
Plug-In	Software	Development	Kit
Version	6
September	18,	2003

Orientation
Introduction
How	to	Use	the	Documentation
What	You	Need	to	Get	Started
Recommended	Reading
Plug-In	Types	Overview

Guidance
Introduction
Fundamental	Concepts	of	the	3ds	max	SDK
Plug-In	Architecture	Overview
Overview	of	the	Principal	Classes
Writing	Plug-In	Applications
Building	the	Sample	Files
Must	Read	Sections	for	All	Developers
Must	Read	Sections	by	Plug-In	Type
What's	New	in	the	3ds	max	4.0	SDK
Required	Changes	to	3ds	max	3.x	Plug-Ins	for	3ds	max	4.0
General	Terminology
Common	Problems	and	Solutions
Advanced	Topics

Reference
Introduction
Typeface	Conventions
Data	Types
Generate	a	Class_ID
Class	Interface
Class	List	by	Category
	

javascript:UniqueId0.Click()

Development	Support
Sparks	Developer	Program
	
Sparks	Developer	Knowledgebase
Sparks	Addin	for	MS	VC++	6	IDE
Sparks	Addin	for	MS	VC++	7	IDE
Sparks	Message	Archives
Sparks	Documentation	Updates
Sparks	Webboard
Sparks	Downloads
Sparks	Incident	Reporting

Introduction
The	3ds	max	Software	Development	Kit	(SDK)	is	an	object-oriented
programming	library	for	creating	plug-in	applications	for	3ds	max.	The	SDK
provides	a	comprehensive	set	of	classes	that	developers	can	combine	and	extend
to	create	seamlessly	integrated	plug-in	applications.
Using	the	SDK	one	can	create	a	great	variety	of	plug-ins.	In	fact,	much	of	3ds
max	itself	is	written	as	plug-in	applications.

How	to	Use	the	Documentation
The	documentation	for	the	SDK	is	an	on-line	help	file.	This	format	provides
easy	hypertext	jumping	between	related	topics.	The	on-line	format	also	allows
developers	to	copy	source	code	from	the	documentation	to	paste	into	plug-ins.
This	is	especially	handy	in	the	Reference	sections.
The	on-line	help	is	broken	into	three	modules:	Orientation,	Guidance,	and
Reference.
The	Orientation	module	gives	you	an	overview	of	how	to	get	started	with	the
SDK.	It	lists	what	hardware	and	software	is	needed	to	develop	3ds	max	plug-in
applications.	This	module	discusses	what	technical	expertise	is	required.	There	is
a	section	on	recommended	reading	in	C++,	CG	and	Windows	programming.
This	module	also	provides	an	introduction	to	the	types	of	plug-ins	developers
may	create	using	the	SDK.	Most	of	the	descriptions	in	this	section	allow
hyperlink	jumps	to	the	main	classes	these	plug-ins	are	derived	from.
Additionally,	relevant	sample	code	available	in	the	SDK	is	listed	here.
The	Guidance	module	is	intended	to	enable	you	to	learn	to	accomplish	a
specific	task.	It	begins	with	a	description	of	the	3ds	max	plug-in	architecture	that
provides	a	diagram	of	the	principal	classes.	There	is	a	section	describing
information	common	to	all	plug-in	development.
There	is	a	section	for	experienced	3D	Studio	IPAS	programmers	making	the
transition	to	MAX.	This	section	discusses	the	similarities	and	differences	in	the
IPAS	and	3ds	max	programming	architectures.	The	changes	in	development
environment,	plug-in/system	control	flow,	user	interface,	and	graphics
programming	support	are	reviewed.	This	section	also	discusses	the	six	types	of
IPAS	routines	possible	under	3D	Studio	DOS	and	how	analogous	plug-ins	may
be	implemented	under	the	3ds	max	architecture.
The	General	Terminology	section	defines	terms	used	throughout	the	SDK
documentation.	These	terms	also	appear	as	popup	help	in	other	parts	of	the
documentation.
The	Advanced	Topics	section	presents	detailed	information	about	key	concepts
in	using	the	APIs.	The	topics	presented	in	this	section	cross	class	boundaries,
and	are	instead	based	on	specific	implementation	issues	developers	need	to
understand	when	designing	plug-ins	for	MAX.	Developers	getting	started	with
the	SDK	should	take	a	look	through	the	various	Advanced	Topics	sections.	This
will	help	in	becoming	familiar	with	what	information	is	available.

The	Reference	module	delivers	comprehensive	reference	information	about
each	class	used	in	the	API.	At	the	beginning	of	each	class	description	is	an
overview	of	the	purpose	of	the	class.	All	the	methods	and	operators	used	by	each
class	are	documented.
This	section	also	has	a	class	list	organized	by	category.	This	provides	an
organized	way	to	jump	to	the	many	classes	in	the	SDK.	These	categories	are:
Main	Plug-In	Classes,	Interface	Classes,	Geometry	Classes,	User	Interface
Classes,	and	Miscellaneous	Utility	Classes.

What	You	Need	to	Get	Started
See	Also:	Recommended	Reading.

Technical	Expertise
In	order	to	use	the	SDK	you	need	to	know	how	to	program	in	C++.	You	should
also	be	familiar	with	object-oriented	programming	concepts.	This	document	can
get	you	started,	but	it	does	not	teach	C++	or	object-oriented	programming.	It
also	assumes	a	basic	understanding	of	the	use	of	3ds	max	and	the	terminology	of
its	user	interface.	This	is	required	to	understand	the	way	the	plug-in	applications
relate	to	the	entire	3ds	max	user	environment.	The	documents	also	refers	to
specific	3ds	max	plug-ins	present	in	the	core	program.	Familiarity	with	these
plug-ins	from	a	users	perspective	will	help	you	understand	the	example	source
code.
It	is	also	assumed	you	are	familiar	with	the	Microsoft	Visual	C++	compiler	and
development	tools.

Software
Microsoft	Windows	NT	version	4.0	or	greater,	including	Windows	2000,	XP.
Microsoft	Visual	C++	version	6.0	(3ds	max	versions	5.1	and	lower).
Microsoft	Visual	C++	version	7.0	(3ds	max	6).

Hardware
The	same	as	required	for	3ds	max	itself.

Recommended	Reading
This	section	lists	several	C++,	Computer	Graphics	and	Windows	books	you	may
find	helpful.

C++	and	Object	Oriented	Programming:
	Bjarne	Stroustrup,	The	C++	Programming	Language	(Second	edition,	Reading,
Massachusetts:	Addison-Wesley	Publishing	Company,	1994),	ISBN:	0-201-
53992-6.
	Bruce	Eckel,	Thinking	in	C++	(Englewood	Cliffs,	New	Jersey:	Prentice	Hall,
Inc.,	1995),	ISBN:	0-13-917709-4.
	Al	Stevens,	Teach	Yourself...	C++	(Fourth	edition,	New	York,	New	York:
MIS:Press).	ISBN	1-55828-406-0.

Computer	Graphics	Programming:
	James	D.	Foley,	Andries	van	Dam,	Steven	K.	Feiner,	and	John	F.	Hughes,
Richard	L.	Phillips,	Introduction	to	Computer	Graphics	(Reading,
Massachusetts:	Addison-Wesley	Publishing	Company,	1993).	ISBN:	0-201-
60921-5.
	John	Vince,	3-D	Computer	Animation	(Reading,	Massachusetts:	Addison-
Wesley	Publishing	Company,	1993).	ISBN:	0-201-62756-6.
	Alan	Watt	and	Mark	Watt,	Advanced	Animation	and	Rendering	Techniques
(Reading,	Massachusetts:	Addison-Wesley,	1992).	ISBN:	0-201-54412-1
	James	D.	Foley,	Andries	van	Dam,	Steven	K.	Feiner,	and	John	F.	Hughes,
Computer	Graphics	Principles	and	Practice	(Second	edition	in	C,	Reading,
Massachusetts:	Addison-Wesely	Publishing	Company,	1995).	ISBN:	0-201-
84840-6.
	Kenton	Musgrave,	Darwyn	Peachey,	Ken	Perlin,	Steven	Worley,	Texturing	and
Modeling	A	Procedural	Approach	(Cambridge,	MA:	Academic	Press,	Inc.,
1994).	ISBN:	0-12-228760-6.	This	book	is	very	applicable	to	3ds	max	texture
plug-in	creation.
	Les	Piegl,	Wayne	Tiller,	The	NURBS	Book	(Berlin	Heidelberg	New	York:
Springer-Verlag,	1995).	ISBN:	3-540-55069-0.	This	book	provides	a	great	deal
of	information	on	B-spline	curves	and	surfaces	(NURBS).
	Gerald	Farin,	Curves	and	Surfaces	for	Computer	Aided	Geometric	Design	:	A
Practical	Guide	(San	Diego,	CA,	1993).	ISBN:	0-12-249052-5.	This	book
provides	information	applicable	to	the	creation	of	spline	and	patch	plug-ins.
	James	D.	Murray	and	William	vanRyper,	Encyclopedia	of	Graphics	File
Formats	(Second	Edition,	O'Reilly	&	Associates,	Inc.,	1996,	1994).	ISBN:	1-
56592-161-5.	This	book	provides	information	about	various	graphic	file
formats	that	are	applicable	to	the	creation	of	image	loader	/	saver	plug-ins.

Windows	Programming:
	Charles	Petzold,	Programming	Windows	95	(Redmond,	Washington:	Microsoft
Press,	1996).	ISBN:	1-55615-676-6.
	Jeffrey	Richter,	Advanced	Windows	The	Developer's	Guide	to	the	Win32	API
for	Windows	NT	3.5	and	Windows	95	(Microsoft	Press,	1995).	ISBN:	1-
55615-677-4.

Plug-In	Types	Overview
See	Also:	Plug-In	Architecture	Overview.
The	following	is	a	brief	description	of	the	categories	of	plug-ins	one	may	create
using	the	3ds	max	Software	Development	Kit.
Sample	code	in	the	SDK	is	available	to	demonstrate	techniques	for	programming
many	of	these	plug-in	types.	Additional	sample	code	is	available	to	Sparks
Developers.	Also	see	the	section	on	Debugging.
The	3ds	max	4.0	SDK	comes	provided	with	an	SDK	appwizard	that	can	be	used
with	Microsoft	Visual	C++.	This	appwizard	allows	you	to	quickly	generate
skeleton	source	code	for	a	variety	of	different	plugin	types	and	essentially
replaced	the	previous	R3_SKELETON	projects	included	in	the	previous	release
of	the	software.
The	generated	code	from	the	appwizard	provides	a	quick	way	to	start	building
plugins.	Each	project	follows	a	standard	structure	with	regard	to	headers	and
code	files.	Developers	should	find	it	easy	to	take	this	generated	code	and	can
start	creating	plugins	without	manually	setting	up	the	entire	project	from	scratch.

Procedural	Objects
Procedural	Objects	are	the	general	class	of	developer-defined	objects	that	can	be
used	in	3ds	max.

Geometric	Objects
These	are	the	only	procedural	objects	that	actually	get	rendered.
Primitives

Primitive	objects	such	as	boxes,	spheres,	cones,	cylinders,	and	tubes	are
implemented	as	procedural	geometric	objects.	These	are	derived	from	class
GeomObject	or	SimpleObject.	Example	code	may	be	found	in
\MAXSDK\SAMPLES\OBJECTS\BOX.CPP,	SPHERE.CPP,
CONE.CPP,	etc.

Particles
Developers	may	create	procedural	object	particle	system	plug-ins.	Some
examples	are	particles	that	depend	upon	procedural	motion	like	fireworks,
explosions,	and	water,	or	particles	that	track	the	surface	of	objects	like
electrical	fields	or	flame.	Applications	can	be	derived	from	ParticleObject
or	SimpleParticle.	Example	code	is	available	in
\MAXSDK\SAMPLES\OBJECTS\RAIN.CPP	and
\MAXSDK\SAMPLES\MODIFIERS\GRAVITY.CPP.

Loft	Objects
The	3ds	max	Lofter	is	implemented	as	a	procedural	object	plug-in.
Developers	may	define	other	modeling	modules	that	fit	this	form.

Compound	Objects
Compound	objects	take	several	objects	and	combine	them	together	to
produce	a	new	object.	Examples	are	Booleans	(which	produce	a	new	object
using	operations	Union,	Intersection	and	Difference)	and	Morph	objects.
Sample	code	for	the	boolean	object	can	be	found	in
\MAXSDK\SAMPLES\OBJECTS\BOOLOBJ.CPP.

Patches
Developers	can	create	patch	modeling	systems	that	work	inside	MAX.	The
TriPatch	and	Patch	Grid	are	examples	of	patch	objects.	These	plug-ins	are
derived	from	PatchObject.	See
\MAXSDK\SAMPLES\OBJECTS\PATCHGRD.CPP,	and
TRIPATCH.CPP	for	sample	code.

NURBS
The	NURBS	API	provides	an	interface	into	the	NURBS	objects	used	by

MAX.	Using	the	API	developer	can	create	new	NURBS	objects	or	modify
existing	ones.	See	the	Advanced	Topics	section	Working	with	NURBS	for
more	information.

Helper	Objects
Helper	objects	are	items	such	as	dummy	objects,	grids,	tape	measurers	and
point	objects.	These	objects	may	be	derived	from	classes	HelperObject	or
ConstObject.	Sample	code	may	be	found	in
\MAXSDK\SAMPLES\OBJECTS\HELPERS\GRIDHELP.CPP,
and	PTHELP.CPP.	See	Class	HelperObject	and	Class	ConstObject.

Shape	Objects
These	are	shapes	such	as	Circles,	Arcs,	Rectangles,	Donuts,	etc.	New	splines
may	be	subclassed	off	SimpleSpline.	Sample	code	may	be	found	in
\MAXSDK\SAMPLES\OBJECTS\CIRCLE.CPP,	ELLIPSE.CPP,
ARC.CPP,	etc.
Procedural	Shapes

These	are	shapes	that	are	defined	procedurally.	An	example	procedural
shape,	Helix,	may	be	found	in
\MAXSDK\SAMPLES\OBJECTS\HELIX.CPP.	When	an	edit
spline	modifier	is	applied	to	a	procedural	shape	it	is	converted	to	splines
with	segments	that	provide	vertices	in	a	linear	approximation	of	the	shape.
This	allows	the	procedural	shape	to	be	edited.	Procedural	shapes	may	be
derived	from	class	SimpleShape.	Other	examples	include	Procedural	lines,
and	Text.
Any	of	these	objects	can	be	edited	with	an	edit	spline	modifier	or	extruded
or	surfrev'd.

Lights
Developers	may	create	custom	plug-in	lights.	There	are	several	classes	from
which	light	plug-ins	may	be	derived.	These	are	LightObject,	and	GenLight.
Example	code	may	be	found	in
\MAXSDK\SAMPLES\OBJECTS\LIGHT.CPP.

Cameras
Developers	may	create	custom	cameras.	The	two	classes	from	which	cameras
may	be	derived	are	CameraObject	and	GenCamera.	An	example	of	a	plug-in
camera	may	be	found	in
\MAXSDK\SAMPLES\OBJECTS\CAMERA.CPP.

Object	Modifiers
Object	modifiers	are	applied	to	objects	in	their	own	local	transform	space	to
modify	them	in	some	way.	Deformations	like	Bend,	Taper,	and	Twist	are
examples	of	Object	Modifier	plug-ins.	Example	code	may	be	found	in
\MAXSDK\SAMPLES\MODIFIERS\BEND.CPP,	TAPER.CPP,	etc.
Extrude	and	Surfrev	are	also	object	modifier	plug-ins.	Sample	code	for	Extrude
can	be	found	in	\MAXSDK\SAMPLES\MODIFIERS\EXTRUDE.CPP.
Developers	may	also	create	surface	modifier	plug-ins	to	alter	smoothing	groups,
texture	coordinates,	and	material	assignments.	See	Class	Modifier	or	Class
SimpleMod.

Edit	Modifiers
These	plug-ins	allow	specific	object	types	to	be	edited.	For	example,	an	Edit
Mesh	modifier	allows	objects	that	can	convert	themselves	into	triangle	meshes
to	be	edited,	while	an	Edit	Patch	modifier	allows	objects	that	can	convert
themselves	into	patches	to	be	edited.	Edit	modifiers	typically	allow	the	user	to
select	sub-object	elements	of	the	object	(vertices	faces	and	edges	in	the	case	of
the	Edit	Mesh	modifier)	and	perform	at	least	the	standard	move/rotate/scale
transformations	to	them.	They	may	also	support	additional	operations	(such	as
the	extrude	option	of	the	Edit	Mesh	modifier).	Example	code	may	be	found	in
\MAXSDK\SAMPLES\MODIFIERS\EDITMESH.CPP.

Space	Warps
Space	Warps	are	basically	object	modifiers	that	affect	objects	in	world	space
instead	of	in	the	object's	local	space	(they	were	originally	called	'world	space
modifiers').	Space	Warps	are	non-rendering	objects	that	affect	other	objects	in
the	scene	based	on	the	position	and	orientation	of	the	other	objects	that	are
bound	to	the	Space	Warp	object.	For	example,	the	Ripple	Space	Warp	applies	a
sine	wave	deformation	to	objects	bound	to	it.	Other	examples	of	Space	Warps
include	things	like	explosions,	wind	fields,	and	gravity.	Sample	code	may	be
found	in	\MAXSDK\SAMPLES\MODIFIERS\SINWAVE.CPP.
Space	warps	are	created	in	the	Creation	branch	of	the	command	panel,	which
makes	them	slightly	different	from	regular	modifiers	(because	they	are
combinations	of	space	warp	objects	and	space	warp	modifiers).
Space	warps	may	also	affect	particle	systems.	For	example,	a	force	field	can	be
applied	to	a	particle	system	by	a	space	warp.	The	force	field	provides	a	function
of	position	in	space,	velocity	and	time	that	gives	a	force.	The	force	is	then	used
to	compute	an	acceleration	on	a	particle	which	modifies	its	velocity.	For	details
see	\MAXSDK\INCLUDE\OBJECT.H,
\MAXSDK\SAMPLES\MODIFIERS\GRAVITY.CPP,	and
\MAXSDK\SAMPLES\OBJECTS\RAIN.CPP.
A	collision	object	can	also	be	applied	to	a	particle	system	by	a	space	warp.	The
collision	object	checks	a	particle's	position	and	velocity	and	determines	if	the
particle	will	collide	with	it	in	the	next	period	of	time.	If	so,	it	modifies	the
position	and	velocity.

Controllers
Controller	plug-ins	are	the	objects	in	3ds	max	that	control	animation.	Controllers
come	in	different	types	based	on	the	data	they	control.	The	most	common
controllers	are	interpolating	or	keyframe	controllers.	Other	controller	types	are
position/rotate/scale,	mathematical	expressions	and	fractal	noise.	Example
controller	code	may	be	found	in
\MAXSDK\SAMPLES\HOWTO\PCONTROL\PCONTROL.CPP,
and	NOIZCTRL.CPP	etc.	Controllers	may	be	derived	from	Class	Control	or
Class	StdControl.

Systems
Systems	are	basically	combinations	of	more	than	one	type	of	procedural	object,
along	with	optional	controllers,	or	modifiers,	or	space	warps	all	working
together.	These	plug-ins	can	provide	high-order	parametric	control	over	very
complex	systems.	An	example	system	is	Biped	which	uses	procedural	objects
and	master/slave	controllers.

File	Import
These	plug-ins	allows	3D	geometry	and	other	scene	data	to	be	imported	and
exported	to	file	formats	other	than	the	3ds	max	format.	An	example	file	import
plug-in	may	be	found	in	\MAXSDK\SAMPLES\IMPEXP\3DSIMP.CPP.
These	plug-ins	are	derived	from	Class	SceneImport.

File	Export
These	plug-ins	allows	3D	geometry	and	other	scene	data	to	be	exported	to	file
formats	other	than	the	3ds	max	format.	Sample	code	may	be	found	in
\MAXSDK\SAMPLES\IMPEXP\3DSEXP.CPP.	These	plug-ins	are
derived	from	Class	SceneExport.

Atmospheric	Plug-Ins
These	plug-ins	are	used	for	atmospheric	effects.	MAX's	Fog,	and	Volume	Fog
are	two	atmospheric	plug-ins.	Certain	particle	system-ish	effects	can	be
accomplished	via	atmospherics	more	efficiently.	For	example,	a	fire	effect	that	is
not	done	with	particles	but	rather	as	a	function	in	3D	space	(the	Combustion
plug-in	is	a	good	example	of	this).	Instead	of	rendering	particles	you	traverse	a
ray	and	evaluate	a	function.	These	plug-ins	typically	use	very	little	memory
relative	to	a	particle	system	equivalent.	Atmospheric	plug-ins	also	have	the
ability	to	reference	items	in	the	scene.	(For	example,	MAX's	Volume	Lights
reference	lights	in	the	scene.)	These	plug-ins	are	derived	from	Class
Atmospheric.

Plug-In	Materials
These	are	additional	developer-defined	material	types.	Examples	are	Standard,
Mix,	and	Multi/Sub-Object	materials.	New	materials	are	subclassed	from	Class
Mtl.	Also	see	the	section	Working	with	Materials	and	Textures.	The	sample	code
for	these	plug-ins	is	in	\MAXSDK\SAMPLES\MATERIALS.

Plug-In	Textures
Procedural	Texture	plug-ins	define	2-	or	3-dimensional	functions	which	can	be
assigned	as	maps	within	the	shader	tree	architecture	of	the	Materials	Editor.
Maps	may	be	assigned	as	ambient,	diffuse,	specular,	shininess,	shininess
strength,	self-illumination,	opacity,	filter	(transmission)	color,	bump,	reflection
and	refraction	maps.	These	functions	may	vary	over	time	to	produce	animated
effects.	There	are	both	2D	and	3D	procedural	textures,	compositors	and	color
modifiers.	These	plug-ins	are	derived	from	Class	Texmap.	Also	see	the	section
Working	with	Materials	and	Textures.	The	sample	code	for	these	plug-ins	is	in
\MAXSDK\SAMPLES\MATERIALS.

2D	Procedural
Examples	of	2D	texture	are	BITMAP.CPP	and	CHECKER.CPP.

3D	Procedural
Examples	of	3D	textures	are	MARBLE.CPP	and	NOISE.CPP.

Compositor
Some	examples	of	compositors	are	MASK.CPP	and	MIX.CPP.

Color	Modifier
An	example	color	modifier	is	RGB	TINT.CPP.
Developers	that	have	created	a	3D	Studio/DOS	SXP	and	a	corresponding	3ds
max	texture	plug-in	may	want	to	have	a	look	at	Class	Tex3D.	It	provides	a
way	to	have	an	instance	of	your	3ds	max	texture	plug-in	created	automatically
when	the	corresponding	SXP	is	found	in	a	3DS	file	being	imported.

Image	Processing	Plug-Ins
Filters
Filters	may	be	used	to	alter	images	in	the	video	post	data	stream.	Filters	may
operate	on	a	single	image	or	may	combine	two	images	together	to	create	a
new	composite	image.	These	plug-ins	are	derived	from	Class	ImageFilter.
Also	see	the	section	Working	with	Bitmaps.
One	Pass	Filter

This	plug-in	type	allows	a	single	image	in	the	video	post	data	stream	to	be
adjusted	in	some	manner.	An	example	plug-in	of	this	type	is
\MAXSDK\SAMPLES\POSTFILTERS\NEGATIVE\NEGATIVE.CPP

Layer	Filter
This	plug-in	allows	two	images	to	be	composited	to	create	a	single	new
image.	An	example	of	this	type	of	plug-in	is
\MAXSDK\SAMPLES\POSTFILTERS\ADD\ADD.CPP	or
\MAXSDK\SAMPLES\POSTFILTERS\ALPHA\ALPHA.CPP.

G	Buffer
A	G-buffer	is	used	to	store,	at	every	pixel,	information	about	the	geometry
at	that	pixel.	All	plug-ins	in	video	post	can	request	various	components	of
the	G-buffer.	When	video	post	calls	the	renderer	it	takes	the	sum	of	all	the
requests	and	asks	the	renderer	to	produce	the	G-buffer.	Developers	can	use
this	information	to	create	visual	effects	that	are	impossible	to	achieve
without	access	to	a	G-buffer.	See	Class	GBuffer.

Rendering	Effects
This	plug-in	type	is	available	in	release	3.0	and	later	only.
There	is	a	new	item	under	the	Rendering	menu	which	displays	the	Rendering
Effects	dialog.	From	this	modeless	dialog,	the	user	can	select	and	assign	a	new
class	of	plug-in,	called	a	"Rendering	Effect,"	which	is	a	post-rendering	image-
processing	effect.	This	lets	the	user	apply	image	processing	without	using	Video
Post,	and	has	the	added	advantage	of	allowing	animated	parameters	and
references	to	scene	objects.	The	base	class	for	these	plug-ins	is	Class	Effect.
Sample	code	is	available	in	the	directory
\MAXSDK\SAMPLES\RENDER\RENDEREFFECT.

Snap	Plug-Ins
This	plug-in	type	is	available	in	release	2.0	and	later	only.
This	plug-in	type	allows	custom	points	to	be	provided	to	the	3ds	max	snapping
system.	For	example	a	door	plug-in	could	provide	a	custom	snap	for	the	hinge
center.	See	Class	Osnap	for	details.	For	sample	code	see
\MAXSDK\SAMPLES\SNAPS\SPHERE\SPHERE.CPP.

Image	Loading	and	Saving	Plug-Ins
Image	loading	and	saving	plug-ins	allow	the	image	file	formats	loaded	and	saved
by	3ds	max	to	be	extended.	An	example	is	the	JPEG	loader	/	saver.	Sample	code
may	be	found	in	the	sub-directories	of	\MAXSDK\SAMPLES\IO.	These
plug-in	types	are	derived	from	Class	BitmapIO.	Device	drivers	are	also	derived
from	this	class.	See	the	sample	code	in
\MAXSDK\SAMPLES\IO\WSD\WSD.CPP.

Utility	Plug-Ins
These	plug-ins	are	useful	for	implementing	modal	procedures	such	as	3D	paint,
dynamics,	etc.	These	plug-ins	are	accessed	from	the	Utility	page	of	the
command	panel.	Example	code	may	be	found	in	the	subdirectory
\MAXSDK\SAMPLES\UTILITIES.	These	plug-ins	are	sub-classes	off
Class	UtilityObj.

Global	Utility	Plug-Ins
This	plug-in	type	is	available	in	release	3.0	and	later	only.
These	simple	utility	plug-ins	are	loaded	at	boot	time,	after	initialization,	but
before	the	message	loop	starts,	and	remain	loaded.	This	is	how	the	new	3ds	max
COM/DCOM	interface	is	implemented.	For	details	see	Class	GUP.

Track	View	Utility	Plug-Ins
These	plug-ins	are	launched	via	the	'Track	View	Utility'	icon	just	to	the	left	of
the	track	view	name	field	in	the	toolbar.	Clicking	on	this	button	brings	up	a
dialog	of	all	the	track	view	utilities	currently	installed	in	the	system.	Most
utilities	will	probably	be	modeless	floating	dialogs,	however	modal	utilities	may
be	created	as	well.	These	can	provide	general	utility	functions	that	operate	on
keys,	time	or	function	curves	in	Track	View.	Sample	code	is	available	in
\MAXSDK\SAMPLES\UTILITIES\RANDKEYS.CPP,
ORTKEYS.CPP	and	SELKEYS.CPP.	These	plug-ins	are	sub-classes	off
Class	TrackViewUtility.

Plug-In	Renderers
Plug-In	renderers	are	derived	from	the	class	Renderer.	The	standard	3ds	max
scanline	renderer	is	itself	derived	from	this	class.	In	a	trivial	sense,	there	are	only
a	few	methods	to	implement	to	create	a	renderer:	Open(),	Render(),	Close(),
ResetParams()	and	CreateParamDlg().	See	Class	Renderer	for	more	details
on	this	plug-in	type.

Shader	Plug-Ins
This	plug-in	type	is	available	in	release	3.0	and	later	only.
This	plug-in	type	works	with	the	new	Standard	material.	It	allows	plug-in
developers	to	add	additional	shading	algorithms	to	the	drop	down	list	of
available	options	(previously	Constant,	Phong,	Blinn,	Metal).	This	was	only
possible	previously	by	writing	an	entire	Material	plug-in	(which	could	be	a
major	undertaking).	See	the	base	class	for	this	plug-in	type	Class	Shader	for
details.

Sampler	Plug-Ins
This	plug-in	type	is	available	in	release	3.0	and	later	only.
This	plug-in	type	works	with	the	Standard	material	of	release	3.	A	Sampler	is	a
plug-in	that	determines	where	inside	a	single	pixel	the	shading	and	texture
samples	are	computed.	The	user	interface	of	Samplers	appears	in	the	Super
Sampling	rollout	in	the	Sampler	dropdown.	See	Class	Sampler	for	details.

Anti-Aliasing	Filter	Plug-Ins
This	plug-in	type	is	available	in	release	3.0	and	later	only.
This	plug-in	type	is	used	for	filtering	and	anti-aliasing	the	image.	Documentation
for	the	base	class	for	these	filters	is	in	Class	FilterKernel.	Sample	Code	is
available	in	the	subdirectory
\MAXSDK\SAMPLES\RENDER\AAFILTERS.

Shadow	Generator	Plug-Ins
This	plug-in	type	is	available	in	release	3.0	and	later	only.
The	generation	of	shadows	is	accessible	via	this	plug-in	type.	The	standard	3ds
max	mapped	and	raytraced	shadows	have	are	plug-ins	of	this	form.	See	Class
ShadowType	and	ShadowGenerator	for	details.	There	is	also	a	handy	class	for
creating	shadow	map	buffers.	See	Class	ShadBufRenderer.

Sound	Plug-In
A	sound	plug-in	can	take	control	of	sound/music	production	in	MAX.	These
plug-ins	control	not	only	the	sounds	they	generate	but	also	the	system	clock.
They	can	thus	coordinate	the	timing	of	external	sound	input	/	output	devices
with	the	animation.	Sound	plug-ins	can	provide	their	user	interface	as	part	of	the
3ds	max	Track	View.
Sound	plug-ins	are	derived	from	Class	SoundObj.

Color	Selector	Plug-In
This	plug-in	type	is	available	in	release	3.0	and	later	only.
This	plug-in	type	provides	the	user	with	a	custom	color	picker	that	appears
whenever	a	standard	3ds	max	color	swatch	control	is	clicked.	These	plug-ins	are
selected	in	the	General	tab	of	the	Preferences	dialog.	The	color	picker	chosen	is
saved	in	the	3DSMAX.INI	file	in	the	"ColorPicker"	section	so	that	the	choice	is
maintained	between	sessions.	If	the	DLL	for	the	selected	color	picker	is	not
available,	it	will	always	default	back	to	the	"Default"	color	picker.	See	Class
ColPick	for	details.

Front	End	Controllers
These	plug-ins	allow	a	developer	to	completely	take	over	the	3ds	max	user
interface.	This	includes	the	toolbar,	pulldown	menus,	and	command	panel.	See
Class	FrontEndController	for	details.

Motion	Capture	Input	Devices
Motion	Capture	Input	Device	plug-ins	can	now	be	written	that	plug-in	to	the	3ds
max	motion	capture	system.	See	Class	IMCInputDevice	for	details.	Sample	code
is	available	in	the	subdirectory	\MAXSDK\SAMPLES\MOCAP.

Image	Viewer	Plug-In
An	image	viewer	is	available	from	the	3ds	max	File	menu	under	View	File.	A
developer	may	replace	the	viewer	DLL	launched	by	this	command	to	provide
enhanced	functionality	for	image	browsing.	The	source	code	for	this	viewer	is	in
\MAXSDK\SAMPLES\VIEWFILE\VIEWFILE.CPP.	This	plug-in	is
derived	from	Class	ViewFile.

Notification	Program
There	is	a	program	whose	source	code	is	in
\MAXSDK\SAMPLES\UTILITIES\NOTIFY\NOTIFY.CPP.	This
program	gets	invoked	by	the	network	manager	to	handle	network	progress
notifications.
A	developer	may	write	another	"Notify"	program	in	order	to	do	any	proprietary
type	of	notifications.	Note	that	"Notify"	can	be	either	a	"*.exe",	a	"*.bat",	or	a
"*.cmd"	executable.	This	allows	a	user	to	create	a	simple	script	file	to	do
something	without	having	to	resort	to	writing	a	binary	program.
The	current	Notify.exe	is	very	simple	as	it	is	used	simply	as	a	demonstration.	It
plays	a	different	wave	file	for	each	of	the	event	types.	If	invoked	with	no
command	line,	it	will	bring	up	a	dialog	box	asking	the	user	to	define	each	of	the
three	wave	files.	The	dialog	has	"Browse"	buttons	next	to	each	wave	file	field
which	puts	the	user	right	into	the	Windows'	"Media"	directory	where	wave	files
are	saved.	There	are	also	"play"	buttons	next	to	each	sound	so	they	can	be	tested.

Guidance	Introduction
This	module	of	the	documentation	is	intended	to	enable	a	developer	to	learn	to
accomplish	a	specific	task	in	programming	3ds	max.	There	is	a	section	on	the
3ds	max	plug-in	architecture	that	provides	a	diagram	of	the	principal	classes.
There	is	a	section	describing	information	common	to	all	plug-in	development.
This	module	provides	How	To	sections	for	several	of	the	plug-in	types	including
procedural	objects,	object	space	modifiers,	space	warps,	controllers	and	system
plug-ins.	These	sections	include	commented	source	code	and	descriptions	of
categories	of	methods	developers	must	implement	to	create	each	plug-in	type.
There	is	a	section	for	experienced	3D	Studio	IPAS	programmers	making	the
transition	to	MAX.	This	section	discusses	the	similarities	and	difference	in	the
IPAS	and	3ds	max	programming	architectures.	The	changes	in	development
environment,	plug-in/system	control	flow,	user	interface,	and	graphics
programming	support	are	reviewed.	This	section	also	discusses	the	six	types	of
IPAS	routines	possible	under	3D	Studio	DOS	and	how	they	may	be	implemented
under	the	3ds	max	plug-in	architecture.
The	General	Terminology	section	defines	terms	used	throughout	the	SDK
documentation.	These	terms	also	appear	as	popup	help	in	other	parts	of	the
documentation.
The	Advanced	Topics	section	presents	detailed	information	about	key	concepts
in	using	the	APIs.	The	topics	presented	in	this	section	cross	class	boundaries,
and	are	instead	based	on	specific	implementation	issues	developers	need	to
understand	when	designing	plug-ins	for	MAX.	Developers	getting	started	with
the	SDK	should	take	a	look	through	the	various	Advanced	Topics	sections	to
become	familiar	with	what	information	is	available.
There	is	also	a	section	on	commonly-encountered	problems	and	solutions.

Plug-In	Directory	Search	Mechanism
See	Also:	DLL	Functions	and	Class	Descriptors.
This	section	discusses	the	system	3ds	max	uses	to	search	for	plug-in	DLLs.	This
includes	path	searching	and	the	standard	file	name	extensions	required	by	plug-
ins.

DLL	Path	Search
In	the	root	directory	with	the	3ds	max	executable	is	a	file	PLUGIN.INI.	This
file	contains	a	one-line	entry	for	each	plug-in	search	location.	When	3ds	max
begins	execution	it	searches	each	path	listed	in	this	file	looking	for	plug-in
DLLs.	When	a	plug-in	DLL	is	found	it	is	loaded.	This	system	allows	developers
to	store	their	plug-ins	in	whatever	sub-directory	structure	they	wish.	The	format
for	the	PLUGIN.INI	file	is:
Descriptive	Text=Search	Path

Here's	what	a	sample	PLUGIN.INI	might	look	like:
Standard	MAX	plug-ins=C:\3DSMAX\STDPLUGS
Miscellaneous	free	plug-ins=C:\3DSMAX\MISCPLUG

From	the	3ds	max	File	menu	is	a	choice	Configure	Paths...	The	dialog	page	for
Plug	Ins	lists	the	paths	defined	in	PLUGIN.INI.	The	user	may	use	the
interactive	tools	in	this	page	to	edit	PLUGIN.INI	and	add	or	remove	search
paths.	Manual	maintenance	shouldn't	be	required	often,	however,	since	a	plug-
in's	install	routine	can	automatically	write	a	string	to	the	PLUGIN.INI	file	that
contains	all	the	information	required	after	creating	the	sub-directory	and	copying
its	files	into	it.	Mostly,	manual	maintenance	will	be	used	to	create	directories	for
freebie	plug-ins,	and	to	de-install	directories	for	plug-ins	that	are	no	longer	used.

Standard	File	Name	Extensions
There	are	certain	file	name	extensions	that	plug-in	DLLs	must	use.	3ds	max	uses
these	standard	extensions	as	part	of	its	search	algorithm	to	determine	which	files
it	will	attempt	to	load.	Below	is	a	list	of	the	extensions	and	the	plug-in	types
associated	with	each	one:
BMI	-	Bitmap	Manager	IO	DLLs.
BMF	-	Bitmap	Manager	Filter	Plug-Ins.
BMS	-	Bitmap	Manager	Storage	DLLs.
DLB	-	Shader	Plug-Ins.
DLC	-	Controllers.
DLE	-	Scene	Export	Plug-Ins.
DLF	-	Font	Loaders.
DLH	-	Sampler	Plug-Ins
DLI	-	Scene	Import	Plug-Ins.
DLK	-	Filter	Kernels	(Anti-aliasing	filters)
DLM	-	Modifiers.
DLO	-	Procedural	Objects.
DLR	-	Renderers.
DLS	-	Object	Snap	Plug-Ins.
DLT	-	Materials	and	Textures.
DLU	-	Utility	Plug-Ins.
DLV	-	Rendering	Effects
FLT	-	Image	Filter	Plug-Ins.
GUP	-	Global	Utility	Plug-Ins.
	

Note	that	it	is	acceptable	to	have	several	different	plug-in	types	present	in	a
single	DLL.	As	long	as	the	DLL	uses	one	of	the	file	name	extensions	listed
above,	3ds	max	will	load	ALL	the	plug-ins	present.	For	example,	if	a	developer
created	a	system	plug-in	using	both	a	procedural	object	and	a	controller,	he	or
she	could	place	them	both	in	the	same	DLL.	3ds	max	would	load	them	all
(provided	the	file	name	extension	matched	one	of	those	above).

Plug-In	Help	System
Plug-In	developers	may	add	on-line	help	for	their	applications	and	make	this
available	to	users	via	the	3ds	max	Help	menu.
From	the	3ds	max	Help	menu	is	a	choice	Plug-in	Help...	When	selected,	this
brings	up	a	dialog	with	a	list	of	installed	help	systems.	The	user	may	select	one
(by	double-clicking	or	selecting	and	clicking	on	Display	Help)	and	that	help
system's	main	menu	will	be	activated.
Help	files	for	plug-ins	are	specified	in	a	separate	[Help]	section	of	the
PLUGIN.INI	file.	The	syntax	is:
Description	of	the	helpfile=C:\PATH\TO\FIND\THE\HELPFILE.HLP
The	description	is	the	string	that	will	appear	in	the	list	that	pops	up	when	you
select	Plug-in	Help,	and	the	specified	.HLP	file	will	be	loaded	when	the	user
asks	to	see	the	help.

For	example,	the	following	lines	added	to	PLUGIN.INI	would	add	the	SDK
Help	file	to	the	list	of	choices.
[Help]
SDK	Help=C:\MAXSDK\HELP\SDK.HLP

Note:	For	3ds	max	2.5	and	later,	developers	may	use	help	files	in	either	.HLP
(WinHelp)	or	.CHM	(HTMLHelp)	formats.

Plug-In	Configuration	System
Developers	often	need	to	store	configuration	files	for	use	with	their	plug-in
applications.	There	is	a	standard	location	defined	for	these	files.	This	allows	a
3ds	max	user	to	have	all	their	configuration	files	stored	together	and	not	spread
around	different	hard-to-find	locations.
The	standard	location	is	the	PlugCFG	directory	off	the	3ds	max	root	directory.
This	location	may	be	changed	by	a	user	using	the	Files	/	Configure	Paths...	menu
command.	The	developer	should	retrieve	the	location	of	this	directory	using	the
GetDir(APP_PLUGCFG_DIR)	method	of	the	BitmapManager	class	or
the	Interface	class.
The	following	samples	code	from
\MAXSDK\SAMPLES\IO\WSD\WSD.CPP	demonstrates	one	approach	a
developer	may	use	to	read	and	write	configuration	files:
#define	WSDCONFIGNAME	_T("wsd.ini")
#define	WSDSECTION	_T("Default	State")
#define	WSDHOSTKEY	_T("Hostname")
#define	WSDSYSKEY	_T("System")
#define	WSDDEFAULT	_T("accom")
#define	WSDDEFSYS	_T("ntsc")
//	GetCfgFilename()
void	BitmapIO_WSD::GetCfgFilename(TCHAR	*filename)	{
	_tcscpy(filename,TheManager->GetDir(APP_PLUGCFG_DIR));
	int	len	=	_tcslen(filename);
	if	(len)	{
		if	(_tcscmp(&filename[len-1],_T("\\")))
			_tcscat(filename,_T("\\"));
	}
	_tcscat(filename,WSDCONFIGNAME);
}
Note:	The	GetPrivateProfileString	function	retrieves	a	string	from	the
specified	section	in	an	initialization	file.	This	function	is	part	of	the	Windows
API.	See	the	Windows	API	on-line	help	for	more	details.
//	ReadCfg()

int	BitmapIO_WSD::ReadCfg()	{
	TCHAR	filename[MAX_PATH];
	TCHAR	system[64];
	GetCfgFilename(filename);
	int	res	=
GetPrivateProfileString(WSDSECTION,WSDHOSTKEY,WSDDEFAULT,
											hostname,MAX_PATH,filename);
	if	(res)	{
	
GetPrivateProfileString(WSDSECTION,WSDSYSKEY,WSDDEFSYS,
												system,64,filename);
	}	else	{
		_tcscpy(system,WSDDEFSYS);
	}
	if	(!_tcscmp(system,WSDDEFSYS))	{
		ntsc	=	TRUE;
		height	=	486;
	}	else	{
		ntsc	=	FALSE;
		height	=	576;
	}
	return	(res);
}
Note:	The	WritePrivateProfileString	function	copies	a	string	into	the
specified	section	of	the	specified	initialization	file.	This	function	is	part	of	the
Windows	API.	See	Windows	API	on-line	help	for	more	details.
//	WriteCfg()
void	BitmapIO_WSD::WriteCfg()	{
	TCHAR	filename[MAX_PATH];
	TCHAR	system[64];
	if	(ntsc)
		_tcscpy(system,WSDDEFSYS);
	else
		_tcscpy(system,_T("pal"));

	GetCfgFilename(filename);
	WritePrivateProfileString(WSDSECTION,WSDHOSTKEY,hostname,filename);
	WritePrivateProfileString(WSDSECTION,WSDSYSKEY,system,filename);
}

Plug-In	Architecture	Overview
See	Also:	Overview	of	the	Principal	Classes
The	SDK	is	a	set	of	C++	classes	and	related	routines.	Writing	a	plug-in	involves
creating	objects	from	the	classes	and	implementing	methods	to	allow
communication	between	the	plug-in	and	the	system.	In	addition	to	using	the
provided	SDK	classes,	you	can	integrate	new	classes	seamlessly	into	the	SDK
framework.
Most	of	the	SDK	classes	inherit	from	three	=	4)
BSPSPopupOnMouseOver(event);;">abstract	base	classes.	The	root	class	of
these	three	is	called	Animatable.	It	defines	most	of	the	animation	and	track	view-
related	methods.	Derived	from	Animatable	is	ReferenceMaker.	This	class	allows
you	to	make	references	to	other	objects.	Derived	from	ReferenceMaker	is
ReferenceTarget.	A	reference	is	a	two-way	link	between	objects	in	the	scene.	It
creates	an	official	record	of	the	dependencies	between	the	ReferenceMaker	and
the	ReferenceTarget.	Its	primary	function	is	to	allow	a	reference	target	to	inform
its	dependent	reference	maker	that	it	has	changed	in	some	way.
Classes	that	don't	inherit	from	Animatable	are	primarily	those	that	don't	deal
with	animation.	For	example,	the	Interface	class	provides	a	mechanism	for	plug-
ins	to	call	functions	in	3ds	max	itself.	The	Interface	class	is	not	derived	from
Animatable.
The	following	diagram	shows	the	inheritance	tree	of	the	principal	public	classes
in	the	SDK.	The	base	classes	(classes	that	do	not	have	parents)	are	shown	at	the
top,	and	the	inheritance	hierarchy	proceeds	toward	the	bottom	and	to	the	right.

javascript:BSSCPopup('idx_abstract_class.htm');

Class	Hierarchy

Writing	Plug-In	Applications
See	Also:	Main	Plug-In	Classes.
This	section	presents	information	common	to	developing	all	3ds	max	plug-in
applications.	It	discusses	the	sample	files,	the	plug-in	directory	search
mechanism,	the	plug-in	help	system,	the	configuration	file	system,	the	standard
DLL	functions,	and	creating	thread-safe	plug-ins.
Included	with	the	SDK	are	sample	programs	that	provide	many	examples	of	how
to	write	plug-in	applications.	These	sample	programs	are	found	in	the	sub-
directories	of	\MAXSDK\SAMPLE.	You'll	find	it	very	instructive	to	examine
the	source	code	of	these	examples.	The	section	on	Building	the	Sample	Files	has
more	detailed	information	on	the	sample	programs	available.
3ds	max	plug-ins	are	implemented	as	dynamic	link	libraries	(DLLs).	DLLs	are
object	code	libraries	that	let	multiple	programs	share	code,	data,	and	resources.
Dynamic	linking	allows	an	executable	module	to	include	only	the	information
needed	at	run	time	to	locate	the	executable	code	for	a	DLL	function.	This	type	of
linking	differs	from	the	more	familiar	static	linking,	which	requires	a	copy	of	a
library	function's	executable	code	in	the	executable	module	of	each	application
using	it.
The	development	tool	for	creating	these	DLLs	is	Microsoft	Visual	C++.	For	a
description	of	how	to	create	a	new	project	file	see	the	Advanced	Topics	section
Creating	a	New	Plug-In	Project.
Developers	may	store	their	plug-in	DLLs	in	any	location	they	wish.	Developers
need	to	let	3ds	max	know	where	to	search	for	the	DLLs.	How	this	is	done	is
discussed	in	the	section	Plug-In	Directory	Search	Mechanism.
Plug-In	developers	may	add	on-line	help	for	their	applications	and	make	this
available	to	users	via	the	3ds	max	Help	menu.	See	the	section	Plug-In	Help
System	for	more	details.
There	is	a	standard	location	for	developers	to	save	any	configuration	files
required	by	their	plug-in	application.	These	may	be	.INI	files,	binary
configuration	files	or	whatever	is	needed.	See	the	section	Plug-In	Configuration
System	for	details.

Standard	DLL	Functions
There	are	a	standard	set	of	functions	that	ALL	plug-in	DLLs	must	implement.
These	functions	are:
DLLMain()
LibDescription()
LibNumberClasses()
LibClassDesc()
LibVersion()
These	functions	allow	3ds	max	to	access,	work	with,	and	maintain	the	plug-ins
inside	the	DLL.	To	review	the	full	details	of	these	functions,	see	the	Advanced
Topics	section	DLL	Functions	and	Class	Descriptors

Reentrant	and	Thread	Safe	Plug-Ins
3ds	max	plug-ins	must	be	'Reentrant'	and	'Thread	Safe'.	See	the	Advanced
Topics	section	Thread	Safe	Plug-Ins	for	more	information.

Building	the	Sample	Files
See	Also:	Main	Plug-In	Classes.

Overview
The	SDK	provides	sample	code	for	many	of	the	plug-in	types.	This	section
discusses	the	procedure	to	build	and	run	the	sample	plug-ins	included	in	the
SDK.	All	the	sample	code	is	located	in	the	sub-directories	of
\MAXSDK\SAMPLES.	A	MAK	file	is	provided	to	build	each	sample.
Each	MAK	file	has	several	configurations	within	it.	There	is	a	Release
configuration,	and	a	Hybrid	configuration.	In	the	special	developer	SDK
available	to	registered	developers	(See	Debugging)	there	is	an	extra	Debug
configuration.	Developers	may	use	any	of	these.	Developers	using	the	standard
SDK	should	use	the	Hybrid	configuration	for	source	level	debugging	and	the
Release	configuration	for	distribution	code.	The	plug-ins	that	ship	with	3ds	max
were	created	using	the	Release	configuration.
These	configurations	differ	based	on	their	optimization	of	the	code,	their
inclusion	of	debug	symbols,	and	their	use	of	runtime	libraries.
The	Release	configuration	creates	optimized	code	while	the	other	configurations
do	not.
Both	the	Hybrid	and	the	Debug	configurations	contain	debug	symbols	useful	in
source	level	debugging.	The	Release	configuration	does	not	include	debug
symbols.
The	Release	and	Hybrid	configurations	both	use	the	same	runtime	libraries.
These	are	called	Multithreaded	DLL	in	VC++.	The	Debug	configuration	uses
a	different	one,	the	Debug	Multithreaded	DLL	library.	The	difference	is	the
Debug	configuration	uses	a	different	heap	to	track	memory.	The	non	debug
libraries	use	the	same	heap	as	regular	release	code.	The	issue	is	that	heaps
cannot	be	mixed	and	matched.	This	is	why	a	special	Debug	version	of	3ds	max
is	required	to	use	the	special	Debug	configuration.
Developers	using	the	standard	SDK	should	use	the	Hybrid	configuration	for
debugging	and	the	Release	configuration	for	distribution	code.

Building	the	Samples
The	MAK	files	assume	the	SDK	is	installed	in	the	\MAXSDK	directory	off	the
root	of	the	drive.
The	MAK	files	also	assume	that	the	directory	to	store	the	3ds	max	plug-ins	is
\MAXSDK\PLUGIN.	If	this	is	not	where	you	wish	to	put	them	you	will	need
to	change	the	output	file	directory.	Load	the	MAK	file	by	choosing	File	/	Open
Workspace...	changing	the	List	File	of	Type...	to	*.MAK	and	selecting	the
MAK	file.
1	From	the	Build	pull	down	menu	choose	Settings...
2	From	the	Project	Settings	dialog	box	choose	the	Link	Tab.
3	Under	Output	File	Name:	Enter	the	path	to	the	desired	plug-in	directory	and
the	output	file	name.

To	build	one	of	the	sample	projects:
1	Load	the	MAK	file	into	VC++.
2	From	the	Build	menu	choose	Rebuild	All.	This	will	compile	and	link	the
plug-ins	in	the	MAK	file.	Note	that	this	process	will	overwrite	any	plug-in
DLLs	with	the	same	name	in	the	destination	directory.

Running	The	Sample	Programs
Important	Note:	The	SDK	plug-ins	are	the	same	as	the	standard	3ds	max	plug-
ins.	If	you	want	to	run	the	samples	you	should	copy	the	plug-in	from	the
\MAXSDK\PLUGIN	directory	to	your	\3DSMAX\STDPLUGS	directory.
This	will	replace	the	standard	3ds	max	plug-in	with	the	SDK	version.	If	you	try
to	load	them	both	(i.e.	put	them	in	separate	directories	and	tell	3ds	max	to	load
plug-ins	from	each	of	these	directories)	you'll	have	a	Class_ID	conflict.	3ds	max
will	not	load	two	plug-ins	that	have	the	same	Class_ID.	It	will	only	load	the	first
one	and	put	up	a	warning	about	the	second	one.
Another	option	is	to	change	the	Class_ID	used	in	the	sample	code	before	it	is
compiled.	3ds	max	may	then	load	both	plug-ins.	For	more	information	on
Class_IDs	see	the	section	DLL	Functions	and	Class	Descriptors.

Ready	To	Build	Plug-In	Projects
The	3ds	max	4.0	SDK	comes	provided	with	an	SDK	appwizard	that	can	be	used
with	Microsoft	Visual	C++.	This	appwizard	allows	you	to	quickly	generate
skeleton	source	code	for	a	variety	of	different	plugin	types	and	essentially
replaced	the	previous	R3_SKELETON	projects	included	in	the	previous	release
of	the	software.
The	generated	code	from	the	appwizard	provides	a	quick	way	to	start	building
plugins.	Each	project	follows	a	standard	structure	with	regard	to	headers	and
code	files.	Developers	should	find	it	easy	to	take	this	generated	code	and	can
start	creating	plugins	without	manually	setting	up	the	entire	project	from	scratch.

Must	Read	Sections	for	All	Developers
See	Also:	Must	Read	Sections	by	Plug-In	Type,	Advanced	Topics.
The	following	sections	in	the	help	file	should	be	read	by	all	developers.	These
are	fundamental	issues	every	programmer	needs	to	understand	to	write	plug-ins
for	MAX.

DLL/Lib	Functions	and	Class	Descriptors
All	3ds	max	Plug-Ins	must	implement	these	DLL	and	Library	functions.
Memory	Allocation
This	section	discusses	how	plug-ins	are	allocated	and	deallocated	in	memory.
Intervals
Intervals	are	an	object	in	3ds	max	that	describe	a	range	of	time.	They	are	a
key	concept	in	understanding	animation	in	MAX.
Geometry	Pipeline	System
The	Geometry	Pipeline	is	a	system	used	by	all	plug-ins	that	deal	with
geometry.
Sub-Anims
The	hierarchy	of	animatable	items	that	appears	in	Track	View	is	referred	to
as	the	sub-anim	hierarchy.	This	section	documents	how	a	plug-in	provides
access	to	it's	sub-anims.
References
The	concept	of	a	reference	is	what	allows	parts	of	3ds	max	that	relate	to	one
another	to	communicate	to	manage	the	relationship.	This	section	presents
information	on	how	this	works.
Nodes
Nodes	are	the	items	in	the	3ds	max	that	have	a	one	to	one	correspondence
with	objects	in	the	scene.	This	section	provides	information	on	nodes.
Custom	User	Interface	Controls
This	section	describes	the	custom	controls	developers	may	use	in	their	user
interface	design.
Parameter	Blocks
Parameter	Blocks	are	the	objects	in	3ds	max	that	help	to	manage	the
variables	that	a	plug-in	uses	to	store	animated	values.
Parameter	Maps

Parameter	Maps	are	used	to	simplify	the	programming	effort	required	to
manage	the	user	interface	of	a	plug-ins	parameters.
Matrix	Representations	of	3D	Transformations
Matrices	are	used	in	3ds	max	to	represent	various	transformation.	This
section	explain	how	they	work.
Rotation	Concepts
This	section	provides	information	on	some	of	the	classes	that	deal	with
rotation.

Must	Read	Sections	by	Plug-In	Type
See	Also:	Must	Read	Section	for	All	Developers,	Plug-In	Types	Overview.
The	following	sections	in	the	help	file	are	those	that	should	be	read	by
developers	creating	a	certain	plug-in	type.	This	is	simply	an	aide	to	point	you	at
the	relevent	sections	that	must	be	understood	to	create	a	specific	kind	of	plug-in.

Atmospheric
Working	with	Bitmaps
Working	with	Lights
Working	with	Materials
References

Controllers
Keyframe	and	Procedural	Controller	Data	Access
Node	and	Object	Offset	Transformations

File	Import	/	File	Export
Geometry	Pipeline	System
Working	with	Controllers
Keyframe	and	Procedural	Controller	Data	Access
Node	and	Object	Offset	Transformations
Object	Creation	Methods
Computing	Face	and	Vertex	Normals
References
Nodes

Image	Loading	and	Saving
Working	with	Bitmaps

Image	Processing	(Filters)
Working	with	Bitmaps

Materials
Working	with	Bitmaps
Working	with	Materials
References
Sub-Anims

Object	Modifiers
Geometry	Pipeline	System
Object	Modification

References
Sub-Anims

Procedural	Objects
Geometry	Pipeline	System
Object	Modification
References
Sub-Anims

Renderer
Geometry	Pipeline	System
Working	with	Bitmaps
Working	with	Lights
Working	with	Materials
References
Sub-Anims

Space	Warps
Space	Warps	Plug-Ins
Geometry	Pipeline	System
Object	Modification
References
Sub-Anims

System
Geometry	Pipeline	System
Working	with	Controllers
References
Sub-Anims

Texture	Maps
Working	with	Bitmaps
Working	with	Materials
References
Sub-Anims

Track	View	Utilities
Track	View

Fundamental	Concepts	of	the	MAX	SDK
See	Also:	Must	Read	Section	for	All	Developers,	Advanced	Topics.

Overview
This	section	provides	an	overview	of	the	fundamental	concepts	involved	in	using
the	SDK.	It	provides	an	explanation	of	many	of	the	basic	issues	that	developers
deal	with	while	creating	plug-in	applications.
The	SDK	provides	tremendous	control	over	almost	all	aspects	of	MAX.	For	this
reason,	there	is	a	lot	of	information.	However,	broken	down	into	smaller	parts,
things	aren't	complex.	This	section	will	discuss	most	of	the	basic	issues	in	simple
terms,	and	has	hyperlinks	to	the	sections	in	the	SDK	that	contain	more	detailed
information.

The	Object	Oriented	Philosophy	of	MAX
3ds	max	can	be	thought	of	as	an	operating	system	for	3D	graphics.	What	a	user
is	doing	when	running	MAX,	for	the	most	part,	is	using	plug-ins.	Almost	all
areas	of	3ds	max	are	open	to	developers,	and	the	3ds	max	programmers	use	the
same	SDK	and	tools	as	third-party	developers.
Instances	of	the	plug-in	classes	developer	create	are	called	Objects.	The	way
that	they	can	be	built	independent	of	one	another,	yet	work	together	to	function
as	an	system,	is	what	makes	the	3ds	max	plug-in	architecture	so	powerful.	The
biggest	impact	this	object	oriented	design	has	on	developers	is	that	one	can
develop	plug-ins	independently,	without	having	to	know	or	worry	about	how	the
other	plug-ins	are	going	about	their	tasks.	Developers	do	have	to	understand	the
3ds	max	Reference	Architecture,	however.	The	Reference	Architecture
(discussed	later	in	this	topic)	is	the	system	that	allows	all	the	plug-ins	to
communicate.

Plug-In	Types
All	of	the	following	areas	of	3ds	max	are	implemented	as	plug-ins:	shapes	and
splines,	patch	objects,	particle	systems,	modifiers,	space	warps,	lights,	cameras,
bitmaps,	texture	maps,	materials,	image	filters	and	compositors,	animation
controllers,	file	import/export	utilities,	atmospheric	effects,	renderers,	and	sound
support.
For	a	list	of	all	the	plug-in	types	that	can	be	developed	with	the	SDK	see	the
topic	Plug-In	Types	Overview.

MAX	Plug-Ins	and	the	Tools	for	Creating	Them
This	section	describes	the	type	of	executable	used	for	3ds	max	plug-ins	and	the
tools	used	to	create	them.
Plug-Ins	for	3ds	max	are	developed	with	Microsoft	Visual	C++.	Plug-ins	are
implemented	as	Windows	Dynamic	Link	Libraries	(DLLs).	A	dynamic-link
library	(DLL)	is	an	executable	file	that	acts	as	a	shared	library	of	functions.
Dynamic	linking	provides	a	way	for	a	process	to	call	a	function	that	is	not	part	of
its	executable	code.	The	executable	code	for	the	function	is	located	in	a	DLL,
which	contains	one	or	more	functions	that	are	compiled,	linked,	and	stored
separately	from	the	processes	that	use	them.
For	step	by	step	information	on	how	to	set	up	a	new	plug-in	project	using	Visual
C++	see	the	section	Creating	a	New	Plug-In	Project	(this	includes	information
on	the	AppWizard	that's	availalble	to	quickly	create	projects).	For	information
on	debugging	plug-ins	using	the	Visual	C++	debugger	see	the	topic	Debugging.
Once	your	plug-in	is	working	you	can	optimize	it	for	speed.	See	the	section	on
Profiling	Plug-in	Performance	for	this	information.
An	additional	tool	that	is	helpful	in	searching	for	information	on	specific
methods	in	the	C++	source	code	is	\MAXSDK\HELP\SDKLINK.ZIP.	This
tool	launches	the	SDK	online	help	and	jumps	directly	to	the	reference
information	on	the	selected	method.	To	use	this	program	unzip	it	and	review	the
installation	and	use	instructions	in	the	README.DOC	file.
There	is	also	a	file,	USERTYPE.DAT,	which	can	be	used	to	enable	syntax
highlighting	of	user	defined	keywords	in	VC++	6.0	IDE.	This	can	make
browsing	and	writing	code	that	much	more	enjoyable.	This	file	lets	you	get	all
the	3ds	max	methods	and	definitions	highlighted	in	a	custom	color	inside	of
Visual	C++	(like	the	colored	C/C++	keyword	you	have	now).
To	put	this	tool	in	place,	copy	the	file	\MAXSDK\HELP\USERTYPE.DAT
into	the	\DevStudio6\Common\MSDev98\Bin	directory.	After	restarting
VC++,	you	can	then	change	the	color	of	3ds	max	keywords	by	modifying	the
color	under	Tools/Options/Format/Colors/User	Defined	Keywords.	It	is
recommended	that	you	choose	a	different	color	than	the	color	assigned	to
Tools/Options/Format/Colors/Keywords,	which	are	specific	to	C++.	Having	two
different	color	patterns	aids	in	your	understanding	of	the	code.

The	C++	Class	Hierarchy
This	section	describes	the	hierarchy	of	C++	classes	used	to	develop	plug-ins.
C++	classes	are	used	by	3ds	max	because	of	their	efficiency.	When	a	plug-in	is
linked	directly	into	the	parent	program,	as	it	is	with	Windows	DLLs,	program
flow	can	proceed	directly	from	3ds	max	into	the	plug-in.	The	plug-in	and	3ds
max	share	memory	and	can	directly	access	one	another's	data.
The	majority	of	3ds	max	plug-ins	are	related	to	modeling,	animation	and
rendering.	These	plug-ins	are	generally	derived	from	a	series	of	base	classes	that
provide	common	characteristics	such	as	the	ability	to	appear	in	Track	View	and
the	ability	of	the	plug-ins	to	communicate	with	one	another	as	they	are	modified
and	changed.

Three	Base	Classes	of	the	MAX	Class	Hierarchy
At	the	base	level	of	this	hierarchy	is	the	animation	related	class	named
Animatable.	The	primary	methods	of	this	class	relate	to	appearing	in	Track
View	and	dealing	with	memory	management.	Derived	from	Animatable	are
two	classes	used	in	the	communication	between	different	parts	of	MAX.
These	are	ReferenceMaker	and	ReferenceTarget.	These	two	classes	are
used	to	facilitate	communication	between	dependent	objects	in	MAX.	This	inter-
object	communication	is	described	later	in	this	topic.
There	are	other	plug-ins	that	are	not	derived	from	these	classes.	Generally,	these
are	items	that	don't	directly	relate	to	animation.	For	instance,	import	/	export
plug-ins	simply	get	data	in	and	out	of	MAX.	They	don't	appear	in	Track	View,
and	function	independently	of	other	plug-ins.
For	a	more	complete	look	at	the	class	hierarchy	see	the	section	Plug-In
Architecture	Overview.	For	a	summary	of	the	main	methods	of	these	classes	see
Overview	of	the	Principal	Classes.

How	Plug-Ins	Interact	with	MAX
This	section	discusses	the	ways	3ds	max	calls	functions	provided	by	the	plug-in,
and	how	plug-ins	can	call	functions	provided	by	MAX.
Plug-ins	are	derived	from	a	base	class	provided	by	MAX.	For	example,	if	you
wanted	to	develop	a	geometric	object	plug-in	you	might	derive	your	class	from
class	SimpleObject	as	shown	below.
	class	MyGeomObject	:	public	SimpleObject	{
		//	...

};
The	3ds	max	header	files	include	the	definition	of	the	SimpleObject	class.	It	is
your	responsibility	as	the	programmer	to	provide	implementations	of	some	of
the	required	methods	of	SimpleObject	in	your	plug-in.	Said	another	way,	your
plug-in	implements	(provides	the	code	for)	certain	methods	of	the	base	class.	3ds
max	can	then	call	these	methods	on	your	plug-in.	For	example,	SimpleObject
has	a	method	BuildMesh().	This	method	is	called	by	3ds	max	when	it	needs	to
get	a	triangle	mesh	representation	of	your	geometric	object.	In	the	code	for	your
implementation	of	SimpleObject::BuildMesh()	you	generate	the	mesh	you
need.	When	3ds	max	needs	this	mesh	representation	it	calls	your	BuildMesh()
method.
In	other	cases,	methods	are	provided	by	the	base	class	(by	MAX).	That	is,	the
base	class	itself	provides	the	implementation.	These	methods	may	be	called	by
the	plug-in.	These	methods	are	inherited	from	the	base	class	from	which	the
plug-in	is	derived.	For	example,	a	geometric	object	primitive	may	be	derived
from	class	GeomObject.	This	geometric	primitive	can	call
NotifyDependents().	This	is	a	method	of	ReferenceTarget	that	the
primitive	inherited	via	the	base	class	hierarchy	(GeomObject->Object-
>BaseObject->ReferenceTarget).
In	the	SDK	documentation,	methods	that	the	plug-in	implements	are	labeled
'Implemented	by	the	Plug-in'.	Those	that	3ds	max	provides	the	implementation
for	are	labeled	'Implemented	by	the	System'.
There	are	other	ways	that	plug-ins	can	call	methods	provided	by	MAX.	This	is
done	through	a	pointer	to	an	Interface	Class.	An	interface	class	is	simply	a	class
without	data	members	and	only	pure	virtual	methods.	Classes	such	as	these	are
essentially	just	a	table	of	function	pointers.	Interface	classes	are	used	quite	often

in	3ds	max	programming.	The	most	general	interface	class	is	named,	logically
enough,	Interface.	A	pointer	to	this	class	is	passed	into	a	great	many	methods
and	plug-ins	use	it	to	perform	common	operations	provided	by	MAX.	For
example,	when	a	modifier	plug-in	wants	to	show	its	user	interface	in	the
command	panel	it	calls	a	method	of	Interface	named	AddRollupPage()	to
take	care	of	it.	Or	when	a	plug-in	wants	to	retrieve	the	current	time	as	specified
by	the	frame	slider	in	MAX,	the	Interface	method	GetTime()	is	called.	See
the	Advanced	Topics	section	Overview	of	Interface	Classes	for	more	details.

How	Plug-Ins	Interact	with	Each	Other	--	The	Reference	Architecture
In	the	object	oriented	paradigm	of	MAX,	where	independent	plug-in	objects
work	together	to	facilitate	the	overall	functioning	of	the	system,	some	form	of
inter-object	communication	is	required.	The	Reference	Architecture	is	the
mechanism	3ds	max	uses	to	handle	this	communication.	Consider	the	following
example	to	understand	why	it	is	needed.
One	of	the	3ds	max	animation	controller	plug-ins	is	called	the	Look	At
Controller.	This	is	a	transform	controller,	meaning	it	controls	the	position,
rotation	and	scale	of	an	item	in	the	scene.	The	Look	At	controller	rotates	the
item	it's	assigned	to	so	that	it	is	always	pointed	towards	(or	"looking	at")	another
object.	For	example,	say	you	create	a	Free	Camera	and	assign	the	Look	At
controller	as	the	camera's	transform	controller.	You	then	pick	a	Box	in	the	scene
as	the	target	of	the	Look	At	controller.	This	will	cause	the	Free	Camera	to	rotate
such	that	its	direction	of	view	is	pointing	right	at	the	Box.	Whenever	the	Box	is
moved,	the	controller	will	readjust	itself	so	that	the	camera	remains	pointing
towards	it.	Also,	if	the	Box	is	deleted	from	the	scene,	the	camera	will	recognize
this	and	simply	remain	stationary.
Now	consider	that	each	of	these	items	(the	Camera,	the	Look	At	Controller,	and
the	Box)	are	all	plug-ins.	And	each	is	written	without	any	specific	knowledge
about	the	other	objects.	How	then	can	these	objects	communicate	so	they	are
aware	of	one	another?	For	example,	how	does	the	Camera	know	that	its	direction
of	view	changes	when	the	Box	moves?	Or	how	does	the	Look	At	controller
know	that	the	Box	has	been	deleted	from	the	scene?	The	answers	are	that	these
objects	communicate	via	what	are	called	References.
A	Reference	is	a	way	to	associate	two	items.	One	item	is	considered	dependent
upon	the	other.	In	the	example	above,	the	Look	At	Controller	is	dependent	on	the
Box.	And	the	Camera	is	dependent	on	the	Look	At	Controller.	That	is	to	say,	if
the	Box	changes	in	some	way	it	needs	to	let	other	objects	that	might	depend	on	it
know	it	has	changed.	The	controller,	via	the	Reference,	gets	notified	that	the	Box
has	changed.	And	the	controller	needs	to	do	the	same	for	those	items	which
depend	on	it.	When	the	controller	has	changed,	it	lets	those	items	which	may
depend	on	it	know.	Thus	the	camera	gets	notified.
An	object	sets	up	this	record	of	dependency	by	creating	a	Reference.	When	an
object	makes	a	reference,	it	is	called	a	Reference	Maker.	The	object	that	is
references	(that	it	depends	on)	is	called	a	Reference	Target.	In	the	example
above,	the	Camera	is	a	Reference	Maker.	It	references	the	Look	At	Controller.

The	Look	At	Controller	is	the	Reference	Target	of	the	Camera.	The	Look	At
Controller	is	also	a	Reference	Maker	--	it	references	the	Box.	The	Box	is	the
Reference	Target	of	the	controller.	The	Box,	in	fact,	has	its	own	references,	for
example,	its	transform	controller.
The	inter-dependencies	created	through	References	exist	all	over	MAX.	In	a
simple	scene,	dozens	of	references	exist	(many	that	3ds	max	is	using	internally).
In	a	complex	scene,	hundreds	may	exist.
For	additional	details	on	how	References	are	used	for	inter-object
communication	see	the	Advanced	Topics	section	References.	Also	see	the	sub-
topic	in	that	section	called	Viewing	Reference	Messages.	It	discusses	a	utility
plug-in	called	the	Reference	Watcher.	This	plug-in	may	be	used	to	help
understand	the	reference	structure	of	a	choosen	item	and	to	monitor	the	reference
messages	it	sends.	This	provides	a	quick,	visual	way	to	examine	the	use	of
references	in	MAX.

The	Parametric	Nature	of	MAX	Objects	and	the	Impact	on	Plug-Ins
The	geometric	objects	provided	by	3ds	max	are	parametric	objects.	This	means
they	are	defined	by	their	user	interface	parameters,	rather	than	directly	by	the
vertices	and	faces	which	make	up	a	mesh	surface.	For	example,	a	Sphere
primitive	is	defined	by	its	Radius,	Segments	count,	Hemisphere	setting,	etc.
These	are	what	are	stored	in	memory,	and	saved	by	3ds	max	when	the	sphere
object	is	written	to	disk.	A	triangle	mesh	representation	of	the	Sphere	is	required
for	rendering,	but	it	is	computed	'on	the	fly'	from	the	parameters.	Contrast	this
with	the	older	3D	Studio	for	DOS.	Its	objects	were	not	parametric	and	existed
only	as	the	vertices	and	faces	that	described	the	surface.	If	a	user	wanted	to	go
back	and	modify	the	sphere's	segment	count	she	would	have	to	delete	and	re-
create	a	new	sphere	object	with	the	setting	changed.	In	3ds	max	one	can	simply
change	the	segment	count	at	any	time	and	the	surface	is	regenerated.
Geometric	objects	must	eventually	be	converted	to	triangle	meshes	for
rendering,	however.	The	3ds	max	renderer	works	with	mesh	objects	only,	so
primitives,	booleans,	loft	objects,	particles,	patches	and	NURBS	surfaces	all	are
converted	to	triangle	meshes.
In	addition	to	procedural	objects,	3ds	max	provides	an	extensive	collection	of
Modifiers.	Many	of	these	are	applied	to	objects	to	provide	some	form	of
modification,	deformation,	manipulation	or	editing	of	the	underlying	object.
Users	can	also	apply	Space	Warp	plug-ins	to	alter	geometry	based	on	world
space	positions.	The	implication	of	all	this	for	plug-in	developers	is	that	they
need	to	understand	the	conversion	process	from	parametric	object	to	modified
triangle	mesh.
The	Geometry	Pipeline	System	of	3ds	max	is	used	to	handle	this	processing
and	conversion.	The	geometry	pipeline	is	the	system	used	to	allow	parametric
objects	to	be	operated	on	by	modifiers,	with	the	eventual	generation	of	a	triangle
mesh	suitable	for	rendering	and	display	in	the	viewports.	For	the	full	details	see
the	Advanced	Topic	section	Geometry	Pipeline	System.	For	information
regarding	how	procedural	objects	and	modifiers	work	together	to	facilitate	the
modification	see	the	section	Object	Modification.
Plug-in	developers	may	find	helpful	to	study	the	code	for	the	Collapse	Utility.
This	utility	lets	a	user	collapse	the	Stack	of	one	or	more	selected	objects	into	an
Editable	Mesh	and,	optionally,	perform	a	Boolean	operation	on	them	at	the	same
time.	See	the	code	in
\MAXSDK\SAMPLES\UTILITIES\COLLAPSE.CPP.

The	Scene	--	Nodes
The	3ds	max	Scene,	that	is	the	objects,	lights,	cameras,	space	warps,	particles,
etc.,	are	each	associated	with	a	Node.	There	is	a	one	to	one	correspondence
between	each	item	in	the	scene	and	a	node.	A	node	is	simply	the	item	that
manages	the	information	needed	to	allow	its	associated	object	to	exist	in	the
scene.	These	are	things	such	as	the	transform	controller,	the	material	used,	data
about	parent-child	hierarchies,	and	grouping	information.
The	transform	controller	of	the	node	controls	the	position,	rotation	and	scale	of
the	object	in	the	scene.	The	material	assigned	to	the	node	is	used	by	the	renderer
to	give	the	object	its	surface	characteristics	such	as	color,	texture,	bumpiness.
The	hierarchy	information	is	used	to	handle	the	linked	/	unlined	state	of	objects
for	forward	and	inverse	kinematics.
For	more	detailed	information	see	the	Advanced	Topics	section	Nodes,	Working
With	Materials	and	Textures,	and	Working	with	Controllers.

Time	and	Intervals
Developers	dealing	with	animation	need	to	specify	certain	points	in	time,	and
also	certain	periods	of	time.	This	section	discusses	each	of	these.
The	basic	unit	of	time	in	3ds	max	and	the	SDK	is	equal	to	1/4800th	of	a	second.
This	length	of	time	is	a	data	type	called	a	TimeValue.	TimeValues	are	used
throughout	the	class	methods	in	the	SDK	when	a	specific	instant	in	time	needs	to
be	specified.	For	example,	if	your	plug-in	needed	to	know	the	current	system
time	(position	of	the	3ds	max	frame	slider)	it	would	call	the	methods
Inteface::GetTime().	This	methods	returns	a	TimeValue	that	indicates	the
current	time	(in	1/4800ths	of	a	second).
In	MAX,	intervals	are	commonly	used	to	define	the	time	period	in	which	an
object	is	unchanging.	To	be	as	fast	as	possible	3ds	max	avoids	re-computing
objects	whenever	it	can.	If	an	animated	plug-in	can	specify	how	long	a	period	it
is	unchanged	3ds	max	can	know	it	doesn't	have	to	re-evaluate	the	object	over
that	time.	For	example,	3ds	max	needs	to	know	over	what	length	of	time	the
Modification	done	by	a	modifier	is	valid	for.	Consider	a	Bend	modifier	where
the	user	has	animated	the	bend	angle	over	time	(say	un-bent	from	frame	0	to
frame	50,	and	then	bent	45	degrees	at	frame	100.)	So	that	3ds	max	doesn't	need
to	re-evaluate	the	modifier	every	frame	(after	all,	its	not	bending	from	frame	0	to
50)	the	modifier	provides	3ds	max	with	a	Validity	Interval	that	tells	it	how	long
the	deformation	is	valid	for.	This	validity	interval	is	relative	to	a	certain	time.
For	instance,	say	3ds	max	asks	the	modifier	how	long	the	modification	is	valid
for	at	frame	0.	The	modification	is	valid	from	frame	0	to	frame	50.	If	3ds	max
asked	how	long	the	modification	was	valid	for	after	frame	50,	say	at	frame	75,
then	the	answer	is	only	for	a	single	instant	of	time.	That's	because	the	modifier	is
animated	from	frame	50	to	100.	At	each	frame	it	is	different	(bent	more	towards
the	final	45	degrees).	Therefore	the	validity	interval	is	only	a	single	point	in	time
(or	TimeValue).
Intervals	of	time	are	specified	in	the	SDK	using	an	Interval	object.	This	object
has	a	start	and	end	time	and	various	methods	to	work	with	the	interval.	There	are
numerous	methods	that	a	plug-in	implements	to	specify	validity	intervals	in
MAX.	The	modifier	example	above	would	do	so	in	the	method
Modifier::LocalValidity().	For	more	information	on	Time	in	the	SDK	see	the
Advanced	Topics	section	Time.	More	information	on	intervals	can	be	found	in
the	topic	Intervals.

Animation	Controllers
All	animation	in	3ds	max	is	managed	by	a	plug-in	type	called	an	animation
controller	(or	controller	for	short).	Some	controllers	are	keyframe	based.	This
means	the	user	sets	the	value	of	the	controller	at	important	(key)	points	in	time
and	the	controller	provides	all	the	values	at	other	times	by	interpolating	between
the	key	values.	Others	are	procedural,	meaning	the	value	is	computed	at	a	certain
time	based	on	a	pre-programmed	effect	(for	instance,	the	Noise	controller	uses	a
fractal	function	to	compute	the	value).
There	are	six	basic	controller	types	based	on	the	data	type	they	control:	floating
point	values	(float),	three	float	values	(Point3),	Position	(Matrix3),	Rotation
(Quat),	Scale	(ScaleValue),	and	Transform	(Matrix3).	Using	the	SDK
developers	can	create	new	controller	types,	or	work	with	the	properties	of
existing	types.	See	the	topic	Working	With	Controllers	for	more	information.
Many	plug-ins	use	animated	parameters,	for	instance	the	animated	radius
parameter	of	a	procedural	Sphere.	3ds	max	provides	tools	for	developers
wanting	to	use	animated	parameters	that	make	them	very	easy	to	manage.	Two
of	these	are	Parameter	Blocks	and	Parameter	Maps.	Parameter	Blocks
provide	a	mechanism	for	storing	values	for	a	plug-ins	parameters	and	managing
the	controller	which	handle	the	interpolation	or	generation	of	values.	Parameter
Maps	are	used	to	associated	a	control	in	the	user	interface	of	the	plug-in	with	an
animated	value.	See	the	Advanced	Topics	sections	Parameter	Blocks	and	Maps
in	Release	3	and	Later,	Parameter	Maps	and	Parameter	Blocks	for	details.

User	Interface	Issues
The	user	interacts	with	3ds	max	mainly	via	the	command	panel	rollups/dialogs,
the	mouse	(or	tablet),	the	keyboard,	and	the	3D	viewports.	The	SDK	provides
developers	with	the	ability	to	control	each	of	these	areas	of	user	interaction.
Plug-Ins	generally	provide	their	user	interface	controls	in	one	of	three	ways:	In
one	or	more	of	the	Command	Panel	branches,	in	rollups	which	appear	in	the
Materials	Editor,	Environment,	or	Render	dialogs,	or	as	modal	or	modeless
floating	dialogs.	Many	of	the	buttons,	spinners,	edit	fields,	etc.	that	appear	in
these	dialogs/rollups	are	from	the	set	of	the	3ds	max	provided	Custom	Controls.
These	are	used	to	make	the	UI	of	plug-ins	consistent	in	appearance	from	one	to
another.	For	more	information	on	these	controls	and	how	to	work	with	them	see
Custom	User	Interface	Controls.
In	addition	to	the	custom	controls,	the	mouse	is	used	to	interact	with	MAX.	The
way	this	type	of	interaction	is	handled	in	the	SDK	is	through	what	are	called
Command	Modes.	For	more	information	see	the	section	Command	Modes	and
Mouse	Procs.
Plug-ins	can	also	make	use	of	the	keyboard	to	speed	user	interaction	with	their
plug-in.	This	is	done	by	registering	what	are	called	Keyboard	Accelerators.
These	allow	the	user	to	execute	some	of	their	plug-in's	functions	by	assigning
them	to	keystrokes.	For	information	on	how	this	is	done	see	the	Advanced
Topics	section	Keyboard	Accelerators	and	Dialog	Messages.
Finally,	plug-ins	often	need	to	draw	in	the	3D	viewports	to	show	themselves	or
their	'gizmos'.	This	is	accomplished	using	the	methods	provided	by	the
interactive	renderer	class	GraphicsWindow.	For	information	on	the	way	to	work
with	this	renderer	see	Interactive	Renderer:	Graphics	Window.

Functions	Every	Plug-In	Must	Provide
This	section	describes	a	set	of	five	functions	required	by	every	plug-in	DLL.	It
also	outlines	an	object	developers	need	to	provide	for	each	plug-in	class.

Every	plug-in	developer	needs	to	provide	the	code	for	the	DllMain	function
and	four	Lib	functions.	Each	is	described	briefly	below:
Function	Called	to	Handle	Initialization
DllMain()	--	This	function	is	the	hook	used	by	Windows	to	initialize	the
DLL.	3ds	max	plug-ins	use	it	to	initialize	the	common	controls	library	and
MAX's	custom	controls.

Functions	Used	by	MAX	to	Inventory	and	Categorize	the	Plug-ins	in	a
DLL
These	four	functions	describe	the	number	and	properties	of	the	plug-ins
provided	by	the	DLL.
LibNumberClasses()	--This	function	returns	the	number	of	plug-in
classes	contained	in	the	DLL.
LibVersion()	--	This	is	a	function	that	allows	the	system	to	deal	with
obsolete	versions	of	plug-in	DLLs.
LibDescription()	--This	function	returns	a	text	string	to	present	to	the
user	if	the	DLL	is	unavailable.
LibClassDesc()	--	This	function	returns	a	pointer	to	an	object	called	a
Class	Descriptor	for	each	plug-in	class	in	the	DLL.	This	Class	Descriptor
object	describes	the	properties	of	each	plug-in	class	and	a	way	to	allocate
an	instance	of	the	class	in	memory.	The	next	section	describes	these	Class
Descriptors.

Creating	and	Classifying	Instances	of	Plug-In	Classes
The	Class	Descriptor	described	above	is	an	object	derived	from	class
ClassDesc.	It	has	several	important	purposes.	The	two	main	ones	relate	to
classifying	the	type	of	object	the	plug-in	is,	and	allocating	the	memory	for
instances	of	the	plug-in	objects.	The	full	details	of	Class	Descriptors	are
described	elsewhere	but	three	important	methods	are	described	below.
Plug-ins	of	all	types	create	3ds	max	system	objects.	These	are	not	the	3D
objects	that	appear	in	a	scene,	but	objects	in	the	C++	sense.	There	are	two
IDs	associated	with	each	plug-in	system	object.	These	are	the	Super	Class	ID
and	the	Class	ID.	The	Super	Class	ID	specifies	what	super-class	of	3ds	max

the	plug-in	class	is	a	sub-class	of.	The	Class	ID	differentiates	between	the
various	plug-ins	for	a	super-class.	For	example,	a	Sphere	object	has	a	Class
ID,	unique	to	it.	This	is	simply	an	ID	generated	using	a	program	provided	by
the	SDK	that	uniquely	identities	the	plug-in	class	(it	is	in
\MAXSDK\HELP\GENCID.EXE	--	Click	Here	to	Try	It).	Its	Super
Class	ID,	which	is	shared	by	all	geometric	primitives,	is
GEOMOBJECT_CLASS_ID.	The	Super	Class	IDs	are	defined	by
MAX,	and	each	plug-in	falls	into	one	of	these	predefined	categories.	For
instance,	all	Texture	Map	plug-ins	share	the	same	Super	Class	ID	of
TEXMAP_CLASS_ID.	Each	individual	texture	map	plug-in	has	its	own
unique	Class	ID	however.	Thus,	the	Super	Class	ID	defines	which	kind	of
object	it	is,	the	Class	ID	uniquely	identifies	a	specific	plug-in	class.
The	Class	Descriptor	method	ClassDesc::SuperClassID()	returns	the
Super	Class	ID.	The	method	ClassDesc::ClassID()	returns	the	Class	ID.
Another	function	of	the	class	descriptor	is	to	allocate	instances	of	the	plug-in
class.	For	example,	when	a	3ds	max	file	is	loaded	which	contains	a
procedural	Sphere,	3ds	max	needs	a	way	to	create	an	instance	of	the	Sphere
plug-in.	It	calls	a	method	of	the	Sphere's	class	descriptor
(ClassDesc::Create()).	See	the	next	section	for	more	on	this	method.
The	functions	outlined	above	are	described	in	greater	detail	in	the	Advanced
Topics	section	DLL/Lib	Functions	and	Class	Descriptors.
The	Memory	Allocation	and	Deallocation	of	Plug-In	Classes
As	discussed	above,	instances	of	plug-in	classes	are	created	by	calling	Class
Descriptor's	Create	method	(ClassDesc::Create()).	This	applies	to	all
plug-in	classes	in	the	SDK.
The	way	this	memory	is	freed	varies	based	on	the	class	the	plug-in	is	derived
from.	Usually	it	is	done	by	calling	a	method	named	DeleteThis()	on	the
plug-in.	In	the	classes	that	are	part	of	the	Animatable	class	hierarchy	this	is
a	method	of	Animatable.	So	for	these	plug-ins,	the	memory	is	allocated	by
ClassDesc::Create()	and	deallocated	by	Animatable::DeleteThis().
For	other	plug-ins	that	are	not	derived	from	Animatable,	the	plug-in	class
itself	may	provide	a	DeleteThis()	method.	For	example,	the	Bitmap	class
is	not	derived	from	Animatable.	It	however	provides	its	own	DeleteThis()
method	to	deallocate	the	memory	created	by	ClassDesc::Create().

javascript:UniqueId0.Click()

In	other	cases,	memory	is	freed	automatically	by	3ds	max	itself	when	it	is
done	with	the	plug-in.	For	example,	the	ImageFilter	class	used	to	create
image	processing	effects	for	use	in	Video	Post	has	its	memory	freed	by	3ds
max	itself	(by	using	the	delete	operator).
See	the	Advanced	Topics	section	Memory	Allocation	for	more	details.

Summary
This	topic	has	provided	at	look	at	some	of	the	fundamental	issues	developer
need	to	understand	to	create	3ds	max	plug-ins.	The	Advanced	Topics	sections	in
the	SDK	provide	detailed	information	about	many	different	aspects	of	the	API.
To	review	the	relevant	parts	of	the	SDK	that	relate	to	a	certain	plug-in	type	see
the	section	Must	Read	Sections	by	Plug-In	Type.

Moving	from	IPAS	to	MAX	Plug-In	Development
See	Also:	Plug-In	Types	Overview,	Plug-In	Architecture	Overview.

Overview
This	topic	is	provided	as	an	aide	to	IPAS	programmers	making	the	transition	to
3ds	max	plug-in	development.	This	section	discusses	the	similarities	and
differences	in	the	IPAS	and	3ds	max	programming	architectures.	The	changes	in
development	environment,	plug-in/system	control	flow,	user	interface,	and
graphics	programming	support	are	reviewed.	This	section	also	discusses	the	six
types	of	IPAS	routines	possible	under	3D	Studio	DOS	and	how	they	may	be
implemented	under	the	3ds	max	plug-in	architecture.

Development	Environment
IPAS	routines	were	developed	in	3D	Studio	DOS	using	the	C	programming
language	with	the	MetaWare	or	Watcom	compilers.	In	MAX,	development	is
done	using	the	C++	programming	language	with	Microsoft	Visual	C++	5.0
under	Windows	NT.	The	3ds	max	architecture	is	an	object-oriented	system	that
provides	a	comprehensive	set	of	classes	that	developers	can	combine	and	extend
to	create	seamlessly	integrated	plug-in	applications.	See	the	section	Writing
Plug-In	Applications	for	more	information	on	the	basics	of	3ds	max
development.

Control	Flow
IPAS	plug-ins	would	completely	take	over	control	of	3D	Studio	DOS.	When	the
IPAS	routine	started	it	had	exclusive	control	and	maintained	this	control	until	the
user	exited	the	routine.	This	forced	the	user	to	leave	the	familiar	program
interface	and	work	with	a	separate	and	different	interface	with	each	IPAS
routine.	This	is	not	the	case	in	3ds	max.	Most	3ds	max	plug-ins	are	modeless	in
operation.	This	means	their	operation	comes	in	and	out	of	focus	as	the	system
requires	processing	on	their	part.	The	user	is	free	to	operate	the	remainder	of	the
standard	3ds	max	interface	even	as	the	plug-in	has	its	user	interface	up.	In	this
way	the	user	never	leaves	their	familiar	working	environment.

User	Interface
3ds	max	provides	a	set	of	custom	controls	that	provide	a	consistent	user	interface
between	the	plug-in	and	the	system.	This	provides	a	level	of	familiarity	for	users
who	often	use	many	different	plug-ins.	See	the	Advanced	Topics	section	Custom
Controls	for	more	details	on	user	interface	implementation	in	MAX.
IPAS	provided	a	set	of	graphic	functions	that	let	developers	access	the	screen
directly	and	use	standard	dialogs.	These	were	the	GFX	calls	such	as
gfx_xorline,	gfx_c_blitput,	and	gfx_file_selector.	Most	of	these	functions
were	low	level	(get/put	pixel,	draw	line,	etc.),	but	there	are	also	a	number	of
higher-level	interface	routines,	such	as	standard	3D	Studio	file	selectors,
material	selectors	and	other	commonly	used	dialogs.	These	capabilities	are
provided	by	3ds	max	as	well.	Review	the	section	Interactive	Renderer:	Graphics
Window	for	details	on	the	low	level	graphics	routines	supplied	by	MAX.	For
higher	level	interface	routines	such	as	access	to	standard	3ds	max	dialog	boxes
see	the	methods	of	the	Interface	class.	The	Windows	API	is	also	often	employed
in	graphics	work	in	MAX.
IPAS	also	provided	routines	to	access	the	mouse	and	change	the	cursor	form.	3ds
max	provides	mouse	and	cursor	control	using	the	CommandMode	class.	See
the	section	Command	Modes	and	Mouse	Procs	for	more	details	on	working	with
the	mouse.
There	were	also	GFX	routines	to	access	3D	Studio	bitmap	services	(load	/	save
bitmaps,	re-size	bitmaps,	color-cut	bitmaps,	etc.).	3ds	max	provides	a
comprehensive	set	of	bitmap	management	tools.	For	details	see	the	section
Working	with	Bitmaps.
Many	interfaces	built	in	IPAS	were	created	using	the	3DE	utility.	This	simplified
the	creation	of	dialog	boxes	and	custom	user	interfaces.	3ds	max	uses	the	Visual
C++	tools	for	creating	its	dialog	boxes.	These	tools	are	more	comprehensive	and
robust	than	3DE.	The	section	on	Custom	Controls	provides	an	general
introduction	to	this	tool	although	you	will	want	to	consult	the	VC++	on-line	help
for	more	detail.

Graphics	Programming	Functions
IPAS	routines	could	make	use	of	some	SDK-supplied	include	files	that	provided
utility	functions	such	as	linear	algebra,	quaternion	algebra,	and	other	common
graphics	programming	functions.	The	3ds	max	architecture	provides	a	very
comprehensive	set	of	these	tools	as	well.	These	standard	classes	are	used
throughout	3ds	max	programming.	The	following	list	of	classes	all	provide
various	graphic	/	geometric	programming	support:	Class	Point2,	Class	Point3,
Class	Matrix3,	Class	Quat,	Class	Color.

IPAS	Plug-In	Types	as	MAX	Plug-Ins
The	following	sections	discuss	how	each	of	the	six	IPAS	types	may	be
implemented	as	a	3ds	max	plug-in.	In	many	cases	there	is	not	an	exact	one-to-
one	correspondence	due	to	the	differences	in	the	two	architectures.	On	the	whole
however,	IPAS	developers	will	find	the	3ds	max	APIs	much	more	powerful,
comprehensive	and	better	integrated	with	the	core	program.

IXP	-	Image	Processing	Modules
IXPs	were	used	to	create	new	images	or	modify	existing	ones	in	the	video	post
data	stream.	They	were	also	used	to	create	special	effects	such	as	image	blur,
star	filters	and	glows.	In	3ds	max	these	types	of	effects	are	achieved	using
Filter	plug-ins.	These	plug-ins	are	derived	from	class	ImageFilter.	Filters	may
be	used	as	image	modifiers,	image	compositors	or	as	transition	effects.	The
3ds	max	capabilities	for	image	processing	plug-ins	are	much	greater	than	their
IPAS	counterparts.	Sample	code	may	be	found	in	the	sub	directories	of
\MAXSDK\SAMPLES\POSTFILTERS	for	example	ADD.CPP.

PXP	-	Procedural	Objects	Modules
This	type	of	IPAS	routine	was	usually	used	to	create	an	object	from	an
algorithm	or	to	modify	an	existing	object.	In	3ds	max	this	type	of	plug-in
translates	into	a	procedural	object,	or	an	object	modifier,	or	a	utility	plug-in.
In	3ds	max	a	procedural	object	is	best	suited	to	create	an	object	defined	by	an
algorithm.	Geometric	procedural	objects	are	derived	from	SimpleObject,	or
GeomObject.	Sample	code	for	this	plug-in	type	may	be	found	in
\MAXSDK\SAMPLES\OBJECTS\SPHERE.CPP.
To	modify	an	existing	object,	the	object	space	modifier	plug-in	type	is
appropriate.	Sample	code	for	an	object	space	modifier	may	be	found	in
\MAXSDK\SAMPLES\MODIFIERS\BEND.CPP.
Certain	utility	IPAS	routines	were	created	as	PXPs.	3ds	max	also	supports
these	utility	plug-ins.	Utility	plug-ins	are	derived	from	Class	UtilityObj.
Sample	code	for	this	plug-in	type	may	be	found	in
\MAXSDK\SAMPLES\UTILITIES\ASCIIOUT.CPP.

AXP	-	Animated	Procedural	Objects
These	plug-ins	were	used	to	create	hard-to-animate	objects	such	as	particle
systems	and	real	world	data.	These	procedures	animated	at	render-time	on	a
frame	by	frame	basis.
Certain	AXP	types	could	be	implemented	in	3ds	max	as	procedural	objects
(particles	systems),	atmospheric	plug-ins	(some	types	of	smoke,	vapor,	and
fog),	or	space	warps.
Particle	systems	may	be	derived	from	classes	ParticleObject,	and
SimpleParticle.	Sample	code	may	be	found	in
\MAXSDK\SAMPLES\OBJECTS\RAIN.CPP.	Particle-system	type
effects	may	also	be	created	using	the	Atmospheric	class.
Geometric	procedural	objects	are	derived	from	SimpleObject,	or
GeomObject.
Space	warp	plug-ins	may	be	used	to	modify	existing	geometry	in	world	space.
These	plug-ins	are	derived	from	Modifier	or	WSMModifier.

SXP	-	Solid	Texture	Procedures
The	IPAS	SXP	routines	were	3D	functions	that	could	be	assigned	as	maps	in
the	3D	Studio	Material	Editor.	3ds	max	provides	similar	but	more-extensive
capabilities	for	both	2D	and	3D	procedural	textures,	compositors	and	color
modifiers.	3ds	max	also	provides	APIs	to	develop	complete	plug-in	materials.
The	sample	code	for	these	plug-ins	can	be	found	in	the	directory
\MAXSDK\SAMPLES\MATERIALS.

KXP	-	Keyframe	Procedures
These	IPAS	routines	were	typically	used	to	create	or	modify	keyframe	data	of
objects	in	the	keyframer.	In	MAX,	controller	plug-ins	are	used	to	manage
animation.	See	classes	Control	and	StdControl.	Sample	controller	code	is
available	in
\MAXSDK\SAMPLES\HOWTO\PCONTROL\PCONTROL.CPP.
There	is	also	an	interface	into	the	Linear,	TCB,	or	Bezier	key	frame	controllers
that	allows	a	developer	to	add,	delete,	retrieve	and	store	the	keys	of	the
controller.	See	Class	IKeyControl.

BXP	-	Bitmap	Loading	/	Saving	Procedures
BXP	plug-ins	were	used	to	provide	extended	image	file	loading	and	saving
support.	These	image	loader	/	saver	plug-ins	are	called	IO	modules	in	MAX.
These	plug-ins	are	derived	from	class	BitmapIO.	Sample	code	for	these	plug-
in	may	be	found	in	the	sub-directories	of	\MAXSDK\SAMPLES\IO,	for
example	\MAXSDK\SAMPLES\IO\BMP.CPP.

Summary
This	section	presented	an	overview	of	the	similarities	and	differences	between
the	IPAS	and	3ds	max	plug-in	architectures.	3ds	max	provides	a	powerful
development	system	for	creating	plug-ins	that	are	tightly	integration	with	the
core	program.	IPAS	developers	are	encouraged	to	implement	their	plug-ins	using
the	standard	3ds	max	types	in	order	to	provide	the	best	integration	with	the
system.	For	those	plug-ins	that	simply	don't	fit	within	the	3ds	max	architecture,
the	Utility	API	is	provided	to	allow	these	plug-ins	to	work	in	MAX.
You	may	find	it	helpful	to	review	the	section	Plug-In	Types	Overview	to	see	a
summary	of	the	general	categories	of	3ds	max	plug-in	applications.

Updating	MAX	1.0	Plug-Ins	to	Work	with	MAX	2.x
See	Also:	What's	New	in	the	MAX	2.0	and	2.5	SDKs.

Overview
This	section	discusses	some	changes	in	the	SDK	APIs	from	3ds	max	1.0	to	2.0
or	2.5.	Developers	need	to	be	aware	of	these	changes	as	old	plug-ins	won't
compile	or	operate	properly	unless	they	are	made.	The	changes	are	broken	down
into	specific	areas	that	have	changed.	Some	general	notes	related	to	all	plug-ins
appear	at	the	beginning	of	this	topic.	For	a	brief	overview	of	the	API	additions
and	changes	for	r2	see	the	section	What's	New	in	the	MAX	2.0	and	2.5	SDKs.
Note	that	this	section	does	not	present	all	the	areas	of	change	--	only	those	where
the	change	will	prevent	the	plug-in	from	compiling/linking/executing	under	3ds
max	2.0.

Recompilation
Plug-Ins	that	were	developed	for	use	with	3ds	max	1.0	will	need	to	be
recompiled	using	the	3ds	max	2.0	SDK	in	order	to	run.	The	LibVersion()
function	will	prevent	older	plug-ins	from	running	in	3ds	max	2.0.	These	plug-ins
will	display	the	message:
DLL	<full	pathname>	is	an	obsolete	version	-	not	loading.

In	some	cases	a	simple	recompilation	is	all	that	is	required.	In	other	cases
changes	must	be	made.	Developers	need	to	be	aware	of	the	following	changes	to
the	API	that	affects	their	ability	to	run	in	3ds	max	version	2.
Note:	The	LibVersion()	method	has	been	expanded	to	include	information
about	the	current	version	of	MAX,	the	SDK,	and	the	API.	See	the	Advanced
Topics	section	on	DLL	Functions	and	Class	Descriptors	for	details.
Also	Note:	Generally,	plug-ins	developed	for	3ds	max	2.0	will	run	without
recompilation	on	3ds	max	2.5.	The	only	exception	to	this	are	those	that	use	the
NURBS	API.	Significant	changes	have	taken	place	in	the	NURBS	API	and	thus
a	recompile	is	required.	If	your	plug-in	#includes	either	SURF_API.H	or
TESSINT.H	(and	you're	using	them,	of	course)	you'll	need	to	recompile.	If	you
don't	include	these	files,	your	plug-in	developed	for	3ds	max	2.0	will	run	without
problems	on	3ds	max	2.5	without	recompilation.

Development	Environment
To	use	the	3ds	max	SDK	you	need	to	use	the	same	version	of	the	same	compiler
that	is	used	to	compile	MAX.	There	are	several	reasons	for	this.	The	first	reason
is	name	mangling.	Developers	need	a	compiler	with	an	identical	name	mangling
scheme.	The	second	reason	is	memory	management.	The	plug-ins	need	to	use
the	same	memory	manager	as	MAX.
Developers	need	to	use	Visual	C++	Version	5.0	for	developing	plug-ins	for	3ds
max	2.0.	The	use	of	any	previous	version	of	VC++	is	not	supported.
Loading	an	existing	project	into	VC++	5.0	will	attempt	to	convert	it	to	the	new
format.	If	this	process	fails	for	some	reason,	or	to	build	a	new	project	from
scratch,	see	the	section	Creating	a	New	Plug-In	Project	for	the	proper	settings.

Checking	the	Current	Version	of	MAX	at	Runtime
Developers	should	be	aware	that	they	cannot	call	methods	provided	in	later
versions	of	the	3ds	max	API	from	an	earlier	version	of	MAX.	This	can	happen,
for	example,	if	a	user	tries	to	run	a	3ds	max	2.5	plug-in	on	3ds	max	2.0.	The
plug-in	will	load	just	fine,	but	the	2.5	specific	functions	would	not	exist.
Developers	can	do	something	like	the	following	to	check	the	running	version	of
MAX:
	
DWORD	v	=	Get3DSMAXVersion();
int	r	=	GET_MAX_RELEASE(v);
if	(r	>=	2500)	{
//	Code	that	requires	2.5	API	here
}

New	Parameters	of	Existing	Methods
Developers	should	watch	out	for	the	case	where	existing	virtual	methods	have
had	new	parameters	added	to	them.	This	results	in	the	compiler	not	seeing	the
new	methods	as	being	implemented.	Rather	the	existing	implementation	of	the
method	is	just	seen	as	a	method	of	the	sub-class.	Instances	of	this	are	rare,
however	cases	where	new	parameter	have	been	added	to	existing	methods	are
noted	in	the	documentation	for	the	methods.

Passing	Along	Mouse	Messages	in	Dialog	Procs
In	3ds	max	2.0	a	change	was	made	in	the	rollup	window	message	handling	so
that	the	right	mouse	button	menu	works	in	all	rollups.	Developers	can	now
remove	the	code	from	their	dialog	procs	that	passes	the	mouse	button	and	move
messages	into	Interface::RollupMouseMessage().	For	example,	in	3ds	max
1.x	developers	needed	to	pass	along	WM_LBUTTONDOWN,
WM_LBUTTONUP,	and	WM_MOUSEMOVE	messages	to	MAX.	This
is	no	longer	required.	So,	code	such	as	the	following	can	be	removed	from	any
dialog	procedures.
	case	WM_LBUTTONDOWN:	case	WM_LBUTTONUP:	case
WM_MOUSEMOVE:
		theUtility.ip->RollupMouseMessage(hWnd,	msg,	wParam,
lParam);
		break;

To	implement	the	change	the	DWL_USER	slot	was	used	in	the	RollupPanel's
window	to	store	a	pointer	to	the	RollupPanel.	This	works	fine	with	most	plug-
ins,	which	use	GWL_USERDATA	to	store	a	pointer	to	their	context.
Developers	must	be	aware	that	if	they	are	developing	any	code	that	uses
DWL_USER	for	a	RollupPanel	dialog	proc	to	store	its	context,	change	it	to
use	GWL_USERDATA.	There	is	a	test	in	place	to	detect	this	which	will	put
up	an	alert	when	the	rollup	is	initialized,	saying	"Rollup	Window	Procs	must	use
GWL_USERDATA,	not	DWL_USER",	so	developers	breaking	this	rule	will	be
informed	pretty	quickly.

Working	with	the	New	Object	Snap	System
Developers	who	implement	creation	procedures	for	their	plug-in	that	call
ViewExp::SnapPoint()	should	add	a	call	to	ViewExp::SnapPreview()	to
their	code	where	the	MOUSE_FREEMOVE	message	is	processed.	This
allows	the	user	to	get	proper	visual	feedback	about	object	snaps	that	are	in	effect.
See	the	Advanced	Topics	section	on	Snapping,	specifically	the	section	'Handling
Snap	Preview	and	Point	Snap	in	Creation	Procedures'	for	more	details.
Developers	who	don't	do	this	will	get	snapping	to	occur	in	their	plug-ins	but
won't	get	the	visual	feedback.

Bitmap	Memory	Management
Previously	bitmaps	were	deleted	using	the	delete	operator.	This	has	changed.
The	bitmap	class	now	has	a	DeleteThis()	method	that	must	be	used	to	delete	all
bitmaps.	For	example,	previously	code	to	create	a	bitmap	and	delete	it	that
looked	like	this:
Bitmap	*bmap	=	TheManager->Create(&bi);
//	Do	something…
delete	bmap

This	is	now	written	as	follows:
Bitmap	*bmap	=	TheManager->Create(&bi);
//	Do	something…
bmap->DeleteThis();

If	you	attempt	to	do	it	the	old	way	you'll	get	a	error	message	during	compilation
similar	to	'Bitmap::~Bitmap'	:	cannot	access	private	member	declared
in	class	'Bitmap'.

Space	Warp	Plug-Ins
It	is	important	to	note	that	source	code	examples	in	the	1.x	SDK	had	the	space
warp	helper	object	returning	1	from	the	ClassDesc::IsPublic()	method.	This
indicated	that	the	helper	was	available	for	use	not	just	by	the	plug-in	itself	but	by
anyone.	This	was	incorrect.	However	there	was	no	user	interface	available	to
allow	the	user	to	choose	and	run	these	plug-ins	independently	so	it	was	never
caught	as	an	error.	With	the	new	space	warp	architecture	there	is.	Thus,	the
ClassDesc::IsPublic()	method	must	return	0	instead	of	1	for	space	warp
helper	objects	to	prevent	the	user	from	creating	them	without	the	space	warp
itself.

Automatically	Turning	On	Mapping	Coordinates	in	Procedural	Objects
The	3ds	max	renderer	and	plug-in	procedural	objects	now	support	the	ability	to
automatically	turn	on	mapping	coordinates	when	they	are	needed	but	aren't
available.	In	3ds	max	1.x,	if	the	renderer	needed	mapping	coordinates	for	an
object,	and	the	'Generate	Mapping	Coordinates'	check	box	wasn't	on,	or	a
mapping	modifier	was	not	applied,	an	error	message	was	presented	to	the	user.
In	3ds	max	2.0	the	renderer	can	request	that	the	object	turn	on	mapping
coordinates	itself	and	thus	avoid	having	to	put	up	the	error	message.
Procedural	object	plug-ins	need	to	implement	a	few	methods
(Object::HasUVW()	and	Object::SetGenUVW())	to	provide	this
capability.	See	the	documentation	for	these	methods	in	Class	Object	for	more
details.

Supporting	the	Second	Mapping	Channel
In	3ds	max	2.0	and	later	there	are	now	two	channels	of	mapping	coordinates	that
can	be	assigned	and	carried	by	a	mesh.	This	lets	the	user	have	two	different	sets
of	mapping	coordinates,	simultaneously,	on	the	same	face.	Developers	of	plug-
ins	that	provide	mapping	coordinate	support	should	now	also	support	the	new
second	mapping	channel.
The	second	mapping	channel	is	stored	in	the	mesh	in	the	same	arrays	as	the
color	per	vertex	information.	Thus,	the	second	mapping	channel	vertex	array	is
stored	in	the	Mesh	data	member	VertColor	*vertCol,	and	the	face	array	is
TVFace	*vcFace.	The	number	of	texture	verts	is	int	numCVerts.
For	additional	details	see	Class	Mesh.

Supporting	the	Drag	and	Drop	System
Drag	and	drop	functionality	has	been	expanded	to	include	all	map	and	material
buttons	--	including	those	in	plug-in	materials	and	texmaps.	As	a	result,	a	3ds
max	user	can	drag	the	button	over	a	like	button	to	display	the	Swap/Copy/Cancel
dialog.	Developers	creating	plug-in	materials	and	texmaps,	as	well	as	plug-ins
with	UI	controls	with	a	bitmap	or	material/texmap	need	to	implement	code	to
work	with	drag	and	drop.	There	are	several	new	or	revised	classes	to	support	this
system.	For	additional	details	see	Class	DADMgr,	Class	TexDADMgr,	Class
MtlDADMgr,	Class	DADBitmapCarrier,	Class	ICustButton,	Class
IDADWindow.

Splines
Three	methods	have	been	removed	from	Class	Spline3D	and	replaced	with	six
others.	The	InVec()	and	OutVec()	methods	were	giving	direct	access	to	the
spline	data	via	a	reference.	The	way	the	spline	vectors	are	stored	inside	the	class
has	been	revised	and	this	could	no	longer	be	allowed.	Instead,	there	are	new
GetInVec(),	GetOutVec(),	SetInVec()	and	SetOutVec()	methods.	Also,	all
the	data	has	been	moved	into	the	private:	section	to	prevent	improper	access.
Developers	using	the	InVec()	methods	will	either	be	using	it	on	the	left	side	of
the	=	or	the	right	side.	The	changes	that	must	be	made	are	as	follows:
Left	Side	of	=	(lvalue)

Example:
InVec(i)	=	Point3(0,0,0);
Change	To:
SetInVec(i,	Point3(0,0,0));

Right	Side	of	=	(rvalue)
Example:
Point3	p	=	InVec(0);
Change	To:
Point3	p	=	GetInVec(0);

Also,	the	KnotPoint()	method	has	been	replaced.	This	is	part	of	a	larger	series
of	changes	which	have	made	working	with	spline	shapes	much	faster.	By
removing	the	direct	access	of	the	reference-returning	methods,	the	Spline3D
class	will	be	able	to	control	caching	of	various	data	within	itself,	preventing
time-wasting	repeated	operations	computing	bezier	control	points.	The
KnotPoint()	method	has	been	replaced	by	two	new	methods:
Point3	GetKnotPoint(int	i);
void	SetKnotPoint(int	i,	Point3&	p);

ShapeObjects
ShapeObjects	are	now	renderable.	In	order	to	accomplish	this,	they	are	now
subclassed	off	of	GeomObject	rather	than	Object,	as	they	were	in	previous
versions.	They	are	still	SHAPE_CLASS_ID	objects,	though.
This	has	introduced	a	couple	of	important	ramifications.	See	the	remarks	at	the
top	of	Class	ShapeObject	for	the	details.

PatchMesh
The	PatchMesh	class	has	been	updated	so	that	it	can	contain	multiple	texture
mapping	channels,	like	the	Mesh	class.	Unlike	the	Mesh	class,	however,	the
second	texture	mapping	channel	is	stored	in	a	new,	second	array	member	of	the
PatchMesh	members,	which	are	now	defined	as:
int	numTVerts[PATCH_TEXTURE_CHANNELS];
UVVert	*tVerts[PATCH_TEXTURE_CHANNELS];
TVPatch	*tvPatches[PATCH_TEXTURE_CHANNELS];		

At	present,	PATCH_TEXTURE_CHANNELS	is	defined	as	2,	specifying
the	two	texture	mapping	channels	available.	This	could	be	extended	in	future
versions,	so	keep	this	in	mind.
Operations	remapping	texture	patch	information	should	perform	the	operations
on	all	texture	channels.	See	the	file
\MAXSDK\SAMPLES\MODIFIERS\EDITPAT.CPP	for	examples.
All	texture-mapping-related	methods	within	the	PatchMesh	class	have	been
adapted	to	deal	with	the	new	mapping	channel.	The	old	methods	all	access
channel	0,	to	retain	backwards	compatibility.	To	access	channels	other	than	zero,
new	methods	with	"Channel"	at	the	end	of	their	names	have	been	added:

NURBS
The	original	3ds	max	1.x	NURBS	classes	have	been	replaced	in	the	SDK.
Developers	can	get	an	overview	of	the	new	NURBS	API	by	reading	the	section
Working	with	NURBS.

Particle	Systems
Several	new	methods	have	been	added	to	class	ParticleObject	in	3ds	max	2.0.
These	methods	have	default	implementations	but	in	order	for	the	particle	system
to	participate	in	Motion	Blur	when	rendering	these	methods	need	to	be
implemented.	These	methods	are:	ParticlePosition(),	ParticleVelocity(),
ParticleSize(),	ParticleCenter(),	ParticleAge(),	and	ParticleLife().	See
Class	ParticleObject	for	details.
Also,	the	methods	CollisionObject::CheckCollision()	and
ForceField::Force()	both	have	a	new	parameter	(int	index),	which	is	the
index	of	the	particle	being	forced	or	collided.	See	Class	CollisionObject	and
Class	ForceField.

Plug-Ins	With	an	Interface	in	Track	View
Plug-Ins	that	provide	a	user	interface	in	Track	View	themselves	will	need	to
implement	several	new	methods	of	Class	Animatable.	These	methods	are	all
marked	'	This	method	is	available	in	release	2.0	and	later	only',	and	the	methods
themselves	discuss	the	changes.
Track	View	has	changed	a	bit.	It	now	remembers	the	open/close	state	of	the
hierarchy	as	well	as	the	selected/deselected	state	of	the	animatables.	This
information	is	saved	with	each	Animatalbe	in	the	data	members	maintained	by
the	class:
	DWORD	tvflags1,	tvflags2;
For	example,	several	methods	now	have	an	additional	parameter	that	specifies
which	Track	View	the	method	deals	with.
There	are	other	new	methods	that	deal	with	the	increased	copy/paste
functionality	in	R2	as	well.

Custom	Creation	Plug-Ins
In	3ds	max	2.0	when	a	new	object	is	created,	if	the	hide	by	category	flag	for	that
object	type	is	set	to	hidden,	it	is	reset	to	visible	before	the	object	is	created.	In
order	to	unhide	a	category	(object,	lights,	particle	systems,	etc.)	when	an	entity
of	that	type	is	created,	code	was	added	to	the	creation	routines	of	entities	that
don't	use	the	default	creation	methods.
Making	the	required	changes	is	simple.	Just	add	the	following	statement	during
the	first	mouse	down	during	creation:
GetCOREInterface()->SetHideByCategoryFlags(
GetCOREInterface()->GetHideByCategoryFlags()	&

~HIDE_X));
Where,	_X	is	_OBJECTS,	_LIGHTS,	etc.	(or	~
(HIDE_OBJECTS|HIDE_PARTICLES)	for	particle	systems.
Anyone	moving	custom-creation	plug-ins	from	3ds	max	1.x	to	2.x	should	add
this	functionality.

Scaling	Parameter	Values
There	is	a	new	virtual	method	of	ReferenceMaker	named
RescaleWorldUnits(float	f).	Its	purpose	is	principally	to	allow	conversion	of
units	between	different	unit	scales	(for	instance	centimeters	to	inches)	when
merging	files.
What	it	is	meant	to	do	is	to	multiply	any	parameter	that	is	expressed	in	world
units	by	the	scale	factor	f.	This	applies	to	things	like	a	sphere's	radius,	a
cylinder's	radius	and	height,	a	control	point	position,	etc.
To	make	this	method	work	everywhere	in	3ds	max	is	going	to	require	all	plug-in
developers	to	make	sure	it	is	implemented	for	their	classes.	In	many	cases	the
default	implementations	will	work	without	change.
To	detect	if	an	object	(or	modifier)	is	rescaling	correctly	is	simple:

(1)	Create	the	object	and	create	a	camera	looking	at	it.
(2)	Render	the	camera	view	of	the	object.
(3)	In	the	Utility	panel,	bring	up	Rescale	World	Units	utility,	click
"Rescale..."	and	set	a	scale	factor	to	say	10.	The	"Affect"	should	be	set	to
"Scene".	Click	OK.	This	will	call	RescaleWorldUnits(10.0)	on	the	entire
scene.
(4)	The	camera	view	should	have	remained	unchanged.	Render	it	again	to
check.

Developers	should	check	if	your	object/modifiers/space	warp/whatever	is
rescaling	correctly.	If	not,	follow	the	steps	below	to	make	them	do	so.
The	default	ReferenceMaker	implementation	of	RescalWorldUnits()
simply	recursively	calls	RescaleWorldUnits()	on	the	sub-references.	(To
avoid	rescaling	multiple	instances	more	than	once,	a	flag	A_WORK1	is
cleared	before	the	whole	process	begins	and	is	used	to	flag	entities	that	have
been	rescaled.)
void	ReferenceMaker::RescaleWorldUnits(float	f)	{
//	This	code	should	appear	at	the	beginning	of	any
//	RescaleWorldUnits	implementation:
if	(TestAFlag(A_WORK1))
return;

SetAFlag(A_WORK1);
	

//	This	code	will	be	replaced	in	particular	implementations
for	(int	i=0;	i<NumRefs();	i++)	{
ReferenceMaker	*srm	=	GetReference(i);
if	(srm)
srm->RescaleWorldUnits(f);

}
}

The	basic	controllers	have	the	method	RescaleWorldUnits()	implemented.
Parameter	blocks	also	have	an	implementation	of	RescaleWorldUnits()	that
will	only	rescale	parameters	for	which	the	Param	Dimension	is	stdWorldDim.
(This	is	the	value	returned	by	NotifyRefChanged()	in	response	to	the
REFMSG_GET_PARAM_DIM	message.)	So	if	an	object's	parameters	are
all	managed	by	a	parameter	block,	making	sure	that	stdWorldDim	is	returned
only	for	those	parameters	which	represent	world	units	is	all	that	need	to	be	done.
If	some	parameters	are	not	handled	by	the	parameter	block,	or	there	are	some
sub-references	that	you	know	need	not	be	rescaled,	you	can	implement
RescaleWorldUnits().
In	certain	cases,	the	default	implementation	for
ParamBlock::RedrawWorldUnits()	is	not	sufficient,	or	there	may	be
conflict	between	your	use	of	stdWorldDim	and	world	unit	rescaling.	In	this
case,	you	will	need	to	implement	your	object's	RescaleWorldUnits()	and	use
the	method:
	void	IParamBlk::RescaleParam(int	paramNum,	float	f)=0;

to	rescale	world	unit	parameters	one	at	a	time.	For	example,	here	is	the
RescaleWorldUnits()	for	the	Fog	atmosphere:
void	FogAtmos::RescaleWorldUnits(float	f)	{
if	(TestAFlag(A_WORK1))
return;

SetAFlag(A_WORK1);
pblock->RescaleParam(PB_TOP,f);	
pblock->RescaleParam(PB_BOTTOM,f);	

}
In	general	it's	pretty	simple	to	get	things	scaling	correctly.	There	can	be	some
easy-to-miss	subtleties,	however.	For	instance,	during	3ds	max	development

there	appeared	some	anomalies	in	the	shadows	of	scenes	scaled	by	a	large	factor,
and	the	fix	involved	scaling	the	shadow	bias	distance,	which	was	overlooked.
It's	very	important	for	plug-in	developers	to	get	this	working	across	all	entities
so	all	developers	should	be	careful	in	implementing	this	concept.

Import	/	Export	Plug-Ins
A	change	was	made	internally	in	3ds	max	2.0	that	causes	a	bug	in	Export	plug-
ins.	This	bug	will	be	addressed	in	a	maintainance	release,	but	for	now,
developers	will	need	to	make	the	following	change	in	order	for	their	description
string	to	appear	properly.	Usually,	this	string	is	retrieved	from	a	string	table	as
in:
const	TCHAR	*	AsciiExp::Ext(int	n)
{
	switch(n)	{
	case	0:
		return	GetString(IDS_EXTENSION1);
	}
	return	_T("");
}

This	will	be	a	problem	in	3ds	max	2.0	due	to	an	internal	change	in	the	ImpExp
code.	The	corrected	code	should	just	return	the	literal	string,	as	in:
const	TCHAR	*	AsciiExp::Ext(int	n)
{
	switch(n)	{
	case	0:
		return	_T("ASE");
	}
	return	_T("");
}

Developers	should	also	be	aware	of	one	other	change	to	these	plug-in	types.
There	is	a	new	parameter	to	the	SceneImport::DoImport()	and
SceneExport::DoExport()	methods.	This	is	suppressPrompts.	Developers
of	Import	/	Export	plug-in	may	wish	to	respect	this	parameter	to	allow	other	3ds
max	developers	to	use	their	plug-in	for	file	IO	(using
Interface::ImportFromFile()	and	ExportToFile()).	See	Class	SceneImport
and	Class	SceneExport	for	details.

Overview	of	the	Principal	Classes
This	section	lists	the	main	classes	of	the	SDK.	The	Overview	hyperlinks	take
you	to	a	brief	summary	of	the	methods	of	the	class.	The	Reference	hyperlinks
jump	to	the	full	details	on	every	method	of	the	class.

Overview	Reference
Animatable	Class	Animatable
BaseObject	Class	BaseObject
CameraObject	Class	CameraObject
ConstObject	Class	ConstObject
Control	Class	Control
GeomObject	Class	GeomObject
HelperObject	Class	HelperObject
Inode	Class	INode
LightObject	Class	LightObject
LinearShape	Class	LinearShape
Modifier	Class	Modifier
Mtl	Class	Mtl
MtlBase	Class	MtlBase
ReferenceMaker	Class	ReferenceMaker
ReferenceTarget	Class	ReferenceTarget
Object	Class	Object
ParticleObject	Class	ParticleObject
PatchObject	Class	PatchObject
ShapeObject	Class	ShapeObject
SimpleMod	Class	SimpleMod
SimpleObject	Class	SimpleObject
SimpleParticle	Class	SimpleParticle
SimpleShape	Class	SimpleShape
SimpleSpline	Class	SimpleSpline
SimpleWSMMod	Class	SimpleWSMMod
SimpleWSMObject	Class	SimpleWSMObject
SoundObj	Class	SoundObj
SplineShape	Class	SplineShape
StdControl	Class	StdControl
Texmap	Class	Texmap
TriObject	Class	TriObject
WSMObject	Class	WSMObject

Main	Plug-In	Classes
See	Also:	Plug-In	Types	Overview,	Overview	of	the	Principal	Classes.
The	following	is	a	list	of	plug-in	types	and	the	classes	from	which	they	may	be
derived:

Atmosphere:		Class	Atmospheric.
Cameras:		CameraObject,	GenCamera.
Construction	Grid	Objects:		Class	ConstObject.
Controllers:		Class	Control,	Class	StdControl.
File	Import:		Class	SceneImport.
File	Export:		Class	SceneExport.
Image	Filter	/	Compositor:		Class	ImageFilter.
Image	Loader	/	Saver:		Class	BitmapIO.
Helper	Objects:		Class	HelperObject.
Lights:		Class	LightObject,	GenLight.
Materials:		Class	Mtl.
Modifiers:		Class	Modifier,	Class	SimpleMod.
Particle	Systems	/	Effects:		Class	SimpleParticle,	Class	Atmospheric.
Patch	Objects		Class	PatchObject.
Procedural	Objects:		Class	GeomObject,	Class	SimpleObject.
Renderer		Class	Renderer.
Spline	Shapes:			Class	SimpleSpline,	Class	SplineShape.
Sound	Plug-Ins:		Class	SoundObj.
Space	Warps:		Class	WSMObject,	Class	WSModifier.
Textures:		Class	Texmap.
Utility:		Class	UtilityObj.

Interface	Classes
See	Also:	Overview	of	the	Principal	Classes,	Interface	Classes	Overview.
The	following	classes	provides	interfaces	into	3ds	max:
General	Interface	into	MAX:	Class	Interface,	Class	IObjParam,	Class
IObjCreate.
Access	node	properties:	Class	INode
Viewport	related	methods:	Class	ViewExp
Loading	and	Saving	data:	Class	ILoad,	Class	ISave.
Enumeration	of	nodes	in	the	scene:	Class	IScene.
Interface	passed	to	materials	and	textures:	Class	IMtlParams.
Access	to	the	3ds	max	Track	Bar:	Class	ITrackBar.
Access	to	XRef	objects:	Class	IXRefObject.
Access	to	the	Layers	functionality	provided	by	3D	Studio	VIZ.	Class	ILayer.

Interfaces	into	the	standard	3ds	max	plug-ins:
Access	to	Procedural	Object	and	Space	Warps	parameters	-	See	the	methods
in	Class	BaseObject:
	virtual	IParamArray	*GetParamBlock();
	virtual	int	GetParamBlockIndex(int	id);
For	an	overview	of	this	process	see	Object	Creation	Methods.
Access	to	derived	objects:	Class	IDerivedObject.
Access	to	the	standard	3ds	max	controllers:	Class	IKeyControl.
Access	to	the	standard	3ds	max	text	object:	Class	ITextObject.
Access	to	3ds	max	Standard	material	properties:	Class	StdMat.
Access	to	the	3ds	max	Bitmap	texture	properties:	Class	BitmapTex.
Access	into	MAX's	default	WAV	sound	object.	Class	IWaveSound.
Access	to	the	Spline	Select	Modifier:	Class	ISplineSelect,	Class
ISplineSelectData.
Access	to	the	Editable	Spline	Object:	Class	ISplineOps.
Access	to	the	Patch	Select	Modifier:	Class	IPatchSelect,	Class
IPatchSelectData.
Access	to	the	Editable	Patch	Object:	Class	IPatchOps.
Access	to	the	FFD	Modifier	and	World	Space	Modifier:	Template	Class

IFFDMod.
Interfaces	into	the	parameter	blocks	and	maps:
Access	to	parameter	blocks:	Class	IParamBlock,	Class	IParamBlock2.
Access	to	parameter	maps:	Class	IParamMap,	Class	IParamMap2.

Geometry	/	Bitmap	Classes
See	Also:	Overview	of	the	Principal	Classes.
Mesh	/	Face:	Class	Mesh,	Class	Face,	Class	TVFace,	Class	TriObject.
Bitmap	Images:	Class	BitmapInfo,	Class	Bitmap,	Class	BitmapIO,	Class
BitmapManager.
2D	and	3D	Points:	Class	IPoint2,	Class	Point2,	Class	IPoint3,	Class	Point3
2D	and	3D	Boxes:	Class	Box2,	Class	Box3.
Matrices:	Class	Matrix2,	Class	Matrix3,	Structure	AffineParts.
Angles	/	Quaternions:	Class	AngAxis,	Class	Quat,	Class	ScaleValue.

User	Interface	Classes
See	Also:	Overview	of	the	Principal	Classes,	The	Interactive	Renderer.
Access	the	interactive	renderer:	Class	GraphicsWindow
Create	custom	mouse	modes:	Class	CommandMode,	Class	MouseCallBack
Parameter	Blocks	/	Maps:	Class	IParamMap,	Class	IParamBlock,	IParamArray.
Custom	Controls:	,	Class	ICustomControl,	Class	ICustEdit,	Class
ISpinnerControl,	Class	ICustImage,	,	Class	ICustStatus,	Class	IColorSwatch,
Class	ICustButton,	Class	ICustToolbar,	Class	IRollupWindow,	Class
IOffScreenBuf.

Miscellaneous	Utility	Classes
See	Also:	Overview	of	the	Principal	Classes.
Bit	flags	using	array	access	Class	BitArray
Unique	plug-in	Class_ID	Class	Class_ID
Class	Descriptor	Class	ClassDesc
Gamma	/	de-gamma	conversion	Class	GammaMgr
Palette	computation	Class	Quantizer
Packing	colors	into	a	palette	Class	ColorPacker
Simple	character	string	class	Class	CStr
Wide	character	string	class	Class	WStr
Table	of	names	Class	NameTab
Table	template	class	Class	Tab
Color	picker	dialog		Class	ColorPicker

Reference	Introduction
This	module	of	the	documentation	is	a	reference	to	the	classes	provided	in	the
SDK.
There	are	sections	on	typographic	conventions,	data	types,	and	a	structured	class
list	organized	by	category.
At	the	beginning	of	each	class	is	an	overview	of	the	purpose	of	the	class.	All	the
data	members,	methods	and	operators	used	by	each	class	are	documented.

Typeface	Conventions
This	documentation	uses	the	following	typographic	conventions:
Typeface	Use
Sans	Serif	Used	for	most	text.
Sans	Serif	Bold	Used	for	titles	and	headings.
Monospace	bold	Program	text,	variables,	classes,	types	and
	other	program	constructs.

Data	Types
This	section	lists	the	data	types	most	commonly	used	in	the	SDK.	Some	of	these
data	types	are	defined	by	3ds	max	while	others	are	part	of	the	Win32	API.
BOOL
A	boolean	value,	either	TRUE	or	FALSE.
BYTE
An	8-bit	unsigned	value.
CIRCLE
The	CIRCLE	structure	defines	the	x	and	y	coordinates	of	the	circle	center	and
radius	value.	A	CIRCLE	data	structure	has	the	following	form	(defined	in
GFX.H):

typedef	struct	tagCIRCLE
{
LONG	x;
LONG	y;
LONG	r;
}	CIRCLE;

COLORREF
A	32-bit	value	used	as	a	color	value.	See	COLORREF.
DWORD
A	32-bit	unsigned	integer	or	the	address	of	a	segment	and	its	associated	offset.
HFONT
The	handle	of	a	font.
HCURSOR
The	handle	of	a	cursor.
HDC
The	handle	of	a	device	context	(DC).
HIMAGELIST
The	handle	to	an	image	list.
HINSTANCE
The	handle	of	an	instance.
HMENU
The	handle	of	a	menu.

HPALETTE
The	handle	of	a	palette.
LONG
A	32-bit	signed	integer.
LPARAM
A	32-bit	value	passed	as	a	parameter	to	a	window	procedure	or	a	callback
function.
LPSTR
A	32-bit	pointer	to	a	character	string.
LRESULT
A	32-bit	value	returned	from	a	window	procedure	or	callback	function.
POINT
The	POINT	structure	defines	the	x	and	y	coordinates	of	a	point.	A	POINT	data
structure	has	the	following	form:
typedef	struct	tagPOINT	{
int	x;
int	y;
}	POINT;
RECT
The	RECT	structure	defines	the	coordinates	of	the	upper-left	and	lower-right
corners	of	a	rectangle.	A	RECT	data	structure	has	the	following	form:
typedef	struct	tagRECT	{
int	left;
int	top;
int	right;
int	bottom;
}	RECT;
USHORT
A	16-bit	unsigned	short	integer.
SIZE
This	structure	specifies	the	width	and	height	of	a	rectangle.	The	rectangle
dimensions	stored	in	this	structure	can	correspond	to	viewport	extents,
window	extents,	text	extents,	bitmap	dimensions,	or	the	aspect-ratio	filter	for
some	extended	functions.

typedef	struct	tagSIZE	{
int	cx;
int	cy;
}	SIZE;
ULONG
A	32-bit	unsigned	long	integer.
WNDPROC
A	32-bit	pointer	to	a	window	procedure.
WORD
A	16-bit	unsigned	integer.
WPARAM
A	32-bit	value	passed	as	a	parameter	to	a	window	procedure	or	callback
function.

Other	various	typedefs	and	structures	used	in	the	SDK:
typedef	unsigned	long	ulong;
typedef	unsigned	char	uchar;
typedef	uchar	UBYTE;
typedef	unsigned	short	USHORT;
typedef	unsigned	short	UWORD;
typedef	int	TimeValue;
typedef	unsigned	short	BMMRES;
typedef	ulong	SClass_ID;
	
typedef	unsigned	int	RefMessage;
typedef	unsigned	short	MtlID;
typedef	unsigned	long	ChannelMask;
struct	Color24	{
	uchar	r,g,b;
	};
struct	Color48	{
	UWORD	r,g,b;
	};
struct	Color64	{
	UWORD	r,g,b,a;

	};
typedef	Point3	UVVert;
typedef	Point3	VertColor;
typedef	AColor	RGBA;
	
typedef	enum	{IO_OK=0,	IO_END=1,	IO_ERROR=2}	IOResult;
typedef	enum	{NEW_CHUNK=0,	CONTAINER_CHUNK=1,
DATA_CHUNK=2}	ChunkType;
enum	RefResult	{
	REF_FAIL,
	REF_SUCCEED,
	REF_DONTCARE,
	REF_STOP,
	REF_INVALID
	};
enum	LightType	{	OMNI_LGT,	SPOT_LGT,	DIRECT_LGT,
AMBIENT_LGT	};
typedef	enum	{IOTYPE_MAX=0,	IOTYPE_MATLIB=1}	FileIOType;
	
typedef	unsigned	long	NURBSId;
typedef	Tab<NURBSId>	NURBSIdTab;
typedef	Tab<BOOL>	BoolTab;
	
typedef	Tab<WVert	*>	WVertTab;
typedef	Tab<WEdge	*>	WEdgeTab;
typedef	Tab<WFace	*>	WFaceTab;
	
typedef	DWORD	HJOB;
typedef	INT_PTR_MSVC70	StringResID;
typedef	INT_PTR_MSVC70	ResID;
typedef	Animatable*	AnimatablePtr;
typedef	DWORD	ActionTableId;
typedef	DWORD	ActionContextId;
typedef	DWORD	HJOB;
typedef	INT_PTR_MSVC70	StringResID;
typedef	INT_PTR_MSVC70	ResID;

typedef	Animatable*	AnimatablePtr;
typedef	DWORD	ActionTableId;
typedef	DWORD	ActionContextId;

General	Terminology
This	section	defines	various	terms	used	throughout	the	SDK	documentation.
=	4)	BSPSPopupOnMouseOver(event);;">Abstract	Class
=	4)	BSPSPopupOnMouseOver(event);;">Affine	Transformation
=	4)	BSPSPopupOnMouseOver(event);;">Apparatus
=	4)	BSPSPopupOnMouseOver(event);;">Base	Object
=	4)	BSPSPopupOnMouseOver(event);;">Callback
=	4)	BSPSPopupOnMouseOver(event);;">Class
=	4)	BSPSPopupOnMouseOver(event);;">Class	Hierarchy
=	4)	BSPSPopupOnMouseOver(event);;">Class	Variable
=	4)	BSPSPopupOnMouseOver(event);;">Controller
=	4)	BSPSPopupOnMouseOver(event);;">Cache	System
=	4)	BSPSPopupOnMouseOver(event);;">Class	Descriptor
=	4)	BSPSPopupOnMouseOver(event);;">ClassID
=	4)	BSPSPopupOnMouseOver(event);;">Channel
=	4)	BSPSPopupOnMouseOver(event);;">Deep	Copy
=	4)	BSPSPopupOnMouseOver(event);;">Device	Context
=	4)	BSPSPopupOnMouseOver(event);;">Deformable
=	4)	BSPSPopupOnMouseOver(event);;">Derived	Object
=	4)	BSPSPopupOnMouseOver(event);;">Dialog	Proc
=	4)	BSPSPopupOnMouseOver(event);;">DLL
=	4)	BSPSPopupOnMouseOver(event);;">Geometric	Pipeline
=	4)	BSPSPopupOnMouseOver(event);;">Hit	Testing
=	4)	BSPSPopupOnMouseOver(event);;">Instance
=	4)	BSPSPopupOnMouseOver(event);;">Interval
=	4)	BSPSPopupOnMouseOver(event);;">Metadata
=	4)	BSPSPopupOnMouseOver(event);;">Modifier
=	4)	BSPSPopupOnMouseOver(event);;">Modifier	Application
=	4)	BSPSPopupOnMouseOver(event);;">Node
=	4)	BSPSPopupOnMouseOver(event);;">Object	Space	Modifier
=	4)	BSPSPopupOnMouseOver(event);;">Orthonormal	Matrix
=	4)	BSPSPopupOnMouseOver(event);;">PRS	Controller
=	4)	BSPSPopupOnMouseOver(event);;">Reentrant	Function
=	4)	BSPSPopupOnMouseOver(event);;">Reference	Maker
=	4)	BSPSPopupOnMouseOver(event);;">Reference	Target
=	4)	BSPSPopupOnMouseOver(event);;">Shallow	Copy

javascript:BSSCPopup('idx_abstract_class.htm');
javascript:BSSCPopup('idx_affine_transformation.htm');
javascript:BSSCPopup('idx_apparatus.htm');
javascript:BSSCPopup('idx_base_object.htm');
javascript:BSSCPopup('idx_callback.htm');
javascript:BSSCPopup('idx_class.htm');
javascript:BSSCPopup('idx_class_hierarchy.htm');
javascript:BSSCPopup('idx_class_variable.htm');
javascript:BSSCPopup('idx_controller.htm');
javascript:BSSCPopup('idx_cache_system.htm');
javascript:BSSCPopup('idx_class_descriptor.htm');
javascript:BSSCPopup('idx_classid.htm');
javascript:BSSCPopup('idx_channel.htm');
javascript:BSSCPopup('idx_T_deep_copy.htm');
javascript:BSSCPopup('idx_device_context.htm');
javascript:BSSCPopup('idx_deformable.htm');
javascript:BSSCPopup('idx_derived_object.htm');
javascript:BSSCPopup('idx_dialog_proc.htm');
javascript:BSSCPopup('idx_dll.htm');
javascript:BSSCPopup('idx_geometric_pipeline.htm');
javascript:BSSCPopup('idx_hit_testing.htm');
javascript:BSSCPopup('idx_instance.htm');
javascript:BSSCPopup('idx_interval.htm');
javascript:BSSCPopup('idx_metadata.htm');
javascript:BSSCPopup('idx_modifier.htm');
javascript:BSSCPopup('idx_modifier_application.htm');
javascript:BSSCPopup('idx_node.htm');
javascript:BSSCPopup('idx_object_space_modifier.htm');
javascript:BSSCPopup('idx_orthonormal_matrix.htm');
javascript:BSSCPopup('idx_prs_controller.htm');
javascript:BSSCPopup('idx_T_reentrant_function.htm');
javascript:BSSCPopup('idx_reference_maker.htm');
javascript:BSSCPopup('idx_reference_target.htm');
javascript:BSSCPopup('idx_T_shallow_copy.htm');

=	4)	BSPSPopupOnMouseOver(event);;">Space	Warp
=	4)	BSPSPopupOnMouseOver(event);;">Sub-Object	Selection
=	4)	BSPSPopupOnMouseOver(event);;">SuperClassID
=	4)	BSPSPopupOnMouseOver(event);;">TriObject
=	4)	BSPSPopupOnMouseOver(event);;">Transform	Controller
=	4)	BSPSPopupOnMouseOver(event);;">Transformation	Matrix
=	4)	BSPSPopupOnMouseOver(event);;">TimeValue
=	4)	BSPSPopupOnMouseOver(event);;">Validity	Interval
=	4)	BSPSPopupOnMouseOver(event);;">Virtual	Array
=	4)	BSPSPopupOnMouseOver(event);;">World	Space	Modifier

javascript:BSSCPopup('idx_space_warp.htm');
javascript:BSSCPopup('idx_sub_object_selection.htm');
javascript:BSSCPopup('idx_superclassid.htm');
javascript:BSSCPopup('idx_triobject.htm');
javascript:BSSCPopup('idx_transform_controller.htm');
javascript:BSSCPopup('idx_transformation_matrix.htm');
javascript:BSSCPopup('idx_timevalue.htm');
javascript:BSSCPopup('idx_validity_interval.htm');
javascript:BSSCPopup('idx_T_virtual_array.htm');
javascript:BSSCPopup('idx_world_space_modifier.htm');

What's	New	in	the	MAX	2.0	and	2.5	SDKs
See	Also:	Updating	MAX	1.0	Plug-Ins	to	work	with	MAX	2.x.

Overview
This	section	provides	a	general	overview	of	the	new	capabilities	of	the	3ds	max
R2	API.	New	classes	have	been	added,	new	methods	to	existing	classes	have
been	added,	and	new	parameters	to	existing	methods	have	been	added	as	well.
Any	new	classes	in	the	SDK	begin	their	Description	section	with	the	line:

This	class	is	available	in	release	2.0	and	later	only	or
This	class	is	available	in	release	2.5	and	later	only.

Any	new	methods	in	a	class	begin:
This	method	is	available	in	release	2.0	and	later	only	or
This	method	is	available	in	release	2.5	and	later	only.

Newly	added	parameters	to	existing	methods	begin:
This	parameter	is	available	in	release	2.0	and	later	only	or
This	parameter	is	available	in	release	2.5	and	later	only.

Newly	added	data	members	begin:
This	data	member	is	available	in	release	2.0	and	later	only	or
This	data	member	is	available	in	release	2.5	and	later	only.

The	sub-sections	below	list	some	of	the	major	areas	of	improvement	or	new
capabilities	in	the	SDK.	This	includes	new	plug-in	types	available,	some
animation	capabilities	for	ImageFilter	plug-ins,	and	the	G-buffer	system.	This
section	does	not	discuss	all	the	changes	--	only	the	major	ones.	Developers	of
existing	1.x	plug-ins	can	look	at	the	reference	information	for	their	plug-in	class
to	review	any	new	capabilities.	Note	that	there	is	a	separate	section	in	the	SDK
which	discusses	how	to	get	existing	3ds	max	R1	plug-ins	to	work	with	R2.	See
Updating	MAX	1.0	Plug-Ins	to	work	with	MAX	2.x	for	details.

New	in	the	MAX	2.5	SDK
The	major	change	to	the	2.5	API	is	related	to	NURBS.	The	additional
capabilities	of	NURBS	system	(such	as	projected	curves,	trimmed	surfaces,
etc.)	have	been	made	available	via	the	SDK.	Developers	will	need	to
recompile	plug-ins	that	use	the	NURBS	API	to	run	on	3ds	max	2.5	because	of
these	significant	changes.	If	your	plug-in	#includes	either	SURF_API.H	or
TESSINT.H	you'll	need	to	recompile.	If	you	don't	include	these	files,	your
plug-in	developed	for	3ds	max	2.0	will	run	without	problems	on	3ds	max	2.5
without	recompilation.	See	the	Advanced	Topics	section	Working	With
NURBS	for	information	on	the	new	classes	available	in	2.5.

Also	enhanced	for	3ds	max	2.5	are	the	Minnesota	Mesh	and	related	classes.	See
Class	MNMesh	for	details.
There	are	two	new	callbacks	available	via	Structure	NotifyInfo	for	pre-save	and
post-save	notification.

New	Plug-In	Types	in	MAX	2.0
World	Space	Modifiers	Without	Helper	Objects.
There	is	a	new	type	of	space	warp	plug-in	that	doesn't	require	a	helper	object	to
operate	in	world	space.	This	was	done	because	some	plug-in	modifiers	needed	to
operate	in	world	space,	and	thus	needed	to	be	space	warps,	but	didn't	require
being	bound	to	the	dummy	helper	object.	The	new	WSMs	are	available	to	be
assigned	like	OSMs	via	buttons	in	the	Modify	branch	of	the	command	panel.
They	don't	need	to	be	specifically	bound	to	a	helper	object	to	be	created	and
assigned.	3ds	max	uses	the	ClassDesc::IsPublic()	method	to	determine	if	they
may	be	directly	assigned.	If	IsPublic()	returns	nonzero	they	may	be	assigned	by
the	user.	If	it	returns	zero	then	they	depend	on	the	helper	object	and	can	only	be
created	when	bound	to	the	helper.
Easily	created	WSM	versions	of	OSMs
Modifiers	derived	SimpleMod	may	also	be	used	to	easily	create	a	Space	Warp
version	as	well.	See	Class	SimpleOSMToWSMObject	for	details	on	how	this	is
done.
Track	View	Utilities
There	is	a	new	type	of	utility	plug-in	that	operate	inside	of	Track	View.	These
are	accessed	by	pressing	the	Track	View	Utilities	icon	in	the	Track	View	toolbar.
Samples	of	this	type	of	utility	are	the	'Randomize	Keys',	'Create	Out	of	Range
Keys'	and	'Select	Keys	by	Time'.	These	plug-ins	are	derived	from	Class
TrackViewUtility.	See	that	class	for	more	details	on	their	creation.
Front	End	Controllers
These	new	plug-ins	allow	a	developer	to	completely	take	over	the	3ds	max	user
interface.	This	includes	the	toolbar,	pulldown	menus,	and	command	panel.	See
Class	FrontEndController	for	details.
Motion	Capture	Input	Devices
Motion	Capture	Input	Device	plug-ins	can	now	be	written	that	plug-in	to	the	3ds
max	motion	capture	system.	See	Class	IMCInputDevice	for	details.	Sample	code
is	available	in	the	subdirectory	\MAXSDK\SAMPLES\MOCAP.
Notification	Program
There	is	a	new	program	whose	source	code	is	in
\MAXSDK\SAMPLES\UTILTIES\NOTIFY\NOTIFY.CPP.	This
program	gets	invoked	by	the	network	manager	to	handle	network	progress

notifications.	The	network	manager	calls	it	with	two	command	line	arguments	as
follows:
Notify.exe	datafile	type

Where:
datafile
This	is	the	fully	qualified	path	and	filename	of	the	actual	notification	notice.
This	is	the	text	that	may	be	sent	out	as	email,	fax	or	whatever	the	notification
program	wants	to	do.
type
This	is	a	numeric	value	indicating	what	type	of	notification	this	is.	The	types
are	defined	in	\MAXSDK\INCLUDE\ALERTS.H.	The	options	are:
	NOTIFY_FAILURE
	NOTIFY_PROGRESS
	NOTIFY_COMPLETION

A	developer	may	write	another	"Notify"	program	in	order	to	do	any	proprietary
type	of	notifications.	Note	that	"Notify"	can	be	either	a	"*.exe",	a	"*.bat",	or	a
"*.cmd"	executable.	This	allows	a	user	to	create	a	simple	script	file	to	do
something	without	having	to	resort	to	writing	a	binary	program.
The	current	Notify.exe	is	very	simple	as	it	is	used	simply	as	a	demonstration.	It
plays	a	different	wave	file	for	each	of	the	event	types.	If	invoked	with	no
command	line,	it	will	bring	up	a	dialog	box	asking	the	user	to	define	each	of	the
three	wave	files.	The	dialog	has	"Browse"	buttons	next	to	each	wave	file	field
which	puts	the	user	right	into	the	Windows'	"Media"	directory	where	wave	files
are	saved.	There	are	also	"play"	buttons	next	to	each	sound	so	they	can	be	tested.

Animated	Parameter	in	ImageFilter	Plug-Ins
A	new	system	has	been	provided	to	allow	Filter	plug-ins	to	use	animated
parameters.	These	parameters	are	just	like	the	other	parameters	in	3ds	max	that
are	controlled	by	a	animation	controller.	These	parameters	appear	in	Track	View
as	a	separate	branch	under	'World'	labeled	'Video	Post'.	In	order	for	this	to	work
a	developer	must	create	something	called	a	Track	View	Node.	Controllers	may
then	be	added	to	this	node.	Using	the	SetValue()	and	GetValue()	methods	of
the	controller	allow	for	values	to	be	stored	and	retrieved.
Also,	Filters	may	have	interactive	dialog	boxes	that	may	be	open	and	operated
at	the	same	time	as	3ds	max	and	Track	View.	This	allows	a	user	to	press	the
Animate	button	and	adjust	the	properties	of	the	filters	parameters	to	a	animate
the	value.	See	Class	ImageFilter,	Class	ImageFilterInfo	and	Class
ITrackViewNode	for	the	new	methods	available.

The	G-Buffer	System
Three	new	channels	has	been	added	to	the	G-buffer.	These	are
BMM_CHAN_COVERAGE,	BMM_CHAN_BG,	and
BMM_CHAN_NODE_RENDER_ID.	See	List	of	Image	Channels	for
more	details.

New	Notifications	(Callbacks)
3ds	max	2.0	supports	a	system	where	a	plug-in	can	ask	to	receive	a	callback
when	events	such	as	the	system	unit	settings	change,	system	time	settings
change,	or	the	user	executes	File/Reset	or	File/New.	The	documentation	for
Structure	NotifyInfo	describes	how	this	system	works.

New	Mesh	Related	Classes
The	MNMesh	class	is	provided	in	3ds	max	2.0	for	temporary	use	by	plug-ins,
to	help	with	complex	topology-based	modifications	to	Meshes.	It	has
capabilities,	such	as	the	ability	to	recognize	faces	with	more	than	3	sides,	that
are	useful	in	certain	applications.	See	Class	MNMesh	for	details.

New	NURBS	API
The	NURBS	API	from	3ds	max	1.0	has	been	replaced	in	3ds	max	2.0	and
extended	in	3ds	max	2.5.	Developers	now	have	a	more	complete	API	for
developing	with	NURBS.	See	the	Advanced	Topics	section	Working	With
NURBS	for	details.

New	Pre	and	Post	Save	Callbacks
For	use	with	3ds	max	2.5	and	later,	two	new	options	have	been	added	for	use
with	Structure	NotifyInfo.	These	allow	plug-ins	to	get	called	before	and	after	a
3ds	max	file	is	saved.

Network	Rendering	Manager	Access
There	is	a	new	Advanced	Topics	section	that	documents	the	protocol	used	to
communicate	with	the	network	rendering	manager.	This	is	for	developers	who
want	to	write	their	own	Queue	Manager	and/or	submit	net	render	jobs	on	their
own.	This	is	not	an	SDK	and	there	is	no	code	--	it	is	just	a	detailed	description
of	the	TCP/IP	protocol	used	to	communicate	with	the	manager.	See	the
Advanced	Topics	section	on	Network	Rendering	for	information.

Plug-In	Project	AppWizard
New	to	the	3ds	max	2.0	SDK	is	an	AppWizard	which	may	be	used	to	easily
create	new	plug-in	projects.	See	the	Advanced	Topics	section	on	Creating	a
New	Plug-In	Project	for	details	on	using	the	AppWizard.

On-Line	Help	Inside	the	Visual	C++	IDE
A	program	is	provided	in	\MAXSDK\HELP\SDKLINK.ZIP	to	allow
developers	to	launch	the	SDK	help	file	and	jump	to	a	specific	class	or	method
from	within	VC++.	See	the	README.DOC	file	inside	that	ZIP	for	a
description	for	how	to	set	this	up	inside	the	Developer	Studio	IDE.

What's	New	in	the	MAX	3.0	SDK
See	Also:	Required	Changes	to	MAX	2.x	Plug-Ins	for	MAX	3.0,	What's	New
in	the	MAX	2.0	and	2.5	SDKs,	Updating	MAX	1.0	Plug-Ins	to	work	with
MAX	2.x.

Overview
This	section	provides	a	general	overview	of	the	new	capabilities	of	the	3ds	max
3.0	API.	New	plug-in	types,	new	classes,	and	new	methods	to	existing	classes
have	been	added.	In	some	cases	new	parameters	to	existing	methods	have	been
added	as	well.
Any	new	classes	in	the	SDK	begin	their	Description	section	with	the	line:

This	class	is	available	in	release	3.0	and	later	only
Any	new	methods	in	a	class	begin:

This	method	is	available	in	release	3.0	and	later	only
Newly	added	parameters	to	existing	methods	begin:

This	parameter	is	available	in	release	3.0	and	later	only
Newly	added	data	members	begin:

This	data	member	is	available	in	release	3.0	and	later	only
The	sub-sections	below	list	some	of	the	major	areas	of	improvement	or	new
capabilities	in	the	SDK.	This	includes	new	plug-in	types,	new	parameter	map
system,	new	texture	map	architecture,	new	keyboard	accelerator	system,	as
well	as	numerous	other	changes.

New	Plug-In	Types
The	following	are	the	new	plug-in	types	introduced	in	the	3ds	max	3.0	SDK.
Each	has	link	to	the	base	class	for	the	creation	of	that	plug-in	type.
Rendering	Effects
There	is	a	new	item	under	the	Rendering	menu	which	displays	the
Rendering	Effects	dialog.	From	this	modeless	dialog,	the	user	can	select
and	assign	a	new	class	of	plug-in,	called	a	“Rendering	Effect,”	which	is	a
post-rendering	image-processing	effect.	This	lets	the	user	apply	image
processing	without	using	Video	Post,	and	has	the	added	advantage	of
allowing	animated	parameters	and	references	to	scene	objects.	The	base

class	for	these	plug-ins	is	Class	Effect.	Sample	code	is	available	in	the
directory	\MAXSDK\SAMPLES\RENDER\RENDEREEFFECT.

Anti-Aliasing	Filters
There	is	a	new	plug-in	type	for	filtering	and	anti-aliasing	the	image.
Documentation	for	the	base	class	for	these	filters	is	in	Class	FilterKernel.
Sample	Code	is	available	in	the	subdirectory
\MAXSDK\SAMPLES\RENDER\AAFILTERS.

Shader	Plug-Ins
This	new	plug-in	type	works	with	the	new	Standard	material.	It	allows
plug-in	developers	to	add	additional	shading	algorithms	to	the	drop	down
list	of	available	options	(previously	Constant,	Phong,	Blinn,	Metal).	This
was	only	possible	previously	by	writing	an	entire	Material	plug-in	(which
could	be	a	major	undertaking).	See	the	base	class	for	this	plug-in	type	Class
Shader	for	details.

Sampler	Plug-Ins
This	plug-in	type	works	with	the	Standard	material	of	release	3.	A	Sampler
is	a	plug-in	that	determines	where	inside	a	single	pixel	the	shading	and
texture	samples	are	computed.	The	user	interface	of	Samplers	appears	in
the	Super	Sampling	rollout	in	the	Sampler	dropdown.	See	Class	Sampler
for	details.

Shadow	Generator	Plug-Ins
The	generation	of	shadows	is	now	accessible	via	this	new	plug-in	type.	The
standard	3ds	max	mapped	and	raytraced	shadows	have	been	revised	to	be
plug-ins	of	this	form.	See	Class	Class	ShadowType	and	Class
ShadowGenerator	for	details.	There	is	also	a	handy	class	for	creating
shadow	map	buffers.	See	Class	ShadBufRenderer.

Color	Selector	Plug-Ins
This	new	plug-in	type	provides	the	user	with	a	custom	color	picker	that
appears	whenever	a	standard	3ds	max	color	swatch	control	is	clicked.
These	plug-ins	are	selected	in	the	General	tab	of	the	Preferences	dialog.
The	color	picker	chosen	is	saved	in	the	3DSMAX.INI	file	in	the
"ColorPicker"	section	so	that	the	choice	is	maintained	between	sessions.	If
the	DLL	for	the	selected	color	picker	is	not	available,	it	will	always	default
back	to	the	"Default"	color	picker.	See	Class	ColPick	for	details.

Global	Utility	Plug-Ins

These	simple	utility	plug-ins	are	loaded	at	boot	time,	after	initialization,	but
before	the	message	loop	starts,	and	remain	loaded.	This	is	how	the	new	3ds
max	COM/DCOM	interface	is	implemented.	For	details	see	Class	GUP.

Ready	To	Build	Plug-In	Projects
The	3ds	max	4.0	SDK	comes	provided	with	an	SDK	appwizard	that	can	be	used
with	Microsoft	Visual	C++.	This	appwizard	allows	you	to	quickly	generate
skeleton	source	code	for	a	variety	of	different	plugin	types	and	essentially
replaced	the	previous	R3_SKELETON	projects	included	in	the	previous	release
of	the	software.
The	generated	code	from	the	appwizard	provides	a	quick	way	to	start	building
plugins.	Each	project	follows	a	standard	structure	with	regard	to	headers	and
code	files.	Developers	should	find	it	easy	to	take	this	generated	code	and	can
start	creating	plugins	without	manually	setting	up	the	entire	project	from	scratch.

New	Example	Code	for	R3	Programming	Concepts
The	SDK	has	sample	code	for	demonstrating	several	programming	concepts	and
exposed	APIs	introduced	in	R3.	This	code	can	be	found	in	the	sub-directories	of
\MAXSDK\SAMPLES\HOWTO\EXAMPLES.	The	API	exposed	by	the
Morpher	modifier	is	demonstrated	in	MORPHERAPI.	In	the	directory
SCRIPTPLUGIN	is	a	utility	that	demonstrates	SDK	access	to	a	scripted	plug-
in's	parameters.	Code	which	demonstrates	using	the	Custom	User	Interface	APIs
is	in	CUI-TEST.

MAXScript	SDK
The	MAXScript	SDK	is	a	set	of	Visual	C++	headers	and	import	libraries	that
programmers	can	use	to	extend	MAXScript.	The	MAXScript	SDK	source	is	now
a	part	of	the	main	3ds	max	SDK	source	tree.	It	is	available	in	the	directory
\MAXSDK\INCLUDE\MAXSCRPT.	In	order	to	use	the	MAXScript	SDK,
you'll	need	to	add	\MAXSDK\LIB\MAXSCRPT.LIB	to	your	project	and
add	\MAXSDK\INCLUDE\MAXSCRPT	to	your	preprocessor	include
directories.	See	the	Advanced	Topics	section	MAXScript	SDK	for
documentation	on	this	SDK.
There	are	two	samples	programs	available	in	the	directory

\MAXSDK\SAMPLES\HOWTO\MXS_SAMPLES.	These	are
TESTDLX	and	MXSAGNI.	TESTDLX	shows	how	to	add	new	types	of
classes	to	MAXScript.	It	also	shows	how	to	add	custom	controls.	The	other	is
MXSAGNI	which	shows	how	to	expose	globals,	struct	globals,	primitives	and
struct	primitives.	It	also	shows	how	to	add	new	types	of	classes	like	BigMatrix,
TrackViewPick,	and	Physique	and	Biped	interfaces.
There	is	also	sample	code	in	the	SDK	showing	how	to	add	a	custom	function	to
MAXScript,	add	a	custom	UI	element,	add	a	system	variable	and	add	a	class.
For	this	see	the	projects	in
\MAXSDK\HOWTO\R3_SKELETONS\MAXSCRIPTSDK.

COM/DCOM	Interface
The	COM/DCOM	interface	available	in	3ds	max	3.0	may	be	used	to	load	and
save	scenes,	import	files,	and	drive	the	3ds	max	renderer.	The	interface	for
doing	this	is	discussed	in	the	Advanced	Topics	section	COM/DCOM	Interface.

Deferred	Loading	of	Plug-Ins
3ds	max	3.0	has	introduced	the	concept	of	delay-loading	plug-ins.	In	previous
releases	every	plug-in	was	loaded	at	3ds	max	load	time.	Now,	certain	plug-ins
are	only	loaded	as	needed.	This	results	in	a	smaller	memory	footprint	for	3ds
max	and	shorter	load	time	at	startup.	The	impact	of	this	on	developers	is	that	the
method	ClassEntry::CD()	may	return	a	pointer	to	an	instance	of	class
DataClassDesc	rather	than	a	full	ClassDesc	as	it	did	previously.	This	derived
class	implements	Create()	by	returning	NULL.	Developers	need	to	call
ClassEntry::FullCD()	in	order	to	ensure	that	the	class	is	actually	there.	See
Class	DataClassDesc	and	Class	ClassEntry	for	information	on	these	methods.
For	additional	details	on	delay-loading	see	the	Advanced	Topics	section
Deferred	Loading	of	Plug-Ins.

New	Parameter	Map	System
The	existing	parameter	map	system	remains	for	backwards	compatibility	but	a
new	and	improved	system	is	available	in	the	3ds	max	3.0	SDK.	This	system
makes	user	interface	coding	even	simpler	than	before	and	allows	plug-ins	to
properly	integrate	with	3ds	max	3.0's	Macro	Recorder,	3ds	maxScript	and
Schematic	View.	For	details	on	this	system	see	the	Advanced	Topics	section

Parameter	Blocks	and	Maps	in	Release	3.

Multiple	Map	Support
New	in	3ds	max	3.0	is	the	ability	to	use	more	than	two	texture	maps	per	face	of	a
mesh.	Now	users	may	use	up	to	100.	This	has	impacted	how	mapping
coordinates	are	stored	by	the	mesh	as	well	as	how	the	color	per	vertex	data	is
stored.	There	are	corresponding	new	methods	in	Class	Object	and	Class	Mesh.
Also	see	the	Advanced	Topics	section	Working	with	Meshes	(Mapping	Channels
in	Release	3.0	and	Later)	for	additional	information.
This	has	also	affect	Patches	and	NURBS.	See	the	sections	Required	Changes	to
Patch	Related	Plug-Ins	and	Required	Changes	to	NURBS	for	details.

Access	to	Scene	XRefs	and	XRef	Objects
3ds	max	3.0	introduces	Scene	and	Object	External	References	(XRefs).	Scene
XRefs	are	stored	as	complete	hierarchies	with	the	XRef	scene's	root	node	as	a
child	of	the	client	scene's	root	node.	There	are	new	methods	in	Class	INode	to
access	these	Scene	XRefs	subtrees.	There	are	also	two	new	methods	in	Class
Interface	for	controlling	the	scene	node	traversal.	Object	XRefs	are	derived	from
Class	IXRefObject	and	this	class	provides	access	to	the	Object	XRef	parameters.

New	G-Buffer	Capabilities
The	G-Buffer	has	been	significantly	enhanced	for	R3.	The	concept	of	'layers'	has
been	added	as	well	as	four	new	channels.	The	multiple	layers	of	the	G-Buffer
allow	image	processing	effects	to	do	better	anti-aliasing	and	handling	of
transparency.	The	new	channels	are:
BMM_CHAN_COLOR
This	is	the	color	returned	by	the	material	shader	for	the	fragment.
BMM_CHAN_TRANSP
This	is	the	transparency	returned	by	the	material	shader	for	the	fragment.
BMM_CHAN_VELOC
This	gives	the	velocity	vector	of	the	fragment	relative	to	the	screen,	in	screen
coordinates.
BMM_CHAN_WEIGHT

This	is	the	sub-pixel	weight	of	a	fragment.
See	Class	GBuffer	and	List	of	Image	(G-Buffer)	Channels	for	details.

New	NURBS	Related	Classes
The	NURBS	API	has	been	extended	and	altered	in	release	3.0.	The	primary
change	has	been	in	the	way	texture	surface	are	handled.	See	the	sub-topic
Texture	Mapping	in	the	Working	with	NURBS	topic	for	an	overview	of	the
classes.	Also	see	the	section	Required	Changes	to	NURBS	Related	Plug-Ins	for
an	overview	of	the	other	changes.	The	new	classes	introduced	in	release	3.0	are:
Class	NURBSTextureChannelSet.
Class	NURBSTextureChannel.
Class	NURBSTexturePoint.
Class	NURBSSurfaceEdgeCurve.
Class	NURBSFilletSurface.
Class	NURBSProceeduralCurve.
Class	NURBSProceeduralSurface.

Access	to	the	File	Properties	Data
The	3ds	max	File	Properties	dialog	allows	a	user	to	enter	various	information	to
be	stored	in	the	3ds	max	file.	Developers	can	access	this	information	via	the
SDK.	Methods	of	class	Interface	provide	this	access	(see	the	PropertySet
methods	of	Class	Interface	for	details).	There	is	a	sample	project	in	the	SDK
which	demonstrates	how	this	is	done.	See	the	code	in
\MAXSDK\SAMPLES\UTILITIES\PROPERTYTEST\PROPERTYTEST.CPP

New	Notifications	(Callbacks)
The	SDK	provides	a	notification	system	where	a	plug-in	can	ask	to	receive	a
callback	for	events	such	as	the	user	executing	File/Reset,	changing	the	viewport
layout,	rendering	the	scene,	etc.	There	are	several	new	types	of	notifications
codes	that	may	be	registered	in	R3.	The	documentation	for	Structure	NotifyInfo
and	List	of	Notification	Codes	describes	them.

Ability	For	Non-3D	Windows	to	Appear	in	a	3ds	max	Viewport

Programs	that	want	to	have	their	user	interface	appear	in	a	3ds	max	viewport
(much	like	Track	View	and	the	Asset	Manager	do)	can	now	accomplish	this.	See
Class	ViewWindow	for	details.

New	Keyboard	Shortcut	System
This	new	system	is	used	to	register	keyboard	shortcuts	in	a	uniform	manner.	In
3ds	max	3.0	in	the	Customize	/	Preference	Settings	/	Keyboard	tab	dialog	there
is	a	section	to	assign	Plug-In	shortcuts	to	commands.	For	details	on	how	this
works	see	Keyboard	Shortcut	System.	Sample	code	is	available	in	the	directory
\MAXSDK\SAMPLES\MODIFIERS\FFD.

New	Custom	User	Interface	API
3ds	max	now	allows	users	the	customize	the	user	interface.	There	is	an	API	that
allows	developers	to	do	some	customization	as	well.	Developers	can	create	their
own	custom	toolbars	and	tab	panels	which	may	be	docked	or	floated.	The
buttons	can	run	3ds	max	keyboard	commands	and	execute	3ds	max	script
commands	in	addition	to	the	usual	custom	toolbar	functionality	(icon	buttons,
flyoffs,	etc.)
There	is	a	sample	program	in	the	SDK	which	demonstrates	the	use	of	these	API.
It's	in	\MAXSDK\SAMPLES\HOWTO\EXAMPLES\CUI-TEST.
Follow	the	instruction	in	the	comments	at	the	top	of	the	code	to	build	and	run
this	plug-in.
The	main	classes	used	in	working	with	the	custom	UI	are:
Class	ICustToolbar
This	existing	class	has	been	enhanced	to	support	the	new	CUI	functionality.
Toolbars	may	now	support	multiple	rows,	or	appear	vertically.	They	may	also
have	macro	buttons	(added	with	the	MacroButtonData	class)	which	may
have	icons	or	text.
When	a	Toolbar	is	part	of	a	CUI	frame	it's	called	a	Tool	Palette.	Tool	Palettes
can	either	float	or	dock	(whereas	a	Toolbar	must	be	placed	by	the	developer
in	a	dialog	using	the	resource	editor).	When	you	want	to	create	a	Tool	Palette
you	create	a	Toolbar	(as	before)	and	then	you	create	a	CUIFrame	and	then
link	the	two	using	a	method	of	CUIFrame.
Class	MacroButtonData

A	Macro	Button	is	a	button	which	can	execute	either	a	keyboard	macro	or	a
MAXScript	macro.	This	class	contains	the	data	and	access	methods	for	such	a
UI	button.
Class	ICUIFrame
This	class	provides	access	to	the	individual	windows	(frames)	that	that
contain	the	toolbars,	menus,	etc.
Class	CUIFrameMgr
There	is	one	instance	of	the	CUIFrameMgr	and	it	controls	the	overall
operation	of	the	individual	CUI	frames.	This	class	has	methods	for	things	like
docking	a	tool	palette,	bringing	up	the	toolbar	right	click	menu,	and	returns
button	IDs	and	window	handles.
Class	CUIFrameMsgHandler
Since	the	CUI	frame	is	just	a	window,	it	needs	a	window	proc.	There	is	one
built	into	the	CUI	system,	but	certain	frames	may	need	additional	information
that	is	specific	to	how	the	frame	is	being	used.	For	example,	the	command
panel	is	a	CUI	frame	which	can't	be	resized	horizontally.	To	manage	this,	the
application	must	install	a	CUIFrameMsgHandler	object.	This	class	has
one	method,	ProcessMessage().
Class	CUIPosData
This	is	the	object	that	provides	the	position	data	when	the
CUIFrameMsgHandler::ProcessMessage()	method	recieves	a
CUI_POSDATA_MSG	message.	The	developer	creates	an	instance	of	this
class	and	implements	the	GetWidth()	and	GetHeight()	methods	which
return	size	information	based	on	the	size	type	and	orientation	passed.
Class	ToolMacroItem
This	class	allows	a	Macro	button	control	to	be	added	to	the	toolbar.
Class	MacroDir
This	class	provides	access	to	Macro	scripts.	Macro	scripts	(or	macros)	are
scripts	that	live	in	buttons	and	menus	in	the	customizable	UI.	Methods	of	this
class	are	availalble	to	access	macros	using	IDs	or	category	and	name	strings,
methods	to	edit	macro	scripts,	methods	to	execute	macros,	and	methods	for
directory	scanning	and	loading.
Class	MacroEntry
This	class	provides	access	to	a	single	macro	entry.	There	are	methods

provided	to	access	the	macro	ID,	name,	category,	file	name,	tooltip,	UI	button
text,	and	the	UI	button	icon.	MacroEntries	are	returned	from	methods	of	class
MacroDir.

New	Custom	Slider	and	Curve	Controls
There	is	a	new	custom	horizontal	slider	control.	This	control	is	functionally
similar	to	the	custom	spinner	control	with	a	few	handy	features.	An	example	of
this	control	can	be	seen	in	the	Color	Balance	Render	Effect.	See	Class
ISliderControl	for	details.
There	is	also	a	new	custom	curve	control.	An	example	of	this	control	in	the	3ds
max	user	interface	can	be	seen	in	the	Color	Map	section	of	the	Output	rollup	of	a
2D	Texture	map.	Sample	code	using	these	APIs	is	available	in
\MAXSDK\SAMPLES\UTILITIES\CCUTIL\CCUTIL.CPP.	See
Class	ICurveCtl	for	reference	information.

New	RightClickMenuManager	Methods
These	new	methods	let	plug-ins	add	sub-menus	to	the	viewport	right-click	menu.
Developers	can	call	the	methods
int	BeginSubMenu(LPCTSTR	name);
int	EndSubMenu();

to	start	and	end	sub-menus.	See	Class	RIghtClickMenuManager.

Access	to	the	Track	Bar
Directly	below	the	time	slider	is	a	new	Track	Bar,	which	offers	a	quick	way	to
manipulate	keyframes	for	selected	objects.	Keys	are	displayed	on	the	track	bar
just	like	they	are	in	Track	View.	Developers	have	access	to	a	class	which	may	be
used	to	manipulate	the	Track	Bar.	See	Class	ITrackBar	for	details.

New	Multiple	Viewport	Enabled	Mouse	Proc
This	new	mouse	proc	allows	drawing	in	multiple	viewports,	offsetting	from	the
construction	plane,	and	orthogonal	and	angle	snapping.	This	is	the	mouse	proc
that	NURBS	uses	for	curve	creation.	This	allows	developers	to	support
orthogonal	snapping	and	angle	snapping	on	creation	like	the	Bezier	Line	tool
does.	Also	if	the	user	presses	Shift	while	dragging	the	mouse,	the	point	is

snapped	to	the	nearest	quadrant	(ortho	snapping).	If	the	Alt	key	is	held,	the	point
is	snapped	using	the	setting	of	the	angle	snap	system.
Users	of	this	mouse	proc	need	to	sub-class	from	the	Class	DataEntryMouseProc
and	implement	some	virtual	methods	to	use	it.

Ability	to	Replace	the	3ds	max	Load	and	Save	File	Dialogs
There	are	two	new	classes	and	two	methods	of	Interface	that	allow	developers
to	replace	the	load	and	save	file	dialogs	with	custom	ones.	See	the	methods:
virtual	void	SetMAXFileOpenDlg(MAXFileOpenDialog*	dlg)=0;
virtual	void	SetMAXFileSaveDlg(MAXFileSaveDialog*	dlg)=0;

in	Class	Interface	for	more	information.

Schematic	View	API
The	Schematic	View	window	allows	users	to	review,	and	perform	certain
operations	on,	many	of	the	objects	that	make	up	the	scene.	See	the	Advanced
Topics	section	on	Schematic	View	for	an	overview	of	the	API.	Developers	have
access	to	method	for	working	with	Schematic	View	as	part	of	the	following
classes:
Class	IGraphObjectManager
This	class	represents	an	instance	of	a	schematic	view	window	and	provides
methods	for	adding	nodes	and	node	pointers,	refreshing	the	schematic	view,
accessing	filter	bits	and	updating	and	controlling	the	various	editors	within
3ds	max.
Class	IGraphNode
This	represents	a	node	in	the	schematic	view	graph	and	provides	a	few
methods	for	querying	information	about	the	node.
Class	IGraphRef
IGraphRef	represents	a	node	pointer	in	Schematic	View.
Class	Animatable
There	is	a	set	of	methods	in	Animatable	that	can	be	overridden,	all	or	in	part,
to	specialize	the	behavior	of	the	schematic	view	node(s)	which	represents	the
Animatable	object.
Class	SubClassList

This	existing	class	also	has	some	Schematic	View	drawing	related	methods
(GetUIInfo()	and	SetUIInfo()).

Random	Number	Generator
There	is	a	new	class	that	may	be	used	to	generate	pseudo-radom	number	in
either	floating	point	or	integer	format	within	a	specified	range.	Each	instantiation
of	this	class	is	independent,	permitting	several	uncoupled	random	number
generators	to	be	present	in	the	system	at	once.	See	Class	Random.

Macro	Recorder	API
3ds	max	R3	introduced	the	concept	of	macro	recording.	The	macro	recorder
generates	MAXScript	code	for	operations	the	user	performs	when	running	3ds
max.	These	scripts	can	then	be	played	back	to	automate	operations	inside	3ds
max.	Since	3ds	max	is	made	up	of	plug-ins	there	needs	to	be	a	way	that	the	plug-
ins	can	record	their	own	changes	as	the	user	operates	them.	This	is	the	purpose
of	the	Macro	Recorder	API.
Most	common	operations	performed	by	a	plug-in	are	handled	automatically.	For
example	the	getting	and	setting	of	parameter	block	values	automatically
generates	script	for	the	Macro	Recorder.	In	such	cases	a	plug-in	developer
doesn't	need	to	do	anything.	There	are	other	operations	that	can't	be	handled
automatically,	however.	For	example	a	plug-in	may	have	a	button	in	its	user
interface	that	internally	results	in	some	looping.	To	generate	code	to	record	a
loop	the	methods	of	MacroRecorder	would	be	used.	See	Class
MacroRecorder.

Access	To	3D	Studio	VIZ	Layers
For	use	with	the	layer	capabilities	of	3D	Studio	VIZ	several	classes	have	been
added	to	the	3ds	max	API.	See	Class	ILayer	and	Class	ILayerManager	for
details.

New	Methods	for	the	IK	Master	Controller
The	new	methods	provide	additional	access	to	the	controls.	See	Class
IKMasterControl.

New	and	Revised	Mesh	Related	Classes
The	following	classes	track	various	aspects	of	an	edit	operation	to	a	mesh.	They
are	the	principal	means	of	keeping	track	of	what's	going	on	in	the	Edit	Mesh
modifier,	and	have	many	standard	mesh	edits	available	for	use	by	other	plug-ins.
Class	MeshDelta
This	is	a	class	that	represent	some	kind	of	change	to	a	mesh.	This	“delta”	can
include	topological,	geometric,	map,	and/or	selection	changes.	Most	standard
mesh	“edits”	available	in	the	Editable	Mesh	or	Edit	Mesh	interface	are
available	through	the	MeshDelta	SDK,	giving	developers	a	powerful	way	to
manipulate	meshes	while	not	having	to	“sweat	the	details”	of	maintaining
maps	to	match	the	mesh	changes,	updating	edge	selections,	etc.
Class	VertMove
This	class	represents	the	notion	of	a	mesh	edit	vertex	move.	The	public	data
members	provide	the	index	of	the	vertex	moved	as	well	as	the	amount	of	the
move	in	X,	Y,	and	Z.
Class	UVVertSet
This	class	represents	the	notion	of	a	mesh	edit	UVW	vertex	assignment.	The
public	data	members	provide	the	index	of	the	vertex	as	well	as	the	UVWVert.
Class	FaceRemap
This	class	represents	the	notion	of	a	mesh	edit	Face	Remap,	which	changes
one	or	more	of	the	verticies	a	face	uses.	It	can	also	alter	the	visibiliy	of	the
face's	edge,	its	hidden	state	and	its	material	ID.
Class	FaceChange
This	class	represents	the	notion	of	a	mesh	edit	Face	Change,	which	changes
the	visibiliy	of	the	face's	edges,	its	hidden	state	and/or	its	material	ID.
Class	FaceSmooth
This	class	represnents	the	notion	of	the	edit	mesh	Face	Smooth	operation.
This	updates	the	smoothing	group	infomation	in	the	face.

	
Similar	to	the	above	classes,	but	used	for	topological	operations	in	the	Edit	Mesh
modifier	and	Editalble	mesh	are	the	classes	below:
Class	MeshDeltaUser	and	Class	MeshDeltaUserData
Both	Edit	Mesh	and	Editable	Mesh	have	a	current	"state",	which	can	be
modified	by	MeshDelta	objects.	In	Editable	Mesh,	this	"state"	is	an	actual

mesh,	while	in	Edit	Mesh,	this	is	one	MeshDelta	per	LocalModData.	These
are	the	two	new	classes	which	provide	a	standard	interface	to	these.
Class	VDataDelta
VDataDelta	is	simply	a	way	for	a	MeshDelta	to	keep	track	of	per-vertex
information.
Class	MapDelta
This	class	that	represents	some	kind	of	change	to	a	mesh	map.	This	“delta”
can	include	changes	in	map	vertices	and/or	faces.
Class	MeshTempData
This	is	a	class	for	caching	winged	edge	lists,	face	adjacency	lists,	face	and
edge	clusters,	vertex	normals,	and	other	derived	data	about	a	mesh.
Class	MeshChamferData
This	is	a	class	to	maintain	chamfer	information	between	several	MeshDelta
methods.
Class	EdgeClusterList
This	is	a	list	of	edge	"clusters"	for	a	given	mesh.	A	typical	application	would
be	in	Edit(able)	Mesh,	where	the	user	has	selected	a	two	separate	groups	of
edges	on	different	parts	of	the	mesh	and	wants	to	extrude	them	both,	or	rotate
both	around	their	local	centers.	Each	"cluster"	is	a	contiguous	group	of
selected	edges.
Class	UVWMapper
Prior	to	release	3.0,	developers	could	implement	the
Object::ApplyUVWMap()	in	their	objects,	but	they	haven't	had	access	to
the	algorithm	3ds	max	uses	to	turn	the	mapping	types	(MAP_BOX,
MAP_PLANE,	etc)	into	an	actual	vertex-to-mapping-coordinate	function.
Now	this	is	available	as	a	class,	UVWMapper.	The	mesh
ApplyUVWMap()	method	has	been	changed	to	take	advantage	of	this.

The	IMeshSelect	and	IMeshSelectData	classes	have	been	extended	to
support	the	Editable	Mesh	and	Edit	Mesh	modifier	(not	just	the	Mesh	Select
modifier).
Class	IMeshSelect
This	class	provides	access	to	the	Editable	Mesh	object,	Edit	Mesh	modifier
and	Mesh	Select	modifier	selection-level	data	as	well	as	a	selection-change-
notification	method.

Class	IMeshSelectData
This	class	may	be	used	to	get	and	set	the	vertex,	face,	and	edge	selection	state
of	the	Edit	Mesh	or	Mesh	Select	modifier.

New	Interface	Classes
The	following	new	interface	classes	provide	access	to	various	objects,	modifiers,
controllers	etc.
Class	ISplineSelect.
Class	ISplineSelectData.
Class	ISplineOps.
Class	IPatchSelect.
Class	IPatchSelectData.
Class	IPatchOps.
Template	Class	IFFDMod.

Required	Changes	To	Geometric	Objects
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.

Overview
This	section	discusses	the	changes	to	Geometric	Objects.	Note	that	not	all	these
changes	are	required	of	every	object.	It	depends	on	the	type	of	object	and
whether	the	default	behavior	is	undesirable.	A	brief	description	of	the	new	or
changed	methods	is	provided	here.	Please	refer	to	the	reference	section	for	the
method	for	details.

Mapping	Methods
The	new	multiple	mapping	methods	are	for	object	which	support	mapping
channels.	These	methods	describe	how	many	mapping	channels	are	available
and	how	many	are	currently	used.	Both	are	from	Class	Object.
virtual	int	NumMapChannels();
virtual	int	NumMapsUsed();

Counting	Face	and	Vertex	Quantities
There	are	many	places	in	3ds	max	that	compute	face	and	vertex	counts	of	objects
in	the	scene.	For	instance	the	object	properties	dialog,	summary	info,	the
polygon	counter	utility,	and	on	file	saving	to	write	that	info	into	the	file.	This
was	previously	done	by	doing	a	ConvertToType()	to	a	TriObject
representation	and	counting	up	the	faces	and	vertices.	For	certain	object	types,
for	instance	NURBS,	this	could	be	very	expensive	since	the	code	would	need	to
re-tessellate	the	whole	object.	This	would	also	consume	a	great	deal	of	memory.
There	is	now	a	new	method	in	the	Object	class	used	to	compute	the	number	of
faces	and	vertices	in	the	mesh	representation	of	the	Object.	This	is:
virtual	BOOL	PolygonCount(TimeValue	t,	int&	numFaces,	int&
numVerts);

Rather	than	doing	a	ConvertToType()	many	objects	can	simply	iterate	over
their	cached	mesh	to	compute	this.	Geometric	objects	that	represent	themselves
as	a	Mesh	can	also	compute	this	quickly.	Therefore	developers	of	Geometric

objects	that	are	mesh-based	should	implement	this	method.	See	Class	Object	for
the	details.
There	is	also	a	global	function	developers	can	call	to	get	this	information	from
any	geometric	object.	It	is:
void	GetPolygonCount(TimeValue	t,	Object*	pObj,	int&
numFaces,	int&	numVerts);

Multiple	Parametric	Surface	Access
Methods	have	been	added	for	accessing	multiple	parametric	surfaces	within	an
object.	Previously,	only	one	surface	within	each	object	could	be	accessed.	The
new	methods	are:
virtual	int	NumSurfaces(TimeValue	t);
virtual	Point3	GetSurfacePoint(TimeValue	t,	int	surface,	float	u,
float	v,Interval	&iv);
virtual	void	SurfaceClosed(TimeValue	t,	int	surface,	BOOL
&uClosed,	BOOL	&vClosed);

Please	see	Class	Object	for	details.

Access	to	Selected	Point	Information
Geometric	Object	which	support	the	selection	of	points	(verticies,	control	points,
etc)	can	make	the	selection	data	availalble	to	other	plug-ins	via	two	new
methods	of	Class	Object.	These	are:
virtual	BOOL	IsPointSelected(int	i);
virtual	float	PointSelection(int	i);

Aborting	Generating	a	Mesh
Geometric	Object	which	implement	GeomObject::GetRenderMesh()	may
wish	to	check	for	aborted	renderings	while	they	generate	the	render	mesh.	Some
plug-ins	do	extensive	calculations	inside	this	method	and	to	allow	3ds	max	to
respond	more	rapidly	to	user	abort	reqeusts	these	calcualtions	should	be	stopped
as	soon	as	possble.	By	calling	a	methods	of	the	View	class,
CheckForRenderAbort(),	inside	of	GetRenderMesh(),	3ds	max	can	be
made	to	feel	all	the	more	responsive.	See	Class	GeomObject	and	Class	View	for

details.

IMeshSelectData	Change
The	return	types	of	the	GetVertSel(),	GetFaceSel()	and	GetEdgeSel()
methods	of	the	Class	IMeshSelectData	class	have	changed.	They	no	longer
return	a	referece	to	a	BitArray	but	rather	a	BitArray	itself.

Supporting	AutoGrid
AutoGrid	allows	for	on-the-fly	creation	of	a	constuction	plane	during	another
object's	creation	mode.	This	reults	in	objects	aligning	to	one	another	during
creation.	Objects	which	handle	their	own	creation	will	need	to	add	some	code	to
their	creation	proc.	To	make	it	work	you	can	do	the	following	in	the	creation
proc.
...
case	MOUSE_FREEMOVE:
	vpt->TrackImplicitGrid(m);
...
case	MOUSE_POINT:
if	(point	==	0)
	vpt>CommitImplicitGrid(m,	flag);
...
if("returning"	CREATE_STOP)
	vpt>ReleaseImplicitGrid();

See	AutoGrid	Related	Methods	in	class	ViewExp	for	information	on	these
methods.

Required	Changes	To	Particles
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.
New	Particle	Methods
New	methods	have	been	added	to	the	SimpleParticle	class	to	set	the	position,
velocity	and	age	for	an	individual	particle:

void	SetParticlePosition(TimeValue	t,	int	i,	Point3	pos);
void	SetParticleVelocity(TimeValue	t,	int	i,	Point3	vel);
void	SetParticleAge(TimeValue	t,	int	i,	TimeValue	age);

Inter-Particle	Collision
The	3ds	max	3.0	SUPRPRTS	particle	systems	support	Inter	Particle	Collision
(IPC).	IPC	is	not	built	into	the	3ds	max	core,	or	even	into	PARTICLE.DLL.
Rather,	it's	implemented	at	a	relatively	high	level	in	SUPRPRTS.	Developers
of	particle	systems	that	want	to	support	IPC	will	have	to	implement	their	own
IPC	system	using	the	3ds	max	code	as	an	example.	Also,	see	the
CheckCollision()	method	of	Class	CollisionObject	which	has	two	new
parameter	for	IPC	support..	The	source	code	for	SUPRPTRS	is	in	the
directory	\MAXSDK\SAMPLES\OBJECTS\PARTICLES.

Required	Changes	To	Helper	Objects
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.
Any	ConstObject-based	classes	will	need	to	have	their	GetSnaps()	method
changed	to	return	a	Point3,	not	a	Point3&.

Required	Changes	To	Light	Plug-Ins
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.

Atmospheres	and	Effects	Rollup	Support
Light	plug-ins	should	use	the	new	'Atmospheres	&	Effects'	rollup	in	their	user
interface	This	is	a	new	rollout	that	lets	you	assign	Atmosphere	and	Render
Effects	to	a	selected	light	from	the	command	panel.	Note	that	you	can	do	the
same	thing	from	within	the	Environment	dialog	or	the	Render	Effects	dialog,
but	this	provides	the	controls	for	the	light	you’re	working	on,	and	lets	you
easily	see,	just	by	selecting	a	light	in	the	scene,	if	that	light	has	an	effect
assigned	to	it..	See	Class	Interface	and	Class	Atmospheric	for	details.

Several	New	Methods	of	LightObject
There	are	a	number	of	new	light	methods.	See	Class	LightObject	to	review
them.

New	Shadow	Generator	Plug-Ins
Lights	may	now	have	a	corresponding	shadow	generator	if	desired.	See	the
What's	New	in	the	MAX	3.0	SDK	section	discussing	the	new	Shadow
Generator	Plug-in	type	or	see	Class	ShadowType.

Required	Changes	To	Atmospheric	Plug-ins
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.
Atmospheric	Gizmos
Developers	may	want	to	use	the	Atmospheres	&	Effects	rollup	which	appears	in
some	of	the	core	3ds	max	plug-ins.	This	is	a	new	rollout	that	appears	only	in	the
Modify	panel.	(It	does	not	appear	when	you	create	the	atmosphere	gizmo.)	The
items	in	the	new	rollout	let	you	assign	Atmosphere	and	Render	Effects	to	a
selected	atmosphere	gizmo	from	the	command	panel.	Note	that	you	can	do	the
same	thing	from	within	the	Environment	dialog	or	the	Render	Effects	dialog,	but
this	provides	the	controls	for	the	gizmo	you’re	working	on	and	lets	you	easily
see,	just	by	selecting	a	gizmo	in	the	scene,	if	that	gizmo	has	an	effect	assigned	to
it.
See	Class	Interface	and	Class	Atmospheric	for	the	required	methods.
Handling	Undo	for	Adding	and	Deleting	Gizmo	References
Atmosphere	plug-ins	need	to	implement	undo	for	the	adding	and	deleting	of
gizmo	references.
Below	is	a	summary	of	what	needs	to	be	done:
Implement	the	SpecialFX	methods	AppendGizmo()	and	DeleteGizmo()	to
handle	the	undo.	See	Class	SpecialFX.	There	are	helper	classes	for	this	purpose.
See	Class	AppendGizmoRestore	and	Class	DeleteGizmoRestore.
Anywhere	in	the	plug-in	where	a	gizmo	is	deleted,	it	should	call
DeleteGizmo()	so	the	undo	will	work	uniformly.	The	DeleteGizmo()	calls
should	be	surrounded	with	theHold.Begin	and	theHold.Accept.
AppendGizmo()	calls	(for	instance	inside	pick	procs)	should	be	surrounded	by
theHold.Begin	and	theHold.Accept.
Use	code	in	NotifyRefChanged()	to	update	any	list	box	controls,	where
changes	can	happen	due	to	an	Undo.	For	example:
		case	REFMSG_SUBANIM_STRUCTURE_CHANGED:
		case	REFMSG_NODE_NAMECHANGE:
			if	(dlg)	dlg->UpdateNames();
			break;

Required	Changes	To	Snap	Plug-Ins
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.
Snap	plug-ins	are	now	required	to	implement	a	Osnap::Category()	method.
Previously,	if	this	method	returned	NULL,	the	snap	was	loaded	into	the	default
category.	This	is	no	longer	true.	Snaps	which	return	NULL	from	this	method
will	not	be	registered	with	the	system.	See	Class	Osnap.

Required	Changes	To	Space	Warps
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.
There	is	a	new	method	used	as	a	way	of	identifying	the	'parent'	Deflector	for	a
CollisionObject	available	to	a	particle	system.	This	must	be	implemented	by	all
Deflectors.	It	returns	the	object	pointer	to	the	Deflector	from	which	the	Collision
object	is	derived.	See	GetSWObject()	in	Class	CollisionObject.

Required	Changes	To	File	Import	Plug-Ins
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.
File	Import	Plug-Ins	have	a	single	new	method	used	to	control	how	Zoom
Extents	is	handled	after	a	scene	import	takes	place.	See	the	method
ZoomExtents()	in	Class	SceneImport.

Required	Changes	To	File	Export	Plug-Ins
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.
File	Export	Plug-Ins	have	a	new	parameter	in	the	method	DoExport()	to
support	the	export	of	only	the	selected	nodes.	There	is	also	a	related	new	method
called	SupportsOptions().See	Class	SceneExport.
Developers	should	also	consider	the	implications	of	the	new	multiple	texture
mapping	channels	present	in	3ds	max	3.0.	These	will	have	an	impact	on	what
needs	to	be	done	to	export	a	faithful	visual	representation	of	the	scene.	For	more
information	see	the	Advaced	Topics	section	on	Working	with	Meshes	as	well	as
the	section	on	Multiple	Mapping	Channels	in	the	What's	New	in	the	MAX	3.0
SDK	section.

Required	Changes	To	Plug-In	Materials
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.

Change	to	BuildMaps
The	method	MtlBase::BuildMaps()	has	had	its	return	value	behaviour
altered.	If	this	method	now	returns	zero	the	render	is	cancelled	(previously
rendering	would	continue).

Maximum	Pixel	Size
The	maximum	pixel	size	preference	has	been	removed	from	the	UI	and	thus	the
following	methods	were	removed	from	the	Interface	class.
virtual	float	GetRendMaxPixelSize()=0;
virtual	void	SetRendMaxPixelSize(float	s)=0;
There	are	new	methods	in	Class	RenderGlobalContext	to	retrieve	the	filter	and
the	filter	size.	These	are	GetAAFilterKernel()	and	GetAAFilterSize().

New	Return	Value	from	MapSlotType
There	is	a	new	value	to	be	returned	by	the	method	MtlBase::MapSlotType()
to	identify	slots	that	hold	displacement	maps.	This	is
MAPSLOT_DISPLACEMENT.	Developers	should	modify	their
MapSlotType()	method	to	return	this	new	value	for	the	displacement	channel.

API	Modifications	to	Handle	3D	Bump	Maps
The	following	changes	are	needed	to	correct	a	problem	with	3D	bump	maps
when	objects	in	the	scene	are	scaled.	This	scaling	results	in	a	very	noticeable
inappropriate	change	in	the	bumping	effect.
The	problem	is	occurring	when	the	bump	perturbation	vectors	must	be
transformed	from	object	space	to	camera	space,	so	they	are	oriented	correctly	as
the	object	rotates.	If	the	object	has	been	scaled,	this	transformation	causes	the
perturbation	vectors	to	be	scale	also,	which	amplifies	the	bump	effect.	What	is
needed	is	a	way	to	rotate	the	perturbation	vectors	so	they	are	correctly	oriented

in	space,	without	scaling	them.	To	do	a	new	method	has	been	added	to	Class
ShadeContext.
ShadeContext::VectorFromNoScale(const	Point3&	p,	RefFrame
ifrom);

There	is	also	a	complimentary	new	method	VectorToNoScale()	added	for
completeness.
ShadeContext::VectorToNoScale(const	Point3&	p,	RefFrame	ito);

The	coding	ramifications	of	this	are	as	follows:
-	Any	plug-in	that	creates	a	shade	context	in	which	materials	are	evaluated	needs
to	implement	these	two	new	functions	(VectorFromNoScale()	and
VectorToNoScale()).	This	applies	to	plug-in	renderers	and	materials.
-	A	change	is	required	related	to	loading	old	files	by	plug-in	materials	which
support	bump	maps.	This	change	is	required	since	if	nothing	is	done	to	modify
old	files,	bump	maps	on	scaled	objects	will	not	render	as	they	did	previously	(the
bump	amount	for	scaled-up	objects	will	become	much	less).	When	loading	old
files,	the	Standard	material	uses	a	post-load	callback	that	looks	to	see	if	the	node
that	references	the	material	is	scaled	up,	and	if	so,	multiplies	the	bump	amount
by	a	similar	factor.	Note	that	if	the	material	is	used	by	more	than	one	node,
there’s	nothing	that	can	be	done	to	make	them	all	render	the	same	if	they	have
different	scales.	The	same	is	true	if	a	node	is	scaled	non-uniformly.	A	postload
callback	similar	to	the	one	the	Standard	material	uses	will	have	to	be	used	by
plug-in	materials	which	support	the	use	of	bump	maps.

Required	Changes	To	NURBS	Related	Plug-Ins
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.

Overview
This	section	discusses	the	changes	to	the	NURBS	API	that	affects	plug-ins.	Note
that	not	all	these	changes	are	required	of	every	NURBS	related	plug-in.	A	brief
description	of	the	new	or	changed	methods	is	provied	here.	Please	refer	to	the
reference	section	for	the	methods	for	details.

New	NURBS	Texture	Surface	API
The	API	for	NURBS	Texture	Surfaces	has	changes	significantly	to	reflect	the
underlying	change.	This	reflects	a	significant	architectural	change	and	will
mean	that	users	of	the	API	will	need	to	rebuild	this	functionality.	See	the	sub-
section	Texture	Mapping	in	Working	with	NURBS	for	a	list	of	the	new	or
revised	classes.

Replaced	or	Eliminated	Methods
Two	methods	have	been	removed	from	Class	NURBSExtrudeSurface.	These
are:
void	SetEVec(TimeValue	t,	Point3&	evec);
Point3&	GetEVec(TimeValue	t);
They	are	replace	by	the	methds:
void	SetAxis(TimeValue	t,	Matrix3&	ray);
Matrix3&	GetAxis(TimeValue	t);

Tesselation	Related	Changes
The	tesselation	methods	have	changed	in	this	release.	This	impacts	several
areas	such	as	Class	NURBSSet	and	Class	TessApprox.	There	are	also	some
new	tesselation	related	global	functions	available.	See	Working	with	NURBS
to	review	these.

Material	IDs
Material	IDs	have	been	added	to	NURBS	curves.	Class	NURBSCurve	now
has	a	new	data	member	int	mMatID.

Required	Changes	To	Textures	Plug-In
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.

Using	an	XYZGen	or	UVGen
All	2D	textures	that	use	UVGen	or	otherwise	select	mapping	channels	need	to
implement	the	method	MtlBase::LocalMappingsRequired()
Here	is	a	typical	implementation:
void	LocalMappingsRequired(int	subMtlNum,	BitArray	&
mapreq,	BitArray	&bumpreq)	{
	uvGen->MappingsRequired(subMtlNum,mapreq,bumpreq);
	}

All	3D	Textures	that	use	the	XYZGen	to	put	up	a	coordinates	rollup	must	now
implement	the	new	MtlBase::LocalMappingsRequired()	method
An	example	is	shown	below:
void	LocalMappingsRequired(int	subMtlNum,	BitArray	&
mapreq,BitArray	&bumpreq)	{
xyzGen->MappingsRequired(subMtlNum,mapreq,bumpreq);
}

Materials	that	need	bump	mapping	for	certain	channels	also	need	to	implement
this	function	so	they	can	set	the	bits	in	bumpreq	for	those	channels.

GetUVWSource	Return	Values
The	method	Texmap::GetUVWSource()	returns	a	value	indicating	where	to
get	the	texture	verticies.	One	of	the	options	has	changed	meaning.	The	value
UVWSRC_EXPLICIT2	has	been	changed	to	always	mean	the	vertex	color
channel.

New	GetMapChannel	Method
There	is	a	new	method	in	Texmap	related	to	the	new	mapping	channels,
GetMapChannel().	This	method	returns	the	map	channel	being	used	when

GetUVWSource()	returns	UVWSRC_EXPLICIT.

List	of	Material	Requirement	Flags
The	old	material	requirement	flags	returned	from	the
MtlBase::Requirements()	method	MTLREQ_UV,	MTLREQ_UV2,
MTLREQ_BUMPUV,	and	MTLREQ_BUMPUV2	are	still	recognized	by
the	renderer	for	backwards	compatibility,	but	they	will	probably	go	away	at
some	time.	See	Class	MtlBase	for	details.

Maximum	Pixel	Size
The	maximum	pixel	size	preference	has	been	removed	from	the	UI	and	thus	the
following	methods	were	removed	from	the	Interface	class.
virtual	float	GetRendMaxPixelSize()=0;
virtual	void	SetRendMaxPixelSize(float	s)=0;
There	are	new	methods	in	Class	RenderGlobalContext	to	retrieve	the	filter	and
the	filter	size.	These	are	GetAAFilterKernel()	and	GetAAFilterSize().

API	Modifications	to	Handle	3D	Bump	Maps
The	following	changes	are	needed	to	correct	a	problem	with	3D	bump	maps
when	objects	in	the	scene	are	scaled.	This	scaling	results	in	a	very	noticeable
inappropriate	change	in	the	bumping	effect.
The	problem	is	occurring	when	the	bump	perturbation	vectors	must	be
transformed	from	object	space	to	camera	space,	so	they	are	oriented	correctly	as
the	object	rotates.	If	the	object	has	been	scaled,	this	transformation	causes	the
perturbation	vectors	to	be	scale	also,	which	amplifies	the	bump	effect.	What	is
needed	is	a	way	to	rotate	the	perturbation	vectors	so	they	are	correctly	oriented
in	space,	without	scaling	them.	To	do	a	new	method	has	been	added	to	Class
ShadeContext.
ShadeContext::VectorFromNoScale(const	Point3&	p,	RefFrame
ifrom);

There	is	also	a	complimentary	new	method	VectorToNoScale()	added	for
completeness.
ShadeContext::VectorToNoScale(const	Point3&	p,	RefFrame	ito);

The	coding	ramifications	of	this	are	as	follows:
All	3D	Textures	need	to	replace	calls	to	ShadeContext::VectorFrom()	with
calls	to	ShadeContext::VectorFromNoScale().
Here's	an	example	of	the	use	of	VectorFromNoScale()	in	an
EvalNormalPerturb()	function:
Point3	Marble::EvalNormalPerturb(ShadeContext&	sc)	{
	float	del,d;
	Point3	p,dp;
	if	(!sc.doMaps)	return	Point3(0,0,0);
	if	(gbufID)	sc.SetGBufferID(gbufID);
	xyzGen->GetXYZ(sc,p,dp);
	if	(size==0.0f)	size=.0001f;
	p	*=	FACT/size;
	
	d	=	MarbleFunc(p);
	del	=	20.0f;
	Point3	np;
	
	Point3	M[3];
	xyzGen->GetBumpDP(sc,M);
np.x	=	(MarbleFunc(p+del*M[0])	-	d)/del;
	np.y	=	(MarbleFunc(p+del*M[1])	-	d)/del;
	np.z	=	(MarbleFunc(p+del*M[2])	-	d)/del;
	
	np	*=	100.0f;
	return	sc.VectorFromNoScale(np,REF_OBJECT);
	}

Required	Changes	To	Renderer	Plug-In
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.

Render	Change	to	Allow	View-Oriented	Lights
The	3ds	max	renderer	has	been	modified	so	that	if	a	DefaultLight	is	passed
into	Renderer::Open	with	a	transformation	matrix	that	is	all	zeros,	the
renderer	will	interpret	this	to	mean	that	on	each	frame	it	should	create	a	light
located	at	the	view	point,	pointing	in	the	view	direction.	This	allows	the
implementation	of	the	new	viewport	1-light	option	so	that	it	tracks	the	camera
during	an	animated	camera	move.	See	Class	Renderer.

Class,	Parameter	and	Data	Member	Changes	Affecting
Renderers
The	ShadowBuffer	and	ShadowQuadTree	classes	have	been	removed.
Shadows	are	a	new	plug-in	type	in	release	3.0.	See	Class	ShadowType.
The	following	parameters	were	moved	from	Class	RendParams	to	Class
FrameRendParams,	so	they	can	be	varied	frame	to	frame.
int	regxmin,regxmax;
int	regymin,regymax;

Added	these	data	members	to	Class	FrameRendParams:
Point2	blowupCenter;
Point2	blowupFactor;

Thus	you	can	now	control	the	horizontal	and	vertical	blowup	factors
independently.
Added	the	following	method	to	RenderInstace.
CastsShadowsFrom(ObjLightDesc	<)

Added	several	new	data	members	to	RenderGlobalContext.
BOOL	force2Side;
float	wire_thick;
Color	globalLightLevel;

Added	a	new	data	member	to	the	ObjLightDesc	class.

int	renderNumber;
Added	a	parameter	to	the	ObjLightDesc::Update()	method:
RenderGlobalContext	*rgc

Two	methods	from	RenderInstance	have	been	removed:
	virtual	int	NumShadLights()=0;
	virtual	LightDesc	*ShadLight(int	n)=0;
These	methods	from	RendContext	have	been	removed.
	virtual	ShadowBuffer*	NewShadowBuffer()	const=0;
	virtual	ShadowQuadTree*	NewShadowQuadTree()	const=0;

Default	Light	Changes
The	default	lights	passed	to	the	renderer	no	longer	have	the	global	light	level
included.	This	must	be	multiplied	in	in	the	implementation	of	the	::Update()
method	of	the	default	light	in	the	renderer	(using	the
RendContext::GlobalLightLevel()	method	passed	in).

API	Modifications	to	Handle	3D	Bump	Maps
The	following	changes	are	needed	to	correct	a	problem	with	3D	bump	maps
when	objects	in	the	scene	are	scaled.	This	scaling	results	in	a	very	noticeable
inappropriate	change	in	the	bumping	effect.
The	problem	is	occurring	when	the	bump	perturbation	vectors	must	be
transformed	from	object	space	to	camera	space,	so	they	are	oriented	correctly	as
the	object	rotates.	If	the	object	has	been	scaled,	this	transformation	causes	the
perturbation	vectors	to	be	scale	also,	which	amplifies	the	bump	effect.	What	is
needed	is	a	way	to	rotate	the	perturbation	vectors	so	they	are	correctly	oriented
in	space,	without	scaling	them.	To	do	a	new	method	has	been	added	to	Class
ShadeContext.
ShadeContext::VectorFromNoScale(const	Point3&	p,	RefFrame
ifrom);

There	is	also	a	complimentary	new	method	VectorToNoScale()	added	for
completeness.
ShadeContext::VectorToNoScale(const	Point3&	p,	RefFrame	ito);

The	coding	ramifications	of	this	are	as	follows:	Any	plug-in	that	creates	a	shade

context	in	which	materials	are	evaluated	needs	to	implement	these	two	new
functions	(VectorFromNoScale()	and	VectorToNoScale()).	This	applies	to
plug-in	renderers	and	materials.

Required	Changes	To	Bitmap	Loader/Saver	Plug-Ins
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.
BitmapIO	plug-in	have	two	changed	methods.	The	methods
BitmapIO::GetOutputPixels()	and
BitmapIO::GetDitheredOutputPixels()	now	have	a	new	parameter
BOOL	preMultAlpha	which	defaults	to	TRUE.	Setting	it	to	FALSE	will
cause	pixels	with	non-premultiplied	alpha	to	be	returned.	See	Class	BitmapIO.

Required	Changes	To	Controller	Plug-Ins
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.

Deleting	Controllers
A	new	"Delete	Controller"	button	has	been	added	to	the	Track	View	toolbar	that
is	enabled	when	one	or	more	delete-able	tracks	are	selected.	This	method	allows
a	plug-in	to	indicate	to	the	Track	View	that	one	or	more	of	its	sub-controllers	are
delete-able.	This	provides	a	way	for	the	user	to	delete	node	sub-controllers	such
as	the	visibility	track,	"Image	Motion	Blur	Multiplier",	"Object	Motion	Blur
On/Off",	etc.
There	are	two	new	methods	of	the	Control	class	to	support	this.	Each	has	a
default	implementation	so	overriding	it	is	optional	but	developers	may	wish	to
do	so.
These	methods	are	CanDeleteSubAnim()	and	DeleteSubAnim().	See	Class
Control	for	details.

Required	Changes	To	Shape	Objects
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.

Material	IDs	in	Shape	Related	Classes
New	in	the	3ds	max	3.0	SDK	is	material	ID	access	to	various	shape-related
classes.	This	results	in	various	methods	being	added	as	shown	below:
ShapeObject:
	virtual	MtlID	GetMatID(TimeValue	t,	int	curve,	int	piece)	{	return
0;	}
SimpleShape:
	virtual	MtlID	GetMatID(TimeValue	t,	int	curve,	int	piece);
SimpleSpline:
	MtlID	GetMatID(TimeValue	t,	int	curve,	int	piece);
BezierShape:
	MtlID	GetMatID(int	poly,	int	piece);
PolyShape:
	MtlID	GetMatID(int	poly,	int	piece);
PolyLine:
	MtlID	GetMatID(int	segment);
SplineShape:
	MtlID	GetMatID(TimeValue	t,	int	curve,	int	piece);
LinearShape:
	MtlID	GetMatID(TimeValue	t,	int	curve,	int	piece);

Note	that	ShapeObject	has	a	default	implementation	so	it	is	not	necessary	to
implement	it	if	the	shape	class	does	not	support	material	IDs.

Number	of	Verticies	in	ShapeObjects
There	is	a	new	method	of	ShapeObject	called	NumberOfVerticies().	This
method	is	used	by	the	Summary	Info	and	Object	Properties	dialogs	to	inform	the
user	how	many	vertices	or	CVs	are	in	the	object.	Developers	may	wish	to

implement	this	method.

Attach	Shape	Method
Developers	implementing	the	ShapeObject::AttachShape()	method	need	to
add	the	weldEnds	and	weldThreshold	parameters.	If	any	endpoints	of	the
curves	in	the	shape	being	attached	are	within	the	threshold	distance	to	endpoints
of	an	existing	curve,	and	the	weld	flag	is	TRUE,	they	should	be	welded.

RescaleWorldUnits	Implementations
Objects	derived	from	the	ShapeObject	class	which	have
RescaleWorldUnits	methods	implemented	need	to	call	the
ShapeObject::RescaleWorldUnits	method.	See	Class	ShapeObject.

Required	Changes	To	Patches
See	Also:	What's	New	in	the	MAX	3.0	SDK,	Required	Changes	to	MAX	2.0
Plug-Ins	for	MAX	3.0.

Overview
This	section	discusses	some	of	the	changes	to	the	patch	related	classes	in	the
SDK.	The	main	changes	relate	to	the	fact	that	Patch	objects	became	editable
Patches	objects	and	that	patches	now	support	more	that	two	mapping	channels.

Mapping	Channel	Changes
PatchMesh	objects	no	longer	use	a	hard	coded
PATCH_TEXTURE_CHANNELS	number	of	maps,	but	rather	a
dynamically	allocated	amount	up	to	MAX_MESHMAPS	(100).	The
following	data	members	have	been	changed	from	fixed-size	arrays	to	tables:
//	Texture	Coord	assignment
Tab<int>	numTVerts;
Tab<UVVert	*>	tVerts;
Tab<TVPatch	*>	tvPatches;

As	before,	the	patch	is	considered	to	have	a	map	on	channel	'i'	if	tvPatches[i]	is
not	NULL.	There	are	PatchMesh::numPatches	elements	in	each	tvPatches
array,	and	numTVerts[i]	UVVerts	in	array	tVerts[i].
IMPORTANT	NOTE:	previously,	developers	could	only	have	2	map	channels.
Map	channel	0	represented	traditional	texture	verts	and	map	channel	1
represented	vertex	colors.	As	with	meshes,	this	has	been	reversed	for	R3:
channel	0	in	these	tables	and	methods	is	the	Vertex	Color	channel,	and	channels
1-99	are	map	channels	1-99.
To	maintain	the	number	of	maps,	the	following	method	has	been	introduced:
void	setNumMaps(int	ct,	BOOL	keep=TRUE);

If	keep	is	FALSE,	all	the	existing	maps	will	be	freed;	otherwise,	only	those	over
'ct'	will	be	freed.	New	map	channels	are	initialized	with	NULL	arrays	and	0
numTVerts.	(numTVerts,	tVerts,	and	tvPatches
are	all	set	to	a	size	of	'ct'.)

However,	most	developers	won't	have	to	worry	about	calling	this	method,	since
it's	called	by	setNumTVertsChannel(),	which	has	been	used	to	set	the
number	of	mapping	verts	in	each	channel.
There	are	now	two	versions	of	most	methods	handling	maps	in	patches,	to	cope
with	a	necessary	change	in	map	indexing	between	3ds	max	2.5	and	3.0	(This
problem	comes	up	in	patches,	but	not	meshes,	since	patches	already	had	a
channel	indexing	scheme	in	methods	like	setNumTVertsChannel().	Mesh
only	had	methods	like	setNumTVerts(),	with	no	channel	argument.)
Old	TV/VC	methods	are	given	with	"TV"	in	the	name.	For	these	methods,
channel	0	is	the	original	map	channel,	while	any	nonzero	channel	is	vertex
colors.	If	no	index	is	given,	the	original	map	channel	is	assumed.	This	is	all
consistent	with	usage	in	the	2.5	SDK.
New	methods	are	given	with	"Map"	in	the	name.	For	these	methods,	channel	0	is
the	VC	channel,	as	it	is	now	in	Object.	Channel	1	is	the	original	map	channel,
while	2-99	are	the	new	channels.	The	plan	here	is	that	the	"Map"	methods	will
be	used	in	future,	the	"TV"	methods	will	be	considered	obselete.
There	is	one	incompatibility	with	the	2.5	SDK,	in	that	the	public	data	members
numTVerts,	tVerts,	and	tvPatches	all	now	use	the	new	indexing	scheme,	and	are
now	Tab<>	tables	instead	of	simple	arrays	as	noted	above.

Links	to	Changed	Classes:
PatchObject
Class	PatchMesh
Class	Patch
Class	PatchVec
Class	PatchVert
Class	PatchEdge
Class	TVPatch

What's	New	in	the	MAX	4.0	SDK
See	Also:	Required	Changes	to	MAX	3.x	Plug-Ins	for	MAX	4.0.

Overview
This	section	provides	a	general	overview	of	the	new	capabilities	of	the	3ds	max
4.0	API.	New	plug-in	types,	new	classes,	and	new	methods	to	existing	classes
have	been	added.	In	some	cases	new	parameters	to	existing	methods	have	been
added	as	well.
Any	new	classes	in	the	SDK	begin	their	Description	section	with	the	line:

This	class	is	available	in	release	4.0	and	later	only
Any	new	methods	in	a	class	begin:

This	method	is	available	in	release	4.0	and	later	only
Newly	added	parameters	to	existing	methods	begin:

This	parameter	is	available	in	release	4.0	and	later	only
Newly	added	data	members	begin:

This	data	member	is	available	in	release	4.0	and	later	only

New	Plug-In	Types
The	following	are	the	new	plug-in	types	introduced	in	the	3ds	max	4.0	SDK.
Each	has	a	link	to	the	base	class	for	the	creation	of	that	plug-in	type.

Manipulator	Plug-Ins
One	of	the	new	UI	features	for	R4	is	a	system	of	direct	manipulation	plug-ins
called	manipulators.	These	plug-ins	are	a	special	kind	of	helper	object	that
can	be	used	to	modify	parameters	of	Objects,	Modifiers,	INodes	and
Controllers	by	using	gizmos	in	the	3D	viewports.	See	Class	Manipulator	or
Class	SimpleManipulator	for	more	details.
The	relevant	classes	are	located	in
\MAXSDK\INCLUDE\MANIPULATOR.H
A	sample	on	how	to	write	these	plugins	is	located	in
\MAXSDK\SAMPLES\HOWTO\BENDMANIP
Tone	Operator	Plug-Ins
In	order	to	provide	better	quality	images	a	tone	operator	plug-in	has	been

added	to	3ds	max	and	the	SDK.	This	is	used	to	convert	lighting	energy
values	to	RGB	values	for	rendering	and	display	after	shading	is	performed.
See	Class	ToneOperator	for	more	information	on	this	topic.
The	relevant	classes	are	located	in	\MAXSDK\INCLUDE\TONEOP.H
Render	Element	Plug-Ins
A	new	plug-in	type	called	Render	Elements	has	been	added.	A	render
element	isolates	a	component	of	a	rendering	like	specular,	diffuse,	emission,
etc.	and	outputs	it	to	either	a	separate	bitmap	or	a	multi-channel	RPF	or	RLA
file.	The	new	plug-in	type	communicates	with	the	ShadeContext,	retrieving
color	data	stored	there	by	the	shaders,	compositing	and	saving	the	resulting
image	to	file.	See	Render	Elements	for	more	details.
The	relevant	classes	are	located	in
\MAXSDK\INCLUDE\RENDERELEMENTS.H
Multi-Pass	Render	Camera	Effect
The	multipass	camera	effect	allows	modification	of	viewpoints	&	view
directions	or	time	for	each	pass	of	a	multipass	rendering.	Algorithms	such	as
Depth	of	Field,	Scene	motion	blur	can	be	implemented	using	multipass
techniques.	See	Class	ImultiPassCameraEffect	for	more	details.
The	relevant	classes	are	located	in	\MAXSDK\INCLUDE\OBJECT.H
Inverse	Kinematics,	Solver	Plugins.
IK	solvers	are	now	plug-able.	The	IK	system	will	recognize	a	plug-in	solver
by	putting	it	in	the	solver	list	wherever	it	appears.	For	more	information	refer
to	the	section	on	Inverse	Kinematics.
The	API	of	the	IK	solver	is	defined	in
\MAXSDK\INCLUDE\IKSOLVER.H,	IKHIERARCHY.H,
IIKSYS.H,	and	IKCTRL.H.	For	an	example,	please	look	at
\MAXSDK\SAMPLES\IKSOLVERS\IKLIMB

New	Features	By	Category
Rendering

Interactive	Reshading
The	relevant	classes	are	located	in	\MAXSDK\INCLUDE\MTL.H.	See
Class	IReshading.

Interactive	Rendering
With	the	likelihood	of	evolving	rendering	and	shading	techniques	which	are
going	to	be	markedly	different	from	what	is	being	used	now,	the	3ds	max	SDK
provides	the	infrastructure	to	support	interactive	rendering.	Since	renderers	are	a
plugin	to	3ds	max	and	since	each	renderer	has	a	different	set	of	resources	and
capabilities	the	interactive	rendering	and	shading	API	is	made	into	as	much	a
general	API	and	independent	as	possible.	See	Class	IInteractiveRender.

Image	Motion	Blur
The	new	motion	blur	effect	plug-in,	MotionBlur.dlv,	now	contains	code	that	used
to	be	part	of	the	renderer,	and	uses	function	publishing	to	allow	the	renderer	to
call	functions	to	do	image	blur.	For	details	on	how	this	is	done	see	Class
IMBOps.	Sample	code	is	available	in
\MAXSDK\SAMPLES\RENDER\RENDEREFFECT\MOTIONBLUR\MOTIONBLUR.CPP
Also,	Image	Motion	Blur	has	been	improved	so	that	objects	that	are	moving
behind	transparent	object	will	blur	fairly	realistically.	See	Class	GBuffer	for
details.	The	relevant	classes	are	located	in	\MAXSDK\INCLUDE\GBUF.H,
IMBLUR.H

Vertex	Colors	from	a	Non-Internal	Color	Array
A	new	method	of	the	Mesh	class	allows	the	source	data	for	vertex	colors	to	come
from	other	than	the	default,	internal	vertex	color	array	(also	known	as	map
channel	0).	Class	Mesh	(Color	Per	Vertex	Methods)	.	An	overview	of	this	can	be
found	in	the	Advanced	Topics	section	Working	With	Meshes.	The	relevant
classes	are	located	in	\MAXSDK\INCLUDE\MESH.H.

Material	Surface	Evaluation
Material	surface	evaluation	allows	extraction	of	more	precise	color	information
from	a	material.	The	material	interface	now	exports	a	set	of	functions	in	order	to
enable	"interactive	display"	to	show	the	material	correctly	in	the	viewport.	Note
that	these	functions	do	not	take	into	consideration	texture	maps	and	other
shading	parameters.	Relevant	changes	were	made	to	Class	Mtl	and	Class
Texmap.

Multiple	Map	Display	in	the	Viewports
The	code	in	the	Mesh	class	and	associated	classes	has	been	modified	so	that
multiple	textures	are	available	for	display	in	the	interactive	viewport.	See	Class
Mesh.	Plug-In	Materials	have	several	new	methods	to	implement	related	to	this.
These	are	SetupGfxMultiMaps	and	SupportsMultiMapsInViewport
from	Class	MtlBase.	The	relevant	classes	are	located	in
\MAXSDK\INCLUDE\MESH.H,	IMTL.H.

New	Material	Handlers	for	New	Particle	Systems
This	interface	allows	particle	systems	to	support	material	per	face	and	particle
ID	per	face.	This	class	may	also	be	used	by	plug-ins	that	want	to	support	this
capability.	See	Class	IChkMtlAPI.	The	relevant	classes	are	located	in
\MAXSDK\INCLUDE\CHKMTLAPI.H

New	Network	Rendering	API
This	is	the	new	API	for	network	rendering.	The	relevant	classes	are	located	in
\MAXSDK\INCLUDE\MAXNET_MANAGER.H.	See	the	Advanced
Topics	section	Network	Rendering	for	details.

A	New	Interface	to	Allow	Multiple	Image	Viewers	(VFBs)
Up	until	this	point,	the	VFB	has	been	tightly	coupled	with	the	3ds	max	Bitmap
implementation.	This	new	abstract	interface	will	let	multiple	image	viewer
implementations	be	used	to	view	Bitmaps.
See	Class	IImageViewer	for	details.
The	relevant	classes	are	located	in
\MAXSDK\INCLUDE\IIMAGEVIEWER.H

User	Interface

Action	Tables
New	in	R4	is	a	class	called	ActionTable	that	is	a	generalization	of	the
ShortcutTable	class	added	for	R3.	ActionTable	contains	operations	that	can	be
tied	to	various	UI	elements	in	3ds	max	including	toolbar	buttons,	keyboard

shortcuts	and	menu	items.	See	the	Advanced	Topics	section	UI	Customization
for	details.	The	relevant	classes	are	located	in
\MAXSDK\INCLUDE\ACTIONTABLE.H,	MAXAPI.H,
PLUGAPI.H.

Function	Publishing
See	the	Advacned	Topics	section	on	Function	Publishing	System	for	details.

Track	Bar	Update
The	Track	Bar	API	has	been	updated	to	support	the	new	functionality	provided
in	R4.	See	Class	ITrackBar.	The	relevant	classes	are	located	in
\MAXSDK\INCLUDE\MAXAPI.H

Menu	Manager
This	is	an	interface	to	the	menu	customization	system.	See	Class
IMenuManager.	The	relevant	classes	are	located	in
\MAXSDK\INCLUDE\IMENUMAN.H

Color	Manager
The	color	manager	allows	plug-ins	to	register	colors	that	can	be	customized	and
saves	/	restores	them	from	a	file.	See	Class	IColorManager.	The	relevant	classes
are	located	in	\MAXSDK\INCLUDE\ICOLORMAN.H

OLE	DragAndDrop	Manager
The	DragAndDrop	manager	is	a	new	component	in	R4	that	provides	a	general
framework	for	handling	OLE-based	drag-and-drop	in	3ds	max.	The	prime
motivations	for	adding	this	new	component	were	to	accommodate	the	new
iDrop™	tool	for	dragging	3ds	max	content	from	the	web	and	to	provide	a
general	way	to	implement	drop	targets	for	the	new	dropScript	capability	in	3ds
max.
The	new	manager	is	a	generalization	of	the	VIZ	R3	OLE-based	DragAndDrop
manager	that	has	been	ported	into	3ds	max	4.	It	is	exposed	through	a	public	API
in	the	3ds	max	SDK	and	the	Function	Publishing	system,	supports	an	extensible

set	of	clipboard	formats	and	drop	types	and	permits	individual	3ds	max	windows
to	specialize	drop	handling.	This	allows	you	to	support	new	iDrop™	file	types,
such	as	dropScripts,	fold	the	3ds	max	internal	drag-and-drop	into	the	same
system	that	handles	external	drag-and-drop,	and	allows	custom	drops	to	various
interesting	windows	in	3ds	max,	such	as	the	material	editor,	schematic	view,	the
new	modifier	stack,	etc.	or	other	3rd-party	windows.	See	Class
IDragAndDropMgr	for	more	details.
The	relevant	classes	are	located	in
\MAXSDK\INCLUDE\IDRAGANDDROP.H

Dialog	Position	/	Size	Manager	API
This	feature	may	be	used	to	increase	UI	consistency	by	having	all	major	floating
dialogs	remember	their	previous	position	and	size,	like	Track	View	and	Medit	do
now.	This	is	done	by	calling	methods	to	save	the	size	/	position	to	the	CUI	file.

R4	Parameter	Wiring	System
The	parameter	wiring	features	are	encapsulated	in	an	interface	class	that	allows
you	to	directly	control	the	various	parameter	wiring	operations.	See	Class
IParamWireMgr	for	more	information.
The	relevant	classes	are	located	in	\MAXSDK\INCLUDE\
IPARAMWIRE.H

New	Mouse	Manager	Functionality
Newly	added	to	the	mouse	manager	is	the	ability	to	add	a	callback	function	that
lets	a	command	mode	get	all	the	raw	mouse	windows	messages	from	a	viewport.
This	way	developers	can	avoid	using	the	MouseCallBack::proc()	method,
which	does	a	lot	of	filtering	on	the	messages	that	it	sends.
The	relevant	classes	are	located	in
\MAXSDK\INCLUDE\MOUSEMAN.H

Modeling

Node	Handles

This	is	a	new	unique	ID	for	each	node	in	the	scene.	See	Class	INode	and	Class
Interface,	in	particular	the	methods	Interface::GetINodeByHandle()	and
INode::GetHandle().	The	relevant	classes	are	located	in
\MAXSDK\INCLUDE\INODE.H	and	MAXAPI.H

Node	Display	Callback
The	feature	enables	a	plug-in	developer	to	register	a	callback	function	that	gets
called	whenever	a	node	needs	to	be	drawn.	The	developer	can	hide	the	standard
mesh	and	display	their	own	image	for	the	node.	This	allows	one	to	control	a
node's	display	without	being	part	of	the	modifier	stack.	See	Class
NodeDisplayCallback.
The	relevant	classes	are	located	in	\MAXSDK\INCLUDE\NODEDISP.H

New	Callback	Classes
Two	new	callbacks	are	available.	One	is	used	to	filter	the	display	of	nodes	in	the
scene	by	category.	See	Class	DisplayFilterCallback.	The	other	is	to	filter	the
selection	of	nodes.	See	Class	SelectFilterCallback.	Also	see	the	methods	in
Class	Interface	associated	with	activating	these	callbacks	(Interface	callback
methods).

Extension	Object	--	New	Extension	Channel
This	feature	enhances	the	geometry	pipeline	by	allowing	a	developer	to	add	a
custom	object	to	the	pipeline	object.	This	object	will	get	notified	whenever
something	in	the	pipeline	changes.	This	extends	the	flexibility	of	the	Modifier
Stack	by	being	able	to	implement	a	combination	of	a	custom	data	notification
system.	An	example	of	this	in	use	is	a	game	developer	who	wants	to	indicate
when	a	certain	object	becomes	invalid	for	export	to	their	game	engine.	By
inserting	an	Extension	Object	into	the	pipeline	they	can	accomplish	this,	by
constantly	checking	the	structure	of	the	object	and	displaying	wrong
faces/vertices	etc.	in	the	viewport.	See	Class	XTCObject.
Sample	code	is	available	in:
\MAXSDK\SAMPLES\EXTENSIONCHANNELOBJECTS\XMODIFIER.H
The	relevant	classes	are	located	in	\MAXSDK\INCLUDE\CHANNELS.H,
XTCOBJECT.H

Geometry	Pipeline	Enumeration
There	is	a	new	class	and	several	new	global	functions	that	can	be	used	to
enumerate	the	geometry	pipeline.
For	details	see	Class	GeomPipelineEnumProc.

Vertex	Alpha
This	feature	adds	map	channels	to	support	"Vertex	Alpha"	and	"Vertex
Illumination"	in	all	object	types	and	gives	the	user	editing	controls	for	these
channels	in	Editable	Objects	and	Edit	Modifiers.	See	Class	Mesh.	The	relevant
prototypes	are	located	in:	\INCLUDE\MESH.H

Custom	Face	Data	Storage
This	feature	allows	a	Mesh	object	to	support	up	to	100	custom	data	channels	for
Faces.	Each	channel	provides	an	array	to	store	data	as	defined	by	the	developer.
The	types	of	data	will	often	be	standard	items	such	as	floats	and	ints,	however,
pointers	to	more	sophisticated	objects	may	be	stored	as	well.	The	number	of
elements	in	the	array	for	each	channel	will	correspond	to	the	number	of	faces	in
the	Mesh.
The	main	advantages	and	differences	over	the	current	per-vertex-data	support
are:	face-data	channels	are	identified	by	a	Class_ID	rather	than	an	integer;	face-
data	channels	can	store	objecst	of	a	user	defined	type,	not	just	float;	3rd	party
developers	can	derive	their	own	face-data	channel	from	Class
IFaceDataChannel.	The	Mesh	notifies	all	its	face-data	channel	objects	of
events	and	operations	related	to	faces,	so	3rd	parties	can	really	manage	their	per-
face	data	the	way	they	want,	they	have	a	lot	of	flexibility.This	is	different	from
the	current	per-vertex-data	because	the	vertex	data	channels	are	entirely	exposed
to	and	managed	by	the	Mesh.	Note	that	only	Meshses	support	the
IFaceDataMgr	interface.	See	Class	IFaceDataChannel,	Class	IFaceDataMgr.

Object	Conversion	Between	Types
There	is	a	new	class	that	allows	developers	to	convert	between	their	object	types
and	the	native	3ds	max	types.	See	Class	ObjectConverter	for	details.

Conversion	Modifiers

There	are	now	modifiers	to	perform	explicit	object	type	conversions	in	the
pipeline.	Specifically,	modifiers	which	will	operate	on	all	object	types:

Turn	to	Mesh
Turn	to	Patch
Turn	to	Poly

There	are	new	global	functions	for	doing	this	conversion.	See	the	Explicit
Conversion	Functions.
The	relevant	prototypes	are	located	in	\MAXSDK\INCLUDE\PATCH.H
and	POLYOBJ.H

SubObjType	API
There	is	a	new	API	for	working	with	Sub-Objects.	The	new	Stack	View	in	the
command	panel	uses	this	API.	There	are	several	new	classes	related	to	it.	See
Class	BaseObject[the	Class	BaseObject	page	has	the	wrong	font	on	its	title],
Class	ISubObjType,	Class	GenSubObjType,	Class	MaxIcon.	The	relevant	classes
are	located	in	\MAXSDK\INCLUDE\OBJECT.H.

Polymesh	Object
See	Class	PolyObject.
The	relevant	classes	are	located	in	\MAXSDK\INCLUDE\POLYOBJ.H

Editable	Poly
See	Class	EPoly.
The	relevant	classes	are	located	in	\MAXSDK\INCLUDE\IEPOLY.H

Patches
A	large	number	of	new	methods	and	data	members	have	been	added	to	the
various	classes	relating	to	patches.	Details	on	these	new	methods	and	data
members	can	be	found	by	browsing	through	the	classes	listed	below	and	looking
for	the	R4	specific	availability	notes.	In	this	section	a	shortlist	of	general
additions	and	changes	will	be	listed.
Class	PatchMesh	has	gained	a	number	of	methods	dealing	with	unifying	and
flipping	normals,	welding	and	cloning,	vertex	weights,	and	linear	and	curved

mapping.
Class	PatchObject	has	gained	a	number	of	methods	dealing	with	setting	the
Show	End	Results	option	and	handling	the	status	thereof,	getting	and	setting
vertex	and	patch	colors,	selecting	vertices	by	color	and	illumination,	creating
shapes	from	edges,	welding	and	breaking,	flipping	and	unifying	normals,
deleting	selected	patches,	and	changing	the	mapping	type	of	patches.
Class	Patch	has	gained	a	few	methods	dealing	with	linear	and	curved	mapping,
finding	edges	and	vertices	based	on	vertex	indices.
Class	TVPatch	has	gained	some	extra	data	members	and	methods	dealing	with
patch	handles	and	interiors.
Class	PatchVert	will	now	deal	with	an	array	of	edges	used	by	a	vertex.
See	Class	PatchMesh,	Class	PatchObject,	Class	Patch,	Class	PatchEdge,	Class
TVPatch,	Class	PatchVert
See	Required	Changed	from	R3.x	to	R4.
The	relevant	classes	are	located	in	\MAXSDK\INCLUDE\PATCH.H	and
PATCHOBJ.H

Animation

New	Interface	Classes	for	Various	Controllers
There	are	several	new	classes	for	accessing	the	parameters	of	new	or	modified
controllers	in	R4.	These	are	listed	below.	The	relevant	classes	are	located	in
\MAXSDK\INCLUDE\ISTDPLUG.H

LookAt	Constraint
This	is	the	new	Look	At	Controller	(rotation	only	as	opposed	to	the	previous
LookAt	Transform	controller).	An	interface	to	its	parameters	is	available	in
Class	ILookAtConstRotation.
Orientation	Constraint
The	Orientation	Constraint	matches	the	orientation	of	an	object	to	its	target
without	affecting	its	position.	See	Class	IOrientConstRotation	for	the
interface	details.
Position	Constraint
A	3ds	max	user	can	use	the	Position	Constraint	to	make	an	object	move	to

and	be	coincident	with	another	target	object.	The	Position	Constraint	can	also
move	an	object	to	the	position	of	the	weighted	average	of	several	different
targets.	See	Class	IPosConstPosition	for	access	to	this	controller.
Path	Constraint
The	old	path	controller	has	been	modified	and	renamed	the	Path	Constraint.
For	an	interface	to	the	parameters	of	this	controller	see	Class	IPathPosition.

New	System	Utilities

New	Notification	Codes
Numerous	new	notification	codes	have	been	added	for	R4.	See	Structure
NotifyInfo.
The	relevant	structure	is	located	in	\MAXSDK\INCLUDE\NOTIFY.H

New	Reference	Messages
There	are	a	few	new	reference	message	that	may	be	used.	See	List	of	Reference
Messages.
The	relevant	defines	are	located	in	\MAXSDK\INCLUDE\REF.H

Scanline	Pager	template
This	new	template	is	used	to	minimize	memory	usage	when	rendering.	Bitmaps
(for	instance	textures	and	the	frame	buffer)	are	normally	accessed	on	a	scanline
basis	when	rendering.	Currently	they	are	fully	loaded	into	memory	when
rendering	starts.	This	class	is	used	to	try	to	keep	only	the	active	block	of
scanlines	in	memory	and	the	rest	of	the	bitmap	on	disk	–	making	the	extra	RAM
available	for	geometry	and	other	memory	buffers.
The	relevant	classes	are	located	in
\MAXSDK\INCLUDE\SCANLINEPAGEMGR.H

New	Miscellaneous	Global	Functions
See	List	of	Miscellaneous	Utility	Functions	for	a	few	new	global	functions
related	to	checking	the	number	of	processors	in	the	system,	determining	the
version	of	Windows	running,	and	checking	the	screen	width	and	height.

Custom	Attributes
An	unlimited	number	of	custom	attributes	(e.g.	parameters)	can	be	added
dynamically	to	individual	objects.	These	can	be	very	useful	for	game	developers
and/or	other	project	specific	data.	The	SDK	provides	a	way	to	define	and	add
these	custom	attributes	to	objects	in	the	scene.
A	sample	on	how	to	write	these	plugins	is	located	in
\MAXSDK\SAMPLES\HOWTO\CUSTATTRIBUTIL
See	Class	CustAttrib	for	details	on	custom	attributes.

Particle	Collision	Encapsulation
The	SDK	adds	new	support	for	particle	collision	detection	whereby	other
systems	such	as	Flex	and	MaxScript	can	also	benefit	from	this	more	open
architecture.	These	collision	API’s	provide	an	interface	to	determine	if	a	particle
hits	a	surface.	Three	basic	collision	detection	classes	are	provided,	a	planar,
spherical,	and	a	mesh	deflection	class.
See	Class	ICollision	for	more	information.

Random	Number	Generator
A	new	and	improved	random	number	generator	class	has	been	provided	in	order
to	deal	with	the	shortcomings	of	the	standard	random	number	generation
functions.
See	Class	RandGenerator	for	more	information.

Support	for	Hardware	Shaders
3ds	max	4.0	supports	custom	hardware	vertex	shaders	and	pixel	shaders	using
Direct-3D,	right	in	the	graphics	viewports.	The	primary	aim	of	this	support	is	to
enable	a	1:1	relation	between	what	users	see	in	the	viewport	and	the	content	they
are	creating	for	other	Direct-3D	enabled	applications.
See	Class	ID3DGraphicsWindow,	Class	IDX8PixelShader,	and	Class
IDX8VertexShader	for	more	information.

What's	New	in	the	MAX	4.0	SDK
See	Also:	What's	New	in	the	MAX	4.0	SDK.

Overview
This	section	provides	general	information	on	the	changes	required	to	all	plug-
ins	to	get	them	running	in	3ds	max	4.0.	It	also	provides	links	to	topics	that
discuss	the	specific	changes	for	many	affected	plug-in	types.	Some	of	these
changes	are	required	while	others	are	optional	but	advantageous.

Microsoft	Platform	SDK
It	is	recommended	to	obtain	and	install	the	Microsoft	Platform	SDK	which
many	of	the	examples	depend	on	and	require	in	order	to	compile	properly.	In
order	to	ensure	proper	compilation	of	plugins	and	voiding	any	linker	errors,
please	make	note	of	the	following;

·			When	compiling	plugins	using	the	command	line,	ensure	that	the	path
environment	variables	for	library	and	include	files	precede	the	paths	set
by	Microsoft	Visual	Studio.
·			When	compiling	plugins	using	the	Visual	Studio	IDE,	ensure	that	the
path	configuration	(options	menu->	directories)	for	library	and	include
files	are	listed	as	the	top	entries.

Note:	The	Microsoft	Platform	SDK	can	be	obtained	through	the	MSDN	web
site.

Patches
As	of	R4.0	a	vector	can	now	be	used	by	more	than	two	patches.	Previously	the
Class	PatchVec	kept	an	index	to	two	patches	sharing	the	vector	as	an	integer
array	of	2	elements.	This	has	changed	to	an	IntTab.	While	this	would	most	likely
not	invalidate	any	code	it	is	advisable	to	keep	in	mind	that	there	could	now	be
more	than	2	patches	sharing	a	vector.
	
Some	structural	changes	have	been	made	to	the	Class	PatchEdge	that	will

require	some	changes	in	the	plugin	code.	Previous	to	R4.0	the	patches	that	used
an	edge	were	kept	in	int	patch1	and	int	patch2.	These	two	integers	have	been
replaced	with	an	integer	table,	IntTab	patches	because	edges	can	now	be	used
by	more	than	two	patches.	The	plugin	code	should	be	changed	to	reflect	these
changes.
	
In	order	to	facilitate	the	new	topology	tracking	code	for	the	Edit	Patch	modifier	a
new	class	has	been	introduced,	Class	PatchTVert.	This	new	class	has	been
integrated	with	the	class	PatchMesh	and	brings	with	it	a	number	of	changes.
The	previous	table	of	UVVerts	has	been	replaced	with	a	table	of
PatchTVert’s.	And	a	number	of	methods	in	Class	PatchMesh	have	been
altered	to	take	advantage	of	this	new	class.	These	are;	mapVerts(),
getTVertChannel(),	getTVert(),	getTVertPtrChannel(),
getTVertPtr(),	getMapVert(),	and	getMapVertPtr().
	
Slight	changes	have	been	made	to	the	PatchObject::DoBevel()	and
PatchObject::DoExtrude()	methods.	Both	now	take	a	Timevalue	as	a
parameter.	Please	make	sure	you	adapt	your	code	according	to	this	new	behavior
if	you	are	using	these	methods.

Splines
A	few	changes	were	made	to	the	Class	ShapeObject	methods	in	order	to	support
the	new	animated	renderable	shapes.	These	changes	should	be	observed	and
adjusted	in	the	plugin’s	code.	ShapeObject::SetThickness(float	t)	now
accepts	a	TimeValue	prior	to	the	thickness	parameter,	and	was	changed	to;
SetThickness(TimeValue	t,	float	thick).	The
ShapeObject::GetThickness()	method	now	accepts	a	TimeValue	and	an
Interval	parameter,	and	was	changed	to;	SetThickness(TimeValue	t).
Currently	the	previous	syntax	of	these	methods	will	get	or	set	the	thickness	at
frame	0,	however	Sparks	Developers	who	are	using	the	debug	build	should	take
note	of	the	fact	that	the	debug	build	will	raise	an	assertion	to	indicate	that	the	old
syntax	is	obsolete	and	that	the	new	syntax	should	be	used.

User	Interface	Notes

Developers	should	no	longer	use	the	Win32	calls	GetSysColor()	and
GetSysColorBrush().	Due	to	the	new	customizable	color	schemes	in	3ds	max
4	developers	should	now	use	the	encapsulated	functions	provided	by	the	SDK;
GetCustSysColor()	and	GetCustSysColorBrush().	These	will	take	the
same	parameters	as	the	Win32	functions	but	will	retrieve	the	color	information
from	the	custom	color	database.

KeyBoard	Shortcuts
The	previous	keyboard	shortcut	system	has	been	replace	by	an	enhanced	system.
The	new	system	uses	what	are	called	Action	Tables.	These	tables	unify	all	the
actions	that	can	be	assigned	to	keyboard	shortcuts,	CUI	buttons,	right-click
menus	and	main	menu.	See	Class	ActionTable	for	more	information.
Some	of	these	methods	have	the	same	name	is	ActionItem	methods,	and	a	more
complete

Sending	WM_COMMAND	messages	to	3ds	max
If	you	are	sending	WM_COMMAND	messages	to	3ds	max’	main	window	you
will	now	need	to	make	sure	that	HIWORD(wParam)	is	1,	not	0.	If	you	ever
get	an	assertion	failure	in	MenuManager::ExecuteAction(),	then	it	is
probably	because	a	WM_COMMAND	message	was	sent	with	a	0	HIWORD.

Registering	window	classes	for	custom	controls.
Previously	every	DLL	had	to	initialize	the	window	classes	through	a	call	to
InitCustomControls()	in	DllMain.	This	caused	a	substantial	hit	on	the
available	system	resources	in	Windows	9x	for	every	plug-in	that	was	loaded.
The	classes	are	now	globally	registered	for	the	whole	process.	Plug-ins	no	longer
have	to	call	InitCustomControls()	at	startup	-	but	it	doesn't	hurt	since	once
the	classes	has	been	registered	they	will	not	be	registered	again.

Additions	to	Class	BaseObject
Objects	and	modifiers,	that	support	subobjects	have	to	overload	the	two	new
methods	NumSubObjTypes()	and	GetSubObjType().	and	return	a	class
derived	from	ISubObjType	in	GetSubObjType().	Developers	can	use	the
GenSubObjType	for	convenience.If	the	parameter	passed	into

GetSubObjType	is	-1,	the	system	requests	a	ISubObjType,	for	the	current
SubObjectLevel	that	flows	up	the	modifier	stack.	If	the	subobject	selection	of
the	modifier	or	base	object	does	not	affect	the	subobj	selection	that	flows	up	the
stack,	the	method	must	return	NULL.
Note	that	this	replaces	the	way	subobjects	were	handled	prior	to	this	release.
RegisterSubObjectLevel()	is	obsolete	and	should	no	longer	be	used.	Instead	the
NumSubObjTypes()	and	GetSubObjType()	methods	should	be	used.	For
more	information	see	Class	ISubObjType	and	Class	BaseObject.

Rendering
Plugin	renderers	should	implement	ShadeContext::BumpBasisVectors().
Interface::DoExclusionListDialog()	accepts	an	ExclList	instead	of	a
NameTab.	This	will	cause	the	compile	to	break	for	plugin	renders,	which	need	to
be	modified	to	use	the	new	node	lists.	There	is	a	method
Interface::GetINodeByHandle(handle)	which	can	be	used	to	get	the	node
from	the	handles	in	the	ExclList.	Additionally
Interface::ConvertNameTabToExclList()	allows	you	to	convert	name
tables	to	the	new	exclusion	lists.	A	number	of	methods	now	return	an	ExclList
instead	of	a	NameTab,	these	are;	ObjLightDesc::GetExclList(),
LightObject::GetExclList(),	GenLight::GetExclusionList(),
GenLight::SetExclusionList().
In	Class	IllumParams	a	few	members	were	replaced;	ULONG	shFlags	and
mtlFlags,	and	Point3	N,	and	V.	The	class	now	contains	pointers	to	the	shader
and	material	from	which	flags	and	other	information	can	be	retrieved.	The
shading	normal	N	was	a	copy	of	the	normal	in	the	shadeContext,	which	is	now
provided	to	shaders	and	renderElements	as	well	as	IllumParams,	thus
sc.Normal()	should	be	used	to	get	the	bumped	shading	normal.

Programatically	collapsing	the	stack
Developers,	who	are	collapsing	the	stack	programmatically,	should	pay	attention
to	the	new	Extension	Channel	(Class	XTCObject)	and	the	Class	BaseObject
methods	NotifyPreCollapse()	and	NotifyPostCollapse().	These	methods
will	be	called	by	the	collapse	code.	It	will	give	the	modifier	(or	BaseObject);	that
adds	an	XTC	object	to	the	stack	the	possibility	to	apply	a	modifier,	that	inserts

these	XTC	objects	onto	the	stack	after	the	collapse.	Through	this	mechanism,	the
XTC	will	survive	a	stack	collapse.	In	case	these	method	are	not	called,	the
Extension	Channel	Objects	will	by	default	be	copied	as	well,	since	they	are	part
of	the	object	in	the	wsCache.	However,	they	won't	survive	a	save/load	operation.
Please	see	the	Class	XTCObject	for	more	details.

Parameter	change	in	Animatable::GetSystemNodes()
The	method	Animatable:GetSystemNodes()	has	its	signature	changed	from
previous	versions	and	could	potentially	require	an	adjustment	of	plugin	code.	If
you	use	the	previous	signature	while	having	it	overridden,	the	compiler	will	let
this	pass	unnoticed	because	it	assumes	this	is	a	new	function	(while	the	actual
method	itself	is	empty	and	hidden	in	the	super	class).	As	a	result	3ds	max	will
call	the	method	with	the	new	signature	and,	because	it	wasn’t	overridden,	it	will
call	the	default	implementation	as	defined

Trivial	changes	to	samplers
Samplers	had	to	be	generalized	for	use	with	Render	Effects.	All	samplers	had	to
be	rewritten	slightly,	as	will	other	plug-in	samplers.	The	change	is	quite	trivial,
however.

Bump	vectors	in	ShadeContext
A	problem	in	the	way	bump	basis	vectors	were	being	calculated	has	been	dealt
with.
The	code	was	trying	to	deduce	a	single	set	of	3	vectors	for	U,V,and	W,	and	this
led	to	problems.	Since	the	bump	vectors	are	only	used	in	pairs	(UV,VW,	WU)	a
better	approach	turns	out	to	be	to	compute	2	vectors	for	the	specific	pair	of	axes.
This	required	some	new	API	calls.	There	is	a	new	method	in	Class
ShadeContext,	BumpBasisVectors(),	which	should	replace	DpDUVW()
over	time.	DpDUVW()	is	left	in	so	as	not	to	break	a	lot	of	plugins.If
BumpBasisVectors()	returns	1,	that	is	assumed	to	mean	it	is	implemented,
and	it	will	be	used	instead	of	DpDUVW().

Systemwide	Clone	implementation	change
A	call	to	BaseClone(this,	newob,remap)	has	been	added	to	all	plugins	in	3ds

max,	that	implement	the	Clone	method.	BaseClone	is	a	virtual	member
function	of	Class	ReferenceTarget.	This	method	allows	base	classes	to	copy	their
data	into	a	new	object	created	by	clone.	All	overwrites	of	BaseClone	must	call
their	base	classes	implementation.	The	implementation	in	Class	ReferenceTarget
is	copying	the	CustAttrib	objects	into	the	newly	created	object.
All	plugins	that	implement	a	Clone	method	have	to	call	BaseClone	with	the
old	and	the	new	object	as	parameters.	The	ordering	in	regards	to	when	this
method	is	called	is	unimportant.	It	obviously	has	to	be	called	after	the	cloned
object	is	created.	The	BaseClone	method	has	to	check	for	the	cases	of	from,	or
to	to	be	NULL	and	from	and	to	to	be	equal.	It	is	important	to	mention	for
BaseClone,	that	all	overrides	have	to	call	their	BaseClass’	implementation.
With	ReferenceTarget::BaseClone	we	have	a	central	method,	that	gets
called	for	all	clone	operations.	This	allows	us	to	add	notifications	etc.	for
cloning.

Code	Cleaning	for	64	bit
INT_PTR,	DWORD_PTR	and	other	_PTR	types	are	new	types	defined	by
Microsoft	to	support	UDM	(Unified	Data	Model),	These	are	polymorphic	types
that	are	defined	to	be	of	the	type	they	indicate	but	large	enough	to	hold	a	pointer.
For	example	an	int	is	32	bits	on	both	Win32	and	Win64,	so	if	you	cast	a	pointer
to	an	int	it	will	loose	the	high	bits.	To	solve	this	they	added	the	_PTR	types	so	if
you	need	to	do	pointer	arithmetic	(with	int	types)	you	need	to	have	the	type
INT_PTR	type	and	the	type	will	be	large	enough	to	hold	a	pointer	(i.e.	32	bits
on	Win32	and	64	bits	on	Win64).	Mesh	methods,	which	dealt	with	the	geometry
pipeline	had	their	channel	parameters	revised	from	unsigned	ulong	to
ULONG_PTR.

Changed	to	GetLocalTMComponents
The	API	of	the	GetLocalTMComponents()	method	has	been	changed.	In	the
current	version,	the	parent	matrix	is	not	given	as	a	pointer	to	the	parent	node,	but
as	an	indirect	matrix	representation.

Changed	support	for	multi-meshes	in	the	renderer
Two	important	methods	are	added	to	the	Class	GeomObject.	These	are

GetMultipleRenderMesh()	and	GetMultipleRenderMeshTM().	Please
refer	to	the	class	documentation	for	more	information.

Changes	to	GBufReader	to	allow	writing	and	bug	fix
Two	new	methods	have	been	added	to	Class	GBufReader:
ModifyChannelData()	and	ModifyAllData().These	methods	allow	values
in	the	current	layer	to	be	written.	This	may	seem	strange,	writing	data	from	the
reader,	but	developers	asked	for	the	capability	of	writing	to	the	already	created
gbuffer,	and	it	is	much	simpler	to	add	this	capability	to	the	GBufReader	than
to	GBufWriter,	which	is	designed	to	construct	gbuffers	from	scratch,	not
modify	existing	ones.

Transparency	and	opacity	maps	in	viewports
For	the	purposes	of	implementing	transparency	and	opacity	maps	in	the
viewports,	a	new	flag	has	been	defined	that	indicates	if	transparency	is	required
in	the	viewport:	MTLREQ_TRANSP_IN_VP.	See	the	List	of	Material
Requirement	Flags	for	more	details.

Removal	of	hidden	vertices
MNMeshes	used	to	support	"hidden	vertices".	These	would	be	vertices	that	exist
"in	the	middle"	of	faces,	taking	part	in	their	triangulation	but	considered	more	a
feature	of	the	face	than	vertices	in	their	own	right.	These	vertices	were	useful	in
the	past,	when	MNMeshes	were	constantly	being	converted	to	and	from	Meshes.
We	needed	to	remove	them	for	PolyMeshes	to	be	an	efficient	pipeline	object;
keeping	track	of	them	was	drastically	increasing	the	size	of	every	face,	whether
it	had	such	vertices	or	not.

Changes	in	Class	MeshDelta
In	class	MeshDelta,	the	data	member	fCreate	was	switched	from	Tab<Face>
to	Tab<FaceCreate>.	In	conjunction	with	this	a	new	method	FCreate()	was
added.	More	information	can	be	found	in	Class	MeshDelta	and	Class
FaceCreate.

Changes	in	Class	MNMapFace
Data	members	hdeg,	and	hvtx	have	been	removed.	The	constructor
MNMapFace()	now	only	accepts	one	argument,	SetAlloc()	and	SetSize()
also	accept	only	one	argument,	HInsert()	and	HDelete()	have	been	removed,
and	MNDebugPrint()	no	longer	accepts	any	arguments.	More	details	can	be
found	in	Class	MNMapFace.

Changes	in	Class	MNFace
Data	members	hdeg	and	hvtx	have	been	removed.	The	constructor	MNFace()
no	longer	accepts	a	second	argument.	SetAlloc()	no	longer	accepts	a	second
argument,	HInsert()	and	HDelete()	have	been	removed	and
MNDebugPrint()	now	only	accepts	one	argument.	The	"tri"	array	was
replaced	by	the	new	"diag"	array.	The	diag	array's	allocated	size	is	always
(dalloc-3)*2.	If	dalloc==3	(triangle),	this	pointer	is	NULL.	The	method
"TriVert"	was	removed.	Use	GetTriangles()	to	access	this	sort	of
information.	More	information	can	be	found	in	Class	MNFace.

Changes	in	Class	MNMesh
The	methods	HVNum()	and	KillUnusedHiddenVerts()	have	been	removed.
There	is	no	longer	an	MNM_SL_TRI	selection	level.	Methods
FindExternalTriangulation()	and	BestConvexTriangulation()	were
changed	to	FindDiagonals()	and	BestConvexDiagonals(),	respectively.
The	Class	MNMap	data	member,	"m",	became	private.	The	accessor	method,
M,	remains	public,	and	now	takes	values	of	-1	(MAP_SHADING)	and	-2
(MAP_ALPHA)	as	well	as	0-99.	SetMapSeamFlags(),	which	previously
took	an	argument	of	(mp=-1),	where	-1	meant	"set	map	seam	flags	based	on	all
maps",	had	to	be	split	into	two	methods	as	follows:	void	SetMapSeamFlags()
and	SetMapSeamFlags(int	mp);
Several	methods	that	accept	a	selection	level	as	an	argument	were	changed	to
take	an	MNMesh	selection	level	(such	as	MNM_SL_VERTEX)	instead	of
the	old	Mesh	selection	levels	they	used	to	take	(such	as	MESH_VERTEX).
This	has	affected	the	following	methods	in	class	MNMesh;	GetBorder(),
TargetVertsBySelection(),	TargetEdgesBySelection(),

TargetFacesBySelection(),	Slice(),	PropegateComponentFlags(),
SabinDoo(),	SabinDooVert(),	and	AndersonDo().

Change	internal	triangulation	storage	from	triangles	to	diagonals
for	Class	MNMesh
This	is	another	space-saving	measure.	We	always	store	a	particular	triangulation,
or	way	to	convert	the	polygon	into	triangles,	in	each	MNFace.	This	is	necessary
to	preserve	face	orientation	when	converting	to	and	from	regular	meshes,	or	to
allow	users	to	explicitly	edit	the	triangulation	in	R4.	We	used	to	store	this	info	as
triangles,	based	on	the	face's	"internal"	indices.	For	instance,	if	we're	dealing
with	an	octagon,	the	vertices	would	be	numbered	0,1,…7,	correpsonding	to	the
order	in	the	"vtx"	array.	However,	this	was	very	inefficient,	as	it	required	3	int's
to	store	the	triangulation	of	a	triangle	(0,1,2),	or	6	int's	for	a	quad	(0,1,2,2,3,0),
even	though	there's	only	1	way	to	"triangulate"	a	triangle,	and	only	2
possibilities	for	a	quad.	(The	other	would	be	(0,1,3,1,2,3).)	Now	we're	storing
diagonals.
For	instance,	in	a	quad,	we	really	only	need	to	know	whether	the	diagonal	goes
from	0	to	2	or	from	1	to	3.	We	can	list	all	the	diagonals	of	an	n-sided	polygon
with	(n-3)*2	ints	-	0	for	a	triangle,	2	for	a	quad,	4	for	a	pentagon,	etc.	(The	old
scheme	took	(n-2)*3	ints	-	3	for	a	triangle,	6	for	a	quad,	9	for	a	pentagon.)	This
is	probably	not	totally	optimized,	but	it	strikes	a	nice	balance	between	memory
usage	and	ease	of	use.

CUI	Image	Lists
CUI	Image	lists	are	no	longer	used.	Everything	now	goes	through	the	icon
manager	and	as	such	the	GetDefaultImageList()	and	AddToImageList()
methods	were	removed	from	the	Class	CUIFrameMgr.

Modifier	Sets	and	Categories
The	categories	shown	in	the	modifiers	drop-down	list	are	modifier	sets	which
you	can	configure	using	the	Configure	Modifier	Sets	dialog.	Modifier	Set
information	is	stored	in	the	3dsmax.ini	file.	In	order	to	add	your	own	custom
Modifier	Set	to	have	your	plugin	showing	under	its	own	heading	you	can	create
the	heading	with	the	appropriate	class	ID	in	the	3dsmax.ini	file.

Note	about	member	alignment
Please	make	sure	that	when	you	save	data	from	your	plugin	you	save	individual
data	members	using	a	chunk	ID	instead	of	saving	the	image	of	a	class.	Saving
(and	loading)	a	class	image	puts	you	at	risk	of	running	into	member	alignment
problems	and	as	such	could	potentially	corrupt	saved	files.	File	IO	would	be	put
further	at	risk	when	you	keep	Intel’s	IA-64	architecture	in	mind	which	depends
on	member	alignment.	What	you	should	not	do	is	outlined	in	the	following
example	when	loading	a	class	image;
iload->Read(&myclass,	sizeof(MyClass),	&ab);
Once	you	change	the	class	in	such	a	way	that	it	affects	the	data	size	you	run	the
risk	of	having	to	support	different	versions,	file	IO	incompatibility,	and	member
alignment	issues.
	

What’s	New	in	the	MAX	5.0	SDK
See	Also	Required	Changes	to	Certain	MAX	4.0	Plug-Ins,	New	and
Unsupported	Changes
Overview
This	section	provides	general	descriptions	and	links	to	the	associated
classes/interfaces	of	new	feature	functionality	in	3ds	max	5.0.
	

Global	Illumination
Description:	3ds	MAX	5.0	currently	has	two	solutions	for	global
illumination:	Radiosity,	and	Light	Tracer.
	
Documentation:	Class	RadiosityEffect,	Class	ISpecularCompositeShader,
Class	IEmissionColor,	Class	INodeGIProperties
	

Spline	IK
Description:	Refers	to	the	new	modifier	which,	when	assigned	to	a	spline	(or
a	NURBS)	curve,	generates	a	certain	number	of	helper	objects	attached	to	the
knots	of	the	curve.	This	interface	provides	access	to	most	of	this	new
functionality
Documentation:	Class	ISplineIKControl
	

Texture	Baking
Description:	Povides	the	interfaces	for	creating	Texture	Baking	plugins	in
3ds	max.	The	texture	baking	plugins	are	controlled	through	the	Maxscript
“Render	To	Texture”.	There	are	methods	available	in	this	class	that	provide
the	ability	to	produce	a	dynamic	UI	in	Maxscript.
	
Documentation:	Class	MaxBakeElement
	

Viewport	Shaders
Description:	These	interfaces	give	you	the	oppurtunity	for	you	to	write	your
own	DX	Hardware	Shaders	and	have	a	mechanism	for	displaying	them	in	the
MAX	viewports
	
Documentation:	Class	IViewportShaderManager	,	Class	IDXDataBridge	,
Class	IHardwareMaterial
	

Skin	Posing
Description:	This	interface	provides	access	for	getting	and	setting	a
special,non-animated,	transformation	pose.
	
Documentation:	Class	RotationValue	,	Class	ISkinPose
	

UVUnwrap
Description:	This	new	interface	allows	for	Normal,	Flatten,	and	Unfold
mapping.	You	can	bring	them	up	through	a	dialog	or	through	a	script
command.	
	
Documentation:	Class	IUnwrapMod2
	

Node	Exposure
Description:	This	interface	provides	the	ability	for	a	node	to	define	whether
it	is	visible	in	any	of	max’s	dialog	boxes.	This	interface	will	be	extended	and
used	by	more	of	3ds	max’s	core	utilities,	but	currently	ONLY	TrackView
and	the	Select	Object/HideObject	dialog	box	use	this	interface.	By	default
this	interface	is	not	available	through	the	default	nodes,	it	needs	to	be	added.
	
Documentation:	Class	INodeExposure
	

Node	Layer	Properties
Description:	This	class	defines	an	interface	for	accessing	a	node's	global
illumination	properties.
	
Documentation:	Class	INodeLayerProperties
	

Assemblies
Description:	Assemblies	combine	the	collective	nature	of	a	group	with	the
programmability	of	a	system.	These	interface	classes	allow	control	over
which	nodes	belong	to	an	assembly	and	which	is	the	head.	Methods	are	also
provided	to	control	the	accessibility	of	members.
	
Documentation:	Class	IAssembly	,	Class	IAssembly2
	

Edit	Normals	Modifier
Description:	This	interface	provides	access	to	the	functionality	in	the	Edit
Normals	modifier,	which	allows	you	to	edit	three	categories	of	normals:
Unspecified,	Specified,	and	Explicit.	Please	see	the	associated	documentation
for	a	full	description	of	this	modifier’s	functionality.
	
Documentation:	Class	IEditNormalsMod

New	and	Unsupported	SDK	Changes	for	MAX	5.0
See	Also:	What's	New	in	the	MAX	5.0	SDK	,	Required	Changes	to	Certain
MAX	4.0	Plug-Ins
Overview
This	section	provides	general	information	on	the	SDK	additions	which	are
accessible	yet	unsupported	in	3ds	max	5.0.
	

Set	Key
Discreet	will	not	be	supporting	Set	Key	functionality	for	3rd	party
plugins.
	

Painter	Interface
Discreet	will	not	be	supporting	Painter	Interface	functionality	for	3rd
party	plugins.	However,	you	may	view	extensive	comments	by	the	developer
of	this	feature	in	the	IPainterInterface	header	file	located	here:
/samples/painterinterface/include/ipainterinterface.h
	

BackBurner2	–	Network	Rendering
Backburner	is	the	new	Network	rendering	system	for	3dsmax	r5.	It
provides	a	unified	model	for	both	3dsmax	and	Combustion	rendering.
Although	the	API	for	backburner	has	not	changed	from	the	API	available	in
3dsmax	4,	some	changes	have	been	introduced	with	the	way	backburner
interacts	with	the	3dsmax	application.	Some	DLLs	required	for	the	API	have
a	very	close	connection	to	Backburner,	so	if	backburner	is	not	present	or	is
not	loaded	these	DLLs	may	fail	to	load,	causing	plugin	failure.

Required	Changes	to	Certain	MAX	4.x	Plug-ins	for
MAX	5.0
See	Also:	What's	New	in	the	MAX	5.0	SDK,	New	and	Unsupported	Changes
Overview
This	section	provides	general	information	on	the	changes	required	to	a	small
list	of	plug-in	types	to	get	them	running	in	3ds	max	5.0.
	

IK	Solver
All	plug-ins	implementing	IK	Solver	functionality	will	require	a
recompile	to	run	in	3ds	MAX	5.0.
	

TrackView	Utilities
All	TrackView	Utility	plug-ins	will	require	a	recompile	to	run	in	3ds
MAX	5.0.

What’s	New	in	the	MAX	6.0	SDK
Overview
In	an	effort	to	provide	the	3ds	max	SDK	development	community	with	up-to-
date	SDK	changes	and	documentation	updates,	we're	moving	our	SDK
updates	presentation	to	a	more	dynamic,	online	location.	With	this	move,	we
can	assure	the	development	community	that	all	changes	and	updates	will	be
reflected	as	soon	as	they	occur,	without	the	requirement	of	downloading	a	new
3ds	max	SDK	documentation	build.	
Please	click	the	link	below	to	view	the	current	SDK	and	documentation
updates	page	online:

Internet	Address
http://sparks.discreet.com/knowledgebase/techdocs/sdk_change_update.htm
	

http://sparks.discreet.com/knowledgebase/techdocs/sdk_change_update.htm

Game	Export	Interface

Overview
The	Game	Export	Interface	has	been	developed	to	greatly	simplify
data	export	from	3ds	max.	The	following	is	a	list	of	associated
components	and	materials	for	this	plugin:

1.	The	.lib	file	is	located	in	/maxsdk/lib/IGame.lib.
2.	The	help	documentation	is	located	as	IGame.chm	in	the
/maxsdk/help/	directory.
3.	The	sample	exporter	can	be	found	through
/samples/impexp/IGameExporter/	directory.

Internet	Address

More	Game	Exporter	related	materials	can	be	located	online	through
the	Sparks	developer	website:	http://sparks.discreet.com/downloads/

http://sparks.discreet.com/downloads/

VC7	memory	wrapper	for	3ds	max

Overview
To	accommodate	for	development	of	3ds	max	5.1	plug-ins	using	the
VC7	development	environment,	Discreet	has	developed	a	system	to
address	the	incompatibility	between	the	VC7	memory	subsystem	and
3ds	max,	which	is	VC6	native.	Developers	can	employ	this	solution	by
including	the	MAX_Mem.h	header	in	their	plug-in	project,	which
serves	as	a	replacement	for	malloc.h,	new.h	and	crtdbg.h.	The	result	is
to	redirect	memory	allocation	and	de-allocation	functions	into
equivalents	implemented	in	the	3ds	max	core,	operating	on	a	VC6
native	heap.

You	can	find	this	header	in	the	maxsdk/include	directory.

Limitations

The	memory	wrapper	is	necessary	only	in	situations	where	memory
allocated	by	a	plug-in	is	later	deallocated	by	3ds	max,	or	vice	versa.	In
these	cases,	both	operations	must	occur	on	the	same	VC6	heap.	Any
other	memory	used	by	a	plug-in	may	reside	on	a	VC7	heap,	and	in
those	cases	the	use	of	MAX_Mem	is	not	necessary.
A	limited	set	of	memory	allocation	functions	is	supported	under
MAX_Mem.	These	include	malloc(),	free(),	new,	delete	(including
array	forms)	and	heap	inspector	functions	like	_heapchk().	Functions
which	implicitly	allocate	memory,	such	as	strcpy(),	are	not	generally
supported.

Expanding	Memory	Wrapper
Developers	wishing	to	expand	upon	the	memory	wrapper	may	create
their	own	VC6-compiled	DLL	which	provides	access	to	the	necessary
functions.	The	functions	could	be	accessed	using	a	preprocessor
macro,	which	defines	the	original	function	name	as	a	call	to	the	VC6
exported	function,	or,	in	the	case	of	new()	and	delete(),	by	using	a
function	overload.	These	are	only	suggestions,	and	other	schemes	are
possible	at	the	developer’s	discretion.

Further	Information

For	more	information	regarding	VC7	compatibility	with	3ds	max,	see
the	document	“VC7	plugins	for	3dsmax	5	and	5.1”	in	the	Sparks
Knowledgebase:
http://sparks.discreet.com/search/index.cfm?
url=/knowledgebase/techdocs/searchable/Techdoc_3dsmaxVC7/3dsmax_VC7.htm

http://sparks.discreet.com/search/index.cfm?url=/knowledgebase/techdocs/searchable/Techdoc_3dsmaxVC7/3dsmax_VC7.htm

Sparks	Developer	Program

Introduction
	
sparks.discreet.com	is	the	Discreet	developer	portal	for	3ds	MAX
4.0	and	above.	Join	sparks	to	receive	the	highest	level	of	3ds	MAX
SDK	support!

http://sparks.discreet.com

How	to	Join	Sparks
	
Apply	for	sparks	directing	your	browser	to	the	following	internet
address:	http://sparks.discreet.com/app/appmain.cfm.	For	more
information,	either	read	on	or	go	here:
http://sparks.discreet.com/info/infohome.cfm
	

http://sparks.discreet.com/app/appmain.cfm
http://sparks.discreet.com/info/infohome.cfm

Sparks	Membership	Tiers
	
The	sparks	program	provides	three	levels	of	access	to	3ds	MAX
SDK	developers.	These	tiers	are	Public,	Standard,	and	Premium.
	
Public	users	of	sparks.discreet.com	have	access	to	the	Sparks
Developer	Knowledgebase,	the	Sparks	Webboard,	and	public	Sparks
Downloads.	There	is	no	cost	for	access	to	these	support	channels.
	
Standard	users	of	sparks.discreet.com	have	access	to	everything
public,	as	well	as	additional	downloads	in	the	form	of	the	latest	3ds
MAX	Debug	Builds,	and	other	private	samples.	The	cost	for	this
membership	is	$400	US.

Premium	users	of	sparks.discreet.com	are	entitled	to	everything
public	and	standard,	as	well	as	access	to	the	Sparks	Incident	Reporting
system	which	allows	direct,	web-based,	contact	with	the	Discreet
Sparks	SDK	Support	Team.	The	cost	for	this	membership	is	$1200	US.
	
Please	note	that	all	prices	are	subject	to	change.

Sparks	Developer	Support	Channels
	
The	following	methods	of	support	are	available	through	the
sparks.discreet.com	domain.	Please	follow	the	links	below	for	brief
description	of	each	topic,	as	well	as	its	associated	internet	address.
	
Sparks	Developer	Knowledgebase
Sparks	Message	Archives
Sparks	Documentation	Updates
Sparks	Webboard
Sparks	Downloads
Sparks	Incident	Reporting
	

Further	Information

For	more	information	regarding	the	sparks	program,	please	direct	your
browser	to	the	following	internet	address:
http://sparks.discreet.com/info/infohome.cfm	.	

http://sparks.discreet.com/info/infohome.cfm

Sparks	Developer	Knowledgebase
See	Also:	Sparks	Developer	Program

Overview
See	Also:
The	sparks	developer	knowledgebase	offers	search-engine	access	to	a
plethora	of	3ds	MAX	SDK	support	materials,	including	techdocs/labs,
solutions,	support	threads,	and	the	documentation	contained	in	this
help	file.	Please	note	that	additional	support	materials	are	available
for	Premium	members.
The	Sparks	Developer	Knowledgebase	is	available	to	the	public,
with	additional	support	materials	provided	to	Premium	sparks
members	only.

Internet	Address
http://sparks.discreet.com/search

http://sparks.discreet.com/search

Sparks	Message	Archives
See	Also:	Sparks	Developer	Program

Overview
	
The	sparks	message	archives	provide	an	offline	archive	of	all	threads
in	the	Sparks	Webboard.	You	can	download	the	most	recent	archive
from	the	public	downloads	or	you	can	find	a	less	recent	version	of	the
file	(sparks_archive.chm)	in	the	help	directory	in	the	maxsdk	directory.
Note	that	as	long	as	that	file	resides	in	that	directory,	all	searches	in
this	this	file	(sdk.chm)	will	have	access	to	those	threads.
The	Sparks	Message	Archive	is	available	to	the	public.
	

Internet	Address
http://sparks.discreet.com/downloads/downloadshome.cfm?
f=2&wf;_id=56

http://sparks.discreet.com/downloads/downloadshome.cfm?f=2&wf_id=56

Sparks	Documentation	Updates
See	Also:	Sparks	Developer	Program

Overview
	
The	sparks	team	is	constantly	updating	the	help	documentation	for	the
MAX	development	community.	To	access	the	latest	compiled	help	file,
please	follow	the	go	the	Sparks	Downloads	Area
(http://sparks.discreet.com/downloads/)	or	visit	the	Sparks	Developer
Knowledgebase	(http://sparks.discreet.com/search)	and	click	the
“knowledgebase”	link	in	the	upper-left	of	the	site.
New	for	3ds	max	6,	we	are	offering	an	online	SDK	and
documentation	update	list.	To	view	this	list,	please	go	here:
http://sparks.discreet.com/knowledgebase/techdocs/sdk_change_update.htm
to
All	Sparks	Documentation	Updates	are	available	to	the	public.

http://sparks.discreet.com/downloads/
http://sparks.discreet.com/search
http://sparks.discreet.com/knowledgebase/techdocs/sdk_change_update.htm

Sparks	Webboard
See	Also:	Sparks	Developer	Program

Overview
	
The	sparks	developer	webboard	offers	a	community	source	for	all
items	related	to	the	MAX	SDK.	Join	the	forum	and	participate	in
discussions	with	fellow	MAX	SDK	developers
The	Sparks	Developer	Knowledgebase	is	available	to	the	public.
	

Internet	Address
http://sparks.discreet.com/webboard/wbpx.dll/~maxsdk

http://sparks.discreet.com/webboard/wbpx.dll/~maxsdk

Sparks	Downloads
See	Also:	Sparks	Developer	Program

Overview
The	sparks	downloads	area	provides	the	latest	samples,
documentation,	debug	builds	(for	members	only),	and	other	support
materials	for	the	MAX	development	community.
The	Sparks	Downloads	area	is	available	to	the	public,	with
additional	downloads	such	as	MAX	Debug	Builds	provided	for
sparks	members	only.
	

Internet	Address
Public	Downloads:
http://sparks.discreet.com/downloads/downloadshome.cfm	
Private	Downloads:	You	must	be	logged	in	to	the	sparks	members
area	and	click	‘downloads’	on	the	left	menu	to	access	additional
downloads	such	as	3ds	MAX	Debug	Build(s)	and	private	samples.

http://sparks.discreet.com/downloads/downloadshome.cfm

Sparks	Incident	Reporting
See	Also:	Sparks	Developer	Program

Overview
	
The	sparks	incident	reporting	system	allows	direct	correspondence
with	the	Sparks	SDK	Support	Team.	As	a	Premium	member,	you’ll	be
able	to	file	questions	and	receive	professional	responses	to	your
development	queries	straight	from	the	experts	at	Discreet.
The	Sparks	Incident	Reporting	system	is	available	Premium
sparks	members	only.
	

Internet	Address
You	must	be	logged	in	to	the	sparks	members	area	and	click	“SDK
Support’	on	the	left	menu	to	access	this	resource.

Advanced	Topics
See	Also:	Must	Read	Sections	by	Plug-In	Type,	Must	Read	Sections	for	All
Developers.
This	section	presents	detailed	information	about	key	concepts	in	using	the	3ds
max	APIs.	This	section	contains	more	explanation	than	is	available	in	the
reference	section.	The	topics	presented	here	cross	class	boundaries	and	are
instead	based	on	specific	concepts	developers	need	to	understand	when	creating
3ds	max	plug-ins.
For	a	list	of	these	topics	important	to	read	when	creating	a	specific	plug-in	type
see	Must	Read	Sections	by	Plug-In	Type.	For	those	sections	which	should	be
read	by	everyone	see	Must	Read	Sections	for	All	Developers.
Action	Tables
Anti-Piracy	Protection
Character	Strings
Creating	a	New	Plug-In	Project
COM/DCOM	Interface
Command	Modes	and	Mouse	Procs
Computing	Face	and	Vertex	Normals
Custom	User	Interface	Controls
Custom	Node	Properties	and	App	Data
Debugging
Deferred	Loading	of	Plug-Ins
DLL/Lib	Functions	and	Class	Descriptors
External	Icons
Foreground	/	Background	Planes.
Function	Publishing	System
Geometry	Pipeline	System
Getting	and	Setting	User	Preferences
Globalization
Hit	Testing
Interactive	Renderer:	Graphics	Window
Interface	Class	Overview
Intervals
Inverse	Kinematics
Keyboard	Accelerators	and	Dialog	Messages

Keyframe	and	Procedural	Controller	Data	Access
Loading	and	Saving	Plug-In	Data
MAXScript	SDK
Matrix	Representations	of	3D	Transformations
Memory	Allocation
Modifier	Stack	Branching
Network	Rendering
Nodes
Node	and	Object	Offset	Transformations
Object	Creation	Methods
Object	Modification
Palettes
Parameter	Blocks
Parameter	Editing	in	the	Command	Panel
Parameter	Maps
Parameter	Blocks	and	Maps	in	Release	3
Parent-Child	Hierarchy
Plug-In	Configuration	System
Plug-In	Directory	Search	Mechanism
Plug-In	Help	System
Profiling	Plug-In	Performance
Read	Only	Plug-Ins
References
Render	Elements
Rotation	Concepts
RPF	Files	and	the	G-Buffer
Schematic	View
Snapping
Space	Warp	Plug-Ins
Style	Guidelines	for	Creating	Pipeline-Friendly	Meshes
Sub-Anims
Sub-Object	Selection
Sub-Object	Coordinate	Systems
Thread	Safe	Plug-Ins
Time
Track	View
UI	Customization

Units	of	Measurement
Undo/Redo
Working	with	ActionTables
Working	with	Bitmaps
Working	with	Character	Strings
Working	with	Controllers
Working	with	Lights
Working	with	Materials	and	Textures
Working	with	Meshes
Working	with	NURBS
Working	with	Patches
Working	with	Shapes	and	Splines

Anti-Piracy	Protection
See	Also:	Read	Only	Plug-Ins.
Developers	may	wish	to	implement	an	anti-piracy	protection	scheme	for	their
plug-ins.	The	3ds	max	SDK	provides	a	function	developers	may	use	as	part	of
their	copy	protection	strategy.	This	function	retrieves	the	unique	hardware	lock
ID	attached	to	a	particular	machine.	3ds	max	itself	requires	the	machine	to	have
a	hardware	lock,	and	every	hardware	lock	used	with	3ds	max	has	a	unique	ID
associated	with	it.	The	function	HardwareLockID()	returns	this	ID	as	an
unsigned	integer.	A	developer	can	call	this	function	using	the	code	shown	below:

Prototype:
unsigned	int	HardwareLockID();

Remarks:
This	function	returns	0	if	no	lock	is	found	and	the	lock	ID	if	one	is	found,
regardless	if	3ds	max	is	in	slave	mode	or	not.

Sample	Code:
	unsigned	int	hLockID	=	HardwareLockID()
Developers	may	key	off	this	ID	in	numerous	ways	to	authorize	a	plug-in	to	run
on	only	a	particular	machine.	The	actual	copy	protection	strategy	employed
using	this	lock	ID	is	the	developers	responsibility.	3ds	max	is	only	responsible
for	insuring	the	integrity	of	the	HardwareLockID()	function.	Internally,	3ds
max	checks	the	integrity	of	this	function	to	prevent	tampering	that	attempts	to
affect	the	values	returned	from	the	function.
Developers	are,	of	course,	free	to	implement	any	additional	copy	protection
schemes	as	they	see	fit.	The	two	basic	suggested	methods	are	to	either	be
"tricky"	about	what	they	do	to	the	plug-in	code	/	functionality	once	it	has	been
detected	that	the	lock	check	has	been	tampered	with	or	they	can	go	to	the
extreme	of	providing	an	additional	hardware	lock	for	use	with	their	own	plug-
ins.
In	any	anti-piracy	/	authorization	strategy	employed,	developers	should	be
careful	how	their	code	affects	users.	For	example,	putting	up	an	authorization
dialog	when	3ds	max	is	performing	a	network	render	is	very	destructive	and
mustn't	be	done.	Also,	plug-ins	that	pop	up	dialogs	when	the	command	panel
branch	is	changed	are	also	far	too	inconvenient	for	the	user.	Anti-Piracy	dialogs
should	not	be	implemented	where	they	will	pop	up	from	any	calls	within	the

Class	Descriptor.	It	may	be	appropriate	to	put	lock	checking	code	inside
ClassDesc	methods,	but	putting	up	dialogs	that	interrupts	the	users	work	flow
should	not	be	done	there.	The	best	places	to	show	dialogs	are	within	methods
such	as	CreateParamDialog()	or	BeginEditParams().	If	you	have	a
rendering	related	plug-in	(renderer,	material,	texmap,	atmospheric	effect,	etc.)
that	you	want	licensed	per	CPU,	it's	better	to	use	a	watermark	or	to	disable
functionality,	but	don't	disrupt	the	user's	workflow.
Sample	code	using	an	authorization	scheme	can	be	found	in
\MAXSDK\SAMPLES\MODIFIERS\TWIST.CPP.

Character	Strings
See	Also:	Class	CStr,	Class	WStr,	Class	FilterList.
This	section	presents	information	developers	need	to	know	when	using	character
strings	in	MAX.	It	discusses	the	meaning	of	the	TSTR,	_T,	and	TCHAR
macros	that	are	commonly	seen	in	the	source	code	examples.	This	section	also
covers	important	substitutes	for	the	standard	C	str*	functions,	and	some	general
functions	that	are	available	for	use	with	character	strings.

The	TSTR,	_T	and	TCHAR	Macros
When	3ds	max	was	designed	there	was	originally	the	possibility	of	using
UNICODE	for	the	storage	of	character	strings.	During	development	it	was
decided	that	3ds	max	would	use	MBCS	(multi-byte	character	sets)	instead.	To
provide	the	flexibility	to	switch	between	the	two	(perhaps	some	day	to	make	it
possible	to	also	support	UNICODE	once	it's	fully	supported	under	Windows
NT),	a	macro	is	used	to	substitute	either	wide	character	strings	(UNICODE)	or
single	character	strings	(MBCS).	This	macro	is	TSTR.	Its	definition	is	shown
below:
#ifdef	_UNICODE
#define	TSTR	WStr
#else
#define	TSTR	CStr
#endif

If	UNICODE	is	in	use,	the	macro	is	defined	to	mean	Class	WStr.	If
UNICODE	is	not	in	use,	Class	CStr	is	used.	As	mentioned	above,	the	decision
was	made	to	not	go	with	UNICODE,	and	thus	TSTR	is	equivalent	to	CStr.
Class	WStr	is	used	for	wide	character	strings	(16	bits	per	character).	Class
CStr	is	for	single	and	double-byte	character	sets.	DBCS	may	need	2	bytes	to
represent	a	single	character,	whereas	UNICODE	always	uses	two	bytes	per
character.	Note:	Windows	code	often	refers	to	"MBCS",	but	in	reality,	the	only
multi-byte	type	supported	is	"double-byte".	I.e.	Windows	doesn't	support	any
character	sets	that	need	3	bytes	for	some	characters.
Both	Cstr	and	WStr	provide	methods	and	operators	for	calculating	lengths,
concatenation,	sub-string	operations,	character	searching,	case	conversion,
comparison,	and	formatted	writing.	For	additional	information	on	these	classes
see	Class	CStr	and	Class	WStr.
Developers	are	encouraged	to	use	the	TSTR	macro	for	string	definitions,	rather
than	going	straight	to	CStr.	In	this	way	if	a	future	version	of	3ds	max	is
developed	that	uses	UNICODE,	the	text	definitions	will	convert	with	a	simple
re-compile.
Developers	will	also	encounter	the	_T	macro	in	the	source	code	examples.
Literal	string	definitions	use	_T	preceding	the	string,	for	example

_T("Parameters").	This	macro	is	defined	in	a	Microsoft	include	file
\MSDEV\INCLUDE\TCHAR.H.	This	macro	will	convert	a	string	to	the
proper	form	for	either	UNICODE	or	non-UNICODE.	In	general,	any	code	that	is
written	for	internationalization	should	use	the	_T	macro	for	literal	string
definitions.
A	developer	may	also	encounter	the	TCHAR	macro	in	the	source	code.	This
macro	will	be	either	a	char	(8	bit)	or	a	wchar_t	(16	bit	UNICODE	char)
depending	if	UNICODE	is	in	use.

Standard	String	Functions	from	C
The	proper	way	to	deal	with	strings	(other	than	the	methods	of	the	CStr	and
WStr	classes)	is	to	use	the	_t	version	of	the	standard	string	functions.	Because
3ds	max	uses	MCBS	(multi-byte	character	sets),	the	_t	versions	sometimes	map
to	functions	other	than	the	traditional	str*	ones	(which	are	only	guaranteed	to
work	with	single-byte	character	sets).	Below	is	a	list	of	several	common
mappings	from	the	standard	Microsoft	VC++	include	file	(usually
\MSDEV\INCLUDE\TCHAR.H).
strcat	maps	to	_tcscat
strcpy	maps	to	_tcscpy
strlen	maps	to	_tcslen
sprintf	maps	to	_stprintf
sscanf	maps	to	_stscanf

For	example,	instead	of	using	the	standard	C	strcpy	function,	use	the	one	shown
below:
TCHAR	buf[64];
_tcscpy(buf,	_T("[0,	0,	0]"));

Developers	who	need	to	use	the	standard	C	string	functions	in	their	3ds	max
code	should	refer	to	\MSDEV\INCLUDE\TCHAR.H	to	see	if	there	is	a	_t
version	of	the	string	function	defined	for	use.

The	GetString()	Function
Developers	may	also	see	the	GetString()	functions	used	in	the	sample	source
code.	This	function	is	simply	used	to	return	a	string	from	a	resource	library.	It	is
defined	as	follows:
TCHAR	*GetString(int	id)	{
	static	TCHAR	buf[256];
	
	if	(hInstance)
		return	LoadString(hInstance,	id,	buf,	sizeof(buf))	?	buf	:	NULL;
	return	NULL;
}

This	function	is	used	so	that	the	3ds	max	program	can	be	easily	translated	into
other	non-English	languages.	By	loading	the	strings	from	a	resource	table,	only
the	resource	string	table	has	to	be	updated	to	allow	the	user	interface	of	3ds	max
to	appear	translated	into	another	language.	For	more	details	on	using	resource
libraries,	see	the	Advanced	Topics	section	Globalization.

Summary	of	Rules	for	Using	Strings
The	following	rules	summarize	what	developers	need	to	be	aware	of	when
working	with	characters	strings.
·	Use	the	TSTR	string	class	as	much	as	possible,	since	these	strings

automatically	allocate	the	right	amount	of	memory	for	their	storage.	(As	an
added	bonus,	they're	also	a	lot	easier	to	use	than	standard	strings,	because	a
lot	of	functionality	is	built	into	the	string	class.)

·	If	you	have	to	use	static	character	arrays,	make	sure	the	array	allocation	is
adequate.	Also,	make	sure	that	system	limits	(like	259	for	path+filename)	are
always	met	or	exceeded.

·	Don't	use	char	or	w_char	arrays:	instead	use	TCHAR	as	the	character	type.
·	Don't	use	any	standard	string	manipulation	functions	(like	strcat,	strcpy,
sprintf,	etc.)	directly.	Rather,	use	the	character-set	independent	versions
found	in	\MSDEV\INCLUDE\TCHAR.H.	For	example,	use	_tcscat
instead	of	strcat.	Note	that	even	routines	like	fopen()	that	take	a	string	have
character-set	independent	versions	in	TCHAR.H.

·	Put	all	literal	strings	inside	the	_T	macro,	as	in	_T("This	is	literal").	The
_T	macro	will	convert	strings	to	Unicode	automatically	if	we	ever	choose	to
compile	with	that	enabled.

·	When	comparing	characters,	use	the	same	macro	as	for	strings	but	with	single
quotes.	Also,	if	for	any	reason	you	are	comparing	with	a	slash	for	directory
separation,	make	sure	to	also	check	for	forward	slashes	as	they	are	valid	in
NT	and	used	when	mounting	Unix	drives.	For	example:
if	(my_path[x]	==	_T('/')	||	my_path[x]	==	_T('\\'))	{
//	do	something...

}
For	internationalization	/	localization	consider	the	following	when	working	with
strings:
·	Try	to	avoid	any	string-specific	manipulation	(like	keying	off	of	the	first	letter

in	a	string,	or	concatenating	strings	to	form	a	longer	token),	since	much	of
this	won't	translate	easily	into	other	languages.

·	Keep	all	literal	strings	in	a	resource	string	table.	If	all	goes	well,	the
internationalization/localization	process	will	consist	of	only	editing
resources,	not	code.	In	fact,	the	French,	Italian,	Spanish,	German,	and	Kanji

versions	of	3ds	max	all	use	the	same	code.

Miscellaneous	String	Functions
The	following	two	functions	are	part	of	the	3ds	max	API	and	are	useful	for
breaking	up	filenames.

Prototype:
void	SplitFilename(TSTR&	name,TSTR*	p,	TSTR*	f,	TSTR*	e);

Remarks:
Splits	filename	name	into	its	path,	filename,	and	extension.

Parameters:
TSTR&	name
The	filename	to	split	apart.
TSTR*	p
The	path	portion.
TSTR*	f
The	filename	portion.
TSTR*	e
The	filename	extension	portion.

Prototype:
void	SplitPathFile(TSTR&	name,TSTR*	p,	TSTR*	f);

Remarks:
Splits	filename	name	into	its	path	and	a	filename.extension.

Parameters:
TSTR&	name
The	filename	to	split	apart.
TSTR*	p
The	path	portion.
TSTR*	f
The	filename	AND	extension	portion.

Prototype:
BOOL	MatchPattern(TSTR	&s,	TSTR	&ptrn,	BOOL
ignoreCase=TRUE);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	check	if	a	string	matches	a	wildcard	pattern.

Parameters:
TSTR	&s
The	string	to	check.
TSTR	&ptrn
The	wildcard	pattern.	The	*	character	matches	1	more	characters.	The	?
character	matches	a	single	character.
BOOL	ignoreCase=TRUE
If	TRUE	the	check	is	not	case	sensitive;	otherwise	it	is	case	sensitive.

Return	Value:
TRUE	if	the	string	matches	the	pattern;	otherwise	FALSE.

Prototype:
int	MaxAlphaNumComp(TCHAR	*a,	TCHAR	*b);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
A	"smart"	alphanumeric	compare	that	sorts	things	so	that	numerical	suffixes
come	out	in	numerical	order.	This	version	is	case	sensetive.

Parameters:
TCHAR	*a
The	first	string	to	compare.
TCHAR	*b
The	second	string	to	compare.

Return	Value:
<	0	means	string	a	is	less	than	string	b.
=	0	means	that	string	a	is	identical	to	string	b.
>	0	means	that	string	a	is	greater	than	string	b.

Prototype:

int	MaxAlphaNumCompI(TCHAR	*a,	TCHAR	*b);
Remarks:
This	function	is	available	in	release	2.0	and	later	only.
A	"smart"	alphanumeric	compare	that	sorts	things	so	that	numerical	suffixes
come	out	in	numerical	order.	This	version	is	case	insensitive.

Parameters:
TCHAR	*a
The	first	string	to	compare.
TCHAR	*b
The	second	string	to	compare.

Return	Value:
<	0	means	string	a	is	less	than	string	b.
=	0	means	that	string	a	is	identical	to	string	b.
>	0	means	that	string	a	is	greater	than	string	b.

Creating	a	New	Plug-In	Project
See	Also:	Plug-In	Directory	Search	Mechanism,	Building	the	Sample	Files.

Overview
This	topic	presents	step	by	step	instructions	on	how	to	create	a	project	file	for	a
3ds	max	plug-in.
Note:	The	3ds	max	2.0	SDK	now	includes	a	set	of	AppWizards	to	create	projects
for	many	of	the	standard	plug-ins.	Currently	it	supports:	Atmosphere,	Anti-
Aliasing	Filters,	Color	Selector,	File	Import,	Front	End	Controllers,	Global
Utility	Plug-Ins,	Image	Filter	/	Compositor,	Materials,	Modifiers,	Procedural
Objects,	Rendering	Effects,	Textures	2D,	Samplers,	Shaders,	Shadow	Generator,
Textures	2D,	Textures	3D,	Track	View	Utility,	and	Utility	plug-ins.
Using	these	wizards	makes	it	much	easier	to	create	new	projects.	In	addition	to
setting	up	most	of	the	compiler	/	link	settings	they	create	CPP	files	containing
the	basic	class	methods	that	need	to	be	implemented.
To	install	the	AppWizard,	copy	the	\MAXSDK\HELP\SDKAPWZ.ZIP	file
to	the	Developer	Studio	Template	directory.	For	example,	copy	it	to	the
\Microsoft	Visual	Studio\Common\MSDev98\Template	directory.	Then
simply	unzip	the	file.	The	next	time	you	start	VC++,	from	the	File	/	New	...
menu,	you	may	choose	3ds	max	Plugin	AppWizard	and	follow	the	onscreen
prompts.	The	AppWizard	has	online	help	available	but	the	steps	are	very	self
explanatory.
If	you	want	to	create	a	plug-in	project	'by	hand',	the	process	is	described	next.
Beginning	a	New	Project
To	create	a	new	3ds	max	plug-in	project	from	within	Microsoft	Developers
Studio	follow	the	steps	below:
1	From	the	File	pulldown	menu	choose	New...
2	From	the	New	dialog	make	sure	the	Projects	tab	is	selected.
3	Select	Win32	Dynamic	Link	Library	from	the	list	of	project	types.
4	In	the	Location:	box	enter	the	path	to	where	you	want	the	project	directory
created	(for	example	C:\MYPLUGS).

5	In	the	Project	Name:	box	enter	the	name	for	the	directory	and	plug-in	project
(for	example	PRJNAME).	A	new	directory	with	this	name	will	be	created	as

a	sub-directory	of	the	directory	entered	in	the	Location:	box.	The	starter
project	files	will	also	use	this	name.

6	Press	the	OK	button	to	exit	the	dialog.
7	At	the	prompt	What	kind	of	DLL	would	you	like	to	create?	select	A	simple
DLL	project	and	press	the	Finish	button	to	exit	the	dialog.	Press	OK	at	the
next	dialog	to	complete	creating	the	initial	files.
Result:	Developer	Studio	creates	a	new	directory	and	puts	starter	OPT,	DSP,
DSW,	MAK,	and	NCB	files	in	this	directory.	These	files	are	explained
below
PRJNAME.DSP	--	This	is	the	project	file	used	within	the	development
environment.	In	previous	versions	of	Visual	C++	this	file	extension	was
.MAK.	It	stores	the	information	specific	to	your	project.	There	will	be	a
separate	.DSP	file	for	each	project	you	create.	.DSP	files	are	not	compatible
with	NMAKE.	You	must	export	a	makefile	to	build	with	NMAKE.
PRJNAME.DSW	--	This	is	the	workspace	file	used	within	the	development
environment.	It	organizes	all	the	projects	into	a	single	workspace.
PRJNAME.NCB	--	This	is	the	No	compile	Browser	file.	It	contains
information	generated	by	the	parser	which	is	used	by	ClassView,	WizardBar,
and	Component	Gallery.	If	the	file	is	accidentally	or	deliberately	deleted,	it	is
automatically	regenerated.
PRJNAME.OPT	--	This	is	the	workspace	options	file	used	within	the
development	environment.	It	stores	all	the	user	options	you	create	for	your
workspace,	so	that	each	time	you	open	the	project	workspace	it	has	the	look
and	feel	you	want	and	includes	any	customizations	you	have	made.
PRJNAME.MAK	--	The	project	makefile.

Creating	and	Adding	DEF	and	CPP	files	to	the	Project
When	you	create	a	3ds	max	project	using	the	Microsoft	Developer	Studio,
you	also	need	the	following	file	types:
CPP	--	The	C++	source	code.
DEF	--	The	module-definition	file.	A	module-definition	file	is	an	ASCII	text
file	containing	one	or	more	module	statements	that	describe	various	attributes
of	a	DLL.	A	DLL	requires	a	DEF	file	to	create	an	import	library	(LIB)	file
and	an	export	(EXP)	file.	The	linker	uses	the	import	library	to	build	any
executable	module	that	uses	the	DLL	and	uses	the	export	file	to	build	the
DLL	file.

You	now	need	to	create	the	DEF	file	and	edit	the	CPP	file.	It	is	usually	most
convenient	if	these	files	reside	in	the	same	directory	as	the	DSP	file.	In	the
instructions	shown	below	it	is	assumed	your	plug-in	is	called	MYPLUGIN.
1	From	the	File	menu	choose	New.	.	.
2	From	the	New	dialog	choose	the	Files	tab,	check	the	Add	to	project
checkbox,	enter	the	C++	source	code	file	name	in	the	File	name:	box	(for
example	MYPLUGIN)	and	select	C++	Source	File.	This	brings	up	a	new	text
file	window	where	you'll	add	your	source	code.	You	can	begin	the	CPP	file	with
the	standard	3ds	max	include	file.	This	is	done	by	adding	the	following	line	to
the	CPP	file:
#include	"MAX.H".
Next	you	need	to	create	the	DEF	file.
1	From	the	File	menu	choose	New.	.	.
2	From	the	New	dialog	choose	the	Files	tab,	check	the	Add	to	project	box,
enter	the	DEF	file	name	in	the	File	name:	box	(for	example
MYPLUGIN.DEF),	select	Text	File	and	press	OK.	This	brings	up	a	new	text
file	window	where	you'll	edit	the	DEF	file	text.

3	Copy	the	text	shown	below	from	this	help	file	into	your	new	text	window.
This	is	the	basic	structure	of	a	DEF	file.
LIBRARY	MyPlugIn
EXPORTS
	LibDescription	@1
	LibNumberClasses	@2
	LibClassDesc	@3
	LibVersion	@4
SECTIONS
	.data	READ	WRITE

4	You'll	need	to	perform	a	single	edit	to	this	DEF	file	to	work	with	your
project.	The	only	thing	you	need	to	change	is	the	Library	name.	Simply
change	it	to	the	name	of	your	DLL.	Do	not	include	a	file	name	extension.	As
shown	above	the	library	name	is	MyPlugIn.

Adding	a	Resource	Script	to	the	Project
You	now	need	to	create	a	Resource	file.	The	resource	has	an	extension	of	RC.

RC	--	The	resource	file.	A	resource	is	binary	data	that	a	resource	compiler	adds
to	an	application's	executable	file.	The	data	in	a	resource	typically	describes	an
icon,	cursor,	menu,	dialog	box,	bitmap,	etc.	Any	rollup	pages	or	dialogs	you
create	to	implement	your	user	interface	will	be	stored	in	the	RC	file.	The
resource	compiler	will	generate	an	include	file	which	you	must	include	in	your
source	file.
To	create	the	resource	file	follow	these	steps:
1	From	the	File	menu	choose	New.	.	.
2	Choose	Resource	Script.
3	In	the	File	name:	box	enter	your	resouce	name	(for	example	MyPlugIn.RC).
Result:	A	resource	script	window	will	pop	up.

You	now	need	to	add	a	dialog	template	to	this	resource	script.
1	From	the	Insert	pull	down	menu	choose	Resource.	.	.
2	From	the	Insert	Resource	dialog	choose	Dialog	and	press	New.
Result:	A	default	dialog	will	pop	up.

1	Right	Click	on	the	dialog	box	itself,	and	from	the	popup	menu	choose
Properties...

2	In	the	ID:	field	enter	the	ID	for	the	dialog,	for	example	IDD_MYPLUGIN
If	your	dialog	is	for	use	in	the	command	panel	or	materials	editor	(not	a
floating	dialog),	follow	the	steps	below:

3	Click	on	the	Styles	Tab
4	From	the	Style:	drop	down	list	choose	Child
5	From	the	Border:	drop	down	list	choose	None
6	Close	the	Properties	dialog	box	and	resize	the	plug-in	dialog	frame	size	to	a
width	of	108	units.	This	is	the	standard	width	for	the	command	panel	in	3ds
max	for	use	in	the	United	States.	You	can	see	the	size	displayed	in	the	lower
right	corner	of	the	IDE.	If	you	are	creating	a	material	or	texmap	plug-in	whose
interface	shows	up	in	the	materials	editor	dialog	the	proper	width	is	217	units.
If	you're	doing	an	atmospheric	or	renderer	plug-in	the	correct	width	is	212
units.	If	you	are	creating	a	dialog	that	will	not	be	used	in	the	command	panel
you	may,	of	course,	use	any	size.
Result:	You	have	a	dialog	template	to	which	you	may	add	controls.	For	use	in
the	command	panel	you	may	wish	to	delete	the	OK	and	Cancel	buttons.

When	you	compile	the	RC	file	an	include	file	is	generated.	The	default	name	is

resource.h.	This	file	will	be	included	in	your	CPP	source	file	to	specify	the
resource	ID's.	To	add	the	include	file	to	your	CPP	file	edit	the	CPP	file	and	add
the	line:
#include	"resource.h"

Adding	a	String	Table
Now	you	need	to	add	a	string	table	to	your	project.	This	allows	you	to	put
your	literal	strings	into	a	table	for	easier	translation	to	other	languages.	Rather
than	searching	your	text	for	literal	strings	you	can	simply	change	them	in	the
string	table.	The	sample	code	in	the	SDK	uses	this	technique	to	manage
strings.	To	add	a	string	table,	do	the	following:

1	From	the	Insert	pull	down	menu	choose	Resource...
2	Choose	String	Table	and	press	the	New	button.
Result:	You	have	added	the	string	table	to	your	project.

When	you	want	to	add	a	literal	string	to	your	plug-in	enter	the	value	into	the
string	table	and	then	use	the	GetString()	function	to	load	that	string.	To	enter
the	value	you	simply	double	click	on	an	empty	slot	in	the	table	and	enter	an	ID
(the	ID	passed	to	GetString())	and	a	Caption	(the	text).	Consider	the
Animatable::GetClassName()	method	as	an	example.

Without	the	string	table,	the	code	would	be	written:
void	GetClassName(TSTR&	s)	{	s	=	_T("Ring	Array");	}

With	the	string	table,	it	would	be	written:
void	GetClassName(TSTR&	s)	{	s	=

GetString(IDS_DB_RING_ARRAY_CLASS);	}
The	GetString()	function	loads	the	string	from	the	table	and	returns	a	pointer
to	it.	You	need	to	include	this	function,	listed	below,	in	your	CPP	source	file:
TCHAR	*GetString(int	id)	{
	static	TCHAR	buf[256];
	if	(hInstance)
		return	LoadString(hInstance,	id,	buf,	sizeof(buf))	?	buf	:	NULL;
	return	NULL;
	}
For	more	information	see	the	Advanced	Topics	section	on	Globalization.

Specifying	Output	and	Include	File	Settings
You	now	need	to	specify	the	output	file	name.	This	is	the	name	of	the	DLL
created.	You	specify	the	output	file	name	for	your	plug-in	using	the	procedure
below:
1	From	the	Project	pull	down	menu	choose	Settings...	Make	sure	all	the
configuration	are	being	changed	by	selecting	All	Configurations	from	the
Settings	For:	dropdown	list.

2	From	the	Project	Settings	dialog	box	choose	the	Link	Tab.
3	Under	Output	file	name:	Enter	the	path	to	3ds	max	plug-ins	and	your	file
name.	For	example	\3DSMAX\STDPLUGS\MYPLUGIN.DLO
Result:	When	the	project	is	compiled	and	linked	successfully,	the	DLL	is
written	to	this	location.
The	example	above	(MYPLUGIN.DLO)	is	the	extenstion	typically	used	by
procecural	object	plug-ins.	For	a	list	of	the	standard	filename	extensions	for
all	plug-ins	see	Plug-In	Directory	Search	Mechanism.	Note	that	3ds	max	will
only	load	DLLs	that	use	these	standard	extensions.

You	now	need	to	specify	the	path	of	the	include	files	for	the	SDK:
1	From	the	Project	Settings	dialog	box	choose	the	C/C++	Tab.
2	From	the	Category:	drop	down	list	box	choose	Preprocessor.
3	Under	Additional	include	directories:	enter	the	path
\MAXSDK\INCLUDE.

You	also	need	to	add	COMCTL32.LIB	which	is	not	included	by	default	by
Visual	C++	in	the	list	of	libraries	to	link.
1	Still	within	the	Project	Settings	dialog	box	choose	the	Link	Tab	(you	may
need	to	scroll	to	see	it).

2	In	the	list	of	Object/library	modules	add	COMCTL32.LIB	to	the	list	of
existing	choices.

3	Select	OK	to	exit	the	dialog.
Updating	the	Project	Configurations
A	new	plug-in	project	contains	two	default	configurations.	These	are	named
Win32	Release	and	Win32	Debug.	The	sample	code	that	comes	with	the	3ds
max	SDK	has	an	additional	configuration:	Win32	Hybrid.	This	section
discusses	the	need	for	these	different	configuration.
There	are	three	conditions	for	plug-ins	working	with	MAX.	These	are:

1)	Release	3ds	max	and	Release	Mode	(non-debug)	plug-ins.	When	you
create	a	plug-in	for	general	distribtion	you'll	compile	in	Release	mode.

2)	Release	3ds	max	and	Debug	Mode	plug-ins.	While	developing	a	plug-in
and	using	source	code	level	debugging	you'll	compile	in	Hybrid	mode.

3)	Debug	3ds	max	(only	registered	developers	have	access	to	this	special
version	of	MAX)	and	Debug	Mode	plug-ins.	While	using	the	special	Debug
SDK,	and	Debug	3ds	max	you'd	compile	in	Debug	Mode.

In	Microsoft	Developer	Studio	the	Debug	and	Release	C	runtime	libraries	use
different	heap	management.	This	means	that	allocating	an	object	in	debug	mode
and	de-allocating	it	in	release	mode	(and	vice	versa)	can	cause	a	crash.	Most
developers	will	work	with	a	version	of	3ds	max	compiled	in	Release	mode.	Thus
it	uses	the	run-time	libraries	called	Multithreaded	DLL.	Plug-Ins	that	work
with	this	version	of	3ds	max	need	to	match	this	run-time	library.	If	they	don't
crashes	will	occur.
To	prevent	this	from	happening	you	need	to	create	a	new	configuration	and
change	some	of	the	settings	of	the	existing	configurations.
To	create	the	Win32	Hybrid	configuration	follow	these	steps:
1	From	the	Build	menu	choose	Configurations...	and	then	choose	Add....
2	Enter	Hybrid	in	the	Configuration	edit	box	then	choose	Win32	Debug	from
the	Copy	settings	from:	list	box	and	press	OK	and	then	Close	to	exit	the
Configurations	dialog.	This	creates	a	new	Hybrid	configuration	using	the
same	initial	settings	as	the	Win32	Debug	configuration.

3	From	the	Project	menu	choose	Settings....
4	From	the	Settings	For:	section	choose	the	Win32	Hybrid	configuration.
5	From	the	C/C++	tab,	under	the	Categories:	drop	down	list	choose	Code
Generation.

6	From	the	Use	run-time	library:	drop	down	list	choose	Multithreaded	DLL.
7	Choose	the	General	tab	of	the	dialog.
8	In	the	edit	boxes	under	both	Intermediate	files:	and	Output	files:	enter
Hybrid.

9	Select	OK	to	exit	the	dialog.
Now	update	the	Win32	Release	configuration:
1	From	the	Project	menu	choose	Settings....
2	From	the	Settings	For:	section	choose	the	Win32	Release	configuration.

3	From	the	C/C++	tab,	under	the	Categories:	drop	down	list	choose	Code
Generation.

4	From	the	Use	run-time	library:	drop	down	list	choose	Multithreaded	DLL.
5	Select	OK	to	exit	the	dialog.
Now	update	the	Win32	Debug	configuration:
1	From	the	Project	menu	choose	Settings....
2	From	the	Settings	For:	section	choose	the	Win32	Debug	configuration.
3	From	the	C/C++	tab,	under	the	Categories:	drop	down	list	choose	Code
Generation.

4	From	the	Use	run-time	library:	drop	down	list	choose	Debug
Multithreaded	DLL.

5	Select	OK	to	exit	the	dialog.
Result:	You	now	have	three	configurations	available,	each	used	for	a	different
purpose.	When	you	create	a	plug-in	for	distribution	to	the	public	use	your
Win32	Release	configuration.	During	development	of	the	plug-in	when	you
want	to	use	source	level	debugging	use	the	Win32	Hybrid	configuration.	If
you	are	a	registered	developer	using	the	special	Debug	SDK	and	Debug	3ds
max	then	use	the	Win32	Debug	configuration.

Specifying	Library	files	for	the	Project
You	will	also	need	to	add	the	3ds	max	library	files	(LIB)	to	the	project.	The
LIB	files	required	varies	depending	on	the	type	of	plug-in	that	is	being	created.
Here	is	the	list	of	the	available	library	files	and	their	use:
ACAP.LIB
The	Call	Attributed	Profiler	library.	When	a	plug-in	is	using	the	profiler	to	test
performance	this	library	is	required.	See	the	Advanced	Topics	section	on
Debugging	for	more	information	on	profiling.
BMM.LIB
Bitmap	manager	library.	Image	loader	/	saver	plug-ins,	and	those	that	deal
with	bitmaps	require	this	library.
CLIENT.LIB
Network	rendering	client	library.	This	one	is	used	internally	for	network
rendering.	A	plug-in	developer	won't	use	this	library.
CORE.LIB
Functions	exported	from	MAX.	All	plug-ins	use	this	library.

EDMODEL.LIB
The	NURBS	library.	Plug-Ins	that	want	to	use	the	NURBS	API	require	this
library.
EXPR.LIB
Expression	library.	Plug-Ins	that	use	the	mathematical	expression	parser	(Class
Expr)	require	this	library.
FLILIBD.LIB
FLILIBH.LIB
FLILIBR.LIB
Flic	file	(FLI/FLC)	libraries	(debug,	hybrid,	and	release	versions).	Plug-ins
that	work	with	FLI/FLC	files	require	the	appropriate	version	of	this	library.
Plug-Ins	for	release	(using	the	Win32	Release	configuration)	should	use
FLILIBR.LIB.	Plug-Ins	used	for	source	level	debugging	should	use
FLILIBH.LIB.	Registered	developers	using	the	special	3ds	max	Debug	SDK
should	use	FLILIBD.LIB.
FLT.LIB
Filters	library.	Image	Filter	plug-ins	use	this	library.
GCOMM.LIB
This	library	is	used	internally.
GEOM.LIB
Geometry	library.	Procedural	objects,	modifiers,	controllers,	and	utility	plug-in
use	this	library.
GFX.LIB
Graphics	library.	Plug-ins	that	use	MAX's	GraphicsWindow	calls	require	this
library.
LVSIO.LIB
This	is	a	library	designed	for	reading	and	writing	the	Lighscape	files.
MAXSCRPT.LIB
Users	of	the	MAXScript	SDK	require	this	library.
MAXUTIL.LIB
Utility	library.	All	plug-ins	use	this	library.
MESH.LIB
Mesh	library.	Plug-Ins	that	call	methods	of	MAX's	Mesh	class	require	this
library.

MNMATH.LIB
The	'Minnesota	Math'	library.	Plug-Ins	that	use	the	MNMesh	and	related
classes	require	this	library.	See	Class	MNMesh	for	details.
PARAMBLK2.LIB
The	Parameter	Block	2	library.	Plug-ins	that	use	the	parameter	block	/	map
system	introduced	in	R3	require	this	library.
PARTICLE.LIB
Particles	library.	Plug-ins	that	relate	to	particle	systems	use	this	library.
PATCH.LIB
Patch	library.	Plug-ins	that	deal	with	Patch	objects	use	this	library.
RENDERUTIL.LIB
Render	utilities	library.	It	includes	the	implementation	of	Quantizer	and
ColorPacker	methods.
TESSINT.LIB
Tesselation	library.	Plug-ins	that	deal	with	the	tesselation	of	NURBS	or
patches	use	this	library.
VIEWFILE.LIB
This	is	the	file	viewer	library	used	by	VIEWFILE.DLL.

To	add	the	library	files	to	the	project	follow	these	steps:
1	From	the	Project	menu	choose	Add	To	Project	then	Files...
2	Change	the	Files	of	type:	drop	down	list	to	Library	files	(.lib).
3	Choose	the	required	LIB	files	from	the	list	(from	the	\MAXSDK\LIB
directory)	(you	may	Ctrl	click	on	them	to	select	more	than	one).	Select	OK	to
exit	the	dialog.
Result:	The	LIB	files	are	added	to	the	project.
Note:	You	may	remove	the	files	ODBC32.LIB	and	ODBCCP32.LIB
which	are	included	by	default	but	not	needed.

Finishing	Up
To	complete	the	new	project	creation	follow	these	steps:
Since	you'll	likely	need	to	spend	time	debugging	the	Hybrid	configuration
should	be	your	initial	choice.	When	you've	finished	development	and	want	to
create	your	DLL	for	distribution	change	this	to	Win32	-	Release	and	rebuild.	To
set	your	default	configuration	to	Hybrid	do	the	following.
1	From	the	Build	menu	choose	Set	Active	Configuration...

2	Choose	Win32	Hybrid	and	select	OK	to	close	the	dialog.
Now	you	need	to	update	the	project	dependencies	and	save	your	work.
1	From	the	Build	pull	down	choose	Update	All	Dependencies...	and	choose	the
all	your	configurations	using	the	check	boxes	and	then	select	OK.

2	From	the	File	menu	choose	Save	Workspace	to	save	your	new	project.
Disabling	Exception	Handling
This	step	is	not	necessary,	but	developers	may	wish	to	disable	exception
handling	for	their	plug-ins.	This	can	be	done	using	the	Project	Settings	dialog,
C++	Tab,	C++	Language	category	and	un-checking	the	Enable	exception
handling	box.	This	makes	the	code	both	smaller	and	faster.

COM/DCOM	Interface
See	Also:	Class	GUP.

Overview
The	idea	behind	this	COM	(Component	Object	Model)	object	is	to	expose	the
core	of	3ds	max	so	applications	can	invoke	3ds	max	to	generate	images.	The
whole	implementation	of	the	COM	interface	was	done	as	a	plug-in	itself	so
developers	have	the	option	of	enhancing	it	in	any	manner	they	wish.	Not	just	by
adding	interfaces	to	this	object	but	also	by	creating	entire	new	objects	using	this
implementation	as	a	code	base.	The	code	is	extensively	documented	and	the	test
"Client	Application"	is	also	extensively	documented	in	a	way	where	even
developers	who	don’t	have	any	experience	with	COM	objects	can	make	use	of	it.
For	those	with	experience,	the	3ds	max	COM	interface	is	implemented	entirely
using	ATL	which	makes	it	very	simple	to	add	and/or	modify	any	aspect	of	the
code.
COM	Interfaces	and	their	types	are	defined	in	an	"IDL"	file.	They	may	be	found
in	\MAXSDK\SAMPLES\GUP\COMSRV\COMSRV.IDL.

Registering	3ds	max	as	a	DCOM	Server
The	following	steps	register	3ds	max	as	a	DCOM	server:
1)	Build	\MAXSDK\SAMPLES\UTILITIES\COMSRV.MAK	and	copy
the	resulting	COMSRVUI.DLU	to	the	3ds	max	PLUGINS	directory.
2)	Start	3ds	max	and	go	the	Utlity	Panel.	Choose	More	and	pick	COM/DCOM
Server	Control.
3)	If	the	button	in	the	comand	panel	says	"Register"	then	click	it,	or	if	it	says
"Unregister",	then	do	nothing	(as	3ds	max	is	already	registered).
Now	3ds	max	is	registered	as	a	DCOM	server	and	an	instance	of	it	can	be
created	from	any	COM	client.
It	is	also	possible	to	register	and	unregister	3ds	max	from	the	command	line.
There	are	two	command	line	options	that	can	be	passed	to	MAX:
3DSMAX	-RegisterMAXRenderer
3DSMAX	-UnregisterMAXRenderer

The	MaxRenderer	Interface
This	is	the	main	interface	exported	by	this	COM	object.	Through	its	methods
you	can	load	a	3ds	max	scene,	define	the	parameters	for	a	resulting	image,
request	3ds	max	to	render	any	number	of	frames,	collect	the	resulting	images,
and	so	on.	The	other	interfaces	defined	are	support	interfaces	used	by	the
different	methods	of	the	3ds	max	Renderer	Interface.

Properties
These	properties	are	the	same	ones	found	in	the	3ds	max	API.	They	are	exposed
here	so	applications	can	query	or	define	the	different	attributes	of	a	scene	to	be
rendered.
HRESULT	AnimationStart([out,	retval]	float	*pVal);
HRESULT	AnimationStart([in]	float	newVal);
Sets	or	returns	the	frame	number	defined	as	the	starting	frame	for	the	current
animation.	The	frame	number	argument	is	a	float	in	order	to	isolate	the	foreign
application	from	MAX’	frame	granularity.	A	3ds	max	frame	can	be	divided	into
around	4096	time	slices.	In	other	words,	it	is	possible	to	generate	animation
images	with	a	1/(30	*	4096)	of	a	second	resolution.
HRESULT	AnimationEnd([out,	retval]	float	*pVal);
HRESULT	AnimationEnd([in]	float	newVal);
Same	as	above	but	for	the	last	frame	of	the	current	animation.
HRESULT	RenderFieldRender([out,	retval]	BOOL	*pVal);
HRESULT	RenderFieldRender([in]	BOOL	newVal);
Defines	(or	gets	the	current	state)	if	the	rendered	images	will	be	field	rendered.
HRESULT	RenderColorCheck([out,	retval]	BOOL	*pVal);
HRESULT	RenderColorCheck([in]	BOOL	newVal);
Defines	(or	gets	the	current	state)	if	the	generated	images	will	be	checked	for
invalid	colors.
HRESULT	RenderSuperBlack([out,	retval]	BOOL	*pVal);
HRESULT	RenderSuperBlack([in]	BOOL	newVal);
Defines	(or	gets	the	current	state)	how	pure	blacks	are	generated.
HRESULT	RenderHidden([out,	retval]	BOOL	*pVal);
HRESULT	RenderHidden([in]	BOOL	newVal);
Defines	(or	gets	the	current	state)	if	hidden	objects	are	to	be	rendered.
HRESULT	RenderForceTwoSide([out,	retval]	BOOL	*pVal);
HRESULT	RenderForceTwoSide([in]	BOOL	newVal);
Defines	(or	gets	the	current	state)	if	both	sides	of	an	object	are	to	be	rendered.
Usually,	just	the	"outside"	is	rendered.
HRESULT	RenderAtmosphere([out,	retval]	BOOL	*pVal);

HRESULT	RenderAtmosphere([in]	BOOL	newVal);
Defines	(or	gets	the	current	state)	if	atmospheric	effects	are	to	be	rendered.
HRESULT	RenderFieldOrder([out,	retval]	long	*pVal);
HRESULT	RenderFieldOrder([in]	long	newVal);
Defines	(or	gets	the	current	order)	the	order	fields	are	rendered	(if	field
rendering).

Methods
These	methods	are	a	superset	of	the	methods	found	in	the	3ds	max	API.	They
encapsulate	some	of	the	API	functions	(specifically	those	related	to	rendering)	in
order	to	simplify	the	process	as	well	as	to	isolate	the	foreign	applications	from
classes	and	data	not	exposed.
HRESULT	LoadScene([in]	BSTR	SceneName);
Loads	the	given	3ds	max	scene.	Note	that	the	location	of	the	scene	is	from	the
perspective	of	the	computer	where	the	3ds	max	instance	is	being	created.	The
use	of	physical	drive	letters	should	only	be	used	if	you	know	the	scene	file
resides	in	the	same	computer.	In	doubt,	use	UNC	path	names.
HRESULT	SaveScene([in]	BSTR	SceneName);
The	counterpart	of	the	above	to	save	the	given	3ds	max	scene.
HRESULT	ImportFile([in]	BSTR	FileName);
Same	idea	as	in	LoadScene()	but	it	deals	with	non	3ds	max	files.	This	can	be
used	to	write	a	"translator"	where	scene	files	are	imported	and	then	saved	as	3ds
max	files.
HRESULT	EnumCameras(void);
Use	this	to	enumerate	all	cameras	defined	in	a	scene.	When	you	request	3ds	max
to	render	a	scene,	one	of	the	arguments	you	need	to	pass	is	the	name	of	the
camera	to	use.	This	method	will	return	all	cameras	defined	in	the	current	scene.
The	returned	names	are	collected	through	the	_ImaxRendererEvents()	interface
defined	below.
HRESULT	OpenRenderer([in]	BSTR	CameraName,	[in]
IMaxBitmapInfo	*pBif,	[in]	BOOL	region);
Opens	the	renderer	and	prepares	it	to	render.	The	first	argument	is	the	camera
name	to	use.	You	can	enumerate	all	cameras	defined	in	a	scene	using	the
EnumCameras()	methods	described	above.	The	pBif	argument	is	a	pointer	to	a
ImaxBitmapInfo()	interface	(defined	below).	This	object	will	define	the
parameters	of	the	resulting	image	to	be	created.	The	last	argument	defines	if	the
render	will	be	a	full	image	or	just	a	region.
HRESULT	SetRegion([in]	short	x,[in]	short	y,[in]	short	w,[in]	short
h);
If	you	are	rendering	just	a	region	of	the	image,	use	this	to	define	the	region	to	be
rendered.	Given	as	an	example	a	scene	you	want	rendered	at	640x480.	If	you

want	to	render	just	the	first	quarter	of	the	image,	you	would	pass	a	rectangle
starting	at	0,0,	320	pixels	wide,	and	240	pixels	high.
HRESULT	RenderFrame([in]	float	Time,	[in]	float	Duration);
You’ve	loaded	a	scene,	opened	the	renderer,	now	you	want	to	render	an	image.
Use	this	method	to	generate	the	image.	The	first	argument	defines	the	frame	you
want	to	render.	The	second	defines	the	duration	of	the	frame.	Render	progress	is
processed	through	the	_ImaxRendererEvents()	interface	defined	below.	This
method	returns	immediately.	You	keep	track	of	the	progress	through	the	sink
event	defined	above	until	you	receive	a	OnRenderDone()	event	call.
HRESULT	CancelRenderer(void);
Cancels	the	rendering.
HRESULT	CloseRenderer(void);
When	done,	use	this	to	close	the	renderer.
HRESULT	GetLine([in]	MAXchannelTypes	type,	[in]	long	line,	[in]
BOOL	linear,	[out,	retval]	SAFEARRAY(unsigned	char)	*psa);
Use	this	method	to	collect	the	image	you	just	rendered.	The	first	argument
defines	the	bitmap	layout.	You	can	collect	the	image	in	many	different	formats
depending	on	what	channels	you	requested	to	be	rendered	in	the
ImaxBitmapInfo()	argument	passed	to	OpenRenderer().	The	second	argument
defines	which	line	you	want	to	collect.	The	third	argument	defines	if	you	want
the	image	to	be	linear	or	gamma	processing	should	take	place.
HRESULT	GetPreviewLine([in]	long	line,	[in]	long	width,	[out,
retval]	SAFEARRAY(unsigned	char)	*psa);
Used	to	collect	sub-sampled	lines	used	to	maintain	a	preview	of	the	render
process	as	it	is	happening.
HRESULT	ExecuteMAXScriptString([in]	BSTR	String);
HRESULT	ExecuteMAXScriptFile([in]	BSTR	Filename);
These	are	used	if	you	need	to	request	3ds	max	to	do	something	and	the	method
for	doing	this	something	is	not	exposed	above,	you	could	issue	a	3ds	max	Script
command	(or	a	whole	3ds	max	Script	file)	in	order	to	accomplish	this
"something"	task.	Note:	These	two	calls	are	untested,	and	unfortunately,	there	is
no	error	control.

The	_ImaxRendererEvents()	sink	interface
Use	this	interface	to	receive	notifications	and	events	from	MAX.
HRESULT	OnEnumCameras([in]	BSTR	CameraName);
When	you	issue	a	ImaxRenderer::EnumCameras(),	OnEnumCameras()	will	be
fired	for	every	camera	found	in	the	scene.
HRESULT	OnRenderProgress([in]	long	Done,[in]	long	Total);
This	event	will	be	fired	during	the	render	process	to	update	the	current	progress
of	the	render	process.
HRESULT	OnRenderMessage([in]	BSTR	Message);
Same	as	in	above.	This	event	will	be	fired	with	message	updates	describing	the
current	stage	of	the	render	process.
HRESULT	OnRenderDone();
This	event	is	fired	when	the	render	is	complete.

The	MaxBitmapInfo	Interface
This	interface	is	used	to	define	the	characteristics	of	the	resulting	image
generated	by	MAX.	There	are	only	properties.	The	only	one	that	might	need
explanation	is	the	Channels()	property.	Use	this	to	define	what	types	of	special
channels	you	want	generated.	These	are	in	addition	to	the	standard	RGBA
channels.

Command	Modes	and	Mouse	Procs
See	Also:	Class	CommandMode,	Class	MouseCallback.

Overview
In	addition	to	any	user	interface	that	a	plug-in	may	provide	in	the	command
panel	via	rollup	pages,	a	plug-in	may	want	to	process	mouse	interaction	in	any
of	the	viewports.	Command	modes	allow	the	plug-in	developer	to	define	custom
user	/	mouse	interaction	procedures.	The	system	uses	command	modes	as	well.
Examples	are	the	viewport	manipulation	commands	such	as	zoom	and	arc-rotate.
Move,	rotate	and	scale	are	implemented	as	command	modes	as	well.
This	section	discusses	command	modes	and	the	methods	used	to	work	with
them.

Methods
In	MAX,	there	is	always	a	current	command	mode.	This	is	the	instance	of	the
class	CommandMode	that	is	currently	at	the	top	of	the	system's	command
stack.	Command	modes	can	either	be	pushed	on	the	stack	or	replace	the	item	on
the	top	of	the	stack.
There	are	methods	in	MAX's	Interface	class	to	set	and	get	the	current	command
mode	as	well	as	getting	the	size	of	the	command	stack	and	finding	a	particular
mode	by	index.	See	the	methods:
virtual	void	PushCommandMode(CommandMode	*m)=0;
virtual	void	SetCommandMode(CommandMode	*m)=0;
virtual	void	PopCommandMode()=0;
virtual	CommandMode*	GetCommandMode()=0;
virtual	void	SetStdCommandMode(int	cid)=0;
virtual	void	PushStdCommandMode(int	cid)=0;
virtual	void	RemoveMode(CommandMode	*m)=0;
virtual	void	DeleteMode(CommandMode	*m)=0;
virtual	int	GetCommandStackSize();
virtual	GetCommandStackEntry(int	entry)

Viewport	manipulation	commands,	for	instance,	are	always	pushed	on	the	stack
so	that	if	the	user	right	clicks	while	in	a	viewport	mode,	the	viewport	command
mode	is	popped	off	the	stack,	restoring	the	previous	command	mode	in	effect
before	the	viewport	command	was	engaged.
A	command	mode	provides	the	system	with	two	major	things:
	A	callback	procedure	which	flags	nodes	that	belong	in	the	foreground	plane.
	A	mouse	proc	which	handles	mouse	input	in	the	viewports.
For	the	first	item,	plug-ins	typically	use	a	standard	callback	object	provided	by
the	system	that	flags	all	nodes	dependent	on	the	plug-in	object.	So	when	the
plug-in	object	changes,	any	nodes	that	change	as	a	result	will	be	in	the
foreground	plane,	making	redraw	time	faster.	For	more	details	see	the	section
Foreground	/	Background	Planes.
The	mouse	proc	is	the	object	that	allows	plug-ins	to	process	viewport	mouse
input.	The	MouseCallback	class	is	a	pure	virtual	class	with	a	method	named
proc().	This	method	is	called	when	a	mouse	event	takes	place.	It	gets	passed
several	parameters:

	The	window	handle	of	the	window	the	user	clicked	in.	This	will	be	one	of	the
viewports.	An	interface	to	the	viewport	can	be	obtained	from	the	system,	given
this	window	handle.
	A	message	parameter.	This	describes	the	type	of	event	such	as	mouse	down,
mouse	up,	mouse	move,	etc.
	The	point	number.	this	is	0	for	the	first	click,	1	for	the	second,	etc.
	Flags.	These	specify	the	state	of	the	Shift,	Ctrl,	and	Alt	keys.
	The	2D	screen	point	that	the	user	clicked	on.	Methods	in	the	viewport	interface
allow	this	point	to	be	converted	into	a	world	space	ray	or	a	3D	view	space
point.	A	world	space	ray	can	be	intersected	with	the	active	construction	plane
which	results	in	a	point	on	the	active	construction	plane.
The	mouse	proc	can	specify	how	many	points	it	wants	for	its	specific	task.	For
instance,	the	move	transform	needs	two	points.	The	first	point	represents	the
point	where	the	user	clicked	down	and	the	second	point	represents	where	the
user	released	the	mouse.	A	mouse	proc	can	specify	that	it	needs	a	large	number
of	points	and	then	return	an	abort	code	when	it	has	completed	its	operation.	For
instance,	the	mouse	proc	that	handles	the	creation	of	a	spline	expects	to	get	some
arbitrary	number	of	points.	When	the	user	completes	the	spline,	the	mouse	proc
signals	the	system	that	its	operation	is	completed.
In	addition	to	providing	the	system	with	a	foreground	callback	and	a	mouse
proc,	a	command	mode	also	has	some	other	methods.
When	a	command	mode	becomes	active	its	EnterMode()	method	is	called.
Usually	it	would	respond	by	changing	the	state	of	a	control	somewhere	to	reflect
to	the	user	that	they	were	in	that	mode.	Typically	this	means	pushing	in	a	tool
button.	When	the	mode	is	finished	the	button	should	be	returned	to	normal.	The
user	may	have	activated	the	mode	by	pushing	in	the	tool	button,	in	which	case	it
is	redundant	for	the	command	mode	to	also	set	the	button's	state	to	'in',	however
the	mode	could	have	been	entered	by	right	clicking	while	in	a	viewport
manipulation	mode	in	which	case,	the	tool	button	would	have	been	in	the	'out'
state.	Note:	A	developer	should	use	the	standard	color	GREEN_WASH	for
check	buttons	that	instigate	a	command	mode.	While	the	command	mode	is
active	the	button	should	be	displayed	in	GREEN_WASH.	See	Class
ICustButton	(specifically	the	method	SetHighlightColor())	for	more	details.
When	the	active	mode	is	replaced	by	a	different	mode,	its	ExitMode()	method
is	called.	Typically,	the	command	mode	would	respond	by	setting	its
corresponding	tool	button	to	the	'out'	state.

Command	modes	are	identified	by	a	class	ID	and	an	ID.	The	class	ID	is	usually
chosen	from	a	pre-defined	set	of	class	IDs	although	developers	may	create	their
own.	These	define	the	'type'	of	mode.	The	ID	is	the	mode's	unique	ID.
There	are	two	other	methods	a	developer	may	find	useful.	These	methods	allow
a	plug-in	to	receive	notification	when	the	command	mode	has	been	changed	by
the	user.	These	methods	of	class	Interface	are:
virtual	void	RegisterCommandModeChangedCallback(
CommandModeChangedCallback	*cb)=0;

Register	a	callback	object	that	will	get	called	when	the	user	changes	the
command	mode.	See	Class	CommandModeChangedCallback.
virtual	void	UnRegisterCommandModeChangedCallback(
CommandModeChangedCallback	*cb)=0;

Un-registers	the	command	mode	change	callback	object.

Display	of	Messages	in	Command	Modes
Developers	cannot	put	up	a	message	box	using	the	Windows	MessageBox()
API	while	in	the	middle	of	a	mouse	operation	inside	a	command	mode.	For
example,	if	the	user	is	dragging	the	mouse,	it	will	cause	problems	to	put	up	a
message	box.	The	prompt	line	may	be	used	if	a	message	needs	to	be	sent	to	the
user	while	in	this	state.	This	is	done	using	the	methods	of	class	Interface.	See
Class	Interface	to	review	these	methods.

Summary
Command	modes	allow	the	plug-in	developer	to	process	mouse	interaction	in
any	of	the	viewports.	A	command	mode	provides	the	system	with	a	foreground
callback	and	a	mouse	proc.	See	the	section	Object	Creation	Methods	for	a
discussion	of	how	command	modes	participate	in	custom	object	creation
procedures.

Computing	Face	and	Vertex	Normals
See	Also:	Class	Point3,	Class	Mesh,	Template	Class	Tab.

Overview
Developers	often	need	to	compute	the	face	and	vertex	normals	when	working
with	meshes	in	MAX.	This	section	discusses	the	process	of	computing	these
normals	and	provides	some	sample	code	to	do	so.

Face	Normals
A	face	normal	is	a	vector	that	defines	which	way	a	face	is	pointing.	The	direction
that	the	normal	points	represents	the	front,	or	outer	surface	of	the	face.	To
compute	the	face	normal	of	a	face	in	a	mesh	you	simply	take	the	cross	product	of
two	edge	vectors	of	the	face.	The	following	code	shows	how	this	is	done	using
the	3ds	max	API.	It	loops	through	each	face	in	a	mesh	and	stores	the	computed
face	normal	in	a	table	of	Point3s	named	fnorms.	At	the	end	of	the	code,	the
DebugPrint()	API	is	used	to	display	each	normal	in	the	table	to	the	debug
window	of	the	VC++	IDE.

void	Utility::ComputeFaceNormals(Mesh	*mesh)	{
	Face	*face;;	
	Point3	*verts;
	Point3	v0,	v1,	v2;
	Tab<Point3>	fnorms;
	
	//	Compute	face	(surface)	normals	for	the	mesh
	face	=	mesh->faces;	
	verts	=	mesh->verts;
	fnorms.SetCount(mesh->getNumFaces());
	for	(int	i	=	0;	i	<	mesh->getNumFaces();	i++,	face++)	{
		v0	=	verts[face->v[0]];
		v1	=	verts[face->v[1]];
		v2	=	verts[face->v[2]];
		fnorms[i]	=	(v1-v0)^(v2-v1);
		fnorms[i]	=	Normalize(fnorms[i]);
	}
	
	//	Display	the	normals	in	the	debug	window	of	the	VC++	IDE
	DebugPrint("\n\nFace	Normals	---");
	for	(i	=	0;	i	<	fnorms.Count();	i++)	{
		DebugPrint("\nFace	Normal[%d]=(%.1f,	%.1f,	%.1f)",
			i,	fnorms[i].x,	fnorms[i].y,	fnorms[i].z);
	}
	DebugPrint("\n\n");

}
As	a	side	note	on	face	normals	--	If	you	take	the	length	of	a	face	normal	vector

(for	example	using	the	Point3::Length()	method),	you	get	a	quantity	equal	to
twice	the	surface	area	of	that	face.

Vertex	Normals
This	section	discusses	the	way	vertex	normals	may	be	computed.	Two
algorithms	are	reviewed.	The	first	ignores	smoothing	groups	and	returns	an
averaged	normal	at	the	vertex.	The	second	one	looks	at	the	smoothing
information	and	computes	multiple	normals	when	there	are	faces	that	have
different	smoothing	groups	that	share	a	vertex.	Sample	code	to	handle	the
smoothing	group	aware	case	is	shown.
First,	consider	the	case	where	smoothing	groups	are	not	checked.	In	this	case,
there	will	be	a	single	vertex	normal	for	each	vertex	of	the	mesh.	The	vertex
normal	is	the	average	of	the	face	normals	of	each	of	the	faces	that	share	that
vertex.	The	algorithm	to	compute	such	vertex	normals	is	as	follows:
First,	allocate	an	array	of	normals,	one	for	each	vertex	in	the	mesh,	and	initialize
them	to	zero	(Point3(0,0,0)).	Then	for	each	face,	compute	its	face	normal,	and
add	it	into	each	of	the	three	vertex	normals	that	the	face	contributes	to.	For
example,	if	you	have	a	vertex	normal	shared	by	five	faces,	each	face	will	add	in
its	normal	to	that	vertex,	and	thus	the	result	will	be	average	normal	of	those	five
faces.	When	all	the	faces	in	the	mesh	have	been	processed,	the	average	normal
vector	has	been	computed.	As	a	last	step,	all	the	normals	in	the	array	can	be
normalized.
The	above	algorithm	does	not	take	smoothing	groups	into	account.	When
smoothing	groups	are	involved,	you	may	have	multiple	normals	for	each	vertex.
For	example,	if	you	had	a	sphere	that	had	the	top	and	bottom	hemi-spheres
smoothed	separately	(i.e.	not	smoothed	across	the	equator),	then	the	vertices
across	the	equator	would	have	two	normals	for	each	vertex	while	the	other
vertices	would	have	one.	There	may	be	as	many	normals	as	there	are	smoothing
groups	colliding	at	a	vertex.	However,	it	is	by	far	the	most	common	case	to	have
one,	and	anything	other	than	one	or	two	is	very	rare.
The	class	used	to	compute	vertex	normals	considering	smoothing	is	shown
below.	This	class,	VNormal,	is	similar	to	the	RNormal	class	used	by	3ds	max
internally.	The	class	contains	a	Point3	which	is	the	normal,	a	DWORD	for	the
smoothing	groups,	and	a	pointer	to	the	next	normal	--	this	class	is	a	linked	list.
The	init	variable	is	used	as	a	flag	to	indicate	if	the	first	normal	in	the	list	has
been	initialized.

//	Linked	list	of	vertex	normals
class	VNormal	{

	public:
		Point3	norm;
		DWORD	smooth;
		VNormal	*next;
		BOOL	init;
	
		VNormal()	{smooth=0;next=NULL;init=FALSE;norm=Point3(0,0,0);}
		VNormal(Point3	&n,DWORD	s)

{next=NULL;init=TRUE;norm=n;smooth=s;}
		~VNormal()	{delete	next;}
		void	AddNormal(Point3	&n,DWORD	s);
		Point3	&GetNormal(DWORD	s);
		void	Normalize();
	};

A	key	method	to	this	class	is	AddNormal().	It	is	used	when	a	face	is	going	to
add	its	normal	to	a	vertex.	This	method	is	passed	the	normal	and	the	smoothing
information	for	that	face.	It	checks	if	the	normal	passed	shares	smoothing
information	with	the	existing	normal.	If	it	does,	the	normal	is	added	in,	and	the
smoothing	bits	are	bitwise	OR-ed	in.	If	it	does	not,	a	new	vertex	normal	is
created.	In	this	way,	as	normals	that	share	smoothing	information	are	added,	they
contribute	to	the	overall	normal	for	that	smoothing	condition	at	the	vertex.	If	it	is
a	normal	whose	face	does	not	share	smoothing	information,	a	new	vertex	normal
is	allocated.

//	Add	a	normal	to	the	list	if	the	smoothing	group	bits	overlap,
//	otherwise	create	a	new	vertex	normal	in	the	list
void	VNormal::AddNormal(Point3	&n,DWORD	s)	{
	if	(!(s&smooth)	&&	init)	{
		if	(next)	next->AddNormal(n,s);
		else	{
			next	=	new	VNormal(n,s);
		}
	}
	else	{
		norm	+=	n;
		smooth	|=	s;
		init	=	TRUE;
	}

}
	
//	Retrieves	a	normal	if	the	smoothing	groups	overlap	or	there	is
//	only	one	in	the	list
Point3	&VNormal::GetNormal(DWORD	s)	{
	if	(smooth&s	||	!next)	return	norm;
	else	return	next->GetNormal(s);	
}
	
//	Normalize	each	normal	in	the	list
void	VNormal::Normalize()	{
	VNormal	*ptr	=	next,	*prev	=	this;
	while	(ptr)	{
		if	(ptr->smooth&smooth)	{
			norm	+=	ptr->norm;
			prev->next	=	ptr->next;
			delete	ptr;
			ptr	=	prev->next;
		}
		else	{
			prev	=	ptr;
			ptr	=	ptr->next;
		}
	}
	norm	=	::Normalize(norm);
	if	(next)	next->Normalize();
}

The	method	ComputeVertexNormals()	shown	below	is	a	demonstration
method	that	uses	the	VNormal	class	above.	The	first	thing	done	is	to	create	a
table	of	the	vertex	normals.	Note	that	since	the	Tab	class	does	not	do	any
initialization	(it	only	allocates	the	memory),	the	code	loops	through	each	normal
and	call	the	constructor	to	perform	the	initialization.	Then	it	goes	through	each
face	,	calculates	the	surface	normal,	and	adds	it	into	each	of	the	three	vertex
normals	for	the	face	using	AddNormal().	When	all	the	faces	have	been
processed,	it	goes	through	each	of	the	vertex	normals	and	normalizes	them.
In	the	code	below,	the	vertex	normals	are	displayed	using	DebugPrint()	to	the

output	window.	If	there	is	more	than	one	normal	at	a	vertex,	each	one	is
displayed	(the	DisplayVertexNormal()	method	recursively	calls	itself	to
display	each	one).

//	Compute	the	face	and	vertex	normals
void	Utility::ComputeVertexNormals(Mesh	*mesh)	{
	Face	*face;	
	Point3	*verts;
	Point3	v0,	v1,	v2;
	Tab<VNormal>	vnorms;
	Tab<Point3>	fnorms;
	
	face	=	mesh->faces;	
	verts	=	mesh->verts;
	vnorms.SetCount(mesh->getNumVerts());
	fnorms.SetCount(mesh->getNumFaces());
	
	//	Compute	face	and	vertex	surface	normals
	for	(int	i	=	0;	i	<	mesh->getNumVerts();	i++)	{
		vnorms[i]	=	VNormal();
	}
	for	(i	=	0;	i	<	mesh->getNumFaces();	i++,	face++)	{
		//	Calculate	the	surface	normal
		v0	=	verts[face->v[0]];
		v1	=	verts[face->v[1]];
		v2	=	verts[face->v[2]];
		fnorms[i]	=	(v1-v0)^(v2-v1);
		for	(int	j=0;	j<3;	j++)	{		
			vnorms[face->v[j]].AddNormal(fnorms[i],face->smGroup);
		}
		fnorms[i]	=	Normalize(fnorms[i]);
	}
	for	(i=0;	i	<	mesh->getNumVerts();	i++)	{
		vnorms[i].Normalize();
	}
	
	//	Display	the	normals	in	the	debug	window	of	the	VC++	IDE
	DebugPrint("\n\nVertex	Normals	---");

	for	(i	=	0;	i	<	vnorms.Count();	i++)	{
		DisplayVertexNormal(vnorms.Addr(i),	i,	0);
	}
	DebugPrint("\n\n");
}
	
void	Utility::DisplayVertexNormal(VNormal	*vn,	int	i,	int	n)	{
	DebugPrint("\nVertex	%d	Normal	%d=(%.1f,	%.1f,	%.1f)",
		i,	n,	vn->norm.x,	vn->norm.y,	vn->norm.z);
	if	(vn->next)	DisplayVertexNormal(vn->next,	i,	n+1);
}

Other	Techniques	for	Computing	Vertex	Normals
This	next	section	discusses	two	other	techniques	that	may	be	used	in	computing
vertex	normals.	The	first	technique	weights	the	normals	by	the	vertex	angle	on
each	face.	The	second	weights	the	normal	using	the	area	of	each	face.
Weighting	by	Face	Angle
To	understand	why	using	a	weighted	normal	approach	might	be	used	consider
the	following	example:
Create	a	default	Box	and	convert	it	to	an	Editable	Mesh.	Go	into	SubObject
mode,	and	find	vertex	1	(generally	found	at	the	front	lower	left	corner).	Display
the	edges,	and	go	into	object	properties	to	unclick	"edges	only"	(so	you	see	the
hidden	edges).	You'll	see	that	vertex	1	is	used	by	bottom	faces	1	and	2.	(In	the
SDK,	these	are	vertex	0	and	faces	0	and	1.)	It's	also	used	by	front	faces	5	and	6,
and	left	face	11.	(4,5,10.)
If	we	simply	averaged	the	normals	of	all	incident	faces,	we'd	get:
Normalize	(2*(0,0,-1)	+	2*(0,-1,0)	+	(-1,0,0)),	which	is	(1/3,	2/3,	2/3).	
Because	this	arrangement	of	diagonals	is	haphazard	and	(inherently)
asymmetric,	we'd	get	vertex	normals	on	a	box	pointing	odd,	uncoordinated
directions.
If	we	instead	weight	the	normals	by	the	vertex	angle	on	each	face,	we	get:
Normalize	(PI/2*(0,0,-1)	+	PI/2*(0,-1,0)	+	PI/2*(-1,0,0))	=	(1,1,1)/Sqrt(3)	
This	is	more	natural	for	the	user.	Each	vertex	normal	points	away	from	all	three
sides	symmetrically.	(The	individual	front	and	bottom	triangles	may	have
varying	angles,	but	the	pairs	of	them	always	add	up	to	PI/2.)
This	seems	like	the	right	approach	in	general	--	when	you	divide	a	face,	for
example,	you	don't	wind	up	changing	the	vertex	normal	when	the	surface	hasn't
essentially	changed.	If	you	change	vertex	angles	by	dragging	neighboring
verticies,	the	normal	changes	in	a	natural	fashion.
You	can	compute	the	vertex	angle	by	using	dot	products	as	shown	below:
//	Corner	is	0,	1,	or	2	--	which	corner	do	we	want	the	angle	of?
float	FindVertexAngle(Mesh	*mesh,	int	face,	int	corner)	{
int	cnext	=	(corner+1)%3;
int	cprev	=	(corner+2)%3;
DWORD	*vv	=	mesh->faces[face];
	

//	Get	edge	vectors:
Point3	A	=	mesh->verts[vv[cnext]]	-	mesh->verts[vv[corner]];
Point3	B	=	mesh->verts[vv[corner]]	-	mesh->verts[vv[cprev]];
	
//	Normalize	the	edge-vectors,	but	return	0	if	either	has	0	length.
float	len	=	Length(A);
if	(!len)	return	len;
A	=	A/len;
len	=	Length(B);
if	(!len)	return	len;
B	=	B/len;
	
//	The	dot	product	gives	the	cosine	of	the	angle:
float	dp	=	DotProd	(A,B);
if	(dp>1)	dp=1.0f;	//	shouldn't	happen,	but	might
if	(dp<-1)	dp=-1.0f;	//	shouldn't	happen,	but	might
return	acos(dp);
}
To	be	efficient	when	computing	all	normals,	you	may	want	to	cache	the
normalized	edge	directions	(A	&	B).	You	can	index	these	by	an	adjacent	edge
list	for	the	mesh,	where	edir[i]	is	the	unit	vector	pointing	from	vertex	ae-
>edges[i].v[0]	to	ae->edges[i].v[1]	(AdjEdgeList	*ae).
Weighting	by	Face	Area
Another	possibility	is	to	weight	the	normals	by	the	area	of	each	face.	The	area	of
a	face	is	very	easy	to	compute,	it's	just	half	the	length	of	the	normal	cross
product:
void	GetAreaAndNormal	(Mesh	*mesh,	int	face,	Point3	&	N,	float
area)	{
DWORD	*vv	=	mesh->faces[face].v;
Point3	A	=	mesh->verts[vv[1]]	-	mesh->verts[vv[0]];
Point3	B	=	mesh->verts[vv[2]]	-	mesh->verts[vv[0]];
N	=	A^B;
area	=	Length	(N)	/	2.0f;
Normalize	(N);

}
This	works	using	any	two	edges	for	A	and	B.
To	weight	face	normals	by	area,	you	can	just	use	the	N=A^B	vector	directly.
Weighting	by	area	gives	an	interesting	result,	but	perhaps	not	as	satisfactory	as
weighting	by	face	angle.

Custom	User	Interface	Controls
See	Also:	Class	Interface,	Class	ICustomControl,	Class	ICustEdit,	Class
ISpinnerControl,	Class	ISliderControl,	Class	ICustImage,	Class	ICustStatus,
Class	IColorSwatch,	Class	ICustButton,	Class	ICurveCtl,	Class	ICustToolbar,
Class	IRollupWindow,	Class	IOffScreenBuf,	Class	TCBGraphParams,	Class
IDADWindow.

Overview
A	set	of	custom	controls	are	available	for	use	in	the	user	interface	design	of	3ds
max	plug-ins.	The	3ds	max	program	itself	makes	extensive	use	of	these	custom
controls.	These	controls	provide	an	important	element	of	consistency	between
the	plug-in	and	the	system,	making	new	plug-ins	appear	fully	integrated	with
MAX.	The	use	of	these	controls	by	the	majority	of	developers	will	provide	a
level	of	familiarity	for	users	who	often	work	with	many	different	plug-ins.
This	section	takes	a	quick	look	at	all	the	control	types.	It	then	discusses	two
major	aspects	of	using	MAX's	custom	controls.	The	first	is	how	the	controls	are
added	to	a	rollup	page	in	the	command	panel	and	presented	to	the	user.	The
second	is	how	the	user's	operation	of	these	controls	is	processed	by	the	plug-in.
The	sample	program	CUSTCTRL.CPP	demonstrates	each	of	the	custom
controls	which	may	be	used	in	the	command	column.	To	run	this	program,	copy
the	file	\MAXSDK\PLUGIN\CUSTCTRL.DLU	into	your	stdplugs
directory.	The	program	is	implemented	as	a	utility	plug-in.	You	can	run	the
program	by	choosing	the	Custom	Control	selection	in	the	Utility	branch	under
How	To.	This	section	makes	reference	to	portions	of	this	plug-in.
You	can	also	look	at	the	custom	controls'	header	file	in
\MAXSDK\INCLUDE\CUSTCONT.H.

Available	Custom	Controls
Custom	Edit	Controls

This	control	is	a	simple	text	input	control.	The	user	may	type	any	string	into
the	field	and	the	plug-in	is	notified	when	the	user	presses	the	ENTER	key.
There	are	also	methods	to	parse	and	return	integer	and	floating	point	values
entered	in	the	control.	If	the	edit	control	is	to	be	used	with	numeric	values,	it
is	typically	used	in	conjunction	with	a	custom	spinner	control.

Spinner	Controls
	(Spinner	control)

	(Edit	control	and	Spinner	control)
The	spinner	control	is	used	(usually	in	conjunction	with	the	custom	edit
control)	to	provide	input	of	values	limited	to	a	fixed	type.	For	example,	the
control	may	be	limited	to	the	input	of	only	positive	integers.	The	input
options	are	integer,	float,	universe	(world	space	units),	positive	integer,
positive	float,	positive	universe,	and	time.	This	control	allows	the	user	to
increment	or	decrement	a	value	by	clicking	on	the	up	or	down	arrows.	The
user	may	also	click	and	drag	on	the	arrows	to	interactively	adjust	the	value.
The	Ctrl	key	may	be	held	to	accelerate	the	value	changing	speed,	while	the
Alt	key	may	be	held	to	decrease	the	value	changing	speed.	The	user	may	also
right	click	on	the	arrows	to	reset	the	value	its	default.

Slider	Controls
This	control	is	available	in	release	3.0	and	later	only.
The	custom	slider	control	is	functionality	similar	to	the	custom	spinner
control	with	some	additional	functionality.	The	slider	control	is	used
(sometimes	in	conjunction	with	the	custom	edit	control)	to	provide	input	of
values	limited	to	a	fixed	type.

	(Slider	Control)

	('Bracketed'	Slider	Control)

Custom	Button	Controls

Custom	Buttons	allow	the	developer	to	have	extra	control	of	the	way	buttons
appear	and	behave	in	the	dialog	box.	These	custom	buttons	have	the
following	features:
	The	button	can	be	either	a	check	button	(which	stays	pressed	in	until	the	user
selects	it	again),	or	a	push	button	(which	pops	back	out	immediately).
	The	highlight	color	of	the	check	button	may	be	specified.
	A	button	may	function	as	a	fly-off.	Any	number	of	additional	buttons	may	be
specified	to	fly	off.	The	direction	of	the	fly	off	may	be	specified	or
computed	automatically.
	The	buttons	may	be	labeled	with	text	or	images.	Four	images	may	be
specified	allowing	precise	control	over	how	the	button	appears	when
enabled	or	disabled	and	pressed	in	or	released.

Custom	Status	Control

This	control	provides	a	recessed	area	of	the	dialog	which	the	developer	may
use	as	a	status	prompt	area.

Custom	Toolbar	Control

This	control	allows	the	creation	of	toolbars	containing	buttons	(push,	check,
and	fly-offs),	status	fields,	separators	(spacers),	and	other	Windows	or	user
defined	controls.	Note:	The	standard	size	for	3ds	max	toolbar	button	icons	is
16x15.

Custom	Curve	Control
This	is	a	spline	based	control	which	returns	output	values	from	a	user
adjustable	curve.	An	example	of	this	control	in	the	3ds	max	user	interface	can
be	seen	in	the	Color	Map	section	of	the	Output	rollup	of	a	2D	Texture	map.
Sample	code	using	these	APIs	is	available	in
\MAXSDK\SAMPLES\UTILITIES\CCUTIL\CCUTIL.CPP.

Custom	Image	Control

The	custom	image	control	provides	a	recessed	area	in	the	dialog	to	display	a
bitmap	image.

Color	Swatch	Control

The	Color	Swatch	control	presents	the	user	with	the	standard	3ds	max
modeless	color	selector	when	the	user	clicks	on	the	control.	The	color	swatch
control	displays	the	currently-selected	color	and	may	be	continuously	updated
as	the	user	interactively	selects	new	colors.	Color	Swatches	also	handle	drag
and	drop	between	color	swatches.

Rollup	Window	Control

This	control	is	used	if	you	are	creating	a	dialog	box	which	will	not	be	used	in
the	command	panel.	This	control	adds	a	container	area	for	rollup	pages	to	be
added	to	the	dialog,	and	provides	a	scroll	bar	just	like	the	command	panel
itself.
Note	that	this	is	a	special	case.	Normally,	adding	rollup	pages	to	the	command
panel	is	done	using	the	simple	AddRollupPage()	method	of	the	Interface
class.	This	control	is	only	used	when	you	want	to	have	a	scrolling	region	for
rollup	pages	in	a	dialog	box.

Window	Thumb	Tack	Control
This	control	installs	a	thumb	tack	into	a	window	title	bar	which	allows	the
user	to	make	the	window	'Always	On	Top'.

Off	Screen	Buffer	Control
This	control	provides	an	off-screen	buffer	which	the	developer	may	draw	into,
then	quickly	blit	onto	the	actual	display	for	flicker-free	image	updates.

TCB	Graph

This	control	displays	a	tension	/	continuity	/	bias	graph.

Drag	and	Drop	Window	Control
This	is	a	new	type	of	custom	control	available	in	3ds	max	2.0	and	later.	It	is
used	to	provide	drag	and	drop	to	and	from	things	other	than	Custom	Buttons.

How	to	a	Create	a	Rollup	Page	using	the	Custom	Controls
The	tool	for	creating	the	rollup	page	portion	the	user	interface	of	your	plug-in	is
the	dialog	editor	of	Visual	C++	Developers	Studio.	You	use	the	dialog	editor	to
create	the	rollup	page,	and	place	and	arrange	the	controls.
The	custom	controls	are	positioned	in	a	rollup	page	like	any	other	control.	Each
one	is	created	using	the	Custom	Control	button.	The	Custom	Control	button	is
the	one	shown	highlighted	below.

The	control	is	identified	as	being	custom	by	filling	in	the	Class	field	of	the
Custom	Control	Properties	dialog	box	with	an	appropriate	string	indicating	the
type	of	control.	To	bring	up	this	dialog,	double	click	on	the	control	in	the	dialog
editor	window.

These	are	the	values	to	be	used	in	the	Class	field	of	the	Custom	Control
Properties	dialog	for	those	custom	controls	which	may	appear	in	a	rollup	page:
Custom	Edit	control	-	CustEdit
Custom	Spinner	Control	-	SpinnerControl
Custom	Button	control	-	CustButton
Custom	Toolbar	control	-	CustToolbar
Custom	Image	control	-	CustImage
Custom	Status	control	-	CustStatus

Color	Swatch	control	-	ColorSwatch
Custom	Rollup	Window	-	RollupWindow
Custom	DragAndDrop	Window	control	-	DragDropWindow
Custom	TCB	Graph	-	TCBGraph

The	other	fields	in	the	user	control	properties	dialog	are	these:
	ID	-	This	is	the	resource's	identifier.	The	resource	ID	is	usually	a	symbol
supplied	by	Visual	C++	and	defined	in	the	.H	file	that	Visual	C++	creates	as
part	of	your	project.	This	is	where	you	define	the	symbolic	name	for	the
resource.
	Caption	-	This	is	the	text	that	appears	as	part	of	the	control	to	label	it.	This	field
is	used	for	Custom	Buttons	and	Status	controls.
	Visible	-	This	determines	whether	or	not	the	control	is	visible	when	the
application	is	first	run.
	Disabled	-	This	determines	if	the	resource	is	displayed	as	disabled	when	the
dialog	box	is	created.
	Group	-	This	specifies	the	first	control	of	a	group	of	controls	in	which	the	user
can	move	from	one	control	to	the	next	by	using	the	arrow	keys.	All	controls	in
the	tab	order	after	the	first	control	with	the	Group	property	set	to	False	belong
to	the	same	group.	The	next	control	in	the	tab	order	with	Group	set	to	True
ends	the	first	group	of	controls	and	starts	the	next	group.
	Tabstop	-	This	specifies	that	the	user	can	move	to	this	control	with	the	TAB
key.	This	is	only	appropriate	for	the	edit	and	button	controls.
	Class	-	The	name	of	the	control's	Windows	class.	This	class	must	be	registered
before	the	dialog	box	containing	the	control	is	created.	See	the	class	list	above.
	Help	ID	-	Assigns	a	help	ID	to	the	control.	The	help	ID	is	based	on	the	resource
ID.	Type:	Bool.	Default:	False.
	Style	-	A	32-bit	hexadecimal	value	specifying	the	control's	style,	primarily	used
to	edit	the	lower	16	bits	that	make	up	a	user	control's	sub-style.
	ExStyle	-	A	32-bit	hexadecimal	value	specifying	the	control's	extended	style.
When	the	rollup	page	dialog	is	created,	it	must	be	compiled	and	the	resource	file
it	generates	must	be	included	in	the	CPP	source	file.	The	default	name	for	this
file	is	RESOURCE.H.	This	may	be	changed	by	right	clicking	on	the	resource
file	name	from	the	Resource	View	list	(the	top	line)	and	choosing	the	Resource
Includes...	option.	From	this	dialog,	change	the	entry	under	Symbol	header	file.
Once	you	create	a	rollup	page	layout,	there	are	several	ways	to	present	it	to	the
user.	The	standard	way	is	using	a	rollup	page	in	the	command	panel.	Typically,

this	is	called	from	within	BeginEditParams()	when	the	user	is	in	the	position
of	editing	an	items	parameters.
There	is	a	method	of	the	interface	class	to	handle	adding	the	rollup.	Its	called
AddRollupPage().	The	syntax	looks	like	this:
hParams	=	interfacePtr->AddRollupPage(
	hInstance,	//	DLL	instance	handle.
	MAKEINTRESOURCE(IDD_CUSTCTRL),	//	ID	of	the	dialog
box.
	DialogProc,	//	Dialog	procedure	to	process	user	input.
	ROLLUP_PAGE_TITLE,	//	Rollup	title	text.
	(LPARAM)this);	//	Saves	the	this	ptr	of	the	item.

The	standard	width	for	rollup	pages	in	the	command	column	in	the	United	States
is	108	units.	When	you	create	dialogs	for	use	in	the	command	panel,	always	use
108	as	the	overall	width	(for	use	in	the	United	States).	Note	the	width	and	height
are	visible	in	the	lower	right	hand	corner	of	the	IDE.
In	summary,	the	custom	controls	are	added	to	a	rollup	page	layout	using	the
resource	editor	window	of	VC++.	The	Class	field	of	the	resource	indicates
which	type	of	control	you	are	creating.	The	finished	rollup	page	layout	is
displayed	to	the	user	using	the	AddRollupPage()	function.

How	to	Process	User	Input	from	the	Custom	Controls
Windows	uses	a	'Dialog	Procedure'	created	by	the	developer	to	handle	the	users
manipulation	of	the	controls	in	the	dialog,.	As	the	user	works	with	the	controls,
Windows	sends	messages	to	the	dialog	procedure.	The	developer	is	responsible
for	responding	to	these	messages	and	implementing	the	logic	to	process	the	user
input.	A	full	description	of	this	messaging	system	is	beyond	the	scope	of	this
documentation,	but	below	is	a	brief	overview.	If	you	need	more	information,	see
the	Recommended	Reading	section	in	the	Orientation	module.
When	you	create	a	dialog	box	or	add	a	rollup	page,	you	specify	the	dialog
procedure	to	process	the	input.	The	basic	structure	of	this	dialog	proc	is	listed
below:
BOOL	CALLBACK	DialogProc(HWND	hDlg,	UINT	message,
	WPARAM	wParam,	LPARAM	lParam)
	{
	switch	(message)	{	//	Respond	to	the	message	...
		case	WM_INITDIALOG:	//	Initialize	the	Controls	here.
				return	TRUE;
		case	WM_DESTROY:	//	Release	the	Controls	here.
			return	FALSE;
		case	WM_COMMAND:	//	Various	messages	come	in	this	way.
			break;
		case	WM_NOTIFY:	//	Others	this	way...
			break;
		//	Other	cases...
		default:
			break;
		}
	return	FALSE;
	}

Windows	passes	in	four	parameters	to	the	dialog	procedure.	These	are	the	handle
of	dialog	box,	the	message,	and	two	parameters	which	hold	message-specific
information.	Except	in	response	to	the	WM_INITDIALOG	message,	the
dialog	box	procedure	should	return	TRUE	if	it	processes	the	message,	and
FALSE	if	it	does	not.

When	the	dialog	box	is	initialized,	the	WM_INITDIALOG	message	is	sent.
At	this	time	the	custom	controls	should	be	initialized.	Each	control	has	methods
to	initialize	it.	The	methods	used	to	initialize	the	control	are	discussed	in	the	next
section,	or	you	may	see	the	sample	program	CUSTCTRL.CPP	for	how	this	is
done	for	each	control.
When	the	user	is	finished	with	the	dialog	box,	the	WM_DESTROY	message
is	sent.	This	is	where	you	release	the	controls.	Again,	the	next	section	discusses
this,	or	you	may	take	a	look	at	the	sample	program	to	see	how	this	is	done.
When	the	user	works	with	any	of	the	custom	controls,	Windows	sends	in	specific
messages	to	the	dialog	procedure.	For	example,	when	the	user	changes	a	spinner
control,	Windows	sends	in	a	CC_SPINNER_CHANGE	message.	The
developer	would	add	this	case	to	the	dialog	proc	code	above	and	handle	the
processing	required	when	the	spinner	changed.	The	dialog	box	may	have	several
spinner	controls:	how	does	the	developer	know	which	spinner	changed?	The
lParam	and	wParam	arguments	to	the	dialog	procedure	contain	message-
specific	information.	It	is	here	that	the	ID	of	the	control	is	provided.	(This	is	the
ID	entered	in	the	ID	field	of	the	user	control	properties	dialog	when	the	control
was	created).	For	example,	the	developer	could	add	a	case	such	as	the	one	below
to	handle	spinner	change	messages:
case	CC_SPINNER_CHANGE:
	switch	(LOWORD(wParam))	{	//	Switch	on	ID
		case	IDC_ANGLE_SPINNER:	//	A	specific	spinner	ID.
			angle	=	((ISpinnerControl	*)lParam)->GetFVal();
			break;
		case	IDC_RADIUS_SPINNER:	//	A	specific	spinner	ID.
			//	Code	to	handle	the	Radius	spinner...
			break;
		};
	break;

This	code	fragment	presents	several	important	concepts.	The	LOWORD	macro
used	above	retrieves	the	low-order	word	from	the	given	32-bit	value.	The
spinner	control	provides	the	ID	of	the	spinner	which	changed	in	the	low	order
word	of	wParam.	(Another	macro,	HIWORD,	retrieves	the	high-order	word
from	the	given	32-bit	value).	Splitting	the	argument	into	low	and	high	order
words	allows	more	information	to	be	packed	into	the	parameter.

A	pointer	to	the	spinner	control	is	provided	in	the	lParam	parameter.	This
pointer	is	used	to	call	a	method	of	the	spinner	to	get	the	new	floating	point	value
((ISpinnerControl	*)lParam	>GetFVal()).
As	another	example,	let's	look	at	the	color	change	message	sent	in	from	the
Color	Swatch	control.	When	the	user	is	changing	the	colors	in	the	dialog	box,
and	the	developer	has	asked	to	be	notified	on	each	change,	Windows	sends	the
CC_COLOR_CHANGE	message.	Again,	the	developer	would	add	a	case	to
the	switch	to	handle	this	message.	The	LOWORD	of	wParam	contains	the	ID
of	the	color	swatch	control.	The	HIWORD	of	wParam	contains	0	if	the
mouse	button	is	down	as	the	user	is	changing	colors,	and	1	if	the	mouse	is	up.
Sometimes,	the	message	sent	to	the	dialog	proc	is	WM_COMMAND,	and	the
programmer	must	look	at	both	the	high	and	low	words	of	wParam	to	determine
the	nature	of	the	message	and	the	ID	of	the	control	which	sent	the	message.	For
example,	the	code	below	demonstrates	how	custom	button	messages	may	be
handled.
case	WM_COMMAND:
	switch(LOWORD(wParam))	{	//	Switch	on	ID
		case	IDC_BUTTON:	//	A	specific	button's	ID.
			switch	(HIWORD(wParam))	{	//	Notification	codes
				case	BN_BUTTONDOWN:		//	Button	is	pressed.
					break;
				case	BN_BUTTONUP:		//	Button	is	released.
					break;
				case	BN_RIGHTCLICK:	//	User	right	clicked.
					break;
				};
			break;
		case	IDC_FLYOFF:	//	A	specific	fly	off	control	ID
			switch	(HIWORD(wParam))	{	//	Notification	codes
				case	BN_FLYOFF:
					//	This	notification	code	is	sent	when	the
					//	user	chooses	a	new	fly	off.
					break;
				};

				break;
		};

In	summary,	when	the	user	works	with	controls	in	a	dialog,	Windows	sends
messages	to	the	plug-in's	dialog	proc.	The	developer	responds	to	these	messages
to	process	the	user	input.

Overview	of	Methods	of	the	Custom	Control	Classes
Before	you	call	any	custom	control	methods,	you	must	initialize	the	controls	by
calling	the	InitCustomControls()	function	(usually	from	the	DLLMain()
function	of	the	plug-in).
Call	InitCustomControls(hInst)	where	hInst	is	the	HINSTANCE	passed
into	DLLMain().
For	each	control,	there	are	two	functions	that	you'll	always	use:
1	A	function	to	initialize	the	pointer	to	the	control	so	you	may	call	its	methods
(usually	when	the	dialog	is	initialized).

2	A	function	to	release	the	control	when	you	are	done	with	it	(when	the	dialog	is
destroyed).
The	sample	code	below	demonstrates	this	for	a	spinner	control	(the	other
controls	are	similar):
First,	declare	a	pointer	to	the	control:
static	ISpinnerControl	*radSpin;
To	initialize	the	pointer	call:
radSpin=GetISpinner(GetDlgItem(hDlg,IDC_RAD_SPIN));
Each	custom	control	has	a	Get	function	to	return	a	handle	to	the	control.
In	the	example	above,	two	functions	are	called	from	a	single	statement.	The
GetDlgItem	function	retrieves	the	handle	of	a	control	in	the	specified	dialog
box.	The	parameter	hDlg	is	the	dialog	handle.	The	IDC_RAD_SPIN
parameter	is	the	ID	for	the	control.	This	is	the	name	entered	in	the	ID	field	of
the	Custom	Control	Properties	dialog	box	when	the	control	was	created.
When	you	are	finished	using	the	control,	call:
ReleaseISpinner(radSpin);
Each	control	has	a	Release	function	to	release	it.

See	Class	ICustomControl	for	a	list	of	the	methods	that	are	available	for	all	the
custom	controls.
The	following	functions	are	not	a	part	of	class	ICustomControl	but	may	also
be	used	in	conjunction	with	the	custom	controls	and	UI	design	in	MAX:
This	is	a	bitmap	brush	where	the	bitmap	is	a	gray	and	white	checker	board.
HBRUSH	GetLTGrayBrush();
HBRUSH	GetDKGrayBrush();

This	returns	the	standard	font.
HFONT	GetFixedFont();

This	returns	the	handle	of	the	hand	cursor	used	for	panning.
HCURSOR	GetPanCursor();

The	following	section	provides	links	to	the	custom	control	classes	that	document
how	to	use	the	specific	methods	of	each	control.

Using	the	Custom	Edit	Control
See	Class	ICustEdit.

Using	the	Spinner	Control
See	Class	ISpinnerControl.

Using	the	Custom	Image	Control
See	Class	ICustImage.

Using	the	Custom	Status	Control
See	Class	ICustStatus.

Using	the	Color	Swatch	Control:
See	Class	IColorSwatch.

Using	the	Custom	Button	Control
See	Class	ICustButton.

Using	the	Custom	Toolbar	Control
See	Class	ICustToolbar.

Using	the	Rollup	Window	Control
See	Class	IRollupWindow.

Using	the	Off	Screen	Buffer	Control
See	Class	IOffScreenBuf.

Using	the	TCB	Graph	Control
See	Class	TCBGraphParams.

Using	the	Thumb	Tack	Control
This	control	installs	a	thumb	tack	into	a	window	title	bar	which	allows	the	user
to	make	the	window	'Always	On	Top'.	This	control	has	two	functions.
void	InstallThumbTack(HWND	hwnd)
This	function	installs	a	thumb	tack	in	the	title	bar	of	a	window.	NOTE:	The
window	class	for	the	window	should	have	4	extra	bytes	in	the	window
structure	for	SetWindowLong().
void	RemoveThumbTack(HWND	hwnd)
This	function	is	used	to	remove	the	thumb	tack	from	the	window	title	bar.

Custom	Node	Properties	and	App	Data
See	Also:	Class	Interface,	Class	INode,	Class	ClassDesc,	AppData,
AppDataChunk.

Overview
A	plug-in	developer	may	need	to	hang	arbitrary	data	off	nodes	in	the	scene.	3ds
max	provides	two	ways	to	accomplish	this,	AppData	and	User	Properties.	This
section	discusses	both	these	approaches.	Also	discussed	is	the	way	a	developer
can	save	data	associated	with	their	plug-in	class	to	the	3ds	max	file.

AppData
AppData	is	application-specific	data	that	may	be	attached	to	any	Animatable
in	the	scene.	With	these	APIs	any	3ds	max	object	(controller,	object,	node,
modifier,	material,	etc.)	can	have	custom	data	attached	by	other	objects.	These
chunks	are	saved	in	the	.MAX	file	and	can	be	accessed	through	the	object	they
are	attached	to.
The	methods	used	to	create	AppData	are	from	class	Animatable.	The	data	is
accessed	using	three	owner	identifiers:	The	SuperClassID	and	the	Class_ID	of
the	owner,	and	a	sub-index.
void	AddAppDataChunk(Class_ID	cid,	SClass_ID	sid,
	DWORD	sbid,	DWORD	len,	void	*d);
This	method	is	used	to	add	an	AppDataChunk	to	this	Animatable.	The	chunk
is	identified	using	the	Class_ID,	and	SuperClassID	of	the	owner,	and	an	ID	for
sub-chunks.
AppDataChunk	*GetAppDataChunk(Class_ID	cid,	SClass_ID	sid,
DWORD	sbid);
This	method	is	used	to	retrieve	a	pointer	to	an	AppDataChunk.
BOOL	RemoveAppDataChunk(Class_ID	cid,	SClass_ID	sid,
DWORD	sbid);
This	method	is	used	to	delete	an	AppDataChunk.

Sample	code	using	these	APIs	can	be	found	in
\MAXSDK\SAMPLES\UTILITIES\APPDATA.CPP.
Developers	who	have	3D	Studio	/	DOS	IPAS	AppData	associated	with	nodes
being	imported	into	3ds	max	have	APIs	available	in	3ds	max	to	help	process	this
imported	data.	AppData	was	used	by	IPAS	plug-ins	to	store	special	data	with
nodes.	This	was	used	for	example	by	IK	and	spline	patches.	These	APIs	allow	a
3ds	max	plug-in	to	request	incoming	app	data	from	an	IPAS	plug-in	and	use	it.
Plug-ins	can	register	a	callback	that	gets	called	when	app	data	is	loaded.	The
callback	can	then	interpret	the	data	and	create	a	new	object	that	will	be	used
instead	of	the	usual	triangle	mesh.	For	more	details	see	Class
ObjectDataReaderCallback.
Note:	Although	it	is	possible	to	hang	AppData	off	the	scene	or	the	root	node,
that	data	won't	be	saved	in	the	3ds	max	file	since	the	scene	and	the	root	node	are
not	actually	saved.

Custom	Node	Properties
Another	type	of	data	that	may	be	attached	to	a	node	is	referred	to	as	a	Custom
Node	Property.	This	data	can	be	ASCII	text,	an	integer	value,	a	float	value,	or	a
BOOLean	value.	These	values	are	stored	and	retrieved	using	a	'key'	string.	This
is	a	string	of	any	length	--	the	only	limitation	is	the	key	string	must	not	contains
spaces,	tabs	or	the	equal	sign	(=)	character.
To	get	and	set	specific	data	values	developers	may	use	the	following	methods	of
INode.	These	get	and	set	values	for	ASCII	strings,	ints,	floats,	and	booleans:
GetUserPropString(),	SetUserPropString()
GetUserPropInt(),	SetUserPropInt()
GetUserPropFloat(),	SetUserPropFloat()
GetUserPropBool(),	SetUserPropBool()

An	end	user	may	enter	this	data	as	well	(in	the	3ds	max	user	interface	it	is
referred	to	as	a	"User	Defined	Property").	Using	the	Object	Properties	dialog	a
user	may	enter	text	in	the	following	format:
PropertyName=Property	Value
The	property	name	cannot	have	spaces	within	it,	although	a	user	can	use
spaces	(and	any	other	characters)	anywhere	outside	the	property	name.	The
property	name	must	appear	at	the	start	of	the	line	(although	it	can	be	indented
with	spaces	or	tabs)	and	there	can	be	only	one	property	per	line.

A	developer	may	access	the	entire	user-defined	property	text	buffer	if	they	wish
to	parse	it	themselves.	The	methods	to	do	this	are	GetUserPropBuffer()	and
SetUserPropBuffer().
For	reference	information	on	these	methods,	see	Class	INode.

Saving	Class	Data
The	following	three	methods	of	class	ClassDesc	may	be	used	to	save	data
associated	with	a	class	in	a	3ds	max	file.	This	is	appropriate	for	preference	data
and	other	similar	information	associated	with	a	class.	If	you	want	to	save	data
associated	with	the	class	have	NeedsToSave()	return	TRUE	and	implement	the
Save()	and	Load()	methods.	See	the	Advanced	Topics	section	on	Loading	and
Saving	for	more	details	on	the	way	data	is	written	to	and	read	from	3ds	max
files.
virtual	BOOL	NeedsToSave();
Returns	TRUE	if	there	is	data	associated	with	the	class	that	needs	to	be	saved
in	the	3ds	max	file.	If	this	is	so,	implement	the	Save()	and	Load()	methods
below.	If	there	is	no	class	data	to	save,	return	FALSE.
virtual	IOResult	Save(ISave	*s);
If	NeedsToSave()	returns	TRUE	then	this	method	should	be	implemented	to
save	the	data	associated	with	the	class.
virtual	IOResult	Load(ILoad	*l);
If	NeedsToSave()	returns	TRUE	then	this	method	should	be	implemented	to
load	the	data	associated	with	the	class.

Note:	One	peculiarity	with	the	loading	and	saving	of	the	class	data	is	that	if	the
user	does	a	File	New	or	File	Reset	then	the	class	data	is	not	cleared.

Debugging
See	Also:	Profiling	Plug-In	Performance.
This	section	presents	information	on	Debugging.	This	include	an	introduction	to
using	the	VC++	debugger,	a	useful	API	for	printing	debug	messages,	and
information	about	the	Sparks	Developer	Program.

Using	the	Visual	C++	IDE	to	Debug	MAX	Plug-Ins
Overview
Developers	may	use	the	VC++	IDE	to	debug	3ds	max	plug-ins.	This	provides
source	code	level	debugging	capabilities	while	execution	is	taking	place	inside
the	context	of	the	plug-in.	One	can	do	things	such	as	set	breakpoints	(specific
lines	in	the	source	code	where	execution	stops	temporarily	so	the	developer	can
examine	variables,	review	the	call	stack,	etc.)	and	establish	variables	to	'watch'.
These	variables	appear	in	a	separate	window	and	display	their	current	contents
as	they	change.
Setting	Up	for	Debugging
Developer	must	use	the	plug-in	project's	Hybrid	configuration	for	debugging.
The	Release	build	does	not	contain	any	source	level	information	and	thus	cannot
be	used.	For	registered	developers	using	the	special	Debug	SDK	the	Debug
configuration	should	be	used	(in	the	description	below	Hybrid	is	always	referred
to	however).
To	begin,	make	sure	you've	compiled	the	Hybrid	configuration	so	you	have	the
debug	information	available.	You	can	set	the	Hybrid	configuration	as	the	current
one	by	choosing	Build…/Set	Active	Configuration….	Then	choose
Build/Rebuild	All.	This	will	be	create	a	DLL	and	associated	files	appropriate	for
use	while	debugging.
Next,	VC++	needs	to	know	where	the	3ds	max	executable	is.	You	can	set	this
through	the	IDE	by	choosing	Settings…	from	the	Project	pulldown	menu.	Then
go	to	the	Debug	Tab,	and	with	the	Hybrid	configuration	selected	(highlighted	in
the	'Settings	for:'	list),	enter	the	full	pathname	to	3DSMAX.EXE.	For	example,
under	the	'Executable	for	debug	session:'	edit	field	enter	'd:\3dsmax\3dsmax.exe'.
In	the	'Working	directory'	field	enter	'd:\3dsmax'.
Executing	3ds	max	and	Your	Plug-In
There	are	several	ways	to	cause	execution	to	halt	at	a	specific	spot	in	your	code.
One	is	to	set	a	breakpoint	at	the	spot.	This	is	done	by	placing	the	cursor	on	the
line	where	you	want	execution	to	stop	and	pressing	F9.	Then,	to	run	the
debugger	simply	press	F5.	This	will	launch	3ds	max	and	get	things	going.	3ds
max	will	run	and	load	your	plug-in	as	usual	upon	startup.	Begin	execution	of
your	plug-in	as	you	normally	would	inside	3ds	max	(for	example,	if	your	plug-in
is	a	modifier	apply	it	to	an	object).	When	execution	of	your	plug-in's	code
reaches	the	breakpoint,	control	will	return	to	VC++	and	you	may	use	its	tool	to

examine	the	state	of	things	(see	the	section	below	for	more	details).
A	second	way	to	reach	a	certain	line	in	your	code	is	to	use	'Run	to	Cursor'
option.	This	is	chosen	by	placing	the	cursor	on	the	desired	line	of	your	source
file	and	selecting	'Build/Start	Debug/Run	to	Cursor'	(or	by	pressing	Ctrl+F10).
This	will	begin	execution	and	stop	when	the	point	in	your	source	code	where	the
cursor	sits.
Once	execution	is	stopped,	you	can	begin	again	by	pressing	F5,	or	pressing	F11
to	step	to	the	next	line	of	source	or	into	the	next	function	or	method.	Note	that	if
you	attempt	to	step	into	MAX's	code	(not	your	own)	you'll	wind	up	with	a
window	showing	the	disassembly	of	the	source	(since	no	debugging	information
is	available	for	MAX's	internal	code.)	If	this	happens	you	can	simply	close	this
window	and	set	another	breakpoint	inside	your	own	code.
Note:	Before	you	begin	debugging	it	is	often	helpful	to	maximize	your	(main)
source	code	window.	This	prevents	other	tiled	windows	from	overlapping	it	so
you	won't	have	to	scroll	to	see	the	currently	executing	line.
Examining	Variables	and	the	Call	Stack
A	Variables	Windows	is	available	to	examine	variables	within	the	program's
current	context.	This	window	also	has	a	dropdown	list	for	the	call	stack	that
shows	the	hierarchy	of	functions	that	are	pending	completion.	This	is	handy	in
the	case	of	a	program	crash	since	it	can	often	be	used	to	show	the	sequence	of
calls	made	up	to	the	point	of	the	crash.
Also	available	is	a	Watch	Window.	This	will	display	the	contents	of	any	variable
and	updates	automatically	as	the	variable	changes.
For	additional	details	on	these	and	other	debugging	tools	see	the	VC++	IDE
online	help.
Summary
Developers	may	use	the	VC++	debugger	to	help	develop	3ds	max	plug-ins.	This
section	has	presented	an	overview	of	getting	started.	Of	particular	importance	is
the	use	of	the	plug-in	project's	Hybrid	configuration	so	source	code	information
is	available.	See	the	section	Creating	a	New	Plug-In	Project	for	details	on	setting
up	such	a	configuration.

The	DebugPrint()	Function
The	function	DebugPrint()	may	be	used	to	send	information	to	the	Debug
window	in	the	Developer	Studio	IDE.	This	is	handy	for	outputting	debug
information,	as	it	only	appears	while	debugging.	This	window	is	scrollable	so	a
developer	can	print	a	lot	of	information	to	it,	then	go	back	to	look	it	over.	The
format	string	works	like	the	standard	C	printf()	function.
void	DebugPrint(const	TCHAR	*format,	...);

Additional	Debugging	Tools	Available	to	Sparks	Developers
A	Debug	SDK	is	available	to	registered	developers.	This	special	version	of	the
SDK	provides	additional	internal	source	code	to	3ds	max	and	is	useful	to	help
developers	debug	their	applications	deep	inside	MAX.	Also,	registered
developers	are	provided	with	a	special	build	of	3ds	max	compiled	in	Debug
mode.	Using	this	debug	build,	registered	developers	can	step	into	parts	of	the
core	of	3ds	max	as	they	are	debugging.
This	special	version	of	3ds	max	has	a	purple	animate	button	to	distinguish	it
from	the	regular	Release	build	of	MAX.	There	is	also	a	Debug	menu	available
on	the	toolbar.	This	menu	provides	options	to	review	the	3ds	max	command
stack	to	see	what	is	the	current	command	mode	and	what	modes	have	been
previously	pushed.
Also	provided	is	a	menu	item	'Pipeline...'	Each	line	in	the	dialog	displayed	by
this	command	represents	the	state	of	the	pipeline	cache	after	a	particular
modifier	or	derived	object.
TM	refers	to	the	Transform	Matrix	channel:	the	number	in	parenthesis	is	a
zero(0)	or	one(1)	indicating	the	channel	is	invalid	(0)	or	valid	(1).
MT	refers	to	the	Material	channel,	followed	by	its	validity	in	parenthesis.
OB	refers	to	the	Object,	and	is	followed	by	a	list	in	parenthesis	of	all	the	object
channels.	If	the	channel	is	listed,	it	is	valid,	otherwise	only	"--"	will	appear	for
that	channel.
TO	is	the	topology	channel.
GE	is	the	geometry	channel.
TX	is	the	texture	coordinate	channel.
MT	is	the	sub-object	material	channel.
SE	is	the	sub-object	selection	channel.
SU	is	the	sub-object	selection	state.
DI	is	the	display	attributes	channel.

An	asterisk	(*)	following	any	of	these	channels	indicates	that	the	channel	is
"locked",	meaning	that	is	a	shallow	copy	of	a	channel	that	is	owned	by	a	cache
"upstream"	in	the	pipeline.
The	numbers	following	"t="	and	"g="	are	the	memory	addresses	of	the	topology
and	geometry	channel	data,	respectively,	which	are	useful	for	debugging

problems	related	to	the	shallow	copying.

Deferred	Loading	of	Plug-ins
See	Also:	Class	DataClassDesc,	Class	ClassEntry.

Overview
It	is	possible	to	indicate	to	3ds	max	that	certain	plug-ins	should	not	be	loaded	at
startup.	Each	deferred	plug-in	will	be	loaded	when	and	if	needed,	which	will
happen	when	one	or	more	of	the	3ds	max	classes	implemented	by	the	plug-in	is
actually	created.	It	might	also	happen	when	detailed	information	about	the	plug-
in	is	requested.	The	principal	benefit	of	deferral	is	that	the	Windows	resources
used	by	the	plug-in	will	not	be	consumed	unless	there	is	some	specific	use	or
interrogation	of	the	plug-in.	Time	taken	at	startup	to	load	the	plug-in,	assign	its
virtual	memory,	etc.	is	also	saved,	or	at	least	deferred.
Deferral	is	governed	by	entries	in	the	Windows	Registry.	These	entries	contain
critical	information	about	each	plug-in	to	be	deferred,	and	about	each	3ds	max
class	implemented	by	each	such	plug-in.	(See	details	below.)	This	information
must	agree	with	the	corresponding	values	returned	by	API	calls	to	the	plug-in
itself.	Disagreement	can	seriously	impair	the	integrity	of	3ds	max	itself.
Typically	the	Registry	entries	are	created	by	an	installer	program	or	by	3ds	max
itself	if	the	plug-in	supports	AutoDefer,	but	in	special	cases	they	could	be
created	by	run-time	code	in	a	plug-in,	or	by	manual	use	of	a	Registry	editor.

AutoDefer
If	a	plug-in	supports	deferred	loading	it	can	let	3ds	max	automatically	register	it.
This	is	done	by	implementing	a	new	function	exported	from	the	DLL	itself.	This
function	is	called	CanAutoDefer()	and	is	an	addition	to	the	four	other	required
DLL	exported	functions:	LibNumberClasses(),	LibVersion(),
LibDescription()	and	LibClassDesc().	Example:
//	Let	the	plug-in	register	itself	for	deferred	loading
__declspec(dllexport)	ULONG	CanAutoDefer()
{
return	1;
}

You	will	also	need	to	add	this	line	to	the	*.DEF	file.	Example:
CanAutoDefer	@5

Before	adding	this	function	to	a	plug-in	you	have	to	make	sure	that	the	plug-in
actually	supports	deferral.
When	3ds	max	starts	up	it	loads	all	the	plug-in	that	are	not	listed	as	deferred	in
the	registry.	If	a	plug-in	is	not	found	in	the	registry,	3ds	max	will	ask	the	plug-in
if	it	can	be	deferred	by	checking	the	implementation	of	CanAutoDefer().	If
the	function	is	defined,	and	it	returns	a	non-zero	value,	then	3ds	max	continues
to	load	the	plug-in	and	queries	it	for	all	the	values	needed	to	store	in	the	registry.
3ds	max	will	then	write	the	needed	registry	information	so	that	next	time	it	starts
up,	the	plug-in	will	be	deferred,	i.e.	it	will	not	be	loaded	until	it	is	needed.
When	a	plug-in	is	registered	by	AutoDefer	a	timestamp	is	added	to	the	registry.
During	start-up,	if	the	timestamp	of	the	DLL	doesn’t	match	the	one	in	the
registry,	then	the	registry	information	about	that	plug-in	is	deleted,	the	plug-in	is
loaded,	and	the	plug-in	is	registered	again.
The	format	of	the	timestamp	is	taken	from	the	lpLastWriteTime	member	of
the	Win32	function	GetFileTime().	The	timestamp	is	devided	into	two	entries,
TimeStampHigh	and	TimeStampLow,	referencing	the	dwLowDateTime
and	dwHighDateTime	members	of	the	FILETIME	structure.

Registry	Key	Structure
The	following	chain	of	Registry	keys	establishes	the	base	for	all	plug-in
descriptions:
\\HKEY_LOCAL_MACHINE\SOFTWARE\Autodesk\3ds
max\4.0\Plug-ins
and
\\HKEY_LOCAL_MACHINE\SOFTWARE\Autodesk\3ds
max\4.0\Plug-ins\Discreet
Under	the	‘Plugins’	key,	there	can	be	one	key	for	each	supplier	of	plug-ins;	for
the	internal	3ds	max	plug-ins,	this	key	is	‘Discreet’.	Under	the	key	for	a	supplier
there	will	be	one	key	per	deferrable	plug-in,	with	a	name	that	is	distinct	from	all
other	plug-in	key	names	from	that	supplier.
This	‘plug-in	key’	has	certain	mandatory	values,	and	under	it	there	will	be	one
key	per	3ds	max	class	implemented	by	the	plug-in.	The	name	of	each	class	key
must	be	distinct,	at	least	within	the	given	plug-in.	Each	such	‘class	key’	has	a	set
of	values,	describing	certain	important	properties	of	the	class.

Plug-in	Key	Values(all	must	be	supplied)
Value	Type	Example
DLLFile	REG_SZ	vrmlimp.dli
LibDescription	REG_SZ	VRML	Scene	Importer
LibVersion	REG_DWORD	0xbb80600
TimeStampHigh	REG_DWORD	0x1be7679	(optional,	only	supplied	for
AutoDefer	plug-ins)
TimeStampLow	REG_DWORD	0x2d8172f2	(optional,	only	supplied	for
AutoDefer	plug-ins)

Notes:	The	DLLFile	value	gives	the	name	of	the	DLL	file	that	this	key	describes;
case	is	disregarded.	The	name	must	be	unique,	and	must	not	match	two	different
files,	even	if	they	are	in	different	directories.

Class	Key	Values
Value	Type	Example	Required	for:
ClassIDA	REG_DWORD	0x35da0f0a	All
ClassIDB	REG_DWORD	0x10ce4af8	All
ClassName	REG_SZ	VrmlImp	All

Category	REG_SZ	SceneImport	All
SuperClassID	REG_DWORD	0xa10	All
IsPublic	REG_DWORD	1	All
OKToCreate	REG_DWORD	1	All
ShortDesc	REG_SZ	VRML	Importers,	exporters,	bitmap	loaders
SupportsOptions	REG_DWORD	0	Exporters
LongDesc	REG_SZ	BMP	Image	File	Bitmap	loaders
Capability	REG_DWORD	0	Bitmap	loaders
ExtCount	REG_DWORD	2	Importers,	exporters,	bitmap	loaders
Ext	REG_SZ	WRL;WRZ	Importers,	exporters,	bitmap	loaders
InputTypeA	REG_DWORD	0x10	Modifiers
InputTypeB	REG_DWORD	0x00	Modifiers
InternalName	REG_SZ	BitmapTex	All	plug-ins	using
			ParamBlock2/ClassDesc2

Notes:	The	IsPublic	and	OKToCreate	values	should	be	0	(no)	or	1	(yes).	The	Ext
value	consists	of	upper-case	file	extensions	(without	the	leading	dot);	if	there	are
more	than	one,	they	are	separated	by	semicolons,	with	no	spaces	before	or	after.
The	number	of	extensions	given	in	the	Ext	value	must	agree	with	the	ExtCount
value.	The	InternalName	value	should	not	be	defined	if	it	returns	NULL.

Deferrable	Plug-ins
To	be	eligible	for	deferred	loading,	a	plug-in	must	meet	all	of	the	following
criteria.

·	All	3ds	max	classes	that	it	implements	must	be	subclasses	of	superclasses
in	the	list	below.

·	All	required	values	must	be	supplied,	and	must	be	constant.	Values	must
not	depend	on	run-time	circumstances.

·	If	values	depend	on	build	configurations	(e.g.	Debug	vs.	Release),	results
may	be	undefined.

·	The	plug-in	must	not	implement	any	keyboard	accelerators.
Supported	Superclasses	are:	Scene	Import,	Scene	Export,	Utility,	Bitmap	Loader,
Helper,	Geometric	Object,	Material/Texture,	Image	Filter,	OSM	(Modifiers),
WSM/WSMObjects	(Space	Warps)
A	plug-in	that	does	not	meet	these	requirements	must	not	be	described	for
deferral	in	the	Registry.

DLL,	LIbrary	Functions,	and	Class	Descriptors
See	Also:	Class	ClassDesc,	Generate	a	Class_ID,	List	of	ClassIDs,	List	of
SuperClassIDs.

javascript:UniqueId0.Click()

Overview
The	following	DLL	and	Library	functions	must	always	be	implemented	by	3ds
max	plug-in	developers.	They	are	called	by	3ds	max	or	Windows	at	load	time
and	provide	information	about	the	DLL	being	loaded	and	the	plug-in	classes
provided	by	DLL.	These	functions	are:
DllMain(HINSTANCE	hinstDLL,ULONG	fdwReason,LPVOID
lpvReserved)
LibNumberClasses()
LibClassDesc(i)
LibDescription()
LibVersion()
This	section	presents	information	about	each	of	these	functions	as	well	as	the
details	of	Class	Descriptors.	Class	Descriptors	provide	information	about	plug-in
classes	and	are	used	by	developers	in	implementing	the	LibClassDesc()
function.

The	DllMain()	Function
3ds	max	plug-ins	are	implemented	as	DLLs.	DLL	stands	for	Dynamic	Link
Library.	DLLs	are	object	code	libraries	that	let	multiple	programs	share	code,
data,	and	resources.	When	developers	compile	and	link	their	plug-in	code,	the
output	is	a	DLL.	The	DllMain()	function	is	implemented	by	the	developer	and
called	by	Windows	at	startup	when	the	plug-in	DLL	is	loaded.

DLLMain()
This	function	is	called	by	Windows	when	the	DLL	is	loaded	(as	well	as	other
times,	for	instance	during	rendering).	Most	plug-ins	simply	make	two	calls
inside	this	function.	These	are	to	initalize	the	3ds	max	custom	user	interface
controls,	and	to	initialize	the	Win95	common	controls.	The	sample	code	below,
which	is	typical	for	most	plug-in	types,	shows	how	this	is	done.	Developers	can
see	the	VC++	help	for	more	details	on	the	DllMain()	function.
Note	that	the	calls	to	initialize	the	controls	are	made	only	once.	This	is	done	by
setting	a	global	variable	to	TRUE	when	the	controls	have	been	initialized	the
first	time,	and	checked	each	time	the	function	is	called.
As	note	above,	this	function	may	also	be	called	many	times	during	time	critical
operations	like	rendering.	Therefore	developers	need	to	be	careful	what	they	do
inside	this	function.	In	the	code	below,	note	how	after	the	DLL	is	loaded	the	first
time	only	a	few	statements	are	executed.	This	function	should	return	TRUE.
int	controlsInit	=	FALSE;
BOOL	WINAPI	DllMain(HINSTANCE	hinstDLL,ULONG
fdwReason,LPVOID	lpvReserved)
	{	
	//	Hang	on	to	this	DLL's	instance	handle.
	hInstance	=	hinstDLL;
	if	(!	controlsInit)	{
		controlsInit	=	TRUE;
		
		//	Initialize	MAX's	custom	controls
		InitCustomControls(hInstance);
		
		//	Initialize	Win95	controls
		InitCommonControls();
	}

	return(TRUE);
	}

The	Library	Functions
These	functions	provide	access	to,	and	information	about,	the	classes	present
inside	the	plug-in's	DLL.

LibNumberClasses()
When	3ds	max	is	first	started,	it	looks	for	DLLs	to	load.	When	it	finds	one,	it
needs	a	way	to	determine	the	number	of	plug-in	classes	inside	the	DLL.	The
programmer	provides	this	information	to	3ds	max	by	defining	the
LibNumberClasses()	function.	For	example:
__declspec(dllexport)	int	LibNumberClasses()	{	return	1;	}
The	developer	should	return	the	number	of	plug-in	classes	inside	the	DLL.

LibClassDesc(i)
The	plug-in	must	provide	the	system	with	a	way	to	retrieve	the	Class	Descriptors
defined	by	the	plug-in.	Class	descriptors	provide	the	system	with	information
about	the	plug-in	classes	in	the	DLL.	The	function	LibClassDesc(i)	allows	the
system	to	access	the	class	descriptors.	A	DLL	may	have	several	class	descriptors,
one	for	each	plug-in	class.	The	function	should	return	a	pointer	to	the	'i-th'	class
descriptor.	For	example:
__declspec(dllexport)	ClassDesc	*LibClassDesc(int	i)	{
	switch(i)	{
		case	0:	return	&MeltCD;
		case	1:	return	&CrumpleCD;
		default:	return	0;
		}
	}
This	example	returns	a	pointer	to	the	Melt	plug-in	class	descriptor,	or	the
Crumple	plug-in	class	descriptor.	See	the	section	at	the	end	of	this	topic	for	a
discussion	of	the	class	descriptor	returned	by	LibClassDesc(i).

LibDescription()
When	a	3ds	max	file	is	loaded	that	contains	an	entity	(procedural	object,
modifier,	controller,	etc.)	that	the	system	does	not	have	access	to	(i.e.	the	DLL	is
not	available),	a	message	is	presented	to	the	user.	The	system	requires	that	each
DLL	return	a	text	string	to	present	to	the	user	if	it	is	unavailable.

As	an	example,	say	a	user	has	a	Melt	modifier.	He	applies	the	melt	to	an	object
in	the	scene,	and	saves	the	file.	He	then	give	this	file	to	a	friend	who	does	not
have	the	Melt	DLL.	When	the	friend	loads	the	file,	the	system	will	put	up	a
message	indicating	an	entity	exists	in	the	file	that	relies	upon	a	DLL	that	cannot
be	found.	This	message	could	be	something	like:	"Melt	Modifier.	To	obtain	a
copy,	call	1-800-PLUG-INS".	To	provide	this	string	to	the	system,	the	DLL	must
implement	the	function	LibDescription().	This	function	returns	a	string	to	be
presented	if	the	DLL	is	not	found.	This	string	is	also	presented	in	the	dialog
presented	to	the	3ds	max	user	via	the	File	/	Summary	Info	/	Plug-In	Info...
command.	Once	a	plug-in	from	the	DLL	has	been	used	in	the	scene,	the	system
stores	the	string	in	the	3ds	max	file	(since	it	must	be	presented	when	the	DLL	is
unavailable).
Note	that	the	scene	is	still	loaded	even	if	the	DLL	is	not	present.	3ds	max
preserves	any	entities	for	which	the	DLL	is	not	found.	In	this	way,	if	the	file	is
modified	and	saved,	then	the	user	obtains	the	DLL	and	loads	the	modified	file,
the	entity	is	still	present	and	linked	in	to	the	scene.	Entities	which	are	loaded
without	access	to	their	DLL	are	referred	to	as	orphaned	entities.
The	orphaned	entity	will	be	loaded	by	a	generic	'stand-in'	for	its	SuperClass.	The
stand	in	will	display	a	minimal	scene	representation.	For	instance,	if	the	entity	is
a	modifier,	it	will	display	its	name	in	the	modifier	list,	but	no	parameters	will	be
presented.	Missing	object-types	have	dummy-type	representations	in	the	scene.
They	can	be	moved,	rotated,	scaled,	linked,	grouped,	deleted:	anything	that	just
involves	the	node.	Missing	controllers	only	provide	constant	default	values,
which	are	not	adjustable.
Also	see	the	Advanced	Topics	section	on	Read	Only	Plug-Ins.	By	allowing	your
plug-in	to	function	in	read-only	mode,	users	can	freely	distribute	the	DLL,	but
unless	they	are	authorized	to	run	based	on	the	ID	of	a	specific	hardware	lock
they	will	have	restricted	use	until	the	user	purchases	their	own	copy.	Below	is	a
sample	implementation	of	this	function.
__declspec(dllexport)	const	TCHAR	*LibDescription()	{
	return	_T("Melt	Modifier.	Call	1-800-PLUG-INS	to	obtain	a
copy");
	}

LibVersion()
Developers	must	implement	a	function	that	allows	the	system	to	deal	with

obsolete	versions	of	3ds	max	plug-in	DLLs.	Because	the	3ds	max	architecture
supports	such	a	close	relationship	to	its	plug-ins,	the	system	may	at	some	point
need	to	prevent	older	plug-in	DLLs	from	being	loaded.	To	allow	3ds	max	to
accomplish	this,	the	DLL	must	implement	a	function	called	LibVersion().	This
function	simply	returns	a	pre-defined	constant	indicating	the	version	of	the
system	under	which	it	was	compiled.	Future	versions	of	3ds	max	may	update
this	constant,	yet	the	older	DLLs	will	always	return	the	previous	value.	With	this
function	the	system	can	check	if	an	obsolete	DLL	is	being	loaded,	and	if	so	put
up	a	message.
__declspec(dllexport)	ULONG	LibVersion()	{	return
VERSION_3DSMAX;	}
Note:	The	meaning	of	VERSION_3DSMAX	has	been	enhanced	in	R2	to
include	information	about	the	current	3ds	max	release	as	well	as	the	3ds	max
API	release	number	and	the	3ds	max	SDK	release	number.
The	upper	word	now	contains	the	3ds	max	release	number	multiplied	by	1000,
and	the	lower	word	is	API	number	and	SDK	revision	within	the	API	version.	3ds
max	will	only	load	DLL's	with	the	API	number	that	is	current.
The	version	number	is	composed	as	follows:
#define	VERSION_3DSMAX	((MAX_RELEASE<<16)+
(MAX_API_NUM<<8)+MAX_SDK_REV)

Each	part	is	describes	below:
MAX_RELEASE
This	is	the	3ds	max	release	number	multiplied	by	1000.
MAX_API_NUM
This	is	the	3ds	max	API	number.	When	a	change	in	the	API	requires	DLLs	to
be	recompiled,	this	number	is	incremented	and	MAX_SDK_REV	is	set	to
0.	This	will	make	all	DLLs	with	the	former	MAX_API_NUM	unloadable.
MAX_SDK_REV
This	denotes	the	revision	of	the	SDK	for	a	given	API.	This	is	incremented
when	the	SDK	functionality	changes	in	some	significant	way	(for	instance	a
new	GetProperty()	query	response	is	added),	but	the	headers	have	not
been	changed.

Note:	A	developer	may	access	this	value	using	the	global	function:

Function:

DWORD	Get3DSMAXVersion();
Remarks:
Returns	the	state	of	the	VERSION_3DSMAX	#define	from
\MAXSDK\INCLUDE\PLUGAPI.H	when	the	running	version	of	3ds
max	was	compiled.

The	following	macros	may	be	used	for	extracting	parts	of
VERSION_3DSMAX:
#define	GET_MAX_RELEASE(x)	((x>>16)&0xffff)
#define	GET_MAX_API_NUM(x)	((x>>8)&0xff)
#define	GET_MAX_SDK_REV(x)	(x&0xff)
#define	GET_MAX_SDK_NUMREV(x)	(x&0xffff)

There	is	also	a	function	you	can	call	to	find	out	which	application	your	plug-in	is
running	on	--	either	3ds	max	or	VIZ.

Function:
APPLICATION_ID	GetAppID();

Remarks:
This	function	is	available	in	release	2.5	and	later	only.
This	function	returns	the	ApplicationID,	either	VIZ	or	MAX.	If	a	plug-in	is
designed	to	work	only	in	one	product,	then	it	could	call	this	function	inside
ClassDesc::IsPublic()	to	switch	between	exposing	the	plug-in	or	not.
For	example:
IsPublic()	{	return(GetAppID()==kAPP_VIZ?1:0);	}	//	VIZ	only

Return	Value:
One	of	the	following	enum	values:
kAPP_NONE
kAPP_MAX
kAPP_VIZ

Library	Function	Summary
The	plug-in	must	implement	these	five	functions:	DllMain(),
LibNumberClasses(),	LibClassDesc(i),	LibDescription(),
LibVersion().	These	functions	allow	the	system	to	determine	information
about	the	plug-ins	contained	in	the	DLL.
The	section	below	provides	information	about	the	Class	Descriptors	which	must
be	returned	by	LibClassDesc(i).

Class	Descriptors
Class	descriptors	provide	the	system	with	information	about	the	plug-in	classes
in	the	DLL.	A	method	of	the	class	descriptor	is	also	responsible	for	allocating
new	instances	of	the	plug-in	class.	The	developer	creates	a	class	descriptor	by
deriving	a	class	from	ClassDesc	and	implementing	several	of	its	methods.
Below	is	a	sample	class	descriptor	and	the	declaration	of	a	single	static	instance.
class	MeltClassDesc	:	public	ClassDesc	{
	public:
	int					IsPublic()	{	return	TRUE;	}
	void	*				Create(BOOL	loading=FALSE)	{	return	new	MeltMod();	}
	const	TCHAR	*		ClassName()	{	return	_T("Melt");	}
	SClass_ID			SuperClassID()	{	return	OSM_CLASS_ID;	}
	Class_ID			ClassID()	{	return	Class_ID(0xA1C8E1D1,
0xE7AA2BE5);	}
	const	TCHAR*		Category()	{	return	_T("");	}
	};
static	MeltClassDesc	MeltCD;
The	following	six	methods	of	the	class	descriptor	are	described	below:
IsPublic(),	Create(),	ClassName(),	SuperClassID(),	ClassID()	and
Category().	Developers	wishing	to	review	the	entire	set	of	methods	should	see
Class	ClassDesc.

IsPublic()
This	method	returns	a	Boolean	value.	If	the	plug-in	can	be	picked	and	assigned
by	the	user,	as	is	usually	the	case,	return	TRUE.	Certain	plug-ins	may	be	used
privately	by	other	plug-ins	implemented	in	the	same	DLL	and	should	not	appear
in	lists	for	the	user	to	choose	from.	These	plug-ins	would	return	FALSE.
Create(BOOL	loading=FALSE)
3ds	max	calls	this	method	when	it	needs	a	pointer	to	a	new	instance	of	the	plug-
in	class.	For	example,	if	3ds	max	is	loading	a	file	from	disk	containing	a
previously	used	plug-in	(procedural	object,	modifier,	controller,	etc.),	it	will	call
the	plug-in's	Create()	method.	The	plug-in	responds	by	allocating	a	new
instance	of	its	plug-in	class.	As	the	sample	implementation	above	shows,	simply
use	the	new	operator.

The	optional	parameter	passed	to	Create()	is	a	flag	indicating	if	the	class	being
created	is	going	to	be	loaded	from	a	disk	file.	If	the	flag	is	TRUE,	the	plug-in
may	not	have	to	perform	any	initialization	of	the	object	because	the	loading
process	will	take	care	of	it.	See	the	Advanced	Topics	section	on	Loading	and
Saving	for	more	information.
When	the	system	needs	to	delete	an	instance	of	a	plug-in	class,	it	usually	calls	a
method	named	DeleteThis().	Plug-in	developers	must	implement	this	method
as	well.	Since	a	developer	uses	the	new	operator	to	allocate	memory,	he	or	she
should	use	the	delete	operator	to	de-allocate	it.	For	instance,	the	developer
would	implement	DeleteThis()	as	follows:
void	DeleteThis()	{	delete	this;	}

See	the	Advanced	Topics	section	on	Memory	Allocation	for	additional	details.

ClassName()
This	method	returns	the	name	of	the	class.	This	name	appears	in	the	button	for
the	plug-in	in	the	3ds	max	user	interface.

SuperClassID()
This	method	returns	a	system-defined	constant	describing	the	class	that	this
plug-in	class	was	derived	from.	For	example,	the	Bend	modifier	returns
OSM_CLASS_ID.	This	super	class	ID	is	used	by	all	object	space	modifiers.
Some	other	example	super	class	IDs	are:	CAMERA_CLASS_ID,
LIGHT_CLASS_ID,	SHAPE_CLASS_ID,	HELPER_CLASS_ID,	and
SYSTEM_CLASS_ID.	See	List	of	Super	Class	IDs	for	the	entire	list	of
available	super	class	IDs.

ClassID()
This	method	must	return	the	unique	ID	for	the	plug-in	object.	A	program	is
provided	with	the	SDK	to	generate	these	ClassIDs.	It	is	VERY	important	you	use
this	program	to	create	the	ClassIDs	for	your	plug-ins.	If	you	use	one	of	the
source	code	examples	to	create	your	plug-in,	you	MUST	change	the	existing
Class_ID.	If	you	don't,	you'll	get	a	conflict.	If	two	ClassIDs	conflict,	the	system
will	only	load	the	first	one	it	finds	(and	will	post	a	message	when	it	attempts	to
load	the	second	one	noting	that	there	is	a	Class_ID	conflict).
A	Class_ID	consists	of	two	unsigned	32-bit	quantities.	The	constructor	assigns	a
value	to	each	of	these,	for	example	Class_ID(0xA1C864D1,

0xE7AA2BE5).	See	Class	Class_ID	for	reference	information.
Note	that	the	sample	code	plug-ins	used	in	3ds	max	use	0	as	the	second	32-bit
quantity	of	the	Class_ID.	Only	the	built-in	classes	(those	that	ship	with	MAX)
should	have	the	second	32	bits	equal	to	0.	All	plug-in	developers	should	use
both	32	bit	quantities.	Again,	make	sure	you	use	the	program	provided	to	create
your	ClassIDs.	This	will	ensure	no	conflicts	arise	between	plug-ins.	To	generate
a	random	Class_ID	and	optionally	copy	it	to	the	clipboard,	click	Generate	a
Class_ID.

Category()
The	category	is	selected	in	the	bottom-most	drop	down	list	in	the	create	branch
of	the	command	panel.	If	this	is	set	to	be	an	existing	category	(i.e.	"Standard
Primitives",	"Particle	Systems",	etc.)	then	the	plug-in	will	appear	in	that
category.	Developers	should	NOT	add	to	the	categories	provided	by	3ds	max
(see	the	note	below).	If	the	category	doesn't	yet	exist	then	it	is	created.	If	the
plug-in	does	not	need	to	appear	in	the	list,	it	may	simply	return	a	null	string	as	in
_T("").	Category()	is	also	used	for	modifiers	to	classify	them	in	the	button
sets	dialog.
Important	Note:	The	3ds	max	architecture	has	a	limit	of	12	plug-ins	per
category	in	the	Create	branch.	To	prevent	a	problem	with	too	many	plug-ins
per	category,	developers	should	ALWAYS	create	a	new	Category	for	their
plug-ins,	rather	than	using	one	of	the	existing	ones	used	by	the	standard	3ds
max	plug-ins.	Note	that	versions	of	3ds	max	prior	to	release	1.2	would	crash
if	there	were	more	than	12	buttons	per	category.

	

javascript:UniqueId1.Click()

Extending	Render	To	Texture	to	Support	New
Materials

Overview
The	render	to	Texture	feature	of	3ds	max	r5	provides	the	ability	to	render	out
various	elements	from	a	standard	render	for	example	light	maps	and	specular
maps.	It	works	in	conjunction	with	the	new	Unwrap	modifier,	which	can	now
flatten	texture	coordinates.	Please	see	the	user	guide	for	a	more	detailed
description.
	
This	new	feature	now	creates	certain	maps	that	do	not	fit	into	any	particular
material	map	slot	for	example,	a	light	map.	However	3rd	party	materials	may
exist	that	support	extended	features.	BakeTextureMappings.ini	file	allows
developers	to	add	support	for	new	materials.	This	provides	the	mapping	between
the	different	baked	elements	and	the	map	sots	in	the	material.
	
An	example	INI	file	can	be	seen	below.
	
[DeclareFileMappings]
DeclareFileMapping1=SaveAll
DeclareFileMapping2=CompleteOnly
DeclareFileMapping3=
DeclareFileMapping4=
DeclareFileMapping5=
DeclareFileMapping6=
DeclareFileMapping7=
DeclareFileMapping8=
DeclareFileMapping9=
DeclareFileMapping10=
	
[CompleteOnly]

shaderName	=		blinn
ambientMap=
diffuseMap	=			CompleteMap
specularMap=
diffuseLevelMap=
specularLevelMap=
glossinessMap=
selfIllumMap=
opacityMap=
filterMap=
bumpMap=
reflectionMap=
refractionMap=
displacementMap=
diffuseRoughnessMap=
anisotropyMap=
orientationMap=
glossinessMap2=
anisotropyMap2=
orientationMap2=
	
[SaveAll]
shaderName=		oren-nayar-blinn
ambientMap=		CompleteMap
diffuseMap=		DiffuseMap
diffuseLevelMap=	ShadowsMap
specularLevelMap=SpecularMap
bumpMap=		NormalsMap
opacityMap=		AlphaMap
selfIllumMap=	LightingMap

displacementMap=	BlendMap
	
The	first	section	of	the	file	is	used	to	populate	the	drop	down	list	in	the	RTT
dialog	box.	For	each	entry	there	must	be	a	subsequent	entry	defining	the
mapping.	In	the	save	all	section	all	the	supported	baked	elements	are	mapped	to
a	standard	material.	This	provides	a	method	of	viewing	all	the	maps	created,	not
necessarily	to	produce	the	correct	rendering
	
The	names,	on	the	left	hand	side	are	the	supported	Maxscript	parseable	names
for	the	parameters	that	have	been	defined	in	the	ParamBlockDesc2	of	the
material.	The	name	on	the	right	is	the	actual	baked	element	name	used	in	the
RTT.	This	mapping	and	naming	needs	to	be	accurate	as	it	can	cause	a	run	time
error	in	the	RTT	macro	script
	
The	Render	To	Texture	script	has	been	written	to	use	the	new	ViewportManager
to	handle	new	Viewport	Shaders,	Internally	it	supports	the	MetalBump	and
LightMap	shaders.	The	script	can	be	found	at	UI\Macroscripts\
Macro_BakeTextures.mcr.	In	the	function	called	UpdateMaterial,	there	is	a
section	that	provides	additional	ViewportShader	support.	The	script	lists	all
available	shaders,	so	all	that	is	needed	is	for	the	developer	to	supply	the
correct	setup	for	the	shader.	Examples	can	be	found	in	the	function
setupLightMapShader.
	
Script	lists	all	available	shaders,	so	all	that	is	needed	is	for	the	developer
to	supply	the	correct	setup	for	the	shader.	Examples	can	be	found	in	the
function	setupLightMapShader

Foreground	/	Background	Planes.
See	Also:	Class	ChangeForegroundCallback,	Class	IScene,	Class	ViewExp,
Class	GraphicsWindow,	Class	CommandMode.

Overview
In	order	to	allow	3ds	max	to	redraw	the	viewports	as	quickly	as	possible,	an
option	is	provided	in	the	3ds	max	user	interface	to	allow	the	user	to	use	Dual
Planes.	If	dual	plane	mode	is	enabled,	there	is	an	extra	buffer	in	memory	that
holds	what	is	referred	to	as	The	Background.	The	background	contains	an	entire
image	buffer	and	Z	buffer	(if	Z	buffering	is	turned	on).	Consider	the	following
example	to	understand	how	the	background	buffer	is	used	to	speed	up	screen
redraws:
Say	there	is	a	scene	with	two	items:	a	small	sphere	that	the	user	is	interactively
moving	around,	and	a	500,000	polygon	model	that	is	not	changing	at	all	--
simply	a	static	model.	The	large	model	could	be	rendered	once	into	the
background	plane.	The	sphere	that	is	changing	is	flagged	as	being	in	the
foreground.	The	next	time	3ds	max	needs	to	redraw	the	screen,	instead	of	re-
rendering	both	models,	it	can	copy	the	background	image	(which	has	the	large
model	already	rendered)	into	the	actual	image	buffer	and	only	render	those
nodes	that	are	flagged	as	being	in	the	foreground	(the	moving	sphere)	on	top	of
this	background	image.	This	provides	the	same	visual	result	as	rendering	both
models	but	is	much	quicker.
The	key	to	making	this	system	work	is	to	figure	out	what	items	need	to	be	in	the
foreground	and	what	items	may	be	put	in	the	background.	The	system	does	this
in	almost	all	cases	(the	plug-in	developer	does	not	normally	need	to	worry	about
this).	If	the	user	is	moving	a	selected	item	in	the	scene,	then	the	selected	items
(and	all	their	dependents)	go	in	the	foreground.	All	other	items	may	go	in	the
background.	For	example,	if	the	user	selects	a	parent	node	to	move,	the	children
nodes	must	have	to	go	in	the	foreground	as	well	since	they	will	move	along	with
the	parent.	However	everything	else	may	go	to	the	background.	When	the	user
plays	back	an	animation	any	items	that	are	animated	go	into	the	foreground	and
non-animated	items	may	go	in	the	background.	When	the	user	is	in	the	Modify
branch,	any	items	that	are	dependent	on	the	item	being	edited	are	put	in	the
foreground,	the	others	go	into	the	background.	Also,	when	a	camera	is	being
moved,	all	objects	in	the	camera's	viewport	are	tagged	as	being	in	the
foreground,	since	they	all	must	be	redrawn.

Methods
For	specialized	plug-ins,	APIs	are	provided	to	allow	the	plug-in	to	control	which
nodes	are	put	in	the	foreground	when	these	plug-ins	have	created	their	own
command	mode.	There	is	a	method	of	the	CommandMode	class	named
ChangeFGProc()	that	can	be	used	to	specify	a	custom	callback	to	process
nodes	that	should	be	placed	in	the	foreground.	For	example,	if	a	utility	plug-in
needs	to	specify	an	additional	set	of	nodes	to	go	into	the	foreground	plane	along
with	the	one	it	is	currently	working	on,	it	could	derive	a	class	from
ChangeForegroundCallback	and	implement	the	callback()	method.	In	this
method	it	could	flag	any	nodes	required	(using	a	method	of	INode	named
FlagForeground()).	In	almost	all	cases,	however,	plug-ins	that	use	a	custom
command	mode	can	simply	specify	one	of	the	two	predefined	values	in	their
implementation	of	ChangeFGProc().	These	are
CHANGE_FG_SELECTED	and	CHANGE_FG_ANIMATED.	See
Class	CommandMode	for	more	details.
As	a	final	note,	if	the	user	has	turned	off	the	Use	Dual	Plane	toggle,	there	is	still
a	notion	of	foreground/background	objects	--	only	with	dual	planes	off,	some
background	objects	end	up	being	rendered.	3ds	max	uses	a	simple	bounding	box
check:	If	a	background	object's	bounding	box	intersects	the	foreground	object's
bounding	box	(at	either	the	old	or	new	position),	then	that	background	object	is
re-rendered.	Otherwise,	it	isn't	redrawn.
To	see	this	dramatically,	consider	the	example	presented	above:	a	small	sphere
and	a	large	500K	polygon	object.	If	the	object	is	off	to	the	right	of	the	viewport,
and	the	sphere	is	to	the	left	(all	by	itself)	then	the	sphere	can	be	moved	very
quickly.	But	once	it	gets	near	enough	to	the	large	object	that	the	bounding	boxes
intersect,	interactivity	drops	dramatically	because	the	large	object	must	now	be
redrawn.

Function	Publishing	System
Class	FPInterface,	Class	FPMixinInteface,	Class	FPInterfaceDesc,	Class
Interface_ID,	Class	FPFunctionDef,	Class	FPPropDef,	Class	FPActionDef,
Class	FPParamDef,	Class	FPParams,	Class	FPEnum,	Class
FPInterfaceCallback,	Class	FPValue,	Class	FPParamOptions,	Class	FPValidator,
Class	ClassDesc2,	Class	ActionTable.

Abstract
	
What	is	Function	Publishing?
The	Function	Publishing	System,	new	to	3ds	max	R4,	is	a	new	system	that
allows	plugins	to	publish	their	major	functions	and	operations	in	such	a	way	that
code	outside	the	plugin	can	discover	and	make	enquiries	about	these	functions
and	is	thus	able	to	call	them	though	a	common	calling	mechanism.	The	whole
system	is	very	similar	to	Window’s	COM	and	OLE	Automation	systems	and
share	many	similar	concepts	in	the	architecture.	However,	the	Function
Publishing	System	is	not	based	on	COM	and	OLE	but	instead	is	a	custom
architecture	more	suited	and	optimized	for	MAX.	The	Function	Publishing	API
serves	a	number	of	purposes	which	allow	3rd	party	developers	to	open	up
important	portions	of	their	plugins	for	use	by	external	sources,	allowing	for	users
to	extend	and	control	these	directly.	Some	of	the	purposes	of	the	API	are:
	

·			Modularizing	plugin	code	into	various	"engines"	that	are	able	to	supply
services	to	other	parts	of	3ds	max	and	other	3rd	party	plugins	and	can	be
delivered	to	the	user	through	various	different	user-interfaces.
·			Providing	automatic	scriptability	by	exposing	the	published	functions
directly	to	MAXScript.
·			Providing	alternate	means	of	invoking	plugin	functions	in	the	UI,	such
as	via	the	new	manipulator	system,	scripted	menus,	quad	menus,	hot	keys,
macroScripts,	toolbar	buttons,	etc.
·			Allowing	the	MAXScript	Macro	Recorder	to	automatically	generate
calls	to	the	published	functions,	in	the	event	that	these	are	invoked	by	the
expanded	ParamMap2	system	or	other	UI	mechanisms	such	as	hot	keys	or

menu	items.
·			Facilitate	automatic	generation	of	COM	interfaces	and	OLE	Type
Libraries	in	such	a	way	that	external	COM	clients	can	invoke	the
published	functions	in	the	plugin	code.

	
What	would	a	plugin	publish?
The	various	kinds	of	functions	published	by	a	plugin	usually	fall	into	the
following	categories.	You	can,	however,	publish	anything	you	want.
	

·			Important	algorithms	in	the	plugin,	for	example,	the	Edit	Mesh	modifier
might	publish	its	face	extrude	and	mesh	attach	functions,	or	the	flex
modifier	its	soft-body	dynamics	algorithms.	In	these	cases,	the	functions
would	be	parameterized	in	the	most	general	way,	independent	of	any
current	scene	state	or	UI	mode	in	MAX,	for	example,	the	face	extrude
might	take	a	Mesh,	a	set	of	faces	and	a	distance.
·			Functions	that	enquire	about	or	affect	the	state	of	one	of	the	plugin's
objects	in	the	scene.	Usually,	these	are	unnecessary	if	the	plugin	stores	its
state	as	parameters	in	ParamBlock2s,	which	are	already	accessible
externally,	but	in	cases	were	this	is	not	done	or	certain	kinds	of	state	are	not
cleanly	accessible	via	the	ParamBlock2	system,	extra	functions	may	be
published	by	the	plugin.	These	usually	take	an	instance	of	one	of	the
plugin's	objects	as	one	of	their	parameters,	and	should	be	independent	of
any	UI	mode,	for	example,	they	should	not	require	that	the	object	being
manipulated	be	the	current	focus	in	the	Command	Panel.	Prior	to	R4,
plugins	that	wished	to	provide	scripter	access	to	internal	functions	would
use	the	MAXScript	SDK	to	provide	scripter	wrapper	functions.	In	R4,	the
recommended	and	much	simpler	technique,	is	to	use	the	Function
Publishing	system,	as	this	not	only	provides	automatic	scriptability,	but	is	a
general	mechanism	for	any	external	system	to	control	and	use	the	plugin.
·			UI	action	functions.	These	basically	provide	a	programmatic	way	of
"pressing"	buttons	and	keys	in	the	UI	for	a	plugin	and	are	specifically
meant	to	be	UI	modal.	They	take	no	parameters,	since	these	are	defined	by
the	current	state	in	the	UI.	For	example,	the	vertex	delete	action	function
for	an	Editable	Mesh	object	would	operate	on	the	current	vertex	selection

for	the	current	object	in	the	Modify	panel.	These	are	not	unlike	the
keyboard	ShortcutTables	that	plugins	could	publish	in	R3,	but	by
publishing	them	as	action	functions,	any	external	system	can	effectively
control	the	UI	of	a	plugin.	As	well	as	being	automatically	exposed	in	the
scripter	like	other	published	functions,	Action	functions	are	automatically
entered	into	the	new	ActionTable	system.	This	is	a	generalization	of	the	R3
ShortcutTable	system	and	basically	holds	all	the	commands	and	actions
that	may	be	bound	to	hotkeys	or	added	to	menus	or	put	in	buttons	on	a
toolbar	using	the	R4	CUI	system,	so	that	by	publishing	your	action
functions	using	the	FnPub	system,	you	are	making	them	automatically
available	for	binding	to	hotkeys	and	placing	in	menus	and	toolbar	buttons.
Action	functions	are	treated	specially	in	the	FnPub	system,	and	have	extra
descriptor	data	for	things	like	menu	item	text,	tooltip	text,	enable
predicates,	etc.

Introduction	to	Function	Publishing
	
The	Function	Publishing	API
The	Function	Publishing	API	consists	of	two	main	components,	a	function
descriptor	system	and	a	function	calling	mechanism.	The	descriptor	system	is
used	by	the	publishing	component	to	declare	the	functions	it	is	publishing	and
provide	necessary	descriptive	data	and	may	be	used	by	a	component’s	client	to
enquire	about	published	functions.	The	calling	system	is	used	by	a	component’s
client	to	invoke	one	of	the	published	functions.
	
Interfaces
Functions	are	published	in	one	or	more	Interfaces	by	your	plugin.	If	you	have	a
large	number	of	functions	to	be	published,	you	might	organize	them	functionally
into	different	interfaces	to	make	them	more	manageable	for	the	user.	For
example,	EditMesh	might	publish	vertex	functions,	edge	functions	and	face
functions	in	separate	interfaces.	Action	functions	must	be	published	in	their	own
(set	of)	interface(s).	Each	interface	is	represented	by	an	instance	of	a	class
derived	from	the	base	class	FPInterface.	You	normally	create	these	instances
as	static	objects	using	the	FPInterface	constructor,	in	much	the	same	way	as
ParamBlock2	descriptors	are	created.	Each	interface	contains	a	list	of	the
functions	it	publishes	and	the	parameters	they	take,	along	with	type	and	name

and	other	descriptive	info	for	all	these	things.	All	the	interfaces	for	a	particular
plugin	class	are	kept	in	it's	ClassDesc	object.	An	external	system	can	find	out
about	the	interfaces	you	publish	by	calling	various	query	methods	on	ClassDesc
that	access	these	interface	definition	objects.	As	well	as	these	enquiry	or
'reflection'	methods,	an	FPInterface	also	has	the	calling	methods	for	actually
invoking	a	particular	function	in	the	interface,	so	that	if	something	has	hold	of
one	of	your	interfaces,	it	can	call	any	of	its	published	functions.
	
Additionally,	a	Mixin	interface	is	provided	which	can	be	multiply-inherited	by	a
plugin's	class	and	returned	via	its	implementation	of	the	above	new
GetInterface(Interface_ID)	method,	in	the	way	that	most	existing	object-
based	interfaces	are	now	implemented.
	
The	FPInterface	class	is	defined	in	the	header	file	maxsdk\include\iFnPub.h,
along	with	all	the	other	FnPub	classes	&	macros	described	in	these	notes.
	
Direct	and	Indirect	Calling
The	FnPub	system	lets	you	set	up	interfaces	so	that	functions	in	them	can	be
called	directly,	as	virtual	member	functions	of	the	interface	object,	or	indirectly
via	a	dispatching	method	that	takes	a	runtime	function	ID	and	a	table	of
parameters.	This	is	roughly	equivalent	to	the	dual	vtable	and	IDispatch	interface
schemes	in	COM.	Typically,	you	provide	the	virtual	interface	in	a	public	header
file	so	that	it	can	be	compiled	against	by	other	plugins	and	they	can	call	the
virtual	functions	on	an	interface	object	directly.	The	indirect	call	mechanism	is
used	by	MAXScript	and	other	external	systems	that	look	for	the	published
interface	functions	at	runtime	using	the	interface	metadata.
	
Interface	and	Function	IDs
Each	interface	is	uniquely	indentified	by	an	Interface_ID,	which	is	a	new	class
in	the	R4	SDK.	This	class	is	structurally	very	similar	to	Class_ID,	containing
two	randomly-chosen	longwords	to	provide	a	unique	global	ID.	It	is	defined	in
maxsdk\include\maxtypes.h
Each	function	in	an	interface	is	identified	by	an	integer	ID	of	type	FunctionID.
This	is	similar	to	the	BlockID	and	ParamID's	used	in	the	paramblock2	system.
This	ID	is	used	in	the	dispatch-based	calling	mechanism	to	identify	the	function

to	call.
	
Interface	Organization
The	map	is	bounded	by	BEGIN_FUNCTION_MAP	and
END_FUNCTION_MAP	and	contains	one	entry	for	each	function	in	the
interface.	The	map	entry	macros	used	come	from	a	set	named	according	to	the
number	of	arguments	and	whether	the	function	is	void.	In	this	case,	FN_2	is
used	for	a	2	argument	function	returning	a	value	and	VFN_3	is	used	for	a	void
function	taking	3	arguments.	The	FN_2	macro,	for	example,	takes	the	function
ID,	the	return	type,	the	virtual	interface	method	name,	and	the	types	of	the	two
arguments.	FN_VA,	VFN_VA,	FNT_VA,	etc.,	FUNCTION_MAP	entry
macro	variants	have	same	args	as	_0	macros	and	specify	that	the	function	takes	a
variable	number	of	arguments	(passed	directly	in	FPParams	instances).	There
are	more	details	on	these	macros	in	the	ref	section	below.	There	is	a	separate
declaration	macro,	DECLARE_DESCRIPTOR(<class>)	that	must	be
specified	in	the	interface	descriptor	class.	In	the	implementation	class	for	a	static
or	action	or	core	interface,	you	provide	a	single	descriptor	declarator	with	the
DECLARE_DESCRIPTOR()	macro,	giving	the	current	class	as	the	macro
parameter	and	a	function	map	using	BEGIN_FUNCTION_MAP	and
END_FUNCTION_MAP	macros	as	before.	The
DECLARE_DESCRIPTOR(<class>)	is	only	required	for
FPStaticInterface	subclasses;	FPMixinInterface	subclasses	should	only
have	the	FUNCTION_MAP/END_FUNCTION_MAP	map	table.
	
Within	your	plugin,	each	interface	is	usually	organized	into	3	separate	sections
of	code:
	

·			The	public	virtual	interface	along	with	the	Interface_ID	and	function
ID	definitions	in	a	public	header	file.
·			the	implementation	interface,	which	inherits	from	the	virtual	interface,
and	contains	both	the	function	implementations	and	a	function	dispatch
map	used	by	the	indirect	calling	methods.	The	FnPub	system	provides	a
set	of	macros	to	ease	the	definition	of	these	maps.

·			the	interface	descriptor,	usually	a	static	instance	of	the	implementation
interface.	The	constructor	for	this	uses	the	same	varargs	technique	used	by
the	ParamBlockDesc2	constructor,	enabling	descriptive	info	for	all	the
functions	in	the	interface	to	be	supplied	in	one	constructor	call.

	
Here's	an	(imaginary	&	simplified)	example	of	an	interface	on	EditMesh	called
'FaceOps'	with	two	functions,	delete	and	extrude:
	
1.	The	public	interface	(in	a	public	header	file)
	
#include	"iFnPub.h"
#define	EM_FO_INTERFACE	Interface_ID(0x434455,	0x65654)
#define	GetEMFaceOpsInterface(cd)	\

(EMFaceOps	*)(cd)->GetFPInterface(EM_FO_INTERFACE)
	
enum	{	em_delete,	em_extrude,	};
	
class	EMFaceOps	:	public	FPStaticInterface
{
public:

virtual	int	Delete	(Mesh*	m,	BitArray*	faces)=0;
virtual	void	Extrude(Mesh*	m,	BitArray*	faces,	float	amt)=0;

};
This	defines	the	Interface_ID	for	the	'FaceOps'	interface	and	provides	a	helper
macro	for	getting	the	interface	pointer	from	the	plugin's	ClassDesc.	This	is
followed	by	an	enum	for	the	two	function	IDs	and	then	the	virtual	interface
class	itself	in	which	each	function	is	declared	as	a	pure	virtual	function.	The
return	and	parameter	types	of	these	functions	are	restricted	to	a	fixed	set,
defined	below.	Fixing	this	set	is	necessary	so	that	systems	that	access	the
interface	metadata	or	use	the	dispatch	form	of	calling	have	a	known	set	of
types	to	deal	with.	External	code	that	wishes	to	call	one	of	these	functions,	and
has	access	to	this	public	header	can	do	so	as	in	the	following	example:

	
EMFaceOps*	efi	=	GetEMFaceOpsInterface(edmeshCD);
...
efi->Extrude(mesh,	faces,	10.0);
	
To	call	this	function	indirectly,	you	call	the	Invoke()	method	on	the	interface,
giving	it	the	function	ID	and	an	FPParams	object	containing	all	the
parameters,	as	in	the	following	example:
	
FPParams	p	(3,	TYPE_MESH,	mesh,

TYPE_BITARRAY,	faces,
TYPE_FLOAT,	10.0);

FPValue	result;
FPInterface	efi	=	edmeshCD->GetFPInterface("FaceOps");
efi->Invoke(em_extrude,	result,	&p);
x	=	result.i;
	
Any	function	result	is	passed	back	in	an	FPValue	instance,	given	as	one	of
the	args	to	Invoke,	which	is	a	type-tagged	variant	structure	that	can	hold	any
one	of	the	FnPub	supported	types.	The	FPParams	class	contains	a	convenience
varargs	constructor	for	building	parameter	sets	as	shown.	An	FPParams
instance	contains	a	Tab<>	of	FPValue	instances,	each	holding	a	parameter.
This	example	demonstrates	how	to	look	up	an	interface	by	name	in	a
ClassDesc.	The	Invoke()	function	has	several	overloads,	for	calling	functions
with	and	without	results	and	parameters.
	
2.	The	implementation	class	(in	the	.cpp	implementation	file)
	
class	EMFaceOpsImp	:	public	EMFaceOps
{

DECLARE_DESCRIPTOR(EMFaceOpsImps)
	
BEGIN_FUNCTION_MAP

FN_2(em_delete,	TYPE_INT,	Delete,	TYPE_MESH,
TYPE_BITARRAY)

		VFN_3(em_extrude,	Extrude,	TYPE_MESH,	TYPE_BITARRAY,
TYPE_FLOAT)

END_FUNCTION_MAP
	
	int	Delete(Mesh*	m,	BitArray*	faces)
	{
		//...	do	the	delete

	return	face_count;
	}
	void	Extrude(Mesh*	m,	BitArray*	faces,	float	amt)
	{
		//...	do	the	extrude
	}
};
The	interface	implementation	class	specializes	the	virtual	interface	class
defined	in	the	public	header.	It	can	contain	any	implementation-required	data
members	and	utility	methods,	but	must	at	least	contain	implementations	for
each	of	the	virtual	methods	defined	in	the	virtual	interface	class.
	
The	key	component	shown	above	is	the	function	map	which	generates	the
indirect	call	dispatcher	used	by	the	Invoke()	method.	This	dispatcher
unbundles	the	parameters	from	the	indirect	call	parameter	structure,	forwards
them	to	the	correct	implementation	method	and	bundles	the	return	value	into
an	FPValue.	It	is	specified	here	using	the	map	macros	that	come	with	the
FnPub	system	(in	iFnPub.h),	in	a	manner	somewhat	similar	to	the	message
maps	in	MFC.	You	can	implement	this	dispatcher	by	hand,	but	it	is	advised
that	you	use	the	map	macros.
	
The	map	is	bounded	by	BEGIN_FUNCTION_MAP	and
END_FUNCTION_MAP	and	contains	one	entry	for	each	function	in	the
interface.	The	map	entry	macros	used	come	from	a	set	named	according	to	the

number	of	arguments	and	whether	the	function	is	void.	In	this	case,	FN_2	is
used	for	a	2	argument	function	returning	a	value	and	VFN_3	is	used	for	a
void	function	taking	3	arguments.	The	FN_2	macro,	for	example,	takes	the
function	ID,	the	return	type,	the	virtual	interface	method	name,	and	the	types
of	the	two	arguments.	There	are	more	details	on	these	macros	in	the	ref	section
below.	There	is	a	separate	declaration	macro,
DECLARE_DESCRIPTOR(<class>)	that	must	be	specified	in	the
interface	descriptor	class.	In	the	implementation	class	for	a	static	or	action	or
core	interface,	you	provide	a	single	descriptor	declarator	with	the
DECLARE_DESCRIPTOR()	macro,	giving	the	current	class	as	the
macro	parameter	and	a	function	map	using	BEGIN_FUNCTION_MAP
and	END_FUNCTION_MAP	macros	as	before.	The
DECLARE_DESCRIPTOR(<class>)	is	only	required	for
FPStaticInterface	subclasses;	FPMixinInterface	subclasses	should	only
have	the	FUNCTION_MAP/END_FUNCTION_MAP	map	table.
	
3.	The	interface	definition	(in	the	.cpp	implementation	file)
	
static	EMFaceOpsImp	emfi	(

EM_FO_INTERFACE,	_T("FaceOps"),	IDS_EMFO,
&edmeshCD,	0,
	em_delete,	_T("delete"),	IDS_DELETE,	TYPE_INT,	0,	2,
			_T("mesh"),	IDS_MESH,	TYPE_MESH,
			_T("faces"),	IDS_FACES,	TYPE_BITARRAY,
	em_extrude,	_T("extrude"),	IDS_EXTRUDE,	TYPE_VOID,	0,	3,
			_T("mesh"),	IDS_MESH,	TYPE_	MESH,
			_T("faces"),	IDS_FACES,	TYPE_BITARRAY,
			_T("amount"),	IDS_AMOUNT,	TYPE_FLOAT,
	end
);
A	distinguished	instance	of	the	interface	implementation	class	is	constructed
and	registered	with	the	owning	ClassDesc.	This	is	the	instance	given	out	when
the	CD	is	asked	for	an	interface	via	its	GetFPInterface()	method.	The

instance	has	data	members	that	contain	all	the	metadata	for	the	interface.	You
normally	build	this	instance	as	a	static	in	the	implementing	.cpp	file,	in	a
manner	similar	to	ParmBlock2	descriptor	instances.
	
In	the	example	above,	the	instance	'emii'	is	statically	declared	using	the
FPInterface's	varargs	constructor.	The	initial	arguments	to	this	constructor
provide	the	Interface_ID,	the	internal	fixed	name,	localizable	descriptor
string	resID,	owning	ClassDesc	and	flags	bits.	This	is	followed	by	a	list	of
function	descriptors	which	themselves	each	have	lists	of	parameter
descriptors.	The	em_delete	function	description,	for	example,	consists	of	a
fixed	name,	a	localizable	description	string	resID,	a	return	type,	flag	bits	and	a
count	of	the	number	of	parameters.	For	each	parameter,	there	is	a	line	giving
parameter	name,	description	string	resID	and	type.

	
FnPub	Object	Based	Mixin	Interfaces
A	variant	of	the	FPInterface,	known	as	a	Mixin	interface,	is	provided	abd	can	be
multiply-inherited	by	a	plugin's	class	and	returned	via	its	implementation	of	the
above	new	GetInterface(Interface_ID)	method,	in	the	way	that	most
existing	object-based	interfaces	are	now	implemented.	Here's	an	example	setup.
First,	the	public	header	that	would	be	used	by	an	SDK-level	client	of	the
interface:
	
//	interface	ID
#define	FOO_INTERFACE	Interface_ID(0x342323,	0x55664)
	
#define	GetFooInterface(obj)	\

((FooInterface*)obj->GetInterface(FOO_INTERFACE))
	
//	function	IDs
enum	{	foo_move,	foo_setRadius,	};
	
//	mixin	interface
class	FooInterface	:	public	FPMixinInterface
{

BEGIN_FUNCTION_MAP
VFN_1(foo_move,	Move,	TYPE_POINT3);
VFN_1(foo_setRadius,	SetRadius,	TYPE_FLOAT);

END_FUNCTION_MAP
	
FPInterfaceDesc*	GetDesc();
	
virtual	void	SetRadius(float	radius)=0;
virtual	void	Move(Point3	p)=0;

};
This	is	much	the	same	as	existing	stand-alone	FnPub	interfaces,	except	that	the
function	map	is	put	into	the	virtual	interface	class,	rather	than	the	implementing
interface	class.	Then,	in	the	plugin	class,	you	inherit	the	mixin	interface	(you	are
"mixing"	it	into	the	class).	You	provide	implementations	for	the	interface's
virtual	methods	in	the	main	class	and	an	implementation	of	GetInterface()	that
returns	the	object	cast	to	the	interface,	exactly	as	you	would	have	done	for	old-
style	object-based	interfaces:
	
class	MyObject	:	public	SimpleObject2,	public	FooInterface
{
public:

...
void	SetRadius(float	radius);
void	Move(Point3	p);
...
FPInterface*	GetInterface(Interface_ID	id)	{
if	(id	==	FOO_INTERFACE)

return	(FooInterface*)this;
else

return	SimpleObject2::GetInterface(id);
}

...
}

Note	that	the	GetInterface()	method	needs	to	cast	the	'this'	to	the	mixin
interface	class	so	the	correct	vtable	is	used	(this	was	the	case	with	old-style
object	interfaces,	as	well).	It	also	calls	SimpleObject2::GetInterface()	if	the
id	doesn't	match	so	that	other	base	class	interfaces	and	stand-alone	interfaces,	if
any,	are	made	available	to	the	caller.	Finally,	you	provide	a	descriptor	for	the
interface,	as	with	stand-alone	interfaces,	but	in	this	case,	you	must	make	it	an
instance	of	FPInterface,	not	FooInterface	or	MyObject,	and	must	specify	the
FN_MIXIN	flag	to	denote	the	interface	as	mixin:
	
static	FPInterfaceDesc	foo_mixininterface(FOO_INTERFACE,

_T("foo"),	0,
&myObjDesc,	FP_MIXIN,
foo_move,	_T("move"),	0,	TYPE_VOID,	0,	1,
_T("vector"),	0,	TYPE_POINT3,

foo_setRadius,	_T("setRadius"),	0,	TYPE_VOID,	0,	1,
_T("radius"),	0,	TYPE_FLOAT,

end
);
	
FPInterfaceDesc*	FooInterface::GetDesc()
{

return	&foo_mixininterface;
}

This	static	instance	provides	the	interface	metadata	and	is	recorded	in	the
ClassDesc.	To	access	the	interface	metadata,	you	must	get	this	instance	directly
from	the	ClassDesc	via	ClassDesc::GetInterface(),	and	not	via
Animatable::GetInterface()	on	an	object.
	
All	this	is	pretty-much	the	same	work	you	would	do	to	provide	an
Animatable::GetInterface()	interface	currently	in	MAX.	The	extra	stuff	is

the	FUNCTION_MAP	and	the	interface	descriptor.	The	SDK-level	clients
use	the	interface	in	exactly	the	same	way,	but	now	the	scripter	and	other	external
systems	can	find	and	use	these	interfaces	automatically	at	runtime.
	
Mixin	object-based	interfaces	are	accessible	in	the	scripter	in	similar	way	to
stand-alone	published	interfaces.	In	particular,	the	functions	are	available	in	a
struct	function	package	which	is	itself	accessed	as	a	property	on	the	plugin	class
object.	For	example,	if	the	above	example	plugin	class	is	named	'MyObject'	in
the	scripter,	the	functions	in	its	'foo'	mixin	interface	would	be	accessed	as:
	
MyObject.foo.move
MyObject.foo.setRadius

	
The	functions	are	effectively	'generic'	functions	that	require	an	instance	of	the
plugin	as	the	first	argument,	resulting	in:
	
MyObject.foo.move	$baz	[10,10,10]
MyObject.foo.setRadius	$bar	123.4

	
Publishing	Mixin	Interface	on	Arbitrary	Classes
You	can	publish	FnPub	mixin	interfaces	on	any	class,	not	just	Animatable
subclasses.	To	do	this,	you	inherit	from,	IObject,	a	new	virtual	base	class	in	the
FnPub	system.	This	provides	an	API	for	querying	and	iterating
FPMixinInterfaces	that	the	class	wishes	to	publish,	similar	to
Animatable::GetInterface().	The	API	that	the	publishing	class	must
implement	is	as	follows:
	
class	IObject
{
public:

//	object/class	name
virtual	TCHAR*	GetName()=0;

							

//	iterate	over	all	interfaces...
virtual	int	NumInterfaces()=0;					
virtual	FPInterface*	GetInterface(int	i)=0;

	
//	get	ID'd	interface
virtual	FPInterface*	GetInterface(Interface_ID	id)=0;

	
//	IObject	ref	management	(can	be	implemented	by

dynamically-
//	allocated	IObjects	for	ref-count	based	lifetime	control)
virtual	void	Acquire()	{	};		
virtual	void	Release()	{	};

};
There	is	a	corresponding	new	ParamType2	type	code,	TYPE_IOBJECT,	that
allows	instances	of	these	classes	to	be	passed	and	returned	in	FPInterface
methods,	providing	a	simple	form	of	user-defined	type,	in	the	sense	that	these
instance	collections	are	passed	as	interfaces	rather	than	pointers	(similar	to
COM).	MAXScript	has	been	extended	to	provide	wrapper	value	classes	for
IObjects	and	so	this	mechanism	provides	a	light-weight	alternative	to	the
MAXScript	SDK	facilities	for	adding	new	wrapper	value	classes	to	the	scripter.
	
MAXScript	also	calls	the	Acquire()	and	Release()	methods	on	IObjects	as	it
creates	and	collects	these	wrappers,	so	that	IObject	objects	can	keep	track	of
MAXScript's	extant	references	to	them.	For	example:
	
class	IFoo1	:	public	FPMixinInterface
{

virtual	void	Frabulate(Point3	p)=0;
...

};
	
class	IFoo2	:	public	FPMixinInterface

{
...

};
	
class	Foo	:	public	IObject,	public	IFoo1,	public	IFoo2
{

//	Foo	methods
...

//	IObject	methods
TCHAR*	GetName()	{	return	_T("Foo");	}
int	NumInterfaces()	{	return	2;	}					
FPInterface*	GetInterface(int	i)
{
if	(i	==	0)	return	(IFoo1*)this;
if	(i	==	1)	return	(IFoo2*)this;

}
FPInterface*	GetInterface(Interface_ID	id)
{
if	(id	==	FOO_INTERFACE_1)	return	(IFoo1*)this;
if	(id	==	FOO_INTERFACE_2)	return	(IFoo2*)this;

}
//	IFoo1	methods
void	Frabulate(Point3	p)	{	...	}
...
//	IFoo2	methods
...

};
Instances	of	Foo	can	be	passed	as	parameters	and	results	in	FnPub	interface
descriptors	and	function	maps	by	declaring	them	as	TYPE_IOBJECT	values,
and	they	will	get	cast	to	IObject*	automatically.	For	example,	in	a	plugin	that

uses	the	Foo	class,	a	method	in	one	of	its	FPInterfaces	might	want	to	return	a
Foo	instance.	The	method	might	be	defined	as:
	
Foo*	GetFoo(INode*	object)
{

Foo*	x	=	new	Foo	(...);
...
return	x;

}
Since	Foo	is	not	a	supported	base	ParamType2	type	but	is	derived	from
IObject,	the	return	value	of	the	above	method	can	be	declared	using
TYPE_IOBJECT	in	the	FUNCTION_MAP	as:
	
FN_1(my_getFoo,	TYPE_IOBJECT,	GetFoo,	TYPE_INODE);

	
and	in	the	descriptor	constructor	as:
	
my_getFoo,	_T("getFoo"),	0,	TYPE_IOBJECT,	0,	1,

_T("object"),	0,	TYPE_INODE,
	
In	MAXScript,	calling	getFoo()	would	return	an	IObject	value	that	has	two
interface	properties,	ifoo1	and	ifoo2,	and	these	in	turn	would	expose	their
methods	as	properties:
	
f	=	getFoo	$
f.ifoo1.frabulate	[10,0,0]	//	call	the	IFoo1	frabulate	method

	
Passing	FPInterfaces	as	Parameters	&	Results
FPInterfaces	themselves	can	now	be	passed	directly	as	parameters	and	results
via	the	new	type,	TYPE_INTERFACE.	These	turn	up	in	MAXScript	as
instances	of	a	new	value	class,	FPInterface,	with	all	the	interface's	methods
accessible	as	properties.

	
In	cases	where	you	have	an	class	publishing	a	single	mixin	interface,	it	is
possible	to	pass	instances	directly	as	TYPE_INTERFACE	and	let	the
FPInterface*	type-cast	implied	by	TYPE_INTERFACE	extract	the	mixin
interface.	This	is	a	useful	simple	alternative	to	the	IObject	scheme	for
publishing	a	mixin	interface	on	non-Animatables,	since	you	don't	actually	need
to	implement	the	IObject	protocol	in	these	cases.	If	the	Foo	example	above	had
a	single	mixin,	it	would	publish	it	in	a	similar	way	to	the	following:
	
class	IFoo	:	public	FPMixinInterface
{

virtual	void	Frabulate(Point3	p)=0;
...

};
	
class	Foo	:	public	OtherBaseClass,	public	IFoo
{

//	Foo	methods
...
//	IFoo	methods
void	Frabulate(Point3	p)	{	...	}
...

};
The	same	Foo*-returning	GetFoo()	method	in	the	previous	example	would	then
be	declared	using	TYPE_INTERFACE	in	the	FUNCTION_MAP	as:
	
FN_1(my_getFoo,	TYPE_INTERFACE,	GetFoo,	TYPE_INODE);

	
and	in	the	descriptor	constructor	as:
	
my_getFoo,	_T("getFoo"),	0,	TYPE_INTERFACE,	0,	1,

_T("object"),	0,	TYPE_INODE,

	
In	this	case,	calling	getFoo()	in	MAXScript	would	return	an	FPInterface
value	that	exposes	the	IFoo	methods	directly	as	properties.
	
f	=	getFoo	$
f.frabulate	[10,0,0]	//	call	the	Foo1	frabulate	method

	
Note	again	this	scheme	won't	work	for	class	publishing	multiple	multiple	mixins
since	implied	FPInterface*	cast	becomes	ambiguous	-	you	must	use	the
IObject	mechanism	in	this	case.
	
FP_CORE	Interfaces
There	is	an	interface	descriptor	flag,	FP_CORE,	which	must	be	specified	on
Core	interface	descriptors.	Static	Core	interface	descriptors	are	now
automatically	registered	with	the	Core,	so	you	do	not	need	to	explicitly	call
RegisterCOREInterface()	on	them.	The	code	examples	below	include	a
Core	interface	using	this	flag.	The	following	example	taken	from	the
DragAndDrop	manager	interface.
	
1.	The	public	interface	definition	(in	a	public	header	file)
	
class	IDragAndDropMgr	:	public	FPStaticInterface
{
public:

virtual	void	EnableDandD(BOOL	flag)=0;
virtual	BOOL	IsEnabled()=0;
virtual	BOOL	EnableDandD(HWND	hwnd,	BOOL	flag,

DragAndDropHandler*	handler	=	NULL)=0;
virtual	BOOL	DropPackage(HWND	hwnd,	POINT&	point,

URLTab&	package)=0;
virtual	BOOL	DownloadPackage(URLTab&	package,

TCHAR*	directory,

HWND	hwnd	=	NULL)=0;
virtual	TCHAR*	GetStdDownloadDirectory()=0;

};
	
2.	The	implementation	class	(in	the	.cpp	implementation	file)
Note	in	this	example,	a	couple	of	the	interface	methods	use	a	new	type,
URLTab,	which	is	not	a	ParamType2	type.	This	is	a	Tab<TCHAR*>
specialization	and	so	provides	overloads	that	take	Tab<TCHAR*>s	and
convert	them	to	URLTabs,	specifically	for	dispatch-based	calls.

	
class	DragAndDropMgr	:	IDragAndDropMgr
{

...
public:

void	EnableDandD(BOOL	flag)	{	global_enable	=	flag;	}
BOOL	IsEnabled()	{	return	global_enable;	}
BOOL	EnableDandD(HWND	hwnd,	BOOL	flag,

DragAndDropHandler*	handler	=	NULL);
BOOL	DropPackage(HWND	hwnd,	POINT&	point,	URLTab&

package);
BOOL	DropFiles(HWND	hwnd,	HDROP	hDrop);
BOOL	DownloadPackage(URLTab&	package,	TCHAR*

directory,
HWND	hwnd	=	NULL);

TCHAR*	GetStdDownloadDirectory();
	

//	variants	for	FnPub	interface	that	take	Tab<TCHAR*>s
BOOL	DropPackage(HWND	hwnd,	POINT&	point,

Tab<TCHAR*>&	package);
BOOL	DownloadPackage(Tab<TCHAR*>&	package,

TCHAR*	directory);
	

DECLARE_DESCRIPTOR(DragAndDropMgr)
	

//	dispatch	map
BEGIN_FUNCTION_MAP
VFN_1(dndmgr_globalEnableDnD,	EnableDandD,

TYPE_BOOL);
FN_0(dndmgr_isEnabled,	TYPE_BOOL,	IsEnabled);
FN_2(dndmgr_enableDandD,	TYPE_BOOL,

EnableDandD,
TYPE_HWND,	TYPE_BOOL);

FN_3(dndmgr_dropPackage,	TYPE_BOOL,
DropPackage,

TYPE_HWND,	TYPE_POINT_BR,
TYPE_STRING_TAB_BR);
FN_2(dndmgr_downloadPackage,	TYPE_BOOL,

DownloadPackage,
TYPE_STRING_TAB_BR,	TYPE_STRING);

FN_0(dndmgr_downloadDirectory,	TYPE_STRING,
GetStdDownloadDirectory);

END_FUNCTION_MAP
...

};
	
3.	The	descriptor,	note	the	FP_CORE	flag.
FP_CORE	descriptors	are	automatically	registered	with
RegisterCOREInterface().

	
DragAndDropMgr	dragAndDropMgr(DND_MGR_INTERFACE,
_T("dragAndDrop"),

IDS_DND_INTERFACE,	NULL,	FP_CORE,
dndmgr_globalEnableDnD,	_T("globalEnableDragAndDrop"),

0,
TYPE_BOOL,	0,	1,	_T("onOff"),	0,	TYPE_BOOL,

	dndmgr_isEnabled,	_T("isEnabled"),	0,	TYPE_BOOL,	0,	0,
	dndmgr_enableDandD,	_T("enableDragAndDrop"),	0,
TYPE_BOOL,	0,	2,

_T("window"),	0,	TYPE_HWND,	_T("onOff"),	0,
TYPE_BOOL,

	dndmgr_dropPackage,	_T("dropPackage"),	0,	TYPE_BOOL,	0,
3,

_T("window"),	0,	TYPE_HWND,	_T("mousePoint"),	0,
TYPE_POINT_BR,	_T("files"),	0,

TYPE_STRING_TAB_BR,
	dndmgr_downloadPackage,	_T("downloadPackage"),	0,
TYPE_BOOL,	0,

2,	_T("files"),	0,	TYPE_STRING_TAB_BR,
_T("directory"),	0,

TYPE_STRING,
	dndmgr_downloadDirectory,	_T("geStdtDownloadDirectory"),	0,

TYPE_STRING,	0,	0,
	end

	
Action	Interfaces
A	special	kind	of	interface	is	the	Action	Interface.	These	interfaces	only	contain
UI	Action	Functions	that	provide	a	programmatic	way	of	"pressing"	buttons	and
keys	in	the	UI	for	a	plugin.	As	mentioned	in	the	opening	section	of	this	doc,
these	action	fucntions	have	certain	special	characeteristics	and	possess	additional
descriptive	metadata,	relative	to	the	functions	we've	described	so	far.	Here's	an
annotated	Action	Interface	example	for	the	EdMesh	system	we	looked	at	above.
	
1.	The	public	interface	(in	a	public	header	file)

	
#include	"iFnPub.h"

	
#define	EM_ACT_INTERFACE	Interface_ID(0x65678,	0x123)
#define	GetEMActionsInterface(cd)	\

(EMActions*)(cd)->GetFPInterface(EM_ACT_INTERFACE)
	
enum	{

ema_create,	ema_create_enabled,	ema_create_checked,
ema_delete,	ema_delete_enabled,

};
	
class	EMActions:	public	FPInterface
{
public:
	virtual	FPStatus	Create()=0;
	virtual	FPStatus	Delete()=0;
	virtual	BOOL	IsCreateEnabled()=0;		
	virtual	BOOL	IsCreateChecked()=0;		
	virtual	BOOL	IsDeleteEnabled()=0;		
};
As	with	normal	function	interfaces,	we	we	have	an	Interface_ID	defined	and
interface	accessor	helpers.	There	is	also	a	function	ID	enum,	but	in	this	case
there	are	more	IDs	than	published	actions.	Each	action	function	can	have
associated	with	it	up	to	3	predicate	functions	that	users	of	the	interface	can	call
to	determine	status	for	the	action.	These	are	the	isEnabled,	isChecked,	and
isVisible	predicates	and	they	are	used	mostly	by	the	UI	elements	that	can	be
bound	to	an	interface	action	to	determine	things	like	whether	a	button	or	menu
item	should	greyed	or	a	checkbutton	should	be	highlighted	or	whether	the
action	should	be	added	to	an	about-to-be-displayed	pop-up	menu.	The
isEnabled	&	isVisible	predicates	are	optional	and	default	to	always	TRUE.
The	isChecked	predicate	is	for	actions	that	toggle	a	state,	for	example
starting	&	stopping	a	mouse	command	mode.	This	predicate	is	also	optional
and	defaults	to	FALSE,	but	it	is	required	if	the	action	is	bound	to
TYPE_CHECKBUTTON	via	the	ParamMap2	system.

	
Declarations	for	action	functions	along	with	any	associated	predicates	are
supplied	in	the	virtual	interface	class.	Action	functions	always	take	zero
arguments	and	return	an	FPStatus	result	which	indicates	whether	the	action
was	succesfully	performed	or	not	(succes	if	FPS_OK,	but	it	may	return
values	such	as	FPS_ACTION_DISABLED	if	the	action	was	not	enabled
at	the	time).	Predicate	functions	always	take	zero	arguments	and	return	a
BOOL.
Here	are	some	action	function	call	examples:

	
EMActions*	emai	=	GetEMActionsInterface(edmeshCD);
...
if	(emai->IsCreateEnabled())	//	direct	calls
	emai->Create();

	
Indirect	Calls:

	
if	(emai->IsEnabled(ema_delete))

emai->Invoke(ema_delete);
	
This	indirect	example	uses	one	of	the	predicate	helper	functions	to	call	the
isEnabled	predicate	in	the	interface	for	a	given	function,	specified	by
FunctionID.

	
2.	The	implementation	class	(in	the	.cpp	implementation	file)

	
class	EMActionsImp	:	public	EMActions
{
public:

BOOL	creating;
	
	DECLARE_DESCRIPTOR(EMActionsImp)

BEGIN_FUNCTION_MAP

		FN_ACT(ema_create,	Create)
FN_PRED(ema_create_enabled,	IsCreateEnabled)

	FN_PRED(ema_create_checked,	IsCreateChecked)
		FN_ACT(ema_delete,	Delete)
		FN_PRED(ema_delete_enabled,	IsDeleteEnabled)
	END_FUNCTION_MAP
	
	void	Init()

{
		//	initialize	any	state	data

creating	=	FALSE;
}

	
FPStatus	Create()

	{
		//...	start	or	stop	the	create	mode
		//...
		creating	=	!creating;	//	toggle	creating	state
		//...
		return	FPS_OK;
	}
	
	BOOL	IsCreateEnabled()
	{
		//...	determine	if	create	enable,	perhaps

//	vertex	subobjlevel	test,	etc.
	}
	
	BOOL	IsCreateChecked()
	{

		return	creating;	//	the	current	create	state
	}
	//...
};
The	action	interface	implementation	class	contains	implementations	for	the
actions	and	predicates,	as	required	by	the	virtual	interface.	It	also	contains	a
FUNCTION_MAP,	but	in	this	case	the	actions	and	predicates	entries	in	the
map	are	defined	with	their	own	special	FN_	macros,	FN_ACT	for	actions
and	FN_PRED	for	predicates.

	
The	Create	action	in	this	example	corresponds	to	a	vertex	create	mode	start
button	and	so	it	provides	an	isChecked	predicate	to	tell	what	state	the	action
is	in,	in	this	case	checked	=>	in	create	mode,	not	checked	=>	not	in	create
mode.	The	implementation	interface	contains	a	data	element	'creating'	to	help
keep	track	of	this	state.	Note	that	it	is	intialized	in	a	method	called	Init().
Since	the	varargs	constructor	is	the	normal	way	the	interface	instance	is
created,	it	guarantees	to	call	this	(virtual)	init	method	for	you;	alternatively,
you	could	make	it	a	static	data	member	and	statically	initialize	it.

	
3.	The	interface	definition	(in	the	.cpp	implementation	file)

	
static	EMActionsImp	emai	(

EM_ACT_INTERFACE,	_T("Actions"),	IDS_EMAI,
&edmeshCD,	FP_ACTIONS,
	ema_create,	_T("create"),	IDS_CREATE,	0,

f_predicates,	ema_create_enabled,	ema_create_checked,
FP_NO_FUNCTION,

		f_category,	_T("creation"),	0,
		f_iconRes,	IDI_CREATE_ICON,
		f_toolTip,	IDS_VERTEX_CREATE_BY_CLICKIN,
		f_ui,	em_params,	0,	TYPE_CHECKBUTTON,	IDC_CREATE,

GREEN_WASH,

		end,
	ema_delete,	_T("delete"),	IDS_DELETE,	0,

f_isEnabled,	ema_delete_enabled,
f_ui,	em_params,	0,	BUTTON,	IDC_DELETE,

		end,
	end
);
The	constructor	for	an	Action	Interface	follows	a	slightly	different	syntax	to	a
normal	function	interface.	The	header	parameters	are	the	same
(Interface_ID,	internal	name,	descriptor,	CD,	flags),	the	FP_ACTIONS
flag	must	be	specified	to	mark	this	as	an	action	interface.
	
Each	action	function	is	specified	by	header	parameters	giving	FunctionID,
internal	name,	descriptor	resID	and	flag	bits.	This	is	followed	by	one	or	more
tagged	action	function	options,	in	the	same	manner	as	parameter	options	in	a
ParamBlockDesc2	constructor.	Each	option	defines	a	separate	item	of
metadata	for	the	function	In	the	case	of	ema_create,	the	following	are
specified:
	

·			2	of	the	3	possible	predicates	via	their	FunctionIDs,
·			a	category	string,	used	by	the	UI	customize	dialogs	to	arrange	actions
into	category	groups
·			a	resID	for	an	Icon	resource	that	will	be	made	available	for	use	in
toolbar	buttons	and	other	UI	locations
·			a	toolTip	string	resID
·			a	UI	specification	that	allows	the	parammap2	system	to
automatically	connect	a	button	to	this	action.	This	is	described	in	more
detail	in	the	next	section.

	
The	possible	options	include:

	

f_category		category	name,	as	internal	TCHAR*	and	localizable	string
resID,

defaults	to	interface	name
f_predicates		supply	3	functionIDs	for	isEnabled,	isChecked,
isVisible

predicates
f_isEnabled		isEnabled	predicate	functionID
f_isChecked		isChecked	predicate	functionID
f_isVisible		isVisible	predicate	functionID
f_iconRes		icon	as	resource	ID
f_icon			icon	as	UI	.bmp	filename,	index	pair,	as	per	CUI	icon
specifications
f_buttonText		button	text	string	resID,	defaults	to	function	description
f_toolTip		tooltip	string	resID,	defaults	to	function	description
f_menuText		menu	item	text	string	resID,	defaults	to	buttonText	or
function

description
f_ui			UI	spec	if	paramMap2-implemented	UI	(pmap	blockID,	mapID,
control

type,	button	or	checkbutton	resID,	hilight	col	if	chkbtn)
f_shortcut		default	keyboard	shortcuts	for	action	functions
f_keyArgDefault	marks	a	parameter	as	optional	and	supplies	a	default

value.	Optional	parameters	must	come	after	the
positional	parameters.	Example:
Meshop::buildMapFaces,
_T("buildMapFaces"),	0,	TYPE_VOID,	0,	3,

_T("source"),	0,	TYPE_FPVALUE_BR,
_T("keep"),	0,	TYPE_BOOL,

f_keyArgDefault,	FALSE,
_T("channel"),	0,	TYPE_INT,

f_keyArgDefault,	0,
	

f_inOut	specifies	whether	_BR	parameter	is	just	for	input,	just	for	output
or	both	via	FPP_OUT_PARAM,
FPP_IN_PARAM,	or	FPP_IN_OUT_PARAM
argument.	Default	is	FP_IN_OUT_PARAM.

f_macroEmitter	Supply	a	pointer	to	FPMacroEmitter	subclass
instance	to	customize	macro-recorder	emission.	The
Emit()	method	is	called	on	this	instance	with	interface
and	function	def	pointers	for	the	particular	action
function	to	be	emitted.

	
The	ActionTable	system	'table	ID'	DWORD	for	Action	interfaces	is	generated
automatically	from	the	Interface_ID	for	the	Action	interface	(by	xor-ing	the	two
DWORDS	in	the	interface	ID).	If	this	generates	an	ID	that	clashes	with	built-in
table	IDS	(in	the	range	0-64),	an	error	message	is	generated	and	you	should
choose	a	more	random	Interface_ID.
	
You	define	the	UI	context	for	the	interface	as	a	whole,	rather	than	for	each
individual	action	function.	The	context	ID	should	be	specified	immediately	after
the	flag	word	in	an	Action	interface	descriptor	constructor.	For	example:
	
static	IKChainActionsImp	sIKChainActionImp(

IKCHAIN_FP_INTERFACE_ID,	_T("Action"),
IDS_IKCHAIN_ACT,

&theIKChainControlDesc,	FP_ACTIONS,
kActionMainUIContext,

IKChainActionsImp::kSnap,	_T("snap"),
IDS_IKCHAIN_SNAP,	0,

...
The	constant	'kActionMainUIContext'	is	one	of	the	built-in	ActionTable
system	contexts	that	you	can	use	(defined	in
maxsdk\include\ActionTable.h),	and	is	most	likely	the	one	to	be	used.	If
you	create	an	entirely	new	context	and	context	ID,	you	will	need	to	register	and
control	its	activation	yourself	(see	the	IActionManager	in
maxsdk\include\ActioNTable.h	for	details).

	
The	automatically-generated	ActionTable	for	the	Action	interface	can	be
accessed	via	a	new	FPInterface	method:	virtual	ActionTable*
GetActionTable();
By	default,	the	action	table	is	activated	immediately	and	stays	active	throughout
the	3ds	max	session.	You	can	dynamically	control	this	activation	via	a	new
FPInterface	method:	virtual	void	EnableActions(BOOL	onOff);
This	enables	or	disables	the	entire	set	of	actions	in	the	interface.	You	might	do
this	if	the	actions	are	only	to	be	active	during	certain	times	in	the	running	of
MAX.	Usually,	this	control	is	achieved	via	ActionTable	contexts.
	
ParamMap2	Buttons
The	f_ui	option	for	an	Action	Function	can	be	used	to	make	the	ParamMap2
system	connect	the	action	function	to	a	button	in	a	ParamMap2-mediated	rollup
in	your	plugin's	UI.	This	means	you	have	to	be	using	the	ParamBlock2	system	in
the	interface's	plugin	(ie,	same	ClassDesc2)	and	have	at	least	one	paramblock
containing	a	paramMap	whose	rollup	contains	the	button	dialog	item.
	
In	the	f_ui	option,	you	first	specify	the	BlockID	of	the	paramblock	containing
this	paramMap	and	then	MapID	of	the	map	within	that	block	(single	map	blocks
use	MapID	0).	This	is	followed	by	a	control	type	code,	and	its	required
parameters,	as	listed	below:
	
TYPE_BUTTON,	<dlg_item_ID>
a	standard	push	button.	The	dialog	item	must	be	a	3ds	max	CustButton
custom	control.
	
TYPE_CHECKBUTTON,	<dlg_item_ID>,	<highlight_color>
a	standard	check	button.	Again,	the	dialog	item	must	be	a	3ds	max
CustButton	custom	control,	the	2nd	parameters	is	the	button	highlight	color
as	a	COLORREF	word,	either	one	of	the	predefined	colors	in
maxsdk\include\custcont.h,	or	an	RGB	value	using	the	system	RGB()
macro.

	
This	is	basically	all	you	need	to	do.	Whenever	the	specified	map	opens	its	rollup,
say	as	part	of	a	BeginEditParams,	it	will	automatically	look	for	any	Action
functions	associated	via	an	f_ui	and	will	call	that	action	function	whenever	the
button	is	clicked.	If	an	isEnabled	predicate	is	supplied,	the	ParamMap2	will
call	it	at	various	display	update	times	to	determine	whether	to	enable	or	disable
(gray	out)	the	button.	For	CheckButtons,	an	isChecked	predicate	must	be
supplied	and	will	be	called	at	similar	times	to	update	the	pressed	or	not-pressed
state	of	the	button	display.

The	FPInterface	Class	Hierarchy
The	FPInterface	class	hierarchy	is	such	that	static	and	mixin	interfaces	and
interface	descriptors	each	have	their	own	types.
	
FPInterface			The	base	class	for	all	interfaces,	prime	client	type	for	using
interfaces
FPInterfaceDesc		Contains	the	interface	metadata
FPStaticInterface	Use	as	the	base	class	for	defining	static	or	core	virtual
interface	classes.

FPMixinInterface	Use	as	the	base	class	for	defining	object-based	mixin
interface

classes,	use	FPInterfaceDesc	for	mixin	interface
descriptors

	
The	FPInterface	class	continues	to	provide	all	the	original	method	and
predicate	invocation	functions	required	by	an	SDK-level	client	of	the	interface.
A	pure	virtual	method,	GetDesc(),	should	be	used	to	get	the	FPInterfaceDesc
instance	for	the	interface.	The	metadata	definition	and	accessing	methods	and
the	metadata	data	members	now	all	live	in	the	FPInterfaceDesc.
	
All	the	original	interface	query	methods	in	the	API	(such	as
Animatable::GetInterface(id),	ClassDesc2::GetInterface(id),
GetCOREInterface(id))	still	return	FPInterface	pointers,	so	you	would	use

GetDesc()	in	constructs	like	the	following	to	get	at	an	interface's	metadata:
	
FPInterface*	fpi	=	GetCOREInterface(FOO_INTERFACE);
TCHAR*	iname	=	fpi->GetDesc()->internal_name.data();

	
The	FPInterface::GetDesc()	method	has	a	default	implementation	in
FPInterfaceDesc	(and	so	FPStaticInterface),	simply	returning	'this',	since
instances	of	these	classes	contain	the	metadata).	FPMixinInterface	subclasses
provide	implementations	of	GetDesc(),	returning	their	associated
FPInterfaceDesc	instance.

Parameter	Validation
An	interface	descriptor	can	now	contain	validation	information	for	individual
parameters,	so	that	clients	such	as	MAXScript	can	validate	values	given	as
parameters	to	FPInterface	calls,	prior	to	making	the	call.	The	validation	info
can	be	in	the	form	of	a	range	of	values	for	int	and	float	types,	or	more	generally,
a	validator	object	that	is	called	the	validate	a	parameter	value.
MAXScript	now	applies	the	validations	if	supplied	and	generates	descriptive
runtime	errors	if	the	validation	fails.
The	validation	info	is	specified	in	the	FPInterface	descriptor	in	optional
tagged	entries	following	the	parameters	to	be	validated.	The	two	possible	tags
are	f_range	and	f_validator.	Here's	an	example	from	a	possible	mixin
interface	to	Cylinder:
	
static	FPInterfaceDesc	cylfpi	(

CYL_INTERFACE,	_T("cylMixin"),	0,	&cylinderDesc,
FP_MIXIN,

...
cyl_setRadius,	_T("setRadius"),	0,	TYPE_VOID,	0,	1,

_T("radius"),	0,	TYPE_FLOAT,	f_range,	0.0,	10000.0,
cyl_setDirection,	_T("setDirection"),	0,	TYPE_VOID,	0,	1,

_T("vector"),	0,	TYPE_POINT3,	f_validator,
&cylValidator,

...
end

);
In	this	above	example,	the	"radius"	parameter	is	defined	to	have	a	range	0.0	to
10000.0.	An	f_range	spec	can	only	be	used	for	int	(TYPE_INT,
TYPE_TIMEVALUE,	TYPE_RADIOBTN_INDEX,	TYPE_INDEX,
TYPE_ENUM)	and	float	parameters	(TYPE_FLOAT,	TYPE_ANGLE,
TYPE_PCNT_FRAC,	TYPE_WORLD,
TYPE_COLOR_CHANNEL)	and	is	given	as	a	pair	of	low	and	high	range
values.	The	values	must	be	floating	point	or	integer	as	needed	by	the	TYPE_xxx
code,	you	cannot	specify	integer	range	values	for	float	types	and	vice	versa,
hence	the	0.0	and	10000.0	in	the	example	above.	MAXScript	checks	parameter
values	against	these	supplied	ranges	and	will	generate	a	descriptive	error
message	for	out-of-range	values.
	
The	"vector"	parameter	in	the	above	example	has	a	validator	object	specified.
This	must	be	a	pointer	to	an	instance	of	a	class	derived	from	the	new	class,
FPValidator,	defined	in	iFnPub.h.	This	is	a	virtual	base	class,	containing	a
single	method,	Validate(),	that	is	called	to	validate	a	prospective	value	for	a
parameter.	You	would	typically	subclass	FPValidator	in	your	code	and	provide
an	implementation	of	Validate()	to	do	the	validation.	Here	is	the	FPValidator
virtual	base	class:
	
class	FPValidator
{
public:

//	validate	val	for	the	given	param	in	function	in	interface
virtual	bool	Validate(FPInterface*	fpi,	FunctionID	fid,

int	paramNum,	FPValue&	val,	TSTR&	msg)=0;
};

The	Validate()	function	is	called	with	interface,	function-within-interface	and
parameter-within-function	identifiers	and	an	FPValue	to	validate.	It	can
optionally	install	an	error	message	string	in	the	'msg'	TSTR&	parameter	for	the

user	of	the	validator	to	display.	If	there	are	many	parameters	to	validate	this	way,
you	can	choose	to	provide	a	separate	subclass	for	each	parameter	or	a	single
subclass	and	switch	on	the	parameter	identification	supplied.
	
For	the	Cylinder	example	above,	the	"vector"	parameter	might	be	required	to	be
given	as	a	unit	vector,	so	the	validator	might	check	for	this	as	follows:
	
class	CylValidator	:	public	FPValidator
{

bool	Validate(FPInterface*	fpi,	FunctionID	fid,	int	paramNum,
FPValue&	val,	TSTR&	msg)

{
if	(fabs(Length(*val.p)	-	1.0)	>	1e-6)
{

msg	=	"Direction	vector	must	be	unit	length."
return	false;

}
else

return	true;
}

}
Note	that	the	type	is	already	checked	by	the	caller,	since	it	has	type	info	for	the
parameter,	so	you	don't	also	need	to	check	the	FPValue	type.
	
Note,	also,	that	the	FPValue&	val	argument	given	to	Validate()	is	a	reference
to	the	actual	parameter	value	to	be	given	to	the	called	function,	so	it	is	also
possible	to	massage	the	value	rather	than	reporting	an	error.	For	example,	the
above	sample	Validate()	method	could	normalize	the	vector	and	always	return
true.	The	type	must	not	be	changed	in	this	process,	only	the	value	can	be
adjusted.
	
A	singleton	instance	of	this	FPValidator	subclass	would	created,	typically	as	a

static	instance,	to	be	given	in	the	f_validator	specification:	static
CylValidator	cylValidator;
	
If	you	need	to	get	at	the	validation	metadata,	it	is	available	in	the	new	'options'
data	member	in	an	FPParamDef	instance	for	a	parameter.	If	non-NULL,	this
points	to	a	FPParamOptions	instance	which	contains	the	range	or	validator
information	for	the	parameter.	See	class	FPParamOptions	in	iFnPub.h	for
details.

Exception	Handling
FnPub	interface	functions	can	now	report	fatal	error	conditions	to	callers	by
using	C++	exception-handling.	There	is	a	new	exception	base	class,
MAXException,	defined	in	iFnPub.h	that	can	be	thrown	directly,	or	subclassed
as	needed	for	error	grouping.	The	class	is	defined	as	follows:
	
class	MAXException
{
public:

TSTR	message;
int	error_code;
MAXException(TCHAR*	msg,	int	code=0)	:	message(msg),

error_code(code)	{	}
};

It	contains	a	message	buffer	and	an	optional	error	code.	You	would	signal	an
error	using	the	MAXException()	constructor	and	the	C++	throw	statement,	as
in	the	following	example:
	
...
if	(discrim	<	0.0)	//	oh-oh,	not	good
throw	MAXException	("Unable	to	find	root.",	-23);
...

This	signals	a	fatal	error	with	the	message	and	code	shown.	If	the	error	occurs

during	a	call	to	the	function	by	MAXScript	code,	it	will	be	trapped	by
MAXScript	and	the	error	message	will	be	displayed	and	the	running	script	will
be	terminated	(but	3ds	max	will	continue	running).	If	the	error	occurs	during	a
C++-level	call,	typically	the	outer	3ds	max	error	catcher	will	catch	and	report	the
error	and	then	exit	MAX,	or	clients	of	the	interface	can	install	their	own	catch
code.

Property	accessors
It	is	possible	to	define	selected	methods	in	an	FPInterface	as	'property
accessor'	methods	so	that	dispatch-based	clients	of	the	interface	may	present
these	methods	as	properties	instead	of	functions.	MAXScript,	for	example,	now
presents	property	accessors	defined	in	this	way	as	simple	dot-notation	properties
of	the	interface.	These	accessors	remain	as	ordinary	methods	in	the
	
C++-level	interface	for	direct	C++	clients	but	are	marked	as	accessors	in	the
descriptor	and	function	maps.	A	'property'	is	typically	defined	by	a	pair	of
accessor	methods,	one	for	getting	and	one	for	setting,	but	you	can	also	define
read-only	methods	that	have	a	single	getter	method.	As	an	example,	here's	a
rework	of	the	above	Cylinder	interface	in	which	the	radius	and	direction	are
made	properties.
	
class	CylInterface	:	public	FPMixinInterface
{

...
virtual	void	RemoveCaps()=0;
virtual	void	AddBend(float	offset,	float	angle,	float	radius)=0;
...
virtual	float	GetRadius()=0;
virtual	void	SetRadius(float	radius)=0;
virtual	Point3	GetDirection()=0;
virtual	void	SetDirection(Point3	dir)=0;
...
BEGIN_FUNCTION_MAP	

...	
VFN_0(cyl_removeCaps,	RemoveCaps);
VFN_3(cyl_addBend,	AddBend,	TYPE_FLOAT,

TYPE_ANGLE,
TYPE_FLOAT);

...
PROP_FNS(cyl_getRadius,	GetRadius,	cyl_setRadius,

SetRadius,
TYPE_FLOAT);

PROP_FNS(cyl_getDir,	GetDirection,	cy_setDir,
SetDirection,

TYPE_POINT3_BV);
...

END_FUNCTION_MAP
FPInterfaceDesc*	GetDesc();

};
Each	property	as	a	getter	and	setter	virtual	method.	Their	signatures	must
conform	to	the	convention	shown,	namely,	the	getter	takes	no	parameters	and	the
getter	one.	The	getter	returns	the	same	type	as	the	setter	and	the	setter	type	is
void.	There	are	also	variants	that	take	an	explicit	time	as	described	below.
	
Properties	have	single	entries	in	the	function	map,	using	one	of	the	property-
related	entry	macros.	In	this	case,	PROP_FNS()	takes	a	getter	ID,	getter
function,	setter	ID,	setter	function	and	finally	the	property	type	code.	There	is
also	a	RO_PROP_FN()	macro	for	read-only	properties	that	takes	a	getter	ID,
getter	FN	and	prop	type.	Finally,	the	are	variants	of	PROP_FNS	and
RO_PROP_FN	that	indicate	the	accessors	take	an	explicit	TimeValue
argument,	presumably	associated	with	animatable	properties	and	indicating	that
the	property	access	should	be	at	the	given	time.	These	macros	are
PROP_TFNS	and	RO_PROP_TFN	and	takes	the	same	arguments	as	their
corresponding	base	macros.	If	the	above	example	properties	were	time-sensitive,
the	definitions	would	be	as	follows:
	

class	CylInterface	:	public	FPMixinInterface
{

...
virtual	void	RemoveCaps()=0;
virtual	void	AddBend(float	offset,	float	angle,	float	radius)=0;
...
virtual	float	GetRadius(TimeValue	t)=0;
virtual	void	SetRadius(float	radius,	TimeValue	t)=0;
virtual	Point3	GetDirection(TimeValue	t)=0;
virtual	void	SetDirection(Point3	dir,	TimeValue	t)=0;
...
BEGIN_FUNCTION_MAP	

...	
VFN_0(cyl_removeCaps,	RemoveCaps);
VFN_3(cyl_addBend,	AddBend,	TYPE_FLOAT,

TYPE_ANGLE,
TYPE_FLOAT);

...
PROP_TFNS(cyl_getRadius,	GetRadius,	cyl_setRadius,

SetRadius,
TYPE_FLOAT);

PROP_TFNS(cyl_getDir,	GetDirection,	cy_setDir,
SetDirection,

TYPE_POINT3_BV);
...

END_FUNCTION_MAP
	
FPInterfaceDesc*	GetDesc();

};
Recall	that	there	are	time-sensitive	variants	for	the	FN_0,	FN_1,	etc.,	macros,

namely	TFN_0,	TFN_1,	etc.	Functions	specified	by	such	macros	in	the
function	map	have	an	implicit	TimeValue	last	parameter.	Note	that	in	all	the
time-sensitive	variants,	the	last	TimeValue	parameter	is	not	defined	as	an
explicit	parameter	in	the	FPInterface	descriptor	entry	for	that	function.	Such
time-sensitive	properties	and	functions	are	handled	specially	in	MAXScript.	It
supplies	the	current	MAXScript	time,	as	defined	by	the	current	'at	time'	context
for	this	implicit	parameter,	making	these	functions	and	properties	behave
consistently	with	the	rest	of	MAXScript.
	
Properties	are	defined	in	a	special	section	in	the	FPInterface	descriptor
constructor	following	the	function	definitions,	headed	by	the	special	tag
'properties'.	They	are	also	entered	in	the	function	map	using	new	property-
specific	FUNCTION_MAP	macros.	Here's	an	example	descriptor	fragment:
	
static	FPInterfaceDesc	cylfpi	(

CYL_INTERFACE,	_T("cylMixin"),	0,	&cylinderDesc,
FP_MIXIN,

...
cyl_removeCaps,	_T("removeCaps"),	0,	TYPE_VOID,	0,	0,
cyl_addBend,	_T("addBend"),	0,	TYPE_VOID,	0,	3,
_T("offset"),	0,	TYPE_FLOAT,
_T("angle"),	0,	TYPE_ANGLE,
_T("radius"),	0,	TYPE_FLOAT,
properties,

cyl_getRadius,	cyl_setRadius,	_T("radius"),	IDS_RADIUS,
TYPE_FLOAT,	f_range,	0.0,	10000.0,

cyl_getDirection,	cyl_setDirection,	_T("direction"),	IDS_DIR,
TYPE_POINT3_BV,

...
end

);
The	'properties'	section	follows	the	function	definitions.	Each	propery	has	a

single	entry	defining	the	function	IDs	for	the	getter	and	setter	functions,	a	fixed
internal	property	name,	a	descriptor	string	resource	ID	and	the	property	type.	If
the	property	is	read-only	and	there	is	no	setter	function,	specify
FP_NO_FUNCTION	for	the	setter	ID.	Each	property	definition	can
optionally	be	followed	by	parameter	validation	options,	as	described	in	the
Parameter	Validation	section	above,	and	these	apply	to	the	parameter	given	to
the	setter	function	during	property	assignment.	In	this	case,	the	radius	is	range
checked.
	
If	you	need	to	get	at	it,	the	property	metadata	is	accessible	in	the	'props'	data
member	in	an	FPInterfaceDesc.	It	is	a	Tab<>	of	pointers	to	FPPropDef
class	instances,	which	contain	individual	property	metadata.	See	the
FPPropDef	class	definition	in	iFnPub.h	for	details.
	
MAXScript	now	exposes	properties	defined	in	this	way	as	direct	dot-notation
properties	on	the	interface.	So,	were	before	the	Get/SetRadius	in	the	example
cylinder	mixin	would	have	been	accessed	as	functions:
	
r	=	$cyl01.cylMixin.getRadius()
$cyl01.cylMixin.setRadius	23

	
you	now	can	use:
	
r	=	$cyl01.cylMixin.radius
$cyl01.cylMixin.radius	=	23

	
This	is	true	for	all	the	types	of	FP	interfaces	that	turn	up	in	MAXScript,	static,
mixin	and	core.	As	a	futher	optimization,	MAXScript	now	effectively	promotes
all	interface	methods	and	properties	to	the	level	of	the	interface,	so	if	individual
methods	and	properties	have	unqiue	names	within	all	the	interfaces	of	an	object
or
class,	you	can	elide	the	interface	name.	The	above	examples	could	now	be
written:
	

r	=	$cyl01.getRadius()
$cyl01.	setRadius	23

	
and:
	
r	=	$cyl01.radius
$cyl01.	radius	=	23

	
If	there	is	a	naming	conflict,	you	can	always	include	the	interface	name	level	to
resolve	this.
	

Symbolic	Enums
One	or	more	symbolic	enums,	similar	to	C++	enums,	can	now	be	added	to	an
FPInterface's	metadata,	and	individual	int	parameters	and/or	results	for	functions
in	that	interface	can	be	defined	as	TYPE_ENUM	and	associated	with	one	of
the	enum	lists.	This	allows	metadata	clients	to	support	symbolic	encodings	for
these	parameters	and	results,	which	MAXScript	now	does.
	
Enums	are	defined	in	the	FPInterface	descriptor	following	the	function	and
property	definitions	as	sets	of	string/code	pairs.	Each	enum	list	is	identified	by	a
unique	integer,	similar	to	function	IDs,	which	is	used	to	associated	a
TYPE_ENUM	parameter	or	result	with	its	enum.	IDs	for	these	would
normally	be	defined	somewhere	near	the	function	IDs	for	an	interface.	For
example:
	
//	function	IDs
enum	{	bmm_getWidth,	bmm_getHeight,	bmm_getType,
bmm_copyImage,	...};
//	enum	IDs
enum	{	bmm_type,	bmm_copy_quality,	...};
	

might	be	some	of	the	IDs	for	a	possible	bitmap	manager	interface.	The	two

enums	provide	symbolic	codes	for	the	bitmap	type	and	copyImage	quality
defines	in	the	"bitmap.h"	SDK	header,	such	as	BMM_PALETTED,
BMM_TRUE_32,	COPY_IMAGE_RESIZE_LO_QUALITY,	etc.	In
the	descriptor	for	the	interface,	any	enum	lists	follow	the	function	and	property
definitions.	They	are	introduced	by	the	special	tag,	'enums',	as	in	the	following
example:
	
static	FPInterfaceDesc	bmmfpi	(

BMM_INTERFACE,	_T("bmm"),	IDS_BMMI,	NULL,
FP_CORE,

...
bmm_copyImage,	_T("copyImage"),	...

_T("copyType"),	IDS_COPYTYPE,	TYPE_ENUM,
bmm_copy_quality,
...
properties,
geo_getType,	geo_setType,	_T("type"),	0,	TYPE_ENUM,

bmm_type,
enums,
bmm_type,	7,

"lineArt",	BMM_LINE_ART,
"paletted",	BMM_PALETTED,
"gray8",	BMM_GRAY_8,
"gray16",	BMM_GRAY_16	,
"true16",	BMM_TRUE_16,
"true32",	BMM_TRUE_32,
"true24",	BMM_TRUE_64,

bmm_copy_quality,	4,
"crop",	COPY_IMAGE_CROP,
"resizeLo",	COPY_IMAGE_RESIZE_LO_QUALITY,
"resizeHi",	COPY_IMAGE_RESIZE_HI_QUALITY,

"useCustom",	COPY_IMAGE_USE_CUSTOM,
end

);
In	the	above	example,	the	enums	are	listed	following	the	function	&	property
definitions.	They	are	introduced	by	the	'enums'	tag	and	consist	of	an	enum	ID
followed	by	a	count	of	items,	followed	by	that	many	string	and	code	pairs.	By
attaching	them	to	the	interface	like	this,	any	number	of	functions	and	properties
in	the	interface	can	use	them.
	
The	above	example	also	has	function	and	property	definitions	showing	the	use	of
TYPE_ENUM.	The	copyImage	function	takes	a	copyType	parameter	which
uses	the	bmm_copy_quality	enum	and	the	type	property	uses	the
bmm_type	enum.	In	all	situations	where	TYPE_xxx	types	can	be	supplied	in
a	descriptor,	including	the	new	property	definitions,	TYPE_ENUM	can	be
used	to	indicate	an	int	by-value	type.	TYPE_ENUM's	must	always	be
followed	by	an	enum	ID.	This	is	the	only	case	in	which	the	type	is	specified	as	a
pair	of	values.	TYPE_ENUM	parameters	and	results	show	up	in	MAXScript
as	#	names.	For	example,	if	a	bmm	interface	was	in	the	variable	'bm1'	and	the
bitmap	type	was	BMM_GRAY_16,
	
bm1.type
->	#gray16
	
bm1.type	=	#true32	--	set	it	to	#true24	(code	is	BMM_TRUE_24)
bm2	=	bm1.copyImage	#resizeHi
	

the	integer	TYPE_ENUM	codes	are	translated	back-and-forth	to	symbolic	#
names	by	MAXScript	using	the	definitions	in	the	FPInterface	descriptor's
enums.	If	you	need	to	access	the	enum	metadata	in	an	FPInterfaceDesc,	it	is
available	in	the	'enumerations'	data	member.	This	is	a	Tab<>	of	pointers	to
FPEnum	class	instances	which	themselves	contain	a	Tab<>	of	name,	code
pairs.	See	class	FPEnum	in	iFnPub.h	for	details.
	

Additional	ParamType2	codes	for	Function	Publishing	and	MAXScript
	
TYPE_FPVALUE		//	FPValue*,	variant	value
TYPE_VALUE		//	MAXScript	Value*

	
TYPE_FPVALUE	can	be	used	to	pass	a	variant	data	type,	containing	one	of
the	types	of	data	that	FPValue	can	hold.	This	allows	a	function	to	be	defined
that	can	accept	many	types	of	values	for	a	TYPE_FPVALUE	parameter,	the
function	can	determine	the	type	from	the	'type'	field	in	the	FPValue	passed.
MAXScript	supports	TYPE_PFVALUE	parameters	and	return	values	and	will
convert	back-and-forth	between	the	MAXScript	types	that	correspond	to	the
various	FPValue	types.	TYPE_FPVALUE	also	supports
TYPE_FPVAUE_BV	and	TYPE_FPVALUE_BR	variants.	MAXScript
arrays	will	attempt	to	convert	themselves	into	TYPE_XXX_TAB	FPValues
if	the	array	elements	are	all	of	the	same	type,	for	example	all	integers	generate	a
TYPE_INT_TAB,	all	scene	nodes	generate	a	TYPE_INODE_TAB,	etc.	If	the
array	contains	mixed	value	types	or	types	not	in	the	following	list,	a
TYPE_FPVALUE_TAB	will	be	generated,	containing	an	FPValue*	variant
value	for	each	element	in	the	array.	Supported	homogeneous	types	are:
	
TYPE_INT_TAB
TYPE_FLOAT_TAB
TYPE_TIMEVALUE_TAB
TYPE_STRING_TAB
TYPE_NAME_TAB
TYPE_POINT3_TAB
TYPE_POINT2_TAB
TYPE_INODE_TAB
TYPE_REFTARG_TAB	(all	other	ReferenceTarget*s,	modifiers,	mtls,
ctlrs,	etc.)

	
TYPE_VALUE	is	basically	a	fallback	to	be	used	in	situations	where
MAXScript	values	of	types	not	covered	by	FPValue	types	need	to	be	passed

into	a	published	function.	The	called	function	is	responsible	for	using	the
MAXScript	SDK	to	convert	to	and	from	the	Value*	in	TYPE_VALUE
values.
	
Parameter/Result	Types
	
More	parameter/result	types	have	been	added	and	the	type	system	has	been
generalized	to	allow	you	to	specify	pass-by-reference,	pass-by-pointer	and	pass-
by-value	variations	of	the	appropriate	base	types.	This	permits	a	wider	range	of
interface	method	signatures	in	FnPub	interfaces,	particularly	those	with	'&'
reference	types	typically	used	for	passing	back	values	via	parameters.	The
scripter	has	been	upgraded	to	support	all	these	new	types	and	pass-by	options
(see	also	the	MAXScript	section	here	for	details).
	
The	type	codes,	defined	in	the	ParamType2	enum,	are	arranged	in	sections
with	various	suffixes	signifying	the	sections.	The	main	section	gives	the	so-
called	'base	types',	such	as	TYPE_INT,	TYPE_FLOAT,	and	the	other
sections	are	variations	derived	from	the	base	types.	The	variations	are:
	
<base_type>_BV		base	type	passed	by	value
<base_type>_BR		base	type	passed	by	reference,	used	with	&	ref	params	&
results
<base_type>_BP		base	type	passed	by	pointer,	used	with	*	pointer	params&
results
<base_type>_TAB		a	Tab<>	of	the	base	type
<base_type>_TAB_BV	a	Tab<>	of	base	type,	the	Tab<>	is	passed	by	value
<base_type>_TAB_BR	a	Tab<>	of	base	type,	the	Tab<>	is	passed	by
reference

	
Since	some	base	types	are	naturally	passed	by	value	or	pointer,	and	the	base
Tab<>	type	is	passed	by	pointer,	so	not	all	possible	combinations	are	actually
made	available.	For	example,	there	is	no	TYPE_INT_BV,	since	TYPE_INT
is	already	passed	by	value,	and	there	is	no	TYPE_STRING_BP	since
TYPE_STRING	is	already	passed	by	pointer.

	
Added	base	types
	
TYPE_POINT	a	Win32	POINT	struct
TYPE_TSTR		a	3ds	max	SDK	TSTR	class
TYPE_IOBJECT	a	new	FnPub	system	IObject
TYPE_INTERFACE	an	FPInterface
TYPE_HWND		a	Win32	HWND	handle
TYPE_NAME		a	variant	of	TYPE_STRING,	meant	to	be	interpreted	as	an
interned	symbol	or

name	in	the	client	(eg,	MAXScript	represents	these	Name
instances,
as	in	#foo,	etc.)

	
All	the	new	base	types	are	passed	naturally	as	pointers,	so	there	are	_BV	and
_BR	variants	for	all	of	them	(except	for	TYPE_HWND).	There	are	also	_TAB,
_TAB_BR,	_TAB_BV	variants	for	them	all.	For	reference,	all	the	currently
available	types	are	in	the	ParamType2	enumeration	in	/include/iparmb2.h.
Some	base	types	are	naturally	passed	by	value,	others	by	pointer.	Basically,	all
the	int	and	float-derived	types	are	passed	naturally	by-value	and	all	the	rest	by
pointer.	The	by-value	base	types	are:
	
ints:
TYPE_INT
TYPE_BOOL
TYPE_TIMEVALUE,
TYPE_RADIOBTN_INDEX
TYPE_INDEX
	
floats:
TYPE_FLOAT
TYPE_ANGLE

TYPE_PCNT_FRAC
TYPE_WORLD
TYPE_COLOR_CHANNEL

	
The	FPValue	class	has	a	union	containing	fields	for	all	the	base	and	table	types
and	show	the	natural	passing	mode	for	each.	Note	that	the	_BP	by-pointer
variants	of	the	base	types	are	passed	as	iptr	&	fptr	pointer	fields	in	the	PValue
union.	For	the	types	that	are	passed	naturally	by	pointer,	the	_BV	variants	cause
local	copies	to	be	made	and	owned	by	the	FPValue	carrying	them.	The
FPValue	destructor	will	free	memory	taken	by	these	copies.	Also,	the	_BR
variants	of	naturally-pointer	types	need	to	supplied	as	pointers	to	the	FPValue
(or	FPParams)	constructors	and	are	dereferenced	at	parameter	delivery	time.
So,	for	example,	the	following	FPInterface	method:
	
Tab<int>	Foo(INode*	object,	Tab<Point3*>&	points);

	
would	be	declared	in	the	FUNCTION_MAP	as
	
FN_2(my_foo,	TYPE_INT_TAB_BV,	Foo,	TYPE_INODE,
TYPE_POINT3_TAB_BR);

	
and	in	the	descriptor	constructor	as
	
my_foo,	_T("foo"),	0,	TYPE_INT_TAB_BV,	0,	2,

_T("object"),	0,	TYPE_INODE,
_T("points"),	0,	TYPE_POINT3_TAB_BR,

Supported	Types
The	type	codes	you	can	use	to	specify	function	return	types	or	argment	types	are
defined	by	the	ParamType2	enumeration	in	\include\paramtype.h.	Several
of	the	type	codes	map	to	the	same	underlying	C++	type,	for	example	there	are
five	float	types.	In	most	cases,	the	alternate	codes	imply	different	UI	scaling
Dimensions	that	are	honored	by	systems	like	MAXScript.	For	example,	using

TYPE_ANGLE	will	cause	MAXScript	to	convert	back	and	forth	between
radians	internally	and	degrees	to	the	user,	so	you	should	use	the	most	specific
type	code.
	
As	you	can	see	from	the	list	below,	all	the	values	are	pointer-sized	or	smaller,	so
they	fit	in	a	single	pointer-sized	union	in	an	FPValue.	This	means	any	object
larger	than	a	pointer	is	normally	passed	by	reference.	To	support	passing	and
returning	by-value,	a	variant	set	of	types	is	provided	that	take	local	copies	of	the
object;	they	have	an	_BV	suffix	in	the	type	code	name.	This	local	copy	is	freed
in	the	destructor	of	FPValue,	so	FPValues	of	these	types	effectively	have	the
semantics	of	pass-by-value.	Typically,	you	would	use	these	by-value	types	for
returning	values	that	have	been	created	locally	in	the	called	function,	Point3s,
strings,	etc.	All	Tab<>	types	take	a	local	copy	of	the	table.	All	the	reftarg	types
(Mtl*,	INode*,	Texmap*)	are	passed	only	as	pointers,	no	attempt	is	made	to
keep	local	references	in	the	FPValue	or	FPParam	instances.
	
Built	in	data	types	(enum	ParamType)
	
TYPE_USER

	
Built	in	data	types	(enum	ParamType2)
	
TYPE_INDEX
TYPE_MATRIX3
TYPE_PBLOCK2

	
The	following	are	only	for	published	function	parameter	types,	not	pblock2
parameter	types.
	
TYPE_ENUM
TYPE_VOID
TYPE_INTERVAL
TYPE_ANGAXIS

TYPE_QUAT
TYPE_RAY
TYPE_POINT2
TYPE_BITARRAY
TYPE_CLASS
TYPE_MESH
TYPE_OBJECT
TYPE_CONTROL
TYPE_POINT
TYPE_TSTR
TYPE_IOBJECT
TYPE_INTERFACE
TYPE_HWND
TYPE_NAME
TYPE_COLOR
TYPE_FPVALUE
TYPE_VALUE
TYPE_DWORD
TYPE_bool

	
The	following	are	tables	of	the	above	data	types	(in	the	same	order	as	base
types).
	
TYPE_INDEX_TAB
TYPE_MATRIX3_TAB
TYPE_PBLOCK2_TAB

	
The	following	are	only	for	published	function	parameter	types,	not	pblock2
parameter	types.
	
TYPE_ENUM_TAB,	TYPE_VOID_TAB,

TYPE_INTERVAL_TAB,	TYPE_ANGAXIS_TAB,
TYPE_QUAT_TAB,	TYPE_RAY_TAB,	TYPE_POINT2_TAB,
TYPE_BITARRAY_TAB,	TYPE_CLASS_TAB,
TYPE_MESH_TAB,	TYPE_OBJECT_TAB,
TYPE_CONTROL_TAB,	TYPE_POINT_TAB,
TYPE_TSTR_TAB,	TYPE_IOBJECT_TAB,
TYPE_INTERFACE_TAB,	TYPE_HWND_TAB,
TYPE_NAME_TAB,	TYPE_COLOR_TAB,
TYPE_FPVALUE_TAB,	TYPE_VALUE_TAB,
TYPE_DWORD_TAB,	TYPE_bool_TAB

	
The	following	pass	by-ref	types,	implies	&	parameters,	int&	&	float&	are	passed
via	.ptr	fields,	only	for	FnPub	use.	These	are	defined	as	TYPE_xxx	+
TYPE_BY_REF.
	
TYPE_FLOAT_BR,	TYPE_INT_BR,	TYPE_BOOL_BR,
TYPE_ANGLE_BR,	TYPE_PCNT_FRAC_BR,
TYPE_WORLD_BR,	TYPE_COLOR_CHANNEL_BR,
TYPE_TIMEVALUE_BR,	TYPE_RADIOBTN_INDEX_BR,
TYPE_INDEX_BR,	TYPE_RGBA_BR,	TYPE_BITMAP_BR,
TYPE_POINT3_BR,	TYPE_HSV_BR,	TYPE_REFTARG_BR,
TYPE_MATRIX3_BR,	TYPE_ENUM_BR,
TYPE_INTERVAL_BR,	TYPE_ANGAXIS_BR,
TYPE_QUAT_BR,	TYPE_RAY_BR,	TYPE_POINT2_BR,
TYPE_BITARRAY_BR,	TYPE_MESH_BR,	TYPE_POINT_BR,
TYPE_TSTR_BR,	TYPE_COLOR_BR,	TYPE_FPVALUE_BR,
TYPE_DWORD_BR,	TYPE_bool_BR

	
The	following	pass	by-ref	Tab<>	types,	implies	&	parameters,	int&	&	float&	are
passed	via	.ptr	fields,	only	for	FnPub	use.	These	are	defined	as	TYPE_xxx	+
TYPE_TAB	+	TYPE_BY_REF.
	
TYPE_FLOAT_TAB_BR,	TYPE_INT_TAB_BR,
TYPE_RGBA_TAB_BR,	TYPE_POINT3_TAB_BR,

TYPE_BOOL_TAB_BR,	TYPE_ANGLE_TAB_BR,
TYPE_PCNT_FRAC_TAB_BR,	TYPE_WORLD_TAB_BR,
TYPE_STRING_TAB_BR,	TYPE_FILENAME_TAB_BR,
TYPE_HSV_TAB_BR,	TYPE_COLOR_CHANNEL_TAB_BR,
TYPE_TIMEVALUE_TAB_BR,
TYPE_RADIOBTN_INDEX_TAB_BR,	TYPE_MTL_TAB_BR,
TYPE_TEXMAP_TAB_BR,	TYPE_BITMAP_TAB_BR,
TYPE_INODE_TAB_BR,	TYPE_REFTARG_TAB_BR,
TYPE_INDEX_TAB_BR,	TYPE_MATRIX3_TAB_BR,
TYPE_TSTR_TAB_BR,	TYPE_ENUM_TAB_BR,
TYPE_INTERVAL_TAB_BR,	TYPE_ANGAXIS_TAB_BR,
TYPE_QUAT_TAB_BR,	TYPE_RAY_TAB_BR,
TYPE_POINT2_TAB_BR,	TYPE_BITARRAY_TAB_BR,
TYPE_CLASS_TAB_BR,	TYPE_MESH_TAB_BR,
TYPE_OBJECT_TAB_BR,	TYPE_CONTROL_TAB_BR,
TYPE_POINT_TAB_BR,	TYPE_IOBJECT_TAB_BR,
TYPE_INTERFACE_TAB_BR,	TYPE_HWND_TAB_BR,
TYPE_NAME_TAB_BR,	TYPE_COLOR_TAB_BR,
TYPE_FPVALUE_TAB_BR,	TYPE_VALUE_TAB_BR,
TYPE_DWORD_TAB_BR,	TYPE_bool_TAB_BR

	
The	following	pass	by-value	types,	implies	dereferencing	the	(meaningful)
pointer-based	values,	only	for	FnPub	use.	These	are	defined	as	TYPE_xxx	+
TYPE_BY_VAL.
	
TYPE_RGBA_BV,	TYPE_POINT3_BV,	TYPE_HSV_BV,
TYPE_INTERVAL_BV,	TYPE_BITMAP_BV,
TYPE_MATRIX3_BV,	TYPE_ANGAXIS_BV,	TYPE_QUAT_BV,
TYPE_RAY_BV,	TYPE_POINT2_BV,	TYPE_BITARRAY_BV,
TYPE_MESH_BV,	TYPE_POINT_BV,	TYPE_TSTR_BV,
TYPE_COLOR_BV,	TYPE_FPVALUE_BV,	TYPE_CLASS_BV

	
The	following	pass	by-value	Tab<>	types,	implies	dereferencing	the
(meaningful)	pointer-based	values,	only	for	FnPub	use.	These	are	defined	as

TYPE_xxx	+	TYPE_TAB	+	TYPE_BY+VAL.
	
TYPE_FLOAT_TAB_BV,	TYPE_INT_TAB_BV,
TYPE_RGBA_TAB_BV,	TYPE_POINT3_TAB_BV,
TYPE_BOOL_TAB_BV,	TYPE_ANGLE_TAB_BV,
TYPE_PCNT_FRAC_TAB_BV,	TYPE_WORLD_TAB_BV,
TYPE_STRING_TAB_BV,	TYPE_FILENAME_TAB_BV,
TYPE_HSV_TAB_BV,	TYPE_COLOR_CHANNEL_TAB_BV,
TYPE_TIMEVALUE_TAB_BV,
TYPE_RADIOBTN_INDEX_TAB_BV,	TYPE_MTL_TAB_BV,
TYPE_TEXMAP_TAB_BV,	TYPE_BITMAP_TAB_BV,
TYPE_INODE_TAB_BV,	TYPE_REFTARG_TAB_BV,
TYPE_INDEX_TAB_BV,	TYPE_MATRIX3_TAB_BV,
TYPE_PBLOCK2_TAB_BV,	TYPE_VOID_TAB_BV,
TYPE_TSTR_TAB_BV,	TYPE_ENUM_TAB_BV,
TYPE_INTERVAL_TAB_BV,	TYPE_ANGAXIS_TAB_BV,
TYPE_QUAT_TAB_BV,	TYPE_RAY_TAB_BV,
TYPE_POINT2_TAB_BV,	TYPE_BITARRAY_TAB_BV,
TYPE_CLASS_TAB_BV,	TYPE_MESH_TAB_BV,
TYPE_OBJECT_TAB_BV,	TYPE_CONTROL_TAB_BV,
TYPE_POINT_TAB_BV,	TYPE_IOBJECT_TAB_BV,
TYPE_INTERFACE_TAB_BV,	TYPE_HWND_TAB_BV,
TYPE_NAME_TAB_BV,	TYPE_COLOR_TAB_BV,
TYPE_FPVALUE_TAB_BV,	TYPE_VALUE_TAB_BV,
TYPE_DWORD_TAB_BV,	TYPE_bool_TAB_BV

	
The	following	pass	by-pointer	types	for	int	&	float	types,	implies	*	parameters,
int*	&	float*	are	passed	via	.ptr	fields,	only	for	FnPub	use.	These	are	defined	as
TYPE_xxx	+	TYPE_BY_PTR.
	
TYPE_FLOAT_BP,	TYPE_INT_BP,	TYPE_BOOL_BP,
TYPE_ANGLE_BP,	TYPE_PCNT_FRAC_BP,
TYPE_WORLD_BP,	TYPE_COLOR_CHANNEL_BP,
TYPE_TIMEVALUE_BP,	TYPE_RADIOBTN_INDEX_BP,

TYPE_INDEX_BP,	TYPE_ENUM_BP,	TYPE_DWORD_BP,
TYPE_bool_BP

	
There	are	no	specific	by-pointer	Tab<>	types,	all	Tab<>	types	are	by-pointer	by
default.
	
TYPE_MAX_TYPE

	
Published	Functions	and	MAXScript
MAXScript	automatically	provides	access	to	all	functions	published	by	a	plugin
via	the	FnPub	system.	The	current	scheme	is	experimental	and	may	change
somewhat.	Each	plugin	class	appears	in	MAXScript	as	a	3ds	max	class	object,
that	can	be	used	to	construct	instances	of	the	plugin,	do	class	tests,	etc.	If	a
plugin	publishes	interfaces,	they	are	visible	in	MAXScript	as	properties	on	this
class	object.	The	internal	name	for	the	interface	is	used	as	the	property	name.	All
the	functions	in	the	interface	are	accessible	as	named	properties	on	the	interface.
So,	if	the	above	example	interfaces	were	published	by	EditMesh,	the	following
script	frags	would	work:
EditMesh.faceOps.extrude	$foo.mesh	#{1,2,3}	10

calls	the	Extrude	function	in	the	FaceOps	interface	on	$foo's	mesh,	faces	1,	2
and	3,	amount	10	units.
EditMesh.actions

retrieves	and	displays	the	action	functions.	Each	interface	is	stored	as	a	struct
definition	in	the	class	object.
EditMesh.actions.create	()

starts	(or	stops)	the	create	mode.	This	would	(should!)	have	the	side-effect	of
highlighting/unhighlighting	the	Create	button	in	the	EditMesh	rollups.	Calls	to
Action	functions	in	MAXScript	return	true	if	the	function	returns	FPS_OK	and
false	otherwise.
if	EditMesh.actions.create.isChecked()	then	...

The	predicate	functions	for	an	Action	Function	are	available	as	properties	on	the
action	function	object	itself,	as	shown.	You	can	determine	if	a	predicate	is
supplied	by	asking:
if	EditMesh.actions.create.isChecked	!=	undefined

	
Extending	Animatable::GetInterface()
The	following	have	been	added	to	class	Animatable:
virtual	FPInterface*	GetInterface(Interface_ID	id);

Any	future	object-based	interfaces	should	be	allocated	unique	Interface_IDs
(you	can	use	Gencid.exe	for	this)	and	made	available	through	this	call.
The	default	implementation	of	GetInterface(Interface_ID)	looks	up	a	standalone
interface	of	the	given	ID	on	the	object's	ClassDesc.	This	gives	access	to
standalone	FnPub	interfaces	via	any	of	a	plugin's	objects,	without	having	to	dig
around	for	the	ClassDesc,	so	you	should	fall	back	to	calling	the	default
implementation	if	you	don't	recognize	an	ID	in	your	implementation	of
GetInterface(Interface_ID).

Global	Functions	related	to	Function	Publishing

Prototype:
void	RegisterCOREInterface(FPInterface*	fpi);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
This	function	registers	an	interface	object.	Creating	Core	interfaces	is	done	in
the	normal	FnPub	manner,	via	public	virtual	interface	headers	and
implementation	interfaces	though	the	FPInterface	constructor	as	above,	but	by
specifying	NULL	for	the	ClassDesc	pointer.	The	core	interfaces	published	this
way	are	automatically	available	in	the	scripter,	with	each	interface	visible	as	a
struct	function	package	of	the	same	name	as	the	internal	name	of	the	interface.

Parameters:
FPInterface*	fpi
The	pointer	to	the	function	publishing	interface	class.

Prototype:
FPInterface*	GetCOREInterface(Interface_ID	id);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.

This	function	locates	a	Core	interface	object	by	its	unique	interface	ID.
Parameters:
Interface_ID	id
The	unique	interface	ID	of	an	interface	object.

Return	Value:
A	pointer	to	the	Core	interface	object	associated	with	the	specified	interface
ID.

Prototype:
int	NumCOREInterfaces();

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
This	function	returns	the	number	of	available	Core	interfaces.

Prototype:
FPInterface*	GetCOREInterface(int	i);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
This	function	returns	a	Core	interface	object	by	its	index.

Parameters:
int	i
The	index	of	the	Core	interface	object	you	wish	to	retrieve.

Return	Value:
A	pointer	to	the	I-th	Core	interface	object.

Prototype:
FPInterface*	GetCOREInterfaceAt(int	i);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
This	function	returns	a	Core	interface	object	by	its	index.

Parameters:

int	i
The	index	of	the	Core	interface	object	you	wish	to	retrieve.

Return	Value:
A	pointer	to	the	I-th	Core	interface	object.

Prototype:
FPInterface	*GetInterface(SClass_ID	super,	Class_ID	cls,
Interface_ID	id);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
This	function	is	a	global	helper	function	that	finds	the	ID’d	interface	for	the
given	plugin	class	and	superclass	ID’s	and	saves	client	code	from	having	to
dig	through	the	ClassDir	to	find	ClassDesc’s.

Parameters:
SClass_ID	super
The	superclass	ID	of	the	plugin.
Class_ID	cls
The	class	ID	of	the	plugin.
Interface_ID	id
The	unique	ID	of	the	interface	object	to	retrieve.

Return	Value:
A	pointer	to	the	Core	interface	object	associated	with	the	specified	class	and
superclass	ID’s.

Geometry	Pipeline	System
See	Also:	Class	ModContext,	Class	ObjectState,	Class	LocalModData,	Class
IDerivedObject,	Class	Object,	Class	INode,	List	of	Channel	Bits,	Class
GeomPipelineEnumProc.

Sub-Topics
The	following	hyperlinks	jump	to	the	beginning	of	sub-topics	within	this
section:
Overview
Pipeline	Details
Instanced	Modifiers
Space	Warps	in	the	Pipeline
ObjectState	Details
Developer	Access	to	the	Pipeline
Channel	Details
Data	Flow	in	the	Pipeline
The	Pipeline	and	the	INode	TM	Methods
A	Note	about	Caching
Modifer	Stack	Branching
Objects	Flowing	Through	the	Pipeline

Overview
An	understanding	of	the	geometric	pipeline	system	is	important	for	developers
creating	plug-ins	that	deal	with	geometry	in	the	scene.	This	section	describes	the
pipeline	system.	A	pipeline	is	the	system	used	by	3ds	max	that	allows	a	node	in
the	scene	to	be	altered,	perhaps	repeatedly,	through	the	application	of	modifiers.
At	the	beginning	of	a	pipeline	is	the	Base	Object.	This	is	a	procedural	object	or
just	a	simple	mesh.	At	the	end	of	a	pipeline	is	the	world	space	state	of	the	object.
This	world	space	state	is	what	appears	in	the	3D	viewports	and	is	rendered.
For	the	system	to	evaluate	the	state	of	the	object	at	the	end	of	the	pipeline,	it
must	apply	each	modification	along	the	way,	from	beginning	to	end.	As	an
example,	say	a	user	creates	a	procedural	cylinder	in	the	scene,	applies	a	Bend
modifier	to	it,	and	then	applies	a	Taper	modifier	to	it.	As	the	system	evaluates
this	pipeline,	it	starts	with	the	state	of	the	cylinder	object.	As	this	object	state
moves	along	the	pipeline,	it	encounters	the	Bend	modifier.	The	system	asks	the
Bend	modifier	to	apply	its	deformation	to	the	object	state.	The	result	of	this
operation	is	passed	as	the	source	into	the	Taper	modifier.	The	Taper	then	applies
its	deformation.	The	result	of	this	operation	is	passed	to	the	system	which
translates	the	result	into	world	space,	and	the	state	of	the	node	in	the	scene	is
complete.
To	maximize	the	speed	that	the	system	can	evaluate	the	state	of	a	node,	the
system	maintains	a	World	Space	Cache	for	each	node	in	the	scene.	This	world
space	cache	is	the	result	of	the	node's	pipeline.	It	reflects	the	state	of	the	object
in	world	space	after	everything	has	been	applied	to	it.	Along	with	the	cache,	the
system	maintains	a	Validity	Interval.	The	validity	interval	indicates	the	period
of	time	over	which	the	cache	accurately	reflects	the	state	of	the	node.
Whenever	a	node	needs	to	perform	an	operation,	such	as	display	itself	at	a
certain	time,	the	system	checks	the	validity	interval	at	that	time	to	see	if	the
cache	is	valid.	If	it	is,	the	operation	is	performed	using	the	cached	representation.
If	it	is	not,	the	pipeline	is	evaluated	and	the	cache	is	made	valid	at	that	time.	The
validity	interval	is	also	updated	to	reflect	the	new	cache.	The	operation	is	then
performed.
As	an	additional	mechanism	to	speed	up	processing,	a	pipeline	is	broken	up	into
Channels.	Channels	allow	modifiers	to	only	alter	certain	portions	of	the	object.
For	example,	there	is	a	separate	channel	for	geometry	(i.e.	the	vertices	of	the
object).	If	a	modifier	only	affects	the	vertices	and	nothing	else,	the	system	has
considerably	less	work	to	do	than	if	it	had	to	reevaluate	the	entire	state	of	the

object	including	its	face	structure,	UV	coordinates,	material	assignments,	etc.
For	example,	the	Bend	modifier	only	affects	the	geometry	channel;	all	the	other
channels	do	not	require	evaluation.
There	are	separate	channels	for	geometry	(vertices),	topology	(face	or	polygon
structures),	texture	vertices	(UV	coordinates),	sub-object	selection,	level	of
selection,	and	display	control.	These	separate	channels	allow	the	cache	system	of
3ds	max	to	be	more	sophisticated.	Instead	of	just	caching	one	global	state	for	the
object,	it	can	cache	separate	portions	of	it	based	on	the	channels.

Pipeline	Details
This	section	discusses	the	details	of	the	3ds	max	pipeline	architecture.	The
concepts	of	Base	Objects,	Derived	Objects,	and	World	Space	Derived	Objects
are	presented.	The	ModContext,	ModApp,	and	ObjectState	are	also	explained.
The	diagram	below	(Figure	1)	shows	the	simple	pipeline	of	a	Cylinder	in	the
scene.	Each	node	in	the	scene	has	a	reference	to	an	object.	In	this	case	the	node's
object	reference	points	directly	to	the	Base	Object.	It	is	the	flow	of	these	object
references	that	represent	the	pipeline.	In	this	case	it's	the	flow	from	the	node's
object	reference	to	the	procedural	cylinder	object	that	stores	the	creation
parameters.

Figure	1.
In	3ds	max	objects	can	be	instanced.	This	means	that	more	than	one	node	can
point	to	the	same	object	reference.	Figure	2	below	shows	two	pipelines.	In	this
case	there	is	a	Cylinder	and	an	instanced	copy	of	it.	Note	how	the	object
reference	of	the	instanced	copy	points	to	the	same	Base	Object	as	the	original.	If
the	creation	parameters	of	the	Cylinder	are	changed,	both	nodes	will	change	in
the	scene	since	they	both	point	at	the	same	Base	Object	which	stores	the	creation
parameters.

Figure	2.
3ds	max	supports	the	application	of	one	or	more	modifiers	to	alter	the	pipeline	in

some	way.	Figure	3	below	shows	the	pipeline	resulting	from	applying	a	Bend
object	space	modifier	to	a	Cylinder.	When	a	modifier	is	first	applied,	a	new
Derived	Object	is	inserted	into	the	node's	pipeline.

Figure	3.
This	arrangement	would	appear	in	MAX's	modifier	stack	as	follows:
Bend

Cylinder

This	indicates	that	the	Base	Object	of	the	pipeline	is	the	Cylinder.	The	----------
indicates	the	start	of	a	Derived	Object.	The	Bend	is	the	modifier	referenced	by
this	Derived	Object.
A	Derived	Object	consists	of	one	or	more	applications	of	modifiers	followed	by
a	reference	to	another	object.	This	other	object	may	be	a	Base	Object	or	another
Derived	Object.	In	Figure	3	above,	the	Derived	Object	has	a	single	application
of	a	modifier.	This	application	of	a	modifier	is	referred	to	as	a	ModApp.	The
ModApp	primarily	consists	of	a	reference	to	a	modifier	--	in	this	case	the	Bend.
Note	that	the	modifier	does	not	sit	within	the	pipeline,	but	is	rather	referenced	by
the	ModApp	within	the	pipeline.
In	addition	to	the	modifier	reference,	the	ModApp	contains	an	instance	of	the

class	ModContext.	In	Figure	3	and	those	that	follow,	the	ModContext	is
represented	by	a	box	labeled	'MC'.	The	ModContext	stores	information	about	the
space	the	modifier	was	applied	in,	and	allows	a	modifier	to	store	data	that	it
needs	for	its	operation.
Specifically,	the	ModContext	stores	three	items	shown	in	Figure	4	and	described
below:

Figure	4.
	The	Transformation	Matrix.	This	matrix	represents	the	space	the	modifier
was	applied	in.	The	modifier	plug-in	uses	this	matrix	when	it	deforms	an
object.	The	plug-in	modifier	first	transforms	the	points	with	this	matrix.	Next
it	applies	its	own	deformation.	Then	it	transforms	the	points	back	through
the	inverse	of	this	transformation	matrix.
	The	Bounding	Box	of	the	Deformation.	This	represents	the	scale	of	the
modifier.	For	a	single	object	it	is	the	bounding	box	of	the	object.	If	the
modifier	is	being	applied	to	a	sub-object	selection	it	represents	the	bounding
box	of	the	sub-object	selection.	If	the	modifier	is	being	applied	to	a	selection
set	of	objects	(and	the	user	interface	'Use	Pivot	Points'	checkbox	is	off),	then
this	is	the	bounding	box	of	the	entire	selection	set.	For	a	selection	set	of
objects	the	bounding	box	is	constant.	In	the	case	of	a	single	object,	the
bounding	box	is	not	constant.	For	example,	if	the	user	applies	a	90	degree
bend	to	a	cylinder,	then	changes	the	height	of	the	cylinder,	one	would	want
the	cylinder	to	still	be	bent	90	degrees.	If	the	bounding	box	did	not	adapt,
the	cylinder	would	appear	to	move	through	the	bend	causing	the	bend	angle
to	be	incorrect.
	A	pointer	to	an	instance	of	a	class	derived	from	LocalModData.	This	is	the
part	of	the	ModContext	that	the	plug-in	developer	controls.	It	is	the	place
where	a	modifier	may	store	application-specific	data.	The	LocalModData

class	has	two	methods	the	derived	class	must	implement.	One	is	a	Clone
procedure	so	the	system	can	copy	a	ModContext.	The	second	is	a	virtual
destructor	so	the	derived	class	can	be	properly	deleted.

More	than	one	modifier	may	be	applied	to	an	object.	Figure	5	below	shows	the
previous	bent	cylinder	with	an	additional	Taper	modifier	applied.

Figure	5.
In	this	case	a	new	ModApp	is	inserted	into	the	existing	Derived	Object.	The
modifier	reference	of	the	new	ModApp	points	to	the	Taper	modifier.
3ds	max	also	allows	Reference	Copies	of	items	in	the	scene.	Note:	the	use	of	the
term	'Reference'	here	is	from	the	3ds	max	user	interface	definition	of	reference	--
not	the	C++	reference	or	the	3ds	max	dependency	reference	meanings.
When	a	Reference	Copy	is	made,	a	new	Derived	Object	is	inserted	into	the
item's	pipeline.	Modifiers	applied	to	the	Reference	Copy	will	have	their
ModApps	inserted	into	the	new	Derived	Object.	You	can	see	this	graphically
illustrated	in	Figure	6.	This	diagram	shows	the	result	of	a	bent	cylinder	being

Reference	Copied	and	having	a	Taper	modifier	applied.	Note	that	the	object
reference	of	the	new	Derived	Object	points	to	the	original	Derived	Object.

Figure	6.
The	modifier	stack	for	Cylinder02	in	Figure	6	would	appear	as:
Taper

Bend

Cylinder

Note	the	two	occurrences	of	the	----------	indicating	that	two	Derived	Objects
are	in	use.	The	original	one	points	to	the	Bend	while	the	new	one	points	to	the
Taper.

Instanced	Modifiers
An	instance	of	the	ModApp	class	exist	in	addition	to	the	modifier	because	the
plug-in	modifier	itself	may	be	instanced	(used	by	several	objects).	When	the	user
applies	a	modifier	to	more	than	one	object,	one	new	instance	of	the	modifier's
class	is	created	and	shared	amongst	the	objects.	Each	object	that	the	modifier	is
applied	to	gets	a	new	ModApp	inserted	into	its	pipeline.	These	ModApps	then
reference	the	same	modifier.
In	the	screen	image	and	diagram	below	(Figures	7	and	8),	the	user	has	selected
two	independent	Cylinders	in	the	scene,	checked	the	'Use	Pivot	Points'	box,	and
applied	a	Bend	modifier.

Figure	7.

Figure	8.
Note	that	each	cylinder	has	its	own	Derived	Object.	The	modifier	reference	of
each	ModApp	points	to	the	same	instanced	modifier	however.	The	ModApp	also
stores	the	ModContext	(labeled	'MC'	in	the	diagrams).	One	data	member	of	this
ModContext	is	the	bounding	box	of	the	deformation.	Because	the	'Use	Pivot
Points'	button	was	checked	at	the	time	the	bend	was	applied,	each	bounding	box
stored	in	the	ModContext	is	the	size	of	each	cylinder	alone.	Additionally,	the
transformation	matrix	of	each	ModContext	reflects	that	the	bend	is	to	be	applied
to	each	cylinder	in	its	own	space.	The	result	is	the	bend	is	applied	locally	and
independently	to	each	cylinder.
Contrast	this	with	the	following	case.	In	the	screen	capture	of	Figure	9	the	user
applied	the	Bend	modifier	to	the	cylinders	as	follows:	First	the	independent
cylinders	were	selected.	Then	the	'Use	Pivot	Points'	button	was	un-checked.
Then	the	Bend	modifier	was	applied.	This	means	the	bend	will	be	applied	to	the
entire	selection	set	as	a	whole.	Note	that	the	cylinders	are	bent	about	a	common
center.

Figure	9.
In	this	case	the	bend	is	applied	relative	to	the	bounding	box	of	both	cylinders.
Thus	the	bounding	box	of	the	ModContexts	are	the	same	for	each	cylinder.	Note
what	happens	if	one	cylinder	is	moved	away	from	the	other	in	the	scene.	The
Modifer	is	selected	so	the	gizmo	shows	the	bounding	box	graphically.	The
bounding	box	remains	the	size	of	both	even	when	the	objects	no	longer	share	the
same	world	space	relationship.

Figure	10.
The	separation	of	the	ModApps	from	the	Modifier	allow	this	flexibility.	The
bounding	box	stored	with	the	ModContext	of	the	ModApp	represents	the	scale
of	the	application	of	the	modifier.	The	transformation	matrix	of	the	ModContext
represents	the	space	the	modifier	was	applied	in.	The	instanced	modifier	just

uses	this	information	to	properly	modify	each	input	object.

Space	Warps	(World	Space	Modifiers)	in	the	Pipeline
This	section	discusses	the	pipeline	of	items	with	World	Space	Modifiers	applied.
Below	is	a	diagram	of	a	Cylinder	and	a	Ripple	Space	Warp	before	the	Cylinder
has	been	bound	to	the	space	warp.

Figure	11.
The	following	diagram	shows	the	pipeline	of	the	Cylinder	after	it	has	been
bound	to	the	Ripple	Space	Warp.

Figure	12.
The	modifier	stack	for	this	condition	would	appear	as	follows:
Ripple	Binding
==========

Cylinder
The	Cylinder	is	the	Base	Object.	The	==========	represents	the	beginning	of
a	WSM	Derived	Object.	The	Ripple	Binding	is	the	actual	application	of	the
world	space	modifier.
When	the	Cylinder	is	bound	to	the	Ripple	a	new	WSM	Derived	Object	is
inserted	into	the	Cylinder's	pipeline.	The	WSM	Derived	Object	is	similar	to	the
Derived	Objects	that	hold	object	space	modifier	ModApps	except	that	these	are
contained	in	a	specific	node	(WSM	Derived	Object	is	in	fact	the	exact	same
class	as	Derived	Object	except	for	the	ClassID()).	Since	they	are	associated
with	a	specific	node,	they	cannot	be	instanced.
The	modifier	reference	of	the	ModApp	points	to	a	newly-created	WSM
Modifier.	This	WSM	Modifier	usually	has	a	references	to	the	node	in	the	scene.
In	this	case	it	is	to	the	Ripple01	node.	This	reference	is	used	to	retrieve	the
position	of	the	node	(from	the	node's	world	space	transformation	matrix).	It	uses
this	matrix	to	transform	the	points	of	the	object	it	is	deforming	into	the	space	of
the	WSM	object	where	it	actually	performs	the	deformation.	For	additional
information	on	Space	Warp	plug-ins	see	the	Advanced	Topics	section	Space
Warp	Plug-Ins.

ObjectState	Details
The	object	state	is	the	structure	that	flows	up	the	pipeline.	When	the
Object::Eval()	method	is	called	on	an	object	or	a	derived	object,	it	returns	an
ObjectState.	This	is	passed	from	one	object	reference	to	the	next.	The
ObjectState	contains	these	elements:
	A	pointer	to	the	object	in	the	pipeline.	A	modifier	will	often	refer	to	the
object	in	the	pipeline	using	this	pointer.	The	object	pointer	is	a	public	data
member	and	is	defined	as:	Object	*obj;
	A	matrix.	If	an	object	cannot	convert	itself	to	a	deformable	type,	3ds	max
deforms	a	matrix	instead.	After	the	matrix	is	deformed,	it	is	converted	back
into	an	=	4)	BSPSPopupOnMouseOver(event);;">orthonormal	matrix	using
an	iterative	process	that	'averages'	the	axis.	All	objects	are	supposed	to	be
able	to	convert	themselves	to	TriObjects	(which	are	deformable)	so	in
general	this	is	not	used.	However	in	the	case	of	cameras	and	lights	it	doesn't
make	sense	to	convert	them	to	TriObjects	so	this	is	how	they	are	deformed.
You	can	see	an	example	of	this	by	binding	a	camera	to	a	space	warp	like
ripple.	The	camera	will	bounce	up	and	down	as	it	is	'deformed'	by	the	space
warp.
	Flags	for	channels	that	are	Boolean	type.	Developers	do	not	need	to	be
concerned	with	these	flags.
	A	material	index.	This	is	no	longer	used.

See	Class	ObjectState	for	details	on	the	methods	dealing	with	the	ObjectState.

javascript:BSSCPopup('idx_orthonormal_matrix.htm');

Developer	Access	to	the	Pipeline
This	section	discusses	how	a	developer	can	access	and	work	with	the	results	of
the	pipeline.
There	is	an	API	available	to	retrieve	the	result	of	a	node's	pipeline.	This	is
INode::EvalWorldState().

Prototype:
virtual	const	ObjectState&	EvalWorldState(TimeValue
time,BOOL	evalHidden=TRUE)=0;

This	returns	the	result	of	the	node's	pipeline	just	as	it	appears	in	the	scene.	This
may	not	return	an	object	that	a	developer	has	a	reference	to	--	it	may	just	be	an
object	that	has	flowed	down	the	pipeline.	For	example,	if	there	is	a	Cylinder	in
the	scene	that	has	a	Bend	and	Taper	applied,	EvalWorldState()	would	return
an	ObjectState	containing	a	TriObject.	This	is	the	result	of	the	cylinder	turning
into	a	TriObject	and	being	bent	and	tapered.	See	Class	INode.
If	a	developer	needs	to	access	the	object	that	the	node	in	the	scene	references,
then	the	method	INode::GetObjectRef()	should	be	used	instead.	See	INode	-
Object	Reference	Methods.
Class	IDerivedObject	also	allows	a	developer	to	create	derived	objects	and
add	and	delete	modifiers.	To	access	the	pipeline	of	a	node	in	the	scene	first
retrieve	the	object	reference	using	INode::GetOjbectRef().	Given	this
Object	pointer	check	its	SuperClassID	to	see	if	it	is
GEN_DERIVOB_CLASS_ID.	If	it	is,	you	can	cast	it	to	an
IDerivedObject.	See	Class	IDerivedObject	for	more	details.

Channel	Details
Channels	allow	modifiers	to	only	alter	certain	portions	of	the	object.	The
pipeline	is	divided	into	the	following	channels:
List	of	Channel	Bits
Modifiers	have	the	option	of	only	modifying	specific	channels.	The	main
purpose	of	this	is	to	allow	MAX's	caching	system	to	be	more	sophisticated.
Individual	caches	can	be	constructed	for	different	channels	at	different	points
along	the	pipeline.	So	for	example,	if	the	texture	coordinate	portion	of	the
pipeline	changes,	and	the	geometric	portion	of	the	pipeline	is	cached,	the
geometry	portion	won't	need	to	be	reevaluated.	This	means	that	modifiers	that
only	depend	on	geometry	may	not	need	to	be	reevaluated.
It	is	up	to	the	object	to	define	the	meaning	of	the	channels.	Take	the
TOPO_CHANNEL	for	example.	For	a	TriObject	the	topology	is	the	face
structure,	the	materials,	and	the	smoothing	information.	For	a	SplineShape	the
topology	is	undefined.	This	is	because	a	SplineShape	is	essentially	just	an
array	of	points	and	has	no	topology.

Data	Flow	in	the	Pipeline	-	An	Example
This	section	presents	a	detailed	look	at	the	flow	of	the	pipeline	from	the	Base
Object	to	the	resulting	World	Space	Cache.	This	includes	the	derived	objects	of
the	object	space	portion	of	the	pipeline,	the	application	of	the	node's	transform
controller,	and	through	the	world	space	portion	of	the	pipeline.
Figure	13	below	is	a	diagram	showing	a	procedural	Cylinder	with	a	Bend
modifier	applied,	and	bound	to	a	Ripple	space	warp.

Figure	13.

The	data	flow	in	the	pipeline	follows	the	Object	References.	In	the	example
above,	the	Cylinder01	Node	has	an	Object	Reference	pointing	to	the	WSM
Derived	Object.	Its	Object	Reference	points	to	the	Derived	Object.	Its	Object
Reference	points	to	the	Cylinder	Base	Object.	This	is	the	path	the	data	follows	as
it	moves	along	the	pipeline.
The	actual	object	that	flows	between	these	references	is	an	ObjectState.	This
ObjectState	is	the	result	of	the	Object::Eval()	method	being	called	on	the
Object	Reference.	Below	is	a	description	of	the	flow	of	this	ObjectState	along
the	pipeline	starting	at	the	procedural	cylinder	base	object.
This	pipeline	starts	at	the	Base	Object	--	the	procedural	Cylinder.	The	system
asks	the	cylinder	to	evaluate	itself.	In	the	cylinder's	implementation	of
Object::Eval(),	it	simply	returns	itself	(return	ObjectState(this);).	It
returns	this	ObjectState	to	the	next	Object	Reference	in	the	pipeline.	This	is	the
Object	Reference	of	the	Derived	Object.
The	Derived	Object	sends	this	ObjectState	through	each	of	its	ModApps.	In	this
example,	the	only	ModApp	is	for	the	Bend	Modifier.	The	Bend	requires
Deformable	objects	(it	indicates	this	in	its	implementation	of
Modifier::InputType()).	The	ModApp	handles	converting	the	object	to	the
appropriate	type	for	the	Modifier.	The	cylinder	is	asked	to	convert	itself	to	a
Deformable	object.	It	does	this	in	its	implementation	of
Object::ConvertToType()	by	creating	a	new	TriObject	and	setting	the
TriObject's	mesh	pointer	to	point	at	the	cylinder's	triangle	mesh.
This	Deformable	TriObject	is	then	sent	through	the	Bend	Modifier.	The	Bend	is
passed	the	ModApp's	ModContext	as	an	argument	to	its
Modifier::ModifyObject()	method.	The	Bend	first	modifies	the	points	of	the
TriObject	using	the	transformation	matrix	of	the	ModContext.	This	puts	the
object	into	the	space	the	modifier	was	applied	in.	Next	the	Bend	applies	its
deformation	to	the	points	(it	bends	them).	Then	the	Bend	modifies	the	points	of
the	TriObject	by	the	inverse	of	the	ModContext	transformation	matrix.	This
restores	the	object,	excepting	it	now	has	the	bend	effect	applied.
At	this	point,	the	Derived	Object	returns	the	result	to	the	next	Object	Reference
in	the	pipeline.	In	this	case	the	result	is	a	TriObject	that	has	been	bent.	It	is
returned	to	the	Object	Reference	of	a	World	Space	Derived	Object.
This	juncture	between	the	Derived	Object	and	the	World	Space	Modifier
Derived	Object	is	where	the	pipeline	crosses	from	object	space	to	world	space.
At	this	point	the	result	of	the	node's	transform	controller,	and	the	object	offset

transformation	are	put	into	the	pipeline.	For	more	details	on	these	various	TMs
see	the	Advanced	Topics	section	on	Node	and	Object	Offset	Transformations.
To	understand	how	the	node's	transform	controller	and	the	object	offset
transformation	are	put	into	the	ObjectState	we	need	to	take	a	look	at	the
ObjectState	TM.	There	is	a	TM	that	is	part	of	the	ObjectState	that	flows	up	the
pipeline.	This	TM	starts	as	the	identity	matrix.	The	first	thing	that	happens	is	this
TM	goes	through	the	object	space	pipeline.	At	this	time,	any	modifiers	that	need
to	be	applied	to	it	are	applied.	In	most	cases	no	modifiers	are	applied.	However,
if	the	object	flowing	through	the	pipeline	is	Deformable	but	has	no	points	to
deform	(such	as	a	camera),	then	modifiers	acting	on	Deformables	may	be
applied	to	it.	This	is	because	cameras	are	deformable,	but	don't	have	'points'	to
deform	(i.e.	there	is	no	'mesh'	associated	with	a	camera).	Since	there	are	no
points,	this	matrix	is	deformed	instead.
At	the	end	of	the	object	space	portion	of	the	pipeline,	out	comes	the	ObjectState
and	its	TM.	Usually	this	TM	is	the	identity,	but	at	times	(like	with	the	camera)	it
is	not.
Now	the	node's	transform	controller	TM	must	be	taken	into	account.	The
transform	controller's	TM	is	the	result	of	taking	the	node's	parent's	TM,	and
passing	it	into	the	transform	controller's	Control::GetValue()	method.	The
controller	applies	its	relative	effect	to	this	matrix,	and	the	result	is	the	Node	TM.
To	the	Node	TM,	the	object	offset	transformation	is	applied.	This	result	is	then
multiplied	by	the	ObjectState	TM	that	resulted	from	the	object	space	portion	of
the	pipeline.	This	resulting	matrix	is	then	stored	back	in	the	ObjectState	TM.
Note	that	this	TM	is	not	applied	to	the	object	yet	--	it	is	only	carried	by	the
ObjectState.
At	this	point	we	have	the	node's	transform	controller	and	the	object	offset
transformation	stored	in	the	ObjectState	TM.
Now	comes	the	world	space	portion	of	the	pipeline	and	the	world	space
modifiers	--	we've	reached	the	first	ModApp	of	the	WSM	Derived	Object.	The
first	World	Space	Modifier	transforms	the	object's	points	by	this	ObjectState
TM.	It	does	this	because	it	does	its	deformation	in	world	space,	and	applying	the
ObjectState	TM	puts	the	object	into	world	space.	This	happens	automatically	for
deformables.	If	the	TM	does	not	get	applied	to	the	object	(for	example	for	a
camera)	the	TM	will	continue	to	get	deformed	by	the	world	space	modifiers.	As
soon	as	this	TM	is	applied	to	the	object	points,	the	TM	gets	set	to	the	identity
matrix.	At	this	time,	the	points	of	the	object	have	been	transformed	into	world

space.
Next	the	ObjectState	is	passed	to	the	Ripple	Modifier	for	it	to	apply	its	effect.
The	Ripple	modifier	has	a	reference	to	the	Ripple	Object	Node	in	the	scene.	It
uses	this	reference	to	get	the	Object	TM	of	the	Ripple	Node.	It	needs	this
because	this	is	the	space	it	is	going	to	apply	the	ripple	effect	in.	The	Ripple
Modifier	also	uses	its	reference	to	the	Ripple	Node	to	get	the	parameters	of	the
Ripple	WSM	Object.
The	Ripple	Modifier	uses	this	data,	and	applies	its	ripple	affect.	The	result	at	this
point	is	a	TriObject	with	the	Bend	and	Ripple	applied.	This	ObjectState	is
returned	to	the	next	Object	Reference	in	the	pipeline.	This	is	the	Object
Reference	of	the	node	in	the	scene.
The	node	maintains	an	ObjectState	that	is	effectively	the	world	space	cache.	This
world	space	cache	is	the	storage	for	the	result	of	the	pipeline.	Associated	with
this	cache	is	a	validity	interval.	When	the	system	needs	the	result	of	a	node's
pipeline,	it	checks	to	see	if	the	validity	interval	of	the	cache	is	valid.	If	it	is,	the
cached	representation	is	used.	If	it	is	not,	the	pipeline	is	evaluated	and	the	cache
is	made	valid.	The	validity	interval	is	updated,	and	the	cached	ObjectState	is
returned.

The	Pipeline	and	the	INode	TM	Methods
This	section	discusses	the	INode	methods	GetObjectTM(),
GetObjTMBeforeWSM()	and	GetObjTMAfterWSM()	and	their
relationship	to	the	pipeline.
The	INode::GetObjectTM()	method	returns	a	matrix	that	is	used	to
transform	the	points	of	the	object	from	object	space	to	world	space.	Let's	look	at
an	example	of	how	this	method	is	used.	Consider	how	the	cylinder	node	is
drawn	in	the	scene.	The	cylinder	draws	itself	in	its	BaseObject::Display()
method.	Into	this	method	is	passed	an	INode	pointer.	What	the	implementation
of	Display()does	is	call	INode::GetObjectTM().	This	method	returns	the
matrix	that	is	used	to	transform	the	points	of	the	object	from	object	space	to
world	space.	The	Display()	method	then	takes	the	matrix	returned	from
GetObjectTM()	and	sets	it	into	the	graphics	window	(using
GraphicsWindow::setTransform()).	In	this	way,	when	the	object	starts
drawing	points	in	object	space,	they	will	be	transformed	with	this	matrix.	This
puts	them	into	world	space	as	they	are	drawn.
Below	is	the	code	from	the	SimpleObject	implementation	of
BaseObject::Display().	This	is	the	code	that	the	cylinder	uses	to	draw	itself.
Note	the	GetObjectTM(t)	and	setTransform(mat)	calls.
int	SimpleObject::Display(TimeValue	t,	INode*	inode,
	ViewExp	*vpt,	int	flags)
	{
	if	(!OKtoDisplay(t))	return	0;
	GraphicsWindow	*gw	=	vpt->getGW();
	Matrix3	mat	=	inode->GetObjectTM(t);
	UpdateMesh(t);	//	UpdateMesh	just	calls	BuildMesh()	if	req'd	at
time	t.
	gw->setTransform(mat);
	mesh.render(gw,	inode->Mtls(),
		(flags&USE_DAMAGE_RECT)	?	&vpt->GetDammageRect()	:
NULL,
		COMP_ALL,	inode->NumMtls());
	return(0);
	}

There	is	a	case	when	world	space	modifiers	are	applied	to	an	object	where	the
points	of	the	object	may	have	already	been	transformed	into	world	space.	If	a
world	space	modifier	has	been	applied,	the	points	of	the	object	may	have	already
been	transformed	into	world	space	and	then	deformed	by	the	world	space
modifier.	With	the	bent,	rippled,	cylinder	example	above,	this	is	exactly	what	has
happened.	When	the	ripple	space	warp	was	applied,	the	points	of	the	object	were
transformed	into	world	space.	In	this	case,	the	points	should	not	be	transformed
into	world	space	again	when	they	are	drawn	(since	they	were	already	by	the
space	warp).	The	problem	is,	the	object	does	not	know	if	it	has	been	transformed
into	world	space	or	not.
The	way	3ds	max	handles	this	situation	is	by	storing	some	state	information	with
the	node.	Before	the	system	calls	Display(),	HitTest(),	etc.	on	the	object	it	sets
a	flag.	The	flag	indicates	if	the	object	has	already	been	transformed	into	world
space.	The	GetObjectTM()	method	looks	at	this	flag	to	determine	the	proper
matrix	to	return.	In	this	way,	when	GetObjectTM()	is	called,	it	returns	the
matrix	the	object	needs	to	be	multiplied	by	in	order	to	get	into	world	space.	If
the	object	is	already	in	world	space	it	will	return	the	identity	matrix.	If	it's	not	in
world	space,	it	will	return	the	matrix	to	get	it	there.	So	all	any	objects	need	to	do
in	their	Display()	methods	is	call	GetObjectTM()	and	use	whatever	matrix	is
returned.
There	may	be	times	when	a	developer	needs	to	access	the	full	object	TM
regardless	of	whether	the	points	of	the	object	have	been	transformed	into	world
space	already.	For	example,	if	a	developer	was	creating	a	utility	plug-in	to	align
two	objects.	In	this	case,	the	developer	would	need	to	get	the	full	object	TM
including	the	NodeTM	and	the	object	offset	transformation.	It	would	not	matter
if	the	points	of	the	object	had	already	been	transformed	into	world	space,	the	TM
is	what	matters.	In	this	case	GetObjectTM()	would	not	work.	This	is	because
it	returns	the	identity	matrix	if	the	object	is	already	in	world	space.
To	solve	this	problem	3ds	max	provides	two	other	INode	methods	that	may	be
used.
GetObjTMBeforeWSM()
This	method	explicitly	gets	the	full	NodeTM	and	object-offset	transformation
affect	before	the	affect	of	any	world	space	modifiers.
GetObjTMAfterWSM().
This	method	explicitly	gets	the	full	NodeTM	and	object-offset	transformation
and	world	space	modifier	affect	unless	the	points	of	the	object	have	already

been	transformed	into	world	space	in	which	case	it	will	return	the	identity
matrix.

Using	these	methods	a	developer	has	complete	access	to	any	transformation
matrix	they	require.	Below	is	a	code	example	that	uses	all	these	methods.	This
function	computes	the	bounding	box	of	the	first	object	in	the	current	selection
set	at	the	current	time.	It	removes	anything	but	scaling	from	the	Object	TM.	In
this	way	rotation	of	the	node	will	not	affect	the	bounding	box.
To	do	this	we	first	need	to	determine	if	the	object	is	in	world	space	or	in	object
space.	Since	we	are	after	the	object	space	bounding	box	(and	will	later	apply
scaling)	we	need	to	convert	the	TM	back	into	object	space	if	it	is	in	world	space.
To	check	if	the	object	is	in	world	space	we	call	GetObjTMAfterWSM().	If
this	matrix	is	the	identity	we	know	we	are	in	world	space.	This	is	because	when
the	points	of	the	object	get	transformed	by	the	ObjectState	TM	to	put	them	into
world	space	the	ObjectState	TM	is	set	to	the	identity.	Therefore	if	the	matrix	is
the	identity	we	are	in	world	space.
If	the	object	is	in	world	space	we	need	to	compute	the	object	space	TM.	We	can
do	this	by	taking	the	inverse	of	the	world	space	TM.
If	the	object	is	not	in	world	space	we	just	need	to	get	its	object	TM	by	calling
GetObjectTM().
Once	we	have	the	object	space	TM	we	want	to	extract	just	the	scaling	portion	of
the	matrix.	3ds	max	provides	a	set	of	APIs	that	make	this	easy.	This	is	done	by
calling	decomp_affine().	This	function	decomposes	a	matrix	into	its
translation,	rotation	and	scaling	components.	See	Structure	AffineParts	for	more
details.
Once	we	have	the	scaling	portion	of	the	matrix	we	can	get	the	bounding	box	and
apply	the	scaling	by	calling	GetDeformBBox().
void	Utility::ComputeBBox(Interface	*ip)	{
	if	(ip->GetSelNodeCount())	{
		INode	*node	=	ip->GetSelNode(0);
		Box3	box;	//	The	computed	box
		Matrix3	mat;	//	The	Object	TM
		Matrix3	sclMat(1);	//	This	will	be	used	to	apply	the	scaling
		//	Get	the	result	of	the	pipeline	at	the	current	time
		TimeValue	t	=	ip->GetTime();
		Object	*obj	=	node->EvalWorldState(t).obj;

		//	Determine	if	the	object	is	in	world	space	or	object	space
		//	so	we	can	get	the	correct	TM.	We	can	check	this	by	getting
		//	the	Object	TM	after	the	world	space	modifiers	have	been
		//	applied.	It	the	matrix	returned	is	the	identity	matrix	the
		//	points	of	the	object	have	been	transformed	into	world	space.
		if	(node->GetObjTMAfterWSM(t).IsIdentity())	{
			//	It's	in	world	space,	so	put	it	back	into	object
			//	space.	We	can	do	this	by	computing	the	inverse
			//	of	the	matrix	returned	before	any	world	space
			//	modifiers	were	applied.
			mat	=	Inverse(node->GetObjTMBeforeWSM(t));
		}
		else	{
			//	It's	in	object	space,	get	the	Object	TM.
			mat	=	node->GetObjectTM(t);
		}
		//	Extract	just	the	scaling	part	from	the	TM
		AffineParts	parts;
		decomp_affine(mat,	&parts);
		ApplyScaling(sclMat,	ScaleValue(parts.k*parts.f,	parts.u));
		//	Get	the	bound	box,	and	affect	it	by	just
		//	the	scaling	portion
		obj->GetDeformBBox(t,	box,	&sclMat);
		//	Show	the	size	and	frame	number
		float	sx	=	box.pmax.x-box.pmin.x;
		float	sy	=	box.pmax.y-box.pmin.y;
		float	sz	=	box.pmax.z-box.pmin.z;
		TSTR	title;
		title.printf(_T("Result	at	frame	%d"),
			t/GetTicksPerFrame());
		TSTR	buf;
		buf.printf(_T("The	size	is:	(%.1f,	%.1f,	%.1f)"),	sx,	sy,	sz);
		MessageBox(NULL,	buf,	title,
MB_ICONINFORMATION|MB_OK);

	}
}

A	Note	About	Caching
The	full	details	of	the	3ds	max	pipeline	cache	system	are	beyond	what	a
developer	needs	to	understand	to	effectively	work	with	the	pipeline.	There	is
however	one	detail	that	may	be	useful	for	a	Modifier	that	is	being	adjusted
interactively.
While	a	modifier	is	being	edited,	in	its	implementation	of	LocalValidity(),	it
can	return	NEVER.	This	forces	a	cache	to	be	built	after	the	previous	modifier.
For	example,	the	SimpleMod	class	does	this.	The	pipeline	will	try	to	put	a
cache	after	something	that	is	relatively	constant	but	before	something	that	is
changing	a	lot.	If	a	modifier	for	its	local	validity	starts	returning	NEVER,	this
will	cause	a	cache	to	be	created	before	it.	This	is	useful	if	a	modifier	is	being
edited	interactively.	In	this	way,	the	system	does	not	have	to	evaluate	the	whole
pipeline.	This	can	considerably	improve	the	interactivity.
After	the	modifier	is	done	being	edited,	if	the	modifier	is	not	animated,	there	is
no	need	to	have	a	cache	before	it.	Therefore	after	the	modifier	is	done	being
edited,	it	can	stop	returning	NEVER	for	LocalValidity().	Below	is	a	code
fragment	from	the	SimpleMod	implementation	of	LocalValidity()	where	this
is	being	done:
Interval	SimpleMod::LocalValidity(TimeValue	t)
	{
	//	If	we	are	being	edited,	return	NEVER	to	forces	a	cache	to
	//	be	built	after	previous	modifier.
	if	(TestAFlag(A_MOD_BEING_EDITED))
		return	NEVER;
	...

Modifier	Stack	Branching
Compound	objects	such	as	the	boolean	object	and	the	lofter	can	actually	cause
the	pipeline	to	branch.	See	the	advanced	topics	section	on	Modifier	Stack
Branching	for	the	details	on	the	methods	a	compound	object	uses	to	implement
branching	in	the	pipeline.

Objects	Flowing	through	the	Pipeline
Certain	plug-in	objects	flow	through	the	pipeline.	Examples	are	both	the
TriObject	and	the	PatchObject.	Most	plug-ins	do	not	however	because	they
convert	themselves	to	TriObjects	or	PatchObjects	and	these	objects	flow
through	the	pipeline.	For	developers	creating	objects	that	flow	through	the
pipeline	there	are	some	pipeline	concepts	and	specific	methods	that	must	be
understood.	These	are	discussed	in	this	section.
Most	of	these	methods	relate	to	minimizing	the	amount	of	overhead	present
within	the	system	when	the	object	is	flowing	through	the	pipeline.	To	be	as
efficient	as	possible	the	system	will	try	not	to	create	any	extra	copies	of	the
object	flowing	down	the	pipeline.	Additionally,	the	object	is	broken	into
channels	and	the	individual	channel	copying	is	kept	to	a	minimum.
To	accomplish	this,	the	system	uses	a	set	of	'locks'	that	indicate	when	it	is	not
okay	to	free	memory	or	modify	the	objects.	The	object	lock	and	channel	lock
methods	are	implemented	and	called	by	the	system.	The	plug-in	developer
implements	methods	to	maintain	validity	intervals	for	the	channels,	create	new
copies	of	channels	as	needed,	and	free	the	memory	associated	with	channels	that
are	no	longer	needed.	Again,	the	main	purpose	of	this	is	to	minimize	the
overhead	of	the	object	flowing	down	the	pipeline.
Every	object	has	what	is	referred	to	as	its	"shell".	The	shell	has	channels	within
it.	Example	channels	are	the	geometry	channel	named	GEOM_CHANNEL
(typically	an	array	of	vertices)	or	the	topology	channel	named
TOPO_CHANNEL	(typically	an	array	of	faces).	Some	channels	are	always
present	in	the	shell.	For	example	the	SUBSEL_TYPE_CHANNEL,
SELECT_CHANNEL	and	DISP_ATTRIB_CHANNEL	state	channel	are
each	just	a	single	value.	These	are	not	allocated	or	de-allocated	dynamically,	and
are	always	present.	Other	channels	like	the	GEOM_CHANNEL,
TOPO_CHANNEL,	and	TEXMAP_CHANNEL	are	allocated
dynamically	so	the	system	tries	to	not	have	extra	copies	of	them	when	possible.
The	following	methods	from	class	Object	deal	with	the	state	of	the	shell.	These
methods	are	implemented	and	called	by	the	system.
void	LockObject()
This	method	locks	the	object	as	a	whole.
void	UnlockObject()
This	method	unlocks	the	object	as	a	whole.

int	IsObjectLocked()
Returns	nonzero	if	the	object	is	locked;	otherwise	0.

If	the	shell	is	locked	then	it	should	not	be	deleted	by	the	pipeline.	For	example,	a
sphere	in	the	pipeline	will	be	locked.	This	is	because	it	exists	in	the	scene	and
thus	should	not	be	deleted.	If	a	bend	modifier	was	applied	to	the	sphere,	then	the
sphere	would	convert	itself	to	a	TriObject.	This	TriObject	is	flowing	down	the
pipeline	and	is	just	a	temporary	object.	This	object	will	be	unlocked	meaning
that	it	may	be	deleted.	This	is	true	unless	a	ModApp	decides	to	cache	it.	In	this
case	it	will	become	locked	because	the	ModApp	has	taken	ownership	of	it	and
therefore	it	should	not	be	deleted.	Note	that	these	methods	are	implemented	and
called	by	the	system	and	not	the	plug-in	object.	They	simply	manipulate	a
private	data	member	inside	the	Object	class.
There	is	a	related	topic	to	discuss	--	channel	locking.	This	is	not	the	locking	of
the	object	as	a	whole	(as	described	above)	but	rather	the	locking	of	only	certain
channels	within	the	object.	For	example,	a	ModApp	may	have	the	geometry
channel	cached	(say	it	has	an	array	of	vertices	cached	somewhere	in	the
pipeline).	When	the	system	is	evaluating	this	pipeline,	if	it	notices	a	certain
channel	it	requires	is	cached,	instead	of	evaluating	the	rest	of	the	pipeline,	it	will
use	the	cache.	It	will	do	what	is	called	a	shallow	copy	of	the	cached	channel	into
the	object	going	down	the	pipeline.	This	is	just	copying	the	pointer	to	the	cached
channel	into	the	object	flowing	down	the	pipeline.	So	essentially	there	are	two
TriObjects	whose	geometry	channels	are	both	pointing	to	the	same	array	of
vertices.	This	reduces	the	memory	overhead	required	because	instead	of	copying
the	whole	array	of	vertices	there	are	essentially	two	meshes	that	are	sharing	the
same	block	of	memory.	Again	this	is	referred	to	as	a	shallow	copy.	The	system
(MAX)	takes	care	of	all	of	this.	It	carefully	keeps	track	of	who	owns	what	so
things	don't	get	deleted	twice	or	get	deleted	when	still	being	used.
The	channel	lock	methods	below	deal	with	this	system.	These	methods	are
implemented	and	called	by	the	system	and	not	the	plug-in	object.	They	simply
manipulate	a	private	data	member	inside	the	Object	class.
void	LockChannels(ChannelMask	channels)
Locks	the	specified	channels	of	the	object.
void	UnlockChannels(ChannelMask	channels)
Unlocks	the	specified	channels	of	the	object.
ChannelMask	GetChannelLocks()
Returns	the	locked	status	of	the	channels.

void	SetChannelLocks(ChannelMask	channels)
Sets	the	locked	status	of	the	object's	channels.
ChannelMask	GetChannelLocks(ChannelMask	m)
Returns	the	locked	status	of	the	specified	channels.

If	a	channel	is	locked,	this	means	that	the	object	does	not	own	the	channel	and	it
should	not	free	it.	If	the	channel	is	unlocked,	this	means	the	object	does	own	it,
and	it	may	free	it.	A	channel	that	is	locked	should	also	not	be	modified.	For
example,	if	a	channel	that	was	cached	upstream	in	the	pipeline	was	modified,	the
cached	version	would	not	be	correct	anymore.	The	locking	of	the	cached	channel
prevents	this	modification	from	happening.
The	ChannelMask	that	appears	in	the	above	methods	is	an	unsigned	long.
Each	channel	is	represented	by	a	bit.	Note:	Developers	must	not	get	confused
between	channel	numbers	(TOPO_CHAN_NUM,	GEOM_CHAN_NUM,
etc.)	and	channel	bits	(TOPO_CHANNEL,	GEOM_CHANNEL,	etc.).
Some	methods	refer	to	the	channel	by	number	and	some	by	bit.	Developers	must
not	confuse	these	two	as	the	compiler	will	not	catch	this	as	an	error.
The	meaning	of	the	channels	are	defined	by	the	object.	The	three	main	channels
(those	that	get	allocated	dynamically)	are	the	GEOM_CHANNEL,
TOPO_CHANNEL,	and	the	TEXMAP_CHANNEL.	The	other	channels
are	always	present.	The	developer	must	determine	what	part	of	their	object	falls
into	the	GEOM_CHANNEL,	TOPO_CHANNEL,	and	the
TEXMAP_CHANNEL.	The	TriObject	defines	the	GEOM_CHANNEL	to
mean	the	points	or	vertices	of	the	mesh.	The	TriObject	defines	the
TOPO_CHANNEL	to	mean	the	face	or	polygon	structures.	This	includes	the
smoothing	groups	and	materials	as	well.
It	is	up	to	the	object	flowing	down	the	pipeline	to	store	validity	intervals	for	each
channel.	Consider	a	sphere	object	with	an	animated	radius	parameter.	The
validity	interval	for	the	geometry	channel	for	this	sphere	will	be	instantaneous
(valid	for	a	single	TimeValue).	This	is	because	the	radius	is	animated	and	is
thus	always	changing.	However	the	topology	channel	of	the	sphere	is	never
changing.	Therefore	the	validity	interval	for	the	topology	channels	will	be
FOREVER.	See	the	Advanced	Topics	section	on	Intervals	for	more	details.
The	methods	below	are	implemented	by	the	developer	of	the	plug-in	object
unless	noted	otherwise.
virtual	Interval	ChannelValidity(TimeValue	t,	int	nchan);

Retrieve	the	current	validity	interval	for	the	nchan	channel	of	the	object.
virtual	void	SetChannelValidity(int	nchan,	Interval	v);
Sets	the	validity	interval	of	the	specified	channel.
void	UpdateValidity(int	nchan,	Interval	v);
Implemented	by	the	system.	This	method	is	called	to	AND	in	interval	v	to	the
specified	channel	validity.
virtual	void	InvalidateChannels(ChannelMask	channels);
This	method	invalidates	the	intervals	for	the	given	channel	mask.	This	just	sets
the	validity	intervals	to	empty	(calling	SetEmpty()	on	the	interval)	.

At	certain	times	the	system	must	ask	the	plug-in	object	to	prepare	certain
channels	for	modification.	For	example,	if	a	channel	is	cached	upstream	in	the
pipeline,	and	was	modified,	the	cached	version	would	be	modified	as	well	(since
they	both	point	to	the	same	memory).	This	would	confuse	the	system	and	thus
locked	channels	must	not	be	modified.	If	the	system	needs	to	modify	one	of	the
channels	it	will	call	the	following	method	implemented	by	the	system.
void	ReadyChannelsForMod(ChannelMask	channels);
This	method	is	used	to	make	the	channels	specified	by	the	channel	mask
writable.

As	mentioned	above,	a	channel	that	is	locked	should	not	be	modified.	This
method	will	take	the	channels	that	are	locked	and	allocate	a	new	block	of
memory	for	them.	It	will	then	copy	the	locked	channels	into	the	new	block	of
memory	and	set	the	new	memory	as	the	current	channel.	Then	it	will	unlock	the
channel.	It	does	this	by	calling	NewAndCopyChannels()	which	is
implemented	by	the	plug-in	and	is	described	below.	In	this	way	the	system	can
modify	the	channels	and	not	affect	the	cached	copy	as	they	no	longer	point	to	the
same	memory.
The	following	methods	also	deal	with	the	allocation	and	copying	of	object
channels.	These	methods	are	implemented	by	the	plug-in.
virtual	Object	*MakeShallowCopy(ChannelMask	channels);
This	method	creates	a	new	shell	and	then	shallow	copies	in	the	channels	that
are	specified.
virtual	void	ShallowCopy(Object*	fromOb,	ChannelMask
channels);
This	method	is	passed	the	shell,	and	it	copies	the	specified	channels	into	it.
The	shallow	copy	just	copies	the	pointers	(for	example,	the	vertices	pointer	or

the	faces	pointer).
virtual	void	NewAndCopyChannels(ChannelMask	channels);
This	method	takes	the	channels	specified	and	clones	them,	and	makes	them
read	only	(by	locking	them).
virtual	void	FreeChannels(ChannelMask	channels);
This	method	deletes	the	memory	associated	with	the	specified	channels	and
set	the	intervals	associated	with	the	channels	to	invalid	(empty).

The	following	method	is	related	to	caching	and	shallow	copying.	This	method	is
only	implemented	by	particle	systems.	Particle	systems	bypass	a	lot	of	how	the
pipeline	works	and	so	they	implement	this	method	to	ensure	that	they	are	never
cached.	Particle	systems	handle	their	own	caching	mechanism.	All	objects	other
than	particle	system	can	use	the	default	implementation	which	returns	TRUE.
Particles	can	override	this	and	return	FALSE.
virtual	BOOL	CanCacheObject()	{return	TRUE;}
Developers	that	have	an	object	that	flows	down	the	pipeline	may	want	to	take
a	look	at	the	source	code	for	the	TriObject	which	provides	implementations
of	all	the	methods	discussed	above.	This	code	is	available	in
\MAXSDK\SAMPLES\HOWTO\MISC\TRIOBJECT.CPP.

Getting	and	Setting	User	Preferences
See	Also:	Class	Interface,	Class	ViewExp,	Class	Point3.

Overview
This	section	provides	an	overview	of	the	global	functions,	classes	and	methods
used	to	retrieve	and	set	the	user	preferences	of	MAX.	Many	of	these	are	from	the
various	pages	of	the	Customize	/	Preferences...	dialog.

User	Interface	Colors
A	3ds	max	user	may	set	various	colors	in	the	user	interface	via	the	settings	in
the	Customize…	Preferences…	Color	tab	dialog.	A	developer	may	access	and
set	these	settings	using	the	following	global	functions:

Prototype:
Point3	GetUIColor(int	which);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
Returns	the	specified	color	value	for	drawing	various	items	in	the	3ds	max
viewports.

Parameters:
int	which
Specifies	which	color	to	retrieve.	See	List	of	Viewport	Drawing	Color	Indices.

Prototype:
void	SetUIColor(int	which,	Point3	*clr);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
Sets	the	specified	color	value	for	drawing	various	items	in	the	3ds	max
viewports.

Parameters:
int	which,
Specifies	which	color	to	set.	See	List	of	Viewport	Drawing	Color	Indices.
Point3	*clr
The	color	value	to	set.

Prototype:
Point3	GetDefaultUIColor(int	which);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
Returns	the	default	color	used	for	drawing	various	items	in	the	3ds	max	user
interface.	The	values	returned	are	not	affected	by	the	user's	color	selections	or

those	set	by	SetUIColor().
Parameters:
int	which
Specifies	which	color	to	retrieve.	See	List	of	Viewport	Drawing	Color	Indices.
	
Note	the	following	#defines	for	getting	the	selection	color,	sub-object
selection	color	and	the	frozen	object	color.
#define	GetSelColor()	GetUIColor(COLOR_SELECTION)
#define	GetSubSelColor()
GetUIColor(COLOR_SUBSELECTION)
#define	GetFreezeColor()	GetUIColor(COLOR_FREEZE)
#define	SMALL_VERTEX_DOTS	0
#define	LARGE_VERTEX_DOTS	1
	

Function:
void	setUseVertexDots(int	b);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	Use	Vertex	Dots	preference	to	on	or	off.	This	corresponds	to	the
'Show	Vertices	As	Dots'	in	the	3ds	max	user	interface.

Parameters:
int	b
Nonzero	for	on;	zero	for	off.

Function:
int	getUseVertexDots();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	Use	Vertex	Dots	preference	--	nonzero	for	on;	zero	for	off.

Function:

void	setVertexDotType(int	t);
Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	Vertex	Small	Dots	/	Large	Dots	preference.	This	corresponds	to	the
'Show	Vertices	As	Dots'	Small	Dots	/	Large	Dots	radio	buttons	in	the	3ds	max
user	interface.

Parameters:
int	t
One	of	the	following	values:
SMALL_VERTEX_DOTS
LARGE_VERTEX_DOTS

Function:
int	getVertexDotType();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	Vertex	Small	Dots	/	Large	Dots	preference.	One	of	the	following
values:
SMALL_VERTEX_DOTS
LARGE_VERTEX_DOTS

Access	to	the	MAX	Viewport	settings:
Access	to	the	user	settings	includes	the	3ds	max	toolbars,	snap	settings,	crossing
setting,	animate	button,	3ds	max	window	handle,	sub-object	selection	color,	axis
constraints,	coordinate	centers,	and	reference	coordinate	system	setting.
See	Class	Interface	-	Access	to	User	Interface	Properties	and	Controls.	The
above	settings	and	more	are	accessed	using	these	methods.
Some	of	the	viewport	settings	are	global	in	nature	--	that	is	they	affect	all	the
viewports.	These	methods	are	in	class	Interface.	Examples	are
getBkgImageName(),	GetGridSpacing(),	etc.
Other	viewport	settings	are	specific	to	a	viewport.	These	are	available	in	class
ViewExp.	Examples	are	getBkgImageDsp(),	getSFDisplay(),	etc.

Access	to	the	MAX	gamma	settings:
The	Class	GammaMgr	allows	access	to	the	user	specified	gamma	settings	for
display	gamma,	file	input	and	output	gamma.

System	Settings
There	is	also	another	API	that	allows	a	plug-in	to	query	various	system	settings.
int	GetSystemSetting(int	id);
This	method	will	return	nonzero	if	the	setting	whose	id	is	passed	is	on;
otherwise	zero.
You	may	pass	the	following	values:
SYSSET_ENABLE_EDITABLEMESH
Used	to	verify	if	TriObjects	created	will	be	the	standard	ones	or	the
editable	variety.	Nonzero	is	returned	if	editable	meshes	will	be	created;
otherwise	zero	for	standard	TriObjects.
SYSSET_CLEAR_UNDO
For	release	1.1	and	later	if	this	ID	is	passed	to	this	method	the	undo	buffer
is	flushed.
SYSSET_EDITABLEMESH_ENABLE_KEYBOARD_ACCEL	
This	option	is	available	in	release	2.0	and	later	only.
Determines	if	keyboard	accelerators	are	enabled	for	the	editable	mesh.
Nonzero	if	so;	otherwise	zero.
SYSSET_ENABLE_EDITMESHMOD
This	option	is	available	in	release	2.0	and	later	only.
Determines	if	the	edit	mesh	modifier	is	enabled.	Nonzero	if	so;	otherwise
zero.

Globalization
See	Also:	Character	Strings.
3D	Studio	is	sold	in	numerous	countries	outside	the	United	States.	To	allow	your
plug-in	to	have	the	largest	possible	audience,	it	is	a	good	practice	to	create	a
globalized	application.	This	means	the	language-specific	strings	used	in	the
plug-in	can	be	easily	translated	to	another	language.
To	accomplish	this,	you	should	separate	out	all	your	language	specific	strings
into	a	separate	resource-only	DLL.	In	this	way,	only	the	resource	DLL,	and	not
the	rest	of	the	code,	needs	to	be	changed	to	move	the	application	to	another
language.
The	basic	concepts	involved	in	creating	and	using	a	resource-only	DLL	are
simple:
Create	a	VC++	project	that	builds	a	separate	DLL	containing	only	the
resources	of	the	plug-in.
When	your	plug-in	begins	execution,	in	the	DllMain()	function,	attempt	to
load	the	resource	DLL.	This	is	done	by	calling	a	function	of	the	Windows
API	LoadLibraryEx().	This	maps	the	specified	executable	module	into	the
address	space	of	the	calling	process,	making	the	strings	accessible	to	the	plug-
in.
After	the	resource	DLL	has	been	loaded	and	you	need	to	use	a	string,	use	the
Window	function	LoadString().	This	loads	the	string	from	the	resource
DLL	and	copies	it	into	a	local	string	buffer.	The	local	string	is	then	used	as
usual.
Release	the	resource	DLL	when	the	plug-in	is	finished	executing.	This	may
be	done	using	the	Windows	FreeLibrary()	function.	Call	this	from	the
DLL_PROCESS_DETACH	case	of	the	DllMain()	function.	This
decrements	the	reference	count	of	the	loaded	DLL	module.	When	the
reference	count	reaches	zero,	the	module	is	unmapped	from	the	address	space
of	the	calling	process.

The	sample	code	below	demonstrates	how	this	is	done.	It	shows	two	functions
from	the	EPS	file	format	I/O	module.
The	first	function	is	DLLMain().	Note	the	use	of	LoadLibraryEx()	and
FreeLibrary().	Also	see	how	GetModuleFileName()	is	used	to	find	the
location	of	the	DLL	(placed	in	the	same	directory	as	the	plug-in).	For	details	on

these	functions	see	the	Windows	API	on-line	help.
#define	MAX_PATH_LENGTH	257
#define	MAX_STRING_LENGTH	256
int	triedToLoad	=	FALSE;
int	resourcesLoaded	=	FALSE;
HINSTANCE	hResource	=	NULL;
BOOL	WINAPI	DllMain(HINSTANCE	hinstDLL,
	ULONG	fdwReason,LPVOID	lpvReserved)
{
//	If	we	have	already	tried	to	load	the	resource
//	file	and	failed	just	give	up.
if	(triedToLoad	&&	!	resourcesLoaded)
return	FALSE;
//	Load	our	resources.	We	look	for	the	file	in	the
//	same	directory	where	this	DLL	was	found
if	(!	resourcesLoaded)	{
//	Where	this	DLL	resides
char	dirName[MAX_PATH_LENGTH];
//	Full	path	name	to	resource	DLL
char	dllName[MAX_PATH_LENGTH];
char	*chPtr;
GetModuleFileName	(hinstDLL,	dirName,
MAX_PATH_LENGTH);
//	Strip	off	the	file	name
chPtr	=	dirName	+	strlen	(dirName);
while	(*(--chPtr)	!=	'\\')
;
*(chPtr+1)	=	0;
//	Add	in	"epsres.dll"
strcpy	(dllName,	dirName);
strcat	(dllName,	"epsres.dll");
//	Load	resource	DLL
//	Turn	off	error	reporting
int	errorMode	=

SetErrorMode(SEM_NOOPENFILEERRORBOX);
hResource	=	LoadLibraryEx(dllName,	NULL,	0);
SetErrorMode(errorMode);
//	Be	sure	to	check	to	see	if	we	succeeded
//	loading	resource	DLL
if	(hResource)	{
resourcesLoaded	=	TRUE;
InitCustomControls	(hResource);
}	else	{
triedToLoad	=	TRUE;
MessageBox	(NULL,
"EPS	Plugin	failed	to	load	due	to	missing	resource	file
EPSRES.DLL",
"EPS",	MB_ICONINFORMATION);
return	FALSE;
}
}
switch(fdwReason)	{
case	DLL_PROCESS_ATTACH:
break;
case	DLL_THREAD_ATTACH:
break;
case	DLL_THREAD_DETACH:
break;
case	DLL_PROCESS_DETACH:
if	(hResource)
FreeLibrary	(hResource);
break;
}
return(TRUE);
}
To	load	and	use	one	of	the	strings	from	the	resource	DLL,	follow	the	approach
shown	below:
const	TCHAR	*EPSClassDesc::ClassName	()	{

static	int	loaded	=	0;
static	TCHAR	stringBuf[MAX_STRING_LENGTH];
if	(!	loaded)	{
LoadString	(hResource,	IDS_CLASS_NAME,	stringBuf,
MAX_STRING_LENGTH);
loaded	=	1;
}
return	stringBuf;
}
In	summary,	it	is	a	good	development	practice	to	separate	the	literal	strings	of	a
plug-in	into	a	separate	resource-only	DLL.	This	creates	a	globalized	application
with	the	potential	to	reach	the	largest	possible	audience.	For	additional
information	on	the	plug-in	functions	shown	above	(DLLMain()	and
ClassName())	see	the	Advanced	Topics	section	DLL	Functions	and	Class
Descriptors.

Hit	Testing
See	Also:	Class	BaseObject,	Class	GraphicsWindow,	Class	Mesh,	Class
ViewExp,	Class	Interface,	Class	HitRecord,	Class	HitRegion,	Class	HitLog.
Hit	testing	is	used	throughout	3ds	max	as	the	user	selects	items	in	the	scene
using	the	mouse.	Hit	testing	is	the	process	of	determining	if	a	given	mouse	point
intersects	an	item	(node,	modifier	gizmo/center,	or	controller	gizmo).	A	plug-in
developer's	responsibility	regarding	hit	testing	depends	upon	the	type	of	plug-in
and	how	much	functionality	is	supplied	by	the	base	class	the	plug-in	is	derived
from.	For	example,	plug-ins	that	are	sub-classed	from	SimpleObject,
SimpleMod	or	StdControl	are	not	required	to	implement	methods	for	hit
testing	as	it	is	all	handled	internally	by	the	base	class.	Other	plug-ins	that	don't
subclass	from	these	classes	(for	example	the	boolean	object	or	the	mapping
modifier)	must	perform	their	own	hit	testing.
There	are	two	types	of	hit	testing:
	Node	level.	This	is	determining	if	a	given	node	in	the	scene	has	been	hit.
	Sub-object	level.	This	can	be	for	objects,	modifier	or	controllers.	This	is	for
determining	if	a	sub-component	of	an	item	has	been	hit.	Object	space
modifiers	can	have	a	visual	representation	in	the	scene	that	the	user	can
manipulate.	For	example,	many	of	the	3ds	max	object	space	modifiers	have	a
gizmo	and	center	mark.	These	are	the	modifier's	sub-object	levels.	In	the	case
of	an	edit	modifier	this	can	be	the	sub-object	parts	of	the	object	itself	(like
vertices,	edges,	or	face	for	the	Edit	Mesh	modifier).	An	object	may	hit	test	sub-
object	parts	as	well.	For	example,	a	compound	object	like	the	boolean	object
may	hit	test	the	operands	of	the	boolean	operation.	The	loft	model	compound
object	may	hit	test	parts	of	the	loft	model	such	as	the	path	or	shapes.
There	is	also	a	distinction	to	be	made	between	'simple'	hit	testing	and	'smart'	hit
testing.	Simple	hit	testing	involves	finding	any	hit	on	an	item.	As	soon	as	a
single	hit	is	found	the	process	of	searching	for	hits	can	stop.	Smart	hit	testing
involves	finding	the	part	of	an	item	that	was	the	closest	to	the	pick	point.	This
involves	hit	testing	everything	and	then	searching	through	all	the	hits	to	find	the
closest	one.
If	the	plug-in	procedural	object,	modifier	or	controller	must	perform	its	own	hit
testing,	methods	of	the	GraphicsWindow	class	make	this	fairly	simple.	There	is	a
special	rendering	mode	that	items	may	be	drawn	or	rendered	in	that	performs	the
hit	testing.	In	this	mode	(called	GW_PICK),	the	item	is	not	actually	drawn,	but

is	instead	tested	for	intersection	with	the	specified	hit	region.	So	if	an	item	needs
to	be	hit	tested,	a	developer	must	simply	draw	the	item	using	a	rendering	level
GW_PICK	and	then	check	the	result.	The	following	sample	code	demonstrates
controller	gizmo	hit	testing.	This	method	hit	tests	a	series	of	'footstep'	shaped
polylines	that	serves	as	the	controller's	gizmo.
int	FootStepControl::HitTest(TimeValue	t,	INode*	inode,
	int	type,	int	crossing,	int	flags,	IPoint2	*p,	ViewExp	*vpt)	{
	int	savedLimits,	res	=	0;
	GraphicsWindow	*gw	=	vpt->getGW();
	Matrix3	ntm	=	inode->GetNodeTM(t);
	HitRegion	hr;
	MakeHitRegion(hr,type,crossing,4,p);
	gw->setHitRegion(&hr);
	gw->setRndLimits(((savedLimits	=
		gw->getRndLimits())	|	GW_PICK)	&	~GW_ILLUM);
	gw->clearHitCode();
	BOOL	abortOnHit	=	flags&SUBHIT_ABORTONHIT?
TRUE:FALSE;
	BOOL	selOnly	=	flags&SUBHIT_SELONLY?TRUE:FALSE;
	BOOL	unselOnly	=	flags&SUBHIT_UNSELONLY?
TRUE:FALSE;
	for	(int	i=0;	i<NUM_FOOTSTEPS;	i++)	{
		if	(selOnly	&&	!sel[i])	continue;
		if	(unselOnly	&&	sel[i])	continue;
		gw->setTransform(fs[i]*ntm);
		gw-
>polyline(FOOT_POINTS,footPts,NULL,NULL,TRUE,NULL);
		if	(gw->checkHitCode())	{
			res	=	TRUE;
			vpt->CtrlLogHit(inode,gw->getHitDistance(),i,0);
			if	(abortOnHit)	{
				break;
				}
			gw->clearHitCode();

			}
		}
	gw->setRndLimits(savedLimits);
	return	res;
	}

Note	that	the	example	above	hit	tests	polylines.	If	you	are	hit	testing	polygons
they	must	be	drawn	as	3	sided	entities	for	3ds	max	to	properly	hit	test	them.
Polygons	drawn	with	more	than	3	sides	will	not	hit	test	properly.	For	more
information	on	hit	testing	using	the	methods	of	Graphics	Window	see	the
Advanced	Topics	section	on	The	Interactive	Renderer	:	GraphicsWindow.

Setting	hitCode	and	hitDistance	in	R4.0
setHitCode()	and	setHitDistance()	are	new	methods	that	make	it	possible	to
work	with	GraphicsWindow	hit-testing	in	otherwise	impossible	situations.	Why
are	they	necessary?	An	example	from	MAX’s	CORE.DLL	is	shown	below.
Sample	Code:
The	patch	object	contains	bezier	spline-based	edges	which	can	consist	of	up	to
102	vertices.	Since	the	GraphicsWindow::polyline	function	can	only	plot
lines	with	up	to	32	vertices,	it	is	impossible	to	plot	these	in	a	single	call	to	the
polyline	function.	Multiple	calls	to	the	polyline	call	do	not	return	a	proper
hitcode	when	using	a	"window"-type	hit	region.	By	using	the	new	setHitCode
method,	code	can	properly	handle	this	situation.	The	code	below	shows	the
function	in	use	from	the	PatchMesh::renderEdge	method:
	

int	steps	=	GetMeshSteps();
int	segNum	=	steps+2;
float	fsegNum	=	(float)	(segNum-1);
//	If	steps	are	too	high	for	GraphicsWindow's	buffer,
//	we	must	draw	it	manually
	if((steps	+	2)	>	GW_MAX_VERTS)	{

Point3	line[2];
Point3	prev,current(.0f,.0f,.0f);
BOOL	hitAll	=	TRUE;
BOOL	hitAny	=	FALSE;

DWORD	hitDist	=	0xffffffff;
		for(int	terp	=	0;	terp	<	segNum;	terp++)	{
		prev	=	current;
			current	=	work.InterpCurve3D((float)terp	/	fsegNum);
			if	(terp	!=	0)	{
				line[0]	=	prev;
				line[1]	=	current;
				gw->clearHitCode();
				gw->polyline(2,	line,	NULL,	NULL,	0,	NULL);
				if(gw->checkHitCode())	{

hitAny	=	TRUE;
					if(gw->getHitDistance()	<	hitDist)
						hitDist	=	gw->getHitDistance();

}
else	hitAll	=	FALSE;

			}	
		}
		if(hr	&&	!hr->crossing	&&	hr->type	!=	POINT_RGN)

		gw->setHitCode(hitAll);
		else
			gw->setHitCode(hitAny);
		gw->setHitDistance(hitDist);
	}
else	{
	for(int	terp	=	0;	terp	<	segNum;	terp++)
			fixedBuf[terp]	=	work.InterpCurve3D((float)terp	/	fsegNum);
			gw->polyline(steps+2,	fixedBuf,	NULL,	NULL,	0,	NULL);
	}

	
Note	that	the	gw->polyline	call	is	preceded	by	a	call	to	clearHitCode,	and
followed	by	code	which	checks	the	hit	code,	maintaining	"hitAny"	and	"hitAll"
flags.	When	all	the	segments	are	drawn,	the	gw->setHitCode	call	is	made,
setting	the	hit	code	depending	on	the	hit	region	type.	When	the	code	which
called	this	function	checks	the	GraphicsWindow’s	hit	code,	it	will	contain	the

proper	value.	This	code	also	keeps	track	of	the	closest	hit	distance	and	places
that	into	the	GraphicsWindow	when	all	line	segments	are	drawn.

Sub-Object	Hit	Testing
Sub-object	hit	testing	is	similar	to	object	level	hit	testing	except	that	the	object	is
not	simply	determining	if	it	was	hit	or	not;	the	sub-object	element	that	was	hit
needs	to	be	determined	as	well.
What	exactly	a	sub-object	element	is	depends	on	the	modifier.	It	may	be	a
modifier's	gizmo	or	part	of	its	gizmo.	For	example,	when	an	FFD	modifier	is	in
vertex	sub-selection	mode,	the	sub-object	elements	that	are	being	hit	tested	are
the	control	points	of	the	lattice.	Edit	modifiers	usually	hit	test	components	of	the
object	in	the	pipeline	such	as	vertices	or	faces.
When	a	modifier's	HitTest()	method	is	called,	it	traverses	the	sub-elements	of
the	current	sub-object	selection	level	and	checks	each	one	to	see	if	it	has	been
hit.	If	so,	it	registers	a	hit	record	with	the	active	viewport.	A	hit	record	contains
the	following	information:
	A	pointer	to	the	node	that	was	hit.	Modifiers	may	be	instanced	across	multiple
nodes,	so	the	instance	that	was	hit	must	be	identified.
	A	pointer	to	the	ModContext.
	The	'distance'	of	the	hit.	To	classify	as	a	hit,	the	sub-object	component	must	be
within	some	threshold	distance	of	the	mouse.	This	distance	is	recorded	in	the
hit	record	so	that	of	all	the	hits	below	the	threshold,	the	one	that	is	the	closest
can	be	identified.	What	the	distance	actually	represents	depends	on	the
rendering	level.	For	wireframe	modes,	it	refers	to	the	distance	in	the	screen	XY
plane	from	the	mouse	to	the	sub-object	component.	In	a	shaded	mode,	it	refers
to	the	Z	depth	of	the	sub-object	component.	In	both	cases,	smaller	distances
indicate	that	the	sub-object	element	is	'closer'	to	the	mouse	cursor.
	A	general	unsigned	long	value.	Most	modifiers	will	just	need	this	to	identify	the
sub-object	element.	The	Edit	Mesh	modifier	uses	the	value	to	store	the	index
of	the	vertex	or	face	that	was	hit.
	In	case	the	4	bytes	above	isn't	enough	space	to	identify	the	sub-object	element,
a	pointer	to	a	HitData	class	is	included.	To	use	this,	a	developer	would	define
a	class	derived	from	this	class	that	would	contain	the	necessary	data.	The
HitData	class	has	one	member	function,	a	virtual	destructor,	so	the	derived
class	can	be	properly	deleted	when	the	HitRecord	instance	is	deleted.
When	HitTest()	is	called	on	an	edit	modifier,	the	edit	modifier	needs	to	hit	test
elements	of	the	object	that	is	flowing	through	the	pipeline.	This	presents	a
problem	since	a	modifier	usually	only	has	a	pointer	to	this	object	when	its

ModifyObject()	method	is	called.	In	order	to	be	able	to	hit	test	the	object,	a
modifier	must	keep	the	object	cached.	Caching	the	object	the	modifier	is
modifying	is	generally	useful	as	well.	For	example,	the	Edit	Mesh	modifier
keeps	a	cache	of	the	mesh	it	is	editing.	When	the	Edit	Mesh	modifier	is
evaluated,	if	it	has	a	cache	it	can	simply	return	the	cache.	This	way,	as	the	user
applies	incremental	edits	to	the	mesh,	all	of	the	previous	edits	don't	need	to	be
reapplied.	Instead,	when	an	edit	is	made	it	is	applied	to	the	cache	and	stored
away	in	some	form	in	case	the	modifier	needs	to	be	reapplied.
Again,	modifiers	can	be	instanced,	so	storing	an	instance-specific	cache	in	the
modifier	might	not	be	the	best	idea.	It	is	the	ModContext,	specifically	in	the
localData	field,	where	instance-specific	modifier	data	belongs.	This	is	where
edit	modifiers	can	put	a	cache	of	the	object	that	it	modifies.	NOTE:	typically	this
cache	is	only	needed	while	the	object	is	being	edited.	A	hit	test	will	never	be
called	on	a	modifier	unless	it	is	being	edited.	In	terms	of	evaluation,	the	pipeline
already	places	caches	where	appropriate	so	there	is	normally	no	need	for	the
modifier	to	maintain	a	cache.
Below	is	a	summary	of	the	hit	test	related	methods	from	Class	GraphicsWindow.
virtual	void	setHitRegion(HitRegion	*rgn)	=	0;
Sets	the	hit	region	used	for	hit	testing.
virtual	void	clearHitCode()	=	0;
This	methods	clears	the	hit	code.	Call	this	method	before	performing	a	hit	test.
virtual	BOOL	checkHitCode()	=	0;
Returns	TRUE	if	a	hit	was	made;	otherwise	FALSE.
virtual	DWORD	getHitDistance()	=	0;
If	checkHitCode()	returns	TRUE	you	may	call	this	method	to	return	the	hit
distance.	In	wireframe	mode	this	is	the	distance	to	the	line.	In	shaded	mode,
this	is	the	z	distance.	This	allows	you	to	perform	'smart'	hit	testing	by
choosing	the	item	with	the	smallest	hit	distance.

The	system	maintains	a	list	of	nodes	for	node	level	hit	testing,	a	HitLog	for
modifier	sub-object	hits,	and	a	CtrlHitLog	for	controller	sub-object	hits.	The
methods	of	Class	ViewExp	are	used	to	work	with	these	results.	After	hit	testing
has	been	performed	these	methods	are	available	to	examine	the	results.
For	node	level	hit-testing
virtual	void	ClearHitList()=0;
Clears	the	list	of	hits.

virtual	INode	*GetClosestHit()=0;
Returns	the	INode	pointer	of	the	node	that	was	the	closest	all	those	hit.
virtual	int	HitCount()=0;
Returns	the	number	of	hits	recorded.

For	modifier	sub-object	level	hit-testing
virtual	void	LogHit(INode	*nr,	ModContext	*mc,	DWORD	dist,
	ulong	info,	HitData	*hitdat	=	NULL)=0;
This	method	records	a	sub-object	level	hit	record	with	the	system	using	the
specified	parameters.	This	is	frequently	called	when	a	plug-in	needs	to	select	a
node	from	the	scene.
virtual	HitLog&	GetSubObjHitList()=0;
Returns	the	sub-object	hit	list.
virtual	void	ClearSubObjHitList()=0;
Clears	the	sub-object	hit	list.
virtual	int	NumSubObjHits()=0;
Returns	the	number	of	sub-object	hits.

For	controller	gizmo	hit	testing
virtual	void	CtrlLogHit(INode	*nr,DWORD	dist,ulong	info,
	DWORD	infoExtra)=0;
This	method	records	a	sub-object	level	hit	record	with	the	system	using	the
specified	parameters.
virtual	CtrlHitLog&	GetCtrlHitList()=0;
Returns	the	sub-object	hit	list.
virtual	void	ClearCtrlHitList()=0;
Clears	the	sub-object	hit	list.

If	a	plug-in	wants	to	perform	hit	testing	of	other	nodes	in	the	scene	it	may	use
the	following	methods	of	Class	Interface.
virtual	INode	*PickNode(HWND	hWnd,	IPoint2	pt)=0;
This	method	hit	tests	the	screen	position	for	nodes	and	returns	a	INode	pointer
if	one	is	hit,	NULL	otherwise.
virtual	int	SubObHitTest(TimeValue	t,	int	type,	int	crossing,
	int	flags,	IPoint2	*p,	ViewExp	*vpt)=0;
This	method	performs	a	sub-object	hit	test.	You	may	access	the	number	of	hits

using:	vpt->NumSubObjHits().	To	return	a	list	of	the	hits	use	vpt-
>GetCtrlHitList().
The	following	code	demonstrates	the	use	of	this	method:
BOOL	GenControlSelectionProcessor::HitTest(
		ViewExp	*vpt,	IPoint2	*p,	int	type,	int	flags)
	{
	vpt->ClearCtrlHitList();
	ip->SubObHitTest(ip->GetTime(),type,ip-
>GetCrossing(),flags,p,vpt);
	if	(vpt->GetCtrlHitList().First())	{
		return	TRUE;
	}	else	{
		return	FALSE;
		}
	}

Plug-ins	that	are	not	subclassed	from	SimpleObject	SimpleMod	or
StdControl	need	to	implement	one	of	the	methods	shown	below.	These	allows
the	system	to	hit	test	the	plug-in	item.
From	Class	BaseObject.	This	is	the	procedural	object	version:
virtual	int	HitTest(TimeValue	t,	INode*	inode,	int	type,
	int	crossing,	int	flags,	IPoint2	*p,	ViewExp	*vpt);
The	modifier	version	of	this	method	has	an	extra	argument	(ModContext
*mc).
virtual	int	HitTest(TimeValue	t,	INode*	inode,	int	type,
	int	crossing,	int	flags,	IPoint2	*p,	ViewExp	*vpt,	ModContext*
mc)
From	Class	Control.
virtual	int	HitTest(TimeValue	t,	INode*	inode,	int	type,
		int	crossing,	int	flags,	IPoint2	*p,	ViewExp	*vpt)

Finally,	the	following	function	is	commonly	used	to	initialize	the	HitRegion
data	structure.
void	MakeHitRegion(HitRegion&	hr,	int	type,
	int	crossing,	int	epsi,	IPoint2	*p);

The	Interactive	Renderer:	GraphicsWindow
See	Also:	Class	GraphicsWindow,	Class	Mesh,	Class	Light,	Class	HitRegion.

Overview
The	display	of	geometric	structures	in	3ds	max	is	handled	through	a	class	called
GraphicsWindow.	An	instance	of	a	GraphicsWindow	sets	up	access	to
underlying	drivers	that	allow	2D	and	3D	primitives	to	be	rasterized	and	appear
on-screen.
The	methods	in	the	GraphicsWindow	class	are	designed	to	provide	a	fast,	low-
impedance	pipeline	to	the	underlying	driver,	and	are	optimized	for	mesh
rendering.
If	you	wish	to	display	a	geometric	object	that	is	represented	as	a	triangular	mesh
(consisting	of	a	vertex	list	and	a	connectivity	list),	you	should	not	use	the
GraphicsWindow	methods	directly.	Rather,	you	should	create	a	3ds	max	Mesh,
and	then	call	that	mesh's	render()	method.	This	assures	that	your	mesh	is
rendered	using	the	optimal	path	through	the	display	subsystem.
A	GraphicsWindow	provides	the	following	services:	

Window	Access	Services
When	the	system	creates	an	instance	of	a	GraphicsWindow,	the	constructor
opens	a	window	for	output	and	connects	that	window	to	an	instance	of	a	low-
level	rasterizer	(driver).	There	are	methods	to	resize	and	move	the	window,	and
to	configure	or	change	drivers.
Note:	Since	the	driver	has	complete	control	over	the	window's	palette	(if	one
exists),	each	GraphicsWindow	within	3ds	max	must	be	connected	to	the	same
driver.
The	physical	window	consists	of	two	parts:	an	image	buffer	(containing	the
colored	pixels,	as	they	appear	on	the	screen)	and	a	Z	buffer.	The	Z	buffer	is	used
to	record	depth	at	each	pixel	as	geometric	primitives	are	rasterized.
Most	drivers	control	two	image	buffers.	One	is	displayed	on	the	screen,	and	the
other	is	used	to	rasterize	geometric	primitives.	When	rasterization	of	a	complete
frame	is	done,	the	off-screen	buffer	is	blitted	onto	the	display	screen.
There	are	methods	within	the	GraphicsWindow	class	that	can	be	used	to
read/write	the	image	and	Z	buffers.

Rendering	Modes
A	GraphicsWindow	instance	can	be	in	any	of	several	different	rasterizing	modes.
The	various	rendering	modes	may	be	combined	in	a	large	number	of	ways.	For
example,	it	is	possible	to	request	Gouraud-shaded,	z-buffered	lines,	or	textured,
flat-shaded	triangles.	(The	actual	output	will	depend	on	the	capabilities	of	the
underlying	device	driver.)
Each	GraphicsWindow	has	a	master	mode	(called	the	rendering	limit)	and	a
current	mode.	The	current	mode	is	always	a	"subset"	of	the	master	mode,	in	that
any	limits	imposed	by	the	master	mode	are	forced	onto	the	current	mode.
For	example,	if	the	master	mode	restricts	primitives	to	wireframe	rendering,	then
setting	the	current	mode	to	filled	polygons	will	have	no	effect.	On	the	other
hand,	if	the	master	mode	restricts	rendering	to	flat	shading,	then	the	current
mode	can	be	set	to	wireframe	to	force	polygons	to	render	at	the	wireframe	level.
In	MAX,	the	rendering	limits	for	each	viewport	can	be	set	in	the	Rendering
Method	page	of	the	Views	/	Viewport	Configuration	dialog	box.	Note	that	even
when	the	level	is	set	to	"Smooth	+	Highlights",	some	primitives	(for	example
lights	and	cameras)	appear	in	wireframe.	This	is	done	by	setting	their	private
mode	to	wireframe.
The	various	rendering	modes	may	be	combined	in	a	large	number	of	ways.	For
example,	it	is	possible	to	get	Gouraud-shaded,	z-buffered	lines,	or	textured,	flat-
shaded	triangles.

Coordinate	Systems
There	are	two	primary	coordinate	systems	within	a	GraphicsWindow:	device-
independent	3D	eye	coordinates	and	device-dependent	window	coordinates.
Device-dependent	coordinates	are	integer	triples	that	have	their	origin	at	the
lower-left	corner	of	the	window	and	increase	toward	the	upper	right.	One	unit
corresponds	to	a	single	pixel.	Z	values	closest	to	the	user	are	0,	and	they	increase
into	the	screen.	The	maximum	Z	value	is	driver-dependent.	This	coordinate
system	is	left-handed.
Eye	coordinates	are	floating	point	triples	that	correspond	to	relative	distances
from	the	camera	(or	"eye")	associated	with	the	window.	In	eye	coordinates,	x
increases	toward	the	right,	y	increases	upward,	and	z	decreases	away	(and	in
front	of)	the	eye	point.	This	coordinate	system	is	right-handed.
There	are	two	ways	to	set	up	eye	coordinates.	In	the	first,	the	camera	is	assumed
to	be	sitting	at	the	origin	looking	down	the	negative	z	axis.	You	specify	camera
parameters	(perspective/orthographic,	field-of-view,	etc.)	and	then	provide	a
transformation	matrix	for	an	object's	position	relative	to	the	camera.	This	is	most
easily	accomplished	by	concatenating	the	inverse	affine	transformation	for	the
camera's	position	in	world	space	with	the	(forward)	affine	transformation	of	the
object	in	world	space.
In	the	second	method,	a	camera	matrix	is	specified	that	includes	both	the	world
position	(affine	transformation)	and	projection	information.	This	allows	for	a
simple	camera	"look	at"	transformation	model.
Note	that	the	system	stores	two	matrices:	a	camera	matrix	(which	can	be	a	pure
projection),	and	an	affine	transformation	matrix.	When	deriving	device
coordinates	for	a	geometric	primitive,	each	position	is	logically	transformed
through	the	affine	transformation	first,	followed	by	the	camera	transformation.
This	allows	each	geometric	primitive	to	be	represented	in	its	own	local
coordinates.
In	addition	to	providing	a	method	for	transforming	points	from	local,	model
coordinates	to	floating	point	device	coordinates,	a	method	is	provided	that
transforms	model	coordinates	into	integer	window	coordinates	with	the	origin	at
the	upper	left.	These	integer	coordinates	correspond	to	the	coordinates	used	by
GDI	and	the	Windows	mouse	routines.
Both	model-to-device	coordinate	methods	return	clipping	values	indicating
whether	the	transformed	point	lies	outside	of	the	view	volume.	Flags	are

provided	for	each	of	the	six	planes	bounding	the	viewing	frustum.

Primitives
The	geometric	primitives	supported	by	the	GraphicsWindow	class	were	designed
to	provide	optimal	support	for	rendering	triangular	meshes.	As	noted	earlier,	the
preferred	way	to	render	such	meshes	is	through	the	render()	method	of	the
Mesh	class.
If	you	need	to	use	the	geometric	primitives	in	the	GraphicsWindow	class
directly,	you	should	be	aware	that	there	is	no	direct	support	within
GraphicsWindow	for	lit	primitives,	so	rendering	illuminated	surfaces	is	a	two-
step	process.
There	are	two	levels	of	primitive	support	within	the	GraphicsWindow	class:	one
set	uses	device-independent	3D	eye	coordinates	and	the	other	uses	device-
dependent	window	coordinates.	At	each	level	there	are	routines	for	polylines,
polygons	(triangles),	markers,	and	annotation	text.
The	device-dependent	routines	do	not	provide	any	support	for	clipping	or	range
testing!	For	speed,	these	routines	assume	that	all	coordinate	values	passed	in	are
valid.	If	invalid	values	are	present,	the	results	are	unpredictable,	but	a	program
crash	or	corruption	of	the	3ds	max	system	is	almost	guaranteed.
The	higher-level	routines	transform	their	coordinate	lists	through	the	current
affine	and	camera	transformations,	clipping	when	necessary,	and	then	call	the
corresponding	low-level	routines.
These	routines	are	designed	to	optimize	the	rendering	of	meshes	composed	of
vertex	and	connectivity	lists.	This	process	works	as	follows:
	Each	vertex	is	transformed	using	the	model-to-device	transformation	routine,
and	the	resulting	device	coordinates	and	clip	flags	are	cached.
	For	each	triangle	in	the	connectivity	list,	the	clip	flags	are	examined	to	classify
the	triangle	into	one	of	the	following	three	cases:
	If	all	vertices	lie	outside	the	viewing	frustrum,	the	triangle	is	trivially	rejected.
	If	all	vertices	lie	inside	the	viewing	region,	it	is	rasterized	using	the	cached
device	coordinates	and	the	low-level	primitive	routines.
	If	the	triangle	is	clipped	by	the	viewing	region,	its	model	coordinates	are	sent	to
the	high-level	routines	where	the	triangle	is	appropriately	clipped	and
rasterized.
Note	that	this	approach	only	transforms	and	clip-checks	most	vertices	once.
(Only	in	the	rare	case	that	a	primitive	is	clipped	do	the	associated	vertices	have
to	be	transformed	again.)	Since	most	vertices	in	a	mesh	are	shared,	this	provides

an	efficient	means	to	rasterize	the	entire	mesh.

Materials	and	Lighting
As	mentioned	above,	the	geometric	primitives	in	a	GraphicsWindow	do	not
directly	support	lighting.	Rather,	polylines	and	polygons	can	be	provided	with
colors	for	each	vertex.	If	provided	(and	the	rendering	limit	allows	for	it),	the
device	driver	will	interpolate	the	vertex	colors	as	the	primitive	is	rasterized.
To	facilitate	the	lighting	process,	there	are	methods	to	specify	light	properties
(type,	color,	angles,	etc.),	position	and	direction,	and	to	specify	material
properties	(ambient,	diffuse,	and	specular	colors,	etc.)	Once	a	material	and	a	set
of	lights	are	specified,	a	given	vertex	/	normal	vector	pair	may	be	"rendered"	by
calling	the	lightVertex()	method.	This	method	uses	the	position	and	normal
vector	direction	to	produce	an	RGB	triple	representing	the	lit	color.
Logically	speaking,	for	lit	primitives	the	pipeline	described	above	is	modified	by
having	each	vertex	lit	at	the	time	it	is	transformed.	The	resulting	RGB	triples	can
then	be	cached	and	later	used	during	rasterization	of	the	primitive.	In	the	mesh
class,	the	actual	renderer	uses	a	lazy	evaluation	algorithm	so	that	only	vertices
that	may	appear	on-screen	get	lit.

Hit	Testing
It	is	also	possible	to	test	each	primitive	for	intersection	or	containment	within	a
specified	"hit	region".	The	region	may	be	a	point	(+/-	epsilon),	a	rectangle,	a
circle,	or	a	fence	(an	arbitrary	polygon	region).
Hit	testing	is	done	through	a	side-effect	mechanism.	When	hit-testing	is	enabled,
primitives	set	a	flag	if	they	pass	through	or	are	fully	contained	in	the	hit	region.
(When	in	this	mode,	the	primitives	do	not	cause	any	visual	side-effects	--	in
particular,	they	do	not	change	the	image	or	Z	buffers.)
By	clearing	the	flag	before	a	primitive	is	rendered,	and	checking	it	immediately
afterwards,	a	hit-check	for	that	particular	primitive	is	made.	Hit	testing	on
vertices,	edges,	entire	meshes,	etc.,	can	be	accomplished	by	rendering	only	the
desired	primitives	and	checking	the	hit	flag	at	the	desired	granularity.
When	the	hit	region	is	a	single	point,	each	"hit"	primitive	also	sets	a	distance
variable	(representing	distance	from	the	hit	point	to	the	line	in	wireframe	mode,
and	Z	distance	in	filled	mode),	so	that	"smart"	hit	testing	--	i.e.	choosing	the
closest	primitive	to	the	hit	point	--	may	be	implemented.

Intervals
See	Also:	Class	Interval,	Advanced	Topics	section	Time.
An	Interval	is	a	class	that	represents	a	length	of	time.	It	has	two	private	data
members,	start	and	end,	that	are	each	TimeValues.	A	TimeValue	is	a	single
instant	in	time.	For	more	information	on	TimeValues	see	the	Advanced	Topics
section	Time.
Intervals	are	used	throughout	3ds	max	in	describing	a	range	of	time.	The	most
common	use	is	to	describe	a	range	of	time	over	which	an	item	is	said	to	be
'Valid'.	This	type	of	interval	is	referred	to	as	a	Validity	Interval.	It	is	normally
used	in	association	with	some	item	which	is	cached.	The	validity	interval
describes	the	range	of	time	over	which	the	cache	accurately	reflects	the	state	of
the	item.	When	comparing	a	given	time	to	see	if	the	cache	is	up	to	date,	if	the
time	is	inside	the	interval,	the	cache	is	valid	at	that	time.	If	it	is	outside	the
interval,	the	cache	is	invalid.
The	geometry	pipeline	system	of	3ds	max	uses	intervals	as	part	of	its	caching
scheme.	Many	of	the	methods	procedural	object	or	modifier	plug-ins	must	call
or	implement	(associated	with	intervals)	are	required	for	use	with	MAX's
caching	system.	In	terms	of	this	cache,	the	interval	represents	a	period	of
constancy	for	an	item	around	a	certain	time.	In	other	words,	given	a	certain	time,
how	far	before	and	how	far	after	the	time	is	the	item	constant	(not	changing).
Part	of	the	caching	algorithm	needs	to	determine	if	an	item	is	relatively	constant
or	not.
As	an	example	consider	a	procedural	object	which	is	not	animated	over	an	entire
100	frame	animation.	This	object	would	have	a	validity	interval	of	FOREVER.	It
is	always	up	to	date	since	nothing	ever	changes.	Then	apply	a	Bend	modifier	to
this	object	and	animate	the	angle	parameter	at	frame	50.	The	bent	object	is	now
always	changing	from	frame	0	to	50.	After	frame	50,	it	never	changes.	Any
validity	intervals	computed	in	the	first	50	frames	would	be	instantaneous
intervals	(the	start	time	equal	to	the	end	time).	Any	validity	intervals	computed
at	a	time	after	frame	50	would	be	from	51	to	100.
3ds	max	may	cache	a	representation	of	the	bent	object	from	frame	51	to	100.	It
will	then	never	have	to	re-compute	this	bent	object	over	this	entire	range.	3ds
max	would	not	cache	a	representation	from	frame	0	to	50	since	the	object	is
always	changing.
Plug-ins	must	provide	3ds	max	with	information	about	when	they	are	changing

and	when	they	are	not.	Below	are	some	examples	of	methods	which	plug-in
procedural	objects	or	modifiers	call	or	implement	that	return	or	modify	intervals.
GetValue()
This	method	of	IParamBlock	has	several	parameters,	one	of	which	is	a	C++
reference	to	an	Interval.	This	method	is	frequently	used	by	developers	to	'whittle'
down	an	interval.	When	a	parameter	of	a	parameter	block	is	animated,	for	any
given	time	there	is	an	interval	over	which	the	parameter	is	constant.	If	the
parameter	is	constantly	changing	the	interval	is	instantaneous.	If	the	parameter
does	not	change	for	a	certain	period	the	interval	will	be	longer.	If	the	parameter
never	changes	the	interval	will	be	FOREVER.	By	passing	an	interval	to	the
GetValue()	method	of	the	parameter	block	you	ask	the	parameter	block	to
'intersect'	the	interval	passed	in	with	the	interval	of	the	parameter.	Intersecting
two	intervals	means	returning	a	new	interval	whose	start	value	is	the	greater	of
the	two,	and	whose	end	value	is	smaller	of	the	two.	In	this	way,	the	resulting
interval	represents	a	combined	period	of	constancy	for	the	two	intervals.
This	technique	is	used	frequently	to	compute	a	validity	interval	for	an	object.
The	developer	starts	an	interval	off	as	FOREVER,	then	intersects	this	interval
with	each	of	its	animated	parameters	(by	calling	GetValue()).	GetValue()
'whittles'	down	the	interval	with	each	call.	When	all	the	parameters	have	been
intersected,	the	result	is	the	overall	validity	interval	of	an	object	at	a	specific
time.
Consider	the	example	shown	in	the	diagram	below.	A	validity	interval	is
computed	at	time	40	for	an	object	with	two	animated	parameters,	Radius,	and
Segments.	The	interval	is	computed	by	first	intersecting	an	initial	interval	of
FOREVER	with	the	Radius	parameter.	The	Radius	interval	is	from	20	to	100.
The	result	of	this	intersection	is	the	interval	from	20	to	100.	This	interval	is
intersected	with	the	Segment	parameter	interval	(from	10	to	50).	The	result	of
this	intersection	is	an	interval	from	20	to	50.	Thus	the	validity	interval	of	the
object	at	time	40	is	from	20	to	50.

ObjectValidity(TimeValue	t)
This	method,	implemented	by	the	plug-in,	returns	the	validity	interval	of	the
procedural	object	around	the	time	passed.	This	method	is	computed	by	the	object
by	starting	an	interval	at	FOREVER,	and	intersecting	this	interval	with	the
intervals	of	each	of	its	animated	parameters.	In	this	way,	an	interval	is	whittled
down	as	it	is	intersected	with	each	of	the	parameters.	The	resulting	interval
represents	a	period	of	constancy	about	the	TimeValue	passed.	The	interval
represents	how	far	before	the	TimeValue	and	how	far	after	it	the	object	is
constant.
LocalValidity(TimeValue	t)
This	method	returns	the	validity	interval	of	the	modifier	itself	around	the	time
passed.	In	general,	this	would	be	the	intersection	of	the	validity	intervals	of	all
controllers	that	the	modifier	uses	to	control	its	parameters,	so	if	a	modifier	was
not	animated,	this	interval	would	be	FOREVER.
As	an	object	flows	up	the	pipeline,	the	validity	interval	of	each	modifier	is
intersected	into	the	object	state's	validity	interval.	When	the	object	gets	to	the
end	of	the	pipeline,	its	validity	interval	reflects	the	intersection	of	all	the
elements	in	the	pipeline.
GetValidity(TimeValue	t)

The	SimpleMod	class	calls	this	method	to	retrieve	the	validity	interval	of	the
modifier.	The	modifier	provides	this	interval	by	starting	an	interval	at
FOREVER	and	intersecting	each	parameter	of	the	modifier	with	the	interval.
SimpleMod	then	intersects	the	validity	intervals	of	its	own	controllers	with	the
returned	interval	in	its	implementation	of	LocalValidity().
UpdateValidity(int	nchan,	Interval	v)
A	modifier	calls	the	UpdateValidity()	method	of	an	object.	When	a	modifier	is
applied	to	an	object,	it	needs	to	include	its	own	validity	interval.	Frequently	this
is	called	by	the	modifier	in	its	ModifyObject()	method.
SetChannelValidity(int	nchan,	Interval	v)
This	method	is	called	to	specify	a	validity	interval	for	a	certain	channel	of	the
pipeline.
See	also:	Class	Interval	and	Geometry	Pipeline	System	in	the	Reference	section.

Inverse	Kinematics
See	Also:	Class	IKChainActions,	Class	IKSolver,	Class	IIKChainControl,	Class
IIKControl,	Class	ZeroPlaneMap,	Class	RootLink,	Class	Link,	Class
LinkChain,	Class	Animatable

Introduction	to	Inverse	Kinematics
	
The	Inverse	Kinematics	(IK	for	short)	API’s	are	divided	over	three	files:
IIKSys.h,	IKSolver.h,	and	IKHierarchy.h.	IIKSys.h	contains	the	interface
definition	of	the	two	types	of	controllers,	IIKControl	and	IIKChainControl.
They	are	both	TM	controllers.	The	former	is	used	in	joints	(nodes	on	which	IK
will	be	applied),	and	the	latter	is	used	in	the	IK	goals	(nodes	that	serve	as	IK
goals).
The	IKControl	and	IKChainControl	are	knit	together	as	the	IK	system.
When	an	IK	solution	is	called	for,	the	IK	system	will	invoke	the	IK	solver,	which
is	a	mathematical	algorithm	that,	given	the	goal	position/orientation,	and
incidental	parameters,	produces	a	solution	in	terms	of	joint	angles	(rotation
values	of	respective	nodes).	While	the	controllers	involved	in	IK	are	not
expandable	via	plug-in,	the	IK	solver	is	actually	plug-able.	The	IK	system	will
recognize	a	plug-in	solver	by	putting	it	in	the	solver	list	wherever	it	appears.	The
API	of	the	IK	solver,	defined	in	IKSolver.h	and	IKHierarchy.h,	contains	the
data	structure	of	transformation	hierarchy	used	in	IKSolver.h.
	
An	interface	pointer	to	the	IKControl	class	can	be	obtained	by	using
Animatable::GetInterface(I_IKCONTROL).
	
An	example	on	using	the	IK	API	can	be	found	in	the	3ds	max	SDK,
\MAXSDK\SAMPLES\IKSOLVERS\IKLIMB.

Concepts
	
Degrees	of	Freedom
A	node	transform	contains	six	degrees	of	freedom.	Three	are	translational

(sliding)	and	three	are	rotational.	In	the	API,	they	have	enum	names,
IKSys::TransX	to	IKSys::TransZ	and	IKSys::RotX	to	IKSys::RotZ.
When	the	context	implies	rotational	or	translational,	IKSys::DofX	to
IKSys::DofZ	are	used.
A	degree	of	freedom	can	be	active	or	inactive.	An	inactive	degree	of	freedom
is	not	to	be	used	by	IK.	In	other	words,	only	active	degrees	of	freedom	are
degrees	of	freedom	as	far	as	IK	is	concerned.	The	methods	DofActive(),
ActiveTrans(),	ActiveRot(),	and	ActiveDofs()	are	provided	to	determine
which	degrees	of	freedom	are	active	and	inactive.	The	first	query	answers
whether	a	specific	(translational	/	rotational)	axis	is	active.	The	following
three	return	a	set	of	DOFs,	which	is	defined	in	the	same	file.	The	set	returned
by	ActiveTrans()	and	ActiveRot()	is	to	be	tested	by	IKSys::DofX	to
IKSys::DofZ,	and	the	set	returned	by	ActiveDofs()	is	to	be	tested	by
IKSys::TransX	to	IKSys::RotZ.

	
Relationship	to	IK	Chains
A	node	transformation	can	be	conceptually	viewed	as	consisting	of	two	joints,
sliding	joint	(translational	degrees	of	freedom)	and	rotational	joint.	The	enum
type,	IKSys::JointType,	contains	two	enums:	IKSys::SlidingJoint	and
IKSys::RotationalJoint.	An	IK	chain	starts	at	the	rotational	joint	of	the
Start	Joint	and	ends	at	the	sliding	joint	of	the	End	Joint.	Two	IK	chains
covering	the	same	joint,	are	considered	overlapping	IK	chains.
Let’s	call	a	node	an	IK	chain	node	if	its	TM	controller	supports	interface
IIKChainControl,	i.e.,	node->GetTMController()-
>GetInterface(I_IKChainControl)	!=	NULL.	The	following	query
returns	a	list	of	IK	chain	nodes;	InodeTab	IKChains(JointType)	const
The	parameter	that	decides	whether	an	individual	degree	of	freedom	is	(IK)
active	is	not	animatable.	There	is	an	animatable	variable	of	IK	chain	that
decides	whether	the	goal	defined	in	the	IK	chain	actually	affects	the	joints	it
covers	at	a	specific	time,	this	can	be	queried	using	IKBound().

	
Joint	Limits
A	degree	of	freedom	can	be	bound	to	a	limited	range.	The	lower	bound	and
upper	bound	can	be	set	separately.	At	each	end,	there	are	a	boolean	parameter,
Limited,	and	a	float	number	that	sets	the	limit.	The	limit	is	effective	only	if

the	boolean	parameter,	Limited,	is	true.	Following	queries	concern	the	joint
limits.	When	a	Point2	is	returned,	it	is	ordered	as	the	lower	limit	followed	by
the	upper	limit.	When	a	Point3	is	returned,	the	order	is	X,	Y,	and	Z.	For
example,	TransLowerLimits()	returns	lower	limits	of	TransX,	TransY,
and	TransZ,	respectively.

	
Preferred	Angles
Some	solver	may	start	off	the	solution	process	with	joint	angles	being	set	to
special	values,	these	are	called	preferred	angles.	PrefPosition()	and
PrefRotation()	return	preferred	angles	of	the	translation	and	rotation	joints,
respectively.	The	APIs	allows	them	to	be	animatable.	However,	in	3ds	max	4,
they	are	constant	with	regard	to	animation	time.	The	methods
SetPrefTrans(),	SetPrefRot(),	and	SetPrefTR()	set	their	values	at	a
specific	time.

	
Joint	Angles
TransValue()	and	RotValue()	will	query	joint	angles	of	sliding	and
rotational	joints,	respectively,	at	a	specific	time.	If	the	user	supplies	non-null
pointer	to	a	validity	interval,	the	validity	interval	will	be	updated.
Their	values	can	be	assigned	using	AssignTrans()	and	AssignRot().	The
methods	AssignActiveTrans()	and	AssignActiveRot()	will	skip	those
degrees	of	freedom	that	are	not	active.	These	same	two	methods	allow	active
DOFs	to	be	given	as	the	first	argument	of	type	DofSet,	while	having	the	new
values	supplied	as	float	array	whose	size	should	be	the	same	as	the	DofSet
[DofSet::Count()].	The	order	in	the	array	is:	DofZ	if	the	DofSet	includes
DofZ,	DofY	if	the	DofSet	includes	it,	and	followed	by	DofX	if	it	is	included
in	the	DofSet.	IK	controllers	are	designed	to	be	controlled	by	the	IK	goals
(through	the	internal	IK	system).	Therefore,	their	values	are	not	to	be	set	as
independent	variables	are.	These	assignment	methods	just	assign	new	values
to	the	respective	variables	and	that’s	all.	They	do	not	adjust	the	validity
interval,	this	is	done	through	the	methods	SetTransValid(),	SetRotValid()
and	SetTRValid().The	last	method	sets	the	validity	intervals	for	translation
and	rotation	values	to	the	same	interval.

	
FK	Sub-controller

The	Forward	Kinematics	sub-controller	and	the	pointer	to	the	node	that	holds
this	controller	as	its	TM	controller	can	be	obtained	using	Control*
FKSubController()	and	INode*	GetNode().	Note	that	the	IK	controller
is	not	designed	to	be	instanced.	It	is	expected	to	have	a	unique	node.

Interface	Class	IIKChainControl
	
Reference	Indices
The	following	enum	constants	are	indices	to	the	reference	targets	made	by	the
IIKChainControl.	For	example,
GetReference(IIKChainControl::kPBlockRef)	will	return	a	pointer	to
IParamBlock2.	These	reference	indices	are:

	
kPBlockRef
The	IparamBlock2	parameter	block.
kGoalTMRef
A	Matrix3	controller	representing	the	sub-controller	that	defines	the
transformation	matrix	of	this	node
kEndJointRefINode
The	INode	reference	for	the	End	Joint.
kEnableRef
Bool	(float)	controller.	This	switch	indicates	when	the	IK	chain	is	enabled
or	effective.
kStartJointRef
The	INode	reference	for	the	Start	Joint.
kLastRef
Place	holder.

	
Parameter	Block	Indices
There	is	just	one	parameter	block.	Its	index	to
Animatable::GetParamBlock()	is	given	by	enum	constant
kParamBlock.

	
Parameter	Indices

The	following	enum	constants	represent	the	indices	of	the	parameters	in	the
parameter	block:

	
kStartJoint		INode,	referenced	by	kStartJointRef
kEndJoint		INode,	referenced	by	kEndJointRef
kSolverName		String,	the	solver	name.
kAutoEnable		BOOL,	auto-enable.
kSwivel			Angle,	swivel	angle.
kPosThresh		Float,	pos	threshold.
kRotThresh		Float,	rot	threshold.
kIteration		Integer,	iterations.
kEEDisplay		BOOL,	EE	display.
kEESize			Float,	EE	size.
kGoalDisplay		BOOL,	display	goals.
kGoalSize		Float,	goal	size.
kVHDisplay		BOOL,	VH	display.
kVHSize			Float,	VH	size.
kVHLength		Float,	VH	length.
kSolverDisplay	BOOL,	display	solvers.
kAutoSnap		BOOL,	auto	snap.
kVHUseTarget		BOOL,	VH	use	target.
kVHTarget		INode,	VH	target.
kLastParam		Place	holder.

	
Most	parameters	have	separate	querying	methods.	For	example;
GetParamBlock(IIKChainControl::kParamBlock)>GetINode(IIKChainControl::kStartJoint)
will	return	turns	the	same	pointer	as	does	StartJoint().	The	kStartJoing
and	kEndJoint	parameters	that	define	the	IK	Chain	Delimiters	can	be
obtained	by	using	the	INode*	StartJoint()	and	INode*	EndJoint()
methods.

	

Swivel	Angles
Most	of	the	time,	joints	are	drawn	on	a	plane	(planar	IK	chains).	A	desirable
quality	of	an	IK	solver	is	not	to	disturb	this	plane.	Those	solvers	would	use
only	the	Start	Joint	to	rotate	the	plane.	When	the	End	Joint	is	adhered	to	the
goal,	the	rotation	about	the	axis	from	the	Start	Joint	to	the	End	Joint	is	called
Swivel.	Swivel	angle	is	the	amount	of	this	rotation.
In	order	for	the	swivel	angle	to	make	sense,	however,	we	need	a	reference
point.	When	a	chain	is	put	at	the	preferred	pose,	meaning	that	all	the	joint
angles	are	set	to	preferred	angles,	the	plane	expanded	by	the	pivots	of	all	the
joints	on	the	chain	is	called	Initial	Plane,	and	the	axis	from	the	Start	Joint	to
End	Joint	is	called	Initial	End	Effector	Axis	(EEAxis).	Since	Preferred	Angles
are	animation	variable,	so	is	the	Initial	Plane	and	EEAxis.	The	InitPlane()
and	InitEEAxis()	methods	return	the	normal	to	the	Initial	Plane	and	the	unit
vector	of	the	Initial	EEAxis.	These	are	represented	in	the	parent	space	of	the
Start	Joint.	To	obtain	the	normal	in	object	space,	use	the	method
ChainNormal().	The	relationship	between	ChainNormal()	and
InitPlane()	is	(in	pseudo	code):
InitPlane()	=	ChainNormal()	*	StartJoint()->PrefRotation().
When	the	joints	do	not	lie	on	a	plane,	the	closest	plane,	in	certain	sense,	can
be	used.	Let’s	call	this	plane	the	solver	plane.
The	class	ZeroPlaneMap	is	defined	in	IKHierarchy.h.	This	provides	the
functionality	that,	given	a	unit	axis,	which	is	to	be	substituted	for	by	EE	Axis,
produces	a	unit	vector,	which	will	be	interpreted	as	the	normal	to	a	plane.
This	plane	will	be	taken	as	the	zero	plane	to	which	the	swivel	angle	is
relative:	the	plane	corresponds	to	swivel	angle	being	zero.	The	amount	of
rotation	that	will	bring	the	Zero	Plane	to	the	current	solver	plane	is	the	Swivel
Angle,	which	corresponds	to	the	parameter	of	index	kSwivel	and	can	be
obtained	using	the	SwivelAngle()	method.	The	following	relationship	holds
(in	pseudo	code):
ChainNormal()	*	StartJoint()->Rotation()	=
ZeroPlaneMap(EEAxis)	*	<Rotation	about	EEAxis	by
SwivelAngle()>
A	plugin	solver	may	have	its	own	ZeroPlaneMap.	In	case	it	does	not	have	a
preference,	it	can	use	the	default	one	provided	by	the	IK	system	as
IKSys::ZeroPlaneMap*	DefaultZeroPlaneMap().

The	solver	plane	can	be	controlled	by	an	extra	node	and	this	is	often	desired
by	the	user.	In	this	case,	they	want	the	solver	plane	to	align	with	the	plane
defined	by	the	Start	Joint,	the	End	Joint,	and	the	extra	node,	called	the	swivel
angle	target.	Since	the	target	and	the	swivel	angle	are	meant	to	control	the
same	thing,	only	one	of	them	can	be	used.	The	parameter	of	index
kVHUseTarget	determines	which	will	be	used.	It	is	not	animatable.	If	it	is
true,	the	swivel	angle	target	will	be	used.	The	target	node	can	be	obtained
from	the	parameter	of	index	kVHTarget.	When	the	target	node	is	NULL,
the	swivel	angle	will	be	used.

	
Solver	Properties
The	method	IKSolver*	Solver()	returns	the	IK	solver	whose	responsibility
it	is	to	solve	the	IK	problem.	Its	class	name	is	stored	as	the	parameter	of	index
kSolverName.	As	mentioned,	there	is	an	animatable	variable	that
determines,	at	a	specific	time,	whether	IK	is	enabled.	Whether	the	solver	is
enabled	or	disabled	can	be	checked	using	the	SolverEnabled()	method.
This	is	just	an	interface	to	the	sub-controller	with	reference	index
kEnableRef.	Since	its	value	is	used	to	determine	whether	joints	in	an	IK
chain	depend	on	the	IK	goal	when	reference	message	is	received,	developers
should	not	replace	it,	using	the	3ds	max	Reference	APIs,	with	an	arbitrary
controller	whose	dependency	structure	is	general.	This	would	create	a	time
variable	dependency	structure	and	is	not	desirable.	The	built	in	controller	is	a
key-frame	controller.
Sometimes,	we	still	want	to	invoke	IK	by	moving	the	goal	even	if
SolverEnabled()	is	false.	In	such	cases	the	purpose	of	IK	is	to	set	keys	on
the	FK	sub-controllers	of	the	joints.	The	feature	is	called	"Use	IK	to	FK",
which	is	only	meaningful	during	an	interactive	session.	For	this	purpose
CanAutoEnabled()	corresponds	to	the	parameter	of	index	kAutoEnable
and	indicates	whether	the	feature	of	"Use	IK	to	FK"	is	desired.	The
AutoEnableSet()	method	provides	the	transient	state	of	the	IK	chain:
whether	IK	is	currently	enabled	due	to	this	feature.	It	is	only	set,	if	it	is	ever
set,	during	the	next	update	cycle,	with	regard	to	when	the	goal	is	moved,	or	its
TM	is	set	to	new	value.

	
Valid	IK	Chains
A	valid	IK	chain	is	one	that	has	a	good	Solver,	Start	and	End	joints,	where	the

Start	Joint	is	an	ancestor	of	the	End	Joint	in	the	scene	hierarchy.	The	Valid()
and	INode*	GetNode()	methods	are	available	for	this.	The	latter	returns	the
node	that	holds	it	as	its	TM	controller.	The	IK	Chain	Controller	is	not
designed	to	be	instanced.	It	is	expected	to	have	a	unique	node.

Class	IKSolver	and	Solver	plugins
Being	a	plugin	itself,	the	IK	system	allows	the	solver	to	be	a	separate	plugin.
This	class	defines	the	base	class	that	plugin	solver	should	derive	from.	The	IK
solver	is	a	pure	mathematical	function:	it	does	not	hold	state	and	just	solves	a
given,	self-contained,	mathematical	problem.	In	other	words,	the	plugin	solver
does	not	have	influence	on	when	IK	is	invoked	and	what	an	IK	problem	is	(what
is	the	goal	and	what	are	the	joints,	etc.),	but	contributes	to	IK	by	answering	how
to	solve.	Structurally,	it	is	independent	of	the	SDK	and,	hence,	can	be	built
independently,	except	for	some	theoretically	independent	math	library.
	
Class	Identity
Plugin	solvers	are	recognized	by	the	IK	system	by	the	Super	Class	ID.	A
unique	enum,	IK_SOLVER_CLASS_ID,	defined	in	animtbl.h,	is	given
to	it.	The	SClass_ID	SuperClassID()	method	should	not	to	be	overridden.
Since	it	is	a	pure	mathematical	function	that	does	not	hold	state,	an	individual
plugin	solver	is	identified	by	its	class	name	which	can	be	obtained	using	the
GetClassName()	method.	When	class	name	clashes,	a	suffix	may	be
appended.	The	class	name	will	appear	in	the	solver	list	from	that	users	can
pick	for	or	assign	to	IK	chains.

	
Solver	Traits
Following	methods	are	meant	to	be	overridden	by	the	plugin	solver	queried
by	the	IK	system.
IsInteractive().	IK	can	be	used	as	a	controller	or	as	an	interactive
manipulation	tool.	In	the	former,	the	relationship	between	the	goal	and	the
joints	are	permanent:	joints	are	completely	controlled	by	the	goal.	In	the
latter,	the	relationship	is	transient,	existing	only	during	interactive
manipulation.	In	the	end,	IK	solutions	are	registered	at	each	joint,	mostly
likely	as	key-frames,	and	it	no	longer	matters	how	joints	got	their	joint	angles.
Only	non-interactive,	or	controller,	IK	solvers	ares	used.

IsHistoryDependent().	At	a	specific	animation	time,	the	history	dependent
solver	will	reach	solutions	not	only	based	the	state	of	goal	at	the	time,	but	also
its	previous	states	(hence	they	are	history	dependent).	On	the	contrary,	the
history	independent	solver	does	its	job	based	on	the	state	of	the	goal	just	at
the	time.	The	procedural	implication	is	that,	when	the	goal	is	changed	at	time
t,	the	IK	system	would	have	to	invalidate	joints,	at	time	t	for	the	history
independent	solver,	and	at	all	times	that	are	greater	or	equal	to	t	for	the	history
dependent	solver.	Only	history	dependent	solvers	are	used	by	the	IK	system.
The	methods	UseSlidingJoint()	and	UseSwivelAngle()	are	used	to	tell
whether	the	plugin	solver	intends	to	use	the	sliding	joint	(translational	degrees
of	freedom)	or	the	swivel	angle	parameter	of	the	IK	chain.
When	two	IK	chains	overlap,	i.e.,	if	there’s	a	joint	belonging	to	both	IK
chains,	some	solvers	are	able	to	negotiate	between	the	possibly	contending
goals	and	some	are	not.	The	method	DoesOneChainOnly()	is	used	to
determine	this.	For	those	that	can	only	solve	one	chain	at	a	time,	the	IK
system	will	pass	to	the	solvers	one	chain	at	a	time	in	a	definitive	order.	Only
solvers	that	"do	one	chain	only"	are	used.
The	method	DoesRootJointLimits()	and	DoesJointLimitsButRoot()
deal	with	the	concern	of	joint	limits.	If	the	solver	supports	joint	limits,	the	IK
system	will	trust	it.	Otherwise,	the	IK	system	will,	after	calling	the	solver,
clamp	the	results	according	the	joint	limit	constraints.	The	root	joint	in
DoesRootJointLimits()	refers	to	the	Start	Joint.	It	is	treated	differently
from	the	rest	of	joints.
The	method	SolveEERotation()	tells	whether	the	rotation	part	of	the	goal
node	will	be	used.	If	it	returns	false,	only	the	position	of	the	goal	node	is
taken	as	the	IK	goal	and	rotation	threshold	will	be	irrelevant.
Solvers	can	reach	solutions	with	closed	formula,	analytically,	or	going
through	iterations.	For	an	analytic	solver,	thresholds	and	maximum	iteration
numbers	are	not	relevant.	Checking	whether	or	not	a	solver	is	analytical	can
be	done	using	the	IsAnalytic()	method.

	
Solution	Parameters
The	methods	GetPosThreshold(),	GetRotThreshold(),
GetMaxIteration(),	SetPosThreshold(),	SetRotThreshold(),
SetMaxIteration()	are	used	to	get	and	set	the	Position	Threshold,	Rotation

Threshold,	and	the	Maximum	number	allowed	for	iterations	and	are	not
relevant	for	all	solvers.	For	an	analytic	solver,	for	example,	these	are	not	used
at	all.	The	IK	system,	however,	may	set	values	to	them.
As	mentioned	earlier,	plugin	solvers	may	have	their	own	Zero	Plane	Map.	If
so,	they	must	override	the	IKSys::ZeroPlaneMap*
GetZeroPlaneMap()	method.	The	IK	system	will	need	it	to	perform	IK
snapping:	setting	the	swivel	angle	based	on	the	current	pose	so	that	the	pose	is
consistent	with	the	swivel	angle.

	
Solve
Solve()	is	the	method	which	the	IK	system	will	call	when	it’s	time	to	update
the	joints	according	to	the	IK	goal	and	other	parameters.	The	IK	system	will
compile	an	IK	problem	represented	in	the	3ds	max	scene	data	structure,
nodes,	controllers,	etc.,	into	a	pure	mathematical	representation,
IKSys::LinkChain.	This	data	structure	only	represents	one	IK	chain.
Overlapping	IK	chains	are	not	dealt	with.	The	ReturnCondition,	returned
by	the	Solve()	method	is	a	bit-set.	Its	definition	is	copied	from
IKHierarchy.h:
	
typedef	unsigned	ReturnCondition;
enum	ConditionBit	{
	bLimitReached	=		0x00000001,
	bLimitClamped	=		0x00000002,
	bMaxIterationReached	=	0x00000004,
	//	The	first	eight	bits	are	reserved	for	mild	condition.
	//	They	are	still	considered	successful.
	bGoalTooCloseToEE	=		0x00000100,
	bInvalidArgument	=		0x00000200,
	bInvalidInitialValue	=	0x00000400
};
The	data	structure	passed	to	the	solver	is	transient,	meaning	that	it	will	be
discarded	once	the	solution	is	copied	back	to	the	joints.	If	the	return	condition
indicates	failure,	(return_condition	>	0xff)	then	the	result	will	not	be

copied	back	to	the	joint	nodes	in	the	3ds	max	scene	database.

Class	LinkChain
A	LinkChain	is	a	hierarchy	of	transformations.	At	the	top	is	the	RootLink	and
it	is	followed	by	a	number	of	Link’s	.	Each	link,	be	it	a	RootLink	or	Link,
evaluates	to	a	matrix,	called	the	link	matrix	(LinkMatrix).	This	matrix	consists
of	two	parts,	one	is	a	variable	part	(degrees	of	freedom)	and	the	other	is	a
relatively	constant	part,	called	rigid	extend	(RigidExtend).	It	can	be
graphically	represented	as:
	
	
RootLink
The	link	variable	is	a	rotation,	rotXYZ.	The	link	matrix	is	defined	as
RigidExtend	*	Rx	(rotXYZ.x)	*	Ry	(rotXYZ.y)	*	Rz	(rotXYZ.z)
where	Rx	(.)	stands	for	rotation	about	the	x-axis,	etc.

	
Link
The	variable	part	of	a	Link	is	of	one	degree	of	freedom.	It	can	be	translational
or	rotational.	A	typical	3	degrees	of	freedom	(xyz)	rotational	joint	can	be
decomposed	into	3	Links,	with	the	first	two	being	null	links:
	

	
LinkChain
A	LinkChain	consists	of	a	RootLink	and	a	number	of	Link’s.	The	reason
that	the	LinkChain	can	start	with	rotation,	the	variable	part	of	the
RootLink,	is	that	the	IK	system	will	collapse	all	the	node	transformations
from	the	root	of	the	scene	to	the	parent	matrix	of	the	Start	Joint	and	the
translation	part	of	the	Start	Joint,	called	the	parent	matrix,	and	transform	the
node	hierarchy	of	the	IK	chain	into	this	space.	The	author	of	the	plugin	solver
does	not	have	to	be	concerned	about	parentMatrix.	They	work	on	the
problem	as	it	is	rooted	at	the	origin	of	the	world.	The	data	structure	of
LinkChain	should	be	sufficient	for	those	solvers	that
DoesOneChainOnly()	and	UseSwivelAngle().

IK	System
The	IK	system	services	two	interfaces,	one	through	the	CORE,	and	the	other
through	the	IK	Chain	Controller	class.
	
Interface	Class	IKCmdOps
The	interface	ID	is	defined	in	IIKSys.h	as	IK_FP_INTERFACE_ID	and
is	published	through	the	CORE,	i.e.,	to	get	a	pointer	to	this	interface,	call
GetCOREInterface(IK_FP_INTERFACE_ID).
To	create	a	new	IK	chain,	use	the	method	CreateIKChain().	Given	two
pointers,	start	and	end,	that	are	intended	for	the	Start	and	End	joints
respectively,	and	the	solver’s	name,	solver,	this	method	will	create	a	node
that	has	an	IKChainControl	as	the	TM	controller.	This	method	will	return
false	and	fail	if:	1)	start	joint	is	not	a	proper	ancestor	of	end	joint	in	the
scene	graph;	or	2)	there	is	a	node	along	the	path	from	the	start	joint	to	the	end
joint	whose	TM	controller	is	not	an	IK	Control	and	is	not	replaceable,	or	3)
no	IK	solver	is	found	with	the	given	name.

	
Interface	Class	IKChainActions
The	interface	ID	is	defined	in	IIKsys.h	as
IKCHAIN_FP_INTERFACE_ID	and	is	published	through	the	class
IKChainControl,	i.e.,	to	get	a	pointer	to	this	interface,	call;
GET_IKCHAIN_CD-
>GetInterface(IKCHAIN_FP_INTERFACE_ID)
where	GET_IKCHAIN_CD	is	a	macro	defined	in	the	same	file	that
produces	a	pointer	to	the	class	descriptor	of	class	IKChainControl.
This	interface	also	publishes	a	number	of	actions.	An	action	acts	on	the
currently	selected	IK	chain	node.	The	following	method	returns	TRUE	if
there	is	exactly	one	valid	IK	chain	node	selected:	IsSnapEnabled().	The
following	methods	execute	snapping	on	the	currently	selected	IK	chain	node:
SnapAction()	,	IKSnapAction(),	and	FKSnapAction().	The	first	one
does	IK	snapping	if	its	Enabled	is	false	and	FK	snapping	if	its	Enabled	is	true.
The	next	two	will	do	IK	snapping	and	FK	snapping,	respectively.

Keyboard	Accelerators	and	Dialog	Messages
See	Also:	Class	Interface,	Custom	Controls.

Keyboard	Shortcuts
Important	Note:	A	new	system	to	handle	keyboard	accelerators	was	added	for
R4.	This	system	supercedes	those	used	in	previous	release.	For	information	on
this	system	see	Class	ActionTable.	The	information	shown	below	applies	to
previous	version	of	the	SDK	APIs.
Important	Note:	In	release	3.0	a	new	system	to	handle	keyboard	shortcuts	was
established.	This	system	is	used	to	register	shortcuts	in	a	uniform	manner.	In	the
Customize	/	Preference	Settings	/	Keyboard	tab	dialog	there	is	a	section	to	assign
Plug-In	shortcuts	to	commands.	For	details	on	how	this	works	see	the	topic
Keyboard	Shortcut	System.

Keyboard	Accelerators
Developers	might	want	to	implement	keyboard	accelerators	for	some	of	their
plug-ins	functions.	Because	3ds	max	plug-ins	are	modeless,	when	using	R1	there
was	inherently	a	conflict	between	the	accelerator	keys	that	the	user	expected	to
run	standard	3ds	max	functions,	and	those	supplied	by	the	plug-in.	For	this
reason,	a	developer	had	to	limit	their	accelerator	key	usage	as	much	as	possible.
However	in	R2	and	later	the	'Plug-In	Keyboard	Shortcut	Toggle'	icon	was	added.
This	controls	this	conflict	such	that	the	user	can	choose	if	the	plug-in
accelerators	are	in	effect	or	if	the	system	accelerators	are.	Thus	in	R2	and	later
developer	are	free	to	registers	all	the	accelerators	they	need	and	the	user	can
control	which	are	available.
When	a	plug-in	has	its	parameters	up	and	registers	some	accelerators,	these
accelerators	take	precedence	over	3ds	max	when	the	'Plug-In	Keyboard	Shortcut
Toggle'	is	on.	The	methods	below	(from	Class	Interface)	enable	the	developer
to	do	this.
virtual	void	RegisterAccelTable(HWND	hWnd,	HACCEL	hAccel
)=0;
This	method	registers	a	keyboard	accelerator	table.	Window	messages
generated	by	the	accelerator	table	are	sent	to	the	hWnd	parameter.
virtual	int	UnRegisterAccelTable(HWND	hWnd,	HACCEL
hAccel)=0;
This	method	un-registers	a	keyboard	accelerator	table.

Receiving	Input	to	Edit	Controls
If	a	plug-in	wants	to	receive	keyboard	input	using	a	Windows	edit	control,	it
must	disable	the	keyboard	accelerators.	3ds	max	uses	un-modified	keys	(such	as
'f'	to	change	to	the	front	view).	Unless	a	plug-in	disabled	the	accelerators	it
would	not	get	this	input.	The	following	global	functions	are	used	to	enable,
disable	and	check	the	enabled	state	of	the	keyboard	accelerators.
void	DisableAccelerators();
When	this	method	is	called,	ALL	keyboard	accelerators	are	disabled	and	are
no	longer	processed.
void	EnableAccelerators();
When	this	method	is	called,	the	keyboard	accelerators	are	processed	again.
BOOL	AcceleratorsEnabled();
Determines	if	the	keyboard	accelerators	are	enabled.	Returns	TRUE	if
enabled;	FALSE	if	disabled.

For	modal	dialogs,	Windows	itself	essentially	handles	disabling	and	enabling
accelerators	automatically.	For	modeless	dialogs,	a	plug-in	may	have	to	deal
with	these	functions.	If	a	plug-in	uses	all	standard	3ds	max	custom	edit	controls
for	its	editing,	it	won't	need	to	deal	with	enabling	and	disabling	accelerators	as
this	is	handled	by	the	custom	controls.	On	the	other	hand,	if	a	plug-in	uses	any
Windows	edit	controls,	such	as	a	combo	box	that	has	an	edit	field	and	drop
down,	they	will	have	to	call	these	functions.
For	example,	in	a	combo	box,	when	an	edit	field	gets	focus,	the	Windows
message	CBN_SETFOCUS	is	sent.	At	this	time,	a	plug-in	should	call
DisableAccelerators().	If	the	plug-in	did	not	do	this,	and	if	the	user	typed	an
'f',	the	current	3ds	max	viewport	would	change	to	the	front	view.	By	disabling
all	the	accelerators,	the	plug-in	will	receive	the	characters	itself.	When	the	dialog
proc	receives	CBN_KILLFOCUS,	the	accelerators	may	be	enabled	using
EnableAccelerators().

Floating	Dialogs
If	a	plug-in	creates	a	floating	dialog	box	there	are	two	important	things	that
should	be	done.
1)	A	plug-in	must	use	the	3ds	max	window	handle	as	the	parent	passed	to	the
"DialogBox"	of	"DialogBoxParam".	One	can	get	this	handle	using	the	method
Interface::GetMAXHWnd().
2)	The	method	Interface::RegisterDlgWnd(HWND	hDlg)	must	be	called
passing	the	handle	of	the	dialog	window.
Following	these	steps	will	prevent	problems	with	the	user	of	the	dialog	being
able	to	operate	the	rest	of	3ds	max	while	your	dialog	is	active.

Keyframe	and	Procedural	Controller	Data	Access
See	Also:	Class	IKeyControl,	Class	INode,	Class	Control,	Class	Matrix3,	Class
AngAxis,	Class	Quat,	Class	ScaleValue,	Matrix	Representations	of	3D
Transformations.

Overview
This	topic	presents	information	on	accessing	the	data	of	MAX's	keyframe	and
procedural	controllers.	There	are	sections	which	explain	how	the	keyframe	data
for	the	PRS	controller	can	be	interpreted,	various	APIs	for	keyframe	data	access,
and	procedural	controller	data	access.
Example	keyframe	controllers	are	the	Tension/Continuity/Bias	(TCB),	Bezier,
and	Linear	controllers.	Each	keyframe	controller	in	3ds	max	is	used	to	animate	a
value.	The	keys	of	the	controller	store	the	values	at	the	key	frames.	The
controller's	job	is	to	interpolate	between	these	keys.	This	topic	discusses	the	way
developers	may	access	and	interpret	the	keys	stored	by	keyframe	controllers	(in
particular	the	keys	stored	by	the	Position/Rotation/Scale	transform	controllers).
3ds	max	also	allows	the	use	of	procedural	controllers.	Procedural	controllers	are
those	that	compute	their	value	algorithmically,	based	on	user	specified
parameters	or	outside	data,	rather	than	interpolating	between	stored	keyframes.
Examples	include	the	Noise	Controller,	Expression	Controller,	Audio	Controller,
Path	Controller,	and	Waveform	Controller.	This	topic	presents	information	on
how	procedural	controllers	may	be	sampled	to	retrieve	their	data.
Source	code	is	provided	demonstrating	how	developers	may	access	both
keyframe	and	procedural	controller	data.

Interpretation	of	Keyframe	Key	Data	for	the	PRS	Controller
The	default	keyframe	transform	controller	in	3ds	max	is	a	PRS	controller.	This
means	that	it	handles	orienting	a	node	in	the	scene	using	separate	controllers	for
Position,	Rotation	and	Scale.	To	generate	a	complete	transformation,	first	the
position	is	applied,	then	the	rotation,	then	the	scaling.
Position	and	scale	keys	are	stored	in	the	local	coordinate	system	of	the
controller,	with	each	key	independent	of	the	others.	Rotation	keys	are	stored	in
local	coordinates	as	well,	but	each	is	stored	relative	to	the	previous	key	in	the
track.	Thus	the	first	key	stored	represents	the	actual	value	for	the	rotation	key	in
terms	of	the	relative	space	of	the	controller.	The	second	key	is	just	an	offset	from
the	first	key.	Thus	to	get	the	actual	rotation	for	the	second	key	you	need	to
multiply	it	on	the	left	by	the	first	key.	To	get	the	third	key,	you	need	to	multiply
it	by	the	second	computed	key	(which	was	computed	from	the	first).	These
computed	rotation	key	values	will	then	be	the	absolute	quaternions	for	each	key
for	that	controller.
It	is	important	to	understand	however	that	the	entire	animation	track	for	position,
rotation	and	scale	are	all	relative	to	the	matrix	passed	into	the	controller	when	its
GetValue()	method	is	called.	For	additional	details	on	how	a	controller	updates
GetValue()	see	the	Advanced	Topics	section	Node	and	Object	Offset
Transformations.
Note	the	following:
·	When	developers	access	key	data	from	MAX,	the	data	is	returned	in	the	local

coordinate	system	of	the	controller.
·	The	key	values	that	appear	in	the	Key	Info	dialog	for	a	controller	are	in	the

local	coordinate	system	of	the	controller	(with	the	appropriate	units	for
display	--	for	example,	angles	are	shown	in	degrees	in	Key	Info	but	are
stored	in	radians).

Keyframe	Access	Classes	and	Methods
This	section	discusses	access	to	keyframe	controller	data.	The	3ds	max	API
provides	a	class	IKeyControl.	This	class	provides	an	interface	into	the	TCB,
Bezier,	and	Linear	keyframe	controllers	allowing	a	developer	to	add,	delete,
retrieve	and	update	the	keys	of	the	controller.
Use	of	the	IKeyControl	methods	requires	you	to	include
\MAXSDK\INCLUDE\ISTDPLUG.H,	i.e.:
#include	"ISTDPLUG.H"

The	standard	3ds	max	PRS	keyframe	controllers	provide	access	to	their	keys
using	this	class.	To	get	an	interface	you	can	use	to	call	methods	of
IKeyControl	use	the	following	macro	(defined	in
\MAXSDK\INCLUDE\ANIMTBL.H):
#define	GetKeyControlInterface(anim)
((IKeyControl*)anim->GetInterface(I_KEYCONTROL))

A	plug-in	developer	may	use	this	macro	as	follows:
IKeyControl	*ikc	=	GetKeyControlInterface(anim);

The	return	value	will	either	be	NULL	or	a	pointer	to	a	valid	controller	interface.
A	NULL	pointer	indicates	the	controller	does	not	support	this	interface	to	allow
access	to	its	data.
The	following	is	an	example	of	getting	a	position	controller	interface	from	a
node	in	the	scene.	The	first	thing	that	happens	is	the	position	controller	is
retrieved	from	the	node	(using	methods	of	class	INode	and	Control)	and	then
the	controller	interface	is	returned	via	the	GetKeyControlInterface()	macro:

Control	*c;
	c	=	node->GetTMController()->GetPositionController();
	IKeyControl	*ikeys	=	GetKeyControlInterface(c);
	if	(!ikeys)	return;	//	No	interface	available	to	access	the	keys...
The	methods	of	IKeyControl	may	be	called	using	the	ikeys	pointer.	For
example	the	method	GetKey(int	i,IKey	*key)	retrieves	the	'i-th'	key	and
stores	the	result	in	key.	You'll	need	to	check	the	ClassID	of	the	controller	so	you
can	pass	the	appropriate	class	to	the	method	to	retrieve	the	keys.	There	are	three
type	of	controllers	and	five	data	types	that	are	supported	by	the	IKeyControl
interface.	The	controller	types	are	Tension/Continuity/Bias	(TCB),	Bezier,	and
Linear.	The	data	types	are	floating	point	(float),	Position	(Point3),	Rotation

(Quat	or	AngAxis),	and	Scale	(ScaleValue).	The	type	of	key	you	pass	to	the
GetKey()	or	SetKey()	methods	depends	on	both	the	controller	and	data	type.
The	following	classes	are	used	for	key	storage	for	each	valid	possibility:

Tension/Continuity/Bias:
Class	ITCBFloatKey
Class	ITCBPoint3Key,
Class	ITCBRotKey
Class	ITCBScaleKey

Bezier:
Class	IBezFloatKey
Class	IBezPoint3Key
Class	IBezQuatKey
Class	IBezScaleKey

Linear:
Class	ILinFloatKey
Class	ILinPoint3Key
Class	ILinRotKey
Class	ILinScaleKey

See	the	following	code	for	an	example:
	ITCBPoint3Key	tcbPosKey;
	int	numKeys	=	ikeys->GetNumKeys();
	if	(c->ClassID()	==
Class_ID(TCBINTERP_POSITION_CLASS_ID,	0))	{
		for	(i	=	0;	i	<	numKeys;	i++)	{
			ikeys->GetKey(i,	&tcbPosKey);
			DebugPrint(_T("\nPosition	Key:	%d=(%.1f,	%.1f,	%.1f)"),
				i,	tcbPosKey.val.x,	tcbPosKey.val.y,	tcbPosKey.val.z);
		}
	}
Note	how	an	instance	of	the	ITCBPoint3Key	class	was	passed	to	GetKey()
since	the	ClassID	indicates	the	controller	is	a	TCB	controller	and	we	want
position	keys	(which	operate	on	Point3s).

Keyframe	Interpolation	in	MAX
The	function	used	for	interpolation	between	keys	depends	on	the	type	of
controller.	In	general,	3ds	max	uses	cubic	(polynomial	of	degree	three)	splines
for	interpolation.	Rotations	are	done	using	spherical	linear	interpolation	(slerps).
Registered	developers	who	are	interested	in	the	exact	details	of	keyframe
interpolation	have	the	source	code	3ds	max	uses	internally	as	part	of	the	Debug
SDK.	The	bezier	interpolation	code	is	available	in
\MAXSDKDB\SDKSRC\INTERP.CPP	and	the	TCB	interpolation	is	in
\MAXSDKDB\SDKSRC\TCBINTRP.CPP.	This	code	is	not	available	for
non-registered	developers.	See	the	Advanced	Topics	section	on	Debugging	for
more	details	on	the	Debug	SDK.
Several	developers	have	tried	to	use	the	IKeyControl	interface	and	then
operate	on	the	keys	to	get	and	interpolate	them	in	'world	space'.	This	is	really	a
problematic	thing	to	try	do	because	the	keys	are	interdependent.	For	instance,
consider	scale	keys.	In	world	space	scale	keys	are	dependent	on	the	position	and
rotation	of	the	controller	as	well	as	the	parent	transformation.	This	is	because
first	an	object	is	scaled,	then	it	is	rotated,	then	its	position	is	applied,	then	the
parent	transformation	is	applied.	So	the	scale	is	rotated.	If	you	scale	an	object
along	its	X	axis	and	then	rotate	it	the	scale	becomes	rotated.	The	scale	is	no
longer	rotated	about	the	world	X	axis,	it's	rotated	about	some	other	axis.	This	is
normally	what	you	want,	i.e.	you	don't	want	the	object	to	rotate	through	the
scaled	spaced	(this	would	cause	it	to	skew).	So	to	talk	about	the	scale	in	world
space	is	a	strange	concept.
Further,	the	interpolation	of	keys	that	are	in	world	space	is	equally	problematic.
If	keys	are	put	into	world	space,	then	interpolated	in	world	space,	the	resulting
animation	will	be	very	different	that	what	would	be	seen	inside	MAX.	For
example,	consider	an	object	that	is	rotating	360	degrees	about	its	local	Z	axis
and	is	tilted	at	some	arbitrary	angle.	If	you	interpolate	the	way	3ds	max	does,	all
the	interpolation	is	done	in	the	local	coordinate	system.	Thus	the	object	would
rotate	about	its	local	Z	axis	(which	is	tilted).	However	if	you	were	to	try	to
interpolate	about	in	world	space	the	rotation	would	occur	about	the	world	Z	axis.
The	object	will	still	end	up	in	the	same	place,	but	it	will	be	a	very	different
animation	than	what	3ds	max	would	have.
The	bottom	line	is	that	developer	need	to	understand	the	way	3ds	max	computes
its	node	transformation	based	on	the	keyframes	and	use	the	information	to
interpolate	between	keys	accordingly.

Procedural	Controller	Data	Access
3ds	max	allows	users	to	use	procedural	controllers	in	addition	to	keyframe
controllers.	Procedural	controllers	are	those	that	compute	their	value
algorithmically	rather	than	interpolate	between	stored	keyframes.	Developers
may	need	to	retrieve	values	from	these	controllers	but	won't	be	able	to	use	the
IKeyControl	interface	since	no	keys	are	available.	In	these	cases,	one	must
sample	the	controller	to	retrieve	its	value	at	each	frame	required.	This	is	done	by
calling	the	Control::GetValue()	method	directly.	The	following	sample	code
samples	the	controller	for	each	frame	in	the	current	animation	interval	and
DebugPrint()s	the	values	to	the	VC++	IDE	debug	window.	Note	how	the
parent	matrix	of	the	node	is	passed	into	the	GetValue()	call.	This	allows
GetValue()	to	update	the	appropriate	matrix.	In	the	code	below,	the	position
coordinates	printed	by	DebugPrint()	will	be	in	world	space.

void	Utility::SampleController(INode	*n,	Control	*c)	{
	TimeValue	t;
	Point3	trans;
	Matrix3	pmat;
	Interval	ivalid;
	int	tpf	=	GetTicksPerFrame();
	int	s	=	ip->GetAnimRange().Start()/tpf,

e	=	ip->GetAnimRange().End()/tpf;
	
	//	Sample	the	controller	at	every	frame	in	the	anim	range
	for	(int	f	=	s;	f	<=	e;	f++)	{
		t	=	f*tpf;
		ivalid	=	FOREVER;
		pmat	=	n->GetParentTM(t);
		c->GetValue(t,	&pmat,	ivalid,	CTRL_RELATIVE);
		trans	=	pmat.GetTrans();
		DebugPrint(_T("\nPosition	at	frame:	%d	of	%d=(%.1f,	%.1f,	%.1f)"),
			f,	e,	trans.x,	trans.y,	trans.z);
	}
}

A	developer	could	also	get	the	relative	values	from	the	PRS	controller	by
passing	in	the	identity	matrix	and	not	the	parent	matrix	to	GetValue().	This	is
appropriate	for	the	PRS	transform	controller	but	not	the	Look	At	transform

controller.	With	a	Look	At	controller,	its	relative	values	are	actually	a	function	of
the	input	matrix.	If	you	pass	in	the	identity	to	its	GetValue()	method,	it	will
think	that	the	object	is	positioned	at	the	center	of	the	world	and	the	results	won't
be	meaningful.

Sample	Code
The	following	sample	code	demonstrates	access	to	the	controller	data	for	the
first	node	in	the	current	selection	set.	The	code	checks	to	see	if	the	controller
provides	its	data	via	the	IKeyControl	interface.	If	it	does,	this	interface	is	used
to	get	the	keys.	If	it	does	not,	the	controller	is	sampled	at	each	frame	to	get	its
data.	For	the	keyframe	controllers,	note	how	the	ClassIDs	are	checked	to	ensure
the	proper	classes	are	used	when	getting	key	values.	Also	note	how	the	rotation
keys	are	derived	by	multiplying	on	the	left	by	the	previous	key.	For	the
procedural	controllers,	note	how	the	parent	matrix	of	the	node	is	passed	to	the
GetValue()	method.

//	Display	the	data	of	the	controller.	For	TCB,	Bezier	and	Linear
//	keyframe	PRS	controllers	the	position,	rotation	and	scale	values
//	are	displayed	in	the	local	space	of	the	controller.	For
//	procedural	controllers	(or	those	that	don't	support	the
//	IKeyControl	interface),	position	data	is	displayed	in	world	space.
void	Utility::KeyTest()	{
	int	i,	numKeys;
	INode	*n;
	Control	*c;
	Quat	newQuat,	prevQuat;
	IKeyControl	*ikeys;
	ITCBPoint3Key	tcbPosKey;
	ITCBRotKey	tcbRotKey;
	ITCBScaleKey	tcbScaleKey;
	IBezPoint3Key	bezPosKey;
	IBezQuatKey	bezRotKey;
	IBezScaleKey	bezScaleKey;
	ILinPoint3Key	linPosKey;
	ILinRotKey	linRotKey;
	ILinScaleKey	linScaleKey;
	
	//	Get	the	first	node	in	the	selection	set
	if	(!ip->GetSelNodeCount())	return;
	n	=	ip->GetSelNode(0);
	
	//	---	Process	the	position	keys	---

	c	=	n->GetTMController()->GetPositionController();
	ikeys	=	GetKeyControlInterface(c);
	if	(!ikeys)	{
		//	No	interface	available	to	access	the	keys...
		//	Just	sample	the	controller	to	get	the	position
		//	data	at	each	key...
		SampleController(n,	c);
		return;
	}
	numKeys	=	ikeys->GetNumKeys();
	DebugPrint(_T("\nThere	are	%d	position	key(s)"),	numKeys);
	
	if	(c->ClassID()	==	Class_ID(TCBINTERP_POSITION_CLASS_ID,	0))
{
		for	(i	=	0;	i	<	numKeys;	i++)	{
			ikeys->GetKey(i,	&tcbPosKey);
			DebugPrint(_T("\nTCB	Position	Key:	%d=(%.1f,	%.1f,	%.1f)"),
				i,	tcbPosKey.val.x,	tcbPosKey.val.y,	tcbPosKey.val.z);
		}
	}
	else	if	(c->ClassID()	==
Class_ID(HYBRIDINTERP_POSITION_CLASS_ID,	0))	{
		for	(i	=	0;	i	<	numKeys;	i++)	{
			ikeys->GetKey(i,	&bezPosKey);
			DebugPrint(_T("\nBezier	Position	Key:	%d=(%.1f,	%.1f,	%.1f)"),
				i,	bezPosKey.val.x,	bezPosKey.val.y,	bezPosKey.val.z);
		}
	}
	else	if	(c->ClassID()	==	Class_ID(LININTERP_POSITION_CLASS_ID,
0))	{
		for	(i	=	0;	i	<	numKeys;	i++)	{
			ikeys->GetKey(i,	&linPosKey);
			DebugPrint(_T("\nLinear	Position	Key:	%d=(%.1f,	%.1f,	%.1f)"),
				i,	linPosKey.val.x,	linPosKey.val.y,	linPosKey.val.z);
		}
	}
	

	//	---	Process	the	rotation	keys	---
	c	=	n->GetTMController()->GetRotationController();
	ikeys	=	GetKeyControlInterface(c);
	if	(!ikeys)	return;
	
	numKeys	=	ikeys->GetNumKeys();
	DebugPrint(_T("\nThere	are	%d	rotation	key(s)"),	numKeys);
	
	if	(c->ClassID()	==	Class_ID(TCBINTERP_ROTATION_CLASS_ID,
0))	{
		for	(i	=	0;	i	<	numKeys;	i++)	{
			ikeys->GetKey(i,	&tcbRotKey);
			newQuat	=	QFromAngAxis(tcbRotKey.val.angle,	tcbRotKey.val.axis);
			if	(i)	newQuat	=	prevQuat	*	newQuat;
			prevQuat	=	newQuat;
			DebugPrint(_T("\nTCB	Rotation	Key:	%d=(%.1f,	%.1f,	%.1f,
%.1f)"),
				i,	newQuat.x,	newQuat.y,	newQuat.z,	newQuat.w);
		}
	}
	else	if	(c->ClassID()	==
Class_ID(HYBRIDINTERP_ROTATION_CLASS_ID,	0))	{
		for	(i	=	0;	i	<	numKeys;	i++)	{
			ikeys->GetKey(i,	&bezRotKey);
			newQuat	=	bezRotKey.val;
			if	(i)	newQuat	=	prevQuat	*	newQuat;
			prevQuat	=	newQuat;
			DebugPrint(_T("\nBezier	Rotation	Key:	%d=(%.1f,	%.1f,	%.1f,
%.1f)"),
				i,	newQuat.x,	newQuat.y,	newQuat.z,	newQuat.w);
		}
	}
	else	if	(c->ClassID()	==
Class_ID(LININTERP_ROTATION_CLASS_ID,	0))	{
		for	(i	=	0;	i	<	numKeys;	i++)	{
			ikeys->GetKey(i,	&linRotKey);
			newQuat	=	linRotKey.val;

			if	(i)	newQuat	=	prevQuat	*	newQuat;
			prevQuat	=	newQuat;
			DebugPrint(_T("\nLinear	Rotation	Key:	%d=(%.1f,	%.1f,	%.1f,
%.1f)"),
				i,	newQuat.x,	newQuat.y,	newQuat.z,	newQuat.w);
		}
	}
	
	//	---	Process	the	scale	keys	---
	c	=	n->GetTMController()->GetScaleController();
	ikeys	=	GetKeyControlInterface(c);
	if	(!ikeys)	return;
	
	numKeys	=	ikeys->GetNumKeys();
	DebugPrint(_T("\nThere	are	%d	scale	key(s)"),	numKeys);
	
	if	(c->ClassID()	==	Class_ID(TCBINTERP_SCALE_CLASS_ID,	0))	{
		for	(i	=	0;	i	<	numKeys;	i++)	{
			ikeys->GetKey(i,	&tcbScaleKey);
			DebugPrint(_T("\nTCB	Scale	Key:	%2d=(%.1f,	%.1f,	%.1f)"),
				i,	tcbScaleKey.val.s.x,	tcbScaleKey.val.s.y,
				tcbScaleKey.val.s.z);
		}
	}
	else	if	(c->ClassID()	==
Class_ID(HYBRIDINTERP_SCALE_CLASS_ID,	0))	{
		for	(i	=	0;	i	<	numKeys;	i++)	{
			ikeys->GetKey(i,	&bezScaleKey);
			DebugPrint(_T("\nBezier	Scale	Key:	%2d=(%.1f,	%.1f,	%.1f)"),
				i,	bezScaleKey.val.s.x,	bezScaleKey.val.s.y,
				bezScaleKey.val.s.z);
		}
	}
	else	if	(c->ClassID()	==	Class_ID(LININTERP_SCALE_CLASS_ID,	0))
{
		for	(i	=	0;	i	<	numKeys;	i++)	{
			ikeys->GetKey(i,	&linScaleKey);

			DebugPrint(_T("\nLinear	Scale	Key:	%2d=(%.1f,	%.1f,	%.1f)"),
				i,	linScaleKey.val.s.x,	linScaleKey.val.s.y,
				linScaleKey.val.s.z);
		}
	}
}
	
//	Display	the	position	data	of	controller	in	world	coordinates	for	each
//	frame	in	the	animation	range
void	Utility::SampleController(INode	*n,	Control	*c)	{
	TimeValue	t;
	Point3	trans;
	Matrix3	pmat;
	Interval	ivalid;
	int	tpf	=	GetTicksPerFrame();
	int	s	=	ip->GetAnimRange().Start()/tpf,

e	=	ip->GetAnimRange().End()/tpf;
	
	//	Sample	the	controller	at	every	frame	in	the	anim	range
	for	(int	f	=	s;	f	<=	e;	f++)	{
		t	=	f*tpf;
		ivalid	=	FOREVER;
		pmat	=	n->GetParentTM(t);
		c->GetValue(t,	&pmat,	ivalid,	CTRL_RELATIVE);
		trans	=	pmat.GetTrans();
		DebugPrint(_T("\nPosition	at	frame:	%d	of	%d=(%.1f,	%.1f,	%.1f)"),
			f,	e,	trans.x,	trans.y,	trans.z);
	}
}

Summary
This	section	provided	an	overview	of	accessing	3ds	max	controller	data.	Since
3ds	max	supports	both	keyframe	and	procedural	controllers	different	techniques
are	required	to	retrieve	the	data.	Keyframe	controller	can	usually	use	the
IKeyControl	interface.	Procedural	controller	must	be	sampled	using
GetValue(),	usually	at	each	frame.	The	values	that	a	controller	stores	are	in	the
local	coordinate	system	of	the	controller.	The	matrix	passed	to	GetValue()	for	a
transform	controller	defines	the	coordinate	system	of	the	transformation.

Loading	and	Saving	Plug-In	Data
See	Also:	Class	ReferenceMaker,	Class	ILoad,	Class	ISave,	Class	AppSave,
Class	AppLoad.

Overview
Plug-in	developers	need	to	be	aware	of	the	way	3ds	max	saves	and	loads	a	plug-
in's	data	from	disk.	In	certain	cases,	the	plug-in's	data	will	be	saved
automatically	without	the	plug-in	developer	having	to	provide	any	special	code.
In	other	cases,	the	plug-in	must	save	and	load	the	data	it	maintains	for	its
operation.
The	following	two	cases	are	examples	of	3ds	max	automatically	saving	plug-in
data.
1	3ds	max	takes	care	of	loading	and	saving	any	references	the	plug-in	has	when
it	is	saved	to	disk.	The	plug-in	does	not	need	to	explicitly	save	its	references,
nor	does	it	need	to	load	its	references.	After	a	scene	is	loaded,	the	references
will	automatically	be	restored.	See	the	Advanced	Topics	section	on
References	for	more	details	on	the	loading	and	saving	of	references.

2	If	a	plug-in's	parameters	are	all	handled	by	parameter	blocks,	the	plug-in	does
not	need	to	save	its	parameters	because	the	parameter	block	is	responsible	for
loading	and	saving	to	disk.

If	the	plug-in	maintains	any	other	type	of	data	it	needs	for	its	operation,	it	must
specifically	save	this	data	to	disk.
There	are	two	methods	of	the	ReferenceMaker	class	which	are	called	by	the
system	when	the	plug-in's	data	needs	to	be	loaded	or	saved.	These	methods	are
named	Load()	and	Save().	The	plug-in	implements	these	methods	to	load	or
save	any	special	data	it	has.
The	process	works	as	follows:	When	a	3ds	max	file	is	saved,	each	plug-in	object
is	asked	to	save	its	data.	It	is	provided	with	an	interface	which	has	methods	to
write	data.	This	data	can	be	partitioned	into	chunks.	A	chunk	is	simply	a
container	used	to	organize	the	data	in	the	file.	When	an	object	needs	to	be	saved,
3ds	max	creates	a	chunk	for	the	object.	Inside	that	chunk,	another	chunk	is
created	to	contain	reference	information	which	the	system	writes.	The	plug-in's
Save()	method	is	then	called.	When	the	plug-in	begins	execution	in	its	Save()
procedure,	the	file	pointer	is	positioned	inside	the	plug-in's	chunk	but	after	the
first	chunk	containing	the	reference	data.	The	plug	in	can	then	create	its	own
chunks.	Each	chunk	may	contain	sub-chunks	or	data,	but	not	both.	In	other
words,	any	single	chunk	may	contain	either	data	only,	or	other	sub-chunks	only.
If	you	want	to	put	both	data	and	chunks	inside	another	chunk,	the	data	needs	to
be	bracketed	inside	a	chunk	itself.	To	save	data,	a	Write()	method	is	used	that

simply	writes	a	block	of	bytes	to	the	output	stream.	See	the	sample	program
below	for	an	example	using	chunks	and	data	to	save	information.
Loading	a	3ds	max	file	is	similar.	The	plug-in	is	asked	to	load	its	data	and	is
given	an	interface	pointer	which	allows	it	to	read	chunks.	When	a	plug-in	DLL	is
asked	to	create	a	new	instance	of	its	class	(using	the	Create()	method	of	the
plug-ins	class	descriptor),	a	parameter	is	passed	to	indicate	whether	the	new
instance	is	being	created	with	the	intention	of	loading	an	object	from	a	disk	file.
In	this	way,	if	the	parameter	is	TRUE,	the	object	doesn't	have	to	perform	any
initialization	because	it	is	guaranteed	that	it	will	be	asked	to	read	data	from	a
file.	The	parameter	referred	to	here	is	the	loading	flag	passed	into
ClassDesc::Create(BOOL	loading).

Sample	Code
The	following	code	demonstrates	how	both	Save()	and	Load()	may	be
implemented	for	a	plug-in	with	two	pieces	of	data	it	needs	to	save	and	restore.
This	sample	writes	an	array	of	10	floating	point	values	and	a	single	DWORD
containing	flags.	The	process	of	saving	is	very	simple.	The	output	file	is	already
open	and	ready	to	be	written	to.	A	pointer	to	the	ISave	class	has	been	passed	in
with	which	the	plug-in	can	call	methods	to	save	data.	The	plug-in	begins	by
creating	a	chunk	using	the	BeginChunk()	method	and	passing	an	ID	it	has
defined.	This	ID	can	be	any	USHORT,	as	only	the	plug-in's	loading	and	saving
procedures	will	ever	use	it.	It	then	writes	the	data	using	the	Write()	method.	It
then	closes	the	chunk	using	EndChunk().	It	begins	a	new	chunk	and	writes	the
flag	data.	After	ending	this	chunk	it	returns	IO_OK	to	indicate	a	successful
save.
The	data	is	saved	in	chunks	like	this	so	that	it	may	be	loaded	in	a	manner	which
is	not	order	dependent.	One	could	write	the	flags	first	and	the	array	second	and	it
would	still	be	read	correctly.
#define	SAMPLE_DATA_CHUNK	1000
#define	SAMPLE_FLAGS_CHUNK	1010
IOResult	Sample::Save(ISave*	isave)	{
	ULONG	nb;
	isave->BeginChunk(SAMPLE_DATA_CHUNK);
	isave->Write(myArray,	sizeof(float)	*	10,	&nb);
	isave->EndChunk();
	isave->BeginChunk(SAMPLE_FLAGS_CHUNK);
	isave->Write(&flags,	sizeof(DWORD),	&nb);
	isave->EndChunk();
	return	IO_OK;
	}

The	following	code	demonstrates	the	loading	process.	Again,	in	preparation	for
this	call	the	system	has	opened	the	file	and	positioned	the	file	pointer	at	the	plug-
in's	objects	chunk.	The	code	loops,	opening	chunks	and	reading	the	data	until
OpenChunk()	no	longer	returns	IO_OK.	This	indicates	there	are	no	more
chunk	at	this	level	and	the	process	is	done.
Inside	the	loop,	the	code	switches	on	the	chunk	ID.	For	each	ID	it	recognizes	it

reads	the	data	using	Read().	The	chunk	is	then	closed	using	CloseChunk().	If
Read()	did	not	return	IO_OK	an	error	occurred	and	this	error	code	is	returned.
Otherwise,	the	loop	begins	again.
If	the	loading	was	successful,	IO_OK	is	returned	to	indicate	so.
IOResult	Sample::Load(ILoad*	iload)	{
	ULONG	nb;
	IOResult	res;
	while	(IO_OK==(res=iload->OpenChunk()))	{
		switch(iload->CurChunkID())	{
			case	SAMPLE_DATA_CHUNK:
				res=iload->Read(myArray,	sizeof(float)*10,	&nb);
				break;
			case	SAMPLE_FLAGS_CHUNK:
				res=iload->Read(&flags,	sizeof(DWORD),	&nb);
				break;
			}
		iload->CloseChunk();
		if	(res!=IO_OK)
			return	res;
		}
	return	IO_OK;
	}

The	possible	return	values	for	IOResult	are:
IO_OK	-	The	result	was	acceptable	-	no	errors.
IO_END	-	This	is	returned	from	OpenChunk()	when	the	end	of	the	chunks	at
a	certain	level	have	been	reached.	It	is	used	as	a	signal	to	terminate	the
processing	of	chunks	at	that	level.
IO_ERROR	-	This	is	returned	if	an	error	occurred.	Note	that	the	plug-in
should	not	put	up	a	message	box	if	a	read	error	occurred.	It	should	simply	return
the	error	status.	This	prevents	a	overabundance	of	messages	from	appearing.
For	Reference	information	see:	ILoad,	ISave.

Loading	and	Saving	Hierarchical	Data
There	are	two	classes	available	for	writing	and	reading	hierarchical	data
structures	to	a	linear	stream,	such	as	an	AppData	block.	These	are	Class
AppSave	and	Class	AppLoad.	Please	see	those	classes	for	more	details.

Matrix	Representations	of	3D	Transformations
See	Also:	Class	Matrix3,	Class	Inode,	Class	Quat,	Class	AngAxis,	Structure
AffineParts,	Class	BigMatrix.

Overview
This	section	discusses	the	way	transformation	matrices	are	constructed	and	used
in	MAX,	and	various	APIs	that	are	available	for	working	with	these	matrices.
Transformation	matrices	can	be	used,	for	example,	to	transfer	the	coordinates	of
an	object	from	local	space	to	world	space,	or	to	position	nodes	in	the	scene.	The
transformations	these	matrices	provide	are	translation,	scaling	and	rotation.
Methods	of	the	Matrix3	class	(and	several	global	functions)	are	provided	to
easily	create	transformation	matrices	and	perform	matrix	arithmetic.

Matrix	Fundamentals
A	matrix	is	a	two-dimensional	array	of	numbers.	In	MAX,	4x3	matrices	are
used.	For	3ds	max	matrices,	the	first	number	is	the	number	of	rows	(4)	and	the
second	number	is	the	number	of	columns	(3).	Thus	there	are	a	total	of	12
elements.
An	instance	of	Matrix3	has	a	private	data	member	that	contains	the	values:
float	m[4][3];

The	layout	of	these	elements	is	shown	in	the	following	diagram:

The	following	matrix	is	called	the	'Identity	Matrix'.	This	special	matrix,	when
multiplied	by	a	vector	or	another	matrix,	yields	the	original	matrix.

The	3ds	max	API	provides	several	ways	to	create	identity	matrices.	If	a	value	of
1	is	passed	to	the	constructor	of	a	Matrix3	it	is	initialized	to	the	identity.	For
example
Matrix3	tmat(1);	//	Identity	matrix

You	may	also	use	a	method	of	Matrix3	to	reset	a	matrix	to	the	identity,	for
example:
tmat.IdentityMatrix();	//	Reset	to	the	identity	matrix

You	can	verify	if	a	matrix	is	equal	to	the	identity	by	using:
BOOL	isIdent	=	tmat.IsIdentity();

The	following	sections	discuss	the	ways	matrices	can	be	used	in	transformations.

Multiplying	a	Vector	by	a	Matrix
One	thing	that	can	be	done	is	to	multiply	a	vector	(Point3)	by	a	matrix
(Matrix3).	This	results	in	a	new	vector	as	a	result.	This	is	often	used	to
transform	vectors	from	one	coordinate	space	to	another.	There	is	a	global
function	in	the	SDK	that	does	this.
Point3	VectorTransform(const	Matrix3&	M,	const	Point3&	V);
Transform	the	vector	(Point3)	with	the	specified	matrix.

Note:	In	MAX,	all	vectors	are	assumed	to	be	row	vectors.	Under	this
assumption,	multiplication	of	a	vector	with	a	matrix	using	the	*	operator	can	be
written	either	way	(Matrix*Vector	or	Vector*Matrix),	for	ease	of	use,	and	the
result	is	the	same	--	the	(row)	vector	transformed	by	the	matrix.

Multiplying	Two	Matrices
It	is	often	also	very	useful	to	compute	the	multiplication	of	a	matrix	by	another
matrix.	This	produces	a	matrix	as	the	result.	Matrix	multiplication	is	associate
but	not	commutative.	That	is,	AB	is	not	the	same	as	BA,	but	(AB)C	is	the	same
as	A(BC).	This	property	is	very	useful	since	separate	matrix	transformations	can
be	concatenated	together	and	then	all	applied	at	once.	3ds	max	provides	several
methods	to	perform	matrix	multiplication;	each	are	operators	of	the	Matrix3
class.
Matrix3&	operator*=(const	Matrix3&	M);
Multiplies	this	Matrix3	by	the	specified	Matrix3.
Matrix3	operator*(const	Matrix3&)	const;
Performs	matrix	multiplication.

Scaling
Now	that	we	have	seen	some	basic	matrix	math,	let's	see	how	we	can	create
matrices	capable	of	performing	typical	transformations.	Scale	transformations
can	be	used,	for	example,	to	multiply	each	component	of	a	vector	by	a	scale
factor.	Scale	transformations	use	the	following	matrix	positions:

The	following	global	function	is	provided	in	the	API	to	create	a	scale	matrix
given	a	Point3	with	the	individual	scale	factors	(the	scale	factors	are	in	the	x,	y,
z	data	members	of	the	Point3):
Matrix3	ScaleMatrix(const	Point3&	s);
Builds	a	new	matrix	for	use	as	a	scale	transformation.

The	following	method	of	the	Matrix3	class	nulls	out	the	scale	values	in	a
matrix:
void	NoScale();
This	method	nulls	the	scale	portion	of	the	matrix.

Translation
Translation	matrices	use	the	following	matrix	positions:

There	are	global	functions	in	the	3ds	max	API	to	create	these	translation
matrices	and	to	apply	translation	to	existing	matrices.	Several	of	these	are	given
below:
Matrix3	TransMatrix(const	Point3&	p);
Builds	a	new	matrix	for	use	as	a	translation	transformation.

A	method	of	Matrix3	allows	the	translation	portion	of	the	matrix	to	be	set.
void	SetTrans(const	Point3	p)
Sets	the	translation	portion	of	this	matrix	to	the	specified	values.
void	NoTrans();
This	method	zeros	the	translation	portion	of	this	matrix.

One	can	also	retrieve	the	translation	portion	of	a	matrix	using	the	Matrix3
method:
Point3	GetTrans();
Returns	the	translation	component	of	this	matrix.

Rotation
The	cells	in	a	rotation	matrix	are	the	sines	and	cosines	of	the	angle	of	rotation.	In
the	Matrix3	right-handed	coordinate	system,	positive	angles	move	in	a
counterclockwise	direction,	when	looking	down	an	axis	from	positive	to
negative.	In	the	diagram	below,	the	cones	along	the	XYZ	axes	point	in	the
positive	direction,	and	the	cones	in	the	circles	around	each	axis	point	in	the
positive	direction	of	rotation.

The	matrices	for	rotation	about	the	three	axes	are	shown	below.	In	each	case	a
represents	the	angle	of	rotation	in	radians:
X	rotation

Y	rotation

Z	rotation

There	are	global	functions	in	the	3ds	max	API	to	create	these	rotation	matrices
and	to	apply	rotation	to	existing	matrices.	Several	of	these	are	given	below:
Matrix3	RotateXMatrix(float	angle);
Builds	a	new	matrix	for	use	as	a	X	rotation	transformation.	The	angle	is
specified	in	radians.
Matrix3	RotateYMatrix(float	angle);
Builds	a	new	matrix	for	use	as	a	Y	rotation	transformation.
Matrix3	RotateZMatrix(float	angle);
Builds	a	new	matrix	for	use	as	a	Z	rotation	transformation.

Developer	can	also	remove	the	rotation	from	a	given	matrix	using	the	Matrix3
method:
void	NoRot();
This	method	nulls	the	rotation	portion	of	the	matrix.

Creating	Quaternions	from	Rotation	Matrices
A	quaternion	can	be	created	from	a	rotation	matrix.	By	passing	the	Matrix3	to
the	constructor	of	the	Quat,	its	rotation	values	are	used	to	initialize	the
quaternion.	The	following	code	shows	an	example	of	this.	It	takes	a	Point3	v
and	creates	a	quaternion	based	on	the	angles	stored	after	snapping	them	using
the	current	3ds	max	angle	snap	settings.
Matrix3	mat;
mat.IdentityMatrix();
mat.RotateX(ip->SnapAngle(v.x));
mat.RotateY(ip->SnapAngle(v.y));
mat.RotateZ(ip->SnapAngle(v.z));	
Quat	q(mat);

A	Matrix3	as	an	Axis	System
A	Matrix3	can	also	be	used	to	specify	an	axis	system.	For	example,	the	INode
method	Rotate()	is	used	to	rotate	a	node	about	a	specified	axis	system.	One	of
the	arguments	to	this	method	is	a	Matrix3	that	specifies	this	axis	system.
Essentially,	a	matrix	is	just	an	axis	system.
For	example,	if	you	think	of	an	axis	tripod	in	a	viewport,	this	is	basically	all	the
information	a	matrix	has.	The	axis	tripod	has	three	vectors	(the	directions	of	the
axes:	X,	Y,	Z)	and	a	position	in	space	(the	point	where	the	axes	converge).	A
transformation	matrix	holds	this	same	information.	The	0th	row	of	a	matrix	is
the	X	vector,	the	1st	row	of	the	matrix	is	the	Y	vector,	the	2nd	row	of	the	matrix
is	the	Z	vector,	and	the	3rd	row	of	the	matrix	is	the	position.
You	can	picture	this	if	you	consider	the	identity	matrix.	Its	0th	row	(X)	is	[1	0	0
]	and	this	is	just	a	vector	along	the	X	axis.	Its	1st	row	(Y)	is	[0	1	0]	and	this	is
simply	a	vector	along	the	Y	axis.	Its	2nd	row	(Z)	is	[0	0	1]	and	this	is	just	a
vector	along	the	Z	axis.	And	the	3rd	row	(position)	is	[0	0	0]	and	this	is	the
origin.	Therefore	the	identity	matrix	is	just	an	axis	system	without	any	rotation,
positioned	at	the	origin.	This	same	thing	holds	true	for	any	transformation
matrix,	it's	just	not	as	easy	to	visualize	as	it	is	with	the	identity	matrix.
Therefore,	any	transformation	matrix	is	really	just	an	axis	system.
To	construct	an	axis	system	then,	you	can	simply	create	an	identity	matrix,	and
apply	transformations	to	the	matrix	to	put	the	matrix	into	the	coordinate	system
you	need.	For	example,	if	you	had	an	axis	system	that	was	rotated	45	degrees
about	the	Z	axis	and	centered	at	(10,	20,	30)	you	could	use	the	following	code	to
build	it:
Matrix3	mat(1);	//	Identity
mat.RotateZ(DegToRad(45.0f));
mat.SetTrans(Point3(10.0f,	20.0f,	30.0f));

Transformation	Matrix	Demonstration	Program
There	is	a	program	available	in
\MAXSDK\SAMPLES\HOWTO\TMATTEST\TMATTEST.CPP	that
shows	visually	how	matrices	are	constructed	for	move/rotate/scale
transformations.	This	program	also	shows	the	results	of	some	of	the	INode
methods	that	return	transformation	matrices	(for	example,	GetNodeTM(),
GetObjectTM(),	etc.).	Developers	can	load	this	project	into	VC++	and	build
it.	Then	copy	the	DLU	from	\MAXSDK\PLUGIN\TMATTEST.DLU	into
the	STDPLUGS	directory	where	3ds	max	can	load	it.	To	run	it	select
TMatTest	from	the	HowTo	section	of	the	Utilities	menu.	The	program	operates
on	the	first	object	in	the	selection	set.	Create	a	node	in	the	scene	(for	instance	a
Box)	and	experiment	with	animating	the	node,	binding	it	to	space	warps,	etc.,
and	viewing	the	resulting	matrices	returned	from	the	INode	methods.	You	can
also	build	transformations	from	scratch	and	apply	them	to	the	first	selected
object.

Memory	Allocation
See	Also:	Class	Animatable,	Dll	Functions	and	Class	Descriptors,	Class
ClassDesc.

Overview
The	3ds	max	API	provides	a	method	used	to	allocate	memory	when	a	new
instance	of	a	plug-in	class	is	required.	It	also	provides	several	different	ways	to
deallocate	this	memory	depending	on	the	plug-in	type.	In	the	most	common
case,	these	methods	are	ClassDesc::Create()	and
Animatable::DeleteThis().

Methods
When	3ds	max	needs	to	create	a	new	instance	of	a	plug-in	class,	it	calls	the
Create()	method	of	the	class	descriptor.	This	method	returns	a	new	instance	of
the	plug-in	class.	The	memory	for	the	class	may	be	allocated	by	using	the	new
operator	as	shown	below:
void	*Create(BOOL	loading	=	FALSE)	{	return	new	MyObject;	}

For	example,	when	3ds	max	loads	a	file	from	disk	it	needs	to	create	instances	of
the	plug-ins	that	are	used	(the	geometric	objects,	lights,	cameras,	materials,
controllers,	etc.).	It	does	this	by	calling	ClassDesc::Create().
The	memory	must	be	freed	when	3ds	max	is	done	with	the	item.	Usually	a
method	named	DeleteThis()	is	called.	This	method	is	called	to	free	the	memory
associated	with	the	plug-in	class.	Since	the	memory	was	allocated	with	the	new
operator,	it	must	be	de-allocated	using	the	delete	operator	as	shown	below:
void	DeleteThis()	{	delete	this;	}

For	plug-ins	that	are	part	of	the	Animatable	class	hierarchy,	DeleteThis()	is	a
method	of	Animatable.	For	plug-ins	that	are	not	derived	from	Animatalbe
there	may	be	a	non-inherited	DeleteThis()	method.	For	example,	the
UtilityObj	class	used	to	create	Utility	plug-ins	is	not	derived	from
Animatable	and	has	its	own	DeleteThis().
The	DeleteThis()	method	also	gives	the	developer	control	over	deleting.	For
example,	a	Utility	Plug-In	object	may	be	statically	declared	and	not	actually
declared	in	the	heap.	A	utility	plug-in	such	as	this	would	implement
DeleteThis()	to	do	nothing	since	there	is	no	heap	memory	to	free.
void	DeleteThis()	{}

This	is	just	what	the
\MAXSDK\SAMPLES\UTILITIES\ASCIIOUT.CPP	code	does.
A	few	plug-in	types	have	no	DelteThis()	method	at	all	--	3ds	max	deletes	the
memory	directly.	The	Image	Filter	and	Compositor	plug-in	types	(subclassed
from	ImageFilter)	are	allocated	using	ClassDesc::Create()	but	are	deleted
by	the	system.	In	this	case	the	plug-in	has	no	DeleteThis()	method	to
implement.	The	system	just	calls	delete	on	the	plug-in	internally	(using	the
delete	operator).

Modifier	Stack	Branching
See	Also:	Geometry	Pipeline,	Class	Object,	Class	INodeTransformed.

Overview
This	section	discusses	the	concept	of	modifier	stack	branching.	This	section	uses
the	boolean	object	plug-in	as	an	example.	The	SDK	sample	code	for	the	boolean
object	is	available	in
\MAXSDK\SAMPLES\OBJECTS\BOOLOBJ.CPP.	Note:	A	developer
may	wish	to	read	through	the	Advanced	Topics	section	on	the	Geometry	Pipeline
System	before	reading	the	material	below.
Normally	the	geometry	pipeline	is	a	single	string	of	object	references.	For
example,	the	node	may	have	a	reference	to	a	derived	object.	This	derived	object
may	reference	another	derived	object.	That	derived	object	may	then	reference
the	base	object.	Normally	this	is	where	the	pipeline	would	end.
In	some	cases	however,	the	base	object	itself	has	references	to	other	objects.	For
example,	the	boolean	object	(referred	to	as	a	compound	object)	has	references	to
its	two	operands.	The	boolean	object	acts	like	a	multiplexer	that	decides	which
parts	of	the	history	is	available	to	the	user.
In	the	3ds	max	user	interface	the	modifier	history	is	just	a	linear	list.	It	does	not
show	any	kind	of	tree	(branch)	structure.	Thus	at	any	one	time	the	user	can	only
go	down	a	single	branch	of	the	tree.	It	is	up	to	the	object	to	decide	which	branch
the	user	is	to	go	down.	The	standard	way	of	doing	this	is	to	provide	a	user
interface	control	to	allow	the	user	to	select	which	branch	they	want	to	go	down.
With	the	boolean	object	the	user	can	go	into	sub-object	selection	and	select	one
of	the	operands.	Then	that	operand's	history	will	become	available	in	the
modifier	stack.	Alternatively	the	boolean	object	provides	a	list	of	the	operands
and	the	user	can	select	them	there.	When	this	is	done	this	history	becomes
available	and	the	user	can	operate	on	the	selected	history.

Methods	used	in	Modifier	Stack	Branching
This	section	presents	the	class	methods	a	developer	works	with	to	manage	an
object	that	uses	modifier	stack	branching.	The	following	methods	from	class
Object	are	involved:
virtual	int	NumPipeBranches()

This	method	returns	the	number	of	pipeline	branches	combined	by	the	object.
This	is	not	the	total	number	of	branches,	but	rather	the	number	that	are	active.
For	example,	in	the	boolean	object,	if	the	user	does	not	have	any	operands
selected,	this	methods	would	return	zero.	If	they	have	one	selected	it	would
return	one.	Here	is	the	boolean	object	implementation	of	this	method:
int	BoolObject::NumPipeBranches()
	{
	int	num=0;
	if	(TestFlag(BOOL_OB1SEL)	&&	ob1)	num++;
	if	(TestFlag(BOOL_OB2SEL)	&&	ob2)	num++;
	return	num;
	}

The	boolean	object	is	set	up	so	that	a	user	can	only	branch	down	one	pipeline	at
a	time.	This	is	not	always	the	case	for	all	compound	objects.	In	the	3ds	max	loft
object,	the	user	may	select	many	shapes	on	the	loft	path.	For	example,	the	user
could	select	five	shapes	on	the	path.	NumPipeBranches()	would	return	five	to
indicate	that	five	pipelines	are	currently	active.	If	all	five	shapes	were	the	same
instance,	the	user	could	go	down	their	history	all	at	the	same	time.	This	is
analogous	to	when	you	select	five	objects	in	the	scene,	and	if	all	these	objects
are	all	instances	(they	have	commonality)	then	their	history	is	available.	If	you
select	five	objects	and	they	don't	have	commonality	their	history	is	not	available.
If	they	share	commonality	to	a	certain	point,	their	history	is	available	up	to	and
including	this	point	and	then	the	history	stops.	The	pipeline	branches	are	similar.
If	there	is	commonality,	the	common	history	will	be	displayed.
virtual	Object	*GetPipeBranch(int	i)
This	method	is	called	to	return	the	'i-th'	branch	of	the	compound	object.	As	the
system	is	calculating	the	history,	when	it	reaches	the	base	object	where	it	would
normally	stop,	it	checks	to	see	if	there	is	any	branching.	The	system	calls
NumPipeBranches()	on	the	object.	If	this	returns	anything	greater	than	zero	it
will	then	get	each	of	the	branches	and	continue	its	evaluation.	Here	is	the

boolean	object	implementation	of	this	method:
Object	*BoolObject::GetPipeBranch(int	i)
	{
	if	(i)	return	ob2;
	if	(TestFlag(BOOL_OB1SEL))	return	ob1;
	return	ob2;
	}

virtual	INode	*GetBranchINode(TimeValue	t,INode	*node,int	i)
Compound	objects	like	the	boolean	object	or	the	lofter	contain	multiple	objects
and	the	history	of	each	of	these	objects	can	be	edited.	A	problem	arises	because
these	compound	objects	usually	apply	a	transformation	to	their	input	objects.	For
example,	the	boolean	object	has	a	transformation	for	each	of	its	two	operand
objects.	The	boolean	object	has	two	operands	and	each	has	a	transform
controller.	These	transform	controllers	represent	the	transformation	relative	to
the	boolean	object's	transformation	(its	local	space).	This	allows	the	user	to
move	the	two	boolean	operands	around	relative	to	each	other	without	modifying
the	boolean	object's	node's	transform	controller.	This	arrangement	simply
provides	an	additional	transformation	for	the	operands.
If	the	user	goes	back	into	the	history	to	edit	one	of	the	boolean	object's	operands
and	applies	an	Edit	Mesh	modifier,	the	Edit	Mesh	modifier	does	not	know	about
the	transformation	that	is	happening	in	the	pipeline	downstream.	Thus	it	thinks
the	object	is	positioned	somewhere	where	it	is	not	since	it	has	no	way	of
knowing	about	this	other	transformation.	This	is	a	problem	(for	example	if	you
try	to	hit	test)	because	the	plug-in	thinks	the	object	is	in	the	wrong	place.
In	general	every	item	in	the	pipeline	applies	a	transformation	of	some	sort.	An
Edit	Mesh	modifier	deals	with	this	by	forcing	'Show	End	Result'	to	be	off.
Currently	show	end	result	only	effects	downstream	modifiers	and	not
downstream	objects	so	the	transformation	by	the	compound	object	still	applies.
The	transformation	applied	by	the	compound	object	typically	is	a	linear
transformation	which,	of	course,	can	be	inverted.	So	one	can	edit	in	the	context
of	the	transformation	if	it	is	known	what	it	is.	Methods	are	available	to	make	it
possible	for	compound	objects	to	provide	access	to	this	transformation:
INode	*GetBranchINode(TimeValue	t,	INode	*node,	int	i)
This	Object	method	will	allow	a	compound	object	to	alter	a	node's
transformation.	The	way	it	does	this	is	by	creating	an	item	called	an

INodeTransformed.	An	INodeTransformed	is	simply	a	wrapper	around	an
INode	that	adds	in	an	extra	transformation	to	the	node's	transformation.	An
object	can	implement	this	method	by	returning	a	pointer	to	a	new
INodeTransformed	that	is	based	on	the	node	passed	into	this	method.	Here	is
the	boolean	object	implementation	of	this	method:
INode	*BoolObject::GetBranchINode(TimeValue	t,	INode	*node,
int	i)
	{
	assert(i<2);
	int	index	=	0;
	if	(i)	index	=	1;
	else	if	(TestFlag(BOOL_OB1SEL))	index	=	0;
	else	index	=	1;
	return	CreateINodeTransformed(node,GetOpTM(t,index));
	}

When	a	modifier,	like	an	Edit	Mesh,	calls	GetModContexts()	some	of	the
INodes	in	the	INodeTab	may	actually	be	pointing	to	INodeTransforms.
When	the	modifier	is	done	with	the	table,	these	wrappers	need	to	be	discarded.
The	method	INodeTransformed::DisposeTemporary()	is	provided	for	this
purpose.

Notifying	Dependents	of	the	History	Change
One	other	task	needs	to	be	done	by	a	compound	object	that	deals	with	modifier
stack	branching.	The	system	needs	to	be	notified	when	the	branching	changes.
For	example,	in	the	boolean	object	if	the	user	has	selected	operand	A,	and	then
selects	operand	B	(which	de-selects	operand	A)	the	history	must	be	updated	to
show	the	history	for	operand	B.	3ds	max	does	not	know	that	the	user	just
changed	operands	as	that	is	handled	by	the	boolean	object.	To	let	the	system
know,	the	boolean	object	sends	the	message
REFMSG_BRANCHED_HISTORY_CHANGED	via
NotifyDependents().	This	lets	the	system	know	it	needs	to	re-build	the	history
from	this	point	on.	For	more	details	on	sending	messages	see	the	Advanced
Topics	section	on	References.

Network	Rendering
See	Also:	Class	MaxNetManager,	Class	MaxNet

Overview
One	of	the	new	components	of	3ds	max	R4	is	a	redesigned	Network	Rendering
pipeline	and	API	that	allows	developers	to	take	full	advantage	to	this	easily
accessible	architecture.	The	core	of	the	Network	Rendering	API	is	exposed
through	the	MaxNetManager	class	which	allows	clients	to	connect	to	the
Network	Rendering	Manager	to	perform	any	and	all	functions	offered.	The
Network	Rendering	API	encapsulates	all	the	network	rendering	details	and	thus
leaves	the	client	code	to	concentrate	on	whatever	it	needs	to	do.	The	API	handles
all	the	networking	code	and	communication	protocols.
Within	MAX,	the	Network	Job	Assignment	dialog	uses	the	Network	Rendering
API	to	submit	new	jobs	to	the	network	queue	while	the	Queue	Manager	uses	the
API	to	provide	all	of	its	functionality.	Neither	of	these	components	have	any
other	type	of	network	access	or	private	access	to	network	rendering	facilities.
The	MaxNet	API	provides	all	of	these	itself.
The	entire	API	is	derived	from	the	MaxNet	class,	which	is	used	solely	for
exception	handling.	In	order	to	handle	exceptions	you	can	catch	a	MaxNet	type
as	follows:
try	{

//	the	code	being	tried
}	catch	(MaxNet*	maxerr)	{

//	handle	the	error
//	do	NOT	delete	maxerr
//	use	maxerr->GetErrorText()	to	get	the	error	description
//	use	maxerr->GetError()	to	get	the	error	code

}
The	MaxNet	class	provides	the	error	code	in	both	numeric	form,	through
GetError()	in	the	form	of	maxnet_error_t	type,	and	in	text	form,	through
GetErrorText().	Most	methods	in	the	Network	Rendering	API	will	return
errors	only	through	this	mechamisn,	particularly	methods	that	handle	network
transactions.

The	Network	Rendering	API	provides	two	functions	that	deal	with	the	creation
and	destruction	of	the	MaxNetManager	class	instance,	these	are,
MaxNetManager*	CreateManager()	and
DestroyManager(MaxNetManager*	mgr).	The	CreateManager()
function	will	return	a	newly	created	instance	of	the	MaxNetManager	class
which	can	be	deleted,	when	done,	by	DestroyManager().

Queue	Control
At	any	given	moment,	only	one	connected	client	can	be	in	control	of	the	network
queue.	This	means,	only	one	connected	client	can	perform	changes.	All	other
clients	operate	in	a	"read	only"	mode.

MaxNetCallBack
The	Network	Rendering	API	provides	a	callback	mechanism	through	the
MaxNetManager	class.	If	you	wish	to	use	the	callback	mechanism	you	can
create	your	own	class	derived	from	MaxNetCallBack	and	pass	it	as	the
argument	for	MaxNetManager::SetCallBack().	All	methods	are	optional,
thus	you	only	need	to	implement	those	you	require.

Network	Rendering	API	by	Example
Two	full	examples	on	how	to	use	the	MaxNet	API	are	included	in	the	SDK
under	\MAXSDK\SAMPLES\NETRENDER\LISTJOBS	and
\MAXSDK\SAMPLES\NETRENDER\JOBASSIGN.
Note	with	these	samples	that	the	use	of	the	Network	Rendering	API	is	not
limited	to	3ds	max	plugins	only.

Nodes
See	Also:	Class	INode,	The	Node	and	Object	Offset	Transformations.

Overview
This	section	presents	information	on	nodes.	This	includes	what	they	are,	their
function	within	MAX,	the	main	class	for	working	with	nodes,	an	overview	of
their	reference	structure,	and	a	section	on	instancing	nodes.

What	are	Nodes?
Nodes	are	the	items	in	the	3ds	max	that	have	a	one	to	one	correspondence	with
objects	in	the	scene.	Every	procedural	object,	light,	camera,	helper	object,	etc.
that	appears	in	the	viewports	has	an	associated	node.	The	node	stores	many
properties	that	allow	the	item	associated	with	the	node	to	relate	to	the	scene.
These	are	properties	such	as	a	transform	controller,	a	material	used	for	rendering,
a	visibility	controller,	hidden/unhidden	sate,	frozen/thawed	state,	wireframe
color,	and	many	more.

Class	INode
The	methods	available	to	work	with	nodes	are	from	Class	INode.	These	methods
provide	the	functions	such	as	evaluating	the	geometry	pipeline	for	the	node,
getting	and	setting	the	node	name,	working	with	parent/child	hierarchies,
accessing	display	attributes	of	the	node,	providing	access	to	controllers,	etc.

Node	Grouping
A	3ds	max	user	can	take	a	node	in	the	scene	and	make	it	part	of	a	group.	Groups
allow	the	user	to	select	all	the	nodes	in	the	group	as	one	element	without	having
to	select	each	piece.	Groups	can	be	included	in	other	groups	so	nesting	can
occur.	There	is	a	method	in	INode	that	indicates	if	a	node	is	included	in	a	group.
This	is	IsGroupMember().	It	returns	TRUE	if	the	node	is	in	a	group	and
FALSE	if	not.
The	group	is	constructed	by	creating	an	invisible	dummy	object	and	linking	the
group	members	to	this	dummy.	The	dummy	node	is	called	the	group	head.	The
INode	method	IsGroupHead()	tells	if	the	node	is	one	of	the	dummy	nodes
that	heads	a	group.	It	returns	TRUE	if	the	node	is	a	group	head	dummy	and
FALSE	if	not.	Note	that	if	the	group	was	nested,	that	is	it's	a	member	of	another
group,	it	may	have	its	IsGroupMember()	boolean	set	as	well.
If	you	have	a	member	of	a	group	and	want	to	get	a	pointer	to	the	group	head	use
GetParentNode().	If	you	go	through	the	children	of	the	head	(and	all	their
children),	and	all	the	member	booleans	are	set,	the	nodes	are	still	part	of	the
same	group.
Groups	may	be	opened	allowing	the	user	to	edit	the	individual	components
(without	otherwise	breaking	up	the	group).	The	method
IsOpenGroupMember()	returns	TRUE	if	the	node	is	a	member	of	an	open
group	and	FALSE	if	not.	Heads	can	check	if	they	are	open	by	calling
IsOpenGroupHead().

Nodes	and	References
A	node	maintains	six	references	(see	the	Advacned	Topics	section	References	for
more	details)	that	allow	it	to	get	notified	when	items	that	affect	it	change.	These
references	are	listed	and	defined	below:

Reference	0:	The	Transform	Controller.
This	is	a	reference	to	the	node's	transform	controller.	This	controller	governs
the	position,	rotation	and	scaling	of	the	node	in	the	scene.	Developers	can	get
and	set	the	transform	controller	used	by	the	node	using	INode::
GetTMController()	and	SetTMController().	Most	nodes	use	the
Position/Rotation/Scale	transform	controller	(for	example	mesh	objects).
Other	items	(such	as	target	spotlights	and	cameras)	use	the	Look	At
transform	controller.
Reference	1:	The	Object	Reference.
Each	node	maintains	a	pointer	to	an	object.	This	is	a	pointer	to	the	base
procedural	object	(mesh,	light,	camera)	or	a	derived	object	(see	the	section
Geometry	Pipeline	System	for	details	on	derived	objects).	The	path	that
follows	between	object	references	are	what	make	up	a	geometry	pipeline	in
MAX.	The	node's	object	reference	is	where	the	pipeline	starts.
Reference	2:	The	Pin	Node	for	IK.
This	reference	is	a	pointer	to	the	pin	node	for	Inverse	Kinematics.	This
reference	is	not	assigned	by	default	and	is	thus	NULL	initially.
Reference	3:	The	Material	Reference.
Materials	in	3ds	max	are	assigned	at	the	node	level.	There	is	a	single	material
assigned	per	node.	This	reference	is	a	pointer	to	the	material	for	the	node.	A
developer	can	get	and	set	the	material	using	the	methods	INode::GetMtl()
and	SetMtl().	If	a	material	is	assigned,	this	reference	tracks	it.	This
reference	is	not	assigned	by	default	and	is	thus	NULL	initially.
Reference	4:	The	Visibility	Controller.
In	Track	View	the	user	can	assign	this	visibility	controller	using	the	'Add
Visibility	Track'	icon.	When	this	controller	is	assigned	this	reference	points
to	the	controller	managing	the	node	visibility.	This	reference	is	not	assigned
by	default	and	is	thus	NULL	initially.
Reference	5:	The	Image	Blur	Controller.
This	reference	is	not	assigned	by	default	and	is	thus	NULL	initially.

Node	Hierarchies	--	Parent	/	Child	and	Groups
Nodes	in	3ds	max	can	be	linked	to	one	another	to	form	parent	/	child	hierarchies.
When	a	node	is	linked	it	receive	the	reference	message
REFMSG_NODE_LINK.	When	it	is	unlinked	it	receives	this	same	message.
Developers	can	manipulate	the	hierarchy	using	methods
INode::AttachChild(),	Detach(),	and	GetParentNode().	One	can	check	if
a	node	is	linked	using	GetParentNode().	If	the	pointer	returned	from	that
method	is	the	same	as	that	returned	from	IsRootNode()	then	the	node	is	not
linked.

Nodes	and	Transformations
There	are	two	transformation	that	affect	all	nodes.	These	are	the	node
transformation	and	the	object-offset	transformation.	For	details	on	these	see	the
Advanced	Topic	Section	Node	and	Object	Offset	Transformations.

Nodes	and	Instancing
Nodes	cannot	be	instanced.	However,	a	developer	can	achieve	functionally	the
same	thing	by	instancing	everything	that	the	node	points	to.	So,	given	two
difference	nodes,	if	you	instance	the	controllers,	objects,	and	materials	of	all	the
child	nodes	then	the	hierarchies	will	behave	as	instances.

The	Node	and	Object	Offset	Transformations
See	Also:	Class	INode,	Class	Interval,	Class	Quat,	Class	ScaleValue,	Matrix
Representations	of	3D	Transformations,	Keyframe	and	Procedural	Controller
Data	Access.

Overview
This	topic	provides	information	on	two	transformations	related	to	nodes	--	the
node	transformation	matrix	and	the	object-offset	transformation.	This	section
also	presents	information	on	how	these	transformation	are	constructed,	how	they
are	used	by	MAX,	and	how	they	may	be	used	by	developers.	This	section	also
discusses	the	methods	of	the	INode	class	that	access	these	transformations.

The	Pivot	Point	--	The	Node	Transformation	Matrix
The	transform	center,	or	pivot	point,	is	the	location	about	which	a	rotation	takes
place,	or	to	and	from	which	a	scale	occurs.	All	nodes	in	3ds	max	have	a	pivot
point.	You	can	think	of	the	pivot	point	as	representing	a	node’s	local	center	and
local	coordinate	system.
The	pivot	point	of	a	node	is	used	for	a	number	of	purposes:

·	As	the	center	for	rotation	and	scaling.
·	Defines	the	transform	origin	for	linked	children.
·	Defines	the	joint	location	for	Inverse	Kinematics.

The	thing	that	most	users	think	of	as	the	pivot	point	--	graphically	represented	in
3ds	max	by	the	axis	tripod	that	is	displayed	when	a	node	is	selected	and	the
coordinate	system	is	set	to	local	--	is	actually	just	a	visual	representation	of	the
node's	transformation	matrix	(NodeTM).
The	node's	transformation	matrix	is	what	is	controlled	by	the	transform
controller	that	places	the	node	in	the	scene.	The	transform	controller	controls	the
transformation	relative	to	the	node's	parent.

How	a	Transform	Controller	Computes	the	NodeTM
This	section	provides	an	overview	of	how	3ds	max	gets	data	from	a	transform
controller	to	create	the	node	transformation	matrix	(NodeTM).
A	controller	can	be	thought	of	as	operating	internally	within	its	own	local
coordinate	system.	For	both	keyframe	and	procedural	controllers,	the	data
generated	is	provided	in	the	local	space	of	the	controller.	It	is	not	until	the
controller	supplies	its	transformation	to	3ds	max	does	the	coordinate	system
become	relative	to	anything	other	than	the	controller	itself.	The	way	this	works
is	as	follows:
All	controllers	are	derived	from	class	Control	(or	StdControl,	which	is	itself
derived	from	Control).	Every	controller,	regardless	of	type,	provides	data	to
3ds	max	at	a	specified	time	via	a	method	of	the	Control	class	called
GetValue().
Prototype:
virtual	void	GetValue(TimeValue	t,	void	*val,	Interval	&valid,
GetSetMethod	method=CTRL_ABSOLUTE)=0;

One	of	the	parameters	passed	to	this	method	is	void	*val.	Depending	on	the
controller	type,	different	data	types	are	passed	using	this	pointer	(see	Class
Control::GetValue()	for	a	complete	discussion	of	all	the	data	types).	For
example,	a	transform	controller	will	be	passed	a	Matrix3	data	type.	It	is	the	job
of	this	transform	controller	to	update	the	matrix	with	its	transformation.	It	does
this	by	pre-multiplying	its	transformation	with	the	matrix	passed.	The	controller
operates	within	its	own	space	internally,	but	when	it	pre-multiplies	its	data	with
the	matrix	passed,	it	essentially	means	the	controller	is	then	working	in	the
coordinate	system	of	the	matrix.	Another	way	to	think	of	this	is	that	the
Matrix3	passed	is	actually	transforming	the	controllers	data.	Thus,	what	the
final	coordinate	system	ends	up	being	depends	upon	the	client	of	the	controller
and	not	on	the	controller	itself	--	it	depends	on	the	matrix	passed	to	GetValue().
To	better	understand	this	consider	the	following	examples.	For	a	transform
controller,	the	matrix	passed	to	GetValue()	is	the	transformation	matrix	of	the
node's	parent.	Consider	a	simplified	keyframe	transform	controller	that	only
provided	position	(no	rotation	or	scale).	This	controller	would	just	update	the
bottom	row	of	the	matrix	(translation	data)	passed	by	pre-multiplying	its	value.
If	the	node	the	controller	was	assigned	to	was	not	hierarchically	linked,	that	is	it
had	no	parent	other	than	the	world,	then	the	matrix	passed	to	GetValue()	would

be	the	identity.	In	this	case,	when	the	controller	pre-multiplied	its	value,	it	would
simply	be	setting	the	translation	row.
Consider	a	different	case	when	the	node	the	controller	is	assigned	to	is
hierarchically	linked.	As	before,	the	keys	of	the	controller	are	stored	in	the	local
space	of	the	controller.	But	in	this	case,	when	GetValue()	is	called,	the	matrix
passed	is	not	necessarily	the	identity.	Rather	it	will	be	the	transformation	matrix
of	the	parent	of	the	node	the	controller	is	assigned	to.	If	the	parent	is	not	located
at	the	origin,	or	is	scaled	or	rotated	in	some	way,	the	parent	matrix	passed	will
provide	an	additional	transformation	to	the	one	the	controller	itself	provides.
For	transform	controllers,	the	matrix	that	is	updated	in	GetValue()becomes	the
NodeTM	and	is	used	to	position	and	orient	the	node	in	the	scene.	The	next
section	discusses	they	way	the	transformations	are	applied	to	the	matrix	by	the
PRS	controller	to	create	the	NodeTM.

Construction	of	the	NodeTM	for	the	PRS	Transform	Controller
This	section	describes	how	3ds	max	constructs	the	NodeTM	for	the	PRS
controller.	The	PRS	controller	uses	sub-controllers	to	create	the	final
transformation.	There	are	three	sub-controllers	--	one	for	Position,	one	for
Rotation	and	one	for	Scale.	The	PRS	controller	is	passed	a	matrix	to	its
Control::GetValue()	method.	This	matrix	is	the	parent	of	the	node.	If	the
node	has	no	parent,	the	matrix	starts	out	as	the	identity	matrix.	GetValue()	is
first	called	on	the	position	controller,	then	the	rotation	controller,	then	the	scale
controller.	In	the	case	of	a	node	with	no	parent,	when	its	position	controller's
GetValue()	method	is	called,	the	identity	is	passed.	First	the	position	controller
pre-multiplies	its	position.	If	the	matrix	passed	is	the	identity,	this	is	equivalent
to	setting	the	bottom	row	(the	translation	row)	of	the	matrix.	Next,	GetValue()
is	called	on	the	rotation	controller	and	the	matrix	passed	includes	the	position
controller	information.	The	rotation	is	pre-multiplied	in.	Next,	GetValue()	is
called	on	the	scale	controller	and	the	matrix	passed	includes	the	position	and
rotation	controller	information.	The	scale	is	pre-multiplied	in.
The	position	is	not	affected	by	rotation	or	scale.	The	rotation	is	affected	by	the
position.	The	scale	is	affected	by	the	position	and	rotation.	Said	another	way,	the
position	is	in	the	space	of	the	parent.	The	rotation	is	in	the	space	of	the	parent
PLUS	the	position	(the	position	has	already	applied	itself	to	the	matrix).	Scale
works	in	the	coordinate	system	of	the	parent	PLUS	position	PLUS	rotation.	The
scaling	is	pre-multiplied	however,	so	the	scaling	takes	place	about	the	local
coordinate	system,	but	then	if	the	node	is	rotated,	this	scaling	is	rotated	around.
If	the	transformations	were	not	applied	in	this	way,	the	scaling	would	be	skewed
by	the	rotation.
Note	that	some	position	controllers	can	actually	apply	more	than	just	position	to
the	matrix.	For	example,	the	Path	Controller	when	the	Follow	switch	is	active.	In
this	case,	the	position	controller	actually	applies	some	rotation	to	have	the	node
remain	tangent	to	the	path	it	is	following.	Thus	when	the	rotation	controllers
receives	the	matrix	in	GetValue(),	the	matrix	already	has	some	rotation	applied.
The	matrix	passed	to	GetValue(),	after	the	position,	rotation	and	scale
transformation	have	updated	it,	becomes	the	NodeTM	3ds	max	uses	to	position,
rotate	and	scale	nodes	in	the	scene.

Methods
There	is	a	method	of	the	INode	class	that	a	developer	may	use	to	get	the	node
transformation	matrix:
virtual	Matrix3	GetNodeTM(TimeValue	t,	Interval*
valid=NULL)=0;
This	method	returns	the	world	space	transformation	matrix	of	the	node	at	the
specified	time.	This	matrix	contains	its	parents	transformation.	The	Node	TM
is	inherited.	The	Node	TM	may	be	considered	the	world	space	transformation
as	far	as	kinematics	is	concerned.

There	are	two	methods	that	a	developer	may	use	to	set	the	node	transformation
matrix.	From	INode	is:
virtual	void	SetNodeTM(TimeValue	t,	Matrix3&	tm)=0;
This	sets	the	node's	world	space	transformation	matrix.	This	will	call
SetValue()	on	the	transform	controller.
The	following	method	if	from	Class	Interface:
virtual	void	SetNodeTMRelConstPlane(INode	*node,	Matrix3&
mat)=0;
This	sets	the	node's	transform	relative	to	the	current	construction	plane.	This
may	be	used	during	creating	so	you	can	set	the	position	of	the	node	in	terms	of
the	construction	plane	and	not	in	world	units.

The	Object-Offset	Transformation
The	object	offset	transformation	provides	an	offset	of	the	geometry	of	an	object
from	its	node.	This	section	describes	the	object	offset	transformation	and	its
function	in	MAX.
One	can	see	a	node's	pivot	point	graphically	represented	in	3ds	max	by	selecting
a	node,	going	to	the	Hierarchy	branch	of	the	command	panel,	selecting	the
'Pivot'	button,	and	choosing	either	the	'Affect	Pivot	Only'	or	'Affect	Object	Only'
button.	This	displays	a	large	axis	tripod	that	shows	the	location	and	orientation
of	the	node's	pivot	point	(NodeTM).	By	choosing	one	of	these	buttons,	and	using
the	Move/Rotate/Scale	toolbar	controls,	a	user	can	manipulate	the	position	of	the
geometry	of	the	object	independent	of	the	pivot	point.	Or	they	may	manipulate
the	pivot	point	independent	of	the	geometry	of	the	object	position.	One	can	think
of	the	geometry	of	the	object	as	the	'mesh'	of	the	object.
The	way	the	user	is	able	to	independently	manipulate	the	pivot	and	the	object	is
managed	internally	using	the	object-offset	transformation.	The	object-offset
transformation	affects	how	the	geometry	of	the	object	is	related	to	the	node.	The
object-offset	transformation	transforms	the	geometry	of	the	object	itself	some
amount	from	the	node.
To	understand	how	the	object-offset	is	used,	consider	the	following	example
from	the	3ds	max	user	interface.	In	the	Hierarchy	branch	under	'Pivot',	when	the
user	has	chosen	the	'Affect	Object	Only'	button	they	are	free	to	move	the
geometry	of	the	object	around	independent	of	the	node.	The	pivot	point	does	not
move	--	only	how	the	geometry	of	the	object	is	oriented	relative	to	the	pivot.
What	is	happening	internally	is	the	object-offset	transformation	is	being
manipulated.	This	transformation	is	simply	an	additional	offset	that	may	be
applied	to	the	geometry	of	the	object	that	is	independent	of	the	node.	The	object-
offset	transformation	is	not	inherited	by	any	child	nodes.
As	another	example	consider	the	use	of	the	'Affect	Pivot	Only'	button.	This
mode	lets	the	user	move	the	pivot	without	affecting	the	position	of	the	geometry
of	the	object.	When	the	system	allows	the	user	to	move	the	pivot	point,	what	is
actually	happening	is	the	node's	transformation	is	being	altered	(to	re-orient	the
pivot	point),	then	the	object-offset	transformation	is	adjusted	to	counter	the	node
transformation.	This	lets	the	geometry	of	the	object	stay	in	the	same	place	while
the	pivot	point	moves	around.	So	again,	when	the	user	is	moving	the	pivot	point,
3ds	max	is	actually	adjusting	the	node	transformation	matrix	and	counter-
adjusting	the	object-offset	transformation.

Construction	of	the	Object	Offset	Transformation
The	object	offset	transformation	consists	of	separate	position,	rotation	and	scale
transformations.	Like	the	NodeTM,	these	are	applied	by	pre-multiplying
position,	then	rotation,	then	scale.	Thus	the	object	offset	transformation	is:

Object	Offset	Transformation	=	Offset	Scale	*	Offset	Rotation	*	Offset
Position

Unlike	the	NodeTM,	the	Object	Offset	Transformation	is	not	inherited	by
children	of	the	node.

Methods
The	INode	class	has	methods	to	get	and	set	individual	transformations	of	the
object	offset.	These	are:
virtual	void	SetObjOffsetPos(Point3	p)=0;
Sets	the	position	portion	of	the	object	offset	from	the	node.
virtual	Point3	GetObjOffsetPos()=0;
Returns	the	position	portion	of	the	object-offset	from	the	node	as	a	Point3.
virtual	void	SetObjOffsetRot(Quat	q)=0;
Sets	the	rotation	portion	of	the	object	offset	from	the	node.
virtual	Quat	GetObjOffsetRot()=0;
Returns	the	rotation	portion	of	the	object-offset	from	the	node.
virtual	void	SetObjOffsetScale(ScaleValue	sv)=0;
Sets	the	scale	portion	of	the	object	offset	from	the	node.
virtual	ScaleValue	GetObjOffsetScale()=0;
Returns	the	scale	portion	of	the	object-offset	from	the	node.

Constructing	an	offset	TM	for	a	node	is	done	with	the	following	code:
Matrix3	tm(1);
Point3	pos	=	node->GetObjOffsetPos();
tm.PreTranslate(pos);
Quat	quat	=	node->GetObjOffsetRot();
PreRotateMatrix(tm,	quat);
ScaleValue	scaleValue	=	node->GetObjOffsetScale();
ApplyScaling(tm,	scaleValue);

The	INode	class	has	a	set	of	methods	that	allow	a	developer	to	transform	the
node	or	geometry	in	the	same	way	as	the	hierarchy	Affect	Pivot	Only	and	Affect
Object	Only	modes	do.	The	entire	node	and	object	may	be	transformed,	just	the
pivot,	or	just	the	geometry	of	the	object.	These	methods	are:
virtual	void	Move(TimeValue	t,	const	Matrix3&	tmAxis,
	const	Point3&	val,	BOOL	localOrigin=FALSE,
	BOOL	affectKids=TRUE,	int	pivMode=PIV_NONE,
	BOOL	ignoreLocks=FALSE)=0;
This	method	may	be	called	to	move	the	node	about	the	specified	axis	system.
Either	the	pivot	point,	or	the	geometry	of	the	object,	or	both	the	pivot	and	the

object	may	be	transformed.	Optionally,	any	children	of	the	node	can	be
counter	transformed	so	they	don't	move.
virtual	void	Rotate(TimeValue	t,	const	Matrix3&	tmAxis,
	const	AngAxis&	val,	BOOL	localOrigin=FALSE,
	BOOL	affectKids=TRUE,	int	pivMode=PIV_NONE,
	BOOL	ignoreLocks=FALSE)=0;
This	method	may	be	called	to	rotate	the	node	about	the	specified	axis	system.
Either	the	pivot	point,	or	the	geometry	of	the	object,	or	both	the	pivot	and	the
object	may	be	transformed.	Optionally,	any	children	of	the	node	can	be
counter	transformed	so	they	don't	rotate.	There	is	also	a	Quat	version	of	this
method.
virtual	void	Scale(TimeValue	t,	const	Matrix3&	tmAxis,
	const	Point3&	val,	BOOL	localOrigin=FALSE,
	BOOL	affectKids=TRUE,	int	pivMode=PIV_NONE,
	BOOL	ignoreLocks=FALSE)=0;
This	method	may	be	called	to	scale	the	node	about	the	specified	axis	system.
Either	the	pivot	point,	or	the	geometry	of	the	object,	or	both	the	pivot	and	the
object	may	be	transformed.	Optionally,	any	children	of	the	node	can	be
counter	transformed	so	they	don't	scale.

The	ObjectTM
The	INode	method	GetObjectTM()	returns	the	transformation	matrix	an
object	needs	to	be	multiplied	by	to	transform	it	into	world	space.	This	includes
the	parent	transformation,	the	node	transformation	(NodeTM)	and	the	Object
Offset	Transformation.	Thus,	the	entire	transformation	used	to	transform	the
points	of	any	object	is:

ObjectTM	=	Offset	Scale	*	Offset	Rotation	*	Offset	Position	*	Controller
Scale	*	Controller	Rotation	*	Controllers	Position	*	Parent	Transformation.

A	developer	can	retrieve	the	entire	transformation	of	the	object-offset,	node	and
parent	using	the	INode	method:
virtual	Matrix3	GetObjectTM(TimeValue	time,	Interval*
valid=NULL)=0;
This	is	the	entire	transformation	of	a	node.	When	an	object	is	actually
translated	into	world	space,	this	is	the	matrix	used.	This	is	the	Object	Offset
Transformation,	plus	the	NodeTM,	plus	the	world	space	modifier	effect.
This	matrix	could	be	used,	for	example,	if	you	have	a	TriObject	and	wanted
to	get	the	world	space	coordinate	of	one	of	its	vertices.	You	could	do	this	by
taking	the	vertex	coordinate	in	object	space	and	multiplying	it	by	the	matrix
returned	from	this	method.
The	ObjectTM	is	not	inherited.	See	the	remarks	on	this	method	in	the
reference	section	documentation	for	more	details.

A	Sample	Plug-In	Using	the	Node	and	Object	Offset	Transformations
The	following	code	is	from	the	Reset	Transform	utility
(\MAXSDK\SAMPLES\MODIFIERS\RESETTM.CPP).	This	utility	is
used	to	push	object	rotation	and	scale	values	onto	the	Modifier	Stack	and	align
object	pivot	points	and	bounding	boxes	with	the	world	coordinate	system.	Reset
Transform	removes	all	rotation	and	scale	values	from	selected	objects	and	places
those	transforms	in	an	XForm	modifier.	The	code	below	demonstrates	the	use	of
the	TMs	discussed	above.
As	previously	noted,	there	are	two	transforms	that	affect	an	object:	the	node
transform	which	is	the	result	of	the	transform	controller	plus	inheritance,	and	the
object	offset	transform	which	positions	the	geometry	relative	to	the	pivot	point.
The	Reset	Transform	utility	takes	the	node	transform	(minus	inheritance),	and
the	offset	transform,	and	combines	them	into	a	matrix	which	is	given	to	an
XForm	modifier	which	is	then	placed	at	the	top	of	the	modifier	stack.
The	node	and	offset	transforms	can	then	be	set	back	to	the	identity	(actually,	the
position	component	of	the	node	TM	is	left	unchanged).	Here	is	the	code	--	it
operates	on	all	the	selected	nodes.
	for	(int	i=0;	i<ip->GetSelNodeCount();	i++)	{
		INode	*node	=	pi->GetSelNode(i);
		Matrix3	ntm,	ptm,	rtm(1),	piv(1),	tm;
		
		//	Get	Parent	and	Node	TMs
		ntm	=	node->GetNodeTM(ip->GetTime());
		ptm	=	node->GetParentTM(ip->GetTime());
		
		//	Compute	the	relative	TM
		ntm	=	ntm	*	Inverse(ptm);
		
		//	The	reset	TM	only	inherits	position
		rtm.SetTrans(ntm.GetTrans());
		
		//	Set	the	node	TM	to	the	reset	TM		
		tm	=	rtm*ptm;
		node->SetNodeTM(ip->GetTime(),	tm);

	
		//	Compute	the	pivot	TM
		piv.SetTrans(node->GetObjOffsetPos());
		PreRotateMatrix(piv,node->GetObjOffsetRot());
		ApplyScaling(piv,node->GetObjOffsetScale());
		
		//	Reset	the	offset	to	0
		node->SetObjOffsetPos(Point3(0,0,0));
		node->SetObjOffsetRot(IdentQuat());
		node->SetObjOffsetScale(ScaleValue(Point3(1,1,1)));
	
		//	Take	the	position	out	of	the	matrix	since
		//	we	don't	reset	position
		ntm.NoTrans();
	
		//	Apply	the	offset	to	the	TM
		ntm	=	piv	*	ntm;
	
		//	Apply	a	derived	object	to	the	node's	object
		Object	*obj	=	node->GetObjectRef();
		IDerivedObject	*dobj	=	CreateDerivedObject(obj);
		
		//	Create	an	XForm	mod
		SimpleMod	*mod	=	(SimpleMod*)ip->CreateInstance(
			OSM_CLASS_ID,
			Class_ID(CLUSTOSM_CLASS_ID,0));
	
		//	Apply	the	transformation	to	the	mod.
		SetXFormPacket	pckt(ntm);
		mod->tmControl->SetValue(ip->GetTime(),&pckt);
	
		//	Add	the	modifier	to	the	derived	object.
		ModContext*	mc	=	new	ModContext(new	Matrix3(1),	NULL,
NULL);
		dobj->AddModifier(mod,	mc);

	
		//	Replace	the	node's	object
		node->SetObjectRef(dobj);
	}

The	'Local'	Transformation	Matrix
To	retrieve	what	is	considered	the	local	transformation	(the	transformation	of	a
node	relative	to	its	parent)	you	must	perform	some	matrix	arithmetic	on	the
nodes	world	space	transformation	(NodeTM).	This	is	because	there	is	not	a	local
transformation	matrix	of	a	node	stored	by	MAX.
What	is	often	considered	the	local	transformation	is	the	transformation	matrix	of
the	node	relative	to	its	parent.	However,	the	transformation	of	a	node	relative	to
its	parent	may	be	some	function	of	the	node's	parent's	transform.	For	example,	a
transform	controller	takes	the	parent's	TM	and	modifies	it.	When	a	node
evaluates	itself	it	takes	the	parent's	TM	and	passes	it	as	an	argument	when	it	calls
GetValue()	on	its	transform	controller.	The	task	of	a	transform	controller	in	its
implementation	of	GetValue()	is	to	modify	this	matrix.	It	applies	its
transformation	to	the	parent	transformation	passed	in.
In	some	cases	this	modification	may	be	just	a	simple	pre-multiplication	by	what
is	considered	the	local	transformation	matrix.	But	it	may	be	some	other	more-
complicated	process.	For	example,	if	rotation	or	scale	inheritance	is	turned	off,
the	transform	controller	takes	the	parent's	matrix	and	perhaps	removes	rotation
from	it,	or	removes	scaling	from	it,	and	then	applies	itself.	As	another	example,
it	may	use	the	parent's	position	as	a	function	to	derive	rotation	--	as	in	a	Look	At
controller.	Thus,	what	is	considered	the	local	transformation	is	a	function	of	the
transform	controller	and	is	not	stored	by	MAX.
What	3ds	max	does	store	is	the	node's	world	space	transformation	matrix
(NodeTM).	This	matrix	includes	the	parent's	transformation.	To	understand	how
the	local	transformation	can	be	extracted	from	the	world	space	transformation
consider	the	following:
Any	transformation	is	made	up	by	starting	with	the	node,	and	then	multiply	it	by
its	parent,	and	then	by	its	parent,	and	so	on,	all	the	way	through	the	ancestors.
This	is	shown	below:
NodeWorldTM	=	NodeLocalTM	*	ParentLocalTM	*	ParentLocalTM	*
ParentLocalTM,	etc.

The	parents	world	transformation	is	equal	to	the	product	of	all	its	ancestors,	so:
ParentWorldTM	=	ParentLocalTM	*	ParentsLocalTM	*	ParentsLocalTM,	etc.

The	nodes	world	transform	can	then	be	expressed	as:
NodeWorldTM	=	NodesLocalTM	*	ParentWorldTM.

If	we	multiply	both	sides	of	this	equation	by	the	Inverse	of	the	ParentsWorldTM

and	simplify	we	get:
NodeLocalTM	=	NodeWorldTM	*	Inverse(ParentWorldTM)

So,	to	retrieve	what	is	considered	the	local	transformation	you	must	get	the
parent's	transform	and	multiply	the	node's	transform	by	the	inverse	of	the	parent.
The	way	this	is	computed	using	the	methods	of	3ds	max	is	shown	in	the
following	code	fragment.	This	example	assumes	node	is	the	INode*	that	we
want	the	local	TM	from,	and	the	result	will	get	stored	in	localTM:

...
INode	*parent;
Matrix3	parentTM,	nodeTM,	localTM;
nodeTM	=	node->GetNodeTM(0);
parent	=	node->GetParentNode();
parentTM	=	parent->GetNodeTM(0);
localTM	=	nodeTM*Inverse(parentTM);
...

Node	Linking	and	Grouping
This	section	discusses	the	linking	and	grouping	of	nodes,	and	the	effect	this	has
on	the	transformations	of	the	nodes.
In	MAX,	nodes	in	the	scene	may	be	linked	together	to	form	a	hierarchy.	A	node
that	is	linked	to	another	node	is	referred	to	as	a	child	node.	A	node	that	has
children	is	referred	to	as	a	parent	node.	A	node	may	have	several	children,	but
only	a	single	parent.	See	Parent	Child	Hierarchy	for	more	details.
Nodes	may	also	be	grouped.	When	nodes	are	grouped	together,	3ds	max
effectively	creates	a	new	dummy	node,	and	links	the	group	nodes	to	the	parent
dummy	node.	3ds	max	maintains	other	information	such	as	if	the	group	is	open
or	closed,	etc.,	but	this	just	effects	the	user	interface.	Essentially	grouping	is	just
like	linking	all	the	nodes	to	a	dummy.
The	following	discussion	applies	to	both	linking	and	grouping	(since	grouping	is
just	a	special	case	of	linking).
When	a	parent-child	link	is	created,	the	user	will	not	want	the	nodes	in	the	scene
to	move.	To	ensure	that	the	nodes	won't	move,	the	transform	controllers	of	the
nodes	need	to	be	modified.	This	is	because	the	reference	coordinate	system	has
changed.	The	TM	controller	is	working	in	a	coordinate	system	which	is	its
parent's	coordinates	system.	When	a	node	is	unlinked,	its	reference	coordinate
system	is	the	world	coordinate	system.	When	a	node	is	linked,	its	reference
coordinates	system	becomes	its	parents.	So,	when	nodes	are	linked	the	parents
change,	and	3ds	max	must	adjust	the	transformation	matrices	to	counteract	the
change	in	reference	coordinates	system.	All	the	keys	created	by	a	keyframe
transform	controller	must	be	updated	to	reflect	the	change.	When	a	developer
creates	the	link,	the	nodes	and	keys	must	be	adjusted	in	a	similar	fashion.	An
option	to	the	INode	method	AttachChild()	that	links	a	node	as	a	child	allows
this	to	be	done	automatically.
virtual	void	AttachChild(INode*	node,	int	keepPos=1)=0;
Makes	the	specified	node	a	child	of	this	node.	If	keepPos	is	nonzero,	the
child	is	adjusted	as	needed	to	keep	it	from	moving.	keepPos	counters	the
change	in	the	reference	coordinate	system.

Access	to	Node	Controller	Data
In	addition	to	accessing	the	node	and	object	offset	transformations,	developers
may	want	to	access	the	keyframes	or	data	of	a	node's	transform	controller.	See
the	Advanced	Topics	section	Keyframe	and	Procedural	Controller	Data
Access	for	information	and	sample	code.

Summary
The	node	maintains	two	transformations.	The	node's	transformation	matrix	is
what	is	controlled	by	the	transform	controller	that	places	the	node	in	the	scene.
The	object-offset	transformation	represents	a	separate	position,	rotation	and
scale	orientation	of	the	geometry	of	the	object	independent	of	the	node.	The
primary	methods	available	to	work	with	the	node	and	these	matrices	are	part	of
the	INode	class.

Object	Creation	Methods
See	Also:	Class	BaseObject,	Class	Interface,	Class	CommandMode,	Class
MouseCallBack,	Class	ClassDesc,	Class	Matrix3,	Class	IDerivedObject.

Overview
This	section	discusses	several	different	approaches	a	developer	may	use	to
manage	the	object	creation	process	for	their	plug-in.
In	many	cases	the	creation	process	of	an	object	is	handled	by	the	system.	For
example,	in	the	procedural	sphere,	the	developer	simply	provides	a	callback
object	to	handle	the	user	/	mouse	interaction.	This	is	done	using	the	method
BaseObject::GetCreateMouseCallBack().	This	method	returns	a	callback
object	that	handles	the	user	input	during	the	creation	process.	The	system	takes
care	of	calling	this	callback	as	the	user	works	with	the	mouse.	It	also	takes	care
of	creating	the	instance	of	the	plug-in	class,	creates	the	node	in	the	scene,	and
sets	the	node's	object	reference	to	point	to	the	plug-in	object.	Thus	the	system
handles	most	of	the	work.
In	certain	cases	a	developer	may	need	to	manage	the	creation	process	at	a	lower
level	in	order	to	provide	special	functionality.	Two	methods	of	the	plug-in's
Class	Descriptor,	BeginCreate()	and	EndCreate(),	allow	the	plug-in	to
manage	the	process.	When	the	system	is	about	to	create	a	plug-in	object
BeginCreate()	is	called.	If	the	plug-in	does	not	wish	to	have	a	custom	creation
process	it	can	return	0	from	this	method	and	the	system	will	invoke	the	default
process.	The	default	implementation	of	this	method	returns	0,	so	if	the	plug-in
does	not	override	it	the	system	handles	the	creation.	If	the	plug-in	does	require	a
custom	creation	phase,	it	does	so	in	its	implementation	of	this	method.	When	it
is	finished	it	returns	nonzero	to	indicate	it	does	not	want	the	default	process
invoked.
The	target	camera	is	an	example	of	a	plug-in	that	must	handle	its	own	creation
process.	This	is	because	it	creates	two	nodes	in	the	scene:	the	camera	and	the
target.	It	also	must	link	the	camera	to	the	target	using	a	lookat	controller	that
ensures	the	camera	is	always	'looking	at'	the	target.	The	system-managed
creation	procedure	using	GetCreateMouseCallBack()	is	not	adequate	to
meet	the	needs	of	this	plug-in.	Therefore	the	target	camera	implements
ClassDesc::BeginCreate()	and	ClassDesc::EndCreate().	You	may	review
the	source	code	for	this	plug-in	in
\MAXSDK\SAMPLES\OBJECTS\CAMERA.CPP.
Note	that	GetCreateMouseCallback()	is	pure	virtual.	Therefore	plug-ins
derived	from	BaseObject	that	use	ClassDesc::BeginCreate()	must	still
provide	a	NULL	implementation	of	this	method.	This	may	be	done	by

implementing	it	as:
CreateMouseCallBack*	GetCreateMouseCallBack()	{return	NULL;}
Another	plug-in	that	manages	its	own	creation	process	by	implementing
BeginCreate()	and	EndCreate()	is	the	Ring	Array	system.
As	a	final	note	about	these	methods,	a	plug-in	developer	can	force	the	system	to
call	ClassDesc::EndCreate()	by	calling	the	method
Interface::StopCreating().	This	terminates	the	creation	process.

Objects,	Nodes	and	Derived	Objects
A	developer	may	wish	to	create	instances	of	the	standard	3ds	max	primitives.
For	example,	an	import	/	export	plug-in	might	want	to	create	standard	3ds	max
spheres,	cones,	tori,	etc.	APIs	are	provided	so	a	plug-in	can	create	objects	and
nodes	in	the	scene.	Additionally	plug-ins	can	create	derived	objects	to	add
modifiers	to	objects.	This	section	introduces	the	methods	required	and	provides
some	sample	code	demonstrating	their	use.
The	standard	3ds	max	primitives,	or	in	fact	any	plug-in	procedural	object	that
3ds	max	has	registered,	may	be	created	given	the	ClassID	and	SuperClassID	of
the	object.	This	is	done	using	the	following	method:
virtual	void	*CreateInstance(SClass_ID	superID,	Class_ID
classID)=0;
This	creates	an	instance	of	a	registered	class.	This	will	call	Create()	on	the
class	descriptor.	This	method	returns	a	pointer	to	the	specified	object.	For
reference	see	List	of	Class	IDs	and	List	of	Super	Class	IDs.	Note:	This	method
is	from	class	Interface,	but	there	is	also	a	global	version	of	this	API	that	may
be	used	at	any	time	(defined	in	\MAXSDK\INCLUDE\PLUGAPI.H).

To	set	the	parameters	for	these	objects	methods	of	BaseObject	are	available:
virtual	IParamArray	*GetParamBlock();
If	an	object	or	modifier	wishes,	it	can	make	its	parameter	block	available	for
other	plug-ins	to	access.	This	method	returns	a	pointer	to	the	item's	parameter
block.
virtual	int	GetParamBlockIndex(int	id);
If	a	plug-in	makes	its	parameter	block	available	(using	GetParamBlock())
then	it	will	need	to	provide	#defines	for	indices	into	the	parameter	block.
These	#defines	should	not	be	directly	used	with	the	parameter	block	but
instead	converted	by	this	function	that	the	plug-in	implements.	In	this	way	if	a
parameter	moves	around	in	a	future	version	of	the	plug-in	the	#define	can	be
remapped.
For	reference	see	List	of	Parameter	Block	IDs.	This	lists	all	the	parameter
block	indices	for	the	standard	plug-ins	that	ship	with	MAX.
Note:	To	use	these	parameter	block	IDs,	make	sure	you	have	the	following
statement	in	your	source	code:
#include	"istdplug.h"

To	create	a	node	in	the	scene	given	an	object	pointer	use	this	method	from	class
Interface:
virtual	INode	*CreateObjectNode(Object	*obj)=0;
This	creates	a	new	node	in	the	scene	with	the	given	object.	Methods	of	INode
allow	the	node	to	be	named,	and	assigned	a	transform	controller.

Developers	may	also	create	derived	objects	and	add	modifiers	to	objects.
Methods	of	class	IDerivedObject	are	available	for	this	purpose.	For	example:
virtual	void	AddModifier(Modifier	*mod,	ModContext
*mc=NULL,
	int	before=0)=0;
Adds	a	modifier	to	this	derived	object.

The	following	code,	from
\MAXSDK\SAMPLES\UTILITIES\UTILTEST.CPP,	demonstrates	the
use	of	these	methods.
#include	"istdplug.h"
void	UtilTest::MakeObject()
	{
	//	Create	a	new	object	through	the	CreateInstance()	API
	Object	*obj	=	(Object*)ip->CreateInstance(
		GEOMOBJECT_CLASS_ID,
		Class_ID(CYLINDER_CLASS_ID,0));
	assert(obj);
	//	Get	a	hold	of	the	parameter	block
	IParamArray	*iCylParams	=	obj->GetParamBlock();
	assert(iCylParams);
	//	Set	the	value	of	radius,	height	and	segs.
	int	rad	=	obj->GetParamBlockIndex(CYLINDER_RADIUS);
	assert(rad>=0);
	iCylParams->SetValue(rad,TimeValue(0),30.0f);
	int	height	=	obj->GetParamBlockIndex(CYLINDER_HEIGHT);
	assert(height>=0);
	iCylParams->SetValue(height,TimeValue(0),100.0f);
	int	segs	=	obj-
>GetParamBlockIndex(CYLINDER_SEGMENTS);

	assert(segs>=0);
	iCylParams->SetValue(segs,TimeValue(0),10);
	//	Create	a	derived	object	that	references	the	cylinder
	IDerivedObject	*dobj	=	CreateDerivedObject(obj);
	//	Create	a	bend	modifier
	Modifier	*bend	=	(Modifier*)ip->CreateInstance(
		OSM_CLASS_ID,
		Class_ID(BENDOSM_CLASS_ID,0));
	//	Set	the	bend	angle
	IParamArray	*iBendParams	=	bend->GetParamBlock();
	assert(iBendParams);
	int	angle	=	bend->GetParamBlockIndex(BEND_ANGLE);
	iBendParams->SetValue(angle,TimeValue(0),90.0f);
	//	Add	the	bend	modifier	to	the	derived	object.
	ModContext*	mc	=	new	ModContext(new	Matrix3(1),	NULL,
NULL);
	dobj->AddModifier(bend,	mc);
	//	Create	a	node	in	the	scene	that	references	the	derived	object
	INode	*node	=	ip->CreateObjectNode(dobj);
	//	Name	the	node	and	make	the	name	unique.
	TSTR	name(_T("MyNode"));
	ip->MakeNameUnique(name);
	node->SetName(name);
	//	Redraw	the	viewports
	ip->RedrawViews(ip->GetTime());
	}

Here	is	another	piece	of	sample	code	that	creates	a	shape	object	using	the
CreateInstance	API.	This	example	creates	a	circle,	but	one	could	modify	it	to
create	lines	or	other	shapes.
//	Vector	length	for	unit	circle
#define	CIRCLE_VECTOR_LENGTH	0.5517861843f
	
void	Utility::Test()	{
	Interface	*ip	=	theUtility.ip;
	Object	*obj	=

		(Object*)ip->CreateInstance(SHAPE_CLASS_ID,	splineShapeClassID);
	
	SplineShape	*ss	=(SplineShape	*)obj;
	BezierShape	&ashape	=	ss->GetShape();
	ashape.NewShape();
	Spline3D	*spline	=	ashape.NewSpline();			
	
	float	radius	=	300.0f;
	float	vector	=	CIRCLE_VECTOR_LENGTH	*	radius;
	
	for(int	ix=0;	ix<4;	++ix)	{
		float	angle	=	6.2831853f	*	(float)ix	/	4.0f;
		float	sinfac	=	(float)sin(angle),	cosfac	=	(float)cos(angle);
		Point3	p(cosfac	*	radius,	sinfac	*	radius,	0.0f);
		Point3	rotvec	=	Point3(sinfac	*	vector,	-cosfac	*	vector,	0.0f);
		spline->AddKnot(SplineKnot(KTYPE_BEZIER,LTYPE_CURVE,
			p,p	+	rotvec,p	-	rotvec));
		}
	spline->SetClosed();
	spline->ComputeBezPoints();			
	ashape.UpdateSels();
	ashape.InvalidateGeomCache();
	
	INode	*node	=	ip->CreateObjectNode(obj);
	TSTR	name(_T("MySplineNode"));
	ip->MakeNameUnique(name);
	node->SetName(name);
	
	//	Redraw	the	views
	ip->RedrawViews(ip->GetTime());
}

Other	Methods	of	Object	Creation	-	NonMouseCreate()
A	method	of	class	Interface	named	NonMouseCreate()	may	be	used	to	create
a	new	object	/	node	without	going	through	the	usual	create	mouse	proc	sequence.
This	call	must	be	made	when	the	system	is	ready	to	create	--	that	is	during
execution	of	the	system-provided	default	object	creation	process.	To	understand
how	this	works	consider	the	example	of	the	procedural	sphere.
When	the	user	selects	Sphere	from	the	3ds	max	UI,	an	instance	of	the	sphere	is
created	and	its	parameters	appear.	There	is	not	a	node	in	the	scene,	but	an
instance	of	the	object	is	created.	The	user	can	then	edit	the	sphere	parameters
before	it	is	put	in	the	scene.	After	a	sphere	is	created,	the	creation	process	is	in	a
different	phase	--	the	user	is	editing	the	parameters	of	the	sphere	that	was	just
created	--	not	the	one	about	to	be	created.	Therefore	the	first	sphere	is	a	special
case	--	the	user	can	edit	the	parameters	both	before	and	after	it	is	created.
Subsequent	spheres	can	only	have	their	parameters	edited	after	they	are	created.
The	procedural	sphere's	user	interface	allows	the	user	to	type	in	a	center	position
and	radius	value	and	then	press	a	'Create'	button.	This	creates	a	new	sphere	in
the	scene	with	these	parameters.	When	the	button	is	pressed	it	calls	the	method
NonMouseCreate().
When	the	NonMouseCreate()	method	is	used,	the	default	creation	manager
looks	to	see	if	a	sphere	has	just	been	created	in	the	scene.	If	there	is	one,	it	ends
the	creation	phase	on	that	sphere	and	creates	a	new	one	and	puts	it	in	the	scene.
If	there	is	not	a	newly-created	sphere	yet,	NonMouseCreate()	will	simply	put
the	object	into	the	scene.
Thus	calling	NonMouseCreate()	treats	the	object	creation	just	as	if	the	user
clicked	the	mouse	in	the	viewport	to	create	the	object	--	but	they	cannot
interactively	adjust	the	parameters.	The	method	takes	a	single	Matrix3
argument	which	is	the	transformation	relative	to	the	construction	plane.	In	the
code	below,	the	translation	part	of	this	matrix	is	set	to	the	values	the	user	typed
in	for	the	X,	Y,	and	Z	location	of	the	sphere.	The	user	is	thus	typing	in	values
that	are	relative	to	the	current	construction	plane.
The	following	code	is	from	the	procedural	sphere.	This	is	the	code	that	is
executed	if	the	user	presses	the	'Create'	button	in	the	'Keyboard	Entry'	rollup
page.	This	allows	the	user	to	type	in	the	values	for	the	sphere's	position	and
radius	using	the	keyboard	and	then	create	the	object.
BOOL	SphereTypeInDlgProc::DlgProc(

	TimeValue	t,IParamMap	*map,HWND	hWnd,UINT	msg,
	WPARAM	wParam,LPARAM	lParam)	{
	switch	(msg)	{
		case	WM_COMMAND:
			switch	(LOWORD(wParam))	{
				case	IDC_TI_CREATE:	{
					//	The	user	has	pressed	the	create	button...
					//	If	the	radius	is	zero	there	is	nothing	to	create
					//	so	just	return.
					if	(so->crtRadius==0.0)	return	TRUE;
					//	We	only	want	to	set	the	value	if	the	object	is
					//	not	in	the	scene.
					if	(so->TestAFlag(A_OBJ_CREATING))	{
						so->pblock->SetValue(PB_RADIUS,0,so->crtRadius);
						}
					//	Create	an	identity	matrix
					Matrix3	tm(1);
					//	Update	the	translation	portion	of	the	matrix	to	the
					//	creation	position	type-in	parameter
					tm.SetTrans(so->crtPos);
					//	Call	the	interface	method	to	create	the	node...
					//	This	will	use	the	values	in	the	objects	pblock.
					so->ip->NonMouseCreate(tm);
					so->suspendSnap	=	FALSE;
					//	NOTE	that	calling	NonMouseCreate()	will	cause	this
					//	object	to	be	deleted.	DO	NOT	DO	ANYTHING	BUT	RETURN.
					return	TRUE;
					}
				}
			break;
		}
	return	FALSE;
	}

Summary
There	are	several	ways	a	developer	may	create	objects	in	the	scene.	Some	rely
on	the	developer	providing	a	custom	creation	process	command	mode	and
mouse	proc.	Others	use	the	default	object	creation	manager.	In	either	case,
developers	may	create	any	plug-in	object	that	the	system	has	loaded	from	its
DLL	at	3ds	max	start	up.	Plug-ins	have	access	to	the	parameter	block	of	all	the
standard	3ds	max	primitives.	Developers	may	also	add	object	modifiers	to	any	of
the	objects	created.

Object	Modification
See	Also:	Class	Modifier,	Class	SimpleMod,	Class	Object,	Class	Deformer,
Class	ModContext,	Class	Mesh,	List	of	Channel	Bits,	List	of	Class_IDs,	Class
BitArray.

Overview
This	topics	presents	information	on	modifying	objects	in	MAX.	It	discusses	how
objects	and	modifiers	interact	to	enable	object	modification,	explains	the	various
types	of	object	modification,	and	shows	key	portions	of	sample	code	from
modifiers	of	each	type.

Objects,	Modifiers,	and	the	Geometry	Pipeline
Modifiers	operate	on	objects	flowing	down	a	geometry	pipeline.	A	geometry
pipeline	is	the	system	3ds	max	uses	to	process	the	modification	of	objects.	There
are	several	methods	implemented	by	the	objects	and	the	modifiers	that	allow	this
to	happen.	First	we'll	look	at	what	modifiers	need	to	do	to	inform	3ds	max	about
the	nature	of	their	modificiation.	Then	we'll	examine	what	procedural	objects
need	to	do	to	make	themselves	'modifyable'.
Modifiers	Request	A	Certain	Type	of	Input
Modifiers	may	only	operate	on	certain	type	of	object.	For	example,	the	Edit
Spline	modifier	only	works	on	spline	shapes.	The	Volume	Select	Modifier	only
works	on	TriObjects	(triangle	mesh	objects).	In	order	for	the	modifier	to	inform
3ds	max	what	type	of	object	it	needs	it	implements	the	method
Modifier::InputType().	This	method	returns	the	Class_ID	of	the	type	of
object	it	needs	for	input.	For	example,	the	Edit	Spline	modifier	implements	this
method	as	shown	below:
Class_ID	InputType()	{	return
Class_ID(SPLINESHAPE_CLASS_ID,0);	}

This	tells	3ds	max	which	objects	the	modifier	can	be	applied	to.	Only	those
objects	that	are	spline	shapes,	or	are	able	to	convert	themselves	to	spline	shapes,
may	be	modified	by	Edit	Spline.	The	same	is	true	for	Volume	Select	Modifier.	It
requires	objects	that	are	triangle	meshes	for	it	to	do	its	work.	Therefore	it
implements	InputType()	as	shown	below:
Class_ID	InputType()	{	return	Class_ID(TRIOBJ_CLASS_ID,0);
}

When	an	object	is	selected	in	MAX,	only	those	modifiers	that	are	appropriate	for
modifying	it	are	enabled	in	the	user	interface.	This	is	done	by	querying	the
modifiers	to	see	if	their	InputType()	matches	the	Class_ID	of	the	selected
object,	or	the	objects	that	it	can	convert	itself	to.	If	it	is,	the	modifier	is	enabled,
otherwise	its	disabled.
Modifiers	Need	To	Indicate	Which	Geometry	Pipeline	Channels	They
Require	and	Alter
Objects	flowing	down	the	geometry	pipeline	are	broken	into	separate	channels.
That	is,	the	pipeline	can	operate	on	only	portions	of	objects	and	not	the	entire
thing	as	a	whole.	Some	examples	of	channels	that	objects	are	broken	into	are	the
geometry	portion	(points),	the	topology	portion	(polygons	or	faces),	the	selection

level	of	the	object	(object,	face,	vertex,	etc.),	and	its	texture	coordinates.	The
purpose	of	this	is	basically	to	allow	the	pipeline	to	operate	more	efficiently.
Modifiers	must	inform	3ds	max	which	channels	they	require	to	perform	their
modification.	Copies	of	the	needed	channels	are	made	and	passed	up	the
pipeline.	3ds	max	will	only	pass	copies	of	a	minimum	set	of	needed	channels	up
the	pipeline.	If	a	certain	channel	is	not	required	by	any	modifiers	anywhere	in	a
pipeline	it	is	not	copied	and	passed	along.
Modifiers	inform	3ds	max	which	channels	they	require	by	implementing	the
method	Modifier::ChannelsUsed().	This	list	of	channels	must	include	the
channels	the	modifier	actually	alters	but	may	include	more.	Here	is	the
implementation	of	ChannelsUsed()	by	the	Volume	Select	modifier:
ChannelMask	ChannelsUsed()
{
return	OBJ_CHANNELS;
}

Note	that	OBJ_CHANNELS	is	defined	as:
#define	OBJ_CHANNELS
(TOPO_CHANNEL	|	GEOM_CHANNEL	|
SELECT_CHANNEL	|	TEXMAP_CHANNEL	|
MTL_CHANNEL	|	SUBSEL_TYPE_CHANNEL	|
DISP_ATTRIB_CHANNEL	|	VERTCOLOR_CHANNEL	|
GFX_DATA_CHANNEL)

This	means	that	the	pipeline	must	have	all	these	channels	up	to	date	in	the	object
that	gets	passed	to	the	modifier	before	it	can	properly	do	its	work.	Technically,
this	is	actually	overkill	for	the	Normals	modifier.	It	wouldn't	need	the
TEXMAP_CHANNEL	and	VERTCOLOR_CHANNEL	since	they
aren't	in	fact	used.	It	really	only	needs	the	GEOM_CHANNEL,
TOPO_CHANNEL,	and	the	SELECT_CHANNEL.
A	modifier	must	also	inform	3ds	max	which	channels	it	will	actually	alter	its
function	as	a	modifier.	It	does	this	by	implementing	the	method
Modifer::ChannelsChanged().	Here	is	the	implementation	of
ChannelsChanged()	by	the	Volume	Select	modifier:
ChannelMask	ChannelsChanged()
{

return
SELECT_CHANNEL|SUBSEL_TYPE_CHANNEL|GEOM_CHANNEL;
}

This	indicates	that	this	modifier	alters	the	selection	channel,	the	sub-object
selection	channel,	and	the	geometry	channel.	Note	that	the	geometry	channel	is
modified	because	the	vertices	themselves	get	selected	via	the	vertSel
BitArray	in	the	Mesh	class	and	are	thus	modified.
Objects	May	Need	to	Convert	Themselves
Procedural	Objects	don't	always	start	out	in	a	form	suitable	for	a	particular	type
of	modifier.	Consider	the	case	of	a	3ds	max	user	putting	a	volume	select
modifier	on	a	procedural	sphere	in	order	to	select	some	vertices	within	it.	A
procedural	sphere	is	not	defined	by	vertices	and	faces.	Rather	it	is	defined	by	it
procedural	definition,	i.e.	it's	radius,	segment	count,	hemisphere	setting,	etc.	But
a	user	can	put	a	volume	select	modifier	on	a	procedural	sphere.	The	way	this	is
handled	is	that	3ds	max	asks	the	object	if	it	can	be	converted	to	a	triangle	mesh
object	(which	has	vertices	and	faces).	If	the	sphere	responds	yes,	then	3ds	max
asks	the	sphere	to	convert	itself	to	one.	Then,	once	the	objects	is	in	the	form	of
the	triangle	mesh,	the	modifier	may	alter	it.	There	are	two	methods	that
procedural	objects	implement	to	allow	this	to	happen.	These	are
Object::CanConvertToType()	and	Object::ConvertToType().
The	code	executed	by	the	procedural	sphere	implementation	of
CanConvertToType()	is	as	follows:
int	SphereObject::CanConvertToType(Class_ID	obtype)
	{
	if	(obtype==patchObjectClassID	||	obtype==defObjectClassID	||
		obtype==triObjectClassID	||
obtype==EDITABLE_SURF_CLASS_ID)	{
		return	1;
	}	else	{
		return	SimpleObject::CanConvertToType(obtype);
		}
	}
	
int	SimpleObject::CanConvertToType(Class_ID	obtype)
	{

	if	(obtype==defObjectClassID	||	obtype==mapObjectClassID	||
obtype==triObjectClassID	||	obtype==patchObjectClassID)	{

		return	1;
	}	
	return	Object::CanConvertToType(obtype);
}
	
int	Object::CanConvertToType(Class_ID	obtype)
	{
	return	obtype==ClassID();
	}

Note	that	the	sphere	answers	true	when	asked	if	it	can	convert	itself	to	a	patch
object,	a	deformable	object	(a	generic	object	with	points	that	can	be	modified),	a
triangle	mesh	object,	and	an	editable	surf	object	(NURBS	object).	In	other	cases
it	calls	the	base	class	method	from	SimpleObject.	If	SimpleObject	doesn't
recognize	the	type	it	calls	its	base	class	method	from	Object.	The	Object
implementation	returns	nonzero	if	the	object	is	asked	to	convert	to	itself,
otherwise	zero.
When	3ds	max	needs	to	actually	have	the	object	convert	itself	to	the	type
required	by	the	modifier	it	calls	ConvertToType()	on	the	object	as	passes	the
needed	Class_ID.	Below	is	the	code	from	the	procedural	sphere's
implementation.
Object*	SphereObject::ConvertToType(TimeValue	t,	Class_ID
obtype)
	{
	if	(obtype	==	patchObjectClassID)	{
		Interval	valid	=	FOREVER;
		float	radius;
		int	smooth,	genUVs;
		pblock->GetValue(PB_RADIUS,t,radius,valid);
		pblock->GetValue(PB_SMOOTH,t,smooth,valid);	
		pblock->GetValue(PB_GENUVS,t,genUVs,valid);
		PatchObject	*ob	=	new	PatchObject();
		BuildSpherePatch(ob->patch,radius,smooth,genUVs);

		ob->SetChannelValidity(TOPO_CHAN_NUM,valid);
		ob->SetChannelValidity(GEOM_CHAN_NUM,valid);
		ob->UnlockObject();
		return	ob;
	}	else	if	(obtype	==	EDITABLE_SURF_CLASS_ID)	{
		Interval	valid	=	FOREVER;
		float	radius,	hemi;
		int	recenter,	genUVs;
		pblock->GetValue(PB_RADIUS,t,radius,valid);
		pblock->GetValue(PB_HEMI,t,hemi,valid);	
		pblock->GetValue(PB_RECENTER,t,recenter,valid);
		pblock->GetValue(PB_GENUVS,t,genUVs,valid);
		Object	*ob	=	BuildNURBSSphere(radius,	hemi,
recenter,genUVs);
		ob->SetChannelValidity(TOPO_CHAN_NUM,valid);
		ob->SetChannelValidity(GEOM_CHAN_NUM,valid);
		ob->UnlockObject();
		return	ob;
		
	}	else{
		return	SimpleObject::ConvertToType(t,obtype);
		}
	}

The	cases	handled	above	cover	converting	to	a	patch	or	NURBS	representation.
The	other	cases	are	handled	by	the	base	classes.
In	summary,	an	object	must	implement	two	methods	to	allow	a	modifier	to
operate	upon	it.	These	are	CanConvertToType()	and	ConvertToType().

Types	of	Object	Modification
This	section	presents	information	on	the	general	types	of	modifiers	possible	in
3ds	max	and	an	overview	of	how	they	accomplish	their	modification.	Code	is
presented	for	each	showing	the	needed	input	type,	channels	changed	and	used,
and	the	method	that	does	the	object	modification.
There	are	many	types	of	modifiers	possible	in	MAX.	The	way	they	are	classified
is	by	which	channel(s)	of	the	geometry	pipeline	they	operate	on.	Modifiers	may
operate	on	one	or	more	channels.	These	channels	are	things	such	as	geometry,
topology,	texture	coordinates,	sub-object	selection	level,	vertex	colors,	as	well	as
several	others.	See	List	of	Channel	Bits	to	review	the	full	list	of	channels	the
pipeline	is	broken	down	into.	The	sections	below	show	examples	of	modifiers
that	operate	on	many	of	these	different	channels.	For	each	of	these	an	analysis	of
the	critical	code	fragment	that	actually	handles	the	alteration	of	the	objectis
shown	--	this	is	the	method	Modifier::ModifyObject().	This	method	is
defined	like	this:

Prototype:
virtual	void	ModifyObject(TimeValue	t,	ModContext	&mc,
ObjectState*	os,	INode	*node)=0;

Remarks:
This	is	the	method	that	actually	modifies	the	input	object.	This	method	is
responsible	for	altering	the	object	and	then	updating	the	validity	interval	of	the
object	to	reflect	the	validity	of	the	modifier.

Parameters:
TimeValue	t
The	time	at	which	the	modification	is	being	done.
ModContext	&mc
A	reference	to	the	ModContext.	The	ModContext	stores	information	about	the
space	the	modifier	was	applied	in	including.
ObjectState*	os
The	object	state	flowing	through	the	pipeline.	This	contains	a	pointer	to	the
object	to	modify.
INode	*node
The	node	the	world	space	modifier	is	applied	to.	This	parameter	is	always

NULLfor	Object	Space	Modifiers	and	non-NULL	for	World	Space	Modifiers
(Space	Warps).	This	is	because	a	given	WSM	is	only	applied	to	a	single	node
at	a	time	whereas	an	Object	Space	Modifier	may	be	applied	to	several	nodes.
This	may	be	used	for	example	by	particle	system	space	warps	to	get	the
transformation	matrix	of	the	node	at	various	times.

Below	are	examples	of	many	of	the	modifier	types.
Modifiers	Which	Change	Topology
These	modifiers	alter	the	face	or	polygon	structures	of	the	objects	they	are
applied	to.	Smoothing	groups	and	materials	are	also	part	of	the	topology
channel.	Edge	visibility	is	also	part	of	this	channels	since	it	is	an	attribute	of	the
face	structure.	The	face	normals	are	also	part	of	the	topology	channel.	The
example	below	is	from	the	Normals	modifier	which	allows	the	user	to	unify	and
flip	the	face	normals	of	a	mesh.	The	full	source	code	is	available	in
\MAXSDK\SAMPLES\MODIFIERS\SURFMOD.CPP.
Below	are	the	implementations	of	InputType(),	ChannelsUsed(),	and
ChannelsChanged().
	Class_ID	InputType()	{return	triObjectClassID;}
	ChannelMask	ChannelsUsed()	{return	OBJ_CHANNELS;}
	ChannelMask	ChannelsChanged()	{return
GEOM_CHANNEL|TOPO_CHANNEL;}
Note	that	this	modifier	only	operates	on	triangle	mesh	objects,	or	those	objects
able	to	convert	themselves	to	triangle	meshes.	Also	note	that	this	modifier
specifies	the	object	channels	for	those	that	it	needs	up	to	date	to	perform	its
modification.	Since	this	modifier	changes	the	vertex	and	face	structure	of	the
mesh	to	alter	the	normals	it	specifies	it	modifies	the	geometry	channel	and	the
topology	channel	in	ChannelsChanged().
Here	is	the	implementation	of	ModifyObject().	Note	that	when	the	modifier	is
done	it	updates	the	validity	of	the	object	flowing	down	the	pipeline	by	calling
UpdateValidity()	and	passing	the	topology	channel	number.
void	NormalMod::ModifyObject(TimeValue	t,	ModContext	&mc,

ObjectState	*os,	INode	*node)
	{
	Interval	valid	=	FOREVER;
	int	flip,	unify;

	pblock->GetValue(PB_FLIP,t,flip,valid);	
	pblock->GetValue(PB_UNIFY,t,unify,valid);	
	
	assert(os->obj->IsSubClassOf(triObjectClassID));
	TriObject	*triOb	=	(TriObject	*)os->obj;
	BOOL	useSel	=	triOb->mesh.selLevel==MESH_FACE;
	
	if	(unify)	{
		triOb->mesh.UnifyNormals(useSel);		
		}
	
	if	(flip)	{
		for	(int	i=0;	i<triOb->mesh.getNumFaces();	i++)	{
			if	(!useSel	||	triOb->mesh.faceSel[i])	{
				FlipMeshNormal(&triOb->mesh,(DWORD)i);
				}
			}
		}
			
	triOb->UpdateValidity(TOPO_CHAN_NUM,valid);		
	}

Modifiers	Which	Change	Mapping	(Texture	Coordinates)
These	modifiers	alter	the	texture	coordinates	of	the	objects	they	modify.	These
can	add	new	mapping	coordinates	to	unmapped	objects	or	modify	the	existing
mapping	coordinates	of	objects.	A	modifier	that	adds	new	mapping	coordinates
is	the	UVW	Mapping	Modifier.	The	full	source	code	is	available	in
\MAXSDK\SAMPLES\MODIFIERS\MAPMOD.CPP.	Below	are	the
implementations	of	InputType(),	ChannelsUsed(),	and
ChannelsChanged().
Class_ID	InputType()	{	return	mapObjectClassID;	}
ChannelMask	ChannelsUsed()
{
return	PART_GEOM	|	PART_TOPO	|	PART_SELECT	|
PART_SUBSEL_TYPE	|	PART_VERTCOLOR;

}
ChannelMask	ChannelsChanged()
{
return	TEXMAP_CHANNEL|PART_VERTCOLOR;
}

The	mapping	modifier	requests	a	modifier	that	is	mappable	by	specifying	the
Class_ID	mapObjectClassID.	Objects	that	know	how	to	make	themselves
mappable	respond	to	this	Class_ID	in	CanConvertToType()	and	return
TRUE.	This	indicates	that	they	may	have	texture	coordinates	assigned	to	them
and	they	implement	the	method	Object::ApplyUVWMap().	Note	how	the
Vertex	Color	channel	is	needed	and	changed	as	well	as	the	texmap	channel.	This
is	because	3ds	max	uses	the	second	mapping	channel	as	the	vertex	color	channel
and	the	user	is	able	to	specify	that	the	second	mapping	channel	may	be	used	for
the	mapping	coordinates.
Here	is	the	implementation	of	ModifyObject().	Note	that	when	the	modifier	is
done	it	updates	the	validity	of	the	texture	map	channel	by	calling
UpdateValidity().
void	MapMod::ModifyObject(TimeValue	t,	ModContext	&mc,

ObjectState	*os,	INode	*node)
	{
	//	If	it's	not	a	mappable	object	then	we	can't	help
	Object	*obj	=	os->obj;
	if	(!obj->IsMappable())	return;
	
	//	Get	pblock	values	
	int	type,	uflip,	vflip,	wflip,	cap,	channel;	
	float	utile,	vtile,	wtile;
	pblock->GetValue(PB_MAPTYPE,t,type,FOREVER);
	pblock->GetValue(PB_UTILE,t,utile,FOREVER);
	pblock->GetValue(PB_VTILE,t,vtile,FOREVER);
	pblock->GetValue(PB_WTILE,t,wtile,FOREVER);
	pblock->GetValue(PB_UFLIP,t,uflip,FOREVER);
	pblock->GetValue(PB_VFLIP,t,vflip,FOREVER);
	pblock->GetValue(PB_WFLIP,t,wflip,FOREVER);

	pblock->GetValue(PB_CAP,t,cap,FOREVER);
	pblock->GetValue(PB_CHANNEL,t,channel,FOREVER);
	
	//	Prepare	the	controller	and	set	up	mats
	if	(!tmControl	||	(flags&CONTROL_OP)	||
(flags&CONTROL_INITPARAMS))
		InitControl(mc,obj,type,t);
	Matrix3	tm;	
	tm	=	Inverse(CompMatrix(t,&mc,NULL));
		
	obj-
>ApplyUVWMap(type,utile,vtile,wtile,uflip,vflip,wflip,cap,tm,channel);
	
	//	The	tex	mapping	depends	on	the	geom	and	topo	so	make	sure
the	validity	interval	reflects	this.
	Interval	iv	=	LocalValidity(t);
	iv	=	iv	&	os->obj->ChannelValidity(t,GEOM_CHAN_NUM);
	iv	=	iv	&	os->obj->ChannelValidity(t,TOPO_CHAN_NUM);
	os->obj->UpdateValidity(TEXMAP_CHAN_NUM,iv);	
	}

To	see	an	example	of	a	modifier	that	alter	existing	texture	coordinates	take	a
look	at	the	source	code	for	the	UVW	XForm	modifier	in
\MAXSDK\SAMPLES\MODIFIERS\UVWXFORM.CPP.	or	the	UVW
Unwrap	modifier	in
\MAXSDK\SAMPLES\MODIFIERS\UNWRAP.CPP.
Modifiers	Which	Change	Materials
These	modifiers	alter	the	material	ID	stored	by	the	object.	An	example	of	this
type	of	modifier	is	the	Material	Modifier
(\MAXSDK\SAMPLES\MODIFIERS\SURFMOD.CPP).	Below	are	the
implementations	of	InputType(),	ChannelsUsed(),	and
ChannelsChanged().	Note	that	materials	are	rolled	into	the	face	structure	of
the	object	so	this	modifier	alters	the	topology	channel.
	Class_ID	InputType()	{return	triObjectClassID;}	
	ChannelMask	ChannelsUsed()	{return	OBJ_CHANNELS;}

	ChannelMask	ChannelsChanged()	{return
GEOM_CHANNEL|TOPO_CHANNEL;}
This	modifier	specifies	it	changes	the	geometry	channel.	Technically	it	doesn't
need	to	since	it	only	changes	the	material	index	at	the	face	level	and	nothing	at
the	vertex	level.	Again,	this	is	a	bit	of	overkill.
Here	is	the	implementation	of	ModifyObject().	Note	that	when	the	modifier	is
done	it	updates	the	validity	of	the	object	flowing	down	the	pipeline	by	calling
UpdateValidity()	and	passing	the	topology	channel	number.
void	MatMod::ModifyObject(TimeValue	t,	ModContext	&mc,
ObjectState	*os,	INode	*node)

	{
	Interval	valid	=	FOREVER;
	int	id;
	pblock->GetValue(PB_MATID,t,id,valid);	
	id--;
	if	(id<0)	id	=	0;
	if	(id>0xffff)	id	=	0xffff;
	
	assert(os->obj->IsSubClassOf(triObjectClassID));
	TriObject	*triOb	=	(TriObject	*)os->obj;
	BOOL	useSel	=	triOb->mesh.selLevel==MESH_FACE;
	
	for	(int	i=0;	i<triOb->mesh.getNumFaces();	i++)	{
		if	(!useSel	||	triOb->mesh.faceSel[i])	{
			triOb->mesh.setFaceMtlIndex(i,(MtlID)id);
			}
		}
		
	triOb->UpdateValidity(TOPO_CHAN_NUM,valid);		
	}

Modifiers	Which	Change	Selection
These	modifiers	alter	the	selection	level	of	objects.	An	example	is	the	Volume
Select	modifier.	The	full	source	code	is	available	in
\MAXSDK\SAMPLES\MODIFIERS\SELMOD.CPP.

Below	is	the	implementations	of	InputType(),	ChannelsUsed(),	and
ChannelsChanged().
	Class_ID	InputType()	{return	triObjectClassID;}
	ChannelMask	ChannelsUsed()	{return	OBJ_CHANNELS;}		
	ChannelMask	ChannelsChanged()

{
return

SELECT_CHANNEL|SUBSEL_TYPE_CHANNEL|GEOM_CHANNEL;
}

Note	that	ChannelsChanged()	for	the	Volume	Select	Modifer	doesn	specify
DISP_ATTRIB_CHANNEL	in	ChannelsChanged().	Technically	it	really
should	since	it	changes	the	Mesh	display	flags.	The	reason	this	isn't	a	problem
however	is	that	this	is	only	a	single	int	in	the	Mesh	and	isn't	dynamically
allocated.	So	it	is	actually	always	present	even	without	specifically	specifying	it.
Here	is	the	implementation	of	ModifyObject().	Note	that	when	the	modifier	is
done	it	updates	the	validity	of	the	object	flowing	down	the	pipeline	by	calling
UpdateValidity()	on	all	the	appropriate	channels.
void	SelMod::ModifyObject(TimeValue	t,	ModContext	&mc,

ObjectState	*os,	INode	*node)
	{
	Interval	valid	=	LocalValidity(t);
	int	level,	method,	type,	vol,	invert;
	
	pblock->GetValue(PB_LEVEL,t,level,FOREVER);
	pblock->GetValue(PB_METHOD,t,method,FOREVER);
	pblock->GetValue(PB_TYPE,t,type,FOREVER);
	pblock->GetValue(PB_VOLUME,t,vol,FOREVER);
	pblock->GetValue(PB_INVERT,t,invert,FOREVER);
	
	assert(os->obj->IsSubClassOf(triObjectClassID));
	TriObject	*obj	=	(TriObject*)os->obj;
	Mesh	&mesh	=	obj->mesh;	
	
	//	Prepare	the	controller	and	set	up	mats

	if	(!tmControl	||	(flags&CONTROL_OP))
InitControl(mc,obj,type,t);
	Matrix3	tm;	
	tm	=	Inverse(CompMatrix(t,&mc,NULL,TRUE,FALSE));
	
	Box3	mcbox	=	*mc.box;
	FixupBox(mcbox);
	
	switch	(level)	{
		case	SEL_OBJECT:
			obj->mesh.selLevel	=	MESH_OBJECT;
			obj-
>mesh.ClearDispFlag(DISP_VERTTICKS|DISP_SELVERTS|DISP_SELFACES);
			break;
	
		case	SEL_VERTEX:
			obj->mesh.selLevel	=	MESH_VERTEX;
			obj->mesh.SetDispFlag(DISP_VERTTICKS|DISP_SELVERTS);
			SelectVertices(obj->mesh,method,type,vol,invert,tm,mcbox);
			break;
	
		case	SEL_FACE:
			obj->mesh.selLevel	=	MESH_FACE;
			obj->mesh.SetDispFlag(DISP_SELFACES);
			SelectFaces(obj->mesh,method,type,vol,invert,tm,mcbox);
			break;
		}
	
	obj->UpdateValidity(SELECT_CHAN_NUM,valid);
	obj->UpdateValidity(GEOM_CHAN_NUM,valid);
	obj->UpdateValidity(TOPO_CHAN_NUM,valid);
	obj->UpdateValidity(SUBSEL_TYPE_CHAN_NUM,FOREVER);
	}
Note	how	UpdateValidity()	is	called	on	four	channels.

Modifiers	Which	Change	Geometry
These	modifiers	just	alter	the	'points'	of	the	object.	Many	modifiers	in	3ds	max
do	this.	For	example,	Bend,	Taper,	Twist,	Spherify,	and	Wave	all	operate	on	the
just	the	points	of	objects.	Note	that	the	'points'	may	mean	different	things	to
different	objects.	For	example,	a	Bend	modifier	may	be	applied	to	both	a
Cylinder	object	and	a	NURBS	curve	object.	That's	because	they	both	have
'points'	that	can	be	modified,	although	the	nature	of	the	'points'	is	quite	different
between	them.	Modifiers	that	operate	on	these	generic	points	are	said	to	operate
on	'deformable'	objects.
Modifiers	that	only	alter	the	geometry	channel	can	be	sub-classed	from
SimpleMod	rather	than	Modifier	and	have	fewer	methods	to	implement.	In
this	case,	the	base	class	SimpleMod	provides	the	default	implementation	of
InputType(),	ChannelsUsed()	and	ChannelsChanged().	Here	they	are:
	Class_ID	InputType()	{return	defObjectClassID;}
	ChannelMask	ChannelsUsed()
{
return

PART_GEOM|PART_TOPO|SELECT_CHANNEL|SUBSEL_TYPE_CHANNEL;
}

	ChannelMask	ChannelsChanged()	{	return	PART_GEOM;	}
Note	that	InputType()	return	the	Class_ID	of	deformable	objects.	As	noted
above,	these	are	a	type	of	objects	that	have	'points'	to	deform.	Also	notice	that
SimpleModifiers	require	the	geometry,	topology,	and	selection	channels.	They
need	the	topology	channel	up	to	date	because	these	modifiers	can	work	on	the
selection	set.	It	needs	to	find	the	vertices	that	are	selected	because	they	are	part
of	selected	faces.	To	make	sure	the	face	selection	is	up	to	date	the	topology
channel	is	specified.	The	selection	channels	are	required	for	the	same	reason	--
the	modifier	may	operate	on	only	the	selection	set	if	that's	what	the	object
flowing	down	the	pipeline	is	at.
SimpleModifiers	don't	directly	implement	ModifyObject().	Rather	they
implement	a	method	called	GetDeformer().	This	method	returns	a	callback
object	which	is	an	instance	of	the	class	Deformer.	This	callback	object	is	really
like	a	pointer	to	a	function	that	is	called	to	perform	the	alteration	of	a	single
point	of	an	object.	The	Deformer	callback	object	returned	from
GetDeformer()	has	a	single	virtual	method	that	the	plug-in	modifier

implements	called	Map().	This	method	is	passed	a	single	point	of	the	object	and
its	job	is	to	modify	the	point	and	return	it	in	altered	form.	To	see	an	example	of
an	implementation	of	this	method	see	BendDeformer::Map()	in
\MAXSDK\SAMPLES\MODIFIERS\BEND.CPP.
The	base	class	SimpleMod	provides	the	implementation	of	ModifyObject()
and	calls	a	method	of	the	input	object	called	Deform()	which	in	turn	calls	the
deformer	provided	by	GetDeformer().	Here	is	the	implementation	of
SimpleMod::ModifyObject():
void	SimpleMod::ModifyObject(TimeValue	t,	ModContext	&mc,
ObjectState	*os,	INode	*node)
	{	
	Interval	valid	=	GetValidity(t);
	Matrix3	modmat,minv;
	
	//	These	are	inverted	because	that's	what	is	usually	needed
//	for	displaying/hit	testing

	minv	=	CompMatrix(t,mc,idTM,valid,TRUE);
	modmat	=	Inverse(minv);
	
	os->obj->Deform(&GetDeformer(t,mc,modmat,	minv),	TRUE);
	os->obj->UpdateValidity(GEOM_CHAN_NUM,valid);	
	}
Notice	that	the	Deform()	method	of	the	input	object	is	called	passing	the
deformer	provided	by	the	modifier	plug-in.	The	object	that	is	being	modified
provides	the	implemtation	of	Deform()	(for	example	a	triangle	mesh	object	that
is	being	modified).	Here	is	the	default	implementation.
void	Object::Deform(Deformer	*defProc,int	useSel)	{
	int	nv	=	NumPoints();	
	for	(int	i=0;	i<nv;	i++)
		SetPoint(i,defProc->Map(i,GetPoint(i)));
	PointsWereChanged();
	}
Notice	how	this	method	loops	through	the	points	of	the	object	and	calls	the
Map()	method	on	each	point.	The	GetPoint()	method	of	the	object	returns	the

'i-th'	point	of	the	object.	This	is	passed	to	Map()	which	deforms	and	returns	it.
The	result	returned	from	Map()	is	set	back	into	the	object	by	calling
SetPoint().	Then	a	method	called	PointsWereChanged()	is	called	to	let	that
object	know	that	its	points	have	been	altered.
Some	objects	override	the	base	class	definition	of	this	method	to	provide	other
ways	of	modifying	the	object.	For	example	the	PatchObject	and
SplineShape	objects	provide	alternate	implementations.	If	an	object	wanted	to
modify	the	selected	points	only	for	example,	it	would	need	to	override
Object::Deform()	and	respect	the	useSel	flag	that	indicates	it	should	use	the
currrent	selection.	The	base	class	method	shown	above	ignores	that	flag.	In	each
case	however,	they	still	call	the	Map()	method	of	the	deformer	passing	it	each
point	to	modify.
Modifiers	Which	Change	The	Entire	Object
There	are	some	modiifer	that	don't	alter	one	or	more	parts	of	the	object,	they
completely	replace	it	with	a	new	object.	These	modifiers	effectively	convert	the
object	from	one	form	to	another.	Examples	of	this	are	the	Extrude	and	Lathe
modifiers.	Both	Extrude	and	Lathe	convert	a	spline	object	into	a	mesh,	patch	or
NURBS	object,	thus	completely	replacing	the	entire	object.	The	full	source	code
for	Extrude	is	available	in
\MAXSDK\SAMPLES\MODIFIERS\EXTRUDE.CPP.
Below	are	the	implementations	of	InputType(),	ChannelsUsed(),	and
ChannelsChanged().
Class_ID	InputType()	{	return	genericShapeClassID;	}
ChannelMask	ChannelsUsed()	{	return
PART_GEOM|PART_TOPO;	}
ChannelMask	ChannelsChanged()	{	return	PART_ALL;	}

Note	that	the	modifier	indicates	it	changes	all	the	channels	by	returning
PART_ALL	from	ChannelsChanged().
Below	is	a	subset	of	the	implementation	of	ModifyObject()	(the	code	for	the
NURBS	and	PATCH	cases	are	removed	for	brevity	and	simplicity).	In	the	mesh
case,	the	key	thing	to	notice	is	that	a	new	TriObject	is	created,	the	TriObject's
mesh	is	created	from	the	spline,	and	the	new	object	is	placed	into	the	pipeline	by
assigning	it's	pointer	to	the	ObjectState's	object	pointer.
void	ExtrudeMod::ModifyObject(TimeValue	t,	ModContext

&mc,
ObjectState	*os,	INode	*node)	{	

	
	//	Get	our	personal	validity	interval...
	Interval	valid	=	GetValidity(t);
	valid	&=	os->obj->ChannelValidity(t,TOPO_CHAN_NUM);
	valid	&=	os->obj->ChannelValidity(t,GEOM_CHAN_NUM);
	
	int	output;
	pblock->GetValue(PB_OUTPUT,	TimeValue(0),	output,
FOREVER);
	
	switch	(output)	{
	case	NURBS_OUTPUT:	{
		//	...
		break;
}

	case	PATCH_OUTPUT:	{
		//	...
		break;
}

	case	MESH_OUTPUT:	{
		//	BuildMeshFromShape	fills	in	the	TriObject's	mesh,
		//	then	we	stuff	the	TriObj	into	the	pipeline.
		TriObject	*tri	=	CreateNewTriObject();
		BuildMeshFromShape(t,	mc,	os,	tri->mesh);
	
		tri->SetChannelValidity(TOPO_CHAN_NUM,	valid);
		tri->SetChannelValidity(GEOM_CHAN_NUM,	valid);
		tri->SetChannelValidity(TEXMAP_CHAN_NUM,	valid);
		tri->SetChannelValidity(MTL_CHAN_NUM,	valid);
		tri->SetChannelValidity(SELECT_CHAN_NUM,	valid);
		tri->SetChannelValidity(SUBSEL_TYPE_CHAN_NUM,	valid);
		tri->SetChannelValidity(DISP_ATTRIB_CHAN_NUM,	valid);

	
		os->obj	=	tri;
		break;

}
	}
	os->obj->UnlockObject();
}

How	Long	is	the	Modification	Valid	For?
This	section	presents	information	on	validity	intervals.	These	describe	a	range	of
time	over	which	the	modification	preformed	by	the	modifier	is	accurate.	This	is
needed	because	so	many	things	in	3ds	max	can	be	animated	and	thus	change
over	time.	For	example,	consider	the	case	above	of	the	procedural	sphere	and	the
volume	select	modifier	applied	to	select	a	set	of	vertices.	A	3ds	max	user	might
animate	the	number	of	segments	in	the	sphere	as	an	animated	camera	gets	closer
to	it	--	this	keeps	the	silhouette	of	the	sphere	from	appearing	faceted.	The
volume	select	modifier	applied	to	the	sphere	needs	to	select	all	the	vertices	in	the
region	defined	by	it's	gizmo	which	represents	its	volume.	Since	the	segment
count	in	the	sphere	is	changing,	the	number	of	vertices	in	the	region	defined	by
the	modifier's	gizmo	is	changing.	Therefore	the	selection	done	at	one	frame	may
not	be	valid	at	the	next	frame.	In	order	to	tell	3ds	max	how	long	the	modification
is	valid,	what's	called	a	validity	interval	is	computed	and	returned.	This	describes
the	range	of	time	over	which	the	modification	is	accurate	and	up	to	date.

There	are	two	methods	that	a	modifier	needs	to	call	or	implement.	These
are	Object::UpdateValidity()	and	Modifier::LocalValidty().
When	a	modifier	is	finished	altering	an	object	it	needs	to	include	its	interval
in	the	validity	interval	of	the	object.	This	way	if	an	object	was	static,	but
had	an	animated	modifier	applied	to	it,	3ds	max	would	know	that	the
modifier	would	need	to	be	re-evaluated	if	the	user	moves	to	a	new	time.	To
do	this,	the	modifier	calls	the	UpdateValidity()	method	on	the	object,
specifying	the	channel	and	the	modifier's	interval.	Modifiers	that	only	affect
the	geometry	channel	would	specify	GEOM_CHAN_NUM.	Modifiers
that	affect	other	channels	would	have	to	call	this	method	once	for	each
channel	modified.	The	interval	that	is	passed	in	to	this	method	is	then
intersected	with	the	interval	that	the	object	keeps	for	each	channel.	So	as
the	object	travels	through	the	pipeline,	its	validity	intervals	are	potentially
getting	smaller	as	(possibly)	animated	modifiers	are	applied	to	it.

Here	are	the	calls	to	UpdateValidity()	that	the	Volume	Select	Modifier	makes
to	the	object	it	modifies.	These	calls	are	made	inside	the	modifiers
ModifyObject()	method.
	obj->UpdateValidity(SUBSEL_TYPE_CHAN_NUM,FOREVER);
	obj->UpdateValidity(SELECT_CHAN_NUM,valid);
	obj->UpdateValidity(GEOM_CHAN_NUM,valid);

	obj->UpdateValidity(TOPO_CHAN_NUM,valid);
The	modifier	must	also	implement	a	method	to	return	to	3ds	max	it's	own
validity,	independent	of	the	object	it	is	modifiying.	This	method	is
Modifier::LocalValidity().	This	value	is	computed	by	starting	an	interval	off
at	FOREVER,	and	intersecting	the	validity	intervals	of	all	the	animated
parameters	of	the	modifier.	In	the	case	of	the	Volume	Select	Modifer,	it	has	a
single	animated	parameter	--	it's	gizmo	which	represents	the	actual	extents	of	the
volume	it	selects.	Below	is	the	implementation	of	this	method	by	Volume	Select.
Interval	SelMod::LocalValidity(TimeValue	t)
	{	
	Interval	valid	=	FOREVER;
	if	(tmControl)	{
		Matrix3	tm(1);
		tmControl->GetValue(t,&tm,valid,CTRL_RELATIVE);
		}
	return	valid;
	}

Note	the	interval	is	started	as	FOREVER.	Then	the	gizmo's	transform
controller's	GetValue()	method	is	called	passing	it	this	initial	interval	of
FOREVER.	The	controller's	GetValue()	method	will	update	this	interval
to	reflect	the	validity	of	the	gizmo.	This	interval	is	then	returned.	Note	that
if	the	volume	has	not	been	animated	yet,	and	thus	there	is	not	a	controller
assigned	to	the	gizmo	yet,	FOREVER	is	returned.	This	means	the
modifier	is	valid	at	all	times.	To	learn	more	about	validity	intervals	see	the
Advanced	Topics	section	Intervals.

Some	modifiers	are	sub-classed	from	SimpleMod	and	not	Modifier.	To	return	the
validity	interval	of	the	modifier	to	SimpleMod,	the	developer	must	implement
a	method	named	GetValidity().	SimpleMod	then	provides	the
implementation	of	LocalValidity()	itself	but	calls	GetValidity()	on	the
SimpleModifier.

Summary
This	section	presented	information	about	how	objects	and	modifiers	work
together	to	accomplish	object	modification.	Objects	may	need	to	convert
themselves	to	another	form	to	be	modified.	They	do	this	in	their
ConvertToType()	method.	Modifers	need	to	specify	which	object	types	they
operate	on	(InputType())	and	which	pipeline	channels	they	need	and	use
(ChannelsUsed()	and	ChannelsChanged()).	Modifiers	also	perform	their
modification	in	the	method	ModifyObject().	Finally,	Modifiers	must	update	the
validity	intervals	of	the	objects	they	modify	to	reflect	their	own	validity.	This	is
done	inside	the	method	UpdateValidity().

Palettes
See	Also:	Class	GPort,	Class	Quantizer,	Class	ColorPacker.

Overview
When	operating	in	8-bit	mode,	3ds	max	uses	a	256	color	palette.	Plug-ins	should
avoid	changing	the	system	palette	because	this	can	cause	the	quality	of	the	3ds
max	display	to	degrade.	The	palette	used	by	3ds	max	reserves	the	bottom	10
slots	and	top	10	slots	of	the	palette	for	Windows	colors.	It	also	contains	a	6x6x6
RGB	color	cube,	and	a	16	gray	level	ramp.	This	palette	should	be	adequate	for
most	purposes.	When	a	plug-in	wants	to	output	bitmaps	and	colored	areas	with
dither,	so	as	to	get	good	approximations	of	24	bit	colors	in	8-bit	modes,	it	should
make	use	of	the	GPort	class.	The	GPort	also	provides	access	to	8	"animated
palette	slots"	to	allow	dynamically	altering	system	palette	entries.

Support	Classes
This	section	discusses	several	class	that	are	helpful	in	working	with	3ds	max
palettes	and	paletted	images.
Class	GPort	-	This	class	has	several	purposes.	It	maintain	the	default	3ds	max
palette	for	doing	256	color	graphics.	It	also	provides	a	mechanism	for	allocating
"animated	color	slots"	in	the	default	palette	for	use	in	the	user	interface.
Additionally	it	provide	various	functions	for	doing	dithered	graphics	using	the
default	3ds	max	palette.
There	is	one	instance	of	GPort	that	is	shared	globally.	It	is	accessed	by	the
function:
GPort*	GetGPort();

Here	is	an	example	of	a	typical	use	of	this	class.	In	this	case	the	developer	wants
to	put	up	a	dialog	box	with	two	color	swatches	in	it,	and	have	these	be	painted
using	an	"animated	color	slot"	in	the	default	3ds	max	palette.	To	set	things	up,
the	following	is	done	in	the	WM_INITDIALOG	code:
//	Plug	the	standard	MAX	palette	into	the	hdc
HDC	hdc	=	GetDC(hwndDlg);
hOldPal	=	GetGPort()->PlugPalette(hdc);
//	Get	one	anim	palette	slot
animSlot[0]	=	GetGPort()->GetAnimPalSlot();
//	Get	another	anim	palette	slot
animSlot[1]	=	GetGPort()->GetAnimPalSlot();
The	routine	GetAnimPalSlot()	is	used	to	get	an	animatable	palette	slot.
There	are	a	total	of	8	slots	available.	This	method	may	return	-1.	This
indicates	that	GPort	has	no	more	remaining	animatable	palette	slots.	In	this
case,	using	the	routine	GPort::PaintColorSwatch()	will	do	the	proper
thing,	that	is	dithering	the	swatch	instead	of	trying	to	paint	it	with	a	single
palette	index.
Next,	in	the	WM_PAINT	code	before	drawing	the	following	is	done:
//	Just	to	be	safe:	if	the	palette	is	there,	unchanged,	this	is	cheap.
GetGPort()->PlugPalette(hdc);
GetGPort()->SetAnimPalEntry(animSlot[0],	rgb1);	//	set	an	rgb
into	slot
GetGPort()->SetAnimPalEntry(animSlot[1],	rgb2);	//	set	an	rgb

into	slot
GetGPort()->AnimPalette(hdc);	//	update	the	palette	with	these
colors
PaintColorSwatch(hdc,	rgb1,	0,	10,10,40,20);	//	see	below
PaintColorSwatch(hdc,	rgb2,	0,	10,30,40,40);
To	finish	up,	in	WM_DESTROY	you	should	do	the	following:
GetGPort()->ReleaseAnimPalSlot(animSlot[0]);	//	Release	palette
slot
GetGPort()->ReleaseAnimPalSlot(animSlot[1]);	//	Release	palette
slot
GetGPort()->RestorePalette(hdc,hOldPal);	//	Restore	palette
The	code	for	PaintColorSwatch()	is	also	included	below	to	illustrate	in
more	detail	how	GPort	works.	This	is	a	routine	to	draw	a	color	swatch	using
an	animated	palette	entry,	if	available.
void	PaintColorSwatch(HDC	hdc,	DWORD	col,	int	slot,
	int	left,	int	top,	int	right,	int	bottom)	{
	HPEN	oldPen	=	(HPEN)	SelectObject(hdc,
GetStockObject(NULL_PEN));
	HBRUSH	oldBrush;
	if	(slot>=0)	{
		HBRUSH	brush	=	GetGPort()->MakeAnimBrush(slot,col);
		oldBrush	=	(HBRUSH)SelectObject	(hdc,	brush);
		Rectangle	(hdc,	left,top,right,bottom);
		DeleteObject(brush);
		}
	else	{
		oldBrush	=	(HBRUSH)SelectObject	(hdc,
			GetStockObject(NULL_BRUSH));
		Rectangle	(hdc,	left,	top,	right,bottom);	//	Paint	the	border
		Rect	rect;
		rect.left	=	left++;
		rect.top	=	top++;
		rect.right	=	right--;
		rect.bottom	=	bottom--;

		GetGPort()->DitherColorSwatch(hdc,	rect	,	col);
		}
	SelectObject	(hdc,	oldPen);
	SelectObject	(hdc,	oldBrush);
	}

Class	Quantizer	-	This	class	is	used	for	dithering	output	to	files.	This	class
computes	a	palette	when	going	from	24-bit	to	8-bit	color.
Class	ColorPacker	-	This	class	is	used	to	pack	the	pixels	down	using	the
Quantizer	computed	palette.
The	following	code	shows	how	the	methods	of	Quantizer	and	ColorPacker
may	be	used	to	compute	a	palette	for	an	image.
/*	Make	a	palette	for	the	given	image	*/
int	BitmapIO::CalcOutputPalette(int	palsize,	BMM_Color_48
*pal)	{
	Quantizer	*q	=	BMMNewQuantizer();
	if	(!q->AllocHistogram())	{
bail_out:
		q->DeleteThis();
		return(0);
		}
	PixelBuf	line(map->Width());
	if	(!line.Ptr())
		goto	bail_out;
	int	y;
	for(y=0;	y<map->Height();	++y)	{
		//	call	GetOutputPixels	to	get	fileOutputGamma	corrected
values.
		if	(!GetOutputPixels(0,y,map->Width(),line.Ptr()))
			goto	bail_out;
		q->AddToHistogram(line.Ptr(),map->Width());
		}
	//	Reserve	the	background	color	(assuming	the	upper	left	pixel	is
a
	//	representative)	and	make	a	palette.

	BMM_Color_64	bgpix;
	GetOutputPixels(0,0,1,&bgpix);
	int	n	=	q->Partition(pal,	palsize,	&bgpix);
	q->DeleteThis();
	return	n;
	}

Parameter	Blocks
See	Also:	Parameter	Blocks	and	Maps	in	Release	3	and	Later,	Parameter	Maps,
Class	IParamBlock,	Class	ParamDimension,	Class	GetParamName,	Class
GetParamDim.

Overview
The	parameter	block	class	provides	a	mechanism	for	storing	values	for	a	plug-
ins	parameters.	When	a	parameter	block	is	created,	the	developer	specifies	the
number	of	parameters	and	the	types	of	each	parameter.	Parameter	types	consist
of	a	range	of	built	in	types	like	integer,	float,	3D	Point,	and	Color.
Parameters	may	be	animated	or	constant.	In	order	for	a	parameter	to	be
animatable,	it	must	have	a	controller	to	control	the	animation.	Different
parameter	types	require	different	controller	types.	For	example,	a	floating	point
value,	like	the	angle	parameter	for	the	bend	modifier,	requires	a	floating	point
controller.	A	node	transformation	matrix	requires	a	transform	controller.	The
most	common	controllers	are	interpolating	or	'key	frame'	controllers.
One	of	the	main	purposes	of	parameter	blocks	is	to	manage	the	complexity	of
maintaining	different	controllers	for	different	parameters.	To	access	the	values	in
the	parameter	block,	the	plug-in	developer	uses	GetValue()	and	SetValue()
methods,	each	take	a	TimeValue	as	a	parameter.	The	parameter	block	stores
values	in	an	efficient	a	manner	as	possible.	If	the	value	hasn't	yet	been	animated,
that	is,	SetValue()	hasn't	been	called	with	time	not	equal	to	0,	then	a	constant
value	is	stored.	When	SetValue()	is	called	with	time	not	equal	to	0,	and	MAXs
'Animate'	button	is	on,	a	new	instance	of	the	default	controller	for	the	parameter
type	is	plugged	in	to	the	parameter	block	and	initialized	with	the	parameter's
values.	Plug-ins	are	required	to	display	their	animated	parameters	in	the	track
view.	If	all	the	plug-in's	parameters	are	handled	by	a	parameter	block,	then	the
parameter	block	will	take	care	of	this	task	as	well.

Parameter	Blocks	in	Use
In	this	section	we'll	explore	the	definition	and	creation	of	parameter	blocks.
Then	we'll	look	at	the	method	of	setting	and	retrieving	values	from	the	parameter
block.	Finally	we'll	look	at	how	parameter	blocks	and	references	may	be	used
together	for	processing	animated	user	interface	parameters.	Note:	This	section
provides	only	a	minimal	description	of	the	reference	mechanism.	For	an	in	depth
discussion	of	references,	see	the	Advanced	Topics	section	References.

Creating	a	Parameter	Block
Throughout	this	section	an	example	of	a	plug-in	with	three	parameters	is	used.
An	angle,	a	length,	and	a	integer	count	parameter.	A	parameter	block	descriptor
is	used	to	describe	each	parameter.	It	is	initialized	by	passing	three	arguments
per	parameter.	(Note	that	another	version	uses	four	arguments.	The	version	with
four	arguments	is	used	to	help	maintain	backward	compatibility.	The	two
descriptors	are	otherwise	the	same).

Prototype:
class	ParamBlockDesc	{
	public:
		ParamType	type;
		UserType	*user;
		BOOL	animatable;
	};
//	This	version	of	the	descriptor	has	an	ID	for	each	parameter.
class	ParamBlockDescID	{
	public:
		ParamType	type;
		UserType	*user;
		BOOL	animatable;
		DWORD	id;
	};
The	arguments	to	ParamBlockDesc	are:
ParamType	type
The	Parameter	Type	-	The	following	types	may	be	used:
	TYPE_INT	-	Integers	values.
	TYPE_FLOAT	-	Floating	point	value.
	TYPE_POINT3	-	Point	values.
	TYPE_RGBA	-	Colors	values	-	Red,	Green,	Blue	and	Alpha.
	TYPE_BOOL	-	Boolean	values.
UserType	*user
The	next	value	is	NOT	USED	-	it	must	always	be	passed	as	NULL.
BOOL	animatable
This	is	a	flag	indicating	if	the	parameter	may	be	animated	or	not.	Pass	TRUE

if	the	value	may	be	animated	and	FALSE	if	it	is	constant.
DWORD	id	(Second	version	only)
This	is	an	ID	used	to	identify	this	parameter.	This	provides	a	solution	to	the
problem	of	backwards	compatibility.	If	you	alter	the	parameter	structure	of
your	plug-in	in	the	future	(by	adding	or	deleting	parameter	for	example)
previously	saved	3ds	max	files	will	be	incompatible.	You	can	however	use	a
mechanism	which	uses	these	IDs	to	convert	older	versions	to	the	current
version.	See	the	Advanced	Topics	section	on	Parameter	Maps	for	more	detail.
Items	in	the	parameter	block	are	referred	to	by	index.	The	index	is	derived
from	the	order	in	which	the	descriptors	appear	in	the	ParamBlockDesc	array.

//	Parameter	block	indices
#define	PB_INDEX_ANGLE	0
#define	PB_INDEX_LENGTH	1
#define	PB_INDEX_COUNT	2
ParamBlockDesc	pdesc[]	=	{
	{	TYPE_FLOAT,	NULL,	TRUE	},	//	Angle
	{	TYPE_FLOAT,	NULL,	TRUE	},	//	Length
	{	TYPE_INT,	NULL,	FALSE	}	//	Count
};

A	parameter	block	is	created	from	this	array	by	calling
CreateParameterBlock().	This	function	requires	two	values,	a	pointer	to
the	ParamBlockDesc	array	and	a	count	of	the	number	of	parameters.	(Note
there	is	an	alternate	version	for	use	with	the	backwards	compatibility
mechanism	discussed	above	that	uses	three	arguments.	The	third	argument	is
used	to	indicate	a	version	of	the	parameter	block.	See	the	Advanced	Topics
section	on	Parameter	Maps	for	more	information).

Prototype:
IParamBlock	*CreateParameterBlock(ParamBlockDesc	*pdesc,
int	count);
or
IParamBlock	*CreateParameterBlock(ParamBlockDescID	*pdesc,
	int	count,DWORD	version);
IParamBlock	*pblk	=	CreateParameterBlock(pdesc,	3);

The	function	returns	a	pointer	to	the	parameter	block	it	creates.

Retrieving	Parameter	Block	Values
Whenever	the	developer	needs	to	retrieve	a	value	from	the	parameter	block,	the
GetValue()	method	is	used.	There	are	overloaded	functions	for	each	type	of
value	to	retrieve	(int,	float,	Point3,	and	RGBA).	Each	method	has	four
parameters.	Below	is	the	float	version.
BOOL	GetValue(int	i,	TimeValue	t,	float	&v,
	Interval	&ivalid);

The	i	parameter	is	the	integer	index	of	the	parameter	to	retrieve.	This	is	the
index	into	the	ParamBlockDesc	array.
If	the	parameter	is	animated	it	will	be	varying	over	time.	The	t	parameter
specifies	at	what	time	to	retrieve	the	value.
The	v	parameter	is	a	C++	reference	to	a	float.	The	value	is	returned	through	v.
The	ivalid	parameter	is	a	C++	reference	to	an	Interval.	The	GetValue()
method	updates	the	interval	passed	in.	This	method	is	frequently	used	by
developers	to	'whittle'	down	an	interval.	When	a	parameter	of	a	parameter	block
is	animated,	for	any	given	time	there	is	a	interval	over	which	the	parameter	is
constant.	If	the	parameter	is	constantly	changing	the	interval	is	instantaneous.	If
the	parameter	does	not	change	for	a	certain	period	the	interval	will	be	longer.	If
the	parameter	never	changes	the	interval	will	be	FOREVER.	By	passing	an
interval	to	the	GetValue()	method	you	ask	the	parameter	block	to	'intersect'	the
interval	passed	in	with	the	interval	of	the	parameter.	Intersecting	two	intervals
means	returning	a	new	interval	whose	start	value	is	the	greater	of	the	two,	and
whose	end	value	is	smaller	of	the	two.	In	this	way,	the	resulting	interval
represents	a	combined	period	of	constancy	for	the	two	intervals.
This	technique	is	used	frequently	to	compute	a	validity	interval	for	an	object.
The	developer	starts	an	interval	off	as	FOREVER,	then	intersects	this	interval
with	each	of	its	animated	parameters	(by	calling	GetValue()).	GetValue()
'whittles'	down	the	interval	with	each	call.	When	all	the	parameters	have	been
intersected	the	result	is	the	overall	validity	interval	of	an	object	at	a	specific
time.	For	more	information	see	the	Advanced	Topics	section	on	Intervals.
The	return	value	is	TRUE	if	a	value	was	retrieved.	Otherwise	it	is	FALSE.

Setting	Parameter	Block	Values
Whenever	the	developer	needs	to	store	a	value	into	the	parameter	block,	the
SetValue()	method	is	used.	There	are	overloaded	functions	for	each	type	of
value	to	set	(int,	float,	Point3,	and	RGBA).	Each	method	has	three	parameters.
Below	is	the	float	version.
BOOL	SetValue(int	i,	TimeValue	t,	float	v);

The	i	parameter	is	the	integer	index	of	the	parameter	to	set.	This	is	the	index	into
the	ParamBlockDesc	array	of	the	parameter.
The	t	parameter	specifies	at	what	time	to	set	the	value.
The	value	to	store	is	passed	in	v.
The	return	value	is	TRUE	if	the	value	was	set.	It	is	FALSE	otherwise.

Setting	Values	and	Handling	References
The	IParamBlock	class	is	derived	from	class	ReferenceTarget.	Since
parameter	blocks	are	reference	targets,	plug-ins	may	create	references	to	them.
By	creating	a	reference	to	the	parameter	block,	the	plug-in	may	be	notified
whenever	any	of	the	parameters	are	set	to	new	values.
The	sample	code	below	creates	a	parameter	block	from	the	array	of	descriptors
and	then	makes	a	reference	to	the	parameter	block.
//This	is	the	index	of	the	Param	Blk	reference.
#define	PARAM_BLK_REF	0
MakeRefByID(
	FOREVER,	//	Interval	-	always	use	FOREVER.
	PARAM_BLK_REF,	//	Index	of	the	PB	reference.
	CreateParameterBlock(pdesc,	3)	//	Create	the	PB
);

When	values	of	the	parameter	block	are	changed,	the	plug-in	needs	to	be
informed.	This	notification	is	done	by	calling	the	ReferenceMaker	method
NotifyDependents().	The	code	fragment	below	shows	how	this	is	done.
Whenever	our	sample	plug-in	needs	to	adjust	its	angle	parameter	it	calls	the
function	below.	This	function	calls	the	SetValue()	method	of	the	parameter
block	and	then	calls	NotifyDependents().
void	Sample::SetAngle(TimeValue	t,	float	r)
	{
	//	pblock	is	a	pointer	to	our	param	blk
	pblock->SetValue(PB_INDEX_ANGLE,	t,	r);
	NotifyDependents(FOREVER,	PART_OBJ,
REFMSG_CHANGE);
	}

When	the	NotifyDependents()	method	is	called	after	a	parameter	has	been
changed,	the	plug-in	is	notified	via	a	REFMSG_CHANGE	message	sent	to
its	NotifyRefChanged()	method.	Here	the	developer	may	respond	to	the
change	in	the	parameter's	value.
There	are	two	other	messages	which	may	be	sent	to	this	method	to	handle
parameter	block	processing.	These	are	REFMSG_GET_PARAM_NAME
and	REFMSG_GET_PARAM_DIM.

The	message	REFMSG_GET_PARAM_DIM	is	sent	by	the	system	when	it
needs	a	parameter	dimension	for	the	parameter.	Any	parameter	that	can	be
controlled	by	a	controller	has	a	dimension.	This	dimension	can	be	considered	a
unit	of	measure.	It	describes	its	type	and	its	order	of	magnitude.	When	a
controller	needs	to	display	the	parameter	values	(for	example	in	the	function
curve	editor)	it	converts	the	value	using	its	parameter	dimension	Convert()
function.	It	can	also	convert	back	using	the	Unconvert()	function.
There	are	several	default	parameter	dims	implemented.	See	ParamDimension	for
details.
The	REFMSG_GET_PARAM_NAME	messages	is	sent	by	the	system
when	it	needs	a	name	for	the	parameter.	For	example,	in	the	track	view	a	name
for	the	parameter	needs	to	be	displayed.	When	this	message	is	received	from	the
system	the	name	is	provided.	The	parameter	which	it	needs	the	name	for	is
passed	in	the	partID.
The	plug-in	implements	this	method	to	receive	messages.	See	below	for	how	the
messages	associated	with	the	parameter	block	are	handled.
RefResult	Sample::NotifyRefChanged(
	Interval	changeInt,
	RefTargetHandle	hTarget,
	PartID&	partID,
	RefMessage	message)
	{
	switch	(message)	{
		case	REFMSG_CHANGE:
			//	Code	to	handle	the	changed	parameter...
			break;
		case	REFMSG_GET_PARAM_DIM:
		//	When	a	client	of	a	parameter	block	receives	the
		//	REFMSG_GET_PARAM_DIM	message,	the	partID
		//	field	is	set	to	point	at	one	of	these	structs.
		//	The	client	should	set	dim	to	point	at	its	dim	descriptor.

			GetParamDim	*gpd	=	(GetParamDim*)partID;
			//	Based	on	which	index	it	wants...
			switch	(gpd->index)	{

				//	...provide	the	appropriate	dim
				case	PB_INDEX_ANGLE:
					gpd->dim	=	stdAngleDim;
					break;
				case	PB_INDEX_LENGTH:
					gpd->dim	=	stdWorldDim;
					break;
				case	PB_INDEX_COUNT:
					gpd->dim	=	stdSegmentsDim;
					break;
					}
			return	REF_STOP;
		case	REFMSG_GET_PARAM_NAME:
			//	When	a	client	of	a	parameter	block	receives	the
			//	REFMSG_GET_PARAM_NAME	message,	the
			//	partID	field	is	set	to	point	at	one	of	these
			//	structures.	The	client	should	fill	in	the	parameter	name.
			GetParamName	*gpn	=	(GetParamName*)partID;
			switch	(gpn->index)	{
				case	PB_INDEX_ANGLE:
					gpn->name	=	_T("Angle");
					break;
				case	PB_INDEX_LENGTH:
					gpn->name	=	_T("Length");
					break;
				case	PB_INDEX_COUNT:
					gpn->name	=	_T("Count");
					break;
				}
			return	REF_STOP;
		}
	return(REF_SUCCEED);
	}

See	also:	GetParamName,	GetParamDim.

Parameter	Editing	in	the	Command	Panel
See	Also:	Class	Animatable,	Custom	Controls,	Parameter	Maps.

Overview
This	section	discusses	the	editing	of	an	item's	parameters	in	the	command	panel.
Plug-In	types	such	as	procedural	objects,	modifiers,	space	warps,	and	controllers
may	all	present	their	user	interface	in	the	command	panel.

Methods	Called	During	Parameter	Editing
There	are	two	methods	that	are	called	when	a	user	begins	and	ends	editing	an
item's	parameters.	In	the	case	of	procedural	objects,	modifier,	and	controllers,
these	methods	are	from	class	Animatable.	They	are	named
BeginEditParams()	and	EndEditParams().	Other	plug-in	types,	such	as
utilities,	may	have	their	own	version	of	these	methods	(for	instance
UtilityObj::BeginEditParams()).	The	text	below	discusses	the	more
common	Animatable	version.
Beginning	Parameter	Editing
When	the	user	begins	to	edit	an	item	the	BeginEditParams()	method	is	called
on	it.	At	this	point	it	is	expected	to	do	two	things:	Put	up	its	user	interface	via
rollup	pages,	and	register	any	sub-object	selection	types	it	may	have.	Each	of
these	is	discussed	below.
Adding	rollup	pages	can	be	done	using	the	method
Interface::AddRollupPage()	or	by	creating	a	parameter	map
(CreateCPParamMap())	which	puts	up	the	rollup	pages	itself.
The	BeginEditParams()	prototype	looks	like	this:
virtual	void	BeginEditParams(IObjParam	*ip,ULONG	flags,
Animatable	*prev=NULL);

The	flags	parameter	passed	is	used	to	indicate	which	branch	of	the	command
panel	the	item	is	being	edited	in.	For	instance	it	may	be	the	Create	branch,	the
Modifier	branch,	the	Hierarchy	branch,	or	the	Motion	branch.
Some	items	may	have	specific	parameters	that	are	particular	to	the	creation
process.	The	flags	parameter	indicates	whether	the	user	is	in	the	create	branch
or	not.	For	example,	procedural	spheres	have	an	option	to	create	them	by
dragging	out	the	radius	or	the	diameter.	These	parameters	shouldn't	be	displayed
in	the	Modify	branch	since	they	are	only	for	creating.	The	sphere	checks	the	flag
to	see	if	rollup	should	be	added.	Here's	the	code	fragment	from	the	sphere	code
where	that	is	done:
void	SphereObject::BeginEditParams(IObjParam	*ip,ULONG
flags,Animatable	*prev)	{

//	.	.	.
		
		if	(flags&BEGIN_EDIT_CREATE)	{

			pmapCreate	=	CreateCPParamMap(
				descCreate,CREATEDESC_LENGH,
				this,
				ip,
				hInstance,
				MAKEINTRESOURCE(IDD_SPHEREPARAM1),
				GetString(IDS_RB_CREATIONMETHOD),
				0);
	
			pmapTypeIn	=	CreateCPParamMap(
				descTypeIn,TYPEINDESC_LENGH,
				this,
				ip,
				hInstance,
				MAKEINTRESOURCE(IDD_SPHEREPARAM3),
				GetString(IDS_RB_KEYBOARDENTRY),
				APPENDROLL_CLOSED);
			}
	
		pmapParam	=	CreateCPParamMap(
			descParam,PARAMDESC_LENGH,
			pblock,
			ip,
			hInstance,
			MAKEINTRESOURCE(IDD_SPHEREPARAM2),
			GetString(IDS_RB_PARAMETERS),
			0);
		}

Note	above	how	the	'Creation	Method'	or	'Keyboard	Entry'	rollups	are	only
added	if	the	BEGIN_EDIT_CREATE	flag	is	set.	In	either	case	the
'Parameters'	rollup	is	added.
The	following	bit	flags	may	be	compared	with	the	flag	parameter	to	test	the
branch	(or	sub-task	of	the	branch).
BEGIN_EDIT_CREATE

Indicates	the	item	is	being	edited	in	the	create	branch.
BEGIN_EDIT_MOTION
Indicates	a	controller	is	being	edited	in	the	motion	branch.
BEGIN_EDIT_HIERARCHY
Indicates	a	controller	is	being	edited	in	the	Pivot	subtask	of	the	hierarchy
branch.
BEGIN_EDIT_IK
Indicates	a	controller	is	being	edited	in	the	IK	subtask	of	the	hierarchy	branch.
BEGIN_EDIT_LINKINFO
Indicates	a	controller	is	being	edited	in	the	Link	Info	subtask	of	the	hierarchy
branch.

Inside	BeginEditParams()	the	item	is	also	expected	to	register	any	sub-object
selection	levels	with	the	system.	.	For	example,	a	modifier	plug-in	may	have
sub-object	selection	levels	like	'Gizmo'	and	'Center'.	These	need	to	appear	in	the
sub-object	drop	down	allowing	the	user	to	select	them.	In	the	case	of	a	bend
mofifier	for	example,	this	is	accomplished	by	calling	BeginEditParams()	on
the	base	class	SimpleMod,	i.e.:
void	BendMod::BeginEditParams(IObjParam	*ip,	ULONG	flags,
Animatable	*prev)	{
	SimpleMod::BeginEditParams(ip,flags,prev);
	//	.	.	.

What	the	base	class	SimpleMod	does	is	the	following:
void	SimpleMod::BeginEditParams(IObjParam	*ip,	ULONG
flags,	Animatable	*prev){
	//	.	.	.
	//	Add	our	sub	object	type
	TSTR	type1(GetResString(IDS_RB_APPARATUS));	
	TSTR	type2(GetResString(IDS_RB_CENTER));	
	const	TCHAR	*ptype[]	=	{	type1,	type2	};
	ip->RegisterSubObjectTypes(ptype,	2);
	//	.	.	.

Note	how	it	retrieves	two	string	resources	using	GetResString()	("Gizmo"	and
"Center")	and	registers	them	using	Interface::RegisterSubObjectTypes().

Ending	Parameter	Editing
When	the	user	is	finished	editing	the	item's	parameters	its	EndEditParams()
method	is	called.	For	example,	if	the	user	switches	branches	of	the	command
panel,	or	selects	a	different	object	type	to	be	created,	it's	called	on	the	item
currently	being	edited.
The	prototype	looks	like	this:
virtual	void	EndEditParams(IObjParam	*ip,	ULONG	flags,
Animatable	*next=NULL);

This	method	is	also	passed	a	flag	value.	If	the	END_EDIT_REMOVEUI
flag	is	set	to	the	item	should	remove	its	rollup	pages	from	the	command	panel.
For	example,	when	in	the	create	branch,	procedural	objects	can	be	created	one
after	the	other	so	there	is	no	need	to	remove	the	UI	when	one	instance	of	a	class
is	finished	with	its	create	stage	if	another	instance	of	that	same	class	is	about	to
be	created.	In	such	a	case,	END_EDIT_REMOVEUI	won't	be	set	since	the
user	interface	should	stay	in	place.
User	Interface	Related	Variables
The	best	way	to	handle	user	interface-related	variables	is	to	make	them	=	4)
BSPSPopupOnMouseOver(event);;">class	variables	(by	declaring	them	static).
Class	variables	are	shared	by	every	instanced	of	the	class	(rather	than	stored
with	each	instantiated	object	of	the	class).	This	way,	an	object	doesn't	suffer	the
overhead	of	these	variables	that	are	only	used	when	it	is	editing.	Only	one	item
may	have	its	parameters	being	edited	at	any	one	time	so	the	class	variables	work
well.
For	example,	consider	a	procedural	sphere.	It	may	have	class	variables	that
contain	the	handles	to	its	parameter	maps	in	the	command	panel.	When	a	sphere
is	first	created,	it	is	immediately	edited	so	its	BeginEditParams()	method	is
called.	It	creates	the	parameter	maps	and	stores	the	handles	to	them	in	its	class
variables.	If	the	user	chooses	to	make	another	sphere,	the	first	sphere's
EndEditParams()	method	is	called,	but	END_EDIT_REMOVEUI	flag	is
set	to	FALSE,	indicating	that	the	sphere	should	leave	the	rollup	pages	in	the
command	panel.	A	new	instance	of	the	Sphere	class	is	then	created	and	its
BeginEditParams()	method	is	called.	It	notices	that	the	parameter	map
handles	are	not	NULL	so	it	doesn't	need	to	create	them.	For	instance,	consider
how	the	procedural	sphere	checks	this	in	the	code	below.	If	its	pointer	to	the
'Creation	Method'	and	'Parameters'	parameter	maps	are	still	valid	(non-NULL)	it

javascript:BSSCPopup('idx_class_variable.htm');

doesn't	recreate	the	rollup	pages.	Rather	it	simply	updates	the	parameber	block
pointer	stored	by	the	parameter	map	to	point	to	the	new	sphere	object.
if	(pmapCreate	&&	pmapParam)	{
	//	Left	over	from	last	sphere	ceated
	pmapCreate->SetParamBlock(this);
	pmapTypeIn->SetParamBlock(this);
	pmapParam->SetParamBlock(pblock);
}	else	{
	//	.	.	.

Interface	Pointer	Validity
The	interface	pointer	passed	to	BeginEditParams()	is	usally	stored	by	the
plug-in	since	it	is	likely	that	the	plug-in	will	need	it	to	call	its	methods.	This
pointer	is	only	valid	while	the	item	is	being	editied.	Therefore,	another	important
thing	to	do	when	EndEditParams()	is	called	is	to	set	the	object's	interface
pointer	to	NULL.	This	pointer	is	only	valid	between	the	BeginEditParams()
and	EndEditParams()	methods.	A	plug-in	should	not	call	methods	on	this
pointer	outside	of	this	interval.

Parameter	Maps
See	Also:	Parameter	Blocks	and	Maps	in	Release	3	and	Later,	Class
IParamMap,	Class	IParamArray,	Class	IParamBlock,	Class	ParamBlockDescID,
Class	ParamUIDesc.

Overview
Parameter	Maps	are	used	to	minimize	the	programming	effort	required	to
manage	the	user	interface	parameters	of	a	plug-in.	A	simple	plug-in,	such	as	the
procedural	sphere,	has	a	user	interface	consisting	of	controls	like	spinners,	radio
buttons	and	check	boxes.	Each	of	these	controls	has	a	one-to-one
correspondence	with	a	variable	or	parameter	in	a	parameter	block.	Parameter
maps	can	be	used	to	map	the	UI	controls	to	a	parameter	handler	of	the
appropriate	data	type.	The	use	of	parameter	maps	has	several	advantages:
	For	standard	processing,	the	developer	will	not	need	to	write	message-
processing	code	to	handle	events	generated	by	the	user.	For	example,	if	a
developer	does	not	use	parameter	maps	they	must	provide	a	dialog	proc	which
processes	the	messages	sent	by	the	controls	as	the	user	works	with	them.	For
instance	the	spinner	control	sends	a	message	when	the	user	operates	the	up	and
down	arrows	or	enters	new	values.	Parameter	maps	handle	this	message
processing	internally.
	The	developer	is	freed	from	dealing	with	the	complexity	of	having	to	manage
controllers	to	control	the	animation	of	user	interface	values.	The	appropriate
type	of	controller	is	assigned	and	managed	by	the	parameter	block	which	the
parameter	map	controls.	The	developer	simply	uses	GetValue()	and
SetValue()	methods	to	retrieve	and	store	values.
	Undo	and	Redo	are	handled	automatically	for	changes	to	a	parameter's	value.
	The	Loading	and	Saving	of	the	parameters	to	and	from	disk	is	handled
automatically.
The	following	user	interface	controls	are	available	for	use	with	parameter	maps:

Spinner	Custom	Control

The	spinner	control	is	used	to	provide	input	of	values	limited	to	a	fixed	type.
For	example,	the	control	may	be	limited	to	the	input	of	only	positive	integers.
The	input	options	are	integer,	float,	universe	(world	space	units),	positive
integer,	positive	float,	positive	universe,	and	time.	This	control	allows	the
user	to	increment	or	decrement	a	value	by	clicking	on	the	up	or	down	arrows.
The	user	may	also	click	and	drag	on	the	arrows	to	interactively	adjust	the
value.	The	Ctrl	key	may	be	held	to	accelerate	the	value	changing	speed,	while
the	Alt	key	may	be	held	to	decrease	the	value	changing	speed.

Radio	Button

Radio	buttons	are	used	to	provide	the	user	with	a	single	boolean	choice,	or
when	used	in	groups,	to	select	among	several	options.

Single	Check	Box

Check	boxes	are	used	to	provide	the	user	with	a	single	boolean	choice.

Multiple	Check	Box
Multiple	Check	boxes	are	also	supported.	This	interface	allows	each	bit	of	a
single	integer	to	control	a	different	check	box.

Color	Swatch	Custom	Control

The	Color	Swatch	control	presents	the	user	with	the	standard	3ds	max
modeless	color	selector	when	the	user	clicks	on	the	control.	The	color	swatch
control	displays	the	currently	selected	color.

Note	that	you	may	use	a	combination	of	parameter	maps	and	other	techniques	to
manage	your	plug-in's	user	interface.	If	you	don't	specifically	inform	the
parameter	map	about	a	UI	control,	it	will	be	ignored.	If	your	plug-in	has	UI
controls	that	require	special	processing,	a	mechanism	is	provided	to	allow	you	to
do	so.	If	you	wish	to	use	other	types	of	controls	such	as	custom	buttons,	toolbars
or	image	controls	see	the	Advanced	Topics	section	Custom	Controls

Basic	Concepts	of	Parameter	Maps
A	parameter	map	may	be	considered	a	table	of	parameter	handlers.	The
parameter	map	provides	the	processing	required	to	map	the	UI	controls	to	the
variables	these	controls	affect.	The	parameter	map	operates	on	a	=	4)
BSPSPopupOnMouseOver(event);;">virtual	array	of	parameters.	Each	control	is
one	element	of	the	virtual	array.	Each	rollup	page	in	the	command	panel	is
treated	as	its	own	virtual	array.
For	processing	parameter	blocks,	the	parameter	map	manages	everything.	As	a
user	operates	the	UI	controls	of	the	plug-in,	the	parameter	map	processes	the
messages	sent	by	the	controls	and	stores	any	values	in	the	parameter	block
which	need	to	be	set.
For	processing	other	variables,	the	developer	needs	to	provide	a	way	for	the
parameter	map	to	get	and	set	the	i-th	element	of	the	virtual	array.	To	do	this,	the
developer	assigns	an	integer	index	to	each	parameter.	The	developer	also
implements	a	set	of	GetValue()	and	SetValue()	methods.	One	parameter	to
these	methods	is	an	index	to	which	parameter	to	get	or	set.	If	the	parameter	map
needs	the	i-th	variable	to	be	stored,	the	developer	stores	it.	It	the	parameter	map
needs	to	retrieve	the	i-th	value	the	developer	supplies	it.	A	section	below
discusses	how	this	is	done.
These	are	the	primary	classes	involving	parameter	maps	the	developer	should	be
aware	of:
Class	ParamUIDesc	-	These	are	descriptors	that	define	the	properties	of	the
UI	control	such	as	its	type	(spinner,	radio	button,	check	box,	etc.),	which
resource	ID	it	refers	to	(which	control	in	the	dialog	template),	and	which
index	into	the	virtual	array	to	use.
Class	ParamBlockDescID	-	This	class	describes	each	parameter	of	a
parameter	block	by	its	type	(int,	float,	point,	color),	whether	it	may	be
animated	or	is	constant,	and	a	ID	used	to	help	manage	backwards
compatibility	of	parameter	blocks.
Class	IParamArray	-	This	is	the	base	class	from	which	parameter	maps	and
parameter	blocks	are	derived.	This	class	represents	a	virtual	array	of
parameters.
Class	IParamMap	-	This	class	provides	a	set	of	methods	to	work	with	the
parameter	map,	for	example,	retrieving	a	pointer	to	the	parameter	block	used.

javascript:BSSCPopup('idx_T_virtual_array.htm');

Using	Parameter	Maps
This	section	discusses	how	to	use	parameter	maps	to	manage	the	user	interface
parameter	of	a	plug-in.	The	example	of	the	procedural	sphere	object	is	examined
to	see	how	it	uses	parameter	maps.	Parameter	maps	handle	most	of	the	command
panel	user	interface	processing	of	the	procedural	sphere.	Shown	below	are	the
three	rollup	pages	of	the	command	panel	added	by	the	procedural	sphere.	Except
for	the	"Create"	button,	all	the	controls	are	managed	by	the	parameter	map.

The	sphere	object	has	two	types	of	parameters	managed	by	parameter	maps.
One	type	of	parameter	is	a	simple	non-animated	value	which	is	driven	by	a
control	in	the	user	interface.	An	example	of	this	is	the	value	associated	with
the	creation	method	radio	buttons	in	the	UI	of	the	sphere.	These	buttons
control	if	the	sphere	is	created	by	dragging	it	radius	or	its	diameter.	This	is
simply	a	variable	which	contains	the	number	of	the	radio	button	selected	by
the	user	(0	or	1).	The	parameter	map	allows	the	variable	to	be	updated	as	the
user	chooses	radio	buttons.
Another	type	of	value	is	a	parameter	of	a	parameter	block.	Parameter	blocks
are	the	mechanism	used	by	3ds	max	to	manage	the	animation	of	parameters.
If	a	parameter	is	animated,	it	must	have	a	controller	to	control	the	animation.

For	example,	a	floating	point	value,	like	the	radius	of	the	sphere,	uses	a
floating	point	controller.	The	primary	purpose	of	parameter	blocks	is	to
manage	the	complexity	of	handling	different	controllers	for	different
parameters.	The	parameter	map	updates	parameter	in	the	parameter	block
resulting	from	any	user	input,	like	adjusting	the	radius	spinner.

The	following	is	a	description	of	how	the	procedural	sphere	uses	parameter
maps.	It	describes	how	the	parameter	map	was	set	up	and	initialized.
The	SphereObject	class	is	sub-classed	from	IParamArray.

class	SphereObject	:	public	GenSphere,	public	IParamArray	{
	...
	};

This	is	done	so	the	sphere	may	use	the	virtual	array	mechanism	to	allow	the
parameter	map	to	work	with	its	variables.	The	details	of	the	way	the
parameter	map	access	these	variables	is	described	later	in	this	section.

Declare	the	UI	Variables
The	developer	must	declare	several	=	4)
BSPSPopupOnMouseOver(event);;">class	variables	which	are	pointers	to
IParamMaps.	Each	parameter	map	manages	a	single	rollup	page	in	the
command	panel.

static	IParamMap	*pmapCreate;
static	IParamMap	*pmapParam;

The	developer	must	also	declare	class	variables	needed	for	the	parameters	in
the	user	interface.

static	int	dlgSegments;
static	int	dlgCreateMeth;
static	int	dlgSmooth;
static	Point3	crtPos;
static	float	crtRadius;

javascript:BSSCPopup('idx_class_variable.htm');

Describe	the	Controls
The	developer	must	define	the	ParamUIDesc	arrays	to	establish	the
properties	of	the	UI	controls	such	as	their	type	(spinner,	radio	button,	check
box,	etc.),	which	resource	ID	they	refer	to,	and	which	index	into	the	virtual
array	they	use.	Below	is	the	ParamUIDesc	array	for	the	Parameters	rollup
page.	It	calls	several	overloaded	constructors	passing	the	values	needed	to
describe	the	controls.	See	the	ParamUIDesc	Reference	section	for	detailed
information	on	the	constructors.

static	int	squashIDs[]	=	{IDC_HEMI_CHOP,IDC_HEMI_SQUASH};
static	ParamUIDesc	descParam[]	=	{
	//	Radius
	ParamUIDesc(
		PB_RADIUS,	//	Virtual	array	index
		EDITTYPE_UNIVERSE,	//	Type	of	value	to	edit
		IDC_RADIUS,IDC_RADSPINNER,	//	Resource	IDs
		MIN_RADIUS,MAX_RADIUS,	//	Upper	and	lower	limits	on	the
value
		SPIN_AUTOSCALE),	//	Scale	factor	for	up/down	arrow	clicks
	//	Segments
	ParamUIDesc(
		PB_SEGS,
		EDITTYPE_INT,
		IDC_SEGMENTS,IDC_SEGSPINNER,
		(float)MIN_SEGMENTS,(float)MAX_SEGMENTS,
		0.1f),
	//	Smooth
	ParamUIDesc(PB_SMOOTH,TYPE_SINGLECHEKBOX,IDC_OBSMOOTH),
	//	Hemisphere
	ParamUIDesc(
		PB_HEMI,
		EDITTYPE_FLOAT,
		IDC_HEMISPHERE,IDC_HEMISPHERESPINNER,
		0.0f,1.0f,
		0.005f),
	//	Chop/squash
	ParamUIDesc(PB_SQUASH,TYPE_RADIO,squashIDs,2),

	//	Recenter
	ParamUIDesc(PB_RECENTER,TYPE_SINGLECHEKBOX,IDC_HEMI_RECENTER)
	};
#define	PARAMDESC_LENGH	6

Set	Up	the	Parameter	Block
Several	of	the	controls	used	allow	animated	values.	For	example,	the	radius,
and	segments	parameters	may	be	animated.	The	developer	uses	a	parameter
block	to	store	these	values.	The	developer	must	define	the	parameter	block
descriptor	which	describes	the	properties	of	each	parameter.

Prototype:
class	ParamBlockDescID	{
	public:
		ParamType	type;
		UserType	*user;
		BOOL	animatable;
		DWORD	id;
	};

This	class	is	initialized	by	passing	four	values	per	parameter.	These	values
are:
ParamType	type
The	Parameter	Type	-	The	following	are	the	types	which	may	be	used:
	TYPE_INT	-	Integers	values.
	TYPE_FLOAT	-	Floating	point	values.
	TYPE_POINT3	-	Point	values.
	TYPE_RGBA	-	Colors	values	-	Red,	Green,	Blue	and	Alpha.
	TYPE_BOOL	-	Boolean	values.
UserType	*user
This	value	is	NOT	USED	-	it	must	always	be	passed	as	NULL.
BOOL	animatable
This	is	a	flag	indicating	if	the	parameter	may	be	animated	or	not.	Pass	TRUE
if	the	value	may	be	animated	and	FALSE	if	just	a	constant	value	should	be
stored.
DWORD	id
This	is	an	ID	assigned	to	each	parameter.	This	is	used	for	backwards
compatibility	if	you	change	the	parameter	block	structure	in	the	future.	There
is	a	mechanism	that	allows	older	format	parameter	blocks	to	be	converted	to	a
newer	format	using	these	IDs	to	match	corresponding	parameters	between	the
new	and	old	format.	This	is	described	below	under	Backwards	Compatibility.

Create	an	Array	of	Descriptors
The	developer	must	create	an	array	of	the	descriptors.	Items	in	the	parameter
block	are	referred	to	by	index.	The	index	is	derived	from	the	order	in	which
the	descriptors	appear	in	the	ParamBlockDescID	array.

#define	PB_RADIUS	0
#define	PB_SEGS	1
#define	PB_SMOOTH	2
#define	PB_HEMI	3
#define	PB_SQUASH	4
#define	PB_RECENTER	5
static	ParamBlockDescID	descVer1[]	=	{
	{	TYPE_FLOAT,	NULL,	TRUE,	0	},	//	Radius
	{	TYPE_INT,	NULL,	TRUE,	1	},	//	Segs
	{	TYPE_INT,	NULL,	TRUE,	2	},	//	Smooth
	{	TYPE_FLOAT,	NULL,	TRUE,	3	},	//	Hemi
	{	TYPE_INT,	NULL,	FALSE,	4	},	//	Squash
	{	TYPE_INT,	NULL,	FALSE,	5	}	};	//	Recenter
#define	PBLOCK_LENGTH	6

For	more	detailed	information	see	the	Advanced	Topics	section	Parameter
Blocks.

Create	the	Parameter	Block	and	Make	a	Reference	to	it
A	parameter	block	must	be	created	from	the	parameter	block	descriptors.	This
is	done	in	the	constructor	of	the	sphere	object.	A	reference	is	made	to	the
parameter	block	as	well.	For	more	information	on	references	see	the
Advanced	Topic	section	References.	After	the	parameter	block	is	created,
default	values	are	initialized.	This	is	done	using	the	SetValue()	method	of
the	parameter	block.	The	developer	must	pass	the	index	of	the	parameter,	the
time	to	set	the	value	at,	and	the	value	to	set.

SphereObject::SphereObject()
	{
	MakeRefByID(FOREVER,	0,
		CreateParameterBlock(descVer1,	PBLOCK_LENGTH,
CURRENT_VERSION));
	assert(pblock);
	pblock->SetValue(PB_RADIUS,0,crtRadius);
	pblock->SetValue(PB_SMOOTH,0,dlgSmooth);
	pblock->SetValue(PB_SEGS,0,dlgSegments);
	pblock->SetValue(PB_SQUASH,0,0);
	}

Add	the	Rollup	Page	to	the	Command	Panel
When	the	user	may	edit	the	sphere's	parameters	the	developer	must	add	the
rollup	pages	to	the	command	panel.	This	is	done	using	the
CreateCPParamMap()	method.	This	method	creates	a	parameter	map	to
handle	the	display	of	parameters	in	the	command	panel.	Shown	below	are	two
samples	from	the	sphere's	BeginEditParams()	method.
This	first	call	to	CreateCPParamMap()	manages	the	variables	of	the
SphereObject	(not	the	parameter	block).
The	CreateCPParamMap()	method	takes	several	arguments.	The	first	is
the	array	of	ParamUIDescs,	one	element	for	each	control	to	be	managed.
The	second	is	the	number	of	items	in	this	array.	The	third	parameter	is	a
pointer	to	the	virtual	array	of	parameters.	The	example	below	uses	the	this
pointer	of	the	sphere	object	to	indicate	which	parameter	array.	The	this
pointer	means	the	SphereObject	itself	is	the	IParamArray	pointer	(the
SphereObject	was	derived	from	IParamArray).	In	this	way,	the
parameter	map	may	access	the	variables	of	the	sphere	object.	The	fourth
parameter	is	the	interface	pointer	passed	into	the	BeginEditParams()
method.	The	fifth	parameter	is	the	DLL	instance	handle	of	the	plug-in.	The
sixth	parameter	is	the	dialog	template	for	the	rollup	page	(created	using	the
resource	editor).	The	next	parameter	is	the	title	displayed	in	the	rollup	page
title	bar.	The	final	parameter	is	a	set	of	flags	to	control	settings	of	the	rollup
page.	After	this	call	finishes,	the	"Creation	Method"	rollup	has	been	added	to
the	command	panel.

pmapCreate	=	CreateCPParamMap(
	descCreate,CREATEDESC_LENGH,
	this,
	ip,
	hInstance,
	MAKEINTRESOURCE(IDD_SPHEREPARAM1),
	_T("Creation	Method"),
	0);

The	example	below	is	similar,	however	it	uses	the	parameter	block	pointer
pblock	to	indicate	which	virtual	array	to	manage.	The	parameters	in	this	case
are	all	stored	as	part	of	the	parameter	block	(the	IParamBlock	class	is	derived
from	IParamArray).	After	this	call	finishes,	the	"Parameters"	rollup	has	been

added	to	the	command	panel.
pmapParam	=	CreateCPParamMap(
	descParam,PARAMDESC_LENGH,
	pblock,
	ip,
	hInstance,
	MAKEINTRESOURCE(IDD_SPHEREPARAM2),
	_T("Parameters"),
	0);

Allowing	the	Parameter	Map	to	Access	plug-in	Variables
The	developer	must	implement	the	GetValue()	and	SetValue()	methods	of
the	IParamArray	class	to	allow	the	parameter	map	to	manage	the
SphereObject	variables.	The	virtual	array	mechanism	works	by	using	an	index
to	specify	which	parameters	are	to	be	retrieved	and	set.	Shown	below	are
samples	for	the	integer	creation	method	variable.	Each	method	uses	a	switch
statement	that	checks	the	index	into	the	virtual	array	and	gets	or	sets	the
appropriate	variable.	Note	that	the	way	the	developer	assigns	the	index	to	the
variables	is	important	since	this	is	an	index	into	the	virtual	array.	Start	at	0
and	assign	each	one	0,	1,	2,	3...

BOOL	SphereObject::SetValue(int	i,	TimeValue	t,	int	v)
	{
	switch	(i)	{
		case	PB_CREATEMETHOD:	dlgCreateMeth	=	v;	break;
		}
	return	TRUE;
	}
BOOL	SphereObject::GetValue(int	i,	TimeValue	t,	int	&v,	Interval
&ivalid)
	{
	switch	(i)	{
		case	PB_CREATEMETHOD:	v	=	dlgCreateMeth;	break;
		}
	return	TRUE;
	}

Removing	the	Rollup	Page	from	the	Command	Panel
When	the	user	is	done	editing	the	sphere's	parameters,	the
DestroyCPParamMap()	method	is	used	to	remove	the	rollup	page	from	the
command	panel	and	release	the	controls	associated	with	the	parameter	map.	It	is
called	from	the	EndEditParams()	method.

Prototype:
void	DestroyCPParamMap(IParamMap	*m);

	if	(pmapCreate)	DestroyCPParamMap(pmapCreate);
	DestroyCPParamMap(pmapParam);
	pmapCreate	=	NULL;
	pmapParam	=	NULL;

Processing	Controls	not	managed	by	the	Parameter	Map
Some	controls	may	need	to	be	processed	by	the	developer	directly.	The	sphere
has	a	'Create'	button	in	the	'Keyboard	Entry'	rollup.	Button	controls	are	not
processed	by	parameter	maps.	In	order	to	process	the	messages	sent	when	the
user	operates	the	button,	the	developer	needs	to	derive	a	class	from
ParamMapUserDlgProc	and	set	it	as	the	parameter	map's	user	=	4)
BSPSPopupOnMouseOver(event);;">callback	using	SetUserDialogProc().
class	SphereTypeInDlgProc	:	public	ParamMapUserDlgProc	{
	public:
		SphereObject	*so;
		SphereTypeInDlgProc(SphereObject	*s)	{so=s;}
		BOOL	DlgProc(TimeValue	t,IParamMap	*map,
			HWND	hWnd,UINT	msg,WPARAM	wParam,LPARAM	lParam);
		void	DeleteThis()	{delete	this;}
	};
The	SetUserDlgProc()	method	of	IParamMap	is	used	to	set	the	callback	to
handle	the	messages.	Note	that	the	callback	is	called	after	the	default
processing	is	complete.

	pmapTypeIn->SetUserDlgProc(new	SphereTypeInDlgProc(this));
For	more	information	on	Dialog	Procs	see	the	Advanced	Topics	section	on
Custom	Controls.

javascript:BSSCPopup('idx_callback.htm');

Providing	a	Name	and	Dimension	for	the	Parameter	Block	Parameters
The	developer	must	provide	a	name	for	each	parameter	used	in	a	parameter
block.	This	name	is	needed	because	the	animated	parameters	show	up	in	the
track	view	and	must	be	labeled.	The	parameter	block	takes	care	of	displaying
them	in	the	track	view,	but	has	no	idea	of	the	name	for	each	one,	it	only	knows
them	by	index.	The	developer	provides	the	name	to	display	by	implementing	the
method	GetParameterName()	and	returning	the	name	of	the	parameter
whose	index	into	the	parameter	block	is	passed.

TSTR	SphereObject::GetParameterName(int	pbIndex)
	{
	switch	(pbIndex)	{
		case	PB_RADIUS:
			return	TSTR(_T("Radius"));
		case	PB_HEMI:
			return	TSTR(_T("Hemisphere"));
		case	PB_SEGS:
			return	TSTR(_T("Segments"));
		case	PB_SMOOTH:
			return	TSTR(_T("Smooth"));
		default:
			return	TSTR(_T(""));
		}
	}

The	developer	must	provide	a	dimension	for	each	parameter	used	in	a	parameter
block.	This	dimension	is	basically	the	type	and	magnitude	of	the	value	stored	in
the	parameter	block.	Pre-defined	constants	are	used	as	the	return	values.	For
more	information,	see	the	Reference	section	ParamDimension.

ParamDimension	*SphereObject::GetParameterDim(int	pbIndex)
	{
	switch	(pbIndex)	{
		case	PB_RADIUS:
			return	stdWorldDim;
		case	PB_HEMI:
			return	stdNormalizedDim;
		case	PB_SEGS:
			return	stdSegmentsDim;

		case	PB_SMOOTH:
			return	stdNormalizedDim;
		default:
			return	defaultDim;
		}
	}

Backwards	Compatibility
As	development	evolves	on	a	plug-in,	the	use	of	its	parameter	blocks	may
change.	For	example,	more	parameters	may	be	added	or	some	may	be	deleted.
3ds	max	files	that	were	saved	using	the	old	version	of	the	plug-in	would	not
normally	load	properly	under	the	new	format.	In	order	to	provide	backward
compatibility	with	the	older	format	a	mechanism	exists	to	allow	the	old	format
to	be	converted	to	the	new	format.
To	accomplish	the	conversion	you	must	define	both	the	old	and	the	new	format
of	the	parameter	block.

static	ParamBlockDescID	descVer0[]	=	{
	{	TYPE_FLOAT,	NULL,	TRUE,	0	},
	{	TYPE_INT,	NULL,	TRUE,	1	},
	{	TYPE_INT,	NULL,	TRUE,	2	}	};
static	ParamBlockDescID	descVer1[]	=	{
	{	TYPE_FLOAT,	NULL,	TRUE,	0	},
	{	TYPE_INT,	NULL,	TRUE,	1	},
	{	TYPE_INT,	NULL,	TRUE,	2	},
	{	TYPE_FLOAT,	NULL,	TRUE,	3	},
	{	TYPE_INT,	NULL,	FALSE,	4	},
	{	TYPE_INT,	NULL,	FALSE,	5	}	};
#define	PBLOCK_LENGTH	6

The	fourth	argument	of	the	ParamBlockDescID	is	the	ID	of	the	parameter.
These	are	used	to	match	the	old	version	of	the	parameter	to	the	new	version.	The
code	which	does	the	conversion	matches	the	IDs	between	the	two	versions,	for
example,	it	will	match	the	ID=1	of	the	old	version	to	the	ID=1	of	the	new
version.
You	create	an	array	of	the	class	ParamVersionDesc,	one	element	for	each	old
version	of	the	parameter	block.	This	structure	describes	a	version	of	the
parameter	block.	You	also	create	an	instance	of	ParamVersionDesc	for	the
new	version.

//	Array	of	old	versions
static	ParamVersionDesc	versions[]	=	{
	ParamVersionDesc(descVer0,3,0)
	};
#define	NUM_OLDVERSIONS	1

//	Current	version
static	ParamVersionDesc	curVersion(descVer1,PBLOCK_LENGTH,1);
#define	CURRENT_VERSION	1

When	the	plug-in	is	loaded,	its	Load()	method	is	called.	From	within	this
method	you	call	a	method	of	the	ILoad	class	which	registers	the	parameter
block	post	load	callback	object.	The	callback	object	is	an	instance	of	the	class
ParamBlockPLCB.	This	callback	creates	a	new	parameter	block.	The	new
parameter	block	inherits	any	parameters	from	the	old	parameter	block	whose
parameter	IDs	match.	In	this	way	the	older	format	is	automatically	converted	to
the	new	format	by	matching	the	corresponding	IDs.
IOResult	SphereObject::Load(ILoad	*iload)
	{
	iload->RegisterPostLoadCallback(
		new
ParamBlockPLCB(versions,NUM_OLDVERSIONS,&curVersion,this,0));
	return	IO_OK;
	}

See	also:	Loading	and	Saving,	ParamBlockPLCB.

Parent-Child	Hierarchy
See	Also:	Class	INode.

Overview
In	3ds	max	nodes	in	the	scene	may	be	linked	together	to	form	a	hierarchy.	3ds
max	provides	a	developer	with	methods	to	work	with	this	hierarchy	via	the
INode	class.
A	node	that	is	linked	to	another	node	is	referred	to	as	a	child	node.	A	node	that
has	children	is	referred	to	as	a	parent	node.	A	node	may	have	several	children,
but	only	a	single	parent.	3ds	max	provides	access	to	the	children	of	a	node	using
an	array	mechanism.

Methods
The	INode	method	NumberOfChildren()	may	be	used	to	retrieve	the
number	of	children	a	node	has.	To	retrieve	any	of	the	children,	use	the	method
GetChildNode(int	i).	This	returns	an	INode	pointer	to	the	'i-th'	child.	To
retrieve	the	parent	of	a	node	use	the	method	GetParentNode().	This	returns	an
INode	pointer	to	the	parent	node.
To	attach	a	node	to	another	node,	use	the	method	AttachChild(INode*	node,
int	keepPos=1).	This	method	attaches	the	specified	node	to	the	calling	node.
To	detach	a	child	node	use	Detach(TimeValue	t,	int	keepPos=1).	Both	these
methods	allow	the	original	position	of	the	node	prior	to	the	hierarchy	change	to
be	maintained.
The	method	IsRootNode()	determines	if	this	node	is	a	root	node	(does	not	have
a	parent	node	other	than	the	world).
Note	the	following	regarding	cycles	in	hierarchical	links:
Cycles	with	both	hierarchical	links	and	references	can	be	legal	or	illegal,
depending	on	the	nature	of	the	references.	If	a	node's	transform	controller
depends	on	one	of	the	node's	child	nodes	(or	on	any	of	its	descendent	nodes)	this
is	illegal.	However	there	is	some	special	case	code	so	that	if	a	node's	*object
depends	on	any	of	the	node's	descendent	nodes,	it	is	not	considered	a	cycle,	and
is	legal.
To	review	the	full	details	on	these	methods	see	the	reference	section	Class
INode.

Profiling	Plug-In	Performance
See	Also:	Debugging.

Overview
There	is	a	utility	plug-in	called	the	3ds	max	Profiler	that	is	available	to	allow
developers	to	analyze	the	execution	and	performance	of	their	plug-ins.	The
profiler	supports	analyzing	Release	build	plug-ins.	This	allows	profiling	to	take
place	with	full	optimization,	inlining,	etc.	(Hybrid	and	Debug	builds	can	also	be
profiled	however	this	doesn't	provide	accurate	information	since	the	code	is	not
optimized).

Two	Types	of	Profiling
There	are	two	types	of	profiling	that	may	be	done.	One	is	called	Polling	and	the
other	is	called	Instrumented.
Polling	Profiling	requires	no	special	compliler	settings	other	than	generating
debug	information	(a	PDB	file).	This	works	by	setting	up	a	separate	thread	and
periodically	looking	at	the	context	of	the	main	thread.	It	looks	at	the	instruction
pointer	to	determine	what	instruction	the	CPU	is	at	and	stores	this	information.
When	finished,	the	stored	addresses	are	used	to	report	the	module,	source	file
and	line	number	of	the	function	(see	below	for	the	details	on	enabling	these
options).
Instrumented	Profiling	requires	a	special	compiler	setting	but	provides	much
more	accurate	profiling	information.
Typically	both	of	these	are	used.	The	polling	profiler	is	used	first	to	get	a	rough
idea	of	where	the	greatest	amount	of	execution	time	is	being	spent.	Then
instrumented	profiling	is	done	for	those	time	consuming	areas.	This	allows	one
to	get	a	quick	overview	using	polling	and	then	collect	very	accurate,	detailed
information	using	instrumented	profiling.

Preparing	For	Profiling	--	Compiler	and	Link	Settings
There	are	several	things	that	need	to	be	done	to	get	a	plug-in	ready	for	profiling.
These	are:
1.	Generating	debugging	information.
2.	For	Instrumented	Profiling	Only	--	Linking	to	the	profiling	LIB	file.
3.	For	Instrumented	Profiling	Only	--	Compiling	using	a	special	compiler	flag.
These	steps	are	outlined	below:
1.	You	need	to	make	sure	debugging	information	is	available.	This	can	be	turned

on	in	the	IDE	using	Project	/	Settings	/	C++	Tab	and	choosing	General
from	the	Category	dropdown	and	choosing	Program	Database	from	the
Debug	info	combo	box.	You'll	also	need	to	check	the	Generate	Debug	Info
check	box	in	the	General	Category	of	the	Link	Tab	of	the	dialog.	This	will
cause	a	PDB	file	to	be	written.	The	profiler	needs	the	PDB	file	in	order
associate	the	addresses	it	collects	as	the	program	executes	with	actual	entry
points	in	the	code.

2.	For	Instrumented	Profiling	Only	--	You	must	add	ACAP.LIB	to	the	plug-ins
link	libraries.	This	is	done	using	the	Project	/	Add	To	Project	/	Files
command	from	the	pulldown	menus.	From	the	dialog	presented	choose
\MAXSDK\LIB\ACAP.LIB.

3.	For	Instrumented	Profiling	Only	--	to	work	the	plug-in	must	be	compiled	with
a	special	compiler	flag:	/Gh.	This	option	isn't	available	through	the	IDE	in	a
check	box	--	it	must	be	manually	typed	into	the	Project	Options	list.	You
access	this	list	from	the	IDE	using	Project	/	Settings	/	C++	Tab	/	General
Category.	At	the	beginning	of	the	list	of	options	add	/Gh.	What	the	/Gh
option	does	is	instruct	the	compiler	to	call	a	special	function	named	penter()
prior	to	doing	anything	for	every	procedure	entry	point.	The	penter()
function	is	provided	by	the	profiler	and	is	used	to	collect	all	the	profiling
information.

Using	the	MAX	Profiler	Plug-In
The	profiler	is	a	utility	plug-in	(\MAXSDK\PLUGIN\MAXPROF.DLU)
with	an	interface	in	both	the	command	panel	and	a	small	floating	dialog.	The
command	panel	interface	is	used	to	indicate	which	type	of	profiling	is	done,
which	information	is	written	to	the	output	file,	and	what	file	name	it's	written	to.
The	floating	dialog	is	used	for	starting,	stopping,	saving	and	clearing	the	profile
recording.
To	run	the	profiler	select	3ds	max	Profiler	from	the	list	of	utility	plug-ins.	A
smaller	floating	dialog	appears	as	well	as	the	command	panel	interface.	Via	radio
buttons	in	the	Collection	area	choose	if	you	want	to	perform	Instrumented	or
Polling	profiling.
To	collect	profiling	information	you	select	the	options	you	want	to	record	using
the	check	boxes	in	the	Report	area	of	the	command	panel	rollup.	Next	choose
the	desired	output	file	name,	from	the	Output	rollup.	By	default	the	output	file
is	written	to	maxprof0.txt	in	the	same	directory	as	the	currently	loaded	3ds
max	file.
Once	these	choice	have	been	made,	click	on	the	Record	button	in	the	floating
dialog.	This	puts	the	profiler	in	record	mode	--	ready	for	the	collection	of
profiling	information.
Next,	simply	use	the	plug-in	you	wish	to	profile.	For	instance,	if	your	plug-in	is
a	modifier,	apply	it	to	an	object	and	adjust	its	settings.	As	you	work	with	the
plug-in,	or	3ds	max	calls	its	methods,	the	profiling	information	is	collected.	The
floating	dialog	stays	active	even	if	you	leave	the	utility	branch	of	the	command
panel	so	you're	free	to	use	all	of	3ds	max	to	fully	test	your	plug-in.	Note	that	the
profiler	is	persistent	even	through	a	3ds	max	File	/	Reset	operation.	This	allows
developers	to	track	what	calls	are	made	during	a	Reset	as	well.	If	you	want	to
reset	the	profiling	information,	press	the	Clear	button	on	the	floating	dialog.
This	section	list	each	of	the	controls	in	the	command	panel	user	interface:

Report	section:
The	check	boxes	in	this	section	determine	which	portions	of	the	output	file	are
written.	Below	is	a	description	of	each	of	the	options	in	this	dialog.	The	sample
output	file	shown	later	in	this	topic	shows	an	example	what	is	written	for	each	of
these.

Summary:	This	generates	some	basic	information	about	the	speed	of	the
machine	3ds	max	is	running	on,	the	amount	of	time	spent	profiling,	and	the
number	of	functions	that	were	profiled.
Module	list:	This	generates	a	list	of	all	the	modules	that	are	loaded	into
process	memory.
Max	stack	depth:	This	reports	the	maximum	depth	of	function	calls	the
profiler	reached.
The	following	options	are	reported	for	every	function	that	is	called.	These

items	appear	as	columns	of	data	in	a	table	where	each	row	represents	one
function	call.
Time	(in	msecs):	This	is	the	amount	of	time	spent	in	the	function	in
milliseconds.	This	is	labeled	SelfTime	in	the	output	table.
Time	(in	ticks):	This	is	amount	of	time	spent	in	the	function	in	ticks.	This	is
labeled	SelfTicks	in	the	output	table.
Time	(in	percent):	This	is	the	time	in	a	function	as	a	percent	of	the	overall
time	spent	in	all	the	functions	that	were	profiled.	This	is	labeled	SelfPercent
in	the	output	table.
Child	times:	If	this	is	checked,	three	new	columns	are	added	to	the	output
table.	These	are	labeled	HierTicks,	HierTime	and	HierPercent.	These	are
similar	to	those	above,	but	include	not	only	the	function	itself,	but	also	any
functions	it	calls.	This	one	is	useful	because	you	can	sort	the	table	by	child
times	(in	a	spreadsheet	such	as	Excel)	and	it	will	display	the	most	time
intensive	functions	first.
Recursion	counts:	This	option	is	useful	if	you	have	recursive	functions.	It
shows	how	many	time	the	function	calls	back	on	itself.	This	is	labeled
Recursions	in	the	output	table.
Calling	functions:	This	generates	a	multiline	entry.	For	each	function
profiled,	a	list	of	all	the	functions,	or	places	within	a	function,	that	called	it
are	shown.	This	also	lists	how	many	times	each	of	the	functions	called	it.
Function	addresses:	This	generates	the	address	in	memory	for	the	function.
This	is	labelled	Address	in	the	output.
Source	module:	This	generates	the	name	of	the	module	(the	name	of	the
DLL	that	the	profiled	function	lives	in).	If	you	are	running	under	NT5	and
have	IMAGEHLP.DLL	you'll	get	the	source	file	name	and	line	number.
This	is	labelled	Module	in	the	output.
The	number	of	calls	(labeled	Count	in	the	output	table)	is	always	reported.
This	is	the	number	of	times	the	function	was	entered.

Output	section:
Output	file	selector	button:	By	default,	the	output	is	written	to	the	path
where	the	3ds	max	file	was	loaded.	Clicking	on	this	button	brings	up	the	file
selector	dialog	for	choosing	a	new	output	file.
Increment	after	save:	This	check	box	is	enabled	only	when	the	filename	has
a	number	or	numbers	at	the	end.	If	checked,	the	file	name	shown	on	the

button	is	incremented	each	time	the	profiling	information	is	saved.	If
unchecked,	the	file	is	overwritten	on	a	save.

Clear	data	after	save:	This	check	box	resets	the	profiler	after	each	time	the
profiling	information	is	saved.	If	this	is	off,	profiling	information	continues	to
accumulate	after	a	save.
Close:	This	closes	the	3ds	max	Profiler	plug-in	in	the	user	interface.
This	section	list	the	controls	in	the	floating	dialog.

The	floating	dialog	has	three	buttons	used	for	starting/stopping,	saving	and
clearing	the	profile	recording.
Record	/	Stop:	This	button	is	used	to	start	and	stop	the	collection	of	profiling
information.
Save:	This	button	is	used	to	save	the	collected	profiling	information	to	disk.
Clear:	This	button	is	used	to	reset	the	profiling	information	so	new	recording
will	start	from	a	clear	state.	If	you	want	to	clear	out	any	existing	profiling
information	generated	press	this	button.

Interpreting	the	Profiler	Output	File
This	section	presents	an	example	of	output	from	the	profiler	and	describes	the
meaning	of	each	section.
The	summary	section:

This	section	is	written	if	the	'Summary'	check	box	is	checked.
Tue	Jul	29	15:46:10	1997
WinNT	4.0
	
microSecsPerTick	0.12126
This	simply	gives	data	about	the	timing	of	the	CPU.	This	is	the	number	of
micro	seconds	per	tick.	Tick	counts	are	used	in	several	places	in	the	profiler
output.
Ticks	(elapsed/counted)	1860866843/305119085
This	tells	how	many	CPU	ticks	went	by	during	the	run	of	the	profiler
(between	when	the	Record	and	Stop	buttons	were	pressed)	over	how	many
were	actually	collected	(counted)	by	the	profiler.
Secs	(elapsed/counted)	225.649/36.9988
This	tells	the	same	information	as	above,	only	in	seconds.
Total	functions	76
This	is	the	total	number	of	functions	that	were	profiled.
Total	calls	7493
This	is	the	total	number	of	calls	that	were	found	while	profiling.

The	module	list	section:
This	section	is	written	if	the	'Module	list'	check	box	is	checked.
module		base
3dsmax		0x400000
ntdll		0x77f60000
.	.	.etc.	.	.
GDI5		0x33600000
SZB5		0x33200000
msafd		0x77660000
wshtcpip		0x77690000
This	simply	lists	all	the	modules	that	are	loaded	into	process	memory	and	the

address	of	where	they	actually	wound	up.
Max	stack	depth	section.

This	section	is	written	if	the	'Max	stack	depth'	check	box	was	checked.
Max	Stack	Depth	8
This	indicates	how	far	into	the	procedure	chain	the	profiler	was	used.	That	is,
how	many	calls	deep	was	the	profiler	involved	in.	This	number	is	exclusive
of	recursion.

The	profiling	data	section.
The	data	shown	below	is	copied	from	an	Excel	spreadsheet	to	make	it	appear	in
a	table	format.	In	pure	text	form	as	output	by	the	profiler	the	data	is	tab
delimited.	One	can	simply	copy	this	data	to	the	clipboard,	paste	it	into	Excel,
and	it	fills	out	the	spreadsheet	cleanly	into	rows	and	columns.	The	data	here	is
just	as	described	above	under	the	user	interface	controls.	Of	particular	note	is	the
list	of	calling	functions.	When	that	option	is	checked	the	table	may	contain
multiple	lines	per	function.	For	each	function	profiled,	a	list	of	all	the	functions,
or	places	within	a	function,	that	called	it	are	shown.	This	also	lists	how	many
times	each	of	the	functions	called	it.	For	example,	in	the	table	below,
GetString()	was	called	13	times,	1	time	by	EnterMode(),	4	times	by
DoPoint(),	1	time	by	DefineStroke(),	2	times	by	DefineStroke()	at	a
different	address,	3	times	by	UpdateStrokeInfo(),	and	2	times	by
ReviewStrokes().
Count	Recursions	SelfTicks	SelfTicks/Call	SelfTime	SelfPercent	HierTicks	HierTime	HierPercent	Address	Function	Module	
13	0	7502	577	1	0	7502	1	0	822087728	GetString	stroke!E:\devel\3dswin\src\DLL\STROKE\stroke.cpp@44	
							1	822090354	StrokeCMode::EnterMode	+32	stroke!@	
							4	822091673	StrokePrgm::DoPoint	+69	stroke!@	
							1	822101165	StrokeTable::DefineStroke	+60d	stroke!@	
							2	822102498	StrokeTable::DefineStroke	+b42	stroke!@	
							3	822103004	UpdateStrokeInfo	+7c	stroke!@	
							2	822105572	StrokeTable::ReviewStrokes	+7b4	stroke!@	
3	0	1050	350	0	0	1050	0	0	822087792	BuildStrokeSetPathName	stroke!E:\devel\3dswin\src\DLL\STROKE\stroke.cpp@179	
							1	822100149	StrokeTable::DefineStroke	+215	stroke!@	
							2	822103881	StrokeTable::ReviewStrokes	+119	stroke!@	
21	0	1727	82	0	0	1727	0	0	822087968	Stroke::Stroke	stroke!E:\devel\3dswin\src\DLL\STROKE\stroke.cpp@424	
							21	822103715	StrokeTable::ReviewStrokes	+73	stroke!@	
144	0	885	6	0	0	885	0	0	822088224	Stroke::GetFunctionName	stroke!E:\devel\3dswin\src\DLL\STROKE\stroke.cpp@447	
							60	822089505	StrokeTable::Sort	+51	stroke!E:\devel\3dswin\src\DLL\STROKE\stroke.cpp@583	
							60	822089514	StrokeTable::Sort	+5a	stroke!E:\devel\3dswin\src\DLL\STROKE\stroke.cpp@590	

							1	822101304	StrokeTable::DefineStroke	+698	stroke!@	
							20	822102448	StrokeTable::DefineStroke	+b10	stroke!@	
							3	822102962	UpdateStrokeInfo	+52	stroke!@	
31	0	17268	557	2	0	17268	2	0	822088256	Stroke::Save	stroke!E:\devel\3dswin\src\DLL\STROKE\stroke.cpp@451	
							31	822089776	StrokeTable::Save	+80	stroke!@

	

Profiling	and	Processors
This	section	discusses	how	the	profiler	deals	with	multiple	processors.
The	profiler	forces	3ds	max	to	run	on	a	single	processor.	This	is	beneficial
because	it	provides	more	accurate	timing	results	than	trying	to	collect	the	data
from	multiple	processors.

Profiling	in	MAX	3.0
With	some	combinations	of	system	software	and	Visual	C	development
environments,	the	profiler	will	fail	to	output	symbols,	even	though	the	.pdb
information	is	present.	This	is	caused	not	by	the	profiler	itself,	but	by	the
imagehlp.dll	upon	which	it	relies.	This	imagehlp.dll	is	supplied	by	Microsoft,
and	while	it	has	undergone	some	changes,	it	has	not	stayed	completely	current
with	the	rest	of	the	OS	DLL	naming	conventions.	This	is	to	say	that	they're
loading	some	old	DLLs	explicitly	-	clearly	a	bug	in	the	imagehlp.dll.
Consequently,	you	have	two	options	for	how	you	can	resolve	the	problem.You
must	chose	one	of	these	two	work	arounds:
1.	See	that	you	have	the	NT4.0	version	of
%SYSTEMROOT%\system32\imagehlp.dll	installed.	It	should	have	the	file
version	of	4.0.1381.125	as	seen	in	the	explorer's	file	properties.	Now,	curiously,
this	file	loads	MSPDB50.DLL	via	hard-coded	string.	Of	course	if	you're	using
VC6,	you'll	have	MSPDB60.DLL	rather	than	MSPDB50.DLL.	Fortunately,	the
two	are	compatible	at	the	interface	level,	so	you	can	"copy	MSPDB60.DLL
MSPDB50.DLL"	to	provide	one	for	imagehlp.dll	to	load.	The	drawback	of	using
this	fix	is	that	the	imagehlp.dll	from	NT4	does	not	support	filename/line	number
information,	and	the	most	discrete	info	you	can	retrieve	from	the	profiler's
output	is	the	names	of	the	functions.
2.	If	you	have	access	to	NT5b2,	you	can	use	some	of	the	DLLs	supplied
there.On	that	CD,	in	\i386	you'll	find	"imagehlp.dll"	and	"msdbi.dll".	Taken
together	these	files	will	work	in	NT4	just	fine.	Moreoever,	they'll	supply	the
cool-ofilename	and	line	number	info	that	makes	the	profiler	more	valuable.	Be
sure	that	the	file	versions	you	get	are	5.0.1878.1	for	imagehlp.dll	and	6.0.8337.0
for	msdbi.dll.	Again,	this	version	info	is	available	from	the	explorer's	file
properties	dialog.
With	whichever	method	you	elect,	you	can	put	the	required	files	either	in	your
system32	directory	so	that	they're	avaiable	to	the	system	as	a	whole,or	in	max's
executable	directory,	in	which	case	they'll	affect	only	3ds	max	.

Read	Only	Plug-Ins
See	Also:	Anti-Piracy	Protection.
Plug-ins	can	read	the	3ds	max	hardware	lock	ID	number.	Using	the	hardware
lock	ID,	developers	can	provide	versions	of	their	plug-in	that	are	slightly
disabled.	When	the	plug-in	was	loaded,	if	the	current	hardware	lock	wasn't	the
one	it	was	authorized	to	run	on,	it	would	put	itself	in	a	disabled	mode.
For	example,	this	might	mean	the	user	interface	for	the	plug-in	was	only
partially	enabled.	Or	perhaps	the	plug-in's	parameters	might	not	be	fully	editable
in	MAX.	Possibly	they	are	assigned	fixed	values,	or	values	of	a	limited	range,	so
the	user	can	get	the	general	idea	of	the	plug-in	but	not	really	work	with	it	in
production.
These	disabled	versions	could	be	freely	distributable	and	contain	information	on
how	the	complete	versions	can	be	purchased.	This	kind	of	information	can	be
shown	to	the	user	via	the	3ds	max	File/Summary	Info.../Plug-In	Info...
command.	This	is	accomplished	using	the	DLL	function	LibDescription().
See	DLL	Functions	and	Class	Descriptors	for	more	information	on	this	function.
A	developer	could	implement	a	system	where	the	user	could	phone	the	plug-in
distributor	and	get	a	key	number	to	unlock	the	disabled	version.	This	key	would
allow	the	plug-in	to	be	bound	to	the	hardware	lock	of	the	new	machine.
Sample	code	using	an	anti-piracy	/	authorization	scheme	can	be	found	in
\MAXSDK\SAMPLES\MODIFIERS\TWIST.CPP.

References
See	Also:	Class	ReferenceMaker,	Class	ReferenceTarget,	List	of	Reference
Messages.

Overview
In	the	3ds	max	architecture,	elements	of	the	scene	often	form	dependencies	on
one	another.	The	typical	manner	these	dependencies	are	handled	in	3ds	max	are
through	References*.	A	reference	is	a	record	of	dependency	between	a	reference
maker	and	a	reference	target.	The	reference	maker	is	said	to	be	dependent	upon
the	reference	target.	If	the	target	changes	in	some	way	that	affects	the	maker,	the
maker	must	be	notified	so	it	may	take	appropriate	action.
*	Note:	This	use	of	the	term	reference	in	this	section	should	not	be	confused
with	the	term	reference	used	in	the	3ds	max	interface	and	user	manuals.	Nor	is	it
to	be	confused	with	the	C++	definition	of	reference.	In	this	section,	the	term
reference	will	always	apply	to	the	notion	of	a	dependent	relationship	unless
specifically	stated	otherwise.
Below	are	a	few	examples	of	dependent	relationships	between	elements	of	a	3ds
max	scene	that	are	managed	using	references:
	A	loft	model	is	dependent	upon	its	path	shapes.	When	one	of	the	path	shapes
changes,	the	model	must	be	notified	so	it	may	update	itself.
	The	path	controller	is	dependent	upon	the	spline	path	the	controller	is	assigned
to	follow.	When	the	spline	path	changes	shape,	the	controller	must	be	notified
so	it	may	realign	its	node	to	the	revised	path.
	The	procedural	sphere	is	dependent	upon	its	animated	parameters.	When	the
parameters	are	changed,	the	object	must	be	notified	so	that	is	can	update	its
cached	representation	to	reflect	the	new	settings.
The	above	examples	show	how	references	have	been	used	in	3ds	max	plug-in
development.	Any	time	a	developer	wants	to	set	up	a	dependent	relationship
between	two	elements	of	the	scene	and	be	notified	of	any	changes,	a	reference
may	be	used.
There	are	two	key	classes	involved	in	the	3ds	max	reference	system.	These	are
the	ReferenceMaker	class,	and	the	ReferenceTarget	class.	The
ReferenceTarget	class	is	derived	from	the	ReferenceMaker	class.	Most
plug-in	classes	are	derived	from	ReferenceTarget.	Thus	most	plug-ins	may
make	references	themselves.
There	are	three	key	methods	involved	when	working	with	references.	These	are
MakeRefByID(),	NotifyDependents(),	and	NotifyRefChanged().

Change	Notification	Methods
The	reference	scheme	allows	a	reference	target	to	notify	all	its	dependent
reference	makers	when	it	changes.	This	section	presents	an	overview	of	how	this
is	done.
Having	a	reference	is	similar	to	having	a	pointer	to	an	object,	however	when	a
maker	references	a	target,	that	target	maintains	a	pointer	back	to	the	maker.	The
reference	target	keeps	a	list	of	back	pointers	to	all	the	reference	makers	which
reference	it.	This	gives	the	target	the	ability	to	notify	each	of	its	dependent
reference	makers	when	it	has	changed	in	some	fashion.	There	are	several
methods	that	must	be	called	or	implemented	by	the	plug-in	when	it	uses
references:
	The	reference	maker	must	inform	the	reference	target	that	it	is	dependent	upon
it.	It	does	this	by	creating	a	reference	to	the	target	using	a	method	called
MakeRefByID().	The	target	then	maintains	this	record	of	dependency	via	its
pointer	back	to	the	reference	maker.
	When	a	reference	target	changes	it	must	notify	its	dependent	reference	makers
of	this	change.	It	does	this	by	calling	a	method	NotifyDependents().
	A	reference	maker	must	implement	a	method	to	receive	the	change	notification
messages	sent	by	the	target.	It	does	this	by	implementing	a	method	called
NotifyRefChanged().
Let's	look	at	each	of	these	methods	and	how	they	are	handled	by	a	specific	3ds
max	plug-in.	We'll	use	the	example	of	the	path	controller.	The	path	controller
governs	the	position	of	a	node	in	the	scene	allowing	it	to	track	along	a	selected
spline	path.	A	spline	path	node	in	the	scene	is	chosen	to	follow,	and	a	parameter
controls	the	amount	of	banking	applied	to	the	node	as	it	follows	along	the	path.
(The	path	controller	has	other	parameters,	but	concerning	references	the	others
are	similar	to	the	two	covered	here).	The	processing	of	these	parameters	involves
several	references.
The	path	controller	tracks	another	node	in	the	scene.	This	node	is	a	spline	and	it
is	of	course	free	to	change	shape	and	orientation	at	any	time.	By	creating	a
reference	to	the	spline	node	using	MakeRefByID(),	the	controller	will	be
notified	whenever	the	spline	changes.	The	path	controller	also	must	monitor	its
own	banking	parameter	which	may	be	animated	and	change	over	time.	By
creating	a	reference	to	this	parameter	the	controller	will	be	informed	whenever
the	parameter	changes.

A	reference	target	is	responsible	for	notifying	all	its	dependent	reference	makers
when	it	has	changed.	The	spline	path	is	a	reference	target.	It	is	therefore
responsible	for	informing	its	dependent	reference	makers	when	it	changes.	It
does	this	by	calling	a	method	of	ReferenceMaker	NotifyDependents().	Any
reference	target	maintains	a	list	of	pointers	to	the	items	that	reference	it.
Internally,	the	NotifyDependents()	function	loops	through	all	these	pointers
and	calls	a	method	NotifyRefChanged()	on	each	one.	NotifyRefChanged()
is	the	method	implemented	by	the	reference	maker	responsible	for	receiving	and
responding	to	the	change	notification	messages.
The	path	controller	also	maintains	a	banking	parameter	and	has	created	a
reference	to	it,	so	the	parameter	has	become	a	reference	target.	Whenever	the
user	alters	the	value	of	the	banking	parameter,	a	message	must	be	sent	to	notify
the	path	controller	it	has	changed.	This	is	done	by	calling
NotifyDependents().	As	part	of	this	function	call	it	passes	the	message
REFMSG_CHANGE.	The	NotifyDependents()	call	broadcasts	this
message	to	all	the	items	which	reference	it.	The	bank	parameter	has	one
reference	to	it	--	the	path	controller.
As	a	reference	maker,	the	path	controller	must	have	a	way	to	receive	and
respond	to	messages	sent	to	it.	The	path	controller	must	respond	to	the
notification	of	the	banking	parameter	changing	and	the	spline	path	changing.	It
does	this	by	implementing	a	method	of	the	ReferenceMaker	class	called
NotifyRefChanged().	The	usual	implementation	of	this	method	has	a	switch
statement	where	each	case	is	one	of	the	messages	the	plug-in	must	respond	to.
The	messages	the	plug-in	must	respond	to	depend	upon	the	types	of	references	it
makes.	There	are	additional	messages	which	the	system	itself	may	need	the
plug-in	to	respond	to.	For	example,	say	the	spline	which	the	path	controller	is
following	is	deleted	from	the	scene.	The	system	needs	to	inform	the	plug-in	that
this	has	occurred.	The	plug-in	developer	must	handle	this	possible	condition	by
providing	a	case	in	NotifyRefChanged()	to	respond	to	the	message
REFMSG_TARGET_DELETED.	See	List	of	Reference	Messages.

Details	of	the	Change	Notification	Methods
This	section	looks	in	detail	at	the	methods	used	by	reference	makers	and	targets
for	change	notification.

Making	References
To	create	a	dependency	upon	an	item,	the	developer	creates	a	reference	to	the
item.	This	is	done	by	calling	a	method	of	ReferenceMaker	called
MakeRefByID().
RefResult	MakeRefByID(
	Interval	refInterval,
	int	which,
	RefTargetHandle	htarget
);

This	method	creates	a	reference	between	the	object	which	calls	the	method,	and
the	ReferenceTarget	specified	by	the	htarget	parameter.
The	refInterval	parameter	indicates	the	interval	of	time	over	which	this
reference	is	active.	Outside	this	interval,	the	reference	is	not	considered	to	be	a
dependency.	This	allows	the	plug-in	to	have	dependent	relationship	over	only
portions	of	an	entire	animation	time	range.	If	a	plug-in	has	a	dependency	over
the	entire	animation	it	may	use	the	pre-defined	interval	FOREVER	for	this
parameter.	In	the	current	implementation	all	plug-ins	must	use	FOREVER	for
this	interval.
The	which	parameter	indicates	which	reference	index	this	newly	created
reference	is	assigned	to.	The	system	uses	a	virtual	array	mechanism	to	access	the
references	an	item	has.	The	developer	simply	assigns	an	integer	index	to	each
reference.	For	example,	the	path	controller	might	use	an	index	of	0	for	the	bank
amount	parameter	reference,	and	an	index	of	1	for	the	node	to	follow	reference.
The	path	controller	would	then	pass	either	0	or	1	as	the	which	parameter
depending	upon	which	reference	it	was	making.	This	is	discussed	in	greater
detail	below	under	Reference	Access	Methods.
The	hTarget	parameter	is	the	handle	of	the	item	to	which	a	reference	is	being
made.
The	return	value	from	this	method	is	of	type	RefResult.	This	is	usually
REF_SUCCEED	indicating	the	reference	was	created	and	is	registered	by	the
reference	target.

Sending	Change	Notification	Messages
When	a	reference	target	changes	it	must	notify	its	dependent	reference	makers	of
this	change.	It	does	this	by	calling	NotifyDependents().
RefResult	NotifyDependents(
	Interval	changeInt,
	PartID	partID,
	RefMessage	message,
	SClass_ID	sclass=NOTIFY_ALL,
	BOOL	propagate=TRUE,
	RefTargetHandle	hTarg=NULL
);

This	method	broadcasts	the	message	specified	by	the	message	parameter	to	all
the	items	which	reference	the	caller.
The	partID	parameter	is	used	to	pass	message	specific	information	to	the	items
which	will	receive	the	message.	See	the	Reference	section	Class
ReferenceMaker	NotifiyRefChanged()	method	for	more	details.
The	changeInt	parameter	indicates	the	interval	of	time	over	which	the	change
reported	by	the	message	is	in	effect.	Currently	all	plug-ins	must	pass
FOREVER	for	this	interval.
The	sclass	parameter	defaults	to	NOTIFY_ALL.	If	this	value	is	passed	to
NotifyDependents()	all	dependents	will	be	notified.	Other	super	class	values
may	be	passed	to	only	send	the	message	to	certain	items	whose	SuperClassID
matches	the	one	passed.
The	propagate	parameter	defaults	to	TRUE.	This	indicates	that	the	message
should	be	sent	to	all	'nested'	dependencies.	If	passed	as	FALSE,	this	parameter
indicates	the	message	should	only	be	sent	to	first	level	dependents.	Normally
this	should	be	left	to	default	to	TRUE.
The	hTarg	parameter	defaults	to	NULL.	A	plug-in	developer	should	never	pass
anything	for	this	parameter.	It	must	always	default	to	NULL.

Responding	to	Change	Notification	Message
A	plug-in	which	makes	references	must	implement	a	method	to	receive	and
respond	to	messages	broadcast	by	its	dependents.	This	is	done	by	implementing
the	NotifyRefChanged()	method	of	ReferenceMaker.
virtual	RefResult	NotifyRefChanged(
	Interval	changeInt,
	RefTargetHandle	hTarget,
	PartID&	partID,
	RefMessage	message
);

The	plug-in	developer	usually	implements	this	method	as	a	switch	statement
where	each	case	is	one	of	the	messages	the	plug-in	needs	to	respond	to.	The
message	parameters	passed	into	this	method	is	the	specific	message	which
needs	to	be	handled.
The	changeInt	interval	is	the	interval	of	time	over	which	the	message	is	active.
Currently,	all	plug-ins	will	receive	FOREVER	for	this	interval.
The	hTarget	parameter	is	the	handle	of	the	reference	target	the	message	was
sent	by.	The	reference	maker	uses	this	handle	to	know	specifically	which
reference	target	sent	the	message.
The	partID	parameter	contains	information	specific	to	the	message	passed	in.
Some	messages	don't	use	the	partID	at	all.	See	the	section	below	on	Reference
Messages	and	PartIDs	for	more	information	about	the	meaning	of	the	partID
for	some	common	messages.
The	return	value	from	this	method	is	of	type	RefResult.	This	is	usually
REF_SUCCEED	indicating	the	message	was	processed.	Sometimes,	the
return	value	may	be	REF_STOP.	This	return	value	is	used	to	stop	the	message
from	being	propagated	to	the	dependents	of	the	item.
Below	is	an	example	of	the	code	structure	usually	used	to	implement
NotifyRefChanged().	It	is	a	simplified	version	taken	from	the	path	controller:
RefResult	PathPosition::NotifyRefChanged(
		Interval	changeInt,
		RefTargetHandle	hTarget,
		PartID&	partID,

		RefMessage	message)
	{
	switch	(message)	{
		case	REFMSG_CHANGE:
			//	Code	to	handle	the	target	changing...
			break;
		case	REFMSG_TARGET_DELETED:
			if	(hTarget	==	pathNode)	{
				//	Code	to	handle	to	path	node	being	deleted...
				}
			break;
		};
	return	REF_SUCCEED;
	}

Note:	A	plug-in	should	NOT	normally	call	NotifyDependents()	from	its
NotifyRefChanged()	method.	All	the	appropriate	dependents	are	notified
automatically	and	thus	doing	so	is	unnecessary.

Reference	Access	Methods
The	system	manages	the	access	to	an	item's	references	by	using	a	virtual	array.	If
the	plug-in	makes	references,	it	must	implement	three	methods	of
ReferenceMaker	to	handle	access	to	its	references.	These	methods	are:
int	NumRefs();
The	plug-in	implements	this	method	to	return	the	total	number	of	references	it
makes.
RefTargetHandle	GetReference(int	i);
The	plug-in	implements	this	method	to	return	a	reference	handle	to	its	'i	th'
reference.	The	plug-in	keeps	track	of	its	references	using	an	integer	array
index	for	each	one.	When	the	system	calls	this	method,	the	plug-in	returns	its
'i	th'	reference.
void	SetReference(int	i,	RefTargetHandle	rtarg);
The	plug-in	implements	this	method	to	store	the	reference	handle	passed	into
its	'i-th'	reference.	The	plug-in	simply	keeps	track	of	its	references	using	an
integer	array	index	for	each	one.	When	the	system	calls	this	method,	the	plug-
in	stores	its	'i-th'	reference.

Below	is	an	example	of	how	these	methods	might	be	implemented
#define	PATHPOS_BANK_REF	0
#define	PATHPOS_PATH_REF	1
int	NumRefs()	{	return	2;	}
RefTargetHandle	PathPosition::GetReference(int	i)
	{
	if	(i==PATHPOS_BANK_REF)	{
		return	bankAmount;
	}	else	{
		return	pathNode;
		}
	}
void	PathPosition::SetReference(
	int	i,
	RefTargetHandle	rtarg)
	{
	if	(i==PATHPOS_BANK_REF)	{

		bankAmount	=	(Control*)rtarg;
	}	else	{
		pathNode	=	(INode*)rtarg;
		}
	}

Maintenance	Methods
The	following	are	methods	that	may	be	used	to	delete	references	when	they	are
no	longer	needed:
DeleteAllRefFromMe();
This	deletes	all	references	from	the	calling	reference	maker.
DeleteAllRefs();
Deletes	all	references	to	and	from	the	calling	reference	maker.
DeleteMe();
This	method	deletes	all	references	to	and	from	the	calling	reference	maker,
sends	the	REFMSG_TARGET_DELETED	message,	handles	Undo,	and
deletes	the	object.

Deleting	and	Replacing	References	as	the	Reference	Structure	Changes
The	number	of	references	maintained	by	a	plug-in	may	change	over	time.	This
section	presents	information	on	the	different	approaches	developers	may	use
to	allow	the	reference	structure	to	change.
Basically,	a	developer	can	have	two	kinds	of	reference	structures.	One
approach	is	to	have	the	number	fixed,	where	some	references	may	go	to
NULL	occasionally,	but	the	number	stays	the	same.	Alternatively,	a	developer
can	have	a	variable	number	of	references,	and	move	them	around	as	they	are
added	and	deleted.
The	first	option,	where	the	number	stays	fixed,	is	accomplished	by	keeping	the
number	of	references	returned	by	NumRefs()	constant.	An	example	of	this
from	3ds	max	is	the	3D	Texmap	Marble
(\MAXSDK\SAMPLES\MATERIALS\MARBLE.CPP).	It	has	4
references:	the	pblock,	the	xyzGen	instance,	and	two	sub-texmaps.	When	the
texmap	starts	up	fresh	it	doesn't	have	sub-maps.	Yet	it	still	returns	4	from
NumRefs().	When	the	user	clicks	on	a	user	interface	button	to	add	a	sub-
map,	the	texmap	calls	ReplaceReference()	on	the	sub-texmap	index	and	a
reference	to	the	new	sub-texmap	gets	plugged-in.	Thus	the	pointer	to	it	is	no
longer	NULL.	Again,	NumRefs()	doesn't	change,	it	is	just	that	reference	is
no	longer	NULL.	A	user	can	also	set	the	sub-texmap	back	to	'None'	to	stop
using	it.	In	this	case	DeleteReference()	will	be	called	(DeleteReference()
breaks	the	connection	between	the	pointer	stored	and	the	system	--	this	is	done
so	3ds	max	will	not	send	change	notification	messages	any	longer).	Again,
even	thought	the	reference	was	deleted	NumRefs()	still	returns	4.
DeleteReference()	will	set	the	pointer	to	NULL.
The	other	approach	to	structuring	references	involves	altering	the	number	of
references	returned	from	NumRefs().	A	developer	can,	after	deleting	a
reference,	change	NumRefs()	to	one	less	and	move	around	the	pointers	so
GetReference()	and	SetReference()	still	return	the	proper	values.	An
example	of	when	this	might	be	used	is	if	the	data	structure	for	the	plug-in	had
a	variable	number	of	references	that	the	user	could	directly	alter.	The	Multi-
SubObject	material	is	structured	like	this
(\MAXSDK\SAMPLES\MATERIALS\MULTI.CPP).	It	maintains	a
table	of	the	sub-materials	and	the	user	can	alter	the	number	of	these	on	the	fly
via	the	user	interface.	In	its	implementation	of	NumRefs()	it	returns	the

number	of	items	in	the	table	at	that	moment.	When	the	user	asks	for	fewer
sub-materials	(and	thus	fewer	references)	ReplaceReference()	is	called
passing	NULL	and	NumRefs()	returns	a	smaller	value.	When	the	user	adds
additional	sub-materials,	new	materials	are	created	and	ReplaceReference()
is	called	passing	pointers	to	these	new	materials.

Pointers	and	References
When	a	plug-in	has	a	pointer	to	an	item	it	should	usually	make	a	reference	to	the
item	as	well.	This	will	ensure	the	item	is	not	deleted	by	the	system	(which	would
make	the	pointer	invalid).
In	3ds	max	when	the	last	reference	to	an	item	is	deleted,	the	item	itself	is
deleted.
For	example,	say	your	plug-in	has	a	pointer	to	a	sub-anim,	but	you	have	not
created	a	reference	to	it.	If	this	sub-anim	appears	in	track	view,	the	system	will
create	a	reference	to	it	because	track	view	needs	a	reference	to	the	items	it
displays.	When	track	view	is	finished	displaying	this	sub-anim,	it	will	delete	the
reference.	If	this	is	the	last	reference	to	the	sub-anim,	the	sub-anim	itself	will	be
deleted.	This	would	invalidate	the	pointer	you	are	maintaining	to	the	sub-anim.
The	way	to	prevent	this	from	happening	is	to	create	a	reference	to	the	sub-anim.
The	system	does	not	delete	items	that	still	have	references	to	them.	Therefore	by
making	a	reference	to	the	item	you	ensure	that	the	system	will	not	delete	it.
The	one	exception	to	this	is	nodes	in	the	scene.	Nodes	may	be	deleted	by	the
user	by	simply	selecting	the	node	and	pressing	the	delete	key.	If	an	item	has	a
reference	to	the	node	the	user	may	still	delete	it.	However	the	item	that
referenced	the	node	will	receive	the	message
REFMSG_TARGET_DELETED	via	NotifyRefChanged().	It	can	then
respond	appropriately	to	the	deletion.
At	certain	times	a	plug-in	may	need	to	have	a	two-way	reference.	For	example,
if	there	is	an	item	that	references	another	item,	the	referenced	item	cannot	have	a
reference	back	to	the	thing	that	referenced	it,	because	this	would	create	a	loop	(a
cyclic	reference).	Cyclic	references	are	illegal.	In	other	words	if	A	has	a
reference	to	B,	then	B	cannot	have	a	reference	to	A.
The	Ring	Array	plug-in	has	a	situation	where	A	has	a	reference	to	B,	but	B	has	a
pointer	to	A	(but	doesn't	have	a	reference	to	A	since	that	would	cause	a	loop).
Again,	whenever	you	have	a	pointer	to	something	you	should	have	a	reference	to
the	item	as	well.	But	B	cannot	reference	A.
What	is	done	in	this	case,	where	you	want	a	two-way	reference,	is	as	follows.	A
has	a	reference	to	B,	and	A	can	give	B	a	pointer	to	itself.	A	is	then	responsible
for	informing	B	if	it	gets	deleted	so	B	can	set	its	pointer	to	A	to	NULL.	So	A	is
responsible	for	making	sure	B's	pointer	to	A	doesn't	end	up	invalid.	This	is	the
way	you	can	set	up	a	two-way	dependency	yet	not	create	a	cyclic	reference.	The

item	that	is	being	pointed	at	must	manage	the	pointer	for	the	item	that	maintains
the	pointer.
When	this	setup	is	saved	to	disk	another	problem	arises.	How	does	one	save	a
pointer,	since	the	value	will	of	course	be	different	when	loaded.	The	solution	to
this	is	to	use	methods	of	the	ISave	and	ILoad	classes	that	let	a	developer	save
and	restore	pointers.	This	must	be	a	pointer	to	one	of	the	objects	that	the	scene
saves	with	the	reference	hierarchy,	but	it	is	not	a	pointer	that	itself	is	a	reference.
When	the	pointer	is	saved	the	method	ISave::GetRefID()	is	used.	This	returns
an	integer	ID	that	can	be	saved	to	disk.	When	loading,	a	method
ILoad::RecordBackpatch()	is	used.	This	takes	the	ID	and	a	pointer	to	a
pointer	and	sets	the	pointer	to	point	back	at	the	item	that	was	pointed	at	when
things	were	saved.	See	Class	ISave,	Class	ILoad	for	more	details.

The	Loading	and	Saving	of	References
The	system	takes	care	of	loading	and	saving	references	when	an	object	is	saved
to	disk.	An	object	does	not	need	to	explicitly	save	its	references,	nor	does	an
object	need	to	load	its	references.	After	a	scene	is	loaded,	an	object's	references
will	automatically	be	restored.	The	system	does	this	by	using	the	NumRefs(),
GetReference()	and	SetReference()	methods	of	the	plug-in.
For	example,	the	path	controller	plug-in	has	a	reference	to	the	spline	shape	node
in	the	scene	it	follows.	It	does	not	save	this	node	explicitly	in	its	implementation
of	ReferenceMaker::Save().	Yet	this	reference	will	be	restored	whenever	the
file	is	loaded	from	disk.	This	happens	because	the	reference	is	saved	and
restored	automatically	by	the	system.
For	anything	that	you	have	a	reference	to	that	you	want	saved	and	reloaded,	you
need	to	have	a	class	descriptor	registered	with	the	system.	This	is	because	the
system	needs	to	call	ClassDesc::Create()	on	the	item	to	create	it	upon
reloading.	See	Class	ClassDesc.
Note	that	since	references	are	restored	automatically	at	loading	time	3ds	max
needs	to	call	ReplaceReference().	This	ReplaceReference()	will	cause	a	call
to	DeleteReference(),	which	checks	if	the	return	value	of	GetReference()	is
NULL.	Therefore	developers	have	to	initialize	their	references	to	NULL,	if	the
ClassDesc::Create()	method	is	called	with	loading==TRUE.	If	they	don't
and	GetReference()	is	called	with	a	non	initialized	return	value	at	loading
time,	3ds	max	will	crash.
While	loading,	that	is	in	a	plug-in's	implementation	of	its	Load()	method,	the
references	are	NOT	in	place	yet.	The	references	are	not	in	place	until	everything
in	the	3ds	max	file	is	loaded.	If	a	developer	needs	to	do	something	with	the
references	when	loading,	a	post	load	callback	may	be	used.	This	is	done	using
the	method	ILoad::RegisterPostLoadCallback().	The	callback	is	called
after	all	loading	is	complete.	Inside	the	callback	the	plug-in's	references	will	be
in	place	and	they	may	be	processed	by	the	plug-in.
Another	way	a	post	load	callback	is	used	is	to	restructure	references	during	a
Load().	For	example,	say	a	plug-in	references	a	static	number	of	objects
followed	by	any	number	of	additional	objects.	Later,	as	development	progresses
on	the	plug-in,	another	static	object	is	added	to	the	reference	structure.	It	would
be	nice	if	old	files	that	still	used	the	older	reference	structure	could	be	loaded.
The	way	to	solve	this	is	as	follows:	After	the	plug-ins	Load()	method	is	called

its	references	are	put	in	place	using	SetReference().	What	needs	to	happen	is
that	the	plug-in	should	check	for	older	versions	of	files	(by	checking	a	saved
version	number)	and	set	a	flag	to	indicate	the	old	version	is	being	loaded.	Then	a
post	load	callback	is	registered	to	turn	off	this	flag	once	all	the	references	have
been	established.	With	this	mechanism	in	place,	the	SetReference()	method
can	check	this	flag	and	integrate	the	old	reference	structure	or	the	new	reference
structure	accordingly.
For	users	of	the	r2	or	later	version	of	the	SDK	a	new	method	is	available	to
handle	the	above.	See	the	method
ReferenceMaker::RemapRefsOnLoad().

Referencing	a	Global	Instance	of	a	Non-Plugin	Class
If	a	plug-in	needs	to	have	some	sort	of	global	instance	that	its	other	objects
reference,	but	is	itself	not	a	specific	plug-in	type,	then	the	super	class	ID	of
REF_TARGET_CLASS_ID	should	be	used.	The	class	of	the	global	instance
should	be	derived	from	ReferenceTarget.

Viewing	Reference	Messages
This	section	discusses	a	utility	plug-in	called	the	Reference	Watcher.	This	plug-
in	may	be	used	to	help	understand	the	reference	structure	of	a	choosen	item	and
to	monitor	the	reference	messages	it	sends.	This	provides	a	quick,	visual	way	to
examine	the	use	of	references	in	MAX.
To	run	this	plug-in	you'll	first	need	to	build	it.	The	project	is	in
\MAXSDK\SAMPLES\HOWTO\REFCHECK.	Load	this	project	into
VC++	and	press	F7	to	build	it.	Place	REFCHECK.DLU	into	your	3ds	max
DLL	search	path	(for	example	in	the	STDPLUGS	directory).	You	can	then	run
the	program	by	choosing	How	To/Reference	Watcher	in	the	utility	panel.
This	plug-in	allows	you	to	create	a	reference	to	a	choosen	Reference	Target	and
then	watch	the	messages	sent	as	you	work	with	the	target.	For	instance,	follow
the	steps	below	to	analyze	the	reference	messages	sent	by	a	node	in	the	scene.
Reset	3ds	max	and	create	a	single	Box	in	the	scene	called	Box01.	Leave	it
selected	after	creation.
Launch	the	Reference	Watcher	from	the	Utility	branch	of	the	command	panel.
Click	on	the	Pick	Reference	Target	to	Watch	button	and	choose	the	Box01
node	from	the	dialog.	This	is	done	by	opening	the	Objects	branch	and	selecting
the	Box01	label	then	pressing	OK.
Result:	The	Reference	Watcher	utility	creates	a	reference	to	the	box	node	in	the
scene	and	displays	information	about	it.	The	upper	most	list	box	shows	this	list
of	reference	messages.	Since	we	haven't	done	anything	to	the	node	yet	the
message	list	is	blank.
The	second	list	box	in	the	dialog	shows	the	items	that	are	referencing	the	node
we've	selected.	This	provides	a	way	to	get	a	general	idea	of	who	is	referencing
an	item.	In	the	case	of	the	Box01	node	these	are:

0:	Node
1:	(This	Reference	Watcher)
2:	Node	Selection
3:	Material	Editor
4:	Scene
5:	Material	Editor
6:	Scene
7:	Animatable.

The	bottom	most	list	box	shows	the	references	that	the	node	itself	has.	For	the
Box01	node	it	has	six	reference	targets.	These	are:

0:	The	Transform	Controller
1:	The	Object	Reference
2:	The	Pin	Node	for	IK	(not	currently	assigned	--	NULL)
3:	The	Material	Reference	(not	currently	assigned	--	NULL)
4:	The	Visibility	Controller	(not	currently	assigned	--	NULL)
5:	The	Image	Blur	Controller	(not	currently	assigned	--	NULL)

As	you	work	with	the	node	(select	it/deselect	it,	assign	modifiers,	bind	to	space
warps,	assign	materials,	change	controllers,	drag	the	item	in	the	viewports,	etc.),
you	can	monitor	the	reference	messages	sent.	They'll	show	up	using	the	#define
name	from	REF.H	(for	example	REFMSG_CHANGE)	in	the	upper	most
window.	If	you	want	to	clear	the	message	list	so	you	can	see	what	messages	are
sent	for	a	particular	action	press	the	Clear	Message	List	button	first.
Developers	can	use	this	utility	to	help	study	the	use	of	references	inside	MAX.

Additional	Global	Functions	Related	to	the	Reference	Hierarchy
The	following	global	functions	are	available	for	working	with	references:

Function:
void	EnumRefHierarchy(ReferenceMaker	*rm,	RefEnumProc
&proc);

Remarks:
This	function	provides	a	general	purpose	reference	enumerator.	It	simply	calls
the	RefEnumProc::proc()	on	each	element	in	the	reference	hierarchy.	See
Class	RefEnumProc.

Parameters:
ReferenceMaker	*rm
The	reference	maker	whose	dependents	will	be	enumerated.
RefEnumProc	&proc
The	callback	object	whose	proc()	method	is	called	for	each	element.

Function:
ReferenceTarget	*CloneRefHierarchy(ReferenceTarget	*rm);

Remarks:
A	new	global	function	has	been	added	for	release	2.0	to	clone	a	reference
target	and	the	hierarchy	emanating	from	it.	This	function	encapsulates	the
code	necessary	to	clone	a	ReferenceTarget	and	the	reference	hierarchy
emanating	from	it.	It	handles	multiple	instances	correctly,	using	a
RemapDir.

Parameters:
ReferenceTarget	*rm
The	reference	target	to	clone.

Return	Value:
A	duplicate	of	the	entire	reference	hierarchy	of	the	item	passed.

Sample	Code:
In	this	example,	a	material	is	being	copied	from	one	MtlBase	to	another
(source	to	dest).	To	copy	all	the	sub-materials	this	function	is	used:
dest[i]	=	(MtlBase	*)CloneRefHierarchy(source[i]);

Function:
BOOL	DependsOn(RefMakerHandle	mkr,	RefMakerHandle
targ);

Remarks:
This	global	function	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	the	is	a	path	of	references	from	mkr	to	targ;	otherwise
FALSE.	Note	that	this	return	TRUE	if	mkr	==	targ.

Parameters:
RefMakerHandle	mkr
The	reference	maker	to	check.
RefMakerHandle	targ
The	reference	target	to	check.

Function:
void	ClearAFlagInHierarchy(ReferenceMaker	*rm,	int	flag);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
Clears	the	specified	Animatable	flag(s)	from	each	item	in	the	reference
hierarchy.

Parameters:
ReferenceMaker	*rm
The	reference	maker	whose	dependents	will	be	enumerated	and	have	their
flags	cleared.
int	flag
See	List	of	Animatable	Flags.

Summary
References	are	used	to	handle	dependencies	between	items	in	the	scene.	A	plug-
in	making	references	is	responsible	for	implementing	several	methods.	The
method	NotifyRefChanged()	is	used	to	receive	messages	that	something	it
references	has	changed.	The	plug-in	must	also	implement	a	method	NumRef()
to	return	the	number	of	references	it	makes.	Methods	GetReference()	and
SetReference()	must	be	implemented	by	the	plug-in	to	allow	the	system	to
access	its	references.	If	an	item	is	a	reference	target,	it	must	call
NotifyDependents()	to	broadcast	a	message	whenever	it	has	changed	in	a	way
which	affects	other	elements	in	the	scene.

Render	Elements
See	Also:	Class	IRenderElementMgr	,	Class	IRenderElement,	Class
IRenderElementCompatible,	Class	MaxRenderElement

Overview
Render	Elements	allow	renderers	to	output	to	separate	bitmaps	portions	of	the
final	shaded	image	so	that	they	can	be	manipulated/composited	at	a	later	time,
without	re-rendering.
Render	Elements	are	specific	to	a	given	renderer.	3ds	max	defines	both	a	general
interface	that	all	render	elements	must	support	&	an	interface	specific	to
elements	supporting	the	max	default	renderer.	Mental	Ray	specific	elements	will
support	the	general	interface,	but	probably	define	their	own	specific	interface.
Part	of	the	general	interface	allows	the	system	to	figure	out	which	installed
render	elements	belong	to	which	renderer,	&	to	only	list	those	compatible
elements.
3ds	max	render	elements	are	supported	by	code	in	each	material.	After	shading
each	active	render	element’s	PostIllum	method	is	called	in	turn.	It	is	provided
with;

·			the	full	shade	context	used	to	do	the	shading
·			pointers	to	the	material	&	(if	there	is	one)	shader	used	to	do	the
computation
·			textured	inputs	to	the	shader	(e.g.	diffuse	color	blended	w/	diffuse
texture	color	by	the	amount	spinner)
·			component-wise	output	from	the	shading	process	(diffuse	term,
reflection	term…)
·			there	is	provision	for	extending	the	component-wise	outputs	to	include
arbitrary	name-matched	channels	(this	allows	materials	w/	special
components,	e.g.	flourescence	in	ray	material,	to	be	communicated	to	an
element.	The	element	must	of	course	be	looking	for	the	special
component.	The	component-wise	outputs	maybe	computed	either	with	or
without	shadows,	depending	on	a	query	on	the	element	interface.

Essentially,	this	is	all	of	the	information	that	is	passed	to	3ds	max	Shaders,	plus

the	shadowed	or	unshadowed	component-wise	output	from	the	materials	shading
process.	This	means	that	each	render	element	may	in	fact	be	a	complete,
alternate,	special-purpose	shader.	This	is	intentional,	of	course,	so	that	any
wacky	thing	might	be	created.	Most	current	render	elements	don’t	take
advantage	of	this,	tho,	they	merely	process	the	component-wise	output	from	the
materials	shading	process,	but	the	potential	is	very	powerful.
3ds	max	Render	elements	then	store	their	computed	shade	in	an	extended
ShadeOutput	class	(imtl.h)	that	is	part	of	the	ShadeContext.	The	ShadeOutput
has	an	array	of	element	output	values,	one	per	element	&	each	max	render
element	is	given	an	index	into	the	array	to	use.	The	ShadeOutput	will	follow	the
fragments	being	shaded	all	through	the	compositing	process,	so	that
transparency	&	partial	coverage	is	properly	resolved.
Atmosphere	cannot	be	properly	computed	at	shading	time	since	the	object	may
be	covered	by	a	transparent	object,	dividing	the	needed	calculation	into	two:
atmosphere	from	the	eye	to	the	transparent	object,	composited	over	atmosphere
between	the	two	objects	&	the	final	objects	color.	Hence	there	is	a	second,
optional	call	to	each	render	element	after	the	atmosphere	is	computed.	The
general	interface	tells	the	system	whether	to	apply	atmosphere	to	the	render
elements	color,	does	so	if	desired	&	calls	the	PostAtmosphere	call	on	the	max
render	element.
Finally,	a	last	query	on	the	general	interface	determines	whether	to	apply	the	AA
filter	when	outputting	the	element	to	its	bitmap,	or	merely	blending	with	other
elements	in	the	pixel.
A	sample	plugin	of	a	Render	Element	can	be	found	in	the	SDK	samples;
\MAXSDK\SAMPLES\RENDER\RENDERELEMENTS.

Rotation	Concepts
See	Also:	Class	Quat,	Class	AngAxis,	Class	Matrix3.

Overview
This	section	describes	the	different	ways	rotation	is	represented	in	the	3ds	max
SDK	and	the	various	classes	used	in	storing	and	interpolating	rotation.
There	are	several	class	used	in	3ds	max	that	describe	rotations	in	3D	space.
These	classes	are	Quat,	AngAxis,	and	Matrix3.	There	are	also	methods	that
convert	between	these	classes.

The	Visualization	of	Rotation	Space
The	set	of	all	rotations	in	space	may	be	visualized	as:

1)	The	set	of	all	unit	length	axis	vectors	with	one	endpoint	centered	at	the
sphere	center	(0,0,0)	and	the	other	endpoint	on	the	surface	of	the	unit	sphere.
2)	The	set	of	rotations	about	each	vector	axis	(rotations	about	the	radius
vectors	that	point	to	each	endpoint	on	the	sphere).

One	way	to	visualize	this	is	to	imagine	that	you	could	nail	a	dinner	plate	to	the
surface	of	a	ball	that	is	fixed	in	space	(with	the	top	surface	of	the	plate	facing	the
center	of	the	ball,	and	the	nail	going	from	the	center	of	the	plate	to	the	center	of
the	sphere	--	see	the	figure	below).	For	each	nailed	position	on	the	ball,	imagine
you	can	rotate	the	plate	about	the	nail	(axis).	The	point	of	placement	of	the	nail
on	the	ball,	and	the	plate's	rotation	about	it	describes	each	of	the	possible
rotations	of	the	plate	in	a	unique	way.

Unit	sphere	with	axis	and	plate	shown.

Quaternion	Representation	of	Rotation
A	quaternion	may	be	visualized	in	a	similar	way:
1)	An	arbitrary	unit	length	axis	vector	(one	of	the	endpoints	on	the	unit
sphere...or	the	nail	position).
2)	A	rotation	about	the	axis	(one	on	the	rotations	about	the	radius	vectors	that
point	to	each	endpoint	on	the	sphere).
In	the	simplest	terms,	the	rotational	space	described	by	each	quaternion	is	a	3D
unit	vector	plus	a	rotation.	The	Quat	class	has	four	public	data	members	that
store	this	information:
float	x,	y,	z,	w;

A	normalized	quaternion	can	represent	-PI	to	+PI	rotation	--	that	is	-180	to	180
degrees	of	rotation.	Quaternions	use	the	left-hand	rule	for	determining	positive
rotation.

AngAxis	Representation	of	Rotation
This	class	is	similar	to	a	quaternion,	except	that	a	normalized	quaternion	only
represents	-PI	to	+PI	rotation	(that	is	-180	to	180	degrees	of	rotation).	The
AngAxis	class	can	instead	have	any	number	of	revolutions	stored.	It	has	two
public	data	members:
Point3	axis;
float	angle;

The	axis	is	similar	to	the	values	in	the	Quat	class.	The	angle	value	can
represent	any	rotation	amount	in	radians.

Matrix	Representation	of	Rotation
A	matrix	may	be	used	to	describe	rotation.	See	the	Advanced	Topics	section	on
Matrix	Representations	of	3D	Transformations	for	more	information.	That
section	describes	not	only	rotation,	but	translation	and	scaling	as	represented	by
matrices.

Euler	Angles
Multiple	rotations	are	not	independent.	When	you	rotate	something	twice,	the
second	rotation	rotates	the	first	rotation.	For	this	reason,	the	order	of	rotation	is
important.	The	3ds	max	Euler	angle	controller,	by	default,	has	an	XYZ	ordering.
That	is,	the	first	rotation	is	done	along	the	X	axis,	then	along	the	Y	axis,	and
finally	along	the	Z	axis.	In	other	words,	the	default	Euler	angle	controller	has	a
type	of	EULERTYPE_XYZ	(described	below).	The	3ds	max	local	Euler	angle
controller	is	similar,	but	specifies	rotations	around	an	object's	local	coordinates
instead	of	the	world	coordinates.	It	has	a	type	of	(EULERTYPE_XYZ	|
EULERTYPE_RF).
The	SDK	provides	functions	for	converting	from	a	Matrix3	to	Euler	angles	using
various	rotation	orderings.	You	need	the	different	types	because	you	get	different
interpolation	of	the	float	values	with	the	each	type.

Prototype:
void	MatrixToEuler(const	Matrix3	&mat,	float	*ang,	int	type);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
Converts	the	specified	matrix	to	Euler	angles	using	the	type	parameter	to
determine	the	order.

Parameters:
const	Matrix3	&mat
The	rotation	matrix	to	convert	to	Euler	angles.
float	*ang
The	result	is	stored	here.	The	array	ordering	is	based	on	the	type	parameter
below.
int	type
This	parameter	specifies	the	order	of	application	of	the	angles.	One	of	the
following	values:

EULERTYPE_XYZ
EULERTYPE_XZZ
EULERTYPE_YZX
EULERTYPE_YXZ
EULERTYPE_ZXY

EULERTYPE_ZYX
EULERTYPE_XYX
EULERTYPE_YZY
EULERTYPE_ZXZ
Note:	Internally,	3ds	max	uses	static	coordinate	frames.	OR	in	the
EULERTYPE_RF	bit	if	you	have	a	special	need	to	use	a	rotating
coordinate	frame.	This	is	described	in	Ken	Shoemake's	paper	in	Graphic
Gems	IV,	pp.	222-229.

Prototype:
void	EulerToMatrix(float	*ang,	Matrix3	&mat,	int	type);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
Converts	from	the	specified	Euler	angle	format	(specifying	rotation	with	a
triple	of	angles)	to	a	Matrix3	format.

Parameters:
float	*ang
The	Euler	angles	to	convert.	The	expected	format	is	based	on	the	type
parameter	below.
Matrix3	&mat
The	matrix	result	is	stored	here.
int	type
This	parameter	specifies	the	order	of	application	of	the	angles.	One	of	the
following	values:

EULERTYPE_XYZ
EULERTYPE_XZZ
EULERTYPE_YZX
EULERTYPE_YXZ
EULERTYPE_ZXY
EULERTYPE_ZYX
EULERTYPE_XYX
EULERTYPE_YZY
EULERTYPE_ZXZ
Note:	Internally,	3ds	max	uses	static	coordinate	frames.	OR	in	the

EULERTYPE_RF	bit	if	you	have	a	special	need	to	use	a	rotating
coordinate	frame.	This	is	described	in	Ken	Shoemake's	paper	in	Graphic
Gems	IV,	pp.	222-229.

Function:
void	QuatToEuler(Quat	&q,	float	*ang,	int	type,	BOOL	b=FALSE);

Remarks:
Converts	the	quaternion	to	Euler	angles.	When	converting	a	quaternion	to
Euler	angles	using	this	method,	the	correct	order	of	application	of	the	resulting
three	rotations	is	specified	by	the	type	parameter.

Parameters:
Quat	&q
The	quaternion	to	convert.
float	*ang
The	angles	are	returned	here	in	the	same	order	as	specified	by	type	(for
example	EULERTYPE_XYZ	would	be	ang[0]=x,	ang[1]=y,	ang[2]=z.)
int	type
This	parameter	specifies	the	order	of	application	of	the	angles.	One	of	the
following	values:

EULERTYPE_XYZ
EULERTYPE_XZZ
EULERTYPE_YZX
EULERTYPE_YXZ
EULERTYPE_ZXY
EULERTYPE_ZYX
EULERTYPE_XYX
EULERTYPE_YZY
EULERTYPE_ZXZ
Note:	Internally,	3ds	max	uses	static	coordinate	frames.	OR	in	the
EULERTYPE_RF	bit	if	you	have	a	special	need	to	use	a	rotating
coordinate	frame.	This	is	described	in	Ken	Shoemake's	paper	in	Graphic
Gems	IV,	pp.	222-229.

BOOL	b=FALSE
This	parameter	is	available	in	release	4.0	and	later	only.

When	this	argument	is	set	to	false	(or	omitted),	each	function	performs	as	it
did	before	version	4.0.	When	the	boolean	is	TRUE,	the	matrix	is	made	with	its
terms	transposed.	When	this	transposition	is	specified,	EulerToQuat()	and
QuatToEuler()	are	consistent	with	one	another.	(In	Shiva,	they	have
opposite	handedness).

Function:
void	EulerToQuat(float	*ang,	Quat	&q,	int	type);

Remarks:
Converts	Euler	angles	to	a	quaternion.

Parameters:
Quat	&q
The	quaternion	result	is	returned	here.
float	*ang
The	angles	are	specified	in	the	same	order	as	specified	in	the	application	(for
example	EULERTYPE_XYZ	would	be	ang[0]=x,	ang[1]=y,	ang[2]=z.)
int	type
This	parameter	specifies	the	order	of	application	of	the	angles.	One	of	the
following	values:

EULERTYPE_XYZ
EULERTYPE_XZZ
EULERTYPE_YZX
EULERTYPE_YXZ
EULERTYPE_ZXY
EULERTYPE_ZYX
EULERTYPE_XYX
EULERTYPE_YZY
EULERTYPE_ZXZ
Note:	Internally,	3ds	max	uses	static	coordinate	frames.	OR	in	the
EULERTYPE_RF	bit	if	you	have	a	special	need	to	use	a	rotating
coordinate	frame.	This	is	described	in	Ken	Shoemake's	paper	in	Graphic
Gems	IV,	pp.	222-229.

Handling	Sign	Flips	when	Converting	a	Rotation	Controller	to	an

Euler	Controller
When	converting	any	rotation	controller	to	an	Euler	controller	it	is	possible	for
sign	flips	to	occur	in	the	resulting	animation.	This	is	due	to	the	fact	that	one
single	rotation	matrix	can	be	expressed	through	many	different	triplets	of	Euler
angles.	Sometimes	the	produced	Euler	angles	are	not	interpolatable.	There	is
code	in	the	SDK	which	solves	this	problem.	It	samples	the	whole	animation
range	and	produces	Euler	angles	that	result	in	the	same	animation	as	the	original,
if	interpolated.	This	code	is	generally	valuable	for	developers	who	want	to
convert	keys	of	any	type	of	3ds	max	controller	that	uses	quaternions	internally
into	a	Euler	angle	keys	(for	example	an	export	plug-in).
The	code	can	be	found	in
\MAXSDK\SAMPLES\CONTROLLERS\EULRCTRL.CPP	in	the
method	void	EulerRotation::Copy(Control	*from).	The	algorithm	works
as	follows:
The	code	samples	the	entire	animation	range	and	incrementally	adds	up	the
angles	for	each	time	step.	During	resampling	it	detects	possible	sign	flips	by
comparing	the	Euler/Quat	ratio	of	two	successive	time	steps.	The	Euler/Quat
ratio	is	the	relation	of	the	angle	difference	in	Euler	space	to	the	angle	difference
in	Quat	space.	If	this	ratio	is	bigger	than	PI	the	rotation	between	the	two	time
steps	contains	a	flip.	The	Euler/Quat	ratio	can	be	determined	using	the	SDK
functions	GetEulerQuatAngleRatio()	or	GetEulerMatAngleRatio()	(see
below).	If	a	flip	is	detected	the	algorithm	calculates	the	actual	angle	not
containing	a	flip	and	adds	it	to	the	incremental	angle.
The	actual	detection	of	the	flip	is	dependent	on	the	amount	of	rotation	in
between	the	time	steps.	It	is	obvious,	that	the	smaller	the	time	step,	the	more
accurate	the	detection	is.	In	the	code	described	above	a	time	step	of	1	tick	is
used,	which	is	most	accurate,	but	also	most	time	intensive.	The	THRESHHOLD
value	describes	the	maximum	intented	rotation	allowed	between	two	time
increments.	In	the	code	described	above	the	THRESHHOLD	is	1.0	which	is
equal	to	57	degrees	of	rotation	(a	lot	of	rotation	for	one	tick).

Function:
float	GetEulerQuatAngleRatio(Quat	&quat1,Quat	&quat2,	float
*euler1,	float	*euler2,	int	type	=	EULERTYPE_XYZ);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.

The	Euler/Quat	ratio	is	the	relation	of	the	angle	difference	in	Euler	space	to
the	angle	difference	in	Quat	space.	If	this	ratio	is	bigger	than	PI	the	rotation
between	the	two	time	steps	contains	a	flip.	See	the	description	above	for
details.

Parameters:
Quat	&quat1
The	'previous'	rotation.
Quat	&quat2
The	'current'	rotation.
float	*euler1
The	'previous'	rotation	as	an	euler	angle.
float	*euler2
The	'current'	rotation	as	an	euler	angle.
int	type	=	EULERTYPE_XYZ
This	parameter	specifies	the	order	of	application	of	the	angles.	One	of	the
following	values:

EULERTYPE_XYZ
EULERTYPE_XZZ
EULERTYPE_YZX
EULERTYPE_YXZ
EULERTYPE_ZXY
EULERTYPE_ZYX
EULERTYPE_XYX
EULERTYPE_YZY
EULERTYPE_ZXZ

Return	Value:
The	Euler/Quat	ratio	between	the	time	steps.

Function:
float	GetEulerMatAngleRatio(Matrix3	&mat1,Matrix3	&mat2,
float	*euler1,	float	*euler2,	int	type	=	EULERTYPE_XYZ);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
The	Euler/Matrix	Angle	ratio	is	the	relation	of	the	angle	difference	in	Euler
space	to	the	angle	difference	in	Matrix	space.	If	this	ratio	is	bigger	than	PI	the

rotation	between	the	two	time	steps	contains	a	flip.	See	the	description	above
for	details.

Parameters:
Matrix3	&mat1
The	'previous'	rotation.
Matrix3	&mat2
The	'current'	rotation.
float	*euler1
The	'previous'	rotation	as	an	euler	angle.
float	*euler2
The	'current'	rotation	as	an	euler	angle.
int	type	=	EULERTYPE_XYZ
This	parameter	specifies	the	order	of	application	of	the	angles.	One	of	the
following	values:

EULERTYPE_XYZ
EULERTYPE_XZZ
EULERTYPE_YZX
EULERTYPE_YXZ
EULERTYPE_ZXY
EULERTYPE_ZYX
EULERTYPE_XYX
EULERTYPE_YZY
EULERTYPE_ZXZ

Return	Value:
The	Euler/Matrix	Angle	ratio	between	the	time	steps.

Schematic	View
See	Also:	Class	IGraphObjectManager,	Class	IGraphNode,	Class	Animatable.
Class	SubClassList.

Overview
The	Schematic	View	window	allows	3ds	max	users	to	browse,	and	perform
certain	operations	on,	many	of	the	objects	that	compose	a	3ds	max	scene.	Like
Track	Views,	multiple	Schematic	Views	can	be	opened	within	MAX,	both	in
modeless	windows	and	docked	in	viewports.
Within	a	Schematic	View	window,	a	subset	of	the	set	of	all	Animatable	objects
within	the	3ds	max	scene	is	represented	by	a	collection	of	rectangular	"nodes."
These	nodes	are	organized	in	tree	form	(or	directed	acyclic	graph).	The	set	of
objects	displayed	depends	on	the	current	filter	settings,	the	hide/show	state	of	the
nodes,	and	which	objects	were	added	to	the	Schematic	View	during	the	traversal
phase.	Schematic	View	is	a	GlobalReferenceMaker	and	any	time	it	detects	a
change	in	the	structure	of	the	3ds	max	scene	it	performs	a	traversal	of	the	scene’s
object	network	and	updates	the	Schematic	View	graph.	During	the	traversal,	the
actual	Animatable	objects	(object’s	derived	from	Animatable)	are	responsible	for
adding	themselves	to	the	Schematic	View	and	continuing	the	traversal	by
recursively	calling	SvTraverseAnimGraph(...).	In	practice,	many	objects	in
the	scene	are	not	added	to	the	schematic	view.	In	general,	these	omitted	objects
are	either	internal	data	structures	that	might	confuse	the	user	if	displayed	or	they
are	objects	whose	shear	quantity	might	overwhelm	the	user	(vertices,	for
example).	Furthermore,	although	the	Schematic	View	requires	that	the
represented	objects	be	derived	from	Animatable,	there	are	very	few	restrictions
on	the	reference	pointers	between	objects	(called	"node	pointers"	in	this	section
to	distinguish	them	from	3ds	max	references).	In	particular,	node	pointers	need
not	necessarily	correspond	to	actual	3ds	max	references	(though	in	practice	they
usually	do).	This	flexibility	allows	the	schematic	view	to	represent	object
relationships	in	a	manner	different	from	the	actual	internal	reference
relationships.	This	can	be	useful	in	places	where	the	internal	structure	does	not
agree	with	the	user’s	notion	of	how	the	objects	are	structured	(e.g.,	a	linked	list
displayed	as	siblings	under	a	parent	node,	or	vice-versa).

Topology
The	topology	of	the	objects	added	to	the	schematic	view	must	be	a	directed
acyclic	graph	(DAG).	Cyclic	references	are	currently	not	allowed.
Currently,	nodes	in	the	schematic	view	are	arranged	in	tree	form	even	if	the
underlying	topology	is	a	DAG.	This	is	accomplished	by	duplicating	shared
nodes	in	the	DAG.	The	DAG	is	essentially	"flattened"	into	a	tree.	This	is	also
how	the	track	view	works	but,	as	will	be	explained	in	detail	later,	the	schematic
view	stores	additional	information	about	the	context	of	"shared"	nodes	which
allows	greater	insight	into	instance	relationships	in	the	tree	(multiple	objects
referencing	a	common	node).

The	Schematic	View	API
There	currently	are	three	interfaces	into	the	schematic	view	objects.
IGraphObjectManager,	IGraphNode,	and	IGraphRef.
IGraphObjectManager	essentially	represents	an	instance	of	a	schematic
view	window	and	provides	methods	for	adding	nodes	and	node	pointers,
refreshing	the	schematic	view,	accessing	filter	bits	and	updating	and	controlling
the	various	editors	within	3ds	max	in	ways	that	are	not	surfaced	in	the	general
interface.	IGraphNode	represents	a	node	in	the	schematic	view	graph	and
provides	a	few	methods	for	querying	information	about	the	node.	Finally,
IGraphRef	represents	a	node	pointer	and,	currently,	has	no	methods.	Each	of
these	three	interfaces	is	described	in	greater	detail	below.
In	addition	to	the	three	schematic	view	interfaces,	there	is	a	set	of	methods	in
Animatable	that	can	be	overridden,	all	or	in	part,	to	specialize	the	behavior	of
the	schematic	view	node(s)	which	represents	the	Animatable	object.	Most	of
these	methods	are	appropriately	implemented	for	the	various	abstract	base
classes	from	which	plug-in	developers	derive	their	classes.	In	most	cases,	there
is	no	need	for	the	plug-in	developer	to	override	any	of	these	methods.	All	of	the
schematic	view	Animatable	methods	are	prefixed	by	"Sv".	In	addition	to	the
"Sv"	methods,	there	are	a	half	dozen	or	so	"Sv"	prefixed	functions	in
Animatable	which	are	called	to	perform	various	schematic	view	related	tasks.
They	are	implemented	in	Animatable	instead	of	IGraphNode	because	they
are	more	closely	associated	with	the	Animatable	than	with	the	graph	node	or
because	they	are	called	in	places	where	the	IGraphNode	and
IGraphObjectManager	interfaces	are	not	available.
Taken	as	a	whole,	the	three	interfaces	(IGraphObjectManager,
IGraphNode,	and	IGraphRef)	along	with	the	"Sv"	Animatable	methods
and	functions	represent	about	95%	of	the	complete	schematic	view	API	and
100%	of	the	public	(plug-in	developer)	API.	The	other	5%	or	so	represents	a
small	collection	of	functions	scoped	to	the	application	and	an	interface,
ISchematicView,	which	is	used	by	the	application	code	to	control	the	schematic
view	window.
In	general,	the	IGraphObjectManager,	IGraphNode,	and	IGraphRef
interfaces	are	not	accessible	to	plug-ins	outside	of	the	scope	of	the	Animatable
"Sv"	methods	and	should	not	be	cached	by	the	plugin.

Overview	of	the	Chain	of	Events	in	Schematic	View
The	events	that	occur	in	the	schematic	view	are	either	generated	by	the	user
(clicking	on	a	node,	etc.)	or	transmitted	to	the	schematic	view	via	a
GlobalReferenceMaker::NotifyRefChanged(...)	message.
In	response	to	these	events,	the	schematic	view	performs	one	or	more	of	the	"Sv"
methods	on	the	effected	nodes.	The	IGraphObjectManager,	IGraphNode,
and	IGraphRef	interfaces	are	passed	to	the	"Sv"	methods	where	appropriate.
The	"Sv"	methods	perform	some	action	and/or	return	some	value	and/or	call	one
or	more	methods	in	the	passed	schematic	view	interface(s).
For	example,	the	user	selects	a	modifier	in	the	schematic	view	and	hits	the
"Delete"	key.	In	response	to	the	delete	request,	the	schematic	view	calls	the
"bool	SvRemoveThis(IGraphObjectManager	*gom,	IGraphNode
*gNode)"	method	in	Modifier	which,	in	turn,	calls	the
"DeleteModifier(IGraphNode	*gNode)"	method	in	the
IGraphObjectManager	interface.

Snapping
See	Also:	Class	Osnap,	Class	IOSnapManager,	Class	HitMesh,	Class	OsnapHit,
Class	OsnapMarker,	Structure	SnapInfo,	Class	Interface,	Class	ViewExp.

Overview
This	topic	presents	information	on	object	snapping	in	MAX.	Objects	snaps	are	a
plug-in	type	that	allow	objects	to	provide	the	3ds	max	snapping	system	with
additional	points	that	may	be	snapped	to.	For	example,	the	built	in	snap	system
provides	the	ability	to	snap	to	points	such	as	vertices,	endpoints,	midpoints,	etc.
A	developer	of	a	procedural	sphere	object	might	want	to	provide	additional
snaps	for	center	point	and	quadrant	points.	By	deriving	a	class	from	Osnap	and
implement	its	methods	a	developer	can	seamlessly	provide	this	functionality	in
MAX.
The	3ds	max	scene	has	a	single	object	called	the	Osnap	Manager.	At	3ds	max
startup	it	will	load	any	object	snap	plug-ins	(those	with	a	DLS	extension).
Object	snap	plug-ins	are	derived	from	class	Osnap.	This	class	has	various
methods	that	allow	the	system	to	query	it	about	potential	objects	to	be	snapped
to.	That	is,	when	3ds	max	is	traversing	the	scene	doing	a	hit	test	the	Osnap
Manger	will	call	each	of	the	plug-ins	to	snap	against	a	particular	node.	The
Osnap	class	has	a	method	that	allows	it	to	tell	the	Osnap	Manager	if	it	wants	to
snap	to	the	specified	object	type	based	on	its	Super	Class	ID	and	Class	ID.	For
example,	NURBS	snaps	only	respond	to	NURBS	objects.	Tangent	and
Perpendicular	snaps	only	respond	to	Spline	objects.	If	the	object	snap	plug-ins
do	want	to	snap	to	the	object	type,	they	can	register	a	set	of	points	to	snap	to.	For
instance,	the	sphere	above	would	register	the	center	and	quadrant	points.
This	system	allows	developers	to	implement	very	specific	snapping	behaviors.
For	example,	a	door	object	might	have	a	special	snap	mode	that	always	snaps	to
the	hinge	point.

Principal	Classes
The	following	are	the	main	classes	associated	with	creating	object	snap	plug-ins.
Class	Osnap
This	is	the	base	class	for	creating	osnap	plug-ins.	Conceptually,	the	osnap
class	represents	a	"rule"	for	locating	points	in	an	object’s	local	space.
Typically,	an	instance	of	this	class	will	only	make	sense	for	certain	object
types.	It’s	the	job	of	the	ValidInput()	method	to	filter	out	uninteresting	nodes
in	the	scene.	When	the	scene	is	traversed,	each	object	which	passes	the	input
test	will	be	passed	into	the	Snap()	method.	This	method	is	the	workhorse	of
object	snap	plug-ins	and	is	responsible	for	computing,	allocating	and
recording	its	hits.

Class	IOsnapManager
This	class	provides	an	interface	to	the	Osnap	Manager.	Developers	who
implement	osnaps	need	to	record	hits	with	the	osnap	manager.

Class	OsnapHit
This	class	encapsulates	the	data	required	to	record	a	snapped	point.	Typically	a
plug-in	creates	instances	of	this	class	and	records	them	with	the	Osnap	Manager.
If	a	snap	plug-in	needs	to	record	additional	data	for	its	hits,	it	should	derive	from
this	class	and	provide	a	clone	method	which	copies	this	additional	data	and	calls
the	base	classes	clone	method.
Class	OsnapMarker
This	class	is	used	for	drawing	osnap	markers	in	the	viewports.	The	marker	is
drawn	as	a	polyline.	The	Osnap	class	must	implement	the	GetMarkers()
method	which	typically	returns	pointers	to	these	static	instances.
Class	HitMesh
This	is	a	class	to	hold	a	list	of	object	space	points	for	highlighting	the
geometry	associated	with	a	hit.	In	practice,	developers	need	only	implement
two	methods	of	this	class.

Class	Interface
There	are	several	methods	in	this	class	related	to	object	snap.	The	most
important	one	returns	a	pointer	to	the	Osnap	Manager.	See	Interface	Osnap
Methods.

Handling	Snap	Preview	and	Point	Snap	in	Creation	Procedures
The	ViewExp::SnapPoint()	method	has	been	enhanced	in	3ds	max	2.0	to
work	with	the	new	object	snap	system.	A	change	that	developers	will	need	to
make	is	that	any	mouse	procs	which	will	be	calling	ViewExp::SnapPoint()
will	need	to	add	a	call	to	ViewExp::SnapPreview()	as	in	the	following	code
fragment	from	\MAXSDK\SAMPLES\OBJECTS\CYL.CPP.
int	CylinderObjCreateCallBack::proc(ViewExp	*vpt,int	msg,	int
point,
int	flags,	IPoint2	m,	Matrix3&	mat)	{

float	r;
if	(msg	==	MOUSE_FREEMOVE)	{
vpt->SnapPreview(m,m,NULL,	SNAP_IN_3D);
}
if	(msg==MOUSE_POINT||msg==MOUSE_MOVE)	{
switch(point)	{
case	0:
ob->suspendSnap	=	TRUE;
sp0	=	m;
p[0]	=	vpt->SnapPoint(m,m,NULL,SNAP_IN_3D);
.	.	.

Sample	Code
Some	simple	sample	code	provided	in	the	SDK	for	demonstrating	object	snap	is
the	sphere	object	snap	plug-in.	It	provides	two	additional	snaps	to	MAX.	These
are	the	center	of	the	sphere	and	the	quadrant	points	on	the	sphere.	This	code	is
available	in	\MAXSDK\SAMPLES\SNAPS\SPHERE\SPHERE.CPP.
The	main	code	where	snapping	is	handled	for	Geometric	Objects,	Shape
Objects,	Cameras,	Lights	and	Helpers	is	available	in
\MAXSDK\SAMLES\SNAPS\XMESH\XMESH.CPP.

Space	Warp	Plug-Ins
See	Also:	Class	Modifier,	Class	ModContext,	Class	WSMObject,	Class
WSMModifier.
In	addition	to	Object	Space	Modifiers	(such	as	Bend,	Taper,	Skew,	etc.),	3ds	max
supports	another	type	of	modifier	referred	to	as	a	Space	Warp.	Another	name	for
this	type	of	modifier	is	a	World	Space	Modifier.	Example	space	warps	are
Ripple,	Wave	and	Bomb.
A	World	Space	Modifier	(WSM)	has	two	components:	A	WSM	Object	and	a
WSM	Modifier.	A	WSM	object	is	just	another	type	of	procedural	object	(derived
from	WSMObject).	It	exists	in	the	scene	and	can	have	modifiers	(including
other	WSMs)	applied	to	it.	When	an	item	is	bound	to	a	WSM	object,	a	WSM
modifier	(derived	from	Modifier	or	WSMModifier)	is	created	and	inserted	in
the	object's	history.
World	space	modifiers	are	very	similar	to	regular	object	space	modifiers	--	in
fact,	they	are	derived	from	the	same	base	class:	Modifier.	They	have	a	mod	app
that	is	actually	in	the	pipeline	that	refers	to	the	modifier,	although	WSM
modifiers	aren't	instanced.	When	a	user	binds	more	than	one	object	to	a	WSM
object	at	once,	a	unique	WSM	modifier	is	created	for	each	object	so	there	is	a
one	to	one	correspondence	between	WSM	modifiers	and	their	mod	apps.	This	is
done	because	a	WSM	modifier	may	contain	parameters	specific	to	that
application	of	the	modifier.	For	example,	the	Ripple	world	space	modifier	has	a
'Flexibility'	parameter	which	allows	the	affect	of	the	Ripple	to	be	scaled	on	a	per
application	basis.
The	main	difference	between	a	regular	object	space	modifier	and	a	WSM
modifier	is	that	WSM	modifiers	usually	have	a	reference	to	the	WSM	object's
node.	Also,	WSM	modifiers	are	applied	after	the	object	has	been	transformed
into	world	space.
A	WSM	modifier	references	its	corresponding	WSM	object's	node	so	it	can	get
the	node's	world	space	transformation	matrix.	It	uses	this	matrix	to	transform	the
points	of	the	object	it	is	deforming	into	the	space	of	the	WSM	object	where	it
actually	performs	the	deformation.	After	the	deformation	is	applied,	the	points
are	transformed	back	to	world	space.	This	is	similar	to	the	way	object	space
modifiers	transform	their	points	into	the	space	defined	by	the	ModContext
transformation	matrix	--	however	this	space	is	defined	by	the	WSM	object's
node.	So	in	general,	if	an	object's	node	is	moved,	the	object	appears	to	move

through	the	deformation	field	defined	by	the	WSM	object	it	is	bound	to.	If	the
WSM	object	moves,	a	similar	effect	is	apparent.	Of	course,	if	an	object	and	the
WSM	object	it	is	bound	to	move	together	(if	one	is	a	child	of	the	other,	for
example)	then	the	affect	appears	to	be	more	like	an	object	space	modifier.
Also	of	note	is	that	WSM	modifiers	(actually	their	mod	apps)	live	in	special
world	space	derived	objects.	These	are	similar	to	the	derived	objects	that	hold
object	space	modifier	mod	apps,	except	that	these	are	contained	in	a	specific
node.	Since	they	are	associated	with	a	specific	node,	they	cannot	be	instanced.
There	are	two	places	where	WSM	user	interface	parameters	can	appear:
	In	the	parameters	of	the	WSM	object.	Any	centralized	parameters	should	be
contained	in	the	WSM	object.	Since	WSM	modifiers	are	never	instanced,	any
parameters	that	the	user	would	want	to	change	and	affect	all	objects	bound	to
the	WSM	would	belong	here.	For	example,	the	Ripple	WSM	has	its
Amplitude,	Phase,	WaveLength	and	Decay	parameters	in	the	WSM	Object.
	In	the	parameters	of	the	WSM	modifier.	These	parameters	are	specific	to	the
object	bound	to	the	WSM.	For	example,	Ripple	has	its	flexibility	parameter
here.	Often	time	these	modifiers	won't	need	to	have	any	parameters	at	all.	An
example	might	be	a	dynamics	WSM	that	has	modifier	parameters	for	the
objects	mass	and	surface	characteristics.

Style	Guidelines	for	Creating	Pipeline-Friendly
Meshes
See	Also:	Working	with	Meshes,	Class	MNMesh.
3ds	max	meshes	allow	the	developer	a	great	deal	of	flexibility.	There	are	very
few	rules.	Meshes	can	have	holes	in	them,	such	as	you	get	when	deleting	any
face	from	a	box	or	a	sphere.	They	may	be	composed	of	separate,	disconnected
units,	which	may	even	self-intersect.	A	'fan'	of	10	faces	can	use	the	same	edge,
simply	by	using	the	same	two	vertices.	A	grid	may	be	created	which	is	simply	a
2-D	collection	of	points	with	one	set	of	faces	pointing	up	and	another	pointing
down.
However,	not	all	of	the	possible	meshes	are	appropriate	for	operations	that	may
be	done	to	them	later	in	the	3ds	max	pipeline.	For	instance,	the	3ds	max
Boolean,	like	any	other	Boolean,	regards	meshes	as	the	outside	boundary	of
solid	objects.	A	Boolean	intersection,	for	instance,	is	defined	by	the	intersection
of	the	volumes	contained	by	the	two	operands.	A	mesh	with	a	hole	in	it,	such	as
the	teapot,	contains	no	volume,	and	therefore	produces	surprising	results	in
Boolean.
Furthermore,	Boolean,	like	several	other	compound	objects	and	modifiers,
converts	meshes	internally	into	MNMeshes.	The	MNMesh	winged-edge
structure	can	only	handle	2	faces	on	a	single	edge,	so	the	'fan'	described	above
gives	it	some	difficulty.	A	mesh	that	doesn’t	gracefully	convert	to	an	MNMesh
won’t	always	behave	as	expected	in	MeshSmooth,	Tesselate,	ShapeMerge,
Connect,	Boolean,	Slice,	and	possibly	many	more	to	come.
Also,	if	a	mesh	is	not	constructed	in	a	straightforward	manner,	the	user	may
experience	some	difficulty	working	with	it	in	modifiers	such	as	Edit	Mesh.	Of
course,	the	user	can	construct	very	strange	meshes	themselves	in	Edit	or	Editable
Mesh,	but	it’s	best	if	parametric	objects	and	modifiers	avoid	introducing	this	sort
of	complexity	when	it	isn’t	needed.
To	that	end,	the	following	style	guidelines	for	creating	pipeline-friendly	meshes
in	3ds	max	are	presented.	None	of	these	are	hard-and-fast	rules,	but	the	more
you	are	able	to	follow,	the	more	flexible	your	mesh	will	be	within	the	3ds	max
environment.
1.	Reference	each	edge	at	most	once	in	each	direction.

3ds	max	meshes	don’t	really	have	edges,	so	what	this	means	is	that	if	you	use

the	vertices	(a,b)	in	a	face,	you	should	only	have	one	other	face	that	uses
both	of	these	vertices,	and	it	should	reference	them	in	the	other	direction
(b,a).	This	other	face	is	the	'other	side'	of	the	edge	(a,b).	If	the	same	edge	is
used	more	than	twice,	or	more	than	once	in	the	same	direction,	MeshSmooth
and	other	MNMesh-based	effects	have	to	compensate	by	duplicating	the
vertices	used	in	the	edge,	once	for	each	extra	face	using	this	edge.

Figure	1A:	Typical	use	of	an	edge
Face	0,	which	has	vertices	(0,3,2),	uses	the	hidden	edge	in	the	(0,3)	direction.
Face	1,	with	vertices	(0,1,3),	uses	the	same	edge	in	the	(3,0)	direction.	The
other	edges	are	'1-sided',	since	there’s	no	face	on	their	other	side.

Figure	1B:	Overuse	of	an	edge
The	face	on	the	left	uses	the	central	edge	in	the	(7,1)	direction;	the	other	5
use	it	in	the	(1,7)	direction.	This	can	be	inconvenient	for	the	user	and	for
many	pipeline	modifiers.	Also,	it	generally	doesn’t	respond	well	to
smoothing	groups.
Another	situation	in	which	edges	are	referenced	too	many	times	is	when	a
zero-thickness	mesh	is	constructed,	with	faces	on	both	sides.

The	above	two	views	show	the	same	zero-thickness	mesh,	with	9	points,	that
has	faces	representing	both	the	front	and	back.	The	edges	connecting	the
outside	to	the	central	point	are	used	twice	by	front-facing	faces	and	twice	by
back-facing	edges.	This	also	can	cause	problems	in	the	pipeline.
Additionally,	some	systems	may	not	display	edges	properly,	as	shown	above
at	right:	the	edge	connecting	the	top	middle	and	base	middle	vertices	should
be	visible,	but	doesn’t	show	up	because	both	the	front-facing	and	back-facing
faces	have	the	same	Z-depth.

2.	Avoid	self-intersection
For	an	example	of	self-intersecting	meshes,	we	need	look	no	further	than	the
standard	3ds	max	primitive	Teapot.	Each	of	the	four	Teapot	components	is	a
separate	mesh	element,	but	the	handle	and	spout	elements	both	intersect	the
main	body.	Even	if	this	mesh	is	closed	with	the	CapHoles	modifier,	it	causes
trouble	for	Booleans	because	once	again,	what	is	'inside'	and	what	is	'outside'
the	teapot	isn’t	very	well	defined.
For	an	alternative	to	self-intersection,	when	(as	in	the	teapot)	computing	the
proper,	connected	result	would	be	taxing,	you	may	want	to	use	the	Boolean

itself	within	the	SDK.	If	separate	mesh	elements	are	closed	and	otherwise
acceptable	to	Boolean,	you	can	just	Union	them	together.	Boolean	is	a	bit
slow,	however,	and	there	are	still	some	known	cases	where	it	actually
produces	an	open	result.	See	the	MakeBoolean	method	in	class	MNMesh
(MNMesh	Boolean	Operations).

3.	Avoid	creating	faces	with	vertices	located	at	the	same	place.
A	face	referencing	the	same	vertex	twice,	or	two	different	vertices	located	in
the	same	place,	makes	no	contribution	to	your	mesh	and	can	interfere	with
display	and	rendering.	Also,	it	confuses	algorithms	that	traverse	faces,	such
as	ShapeMerge	or	Editable	Mesh’s	new	Cut	function.	Finally,	Edit	Mesh
users	can	find	it	very	frustrating	to	have	to	sort	through	multiple	vertices	at
the	same	location	in	order	to	move	the	one	they	want.

4.	Try	not	to	'bridge'	separate	mesh	components	with	a	single	vertex.

The	above	two	boxes	share	a	single	vertex,	which	is	selected.	Such	vertices
are	split	by	MNMesh	conversions.	MNMesh	effects	deal	with	such
vertices	adequately,	but	the	duplication	is	occasionally	a	surprise.

5.	If	a	mesh	looks	like	a	single	element,	it	probably	should	be.
A	user	shouldn’t	be	able	to	take	what	looks	like	a	single	object	apart	by
moving	'element'	selections	in	Edit	Mesh.	If	a	model	looks	like	a	box,	it
shouldn’t	behave	like	a	collection	of	6	separate	faces.	This	will	give	the	user
more	reasonable	results	not	only	in	modifiers	like	MeshSmooth,	but	also
when	they	edit	the	object	in	Edit	Mesh.

6.	Whenever	convenient,	close	your	meshes.
A	'closed'	mesh	is	one	in	which	every	edge	has	exactly	two	faces:	one	on
each	side.	Closed	meshes	represent	3-dimensional	objects.	Open	meshes	are
mere	shells.	Closed	objects	respond	well	to	Boolean	operations;	open	ones

can’t,	since	there’s	no	way	for	the	Boolean	to	know	which	parts	of	operand	A
are	supposed	to	be	'inside'	operand	B,	and	vice	versa.	Closed	meshes	have
measurable	volume;	open	ones	do	not.
This	style	point	is	less	important	than	the	others,	because	users	are	used	to
dealing	with	it.	Any	user	who	has	models	in	Editable	Mesh,	for	instance,
deletes	faces	and	constructs	new	ones	all	the	time.	However,	avoid	catching
users	off-guard:	try	not	to	leave	tiny	holes	that	can’t	be	seen,	say	by	putting
open	edges	very	close	to	each	other.	Users	may	not	see	them,	but	any	hole
will	cause	problems	in	pipeline	effects	that	depend	on	solid,	closed	meshes,
and	may	affect	rendering	adversely.

Sub-Anims
See	Also:	Track	View,	Class	Animatable,	Parameter	Blocks.

Overview
In	the	SDK	the	term	anim	refers	to	something	derived	from	class	Animatable.
This	anim	can	be	anything	such	as	a	node,	object,	controller,	material,	texmap,
parameter	block,	etc.	Further,	any	item	that	has	sub-items	has	what	are	referred
to	as	sub-anims.	This	hierarchy	of	items,	the	parent	item	and	it's	sub-items,	is
referred	to	as	the	sub-anim	hierarchy.	The	sub-anim	hierarchy	can	be	thought	of
as	the	Track	View	hierarchy.
Below	is	a	partial	screen	capture	of	Track	View	showing	a	few	anims	and	their
sub-anims.

For	example,	a	node	has	six	sub-anims.	These	are:	Space	Warp	Bindings,	the
Transform	Controller,	the	Object	Reference	of	the	node,	the	Material,	the
Visibility	Controller,	the	Image	Motion	Blur	Controller.	If	a	node	does	not	have
some	of	these	assigned	(for	example	the	material	and	visibility	controller)	these
sub-anims	are	NULL.	Any	sub-anims	that	are	NULL	don't	appear	in	Track	View.

In	the	example	above,	the	node	Box01	has	two	sub-anims	that	are	non-NULL:
the	transform	controller	(labeled	Transform)	and	the	object	reference	(labeled
Object(Box)).	The	other	node,	Box02,	has	three	non-NULL	sub-anims.	These
are	the	transform	controller	(Transform),	the	derived	object	(Modified
Object),	and	the	Material	(Material01).
Note	that	sub-anims	may	have	sub-anims	themselves.	This	can	be	seen	in	the
parameters	of	Box01	sub-anim	Object(Box).	Procedural	objects	derived	from
SimpleObject	(like	Object(Box))	have	a	single	sub-anim	and	that	is	the
parameter	block.	The	box's	parameter	block	has	six	sub-anims	(Length,	Width,
etc.).	Note	also	that	the	node	Box02	sub-anim	Material	#1	has	sub-anims	of
its	own.	These	are	its	parameters	and	its	texture	maps.
Sub-Anims	are	often	the	animatable	parameters	of	a	plug-in.	In	3ds	max	any
animated	parameter	has	a	controller	to	control	the	animation.	The	controller	for	a
parameter	appears	in	the	track	view.	This	allows	the	user	to	view	the	animation
associated	with	a	parameter	in	several	formats	such	as	in	key	frames,	as	a	range
of	time	over	which	the	animation	takes	place,	and	graphically	as	a	function
curve.
3ds	max	accesses	the	sub-anims	of	a	plug-in	using	a	virtual	array	mechanism.
That	is,	each	sub-anim	is	given	an	index	and	is	accessed	by	a	method	that
returns	a	pointer	to	the	'i-th'	sub-anim.	These	methods	are
Animatable::NumSubs(),Animatable::SubAnim(i)	and
Animatable::SubAnimName(i).

Methods
The	plug-in	can	store	its	parameters	in	any	way	it	chooses.	When	the	system
needs	to	access	a	parameter,	it	passes	the	plug-in	an	index	and	the	plug-in	returns
the	parameter	it	has	assigned	to	that	index.	Below	is	a	description	of	the	three
methods	associated	with	sub-anims.
virtual	int	NumSubs();
This	method	returns	the	total	number	of	sub-anims	maintained	by	the	plug-in.
If	a	plug-in	is	using	a	parameter	block	to	manage	its	parameters	it	should	just
return	1	for	all	those	parameters.	Below	is	the	SimpleMod	implementation	of
this	method.	It	returns	3	as	it	has	a	controller	for	the	Center,	the	Gizmo,	and	a
parameter	block.
int	NumSubs()	{return	3;}
virtual	Animatable*	SubAnim(int	i);
This	method	returns	a	pointer	to	the	'i-th'	sub-anim.	If	a	plug-in	is	using	a
parameter	block	to	manage	all	of	its	parameters	it	should	just	return	a	pointer
to	the	parameter	block	itself	from	this	method.	Below	is	the	SimpleMod
implementation	of	this	method.
Animatable*	SimpleMod::SubAnim(int	i)

	{
	switch	(i)	{
		case	0:	return	posControl;	//	Center
		case	1:	return	tmControl;	//	Gizmo
		case	2:	return	pblock;	//	Parameter	block
		default:	return	NULL;
		}
	}

virtual	TSTR	SubAnimName(int	i);
This	method	returns	the	name	of	the	'i-th'	sub-anim	to	appear	in	track	view.
The	system	has	no	idea	what	name	to	assign	to	the	parameter	(it	only	knows	it
by	the	array	index),	so	this	method	is	called	to	retrieve	one	to	display.	Below
is	the	SimpleMod	implementation	of	this	method.	Note	that	it	returns	a
descriptive	name	for	each	controller,	i.e.	"Center"	for	the	center	mark	position
controller,	and	"Gizmo"	for	the	gizmo	controller.	However	it	just	returns
"Parameters"	for	the	parameter	block.	The	parameter	block	name	itself	does

not	show	up	in	track	view,	only	its	sub-controllers.	This	is	because	the
parameter	block	implements	a	method	that	tells	the	system	to	not	show	it	in
track	view.	This	prevents	the	user	from	having	to	navigate	another	nested	level
to	simply	get	to	the	parameters.
TSTR	SimpleMod::SubAnimName(int	i)

	{
	switch	(i)	{
		case	0:	return	TSTR(_T("Center"));
		case	1:	return	TSTR(_T("Gizmo"));
		case	2:	return	TSTR(_T("Parameters"));
		default:	return	TSTR(_T(""));
		}
	}

Summary
The	sub-anim	hierarchy	of	a	plug-in	corresponds	to	the	Track	View	hierarchy.
Any	non-NULL	sub-anims	that	a	plug-in	has	appear	in	Track	View	as	branches
under	the	parent	item.	A	developer	implements	three	methods	of	the
Animatable	class,	NumSubs(),	SubAnim(i)	and	SubAnimName(i)	to
provide	3ds	max	with	access	to	its	sub-anims.

Sub-Object	Selection
See	Also:	Class	CommandMode,	Class	Interface,	Class	XFormModes,	Class
BaseObject,	Class	Modifier.
Certain	modifiers	may	wish	to	provide	the	system	with	different	levels	of	sub-
object	selection.	The	are	two	general	types	of	sub-object	selection:
	Selection	of	the	modifier's	gizmo.	A	modifier's	gizmo	is	a	visual	representation
in	the	scene	the	user	can	manipulate.	This	can	be	something	as	simple	as	the
3D	box	used	by	the	bend	modifier	or	something	more	complex	like	a	FFD
lattice.	The	Bend	modifier	provides	sub-object	levels	of	Center	and	Gizmo.
	Selection	of	components	of	the	object	flowing	through	the	geometry	pipeline.	If
the	object	in	the	pipeline	is	a	TriObject,	for	example,	the	sub-object	selection
levels	may	be	things	such	as	vertices,	faces,	and	edges.	The	Edit	Spline
modifier	supplies	sub-object	levels	for	Spline,	Segments	and	Vertex.
A	modifier	registers	its	sub-object	selection	levels	when	its
BeginEditParams()	method	is	called.	A	method	of	the	Interface	class	named
RegisterSubObjectTypes()	handles	this.	It	provides	the	system	with	a	list	of
strings.	These	strings	are	the	names	of	the	sub-object	selection	levels	that	will
appear	in	the	Sub-Object	drop	down	list.	For	example,	the	following	code	would
register	two	sub-object	levels,	"Gizmo"	and	"Center".
const	TCHAR	*ptype[]	=	{	"Gizmo",	"Center"	};
ip->RegisterSubObjectTypes(ptype,	2);

When	the	user	presses	the	Sub-Object	button	or	changes	the	selection	in	the	sub-
object	drop	down	list	the	modifier	is	notified.	The	system	calls	the	Modifier's
ActivateSubobjSel()	method.	In	its	implementation	of	this	method	the
modifier	is	expected	to	provide	an	instance	of	a	class	derived	from
CommandMode	to	support	Move,	Rotate,	Uniform	scale,	Non-uniform	scale,
and	Squash.	These	modes	replace	their	object	level	counterparts	although	the
user	still	uses	the	move/rotate/scale	toolbar	buttons	to	activate	these	modes.
Certain	sub-object	levels	may	not	support	all	of	these	modes.	For	example,	the
Bend	modifier	(derived	from	SimpleMod)	has	two	sub-object	levels:	"Gizmo"
and	"Center".	The	Gizmo	level	supports	Move,	Rotate,	Non-uniform	scale,
Uniform	scale	and	Squash	while	the	Center	level	only	supports	Move.	Any
modes	that	the	modifier	does	not	support	will	have	the	corresponding	button
grayed	out	in	the	toolbar.

In	addition	to	move/rotate/scale,	a	plug-in	may	provide	other	modes.	For
instance	the	Edit	Mesh	modifier	has	an	extrude	mode	where	the	user	can	click
and	drag	to	interactively	extrude	faces	of	a	mesh.
Users	will	expect	sub-object	move,	rotate	and	scale	transformations	to	behave
like	their	object	level	counterparts.	To	make	this	very	easy	to	implement,	there
are	a	set	of	standard	modes	defined	by	the	system	that	a	developer	may	use.
These	modes	handle	all	this	logic	internally	--	the	developer	simply	uses	them.
Most	modifiers	will	be	able	to	use	these	modes.	The	sample	code	below
demonstrates	how	the	modes	are	used.	This	example	is	from	the	implementation
of	class	SimpleMod.
In	the	class	declaration	the	mode	pointers	are	defined:
class	SimpleMod	:	public	Modifier	{
	...
	protected:
		static	MoveModBoxCMode	*moveMode;
		static	RotateModBoxCMode	*rotMode;
		static	UScaleModBoxCMode	*uscaleMode;
		static	NUScaleModBoxCMode	*nuscaleMode;
		static	SquashModBoxCMode	*squashMode;
	...

In	the	BeginEditParams()	method	the	modes	are	allocated:
void	SimpleMod::BeginEditParams(IObjParam	*ip,	ULONG
flags,
	Animatable	*prev)
	{
...

	//	Create	sub	object	editing	modes.
	moveMode	=	new	MoveModBoxCMode(this,ip);
	rotMode	=	new	RotateModBoxCMode(this,ip);
	uscaleMode	=	new	UScaleModBoxCMode(this,ip);
	nuscaleMode	=	new	NUScaleModBoxCMode(this,ip);
	squashMode	=	new	SquashModBoxCMode(this,ip);
	...
	}

In	the	method	ActivateSubobjSel()	the	modes	are	activated.	This	method	is
defined	in	BaseObject.
void	SimpleMod::ActivateSubobjSel(int	level,	XFormModes&
modes)
	{
	switch	(level)	{
		case	1:	//	Modifier	box
			modes	=	XFormModes(moveMode,rotMode,nuscaleMode,
				uscaleMode,squashMode,NULL);
			break;
		case	2:	//	Modifier	Center
			modes	=
XFormModes(moveMode,NULL,NULL,NULL,NULL,NULL);
			break;
		}
	...
	}

When	the	item	is	finished	being	edited	the	modes	can	be	deleted:
void	SimpleMod::EndEditParams(IObjParam	*ip,	ULONG	flags,
	Animatable	*next)
	{
	...
	ip->DeleteMode(moveMode);
	ip->DeleteMode(rotMode);
	ip->DeleteMode(uscaleMode);
	ip->DeleteMode(nuscaleMode);
	ip->DeleteMode(squashMode);
	if	(moveMode)	delete	moveMode;
	moveMode	=	NULL;
	if	(rotMode)	delete	rotMode;
	rotMode	=	NULL;
	if	(uscaleMode)	delete	uscaleMode;
	uscaleMode	=	NULL;
	if	(nuscaleMode)	delete	nuscaleMode;

	nuscaleMode	=	NULL;
	if	(squashMode)	delete	squashMode;
	squashMode	=	NULL;
	}

For	a	complete	list	of	the	classes	that	may	be	used	see	List	of	Standard	Sub-
Object	Modes.
Both	the	standard	transformation	modes	and	custom	modes	are	expected	to	treat
sub-object	selection	in	the	same	way	3ds	max	handles	object	selection.	This
means	all	the	keypress	options,	such	as	Ctrl	to	add	to	a	selection	and	Alt	to
subtract	from	a	selection,	should	work	in	the	same	manner.	To	avoid	forcing
plug-in	developers	to	implement	all	this	logic,	a	SelectionProcessor	class	is
provided.	This	class	represents	a	mouse	proc	derived	from	the	MouseCallback
class.	When	you	create	an	instance	of	the	SelectionProcessor	class	you	give
its	constructor	a	pointer	to	another	MouseCallback	--	the	mouse	proc	to
handle	the	mode	being	implemented.	The	SelectionProcessor	receives	the
mouse	input	first.	It	processes	the	mouse	input	using	a	standard	selection	logic
and	then	calls	the	MouseCallback	it	was	given.
The	sample	code	below	is	from	\MAXSDK\SAMPLES\MESH.	It	shows
how	the	extrude	command	mode	of	the	Edit	Mesh	modifier	uses	the
SelectionProcessor	class	to	handle	selection	yet	performs	its	own	work	after
the	selection	process	has	been	handled.	The	extrude	command	mode	allows	the
user	to	select	items	with	the	mouse	using	all	the	standard	logic	such	as	box
selection,	and	using	the	Ctrl	and	Alt	keys.	If	the	user	drags	the	mouse	however,
the	extrude	operation	is	performed.	By	using	the	selection	processor	all	the	logic
for	selection	is	handled	automatically.
The	overall	manner	this	is	set	up	is	as	follows:
A	command	mode	has	a	method	MouseProc()	that	returns	an	instance	of
MouseCallBack	to	handle	the	user	/	mouse	interaction.	In	the	extrude
command	mode's	implementation	of	MouseProc()	it	returns	an	instance	of	a
selection	processor	(which	is	derived	from	MouseCallBack).	The	constructor
for	the	selection	processor	takes	a	pointer	to	another	MouseCallBack.	This	is
the	extrude	mouse	callback.	When	the	command	mode	is	processing	mouse
input,	the	selection	processor	mouse	callback	is	called	first.	It	processes	all	the
logic	for	the	selection.	If	the	user	drags	the	mouse	however	the	selection
processor	calls	the	extrude	mouse	callback	to	handle	the	extrude	operation.

Below	are	the	class	definitions	showing	how	this	is	set	up.
The	mouse	callback	below	implements	the	user	/	mouse	interaction	for	the
extrude	operation.
class	ExtrudeMouseProc	:	public	MouseCallBack	{
	private:
		MoveTransformer	moveTrans;
		EditMeshMod	*em;
		IObjParam	*ip;
		IPoint2	om;
	public:
		ExtrudeMouseProc(EditMeshMod*	mod,	IObjParam	*i)
			:	moveTrans(i)	{em=mod;ip=i;}
		int	proc(
			HWND	hwnd,
			int	msg,
			int	point,
			int	flags,
			IPoint2	m);
	};

The	code	below	defines	a	class	from	GenModSelectionProcessor.	The
constructor	passes	on	the	mouse	proc	for	the	extrusion	interaction	to	the	base
class	GenModSelectionProcessor.	This	allows	the	selection	processor	to	call
the	extrusion	mouse	proc.
class	ExtrudeSelectionProcessor	:	public
GenModSelectionProcessor	{
	protected:
		HCURSOR	GetTransformCursor();
	public:
		ExtrudeSelectionProcessor(ExtrudeMouseProc	*mc,
			Modifier	*m,	IObjParam	*i)
			:	GenModSelectionProcessor(mc,m,i)	{}
	};

The	command	mode	declares	an	instance	of	the	selection	processor	and	extrude
mouse	proc.	The	extrude	mouse	proc	is	passed	into	the	selection	processor.

class	ExtrudeCMode	:	public	CommandMode	{
	private:
		ChangeFGObject	fgProc;
		ExtrudeSelectionProcessor	mouseProc;
		ExtrudeMouseProc	eproc;
		EditMeshMod*	em;
	public:
		ExtrudeCMode(EditMeshMod*	mod,	IObjParam	*i)	:
			fgProc(mod),	mouseProc(&eproc,mod,i),	eproc(mod,i)
{em=mod;}
		int	Class()	{	return	MODIFY_COMMAND;	}
		int	ID()	{	return	CID_EXTRUDE;	}
		MouseCallBack	*MouseProc(int	*numPoints)
			{	*numPoints=2;	return	&mouseProc;	}
		ChangeForegroundCallback	*ChangeFGProc()
			{	return	&fgProc;	}
		BOOL	ChangeFG(CommandMode	*oldMode)
			{	return	oldMode->ChangeFGProc()	!=	&fgProc;	}
		void	EnterMode();
		void	ExitMode();
	};

See	the	source	code	in	EDITMOPS.CPP	for	the	full	implementation	of	the
methods	of	these	classes.

Modifier	Methods
The	overall	process	of	sub-object	selection	relies	upon	the	implementation	of
several	methods	in	the	modifier.	These	methods	are	from	class	BaseObject.
These	involve	selecting,	identifying,	moving,	rotating	and	scaling	sub-object
components.	These	methods	are:
virtual	void	ClearSelection(int	selLevel);
This	method	is	called	to	clear	the	selection	for	the	given	sub-object	level.	All
sub-object	elements	of	this	type	should	be	deselected.
virtual	void	SelectSubComponent(HitRecord	*hitRec,	BOOL
selected,	BOOL	all,	BOOL	invert=FALSE)
This	method	is	called	to	change	the	selection	state	of	the	component	identified
by	hitRec.
virtual	int	SubObjectIndex(HitRecord	*hitRec);
Returns	the	index	of	the	sub-object	element	identified	by	the	HitRecord
hitRec.	The	sub-object	index	identifies	a	sub-object	component.	The
relationship	between	the	index	and	the	component	is	established	by	the
modifier.	For	example,	an	edit	modifier	may	allow	the	user	to	select	a	group	of
faces	and	these	groups	of	faces	may	be	identified	as	group	0,	group	1,	group	2,
etc.	Given	a	hit	record	that	identifies	a	face,	the	edit	modifier's	implementation
of	this	method	would	return	the	group	index	that	the	face	belonged	to.
virtual	void	CloneSelSubComponents(TimeValue	t);
This	method	is	called	to	make	a	copy	of	the	selected	sub-object	components.
virtual	void	Move(TimeValue	t,	Matrix3&	partm,	Matrix3&
tmAxis,
	Point3&	val,	BOOL	localOrigin=FALSE)
When	this	method	is	called	the	plug-in	should	respond	by	moving	its	selected
sub-object	components.
virtual	void	Rotate(TimeValue	t,	Matrix3&	partm,	Matrix3&
tmAxis,
	Quat&	val,	BOOL	localOrigin=FALSE)
When	this	method	is	called	the	plug-in	should	respond	by	rotating	its	selected
sub-object	components.
virtual	void	Scale(TimeValue	t,	Matrix3&	partm,	Matrix3&
tmAxis,

	Point3&	val,	BOOL	localOrigin=FALSE)
When	this	method	is	called	the	plug-in	should	respond	by	scaling	its	selected
sub-object	components.

Sub-Object	Selection	in	Edit	Modifiers
A	certain	class	of	modifiers,	referred	to	as	edit	modifiers,	allow	specific	object
types	to	be	edited.	For	example,	the	Edit	Mesh	modifier	allows	TriObjects	to	be
edited	while	the	Edit	Patch	modifier	allows	patch	objects	to	be	edited.	A	generic
Edit	Point	modifier	would	edit	any	object	that	supports	the	deformable	interface.
The	sub-object	selection	levels	for	these	edit	modifiers	reflect	the	sub-object
types	for	the	object	type	that	the	edit	modifier	is	designed	to	edit.	For	example,
the	Edit	Mesh	modifier	supports	three	sub-object	selection	levels:	vertex,	face
and	edge.	These	correspond	to	actual	elements	of	a	TriObject.	In	contrast,	the
sub-object	levels	of	the	Bend	modifier,	are	gizmo	and	center.	These	have	no
correspondence	with	the	object	that	the	bend	modifier	is	modifying.
Edit	modifiers	typically	allow	the	user	to	select	sub-object	elements	of	the	object
and	perform	at	least	the	standard	move/rotate/scale	transformations.	They	may
also	support	other	operations	such	as	the	Edit	Mesh	modifier's	extrude	operation.
When	the	user	creates	sub-object	selections	with	an	edit	modifier,	they	are
typically	stored	in	the	object	because	they	correspond	to	actual	parts	of	the
object.	The	sub-object	selection	is	actually	part	of	the	object's	state	that	flows	up
the	pipeline.	For	example,	the	Edit	Mesh	modifier	allows	the	user	to	select
vertices,	faces	or	edges.	If	a	Bend	modifier	is	then	applied	after	the	Edit	Mesh
modifier,	it	will	operate	on	the	selected	vertices	or	faces.	If	the	user	goes	back	in
the	history	to	the	Edit	Mesh	modifier	and	changes	the	selection,	the	set	of
vertices	that	the	bend	affects	will	change.	Essentially	just	editing	the	selection	is
a	form	of	editing	an	object	because	the	selection	is	part	of	the	object.
Edit	modifiers	have	to	store	the	selection	themselves.	If	the	input	to	an	edit
modifier	changes,	the	modifier	will	need	to	reapply	its	modifications.	Since
changing	the	selection	set	is	a	modification	to	the	object,	the	edit	modifier	will
need	to	recreate	the	selection	set.
Selection	sets	are	not	the	only	thing	edit	modifiers	need	to	store.	If	an	edit
modifier	moves	points	on	a	modifier,	then	it	needs	to	store,	in	some	form,	the
changes	it	made	to	the	points.	For	example,	the	Edit	Mesh	modifier	stores
changes	made	to	the	vertices	of	a	mesh	by	maintaining	an	array	of	3D	vectors
that	represent	a	delta	for	each	vertex.	This	delta	is	applied	to	an	object	by	simply
adding	each	delta	to	its	corresponding	vertex.	This	brings	up	a	couple	of	issues:
What	happens	if	the	number	of	vertices	of	the	input	object	change?	Since	the
vertex	index	is	used	to	find	its	corresponding	delta,	if	the	topology	of	an	object
changes,	a	vertex's	index	might	change.	If	this	is	the	case	the	user	is	given	a

warning	message	that	a	modifier	exists	in	the	stack	that	depends	on	topology
(see	the	method	Modifier::DependOnTopology()	for	the	details	on	how	an
edit	modifier	informs	the	system	it	is	dependent	on	topology).	If	the	user	selects
OK	from	the	warning	message	dialog	the	topology	may	be	changed.	The	least
that	an	edit	modifier	should	do	is	not	reference	a	vertex	out	of	the	range	of	an
object's	vertex	array.	The	Edit	Mesh	modifier	continually	scales	the	length	of	its
delta	array	to	match	the	length	of	the	vertex	array	of	the	incoming	object.	This
ensures	that	the	deltas	are	all	applied	to	legitimate	vertices,	but	if	the	topology
changes,	the	effect	is	rarely	useable.
The	user	may	use	the	volumetric	selector	modifier	to	help	eliminate	this
problem.	This	modifier	uses	spheres,	3D	boxes,	and	cylinders	to	define	a	3D
region.	Points	inside	the	region	become	selected	while	points	outside	are	not.
This	method	of	selection	is	independent	of	topology	and	therefore	does	not
exhibit	the	previously-described	problems.
Modifiers	can	be	instanced	and	therefore	a	modifier,	in	general,	isn't	just	applied
to	a	single	object.	This	raises	the	question	of	what	happens	when	an	edit
modifier	is	instanced.	It	must	store	its	changes	to	a	particular	object	somewhere.
One	of	the	fields	of	the	ModContext	is	a	pointer	to	a	LocalModData	derived
class.	The	most	convenient	place	to	store	this	data	is	here	in	the	ModContext.
When	an	object	is	copied,	the	ModContext	(and	therefore	the	LocalModData)	is
also	copied	making	it	possible	to	copy	objects	with	edit	modifiers	applied	to
them.

Named	Sub-Object	Selection	Sets
A	modifier	that	supports	sub-object	selection	can	choose	to	support	named	sub-
object	selection	sets.	This	allows	the	user	to	save	and	restore	certain	sub-object
selection	sets	and	not	have	to	pick	them	over	and	over.	The	modifier	indicates	it
wishes	to	do	so	by	returning	TRUE	from	the	following	method	of	BaseObject.
virtual	BOOL	SupportsNamedSubSels();
Returns	TRUE	if	the	plug-in	supports	named	sub-object	selection	sets;
otherwise	FALSE.

A	modifier	that	wishes	to	support	this	capability	maintains	its	list	of	named	sub-
object	selections.	When	the	user	enters	sub-object	selection	mode	the	modifier
should	add	its	named	selection	sets	into	the	drop	down	using	the	following
method	of	Class	Interface:
virtual	void	AppendSubObjectNamedSelSet(const	TCHAR
*set)=0;
A	modifier	may	call	this	method	to	add	sub-object	named	selection	sets	to	the
named	selection	set	drop	down	list	in	the	3ds	max	toolbar.	This	should	be	done
whenever	the	selection	level	changes	(in	the	Modifiers
BaseObject::ActivateSubobjSel()	method).

The	following	methods	of	BaseObject	are	called	when	the	user	picks	items	from
the	drop	down	list:
virtual	void	ActivateSubSelSet(TSTR	&setName);
When	the	user	chooses	a	name	from	the	drop	down	list	this	method	is	called.
The	plug-in	should	respond	by	selecting	the	set	identified	by	the	name	passed.
virtual	void	NewSetFromCurSel(TSTR	&setName);
If	the	user	types	a	new	name	into	the	named	selection	set	drop	down	then	this
method	is	called.	The	plug-in	should	respond	by	creating	a	new	set	and	give	it
the	specified	name.
virtual	void	RemoveSubSelSet(TSTR	&setName);
If	the	user	selects	a	set	from	the	drop	down	and	then	chooses	Remove	Named
Selections	from	the	Edit	menu	this	method	is	called.	The	plug-in	should
respond	by	removing	the	specified	selection	set.

The	following	methods	from	Class	Interface	also	deal	with	named	sub-object
selection	sets:
virtual	void	ClearSubObjectNamedSelSets()=0;

This	method	clears	the	named	selections	from	the	drop	down.
virtual	void	ClearCurNamedSelSet()=0;
This	method	clears	the	current	edit	field	of	the	named	selection	set	drop	down.

For	sample	code	that	deals	with	named	sub-object	selection	sets	see
\MAXSDK\SAMPLES\MODIFIERS\EDITMESH.CPP.

Sub-Object	Coordinate	Systems:
See	Also:	Class	BaseObject,	Class	Control,	Class	SubObjAxisCallback.
When	a	modifier	or	controller	is	in	a	sub-object	selection	level,	it	has	the	ability
to	define	the	meaning	of	some	of	MAX's	reference	coordinate	systems.	MAX's
reference	coordinate	system	has	two	parts:	The	reference	coordinate	system	drop
down	list	and	the	center	button.	These	are	described	below:
1	The	reference	coordinate	system	drop	down	list.	This	lets	the	user	select	the
orientation	of	the	reference	coordinate	system.	While	the	user	is	in	a	sub-
object	selection	state,	'local'	refers	to	the	local	coordinate	system	of	the
currently	selected	sub-object	element	and	'parent'	refers	to	the	node's	local
coordinate	system.
What	a	sub-object's	local	coordinate	system	means	is	up	to	the	modifier	or
controller.	For	example,	Bend	(and	in	fact,	any	modifier	using	SimpleMod
as	a	base	class)	define	local	to	mean	the	coordinate	system	of	the	gizmo.	The
Edit	Mesh	modifier	defines	local	to	mean	different	things	for	face	and	vertex
selection	levels.	For	face,	the	modifier	constructs	a	coordinate	system	where
the	Z	axis	is	parallel	to	the	face's	normal	and	X	lies	somewhere	in	the	world
XY	plane	perpendicular	to	Z.	The	Y	axis	is	then	given	by	X	and	Z.	For
vertices,	a	similar	thing	is	done	--	the	vertex	normal	used	for	smoothing	is
used	to	define	the	Z	axis.	X	and	Y	are	constructed	the	same	way	as	above.

2	The	center	button.	This	button	allows	the	user	to	choose	the	position	of	the
center	of	the	reference	coordinate	system.	It	has	3	options:	Center	of	the
selection	set,	Center	of	the	reference	coordinate	system,	and	Pivot	point.	If	the
reference	drop	down	list	is	set	to	local	and	the	center	button	is	set	to	center	of
the	reference	coordinate	system,	then	the	modifier	or	controller	defines	the
position	of	the	center	when	it	constructs	the	local	coordinate	system.	For
center	of	selection	and	pivot	point,	it	is	up	to	the	modifier	or	controller	to
decide	what	these	mean.	The	Edit	Mesh	modifier	defines	center	of	the
selection	set	to	be	the	average	of	all	vertices	referenced	by	selected	faces	and
the	pivot	point	to	be	the	center	of	a	face	cluster.

When	the	user	is	in	a	sub-object	selection	level,	the	system	needs	to	get	the
reference	coordinate	system	definition	from	the	current	modifier	or	controller
being	edited	so	that	it	can	display	the	axes.	Two	methods	(from	BaseObject	or
Control)	allow	the	system	to	do	this:
GetSubObjectCenters(SubObjAxisCallback	*cb,TimeValue

t,INode	*node)
This	method	specifies	the	position	of	the	center.	The	plug-in	enumerates	its
centers	and	calls	the	callback	cb	once	for	each.
GetSubObjectTMs(SubObjAxisCallback	*cb,TimeValue	t,INode
*node)
This	method	returns	the	axis	system	of	the	reference	coordinate	system.	The
plug-in	enumerates	its	TMs	and	calls	the	callback	cb	once	for	each.

Thread	Safe	Plug-Ins
See	Also:	Main	Plug-In	Classes.

Overview
Plug-ins	that	relate	to	the	renderer	have	specific	methods	that	need	to	be	thread
safe.	This	is	because	the	renderer	launches	several	threads	of	execution	when
rendering	an	image.	Therefore	the	same	method	could	get	called	from	several
threads	at	the	same	time.	If	one	of	the	methods	is	writing	a	value	that	the	other	is
reading	or	writing	this	can	interfere	with	valid	values	being	accessed.
Plug-in	materials,	texture	maps	and	atmospheric	effects	are	the	plug-in	types	that
have	methods	that	need	to	be	=	4)
BSPSPopupOnMouseOver(event);;">reentrant.	Any	method	of	these	plug-ins
that	is	called	while	rendering,	like	Texmap::EvalColor(),	Mtl::Shade(),
Atmospheric::Shade(),	etc.	must	be	written	in	a	way	that	is	thread	safe.
The	methods	listed	above	can	be	re-entered	from	another	thread	while	the
renderer	is	processing.	For	example,	while	Texmap::EvalColor()	was
executing	it	could	get	called	again,	totally	asynchronously.	At	a	certain	time	this
method	could	be	changing	a	variable,	and	another	thread	could	be	changing	that
same	variable	at	the	same	time.	Or	it	could	be	setting	the	value	while	another
thread	is	attempting	to	read	it.	This	can	interfere	with	valid	values	being	set	or
read.
The	main	rule	for	class	variables	is	if	a	method	changes	a	variable	it	won't	be
thread	safe	unless	it	takes	specific	steps	to	ensure	it	is.	Any	variables	in	the	class
must	not	be	written	to	without	taking	steps.	This	is	because	both	threads	can	see
the	same	variable	and	could	write	to	it	at	the	same	time.
There	are	conditions	where	a	plug-in	does	NOT	have	to	do	anything	to	be	thread
safe.	If	the	method	just	reads	variables,	it	will	be	thread	safe.	Any	local	variables
(those	on	the	stack)	can	be	read	and	written	without	concern.	Any	global
variables	can	also	be	read	without	concern.	If	a	method	does	all	of	its	work	on
the	stack	then	it	will	be	thread	safe.

javascript:BSSCPopup('idx_T_reentrant_function.htm');

How	To	Ensure	a	Function	is	Thread	Save
The	code	fragments	below	are	from	the	3ds	max	fog	atmospheric	effect.	The
code	for	this	plug-in	can	be	found	in	the	SDK	in
\MAXSDK\SAMPLES\HOWTO\MISC\FOG.CPP.	The	synchronization
object	used	to	make	the	method	thread	safe	here	is	called
CRITICAL_SECTION.	Developers	can	look	in	the	Win32	API	for
documentation	for	this	and	other	synchronization	objects.
First	a	developer	declares	a	CRITICAL_SECTION.	This	is	a	data	type	that
is	declared,	initialized,	and	deleted	when	one	is	finished	with	it.	When	the	class
is	created,	like	in	the	class	constructor	this	object	is	initialized.	Below	are	a	pair
of	code	fragment	from	the	Fog	plug-in	where	the	CRITICAL_SECTION	is
declared	and	initialized:
This	creates	the	CRITICAL_SECTION	object.
class	FogAtmos	:	public	StdFog	{

public:
CRITICAL_SECTION	csect;
...

}
Here	it	is	initialized	in	the	constructor.
FogAtmos::FogAtmos()	{
	...
	InitializeCriticalSection(&csect);
	...
	}

In	code	where	data	that	is	accessible	to	several	threads	is	to	be	modified,	you	call
a	Win32	API	named	EnterCriticalSection()	and	pass	the
CRITICAL_SECTION	object.
For	example,	thread	A	enters	the	code	and	EnterCriticalSection()	is	called.
This	sets	a	state	in	the	CRITICAL_SECTION	data	structure.	Now	thread	B
enters	the	same	section	of	code.	It	also	calls	EnterCriticalSection()	and
passes	in	the	CRITICAL_SECTION	object.	The	CRITICAL_SECTION
object	knows	that	another	thread	is	already	in	that	code.	Therefore	it	will	sit	and
wait	until	thread	A	finishes	and	calls	LeaveCriticalSection().	When	thread	A
calls	LeaveCriticalSection()	this	will	trigger	thread	B	that	it	may	return	from

EnterCriticalSection().	At	this	point	it	can	then	enter	the	code.	Thus
bracketing	code	with	EnterCriticalSection()	and	LeaveCriticalSection()
will	make	the	code	thread	safe.
Below	is	a	fragment	from	a	method	of	the	fog	plug-in	that	is	made	thread	safe
using	this	technique.
void	FogAtmos::UpdateCaches(TimeValue	t)
	{
	EnterCriticalSection(&csect);
	if	(!valid.InInterval(t))	{
		valid	=	FOREVER;
		pblock->GetValue(PB_COLOR,t,fogColor,valid);

...
		}
	LeaveCriticalSection(&csect);
	}
Note	that	at	the	beginning	of	the	method	EnterCriticalSection()	is	called.
Just	before	it	exits	LeaveCriticalSection()	is	called.

When	a	plug-in	is	done	with	the	CRITICAL_SECTION	object,	it	can	call
DeleteCriticalSection().	Here	this	is	done	in	the	destructor	for	the	Fog	plug-
in:
~FogAtmos()	{
	DeleteCriticalSection(&csect);
	}

Developers	should	also	be	aware	of	the	following	two	points:
1	Critical	sections,	or	any	other	synchronization	objects,	should	only	surround
the	part	of	the	code	that	requires	synchronization.	Otherwise,	if	the	critical
section	surrounds	a	large	block	of	computationally-expensive	code
unnecessarily,	performance	will	suffer	on	multiprocessor	machines.
As	an	example,	if	an	algorithm	needs	to	write	to	a	class	variable,	do	a	long
computation,	then	write	to	another	class	variable,	it	would	be	bad	to	structure
the	code	like	this:
	Enter	Critical	Section
	write	to	var1
	do	long	computation...

	write	to	var2
	Leave	Critical	Section
This	structure	stops	any	other	processor	from	accessing	this	routine	until	the
long	computation	is	done.	It	would	be	better	to	structure	the	code	like	this:
	Enter	Critical	Section
	write	to	var1
	Leave	Critical	Section
	do	long	computation...
	Enter	Critical	Section
	write	to	var2
	Leave	Critical	Section

2	Synchronization	problems	often	don't	show	up	until	you	are	running	on	a
multi-processor	system.	All	plug-in	developers	should	test	their	code	on	multi-
processor	systems	as	much	as	possible.	Intermittent	crashes	or	erratic	behavior
is	often	a	symptom	of	non-reentrancy.

Summary
3ds	max	is	a	multi-threaded	application	and	plug-ins	that	run	inside	3ds	max
where	multiple	threads	are	used	need	to	be	thread	safe.	This	section	has
presented	the	data	structures	and	calls	from	the	Windows	Win32	API	used	to
create	thread	safe	code.

Time
See	Also:	Time	Function	Reference.
This	section	discusses	the	concept	of	time	as	used	by	3ds	max.
Time	is	stored	internally	in	3ds	max	as	an	integer	number	of	ticks.	Each	second
of	an	animation	is	divided	into	4800	ticks.	This	value	is	chosen	in	part	because	it
is	evenly	divisible	by	the	standard	frame	per	second	settings	in	common	use	(24
--	Film,	25	--	PAL,	and	30	--	NTSC).
The	data	type	used	to	store	a	specific	instance	of	time	is	the	TimeValue.	A
TimeValue	stores	the	number	of	ticks	the	time	represents.	When	a	developer
specifies	time	to	almost	all	the	functions	in	the	SDK	they	use	TimeValues.
In	MAX,	time	may	be	displayed	in	one	of	four	formats.	These	are	just	display
formats	(the	internal	representation	never	changes).	The	formats	are:
Frames	-	Integer	number	of	frames.
SMPTE	-	SMPTE	time	code.	This	format	uses
hours:minutes:seconds:frames.	3ds	max	abbreviates	this	by	not	including
the	hours	designation	to	minutes:seconds.frames.
FRAME:TICKS	-	Integer	number	of	frames:number	of	ticks.
MM:SS:TICKS	-	Minutes:Seconds:Ticks.

A	developer	may	get	and	set	the	current	time	displayed	format.	The	functions	to
accomplish	this	are	GetTimeDisplayMode()	and	SetTimeDisplayMode().
When	these	settings	are	changed	a	message	is	sent	throughout	3ds	max	to	handle
updating	any	UI	controls	that	reflect	time	settings	(including	plug-in	custom
controls).
A	developer	can	retrieve	the	number	of	ticks	per	frame	using	the	function
GetTicksPerFrame(),	and	can	set	this	number	using	SetTicksPerFrame().
A	developer	can	also	get	and	set	the	current	frame	rate.	This	is	the	number	of
frames	per	second.	The	functions	for	this	are	GetFrameRate()	and
SetFrameRate().	This	is	just	an	alternate	way	to	specify	the	number	of	ticks
per	frame.
There	are	also	functions	to	convert	between	the	numeric	and	ASCII
representations	of	time.	The	functions	for	this	are	TimeToString()	and
StringToTime().
To	review	the	methods	discussed	above	see	Time	Function	Reference.

Note	that	some	methods	related	to	time	are	part	of	various	interface	classes.	For
example	Class	Interface	provides	methods	to	retrieve	the	current	frame	slider
setting	and	the	current	animation	range.	These	methods	are	GetTime()	and
GetAnimRange().	You	can	also	set	these	using	SetTime()	and
SetAnimRange().	There	is	also	a	method	RegisterTimeChangeCallback()
that	allows	a	plug-in	to	be	notified	every	time	the	user	changes	the	frame	slider.

Track	View
See	Also:	Class	Animatable.

Overview
The	track	view	of	3ds	max	provides	a	view	into	time.	Track	view	is	organized	as
a	nested	hierarchy	showing	both	parent/child	relationships,	and	sub-anim
(parameter)	relationships.
Many	different	plug-in	types	may	participate	in	track	view.	For	example,	system
plug-ins,	sound	object	plug-ins,	and	many	controller	types	all	may	have
interfaces	in	track	view.	The	methods	of	the	Animatable	class	allow	a
developer	to	participate.	This	section	is	an	overview	of	the	concepts	of	track
view,	and	an	outline	of	the	specific	methods	involved	in	providing	an	interface.
The	track	view	provides	a	hierarchical	view	of	the	scene.	All	controllers	appear
in	the	track	view	as	children	of	the	objects	they	control.	For	example,	every	node
has	a	transform	controller	and	this	controller	appears	under	the	node	in	the	track
view.	Also,	procedural	objects	and	modifiers	appear	in	the	track	view.	If	these
have	animatable	parameters,	the	controllers	plugged	in	to	those	parameters
appear	underneath	the	object	or	modifier.	If	a	controller	itself	has	animatable
parameters,	then	any	controllers	plugged	into	those	parameters	would	be	found
underneath	it	in	the	track	view.
On	the	right	side	of	each	item	in	the	track	view	there	is	a	long	horizontal	track
window.	In	this	window,	a	controller	can	represent	the	track	it	controls.	For
example,	a	keyframe	controller	draws	marks	in	the	track	representing	points	in
time	that	have	keyframes.	Other	procedural	controllers	may	only	present	a	time
line	displaying	the	duration	of	the	animation.
Each	controller	is	also	able	to	display	a	function	curve.	This	may	or	may	not	be
editable	by	the	user	depending	on	the	type	of	controller.	For	example,	the
standard	keyframe	controllers	allow	the	user	to	edit	the	function	curve	while	the
expression	controller	simply	displays	a	graph	of	the	function	that	the	user
specified.	The	user	has	the	ability	to	overlay	function	curves	for	different
controllers	on	top	of	each	other,	regardless	of	the	types	of	the	controllers.	For
example,	the	user	could	place	a	function	curve	that	represents	the	red	component
of	a	spotlight	on	top	of	the	function	curve	that	represents	the	position	along	a
path	of	one	of	the	nodes	in	the	scene	and	edit	the	two.
In	addition	to	function	curves	and	tracks,	a	modal	dialog	may	be	brought	up	by
the	controller	that	contains	additional	parameters	which	the	user	can	edit.

Appearing	in	Track	View
By	default	an	anim	(controller,	parameter,	etc.)	will	appear	in	track	view.	If	the
anim	should	not,	the	following	method	may	be	used:
virtual	BOOL	BypassTreeView()
This	method	indicates	to	the	system	that	this	item	should	not	appear	in	the
track	view.	Note:	Track	View	was	formally	referred	to	as	Tree	View.	The
default	implementation	returns	FALSE,	so	items	will	appear	unless	this
method	is	implemented	to	return	TRUE.

Copy	and	Paste	Operations
There	are	two	types	of	copy	and	paste	in	track	view.	These	are	available	using
two	buttons	in	track	view	dialog.	There	is	the	Copy	Controller	button,	and	in
Edit	Time	Mode,	there	is	the	Copy	Tracks	button.
Copy	Controller	lets	the	user	copy	the	entire	controller	plug-in.	A	method	of
Animatable	is	available	to	prevent	an	item	from	being	copied.
virtual	BOOL	CanCopyAnim()
If	an	animatable	doesn't	want	to	be	copied	in	track	view	it	can	return	FALSE
from	this	method,	otherwise	it	can	return	TRUE.

Copy	Tracks	lets	the	user	select	a	block	of	time	and	copy	keys.	An	item	(usually
a	controller)	can	participate	in	the	copy	and	pasting	of	tracks.	To	indicate	that	it
will	participate	in	copying,	a	controller	implements	the	following	method	and
returns	TRUE:
virtual	BOOL	CanCopyTrack(Interval	iv,	DWORD	flags)
Returns	TRUE	if	this	item	can	copy	its	data	over	the	specified	range;
otherwise	returns	FALSE.

If	a	plug-in	can	copy	its	track	data,	the	following	method	will	be	called	to	allow
the	item	to	do	so:
virtual	TrackClipObject	*CopyTrack(Interval	iv,	DWORD	flags)
This	method	is	called	to	copy	the	item's	track	data	over	the	specified	interval.
A	plug-in	should	derive	a	class	from	the	TrackClipObject	base	class	to
store	the	data	associated	with	the	objects	tracks,	and	implement	the	methods
that	identify	the	creator	of	the	clip	object.

When	the	user	has	asked	to	paste	the	track,	the	system	will	call	the	following
method	to	see	if	the	track	data	can	be	pasted	to	the	item.
virtual	BOOL	CanPasteTrack(TrackClipObject	*cobj,Interval	iv,
DWORD	flags)
Returns	TRUE	if	this	item	can	paste	its	data	over	the	specified	range;
otherwise	returns	FALSE.	The	item	can	check	the	TrackClipObject	creator
and	see	if	the	data	is	appropriate	for	it	to	accept.

If	the	data	is	okay,	the	following	method	will	be	called	to	paste	the	data	from	the
TrackClipObject	to	the	item.
virtual	void	PasteTrack(TrackClipObject	*cobj,Interval	iv,
DWORD	flags)

This	method	is	called	to	paste	the	specified	clip	object	to	this	track.	This
method	will	not	be	called	unless	CanPasteTrack()	returned	TRUE.

Operations	to	Time
This	section	shows	several	of	the	methods	of	Animatable	that	relate	to	the
manipulation	of	time	in	track	view:
virtual	BOOL	SupportTimeOperations()
If	an	item	supports	time	operations	in	the	track	view	(cut,	copy,	paste,	etc.),	it
should	implement	this	method	to	return	TRUE.	When	it	is	FALSE	the	user
cannot	select	blocks	of	time	in	the	item's	track.
virtual	void	DeleteTime(Interval	iv,	DWORD	flags);
This	method	is	called	to	delete	the	specified	interval	of	time	(or	the	keys
within	the	interval).
virtual	void	ReverseTime(Interval	iv,	DWORD	flags);
This	method	is	called	to	reverse	the	data	within	the	specified	interval.
virtual	void	ScaleTime(Interval	iv,	float	s);
This	method	is	called	to	scale	an	interval	of	time	by	the	specified	scale	factor.
virtual	void	InsertTime(TimeValue	ins,	TimeValue	amount)
This	method	is	called	to	insert	the	specified	amount	of	time	at	the	specified
insertion	point.

Drawing	and	Hit	Testing	Tracks	and	Function	Curves
This	section	discusses	how	an	item	may	display	and	hit	test	itself	in	the	track	and
function	curve	modes	of	track	view.
To	indicate	the	amount	of	space	it	needs	to	draw	itself,	the	item	implements	the
following	method:
virtual	int	GetTrackVSpace(int	lineHeight)
Returns	the	vertical	space	occupied	by	the	track	in	units	of	one	line.

An	item	may	have	a	custom	appearance	for	itself	in	the	track	view.	It	does	this
custom	drawing	in	its	implementation	of	the	following	method:
virtual	int	PaintTrack(HDC	hdc,Rect&	rcTrack,
	Rect&	rcPaint,	float	zoom,	int	scroll,	DWORD	flags)
This	method	is	called	to	display	the	item	in	the	track	view.	If	an	item	needs	to
draw	itself	in	a	special	fashion,	it	implements	this	method	to	do	so.	For
example,	a	sound	plug-in	may	draw	its	waveform	using	this	method.	If	an	item
does	not	need	to	draw	itself,	the	default	implementation	may	be	used.	This
draws	the	range	bar	for	the	item	in	the	track	instead.
Note:	When	drawing	something	to	appear	in	Track	View,	a	developer	should
not	do	any	clipping	of	their	own.	3ds	max	will	take	care	of	all	clipping	itself.

The	next	method	is	used	to	hit	test	a	track.	Hit	testing	is	checking	to	see	which
keys	have	been	selected	by	the	user.	This	selection	may	be	a	single	pick	point	or
a	dragged	rectangular	region.	This	method	is	passed	a	table	of
TrackHitRecords	to	update.	Each	key	that	lies	within	the	hit	rectangle	(is	hit)
should	be	added	to	this	table.
virtual	int	HitTestTrack(TrackHitTab&	hits,
	Rect&	rcHit,Rect&	rcTrack,
	float	zoom,int	scroll,DWORD	flags)
This	method	is	called	to	determine	which	keys	lie	within	the	rcHit	rectangle.
Keys	that	are	hit	are	added	to	the	hits	table.

When	the	user	has	selected	Function	Curve	mode,	3ds	max	displays	the	item	in	a
graph	with	time	along	the	horizontal	axis	and	the	value	of	the	item	along	the
vertical	axis.	An	item	can	draw	itself	in	track	view	in	any	way	it	wishes.	It	does
so	by	implementing	the	following	method:
virtual	int	PaintFCurves(ParamDimensionBase	*dim,
	HDC	hdc,	Rect&	rcGraph,

	Rect&	rcPaint,	float	tzoom,int	tscroll,
	float	vzoom,	int	vscroll,	DWORD	flags)
This	method	is	called	to	draw	the	function	curve	of	the	item.

There	are	a	set	of	macros	that	are	handy	for	scaling	time	and	values	into	and	out
of	screen	space.	These	are	often	used	in	the	implementations	of	PaintFCurve()
and	HitTestFCurves().	See	List	of	Screen-Time-Value	Macros.
When	the	user	executes	zoom	extents	on	the	item,	this	method	is	called:
virtual	int	GetFCurveExtents(ParamDimensionBase	*dim,
		float	&min,	float	&max,	DWORD	flags)
This	method	is	called	to	calculate	the	largest	and	smallest	values	of	the	item.

The	next	method	is	used	to	hit	test	the	keys	of	a	function	curve.	This	selection
may	be	a	single	pick	point	or	a	dragged	rectangular	region.	This	method	is
passed	a	table	of	TrackHitRecords	to	update.	Each	key	that	lies	within	the	hit
rectangle	(is	hit)	should	be	added	to	this	table.
virtual	int	HitTestFCurves(ParamDimensionBase	*dim,
		TrackHitTab&	hits,	Rect&	rcHit,	Rect&	rcGraph,
		float	tzoom,	int	tscroll,
		float	vzoom,int	vscroll,	DWORD	flags)
This	method	is	called	to	hit	test	the	item's	function	curves.	It	is	called	to
determine	which	keys	on	the	curve	lie	within	the	rcHit	rectangle.	Keys	that
are	hit	are	added	to	the	hits	table.

Operations	to	Keys
This	section	discusses	some	of	the	various	Animatable	method	for	dealing	with
keys	in	track	view.	These	methods	perform	operations	such	as	adding,	deleting
and	scaling	keys.
virtual	void	AddNewKey(TimeValue	t,DWORD	flags);
This	method	is	called	to	add	a	new	key	at	the	specified	time.	The	value	of	the
key	is	set	to	the	value	of	the	previous	key,	or	interpolated	between	keys,	based
on	the	flags	passed.
virtual	void	DeleteKeys(DWORD	flags)
This	method	is	called	to	delete	keys,	as	specified	by	the	flags	passed.
virtual	void	SelectKeys(TrackHitTab&	sel,	DWORD	flags);
This	method	is	called	to	select	or	deselect	a	set	of	keys	identified	by	the
TrackHitTab	and	the	specified	flags.
virtual	void	MoveKeys(ParamDimensionBase	*dim,float
delta,DWORD	flags);
This	method	is	called	to	move	selected	keys	vertically	in	the	function	curve
editor.	This	moves	the	key	values	but	does	not	alter	the	key	times.
virtual	void	ScaleKeyValues(ParamDimensionBase	*dim,

		float	origin,	float	scale,	DWORD	flags)
This	method	is	called	to	scale	selected	keys	values.	This	scales	the	key	values
but	does	not	alter	the	key	times.
virtual	void	MapKeys(TimeMap	*map,	DWORD	flags);
This	method	is	called	to	update	the	keys	specified	by	the	flags,	using	the
TimeMap	passed.	The	plug-in	should	go	through	the	specified	keys	and
change	their	time	to	TimeMap::map(time).

Track	View	and	References
3ds	max	maintains	a	reference	to	every	sub-anim	in	the	track	view.	This	is	how
track	view	monitors	if	the	sub-anim	is	changing.	This	reference	is	created	when
the	sub-anim	appears	in	track	view,	and	is	deleted	when	the	sub-anim	is	no
longer	shown.

Summary
This	section	has	provided	an	overview	of	many	of	the	methods	related	to
participating	in	track	view.	The	main	methods	developers	must	use	to	work	with
keys,	time	ranges,	function	curves,	and	copying/pasting	operations	were
discussed.	The	primary	methods	associated	with	track	view	are	from	class
Animatable.	See	this	class	for	more	detailed	information	on	the	methods
presented	above	as	well	as	the	others	associated	with	track	view.

UI	Customization
See	Also:	Class	ActionTable,	Class	ActionCallback,	Class	ActionContext,	Class
IActionManager,	Class	DynamicMenu,	Structure	ActionDescription,	Class
DynamicMenuCallback,	Class	ClassDesc,	Class	Interface.

Overview
This	section	describes	the	various	classes	and	functions	used	to	customize	the
user	interface	in	3ds	max	R4.	This	includes	the	ability	to	customize	the	3ds	max
main	pulldown	menus,	the	toolbars,	quad	menus	and	keyboard	shortcuts.
Discussed	below	is	the	Action	System.	This	is	a	new	system	used	for
customizing	the	user	interface.	Plug-ins	may	use	this	to	customize	the	3ds	max
main	menu,	toolbars,	quad	menus	and	keyboard	shortuts.	This	system
supercedes	the	system	used	by	previous	version	of	3ds	max	for	keyboard
accelerators.
The	system	relies	on	plug-ins	creating	Action	Tables.	These	are	tables	of	UI
related	operations.	These	operations	are	called	Action	Items.	When	a	UI
operation	is	performed	the	code	that	carries	out	that	operation	is	done	by	code	in
an	Action	Callback	object.

Overview	of	the	Principal	Classes	of	the	Action	System
Class	ActionTable
The	class	ActionTable	is	a	generalization	of	the	ShortcutTable	class	from	R3.	An
ActionTable	holds	a	set	of	ActionItems,	which	are	operations	that	can	be	tied	to
various	UI	elements,	such	as	keyboard	shortcuts,	Custom	User	Interface	buttons,
the	3ds	max	main	menu	and	the	Quad	menu.	MAX’s	core	code	exports	several
ActionTables	for	built-in	operations	in	MAX.	Plug-ins	can	also	export	their	own
action	tables	via	methods	available	in	Class	ClassDesc.
Class	ActionItem
The	class	ActionItem	is	used	to	represent	a	single	operation	that	lives	in	an
ActionTable.	ActionItem	is	an	abstract	class	with	operations	to	support	various
UI	operations.	The	system	provides	a	default	implementation	of	this	class	that
works	when	the	table	is	build	with	the	ActionTable::BuildActionTable()
method.	However,	developers	may	want	to	specialize	this	class	for	more
specific-purpose	applications.	For	example,	MAXScipt	does	this	to	export
macroScripts	to	an	ActionTable.
Structure	ActionDescription
This	structure	is	used	when	creating	Action	Tables.	An	array	of	these	structures
is	created	with	one	element	for	each	action	in	the	table	to	be	built.	This	array	of
structures	is	then	passed	as	a	parameter	to	the	ActionTable	constructor.
Class	ActionCallback
This	is	the	callback	class	that	actually	execute	the	action	when	a	user	requests	it.
The	ExecuteAction()	method	of	this	class	is	called	and	performs	the	work.
Developers	create	a	sub-class	of	this	class	and	implement	ExecuteAction().
This	usually	consists	of	a	case	statement	which	switches	on	the	ID	of	the
command	being	executed.
Class	ActionContext
This	class	functions	like	an	identifier	for	a	group	of	actions.	Several	Action
Tables	can	share	a	single	ActionContext.	The	class	maintains	an	ID,	a	name,	and
an	active	state	for	the	context	and	has	methods	to	retieve	these.	When	a	Action
Context	is	active	all	the	Action	Tables	that	use	that	context	are	active	as	well.
Class	IActionManager
This	class	provides	methods	to	work	with	the	available	Action	Tables.	There	are
methods	to	get	the	number	of	and	a	pointer	to	specific	action	tables,	activate	and

deactivate	action	tables,	work	with	action	contexts	and	determine	if	they	are
active.	A	pointer	which	may	be	used	to	call	the	methods	of	this	class	is	returned
from	Interface::GetActionManager().
Class	DynamicMenu
This	is	a	helper	class	used	in	putting	up	additional	quad	or	toolbar	menus	'on	the
fly'.	This	class	has	a	few	methods	related	to	adding	new	menu	items,	beginning
and	ending	sub-menus,	checking	menu	flags,	and	getting	a	pointer	to	the	menu
after	it	has	been	created.	The	dynamic	menu	created	by	this	class	is	provided	to
the	method	ActionItem::GetDynamicMenu().
Class	DynamicMenuCallback
This	is	the	callback	used	when	creating	dynamic	menus.	An	instance	of	this	class
is	passed	to	the	constructor	of	the	helper	class	DynamicMenu.	This	class	has	a
single	method	called	MenuItemSelected()	which	is	called	when	the	user	has
choosen	an	item	from	the	menu.
Class	MAXIcon
	
Class	ClassDesc
There	are	two	new	method	of	this	class	related	to	ActionTables.	When	a	plug-in
wants	to	make	its	keyboard	accelerators	available	it	uses	the	following	new
methods:
virtual	int	NumActionTables();
virtual	ActionTable*	GetActionTable(int	i);
Class	Interface
There	is	a	new	method	to	access	the	Action	Manager	interface.	This	is:
virtual	IActionManager*	GetActionManager()	=	0;
See	Class	IActionManager	for	details.

Building	Action	Tables
This	section	discusses	the	approach	developers	may	use	to	build	action	tables
and	make	them	available	to	the	system.	In	most	cases	building	an	ActionTable	is
fairly	easy.	It	is	a	bit	more	work	if	you	choose	to	implement	your	own	custom
sub-class	of	ActionItem,	but	in	most	cases	that	isn’t	needed	(see	next	section).
The	system	provides	a	helper	class	called	ActionDescription	that	helps	in
building	tables.
struct	ActionDescription	{
//	A	unique	identifier	for	the	command	(must	be	uniqe	per	table)
int	mCmdID;
//	A	string	resource	id	that	describes	the	command
int	mDescriptionResourceID;
//	A	string	resource	ID	for	a	short	name	for	the	action
int	mShortNameResourceID;
//	A	string	resource	for	the	category	of	an	operation
int	mCategoryResourceID;
};
An	ActionTable	is	built	by	making	a	static	table	of	action	descriptions	and
passing	it	to	the	constructor	for	ActionTable.	For	example,	here	is	the	code	that
builds	the	action	table	for	the	FFD	modifier:
#define	NumElements(array)	(sizeof(array)	/	sizeof(array[0]))
static	ActionDescription	spActions[]	=	{
ID_SUBOBJ_TOP,
IDS_SWITCH_TOP,
IDS_SWITCH_TOP,
IDS_RB_FFDGEN,
ID_SUBOBJ_CP,
IDS_SWITCH_CP,
IDS_SWITCH_CP,
IDS_RB_FFDGEN,
ID_SUBOBJ_LATTICE,
IDS_SWITCH_LATTICE,
IDS_SWITCH_LATTICE,
IDS_RB_FFDGEN,

ID_SUBOBJ_SETVOLUME,
IDS_SWITCH_SETVOLUME,
IDS_SWITCH_SETVOLUME,
IDS_RB_FFDGEN,
};
ActionTable*	BuildActionTable()
{
TSTR	name	=	GetString(IDS_RB_FFDGEN);
HACCEL	hAccel	=	LoadAccelerators(hInstance,
MAKEINTRESOURCE(IDR_FFD_SHORTCUTS));
int	numOps	=	NumElements(spActions);
ActionTable*	pTab;
pTab	=	new	ActionTable(kFFDActions,	kFFDContext,	name,	hAccel,
numOps,	spActions,	hInstance);
GetCOREInterface()->GetActionManager()-
>RegisterActionContext	(kFFDContext,	name.data());
return	pTab;
}
The	constructor	for	ActionTable	takes	the	ID	of	the	table,	the	context	id,	a	name
for	the	table,	a	windows	accelerator	table	that	gives	default	keyboard
assignments	for	the	operations,	the	number	of	items,	the	table	of	operation
descriptions,	and	the	instance	of	the	module	where	the	string	resources	in	the
table	are	stored.
At	the	same	time	the	table	is	built,	you	also	need	to	register	the	action	context	ID
with	the	system.	This	is	done	with	the
IActionManager::RegisterActionContext()	method.
The	other	part	of	implementing	an	ActionTable	is	implementing	an
ActionCallback	class.	This	is	an	abstract	class	with	a	virtual	method	called
ExecuteAction(int	id).	You	need	to	sub-class	this	and	pass	an	instance	of	it	to
the	system	when	you	activate	the	ActionTable.	Then	when	the	system	wants	to
execute	an	action,	you	will	get	a	callback	to
ActionCallback::ExecuteAction().
For	the	FFD	modifier,	this	looks	like:
template	<class	T>

class	FFDActionCB	:	public	ActionCallback
{
public:
T*	ffd;
FFDActionCB(T	*ffd)	{	this->ffd	=	ffd;	}
BOOL	ExecuteAction(int	id);
};
template	<class	T>
BOOL	FFDActionCB<T>::ExecuteAction(int	id)	{
	switch	(id)	{
		case	ID_SUBOBJ_TOP:
			ffd->ip->SetSubObjectLevel(SEL_OBJECT);
			ffd->ip->RedrawViews(ffd->ip->GetTime());
			return	TRUE;
		case	ID_SUBOBJ_CP:
			ffd->ip->SetSubObjectLevel(SEL_POINTS);
			return	TRUE;
		case	ID_SUBOBJ_LATTICE:
			ffd->ip->SetSubObjectLevel(SEL_LATTICE);
			return	TRUE;
		case	ID_SUBOBJ_SETVOLUME:
			ffd->ip->SetSubObjectLevel(SEL_SETVOLUME);
			return	TRUE;
	}
	return	FALSE;
}
FFD	uses	a	template	class	to	implement	several	versions	of	this	callback,	but	this
is	not	required.
Finally,	the	system	needs	to	activate	and	deactivate	the	table	at	the	appropriate
time.	When	to	do	this	depends	on	the	scope	of	applicability	of	the	table.	If	your
ActionTable	is	exported	from	an	editable	object	of	modifier	plug-in,	then	you
typically	want	it	only	to	be	active	when	editing	the	object	or	modifier.	This	is
done	by	activating	it	in	the	BeginEditParams()	method,	and	deactivating	it	in
EndEditParams().

For	FFD,	this	looks	like	this:
ffdActionCB	=	new	FFDActionCB<FFDMod	>(this);
ip->GetActionManager()->ActivateActionTable(ffdActionCB,
kFFDActions);
The	first	parameter	is	the	ID	of	the	table	to	activate,	and	the	second	is	an
instance	of	the	ActionCallback	class	that	is	responsible	for	executing	actions.	In
EndEditParams(),	we	deactivate	the	table:
ip->GetActionManager()->DeactivateActionTable(ffdActionCB,
kFFDActions);
delete	ffdActionCB;
For	other	types	of	plug-ins	the	table	can	be	activated	at	different	times.	For
example,	you	could	write	a	GUP	plug-in	that	activates	the	table	when	the	plug-in
is	loaded	to	provide	actions	that	are	always	available.
To	Sub-Class	or	not	to	Sub-Class?
Developers	have	the	option	of	sub-classing	both	the	ActionTable	class	and	the
ActionItem	class,	but	are	not	required	to	do	either.	Only	the	ActionCallback	is
required	to	be	sub-classed	in	all	cases.
For	the	ActionItem	class,	developers	only	need	to	sub-class	in	rare	cases.	The
default	implementation	of	this	class	stores	internal	strings	for	its	name,
description,	category,	icon,	etc.	In	some	cases	this	might	lead	to	duplicate
storage	if	that	information	is	stored	elsewhere.	In	that	case,	you	might	want	to
provided	a	specialization	of	this	class	for	memory	efficiency.
The	ActionTable	class	also	has	several	virtual	methods	that	the	developer	might
want	to	implement.	All	these	methods	have	default	implementations,	so	sub-
classing	is	not	required	unless	special	behavior	is	needed.
The	default	handlers	for	some	of	the	handlers	may	not	be	appropriate.	For
example	IsEnabled(int	cmdId)	returns	TRUE	in	every	case	in	the	default
implementation.	If	you	want	command	to	be	disabled	under	some	conditions,
then	you	will	need	to	build	a	specialization	of	ActionTable	and	implement	this
method.	Other	methods	that	you	might	want	to	implement	are:
virtual	BOOL	GetButtonText(int	cmdId,	TSTR&	buttonText);
virtual	BOOL	GetMenuText(int	cmdId,	TSTR&	menuText)
virtual	BOOL	GetDescriptionText(int	cmdId,	TSTR&	descText);
virtual	BOOL	IsChecked(int	cmdId);

virtual	BOOL	IsItemVisible(int	cmdId);
virtual	BOOL	IsEnabled(int	cmdId);
virtual	void	WritePersistentActionId(int	cmdId,	TSTR&	idString);
virtual	int	ReadPersistentActionId(TSTR&	idString);
You	only	need	to	implement	the	last	two	methods	if	your	table	uses	command
identifiers	that	are	not	persistent	from	session	to	session.	An	example	of	this	is
the	ActionTable	that	exports	macroScripts	from	MAXScript.	This	system	reads
all	the	macroScripts	in	your	system	and	assigns	command	IDs	that	are	based	on
the	order	the	macroScripts	are	read	from	the	file.	This	might	change	from
session	to	session,	so	when	we	want	a	persistent	ID	to	write	out	to	our	keyboard
or	CUI	files,	we	need	one	that	doesn’t	change.	For	macroScripts,	it	writes	the
name	of	the	script	concatenated	with	the	category	of	the	script.	The
ReadPersistentID	method	takes	that	string	and	returns	its	integer	command	ID
for	the	current	session.
For	tables	that	use	constant	integer	identifiers	that	don’	t	change	from	session	to
session,	like	the	FDD	example	above,	there	is	no	need	to	implement	this	method.
Registering	Action	Tables
In	order	for	the	system	to	use	an	action	table,	it	need	to	be	registered.	For	most
plug-ins,	this	is	done	by	returning	it’s	action	table	in	the	following	methods	in
ClassDesc:
virtual	int	NumActionTables();
virtual	ActionTable*	GetActionTable(int	i);
The	system	will	call	these	methods	on	start-up,	so	if	your	plug-in	exports	action
tables,	it	cannot	be	demand	loaded.	This	is	required	because	the	ActionItems
need	to	be	displayed	in	the	customization	dialogs	even	if	your	plug-in	is	not	in
use.
Action	Context	IDs	used	by	MAX
The	following	action	context	IDs	are	used	internally	in	MAX.
const	ActionContextId	kActionMainUIContext	=	0;
const	ActionContextId	kActionTrackViewContext	=	1;
const	ActionContextId	kActionMaterialEditorContext	=	2;
const	ActionContextId	kActionVideoPostContext	=	3;
const	ActionContextId	kActionSchematicViewContext	=	5;
const	ActionContextId	kActionIReshadeContext	=	6;

Menu	Manager
The	menu	manager	API	lets	plug-ins	register	menus	and	menu	contexts	that	are
saved	in	MAX’s	menus	customization	file,	and	can	be	configured	by	the	user.
Menus	are	populated	with	ActionItems	published	from	ActionTables.	Menu
contexts	are	places	where	menus	can	appear	in	MAX’s	UI.	Menu	contexts	can	be
either	for	the	main	menu	bar,	or	for	places	where	a	Quad	menu	can	be	displayed.
3ds	max	ships	with	a	few	pre-defined	menu	contexts,	including	the	main	menu
bar,	the	viewport	Quad	menu	and	the	ActiveShade	Quad	menu.	Only	a	single
menu-bar	context	is	allowed,	but	plug-ins	may	register	new	Quad	menu	context
as	appropriate.	For	example,	the	UVW	Unwrap	plug-in	in	the	3ds	max	SDK
defines	a	Quad	menu	context	that	is	used	when	the	user	right-clicks	in	the	UVW
Unwrap	window.
Menu	creation	is	handled	with	the	IMenu	API	defined	in	the	iMenus.h	header	in
the	3ds	max	SDK.
Adding	to	MAX’s	default	menus
A	plug-in	can	use	a	MenuContext	to	register	new	menu	items	on	to	MAX’s
default	menu	bar	or	Quad	menus.	Since	3ds	max	gets	its	menu	configuration
from	a	file	(in	UI\MaxMenus.mnu	by	default),	plug-ins	should	only	register	their
extensions	a	single	time.	To	determine	if	the	menu	extensions	have	been
registered	yet,	the	plug-in	should	register	a	menu	context	with	the
ImenuManager::RegisterMenuContext()	method.	This	method	will	return	false	if
the	context	has	not	been	registered,	and	true	if	it	has.	After	the	context	is
registered,	it	is	saved	in	the	menu	file,	and	the	next	time	3ds	max	starts,	the	call
to	RegisterMenuContext()	will	return	false.
To	add	items	to	MAX’s	main	menu,	the	plug-in	should	check	the	return	value	of
RegisterMenuContext(),	and	if	it	is	true,	that	means	that	this	is	the	first	time	it
has	been	registered,	and	the	plug-in	can	then	create	new	menus,	add	items	to
MAX’s	main	menu	and	Quad	menus.	In	this	case	the	MenuContext	is	used	only
as	a	place	holder	for	determining	when	to	add	items	to	menus,	not	as	a	place
where	menus	can	appear.
Plug-ins	can	also	register	Quad	menu	contexts	to	be	used	as	places	Quad	menus
can	appear	in	their	UI.	Typically	this	only	applies	if	the	plug-in	creates	its	own
floating	window,	such	as	UVW	Unwrap.	Normally,	plug-in	just	need	to	register
ActionItems,	and	possibly	add	items	to	MAX’s	main	menu	or	default	menus.
Once	items	have	been	added	to	menus,	and	new	menus	have	been	registered,

they	will	appear	in	MAX’s	menu	customization	dialogs.	Users	can	then	move
the	items	around,	or	remove	them	from	menus.
If	a	plug-in	wants	to	add	menus	and	items	to	MAX’s	existing	menus,	or	create	its
own	Quad	menu	context,	it	should	be	done	when	3ds	max	starts.	This	is	best
done	with	a	GUP-style	plug-in.	These	plug-ins	have	a	Start()	,method	that	is
called	when	MAX’s	first	starts	up.	It	is	in	that	method	that	plug-ins	should
register	new	contexts	and	add	menus	and	items.
Menu	Context	Ids
Every	menu	context	needs	a	unique	32-bit	integer	identifier.	The	ids	for	MAX’s
built-in	contexts	are	defined	in	the	iMenuMan.h	header	file.	New	plug-ins
should	use	a	random,	fixed,	integer	value	for	the	context.	This	can	be	generated
using	the	"gencid.exe"	program	in	MAX’s	SDK.	Just	use	one	of	the	2	32-bit
values	generated.
Class	IMenuBarContext
3ds	max	comes	with	one	pre-defined	MenuBarContext,	which	is	used	to	obtain
the	menu	used	on	MAX’s	main	menu	bar.	Its	context	id	is
kMenuContextMenuBar.	When	a	plug-in	wants	to	add	items	or	sub-menus
to	the	main	menu	bar,	it	should	get	the	menu	from	the	main	menu	bar	context	as
follows:
IMenuBarContext*	pMenuBarContext	=	(IMenuBarContext*)
GetCOREInterface()->GetMenuManager-
>GetContext(kMenuContextMenuBar);
IMenu*	pMenu	=	pMenuBarContext->GetMenu();
The	program	can	then	use	the	IMenu	class	methods	to	add	items	or	sub-menus	to
the	main	menu.	It	is	recommended	that	plug-ins	add	their	own	top-level	menu
rather	than	adding	items	to	existing	menus.
The	other	use	of	the	ImenuBar	context	is	mentioned	above.	Plug-ins	can	register
a	menu	bar	context	with	its	own	ID	to	determine	whether	it	should	extend	the
main	menu	or	not.

Sample	Code
Examples	of	Action	Table	APIs	in	use	are	found	in	many	places	in	the	SDK.	A
simple	example	is	\MAXSDK\MODIFIERS\FFD.

Units	of	Measurement
See	Also:	Units	of	Measurement	Reference.
This	section	discusses	how	developers	work	with	the	units	of	measurement	used
by	3ds	max.
3ds	max	allows	users	to	work	with	units	that	they	are	most	comfortable	with.
Users	may	specify	that	they	wish	to	work	in	US	Standard	units	(Inches,	Feet,
Miles)	or	Metric	units	(Millimeters,	Centimeters,	Meters	or	Kilometers).	Or	they
may	specify	a	custom	setting	(for	example	perhaps	they	want	to	work	in
fathoms).	Users	may	also	work	with	generic	units	(these	are	the	same	as	the
default	3ds	max	master	units).
Internally	3ds	max	keeps	track	of	all	measurements	in	its	own	internal	unit
called	the	master	unit.	The	program	converts	measurements	from	user-defined
units	into	the	master	defined	unit	for	storage	and	computation.	The	master	unit	is
defined	as	1.0	inch.	The	user	is	able	to	change	this	master	unit	using
Customize/Preferences,	selecting	the	General	page,	and	adjusting	the	System
Unit	Scale	controls.
To	retrieve	the	current	unit	display	information	one	can	use
GetUnitDisplayInfo().This	returns	the	information	describing	MAX's	current
system	of	measurement.	This	includes	the	type	of	units	used,	how	they	are
displayed	and	custom	unit	name	and	scale.	A	developer	may	also	use
SetUnitDisplayInfo().	This	allows	the	developer	to	control	the	unit	settings.
Two	functions	are	available	for	converting	units	in	and	out	of	ASCII	form.	These
are	FormatUniverseValue()and	DecodeUniverseValue().
FormatUniverseValue()	converts	the	specified	value	to	its	ASCII
representation	using	the	current	unit	display	settings.	DecodeUniverseValue()
parses	the	specified	measurement	string	and	converts	it	to	a	floating	point	value.
Developers	can	use	the	method	GetMasterScale(int	type)	to	retrieve	the
master	scale	in	terms	of	the	specified	unit	type.	For	example:
GetMasterScale(UNITS_INCHES)	returns	the	number	of	inches	per	unit
(unless	altered	by	the	user	this	would	be	1.0).
To	review	the	methods	discussed	above	in	detail	see	the	section	Units	of
Measurement	Reference.

Undo/Redo
See	Also:	Class	RestoreObj,	Class	Hold.

Overview
3ds	max	has	a	built-in	system	for	handling	undo	and	redo.	This	allows	users	to
undo	their	previous	modifications	to	the	database.	The	user	may	undo	several
operations,	and	also	redo	several	undo	operations.
The	undo/redo	system	uses	a	global	object	call	theHold.	This	is	an	instance	of
the	class	Hold.	The	developer	calls	methods	of	theHold	to	participate	in
undo/redo.	Another	class	involved	is	RestoreObj.	The	developer	creates
instances	of	a	class	derived	from	RestoreObj	to	save	the	data	needed	to	undo
and	redo	the	operation	of	the	plug-in	and	to	implement	several	methods	required
by	MAX.	The	process	works	as	follows:
Any	operation	that	will	modify	the	database	checks	to	see	if	theHold	is
'holding'.	This	means	the	3ds	max	undo	system	has	had	the	Begin()	method
called.	If	theHold	is	not	'holding'	the	developer	should	call	theHold.Begin().
This	signals	the	start	of	a	potential	undo	operation.	If	theHold	is	holding,	any
operation	that	modifies	the	database	must	register	a	restore	object	with	the
system	before	it	modifies	the	database.	A	restore	object	is	an	instance	of	the
class	RestoreObj.	The	restore	object	saves	just	enough	data	to	restore	the
database	to	the	state	it	was	in	when	theHold.Begin()	was	called.	It	also	saves
data	to	allow	a	Redo	operation	to	occur.
As	a	simple	example	consider	a	utility	plug-in	that	allows	the	user	to	change	the
wireframe	color	of	a	node	in	the	scene.	The	restore	object	would	need	to	save	the
previous	color	and	a	pointer	to	the	node	being	changed.	It	would	also	need	to
have	storage	to	save	the	current	color	prior	to	an	undo.	This	would	allow	it	to
undo	the	undo,	or	redo	the	operation.
In	order	to	register	the	restore	object	with	the	system	the	developer	calls
theHold.Put().	This	methods	passes	a	pointer	to	the	restore	object.	For
example:
	if	(theHold.Holding())	{
		theHold.Put(new	ColorRestoreObj(currentColor,this));
	}

In	the	example	above	the	ColorRestoreObj	is	a	developer	defined	class
derived	from	RestoreObj.
Once	the	restore	object	has	been	registered	with	theHold	there	are	two	potential
cases	to	terminate	the	Begin().	The	user	can	complete	the	operation	or	they	may

cancel	it.
If	the	user	completes	the	operation,	the	developer	calls	theHold.Accept().
This	registers	an	undo	object	with	the	undo	system	and	leaves	the	database	in
its	modified	state.
If	the	user	cancels	the	operation,	the	developer	calls	theHold.Cancel().	This
restores	the	database	to	its	previous	state	and	throws	out	the	restore	object.

In	addition	to	saving	the	data	it	needs	to	restore	the	database,	the	restore	object
has	three	main	methods	it	must	implement:
Restore(int	isUndo)
This	is	called	to	restore	the	database	to	the	state	it	was	in	when
theHold.Begin()	was	called.	In	the	earlier	example,	the	Restore()	method
would	reset	the	wireframe	color	to	the	previous	color.	A	flag,	isUndo,	is
passed	into	this	method	to	indicate	if	it	was	called	in	response	to	the	Undo
command.	In	the	above	example,	if	the	flag	is	TRUE	the	developer	must	save
the	current	color	before	restoring	the	previous	color	so	if	the	user	selects	the
Redo	command	the	color	could	be	reset	to	the	state	before	the	undo.
Redo()
This	is	called	by	the	system	if	the	user	has	selected	the	Redo	command.	This
means	the	user	wants	to	undo	the	undo.	The	developer	restores	the	database	to
the	state	it	was	in	before	the	last	undo	was	called	on	the	restore	object.
Size()
This	is	called	by	the	system	to	retrieve	the	size	in	bytes	of	the	restore	object.
This	is	used	to	make	sure	all	the	accumulated	restore	objects	to	not	grow
beyond	a	manageable	size.

Sometimes	the	Restore()	method	of	the	restore	object	may	be	called	but	not	in
response	to	the	user	selecting	the	Undo	command.	The	undo	system	also	allows
values	to	be	held	in	a	buffer	and	then	restored	programmatically.	For	example,
consider	the	operation	of	moving	a	node	in	the	scene	using	the	mouse.	When	the
user	first	clicks	the	mouse	button	down	to	begin	the	operation,	the	state	of	the
node's	=	4)	BSPSPopupOnMouseOver(event);;">transform	controller	is	saved	as
part	of	a	restore	object.	As	the	user	moves	the	mouse,	the	plug-in	tracks	its
position	and	updates	the	position	of	the	node	in	the	scene.	Over	and	over	the
plug-in	receives	a	message	that	the	mouse	has	moved	and	the	node	in	the	scene
must	be	re-positioned.	Rather	than	storing	incremental	moves	from	the
previously	calculated	position	(which	may	accumulate	error)	it	is	more	accurate

javascript:BSSCPopup('idx_transform_controller.htm');

to	restore	the	mouse	position	to	where	it	started	and	recalculate	the
transformation	based	on	the	distance	from	the	original	mouse	point	to	the	new
mouse	point.	In	order	to	reset	the	original	position,	the	system	calls	Restore().
This	puts	the	node	back	into	its	original	position.	Then	when	the	new	position	is
calculated	this	is	applied	to	the	node.	This	happens	over	and	over	until	the	user
releases	the	mouse.	When	the	mouse	is	released	theHold.Accept()	is	called	to
register	an	undo	object	with	the	system.
In	iterative	operations	such	as	this	it	is	often	useful	to	set	one	of	the	flags	of
Animatable	to	indicate	that	a	restore	object	is	being	held.	In	the	example	above,
when	the	user	first	clicks	down	on	the	mouse	the	developer	checks	if	theHold	is
holding	and	if	it	is	calls	theHold.Put()	to	register	a	restore	object.	Then	the
developer	calls	a	method	of	Animatable	SetAFlag(A_HELD).	This	sets	the
A_HELD	bit	of	the	Animatable	aflag	data	member	to	indicate	the	restore
object	is	held.	Then	on	each	iteration	the	bit	is	tested	to	see	if	it	is	set	and	if	so
another	restore	object	is	not	registered.	A	single	restore	object	can	be	restored
over	and	other	again.
When	theHold.Accept()	or	theHold.Cancel()	is	called,	the	system	calls	a
method	of	the	restore	object	called	EndHold().	The	developer	may	then	clear
the	A_HELD	bit	to	indicate	the	restore	object	is	no	longer	being	held.

Database	Changes	that	are	not	Undoable
When	3ds	max	is	exited,	reset,	etc.,	the	save	requester	is	only	brought	up	if	there
is	something	on	the	undo	stack.	If	a	plug-in	makes	a	change	that	is	not	undoable,
the	'save	dirty	bit'	must	be	set.	This	will	indicate	to	the	system	that	the	save
requester	needs	to	be	brought	up.	There	are	three	APIs	related	to	this:
Function:
BOOL	GetSaveRequiredFlag();

Remarks:
Implemented	by	the	System.
Returns	TRUE	if	the	'save	required'	flag	is	set;	otherwise	FALSE.	Note:	this
method	does	not	tell	you	if	saving	is	required,	it	just	returns	the	value	of	the
'save	required'	flag.	To	really	know	if	saving	is	required,	you	have	to	check	the
undo	buffer	as	well	as	this	flag.	This	is	the	purpose	IsSaveRequired()
below.

Function:
void	SetSaveRequiredFlag(BOOL	b=TRUE);

Remarks:
Implemented	by	the	System.
Sets	the	'save	required	flag'.	Note	that	calling
SetSaveRequiredFlag(TRUE)	will	cause	the	'Save	Changes'	prompt	to
appear,	but	SetSaveRequiredFlag(FALSE)	will	not	prevent	it	from
coming	up	unless	you	also	reset	the	undo	buffer.

Parameters:
BOOL	b=TRUE
TRUE	to	set	the	save	dirty	bit;	FALSE	to	clear	it.

Function:
BOOL	IsSaveRequired();

Remarks:
Implemented	by	the	System.
Returns	TRUE	if	a	change	was	made	to	the	3ds	max	database	that	would
require	the	file	to	be	saved.	In	other	words,	it	returns	TRUE	if	the	save
requester	will	be	brought	up	when	the	user	exits,	resets,	etc.;	otherwise

FALSE.

Flushing	the	Undo	Buffer
If	a	plug-in	developer	needs	to	clear	the	undo	buffer,	two	APIs	are	available	to
do	so.	A	method	of	class	Interface	will	flush	the	undo	buffer:
void	FlushUndoBuffer();

Developers	may	also	use:
int	GetSystemSetting(int	id);
If	the	ID	SYSSET_CLEAR_UNDO	is	passed	to	this	method,	the	undo
buffer	is	flushed.	This	function	will	return	0.	Note	that	this	will	only	work
with	version	1.1	of	3ds	max	or	later.
An	example	of	when	to	do	this	is	when	a	creation	object	is	deleted	after	some
undo	items	have	been	put	on	the	stack	that	refer	to	that	object,	for	instance
when	a	plug-in	is	doing	a	custom	creation	process.	See	the	sample	code	in
\MAXSDK\SAMPLES\OBJECTS\LIGHT.CPP.
If	the	creation	object	is	deleted	without	being	attached	to	a	node,	or	if	the
creation	is	canceled,	and	if	some	undo	objects	have	been	logged	since	the
creation	object	was	created,	then	one	should	flush	the	entire	undo	stack.	This
brute	force	way	of	doing	it	is,	unfortunately,	the	only	safe	way	to	ensure	that
the	3ds	max	undo	stack	is	not	corrupt	with	restore	objects	that	point	to	deleted
objects.

Summary
In	summary,	plug-In	developers	are	encouraged	to	have	their	plug-ins	fully
participate	in	the	undo	redo	system	of	MAX.	The	developer	works	with	two
classes.	RestoreObj	is	used	to	store	data	for	undoing	and	redoing
modifications	to	the	database.	Hold	is	used	to	call	methods	of	the	system	and
the	restore	object	to	manage	undo	and	redo.
For	reference	information	see	Class	Hold	and	Class	RestoreObj.

Working	with	Action	Tables
See	Also:	Class	ActionTable,	Class	ActionItem,	Structure	ActionDescription,
Class	ActionCallback,	Class	ActionContext,	Class	IActionManager.

Working	with	Bitmaps
See	Also:	BitmapManager,	BitmapInfo,	Bitmap,	BitmapIO,	BitmapStorage.

Overview
This	section	presents	information	about	working	with	bitmap	images.	It
discusses	the	main	classes	used,	and	presents	information	about	concepts	such	as
creating,	loading	and	saving	bitmaps,	memory	management	when	working	with
bitmaps,	palettes,	alpha,	gamma,	the	geometry/graphics	buffer	(G-buffer),
working	with	multi-frame	images,	handling	errors	that	occur,	and	pixel	storage
formats.	This	section	also	documents	a	few	utility	functions	in	the	API	that	are
not	part	of	any	class.

Overview	of	the	Principal	Classes
The	following	three	classes	are	the	main	ones	used	when	working	with	bitmaps:
BitmapManager
There	is	a	global	object	defined	by	3ds	max	called	TheManager.	This	is	an
instance	of	the	class	BitmapManager.	This	object	manages	and	enables
developers	to	work	with	bitmaps	in	MAX.	For	example,	this	class	provides
methods	for	creating	and	loading	bitmaps.	It	also	has	methods	for	displaying
some	common	dialogs	that	let	users	interactively	specify	files	and	devices	to
work	with,	and	set	options	for	bitmaps.
BitmapInfo
BitmapInfo	is	the	class	used	to	describe	the	properties	of	a	bitmap.	The
developer	can	declare	an	instance	of	this	class	and	use	its	methods	such	as
SetWidth(),	SetHeight(),	SetGamma(),	and	SetName()	to	describe	the
bitmap	properties.	The	other	classes	related	to	bitmaps	then	use	this
information.	Thus	BitmapInfo	is	the	heart	of	all	image	input/output.	For
example,	all	but	a	few	methods	in	the	BitmapManager	use	a	BitmapInfo
object	as	the	main	argument.	For	instance,	if	you	wish	to	create	a	bitmap,	you
declare	an	instance	of	BitmapInfo	and	use	its	methods	to	establish	the
bitmap	properties.	Then	when	you	call	the	BitmapManager	method
Create(),	you	pass	the	BitmapInfo	object.	The	BitmapManager	uses
this	information	to	determine	how	much	memory	to	allocate	based	on	the
width,	height	and	color	depth.
This	class	also	has	methods	to	get	and	set	the	number	of	frames	used	in	multi-
frame	bitmaps,	and	to	define	'custom'	properties	of	the	bitmap.	Custom
properties	let	you	specify	only	a	portion	of	the	main	bitmap,	such	as	a	smaller,
sub-region	of	the	original,	or	fewer	frames	than	the	original	(different	begin
and	end	settings	or	a	different	frame	increment	step	size	for	multi-frame
bitmaps).	These	custom	properties	are	read	and	used	by	bitmap	copying
operations	for	example.
Bitmap
The	Bitmap	class	is	the	bitmap	itself.	All	image	access	is	done	through	this
class.	This	class	provides	standard	methods	to	retrieve	and	store	pixels	from
the	image.	The	Bitmap	class	has	methods	to	retrieve	parameters	of	the
bitmap	such	as	its	width,	height,	whether	it	is	dithered,	or	has	an	alpha

channel.	Additional	methods	allow	developers	to	open	bitmaps	for	output,
write	multi-frame	images,	and	to	copy	pixel	data	between	bitmaps.

There	are	other	bitmap	related	classes	used	only	by	developers	who	create	3ds
max	plug-ins	used	to	load	and	save	new	bitmap	file	formats.	The	methods	of
these	classes	are	called	by	the	BitmapManager	and	Bitmap	classes	and	not
by	developers	themselves.	The	primary	classes	used	for	creating	image	loading
and	saving	plug-ins	are:
BitmapIO
This	is	the	main	plug-in	class	used	by	developers	creating	image	loader	/
saver	plug-ins.	For	example,	a	developer	creating	a	plug-in	to	support	the
PCX	file	format	would	derive	their	plug-in	class	from	BitmapIO.	This	class
is	used	for	both	files	and	devices	(devices	are	items	such	as	digital	disk
recorders).	Developers	implement	pure	virtual	methods	of	this	class	to
provide	information	about	the	image	loader	/	saver	they	are	creating.	This	is
information	such	as	the	plug-in	author	name,	copyright	data,	image	format
description,	filename	extension(s)	used,	and	other	capabilities	of	the	image
loader	/	saver.	The	developer	also	implements	methods	to	load	the	image	from
disk,	prepare	it	for	output,	write	image	data	to	it,	and	close	it.	Image	loader	/
saver	plug-ins	use	the	BitmapStorage	class	described	below	to	load	and
save	their	actual	pixel	data.
BitmapStorage
When	an	image	is	loaded	or	created,	the	buffer	that	will	hold	the	image	data	is
an	instance	of	the	BitmapStorage	class.	This	class	allows	developers	to
access	the	image	in	a	uniform	manner	even	though	the	underlying	storage
might	be	1,	8,	16,	32	or	48	bit.	For	example,	a	paletted	8-bit	format	is	perfect
for	loading	GIF	files	but	not	for	loading	32-bit	Targa	files.	The	inverse	is	also
true.	There	is	no	point	in	creating	a	true	color	64-bit	storage	to	load	a	GIF	file
that	only	has	8-bit	color	information.
Thus	the	BitmapStorage	mechanism	was	created	so	images	could	be	kept
in	memory	in	a	more	efficient	way.	Instead	of	loading	everything	in	MAX's
internal	64-bit	format,	bitmaps	are	loaded	and/or	created	using	the	most
efficient	storage	for	their	type.	The	BitmapStorage	class	provides	an
uniform	set	of	pixel	access	methods	to	hide	these	different	formats	from	the
developer	using	bitmaps.	For	example,	standard	methods	are	available	for
getting	and	putting	pixels	at	various	color	depths.	In	this	way,	even	though	an
image	may	be	a	1-bit	monochrome	line	art	bitmap,	pixels	may	be	retrieved	or

stored	at	other	color	depths.	For	example	the	BitmapStorage	methods
Get16Gray()/Put16Gray(),	GetTruePixels()/PutTruePixels(),	and
GetIndexPixels()/PutIndexPixels()provide	access	to	pixel	data	at	various
color	depths.
Again,	note	that	the	BitmapStorage	class	is	a	low	level	access	mechanism
used	by	image	loader	/	saver	(BitmapIO)	plug-ins.	Developers	wanting	to
access	an	image	use	the	methods	in	the	Bitmap	class	instead.

Needed	#include	and	LIB	files
When	working	with	bitmaps,	make	sure	you	add	the	bitmap	include	file	to	your
source	file,	i.e.	use	the	statement:
#include	"bmmlib.h"

Also	be	sure	to	set	your	MS	VC++	project	settings	to	link	to
\MAXSDK\LIB\BMM.LIB
Using	bmmlib.h	and	bmm.lib	will	ensure	you	have	access	to	all	the	bitmap
classes,	methods,	and	functions.

Creating,	Opening,	Writing,	and	Closing	Bitmaps
This	section	shows	how	the	BitmapInfo	and	BitmapManager	classes	may
be	used	to	create,	open,	and	write	to	bitmaps.	Following	this	is	code	that
demonstrates	how	to	open	an	existing	bitmap	using	the	standard	3ds	max	Open
File	dialog	box.	Both	these	examples	show	how	to	properly	delete	the	bitmaps
after	they	are	used.
To	create	a	bitmap	from	scratch,	we	need	to	declare	a	pointer	to	point	to	it:
Bitmap	*bmap;

Remember	that	the	Bitmap	class	represents	the	bitmap	itself.	Next,	we	need	to
declare	an	instance	of	the	BitmapInfo	class	to	describe	the	properties	of	the
bitmap	to	create:
BitmapInfo	bi;

Then	we	initialize	the	BitmapInfo	with	the	properties	of	the	bitmap	we	wish	to
create.	This	is	done	using	the	methods	of	BitmapInfo	such	as	SetType(),
SetWidth(),	etc.:
	//	Initialize	the	BitmapInfo	instance
	bi.SetType(BMM_TRUE_64);
	bi.SetWidth(320);
	bi.SetHeight(200);
	bi.SetFlags(MAP_HAS_ALPHA);
	bi.SetCustomFlag(0);
Note	 in	 the	above	code	how	the	 type	 is	set.	The	 type	describes	 the	number	of
bits	per	pixel	used	to	describe	the	image,	whether	the	images	is	paletted	(has	a
color	map),	and	if	it	has	an	alpha	channel.	To	see	a	list	of	the	types	of	bitmaps
that	 may	 be	 created	 see	 List	 of	 Bitmap	 Types.	 In	 this	 example,	 we	 use
BMM_TRUE_64.	 This	 format	 has	 16-bits	 for	 each	 color	 (RGB)	 and	 alpha
component.	This	is	the	format	that	3ds	max	uses	internally	in	the	renderer.
Once	the	BitmapInfo	is	initialized,	we	can	call	a	method	of	the	bitmap
manager	to	create	the	bitmap.	A	global	instance	of	the	BitmapManager	class
exists	called	TheManager.	This	is	what	we	use	to	call	methods	of
BitmapManager	as	shown	below:
	//	Create	a	new	bitmap
	bmap	=	TheManager->Create(&bi);

Note	that	we	pass	it	our	BitmapInfo	instance.	This	is	where	the	bitmap
manager	gets	the	information	on	the	bitmap	to	create.	If	the	pointer	returned	is
NULL,	an	error	has	occurred	in	creating	the	bitmap.	If	the	pointer	is	non-NULL,
it's	valid	and	we	can	use	it	to	call	methods	of	the	Bitmap	class	to	work	with	the
bitmap.	The	code	below	shows	how	the	PutPixels()	method	is	used	to	write
data	to	the	bitmap.	This	code	sets	every	pixel	of	the	image	to	the	color	and
opacity	specified	by	r,	g,	b	and	alpha.

	...
	BMM_Color_64	*line,	*lp,	color	=	{r,	g,	b,	alpha};
	int	bmapWidth	=	bmap->Width(),	bmapHeight	=	bmap->Height();
	
	if	((line	=	(BMM_Color_64	*)calloc(bmapWidth,
sizeof(BMM_Color_64))))	{
		int	ix,	iy;
		for(ix	=	0,	lp	=	line;	ix	<	bmapWidth;	ix++,	lp++)
			*lp	=	color;
		for(iy	=	0;	iy	<	bmapHeight;	iy++)
			int	res	=	bmap->PutPixels(0,	iy,	bmapWidth,	line);
		free(line);

}
	

When	we	are	done	using	the	bitmap,	we	need	to	delete	it.	This	is	done	by	simply
using	the	delete	operator:
if	(bmap)	bmap->DeleteThis();

That's	all	that's	required	to	create	a	bitmap	from	scratch.
The	following	code	demonstrates	two	other	methods	of	the	bitmap	manager	--
SelectFileInput()	to	allow	the	user	to	choose	a	file	to	load	(and	initialize	the
BitmapInfo	instance	passed	to	it)	and	Load()	to	create	a	bitmap	to	hold	the
image.	Again,	we	declare	a	Bitmap	pointer	and	a	BitmapInfo	instance.
Bitmap	*bmap;
BitmapInfo	bi;

Next,	we	use	a	method	of	the	bitmap	manager	to	allow	the	user	to	choose	an
image	file.	This	method	returns	FALSE	if	the	user	cancels	and	TRUE	if	they
select	an	image.	If	you	want	to	directly	indicate	which	file	to	load,	just	set	the
fields	of	BitmapInfo	yourself	(for	example

bi.SetName(_T("TEST.JPG"));)
	//	Let	the	user	choose	the	file	to	open
	BOOL	res	=	TheManager->SelectFileInput(&bi,	ip-
>GetMAXHWnd(),
		_T("Open	File"));
	if	(!res)	return;	//	User	cancelled...
After	SelectFileInput()	returns,	the	BitmapInfo	instance	passed	to	it
contains	the	necessary	information	about	the	bitmap	to	load.	To	load	the	bitmap,
the	Load()	method	of	the	bitmap	manager	is	used.
	//	Load	the	selected	image
	BMMRES	status;
	bmap	=	TheManager->Load(&bi,	&status);
	if	(status	!=	BMMRES_SUCCESS)	{
		MessageBox(ip->GetMAXHWnd(),	_T("Error	loading	bitmap."),
			_T("Error"),	MB_ICONSTOP);
	}
Once	the	image	is	loaded,	you	can	work	with	it	like	any	other	bitmap.	For
example	to	display	the	bitmap	in	a	window,	use	the	Bitmap::Display()
method.
	//	Display	the	opened	bitmap
	bmap->Display(title,	BMM_CN,	FALSE,	TRUE);
A	few	more	notes	on	the	bitmap	manager	Load()	method	--	Additional	options
may	be	set	by	calling	BitmapManager::ImageInputOptions()	before
calling	Load().	This	method	will	ask	the	user	for	special	details	such	as	custom
positioning	of	smaller/larger	images,	etc.	This	method	sets	the	proper	fields	in
BitmapInfo.
The	examples	above	show	how	to	create	and	load	a	bitmap.	Once	you	have	the
bitmap	what	if	you	want	to	save	it	to	disk?	Also,	how	do	you	deal	with	multi-
frame	files	(like	a	FLC	or	AVI)?	The	example	below	demonstrates	both	these
things	for	a	multi-frame	file.	Again,	we	declare	a	Bitmap	pointer	and	a
BitmapInfo	instance.
Bitmap	*bmap;
BitmapInfo	bi;

To	allow	the	user	to	choose	an	output	file	type,	use	the	BitmapManager
method	SelectFileOutput().	This	brings	up	the	'Browse	Images	for	Output'
dialog	box.	This	method	returns	TRUE	if	the	user	selected	a	file;	it	returns
FALSE	if	they	cancel	the	dialog	box.	This	method	also	handles	checking	if	the
filename	chosen	already	exists,	and	if	so	provides	an	overwrite	question	dialog.
This	method	will	fill	in	the	proper	fields	of	the	BitmapInfo	passed.
BOOL	gotIt	=	TheManager->SelectFileOutput(&bi,	ip-
>GetMAXHWnd());
if	(!gotIt)	return;	//	User	cancelled…

Next	we	need	to	set	the	image	size	and	the	properties	of	BitmapInfo	related	to
multi-frame	images.	Below	we	do	this	for	a	30	frame	sequence.
bi.SetWidth(640)
bi.SetHeight(480)
bi.SetFirstFrame(0)
bi.SetLastFrame(29)

With	the	BitmapInfo	setup,	we	can	call	the	BitmapManager	to	create	the
sequence:
bmap	=	TheManager->Create(&bi);

The	next	code	is	used	to	open	the	bitmap	for	output.	This	indicates	to	the	system
that	the	bitmap	is	open	for	output	and	we	can	write	to.
bmap->OpenOutput(&bi);

Next	we	simply	write	the	images	for	each	frame:
for	(frame	=	0;	frame	<	30;	frame++)	{

//	Do	something	to	the	image
//	...
//	Write	the	image
bmap->Write(&bi,	frame);

}
When	we	are	done	we	need	to	close	the	image:
bmap->Close(&bi)

Note:	You	can	add	any	number	of	outputs	to	a	bitmap.	Just	keep	calling	bmap-
>OpenOutput()	with	different	outputs	(for	instance	a	TGA	file	and	Frame
Buffer).	To	write	or	close	a	specific	output,	use	Write()	and	Close().	To	write

and	close	them	all	at	once,	use	the	Bitmap	methods	WriteAll()	and
CloseAll().	It	is	okay	to	use	WriteAll()	and	CloseAll()	if	you	have	just	one
output	defined.

Multi-frame	Files
Certain	file	types	(and	most	devices)	are	multi-frame.	AVI,	IFL,	FLI,	and
FLC	are	all	formats	that	support	multiple	frames.	The	Bitmap	class	has
methods	for	dealing	with	these	multi-frame	bitmaps.	For	example,	you	can	set
the	current	frame	to	load	or	save.	Also,	the	BitmapInfo	class	has	methods	that
will	let	you	work	with	only	a	subset	of	frames	of	a	multi-frame	image,	for
example,	SetStartFrame(),	SetEndFrame(),	and	SetCustomStep()	let	you
specify	a	different	start,	end	and	frame	increment	to	be	used.
When	loading	files,	BitmapInfo	defaults	to	frame	0.	For	multi-frame	files	you
should	specify	the	frame	number	you	want	to	load.	This	is	done	by	using
bi.SetCurrentFrame(f)	before	calling	Load().

High	Dynamic	Range	Bitmaps
Newly	added	to	the	bitmap	system	in	R4	are	High	Dynamic	Range	bitmaps.	This
was	accomplished	by	adding	methods	to	get	and	put	floating	point	color	values
into	the	Bitmap	and	BitmapStorage	classes.	Conversions	between	floating	point
and	fixed	point	representations	are	handled	by	the	BitmapStorage,	include
clamping	and	scaling	of	floating	point	values.
There	are	four	high	dynamic	range	BitmapStorage	formats:
·	LogLUV32:	This	format	uses	a	logarithmic	encoding	of	luminance	and	U’	and

V’	in	the	CIE	perceptively	uniform	space.	It	spans	38	orders	of	magnitude
from	5.43571´10-20	to	1.84467´1019	in	steps	of	about	0.3%	luminance	steps.
It	includes	both	positive	and	negative	colors.	A	separate	16	bit	channel	is
kept	for	alpha	values.

·	LogLUV24:	This	format	is	similar	to	LogLUV32	except	is	uses	smaller	values
to	give	a	span	of	5	order	of	magnitude	from	1/4096	to	16	in	1.1%	luminance
steps.	A	separate	8	bit	channel	is	kept	for	alpha	values.

·	LogLUV24A:	This	format	is	identical	to	LogLUV24,	except	the	8	bit	alpha
value	is	kept	with	the	24	bit	color	value	in	a	single	32	bit	word.

·	RealPixel:	This	format	encodes	the	exponent,	e,	of	the	largest	rgb	component
of	the	pixel,	and	the	ratio	of	each	component	with	2e.

Structure	BMM_Color_fl
Added	BMM_Color_fl	for	foating	point	access	to	bitmaps.
Structure	LogLUV32Pixel
Structure	LogLUV24Pixel
Class	BitmapStorage
There	are	new	methods	in	Bitmap	and	BitmapStorage	that	allow	data	to	be
retrieved	in	floating	point	values	rather	then	integer	values	so	3ds	max	can	get
the	high	dynamic	range	data	without	clamping.
BMM_Color_fl	uses	floats	to	hold	the	RGBA	color	components,	rather	than
16	bit	integers	which	are	used	in	BMM_Color_64.	To	convert	from
BMM_Color_64	to	BMM_Color_fl	you	divide	each	component	by	65535.0
and	to	go	back	you	multiply	each	component	by	65535.0.	High	Dynamic	Range
bitmaps	are	not	restricted	to	the	range	0.0	to	1.0.	Some	formats	allow	negative
values	and	all	of	the	formats	can	go	well	above	1.0.
There	is	a	problem	is	when	converting	from	BMM_Color_fl	to

BMM_Color_64,	since	the	value	may	exceed	65535.	The	bitmap	will	either
clamp	the	values	to	0	to	65535,	or	scale	the	values	by	the	largest	component
value	so	all	of	the	components	are	in	the	range	0	to	65535.
Class	BitmapStorageLDR
Class	BitmapStorageHDR
The	class	hierarchy	of	BitmapStorage	was	changed	a	little.	Two	new	classes
BitmapStorageLDR	and	BitmapStorageHDR	are	derived	from	BitmapStorage
and	should	be	used	as	the	base	class	for	BitmapStorage	implementations.
BitmapStorageLDR	provides	default	implementations	of	the	new	floating	point
BitmapStorage	methods	and	BitmapStorageHDR	provides	default
implementations	of	the	64	bit	pixel	BitmapStorage	methods.
Class	AColor
Implemented	converters	between	AColor	and	BMM_Color_fl.
Class	Color
Implemented	converter	between	Color	and	high	dynamic	range	pixel	formats.
Class	Texmap
Added	method	IsHighDynamicRange	to	Texmap	so	we	can	determine	when	a
texmap	is	returning	high	dynamic	range	data.
PreShade	and	PostShade	store	high	dynamic	range	data	when	a	Texmap
indicates	that	it	returns	high	dynamic	range	data.
Class	StdCubic
Class	StdMirror
Added	interface	method	UseHighDynamicRange	to	allow	StdMirror	and
StdCubic	to	use	high	dynamic	range	bitmaps.
Structure	BMM_Color_24
Structure	BMM_Color_32
Structure	BMM_Color_48
Structure	BMM_Color_64
Structure	BMM_Color_fl
Structure	RealPixel.

Custom	Bitmap	Properties
You	may	occasionally	want	to	work	with	only	a	portion	of	a	bitmap	or	series	of
images.	For	example,	when	copying	one	file	to	another,	if	you	had	a	640x480,	30
frame	FLC	file,	you	might	want	to	work	with	the	lower	right	corner	160x100
portion,	using	every	other	frame,	perhaps	starting	at	frame	5	and	ending	at	frame
15.	The	'Custom'	methods	of	the	BitmapInfo	class	let	you	specify	these
options.	Methods	such	as	SetCustomWidth(),	SetCustomX(),	and
SetCustomStep()	let	you	specify	the	part	of	the	source	image	that	should	be
manipulated.	The	method	that	copied	the	image	would	see	that	these	custom
properties	were	set	and	would	act	accordingly.	See	the	BitmapInfo	class	for
details	on	these	methods.
You	may	use	the	BitmapManager::ImageInputOptions()	method	to	allow
the	user	to	specify	these	options	via	the	standard	3ds	max	Input	Image	Options
dialog.	This	dialog	simply	sets	the	appropriate	data	members	in	BitmapInfo
based	on	the	user's	choices.

Memory	Management	for	Plug-Ins	that	work	with	Bitmaps
Memory	is	allocated	and	de-allocated	by	the	bitmap	classes	in	various	ways.	It	is
important	to	understand	when	memory	needs	to	be	freed	by	the	developer,	and
when	the	system	will	take	care	of	freeing	it.	This	section	discusses	this	issue.
The	bitmap	manager	methods	Create()	and	Load()	both	return	pointers	to
bitmaps	that	need	to	be	freed	when	the	developer	is	done	working	with	them.
This	is	accomplished	by	simply	using	the	delete	operator	on	the	pointer	returned
from	the	methods.	The	pseudo	code	below	shows	both	of	these	cases.
This	is	the	BitmapManager::Create()	case:
Bitmap	*bmap;
BitmapInfo	bi;
bmap	=	TheManager->Create(&bi);
//	Work	with	the	bitmap...
//	...
//	Free	the	bitmap	when	done
if	(bmap)	bmap->DeleteThis();

This	is	the	BitmapManager::Load()	case:
BMMRES	status;
Bitmap	*bmap;
BitmapInfo	bi;
BOOL	res	=	TheManager->SelectFileInput(&bi,	ip-
>GetMAXHWnd(),
_T("Open	File"));
bmap	=	TheManager->Load(&bi,	&status);
//	Work	with	the	bitmap...
//	...
//	Free	the	bitmap	when	done
if	(bmap)	bmap->DeleteThis();

As	the	code	above	shows,	the	developer	is	responsible	for	freeing	memory	from
both	these	methods.
Another	example	of	getting	a	pointer	to	a	bitmap	and	needing	to	free	it	is	the
pointer	returned	from	the	Bitmap	method	ToDIB().	This	method	creates	a	new
Windows	Device	Independent	Bitmap	(DIB)	and	returns	a	pointer	to	it.	The	DIB
bitmap	is	created	from	the	bitmap	whose	method	is	called.	The	DIB	is	allocated

internally	using	LocalAlloc()	and	must	be	freed	by	the	developer	using
LocalFree().	The	pseudo-code	below	show	how	this	is	done.
PBITMAPINFO	pDib;
pDib	=	bmap->ToDib();
//	Work	with	the	bitmap...
//	...
//	Free	the	bitmap	when	done
LocalFree(pDib);

There	is	a	different	case	where	the	developer	receives	a	pointer	to	a	bitmap,	but
is	NOT	responsible	for	deleting	it	when	done.	If	you	have	a	video	post	Image
Filter	plug-in,	it	receives	a	pointer	to	the	video	post	bitmap	queue.	This	bitmap
should	not	be	deleted	as	video	post	is	using	it	internally.	For	example,	in	the
ImageFilter::Render()	method,	the	filter	plug-in	has	access	to	a	source
bitmap	named	srcmap.	The	methods	of	this	pointer	may	be	called,	but	the
bitmap	itself	should	not	be	deleted	by	the	plug-in.	Video	post	will	take	care	of	it.

Memory	Management	for	Image	Loader/Saver	Plug-Ins
This	section	discusses	how	memory	is	managed	internally	by	image	loader	/
saver	plug-ins.	These	are	the	plug-ins	derived	from	class	BitmapIO.	Examples
of	this	type	of	plug-in	are	the	GIF,	FLC	and	JPG	IO	modules.	Developers	who
are	not	creating	these	types	of	plug-ins	do	not	need	to	be	concerned	with	these
details.
The	memory	allocated	to	a	bitmap	is	managed	internally	by	an	instance	of
BitmapStorage.	This	class	provides	access	to	the	pixels	through	a	uniform
interface.
When	a	developer	creates	an	image,	the	memory	is	allocated	by	the	system.	As
long	as	the	bitmap	is	being	used	within	the	system,	the	bitmap	remains	allocated.
This	is	handled	internally	by	a	usage	counter	that	tracks	if	a	bitmap	is	still	being
used.	If	another	use	of	the	bitmap	takes	place,	the	usage	count	is	incremented.	If
the	use	of	a	bitmap	ends,	the	usage	count	is	decremented.	When	the	usage	count
for	the	bitmap	goes	to	zero,	the	system	frees	the	memory.	This	happens
automatically	without	intervention	from	the	plug-in.
For	example,	once	a	bitmap	is	loaded	(this	is	never	the	case	when	a	bitmap	is
created),	a	storage	for	the	image	is	created	to	hold	the	actual	bitmap.	If	a	second
attempt	to	open	this	same	bitmap	is	made	(the	same	file	and	the	same	frame),
instead	of	creating	a	new	storage,	the	bitmap	is	created	pointing	to	the	existing
storage.	In	the	storage	a	counter	is	incremented	to	tell	how	many	bitmaps	are
using	it.	When	a	developer	deletes	the	bitmap	(i.e.	delete	MyMap;)	the
destructor	calls	the	storage	and	asks	to	be	unlinked	from	the	storage.	The	storage
decrements	the	usage	count	and	if	it	reaches	0,	the	storage	itself	is	also	deleted.
Note	that	this	is	only	the	case	when	a	bitmap	is	loaded	because	when	you	create
a	bitmap,	it	doesn't	yet	exist	in	the	file	system.	There	is	no	way	for	someone	else
to	"open"	it.	This	is	why	when	you	create	a	bitmap,	it	is	said	this	is	a	"WRITE
ONLY"	bitmap,	and	when	you	load	a	bitmap	it	is	said	this	is	a	"READ	ONLY"
bitmap.	In	order	to	read	and	write	a	bitmap	you	must	load	the	original	bitmap,
create	a	second,	copy	the	data	(doing	whatever	processing	in	between),	and	then
write	the	newly	created	bitmap.

Bitmap	Adjustment	-	Changes	to	Resolution	and	Color	Depth
There	are	several	ways	to	change	the	resolution	of	a	bitmap.	In	each	case	this
involves	creating	a	new	bitmap	and	copying	the	existing	bitmap	to	the	new.	To
change	the	image	size	without	any	scaling	of	the	pixel	data,	use
Bitmap::CopyImage()	and	specify	the	COPY_IMAGE_CROP	operation.
To	resize	the	bitmap	you	use	Bitmap::CopyImage()	as	well.	This	method	lets
you	specify	either	a	low	quality	(faster)	or	a	higher	quality	(slower)	copy.	See
List	of	Copy	Image	Operations	for	examples	of	each.
To	change	the	color	depth	(number	of	bits	per	pixel),	you	must	create	a	new
bitmap	of	the	desired	color	depth,	and	copy	the	original	to	the	new	using
Bitmap::CopyImage().

Palettes
Some	color	bitmaps	use	only	8-bits	per	pixel.	These	images,	unlike	true	color
images	where	every	pixel	can	be	a	unique	color,	are	limited	by	the	colors	stored
in	a	palette.	For	example,	an	8-bit	GIF	file	has	a	256	color	palette.	The	color
values	stored	by	the	palette	can	be	any	color,	but	the	actual	bitmap	image	can
only	be	comprised	of	colors	from	the	palette.	And	since	the	palette	is	limited	to
256	colors,	the	image	has	a	maximum	of	256	unique	colors.	For	paletted
bitmaps,	each	pixel	in	the	image	is	actually	an	index	into	the	palette	(sometimes
called	a	color	lookup	table).	So	the	pixel	value	tells	the	system	which	palette	slot
to	look	in,	and	the	value	in	that	palette	slot	determines	the	exact	color.
In	contrast,	true	color	images,	for	example	a	24-bit	TGA	file,	store	the	color	of
the	pixel	directly	in	the	pixel	value.	There	is	no	palette	used.
In	MAX,	every	bitmap	has	storage	for	a	palette	even	if	it	is	not	used.	There	are
methods	of	the	Bitmap	class	used	to	work	with	palettes.	A	developer	may	use
Bitmap::IsPaletted()	to	determine	if	an	image	is	indeed	paletted.	To	access
the	palette	of	a	bitmap,	Bitmap::GetPalette()	and	Bitmap::SetPalette()
may	be	used.
Palettes	are	primarily	a	concern	for	image	loader	plug-in	derived	from
BitmapIO.	When	loading	an	8	bit	image,	the	loader	would	create	an	8-bit
storage	and	set	the	palette	through	BitmapStorage::SetPalette().	Sample
code	is	available	showing	how	this	is	done	in
\MAXSDK\SAMPLES\IO\BMP\BMP.CPP	in	the	Load()	method.

Pixel	Storage
There	are	several	in-memory	storage	formats	for	pixel	data.	For	a	list	of	the
available	formats	see	the	section	Pixel	Storage	Types.	Also	see	Class	PixelBuf,
and	Template	Class	PixelBufT	for	some	useful	utility	classes	that	manage	single
scanline	buffers.

Pre-Multiplied	Alpha
The	following	is	a	discussion	of	the	concept	of	pre-multiplied	alpha	as	used	by
MAX.	A	32-bit	bitmap	file	contains	four	channels	of	data:	red,	green,	blue,	and
alpha.	The	first	three	provide	color	information	to	the	pixels,	while	the	alpha
channel	provides	transparency	information.	There	are	two	methods	of	storing
alpha	in	a	bitmap	--	pre-multiplied	and	non-pre-multiplied.
To	composite	an	image	that	is	in	non-pre-multiplied	format,	the	alpha	must	be
multiplied	by	each	of	the	R,G,	and	B	channels	before	adding	it	in	to	the	color	of
the	background	image.	This	provides	the	correct	transparency	effect,	but	must	be
done	each	time	you	composite.	With	pre-multiplied	alpha,	you	store	the	R,G,	and
B	components	with	the	alpha	already	multiplied	in,	so	compositing	is	more
efficient.
However,	this	is	not	the	only	reason	that	3ds	max	stores	images	in	the	pre-
multiplied	format.	When	you	render	an	image,	you	typically	want	the	edges	of
the	objects	to	be	anti-aliased.	This	effect	is	achieved	by	determining	the
fractional	coverage	of	pixels	on	the	edge	of	the	object,	and	then	adjusting	the
alpha	of	the	pixel	to	reflect	this.	For	example,	a	pixel	which	is	30%	covered	by
the	object	will	have	an	alpha	of	0.30.	To	anti-alias	the	edges,	the	alpha	must	be
pre-multiplied	to	darken	these	edge	pixels.	(This	is	basically	equivalent	to
compositing	the	image	over	a	black	image).	So	it	is	natural,	in	a	sense,	for
rendered	images	to	have	pre-multiplied	alpha.	If	you	didn't	pre-multiply	in	the
alpha	of	a	rendered	image,	then	just	looking	at	the	RGB	you	would	see	jaggies
on	the	edges	of	objects:	you'd	have	to	composite	it	against	black	using	the	alpha
channel	whenever	you	wanted	to	display	it.
Pre-multiplied	alpha	works	as	follows:	If	you	have	an	image	A	which	is	partially
transparent,	and	you	want	to	composite	it	over	an	image	B,	the	alpha	channel	of
A	tells	you	at	each	pixel	how	much	of	A	and	B	to	mix	in.	If	A's	alpha	is	pre-
multiplied	(as	it	always	is	in	MAX)	then	the	formula	is:
color	=	A	+	(1-A.alpha)*B

alpha	can	also	be	thought	of	as	the	"opacity"	of	A	at	a	given	pixel.
If	image	A	was	stored	with	Non-Pre-Multiplied	Alpha	(NPMA)	then	the	formula
for	compositing	would	be:
color	=	A.alpha*A	+	(1-A.alpha)*B

To	understand	why	pre-multiplied	alpha	is	used	consider	an	anti-aliased	edge	of
an	object,	rendered	against	a	black	background.	The	pixels	along	the	edge	will

have	an	alpha	less	than	1.0,	and	when	the	alpha	is	multiplied	in,	it	will	make	the
edge	look	smooth	(i.e.	anti-aliased).	If	you	don't	pre-multiply	the	alpha,	the
RGB	image	displayed	as-is	(with	out	taking	into	account	alpha)	looks	jagged:
multiplying	by	the	alpha	is	what	anti-aliases	the	image.
This	begs	the	question	"Why	would	you	ever	use	non-pre-multiplied	alpha?".
Say	you	have	an	image	without	an	alpha	channel.	You	want	to	create	an	alpha
channel	to	mask	out	all	but	a	certain	object,	but	want	to	leave	the	original	image
unchanged:	you	may	be	using	the	same	image	at	other	places	in	your	rendering.
In	this	case,	you	would	want	to	paint	an	alpha	channel	using	an	image	editor
(such	as	Photoshop)	which	would	mask	out	the	image,	and	combine	it	using	the
non-pre-multiplied	alpha	formula.
MAX's	Mask	texture	map	allows	you	to	do	this,	in	fact.	Basically	Mask	lets	you
combine	a	texture	with	an	mask	channel,	where	the	mask	channel	acts	as	a	NON
pre-multiplied	alpha	channel.	What	the	mask	texture	actually	does	is	multiply	all
four	channels	of	the	map	with	the	mask	channel,	so	what	is	passed	up	the
pipeline	is	RGBA	with	pre-multiplied	alpha.

Dithering	and	Filtering
When	converting	images	with	a	palette	of	a	greater	number	of	colors	to	an	image
with	a	palette	of	fewer	colors,	dithering	is	a	means	of	simulating	colors	not	in	the
more	limited	palette	by	mixing	different	colored	pixels	together.
Dithering	is	also	a	method	of	smoothing	the	edges	between	two	color	regions	by
mixing	their	pixels	so	the	edges	appear	to	blend	together.
In	MAX,	you	have	the	option	of	setting	dithering	if	you	are	rendering	for	the
limited	colors	of	an	8-bit	display	(256	colors).	It	can	help	prevent	a	banding
effect	in	color	gradients.	Dithering	does	increase	the	size	of	8-bit	files	and	slows
down	the	playback	speed	of	animations.
3ds	max	is	designed	to	render	64-bit	color	output.	Consequently,	you	also	have
the	option	of	setting	dithering	for	true	color	(24	or	32-bit	color).	The	Dither	True
Color	option	ensures	that	you	get	the	best	quality	on	true-color	displays.
Users	turn	dithering	on	and	off	in	the	Rendering	page	of	the	Preferences	dialog.
Users	can	also	set	dithering	for	scene	motion	blur	in	Video	Post.	Here,	dithering
provides	a	smoothing	effect	between	the	separate	images	making	up	the	"blur".
Video	Post	dither	is	set	as	a	percentage	of	total	dither.
A	developer	can	determine	if	a	bitmap	is	dithered	by	calling
Bitmap::IsDithered().	A	developer	can	ask	the	system	to	dither	an	image	at
render	time	using	the	method	Bitmap::SetDither().
Normally,	a	developer	is	not	directly	concerned	with	the	dithering	or	filtering	of
bitmaps.	These	two	operations	are	performed	by	the	renderer,	and	the	3ds	max
user	sets	these	characteristics	of	the	bitmaps	using	the	3ds	max	user	interface.	A
developer	can	however	determine	if	a	bitmap	will	be	filtered	by	calling
Bitmap::HasFilter().	A	developer	can	also	ask	the	system	to	filter	an	image
when	it's	rendered.	This	is	done	using	the	method	Bitmap::SetFilter().	See
List	of	Bitmap	Filter	Types	for	more	details	on	the	types	of	filtering	available.
There	is	also	a	method	of	the	Bitmap	class	called	GetFiltered()	to	compute
averaged	colors	over	a	specified	area	of	the	bitmap	using	the	bitmap's	current
filtering	algorithm.

Gamma	Correction
This	section	contains	an	overview	of	the	concept	of	gamma	followed	by	a
discussion	of	the	methods	available	to	developers	in	dealing	with	bitmaps	and
gamma	correction.
Gamma	correction	compensates	for	the	differences	in	color	display	on	different
output	devices	so	that	images	look	the	same	when	viewed	on	different	monitors.
A	gamma	value	of	1.0	corresponds	to	an	"ideal"	monitor;	that	is,	one	that	has	a
perfectly	linear	progression	from	white	through	gray	to	black.	However,	the
ideal	display	device	doesn't	exist.	Computer	monitors	are	"nonlinear"	devices.
The	higher	the	gamma	value,	the	greater	the	degree	of	nonlinearity.	The	standard
gamma	value	for	NTSC	video	is	2.2.	For	computer	monitors,	gamma	values	in
the	range	of	1.5	to	2.0	are	common.
When	you	create	an	image	on	your	computer,	you	base	your	color	values	and
intensities	on	what	you	see	on	your	monitor.	Thus,	when	you	save	an	image	that
looks	perfect	on	your	own	monitor,	you're	compensating	for	the	variance	caused
by	the	monitor	gamma.	The	same	image	displayed	on	another	monitor	(or
recorded	to	another	media	affected	by	gamma)	will	look	different,	depending	on
that	media's	gamma	values.
Two	basic	procedures	are	required	to	compensate	for	changes	in	gamma:

1.	Calibrate	your	output	display	devices	so	that	the	midtones	generated	by
3ds	max	are	accurately	duplicated	on	your	display	device.	You	do	this	in	the
Gamma	panel	of	the	Preferences	dialog	(Display	Gamma).
2.	Determine	the	gamma	value	to	be	applied	to	files	output	by	the	3ds	max
renderer	and	files	input	into	3ds	max,	such	as	texture	maps.	This	control	is
also	in	the	Gamma	panel	of	the	Preferences	dialog	(Files	Gamma).

The	most	important	rule	about	gamma	correction	is	to	do	it	only	once.	If	you	do
it	twice,	the	image	quality	is	over	bright	and	loses	color	resolution.
With	regard	to	output	file	gamma,	video	devices	such	as	video	tape	recorders
have	their	own	hardware	gamma-correction	circuitry.	Therefore,	you	need	to
decide	whether	to	let	3ds	max	do	the	output	gamma	correction	or	to	let	the
output	device	handle	it.
Gamma	correction	is	not	required	for	hardcopy	print	media.
Files	coming	into	3ds	max	from	programs	such	as	Adobe	Photoshop	will	have
been	gamma-corrected	already.	If	you've	been	viewing	the	files	on	the	same
monitor	and	they	look	good,	you	won't	need	to	set	input	file	gamma	in	3ds	max.

A	developer	can	indicate	that	a	bitmap	should	have	a	custom	gamma	setting
using	the	method	BitmapInfo::SetGamma().	To	retrieve	the	gamma	setting
stored	with	the	bitmap	use	Bitmap::Gamma().
There	are	several	ways	to	access	pixel	values	in	a	bitmap.	Some	of	these
methods	return	gamma	corrected	pixels	while	other	do	not.	Normally,	a	plug-in
that	access	the	pixels	directly	(for	example	an	image	filter	plug-in	that	modifies
the	pixels)	should	use	the	method	GetLinearPixels().	This	method	returns
pixels	that	are	NOT	gamma	corrected.	The	method	GetPixels()	is	employed	to
access	pixels	that	are	gamma	corrected.
Developers	may	also	use	the	methods	of	Class	GammaMgr	to	gamma	correct
colors.

Aspect	Ratio
Aspect	ratio	is	usually	expressed	either	as	a	ratio	of	bitmap	width	over	bitmap
height	(for	example,	4:3)	or	as	a	real	value	relative	to	1	(for	example,	1.333).
Methods	are	available	in	the	BitmapInfo	class	to	get	and	set	the	aspect	ratio
property	of	the	BitmapInfo	(BitmapInfo::Aspect()	and	SetAspect()).
Methods	are	available	from	the	Bitmap	and	BitmapStorage	classes	to	return
the	value	of	the	BitmapInfo	instance	associated	with	the	Bitmap	or
BitmapStorage.
3ds	max	also	allows	users	to	set	the	pixel	aspect	ratio,	so	that	there	is	a	different
value	for	the	distance	covered	by	one	pixel	measured	horizontally	and	one	pixel
measured	vertically.	A	developer	can	check	the	pixel	aspect	ratio	setting	that	is
being	used	by	the	renderer	using	the	method	Interface::GetRendAspect().

Hot	Check	Utilities
There	are	functions	that	may	be	used	to	correct	a	pixel	with	RGB	values	that	will
give	"unsafe"	values	of	chrominance	signal	or	composite	signal	amplitude	when
encoded	into	an	NTSC	or	PAL	color	signal.	This	happens	for	certain	high-
intensity,	high-saturation	colors	that	are	rare	in	real	scenes,	but	can	easily	be
present	in	computer	generated	images.	See:	List	of	Video	Color	Check	Utilities.

G-Buffer	Image	Channels
Image	Filter	and	Image	Layer	events	in	Video	Post	can	use	masks	that	are	based
on	geometry/graphics	buffer	(G-Buffer)	channels	instead	of	the	more	widely
used	RGB	and	alpha	channels.	Also,	some	kinds	of	Filter	and	Layer	events	can
post-process	objects	or	materials	designated	by	these	channels.	The	3ds	max	G-
Buffer	system	allows	developers	to	access	additional	data	about	rendered
objects.
A	G-buffer	is	used	to	store,	at	every	pixel,	information	about	the	geometry	at	that
pixel.	All	plug-ins	in	video	post	can	request	various	components	of	the	G-buffer.
When	video	post	calls	the	renderer	it	takes	the	sum	of	all	the	requests	and	asks
the	renderer	to	produce	the	G-buffer.
This	allows	a	developer	writing	an	image	processing	plug-in	to	locate	parts	of
the	image	using	a	specific	material,	locate	a	specific	node	in	the	scene,	and
access	UV	coordinates,	surface	normals,	and	unclamped	color	values.	This	also
allows	the	developer	to	access	the	Z	(depth)	buffer.	In	release	3.0	and	later
developers	can	access,	color,	transparency	and	weight	for	sub-pixel	fragments	as
well	as	velocity	(for	motion	blur).
A	filter	plug-in	(derived	from	class	ImageFilter)	implements	a	method
ChannelsRequired()	to	indicate	what	channels	it	needs.	Then,	at	the	time	the
filter's	Render()	method	is	called	it	will	have	access	to	these	channels.	See	List
of	Image	Channels	for	details	on	the	available	channels.

Error	Reporting
When	an	image	loader/saver	plug-in	(derived	from	class	BitmapIO)	encounters
an	error	during	a	bitmap	operation	(for	example	"No	Disk	Space"	when
attempting	to	write	a	bitmap)	there	is	a	system	flag	that	controls	how	the	error
should	be	reported	to	the	user.
The	image	loader/saver	base	class	BitmapIO	provides	a	method	for	reporting
errors	named	ProcessImageIOError().	This	presents	a	standard	dialog	that
provides	the	user	with	options	to	cancel	or	retry	the	operation.	So,	when	a
developer	runs	into	an	error	condition	while	processing	a	bitmap,	they	would	use
the	BitmapIO::ProcessImageIOError()	method	to	report	it.	Some
"common"	error	messages	are	already	defined,	and	for	those	you	would	simply
use	one	of	the	error	codes	defined	in	BITMAP.H.	These	are:
BMMRES_MEMORYERROR	Generic	memory	error.
BMMRES_CANTSTORAGE	Generic	can't	create	storage	error.
BMMRES_BADFRAME		Generic	Invalid	Frame	Number	Requested.

More	of	these	exist	but	are	for	internal	use	only.	To	send	your	own	message,
simply	pass	a	TCHAR	string	instead.	The	file	name	and/or	device	name	are
taken	from	the	given	BitmapInfo	object.
The	ProcessImageIOError()	returns	either	BMMRES_ERRORRETRY
or	BMMRES_ERRORTAKENCARE	depending	on	the	users	selection
from	the	dialog	box.	Normally	a	developer	doesn't	care	about	the	return	value
and	simply	returns	it	and	exits.
The	idea	of	a	standard	error	processing	dialog	is	to	control	the	display	of	dialogs.
For	example,	when	3ds	max	is	running	in	network	rendering	mode,	no	dialogs
should	be	displayed.	That	would	cause	the	machine	to	just	sit	there	since	there
would	be	no	user	to	respond	to	the	dialog.
If	you	must	handle	the	error	yourself	(that	is,	if	you	want	to	display	your	own
error	dialog),	you	should	first	check	to	see	if	dialogs	are	allowed	by	checking	the
BitmapManager::SilentMode()	method.	This	method	returns	a	value
indicating	if	dialogs	should	indeed	be	displayed	or	not.

Utility	Functions	for	Use	with	Bitmaps.
The	following	functions	are	general	utility	routines	for	dealing	with	bitmap	files
(but	are	not	methods	of	a	specific	class):

Prototype:
BOOL	BMMCreateNumberedFilename(const	TCHAR
*namein,DWORD	frame,	TCHAR	*nameout);

Remarks:
Implemented	by	the	System.
This	appends	a	4	digit	frame	number	string	to	the	end	of	the	name	passed.	For
example,	this	will	convert	BIGFILE.TGA	to	BIGFILE0000.TGA	(or
BIGF0000.TGA).	This	function	checks	the	file	system	to	see	if	it	supports	long
file	names	and	manages	the	length	appropriately.

Parameters:
const	TCHAR	*namein
The	input	name	to	append	the	numbers	to.
DWORD	frame
The	frame	number	to	append.
TCHAR	*nameout
The	output	string.

Return	Value:
TRUE	if	the	function	succeeded;	otherwise	FALSE.

Prototype:
BOOL	BMMGetFullFilename(BitmapInfo	*bi);

Remarks:
This	function	will	search	the	system	for	a	bitmap.	The	BitmapInfo	pointer
contains	the	name	of	the	bitmap	that	is	searched	for	(bi->Name()).	If	the
filename	found	in	the	BitmapInfo	is	incorrect,	and	the	bitmap	is	found
somewhere	else,	this	function	will	replace	bi->Name()	with	the	correct	path.
The	order	of	the	search	is	as	follows:
-	The	full	UNC	path/filename	saved	in	the	BitmapInfo	object.
-	The	path	where	the	current	3ds	max	file	was	loaded	from.

-	The	directory	tree	under	the	directory	where	the	current	Max	files	was
loaded.
-	The	Map	path.

Parameters:
BitmapInfo	*bi
Describes	the	bitmap	to	find	(using	bi->Name()).	This	name	is	updated	if	the
bitmap	is	found	in	a	different	location.

Return	Value:
TRUE	if	the	file	was	found;	otherwise	FALSE.

Prototype:
BOOL	BMMIsFile(const	TCHAR	*filename);

Remarks:
Returns	TRUE	if	the	specified	filename	is	indeed	an	existing	file;	otherwise
FALSE.

Parameters:
const	TCHAR	*filename
The	filename	to	check.

Prototype:
void	BMMSplitFilename(const	TCHAR	*name,	TCHAR	*p,
TCHAR	*f,	TCHAR	*e);

Remarks:
This	function	will	break	the	specified	filename	into	path,	file	and	extension
components.	*p,	*f,	and/or	*e	can	be	NULL.	It	is	possible,	for	example,	to
call	with	just	*e	to	collect	just	the	file	extension.

Parameters:
const	TCHAR	*name
The	filename	to	split	apart.
TCHAR	*p
The	path	name	is	stored	here.
TCHAR	*f

The	file	name	is	stored	here.
TCHAR	*e
The	file	name	extension	is	stored	here.	The	name	includes	the	period	character
(.).

Prototype:
void	BMMAppendSlash(TCHAR	*path);

Remarks:
This	function	appends	a	slash	character	to	the	end	of	the	path	passed	unless
one	already	exists.

Parameters:
TCHAR	*path
The	path	name	to	append.

Prototype:
BOOL	BMMGetUniversalName(TCHAR	*out_uncname,	const
TCHAR*	in_path,	BOOL	nolocal	=	FALSE);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
Given	a	path	(E:\path\filename.ext),	the	function	will	check	and	see	if	this
drive	is	mapped	to	a	network	share.	If	successful,	the	full	UNC	version	will	be
returned	in	out_uncname	("\\computer\share\path\file.ext").	If	the
function	returns	FALSE,	out_uncname	will	be	undefined.
This	function	has	been	enhanced	to	also	return	an	UNC	for	a	local	drive	that
happens	to	be	shared.	For	instance,	if	you	pass	in	something	like
d:\data\images\maps\background\rottenredmond.tga	and	it	happens
that	d:\data	is	shared	as	"Image	Data",	the	function	will	return:
\\computername\Image	Data\images\rottenredmond.tga.

Parameters:
TCHAR	*out_uncname
This	is	a	buffer	you	pass	to	it	to	receive	the	UNC	path	(if	any).	It	must	be	at
least	MAX_PATH	long.

const	TCHAR	*in_path
The	path	for	which	to	obtain	the	UNC	name.
BOOL	nolocal	=	FALSE
Pass	this	as	TRUE	if	you	just	want	to	see	if	this	is	a	network	share	(don't
check	if	this	local	drive	is	shared).

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
BOOL	BMMFindNetworkShare(const	TCHAR*	in_localpath,
TCHAR*	out_sharename,	TCHAR*	out_sharepath);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Given	a	path	(E:\path\filename.ext)	this	function	will	check	and	see	if	this
[local]	path	is	shared.	If	successful,	it	will	return	both	the	share	name	and	the
path	of	the	share.

Parameters:
TCHAR	*in_localpath
The	local	path	provided.
TCHAR	*out_sharename
The	share	name	which	is	returned	if	the	provided	path	is	shared.
TCHAR	*out_sharepath
The	path	of	the	share	which	is	returned	if	the	provided	path	is	shared..

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
BOOL	BMMGetLocalShare(const	TCHAR	*local_path,	TCHAR
*share);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	represents	the	"second	half"	of	BMMGetUniversalName()

above.	This	method	will	check	local	paths	only	and	return	a	UNC	version	if	a
share	exists	somewhere	up	in	the	path	hierarchy.

Parameters:
const	TCHAR	*local_path
The	local	path	provided.
TCHAR	*share
The	share	name	which	is	returned.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
LPTSTR	BMMGetLastErrorText(LPTSTR	lpszBuf,	DWORD
dwSize);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
Whenever	you	call	a	Win32	function	and	there	is	an	error,	this	method	may	be
used	to	return	the	descriptive	string	associated	with	the	error.

Parameters:
LPTSTR	lpszBuf
This	is	the	string	that	is	updated.
DWORD	dwSize
The	maximum	length	of	the	string	that	may	be	returned	in	lpszBuf.

Working	with	Controllers
See	Also:	Class	Control,	Class	StdControl,	Class	SetXFormPacket,	Class
IKeyControl,	Class	IKDeriv,	Class	IKEnumCallback,	Class	JointParams,	Class
AngAxis,	Class	Quat,	Class	Matrix3,	Class	Point3,	Class	ScaleValue,	Class
Interval.

Overview
Controllers	are	the	plug-in	type	responsible	for	directing	all	animation	in
MAX.	This	topic	provides	information	on	working	with	controllers.	There	is
an	overview	of	the	princial	classes	involved	when	creating	and	working	with
controllers,	a	list	of	the	various	controller	types	in	MAX,	information	on
accessing	the	keyframe	for	the	systems	controllers,	and	a	note	about	the
importance	of	undo	/	redo	as	related	to	controllers.

Principal	Classes
The	following	classes	are	the	main	ones	used	when	dealing	with	controllers	in
the	SDK.
Class	Control
This	is	the	base	class	for	the	creation	of	controller	plug-ins.
Class	StdControl
This	class	provides	a	simplified	way	to	create	controller	plug-ins.	Developers
who	sub-classs	their	plug-in	from	this	class	will	have	fewer	methods	to
implement.
Class	IKeyControl
This	class	is	used	to	access	the	properties	of	controllers.	The	standard	3ds
max	plug-ins	support	this	interface.	Plug-In	developers	are	encouraged	to	do
so	as	well.	This	allows	other	third-party	developers	to	access	your
controller's	data.
Class	SetXFormPacket
This	class	is	used	to	allow	a	transform	controller	to	know	that	it	is	being
specifically	moved,	rotated,	or	scaled.
Class	EaseCurveList
Ease	curves	vary	the	timing	of	a	superior	function	curve.	A	normal	function
curve	charts	an	animated	parameter	value	over	time.	An	Ease	curve	charts
changes	to	the	time	of	a	function	curve	over	time.	A	3ds	max	user	may	apply
multiple	ease	curves	to	a	parameter.	This	class	holds	a	list	of	ease	curves	and
allows	developers	to	access	their	data.
Class	MultCurveList
The	value	of	a	multiplier	curve	is	a	scale	factor	applied	to	the	value	of	its
superior	function	curve.	This	class	holds	a	list	of	multiplier	curves	and
allows	developers	to	access	their	data.
There	are	several	interface	classes	that	provide	access	to	the	parameters	for	the
standard	3ds	max	controllers.	These	are	listed	below:
Path	Controller:	Class	IPathPosition.
Noise	Controller:	Class	INoiseControl.
Surface	Position:	Class	ISurfPosition.
Link	Inheritance	Controller:	Class	ILinkCtrl.
Look	At	Controller:	Class	ILookatControl.

Controller	Types	in	MAX
The	basic	data	types	that	can	be	animated	by	controllers	are:
Integer	values	(int).
Floating	point	values	(float).
Three	floats	(Point3).	Note:	The	Point3	class	is	also	used	for	Color
Controllers.
Position	(Matrix3).
Scale	(ScaleValue).
Transform	(Matrix3).

Accessing	Keyframe	Data	of	Controllers
Developers	have	access	to	the	data	of	MAX's	keyframe	and	procedural
controllers.	There	is	a	separate	Advanced	Topics	section	on	this	topic.	See
Keyframe	and	Procedural	Controller	Data	Access.

The	Undo	Mechanism	and	Transform	Controllers
The	following	is	a	discussion	of	how	a	transform	controller	responds	to
movement	of	the	mouse	when	the	user	is	dragging	and	how	the	undo
mechanism	is	involved.
When	the	user	first	clicks	the	mouse	button	down	to	begin	a	drag	operation,
the	initial	position	of	a	node	is	stored.	As	each	move	takes	place	a	new	vector
is	calculated	from	the	initial	position	to	the	new	position	of	the	mouse.	This
new	calculation	is	used	to	update	the	position	of	the	node.	This	is	different
than	accumulating	the	new	position	from	the	previous	position.	The
accumulation	approach	can	introduce	error.	It	may	also	be	a	problem	for	the
user	to	get	back	to	the	initial	position	of	the	node	if	they	move	the	mouse	back
to	the	initial	position.
3ds	max	uses	the	undo	mechanism	to	avoid	the	problems	associated	with	the
accumulation	approach.	Every	time	the	user	moves	the	mouse	3ds	max	re-
computes	the	entire	modification.	So	3ds	max	uses	the	original	point	and	the
current	location	of	the	mouse	to	compute	the	position.	What	this	means
internally	is	that	every	time	the	user	moves	the	mouse	the	state	at	initial	mouse
down	must	be	restored.	To	do	this,	when	the	mouse	is	initially	pressed,
theHold.Begin()	is	called	to	create	a	RestoreObj	that	stores	the	initial
state.	When	the	mouse	is	moved,	theHold.Restore()	is	called.	This	restores
the	state	to	when	theHold.Begin()	was	called.

As	noted	above,	when	the	user	initially	mouses	down,	theHold.Begin()	is
called.	Then	at	each	mouse	move	theHold.Restore()	is	called.	In	iterative
operations	such	as	this	it	is	often	useful	to	set	one	of	the	flags	of	Animatable	to
indicate	that	a	restore	object	is	being	held.	In	the	example	above,	when	the	user
first	clicks	down	on	the	mouse	the	developer	checks	if	theHold	is	holding	and	if
it	is	calls	theHold.Put()	to	register	a	restore	object.	Then	the	developer	calls	a
method	of	Animatable	SetAFlag(A_HELD).	This	sets	the	A_HELD	bit	of
the	Animatable	aflag	data	member	to	indicate	the	restore	object	is	held.	Then
on	each	iteration	the	bit	is	tested	to	see	if	it	is	set	and	if	so	another	restore	object
is	not	registered.	A	single	restore	object	can	be	restored	over	and	other	again.
When	theHold.Accept()	or	theHold.Cancel()	is	called,	the	system	calls	a
method	of	the	restore	object	called	EndHold().	The	developer	may	then	clear
the	A_HELD	bit	to	indicate	the	restore	object	is	no	longer	being	held.
For	sample	code	that	does	this	see	any	of	the	transform	controllers,	for

example,
\MAXSDK\SAMPLES\CONTROLLERS\BOOLCTRL.CPP.	Also,
see	the	Advanced	Topics	section	on	Undo	/	Redo.

Global	Functions
There	are	some	global	functions	developer	may	use	that	relate	to	controllers.
These	provide	things	such	as	setting	the	default	controllers	used	for	various
controller	types,	creating	new	instances	of	different	controller	types,	turning
animation	mode	on	and	off,	temporarily	suspending	animate	mode,	and
getting/setting	the	animation	start	and	end	times.	There	are	also	some	global
functions	which	provide	access	to	the	default	tangent	types	for	both	the	Bezier
and	TCB	controllers.	See	List	of	Additional	Controller	Related	Functions	to
review	them.

Working	with	Lights
See	Also:	Class	LightObject,	Class	GenLight,	Class	Light,	Class	DefaultLight,
Structure	LightState,	Class	LightDesc,	Class	LightRayTraversal,	Class
ObjLightDesc,	Class	ShadeContext.

Overview
This	topic	provides	information	on	working	with	lights.	Covered	are	the	main
classes	used	when	dealing	with	lights	and	a	description	of	how	these	relate	to
one	another.	Also	discussed	are	the	types	of	lights,	and	how	the	parameters
that	define	their	characteristics	may	be	retrieve	and	assigned.
There	are	several	tasks	lights	are	responsible	for	accomplishing.	One	is	to
provide	an	interface	so	the	user	can	adjust	their	properties.	Another	is	to
provide	access	to	these	same	parameters	so	other	plug-ins	(utilities,	exporters,
renderers,	etc.)	can	get	and	set	them.	Another	one	is	the	actual	llumination
objects	in	the	scene.	Also,	certain	lights	need	to	work	with	the	3ds	max
atmosphere	system	(such	as	fog	and	volume	lighting).

Overview	of	the	Principal	Classes
The	following	classes	are	the	main	ones	used	when	dealing	with	lights	in	the
SDK.
Class	LightObject
This	is	a	base	class	for	plug-in	lights.	It	has	a	method	used	to	retrieve	the
light's	properties	at	a	certain	time,	a	method	to	create	an	ObjLightDesc
object	(described	below).	It	also	has	methods	that	allow	the	many	properties
of	the	light	to	be	read	and	altered.
Class	GenLight
This	is	also	a	possible	candidate	for	plug-in	lights	to	sub-class	from.	This
class,	sub-classed	from	LightObject,	provides	a	set	of	additional	methods
(for	example	access	to	the	controllers	handling	the	animation	of	the	light's
properties).
Class	Light
This	class	describes	the	properties	of	the	lights	used	in	the	interactive
renderer.	See	Light	methods	in	Class	GraphicsWindow	for	methods	which
use	this	class.
Class	DefaultLight
An	array	of	these	objects	is	passed	in	the	Open()	method	of	a	renderer	plug-
in.	This	class	contains	the	transformation	matrix	of	the	light	and	a
LightState	object	(described	below)	that	describes	the	characteristics	of	the
light.
Structure	LightState
This	structure	describes	the	properties	of	a	light.	When	the	LightObject
method	EvalLightState()	is	called,	LightState	is	the	structure	that	is
updated.	This	is	used,	for	example,	by	many	of	the	file	format	export	plug-
ins	to	grab	data	about	the	lights	they	are	exporting.
Class	LightDesc
This	class	has	a	single	method	Illuminate()	used	to	determine	the	color	and
direction	of	the	light	striking	a	point.	It	has	two	public	data	members	that
indicate	if	the	diffuse	and/or	specular	color	of	objects	should	be	affected	by
the	light.
Class	ObjLightDesc
This	class	is	sub-classed	from	LightDesc	(described	above).	There	is	an

instance	of	this	class	for	every	instance	of	a	light	in	the	scene.	The	renderer
asks	each	light	in	the	scene	to	create	one	of	these	objects	by	calling
LightObject::CreateLightDesc()	and	passing	it	the	light	node.	This
class	has	data	members	that	provide	information	such	as	a	pointer	to	the	node
for	the	light,	a	LightState	object,	various	transformation	matrices	that
provide	conversions	between	the	light's	space	and	world	and	camera	space.	It
has	a	method	to	retrive	the	lights	exclusion	list,	and	a	method	to	update	the
light's	data	members	in	this	class	once	per	render.	It	also	has	a	method	used
in	computing	volume	lighting	effects,	TraverseVolume().

Accessing	Light	Parameters
There	are	several	approaches	developers	may	use	to	access	the	parameters	that
define	the	properties	of	a	light.	One	way	is	to	call	the	EvalLightState()
method	of	the	light.	This	method	updates	the	LightState	structure	passed	to
it.	This	structure	contains	basic	information	about	the	light	such	as	its	type,
color,	attenuation	ranges,	etc.).	The	structure	is	valid	for	a	single	point	in	time
for	animated	lights.
Another	approach	is	to	call	the	individual	Get/Set	methods	of	the	light
directly.	Since	lights	are	sub-classed	from	LightObject	or	GenLight,	the
methods	of	these	classes	may	be	called	to	get	and	set	additional	properties.
This	provides	not	only	read	access	but	also	the	ability	to	change	the	lights
properties.	If	animate	mode	is	set	to	on,	a	developer	may	animate	the	lights	in
this	way.
Finally,	developers	may	access	the	controllers	that	handle	the	animation	of
lights.	This	can	be	used	to	determine	exactly	what	type	of	interpolation	is
being	done	by	the	lights	when	they	are	animated	(by	looking	at	the
Controller's	Class_ID).	Also,	the	GetValue()	and	SetValue()	method	of	the
controller	may	be	used	to	access	the	lights	properties.

Global	Light	Scaling	and	Tinting
In	3ds	max	2.0	a	new	area,	called	'Global	Lighting'	has	been	added	to	the
Environment	dialog.	It	contains	two	new	controls	that	globally	affect	all	lights	in
the	scene,	except	the	Ambient	light.	The	two	new	controls	are	as	follows:
A	Level	spinner	control:	The	value	in	this	spinner	acts	as	a	multiplier	to	all	lights
in	the	scene,	except	ambient	light.	Thus,	a	level	of	1	(default)	preserves	the
normal	light	settings,	while	higher	numbers	raise	the	lighting,	and	lower
numbers	reduce	the	lighting.
A	Tint	color	swatch:	The	user	may	use	this	for	to	tint	all	lights	in	the	scene	by
that	color.
Both	of	these	new	controls	can	be	animated.	Developers	that	retrieve	light	color
values	from	the	Get/Set	methods	of	the	lights	themselves	do	not	have	this	global
lighting	factor	applied.	There	are	several	methods	of	the	Interface	class	that
provide	access	to	these	properties.	See	Interface	--	Environment	Access.

Working	with	Materials	and	Textures
See	Also:	Class	MtlBase,	Class	Mtl,	Class	Texmap,	Class	ShadeContext,	Class
StdMat,	Class	Mesh,	Class	INode.

Overview
This	section	provides	information	on	working	with	materials	and	textures.	This
includes	an	overview	of	the	principal	classes,	how	plug-ins	can	access
components	of	materials	(such	as	their	maps,	colors,	etc.),	and	how	materials
may	be	created	and	applied	to	nodes	in	the	scene.	Information	is	also	provided
about	how	the	user	interface	is	managed	for	plug-in	materials	and	textures.
A	texture	and	a	material	are	similar	in	many	ways.	In	MAX,	every	texture	or
material	may	have	sub-texture	or	sub-materials.	Materials	that	have	sub-
materials	are	referred	to	as	meta-materials.

Overview	of	the	Principal	Classes
The	following	are	the	main	classes	associated	with	creating	plug-in	materials
and	textures.
MtlBase
This	is	the	base	class	that	the	materials	and	texture	classes	are	derived	from.
Mtl
This	is	the	class	plug-in	materials	are	sub-classed	from.
Texmap
This	is	the	class	plug-in	procedural	textures	are	sub-classed	from.
ShadeContext
An	instance	of	this	class	is	passed	into	various	methods	associated	with
materials	and	texture	maps.	It	provides	data	members	and	methods	used	in
communication	between	the	renderer	and	the	plug-in	material	or	texture.
RenderGlobalContext
A	pointer	to	an	instance	of	this	class	is	a	data	member	of	the	ShadeContext
(RenderGlobalContext	*globContext;).	This	can	be	used	by	materials,
texmaps,	etc.	to	retireve	information	about	the	global	rendering	enviornment.
This	is	information	such	as	the	renderer	in	use,	the	project	type	for	rendering,
the	output	device	width	and	height,	several	matrices	for	transforming	between
camera	and	world	coordinates,	the	environment	map,	the	atmospheric	effects,
the	current	time,	field	rendering	information,	and	motion	blur	information.
IMtlParams
This	is	an	interface	class	passed	to	a	material	or	texture	map	when	it	is	being
edited	in	the	materials	editor.	The	class	has	methods	to	do	things	such	as	add
rollup	pages	to	the	dialog,	remove	rollup	pages,	and	retrieve	the	current	time
(frame	slider	position).
ParamDlg
Every	MtlBase	sub-class	(i.e.	texture	map	and	material)	defines	a
ParamDlg	to	manage	its	part	of	the	material	editor	user	interface.	See	the
section	below	on	Editing	Material	or	Texture	Parameters	for	details	on	how
this	class	is	used.
UVGen
Most	texture	maps	that	use	UVs	will	use	a	UVGen.	This	class	encapsulates	a

lot	of	the	user	interface	for	setting	mirroring,	tiling	and	so	on.	The	UVGen	is
given	a	MapSampler	callback,	and	the	plug-in	lets	the	UVGen	call	it.	This
lets	the	UVGen	figure	out	the	components	for	anti-aliasing,	and	it	includes
any	transform	including	scaling,	rotation,	moving,	and	noise	on	the	UVs.
MapSampler
A	texture	map	implements	this	class	and	passes	it	into	the	UVGen	methods
EvalUVMap(),	EvalUVMapMono(),	and	EvalDeriv()	to	evaluate	itself
with	tiling	&	mirroring.	Each	of	the	methods	of	this	class	are	used	to	sample
the	map	at	a	single	UV	coordinate.
XYZGen
This	class	generates	Point3	coordinates	based	on	the	ShadeContext.	A
reference	to	one	of	these	is	referenced	by	all	3D	texture	maps.	XYZGen
does	for	3D	Texmaps	what	UVGen	does	for	2D	Texmaps.	It	puts	up	the	3D
"Coordinates"	rollup,	and	supplies	the	3D	Texmap	with	transformed	3D
coordinates.
TextureOutput
This	class	may	be	used	by	textures	to	provide	control	over	their	output.	The
standard	rollup	page	'Output'	is	managed	by	this	class.	The	Output	Amount,
RGB	Level,	and	RGB	Offset	are	settable.	In	the	future	this	may	be	enhanced
to	include	other	things	that	are	often	desirable	on	the	output	stage	such	as
tinting,	color	shifting,	etc.

The	following	are	the	main	classes	associated	with	accessing	properties	of
materials	and	textures:
StdMat
This	class	provides	access	to	the	parameters	of	the	3ds	max	Standard	material.
MultiMtl
This	class	provides	access	to	the	developer	alterable	properties	of	the	3ds	max
Multi/Sub-Object	material.
BitmapTex
This	class	provides	access	to	the	parameters	of	the	3ds	max	Bitmap	texture.
StdUVGen
This	class	provides	access	to	the	parameters	of	the	3ds	max	UVGen	class.
These	are	the	settings	in	the	'Coordinates'	and	'Noise'	rollups	such	as	UV
offsets,	angle,	blur,	noise	level,	etc.

StdXYZGen
This	class	provides	access	to	the	parameter	of	the	3ds	max	XYZGen	class.
MtlBaseLib
This	class	provides	access	to	the	materials	stored	in	a	materials	library.	See
the	sample	code	below	for	an	example	of	use.

Accessing	Material	Properties
This	section	covers	how	the	various	properties	of	a	material	may	be	retrieved
from	a	node	in	the	scene.	These	are	properties	such	as	color,	mapping
parameters,	bitmaps	used,	etc.
In	3ds	max	there	is	only	one	material	per	node.	In	the	INode	class	there	are
methods	GetMtl()	and	SetMtl()	that	provide	access	to	the	node's	material.
GetMtl()	returns	a	pointer	to	an	instance	of	class	Mtl.
virtual	Mtl	*GetMtl()=0;
Returns	the	renderer	material	for	the	node.	If	the	value	returned	is	NULL	this
means	the	user	has	not	assigned	a	material	to	the	node.	In	such	a	case	the
renderer	simply	uses	the	wireframe	color	of	the	node	(as	well	as	many
defaults)	for	the	rendering	properties.

The	material	returned	can	be	any	material	that	may	be	assigned	by	the	user.
These	include	those	from	3ds	max	itself	as	well	as	those	created	by	third	party
developers.	One	may	look	at	the	Class_ID	of	the	material	to	determine	its	type.
For	example,	the	3ds	max	Standard	material	has	a	Class_ID	of
DMTL_CLASS_ID	while	the	Multi/Sub-Object	material	uses
MULTI_CLASS_ID.	See	List	of	Class_IDs	to	review	the	complete	list
provided	by	MAX.
Let's	consider	the	case	of	accessing	properties	of	the	3ds	max	Standard	material
first.	If	the	Class_ID	returned	is	DMTL_CLASS_ID	then	it's	a	Standard
material.	This	material	does	not	have	any	sub-materials,	but	has	many
parameters	that	a	developer	may	need	to	access.
The	primary	class	for	accessing	the	Standard	material	is	Class	StdMat.	It
provides	methods	to	get	and	set	the	material's	properties.	These	are	things	like
the	shading	limit,	the	diffuse,	ambient	and	specular	colors,	and	the	shininess	and
opacity	of	the	material.	Developers	may	also	need	to	access	the	mapping
parameters,	for	example,	to	find	the	texture	used	in	the	diffuse	slot.	A	developer
may	access	these	using	MtlBase::GetSubTexmap(int	i)	and
MtlBase::SetSubTexmap(int	i,	Texmap	*m).	The	index	passed	to	these
method	are	a	series	of	#defines.	See	List	of	Texture	Map	Indices.
Next,	let's	consider	access	to	the	properties	a	Multi/Sub-Object	material.	If	the
Class_ID	returned	is	MULTI_CLASS_ID	then	it's	a	Multi/Sub-Object
material.	The	multi-material	is	a	plug-in	that	uses	the	MtlID	assigned	to	each
face	of	a	mesh	as	an	index	into	the	list	of	sub-materials.	There	are	methods	of

the	Face	class	getMatID()	and	setMatID()	to	access	the	MtlID	for	each	face.
Additionally,	the	Mesh	class	has	methods	getFaceMtlIndex(int	i)	and
setFaceMtlIndex(int	i,	MtlID	id).
Note	that	the	meaning	of	this	material	index	assigned	to	the	face	is	specific	to
the	type	of	material.	A	third	party	developer	could	write	a	material	that	used	the
ID	in	an	entirely	different	manner	than	3ds	max	does.
For	a	multi-material,	a	developer	can	use	the	methods	of	MtlBase:
NumSubMtls(),	GetSubMtl(i)	and	SetSubMtl(i,	Mtl*	m)	to	access	the
sub	materials.	Note	that	some	3ds	max	primitive	have	pre-assigned	material	ids
(such	as	the	Box	and	the	Hedra).	Since	the	object	is	not	really	aware	of	the
material,	it	can	happen	that	the	material	ID	on	a	face	is	higher	than	the	total
number	of	sub	materials	in	a	material.	Developers	should	look	at	the	number	of
sub	materials	on	the	material,	and	use	a	modulo	function	to	bring	the	material	ID
of	the	face	down	to	a	legal	value	before	trying	to	access	it.
The	following	code	demonstrates	access	to	material	and	texture	properties.	It
shows	how	the	ClassIDs	are	checked	for	the	material	and	the	texture	map.	It	also
demonstrates	how	to	access	materials	properties	using	the	StdMat	class	and	the
bitmap	properties	using	the	BitmapTex	class.
//	Test	of	access	to	material	and	texture	map	properties	of	a	selected
node.
//	This	code	determines	if	the	two	sided	flag	is	set	for	the	material
//	and	retrieves	the	U	and	V	tiling	options	for	the	diffuse	texture.
//	It	checks	if	the	material	is	a	3ds	max	Standard	material,	and	if	the
diffuse
//	texture	map	is	a	3ds	max	Bitmap	texture.
#include	"stdmat.h"
void	Utility::Test	(Interface	*ip)	{
	BOOL	two;
	float	utile,	vtile;
	TSTR	buf;
	
	//	Get	the	material	and	texture	properties	from	the	node.
	if	(ip->GetSelNodeCount()	<	1)	return;
	INode	*node	=	ip->GetSelNode(0);

	//	Get	the	material	from	the	node
	Mtl	*m	=	node->GetMtl();
	if	(!m)	return;	//	No	material	assigned
	//	See	if	it's	a	Standard	material
	if	(m->ClassID()	==	Class_ID(DMTL_CLASS_ID,	0))	{
		//	It	is	--	Access	the	two	sided	property	of	the	material
		StdMat*	std	=	(StdMat	*)m;
		two	=	std->GetTwoSided();
		//	Access	the	Diffuse	map	and	see	if	it's	a	Bitmap	texture
		Texmap	*tmap	=	m->GetSubTexmap(ID_DI);
		if	(tmap->ClassID()	==	Class_ID(BMTEX_CLASS_ID,	0))	{
			//	It	is	--	Access	the	UV	tiling	settings	at	time	0.
			BitmapTex	*bmt	=	(BitmapTex*)	tmap;
			StdUVGen	*uv	=	bmt->GetUVGen();
			utile	=	uv->GetUScl(0);
			vtile	=	uv->GetVScl(0);
			buf.printf(_T("Two	sided=%d,	U	Tile	=	%.1f,	V	Tile	=	%.1f"),
				two,	utile,	vtile);
			MessageBox(ip->GetMAXHWnd(),	buf,	_T("Info..."),

MB_ICONINFORMATION);
		}
	}
}

Accessing	Material	Libraries
3ds	max	stores	groups	of	materials	in	a	library.	The	API	provides	methods	to
access	the	materials	stored	in	these	libraries.	You	can	use	the	methods	of	class
Interface	to	load	and	save	material	libraries.	These	methods	are
LoadMaterialLib()	and	SaveMaterialLib().	This	class	also	has	a	method
GetMaterialLibrary()	which	returns	a	reference	to	the	currently	loaded
library.	You	may	then	use	class	MtlBaseLib	to	access	the	materials	themselves.
The	sample	code	below	shows	how	this	is	done.	It	loads	a	materials	library,
removes	a	single	material,	and	saves	it	again.
void	Utility::TestMaterialLib()	{
	TCHAR	*n1	=	_T("D:\\3DSMAX\\MAPS\\3DSMAX.MAT");
	
	int	okay	=	ip->LoadMaterialLib(n1);
	if	(!	okay)	return;
	
	//	Declare	this	as	references	since	we	want	to	manipulate	the
	//	orignal	material	library	and	not	a	copy.
	MtlBaseLib	&mlib1	=	ip->GetMaterialLibrary();
	int	index	=	mlib1.FindMtlByName(TSTR(_T("Aqua	Glaze")));
	if	(index	!=	-1)
		mlib1.Remove(mlib1[index]);
	ip->SaveMaterialLib(n1);
}

Texture	Coordinates
This	section	discusses	how	UVW	texture	coordinates	are	interpreted	by	the
renderer	for	texture	maps	in	3ds	max.	The	Mesh	class	provides	access	to	the
texture	coordinates	of	a	Mesh.	The	PatchMesh	class	provides	access	to	the
texture	coordinates	of	a	Patch.	Both	use	a	very	similar	approach.	In	this	section
we'll	look	at	how	this	is	done	for	the	Mesh	class.
The	texture	coordinates	are	available	in	the	Mesh	class	public	data	member
UVVert	*tVerts;
Note	that	a	UVVert	is	simply	a	Point3,	i.e.:	typedef	Point3	UVVert;
tVerts	is	a	pointer	to	the	list	of	texture	vertices.	Each	UVVert	stores	a	single
UVW	coordinate	(as	the	X,	Y	and	Z	public	data	members	of	the	Point3).	The
UVW	coordinates	parallel	the	relative	direction	of	the	XYZ	coordinates.	If	you
look	at	a	2D	map	image,	U	is	equivalent	to	X,	and	represents	the	horizontal
direction	of	the	map;	V	is	the	equivalent	of	Y,	and	represents	the	vertical
direction	of	the	map;	W	is	the	equivalent	of	Z	and	represents	a	direction
perpendicular	to	the	UV	plane	of	the	map.	For	a	2D	mapping,	only	two	of	the
coordinates	are	used,	i.e.	UV,	VW,	or	WU.	This	provides	greater	flexibility	for
the	user	as	it	allows	them	to	flip	the	orientation	of	the	map	relative	to	the
geometry.	Radio	buttons	in	the	Materials	Editor	user	interface	allow	the	user	to
choose	which	two	are	used.	The	texture	coordinates	don't	provide	exclusive
control	over	the	mapping	--	the	material	containing	the	map	may	apply	other
transformations	that	affect	how	the	texture	coordinates	are	interpreted	by	the
renderer.	First	we'll	look	at	the	default	case	where	the	material	imparts	no
additional	transformations.	Later	we'll	see	what	happens	when	the	material
applies	a	transformation,	and	how	we	can	access	and	interpret	additional
material	transformations.
The	texture	coordinates	stored	in	the	tVerts	array	can	be	any	floating	point
values.	If	we	assume	that	the	settings	in	the	material	do	not	apply	any	additional
transformations	(the	default	settings),	then	an	image	is	fit	in	its	entirety	between
texture	coordinates	0.0	to	1.0.	For	example,	if	the	two	triangles	pictured	below	in
Figure	0	had	the	mapping	coordinates	shown	at	each	vertex,	the	bitmap	image	in
figure	1	would	be	mapped	across	the	entire	two	triangles.	This	mapping	is	shown
in	Rendering	1.	As	you	can	see,	the	mapping	coordinates	from	0.0	to	1.0	provide
an	exact	match,	fitting	the	bitmap	across	the	entire	quad.

Figure	0:
Note:	In	figure	0	and	those	below	'TC'	stands	for	Texture	Coordinate	(i.e.	the

value	in	the	tVerts	array)
	

Figure	1:	The	original	bitmap	(on	a	black	background).

Rendering	1:
The	next	example	shows	how	an	image	can	be	tiled	across	the	geometry	by
using	mapping	coordinates	greater	than	1.0.	The	X	mapping	coordinate	for
vertex	1	and	vertex	2	are	2.0	(and	the	material	tiling	check	box	are	enabled	in	the
Materials	Editor).	This	results	in	the	image	being	repeated	in	the	U	direction
twice	as	shown	below.	Note	that	it	is	only	tiled	once	in	V	since	the	Y	coordinates
are	still	1.0.

Figure	2:

Rendering	2:
The	next	example	shows	how	negative	texture	coordinates	are	used	to	reverse
the	way	the	image	is	mapped	to	the	geometry.	In	the	figure	below,	the	X	texture
coordinates	are	-2.0	for	vertex	1	and	vertex	2.	This	results	in	the	image	be
mirrored	about	the	vertical	axis	of	the	map.	It	is	also	repeated	twice	since	the
coordinates	are	-2.0	and	not	-1.0.

Figure	3:

Rendering	3:
The	next	diagram	shows	how	mapping	coordinate	greater	than	0.0	start	the
image	off	at	a	offset	within	the	image.	Here	the	coordinates	are	the	same	as	in
example	1,	except	all	the	values	have	been	shifted	by	0.5	in	X	and	0.5	in	Y.	This
results	in	the	image	being	shifted	on	the	geometry.	Here	again,	tiling	is	on,	so	the
pattern	begins	in	the	center	of	geometry,	but	is	tiled	and	thus	reappears	from	the
left	and	bottom	edges.

Figure	4:

Rendering	4:
There	is	something	special	about	UVW	coordinates	in	the	range	of	0.0	to	1.0.	If
image	tiling	is	turned	off	in	the	Materials	Editor	(the	'Tile'	check	box	is
unchecked	for	a	certain	direction),	then	the	image	will	only	appear	where	the
texture	coordinates	are	in	this	range.	UV	values	outside	the	range	0.0	to	1.0	will
not	be	mapped	when	tiling	is	off	in	that	direction.	This	is	shown	in	the	diagram
below.	The	material	editor	settings	have	tiling	off	in	both	the	U	and	V	directions,
and	the	mapping	coordinates	are	from	[0.0	to	2.0].	Note	that	the	image	only
appears	where	the	mapping	coordinates	are	in	the	range	[0.0	to	1.0],	i.e.	the
lower	left	corner.

Figure	5:

Rendering	5:

As	mentioned	above,	users	may	alter	the	tiling,	mirroring,	angle,	and	offset
settings	from	within	the	material.	These	controls	adjust	the	position	of	the	map
relative	to	the	mapping	coordinates.	In	the	figure	shown	below,	the	material
controls	have	been	used	to	add	an	additional	transformation	to	the	mapping
shown	above	in	figure	5.	The	texture	coordinates	stored	with	the	geometry	are
just	the	same,	but	a	U	Offset	of	0.5	and	a	V	Offset	of	0.5	were	used	to	shift	the
map	onto	the	center	of	the	geometry.	Additionally,	a	U	tiling	setting	of	0.75	was
used	to	'stretch'	the	mapping	in	the	U	direction.	Thus	the	image	is	no	longer
square,	but	is	rather	elongated	in	U.	Rendering	6	below	shows	the	resulting
image.

Rendering	6:
Developers	may	access	all	the	users	material	transformation	settings	using	the
methods	of	class	StdUVGen.	The	code	shown	above	in	the	section	Accessing
Materials	Properties	sections	shows	how	this	is	done.

Texture	Mapping
This	section	provides	a	quick	look	at	how	the	texture	coordinates	described
above	are	applied	to	objects	in	3ds	max	using	the	standard	mapping	methods
(planar,	cylindrical,	spherical,	etc.).
In	general	this	is	quite	simple.	Basically,	the	geometric	vertices	of	the	object
being	mapped	are	transformed	into	some	space	(another	coordinate	system)	and
then	these	transformed	geometric	coordinates	become	the	texture	coordinates.
For	example	in	a	simple	planar	mapping,	the	geometric	vertices	are	transformed
into	the	coordinate	system	of	the	mapping	icon.	Once	transformed,	the	X,	Y
geometric	coordinates	become	the	UV	mapping	coordinates.	For	a	cylindrical
mapping	the	same	thing	is	done	except	instead	of	taking	just	the	X,	Y
coordinates,	they	are	further	transformed	into	a	cylindrical	coordinate	system.
Then	these	values	become	the	UV	mapping	coordinates.
In	camera	mapping,	where	the	texture	coordinates	of	an	object	are	used	to	match
a	background	image,	the	geometric	coordinates	are	transformed	into	camera
screen	space,	and	then	screen	X,	Y	becomes	the	UV	coordinates.

Face-Map	Materials
There	is	another	method	of	applying	mapped	materials	that	requires	no
application	of	mapping	coordinates	by	the	user	whatsoever.	In	the	Materials
Editor,	you	can	create	a	face-map	material.	When	a	face-map	material	is	applied
to	an	object,	the	map	is	automatically	applied	to	each	facet	of	the	object.	Below
is	the	code	used	internally	by	3ds	max	that	computes	the	texture	coordinates	for
face	mapping:

static	Point3	basic_tva[3]	=	{
Point3(0.0,0.0,0.0),Point3(1.0,0.0,0.0),Point3(1.0,1.0,0.0)};
static	Point3	basic_tvb[3]	=	{
Point3(1.0,1.0,0.0),Point3(0.0,1.0,0.0),Point3(0.0,0.0,0.0)};
static	int	nextpt[3]	=	{1,2,0};
static	int	prevpt[3]	=	{2,0,1};
	
static	void	make_face_uv(Face	*f,	Point3	*tv)	{
int	na,nhid,i;
Point3	*basetv;
/*	make	the	invisible	edge	be	2->0	*/
nhid	=	2;
if	(!(f->flags&EDGE_A))	nhid=0;
else	if	(!(f->flags&EDGE_B))	nhid	=	1;
else	if	(!(f->flags&EDGE_C))	nhid	=	2;
na	=	2-nhid;
basetv	=	(f->v[prevpt[nhid]]<f->v[nhid])	?	basic_tva	:	basic_tvb;
for	(i=0;	i<3;	i++)	{
tv[i]	=	basetv[na];
na	=	nextpt[na];
}
}

Bump	Mapping	in	Procedural	Textures
Bump	mapping	is	a	technique	that	enables	a	surface	to	appear	wrinkled	or
dimpled	without	the	need	to	model	these	depressions	geometrically.	Rather,	the
surface	normal	is	perturbed	according	to	information	given	in	the	'bump	map'.
This	results	in	variations	to	the	smooth	surface.
A	2D	bump	map	is	applied	to	the	surface	of	an	object.	The	space	along	the
surface	is	called	the	UV	space.	The	2D	bump	map	can	be	thought	of	as	its	own
surface,	where	bright	areas	are	hills	and	dark	areas	are	valleys.	On	the	surface
then	you	can	define	a	gradient,	which	can	be	thought	of	as	the	'downhill'	or
'uphill'	directions.	This	gradient	of	values	gives	you	a	direction	in	UV	space
where	you	are	going	to	perturb	the	surface	normal.	If	you	have	a	bump	in	a
texture	(a	steep	hill	up	for	example)	then	you	want	to	perturb	the	normal	to	make
it	look	like	there	is	a	steep	hill	up	there.	Given	the	gradient	in	UV	space,	you
need	to	figure	out	what	direction	in	3D	(XYZ)	space	to	perturb	the	normal	that
corresponds	to	that	gradient	in	UV	space.	The	bump	basis	vectors	are	used	for
this	purpose.	These	are	the	vectors	that	represent	the	UVW	axes	of	that	texture	in
3D.	These	are	unit	vectors	that	can	be	used	to	perturb	the	normal.
To	understand	how	this	is	done,	let's	look	at	some	sample	code.	The	method
responsible	for	returning	the	perturbed	normal	is
Texmap::EvalNormalPerturb().	The	code	below	happens	to	be	from
\MAXSDK\SAMPLES\MATERIALS\CHECKER.CPP	but	all	the	other
2D	textures	use	a	similar	approach.
Point3	Checker::EvalNormalPerturb(ShadeContext&	sc)	{
	Point3	dPdu,	dPdv;
	if	(!sc.doMaps)	return	Point3(0,0,0);
	if	(gbufID)	sc.SetGBufferID(gbufID);
	uvGen->GetBumpDP(sc,dPdu,dPdv);
	Point2	dM	=	uvGen->EvalDeriv(sc,&mysamp);
	return	dM.x*dPdu+dM.y*dPdv;
	}

The	first	significant	line	related	to	bump	mapping	is:
	uvGen->GetBumpDP(sc,dPdu,dPdv);

This	method	of	UVGen	gets	the	bump	vectors.	Developers	can	also	get	the
bump	vectors	directly	from	the	method	ShadeContext::DPdUVW()	although

these	would	not	be	affected	by	the	UVGen	transformations.	In	our	case,	since
all	the	coordinates	are	coming	through	UVGen,	we	must	use	GetBumpDP()
since	the	UVGen	has	rotated	things	around	--	it	has	transformed	the	bump
vectors	to	a	new	position.	Basically,	the	UVGen	has	rotated	the	UV	space	into
another	position	locally.	So	again,	this	method	gets	the	bump	basis	vectors,
which	are	really	the	U	and	V	axes	in	3D	space	(unit	vectors	in	the	U	direction
and	the	V	direction,	but	in	3D	space).
The	next	line	computes	dM.	This	is	the	derivative	of	the	function	across	the
pixel.	This	is	the	rate	of	change	of	the	function	in	the	U	direction	(dM.x)	and
the	V	direction	(dM.y).	So	for	example,	if	this	is	a	flat	function,	these	will	both
be	zero.	If	the	function	is	increasing	in	U	but	is	constant	in	V	then	the	value	in
the	U	direction	will	correspond	to	how	fast	it	is	changing	while	V	will	still	be
zero.	Thus,	dM	can	be	thought	of	as	the	gradient	--	how	fast	things	are	changing
up	and	down.
	Point2	dM	=	uvGen->EvalDeriv(sc,&mysamp);

Next,	we	need	to	compute	the	perturbation	to	the	normal.	This	can	be	thought	of
as	a	small	vector	that	will	be	added	to	the	end	of	the	existing	normal	that	will
move	it	over	a	little	bit.	There	are	several	ways	to	do	this.	The	common	textbook
algorithm	(Blinn's	algorithm	for	bump	mapping)	is	not	used	by	the	3ds	max
textures.	Rather,	the	calculation	shown	below	was	found	to	be	simpler	and	faster
with	no	visual	difference.	To	compute	the	perturbation	to	apply	to	the	normal	the
following	code	is	used:
	return	dM.x*dPdu+dM.y*dPdv;

This	takes	the	sum	of	the	U	component	(dM.x)	multiplied	by	the	U	basis	vector
(dPdu)	and	the	V	component	(dM.y)	multiplied	by	the	basis	vector	in	the	V
direction.	This	gives	the	change	(perturbation)	to	the	normal	as	a	unit	vector.
The	result	of	EvalNormalPerturb(),	the	perturbation	to	apply	to	the	surface
normal,	is	used	by	3ds	max	as	follows:	Outside	the	procedural	texture,	for
example	in	the	Standard	material,	the	value	returned	is	added	on	to	the	surface
normal.	Then	the	normal	is	re-normalized	(made	a	unit	vector	again).	This
altered	normal	results	in	the	surface	appearing	'bumped'	when	rendered.

Assigning	Materials	to	Nodes	in	the	Scene
A	developer	may	also	wish	to	create	materials	and	assign	them	to	nodes	in	the
scene.	There	are	functions	available	for	creating	the	standard	3ds	max	materials
and	textures	such	as	Standard,	Mult/Sub-Object,	Bitmap	texture,	Composite
texture,	Mix,	etc.	These	functions	are	not	part	of	a	class	but	are	globally
accessible	(they	are	defined	in	\MAXSDK\INCLUDE\STDMAT.H).
StdMat	*NewDefaultStdMat();
This	function	creates	a	new	3ds	max	Standard	material.	See	Class	StdMat.
MultiMtl	*NewDefaultMultiMtl();
This	function	creates	a	new	3ds	max	Multi/Sub-Object	material.	See	Class
MultiMtl.
BitmapTex	*NewDefaultBitmapTex();
This	function	creates	a	new	3ds	max	Bitmap	texture.	See	Class	BitmapTex.
MultiTex	*NewDefaultCompositeTex();
This	function	creates	a	new	3ds	max	Composite	texture.	See	Class	MultiTex.
MultiTex	*NewDefaultMixTex();
This	function	creates	a	new	3ds	max	Mix	texture.	See	Class	MultiTex.
MultiTex	*NewDefaultTintTex();
This	function	creates	a	new	3ds	max	Tint	texture.	See	Class	MultiTex.
GradTex	*NewDefaultGradTex();
This	function	creates	a	new	3ds	max	Gradient	texture.	See	Class	GradTex.
StdCubic	*NewDefaultStdCubic();
This	function	creates	a	new	3ds	max	Reflect/Refract	texture.	See	Class
StdCubic.
StdMirror	*NewDefaultStdMirror();
This	function	creates	a	new	3ds	max	Flat	Mirror	texture.	See	Class	StdMirror.
StdFog	*NewDefaultStdFog();
This	function	creates	a	new	3ds	max	Fog	atmospheric	effect.	See	Class
StdFog.

Sample	code	using	many	of	these	functions	is	available	in	the	3D	Studio	DOS
file	import	plug-in.	This	code	may	be	found	in
\MAXSDK\SAMPLES\IMPEXP\3DSIMP.CPP.
The	code	below	demonstrates	how	a	3ds	max	Standard	material	may	be	assigned
to	a	mesh	object.	It	assigns	a	material	with	Red	Ambient	and	Diffuse	settings	to

the	first	node	in	the	current	selection	set.
void	Sample::AssignMtl(Interface	*ip)
{
	if	(!	ip->GetSelNodeCount())	return;	//	Nothing	to	assign.
	INode	*node	=	ip->GetSelNode(0);
	//	Create	a	new	Standard	material.
	StdMat	*m	=	NewDefaultStdMat();
	//	Set	its	properties...
	m->SetName(_T("Sample"));
	m->SetAmbient(Color(1.0f,0.0f,0.0f),0);	//	Pure	Red
	m->SetDiffuse(Color(1.0f,0.0f,0.0f),0);
	m->SetSpecular(Color(1.0f,1.0f,1.0f),0);
	m->SetShininess(0.5f,0);
	m->SetShinStr(.7f,0);
	//	Assign	it	to	the	node.
	node->SetMtl(m);
	ip->RedrawViews(ip->GetTime());
}

Editing	Material	or	Texture	Parameters	in	the	Materials	Editor
This	section	discusses	the	manner	in	which	plug-in	texture	and	materials	manage
their	user	interface	in	MAX.	This	is	only	a	concern	of	developers	creating	plug-
in	materials	or	textures.
The	way	materials	and	texture	maps	handle	their	user	interface	is	different	than
the	way	other	plug-ins	handle	their	UI	in	the	command	panel	of	MAX.	For
materials	and	textures,	a	developer	derives	a	class	from	ParamDlg	and
implements	its	methods.
A	method	of	MtlBase	named	CreateParamDlg()	is	called	by	the	system
when	the	material	or	texture	is	to	be	displayed	in	the	material	editor	parameters
area.	This	method	is	expected	to	create	a	new	instance	of	a	class	derived	from
ParamDlg.	The	system	then	maintains	the	ParamDlg	pointer.	When	the
system	needs	to	delete	the	memory	associated	with	this	instance	it	calls	the
method	ParamDlg::DeleteThis().
Within	the	instance	of	the	class	derived	from	ParamDlg	a	developer	can	store
any	data	needed	to	handle	the	user	interface	(for	example,	spinner	control
handles,	window	handles,	etc.).	The	class	will	also	need	to	have	a	pointer	to	the
'thing'	that	is	being	edited.	This	'thing'	is	either	a	texture	or	the	material.
As	the	user	works	with	different	materials	in	the	materials	editor,	these	materials
have	to	put	up	their	user	interfaces.	For	example,	if	the	user	is	editing	a	Standard
material	in	one	sample	window,	then	selects	another	Standard	material	in	another
sample	window,	the	user	interface	changes	to	reflect	the	new	material	settings.
The	user	interface	does	not	'flash'	however	--	in	other	words	the	entire	rollup
page	is	not	deleted	and	replaced.	Rather	the	fields	are	simply	updated	to	reflect
the	new	values.	What	the	system	is	doing	is	effectively	'passing	off'	the	user
interface	from	one	material	to	another.	Two	methods	of	ParamDlg	allow	this	to
happen.	These	are	SetThing()	and	GetThing().
When	a	system	calls	SetThing()	it	passes	a	pointer	to	a	ReferenceTarget.
This	is	the	item	that	is	being	edited.	So	normally	a	developer	would	implement
this	method	to	store	the	item	being	edited	(the	'thing')	and	update	the	user
interface	controls	to	reflect	the	state	of	the	new	'thing'.
When	the	system	calls	GetThing(),	the	plug-in	returns	the	'thing'	that	is
currently	being	edited.
As	an	example,	consider	the	following	code	from	the	Checker	texture	map.
Checker	derives	a	class	from	ParamDlg	and	uses	data	members	to	store	the

data	needed	for	its	operation.	A	portion	of	this	code	is	shown	below:
class	CheckerDlg:	public	ParamDlg	{
	public:
		HWND	hwmedit;	//	window	handle	of	the	materials	editor	dialog
		IMtlParams	*ip;
		Checker	*theTex;	//	current	Checker	being	edited.
		HWND	hPanel;	//	Rollup	pane
		ISpinnerControl	*blurSpin;
		IColorSwatch	*cs[2];
		TimeValue	curTime;
		ParamDlg	*uvGenDlg;
		int	isActive;
		...

Note	that	CheckerDlg	has	a	data	member	that	is	a	pointer	to	an	instance	of
Checker	(theTex).	This	is	where	it	stores	the	'thing',	i.e.	the	current	Checker
being	edited.	Shown	below	are	Checker's	implementations	of	GetThing()	and
SetThing().
ReferenceTarget*	GetThing()	{	return	(ReferenceTarget	*)theTex;
}

When	the	system	calls	GetThing(),	Checker	just	returns	the	pointer	to	the	item
that	is	currently	being	edited.

void	CheckerDlg::SetThing(ReferenceTarget	*m)	{
	assert	(m->ClassID()==checkerClassID);
	assert	(m->SuperClassID()==TEXMAP_CLASS_ID);
	if	(theTex)	theTex->paramDlg	=	NULL;
	theTex	=	(Checker	*)m;
	uvGenDlg->SetThing(theTex->uvGen);
	if	(theTex)
		theTex->paramDlg	=	this;
	LoadDialog(TRUE);
	}

When	the	system	calls	SetThing(),	Checker	store	the	pointer	to	the	item	that	is
currently	being	edited	into	theTex.	The	Checker	class	itself	maintains	a	pointer
to	the	instance	of	ParamDlg	that	is	handling	the	user	interface.	Note	that
Checker	stores	the	this	pointer	(theTex->paramDlg	=	this;).

Also	note	that	CheckerDlg	maintains	a	pointer	to	a	UVGen	(UVGenDlg).
UVGen	is	a	class	developers	use	to	encapsulate	the	user	interface	for	UV
coordinates.	This	pointer	is	initialized	in	the	CheckerDlg	constructor	as
follows:
uvGenDlg	=	theTex->uvGen->CreateParamDlg(hwmedit,	imp);

In	the	CheckerDlg	implementation	of	SetThing()	it	also	calls	the
SetThing()	method	on	the	uvGenDlg.	This	allows	the	UVGen	to	update	its
user	interface	in	the	dialog.	These	are	the	controls	in	the	'Coordinate'	and	'Noise'
rollups.

Pre-defined	Categories	of	Texture	Maps
Developers	creating	texture	maps	should	use	the	text	strings	shown	below	to
distinguish	between	the	various	types	of	maps	so	they	can	be	separated	in	the
Material/Map	Browser.
TCHAR	TEXMAP_CAT_2D[];	-	2D	maps.
TCHAR	TEXMAP_CAT_3D[];	-	3D	maps.
TCHAR	TEXMAP_CAT_COMP[];	-	Composite.
TCHAR	TEXMAP_CAT_COLMOD[];	-	Color	modifier.
TCHAR	TEXMAP_CAT_ENV[];	-	Environment.

The	appropriate	string	should	be	returned	by	the	ClassDesc::Category()
method	of	the	Texmap.	For	example:
const	TCHAR*	Category()	{	return	TEXMAP_CAT_3D;	}
See	Class	ClassDesc	for	more	details	on	this	method.

Miscellaneous	Function	and	Macros	for	use	with	Materials
The	following	functions	are	not	part	of	any	class	but	are	available	for	use	by
plug-ins.
Developers	that	have	created	a	3D	Studio/DOS	SXP	and	a	corresponding	3ds
max	texture	plug-in	may	want	to	have	a	look	at	Class	Tex3D.	It	provides	a	way
to	have	an	instance	of	your	3ds	max	texture	plug-in	created	automatically	when
the	corresponding	SXP	is	found	in	a	3DS	file	being	imported	(using	the	standard
3ds	max	3DS	importer).
Another	handy	materials	related	function	is	CombineMaterials().	This
function	combines	the	two	specified	materials	into	a	multi-material.

Prototype:
Mtl	*CombineMaterials(Mtl	*mat1,	Mtl	*mat2,	int	&mat2Offset);

Remarks:
Implemented	by	the	System.
This	function	is	available	in	release	3.0	and	later	only.
This	function	combines	the	two	specified	materials	into	a	multi-material.
Either	of	the	two	input	materials	can	themselves	be	multi	materials.

Parameters:
Mtl	*mat1
Points	to	the	one	of	the	source	materials.
Mtl	*mat2
Points	to	the	other	source	material.
int	&mat2Offset
The	index	of	the	first	mat2	material	in	the	combined	material	is	returned	here.

Return	Value:
A	pointer	to	the	new	multi-material.

The	following	function	may	be	used	to	determine	if	the	MtlBase	pointer	passed
is	a	material	(Mtl):
inline	int	IsMtl(MtlBase	*m)
{	return	m->SuperClassID()==MATERIAL_CLASS_ID;	}

The	following	function	may	be	used	to	determine	if	the	MtlBase	pointer	passed
is	a	texture	(Texmap):

inline	int	IsTex(MtlBase	*m)
	{	return	m->SuperClassID()==TEXMAP_CLASS_ID;	}

The	following	functions	return	the	intensity	of	the	color	passed:
static	inline	float	Intens(const	AColor&	c)
	{	return	(c.r+c.g+c.b)/3.0f;	}
static	inline	float	Intens(const	Color&	c)
{	return	(c.r+c.g+c.b)/3.0f;	}

The	following	functions	return	default	instances	of	several	classes	implemented
by	the	system:
UVGen*	GetNewDefaultUVGen();
XYZGen*	GetNewDefaultXYZGen();
TextureOutput*	GetNewDefaultTextureOutput();

Note	the	following	typedef's	used	with	materials	and	textures:
typedef	MtlBase*	MtlBaseHandle;
typedef	Mtl*	MtlHandle;
typedef	Texmap*	TexmapHandle;

Working	with	Meshes
See	Also:	Class	Mesh,	Class	TriObject,	Class	Face,	Class	TVFace,	Class
MNMesh.

Overview
This	topic	presents	information	on	working	with	meshes.	The	main	classes
dealing	with	meshes	are	discussed	as	well	as	several	support	classes.	The	way
texture	mapping	works	with	meshes	is	presented.	How	materials	are	assigned	to
meshes	is	also	reviewed.

Overview	of	the	Principal	Classes
This	section	presents	an	overview	of	the	principal	classes	used	when	working
with	meshes.
Class	Mesh
This	is	the	main	class	for	working	with	mesh	objects.	It	has	data	members	that
point	to	the	vertices,	faces,	texture	vertices	and	texture	faces.	Methods	are
provided	to	access	all	properties	of	the	mesh	and	to	render,	snap	to,	and	hit
test	the	mesh.	There	are	also	methods	to	optimize,	apply	mapping
coordinates,	and	perform	boolean	operations	on	the	mesh.
Class	TriObject
All	procedural	objects	must	be	able	to	convert	themselves	to	TriObjects.	This
is	the	class	that	actually	flows	down	the	geometry	pipeline.	This	class
contains	an	instance	of	the	Mesh	class.
Class	Face
This	is	the	class	used	to	hold	a	single	triangular	face	of	the	mesh	object.	It
maintains	three	indices	into	the	vertex	array	of	the	mesh.	Methods	are
provided	for	setting	materials,	smoothing	groups,	edge	visibility	and	hidden
status.
Class	TVFace
This	is	the	class	used	to	hold	a	texture	face.	It	contains	an	array	of	three
indices	into	the	texture	vertex	array	of	the	mesh.

Support	Classes
This	section	lists	several	classes	that	are	handy	when	dealing	with	mesh	objects.
There	are	a	set	of	classes	for	working	with	parts	of	the	mesh	such	as	its	face
structure,	element	structure,	and	cluster	structure.	For	details	see:	Class
AdjEdgeList,	Class	AdjFaceList,	Class	FaceElementList,	Class	FaceClusterList.
New	for	release	2.0	and	later,	the	MNMesh	class	is	provided	for	temporary	use
by	plug-ins,	to	help	with	complex	topology-based	modifications	to	Meshes.	It
has	capabilities,	such	as	the	ability	to	recognize	faces	with	more	than	3	sides,
that	are	useful	in	certain	applications.	See	Class	MNMesh	for	details.

Extracting	the	Mesh	from	a	Node
Developers	who	want	to	get	the	TriObject	representation	of	a	geometric	object
from	its	node	can	use	the	source	code	shown	along	with	the	method
INode::EvalWorldState().	See	INode::EvalWorldState().

Building	Meshes	Suitable	for	MAX	Modifiers
Developers	should	follow	a	few	simple	but	important	rules	when	building
meshes	to	function	ideally	with	modifiers	in	the	Geometry	Pipeline.	The	six
basic	rules	are:

1)	Referencing	each	edge	at	most	once	in	each	direction.
2)	Avoiding	self-intersection	of	faces.
3)	Avoiding	creating	faces	with	vertices	located	at	the	same	place.
4)	Not	'bridging'	separate	mesh	components	with	a	single	vertex.
5)	Breaking	the	mesh	into	sensible	elements.
6)	Whenever	convenient,	closing	the	mesh.

See	the	Advanced	Topics	section	Style	Guidelines	for	Creating	Pipeline-Friendly
Meshes	for	details	on	these	rules.

Material	Assignment
Materials	are	assigned	in	3ds	max	at	the	node	level.	There	is	one	material
assigned	per	node.	The	material	itself	defines	the	meaning	of	how	it	acts	upon	a
mesh.	For	example,	the	3ds	max	Multi/Sub-Object	material	uses	the	material	ID
assigned	to	each	mesh	face	as	indices	into	its	list	of	sub-materials.	In	this	way,
the	user	may	assign	several	materials	to	a	single	mesh	object.	The	Mesh	class
provides	methods	to	get	and	set	the	material	ID	assigned	to	a	face.	For	more
details	see	Working	with	Materials	and	Textures.

Texture	Vertices	and	Texture	Faces
The	mesh	class	keeps	a	pointer	to	a	list	of	texture	vertices.	If	mapping
coordinates	are	assigned	to	the	mesh	these	extra	vertices	are	allocated.	These
vertices	are	completely	independent	of	the	regular	vertices	in	the	mesh.	In
addition	to	the	texture	vertices	there	are	also	texture	faces.	There	needs	to	be	one
texture	face	for	every	regular	face	in	the	mesh.	Each	texture	face	has	three
indices	into	the	texture	vertex	array.	This	allows	every	face	of	the	mesh	to	have
its	own	mapping.

Mapping	Channels	in	Release	3.0	and	Later
In	the	Materials	Editor	a	user	can	choose	which	of	the	channels	a	texture	map	is
applied	to.	In	the	Coordinates	rollout	of	the	user	interface,	in	the	Texture
Mapping	dropdown	the	user	may	choose	"Explicit	Map	Channel".	In	this	case
the	Map	Channel	spinner	is	enabled	and	the	user	may	choose	a	number	between
1	and	99.	This	number	is	effectively	an	index	into	the	Mesh	class	mapping
methods.	The	number	1	corresponds	to	the	pre-R3	Mesh	class	TVerts	array.
The	numbers	2	through	99	correspond	to	the	R3	and	later	channels.	If	the	user
chooses	"Vertex	Color	Channel"	from	the	dropdown	then	the	Map	Channel
spinner	is	disabled	and	the	vertex	color	channel	is	used.	This	corresponds	to	an
index	of	0	in	the	Mesh	class	mapping	methods.
In	release	2.0	there	were	just	two	possible	mapping	channels.	The	original
release	1.x	mapping	channel	and	the	color	per	vertex	channel.	These	two	still
exist.	However	the	map	channel	index	numbers	have	changed.	Henceforth	at	the
object	level,	map	channel	0	refers	to	what	was	map	channel	1,	the	vertex	color
channel,	while	map	channel	1	refers	to	the	original	map	channel.	The	reason	for
this	change	is	that	vertex	colors	are	treated	differently	than	map	channel	vertices
for	some	topological	operations,	and	it's	better	to	separate	this	map	channel	from
all	the	other	map	channels.
Note	the	following	details	on	adding	map	channels:
1)	To	support	a	map	channel	in	a	mesh,	call
Mesh::setMapSupport(channel,	TRUE).	This	works	for	the	vertex
colors	(channel	0)	or	the	original	TVFaces	(channel	1)	as	well	as	the	new
channels.
2)	The	method	Mesh::setMapSupport	allocates	the	map	faces,	since	there
are	always	Mesh::numFaces	of	these,	but	it	does	not	allocate	the	map	verts,
since	the	number	of	these	can	change	from	map	to	map.
3)	Use	Mesh::setNumMapVerts(int	mp)	to	set	the	number	of	map	verts.
4)	Calls	to	Mesh::setNumFaces(int	nf,	BOOL	keep)	also	set	the	number
of	map	faces	in	all	supported	maps.
5)	Keep	in	mind	that	the	Mesh::mapVerts(int	mp)	and
Mesh::mapFaces(int	mp)	methods	return	pointers	that	may	be	invalid	later
if	the	number	of	verts	or	faces	is	reallocated.	For	example,	the	following
won't	work:

UVVert	*mv	=	mesh.mapVerts(43);	//	map	channel	43
mesh.setNumMapVerts(43,	98);
for	(i=0;	i<98;	i++)	mv[i]	=	UVVert(0,0,0);

For	reference	information	on	the	new	mapping	related	methods	in	3.0	see	Mesh
Mapping	Related	Methods.

Color	Per	Vertex	Information
In	3ds	max	2.0	and	later	color	per	vertex	information	is	stored	with	a	Mesh.	This
allows	the	user	to	assign	colors	to	vertices.	This	ability	is	primarily	for	game
developers	and	developers	of	radiosity	renderers.	This	information	can	be	used
in	conjunction	with	the	Vertex	Color	map
(\MAXSDK\SAMPLES\MATERIALS\VERTCOL.CPP)	or	the	Color
Per	Vertex	utility	and	modifier
(\MAXSDK\SAMPLES\UTILITIES\APPLYVC\APPLYVC.CPP	and
AVCMOD.CPP).
Three	public	data	members	and	several	methods	in	the	Mesh	class	provide
access	to	this	data.
int	numCVerts;
The	number	of	color	vertices.
VertColor	*vertCol;
Array	of	color	vertices.	Note:	typedef	Point3	VertColor;
TVFace	*vcFace;
Array	of	vertex	color	faces.

Color	Per	Vertex	Enhancements	in	Release	4.0	and	Later
In	3ds	max	4.0	and	later	it	is	possible	to	have	the	source	data	for	vertex	colors
come	from	other	than	the	internal	vertex	color	array	(vertCol).	The	data	can
come	from	an	external	array	or	one	of	the	map	channels.	When	3ds	max	is
rendering	the	color	values	come	from	the	vertColArray	variable.
VertColor	*vertColArray;
This	array	defaults	to	the	internal	array	(vertCol)	but	can	be	set	to	an	external
array	or	a	mapping	channel.

If	an	external	array	is	used	the	following	data	member	is	a	pointer	to	it	(this
defaults	to	NULL):
VertColor	*curVCArray;

If	a	mapping	channel	is	used	the	following	data	member	indicates	which	one
(this	defaults	to	0).
int	curVCChan;

When	3ds	max	is	rendering	the	vertex	lookup	comes	from	the	vcFaceData
variable.	This	defaults	to	the	vcFace	data	but	if	a	mapping	channel	is	used	for
color	lookup	3ds	max	uses	its	TVFace	structure.
TVFace	*vcFaceData;

The	methods	associates	with	this	are	as	follows:
To	set	the	number	of	vertex	colors:
BOOL	setNumVertCol(int	ct,BOOL	keep=FALSE);

To	retrieve	the	number	of	vertex	colors:
int	getNumVertCol()	const

To	set	the	number	of	vertex	color	faces:
BOOL	setNumVCFaces(int	ct,	BOOL	keep=FALSE,	int	oldCt=0);

To	use	a	different	souce	array	for	vertex	color	data	(this	can	be	either	an	external
array	or	one	of	the	mapping	channels):
void	setVCDisplayData(int	mapChan	=	0,	VertColor
*VCArray=NULL,	TVFace	*VCf=NULL);

Stripping
Stripping	is	the	process	of	taking	a	mesh	and	turning	it	into	all	set	of	strips	as
shown	below.	Without	stripping,	when	a	triangle	mesh	is	sent	down	the	graphics
display	pipeline,	three	vertices	plus	three	normals	or	colors	must	be	sent	for	each
triangle.	However,	if	the	triangles	are	turned	into	a	'strip',	where	one	triangle
points	up,	the	next	ponts	down,	then	the	next	up,	etc.,	forming	parallel	lines
along	the	top	and	bottom	(see	diagram	below),	then	for	each	new	triangle	in	the
strip,	all	that	is	sent	down	the	graphics	pipeline	is	the	one	new	vertex.	Since	the
communication	between	the	CPU	and	the	graphics	card	is	one	of	the	bottlenecks
in	the	graphics	pipeline	this	results	in	a	significant	speed	increase.

This	can	only	happen	if	3ds	max	knows	that	each	new	triangle	is	adjoining	the
previous	one.	Stripping	then,	is	the	process	of	taking	whatever	configuration	the
mesh	is	in	originally,	and	turning	it	into	a	sequence	of	sequence	of	vertices	that
all	correspond	to	strips	as	shown	above.	This	speeds	up	the	display	process
dramatically.
Developers	who	create	their	own	mesh	objects	for	display	need	to	be	aware	of
two	new	methods	for	dealing	with	stripping	if	maximum	speed	is	to	be	achieved.
These	method	are	Mesh::BuildStrips()	and
Mesh::BuildStripsAndEdges().	These	builds	the	strip	(and	edge)	databases
inside	the	mesh.	The	standard	3ds	max	primitives	call
BuildStripsAndEdges()	after	creating	their	meshes	for	instance.
Changes	have	been	made	to	the	3ds	max	geometry	pipeline	that	make	this
important.	In	3ds	max	1.x,	an	algorithm	was	used	to	build	the	edge	database
when	the	mesh	was	about	to	be	displayed.	So	for	example,	if	a	mesh	was	built,
and	some	modifiers	acted	upon	it,	for	instance	a	Bend,	the	geometry	pipeline
would	be	evaulated	and	then	the	when	the	object	was	about	to	be	displayed	its
edge	list	would	be	built.	If	the	modifers	were	animated	(say	the	Bend	angle
changed),	the	geometry	pipeline	would	be	evaluated	and	the	edge	list	would	be
built	again.	This	was	very	inefficient	because	the	edge	list	would	only	get	used
for	one	display,	and	then	would	be	thrown	out,	and	then	calculated	again.	Since	a
Bend	modifier	doesn't	alter	the	mesh	topology	the	edge	list	was	actually	still

valid.
In	3ds	max	2.0	this	changed.	The	edge	and	new	strip	topology	flows	down	the
pipeline.	In	this	way,	if	a	primitive	builds	its	own	edges	and	strips	by	calling
BuildStripsAndEdges(),	when	animated	modifiers	are	applied	the	display	is
dramatically	faster.	This	is	because	the	strip	and	edge	database	is	never	rebuilt
unless	the	topology	changes.	Therefore	when	a	developer	creates	a	mesh	to	be
displayed	they	should	call	BuildStripsAndEdges().	If	this	is	not	done,	they
won't	be	available	to	flow	down	the	pipeline,	and	must	be	build	automatically	at
the	end	of	the	pipeline.
If	a	developer	knows	that	their	strips	are	invalid,	for	example	they've	deleted	a
vertex	or	face,	or	otherwise	changed	the	topology	of	the	mesh,	then	the	method
InvalidateStrips()	and	InvalidateEdgeList()	should	be	called.	A	developer
could	also	call	InvalidateTopologyCache()	which	simply	calls	both	of	the
above.
However,	if	a	modifier	is	written	that	changes	topology	(ChannelsChanged()
includes	TOPO_CHANNEL),	for	example	Bomb,	then	the	invalidation
happens	automatically.	Other	objects	or	modifiers	may	have	to	make	an	explicit
call	to	InvalidateTopologyCache().	For	example,	the	Editable	Mesh	Object
or	the	Edit	Mesh	Modifier	can	operate	on	a	mesh	at	the	push	and	pull	vertex
level	rather	than	at	the	pipeline	level.	In	these	cases	the	mesh	is	being	directly
modified	and	thus	the	invalidate	call	is	required.

Working	with	NURBS
See	Also:	Class	NURBSObject,	Class	NURBSSurface,	Class	NURBSSet,	Class
NURBSControlVertex,	Class	NURBSPoint,	Class	NURBSCurve,	Class
NURBSFuseSurfaceCV,	Class	NURBSFuseCurveCV,	Class	TessApprox,	Class
Object,	Class	ShapeObject,	Class	Matrix3,	Class	Point3.

Overview
This	section	presents	an	overview	of	working	with	NURBS	using	the	SDK.	It
defines	some	terms	and	concepts	related	to	NURBS,	describes	the	main	classes
used,	provides	an	overview	of	some	key	concepts	when	using	NURBS,	and
discusses	the	sample	code	available	in	the	SDK.	There	is	also	a	section	of
reference	information	for	some	global	functions	available.
The	NURBS	API
The	NURBS	API	provides	an	interface	into	the	NURBS	objects	used	by	MAX.
Unlike	much	of	the	3ds	max	API,	the	NURBS	objects	3ds	max	provides	don't
use	this	API.	Rather,	the	NURBS	API	has	been	added	to	allow	developers	to
access	the	NURBS	objects	3ds	max	uses	internally.	Using	the	API	developer	can
create	new	NURBS	objects	or	modify	existing	ones.
ClassIDs	of	the	NURBS	Objects
Developers	can	check	if	an	object	is	a	NURBS	object	by	checking	it	ClassID().
If	it	matches	any	of	the	following
#define	EDITABLE_SURF_CLASS_ID	Class_ID(0x76a11646,
0x12a822fb)
#define	FITPOINT_PLANE_CLASS_ID	Class_ID(0x76a11646,
0xbadbeef)
#define	EDITABLE_CVCURVE_CLASS_ID
Class_ID(0x76a11646,	0x12a82144)
#define	EDITABLE_FPCURVE_CLASS_ID
Class_ID(0x76a11646,	0x12a82142)

then	it's	a	NURBS	object	and	the	NURBS	API	may	be	used	to	manipulate	it.
Necessary	Include	File
The	main	NURBS	include	file	is	\MAXSDK\INCLUDE\SURF_API.H.
This	is	not	included	by	default	by	MAX.H	so	you	need	to	specifically	include	it
via	the	following	statement:
#include	"surf_api.h"

Reference	Information	on	NURBS	Mathematics
Developers	who	wish	to	understand	the	mathematics	of	NURBS	should	see:
The	NURBS	Book:	Les	Piegl,	Wayne	Tiller,	The	NURBS	Book	(Berlin
Heidelberg	New	York:	Springer-Verlag,	1995).	ISBN:	3-540-55069-0.

Providing	Valid	Data	to	the	NURBS	Methods
The	NURBS	API	is	not	intended	to	be	bomb	proof,	i.e.	it	is	possible	to	pass
values	to	the	methods	than	can	cause	a	crash.	It	is	up	to	the	developer	to	insure
that	valid	data	is	provided.	As	with	the	rest	of	the	SDK	it	is	easy	to	write	a	piece
of	code	that	will	crash	3ds	max	if	improper	values	are	supplied.

Definition	of	Terms
This	section	provides	definitions	of	various	terms	used	later	in	this	topic	and	in
the	NURBS	classes.

NURBS
The	term	NURBS	stands	for	Non-Uniform	Rational	B-Splines.	Specifically:
Non-Uniform	means	that	the	extent	of	a	control	vertex’s	influence	can	vary.
This	is	useful	when	modeling	irregular	surfaces.
Rational	means	that	the	equation	used	to	represent	the	curve	or	surface	is
expressed	as	a	ratio	of	two	polynomials,	rather	than	a	single	summed
polynomial.	The	rational	equation	provides	a	better	model	of	some	important
curves	and	surfaces,	especially	conic	sections,	cones,	spheres,	and	so	on.
A	B-spline	(for	basis	spline)	is	a	way	to	construct	a	curve	that	is	interpolated
between	three	or	more	points.	Shape	curves	you	create	in	3ds	max	using	the
Line	tool	and	other	Shape	tools	are	Bézier	curves,	which	are	a	special	case	of
B-splines.
Point
A	point	in	three-space.	A	Point	Curve	or	Point	Surface	is	constrained	to	pass
through	it’s	points.	Points	behave	somewhat	like	vertices	for	3ds	max	spline
objects,	but	their	behavior	is	not	identical	and	they	are	a	distinct	object	type.
Curve
This	is	a	NURBS	Curve.	There	are	two	kinds	of	NURBS	curves	in	MAX.	A
Point	Curve	is	controlled	by	points,	which	always	lie	on	the	curve.	A	CV
Curve	is	controlled	by	control	vertices	(CVs),	which	don’t	necessarily	lie	on
the	curve.
CV
This	is	a	Control	Vertex	of	a	NURBS	Curve	or	NURBS	Surface.	It's	a	vertex
that	controls	a	CV	Curve	or	CV	Surface.	The	3D	location	of	each	CV	affects
the	shape	of	the	curve	or	surface.	CVs	aren’t	constrained	to	lie	on	the	curve
or	surface.	Each	CV	has	a	rational	weight	that	can	be	used	to	adjust	the
influence	of	the	CV	on	the	curve’s	or	surface’s	shape.
Point	Curve
A	NURBS	curve	defined	by	points.	The	points	are	constrained	to	lie	on	the
curve.
CV	Curve

A	NURBS	curve	defined	by	CVs.	The	CVs	don’t	necessarily	lie	on	the	curve.
Instead,	they	form	a	control	lattice	that	affects	the	curvature	of	the	curve.
Surface
This	is	an	individual	quadrilateral	NURBS	Surface.	NURBS	surfaces	have
essentially	the	same	properties	as	NURBS	curves,	extended	from	a	one-
dimensional	parameter	space	to	two	dimensions.
There	are	two	kinds	of	NURBS	surfaces:	A	Point	Surface	is	controlled	by
points,	which	always	lie	on	the	surface.	A	CV	Surface	is	controlled	by
control	vertices	(CVs).	Instead	of	lying	on	the	surface,	CVs	form	a	control
lattice	that	surrounds	the	surface.
Point	Surface
A	NURBS	surface	defined	by	points.	The	points	are	constrained	to	lie	on	the
surface.	More	than	one	NURBS	solution	is	possible	for	a	Point	Surface.
CV	Surface
A	surface	defined	by	CVs.	Instead	of	lying	on	the	surface,	CVs	form	a
control	lattice	that	surrounds	the	surface.
Independent	<object>
This	is	an	object	(point,	curve,	surface)	that	is	not	dependent	on	any	other
object.
Dependent	<object>
This	is	an	object	(point,	curve,	surface)	that	depends	on	another	object	to
define	what	it	is.	For	example,	a	Blend	Curve	depends	on	the	two	curves	that
it	blends	between	(as	well	as	its	own	two	tension	parameters).
Constrained	point
Another	term	for	a	dependent	point.	A	NURBS	Point	that	is	dependent	on
either	another	Point,	Curve,	or	Surface,	and	that	exists	either	on	the	object	or
relative	to	it.	The	relative	cases	are	XYZ-relative,	along	a	normal,	or	along	a
tangent	(or	set	of	tangents	for	a	surface-dependent	constrained	point).
Continuity
A	curve	is	continuous	if	it	is	unbroken.	There	are	different	levels	of
continuity.	A	curve	with	an	angle	or	cusp	in	it	is	C0	continuous¾that	is,	the
curve	is	continuous	but	has	no	derivative	at	the	cusp.	A	curve	with	no	such
cusps	but	whose	curvature	changes	is	C1	continuous.	Its	derivative	is	also
continuous,	but	its	second	derivative	is	not.	A	curve	with	uninterrupted,
unchanging	curvature	is	C2	continuous.	Both	its	first	and	second	derivatives

are	also	continuous.
A	curve	can	have	still	higher	levels	of	continuity,	but	for	computer	modeling
these	three	are	adequate.	Usually	the	eye	can’t	distinguish	between	a	C2
continuous	curve	and	one	with	higher	continuity.
Continuity	and	degree	are	related.	A	degree	3	equation	can	generate	a	C2
continuous	curve.	This	is	why	higher-degree	curves	aren’t	generally	needed
in	NURBS	modeling.	Higher-degree	curves	are	also	less	stable	numerically,
so	using	them	isn’t	recommended.
Different	segments	of	a	NURBS	curve	can	have	different	levels	of	continuity.
In	particular,	by	placing	CVs	at	the	same	location	or	very	close	together,	you
reduce	the	continuity	level.	Two	coincident	CVs	sharpen	the	curvature.	Three
coincident	CVs	create	an	angular	cusp	in	the	curve.	This	property	of	NURBS
curves	is	known	as	multiplicity.	In	effect,	the	additional	one	or	two	CVs
combine	their	influence	in	that	vicinity	of	the	curve.
By	moving	one	of	the	CVs	away	from	the	other,	you	increase	the	curve’s
continuity	level	again.	In	MAX,	multiplicity	also	applies	when	you	fuse	CVs.
Fused	CVs	create	a	sharper	curvature	or	a	cusp	in	the	curve.	Again,	the	effect
goes	away	if	you	unfuse	the	CVs	and	move	one	away	from	the	other.
Multiplicity
The	property	that	coincident	or	nearly	coincident	CVs	reduce	the	continuity
level	of	the	curve	or	surface.	Two	coincident	CVs	locally	increase	curvature.
Three	coincident	CVs	(or	more)	create	an	angular	cusp.	Fusing	CVs	shows
the	effect	of	multiplicity.
Degree
The	degree	of	a	curve	is	highest	exponent	in	the	equation	used	to	represent	it.
A	linear	equation	is	degree	1,	a	quadratic	equation	degree	2.	NURBS	curves
typically	are	represented	by	cubic	equations	and	have	a	degree	of	3.
Order
The	order	of	a	curve	refers	to	its	mathematical	order.	For	instance	a	cubic
curve	is	order	4,	a	quadratic	curve	is	order	3,	a	linear	curve	is	order	2.	This	is
one	more	than	the	degree	of	polynomial	of	any	segment	of	the	curve.
Iso	Line
This	is	short	for	isoparametric	line.	It's	a	line	of	constant	parameter	value,
similar	to	a	contour	line.	Iso	lines	can	be	used	to	display	a	NURBS	surface.
Segment

The	portion	of	a	curve	between	two	of	its	controlling	points	or	CVs.
Knot
This	is	a	mathematical	construct	that	helps	define	the	span	of	control	of	CVs
and	blending	functions	that	define	NURBS	Curves	and	Surfaces.	The	knots
are	an	array	of	double	precision	values	that	determines	the	parameterization
of	a	curve.	.	Values	in	the	knot	vector	are	nondecreasing.	The	knots	specify
the	region	of	influence	of	the	CVs	on	the	curve.	It	is	a	way	of	partitioning	the
parameter	space	up	into	different	segments.	A	B	spline	curve	or	a	NURBS
curve	is	a	curve	that	is	defined	by	a	series	of	segments.	On	each	one	of	the
segments	the	curve	is	like	a	polynomial,	or	in	the	case	of	a	rational	one,	it's
like	the	ratio	of	polynomials.	The	knot	vector	describes	how	to	partition	the
parameter	space	of	the	curve	up	for	each	of	the	different	pieces	of	the
polynomial.
Parameter	space
In	addition	to	their	existence	in	3D	space,	NURBS	objects	have	a	parameter
space	that	includes	the	array	of	knot	values.	NURBS	curves	have	a	single	U
dimension	in	parameter	space.	NURBS	surfaces	have	two	dimensions,	UV,	in
parameter	space.
Refine
To	increase	the	number	of	CVs	on	a	curve	or	surface.
B-spline
Short	for	basis	spline.	A	kind	of	spline	generated	by	so-called	basis
functions.	The	advantage	of	B-splines	over	Bézier	curves	(which	are	a
special	case	of	B-splines)	is	that	the	control	vertices	(CVs)	of	a	B-spline
affect	only	their	local	region	of	the	curve	or	surface.
Bézier	curve
A	curve	modeled	using	a	parametric	polynomial	technique.	Bézier	curves
were	developed	by	P.	Bézier	for	computer	modeling	in	automobile	design.
They	are	a	special	case	of	B-splines.

Overview	of	the	Principal	Classes
The	following	diagram	shows	the	inheritance	tree	of	the	principal	classes	in	the
NURBS	API.	The	base	classes	are	shown	at	the	top,	and	the	inheritance
hierarchy	proceeds	toward	the	bottom	and	to	the	right.	NURBSObject	is	the
main	base	class,	with	NURBSPoint,	NURBSCurve	and	NURBSSurface
also	functioning	as	base	classes.
Class	Hierarchy

The	Base	Class	for	NURBS	Points,	Curves	and	Surfaces:

Class	NURBSObject
This	is	the	base	class	for	many	of	the	other	NURBS	classes.	It	provides	a	set
of	methods	that	are	common	to	the	other	classes	such	as	getting	and	setting
the	name	of	the	item,	returning	error	messages,	and	determining	the	specific
type	of	NURBS	object.	It	also	has	a	method	to	return	a	NURBSId	which	is
an	ID	used	to	specify	a	particular	object	in	communication	between	the
NURBS	classes.

Sets	of	NURBS	Objects:
Class	NURBSSet
This	is	the	class	used	when	developers	want	to	create	3ds	max	NURBS
objects,	or	retrieve	data	from	existing	3ds	max	NURBS	objects.	The
NURBSSet	acts	as	a	container	for	the	other	objects.
This	class	contains	a	table	of	the	various	NURBSObject	derived	entities
(points,	curves,	surfaces)	used	to	make	up	the	set.	Additionally	it	has	two
'fuse'	tables:	one	for	fuse	curves	and	one	for	fuse	surfaces.	These	are	used	to
allow	the	CVs	in	the	curves	or	surfaces	to	be	'stitched'	or	'fused'	together	so
that	if	one	curve	or	surface	moves	the	other	moves	with	it.	This	class	also	has
information	required	to	tessellate	the	objects	to	triangle	meshes	for	use	in	the
viewports	and	the	production	renderer.

Independent	Points:
Independent	Points	are	those	that	don't	rely	on	other	objects	to	define	their
location.	This	is	different	than	the	dependent	(or	constrained)	points	described
later.

Class	NURBSPoint
This	class	describes	a	point	in	3	space.	It	is	used	as	a	base	class	for	many	of
the	dependent	points	in	the	API.	It	has	methods	to	set	and	get	the	point
position	in	various	formats	and	floating	point	precisions.	This	is	an	abstract
base	class	so	only	objects	that	are	subclasses	of	this	class	can	be	created.
Class	NURBSIndependentPoint
This	class	is	derived	from	NURBSPoint.	It	is	used	to	create	an
independent,	free-standing	point.	There	are	methods	to	set	the	position	of	the
point	in	various	floating	point	formats	and	operators	to	compare	points.
Class	NURBSControlVertex
This	is	a	Control	Vertex	of	a	NURBS	Curve	or	NURBS	Surface.	This	class

shares	may	of	the	same	properties	as	a	NURBSPoint	and	has	the	added
property	of	a	rational	weight.	The	weight	value	of	a	CV	is	rational.	That	is,	it
is	relative	to	other	CVs	in	the	curve	or	surface.	Changing	the	weight	of	all
CVs	at	once	has	no	effect,	because	this	doesn’t	change	the	ratio	between
weights.
Class	NURBSTrimPoint
This	class	defines	a	point	on	a	curve	used	to	trim	a	portion	of	the	curve	from
the	point	towards	one	of	the	ends	of	the	curve.

Dependent	(Constrained)	Points:
The	following	classes	provide	the	ability	to	create	dependent	points.	Dependent
points	are	related	to	the	objects	they	depend	on	such	that	the	relationship
established	initially	remains	if	the	point,	curve	or	surface	moves.	For	example,	a
point	can	be	created	such	that	it	always	remains	a	certain	distance	from	another
point.	The	options	are	XYZ-relative,	along	a	normal,	or	along	a	tangent	(or	set	of
tangents	for	a	surface-dependent	constrained	point).
All	the	following	classes	are	derived	from	NURBSPoint.

Class	NURBSPointConstPoint
This	class	is	used	to	create	a	dependent	point	that	lies	at	a	point	or	relative	to
it.	It	is	a	point	constrianed	relative	to	another	point.	This	can	be	a	point	used
to	define	a	point	surface	or	point	curve,	it	can	be	a	trim	point,	or	just	a	point
in	space.
Class	NURBSCurveConstPoint
This	class	is	used	to	create	a	dependent	point	that	lies	on	a	curve	or	relative
to	it.
Class	NURBSCurveCurveIntersectionPoint
This	class	is	used	to	create	a	dependent	point	at	the	intersection	of	two
curves.
Class	NURBSSurfConstPoint
This	class	is	used	to	create	a	dependent	point	on	a	surface	or	related	to	it.

Independent	Curves:
The	following	classes	provide	the	ability	to	create	independent	curves.

Class	NURBSCurve
This	base	class	describes	the	properties	of	a	NURBS	curve.	This	includes	its
open/closed	state,	and	number	of	trim	points.	The	Evaluate()	method	is

used	to	compute	points	and	tangents	on	the	curve.
Class	NURBSPointCurve
This	class	is	derived	from	NURBSCurve.	It	defines	a	curve	that	uses	points
to	describe	its	shape.	All	the	points	lie	on	the	curve	itself.	There	are	methods
to	get/set	the	number	of	points	in	the	curve,	get/set	the	points	themselves,
refine	the	curve	(add	points	without	changing	its	shape),	and	to	get/set	the
transformation	matrix	used	by	the	curve	to	position	it	within	a	NURBSSet.
Class	NURBSCVCurve
This	class	is	derived	from	NURBSCurve.	It	defines	a	curve	that	uses
control	vertices	(CVs)	to	describe	its	shape.	The	CVs	define	a	control	lattice
which	surrounds	the	curve.	This	class	has	methods	to	close	the	curve,	set	its
order,	number	of	knots	and	number	of	CVs,	and	get/set	the	knots	and	CVs.
There	is	also	a	method	to	add	additional	CVs	to	the	curve.

Dependent	Curves:
The	following	classes	are	used	to	create	dependent	curves.	A	dependent	curve	is
an	object	that	depends	on	one	or	more	other	objects	to	define	what	it	is.	For
example,	a	Blend	Curve	depends	on	the	two	parent	curves	that	it	blends	between
when	it	was	created	(as	well	as	on	its	two	tension	parameters).
All	the	following	classes	are	derived	from	NURBSCurve.

Class	NURBSBlendCurve
This	class	defines	a	dependent	blend	curve.	A	blend	curve	connects	the
specified	end	of	one	curve	to	the	specified	end	of	another,	blending	the
curvature	of	the	parents	to	create	a	smooth	curve	between	them.
Class	NURBSOffsetCurve
This	class	defines	a	dependent	offset	curve.	An	offset	curve	is	offset	from	the
original,	parent	curve.	It	lies	in	the	same	plane	as	its	parent,	and	is	normal	to
the	original.
Class	NURBSXFormCurve
This	class	defines	a	dependent	transform	(xform)	curve.	A	transform	curve	is
a	copy	of	the	original	curve	with	a	different	position,	rotation,	or	scale
Class	NURBSMirrorCurve
This	class	defines	a	dependent	mirror	curve.	A	mirror	curve	is	similar	to	a
mirror	object	that	you	create	using	the	Mirror	tool	(on	the	3ds	max	toolbar)
or	the	Mirror	modifier.	It	is	the	original	curve	relfected	about	one	or	two

axes.
Class	NURBSFilletCurve
This	class	defines	a	dependent	fillet	curve.	A	fillet	is	a	curve	that	creates	a
circular	arc	corner	between	two	parent	curves.
Class	NURBSChamferCurve
This	class	defines	a	dependent	chamfer	curve.	A	chamfer	is	a	curve	that
creates	a	straight	line	corner	between	two	parent	curves.
Class	NURBSIsoCurve
This	class	defines	a	dependent	iso	curve.	U	and	V	iso	curves	are	dependent
curves	created	along	lines	of	constant	parameter	value	of	a	NURBS	surface.
Note	the	difference	between	"Iso	Lines",	which	are	a	display	artifact,	and
"Iso	Curves"	which	are	the	dependent	objects.

Independent	Surface:
Class	NURBSSurface
This	base	class	describes	the	properties	of	a	NURBS	surface.	This	includes
its	material	ID,	texture/tiling	options,	renderable	state,	and	open/closed	state,
and	normal	inverted	state.	The	Evaluate()	method	is	used	to	compute	points
and	tangents	on	the	surface.
Class	NURBSPointSurface
This	class	is	derived	from	NURBSSurface.	It	defines	a	surface	that	uses
points	to	describe	its	shape.	This	class	has	methods	to	close	the	surface	in	U
and	V,	set	the	number	of	points	in	U	and	V,	and	get/set	the	points	in	U	and	V.
There	is	also	a	method	to	add	additional	points	to	the	surface.	The	point
surface	has	a	transformation	matrix	used	to	set	the	position	of	the	surface
within	a	NURBSSet.
Class	NURBSCVSurface
This	class	is	derived	from	NURBSSurface.	It	defines	a	surface	that	uses
control	vertices	(CVs)	to	describe	its	shape.	The	CVs	define	a	control	lattice
which	surrounds	the	surface.	This	class	has	methods	to	close	the	surface	in	U
and	V,	set	its	order	in	U	and	V,	set	the	number	of	knots	and	CVs	in	U	and	V,
and	get/set	the	knots	and	CVs	in	U	and	V.	There	is	also	a	method	to	add
additional	CVs	to	the	surface.	The	CV	surface	has	a	transformation	matrix
used	to	position	the	surface	within	a	NURBSSet.

Dependent	Surfaces:

Dependent	surfaces	are	surface	sub-objects	whose	geometry	depends	on	other
surfaces	or	curves	in	the	NURBS	model.	When	you	change	the	geometry	of	the
original	parent	surface	or	curve,	the	dependent	surface	changes	as	well.

Class	NURBSBlendSurface
This	class	defines	a	dependent	blend	surface.	A	blend	surface	connects	the
edge	of	one	surface	to	the	edge	of	another,	blending	the	curvature	of	the
parents	to	create	a	smooth	surface	between	them.
Class	NURBSOffsetSurface
This	class	defines	a	dependent	offset	surface.	An	Offset	surface	is	offset	a
specified	distance	from	the	original	along	the	parent	surface’s	normals.
Class	NURBSXFormSurface
This	class	defines	a	dependent	transform	(xform)	surface.	A	transform
surface	is	a	copy	of	the	original	surface	with	a	different	position,	rotation,	or
scale
Class	NURBSMirrorSurface
This	class	defines	a	dependent	mirror	surface.	A	mirror	surface	is	similar	to	a
mirror	object	that	you	create	using	the	Mirror	tool	(on	the	3ds	max	toolbar)
or	the	Mirror	modifier.	It	is	the	original	surface	relfected	about	one	or	two
axes.
Class	NURBSRuledSurface
This	class	defines	a	dependent	ruled	surface.	A	ruled	surface	is	generated
from	two	curve	sub-objects.	It	lets	you	use	curves	to	design	the	two	opposite
borders	of	a	surface.
Class	NURBSULoftSurface
This	class	defines	a	dependent	U	Loft	surface.	A	U	Loft	surface	interpolates
a	surface	across	multiple	curve	sub-objects.	The	curves	become	U-axis
contours	of	the	surface.
Class	NURBSExtrudeSurface
This	class	defines	a	dependent	extrude	surface.	An	extrude	surface	is
extruded	from	a	curve	sub-object.	It	is	similar	to	a	surface	created	with	the
Extrude	modifier.	The	advantage	is	that	an	extrude	sub-object	is	part	of	the
NURBS	model,	so	you	can	use	it	to	construct	other	curve	and	surface	sub-
objects
Class	NURBSLatheSurface

This	class	defines	a	dependent	lathe	surface.	A	lathe	surface	is	generated
from	a	curve	sub-object.	It	is	similar	to	a	surface	created	with	the	Lathe
modifier.	The	advantage	is	that	a	lathe	sub-object	is	part	of	the	NURBS
model,	so	you	can	use	it	to	construct	other	curve	and	surface	sub-objects.
Class	NURBSCurveSurfaceIntersectionPoint
This	class	is	used	to	create	a	dependent	point	at	the	intersection	of	a	curve
and	a	surface.
Class	NURBSProjectNormalCurve
This	class	provides	access	to	the	Normal	Proejcted	Curve.	A	Normal
Projected	curve	lies	on	a	surface.	It	is	based	on	an	existing	curve,	which	is
projected	onto	the	surface	in	the	direction	of	the	surface's	normals
Class	NURBSProjectVectorCurve
This	class	provides	access	to	the	Vector	Projected	Curve.	A	Vector	Projected
curve	lies	on	a	surface.	This	is	almost	the	same	as	a	Normal	Projected	curve,
except	that	the	projection	from	the	existing	curve	to	the	surface	is	in	the
direction	of	a	vector	that	you	can	control.	Vector	projected	curves	may	be
used	for	trimming.
Class	NURBSSurfaceNormalCurve
This	provides	access	to	the	Surface	Normal	Curve.	This	is	a	curve	created	at
a	specified	distance	from	a	surface	and	normal	to	it.
Class	NURBSSurfSurfIntersectionCurve
This	class	provides	access	to	the	Surface-Surface	Intersection	Curve.	This	is
a	curve	that	is	defined	by	the	intersection	of	two	surfaces.	You	can	use
surface-surface	intersection	curves	for	trimming.
Class	NURBSCurveOnSurface
This	class	provides	access	to	the	CV	curve	on	surface	parameters.	These
curves	can	be	used	for	trimming	the	surface	they	lie	on.
Class	NURBSPointCurveOnSurface
This	class	provides	access	to	the	point	curve	on	surface	parameters.	These
curves	can	be	used	for	trimming	the	surface	they	lie	on.
Class	NURBSUVLoftSurface
This	class	provides	access	to	the	UV	Loft	Surface.	This	surface	is	similar	to
the	U	Loft	surface,	but	has	a	set	of	curves	in	the	V	dimension	as	well	as	the
U	dimension.

Class	NURBSNBlendSurface
This	class	provides	access	to	the	Multisided	Blend	surface.	A	Multisided
Blend	surface	is	a	surface	that	"fills	in"	the	edges	defined	by	three	or	four
other	curve	or	surfaces.	Unliked	a	regular,	two-sided	Blend	surface,	the
curves	or	surfaces	edges	must	form	a	closed	loop¾that	is,	they	must
completely	surround	the	opening	the	Multisided	Blend	will	cover.
Class	NURBS1RailSweepSurface
This	class	provides	access	to	the	1-Rail	Sweep	Surface.	A	1-Rail	Sweep
Surface	uses	at	least	two	curves.	One	curve,	the	"rail,"	defines	one	edge	of
the	surface.	The	other	curves	define	the	surface's	cross	sections.	The	cross-
section	curves	should	intersect	the	rail	curve.	If	the	cross	sections	don't
intersect	the	rail,	the	resulting	surface	is	unpredicable.
Class	NURBS2RailSweepSurface
This	class	provides	access	to	the	2-Rail	Sweep	Surface.	A	2-Rail	Sweep
surface	uses	at	least	three	curves.	Two	curves,	the	"rails,"	define	the	two
edges	of	the	surface.	The	other	curves	define	the	surface's	cross	sections.	A
2-Rail	Sweep	surface	is	similar	to	a	1-Rail	sweep.	The	additional	rail	gives
you	more	control	over	the	shape	of	the	surface.
Class	NURBSCapSurface
This	class	provides	access	to	the	Cap	Surface.	A	Cap	Surface	is	a	surface	that
caps	a	closed	curve	or	the	edge	of	a	closed	surface.	Caps	are	especially
useful	with	extruded	surfaces.
Class	NURBSMultiCurveTrimSurface
This	class	provides	access	to	the	Multicurve	Trim	Surface	which	is	a	surface
that	is	trimmed	by	multiple	curves	forming	a	loop.

Texture	Mapping:
The	following	classes	are	those	involved	in	texture	mapping	NURBS	surfaces.
In	3ds	max	3.0	and	later	there	may	be	99	texture	channels	assigned	to	each
surface.

Class	NURBSSurface
This	class	(also	described	above)	has	a	NURBSTextureChannelSet
which	is	a	table	of	pointers	to	all	the	mapping	channels	used	by	this	surface.
This	class	also	has	methods	to	return	a	reference	to	the
NURBSTextureSurface	associated	with	a	specific	channel.
Class	NURBSTextureChannelSet

This	class	holds	a	table	of	pointers	to	all	the	NURBSTextureChannel	data
for	a	surface.	There	are	methods	to	returns	the	table	data	by	channel	or	by
index	and	a	method	to	add	a	new	texture	channel
Class	NURBSTextureChannel
This	class	holds	and	provides	access	to	a	single	texture	channel.	It	holds	the
NURBSTextureSurface	instance	associated	with	the	channel.	It	also	holds
the	channel	number	(a	number	in	the	range	0	to	98),	the	tiling,	offset,	and
angle	parameters	as	well	as	the	Generate	UV	flag.
Class	NURBSTextureSurface
A	texture	surface	is	a	surface	associated	with	the	surface	sub-object.	3ds	max
uses	the	texture	surface	to	control	how	materials	are	mapped.	In	effect,
changing	the	texture	surface	stretches	or	otherwise	changes	the	UV
coordinates	for	the	surface,	altering	the	mapping.	This	class	maintains	a
mapper	type	which	controls	how	the	texture	surface	generates	the	mapping.
This	class	also	provides	access	to	the	individual	UV	mapping	coordinates.
These	coordinates	are	NURBSTexturePoint	objects.
Class	NURBSTexturePoint
This	class	holds	and	provides	access	to	a	single	UV	mapping	coordinate.

NURBSIds	and	Indexes
An	important	concept	to	understand	when	working	with	NURBSSets	and	the
other	NURBS	classes	is	the	way	you	identify	component	items	that	are	in	the
set.	Before	a	NURBSet	is	instantiated	in	the	scene	as	a	NURBS	object,	the
individual	points,	curves,	and	surfaces	are	identified	by	an	index	number.	As	you
append	objects	to	the	set	they	are	assigned	successive	indexes,	starting	at	0.
When	you	want	to	refer	to	a	particular	item,	say	to	specify	the	parent	surfaces	in
a	blend	surface,	you	use	this	index.	Once	an	object	has	been	added	to	a
NURBSSet,	its	index	can	retrieved	using.
However,	once	a	NURBSSet	is	associated	with	a	scene	object,	either	by	being
instantiated	or	because	it	was	directly	created	from	an	existing	scene	object,	this
index	is	no	longer	valid.	Instead,	a	different	number,	called	a	NURBSId,	is
assigned	to	each	item	and	you	must	use	that	Id	when	referring	to	items	from	then
on.	The	NURBSId	of	any	item	in	an	instantiated	NURBSSet	can	be	obtained
through	the	NURBSObject::GetId()	method	of	that	object.
Seed	Value	Parameters

Seed	Value	Parameters
Some	kinds	of	dependent	objects	depend	on	geometry	that	might	have	more	than
one	solution.	For	example,	if	you	want	to	create	a	surface-curve	intersection
point	but	the	curve	intersects	the	surface	more	than	once,	3ds	max	must	decide
which	intersection	is	to	be	the	location	of	the	point.
For	these	kinds	of	objects,	seed	value	parameters	control	the	decision.	The	seed
location	is	a	location	on	a	parent	object,	and	the	location	nearest	to	the	seed
value	that	satisfies	the	creation	condition	is	the	one	that	3ds	max	chooses.
For	example,	the	seed	location	for	a	surface-curve	intersection	point	is	a	U
position	along	the	length	of	the	parent	curve.	The	surface-curve	intersection
closest	to	the	seed	is	chosen	as	the	location	of	the	dependent	point.
For	a	surface,	the	seed	location	is	a	pair	of	UV	coordinates	in	the	surface's
parameter	space.

Using	the	API	to	Create	and	Modify	MAX	NURBS	Models
As	mentioned	above,	3ds	max	itself	uses	a	different	internal	representation	of
NURBS	objects	than	the	API	does.	The	API	is	simply	a	means	to	access	these
internal	3ds	max	NURBS	objects	and	allow	them	to	be	manipulated.
The	object	used	in	communication	between	the	internal	3ds	max	NURBS	objects
and	the	classes	in	the	SDK	available	to	work	with	these	objects	is	the
NURBSSet.	There	are	also	two	global	functions	used	in	this	communication.
These	are	CreateNURBSObject()	and	GetNURBSSet().	How	these	are
used	is	described	below:
Creating	New	NURBS	Objects
The	API	can	be	used	to	create	new	NURBS	objects.	This	is	done	by	adding	the
objects	(points,	curves	and	surfaces)	to	an	item	called	a	NURBS	'set'	and	calling
the	global	function	CreateNURBSObject().	The	NURBSSet	is	a	container
for	the	objects.	Then	the	global	function	CreateNURBSObject()	makes	an
internal	3ds	max	NURBS	object	out	of	the	set.
As	an	example,	consider	the	following	code	fragment	that	creates	a
NURBSCVCurve	object	(with	NURBSControlVertex	sub-objects)	and
puts	it	in	the	scene:
//	Create	an	empty	NURBSSet	object
NURBSSet	nset;
	
//	Allocate	a	new	NURBSCVCurve	and	set	the	knots	and	CVs
NURBSCVCurve	*c	=	new	NURBSCVCurve();
c->SetName(_T("CV	Curve"));
c->SetNumCVs(4);
c->SetOrder(4);
c->SetNumKnots(8);
for	(int	k	=	0;	k	<	4;	k++)	{
	c->SetKnot(k,	0.0);
	c->SetKnot(k+4,	1.0);
}
NURBSControlVertex	cv;
cv.SetPosition(0,	Point3(0,	0,	50));
c->SetCV(0,	cv);

cv.SetPosition(0,	Point3(-100,	0,	50));
c->SetCV(1,	cv);
cv.SetPosition(0,	Point3(-100,	100,	50));
c->SetCV(2,	cv);
cv.SetPosition(0,	Point3(0,	100,	50));
c->SetCV(3,	cv);
	
//	Add	the	NURBSCVCurve	object	to	the	set
nset.AppendObject(c);
	
//	Create	the	NURBS	object	from	the	NURBSSet
Matrix3	mat(1);
Object	*obj	=	CreateNURBSObject(ip,	&nset,	mat);
	
//	Create	the	node	in	the	scene	and	point	it	at	the	NURBS	object
INode	*node	=	ip->CreateObjectNode(obj);
node->SetName(_T("NURBS	Set	1"));

The	NURBS	object	created	(obj)	will	have	the	Class_ID:
EDITABLE_SURF_CLASS_ID.
Modifying	Existing	NURBS	Objects
The	API	can	also	be	used	to	modify	the	properties	of	existing	NURBS	objects	in
the	scene.	To	gain	access	to	an	internal	3ds	max	NURBS	object	you	must	have
the	data	copied	into	a	NURBSSet.	This	is	done	using	the	global	function
GetNURBSSet().	You	can	then	use	the	methods	of	the	NURBSSet	to	access
the	objects.	After	checking	the	type	of	the	object	you	can	cast	it	to	the
appropriate	class	and	use	that	class's	methods	to	alter	the	item.
For	example,	the	following	sample	code	attempts	to	grab	the	first	NURBS	sub-
object	from	the	first	node	in	the	current	selection	set.	It	then	checks	if	it's	a	blend
surface	and	if	so	adjust	one	of	the	tension	parameters.
//	Get	the	first	selected	node
INode*	node	=	ip->GetSelNode(0);
if	(!node)	return;
//	Get	the	object	reference	of	the	node
Object*	obj	=	node->GetObjectRef();

	
//	Make	sure	it's	a	NURBS	object
if	(obj->ClassID()	==	EDITABLE_SURF_CLASS_ID)	{
NURBSSet	getSet;
BOOL	okay	=	GetNURBSSet(obj,	ip->GetTime(),	getSet,
TRUE);
if	(okay)	{
	NURBSObject	*nObj;
nObj	=	getSet.GetNURBSObject(0),	ip->GetTime());
if	(nObj->GetType()	==	kNBlendSurface)	{
	//	It's	a	blend,	adjust	the	tension
	NURBSBlendSurface	*bSurf	=	(NURBSBlendSurface

*)nObj;
	bSurf->SetTension(ip->GetTime(),	0,	2.0);
}

}
}

There	are	other	global	functions	that	may	be	used	to	modify	NURBS	objects.
These	functions	are	documented	at	the	end	of	this	topic.	For	instance,	developers
can	use	the	function	BreakSurface()	to	take	an	existing	NURBS	surface	and
break	it	into	two	separate	surfaces.

Accessing	Details	of	NURBS	Objects
Developers	that	need	to	access	that	internal	of	3ds	max	NURBS	objects	can	see
the	following	methods	to	get	at	details	such	as	knot	counts,	CV	counts,	order,
weight	and	position	data.	The	main	call	is:
BOOL	GetNURBSSet(Object	*object,	TimeValue	t,	NURBSSet
&nset,	BOOL	Relational);

with	Relational	set	to	FALSE.	This	will	fill	in	the	NURBSSet	with	the
surfaces,	curves	and	independent	points	of	the	object	passed.	The	surfaces	will
all	be	NURBSCVSurface's	and	the	curves	will	all	be	NURBSCVCurve's.
These	can	be	gotten	from	the	NURBSSet	with:
int	GetNumObjects();
NURBSObject*	GetNURBSObject(int	index);
The	following	can	be	called	to	get	the	knots	(for	surfaces,	there	is	an	equivalent
for	curves,	of	course):
int	GetNumUKnots(void);
int	GetNumVKnots(void);
double	GetUKnot(int	index);
double	GetVKnot(int	index);
and	the	CVs	can	be	retrieved	with:
int	GetNumUCVs(void);
int	GetNumVCVs(void);
NURBSControlVertex*	GetCV(int	u,	int	v);
The	order	of	the	surface	can	be	determined	with:
int	GetUOrder(void);
int	GetVOrder(void);
Finally,	given	a	NURBSControlVertex	the	position	and	weights	can	be
retreived	via	member	functions:
Point3	GetPosition(TimeValue	t);
void	GetWeight(TimeValue	t,	double&	wt);

Parameter	Ranges	for	Curves	and	Surfaces
Methods	that	deal	with	points	in	the	parameter	space	of	a	curve	work	with
arguments	in	U.	Methods	that	deal	with	points	in	the	parameter	space	of	surfaces
deal	with	arguments	in	U	and	V.	For	example,	the	function
NURBSSurfConstPoint::SetUParam()	sets	the	position	of	a	dependent
point	in	the	parent	surface's	U	parameter	space.	The	valid	U	and	V	values	that
may	be	passed	to	this	method	must	be	obtained	by	calling
NURBSSurface::GetParameterRange()	on	the	parent	surface.	This
methods	retrieves	the	minimum	and	maximum	values	for	U	and	V	that	may	be
used.	For	curves	there	is	a	similar	function	for	getting	the	valid	range	for	U.	This
is	NURBSCurve::GetParameterRange().
Developers	should	be	aware	that	a	curve	or	surface	needs	to	be	instantiated	in
the	3ds	max	data	base	before	it	is	okay	to	call	these	methods	(for	example	by
calling	CreateNURBSObject()).	Prior	to	the	object	existing	in	the	data	base
these	calls	will	fail.
Generally,	when	CV	curves	and	surfaces	are	created,	the	valid	parameter	range	is
known	because	they	were	specified	in	the	beginning	and	ending	knot	values.	In
cases	where	they	are	not	known,	one	can	instantiate	a	NURBSSet	that	has	just
the	base	curves	or	surfaces.	Once	instantiated	GetParameterRange()	can	be
used.	Then	one	can	build	the	rest	of	the	parametric	model	by	making	additions
and/or	modifiications	to	the	already	instantiated	object.	The	global	function
AddNURBSObjects()	makes	this	easy	to	do.

Materials	Assignment	and	Texture	Coordinates
Materials	and	NURBS
Each	NURBS	surface	has	its	own	material	ID.	If	you	assign	a	Multi-SubObject
material	you	can	apply	a	different	material	to	each	surface	in	a	NURBS	object.
The	method	to	do	this	is	NURBSSurface::MatID().	In	release	3.0	and	later
each	NURBSCurve	can	have	an	associated	material.	This	is	used	by	the	Lathe
and	Extrude	modifiers	for	example.
Texture	Coordinates	and	NURBS
Texture	coordinates	are	assigned	to	each	of	the	four	corners	of	a	NURBS
surface.	On	the	standard	3ds	max	primitives	for	example	most	are	assigned	to
use	(0,0)	to	(1,1)	across	the	surface.	Some	primitive,	such	as	the	Prism,	don't	use
(0,0)	to	(1,1)	because	of	the	way	they	wrap.	Developers	may	of	course	assign
any	values	using	the	API.	The	method	to	do	this	is
NURBSSurface::SetTextureUVs().

Sample	Code
There	is	a	demonstration	utility	plug-in	that	exercises	the	NURBS	API.	This	is
available	in
\MAXSDK\SAMPLES\UTILITIES\NURBS\SDK_TEST.CPP.	This	is
an	excellent	place	to	look	for	simple,	clear	sample	code.
The	standard	3ds	max	primitives	also	use	the	NURBS	API.	See	this	code	in	the
various	primitive	objects	in	directory	\MAXSDK\SAMPLES\OBJECTS.
Additionally,	the	Lathe	and	Extrude	use	the	API.	Developers	can	review	this
code	in	\MAXSDK\SAMPLES\MODIFIERS\EXTRUDE.CPP	and
SURFREV.CPP.

Additional	Functions	for	Working	with	NURBS
The	following	global	functions	are	available	for	working	with	NURBS.	The
hyperlinks	below	take	you	to	the	start	of	groups	of	related	functions:
Creating	and	Retrieving	MAX	NURBS	Objects
Creating	Primitive	NURBS	Objects	(Spheres,	Cylinders,	etc.)
Modifying	Existing	NURBS	Objects

Creating	and	Retrieving	MAX	NURBS	Objects
Prototype:
Object	*CreateNURBSObject(IObjParam*	ip,	NURBSSet	*nset,
Matrix3&	mat);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	takes	a	NURBSSet	as	input	and	outputs	a	pointer	to	an	editable
NURBS	object.	For	example,	this	is	what	all	the	standard	3ds	max	primitives
do	when	they	implement	Object::ConvertToType().	If	you	want	to	make	a
node	in	the	scene	reference	a	NURBS	object,	put	the	objects	into	a
NURBSSet	and	use	this	function	to	create	the	NURBS	object.	Then	pass	this
object	to	Interface::CreateObjectNode().

Parameters:
IObjParam*	ip
The	3ds	max	interface	pointer.	If	non-NULL,	this	is	used	to	get	at	the	3ds	max
function	to	do	unique	naming.	If	a	NULL	is	specified	the	names	are	not	made
unique.
NURBSSet	*nset
Points	to	the	set	of	input	objects	to	create.	These	are	defined	in	object	space.
The	matrix	below	is	used	to	transform	these.	For	instance,	the	NURBSSet
could	be	defined	in	a	unit	cube	and	the	mat	parameter	could	be	used	to	scale
it	up.
Note:	The	NURBSIds	and	parent	NURBSIds	in	this	NURBS	set	are	filled	in
the	process	of	doing	the	creation.	Thus,	you	pass	this	set	in,	and	the	function
modifies	it	so	you	can	work	with	the	set	immediately	(you	don't	have	to	later
call	GetNURBSSet()	to	get	an	appropriate	one	to	work	with).	For	example,

say	you	create	a	NURBSCVSurface	using	this	API	and	then	want	to
animate	some	of	the	CVs	on	the	surface.	You'd	pass	in	this	set,	then	when	the
object	is	created	the	CVs	on	the	surface	will	have	the	parent	ids	filled	in	so
you	can	actually	manipulate	the	surface	in	the	scene.
Matrix3&	mat
This	is	a	transformation	applied	to	all	of	the	objects.

Return	Value:
A	pointer	to	an	editable	NURBS	object	whose	Class_ID	is
EDITABLE_SURF_CLASS_ID.

Prototype:
BOOL	GetNURBSSet(Object	*object,	TimeValue	t,	NURBSSet
&nset,	BOOL	Relational);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	is	used	to	retrieve	a	NURBSSet	that	corresponds	to	the
specified	NURBS	object.	This	allows	a	developer	to	access	the	internal
objects	inside	a	3ds	max	editable	NURBS	object.
If	the	Relational	parameter	is	FALSE	the	NURBSSet	will	contain	CV
curves	and	CV	surfaces.	So	for	example,	if	you	pass	an	object	that	has	a
relational	model	(perhaps	two	CV	surfaces	and	a	dependent	blend	surface)	it
will	decompose	them	into	three	CV	surfaces.	This	will	be	the	CV	surfaces	that
represent	the	two	surfaces	and	the	blend,	but	you	won't	have	the	blend
relational	data.	If	Relational	is	TRUE,	you'd	get	back	two	CV	surfaces	and	a
NURBS	blend	surface.	If	you	get	back	a	relational	model,	check	the	type	of
object	using	the	base	class	method	NURBSObject::GetType()	and	then
cast	the	object	to	the	appropriate	type.	Then	you	may	call	that	classes	methods
on	the	object	to	work	with	it.
If	you	were	using	this	API	as	part	of	an	export	plug-in,	you'd	probably	want	to
set	Relational	to	FALSE	because	getting	back	a	relational	blend	surface
would	not	be	useful,	but	having	CV	surface	data	you	could	export	would.	On
the	other	hand,	if	you	simply	wanted	to	animate	the	tension	parameters	on	the
blend	surface	you'd	set	Relational	to	TRUE	and	then	call	the	methods	of	the
blend	surface	object	to	change	the	tension	parameters

(NURBSBlendSurface::SetTension()).
Important	Note:	Developers	must	use	the	method
NURBSSet::DeleteObjects()	when	done	with	the	NURBSSet	to	free	the
memory	used.

Parameters:
Object	*object
The	input	object.	This	need	to	be	a	NURBS	object	(Class_ID
EDITABLE_SURF_CLASS_ID).
TimeValue	t
The	time	at	which	the	object	is	evaluated	and	converted.
NURBSSet	&nset
A	NURBSSet	that	corresponds	to	the	specified	object	is	returned	here.
BOOL	Relational
If	TRUE	the	NURBSSet	will	contain	relational	data;	if	FALSE	the
NURBSSet	will	contain	a	CV	curve	or	CV	surface	equivalent	of	the	object.

Creating	primitive	NURBS	Objects	(spheres,	cylinders,	etc.)
Prototype:
NURBSResult	GenNURBSLatheSurface(NURBSCurve&	curve,
Point3&	origin,	Point3&	north,	float	start,	float	end,
NURBSSurface&	surf);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	generates	a	NURBS	surface	of	revolution	given	an	input	curve,
origin,	up	axis,	and	start	and	end	angles.	The	output	of	this	function	is	a
NURBS	Surface.	Note	that	this	is	a	CV	surface	that	matches	the	definition,	not
a	relational	surface.

Parameters:
NURBSCurve&	curve
This	is	the	NURBS	curve	that	is	revolved.
Point3&	origin
Specifies	the	origin	of	the	revolution.

Point3&	north
This	is	the	axis	that	specified	the	up	direction.
float	start
This	is	the	start	angle	of	the	revolution	in	radians.
float	end
This	is	the	end	angle	of	the	revolution	in	radians.
NURBSSurface&	surf
The	surface	definition	is	returned	here.

Return	Value:
See	List	of	NURBS	Results.

Prototype:
NURBSResult	GenNURBSSphereSurface(float	radius,	Point3&
center,	Point3&	northAxis,	Point3&	refAxis,	float	startAngleU,
float	endAngleU,	float	startAngleV,	float	endAngleV,
NURBSSurface&	surf);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	generates	a	NURBS	sphere.	The	output	of	this	function	is	a
NURBS	Surface.	Note	that	this	is	a	CV	surface	that	matches	the	definition,	not
a	relational	surface.
Note:	This	surface	is	not	closed	surface.

Parameters:
float	radius
The	radius	of	the	sphere.
Point3&	center
The	center	point	of	origin	of	the	sphere.
Point3&	northAxis
This	specifies	the	up	axis.	Use	Point3(0,0,1)	for	the	Z	axis	for	example.
Point3&	refAxis
This	is	the	direction	of	the	seam.	The	sphere	primitive	uses	Point3(0,-1,0)	as
this	value.
float	startAngleU

The	start	angle	for	the	sphere	in	the	U	direction,	specified	in	radians.
float	endAngleU
The	end	angle	for	the	sphere	in	the	U	direction,	specified	in	radians.
float	startAngleV
The	start	angle	for	the	sphere	in	the	V	direction,	specified	in	radians.
float	endAngleV
The	end	angle	for	the	sphere	in	the	V	direction,	specified	in	radians.
NURBSSurface&	surf
The	surface	definition	is	returned	here.	This	is	a	CV	surface	that	matches	the
definition,	not	a	relational	surface.

Return	Value:
See	List	of	NURBS	Results.

Prototype:
NURBSResult	GenNURBSCylinderSurface(float	radius,	float
height,	Point3&	origin,	Point3&	symAxis,	Point3&	refAxis,	float
startAngle,	float	endAngle,	NURBSSurface&	surf);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	generates	a	NURS	cylinder.	The	output	of	this	function	is	a
NURBS	Surface.	Note	that	this	is	a	CV	surface	that	matches	the	definition,	not
a	relational	surface.
Note:	This	surface	is	not	closed	surface.

Parameters:
float	radius
The	radius	of	the	cylinder.
float	height
The	height	of	the	cylinder.
Point3&	origin
The	origin	of	the	cylinder.
Point3&	symAxis
The	axis	of	symetry.	The	standard	cylinder	primitive	specifies	Point3(0,0,1).
Point3&	refAxis

This	is	the	direction	of	the	seam.	The	standard	cylinder	primitive	specifies
Point3(0,1	,0).
float	startAngle
The	start	angle	in	radians.
float	endAngle
The	end	angle	in	radians.
NURBSSurface&	surf
The	surface	definition	is	returned	here.

Return	Value:
See	List	of	NURBS	Results.

Prototype:
NURBSResult	GenNURBSConeSurface(float	radius1,	float
radius2,	float	height,	Point3&	origin,	Point3&	symAxis,	Point3&
refAxis,	float	startAngle,	float	endAngle,	NURBSSurface&	surf);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	generates	a	NURBS	cone	surface.	The	output	of	this	function	is
a	NURBS	Surface.	Note	that	this	is	a	CV	surface	that	matches	the	definition,
not	a	relational	surface.
Note:	This	surface	is	not	closed	surface.

Parameters:
float	radius1
One	of	the	radii	of	the	cone.
float	radius2
The	other	radius	of	the	cone.
float	height
The	height	of	the	cone.
Point3&	origin
The	origin	of	the	cone.
Point3&	symAxis
The	axis	of	symmetry.
Point3&	refAxis

This	is	the	direction	of	the	seam.
float	startAngle
The	start	angle	in	radians.
float	endAngle
The	end	angle	in	radians.
NURBSSurface&	surf
The	surface	definition	is	returned	here.

Return	Value:
See	List	of	NURBS	Results.

Prototype:
NURBSResult	GenNURBSTorusSurface(float	majorRadius,	float
minorRadius,	Point3&	origin,	Point3&	symAxis,	Point3&	refAxis,
float	startAngleU,	float	endAngleU,	float	startAngleV,	float
endAngleV,	NURBSSurface&	surf);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	generates	a	NURBS	torus	surface.	The	output	of	this	function	is
a	NURBS	Surface.	Note	that	this	is	a	CV	surface	that	matches	the	definition,
not	a	relational	surface.
Note:	This	surface	is	not	closed	surface.

Parameters:
float	majorRadius
This	is	the	radius	of	the	entire	'donut'	shape.
float	minorRadius
The	is	the	radius	of	the	'tube'.
Point3&	origin
The	origin	of	the	cone.
Point3&	symAxis
The	axis	of	symmetry.
Point3&	refAxis
This	is	the	direction	of	the	seam.
float	startAngleU

The	start	angle	of	the	torus	in	the	U	direction.
float	endAngleU
The	end	angle	of	the	torus	in	the	U	direction.
float	startAngleV
The	start	angle	of	the	torus	in	the	V	direction.
float	endAngleV
The	end	angle	of	the	torus	in	the	V	direction.
NURBSSurface&	surf
The	surface	definition	is	returned	here.

Return	Value:
See	List	of	NURBS	Results.

Prototype:
Object	*CreateNURBSLatheShape(IObjParam*	ip,	TSTR	name,
TimeValue	t,	ShapeObject	*shape,	Matrix3&	axis,	float	degrees,	int
capStart,	int	capEnd,	int	capType,	BOOL	weldCore,	BOOL
flipNormals,	BOOL	texturing,	int	segs,	BOOL	matIds,	BOOL
shapeIDs);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	generates	a	NURBS	object	based	on	the	specified	lathe	(surface
of	revolution)	definition	and	returns	a	pointer	to	it.	This	is	used	by	the	lathe
modifier.

Parameters:
IObjParam*	ip
The	3ds	max	interface	pointer.	If	non-NULL,	this	is	used	to	get	at	the	3ds	max
function	to	do	unique	naming.	If	a	NULL	is	specified	the	names	are	not	made
unique.
TSTR	name
The	name	for	the	object.	If	the	pointer	above	is	non-NULL	this	name	is	made
unique.
TimeValue	t
The	time	at	which	to	revolve	the	shape.

ShapeObject	*shape
Points	to	the	shape	object	to	revolve.	Note	that	if	the	ShapeObject	pointed	to
is	a	bezier	spline	then	capping	won't	work	properly.
Matrix3&	axis
This	specifies	the	axis	of	revolution.
float	degrees
The	angle	for	the	surface	of	revolution	in	degrees.
int	capStart
Specifies	if	the	surface	should	be	capped	at	the	beginning:	TRUE	to	cap;
FALSE	to	leave	open.	Note	that	this	is	only	used	if	the	ShapeObject	is	a
NURBS	curve.
int	capEnd
Specifies	if	the	surface	should	be	capped	at	the	ending:	TRUE	to	cap;	FALSE
to	leave	open.	Note	that	this	is	only	used	if	the	ShapeObject	is	a	NURBS
curve.
int	capType
This	parameter	is	not	currently	used	and	the	value	passed	is	ignored.
BOOL	weldCore
TRUE	to	collapse	any	coincident	vertices	at	the	center	of	the	surface;
otherwise	FALSE.
BOOL	flipNormals
TRUE	to	invert	the	orientation	of	surface	normals;	otherwise	FALSE.
BOOL	texturing
TRUE	to	generate	mapping	coordinates;	otherwise	FALSE.
int	segs
This	parameter	is	not	currently	used	and	the	value	passed	is	ignored.
BOOL	matIds
If	TRUE	special	material	Ids	are	assigned	to	the	surfaces	and	caps.
BOOL	shapeIDs
This	parameter	is	available	in	release	3.0	and	later	only.
If	TRUE	shape	IDs	are	used.	When	on,	this	function	uses	the	material	ID
values	assigned	to	segments	in	the	spline	to	be	lathed,	or	curve	sub-objects	in
the	NURBS	curve	to	be	lathed.	This	is	available	only	when	matIds	is	TRUE.

Prototype:
Object	*CreateNURBSExtrudeShape(IObjParam*	ip,	TSTR
name,	TimeValue	t,	ShapeObject	*shape,	float	amount,	int
capStart,	int	capEnd,	int	capType,	BOOL	texturing,	BOOL
matIDs,	BOOL	shapeIDs);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	generates	a	NURBS	object	based	on	the	specified	extrusion
definition	and	returns	a	pointer	to	it.	This	is	used	by	the	extrude	modifier.

Parameters:
IObjParam*	ip
The	3ds	max	interface	pointer.	If	non-NULL,	this	is	used	to	get	at	the	3ds	max
function	to	do	unique	naming.	If	a	NULL	is	specified	the	names	are	not	made
unique.
TSTR	name
The	name	for	the	surface.	If	the	pointer	above	is	non-NULL	this	name	is	made
unique.
TimeValue	t
The	time	at	which	to	extrude	the	shape.
ShapeObject	*shape
Points	to	the	shape	object	to	extrude.	Note	that	if	the	ShapeObject	pointed	to
is	a	bezier	spline	then	capping	won't	work	properly.
float	amount
Specifies	the	height	of	the	extrusion.
int	capStart
Specifies	if	the	surface	should	be	capped	at	the	bottom:	TRUE	to	cap;	FALSE
to	leave	open.	Note	that	this	is	only	used	if	the	ShapeObject	is	a	NURBS
curve.
int	capEnd
Specifies	if	the	surface	should	be	capped	at	the	top:	TRUE	to	cap;	FALSE	to
leave	open.	Note	that	this	is	only	used	if	the	ShapeObject	is	a	NURBS	curve.
int	capType
This	parameter	is	not	currently	used	and	the	value	passed	is	ignored.

BOOL	texturing
If	TRUE	texture	coordinates	are	assigned;	otherwise	they	are	not.
BOOL	matIds
If	TRUE	special	material	Ids	are	assigned	to	the	surfaces	and	caps.
BOOL	shapeIDs
This	parameter	is	available	in	release	3.0	and	later	only.
If	TRUE	shape	IDs	are	used.	When	on,	this	function	uses	the	material	ID
values	assigned	to	segments	in	the	spline	to	be	extruded,	or	curve	sub-objects
in	the	NURBS	curve	to	be	extruded.	This	is	available	only	when	matIds	is
TRUE.

Modifying	Existing	NURBS	Objects
Prototype:
int	AddNURBSObjects(Object*	obj,	IObjParam*	ip,	NURBSSet
*nset);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	adds	the	specified	NURBSSet	to	the	specified	object.

Parameters:
Object*	obj
Points	to	the	object	to	have	the	specified	NURBSSet	added	to.	This	object
must	be	a	NURBS	object	(otherwise	it	will	simply	return	0).
IObjParam*	ip
The	3ds	max	interface	pointer.	If	non-NULL,	this	is	used	to	get	at	the	3ds	max
function	to	do	unique	naming.	If	a	NULL	is	specified	the	names	are	not	made
unique.
NURBSSet	*nset
Points	to	the	NURBS	set	that	is	added	to	the	object.

Return	Value:
Nonzero	if	the	object	was	added;	otherwise	zero.

Prototype:

NURBSResult	SetSurfaceApprox(Object*	obj,	BOOL	viewport,
TessApprox	*tess,	BOOL	clearSurfs=FALSE);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	sets	the	surface	approximation	characteristics	of	an	existing
NURBS	object.

Parameters:
Object*	obj
The	NURBS	object	to	modifiy.
BOOL	viewport
TRUE	to	set	the	viewport	approximation	settings;	FALSE	to	set	the	rendering
settings.
TessApprox	*tess
Specifies	the	properties	of	the	tesselation	approximation	to	the	mathematical
surface.
BOOL	clearSurfs=FALSE
This	tells	the	NURBS	object	to	clear	any	over-ridden	values	on	individual
surfaces.	The	NURBS	UI	lets	users	set	surface	approximation	value	on
individual	surfaces	that	over-ride	the	values	for	the	whole	object.	When	this	is
TRUE,	then	these	are	cleared	out.

Return	Value:
See	List	of	NURBS	Results.

Function:
NURBSResult	SetCurveApprox(Object*	obj,	BOOL	viewport,
TessApprox	*tess,	BOOL	clearSurfs);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	sets	the	curve	approximation	characteristics	of	an	existing
NURBS	object.

Parameters:
Object*	obj
The	NURBS	object	to	modifiy.

BOOL	viewport
TRUE	to	set	the	viewport	approximation	settings;	FALSE	to	set	the	rendering
settings.
TessApprox	*tess
Specifies	the	properties	of	the	tesselation	approximation	to	the	mathematical
curve.
BOOL	clearSurfs
This	tells	the	NURBS	object	to	clear	any	over-ridden	values	on	individual
curves.	The	NURBS	UI	lets	users	set	surface	approximation	value	on
individual	surfaces	that	over-ride	the	values	for	the	whole	object.	When	this	is
TRUE,	then	these	are	cleared	out.

Return	Value:
See	List	of	NURBS	Results.

Function:
NURBSResult	SetDispApprox(Object*	obj,	TessApprox	*tess,
BOOL	clearSurfs);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	sets	the	displacement	mapping	approximation	characteristics	of
an	existing	NURBS	object.

Parameters:
Object*	obj
The	NURBS	object	to	modifiy.
TessApprox	*tess
Specifies	the	properties	of	the	tesselation	approximation	to	the	mathematical
curve.
BOOL	clearSurfs
This	tells	the	NURBS	object	to	clear	any	over-ridden	values	on	individual
surfaces.	The	NURBS	UI	lets	users	set	surface	approximation	value	on
individual	surfaces	that	over-ride	the	values	for	the	whole	object.	When	this	is
TRUE,	then	these	are	cleared	out.

Return	Value:
See	List	of	NURBS	Results.

Function:
NURBSResult	SetSurfaceDisplaySettings(Object*	obj,
NURBSDisplay&	disp);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	sets	the	display	properties	of	an	existing	NURBS	object.

Parameters:
Object*	obj
The	NURBS	object	to	modifiy.
NURBSDisplay&	disp
The	display	properties	to	use.	See	Class	NURBSDisplay.

Return	Value:
See	List	of	NURBS	Results.

Function:
NURBSResult	GetSurfaceDisplaySettings(Object*	obj,
NURBSDisplay&	disp);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	retrieves	the	display	properties	of	an	existing	NURBS	object.

Parameters:
Object*	obj
The	NURBS	object	to	check.
NURBSDisplay&	disp
The	display	properties	are	returned	here.	See	Class	NURBSDisplay.

Return	Value:
See	List	of	NURBS	Results.

Prototype:
NURBSResult	Transform(Object*	obj,	NURBSIdTab&	ids,
SetXFormPacket&	xPack,	Matrix3&	mat,	TimeValue	t);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	transforms	the	specified	sub-objects	within	the	NURBS	object
passed.	Note	that	the	parameter	xPack	is	used	for	the	transformation	when
Animate	mode	is	on,	and	mat	is	used	when	Animate	is	off.	This	stems	from
the	fact	that	3ds	max	delays	creation	of	controlers	on	NURBS	sub-objects
until	they	are	animated.

Parameters:
Object*	obj
The	NURBS	object	whose	sub-objects	are	modified.
NURBSIdTab&	ids
The	table	of	NURBS	Ids	of	the	sub-objects	to	transform.	These	are	the	sub-
objects	within	the	3ds	max	NURBS	object	obj	that	are	transformed.
SetXFormPacket&	xPack
When	Animate	mode	is	on,	this	matrix	is	used	for	the	transformation.	See
Class	SetXFormPacket.
Matrix3	mat
When	not	in	Animate	mode,	this	matrix	is	used	for	the	transformation.
TimeValue	t
The	time	at	which	to	do	the	transformation.

Return	Value:
See	List	of	NURBS	Results.

Prototype:
NURBSResult	BreakCurve(Object*	obj,	NURBSId	id,	double	u,
TimeValue	t);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	takes	the	specified	NURBS	curve	sub-object	and	generates	two
curves	from	it.

Parameters:
Object*	obj
The	NURBS	object	whose	curve	sub-object	is	broken.

NURBSId	id
The	id	of	the	curve	sub-object	to	break.
double	u
The	point	along	the	curve	at	which	the	break	is	made.
TimeValue	t
The	time	at	which	the	curve	is	broken.	The	u	parameter	is	relative	to	the	state
of	the	curve	at	this	time	(for	instance	if	it's	animated).

Return	Value:
See	List	of	NURBS	Results.

Prototype:
NURBSResult	BreakSurface(Object*	obj,	NURBSId	id,	BOOL
breakU,	double	param,	TimeValue	t);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	takes	the	specified	NURBS	surface	sub-object	and	generates
two	surfaces	from	it.

Parameters:
Object*	obj
The	NURBS	object	whose	surface	sub-object	is	broken.
NURBSId	id
The	id	of	the	surface	sub-object	to	break.
BOOL	breakU
If	TRUE	the	break	occurs	along	a	constant	U	parameter;	otherwise	along	a
constant	V	parameter.
double	param
The	distance	in	U	or	V	space	that	the	break	should	happen	in.
TimeValue	t
The	time	at	which	the	surface	is	broken.	The	u	parameter	is	relative	to	the
state	of	the	surface	at	this	time	(for	instance	if	it's	animated).

Return	Value:
See	List	of	NURBS	Results.

Prototype:
NURBSId	JoinCurves(Object*	obj,	NURBSId	id1,	NURBSId	id2,
BOOL	begin1,	BOOL	begin2,	double	tolerance,	double	ten1,
double	ten2,	TimeValue	t);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	takes	two	curves	and	joins	them	together	and	makes	a	single
curve	out	of	them.	That	is,	the	endpoints	of	the	two	curve	objects	are
connected	by	new	segments,	and	the	two	original	curves	are	replaced	by	a
single	curve.

Parameters:
Object*	obj
The	NURBS	object	whose	curve	sub-objects	are	joined.
NURBSId	id1
The	id	of	the	first	curve	sub-object.
NURBSId	id2
The	id	of	the	second	curve	sub-object.
BOOL	begin1
Specifies	if	the	beginning	or	the	end	of	curve	1	if	joined.	If	TRUE	the
beginning	is	used;	otherwise	the	end	is	used.	The	beginning	of	the	curve	is	the
point	of	minimum	parameter	value.
BOOL	begin2
Specifies	if	the	beginning	or	the	end	of	curve	2	if	joined.	If	TRUE	the
beginning	is	used;	otherwise	the	end	is	used.	The	beginning	of	the	curve	is	the
point	of	minimum	parameter	value.
double	tolerance
A	distance	in	3ds	max	units.	If	the	gap	between	the	curves	you	are	joining	is
greater	than	this	value,	this	function	creates	the	join	by	first	creating	a	blend
curve	and	then	joining	the	three	parts.	If	the	gap	is	less	than	this	value,	or	if
the	curves	are	overlapping	or	coincident,	no	blend	is	created.
Creating	a	blend	and	then	joining	the	three	curves	into	a	single	curve	is	the
better	technique.	The	result	matches	the	parent	curves	well.	Without	the	blend
step,	the	resulting	curve	can	deviate	from	the	parent	curves,	in	order	to
maintain	smoothness.	(The	amount	of	deviation	depends	on	how	far	from

tangent	the	two	input	curves	were	at	the	join.)
A	problem	arises	when	there	is	a	gap	but	it	is	too	small.	In	this	case,	this
function	generates	the	blend	but	because	there	isn’t	enough	room	for	it,	the
resulting	curve	has	a	loop	in	it.	To	avoid	this	loop,	set	this	parameter	higher
than	the	gap	distance.
If	you	use	a	value	of	0.0,	the	function	chooses	a	value	to	use	for	the	tolerance.
double	ten1
Specifies	the	tension	of	the	new	curve	at	the	end	of	the	first	curve	sub-object.
double	ten2
Specifies	the	tension	of	the	new	curve	at	the	end	of	the	second	curve	sub-
object.
TimeValue	t
The	time	at	which	the	curves	are	joined.

Return	Value:
The	NURBSId	of	the	newly	joined	curve.

Prototype:
NURBSId	JoinSurfaces(Object*	obj,	NURBSId	id1,	NURBSId
id2,	int	edge1,	int	edge2,	double	tolerance,	double	ten1,	double
ten2,	TimeValue	t);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	takes	two	surfaces	and	joins	them	together	and	makes	a	single
surface	out	of	them.	That	is,	the	specified	edges	of	the	two	surface	objects	are
connected	by	a	new	surface,	and	the	two	original	surfaces	are	replaced	by	a
single	surface.

Parameters:
Object*	obj
The	NURBS	object	whose	surface	sub-objects	are	joined.
NURBSId	id1
The	id	of	the	first	surface	sub-object.
NURBSId	id2
The	id	of	the	second	surface	sub-object.

int	edge1
The	index	of	the	edge	of	surface	1	to	join.
int	edge2
The	index	of	the	edge	of	surface	2	to	join.
double	tolerance
A	distance	in	3ds	max	units.	If	the	gap	between	the	surfaces	you	are	joining	is
greater	than	this	value,	this	function	creates	the	join	by	first	creating	a	blend
surface.	If	the	gap	is	less	than	this	value,	or	if	the	surfaces	are	overlapping	or
coincident,	3ds	max	doesn’t	create	the	blend.
Creating	a	blend	and	then	joining	the	three	surfaces	into	a	single	surface	is	the
better	technique.	The	result	matches	the	parent	surfaces	well.	Without	the
blend	step,	the	resulting	surface	can	deviate	from	the	parent	surfaces,	in	order
to	maintain	smoothness.	(The	amount	of	deviation	depends	on	how	far	from
tangent	the	two	input	surfaces	were	at	the	join.)
A	problem	arises	when	there	is	a	gap	but	it	is	too	small.	In	this	case,	this
function	generates	the	blend	but	because	there	isn’t	enough	room	for	it,	the
resulting	surface	has	a	loop	in	it.	To	avoid	this	loop,	set	the	tolerance
parameter	higher	than	the	gap	distance.
If	you	set	the	tolerance	to	0.0,	the	function	chooses	a	value	to	use	for	the
tolerance.
double	ten1
Specifies	the	tension	of	the	new	surface	at	the	edge	of	the	first	surface	sub-
object.
double	ten2
Specifies	the	tension	of	the	new	surface	at	the	edge	of	the	second	surface	sub-
object.
TimeValue	t
The	time	at	which	the	surfaces	are	joined.

Return	Value:
The	NURBSId	of	the	newly	joined	surface.

Function:
NURBSResult	ZipCurves(Object*	obj,	NURBSId	id1,	NURBSId
id2,	BOOL	begin1,	BOOL	begin2,	double	tolerance,	TimeValue	t);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	method	'zips'	two	curves.	Zipping	concatenates	the	CV	lattices	of	the	two
original	curves.	Zipping	can	change	the	shape	of	the	original	curves,	but
usually	it	produces	a	better	result	than	joining.	If	both	curves	are	untrimmed
point	curves,	the	result	is	a	point	curve.	In	all	other	cases,	the	result	of	zipping
is	a	CV	curve.

Parameters:
The	NURBS	object	whose	curve	sub-objects	are	zipped.
NURBSId	id1
The	id	of	the	first	curve	sub-object.
NURBSId	id2
The	id	of	the	second	curve	sub-object.
BOOL	begin1
Specifies	if	the	beginning	or	the	end	of	curve	1	if	joined.	If	TRUE	the
beginning	is	used;	otherwise	the	end	is	used.	The	beginning	of	the	curve	is	the
point	of	minimum	parameter	value.
BOOL	begin2
Specifies	if	the	beginning	or	the	end	of	curve	2	if	joined.	If	TRUE	the
beginning	is	used;	otherwise	the	end	is	used.	The	beginning	of	the	curve	is	the
point	of	minimum	parameter	value.
double	tolerance
A	distance	in	3ds	max	units.	If	the	gap	between	the	curves	you	are	zipping	is
greater	than	this	value,	this	function	creates	the	join	by	first	creating	a	blend
curve	and	then	joining	the	three	parts.	If	the	gap	is	less	than	this	value,	or	if
the	curves	are	overlapping	or	coincident,	no	blend	is	created.
If	you	use	a	value	of	0.0,	the	function	chooses	a	value	to	use	for	the	tolerance.
TimeValue	t
The	time	at	which	the	surfaces	are	joined.

Return	Value:
See	List	of	NURBS	Results.

Function:
NURBSResult	ZipSurfaces(Object*	obj,	NURBSId	id1,	NURBSId

id2,	int	edge1,	int	edge2,	double	tolerance,	TimeValue	t);
Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	method	'zips'	two	surface.	Zipping	concatenates	the	CV	lattices	of	the
two	original	surfaces.	Zipping	can	change	the	shape	of	the	original	surfaces,
but	compared	to	joining	it	usually	produces	a	simpler	surface	that	is	easier	to
edit.

Parameters:
Object*	obj
The	NURBS	object	whose	surface	sub-objects	are	zipped.
NURBSId	id1
The	id	of	the	first	surface	sub-object.
NURBSId	id2
The	id	of	the	second	surface	sub-object.
int	edge1
The	index	of	the	edge	of	surface	1	to	join.
int	edge2
The	index	of	the	edge	of	surface	2	to	join.
double	tolerance
A	distance	in	3ds	max	units.	If	the	gap	between	the	surfaces	you	are	zipping	is
greater	than	this	value,	this	function	creates	the	join	by	first	creating	a	blend
surface.	If	the	gap	is	less	than	this	value,	or	if	the	surfaces	are	overlapping	or
coincident,	3ds	max	doesn’t	create	the	blend.
If	you	set	the	tolerance	to	0.0,	the	function	chooses	a	value	to	use	for	the
tolerance.
double	ten1
Specifies	the	tension	of	the	new	surface	at	the	edge	of	the	first	surface	sub-
object.
double	ten2
Specifies	the	tension	of	the	new	surface	at	the	edge	of	the	second	surface	sub-
object.
TimeValue	t
The	time	at	which	the	surfaces	are	joined.

Return	Value:
See	List	of	NURBS	Results.

Prototype:
NURBSId	MakeIndependent(Object*	obj,	NURBSId	id,
TimeValue	t);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	takes	a	dependent	sub-object	(fillet,	offset,	blend,	etc.)	and	turns
it	into	a	CV	variant	of	itself	such	that	it	is	independent	(no	longer	dependent
on	a	parent).

Parameters:
Object*	obj
The	NURBS	object	whose	sub-object	is	made	independent.
NURBSId	id
The	id	of	the	dependent	sub-object.
TimeValue	t
The	time	at	which	the	sub-object	is	made	independent.

Return	Value:
The	NURBSId	of	the	resulting	object	or	zero	if	it	could	not	be	done.

Function:
NURBSId	MakeRigid(Object*	obj,	NURBSId	id,	TimeValue	t);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
To	improve	performance,	you	can	make	any	kind	of	surface	sub-object	into	a
rigid	surface.	Once	you	have	made	a	surface	rigid,	the	only	editing	allowed	is
to	transform	it	at	the	Surface	sub-object	level.	You	can't	move	a	rigid	surface's
points	or	CVs,	or	change	the	number	of	points	or	CVs.
Rigid	surfaces	reduce	the	amount	of	memory	used	by	the	NURBS	model.
Making	surfaces	rigid	improves	performance,	especially	for	large	and	complex
models.

Parameters:

Object*	obj
The	NURBS	object	whose	surface	sub-objects	is	made	rigid.
NURBSId	id
The	id	of	the	sub-object	who	is	made	rigid.
TimeValue	t
The	time	at	which	to	make	it	rigid.

Return	Value:
The	NURBSId	of	the	rigid	surface.

Function:
void	SetApproxPreset(Object*	pObj,	int	i);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	allows	choosing	one	of	the	Tesselation	Presets	which	appear	in	the	3ds
max	UI	in	the	Surface	Approximation	rollup.	These	are	the	Low,	Medium	and
High	buttons.	See	GetTessPreset()	and	SetTessPreset()	below.

Parameters:
Object*	pObj
The	objects	whose	specified	Tesselation	Preset	is	set.
int	i
Specifies	which	preset	to	make	active.	One	of	the	following	values:
0:	Low
1:	Medium
2:	High

Function:
void	ToggleShadedLattice(Object*	pObj);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
Inverts	the	state	of	the	Shaded	Lattice	setting	for	the	object.	This	goes	between
'Tesselated	Mesh'	and	'Shaded	Lattice'	surface	display	mode.

Parameters:

Object*	pObj
The	object	whose	Shaded	Lattice	setting	is	toggled.

Function:
TessApprox*	GetTessPreset(int	which,	int	preset);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	tesselation	object	corresponding	to	the	specified	type
of	tesselation	preset.

Parameters:
int	which
Determines	which	type	of	tesselation	is	set.	One	of	the	following	values:
0:	Curve	tesselation	in	the	viewports.
1:	Curve	tesselation	by	the	production	renderer.
2:	Surface	tesselation	in	the	viewports.
3:	Surface	tesselation	by	the	production	renderer.
4:	Displacement	mapping	(by	the	production	renderer).

int	preset
Specifies	which	preset	to	get.	One	of	the	following	values:
0:	Low
1:	Medium
2:	High

Return	Value:
See	Class	TessApprox.

Function:
void	SetTessPreset(int	which,	int	preset,	TessApprox&	tess);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
Sets	the	tesselation	object	corresponding	to	the	specified	type	of	tesselation
preset.

Parameters:
int	which
Determines	which	type	of	tesselation	is	set.	One	of	the	following	values:
0:	Curve	tesselation	in	the	viewports.
1:	Curve	tesselation	by	the	production	renderer.
2:	Surface	tesselation	in	the	viewports.
3:	Surface	tesselation	by	the	production	renderer.
4:	Displacement	mapping	(by	the	production	renderer).

int	preset
Specifies	which	preset	to	get.	One	of	the	following	values:
0:	Low
1:	Medium
2:	High

TessApprox&	tess
The	tesselation	object	to	set.	See	Class	TessApprox.

Function:
Object	*BuildEMObjectFromLofterObject(Object	*loftObject,
double	tolerance);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
Generates	a	new	NURBS	object	from	the	specified	loft	object	at	the	current
time.	This	is	a	special	call	used	in	internally	in	the	lofter	to	convert	a	loft
object	to	a	NURBS	surface.

Parameters:
Object	*loftObject
Points	to	the	source	loft	object.
double	tolerance
This	parameter	is	the	maximum	deviation	of	the	NURBS	approximation	to	the
true	loft	surface.

Return	Value:
A	pointer	to	the	new	NURBS	object.

Function:
Object	*BuildEMObjectFromPatchObject(Object	*patchObject);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
Generates	a	new	NURBS	object	from	the	specified	patch	object	at	the	current
time.

Parameters:
Object	*patchObject
Points	to	the	source	patch	object.

Return	Value:
A	pointer	to	the	new	NURBS	object.

Function:
Object	*DetachObjects(TimeValue	t,	INode	*pNode,	Object*	pobj,
NURBSIdList	list,	char	*newObjName,	BOOL	copy,	BOOL
relational);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Creates	a	NURBS	object	in	the	scene	named	newObjName	respecting	the
copy	and	relational	flags	like	the	3ds	max	Detach	operation.

Parameters:
TimeValue	t
The	time	at	which	to	detach	the	object.
INode	*pNode
The	node	of	the	existing	object.
Object*	pobj
Points	to	the	NURBS	object	whose	sub-objects	are	detached.
NURBSIdList	list
The	list	of	objects	to	detach.	Note:	typedef	Tab<NURBSId>
NURBSIdList.	See	Template	Class	Tab.
char	*newObjName
The	name	for	the	new	node	created.

BOOL	copy
TRUE	to	create	a	copy	for	the	detached	objects	leaving	the	original;	FALSE	to
remove	the	originals.
BOOL	relational
If	TRUE	the	object	will	contain	relational	data;	if	FALSE	the	object	will
contain	a	CV	curve	or	CV	surface	equivalent	of	the	object.

Return	Value:
A	pointer	to	the	new	object	created	by	the	detach.	If	an	error	occurs,	NULL	is
returned.

Function:
NURBSSubObjectLevel	GetSelectionLevel(Object*	pObj);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Returns	the	current	sub-object	selection	level	for	the	specified	NURBS	object.

Parameters:
Object*	pObj
The	object	to	check.

Return	Value:
The	sub-object	level.	See	List	of	NURBSSubObjectLevel	Options.

Function:
NURBSResult	SetSelectionLLevel(Object*	pObj,
NURBSSubObjectLevel	level);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Sets	the	current	sub-object	selection	level	for	the	specified	NURBS	object.

Parameters:
Object*	pObj
Points	to	the	object	whose	sub-object	selection	state	is	set.
NURBSSubObjectLevel	level
The	sub-object	level.	See	List	of	NURBSSubObjectLevel	Options.

Return	Value:
See	List	of	NURBS	Results	.

Function:
NURBSResult	GetSelection(Object*	pObj,
NURBSSubObjectLevel	level,	BitArray&	selset);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Returns	a	BitArray	containing	the	sub-object	selection	state	of	the	NURBS
object	passed.

Parameters:
Object*	pObj
Points	to	the	object	whose	sub-object	selection	data	is	retrieved.
NURBSSubObjectLevel	level
The	sub-object	level	data	to	get.	See	List	of	NURBSSubObjectLevel	Options.
BitArray&	selset
The	BitArray	for	the	result.	Bits	set	are	selected	components.	See	Class
BitArray.

Return	Value:
See	List	of	NURBS	Results	.

Function:
NURBSResult	SetSelection(Object*	pObj,	NURBSSubObjectLevel
level,	BitArray&	selset);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Sets	the	specified	sub-object	selection	state	of	the	NURBS	object	passed.

Parameters:
Object*	pObj
Points	to	the	object	whose	sub-object	selection	state	is	set.
NURBSSubObjectLevel	level
The	sub-object	level.	See	List	of	NURBSSubObjectLevel	Options.

BitArray&	selset
The	BitArray	with	the	selection	data.	Bits	which	are	set	indicate	items	to
select.

Return	Value:
See	List	of	NURBS	Results	.

Function:
NURBSResult	MoveCurrentSelection(Object*	pObj,
NURBSSubObjectLevel	level,	TimeValue	t,	Matrix3&	partm,
Matrix3&	tmAxis,	Point3&	val,	BOOL	localOrigin);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Moves	the	current	sub-object	selection	at	the	specified	level.

Parameters:
Object*	pObj
The	object	whose	components	are	transformed.
NURBSSubObjectLevel	level
The	sub-object	level.	See	List	of	NURBSSubObjectLevel	Options.
TimeValue	t
The	time	to	transform	the	sub-objects.
Matrix3&	partm
The	'parent'	transformation	matrix.
Matrix3&	tmAxis
The	axis	system	about	which	the	selection	is	transformed.
Point3&	val
The	amount	of	the	transformation	relative	to	the	axis	system.
BOOL	localOrigin
If	TRUE	the	transformation	takes	place	about	the	nodes	local	origin;	otherwise
about	the	world	origin.

Return	Value:
See	List	of	NURBS	Results	.

Function:

NURBSResult	RotateCurrentSelection(Object*	pObj,
NURBSSubObjectLevel	level,	TimeValue	t,	Matrix3&	partm,
Matrix3&	tmAxis,	Quat&	val,	BOOL	localOrigin);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Rotates	the	current	sub-object	selection	at	the	specified	level.

Parameters:
Object*	pObj
The	object	whose	components	are	transformed.
NURBSSubObjectLevel	level
The	sub-object	level.	See	List	of	NURBSSubObjectLevel	Options.
TimeValue	t
The	time	to	transform	the	sub-objects.
Matrix3&	partm
The	'parent'	transformation	matrix.
Matrix3&	tmAxis
The	axis	system	about	which	the	selection	is	transformed.
Quat&	val
The	amount	of	the	transformation	relative	to	the	axis	system.
BOOL	localOrigin
If	TRUE	the	transformation	takes	place	about	the	nodes	local	origin;	otherwise
about	the	world	origin.

Return	Value:
See	List	of	NURBS	Results	.

Function:
NURBSResult	ScaleCurrentSelection(Object*	pObj,
NURBSSubObjectLevel	level,	TimeValue	t,	Matrix3&	partm,
Matrix3&	tmAxis,	Point3&	val,	BOOL	localOrigin);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Scales	the	current	sub-object	selection	at	the	specified	level.

Parameters:
Object*	pObj
The	object	whose	components	are	transformed.
NURBSSubObjectLevel	level
The	sub-object	level.	See	List	of	NURBSSubObjectLevel	Options.
TimeValue	t
The	time	to	transform	the	sub-objects.
Matrix3&	partm
The	'parent'	transformation	matrix.
Matrix3&	tmAxis
The	axis	system	about	which	the	selection	is	transformed.
Point3&	val
The	amount	of	the	transformation	relative	to	the	axis	system.
BOOL	localOrigin
If	TRUE	the	transformation	takes	place	about	the	nodes	local	origin;	otherwise
about	the	world	origin.

Return	Value:
See	List	of	NURBS	Results	.

Function:
int	SubObjectCount(Object*	pObj,	NURBSSubObjectLevel	level);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	sub-objects	at	the	specified	level.

Parameters:
Object*	pObj
Points	to	the	object	to	check.
NURBSSubObjectLevel	level
The	sub-object	level.	See	List	of	NURBSSubObjectLevel	Options.

Function:
int	NamedSelSetCount(Object*	pObj,	NURBSSubObjectLevel

level);
Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	named	selection	sets	at	the	specified	level

Parameters:
Object*	pObj
Points	to	the	object	to	check.
NURBSSubObjectLevel	level
The	sub-object	level.	See	List	of	NURBSSubObjectLevel	Options.

Function:
TCHAR*	GetNamedSelSetName(Object*	pObj,
NURBSSubObjectLevel	level,	int	i);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Returns	the	name	of	the	'i-th'	named	selection	set	of	the	specified	sub-object
level.

Parameters:
Object*	pObj
Points	to	the	object	to	check.
NURBSSubObjectLevel	level
The	sub-object	level.	See	List	of	NURBSSubObjectLevel	Options.
int	i
The	zero	based	index	of	the	selection	set	(between	0	and
NamedSelSetCount()-1).

Function:
NURBSResult	GetNamedSelSet(Object*	pObj,
NURBSSubObjectLevel	level,	TCHAR*	name,	BitArray&	selSet);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Retrieves	the	name	of,	and	BitArray	holding,	the	named	selelction	set	for	the

specified	sub-object	level.
Parameters:
Object*	pObj
Points	to	the	object	whose	named	selection	set	is	retrieved.
NURBSSubObjectLevel	level
The	sub-object	level.	See	List	of	NURBSSubObjectLevel	Options.
TCHAR*	name
The	retrieved	name	of	the	set.
BitArray&	selSet
The	retrieved	selection	set	data.	See	Class	BitArray.

Return	Value:
See	List	of	NURBS	Results	.

Function:
NURBSResult	SetNamedSelSet(Object*	pObj,
NURBSSubObjectLevel	level,	TCHAR*	name,	BitArray&	sel);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Set	the	specified	named	selection	set.	The	set	must	exist.	To	add	a	new	set	see
AppendNamedSelSet().

Parameters:
Object*	pObj
Points	to	the	object	whose	named	selection	set	is	stored.
NURBSSubObjectLevel	level
The	sub-object	level.	See	List	of	NURBSSubObjectLevel	Options.
TCHAR*	name
The	name	of	the	set.
BitArray&	sel
The	selection	data.	See	Class	BitArray.

Return	Value:
See	List	of	NURBS	Results	.

Function:
NURBSResult	AppendNamedSelSet(Object*	pObj,
NURBSSubObjectLevel	level,	TCHAR*	name,	BitArray&	sel);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Adds	a	new	named	selection	set	to	the	specified	object.

Parameters:
Object*	pObj
Points	to	the	object	whose	named	selection	set	list	is	appended.
NURBSSubObjectLevel	level
The	sub-object	level.	See	List	of	NURBSSubObjectLevel	Options.
TCHAR*	name
The	name	for	the	set.
BitArray&	sel
The	selection	data.	See	Class	BitArray.

Return	Value:
See	List	of	NURBS	Results	.

Function:
NURBSResult	DeleteCurrentSelection(Object*	pObj,
NURBSSubObjectLevel	level);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Deletes	the	current	sub-object	selection.

Parameters:
Object*	pObj
Points	to	the	object	whose	current	selection	is	deleted.
NURBSSubObjectLevel	level
The	sub-object	level.	See	List	of	NURBSSubObjectLevel	Options.

Return	Value:
See	List	of	NURBS	Results	.

Function:
NURBSResult	MapNURBSIdToSelSetIndex(Object*	pObj,
NURBSId	id,	int&	index,	NURBSSubObjectLevel&	level);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Returns	the	index	into	a	sub-object	selection	set	of	the	sub-object	component
whose	NURBSId	is	passed.

Parameters:
Object*	pObj
Points	to	the	object	whose	sub-object	component	selection	set	index	is
returned.
NURBSId	id
The	ID	of	the	sub-object	to	find.
int&	index
The	zero	based	selection	set	index	is	returned	here.
NURBSSubObjectLevel&	level
The	sub-object	level.	See	List	of	NURBSSubObjectLevel	Options.

Return	Value:
See	List	of	NURBS	Results	.

Function:
NURBSResult	MapSelSetIndexToNURBSId(Object*	pObj,	int
index,	NURBSSubObjectLevel	level,	NURBSId&	id);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Returns	the	NURBSId	of	the	sub-object	component	whose	selection	set	index
is	passed.

Parameters:
Object*	pObj
Points	to	the	object	whose	sub-object	component	NURBSId	is	returned.
int	index
The	zero	based	index	into	the	selection	set.

NURBSSubObjectLevel	level
The	sub-object	level.	See	List	of	NURBSSubObjectLevel	Options.
NURBSId&	id
The	ID	is	returned	here.

Return	Value:
See	List	of	NURBS	Results	.

Function:
void	ApplyUVWMapAsTextureSurface(Object*	pObj,	int	type,
float	utile,	float	vtile,	float	wtile,	int	uflip,	int	vflip,	int	wflip,	int
cap,	const	Matrix3	&tm,int	channel);

Remarks:
This	global	function	is	not	currently	supported	as	of	3ds	max	release	3.1.

Function:
void	UpdateSurfaceMapper(Modifier*	pMod);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
When	called,	passing	in	an	instance	of	a	NURBS	Surface	Mapper	WSM,	this
has	the	effect	of	pressing	the	"Update"	button.	If	any	other	modifier	is	passed
in,	the	function	does	nothing.

Parameters:
Modifier*	pMod
Points	to	the	NURBS	Surface	Mapper	WSM.

Working	with	Patches
See	Also:	Class	Patch,	Class	PatchMesh,	Class	PatchObject,	Class	PatchVec,
Class	PatchVert,	Class	PatchEdge,	Class	TVPatch.

Overview
This	section	provides	an	overview	of	how	to	work	with	Patches.	It	covers	the
main	classes	used	when	working	with	patches,	and	an	example	of	creating	a
patch	mesh.
The	SDK	provides	a	set	of	classes	for	creating	and	working	with	patches.	A
Patch	is	a	three	or	four	sided	surface.	Each	edge	of	a	patch	is	a	bezier	curve.
Each	edge	has	a	vertex	at	the	end	and	a	vector	attached	to	each	of	those	ends.
Inside	a	four	sided	patch	are	four	interior	vertices	used	to	generate	the	surface
inside.	Inside	a	three	sided	patch	are	three	interior	vertices.	Normally	these
vertices	are	set	to	be	automatically	calculated	by	the	program	to	maintain
continuity	at	the	corners.	They	can	however	be	set	to	be	user-definable	interior
points.

Overview	of	the	Principal	Classes
The	SDK	provides	a	set	of	classes	for	creating	patch	objects.	These	classes	are
listed	below.
Class	PatchObject
This	is	the	base	class	for	the	creation	of	Patch	Objects	in	MAX.	The
PatchObject	is	the	object	that	flows	down	the	3ds	max	geometry	pipeline.	This
object	stores	a	PatchMesh	as	well	as	a	Mesh	cache.	This	is	similar	to	the	way
a	TriObject	has	a	Mesh.	The	TriObject	provides	methods	to	manage	the
operations	associated	with	flowing	down	the	pipeline,	while	the	Mesh	stores	the
vertex,	edge	and	face	information.	In	the	PatchObject	case,	the	PatchObject
provides	methods	for	working	with	the	pipeline	while	the	Mesh	cache	is	used
for	display	in	the	viewports.
Class	PatchMesh
A	PatchMesh	can	be	made	up	of	any	number	of	Patches.	Each	of	these	patches
can	be	three	or	four	sided.	The	topology	of	these	patches	are	not	quite	as
freeform	as	a	regular	TriObject	mesh.	For	example,	in	a	normal	triangle	mesh
you	can	have	an	edge	that	is	used	by	any	number	of	faces.	However	with
patches,	in	order	for	the	system	to	figure	out	how	the	topology	is	connected
together,	each	edge	can	only	be	used	by	either	one	patch	(which	makes	it	an
open	edge),	or	two	patches	(which	makes	it	a	transitional	edge	between	the	two).
Class	Patch
A	PatchMesh	is	made	up	of	a	series	of	Patch	objects	derived	from	this	class.
This	is	similar	to	the	way	faces	relate	to	a	mesh,	i.e.	a	Patch	is	like	the	face,	and
the	PatchMesh	is	like	the	Mesh.	Each	Patch	can	be	three	or	four	sided.	The
Patch	contains	the	vertices	(three	or	four),	and	a	set	of	vectors	(six	or	eight)	that
go	between	the	vertices	(two	per	edge).	There	are	also	a	set	of	vertices	in	the
interior	of	the	patch	(three	or	four	of	these).
Class	PatchVec
This	class	represents	a	patch	vector.	This	can	be	either	an	interior	vector	or	an
edge	vector.
Class	PatchVert
This	class	stores	the	information	associated	with	a	patch	vertex	and	provides
methods	to	access	this	data.	This	information	includes	the	vertex	location,	a	table
of	vectors	attached	to	the	patch,	and	a	table	of	patches	using	the	vertex.

Class	PatchEdge
This	class	describes	a	patch	edge	using	the	vertices	at	the	edge	ends,	and	the
indices	of	the	patches	sharing	the	edge.
Class	TVPatch
This	class	is	a	texture	vertex	patch	structure.	This	is	similar	to	the	TVFace	class
used	with	a	Mesh.

Main	Methods	in	Creating	a	Patch
A	good	sample	to	look	at	to	see	how	patches	are	created	is	the	patch	grid	plug-in.
The	source	code	is	in
\MAXSDK\SAMPLES\OBJECTS\PATCHGRD.CPP.
	
The	code	below	is	a	portion	of	the	source	of	this	plug-in.	This	section	discusses
some	of	the	key	methods	used	in	the	creation	of	the	patch.
//	Quad	patch	layout
//
//	A--->	ad	-----	da	<---D
//	|	|
//	|	|
//	v	v
//	ab	i1	i4	dc
//
//	|	|
//	|	|
//
//	ba	i2	i3	cd
//	^	^
//	|	|
//	|	|
//	B--->	bc	-----	cb	<---C
//
//	Vertices	(a	b	c	d)	are	in	counter	clockwise	order	when	viewed
from
//	outside	the	surface
void	QuadPatchObject::BuildPatch(TimeValue	t,PatchMesh&
amesh)
	{
	int	ix,iy,np,kv;
	int	wsegs,lsegs,nv;
	Point3	v,p;
	float	l,	w;

	//	Start	the	validity	interval	at	forever	and	widdle	it	down.
	ivalid	=	FOREVER;
	pblock->GetValue(PB_LENGTH,	t,	l,	ivalid);
	pblock->GetValue(PB_WIDTH,	t,	w,	ivalid);
	pblock->GetValue(PB_LSEGS,	t,	lsegs,	ivalid);
	pblock->GetValue(PB_WSEGS,	t,	wsegs,	ivalid);
	int	lv	=	lsegs	+	1;
	int	wv	=	wsegs	+	1;
	int	nverts	=	lv	*	wv;
	int	npatches	=	lsegs	*	wsegs;
	int	nexteriors	=	npatches	*	4	+	lsegs	*	2	+	wsegs	*	2;
	int	ninteriors	=	npatches	*	4;
	int	nvecs	=	ninteriors	+	nexteriors;
Here	the	number	of	vertices,	texture	vertices,	vectors,	patches	and	texture
patches	are	established	in	the	PatchMesh.
	amesh.setNumVerts(nverts);
	amesh.setNumTVerts(textured	?	nverts	:	0);
	amesh.setNumVecs(nvecs);
	amesh.setNumPatches(npatches);
	amesh.setNumTVPatches(textured	?	npatches	:	0);
	v	=	Point3(-w,	-l,	0.0f)	/	2.0f;
	float	dx	=	w/wsegs;
	float	dy	=	l/lsegs;
	float	fws	=	(float)wsegs;
	float	fls	=	(float)lsegs;
Next	the	vertices	are	created.	The	setVert()	method	of	the	PatchMesh	is
used	to	do	this.
	//	Create	the	vertices.
	nv	=	0;
	p.z	=	v.z;
	p.y	=	v.y;
	for(iy=0;	iy<=lsegs;	iy++)	{
		p.x	=	v.x;
		for	(ix=0;	ix<=wsegs;	ix++)	{

			if(textured)
				amesh.tVerts[nv]	=	UVVert((float)ix	/
					fws,	(float)iy	/	fls,	0.0f);
			amesh.verts[nv].flags	=	PVERT_COPLANAR;
			amesh.setVert(nv++,	p);
			p.x	+=	dx;
			}
		p.y	+=	dy;
		}
Next	the	patches	are	created.	The	PatchMesh	method	MakeQuadPatch()
is	used	once	the	vertices,	vectors,	and	interiors	are	set	up.
	//	Create	patches.
	np	=	0;
	int	interior	=	nexteriors;
	int	vecRowInc	=	lsegs	*	2;
	int	vecColInc	=	wsegs	*	2;
	for(iy=0;	iy<lsegs;	iy++)	{
		kv	=	iy*(wsegs+1);
		int	rv	=	iy	*	vecColInc;	//	Row	vector	start
		int	cv	=	vecColInc	*	lv	+	iy	*	2;	//	column	vector	start
		for	(ix=0;	ix<wsegs;	ix++,++np)	{
			Patch	&p	=	amesh.patches[np];
			int	a	=	kv,	b	=	kv+1,	c	=	kv+wsegs+2,	d	=	kv	+	wsegs	+	1;
			int	ab	=	rv,	ba	=	rv+1;
			int	bc	=	cv+vecRowInc,	cb	=	cv	+	vecRowInc	+	1;
			int	cd	=	rv+vecColInc+1,	dc	=	rv+vecColInc;
			int	da	=	cv	+	1,	ad	=	cv;
			amesh.MakeQuadPatch(np,	a,	ab,	ba,	b,	bc,	cb,	c,	cd,	dc,
				d,	da,	ad,	interior,	interior+1,	interior+2,
				interior+3,	1);
If	textures	are	being	used,	then	setTVerts()	is	called.
			if(textured)	{
				TVPatch	&tp	=	amesh.tvPatches[np];
				tp.setTVerts(a,b,c,d);

				}
Next	the	vectors	are	set	using	setVec().	One	third	of	the	distance	from	vertex
a	to	vertex	b	is	vector	ab,	and	one	third	of	the	distance	from	vertex	b	to
vertex	a	is	ba.
			//	Create	the	default	vectors
			Point3	pa	=	amesh.getVert(a).p;
			Point3	pb	=	amesh.getVert(b).p;
			Point3	pc	=	amesh.getVert(c).p;
			Point3	pd	=	amesh.getVert(d).p;
			amesh.setVec(ab,	pa	+	(pb	-	pa)	/	3.0f);
			amesh.setVec(ba,	pb	-	(pb	-	pa)	/	3.0f);
			amesh.setVec(bc,	pb	+	(pc	-	pb)	/	3.0f);
			amesh.setVec(cb,	pc	-	(pc	-	pb)	/	3.0f);
			amesh.setVec(cd,	pc	+	(pd	-	pc)	/	3.0f);
			amesh.setVec(dc,	pd	-	(pd	-	pc)	/	3.0f);
			amesh.setVec(da,	pd	+	(pa	-	pd)	/	3.0f);
			amesh.setVec(ad,	pa	-	(pa	-	pd)	/	3.0f);
			kv++;
			cv	+=	vecRowInc;
			rv	+=	2;
			interior	+=	4;
			}
		}
	//	Verify	that	we	have	the	right	number	of	parts!
	assert(np==npatches);
	assert(nv==nverts);
Next	the	PatchMesh	method	buildLinkages()	is	called.	This	makes	sure
that	everything	is	connected	correctly	and	there	are	not	any	edges	that	are
used	by	more	than	two	patches.	It	will	return	FALSE	if	these	conditions	are
not	met.
	//	Finish	up	patch	internal	linkages	(and	bail	out	if	it	fails!)
	assert(amesh.buildLinkages());
Next	the	method	computeInteriors()	is	called.	For	any	automatic	patches,
the	interior	vertices	will	be	computed.

	//	Calculate	the	interior	bezier	points	on	the	PatchMesh's	patches
	amesh.computeInteriors();
Then	the	geometry	cache	is	cleared	to	make	sure	that	any	cache	that	might
have	been	in	the	PatchMesh	is	emptied.
	amesh.InvalidateGeomCache();
Finally	the	validity	of	the	Mesh	cache	is	set	to	FALSE	to	indicate	the
PatchMesh	has	been	changed.
	//	Tell	the	PatchObject	its	mesh	just	got	changed
	meshValid	=	FALSE;
	}

Patch	Interpolation
The	patch	system	supports	any	combination	of	quadrilateral	and	triangular
patches,	as	long	as	they	are	set	up	so	that	a	single	edge	is	only	shared	by	at	most
two	patches.
Adjacent	patches	share	control	points	and	vectors	on	their	common	edges.	This
minimizes	the	amount	of	data	and	makes	book	keeping	easier.	It	also	guarantees
matching	patch	edges.
The	only	problem	with	this	system	is	that	the	3ds	max	quad	patches	are	bicubic
(degree	3),	and	if	they	are	connected	to	degree	3	triangular	patches,
discontinuities	will	result	at	the	boundaries.	The	solution	used	in	3ds	max	is	to
store	the	patch	information	and	allow	users	to	manipulate	it	in	a	degree-3
manner	(4	points	on	the	side	of	a	patch).	When	we	go	to	interpolate	it,	however,
we	convert	all	the	triangular	patches'	control	points	to	degree	4,	where	they	can
be	completely	compatible	with	their	quad	neighbors.
Below	is	the	source	code	for	the	interpolators	for	both	the	quad	and	tri	patches.
Note:	Interested	developers	should	see	the	"Patch	Tesselation"	upload	in	the
private	Sparks	Developer	section	on	the	webboard.	Here	developers	can	get	a
working	example	on	how	to	tesselate	a	PatchMesh	for	use	in	a	game	engine.
This	modifier	sample	is	available	in	the	Sparks	Developer	section	of	the
webboard	at	http://sparks.discreet.com
Also	Note:	The	UpdateHooks()	method	shown	below	is	modified	from	the
original	version	in	PATCH.CPP.
//	Triangular	patch	interpolator
Point3	Patch::interp(PatchMesh	*pMesh,float	pu,	float	pv,	float	pw)	{
	//	It	had	better	be	a	triangular	patch!
	assert(type	==	PATCH_TRI);
	Point3	p;
	PatchVert	*vp	=	pMesh->verts;
	PatchVec	*vecp	=	pMesh->vecs;
	float	pu2	=	pu	*	pu;
	float	pu3	=	pu2	*	pu;
	float	pu4	=	pu3	*	pu;
	float	pv2	=	pv	*	pv;
	float	pv3	=	pv2	*	pv;

	float	pv4	=	pv3	*	pv;
	float	pw2	=	pw	*	pw;
	float	pw3	=	pw2	*	pw;
	float	pw4	=	pw3	*	pw;
	//	Hold	on	to	your	hats	--	Here	it	comes!
	p	=	vp[v[0]].p	*	pw4	+
aux[0]	*	4.0f	*	pu	*	pw3	+
aux[1]	*	6.0f	*	pu2	*	pw2	+
aux[2]	*	4.0f	*	pu3	*	pw	+
vp[v[1]].p	*	pu4	+
aux[3]	*	4.0f	*	pv	*	pu3	+
aux[4]	*	6.0f	*	pu2	*	pv2	+
aux[5]	*	4.0f	*	pv3	*	pu	+
		vp[v[2]].p	*	pv4	+
aux[6]	*	4.0f	*	pw	*	pv3	+
aux[7]	*	6.0f	*	pv2	*	pw2	+
aux[8]	*	4.0f	*	pw3	*	pv	+
		vecp[interior[0]].p	*	12.0f	*	pu	*	pv	*	pw2	+
		vecp[interior[1]].p	*	12.0f	*	pu2	*	pv	*	pw	+
		vecp[interior[2]].p	*	12.0f	*	pu	*	pv2	*	pw;
	return	p;
	}
//	Quadrilateral	patch	interpolator
Point3	Patch::interp(PatchMesh	*pMesh,float	pu,	float	pv)	{
	//	It	had	better	be	a	quad	patch!
	assert(type	==	PATCH_QUAD);
	Point3	p;
	PatchVert	*vp	=	pMesh->verts;
	PatchVec	*vecp	=	pMesh->vecs;
	float	pu2	=	pu	*	pu;
	float	pu1	=	1.0f	-	pu;
	float	pu12	=	pu1	*	pu1;

	float	u0	=	pu12	*	pu1;
	float	u1	=	3.0f	*	pu	*	pu12;
	float	u2	=	3.0f	*	pu2	*	pu1;
	float	u3	=	pu2	*	pu;
	float	pv2	=	pv	*	pv;
	float	pv1	=	1.0f	-	pv;
	float	pv12	=	pv1	*	pv1;
	float	v0	=	pv12	*	pv1;
	float	v1	=	3.0f	*	pv	*	pv12;
	float	v2	=	3.0f	*	pv2	*	pv1;
	float	v3	=	pv2	*	pv;
	//	Hold	on	to	your	hats	--	Here	it	comes!
	p	=		vp[v[0]].p	*	u0	*	v0	+
vecp[vec[7]].p	*	u1	*	v0	+
vecp[vec[6]].p	*	u2	*	v0	+
vp[v[3]].p	*	u3	*	v0	+
		vecp[vec[0]].p	*	u0	*	v1	+
vecp[interior[0]].p	*	u1	*	v1	+
vecp[interior[3]].p	*	u2	*	v1	+
vecp[vec[5]].p	*	u3	*	v1	+
		vecp[vec[1]].p	*	u0	*	v2	+
vecp[interior[1]].p	*	u1	*	v2	+
vecp[interior[2]].p	*	u2	*	v2	+
vecp[vec[4]].p	*	u3	*	v2	+
		vp[v[1]].p	*	u0	*	v3	+
vecp[vec[2]].p	*	u1	*	v3	+
vecp[vec[3]].p	*	u2	*	v3	+
vp[v[2]].p	*	u3	*	v3;
	return	p;
	}
Building	the	vertices	are	just	a	matter	of	looping	through	your	patches	and	then
running	through	each	patches	UV	space	to	get	the	corresponding	point	on	the

surface.	Below	is	sample	showing	the	basics.
	float	fpd	=	(float)patchDivs;
	for(px	=	0;	px	<	numPatches;	++px)	{
		Patch	&p	=	patches[px];
		switch(p.type)	{
			case	PATCH_TRI:	{
				for(int	ax	=	patchDivs	-	1;	ax	>	0;	--ax)	{
					for(int	bx	=	1;	bx	<	ax;	++bx)	{
						float	u	=	(float)bx	/	fpd;
						float	v	=	(float)(patchDivs	-	ax)	/	fpd;
						float	w	=	1.0f	-	u	-	v;	//	Barycentric	validity	guaranteed!
						mesh.setVert(vert++,	p.interp(this,	u,	v,	w));
						}
					}
				}
				break;
			case	PATCH_QUAD:	{
				for(int	u	=	1;	u	<	patchDivs;	++u)	{
					float	fu	=	(float)u	/	fpd;
					for(int	v	=	1;	v	<	patchDivs;	++v)	{
						float	fv	=	(float)v	/	fpd;
						mesh.setVert(vert++,	p.interp(this,	fu,	fv));
						}
					}
				}
				break;
			}
		}
Below	is	the	sample	code	that	puts	it	all	together.	It	shows	the	interpolation	of
the	surface	points,	the	book	keeping	code	for	shared	edges,	the	construction	of
the	mesh	faces,	the	handling	of	texture	vertices	and	faces,	and	how	bind	patches
are	handled.

//	vertices	(a	b	c	d)	are	in	counter	clockwise	order	when	viewed	from
//	outside	the	surface
//watje	12-8-98
static	void	MakeQuad(int	nVerts,	Face	*f,	int	a,	int	b	,	int	c	,	int	d,	DWORD
sm,	MtlID	m,
						int	e1a,	int	e1b,	int	e1c,
						int	e2a,	int	e2b,	int	e2c,
						int	hide
)	{
//DebugPrint("Make	quad	%d	%d	%d	%d	\n",a,b,c,d);
	assert(a<nVerts);
	assert(b<nVerts);
	assert(c<nVerts);
	assert(d<nVerts);
	f[0].setVerts(a,	b,	c);
	f[0].setSmGroup(sm);
	f[0].setEdgeVisFlags(e1a,e1b,e1c);
	f[0].setMatID(m);
	f[0].SetHide(hide);
	f[1].setVerts(c,	d,	a);
	f[1].setSmGroup(sm);
	f[1].setEdgeVisFlags(e2a,e2b,e2c);
	f[1].setMatID(m);
	f[1].SetHide(hide);
	}
//watje	12-8-98
#define	MAKE_QUAD(na,nb,nc,nd,sm,m,e1a,e1b,e1c,e2a,e2b,e2c,hide)	{
MakeQuad(nVerts,&(mesh.faces[face]),na,	nb,	nc,	nd,	sm,
m,e1a,e1b,e1c,e2a,e2b,e2c,hide);	face+=2;	}
//	Make	texture	face	quad
static	void	MakeTQuad(int	chan,	int	nTVerts,	TVFace	*f,	int	a,	int	b	,	int	c	,
int	d)	{

	assert(a<nTVerts);
	assert(b<nTVerts);
	assert(c<nTVerts);
	assert(d<nTVerts);
	f[0].setTVerts(a,	b,	c);
	f[1].setTVerts(c,	d,	a);
	}
#define	MAKE_TQUAD(ch,na,nb,nc,nd)	{	MakeTQuad(ch,	nTVerts[ch],	&
(mesh.mapFaces(ch)[tface]),na,	nb,	nc,	nd);	tface+=2;	}
//	vertices	(a	b	c	d)	are	in	counter	clockwise	order	when	viewed	from
//	outside	the	surface
//watje	12-8-98
static	void	MakeTri(int	nVerts,	Face	*f,	int	a,	int	b,	int	c,	DWORD	sm,
MtlID	m,
					int	ea,	int	eb,	int	ec,	int	hide
)	{
	assert(a<nVerts);
	assert(b<nVerts);
	assert(c<nVerts);
//DebugPrint("Making	tri	%d	%d	%d	\n",a,b,c);
	f->setVerts(a,	b,	c);
	f->setSmGroup(sm);
	f->setEdgeVisFlags(ea,eb,ec);
	f->setMatID(m);
	f->SetHide(hide);
	}
//watje	12-8-98
#define	MAKE_TRI(na,nb,nc,sm,mat,ea,eb,ec,hide)	{	MakeTri(nVerts,&
(mesh.faces[face]),na,	nb,	nc,	sm,	mat,ea,eb,ec,hide);	face++;	}
#define	MAKE_QUAD_SPECIAL(na,nm,nb,nc,sm,mat,ea,eb,ec,ed,hide)				\
{	MakeTri(nVerts,&(mesh.faces[face]),na,	nm,	nc,	sm,	mat,ea,0,ed,hide);
face++;	\

		MakeTri(nVerts,&(mesh.faces[face]),nm,	nb,	nc,	sm,	mat,eb,ec,0,hide);
face++;	}
#define	MAKE_PENTA_EDGE1(na,nm,nb,nc,nd,sm,mat,ea,eb,ec,ed,hide)
{						\
MakeTri(nVerts,&(mesh.faces[face]),na,	nm,	nc,	sm,	mat,ea,0,0,hide);
face++;	\
		MakeTri(nVerts,&(mesh.faces[face]),nm,	nb,	nc,	sm,	mat,ea,eb,0,hide);
face++;	\
		MakeTri(nVerts,&(mesh.faces[face]),nc,	nd,	na,	sm,	mat,ec,ed,0,hide);
face++;	\
		}
#define	MAKE_PENTA_EDGE2(na,nb,nm,nc,nd,sm,mat,ea,eb,ec,ed,hide)
{						\
		MakeTri(nVerts,&(mesh.faces[face]),na,nb,nm,	sm,	mat,ea,eb,0,hide);
face++;		\
		MakeTri(nVerts,&(mesh.faces[face]),na,	nm,	nc,	sm,	mat,0,eb,0,hide);
face++;	\
		MakeTri(nVerts,&(mesh.faces[face]),nc,	nd,	na,	sm,	mat,ec,ed,0,hide);
face++;	\
		}																				
#define	MAKE_PENTA_EDGE3(na,nb,nc,nm,nd,sm,mat,ea,eb,ec,ed,hide)
{						\
		MakeTri(nVerts,&(mesh.faces[face]),na,nb,nc,	sm,	mat,ea,eb,0,hide);
face++;	\
		MakeTri(nVerts,&(mesh.faces[face]),nc,	nm,	na,	sm,	mat,ec,0,0,hide);
face++;	\
		MakeTri(nVerts,&(mesh.faces[face]),nm,	nd,	na,	sm,	mat,ec,ed,0,hide);
face++;	\
		}																				
#define	MAKE_PENTA_EDGE4(na,nb,nc,nd,nm,sm,mat,ea,eb,ec,ed,hide)
{						\
		MakeTri(nVerts,&(mesh.faces[face]),na,nb,nc,	sm,	mat,ea,eb,0,hide);
face++;	\
		MakeTri(nVerts,&(mesh.faces[face]),nc,	nd,	nm,	sm,	mat,ec,ed,0,hide);

face++;	\
		MakeTri(nVerts,&(mesh.faces[face]),nc,	nm,	na,	sm,	mat,0,ed,0,hide);
face++;	\
		}																				
//	Make	texture	face	triangle
static	void	MakeTTri(int	chan,	int	nTVerts,	TVFace	*f,	int	a,	int	b,	int	c)	{
	assert(a<nTVerts);
	assert(b<nTVerts);
	assert(c<nTVerts);
	f->setTVerts(a,	b,	c);
	}
#define	MAKE_TTRI(ch,na,nb,nc)	{	MakeTTri(ch,	nTVerts[ch],	&
(mesh.mapFaces(ch)[tface]),na,	nb,	nc);	tface++;	}
#define	MAKE_TQUAD_SPECIAL(ch,na,nm,nb,nc)	\
{	MakeTTri(ch,	nTVerts[ch],	&(mesh.mapFaces(ch)[tface]),na,	nm,	nc);
tface++;	\
	MakeTTri(ch,	nTVerts[ch],	&(mesh.mapFaces(ch)[tface]),nm,	nb,	nc);
tface++;	\
tvertHookStart++;	}
#define	MAKE_TPENTA_EDGE1(ch,na,nm,nb,nc,nd)	\
{										\
MakeTTri(ch,	nTVerts[ch],	&(mesh.mapFaces(ch)[tface]),na,	nm,	nc);
tface++;	\
MakeTTri(ch,	nTVerts[ch],	&(mesh.mapFaces(ch)[tface]),nm,	nb,	nc);
tface++;	\
MakeTTri(ch,	nTVerts[ch],	&(mesh.mapFaces(ch)[tface]),nc,	nd,	na);
tface++;	\
tvertHookStart++;			}
#define	MAKE_TPENTA_EDGE2(ch,na,nb,nm,nc,nd)	\
{										\
MakeTTri(ch,	nTVerts[ch],	&(mesh.mapFaces(ch)[tface]),na,	nb,	nm);
tface++;	\
MakeTTri(ch,	nTVerts[ch],	&(mesh.mapFaces(ch)[tface]),na,	nm,	nc);

tface++;	\
MakeTTri(ch,	nTVerts[ch],	&(mesh.mapFaces(ch)[tface]),nc,	nd,	na);
tface++;	\
tvertHookStart++;			}
#define	MAKE_TPENTA_EDGE3(ch,na,nb,nc,nm,nd)	\
{										\
MakeTTri(ch,	nTVerts[ch],	&(mesh.mapFaces(ch)[tface]),na,	nb,	nc);
tface++;	\
MakeTTri(ch,	nTVerts[ch],	&(mesh.mapFaces(ch)[tface]),nc,	nm,	na);
tface++;	\
MakeTTri(ch,	nTVerts[ch],	&(mesh.mapFaces(ch)[tface]),nm,	nd,	na);
tface++;	\
tvertHookStart++;			}
#define	MAKE_TPENTA_EDGE4(ch,na,nb,nc,nd,nm)	\
{										\
MakeTTri(ch,	nTVerts[ch],	&(mesh.mapFaces(ch)[tface]),na,	nb,	nc);
tface++;	\
MakeTTri(ch,	nTVerts[ch],	&(mesh.mapFaces(ch)[tface]),nc,	nd,	nm);
tface++;	\
MakeTTri(ch,	nTVerts[ch],	&(mesh.mapFaces(ch)[tface]),nc,	nm,	na);
tface++;	\
tvertHookStart++;			}
void	PatchMesh::PrepareMesh()	{
	//	If	mesh	is	already	there,	just	return	it!
	if(meshValid	&&	cacheSteps	==	GetMeshSteps()	&&	cacheAdaptive	==
GetAdaptive())
		return;
	//	TH	3/23/99	--	Added	this	because	something	in	the	pipeline	is	updating
the
	//	vert/vector	coords	without	calling	computeInteriors()!
	computeAux();
	//	Keep	a	record	of	the	settings	used	for	the	cache
	cacheSteps	=	GetMeshSteps();

	cacheAdaptive	=	GetAdaptive();
	int	patchDivs	=	cacheAdaptive	?	11	:	cacheSteps	+	1	;
	float	fpd	=	(float)patchDivs;
	int	workSteps	=	patchDivs	-	1;
	int	px;
	int	nFaces	=	0;
	int	nVerts	=	0;
	//	Calc	the	number	of	verts	and	faces	in	the	mesh
	nVerts	+=	numVerts;							//	Corner	verts
	nVerts	+=	(getNumEdges()	*	(patchDivs	-	1));		//	Edge	verts
//	watje	compute	the	hook	verts	additions
	nVerts	+=	hooks.Count()	*	(patchDivs)	-	hooks.Count()	-	(hooks.Count()	*2
*	(patchDivs	-	1));
	//	Precalculate	interior	vertex	counts
	int	quadint	=	(patchDivs	-	1)	*	(patchDivs	-	1);
	int	triint	=	(patchDivs	+	1)	*	(patchDivs	+	2)	/	2	-	patchDivs	*	3;
	//	Precalculate	number	of	texture	verts
	int	quadTVerts	=	(patchDivs	+	1)	*	(patchDivs	+	1);
	int	triTVerts	=	(patchDivs	+	1)	*	(patchDivs	+	2)	/	2;
	//	Now	the	interior	verts
	for(px	=	0;	px	<	numPatches;	++px)	{
		switch(patches[px].type)	{
			case	PATCH_TRI:
				nFaces	+=	(patchDivs	*	patchDivs);
				nVerts	+=	triint;
				break;
			case	PATCH_QUAD:
				nFaces	+=	(patchDivs	*	patchDivs	*	2);
				nVerts	+=	quadint;
				break;
			}
		}

//	watje	compute	the	hook	face	additions
	nFaces	+=	hooks.Count()	*	(patchDivs);
//	watje	compute	the	hook	texture	verts	additions
	//	Build	the	vertices!
	mesh.setNumVerts(nVerts);
	//	The	first	vertices	in	the	Mesh	match	those	in	the	PatchMesh
	for(int	i	=	0;	i	<	numVerts;	++i)
		mesh.setVert(i,	verts[i].p);
	int	edgeBase	=	numVerts;
	int	vert	=	edgeBase;
	//	Now	we	put	in	the	edge	vertices
	//	Set	up	a	spline	object	we'll	use	for	ease	of	edge	interpolation
	Spline3D	work;
	work.AddKnot(SplineKnot(KTYPE_BEZIER,	LTYPE_CURVE,
zeroPoint,	zeroPoint,	zeroPoint));
	work.AddKnot(SplineKnot(KTYPE_BEZIER,	LTYPE_CURVE,
zeroPoint,	zeroPoint,	zeroPoint));
	Tab<int>	hookEdges;
	hookEdges.SetCount(getNumEdges());
	Tab<int>	hookEdgeList;
	hookEdgeList.SetCount(hooks.Count()	*	(patchDivs*2-1));
	BitArray	eEdges;
	eEdges.SetSize(getNumEdges());
	eEdges.ClearAll();
	for(i	=	0;	i	<	getNumEdges();	i++)	{
		hookEdges[i]	=	-1;
		}
	for(i	=	0;	i	<	hooks.Count();	i++)
		{	
		hookEdges[hooks[i].hookEdge]	=	i;
		int	a	=	hooks[i].upperEdge;
		int	b	=	hooks[i].lowerEdge;

		eEdges.Set(a);
		eEdges.Set(b);
		}
	Tab<int>	edgeStart;
	Tab<int>	edgeEnd;
	Tab<int>	hookEdgeStart;
	Tab<int>	hookEdgeEnd;
	edgeStart.SetCount(getNumEdges());
	edgeEnd.SetCount(getNumEdges());
	hookEdgeStart.SetCount(hooks.Count());
	hookEdgeEnd.SetCount(hooks.Count());
	int	ct	=	0;
	for(i	=	0;	i	<	getNumEdges();	++i)	{
		PatchEdge	&edge	=	edges[i];
		work.SetKnotPoint(0,	verts[edge.v1].p);
		work.SetOutVec(0,	vecs[edge.vec12].p);
		work.SetInVec(1,	vecs[edge.vec21].p);
		work.SetKnotPoint(1,	verts[edge.v2].p);
//need	to	check	if	edge	is	hooked	if	so	double	the	number	ofpoints	-	1
		if	(hookEdges[i]!=-1)
			{
//need	to	take	out	middle	point	since	this	the	corner	of	another	patch
			edgeStart[i]	=	vert;
			int	index	=	hookEdges[i];
			hookEdgeStart[index]=ct;
			edgeStart[hooks[index].upperEdge]	=	vert;
			int	mid	=	(patchDivs+patchDivs)/2;
			for(int	terp	=	1;	terp	<	(patchDivs+patchDivs);	++terp)
				{
//add	ehook	edges	upper	start
				if	(terp	!=	mid)
					{

					hookEdgeList[ct++]	=	vert;
					mesh.setVert(vert++,	work.InterpCurve3D((float)terp	/	(fpd+fpd)));
					}
				else
					{
//add	ehook	edges	upper	end
					hookEdgeList[ct++]	=	hooks[index].hookPoint;
					edgeEnd[hooks[index].upperEdge]	=	vert-1;
//add	ehook	edges	lower	start
					edgeStart[hooks[index].lowerEdge]	=	vert;
					}
				}
//add	ehook	edges	lower	end
			hookEdgeEnd[index]=ct-1;
			edgeEnd[hooks[index].lowerEdge]	=	vert-1;
//check	if	these	need	to	be	flipped
			int	u,l;//,h;
			u	=	edge.v1;
			l	=	edge.v2;
			PatchEdge	eu	=	edges[hooks[index].upperEdge];
			PatchEdge	el	=	edges[hooks[index].lowerEdge];
			if	(u	!=	eu.v1)
				{
				int	t	=	edgeEnd[hooks[index].upperEdge];
				edgeEnd[hooks[index].upperEdge]	=	edgeStart[hooks[index].upperEdge];
				edgeStart[hooks[index].upperEdge]	=	t;
				}
			if	(l	!=	el.v2)
				{
				int	t	=	edgeEnd[hooks[index].lowerEdge];
				edgeEnd[hooks[index].lowerEdge]	=	edgeStart[hooks[index].lowerEdge];
				edgeStart[hooks[index].lowerEdge]	=	t;

				}
			edgeEnd[i]	=	vert-1;
			}
		else
			{
//look	for	edges	that	are	share	with	a	hook	patch	and	don't	use	since	we
already
			if	(!eEdges[i])
				{
				edgeStart[i]	=	vert;
				for(int	terp	=	1;	terp	<	patchDivs;	++terp)
					{
					mesh.setVert(vert++,	work.InterpCurve3D((float)terp	/	fpd));
					}
				edgeEnd[i]	=	vert-1;
				}
			}
		}
	//	Now	generate	the	patch	interior	points
	int	interiorBase	=	vert;
	IntTab	patchVOff;
	for(px	=	0;	px	<	numPatches;	++px)	{
		patchVOff.Append(1,	&vert);		//	Keep	a	record	of	this	patch's	starting
interior	vertex
		Patch	&p	=	patches[px];
		switch(p.type)	{
			case	PATCH_TRI:	{
				for(int	ax	=	patchDivs	-	1;	ax	>	0;	--ax)	{
					for(int	bx	=	1;	bx	<	ax;	++bx)	{
						float	u	=	(float)bx	/	fpd;
						float	v	=	(float)(patchDivs	-	ax)	/	fpd;
						float	w	=	1.0f	-	u	-	v;		//	Barycentric	validity	guaranteed!

						mesh.setVert(vert++,	p.interp(this,	u,	v,	w));
						}
					}
				}
				break;
			case	PATCH_QUAD:	{
				for(int	u	=	1;	u	<	patchDivs;	++u)	{
					float	fu	=	(float)u	/	fpd;
					for(int	v	=	1;	v	<	patchDivs;	++v)	{
						float	fv	=	(float)v	/	fpd;
						mesh.setVert(vert++,	p.interp(this,	fu,	fv));
						}
					}
				}
				break;
			}
		}
	assert(vert	==	nVerts);
		
	//	Build	the	faces!
	//	This	is	a	bit	tricky	because	we're	sharing	vertices	at	patch	edges
	mesh.setNumFaces(nFaces);
	int	face	=	0;
//watje	12-10-98
	BOOL	hidden;
//build	hook	patch	db	so	we	can	quicky	determine	which	edge	is	hooked
	Tab<int>	hookPatches;
	Tab<int>	hookPoints;
	hookPatches.SetCount(numPatches);
	hookPoints.SetCount(numPatches);
	for(px	=	0;	px	<	numPatches;	px++)
		{

		hookPatches[px]	=	0;
		hookPoints[px]	=	-1;
		}
	for(px	=	0;	px	<	hooks.Count();	px++)
		{
		int	a=	hooks[px].hookPatch;
//find	which	edge	is	the	hook
		int	ea,eb;
		ea	=	hooks[px].upperPoint;
		eb	=	hooks[px].lowerPoint;
		Patch	p	=	patches[a];
		int	pa,pb,pc,pd;
		pa	=	p.v[0];
		pb	=	p.v[1];
		pc	=	p.v[2];
		if	(p.type	==	PATCH_TRI)
			pd	=	-1;
		else	pd	=	p.v[3];
//check	ab	edge
		if	(((pa==ea)	&&	(pb==eb))	||
				((pa==eb)	&&	(pb==ea)))
			{
			hookPatches[a]	|=	1;
			hookPoints[a]	=	px;
			}
//check	bc	edge
		else	if	(((pb==ea)	&&	(pc==eb))	||
				((pb==eb)	&&	(pc==ea)))
			{
			hookPatches[a]	|=	2;
			hookPoints[a]	=	px;
			}

//check	if	tri
		else	if	(pd	==	-1)
			{
	//check	ca	edge
			if	(((pc==ea)	&&	(pa==eb))	||
				((pc==eb)	&&	(pa==ea)))
				{
				hookPatches[a]	|=	4;
				hookPoints[a]	=	px;
				}
			}
		else
			{
	//check	cd	edge
			if	(((pc==ea)	&&	(pd==eb))	||
				((pc==eb)	&&	(pd==ea)))
				{
				hookPatches[a]	|=	4;
				hookPoints[a]	=	px;
				}
	//check	da	edge
			else	if	(((pd==ea)	&&	(pa==eb))	||
						((pd==eb)	&&	(pa==ea)))
				{
				hookPatches[a]	|=	8;
				hookPoints[a]	=	px;
				}
			}
		}
	//	Table	used	to	store	texture	vertex	base	for	each	patch
	Tab<IntTab	*>	patchTVOff;
	Tab<int>	nTVerts;

	patchTVOff.SetCount	(getNumMaps());
	for	(int	chan=0;	chan<getNumMaps();	chan++)	patchTVOff[chan]	=
NULL;
	nTVerts.SetCount	(getNumMaps());
	int	tvertHookStart;
	//	Build	texture	verts	if	necessary
	for(chan	=	0;	chan	<	getNumMaps();	++chan)	{
		nTVerts[chan]	=	0;
		if(tvPatches[chan])	{
			patchTVOff[chan]	=	new	IntTab;
			for(px	=	0;	px	<	numPatches;	++px)	{
				Patch	&p	=	patches[px];
				patchTVOff[chan]->Append(1,	&nTVerts[chan]);
				switch(p.type)	{
					case	PATCH_TRI:
						nTVerts[chan]	+=	(patchDivs	+	1)	*	(patchDivs	+	2)	/	2;
						break;
					case	PATCH_QUAD:
						nTVerts[chan]	+=	(patchDivs	+	1)	*	(patchDivs	+	1);
						break;
					}
				}
//add	in	additional	vertices	for	hooks
			int	hv	=	hooks.Count()	*	(patchDivs);
			tvertHookStart	=	nTVerts[chan];
			nTVerts[chan]	+=	hv;
			mesh.setMapSupport	(chan);
			mesh.setNumMapVerts	(chan,	nTVerts[chan]);
			//	Generate	the	texture	verts!
			for(px	=	0;	px	<	numPatches;	++px)	{
				Patch	&p	=	patches[px];
				TVPatch	&tp	=	getMapPatch	(chan,px);

				int	tvert	=	(*patchTVOff[chan])[px];
				switch(p.type)	{
					case	PATCH_TRI:	{
						UVVert	&t0	=	tVerts[chan][tp.tv[0]];
						UVVert	&t1	=	tVerts[chan][tp.tv[1]];
						UVVert	&t2	=	tVerts[chan][tp.tv[2]];
						for(int	ax	=	patchDivs;	ax	>=	0;	--ax)	{
							for(int	bx	=	0;	bx	<=	ax;	++bx)	{
								float	u	=	(float)bx	/	fpd;
								float	v	=	(float)(patchDivs	-	ax)	/	fpd;
								float	w	=	1.0f	-	u	-	v;		//	Barycentric	validity	guaranteed!
								Point3	vertLoc	=	t0	*	w	+	t1	*	u	+	t2	*	v;
								mesh.setMapVert	(chan,	tvert++,	vertLoc);
							}
							}
						}
						break;
					case	PATCH_QUAD:	{
						UVVert	&t0	=	tVerts[chan][tp.tv[0]];
						UVVert	&t1	=	tVerts[chan][tp.tv[1]];
						UVVert	&t2	=	tVerts[chan][tp.tv[2]];
						UVVert	&t3	=	tVerts[chan][tp.tv[3]];
						for(int	v	=	0;	v	<=	patchDivs;	++v)	{
							float	fv	=	(float)v	/	fpd;
							UVVert	iv1	=	t0	+	(t3	-	t0)	*	fv;
							UVVert	iv2	=	t1	+	(t2	-	t1)	*	fv;
							for(int	u	=	0;	u	<=	patchDivs;	++u)	{
								float	fu	=	(float)u	/	fpd;
								UVVert	iu	=	iv1	+	(iv2	-	iv1)	*	fu;
								mesh.setMapVert	(chan,	tvert++,	iu);
								}
							}

						}
						break;
					}
				}
//now	add	additional	hook	points
			int	tvIndex	=	tvertHookStart;
			for(px	=	0;	px	<	numPatches;	++px)
				{
				Patch	&p	=	patches[px];
				TVPatch	&tp	=	getMapPatch	(chan,px);
				UVVert	t0;
				UVVert	t1;
				if	(hookPatches[px]&1)
					{
					t0	=	tVerts[chan][tp.tv[0]];
					t1	=	tVerts[chan][tp.tv[1]];
					}
				else	if	(hookPatches[px]&2)
					{
					t0	=	tVerts[chan][tp.tv[1]];
					t1	=	tVerts[chan][tp.tv[2]];
					}
				else	if	(hookPatches[px]&4)
					{
					if	(p.type	==	PATCH_TRI)
						{
						t0	=	tVerts[chan][tp.tv[2]];
						t1	=	tVerts[chan][tp.tv[0]];
						}
					else
						{	
						t0	=	tVerts[chan][tp.tv[2]];

						t1	=	tVerts[chan][tp.tv[3]];
						}
					}
				else	if	(hookPatches[px]&8)
					{
					t0	=	tVerts[chan][tp.tv[3]];
					t1	=	tVerts[chan][tp.tv[0]];
					}
				if	(hookPatches[px]!=0)
					{
					Point3	vec	=	(t1-t0)/(fpd*2.0f);
//put	first	in	TV	for	start	corner
					t0	+=	vec;
					mesh.setMapVert	(chan,	tvIndex++,	t0);
//put	last	in	TV	for	end	corner
					if	(patchDivs	>	1)
						{
						Point3	tEnd;
						tEnd	=	t0+	(vec	*	((float)(patchDivs*2)-2.0f));
						mesh.setMapVert	(chan,	tvIndex++,	tEnd);
//put	middle	in	TV	for	edges
						t0	+=	vec;
						for(int	v	=	2;	v	<=	((patchDivs*2)-3);	++v)	{
							if	((v%2)	==	1)	mesh.setMapVert	(chan,	tvIndex++,	t0);
							t0	+=	vec;
							}
						}
					}
				}
			if	(nTVerts[chan]!=tvIndex)
				{
DebugPrint("error\n");

				}
			}
		else	{
			mesh.setMapSupport	(chan,	0);
		}
	}
	for(px	=	0;	px	<	numPatches;	++px)	{
		Patch	&p	=	patches[px];
		int	baseVert	=	patchVOff[px];	//	Interior	vertex	base
		MtlID	matid	=	p.getMatID();
		hidden	=	p.IsHidden();
		switch(p.type)	{
			case	PATCH_TRI:	{
				int	vbase	=	baseVert;
				//	If	only	need	to	make	1	triangle,	make	it	and	blow!
				//no	need	to	check	if	it	is	a	hooked	patch	is	so	one	edge	or	modre	needs	to
be	split
//watje	12-10-98
				if(workSteps	==	0)	{
					if	(hookPatches[px]==0)
						{
						MAKE_TRI(p.v[0],p.v[1],p.v[2],	p.smGroup,	matid,1,1,1,hidden);
						}
					else
						{
						if	(hookPatches[px]&1)
							{
							int	ex	=	hooks[hookPoints[px]].hookPoint;
							MAKE_QUAD_SPECIAL(p.v[0],ex,p.v[1],p.v[2],	p.smGroup,
matid,1,1,1,1,hidden);
							}
						else	if	(hookPatches[px]&2)

							{
							int	ex	=	hooks[hookPoints[px]].hookPoint;
							MAKE_QUAD_SPECIAL(p.v[1],ex,p.v[2],p.v[0],	p.smGroup,
matid,1,1,1,1,hidden);
							}
						else	if	(hookPatches[px]&4)
							{
							int	ex	=	hooks[hookPoints[px]].hookPoint;
							MAKE_QUAD_SPECIAL(p.v[2],ex,p.v[0],p.v[1],	p.smGroup,
matid,1,1,1,1,hidden);
							}
						}
					break;
					}
				if(workSteps	>	2)	{
					//	Make	inside	faces	if	necessary
					for(int	ax	=	0;	ax	<	(workSteps	-	2);	++ax)	{
						int	vix	=	vbase;
						for(int	bx	=	0;	bx	<	(workSteps	-	2	-	ax);	++bx,	++vix)
//watje		12-10-98					
							{
							if	(showInterior)
								{
								MAKE_TRI(vix,	vix	+	1,	vix	+	workSteps	-	1	-	ax,	p.smGroup,
matid,1,1,1,hidden);
								}
							else{
								MAKE_TRI(vix,	vix	+	1,	vix	+	workSteps	-	1	-	ax,	p.smGroup,
matid,0,0,0,hidden);
								}
							}
						vix	=	vbase;

//watje		12-10-98					
						for(bx	=	1;	bx	<	(workSteps	-	2	-	ax);	++bx,	++vix)
							{
//watje
							if	(showInterior)
								{
								MAKE_TRI(vix	+	1,	vix	+	workSteps	-	ax,	vix	+	workSteps	-	1	-	ax,
p.smGroup,	matid,1,1,1,hidden);
								}
							else{
								MAKE_TRI(vix	+	1,	vix	+	workSteps	-	ax,	vix	+	workSteps	-	1	-	ax,
p.smGroup,	matid,0,0,0,hidden);
								}
							}
						vbase	+=	(workSteps	-	1	-	ax);
						}
					}
				//	Make	corners
				int	edge0	=	p.edge[0];
				int	edge1	=	p.edge[1];
				int	edge2	=	p.edge[2];
				PatchEdge	&e0	=	edges[edge0];
				PatchEdge	&e1	=	edges[edge1];
				PatchEdge	&e2	=	edges[edge2];
				int	e0start,e1start,e2start,e0end,e1end,e2end,e0dir,e1dir,e2dir;
				if(e0.v1	==	p.v[0])	{
					e0start	=	edgeStart[edge0];
					e0end	=	edgeEnd[edge0];
					e0dir	=	1;
					}
				else	{
					e0start	=	edgeEnd[edge0];

					e0end	=	edgeStart[edge0];
					e0dir	=	-1;
					}
				if(e1.v1	==	p.v[1])	{
					e1start	=	edgeStart[edge1];
					e1end	=	edgeEnd[edge1];
					e1dir	=	1;
					}
				else	{
					e1start	=	edgeEnd[edge1];
					e1end	=	edgeStart[edge1];
					e1dir	=	-1;
					}
				if(e2.v1	==	p.v[2])	{
					e2start	=	edgeStart[edge2];
					e2end	=	edgeEnd[edge2];
					e2dir	=	1;
					}
				else	{
					e2start	=	edgeEnd[edge2];
					e2end	=	edgeStart[edge2];
					e2dir	=	-1;
					}
				if	(e2start	>	e2end)	e2dir	=	-1;
					else	e2dir	=	1;
				if	(e1start	>	e1end)	e1dir	=	-1;
					else	e1dir	=	1;
				if	(e0start	>	e0end)	e0dir	=	-1;
					else	e0dir	=	1;
				//	Create	the	corners
				int	i0	=	baseVert;
				int	i1	=	baseVert	+	(workSteps	-	2);

				int	i2	=	baseVert	+	triint	-	1;
				if	(showInterior)
					{
					if	(hookPatches[px]&1)
						{
						int	index	=	hookPoints[px];
						int	st	=	hookEdgeStart[index];
						int	end	=	hookEdgeEnd[index];
						int	s1	=	hookEdgeList[st];
						int	s2	=	hookEdgeList[st+1];
						int	e1	=	hookEdgeList[end-1];
						int	e2	=	hookEdgeList[end];
						MAKE_QUAD_SPECIAL(p.v[0],s1,s2,e2end,	p.smGroup,
matid,1,1,1,1,hidden);
						MAKE_QUAD_SPECIAL(e1,e2,p.v[1],e1start,	p.smGroup,
matid,1,1,1,1,hidden);
						MAKE_TRI(p.v[2],	e2start,	e1end,	p.smGroup,	matid,1,1,1,hidden);
						}
					else	if	(hookPatches[px]&2)
						{
						int	index	=	hookPoints[px];
						int	st	=	hookEdgeStart[index];
						int	end	=	hookEdgeEnd[index];
						int	s1	=	hookEdgeList[st];
						int	s2	=	hookEdgeList[st+1];
						int	e1	=	hookEdgeList[end-1];
						int	e2	=	hookEdgeList[end];
						MAKE_TRI(p.v[0],	e0start,	e2end,	p.smGroup,	matid,1,1,1,hidden);
						MAKE_QUAD_SPECIAL(p.v[1],s1,s2,e0end,	p.smGroup,
matid,1,1,1,1,hidden);
						MAKE_QUAD_SPECIAL(e1,e2,p.v[2],e2start,	p.smGroup,
matid,1,1,1,1,hidden);

						}
					else	if	(hookPatches[px]&4)
						{
						int	index	=	hookPoints[px];
						int	st	=	hookEdgeStart[index];
						int	end	=	hookEdgeEnd[index];
						int	s1	=	hookEdgeList[st];
						int	s2	=	hookEdgeList[st+1];
						int	e1	=	hookEdgeList[end-1];
						int	e2	=	hookEdgeList[end];
						MAKE_TRI(p.v[1],	e1start,	e0end,	p.smGroup,	matid,1,1,1,hidden);
						MAKE_QUAD_SPECIAL(p.v[2],s1,s2,e1end,	p.smGroup,
matid,1,1,1,1,hidden);
						MAKE_QUAD_SPECIAL(e1,e2,p.v[0],e0start,	p.smGroup,
matid,1,1,1,1,hidden);
						}
					else
						{
						MAKE_TRI(p.v[0],	e0start,	e2end,	p.smGroup,	matid,1,1,1,hidden);
						MAKE_TRI(p.v[1],	e1start,	e0end,	p.smGroup,	matid,1,1,1,hidden);
						MAKE_TRI(p.v[2],	e2start,	e1end,	p.smGroup,	matid,1,1,1,hidden);
						}
					}
				else
					{
					if	(hookPatches[px]&1)
						{
						int	index	=	hookPoints[px];
						int	st	=	hookEdgeStart[index];
						int	end	=	hookEdgeEnd[index];
						int	s1	=	hookEdgeList[st];
						int	s2	=	hookEdgeList[st+1];

						int	e1	=	hookEdgeList[end-1];
						int	e2	=	hookEdgeList[end];
						MAKE_QUAD_SPECIAL(p.v[0],s1,s2,e2end,	p.smGroup,
matid,1,1,0,1,hidden);
						MAKE_QUAD_SPECIAL(e1,e2,p.v[1],e1start,	p.smGroup,
matid,1,1,1,0,hidden);
						MAKE_TRI(p.v[2],	e2start,	e1end,	p.smGroup,	matid,1,0,1,hidden);
						}
					else	if	(hookPatches[px]&2)
						{
						int	index	=	hookPoints[px];
						int	st	=	hookEdgeStart[index];
						int	end	=	hookEdgeEnd[index];
						int	s1	=	hookEdgeList[st];
						int	s2	=	hookEdgeList[st+1];
						int	e1	=	hookEdgeList[end-1];
						int	e2	=	hookEdgeList[end];
						MAKE_TRI(p.v[0],	e0start,	e2end,	p.smGroup,	matid,1,0,1,hidden);
						MAKE_QUAD_SPECIAL(p.v[1],s1,s2,e0end,	p.smGroup,
matid,1,1,0,1,hidden);
						MAKE_QUAD_SPECIAL(e1,e2,p.v[2],e2start,	p.smGroup,
matid,1,1,1,0,hidden);
						}
					else	if	(hookPatches[px]&4)
						{
						int	index	=	hookPoints[px];
						int	st	=	hookEdgeStart[index];
						int	end	=	hookEdgeEnd[index];
						int	s1	=	hookEdgeList[st];
						int	s2	=	hookEdgeList[st+1];
						int	e1	=	hookEdgeList[end-1];
						int	e2	=	hookEdgeList[end];

						
						MAKE_TRI(p.v[1],	e1start,e0end,	p.smGroup,	matid,1,0,1,hidden);
						MAKE_QUAD_SPECIAL(p.v[2],s1,s2,e1end,	p.smGroup,
matid,1,1,0,1,hidden);
						MAKE_QUAD_SPECIAL(e1,e2,p.v[0],e0start,	p.smGroup,
matid,1,1,1,0,hidden);
						}
					else
						{
						MAKE_TRI(p.v[0],	e0start,	e2end,	p.smGroup,	matid,1,0,1,hidden);
						MAKE_TRI(p.v[1],	e1start,	e0end,	p.smGroup,	matid,1,0,1,hidden);
						MAKE_TRI(p.v[2],	e2start,	e1end,	p.smGroup,	matid,1,0,1,hidden);
						}
					}
				//	Create	the	edges,	if	necessary
				if(workSteps	>	1)	{
					//	Corner-to-interiors
//watje	12=10=98
					if	(showInterior)
						{
						if	(hookPatches[px]&1)
							{
							int	index	=	hookPoints[px];
							int	st	=	hookEdgeStart[index];
							int	end	=	hookEdgeEnd[index];
							int	s1	=	hookEdgeList[st];
							int	s2	=	hookEdgeList[st+1];
							int	e1	=	hookEdgeList[end-1];
							int	e2	=	hookEdgeList[end];
							MAKE_TRI(s2,	i0,	e2end,	p.smGroup,	matid,1,1,1,hidden);
							MAKE_TRI(e1start,	i1,	e1,	p.smGroup,	matid,1,1,1,hidden);
							MAKE_TRI(e2start,	i2,	e1end,	p.smGroup,	matid,1,1,1,hidden);

							}
						else	if	(hookPatches[px]&2)
							{
							int	index	=	hookPoints[px];
							int	st	=	hookEdgeStart[index];
							int	end	=	hookEdgeEnd[index];
							int	s1	=	hookEdgeList[st];
							int	s2	=	hookEdgeList[st+1];
							int	e1	=	hookEdgeList[end-1];
							int	e2	=	hookEdgeList[end];
							MAKE_TRI(e0start,	i0,	e2end,	p.smGroup,	matid,1,1,1,hidden);
							MAKE_TRI(s2,	i1,	e0end,	p.smGroup,	matid,1,1,1,hidden);
							MAKE_TRI(e2start,	i2,	e1,	p.smGroup,	matid,1,1,1,hidden);
							}
						else	if	(hookPatches[px]&4)
							{
							int	index	=	hookPoints[px];
							int	st	=	hookEdgeStart[index];
							int	end	=	hookEdgeEnd[index];
							int	s1	=	hookEdgeList[st];
							int	s2	=	hookEdgeList[st+1];
							int	e1	=	hookEdgeList[end-1];
							int	e2	=	hookEdgeList[end];
							MAKE_TRI(e0start,	i0,	e1,	p.smGroup,	matid,1,1,1,hidden);
							MAKE_TRI(e1start,	i1,	e0end,	p.smGroup,	matid,1,1,1,hidden);
							MAKE_TRI(s2,	i2,	e1end,	p.smGroup,	matid,1,1,1,hidden);
							}
						else
							{
							MAKE_TRI(e0start,	i0,	e2end,	p.smGroup,	matid,1,1,1,hidden);
							MAKE_TRI(e1start,	i1,	e0end,	p.smGroup,	matid,1,1,1,hidden);
							MAKE_TRI(e2start,	i2,	e1end,	p.smGroup,	matid,1,1,1,hidden);

							}
						}
					else
						{
						if	(hookPatches[px]&1)
							{
							int	index	=	hookPoints[px];
							int	st	=	hookEdgeStart[index];
							int	end	=	hookEdgeEnd[index];
							int	s1	=	hookEdgeList[st];
							int	s2	=	hookEdgeList[st+1];
							int	e1	=	hookEdgeList[end-1];
							int	e2	=	hookEdgeList[end];
							MAKE_TRI(s2,	i0,	e2end,	p.smGroup,	matid,0,0,0,hidden);
							MAKE_TRI(e1start,	i1,	e1,	p.smGroup,	matid,0,0,0,hidden);
							MAKE_TRI(e2start,	i2,	e1end,	p.smGroup,	matid,0,0,0,hidden);
							}
						else	if	(hookPatches[px]&2)
							{
							int	index	=	hookPoints[px];
							int	st	=	hookEdgeStart[index];
							int	end	=	hookEdgeEnd[index];
							int	s1	=	hookEdgeList[st];
							int	s2	=	hookEdgeList[st+1];
							int	e1	=	hookEdgeList[end-1];
							int	e2	=	hookEdgeList[end];
							MAKE_TRI(e0start,	i0,	e2end,	p.smGroup,	matid,0,0,0,hidden);
							MAKE_TRI(s2,	i1,	e0end,	p.smGroup,	matid,0,0,0,hidden);
							MAKE_TRI(e2start,	i2,	e1,	p.smGroup,	matid,0,0,0,hidden);
							}
						else	if	(hookPatches[px]&4)
							{

							int	index	=	hookPoints[px];
							int	st	=	hookEdgeStart[index];
							int	end	=	hookEdgeEnd[index];
							int	s1	=	hookEdgeList[st];
							int	s2	=	hookEdgeList[st+1];
							int	e1	=	hookEdgeList[end-1];
							int	e2	=	hookEdgeList[end];
							MAKE_TRI(e0start,	i0,	e1,	p.smGroup,	matid,0,0,0,hidden);
							MAKE_TRI(e1start,	i1,	e0end,	p.smGroup,	matid,0,0,0,hidden);
							MAKE_TRI(s2,	i2,	e1end,	p.smGroup,	matid,0,0,0,hidden);
							}
						else
							{
							MAKE_TRI(e0start,	i0,	e2end,	p.smGroup,	matid,0,0,0,hidden);
							MAKE_TRI(e1start,	i1,	e0end,	p.smGroup,	matid,0,0,0,hidden);
							MAKE_TRI(e2start,	i2,	e1end,	p.smGroup,	matid,0,0,0,hidden);
							}
						}
					//	Now	the	edges
					int	e0ix	=	e0start,	e1ix	=	e1start,	e2ix	=	e2start;
					int	i0ix	=	i0,	i1ix	=	i1,	i2ix	=	i2;
					for(int	i	=	0;	i	<	(workSteps	-	1);
++i,e0ix+=e0dir,e1ix+=e1dir,e2ix+=e2dir)	{
						if	(showInterior)
							{
							if	(hookPatches[px]&1)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								int	s2	=	hookEdgeList[st+i*2+2];
								int	s3	=	hookEdgeList[st+i*2+3];

								MAKE_QUAD_SPECIAL(s1,s2,s3,i0ix,	p.smGroup,
matid,1,1,1,1,hidden);
								MAKE_TRI(e1ix,	e1ix+e1dir,	i1ix,	p.smGroup,	matid,1,1,1,hidden);
								MAKE_TRI(e2ix,	e2ix+e2dir,	i2ix,	p.smGroup,	matid,1,1,1,hidden);
								}
							else	if	(hookPatches[px]&2)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								int	s2	=	hookEdgeList[st+i*2+2];
								int	s3	=	hookEdgeList[st+i*2+3];
								MAKE_TRI(e0ix,	e0ix+e0dir,	i0ix,	p.smGroup,	matid,1,1,1,hidden);
								MAKE_QUAD_SPECIAL(s1,s2,s3,i1ix,	p.smGroup,
matid,1,1,1,1,hidden);
								MAKE_TRI(e2ix,	e2ix+e2dir,	i2ix,	p.smGroup,	matid,1,1,1,hidden);
								}
							else	if	(hookPatches[px]&4)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								int	s2	=	hookEdgeList[st+i*2+2];
								int	s3	=	hookEdgeList[st+i*2+3];
								MAKE_TRI(e0ix,	e0ix+e0dir,	i0ix,	p.smGroup,	matid,1,1,1,hidden);
								MAKE_TRI(e1ix,	e1ix+e1dir,	i1ix,	p.smGroup,	matid,1,1,1,hidden);
								MAKE_QUAD_SPECIAL(s1,s2,s3,i2ix,	p.smGroup,
matid,1,1,1,1,hidden);
								}
							else
								{
								MAKE_TRI(e0ix,	e0ix+e0dir,	i0ix,	p.smGroup,	matid,1,1,1,hidden);

								MAKE_TRI(e1ix,	e1ix+e1dir,	i1ix,	p.smGroup,	matid,1,1,1,hidden);
								MAKE_TRI(e2ix,	e2ix+e2dir,	i2ix,	p.smGroup,	matid,1,1,1,hidden);
								}
						
							}
						else	{
							if	(hookPatches[px]&1)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								int	s2	=	hookEdgeList[st+i*2+2];
								int	s3	=	hookEdgeList[st+i*2+3];
								MAKE_QUAD_SPECIAL(s1,s2,s3,i0ix,	p.smGroup,
matid,1,1,0,0,hidden);
								MAKE_TRI(e1ix,	e1ix+e1dir,	i1ix,	p.smGroup,	matid,1,0,0,hidden);
								MAKE_TRI(e2ix,	e2ix+e2dir,	i2ix,	p.smGroup,	matid,1,0,0,hidden);
								}
							else	if	(hookPatches[px]&2)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								int	s2	=	hookEdgeList[st+i*2+2];
								int	s3	=	hookEdgeList[st+i*2+3];
								MAKE_TRI(e0ix,	e0ix+e0dir,	i0ix,	p.smGroup,	matid,1,0,0,hidden);
								MAKE_QUAD_SPECIAL(s1,s2,s3,i1ix,	p.smGroup,
matid,1,1,0,0,hidden);
								MAKE_TRI(e2ix,	e2ix+e2dir,	i2ix,	p.smGroup,	matid,1,0,0,hidden);
								}
							else	if	(hookPatches[px]&4)
								{

								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								int	s2	=	hookEdgeList[st+i*2+2];
								int	s3	=	hookEdgeList[st+i*2+3];
								MAKE_TRI(e0ix,	e0ix+e0dir,	i0ix,	p.smGroup,	matid,1,0,0,hidden);
								MAKE_TRI(e1ix,	e1ix+e1dir,	i1ix,	p.smGroup,	matid,1,0,0,hidden);
								MAKE_QUAD_SPECIAL(s1,s2,s3,i2ix,	p.smGroup,
matid,1,1,0,0,hidden);
								}
							else
								{
								MAKE_TRI(e0ix,	e0ix+e0dir,	i0ix,	p.smGroup,	matid,1,0,0,hidden);
								MAKE_TRI(e1ix,	e1ix+e1dir,	i1ix,	p.smGroup,	matid,1,0,0,hidden);
								MAKE_TRI(e2ix,	e2ix+e2dir,	i2ix,	p.smGroup,	matid,1,0,0,hidden);
								}
							}
						i0ix++;
						i1ix	+=	(workSteps	-	i	-	2);
						i2ix	-=	(i	+	2);
						}
					//	Make	interleaving	triangles
					e0ix	=	e0start	+	e0dir;
					e1ix	=	e1start	+	e1dir;
					e2ix	=	e2start	+	e2dir;
					i0ix	=	i0;
					i1ix	=	i1;
					i2ix	=	i2;
					for(i	=	1;	i	<	(workSteps	-	1);	++i,e0ix+=e0dir,e1ix+=e1dir,e2ix+=e2dir)	{
						if	(showInterior)
							{
							if	(hookPatches[px]&1)

								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								MAKE_TRI(s1,	i0ix	+	1,	i0ix,	p.smGroup,	matid,1,1,1,hidden);
								MAKE_TRI(e1ix,	i1ix	+	(workSteps	-	i	-	1),	i1ix,	p.smGroup,
matid,1,1,1,hidden);
								MAKE_TRI(e2ix,	i2ix	-	(i	+	1),	i2ix,	p.smGroup,	matid,1,1,1,hidden);
								}
							else	if	(hookPatches[px]&2)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								MAKE_TRI(e0ix,	i0ix	+	1,	i0ix,	p.smGroup,	matid,1,1,1,hidden);
								MAKE_TRI(s1,	i1ix	+	(workSteps	-	i	-	1),	i1ix,	p.smGroup,
matid,1,1,1,hidden);
								MAKE_TRI(e2ix,	i2ix	-	(i	+	1),	i2ix,	p.smGroup,	matid,1,1,1,hidden);
								}
							else	if	(hookPatches[px]&4)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								MAKE_TRI(e0ix,	i0ix	+	1,	i0ix,	p.smGroup,	matid,1,1,1,hidden);
								MAKE_TRI(e1ix,	i1ix	+	(workSteps	-	i	-	1),	i1ix,	p.smGroup,
matid,1,1,1,hidden);
								MAKE_TRI(s1,	i2ix	-	(i	+	1),	i2ix,	p.smGroup,	matid,1,1,1,hidden);
								}
							else
								{
								MAKE_TRI(e0ix,	i0ix	+	1,	i0ix,	p.smGroup,	matid,1,1,1,hidden);

								MAKE_TRI(e1ix,	i1ix	+	(workSteps	-	i	-	1),	i1ix,	p.smGroup,
matid,1,1,1,hidden);
								MAKE_TRI(e2ix,	i2ix	-	(i	+	1),	i2ix,	p.smGroup,	matid,1,1,1,hidden);
								}
							}
						else
							{
							if	(hookPatches[px]&1)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								MAKE_TRI(s1,	i0ix	+	1,	i0ix,	p.smGroup,	matid,0,0,0,hidden);
								MAKE_TRI(e1ix,	i1ix	+	(workSteps	-	i	-	1),	i1ix,	p.smGroup,
matid,0,0,0,hidden);
								MAKE_TRI(e2ix,	i2ix	-	(i	+	1),	i2ix,	p.smGroup,	matid,0,0,0,hidden);
								}
							else	if	(hookPatches[px]&2)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								MAKE_TRI(e0ix,	i0ix	+	1,	i0ix,	p.smGroup,	matid,0,0,0,hidden);
								MAKE_TRI(s1,	i1ix	+	(workSteps	-	i	-	1),	i1ix,	p.smGroup,
matid,0,0,0,hidden);
								MAKE_TRI(e2ix,	i2ix	-	(i	+	1),	i2ix,	p.smGroup,	matid,0,0,0,hidden);
								}
							else	if	(hookPatches[px]&4)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];

								MAKE_TRI(e0ix,	i0ix	+	1,	i0ix,	p.smGroup,	matid,0,0,0,hidden);
								MAKE_TRI(e1ix,	i1ix	+	(workSteps	-	i	-	1),	i1ix,	p.smGroup,
matid,0,0,0,hidden);
								MAKE_TRI(s1,	i2ix	-	(i	+	1),	i2ix,	p.smGroup,	matid,0,0,0,hidden);
								}
							else
								{
								MAKE_TRI(e0ix,	i0ix	+	1,	i0ix,	p.smGroup,	matid,0,0,0,hidden);
								MAKE_TRI(e1ix,	i1ix	+	(workSteps	-	i	-	1),	i1ix,	p.smGroup,
matid,0,0,0,hidden);
								MAKE_TRI(e2ix,	i2ix	-	(i	+	1),	i2ix,	p.smGroup,	matid,0,0,0,hidden);
								}
							}
						i0ix++;
						i1ix	+=	(workSteps	-	i	-	1);
						i2ix	-=	(i	+	1);
						}
					}
				else
					{
					if	(showInterior)
						{
						if	(hookPatches[px]&1)
							{
							int	index	=	hookPoints[px];
							int	st	=	hookEdgeStart[index];
							int	s2	=	hookEdgeList[st+1];
							MAKE_TRI(s2,	e1start,	e2start,	p.smGroup,	matid,1,1,1,hidden);
							}
						else	if	(hookPatches[px]&2)
							{
							int	index	=	hookPoints[px];

							int	st	=	hookEdgeStart[index];
							int	s2	=	hookEdgeList[st+1];
							MAKE_TRI(e0start,	s2,	e2start,	p.smGroup,	matid,1,1,1,hidden);
							}
						else	if	(hookPatches[px]&4)
							{
							int	index	=	hookPoints[px];
							int	st	=	hookEdgeStart[index];
							int	s2	=	hookEdgeList[st+1];
							MAKE_TRI(e0start,	e1start,	s2,	p.smGroup,	matid,1,1,1,hidden);
							}
						else
							{
							MAKE_TRI(e0start,	e1start,	e2start,	p.smGroup,	matid,1,1,1,hidden);
							}
						}
					else
						{
						if	(hookPatches[px]&1)
							{
							int	index	=	hookPoints[px];
							int	st	=	hookEdgeStart[index];
							int	s2	=	hookEdgeList[st+1];
							MAKE_TRI(s2,	e1start,	e2start,	p.smGroup,	matid,0,0,0,hidden);
							}
						else	if	(hookPatches[px]&2)
							{
							int	index	=	hookPoints[px];
							int	st	=	hookEdgeStart[index];
							int	s2	=	hookEdgeList[st+1];
							MAKE_TRI(e0start,	s2,	e2start,	p.smGroup,	matid,0,0,0,hidden);
							}

						else	if	(hookPatches[px]&4)
							{
							int	index	=	hookPoints[px];
							int	st	=	hookEdgeStart[index];
							int	s2	=	hookEdgeList[st+1];
							MAKE_TRI(e0start,	e1start,	s2,	p.smGroup,	matid,0,0,0,hidden);
							}
						else
							{
							MAKE_TRI(e0start,	e1start,	e2start,	p.smGroup,	matid,0,0,0,hidden);
							}
						}
					}
				}
				break;
			case	PATCH_QUAD:	{
				//	If	only	need	to	make	1	quad,	make	it	and	blow!
				if(workSteps	==	0)	{
					if	(hookPatches[px]==0)
						{
						MAKE_QUAD(p.v[0],p.v[1],p.v[2],p.v[3],p.smGroup,
matid,1,1,0,1,1,0,hidden);
						}
					else
						{
//a	edge
						if	(hookPatches[px]&1)
							{
							int	edge	=	p.edge[0];
							int	ex	=	hooks[hookPoints[px]].hookPoint;
							MAKE_PENTA_EDGE1(p.v[0],	ex,	p.v[1],	p.v[2],	p.v[3],	p.smGroup,
matid,1,1,1,1,hidden);

							}
//b	edge
						if	(hookPatches[px]&2)
							{
							int	edge	=	p.edge[1];
							int	ex	=	hooks[hookPoints[px]].hookPoint;
							MAKE_PENTA_EDGE2(p.v[0],	p.v[1],	ex,	p.v[2],	p.v[3],	p.smGroup,
matid,1,1,1,1,hidden);							
							}
//c	edge
						if	(hookPatches[px]&4)
							{
							int	edge	=	p.edge[2];
							int	ex	=	hooks[hookPoints[px]].hookPoint;
							MAKE_PENTA_EDGE3(p.v[0],	p.v[1],	p.v[2],ex,	p.v[3],	p.smGroup,
matid,1,1,1,1,hidden);							
							}
//d	edge
						if	(hookPatches[px]&8)
							{
							int	edge	=	p.edge[3];
							int	ex	=	hooks[hookPoints[px]].hookPoint;
							MAKE_PENTA_EDGE4(p.v[0],	p.v[1],	p.v[2],	p.v[3],	ex,	p.smGroup,
matid,1,1,1,1,hidden);							
							}
						}
					break;
					}
				if(workSteps	>	1)	{
					//	Make	the	inside	faces	if	necessary
					for(int	u	=	0;	u	<	(workSteps-1);	++u)	{
						int	uix	=	baseVert	+	u	*	workSteps;

						for(int	v	=	0;	v	<	(workSteps-1);	++v,	++uix)	{
//watje	12-8-98
							if	(showInterior)
								{
								MAKE_QUAD(uix,	uix	+	1,	uix	+	workSteps	+	1,	uix	+	workSteps,
p.smGroup,	matid,1,1,0,1,1,0,hidden);
								}
							else
								{
								MAKE_QUAD(uix,	uix	+	1,	uix	+	workSteps	+	1,	uix	+	workSteps,
p.smGroup,	matid,0,0,0,0,0,0,hidden);
								}
							}
						}
					}
				//	Make	the	corner	faces
				int	edge0	=	p.edge[0];
				int	edge1	=	p.edge[1];
				int	edge2	=	p.edge[2];
				int	edge3	=	p.edge[3];
				PatchEdge	&e0	=	edges[edge0];
				PatchEdge	&e1	=	edges[edge1];
				PatchEdge	&e2	=	edges[edge2];
				PatchEdge	&e3	=	edges[edge3];
				int
e0start,e1start,e2start,e3start,e0end,e1end,e2end,e3end,e0dir,e1dir,e2dir,e3dir;
				if(e0.v1	==	p.v[0])	{
					e0start	=	edgeStart[edge0];
					e0end	=	edgeEnd[edge0];
					e0dir	=	1;
					}
				else	{

					e0start	=	edgeEnd[edge0];
					e0end	=	edgeStart[edge0];
					e0dir	=	-1;
					}
				if(e1.v1	==	p.v[1])	{
					e1start	=	edgeStart[edge1];
					e1end	=	edgeEnd[edge1];
					e1dir	=	1;
					}
				else	{
					e1start	=	edgeEnd[edge1];
					e1end	=	edgeStart[edge1];
					e1dir	=	-1;
					}
				if(e2.v1	==	p.v[2])	{
					e2start	=	edgeStart[edge2];
					e2end	=	edgeEnd[edge2];
					e2dir	=	1;
					}
				else	{
					e2start	=	edgeEnd[edge2];
					e2end	=	edgeStart[edge2];
					e2dir	=	-1;
					}
				if(e3.v1	==	p.v[3])	{
					e3start	=	edgeStart[edge3];
					e3end	=	edgeEnd[edge3];
					e3dir	=	1;
					}
				else	{
					e3start	=	edgeEnd[edge3];
					e3end	=	edgeStart[edge3];

					e3dir	=	-1;
					}
				if	(e3start	>	e3end)	e3dir	=	-1;
					else	e3dir	=	1;
				if	(e2start	>	e2end)	e2dir	=	-1;
					else	e2dir	=	1;
				if	(e1start	>	e1end)	e1dir	=	-1;
					else	e1dir	=	1;
				if	(e0start	>	e0end)	e0dir	=	-1;
					else	e0dir	=	1;
				//	Create	the	corners
				int	i0	=	baseVert;
				int	i1	=	baseVert	+	(workSteps	-	1);
				int	i2	=	baseVert	+	quadint	-	1;
				int	i3	=	i2	-	(workSteps	-	1);
//watje	12-8-98
				if	(showInterior)
					{
					if	(hookPatches[px]&1)
						{
						int	index	=	hookPoints[px];
						int	st	=	hookEdgeStart[index];
						int	end	=	hookEdgeEnd[index];
						int	s1	=	hookEdgeList[st];
						int	s2	=	hookEdgeList[st+1];
						int	e1	=	hookEdgeList[end-1];
						int	e2	=	hookEdgeList[end];
						MAKE_PENTA_EDGE1(p.v[0],s1,s2,i0,e3end,	p.smGroup,
matid,1,1,1,1,hidden);
						MAKE_PENTA_EDGE1(e1,e2,p.v[1],e1start,i1,	p.smGroup,
matid,1,1,1,1,hidden);
						MAKE_QUAD(p.v[2],	e2start,	i2,	e1end,	p.smGroup,

matid,1,1,0,1,1,0,hidden);
						MAKE_QUAD(e3start,	i3,	e2end,	p.v[3],	p.smGroup,
matid,1,1,0,1,1,0,hidden);
						}	
					else	if	(hookPatches[px]&2)
						{
						int	index	=	hookPoints[px];
						int	st	=	hookEdgeStart[index];
						int	end	=	hookEdgeEnd[index];
						int	s1	=	hookEdgeList[st];
						int	s2	=	hookEdgeList[st+1];
						int	e1	=	hookEdgeList[end-1];
						int	e2	=	hookEdgeList[end];
						MAKE_QUAD(p.v[0],	e0start,	i0,	e3end,	p.smGroup,
matid,1,1,0,1,1,0,hidden);
						MAKE_PENTA_EDGE2(e0end,	p.v[1],s1,s2,i1,	p.smGroup,
matid,1,1,1,1,hidden);
						MAKE_PENTA_EDGE2(i2,e1,	e2,	p.v[2],e2start,	p.smGroup,
matid,1,1,1,1,hidden);
						MAKE_QUAD(e3start,	i3,	e2end,	p.v[3],	p.smGroup,
matid,1,1,0,1,1,0,hidden);
						}	
					else	if	(hookPatches[px]&4)
						{
						int	index	=	hookPoints[px];
						int	st	=	hookEdgeStart[index];
						int	end	=	hookEdgeEnd[index];
						int	s1	=	hookEdgeList[st];
						int	s2	=	hookEdgeList[st+1];
						int	e1	=	hookEdgeList[end-1];
						int	e2	=	hookEdgeList[end];
						MAKE_QUAD(p.v[0],	e0start,	i0,	e3end,	p.smGroup,
matid,1,1,0,1,1,0,hidden);

						MAKE_QUAD(e1start,	i1,	e0end,	p.v[1],	p.smGroup,
matid,1,1,0,1,1,0,hidden);
						MAKE_PENTA_EDGE3(i2,e1end,p.v[2],s1,	s2,	p.smGroup,
matid,1,1,1,1,hidden);
						MAKE_PENTA_EDGE3(e3start,i3,e1,e2,p.v[3],	p.smGroup,
matid,1,1,1,1,hidden);
						}	
					else	if	(hookPatches[px]&8)
						{
						int	index	=	hookPoints[px];
						int	st	=	hookEdgeStart[index];
						int	end	=	hookEdgeEnd[index];
						int	s1	=	hookEdgeList[st];
						int	s2	=	hookEdgeList[st+1];
						int	e1	=	hookEdgeList[end-1];
						int	e2	=	hookEdgeList[end];
						MAKE_QUAD(e1start,	i1,	e0end,	p.v[1],	p.smGroup,
matid,1,1,0,1,1,0,hidden);
						MAKE_QUAD(p.v[2],	e2start,	i2,	e1end,	p.smGroup,
matid,1,1,0,1,1,0,hidden);
						MAKE_PENTA_EDGE4(s2,i3,e2end,p.v[3],s1,	p.smGroup,
matid,1,1,1,1,hidden);
						MAKE_PENTA_EDGE4(p.v[0],e0start,i0,e1,e2,	p.smGroup,
matid,1,1,1,1,hidden);
						}	
					else
						{
						MAKE_QUAD(p.v[0],	e0start,	i0,	e3end,	p.smGroup,
matid,1,1,0,1,1,0,hidden);
						MAKE_QUAD(e1start,	i1,	e0end,	p.v[1],	p.smGroup,
matid,1,1,0,1,1,0,hidden);
						MAKE_QUAD(p.v[2],	e2start,	i2,	e1end,	p.smGroup,
matid,1,1,0,1,1,0,hidden);

						MAKE_QUAD(e3start,	i3,	e2end,	p.v[3],	p.smGroup,
matid,1,1,0,1,1,0,hidden);
						}
					}
				else
					{
					if	(hookPatches[px]&1)
						{
						int	index	=	hookPoints[px];
						int	st	=	hookEdgeStart[index];
						int	end	=	hookEdgeEnd[index];
						int	s1	=	hookEdgeList[st];
						int	s2	=	hookEdgeList[st+1];
						int	e1	=	hookEdgeList[end-1];
						int	e2	=	hookEdgeList[end];
						MAKE_PENTA_EDGE1(p.v[0],s1,s2,i0,e3end,	p.smGroup,
matid,1,0,0,1,hidden);
						MAKE_PENTA_EDGE1(e1,e2,p.v[1],e1start,i1,	p.smGroup,
matid,1,1,0,0,hidden);
						MAKE_QUAD(p.v[2],	e2start,	i2,	e1end,	p.smGroup,
matid,1,0,0,0,1,0,hidden);
						MAKE_QUAD(e3start,	i3,	e2end,	p.v[3],	p.smGroup,
matid,0,0,0,1,1,0,hidden);
						}	
					else	if	(hookPatches[px]&2)
						{
						int	index	=	hookPoints[px];
						int	st	=	hookEdgeStart[index];
						int	end	=	hookEdgeEnd[index];
						int	s1	=	hookEdgeList[st];
						int	s2	=	hookEdgeList[st+1];
						int	e1	=	hookEdgeList[end-1];
						int	e2	=	hookEdgeList[end];

						MAKE_QUAD(p.v[0],	e0start,	i0,	e3end,	p.smGroup,
matid,1,0,0,0,1,0,hidden);
						MAKE_PENTA_EDGE2(e0end,	p.v[1],s1,s2,i1,	p.smGroup,
matid,1,1,0,0,hidden);
						MAKE_PENTA_EDGE2(i2,e1,	e2,	p.v[2],e2start,	p.smGroup,
matid,0,1,1,0,hidden);
						MAKE_QUAD(e3start,	i3,	e2end,	p.v[3],	p.smGroup,
matid,0,0,0,1,1,0,hidden);
						}	
					else	if	(hookPatches[px]&4)
						{
						int	index	=	hookPoints[px];
						int	st	=	hookEdgeStart[index];
						int	end	=	hookEdgeEnd[index];
						int	s1	=	hookEdgeList[st];
						int	s2	=	hookEdgeList[st+1];
						int	e1	=	hookEdgeList[end-1];
						int	e2	=	hookEdgeList[end];
						MAKE_QUAD(p.v[0],	e0start,	i0,	e3end,	p.smGroup,
matid,1,0,0,0,1,0,hidden);
						MAKE_QUAD(e1start,	i1,	e0end,	p.v[1],	p.smGroup,
matid,0,0,0,1,1,0,hidden);
						MAKE_PENTA_EDGE3(i2,e1end,p.v[2],s1,	s2,	p.smGroup,
matid,0,1,1,0,hidden);
						MAKE_PENTA_EDGE3(e3start,i3,e1,e2,p.v[3],	p.smGroup,
matid,0,0,1,1,hidden);
						}	
					else	if	(hookPatches[px]&8)
						{
						int	index	=	hookPoints[px];
						int	st	=	hookEdgeStart[index];
						int	end	=	hookEdgeEnd[index];
						int	s1	=	hookEdgeList[st];

						int	s2	=	hookEdgeList[st+1];
						int	e1	=	hookEdgeList[end-1];
						int	e2	=	hookEdgeList[end];
						MAKE_QUAD(e1start,	i1,	e0end,	p.v[1],	p.smGroup,
matid,0,0,0,1,1,0,hidden);
						MAKE_QUAD(p.v[2],	e2start,	i2,	e1end,	p.smGroup,
matid,1,0,0,0,1,0,hidden);
						MAKE_PENTA_EDGE4(s2,i3,e2end,p.v[3],s1,	p.smGroup,
matid,0,0,1,1,hidden);
						MAKE_PENTA_EDGE4(p.v[0],e0start,i0,e1,e2,	p.smGroup,
matid,1,0,0,1,hidden);
						}	
					else
						{
						MAKE_QUAD(p.v[0],	e0start,	i0,	e3end,	p.smGroup,
matid,1,0,0,0,1,0,hidden);
						MAKE_QUAD(e1start,	i1,	e0end,	p.v[1],	p.smGroup,
matid,0,0,0,1,1,0,hidden);
						MAKE_QUAD(p.v[2],	e2start,	i2,	e1end,	p.smGroup,
matid,1,0,0,0,1,0,hidden);
						MAKE_QUAD(e3start,	i3,	e2end,	p.v[3],	p.smGroup,
matid,0,0,0,1,1,0,hidden);
						}
					}
				//	Create	the	edges,	if	necessary
				if(workSteps	>	1)	{
					int	e0ix	=	e0start,	e1ix	=	e1start,	e2ix	=	e2start,	e3ix	=	e3start;
					for(int	i	=	0;	i	<	(workSteps	-	1);
++i,e0ix+=e0dir,e1ix+=e1dir,e2ix+=e2dir,e3ix+=e3dir)	{
//watje	12-8-98
						if	(showInterior)
							{
							if	(hookPatches[px]&1)

								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								int	s2	=	hookEdgeList[st+i*2+2];
								int	s3	=	hookEdgeList[st+i*2+3];
								MAKE_PENTA_EDGE1(s1,s2,s3,	i0	+	1	+	i,	i0	+	i,	p.smGroup,
matid,1,1,1,1,hidden);
								MAKE_QUAD(e1ix+e1dir,	i1	+	workSteps	*	(i	+	1),	i1	+	workSteps	*	i,
e1ix,	p.smGroup,	matid,1,1,0,1,1,0,hidden);
								MAKE_QUAD(e2ix,	e2ix+e2dir,	i2	-	1	-	i,	i2	-	i,	p.smGroup,
matid,1,1,0,1,1,0,hidden);
								MAKE_QUAD(e3ix+e3dir,	i3	-	workSteps	*	(i	+	1),	i3	-	workSteps	*	i,
e3ix,	p.smGroup,	matid,1,1,0,1,1,0,hidden);
								}	
							else	if	(hookPatches[px]&2)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								int	s2	=	hookEdgeList[st+i*2+2];
								int	s3	=	hookEdgeList[st+i*2+3];
								MAKE_QUAD(e0ix,	e0ix+e0dir,	i0	+	1	+	i,	i0	+	i,	p.smGroup,
matid,1,1,0,1,1,0,hidden);
								MAKE_PENTA_EDGE2(i1	+	workSteps	*	i,s1,s2,s3,	i1	+	workSteps	*
(i	+	1),	p.smGroup,	matid,1,1,1,1,hidden);
								MAKE_QUAD(e2ix,	e2ix+e2dir,	i2	-	1	-	i,	i2	-	i,	p.smGroup,
matid,1,1,0,1,1,0,hidden);
								MAKE_QUAD(e3ix+e3dir,	i3	-	workSteps	*	(i	+	1),	i3	-	workSteps	*	i,
e3ix,	p.smGroup,	matid,1,1,0,1,1,0,hidden);
								}	
							else	if	(hookPatches[px]&4)
								{

								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								int	s2	=	hookEdgeList[st+i*2+2];
								int	s3	=	hookEdgeList[st+i*2+3];
								MAKE_QUAD(e0ix,	e0ix+e0dir,	i0	+	1	+	i,	i0	+	i,	p.smGroup,
matid,1,1,0,1,1,0,hidden);
								MAKE_QUAD(e1ix+e1dir,	i1	+	workSteps	*	(i	+	1),	i1	+	workSteps	*	i,
e1ix,	p.smGroup,	matid,1,1,0,1,1,0,hidden);
								MAKE_PENTA_EDGE3(i2	-	1	-	i,i2	-	i,s1,s2,s3,	p.smGroup,
matid,1,1,1,1,hidden);
								MAKE_QUAD(e3ix+e3dir,	i3	-	workSteps	*	(i	+	1),	i3	-	workSteps	*	i,
e3ix,	p.smGroup,	matid,1,1,0,1,1,0,hidden);
								}	
							else	if	(hookPatches[px]&8)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								int	s2	=	hookEdgeList[st+i*2+2];
								int	s3	=	hookEdgeList[st+i*2+3];
								MAKE_QUAD(e0ix,	e0ix+e0dir,	i0	+	1	+	i,	i0	+	i,	p.smGroup,
matid,1,1,0,1,1,0,hidden);
								MAKE_QUAD(e1ix+e1dir,	i1	+	workSteps	*	(i	+	1),	i1	+	workSteps	*	i,
e1ix,	p.smGroup,	matid,1,1,0,1,1,0,hidden);
								MAKE_QUAD(e2ix,	e2ix+e2dir,	i2	-	1	-	i,	i2	-	i,	p.smGroup,
matid,1,1,0,1,1,0,hidden);
								MAKE_PENTA_EDGE4(s3,i3	-	workSteps	*	(i	+	1),	i3	-	workSteps	*
i,s1,s2,	p.smGroup,	matid,1,1,1,1,hidden);
								}	
							else
								{
								MAKE_QUAD(e0ix,	e0ix+e0dir,	i0	+	1	+	i,	i0	+	i,	p.smGroup,

matid,1,1,0,1,1,0,hidden);
								MAKE_QUAD(e1ix+e1dir,	i1	+	workSteps	*	(i	+	1),	i1	+	workSteps	*	i,
e1ix,	p.smGroup,	matid,1,1,0,1,1,0,hidden);
								MAKE_QUAD(e2ix,	e2ix+e2dir,	i2	-	1	-	i,	i2	-	i,	p.smGroup,
matid,1,1,0,1,1,0,hidden);
								MAKE_QUAD(e3ix+e3dir,	i3	-	workSteps	*	(i	+	1),	i3	-	workSteps	*	i,
e3ix,	p.smGroup,	matid,1,1,0,1,1,0,hidden);
								}
							}
						else
							{
							if	(hookPatches[px]&1)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								int	s2	=	hookEdgeList[st+i*2+2];
								int	s3	=	hookEdgeList[st+i*2+3];
								
								MAKE_PENTA_EDGE1(s1,s2,s3,	i0	+	1	+	i,	i0	+	i,	p.smGroup,
matid,1,0,0,0,hidden);
								MAKE_QUAD(e1ix+e1dir,	i1	+	workSteps	*	(i	+	1),	i1	+	workSteps	*	i,
e1ix,	p.smGroup,	matid,0,0,0,0,1,0,hidden);
								MAKE_QUAD(e2ix,	e2ix+e2dir,	i2	-	1	-	i,	i2	-	i,	p.smGroup,
matid,1,0,0,0,0,0,hidden);
								MAKE_QUAD(e3ix+e3dir,	i3	-	workSteps	*	(i	+	1),	i3	-	workSteps	*	i,
e3ix,	p.smGroup,	matid,0,0,0,0,1,0,hidden);
								}
							else	if	(hookPatches[px]&2)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];

								int	s2	=	hookEdgeList[st+i*2+2];
								int	s3	=	hookEdgeList[st+i*2+3];
								
								MAKE_QUAD(e0ix,	e0ix+e0dir,	i0	+	1	+	i,	i0	+	i,	p.smGroup,
matid,1,0,0,0,0,0,hidden);
								MAKE_PENTA_EDGE2(i1	+	workSteps	*	i,s1,s2,s3,	i1	+	workSteps	*
(i	+	1),	p.smGroup,	matid,0,1,0,0,hidden);
								MAKE_QUAD(e2ix,	e2ix+e2dir,	i2	-	1	-	i,	i2	-	i,	p.smGroup,
matid,1,0,0,0,0,0,hidden);
								MAKE_QUAD(e3ix+e3dir,	i3	-	workSteps	*	(i	+	1),	i3	-	workSteps	*	i,
e3ix,	p.smGroup,	matid,0,0,0,0,1,0,hidden);
								}
							else	if	(hookPatches[px]&4)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];
								int	s1	=	hookEdgeList[st+i*2+1];
								int	s2	=	hookEdgeList[st+i*2+2];
								int	s3	=	hookEdgeList[st+i*2+3];
								
								MAKE_QUAD(e0ix,	e0ix+e0dir,	i0	+	1	+	i,	i0	+	i,	p.smGroup,
matid,1,0,0,0,0,0,hidden);
								MAKE_QUAD(e1ix+e1dir,	i1	+	workSteps	*	(i	+	1),	i1	+	workSteps	*	i,
e1ix,	p.smGroup,	matid,0,0,0,0,1,0,hidden);
								MAKE_PENTA_EDGE3(i2	-	1	-	i,i2	-	i,s1,s2,s3,	p.smGroup,
matid,0,0,1,0,hidden);
								MAKE_QUAD(e3ix+e3dir,	i3	-	workSteps	*	(i	+	1),	i3	-	workSteps	*	i,
e3ix,	p.smGroup,	matid,0,0,0,0,1,0,hidden);
								}
							else	if	(hookPatches[px]&8)
								{
								int	index	=	hookPoints[px];
								int	st	=	hookEdgeStart[index];

								int	s1	=	hookEdgeList[st+i*2+1];
								int	s2	=	hookEdgeList[st+i*2+2];
								int	s3	=	hookEdgeList[st+i*2+3];
								
								MAKE_QUAD(e0ix,	e0ix+e0dir,	i0	+	1	+	i,	i0	+	i,	p.smGroup,
matid,1,0,0,0,0,0,hidden);
								MAKE_QUAD(e1ix+e1dir,	i1	+	workSteps	*	(i	+	1),	i1	+	workSteps	*	i,
e1ix,	p.smGroup,	matid,0,0,0,0,1,0,hidden);
								MAKE_QUAD(e2ix,	e2ix+e2dir,	i2	-	1	-	i,	i2	-	i,	p.smGroup,
matid,1,0,0,0,0,0,hidden);
								MAKE_PENTA_EDGE4(s3,i3	-	workSteps	*	(i	+	1),	i3	-	workSteps	*
i,s1,s2,	p.smGroup,	matid,0,0,0,1,hidden);
								}
							else
								{
								MAKE_QUAD(e0ix,	e0ix+e0dir,	i0	+	1	+	i,	i0	+	i,	p.smGroup,
matid,1,0,0,0,0,0,hidden);
								MAKE_QUAD(e1ix+e1dir,	i1	+	workSteps	*	(i	+	1),	i1	+	workSteps	*	i,
e1ix,	p.smGroup,	matid,0,0,0,0,1,0,hidden);
								MAKE_QUAD(e2ix,	e2ix+e2dir,	i2	-	1	-	i,	i2	-	i,	p.smGroup,
matid,1,0,0,0,0,0,hidden);
								MAKE_QUAD(e3ix+e3dir,	i3	-	workSteps	*	(i	+	1),	i3	-	workSteps	*	i,
e3ix,	p.smGroup,	matid,0,0,0,0,1,0,hidden);
								}
							}
						}
					}
				}
			}
		}
	assert(face	==	nFaces);
	//	Build	texture	faces	if	necessary
	for(chan	=	0;	chan	<	getNumMaps();	++chan)	{

		
		if(getNumMapVerts	(chan))	{
			mesh.setMapSupport	(chan,	TRUE);
			mesh.setNumMapFaces	(chan,	nFaces);
			int	tface	=	0;
			for(px	=	0;	px	<	numPatches;	++px)	{
				Patch	&p	=	patches[px];
				int	baseTVert	=	(*patchTVOff[chan])[px];	//	texture	vertex	base
				switch(p.type)	{
					case	PATCH_TRI:	{
						int	tvbase	=	baseTVert;
						//	If	only	need	to	make	1	triangle,	make	it	and	blow!
						if(workSteps	==	0)	{
							if	(hookPatches[px]==0)
								{
								MAKE_TTRI(chan,	tvbase,	tvbase+1,	tvbase+2);
								}
							else
								{	
								if	(hookPatches[px]&1)
									{
									MAKE_TQUAD_SPECIAL(chan,	tvbase,tvertHookStart,
tvbase+1,tvbase+2);
									}
								else	if	(hookPatches[px]&2)
									{
									MAKE_TQUAD_SPECIAL(chan,
tvbase+1,tvertHookStart,tvbase+2,tvbase);
									}
								else	if	(hookPatches[px]&4)
									{
									MAKE_TQUAD_SPECIAL(chan,

tvbase+2,tvertHookStart,tvbase,tvbase+1);
									}
								}
							break;
							}
						if(workSteps	>	2)	{
							//	Make	inside	faces	if	necessary
							int	ivbase	=	baseTVert	+	workSteps	+	3;
							for(int	ax	=	0;	ax	<	(workSteps	-	2);	++ax)	{
								int	vix	=	ivbase;
								for(int	bx	=	0;	bx	<	(workSteps	-	2	-	ax);	++bx,	++vix)
									MAKE_TTRI(chan,	vix,	vix	+	1,	vix	+	workSteps	+	1	-	ax);
								vix	=	ivbase;
								for(bx	=	1;	bx	<	(workSteps	-	2	-	ax);	++bx,	++vix)
									MAKE_TTRI(chan,	vix	+	1,	vix	+	workSteps	+	2	-	ax,	vix	+	workSteps
+	1	-	ax);
								ivbase	+=	(workSteps	+	1	-	ax);
								}
							}
						//	Create	the	corners
						int	i0	=	baseTVert	+	patchDivs	+	2;
						int	i1	=	i0	+	workSteps	-	2;
						int	i2	=	baseTVert	+	triTVerts	-	5;
						int	e0start	=	baseTVert	+	1;
						int	e1start	=	baseTVert	+	patchDivs	*	2;
						int	e2start	=	baseTVert	+	triTVerts	-	3;
						int	e0end	=	baseTVert	+	workSteps;
						int	e1end	=	e2start	+	1;
						int	e2end	=	baseTVert	+	patchDivs	+	1;
						if	(hookPatches[px]&1)
							{
							MAKE_TQUAD_SPECIAL(chan,	baseTVert,	tvertHookStart,	e0start,

e2end);
							MAKE_TQUAD_SPECIAL(chan,	e0end,	tvertHookStart,	baseTVert	+
patchDivs,	e1start);
							MAKE_TTRI(chan,	baseTVert	+	triTVerts-1,	e2start,	e1end);
							}
						else	if	(hookPatches[px]&2)
							{
							MAKE_TTRI(chan,	baseTVert,	e0start,	e2end);
							MAKE_TQUAD_SPECIAL(chan,	baseTVert	+	patchDivs,
tvertHookStart,	e1start,	e0end);
							MAKE_TQUAD_SPECIAL(chan,	e1end,tvertHookStart	,	baseTVert	+
triTVerts-1,	e2start);
							}
						else	if	(hookPatches[px]&4)
							{
							MAKE_TTRI(chan,	baseTVert	+	patchDivs,	e1start,	e0end);
							MAKE_TQUAD_SPECIAL(chan,	baseTVert	+	triTVerts-
1,tvertHookStart,	e2start,	e1end);
							MAKE_TQUAD_SPECIAL(chan,	e2end,tvertHookStart,	baseTVert,
e0start);
							}
						else
							{
							MAKE_TTRI(chan,	baseTVert,	e0start,	e2end);
							MAKE_TTRI(chan,	baseTVert	+	patchDivs,	e1start,	e0end);
							MAKE_TTRI(chan,	baseTVert	+	triTVerts-1,	e2start,	e1end);
							}
						//	Create	the	edges,	if	necessary
						if(workSteps	>	1)	{
							//	Corner-to-interiors
							MAKE_TTRI(chan,	e0start,	i0,	e2end);
							MAKE_TTRI(chan,	e1start,	i1,	e0end);
							MAKE_TTRI(chan,	e2start,	i2,	e1end);

							//	Now	the	edges
							int	e0ix	=	e0start,	e1ix	=	e1start,	e2ix	=	e2start;
							int	i0ix	=	i0,	i1ix	=	i1,	i2ix	=	i2;
							int	holder	=	tvertHookStart;
							for(int	i	=	0;	i	<	(workSteps	-	1);	++i)	{
								int	e1dir	=	workSteps	-	i;
								int	e2dir	=	-(3	+	i);
								if	(hookPatches[px]&1)
									{
									MAKE_TQUAD_SPECIAL(chan,	e0ix,	tvertHookStart,	e0ix+1,	i0ix);
									MAKE_TTRI(chan,	e1ix,	e1ix+e1dir,	i1ix);
									MAKE_TTRI(chan,	e2ix,	e2ix+e2dir,	i2ix);
									}
								else	if	(hookPatches[px]&2)
									{
									MAKE_TTRI(chan,	e0ix,	e0ix+1,	i0ix);
									MAKE_TQUAD_SPECIAL(chan,	e1ix,	tvertHookStart,	e1ix+e1dir,
i1ix);
									MAKE_TTRI(chan,	e2ix,	e2ix+e2dir,	i2ix);
									}
								else	if	(hookPatches[px]&4)
									{
									MAKE_TTRI(chan,	e0ix,	e0ix+1,	i0ix);
									MAKE_TTRI(chan,	e1ix,	e1ix+e1dir,	i1ix);
									MAKE_TQUAD_SPECIAL(chan,	e2ix,	tvertHookStart,	e2ix+e2dir,
i2ix);
									}
								else
									{
									MAKE_TTRI(chan,	e0ix,	e0ix+1,	i0ix);
									MAKE_TTRI(chan,	e1ix,	e1ix+e1dir,	i1ix);
									MAKE_TTRI(chan,	e2ix,	e2ix+e2dir,	i2ix);

									}
								i0ix++;
								i1ix	+=	e1dir;
								i2ix	-=	(4	+	i);
								e0ix++;
								e1ix	+=	e1dir;
								e2ix	+=	e2dir;
								}
							//	Make	interleaving	triangles
							e0ix	=	e0start	+	1;
							e1ix	=	e1start	+	workSteps;
							e2ix	=	e2start	-	3;
							i0ix	=	i0;
							i1ix	=	i1;
							i2ix	=	i2;
							for(i	=	1;	i	<	(workSteps	-	1);	++i)	{
								int	e1dir	=	workSteps	-	i;
								int	e2dir	=	-(3	+	i);
								MAKE_TTRI(chan,	e0ix,	i0ix	+	1,	i0ix);
								MAKE_TTRI(chan,	e1ix,	e1ix	-	1,	i1ix);
								MAKE_TTRI(chan,	e2ix,	i2ix	+	e2dir,	i2ix);
								i0ix++;
								i1ix	=	i1ix	+	e1dir	+	1;
								i2ix	+=	e2dir;
								e0ix++;
								e1ix	+=	e1dir;
								e2ix	+=	e2dir;
								}
							}
						else
							MAKE_TTRI(chan,	e0start,	e1start,	e2start);
						}

						break;
					case	PATCH_QUAD:	{
						int	tvbase	=	baseTVert;
						int	qvstep	=	patchDivs	+	1;
						//	If	only	need	to	make	1	quad,	make	it	and	blow!
						if(workSteps	==	0)	{
							if	(hookPatches[px]==0)
								{
								MAKE_TQUAD(chan,	tvbase,	tvbase+1,	tvbase+3,	tvbase+2);
								}
							else
								{	
								if	(hookPatches[px]&1)
									{
									MAKE_TPENTA_EDGE1(chan,	tvbase,tvertHookStart,	tvbase+1,
tvbase+3,	tvbase+2);
									}
								else	if	(hookPatches[px]&2)
									{
									MAKE_TPENTA_EDGE2(chan,	tvbase,	tvbase+1,tvertHookStart,
tvbase+3,	tvbase+2);
									}
								else	if	(hookPatches[px]&4)
									{
									MAKE_TPENTA_EDGE3(chan,	tvbase,	tvbase+1,
tvbase+3,tvertHookStart,	tvbase+2);
									}
								else	if	(hookPatches[px]&8)
									{
									MAKE_TPENTA_EDGE4(chan,	tvbase,	tvbase+1,	tvbase+3,
tvbase+2,tvertHookStart);
									}

								}
							break;
							}
						if(workSteps	>	1)	{
							int	ivbase	=	baseTVert	+	qvstep	+	1;
							//	Make	the	inside	faces	if	necessary
							for(int	v	=	0;	v	<	(workSteps-1);	++v)	{
								int	vix	=	ivbase	+	v	*	qvstep;
								for(int	u	=	0;	u	<	(workSteps-1);	++u,	++vix)	{
									MAKE_TQUAD(chan,	vix,	vix	+	1,	vix	+	qvstep	+	1,	vix	+	qvstep);
									}
								}
							}
						int	e0start	=	baseTVert	+	1;
						int	e1start	=	baseTVert	+	qvstep	*	2	-	1;
						int	e2start	=	baseTVert	+	quadTVerts	-	2;
						int	e3start	=	baseTVert	+	qvstep	*	workSteps;
						int	e0end	=	e0start	+	workSteps	-	1;
						int	e1end	=	e1start	+	qvstep	*	(workSteps	-	1);
						int	e2end	=	e2start	-	(workSteps	-	1);
						int	e3end	=	e3start	-	qvstep	*	(workSteps	-	1);
						//	Create	the	corners
						int	i0	=	baseTVert	+	qvstep	+	1;
						int	i1	=	i0	+	(workSteps	-	1);
						int	i2	=	i1	+	qvstep	*	(workSteps	-	1);
						int	i3	=	i2	-	(workSteps	-	1);
						if	(hookPatches[px]&1)
							{
							MAKE_TPENTA_EDGE1(chan,	baseTVert,tvertHookStart,	e0start,	i0,
e3end);
							MAKE_TPENTA_EDGE1(chan,	e0end,	tvertHookStart,	baseTVert	+
patchDivs,e1start,	i1);

							MAKE_TQUAD(chan,	baseTVert	+	quadTVerts	-	1,	e2start,	i2,	e1end);
							MAKE_TQUAD(chan,	e3start,	i3,	e2end,	baseTVert	+	qvstep	*
patchDivs);
							}
						else	if	(hookPatches[px]&2)
							{
							MAKE_TQUAD(chan,	baseTVert,	e0start,	i0,	e3end);
							MAKE_TPENTA_EDGE2(chan,	e0end,	baseTVert	+
patchDivs,tvertHookStart,e1start,	i1);
							MAKE_TPENTA_EDGE2(chan,	i2,	e1end,tvertHookStart,	baseTVert	+
quadTVerts	-	1,	e2start);
							MAKE_TQUAD(chan,	e3start,	i3,	e2end,	baseTVert	+	qvstep	*
patchDivs);
							}
						else	if	(hookPatches[px]&4)
							{
							MAKE_TQUAD(chan,	baseTVert,	e0start,	i0,	e3end);
							MAKE_TQUAD(chan,	e1start,	i1,	e0end,	baseTVert	+	patchDivs);
							MAKE_TPENTA_EDGE3(chan,	i2,	e1end,	baseTVert	+	quadTVerts	-
1,tvertHookStart,	e2start);
							MAKE_TPENTA_EDGE3(chan,	e3start,	i3,	e2end,tvertHookStart,
baseTVert	+	qvstep	*	patchDivs);
							}
						else	if	(hookPatches[px]&8)
							{
							MAKE_TQUAD(chan,	e1start,	i1,	e0end,	baseTVert	+	patchDivs);
							MAKE_TQUAD(chan,	baseTVert	+	quadTVerts	-	1,	e2start,	i2,	e1end);
							MAKE_TPENTA_EDGE4(chan,	e3start,	i3,	e2end,	baseTVert	+	qvstep
*	patchDivs,tvertHookStart);
							MAKE_TPENTA_EDGE4(chan,	baseTVert,	e0start,	i0,
e3end,tvertHookStart);
							}
						else

							{
							MAKE_TQUAD(chan,	baseTVert,	e0start,	i0,	e3end);
							MAKE_TQUAD(chan,	e1start,	i1,	e0end,	baseTVert	+	patchDivs);
							MAKE_TQUAD(chan,	baseTVert	+	quadTVerts	-	1,	e2start,	i2,	e1end);
							MAKE_TQUAD(chan,	e3start,	i3,	e2end,	baseTVert	+	qvstep	*
patchDivs);
							}
						//	Create	the	edges,	if	necessary
						if(workSteps	>	1)	{
							int	e0ix	=	e0start,	e1ix	=	e1start,	e2ix	=	e2start,	e3ix	=	e3start;
							for(int	i	=	0;	i	<	(workSteps	-	1);	++i)	{
								if	(hookPatches[px]&1)
									{
									MAKE_TPENTA_EDGE1(chan,	e0ix,tvertHookStart,	e0ix+1,	i0+1,
i0);
									MAKE_TQUAD(chan,	e1ix+qvstep,	i1+qvstep,	i1,	e1ix);
									MAKE_TQUAD(chan,	e2ix,	e2ix-1,	i2-1,	i2);
									MAKE_TQUAD(chan,	e3ix-qvstep,	i3-qvstep,	i3,	e3ix);
									}
								else	if	(hookPatches[px]&2)
									{
									MAKE_TQUAD(chan,	e0ix,	e0ix+1,	i0+1,	i0);
									MAKE_TPENTA_EDGE2(chan,	i1,	e1ix,	tvertHookStart,	e1ix+qvstep,
i1+qvstep);
									MAKE_TQUAD(chan,	e2ix,	e2ix-1,	i2-1,	i2);
									MAKE_TQUAD(chan,	e3ix-qvstep,	i3-qvstep,	i3,	e3ix);
									}
								else	if	(hookPatches[px]&4)
									{
									MAKE_TQUAD(chan,	e0ix,	e0ix+1,	i0+1,	i0);
									MAKE_TQUAD(chan,	e1ix+qvstep,	i1+qvstep,	i1,	e1ix);
									MAKE_TPENTA_EDGE3(chan,	i2-1,	i2,e2ix,	tvertHookStart,e2ix-1);

									MAKE_TQUAD(chan,	e3ix-qvstep,	i3-qvstep,	i3,	e3ix);
									}
								else	if	(hookPatches[px]&8)
									{
									MAKE_TQUAD(chan,	e0ix,	e0ix+1,	i0+1,	i0);
									MAKE_TQUAD(chan,	e1ix+qvstep,	i1+qvstep,	i1,	e1ix);
									MAKE_TQUAD(chan,	e2ix,	e2ix-1,	i2-1,	i2);
									MAKE_TPENTA_EDGE4(chan,	e3ix-qvstep,	i3-qvstep,	i3,
e3ix,tvertHookStart);
									}
								else
									{
									MAKE_TQUAD(chan,	e0ix,	e0ix+1,	i0+1,	i0);
									MAKE_TQUAD(chan,	e1ix+qvstep,	i1+qvstep,	i1,	e1ix);
									MAKE_TQUAD(chan,	e2ix,	e2ix-1,	i2-1,	i2);
									MAKE_TQUAD(chan,	e3ix-qvstep,	i3-qvstep,	i3,	e3ix);
									}
								e0ix++;
								e1ix	+=	qvstep;
								e2ix--;
								e3ix	-=	qvstep;
								i0++;
								i1	+=	qvstep;
								i2--;
								i3	-=	qvstep;
								}
							}
						}
					}
				}
			assert(tface	==	nFaces);
			}

		}
		
	mesh.InvalidateGeomCache();
	mesh.EnableEdgeList(1);
	//	The	mesh	is	now	valid!
	meshValid	=	TRUE;
	return;
	}
//	Compute	the	degree-4	alias	control	points
void	Patch::ComputeAux(PatchMesh	*pMesh,	int	index)	{
	Point3	p1	=	pMesh->getVert(v[index]).p;
	Point3	p2	=	pMesh->getVert(v[(index+1)%3]).p;
	int	vecIndex	=	index	*	2;
	Point3	v1	=	pMesh->getVec(vec[vecIndex]).p;
	Point3	v2	=	pMesh->getVec(vec[(vecIndex+1)%6]).p;
	int	auxIndex	=	index	*	3;
	aux[auxIndex++]	=	p1	+	(v1	-	p1)	*	0.75f;
	aux[auxIndex++]	=	v1	+	(v2	-	v1)	*	0.5f;
	aux[auxIndex++]	=	v2	+	(p2	-	v2)	*	0.25f;
#ifdef	CHECK_TRI_PATCH_AUX
	auxSource[index*3]	=	p1;
	auxSource[index*3+1]	=	v1;
	auxSource[index*3+2]	=	v2;
#endif	//CHECK_TRI_PATCH_AUX
	}
//	Compute	interior	vertices	considering	this	patch	only
void	Patch::computeInteriors(PatchMesh	*pMesh)	{
	PatchVec	*vecp	=	pMesh->vecs;
	switch(type)	{
		case	3:	{
			//	Triangulars	must	also	compute	the	degree	4	equivalent	control	points!
			//	These	get	stored	in	the	'aux'	array

			ComputeAux(pMesh,	0);
			ComputeAux(pMesh,	1);
			ComputeAux(pMesh,	2);
			
			//	If	the	interior	points	are	automatic,	compute	'em!
			if(flags	&	PATCH_AUTO)	{
				Point3	a	=	pMesh->getVert(v[0]).p;
				Point3	b	=	pMesh->getVert(v[1]).p;
				Point3	c	=	pMesh->getVert(v[2]).p;
				vecp[interior[0]].p	=	pMesh->getVec(vec[5]).p	+	(pMesh-
>getVec(vec[0]).p	-	a);
				vecp[interior[1]].p	=	pMesh->getVec(vec[1]).p	+	(pMesh-
>getVec(vec[2]).p	-	b);
				vecp[interior[2]].p	=	pMesh->getVec(vec[3]).p	+	(pMesh-
>getVec(vec[4]).p	-	c);
				}
			}
			break;
		case	4:
			if(flags	&	PATCH_AUTO)	{
				Point3	a	=	pMesh->getVert(v[0]).p;
				Point3	b	=	pMesh->getVert(v[1]).p;
				Point3	c	=	pMesh->getVert(v[2]).p;
				Point3	d	=	pMesh->getVert(v[3]).p;
				vecp[interior[0]].p	=	pMesh->getVec(vec[7]).p	+	(pMesh-
>getVec(vec[0]).p	-	a);
				vecp[interior[1]].p	=	pMesh->getVec(vec[1]).p	+	(pMesh-
>getVec(vec[2]).p	-	b);
				vecp[interior[2]].p	=	pMesh->getVec(vec[3]).p	+	(pMesh-
>getVec(vec[4]).p	-	c);
				vecp[interior[3]].p	=	pMesh->getVec(vec[5]).p	+	(pMesh-
>getVec(vec[6]).p	-	d);
				}

			break;
		}
	}
int	PatchMesh::UpdateHooks()
	{
//check	to	make	sure	all	are	valid	hooks	if	not	delete	them
	for	(int	i	=	0;	i	<	hooks.Count();i++)
		{
		int	j	=	hooks[i].hookEdge;
		int	a	=	edges[j].v1;
		int	b	=	edges[j].v2;
		
		if	(((a	==	hooks[i].upperPoint)	&&	(b	==	hooks[i].lowerPoint))	||
				((b	==	hooks[i].upperPoint)	&&	(a	==	hooks[i].lowerPoint)))
			{
					Point3	delta;
//build	a	spline	based	on	that	edge
					Spline3D	work;
					work.AddKnot(SplineKnot(KTYPE_BEZIER,	LTYPE_CURVE,
zeroPoint,	zeroPoint,	zeroPoint));
					work.AddKnot(SplineKnot(KTYPE_BEZIER,	LTYPE_CURVE,
zeroPoint,	zeroPoint,	zeroPoint));
					PatchEdge	&edge	=	edges[j];
					work.SetKnotPoint(0,	verts[edge.v1].p);
					work.SetOutVec(0,	vecs[edge.vec12].p);
					work.SetInVec(1,	vecs[edge.vec21].p);
					work.SetKnotPoint(1,	verts[edge.v2].p);
//refine	from	the	spline	refine
	//	Get	the	knot	points
					Point3	v00	=	work.GetKnotPoint(0);
					Point3	v30	=	work.GetKnotPoint(1);
					Point3	point	=	work.InterpBezier3D(0,	0.5f);

					Point3	v10	=	work.GetOutVec(0);
					Point3	v20	=	work.GetInVec(1);
					Point3	v01	=	v00	+	(v10	-	v00)	*	0.5f;
					Point3	v21	=	v20	+	(v30	-	v20)	*	0.5f;
					Point3	v11	=	v10	+	(v20	-	v10)	*	0.5f;
					Point3	v02	=	v01	+	(v11	-	v01)	*	0.5f;
					Point3	v12	=	v11	+	(v21	-	v11)	*	0.5f;
					Point3	v03	=	v02	+	(v12	-	v02)	*	0.5f;
					Point3	av,bv,cv,dv;
					av	=	v01;
					bv	=	v02;
					cv	=	v12;
					dv	=	v21;
					PatchVert	patchvert	=	getVert(hooks[i].hookPoint);
					delta	=	point-patchvert.p;
					setVert(hooks[i].hookPoint,point);				
					setVec(hooks[i].upperVec,av);
					setVec(hooks[i].upperHookVec,bv);
					setVec(hooks[i].lowerHookVec,cv);
					setVec(hooks[i].lowerVec,dv);
					for	(int	ct	=	0;	ct	<patchvert.vectors.Count();ct++)
						{
						int	vecIndex	=	patchvert.vectors[ct];
						if	((vecIndex	!=	hooks[i].upperHookVec)	&&	(vecIndex	!=
hooks[i].lowerHookVec))
							{
							PatchVec	vp	=	getVec(vecIndex);
							vp.p	+=	delta;
							setVec(vecIndex,vp.p);
							}
						}
			}

		else
			{
			hooks.Delete(i,1);
			i--;
			}
		}
	return	1;
	}

Working	with	Shapes	and	Splines
See	Also:	Class	SplineShape,	Class	BezierShape.

Overview
This	section	presents	information	about	working	with	shapes	and	splines.	It
covers	the	main	classes	used,	provides	an	overview	of	creating	splines,	and
discusses	the	capping	of	shapes	with	meshes	and	patches.
A	good	example	shape	for	study	is	the	Donut	plug-in.	This	shape	has	two	circles,
an	inner	and	an	outer	that	make	up	the	shape.	The	code	for	this	plug-in	is	in
\MAXSDK\SAMPLES\OBJECTS\DONUTS.CPP.

Overview	of	the	Principal	Classes
The	following	are	the	main	classes	used	when	working	with	shapes	and	splines:
Class	ShapeObject
These	are	open	or	closed	hierarchical	shape	objects.	This	is	the	base	class	that
SimpleSpline,	SimpleShape,	SplineShape,	and	LinearShape	are
derived	from.	This	class	is	defined	in
\MAXSDK\INCLUDE\OBJECT.H.
Class	SplineShape
The	SplineShape	is	the	shape	object	flows	down	the	geometry	pipeline	of
MAX.	The	SplineShape	contains	a	BezierShape.	A	SplineShape	and	its
contained	BezierShape	are	analogous	to	a	TriObject	which	flows	down
the	pipeline	and	its	Mesh.	This	class	is	defined	in
\MAXSDK\INCLUDE\SPLSHAPE.H.
Class	BezierShape
The	BezierShape	is	effectively	a	collection	of	Bezier	Splines.	For	example,
the	3ds	max	Donut	object	has	two	splines	in	a	hierarchy	to	make	a	shape.	The
BezierShape	contains	these	splines.	The	BezierShape	is	analogous	to	the
Mesh	of	the	TriObject.	This	class	is	defined	in
\MAXSDK\INCLUDE\SHAPE.H.
Class	Spline3D
This	is	a	general	3D	spline	class.	The	BezierShape	class	has	a	list	of	these
splines	that	make	up	the	bezier	shape.	This	class	is	defined	in
\MAXSDK\INCLUDE\SPLINE3D.H.
Class	PolyShape
This	class	is	used	in	the	caching	of	bezier	shapes.	This	is	used	for	doing	a	one
time	interpolation	of	a	bezier	shape	into	a	form	that	is	the	same	shape	but
doesn't	require	any	further	interpolation.	In	this	way	the	system	can	do	the
complex	calculations	once,	store	the	shape	into	this	PolyShape
representation,	and	not	have	to	go	through	the	cubic	spline	calculations	to
figure	out	where	the	points	are	in	the	future.	This	class	maintains	an	array	of
PolyLines.	This	class	is	defined	in
\MAXSDK\INCLUDE\POLYSHP.H.
Class	PolyLine

This	class	describes	a	single	polygon	in	a	PolyShape	using	linear	segments.
This	class	is	defined	in	\MAXSDK\INCLUDE\POLYSHP.H.
Class	SimpleSpline
This	is	a	class	used	in	the	creation	of	shape	plug-ins.	Most	of	the	3ds	max
shapes	and	splines	are	derived	from	this	class.	For	example,	Line,	Arc,	Circle,
Ellipse	and	Star	are	all	SimpleSplines.	This	class	is	defined	in
\MAXSDK\INCLUDE\SIMPSPL.H.
Class	SimpleShape
This	class	is	used	to	make	procedural	shape	primitives	easier	to	create.	The
3ds	max	Helix	procedural	shape	is	derived	from	this	class.	It's	defined	in
\MAXSDK\INCLUDE\SIMPSHP.H.
Class	LinearShape
This	class	is	similar	to	a	SplineShape	except	this	class	uses	a	PolyShape
as	its	data	while	a	SplineShape	uses	a	BezierShape	as	its	data.	Therefore
this	is	a	shape	made	up	of	entirely	linear	segments.	This	class	is	defined	in
\MAXSDK\INCLUDE\LINSHAPE.H.

Main	Methods	in	Creating	a	Spline
Below	is	a	section	of	code	from	the	Circle	plug-in.	This	plug-in	is	derived	from
class	SimpleSpline.	This	code	demonstrates	the	key	methods	used	in	building	a
shape.	The	method	SimpleSpline::BuildShape()	is	called	to	build	the	shape
at	the	specified	time	and	store	the	results	in	ashape.
void	CircleObject::BuildShape(TimeValue	t,	BezierShape&
ashape)	{
	//	Start	the	validity	interval	at	forever	and	whittle	it	down.
	ivalid	=	FOREVER;
	float	radius;
	pblock->GetValue(PB_RADIUS,	t,	radius,	ivalid);
	LimitValue(radius,	MIN_RADIUS,	MAX_RADIUS);
The	first	thing	to	notice	is	the	call	to	NewShape().	This	ensures	the	shape	is
flushed	out	and	emptied.
Next	this	method	calls	MakeCircle().	See	the	code	for	this	method	below.
	ashape.NewShape();
	//	Get	parameters	from	SimpleSpline	and	place	them	in	the
BezierShape
	int	steps;
	BOOL	optimize,adaptive;
	ipblock->GetValue(IPB_STEPS,	t,	steps,	ivalid);
	ipblock->GetValue(IPB_OPTIMIZE,	t,	optimize,	ivalid);
	ipblock->GetValue(IPB_ADAPTIVE,	t,	adaptive,	ivalid);
	ashape.steps	=	adaptive	?	-1	:	steps;
	ashape.optimize	=	optimize;
Next	this	method	calls	MakeCircle().	See	the	code	for	this	method	below.
	MakeCircle(ashape,radius);
After	MakeCircle()	has	returned,	another	important	call	is	made.	This	is
UpdateSels().	This	should	be	called	when	you	are	done	adding	all	the
polygons	to	the	shape.	This	method	updates	the	selection	set	information
maintained	by	the	shape.	It	is	vital	to	call	this	before	you	are	done.
	ashape.UpdateSels();	//	Make	sure	it	readies	the	selection	set	info
Finally	we	clear	any	caches	from	the	shape.

	ashape.InvalidateGeomCache();
	}
static	void	MakeCircle(BezierShape&	ashape,	float	radius)	{
	float	vector	=	CIRCLE_VECTOR_LENGTH	*	radius;
First	create	a	new	spline.	This	is	done	by	calling	the	NewSpline()	method	on
the	shape.	The	shape	adds	a	polygon	to	itself	and	returns	a	pointer	to	it.
	Spline3D	*spline	=	ashape.NewSpline();
	//	Now	add	all	the	necessary	points
	for(int	ix=0;	ix<4;	++ix)	{
		float	angle	=	6.2831853f	*	(float)ix	/	4.0f;
		float	sinfac	=	(float)sin(angle),	cosfac	=	(float)cos(angle);
		Point3	p(cosfac	*	radius,	sinfac	*	radius,	0.0f);
		Point3	rotvec	=	Point3(sinfac	*	vector,	-cosfac	*	vector,	0.0f);
Next	points	or	knots	are	added	to	the	spline	by	calling	AddKnot().	This
allows	you	to	add	different	types	of	knots	and	line	segments.
		spline-
>AddKnot(SplineKnot(KTYPE_BEZIER,LTYPE_CURVE,
			p,p	+	rotvec,p	-	rotvec));
		}
After	adding	four	knots,	the	SetClosed()	method	is	called	to	make	sure	it's	a
closed	circle.
	spline->SetClosed();
Next,	an	important	call	is	made.	The	spline	has	a	cached	set	of	bezier	points
inside	it.	This	needs	to	be	called	if	you	change	the	points	of	the	spline.	This
methods	updates	the	information	internal	to	the	spline.
	spline->ComputeBezPoints();
	}

Capping	a	Shape	with	a	Mesh
This	section	discusses	the	capping	of	shapes	using	a	mesh.	The	SDK	provides
tools	for	easily	creating	these	mesh	caps	for	shapes.
Typically	for	an	extruded	object,	the	capping	on	the	front	of	the	object	is	exactly
the	same	as	the	capping	on	the	back	of	the	object.	For	example,	if	you	extrude
the	letter	'M'.	It's	redundant	to	have	to	cap	this	separately	for	the	front	and	back
(as	they	are	the	same).	When	dealing	with	complex	shapes,	having	to	go	back
and	do	the	second	cap	is	very	time	consuming.	So	the	capping	system	tries	to
cache	information	to	speed	up	the	process.
Sample	code	for	capping	can	be	found	in	the	extrude	and	lathe	modifiers.	These
plug-ins	are	in	\MAXSDK\SAMPLES\MODIFIERS\SURFREV.CPP
and	\MAXSDK\SAMPLES\MODIFIERS\EXTRUDE.CPP.
The	following	code	fragments	are	taken	from	EXTRUDE.CPP.	This
demonstrates	the	basic	process	for	capping	a	shape.	This	code	is	part	of	the
method	ExtrudeMod::BuildMeshFromShape().
For	this	example,	we	are	starting	of	with	a	ShapeObject	shape	that	we	want
capped	with	a	mesh.	The	first	thing	to	do	is	convert	the	shape	to	a	PolyShape.
This	greatly	simplifies	the	mesh	conversion.	The	code	below	shows	how	this	is
done.
//	Make	the	shape	convert	itself	to	a	PolyShape.
//	This	makes	our	mesh	conversion	MUCH	easier!
PolyShape	pShape;
shape->MakePolyShape(t,	pShape);

Next,	we	organize	the	curves	into	a	hierarchy.	This	automatically	figures	out	the
shape	nesting	and	directions	for	proper	capping.
ShapeHierarchy	hier	=	pShape.OrganizeCurves(t);

Next	we	need	to	reverse	the	shapes	whose	directions	are	incorrect	for	the
hierarchy.	The	hierarchy	calculated	above	contains	a	BitArray	that	describes
which	shapes	need	to	be	reversed.	This	is	passed	into	the	Reverse()	method	of
the	PolyShape	to	tell	it	which	shapes	to	reverse.
//	Need	to	flip	the	reversed	curves	in	the	shape!
pShape.Reverse(hier.reverse);

At	this	point	the	PolyShape	is	all	set	up	with	the	proper	clockwise/counter-

clockwise	ordering	on	all	the	polygons	so	all	that	needs	to	be	done	is	to	generate
the	faces.	You	may	refer	to	the	full	source	of	EXTRUDE.CPP	to	see	how	this
is	done.
The	next	thing	is	just	to	create	the	caps.	This	begins	by	instantiating	a
MeshCapInfo	class	and	asking	the	PolyShape	to	make	a	cap.	This	fills	up	the
MeshCapInfo	class	with	all	the	information	it	needs	to	create	a	cap.	The	type
can	be	morph	or	grid	capping.	Morph	capping	only	uses	the	existing	vertices	in
the	PolyShape	to	generate	the	cap.	The	capping	code	does	the	best	job	it	can
given	this	constraint,	however	it	is	possible	to	wind	up	with	long	sliver-like	faces
on	the	cap.	This	is	referred	to	as	a	morph	cap	because	if	you	cap	a	shape	using
this	method	it	does	not	generate	any	new	vertices	and	you	can	then	morph
between	shapes	with	the	same	number	of	vertices.	A	Grid	cap	generates	new
vertices	in	the	interior	of	the	shape	in	a	grid	pattern.	This	helps	to	break	up	the
shape	and	helps	reduce	slivering.	Grid	capping	will	generate	different	number	of
vertices	based	on	the	shape	and	thus	the	shapes	are	not	morphable.
MeshCapInfo	capInfo;
pShape.MakeCap(t,	capInfo,	capType);

After	this	is	done,	the	MeshCapInfo	is	cached	within	the	shape.	Therefore	if
this	is	needed	again,	no	work	needs	to	be	done.
Next,	a	MeshCapper	object	is	created.	This	is	done	by	passing	the
PolyShape	as	an	argument	to	the	constructor.	This	gets	the	MeshCapper
ready	for	the	topology	of	the	shape.	Developers	don't	need	to	understand	the
inner	workings	of	the	MeshCapper,	it's	just	a	tool	used	to	aide	in	capping.
//	Build	information	for	capping
MeshCapper	capper(pShape);

Below	is	the	code	where	the	start	of	the	extrusion	is	capped.	Inside	the	capper	is
a	MeshCapPoly.	There	is	one	for	each	polygon	in	the	shape.	The
MeshCapPoly	needs	to	know	the	corresponding	mesh	vertex	for	each	vertex	in
the	PolyLine.	This	is	done	by	calling	SetVert()	on	the	MeshCapPoly.	For
example,	this	might	associate	vertex	0	in	the	PolyLine	with	vertex	200	in	the
mesh,	vertex	1	with	mesh	vertex	220,	etc.
if(capStart)	{
	vert	=	0;
	for(poly	=	0;	poly	<	polys;	++poly)	{

		PolyLine	&line	=	pShape.lines[poly];
		MeshCapPoly	&capline	=	capper[poly];
		int	lverts	=	line.numPts;
		for(int	v	=	0;	v	<	lverts;	++v)
			//	Gives	this	vert's	location	in	the	mesh!
			capline.SetVert(v,	vert++);
		vert	+=	lverts	*	levels;
		}

The	next	thing	that	is	done	is	used	only	for	grid	capping.	A	grid	cap	generates
new	vertices	inside	the	shape	that	make	up	the	grid.	In	the	case	of	a	SurfRev	for
example,	the	end	cap	might	be	rotated,	or	scaled	in	some	manner.	A	matrix	is
required	so	the	capper	knows	how	to	orient	the	vertices	into	the	correct	location.
This	matrix	is	ignored	for	non-grid	capping.
	//	Create	a	work	matrix	for	grid	capping
	Matrix3	gridMat	=	TransMatrix(offset1);

The	final	step	is	to	cap	the	mesh.	This	is	done	using	a	method	of	the	capper
named	CapMesh().	This	method	is	passed	the	output	mesh,	the
MeshCapInfo,	a	flag	that	indicates	if	the	cap	should	be	flipped,	the	smoothing
group	number	for	all	the	faces	in	the	cap,	and	a	pointer	to	the	orientation	matrix.
	capper.CapMesh(mesh,	capInfo,	TRUE,	16,	&gridMat);

Once	this	is	done	the	shape	has	been	capped	with	a	mesh.

Capping	a	Shape	with	a	Patch
This	section	discusses	the	capping	of	shapes	with	patches.	This	is	very	similar	to
the	mesh	capping	discussed	above.
Again,	the	following	code	fragments	are	taken	from	EXTRUDE.CPP.	This
demonstrates	the	basic	process	for	capping	a	shape	with	a	patch.
Here	we	try	to	use	a	BezierShape	to	create	the	cap.	First	a	BezierShape
object	is	created.	Then	the	shape	to	be	capped	is	asked	if	it	can	make	a
transformation	from	itself	to	a	BezierShape.	If	it	can,	we	just	ask	it	to	make	a
BezierShape.	If	it	cannot,	we	are	forced	to	use	a	PolyShape.	For	patch
capping	this	is	much	less	desirable,	but	if	we	can't	make	a	BezierShape,	then
this	is	used.	The	shape	is	asked	to	convert	to	a	PolyShape,	and	then	the
PolyShape	is	converted	to	a	BezierShape.	This	is	a	very	poor	conversion,	as
all	it	does	is	make	a	linear	spline	out	of	the	PolyShape.
//	If	the	shape	can	convert	itself	to	a	BezierShape,	have	it	do	so!
BezierShape	bShape;
if	(shape->CanMakeBezier())
	shape->MakeBezier(t,	bShape);
else	{
	PolyShape	pShape;
	shape->MakePolyShape(t,	pShape);
	bShape	=	pShape;	//	UGH	--	Convert	it	from	a	PolyShape	--	not
good!
	}

Next,	the	curves	are	organized	into	a	hierarchy.	This	automatically	figures	out
the	shape	nesting	and	directions	for	proper	capping.
ShapeHierarchy	hier;
bShape.OrganizeCurves(t,	&hier);

Next	we	need	to	reverse	the	shapes	whose	direction	is	incorrect	for	the	hierarchy.
The	hierarchy	calculated	above	contains	a	BitArray	that	describes	which
shapes	need	to	be	reversed.	This	is	passed	into	the	reverse	method	of	the
BezierShape	to	tell	it	which	shapes	to	reverse.
//	Need	to	flip	the	reversed	polys...
bShape.Reverse(hier.reverse);

At	this	point	the	BezierShape	is	all	set	up	with	the	proper	clockwise/counter-
clockwise	ordering	on	all	the	polygons.	Next	the	extrude	modifier	generates	the
patches.	You	may	refer	to	the	full	source	of	EXTRUDE.CPP	to	see	how	this	is
done.
The	next	step	is	to	create	the	caps.	This	begins	by	instantiaing	a	PatchCapInfo
class	and	asking	the	BezierShape	to	make	a	cap.	This	fills	up	the
PatchCapInfo	class	with	all	the	information	it	needs	to	create	a	cap.
PatchCapInfo	capInfo;
bShape.MakeCap(t,	capInfo);

After	this	is	done,	the	PatchCapInfo	is	cached	within	the	shape.	Therefore	if
this	is	needed	again,	no	work	needs	to	be	done.
Next,	a	PatchCapper	object	is	created.	This	is	done	by	passing	the
BezierShape	as	an	argument	to	the	constructor.	This	gets	the	PatchCapper
ready	for	the	topology	of	the	shape.	Developers	don't	need	to	understand	the
inner	workings	of	the	PatchCapper,	it's	just	a	tool	used	to	aide	in	capping.
//	Build	information	for	capping
PatchCapper	capper(bShape);

Below	is	the	code	where	the	start	of	the	extrusion	is	capped.	Inside	the	capper	is
a	PatchCapPoly.	There	is	one	for	each	polygon	in	the	shape.	The
PatchCapPoly	needs	to	know	the	vertex	number	in	the	patch	mesh	that
corresponds	to	the	given	knot	in	the	bezier	spline.	This	is	done	by	calling
SetVert()	on	the	PatchCapPoly.	After	this	is	done,	the	same	thing	happens
for	each	of	the	vectors	when	SetVec()	is	called.
if(capStart)	{
	vert	=	0;
	int	baseVec	=	0;
	for(poly	=	0;	poly	<	polys;	++poly)	{
		Spline3D	*spline	=	bShape.splines[poly];
		PatchCapPoly	&capline	=	capper[poly];
		int	lverts	=	spline->KnotCount();
		for(int	v	=	0;	v	<	lverts;	++v)
			//	Gives	this	vert's	location	in	the	mesh!
			capline.SetVert(v,	vert++);
		vert	+=	lverts	*	levels;

		vec	=	baseVec;
		int	lvecs	=	spline->Segments()	*	2;
		for(v	=	0;	v	<	lvecs;	++v)
			//	Gives	this	vec's	location	in	the	mesh!
			capline.SetVec(v,	vec++);
		baseVec	+=	lvecs	*	(levels	+	1)	+	spline->KnotCount()	*	levels	*
2;
		}

There	are	vectors	generated	inside	the	patch	cap.	In	the	case	of	a	SurfRev	for
example,	the	end	cap	might	be	rotated,	or	scaled	in	some	manner.	A	matrix	is
required	so	the	capper	knows	how	to	orient	the	vectors	into	the	correct	location.
	//	Create	a	work	matrix	for	capping
	Matrix3	mat	=	TransMatrix(offset1);

The	final	step	is	to	cap	the	patch	mesh.	This	is	done	using	a	method	of	the
capper	named	CapPatchMesh().	This	method	is	passed	the	output	patch	mesh,
the	PatchCapInfo,	a	flag	that	indicates	if	the	cap	should	be	flipped,	the
smoothing	group	number	for	all	the	patches	in	the	cap,	and	a	pointer	to	the
orientation	matrix.
	capper.CapPatchMesh(pmesh,	capInfo,	TRUE,	16,	&mat);

Once	this	is	done	the	shape	has	been	capped	with	a	patch.

Modifier	Pipeline	Note
The	ShapeObject	class	has	a	special	method,	CopyBaseData(),	which	is	used
by	derived	classes	to	make	sure	that,	when	they	copy	themselves,	they	are	also
copying	the	data	in	the	ShapeObject.	This	is	usually	used	in	the	assignment
operator	of	derived	classes.	It	is	also	used	in	the	ShallowCopy	method	of
objects	that	are	passed	up	the	modifier	pipeline.	In	this	case,	it	is	VITAL	that	you
wrap	the	CopyBaseData	call	in	Suspend	and	Resume	calls	to	the	undo
mechanism:
theHold.Suspend();
CopyBaseData(*fob);
theHold.Resume();

If	this	is	not	done,	when	certain	undo	functions	are	performed,	a	crash	will	occur

due	to	the	temporary	pipeline	object	being	destroyed.	Just	remember	to	wrap	the
call	as	shown	in	any	code	that	is	used	as	part	of	the	modifier	pipeline	evaluation.

Common	Problems	and	Solutions
This	section	provides	a	series	of	commonly-encountered	problems	and	their
solutions.

Problem:
Your	DLL	compiles	and	links	fine,	but	when	you	run	3ds	max	it	complains
that	LibVersion()	is	not	implemented.	You	know	that	you	implemented	this,
so	what	is	going	on?

Solution:
Did	you	remember	to	create	a	.DEF	file	with	this	listed,	and	if	so	did	you
remember	to	include	the	file	in	your	project?

Problem:
When	you	link	InitCommonControls	comes	up	unresolved.

Solution:
Did	you	remember	to	link	in	COMCTL32.LIB	(which	is	not	included	by
default	by	Visual	C++	in	the	list	of	libraries	to	link)?

Problem:
You	have	a	dialog	proc	to	process	a	button	in	your	user	interface.	The	code	is
in	place	to	process	the	button	but	it	never	gets	called.

Solution:
You	may	have	a	macro	redefinition	for	one	of	the	buttons	in	another	header
file	in	your	project.	The	compiler	takes	the	first	definition	and	uses	it	instead
of	your	definition.	Therefore	yours	never	gets	processed.	The	compiler	will
flag	this	condition	as	a	warning	but	not	as	an	error.

Problem:
When	you	de-allocate	memory	the	system	crashes.	You	have	checked	that	the
item	being	de-allocated	exists	and	is	OK	to	delete.	What	is	happening?

Solution:
In	Visual	C++	the	debug	and	release	C	runtime	libraries	use	different	heap
management.	This	means	that	allocating	an	object	in	debug	mode	and	de-
allocating	it	in	release	mode	(and	vice	versa)	can	cause	a	crash.	You	need	to
change	your	settings	for	your	DEBUG	configuration.	Choose
Build/Settings...	from	the	pulldown	menus.	From	the	Settings	For:
section	choose	your	Debug	configuration.	From	the	C/C++	tab,	under	the
Categories:	drop	down	list	choose	Code	Generation.	From	the	Use
runtime	library:	drop	down	list	choose	Multithreaded	DLL	instead	of
Debug	Multithreaded	DLL.

Problem:
You	have	a	plug-in	which	when	compiled	under	the	hybrid	settings	works
fine.	When	you	go	to	make	it	in	release	mode,	it	works	fine	except	for	any
time	it	is	used	and	3ds	max	is	exited	you	get	a	"Runtime	error.	R6017
unexpected	multithread	lock	error".

Solution:
The	project	settings	for	the	Release	configuration	in	the	code	generation
section	for	run-time	library	are	set	to	DLL	instead	of	Multithreaded	DLL.
Changing	to	Multithreaded	DLL	corrects	the	problem.

Problem:
You	have	created	a	plug-in	that	runs	fine	on	certain	machines	but	on	other
machines	it	simply	won't	load.

Solution:
You	probably	have	a	missing	system	DLL.	The	easiest	way	to	see	what	DLLs
your	plug-in	requires	is	to	use	the	DUMPBIN.EXE	program	(which	comes
with	Visual	C++	and	is	usually	found	in	\MSDEV\BIN)	and	use	the
/IMPORTS	switch.	This	will	tell	you	all	of	the	DLLs	that	your	DLL
depends	upon.	Make	sure	the	machines	that	need	to	run	the	plug-in	have	the
proper	DLLs.
For	example:	dumpbin	/imports	utility.dlu

Problem:
You	have	a	plug-in	whose	interface	won't	show	up	in	the	command	panel	yet
everything	seems	fine	code	wise.	What's	wrong?

Solution:
You	may	have	forgotten	to	enter	the	class	names	for	the	custom	controls	in
the	VC++	dialog	editor.	See	the	Advanced	Topic	Custom	User	Interface
Controls	--	especially	the	section	How	to	a	Create	a	Rollup	Page	using	the
Custom	Controls	for	a	description	of	the	values	to	be	used	in	the	Class	field	of
the	Custom	Control	Properties	dialog.

Class	Interface
See	Also:	Class	FPStaticInterface,	Class	ViewExp,	Class	INode,	Class
INodeTab,	Class	CommandMode,	Class	Interval,	Class	Renderer,	Class
Modifier,	Class	Control,	Class	Atmospheric,	Class	Point3,	Class	Matrix3,	Class
ModContext,	Class	ReferenceTarget,	Template	Class	Tab
class	Interface	:	public	FPStaticInterface

Description:
This	class	provides	an	interface	for	calling	functions	that	are	exported	from	the
3DStudio	MAX	executable.	All	the	methods	in	this	class	are	implemented	by
MAX	itself.
Methods	are	provided	for	putting	up	many	standard	MAX	dialogs,	working	with
command	modes,	working	with	viewports,	controlling	the	prompt,	toolbar	and
status	areas,	and	working	with	selection	sets.	There	are	also	methods	for	creating
objects	and	nodes	in	the	scene,	setting	and	getting	the	current	time	and	animation
ranges,	working	with	the	standard	directories	of	MAX,	and	many	more.	See	the
Method	Groups	listed	below	for	a	breakdown	of	the	various	kinds	of	methods
available.
Important	Note	for	Finding	Specific	Methods:

To	find	documentation	for	a	specific	method	choose	the	Help	Topics	button
and	the	Index	tab,	then	type:
methods,	followed	by	the	name	of	the	method.	Note	the	space	after	the
comma	--	this	is	required.
For	example,	enter
methods,	ForceCompleteRedraw
This	will	jump	directly	to	the	Interface::ForceCompleteRedraw()
method.

Note:	When	editing	in	the	command	panel,	a	developer	gets	passed	an	interface
pointer	during	BeginEditParams().	This	pointer	is	only	valid	before
EndEditParams()	is	finished.	A	developer	should	not	hang	on	to	this	pointer
and	call	methods	on	it	after	EndEditParams()	has	returned.

Method	Groups
These	hyperlinks	take	you	to	the	start	of	groups	of	related	methods	within	the
class.

Action	Table	and	Menu	Manager	Methods
Add	/	Delete	Class	Methods
Ambient/Atmosphere/Background	Access
Animation	/	Time	/	Playback	Methods
Auto	Backup	Time	Related	Methods
Axis	System	Related	Methods
Bitmap/Texmap	Related	Methods
Callback	/	Notification	Registration
Creation	Related	Methods
Command	Modes
Command	Panel	and	Rollup	Page	Methods
Delete	Key	Notification
Deferred	Loading	Related	Methods
Dialogs	--	Methods	to	Display	MAX	Dialogs
Dialogs	--	Register	Windows
Directory	Access	--	Plug-In	/	Bitmap	Paths
DLL	Directory	Access
Error	Logging
Environment	Access
Execute	MAX	Commands
Execute	--	Generic	Expansion	Function
Extended	Display	Modes
Filenames	and	Pathnames
File	Open	/	Merge	/	Save	/	Reset	/	Hold	/	Fetch
Fonts	/	Cursor	Related	Methods
Grid	Related	Methods
Import	/	Export	Related	Methods
Keyboard	Accelerators
Keyboard	Shortcut	Related	Methods
Light	Related	Methods
Licensing	Methods
Material	/	Texmap	Related	Methods
Modifier	Related	Methods
Node	Grouping
Node	Names	--	Creating	Unique
Node	Picking	(Interactive	Selection)
Node	Related	Methods

Node	Selection	Sets
IObjCreate	and	IObjParam	Pointer	Casting
Object	Snap	Methods
Plug-In	Renderer	Access
Preview	Creation
Progress	Bar	Methods
Property	Set	Access
RAMPlayer	Access
Redraw	Viewports
Renderer	Access	(also	see	Plug-In	Renderer	Access)
Render	Effects	Methods
Right	Click	Menu	Related	Methods
Selection	Sets	(Named)
Selection	Sets	(Nodes)Scene	Access
Show	End	Result	Related	Methods
Slave	/	Server	Mode	Method
Snap	Related	Methods
Sound	Object	Access
Sub-Object	Related	Methods
Sub-Object	Selection	Sets	(Named)
Status	Panel	/	Prompt	Related	Methods
Texmap	/	Material	Related	Methods
Time	Configurations	Key	Steps	Settings	Access
Track	Bar	and	Track	View	Related	Methods
Transform	Gizmo	Related	Methods
Undo	/	Redo	Related	Methods
User	Interface	Controls	and	Properties
Video	Post	Related	Methods
Viewport	Access	(Redrawing,	etc)
Viewport	Background	Properties
Window	Handle	of	MAX
Windows	Messages
XRef	Methods

Methods:
	
Animation	/	Time	/	Playback	Related	Methods

Prototype:
virtual	TimeValue	GetTime()=0;

Remarks:
Returns	the	current	time,	i.e.	the	frame	slider	position.	See	the	Advanced
Topics	section	on	Time	for	an	overview	of	time	in	MAX.

Prototype:
virtual	void	SetTime(TimeValue	t,	BOOL	redraw=TRUE)=0;

Remarks:
Set	the	current	time,	updates	the	frame	slider,	and	optionally	redraws	the
viewports.

Parameters:
TimeValue	t
The	time	to	set	as	current.
BOOL	redraw=TRUE
If	set	to	FALSE,	the	current	time	will	be	set	to	the	specified	time	but	the
viewports	will	not	be	redrawn.

Prototype:
virtual	Interval	GetAnimRange()=0;

Remarks:
Returns	the	current	setting	of	the	animation	interval.	This	can	be	used	to	get
the	total	number	of	frames	in	the	animation.	Note:	The	values	stored	in	the
interval	returned	represent	ticks	not	frames.

Prototype:
virtual	void	SetAnimRange(Interval	range)=0;

Remarks:
Sets	the	animation	interval.	Note:	The	values	passed	in	the	interval	are	ticks
not	frames.

Parameters:
Interval	range

Specifies	the	new	animation	range	to	set.

Prototype:
virtual	void	StartAnimPlayback(int	selOnly=FALSE)=0;

Remarks:
Begins	animation	playback.	The	animation	may	be	played	for	all	objects,	or
just	the	selected	ones.

Parameters:
int	selOnly=FALSE
If	TRUE	only	the	selected	objects	are	updated	as	the	animation	is	played;
otherwise	all	objects	are.

Prototype:
virtual	void	EndAnimPlayback()=0;

Remarks:
Terminates	the	animation	playback.

Prototype:
virtual	BOOL	IsAnimPlaying()=0;

Remarks:
Returns	TRUE	if	the	animation	is	currently	playing;	otherwise	FALSE.

Prototype:
virtual	void	EnableAnimateButton(BOOL	enable)=0;

Remarks:
Sets	the	state	of	the	Animate	button	to	enabled	or	disabled.	When	disabled	the
user	cannot	turn	on	Animate	mode.
Note:	Developers	have	additional	functions	available	for	controlling	the	state
of	the	animate	button.	These	functions	are	defined	in
\MAXSDK\INCLUDE\CONTROL.H.	These	functions	can	be	used	to
determine	if	animating	is	on	or	off,	or	toggle	it	on	and	off	without	affecting	the
appearance	of	the	Animate	button	in	the	user	interface.	In	this	way,	a	user	will
not	be	aware	anything	is	happening.	See	List	of	Additional	Controller	Related

Functions	for	documentation.
Parameters:
BOOL	enable
Pass	TRUE	to	enable	the	button;	FALSE	to	disable	it.

Prototype:
virtual	BOOL	IsAnimateEnabled()=0;

Remarks:
Returns	TRUE	if	the	Animate	button	is	enabled;	otherwise	FALSE.	See	the
note	in	the	method	above	as	well.

Prototype:
virtual	void	SetAnimateButtonState(BOOL	onOff)=0;

Remarks:
Turns	the	animate	button	(and	animate	mode)	on	or	off.

Parameters:
BOOL	onOff
TRUE	to	turn	on;	FALSE	to	turn	off.

Prototype:
virtual	BOOL	GetRealTimePlayback()=0;

Remarks:
Returns	the	state	of	the	real-time	animation	playback	toggle.

Prototype:
virtual	void	SetRealTimePlayback(BOOL	realTime)=0;

Remarks:
Sets	the	state	of	the	real-time	animation	playback	toggle.

Parameters:
BOOL	realTime
TRUE	if	frames	should	be	dropped	if	necessary	for	the	animation	to	play	back
in	real	time.	FALSE	specifies	that	every	frame	should	be	played.

Prototype:
virtual	BOOL	GetPlayActiveOnly()=0;

Remarks:
This	method	returns	the	flag	controlling	which	viewports	are	updated	when
the	animation	is	played.

Return	Value:
TRUE	if	all	the	viewports	are	updated	during	play;	FALSE	if	only	the	active
viewport	is	updated.

Prototype:
virtual	void	SetPlayActiveOnly(BOOL	playActive)=0;

Remarks:
This	method	sets	the	flag	controlling	which	viewports	are	updated	when	the
animation	is	played.	This	may	be	all	the	viewports,	or	just	the	active	one.

Parameters:
BOOL	playActive
If	TRUE,	only	the	active	viewport	is	updated	as	the	animation	is	played;
otherwise	all	the	viewports	are	updated.

Auto	Backup	Time	Related	Methods
Prototype:
virtual	float	GetAutoBackupTime()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	auto	backup	interval	in	minutes.

Prototype:
virtual	void	SetAutoBackupTime(float	minutes)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	auto	backup	time	interval.

Parameters:

float	minutes
The	time	to	set	in	minutes.

Prototype:
virtual	BOOL	AutoBackupEnabled()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	auto	backup	mode	is	enabled;	FALSE	if	it's	disabled.

Prototype:
virtual	void	EnableAutoBackup(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Enables	or	Disables	the	auto	backup	system.

Parameters:
BOOL	onOff
TRUE	to	turn	it	on;	FALSE	to	turn	it	off.

Action	Table	and	Menu	Manager	Methods
Prototype:
virtual	IActionManager*	GetActionManager()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	Action	Manager	interface	class.	The	action	manager	is
used	to	manage	ActionTables	which	plug-ins	can	use	to	export	operations	that
can	be	tied	to	UI	elements	like	keyboard	shortcuts,	menus	and	toolbars.	See
Class	IActionManager.

Prototype:
virtual	IMenuManager*	GetMenuManager()=0;

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	manager	for	cusomizable	menus.	See	Class
IMenuManager.

Axis	System	Related	Methods
Prototype:
virtual	Matrix3	GetTransformAxis(INode	*node,int
subIndex,BOOL*	local	=	NULL)=0;

Remarks:
An	item	that	is	doing	sub-object	hit	testing	gets	to	specify	what	their	sub-
object	axes	systems	are.	For	example	a	mesh	may	have	separate	coordinate
systems	for	every	face	or	group	of	selected	faces,	while,	for	instance,	a	bend
modifier	has	its	own	axes	system	for	the	gizmo.	This	method	gets	the	axes
system	for	a	particular	node.	Each	node	may	have	several	axes	systems
identified	by	an	index.
See	EDITMESH.CPP	for	an	example	of	use.

Parameters:
INode	*node
The	node	to	get	the	axis	coordinates	system	of.
int	subIndex
The	index	of	the	axis	system	of	the	node.
BOOL*	local	=	NULL
If	'local'	is	not	NULL,	it	will	be	set	to	TRUE	if	the	center	of	the	axis	is	the
pivot	point	of	the	node,	FALSE	otherwise.

Return	Value:
The	axis	system	of	the	node.

Prototype:
virtual	int	GetNumAxis()=0;

Remarks:
This	returns	the	number	of	axis	tripods	in	the	scene.	When	transforming
multiple	sub-objects,	in	some	cases	each	sub-object	is	transformed	in	a
different	space.

Return	Value:
One	of	the	following	values:
NUMAXIS_ZERO
Nothing	to	transform.
NUMAXIS_ALL
Use	only	one	axis.
NUMAXIS_INDIVIDUAL
Do	all,	one	at	a	time.

Prototype:
virtual	Matrix3	GetTransformAxis(INode	*node,	int	subIndex,
BOOL*	local	=	NULL)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	axis	which	defines	the	space	in	which	transforms	should	take
place.

Parameters:
INode	*node
The	object	the	axis	system	should	be	based	on.
int	subIndex
The	sub	object	which	the	axis	system	should	be	based	on	(the	thing	the	user
clicked	on).
BOOL*	local	=	NULL
If	'local'	is	not	NULL,	it	will	be	set	to	TRUE	if	the	center	of	the	axis	is	the
pivot	point	of	the	node,	FALSE	otherwise.

Return	Value:
A	matrix	representing	the	axis	system	that	transforms	take	place	in.

Prototype:
virtual	void	LockAxisTripods(BOOL	onOff)=0;

Remarks:
This	method	locks	axis	tripods	so	that	they	will	not	be	updated.

Parameters:
BOOL	onOff
TRUE	to	lock;	FALSE	to	unlock.

Prototype:
virtual	BOOL	AxisTripodLocked()=0;

Remarks:
This	method	returns	TRUE	if	axis	tripods	are	locked.

Bitmap	/	Texmap	Related	Methods
Prototype:
virtual	void	FreeSceneBitmaps()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	traverses	the	scene	reference	hierarchy,	calling
Animatable::FreeAllBitmaps()	on	every	Animatable.	This	will	free	up	all
the	memory	used	by	bitmaps.

Prototype:
virtual	void	EnumAuxFiles(NameEnumCallback&	nameEnum,
DWORD	flags)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	may	be	used	to	enumerate	all	the	bitmap	files	in	the	scene.	The
flags	allow	control	over	which	files	are	enumerated.

Parameters:
NameEnumCallback&	nameEnum
The	callback,	called	once	for	each	bitmap.	See	Class	NameEnumCallback.
DWORD	flags
See	List	of	EnumAuxFiles()	Flags.

Prototype:

virtual	void	RenderTexmap(Texmap	*tex,	Bitmap	*bm,	float
scale3d=1.0f,	BOOL	filter=FALSE,	BOOL	display=FALSE)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	may	be	called	to	render	a	texmap	(or	an	entire	texmap	tree)	to	the
specified	bitmap.

Parameters:
Texmap	*tex
The	Texmap	to	render	to	a	bitmap.
Bitmap	*bm
A	pointer	to	a	bitmap	to	render	to.	This	bitmap	must	be	created	at	the
resolution	you	wish	to	render	to.
float	scale3d=1.0f
This	is	a	scale	factor	applied	to	3D	Texmaps.	This	is	the	scale	of	the	surface	in
3d	space	that	is	mapped	to	UV.	This	controls	how	much	of	the	texture	appears
in	the	bitmap	representation.
BOOL	filter=FALSE
If	TRUE	the	bitmap	is	filtered.	It	is	quite	a	bit	slower	to	rescale	bitmaps	with
filtering	on.
BOOL	display=FALSE
If	TRUE	the	resulting	bitmap	is	displayed	using	the	virtual	frame	buffer;
otherwise	it	is	not.

Prototype:
virtual	bool	CanImportBitmap(const	TCHAR*	filename)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	check	if	the	system	can	import	the	specified	bitmap	file.

Parameters:
const	TCHAR*	filename
The	file	name	to	check.

Return	Value:

TRUE	if	the	specified	file	is	a	bitmap	file	of	a	format	that	is	supported	by	one
of	the	bitmap	reader	plug-ins;	otherwise	FALSE.
	

Prototype:
virtual	bool	CaptureSubObjectRegistration(bool	OnOff,	Class_ID
cid)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	to	lock	and	unlock	subobject	mode	registrations	and	is
primarily	used	by	the	FileLink	wrapper	classes	acting	as	proxies	to	other
classes	in	3D	Studio	VIZ.	When	a	class	calls	this	method	with	OnOff	set	to
TRUE,	then	other	classes	are	prevented	from	registering	new	subobject
modes.	This	continues	until	the	original	class	"releases"	by	calling
CaptureSubObjectModes(FALSE,	myClassID).	The	second	argument	insures
that	only	the	class	which	does	the	capture	can	do	the	release.	Note	that	this	is
used	only	by	certain	VIZ	plugins.

Parameters:
bool	OnOff
TRUE	to	prevent	other	classes	from	registering	new	subobject	modes.
Class_ID	cid
The	class	ID.

Return	Value:
TRUE	is	successful,	otherwise	FALSE.

Prototype:
virtual	bool	DownloadUrl(HWND	hwnd,	const	TCHAR*	url,
const	TCHAR*	filename,	DWORD	flags	=	0)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	simplifies	downloading	files	from	any	given	URL	and	displays	a
floating	progress	dialog.

Parameters:

HWND	hwnd
The	window	handle	for	owner	window	(required	for	the	progress	floating
dialog).
const	TCHAR*	url
The	string	for	the	resource/file	to	download.
const	TCHAR*	filename
The	target	location	and	filename	for	the	downloaded	file.
DWORD	flags	=	0
Additional	controls	to	the	download	behavior.	Currently	only	one	flag	is
supported,	DOWNLOADDLG_NOPLACE,	which	hides	an	option	in	the
progress	dialog	that	allows	the	user	to	place	(move)	a	dropped	object
immediately	after	being	dropped.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	INode*	GetImportCtxNode(void)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
On	drag-and-drop,	if	the	drop	type	is	a	file,	the	drop	handler	searches	for	an
importer	plugin	that	can	handle	the	file	(based	on	its	extension).	Some	drop
operations,	such	as	bitmaps	and	material	XML	files,	can	or	must	be	dropped
on	to	an	object	in	the	scene.

Return	Value:
The	node	that	the	operation	is	performed	on,	if	one	is	"hit"	at	the	drop
location.	It	returns	NULL	if	no	nodes	were	found	at	the	drop	location.

Callback	/	Notification	Registration
Related	to	callbacks	is	Structure	NotifyInfo	and	its	associated	functions.
Please	see	this	topic	for	additional	ways	a	developer	can	register	a	callback	for
events	like	the	user	performing	a	File/Reset	or	File/New,	the	system	unit
settings	changing,	etc.

Prototype:

virtual	void	RegisterTimeChangeCallback(TimeChangeCallback
*tc)=0;

Remarks:
Registers	a	callback	object	that	will	get	called	every	time	the	user	changes	the
MAX	frame	slider.

Parameters:
TimeChangeCallback	*tc
Points	to	the	callback	object	to	register.	See:	Class	TimeChangeCallback.

Prototype:
virtual	void
UnRegisterTimeChangeCallback(TimeChangeCallback	*tc)=0;

Remarks:
This	method	un-registers	the	time	change	callback.

Parameters:
TimeChangeCallback	*tc
Points	to	the	callback	object	to	un-register.	See:	Class	TimeChangeCallback.

Prototype:
virtual	void
RegisterCommandModeChangedCallback(CommandModeChangedCallback
*cb)=0;

Remarks:
Register	a	callback	object	that	will	get	called	when	the	user	changes	the
command	mode.

Parameters:
CommandModeChangedCallback	*cb
Points	to	the	callback	object	to	register.	See	Class
CommandModeChangedCallback.

Prototype:
virtual	void

UnRegisterCommandModeChangedCallback(CommandModeChangedCallback
*cb)=0;

Remarks:
Un-registers	the	command	mode	change	callback	object.

Parameters:
CommandModeChangedCallback	*cb
Points	to	the	callback	object	to	un-register.	See	Class
CommandModeChangedCallback.

Prototype:
virtual	void	RegisterViewportDisplayCallback(BOOL	preScene,
ViewportDisplayCallback	*cb)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Registers	a	ViewportDisplayCallback	whose	Display()	method	will	be
called	to	allow	a	plug-in	to	draw	in	the	MAX	viewports.

Parameters:
BOOL	preScene
If	TRUE	the	callback	will	be	called	before	objects	are	rendered	(typically,	but
not	always);	if	FALSE	the	callback	is	called	after	the	objects	are	rendered.
In	some	cases	redrawing	the	viewports	may	take	two	passes;	once	to	re-render
the	background	plane	and	once	to	rerender	the	foreground	plane.	In	this	case
the	order	of	events	would	be:

Call	pre	callbacks
Render	scene
Call	post	callbacks
Call	pre	callbacks
Render	scene
Call	post	callbacks

The	two	calls	to	callbacks	in	the	middle	are	neither	pre	nor	post	callbacks.
However	you	could	also	look	at	this	as	two	separate	redraws.
ViewportDisplayCallback	*cb

Points	to	the	callback	object.	See	Class	ViewportDisplayCallback.

Prototype:
virtual	void	UnRegisterViewportDisplayCallback(BOOL
preScene,	ViewportDisplayCallback	*cb)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Call	this	method	to	un-register	the	viewport	display	callback	object.

Parameters:
BOOL	preScene
If	TRUE	the	callback	will	be	called	before	object	are	rendered	(typically,	but
not	always);	if	FALSE	the	callback	is	called	after	the	objects	are	rendered.
ViewportDisplayCallback	*cb
Points	to	the	callback	object.	See	Class	ViewportDisplayCallback.

Prototype:
virtual	void	NotifyViewportDisplayCallbackChanged(BOOL
preScene,	ViewportDisplayCallback	*cb)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	to	inform	MAX	that	the	viewport	callback	has	changed.
This	is	similar	to	when	an	object	that	is	part	of	the	reference	hierarchy	changes
and	it	needs	to	call	NotifyDependents()	with	the	message
REFMSG_CHANGE	to	inform	the	items	that	depend	on	it.	In	a	sense	a
ViewportDisplayCallback	is	like	an	object	in	the	scene	in	that	it	has	a
Display()	method	that	is	called.	However,	the	callback	is	not	actually	an
object	that	is	part	of	the	reference	hierarchy	so	it	cannot	send	a
REFMSG_CHANGE	message	when	it	changes.	So	this	method	provides
the	equivalent	functionality.	If	the	callback	changes	this	method	needs	to	be
called.
To	understand	why	this	is	needed	consider	that	if	a	plug-in	called
RedrawViews()	five	times	in	a	row,	the	viewports	may	be	redrawn	the	first
time	(if	something	has	changed),	but	the	next	four	calls	won't	do	anything.

This	is	because	MAX	maintains	some	flags	that	indicate	if	things	have
changed	or	not	and	these	flags	are	reset	on	the	first	redraw	to	indicate	that
everything	is	up	to	date.	Therefore,	when	a	ViewportDisplayCallback
changes,	it	needs	to	call	this	method	to	let	MAX	know	that	changes	have	been
made	and	the	viewports	indeed	need	to	be	redrawn	the	next	time
RedrawViews()	is	called.

Parameters:
BOOL	preScene
If	TRUE	the	callback	will	be	called	before	objects	are	rendered	(typically,	but
not	always);	if	FALSE	the	callback	is	called	after	the	objects	are	rendered.
ViewportDisplayCallback	*cb
Points	to	the	callback	object.	See	Class	ViewportDisplayCallback.

Prototype:
virtual	void	RegisterExitMAXCallback(ExitMAXCallback
*cb)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Registers	a	ExitMAXCallback	whose	Exit()	method	will	be	called	when
MAX	is	about	to	exit.	The	return	value	from	the	callback	allows	the	plug-in	to
decide	if	MAX	exits	or	not.

Parameters:
ExitMAXCallback	*cb
Points	to	the	callback	object.	See	Class	ExitMAXCallback.

Prototype:
virtual	void	UnRegisterExitMAXCallback(ExitMAXCallback
*cb)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Un-registers	the	exit	callback	so	it's	no	longer	called.

Parameters:

ExitMAXCallback	*cb
Points	to	the	callback	object.	See	Class	ExitMAXCallback.

Prototype:
virtual	void	RegisterAxisChangeCallback(AxisChangeCallback
*cb)=0;

Remarks:
Registers	a	callback	object	that	will	get	called	any	time	the	user	changes	the
reference	coordinate	system	by:
Changing	the	transform	coordinate	system	drop-down	menu.
Changing	the	state	of	the	transform	center	fly-off.
Changing	X,	Y,	Z,	XY,	YZ,	ZX	constraint	buttons/fly-off.
Using	an	accelerator	or	anything	else	that	changes	the	above.

Parameters:
AxisChangeCallback	*cb
Points	to	the	callback	to	register.	See	AxisChangeCallback.

Prototype:
virtual	void	UnRegisterAxisChangeCallback(AxisChangeCallback
*cb)=0;

Remarks:
Un-registers	the	axis	change	callback.

Parameters:
AxisChangeCallback	*cb
Points	to	the	callback	to	un-register.	See	AxisChangeCallback.

Prototype:
virtual	void
RegisterRedrawViewsCallback(RedrawViewsCallback	*cb)=0;

Remarks:
Registers	a	call	back	object	that	gets	called	every	time	the	viewports	are
redrawn.	The	proc()	method	is	called	after	the	views	are	finished	redrawing.

Parameters:
RedrawViewsCallback	*cb
Points	to	the	callback	object	whose	proc()	method	is	called	when	the
viewports	are	redrawn.	See	Class	RedrawViewsCallback.

Prototype:
virtual	void
UnRegisterRedrawViewsCallback(RedrawViewsCallback	*cb)=0;

Remarks:
Un-registers	the	viewport	redraw	callback.

Parameters:
RedrawViewsCallback	*cb
Points	to	the	callback	object	to	un-register.	See	Class	RedrawViewsCallback.
	

Prototype:
virtual	void	RegisterSelectFilterCallback(SelectFilterCallback
*cb)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Registers	a	call	back	object	that	gets	called	to	filter	the	selection	of	nodes.

Parameters:
SelectFilterCallback	*cb
Points	to	the	callback	object	to	register.	See	Class	SelectFilterCallback.

Prototype:
virtual	void	UnRegisterSelectFilterCallback(SelectFilterCallback
*cb)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Un-registers	the	select	filter	callback.

Parameters:

SelectFilterCallback	*cb
Points	to	the	callback	object	to	un-register.	See	Class	SelectFilterCallback.

Prototype:
virtual	void	RegisterDisplayFilterCallback(DisplayFilterCallback
*cb)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Registers	a	call	back	object	that	gets	called	to	filter	the	display	of	nodes.
	

Parameters:
DisplayFilterCallback	*cb
Points	to	the	callback	object	to	register.	See	Class	DisplayFilterCallback.
	

Prototype:
virtual	void
UnRegisterDisplayFilterCallback(DisplayFilterCallback	*cb)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Un-registers	the	display	filter	callback.

Parameters:
DisplayFilterCallback	*cb
Points	to	the	callback	object	to	un-register.	See	Class	DisplayFilterCallback.

Prototype:
virtual	PickModeCallback*	GetCurPickMode()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
If	a	Pick	Mode	is	on	top	of	the	command	stack,	then	this	function	will	return
the	PickModeCallback.	If	the	Pick	Mode	is	not	on	top	of	the	command
stack	the	it	returns	NULL.

Creation	Related	Methods

Prototype:
virtual	INode	*CreateObjectNode(Object	*obj)=0;

Remarks:
Creates	a	new	node	in	the	scene	with	the	given	object.	Normally	a	developer
will	use	the	standard	creation	methods	for	procedural	objects	and	this	method
is	not	used.	However	if	the	developer	wants	to	handle	the	creation	process	on
their	own	they	may	need	to	use	this	method.	See	Also:	Object	Creation
Methods.

Parameters:
Object	*obj
Pointer	to	the	Object	to	create.

Return	Value:
Pointer	to	the	node	created.

Prototype:
virtual	void	*CreateInstance(SClass_ID	superID,	Class_ID
classID)=0;

Remarks:
Creates	an	instance	of	a	registered	class.	This	will	call	Create()	on	the	class
descriptor.

Parameters:
SClass_ID	superID
The	super	class	ID	of	the	item	to	create	an	instance	of.
Class_ID	classID
The	class	ID	of	the	item	to	create	an	instance	of.	See	Class	Class_ID.

Return	Value:
Pointer	to	the	created	instance.

Also	Note:
There	is	a	global	method	that	duplicates	the	functionality	of	this	class	method	to
let	you	create	an	instance	of	any	registered	class	wherever	you	are	(without	the
interface	pointer):

void	*CreateInstance(SClass_ID	superID,	Class_ID	classID);

Prototype:
virtual	void	NonMouseCreate(Matrix3	tm)=0;

Remarks:
This	creates	a	new	object/node	without	going	through	the	usual	create	mouse
proc	sequence.	The	matrix	is	relative	to	the	construction	plane.	This	must	be
called	during	the	creation	phase	of	an	object.	For	example,	the	procedural
sphere	uses	it	when	the	user	clicks	on	the	'Create'	button	after	they	type	in	the
parameters	for	the	sphere.	See	Object	Creation	Methods.

Parameters:
Matrix3	tm
The	transformation	matrix	relative	to	the	construction	plane.

Prototype:
virtual	void	NonMouseCreateFinish(Matrix3	tm)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	presently	only	used	in	the	Line	object.	It's	used	for
repositioning	the	pivot	point	of	the	object	at	the	end	of	the	creation	process.
You	simply	pass	it	the	new	matrix,	and	the	creation	manager	sets	the	TM	for
the	node	being	created	to	the	given	TM	*	the	construction	plane	TM.

Parameters:
Matrix3	tm
The	transformation	matrix	relative	to	the	construction	plane	for	the	node.

Prototype:
virtual	void	StopCreating()=0;

Remarks:
When	a	plug-in	object	implements	its	own	ClassDesc::BeginCreate()	/
ClassDesc::EndCreate()	it	can	cause	EndCreate()	to	be	called	by	calling
this	method.	See	Object	Creation	Methods.

Prototype:
virtual	int	BindToTarget(INode	*laNode,	INode	*targNode)=0;

Remarks:
This	method	binds	a	node	to	a	target	using	a	lookat	controller.

Parameters:
INode	*laNode
Pointer	to	the	node	to	assign	the	lookat	controller	to.
INode	*targNode
Pointer	to	the	target	node.

Return	Value:
Returns	TRUE	if	the	node	was	bound;	otherwise	FALSE.

Sample	Code:
This	method	is	used	in
\MAXSDK\SAMPLES\OBJECTS\CAMERA.CPP.

Command	Modes
For	more	information	on	CommandModes,	see	the	Advanced	Topics	section
Command	Modes	and	Mouse	Procs.

Prototype:
virtual	void	PushCommandMode(CommandMode	*m)=0;

Remarks:
This	method	pushes	the	specified	command	mode	on	the	stack.	Typically	this
is	used	by	developers	handling	their	own	creation	using
ClassDesc::BeginCreate().	See	Class	ClassDesc	for	more	details.
Note:	This	method	works	as	documented	but	a	developer	may	not	want	to	use
it.	The	problem	is	that	other	modes	can	be	pushed	on	the	stack	(such	as
viewport	transformation	modes)	and	it	becomes	complicated	to	track	when	it
is	OK	to	pop	your	mode.	See	the	methods	below	for	alternatives	(such	as
SetCommandMode).

Parameters:
CommandMode	*m
A	pointer	to	the	command	mode	to	push.

Prototype:
virtual	void	SetCommandMode(CommandMode	*m)=0;

Remarks:
This	method	sets	the	top	of	the	stack	to	the	specified	command	mode.	A
developer	should	call	DeleteMode()	to	delete	their	command	mode	when
done	using	it.

Parameters:
CommandMode	*m
The	command	mode	to	set.

Prototype:
virtual	void	PopCommandMode()=0;

Remarks:
Pops	the	command	mode	off	the	top	of	the	stack.

Prototype:
virtual	CommandMode*	GetCommandMode()=0;

Remarks:
Returns	the	current	mode	on	the	top	of	the	stack.

Prototype:
virtual	int	GetCommandStackSize();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	command	modes	in	the	command	mode	stack.

Prototype:
virtual	CommandMode*	GetCommandStackEntry(int	entry);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	command	mode	at	the	specified	position	in	the
command	mode	stack.	A	developer	may	use	this	to	determine	if	their

command	mode	is	in	the	stack.
Parameters:
int	entry
The	index	into	the	command	mode	stack	of	the	entry	to	get.	Pass	0	to	get	the
current	command	mode.

Prototype:
virtual	void	SetStdCommandMode(int	cid)=0;

Remarks:
This	is	the	typical	method	called	by	the	developer	to	handle	mouse	interaction.
It	allows	the	developer	to	set	the	command	mode	to	one	of	the	standard
command	modes.	For	example:	CID_OBJMOVE,	CID_OBJROTATE,
CID_OBJSCALE,	CID_OBJUSCALE,	CID_OBJSQUASH,
CID_OBJSELECT,	etc.

Parameters:
int	cid
The	index	of	the	command	mode	to	set.	See	List	of	Standard	Command
Modes	to	review	the	full	list.

Prototype:
virtual	void	PushStdCommandMode(int	cid)=0;

Remarks:
Allows	the	developer	to	push	one	of	the	standard	command	modes	on	the
command	stack.	For	example:	CID_OBJMOVE,	CID_OBJROTATE,
CID_OBJSCALE,	CID_OBJUSCALE,	CID_OBJSQUASH,
CID_OBJSELECT,	etc.

Parameters:
int	cid
The	index	of	the	command	mode	to	set.	See	List	of	Standard	Command
Modes	to	review	the	full	list.

Prototype:

virtual	void	RemoveMode(CommandMode	*m)=0;
Remarks:
Removes	the	specified	command	mode	from	the	stack.	This	method	pops
items	off	the	command	mode	stack	up	to	and	including	the	specified	mode.
The	top	item	in	the	stack	is	then	set	as	the	active	command	mode.	As	usual,
ExitMode()	is	called	on	the	specified	mode	before	it	is	popped	and
EnterMode()	is	called	on	the	newly	active	mode.

Parameters:
CommandMode	*m
Points	to	the	command	mode	to	remove.

Prototype:
virtual	void	DeleteMode(CommandMode	*m)=0;

Remarks:
If	the	developer	sets	or	pushes	a	command	mode,	this	method	should	be	called
when	the	developer	is	done	with	the	mode	to	ensure	that	it	is	no	longer
anywhere	in	the	stack.	If	the	mode	is	already	deleted	this	method	does
nothing.
Note:	It	is	normal	for	a	developer	to	set	the	'Select	and	Move'	command	mode
to	be	the	active	one	if	their	mode	was	at	the	top	of	the	stack	and	is	being
deleted.	For	instance:
	ip->SetStdCommandMode(CID_OBJMOVE);
	ip->DeleteMode(&myCMode);

Parameters:
CommandMode	*m
The	command	mode	to	delete.

Command	Panel	and	Rollup	Page	methods

Prototype:
virtual	HWND	AddRollupPage(HINSTANCE	hInst,	TCHAR
*dlgTemplate,	DLGPROC	dlgProc,	TCHAR	*title,	LPARAM
param=0,	DWORD	flags=0,	int	category	=

ROLLUP_CAT_STANDARD)=0;
Remarks:
This	method	is	used	to	add	a	rollup	page	to	the	command	panel.	It	returns	the
window	handle	of	the	rollup	page.

Parameters:
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in.
TCHAR	*dlgTemplate
The	dialog	template	for	the	rollup	page.
DLGPROC	dlgProc
The	dialog	proc	to	handle	the	messages	sent	to	the	rollup	page.
TCHAR	*title
The	title	displayed	in	the	title	bar	of	the	rollup	page.
LPARAM	param=0
Any	specific	data	to	pass	along	may	be	stored	here.	This	may	be	later	retrieved
using	the	GetWindowLong()	call	from	the	Windows	API	if	it	was	set	in	the
window	using	SetWindowLong().
For	example,	at	the	beginning	of	the	dialog	proc	do	something	like:
BOOL	CALLBACK	MyDlgProc(
HWND	hWnd,	UINT	message,	WPARAM	wParam,	LPARAM
lParam)	{
	
	MyUtil	*u	=	(MyUtil	*)GetWindowLong(hWnd,
GWL_USERDATA);
	if	(!u	&&	message	!=	WM_INITDIALOG)	return	FALSE;
	.	.	.

Then	inside	the	code	block	handling	the	WM_INITDIALOG	message	do
something	like:

	switch	(message)	{
		case	WM_INITDIALOG:
			u	=	(MyUtil	*)lParam;
			SetWindowLong(hWnd,	GWL_USERDATA,	(LONG)u);
			.	.	.

Then	later	in	the	dialog	you	can	access	the	object	passed	in	--	in	the	case
above	an	instance	of	MyUtil	(using	u->).
DWORD	flags=0
The	following	flag	value	may	be	used:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	(closed)	state.

int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Sample	Code:
hBendParams	=	ip->AddRollupPage(
	hInstance,
	MAKEINTRESOURCE(IDD_BEND_ROLLUP),
	BendParamDialogProc,
	_T("Parameters"),
	(LPARAM)this);

Return	Value:
The	window	handle	of	the	rollup	page.

Prototype:
virtual	HWND	AddRollupPage(HINSTANCE	hInst,
DLGTEMPLATE	*dlgTemplate,	DLGPROC	dlgProc,	TCHAR

*title,	LPARAM	param=0,	DWORD	flags=0,	int	category	=
ROLLUP_CAT_STANDARD)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	to	add	a	rollup	page	to	the	command	panel.	It	returns	the
window	handle	of	the	rollup	page.	This	method	is	currently	not	being	used.

Parameters:
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in.
DLGTEMPLATE	*dlgTemplate
The	dialog	template	for	the	rollup	page.
DLGPROC	dlgProc
The	dialog	proc	to	handle	the	messages	sent	to	the	rollup	page.
TCHAR	*title
The	title	displayed	in	the	title	bar	of	the	rollup	page.
LPARAM	param=0
Any	specific	data	to	pass	along	may	be	stored	here.	This	may	be	later	retrieved
using	the	GetWindowLong()	call	from	the	Windows	API	if	it	was	set	in	the
window	using	SetWindowLong().
DWORD	flags=0
The	following	flag	value	may	be	used:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	(closed)	state.

int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the

RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
The	window	handle	of	the	rollup	page.

Prototype:
virtual	void	DeleteRollupPage(HWND	hRollup)=0;

Remarks:
Removes	a	rollup	page	and	destroys	it.

Parameters:
HWND	hRollup
The	window	handle	of	the	rollup	window.	This	is	the	handle	returned	from
AddRollupPage().

Prototype:
virtual	HWND	ReplaceRollupPage(HWND	hOldRollup,
HINSTANCE	hInst,	TCHAR	*dlgTemplate,	DLGPROC	dlgProc,
TCHAR	*title,	LPARAM	param=0,DWORD	flags=0,	int	category
=	ROLLUP_CAT_STANDARD)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	replaces	an	existing	rollup	with	another	one	and	(deletes	the	original).

Parameters:
HWND	hOldRollup
The	window	handle	of	the	old	rollup.
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in.
TCHAR	*dlgTemplate
The	dialog	template	for	the	rollup	page.

DLGPROC	dlgProc
The	dialog	proc	to	handle	the	messages	sent	to	the	rollup	page.
TCHAR	*title
The	title	displayed	in	the	title	bar	of	the	rollup	page.
LPARAM	param=0
Any	specific	data	to	pass	along	may	be	stored	here.
DWORD	flags=0
The	following	flag	value	may	be	used:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	(closed)	state.

int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
The	window	handle	of	the	rollup.

Prototype:
virtual	HWND	ReplaceRollupPage(HWND	hOldRollup,
HINSTANCE	hInst,	TCHAR	*dlgTemplate,	DLGPROC	dlgProc,
TCHAR	*title,	LPARAM	param=0,DWORD	flags=0,	int	category
=	ROLLUP_CAT_STANDARD)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	replaces	an	existing	rollup	with	another	one	and	(deletes	the	original).
This	method	is	currently	not	being	used.

Parameters:
HWND	hOldRollup
The	window	handle	of	the	old	rollup.
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in.
DLGTEMPLATE	*dlgTemplate
The	dialog	template	for	the	rollup	page.
DLGPROC	dlgProc
The	dialog	proc	to	handle	the	messages	sent	to	the	rollup	page.
TCHAR	*title
The	title	displayed	in	the	title	bar	of	the	rollup	page.
LPARAM	param=0
Any	specific	data	to	pass	along	may	be	stored	here.
DWORD	flags=0
The	following	flag	value	may	be	used:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	(closed)	state.

int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags

argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
The	window	handle	of	the	rollup.

Prototype:
virtual	IRollupWindow	*GetCommandPanelRollup()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	a	rollup	window	interface	to	the	command	panel	rollup.
This	interface	provides	methods	for	showing	and	hiding	rollups,	adding	and
removing	rollup	pages,	etc.	Note:	This	interface	does	not	need	to	be	released
with	ReleaseIRollup()	as	MAX	takes	care	of	this	when	it	shuts	down.
See	Class	IRollupWindow.

Prototype:
virtual	void	RollupMouseMessage(HWND	hDlg,	UINT	message,
WPARAM	wParam,	LPARAM	lParam)=0;

Remarks:
This	method	allows	hand	cursor	scrolling	in	the	command	panel	when	the	user
clicks	and	drags	the	mouse	in	an	unused	area	of	the	dialog.	When	the	user
mouse-es	down	in	dead	area	of	the	command	panel,	the	plug-in	should	pass
mouse	messages	to	this	function	which	will	pass	them	on	to	the	rollup.
Note:	This	method	is	obsolete	in	MAX	2.0	and	later.	These	messages	no
longer	need	to	be	passed	along	as	this	is	handled	internally.

Parameters:
HWND	hDlg
The	window	handle	of	the	dialog.
UINT	message
The	message	sent	to	the	dialog	proc.
WPARAM	wParam
Passed	in	to	the	dialog	proc.	Pass	along	to	this	method.
LPARAM	lParam

Passed	in	to	the	dialog	proc.	Pass	along	to	this	method.
Sample	Code:
case	WM_LBUTTONDOWN:	case	WM_LBUTTONUP:	case
WM_MOUSEMOVE:
		ip->RollupMouseMessage(hDlg,message,wParam,lParam);

Prototype:
virtual	int	GetCommandPanelTaskMode()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	a	value	to	indicate	which	brach	of	the	command	panel	is	currently
active.

Return	Value:
One	of	the	following	values:
TASK_MODE_CREATE
TASK_MODE_MODIFY
TASK_MODE_HIERARCHY
TASK_MODE_MOTION
TASK_MODE_DISPLAY
TASK_MODE_UTILITY

Prototype:
virtual	void	SetCommandPanelTaskMode(int	mode)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	sets	the	brach	of	the	command	panel	that	is	currently	active.

Parameters:
int	mode
One	of	the	following	values:
TASK_MODE_CREATE
TASK_MODE_MODIFY

TASK_MODE_HIERARCHY
TASK_MODE_MOTION
TASK_MODE_DISPLAY
TASK_MODE_UTILITY

Delete	Key	Notification
Prototype:
virtual	void	RegisterDeleteUser(EventUser	*user)=0;

Remarks:
Registers	a	callback	invoked	when	the	user	presses	the	Delete	Key.	This
allows	the	developer	to	override	the	default	processing	of	the	Delete	Key.

Parameters:
EventUser	*user
Pointer	to	an	instance	of	the	EventUser	class.

Sample	Code:
See	\MAXSDK\SAMPLES\MODIFIERS\EDITSPL.CPP.

Prototype:
virtual	void	UnRegisterDeleteUser(EventUser	*user)=0;

Remarks:
Un-registers	a	Delete	Key	callback.

Parameters:
EventUser	*user
Pointer	to	an	instance	of	the	EventUser	class.

Dialogs	--	Methods	to	Display	MAX	dialogs
This	section	describes	methods	to	put	up	many	of	the	standard	dialog	boxes
used	by	MAX.	Some	dialogs	are	accessed	outside	of	this	class.	For	the	Arc
Rotate	dialog	box	see	Class	ArcballDialog.	For	the	modal	or	modeless	color
selector	dialog	see	Class	ColorPicker.	For	a	Win32	MessageBox()	like
function	that	supports	'Hold'	and	'Don't	show	this	dialog	again'	items	see	List
of	Miscellaneous	Utility	Functions.

Prototype:
virtual	void	PutMtlToMtlEditor(MtlBase	*mb	,	int	slot=-1)=0;

Remarks:
Puts	the	specified	material	into	the	material	editor.	The	material	is	put	to	the
specified	slot,	or	if	-1	is	passed,	the	following	dialog	is	presented	which	allows
the	user	to	choose	a	sample	slot	for	the	material.

Parameters:
MtlBase	*mb
The	material	to	put	to	the	material	editor.
int	slot=-1
This	parameter	is	available	in	release	3.0	and	later	only.
The	Materials	Editor	slot	number	(a	value	in	the	range	0	to	23).	If	a	slot
number	is	specified,	then	this	method	will	replace	that	material	in	the
Materials	Editor	without	user	interaction.	If	-1	is	passed	(the	default)	then	the
function	brings	up	the	put	dialog.

Prototype:
virtual	BOOL	TrackViewPickDlg(HWND	hParent,
TrackViewPick	*res,	TrackViewFilter	*filter=NULL,	DWORD
flags=0)=0;

Remarks:
This	method	brings	up	the	track	view	pick	dialog.	This	dialog	appears	below:

Parameters:
HWND	hParent
The	handle	of	the	parent	window.
TrackViewPick	*res
The	item	chosen	by	the	user.	See	Class	TrackViewPick
TrackViewFilter	*filter=NULL
The	call	back	object	to	filter	selection	in	the	track	view.	See	Class
TrackViewFilter.
DWORD	flags=0
Currently	not	used.

Return	Value:
TRUE	if	the	user	selected	OK	to	exit	the	dialog;	otherwise	FALSE.

Sample	Code:
This	code	brings	up	the	Track	View	Pick	Dialog	and	filters	the	input	to	MAX's
controllers.	After	the	controller	is	selected	GetValue()	is	called	on	it.
class	MyTVFilter	:	public	TrackViewFilter	{
	BOOL	proc(Animatable	*anim,	Animatable	*client,int	subNum)	{
		Control	*c	=	(Control*)anim->GetInterface(I_CONTROL);
		return	(c)	?	TRUE	:	FALSE;
	}
};

	
void	DoTest()	{
	TrackViewPick	res;
	MyTVFilter	tvf;
	BOOL	okay	=	IP->TrackViewPickDlg(IP->GetMAXHWnd(),	&res,
&tvf);
	if	(!okay)	return;
	Control	*c	=	(Control	*)res.anim;
	SClass_ID	sid	=	c->SuperClassID();
	GetSetMethod	method	=	CTRL_ABSOLUTE;
	switch(sid)	{
		case	CTRL_FLOAT_CLASS_ID:
			float	r;
			Interval	ivalid;
			c->GetValue(IP->GetTime(),	&r,	ivalid,	method);
			...

Prototype:
virtual	BOOL	TrackViewPickMultiDlg(HWND	hParent,
Tab<TrackViewPick>	*res,	TrackViewFilter
*filter=NULL,DWORD	flags=0)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	brings	up	a	dialog	that	allows	one	to	select	multiple	tracks.	This
method	works	much	like	the	TrackViewPickDlg	method	above	except	it	is
passed	a	pointer	to	a	table	of	a	TrackViewPick	items	instead.

Parameters:
HWND	hParent
The	handle	of	the	parent	window.
Tab<TrackViewPick>	*res
This	is	a	table	(See	Template	Class	Tab)	of	items	chosen	by	the	user.	See	Class
TrackViewPick
TrackViewFilter	*filter=NULL
The	call	back	object	to	filter	selection	in	the	track	view.	See	Class
TrackViewFilter.
DWORD	flags=0
Currently	not	used.

Prototype:
virtual	int	DoExclusionListDialog(ExclList	*nl,	BOOL
doShadows=TRUE)=0;

Remarks:
This	brings	up	the	standard	Exclude	/	Include	dialog	box	used	for	light
exclusion	/	inclusion	lists.	This	dialog	appears	below:

Parameters:
ExclList	*nl
If	the	user	selects	OK,	this	is	the	list	of	names	chosen	by	the	user.	See	Class
ExclList.
BOOL	doShadows=TRUE
The	shadows	switch.

Return	Value:
Nonzero	if	the	user	selected	OK	to	exit	the	dialog;	otherwise	0.

Prototype:
virtual	void	ConvertNameTabToExclList(const	NameTab	*nt,
ExclList	*excList)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	convert	a	NameTab	to	an	ExclList	(the	new	format	for
Exclusion	lists).

Parameters:
const	NameTab	*nt

A	pointer	to	the	name	table.
ExclList	*excList
A	pointer	to	the	resulting	exclusion	list.

Prototype:
virtual	MtlBase	*DoMaterialBrowseDlg(HWND	hParent,DWORD
flags,BOOL	&newMat,BOOL	&cancel)=0;

Remarks:
This	method	brings	up	the	Material	/	Map	Browser	dialog	box.	This	dialog
appears	below:

Parameters:
HWND	hParent
The	parent	window	handle.
DWORD	flags

See	List	of	Material	Browser	Flags.
BOOL	&newMat
TRUE	if	the	user	has	selected	a	new	item;	otherwise	FALSE.	If	TRUE	it	is
safe	to	modify	this	item.	If	FALSE	the	item	may	be	an	instance	and	a
developer	should	not	modify	this	as	other	materials	may	be	using	this	same
item.
BOOL	&cancel
TRUE	if	the	user	canceled	the	dialog;	otherwise	FALSE.

Return	Value:
If	cancel	is	FALSE,	the	item	chosen	by	the	user	is	returned.	See	Class
MtlBase.

Prototype:
virtual	BOOL	DoHitByNameDialog(HitByNameDlgCallback
*hbncb=NULL)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	put	up	the	standard	MAX	Hit	By	Name	dialog.	This
dialog	appears	below:
If	the	callback	is	NULL	this	method	does	a	standard	select	by	name.	The
nodes	choosen	by	the	user	are	selected	if	the	user	selects	'Select'	from	the
dialog	to	exit.	Use	Interface::GetSelNodeCount()	and	GetSelNode(i)	to
retrieve	the	results.

Parameters:
HitByNameDlgCallback	*hbncb=NULL
Points	to	the	callback	object.	See	Class	HitByNameDlgCallback.	Developers
should	delete	this	callback	when	done.

Return	Value:
TRUE	if	the	user	selects	'Select'	from	the	dialog;	otherwise	FALSE.

Prototype:
virtual	BOOL	NodeColorPicker(HWND	hWnd,DWORD	&col)=0;

Remarks:
This	method	brings	up	the	standard	MAX	object	color	picker	dialog.	This
dialog	appears	below:

Parameters:
HWND	hWnd
The	parent	window	handle.
DWORD	&col
If	the	user	picks	a	color	then	this	will	be	set	to	the	chosen	color.	This	is	stored
in	a	32	bit	format,	with	the	high	order	8	bits	as	0's,	the	next	8	bits	as	the	Blue
amount,	the	next	8	bits	as	the	Green	amount,	and	the	low	order	8	bits	as	the
Red	amount	(0x00BBGGRR).	See	COLORREF	-	DWORD	Color	Format.

Return	Value:
TRUE	if	the	user	picks	a	color	and	FALSE	if	the	user	cancels	the	dialog.

Prototype:
virtual	void	ChooseDirectory(HWND	hWnd,	TCHAR	*title,
TCHAR	*dir,	TCHAR	*desc=NULL)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	methods	puts	up	the	Choose	Directory	dialog	box	to	allow	the	user	to
select	a	directory.	The	choosen	directory	including	the	drive	and	path	is	stored
in	dir.	This	dialog	appears	below:

Parameters:
HWND	hWnd
The	parent	window	handle.
TCHAR	*title
The	title	in	the	dialog	box.
TCHAR	*dir
The	choosen	directory	is	stored	here.	This	points	to	an	empty	string	on	cancel.
TCHAR	*desc=NULL
The	string	to	go	into	the	Label	field	of	the	dialog.	This	string	may	be	changed
by	the	user	and	is	returned	here.

Prototype:
virtual	int	ConfigureBitmapPaths()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	puts	up	the	dialog	to	let	the	user	configure	the	bitmap	loading
paths.	This	dialog	appears	below:

Return	Value:
Nonzero	on	user	selecting	OK,	zero	on	Cancel.

Prototype:
virtual	BOOL	DoSpaceArrayDialog(SpaceArrayCallback
*sacb=NULL)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Puts	up	the	space	array	dialog.	If	the	callback	is	NULL	it	just	does	the
standard	space	array	tool.

Parameters:
SpaceArrayCallback	*sacb=NULL
The	callback.	See	Class	SpaceArrayCallback.

Return	Value:
Returns	TRUE	if	the	user	OKs	the	dialog,	otherwise	FALSE.

RAM	Player
Prototype:
virtual	void	RAMPlayer(HWND	hWndParent,	TCHAR*
szChanA=NULL,	TCHAR*	szChanB=NULL)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Brings	up	the	RAMPlayer	dialog	and	optionally	loads	one,	or	both	channels
with	the	supplied	files.

Parameters:
HWND	hWndParent
The	parent	window	handle.
TCHAR*	szChanA=NULL
The	file	to	load	for	channel	A	(for	example,	_T("movie.avi")).	If	NULL	is
passed	no	file	is	loaded	into	the	channel.
TCHAR*	szChanB=NULL
The	file	to	load	for	channel	B.	If	NULL	is	passed	no	file	is	loaded	into	the
channel.

Dialogs	--	Register	Windows
Prototype:
virtual	void	RegisterDlgWnd(HWND	hDlg)=0;

Remarks:
Registers	a	dialog	window	so	IsDialogMessage()	gets	called	for	it.	This	is
not	required	if	you	add	rollup	pages	to	the	command	panel	as	this	is	done
automatically,	however	if	you	create	a	floating,	modeless	dialog	you	must	call
this	method.

Important	Note:	ALL	modeless	dialogs	in	MAX	must	be	registered	to	the
application	window	with	this	method	so	that	it,	and	any	sub	dialogs,	will
behave	as	they	should.

Parameters:
HWND	hDlg
The	window	handle	of	the	dialog.

Prototype:
virtual	int	UnRegisterDlgWnd(HWND	hDlg)=0;

Remarks:
Un-registers	a	dialog	window	so	IsDialogMessage()	is	no	longer	called	for
it.

Parameters:
HWND	hDlg
The	window	handle	of	the	dialog.

Return	Value:
Nonzero	if	successful;	otherwise	0.

Directory	Access	--	Plug-In	and	Bitmap	Paths

Prototype:
virtual	TCHAR	*GetDir(int	which)=0;

Remarks:
Returns	the	pathname	of	a	directory	used	by	3ds	max.

Parameters:
int	which
One	of	the	following	directories.	See	List	of	Directory	Names.

Return	Value:
The	pathname	of	the	directory.

Prototype:
virtual	int	GetPlugInEntryCount()=0;

Remarks:
This	is	the	number	of	entries	in	PLUGIN.INI.	PLUGIN.INI	contains	a	list
of	descriptions	and	directories	used	by	plug-in	DLLs.	See	Also:	Plug-In
Directory	Search	Mechanism.

Return	Value:
The	number	of	entries	in	PLUGIN.INI.

Prototype:
virtual	TCHAR	*GetPlugInDesc(int	i)=0;

Remarks:
Returns	the	'i-th'	description	string	from	PLUGIN.INI.	See	Also:	Plug-In
Directory	Search	Mechanism.

Parameters:
int	i
Specifies	which	description	to	return.

Return	Value:
The	'i-th'	description	string	from	PLUGIN.INI.

Prototype:
virtual	TCHAR	*GetPlugInDir(int	i)=0;

Remarks:
Returns	the	pathname	string	for	the	'i-th'	plug-in	directory	from
PLUGIN.INI.	See	Also:	Plug-In	Directory	Search	Mechanism.

Parameters:
int	i
Specifies	which	directory	to	return.

Return	Value:
The	'i-th'	pathname	string	from	PLUGIN.INI.

DLL	Directory	Access
Prototype:

virtual	DllDir&	GetDllDir()=0;
Remarks:
Returns	a	reference	to	the	central	DLL	directory.	See	Class	DllDir.

Prototype:
virtual	DllDir	*GetDllDirectory()=0;

Remarks:
Returns	a	pointer	to	the	central	DLL	directory.	See	Class	DllDir.

Error	Logging
The	following	methods	allow	a	developer	to	write	to	the	error	log	file	created	in
each	network	server's	directory.	These	three	methods	allow	more	detailed
information	to	be	recorded	than	the	single	line	error	message	that	is	returned	to
the	network	"master"	when	a	render	fails.	If	there	is	any	place	in	your	code
where	an	Alert	is	put	up	that	might	be	encountered	during	rendering,	you	can
print	the	information	out	to	the	error	log	instead.

Prototype:
virtual	LogSys	*Log()=0;

Remarks:
Returns	a	pointer	which	may	be	used	for	calling	methods	to	write	information
to	the	system	log.	See	Class	LogSys	for	details.

Environment	Access

Prototype:
virtual	Texmap	*GetEnvironmentMap()=0;

Remarks:
Returns	the	current	environment	map.

Prototype:
virtual	void	SetEnvironmentMap(Texmap	*map)=0;

Remarks:

Sets	the	current	environment	map	to	the	specified	map.	See
\MAXSDK\SAMPLES\UTILITIES\UTILTEST.CPP	for	sample	code.

Parameters:
Texmap	*map
The	map	to	set.

Prototype:
virtual	BOOL	GetUseEnvironmentMap()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	the	'Use	Map'	checkbox	is	checked	in	the	Environment	/
Background	dialog;	otherwise	FALSE.

Prototype:
virtual	void	SetUseEnvironmentMap(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	state	of	the	'Use	Map'	checkbox	in	the	Environment	/	Background
dialog.

Parameters:
BOOL	onOff
TRUE	for	checked;	FALSE	for	unchecked.

Prototype:
virtual	Point3	GetAmbient(TimeValue	t,Interval	&valid)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Retrieves	the	color	of	the	ambient	light	at	the	time	passed	and	updates	the
validity	interval	passed	to	reflect	the	validity	of	the	ambient	light.

Parameters:
TimeValue	t
The	time	to	retrieve	the	ambient	light	color.

Interval	&valid
The	validity	interval	to	update.

Return	Value:
The	color	as	a	Point3.

Prototype:
virtual	void	SetAmbient(TimeValue	t,	Point3	col)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	color	of	the	ambient	light	in	the	scene	to	the	color	passed	at	the
specified	time.

Parameters:
TimeValue	t
The	time	to	set	the	color.
Point3	col
The	new	color	for	the	ambient	light.

Prototype:
virtual	Control	*GetAmbientController()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Retrieves	a	pointer	to	the	controller	use	to	animate	the	ambient	light.

Prototype:
virtual	void	SetAmbientController(Control	*c)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	controller	used	for	handling	the	animation	of	the	ambient	light.

Parameters:
Control	*c
The	controller	to	set.

Prototype:
virtual	Point3	GetLightTint(TimeValue	t,Interval	&valid)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	rendering	environment	global	lighting	tint	color	at	the	specified
time	and	updates	the	validity	interval	passed	to	reflect	the	validity	of	the	tint
color	controller.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	color.
Interval	&valid
The	validity	interval	that	is	updated.

Prototype:
virtual	void	SetLightTint(TimeValue	t,	Point3	col)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	rendering	environment	global	lighting	tint	color	at	the	specified	time
to	the	color	passed.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	color.
Point3	col
The	color	to	set.

Prototype:
virtual	Control	*GetLightTintController()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	a	pointer	to	the	controller	use	to	animate	the	tint	color.

Prototype:

virtual	void	SetLightTintController(Control	*c)=0;
Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	controller	use	to	animate	the	tint	color.

Parameters:
Control	*c
Points	to	the	controller	to	set.

Prototype:
virtual	float	GetLightLevel(TimeValue	t,Interval	&valid)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	rendering	environment	global	lighting	level	at	the	specified	time
and	updates	the	validity	interval	passed	to	reflect	the	validity	of	the	lighting
level	controller.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	level.
Interval	&valid
The	validity	interval	that	is	updated.

Prototype:
virtual	void	SetLightLevel(TimeValue	t,	float	lev)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	rendering	environment	global	lighting	level	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	lighting	level.
float	lev
The	level	to	set.

Prototype:
virtual	Control	*GetLightLevelController()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	a	pointer	to	the	controller	use	to	animate	the	lighting	level.

Prototype:
virtual	void	SetLightLevelController(Control	*c)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	controller	use	to	animate	the	lighting	level.

Parameters:
Control	*c
Points	to	the	controller	to	set.

Prototype:
virtual	int	NumAtmospheric()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	number	of	atmospheric	effects	currently	assigned.

Prototype:
virtual	Atmospheric	*GetAtmospheric(int	i)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	a	pointer	to	the	'i-th'	atmospheric	effect.

Parameters:
int	i
Specifies	which	atmospheric	effect	to	retrieve.

Prototype:

virtual	void	SetAtmospheric(int	i,Atmospheric	*a)=0;
Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	'i-th'	atmospheric	effect.

Parameters:
int	i
Specifies	which	effect	to	set.
Atmospheric	*a
A	pointer	to	the	atmospheric	effect.

Prototype:
virtual	void	AddAtmosphere(Atmospheric	*atmos)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Adds	the	specified	atmospheric	effect	to	the	list	of	effects.

Parameters:
Atmospheric	*a
A	pointer	to	the	atmospheric	effect	to	add.

Prototype:
virtual	void	DeleteAtmosphere(int	i)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Deletes	the	specified	atmospheric	effect.

Parameters:
int	i
The	index	of	the	atmospheric	effect	to	delete.

Prototype:
virtual	void	EditAtmosphere(Atmospheric	*a,	INode
*gizmo=NULL)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	selects	the	specified	atmosphere's	gizmo	and	displays	the
parameters	for	it	(if	any).

Parameters:
Atmospheric	*a
Points	to	the	Atmospheric	plug-in.	See	Class	Atmospheric.
INode	*gizmo=NULL
Points	to	the	gizmo	node	associated	with	the	plug-in.

Render	Effects	Methods
Prototype:
virtual	int	NumEffects()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	Render	Effects	currently	assigned.

Prototype:
virtual	Effect	*GetEffect(int	i)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	'i-th'	Render	Effect.	See	Class	Effect.

Parameters:
int	i
The	zero	based	index	of	the	effect	to	return.

Prototype:
virtual	void	SetEffect(int	i,	Effect	*e)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	specified	Render	Effect	to	the	one	passed.

Parameters:
int	i
The	zero	based	index	of	the	effect	to	set.
Effect	*e
Points	to	the	Renderer	Effect	to	set.

Prototype:
virtual	void	AddEffect(Effect	*eff)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Adds	the	specified	Renderer	Effect	to	the	existing	list	of	effects.

Parameters:
Effect	*eff
Points	to	the	render	effect	to	add.	See	Class	Effect.

Prototype:
virtual	void	DeleteEffect(int	i)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deletes	the	specified	Renderer	Effect.

Parameters:
int	i
The	zero	based	index	of	the	effect	to	delete.

Prototype:
virtual	void	EditEffect(Effect	*e,	INode	*gizmo=NULL)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	selects	the	specified	gizmo	and	displays	the	parameters	for	it	(if
any).

Parameters:
Effect	*e

Points	to	the	Effect	plug-in.	See	Class	Effect.
INode	*gizmo=NULL
Points	to	the	gizmo	node	associated	with	the	effect.

Prototype:
virtual	Point3	GetBackGround(TimeValue	t,Interval	&valid)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Retrieves	the	background	color	at	the	specified	time	and	updates	the	validity
interval	passed	to	reflect	the	validity	of	the	background	color.

Parameters:
TimeValue	t
The	time	to	retrieve	the	color.
Interval	&valid
The	validity	interval	to	update.

Prototype:
virtual	void	SetBackGround(TimeValue	t,Point3	col)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	background	color	to	the	specified	color	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	set	the	color.
Point3	col
The	color	to	set.

Prototype:
virtual	Control	*GetBackGroundController()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	a	pointer	to	the	controller	animating	the	background	color.

Prototype:
virtual	void	SetBackGroundController(Control	*c)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	controller	used	for	animating	the	background	color.

Parameters:
Control	*c
Specifies	which	controller	to	set.

Execute	MAX	Commands

Prototype:
virtual	void	ExecuteMAXCommand(int	id)=0;

Remarks:
This	method	may	be	used	to	execute	a	MAX	command.	These	are	the	same
commands	that	may	be	assigned	using	the	MAX
Customize/Preferences.../Keyboard	Tab	key	assignment	system.
For	MAX	version	1.1	or	later,	this	method	may	also	be	used	to	set	various
aspects	of	the	preview	display.	The	id	to	pass	for	these	options	is	shown
below:
ExecuteMAXCommand(MAXCOM_API_PVW_GRID_OFF)
This	turns	off	the	preview	grid	display.
ExecuteMAXCommand(MAXCOM_API_PVW_GRID_ON)
This	turns	on	the	preview	grid	display.
ExecuteMAXCommand(MAXCOM_API_PVW_SMOOTH_MODE)
This	sets	the	preview	rendering	mode	to	"smooth".
ExecuteMAXCommand(MAXCOM_API_PVW_FACET_MODE)
This	sets	the	preview	rendering	mode	to	"facet".
ExecuteMAXCommand(MAXCOM_API_PVW_WIRE_MODE)
This	sets	the	preview	rendering	mode	to	"wireframe".
Note:	In	MAX	2.0	and	later	there	is	an	alternate	(better)	way	to	do	this.	See
the	method:

virtual	void	CreatePreview(PreviewParams	*pvp=NULL)=0;
Parameters:
int	id
The	command	to	execute.	See	List	of	MAX	Command	IDs.

Execute	--	General	API	Expansion	Function
Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG_PTR	arg1=0,
ULONG_PTR	arg2=0,	ULONG_PTR	arg3=0,	ULONG_PTR
arg4=0,	ULONG_PTR	arg5=0,	ULONG_PTR	arg6=0)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	MAX	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.
Note:	In	R4	the	return	value	changed	from	int	to	INT_PTR
New	in	R5.1	An	additional	Command	was	added	to	allow	the	setting	of
certain	directories	such	as	Plugins.	It	looks	like	this:
Execute(I_EXEC_SET_DIR,	(ULONG_PTR)(int)	which,	ULONG_PTR)
(TCHAR	*)dir)
	
where	'which'	designates	the	particular	Max	directory	to	be	changed	(like	the
corresponding	argument	of	Interface::GetDir()),	and	'dir'	is	the	path	as	a
string.	

Parameters:
int	cmd
The	index	of	the	command	to	execute.	See	List	of	Interface::Execute
Command	Options.
ULONG	arg1=0
Optional	argument	1.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	these	parameters.
ULONG	arg2=0
Optional	argument	2.

ULONG	arg3=0
Optional	argument	3.
ULONG	arg4=0
This	parameter	is	available	in	release	4.0	and	later	only.
Optional	argument	4.
ULONG	arg5=0
This	parameter	is	available	in	release	4.0	and	later	only.
Optional	argument	5.
ULONG	arg6=0
This	parameter	is	available	in	release	4.0	and	later	only.
Optional	argument	6.

Return	Value:
An	INT_PTR	return	value.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	the	meaning	of	this	value.

Extended	Display	Modes
Prototype:
virtual	void	SetExtendedDisplayMode(int	flags)=0;

Remarks:
This	method	is	used	internally	to	set	the	extended	display	mode.

Parameters:
int	flags
See	List	of	Extended	Display	Modes.

Prototype:
virtual	int	GetExtendedDisplayMode()=0;

Remarks:
Returns	the	extended	display	mode	flags.	This	method	provides	a	mechanism
to	retrieve	some	additional	information	about	an	object	that	is	more	dependent
on	MAX	than	on	the	particular	object.	For	example,	when	a	spotlight	is
selected,	it	can	use	this	method	to	detect	that	it	is	the	only	item	selected,	and
display	its	cone.	It	checks	this	using	and	extended	display	mode

EXT_DISP_ONLY_SELECTED.	See	List	of	Extended	Display	Modes.

Filenames	and	Pathnames

Prototype:
virtual	TSTR	&GetCurFileName()=0;

Remarks:
Returns	the	name	of	the	current	MAX	file	(but	not	the	path).	For	example,	if
the	currently	loaded	file	is	"D:\3DSMAX\SCENES\Expgears.max"	this
method	returns	"	Expgears.max".

Prototype:
virtual	TSTR	&GetCurFilePath()=0;

Remarks:
Returns	the	file	and	path	of	the	current	MAX	file.	For	example,	if	the
currently	loaded	file	is	"D:\3DSMAX\SCENES\Expgears.max"	this
method	returns	"D:\3DSMAX\SCENES\Expgears.max	".

Prototype:
virtual	TCHAR	*GetMatLibFileName()=0;

Remarks:
Returns	the	current	material	library	file	name.

File	Open/Merge/Save/Reset/Hold/Fetch	Methods
For	file	IO	using	the	MAX	import	/	export	mechanism	see	the	section:	Import
/	Export	Related	Methods.

Prototype:
virtual	bool	IsMaxFile(const	TCHAR*	filename)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	true	if	the	specified	file	is	a	valid	MAX	file;	otherwise	false.

Parameters:

const	TCHAR*	filename
The	name	of	the	file	to	check.

Prototype:
virtual	bool	IsInternetCachedFile(const	TCHAR*	filename)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	true	if	the	specified	file	is	an	internet	cached	file;	otherwise	false.

Parameters:
const	TCHAR*	filename
The	name	of	the	file	to	check.

Prototype:
virtual	void	SetMAXFileOpenDlg(MAXFileOpenDialog*	dlg)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	allows	a	custom	file	open	dialog	to	be	registered.

Parameters:
MAXFileOpenDialog*	dlg
Points	to	the	file	open	dialog	object	to	use.	See	Class	MAXFileOpenDialog.

Prototype:
virtual	void	SetMAXFileSaveDlg(MAXFileSaveDialog*	dlg)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	allows	a	custom	file	save	dialog	to	be	registered.

Parameters:
MAXFileSaveDialog*	dlg
Points	to	the	file	save	dialog	object	to	use.	See	Class	MAXFileSaveDialog.

Prototype:

virtual	void	FileOpenMatLib(HWND	hWnd)=0;
Remarks:
This	method	brings	up	the	File	Open	dialog	box	and	allows	the	user	to	select	a
material	library	to	load.

Parameters:
HWND	hWnd
The	parent	window	handle.

Prototype:
virtual	void	FileSaveMatLib(HWND	hWnd)=0;

Remarks:
If	the	current	material	library	has	been	saved	previously	(has	been	named)	this
method	saves	the	material	library	to	the	same	file.	Otherwise	it	brings	up	the
standard	Save	File	As	dialog	box	to	allow	the	user	to	save	the	current	material
library.

Parameters:
HWND	hWnd
The	parent	window	handle.

Prototype:
virtual	void	FileSaveAsMatLib(HWND	hWnd)=0;

Remarks:
Brings	up	the	standard	Save	File	As	dialog	box	to	allow	the	user	to	save	the
current	material	library.

Parameters:
HWND	hWnd
The	parent	window	handle.

Prototype:
virtual	void	LoadDefaultMatLib()=0;

Remarks:
This	method	loads	the	default	material	library	3DSMAX.MAT	(if	this	file

exists).

Prototype:
virtual	int	LoadFromFile(const	TCHAR	*name,	BOOL
refresh=TRUE)=0;

Remarks:
Loads	the	specified	MAX	file.	A	developer	should	normally	specify	a
complete	path	name.	This	method	does	not	bring	up	a	file	dialog.

Parameters:
const	TCHAR	*name
The	MAX	file	to	load.
BOOL	refresh=TRUE
This	parameter	is	available	in	release	2.0	and	later	only.
Set	this	to	FALSE	to	prevent	the	viewports	from	automatically	being
refreshed.

Return	Value:
Nonzero	if	the	file	was	loaded;	otherwise	0.

Prototype:
virtual	int	SaveToFile(const	TCHAR	*fname)=0;

Remarks:
Saves	the	current	scene	to	the	specified	MAX	file.	This	method	does	not	bring
up	a	file	dialog.

Parameters:
const	TCHAR	*name
The	MAX	file	to	save.

Return	Value:
Nonzero	if	the	library	was	saved;	otherwise	0.

Prototype:
virtual	void	FileSaveSelected(TCHAR	*fname)=0;

Remarks:

This	method	is	available	in	release	2.0	and	later	only.
Saves	the	selected	nodes	to	the	specified	file.

Parameters:
TCHAR	*fname
The	MAX	file	to	save.

Prototype:
virtual	void	FileSaveNodes(INodeTab*	nodes,	TCHAR	*fname)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Saves	the	specified	nodes	to	the	specified	file.

Parameters:
INodeTab*	nodes
Points	to	the	table	of	nodes	to	save.	See	Class	INodeTab.
TCHAR	*fname
The	MAX	file	to	save.

Prototype:
virtual	int	LoadMaterialLib(const	TCHAR	*name,	MtlBaseLib
*lib=NULL)=0;

Remarks:
Loads	the	specified	material	library.	This	method	does	not	bring	up	a	file
dialog.

Parameters:
const	TCHAR	*name
The	material	library	to	load.
MtlBaseLib	*lib=NULL
This	parameter	is	available	in	release	2.0	and	later	only.
Points	to	the	material	library	to	load	into.	If	NULL	the	library	is	loaded	into
the	current	material	library.	See	Class	MtlBaseLib.
Note:	You	need	to	call	MtlBaseLib::DeleteAll()	on	the	library	during	a
MAX	reset	operation.	This	will	remove	all	its	references	to	the	materials	and

set	its	count	to	zero.
Return	Value:
Nonzero	if	the	library	was	loaded;	otherwise	0.

Prototype:
virtual	int	SaveMaterialLib(const	TCHAR	*name,	MtlBaseLib
*lib=NULL)=0;

Remarks:
Saves	the	specified	material	library	to	the	specified	file.	This	method	does	not
bring	up	a	file	dialog.

Parameters:
const	TCHAR	*name
The	material	library	to	save.
This	parameter	is	available	in	release	2.0	and	later	only.
Points	to	the	material	library	to	save	from.	If	NULL	the	library	is	saved	from
the	current	material	library.	See	Class	MtlBaseLib.

Return	Value:
Nonzero	if	the	library	was	saved;	otherwise	0.

Prototype:
virtual	int	MergeFromFile(const	TCHAR	*name,	BOOL
mergeAll=FALSE,	BOOL	selMerged=FALSE,	BOOL
refresh=TRUE,	int	dupAction	=	MERGE_DUPS_PROMPT,
NameTab*	mrgList=NULL)=0;

Remarks:
Merges	the	specified	MAX	file	into	the	current	scene.	In	MAX	2.0	and	later
additional	parameters	allow	automatic	viewport	updates	to	be	optionally	be
turned	off,	cases	of	duplicate	objects	being	merged	may	be	handled,	a	table	of
names	of	the	merged	objects	may	be	generated,	and	only	specific	named
objects	from	the	file	may	be	merged.

Parameters:
const	TCHAR	*name
The	MAX	file	to	merge.

BOOL	mergeAll=FALSE
If	TRUE	all	the	items	in	the	file	are	merged;	otherwise	the	selector	dialog
appears	allowing	the	user	to	choose.
selMerged=FALSE
If	TRUE	the	nodes	are	selected	when	they	are	merged.
BOOL	refresh=TRUE
This	parameter	is	available	in	release	2.0	and	later	only.
Set	this	to	FALSE	to	prevent	the	viewports	from	automatically	being
refreshed.
int	dupAction	=	MERGE_DUPS_PROMPT
This	parameter	is	available	in	release	2.0	and	later	only.
Determines	what	to	do	when	duplicate	named	objects	are	encountered	during
the	merge.	One	of	the	following	values	specifies	what	to	do:
MERGE_DUPS_PROMPT
Prompt	the	user	for	what	to	do	when	duplicates	are	encountered.
MERGE_DUPS_MERGE
Merge	new	objects,	but	keep	original	objects	when	duplicates	are
encountered.
MERGE_DUPS_SKIP
Skip	any	duplicates	encountered	(don't	merge	them).
MERGE_DUPS_DELOLD
Delete	the	old	objects	and	merge	the	new	ones	when	duplicates	are
encountered.
MERGE_LIST_NAMES
Specifies	that	the	name	table	mrgList	below	should	be	filled	in	with	the
names	of	the	merged	objects.

NameTab*	mrgList=NULL
This	parameter	is	available	in	release	2.0	and	later	only.
When	you	specify	a	pointer	to	a	NameTab	for	this	parameter,	and	don't	set
dupAction	to	MERGE_LIST_NAMES,	then	this	method	will	merge	the
nodes	whose	names	are	listed	in	the	mrgList.
If	dupAction==MERGE_LIST_NAMES,	(and	mergeAll==TRUE,

and	mrgList	!=	NULL)	then	this	method	puts	a	list	of	the	nodes	in	the	file
into	mrgList,	and	simply	returns	(no	merging	is	done).
See	Class	NameTab.

Return	Value:
Nonzero	if	the	file	was	merged;	otherwise	0.

Prototype:
virtual	void	FileOpen()=0;

Remarks:
This	brings	up	the	standard	MAX	file	open	dialog	and	allows	the	user	to	load
a	new	scene.

Prototype:
virtual	BOOL	FileSave()=0;

Remarks:
This	saves	the	current	file.	If	the	file	has	not	been	saved	yet	(and	is	thus
unnamed)	this	brings	up	the	standard	MAX	file	Save	As	dialog	box	and	allows
the	user	to	choose	a	name.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	BOOL	CheckForSave()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	can	be	used	to	write	out	a	.MAX	file	if	needed.	First	it	ends
animation	if	it's	in	progress.	Next	it	determines	whether	a	save	operation	is
required	(change	marked	in	scene,	or	undo	operations	present).

Return	Value:
If	the	save	is	not	required,	it	returns	TRUE;	otherwise,	it	puts	up	a	dialog	box
asking	if	the	user	wants	to	save.	If	the	user	picks	No,	it	returns	TRUE.	If	the
user	picks	Cancel	it	returns	FALSE.	If	the	user	picks	Yes	then	the	method
proceeds	as	for	FileSave()	above.

Prototype:
virtual	BOOL	FileSaveAs()=0;

Remarks:
This	brings	up	the	standard	MAX	file	saveas	dialog	box	and	allows	the	user	to
save	the	current	scene	to	a	new	file.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	void	FileSaveSelected()=0;

Remarks:
This	brings	up	the	standard	MAX	file	save	selected	dialog	box	and	allows	the
user	to	save	the	selected	items	from	the	current	scene.

Prototype:
virtual	void	FileReset(BOOL	noPrompt=FALSE)=0;

Remarks:
This	resets	MAX	to	its	startup	condition	after	a	confirmation	prompt.	This
performs	the	same	operation	as	choosing	File	/	Reset	from	the	MAX	menus.

Parameters:
BOOL	noPrompt=FALSE
If	TRUE	the	confirmation	prompt	is	not	presented.

Prototype:
virtual	void	FileMerge()=0;

Remarks:
This	allows	the	user	to	merge	another	MAX	file	with	the	current	scene.	This
performs	the	same	operation	as	choosing	File	/	Merge	from	the	MAX	menus.

Prototype:
virtual	void	FileHold()=0;

Remarks:

This	saves	the	current	state	of	the	scene	to	a	temporary	hold	buffer	(same	as
Edit	/	Hold).	This	state	may	later	be	restored	using	FileFetch()	or	(Edit	/
Fetch	from	MAX).

Prototype:
virtual	void	FileFetch()=0;

Remarks:
This	restores	the	current	state	of	the	scene	from	the	temporary	hold	buffer
created	using	FileHold()	(or	from	the	MAX	menu	command	Edit	/	Hold).

File	Import	/	Export	Related	Methods
Prototype:
virtual	BOOL	FileImport()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	simply	brings	up	the	'Select	File	to	Import'	dialog	just	as	if	the
user	picked	this	option	from	the	File	/	Import...	pulldown	menu.

Return	Value:
TRUE	if	the	file	was	imported	successfully;	otherwise	FALSE.

Prototype:
virtual	BOOL	FileExport()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	simply	brings	up	the	'Select	File	to	Export'	dialog	just	as	if	the
user	picked	this	option	from	the	File	/	Export...	pulldown	menu.

Return	Value:
TRUE	if	the	export	file	was	written	successfully;	otherwise	FALSE.

Prototype:
virtual	BOOL	ImportFromFile(const	TCHAR	*name,	BOOL
suppressPrompts=FALSE,	Class_ID	*importerID=NULL)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	allows	the	import	of	the	specified	file	by	any	of	the	supported
import	formats.	This	is	done	by	specifying	a	full	filename	thus	bypassing	the
file	browser.	If	suppressPrompts	is	set	to	TRUE,	the	import	mechanism
will	not	display	any	prompts	requiring	user	action.
Note:	Developers	of	Import	plug-ins	need	to	support	the	suppressPrompts
mechanism	for	this	to	work	properly.	Developers	of	such	plug-ins	should	see
the	Class	SceneImport	for	details.

Parameters:
const	TCHAR	*name
The	full	file	name	(including	extension	--	which	identifies	the	importer	used)
of	the	input	file.
BOOL	suppressPrompts=FALSE
If	TRUE	the	default	choices	in	the	import	plug-in	are	used	and	no	options
dialogs	are	presented.	If	FALSE	any	options	dialogs	provided	by	the	importer
are	presented	to	the	user.
Class_ID	*importerID=NULL
This	parameter	is	available	in	release	3.0	and	later	only.
The	parameter	specifies	the	Class_ID	of	the	import	module	to	use.	This	is	for
those	cases	where	more	than	one	import	module	uses	the	same	file	extension.
Omitting	this	class	ID	operates	in	the	pre-R3	mode,	i.e.	the	first	importer
found	is	used.

Return	Value:
TRUE	if	the	export	file	was	written	successfully;	otherwise	FALSE.

Prototype:
virtual	BOOL	ExportToFile(const	TCHAR	*name,	BOOL
suppressPrompts=FALSE,	DWORD	options,	Class_ID
*exporterID=NULL)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	allows	the	export	of	the	current	MAX	file	to	any	of	the	supported
export	formats.	This	is	done	by	specifying	a	full	filename	thus	bypassing	the

file	browser.	If	suppressPrompts	is	set	to	TRUE,	the	export	mechanism	will
not	display	any	prompts	requiring	user	action.
Note:	Developers	of	Export	plug-ins	need	to	support	the	suppressPrompts
mechanism	for	this	to	work	properly.	Developers	of	such	plug-ins	should	see
the	Class	SceneExport	for	details.

Parameters:
const	TCHAR	*name
The	full	file	name	(including	extension	--	which	identifies	the	exporter	used)
of	the	output	file.
BOOL	suppressPrompts=FALSE
If	TRUE	the	default	choices	in	the	export	plug-in	are	used	and	no	options
dialogs	are	presented.	If	FALSE	any	options	dialogs	provided	by	the	exporter
are	presented	to	the	user.
DWORD	options
This	option	is	available	in	release	4.0	and	later	only.
There	is	currently	one	option;	SCENE_EXPORT_SELECTED	which
allows	you	to	export	only	selected	nodes.
Class_ID	*exporterID=NULL
This	parameter	is	available	in	release	3.0	and	later	only.
The	parameter	specifies	the	Class_ID	of	the	export	module	to	use.	This	is	for
those	cases	where	more	than	one	export	module	uses	the	same	file	extension.
Omitting	this	class	ID	operates	in	the	pre-R3	mode,	i.e.	the	first	exporter
found	is	used.

Return	Value:
TRUE	if	the	export	file	was	written	successfully;	otherwise	FALSE.

Prototype:
virtual	bool	CanImportFile(const	TCHAR*	filename)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	check	is	the	specified	file	can	be	imported.

Parameters:
const	TCHAR*	filename

The	file	name	to	check.
Return	Value:
TRUE	if	the	specified	file	can	be	imported	by	one	of	the	import	plug-ins;
otherwise	FALSE.

Prototype:
virtual	BOOL	GetImportZoomExtents()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	returns	the	state	of	the	system	zoom	extents	flag.	Note	that	individual
SceneImport	plug-ins	can	override	this	in	their	ZoomExtents()	method.	See
Class	SceneImport.

Return	Value:
TRUE	indicates	that	zoom	extents	will	occur	after	imports,	FALSE	indicates
that	no	zoom	extents.

Prototype:
virtual	void	SetImportZoomExtents(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	state	of	the	system	zoom	extents	flag.

Parameters:
BOOL	onOff
TRUE	indicates	that	zoom	extents	will	occur	after	imports,	FALSE	indicates
that	no	zoom	extents.

Fonts	/	Cursor	Related	Methods
Prototype:
virtual	HFONT	GetAppHFont()=0;

Remarks:
Returns	the	handle	of	the	font	used	by	MAX.	The	default	font	is	the	same	one
returned	from	GetAppHFont().	So	if	a	developer	makes	a	dialog	in	the

rollup	page	the	correct	font	will	be	used	automatically.

Prototype:
virtual	HCURSOR	GetSysCursor(int	id)=0;

Remarks:
This	method	returns	the	cursor	handle	for	the	standard	MAX	cursors.	Use
SetCursor()	from	the	Windows	API	to	set	the	cursor.

Parameters:
int	id
One	of	the	following	values:
SYSCUR_MOVE,	SYSCUR_ROTATE,	SYSCUR_USCALE,
SYSCUR_NUSCALE,
SYSCUR_SQUASH,	SYSCUR_SELECT,
SYSCUR_DEFARROW.

Return	Value:
The	handle	of	the	cursor.

Prototype:
virtual	void	SetCrossHairCur(BOOL	onOff)=0;

Remarks:
This	method	is	reserved	for	future	use.

Prototype:
virtual	BOOL	GetCrossHairCur()=0;

Remarks:
This	method	is	reserved	for	future	use.

Grid	Related	Methods

Prototype:
virtual	float	GetGridSpacing()=0;

Remarks:

This	method	returns	the	grid	spacing	value	that	the	user	specifies	in	the	Views
/	Grid	and	Snap	Settings	dialog	in	the	Home	Grid	tab	under	Grid	Spacing.

Prototype:
virtual	int	GetGridMajorLines()=0;

Remarks:
This	method	returns	the	value	that	the	user	specifies	in	the	Views	/	Grid	and
Snap	Settings	dialog	in	the	Home	Grid	tab	under	Major	Lines	every	Nth.

Prototype:
virtual	void	SetActiveGrid(INode	*node)=0;

Remarks:
Sets	the	given	node	as	the	active	grid	object.	This	is	used	with	grid	helper
objects	to	allow	them	to	take	effect.	This	method	may	also	be	used	to	activate
the	home	grid.
Note:	This	API	is	not	working	in	the	SDK	prior	to	version	2.5.

Parameters:
INode	*node
The	node	to	set	as	the	active	grid	object.	To	activate	the	home	grid	pass
NULL.

Prototype:
virtual	INode	*GetActiveGrid()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	active	grid	node	or	NULL	if	the	home	grid	is	in	use.

Prototype:
virtual	void	AddGridToScene(INode	*node)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	not	operative	in	MAX	(only	in	3D	Studio	VIZ).

Hide	By	Category	Flags
Prototype:
virtual	DWORD	GetHideByCategoryFlags()=0;

Remarks:
Returns	the	state	of	the	hide	by	category	flags.

Return	Value:
One	or	more	of	the	following	values:
HIDE_OBJECTS
HIDE_SHAPES
HIDE_LIGHTS
HIDE_CAMERAS
HIDE_HELPERS
HIDE_WSMS
HIDE_SYSTEMS
HIDE_ALL
HIDE_NONE

Prototype:
virtual	void	SetHideByCategoryFlags(DWORD	f)=0;

Remarks:
Sets	the	state	of	the	hide	by	category	flags.

Parameters:
DWORD	f
One	or	more	of	the	following	values:
HIDE_OBJECTS
HIDE_SHAPES
HIDE_LIGHTS
HIDE_CAMERAS
HIDE_HELPERS
HIDE_WSMS
HIDE_SYSTEMS
HIDE_ALL

HIDE_NONE

Keyboard	Accelerators
See	the	Advanced	Topics	section	Keyboard	Accelerators	and	Dialog	Messages
for	more	details.	Also	see	the	Keyboard	Shortcut	System	topic	for	details	of	the
system	used	in	release	3.0	and	later.

Prototype:
virtual	void	RegisterAccelTable(HWND	hWnd,	HACCEL
hAccel)=0;

Remarks:
Registers	a	keyboard	accelerator	table.

Parameters:
HWND	hWnd
The	window	handle.
HACCEL	hAccel
The	handle	of	the	accelerator	table	(from	the	Windows	API).	See	the	Windows
API	for	more	details	on	accelerator	tables.

Prototype:
virtual	int	UnRegisterAccelTable(HWND	hWnd,	HACCEL
hAccel)=0;

Remarks:
Un-registers	a	keyboard	accelerator	table.

Parameters:
HWND	hWnd
The	window	handle.
HACCEL	hAccel
The	handle	of	the	accelerator	table	(from	the	Windows	API).	See	the	Windows
API	for	more	details	on	accelerator	tables.

Return	Value:
Nonzero	if	successful;	otherwise	0.

Prototype:
virtual	BOOL	GetPluginKeysEnabled()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Note	that	this	method	has	been	removed	in	release	4.0	and	later.
In	the	MAX	UI	there	is	a	icon	button	for	toggling	between	the	MAX	system
keyboard	accelerators	and	those	registered	by	the	plug-in.	This	icon	has	a
tooltip	'Plug-in	Keyboard	Shortcut	Toggle'.

Return	Value:
TRUE	if	the	state	is	set	such	that	the	plug-in	accelerators	are	enabled	and
FALSE	if	the	system	accelerators	are	enabled.

Prototype:
virtual	void	SetPluginKeysEnabled(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Note	that	this	method	has	been	removed	in	release	4.0	and	later.
In	the	MAX	UI	there	is	a	icon	button	for	toggling	between	the	MAX	system
keyboard	accelerators	and	those	registered	by	plug-ins.	This	method	may	be
used	to	set	the	state	such	that	the	plug-in	accelerators	are	enabled	or	disabled.
Note:	Normally	the	user	should	decide	which	accelerators	are	enabled.
The	user	will	probably	find	it	disconcerting	to	have	a	plug-in	change	the
state	of	this	button.	Therefore	developers	should	simply	register	their
accelerators	and	let	the	user	toggle	them	on	and	off.

Parameters:
BOOL	onOff
TRUE	to	enable	plug-in	accelerators;	FALSE	to	enable	system	accelerators.

Keyboard	Shortcut	Table	Related	Methods
The	keyboard	shortcut	system	used	prior	to	release	4	of	MAX	has	been	replaced
by	a	more	comprehensive	system.	See	the	Advanced	Topics	section	UI
Customization	for	details.

Light	Related	Methods
Prototype:
virtual	float	GetLightConeConstraint()=0;

Remarks:
Returns	the	light	cone	constraint	angle	(in	radians).	This	is	the	hotspot	/	falloff
separation	angle.

Prototype:
virtual	void	AddLightToScene(INode	*node)=0;

Remarks:
Adds	a	light	to	the	scene	and	registers	the	light	with	the	viewports.

Parameters:
INode	*node
The	light	to	add.

Prototype:
virtual	void	AddSFXRollupPage(ULONG	flags=0)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	should	be	called	in	an	light's	BeginEditParams()	method,	after
adding	rollups	to	the	modify	panel:	it	puts	up	a	rollup	containing	a	list	of	all
Atmospherics	and	Effects	that	use	the	current	selected	node	as	a	"gizmo".

Parameters:
ULONG	flags=0
These	are	reserved	for	future	use.

Prototype:
virtual	void	DeleteSFXRollupPage()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	is	called	in	a	light's	EndEditParams()	when	removing	rollups.

Prototype:
virtual	void	RefreshSFXRollupPage()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
An	Atmospheric	or	Rendering	Effect	calls	this	when	it	adds	or	removes	a
"gizmo"	reference.	This	is	called	to	refresh	the	Special	Effects	rollup.	The
Atmospherics	and	Rendering	Effects	may	also	use	the
REFMSG_SFX_CHANGE	message,	though	calling	this	method	would
have	the	same	effect.

Material	Related	Methods
Prototype:
virtual	MtlBaseLib&	GetMaterialLibrary()=0;

Remarks:
This	method	provides	access	to	the	currently	loaded	material	library.

Return	Value:
See	Class	MtlBaseLib.

Prototype:
MtlBaseLib*	GetSceneMtls();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	list	of	all	the	materials	used	in	the	scene.

Return	Value:
See	Class	MtlBaseLib.

Prototype:
MtlBase*	GetMtlSlot(int	slot);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	material	in	the	specified	slot	in	the	Materials	Editor.

Parameters:

int	slot
The	number	of	the	slot	in	the	Materials	Editor	(a	value	in	the	range	0	to	23).

Prototype:
virtual	BOOL	OkMtlForScene(MtlBase	*m)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Before	assigning	material	to	scene,	call	this	to	avoid	duplicate	names.

Return	Value:
TRUE	if	it	is	okay	to	assign	the	material;	FALSE	if	not.

Prototype:
virtual	void	AssignNewName(Mtl	*m)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Modifies	the	name	of	the	material	to	make	it	unique.	The	name	is	of	the	form
"Material	#1"	where	the	number	is	incremented	as	required	to	make	ensure
it's	unique.

Parameters:
Mtl	*m
The	material	whose	name	is	modified.

Prototype:
virtual	void	AssignNewName(Texmap	*m)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Modifies	the	name	of	the	texture	to	make	it	unique.	.	The	name	is	of	the	form
"Map	#1"	where	the	number	is	incremented	as	required	to	make	ensure	it's
unique.

Parameters:
Texmap	*m
The	texmap	whose	name	is	modified.

Prototype:
void	ActivateTexture(Texmap	*tx,	Mtl	*mtl,	int	subNum=-1);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
The	method	activates	the	texture	map	in	the	viewports.
Note:	In	the	MAX	2.0	SDK	a	bug	prevents	this	function	from	being	used	--	it
results	in	a	link	error.	This	is	fixed	in	the	2.5	SDK.

Parameters:
Texmap	*tx
Points	to	the	texmap	to	activate.
Mtl	*mtl
The	top	level	material	containing	the	texture	map.
int	subNum=-1
If	mtl	above	is	a	Multi-material,	this	specifies	which	sub-branch	of	the
material	contains	tx.

Prototype:
void	DeActivateTexture(Texmap	*tx,	Mtl	*mtl,	int	subNum=-1);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
The	method	deactivates	the	texture	map	in	the	viewports.
Note:	In	the	MAX	2.0	SDK	a	bug	prevents	this	function	from	being	used	--	it
results	in	a	link	error.	This	is	fixed	in	the	2.5	SDK.

Parameters:
Texmap	*tx
Points	to	the	texmap	to	deactivate.
Mtl	*mtl
The	top	level	material	containing	the	texture	map.
int	subNum=-1
If	mtl	above	it	a	Multi-material,	this	specifies	which	sub-branch	of	the
material	contains	tx.

Prototype:
virtual	void	UpdateMtlEditorBrackets()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	makes	sure	the	Materials	Editor	slots	correctly	reflect	which
materials	are	used	in	the	scene,	which	are	used	by	selected	objects,	etc.	This	is
used	internally	for	the	drag-and-drop	of	materials	to	nodes	--	there	is	no	reason
why	a	plug-in	developer	should	need	to	call	it.

Prototype:
virtual	void	ConvertMtl(TimeValue	t,	Material	&gm,	Mtl	*mtl,
BOOL	doTex,	int	subNum,	float	vis,	BOOL	&needDecal,	INode
*node,	BitArray	*needTex,	GraphicsWindow	*gw)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	function	converts	a	material	(class	Mtl)	to	a	viewport	material	(class
Material).

Parameters:
TimeValue	t
The	time	to	convert	the	material.
Material	&gm
The	viewport	material	(output).	See	Class	Material.
Mtl	*mtl
The	material	to	convert	(input).	See	Class	Mtl.
BOOL	doTex
Determines	whether	or	not	to	include	textures.	TRUE	for	yes;	FALSE	for	no.
int	subNum
If	the	input	material	mtl	is	a	sub-material	then	pass	its	subnum;	otherwise
pass	0.
float	vis
The	visibility	value	in	the	range	of	0.0	(completely	transparent)	to	1.0	(fully
opaque)	for	the	viewport	representation.
BOOL	&needDecal

Pass	TRUE	if	the	texture	needs	decal	mapping;	otherwise	FALSE.
INode	*node
Points	to	the	node	that	the	material	is	assigned	to.	See	Class	INode.
BitArray	*needTex
A	BitArray	that	returns	which	map	channels	are	needed.	The	BitArray	is
enlarged	if	needed.	See	Class	BitArray.
GraphicsWindow	*gw
The	GraphicsWindow	to	do	the	conversion	for.	See	Class	GraphicsWindow.

Modifier	Related	Methods
Prototype:
virtual	void	GetModContexts(ModContextList&	list,	INodeTab&
nodes)=0;

Remarks:
A	modifier	may	be	applied	to	several	objects	in	the	scene.	This	method
retrieves	a	list	of	all	the	ModContexts	for	the	modifier	at	the	current	place	in
the	modifier	stack.	It	also	gets	a	list	of	the	nodes	the	modifier	is	applied	to.	For
example	a	modifier	may	store	data	into	the	local	data	portion	of	the
ModContext	for	each	object	affected	by	the	modifier.	In	order	to	get	at	this
data	it	needs	to	get	each	ModContext.
Note:	this	method	returns	only	the	ModContext	of	the	currently	selected
objects,	even	if	the	modifier	is	applied	to	several	objects.

Parameters:
ModContextList&	list
A	reference	to	the	list	of	ModContexts.	See	ModContextList.
INodeTab&	nodes
A	reference	to	the	table	of	each	of	the	nodes.	See	INodeTab.

Prototype:
virtual	BaseObject*	GetCurEditObject()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	object	(or	modifier)	that	is	currently	being	edited	in

the	modifier	panel.	See	Class	BaseObject.

Node	Grouping

Prototype:
virtual	INode	*GroupNodes(INodeTab	*nodes=NULL,TSTR
*name=NULL,BOOL	selGroup=TRUE)=0;

Remarks:
Combines	the	specified	nodes	into	a	MAX	group.

Parameters:
INodeTab	*nodes=NULL
The	table	of	nodes	to	combine	into	a	MAX	group.	If	NULL	is	passed,	the
current	selection	set	is	used.
TSTR	*name=NULL
The	name	of	the	group	to	create.	If	the	name	is	NULL,	a	dialog	box	will
prompt	the	user	to	select	a	name.
BOOL	selGroup=TRUE
If	TRUE,	the	group	of	nodes	will	be	selected	after	the	operation	is	completed.

Return	Value:
A	pointer	to	the	group	of	nodes	created.

Prototype:
virtual	void	UngroupNodes(INodeTab	*nodes=NULL)=0;

Remarks:
Un-groups	the	specified	nodes.

Parameters:
INodeTab	*nodes=NULL
The	table	of	nodes	to	un-group.	If	NULL	is	passed,	the	current	selection	set	is
used.

Prototype:
virtual	void	ExplodeNodes(INodeTab	*nodes=NULL)=0;

Remarks:
Explodes	the	grouped	nodes.	This	completely	un-groups	nested	groups.

Parameters:
INodeTab	*nodes=NULL
The	table	of	nodes	to	explode.	If	NULL	is	passed,	the	current	selection	set	is
used.

Prototype:
virtual	void	OpenGroup(INodeTab	*nodes=NULL,BOOL
clearSel=TRUE)=0;

Remarks:
Opens	the	grouped	nodes.	Items	in	an	opened	group	may	be	edited
individually.

Parameters:
INodeTab	*nodes=NULL
The	table	of	nodes	comprising	a	group	that	will	be	opened.	If	NULL	is	passed,
the	current	selection	set	is	used.
BOOL	selGroup=TRUE
If	TRUE,	the	group	of	nodes	will	be	selected	after	the	operation	is	completed.

Prototype:
virtual	void	CloseGroup(INodeTab	*nodes=NULL,BOOL
selGroup=TRUE)=0;

Remarks:
Closes	the	specified	group	of	nodes.	Items	in	a	closed	group	cannot	be	edited
individually.

Parameters:
INodeTab	*nodes=NULL
The	table	of	nodes	to	close.	If	NULL	is	passed,	the	current	selection	set	is
used.
BOOL	selGroup=TRUE
If	TRUE,	the	group	of	nodes	will	be	selected	after	the	operation	is	completed.

Node	Names	--	Creating	Unique

Prototype:
virtual	void	MakeNameUnique(TSTR	&name)=0;

Remarks:
Given	a	name,	this	method	will	modify	it	to	ensure	it	is	unique.	It	does	this	by
appending	a	two	digit	number	to	the	end	of	the	name,	or	incrementing	the
existing	number,	until	the	name	created	is	unique.	Important	Note:	See
NewNameMaker()	below	for	a	much	faster	version	of	this	method	when
creating	many	nodes	whose	names	must	be	unique.

Parameters:
TSTR	&name
The	name	to	make	unique.

Prototype:
virtual	NameMaker*	NewNameMaker(BOOL	initFromScene	=
TRUE)=0;

Remarks:
Returns	a	class	used	for	efficiently	creating	unique	names.	To	use,	do	the
following:

NameMaker	*nm	=	interface->NewNameMaker();
for(;;)	{
	...
	nm->MakeUniqueName(nodename);
	...
	}
delete	nm;

Parameters:
BOOL	initFromScene	=	TRUE
This	parameter	is	available	in	release	2.0	and	later	only.
If	FALSE	then	the	name	maker	is	not	seeded	with	the	names	of	the	objects	in
the	current	scene.

Return	Value:

See	Class	NameMaker	for	details.

Node	Related	Methods

Prototype:
virtual	INode	*GetINodeByName(const	TCHAR	*name)=0;

Remarks:
This	method	may	be	called	to	retrieve	the	INode	pointer	for	the	node	with	the
given	name.

Parameters:
const	TCHAR	*name
The	name	of	the	node	to	find.

Prototype:
virtual	INode	*GetINodeByHandle(ULONG	handle)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	node	whose	handle	is	specified.	In	3dsmax	version	4.0
and	later	each	node	is	assigned	a	unique	handle.

Parameters:
ULONG	handle
The	handle	of	the	node	to	find.

Prototype:
virtual	void	DeleteNode(INode	*node,	BOOL	redraw=TRUE,
BOOL	overrideSlaves=FALSE)=0;

Remarks:
This	deletes	the	specified	node	from	the	scene	and	handles	setting	up	for	an
undo.
In	order	to	be	able	to	undo	this	deletion	properly	the	undo	system	must	be	in	a
holding	state.	A	developer	can	do	this	by	calling	theHold.Begin()	before
calling	DeleteNode()	and	calling	theHold.Accept()	after.	For	example,	to
delete	the	first	node	in	the	current	selection	set,	you	could	use	the	following

code:
theHold.Begin();
ip->DeleteNode(ip->GetSelNode(0));
theHold.Accept(_T("Delete"));

The	string	used	in	the	Accept()	method	is	what	appears	to	the	user	in	the
Undo	menu	choice.
Note	that	the	object	reference	of	the	node	is	deleted	as	well	if	the	only	item
referencing	that	object	is	the	node.	This	is	because	when	the	node	is	deleted,	it
first	deletes	all	its	references.	Whenever	a	reference	is	deleted,	if	the	item	is
the	last	reference,	then	the	system	deletes	the	item	as	well.

Parameters:
INode	*node
The	node	to	delete.
BOOL	redraw=TRUE
This	parameter	is	available	in	release	2.0	and	later	only.
If	FALSE	the	viewports	will	not	be	redrawn	after	the	node	is	deleted.	This
allows	several	nodes	to	be	deleted	at	once	without	the	viewports	having	to	be
redrawn	after	each	one.
BOOL	overrideSlaves=FALSE
This	parameter	is	available	in	release	2.0	and	later	only.
If	TRUE	then	this	method	will	delete	nodes	whose	TM	controllers	implement
the	Control::PreventNodeDeletion()	method	to	return	TRUE.	If	a	TM
controller	implements	that	method	then	normally	DeleteNode()	won't	work
on	the	nodes	associated	with	that	controller.	However	if	this	parameter	is
TRUE	then	these	nodes	still	can	be	deleted.	This	allows	a	master	controller	to
easily	delete	slaves	nodes	if	it	needs	to.

Prototype:
virtual	INode	*GetRootNode()=0;

Remarks:
Returns	a	pointer	to	the	root	node.	From	the	root	node	one	can	retrieve	the
children	(using	INode::NumberOfChildren(),	and
INode::GetChildNode(i)).	This	allows	a	developer	enumerated	the	scene

by	enumerating	the	node	tree.

Prototype:
virtual	void	NodeInvalidateRect(INode	*node)=0;

Remarks:
This	invalidates	the	rectangle	in	the	viewports	that	the	node	occupies.
Rectangles	flagged	as	invalid	will	be	updated	on	the	next	screen	redraw.

Parameters:
INode	*node
Specifies	the	node	whose	rectangle	is	invalidated.

Prototype:
virtual	void	SetNodeTMRelConstPlane(INode	*node,	Matrix3&
mat)=0;

Remarks:
Sets	the	nodes	transform	relative	to	the	current	construction	plane.	This	may
be	used	during	creating	so	you	can	set	the	position	of	the	node	in	terms	of	the
construction	plane	and	not	in	world	units.

Parameters:
INode	*node
The	node	whose	transform	will	be	set.
Matrix3&	mat
The	transformation	matrix.

Node	Selection	Sets
Prototype:
virtual	int	GetSelNodeCount()=0;

Remarks:
Returns	the	number	of	nodes	in	the	selection	set.

Prototype:
virtual	INode	*GetSelNode(int	i)=0;

Remarks:
Selection	sets	are	handled	as	a	virtual	array	and	accessed	using	an	index
starting	at	0.	This	method	returns	a	pointer	to	the	'i-th'	node	in	the	current
selection	set.	See	also:	GetSelNodeCount().

Parameters:
int	i
Index	of	the	node	in	the	selection	set.

Return	Value:
Pointer	to	the	'i-th'	node	in	the	selection	set.

Prototype:
virtual	void	GetSelectionWorldBox(TimeValue	t,Box3	&box)=0;

Remarks:
This	method	retrieves	the	world	space	bounding	box	of	the	current	selection
set.

Parameters:
TimeValue	t
The	time	to	retrieve	the	bounding	box.
Box3	&box
The	bounding	box	is	returned	here.

Prototype:
virtual	void	SelectNode(INode	*node,	int	clearSel	=	1)=0;

Remarks:
This	selects	the	specified	node,	either	adding	it	to	the	current	selection	set,	or
creating	a	new	selection	set	with	the	node.
Note:	A	developer	should	call	theHold.Begin()	before	this	method	and
theHold.Accept()	after	this	call.	Otherwise,	MAX	may	crash	if	the	user
selects	undo	after	this	call	has	been	issued.	See	the	sample	code	below.	Also
see	Undo	/	Redo	for	more	details	on	this	system.

Parameters:
INode	*node

The	node	to	select.
int	clearSel	=	1
If	zero,	the	node	is	added	to	the	current	selection	set.	If	nonzero,	the	node
replaces	the	selection	set.

Sample	Code:
theHold.Begin();
ip->SelectNode(node);
TSTR	undostr;	undostr.printf("Select");
theHold.Accept(undostr);

Prototype:
virtual	void	DeSelectNode(INode	*node)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	unselects	the	specified	node.

Parameters:
INode	*node
The	node	to	deselect.

Prototype:
virtual	void	SelectNodeTab(INodeTab	&nodes,BOOL	sel,BOOL
redraw=TRUE)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	may	be	used	to	select	or	deselect	a	group	of	nodes	all	at	once	and
optionally	redraw	the	viewports	when	done.

Parameters:
INodeTab	&nodes
The	Table	of	nodes	to	select	or	deselect.
BOOL	sel
If	TRUE	the	nodes	are	selected;	otherwise	they	are	deselected.
BOOL	redraw=TRUE

If	TRUE	the	viewports	are	redrawn	when	done;	otherwise	they	are	not.

Prototype:
virtual	void	ClearNodeSelection(BOOL	redraw=TRUE)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	may	be	used	to	clear	the	current	selection	set	and	optionally
redraw	the	viewports.

Parameters:
BOOL	redraw=TRUE
If	TRUE	the	viewports	are	redrawn	when	done;	otherwise	they	are	not.

Prototype:
virtual	BOOL	SelectionFrozen()=0;

Remarks:
In	MAX	the	space	bar	freezes	the	selection	set.	This	keeps	the	selection	set
from	being	inadvertently	changed.	This	method	access	the	status	of	the
selection	set	frozen	state.

Return	Value:
TRUE	if	the	selection	set	is	frozen;	otherwise	FALSE.

Prototype:
virtual	void	FreezeSelection()=0;

Remarks:
Toggles	the	selection	set	to	the	frozen	state.

Prototype:
virtual	void	ThawSelection()=0;

Remarks:
Toggles	the	selection	set	to	the	thawed	state.

Prototype:

virtual	bool	CloneNodes(INodeTab&	nodes,	Point3&	offset,	bool
expandHierarchies	=	true,	CloneType	cloneType	=	NODE_COPY,
INodeTab*	resultSource	=	NULL,	INodeTab*	resultTarget	=
NULL)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	clone	nodes	and	node	hierarchies.

Parameters:
INodeTab&	nodes
The	node	table	containing	the	nodes	you	wish	to	clone.
Point3&	offset
The	position	offset	you	wish	to	apply	to	the	cloned	nodes.
bool	expandHierarchies	=	true
This	determines	if	children	will	be	cloned	in	hierarchies.
CloneType	cloneType	=	NODE_COPY
The	type	of	cloning	you	wish	to	do,	which	is	one	of	the	following;
NODE_COPY,	NODE_INSTANCE	or	NODE_REFERENCE.
INodeTab*	resultSource	=	NULL
This	node	table	will	be	filled	in	with	the	original	nodes	to	be	cloned.	The
reason	for	this	is	that	there	can	be	dependencies	between	nodes	that	cause
other	nodes	to	be	added	to	the	list.	For	example	light/camera	targets,	nodes
part	of	systems,	belonging	to	groups	or	expanded	hierarchies	etc.
INodeTab*	resultTarget	=	NULL
This	node	table	will	be	filled	in	with	the	new	cloned	nodes.	There	is	a	one	to
one	relationship	between	the	nodes	in	the	resultSource	and	the	resultTraget.

Return	Value:
TRUE	if	the	nodes	were	cloned	successfully,	otherwise	FALSE.	Note	that	with
R4.0	the	return	value	will	always	be	TRUE	since	no	actual	error	checking	is
undertaken.

Node	Picking	(interactive	selection	in	the	scene)

Prototype:
virtual	INode	*PickNode(HWND	hWnd,IPoint2

pt,PickNodeCallback	*filt=NULL)=0;
Remarks:
This	method	hit	tests	the	screen	position	for	nodes	and	returns	an	INode
pointer	if	one	is	hit,	NULL	otherwise.

Parameters:
HWND	hWnd
Handle	of	the	window	to	check.
IPoint2	pt
Point	to	check	in	screen	coordinates.
PickNodeCallback	*filt=NULL
This	callback	may	be	used	to	filter	nodes	from	being	picked.	See	Class
PickNodeCallback.

Return	Value:
INode	pointer	of	node	that	was	hit;	NULL	if	no	node	was	found.

Prototype:
virtual	void	BoxPickNode(ViewExp	*vpt,IPoint2	*pt,BOOL
crossing,PickNodeCallback	*filt=NULL)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	performs	a	node	level	hit	test	on	the	specified	rectangular	region.
Use	either	the	ViewExp::GetClosestHit()	or	ViewExp::GetHit()
method	to	access	the	result.

Parameters:
ViewExp	*vpt
The	viewport	to	perform	the	hit	testing.
IPoint2	*pt
These	points	specify	the	box	region	to	hit	test.	The	first	point	in	the	array	is
the	lower	left.	The	second	point	is	the	upper	right.
BOOL	crossing
If	TRUE	Crossing	selection	is	used;	otherwise	Window	seleciton	is	used.
PickNodeCallback	*filt=NULL

This	callback	may	be	used	to	filter	nodes	from	being	picked.	See	Class
PickNodeCallback.

Prototype:
virtual	void	CirclePickNode(ViewExp	*vpt,IPoint2	*pt,BOOL
crossing,PickNodeCallback	*filt=NULL)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	performs	a	node	level	hit	test	on	the	specified	circular	region.
Use	either	the	ViewExp::GetClosestHit()	or	ViewExp::GetHit(int	i)
method	to	access	the	result.

Parameters:
ViewExp	*vpt
The	viewport	to	perform	the	hit	testing.
IPoint2	*pt
These	points	specify	the	circular	region	to	hit	test.	The	first	point	in	the	array
is	the	center.	The	second	point	is	a	point	on	the	radius.
BOOL	crossing
If	TRUE	Crossing	selection	is	used;	otherwise	Window	seleciton	is	used.
PickNodeCallback	*filt=NULL
This	callback	may	be	used	to	filter	nodes	from	being	picked.	See	Class
PickNodeCallback.

Prototype:
virtual	void	FencePickNode(ViewExp	*vpt,IPoint2	*pt,BOOL
crossing,PickNodeCallback	*filt=NULL)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	performs	a	node	level	hit	test	on	the	specified	arbitrary	polygonal
region.	Use	either	the	ViewExp::GetClosestHit()	or	ViewExp::GetHit()
method	to	access	the	result.

Parameters:

ViewExp	*vpt
The	viewport	to	perform	the	hit	testing.
IPoint2	*pt
These	points	specify	the	fence	region	to	hit	test.	It	is	assumed	the	last	point	is
connected	to	the	first	point	to	close	the	region.	The	fence	knows	when	it's	out
of	points	when	it	hits	a	point	that	has	negative	x	and	y	values.	So,	the
initializer	IPoint2(-1,	-1)	added	to	the	bottom	of	this	IPoint2	list	signals	the
end.
BOOL	crossing
If	TRUE	Crossing	selection	is	used;	otherwise	Window	seleciton	is	used.
PickNodeCallback	*filt=NULL
This	callback	may	be	used	to	filter	nodes	from	being	picked.	See	Class
PickNodeCallback.

Prototype:
virtual	void	SetPickMode(PickModeCallback	*pc)=0;

Remarks:
This	will	set	the	command	mode	to	a	standard	pick	mode.	The	callback
implements	hit	testing	and	a	method	that	is	called	when	the	user	actually	picks
an	item.	Note	that	this	method,	if	called	a	second	time,	will	cancel	the	pick
mode	and	put	the	user	into	'Select	and	Move'	mode.	This	can	be	used	to	handle
the	case	where	a	user	clicks	on	a	user	interface	control	a	second	time	to	cancel
to	picking.
Sample	code	using	this	API	is	available	in
\MAXSDK\SAMPLES\OBJECTS\MORPHOBJ.CPP.	A	utility	plug-
in	that	uses	this	API	is
\MAXSDK\SAMPLES\UTILITIES\ASCIIOUT.CPP.

Parameters:
PickModeCallback	*pc
A	pointer	to	an	instance	of	the	class	PickModeCallback.

Prototype:
virtual	void	ClearPickMode()=0;

Remarks:
This	method	is	called	to	make	sure	there	are	no	pick	modes	in	the	command
stack.

Prototype:
virtual	void	FlashNodes(INodeTab	*nodes)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	'flash'	a	group	of	nodes.	This	is	usually	used	as	a
confirmation	of	some	operation	(for	example	as	an	indication	of	the
completion	of	a	pick	node	operation.)	The	nodes	are	briefly	erased	and	then
redrawn	in	the	viewport	to	flash	them.

Parameters:
INodeTab	*nodes
Pointer	to	the	table	of	nodes	to	'flash'.

Sample	Code:
INodeTab	flash;
INode	*node;
for	(int	i=0;	i<ip->GetSelNodeCount();	i++)	{
	node	=	ip->GetSelNode(i);
	flash.Append(1,&node,10);
}
ip->FlashNodes(&flash);

IObjCreate	and	IObjParam	Pointer	Casting

Prototype:
virtual	IObjCreate	*GetIObjCreate()=0;

Remarks:
Returns	this	interface	pointer	cast	as	a	IObjCreate	pointer.

Prototype:
virtual	IObjParam	*GetIObjParam()=0;

Remarks:
Returns	this	interface	pointer	cast	as	a	IObjParam	pointer.

Object	Snap	Methods
Prototype:
virtual	IOsnapManager	*GetOsnapManager()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	an	interface	pointer	to	the	object	snap	manager.	See	Class
IOsnapManager.	Also	see	the	Advanced	Topics	section	on	Snapping.

Prototype:
virtual	MouseManager	*GetMouseManager()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	used	internally	by	the	Osnap	Manager.	Plug-Ins	don't	need	to	use	this
method.

Prototype:
virtual	void	InvalidateOsnapdraw()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	used	internally	to	invalidate	the	osnap	drawing	mechanism.	Plug-Ins
don't	need	to	use	this	method.

Preview	Creation

Prototype:
virtual	void	CreatePreview(PreviewParams	*pvp=NULL)=0;

Remarks:
This	method	is	used	to	render	a	preview	image	(or	animation)	from	the
currently	active	viewport	using	the	real-time	(viewport)	renderer.

This	method	is	available	in	release	2.0	and	later	only.
Parameters:
PreviewParams	*pvp=NULL
This	class	defines	the	way	the	preview	is	generated	(via	its	data	members).	If
this	is	passed	as	NULL	the	parameters	from	the	preview	rendering	dialog	box
are	used.	See	Class	PreviewParams.

Progress	Bar	Methods

Prototype:
virtual	BOOL	ProgressStart(TCHAR	*title,	BOOL	dispBar,
LPTHREAD_START_ROUTINE	fn,	LPVOID	arg)=0;

Remarks:
This	method	puts	up	a	progress	bar	in	the	status	panel.	The	function	fn	is	then
called	and	is	passed	the	argument	arg.	This	function	fn	does	the	processing
work	of	the	plug-in.	See	the	sample	code	below.
Note:	It	is	not	possible	to	use	the	progress	bar	APIs	in	the	create	or	modify
branches	of	the	command	panel.	In	the	create	or	modify	branch	of	the
command	panel,	EndEditParams()	gets	called	from	this	method.	This	is
because	most	of	MAX	is	"shut	down"	during	a	progress	operation.	For
example,	it	is	not	appropriate	for	users	to	be	moving	objects	during	an	IK
calculation,	or	changing	the	camera	lens	while	a	preview	is	being	created	(all
these	operations	use	the	ProgressStart()	API).	It	is	for	this	same	reason	that
the	Transform	Type-in,	Medit,	Track	View	and	Video	Post	windows	are
hidden	during	a	progress	operation.	Since	EndEditParams()	is	called,	the
Interface	pointer	a	plug-in	maintains	is	no	longer	valid	after	the	operation	is
started.	This	method	is	useful	for	Utility	plug-ins,	and	Import/Export	plug-ins
however.

Parameters:
TCHAR	*title
The	title	string	for	the	progress	bar	to	let	the	user	know	what	is	happening.
BOOL	dispBar
If	FALSE	the	progress	bar	is	not	displayed;	if	TRUE	the	progress	bar	is
displayed.

LPTHREAD_START_ROUTINE	fn
This	is	a	pointer	to	a	function	that	returns	a	DWORD	and	takes	a	single
argument.	When	ProgressStart()	is	called,	this	function	is	called	with	the
argument	arg	passed.	This	function	should	be	declared	as	follows:
DWORD	WINAPI	fn(LPVOID	arg)

LPVOID	arg
This	is	the	argument	to	the	function	fn.

Return	Value:
TRUE	means	the	progress	mode	was	entered	successfully.	FALSE	means	that
there	was	a	problem.	Currently	the	return	value	is	always	TRUE.	When
compiled	for	multi-threading	(which	is	turned	off	in	the	1.0	build),	FALSE	is
returned	if	the	new	thread	could	not	be	created.

Sample	Code:
This	code	demonstrates	the	use	of	the	ProgressStart(),	ProgressEnd()
GetCancel()	and	SetCancel()	APIs.	There	are	two	ways	to	use	the	APIs.	One
is	to	use	a	dummy	function	for	fn	in	ProgressStart().	Then	just	call
ProgressUpdate()	from	whatever	function	you	want	to	do	the	processing.	The
other	way	is	to	use	fn	to	do	the	processing.
In	this	version,	the	fn	function	passed	to	ProgressStart()	performs	the	work.

DWORD	WINAPI	fn(LPVOID	arg)	{
	int	i,	percent;
	Interface	*ip	=	theUtility.ip;
	for	(i	=	0;	i	<	1000;	i++)	{
		percent	=	i/10;
		ip->ProgressUpdate(percent);
		if	(ip->GetCancel())	{
			switch(MessageBox(ip->GetMAXHWnd(),	_T("Really	Cancel"),
				_T("Question"),	MB_ICONQUESTION	|	MB_YESNO))	{
				case	IDYES:
					return(0);
				case	IDNO:
					ip->SetCancel(FALSE);
			}
		}

	}
	return(0);
}
void	Utility::Test1()	{
	Interface	*ip	=	theUtility.ip;
	LPVOID	arg;
	ip->ProgressStart(_T("Title	String"),	TRUE,	fn,	arg);
	ip->ProgressEnd();
}

In	this	version,	the	fn	function	passed	to	ProgressStart()	is	a	dummy	function,
and	the	processing	is	done	outside	it.

DWORD	WINAPI	fn(LPVOID	arg)	{
	return(0);
}
void	Utility::Test1()	{
	int	i,	percent,	retval;
	Interface	*ip	=	theUtility.ip;
	LPVOID	arg;
	ip->ProgressStart(_T("Title	String"),	TRUE,	fn,	arg);
	for	(i	=	0;	i	<	1000;	i++)	{
		percent	=	i/10;
		ip->ProgressUpdate(percent);
		if	(ip->GetCancel())	{
			retval	=	MessageBox(ip->GetMAXHWnd(),	_T("Really	Cancel"),
				_T("Question"),	MB_ICONQUESTION	|	MB_YESNO);
			if	(retval	==	IDYES)
				break;
			else	if	(retval	==	IDNO)
				ip->SetCancel(FALSE);
		}
	}
	ip->ProgressEnd();
}

Prototype:
virtual	void	ProgressUpdate(int	pct,	BOOL	showPct	=	TRUE,

TCHAR	*title	=	NULL)=0;
Remarks:
This	method	updates	the	progress	bar.	As	the	function	fn	passed	in
ProcessStart()	above	is	working	it	should	periodically	call	this	method	to
report	its	progress.

Parameters:
int	pct
The	percentage	complete	(0	to	99).	This	is	what	causes	the	progress	bar	to
move.
BOOL	showPct	=	TRUE
If	TRUE,	then	the	title	parameter	is	ignored,	and	a	percent	is	displayed	to	the
right	of	the	progress	bar.	If	FALSE,	then	the	title	parameter	is	displayed	next
to	the	progress	bar.	This	is	for	operations	that	are	discrete	--	the	title	might
change	from	"extruding"	to	"capping"	to	"welding"	for	example.	Note	that
currently	the	Cancel	button	is	not	shown	if	showPct	is	set	to	FALSE,
however	the	ESC	key	may	be	used	to	cancel.
TCHAR	*title	=	NULL
If	showPct	is	FALSE,	this	string	is	displayed	next	to	the	progress	bar.

Prototype:
virtual	void	ProgressEnd()=0;

Remarks:
This	method	removes	the	progress	bar	and	frees	the	memory	that	was
allocated	internally	to	handle	the	processing.

Prototype:
virtual	BOOL	GetCancel()=0;

Remarks:
This	method	returns	the	progress	bar	cancel	button	status.	Also	see
SetCancel()	below.

Return	Value:
TRUE	if	the	user	pressed	the	cancel	button;	otherwise	FALSE.

Prototype:
virtual	void	SetCancel(BOOL	sw)=0;

Remarks:
Sets	the	canceled	status	returned	from	GetCancel().	This	may	be	used	if	you
want	to	give	the	user	a	confirmation	dialog	box	asking	if	they	really	want	to
cancel.	For	example,	when	a	MAX	user	creates	an	preview	animation	this	API
is	used.	If	the	user	presses	cancel,	the	preview	code	reads	this	via
GetCancel().	Then	a	confirmation	dialog	is	displayed	asking	the	user	if	they
indeed	want	to	cancel.	If	the	user	selects	that	they	don't	want	to	cancel,	this
method	is	called	passing	FALSE.	This	sets	the	class	variable	that	is	returned
by	GetCancel().	The	cancel	request	is	ignored	and	processing	continues.
Note	that	this	will	not	cancel	unless	you	implement	code	to	process
GetCancel().	It	merely	sets	the	state	returned	from	GetCancel().

Parameters:
BOOL	sw
TRUE	to	set	the	cancel	flag;	FALSE	to	clear	the	cancel	flag.

Renderer	Access
The	following	APIs	provide	a	simplistic	method	to	call	the	renderer	and
render	frames	(to	gain	more	control	over	the	renderer,	see	the	methods	after
these	first	three).	The	renderer	just	uses	the	current	user	specified	parameters.
Note	that	the	renderer	uses	the	width,	height,	and	aspect	of	the	specified
bitmap	so	the	caller	can	control	the	size	of	the	rendered	image	rendered.	Also
Note:	These	methods	drive	the	renderer	and	not	video	post.

Prototype:
virtual	int	OpenCurRenderer(INode	*camNode,ViewExp
*view,RendType	t	=	RENDTYPE_NORMAL,	int	w=0,	int	h=0)=0;

Remarks:
This	method	is	called	to	open	the	current	renderer.	It	must	be	opened	before
frames	can	be	rendered.	Either	camNode	or	view	must	be	non-NULL,	but
not	both.	Remember	to	close	the	renderer	when	you	are	done	(using
CloseCurRenderer()).

Parameters:

INode	*camNode
A	pointer	to	the	camera	node	to	render,	or	NULL	if	a	viewport	should	be
rendered.
ViewExp	*view
A	pointer	to	the	view	to	render,	or	NULL	if	the	camera	should	be	rendered.
RendType	t	=	RENDTYPE_NORMAL
This	parameter	is	available	in	release	3.0	and	later	only.
This	provides	an	optional	way	to	specify	the	view	when	opening	the	renderer.
This	specifies	the	type	of	render.	See	List	of	Render	Types.
int	w=0
This	parameter	is	available	in	release	3.0	and	later	only.
This	specifies	the	width	of	the	rendering.
int	h=0
This	parameter	is	available	in	release	3.0	and	later	only.
This	specifies	the	height	of	the	rendering.

Return	Value:
Nonzero	indicates	success;	failure	is	zero.

Prototype:
virtual	int	OpenCurRenderer(ViewParams	*vpar,RendType	t	=
RENDTYPE_NORMAL,	int	w=0,	int	h=0)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	to	open	the	current	renderer.	It	provides	an	optional	way
to	specify	the	view	when	opening.

Parameters:
ViewParams	*vpar
This	class	describes	the	properties	of	a	view	that	is	being	rendered.	See	Class
ViewParams.
RendType	t	=	RENDTYPE_NORMAL
This	parameter	is	available	in	release	3.0	and	later	only.
This	provides	an	optional	way	to	specify	the	view	when	opening	the	renderer.
This	specifies	the	type	of	render.	See	List	of	Render	Types.

int	w=0
This	parameter	is	available	in	release	3.0	and	later	only.
This	specifies	the	width	of	the	rendering.
int	h=0
This	parameter	is	available	in	release	3.0	and	later	only.
This	specifies	the	height	of	the	rendering.

Return	Value:
Nonzero	indicates	success;	failure	is	0.

Prototype:
virtual	void	CloseCurRenderer()=0;

Remarks:
This	method	is	called	to	close	the	renderer.	The	renderer	must	be	closed	when
you	are	finished	with	it.

Prototype:
virtual	int	CurRendererRenderFrame(TimeValue	t,Bitmap
*bm,RendProgressCallback	*prog=NULL,	float	frameDur	=	1.0f	,
ViewParams	*vp=NULL,	RECT	*regionRect	=	NULL)=0;

Remarks:
This	method	is	called	to	render	a	frame	to	the	given	bitmap.	The	renderer	uses
the	width,	height,	and	aspect	ratio	of	the	specified	bitmap	to	control	the	size	of
the	rendered	image.

Parameters:
TimeValue	t
The	time	to	render	the	image.
Bitmap	*bm
The	bitmap	to	render	to.	This	bitmap	defines	the	size	and	aspect	ratio	of	the
render.	See	Class	Bitmap.
RendProgressCallback	*prog=NULL
The	RendProgressCallback	is	an	optional	callback.	See	Class
RendProgressCallback.
float	frameDur	=	1.0f

This	parameter	should	always	be	set	to	1.0.
ViewParams	*vp=NULL
This	parameter	allows	you	to	specify	a	different	view	transformation	on	each
render	call.	For	instance,	you	can	render	a	given	scene	at	a	given	time	from
many	different	viewpoints,	without	calling	Render::Open()	for	each	one.
RECT	*regionRect	=	NULL
This	parameter	is	available	in	release	3.0	and	later	only.
This	value,	if	passed,	defines	the	region	to	be	rendererd.	This	only	works	for
RENDTYPE_REGION	and	RENDTYPE_REGIONCROP.

Return	Value:
The	result	of	the	render	-	Nonzero	if	success;	otherwise	0.

Prototype:
virtual	IScanRenderer	*CreateDefaultScanlineRenderer()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	creates	a	default	scanline	renderer.	This	renderer	must	be	deleted
by	calling	IScanRenderer::DeleteThis().

Return	Value:
A	pointer	to	a	new	IScanRenderer	object.

Prototype:
virtual	BOOL	DisplayActiveCameraViewWithMultiPassEffect()	=
0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	draw	the	active	view	(if	it	is	a	camera	view	with	a	multi-pass
effect	enabled)	with	that	effect	active.

Return	Value:
TRUE	if	the	active	view	is	a	camera	view	with	a	multi-pass	effect	enabled,
FALSE	otherwise.

Plug-In	Renderer	Access
Below	is	a	set	of	functions	parallel	to	those	above	to	work	with	any	Renderer
instance.

Prototype:
virtual	int	OpenRenderer(Renderer	*pRenderer,	INode
*camNode,ViewExp	*view,	RendType	type	=
RENDTYPE_NORMAL,	int	w=0,	int	h=0)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	called	to	open	the	specified	renderer.	It	must	be	opened	before
frames	can	be	rendered.	Either	camNode	or	view	must	be	non-NULL,	but
not	both.	Remember	to	close	the	renderer	when	you	are	done	(using
CloseRenderer()).

Parameters:
Renderer	*pRenderer
Points	to	the	renderer	to	open.
INode	*camNode
A	pointer	to	the	camera	node	to	render,	or	NULL	if	a	viewport	should	be
rendered.
ViewExp	*view
A	pointer	to	the	view	to	render,	or	NULL	if	the	camera	should	be	rendered.
RendType	type	=	RENDTYPE_NORMAL
This	parameter	is	available	in	release	3.0	and	later	only.
This	provides	an	optional	way	to	specify	the	view	when	opening	the	renderer.
This	specifies	the	type	of	render.	See	List	of	Render	Types.
int	w=0
This	specifies	the	width	of	the	rendering.
int	h=0
This	specifies	the	height	of	the	rendering.

Return	Value:
Nonzero	indicates	success;	failure	is	zero.
	

Prototype:
virtual	int	OpenRenderer(Renderer	*pRenderer,	ViewParams
*vpar,	RendType	type	=	RENDTYPE_NORMAL,	int	w=0,	int
h=0)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	called	to	open	the	specified	renderer.	It	provides	an	optional
way	to	specify	the	view	when	opening.

Parameters:
Renderer	*pRenderer
Points	to	the	renderer	to	do	the	rendering.
ViewParams	*vpar
This	class	describes	the	properties	of	a	view	that	is	being	rendered.	See	Class
ViewParams.
RendType	type	=	RENDTYPE_NORMAL
This	parameter	is	available	in	release	3.0	and	later	only.
This	provides	an	optional	way	to	specify	the	view	when	opening	the	renderer.
This	specifies	the	type	of	render.	See	List	of	Render	Types.
int	w=0
This	specifies	the	width	of	the	rendering.
int	h=0
This	specifies	the	height	of	the	rendering.

Return	Value:
Nonzero	indicates	success;	failure	is	0.

Prototype:
virtual	int	RendererRenderFrame(Renderer	*pRenderer,
TimeValue	t,	Bitmap	*bm,	RendProgressCallback	*prog=NULL,
float	frameDur	=	1.0f,	ViewParams	*vp=NULL,	RECT
*regionRect	=	NULL)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	called	to	render	a	frame	with	the	specified	renderer	to	the	given

bitmap.	The	renderer	uses	the	width,	height,	and	aspect	ratio	of	the	specified
bitmap	to	control	the	size	of	the	rendered	image.

Parameters:
Renderer	*pRenderer
Points	to	the	renderer	which	will	do	the	rendering.
TimeValue	t
The	time	to	render	the	image.
Bitmap	*bm
The	bitmap	to	render	to.	This	bitmap	defines	the	size	and	aspect	ratio	of	the
render.	See	Class	Bitmap.
RendProgressCallback	*prog=NULL
The	RendProgressCallback	is	an	optional	callback.	See	Class
RendProgressCallback.
float	frameDur	=	1.0f
This	parameter	should	always	be	set	to	1.0.
ViewParams	*vp=NULL
This	parameter	allows	you	to	specify	a	different	view	transformation	on	each
render	call.	For	instance,	you	can	render	a	given	scene	at	a	given	time	from
many	different	viewpoints,	without	calling	Render::Open()	for	each	one.
RECT	*regionRect	=	NULL
This	parameter	is	available	in	release	3.0	and	later	only.
This	value,	if	passed,	defines	the	region	to	be	rendererd.	This	only	works	for
RENDTYPE_REGION	and	RENDTYPE_REGIONCROP.

Return	Value:
The	result	of	the	render	-	Nonzero	if	success;	otherwise	0.

Prototype:
virtual	void	CloseRenderer(Renderer	*pRenderer)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Closes	the	specified	renderer.

Parameters:
Renderer	*pRenderer

Points	to	the	renderer	to	close.
	

To	get	more	control	over	the	renderer,	the	renderer	can	be	called	directly.	The
following	methods	give	access	to	the	current	renderer	and	the	user's	current
rendering	settings.	Note:	These	methods	drive	the	renderer	and	not	video	post.

Prototype:
virtual	Renderer	*GetCurrentRenderer()=0;

Remarks:
Retrieves	a	pointer	to	the	renderer	currently	set	as	the	active	renderer.	This
will	be	either	the	production	rederer	or	the	draft	renderer	depending	upon
which	is	active.	A	developer	can	determine	which	renderer	this	is	by	calling
the	ClassID()	method	of	the	renderer.

Return	Value:
A	pointer	to	the	renderer.

Prototype:
virtual	Renderer	*GetProductionRenderer()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Retrieves	a	pointer	to	the	renderer	currently	set	as	the	production	renderer.	A
developer	can	determine	which	renderer	this	is	by	calling	the	ClassID()
method	of	the	renderer.

Return	Value:
A	pointer	to	the	renderer.

Prototype:
virtual	Renderer	*GetDraftRenderer()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Retrieves	a	pointer	to	the	renderer	currently	set	as	the	draft	renderer.	A
developer	can	determine	which	renderer	this	is	by	calling	the	ClassID()
method	of	the	renderer.

Return	Value:
A	pointer	to	the	renderer.

Prototype:
virtual	Renderer	*GetRenderer(RenderSettingID
renderSettingID)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	specified	renderer.

Parameters:
RenderSettingID	renderSettingID
One	of	these	values:	See	List	of	Render	Setting	IDs

Return	Value:
A	pointer	to	the	renderer.

Prototype:
virtual	void	AssignCurRenderer(Renderer	*rend)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Assigns	the	renderer	passed	for	use	as	either	the	draft	renderer	or	the
production	renderer	depending	upon	which	is	active.

Parameters:
Renderer	*rend
The	renderer	to	assign.

Prototype:
virtual	void	AssignProductionRenderer(Renderer	*rend)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Assigns	the	renderer	passed	as	the	production	renderer.

Parameters:
Renderer	*rend

The	renderer	to	assign.

Prototype:
virtual	void	AssignDraftRenderer(Renderer	*rend)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Assigns	the	renderer	passed	as	the	draft	renderer.

Parameters:
Renderer	*rend
The	renderer	to	assign.

Prototype:
virtual	void	AssignRenderer(RenderSettingID	renderSettingID,
Renderer	*rend)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Assigns	the	renderer	passed	as	one	of	the	standard	MAX	rendering	options
(Production,	Draft,	etc).

Parameters:
RenderSettingID	renderSettingID
One	of	these	values:	See	List	of	Render	Setting	IDs
Renderer	*rend
Points	to	the	renderer	to	assign.

Prototype:
virtual	void	SetUseDraftRenderer(BOOL	b)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Specifies	which	renderer	is	active	--	draft	or	production.	Pass	TRUE	to	use	the
draft	renderer	and	FALSE	to	get	the	production	renderer.

Prototype:

virtual	BOOL	GetUseDraftRenderer()=0;
Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Determines	which	renderer	is	active	--	draft	or	production.

Return	Value:
TRUE	for	the	draft	renderer	and	FALSE	for	the	production	renderer.

Prototype:
virtual	void	ChangeRenderSetting(RenderSettingID
renderSettingID)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	specified	renderer	as	active.

Parameters:
RenderSettingID	renderSettingID
One	of	these	values:	See	List	of	Render	Setting	IDs.

Prototype:
virtual	RenderSettingID	GetCurrentRenderSetting()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	value	which	indicates	which	renderer	is	current.	See	List	of	Render
Setting	IDs.

Prototype:
virtual	IRenderElementMgr	*GetCurRenderElementMgr()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	a	pointer	to	the	current	render	elements	manager
interface.

Prototype:

virtual	IRenderElementMgr
*GetRenderElementMgr(RenderSettingID	renderSettingID)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	a	pointer	to	the	production	or	draft	render	element
manager	--	passing	in	renderSettingID	=	RS_IReshade	will	return	NULL.

Parameters:
RenderSettingID	renderSettingID
One	of	these	values:	See	List	of	Render	Setting	IDs.

Prototype:
virtual	void	SetupRendParams(RendParams	&rp,	ViewExp	*vpt,
RendType	t	=	RENDTYPE_NORMAL)=0;

Remarks:
This	method	is	called	to	fill	in	a	RendParams	structure	that	can	be	passed	to
the	renderer	with	the	user's	current	rendering	settings.	This	is	whatever	was
last	used,	or	the	default	settings.
In	MAX	1.x	note	the	following	(this	needs	not	be	done	in	MAX	2.0	or	later):
In	order	to	open	a	renderer	using	this	method	to	setup	the	RendParams	class
the	following	code	should	be	used:

RendParams	rp;
SetupRendParams(rp,	�);
rp.atmos	=	NULL;
rp.envMap	=	NULL;

As	shown	above,	this	method	does	not	automatically	set	the	values	for
envMap	and	atmos.	You	must	do	this	manually	if	you	are	using	the
RendParams	object	to	initialize	the	renderer.	Then	you	can	call
Renderer::Open(�,	rp,	�).	In	MAX	2.0	and	later,	atmos	and	envMap
are	properly	initialized	without	the	above	code.

Parameters:
RendParams	&rp
This	is	the	class	instance	whose	data	is	filled	in.	See	Class	RendParams.

ViewExp	*vpt
This	pointer	only	needs	to	be	passed	in	if	the	RendType	is
RENDTYPE_REGION	or	RENDTYPE_BLOWUP.	In	these	cases	it
will	set	up	the	RendParams	regxmin,	regxmax,	regymin,	regymax
from	values	stored	in	the	viewport.	See	Class	ViewExp.
RendType	t	=	RENDTYPE_NORMAL
See	List	of	Render	Types.

Prototype:
virtual	void	GetViewParamsFromNode(INode*	vnode,
ViewParams&	vp,	TimeValue	t)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	fills	in	the	specified	ViewParams	structure	based	on	type	of	node
passed	(camera	or	light).	It	can	be	used	when	instantiating	a	renderer	and
calling	Open(),	Render(),	and	Close()	directly	on	it.

Parameters:
INode*	vnode
Points	to	the	node	to	initialize	from.
ViewParams&	vp
The	ViewParams	structure	to	initalize.
TimeValue	t
The	time	at	which	to	initialize	the	structure.

Prototype:
virtual	BOOL	CheckForRenderAbort()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	may	be	called	during	a	rendering	to	check	if	user	has	cancelled
the	render.

Return	Value:
TRUE	if	user	has	cancelled;	otherwise	FALSE.	If	not	rendering	the	method
returns	FALSE.

These	methods	give	access	to	the	individual	user	specified	render	parameters.
These	are	either	parameters	that	the	user	specifies	in	the	render	dialog	or	the
renderer	page	of	the	preferences	dialog.

Prototype:
virtual	int	GetRendTimeType()=0;

Remarks:
Retrieves	the	type	of	time	range	to	be	rendered.

Return	Value:
One	of	the	following	values:
REND_TIMESINGLE
A	single	frame.
REND_TIMESEGMENT
The	active	time	segment.
REND_TIMERANGE
The	user	specified	range.
REND_TIMEPICKUP
The	user	specified	frame	pickup	string	(for	example	"1,3,5-12").

Prototype:
virtual	void	SetRendTimeType(int	type)=0;

Remarks:
Sets	the	type	of	time	range	rendered.

Parameters:
int	type
One	of	the	following	values:
REND_TIMESINGLE
A	single	frame.
REND_TIMESEGMENT
The	active	time	segment.
REND_TIMERANGE
The	user	specified	range.
REND_TIMEPICKUP

The	user	specified	frame	pickup	string	(for	example	"1,3,5-12").

Prototype:
virtual	TimeValue	GetRendStart()=0;

Remarks:
Retrieves	the	renderer's	start	time	setting.

Prototype:
virtual	void	SetRendStart(TimeValue	start)=0;

Remarks:
Sets	the	renderer's	start	time	setting.

Parameters:
TimeValue	start
The	time	to	begin	rendering.

Prototype:
virtual	TimeValue	GetRendEnd()=0;

Remarks:
Retrieves	the	renderer's	end	time	setting.

Prototype:
virtual	void	SetRendEnd(TimeValue	end)=0;

Remarks:
Sets	the	renderer's	end	time	setting.

Parameters:
TimeValue	end
The	time	to	end	rendering.

Prototype:
virtual	int	GetRendNThFrame()=0;

Remarks:

Returns	the	renderer's	'n-th'	frame	setting.

Prototype:
virtual	void	SetRendNThFrame(int	n)=0;

Remarks:
Sets	the	renderer's	'n-th'	frame	setting.

Parameters:
int	n
The	n-th	frame	setting.

Prototype:
virtual	BOOL	GetRendShowVFB()=0;

Remarks:
Retrieves	the	state	of	the	renderer's	show	virtual	frame	buffer	flag.	Returns
TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetRendShowVFB(BOOL	onOff)=0;

Remarks:
Sets	the	state	of	the	renderer's	show	virtual	frame	buffer	flag.

Parameters:
BOOL	onOff
TRUE	is	on;	FALSE	is	off.

Prototype:
virtual	BOOL	GetRendSaveFile()=0;

Remarks:
Retrieves	the	state	of	the	renderer's	save	file	flag.

Return	Value:
Returns	TRUE	if	on;	FALSE	if	off.

Prototype:

virtual	void	SetRendSaveFile(BOOL	onOff)=0;
Remarks:
Sets	the	state	of	the	renderer's	save	file	flag.

Parameters:
BOOL	onOff
TRUE	is	on;	FALSE	is	off.

Prototype:
virtual	BOOL	GetRendUseDevice()=0;

Remarks:
Retrieves	the	state	of	the	renderer's	use	device	flag.

Return	Value:
Returns	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetRendUseDevice(BOOL	onOff)=0;

Remarks:
Sets	the	state	of	the	renderer's	use	device	flag.

Parameters:
BOOL	onOff
TRUE	is	on;	FALSE	is	off.

Prototype:
virtual	BOOL	GetRendUseNet()=0;

Remarks:
Retrieves	the	state	of	the	renderer's	use	net	flag.

Return	Value:
Returns	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetRendUseNet(BOOL	onOff)=0;

Remarks:
Sets	the	state	of	the	renderer's	use	net	flag.

Parameters:
BOOL	onOff
TRUE	is	on;	FALSE	is	off.

Prototype:
virtual	BitmapInfo&	GetRendFileBI()=0;

Remarks:
Retrieves	the	rendering	file	BitmapInfo.	This	class	describes	the	output	file.
See	Class	BitmapInfo.

Prototype:
virtual	BitmapInfo&	GetRendDeviceBI()=0;

Remarks:
Retrieves	the	rendering	device	BitmapInfo.	This	class	describes	the	output
device.	See	Class	BitmapInfo.

Prototype:
virtual	int	GetRendWidth()=0;

Remarks:
Retrieves	the	rendering	output	width	in	pixels.

Prototype:
virtual	void	SetRendWidth(int	w)=0;

Remarks:
Sets	the	rendering	output	width.

Parameters:
int	w
The	width	in	pixels.

Prototype:

virtual	int	GetRendHeight()=0;
Remarks:
Retrieves	the	rendering	output	height	in	pixels.

Prototype:
virtual	void	SetRendHeight(int	h)=0;

Remarks:
Sets	the	rendering	output	height.

Parameters:
int	h
The	height	in	pixels.

Prototype:
virtual	float	GetRendApect()=0;

Remarks:
Retrieves	the	renderer's	pixel	aspect	ratio	setting.	Note	for	MAX	1.2:	To	get
the	'Image	Aspect	Ratio'	setting	use:

float	aspectRatio	=
((float)	ip->GetRendWidth())/((float)	ip-
>GetRendHeight());

In	MAX	2.0	or	later	GetRendImageAspect()	may	be	used:

Prototype:
virtual	void	SetRendAspect(float	a)=0;

Remarks:
Sets	the	renderer's	pixel	aspect	ratio	setting.

Parameters:
float	a
The	pixel	aspect	ratio	to	set.

Prototype:

virtual	float	GetRendImageAspect()=0;
Remarks:
This	method	is	available	in	release	2.0	and	later	only.

Return	Value:
Returns	the	image	aspect	ratio.

Prototype:
virtual	float	GetRendApertureWidth()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

Return	Value:
Returns	the	aperture	width	in	millimeters	(mm).

Prototype:
virtual	void	SetRendApertureWidth(float	aw)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	aperture	width.

Parameters:
float	aw
The	width	to	set	in	millimeters	(mm).

Prototype:
virtual	BOOL	GetRendFieldRender()=0;

Remarks:
Retrieves	the	renderer's	field	render	flag.

Return	Value:
Returns	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetRendFieldRender(BOOL	onOff)=0;

Remarks:
Sets	the	renderer's	field	render	flag.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetRendColorCheck()=0;

Remarks:
Retrieves	the	renderer's	color	check	flag.

Return	Value:
Returns	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetRendColorCheck(BOOL	onOff)=0;

Remarks:
Sets	the	renderer's	color	check	flag.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetRendSuperBlack()=0;

Remarks:
Retrieves	the	renderer's	super	black	flag.

Return	Value:
Returns	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetRendSuperBlack(BOOL	onOff)=0;

Remarks:
Sets	the	renderer's	super	black	flag.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetRendHidden()=0;

Remarks:
Retrieves	the	renderer's	render	hidden	objects	flag.

Return	Value:
Returns	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetRendHidden(BOOL	onOff)=0;

Remarks:
Sets	the	renderer's	render	hidden	objects	flag.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetRendForce2Side()=0;

Remarks:
Retrieves	the	renderer's	force	two-sided	flag.

Return	Value:
Returns	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetRendForce2Side(BOOL	onOff)=0;

Remarks:
Sets	the	renderer's	force	two-sided	flag.	TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetRendAtmosphere()=0;

Remarks:
Retrieves	the	renderer's	uses	atmospheric	effects	flag.

Return	Value:
Returns	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetRendAtmosphere(BOOL	onOff)=0;

Remarks:
Sets	if	the	renderer	uses	atmospheric	effects.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetRendEffects()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Return	Value:
Returns	TRUE	if	Rendering	Effects	will	be	used;	otherwise	FALSE.

Prototype:
virtual	void	SetRendEffects(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	if	Rendering	Effects	will	be	used.

Parameters:
BOOL	onOff
TRUE	to	use	(on);	FALSE	to	not	use	(off).

Prototype:
virtual	BOOL	GetRendDisplacement()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Return	Value:
Returns	TRUE	if	rendering	displacements	is	enabled;	otherwise	FALSE.
Note:	Developers	should	use	the	flags	parameter	of	the	View	class	which	is
passed	into	GetRenderMesh()	to	determine	if	Displacement	Mapping	is
being	used	because	the	values	may	not	the	same	(for	instance	when	rendering
in	the	Materials	Editor).	See	Class	View.

Prototype:
virtual	void	SetRendDisplacement(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	if	rendering	displacements	are	enabled.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	TSTR&	GetRendPickFramesString()=0;

Remarks:
Retrieves	the	string	holding	the	frames	the	user	wants	to	render.	For	example
"1,3,5-12".

Prototype:
virtual	BOOL	GetRendDitherTrue()=0;

Remarks:
Retrieves	the	renderer's	dither	true	color	flag.

Return	Value:
Returns	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetRendDitherTrue(BOOL	onOff)=0;

Remarks:
Sets	the	renderer's	dither	true	color	flag.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetRendDither256()=0;

Remarks:
Retrieves	the	renderer's	dither	256	color	flag.

Return	Value:
Returns	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetRendDither256(BOOL	onOff)=0;

Remarks:
Sets	the	renderer's	dither	256	color	flag.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetRendMultiThread()=0;

Remarks:
Retrieves	the	renderer's	multi-threaded	flag.

Return	Value:
Returns	TRUE	if	on;	FALSE	if	off.

Prototype:

virtual	void	SetRendMultiThread(BOOL	onOff)=0;
Remarks:
Sets	the	renderer's	multi-threaded	flag.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetRendNThSerial()=0;

Remarks:
This	retrieves	the	output	file	sequencing	nth	serial	numbering	setting.

Return	Value:
Returns	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetRendNThSerial(BOOL	onOff)=0;

Remarks:
This	sets	the	output	file	sequencing	nth	serial	numbering	setting.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	int	GetRendVidCorrectMethod()=0;

Remarks:
Retrieves	the	video	color	check	method.

Return	Value:
One	of	the	following	values:
0	is	FLAG
1	is	SCALE_LUMA
2	is	SCALE_SAT

Prototype:
virtual	void	SetRendVidCorrectMethod(int	m)=0;

Remarks:
Sets	the	video	color	check	method.

Parameters:
int	m
One	of	the	following	values:
0	is	FLAG
1	is	SCALE_LUMA
2	is	SCALE_SAT

Prototype:
virtual	int	GetRendFieldOrder()=0;

Remarks:
Retrieves	the	rendering	field	order.

Return	Value:
One	of	the	following	values:
0	is	Even
1	is	Odd

Prototype:
virtual	void	SetRendFieldOrder(int	fo)=0;

Remarks:
Sets	the	rendering	field	order	to	even	or	odd.

Parameters:
int	fo
One	of	the	following	values:
0	sets	Even
1	sets	Odd

Prototype:

virtual	int	GetRendNTSC_PAL()=0;
Remarks:
Retrieves	the	video	color	check	NTSC	or	PAL	setting.

Return	Value:
One	of	the	following	values:
0	is	NTSC
1	is	PAL

Prototype:
virtual	void	SetRendNTSC_PAL(int	np)=0;

Remarks:
Sets	the	video	color	check	NTSC	or	PAL	setting.

Parameters:
int	np
One	of	the	following	values:
0	sets	NTSC
1	sets	PAL

Prototype:
virtual	int	GetRendSuperBlackThresh()=0;

Remarks:
Returns	the	super	black	threshold	setting.

Prototype:
virtual	void	SetRendSuperBlackThresh(int	sb)=0;

Remarks:
Sets	the	super	black	threshold	setting.

Parameters:
int	sb
The	super	black	threshold.

Prototype:
virtual	int	GetRendFileNumberBase()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	File	Number	Base	in	the	'Common	Parameters'	rollup	of	the
Render	Scene	dialog.

Prototype:
virtual	void	SetRendFileNumberBase(int	n)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	File	Number	Base	in	the	'Common	Parameters'	rollup	of	the	Render
Scene	dialog.

Parameters:
int	n
The	number	to	set.

Prototype:
virtual	BOOL	GetSkipRenderedFrames()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	skip	existing	rendered	frames	state	is	on;	otherwise
FALSE.

Prototype:
virtual	void	SetSkipRenderedFrames(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	skip	existing	rendered	frames	state	to	on	or	off.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Right	Click	Menu	Related	Methods

Prototype:
virtual	RightClickMenuManager*
GetRightClickMenuManager()=0;

Remarks:
Using	this	pointer	a	developer	can	add	to	the	menu	that	pops	ups	when	the
user	clicks	the	right	mouse	button.	Example	code	is	available	in:
\MAXSDK\SAMPLES\MODIFIERS\EDITSPL.CPP.	See	Also:	Class
RightClickMenuManager.

Return	Value:
A	pointer	to	the	RightClickMenuManager.

Rollup	Page	Related	Methods
See	Command	Panel	--	Rollup	Page	Methods.

Selection	Sets	(Named)
See	Also:	Sub-Object	Selection	Sets	(Named)

Prototype:
virtual	void	ClearCurNamedSelSet()=0;

Remarks:
This	method	clears	the	current	edit	field	of	the	named	selection	set	drop	down.

Prototype:
virtual	void	SetCurNamedSelSet(TCHAR	*setName)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	edit	field	of	the	named	selection	set	drop	down	to	the	set	whose	name
is	passed.

Parameters:
TCHAR	*setName
The	name	of	the	selection	set	to	make	current.

Prototype:
virtual	void	NamedSelSetListChanged()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Calling	this	method	tells	the	system	that	the	named	sub-object	selection	sets
have	changed	and	that	the	drop	down	needs	to	be	rebuilt.	This	will	cause
BaseObject::SetupNamedSelDropDown()	to	be	called	on	the	current
item	being	edited.	This	is	often	called	inside	restore	objects	that	undo	changes
to	the	selection	set.	This	causes	the	system	to	check	if	the	current	item	being
edited	is	in	sub-object	selection	mode,	and	if	so,	will	cause
SetupNamedSelDropDown()	to	be	called.	Note	that	restore	objects	can	be
invoked	at	any	time	and	the	user	may	not	be	in	sub-object	selection	mode	(for
instance	they	might	be	in	the	Display	panel).	Restore	objects	however	can
simply	call	this	method	and	the	system	will	figure	out	if	the	drop	down	needs
to	be	updated.

Prototype:
virtual	int	GetNumNamedSelSets()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	number	of	named	selection	sets	at	the	object	level.

Prototype:
virtual	TCHAR	*GetNamedSelSetName(int	setNum)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	name	of	the	named	selection	set	whose	index	is	passed.

Parameters:
int	setNum
The	index	of	the	named	selection	set.

Prototype:
virtual	int	GetNamedSelSetItemCount(int	setNum)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	number	of	items	in	the	named	selection	set	whose	index	is	passed.

Parameters:
int	setNum
The	index	of	the	named	selection	set.

Prototype:
virtual	INode	*GetNamedSelSetItem(int	setNum,int	i)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	may	be	used	to	retrieve	the	INode	pointer	of	the	'i-th'	item	in	the
named	selection	set	whose	index	is	passed.

Parameters:
int	setNum
The	index	of	the	selection	set	whose	'i-th'	INode	pointer	is	returned.
int	i
The	index	into	the	selection	set.

Prototype:
virtual	void	AddNewNamedSelSet(INodeTab	&nodes,	TSTR
&name)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Adds	a	new	named	selection	set	to	those	already	available	in	the	drop	down
list	in	the	MAX	toolbar.

Parameters:
INodeTab	&nodes
The	table	of	nodes	making	up	the	selection	set.
TSTR	&name
The	name	for	the	set.

Prototype:
virtual	void	RemoveNamedSelSet(TSTR	&name)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Removes	the	specified	named	selection	set	those	already	available	in	the	drop
down	list	in	the	MAX	toolbar.

Parameters:
TSTR	&name
The	name	for	the	set	to	remove.

Scene	Access
Prototype:
virtual	ReferenceTarget	*GetScenePointer()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	a	pointer	for	direct	access	to	the	scene.	This	is	primarily	used	for
hanging	AppData	off	the	entire	scene	as	opposed	to	a	certain	Animatable.

Show	End	Result	Related	Methods
Prototype:
virtual	void	EnableShowEndResult(BOOL	enabled)=0;

Remarks:
This	method	is	called	if	a	modifier	wants	to	temporarily	disable	any	modifiers
following	it.	For	example	the	edit	mesh	modifier	does	not	let	you	edit	a	mesh
while	other	modifiers	later	in	the	pipeline	are	affecting	the	result	so	it	calls	this
method	to	disable	the	others	temporarily.

Parameters:
BOOL	enabled
TRUE	is	enabled;	FALSE	is	disabled.

Prototype:

virtual	BOOL	GetShowEndResult()=0;
Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	Show	End	Result	button	is	on	(pressed);	otherwise
FALSE.

Prototype:
virtual	void	SetShowEndResult(BOOL	show)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	on/off	(pressed/unpressed)	state	of	the	Show	End	Result	button.	Note
that	calling	this	method	generates	a	redraw.

Parameters:
BOOL	show
TRUE	for	on;	FALSE	for	off.

Slave	/	Server	Mode	Methods
Prototype:
virtual	BOOL	InSlaveMode()=0;

Remarks:
Returns	TRUE	if	MAX	is	operating	in	network	rendering	mode	and	FALSE	if
operating	in	normal	interactive	mode.	This	method	returns	the	same	value	as
Interface::IsNetServer().

Prototype:
virtual	BOOL	IsNetServer()=0;

Remarks:
Returns	TRUE	if	MAX	is	operating	in	network	rendering	mode	and	FALSE	if
operating	in	normal	interactive	mode.	This	method	returns	the	same	value	as
Interface::InSlaveMode().

Prototype:

virtual	void	SetNetServer()=0;
Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	for	internal	use	only.	Calling	this	method	will	not	(alone)	set
MAX	in	"Server"	mode.	Developers	should	not	call	this	method.

Snap	Related	Methods
Prototype:
virtual	int	InitSnapInfo(SnapInfo	*info)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only	(previously	available	as	a
global	function).
Initialized	the	SnapInfo	structure	passed	with	the	current	snap	settings.

Parameters:
SnapInfo	*info
Points	to	the	SnapInfo	structure	to	initialize.	See	Structure	SnapInfo.

Return	Value:
Returns	nonzero	if	snap	is	on;	zero	if	off.

Prototype:
virtual	float	SnapAngle(float	angleIn,	BOOL	fastSnap=TRUE,
BOOL	forceSnap=FALSE)=0;

Remarks:
Normally,	with	angle	snap	off,	interactive	rotation	of	a	node	uses	a	rate	of	1/2
degree	per	pixel.	With	angle	snap	on,	the	angles	are	snapped	to	the	nearest
MAX	angle	snap	value.
This	method	may	be	used	when	interactive	rotation	is	taking	place	with	the
mouse	to	snap	the	angle	passed	to	the	nearest	MAX	angle	snap	value.	In	this
method,	the	input	value/output	value	snap	correspondence	is	accelerated	as	the
angle	grows.	This	prevents	the	user	from	having	to	move	the	mouse	too	much
with	larger	angle	values.	This	is	why	this	method	does	not	return	a	linear
relationship	between	the	input	angle	and	the	snapped	output	angle.
Note	that	when	angle	snap	is	off,	this	method	just	returns	the	input	value

unaltered.
Note	for	R3:	This	method	formerly	was	set	up	with	a	single	parameter,	the
angle	to	be	snapped.	If	the	angle	snap	toggle	was	on,	snapping	occurred.	If
not,	it	did	nothing.	There	were	two	problems	with	this:
1)	A	multiplier	was	applied	to	the	angle	input,	giving	faster	interactive	results
in	object	rotations,	etc.	This	had	a	negative	effect	if	you	just	wanted	your	input
angle	snapped	to	the	nearest	snap	angle.
2)	It	only	snapped	if	the	angle	snap	toggle	was	on.	Sometimes,	you	might
want	to	snap	something	to	the	angle	snap	value	even	if	the	master	toggle	was
off.
To	remedy	these	shortcomings,	the	method	has	had	two	parameters	added
(fastSnap	and	forceSnap).

Parameters:
float	angleIn
Angle	to	snap	in	radians.
BOOL	fastSnap=TRUE
This	parameter	is	available	in	release	3.0	and	later	only.
If	TRUE	the	snapping	multiplier	is	used;	if	FALSE	it	is	not.
BOOL	forceSnap=FALSE
This	parameter	is	available	in	release	3.0	and	later	only.
If	TRUE	snapping	is	used	even	if	the	master	angle	snap	toggle	is	off.

Return	Value:
Angle	snapped	to	the	nearest	angle	snap	setting	(considering	acceleration	if
specified),	in	radians,	to	be	used	for	interactive	rotation.

Prototype:
virtual	float	SnapPercent(float	percentIn)=0;

Remarks:
Given	a	value	in	the	range	0.0	(0%)	to	1.0	(100%)	this	method	snaps	the	value
using	the	current	percentage	snap.

Parameters:
float	percentIn
The	value	to	snap.

Return	Value:
The	snapped	value	where	0.0	=	0%	and	1.0	=	100%.

Prototype:
virtual	BOOL	GetSnapState()=0;

Remarks:
Retrieves	the	snap	toggle	state.

Return	Value:
TRUE	if	snap	is	on;	FALSE	if	snap	is	off.

Prototype:
virtual	int	GetSnapMode()=0;

Remarks:
Retrieves	the	current	snap	type.

Return	Value:
One	of	the	following	values:
SNAPMODE_RELATIVE
SNAPMODE_ABSOLUTE

Prototype:
virtual	BOOL	SetSnapMode(int	mode)=0;

Remarks:
Set	the	current	snap	mode.	Note	that	setting	the	mode	to
SNAPMODE_ABSOLUTE	will	fail	if	the	reference	coordinate	system	is
not	in	set	to	Screen.

Parameters:
int	mode
One	of	the	following	values:
SNAPMODE_RELATIVE
SNAPMODE_ABSOLUTE

Return	Value:
Returns	TRUE	if	succeeded;	otherwise	FALSE.

Sound	Object	Access

Prototype:
virtual	SoundObj	*GetSoundObject()=0;

Remarks:
Returns	the	current	sound	object.	See	the	sample	code	in
\MAXSDK\SAMPLES\UTILITIES\UTILTEST.CPP.

See	Also:	Class	SoundObj,	Class	IWaveSound.

Prototype:
virtual	void	SetSoundObject(SoundObj	*snd)=0;

Remarks:
Sets	the	current	sound	object	to	the	one	specified.	See	Class	SoundObj.

Parameters:
SoundObj	*snd
The	sound	object	to	set	as	current.

Sub-Object	Related	Methods
Prototype:
virtual	void	RegisterSubObjectTypes(const	TCHAR	**types,	int
count,	int	startIndex=0)=0;

Remarks:
This	method	registers	the	sub-object	types	for	a	given	plug-in	object	type.	See
the	Advanced	Topics	section	on	sub-object	selection	for	more	details.

Parameters:
const	TCHAR	**types
Array	of	strings	listing	the	sub	object	levels.	The	order	the	strings	appear	in
the	array	sets	the	indices	used	for	the	sub-object	levels.	Level	0	is	always
object	level,	the	first	string	corresponds	to	level	1,	and	the	second	string
corresponds	to	level	2,	etc.	In	the	sample	code	below,	"Center"	is	level	1
and	"Gizmo"	is	level	2.
int	count

The	number	of	strings	in	the	array.
int	startIndex=0
This	parameter	is	available	in	release	2.0	and	later	only.
Specifies	which	string	to	display	initially	in	the	sub-object	type	combo	box.
This	is	needed	because	the	NURBS	object	computes	its	sub-object	list
dynamically,	and	sometimes	it	add	a	new	sub-object	level	while	already	in	a
sub-object	level.	The	default	value	of	zero	replicates	the	original	behavior.

Sample	Code:
const	TCHAR	*ptype[]	=	{	_T("Center"),	_T("Gizmo")	};
ip->RegisterSubObjectTypes(ptype,	2);

Prototype:
virtual	int	GetSubObjectLevel()=0;

Remarks:
Returns	the	state	of	the	sub	object	drop-down.

Return	Value:
0	is	object	level	and	>=	1	refers	to	the	levels	registered	by	the	object	using
RegisterSubObjectTypes().	The	value	refers	to	the	order	the	item	appeared
in	the	list.	1	is	the	first	item,	2	is	the	second,	etc.

Prototype:
virtual	void	SetSubObjectLevel(int	level,	BOOL	force	=
FALSE)=0;

Remarks:
Sets	the	sub-object	drop	down.	This	will	cause	the	object	being	edited	to
receive	a	notification	that	the	current	sub-object	level	has	changed	(via
BaseObject::ActivateSubobjSel()).

Parameters:
int	level
The	level	registered	by	the	object	using	RegisterSubObjectTypes().	0
indicates	object	level.	Values	greater	than	1	refer	to	the	order	the	items
appeared	in	the	list.
BOOL	force	=	FALSE

If	this	parameter	is	TRUE,	this	method	will	set	the	level	even	if	the	current
level	is	the	same	as	the	level	requested.	This	is	to	support	objects	that	change
sub-object	levels	on	the	fly,	for	instance	NURBS.

Prototype:
virtual	int	GetNumSubObjectLevels()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	returns	the	number	of	sub	object	levels	that	the	currently	edited
object	(or	modifier)	has.	Like	the	other	sub-object	related	methods	in	this
class,	this	method	will	only	return	a	valid	answer	if	the	modifier	panel	is
displayed.

Prototype:
virtual	void	EnableSubObjectSelection(BOOL	enable)=0;

Remarks:
This	method	enables	or	disables	sub-object	selection.	Note	that	it	will	already
be	disabled	if	there	are	no	subobject	levels	registered.	In	this	case,	this	method
has	no	effect.

Parameters:
BOOL	enable
TRUE	to	enable	sub-object	selection;	FALSE	to	disable.

Prototype:
virtual	BOOL	IsSubObjectSelectionEnabled()=0;

Remarks:
This	method	returns	the	state	that	is	modified	by
EnableSubObjectSelection().	That	is,	it	does	not	actually	return	the	state
of	the	button,	but	indicates	the	disabled	state	as	set	by
EnableSubObjectSelection().

Return	Value:
TRUE	if	the	sub-object	button	has	been	disabled	by
EnableSubObjectSelection();	otherwise	FALSE.

Prototype:
virtual	void	PipeSelLevelChanged()=0;

Remarks:
Plug-ins	call	this	method	to	notify	the	system	that	the	selection	level	in	the
pipeline	has	changed.	The	selection	level	flows	up	the	pipeline	so	if	you
change	the	selection	level	you	affect	things	later	in	the	pipeline.	For	example
an	edit	modifier	that	changes	the	sub-object	level	from	vertex	to	object	level
must	call	this	method	after	making	the	change	to	notify	the	system.	Note	that
it	is	only	called	for	modifiers	whose	sub-object	levels	propagate	up	the
pipeline.	For	example,	when	entering	a	sub-object	level	within	the	Bend
modifier,	PipeSelLevelChanged()	is	not	called.
This	method	should	be	called	from	within	ActivateSubobjSel()	to	notify	the
system	that	a	selection	level	has	changed	in	the	pipeline.	Note	that	calling	this
method	from	within	ModifyObject()	is	no	good	since	it	involves	re-
evaluating	the	pipeline,	which	will	call	ModifyObject(),	which	will	the	call
PipeSelLevelChanged()	again,	etc.

Prototype:
virtual	void	GetPipelineSubObjLevel(DWORDTab	&levels)=0;

Remarks:
Gets	the	sub-object	selection	level	at	the	point	in	the	pipeline	just	before	the
current	place	in	the	history.

Parameters:
DWORDTab	&levels
The	sub-object	level.	This	value	depends	on	the	object.	The	only	level	defined
is	level	0,	which	means	'object'	level	selection.

Prototype:
virtual	int	SubObHitTest(TimeValue	t,	int	type,	int	crossing,	int
flags,	IPoint2	*p,	ViewExp	*vpt)=0;

Remarks:
This	method	may	be	called	to	perform	a	sub-object	hit	test.	You	may	access
the	number	of	hits	using:	vpt->NumSubObjHits();	See	Class	ViewExp	for

a	list	of	the	other	methods	that	may	be	used	to	examine	the	results.
Parameters:
TimeValue	t
The	time	of	the	hit	testing.
int	type
The	hit	test	type.	See	List	of	Hit	Test	Types.
int	crossing
Nonzero	for	crossing	selection;	0	for	normal	(window).
int	flags
The	flags	for	hit	testing.	See	List	of	Hit	Test	Flags.
IPoint2	*p
Point	to	check	in	screen	coordinates.
ViewExp	*vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.

Return	Value:
Nonzero	if	the	item	was	hit;	otherwise	0.

Sub-Object	Selection	Sets	(Named)

Prototype:
virtual	void	AppendSubObjectNamedSelSet(const	TCHAR
*set)=0;

Remarks:
A	modifier	may	call	this	method	to	add	sub-object	named	selection	sets	to	the
named	selection	set	drop	down	list	in	the	MAX	toolbar.	This	should	be	done
whenever	the	selection	level	changes	(in	the	Modifiers
BaseObject::ActivateSubobjSel()	method).	See	Class	BaseObject	for
additional	methods	associated	with	sub-object	named	selection	sets.

Parameters:
const	TCHAR	*set
The	named	selection	set	to	add	to	the	list.

Prototype:
virtual	void	ClearSubObjectNamedSelSets()=0;

Remarks:
This	method	clears	the	named	sub-object	selection	sets	from	the	drop	down.

Status	Panel	/	Prompt	Related	Methods
Generally	prompts	are	set	by	the	command	mode	and	these	are	the	methods
used.	The	developer	may	use	the	DisplayTempPrompt()	method	below	to
temporarily	display	a	prompt	to	the	user	independent	of	a	command	mode.

Prototype:
virtual	void	PushPrompt(TCHAR	*s)=0;

Remarks:
Pushes	a	prompt	to	display	on	the	prompt	stack.

Parameters:
TCHAR	*s
The	string	to	display.

Prototype:
virtual	void	PopPrompt()=0;

Remarks:
Pops	a	displayed	string	off	the	prompt	stack.	The	previous	prompt	will	be
restored.

Prototype:
virtual	void	ReplacePrompt(TCHAR	*s)=0;

Remarks:
Replaces	the	string	on	the	top	of	the	prompt	stack.

Parameters:
TCHAR	*s
The	string	to	display.

Prototype:
virtual	void	DisplayTempPrompt(TCHAR	*s,	int	msec=1000)=0;

Remarks:
Displays	the	string	passed	for	the	duration	passed.	After	the	time	elapses,	the
string	is	popped	from	the	stack.	This	may	be	used	to	put	up	a	temporary	error
message	for	example.

Parameters:
TCHAR	*s
The	string	to	display	temporarily.
int	msec=1000
The	duration	in	milliseconds	to	display	the	string.

Prototype:
virtual	void	RemoveTempPrompt()=0;

Remarks:
Removes	the	temporary	prompt	immediately.

Prototype:
virtual	void	DisableStatusXYZ()=0;

Remarks:
Disables	mouse	tracking	and	display	of	coordinates	to	the	X,	Y,	Z	status
boxes.	Typically	a	plug-in	would	disable	mouse	tracking	on	mouse	down	and
enable	it	on	mouse	up.

Prototype:
virtual	void	EnableStatusXYZ()=0;

Remarks:
Enables	mouse	tracking	and	display	of	coordinates	to	the	X,	Y,	Z	status	boxes.
Typically	a	plug-in	would	disable	mouse	tracking	on	mouse	down	and	enable
it	on	mouse	up.

Prototype:

virtual	void	SetStatusXYZ(Point3	xyz,int	type)=0;
Remarks:
Displays	the	point	passed	using	the	format	passed	in	the	X,	Y,	Z	status	boxes.

Parameters:
Point3	xyz
The	point	to	be	displayed.
int	type
The	format	of	the	point:
STATUS_UNIVERSE
Current	system	units.
STATUS_SCALE
0=0%,	1=100%.
STATUS_ANGLE
Degrees.
STATUS_OTHER
Straight	floating	point	value.

Prototype:
virtual	void	SetStatusXYZ(AngAxis	aa)=0;

Remarks:
This	method	will	convert	the	specified	angle	axis	for	status	display.

Parameters:
AngAxis	aa
The	angle	axis	to	convert	and	display.

Track	Bar	and	Track	View	Related	Methods
Prototype:
virtual	ITrackViewNode	*GetTrackViewRootNode()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	a	pointer	to	the	Track	View	Root	Node.	See	Class
ITrackViewNode.

Prototype:
virtual	ITreeView*	CreateTreeViewChild(ReferenceTarget*	root,
HWND	hParent,	DWORD	style=0,	ULONG	id=0,	int
open=OPENTV_SPECIAL)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	creates	a	plain	treeview	window	(no	title,borders,etc.)	as	a
child	window	of	the	given	window.	To	destroy	the	window,	delete	the
ITreeView	pointer.

Parameters:
ReferenceTarget*	root
Points	to	the	root	node	of	the	hierarchy	to	display	in	the	Track	View.
HWND	hParent
The	window	handle	of	the	parent	for	the	dialog.
DWORD	style=0
The	style	flags;
TVSTYLE_MAXIMIZEBUT
Provide	a	maximize	button.
TVSTYLE_INVIEWPORT
Display	in	the	viewport.
TVSTYLE_NAMEABLE
The	treeview	is	namable.
TVSTYLE_INMOTIONPAN
Used	in	the	motion	panel.

ULONG	id=0
The	ID	of	the	treeview	window.
int	open=OPENTV_SPECIAL
One	of	the	following	values:
OPENTV_NEW
Open	a	new	treeview.
OPENTV_SPECIAL
Open	a	special	treeview.
OPENTV_LAST

Open	the	last	treeview.

Prototype:
virtual	ITrackBar*	GetTrackBar()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	returns	an	instance	of	the	ITrackBar	class.	This	class	may	be
used	to	manipulate	the	track	bar.	See	Class	ITrackBar.

Time	Configuration	Key	Steps	Settings	Access
Prototype:
virtual	BOOL	GetKeyStepsSelOnly()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	the	Time	Configuration	/	Key	Steps	/	Selected	Objects	Only
check	box	is	on;	otherwise	FALSE.

Prototype:
virtual	void	SetKeyStepsSelOnly(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	Time	Configuration	/	Key	Steps	/	Selected	Objects	Only	check	box	to
on	or	off.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetKeyStepsUseTrans()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

Returns	TRUE	if	the	Time	Configuration	/	Key	Steps	/	Use	Current	Transform
check	box	is	on;	otherwise	FALSE.

Prototype:
virtual	void	SetKeyStepsUseTrans(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	Time	Configuration	/	Key	Steps	/	Use	Current	Transform	check	box
to	on	or	off.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetKeyStepsPos()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	the	Time	Configuration	/	Key	Steps	/	Position	check	box	is
on;	otherwise	FALSE.	This	value	is	only	meaningful	if	Use	Current	Transform
is	off.

Prototype:
virtual	void	SetKeyStepsPos(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	Time	Configuration	/	Key	Steps	/	Position	check	box	is	to	on	or	off.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetKeyStepsRot()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	the	Time	Configuration	/	Key	Steps	/	Rotation	check	box	is
on;	otherwise	FALSE.	This	value	is	only	meaningful	if	Use	Current	Transform
is	off.

Prototype:
virtual	void	SetKeyStepsRot(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	Time	Configuration	/	Key	Steps	/	Rotation	check	box	is	to	on	or	off.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetKeyStepsScale()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	the	Time	Configuration	/	Key	Steps	/	Scale	check	box	is	on;
otherwise	FALSE.	This	value	is	only	meaningful	if	Use	Current	Transform	is
off.

Prototype:
virtual	void	SetKeyStepsScale(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	Time	Configuration	/	Key	Steps	/	Scale	check	box	is	to	on	or	off.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetKeyStepsUseTrackBar()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	state	of	the	Time	Configuration	dialog	'Key	Steps	/	Use	TrackBar'
checkbox.	TRUE	if	checked;	FALSE	if	unchecked.

Prototype:
virtual	void	SetKeyStepsUseTrackBar(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	state	of	the	Time	Configuration	dialog	'Key	Steps	/	Use	TrackBar'
checkbox.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

User	Interface	Controls	and	Properties
Prototype:
virtual	void	SetFlyOffTime(int	msecs)=0;

Remarks:
This	sets	the	custom	control	flyoff	time	to	the	value	passed.	This	is	the	number
of	milliseconds	the	user	must	hold	down	on	a	flyoff	button	before	the	flyoff	is
activated.

Parameters:
int	msecs
The	number	of	milliseconds	the	user	must	hold	down	on	the	button	before	the
flyoff	is	activated.

Prototype:
virtual	int	GetFlyOffTime()=0;

Remarks:

Returns	the	number	of	milliseconds	the	user	must	hold	down	on	a	flyoff
button	before	the	flyoff	is	activated.

Prototype:
virtual	BOOL	GetCrossing()=0;

Remarks:
Returns	the	state	of	the	'crossing'	preference	for	hit	testing.

Return	Value:
TRUE	if	crossing	selection	is	on;	FALSE	if	off.

Prototype:
virtual	void	SetToolButtonState(int	button,	BOOL	state)=0;

Remarks:
Sets	the	state	of	one	of	the	transform	tool	buttons.

Parameters:
int	button
The	transform	tool	buttons:
MOVE_BUTTON
ROTATE_BUTTON
NUSCALE_BUTTON
USCALE_BUTTON
SQUASH_BUTTON
SELECT_BUTTON

BOOL	state
TRUE	indicates	pressed,	FALSE	is	not	pressed.

Prototype:
virtual	int	GetAxisConstraints()=0;

Remarks:
Retrieves	the	state	of	the	axis	constraints	flyoff.

Return	Value:
One	of	the	following	axis	constraints:

AXIS_XY
AXIS_ZX
AXIS_YZ
AXIS_X
AXIS_Y
AXIS_Z

Prototype:
virtual	void	SetAxisConstraints(int	c)=0;

Remarks:
Sets	the	state	of	the	axis	constraints	flyoff.

Parameters:
int	c
The	axis	constraint	to	set.	You	may	pass	one	of	the	following:
AXIS_XY
AXIS_ZX
AXIS_YZ
AXIS_X
AXIS_Y
AXIS_Z

Prototype:
virtual	void	EnableAxisConstraints(int	c,	BOOL	enabled)=0;

Remarks:
Enables	or	disables	the	specified	axis	constraint.

Parameters:
int	c
The	axis	constraint.	You	may	pass	one	of	the	following:
AXIS_XY
AXIS_ZX
AXIS_YZ
AXIS_X

AXIS_Y
AXIS_Z

BOOL	enabled
TRUE	to	enable;	FALSE	to	disable.

Prototype:
virtual	void	PushAxisConstraints(int	c)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Pushes	the	specified	axis	constraint.	This	push/pop	mechanism	is	used	so	that
the	appropriate	axis	mode	can	be	restored	after	the	Transform	Gizmo	has	been
used.	The	Gizmo	itself	calls	this	Push	method	is	response	to	the	HitTest	with
certain	flags.

Parameters:
int	c
The	axis	constraint.	You	may	pass	one	of	the	following:
AXIS_XY
AXIS_ZX
AXIS_YZ
AXIS_X
AXIS_Y
AXIS_Z

Prototype:
virtual	void	PopAxisConstraints()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Pops	the	active	constraint.	After	the	Transform	Gizmo	pushes	a	constraint	a
selection	processor	pops	it	back	again	after	the	manipulators	are	deactivated.

Prototype:
virtual	int	GetCoordCenter()=0;

Remarks:
Retrieves	the	state	of	the	coordinate	system	center.

Return	Value:
One	of	the	following	values:
ORIGIN_LOCAL
Object's	pivot.
ORIGIN_SELECTION
Center	of	selection	set	(or	center	of	individual	object	for	local	or	parent
space).
ORIGIN_SYSTEM
Center	of	the	reference	coordinate	system.

Prototype:
virtual	void	SetCoordCenter(int	c)=0;

Remarks:
Sets	the	state	of	the	coordinate	system	center.

Parameters:
int	c
One	of	the	following	values	(from	MAXAPI.H).
ORIGIN_LOCAL
Object's	pivot.
ORIGIN_SELECTION
Center	of	selection	set	(or	center	of	individual	object	for	local	or	parent
space).
ORIGIN_SYSTEM
Center	of	the	reference	coordinate	system.

Prototype:
virtual	void	EnableCoordCenter(BOOL	enabled)=0;

Remarks:
Enables	or	disables	the	coordinates	system	center.

Parameters:

BOOL	enabled
TRUE	to	enable;	FALSE	to	disable.

Prototype:
virtual	int	GetRefCoordSys()=0;

Remarks:
Retrieves	the	reference	coordinate	system	setting.

Return	Value:
One	of	the	following	reference	coordinate	systems:
COORDS_HYBRID
COORDS_SCREEN
COORDS_WORLD
COORDS_PARENT
COORDS_LOCAL
COORDS_OBJECT

Prototype:
virtual	void	SetRefCoordSys(int	c)=0;

Remarks:
Sets	the	reference	coordinate	system	used.

Parameters:
int	c
Reference	coordinate	system:
COORDS_HYBRID
COORDS_SCREEN
COORDS_WORLD
COORDS_PARENT
COORDS_LOCAL
COORDS_OBJECT

Prototype:
virtual	void	EnableRefCoordSys(BOOL	enabled)=0;

Remarks:
Enables	or	disables	the	reference	coordinates	system.

Parameters:
BOOL	enabled
TRUE	to	enable;	FALSE	to	disable.

Prototype:
virtual	BOOL	GetPlaybackLoop()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	state	of	the	"loop"	checkbox	in	the	time	configuration
panel.	Note	that	the	loop	control	is	only	active	when	"real	time"	is	selected.

Return	Value:
TRUE	if	loop	is	on;	FALSE	if	off.

Prototype:
virtual	void	SetPlaybackLoop(BOOL	loop)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	state	of	the	"loop"	checkbox	in	the	time
configuration	panel.	Note	that	the	loop	control	is	only	active	when	"real	time"
is	selected.

Parameters:
BOOL	loop
TRUE	to	set	the	loop	to	on;	FALSE	to	set	it	off.

Video	Post	Related	Methods
Prototype:
virtual	INode	*GetINodeFromRenderID(UWORD	id)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	the	node	pointer	from	the	id	in	the

BMM_CHAN_NODE_RENDER_ID	G-Buffer	channel.	The	renderer
will	set	the	RenderID	of	all	rendered	nodes,	and	will	set	all	non-rendered
nodes	to	0xffff.	See	List	of	Image	Channels.

Parameters:
UWORD	id
The	id	from	the	G	Buffer	channel.

Prototype:
virtual	int	GetSelectFilter()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	your	current	selected	select	filter	in	the	toolbar.

Prototype:
virtual	void	SetSelectFilter(int	c)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	current	selected	select	filter	in	the	toolbar.

Parameters:
int	c
The	index	of	the	filter	you	wish	to	set.

Prototype:
virtual	int	GetNumberSelectFilters()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	number	of	select	filters	in	the	drop	down	list.

Prototype:
virtual	TCHAR*	GetSelectFilterName(int	index)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

This	method	returns	the	name	that	appears	in	the	interface	for	the	specified
filter.

Parameters:
int	index
The	index	of	the	filter.

Prototype:
virtual	BOOL	GetDisplayFilter(int	index)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	state	of	a	display	filter.

Parameters:
int	index
The	index	of	the	display	filter	that	you	want	to	check.

Prototype:
virtual	void	SetDisplayFilter(int	index,	BOOL	on)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	state	of	a	display	filter.

Parameters:
int	index
The	index	of	the	display	filter	you	wish	to	set.
BOOL	on
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	int	GetNumberDisplayFilters()	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	number	of	display	filters	in	the	display	panel.

Prototype:
virtual	TCHAR*	GetDisplayFilterName(int	index)=0;;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	name	of	the	specified	filter.

Parameters:
int	index
The	index	of	the	filter.

Prototype:
virtual	BOOL	DisplayFilterIsNodeVisible(int	index,	int	sid,
Class_ID	cid,	INode	*node)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	checks	the	display	filter	at	index,	and	sees	if	the	node,	class	id,
and	super	class	id	fail	the	filter	check	or	not.

Parameters:
int	index
The	index	of	the	filter
int	sid
The	super	class	id
Class_ID	cid
The	class	ID
INode	*node
The	node	to	check.

Return	Value:
TRUE	if	visible,	otherwise	FALSE.

Viewport	Access

Prototype:
virtual	void	RedrawViews(TimeValue	t,	DWORD

vpFlags=REDRAW_NORMAL,	ReferenceTarget
*change=NULL)=0;

Remarks:
This	method	may	be	called	to	cause	the	viewports	to	be	redrawn.

Parameters:
TimeValue	t
The	time	at	which	to	redraw	the	viewports.
DWORD	vpFlags=REDRAW_NORMAL
You	may	specify	one	of	the	following:
REDRAW_BEGIN
Call	this	before	you	redraw.
REDRAW_INTERACTIVE
This	allows	the	view	quality	to	degrade	to	maintain	interactively.
REDRAW_END
If	during	interactive	redraw	the	state	degraded,	this	will	redraw	the	views	in
the	undegraded	state.
REDRAW_NORMAL
This	redraws	the	views	in	the	undegraded	state.

ReferenceTarget	*change=NULL
This	parameter	is	not	used	-	always	let	it	default	to	NULL.

Example:
ip->RedrawViews(ip->GetTime(),REDRAW_BEGIN);
//	More	code	...
ip->RedrawViews(ip->GetTime(),REDRAW_INTERACTIVE);
//	More	code	...
ip->RedrawViews(ip->GetTime(),REDRAW_END);

Prototype:
virtual	void	ForceCompleteRedraw(BOOL	doDisabled=TRUE)=0;

Remarks:
Calling	this	method	will	cause	all	the	viewports	to	be	completely	redrawn.
Note:	This	method	literally	forces	everything	(every	object,	every	screen
rectangle,	every	view)	to	be	marked	invalid	and	then	the	whole	scene	is

regenerated.	(The	individual	object	pipeline	caches	are	not	flushed,	however.)
So	this	routine	is	guaranteed	to	be	slow.

Parameters:
BOOL	doDisabled=TRUE
This	parameter	is	available	in	release	2.0	and	later	only.
If	TRUE	disabled	viewports	are	redrawn;	otherwise	they	are	not.

Prototype:
virtual	void	DisableSceneRedraw()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	turns	the	scene	redraw	off	(disables	it).	Scene	redraw	should	be	disabled
in	any	renderer's	Open()	method,	and	re-enabled	in	the	renderer's	Close()
method.	All	calls	to	DisableSceneRedraw()/Enable	SceneRedraw()
should	be	in	pairs,	since	an	internal	counter	is	used	to	actually	do	the	redraw
enable/disable	action.

Prototype:
virtual	void	EnableSceneRedraw()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	turns	the	scene	redraw	on	(enables	it).	Scene	redraw	should	be	disabled
in	any	renderer's	Open()	method,	and	re-enabled	in	the	renderer's	Close()
method.	All	calls	to	DisableSceneRedraw()/Enable	SceneRedraw()
should	be	in	pairs,	since	an	internal	counter	is	used	to	actually	do	the	redraw
enable/disable	action.

Prototype:
virtual	int	IsSceneRedrawDisabled()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	nonzero	if	the	redraw	is	disabled;	zero	if	enabled.

Prototype:
virtual	BOOL	SetActiveViewport(HWND	hwnd)=0;

Remarks:
This	allows	you	to	specify	the	active	viewport.

Parameters:
HWND	hwnd
The	handle	of	the	window	to	activate.

Return	Value:
TRUE	if	the	viewport	was	not	previously	active;	otherwise	FALSE.

Prototype:
virtual	ViewExp	*GetActiveViewport()=0;

Remarks:
Returns	the	ViewExp	pointer	of	the	active	MAX	viewport.	Remember	to
release	the	ViewExp	pointer	with	Interface::ReleaseViewport().

Prototype:
virtual	ViewExp	*GetViewport(HWND	hwnd)=0;

Remarks:
This	method	gets	a	viewport	interface	given	a	window	handle.

Parameters:
HWND	hwnd
The	window	handle	of	the	viewport.

Prototype:
virtual	void	ReleaseViewport(ViewExp	*vpt)=0;

Remarks:
When	the	developer	is	done	with	the	viewport	interface	acquired	via
GetViewport()	or	GetActiveViewport()	they	should	call	this	method	to
release	it.

Parameters:

ViewExp	*vpt
The	viewport	interface	to	release.

Prototype:
virtual	int	GetViewportLayout()=0;

Remarks:
This	method	may	be	called	to	retrieve	a	value	that	describes	the	configuration
of	the	MAX	viewports.

Return	Value:
The	viewport	layout	configuration.	The	list	below	uses	the	following	syntax:
#	is	the	total	number	of	viewports.
V	=	vertical	split
H	=	horizontal	split
L/R	=	left/right	placement
T/B	=	top/bottom	placement

One	of	the	following	values.	Note:	The	bottom	nibble	(4-bits)	is	the	total
number	of	views.	You	may	use	the	constant	VP_NUM_VIEWS_MASK
to	mask	off	the	4	bits	that	contains	the	total	number	of	viewports.
VP_LAYOUT_1
VP_LAYOUT_2V
VP_LAYOUT_2H
VP_LAYOUT_2HT
VP_LAYOUT_2HB
VP_LAYOUT_3VL
VP_LAYOUT_3VR
VP_LAYOUT_3HT
VP_LAYOUT_3HB
VP_LAYOUT_4
VP_LAYOUT_4VL
VP_LAYOUT_4VR
VP_LAYOUT_4HT
VP_LAYOUT_4HB
VP_LAYOUT_1C

Prototype:
virtual	void	SetViewportLayout(int	layout)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	viewport	configuration	layout.

Parameters:
int	layout
The	layout	to	use.	See	the	return	values	of	GetViewportLayout()	above.

Prototype:
virtual	BOOL	IsViewportMaxed()=0;

Remarks:
Returns	TRUE	if	the	current	viewport	is	full	screen;	otherwise	FALSE.

Prototype:
virtual	void	SetViewportMax(BOOL	max)=0;

Remarks:
This	method	will	maximize	(set	to	a	single	full	screen	view)	or	minimize	the
current	viewport.

Parameters:
BOOL	max
If	TRUE	the	viewport	is	maximized;	otherwise	it	is	minimized.

Prototype:
virtual	void	ViewportZoomExtents(BOOL	doAll,	BOOL
skipPersp=FALSE)=0;

Remarks:
This	method	performs	a	zoom	extents	on	the	viewport(s).	This	fills	the
viewport(s)	with	the	objects	of	the	scene.

Parameters:
BOOL	doAll
If	TRUE	all	the	viewports	are	zoomed	to	their	extents;	otherwise	just	the

current	viewport	is.
BOOL	skipPersp=FALSE
If	TRUE	perspective	viewports	are	not	altered;	otherwise	these	views	are
zoomed	to	their	extents	as	well.

Prototype:
virtual	int	IsCPEdgeOnInView()=0;

Remarks:
This	method	returns	nonzero	if	the	construction	plane	is	'head	on'	in	the
current	viewport.	For	example	if	the	construction	plane	was	XY	and	you	were
looking	from	the	Front	view,	this	method	would	return	nonzero.	This	is	used
for	example	during	object	creation	because	this	process	doesn't	work	very	well
when	the	view	is	'head	on'.

Return	Value:
Nonzero	if	the	construction	plane	is	'head	on'	in	the	current	viewport;
otherwise	0.
For	use	with	extended	views:	-	make	the	extended	viewport	active	(set	on
mouse	click,	for	example)	-put	up	the	view	type	popup	menu	(put	up	on	right-
click,	for	example)

Prototype:
virtual	void	MakeExtendedViewportActive(HWND	hWnd)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	with	Extended	Viewports	(see	Class	ViewWindow).	It	is
called	when	the	extended	viewport	needs	to	become	active.	It	should	be	called
whenever	the	user	clicks	in	the	non-3D	window	(so	as	to	deactivate	the	current
3D	window,	and	redirect	commands	like	the	Min/Max	toggle	to	the	non-3D
viewport	window).

Parameters:
HWND	hWnd
The	handle	of	the	window	which	to	made	active.

Prototype:
virtual	void	PutUpViewMenu(HWND	hWnd,	POINT	pt)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	with	Extended	Viewports	(see	Class	ViewWindow).	It	is
called	to	put	up	the	view	type	popup	menu	(for	example	the	right-click	menu).
It	should	be	called	when	the	user	right-clicks	in	a	dead	region	of	the	non-3D
window.	This	brings	up	the	view	selection	menu	so	that	the	user	can	choose	to
replace	the	current	window	with	a	3D	or	other	non-3D	window	without	having
to	go	to	the	Views	|	Viewport	Config	dialog	directly.

Parameters:
HWND	hWnd
The	handle	of	the	window	the	menu	is	to	appear	in.
POINT	pt
The	point	at	which	the	menu	is	put	up.

Sample	Code:
case	WM_RBUTTONDOWN:
	pt.x	=	LOWORD(l);
	pt.y	=	HIWORD(l);

GetCOREInterface()->PutUpViewMenu(h,	pt);

Prototype:
virtual	BOOL	RegisterViewWindow(ViewWindow	*vw)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	register	a	window	that	can	appear	in	a	viewport.

Parameters:
ViewWindow	*vw
The	pointer	to	the	view	window	to	register.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	BOOL	UnRegisterViewWindow(ViewWindow	*vw)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	unregister	a	window	that	can	appear	in	a	viewport.

Parameters:
ViewWindow	*vw
The	pointer	to	the	view	window	to	unregister.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	void	ZoomToBounds(BOOL	doAll,	Box3	box)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	zoom	the	current	or	selected	viewport	to	a
bounding	region.

Parameters:
BOOL	doAll
This	flag	determines	whether	only	the	selected	or	all	viewports	get	zoomed.
TRUE	for	all,	FALSE	for	selected	only.
Box3	box
The	bounding	region	to	zoom	to.

Viewport	Background	Properties

Prototype:
virtual	void	SetViewportBGColor(const	Point3	&color)=0;

Remarks:
Sets	the	viewport	background	color	to	the	specified	color.

Parameters:
const	Point3	&color

The	color	to	set.

Prototype:
virtual	Point3	GetViewportBGColor()=0;

Remarks:
Returns	the	viewport	background	color.

Prototype:
virtual	BOOL	setBkgImageName(TCHAR	*name)=0;

Remarks:
This	method	is	used	to	specify	the	background	image	used.

Parameters:
TCHAR	*name
The	name	of	the	background	image.

Return	Value:
TRUE	if	the	image	was	set;	otherwise	FALSE.

Prototype:
virtual	TCHAR	*getBkgImageName()=0;

Remarks:
This	method	is	used	to	retrieve	the	name	of	the	background	image	used.	The
pointer	returned	from	this	method	does	not	need	to	be	freed.

Prototype:
virtual	void	setBkgImageAspect(int	t)=0;

Remarks:
Sets	the	background	image	aspect	ratio.	This	may	match	the	viewport,	the
bitmap,	or	the	rendering	output	aspect	ratio.

Parameters:
int	t
One	of	the	following	values:
VIEWPORT_BKG_ASPECT_VIEW

VIEWPORT_BKG_ASPECT_BITMAP
VIEWPORT_BKG_ASPECT_OUTPUT

Prototype:
virtual	int	getBkgImageAspect()=0;

Remarks:
Retrieves	the	background	image	aspect	ratio.	This	will	be	the	viewport,	the
bitmap,	or	the	rendering	output	aspect	ratio.

Return	Value:
One	of	the	following	values:
VIEWPORT_BKG_ASPECT_VIEW
VIEWPORT_BKG_ASPECT_BITMAP
VIEWPORT_BKG_ASPECT_OUTPUT

Prototype:
virtual	void	setBkgImageAnimate(BOOL	onOff)=0;

Remarks:
This	method	sets	if	the	background	image	is	animated	in	the	viewports.	If
TRUE	the	image	updates	to	reflect	the	current	frame.	If	FALSE	the	image
remains	static	regardless	of	time.

Parameters:
BOOL	onOff
TRUE	to	enable	viewport	background	image	animation;	FALSE	to	disable	it.

Prototype:
virtual	int	getBkgImageAnimate()=0;

Remarks:
This	method	determines	if	the	background	image	is	set	to	update	with	the
current	frame	in	the	viewports.

Prototype:
virtual	void	setBkgFrameRange(int	start,	int	end,	int	step=1)=0;

Remarks:
This	method	establishes	the	range	of	frames	used	for	an	animated	background.

Parameters:
int	start
The	start	frame	number.
int	end
The	end	frame	number.
int	step=1
The	frame	increment.

Prototype:
virtual	int	getBkgFrameRangeVal(int	which)=0;

Remarks:
This	method	retrieves	either	the	start	or	end	frame	number.

Parameters:
int	which
One	of	the	following	values:
VIEWPORT_BKG_START
VIEWPORT_BKG_END

Prototype:
virtual	void	setBkgORType(int	which,	int	type)=0;

Remarks:
Sets	the	background	Out	of	Range	Type.	This	may	be	the	start	or	end	ORT.

Parameters:
int	which
One	of	the	following	values:
0	:	Sets	the	Start	Processing	ORT.
1	:	Sets	the	End	Processing	ORT.

int	type
One	of	the	following	values:
VIEWPORT_BKG_BLANK

VIEWPORT_BKG_HOLD
VIEWPORT_BKG_LOOP

Prototype:
virtual	int	getBkgORType(int	which)=0;

Remarks:
Retrieves	the	background	Out	of	Range	Type.	This	may	be	the	start	or	end
ORT.

Parameters:
int	which
One	of	the	following	values:
0	:	Gets	the	Start	Processing	ORT.
1	:	Gets	the	End	Processing	ORT.

Return	Value:
One	of	the	following	values:
VIEWPORT_BKG_BLANK
VIEWPORT_BKG_HOLD
VIEWPORT_BKG_LOOP

Prototype:
virtual	void	setBkgStartTime(TimeValue	t)=0;

Remarks:
This	sets	the	"Start	at"	parameter	from	the	Views	/	Background	Image...
dialog.

Parameters:
TimeValue	t
The	time	to	start.

Prototype:
virtual	TimeValue	getBkgStartTime()=0;

Remarks:
This	returns	the	"Start	at"	parameter	from	the	Views	/	Background	Image...

dialog.

Prototype:
virtual	void	setBkgSyncFrame(int	f)=0;

Remarks:
Sets	the	background	"Sync	Start	to	Frame"	setting.

Parameters:
int	f
The	frame	number.

Prototype:
virtual	int	getBkgSyncFrame()=0;

Remarks:
Returns	the	background	"Sync	Start	to	Frame"	setting.

Prototype:
virtual	int	getBkgFrameNum(TimeValue	t)=0;

Remarks:
This	method	will	convert	the	TimeValue	passed	to	a	frame	number	based	on
the	background	image	settings	(ORTs,	start/end	times,	sync	frame,	etc.).

Parameters:
TimeValue	t
The	time	to	convert.

Return	Value:
The	frame	number	corresponding	to	the	time	passed.

Window	Handle	of	MAX
Prototype:
virtual	HWND	GetMAXHWnd()=0;

Remarks:
Returns	the	window	handle	of	MAX.

Windows	Messages
Prototype:
virtual	void	TranslateAndDispatchMAXMessage(MSG	&msg)=0;

Remarks:
If	a	plug-in	needs	to	do	a	PeekMessage()	and	wants	to	actually	remove	the
message	from	the	queue,	it	can	use	this	method	to	have	the	message	translated
and	dispatched.

Parameters:
MSG	&msg
The	message	from	PeekMessage().

Prototype:
virtual	BOOL	CheckMAXMessages()=0;

Remarks:
This	will	go	into	a	PeekMessage()	loop	until	there	are	no	more	messages
left.	This	is	a	way	a	plug-in	can	relieve	control	to	the	system.
There	may	be	certain	circumstances	where	a	plug-in	wants	to	give	control
back	to	MAX.	For	example	a	plug-in	may	put	up	a	progress	bar	with	a	cancel
button	during	a	lengthy	operation.	However	the	cancel	button	would	not
receive	any	messages	if	the	user	was	clicking	on	it	because	no	messages	are
being	dispatched.
This	method	will	relieve	control	and	let	any	messages	that	are	in	the	queue	get
processed.	If	there	are	no	messages	it	will	return	right	away.	This	provides	a
way	for	a	plug-in	to	yield	control.
Note:	A	developer	must	be	prepared	to	handle	a	lot	of	different	conditions	if
this	is	done.	For	example	the	user	could	click	on	the	delete	key	and	delete	the
object	that	was	being	processed.	EndEditParams()	could	be	called	on	the
plug-in.	So	in	EndEditParams()	there	must	be	some	logic	to	signal	the
other	lengthy	process	that	EndEditParams()	was	called.

Return	Value:
If	this	method	returns	FALSE	then	the	user	is	attempting	to	quit	MAX	and	the
caller	should	return.

Prototype:
virtual	void	RescaleWorldUnits(float	f,	BOOL	selected)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	rescale	the	world	units	of	the	entire	scene,	or	optionally
the	current	selection	set.

Parameters:
float	f
The	scale	factor	to	apply	to	the	scene.
BOOL	selected
TRUE	to	scale	selected	objects	only;	otherwise	the	entire	scene	is	scaled.

Transform	Gizmo	Related	Methods
Prototype:
virtual	BOOL	GetUseTransformGizmo()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	state	of	the	Transform	Tools	/	Gizmo	toggle.

Return	Value:
TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetUseTransformGizmo(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	enables	or	disables	the	use	of	Transform	Gizmos.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:

virtual	void	SetTransformGizmoRestoreAxis(BOOL	bOnOff)=0;
Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	sets	whether	the	TransformGizmo	should	restore	the	axis
constraint	when	released,	or	if	the	axis	constraint	is	permanently	changed.	The
value	is	saved	in	the	3DSMAX.INI	file	for	later	sessions.

Parameters:
BOOL	bOnOff
Enable	or	disable	the	restoration	of	the	axis	constraint.

Prototype:
virtual	BOOL	GetTransformGizmoRestoreAxis()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Indicates	if	the	TransformGizmo	will	restore	the	axis	constraint	when	released.
Returns	TRUE	if	it	will;	FALSE	if	it	won't.

Prototype:
virtual	BOOL	GetConstantAxisRestriction()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	state	of	the	Transform	Tools	/	Constant	Axis	toggle.

Return	Value:
TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetConstantAxisRestriction(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	state	of	the	Transform	Tools	/	Constant	Axis	toggle.

Parameters:
BOOL	onOff

TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	int	HitTestTransformGizmo(IPoint2	*p,	ViewExp	*vpt,	int
axisFlags)	=	0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	to	hittest	gizmos	for	sub-objects.

Parameters:
IPoint2	*p
Point	to	check	in	screen	coordinates.
ViewExp	*vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.
int	axisFlags
One	or	more	of	the	following	values:
HIT_TRANSFORMGIZMO
This	flag	is	passed	in	on	a	MOUSE_FREEMOVE	message	so	that	the
axis	is	hit	tested	and	it	hightlights	if	it	is	hit,	but	it	doesn't	actually	switch
the	transform	mode.
HIT_SWITCH_GIZMO
In	case	of	a	MOUSE_POINT,	this	flag	is	used,	and	if	the	axis	is	hit,	the
'hit'	transform	mode	will	be	pushed	on	the	transform	mode	stack.

Return	Value:
Nonzero	if	the	item	was	hit;	otherwise	0.

Add	/	Delete	Class	Methods
Prototype:
virtual	int	AddClass(ClassDesc	*cd)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	to	dynamically	add	a	plug-in	class.	This	method	will

update	the	control	panel	in	the	Create	or	Modify	branches	dynamically.
Parameters:
ClassDesc	*cd
Points	to	the	Class	Descriptor	to	add.	See	Class	ClassDesc.

Return	Value:
Returns	-1	if	the	superclass	was	unknown,	0	if	the	class	already	exists,	or	1	if
the	class	was	added	successfully.

Prototype:
virtual	int	DeleteClass(ClassDesc	*cd)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	to	dynamically	delete	a	plug-in	class.	This	method	will
update	the	control	panel	in	the	Create	or	Modify	branches	dynamically.

Parameters:
ClassDesc	*cd
Points	to	the	Class	Descriptor	to	add.	See	Class	ClassDesc.

Return	Value:
Returns	-1	if	the	superclass	was	unknown,	0	if	the	class	does	not	exist,	or	1	if
the	class	was	deleted	successfully.

Property	Set	Access
The	following	methods	provide	developer	access	to	the	property	set	data	stored
by	MAX.	A	MAX	user	can	enter	this	data	via	the	File	Properties	dialog.	There
are	three	tabs	to	this	dialog	which	correspond	to	the	options	which	may	be
specified	for	the	PropertySet	parameter	used	in	the	methods	below.	The
PROPSPEC	and	PROPVARIANT	structures	used	below	are	part	of	the
Windows	API.	Developers	can	find	sample	code	using	these	methods	in
\MAXSDK\SAMPLES\UTILITIES\PROPERTYTEST\PROPERTYTEST.CPP
Prototype:
virtual	int	GetNumProperties(int	PropertySet)=0;

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	properties	of	the	specified	property	set.	See	the	note	at
the	start	of	this	group	of	methods	above	for	info	on	property	sets.

Parameters:
int	PropertySet
See	List	of	PropertySet	Options.

Prototype:
virtual	int	FindProperty(int	PropertySet,	const	PROPSPEC*
propspec)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Return	the	index	of	the	specified	property	or	-1	if	it	is	not	found.	See	the	note
at	the	start	of	this	group	of	methods	above	for	info	on	property	sets.

Parameters:
int	PropertySet
See	List	of	PropertySet	Options.
const	PROPSPEC*	propspec
Points	to	a	PROPSPEC	structure	of	the	property	to	find.	The	Windows	API
PROPSPEC	structure	is	used	by	many	of	the	methods	of	IPropertyStorage	to
specify	a	property	either	by	its	property	identifier	or	the	associated	string
name.	See	the	Windows	API	for	details	on	this	structure.

Return	Value:
The	zero	based	index	of	the	specified	property	or	-1	if	not	found.

Prototype:
virtual	const	PROPVARIANT*	GetPropertyVariant(int
PropertySet,	int	idx)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Return	the	value	of	the	property	at	this	index,	in	PROPVARIANT	form.	See
the	note	at	the	start	of	this	group	of	methods	above	for	info	on	property	sets.

Parameters:
int	PropertySet
See	List	of	PropertySet	Options.
int	idx
The	zero	based	index	of	the	property	variant	to	get.

Return	Value:
Points	to	a	PROPVARIANT	structure.	This	Windows	API	structure	is	used
in	most	of	the	methods	of	IPropertyStorage	to	define	the	type	tag	and	the
value	of	a	property	in	a	property	set.	See	the	Windows	API	for	details	on	this
structure.

Prototype:
virtual	const	PROPSPEC*	GetPropertySpec(int	PropertySet,	int
idx)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Return	the	name	of	the	property	at	this	index,	in	PROPSPEC	form.	See	the
note	at	the	start	of	this	group	of	methods	above	for	info	on	property	sets.

Parameters:
int	PropertySet
See	List	of	PropertySet	Options.
int	idx
The	zero	based	index	of	the	property	name	to	get.

Return	Value:
Points	to	a	PROPSPEC	structure.	The	Windows	API	PROPSPEC	structure	is
used	by	many	of	the	methods	of	IPropertyStorage	to	specify	a	property	either
by	its	property	identifier	or	the	associated	string	name.	See	the	Windows	API
for	details	on	this	structure.

Prototype:
virtual	void	AddProperty(int	PropertySet,	const	PROPSPEC*
propspec,	const	PROPVARIANT*	propvar)=0;

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
This	method	adds	a	property	to	the	specified	property	set.	See	the	sample	code
in
\MAXSDK\SAMPLES\UTILITIES\PROPERTYTEST\PROPERTYTEST.CPP
See	the	note	at	the	start	of	this	group	of	methods	above	for	info	on	property
sets.

Parameters:
int	PropertySet
See	List	of	PropertySet	Options.
const	PROPSPEC*	propspec
Points	to	a	PROPSPEC	structure.
const	PROPVARIANT*	propvar
Points	to	a	PROPVARIANT	structure.

Prototype:
virtual	void	DeleteProperty(int	PropertySet,	const	PROPSPEC*
propspec)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deletes	the	specified	property.	The	property	will	be	removed	and	the	memory
freed.	See	the	note	at	the	start	of	this	group	of	methods	above	for	info	on
property	sets.

Parameters:
int	PropertySet
See	List	of	PropertySet	Options.
const	PROPSPEC*	propspec
Points	to	a	PROPSPEC	structure	to	delete.

XRef	Methods
Prototype:
virtual	void	SetIncludeXRefsInHierarchy(BOOL	onOff)=0;

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
This	method	allows	a	plug-in	to	specify	whether	scene	XRef	objects	are
hidden	from	the	hierarchy	when	it	is	traversed.	Normally	this	parameter	is	set
to	FALSE	except	during	rendering.	If	a	plug-in	wants	access	to	XRef	scene
objects	then	it	should	set	this	to	TRUE	and	traverse	the	scene	and	then	set	it
back	to	FALSE	when	it's	done.
Most	of	the	time	the	XRef	trees	(whose	root	node	is	a	child	of	the	client
scene's	root	node)	are	skipped	when	traversing	the	hierarchy.	When	this	option
is	turned	on,	all	root	nodes	will	include	child	XRef	scene	root	nodes	in	any
traversal	related	functions	such	as	NumberOfChildren()	and
GetChildNode(i).
This	option	is	turned	on	automatically	before	rendering	and	turned	off	after	so
that	scene	XRefs	appear	in	the	production	renderer.	Note:	This	option	should
not	be	left	on	if	it	is	turned	on	since	it	would	cause	scene	XRef	objects	to
be	accessible	to	the	user	in	the	client	scene.
Note	that	plug-ins	can	also	access	XRef	objects	using	the	Class	INode	XRef
methods.

Parameters:
BOOL	onOff
TRUE	to	include	XRefs	in	the	hierarchy;	FALSE	to	not	include	them.

Prototype:
virtual	BOOL	GetIncludeXRefsInHierarchy()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	XRefs	are	included	in	the	traversal	of	the	scene	hierarchy;
otherwise	FALSE.	See	the	method	above	for	details.

Prototype:
virtual	BOOL	IsXRefAutoUpdateSuspended()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	automatic	updating	of	XRefs	is	suspended;	otherwise

FALSE.	When	an	XRef	file	is	changed	and	that	causes	an	XRef	object	to
update,	the	old	XRef	object	gets	deleted	from	memory	which	can	cause
problems	for	some	plug-ins.	For	example,	the	Dynamics	system	would	have	a
problem	if	an	update	occured	while	a	solution	was	solving.	This	method	is
used	to	disable	the	automatic	updating	to	prevent	the	problem.

Prototype:
virtual	void	SetXRefAutoUpdateSuspended(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	if	the	automatic	updating	of	XRefs	is	suspended	or	not.	See	the	note	in
IsXRefAutoUpdateSuspended()	for	details.

Parameters:
BOOL	onOff
TRUE	to	suspend;	FALSE	to	restore	automatic	updating.

Prototype:
virtual	BOOL	IsSceneXRefNode(INode	*node)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	specified	node	is	part	of	a	scene	XRef	or	FALSE	if	the
node	is	a	regular	modifiable	node	in	the	current	scene.

Parameters:
INode	*node
The	node	to	check.

Licensing	Methods
Prototype:
virtual	bool	IsTrialLicense()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	application	is	running	under	a	trial	license,	as	opposed	to

a	full,	authorized	license;	otherwise	FALSE.

Prototype:
virtual	bool	IsNetworkLicense()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
As	of	R4	this	method	will	always	return	false	as	R4	does	not	have	network
licencing.

Prototype:
virtual	bool	IsEmergencyLicense()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
As	of	R4	this	method	is	no	longer	supported	and	always	returns	false.
Returns	TRUE	if	the	application	is	running	under	an	emergency	license,	while
the	full	license	is	exported;	otherwise	FALSE.

Prototype:
virtual	int	GetProductVersion()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	product	version	which	is	one	of	the	following	values:
PRODUCT_VERSION_DEVEL	--	A	debug	build,	or	licensed	in-
house.
PRODUCT_VERSION_TRIAL	--	A	trial	license.
PRODUCT_VERSION_ORDINARY	--	A	commercial	license.
PRODUCT_VERSION_NFR	--	Not	for	resale.
PRODUCT_VERSION_EDU	--	Educational	or	student	license.

Prototype:
virtual	int	GetLicenseBehavior()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	one	of	the	following	values	which	indicates	the	liscence	behaviour:
LICENSE_BEHAVIOR_PERMANENT	--	A	permanent	license,	or
hardware	lock.
LICENSE_BEHAVIOR_EXTENDABLE	--	A	term	license	which
can	be	extended.
LICENSE_BEHAVIOR_NONEXTENDABLE	--	A	term	license
which	cannot	be	extended.

Prototype:
virtual	int	GetLicenseDaysLeft()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	an	integer	indicating	the	number	of	full	days	left	in	the	term	of	the
license.	A	value	of	0	means	that	today	is	the	last	day	of	validity.	For
permanent	licenses,	a	fixed	value	is	returned	indicating	greater	than	10	years
are	left.

Prototype:
virtual	bool	IsFeatureLicensed(int	subNum)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	not	currently	supported	and	always	returns	false.	In	the	future
it	will	be	used	for	returning	true	or	false	as	the	license	subgroup	designated	by
the	argument	is	or	is	not	enabled.

Return	Value:
TRUE	if	licensed;	FALSE	if	not	licensed.

Deferred	Loading	Related	Methods
Prototype:
virtual	void	EnableDeferredPluginLoading(bool	onOff)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
In	the	Preferences	dialog	/	General	Tab	/	Plug-In	Loading	section	there	is	a
Checkbox	labelled	'Load	Plug-Ins	when	Used'.	This	method	sets	the	state	of
this	toggle.	See	the	Advanced	Topics	section	Deferred	Loading	of	Plug-Ins.

Parameters:
bool	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	bool	DeferredPluginLoadingEnabled()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
In	the	Preferences	dialog	/	General	Tab	/	Plug-In	Loading	section	there	is	a
Checkbox	labelled	'Load	Plug-Ins	when	Used'.	This	method	returns	the	state
of	this	toggle..	See	the	Advanced	Topics	section	Deferred	Loading	of	Plug-Ins.

Return	Value:
TRUE	if	on;	FALSE	if	off.

Undo	/	Redo	Related	Methods
Prototype:
virtual	void	FlushUndoBuffer()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	function	will	flush	the	undo	buffer.	See	the	Advanced	Topics	section
Undo	/	Redo.

Class	List	by	Category
See	Also:	Plug-In	Types	Overview.
This	section	provides	a	list	of	all	the	main	classes	in	the	SDK	organized	by
category.	Hyperlinks	are	provided	to	the	reference	section	of	each	class.	You
may	also	use	the	Search	function	in	the	on-line	help	toolbar.	When	using	search
note	that	all	the	classes	in	the	SDK	are	named	beginning	with	Class,	so	they	are
grouped	together	and	appear	in	alphabetical	order.	To	find	a	particular	method	or
function	by	name,	choose	Search,	select	the	Find	tab,	then	enter	the	name	in	the
'Type	the	word(s)	you	want	to	find'	field.
Overview	of	the	Principal	Classes
Main	Plug-In	Classes
Interface	Classes
Geometry	/	Bitmap	Classes
User	Interface	Classes
Miscellaneous	Utility	Classes

Sparks	Addin	for	MS	VC++	6	IDE
See	Also:	Sparks	Developer	Program,Sparks	Developer
Knowledgebase,Sparks	Addin	for	MS	VC++	7	IDE

Overview
New	for	3ds	max	5.1	is	the	Sparks	Addin	for	use	with	the	MS	VC++	6
IDE.	Its	functionality	allows	3ds	max	developers	to	search	the	sparks
knowledgebase	for	the	text	that’s	selected	in	the	IDE.
The	Sparks	Addin	is	available	to	the	public.

Installation

1.	Open	VC++	6,	and	go	to	Tools:	Customize:	Add-ins	and	Macro
Files.
2.	Click	on	the	'browse'	button	and	locate	SparksAddin.dll	in	the
maxsdk	help	directory.	Click	'open'.
3.	Check	the	checkbox	next	to	its	entry	in	the	'Add-ins	and	macro
files:'	list	box.
4.	The	toolbar	should	now	be	visible	in	your	environment.

Usage

1.	With	the	addin	toolbar	enabled,	select	a	string	of	text	in	the	IDE.
2.	Click	a	button	on	the	toolbar	to	launch	the	sparks	knowledgebase
with	the	selected	string.

a.	(3ds	max	icon):	Searches	the	entire	knowledgebase.
b.	(letter	icon):	Searches	all	webboard	support	threads,	legacy	support
threads,	developer	techdocs,	and	solutions.
c.	(class	icon):	Searches	the	lastest	3ds	max	SDK	documentation	only.
Very	useful	for	class/method	lookup.	

3.	Once	inside	the	sparks	knowledgebase,	you	can	alter	your	search	as
well	as	use	'and/or'	keywords	to	refine	your	search.

Local	Address
The	addin	can	be	found	in	the	maxsdk	help	directory	of	the	5.1	install.
Please	read	the	SparksAddinReadme	therein	for	usage	and	installation
instructions.

Internet	Address
http://sparks.discreet.com/downloads/downloadshome.cfm?
f=2&wf_id=87

http://sparks.discreet.com/downloads/downloadshome.cfm?f=2&wf_id=87

Sparks	Addin	for	MS	VC++	7	IDE
See	Also:	Sparks	Developer	Program,Sparks	Developer	Knowledgebase

Overview
New	for	3ds	max	6	is	the	Sparks	Addin	for	use	with	the	MS	VC++	7
IDE.	Its	functionality	allows	3ds	max	developers	to	search	the	sparks
knowledgebase	for	the	text	that’s	selected	in	the	IDE.
The	Sparks	Addin	is	available	to	the	public.

Installation

1.	Follow	the	installation	instructions	in	the	included	installer.

Usage

1.	With	the	addin	toolbar	enabled,	select	a	string	of	text	in	the	IDE.
2.	Click	the	'Search	3ds	max	SDK	Knowledgebase'	button	to	launch
the	search.	Below	are	descriptions	for	items	in	the	Collection
dropdown

a.	Entire	Knowledgebase:	Searches	the	entire	knowledgebase.
b.	Support	Threads:	Searches	all	webboard	support	threads,	legacy
support	threads,	developer	techdocs,	and	solutions.
c.	SDK	Documentation:	Searches	the	lastest	3ds	max	SDK
documentation	only.	Very	useful	for	class/method	lookup.	

3.	Once	inside	the	sparks	knowledgebase,	you	can	alter	your	search	as
well	as	use	'and/or'	keywords	to	refine	your	search.

Internet	Address
http://sparks.discreet.com/downloads/downloadshome.cfm?f=2&wf_id=105

http://sparks.discreet.com/downloads/downloadshome.cfm?f=2&wf_id=105

Class	GeomObject
See	Also:	Class	Object,	Class	Mesh.
class	GeomObject	:	public	Object

Description:
This	is	the	base	class	for	the	creation	of	Geometric	Object	plug-ins.	This	class
represents	an	object	that	has	geometry	and	is	renderable.

Methods:

Prototype:
virtual	int	IsInstanceDependent()

Remarks:
Implemented	by	the	Plug-In.
If	an	object	creates	different	meshes	depending	on	the	particular	instance
(view-dependent)	it	should	return	nonzero;	otherwise	0.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	Mesh*	GetRenderMesh(TimeValue	t,	INode	*inode,	View&
view,	BOOL&	needDelete);

Remarks:
Implemented	by	the	Plug-In.
This	method	should	be	implemented	by	all	renderable	GeomObjects.	It
provides	a	mesh	representation	of	the	object	for	use	by	the	renderer.	Primitives
that	already	have	a	mesh	cached	can	just	return	a	pointer	to	it	(and	set
needDelete	to	FALSE).
In	release	3.0	and	later,	any	implementations	of	this	method	which	take	a	long
time	should	periodically	call	View::CheckForRenderAbort()	to	see	if	the
user	has	canceled	the	render.	If	canceled,	the	function	can	either	return	NULL,
or	return	a	non	null	pointer	with	the	appropriate	value	for	needDelete.	(If
needDelete	is	TRUE	a	non-null	mesh	will	be	deleted.)

Parameters:

TimeValue	t
The	time	to	get	the	mesh.
INode	*inode
The	node	in	the	scene.
View&	view
If	the	renderer	calls	this	method	it	will	pass	the	view	information	here.	See
Class	View.
BOOL&	needDelete
Set	to	TRUE	if	the	renderer	should	delete	the	mesh,	FALSE	otherwise.

Return	Value:
A	pointer	to	the	mesh	object.

Prototype:
virtual	PatchMesh*	GetRenderPatchMesh(TimeValue,	INode
*inode,	View&	view,	BOOL&	needDelete);

Remarks:
Implemented	by	the	Plug-In.
This	method	provides	a	patch	mesh	representation	of	the	object	for	use	by	the
renderer.	If	this	method	returns	NULL,	then	GetRenderMesh()	will	be
called.

Parameters:
TimeValue	t
The	time	to	get	the	patch	mesh.
INode	*inode
The	node	in	the	scene.
View&	view
If	the	renderer	calls	this	method	it	will	pass	the	view	information	here.	See
Class	View.
BOOL&	needDelete
Set	to	TRUE	if	the	renderer	should	delete	the	patch	mesh,	FALSE	otherwise.

Return	Value:
A	pointer	to	the	patch	mesh.	See	Class	PatchMesh.

Prototype:
virtual	int	NumberOfRenderMeshes();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	Plug-In.
Objects	may	supply	multiple	render	meshes	(e.g.	particle	systems).	If	this
method	returns	a	positive	number,	then	GetMultipleRenderMesh	and
GetMultipleRenderMeshTM	will	be	called	for	each	mesh,	instead	of
calling	GetRenderMesh.

Return	Value:
The	number	of	render	meshes,	or	0	to	indicate	that	multiple	meshes	aren’t
supported.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	Mesh*	GetMultipleRenderMesh(TimeValue	t,	INode
*inode,	View&	view,	BOOL&	needDelete,	int	meshNumber);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	Plug-In.
For	multiple	render	meshes,	this	method	must	be	implemented.	set
needDelete	to	TRUE	if	the	render	should	delete	the	mesh,	FALSE	otherwise.

Parameters:
TimeValue	t
The	time	at	which	to	obtain	the	mesh.
INode	*inode
The	pointer	to	the	node.
View&	view
A	reference	to	the	view.
BOOL&	needDelete
TRUE	if	the	mesh	needs	to	be	deleted,	otherwise	FALSE.

int	meshNumber
Specifies	which	of	the	multiplie	meshes	is	being	asked	for.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	void	GetMultipleRenderMeshTM(TimeValue	t,	INode
*inode,	View&	view,	int	meshNumber,	Matrix3&	meshTM,
Interval&	meshTMValid);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	Plug-In.
For	multiple	render	meshes,	this	method	must	be	implemented.

Parameters:
TimeValue	t
The	time	at	which	to	obtain	the	mesh.
INode	*inode
The	pointer	to	the	node.
View&	view
A	reference	to	the	view.
int	meshNumber
Specifies	which	of	the	multiplie	meshes	is	being	asked	for.
Matrix3&	meshTM
Should	be	returned	with	the	transform	defining	the	offset	of	the	particular
mesh	in	object	space.
Interval&	meshTMValid
Should	contain	the	validity	interval	of	meshTM.

Default	Implementation:
{	return;	}

Prototype:
virtual	BOOL	CanDoDisplacementMapping();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	this	object	can	do	displacement	mapping;	otherwise	FALSE.

Default	Implementation:
{	return	0;	}

Class	SimpleObject
See	Also:	Class	GeomObject,	Class	IParamBlock,	Class	Mesh.
class	SimpleObject	:	public	GeomObject

Description:
This	is	a	base	class	for	creating	procedural	objects.	This	class	implements	many
of	the	methods	required	to	create	a	procedural	object.	The	only	limitation	for	a
procedural	object	using	SimpleObject	as	a	base	class	is	that	it	must	represent
itself	with	a	mesh.

Data	Members:
Note:	Methods	of	the	base	class	refer	to	these	data	members.	For	example	the
base	class	implementations	of	the	bounding	box	methods	use	the	mesh	data
member.	Therefore	the	plug-in	derived	from	SimpleObject	must	use	these	same
data	members.
public:
IParamBlock	*pblock;
The	parameter	block	for	managing	the	object's	parameters.
Mesh	mesh;
The	mesh	object	that	is	built	by	BuildMesh().
Interval	ivalid;
The	validity	interval	for	the	mesh.	This	interval	is	used	to	determine	how
BuildMesh()	is	called.	If	this	interval	is	not	set	BuildMesh()	will	be	called
over	and	over	as	the	system	won't	know	when	the	mesh	is	valid	or	not.	Make
sure	you	set	this	interval	to	accurately	reflect	the	validity	interval	for	the	mesh.
BOOL	suspendSnap;
If	TRUE,	this	causes	no	snapping	to	occur.	This	is	commonly	used	to	prevent
an	object	from	snapping	to	itself	when	it	is	creating.	For	example,	in	the
mouse	proc	used	to	create	an	object,	the	following	code	is	often	used	when
snapping	mouse	points:
ob->suspendSnap	=	TRUE;
p0	=	vpt->SnapPoint(m,m,NULL,SNAP_IN_PLANE);

This	disables	snapping	temporarily	to	keep	the	object	from	snapping	to	itself.
Procedural	Object	plug-ins	which	subclass	off	SimpleObject	must	implement

these	methods.	The	default	implementations	are	noted.

Methods:

Prototype:
virtual	void	BuildMesh(TimeValue	t)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	build	the	mesh	representation	of	the	object	using	its
parameter	settings	at	the	time	passed.	The	plug-in	should	use	the	data	member
mesh	to	store	the	built	mesh.

Parameters:
TimeValue	t
The	time	at	which	to	build	the	mesh.

Prototype:
virtual	ParamDimension	*GetParameterDim(int	pbIndex)

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	parameter	dimension	of	the	parameter	whose	index	is
passed.

Parameters:
int	pbIndex
The	index	of	the	parameter	to	return	the	dimension	of.

Return	Value:
Pointer	to	a	ParamDimension.

Example:
return	stdNormalizedDim;

Default	Implementation:
The	default	implementation	returns	defaultDim.

See	Also:	ParamDimension

Prototype:
virtual	TSTR	GetParameterName(int	pbIndex)

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	name	of	the	parameter	whose	index	is	passed.

Parameters:
int	pbIndex
The	index	of	the	parameter	to	return	the	name	of.

Return	Value:
The	name	of	the	parameter.

Default	Implementation:
The	default	implementation	returns	TSTR(_T("Parameter"))

Prototype:
virtual	void	InvalidateUI()

Remarks:
Implemented	by	the	Plug-In.
This	is	called	if	the	user	interface	parameters	needs	to	be	updated	because	the
user	moved	to	a	new	time.	The	UI	controls	must	display	values	for	the	current
time.

Example:
If	the	plug-in	uses	a	parameter	map	for	handling	its	UI,	it	may	call	a	method	of
the	parameter	map	to	handle	this:	pmapParam->Invalidate();
If	the	plug-in	does	not	use	parameter	maps,	it	should	call	the	SetValue()
method	on	each	of	its	controls	that	display	a	value,	for	example	the	spinner
controls.	This	will	cause	to	the	control	to	update	the	value	displayed.	The	code
below	shows	how	this	may	be	done	for	a	spinner	control.	Note	that	ip	and	pblock
are	assumed	to	be	initialized	interface	and	parameter	block	pointers
(IObjParam	*ip,	IParamBlock	*pblock).
	float	newval;
	Interval	valid=FOREVER;
	TimeValue	t=ip->GetTime();

	//	Get	the	value	from	the	parameter	block	at	the	current	time.
	pblock->GetValue(PB_ANGLE,	t,	newval,	valid);
	//	Set	the	value.	Note	that	the	notify	argument	is	passed	as
FALSE.
	//	This	ensures	no	messages	are	sent	when	the	value	changes.
	angleSpin->SetValue(newval,	FALSE);

Prototype:
virtual	BOOL	OKtoDisplay(TimeValue	t)

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	a	BOOL	to	indicate	if	it	is	okay	to	draw	the	object	at	the
time	passed.	Normally	it	is	always	OK	to	draw	the	object,	so	the	default
implementation	returns	TRUE.	However	for	certain	objects	it	might	be	a
degenerate	case	to	draw	the	object	at	a	certain	time	(perhaps	the	size	went	to
zero	for	example),	so	these	objects	could	return	FALSE.

Parameters:
TimeValue	t
The	time	at	which	the	object	would	be	displayed.

Default	Implementation:
{	return	TRUE;	}

Return	Value:
TRUE	if	the	object	may	be	displayed;	otherwise	FALSE.

Class	ParticleObject
See	Also:	Class	GeomObject,	Class	ForceField,	Class	CollisionObject,	Class
ShadeContext.
class	ParticleObject	:	public	GeomObject

Description:
This	is	the	base	class	for	creating	particle	system	plug-ins.
Many	particle	systems	may	be	derived	from	class	SimpleParticle	instead	of
this	class.	See	Class	SimpleParticle	for	more	details.
Note:	This	class	is	derived	from	GeomObject	and	still	has
GEOMOBJECT_CLASS_ID	as	its	super	class.	To	determine	if	an	object	is
a	ParticleObject,	call:
Animatable::GetInterface()	with	the	ID	I_PARTICLEOBJ	or	use	the
macro:
GetParticleInterface(anim)	where	anim	is	the	object	in	question.	This	will
return	a	ParticleObject*	or	NULL.	See	Class	Animatable	.
Note:	See	the	method	Animatable::GetProperty()	for	details	on	choosing
the	method	used	to	evaluate	the	particle	system	during	motion	blur	rendering.
See	Class	Animatable	.

Methods:

Prototype:
virtual	void	ApplyForceField(ForceField	*ff)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	add	the	force	field	object	passed	to	the	list	of	force
field	objects	operating	on	this	particle	system.

Parameters:
ForceField	*ff
Points	to	an	instance	of	a	ForceField	object.

Sample	Code:
void	SimpleParticle::ApplyForceField(ForceField	*ff)	{
fields.Append(1,&ff);

}

Prototype:
virtual	BOOL	ApplyCollisionObject(CollisionObject	*co)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	add	the	collision	object	passed	to	the	list	of	collision
objects	operating	on	this	particle	system.

Parameters:
CollisionObject	*co
Points	to	an	instance	of	a	collision	object.

Return	Value:
If	a	particle	does	not	support	this	method	it	should	return	FALSE;	otherwise
return	TRUE.

Sample	Code:
BOOL	SimpleParticle::ApplyCollisionObject(CollisionObject	*co)
{
cobjs.Append(1,&co);
return	TRUE;
}

Prototype:
int	IsDeformable();

Remarks:
Implemented	by	the	System.
This	method	returns	TRUE	to	indicate	it	is	deformable.	A	particle	object	is
deformable,	but	does	not	let	itself	be	deformed	using	the	usual	GetPoint()	/
SetPoint()	methods.	Instead	a	space	warp	must	apply	a	force	field	to	deform
the	particle	system.

Prototype:
BOOL	CanCacheObject();

Remarks:
Implemented	by	the	System.
This	method	returns	FALSE	to	indicate	the	object	cannot	be	cached.	Particle
objects	don't	perform	a	shallow	copy	and	therefore	cannot	be	cached.

Prototype:
virtual	BOOL	NormalAlignVector(TimeValue	t,Point3	&pt,	Point3
&norm);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.
This	method	is	inherited	from	Class	Object.	This	is	a	default	implementation
provided	for	particle	systems.

Parameters:
TimeValue	t
The	time	to	compute	the	normal	align	vector.
Point3	&pt
The	point	of	intersection.
Point3	&norm
The	normal	at	the	point	of	intersection.

Return	Value:
TRUE	if	this	method	is	implemented	to	return	the	normal	align	vector;
otherwise	FALSE.

Default	Implementation:
{pt=Point3(0,0,0);norm=Point3(0,0,-1);return	TRUE;}

Prototype:
virtual	Point3	ParticlePosition(TimeValue	t,int	i);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	position	of	the	specified	particle	in	world	space	at	the	time	passed.

The	Particle	Age	texture	map	and	the	Particle	Motion	Blur	texture	map	use
this	method.

Parameters:
TimeValue	t
The	time	to	return	the	particle	position.
int	i
The	index	of	the	particle.
Note:	When	a	texture	map	calls	these	methods,	the	particle	index	i	is	passed	to
the	texmap	in	the	data	member	ShadeContext::mtlNum.	The	particle
systems	encode	the	index	of	the	particle	associated	with	the	face	of	the	particle
mesh	being	shaded	into	the	mtlNum.	For	instance,	once	the	particle	system
generates	a	mesh	to	be	rendered,	every	face	of	the	mesh	corresponds	to	a
particle.	This	isn't	a	one-to-one	correspondance	because	there	are	more	faces
than	particles	(if	the	particles	are	represented	as	tetrahedrons	there	are	four
faces	per	particle).	When	a	texture	map	or	material	that	is	shading	a	mesh
generated	by	a	particle	system	wants	to	know	which	particle	the	face	is
associated	with	it	gets	this	info	out	of	the	ShadeContext::mtlNum.
For	example,	here	is	a	fragment	of	the	code	from	the	Particle	Age	texture	map
where	it	evaluates	the	color	of	the	point	being	shaded:
AColor	PartAgeTex::EvalColor(ShadeContext&	sc)
	{
	...
	//	Evaluate...
	Object	*ob	=	sc.GetEvalObject();
	if	(ob	&&	ob->IsParticleSystem())	{
		ParticleObject	*obj	=	(ParticleObject*)ob;
		TimeValue	t	=	sc.CurTime();
		TimeValue	age	=	obj->ParticleAge(t,sc.mtlNum);
		TimeValue	life	=	obj->ParticleLife(t,sc.mtlNum);
		...etc.

	
Default	Implementation:
{return	Point3(0,0,0);}

Prototype:
virtual	Point3	ParticleVelocity(TimeValue	t,int	i);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
Returns	the	velocity	of	the	specified	particle	at	the	time	passed	(in	3ds	max
units	per	tick).	This	is	specified	as	a	vector.	The	Particle	Age	texture	map	and
the	Particle	Motion	Blur	texture	map	use	this	method.

Parameters:
TimeValue	t
The	time	to	return	the	particle	velocity.
int	i
The	index	of	the	particle.

Default	Implementation:
{return	Point3(0,0,0);};

Prototype:
virtual	float	ParticleSize(TimeValue	t,int	i);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
Returns	the	world	space	size	of	the	specified	particle	in	at	the	time	passed.
The	Particle	Age	texture	map	and	the	Particle	Motion	Blur	texture	map	use
this	method.

Parameters:
TimeValue	t
The	time	to	return	the	particle	size.
int	i
The	index	of	the	particle.

Default	Implementation:
{return	0.0f;};

Prototype:
virtual	int	ParticleCenter(TimeValue	t,int	i);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
Returns	a	value	indicating	where	the	particle	geometry	(mesh)	lies	in	relation
to	the	particle	position.
This	is	used	by	Particle	Motion	Blur	for	example.	It	gets	the	point	in	world
space	of	the	point	it	is	shading,	the	size	of	the	particle	from	ParticleSize(),
and	the	position	of	the	mesh	from	ParticleCenter().	Given	this	information,
it	can	know	where	the	point	is,	and	it	makes	the	head	and	the	tail	more
transparent.

Parameters:
TimeValue	t
The	time	to	return	the	particle	center.
int	i
The	index	of	the	particle.

Return	Value:
One	of	the	following:
PARTCENTER_HEAD
The	particle	geometry	lies	behind	the	particle	position.
PARTCENTER_CENTER
The	particle	geometry	is	centered	around	particle	position.
PARTCENTER_TAIL
The	particle	geometry	lies	in	front	of	the	particle	position.

Default	Implementation:
{return	PARTCENTER_CENTER;}

Prototype:
virtual	TimeValue	ParticleAge(TimeValue	t,	int	i);

Remarks:
Implemented	by	the	Plug-In.

This	method	is	available	in	release	2.0	and	later	only.
Returns	the	age	of	the	specified	particle	--	the	length	of	time	it	has	been	'alive'.
The	Particle	Age	texture	map	and	the	Particle	Motion	Blur	texture	map	use
this	method.

Parameters:
TimeValue	t
Specifies	the	time	to	compute	the	particle	age.
int	i
The	index	of	the	particle.

Default	Implementation:
{return	-1;}

Prototype:
virtual	TimeValue	ParticleLife(TimeValue	t,	int	i);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
Returns	the	life	of	the	particle	--	the	length	of	time	the	particle	will	be	'alive'.
The	Particle	Age	texture	map	and	the	Particle	Motion	Blur	texture	map	use
this	method.

Parameters:
TimeValue	t
Specifies	the	time	to	compute	the	particle	life	span.
int	i
The	index	of	the	particle.

Default	Implementation:
{return	-1;}

Prototype:
virtual	BOOL	HasConstantTopology();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

Implemented	by	the	Plug-In.
If	a	particle	system	has	a	fixed	number	of	particles	of	fixed	topology,	then	it
can	return	TRUE	for	this	method,	and	the	renderer	will	then	compute	the
image	motion	blur	velocities	based	on	the	vertex	motions,	giving	motion	blur
for	rotating	particles	etc.	If	the	particle	system	is	topology-varying	it	should
return	FALSE.

Default	Implementation:
{return	FALSE;}

Class	SimpleParticle
See	Also:	Class	ParticleObject,	Marker	Types,	Class	Mesh,	Class	ParticleSys,
Class	Interval,	Template	Class	Tab,	Class	ParamDimension,.
class	SimpleParticle	:	public	ParticleObject

Description:
This	class	provides	a	base	class	from	which	you	may	derive	Particle	System
plug-ins.	This	class	may	be	used	by	particle	systems	that	fit	within	its	form.	The
form	is	primarily	dictated	by	the	data	members	maintain	by	the	class.	The	class
maintains	an	instance	of	class	ParticleSys	that	describes	the	particles.	It	also	has
a	table	of	force	fields	and	collision	objects.	The	emitter	for	the	particles	is
represented	by	a	mesh.	There	is	also	a	parameter	block	pointer	available.
Particle	system	plug-ins	that	don't	fit	this	form	may	derive	from	a	base	class
without	any	constraints.	See	Class	ParticleObject	for	more	details.

Data	Members:
public:
IParamBlock	*pblock;
The	parameter	block	pointer.
ParticleSys	parts;
This	is	a	description	of	the	particles	themselves	(their	count,	position,
velocities,	...).
TimeValue	tvalid;
A	particle	system	derived	from	SimpleParticle	is	valid	at	a	particular	time	only
(it	does	not	have	a	validity	interval).	It	is	assumed	to	be	always	changing.	This
data	member	holds	the	time	at	which	it	is	valid	(when	valid	is	TRUE).
BOOL	valid;
This	flag	indicates	if	the	particle	system	is	valid.	If	TRUE,	tvalid	should
contain	the	time	it	is	valid	for.
Tab<ForceField*>	fields;
The	table	of	force	fields	affecting	the	particles.
Tab<CollisionObject*>	cobjs;
The	table	of	collision	objects	affecting	the	particles.
Mesh	mesh;

The	mesh	object	that	represents	the	emitter.
Interval	mvalid;
The	validity	interval	for	the	emitter	mesh.	If	the	mesh	is	invalid
BuildEmitter()	will	be	called.
static	SimpleParticle	*editOb;
The	SimpleParticle	object	that	is	being	edited	between	BeginEditParams()
and	EndEditParams().
static	IObjParam	*ip;
Storage	for	the	interface	pointer	passed	into	BeginEditParams().	This
pointer	is	only	valid	between	BeginEditParams()	and	EndEditParams().

Methods:

Prototype:
SimpleParticle();

Remarks:
Constructor.	The	pblock	is	initialized	to	NULL,	the	mvalid	interval	is	set	to
empty,	and	valid	is	set	to	FALSE.

Prototype:
virtual	void	UpdateParticles(TimeValue	t,	INode	*node)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	so	the	particle	system	can	update	its	state	to	reflect	the
current	time	passed.	This	may	involve	generating	new	particle	that	are	born,
eliminating	old	particles	that	have	expired,	computing	the	impact	of	collisions
or	force	field	effects,	and	modify	the	positions	and	velocities	of	the	particles.

Parameters:
TimeValue	t
The	particles	should	be	updated	to	reflect	this	time.
INode	*node
This	is	the	emitter	node.	Particles	system	are	world	space	objects	so	they	are
not	instanced.	This	means	that	the	particle	system	can	depend	on	the	node's
world	space	position.

Sample	Code:
For	example	code	see	\MAXSDK\SAMPLES\OBJECTS\RAIN.CPP.

Prototype:
void	SetParticlePosition(TimeValue	t,	int	i,	Point3	pos);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	position	of	the	specified	particle	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	particle	position.
int	i
The	zero	based	index	of	the	particle	to	set.
Point3	pos
The	position	to	set.

Prototype:
void	SetParticleVelocity(TimeValue	t,	int	i,	Point3	vel);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	velocity	of	the	specified	particle	at	the	specified	time	(in	3ds	max
units	per	tick).

Parameters:
TimeValue	t
The	time	at	which	to	set	the	particle	velocity.
int	i
The	zero	based	index	of	the	particle	to	set.
Point3	vel
The	velocity	to	set.

Prototype:
void	SetParticleAge(TimeValue	t,	int	i,	TimeValue	age);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	age	of	the	specified	particle	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	particle	age.
int	i
The	zero	based	index	of	the	particle	to	set.
TimeValue	age
The	age	to	set.

Prototype:
virtual	void	BuildEmitter(TimeValue	t,	Mesh&	amesh)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	allow	the	plug-in	to	provide	a	representation	of	its
emitter	in	the	3D	viewports.

Parameters:
TimeValue	t
Specifies	the	time	to	build	the	emitter.
Mesh&	amesh
Store	the	built	mesh	representation	here.

Prototype:
virtual	Interval	GetValidity(TimeValue	t)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	retrieve	the	validity	time	of	the	particle	system
emitter.

Parameters:
TimeValue	t
The	time	to	compute	the	validity	interval.

Return	Value:
The	validity	interval	of	the	particle	system	emitter	at	the	specified	time.

Prototype:
virtual	MarkerType	GetMarkerType();

Remarks:
Implemented	by	the	Plug-In.
Returns	one	of	the	defined	marker	types	to	use	when	displaying	particles.

Return	Value:
One	of	the	following	values:
See	Marker	Types.

Default	Implementation:
{return	POINT_MRKR;}

Prototype:
virtual	BOOL	OKtoDisplay(TimeValue	t);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	determine	if	the	particle	emitter	is	okay	to	display	at
the	specified	time.	If	at	certain	times	it	is	not	okay	to	display	this	method
should	return	FALSE.	This	might	occur	if	a	size	goes	to	0.	Normally	however
it	is	always	okay	to	display	so	the	default	implementation	returns	TRUE.

Parameters:
TimeValue	t
The	time	to	display	the	emitter.

Return	Value:
TRUE	if	it	is	okay	to	display,	FALSE	otherwise.

Default	Implementation:
{return	TRUE;}

Prototype:
virtual	BOOL	EmitterVisible();

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	determine	if	the	particle	emitter	is	visible	in	the
viewports.	If	the	plug-in	provides	a	UI	control	to	toggle	the	emitter	on	and	off,
this	method	should	return	the	state	of	this	control.

Return	Value:
TRUE	if	the	emitter	is	visible;	otherwise	FALSE.

Default	Implementation:
{return	TRUE;}

Prototype:
virtual	void	InvalidateUI();

Remarks:
Implemented	by	the	Plug-In.
It	is	important	the	user	interface	controls	display	values	that	reflect	the	current
time.	This	method	is	called	if	the	user	interface	parameters	needs	to	be
updated	because	the	user	moved	to	a	new	time.

Example:
If	the	plug-in	uses	a	parameter	map	for	handling	its	UI,	it	may	call	a	method	of
the	parameter	map	to	handle	this:	pmapParam->Invalidate();
If	the	plug-in	does	not	use	parameter	maps,	it	should	call	the	SetValue()
method	on	each	of	its	controls	that	display	a	value,	for	example	the	spinner
controls.	This	will	cause	to	the	control	to	update	the	value	displayed.	The	code
below	shows	how	this	may	be	done	for	a	spinner	control.	Note	that	ip	and
pblock	are	assumed	to	be	initialized	interface	and	parameter	block	pointers
(IObjParam	*ip,	IParamBlock	*pblock).
float	newval;
Interval	valid=FOREVER;
TimeValue	t=ip->GetTime();
//	Get	the	value	from	the	parameter	block	at	the	current	time.
pblock->GetValue(PB_ANGLE,	t,	newval,	valid);
//	Set	the	value.	Note	that	the	notify	argument	is	passed	as
FALSE.

//	This	ensures	no	messages	are	sent	when	the	value	changes.
angleSpin->SetValue(newval,	FALSE);

Prototype:
virtual	ParamDimension	*GetParameterDim(int	pbIndex);

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	parameter	dimension	of	the	parameter	whose	index	is
passed.

Parameters:
int	pbIndex
The	index	of	the	parameter	to	return	the	dimension	of.

Return	Value:
Pointer	to	a	ParamDimension.

Example:
return	stdNormalizedDim;

Default	Implementation:
The	default	implementation	returns	defaultDim.

See	Also:	ParamDimension

Prototype:
virtual	TSTR	GetParameterName(int	pbIndex);

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	name	of	the	parameter	whose	index	is	passed.

Parameters:
int	pbIndex
The	index	of	the	parameter	to	return	the	name	of.

Return	Value:
The	name	of	the	parameter.

Default	Implementation:

The	default	implementation	returns	TSTR(_T("Parameter"))

Class	PatchObject
See	Also:	Class	GeomObject,	Class	IPatchOps,	Class	IPatchSelect,	Class
IPatchSelectData,	Class	ISubMtlAPI,	Class	AttachMatDlgUser,	Class
PatchMesh,	Class	Patch,	Class	Mesh,	Class	TessApprox,	Working	with	Patches.
class	PatchObject	:	public	GeomObject,	IPatchOps,	IPatchSelect,
IPatchSelectData,	ISubMtlAPI,	AttachMatDlgUser

Description:
This	class	is	the	base	class	for	the	creation	of	Patch	objects.	This	class	stores	an
instance	of	a	PatchMesh	that	holds	all	the	Patches	that	make	up	this	patch
object.	This	class	also	maintains	a	Mesh	cache.	All	methods	of	this	class	are
implemented	by	the	system.

Data	Members:
public:
PatchMesh	patch;
The	patch	mesh	for	this	patch	object.
Mesh	mesh;
The	Mesh	cache.
BOOL	meshValid;
Indicates	if	the	mesh	cache	is	valid.
BOOL	showMesh;
Indicates	if	the	mesh	is	shown	in	the	viewports
GenericNamedSelSetList	vselSet;
This	data	member	is	available	in	release	3.0	and	later	only.
Vertex	level	named	selection	sets.
GenericNamedSelSetList	eselSet;
This	data	member	is	available	in	release	3.0	and	later	only.
Edge	level	named	selection	sets.
GenericNamedSelSetList	pselSet;
This	data	member	is	available	in	release	3.0	and	later	only.
Patch	level	named	selection	sets.
int	patchSelSubType;
This	data	member	is	available	in	release	4.0	and	later	only.

The	sub-object	selection	level,	defined	by;
PO_PATCH
Patch	sub-object	level.	When	SetSubobjectLevel(PO_PATCH)	is	called,
both	the	PatchMesh	selection
level	and	patchSelSubType	are	set	to	PO_PATCH.
PO_ELEMENT
Element	sub-object	level.	When	SetSubobjectLevel(PO_ELEMENT)	is
called,	the	PatchMesh	selection	level	is	set	to	PO_PATCH	and
patchSelSubType	is	set	to	PO_ELEMENT.

Methods:

Prototype:
PatchObject();

Remarks:
Constructor.

Prototype:
~PatchObject();

Remarks:
Destructor.

Prototype:
void	UpdatePatchMesh(TimeValue	t);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	should	be	implemented	by	classes	derived	from	PatchObject	whose
patches	change	over	time.

Parameters:
TimeValue	t
The	time	to	update	the	patch	mesh.

Default	Implementation:
{}

Prototype:
void	PrepareMesh(TimeValue	t);

Remarks:
This	method	checks	to	see	if	the	mesh	cache	is	up	to	date,	and	if	not,	it
generates	it.

Parameters:
TimeValue	t
This	parameter	is	available	in	release	2.0	and	later	only.
The	mesh	cache	should	be	generated	to	reflect	this	time.

Prototype:
BOOL	ShowLattice();

Remarks:
Returns	TRUE	if	the	patch	lattice	is	displayed;	otherwise	FALSE.

Prototype:
BOOL	ShowVerts();

Remarks:
Returns	TRUE	if	the	patch	vertices	are	shown;	otherwise	FALSE.

Prototype:
void	SetShowLattice(BOOL	sw);

Remarks:
Sets	the	state	of	the	lattice	display	switch.

Parameters:
BOOL	sw
TRUE	to	turn	on	the	lattice	display;	FALSE	to	turn	it	off.

Prototype:
void	SetShowVerts(BOOL	sw);

Remarks:

Sets	the	state	of	the	vertex	display	switch
Parameters:
BOOL	sw
TRUE	to	turn	on	the	vertex	display;	FALSE	to	turn	it	off.

Prototype:
void	SetMeshSteps(int	steps);

Remarks:
Sets	the	number	of	mesh	steps	(viewport).

Parameters:
int	steps
The	number	of	steps	to	set.

Prototype:
int	GetMeshSteps();

Remarks:
Returns	the	number	of	mesh	steps	(viewport).

Prototype:
void	SetMeshStepsRender(int	steps);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	Surface	Render	Steps	setting.

Parameters:
int	steps
The	value	to	set.

Prototype:
int	GetMeshStepsRender();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Returns	the	Surface	Render	Steps	setting.

Prototype:
void	SetShowInterior(BOOL	si);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	'Show	Interior	Edges'	value.

Parameters:
BOOL	si
TRUE	for	on;	FALSE	for	off.

Prototype:
BOOL	GetShowInterior();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	'Show	Interior	Edge'	setting;	TRUE	if	on;	FALSE	if	off.

Prototype:
void	SetAdaptive(BOOL	sw);

Remarks:
Sets	the	state	of	the	adaptive	switch.

Parameters:
BOOL	sw
TRUE	to	turn	on;	FALSE	to	turn	off.

Prototype:
BOOL	GetAdaptive();

Remarks:
Returns	the	state	of	the	adaptive	switch.	TRUE	is	on;	FALSE	is	off.

Prototype:

void	SetViewTess(TessApprox	tess);
Remarks:
Sets	the	tesselation	approximation	object	used	for	viewport	rendering.

Parameters:
TessApprox	tess
The	tesselation	approximation	object	to	be	used	for	viewport	rendering.

Prototype:
TessApprox	GetViewTess();

Remarks:
Returns	the	tesselation	approximation	object	used	for	rendering	in	the
viewports.

Prototype:
void	SetProdTess(TessApprox	tess);

Remarks:
Sets	the	tesselation	approximation	object	used	for	production	rendering.

Parameters:
TessApprox	tess
The	tesselation	approximation	object	to	be	used	for	production	rendering.

Prototype:
TessApprox	GetProdTess();

Remarks:
Returns	the	tesselation	approximation	object	used	for	production	rendering.

Prototype:
void	SetDispTess(TessApprox	tess);

Remarks:
Sets	the	tesselation	approximation	object	used	for	display	in	the	viewports.

Parameters:

TessApprox	tess
The	tesselation	approximation	object	to	be	used	for	the	viewports.

Prototype:
TessApprox	GetDispTess();

Remarks:
Returns	the	tesselation	approximation	object	used	for	display	in	the	viewports.

Prototype:
BOOL	GetViewTessNormals();

Remarks:
Returns	TRUE	if	normals	are	used	from	the	viewport	tesselator;	otherwise
FALSE.

Prototype:
void	SetViewTessNormals(BOOL	use);

Remarks:
Sets	if	normals	are	used	from	the	viewport	tesselator.

Parameters:
BOOL	use
TRUE	to	use	normals;	FALSE	to	not	use	them.

Prototype:
BOOL	GetProdTessNormals();

Remarks:
Returns	TRUE	if	normals	are	used	from	the	production	renderer	tesselator;
otherwise	FALSE.

Prototype:
void	SetProdTessNormals(BOOL	use);

Remarks:
Sets	if	normals	are	used	from	the	production	renderer	tesselator.

Parameters:
BOOL	use
TRUE	to	use	normals;	FALSE	to	not	use	them.

Prototype:
BOOL	GetViewTessWeld();

Remarks:
Returns	TRUE	if	the	viewport	mesh	is	welded	after	tesselation;	otherwise
FALSE.

Prototype:
void	SetViewTessWeld(BOOL	weld);

Remarks:
Sets	if	the	viewport	mesh	is	welded	after	tesselation;	otherwise	FALSE.

Parameters:
BOOL	weld
TRUE	to	weld;	FALSE	to	not	weld.

Prototype:
BOOL	GetProdTessWeld();

Remarks:
Returns	TRUE	if	the	production	renderer	mesh	is	welded	after	tesselation;
otherwise	FALSE.

Prototype:
void	SetProdTessWeld(BOOL	weld);

Remarks:
Sets	if	the	production	renderer	mesh	is	welded	after	tesselation;	otherwise
FALSE.

Parameters:
BOOL	weld
TRUE	to	weld;	FALSE	to	not	weld.

Prototype:
void	InvalidateMesh();

Remarks:
Invalidates	the	mesh	cache.

Prototype:
void	SetFlag(DWORD	fl,	BOOL	val=TRUE);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	sets	or	clears	the	status	of	the	Show	End	Result	flag.

Parameters:
DWORD	fl
The	flag	you	wish	to	set	or	clear.	Currently	the	only	flag	defined	is	the	Show
End	Result	flag	EP_DISP_RESULT.
BOOL	val
Specifies	if	the	given	flag	should	be	set	or	cleared.

Prototype:
void	ClearFlag	(DWORD	fl);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	clears	the	status	of	the	Show	End	Result	flag.

Parameters:
DWORD	fl
The	flag	you	wish	to	set	or	clear.	Currently	the	only	flag	defined	is	the	Show
End	Result	flag	EP_DISP_RESULT.

Prototype:
bool	GetFlag(DWORD	fl);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

This	methods	allows	you	to	obtain	the	status	of	the	Show	End	Result	flag.
Parameters:
DWORD	fl
The	flag	you	wish	to	set	or	clear.	Currently	the	only	flag	defined	is	the	Show
End	Result	flag	EP_DISP_RESULT.

Prototype:
void	ShowEndResultChanged(BOOL	showEndResult);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	called	by	the	system	then	the	status	of	the	Show	End	Result
function	changes	(ie.	the	Show	End	Results	button	has	been	toggled	on	or	off).
Note	that	setting	the	state	of	the	Show	End	Result	is	done	through	the
Interface::SetShowEndResult()	method.

Parameters:
BOOL	showEndResult
This	flag	specifies	the	Show	End	Result	status,	which	is	TRUE	if	on;	FALSE
if	off.

Prototype:
int	Display(TimeValue	t,	INode*	inode,	ViewExp	*vpt,	int	flags,
ModContext	*mc);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	to	display	the	gizmo	version	of	the	patch	mesh.

Parameters:
TimeValue	t
The	time	to	display	the	object.
INode*	inode
The	node	to	display.
ViewExp*	vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the

viewports.
int	flags
The	display	flags.	See	the	List	of	Display	Flags	for	more	information.
ModContext*	mc
A	pointer	to	the	modifiers	ModContext.

Prototype:
void	GetWorldBoundBox	(TimeValue	t,	INode	*	inode,	ViewExp*
vp,	Box3&	box,	ModContext	*mc);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	world	space	bounding	box	for	the	gizmo	version	of
the	patch	mesh.

Parameters:
TimeValue	t
The	time	to	compute	the	bounding	box.
INode*	inode
The	node	to	calculate	the	bounding	box	for.
ViewExp*	vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.
Box3&	box
The	bounding	box	which	was	computed.
ModContext*	mc
A	pointer	to	the	modifiers	ModContext.

Prototype:
int	GetSubobjectType();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	goes	hand-in-hand	with	GetSubobjectLevel(),	except	that	this
method	returns	the	type	of	geometry	that	is	actually	being	acted	upon.

Return	Value:
The	sub-object	type,	either	PO_PATCH	or	PO_ELEMENT.

Prototype:
Color	GetVertColor(int	mp=0,	bool	*differs=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	common	color	for	all	selected	vertices.	If	no	vertices
are	selected	then	white	(1,1,1)	will	be	returned,	however,	if	multiple	vertices
with	different	colors	are	selected,	then	black	(0,0,0)	will	be	returned.

Parameters:
int	mp=0
The	map	channel.
bool	*differs=NULL
This	parameter	is	returned	to	indicate	if	there	were	any	differences.
	

Prototype:
void	SetVertColor(Color	clr,	int	mp=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	set	all	selected	vertices	to	the	specified	color.

Parameters:
Color	clr
The	color	you	wish	to	apply	to	all	the	selected	vertices.
int	mp=0
The	map	channel.

Prototype:
Color	GetPatchColor(int	mp=0,	bool	*differs=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

This	method	returns	the	common	color	for	all	selected	patches.	If	no	patches
are	selected	then	white	(1,1,1)	will	be	returned,	however,	if	different	vertex
colors	are	present	in	the	selected	patches,	then	black	(0,0,0)	will	be	returned.

Parameters:
int	mp=0
The	map	channel.
bool	*differs=NULL
This	parameter	is	returned	to	indicate	if	there	were	any	differences.
	

Prototype:
void	SetPatchColor(Color	clr,	int	mp=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	set	all	selected	patches	to	the	specified	color.

Parameters:
Color	clr
The	color	you	wish	to	apply	to	all	the	selected	patches.
int	mp=0
The	map	channel.

Prototype:
void	SelectVertByColor(VertColor	clr,	int	deltaR,	int	deltaG,	int
deltaB,	BOOL	add,	BOOL	sub,	int	mp=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	select	all	vertices	which	fall	into	a	specified	color	range.

Parameters:
VertColor	clr
The	starting	color	of	the	vertices	you	wish	to	select	by	color.
int	deltaR
The	difference	range	for	the	red	color	component.

int	deltaG
The	difference	range	for	the	green	color	component.
int	deltaB
The	difference	range	for	the	blue	color	component.
BOOL	add
This	flag	adds	vertices	to	the	selection	that	fall	into	the	color	range.
BOOL	sub
This	flag	subtracts	vertices	from	the	selection	that	fall	into	the	color	range.
int	mp=0
The	map	channel.

Prototype:
void	SelectOpenEdges();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	examines	the	patch	mesh	and	selects	any	edges	used	by	only	one
single	patch.

Prototype:
void	DoBevel(TimeValue	t);

Remarks:
When	called	with	the	Animate	state	active	and	on	a	nonzero	TimeValue,	this
method	will	prepare	the	controllers	for	the	geometry	that	is	being	created.	The
program	can	then	fill	in	the	animated	vertex	values	later.

Parameters:
TimeValue	t
This	parameter	is	available	in	release	4.0	and	later	only.
The	time	at	which	to	prepare	and	execute	the	bevel	operation.

Prototype:
void	DoExtrude(TimeValue	t);

Remarks:

When	called	with	the	Animate	state	active	and	on	a	nonzero	TimeValue,	this
method	will	prepare	the	controllers	for	the	geometry	that	is	being	created.	The
program	can	then	fill	in	the	animated	vertex	values	later.

Parameters:
TimeValue	t
This	parameter	is	available	in	release	4.0	and	later	only.
The	time	at	which	to	prepare	and	execute	the	extrude	operation.

Prototype:
void	DoCreateShape();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	create	a	bezier	spline	shape	from	the	selected	edges	of	the
patch	mesh.	Each	edge	will	become	a	separate	spline	in	the	output	shape.	The
user	will	be	prompted	to	enter	a	name	for	the	new	editable	spline	object	that
will	be	created.

Prototype:
void	DoEdgeWeld();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	perform	the	edge	weld	function	on	the	patch	object.	Note
that	this	does	not	take	into	account	any	threshold	but	welds	edges	only	if	they
use	the	same	two	vertices	as	endpoints.	When	two	or	more	edges	are	welded,
the	locations	of	the	edge	vectors	are	averaged	to	create	the	new	edge.

Prototype:
void	DoFlipNormals(int	patchIndex	=	-1);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	flips	the	normals	of	a	specified	patch	or	all	selected	patches.	This
method	will	save	undo	information	and	displays	a	prompt	if	patchIndex	<	0
while	there	are	no	patches	selected.

Parameters:
int	patchIndex
The	index	of	the	patch	for	which	to	flip	the	normal.	If	this	parameter	is	<	0,
the	normals	of	all	selected	patches	will	be	flipped	(if	there	are	any	selected).
Any	vertices	set	to	PVERT_COPLANAR	that	lie	on	the	boundary	between
flipped	and	unflipped	patches	will	have	their	type	set	to
PVERT_CORNER.	This	is	because	attempting	to	compute	normals	of
neighboring	patches	with	opposite	normals	in	order	to	get	a	proper	plane	often
results	in	invalid	normals	being	generated.	Making	the	vertex	a	corner	type
prevents	the	problem.	Any	vertices	not	on	the	boundary	between	flipped	and
unflipped	patches	are	left	as	is.

Prototype:
void	DoUnifyNormals();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	examines	the	selected	patch	set	and	attempts	to	make	them	all
face	the	same	direction.	Preferred	direction	is	arbitrary;	the	first	selected	patch
encountered	in	each	contiguous	group	determines	the	direction	all	patches	in
that	group	will	attain.
Any	vertices	set	to	PVERT_COPLANAR	that	lie	on	the	boundary	between
flipped	and	unflipped	patches	will	have	their	type	set	to
PVERT_CORNER.	This	is	because	attempting	to	compute	normals	of
neighboring	patches	with	opposite	normals	in	order	to	get	a	proper	plane	often
results	in	invalid	normals	being	generated.	Making	the	vertex	a	corner	type
prevents	the	problem.	Any	vertices	not	on	the	boundary	between	flipped	and
unflipped	patches	are	left	as	is.

Prototype:
void	DoBreak(BOOL	interactive	=	TRUE);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
In	vertex	mode,	this	method	examines	selected	vertices,	and	if	any	of	the
vertices	that	are	part	of	the	selection	set	are	used	by	more	than	one	patch,

those	vertices	(and	any	attached	vectors)	are	duplicated	into	separate	geometry
for	each	patch	using	it.
In	edge	mode,	this	method	examines	the	selected	edges	and	any	vectors	on	the
selected	edges	that	are	used	by	more	than	one	patch	are	duplicated	into
separate	geometry	for	each	patch	using	them.	Any	vertices	used	by	more	than
one	selected	edge	are	duplicated	as	well	for	patches	on	opposite	sides	of	the
edge.
Note:	If	the	vertices	and	vectors	involved	have	controllers	attached,	they	are
removed	by	this	operation.

Parameters:
BOOL	interactive
If	this	parameter	is	set	to	TRUE	it	will	cause	the	method	to	display	the
appropriate	prompts,	create	an	undo	object,	and	notifies	the	dependents.

Prototype:
void	DoDeleteSelected(BOOL	interactive	=	TRUE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	will	delete	the	selected	patches,	exactly	like	the	DeleteMesh
modifier	does.

Parameters:
BOOL	interactive
This	parameter	is	available	in	release	4.0	and	later	only.
If	this	parameter	is	set	to	TRUE	it	will	cause	the	method	to	display	the
appropriate	prompts,	create	an	undo	object,	and	notifies	the	dependents.

Prototype:
void	ChangeMappingTypeLinear(BOOL	linear);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	change	the	mapping	type	of	the	selected	patches	to	linear	or
curved.

Parameters:

BOOL	linear
If	TRUE	the	mapping	type	will	be	changed	to	linear.	FALSE	will	change	the
mapping	type	to	curved.

Prototype:
virtual	void	GetUIParam(patchUIParam	uiCode,	int	&ret);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	get	the	edit	patch	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
patchUIParam	uiCode
This	enum	is	currently	empty.
int	&ret
The	returned	value.

Default	Implementation:
{	}

Prototype:
virtual	void	SetUIParam(patchUIParam	uiCode,	int	val);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	edit	patch	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
patchUIParam	uiCode
This	enum	is	currently	empty.
int	val
The	value	to	set.

Default	Implementation:
{	}

Prototype:
virtual	void	GetUIParam(patchUIParam	uiCode,	float	&ret);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	get	the	edit	patch	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
patchUIParam	uiCode
This	enum	is	currently	empty.
float	&ret
The	returned	value.

Default	Implementation:
{	}

Prototype:
virtual	void	SetUIParam(patchUIParam	uiCode,	float	val);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	edit	patch	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
patchUIParam	uiCode
This	enum	is	currently	empty.
float	val
The	value	to	set.

Default	Implementation:
{	}

Prototype:
bool	Editing();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

This	method	will	return	TRUE	if	the	SplineShape	object	or	Edit	Spline
modifier	is	active	in	the	command	panel.

Default	Implementation:
{	return	(ip	&&	(editObj==this))	?	TRUE	:	FALSE;	}

Class	HelperObject:
See	Also:	Class	Object,	Class	Animatable.
class	HelperObject	:	public	Object

Description:
This	is	used	as	a	base	class	to	create	helper	object	plug-ins.	It	simply	provides
implementations	for	a	few	of	the	methods	of	Animatable	and	Object.

Methods:

Prototype:
SClass_ID	SuperClassID();

Remarks:
Implemented	by	the	System.
Returns	the	super	class	ID	of	this	plug-in	type:	HELPER_CLASS_ID

Prototype:
int	IsRenderable();

Remarks:
Implemented	by	the	System.
Returns	0	to	indicate	this	object	type	may	not	be	rendered.

Prototype:
virtual	void	InitNodeName(TSTR&	s);

Remarks:
Implemented	by	the	System.
Sets	the	default	node	name	to	"Helper".

Prototype:
virtual	int	UsesWireColor();

Remarks:
Implemented	by	the	System.
Returns	TRUE	to	indicate	the	object	color	is	used	for	display.

Class	ConstObject
See	Also:	Class	HelperObject,	Class	INode,	Class	Object,	Class	ViewExp,	Class
Matrix3.
class	ConstObject	:	public	HelperObject

Description:
This	is	a	base	class	used	to	create	construction	grid	objects.	It	implements	a	few
of	the	methods	of	Animatable	and	Object	and	provides	a	few	for	working	with
construction	grids.

Methods:

Prototype:
int	IsConstObject();

Remarks:
Implemented	by	the	System.
Returns	1	to	indicate	this	object	is	a	construction	grid	object.

Prototype:
virtual	void	GetConstructionTM(TimeValue	t,	INode*	inode,
ViewExp	*vpt,	Matrix3	&tm)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	construction	grid	transformation	matrix.	This	is	the
world	space	orientation	and	position	of	the	construction	plane.

Parameters:
TimeValue	t
The	time	to	retrieve	the	matrix.
INode*	inode
The	node	in	the	scene	corresponding	to	the	construction	grid	object.
ViewExp	*vpt
The	viewport	the	TM	is	being	returned	for.	Certain	construction	grid	objects
might	have	a	different	plane	for	different	viewports.
Matrix3	&tm

The	transform	matrix	for	this	view	is	returned	here.

Prototype:
virtual	Point3	GetSnaps(TimeValue	t)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	specific	to	construction	grids.	The	system	calls	this	method	to
retrieve	the	snap	dimension	of	the	grid.	In	the	3ds	max	user	interface	for	the
construction	grid	helper	object	there	is	a	spinner	for	'Spacing'.	This	is	the
spacing	for	the	grid.	When	GetSnaps()	is	called	the	Point3	returned	will
have	this	value	in	all	three	axes.	This	value	is	used,	for	example,	when	you
create	a	box	or	other	primitive	and	are	setting	the	height	dimension.
Note:	In	release	3.0	and	later	this	method	was	changed	to	return	a	Point3	(not
a	Point3&).

Parameters:
TimeValue	t
The	time	to	retrieve	the	snap	values.

Class	SimpleSpline
See	Also:	Class	ShapeObject.
class	SimpleSpline	:	public	ShapeObject

Description:
Defines	a	simple	spline	object	class	to	make	spline	primitives	easier	to	create.
This	class	provides	default	implementations	for	most	of	the	ShapeObject
methods.	The	plug-in	derived	from	SimpleSpline	must	only	implement	a
handful	of	methods	to	create	a	shape	plug-in.
SimpleSpline	plug-ins	use	a	Super	Class	ID	of	SHAPE_CLASS_ID.

Data	Members:
public:
IParamBlock	*ipblock;
Interpolation	parameter	block	(handled	by	SimpleSpline).
IParamBlock	*pblock;
User's	parameter	block.	See	Class	IParamBlock.
static	IParamMap	*ipmapParam;
The	parameter	map.	See	Class	IParamMap.
static	int	dlgSteps;
The	dialog	steps	settings.
static	BOOL	dlgOptimize;
The	dialog	Optimize	toggle.
static	BOOL	dlgAdaptive;
The	dialog	Adaptive	toggle.
BezierShape	shape;
The	Spline	cache.
Interval	ivalid;
The	validity	interval	for	the	spline.	See	Class	Interval.
BOOL	suspendSnap;
Flag	to	suspend	snapping	used	during	creation.
static	SimpleSpline	*editOb;
This	is	the	spline	being	edited	in	the	command	panel.

Methods:

Prototype:
SimpleSpline();

Remarks:
Constructor.	The	validity	interval	is	set	to	empty,	and	the	pblocks	are	set	to
NULL.

Prototype:
~SimpleSpline();

Remarks:
Destructor.
Clients	of	SimpleSpline	need	to	implement	these	methods:

Prototype:
virtual	TCHAR	*GetObjectName()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	name	that	will	appear	in	the	history	browser.

Prototype:
virtual	void	InitNodeName(TSTR&	s)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	retrieves	the	default	name	of	the	node	when	it	is	created.

Parameters:
TSTR&	s
The	name	is	stored	here.

Prototype:
virtual	Class_ID	ClassID()	=	0;

Remarks:

Implemented	by	the	Plug-In.
Returns	the	unique	Class_ID	of	the	plug-in.	See	Class	Class_ID	for	more
details.

Prototype:
virtual	void	GetClassName(TSTR&	s)	=	0;

Remarks:
Implemented	by	the	Plug-In.
Retrieves	the	name	of	the	plug-in	class.	This	is	used	internally	for	debugging
purposes.

Parameters:
TSTR&	s
The	name	is	stored	here.

Prototype:
virtual	void	BuildShape(TimeValue	t,BezierShape&	ashape)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	build	the	shape	at	the	specified	time	and	store	the
results	in	ashape.

Parameters:
TimeValue	t
The	time	to	build	the	shape.
BezierShape&	ashape
The	created	shape	is	store	here.

Prototype:
virtual	RefTargetHandle	Clone(RemapDir&	remap	=	NoRemap())
=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	have	the	plug-in	clone	itself.	The	plug-in	should	clone

all	its	references	as	well.
Parameters:
RemapDir	&remap	=	NoRemap()
This	class	is	used	for	remapping	references	during	a	Clone.	See	Class
RemapDir.

Return	Value:
A	pointer	to	the	cloned	item.

Prototype:
virtual	void	EndEditParams(IObjParam	*ip,	ULONG	flags,
Animatable	*next)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	user	is	finished	editing	object’s	parameters.
The	system	passes	a	flag	into	the	EndEditParams()	method	to	indicate	if
the	rollup	page	should	be	removed.	If	this	flag	is	TRUE,	the	plug-in	must	un-
register	the	rollup	page,	and	delete	it	from	the	panel.

Parameters:
IObjParam	*ip
This	is	an	interface	pointer	passed	in.	The	developer	may	use	the	interface
pointer	to	call	methods	such	as	DeleteRollupPage().
ULONG	flags
The	following	flag	may	be	set:
END_EDIT_REMOVEUI
If	TRUE,	the	item's	user	interface	should	be	removed.

Animatable	*next
This	parameter	may	be	used	in	the	motion	and	hierarchy	branches	of	the
command	panel.	This	pointer	allows	a	plug-in	to	look	at	the	ClassID	of	the
next	item	that	was	being	edited,	and	if	it	is	the	same	as	this	item,	to	not	replace
the	entire	UI	in	the	command	panel.	Note	that	for	items	that	are	edited	in	the
modifier	branch	this	field	can	be	ignored.

Prototype:

virtual	CreateMouseCallBack*	GetCreateMouseCallBack()	=	0;
Remarks:
Implemented	by	the	Plug-In.
This	method	allows	the	system	to	retrieve	a	callback	object	used	in	creating
the	shape	in	the	3D	viewports.	This	method	returns	a	pointer	to	an	instance	of
a	class	derived	from	CreateMouseCallBack.	This	class	has	a	method
proc()	which	is	where	the	developer	defines	the	user/mouse	interaction	used
during	the	shape	creation	phase.

Return	Value:
A	pointer	to	an	instance	of	a	class	derived	from	CreateMouseCallBack.

Prototype:
virtual	BOOL	ValidForDisplay(TimeValue	t)	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	it	is	okay	to	display	the	shape	at	the	time	passed;	otherwise
FALSE.	Certain	shapes	may	not	want	to	be	displayed	at	a	certain	time,	for
example	if	their	size	goes	to	zero	at	some	point.

Parameters:
TimeValue	t
The	time	to	check.

Prototype:
virtual	void	InvalidateUI();

Remarks:
Implemented	by	the	Plug-In.
This	is	called	if	the	user	interface	parameters	needs	to	be	updated	because	the
user	moved	to	a	new	time.	The	UI	controls	must	display	values	for	the	current
time.
If	the	plug-in	uses	a	parameter	map	for	handling	its	UI,	it	may	call	a	method	of
the	parameter	map	to	handle	this:	ipmapParam->Invalidate();
If	the	plug-in	does	not	use	parameter	maps,	it	should	call	the	SetValue()
method	on	each	of	its	controls	that	display	a	value,	for	example	the	spinner

controls.	This	will	cause	to	the	control	to	update	the	value	displayed.	The	code
below	shows	how	this	may	be	done	for	a	spinner	control.	Note	that	ip	and
pblock	are	assumed	to	be	initialized	interface	and	parameter	block	pointers
(IObjParam	*ip,	IParamBlock	*pblock).
float	newval;
Interval	valid=FOREVER;
TimeValue	t=ip->GetTime();
//	Get	the	value	from	the	parameter	block	at	the	current	time.
pblock->GetValue(PB_ANGLE,	t,	newval,	valid);
//	Set	the	value.	Note	that	the	notify	argument	is	passed	as
FALSE.
//	This	ensures	no	messages	are	sent	when	the	value	changes.
angleSpin->SetValue(newval,	FALSE);

Prototype:
virtual	ParamDimension	*GetParameterDim(int	pbIndex)

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	parameter	dimension	of	the	parameter	whose	index	is
passed.

Parameters:
int	pbIndex
The	index	of	the	parameter	to	return	the	dimension	of.

Return	Value:
Pointer	to	a	ParamDimension.	See	Class	ParamDimension.

Default	Implementation:
{return	defaultDim;}

Prototype:
virtual	TSTR	GetParameterName(int	pbIndex)

Remarks:
Implemented	by	the	Plug-In.

Returns	the	name	of	the	parameter	whose	index	is	passed.
Parameters:
int	pbIndex
The	index	into	the	parameter	block	of	the	parameter	to	return	the	name	of.

Default	Implementation:
{return	TSTR(_T("Parameter"));}

Prototype:
virtual	BOOL	DisplayVertTicksDuringCreation();

Remarks:
Returns	TRUE	if	the	Simple	Spline	should	display	vertex	ticks	during	its
creation;	otherwise	FALSE.

Default	Implementation:
{	return	TRUE;	}

Class	SimpleShape
See	Also:	Class	ShapeObject,	Class	IParamBlock,	Class	PolyShape,	Class
Interval,	Working	with	Shapes	and	Splines.
class	SimpleShape	:	public	ShapeObject

Description:
This	class	defines	a	simple	shape	object	to	make	procedural	shape	primitives
easier	to	create.	For	example,	the	3ds	max	Helix	plug-in	is	derived	from	this
class.	There	are	a	set	of	mandatory	and	optional	methods	to	implement.
Revised	for	3ds	max	2.0	SimpleShape-based	objects	have	a	new	'General'	rollup,
which	contains	renderable	shape	options:	Renderable	checkbox,	Thickness
spinner,	and	a	Mapping	coords	checkbox.	These	are	supported	automatically.	To
support	the	new	features	of	the	renderable	splines,	the	derived	class	of
SimpleShape	needs	to	work	with	a	few	new	methods	--	see
SimpleShapeClone()	and	ReadyGeneralParameters()	below	for	details.

Data	Members:
public:
IParamBlock	*pblock;
The	parameter	block	for	managing	the	shape's	parameters.
static	IObjParam	*ip;
This	data	member	is	available	in	release	2.0	and	later	only.
This	is	the	interface	pointer	stored	by	the	class.
static	HWND	hGenParams;
This	data	member	is	available	in	release	2.0	and	later	only.
The	window	handle	to	the	'General'	rollup.
static	BOOL	dlgRenderable;
This	data	member	is	available	in	release	2.0	and	later	only.
The	'Renderable'	flag	in	the	'General'	rollup.
static	float	dlgThickness;
This	data	member	is	available	in	release	2.0	and	later	only.
The	'Thickness'	setting	in	the	'General'	rollup.
static	BOOL	dlgGenUVs;

This	data	member	is	available	in	release	2.0	and	later	only.
The	'Generate	Mapping	Coords'	flag	in	the	'General'	rollup.
PolyShape	shape;
The	shape	cache.
Interval	ivalid;
The	validity	interval	for	the	shape	cache.
BOOL	suspendSnap;
A	flag	to	suspend	snapping	used	during	the	creation	process.
static	SimpleShape	*editOb;
The	shape	that	is	currently	being	edited	in	the	command	panel.
static	ISpinnerControl	*thickSpin;
Points	to	the	spinner	control	used	for	the	thickness	parameter.

Methods:

Prototype:
SimpleShape();

Remarks:
Constructor.

Prototype:
~SimpleShape();

Remarks:
Destructor.
Clients	of	SimpleShape	need	to	implement	these	methods:

Prototype:
virtual	void	BuildShape(TimeValue	t,	PolyShape&	ashape)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	build	the	shape	at	the	specified	time	and	store	the
result	into	the	PolyShape	passed.

Parameters:

TimeValue	t
The	time	to	build	the	shape.
PolyShape&	ashape
The	built	shape	is	stored	here.

Prototype:
virtual	BOOL	ValidForDisplay(TimeValue	t)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	indicates	if	the	shape	may	be	displayed	at	the	time	passed.	At
certain	times,	for	certain	shapes,	the	shape	may	not	be	in	a	displayable	form.
For	example,	the	size	of	the	shape	may	go	to	zero	at	a	certain	point	and	would
be	inappropriate	to	display.

Parameters:
TimeValue	t
The	time	to	check.

Return	Value:
TRUE	if	the	shape	may	be	displayed	at	the	specified	time;	otherwise	FALSE.

Prototype:
virtual	void	InvalidateUI()

Remarks:
Implemented	by	the	Plug-In.
This	is	called	if	the	user	interface	parameters	needs	to	be	updated	because	the
user	moved	to	a	new	time.	The	UI	controls	must	display	values	for	the	current
time.
If	the	plug-in	uses	a	parameter	map	for	handling	its	UI,	it	may	call	a	method	of
the	parameter	map	to	handle	this:	ipmapParam->Invalidate();
If	the	plug-in	does	not	use	parameter	maps,	it	should	call	the	SetValue()
method	on	each	of	its	controls	that	display	a	value,	for	example	the	spinner
controls.	This	will	cause	to	the	control	to	update	the	value	displayed.	The	code
below	shows	how	this	may	be	done	for	a	spinner	control.	Note	that	ip	and
pblock	are	assumed	to	be	initialized	interface	and	parameter	block	pointers

(IObjParam	*ip,	IParamBlock	*pblock).
float	newval;
Interval	valid=FOREVER;
TimeValue	t=ip->GetTime();
//	Get	the	value	from	the	parameter	block	at	the	current	time.
pblock->GetValue(PB_ANGLE,	t,	newval,	valid);
//	Set	the	value.	Note	that	the	notify	argument	is	passed	as
FALSE.
//	This	ensures	no	messages	are	sent	when	the	value	changes.
angleSpin->SetValue(newval,	FALSE);

Default	Implementation:
{}

Prototype:
virtual	ParamDimension	*GetParameterDim(int	pbIndex)

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	parameter	dimension	of	the	parameter	whose	index	is
passed.

Parameters:
int	pbIndex
The	index	of	the	parameter	to	return	the	dimension	of.

Return	Value:
Pointer	to	a	ParamDimension.	See	Class	ParamDimension.

Default	Implementation:
{return	defaultDim;}

Prototype:
virtual	TSTR	GetParameterName(int	pbIndex)

Remarks:
Implemented	by	the	Plug-In.
Returns	the	name	of	the	parameter	whose	index	is	passed.

Parameters:
int	pbIndex
The	index	into	the	parameter	block	of	the	parameter	to	return	the	name	of.

Default	Implementation:
{return	TSTR(_T("Parameter"));}

For	procedural	shapes	the	following	methods	must	be
implemented:

Prototype:
virtual	Point3	InterpCurve3D(TimeValue	t,	int	curve,	float	param,
int	ptype	=	PARAM_SIMPLE)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	a	point	interpolated	on	the	entire	curve.

Parameters:
TimeValue	t
The	time	to	evaluate.
int	curve
The	index	of	the	curve	to	evaluate.
float	param
The	'distance'	along	the	curve	where	0	is	the	start	and	1	is	the	end.
int	ptype=PARAM_SIMPLE
The	parameter	type	for	spline	interpolation.	See	List	of	Parameter	Types	for
Shape	Interpolation.

Return	Value:
The	interpolated	point	on	the	curve.

Prototype:
virtual	Point3	TangentCurve3D(TimeValue	t,	int	curve,	float
param,	int	ptype	=	PARAM_SIMPLE)	=	0;

Remarks:

Implemented	by	the	Plug-In.
This	method	returns	a	tangent	vector	interpolated	on	the	entire	curve.

Parameters:
TimeValue	t
The	time	at	which	to	evaluate	the	curve.
int	curve
The	index	of	the	curve	to	evaluate.
float	param
The	'distance'	along	the	curve	where	0.0	is	the	start	and	1.0	is	the	end.
int	ptype=PARAM_SIMPLE
The	parameter	type	for	spline	interpolation.	See	List	of	Parameter	Types	for
Shape	Interpolation.

Return	Value:
The	tangent	vector.

Prototype:
virtual	float	LengthOfCurve(TimeValue	t,	int	curve)	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	length	of	the	specified	curve.

Parameters:
TimeValue	t
The	time	at	which	to	compute	the	length.
int	curve
The	index	of	the	curve.

The	following	methods	are	optional.

You	should	strongly	consider	implementing	these,	because	the	default
implementations	just	do	the	bare-minimum	job.	It	is	often	best	to	break	up	a
curve	into	several	smaller	pieces	than	to	have	one	single	long	curve.	For
example,	the	user	may	use	a	step	setting	of	10,	and	will	expect	to	see	a
reasonable	approximation	of	the	shape	using	such	a	step	setting.	A	curve	that	is

too	long	will	not	be	accurately	represented	by	such	a	steps	setting	as	it	will	be
too	course.	Chopping	your	curve	up	into	manageable	pieces	will	make	things
look	better.

Prototype:
virtual	int	NumberOfPieces(TimeValue	t,	int	curve)

Remarks:
Implemented	by	the	Plug-In.
Returns	the	number	of	sub-curves	in	a	curve.

Parameters:
TimeValue	t
The	time	at	which	to	check.
int	curve
The	index	of	the	curve.

Default	Implementation:
{	return	1;	}

Prototype:
virtual	Point3	InterpPiece3D(TimeValue	t,	int	curve,	int	piece,
float	param,	int	ptype=PARAM_SIMPLE)

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	interpolated	point	along	the	specified	sub-curve.

Parameters:
TimeValue	t
The	time	to	evaluate	the	sub-curve.
int	curve
The	curve	to	evaluate.
int	piece
The	sub-curve	(segment)	to	evaluate.
float	param
The	position	along	the	sub-curve	to	return	where	0.0	is	the	start	and	1.0	is	the
end.

int	ptype=PARAM_SIMPLE
The	parameter	type	for	spline	interpolation.	See	List	of	Parameter	Types	for
Shape	Interpolation.

Return	Value:
The	point	in	world	space.

Default	Implementation:
{	return	InterpCurve3D(t,	curve,	param);	}

Prototype:
virtual	Point3	TangentPiece3D(TimeValue	t,	int	curve,
int	piece,	float	param,	int	ptype=PARAM_SIMPLE)

Remarks:
Implemented	by	the	Plug-In.
Returns	the	tangent	vector	on	a	sub-curve	at	the	specified	'distance'	along	the
curve.

Parameters:
TimeValue	t
The	time	to	evaluate	the	sub-curve.
int	curve
The	curve	to	evaluate.
int	piece
The	sub-curve	(segment)	to	evaluate.
float	param
The	position	along	the	sub-curve	to	return	where	0.0	is	the	start	and	1.0	is	the
end.
int	ptype=PARAM_SIMPLE
The	parameter	type	for	spline	interpolation.	See	List	of	Parameter	Types	for
Shape	Interpolation.

Return	Value:
The	tangent	vector.

Default	Implementation:
{	return	TangentCurve3D(t,	curve,	param,	ptype);	}

Prototype:
void	ReadyGeneralParameters();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
To	support	the	new	features	of	the	renderable	splines,	in	the	derived	class's
constructor,	call	ReadyGeneralParameters().	This	will	set	up	the	general
parameters	in	the	base	class	to	the	proper	defaults.	Failure	to	make	this	call
will	cause	SimpleShape-based	objects	to	be	created	with	default	general
parameters	rather	than	those	of	the	previously-created	object.

Prototype:
void	SimpleShapeClone(SimpleShape	*sshpSource);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
To	support	the	new	features	of	the	renderable	splines,	the	derived	class	of
SimpleShape	needs	to,	in	the	Clone	method,	call	this	method.	This	will	insure
that	the	base	class	parameters	are	copied	to	the	cloned	object.	Failure	to	make
this	call	will	cause	cloned	SimpleShape-based	objects	to	revert	to	the	default
rendering	parameters.

Parameters:
SimpleShape	*sshpSource
The	source	shape	for	the	clone.

Prototype:
virtual	MtlID	GetMatID(TimeValue	t,	int	curve,	int	piece);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	material	ID	of	the	specified	segment	of	the	specified	curve	or	the
shape.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	material	ID
int	curve

The	zero	based	index	of	the	curve.
int	piece
The	zero	based	index	of	the	segment	of	the	curve.

Class	LightObject
See	Also:	Class	Object,	Class	ObjLightDesc,	Class	Interval,	Class	Texmap.
class	LightObject	:	public	Object

Description:
This	is	the	base	class	from	which	plug-in	lights	may	be	derived.

Methods:

Prototype:
virtual	RefResult	EvalLightState(TimeValue	time,	Interval&
valid,	LightState	*ls)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	update	the	passed	LightState	and	validity	interval	of
the	light.

Parameters:
TimeValue	time
The	time	to	evaluate	the	light	state.
Interval&	valid
The	validity	interval	of	the	light	about	the	specified	time.	This	interval	should
be	updated	to	reflect	the	validity	interval	of	the	light.
LightState	*ls
A	pointer	to	the	LightState	structure	which	describes	the	properties	of	the
light.	This	function	updates	the	data	in	the	structure	to	reflect	the	properties	of
the	light	at	the	specified	time.	See	Structure	LightState.

Return	Value:
REF_SUCCEED	if	the	LightState	was	updated;	otherwise	REF_FAIL.

Prototype:
virtual	ObjLightDesc	*CreateLightDesc(INode	*n,	BOOL
forceShadowBuffer
)

Remarks:
Implemented	by	the	Plug-In.
When	the	renderer	goes	to	render	the	scene	it	asks	all	of	the	lights	to	create	an
ObjectLighDesc	object.	This	is	the	method	that	is	called	to	return	this
object.

Parameters:
INode	*n
The	node	pointer	of	the	light.
BOOL	forceShadowBuffer
Forces	the	creation	of	a	shadow	buffer.
	

Return	Value:
An	instance	of	ObjectLightDesc.	See	Class	ObjectLightDesc.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	void	SetUseLight(int	onOff)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	if	the	light	is	on	or	off.

Parameters:
int	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetUseLight()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	light	is	on;	otherwise	FALSE.

Prototype:

virtual	void	SetHotspot(TimeValue	time,	float	f)=0;
Remarks:
Implemented	by	the	Plug-In.
Sets	the	hotspot	to	the	specified	angle	at	the	specified	time.

Parameters:
TimeValue	time
The	time	to	set	the	hotspot	angle.
float	f
The	angle	to	set	in	degrees.

Prototype:
virtual	float	GetHotspot(TimeValue	t,	Interval&	valid	=
Interval(0,0))=0;

Remarks:
Implemented	by	the	Plug-In.
Retrieves	the	hotspot	angle.

Parameters:
TimeValue	t
The	time	to	retrieve	the	angle.
Interval&	valid	=	Interval(0,0)
The	validity	interval	that	this	method	will	update	to	reflect	the	hotspot	setting.

Return	Value:
The	hotspot	angle	(in	degrees).

Prototype:
virtual	void	SetFallsize(TimeValue	time,	float	f)=0;

Remarks:
Implemented	by	the	Plug-In.
Sets	the	falloff	setting	of	the	light.

Parameters:
TimeValue	time
The	time	to	set	the	falloff.

float	f
The	falloff	angle	in	degrees.

Prototype:
virtual	float	GetFallsize(TimeValue	t,	Interval&	valid	=
Interval(0,0))=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	falloff	angle	of	the	light	in	radians.

Parameters:
TimeValue	t
The	time	to	retrieve	the	falloff	angle.
Interval&	valid	=	Interval(0,0)
The	validity	interval	that	this	method	will	update	to	reflect	the	falloff	setting.

Return	Value:
The	falloff	angle	of	the	light	in	degrees.

Prototype:
virtual	void	SetAtten(TimeValue	time,	int	which,	float	f)=0;

Remarks:
Implemented	by	the	Plug-In.
Sets	the	specified	attenuation	range	distance	at	the	time	passed.

Parameters:
TimeValue	time
The	time	to	set	the	attenuation	distance.
int	which
Indicates	which	distance	to	set.	One	of	the	following	values:
LIGHT_ATTEN_START	-	The	start	range	radius.
LIGHT_ATTEN_END	-	The	end	range	radius.

float	f
The	distance	to	set.

Prototype:
virtual	float	GetAtten(TimeValue	t,	int	which,	Interval&	valid	=
Interval(0,0))=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	specified	attenuation	range	distance	at	the	time	passed.

Parameters:
TimeValue	t
The	time	to	retrieve	the	attenuation	distance.
int	which
Indicates	which	distance	to	retrieve.	One	of	the	following	values:
LIGHT_ATTEN_START	-	The	start	range	radius.
LIGHT_ATTEN_END	-	The	end	range	radius.

Interval&	valid	=	Interval(0,0)
The	validity	interval	that	this	method	will	update	to	reflect	the	attenuation
setting.

Return	Value:
The	specified	attenuation	range	distance.

Prototype:
virtual	void	SetTDist(TimeValue	time,	float	f)=0;

Remarks:
Implemented	by	the	Plug-In.
Sets	the	light's	target	distance.

Parameters:
TimeValue	time
The	time	to	set	the	distance.
float	f
The	distance	to	set.

Prototype:
virtual	float	GetTDist(TimeValue	t,	Interval&	valid	=

Interval(0,0))=0;
Remarks:
Implemented	by	the	Plug-In.
Retrieves	the	light's	target	distance.

Parameters:
TimeValue	t
The	time	to	retrieve	the	distance.
Interval&	valid	=	Interval(0,0)
The	validity	interval	that	this	method	will	update	to	reflect	the	target	distance
setting.

Return	Value:
The	light's	target	distance.

Prototype:
virtual	void	SetConeDisplay(int	s,	int	notify=TRUE)=0;

Remarks:
Implemented	by	the	Plug-In.
Sets	the	light's	cone	display	flag.	This	controls	if	the	cone	is	depicted
graphically	in	the	viewports.

Parameters:
int	s
Indicates	if	the	cone	display	should	be	on	or	off.	If	nonzero,	the	cone	should
be	displayed;	otherwise	it	should	be	turned	off.
int	notify=TRUE
If	notify	is	TRUE	the	plug-in	should	call	NotifyDependents()	to	notify	its
dependents.

Prototype:
virtual	BOOL	GetConeDisplay()=0;

Remarks:
Implemented	by	the	Plug-In.
Retrieves	the	light's	cone	display	setting.	This	indicates	if	the	cone	is	depicted

graphically	in	the	viewports.
Return	Value:
TRUE	to	indicate	the	cone	is	displayed;	FALSE	to	indicate	it	is	turned	off.

Prototype:
virtual	int	GetShadowMethod();

Remarks:
Implemented	by	the	Plug-In.
Returns	the	type	of	shadows	used	by	the	light.

Return	Value:
One	of	the	following	values:
LIGHTSHADOW_NONE
LIGHTSHADOW_MAPPED
LIGHTSHADOW_RAYTRACED

Default	Implementation:
{return	LIGHTSHADOW_NONE;}

Prototype:
virtual	void	SetRGBColor(TimeValue	t,	Point3&	rgb);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	color	of	the	light	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	set	the	color.
Point3&	rgb
The	color	to	set.

Prototype:
virtual	Point3	GetRGBColor(TimeValue	t,	Interval	&valid	=
Interval(0,0));

Remarks:
Implemented	by	the	Plug-In.
Returns	the	color	of	the	light	at	the	specified	time	and	updates	the	validity
interval	to	reflect	this	parameters	validity	interval.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.
Interval	&valid	=	Interval(0,0)
The	validity	interval	to	intersect	with	this	parameters	interval.

Return	Value:
The	color	of	the	light	at	the	specified	time.

Default	Implementation:
{return	Point3(0,0,0);}

Prototype:
virtual	void	SetIntensity(TimeValue	time,	float	f);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	intensity	of	the	light	to	the	value	passed.

Parameters:
TimeValue	time
The	time	to	set	the	value.
float	f
The	value	to	set.

Prototype:
virtual	float	GetIntensity(TimeValue	t,	Interval&	valid	=
Interval(0,0));

Remarks:
Implemented	by	the	Plug-In.
Retrieves	the	intensity	of	the	light	at	the	specified	time	and	updates	the
validity	interval	passed	to	reflect	the	validity	interval	of	this	parameter.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.
Interval	&valid	=	Interval(0,0)
The	validity	interval	to	intersect	with	this	parameters	interval.

Return	Value:
The	intensity	of	the	light	at	the	specified	time

Default	Implementation:
{return	0.0f;}

Prototype:
virtual	void	SetAspect(TimeValue	t,	float	f);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	aspect	ratio	of	the	light	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	set	the	value.
float	f
The	value	to	set.

Prototype:
virtual	float	GetAspect(TimeValue	t,	Interval&	valid	=
Interval(0,0));

Remarks:
Implemented	by	the	Plug-In.
Retrieves	the	aspect	ratio	of	the	light	at	the	specified	time	and	updates	the
validity	interval	passed	to	reflect	the	validity	interval	of	this	parameter.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.
Interval	&valid	=	Interval(0,0)

The	validity	interval	to	intersect	with	this	parameters	interval.
Return	Value:
The	aspect	ratio	of	the	light	at	the	specified	time

Default	Implementation:
{return	0.0f;}

Prototype:
virtual	void	SetUseAtten(int	s);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	flag	to	indicate	if	the	light	is	attenuated.

Parameters:
int	s
Nonzero	to	indicate	the	light	is	attenuated;	otherwise	0.

Prototype:
virtual	BOOL	GetUseAtten();

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	to	indicate	the	light	is	attenuated;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	void	SetAttenDisplay(int	s);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	flag	to	indicate	if	the	light	attenuation	ranges	are	displayed.

Parameters:
int	s
Nonzero	to	indicate	the	light	attenuation	ranges	are	displayed;	otherwise	0.

Prototype:
virtual	BOOL	GetAttenDisplay();

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	the	light	attenuation	ranges	are	displayed;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	void	Enable(int	enab);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	light	to	enabled	or	disables	(on	or	off).

Parameters:
int	enab
Nonzero	to	set	the	light	to	on;	zero	to	turn	the	light	off.

Prototype:
virtual	void	SetMapBias(TimeValue	t,	float	f);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	map	bias	setting	at	the	time	passed.

Parameters:
TimeValue	t
The	time	to	set	the	value.
float	f
The	map	bias	value	to	set.	The	3ds	max	lights	use	a	range	of	0.0	to	100.0.

Prototype:
virtual	float	GetMapBias(TimeValue	t,	Interval&	valid	=
Interval(0,0));

Remarks:
Implemented	by	the	Plug-In.
Returns	the	map	bias	setting	at	the	time	passed	and	updates	the	validity
interval	to	reflect	the	validity	interval	of	this	parameter.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.
Interval&	valid	=	Interval(0,0)
The	validity	interval	to	update	to	reflect	this	parameters	validity	interval.

Return	Value:
The	map	bias	setting	at	the	time	passed.

Default	Implementation:
{return	0.0f;}

Prototype:
virtual	void	SetMapRange(TimeValue	t,	float	f);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	map	sample	range	setting	to	the	value	passed	at	the	time	passed.

Parameters:
TimeValue	t
The	time	to	set	the	value.
float	f
The	value	to	set.	The	3ds	max	lights	use	a	range	of	0.0	to	20.0.

Prototype:
virtual	float	GetMapRange(TimeValue	t,	Interval&	valid	=
Interval(0,0));

Remarks:
Implemented	by	the	Plug-In.
Retrieves	the	lights	map	sample	range	setting	at	the	specified	time	and	updates
the	validity	interval	to	reflect	the	validity	interval	of	this	parameter.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.
Interval&	valid	=	Interval(0,0)
The	validity	interval	to	update	to	reflect	this	parameters	validity	interval.

Return	Value:
The	lights	map	sample	range	setting.

Default	Implementation:
{return	0.0f;}

Prototype:
virtual	void	SetMapSize(TimeValue	t,	int	f);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	lights	map	size	parameter	to	the	value	passed	at	the	time	passed.

Parameters:
TimeValue	t
The	time	to	set	the	value.
int	f
The	value	to	set.

Prototype:
virtual	int	GetMapSize(TimeValue	t,	Interval&	valid	=
Interval(0,0))

Remarks:
Implemented	by	the	Plug-In.
Returns	the	lights	map	size	parameter	at	the	specified	time	and	updates	the
validity	interval	passed	to	reflect	the	validity	interval	of	this	parameter.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.
Interval&	valid	=	Interval(0,0)

The	validity	interval	to	update	to	reflect	this	parameters	validity	interval.
Return	Value:
The	lights	map	size	parameter.

Default	Implementation:
{return	0;}

Prototype:
virtual	void	SetRayBias(TimeValue	t,	float	f);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	raytrace	bias	setting	to	the	value	passed	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	set	the	value.
float	f
The	value	to	set.

Prototype:
virtual	float	GetRayBias(TimeValue	t,	Interval&	valid	=
Interval(0,0));

Remarks:
Implemented	by	the	Plug-In.
Returns	the	lights	raytrace	bias	setting	at	the	specified	time	and	updates	the
validity	interval	passed	to	reflect	the	validity	interval	of	this	parameter.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.
Interval&	valid	=	Interval(0,0)
The	validity	interval	to	update	to	reflect	this	parameters	validity	interval.

Return	Value:
The	lights	raytrace	bias	setting	at	the	specified	time.

Default	Implementation:

{return	0.0f;}

Prototype:
virtual	int	GetUseGlobal()

Remarks:
Implemented	by	the	Plug-In.
Returns	the	Use	Global	Settings	flag	setting.

Default	Implementation:
{return	0;}

Prototype:
virtual	void	SetUseGlobal(int	a);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	lights	Use	Global	Settings	flag.

Parameters:
int	a
Nonzero	indicates	the	light	uses	the	global	settings;	zero	indicates	the	light
uses	its	own	settings.

Prototype:
virtual	int	GetShadow()

Remarks:
Implemented	by	the	Plug-In.
Returns	the	lights	Cast	Shadows	flag.

Return	Value:
Nonzero	indicates	the	light	casts	shadows;	otherwise	0.

Default	Implementation:
{return	0;}

Prototype:

virtual	void	SetShadow(int	a);
Remarks:
Implemented	by	the	Plug-In.
Sets	the	lights	Cast	Shadows	flag.

Parameters:
int	a
Nonzero	indicates	the	light	casts	shadows;	zero	indicates	the	light	does	not
cast	shadows.

Prototype:
virtual	int	GetShadowType()

Remarks:
Implemented	by	the	Plug-In.
Retrieves	the	type	of	shadows	used	by	the	light	-	mapped	or	raytraced.

Return	Value:
One	of	the	following	values:
-1:	if	the	Shadow	Generator	is	NULL.	(R3	only).
0:	if	the	light	uses	Shadow	Maps.
1:	if	the	light	uses	Raytraced	Shadows.
0xffff:	for	any	other	Shadow	Generators.	(R3	only).

Default	Implementation:
{return	0;}

Prototype:
virtual	void	SetShadowType(int	a);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	type	of	shadows	used	by	the	light	-	mapped	or	raytraced.

Parameters:
int	a
One	of	the	following	values:

0:	This	value	plugs	in	a	Shadow	Map	Generator
1:	This	value	plugs	in	a	Raytraced	Shadow	Generator.
Any	other	value	is	a	NOOP.

Prototype:
virtual	void	SetShadowGenerator(ShadowType	*s);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	shadow	generator	used	by	the	light.

Parameters:
ShadowType	*s
The	shadow	plug-in	to	use.	See	Class	ShadowType.

Default	Implementation:
{}

Prototype:
virtual	ShadowType	*GetShadowGenerator();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	shadow	generator	plug-in	in	use	by	the	light.	See
Class	ShadowType.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	int	GetAbsMapBias()

Remarks:
Implemented	by	the	Plug-In.
Returns	the	lights	Absolute	Map	Bias	setting.

Return	Value:
Nonzero	indicates	Absolute	Map	Bias	is	on;	zero	indicates	it	is	off.

Default	Implementation:
{return	0;}

Prototype:
virtual	void	SetAbsMapBias(int	a);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	lights	Absolute	Map	Bias	setting.

Parameters:
int	a
Nonzero	indicates	Absolute	Map	Bias	is	on;	zero	indicates	it	is	off.

Prototype:
void	SetAtmosShadows(TimeValue	t,	int	onOff);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	state	of	the	atmospheric	shadowing	shadows	on	/	off	toggle	for	the
light.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	state.
int	onOff
Nonzero	for	on;	zero	for	off.

Prototype:
int	GetAtmosShadows(TimeValue	t);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	state	of	the	atmospheric	shadowing	shadows	on	/	off	toggle	for	the
light.

Parameters:
TimeValue	t

The	time	at	which	to	retrieve	the	state.

Prototype:
void	SetAtmosOpacity(TimeValue	t,	float	f);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	atmospheric	shadowing	opacity	for	the	light	to	the	specified	value	at
the	time	specified.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	value.
float	f
The	value	to	set.

Prototype:
float	GetAtmosOpacity(TimeValue	t,	Interval&
valid=FOREVER);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	atmospheric	shadowing	opacity	for	the	light	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	retrieve	the	value.
Interval&	valid=FOREVER
The	validity	interval	which	is	updated	to	reflect	the	validity	of	the	opacity
setting.

Prototype:
void	SetAtmosColAmt(TimeValue	t,	float	f);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	atmospheric	shadowing	color	amount	to	the	specified	value	at	the

time	passed.
Parameters:
TimeValue	t
The	time	at	which	to	set	the	value.
float	f
The	value	to	set.

Prototype:
float	GetAtmosColAmt(TimeValue	t,	Interval&
valid=FOREVER);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	atmospheric	shadowing	color	amount	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	retrieve	the	value.
Interval&	valid=FOREVER
The	validity	interval	which	is	updated	to	reflect	the	validity	of	the	color
amount	setting.

Prototype:
virtual	int	GetOvershoot()

Remarks:
Implemented	by	the	Plug-In.
Returns	the	lights	Overshoot	on	/	off	setting.	Nonzero	indicates	overshoot	is
on;	otherwise	0.

Default	Implementation:
{return	0;}

Prototype:
virtual	void	SetOvershoot(int	a);

Remarks:

Implemented	by	the	Plug-In.
Sets	the	lights	Overshoot	on	/	off	setting.

Parameters:
int	a
Nonzero	indicates	overshoot	is	on;	otherwise	0.

Prototype:
virtual	int	GetProjector()

Remarks:
Implemented	by	the	Plug-In.
Returns	the	lights	Projector	on	/	off	setting.	Nonzero	indicates	this	light
projects	an	image;	otherwise	0.

Default	Implementation:
{return	0;}

Prototype:
virtual	void	SetProjector(int	a);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	lights	projector	on	/	off	setting.

Parameters:
int	a
Nonzero	indicates	this	light	projects	an	image;	otherwise	0.

Prototype:
virtual	ExclList*	GetExclList();

Remarks:
Implemented	by	the	Plug-In.
Returns	the	list	of	names	of	items	included	or	excluded	by	this	light.	See	Class
NameTab.

Default	Implementation:

{return	NULL;}

Prototype:
virtual	BOOL	Include();

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	the	light's	name	list	is	of	items	to	be	included	by	the	light.
Returns	FALSE	if	the	list	is	of	items	to	exclude	from	the	light.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	Texmap*	GetProjMap()

Remarks:
Implemented	by	the	Plug-In.
Returns	the	map	used	by	a	projector	light.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	void	SetProjMap(Texmap*	pmap);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	image(s)	used	by	the	projector	light.

Parameters:
Texmap*	pmap
The	map	to	use.

Prototype:
virtual	void	UpdateTargDistance(TimeValue	t,	INode*	inode);

Remarks:

This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
Updates	the	display	of	the	light's	target	distance	in	the	light's	rollup	page.

Parameters:
TimeValue	t
The	time	to	retrieve	the	distance.
INode*	inode
The	light	node.

Default	Implementation:
{}

Class	GenLight
See	Also:	Class	LightObject,	Class	NameTab,	Class	Control,	Class	Interval,
Class	Point3,	Class	ObjLightDesc.
class	GenLight	:	public	LightObject

Description:
This	class	describes	a	generic	light	object.	It	is	used	as	a	base	class	for	creating
plug-in	lights.	Methods	of	this	class	are	used	to	get	and	set	properties	of	the
light.	All	methods	of	this	class	are	implemented	by	the	plug-in.

Methods:

Prototype:
virtual	GenLight	*NewLight(int	type)=0;

Remarks:
Creates	a	new	light	object	of	the	specified	type.

Parameters:
int	type
One	of	the	following	values:
OMNI_LIGHT	--	Omnidirectional	light.
TSPOT_LIGHT	--	Targeted	spot	light.
DIR_LIGHT	--	Directional	light.
FSPOT_LIGHT	--	Free	spot	light.
TDIR_LIGHT	--	Targeted	directional	light.

Return	Value:
A	pointer	to	a	new	instance	of	the	specified	light	type.

Prototype:
virtual	int	Type()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	type	of	light	this	is.

Return	Value:

One	of	the	following	values:
OMNI_LIGHT	--	Omnidirectional	light.
TSPOT_LIGHT	--	Targeted	spot	light.
DIR_LIGHT	--	Directional	light.
FSPOT_LIGHT	--	Free	spot	light.
TDIR_LIGHT	--	Targeted	directional	light.

Prototype:
virtual	BOOL	IsSpot()=0;

Remarks:
Returns	TRUE	if	the	light	is	a	spotlight;	otherwise	FALSE.

Prototype:
virtual	BOOL	IsDir()=0;

Remarks:
Returns	TRUE	if	the	light	is	directional;	otherwise	FALSE.

Prototype:
virtual	void	SetUseLight(int	onOff)=0;

Remarks:
Sets	the	light	on	or	off.

Parameters:
int	onOff
Nonzero	sets	the	light	on;	zero	sets	it	off.

Prototype:
virtual	BOOL	GetUseLight(void)=0;

Remarks:
Returns	TRUE	if	the	light	is	on;	otherwise	FALSE.

Prototype:
virtual	void	SetSpotShape(int	s)=0;

Remarks:
Sets	the	shape	used	for	a	spotlight,	either	rectangular	or	circular.

Parameters:
int	s
One	of	the	following	values:
RECT_LIGHT
CIRCLE_LIGHT

Prototype:
virtual	int	GetSpotShape(void)=0;

Remarks:
Retrieves	the	shape	used	for	a	spotlight.

Return	Value:
One	of	the	following	values:
RECT_LIGHT
CIRCLE_LIGHT
	

Prototype:
virtual	void	SetHotspot(TimeValue	time,	float	f)=0;

Remarks:
Sets	the	hotspot	to	the	specified	angle	at	the	specified	time.

Parameters:
TimeValue	time
The	time	to	set	the	value.
float	f
The	angle	in	degrees.

Prototype:
virtual	float	GetHotspot(TimeValue	t,	Interval&	valid	=
Interval(0,0))=0;

Remarks:

Returns	the	hotspot	angle	in	degrees	at	the	specified	time	and	updates	the
interval	to	reflect	the	validity	of	the	hotspot	controller.

Parameters:
TimeValue	t
The	time	to	get	the	angle.
Interval&	valid	=	Interval(0,0)
The	interval	which	is	updated.

Prototype:
virtual	void	SetFallsize(TimeValue	time,	float	f)=0;

Remarks:
Sets	the	falloff	angle	at	the	specified	time.

Parameters:
TimeValue	time
The	time	to	set	the	angle.
float	f
The	angle	to	set	in	degrees.

Prototype:
virtual	float	GetFallsize(TimeValue	t,	Interval&	valid	=
Interval(0,0))=0;

Remarks:
Returns	the	falloff	angle	in	degrees	at	the	specified	time	and	updates	the
interval	passed	to	reflect	the	validity	of	the	falloff	controller.

Parameters:
TimeValue	t
The	time	to	return	the	value.
Interval&	valid	=	Interval(0,0)
The	interval	which	is	updated.

Prototype:
virtual	void	SetAtten(TimeValue	time,	int	which,	float	f)=0;

Remarks:
Sets	the	specified	attenuation	range	distance	at	the	time	passed.

Parameters:
TimeValue	time
The	time	to	set	the	attenuation	distance.
int	which
Indicates	which	distance	to	set.	One	of	the	following	values:
ATTEN1_START
The	near	start	range.
ATTEN1_END
The	near	end	range.
ATTEN_START
The	far	start	range.
ATTEN_END
The	far	end	range.

float	f
The	distance	to	set.

Prototype:
virtual	float	GetAtten(TimeValue	t,	int	which,	Interval&	valid	=
Interval(0,0))=0;

Remarks:
Returns	the	specified	attenuation	distance	at	the	time	passed	and	updates	the
interval	to	reflect	the	validity	of	the	attenuation	controller.

Parameters:
TimeValue	t
The	time	to	get	the	attenuation	distance.
int	which
Indicates	which	distance	to	get.	One	of	the	following	values:
ATTEN1_START
The	near	start	range.
ATTEN1_END
The	near	end	range.

ATTEN_START
The	far	start	range.
ATTEN_END
The	far	end	range.

Interval&	valid	=	Interval(0,0)
The	interval	which	is	updated.

Prototype:
virtual	void	SetTDist(TimeValue	time,	float	f)=0;

Remarks:
Sets	the	light's	target	distance.

Parameters:
TimeValue	time
The	time	to	set	the	distance.
float	f
The	distance	to	set.

Prototype:
virtual	float	GetTDist(TimeValue	t,	Interval&	valid	=
Interval(0,0))=0;

Remarks:
Returns	the	light's	target	distance	at	the	specified	time	and	updates	the	interval
passed	to	reflect	the	validity	of	the	target	distance.

Parameters:
TimeValue	t
The	time	to	retrieve	the	distance.
Interval&	valid	=	Interval(0,0)
The	interval	to	update.

Prototype:
virtual	ObjLightDesc	*CreateLightDesc(INode	*n,BOOL
forceShadowBuffer=false)=0;

Remarks:
When	the	renderer	goes	to	render	the	scene	it	asks	all	of	the	lights	to	create	an
ObjLighDesc	object.	This	is	the	method	that	is	called	to	return	a	pointer	to	this
object.

Parameters:
INode	*n
The	node	pointer	of	the	light.
BOOL	forceShadowBuffer
Forces	the	creation	of	a	shadow	buffer.
	

Prototype:
virtual	void	SetRGBColor(TimeValue	t,	Point3&	rgb)=0;

Remarks:
Sets	the	color	of	the	light	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	set	the	color.
Point3&	rgb
The	color	to	set.

Prototype:
virtual	Point3	GetRGBColor(TimeValue	t,	Interval	&valid	=
Interval(0,0))=0;

Remarks:
Returns	the	color	of	the	light	at	the	specified	time	and	updates	the	validity
interval	to	reflect	this	parameters	validity	interval.

Parameters:
TimeValue	t
The	time	to	get	the	color.
Interval	&valid	=	Interval(0,0)
The	interval	which	is	updated.

Prototype:
virtual	void	SetHSVColor(TimeValue	t,	Point3&	hsv)=0;

Remarks:
Sets	the	HSV	color	of	the	light	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	set	the	color.
Point3&	hsv
The	color.

Sample	Code:
The	following	sample	shows	how	the	RGB	value	can	be	converted	to	HSV.

{
int	h,	s,	v;
Point3	rgbf	=	GetRGBColor(t,	valid);
DWORD	rgb	=	RGB((int)(rgbf[0]*255.0f),
(int)(rgbf[1]*255.0f),	(int)(rgbf[2]*255.0f));

RGBtoHSV	(rgb,	&h,	&s,	&v);
return	Point3(h/255.0f,	s/255.0f,	v/255.0f);
}

Prototype:
virtual	Point3	GetHSVColor(TimeValue	t,	Interval	&valid	=
Interval(0,0))=0;

Remarks:
Retrieves	the	HSV	color	of	the	light	at	the	specified	time	and	updates	the
validity	interval	to	reflect	the	color	parameter.

Parameters:
TimeValue	t
The	time	to	retrieve	the	color.
Interval	&valid	=	Interval(0,0)
The	interval	to	update.

Return	Value:

The	color	of	the	light	(as	a	Point3).

Prototype:
virtual	void	SetIntensity(TimeValue	time,	float	f)=0;

Remarks:
Sets	the	intensity	(multiplier	value)	of	the	light	at	the	specified	time.

Parameters:
TimeValue	time
The	time	to	set	the	intensity.
float	f
The	value	to	set.

Prototype:
virtual	float	GetIntensity(TimeValue	t,	Interval&	valid	=
Interval(0,0))=0;

Remarks:
Returns	the	intensity	(multiplier	value)	of	the	light	at	the	specified	time	and
updates	the	interval	passed	to	reflect	the	validity	of	the	controller.

Parameters:
TimeValue	t
The	time	to	get	the	value.
Interval&	valid	=	Interval(0,0)
The	interval	is	updated.

Prototype:
virtual	void	SetContrast(TimeValue	time,	float	f)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	light's	contrast	setting.

Parameters:
TimeValue	time
The	time	to	set	the	contrast	value.

float	f
The	new	contrast	value	in	the	range	of	0.0	to	100.0.

Prototype:
virtual	float	GetContrast(TimeValue	t,	Interval&	valid	=
Interval(0,0))=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	light's	contrast	setting	in	the	range	0.0	to	100.0.

Parameters:
TimeValue	t
The	time	to	get	the	light's	contrast	setting.
Interval&	valid	=	Interval(0,0)
This	interval	is	updated	to	reflect	the	interval	of	the	light's	contrast	setting.

Prototype:
virtual	void	SetAspect(TimeValue	t,	float	f)=0;

Remarks:
Set	the	aspect	property	to	the	specified	value.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	aspect	ratio.
float	f
Specifies	the	aspect	ratio	setting.

Prototype:
virtual	float	GetAspect(TimeValue	t,	Interval&	valid	=
Interval(0,0))=0;

Remarks:
Returns	the	aspect	property	(for	rectangular	lights)	at	the	specified	time	and
updates	the	interval	passed	to	reflect	the	validity	of	the	aspect	controller.

Parameters:

TimeValue	t
The	time	to	get	the	value.
Interval&	valid	=	Interval(0,0)
The	interval	to	update.

Prototype:
virtual	void	SetConeDisplay(int	s,	int	notify=TRUE)=0;

Remarks:
Sets	the	spotlight	cone	display	to	on	or	off.	This	controls	if	the	cone	is
depicted	graphically	in	the	viewports.

Parameters:
int	s
Indicates	if	the	cone	display	should	be	on	or	off.	Nonzero	indicates	the	cone
should	be	displayed;	otherwise	it	will	be	turned	off.
int	notify=TRUE
If	notify	is	TRUE	the	plug-in	should	call	NotifyDependents()	to	notify	its
dependents.

Prototype:
virtual	BOOL	GetConeDisplay()=0;

Remarks:
Returns	the	cone	display	property.	TRUE	if	the	spotlight	cone	is	on;	FALSE	if
off.

Prototype:
virtual	void	SetUseAtten(int	s)=0;

Remarks:
Sets	the	far	attenuation	state	to	on	or	off.

Parameters:
int	s
Nonzero	for	on;	zero	for	off.

Prototype:
virtual	BOOL	GetUseAtten()=0;

Remarks:
Returns	nonzero	if	far	attenuation	is	on;	zero	if	off.

Prototype:
virtual	void	SetAttenDisplay(int	s)=0;

Remarks:
Establishes	if	the	light	far	attenuation	range	is	displayed	in	the	viewports.

Parameters:
int	s
Nonzero	for	on;	zero	for	off.

Prototype:
virtual	BOOL	GetAttenDisplay()=0;

Remarks:
Returns	TRUE	if	the	far	attenuation	range	is	displayed;	otherwise	FALSE.

Prototype:
virtual	void	SetUseAttenNear(int	s)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	if	the	light	uses	near	attenuation.

Parameters:
int	s
Nonzero	to	use	near	attenuation;	otherwise	zero.

Prototype:
virtual	BOOL	GetUseAttenNear(void)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

Returns	TRUE	if	the	light	has	near	attenuation	on;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetAttenNearDisplay(void)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	the	light	near	attenuation	range	is	displayed	in	the	viewports;
otherwise	FALSE.

Prototype:
virtual	void	SetAttenNearDisplay(int	s)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Establishes	if	the	light	near	attenuation	range	is	displayed	in	the	viewports.

Parameters:
int	s
TRUE	to	turn	on	the	display;	otherwise	FALSE.

Prototype:
virtual	void	Enable(int	enab)=0;

Remarks:
Sets	the	light	to	enabled	or	disables	(on	or	off).

Parameters:
int	enab
Nonzero	for	on;	zero	for	off.

Prototype:
virtual	void	SetMapBias(TimeValue	t,	float	f)=0;

Remarks:
Sets	the	map	bias	value	at	the	time	passed.

Parameters:

TimeValue	t
The	time	to	set	the	value.
float	f
The	value	to	set.

Prototype:
virtual	float	GetMapBias(TimeValue	t,	Interval&	valid	=
Interval(0,0))=0;

Remarks:
Returns	the	map	bias	setting	at	the	specified	time	and	updates	the	interval
passed	to	reflect	the	validity	of	the	map	bias.

Parameters:
TimeValue	t
The	time	to	get	the	value.
Interval&	valid	=	Interval(0,0)
The	interval	to	update.

Prototype:
virtual	void	SetMapRange(TimeValue	t,	float	f)=0;

Remarks:
Sets	the	map	range	value	at	the	time	passed.

Parameters:
TimeValue	t
The	time	to	set	the	value.
float	f
The	value	to	set.

Prototype:
virtual	float	GetMapRange(TimeValue	t,	Interval&	valid	=
Interval(0,0))=0;

Remarks:
Returns	the	map	range	setting	at	the	specified	time	and	updates	the	interval

passed	to	reflect	the	validity	of	the	map	range.
Parameters:
TimeValue	t
The	time	to	get	the	value.
Interval&	valid	=	Interval(0,0)
The	interval	to	update.

Prototype:
virtual	void	SetMapSize(TimeValue	t,	int	f)=0;

Remarks:
Sets	the	map	size	value	at	the	time	passed.

Parameters:
TimeValue	t
The	time	to	set	the	value.
int	f
The	value	to	set.

Prototype:
virtual	int	GetMapSize(TimeValue	t,	Interval&	valid	=
Interval(0,0))=0;

Remarks:
Returns	the	map	size	setting	at	the	specified	time	and	updates	the	interval
passed	to	reflect	the	validity	of	the	map	size.

Parameters:
TimeValue	t
The	time	to	get	the	value.
Interval&	valid	=	Interval(0,0)
The	interval	to	update.

Prototype:
virtual	void	SetRayBias(TimeValue	t,	float	f)=0;

Remarks:

Sets	the	map	raytrace	bias	value	at	the	time	passed.
Parameters:
TimeValue	t
The	time	to	set	the	value.
float	f
The	value	to	set.

Prototype:
virtual	float	GetRayBias(TimeValue	t,	Interval&	valid	=
Interval(0,0))=0;

Remarks:
Returns	the	raytrace	bias	setting	at	the	specified	time	and	updates	the	interval
passed	to	reflect	the	validity	of	the	bias.

Parameters:
TimeValue	t
The	time	to	get	the	value.
Interval&	valid	=	Interval(0,0)
The	interval	to	update.

Prototype:
virtual	int	GetUseGlobal()=0;

Remarks:
Returns	TRUE	if	the	use	global	setting	is	on;	otherwise	FALSE.

Prototype:
virtual	void	SetUseGlobal(int	a)=0;

Remarks:
Set	the	use	global	setting	to	on	or	off.

Parameters:
int	a
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	int	GetShadow();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	lights	Cast	Shadows	flag.	Nonzero	indicates	the	light	casts
shadows;	otherwise	0.

Default	Implementation:
{return	0;}

Prototype:
virtual	void	SetShadow(int	a);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	lights	Cast	Shadows	flag.

Parameters:
int	a
Nonzero	indicates	the	light	casts	shadows;	zero	indicates	the	light	does	not
cast	shadows.

Default	Implementation:
{}

Prototype:
virtual	int	GetShadowType();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Retrieves	the	type	of	shadows	used	by	the	light	-	mapped	or	raytraced.

Return	Value:
One	of	the	following	values:
-1:	if	the	Shadow	Generator	is	NULL.	(R3	only).
0:	if	the	light	uses	Shadow	Maps.
1:	if	the	light	uses	Raytraced	Shadows.

0xffff:	for	any	other	Shadow	Generators.	(R3	only).
Default	Implementation:
{return	0;}

Prototype:
virtual	void	SetShadowType(int	a);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	type	of	shadows	used	by	the	light	-	mapped	or	raytraced.

Parameters:
int	a
The	shadow	type.	One	of	the	following	values:
0:	This	value	plugs	in	a	Shadow	Map	Generator.
1:	This	value	plugs	in	a	Raytraced	Shadow	Generator.
Any	other	value	is	a	NO-OP.

Default	Implementation:
{}

Prototype:
virtual	void	SetShadowGenerator(ShadowType	*s);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	shadow	generator	used	by	the	light.

Parameters:
ShadowType	*s
The	shadow	plug-in	to	use.	See	Class	ShadowType.

Default	Implementation:
{}

Prototype:
virtual	ShadowType	*GetShadowGenerator();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	shadow	generator	plug-in	in	use	by	the	light.	See
Class	ShadowType.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	void	SetAtmosShadows(TimeValue	t,	int	onOff);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	atmospheric	shadow	flag	to	on	or	off	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	value.
int	onOff
TRUE	for	on;	FALSE	for	off.

Default	Implementation:
{}

Prototype:
virtual	int	GetAtmosShadows(TimeValue	t);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	atmospheric	shadow	setting	at	the	specified	time.

Parameters:
TimeValue	t

Default	Implementation:
{	return	0;	}

Prototype:

virtual	void	SetAtmosOpacity(TimeValue	t,	float	f);
Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	atmospheric	opacity	value	at	the	time	passed.

Parameters:
TimeValue	t
The	time	to	set	the	value.
float	f
The	value	to	set.

Default	Implementation:
{}

Prototype:
virtual	float	GetAtmosOpacity(TimeValue	t,	Interval&
valid=FOREVER);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	atmospheric	opacity	value	at	the	specified	time	and	updates	the
validity	interval	to	reflect	the	validity	of	the	opacity	controller.

Parameters:
TimeValue	t
The	time	to	get	the	value.
Interval&	valid=FOREVER
The	interval	to	update.

Default	Implementation:
{	return	0.0f;	}

Prototype:
virtual	void	SetAtmosColAmt(TimeValue	t,	float	f);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Sets	the	atmospheric	shadow	color	amount	at	the	specified	time.
Parameters:
TimeValue	t
The	time	to	set	the	value.
float	f
The	value	to	set.

Default	Implementation:
{}

Prototype:
virtual	float	GetAtmosColAmt(TimeValue	t,	Interval&
valid=FOREVER);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	atmospheric	shadow	color	amount	at	the	specified	time	and
updates	the	interval	passed	to	reflect	the	validity	of	the	amount.

Parameters:
TimeValue	t
The	time	to	get.
Interval&	valid=FOREVER
The	interval	to	update.

Default	Implementation:
{	return	0.0f;	}

Prototype:
virtual	int	GetOvershoot()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	overshoot	setting.	Nonzero	is	on;	zero	is	off.

Prototype:

virtual	void	SetOvershoot(int	a)=0;
Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	overshoot	setting.

Parameters:
int	a
Nonzero	for	on;	zero	for	off.

Prototype:
virtual	ExclList&	GetExclusionList()=0;

Remarks:
Returns	the	exclusion	list	for	the	light.

Prototype:
virtual	void	SetExclusionList(ExclList	&list)=0;

Remarks:
Sets	the	exclusion	list	for	the	light.

Parameters:
ExclList	&list
The	exclusion	list.

Prototype:
virtual	BOOL	SetHotSpotControl(Control	*c)=0;

Remarks:
Sets	the	controller	for	the	hot	spot	parameter.

Parameters:
Control	*c
The	controller	to	set.

Return	Value:
TRUE	if	the	controller	was	set;	otherwise	FALSE.

Prototype:
virtual	BOOL	SetFalloffControl(Control	*c)=0;

Remarks:
Sets	the	controller	for	the	falloff	parameter.

Parameters:
Control	*c
The	controller	to	set.

Return	Value:
TRUE	if	the	controller	was	set;	otherwise	FALSE.

Prototype:
virtual	BOOL	SetColorControl(Control	*c)=0;

Remarks:
Sets	the	controller	for	the	color	parameter.

Parameters:
Control	*c
The	controller	to	set.

Return	Value:
TRUE	if	the	controller	was	set;	otherwise	FALSE.

Prototype:
virtual	Control*	GetHotSpotControl()=0;

Remarks:
Returns	the	controller	for	the	hot	spot	parameter.

Prototype:
virtual	Control*	GetFalloffControl()=0;

Remarks:
Returns	the	controller	for	the	falloff	parameter.

Prototype:

virtual	Control*	GetColorControl()=0;
Remarks:
Returns	the	controller	for	the	color	parameter.

Prototype:
virtual	void	SetAffectDiffuse(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Establishes	if	the	light	affects	the	diffuse	color	of	objects.

Parameters:
BOOL	onOff
TRUE	to	have	the	light	affect	the	diffuse	color;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetAffectDiffuse()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	the	light	affects	the	diffuse	color	of	objects;	otherwise
FALSE.

Prototype:
virtual	void	SetAffectSpecular(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Establishes	if	the	light	affects	the	specular	color	of	objects.

Parameters:
BOOL	onOff
TRUE	to	have	the	light	affect	the	specular	color;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetAffectSpecular()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	the	light	affects	the	specular	color	of	objects;	otherwise
FALSE.

Prototype:
virtual	void	SetDecayType(BOOL	onOff);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	decay	state	of	the	light.

Parameters:
BOOL	onOff
This	boolean	works	as	an	integer	where	0	is	None,	1	is	Inverse	and	2	is
Inverse	Square.

Default	Implementation:
{}

Prototype:
virtual	BOOL	GetDecayType();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	decay	state	of	the	light.

Return	Value:
This	boolean	works	as	an	integer	where	0	is	None,	1	is	Inverse	and	2	is
Inverse	Square.

Default	Implementation:
{return	0;}

Prototype:
virtual	void	SetDecayRadius(TimeValue	time,	float	f);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Sets	the	decay	radius	(i.e.	falloff)	of	the	light.
Parameters:
TimeValue	time
The	time	at	which	to	set	the	radius.
float	f
The	radius	to	set.

Default	Implementation:
{}

Prototype:
virtual	float	GetDecayRadius(TimeValue	t,	Interval&	valid	=
Interval(0,0));

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	decay	radius	of	the	light	and	updates	the	validity	interval	to	reflect
the	validity	of	the	radius	controller.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	radius.
Interval&	valid	=	Interval(0,0)
The	validity	interval	which	is	updated.

Default	Implementation:
{	return	0.0f;}

Prototype:
virtual	void	SetDiffuseSoft(TimeValue	time,	float	f);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	state	of	the	'Soften	Diffuse	Edge'	parameter.

Parameters:
TimeValue	time

The	time	at	which	to	set	the	value.
float	f
The	value	to	set	in	the	range	of	0.0	to	100.0.

Default	Implementation:
{}

Prototype:
virtual	float	GetDiffuseSoft(TimeValue	t,	Interval&	valid	=
Interval(0,0));

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	state	of	the	'Soften	Diffuse	Edge'	parameter.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	value.
Interval&	valid	=	Interval(0,0)
The	validity	interval	that	is	updated	to	reflect	the	state	of	this	parameter.

Default	Implementation:
{	return	0.0f;	}

Prototype:
virtual	void	SetShadColor(TimeValue	t,	Point3&	rgb);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	shadow	color	to	the	specified	value	at	the	time	passed.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	shadow	color.
Point3&	rgb
The	color	to	set.

Default	Implementation:

{}

Prototype:
virtual	Point3	GetShadColor(TimeValue	t,	Interval	&valid	=
Interval(0,0));

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	shadow	color	at	the	time	passed	and	updates	the	validity	interval
passed	to	reflect	the	validity	of	the	shadow	color	controller.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	shadow	color.
Interval	&valid	=	Interval(0,0)
The	validity	interval	which	is	updated.

Default	Implementation:
{	return	Point3(0,0,0);	}

Prototype:
virtual	BOOL	GetLightAffectsShadow();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	Light	Affects	Shadow	Color	flag	is	set;	otherwise
FALSE.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	void	SetLightAffectsShadow(BOOL	b);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	state	of	the	Light	Affects	Shadow	Color	flag	to	the	value	passed.

Parameters:
BOOL	b
TRUE	for	set;	FALSE	for	off.

Default	Implementation:
{}

Prototype:
virtual	void	SetShadMult(TimeValue	t,	float	m);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	shadow	color	multiplier	(density)	to	the	value	passed	at	the	specified
time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	value.
float	m
The	value	to	set.

Default	Implementation:
{}

Prototype:
virtual	float	GetShadMult(TimeValue	t,	Interval	&valid	=
Interval(0,0));

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	shadow	color	multiplier	(density)	at	the	specified	time	and	updates
the	interval	passed	to	reflect	the	validity	of	the	multiplier	controller.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	value.
Interval	&valid	=	Interval(0,0)
The	interval	which	is	updated.

Default	Implementation:
{	return	1.0f;	}

Prototype:
virtual	Texmap*	GetProjMap();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	texmap	used	as	the	projector	image	or	NULL	if	not
set.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	void	SetProjMap(Texmap*	pmap);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	texmap	to	use	as	the	light's	projector	image.

Parameters:
Texmap*	pmap
Points	to	the	texmap	to	set	or	NULL	to	clear	it.

Default	Implementation:
{}

Prototype:
virtual	Texmap*	GetShadowProjMap();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	texmap	used	as	the	shadow	projector	or	NULL	if	not
set.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	void	SetShadowProjMap(Texmap*	pmap);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	texmap	to	use	as	the	light's	shadow	projector.

Parameters:
Texmap*	pmap
Points	to	the	texmap	to	set	or	NULL	to	clear	it.

Default	Implementation:
{}

Prototype:
virtual	void	SetAmbientOnly(BOOL	onOff);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	ambient	only	flag	to	on	or	off.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Default	Implementation:
{}

Prototype:
virtual	BOOL	GetAmbientOnly();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	state	of	the	ambient	only	flag.	TRUE	is	on;	FALSE	is	off.

Default	Implementation:
{	return	FALSE;	}

Class	CameraObject
See	Also:	Class	Object.
class	CameraObject	:	public	Object

Description:
This	is	a	base	class	from	which	camera	plug-ins	may	be	derived.	Methods	of	this
class	are	used	to	get	and	set	properties	of	the	camera.	All	methods	of	this	class
are	implemented	by	the	plug-in.

Methods:

Prototype:
virtual	RefResult	EvalCameraState(TimeValue	time,
Interval&	valid,	CameraState*	cs)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	update	the	CameraState	and	validity	interval	at	the
specified	time.

Parameters:
TimeValue	time
Specifies	the	time	to	evaluate	the	camera.
Interval&	valid
The	plug-in	computes	the	validity	interval	of	the	camera	at	the	specified	time
and	stores	the	result	here.
CameraState*	cs
The	camera	state	to	update.	See	Structure	CameraState.	Note:	The	view	vector
and	'up'	vector	for	the	camera	are	stored	with	the	matrix	transform	for	the
node.	Cameras	can	be	multiple-instanced	so	it	must	work	this	way.	To	get	at
this	matrix	use	the	following	method	from	Class	INode:
virtual	Matrix3	GetObjTMAfterWSM(TimeValue	time,
Interval*	valid=NULL)=0;
The	scaling	of	this	matrix	may	be	removed	by	normalizing	each	of	the
rows.

Return	Value:

REF_SUCCEED	if	the	camera	state	was	updated	successfully;	otherwise
REF_FAIL.

Prototype:
virtual	void	SetOrtho(BOOL	b)=0;

Remarks:
Implemented	by	the	Plug-In.
Sets	whether	the	camera	is	on	ortho	mode	or	not.

Parameters:
BOOL	b
Pass	TRUE	for	ortho	and	FALSE	for	not	ortho.

Prototype:
virtual	BOOL	IsOrtho()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	the	camera	is	in	ortho	mode	and	FALSE	if	it	is	not.

Prototype:
virtual	void	SetFOV(TimeValue	time,	float	f)=0;

Remarks:
Implemented	by	the	Plug-In.
Sets	the	field-of-view	of	the	camera	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	field-of-view.
float	f
The	value	to	set	in	radians.

Prototype:
virtual	float	GetFOV(TimeValue	t,	Interval&	valid	=
Interval(0,0))=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	field-of-view	setting	of	the	camera	at	the	specified	time	and
adjusts	the	validity	interval	of	the	camera	at	this	time	to	reflect	the	field-of-
view	parameter.

Parameters:
TimeValue	t
The	time	to	retrieve	the	field-of-view	setting.
Interval&	valid	=	Interval(0,0)
The	validity	interval	to	set.

Return	Value:
The	field-of-view	of	the	camera	in	radians.

Prototype:
virtual	void	SetTDist(TimeValue	time,	float	f)=0;

Remarks:
Implemented	by	the	Plug-In.
Sets	the	target	distance	setting	(for	free	cameras)	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	target	distance.
float	f
The	value	to	set.

Prototype:
virtual	float	GetTDist(TimeValue	t,	Interval&	valid	=
Interval(0,0))=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	target	distance	setting	of	the	camera	at	the	specified	time	and
adjusts	the	validity	interval	of	the	camera	to	reflect	the	target	distance
parameter.

Parameters:
TimeValue	t
The	time	to	retrieve	the	target	distance	setting.
Interval&	valid	=	Interval(0,0)
This	validity	interval	is	intersected	with	the	validity	interval	of	the	target
distance	parameter.

Return	Value:
The	target	distance	of	the	camera.

Prototype:
virtual	int	GetManualClip()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	manual	clip	flag.	This	indicates	the	camera	will	perform	clipping
at	its	hither	and	yon	distances.

Return	Value:
Nonzero	if	manual	clipping	is	enabled;	otherwise	0.

Prototype:
virtual	void	SetManualClip(int	onOff)=0;

Remarks:
Implemented	by	the	Plug-In.
Sets	the	manual	clip	flag.	This	indicates	the	camera	will	perform	clipping	at	its
hither	and	yon	distances.

Parameters:
int	onOff
The	state	of	the	manual	clipping	flag	to	set.	Nonzero	indicates	clipping	will	be
performed.

Prototype:
virtual	float	GetClipDist(TimeValue	t,	int	which,
Interval	&valid=Interval(0,0))=0;

Remarks:
Implemented	by	the	Plug-In.
Retrieves	the	clipping	distance	of	the	specified	plane	at	the	specified	time	and
modifies	the	validity	interval	to	reflect	the	setting	of	the	clipping	distance
parameter.

Parameters:
TimeValue	t
The	time	to	retrieve	the	clipping	distance.
int	which
Indicates	which	distance	to	return.	One	of	the	following	values:
CAM_HITHER_CLIP	-	The	hither	distance
CAM_YON_CLIP	-	The	yon	distance.

Interval	&valid=Interval(0,0)
The	validity	interval	that	this	method	will	update	to	reflect	the	clipping
distance	interval.

Return	Value:
The	clipping	distance.

Prototype:
virtual	void	SetClipDist(TimeValue	t,	int	which,	float	val)=0;

Remarks:
Implemented	by	the	Plug-In.
Sets	the	clipping	distance	of	the	specified	plane	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	set	the	clipping	distance.
int	which
Indicates	which	distance	to	set.	One	of	the	following	values:
CAM_HITHER_CLIP	-	The	hither	distance
CAM_YON_CLIP	-	The	yon	distance.

float	val
The	distance	to	set.

Prototype:
virtual	void	SetEnvRange(TimeValue	time,	int	which,	float	f)=0;

Remarks:
Implemented	by	the	Plug-In.
Sets	the	environment	range	distance	at	the	specified	time.

Parameters:
TimeValue	time
The	time	to	set	the	environment	range.
int	which
Indicates	which	distance	to	set.	One	of	the	following	values:
ENV_NEAR_RANGE	-	The	near	distance.
ENV_FAR_RANGE	-	The	far	distance.

float	f
The	distance	to	set.

Prototype:
virtual	float	GetEnvRange(TimeValue	t,	int	which,
Interval&	valid	=	Interval(0,0))=0;

Remarks:
Implemented	by	the	Plug-In.
Retrieves	the	environment	range	distance	at	the	specified	time	and	intersects
the	specified	validity	interval	with	the	interval	of	the	environment	range
parameter.

Parameters:
TimeValue	time
The	time	to	retrieve	the	environment	range.
int	which
Indicate	which	distance	to	set.	One	of	the	following	values:
ENV_NEAR_RANGE	-	The	near	distance.
ENV_FAR_RANGE	-	The	far	distance.

Interval&	valid	=	Interval(0,0)
The	validity	interval	that	this	method	will	update	to	reflect	the	environment

range	setting.
Return	Value:
The	environment	range	distance	at	the	specified	time.

Prototype:
virtual	void	SetEnvDisplay(BOOL	b,	int	notify=TRUE)=0;

Remarks:
Implemented	by	the	Plug-In.
Sets	the	environment	range	display	flag.	This	indicates	if	the	camera	will
display	its	range	settings.

Parameters:
BOOL	b
The	flag	state	to	set.
int	notify=TRUE
If	notify	is	TRUE,	dependents	of	this	message	are	sent	the
REFMSG_CHANGE	message,	via:
NotifyDependents(FOREVER,	PART_OBJ,
REFMSG_CHANGE);
Otherwise	no	notification	is	sent.

Prototype:
virtual	BOOL	GetEnvDisplay()=0;

Remarks:
Implemented	by	the	Plug-In.
Retrieves	the	environment	range	display	setting.

Return	Value:
TRUE	if	ranges	are	displayed;	otherwise	FALSE.

Prototype:
virtual	void	RenderApertureChanged(TimeValue	t)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

This	method	is	called	on	all	cameras	when	the	render	aperture	width	has
changed.

Parameters:
TimeValue	t
The	time	of	the	change.

Prototype:
virtual	void	UpdateTargDistance(TimeValue	t,	INode	*inode);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	on	all	target	cameras	when	the	target	distance	has
changed.	For	instance,	a	distance	shown	in	the	user	interface	may	be	updated
in	this	method.

Parameters:
TimeValue	t
The	time	of	the	change.
INode	*inode
The	camera	node.

Default	Implementation:
{}

Prototype:
virtual	void	SetIMultiPassCameraEffect(IMultiPassCameraEffect
*pIMultiPassCameraEffect);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	plug-in.
The	IMultiPassCameraEffect	should	be	checked	to	see	if	compatible	with
the	camera
before	being	assigned.

Parameters:
IMultiPassCameraEffect	*pIMultiPassCameraEffect

The	IMultiPassCameraEffect	to	assign.
Default	Implementation:
{	}

Prototype:
virtual	void	SetMultiPassEffectEnabled(TimeValue	t,	BOOL
enabled);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Enables	or	disables	the	multi-pass	effect.

Parameters:
TimeValue	t
The	time	at	which	to	enable	the	effect.
BOOL	enabled
TRUE	for	enabled;	FALSE	for	disabled.

Default	Implementation:
{	}

Prototype:
virtual	BOOL	GetMultiPassEffectEnabled(TimeValue	t,	Interval&
valid);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	enabled	or	disabled	state	of	the	multi-pass	effect	setting	for	the
camera.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	setting.
Interval&	valid
The	validity	interfal	for	the	setting.

Return	Value:
TRUE	for	enabled;	FALSE	for	disabled.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	IMultiPassCameraEffect	*GetIMultiPassCameraEffect();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	current	multi-pass	camera	effect.	See	Class
IMultiPassCameraEffect.

Default	Implementation:
{	return	NULL;	}

Class	GenCamera
See	Also:	Class	CameraObject,	Class	Interval,	Class	Control.
class	GenCamera	:	public	CameraObject

Description:
This	class	describes	a	generic	camera	object.	It	is	used	as	a	base	class	for
creating	plug-in	cameras.	Methods	of	this	class	are	used	to	get	and	set	properties
of	the	camera.	All	methods	of	this	class	are	implemented	by	the	plug-in.

Methods:

Prototype:
virtual	GenCamera	*NewCamera(int	type)=0;

Remarks:
Creates	a	new	generic	camera	object.

Parameters:
int	type
Nonzero	if	the	camera	has	a	target;	otherwise	0.

Return	Value:
A	pointer	to	a	new	instance	of	the	specified	light	type.

Prototype:
virtual	void	SetConeState(int	s)=0;

Remarks:
Sets	if	the	camera	cone	is	displayed	in	the	viewports.

Parameters:
int	s
Nonzero	to	display	the	camera	cone;	otherwise	0.

Prototype:
virtual	int	GetConeState()=0;

Remarks:
Returns	TRUE	if	the	camera	cone	is	displayed	in	the	viewports;	otherwise

FALSE.

Prototype:
virtual	void	SetHorzLineState(int	s)=0;

Remarks:
Sets	if	the	camera	has	a	horizon	line	displayed.

Parameters:
int	s
Nonzero	to	display	the	horizon	line;	otherwise	0.

Prototype:
virtual	int	GetHorzLineState()=0;

Remarks:
Returns	TRUE	if	the	camera	has	a	horizon	line	displayed;	otherwise	FALSE.

Prototype:
virtual	void	Enable(int	enab)=0;

Remarks:
Enables	or	disables	the	camera.	If	enabled	the	camera	may	be	displayed,	hit
tested,	etc.

Parameters:
int	enab
Nonzero	to	enable;	zero	to	disable.

Prototype:
virtual	BOOL	SetFOVControl(Control	*c)=0;

Remarks:
Sets	the	controller	for	the	field-of-view	parameter.

Parameters:
Control	*c
Points	to	the	controller	to	set.

Return	Value:
Returns	TRUE	if	set;	otherwise	FALSE.

Prototype:
virtual	Control	*GetFOVControl()=0;

Remarks:
Returns	the	controller	for	the	field-of-view	parameter.

Prototype:
virtual	void	SetFOVType(int	ft)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	Field-Of-View	type	of	the	camera.

Parameters:
int	ft
One	of	the	following	values:
FOV_W
Width-related	FOV
FOV_H
Height-related	FOV
FOV_D
Diagonal-related	FOV

Prototype:
virtual	int	GetFOVType()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	Field-Of-View	type	of	the	camera.	One	of	the	following	values:
FOV_W
Width-related	FOV
FOV_H
Height-related	FOV

FOV_D
Diagonal-related	FOV

Prototype:
virtual	int	Type()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	one	of	the	following	values	to	indicate	the	camera	type:
FREE_CAMERA	(No	Target)
TARGETED_CAMERA	(Target	/	Look	At	Controller)
PARALLEL_CAMERA	(Orthographic	Camera)

Prototype:
virtual	void	SetType(int	tp)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	type	of	camera.

Parameters:
int	tp
One	of	the	following	types:
FREE_CAMERA	(No	Target)
TARGETED_CAMERA	(Target	/	Look	At	Controller)
PARALLEL_CAMERA	(Orthographic	Camera)

Class	Modifier
See	Also:	Class	BaseObject,	Class	ObjectState,	Class	ModContext,	Class
ModContextEnumProc,	Class	Interval,	Class	ISave,	Class	ILoad,	Class
Class_ID.
class	Modifier	:	public	BaseObject

Description:
This	is	the	class	from	which	you	may	derive	Object	Space	and	Space	Warp
(World	Space)	Modifier	plug-ins.	This	class	is	subclassed	off	of	BaseObject	so
the	modifier	can	put	up	a	graphical	representation	in	the	viewport	to	use	as	a
gizmo.

Method	Groups:
The	hyperlinks	below	jump	to	the	start	of	groups	of	related	methods	within	the
class:
Modifier	Name	Access
InputType,	ChannelsUsed,	ChannelsChanged.
Object	Modification	Methods
Topology	Dependence
Loading	and	Saving	Methods
Notification	of	Change
Modifier	Stack	Enable/Disable	Methods
ModContext	Enumeration
Validity	Intervals

Methods:

Modifier	Name	Access

Prototype:
virtual	TSTR	GetName();

Remarks:
Implemented	by	the	System.
Returns	the	name	of	the	modifier.

Prototype:
virtual	void	SetName(TSTR	n);

Remarks:
Implemented	by	the	System.
Sets	the	name	of	the	modifier	to	the	name	passed.

Parameters:
TSTR	n
Specifies	the	name	to	set.

InputType,	ChannelsUsed,	ChannelsChanged.

Prototype:
virtual	Class_ID	InputType()=0;

Remarks:
Implemented	by	the	Plug-In.
This	is	the	type	of	object	that	the	modifier	knows	how	to	modify.	Simple
modifiers	that	just	modify	points	of	an	object	can	operate	on	generic
'Deformable'	objects.	Deformable	objects	are	any	type	of	object	that	has
points.	A	modifier	could	also	work	on	a	particular	type	of	object	such	as	a
TriObject	or	PatchObject.

Return	Value:
The	Class_ID	of	the	item.	You	can	request	any	Class_ID	for	your	input	type.
For	example,	Class_ID(OMNI_LIGHT_CLASS_ID,	0).	See	List	of
Class_IDs.

Prototype:
virtual	ChannelMask	ChannelsUsed()=0;

Remarks:
Implemented	by	the	Plug-In.
These	are	channels	that	the	modifier	needs	in	order	to	perform	its
modification.	This	should	at	least	include	the	channels	specified	in
ChannelsChanged()	but	may	include	more.
Note	that	ChannelsUsed()	is	called	many	times	but	the	channels	returned

should	not	change	on	the	fly.
Return	Value:
The	channels	required.	See	List	of	Channel	Bits.

Sample	Code:
{	return	GEOM_CHANNEL|TOPO_CHANNEL;	}

Prototype:
virtual	ChannelMask	ChannelsChanged()=0;

Remarks:
Implemented	by	the	Plug-In.
These	are	the	channels	that	the	modifier	actually	modifies.	Note	that
ChannelsChanged()	is	called	many	times	but	the	channels	returned	should
not	change	on	the	fly.

Return	Value:
The	channels	that	are	changed.	See	List	of	Channel	Bits.

Prototype:
ChannelMask	TotalChannelsUsed();

Remarks:
Returns	the	same	value	as	ChannelsUsed()	above	except
GFX_DATA_CHANNEL	will	be	ORed	in	if	the	TOPO_CHANNEL	or
the	TEXMAP_CHANNEL	are	being	used.

Prototype:
ChannelMask	TotalChannelsChanged();

Remarks:
Returns	the	same	value	as	ChannelsChanged()	above	except
GFX_DATA_CHANNEL	will	be	ORed	in	if	the	TOPO_CHANNEL,
the	TEXMAP_CHANNEL	,	or	the	VERTCOLOR_CHANNEL	are
being	changed.

Prototype:

virtual	bool	ChangesSelType();
Remarks:
This	method	is	available	in	release	4.0	and	later	only.
If	a	modifier	want	to	make	it	possible	to	sitch	dynamically	between	changing
the	selection	type	that	flows	up	the	stack,	or	leaving	it	like	it	is,	it	can
overwrite	this.	The	default	implementation	indicates	that	it	changes	the
selection	type,	if	the	SUBSEL_TYPE_CHANNEL	is	part	of
ChannelsChanged().	Note	that	ChannelsChanged()	can	not	dynamically
changed	for	various	reasons.

Default	Implementation:
{	return	ChannelsChanged()&SUBSEL_TYPE_CHANNEL	?	true
:	false;	}

Object	Modification

Prototype:
virtual	void	ModifyObject(TimeValue	t,	ModContext	&mc,
ObjectState*	os,	INode	*node)=0;

Remarks:
Implemented	by	the	Plug-In.
This	is	the	method	that	actually	modifies	the	input	object.	This	method	is
responsible	for	altering	the	object	and	then	updating	the	validity	interval	of	the
object	to	reflect	the	validity	of	the	modifier.

Parameters:
TimeValue	t
The	time	at	which	the	modification	is	being	done.
ModContext	&mc
A	reference	to	the	ModContext.
ObjectState*	os
The	object	state	flowing	through	the	pipeline.	This	contains	a	pointer	to	the
object	to	modify.
INode	*node
The	node	the	modifier	is	applied	to.	This	parameter	is	always	NULL	for

Object	Space	Modifiers	and	non-NULL	for	World	Space	Modifiers	(Space
Warps).	This	is	because	a	given	WSM	is	only	applied	to	a	single	node	at	a
time	whereas	an	OSM	may	be	applied	to	several	nodes.	This	may	be	used	for
example	by	particle	system	space	warps	to	get	the	transformation	matrix	of	the
node	at	various	times.

See	Also:	Advanced	Topics	section	on	Object	Modification.

Validity	Intervals

Prototype:
virtual	Interval	LocalValidity(TimeValue	t);

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	validity	interval	of	a	modifier.	It	is	simply	the
combination	of	the	validity	of	all	the	modifier's	parameters.	It's	used	to
determine	when	to	cache	in	the	pipeline,	but	is	not	directly	responsible	for
determining	when	ModifyObject()	is	called.	ModifyObject()	is	called
when	the	pipeline	needs	to	be	evaluated	either	because	someone	sent	a
REFMSG_CHANGE	message	or	the	validity	of	the	object	does	not
include	the	current	time.
If	a	modifier	is	not	animated	it's	OK	to	simply	return	FOREVER	from	this
method.	In	the	case	where	the	modifier	changes	because	a	user	changes	a	non-
animated	control	in	the	user	interface	(for	instance	a	check	box),	you	can
cause	reevaluation	by	notifying	your	dependents	of	the	change,	i.e.:
NotifyDependents(FOREVER,	PART_ALL,
REFMSG_CHANGE);

Parameters:
TimeValue	t
The	time	to	calculate	the	Interval.

See	Also:	Advanced	Topics	on	Intervals.

Topology	Dependence

Prototype:

virtual	BOOL	DependOnTopology(ModContext	&mc)
Remarks:
Implemented	by	the	Plug-In.
Modifiers	that	place	a	dependency	on	topology	should	return	TRUE	for	this
method.	An	example	would	be	a	modifier	that	stores	a	selection	set	base	on
vertex	indices.	This	modifier	depends	on	the	indices	being	intact	for	it	to
operate	correctly.

Parameters:
ModContext	&mc
Reference	to	the	ModContext.

Default	Implementation:
{	returns	FALSE;	}

Return	Value:
TRUE	if	the	modifier	depends	on	topology;	otherwise	FALSE.

Modifier	Stack	Access

Prototype:
void	DisableMod()

Remarks:
Implemented	by	the	System.
This	disables	the	modifier	in	the	history	browser	(modifier	stack).

Prototype:
void	EnableMod()

Remarks:
Implemented	by	the	System.
This	enables	the	modifier	in	the	history	browser	(modifier	stack).

Prototype:
int	IsEnabled()

Remarks:

Implemented	by	the	System.
This	returns	the	status	(enabled	or	disabled)	of	the	modifier	in	the	history
browser.

Return	Value:
Nonzero	if	enabled;	otherwise	0.
	

Prototype:
void	DisableModInRender()

Remarks:
Implemented	by	the	System.
This	turns	off	the	modifier	in	the	renderer
	

Prototype:
void	EnableModInRender()

Remarks:
Implemented	by	the	System.
This	turns	on	the	modifier	in	the	renderer
	

Prototype:
int	IsEnabledInRender()

Remarks:
Implemented	by	the	System.
This	returns	the	status	(enabled	or	disabled)	of	the	modifier	in	the	renderer.

Return	Value:
Nonzero	if	enabled;	otherwise	0.
	

Prototype:
void	DisableModInViews();

Remarks:
Implemented	by	the	System.
Disables	the	modifier	in	the	viewports	(it	remains	active	in	the	renderer	unless
DisableMod()	above	is	used).

Prototype:
void	EnableModInViews();

Remarks:
Implemented	by	the	System.
Enables	the	modifier	in	the	viewports.

Prototype:
int	IsEnabledInViews();

Remarks:
Implemented	by	the	System.
Returns	nonzero	if	the	modifier	is	enabled	in	the	viewports;	otherwise	zero.

Prototype:
void	DisableModApps()

Remarks:
This	method	is	used	internally.

Prototype:
void	EnableModApps()

Remarks:
This	method	is	used	internally.

Notification	of	Input	Changed

Prototype:
virtual	void	NotifyInputChanged(Interval	changeInt,	PartID
partID,	RefMessage	message,	ModContext	*mc)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	an	item	in	the	modifier	stack	before	this	modifier
sends	a	REFMSG_CHANGE	message	via	NotifyDependents().
Consider	the	following	example:	Assume	the	modifier	stack	contains	a	Sphere
Object,	then	a	Bend,	then	a	Edit	Mesh.	The	Edit	Mesh	modifier	does	not	have
a	reference	to	the	Bend	or	the	Sphere	because	it	does	not	officially	depend	on
these	items.	However	it	does	depend	on	them	in	a	certain	sense,	because	it
modifies	the	data	that	these	items	produce.	So,	if	they	change	it	may	affect	the
modifier.	A	modifier	may	build	a	cache	based	on	its	input	object.	The	modifier
needs	a	way	to	know	when	to	discard	this	cache	because	the	input	object	has
changed.	Whenever	one	of	the	items	before	this	modifier	in	the	stack	sends
out	a	REFMSG_CHANGE	message	via	NotifyDependents()	to	indicate
it	has	changed	this	method	is	called.	The	modifier	may	respond	in	a	way
appropriate	to	it,	for	example	by	discarding	its	cache	of	the	input	object.
It	is	not	legal,	to	issue	a	NotifyDependent()'s	in	the
NotifyInputChanged()	method	of	a	modifier,	without	checking	for
reentrancy.	Imagine,	you	have	an	instanced	modifier	applied	to	the	same
object	in	the	stack.	Sending	a	refmsg	from	the	NotifyInputChanged
method	will	casue	an	endles	loop.	Simply	putting	a	guard	in,	that	checks	for
reentrancy	should	get	rid	of	the	problem.

Parameters:
Interval	changeInt
This	is	the	interval	from	the	message.	It	is	reserved	for	future	use	-	now	it	will
always	be	FOREVER.
PartID	partID
This	is	the	partID	from	the	message.
RefMessage	message
This	is	the	message	sent.
ModContext	*mc
The	ModContext	for	the	pipeline	that	changed.	If	a	modifier	is	applied	to
multiple	objects,	then	there	are	ModApps	in	each	pipeline	that	it	is	applied	to.
These	ModApps	are	pointing	to	the	same	modifier.	Consider	the	following
example:	Say	you	apply	a	Bend	modifier	to	a	Sphere,	a	Cylinder	and	a	Box
object.	There	are	three	ModApps	but	only	one	Bend	modifier.	Then	you	go	to

the	Sphere	and	adjust	its	Radius.	This	will	cause	NotifyInputChanged()	to
be	called	on	the	Bend	because	the	Bend's	input	changed.	However	only	one	of
its	inputs	changed	-	only	the	Sphere	changed	and	not	the	Cylinder	or	the	Box.
Therefore	NotifyInputChanged()	will	be	called	once,	and	the	ModContext
passed	in	will	be	for	the	Sphere's	changed	pipeline.	It	is	possible	that	all	three
objects	could	change	at	the	same	time.	If	an	instanced	float	controller	was
assigned	to	the	radius,	width,	and	height	-	one	parameter	for	each	object	-	then
the	controller	was	adjusted	in	the	function	curve	editor,	all	three	items	would
change.	In	this	case	NotifyInputChanged()	would	be	called	three	times	on
the	Bend.	Once	for	each	pipeline,	once	with	each	ModContext.

Loading	and	Saving	Methods

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
Implemented	by	the	System.
This	method	handles	saving	the	modifier	name.	This	method	should	be	called
by	the	derived	class	BEFORE	it	saves	any	chunks.	See	the	sample	code	below.

Parameters:
ISave	*isave
You	may	use	this	pointer	to	call	methods	of	ISave	to	write	data.

Return	Value:
One	of	the	following	values:	IO_OK,	IO_ERROR.

Sample	Code:
IOResult	DispMod::Save(ISave	*isave)
	{
	//	First	save	the	modifier	name	by
	//	calling	the	base	class	version.
	Modifier::Save(isave);
	//	Then	save	this	modifiers	data.
	isave->BeginChunk(BMIO_CHUNK);
	bi.Save(isave);
	isave->EndChunk();

	return	IO_OK;
	}

Prototype:
IOResult	Load(ILoad	*iload);
This	method	handles	loading	the	modifier	name.	It	should	be	called	by	the
derived	class	BEFORE	it	loads	any	chunks.

Remarks:
Implemented	by	the	System.

Parameters:
ILoad	*iload
You	may	use	this	pointer	to	call	methods	of	ILoad	to	read	data.

Return	Value:
One	of	the	following	values:	IO_OK,	IO_ERROR.

Prototype:
virtual	IOResult	LoadLocalData(ILoad	*iload,	LocalModData
**pld)

Remarks:
Implemented	by	the	Plug-In.
When	a	3ds	max	file	is	being	loaded,	this	method	is	called	so	that	the	modifier
can	load	the	LocalModData	structure	that	is	hung	off	each	ModContext.	If	the
modifier	doesn't	store	any	data	in	the	ModContext	it	can	ignore	this	method.

Parameters:
ILoad	*iload
You	may	use	this	pointer	to	call	methods	of	ILoad	to	read	data.
LocalModData	**pld
A	pointer	to	a	pointer	in	the	ModContext.	The	modifier	must	set	this	pointer	to
point	at	a	new	LocalModData	derived	class.

Return	Value:
One	of	the	following	values:	IO_OK,	IO_ERROR.

Prototype:
virtual	IOResult	SaveLocalData(ISave	*isave,	LocalModData	*ld)

Remarks:
Implemented	by	the	Plug-In.
When	a	3ds	max	file	is	being	saved,	this	method	is	called	so	that	the	modifier
can	save	the	localData	structure	that	is	hung	off	each	ModContext.	If	the
modifier	doesn't	store	any	data	in	the	ModContext	it	can	ignore	this	method.

Parameters:
ISave	*isave
You	may	use	this	pointer	to	call	methods	of	ISave	to	write	data.
LocalModData	*ld
Pointer	to	the	LocalModData	for	the	modifier.

Return	Value:
One	of	the	following	values:	IO_OK,	IO_ERROR.

ModContext	Enumeration

Prototype:
void	EnumModContexts(ModContextEnumProc	*proc);

Remarks:
Implemented	by	the	System.
This	method	will	call	the	callback	object	proc	method	once	for	each
application	of	the	modifier.

Parameters:
ModContextEnumProc	*proc
The	callback	object	whose	proc	method	is	called.

See	Also:	Class	ModContextEnumProc.

Prototype:
void	GetIDerivedObject(ModContext	*mc,	IDerivedObject
*&derObj,	int	&modIndex);

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
This	method	will	retrieve	the	IDerivedObject	and	index	of	this	modifier	for	a
given	modifier	context.

Parameters:
ModContext	*mc
Points	to	the	ModContext	for	the	modifier.
IDerivedObject	*&derObj
A	pointer	to	the	IDerivedObject	is	returned	here.
int	&modIndex
The	zero	based	index	of	the	modifier	in	the	derived	object	is	returned	here.

Prototype:
virtual	void	CopyAdditionalChannels(Object	*fromObj,	Object
*toObj);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
In	case	the	modifier	changes	the	object	type	(basically	the	os->obj	pointer	in
ModifyObject)	*and*	changes	the	ExtensionChannel,	it	has	to	overwrite	this
method	and	copy	only	the	channels	that	it	doesn't	modify/added	already	to	the
new	object.

Parameters:
Object	*fromObj
	
Object	*toObj
	

Default	Implementation:
{	toObj->CopyAdditionalChannels(fromObj);}

Prototype:
virtual	int	NeedUseSubselButton();

Remarks:
This	method	is	no	longer	used.

Class	SimpleMod
See	Also:	Class	Modifier.
class	SimpleMod	:	public	Modifier

Description:
The	SimpleMod	class	supplies	most	of	the	methods	needed	to	implement	an
object	space	modifier.
To	be	a	'Simple'	modifier,	the	following	assumptions	are	made:
	The	modifier	only	modifies	the	geometry	channel.
	The	modifier	uses	an	instance	of	a	class	derived	from	Deformer	to	do	the
modifying.
	The	modifier's	gizmo	is	represented	as	a	3D	box	that	has	had	the	modifier
applied	to	it.
This	class	maintains	a	pointer	to	a	parameter	block.	If	the	client	of	SimpleMod
uses	a	single	parameter	block	then	SimpleMod	can	manage	all	the	methods
associated	with	SubAnims	and	References	for	the	client.
If	the	client	of	SimpleMod	maintains	several	parameter	blocks	then	the	client
must	implement	the	methods	NumSubs(),	SubAnim(i),	SubAnimName(i),
NumRefs(),	GetReference(i)	and	SetReference(i)	and	call	the
SimpleMod	methods	when	'i'	refers	to	the	parameters	maintained	by
SimpleMod.
When	clients	of	SimpleMod	are	cloning	themselves,	they	should	call	this
method	on	the	clone	to	copy	SimpleMod's	data.
void	SimpleModClone(SimpleMod	*smodSource);

Clients	of	SimpleMod	probably	want	to	override	these.	If	they	do	they	should
call	these	from	within	their	implementation	of	these	methods.
void	BeginEditParams(IObjParam	*ip,	ULONG	flags,Animatable
*prev);
void	EndEditParams(IObjParam	*ip,	ULONG	flags,Animatable
*next);

Data	Members:
public:
Control	*tmControl;

Points	to	the	transform	controller	for	the	Gizmo.
Control	*posControl;
Points	to	the	position	controller	for	the	Center.
IParamBlock	*pblock;
Pointer	to	a	parameter	block.	Clients	of	SimpleMod	should	use	the	following
value	as	the	reference	index	of	this	parameter	block.	#define
SIMPMOD_PBLOCKREF	2
static	IObjParam	*ip;
Storage	for	the	interface	pointer.
static	MoveModBoxCMode	*moveMode;
Storage	for	the	move	modifier	box	command	mode.
static	RotateModBoxCMode	*rotMode;
Storage	for	the	rotate	modifier	box	command	mode.
static	UScaleModBoxCMode	*uscaleMode;
Storage	for	the	uniform	scale	modifier	box	command	mode.
static	NUScaleModBoxCMode	*nuscaleMode;
Storage	for	the	non-uniform	scale	modifier	box	command	mode.
static	SquashModBoxCMode	*squashMode;
Storage	for	the	squash	modifier	box	command	mode.
static	SimpleMod	*editMod;
Storage	for	the	instance	of	SimpleMod	that	is	being	edited	in	the	command
panel.

Methods:

Prototype:
virtual	Deformer&	GetDeformer(TimeValue	t,ModContext
&mc,Matrix3&	mat,Matrix3&	invmat)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	retrieve	the	callback	object	that	will	handle	the
deformation.

Parameters:
TimeValue	t

Specifies	the	time	the	modification	is	being	performed.
ModContext	&mc
A	reference	to	the	ModContext.
Matrix3&	mat
A	reference	to	a	matrix	that	describes	the	space	the	modification	is	supposed
to	happen	in.	This	is	computed	from	the	ModContext	matrix	and	the
controllers	controlling	the	gizmo	and	center	of	the	modifier.	The	plug-in
developers	job	is	simply	to	transform	each	point	to	be	deformed	by	this	matrix
before	it	performs	its	own	deformation	to	the	point.	After	the	modifier	applies
its	own	deformation	to	the	point,	the	developer	transforms	the	point	by	the
inverse	of	this	matrix	(passed	below).
Matrix3&	invmat
This	is	the	inverse	of	the	matrix	above.	See	the	comment	above	for	how	this	is
used.

Return	Value:
A	C++	reference	to	the	deformer	callback	object.

Prototype:
virtual	void	InvalidateUI()

Remarks:
Implemented	by	the	Plug-In.
This	is	called	if	the	user	interface	parameters	needs	to	be	updated	because	the
user	moved	to	a	new	time.	The	UI	controls	must	display	values	for	the	current
time.

Example:
If	the	plug-in	uses	a	parameter	map	for	handling	its	UI,	it	may	call	a	method	of
the	parameter	map	to	handle	this:	pmapParam->Invalidate();
If	the	plug-in	does	not	use	parameter	maps,	it	should	call	the	SetValue()
method	on	each	of	its	controls	that	display	a	value,	for	example	the	spinner
controls.	This	will	cause	to	the	control	to	update	the	value	displayed.	The	code
below	shows	how	this	may	be	done	for	a	spinner	control.	Note	that	ip	and
pblock	are	assumed	to	be	initialized	interface	and	parameter	block	pointers
	
float	newval;

Interval	valid=FOREVER;
TimeValue	t=ip->GetTime();
//	Get	the	value	from	the	parameter	block	at	the	current	time.
pblock->GetValue(PB_ANGLE,	t,	newval,	valid);
//	Set	the	value.	Note	that	the	notify	argument	is	passed	as
FALSE.
//	This	ensures	no	messages	are	sent	when	the	value	changes.
angleSpin->SetValue(newval,	FALSE);

Prototype:
virtual	Interval	GetValidity(TimeValue	t)

Remarks:
Implemented	by	the	Plug-In.
The	SimpleMod	class	calls	this	method	to	retrieve	the	validity	interval	of	the
modifier.	The	modifier	provides	this	interval	by	starting	an	interval	at
FOREVER	and	intersecting	it	with	each	of	its	parameters	validity	intervals.

Parameters:
TimeValue	t
The	time	to	compute	the	validity	interval.

Default	Implementation:
{return	FOREVER;}

Return	Value:
The	validity	interval	of	the	modifier.

See	Also:	The	Advanced	Topics	section	on	Intervals.

Prototype:
virtual	ParamDimension	*GetParameterDim(int	pbIndex)

Remarks:
Implemented	by	the	Plug-In.
Returns	the	dimension	of	the	parameter	whose	index	is	passed.	See	Class
ParamDimension.

Parameters:
int	pbIndex
The	index	of	the	parameter.

Default	Implementation:
{return	defaultDim;}

Return	Value:
A	pointer	to	the	dimension	of	the	parameter.

Prototype:
virtual	TSTR	GetParameterName(int	pbIndex)

Remarks:
Implemented	by	the	Plug-In.
Returns	the	name	of	the	parameter	whose	index	is	passed.

Parameters:
int	pbIndex
Index	of	the	parameter.

Default	Implementation:
{return	TSTR(_T("Parameter"));}

Return	Value:
The	name	of	the	parameter.

Prototype:
virtual	BOOL	GetModLimits(TimeValue	t,float	&zmin,	float
&zmax,	int	&axis)

Remarks:
Implemented	by	the	Plug-In.
If	the	effect	can	be	limited	(like	the	way	bend/taper/twist/etc.	can	be	limited)
then	it	should	specify	the	min	and	max	limits	and	the	axis	that	it	is	limited
along.	SimpleMod	will	then	display	the	limits	as	part	of	the	Gizmo.	If	it	does
not	support	limits	then	it	should	return	FALSE	or	simply	not	implement	this
method.

Parameters:

TimeValue	t
The	time	to	get	the	limits.
float	&zmin
The	min	limit.
float	&zmax
The	max	limit.
int	&axis
The	axis	that	it	is	limited	along:	x=0,	y=1,	z=2.

Return	Value:
TRUE	if	limits	are	supported;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Class	Control
See	Also:	Class	ReferenceTarget,	Class	IKeyControl,	Class	IKDeriv,	Class
IKEnumCallback,	Class	StdControl,	List	of	Additional	Controller	Related
Functions,	Class	AngAxis,	Class	Quat,	Class	Interval,	Class	Matrix3,	Class
Point3,	Class	ScaleValue,	Class	JointParams,	Class	SetXFormPacket.
class	Control	:	public	ReferenceTarget

Description:
Control	is	the	class	from	which	you	may	derived	controller	objects.	Controllers
are	the	objects	in	3ds	max	that	control	animation.	Controllers	come	in	different
types	based	on	the	type	of	data	they	control.	For	example,	Transform	controllers
control	the	4x3	matrices	used	to	define	the	position	of	nodes	in	the	scene	while
float	controllers	control	simple	floating	point	values.
Note:	Many	controller	plug-ins	may	be	able	to	subclass	from	StdControl	rather
than	Control.	This	simplifies	the	developers	job.	StdControl	handles	the
processing	of	Out	of	Range	Types,	Ease	Curves,	and	Multiplier	Curves.	See
Class	StdControl	for	more	information.
Plug-In	Information:
Class	Defined	In	CONTROL.H
Super	Class	ID	CTRL_FLOAT_CLASS_ID	-	Used	by	float	controllers.
	CTRL_POINT3_CLASS_ID	-	Used	by	Point3	controllers.
	CTRL_MATRIX3_CLASS_ID	-	Used	by	Matrix3	controllers.
	CTRL_POSITION_CLASS_ID	-	Used	by	position	controllers.
	CTRL_ROTATION_CLASS_ID	-	Used	by	rotation	controllers.
	CTRL_SCALE_CLASS_ID	-	Used	by	scale	controllers.
	CTRL_MORPH_CLASS_ID	-	Used	by	morph	controllers.
Standard	File	Name	Extension	DLC
Extra	Include	File	Needed	None

Method	Groups:
The	following	hyperlinks	jump	to	the	start	of	groups	of	related	methods	within
the	class:
GetValue	and	SetValue
Inverse	Kinematics	(IK)

Ease	Curve,	Multiplier	Curve	and	Out	of	Range	Types
Access	to	Sub-Controllers
New	Controller	Assignment
Transform	Controller	methods
Lookat	Controller	methods
IsLeaf/IsKeyable	/	IsColorController
Copying	and	Pasting
Gizmo	/	Sub-Object	methods
Load	/	Save
Post	Clone	Notification
Undo	/	Redo
Miscellaneous	methods

Methods:

Prototype:
virtual	void	GetValue(TimeValue	t,	void	*val,	Interval	&valid,
GetSetMethod	method=CTRL_ABSOLUTE)=0;

Remarks:
Implemented	by	the	Plug-In.
Retrieves	the	value	of	the	controller	at	the	specified	time,	and	updates	the
validity	interval	passed	in	to	reflect	the	interval	of	the	controller.	This	method
is	responsible	for	handling	Out	of	Range	Types,	Ease	Curves	and	Multiplier
Curves.	See	the	sample	code	below.

Parameters:
TimeValue	t
Specifies	the	time	to	retrieve	the	value.
void	*val
This	points	to	a	variable	to	hold	the	computed	value	of	the	controller	at	the
specified	time.	What	the	plug-in	needs	to	do	to	store	the	value	of	the	controller
depends	on	the	controller	type.	There	are	six	controller	types:	float,	Point3,
Position,	Rotation,	Scale,	and	Transform.	The	way	the	value	is	stored
also	depends	on	the	GetSetMethod	parameter	method.	Below	is	list	of	the
possible	cases	and	how	the	value	should	be	stored	in	each	case.
float

If	method	==	CTRL_ABSOLUTE
*val	points	to	a	float
The	controller	should	simply	store	the	value.

	
If	method	==	CTRL_RELATIVE
*val	points	to	a	float
The	controller	should	add	its	value	to	the	existing	floating	point
value.

Point3
If	method	==	CTRL_ABSOLUTE
*val	points	to	a	Point3
The	controller	should	simply	store	the	value.

If	method	==	CTRL_RELATIVE
*val	points	to	a	Point3
The	controller	should	add	its	value	to	the	existing	Point3	value.

Position
If	method	==	CTRL_ABSOLUTE
*val	points	to	a	Point3
The	controller	should	simply	store	the	value.

If	method	==	CTRL_RELATIVE
*val	points	to	a	Matrix3
The	controller	should	apply	its	value	to	the	matrix	by	pre-
multiplying	its	position.
Matrix3	*mat	=	(Matrix3*)val;
Point3	v	=	the	computed	value	of	the	controller...
mat->PreTranslate(v);

Rotation
If	method	==	CTRL_ABSOLUTE
*val	points	to	a	Quat
The	controller	should	simply	store	the	value.

If	method	==	CTRL_RELATIVE

*val	points	to	a	Matrix3
The	controller	should	apply	its	value	to	the	matrix	by	pre-
multiplying	its	rotation.
Matrix3	*mat	=	(Matrix3*)val;
Quat	q	=	the	computed	value	of	the	controller...
PreRotateMatrix(*mat,q);

Scale
If	method	==	CTRL_ABSOLUTE
*val	points	to	a	ScaleValue
The	controller	should	simply	store	the	value.

If	method	==	CTRL_RELATIVE
*val	points	to	a	Matrix3
The	controller	should	apply	its	value	to	the	matrix	by	pre-
multiplying	its	scale.
Matrix3	*mat	=	(Matrix3*)val;
ScaleValue	s	=	the	computed	value	of	the	controller...
ApplyScaling(*mat,s);

Transform	(Matrix3)
If	method	==	CTRL_ABSOLUTE
*val	points	to	a	Matrix3
The	controller	should	simply	store	the	value.
Important	Note:	Developers	should	only	pass
CTRL_RELATIVE	when	getting	the	value	of	a	Matrix3
controller.	This	is	because	the	controller	may	use	the	matrix
as	input	to	compute	the	value.	Therefore	it	is	not	acceptable
to	use	CTRL_ABSOLUTE	to	get	the	value.

If	method	==	CTRL_RELATIVE
*val	points	to	a	Matrix3.
The	controller	should	apply	its	value	to	the	matrix	by	pre-
multiplying.	When	GetValue()	is	called	on	a	transform
controller	the	method	is	CTRL_RELATIVE	and	the	matrix
passed	is	usually	the	parent	of	the	node.

Important	Note	for	Matrix3	Controllers:	when	SetValue()	is
called	*val	points	to	an	instance	of	Class	SetXFormPacket.	See
that	class	for	more	details	on	how	it	is	used.
	

Interval	&valid
The	validity	interval	to	update.	The	controllers	validity	interval	should	be
intersected	with	this	interval.	This	updates	the	interval	to	reflect	the	interval	of
the	controller.
GetSetMethod	method=CTRL_ABSOLUTE
One	of	the	following	values:
CTRL_RELATIVE
Indicates	the	plug-in	should	apply	the	value	of	the	controller	to	*val.	See
Above.
CTRL_ABSOLUTE
Indicates	the	controller	should	simply	store	its	value	in	*val.	See	Above.

Sample	Code:
The	following	code	is	from	the	StdControl	implementation	of	this	method.	It
demonstrates	how	the	out	of	range	and	multiplier	curves	are	handled.
void	StdControl::GetValue(TimeValue	t,	void	*val,	Interval	&valid,
GetSetMethod	method)
	{
	Interval	range	=	GetTimeRange(TIMERANGE_ALL);
	Interval	wvalid	=	FOREVER,	cvalid	=	FOREVER;
	void	*ptr	=	val;
	int	ort;
	float	m;
	TimeValue	oldTime	=	t;
	
	if	(method==CTRL_RELATIVE)	{
		ptr	=	CreateTempValue();
		}
	
	//	Grab	the	multiplier	before	the	time	warp.
	m	=	GetMultVal(t,valid);
	

	//	Apply	the	time	warp.
	t	=	ApplyEase(t,wvalid);
	
	if	(t<=range.Start())	{
		ort	=	GetORT(ORT_BEFORE);
	}	else	{
		ort	=	GetORT(ORT_AFTER);
		}
	
	if	(/*ort==ORT_CONSTANT*/TestAFlag(A_ORT_DISABLED)	||
		range.Empty()	||	range.InInterval(t))	{
	
		GetValueLocalTime(t,ptr,cvalid);
	}	else	{
		switch	(ort)	{
			case	ORT_CONSTANT:
				if	(t<range.Start())	{
					GetValueLocalTime(range.Start(),ptr,cvalid,CTRL_ABSOLUTE);
					cvalid.Set(TIME_NegInfinity,range.Start());
				}	else	{
					GetValueLocalTime(range.End(),ptr,cvalid,CTRL_ABSOLUTE);
					cvalid.Set(range.End(),TIME_PosInfinity);
					}
				break;
	
			case	ORT_LOOP:
			case	ORT_CYCLE:
				GetValueLocalTime(CycleTime(range,t),ptr,
					cvalid,CTRL_ABSOLUTE);
				break;
	
			case	ORT_OSCILLATE:	{
				int	cycles	=	NumCycles(range,t);
				TimeValue	tp	=	CycleTime(range,t);
				if	(cycles&1)	{
					tp	=	range.End()-(tp-range.Start());
					}

					GetValueLocalTime(tp,ptr,cvalid,CTRL_ABSOLUTE);
				break;
				}
	
			case	ORT_RELATIVE_REPEAT:
			case	ORT_IDENTITY:
			case	ORT_LINEAR:
				Extrapolate(range,t,ptr,cvalid,ort);
				break;
			}
		}
	
	if	(m!=1.0f)	{
		MultiplyValue(ptr,m);
		}
	if	(method==CTRL_RELATIVE)	{
		ApplyValue(val,ptr);
		DeleteTempValue(ptr);
		}
	
	if	(ort!=ORT_CONSTANT)	{
		cvalid.Set(oldTime,oldTime);
		}
	valid	&=	cvalid;
	valid	&=	wvalid;
	//	Time	warps	can	cause	this	to	happen.
	if	(valid.Empty())	valid.Set(oldTime,oldTime);
	}

Prototype:
virtual	void	SetValue(TimeValue	t,	void	*val,	int	commit=1,
	GetSetMethod	method=CTRL_ABSOLUTE)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	sets	the	value	of	the	controller	at	the	specified	time.	This	method
is	responsible	for	handling	Out	of	Range	Types,	Ease	Curves	and	Multiplier

Curves.	See	the	sample	code	below.
Note:	Developers	who	want	to	create	keys	for	a	keyframe	controller	by	calling
SetValue()	directly	can	do	so,	but	the	animate	button	should	be	turned	on
using	the	following	code:
SuspendAnimate();
AnimateOn();
//	Call	SetValue()	--	make	sure	commit=1
ResumeAnimate();

Parameters:
TimeValue	t
Specifies	the	time	to	save	the	value.
void	*val
Points	to	an	instance	of	a	data	type	that	corresponds	with	the	controller	type.
These	are	the	same	as	GetValue()	above	with	the	following	exceptions:
For	rotation	controllers,	if	the	GetSetMethod	is	CTRL_RELATIVE,
*val	points	to	an	AngAxis,	while	if	it	is	CTRL_ABSOLUTE	it	points
to	a	Quat.
For	Matrix3	controllers	*val	points	to	an	instance	of	class
SetXFormPacket.	See	Class	SetXFormPacket.

int	commit=1
When	SetValue()	is	called	the	controller	should	store	it	value	(usually	into	a
cache	it	maintains),	and	if	this	parameter	is	set,	also	'commit'	it's	value
(usually	by	calling	CommitValue()).
For	example,	consider	a	3ds	max	keyframe	controller:	If	commit==1	and	if
the	Animate	button	is	on,	then	the	cache	should	be	updated	and	a	key	should
be	created.	If	the	Animate	button	is	off	then	the	cache	should	be	updated	and
the	keys	should	all	be	offset.	If	commit==0	then	the	cache	value	is	set	and	its
validity	interval	is	set	to	the	current	time.	If	later	commit==1	then	a	key
would	be	created	from	that	cached	value.	If	SetValue()	is	never	called	with
commit=1	then	the	key	is	never	set.	For	instance	with	Inverse	Kinetmatics,
SetValue()	is	called	many	times	over	and	over	at	the	same	TimeValue	with
commit=0.	The	controller	doesn't	create	a	key,	it	just	changes	its	cached
value.	When	an	IK	solution	is	finally	reached,	SetValue()	is	called	with

commit=1	and	a	key	is	created.
Note	that	calling	SetValue()	with	commit=0	and	then	calling
CommitValue()	should	have	the	same	effect	as	calling	SetValue()	with
commit=1.
See	the	methods	CommitValue()	and	RestoreValue()	below.
GetSetMethod	method=CTRL_ABSOLUTE
One	of	the	following	values:
CTRL_RELATIVE
Indicates	the	plug-in	should	add	the	value	to	the	existing	value	*val	(i.e.
Move/Rotate/Scale)
CTRL_ABSOLUTE
Indicates	the	plug-in	should	just	set	the	value.
Important	Note	for	Matrix3	Controllers:	When	SetValue()	is
called	this	method	parameter	is	ignored.	The	*val	pointer	passed
to	SetValue()	points	to	an	instance	of	Class	SetXFormPacket.
See	that	class	for	more	details	on	how	it	is	used.

Sample	Code:
The	following	code	is	from	the	StdControl	implementation	of	this	method.	It
demonstrates	how	the	out	of	range	and	multiplier	curves	are	handled.
void	StdControl::SetValue(TimeValue	t,	void	*val,	int	commit,
GetSetMethod	method)
	{
	Interval	range	=	GetTimeRange(TIMERANGE_ALL);
	Interval	wvalid,	mvalid;
	int	ort;
	float	m;
	
	//	Grab	the	multiplier	before	the	time	warp.
	m	=	GetMultVal(t,mvalid);
	if	(m!=1.0f	&&	m!=0.0f)	{
		MultiplyValue(val,1.0f/m);
		}
	
	//	Apply	the	time	warp.

	t	=	ApplyEase(t,wvalid);
	if	(range.Empty())	{
		SetValueLocalTime(t,val,commit,method);
		return;
		}
	
	if	(t<=range.Start())	{
		ort	=	GetORT(ORT_BEFORE);
	}	else	{
		ort	=	GetORT(ORT_AFTER);
		}
	if	(TestAFlag(A_ORT_DISABLED))	ort	=	ORT_CONSTANT;
	
	switch	(ort)	{
		case	ORT_LOOP:
		case	ORT_CYCLE:
			SetValueLocalTime(CycleTime(range,t),val,commit,method);
			break;
	
		case	ORT_OSCILLATE:	{
			int	cycles	=	NumCycles(range,t);
			if	(cycles&1)	{
				t	=	range.Duration()	-	CycleTime(range,t);
			}	else	{
				t	=	CycleTime(range,t);
				}
				SetValueLocalTime(t,val,commit,method);
			break;
			}
	
			//	These	ORTs	aren't	cyclic	so	we	just	set	the	value	out	of	range.
		case	ORT_RELATIVE_REPEAT:
		case	ORT_CONSTANT:
		case	ORT_IDENTITY:
		case	ORT_LINEAR:
			SetValueLocalTime(t,val,commit,method);
			break;

		}
	}

Prototype:
virtual	bool	GetLocalTMComponents(TimeValue	t,
TMComponentsArg&	cmpts,	Matrix3Indirect&	parentMatrix);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	PRS	components	of	the	local	matrix.	In	general,
controller	cannot	decide	on	the	local	matrix	without	knowing	the	parent
matrix.	However,	many	controllers,	such	as	default	controllers,	are	well
defined	without	the	parent	matrix.	In	these	cases,	it	is	more	efficient	to
compute	the	local	components	directly	without	going	through	the	world
matrix.
Therefore,	the	argument	parentMatrix	is	a	reference	to	Matrix3Indirect.	This
would	allow	clients	to	supply	a	"delayed	parent	matrix,"	which	will	be
computed	only	if	it	is	necessary.	It	returns	true	for	Matrix3,	Position,	Rotation,
or	Scale	controllers,	and	return	false	otherwise.
The	PRS	components	will	be	put	in	argument	cmpts	in	the	respective	fields
with	corresponding	validity	intervals.	NULL	pointer,	of
TMComponentsArg::position	for	example,	indicates	that	the	client	is	not
concerned	about	the	component.	When	it	is	not	NULL,	the	corresponding
pointer	to	the	validity	interval	MUST	NOT	be	NULL.	When	it	is	not	NULL,
TMComponentsArg::rotation	is	a	float[4].	rotRep	tells	what	the	numbers
mean.
Position,	Rotation,	or	Scale,	controllers	will	put	results	at	the	respective
component	when	the	corresponding	pointer	is	not	NULL.
Upon	entry,	parentMatrix	should	represent	the	parent	matrix	up	to	the	first
requested	components.	For	Matrix3	controllers,	for	example,	if
cmpts.position==NULL	&&	cmpts.rotation!=NULL,	then	parentMatrix	should
be	matrix	that	includes	the	parent	node	matrix	plus	the	position	of	this	node.
Upon	return,	this	matrix	may	be	modified.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	local	TM	components.

TMComponentsArg&	cmpts
See	Structure	TMComponentsArgs.
Matrix3Indirect&	parentMatrix
The	parent	matrix.	Note	the	definition:	LocalMatrix	=	WorldMatrix	*
ParentWorldMatrix^(-1)

Post	Clone	Notification
Prototype:
virtual	void	PostCloneNode();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	on	a	transform	controller	after	a	node	is	cloned	and	the
clone	process	has	finished.	This	allows	the	controller	to	do	any	work	it	needs
to	after	the	clone	is	complete.

Default	Implementation:
{}

Undo	/	Redo	methods
Controllers,	like	objects	and	modifiers,	need	to	be	able	to	undo	and	redo
themselves.	Whenever	a	controller	is	about	to	modify	its	data,	it	checks	the	state
of	the	global	Hold	object	to	see	if	it	is	holding.	If	so	it	must	register	a
RestoreObject	with	the	hold	(see	the	Advanced	Topics	section	Undo/Redo).
Controllers	also	support	another	type	of	undo	and	redo	through	two	methods:
CommitValue()	and	RestoreValue().
The	purpose	of	this	'inner'	hold	and	restore	buffer	is	not	to	hold	and	restore	the
entire	state	of	the	controller,	but	to	hold	and	restore	the	value	of	the	controller	at
a	single	instant	in	time.	When	SetValue()is	called	on	a	controller	with	the
commit	parameter	equal	to	zero,	the	controller	records	the	new	value,	but	does
not	necessarily	modify	any	data.	For	example,	a	keyframe	controller	doesn't
actually	generate	a	new	key	--	it	just	updates	a	cache	it	maintains.	Then,	if	the
controller	is	asked	to	evaluate	itself	at	the	exact	same	TimeValue	for	which	the
controller	was	just	set,	it	can	just	return	the	cached	value.
The	RestoreValue()	method	will	simply	throw	out	the	temporary	value

whereas	the	CommitValue()	method	will	cause	the	value	to	be	actually
committed	(a	key	generated	in	the	case	of	a	keyframe	controller).
The	purpose	of	this	inner	hold	and	restore	is	for	iterative	procedures	that	need	to
set	values	many	times	at	a	single	TimeValue	and	don't	want	to	incur	the
overhead	of	things	like	recalculating	the	tangents	at	adjacent	keys.	Some
examples	of	these	types	of	procedures	are	inverse	kinematics	and	collision
detection.

Prototype:
virtual	void	CommitValue(TimeValue	t)

Remarks:
Implemented	by	the	Plug-In.
This	method,	along	with	RestoreValue(),	comprise	an	"inner"	hold	and
restore	mechanism	(see	above).	When	the	controller's	SetValue()	method	is
called,	if	the	commit	parameter	is	nonzero,	then	the	controller	should	save
the	value	of	the	controller	at	the	current	time	into	its	cache	and	also	'commit'
the	value.	For	example,	this	stores	a	key	in	the	case	of	a	keyframe	controller.
If	the	set	value	was	not	committed	then	RestoreValue()	may	be	called	to
restore	the	previous	value.

Parameters:
TimeValue	t
Specifies	the	time	to	save	the	value.

Default	Implementation:
{}

Prototype:
virtual	void	RestoreValue(TimeValue	t)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	the	other	half	of	the	"inner"	hold	and	restore	mechanism.	This
method	is	called	to	restore	a	previously	saved	value.	This	method	restores	the
current	cache	value	to	the	value	that	was	set	before	SetValue()	was	last
called.	They	way	the	standard	3ds	max	controllers	handle	this	is	as	follows:
When	SetValue()	is	called	a	temporary	hold	mechanism	(TempStore	define

in	CONTROL.H)	is	used	to	hold	the	current	value.	Then	the	new	value	is
set.	If	RestoreValue()	is	later	called	then	it	restores	the	current	value	from
the	temporary	storage.	Note	that	in	addition	to	restoring	from	the	TempStore,
another	way	a	controller	may	restore	the	current	value	is	to	re-interpolate	the
keys.

Parameters:
TimeValue	t
Specifies	the	time	to	restore	the	value.

Default	Implementation:
{}

New	Controller	Assignment

Prototype:
virtual	void	Copy(Control	*from)=0;

Remarks:
Implemented	by	the	Plug-In.
When	a	controller	is	assigned	to	a	track	in	the	track	view,	the	new	controller	is
plugged	into	the	parameter	and	this	method	is	called	on	the	new	controller.	A
pointer	to	the	old	controller	is	passed	in	to	this	method.	The	new	controller	can
attempt	to	copy	any	data	that	it	can	from	the	old	controller.	At	the	very	least	it
should	initialize	itself	to	the	value	of	the	old	controller	at	frame	0.

Parameters:
Control	*from
A	pointer	to	the	previous	controller.

Prototype:
virtual	BOOL	IsReplaceable()

Remarks:
Implemented	by	the	Plug-In.
This	method	determines	if	another	controller	can	replace	this	one.	A	controller
can	return	FALSE	from	this	method	to	not	allow	the	user	to	assign	a	new
controller	in	its	place.	This	will	also	prevent	the	controller	from	being	replaced

by	a	paste	controller	operation.
Return	Value:
TRUE	to	allow	the	controller	to	be	replaced;	otherwise	FALSE.

Default	Implementation:
{return	TRUE;}

Lookat	Controller	methods
The	following	two	methods	work	with	lookat	controllers.	If	the	controller	is	not
a	lookat	controller,	these	methods	should	be	ignored.

Prototype:
virtual	INode*	GetTarget()

Remarks:
Implemented	by	the	Plug-In.
This	method	retrieves	a	lookat	controller's	target.

Return	Value:
The	lookat	controllers	target	node.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	RefResult	SetTarget(INode	*targ)

Remarks:
Implemented	by	the	Plug-In.
This	method	stores	a	lookat	controller's	target.

Parameters:
INode	*targ
The	target	node	to	store.

Return	Value:
One	of	the	following	values:
REF_SUCCEED
Indicates	the	target	was	set.

REF_FAIL
Indicates	the	target	was	not	set.

Default	Implementation:
{return	REF_SUCCEED;}

Sub-Controllers

Prototype:
virtual	Control	*GetPositionController()

Remarks:
Implemented	by	the	Plug-In.
Implemented	by	transform	controllers	that	have	a	position	controller	that	can
be	edited	in	the	motion	branch.	This	method	returns	a	pointer	to	the	position
controller	of	the	transform	controller.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	Control	*GetRotationController()

Remarks:
Implemented	by	the	Plug-In.
Implemented	by	transform	controllers	that	have	a	rotation	controller	that	can
be	edited	in	the	motion	branch.	This	method	returns	a	pointer	to	the	rotation
controller	of	the	transform	controller.

Return	Value:
Default	Implementation:
{return	NULL;}

Prototype:
virtual	Control	*GetScaleController()

Remarks:
Implemented	by	the	Plug-In.

Implemented	by	transform	controllers	that	have	a	scale	controller	that	can	be
edited	in	the	motion	branch.	This	method	returns	the	a	pointer	to	the	scale
controller	of	the	transform	controller.

Return	Value:
Default	Implementation:
{return	NULL;}

Prototype:
virtual	Control	*GetRollController()

Remarks:
Implemented	by	the	Plug-In.
Implemented	by	lookat	controllers	that	have	a	float	valued	roll	controller	so
that	the	roll	can	be	edited	via	the	transform	type-in.	This	method	returns	a
pointer	to	the	roll	controller	of	the	lookat	controller.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	BOOL	SetPositionController(Control	*c);

Remarks:
Implemented	by	the	Plug-In.
This	method	assigns	a	new	position	controller.	Plug-Ins	don't	need	to	be
concerned	with	freeing	the	previous	controller	if	this	method	is	called.	Any
previous	controller	assigned	will	be	deleted	by	3ds	max	if	it	is	not	used
elsewhere	in	the	scene.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	SetRotationController(Control	*c);

Remarks:
Implemented	by	the	Plug-In.

This	method	assigns	a	new	rotation	controller.	Plug-Ins	don't	need	to	be
concerned	with	freeing	the	previous	controller	if	this	method	is	called.	Any
previous	controller	assigned	will	be	deleted	by	3ds	max	if	it	is	not	used
elsewhere	in	the	scene.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	SetScaleController(Control	*c);

Remarks:
Implemented	by	the	Plug-In.
This	method	assigns	a	new	scale	controller.	Plug-Ins	don't	need	to	be
concerned	with	freeing	the	previous	controller	if	this	method	is	called.	Any
previous	controller	assigned	will	be	deleted	by	3ds	max	if	it	is	not	used
elsewhere	in	the	scene.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	SetRollController(Control	*c);

Remarks:
Implemented	by	the	Plug-In.
This	method	assigns	a	new	roll	controller.	Plug-Ins	don't	need	to	be	concerned
with	freeing	the	previous	controller	if	this	method	is	called.	Any	previous
controller	assigned	will	be	deleted	by	3ds	max	if	it	is	not	used	elsewhere	in	the
scene.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	Control	*GetXController();

Remarks:

This	method	is	available	in	release	2.0	and	later	only.
Returns	a	pointer	to	the	'X'	sub-controller	of	this	controller.	If	a	controller	has
an	'X',	'Y',	or	'Z'	controller,	it	can	implement	this	set	of	methods	so	that	its	sub-
controllers	can	respect	track	view	filters.	Examples	of	controllers	that	have
XYZ	sub-controllers	are	the	Euler	angle	controller	or	the	Position	XYZ
controller.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	Control	*GetYController();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	a	pointer	to	the	'Y'	sub-controller	of	this	controller.	If	a	controller	has
an	'X',	'Y',	or	'Z'	controller,	it	can	implement	this	set	of	methods	so	that	its	sub-
controllers	can	respect	track	view	filters.	Examples	of	controllers	that	have
XYZ	sub-controllers	are	the	Euler	angle	controller	or	the	Position	XYZ
controller.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	Control	*GetZController();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	a	pointer	to	the	'Z'	sub-controller	of	this	controller.	If	a	controller	has
an	'X',	'Y',	or	'Z'	controller,	it	can	implement	this	set	of	methods	so	that	its	sub-
controllers	can	respect	track	view	filters.	Examples	of	controllers	that	have
XYZ	sub-controllers	are	the	Euler	angle	controller	or	the	Position	XYZ
controller.

Default	Implementation:
{return	NULL;}

Transform	Controller	methods

Prototype:
virtual	BOOL	ChangeParents(TimeValue	t,const	Matrix3&	oldP,
const	Matrix3&	newP,const	Matrix3&	tm)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	on	transform,	position,	rotation,	and	scale	controllers
when	their	input	matrix	is	about	to	change.	This	happens	when	the	user	links
an	object	(either	from	one	object	to	another	or	when	the	user	links	an	object
for	the	first	time).	Because	a	controllers	transformation	is	relative	to	its	parent,
when	the	user	changes	parents,	the	transform	controller	will	need	to	change
itself.	If	a	plug-in	returns	FALSE	the	node	will	calculate	a	change	and	call
SetValue()	to	make	the	necessary	adjustments	at	the	specific	time	passed.
Consider	the	following	example	of	a	position	controller:
If	a	node	in	the	scene	that	is	NOT	animated,	is	linked	to	another	node,	this
method	would	be	called.	If	the	method	returned	FALSE	then	the	node	would
calculate	a	change	and	call	SetValue()	to	make	the	adjustment	and	this	would
be	okay.	If	however	the	node	was	animated	there	would	be	a	problem.	Say	for
example	that	an	unlinked	node	was	bouncing	up	and	down	along	the	world	Z
axis.	If	this	node	is	then	linked	to	a	node	that	was	rotated	such	that	its	Z	axis
was	pointed	in	the	direction	of	the	world	X	axis	(so	the	object	is	flipped	over
on	its	side)	the	linked	node	(whose	animation	keys	are	stored	relative	to	its
previous	parent	(the	world))	would	then	begin	to	bounce	up	and	down	along
the	world	X	axis	instead.	This	is	because	it	is	still	moving	along	its	parent's	Z
axis,	but	its	parents	Z	axis	is	really	the	world	X	axis.	Thus	the	object	needs	to
be	counter-rotated	to	compensate.	Additionally,	all	the	animation	keys	for	the
object	also	need	to	be	counter-rotated.	A	position	keyframe	controller	would
need	to	implement	this	method	to	handle	the	correction	of	the	object	and	its
keyframes.	See	the	sample	code	below.

Parameters:
TimeValue	t
The	time	of	the	change.
const	Matrix3&	oldP
The	old	parent	matrix.

const	Matrix3&	newP
The	new	parent	matrix.
const	Matrix3&	tm
The	nodes	current	world	transformation.

Return	Value:
If	FALSE	the	node	will	call	SetValue()	to	make	the	necessary	adjustments.

Default	Implementation:
{return	FALSE;}

Sample	Code:
This	is	the	code	used	inside	3ds	max'	position	controller.	It	takes	the	difference
between	the	two	parents	and	transforms	the	position	track	by	that	amount.	It
computes	the	relative	transformation	which	is	the	old	parent	times	the	inverse
of	the	new	parent.
A	plug-in	could	provide	an	implementation	for	this	method	using	a	similar
concept.
INTERP_CONT_TEMPLATE
BOOL
InterpControl<INTERP_CONT_PARAMS>::ChangeParents(
		TimeValue	t,
		const	Matrix3&	oldP,const	Matrix3&	newP,const	Matrix3&	tm)
	{
	if	(SuperClassID()==CTRL_POSITION_CLASS_ID)	{
		HoldTrack();
		//	Position	controllers	need	their	path	counter	rotated	to
		//	account	for	the	new	parent.
		Matrix3	rel	=	oldP	*	Inverse(newP);
		//	Modify	the	controllers	current	value	(the	controllers	cache)
		((Point3)(&curval))	=	*((Point3*)(&curval))	*	rel;
		//	Then	modify	the	keys...
		for	(int	i=0;	i<keys.Count();	i++)	{
			//	All	this	casting	keeps	the	compiler	happy
			//	for	non-Point3	versions	of	this	template.
			((Point3)(&keys[i].val))	=

				((Point3)(&keys[i].val))	*	rel;
			}
		keys.KeysChanged(FALSE);
		ivalid.SetEmpty();
		return	TRUE;
	}	else	{
		return	FALSE;
		}
	}

Prototype:
virtual	RefResult	PinNodeChanged(RefMessage	message,Interval
changeInt,	PartID	&partID);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
If	a	node	is	pinned	to	another	node,	and	the	node	gets	a
NotifyRefChanged()	message	that	its	pinned	node	has	changed,	then	this
method	is	called	on	the	transform	controller	of	the	node.	Otherwise	the
controller	wouldn't	get	notified	since	the	controller	doesn't	have	a	reference	to
the	pin	node	(but	the	node	does).	Most	controllers	don't	really	care,	but	the	IK
controller	does.

Parameters:
RefMessage	message
The	message	that	was	sent.
Interval	changeInt
This	is	the	interval	of	time	over	which	the	message	is	active.	Currently,	all
controllers	will	receive	FOREVER	for	this	interval.
PartID	&partID
This	contains	information	specific	to	the	message	passed	in.	Some	messages
don't	use	the	partID	at	all.	See	the	section	List	of	Reference	Messages	for
more	information	about	the	meaning	of	the	partID	for	some	common
messages.

Return	Value:

The	return	value	from	this	method	is	of	type	RefResult.	This	is	usually
REF_SUCCEED	indicating	the	message	was	processed.	Sometimes,	the
return	value	may	be	REF_STOP.	This	return	value	is	used	to	stop	the
message	from	being	propagated	to	the	dependents	of	the	item.

Default	Implementation:
{return	REF_SUCCEED;}

Prototype:
virtual	void	NodeIKParamsChanged();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	on	a	transform	controller	when	one	of	the	node	level	IK
parameters	has	been	changed.

Default	Implementation:
{}

Prototype:
virtual	BOOL	InheritsParentTransform()

Remarks:
Implemented	by	the	Plug-In.
This	method	is	only	implemented	by	transform	controllers.	Transform
controllers	that	do	not	inherit	their	parent's	transform	should	override	this
method.
When	a	transform	controller	is	evaluated,	the	parent	transform	is	passed	in	to
the	controller	and	the	controller	typically	applies	its	value	to	the	parent
transform.	However,	some	controllers	(for	example	Biped)	may	choose	to
control	the	TM	in	an	absolute	manner	and	therefore	ignore	the	incoming
parent's	TM.	The	system	needs	to	know	about	this	because	normally	if	an
object	and	its	parent	are	selected	and	the	user	attempts	to	move	them	only	the
parent	transform	is	modified	because	it	is	assumed	that	the	child	will	inherit	its
parents	TM.
Note:	This	method	may	still	return	TRUE	even	if	all	the	bits	returned	from
GetInheritanceFlags()	are	SET	to	indicate	that	nothing	is	inherited	from

the	parent.	This	is	simply	because	these	methods	don't	have	the	same	level	of
'granularity'.	This	method	deals	with	the	overall	inheritance	of	the	parent's
transform	whereas	the	inheritance	flags	relate	to	individual	parts.

Return	Value:
TRUE	if	the	controller	inherits	its	parents	TM;	otherwise	FALSE.	Returning
FALSE	will	cause	SetValue()	to	be	called	even	in	the	case	when	the	parent	is
also	being	transformed.

Default	Implementation:
{	return	TRUE;	}

Prototype:
virtual	DWORD	GetInheritanceFlags();

Remarks:
Implemented	by	the	Plug-In.
This	method	should	be	implemented	by	TM	controllers	that	support	filtering
out	inheritance.	It	returns	the	state	of	the	transform	inheritance	flags.	These	are
the	values	that	show	up	in	the	Hierarchy	branch,	under	the	Link	Info	section,
in	the	Inheritance	rollup.

Return	Value:
One	or	more	of	the	following	values:
Note:	Each	bit	is	used	to	represent	a	single	inheritance.	If	the	bit	is	CLEAR
(OFF)	it	means	inherit	(checked	in	the	3ds	max	UI).	If	the	bit	is	SET	it	means
DON'T	inherit	(unchecked	in	the	3ds	max	UI).
INHERIT_POS_X
INHERIT_POS_Y
INHERIT_POS_Z
INHERIT_ROT_X
INHERIT_ROT_Y
INHERIT_ROT_Z
INHERIT_SCL_X
INHERIT_SCL_Y
INHERIT_SCL_Z
INHERIT_ALL

Default	Implementation:
{return	INHERIT_ALL;}

Prototype:
virtual	BOOL	SetInheritanceFlags(DWORD	f,	BOOL	keepPos);

Remarks:
Implemented	by	the	Plug-In.
This	method	should	be	implemented	by	TM	controllers	that	support	filtering
out	inheritance.
Note:	Each	bit	is	used	to	represent	a	single	inheritance.	This	method	expects
the	bits	of	the	flags	passed	to	be	CLEAR	(OFF)	to	mean	DON'T	inherit
(unchecked	in	the	3ds	max	UI).	If	they	are	SET	it	means	inherit	(checked	in
the	3ds	max	UI).

Parameters:
DWORD	f
The	inheritance	flags.	One	or	more	of	the	following	values:
INHERIT_POS_X
INHERIT_POS_Y
INHERIT_POS_Z
INHERIT_ROT_X
INHERIT_ROT_Y
INHERIT_ROT_Z
INHERIT_SCL_X
INHERIT_SCL_Y
INHERIT_SCL_Z
INHERIT_ALL

BOOL	keepPos
If	TRUE	the	position	of	the	node	should	remain	the	same;	otherwise	the	node
may	move.

Return	Value:
Return	TRUE	if	TM	controller	supports	inheritance;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

IsLeaf	/	IsKeyable	/	IsColor

Prototype:
virtual	BOOL	IsLeaf()

Remarks:
Implemented	by	the	Plug-In.
Indicates	whether	the	controller	is	a	leaf	controller.	If	a	controller	is	a	leaf
controller,	then	it	MUST	NOT	BY	DEFINITION	have	any	sub-controllers	or
references.	The	controller	should	return	TRUE	if	it	has	no	sub-controllers.	For
example,	a	PRS	controller	is	not	a	leaf	controller	(because	it	has	sub-
controllers	for	Position,	Rotation	and	Scale),	but	a	simple	keyframed	float
controller	is	a	leaf	controller.

Return	Value:
TRUE	if	the	controller	is	a	leaf	controller;	FALSE	otherwise.

Default	Implementation:
{return	TRUE;}

Prototype:
virtual	int	IsKeyable()

Remarks:
Implemented	by	the	Plug-In.
Indicates	if	the	controller	is	a	keyframe	controller.	This	means	the	controller
stores	keys	at	certain	frames	and	interpolates	between	keys	at	other	times.

Return	Value:
Nonzero	if	the	controller	is	a	keyframe	controller;	zero	otherwise.

Default	Implementation:
{return	1;}

Prototype:
virtual	BOOL	IsColorController()

Remarks:
Implemented	by	the	Plug-In.

Implemented	by	any	Point3	controller	that	wishes	to	indicate	that	it	is	intended
to	control	floating	point	RGB	color	values.	Returns	TRUE	to	indicate	that	it
controls	float	color	values;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Ease	/	Mulitplier	Curve	and	ORT	methods
The	following	methods	involve	ease	and	multiplier	curves.	See	the	sample	code
after	the	methods	GetValue()	and	SetValue()	to	see	how	these	methods	are
used.

Prototype:
virtual	BOOL	CanApplyEaseMultCurves()

Remarks:
Implemented	by	the	Plug-In.
This	method	determines	if	a	controller	may	have	ease	or	multiplier	curves
applied	to	it.	This	method	defaults	to	returning	TRUE,	but	can	be
implemented	to	return	FALSE	by	a	controller	that	does	not	wish	to	let	ease	or
multiplier	curves	be	applied	to	it.

Return	Value:
TRUE	to	allow	the	application	of	ease	and	multiplier	curves;	otherwise
FALSE.

Default	Implementation:
{return	TRUE;}

Prototype:
TimeValue	ApplyEase(TimeValue	t,Interval	&valid);

Remarks:
Implemented	by	the	System.
The	controller	calls	this	method	to	pipe	the	TimeValue	passed	through	the	ease
curve	to	get	the	modified	TimeValue.

Parameters:
TimeValue	t

The	time	to	have	modified	by	the	ease	curve.
Interval	&valid
The	validity	interval	of	the	TimeValue	returned.

Return	Value:
The	modified	TimeValue.

Prototype:
void	AppendEaseCurve(Control	*cont);

Remarks:
Implemented	by	the	System.
Adds	an	ease	curve	to	the	specified	controller.

Parameters:
Control	*cont
The	controller	that	the	ease	curve	will	be	applied	to.

Prototype:
int	NumEaseCurves();

Remarks:
Implemented	by	the	System.
Returns	the	number	of	ease	curves	applied	to	the	controller.

Prototype:
void	DeleteEaseCurve(int	i);

Remarks:
Implemented	by	the	System.
Deletes	the	'i-th'	ease	curve	from	the	controller.

Parameters:
int	i
The	index	of	the	ease	curve	to	delete.

Prototype:

float	GetMultVal(TimeValue	t,Interval	&valid);
Remarks:
Implemented	by	the	System.
Retrieves	a	floating	point	value	that	is	the	product	of	all	the	multiplier	curves
at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	retrieve	the
Interval	&valid
The	validity	interval	of	the	value.

Return	Value:
The	product	of	all	the	multiplier	curves	applied	to	the	controller.

Prototype:
void	AppendMultCurve(Control	*cont);

Remarks:
Implemented	by	the	System.
Adds	a	multiplier	curve	to	the	specified	controller.

Parameters:
Control	*cont
The	controller	to	have	the	multiplier	curve	added.

Prototype:
int	NumMultCurves();

Remarks:
Implemented	by	the	System.
Returns	the	number	of	multiplier	curves	assigned	to	the	controller.

Prototype:
void	DeleteMultCurve(int	i);

Remarks:
Implemented	by	the	System.

Deletes	the	'i-th'	multiplier	curve	from	this	controller.
Parameters:
int	i
The	index	of	the	curve	to	delete.

When	a	user	brings	up	the	track	view	and	sets	the	out	of	range	types	for
the	controller	the	following	two	methods	are	called.

Prototype:
virtual	int	GetORT(int	type)

Remarks:
Implemented	by	the	System.
Returns	the	specified	Out	of	Range	Type	used	by	the	controller.	The	system
handles	this	method	but	the	controller	needs	to	process	the	ORT	in	its
implementation	of	GetValue()	and	SetValue().

Parameters:
int	type
One	of	the	following	values:
ORT_BEFORE	-	leading	up	to	the	pattern
ORT_AFTER	-	beyond	the	key	pattern

Return	Value:
One	of	the	following	values:
See	List	of	Out	of	Range	Types.

Prototype:
virtual	void	SetORT(int	ort,int	type);

Remarks:
Implemented	by	the	System.
Sets	the	specified	Out	of	Range	Type	to	be	used	by	the	controller.	The	system
handles	this	method	but	the	controller	needs	to	process	the	ORT	in	its
implementation	of	GetValue()	and	SetValue().

Parameters:
int	ort
See	List	of	Out	of	Range	Types.
int	type
One	of	the	following	values:
ORT_BEFORE	-	leading	up	to	the	pattern

ORT_AFTER	-	beyond	the	key	pattern

Prototype:
virtual	void	EnableORTs(BOOL	enable);

Remarks:
Implemented	by	the	System.
Sets	the	enabled/disabled	state	for	Out	of	Range	Types.	If	disabled,	this
temporarily	causes	the	Out	of	Range	Types	to	behave	as	if	set	to	constant.	This
can	be	used	if	you	want	to	modify	a	controller	but	don't	want	ORT	mapping
for	ORT_LOOP,	ORT_CYCLE,	or	ORT_OSCILLATE.

Parameters:
BOOL	enable
TRUE	to	enable	ORTs;	FALSE	to	disable.

The	methods	below	are	used	with	Inverse	Kinematics.	The
following	is	an	overview	of	the	control	flow	of	the	system	calling
these	IK	methods	on	the	controller	during	IK	calculations:
First	the	system	calls	EnumIKParams()	once	to	get	the	number	of	IK
parameters	(degrees	of	freedom)	from	the	plug-in.	This	lets	the	system	know
how	many	parameters	the	controller	has.	This	happens	only	once	when	the	entire
chain	is	set	up.	For	example	during	interactive	IK,	when	the	user	presses	the
mouse	button	down	the	chain	is	set	up.	In	applied	IK	when	the	user	presses	the
Apply	IK	button	the	chain	is	set	up.
Next	the	IK	task	is	defined.	For	example,	if	the	user	is	doing	interactive	IK	they
press	the	mouse	button	down	and	the	IK	chain	is	set	up.	Next	they	move	the
mouse	a	few	pixels.	This	results	in	a	delta	for	the	end	effector.	This	defines	the
task	for	the	end	effector.	The	end	effector	wants	to	move	some	delta	or	rotate
some	amount.	This	has	defined	a	task	to	be	solved.
In	order	to	solve	the	task	the	system	must	iterate	towards	a	solution.
To	do	this	it	first	needs	to	compute	the	derivatives	of	all	the	parameters.	The
system	calls	CompDerivs()	on	the	controller.	The	controller	computes	the
derivative	and	tells	the	system	by	calling	methods	on	the	IKDeriv	argument
passed	to	the	method.	It	provides	its	derivative	for	each	of	the	parameters.

Next	the	system	uses	this	derivative	information	to	formulate	a	change	in	the
parameter	that	will	get	closer	to	the	solution.	The	system	then	computes	an
amount	to	change	the	parameter	and	then	calls	IncIKParams().	The	delta
passed	to	this	method	is	the	amount	of	change	it	wants	in	the	parameter.	The
controller	then	applies	this	change	(perhaps	not	all	of	it	due	to	constraints	it
might	have)	and	returns	the	amount	that	was	applied.
This	has	completed	a	single	iteration.	All	the	parameters	have	been	adjusted	a	bit
and	hopefully	we	have	move	closer	to	a	solution.	At	this	point	the	system	calls
CompDerivs()	again	because	just	moving	the	parameters	a	small	amount	may
have	actually	changed	the	derivative.	The	cycle	begins	again.
When	the	IK	solver	has	reached	its	solution	the	IK	task	is	finished.	Below	are
the	methods	that	must	be	implemented	to	participate	in	this	process.

Prototype:
virtual	void	EnumIKParams(IKEnumCallback	&callback)

Remarks:
Implemented	by	the	Plug-In.
This	tells	the	system	how	many	parameters	the	controller	has.	A	controller	can
have	as	many	IK	parameters	as	it	wants.	An	IK	parameter	corresponds	to	a
degree	of	freedom	in	IK.	The	parameter	is	a	floating	point	scalar	value.	For
example	a	position	controller	has	three	degrees	of	freedom	(X,	Y,	Z)	and	thus
three	parameters	that	IK	can	vary	in	its	solution.	The	path	controller	has	only	a
single	parameter	(degree	of	freedom)	-	the	position	along	the	path.	The	3ds
max	user	may	set	the	number	of	degrees	of	freedom.	For	example,	a	user	can
specify	that	a	rotation	controller	cannot	rotate	about	one	or	more	axes.	These
are	then	no	longer	degrees	of	freedom	or	IK	parameters.
This	method	is	called	by	the	system	so	the	plug-in	can	specify	how	many	IK
parameters	it	has.	It	does	this	by	calling	the	provided	callback	object	proc()
method	once	for	each	parameter	it	has.	It	passes	a	pointer	to	itself	and	the
index	of	the	IK	parameter.	For	example	a	position	controller	with	three
degrees	of	freedom	(and	thus	three	IK	parameters)	would	call	the
callback.proc()	three	time	passing	an	index	of	0,	then	1,	then	2.	See	the
sample	code	below.

Parameters:
IKEnumCallback	&callback

This	callback	is	provided	by	the	system	and	should	be	called	by	the	plug-in
once	for	each	IK	parameter	the	plug-in	has.	See	Class	IKEnumCallback.

Default	Implementation:
{}

Sample	Code:
void	QuatEnumIKParams(Control	*cont,IKEnumCallback
&callback)
	{
	JointParams	*jp	=	(JointParams*)cont-
>GetProperty(PROPID_JOINTPARAMS);
	for	(int	i=0;	i<3;	i++)	{
		if	(!jp	||	jp->Active(i))	{
			callback.proc(cont,i);
			}
		}
	}

Prototype:
virtual	BOOL	CompDeriv(TimeValue	t,Matrix3&	ptm,
	IKDeriv&	derivs,DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	determine	what	effect	a	change	in	the	parameter	has	on
the	end	effector.	This	is	the	derivative	of	the	end	effector	with	respect	to	the
parameter.	What	the	derivative	means	in	this	case	is	what	happens	to	the	end
effector	if	the	parameter	is	changed	by	some	small	delta.
The	plug-in	provides	the	derivatives	to	the	system	calling	derivs.DP()	and
derivs.DR().	It	should	call	derivs.DP()	and	derivs.DR()	in	the	same	order
as	the	callback.proc()	was	called	in	the	NumIKParams()	method
implementation.
When	the	controller	computes	the	derivative	it	should	apply	itself	to	the	parent
matrix.	For	example	a	position	controller	would	compute	its	derivative	based
on	the	parent	and	the	position	of	the	end	effector	and	then	apply	itself	to	the

parent	matrix.	If	it	does	apply	itself	to	the	parent	it	should	return	TRUE.	If	it
does	not	apply	itself	it	should	return	FALSE.

Parameters:
TimeValue	t
Specifies	the	time	to	compute	the	derivative.
Matrix3&	ptm
The	parents	transformation.
IKDeriv&	derivs
This	class	provides	methods	the	plug-in	calls	to	set	the	derivatives.	See	Class
IKDeriv.
DWORD	flags
One	of	the	following	values:
POSITION_DERIV
Indicates	that	derivs.DP()	should	be	called.
ROTATION_DERIV
Indicates	that	derivs.DR()	should	be	called.

Return	Value:
If	a	controller	isn't	participating	in	IK	then	it	should	return	FALSE	and	the
client	(usually	PRS)	will	apply	the	controller's	value	to	the	parent	TM.

Default	Implementation:
{return	FALSE;}

Sample	Code:
The	following	sample	code	shows	how	the	quaternion	controller	has
implemented	this	method.	Note	that	the	method	loops	based	on	the	number	of
end	effectors,	and	calls	derivs.NextDOF()	after	each	iteration.
BOOL	QuatCompDeriv(Control	*cont,TimeValue	t,Matrix3&
ptm,
		IKDeriv&	derivs,DWORD	flags)
	{
	JointParams	*jp	=	(JointParams*)cont-
>GetProperty(PROPID_JOINTPARAMS);
	Quat	q;
	Interval	valid;

	for	(int	i=0;	i<3;	i++)	{
		if	(!jp	||	jp->Active(i))	{
			for	(int	j=0;	j<derivs.NumEndEffectors();	j++)	{
				Point3	r	=	derivs.EndEffectorPos(j)	-	ptm.GetRow(3);
				if	(flags&POSITION_DERIV)	{
					derivs.DP(CrossProd(ptm.GetRow(i),r),j);
					}
				if	(flags&ROTATION_DERIV)	{
					derivs.DR(ptm.GetRow(i),j);
					}
				}
			derivs.NextDOF();
			}
		}
	return	FALSE;
	}

Prototype:
virtual	float	IncIKParam(TimeValue	t,int	index,float	delta);

Remarks:
Implemented	by	the	Plug-In.
When	the	system	has	computed	a	change	in	the	parameter	it	will	call	this
method.	The	controller	should	increment	the	specified	parameter	by	the
specified	delta.	The	controller	can	increment	the	parameter	less	than	this	delta
if	it	needs	to.	This	could	be	for	several	reasons:
1	Its	parameter	may	be	constrained	to	lie	within	a	specific	interval.	It	would
not	want	to	add	a	delta	that	took	the	parameter	outside	of	this	interval.

2	It	was	asked	to	calculate	a	constant	partial	derivative	for	a	linkage	that	could
be	nonlinear.	Therefore	the	derivative	may	have	only	been	an	instantaneous
approximation.	Due	to	the	locality	of	the	IK	solution,	the	controller	might
not	want	to	allow	a	delta	that	was	too	large.

After	the	controller	has	applied	the	delta,	it	needs	to	indicate	to	the	system
how	much	of	the	delta	was	used.

Parameters:

TimeValue	t
The	time	of	the	increment.
int	index
Specifies	the	IK	parameter	to	increment.
float	delta
The	delta	to	apply	to	the	parameter.	The	controller	can	increment	the
parameter	less	than	this	delta	if	it	needs	to	in	order	to	accommodate	a	limit	it
has.	This	methods	returns	the	amount	that	was	actually	incremented.

Return	Value:
The	amount	the	parameter	was	actually	incremented.	This	allows	the	IK	solver
to	know	the	value	was	not	incremented	the	full	amount.

Default	Implementation:
{return	0.0f;}

Sample	Code:
float	QuatIncIKParam(Control	*cont,TimeValue	t,int	index,float
delta)
	{
	JointParams	*jp	=	(JointParams*)cont-
>GetProperty(PROPID_JOINTPARAMS);
	if	((float)fabs(delta)>MAX_IKROT)	delta	=	MAX_IKROT	*
SGN(delta);
	if	(jp)	{
		float	v=0.0f;
		if	(jp->Limited(index))	{
			Quat	q;
			Interval	valid;
			cont->GetValue(t,&q,valid,CTRL_ABSOLUTE);
			v	=	GetRotation(q,index);
			}
		delta	=	jp->ConstrainInc(index,v,delta);
		}
	Point3	a(0,0,0);
	a[index]	=	1.0f;
	AngAxis	aa(a,-delta);

	cont->SetValue(t,&aa,FALSE,CTRL_RELATIVE);
	return	delta;
	}
static	float	GetRotation(Quat&	q,int	axis)
	{
	Matrix3	tm;
	q.MakeMatrix(tm);
	MRow*	t	=	tm.GetAddr();
	int	n	=	(axis+1)%3,	nn	=	(axis+2)%3;
	if	(fabs(t[n][axis])	<	fabs(t[nn][axis]))	{
		return	(float)atan2(t[n][nn],t[n][n]);
	}	else	{
		return	-(float)atan2(t[nn][n],t[nn][nn]);
		}
	}

Prototype:
virtual	void	ClearIKParam(Interval	iv,int	index)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	have	the	controller	delete	its	keys.	If	the	user	has	the
'Clear	Keys'	check	box	checked	when	they	press	the	'Apply	IK'	button,	this
method	is	called	to	have	the	controller	deletes	keys	in	the	given	interval	for
the	specified	degree	of	freedom.

Parameters:
Interval	iv
The	interval	over	which	the	keys	should	be	deleted.
int	index
Specified	the	degree	of	freedom	(parameter)	that	the	keys	should	be	deleted
for.

Default	Implementation:
{return;}

Prototype:

virtual	void	InitIKJoints(InitJointData	*posData,InitJointData
*rotData)

Remarks:
Implemented	by	the	Plug-In.
This	is	an	optional	method	that	can	be	implemented	by	controllers	that	support
IK	to	initialize	their	joint	parameters	based	on	data	loaded	from	3D	Studio	R4/
DOS	files.

Parameters:
InitJointData	*posData
The	position	data	from	the	3DS	file.	See	Class	InitJointData.
InitJointData	*rotData
The	rotation	data	from	the	3DS	file.

Default	Implementation:
{}

Prototype:
virtual	void	InitIKJoints2(InitJointData2	*posData,
InitJointData2	*rotData);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	available	in	release	4.0	and	later	only.
This	is	an	optional	method	that	can	be	implemented	by	controllers	that	support
IK	to	initialize	their	joint	parameters	based	on	data	loaded	from	3D	Studio	R4/
DOS	files.

Parameters:
InitJointData2	*posData
The	position	data	from	the	3DS	file.	See	Class	InitJointData2.
InitJointData2	*rotData
The	rotation	data	from	the	3DS	file.

Default	Implementation:
{}

Prototype:
virtual	BOOL	GetIKJoints(InitJointData	*posData,InitJointData
*rotData);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	retrieves	the	IK	joint	parameter	data	from	the	UI.

Parameters:
InitJointData	*posData
Points	to	the	object	to	hold	the	position	data.	See	Class	InitJointData.
InitJointData	*rotData
Points	to	the	object	to	hold	the	rotation	data.

Return	Value:
TRUE	if	the	data	was	retrieved;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	GetIKJoints2(InitJointData2	*posData,
InitJointData2	*rotData);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	retrieves	the	IK	joint	parameter	data	from	the	UI.

Parameters:
InitJointData2	*posData
Points	to	the	object	to	hold	the	position	data.	See	Class	InitJointData2.
InitJointData2	*rotData
Points	to	the	object	to	hold	the	rotation	data.

Return	Value:
TRUE	if	the	data	was	retrieved;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	GetDOFParams(TimeValue	t,	Matrix3	&ptm,
DOFParams	&dofs,	BOOL	nodeSel);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
The	new	IK	system	has	some	axes	gizmos	which	show	the	degrees	of
freedom,	etc.	This	method	is	called	by	the	system

Parameters:
TimeValue	t
The	current	time.
Matrix3	&ptm
The	parent	matrix.
DOFParams	&dofs
This	is	the	structure	to	be	filled	in.	See	Class	DOFParams.
BOOL	nodeSel
TRUE	if	the	node	is	currently	selected;	otherwise	FALSE.

Return	Value:
TRUE	if	the	method	is	implemented;	FALSE	otherwise.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	CreateLockKey(TimeValue	t,	int	which);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	to	create	a	locking	key.	This	is	a	key	that	looks	back	to
the	previous	key	and	creates	a	new	key	at	the	specified	time	which	matches
the	previous	key	in	value.	It	also	adjusts	the	parameters	for	the	key	such	that
the	value	stays	constant	from	the	previous	key	to	this	key.	For	instance,	the
TCB	controller	will	set	the	previous	and	new	continuity	to	0.	The	Bezier
controller	sets	the	out	tangent	type	of	the	previous	key	to	linear	and	the	in
tangent	type	of	the	new	key	to	linear.

Parameters:
TimeValue	t
The	time	to	create	the	key.
int	which
Specifies	which	type	of	key	to	create:	0	for	position,	1	for	rotation.

Return	Value:
TRUE	if	the	method	is	implemented;	FALSE	otherwise.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	void	MirrorIKConstraints(int	axis,	int	which,	BOOL
pasteMirror=FALSE);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	to	mirror	the	specified	IK	constraints	about	the	specified
axis.	When	IK	constraints	are	mirrored	they	need	to	be	updated	to	reflect	the
new	orientation.	For	instance,	if	you	set	the	constraints	for	a	left	arm	to	bend
only	+90	degrees	along	one	axis	and	then	copied	these	to	a	right	arm	the	joint
would	bend	backwards.	What	you	need	to	do	is	provides	the	appropriate
compensation	so	the	orientation	is	kept	proper.

Parameters:
int	axis
Specifies	the	axis	of	reflection:	0	for	X,	1	for	Y,	2	for	Z.
int	which
Specifies	which	type	of	constraints	are	being	mirrored:	0	for	position,	1	for
rotation.
BOOL	pasteMirror=FALSE
TRUE	if	the	mirror	is	being	done	as	part	of	a	paste	operation;	otherwise
FALSE	(for	example	if	the	mirror	was	being	done	with	the	mirror	tool).

Return	Value:
TRUE	if	the	method	is	implemented;	FALSE	otherwise.

Default	Implementation:
{}

Prototype:
virtual	BOOL	TerminateIK();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
User	can	specifiy	a	node	as	a	terminator.	This	method	gives	the	associated
controller	the	chance	to	specify	that	it's	terminated.

Return	Value:
TRUE	if	the	method	is	implemented;	FALSE	otherwise.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	void	NodeIKParamsChanged();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	on	a	transform	controller	when	one	of	the	node	level	IK
parameters	has	been	changed

Default	Implementation:
{}

Prototype:
virtual	void	TMInvalidated();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	in	a	transform	controller	when	a	node	invalidates	its	TM
cache

Default	Implementation:
{}

Prototype:
virtual	BOOL	OKToBindToNode(INode	*node);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	lets	a	TM	controller	determine	if	it's	OK	to	IK	bind	to	a	particular
node.

Parameters:
INode	*node
Points	to	the	node	to	check.

Return	Value:
TRUE	if	it's	okay	to	bind;	FALSE	if	it's	not.

Default	Implementation:
{return	TRUE;}

Prototype:
virtual	BOOL	PreventNodeDeletion();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	on	TM	controllers	so	that	system	slave	controllers	can
prevent	the	Interface::DeleteNode()	API	from	deleting	them.	Note	that
DeleteNode()has	an	optional	parameter	to	override	this	so	master	controllers
can	easily	ddelete	slave	nodes	if	they	want	to.

Return	Value:
TRUE	to	prevent	deletion;	FALSE	to	allow	it.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	float	EvalVisibility(TimeValue	t,	View	&view,	Box3	pbox,
Interval	&valid);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

The	Level	of	Detail	utility	lets	you	construct	an	object	that	alters	its	geometric
complexity	(or	level	of	detail)	based	on	its	size	in	the	rendered	image.	You	do
this	by	creating	several	versions	of	the	same	object	--	each	with	different
levels	of	detail,	grouping	them	as	one,	and	then	assigning	the	Level	of	Detail
utility,	which	automatically	creates	a	special	LOD	controller	as	a	Visibility
track.	The	LOD	controller	then	hides	and	unhides	the	various	objects	in	the
group,	depending	on	their	size	in	the	rendered	scene.
This	method	is	called	on	visibility	float	controllers	with	view	related
parameters.	This	is	used	by	the	Level	of	Detail	controller	to	allow	view
dependent	visibility.

Parameters:
TimeValue	t
The	time	at	which	to	evaluate.
View	&view
This	class	contains	information	about	the	view	being	rendered.	This	includes
information	such	as	the	image	width	and	height,	the	projection	type,	and
matrices	to	convert	between	world	to	view	and	world	to	camera.	See	Class
View.
Box3	pbox
The	bounding	box	of	the	node	that's	being	evaluated.
Interval	&valid
This	interval	should	be	updated	to	reflect	the	validity	of	the	visibility
controller.

Return	Value:
The	visibility	of	the	object	at	the	specified	time.

Default	Implementation:
The	default	implementation	will	simply	call	GetValue().

Prototype:
virtual	BOOL	VisibleInViewports();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	on	visibility	controllers.	This	gives	them	the	option	to

completely	hide	an	object	in	the	viewports.
Return	Value:
TRUE	if	the	object	is	visible	in	the	viewport;	FALSE	if	invisible.

Default	Implementation:
{return	TRUE;}

Prototype:
virtual	BOOL	CanInstanceController();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Called	on	transform	controllers	or	visibility	controllers	when	a	node	is	cloned
and	the	user	has	chosen	to	instance

Return	Value:
	

Default	Implementation:
{return	TRUE;}

Prototype:
void	CloneControl(Control	*ctrl,RemapDir	&remap);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	implemented	by	the	System.	It	should	be	called	by	any	leaf
controller's	Clone()	method	so	that	ease	and	multipier	curves	are	cloned.

Parameters:
Control	*ctrl
Points	to	the	cloned	controller	(the	new	one).
RemapDir	&remap
The	RemapDir	passed	to	this	controller's	Clone()	method.

Sample	Code:
RefTargetHandle	Clone(RemapDir&	remap=NoRemap())	{
	ExprControl	*ctrl	=	new	ExprControl(this->type,	*this);
	CloneControl(ctrl,remap);

	return	ctrl;
	}		

The	following	functions	are	not	part	of	class	Control	but	are
provided	for	use.	These	functions	are	for	use	by	Position	or
Rotation	controllers.	Position	controllers	would	use	the	Point3
versions	and	Rotation	controllers	would	use	the	Quat	versions
	
void	QuatEnumIKParams(Control	*cont,IKEnumCallback
&callback);
	
BOOL	QuatCompDeriv(Control	*cont,TimeValue	t,Matrix3&
ptm,
	IKDeriv&	derivs,DWORD	flags);
	
float	QuatIncIKParam(Control	*cont,TimeValue	t,int	index,float
delta);
	
void	QuatBeginIKParams(Control	*cont,IObjParam	*ip,
ULONG	flags,
	Animatable	*prev);
	
void	Point3EnumIKParams(Control	*cont,IKEnumCallback
&callback);
	
BOOL	Point3CompDeriv(Control	*cont,TimeValue	t,Matrix3&
ptm,
	IKDeriv&	derivs,DWORD	flags);
	
float	Point3IncIKParam(Control	*cont,TimeValue	t,int
index,float	delta);
	
void	Point3BeginIKParams(Control	*cont,IObjParam	*ip,
	ULONG	flags,Animatable	*prev);

The	methods	below	deal	with	copying	and	pasting	IK	parameters
in	the	Hierarchy	branch.

Prototype:
virtual	BOOL	CanCopyIKParams(int	which)

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	TRUE	if	the	controller	has	IK	parameters	it	can	copy	and
FALSE	otherwise.

Parameters:
int	which
One	of	the	following	values:
COPYPASTE_IKPOS
COPYPASTE_IKROT

Return	Value:
TRUE	if	the	controller	can	copy	the	specified	IK	parameters;	otherwise
FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	IKClipObject	*CopyIKParams(int	which)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	have	the	controller	copy	the	specified	IK	parameters
to	an	IKClipObject	and	return	a	pointer	to	it.	The	plug-in	should	derive	a	class
from	the	IKClipObject,	put	its	data	in	the	class,	and	return	a	new	instance	of	it.
See	Class	IKClipObject.

Parameters:
int	which
One	of	the	following	values:
COPYPASTE_IKPOS
COPYPASTE_IKROT

Default	Implementation:
{return	NULL;}

Prototype:
virtual	BOOL	CanPasteIKParams(IKClipObject	*co,int	which)

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	the	controller	can	paste	the	specified	IK	parameters;
otherwise	FALSE.

Parameters:
IKClipObject	*co
A	pointer	to	the	current	IKClipObject	in	the	clipboard.	This	class	identifies
the	creator	of	the	clip	object.	See	Class	IKClipObject.	The	plug-in	should	look
at	the	IDs	in	the	IKClipObject	to	make	sure	it	matches	this	controller.	If	it
does	not,	the	plug-in	should	return	FALSE.
int	which
One	of	the	following	values:
COPYPASTE_IKPOS
COPYPASTE_IKROT

Return	Value:
TRUE	if	the	controller	can	paste	the	specified	IK	parameters;	otherwise
FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	void	PasteIKParams(IKClipObject	*co,int	which)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	have	the	controller	paste	the	specified	IK	parameters
from	the	specified	IKClipObject	to	itself.

Parameters:

IKClipObject	*co
A	pointer	to	an	IKClipObject.	See	Class	IKClipObject.
int	which
One	of	the	following	values:
COPYPASTE_IKPOS
COPYPASTE_IKROT

Default	Implementation:
{}

Controllers	that	wish	to	have	an	gizmo	(apparatus)	available	in
the	scene	will	implement	these	methods.

Prototype:
virtual	int	Display(TimeValue	t,	INode*	inode,
	ViewExp	*vpt,	int	flags);

Remarks:
Implemented	by	the	Plug-In.
This	is	called	by	the	system	to	have	the	controller	display	its	gizmo.	When	a
controller	is	being	edited	in	the	Motion	branch,	this	method	is	called	to	allow
it	to	display	any	apparatus	it	may	have	in	the	scene.	Note	that	Display()	is
only	called	on	Transform	Controllers.	It	is	not	called	only	any	sub-controllers,
for	example	it	wouldn't	be	called	on	the	position	controller	of	a	PRS	transform
controller.
In	R4	and	higher	however	the	display	method	WILL	be	called	on	Position,
Rotation	and	scale	controllers	as	well

Parameters:
TimeValue	t
The	time	to	display	the	object.
INode*	inode
The	node	to	display.
ViewExp	*vpt
An	interface	pointer	that	exposes	methods	the	plug-in	may	call	related	to	the
viewports.

int	flags
See	List	of	Display	Flags.

Return	Value:
Nonzero	if	the	item	was	displayed;	otherwise	0.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	int	HitTest(TimeValue	t,	INode*	inode,	int	type,
	int	crossing,	int	flags,	IPoint2	*p,	ViewExp	*vpt)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	determine	if	the	specified	screen	point	intersects	the
controller	gizmo.	The	method	returns	nonzero	if	the	gizmo	was	hit;	otherwise
0.

Parameters:
TimeValue	t
The	time	to	perform	the	hit	test.
INode*	inode
A	pointer	to	the	node	whose	gizmo	should	be	tested.
int	type
The	type	of	hit	testing	to	perform.	See	Hit	Test	Types	for	details.
int	crossing
The	state	of	the	crossing	setting.	If	TRUE	crossing	selection	is	on.
int	flags
The	hit	test	flags.	See	Hit	Test	Flags	for	details.
IPoint2	*p
The	screen	point	to	test.
ViewExp	*vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.

Return	Value:

Nonzero	if	the	controller	gizmo	was	hit;	otherwise	0.
Default	Implementation:
{	return	0;	}

Prototype:
virtual	void	GetWorldBoundBox(TimeValue	t,INode*	inode,
	ViewExp	*vpt,	Box3&	box)

Remarks:
Implemented	by	the	Plug-In.
This	is	the	world	space	bounding	box	of	the	controllers	gizmo.

Parameters:
TimeValue	t
The	time	to	retrieve	the	bounding	box.
INode	*	inode
The	node	to	calculate	the	bounding	box	for.
ViewExp*	vp
An	interface	pointer	that	exposes	portions	of	View3D	that	are	exported	for	use
by	plug-ins.
Box3&	box
The	bounding	box	is	returned	through	box.

Default	Implementation:
{}

Prototype:
virtual	void	ActivateSubobjSel(int	level,	XFormModes&	modes)

Remarks:
Implemented	by	the	Plug-In.
When	the	user	changes	the	selection	of	the	sub-object	drop	down,	this	method
is	called	to	notify	the	plug-in.	This	method	should	provide	instances	of	a	class
derived	from	CommandMode	to	support	move,	rotate,	non-uniform	scale,
uniform	scale,	and	squash	modes.	These	modes	replace	their	object	mode
counterparts	however	the	user	still	uses	the	move/rotate/scale	tool	buttons	in

the	toolbar	to	activate	them.	If	a	certain	level	of	sub-object	selection	does	not
support	one	or	more	of	the	modes	NULL	may	be	passed.	If	NULL	is	specified
the	corresponding	toolbar	button	will	be	grayed	out.

Parameters:
int	level
The	sub-object	selection	level	the	command	modes	should	be	set	to	support.	A
level	of	0	indicates	object	level	selection.	If	level	is	greater	than	or	equal	to	1
the	index	refers	to	the	types	registered	by	the	object	in	the	order	they	appeared
in	the	list	when	registered	by	Interface::RegisterSubObjectTypes().	See
Class	Interface.
XFormModes&	modes
The	command	modes	to	support.	See	Class	XFormModes.

Default	Implementation:
{}

Prototype:
virtual	void	SelectSubComponent(CtrlHitRecord	*hitRec,
	BOOL	selected,	BOOL	all,	BOOL	invert=FALSE)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	change	the	selection	state	of	the	component	identified
by	hitRec.

Parameters:
CtrlHitRecord	*hitRec
Identifies	the	component	whose	selected	state	should	be	modified.	See	Class
CtrlHitRecord.
BOOL	selected
TRUE	if	the	item	should	be	selected;	FALSE	if	the	item	should	be	de-selected.
BOOL	all
TRUE	if	the	entire	object	should	be	selected;	FALSE	if	only	the	portion	of	the
identified	by	hitRec.
BOOL	invert=FALSE
This	is	set	to	TRUE	when	all	is	also	set	to	TRUE	and	the	user	is	holding	down

the	Shift	key	while	region	selecting	in	select	mode.	This	indicates	the	items	hit
in	the	region	should	have	their	selection	state	inverted

Default	Implementation:
{}

Prototype:
virtual	void	ClearSelection(int	selLevel)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	clear	the	selection	for	the	given	sub-object	level.	All
sub-object	elements	of	this	type	should	be	deselected.

Parameters:
int	selLevel
Specifies	the	selection	level	to	clear.

Default	Implementation:
{}

Prototype:
virtual	int	SubObjectIndex(CtrlHitRecord	*hitRec)

Remarks:
Implemented	by	the	System.
Returns	the	index	of	the	sub-object	element	identified	by	the	CtrlHitRecord
hitRec.	The	sub-object	index	identifies	a	sub-object	component.	The
relationship	between	the	index	and	the	component	is	established	by	the
controller.	For	example	a	controller	may	allow	the	user	to	select	a	group	of
footprints	and	these	groups	may	be	identified	as	group	0,	group	1,	group	2,
etc.	Given	a	hit	record	that	identifies	a	footstep,	the	controller's
implementation	of	this	method	would	return	the	group	index	that	the	footprint
belonged	to.

Parameters:
CtrlHitRecord	*hitRec
Identifies	the	component	whose	index	should	be	returned.	See	Class

CtrlHitRecord.
Return	Value:
The	index	of	the	sub-object	element.

Default	Implementation:
{return	0;}

Prototype:
virtual	void	SelectAll(int	selLevel);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	to	select	every	element	of	the	given	sub-object	level.
This	will	be	called	when	the	user	chooses	Select	All	from	the	3ds	max	Edit
menu.

Parameters:
int	selLevel
Specifies	the	selection	level	to	select.

Default	Implementation:
{}

Prototype:
virtual	void	InvertSelection(int	selLevel);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	to	invert	the	specified	sub-object	level.	If	the	element	is
selected	it	should	be	deselected.	If	it's	deselected	it	should	be	selected.	This
will	be	called	when	the	user	chooses	Select	Invert	from	the	3ds	max	Edit
menu.

Parameters:
int	selLevel
Specifies	the	selection	level	to	invert.

Default	Implementation:
{}

When	the	user	is	in	a	sub-object	selection	level,	the	system	needs
to	get	the	reference	coordinate	system	definition	from	the	current
controller	being	edited	so	that	it	can	display	the	axis.
Two	methods	allows	the	system	to	do	this:

Prototype:
virtual	void	GetSubObjectCenters(SubObjAxisCallback	*cb,
	TimeValue	t,INode	*node)

Remarks:
Implemented	by	the	Plug-In.
When	the	user	is	in	a	sub-object	selection	level,	the	system	needs	to	get	the
reference	coordinate	system	definition	from	the	current	controller	being	edited
so	that	it	can	display	the	axes.	This	method	specifies	the	position	of	the	center.
The	plug-in	enumerates	its	centers	and	calls	the	callback	cb	once	for	each.	See
Sub-Object	Coordinate	Systems.

Parameters:
SubObjAxisCallback	*cb
The	callback	object	whose	methods	may	be	called.	See	Class
SubObjAxisCallback.
TimeValue	t
The	time	to	enumerate	the	centers.
INode	*node
A	pointer	to	the	node.

Default	Implementation:
{}

Prototype:
virtual	void	GetSubObjectTMs(SubObjAxisCallback	*cb,
	TimeValue	t,INode	*node)

Remarks:
Implemented	by	the	Plug-In.
When	the	user	is	in	a	sub-object	selection	level,	the	system	needs	to	get	the
reference	coordinate	system	definition	from	the	current	controller	being	edited

so	that	it	can	display	the	axes.	This	method	returns	the	axis	system	of	the
reference	coordinate	system.	The	plug-in	enumerates	its	TMs	and	calls	the
callback	cb	once	for	each.	See	Sub-Object	Coordinate	Systems.

Parameters:
SubObjAxisCallback	*cb
The	callback	object	whose	methods	may	be	called.	See	Class
SubObjAxisCallback.
TimeValue	t
The	time	to	enumerate	the	TMs.
INode	*node
A	pointer	to	the	node.

Default	Implementation:
{}

	

Modify	sub-object	apparatuses

Prototype:
virtual	void	SubMove(TimeValue	t,	Matrix3&	partm,
	Matrix3&	tmAxis,	Point3&	val,
	BOOL	localOrigin=FALSE)

Remarks:
Implemented	by	the	Plug-In.
When	this	method	is	called	the	plug-in	should	respond	by	moving	its	selected
sub-object	components.

Parameters:
TimeValue	t
The	time	of	the	transformation.
Matrix3&	partm
The	'parent'	transformation	matrix.	This	matrix	represents	a	transformation
that	would	take	points	in	the	controller's	space	and	convert	them	into	world
space	points.
Matrix3&	tmAxis
The	matrix	that	represents	the	axis	system.	This	is	the	space	in	which	the
transformation	is	taking	place.
Point3&	val
This	value	is	a	vector	with	X,	Y,	and	Z	representing	the	movement	along	each
axis.
BOOL	localOrigin=FALSE
When	TRUE	the	transformation	is	occurring	about	the	sub-object's	local
origin.

Default	Implementation:
{}

Prototype:
virtual	void	SubRotate(TimeValue	t,	Matrix3&	partm,
	Matrix3&	tmAxis,	Quat&	val,	BOOL	localOrigin=FALSE){}

Remarks:
Implemented	by	the	Plug-In.
When	this	method	is	called	the	plug-in	should	respond	by	rotating	its	selected
sub-object	components.

Parameters:
TimeValue	t
The	time	of	the	transformation.
Matrix3&	partm
The	'parent'	transformation	matrix.	This	matrix	represents	a	transformation
that	would	take	points	in	the	controller's	space	and	convert	them	into	world
space	points.
Matrix3&	tmAxis
The	matrix	that	represents	the	axis	system.	This	is	the	space	in	which	the
transformation	is	taking	place.
Quat&	val
The	amount	to	rotate	the	selected	components.
BOOL	localOrigin=FALSE
When	TRUE	the	transformation	is	occurring	about	the	sub-object's	local
origin.	Note:	This	information	may	be	passed	onto	a	transform	controller	(if
there	is	one)	so	they	may	avoid	generating	0	valued	position	keys	for	rotation
and	scales.	For	example	if	the	user	is	rotating	an	item	about	anything	other
than	its	local	origin	then	it	will	have	to	translate	in	addition	to	rotating	to
achieve	the	result.	If	a	user	creates	an	object,	turns	on	the	animate	button,	and
rotates	the	object	about	the	world	origin,	and	then	plays	back	the	animation,
the	object	does	not	do	what	the	was	done	interactively.	The	object	ends	up	in
the	same	position,	but	it	does	so	by	both	moving	and	rotating.	Therefore	both
a	position	and	a	rotation	key	are	created.	If	the	user	performs	a	rotation	about
the	local	origin	however	there	is	no	need	to	create	a	position	key	since	the
object	didn't	move	(it	only	rotated).	So	a	transform	controller	can	use	this
information	to	avoid	generating	0	valued	position	keys	for	rotation	and	scales.

Prototype:
virtual	void	SubScale(TimeValue	t,	Matrix3&	partm,	Matrix3&
tmAxis,	Point3&	val,	BOOL	localOrigin=FALSE)

Remarks:
Implemented	by	the	Plug-In.
When	this	method	is	called	the	plug-in	should	respond	by	scaling	its	selected
sub-object	components.

Parameters:
TimeValue	t
The	time	of	the	transformation.
Matrix3&	partm
The	'parent'	transformation	matrix.	This	matrix	represents	a	transformation
that	would	take	points	in	the	modifier's	space	and	convert	them	into	world
space	points.
Matrix3&	tmAxis
The	matrix	that	represents	the	axis	system.	This	is	the	space	in	which	the
transformation	is	taking	place.
Point3&	val
This	value	is	a	vector	with	X,	Y,	and	Z	representing	the	scale	along	X,	Y,	and
Z	respectively.
BOOL	localOrigin=FALSE
When	TRUE	the	transformation	is	occurring	about	the	sub-object's	local
origin.	See	the	note	above	in	the	Rotate	method.

Prototype:
virtual	BOOL	RescaleTime(Interval	oseg,	Interval	nseg);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	called	when	the	user	rescales	time	in	the	time	configuration
dialog.	If	FALSE	is	returned	from	this	method	then
Animatable::MapKeys()	will	be	used	to	perform	the	scaling.	Controllers
can	override	this	method	to	handle	things	like	rescaling	tagents	that
MapKeys()	won't	affect	and	return	TRUE	if	they	don't	want	MapKeys()	to
be	called.

Parameters:
Interval	oseg

The	old	time	segment.
Interval	nseg
The	new	time	segment.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	int	GetDrawPixelStep();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Prior	to	R4	TrackView	was	using	static	defines	to	determines	the	number
samples/pixel	it	used	to	draw	and	compute	curve	extents.	Now	a	controller	can
override	these	defaults	by	implementing	GetDrawPixelStep()	and
GetExtentTimeStep().
This	method	allows	a	control	to	get	sampled	at	a	different	rate	than	what
trackview	does	by	default	so	the	controller	can	speed	up	redraws.	It	returns	the
pixel	sample	rate	for	when	the	curve	is	drawn.

Default	Implementation:
{return	5;}

Prototype:
virtual	int	GetExtentTimeStep();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Prior	to	R4	TrackView	was	using	static	defines	to	determines	the	number
samples/pixel	it	used	to	draw	and	compute	curve	extents.	Now	a	controller	can
override	these	defaults	by	implementing	GetDrawPixelStep()	and
GetExtentTimeStep().
This	method	returns	the	ticks	sample	rate	used	when	the	curve	is	checked	for
its	Y	extents.

Default	Implementation:
{return	40;}

Load	/	Save

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
Implemented	by	the	System.
The	default	implementation	of	Save()	handles	the	saving	of	the	out	of	range
types.	The	plug-in	should	call	this	method	from	its	implementation	of	Save().
The	plug-in	should	call	this	method	before	it	saves	any	of	its	chunks.
The	out	of	range	types	are	saved	in	these	chunks:
CONTROLBASE_CHUNK
INORT_CHUNK
OUTORT_CHUNK

Parameters:
ISave	*isave
This	pointer	may	be	used	to	call	methods	to	write	data	to	disk.	See	Class
ISave.

Return	Value:
One	of	the	following	values:
IO_OK	-	The	result	was	acceptable	-	no	errors.
IO_ERROR	-	This	is	returned	if	an	error	occurred.

Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
Implemented	by	the	System.
The	default	implementation	of	Load()	handles	the	loading	of	the	out	of	range
types.	The	plug-in	should	call	this	method	from	its	implementation	of	Load().
The	plug-in	should	call	this	method	before	it	loads	any	of	its	chunks.
The	out	of	range	types	are	saved	in	these	chunks:
CONTROLBASE_CHUNK
INORT_CHUNK
OUTORT_CHUNK

Parameters:
ILoad	*iload
This	pointer	may	be	used	to	call	methods	to	load	data	from	disk.	See	Class
ILoad.

Return	Value:
One	of	the	following	values:
IO_OK	-	The	result	was	acceptable	-	no	errors.
IO_ERROR	-	This	is	returned	if	an	error	occurred.

These	are	implemented	to	handle	ease	curves.
If	a	controller	is	a	leaf	controller,	then	it	MUST	NOT	BY	DEFINITION	have
any	sub-controllers	or	references.	If	it	is	a	leaf	controller,	then	these	are
implemented	to	handle	the	ease	curve	list.	If	it	is	NOT	a	leaf	controller,	then
these	can	be	overridden.
From	ReferenceMaker.	See	this	class	for	details	on	these	methods.
int	NumRefs();
RefTargetHandle	GetReference(int	i);
void	SetReference(int	i,	RefTargetHandle	rtarg);

From	Animatable.	See	this	class	for	details	on	these	methods.
int	NumSubs();
Animatable*	SubAnim(int	i);
TSTR	SubAnimName(int	i);

Default	implementations	of	some	Animatable	methods:
void*	GetInterface(ULONG	id);
int	PaintFCurves(ParamDimensionBase	*dim,
	HDC	hdc,	Rect&	rcGraph,	Rect&	rcPaint,
	float	tzoom,	int	tscroll,	float	vzoom,	int	vscroll,	DWORD	flags);
int	GetFCurveExtents(ParamDimensionBase	*dim,
	float	&min,	float	&max,	DWORD	flags);

Class	StdControl
See	Also:	Class	Control,	Class	Interval,	Class	Matrix3,	Class	Point3,	Class
Quat,	Class	ScaleValue,	List	of	Additional	Control	Related	Functions
class	StdControl	:	public	Control

Description:
StdControl	is	a	class	from	which	you	may	derived	controller	objects.	Controllers
are	the	objects	in	3ds	max	that	control	animation.	Any	controller	that	does	not
evaluate	itself	as	a	function	of	its	input	can	subclass	off	this	class.
The	purpose	of	this	class	is	to	simplify	some	aspects	of	implementing
controllers.	The	only	restriction	when	using	this	class	is	that	the	controller	can
not	evaluate	itself	as	a	function	of	its	input.	For	example,	position,	rotation,	and
scale	controllers	are	passed	a	TM	when	they	are	evaluated.	They	are	supposed	to
calculate	their	value	and	apply	it	to	the	TM	(pre-multiply).	It	is	possible	that	the
controller	could	calculate	its	value	as	some	function	of	this	input	matrix.	For
example,	a	rotation	controller	could	look	at	the	position	of	the	matrix	and	the
position	of	some	other	node	in	the	scene	and	calculate	the	rotation	such	that	the
object	is	looking	at	the	other	node.	Most	controllers	don't	do	this	so	they	can
subclass	off	this	class	which	handles	processing	ORTs	(Out	of	Range	Types),
ease	curves	and	multiplier	curves.
This	class	implements	GetValue()	and	SetValue()	but	requires	the	derived
class	to	implement	two	new	methods:	GetValueLocalTime()	and
SetValueLocalTime().
The	implementations	of	GetValue()	and	SetValue()	handle	processing	the
ORTs	and	ease	and	multiplier	curves.
Plug-In	Information:
Class	Defined	In	CONTROL.H
Super	Class	ID	CTRL_FLOAT_CLASS_ID	-	Used	by	float	controllers.
	CTRL_POINT3_CLASS_ID	-	Used	by	Point3	controllers.
	CTRL_MATRIX3_CLASS_ID	-	Used	by	Matrix3	controllers.
	CTRL_POSITION_CLASS_ID	-	Used	by	position	controllers.
	CTRL_ROTATION_CLASS_ID	-	Used	by	rotation	controllers.
	CTRL_SCALE_CLASS_ID	-	Used	by	scale	controllers.
	CTRL_MORPH_CLASS_ID	-	Used	by	morph	controllers.

Standard	File	Name	Extension	DLC
Extra	Include	File	Needed	None

Methods:

Prototype:
virtual	void	GetValueLocalTime(TimeValue	t,	void	*val,
	Interval	&valid,	GetSetMethod	method=CTRL_ABSOLUTE)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	have	the	controller	evaluate	itself	at	the	given	time.	In
this	class	the	system	implements	the	method	GetValue().	GetValue()	calls
this	method	to	retrieves	the	value	of	the	controller	at	the	specified	time.	The
implementation	of	GetValue()	then	takes	care	of	handling	the	ORTs,	ease
curves	and	multiplier	curves.	The	plug-in	must	only	return	the	value	of	the
controller.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.
void	*val
This	points	to	a	variable	to	hold	the	computed	value	of	the	controller	at	the
specified	time.	What	the	plug-in	needs	to	do	to	store	the	value	of	the	controller
depends	on	the	controller	type.	There	are	six	controller	types:	float,	Point3,
Position,	Rotation,	Scale,	and	Transform.

float
*val	points	to	a	float

Point3
*val	points	to	a	Point3

Position
*val	points	to	a	Point3

Rotation
*val	points	to	a	Quat

Scale
*val	points	to	a	ScaleValue

Transform
*val	points	to	a	Matrix3

Interval	&valid
The	interval	to	update.	The	controllers	validity	interval	should	be	intersected
with	this	interval.	This	updates	the	interval	to	reflect	the	interval	of	the
controller.
GetSetMethod	method=CTRL_ABSOLUTE
This	will	always	be:	CTRL_ABSOLUTE
This	indicates	the	controller	should	simply	store	its	value	in	*val.

Prototype:
virtual	void	SetValueLocalTime(TimeValue	t,	void	*val,
	int	commit=1,	GetSetMethod	method=CTRL_ABSOLUTE)=0;

Remarks:
Implemented	by	the	Plug-In.
In	this	class	the	system	implements	the	method	SetValue().	SetValue()	calls
this	method	to	store	the	value	of	the	controller	at	the	specified	time.	The
system	takes	care	of	handling	the	ORTs	and	multiplier	curves.	The	plug-in
must	only	store	the	value	of	the	controller.

Parameters:
TimeValue	t
The	time	to	store	the	value.
void	*val
Storage	for	the	value	to	set.	See	*val	in	Control::SetValue()	for	the
possible	data	types	passed	here.
int	commit=1
If	this	parameter	is	zero,	the	controller	should	save	the	value	at	the	given	time
before	setting	the	value.	If	commit	is	nonzero,	the	controller	doesn't	need	to
actually	update	its	keys	or	tangents.	See	Control	methods	CommitValue()
and	RestoreValue().
GetSetMethod	method=CTRL_ABSOLUTE
One	of	the	following	values:
CTRL_RELATIVE

Indicates	the	plug-in	should	add	the	value	to	the	existing	value	*val	(i.e.
Move/Rotate/Scale)
CTRL_ABSOLUTE
Indicates	the	plug-in	should	just	set	the	value.

Prototype:
void	GetValue(TimeValue	t,	void	*val,	Interval	&valid,
	GetSetMethod	method=CTRL_ABSOLUTE);

Remarks:
This	method	is	implemented	by	the	system.	Controller	that	subclass	from
StdControl	only	need	to	implement	GetValueLocalTime().	See	above.

Prototype:
void	SetValue(TimeValue	t,	void	*val,	int	commit=1,
	GetSetMethod	method=CTRL_ABSOLUTE);

Remarks:
This	method	is	implemented	by	the	system.	Controller	that	subclass	from
StdControl	only	need	to	implement	SetValueLocalTime().	See	above.

Prototype:
virtual	void	Extrapolate(Interval	range,	TimeValue	t,
	void	*val,	Interval	&valid,	int	type)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	calculate	some	of	the	Out	of	Range	Types	(ORTs).
There	are	several	kinds	of	extrapolations	that	need	to	be	done	based	on	the
ORT	type.	There	are	template	functions	implemented	in	CONTROL.H	to	do
them.	See	List	of	Miscellaneous	Controller	Functions	for	a	description	of
those	available.

Parameters:
Interval	range
The	range	that	must	be	extrapolated.

TimeValue	t
The	time	outside	the	range	to	extrapolate.
void	*val
Storage	for	the	extrapolated	value.	See	*val	in	GetValueLocalTime()	for
the	possible	data	types	passed	here.
Interval	&valid
The	validity	interval	of	the	extrapolated	value.
int	type
See	List	of	Out	of	Range	Types.

Sample	Code:
The	following	sample	code	shows	the	use	of	the	template	functions	to
implement	this	method	to	calculate	the	ORTs.
INTERP_CONT_TEMPLATE
void	InterpControl<INTERP_CONT_PARAMS>::Extrapolate(Interval
range,TimeValue	t,void	*val,
		Interval	&valid,int	type)
	{
	T	val0,	val1,	val2,	res;
	switch	(type)	{
		case	ORT_LINEAR:
			if	(t<range.Start())	{
				GetValueLocalTime(range.Start(),&val0,valid);
				GetValueLocalTime(range.Start()+1,&val1,valid);
				res	=	LinearExtrapolate(range.Start(),t,val0,val1,val0);
			}	else	{
				GetValueLocalTime(range.End()-1,&val0,valid);
				GetValueLocalTime(range.End(),&val1,valid);
				res	=	LinearExtrapolate(range.End(),t,val0,val1,val1);
				}
			break;
	
		case	ORT_IDENTITY:
			if	(t<range.Start())	{
				GetValueLocalTime(range.Start(),&val0,valid);
				res	=	IdentityExtrapolate(range.Start(),t,val0);
			}	else	{

				GetValueLocalTime(range.End(),&val0,valid);
				res	=	IdentityExtrapolate(range.End(),t,val0);
				}
			break;
	
		case	ORT_RELATIVE_REPEAT:
			GetValueLocalTime(range.Start(),&val0,valid);
			GetValueLocalTime(range.End(),&val1,valid);
			GetValueLocalTime(CycleTime(range,t),&val2,valid);
			res	=	RepeatExtrapolate(range,t,val0,val1,val2);
			break;
		}
	valid.Set(t,t);
	((T)val)	=	res;
	}

Prototype:
virtual	void	*CreateTempValue()=0;

Remarks:
Implemented	by	the	Plug-In.
When	processing	the	ORTs	the	system	might	need	a	temporary	variable	to
hold	an	intermediate	value.	Since	the	system	doesn't	know	the	type	of	the	data
that	the	controller	is	controlling	it	can't	allocate	the	right	amount	of	temporary
storage.	It	calls	this	method	to	do	so.	The	plug-in's	implementation	of	this
method	should	allocate	storage	to	hold	its	type	of	data	and	return	a	pointer	to
it.

Prototype:
virtual	void	DeleteTempValue(void	*val)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	simply	deletes	the	memory	allocated	by	CreateTempValue().

Parameters:
void	*val

Points	to	the	memory	allocated	by	CreateTempValue().

Prototype:
virtual	void	ApplyValue(void	*val,	void	*delta)=0;

Remarks:
Implemented	by	the	Plug-In.
Applies	the	given	value	to	the	given	input	value.	For	position,	rotation,	and
scale	controllers,	the	input	value	will	be	a	matrix	and	the	value	being	applied
will	be	a	Point3,	Quaternion,	or	ScaleValue,	respectively.	For	other	controllers
the	input	value	is	the	same	type	as	the	value	being	applied.

Parameters:
void	*val
The	value	to	update.
void	*delta
The	value	to	apply.

Prototype:
virtual	void	MultiplyValue(void	*val,	float	m)=0;

Remarks:
Implemented	by	the	Plug-In.
If	the	controller	has	multiplier	curves	then	the	system	will	calculate	the	factor
from	all	the	multiplier	curves	and	then	ask	the	controller	to	multiply	the	scalar
value	to	the	particular	data	type.

Parameters:
void	*val
The	value	to	update.
float	m
The	scalar	value	to	multiply	*val	by.

Class	SceneImport
See	Also:	Class	ImpInterface,	Class	Interface.
class	SceneImport

Description:
This	is	a	base	class	for	creating	file	import	plug-ins.	The	plug-in	implements
methods	of	this	class	to	describe	the	properties	of	the	import	plug-in	and	a
method	that	handles	the	actual	import	process.

Methods:

Prototype:
SceneImport();

Remarks:
Constructor.

Prototype:
virtual	~SceneImport();

Remarks:
Destructor.

Prototype:
virtual	int	ExtCount()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	number	of	file	name	extensions	supported	by	the	plug-in.

Prototype:
virtual	const	TCHAR	*Ext(int	i)	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	'i-th'	file	name	extension	(i.e.	"3DS").

Parameters:

int	i
The	index	of	the	file	name	extension	to	return.

Prototype:
virtual	const	TCHAR	*LongDesc()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	a	long	ASCII	description	of	the	file	type	being	imported	(i.e.
"Autodesk	3D	Studio	File").

Prototype:
virtual	const	TCHAR	*ShortDesc()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	a	short	ASCII	description	of	the	file	type	being	imported	(i.e.	"3D
Studio").

Prototype:
virtual	const	TCHAR	*AuthorName()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	ASCII	Author	name.

Prototype:
virtual	const	TCHAR	*CopyrightMessage()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	ASCII	Copyright	message	for	the	plug-in.

Prototype:
virtual	const	TCHAR	*OtherMessage1()	=	0;

Remarks:

Implemented	by	the	Plug-In.
Returns	the	first	message	string	that	is	displayed.

Prototype:
virtual	const	TCHAR	*OtherMessage2()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	second	message	string	that	is	displayed.

Prototype:
virtual	unsigned	int	Version()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	version	number	of	the	import	plug-in.	The	format	is	the	version
number	*	100	(i.e.	v3.01	=	301).

Prototype:
virtual	void	ShowAbout(HWND	hWnd)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	have	the	plug-in	display	its	"About..."	box.

Parameters:
HWND	hWnd
The	parent	window	handle	for	the	dialog.

Prototype:
virtual	int	DoImport(const	TCHAR	*name,	ImpInterface
*ii,Interface	*i,	BOOL	suppressPrompts=FALSE)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	actually	performs	the	file	import.

Parameters:

const	TCHAR	*name
The	file	name	chosen	by	the	user	to	import.
ImpInterface	*ii
An	import	interface	pointer	that	may	be	used	to	create	objects	and	nodes	in	the
scene.
Interface	*i
Pass	the	3ds	max	interface	pointer	here.
BOOL	suppressPrompts=FALSE
This	parameter	is	available	in	release	2.0	and	later	only.
When	TRUE,	the	plug-in	must	not	display	any	dialogs	requiring	user	input.	It
is	up	to	the	plug-in	as	to	how	to	handle	error	conditions	or	situations	requiring
user	input.	This	is	an	option	set	up	for	the	3ds	max	API	in	order	for	plug-in
developers	to	create	batch	import	plugins	which	operate	unattended.	See
Interface::ImportFromFile().

Return	Value:
One	of	the	following	three	values	should	be	returned
#define	IMPEXP_FAIL	0
#define	IMPEXP_SUCCESS	1
	#define	IMPEXP_CANCEL	2

Prototype:
virtual	int	ZoomExtents();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	to	control	the	zoom	extents	done	after	the	import	is
accomplished.	It	returns	a	value	that	indicates	if	the	plug-in	should	override
the	user	preference	setting.
Also	see	the	method	Interface::GetImportZoomExtents()	which	returns
the	state	of	the	system	zoom	extents	flag.

Return	Value:
One	of	the	following	values:
ZOOMEXT_NOT_IMPLEMENTED
Indicates	to	use	the	preference	setting.

ZOOMEXT_YES
Indicates	to	do	a	zoom	extents	after	import	regardless	of	the	preference
setting.
ZOOMEXT_NO
Indicates	to	not	do	a	zoom	extents	regardless	of	the	preference	setting.

Default	Implementation:
{	return	ZOOMEXT_NOT_IMPLEMENTED;	}

Class	SceneExport
See	Also:	Class	ExpInterface,	Class	Interface.
class	SceneExport

Description:
This	is	a	base	class	for	creating	file	export	plug-ins.	The	plug-in	implements
methods	of	this	class	to	describe	the	properties	of	the	export	plug-in	and	a
method	that	handles	the	actual	export	process.

Methods:

Prototype:
SceneExport();

Remarks:
Constructor.

Prototype:
virtual	~SceneExport();

Remarks:
Destructor.

Prototype:
virtual	int	ExtCount()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	number	of	file	name	extensions	supported	by	the	plug-in.

Prototype:
virtual	const	TCHAR	*Ext(int	i)	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	'i-th'	file	name	extension	(i.e.	"3DS").

Parameters:

int	i
The	index	of	the	file	name	extension	to	return.

Prototype:
virtual	const	TCHAR	*LongDesc()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	a	long	ASCII	description	of	the	file	type	being	exported	(i.e.
"Autodesk	3D	Studio	File").

Prototype:
virtual	const	TCHAR	*ShortDesc()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	a	short	ASCII	description	of	the	file	type	being	exported	(i.e.	"3D
Studio").

Prototype:
virtual	const	TCHAR	*AuthorName()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	ASCII	Author	name.

Prototype:
virtual	const	TCHAR	*CopyrightMessage()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	ASCII	Copyright	message	for	the	plug-in.

Prototype:
virtual	const	TCHAR	*OtherMessage1()	=	0;

Remarks:

Implemented	by	the	Plug-In.
Returns	the	first	message	string	that	is	displayed.

Prototype:
virtual	const	TCHAR	*OtherMessage2()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	second	message	string	that	is	displayed.

Prototype:
virtual	unsigned	int	Version()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	version	number	of	the	export	plug-in.	The	format	is	the	version
number	*	100	(i.e.	v3.01	=	301).

Prototype:
virtual	void	ShowAbout(HWND	hWnd)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	have	the	plug-in	display	its	"About..."	box.

Parameters:
HWND	hWnd
The	parent	window	handle	for	the	dialog.

Prototype:
virtual	int	DoExport(const	TCHAR	*name,ExpInterface
*ei,Interface	*i,	BOOL	suppressPrompts=FALSE,	DWORD
options=0)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	for	the	plug-in	to	perform	its	file	export.

Parameters:
const	TCHAR	*name
The	export	file	name.
ExpInterface	*ei
A	pointer	the	plug-in	may	use	to	call	methods	to	enumerate	the	scene.
Interface	*i
An	interface	pointer	the	plug-in	may	use	to	call	methods	of	3ds	max.
BOOL	suppressPrompts=FALSE
This	parameter	is	available	in	release	2.0	and	later	only.
When	TRUE,	the	plug-in	must	not	display	any	dialogs	requiring	user	input.	It
is	up	to	the	plug-in	as	to	how	to	handle	error	conditions	or	situations	requiring
user	input.	This	is	an	option	set	up	for	the	3ds	max	API	in	order	for	plug-in
developers	to	create	batch	export	plugins	which	operate	unattended.	See
Interface::ExportToFile().
DWORD	options=0
This	parameter	is	available	in	release	3.0	and	later	only.
In	order	to	support	export	of	selected	objects	(as	well	as	future	enhancements),
this	method	now	has	this	additional	parameter.	The	only	currently	defined
option	is:
SCENE_EXPORT_SELECTED
When	this	bit	is	set	the	export	module	should	only	export	the	selected	nodes.

Return	Value:
One	of	the	following	three	values	should	be	returned
#define	IMPEXP_FAIL	0
#define	IMPEXP_SUCCESS	1
	#define	IMPEXP_CANCEL	2

Prototype:
virtual	BOOL	SupportsOptions(int	ext,	DWORD	options);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	called	by	3ds	max	to	determine	if	one	or	more	export	options
are	supported	by	a	plug-in	for	a	given	extension.	It	should	return	TRUE	if	all

option	bits	set	are	supported	for	this	extension;	otherwise	FALSE.
Note	that	the	method	has	a	default	implementation	defined	in	order	to	provide
easy	backward	compatibility.	It	returns	FALSE,	indicating	that	no	options	are
supported.

Parameters:
int	ext
This	parameter	indicates	which	extension	the	options	are	being	queried	for,
based	on	the	number	of	extensions	returned	by	the
SceneExport::ExtCount()	method.	This	index	is	zero	based.
DWORD	options
This	parameter	specifies	which	options	are	being	queried,	and	may	have	more
than	one	option	specified.	At	present,	the	only	export	option	is
SCENE_EXPORT_SELECTED,	but	this	may	change	in	the	future.	If
more	than	one	option	is	specified	in	this	field,	the	plugin	should	only	return
TRUE	if	all	of	the	options	are	supported.	If	one	or	more	of	the	options	are	not
supported,	the	plugin	should	return	FALSE.

Default	Implementation:
{return	FALSE;}

Class	Atmospheric
See	Also:	Class	SpecialFX,	Class	SFXParamDlg,	Class	IRendParams,	Class
ShadeContext,	Class	Point3,	Class	Color,	Class	Interval.
class	Atmospheric	:	public	SpecialFX

Description:
This	is	the	base	class	for	the	creation	of	Atmospheric	plug-ins.	Developers	may
look	to	the	text	below	for	information	on	the	techniques	used	to	create	these
types	of	effects:
Kenton	Musgrave,	Darwyn	Peachey,	Ken	Perlin,	Steven	Worley,	Texturing	and
Modeling	A	Procedural	Approach	(Cambridge,	MA:	Academic	Press,	Inc.,
1994).	ISBN:	0-12-228760-6.
Chapter	6	on	Hypertexture,	particularly	the	section	on	'Raymarching',	describes
essentially	the	method	3ds	max	uses.

Methods:

Prototype:
virtual	AtmosParamDlg	*CreateParamDialog(IRendParams	*ip)

Remarks:
Implemented	by	the	Plug-In.
This	method	creates	and	returns	a	new	instance	of	a	class	derived	from
AtmosParamDlg	to	manage	the	user	interface.	This	put	up	a	modal	dialog
that	lets	the	user	edit	the	plug-ins	parameters.

Parameters:
IRendParams	*ip
This	is	the	interface	given	to	the	atmospheric	effect	so	it	may	display	its
parameters.

Return	Value:
A	new	instance	of	a	class	derived	from	AtmosParamDlg.
Note:	typedef	SFXParamDlg	AtmosParamDlg;

Default	Implementation:
{return	NULL;}

Prototype:
virtual	BOOL	SetDlgThing(AtmosParamDlg*	dlg);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
You	should	implement	this	if	you	are	using	the	ParamMap2	AUTO_UI	system
and	the	effect	has	secondary	dialogs	that	have	something	other	than	the
incoming	effect	as	their	'thing'.	Called	once	for	each	secondary	dialog	for	you
to	install	the	correct	thing.	Return	TRUE	if	you	process	the	dialog,	FALSE
otherwise,	in	which	case	the	incoming	effect	will	be	set	into	the	dialog.
Note:	Developers	needing	more	information	on	this	method	can	see	the
remarks	for	MtlBase::CreateParamDlg()	which	describes	a	similar	example	of
this	method	in	use	(in	that	case	it's	for	use	by	a	texture	map	plug-in).

Parameters:
AtmosParamDlg*	dlg
Points	to	the	ParamDlg.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	void	Shade(ShadeContext&	sc,const	Point3&	p0,const
Point3&	p1,Color&	color,Color&	trans,	BOOL	isBG=FALSE)=0;

Remarks:
Implemented	by	the	Plug-In.
This	is	the	function	that	is	called	to	apply	the	atmospheric	effect.	The	line
segment	defined	by	the	world	space	points	p0	and	p1	represent	a	segment	of
volume	that	needs	to	be	shaded.	This	line	segment	is	a	line	along	the	ray
defined	by	the	line	between	the	viewer's	eye	(the	camera)	and	the	pixel	being
rendered	in	the	image	plane	and	continuing	through	world	space.	This	ray	is
broken	up	into	segments,	with	the	boundaries	defined	by	surfaces.	If	there	are
no	surfaces,	there	will	just	be	a	single	segment	from	the	eye	point	going	off
into	space	(p1	will	be	a	large	number).	If	there	is	a	surface	that	is	hit,	and	the
surface	is	opaque,	there	will	still	be	one	segment	from	the	eye	to	the	surface.	If
the	surface	is	transparent	there	may	be	two	segments,	the	segment	before	and
the	segment	after.	Therefore	the	ray	may	be	broken	up	into	many	segments

depending	on	the	number	of	transparent	surfaces	hit.
The	shader	does	not	need	to	be	directly	concerned	with	this	however.	It	only
knows	it's	shading	the	segment	between	p0	and	p1.	It	will	get	called
repeatedly	for	different	pixels	and	different	segments.
The	output	of	this	method	is	the	computed	color	and	transparency.
An	example	implementation	of	this	method	is	3ds	max's	Simple	Fog.	It	takes
the	distance	of	the	line	segment	and	essentially	interpolates	towards	the	fog
color	based	on	the	distance.	This	is	a	very	simple	effect.
3ds	max's	Volume	Fog	traverses	along	the	segment	and	evaluates	its	3D	noise
function.	It	integrates	the	density	across	the	segment,	and	uses	the	density	to
compute	the	fog	color.

Parameters:
ShadeContext&	sc
The	ShadeContext.
const	Point3&	p0
The	start	point	of	the	segment	to	shade.	This	point	(and	p1)	are	in	an
undefined	'internal'	space	specific	to	the	renderer	(which	for	the	3ds	max
renderer	is	in	fact	is	camera	space).	To	get	to	world	space	the	plug-in	would
call	sc.PointTo(p0,REF_WORLD).
const	Point3&	p1
The	end	point	of	the	segment	to	shade.
Color&	color
This	method	shades	the	volume	between	p0	and	p1	and	modifies	this	color.
Color&	trans
This	method	shades	the	volume	between	p0	and	p1	and	modifies	this
transparency.
BOOL	isBG=FALSE
TRUE	if	the	background	is	being	shaded;	otherwise	FALSE.	If	TRUE	then	p1
will	be	infinity	(a	large	number).	This	is	used	when	the	option	to	not	fog	the
background	is	on.

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	system.
To	facilitate	naming	atmospheric	effects,	a	'name'	string	has	been	added	to	the
base	class.	This	method	should	be	called	from	the	developers	sub-classed
Atmospheric	plug-in	to	save	the	name.

Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	system.
To	facilitate	naming	atmospheric	effects,	a	'name'	string	has	been	added	to	the
base	class.	This	method	should	be	called	from	the	developers	sub-classed
Atmospheric	plug-in	to	load	the	name.

Class	Mtl
See	Also:	Class	MtlBase,	Class	Texmap,	Class	ShadeContext,	ShadeOutput,
Class	Interval,	Class	Color.
class	Mtl	:	public	MtlBase

Description:
This	is	the	base	class	for	the	creation	of	material	plug-ins.	This	class	provides
methods	to	do	things	such	as	compute	the	properties	of	the	material	for	a	given
location,	return	the	number	of	sub-materials	and	access	the	properties	of	the
material	for	the	interactive	renderer.

Plug-In	Information:

Class	Defined	In	IMTL.H

Super	Class	ID	MATERIAL_CLASS_ID

Standard	File	Name	Extension	DLT

Extra	Include	File	Needed	IMTL.H

Method	Groups:
The	following	hyperlinks	take	you	to	the	start	of	groups	of	related	methods
within	the	class:
Naming	Methods
Shade
Get/SetActiveTexmap
Get	Property	Methods
Set	Property	Methods
Sub-Mtl	Access	Methods
Dynamic	Properties	Methods
Displacement	Mapping
Replace	Material	Dialog

Methods:

Prototype:
Mtl();

Remarks:

Constructor.	The	active	texture	map	is	set	to	NULL.

Naming	Methods

Prototype:
virtual	TSTR	GetSubMtlSlotName(int	i);

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	slot	name	of	the	'i-th'	sub-material.	This	name	appears
in	the	materials	editor	dialog.	For	instance,	if	you	are	in	a	material	and	then
you	go	down	into	a	sub-material,	this	is	the	name	that	appears	just	below	the
'Get	Material'	icon.	For	example,	in	the	Multi/Sub-Object	material	when	you
choose	one	of	the	sub-materials,	the	map	name	appears	to	let	you	know	which
slot	you	are	working	on.	For	the	Multi/Sub-Object	material,	this	is	the	number
of	the	slot,	i.e."#1:",	"#2:",	"#3:",	etc.

Parameters:
int	i
The	index	of	the	sub-materials	whose	slot	name	should	be	returned.

Prototype:
TSTR	GetSubMtlTVName(int	i);

Remarks:
Implemented	by	the	Plug-In.
Returns	the	name	of	the	'i-th'	sub-material	that	should	appear	in	track	view.

Parameters:
int	i
The	index	of	the	sub-materials	whose	track	view	name	should	be	returned.

Shade

Prototype:
virtual	void	Shade(ShadeContext&	sc)=0;

Remarks:

Implemented	by	the	Plug-In.
This	is	the	main	method	of	the	material.	This	is	called	by	the	renderer	to
compute	the	color	and	transparency	output	returned	in	sc.out.

Parameters:
ShadeContext&	sc
Describes	properties	of	the	pixel	to	be	shaded.	The	result	of	this	method	is
returned	in	the	ShadeOutput	data	member	of	sc.

Get/SetActiveTexmap

Prototype:
MtlBase*	GetActiveTexmap();

Remarks:
Implemented	by	the	System.
Returns	a	pointer	to	the	active	texture	map	used	in	the	interactive	renderer.

Prototype:
void	SetActiveTexmap(MtlBase	*txm);

Remarks:
Implemented	by	the	System.
Stores	the	pointer	to	the	active	texture	map	used	in	the	interactive	renderer.
Note	that	this	method	does	not	do	everything	required	to	update	the	viewports
with	the	new	texmap.	To	accomplish	that	call
Interface::ActivateTexture().

Get	Properties	Methods
The	following	methods	are	used	for	displaying	materials	in	the	3ds	max
viewports.

Prototype:
virtual	Color	GetAmbient(int	mtlNum=0,	BOOL
backFace=FALSE)=0;

Remarks:

Implemented	by	the	Plug-In.
Returns	the	ambient	color	of	the	specified	material	for	use	in	the	interactive
renderer.

Parameters:
int	mtlNum=0
This	is	the	material	index	for	mult-materials.
BOOL	backFace=FALSE
If	the	surface	normal	of	the	face	is	pointing	away	from	the	viewer	this	will	be
TRUE;	otherwise	FALSE.

Prototype:
virtual	Color	GetDiffuse(int	mtlNum=0,	BOOL
backFace=FALSE)=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	diffuse	color	of	the	specified	material	for	use	in	the	interactive
renderer.

Parameters:
int	mtlNum=0
This	is	the	material	index	for	mult-materials.
BOOL	backFace=FALSE
If	the	surface	normal	of	the	face	is	pointing	away	from	the	viewer	this	will	be
TRUE;	otherwise	FALSE.

Prototype:
virtual	Color	GetSpecular(int	mtlNum=0,	BOOL
backFace=FALSE)=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	specular	color	of	the	specified	material	for	use	in	the	interactive
renderer.

Parameters:

int	mtlNum=0
This	is	the	material	index	for	mult-materials.
BOOL	backFace=FALSE
If	the	surface	normal	of	the	face	is	pointing	away	from	the	viewer	this	will	be
TRUE;	otherwise	FALSE.

Prototype:
virtual	float	GetShininess(int	mtlNum=0,	BOOL
backFace=FALSE)=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	shininess	value	of	the	specified	material	for	use	in	the	interactive
renderer.

Parameters:
int	mtlNum=0
This	is	the	material	index	for	mult-materials.
BOOL	backFace=FALSE
If	the	surface	normal	of	the	face	is	pointing	away	from	the	viewer	this	will	be
TRUE;	otherwise	FALSE.

Prototype:
virtual	float	GetShinStr(int	mtlNum=0,	BOOL
backFace=FALSE)=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	shininess	strength	value	of	the	specified	material	for	use	in	the
interactive	renderer.

Parameters:
int	mtlNum=0
This	is	the	material	index	for	mult-materials.
BOOL	backFace=FALSE
If	the	surface	normal	of	the	face	is	pointing	away	from	the	viewer	this	will	be
TRUE;	otherwise	FALSE.

Prototype:
virtual	float	GetXParency(int	mtlNum=0,	BOOL
backFace=FALSE)=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	transparency	value	of	the	specified	material	for	use	in	the
interactive	renderer.

Parameters:
int	mtlNum=0
This	is	the	material	index	for	mult-materials.
BOOL	backFace=FALSE
If	the	surface	normal	of	the	face	is	pointing	away	from	the	viewer	this	will	be
TRUE;	otherwise	FALSE.

Prototype:
virtual	float	GetSelfIllum(int	mtlNum=0,	BOOL
backFace=FALSE);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
Returns	the	self	illumination	value	of	the	specified	material	for	use	in	the
interactive	renderer.

Parameters:
int	mtlNum=0
This	is	the	material	index	for	mult-materials.
BOOL	backFace=FALSE
If	the	surface	normal	of	the	face	is	pointing	away	from	the	viewer	this	will	be
TRUE;	otherwise	FALSE.

Default	Implementation:
{	return	0.0f;	}

Prototype:

virtual	BOOL	GetSelfIllumColorOn(int	mtlNum=0,	BOOL
backFace=FALSE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	Self	Illumination	Color	is	on	(checked)	for	the	specified
material;	otherwise	FALSE.

Parameters:
int	mtlNum=0
This	is	the	material	index	for	mult-materials.
BOOL	backFace=FALSE
If	the	surface	normal	of	the	face	is	pointing	away	from	the	viewer	this	will	be
TRUE;	otherwise	FALSE.

Default	Implementation:
{	return	TRUE;	}

Prototype:
virtual	Color	GetSelfIllumColor(int	mtlNum=0,	BOOL
backFace=FALSE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	Self	Illumination	Color	of	the	specified	material	for	use	in	the
interactive	renderer.

Parameters:
int	mtlNum=0
This	is	the	material	index	for	mult-materials.
BOOL	backFace=FALSE
If	the	surface	normal	of	the	face	is	pointing	away	from	the	viewer	this	will	be
TRUE;	otherwise	FALSE.

Default	Implementation:
{	Color	c(.0f,.0f,.0f);	return	c;	}

Prototype:

virtual	float	WireSize(int	mtlNum=0,	BOOL	backFace=FALSE)
Remarks:
Implemented	by	the	Plug-In.
Returns	the	wire	size	of	the	material.

Parameters:
int	mtlNum=0
This	is	the	material	index	for	mult-materials.
BOOL	backFace=FALSE
If	the	surface	normal	of	the	face	is	pointing	away	from	the	viewer	this	will	be
TRUE;	otherwise	FALSE.

Default	Implementation:
{	return	1.0f;	}

Prototype:
virtual	Sampler	*GetPixelSampler(int	mtlNum=0,	BOOL
backFace=FALSE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	Sampler	used	for	the	specified	sub-material.

Parameters:
int	mtlNum=0
This	is	the	material	index	for	mult-materials.
BOOL	backFace=FALSE
If	the	surface	normal	of	the	face	is	pointing	away	from	the	viewer	this	will	be
TRUE;	otherwise	FALSE.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	RenderData	*GetRenderData();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

This	method	returns	the	auxiliary	data	attached	to	the	material	by	the	renderer.
Default	Implementation:
{	return	renderData;	}

Prototype:
virtual	BOOL	IsOutputConst(ShadeContext&	sc,	int	stdID);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	TRUE	if	the	evaluated	color/value	(output)	is	constant
over	all	possible	inputs	described	by	the	shade	context.	If	it	cannot	determine
the	correct	answer,	it	returns	FALSE.

Parameters:
ShadeContext&	sc
This	describes	the	context	of	the	question.
int	stdID
The	ID	of	the	channel	in	question.	See	List	of	Texture	Map	Indices

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	BOOL	EvalColorStdChannel(ShadeContext&	sc,	int	stdID,
Color&
outClr);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	evaluates	the	material	on	a	single	standard	texmap	channel	over
an	area	described	in	the	ShadeContext.	A	return	value	of	FALSE	indicates	that
the	color	could	not	be	evaluated.
If	there's	no	texmap	defined	for	a	channel	or	the	output	of	the	texmap	is	not
"meaningful",	the	raw	color	stored	by	the	material	or	shader	is	returned.	(The
output	of	a	texmap	is	meaningful	in	a	given	ShadeContext	if	it	is	the	same	as
when	the	scene	is	rendered.	If	the	map	cannot	determine	whether	the	output
value	is	the	same	as	when	rendered,	it	should	not	be	meaningful.)

Note	that	the	output	color	is	not	clamped.	If	the	method	is	called	with	a
monochrome	channel	ID,	the	result	value	is	copied	in	the	R,	G	and	B
components	of	the	Color	structure.
As	a	default	implementation,	this	method	sets	the	output	color	to	black	and
returns	FALSE.

Parameters:
ShadeContext&	sc
This	describes	the	context	in	which	the	material	should	be	evaluated.
int	stdID
The	ID	of	the	channel	to	perform	evaluation	on.	See	List	of	Texture	Map
Indices
Color&	outClr
The	result	of	the	evaluation.

Default	Implementation:
{	return	FALSE;	}

Set	Properties	Methods

Prototype:
virtual	void	SetAmbient(Color	c,	TimeValue	t)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	saves	the	specified	color	at	the	specified	time.

Parameters:
Color	c
The	color	to	store.
TimeValue	t
The	time	to	set	this	color.

Prototype:
virtual	void	SetDiffuse(Color	c,	TimeValue	t)=0;

Remarks:
Implemented	by	the	Plug-In.

This	method	saves	the	specified	color	at	the	specified	time.
Parameters:
Color	c
The	color	to	store.
TimeValue	t
The	time	to	set	this	color.

Prototype:
virtual	void	SetSpecular(Color	c,	TimeValue	t)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	saves	the	specified	color	at	the	specified	time.

Parameters:
Color	c
The	color	to	store.
TimeValue	t
The	time	to	set	this	color.

Prototype:
virtual	void	SetShininess(float	v,	TimeValue	t)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	saves	the	specified	shininess	at	the	specified	time.

Parameters:
float	v
The	shininess	value	to	store.
TimeValue	t
The	time	to	set	this	color.

Prototype:
virtual	void	SetRenderData(RenderData	*rdata);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	the	renderer	to	attach	auxiliary	data	to	each	material.

Parameters:
RenderData	*rdata
The	auxiliary	data	you	wish	to	attach.

Default	Implementation:
{	renderData	=	rdata;	}

Sub-material	Access	Methods

Prototype:
virtual	int	NumSubMtls()

Remarks:
Implemented	by	the	Plug-In.
Returns	the	number	of	sub-materials	managed	by	this	material.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	Mtl*	GetSubMtl(int	i)

Remarks:
Implemented	by	the	Plug-In.
Returns	a	pointer	to	the	'i-th'	sub-material	of	this	material.

Parameters:
int	i
The	index	of	the	material	to	return.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	void	SetSubMtl(int	i,	Mtl	*m)

Remarks:
Implemented	by	the	Plug-In.
Stores	the	'i-th'	sub-material	of	this	material.

Parameters:
int	i
The	index	of	the	material	to	store.
Mtl	*m
The	material	pointer	to	store.

Default	Implementation:
{}

Prototype:
virtual	int	SubMtlOn(int	i);

Remarks:
This	method	is	not	currently	used.

Prototype:
virtual	int	VPDisplaySubMtl();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	which	sub-mtl	is	to	display	in	the	viewport,	a	return	value
of:-1	indicates	not	implemented.
Note	that	when	a	material,	such	as	Blend,	has	a	method	of	selecting	which
sub-map	is	to	be	shown	in	the	viewport,	and	implements	this	method,	the
materials	editor	lets	you	turn	on	Show	Map	In	Viewport	(SMIV)	in	all	the	sub
maps	at	once.	When	the	material,	such	as	top-bottom,	doesn't	have	a	selector,
and	doesn't	implement	this	method,	then	the	materials	editor	will	only	let	you
turn	on	SMIV	for	one	map/mtl	in	the	entire	sub-tree	of	the	material.

Default	Implementation:
{	return	-1;	}

Dynamic	Properties	Methods

Prototype:
float	GetDynamicsProperty(TimeValue	t,	int	mtlNum,	int
propID);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	the	specified	dynamics	property	of	the	material	at	the
specified	time.

Parameters:
TimeValue	t
The	time	to	return	the	dynamics	property.
int	mtlNum
The	index	of	the	sub-material	or	zero	if	this	is	a	base	material.
int	propID
Specifies	the	type	of	property.	One	of	the	following	values:
DYN_BOUNCE
The	bounce	coefficient.	Values	in	the	range	0.0	to	1.0.
DYN_STATIC_FRICTION
The	static	friction	property.	Values	in	the	range	0.0	to	1.0.
DYN_SLIDING_FRICTION
The	sliding	friction	property.	Values	in	the	range	0.0	to	1.0.

Default	Implementation:
The	default	implementation	for	Mtl	will	handle	all	multi-materials.	All	root
level	materials	(for	instance	Standard)	need	to	implement	this	method.

Prototype:
void	SetDynamicsProperty(TimeValue	t,	int	mtlNum,	int	propID,
float	value);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	sets	the	specified	dynamics	property	of	the	material	at	the
specified	time.

Parameters:

TimeValue	t
The	time	at	which	to	set	the	value.
int	mtlNum
The	sub-material	number	for	a	multi-material.
int	propID
Specifies	the	type	of	property.	One	of	the	following	values:
DYN_BOUNCE
The	bounce	coefficient.	Values	in	the	range	0.0	to	1.0.
DYN_STATIC_FRICTION
The	static	friction	property.	Values	in	the	range	0.0	to	1.0.
DYN_SLIDING_FRICTION
The	sliding	friction	property.	Values	in	the	range	0.0	to	1.0.

float	value
The	value	to	set.

Default	Implementation:
The	default	implementation	for	Mtl	will	handle	all	multi-materials.	All	root
level	materials	(for	instance	Standard)	need	to	implement	this	method.

Displacement	Mapping
Prototype:
virtual	float	EvalDisplacement(ShadeContext&	sc);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	amound	of	displacement	along	the	normal	of	the	surface	at	the
point	as	specified	by	the	ShadeContext.

Parameters:
ShadeContext&	sc
This	contains	the	details	of	the	point	being	displaced.

Default	Implementation:
{	return	0.0f;	}

Prototype:
virtual	Interval	DisplacementValidity(TimeValue	t);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	validity	interval	of	the	displacement	mapping	around	the	specified
time.

Parameters:
TimeValue	t
The	Interval	returned	reflects	the	validity	around	this	time.

Default	Implementation:
{	return	FOREVER;	}

Replace	Material	Dialog
Prototype:
virtual	BOOL	DontKeepOldMtl();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Return	TRUE	to	prevent	the	Replace	Material	(Discard	old	material?	/	Keep
old	material	as	sub-material?)	dialog	from	being	presented	to	the	user;	FALSE
to	allow	it	to	be	presented.	This	allows	a	plug-in	to	control	the	display	of	this
dialog	when	being	created	in	a	Material	Editor	slot.

Default	Implementation:
{	return	FALSE;	}
	

Prototype:
virtual	BOOL	SupportsShaders();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	TRUE	if	the	material	supports	shaders,	otherwise	FALSE.

Default	Implementation:

{	return	FALSE;	}

Class	Texmap
See	Also:	Class	MtlBase,	Class	ShadeContext,	Class	UVGen,	Class	XYZGen,
Class	TexHandleMaker,	Class	NameAccum,	Class	AColor,	Class	Matrix3,	List
of	Procedural	Texture	Clamping,	Noise	and	Misc	Functions.
class	Texmap:	public	MtlBase

Description:
This	is	the	base	class	for	the	creation	of	texture	map	plug-ins.	It	provides
methods	for	things	such	as	calculating	the	color	of	the	map	for	a	given	location,
and	computing	a	perturbation	to	apply	to	a	normal	for	bump	mapping.
Note:	Developers	creating	procedural	textures	should	be	aware	that	these
textures	may	appear	less	than	perfect	when	a	3ds	max	user	is	using	the	"Quick
Renderer"	in	the	Materials	Editor.	This	is	not	the	fault	of	the	plug-in	texture,	it	is
simply	that	the	"Quick	Renderer"	uses	an	algorithm	that	is	quicker	but	less
accurate	than	the	standard	scanline	renderer.	Therefore,	don't	be	concerned	if
your	texture	does	not	show	up	perfectly	when	using	"Quick	Renderer".

Plug-In	Information:

Class	Defined	In	IMTL.H

Super	Class	ID	TEXMAP_CLASS_ID

Standard	File	Name	Extension	DLT

Extra	Include	Files	Needed	IMTL.H	(and	optionally	TEXUTIL.H)

Method	Groups:
The	hyperlinks	below	jump	to	the	start	of	groups	of	related	methods	within	the
class:
Eval	Methods
Output	Level
Texture	Display	in	the	Viewports
Loading	Map	Files
Slot	Type
Get	UV	Transform	/	Texture	Tiling
UVGen	and	XYZGen	Access
Additional	Details	related	to	Bump	Mapping

Methods:

Prototype:
Texmap();

Remarks:
Constructor.	The	number	of	active	uses	of	this	texture	is	set	to	0.

Eval	Methods

Prototype:
virtual	AColor	EvalColor(ShadeContext&	sc)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	evaluate	the	color	of	the	texture	map	for	the	context.
This	is	for	channels	that	have	a	color	such	as	diffuse,	specular,	ambient,	etc.
This	method	is	called	for	every	pixel	of	the	texture.

Parameters:
ShadeContext&	sc
Describes	the	properties	of	the	pixel	to	evaluate.

Return	Value:
An	AColor	object	which	stores	the	r,	g,	b,	a	values.	Note:	The	alpha	is
premultiplied,	and	the	alpha	value	goes	into	AColor::a.

Prototype:
virtual	float	EvalMono(ShadeContext&	sc);

Remarks:
Implemented	by	the	Plug-In.
Evaluate	the	map	for	a	"mono"	channel.	Mono	channels	are	those	that	don't
have	a	color,	but	rather	a	single	value.	This	is	for	things	like	shininess,
transparency,	etc.	This	just	permits	a	bit	of	optimization.

Parameters:
ShadeContext&	sc
Describes	the	properties	of	the	pixel	to	evaluate.

Return	Value:
A	floating	point	value	for	the	mono	channel.

Default	Implementation:
{return	Intens(EvalColor(sc));}

Prototype:
virtual	BOOL	EvalColorMonoChannel(ShadeContext&	sc,	int
stdID,	Color&
outClr);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	evaluates	the	material	on	a	single	standard	texmap	channel	over
an	area	described	in	the	ShadeContext.	A	return	value	of	FALSE	indicates	that
the	value	could	not	be	evaluated.
If	there's	no	texmap	defined	for	a	channel	or	the	output	of	the	texmap	is	not
"meaningful",	the	raw	value	stored	by	the	material	or	shader	is	returned.	For
the	definition	of	the	term	"meaningful"	see
Texmap::IsOutputMeaningful().
Note	that	the	output	value	is	not	clamped.	If	the	method	is	called	on	a	color
channel,	the	intensity	of	the	RGB	value	is	returned.	The	intensity	is	computed
as	defined	by	the	global	helper	method	Interns	in	the	3ds	max	SDK.
As	a	default	implementation,	this	calls	EvalColorStdChannel()	method
and	sets	the	result	to	the	intensity	of	the	color.

Parameters:
ShadeContext&	sc
This	describes	the	context	in	which	the	material	should	be	evaluated.
int	stdID
The	ID	of	the	channel	to	perform	evaluation	on.	See	List	of	Texture	Map
Indices	**aztodo**	link	this
Color&	outClr
The	result	of	the	evaluation.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	Point3	EvalNormalPerturb(ShadeContext&	sc)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	for	bump	mapping	to	retrieve	a	perturbation	to	apply	to	a
normal.

Parameters:
ShadeContext&	sc
Describes	the	properties	of	the	pixel	to	evaluate.

Return	Value:
A	deflection	vector	for	perturbing	the	normal.

Prototype:
virtual	BOOL	HandleOwnViewPerturb();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	query	is	made	of	maps	plugged	into	the	Reflection	or	Refraction	slots:
Normally	the	view	vector	is	replaced	with	a	reflected	or	refracted	one	before
calling	the	map:	if	the	plugged	in	map	doesn't	need	this,	it	should	return
TRUE.

Default	Implementation:
{	return	FALSE;	}

Output	Level

Prototype:
virtual	void	SetOutputLevel(TimeValue	t,	float	v)

Remarks:
Implemented	by	the	Plug-In.
Sets	the	output	level	at	the	specified	time.	It	is	used	to	set	the	output	level	of
the	imbedded	Texout	object,	principally	by	importing	plug-ins.	It	is
implemented	in	all	Texmaps.

Parameters:

TimeValue	t
The	time	to	set	the	output	level.
float	v
The	value	to	set.

Default	Implementation:
{}

Prototype:
void	RecursInitSlotType(int	sType);

Remarks:
Implemented	by	the	System.
This	method	is	used	internally	to	set	the	slot	type	for	all	subtexmaps	in	a	tree.

Prototype:
virtual	BITMAPINFO*	GetVPDisplayDIB(TimeValue	t,
TexHandleMaker&	thmaker,	Interval	&valid,	BOOL
mono=FALSE,	int	forceW=0,	int	forceH=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	gets	the	viewport	display	bitmap	in	DIB	format,	useful	when	combining
several	maps	for	hardware-supported	multiple	texture	display.	If	mono	is
TRUE,	the	map	should	do	a	mono	evaluation	and	place	the	result	in	RGB.
forceW	and	forceH,	if	non-zero,	overide	dimensions	specified	by	thmaker.

Parameters:
TimeValue	t
The	time	to	get	the	bitmap	at.
TexHandleMaker&	thmaker
This	class	provides	methods	for	creating	a	texture	handle	from	a	3ds	max
bitmap	and	a	Windows	DIB.	It	also	has	a	method	to	retrieve	the	required	size
of	the	texture	map.	See	Class	TexHandleMaker.
Interval	&valid
The	validity	interval	of	the	returned	bitmap.

BOOL	mono
Indicates	whether	a	map	should	do	mono	evaluation.
int	forceW
Overrides	the	bitmap	width	usually	supplied	by	thmaker.
int	forceH
Overrides	the	bitmap	height	usually	supplied	by	thmaker.

Get	UV	Transform	/	Texture	Tiling

Prototype:
virtual	void	GetUVTransform(Matrix3	&uvtrans)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	retrieve	the	UV	transformation	matrix	for	use	in	the
viewports.	If	a	developer	is	using	an	instance	of	UVGen,	a	method	of	that
class	may	be	called	to	retrieve	the	value:
(i.e.	{	uvGen->GetUVTransform(uvtrans);	}).

Parameters:
Matrix3	&uvtrans
The	transformation	matrix	is	returned	here.

Default	Implementation:
{}

Prototype:
virtual	int	GetTextureTiling()

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	get	the	tiling	state	of	the	texture	for	use	in	the
viewports.	This	is	described	by	a	set	of	symmetry	flags	that	may	be	ORed
together.	If	you	are	using	an	instance	of	UVGen	to	handle	the	UV	user
interface	you	may	simply	call	a	method	of	UVGen	to	handle	this.
For	example:	{	return	uvGen->GetTextureTiling();	}

Return	Value:
See	List	of	Texture	Symmetry	Flags.

Default	Implementation:
{	return	U_WRAP|V_WRAP;	}

Prototype:
virtual	int	GetUVWSource();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	a	value	indicating	where	to	get	the	texture	vertices	for	the	Texmap.

Return	Value:
One	of	the	following	values:
UVWSRC_EXPLICIT
Use	explicit	mesh	texture	vertices	from	one	of	the	mapping	channels	(see
GetMapChannel()	below	to	determine	which	one).	This	uses	the	UVW
coordinates	assigned	to	the	object,	either	through	the	Generate	Mapping
Coordinates	option	in	the	object’s	creation	parameters,	or	through	mapping
modifiers,	such	as	UVW	Map.
UVWSRC_EXPLICIT2
Use	explicit	mesh	texture	vertices	from	the	Vertex	Color	Channel.
UVWSRC_OBJXYZ
Generate	planar	UVW	mapping	coordinates	from	the	object	local	XYZ	on-
the-fly.	This	corresponds	to	the	"Planar	from	Object	XYZ"	option.
UVWSRC_WORLDXYZ
This	value	is	available	in	release	3.0	and	later	only.
Generate	planar	UVW	mapping	coordinates	from	the	world	XYZ	on-the-
fly.	This	corresponds	to	the	"Planar	From	World	XYZ"	option.	Note:	this
value	used	for	the	UVW	is	the	world	XYZ,	taken	directly,	with	out
normalization	to	the	objects	bounding	box.	This	differs	from	"Planar	from
Object	XYZ",	where	the	values	are	normalized	to	the	object's	bounding
box.

Default	Implementation:
{	return	UVWSRC_EXPLICIT;	}

Prototype:
virtual	int	GetMapChannel();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	map	channel	being	used	by	the	texmap	if	GetUVWSource()
returns	UVWSRC_EXPLICIT.	The	return	value	should	be	at	least	1.	A
value	of	0	is	not	acceptable.

Default	Implementation:
{	return	1;	}

UVGen	and	XYZGen	Access
Prototype:
virtual	UVGen	*GetTheUVGen();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Texture	maps	that	use	a	UVGen	should	implement	this	method	to	return	a
pointer	to	it.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	XYZGen	*GetTheXYZGen();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Texture	maps	that	use	a	XYZGen	should	implement	this	method	to	return	a
pointer	to	it.

Default	Implementation:
{	return	NULL;	}

Loading	Bitmap	Files

Prototype:

virtual	int	LoadMapFiles(TimeValue	t)
Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	prior	to	rendering	to	allow	the	plug-in	to	load	any
bitmap	files	it	requires.
Note	that	LoadMapFiles()	is	called	to	load	map	files	only,	not	to	list	the
missing	files.	The	missing	files	are	listed	using	the	EnumAuxFiles()
method,	which	allows	enumerating	them	without	loading	them.
Also	Note:	There	is	currently	not	an	UnloadMapFiles()	method.	There	are	a
couple	of	ways	to	do	this	however.	One	is	to	call
Interface::FreeAllBitmaps().	That	method	traverses	the	scene	reference
hierarchy	and	calls	Animatable::FreeAllBitmaps()	on	each	item.	Another
approach	is	to	evaluate	the	Material	/	TextureMap	hierarchy	on	each	material.
Then	call	Animatable::FreeAllBitmaps()	yourself	in	the
MtlEnum::proc()	shown	below.

class	MtlEnum	{
	public:
		virtual	void	proc(MtlBase	*m)	=	0;
	};
	
void	EnumMtlTree(MtlBase	*mb,	MtlEnum	&tenum)	{
	tenum.proc(mb);
	for	(int	i=0;	i<mb->NumSubTexmaps();	i++)	{
		Texmap	*st	=	mb->GetSubTexmap(i);
		if	(st)
			EnumMtlTree(st,tenum);
		}
	if	(IsMtl(mb))	{
		Mtl	*m	=	(Mtl	*)mb;
		for	(i=0;	i<m->NumSubMtls();	i++)	{
			Mtl	*sm	=	m->GetSubMtl(i);
			if	(sm)
				EnumMtlTree(sm,tenum);
			}

		}
	}

Now	just	define	a	subclass	of	MtlEnum	that	does	what	you	want,	and	call
EnumMtlTree.	In	this	particular	case	it	is	more	efficient	than	enumerating
the	entire	reference	hierarchy.	If	you	do	want	to	enumerate	the	entire
reference	hierarchy,	here's	how
class	RefEnumProc	{
	public:
	virtual	void	proc(ReferenceMaker	*rm)=0;
	};
	
void	EnumRefs(ReferenceMaker	*rm,	RefEnumProc	&proc)
{
	proc.proc(rm);
	for	(int	i=0;	i<rm->NumRefs();	i++)	{
		ReferenceMaker	*srm	=	rm->GetReference(i);
		if	(srm)	EnumRefs(srm,proc);		
		}
	}

Just	define	a	subclass	of	RefEnumProc	that	does	what	you	want,	and	call
EnumRefs	on	the	part	of	the	reference	hierarchy	you	want	to	enumerate.
For	example
class	MyEnum:	public	RefEnumProc	{
	void	proc(ReferenceMaker	*rm)	{	/*	do	something	*/	}
	}
	
void	afunction(Mtl*	m)	{
	MyEnum	enumer;
	EnumRefs(m,&enumer);
	}

Parameters:
TimeValue	t
The	time	the	maps	are	being	loaded.

Return	Value:

Always	return	nonzero	from	this	method.
Default	Implementation:
{	return	1;	}

Prototype:
virtual	void	RenderBitmap(TimeValue	t,	Bitmap	*bm,	float
scale3D=1.0f,	BOOL	filter	=	FALSE);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	render	a	2D	bitmap	version	of	this	texmap.

Parameters:
TimeValue	t
The	time	at	which	to	render	the	texmap	to	the	bitmap.
Bitmap	*bm
A	pointer	to	a	bitmap	to	render	to.	This	bitmap	must	be	created	at	the
resolution	you	wish	to	render	to.
float	scale3D=1.0f
This	is	a	scale	factor	applied	to	3D	Texmaps.	This	is	the	scale	of	the	surface	in
3d	space	that	is	mapped	to	UV.	This	controls	how	much	of	the	texture	appears
in	the	bitmap	representation.
BOOL	filter	=	FALSE
If	TRUE	the	bitmap	is	filtered.	It	is	quite	a	bit	slower	to	rescale	bitmaps	with
filtering	on.

Slot	Type

Prototype:
virtual	void	InitSlotType(int	sType)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	initialize	the	slot	type.	This	sets	the	proper	button	in
the	coordinate	user	interface	rollup	page.	If	you	are	using	an	instance	of
UVGen	to	handle	the	UV	user	interface	you	may	simply	call	a	method	of

UVGen	to	handle	this.	For	example:	{	if	(uvGen)	uvGen-
>InitSlotType(sType);	}

Parameters:
int	sType
See	List	of	Map	Slot	Types.

Default	Implementation:
{}

Prototype:
virtual	void	RenderBitmap(TimeValue	t,	Bitmap	*bm,	float
scale3D=1.0f,	BOOL	filter	=	FALSE);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Renders	the	texmap	to	the	specified	bitmap.

Parameters:
TimeValue	t
The	time	at	which	to	render	the	bitmap.
Bitmap	*bm
The	result	is	stored	in	this	bitmap.	The	properties	of	this	bitmap	define	the
resolution,	color	depth,	etc.
float	scale3D=1.0f
This	is	the	scale	of	the	surface	in	3d	space	that	is	mapped	to	UV.
BOOL	filter	=	FALSE
If	TRUE	the	bitmap	is	filtered.	It	is	quite	a	bit	slower	to	rescale	bitmaps	with
filtering	on.

Default	Implementation:
The	default	implementation	calls	Interface::RenderTexmap().

Prototype:
virtual	BOOL	IsOutputMeaningful(ShadeContext&	sc);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

Implemented	by	the	system.
Returns	TRUE	only	if	all	submaps	and	itself	have	a	meaningful	output.
Returns	FALSE	if	at	least	one	sub-texmap	or	itself	does	not	have	a	meaningful
output
The	output	of	a	texmap	is	meaningful	in	a	given	ShadeContext	if	it	is	the	same
as	when	the	scene	is	rendered.	If	the	map	cannot	determine	whether	the	output
value	is	the	same	as	when	rendered,	it	should	not	be	meaningful.	This	method
can	be	called	before	EvalColor()	or	EvalMono()	on	a	texmap	in	order	to
decide	whether	to	call	these	methods	at	all	or	if	their	return	values	should	be
used	in	further	calculations.

Parameters:
ShadeContext&	sc
This	describes	the	context	of	the	question.

Prototype:
virtual	BOOL	IsLocalOutputMeaningful(ShadeContext&	sc);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	TRUE	if	the	output	of	this	texmap	is	meaningful	for	the	given
context;	it	should	not	take	into	account	subtexmaps.	This	method	is	called	by
IsOutputMeaningful().

Parameters:
ShadeContext&	sc
This	describes	the	context	of	the	question.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	int	IsHighDynamicRange()	const;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	nonzero	if	the	texture	is	returning	high	dynamic	range	data;	otherwise
zero.

Default	Implementation:
{	return	false;	}

Additional	Details	related	to	Bump	Mapping
Note	the	following	information	concerning	bump	mapping:
The	following	function	evaluates	the	normal	perturbation	vector	in	the	Bitmap
texture.
Point3	BMTex::EvalNormalPerturb(ShadeContext&	sc)	{
	Point3	dPdu,	dPdv;
Point2	dM;
if	(gbufID)	sc.SetGBufferID(gbufID);
if	(thebm==NULL)
	return	Point3(0,0,0);
	uvGen->GetBumpDP(sc,dPdu,dPdv);	//	get	bump	basis	vectors
	if	(alphaAsMono)
		dM=(.01f)*uvGen-
>EvalDeriv(sc,&alphasamp,filterType!=FILTER_NADA);
	else
		dM=(.01f)*uvGen-
>EvalDeriv(sc,&mysamp,filterType!=FILTER_NADA);
	return	texout->Filter(dM.x*dPdu+dM.y*dPdv);
}
The	function	GetBumpDP()	returns	the	"bump	basis	vectors".	These	are	the
gradient	vectors	of	the	UVW	mapping	in	the	object	coordinate	space.
The	following	function	is	used	to	compute	the	U	and	V	bump	basis	vectors	for	a
triangle	given	the	texture	coordinates	at	the	three	vertices	of	the	triangle	(tv[])
and	the	3D	coordinates	at	the	vertices	(v[]).	It	is	simply	a	solution	using	linear
algebra	for	the	U	and	V	axes	in	terms	of	the	XYZ	coordinates.	It	returns
	b[0]	=	DP/DU
	b[1]	=	DP/DV
This	function	does	not	compute	DP/DW	(the	W	bump	basis	vector),	which	at
present	is	a	shortcoming	of	the	scanline	renderer.
void	ComputeBumpVectors(const	Point3	tv[3],	const	Point3	v[3],

	Point3	bvec[3])	{
	float	uva,uvb,uvc,uvd,uvk;
	Point3	v1,v2;
	uva	=	tv[1].x-tv[0].x;
	uvb	=	tv[2].x-tv[0].x;
	uvc	=	tv[1].y-tv[0].y;
	uvd	=	tv[2].y-tv[0].y;
	uvk	=	uvb*uvc	-	uva*uvd;
	v1	=	v[1]-v[0];
	v2	=	v[2]-v[0];
	if	(uvk!=0)	{
		bvec[0]	=	(uvc*v2-uvd*v1)/uvk;
		bvec[1]	=	(uva*v2-uvb*v1)/uvk;
		}
	else	{
		if	(uva!=0)
			bvec[0]	=	v1/uva;
		else	if	(uvb!=0)
			bvec[0]	=	v2/uvb;
		else
			bvec[0]	=	Point3(0.0f,0.0f,0.0f);
		if	(uvc!=0)
			bvec[1]	=	v1/uvc;
		else	if	(uvd!=0)
			bvec[1]	=	v2/uvd;
		else
			bvec[1]	=	Point3(0.0f,0.0f,0.0f);
		}
	bvec[2]	=	Point3(0,0,1);	//	TBD-	How	to	compute	this	??
	}
The	three	Point3's	returned	in	bvec	are	stored	away,	and	then	simple	returned	in
the	function	SContext::GetBumpDP();
The	function	UVGen::EvalDeriv()	evaluates	the	local	derivative	of	the
texture	map	in	the	U	and	V	directions,	taking	into	account	symmetry	and	scaling.

The	resulting	derivative,	dM,	is	scaled	down	from	the	value	returned	by
EvalDeriv	to	keep	the	bump	perturbations	in	a	more	reasonable	range.
The	perturbation	vector	is	calculated	as:
	dM.x*dPdu+dM.y*dPdv
And	then	passed	through	the	texout->Filter	function,	which	is	just	the
following:	
Point3	Texout::Filter(Point3	c)	{
if	(outAmt!=1.0f)	c	*=	outAmt;
if	(flags&TEXOUT_INVERT)	c	=	-c;
return	c;
}

Class	Tex3D
See	Also:	Class	Texmap,	Working	with	Materials	and	Textures.
class	Tex3D	:	public	Texmap

Description:
Developers	that	have	created	a	3D	Studio/DOS	SXP	and	a	corresponding	3ds
max	texture	plug-in	may	want	to	subclass	from	this	class.	It	provides	a	way	to
have	an	instance	of	your	3ds	max	texture	plug-in	created	automatically	when	the
corresponding	SXP	is	found	in	a	3DS	file	being	imported.
This	works	as	follows:
In	the	3ds	max	texture	plug-in's	implementation	of	DllMain()	the	following
function	is	called:
void	RegisterSXPReader(TCHAR	*sxpName,	Class_ID	cid);
The	plug-in	passes	its	own	SXP	name	(i.e.	"MARBLE_I.SXP")	and	its	own
Class_ID.

The	system	then	remembers	this.	When	the	3DStudio	import	plug-ins	is	loading
a	.3DS	file	and	it	encounters	an	SXP	with	this	name,	it	will	create	an	instance	of
the	plug-in	class	(using	the	Class_ID)	and	call	the	method	of	this	class
ReadSXPData().	The	plug-in	can	then	initialize	itself	with	proper	values	by
reading	the	old	SXP	data.
A	sample	plug-in	that	uses	this	technique	is	the	3ds	max	Marble	texture.	It
imports	the	settings	from	the	3D	Studio	Marble	SXP.	See	the	sample	code	in
\MAXSDK\SAMPLES\MATERIALS\MARBLE.CPP.

Methods:

Prototype:
virtual	void	ReadSXPData(TCHAR	*name,	void	*sxpdata)=0;

Remarks:
This	method	is	called	when	the	3D	Studio/DOS	import	plug-in	encounters	an
SXP	with	the	name	registered	by	RegisterSXPReader().

Parameters:
TCHAR	*name
The	name	of	the	SXP.

void	*sxpdata
This	is	the	SXP's	initialization	data.	The	plug-in	can	look	at	this	data	to	see
what	numbers	it	was	initialized	to	in	the	.3DS	file	being	imported.	It	can	then
set	its	initial	value	to	match	the	SXP	settings.

Class	ImageFilter
See	Also:	Class	ImageFilterInfo,	Class	Bitmap,	Class	ITrackViewNode,	Class
TimeChange,	Class	UndoNotify,	Working	with	Bitmaps.
class	ImageFilter

Description:
Image	processing	filter	plug-ins	are	derived	from	ImageFilter.	This	class	has
virtual	methods	the	developer	implements	to	provide	information	about	the	plug-
in	version,	and	description.	The	developer	also	implements	the	Capability()
method	to	indicate	the	properties	of	the	plug-in	such	as	if	it	is	a	one	pass	filter	or
compositor,	and	whether	it	has	a	control	dialog	to	be	displayed.
The	Render()	method	is	the	one	that	actually	alters	the	source	image	to	perform
the	work	of	the	application.
Filter	plug-ins	have	access	to	several	bitmaps	associated	with	the	video	post	data
stream.	All	filter	plug-ins	will	have	at	least	a	pointer	to	data	member	srcmap.
This	is	Video	Post's	main	image	pipeline.	Composition	and	transition	(layer)
filters	will	also	receive	a	second	bitmap	(frgmap)	which	should	be	composited
above	the	main	bitmap	(srcmap).	If	mskmap	is	not	NULL,	it	will	contain	a
pointer	to	a	grayscale	image	to	be	used	as	a	mask	for	the	process.	Note	that
developers	should	not	delete	these	bitmaps	as	they	are	maintained	by	3ds	max.
If	a	plug-in	is	both	a	filter	and	a	compositor,	the	plug-in	can	tell	if	it	is	running	as
a	filter	when	the	frgmap	pointer	is	NULL.
Note:	If	changes	are	made	to	an	ImageFilter	plug-in,	the	system	will	not
automatically	put	up	the	'The	scene	has	been	modified.	Do	you	want	to	save
your	changes?'	dialog	if	the	user	attempts	to	exit	without	saving.	So	that	your
plug-in	does	not	go	unsaved,	you	should	call	the	following	global	function	if	you
make	changes.	This	will	indicate	to	the	system	that	the	save	requester	needs	to
be	brought	up:
void	SetSaveRequired(int	b=TRUE);
Sets	the	'save	dirty	bit'.	This	will	indicate	to	the	system	that	the	save	requester
needs	to	be	presented	to	the	user.

Method	Groups:
The	hyperlinks	below	jump	to	beginning	of	related	methods	within	the	class:
Constructor	/	Destructor

Max	Interface	Pointer
Description/Copyright/Author/Version	Methods
Capabilities
Dialog	Methods
Parameter	Block	Configuration	Data	Methods
Linear	Interpolation
Rendering
Preview	Creation
Channels
Filter	Control	Dialog	Interactivity
Track	View	Node	Methods

Data	Members:
protected:
BOOL	interactive;
This	data	member	is	available	in	release	2.0	and	later	only.
TRUE	if	the	setup	dialog	is	interactive;	otherwise	FALSE.
HWND	vpSetuphWnd;
The	window	handle	of	the	video	post	setup	dialog.
HWND	vphWnd;
The	window	handle	of	the	Video	Post	dialog.
HWND	dlghWnd;
The	window	handle	of	the	filter's	setup	dialogue	when	in	"Interactive"	mode.
Bitmap	*srcmap
The	Source	Bitmap	(background).	Note:	The	Video	Post	output	resolution	may
be	retrieved	using	this	pointer.	The	width	is	srcmap->Width()	and	the
height	is	srcmap->Height().
Bitmap	*mskmap
The	Image	Mask	Bitmap	(for	grayscale	masking).	This	bitmap	is	at	the	Video
Post	output	resolution	size	when	the	developer	needs	to	access	it	in	the
Render()	method.
Bitmap	*frgmap
The	Foreground	Bitmap	(for	layering/transitions).	This	bitmap	is	at	the	Video
Post	output	resolution	size	when	the	developer	needs	to	access	it	in	the

Render()	method.
ImageFilterInfo	*ifi
A	pointer	to	an	instance	of	the	class	that	provides	information	about	this	filter
and	the	video	post	queue.
public:
TimeChange	timeChange;
This	data	member	is	available	in	release	2.0	and	later	only.
This	class	maintains	this	time	change	object	so	it	may	send
FLT_TIMECHANGED	messages.
UndoNotify*	undonotify;
This	data	member	is	available	in	release	2.0	and	later	only.
Points	to	an	instance	of	the	class	that	can	be	used	so	an	ImageFilter	plug-in
can	get	notified	on	a	change	to	its	Track	View	Node.

Methods:

Constructor	/	Destructor

Prototype:
ImageFilter();

Remarks:
Constructor.	The	srcmap,	mskmap	and	frgmap	are	set	to	NULL.	The	undo
notify	pointer	is	set	to	NULL	and	the	interactive	flag	is	set	to	FALSE.

Prototype:
virtual	~ImageFilter();

Remarks:
Destructor.

Max	Interface	Pointer

Prototype:
virtual	Interface	*Max();

Remarks:
Implemented	by	the	System.
This	method	returns	an	interface	pointer	for	calling	methods	implemented	in
3ds	max.	See	Class	Interface.

Description/Copyright/Author/Version

Prototype:
virtual	const	TCHAR	*Description()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	an	ASCII	description	of	the	filter	plug-in	(i.e.	"Convolution	Filter").

Prototype:
virtual	const	TCHAR	*AuthorName()	=	0

Remarks:
Implemented	by	the	Plug-In.
Returns	the	name	of	the	plug-in's	author.

Prototype:
virtual	const	TCHAR	*CopyrightMessage()	=	0

Remarks:
Implemented	by	the	Plug-In
Returns	the	plug-in	ASCII	Copyright	message.

Prototype:
virtual	UINT	Version()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	plug-in	version	number	*	100	(i.e.	v3.01	=	301).

Capabilities

Prototype:
virtual	DWORD	Capability()	=	0

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	a	set	of	flags	that	describe	the	capabilities	of	this	filter
plug-in.	These	capabilities	indicate	if	the	plug-in	is	a	filter,	compositor,	or	has
a	control	panel.	To	create	a	flag,	"OR"	the	capabilities	together,	ie.
(IMGFLT_CONTROL	|	IMGFLT_COMPOSITOR).	Note:	It	is	valid
for	a	plug-in	to	both	a	Filter	and	a	Compositor.	If	both	flags	are	set,	the	user
will	be	able	to	select	it	from	both	the	Filter	list	and	from	the	Compositor	list.
The	plug-in	will	know	it	is	running	as	a	filter	when	the	foreground	map
pointer,	frgmap,	is	NULL.

Return	Value:
See	List	of	Image	Filter	Capability	Flags.

Dialogs

Prototype:
virtual	void	ShowAbout(HWND	hWnd)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	by	the	system	to	display	the	About	Box	of	the	plug-in.
This	dialog	is	mandatory	so	the	developer	must	implement	this	method.

Parameters:
HWND	hWnd
The	parent	window	handle	of	the	dialog.

Prototype:
virtual	BOOL	ShowControl(HWND	hWnd)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	by	the	system	to	display	the	control	panel	for	the	plug-
in.	This	control	panel	is	optional	and	its	existence	should	be	flagged	by	the

capability	flag	returned	from	Capability()	(IMGFLT_CONTROL).	If	a
plug-in	does	not	have	a	control	panel,	don't	implement	this	method	and	let	it
default	to	FALSE.

Parameters:
HWND	hWnd
The	parent	window	handle	of	the	dialog.

Return	Value:
TRUE	if	the	user	selects	OK	to	exit	the	dialog,	and	FALSE	if	the	user	selects
Cancel.

Default	Implementation:
{	return	FALSE;	}

Rendering

Prototype:
virtual	BOOL	Render(HWND	hWnd)	=	0

Remarks:
Implemented	by	the	Plug-In.
This	is	the	method	the	plug-in	implements	to	alter	the	image.	This	method
performs	the	work	of	the	filter	or	compositor.

Parameters:
HWND	hWnd
The	window	handle	to	which	the	plug-in	will	be	sending	progress	and	abort
check	messages.

Return	Value:
TRUE	if	the	render	was	completed;	otherwise	FALSE	(error	or	canceled	by
user).

Sample	Code:
Below	is	an	example	of	a	render	loop	through	each	horizontal	band	of	the	image
demonstrating	the	posting	of	messages.	At	the	start	of	the	loop	the	progress	and
check	abort	messages	are	sent.	The	progress	message	updates	the	Execute	Video
Post	dialog	with	how	much	of	the	image	has	been	processed.	The	check	abort
message	allows	the	plug-in	to	detect	if	the	user	has	canceled	the	operation.

BOOL	result	=	TRUE;
BOOL	abort	=	FALSE;
for	(int	iy	=	0;	iy	<	srcmap->Height();	iy++)	{
	//	Progress	Report
	SendMessage(hWnd,FLT_PROGRESS,iy,srcmap->Height()-1);
	//	Check	for	Abort
	SendMessage(hWnd,FLT_CHECKABORT,0,(LPARAM)(BOOL
*)&abort);
	if	(abort)	{
		result	=	FALSE;
		break;
	}
}
return(result);
Messages	are	sent	via	the	Window	API	SendMessage()	function.	See	List	of
ImageFilter	Related	Messages.

Parameter	Block	Configuration	Data
Parameter	Block	Load	and	Save.	A	'parameter	block'	is	really	nothing	more	than
data	a	developer	wants	to	load	and	save.	See	the	sample	code	below	to	see	how
these	methods	are	used	to	save	the	data	in	the	UserSettable	structure.
typedef	struct	userSettable	{
int	data1;
float	data2;
}	UserSettable;
	
DWORD	MyFilter::EvaluateConfigure	()	{
return	sizeof	(UserSettable);
}
	
BOOL	MyFilter::LoadConfigure	(void	*ptr)	{
UserSettable	*buf	=	(UserSettable	*)	ptr;
memcpy	(&userSettings,	ptr,	sizeof(UserSettable));
return	TRUE;

}
	
BOOL	MyFilter::SaveConfigure	(void	*ptr)	{
if	(ptr)	{
memcpy	(ptr,	&userSettings,	sizeof(UserSettable));
return	TRUE;
}	else
return	FALSE;
}

Prototype:
virtual	DWORD	EvaluateConfigure()

Remarks:
Implemented	by	the	Plug-In.
The	system	will	call	this	method	to	determine	the	buffer	size	required	by	the
plug-in.	The	plug-in	can	save	its	parameter	block	in	this	buffer	by
implementing	the	SaveConfigure()	method.

Return	Value:
The	number	of	bytes	required	by	the	plug-in's	parameter	block.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	BOOL	LoadConfigure(void	*ptr)

Remarks:
Implemented	by	the	Plug-In.
This	method	will	be	called	so	the	plug-in	can	load	its	parameter	block.
Memory	management	is	performed	by	3ds	max	using	standard	LocalAlloc()
and	LocalFree().

Parameters:
void	*ptr
A	pre-allocated	buffer.

Return	Value:
TRUE	if	the	data	was	loaded	OK;	otherwise	FALSE.

Default	Implementation:
{	return	(FALSE)	};

Prototype:
virtual	BOOL	SaveConfigure(void	*ptr)

Remarks:
Implemented	by	the	Plug-In.
This	method	will	be	called	so	the	plug-in	can	transfer	its	parameter	block	to
the	host.

Parameters:
void	*ptr
A	pre-allocated	buffer	the	plug-in	may	write	to.

Return	Value:
TRUE	if	the	data	was	saved	OK;	otherwise	FALSE.

Default	Implementation:
{	return	(FALSE);	}

Linear	Interpolation

Prototype:
virtual	int	Lerp(int	a,	int	b,	int	l);

Remarks:
This	method	is	used	internally.

Prototype:
virtual	int	Lerp(int	a,	int	b,	float	f);

Remarks:
This	method	is	used	internally.

Preview

Prototype:
virtual	BOOL	CreatePreview(HWND	hWnd,	Bitmap	**back,	int
frame,	int	width,	int	height,	float	aspect,	Bitmap	**fore	=	NULL,
DWORD	flag	=	PREVIEW_UP);

Remarks:
Implemented	by	the	System.
This	method	provides	a	preview	facility	for	use	by	plug-ins.	This	can	be	used
by	plug-ins	that	want	to	have	a	preview	bitmap	while	displaying	a	control
dialog.
Note:	When	you	add	a	new	Video	Post	event,	an	event	object	is	created	and	it
is	added	to	the	event	queue	when	you	hit	the	OK	button.	However,	because	the
event	is	added	to	the	queue	only	when	you	exit	the	dialogue,	you	cannot	create
a	preview	at	that	stage.	Later,	when	you	"Edit"	the	event,	it	is	part	of	the	queue
and	you	can	create	a	preview.	Internally,	there	is	no	way	for	3ds	max	to	tell	if
the	"Setup"	button	was	called	from	an	"Add"	event	or	from	an	"Edit"	event.
Plug-In	developers	can	tell	if	they	are	in	the	"Add"	event	mode	by	looking	at
the	return	value	from	this	method.	It	will	be	FALSE	if	in	"Add"	mode	since
the	call	will	fail.

Parameters:
HWND	hWnd
This	window	handle	will	receive	progress	notification	messages.	The
messages	are	defined	in	both	BITMAP.H	and	FILTERS.H:

FLT_PROGRESS
wParam:	Current
lParam:	Total
FLT_CHECKABORT
wParam:	0
lParam:	BOOL*
FLT_TEXTMSG
wParam:	0
lParam:	LPCTSTR
BMM_PROGRESS
wParam:	Current

lParam:	Total
BMM_CHECKABORT
wParam:	0
lParam:	*BOOL
BMM_TEXTMSG
wParam:	0
lParam:	LPCTSTR

Bitmap	**back
A	pointer	to	the	Bitmap	Pointer	(the	Background).	If	the	Bitmap	pointer	is
NULL,	a	new	bitmap	is	created	using	the	given	dimensions.	This	pointer	must
be	NULL	the	first	time	this	function	is	called	as	the	bitmap	must	be	created
by	Video	Post.	Once	this	function	is	called	and	a	bitmap	is	returned,	it	is	OK
to	call	it	again	using	this	map.	In	this	case,	Video	Post	will	simply	use	it
instead	of	creating	a	new	one.	Note:	You	must	NOT	delete	the	bitmap	when
done	--	Video	Post	will	take	care	of	it.
int	frame
The	desired	frame	in	TICKS.	Note	that	this	is	the	position	of	the	Video	Post
frame	slider	(in	TICKS)	and	not	the	main	3ds	max	frame	slider.	See	the
Advanced	Topics	section	on	Time	for	details	on	ticks.
int	width
The	desired	width	of	the	preview.
int	height
The	desired	height	of	the	preview.
Float	aspect
The	desired	aspect	ratio	of	the	preview.
Bitmap	**fore	=	NULL
A	pointer	to	the	Bitmap	Pointer	(the	Foreground).	For	layer	plug-ins,	this
points	to	the	foreground	image.	This	is	only	valid	if	flag	is	set	to
PREVIEW_BEFORE.	In	this	case	back	will	hold	Video	Post	main	queue
and	fore	will	have	the	foreground	image	to	be	composited.	This	is	useful	if
you,	a	layer	plug-in,	want	to	collect	the	images	and	run	a	realtime	preview.	If
flag	is	not	PREVIEW_BEFORE,	fore	will	be	a	NULL	pointer	indicating
there	is	no	bitmap.

DWORD	flag	=	PREVIEW_UP
The	flag	controls	how	much	of	the	queue	to	run.	The	options	are:
PREVIEW_BEFORE
The	queue	is	run	up	to	the	event	before	the	filter	calling	it.
PREVIEW_UP
The	queue	is	run	up	to	the	event	(filter)	calling	this	function.
PREVIEW_WHOLE
The	whole	queue	is	run	including	events	after	this	filter.

Return	Value:
TRUE	if	the	creation	was	successful;	otherwise	FALSE.

Channels

Prototype:
virtual	DWORD	ChannelsRequired();

Remarks:
Implemented	by	the	Plug-In.
If	a	filter	wants	to	work	with	the	G-buffer	(geometry/graphics	buffer)	it
implements	this	method.	It	is	used	to	indicate	what	image	channels	this	plug-
in	requires.	Prior	to	rendering	3ds	max	will	scan	the	plug-ins	in	the	chain	of
events	and	find	out	all	the	channels	being	requested.	At	the	time	the	plug-in's
Render()	method	is	called,	it	will	have	access	to	these	channels.	The	methods
of	class	Bitmap	may	be	used	to	access	the	channels.
Note:	The	generation	of	these	channels	should	not	normally	be	a	default
setting	for	the	plug-in.	These	channels	are	memory	intensive	and	if	the	plug-in
won't	use	the	channel	it	should	not	ask	for	it.	Normally	the	plug-in	would	ask
the	user	which	channels	to	use	and	only	then	set	the	proper	flags.

Return	Value:
See	List	of	Image	Channels.

Default	Implementation:
{	return	BMM_CHAN_NONE;	}

Filter	Control	Dialog	Interactivity

Prototype:
void	MakeDlgInteractive(HWND	hWnd);

Remarks:
Implemented	by	the	System.
This	method	is	available	in	release	2.0	and	later	only.
This	method	may	be	used	to	allow	a	filter's	dialog	to	operate	interactively.
This	means	that	a	user	can	have	the	filter's	control	dialog	up	and	still	operate
3ds	max	and	Track	View	at	the	same	time.	This	method	should	be	called	from
the	filter's	Control()	method	as	part	of	the	WM_INITDIALOG	code.
Note	that	even	though	this	method	can	be	called	safely	for	any	reason,
developers	should	only	call	it	when	using	animated	parameters.	It	doesn't
make	sense	to	use	it	for	filters	with	non-animated	or	no	parameters.	For
sample	code	using	this	method	see
\MAXSDK\SAMPLES\POSTFILTERS\NEGATIVE\NEGATIVE.CPP

Parameters:
HWND	hWnd
The	parent	window	handle.

Sample	Code:
BOOL	ImageFilter_Negative::Control(HWND	hWnd,UINT
message,WPARAM	wParam,LPARAM	lParam)	{
	switch	(message)	{
		case	WM_INITDIALOG:	{
				//--	Make	Dialogue	Interactive
				MakeDlgInteractive(hWnd);
				...

Prototype:
virtual	void	FilterUpdate();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Whenever	a	filter	instance	is	created	or	updated	(i.e.	the	user	went	through	the
Filter	Edit	Control	dialog)	this	method	is	called.	The	filter	may	use	it	to	create
or	update	its	node	controls.	For	an	example	see
\MAXSDK\SAMPLES\POSTFILTERS\NEGATIVE\NEGATIVE.CPP

Default	Implementation:
{}

Track	View	Node	Methods
Prototype:
BOOL	IsInteractive();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.
Returns	TRUE	if	the	control	dialog	is	interactive;	otherwise	FALSE.	This
means	a	user	can	have	the	filter's	control	dialog	up	and	still	operate	3ds	max
and	Track	View	at	the	same	time.

Prototype:
virtual	ITrackViewNode	*CreateNode();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.
This	method	may	be	called	to	create	a	new	Track	View	Node.

Prototype:
virtual	ITrackViewNode	*Node();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.
This	method	is	used	to	return	the	Track	View	node	for	this	filter.

Class	GBuffer
See	Also:	Class	GBufReader,	Class	GBufWriter,	List	of	Image	Channels,	List
of	GBuffer	Channel	Types,	Class	Bitmap.
class	GBuffer	:	public	InterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	is	used	by	Bitmaps	to	implement	an	enhanced	G-Buffer	(providing
more	functionality	than	the	2.x	G-Buffer).	The	new	G-Buffer	stores	multiple
layers	at	each	pixel.	The	Virtual	Frame	Buffer	includes	a	new	spinner	to	the	right
of	the	"channels"	drop	down	which	lets	you	look	at	the	different	layers.	(It	only
appears	when	there	are	G-Buffer	channels	present).
The	multiple	layers	of	the	G-Buffer	allow	rendering	effects	to	do	better
antialiasing	and	handling	of	transparency.	The	frontmost	layer	is	still	stored	in
the	G-Buffer	as	full,	screen-sized	arrays,	one	for	each	channel.	The	subsequent
layers	are	stored	in	a	variable	number	of	“layer	records”	all	of	which	are	the
same	size	(which	depends	on	which	channels	have	been	requested	via	the
GBuffer::CreateChannels()	function).	Even	scenes	with	no	transparency
can	have	more	than	one	layer	at	a	given	pixel.	This	can	occur	along	the	edges	of
an	object,	where	the	object	partially	covers	some	pixels,	and	another	object	(or
objects)	is	visible	in	the	remaining	part	of	the	pixel.	Each	visible	face	in	the	pixel
will	be	represented	by	a	fragment.	A	given	object	will	not	always	appear	on	the
same	layer.	If	it	is	the	only	object	in	a	pixel	it	will	be	in	the	frontmost	layer,	but
where	it	is	partially	occluded	it	will	lie	in	a	layer	behind	the	occluding	object.
Another	way	multiple	layers	can	occur	(aside	from	transparency)	is	when	objects
are	given	the	“Render	Occluded	Objects”	property	in	the	object	properties
dialog.	When	an	object	has	this	property,	it	acts	as	if	it	were	transparent,	and
objects	behind	it,	though	invisible,	are	rendered	and	stored	in	the	G-Buffer.
Another	G-Buffer	layer	is	added	to	contain	the	background	color	in	its	color
channel	for	any	pixel	which	is	not	empty	and	on	which	the	background	gets
evaluated.	This	means	the	background	layer	will	be	present	behind	transparent
objects	or	objects	with	“render	occluded”	turned	on.	It	will	also	be	present	along
the	edges	of	objects	where	the	background	is	partially	visible	in	the	pixel.	Note:
This	does	not	depend	at	all	on	having	the	GB_BG	flag	set.	It	is	necessary	to
have	the	GB_COLOR	channel,	however.

All	methods	of	this	class	are	implemented	by	the	System.
Note	on	RPF	files:	The	following	information	relates	to	the	layer	storage
scheme	used	in	the	3ds	max	RPF	files.
The	layer	information	for	each	scan	line	is	stored	as	a	series	of	run-encoded
channels,	each	containing	the	same	number	of	data	elements,	one	per	layer
record.	The	first	channel	is	a	“psuedo-channel”	that	contains	the	x	value	for	each
layer	record.	If	there	are	multiple	layers	for	a	given	x,	this	will	be	reflected	as
several	identical	x	values	in	a	row.
For	instance,	if	the	x	channel	contained

5,6,7,7,8,8,8,9,10
And	the	Z	channel	contained

100,	100,	100,200,	100,200,300,	100,	100
This	would	mean	at	pixel	7	there	are	2	layers,	and	pixel	8	there	are	3	layers.

Pixel	depths
5	100
6	100
7	100,	200
8	100,	200,	300
9	100

10.	 100

	
As	an	extra	note	regarding	RPF	files,	a	new	data	member	was	added	to	class
RenderInfo,	which	is	saved	with	the	RPF	(and	RLA)	files.	In	order	to	avoid
getting	out	of	sync	with	previous	file	format	implementations	a	“version”	word
preceding	the	RenderInfo	record	has	been	added	into	the	format.	The	version	is
set	to	a	value	that	will	distinguish	it	from	the	first	word	of	the	RenderInfo	data,
enabling	it	to	determine	the	version.	If	we	make	further	additions	to	RenderInfo
in	the	future,	the	version	will	allow	us	to	keep	it	straight.	To	load	both	older	and
newer	RPF	and	RLA	files	correctly,	the	code	that	loads	the	RenderInfo	been
modified,	and	therefore	any	plugins	and	3rd	party	code	that	read	these	files	need
to	be	changed.	Here's	my	the	code:
	

#define	RENDINFO_VERS1	1000
int	RLAReader::ReadRendInfo(RenderInfo	*ri)	{
short	vers;
if	(fread(&vers,sizeof(short),1,fd)!=1)	return	0;
int	size	=	sizeof(RenderInfo);
if	(vers	!=	RENDINFO_VERS1)	{
//	the	old	version	didn't	start	with	a	version	word,	but
//	with	projType	which	is	0	or	1.
size	-=	sizeof(Rect);	//	The	old	record	didn't	have	the	region	Rect.
fseek(fd,-sizeof(short),SEEK_CUR);	//	Undo	the	version	read
}
if	(ri)	{
if	(fread(ri,size,1,fd)!=1)	return	0;
}
else
fseek(fd,	size,	SEEK_CUR);
return	1;
}

The	following	functions	are	not	part	of	this	class	but	are	available
for	use:
Function:
GBuffer	*NewDefaultGBuffer();

Remarks:
Creates	and	returns	a	pointer	to	a	new	default	G-Buffer.	The	buffer	is
essentially	created	empty.
A	'default'	G-Buffer	is	one	that	3ds	max	itself	creates.	See
GBuffer::IsDefaultGBuffer()	below.

Function:

void	SetMaximumGBufferLayerDepth(int	m);
Remarks:
Sets	the	maximum	GBuffer	layer	depth.

Parameters:
int	m
The	number	to	set.

Function:
int	GetMaximumGBufferLayerDepth();

Remarks:
Returns	the	maximum	GBuffer	layer	depth.

Function:
int	GBDataSize(int	i);

Remarks:
Returns	the	number	of	bytes	per	pixel	for	the	specified	channel.

Parameters:
int	i
The	index	of	the	channel.	See	List	of	G-Buffer	Channel	Indexes.

Function:
TCHAR	*GBChannelName(int	i);

Remarks:
Returns	the	name	of	the	specified	channel.

Parameters:
int	i
The	index	of	the	channel.	See	List	of	G-Buffer	Channel	Indexes.

Return	Value:
The	name	returned	for	the	specified	index:
GB_Z	(0):	"Z"
GB_MTL_ID	(1):	"Material	Effects"

GB_NODE_ID	(2):	"Object"
GB_UV	(3):	"UV	Coordinates"
GB_NORMAL	(4):	"Normal"
GB_REALPIX	(5):	"Non-Clamped	Color"
GB_COVERAGE	(6):	"Coverage"
GB_BG	(7):	"Coverage	Background"
GB_NODE_RENDER_ID	(8):	"Node	Render	ID"
GB_COLOR	(9):	"Color"
GB_TRANSP10):	"Transparency"
GB_VELOC	(11):	"Velocity"
GB_WEIGHT	(12):	"Sub-Pixel	Weight"
GB_MASK	(2):	“Sub-Pixel	Coverage	Mask”

Methods:
public:

Prototype:
virtual	void	SetRasterSize(int	ww,	int	hh)=0;

Remarks:
This	method	is	used	internally	to	set	the	size	of	the	G-Buffer.

Parameters:
int	ww
The	width	to	set	in	pixels.
int	hh
The	height	to	set	in	pixels.

Prototype:
virtual	int	Width()=0;

Remarks:
Returns	the	width	of	the	GBuffer.

Prototype:

virtual	int	Height()=0;
Remarks:
Returns	the	height	of	the	GBuffer.

Prototype:
virtual	int	InitBuffer()=0;

Remarks:
Initializes	the	GBuffer.	Call	this	method	before	writing	to	the	buffer.	If
present,	the	GB_Z	channels	is	set	to	-BIGFLOAT	and	the
GB_NODE_RENDER_ID	channel	is	set	to	0xffff.	The	Render	ID	Name	Table
is	cleared.

Return	Value:
Nonzero	on	success;	otherwise	zero.

Sample	Code:
GBuffer	*gbuf	=	tobm->GetGBuffer();
if	(gbuf)	gbuf->InitBuffer();

Prototype:
virtual	ULONG	CreateChannels(ULONG	channelMask)=0;

Remarks:
This	method	creates	the	specified	channels	in	this	G-Buffer.

Parameters:
ULONG	channelMask
Specifies	the	channels	to	create.	See	List	of	Image	Channels.

Return	Value:
The	channels	that	are	currently	present.

Prototype:
virtual	void	DeleteChannels(ULONG	channelMask)=0;

Remarks:
This	method	delete	specified	channels.

Parameters:

ULONG	channelMask
Specifies	the	channels	to	create.	See	List	of	Image	Channels.

Return	Value:
The	channels	that	are	currently	present.

Prototype:
virtual	ULONG	ChannelsPresent()=0;

Remarks:
Returns	the	channels	that	are	currently	present.	See	List	of	Image	Channels.

Prototype:
virtual	void	*GetChannel(ULONG	channelID,	ULONG&
chanType)=0;

Remarks:
Returns	a	pointer	to	the	specified	channel	of	the	G-Buffer,	and	determines	its
type	in	terms	of	bits	per	pixel.	NULL	is	returned	if	the	channel	can't	be	found.

Parameters:
ULONG	channelID
The	channel	to	get.	See	List	of	Image	Channels.
ULONG&	chanType
The	channel	type.	See	List	of	G-Buffer	Channel	Types.

Prototype:
virtual	GBufReader	*CreateReader()=0;

Remarks:
Creates	and	returns	a	pointer	to	a	GBufReader	object.

Prototype:
virtual	void	DestroyReader(GBufReader	*pRdr)=0;

Remarks:
Deletes	the	specified	GBufReader	object.

Parameters:

GBufReader	*pRdr
Points	to	the	reader	to	delete.

Prototype:
virtual	GBufWriter	*CreateWriter()=0;

Remarks:
Creates	and	returns	a	pointer	to	a	GBufWriter	object.

Prototype:
virtual	void	DestroyWriter(GBufWriter	*pRdr)=0;

Remarks:
Deletes	the	specified	GBufWriter	object.

Parameters:
GBufWriter	*pRdr
Points	to	the	writer	to	delete.

Prototype:
virtual	BOOL	IsDefaultGBuffer();

Remarks:
Returns	TRUE	if	this	is	a	default	G-Buffer;	otherwise	FALSE.	A	'default'	G-
Buffer	is	one	that	3ds	max	itself	creates.	Since	GBuffer	is	a	virtual	class	a
plug-in	developer	could	create	their	own	G-Buffers	(for	some	very	special
purpose).	In	that	case	it	would	not	be	a	'default'	G-Buffer	and	this	method
would	return	FALSE.

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Deletes	this	G-Buffer.

Prototype:
virtual	void	Copy(GBuffer	*gbfrom)=0;

Remarks:
Copies	the	data	from	the	specified	G-Buffer	to	this	one.	This	method
maintains	the	multi-layer	data	correctly.	The	channels	present	in	each	G-
Buffer	must	match.

Parameters:
GBuffer	*gbfrom
Points	to	the	source	of	the	copy.

Prototype:
virtual	void	CopyScale(GBuffer	*gbfrom,	int	cw=-1,	int	ch=-1)=0;

Remarks:
Copies	the	data	from	the	specified	G-Buffer	and	optionally	scales	its	size
while	maintaining	the	multi-layer	data	correctly.	This	is	used	in	Video	Post
whenever	there	is	an	input	bitmap	that	is	a	different	size	than	the	current	Video
Post	image	dimensions.

Parameters:
GBuffer	*gbfrom
Points	to	the	source	of	the	copy.
int	cw=-1
The	width	for	the	copy.	If	-1	is	specified	the	copy	is	the	same	size	as	the
original.
int	ch=-1
The	height	for	the	copy.	If	-1	is	specified	the	copy	is	the	same	size	as	the
original.

Prototype:
virtual	void	Position(int	srcy,	int	trgy,	int	srcx,	int	trgx,	int	trgw,
int	trgh)=0;

Remarks:
This	method	is	used	internally	and	is	something	that	normally	a	developer
shouldn’t	call	directly.	It	is	used	inside	the	Bitmap	routines	for	manipulating
bitmaps.	It	takes	a	sub	rectangle	of	the	G-Buffer	which	has	an	upper	left
corner	at	(srcx,srcy),	and	dimensions	of	(trgw,trgh),	and	moves	it	to	be

positioned	at	(trgx,trgy).	Portions	of	the	G-Buffer	outside	of	this	rectangle	are
discarded.

Parameters:
int	srcy
The	source	y	location.
int	trgy
The	target	y	location.
int	srcx
The	source	x	location.
int	trgx
The	target	x	location.
int	trgw
The	target	width.
int	trgh
The	target	height.

Prototype:
virtual	int	NumberLayerRecords(int	y)=0;

Remarks:
Returns	the	total	number	of	layer	records	for	the	specified	scan	line.	On	each
scan	line	there	is	a	single	array	of	layer	records.	Each	layer	record	contains	an
x	value	which	tells	at	what	pixel	it	is	located,	and	then	all	of	the	G-Buffer	data
that	is	being	stored	in	this	particular	G-Buffer.	The	layer	records	for	a	given
pixel	all	have	the	same	x	value,	and	are	ordered	front-to-back	in	scene	depth.
This	method	is	used	by	the	RLA	and	RPF	writer	code.	See
\MAXSDK\SAMPLES\IO\RLA\RLA.CPP	for	an	example.

Parameters:
int	y
The	zero	based	index	of	the	scan	line.

Prototype:
virtual	int	GetLayerChannel(int	y,	int	ichan,	char	*data)=0;

Remarks:

This	method	goes	through	all	the	layer	records	and	pulls	out	the	values	for	a
particular	channel	into	an	array,	which	is	handy	for	run-encoding	when	saving
to	a	file.

Parameters:
int	y
The	zero	based	index	of	the	scan	line.
int	ichan
The	channel	to	check.	See	List	of	G-Buffer	Channel	Indexes.	When
ichan=-1,	it	gives	an	array	of	the	x	values	from	each	of	the	layer	records.
char	*data
Points	to	storage	for	the	layer	data.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	int	CreateLayerRecords(int	y,	int	num)=0;

Remarks:
This	method	creates	the	specifed	number	of	layer	records	for	the	scan	line
passed.

Parameters:
int	y
The	zero	based	index	of	the	scan	line.
int	num
The	number	of	records	to	create.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	int	SetLayerChannel(int	y,	int	ichan,	char	*data)=0;

Remarks:
Sets	the	layer	record	data	for	the	specified	channel	for	the	scan	line	passed.

Parameters:

int	y
The	zero	based	index	of	the	scan	line.
int	ichan
The	channel	to	set.	See	List	of	G-Buffer	Channel	Indexes.	When	ichan=-1,	it
sets	an	array	of	the	x	values	from	each	of	the	layer	records.
char	*data
Points	to	storage	for	the	layer	data.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	void	UpdateChannelMinMax()=0;

Remarks:
This	method	searches	the	G-Buffer	Z,	UV	and	VELOC	channels	and	stores	the
minimum	and	maximum	values.	This	enables	the	GetChannelMin()	and
GetChannelMax()	methods	to	work.	This	is	called	internally	whey	3ds	max
generates	a	G-Buffer.	When	developers	get	one	from	the	renderer	this	method
will	already	have	been	called.

Prototype:
virtual	BOOL	GetChannelMin(int	chan,	void	*data)=0;

Remarks:
Retrieves	the	minimum	value	in	the	specified	channel.

Parameters:
int	chan
The	channel	to	check.	One	of	the	following	(the	other	channels	are	not
supported):
GB_Z
Z-Buffer	depth	-	float
GB_UV
UV	coordinates	-	Point2
GB_VELOC

Velocity	-	Point2
void	*data
Points	to	storage	for	the	value	to	get.

Return	Value:
TRUE	if	chan	was	valid	and	the	value	could	be	stored	in	data;	otherwise
FALSE.

Prototype:
virtual	BOOL	GetChannelMax(int	chan,	void	*data)=0;

Remarks:
Retrieves	the	maximum	value	in	the	specified	channel.

Parameters:
int	chan
The	channel	to	check.	One	of	the	following	(the	other	channels	are	not
supported):
GB_Z
Z-Buffer	depth	-	float
GB_UV
UV	coordinates	-	Point2
GB_VELOC
Velocity	-	Point2

void	*data
Points	to	storage	for	the	value	to	get.

Return	Value:
TRUE	if	chan	was	valid	and	the	value	could	be	stored	in	data;	otherwise
FALSE.

Prototype:
virtual	NameTab	&NodeRenderIDNameTab()=0;

Remarks:
This	method	returns	a	reference	to	the	table	of	node	names	indexed	by	their
NodeRenderId.	See	Class	NameTab.

Prototype:
virtual	Tab<float>	&ImageBlurMultiplierTab()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	a	reference	to	a	table	of	floats.	These	are	image	blur
multipliers	indexed	by	NodeRenderID.

Prototype:
INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG	arg2=0,
ULONG	arg3=0);

Remarks:
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.
This	is	currently	reserved	for	future	use.

Parameters:
int	cmd
The	command	to	execute.
ULONG	arg1=0
Optional	argument	1	(defined	uniquely	for	each	cmd).
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value	(defined	uniquely	for	each	cmd).

Class	Effect
See	Also:	Class	SpecialFX,	Class	SFXParamDlg,	Class	IRendParams,Class
RenderGlobalContext,	Class	Bitmap,	Class	ISave,	Class	ILoad,	Class	INode,
Class	Interface.
class	Effect	:	public	SpecialFX

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	base	class	used	in	the	creation	of	Rendering	Effect	plug-ins.	In	3ds
max	3.0	these	plug-in	are	added	in	sequence	after	a	rendering	is	complete
without	the	use	of	Video	Post.	A	developer	creates	a	sub-class	of	this	class	and
implements	or	calls	the	methods	shown	below.
Plug-In	Information:
Class	Defined	In	RENDER.H
Super	Class	ID	RENDER_EFFECT_CLASS_ID
Standard	File	Name	Extension	DLV
Extra	Include	File	Needed	None
There	are	also	methods	in	the	Interface	class	for	manipulating	the	Effects	List:
virtual	int	NumEffects()=0;
virtual	Effect	*GetEffect(int	i)=0;
virtual	void	SetEffect(int	i,Effect	*e)=0;
virtual	void	AddEffect(Effect	*eff)=0;
virtual	void	DeleteEffect(int	i)=0;

Methods:
public:

Prototype:
virtual	EffectParamDlg	*CreateParamDialog(IRendParams	*ip);

Remarks:
Implemented	by	the	Plug-In.
This	method	creates	and	returns	a	new	instance	of	a	class	derived	from
EffectParamDlg	to	manage	the	user	interface.	This	put	up	a	modal	dialog
that	lets	the	user	edit	the	plug-ins	parameters.

Parameters:
IRendParams	*ip
This	is	the	interface	given	to	the	rendering	effect	so	it	may	display	its
parameters.

Return	Value:
A	new	instance	of	a	class	derived	from	EffectParamDlg.
Note:	typedef	SFXParamDlg	EffectParamDlg;

Default	Implementation:
{return	NULL;}

Prototype:
virtual	BOOL	SetDlgThing(EffectParamDlg*	dlg);

Remarks:
You	should	implement	this	if	you	are	using	the	ParamMap2	AUTO_UI	system
and	the	effect	has	secondary	dialogs	that	have	something	other	than	the
incoming	effect	as	their	'thing'.	Called	once	for	each	secondary	dialog	for	you
to	install	the	correct	thing.	Return	TRUE	if	you	process	the	dialog,	FALSE
otherwise,	in	which	case	the	incoming	effect	will	be	set	into	the	dialog.
Note:	Developers	needing	more	information	on	this	method	can	see	the
remarks	for	MtlBase::CreateParamDlg()	which	describes	a	similar	example	of
this	method	in	use	(in	that	case	it's	for	use	by	a	texture	map	plug-in).

Parameters:
EffectParamDlg*	dlg
Points	to	the	ParamDlg.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	DWORD	GBufferChannelsRequired(TimeValue	t);

Remarks:
Implemented	by	the	Plug-In.
Returns	a	DWORD	that	indicates	the	channels	that	this	Effect	requires	in	the

output	bitmap.
Parameters:
TimeValue	t
The	time	at	which	the	channels	are	required.

Return	Value:
The	required	channels.	See	List	of	Image	Channels.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	void	Apply(TimeValue	t,	Bitmap	*bm,
RenderGlobalContext	*gc,	CheckAbortCallback	*cb)=0;

Remarks:
Implemented	by	the	Plug-In.
This	is	the	method	that	is	called	to	apply	the	effect	to	the	bitmap	passed.

Parameters:
TimeValue	t
The	time	at	which	to	apply	the	effect.
Bitmap	*bm
The	bitmap	the	effect	modifies	and	stores	the	result	in.
RenderGlobalContext	*gc
This	can	be	used	to	retireve	information	about	the	global	rendering
enviornment.
CheckAbortCallback	*cb
Points	to	an	object	whose	Check()	method	may	be	called	to	determine	if	the
user	wants	to	abort.	See	Class	CheckAbortCallback.

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
Implemented	by	the	System.
To	facilitate	naming	rendering	effects	a	'name'	string	exists	in	the	base	class.

This	method	should	be	called	at	the	start	of	the	developer's	sub-classed	Effect
plug-in	to	save	the	name.

Parameters:
ISave	*isave
An	interface	for	saving	data.

Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
Implemented	by	the	System.
To	facilitate	naming	rendering	effects	a	'name'	string	exists	in	the	base	class.
This	method	should	be	called	at	the	start	of	the	developer's	sub-classed	Effect
plug-in	to	load	the	name.

Parameters:
ILoad	*iload
An	interface	for	loading	data.

Class	Osnap
See	Also:	Class	OsnapHit,	Class	IOsnapManager,	Class	OsnapMarker,
Structure	SnapInfo	The	Advanced	Topics	section	on	Snapping.
class	Osnap

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	is	the	base	class	for	the	derivation	of	a	new	object	snap	plug-ins.
Conceptually,	the	osnap	class	represents	a	"rule"	for	locating	points	in	an
object’s	local	space.	Typically,	an	instance	of	this	class	will	only	make	sense
for	certain	object	types.	It’s	the	job	of	the	ValidInput()	method	to	filter	out
uninteresting	nodes	in	the	scene.	When	the	scene	is	traversed,	each	object
which	passes	the	input	test	will	be	passed	into	the	Snap()	method.	This
method	is	the	workhorse	of	object	snap	plug-ins	and	is	responsible	for
computing,	allocating	and	recording	its	hits.
For	convenience,	an	object	snap	plug-in	may	encompass	multiple	sub-rules.
For	example,	the	shape	snap	contains	rules	for	computing	both	tangents	and
perpendicular	points	on	splines.	Therefore	many	of	the	methods	have	an	index
argument	which	identifies	which	sub-snap	it	applies	to.

For	sample	code	see
\MAXSDK\SAMPLES\SNAPS\SPHERE\SPHERE.CPP.

Friend	Classes:
friend	class	OsnapHit;
friend	class	OsnapManager;

Methods:

Prototype:
Osnap();

Remarks:
Constructor.	The	OsnapManger	interface	pointer	is	initialized.

Prototype:
virtual	~Osnap();

Remarks:
Destructor.	Internal	data	structure	to	the	class	are	freed.

Prototype:
virtual	int	numsubs();

Remarks:
Returns	the	number	of	sub-snaps	this	plug-in	provides.

Default	Implementation:
{return	1;}

Prototype:
virtual	BOOL	IsActive();

Remarks:
Implemented	by	the	system.
Returns	TRUE	if	any	of	the	sub-snaps	are	active;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetActive(int	index);

Remarks:
Implemented	by	the	system.
Returns	TRUE	if	any	of	the	indexed	sub-snap	is	active.

Prototype:
virtual	void	SetActive(int	index,	BOOL	state);

Remarks:
Implemented	by	the	system.
Sets	the	indexed	sub-snap	to	the	specified	state.

Prototype:
virtual	TCHAR	*Category();

Remarks:
Returns	the	category	string	for	this	plug-in.	If	the	plug-in	fails	to	overide	this

method,	the	snap	will	be	added	to	the	"standard"	page	of	the	UI.
Default	Implementation:
{return	NULL;}

Prototype:
virtual	Class_ID	ClassID();

Remarks:
Returns	the	Class_ID	for	this	plug-in.

Default	Implementation:
{	return	Class_ID(0,	0);	}

Prototype:
virtual	boolean	ValidInput(SClass_ID	scid,	Class_ID	cid)=0;

Remarks:
This	method	is	used	to	check	if	the	object	whose	super	class	ID	and	class	ID
are	passed	is	valid	input	for	this	object	snap	plug-in	to	snap	to.

Parameters:
SClass_ID	scid
The	Super	Class	ID	to	check.
Class_ID	cid
The	Class	ID	to	check.

Return	Value:
Returns	TRUE	if	the	object	is	OK	to	snap	to;	otherwise	FALSE.

Sample	Code:
boolean	SphereSnap::ValidInput(SClass_ID	scid,	Class_ID	cid){
	boolean	c_ok	=	FALSE,	sc_ok	=	FALSE;
	sc_ok	|=	(scid	==	GEOMOBJECT_CLASS_ID)?	TRUE	:	FALSE;
	c_ok	|=	(cid	==	Class_ID(SPHERE_CLASS_ID,0))?	TRUE	:
FALSE;
	return	sc_ok	&&	c_ok;
}

Prototype:
virtual	void	Snap(Object*	pobj,	IPoint2	*p,	TimeValue	t);

Remarks:
Implemented	by	the	Plug-In.
This	is	the	workhorse	of	a	snap	plug-in.	This	method	should	compute	and
record	hits	on	the	given	object.

Parameters:
Object*	pobj
A	pointer	to	an	object	which	passed	the	valid	input	test.	Note	that	if	this
method	is	called,	you	can	make	certain	assumption	about	the	class	of	the
object	and	do	appropriate	casting	as	needed.
IPoint2	*p
The	cursor	position.
TimeValue	t
The	time	at	which	to	check.

Default	Implementation:
{}

Prototype:
virtual	BOOL	UseCallbacks();

Remarks:
Developers	have	the	option	of	placing	all	their	code	in	a	single	Snap()
method	or	of	breaking	it	up	into	multiple	callbacks.	Developers	wishing	to	use
callbacks	should	overide	this	method	to	return	TRUE.	Note:	if	callbacks	are
used,	the	Snap()	method	is	not	called.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	int	NumCallbacks();

Remarks:
Returns	the	number	of	callbacks	used.

Default	Implementation:
{return	0;}

Prototype:
virtual	SnapCallback	GetSnapCallback(int	sub);

Remarks:
Returns	the	specified	callback	to	be	used	for	snapping.

Parameters:
int	sub
The	sub-snap	index.

Return	Value:
Note	the	following	typedef	--	a	SnapCallback	is	simply	a	pointer	to	a
function	passed	two	arguments:
typedef	void	(*SnapCallback)	(Object*	pobj,	IPoint2	*p)	;

Default	Implementation:
{	return	NULL;}

Prototype:
virtual	BOOL	GetSupportedObject(INode	*iNode,	TimeValue	t,
ObjectState	*os);

Remarks:
This	method	is	provided	for	future	use	so	that	snaps	can	evaluate	the	object	at
arbitrary	points	in	the	pipeline.	Returns	TRUE	if	the	object	associated	with	the
node	passed	is	supported;	otherwise	FALSE.	The	default	implementation	calls
ValidInput()	and	fills	the	storage	pointed	to	by	os	with	the	object	state	at	the
end	of	the	geometry	pipeline.	This	is	the	same	object	state	returned	by
EvalWorldState.

Parameters:
INode	*iNode
The	node	whose	object	being	checked.
TimeValue	t
The	time	at	which	to	check	the	object.

ObjectState	*os
This	pointer	should	be	updated	to	the	ObjectState	of	the	object	associated
with	the	node	by	calling	INode::EvalWorldState().

Default	Implementation:
BOOL	Osnap::GetSupportedObject(INode	*inode,	TimeValue	t,
ObjectState	*os)	{
	*os	=	inode->EvalWorldState(t);
	assert(os);
	Class_ID	thistype	=	os->obj->ClassID();
	unsigned	long	supertype	=	os->obj->SuperClassID();
	return	ValidInput(supertype,thistype)?TRUE:FALSE;
}

Prototype:
virtual	TSTR	*snapname(int	index)=0;

Remarks:
Returns	a	pointer	to	the	snap’s	name	to	be	displayed	in	the	user	interface.

Parameters:
int	index
The	index	of	the	sub-snap	whose	name	is	returned.

Prototype:
virtual	TSTR	*tooltip(int	index);

Remarks:
Reserved	for	future	use.

Parameters:
int	index
The	index	of	the	sub-snap	whose	name	is	returned.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	OsnapMarker	*GetMarker(int	index)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	should	return	a	pointer	to	a	(typically	static)	OsnapMarker.	These
markers	define	the	identifying	markers	which	get	displayed	in	the	viewports.

Parameters:
int	index
The	subsnap	whose	marker	the	system	requires.

Return	Value:
A	pointer	to	an	OsnapMarker.	If	this	method	returns	NULL,	a	default	marker
will	be	displayed.

Prototype:
virtual	WORD	HiliteMode();

Remarks:
Implemented	by	the	Plug-In.
Returns	a	value	to	indicate	the	type	of	highlighting	to	be	done	for	this	snap.
Typically,	some	part	of	the	objects	geometry	is	illumintated.	In	some	cases	it	is
desirable	to	illuminate	the	objects	bounding	box	and	occasionally	to	draw	a
world	space	crosshair.	The	default	implementations	should	normally	be	used.

Return	Value:
One	or	more	of	the	following	values:
HILITE_NORMAL
This	is	the	default	and	indicates	that	some	part	of	the	objects	geometry	will
be	hilited.	The	description	of	this	geometry	is	recorded	in	the	hitmesh
member	of	the	class	OsnapHit.
HILITE_BOX
This	is	return	value	indicates	that	the	objects	bounding	box	should	be
drawn	as	the	result	of	a	hit	on	this	object.
HILITE_CROSSHAIR
Reserved	for	grid	snapping.	This	return	value	indicates	that	a	world	space
crosshair	should	be	drawn	through	the	hitpoint.

Default	Implementation:
{return	HILITE_NORMAL;}

Prototype:
virtual	boolean	BeginUI(HWND	hwnd);

Remarks:
This	method	is	reserved	for	future	use.

Default	Implementation:
{return	TRUE;}

Prototype:
virtual	void	EndUI(HWND	hwnd);

Remarks:
This	method	is	reserved	for	future	use.

Default	Implementation:
{}

Prototype:
virtual	HBITMAP	getTools()=0;

Remarks:
Returns	a	handle	to	a	bitmap	that	contains	the	icons	to	be	displayed	for	this
snap.	If	there	are	N	subsnaps,	this	bitmap	should	contain	N	icons.	The	size	of
an	individual	icon	is	16x15.

Prototype:
virtual	HBITMAP	getMasks()=0;

Remarks:
Returns	a	handle	to	a	bitmap	that	contains	the	masks	for	the	UI	icons	for	this
snap	plug-in.

Prototype:
virtual	BOOL	HitTest(Object*	pobj,	IPoint2	*p,	TimeValue	t);

Remarks:
Implemented	by	the	Plug-In.
Developers	may	overide	this	method	to	do	additional	hit	testing	on	each	object
as	an	additional	rejection	criteria.	The	default	implementation	returns	TRUE
and	consequently	filters	nothing.	Note	that	if	this	method	returns	FALSE	for	a
given	object,	the	snap	method	will	never	be	called	for	it.
Note:	Nodes	are	always	trivially	rejected	if	the	cursor	position	does	not	fall
within	the	screen	space	bounding	box	of	the	node.

Parameters:
Object*	pobj
A	pointer	to	the	object	returned	by	GetSupportedObject.
IPoint2	*p
The	cursor	position.
TimeValue	t
The	time	at	which	to	hittest.

Return	Value:
Returns	TRUE	if	the	object	is	being	hit	and	should	be	considered	for
snapping.

Default	Implementation:
{return	TRUE;}

Prototype:
virtual	WORD	AccelKey(int	index)=0;

Remarks:
This	method	is	no	longer	used.

Class	BitmapIO
See	Also:	Class	Bitmap,	Class	BitmapStorage,	Class	BitmapInfo,	Working	with
Bitmaps.
class	BitmapIO	:	public	BaseInterfaceServer

Description:
This	is	the	base	class	used	by	developers	creating	image	loader	/	saver	plug-ins.
Developers	implement	pure	virtual	methods	of	this	class	to	load	the	image,	open
it	for	output,	write	to	it,	close	it,	and	to	provide	information	about	the	image
loader/saver	they	are	creating.	These	are	properties	such	as	the	author	name,
copyright,	image	format	description,	filename	extension(s)	used,	and	the
capabilities	of	the	image	loader	/	saver.
When	a	BitmapIO	derived	image	reader	reads	an	image,	it	creates	a	storage	class
that	makes	sense	to	it.	For	example,	a	paletted	8	bit	is	perfect	for	loading	GIF's
but	not	for	loading	32	bit	Targas.	The	inverse	is	also	true.	There	is	no	point	in
creating	a	TRUE_64	storage	to	load	a	GIF.	Because	this	is	how	image	buffers
are	managed,	it	is	also	important	to	note	that	if	a	developer	writes	an	image
loader	that	creates	images	from	scratch	(a	gradient	generator	for	instance),	there
is	no	need	to	have	any	real	memory	allocated.	The	plug-in	would	simply	derive	a
new	type	of	BitmapStorage	and	provide	the	pixels	through	the	common
methods	(virtual	buffer),	creating	them	as	they	are	requested.

Method	Groups:
The	hyperlinks	below	jump	to	the	start	of	related	methods	within	the	class:
Loading
Output/Write/Close
Filename	Extension
Author/Description/Copyright/Version
Capabilities
Parameter	Block	Methods
ShowAbout/ShowImage/ShowControl
Image	Information
Gamma	Setting
Dithering
DIB	Access
Palette	Calculation

Storage	/	Bitmap	Access
Silent	Mode	Setting
G-Buffer	Channels	Required
Internal	Methods

Data	Members:
protected:
float	gamma;
The	gamma	setting.
Bitmap	*map;
The	Bitmap	using	this	OUTPUT	handler.
BitmapStorage	*storage;
The	storage	used	by	this	INPUT	handler.
int	openMode;
The	mode	that	the	IO	module	is	open	for.	See	List	of	Bitmap	Open	Mode
Types.
BitmapIO	*prevIO;
A	linked	list	pointer	to	the	previous	IO	module	for	multiple	outputs	of	a	single
bitmap.
BitmapIO	*nextIO;
A	linked	list	pointer	to	the	next	IO	module	for	multiple	outputs	of	a	single
bitmap.

public:
BitmapInfo	bi;
Describes	the	properties	of	the	bitmap	being	handled	by	the	instance	of	this
class.

Methods:

Output	Pixels
public:

Prototype:
int	GetOutputPixels(int	x,int	y,int	pixels,BMM_Color_64
*ptr,BOOL	preMultAlpha=TRUE);

Remarks:
Implemented	by	the	System.
This	method	is	used	by	the	subclassed	BitmapIO	to	get	pixels	for	output	with
the	appropriate	output	gamma	correction.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.
BMM_Color_64	*ptr
Pointer	to	storage	for	the	retrieved	pixels.	See	Structure	BMM_Color_64.
BOOL	preMultAlpha=TRUE
This	parameter	is	available	in	release	3.0	and	later	only.
Setting	this	parameter	to	FALSE	will	cause	pixels	with	non-premultiplied
alpha	to	be	returned.

Return	Value:
Nonzero	if	the	pixels	were	retrieved;	otherwise	zero.

Prototype:
int	GetDitheredOutputPixels(int	x,int	y,int	pixels,BMM_Color_32
*ptr,BOOL	preMultAlpha=TRUE);

Remarks:
Implemented	by	the	System.
This	method	is	used	by	the	subclassed	BitmapIO	to	get	32	bit	pixels	for	output
with	the	appropriate	output	gamma	correction	and	dither.	Note	that	this
method	works	on	only	a	single	scanline	of	pixels	at	a	time.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.

int	pixels
Number	of	pixels	to	retrieve.
BMM_Color_32	*ptr
Pointer	to	storage	for	the	retrieved	pixels.	See	Structure	BMM_Color_32.
BOOL	preMultAlpha=TRUE
This	parameter	is	available	in	release	3.0	and	later	only.
Setting	this	parameter	to	FALSE	will	cause	pixels	with	non-premultiplied
alpha	to	be	returned.

Return	Value:
Nonzero	if	the	pixels	were	retrieved;	otherwise	zero.

DIB	Access

Prototype:
PBITMAPINFO	GetOutputDib(int	depth	=	24);

Remarks:
Implemented	by	the	System.
This	method	is	used	by	the	subclassed	BitmapIO	to	get	a	DIB	for	output	with
the	appropriate	output	gamma	correction.

Parameters:
int	depth	=	24
Specifies	the	depth	of	the	DIB.	This	may	be	either	24	or	32.

Prototype:
PBITMAPINFO	GetDitheredOutputDib(int	depth	=	24);

Remarks:
Implemented	by	the	System.
This	methods	is	used	by	the	subclassed	BitmapIO	to	get	a	DIB	for	output	with
the	appropriate	output	gamma	correction	and	dither.

Parameters:
int	depth	=	24
Specifies	the	depth	of	the	DIB.	This	may	be	either	24	or	32.

Output	Gamma	Setting

Prototype:
float	OutputGamma();

Remarks:
Implemented	by	the	System.
Returns	the	output	gamma	setting.

Dithering

Prototype:
BOOL	DitherTrueColor();

Remarks:
Implemented	by	the	System.
If	a	BitmapIO	wants	to	do	its	own	dithering,	it	should	call	this	method	to	find
out	if	dithering	is	wanted	for	true	color	images.	If	it	is	a	24	bit	or	32	bit
format,	it	would	usually	just	call	GetDitheredOutputPixels()	instead.

Return	Value:
TRUE	if	dithering	is	desired;	otherwise	FALSE.

Prototype:
BOOL	DitherPaletted();

Remarks:
Implemented	by	the	System.
If	a	BitmapIO	wants	to	do	its	own	dithering,	it	should	call	this	method	to	find
out	if	dithering	is	wanted	for	paletted	images.

Return	Value:
TRUE	if	dithering	is	desired;	otherwise	FALSE.

Palette	Computation

Prototype:
int	CalcOutputPalette(int	palsize,	BMM_Color_48	*pal);

Remarks:
Calculate	a	color	palette	for	output	color	packing	for	the	map	that	is	using	this
output	handler	(this	is	the	map	pointed	at	by	the	protected	data	member
Bitmap	*map).	This	method	performs	gamma	correction.	See	Class
ColorPacker,	Class	Quantizer.

Parameters:
int	palsize
The	size	of	the	palette	to	compute.
BMM_Color_48	*pal
Storage	for	the	palette.

Return	Value:
Nonzero	if	the	palette	was	computed;	otherwise	zero.

Open	Mode	Setting

Prototype:
inline	int	OpenMode()

Remarks:
Implemented	by	the	System.
Returns	the	open	mode	setting.	See	Bitmap	Open	Mode	Types.

Storage	/	Bitmap	Access

Prototype:
BitmapStorage	*Storage()

Remarks:
Implemented	by	the	System.
Returns	a	pointer	to	the	BitmapStorage	for	this	image	input	handler.

Prototype:
inline	Bitmap	*Map()

Remarks:
Implemented	by	the	System.

Returns	a	pointer	to	the	Bitmap	using	this	output	handler.

Filename	Extensions

Prototype:
virtual	int	ExtCount()	=	0

Remarks:
Implemented	by	the	Plug-In.
Returns	the	number	of	filename	extensions	supported	by	this	IO	module.	For
example	the	EPS	plug-in	supports	"EPS"	and	"PS",	and	thus	returns	2.

Prototype:
virtual	const	TCHAR	*Ext(int	n)	=	0;

Remarks:
Implemented	by	the	Plug-In.
The	extensions	are	accessed	using	a	virtual	array.	This	method	returns	the	'i-th'
filename	extension	supported	by	the	IO	module,	(i.e.	"EPS").

Parameters:
int	i
Specifies	which	filename	extension	to	return.

Author/Desc/Copyright/Version

Prototype:
virtual	const	TCHAR	*LongDesc()	=	0

Remarks:
Implemented	by	the	Plug-In.
Returns	a	long	ASCII	description	of	the	image	format	(i.e.	"Targa	2.0	Image
File").

Prototype:
virtual	const	TCHAR	*ShortDesc()	=	0

Remarks:

Implemented	by	the	Plug-In.
Returns	a	short	ASCII	description	of	the	image	format	(i.e.	"Targa").

Prototype:
virtual	const	TCHAR	*AuthorName()	=	0

Remarks:
Implemented	by	the	Plug-In.
Returns	the	ASCII	Author	name	of	the	IO	module.

Prototype:
virtual	const	TCHAR	*CopyrightMessage()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	ASCII	Copyright	message	for	the	IO	module.

Prototype:
virtual	UINT	Version()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	IO	module	version	number	*	100	(i.e.	v3.01	=	301)

Capabilities

Prototype:
virtual	int	Capability()	=	0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	IO	module	capability	flags.	These	describe	the	capabilities	of	the
plug-in	such	as	if	it	supports	reading	images,	writing	images,	multiple	files,
and	whether	it	has	its	own	information	and	control	dialog	boxes.	See
BitmapIO	Capability	Flags.

ShowAbout	/	ShowImage	/	ShowControl

Prototype:
virtual	void	ShowAbout(HWND	hWnd)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	show	the	plug-in's	"About"	box.	This	is	called,	for
example,	from	the	About	button	of	the	Add	Image	Input	Event	dialog	in	Video
Post.

Parameters:
HWND	hWnd
The	handle	of	the	owner	window.

Prototype:
virtual	BOOL	ShowImage(HWND	hWnd,	BitmapInfo	*bi)

Remarks:
Implemented	by	the	Plug-In.
If	the	BMMIO_OWN_VIEWER	flag	is	set	in	the	flags	returned	from	the
Capability()	method,	this	method	will	be	called	whenever	the	user	wants	to
view	an	image	for	this	device.	This	is	for	devices	which	can	"play"	image
sequences	such	as	AVIs,	FLCs,	etc.

Parameters:
HWND	hWnd
The	handle	of	the	owner	window.
BitmapInfo	*bi
The	bitmap	to	view.

Return	Value:
TRUE	if	the	viewing	the	image	was	successful;	otherwise	FALSE.

Default	Implementation:
{	return	FALSE;	}

Prototype:

virtual	BOOL	ShowControl(HWND	hWnd,	DWORD	flag)
Remarks:
Implemented	by	the	Plug-In.
Displays	the	Control	Panel	of	the	IO	module.	This	function	is	only	called	if
the	plug-in	has	defined	it	supports	it	(through	the	Capability	flag	returned
from	Capability(),	ie.	BMMIO_CONTROLREAD,	etc.).	See	BitmapIO
Capability	Flags.

Parameters:
HWND	hWnd
The	handle	of	the	owner	window.
DWORD	flag
Indicates	to	the	plug-in	what	operation	the	control	is	for	(read,	write,	or
generic).	See	BitmapIO	Capability	Flags

Return	Value:
If	the	user	exits	the	box	through	an	OK,	this	function	should	return	TRUE.	If
the	user	cancels	out,	it	will	should	FALSE.	FALSE	indicates	nothing	has
changed	so	the	system	won't	bother	asking	the	plug-in	if	it	wants	to	save	data.

Default	Implementation:
{	return	FALSE;	}

Parameter	Block	Methods
The	following	methods	(EvaluateConfigure(),	LoadConfigure(),
SaveConfigure())	deal	with	parameter	block	loading	and	saving.	See	the
sample	code	below	to	see	how	the	EPS	BitmapIO	plug-in	uses	these	methods.
typedef	struct	userSettable	{
int	units;	//	Inches	or	MM
int	binary;	//	Whether	want	binary	image	data	or	not
int	preview;	//	Whether	want	TIFF	preview	in	file
int	orientation;	//	Options	are	portrait	or	landscape
int	colorType;	//	Whether	image	is	output	as	rgb	or	gray
float	paperHeight;	//	Height	of	output	(for	centering	image)
float	paperWidth;	//	Width	of	output	(for	centering	image)
float	xResolution;	//	In	dots	per	inch

float	yResolution;	//	In	dots	per	inch
}	UserSettable;
	
DWORD	BitmapIO_EPS::EvaluateConfigure	()	{
return	sizeof	(UserSettable);
}
	
BOOL	BitmapIO_EPS::LoadConfigure	(void	*ptr)	{
UserSettable	*buf	=	(UserSettable	*)	ptr;
memcpy	(&userSettings,	ptr,	sizeof(UserSettable));
return	TRUE;
}
	
BOOL	BitmapIO_EPS::SaveConfigure	(void	*ptr)	{
if	(ptr)	{
memcpy	(ptr,	&userSettings,	sizeof(UserSettable));
return	TRUE;
}	else
return	FALSE;
}

Prototype:
virtual	DWORD	EvaluateConfigure()	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	by	3ds	max	to	determine	the	buffer	size	required	by	the
plug-in.	The	plug-in	implements	this	method	and	returns	the	number	of	bytes
of	configuration	data	it	needs	to	save.

Return	Value:
The	buffer	size	required	by	the	plug-in	(in	bytes).

Prototype:
virtual	BOOL	LoadConfigure(void	*ptr)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	by	3ds	max	to	allow	the	plug-in	to	load	any
configuration	data.

Parameters:
void	*ptr
Pointer	initialized	to	point	to	the	previously	saved	configuration	data.

Return	Value:
Returns	TRUE	if	the	data	was	loaded	properly;	otherwise	FALSE.

Prototype:
virtual	BOOL	SaveConfigure(void	*ptr)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	by	3ds	max	to	allow	the	plug-in	to	save	any
configuration	data.

Parameters:
void	*ptr
Pointer	initialized	to	a	pre-allocated	buffer	where	the	plug-in	may	save	data.

Return	Value:
Returns	TRUE	if	the	data	was	saved;	otherwise	FALSE.

Silent	Mode	Setting

Prototype:
BOOL	SilentMode()

Remarks:
Implemented	by	the	System.
Returns	the	state	of	the	silent	mode	flag.	If	this	flag	is	TRUE	the	plug-in
should	NOT	post	a	dialog	displaying	any	error	messages.

Prototype:

BMMRES	GetFrame(BitmapInfo	*fbi,	int	*frame);
Remarks:
Implemented	by	the	System.
This	method	is	for	use	with	multi-frame	sequences.	It	processes	the	desired
frame	based	on	the	user	options.	For	example	the	user	can	tell	the	system	to
hold	on	the	last	frame	of	the	sequence,	loop	back	to	the	beginning,	or	return	an
error.	This	method	does	all	the	checking	automatically	based	on	the
BitmapInfo	object	passed	and	computes	the	proper	frame	number.

Parameters:
BitmapInfo	*fbi
A	pointer	to	the	BitmapInfo	that	contains	the	user	options.	This	is	the	instance
passed	to	Load().
int	*frame
A	pointer	to	an	integer	to	receive	the	frame	number

Return	Value:
One	of	the	following	values:
BMMRES_SUCCESS
BMMRES_BADFRAME

Critical	Error	Handling

Prototype:
BMMRES	ProcessImageIOError(BitmapInfo	*bi,	TCHAR	*string
=	NULL);

Remarks:
Implemented	by	the	System.
This	method	may	be	called	to	present	the	user	with	the	3ds	max	Image	IO
Error	dialog	box.	The	dialog	displays	the	bitmap	file	name	or	device	name,
and	the	specified	error	message.	The	user	may	choose	Cancel	or	Retry	from
the	dialog.	An	appropriate	value	is	returned	based	on	the	users	selection.
This	method	is	used	to	handle	hardware	I/O	errors	automatically	or	display	the
given	string.
In	this	method,	if	Silent	Mode	is	on	(for	example	network	rendering	is	being
done),	no	dialog	is	presented	and	BMMRES_ERRORTAKENCARE	is
returned.

Parameters:
BitmapInfo	*bi
A	pointer	to	the	BitmapInfo.	This	is	used	to	retrieve	the	file	or	device	name
(using	bi->Name()	or	bi->Device()).
TCHAR	*string	=	NULL
The	error	message	to	present	in	the	dialog.	If	NULL	this	method	will	query	the
operating	system	for	the	last	I/O	error	and	give	its	own	interpretation	of	the
error.	This	will	work	for	all	"File	Not	Found",	"Permission	Denied",	etc.	type
errors.

Return	Value:
One	of	the	following	values:
BMMRES_ERRORTAKENCARE
Returned	if	the	user	selected	OK	from	the	dialog	or	the	error	was	taken	care
of	(silent	mode	was	on).
BMMRES_ERRORRETRY
The	user	has	selected	Retry	from	the	dialog.

Prototype:

BMMRES	ProcessImageIOError(BitmapInfo	*bi,	int	errorcode);
Remarks:
Implemented	by	the	System.
This	method	may	be	called	to	present	the	user	with	the	3ds	max	Image	IO
Error	dialog	box	displaying	the	specified	error	message	based	on	the	error
code	passed.	The	user	may	choose	Cancel	or	Retry	from	the	dialog.	An
appropriate	value	is	returned	based	on	the	users	selection.	If	Silent	Mode	is	on
(for	example	network	rendering	is	being	done)	no	dialog	is	presented	and
BMMRES_ERRORTAKENCARE	is	returned.

Parameters:
BitmapInfo	*bi
A	pointer	to	the	BitmapInfo.	This	is	used	to	retrieve	the	file	or	device	name
(using	bi->Name()	or	bi->Device()).
int	errorcode
The	error	code.	Pass	one	of	the	following	values	and	the	string	shown	to	its
right	will	be	presented.
BMMRES_INTERNALERROR	-	Internal	Error
BMMRES_NUMBEREDFILENAMEERROR	-	Error	Creating
Numbered	File	Name.
BMMRES_BADFILEHEADER	-	Invalid	Image	File	Header
BMMRES_CANTSTORAGE	-	Error	Creating	Image	Storage
BMMRES_MEMORYERROR	-	Memory	Error
BMMRES_BADFRAME	-	Invalid	Frame	Requested
Any	other	values	produce	-	Unknown	Error

Return	Value:
One	of	the	following	values:
BMMRES_ERRORTAKENCARE
Returned	if	the	user	selected	Cancel	from	the	dialog	or	the	error	was	taken
care	of	(silent	mode	was	on).
BMMRES_ERRORRETRY
The	user	has	selected	Retry	from	the	dialog.

Sample	Code:
BMMRES	BitmapIO_JPEG::Write(int	frame)	{
	//--	If	we	haven't	gone	through	an	OpenOutput(),	leave

	if	(openMode	!=	BMM_OPEN_W)
		return	(ProcessImageIOError(&bi,BMMRES_INTERNALERROR));
	//--	Resolve	Filename	--------------------------------
	TCHAR	filename[MAX_PATH];
	if	(frame	==	BMM_SINGLEFRAME)	{
		_tcscpy(filename,bi.Name());
	}	else	{
		if	(!BMMCreateNumberedFilename(bi.Name(),frame,filename))	{
			return
(ProcessImageIOError(&bi,BMMRES_NUMBEREDFILENAMEERROR));
		}
	}

G-Buffer	Channels	Required

Prototype:
virtual	DWORD	ChannelsRequired()

Remarks:
Implemented	by	the	Plug-In.
These	are	the	channels	required	for	output.	By	setting	this	flag,	the	plug-in	can
request	that	3ds	max	generate	the	given	channels.	Prior	to	rendering,	3ds	max
will	scan	the	plug-ins	in	the	chain	of	events	and	list	all	types	of	channels	being
requested.	The	plug-in,	at	the	time	of	the	Write()	method,	will	have	access	to
these	channels	through	the	channel	interface	described	in	BitmapStorage.

Return	Value:
See	List	of	Image	Channels.

Default	Implementation:
{	return	BMM_CHAN_NONE;	}

Image	Information

Prototype:
virtual	BMMRES	GetImageInfoDlg(HWND	hWnd,	BitmapInfo
*bi,	const	TCHAR	*filename	=	NULL)

Remarks:
Implemented	by	the	Plug-In.
This	method	will	display	a	dialog	with	information	about	the	given	bitmap
(either	defined	in	bi.Name()/bi.Device()	or	explicitly	in	the	filename
passed).	The	default	method	will	retrieve	image	information	using	the
mandatory	GetImageInfo()	and	display	a	generic	information	dialog.	If	an
image	loader	/	writer	wants	to	show	its	own	info	dialog,	perhaps	showing	an
image	property	not	found	in	the	generic	dialog,	it	can	implement	its	own
function	(and	notify	the	system	using	the	BMM_INFODLG	flag	in	the
capabilities	flag).

Parameters:
HWND	hWnd
The	parent	window	handle	calling	the	dialog.
BitmapInfo	*bi
Defines	the	name	of	the	bitmap	or	device	(unless	specified	below).
const	TCHAR	*filename	=	NULL
Specifies	the	filename	to	use	explicitly.

Return	Value:
The	result	of	the	operation.	See	Bitmap	Error	Codes.

Prototype:
virtual	BMMRES	GetImageInfo(BitmapInfo	*bi)	=	0;

Remarks:
Implemented	by	the	Plug-In.
The	BitmapIO	module	implements	this	method	to	initialize	the	BitmapInfo
instance	passed	in	with	information	about	the	image.	This	information	might
be	obtained	from	read	the	image	header	for	example.	The	BitmapInfo	passed
contains	the	name	of	the	image	to	get	the	information	about.

Parameters:
BitmapInfo	*bi
A	pointer	to	an	instance	of	the	class	BitmapInfo.

Return	Value:
If	an	error	occurs,	the	plug-in	should	process	the	error	(display	a	message	if

appropriate)	and	return	BMMRES_ERRORTAKENCARE.	If	everything
went	OK,	the	plug-in	should	return	BMMRES_SUCCESS.

Sample	Code:
bi->SetWidth(640);
bi->SetHeight(480);
bi->SetType(BMM_TRUE_24);
bi->SetAspect(1.0f);
bi->SetGamma(1.0f);
bi->SetFirstFrame(0);
bi->SetLastFrame(0);
return	BMM_SUCCESS;

Prototype:
virtual	BMMRES	GetImageName(BitmapInfo	*bi,	TCHAR
*filename)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	implemented	by	image	file	loaders	(IFL	handlers).	It	is	called
to	update	the	filename	passed	based	on	the	properties	of	the	BitmapInfo
passed.	See	the	implementation	of	this	method	in
\MAXSDK\SAMPLES\IO\IFL.CPP.

Parameters:
BitmapInfo	*bi
Specifies	the	properties	of	the	IFL	sequence.
TCHAR	*filename
The	filename	to	update	based	on	the	properties	of	bi.

Return	Value:
See	Bitmap	Error	Codes.

Prototype:
virtual	void	EvalMatch(TCHAR	*matchString);

Remarks:

This	method	is	available	in	release	2.0	and	later	only.
The	bitmap	manager	caches	images	in	order	to	speed	its	process.	When	a	new
image	is	requested,	if	it's
already	loaded,	a	pointer	to	it	is	passed	around	as	opposed	to	loading	an	entire
new	copy	of	it.	It	does	so	by	comparing	the	image	name	and	the	frame	number
requested	(in	case	of	multiframe	files	and/or	devices).
This	works	fine	in	most	cases,	however	consider	the	following	scenario.	The
Accom	device	generates	images	just	as	if	you	were	loading	Targa	files.	The
comparison	explained	above	works	fine.	The	problem	however,	is	that	within
the	Accom	private	setup,	you	can	determine	where	in	the	Accom	to	start
reading	frames.	In	other	words,	you	may	have	a	sequence	of	images	recorded
in	the	Accom	starting	at	frame	300	for	instance.	Once	in	the	Accom	setup,	you
define	your	starting	frame	at	300	and	whenever	3ds	max	requests	a	frame,	the
Accom	driver	offsets	the	requested	frame	number	by	300.	For	example,	when
3ds	max	is	rendering	its	10th	frame	and	requests	a	frame	from	the	Accom	(for
a	Map	or	for	a	background,	etc.),	the	Accom	will	see	that	3ds	max	wants
frame	10	and	the	user	had	setup	the	starting	frame	at	300.	After	computing	the
offset	the	Accom	driver	returns	frame	310.	Now,	if	two	or	more	maps	are	used
in	a	scene,	the	cache	match	mechanism	explained	above	fails	as	it	does	not
take	in	consideration	the	"starting	frame"	parameter	of	the	Accom	driver.	For
it,	the	name	matches	(Accom)	and	the	frame	number	matches	(frame	10	in	the
example	above).	If	two	or	more	maps	start	at	different	positions	within	the
Accom,	the	first	one	defined	will	be	used	as	it	satisfies	the	match.
To	handle	this	condition	this	new	method	saves	extra	information	(driver
private	information)	about	a	frame.	Basically,	part	of	the	match	process	is	now
handled	by	those	drivers	that	implement	this	method.
If	a	driver	has	some	private	data	(handled	by	its	own	setup	dialogue)	that
defines	anything	in	how	images	are	returned	(in	other	words,	if	different
images	are	returned	because	of	those	private	settings	being	different),	it	must
define	the	BMMIO_EVALMATCH	return	flag	and	must	also	implement
this	method.	The	flag	is	necessary	to	avoid	wasting	time	setting	up	instances
of	the	driver	just	to	call	the	(possibly	unimplemented)	method.

Parameters:
TCHAR	*matchString
The	match	string.	The	driver	simply	builds	a	string	made	of	its	own	"per
frame"	parameters	and	retuns	it	so	3ds	max	can	compare	it	with	another

instance	of	the	driver.

Loading

Prototype:
virtual	BitmapStorage	*Load(BitmapInfo	*bi,	Bitmap	*map,
BMMRES	*status)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	is	the	method	that	is	called	to	actually	load	and	store	the	image.	This
method	usually	creates	the	storage	for	the	image	data,	allocates	storage	space,
and	puts	the	image	to	the	storage	one	scanline	at	a	time.	This	method	also
usually	sets	the	BitmapIO::openMode	flag	to	BMM_OPEN_R	to
indicate	the	image	is	loaded	and	open	for	reading.

Parameters:
BitmapInfo	*bi
Points	to	an	instance	of	class	BitmapInfo.	This	has	the	name	of	the	bitmap	/
device	to	load.
Bitmap	*map
This	points	to	the	bitmap	to	be	loaded.
BMMRES	*status
The	result	of	the	bitmap	load	operation.	See	Bitmap	Error	Codes.

Return	Value:
The	BitmapStorage	created	to	manages	this	bitmap.

Sample	Code:
See	the	Load()	method	of
\MAXSDK\SAMPLES\IO\JPEG\JPEG.CPP.

Output	/	Write	/	Close

Prototype:
virtual	int	OpenOutput(BitmapInfo	*bi,	Bitmap	*map);

Remarks:

Implemented	by	the	Plug-In.
This	method	opens	the	image	for	output	and	prepare	to	write	to	it.	This	is	the
time	that	the	plug-in	receives	the	information	about	what	to	write,	the	flags,
etc.	When	the	Write()	method	is	called	the	only	thing	passed	is	the	frame
number.

Parameters:
BitmapInfo	*bi
The	image	information.
Bitmap	*map
Points	to	the	bitmap	to	save.

Return	Value:
Returns	nonzero	if	everything	was	OK;	otherwise	0.

Sample	Code:
See	the	OpenOutput()	method	of
\MAXSDK\SAMPLES\IO\JPEG\JPEG.CPP.

Prototype:
virtual	int	Write(int	frame);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	write	the	image	from	the	BitmapStorage	to	disk.
The	data	member	bi	contains	the	relevant	information	(for	example
bi.Name()	contains	the	name	of	the	file	to	write).

Parameters:
DWORD	frame
Specifies	the	frame	to	write.	For	single	image	formats	this	will	be
BMM_SINGLEFRAME.

Return	Value:
Returns	nonzero	if	everything	was	OK;	otherwise	0.

Sample	Code:
See	the	Write()	method	of
\MAXSDK\SAMPLES\IO\JPEG\JPEG.CPP.

Prototype:
virtual	int	Close(int	flag);

Remarks:
Implemented	by	the	Plug-In.
Closes	the	output	file	and	saves	or	discards	the	changes	based	on	the	flag
passed.

Parameters:
int	flag
See	List	of	Bitmap	Close	Types.

Return	Value:
Returns	nonzero	if	output	was	closed	successfully;	otherwise	0.

Sample	Code:
See	the	Close()	method	of
\MAXSDK\SAMPLES\IO\WSD\WSD.CPP.

Internal	use

Prototype:
void	InitOutputGammaTable(BitmapInfo*bi);

Remarks:
Implemented	by	the	System.
This	method	is	used	internally	to	build	the	output	gamma	table.

Prototype:
virtual	PAVIFILE	GetPaviFile();

Remarks:
Implemented	by	the	System.
This	method	is	used	internally.

Default	Implementation:
{	return	NULL;	}

Prototype:

inline	void	SetPrev(BitmapIO	*prev)
Remarks:
Implemented	by	the	System.
This	method	is	used	internally.

Prototype:
inline	void	SetNext(BitmapIO	*next);

Remarks:
Implemented	by	the	System.
This	method	is	used	internally.

Prototype:
inline	BitmapIO	*Prev();

Remarks:
Implemented	by	the	System.
This	method	is	used	internally.

Prototype:
inline	BitmapIO	*Next();

Remarks:
Implemented	by	the	System.
This	method	is	used	internally.

Class	UtilityObj
See	Also:	Class	Interface,	Class	IUtil.
class	UtilityObj

Description:
3ds	max	utility	plug-ins	are	derived	from	this	class.	Methods	are	provided	for
editing	the	utilities	parameters	and	responding	to	changes	in	the	current	selection
set.	An	interface	pointer	is	provided	for	calling	the	utility	methods	provided	by
MAX.
Note:	Utility	plug-ins	are	not	a	direct	participant	in	the	geometry	pipeline	system
of	3ds	max	in	the	same	way	modifiers	or	space	warps	are.	For	this	reason,
UtilityObj	plug-ins	are	not	suitable	for	modifying	objects	flowing	down	the
pipeline.	Use	Modifier	or	WSModifier	plug-ins	for	this	purpose.
Also	note:	It	is	possible	to	create	a	utility	plug-in	that	uses	a	modeless	dialog
box.	When	3ds	max	itself	uses	modeless	dialogs,	it	disables	input	to	the	other
open	windows	such	as	the	Track	View,	the	Materials	Editor,	etc.	In	this	way,	the
user	cannot	perform	some	action	that	could	disturb	the	operation	of	the	modeless
dialog.	For	example	using	Track	View,	a	user	could	assign	a	different	controller
to	a	node,	and	a	utility	plug-in	might	be	accessing	keys	from	the	node's	previous
controller.	Since	utility	plug-ins	cannot	currently	prevent	the	user	from	operating
these	other	parts	of	MAX,	developers	need	to	be	careful	about	the	use	of
modeless	dialogs.

Methods:

Prototype:
virtual	void	BeginEditParams(Interface	*ip,IUtil	*iu)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	utility	plug-in	may	be	used	in	the	Utility
branch	of	the	command	panel.	The	plug-in	may	add	rollup	pages	to	the
command	panel	in	this	method	for	example.

Parameters:
Interface	*ip
An	interface	pointer	you	may	use	to	call	methods	of	the	Interface	class.

IUtil	*iu
An	interface	pointer	you	may	use	to	close	the	current	utility	in	the	command
panel.

Prototype:
virtual	void	EndEditParams(Interface	*ip,IUtil	*iu)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	utility	plug-in	is	done	being	used	in	the	Utility
branch	of	the	command	panel	(for	example	if	the	user	changes	to	the	Create
branch).

Parameters:
Interface	*ip
An	interface	pointer	you	may	use	to	call	methods	of	the	Interface	class.
IUtil	*iu
An	interface	pointer	you	may	use	to	close	the	current	utility	in	the	command
panel.

Prototype:
virtual	void	SelectionSetChanged(Interface	*ip,IUtil	*iu);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	selection	set	changes.	A	plug-in	may
implement	this	method	to	respond	to	this	condition.

Parameters:
Interface	*ip
An	interface	pointer	you	may	use	to	call	methods	of	the	Interface	class.
IUtil	*iu
An	interface	pointer	you	may	use	to	close	the	current	utility	in	the	command
panel.

Prototype:
virtual	void	SetStartupParam(TSTR	param);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	after	BeginEditParams()	when	the	user	starts	the
utility	from	the	command	line	with	the	option	-U	and	passes	an	argument	to
the	utility.

Parameters:
TSTR	param
The	command	line	argument	is	passed	here.

Default	Implementation:
{}

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	delete	the	utility	object	allocated	by
ClassDesc::Create().
For	example	if	the	developer	has	used	the	new	operator	to	allocate	memory
for	their	plug-in	class	they	should	implement	this	method	as	{	delete	this;	}
to	delete	the	plug-in	object.
In	some	cases	it	may	be	better	to	use	a	single	static	instance	of	the	plug-in
class	and	not	allocate	and	deallocate	memory.	For	example	some	of	the	sample
utility	plug-ins	use	a	single	static	instance	of	their	plug-in	class.	This	is	done
so	that	if	the	user	moves	between	branches	in	the	command	panel	(goes	into
the	Create	branch	and	then	returns	to	the	Utility	branch)	all	the	utility	plug-in
parameters	remain	intact.	If	the	memory	was	allocated	and	deallocated	each
time	the	parameter	would	be	'forgotten'.	The	samples	that	use	a	single	static
instance	implement	this	method	as	{}	(NULL).	See	the	sample	code	in
\MAXSDK\SAMPLES\UTILITIES\COLCLIP.CPP	for	an	example.

Class	GUP
See	Also:	Class	Interface,	Class	DllDir,	Class	BitmapManager,	Class
ITreeEnumProc,	Class	ILoad,	Class	ISave.
class	GUP	:	public	InterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	base	class	for	the	creation	of	Global	Utility	Plug-Ins.
These	plug-ins	work	as	follows:	At	3ds	max	startup	time,	before	3ds	max	begins
its	message	loop	and	after	all	its	subsystems	are	initialized,	the	GUP	Manager
will	scan	the	plug-in	directory	and	load	all	plug-ins	with	the	"*.gup"	extension.
One	by	one,	the	GUP	Manager	will	call	the	plug-in's	Start()	method.	At	that
point	the	plug-in	would	do	its	initialization	and	decide	if	it	wants	to	remain
loaded	or	if	it	can	be	discarded.	As	an	option,	it	is	also	possible	for	a	GUP	plug-
in	for	make	3ds	max	fail	and	abort	all	together.	If	a	plug-in	wishes	to	remain
loaded	(after	returning	a	GUPRESULT_KEEP	result	code	from	the	Start()
method	described	below),	it	should	start	a	new	thread	for	its	code	as	there	is	no
other	call	from	3ds	max.
Unlike	other	3ds	max	plug-ins,	GUP's	do	not	provide	a	user	interface.	If
developers	of	GUP	plug-ins	desire	to	present	an	interface,	they	can	develop	a
standard	3ds	max	utility	plug-in	to	do	so.	See	Class	UtilityObj.	There	is	some
sample	code	using	this	technique	availalble	in
\MAXSDK\SAMPLES\GUP\COMSRV\MSCOM.CPP.	This	Utility
plug-in	(COMSRV.DLU)	accesses	the	COM/DCOM	plug-in	and	allows	the
user	to	"register"	or	"unregister"	the	COM	interface.	See	the	Advanced	Topics
section	COM/DCOM	Interface.

Plug-In	Information:

Class	Defined	In	GUP.H

Super	Class	ID	GUP_CLASS_ID

Standard	File	Name	Extension	GUP

Extra	Include	File	Needed	None

Methods:
public:

Prototype:
GUP();

Remarks:
Constructor.

Prototype:
virtual	~GUP();

Remarks:
Destructor.

Prototype:
virtual	HINSTANCE	MaxInst();

Remarks:
Implemented	by	the	System.
Returns	the	application	instance	handle	of	3ds	max	itself.

Prototype:
virtual	HWND	MaxWnd();

Remarks:
Implemented	by	the	System.
Returns	the	window	handle	of	3ds	max's	main	window.

Prototype:
virtual	DllDir*	MaxDllDir();

Remarks:
Implemented	by	the	System.
Returns	a	pointer	to	an	instance	of	a	class	which	provides	access	to	the	DLL
Directory.	This	is	a	list	of	every	DLL	loaded	in	3ds	max

Prototype:
virtual	Interface*	Max();

Remarks:
Implemented	by	the	System.
Returns	an	interface	pointer	for	calling	methods	provided	by	3ds	max.

Prototype:
virtual	BitmapManager*	Bmi();

Remarks:
Implemented	by	the	System.
Returns	a	pointer	to	the	bitmap	manager	which	may	be	used	to	manage	the	use
of	bitmaps	within	3ds	max.

Prototype:
virtual	int	EnumTree(ITreeEnumProc	*proc);

Remarks:
Implemented	by	the	System.
This	may	be	called	to	enumerate	every	INode	in	the	scene.

Parameters:
ITreeEnumProc	*proc
This	callback	object	is	called	once	for	each	INode	in	the	scene.

Return	Value:
Nonzero	if	the	process	was	aborted	by	the	callback	(TREE_ABORT);
otherwise	0.

Prototype:
virtual	bool	ExecuteStringScript(TCHAR	*string);

Remarks:
Implemented	by	the	System.
This	method	will	execute	the	specified	MAXScript	command.	If	a	developer
needs	to	ask	3ds	max	to	do	something	and	this	"something"	is	not
implemented	within	the	COM	interface,	it	is	possible	to	send	MAXScript

commands	through	this	method	(and	ExecuteFileScript()	below).	This
method	will	execute	whatever	string	is	specified,	for	instance
ExecuteStringScript("open	\"MyScene.max\"").

Parameters:
TCHAR	*string
Points	to	the	MAXScript	command	to	execute.

Return	Value:
TRUE	indicates	if	the	command	was	successfully	sent	to	MAXScript;	FALSE
if	it	was	not	sent.	Note	that	this	does	not	reflect	the	success	of	the	embedded
command.

Prototype:
virtual	bool	ExecuteFileScript(TCHAR	*file);

Remarks:
Implemented	by	the	System.
This	method	will	execute	the	specified	MAXScript	file.

Parameters:
TCHAR	*file
The	file	name	for	the	script	file.

Return	Value:
TRUE	indicates	if	the	script	was	successfully	sent	to	MAXScript;	FALSE	if	it
was	not	sent.	Note	that	this	does	not	reflect	the	result	of	the	script.

Prototype:
virtual	DWORD	Start()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	at	boot	time.	At	that	point	the	plug-in	should	do	its
initialization	and	decide	if	it	wants	to	remain	loaded	or	if	it	can	be	discarded.
As	an	option,	it	is	also	possible	for	a	GUP	plug-in	for	make	3ds	max	fail	and
abort	all	together.	Obviously	this	should	be	used	with	caution	and	plenty	of
documentation	from	the	part	of	the	developer	of	the	plug-in.	If	a	plug-in
wishes	to	remain	loaded	(after	returning	a	GUPRESULT_KEEP	result

code),	it	should	start	a	new	thread	for	its	code	as	there	is	no	other	call	from
3ds	max.

Return	Value:
One	of	the	following	values:
GUPRESULT_KEEP
Return	this	to	value	to	have	the	plug-in	remain	loaded.
GUPRESULT_NOKEEP
Return	this	value	to	discard.
GUPRESULT_ABORT
Return	this	value	to	cause	3ds	max	to	shut	down.

Prototype:
virtual	void	Stop()=0;

Remarks:
Implemented	by	the	Plug-In.
The	Stop()	method	is	called	when	3ds	max	is	going	down.	The	GUP	Manager
will	call	this	methods	for	all	GUP	plug-ins	that	were	maintained	in	memory
right	before	it	discards	them.	This	method	is	called	only	for	plug-ins	that
returned	GUPRESULT_KEEP	for	the	Start()	method	above.

Prototype:
virtual	DWORD	Control(DWORD	parameter);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	an	entry	point	for	external	access	to	GUP	plug-in.	For	instance,
Utility	plug-ins	can	invoke	their	GUP	plugin	counterpart	and	have	direct
access	to	them.

Parameters:
DWORD	parameter
The	meaning	of	this	parameter	is	defined	by	the	plug-in.

Return	Value:
The	return	value	meaning	is	also	defined	by	the	plug-in.

Default	Implementation:
{	return	0;}

Prototype:
virtual	IOResult	Save(ISave	*isave);

Remarks:
This	method	is	called	to	save	any	data	the	plug-in	may	have	into	the	3ds	max
file.

Parameters:
ISave	*isave
An	interface	used	for	saving	data.

Prototype:
virtual	IOResult	Load(ILoad	*iload);

Remarks:
This	method	is	called	to	load	any	data	the	plug-in	may	have	from	the	3ds	max
file.

Parameters:
ILoad	*iload
An	interface	used	for	loading	data.

Class	TrackViewUtility
See	Also:	Class	ITVUtility,	Class	Interface,	Class	Control.
class	TrackViewUtility

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	is	the	base	class	for	Track	View	Utility	plug-ins.	These	plug-ins	are
launched	via	the	'Track	View	Utility'	icon	just	to	the	left	of	the	track	view	name
field	in	the	toolbar.	Clicking	on	this	button	brings	up	a	dialog	of	all	the	track
view	utilities	currently	installed	in	the	system.	Most	utilities	will	probably	be
modeless	floating	dialogs,	however	modal	utilities	may	be	created	as	well.
The	developer	will	derive	their	classes	from	this	class.	Methods	are	provided	to
bracket	the	beginning	and	ending	of	parameter	editing,	and	responding	to
various	changes	in	Track	View	(such	as	key	selection,	time	selection,	node
selection,	etc.).	There	is	also	a	method	to	delete	this	instance	of	the	plug-in	class.
Sample	code	is	available	in
\MAXSDK\SAMPLES\UTILITIES\RANDKEYS.CPP,
ORTKEYS.CPP	and	SELKEYS.CPP.
Plug-In	Information:

Class	Defined	In TVUTIL.H

Super	Class	ID TRACKVIEW_UTILITY_CLASS_ID

Standard	File	Name	Extension DLU

Extra	Include	File	Needed None

Methods:

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
This	method	is	called	to	delete	this	instance	of	the	plug-in	class.	This	method
should	free	the	memory	allocated	in	ClassDesc::Create().	See	the
Advanced	Topics	section	on	Memory	Management	for	more	details.

Prototype:

virtual	void	BeginEditParams(Interface	*ip,ITVUtility	*iu);
Remarks:
This	method	is	called	to	begin	editing	of	the	Track	View	utility	plug-in's
parameters.

Parameters:
Interface	*ip
An	interface	for	calling	functions	provided	by	3ds	max.
ITVUtility	*iu
An	interface	for	allowing	track	view	utilities	to	access	the	Track	View	they	are
launched	from.

Default	Implementation:
{}

Prototype:
virtual	void	EndEditParams(Interface	*ip,ITVUtility	*iu);

Remarks:
This	method	is	called	when	the	user	has	closed	the	Track	View	utility	or	Track
View	itself.

Parameters:
Interface	*ip
An	interface	for	calling	functions	provided	by	3ds	max.
ITVUtility	*iu
An	interface	for	allowing	track	view	utilities	to	access	the	Track	View	they	are
launched	from.

Default	Implementation:
{}

Prototype:
virtual	void	TrackSelectionChanged();

Remarks:
This	method	is	called	when	the	selection	of	tracks	has	changed.

Default	Implementation:
{}

Prototype:
virtual	void	NodeSelectionChanged();

Remarks:
This	method	is	called	when	the	selection	of	nodes	has	changed.

Default	Implementation:
{}

Prototype:
virtual	void	KeySelectionChanged();

Remarks:
This	method	is	called	when	the	selection	of	keys	has	changed.

Default	Implementation:
{}

Prototype:
virtual	void	TimeSelectionChanged();

Remarks:
This	method	is	called	when	the	amount	of	time	selected	changes	in	Edit	Time
mode.	See	ITVUtility::GetTimeSelection().

Default	Implementation:
{}

Prototype:
virtual	void	MajorModeChanged();

Remarks:
This	method	is	called	if	the	current	mode	of	Track	View	changes.	These	are
the	modes	such	as	Edit	Keys,	Edit	Time,	Edit	Ranges,	Position	Ranges,	and
Edit	Function	Curves.	See	ITVUtility::GetMajorMode().

Default	Implementation:
{}

Prototype:
virtual	void	TrackListChanged();

Remarks:
This	method	is	called	when	the	Track	View	list	is	rebuild.	This	is	the	list	of
items	that	are	visible	(currently	open).

Default	Implementation:
{}

Class	Renderer
See	Also:	Class	ReferenceTarget,	Class	FrameRendParams,	Class
RendProgressCallback,	Class	IRendParams,	Class	INode,	Class	ViewParams,
Class	RendParamDlg,	Class	RendParams,	Class	DefaultLight.
class	Renderer	:	public	ReferenceTarget

Description:
This	is	the	base	class	for	the	creation	of	plug-in	renderers.	There	are	five
methods	that	need	to	be	implemented:	Open(),	Render(),	Close(),
CreateParamDialog()	and	ResetParams().
In	3ds	max	2.0	and	later	developers	must	also	implement
ReferenceTarget::Clone()	to	support	the	new	Production/Draft	renderer
capability.

Methods:

Prototype:
virtual	int	Open(INode	*scene,	INode	*vnode,ViewParams
viewPar,RendParams	&rp,	HWND	hwnd,	DefaultLight
defaultLights=NULL,int	numDefLights=0)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	once	per	render.	It	gives	the	renderer	a	chance	to	build
up	any	data	structures	which	it	will	use	over	the	course	of	the	render.

Parameters:
INode	*scene
The	root	node	of	the	scene	to	render.	Note:	If	you	are	rendering	in	the
Materials	Editor,	you'll	instead	get	a	pointer	to	the	INode	that	is	in	the	sample
slot	--	not	the	root	node.
INode	*vnode
The	view	node.	This	may	be	a	camera,	a	light,	or	NULL.
ViewParams	*viewPar
View	parameters	for	rendering	orthographic	or	user	viewports.	This	is	used	if
*vnode	is	NULL.

RendParams	&rp
This	class	contains	a	set	of	common	renderer	parameters.
HWND	hwnd
The	owner	window	for	messages.
DefaultLight*	defaultLights=NULL
An	array	of	default	lights	if	there	are	no	user	created	lights	in	the	scene.
int	numDefLights=0
Number	of	lights	in	defaultLights	array.

Return	Value:
Nonzero	for	success,	zero	for	failure.

Prototype:
virtual	int	Render(TimeValue	t,	Bitmap	*tobm,
FrameRendParams	&frp,	HWND	hwnd,	RendProgressCallback
*prog=NULL,	ViewParams	*viewPar=NULL)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	render	a	frame.	It	should	use	the	camera	or	view
passed	to	the	Open()	method.	This	is	called	once	per	frame,	and	the	resulting
rendered	image	is	written	to	tobm.

Parameters:
TimeValue	t
The	frame	to	render.
Bitmap	*tobm
This	is	the	target	bitmap.	The	properties	of	the	bitmap	define	the	render	width,
height	and	aspect.	See	Class	Bitmap.
FrameRendParams	&frp
A	set	of	time	dependent	parameters.
HWND	hwnd;
The	owner	window	handle.
RendProgressCallback	*prog=NULL
A	callback	used	to	allow	the	renderer	to	update	the	rendering	dialog.	The

renderer	may	call	methods	of	this	class.
ViewParams	*viewPar=NULL
This	parameter	is	available	in	release	2.0	and	later	only.
This	parameter	allows	you	to	specify	a	different	view	transformation	on	each
render	call.	For	example,	you	can	render	a	given	scene	at	a	given	time	from
many	different	viewpoints,	without	calling	Render::Open()	for	each	one.

Return	Value:
Nonzero	for	success,	zero	for	failure.

Prototype:
virtual	void	Close	(HWND	hwnd)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	once	when	rendering	is	done.	This	is	where	the	renderer
frees	any	data	structures	being	held	on	to.	This	includes	things	such	as	shadow
buffers,	render-ready	meshes,	lists	of	materials,	etc.

Parameters:
HWND	hwnd
The	owner	window	handle.

Prototype:
virtual	bool	ApplyRenderEffects(TimeValue	t,	Bitmap	*pBitmap,
bool	updateDisplay=true);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	called	to	apply	the	render	effects	at	the	specified	time	value.	It
should	be	called	between	the	Open()	and	Close()	methods.
This	can	be	used	during	a	multi-pass	rendering,	in	order	to	apply	the	render
effects	to	the	final,	blended	bitmap.

Parameters:
TimeValue	t
The	time	to	apply	the	render	effects.

Bitmap	*pBitmap
Points	to	the	bitmap.
bool	updateDisplay=true
Passing	true	indicates	that	Bitmap's	display	should	be	refreshed	by	the
renderer;	false	indicates	it	should	not	be.

Return	Value:
Returns	true	if	the	effects	were	successfully	applied;	otherwise	false.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	RendParamDlg	*CreateParamDialog(IRendParams
*ir,BOOL	prog=FALSE)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	create	and	return	a	pointer	to	an	instance	of	the
RendParamDlg	class.	The	renderer	can	add	rollup	page(s)	to	the	renderer
configuration	dialog	using	the	IRendParams	interface	passed	into	this
method.

Parameters:
IRendParams	*ir
An	interface	that	provides	methods	for	use	in	displaying	parameters,	for
example	this	class	has	methods	for	adding	rollup	pages.
BOOL	prog=FALSE
If	TRUE	then	the	rollup	page	should	just	display	the	parameters	so	the	user
has	them	for	reference	while	rendering,	they	should	not	be	editable.

Return	Value:
A	pointer	to	an	instance	of	the	RendParamDlg	class.	This	class	will	be
deleted	using	RendParamDlg::DeleteThis().

Prototype:
virtual	void	ResetParams()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	simply	sets	all	the	parameters	to	their	default	values.

Class	Shader
See	Also:	Class	BaseShader,	Class	MacroRecorder.
class	Shader	:	public	BaseShader

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	class	that	developers	use	to	create	Shader	plug-ins.	Developers	must
implement	the	methods	of	this	class	to	provide	data	to	the	3ds	max	interactive
renderer	so	it	can	properly	reflect	the	look	of	the	shader	in	the	viewports.	The
methods	associated	with	the	actual	Shader	illumination	code	are	from	the	base
class	BaseShader.
There	are	various	Get	and	Set	methods	defined	in	this	class.	Plug-in	developers
provide	implementations	for	the	'Get'	methods	which	are	used	by	the	interactive
renderer.	The	implementations	of	the	'Set'	methods	are	used	when	switching
between	shaders	types	in	the	Materials	Editor.	This	is	used	to	transfer	the
corresponding	colors	between	the	old	Shader	and	the	new	one.
Note	that	some	shaders	may	not	have	the	exact	parameters	as	called	for	in	the
methods.	In	those	case	an	approximate	value	may	be	returned	from	the	'Get'
methods.	For	example,	the	Strauss	Shader	doesn't	have	an	Ambient	channel.	In
that	case	the	Diffuse	color	is	taken	and	divided	by	2	and	returned	as	the	Ambient
color.	This	gives	the	interactive	renderer	something	to	work	with	that	might	not
be	exact	but	is	somewhat	representative.

Methods:
public:

Prototype:
virtual	void	CopyStdParams(Shader*	pFrom)=0;

Remarks:
This	method	copies	the	standard	shader	parameters	from	pFrom	to	this
object.	Note	that	plug-ins	typically	disable	the	macro	recorder	during	this
operation	as	the	Get	and	Set	methods	are	called.	See	the	sample	code	for
examples.

Parameters:
Shader*	pFrom

The	source	parameters.

Prototype:
virtual	BOOL	GetLockDS()=0;

Remarks:
Returns	TRUE	if	the	Diffuse	/	Specular	lock	is	on;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetLockAD()=0;

Remarks:
Returns	TRUE	if	the	Ambient	/	Diffuse	lock	is	on;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetLockADTex()=0;

Remarks:
Returns	TRUE	if	the	Ambient	/	Diffuse	Texture	lock	is	on;	otherwise	FALSE.

Prototype:
virtual	Color	GetAmbientClr(int	mtlNum,	BOOL	backFace)=0;

Remarks:
Returns	the	Ambient	Color.

Parameters:
The	parameters	to	this	method	are	not	applicable	and	may	safely	be	ignored.

Prototype:
virtual	Color	GetDiffuseClr(int	mtlNum,	BOOL	backFace)=0;

Remarks:
Returns	the	Diffuse	Color.

Parameters:
The	parameters	to	this	method	are	not	applicable	and	may	safely	be	ignored.

Prototype:
virtual	Color	GetSpecularClr(int	mtlNum,	BOOL	backFace)=0;

Remarks:
Returns	the	Specular	Color.

Parameters:
The	parameters	to	this	method	are	not	applicable	and	may	safely	be	ignored.

Prototype:
virtual	Color	GetSelfIllumClr(int	mtlNum,	BOOL	backFace)=0;

Remarks:
Returns	the	Self	Illumination	Color.

Parameters:
The	parameters	to	this	method	are	not	applicable	and	may	safely	be	ignored.

Prototype:
virtual	float	GetSelfIllum(int	mtlNum,	BOOL	backFace)=0;

Remarks:
Returns	the	Self	Illumination	Amount.

Parameters:
The	parameters	to	this	method	are	not	applicable	and	may	safely	be	ignored.

Prototype:
virtual	float	GetGlossiness(int	mtlNum,	BOOL	backFace)=0;

Remarks:
Returns	the	Glossiness	Level.

Parameters:
The	parameters	to	this	method	are	not	applicable	and	may	safely	be	ignored.

Prototype:
virtual	float	GetSpecularLevel(int	mtlNum,	BOOL	backFace)=0;

Remarks:

Returns	the	Specular	Level.
Parameters:
The	parameters	to	this	method	are	not	applicable	and	may	safely	be	ignored.

Prototype:
virtual	float	GetSoftenLevel(int	mtlNum,	BOOL	backFace)=0;

Remarks:
Returns	the	Soften	Level	as	a	float.

Parameters:
The	parameters	to	this	method	are	not	applicable	and	may	safely	be	ignored.

Prototype:
virtual	BOOL	IsSelfIllumClrOn(int	mtlNum,	BOOL	backFace)=0;

Remarks:
Returns	TRUE	if	the	Self	Illumination	Color	setting	is	on	(checked);	FALSE	if
off.

Parameters:
The	parameters	to	this	method	are	not	applicable	and	may	safely	be	ignored.

Prototype:
virtual	BOOL	IsSelfIllumClrOn()=0;

Remarks:
Returns	TRUE	if	the	Self	Illumination	Color	setting	is	on	(checked);	FALSE	if
off.

Prototype:
virtual	Color	GetAmbientClr(TimeValue	t)=0;

Remarks:
Returns	the	Ambient	Color	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	color.

Prototype:
virtual	Color	GetDiffuseClr(TimeValue	t)=0;

Remarks:
Returns	the	Diffuse	Color	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	color.

Prototype:
virtual	Color	GetSpecularClr(TimeValue	t)=0;

Remarks:
Returns	the	Specular	Color	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	color.

Prototype:
virtual	float	GetGlossiness(TimeValue	t)=0;

Remarks:
Returns	the	Glossiness	value	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	value.

Prototype:
virtual	float	GetSpecularLevel(TimeValue	t)=0;

Remarks:
Returns	the	Specular	Level	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	value.

Prototype:
virtual	float	GetSoftenLevel(TimeValue	t)=0;

Remarks:
Returns	the	Soften	Specular	Highlights	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	value.

Prototype:
virtual	float	GetSelfIllum(TimeValue	t)=0;

Remarks:
Returns	the	Self	Illumination	Amount	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	value.

Prototype:
virtual	Color	GetSelfIllumClr(TimeValue	t)=0;

Remarks:
Returns	the	Self	Illumination	Color	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	color.

Prototype:
virtual	void	SetLockDS(BOOL	lock)=0;

Remarks:
Sets	the	state	of	the	Diffuse	/	Specular	lock	to	on	or	off.

Parameters:
BOOL	lock
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetLockAD(BOOL	lock)=0;

Remarks:
Sets	the	state	of	the	Ambient	/	Diffuse	lock	to	on	or	off.

Parameters:
BOOL	lock
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetLockADTex(BOOL	lock)=0;

Remarks:
Sets	the	state	of	the	Ambient	/	Diffuse	Texture	lock	to	on	or	off.

Parameters:
BOOL	lock
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetSelfIllum(float	v,	TimeValue	t)=0;

Remarks:
Sets	the	Self	Illumination	parameter	to	the	specified	value	at	the	time	passed.

Parameters:
float	v
The	value	to	set.
TimeValue	t
The	time	to	set	the	value.

Prototype:
virtual	void	SetSelfIllumClrOn(BOOL	on)=0;

Remarks:
Sets	the	Self	Illumination	Color	On/Off	state.

Parameters:

BOOL	on
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetSelfIllumClr(Color	c,	TimeValue	t)=0;

Remarks:
Sets	the	Self	Illumination	Color	at	the	specified	time.

Parameters:
Color	c
The	color	to	set.
TimeValue	t
The	time	to	set	the	color.

Prototype:
virtual	void	SetAmbientClr(Color	c,	TimeValue	t)=0;

Remarks:
Sets	the	Ambient	Color	at	the	specified	time.

Parameters:
Color	c
The	color	to	set.
TimeValue	t
The	time	to	set	the	color.

Prototype:
virtual	void	SetDiffuseClr(Color	c,	TimeValue	t)=0;

Remarks:
Sets	the	Diffuse	Color	at	the	specified	time.

Parameters:
Color	c
The	color	to	set.
TimeValue	t
The	time	to	set	the	color.

Prototype:
virtual	void	SetSpecularClr(Color	c,	TimeValue	t)=0;

Remarks:
Sets	the	Specular	Color	at	the	specified	time.

Parameters:
Color	c
The	color	to	set.
TimeValue	t
The	time	to	set	the	color.

Prototype:
virtual	void	SetGlossiness(float	v,	TimeValue	t)=0;

Remarks:
Sets	the	Glossiness	parameter	to	the	specified	value	at	the	time	passed.

Parameters:
float	v
The	value	to	set.
TimeValue	t
The	time	to	set	the	value.

Prototype:
virtual	void	SetSpecularLevel(float	v,	TimeValue	t)=0;

Remarks:
Sets	the	Specular	Level	parameter	to	the	specified	value	at	the	time	passed.

Parameters:
float	v
The	value	to	set.
TimeValue	t
The	time	to	set	the	value.

Prototype:
virtual	void	SetSoftenLevel(float	v,	TimeValue	t)=0;

Remarks:
Sets	the	Soften	Specular	Highlights	Level	to	the	specified	value	at	the	time
passed.

Parameters:
float	v
The	value	to	set.
TimeValue	t
The	time	to	set	the	value.

Prototype:
virtual	float	EvalHiliteCurve(float	x);

Remarks:
This	method	is	called	to	evaluate	the	hightlight	curve	that	appears	in	the
Shader	user	interface.
Note:	This	gets	called	from	the	DrawHilite()	function	which	is	available	to
developers	in
\MAXSDK\SAMPLES\MATERIALS\SHADER\SHADERUTIL.CPP
DrawHilite()	get	called	from	the	window	proc	HiliteWndProc()	in	the
same	file.	This	code	is	available	to	developers	to	use	in	their	Shader	dialog
procs.

Parameters:
float	x
The	input	value.

Return	Value:
The	output	value	on	the	curve.	A	value	of	1.0	represents	the	top	of	the	curve	as
it	appears	in	the	UI.	Values	greater	than	1.0	are	okay	and	simply	appear	off	the
top	of	the	graph.

Default	Implementation:
{	return	0.0f;	}

Prototype:
virtual	float	EvalHiliteCurve2(float	x,	float	y,	int	level	=	0);

Remarks:
This	is	the	highlight	curve	function	for	the	two	highlight	curves	which
intersect	and	appear	in	the	UI,	for	instance	in	the	Anistropic	shader.

Parameters:
float	x
The	x	input	value.
float	y
The	y	input	value.
int	level	=	0
This	is	used	by	multi-layer	shaders	to	indicate	which	layer	to	draw.	The	draw
highlight	curve	routines	use	this	when	redrawing	the	graph.

Return	Value:
The	output	value	of	the	curve.

Default	Implementation:
{	return	0.0f;	}

Class	Sampler
See	Also:	Class	SpecialFX,	Class	SamplingCallback,	Class	SFXParamDlg,
Class	ShadeContext,	Class	Point3,	Class	Point2,	Class	ILoad,	Class	ISave.
class	Sampler	:	public	SpecialFX

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	base	class	for	the	creation	of	Sampler	plug-ins	which	work	with	the
Standard	material.	These	appear	in	the	Super	Sampling	rollout	in	the	Sampler
dropdown.	They	have	an	Enable	checkbox	and	a	Quality	spinner	for	their	user
interface.	An	optional	modal	dialog	may	also	be	presented.
A	Sampler	is	a	plug-in	that	determines	where	inside	a	single	pixel	the	shading
and	texture	samples	are	computed.	For	some	Samplers	this	pattern	is	the	same
for	each	pixel,	for	others	a	different	pattern	is	chosen	for	each	pixel.	After
determining	the	sample	locations,	the	sampler	calls	back	to	the	renderer	to
compute	the	shading	values.	It	then	averages	the	resluting	shading	values	and
returns	its	estimate	of	the	final	color.
Some	Samplers	are	adaptive.	This	means	that	the	Sampler	decides	on-the-fly
how	many	samples	to	take	to	achieve	its	goal.	There	are	many	subtleties	to
adaptive	Samplers	and	many	ways	to	define	the	adaptive	mechanism.	The
adaptive	mechanism	used	by	the	R3	Samplers	is	very	simple:	take	4	samples,
look	for	the	maximum	change	in	any	of	the	color	channels,	if	it's	greater	than	the
threshold,	then	sample	the	entire	pixel	according	to	the	given	quality.	Threshold
is	an	optional	parameter	that	may,	but	need	not	be	used	by	adaptive	Samplers.
The	transfer	of	control	from	3ds	max	to	the	Sampler	plug-in	is	as	follows:	A
Sampler	is	responsible	for	the	sampling	loop.	It	samples	until	it	is	done	and
computes	the	sum	of	its	samples	upon	completion.	Once	the	Sampler's
DoSample()	method	is	called	3ds	max	no	longer	has	control.	This	is	how
adaptive	samplers	are	handled.	The	DoSample()	routine	will	determine	how
often	and	where	it	samples,	then	it	calls	the	provided
SamplingCallback::SampleAtOffset()	method	to	have	3ds	max	compute
the	shading	value.

Plug-In	Information:

Class	Defined	In	SAMPLER.H

Super	Class	ID	SAMPLER_CLASS_ID

Standard	File	Name	Extension	DLH

Extra	Include	File	Needed	None

Methods:
public:

Prototype:
virtual	void	DoSamples(Color&	c,	Color&	t,	SamplingCallback*
cb,	ShadeContext*	sc,	MASK	mask=NULL)=0;

Remarks:
This	is	the	method	where	the	Sampler	plug-in	does	its	sampling	loop.	Upon
completion	it	returns	the	color	and	transparency	back	to	3ds	max	in	c	and	t.
A	sampler	samples	a	range	of	0.0	to	1.0.	For	a	pixel	sampler	this	range	gets
mapped	to	a	single	pixel.	The	sampler	doesn't	need	to	be	concerned	with	this
however.	It	just	works	within	the	0.0	to	1.0	space	determining	where	to	put	the
samples.	Essentially,	this	method	generates	a	set	of	points	and	calls
SamplingCallback::SampleAtOffset()	for	each	one.	Then	it	sums	up	the
results	of	the	values	returned	from	SampleAtOffset(),	divides	by	the
number	of	samples,	and	stores	the	results	in	c	and	t.

Parameters:
Color&	c
This	is	the	output	color.
Color&	t
This	is	the	output	transparency.
SamplingCallback*	cb
This	is	the	callback	provided	by	3ds	max	which	the	sampler	uses	to	actually
do	the	sampling.
ShadeContext*	sc
The	Shade	Context	which	provides	information	about	the	pixel	being	sampled.
MASK	mask=NULL
The	64	bit	pixel	mask.	This	mask	coresponds	to	the	8x8	sub-pixel	area	grid.
The	actual	geometry	covers	only	some	portion	of	these	bits.	This	is	essentially
an	8x8	raster	for	the	inside	of	the	pixel	where	bits	are	set	over	the	polygon

being	rendered	and	bits	are	off	for	areas	not	over	the	polygon.	Developers
typically	only	want	to	sample	where	the	geometry	is	and	thus	when	the	bits
are	on.	If	not	the	results	are	very	poor	visually.
Note:	Most	polygons	are	quite	small	in	a	typically	complex	scene	being
rendered.	In	other	words,	most	polygons	that	need	to	get	sampled	will	only
have	a	small	number	of	these	mask	bits	on	since	the	polygons	are	very	small
relative	to	the	pixel.	For	instance,	edge	on	polygons	may	project	down	to	only
a	few	bits	within	the	pixel.	Consequently	it	is	quite	possible	that	there	may	be
zero	samples,	i.e.	no	geometry	in	the	mask.	Developers	need	to	check	for	this
zero	samples	condition.	If	this	is	the	case	then	a	method	of	ShadeContext
called	SurfacePtScreen()	is	used.	This	method	returns	a	point	which	is
guaranteed	to	be	on	the	fragment	no	matter	how	small	it	is.	This	point	can	then
be	used	for	at	least	a	single	sample.

Sample	Code:
The	following	is	a	brief	analysis	of	the	DoSamples()	method	from	the	Uniform
Sampler	of	3ds	max.	This	sampler	sub-divides	the	sample	area	into	a	grid	and
samples	the	pixel	at	the	center	point	of	each	grid	unit.
This	code	is	from	the	file
\MAXSDK\SAMPLES\RENDER\SAMPLERS\STDSAMPLERS.CPP
The	complete	code	is	shown	below	and	then	a	code	fragment	analysis	follows:
void	UniformSampler::DoSamples(Color&	clr,	Color&trans,
SamplingCallback*	cb,	ShadeContext*	sc,	MASK	mask)
{
	int	sideSamples	=	GetSideSamples();
	int	numSamples	=	sideSamples	*	sideSamples;
	DbgAssert(sideSamples	>	0);
	//	we	map	0...sideSz	into	0..1
	float	sideSzInv	=	1.0f	/	float(sideSamples);
	float	sampleScale	=	sideSzInv;	
	
	Point2	sample;
	float	nSamples	=	0.0f;
	clr.r	=	clr.g	=	clr.b	=	trans.r	=	trans.g	=	trans.b	=	0;
	

	//	Sampling	loop
	for(int	y	=	0;	y	<	sideSamples;	++y)	{
		sample.y	=	(float(y)	+	0.5f)	*	sideSzInv;
	
		for(int	x	=	0;	x	<	sideSamples;	++x)	{
			sample.x	=	(float(x)	+	0.5f)	*	sideSzInv;
	
			if	(sampleInMask(sample,	mask))	{
				Color	c,	t;
				//	NB,	returns	true	for	unclipped	samples
				if	(cb->SampleAtOffset(c,	t,	sample,	sampleScale))	{
					clr	+=	c;
					trans	+=	t;
					nSamples	+=	1.0f;
				}
			}
		}
	}
	
	//	Check	for	0	samples
	if	(nSamples	==	0.0f){
		//	use	frag	center	if	no	other	samples
		sample	=	sc->SurfacePtScreen();
		sample.x	=	frac(sample.x);	sample.y	=	frac(sample.y);
	
		cb->SampleAtOffset(clr,	trans,	sample,	1.0f);
	}	else	{
		clr	/=	nSamples;
		trans	/=	nSamples;
	}
}
	
The	above	code	is	broken	into	smaller	fragments	to	look	at	below:

	int	sideSamples	=	GetSideSamples();

Here	the	sampler	is	just	getting	the	number	of	sides	in	the	sampling	grid.	This
is	computed	based	on	the	Quality	spinner	in	the	user	interface.	In	this	sampler
this	results	in	a	number	between	2	and	6	(developers	can	look	at	the
UniformSampler::GetSideSamples()	method	to	see	this).	Thus	the
resulting	sampling	grid	is	2x2	or	3x3,	up	to	6x6.	Then	the	number	of	samples
is	computed	by	multiplying	the	number	of	sides	times	itself.

	int	numSamples	=	sideSamples	*	sideSamples;
Next	the	side	size	inverse	is	computed	to	know	how	big	the	step	size	is.	This	is
the	amount	to	step	along	each	time.
The	sample	scale	is	how	large	is	the	piece	that's	being	sampled.	For	example,
if	the	grid	is	2x2	then	each	sample	is	scaled	by	1/2

	float	sideSzInv	=	1.0f	/	float(sideSamples);
	float	sampleScale	=	sideSzInv;	
Next	the	number	of	samples,	and	the	color	and	transparency	are	initialized	to
zero:

	Point2	sample;
	float	nSamples	=	0.0f;
	clr.r	=	clr.g	=	clr.b	=	trans.r	=	trans.g	=	trans.b	=	0;
Then	the	sampling	loop	begins.	Here	the	positions	of	individual	sampling
points	are	computed.	Each	point	is	then	checked	to	see	if	it	corresponds	to	a
point	in	the	mask	(is	over	a	polygon).	(The	sampleInMask	function	is
defined	in
\MAXSDK\SAMPLES\RENDER\SAMPLERS\SAMPLERUTIL.CPP
If	it	is	a	point	that's	over	a	polygon	then	SampleAtOffset()	is	called.	What
SampleAtOffset()	does	is	turn	the	passed	2D	sample	into	a	3D	sample	and
returns	a	color	and	transparency.	These	returned	values	are	summed	up	over
the	sampling	loop	(clr	+=	c;	trans	+=	t;).

	//	Sampling	loop
	for(int	y	=	0;	y	<	sideSamples;	++y)	{
		sample.y	=	(float(y)	+	0.5f)	*	sideSzInv;
	
		for(int	x	=	0;	x	<	sideSamples;	++x)	{
			sample.x	=	(float(x)	+	0.5f)	*	sideSzInv;
	
			if	(sampleInMask(sample,	mask))	{

				Color	c,	t;
				//	NB,	returns	true	for	unclipped	samples
				if	(cb->SampleAtOffset(c,	t,	sample,	sampleScale))	{
					clr	+=	c;
					trans	+=	t;
					nSamples	+=	1.0f;
				}
			}
		}
	}
At	the	end	of	the	sampling	loop	a	check	is	done	to	see	if	there	were	zero
samples.	This	is	the	case	if	the	geometry	is	very	small	relative	to	the	pixel.
There	are	two	approaches	that	one	might	take	when	there	are	zero	samples.
One	is	to	simply	return	black.	A	strict	'jitter-type'	sampler	might	do	this	since,
in	fact,	no	samples	were	hit.	This	will	result	in	artifacts	to	the	image	however.
A	better	approach	is	to	use	the	ShadeContext	method	SurfacePtScreen()
to	return	a	point	which	is	guaranteed	to	be	at	the	center	of	the	fragment.	Then
this	point	is	passed	to	SampleAtOffset()	so	a	single	sample	which	is	on	the
fragment	is	used.
If	a	single	sample	point	was	used,	DoSamples()	is	finished.	The	reults	are	in
clr	and	trans	as	returned	from	SampleAtOffset().
If	a	number	of	samples	was	taken,	the	Colors	clr	and	trans	are	divided	by	the
number	of	samples	(nSamples)	to	get	the	final	colors.

	//	Check	for	0	samples
	if	(nSamples	==	0.0f){
		//	use	frag	center	if	no	other	samples
		sample	=	sc->SurfacePtScreen();
		sample.x	=	frac(sample.x);	sample.y	=	frac(sample.y);
	
		cb->SampleAtOffset(clr,	trans,	sample,	1.0f);
	}	else	{
		clr	/=	nSamples;
		trans	/=	nSamples;
	}

Prototype:
virtual	int	GetNSamples()=0;

Remarks:
This	methods	returns	the	integer	number	of	samples	given	the	current	quality
setting.	If	doing	adaptive	sampling	(where	the	number	of	samples	may	vary)
return	the	maximum	number	of	samples	possible.

Prototype:
virtual	float	GetQuality()=0;

Remarks:
Returns	the	sampling	quality	in	the	range	of	0.0	to	1.0.	Quality	means	how
many	samples	are	taken	to	compute	the	shade	in	a	pixel.	Higher	quality	is	of
course	achieved	by	more	samples.	Quality	0.0	means	"minimal",	Quality	1.0
means	"best",	and	Quality	0.5	means	"good,	the	default	".	Some	samplers	do
not	have	adjustable	quality	(like	3ds	max	2.5	Star),	in	which	case	the	quality
spinner	is	disabled	and	this	method	is	ignored.

Prototype:
virtual	void	SetQuality(float	value)=0;

Remarks:
Sets	the	sampling	quality.	This	is	the	one	default	parameter.

Parameters:
float	value
Quality	is	nominal	with	a	range	of	0.0	to	1.0.

Prototype:
virtual	int	SupportsQualityLevels()=0;

Remarks:
This	method	returns	0	on	"unchangeable",	otherwise	the	number	of	quality
levels.

Prototype:
virtual	BOOL	GetEnable()=0;

Remarks:
Returns	TRUE	if	sampling	is	enabled;	otherwise	FALSE.

Prototype:
virtual	void	SetEnable(BOOL	samplingOn)=0;

Remarks:
Sets	the	Enable	Sampler	state	to	on	or	off.

Parameters:
BOOL	samplingOn
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	TCHAR*	GetDefaultComment()=0;

Remarks:
Returns	a	comment	string	for	the	Sampler	which	appears	in	the	Materials
Editor	user	inteface.

Prototype:
virtual	SamplerParamDlg	*CreateParamDialog(HWND
hWndParent);

Remarks:
This	method	creates	and	puts	up	a	pop-up	modal	dialog	that	allows	editing	the
sampler	extended	parameters	(if	any).

Parameters:
HWND	hWndParent
The	window	handle	of	the	parent.

Return	Value:
Points	to	the	object	to	manage	the	dialog.	Note:	typedef	SFXParamDlg
SamplerParamDlg;
See	Class	SFXParamDlg.

Default	Implementation:

{return	NULL;}

Prototype:
virtual	BOOL	SetDlgThing(EffectParamDlg*	dlg);

Remarks:
You	should	implement	this	method	if	you	are	using	the	ParamMap2
AUTO_UI	system	and	the	sampler	has	secondary	dialogs	that	have	something
other	than	the	incoming	effect	as	their	'thing'.	Called	once	for	each	secondary
dialog	for	you	to	install	the	correct	thing.	Return	TRUE	if	you	process	the
dialog,	FALSE	otherwise,	in	which	case	the	incoming	effect	will	be	set	into
the	dialog.
Note:	Developers	needing	more	information	on	this	method	can	see	the
remarks	for	MtlBase::CreateParamDlg()	which	describes	a	similar	example	of
this	method	in	use	(in	that	case	it's	for	use	by	a	texture	map	plug-in).

Parameters:
EffectParamDlg*	dlg
Points	to	the	ParamDlg.

Default	Implementation:
{	return	FALSE;	}

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
Implemented	by	the	System.
This	method	saves	the	name	of	the	sampler.	This	should	be	called	at	the	start
of	a	plug-in's	save	methods.

Parameters:
ISave	*isave
An	interface	for	saving	data.

Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
Implemented	by	the	System.
This	method	loads	the	name	of	the	sampler.	This	should	be	called	at	the	start
of	a	plug-in's	load	methods.

Parameters:
ILoad	*iload
An	interface	for	loading	data.

Optional	Adaptive	Sampling	Methods	(with	default
implementations)
Prototype:
virtual	BOOL	SupportsAdaptive();

Remarks:
Returns	TRUE	if	the	sampler	is	adaptive;	otherwise	FALSE.	If	this	method
returns	TRUE	the	Adaptive	On	checkbox	appears	along	with	the	Threshold
spinner.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	ULONG	SupportsStdParams();

Remarks:
This	method	determines	which	of	the	various	optional	parameters	are
displayed.	Zero	or	more	of	the	following	values	(which	may	be	added
together):
IS_ADAPTIVE	--	Samples	is	adaptive	in	some	way.
ADAPTIVE_CHECK_BOX	--	Enable	the	Adaptive	check	box.
ADAPTIVE_THRESHOLD	--	Enable	the	adaptive	Threshold	spinner.
SUPER_SAMPLE_TEX_CHECK_BOX	--	Enable	the	texture	Super
Sampling	check	box.
ADVANCED_DLG_BUTTON	--	Enable	the	Advanced	button.	This
allows	an	additional	popup	dialog	to	be	presented	to	the	user.	See	the

method	ExecuteParamDialog().
OPTIONAL_PARAM_0	--	Enable	optional	spinner	0.	See	the	methods
GetOptionalParamName(),	GetOptionalParamMax(),	etc.
OPTIONAL_PARAM_1	--	Enable	optional	spinner	1.

The	following	option	is	simply	a	set	of	these:
R3_ADAPTIVE	=
(IS_ADAPTIVE+ADAPTIVE_CHECK_BOX+ADAPTIVE_THRESHOLD

Default	Implementation:
{	return	0;	}

Prototype:
virtual	void	SetTextureSuperSampleOn(BOOL	on);

Remarks:
This	method	is	called	on	the	Sampler	to	reflect	the	change	in	the	'Supersamp.
Tex.'	checkbox	state.	This	determines	whether	to	cut	down	the	texture	sample
size	of	each	sample,	or	whether	to	always	use	1	pixel	texture	sample	size.

Parameters:
BOOL	on
TRUE	for	on;	FALSE	for	off.

Default	Implementation:
{}

Prototype:
virtual	BOOL	GetTextureSuperSampleOn();

Remarks:
Returns	TRUE	if	Super	Sampling	is	on;	otherwise	FALSE.	See
SetTextureSuperSampleOn()	above.

Default	Implementation:
{	return	FALSE;	}

Prototype:

virtual	void	SetAdaptiveOn(BOOL	on);
Remarks:
This	method	is	called	on	the	Sampler	to	reflect	the	change	in	the	'Adaptive'
checkbox	state.

Parameters:
BOOL	on
TRUE	for	on;	FALSE	for	off.

Default	Implementation:
{}

Prototype:
virtual	BOOL	IsAdaptiveOn();

Remarks:
Returns	TRUE	if	Adaptive	is	on	(cheched	in	the	user	interface);	otherwise
FALSE.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	void	SetAdaptiveThreshold(float	value);

Remarks:
This	method	is	called	on	the	Sampler	to	reflect	the	change	in	the	'Threshold'
spinner.

Parameters:
float	value
The	value	to	set.	Range	0-1.

Default	Implementation:
{}

Prototype:
virtual	float	GetAdaptiveThreshold();

Remarks:
Returns	the	adaptive	threshold	setting.

Default	Implementation:
{	return	0.0f;	}

Optional	Parameter	Related	Methods
Prototype:
virtual	long	GetNOptionalParams();

Remarks:
Samplers	plug-ins	support	two	optional	parameter	which	may	be	used	by	the
plug-in	for	its	own	needs.	This	methods	returns	the	number	of	parameters	it
supports.	Note	that	the	max	value	is	2.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	TCHAR	*GetOptionalParamName(long	nParam);

Remarks:
Returns	the	name	of	the	specified	parameter.

Parameters:
long	nParam
The	zero	based	index	of	the	optional	parameter:	0	for	the	first	one,	1	for	the
second.

Default	Implementation:
{	return	_T("");	}

Prototype:
virtual	float	GetOptionalParamMax(long	nParam);

Remarks:
Returns	the	maximum	value	of	the	specified	optional	parameter.

Parameters:

long	nParam
The	zero	based	index	of	the	optional	parameter:	0	for	the	first	one,	1	for	the
second.

Default	Implementation:
{	return	1.0f;	}

Prototype:
virtual	float	GetOptionalParam(long	nParam);

Remarks:
Returns	the	value	of	the	specified	optional	parameter.

Parameters:
long	nParam
The	zero	based	index	of	the	optional	parameter:	0	for	the	first	one,	1	for	the
second.

Default	Implementation:
{	return	0.0f;	}

Prototype:
virtual	void	SetOptionalParam(long	nParam,	float	val);

Remarks:
Sets	the	value	of	the	specified	optional	parameter.

Parameters:
long	nParam
The	zero	based	index	of	the	optional	parameter:	0	for	the	first	one,	1	for	the
second.
float	val
The	value	to	set.

Default	Implementation:
{}

Prototype:

virtual	void	ExecuteParamDialog(HWND	hWndParent,	StdMat2*
mtl);

Remarks:
This	method	is	called	to	put	up	a	modal	dialog	which	allows	editing	of	the
extended	parameters.	The	rest	of	the	operation	of	3ds	max	should	be	disalbed
by	this	modal	dialog	(which	is	why	you	should	use	GetMAXHWnd()).	This
method	is	called	when	the	Advanced	button	is	pressed	(which	is	enabled	by
using	the	ADVANCED_DLG_BUTTON	flag	returned	from
SupportsStdParams().

Parameters:
HWND	hWndParent
The	parent	window	handle.	Use	Interface::GetMAXHWnd().
StdMat2*	mtl
Points	to	the	owning	Standard	material.

Default	Implementation:
{}

Class	FilterKernel
See	Also:	Class	SpecialFX,	Class	SFXParamDlg.
class	FilterKernel	:	public	SpecialFX

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	plug-in	class	from	which	developers	sub-class	their	Anti-aliasing
filters.	These	filters	appear	in	the	Render	Scene	dialog	in	the	Anti-Aliasing
section	in	the	Filter	dropdown	list.
Filter	are	a	very	simple	plug-in	as	there	are	only	a	few	methods	that	define	them.
The	KernelFn()	method	is	the	one	that	does	the	filtering.	The	other	methods
are	simply	informational.
A	filter	kernel	is	nothing	but	a	curve	that	starts	(usually	at	0)	at	some	distance	R
from	a	center	pole.	This	curve	is	swept	around	the	center	pole	forming	a	volume
that	is	centered	at	the	center	of	a	pixel	(0.5,0.5)	and	extends	to	cover	some	of	the
near	neighboring	pixels.	The	height	of	this	filter	"hat"	gives	the	weight	for	each
pixel	under	the	filter.	To	achieve	high	resolution	and	good	quality	this
convolution	is	done	at	full	8x8	sub-pixel	resolution:	each	subpixel	is	weighted
by	the	height	of	the	curve	above	it.	This	is	what	the	KernelFn()	method	returns.
It	is	given	the	distance	from	the	center	pole	and	it	returns	the	weight.	This	is	the
only	method	that	computes	anything.
Note:	When	things	get	rasterized	in	3ds	max	it	is	done	so	at	a	resolution	higher
than	that	of	the	final	output	raster.	3ds	max	actually	rasterizes	the	geometry	to	an
8x8	raster	within	each	pixel.	This	mask	is	used	do	hiding	and	shading
operations	properly	inside	each	pixel.	Each	of	these	64	inside-a-pixel	pixels	is
called	a	subpixel.
Theoretically,	the	KernelFn()	function	could	get	called	once	for	each	sub-pixel
with	the	distance	of	the	center	of	that	subpix	to	the	center	pole.	Of	course	that
would	take	a	great	deal	of	time.	Instead	3ds	max	builds	a	table	at	the	beginning
of	a	render.	This	table	is	slow	to	build	(it	requires	many	calls	to	KernelFn())
but	fast	to	use	and	gives	exactly	the	same	answer	as	doing	the	computationly
intense	approach	at	the	sub-pixel	level.	Thus	the	KernelFn()	function	can	be
fairly	slow	yet	the	render	still	happens	relatively	fast.

Plug-In	Information:

Class	Defined	In	RENDER.H

Super	Class	ID	FILTER_KERNEL_CLASS_ID

Standard	File	Name	Extension	DLK

Extra	Include	File	Needed	None

Methods:
public:

Prototype:
virtual	double	KernelFn(double	x,	double	y	=	0.0)=0;

Remarks:
This	is	the	function	that	is	called	to	sample	the	kernel	values.	This	returns	the
weight	of	the	filtering	curve	at	the	specified	distance	from	the	center	pole	of
the	curve.

Parameters:
double	x
The	distance	from	the	center	pole	of	the	curve.
double	y	=	0.0
The	distance	from	the	center	pole	of	the	curve	in	y	(for	2D	filters).

Prototype:
virtual	bool	Is2DKernel()=0;

Remarks:
Most	kernels	are	1D	and	hence	circularly	symmetric	about	the	center	pole,	but
some	are	2D	like	a	box	or	diamond.	This	method	returns	true	if	the	filter	is	2D
and	false	if	1D.
A	2D	kernel	uses	both	parameters	of	the	methods	GetKernelSz()	and
SetKernelSz().	A	1D	kernel	only	uses	x;	y	need	not	be	included	in	the	set.
Note	that	GetKernelSz()	always	requires	both	x	&	y	since	they	are	return
parameters	while	a	1D	kernel	ignores	y.	Also	note	that	a	2D	filter	provides	a
filter	function	that	uses	both	the	x	and	y	parameters.

Prototype:

virtual	long	GetKernelSupport()=0;
Remarks:
This	method	returns	the	kernel	'support'.	Support	is	the	integer	number	of
pixels	beyond	the	center	pixel	that	are	touch	in	some	part	by	the	kernel.
Support	of	0	is	1x1:	the	area	filter.	A	support	value	of	1	is	a	3x3	filter,	one
pixel	on	all	sides	of	the	center.	A	support	of	2	is	5x5.	The	size	of	a	side	of	the
block	is	always	2*Support+1.	Support	confides	how	many	pixels	might	be
touched,	but	not	the	exact	size	of	the	filter.

Prototype:
virtual	long	GetKernelSupportY()=0;

Remarks:
For	2D	kernels	returns	the	Y	support.	See	GetKernelSupport()	above.

Prototype:
virtual	bool	IsVariableSz()=0;

Remarks:
Returns	true	if	the	filter	is	variable	size;	otherwise	false.	Size	means	the
distance	from	the	center	pole	where	the	filter	function	becomes	essentially	0.
In	non-variable	size	filters	this	width	is	returned	in	GetKernelSz()	and	is
usually	displayed	in	the	greyed	out	Size	box	in	the	user	interface.	In	variable
size	filters	get	&	set	size	control	the	bluriness.

Prototype:
virtual	void	GetKernelSz(double&	x,	double&	y)=0;

Remarks:
Retrieves	the	kernel	size.	A	2D	kernel	uses	both	parameters	of	this	method.	A
1D	kernel	only	uses	x	(y	is	set	to	0).

Parameters:
double&	x
The	x	size	is	returned	here.
double&	y
The	y	size	is	returned	here.

Prototype:
virtual	void	SetKernelSz(double	x,	double	y	=	0.0)=0;

Remarks:
Stores	the	kernel	size.	A	2D	kernel	stores	both	parameters	of	this	method.	A
1D	kernel	stores	only	x.

Parameters:
double	x
The	x	value	to	store.
double	y	=	0.0
The	y	value	to	store.

Prototype:
virtual	bool	IsNormalized();

Remarks:
Returning	true	from	this	method	will	disable	the	built-in	normalizer.
Normalized	means	that	if	you	have	some	solid	color	and	you	filter	it,	you	get
the	same	color	out;.	it	is	not	brighter	or	darker	than	the	original.	With	positive
only	filters	this	is	always	possible,	but	with	some	negative	lobe	filters	the
colors	overflow,	so	they	are	toned	down	(produce	a	slightly	darker	image,	but
don't	overflow).
The	normalizer	computes	the	positive	and	negative	volumes	of	an	arbitrary
filter	and	scales	all	the	filter	values	by	1/volume	where	volume	is	(posVolume
-	abs(negVolume)).	This	whole	process	is	turned	off	and	the	filter	values
direct	from	the	plug-in	have	already	been	scaled	internally	when	this	method
returns	true.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	bool	HasNegativeLobes()=0;

Remarks:
This	method	tells	the	filtering	code	that	it	can	speed	things	up	potentially	by
dealing	with	the	positive	common	only	case.	Currently	this	is	not	taken

advantage	of.

Prototype:
virtual	TCHAR*	GetDefaultComment()=0;

Remarks:
Returns	a	pointer	to	a	string	which	describes	the	filter.	This	string	is	displayed
in	the	static	text	box	in	the	user	interface.

Prototype:
virtual	long	GetNFilterParams()=0;

Remarks:
There	are	two	optional	parameters	that	may	be	used	by	the	filter	(besides	Filter
Size).	This	method	returns	the	number	used.	If	two	parameters	are	used	both
hidden	spinners	appear	in	the	Anti-aliasing	section	of	the	Render	Scene
dialog.	If	only	one	parameter	is	used	just	the	top	spinner	appears.	If	this
method	returns	nonzero	then	the	methods	below	are	used	to	supply	the	names
for	the	parameter(s)	and	to	provide	and	receive	the	values.

Prototype:
virtual	TCHAR	*GetFilterParamName(long	nParam)=0;

Remarks:
Returns	a	pointer	to	the	string	containing	the	name	of	the	specified	parameter.

Parameters:
long	nParam
The	index	of	the	parameter	(0	or	1).

Prototype:
virtual	double	GetFilterParam(long	nParam)=0;

Remarks:
Returns	the	specified	parameter	value.

Parameters:
long	nParam

The	index	of	the	parameter	(0	or	1).

Prototype:
virtual	void	SetFilterParam(long	nParam,	double	val)=0;

Remarks:
Stores	the	value	passed	for	the	specified	parameter.

Parameters:
long	nParam
The	index	of	the	parameter	(0	or	1).
double	val
The	value	to	set.

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
Saves	the	filter	name.	This	should	be	called	at	the	start	of	a	plug-in's	save
method.

Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
Loads	the	filter	name.	This	should	be	called	at	the	start	of	a	plug-in's	load
method.

Class	ShadowType
Description:
This	class	is	only	available	in	release	5	or	later.
	
	
The	user	of	GetAreaShadowType()	is	a	linear	or	area	light.
	
The	usage	is:
	
void	AreaShadowLightObjDesc::createShadowGenerator(
				AreaLight*				light,
				bool										forceShadowBuf
)
{
								ShadowType*	shad	=	light->ActiveShadowType();
				IAreaShadowType*	area	=	shad->GetAreaShadowType();
	
				//	If	we	aren't	forcing	Shadow	Map	and	the	shadow	generator
								//	supports	area	shadows,	then	create	the	area	shadow	generator.
				//	The	flags	are	the	same	as	for	CreateShdowGenerator
				if	(!forceShadowBuf	&&	area	!=	NULL)	{
								_areaShadGen	=	area->CreateAreaShadowGenerator(light,	this,
												SHAD_2SIDED)
								}	else	{
																_shadGen	=	shad->CreateShadowGenerator(light,	this,
SHAD_2SIDED);
								}
}
	
Sampling	the	area	shadows	is	a	little	tricky	to	allow	for	some
optimizaton.
This	is	an	example	of	the	code	needed	in
AreaShadowLightObjDesc::Illuminate.

The	variable,	sampler,	should	be	local	to	allow	multithreading.
	
				AreaShadowSampler*	sampler	=_areaShadGen->InitializeSampler(
								alloca(_areaShadGen->GetSamplerSize()));
	
Once	the	sampler	has	been	initialized,	you	can	calculate	the	visibility
between
any	point	on	the	light	and	the	point	being	shaded	by	using:
	
								float	atten	=	sampler->(sc,	pointOnLight,	shadedNormal,
lightColor);
	
The	value	of	pointOnLight	depends	on	the	type	of	light	we	are	sampling.
If	the	light	is
parallel,	then	pointOnLight	needs	to	be	in	the	local	light	coordinates.	If
the	light	is	not
parallel,	then	pointOnLight	needs	to	be	in	camera	coordinates.

Class	ShadowGenerator
See	Also:	Class	ShadowType,	Class	ShadBufRenderer,	Class	RendContext,
Class	RenderGlobalContext,	Class	ShadeContext,	Class	Matrix3,	Class	Point3,
Class	Color.
class	ShadowGenerator

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	is	used	by	a	Shadow	Type	plug-in	to	generate	the	shadows.	It	only
exists	during	a	render,	with	one	per	instance	of	the	light.	Methods	of	this	class
perform	the	shadow	buffer	creation	and	sampling.
The	ShadowGenerator	API	allows	for	two	methods	of	sampling:	A	generator	can
use	either	a	"generic"	sampling	method:
float	Sample(ShadeContext	&sc,	Point3	&norm,	Color&	color);

Or,	if	it	the	generator	is	to	work	with	Volumetric	lights,	it	must	use	the	following
sampling	shadow-map	style	interface:
float	Sample(ShadeContext	&sc,	float	x,	float	y,	float	z,	float	xslope,
float	yslope);
BOOL	QuickSample(int	x,	int	y,	float	z);
FiltSample(int	x,	int	y,	float	z,	int	level);
LineSample(int	x1,	int	y1,	float	z1,	int	x2,	int	y2,	float	z2);

To	indicate	that	the	latter	interface	is	used,	the	method
ShadowType::SupportStdMapInterface()	must	return	TRUE;

The	following	functions	are	not	part	of	this	class	but	are	available
for	use:
Function:
ShadowType	*NewDefaultShadowMapType();

Remarks:
This	global	function	returns	a	new	default	shadow-map	shadow	generator.

Function:

ShadowType	*NewDefaultRayShadowType();
Remarks:
This	global	function	returns	a	new	default	ray-trace	shadow	generator.

Methods:
public:

Prototype:
virtual	int	Update(TimeValue	t,	const	RendContext&	rendCntxt,
RenderGlobalContext	*rgc,	Matrix3&	lightToWorld,	float	aspect,
float	param,	float	clipDist	=	DONT_CLIP)=0;

Remarks:
This	is	called	on	every	frame	to	create	a	new	shadow	buffer	for	that	frame.	For
example,	the	objects	in	the	scene	will	have	moved	to	different	position,	etc.,	so
a	new	shadow	buffer	will	need	to	be	set	up.	See	Class	ShadBufRenderer	for	a
helper	class	used	for	generating	shadow	map	buffers.

Parameters:
TimeValue	t
The	time	for	the	update.
const	RendContext&	rendCntxt
The	render	context	--	this	is	used	for	the	progress	bar.
RenderGlobalContext	*rgc
This	is	used	to	get	an	instance	list.
Matrix3&	lightToWorld
The	light	to	world	space	transformation	matrix.	This	is	not	necessarily	the
same	as	that	of	the	light.
float	aspect
This	is	the	aspect	ratio	for	non-square	buffers.	The	aspect	gives	the
height/width	ratio	of	the	shadow	rectangle.	The	shadow	buffer	bitmap	is
always	the	same	number	of	pixels	wide	as	it	is	high,	but	it	can	be	mapped	into
a	non-square	rectangle.
float	param
This	is	the	field-of-view	of	the	light	in	radians	for	perspective	projections	or
the	width	in	world	coordinates	for	parallel	projections.

float	clipDist	=	DONTCLIP
This	parameter	specifies	the	far	clipping	distance	for	the	light.	This	is	used
when	the	far	distance	attenuation	is	turned	on,	and	can	result	in	much	more
efficient	shadow	buffer	creation.	If	you	have	a	small	scene	in	the	middle	of	a
large	complex	scene,	and	the	small	scene	is	lit	by,	for	instance,	a	shadow-
casting	omni,	if	you	don't	use	far	attenuation	the	omni	has	to	take	into	account
the	entire	large	scene	in	its	shadow	map.	Using	far	attenuation	will	clip	all	this
outside	stuff.	Also	omnis	free	up	any	of	their	6	shadow	buffer	that	end	up
being	empty,	so	this	can	save	memory	usage.

Return	Value:
Nonzero	on	success;	otherwise	zero.

Prototype:
virtual	int	UpdateViewDepParams(const	Matrix3&
worldToCam)=0;

Remarks:
If	things	such	as	automatic	cubic	maps	or	mirror	are	used,	the	rendering	is
done	from	several	different	points	of	view.	This	method	is	called	to	allow	the
view	matrix	to	be	computed	and	cached	so	it	won't	have	to	be	computed	over
and	over	again.	The	shadow	buffer	caches	the	matrix	that	does	the
transformation	from	the	current	view	coordinates	into	its	coordinates.

Parameters:
const	Matrix3&	worldToCam
This	is	the	direction	the	view	is	looking	from.	Object	coordinates	are	relative
to	this	'camera'.	This	is	not	always	a	'camera',	it	is	just	world	to	whatever	view
is	needed,	for	example	from	a	mirror.

Return	Value:
Nonzero	on	success;	otherwise	zero.

Prototype:
virtual	void	FreeBuffer()=0;

Remarks:
This	method	is	used	to	delete	the	memory	associated	with	the	buffer.

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Call	this	to	destroy	the	ShadowGenerator.

Prototype:
virtual	float	Sample(ShadeContext	&sc,	Point3	&norm,	Color&
color);

Remarks:
Generic	shadow	sampling	function.	Implement	this	when
ShadowType::SupportStdMapInterface()	returns	FALSE.
This	is	the	Sample	method	used	for	ray	traced	shadows,	for	example.	It	takes
the	color	that	would	illuminate	the	surface	if	there	were	no	shadows,	and
returns	a	modified	value.	The	shade	context	provides	the	point	on	the	surface
(sc.P())	and	norm	is	the	normal	to	the	surface.

Parameters:
ShadeContext	&sc
The	shade	context	provides	the	point	on	the	surface	(sc.P()).
Point3	&norm
This	is	the	normal	to	the	surface.
Color&	color
The	input	color.

Return	Value:
It	returns	an	attenuation,	where	1.0	indicates	it	is	not	in	shadow,	and	0.0
indicates	it	is	in	shadow.

Default	Implementation:
{	return	1.0f;	}

Prototype:
virtual	float	Sample(ShadeContext	&sc,	float	x,	float	y,	float	z,
float	xslope,	float	yslope);

Remarks:

Implement	this	method	when	ShadowType::SupportStdMapInterface()
returns	TRUE.	This	interface	allows	illuminated	atmospherics.
This	method	is	called	to	determine	how	much	the	point	(x,	y,	z)	is	in	shadow.
It	returns	an	attenuation,	where	1.0	indicates	it	is	not	in	shadow,	and	0.0
indicates	it	is	in	shadow,	and	potentially	a	small	negative	number.	A	small
negative	number	should	be	returned	when	the	sample	falls	outside	of	the
buffer	(this	is	needed	in	order	to	fix	a	problem	occuring	with	Omni	Lights
when	using	shadow	maps).	All	shadow	generators	that	implement	this
function	need	to	do	this.	The	value	itself	isn't	important,	as	long	as	it	is
negative	and	very	small	(for	instance	(-float(1.0e-30)).

Parameters:
ShadeContext	&sc
The	shade	context.
float	x
The	x	coordinate	of	the	point	to	check.	This	point	is	normalized	into	shadow
buffer	space.	For	example	if	the	shadow	buffer	was	256x256	a	point	at	the
center	would	be	128,	128.
float	y
The	y	coordinate	of	the	point	to	check.	This	point	is	normalized	into	shadow
buffer	space.
float	z
The	z	coordinate	of	the	point	to	check.	This	is	the	distance	perpendicular	to
the	light	where	0.0	is	right	at	the	light.
float	xslope
This	indicates	the	slope	of	the	surface	relative	to	the	shadow	buffer	in	x.
float	yslope
This	indicates	the	slope	of	the	surface	relative	to	the	shadow	buffer	in	y.

Default	Implementation:
{	return	1.0f;	}

Prototype:
virtual	BOOL	QuickSample(int	x,	int	y,	float	z);

Remarks:

Implement	this	method	when	ShadowType::SupportStdMapInterface()
returns	TRUE.	This	interface	allows	illuminated	atmospherics.
This	method	determines	if	the	given	point	is	in	a	shadow.	It	samples	a	single
pixel	in	the	shadow	map.

Parameters:
int	x
The	x	coordinate	of	the	point	to	check.	This	point	is	normalized	into	shadow
buffer	space.	For	example	if	the	shadow	buffer	was	256x256	a	point	at	the
center	would	be	128,	128.
int	y
The	y	coordinate	of	the	point	to	check.	This	point	is	normalized	into	shadow
buffer	space.
float	z
The	z	coordinate	of	the	point	to	check.	This	is	the	distance	perpendicular	to
the	light	where	0.0	is	right	at	the	light.

Return	Value:
TRUE	if	the	point	is	in	shadow;	otherwise	FALSE.

Default	Implementation:
{	return	1;	}

Prototype:
virtual	float	FiltSample(int	x,	int	y,	float	z,	int	level);

Remarks:
Implement	this	method	when	ShadowType::SupportStdMapInterface()
returns	TRUE.	This	interface	allows	illuminated	atmospherics.
This	method	is	called	to	determine	how	much	the	point	(x,	y,	z)	is	in	shadow.
It	returns	an	attenuation,	where	1.0	indicates	it	is	not	in	shadow,	and	0.0
indicates	it	is	in	shadow.	The	method	QuickSample()	above	looks	at	a	single
pixel	in	the	shadow	buffer.	This	method	looks	at	either	4	or	8	pixels	(based	on
the	level	parameter)	to	compute	the	result.	The	center	pixel	is	given	the
highest	weighting,	while	the	other	pixels	are	given	lesser	weightings.	However
this	method	is	still	fairly	quick,	since	it	doesn't	base	the	weighting	on	the
location	within	the	pixel.	This	is	in	contrast	to	the	Sample()	method	above,
where	the	blending	of	the	adjacent	pixels	is	weighted	by	the	position	within

the	sub-pixel.
Parameters:
int	x
The	x	coordinate	of	the	point	to	check.	This	point	is	normalized	into	shadow
buffer	space.	For	example	if	the	shadow	buffer	was	256x256	a	point	at	the
center	would	be	128,	128.
int	y
The	y	coordinate	of	the	point	to	check.	This	point	is	normalized	into	shadow
buffer	space.
float	z
The	z	coordinate	of	the	point	to	check.	This	is	the	distance	perpendicular	to
the	light	where	0.0	is	right	at	the	light.
int	level
This	may	be	0	or	1.	If	0,	four	neighboring	pixels	are	blended	in.	If	1,	eight
neighboring	pixels	are	blended	in.

Return	Value:
A	value	in	the	range	0.0	to	1.0.

Default	Implementation:
{	return	1.0f;	}

Prototype:
virtual	float	LineSample(int	x1,	int	y1,	float	z1,	int	x2,	int	y2,	float
z2);

Remarks:
Implement	this	method	when	ShadowType::SupportStdMapInterface()
returns	TRUE.	This	interface	allows	illuminated	atmospherics.
This	method	is	called	to	sample	the	shadow	map	along	a	line	segment.	It	uses
a	line	between	x1,	y1	and	x2,	y2.	The	z	values	are	interpolated	between	z1	and
z2	and	compared	to	the	z	value	in	the	shadow	map	for	that	pixel.

Parameters:
int	x1
The	start	x	coordinate	of	the	line.	This	point	is	normalized	into	shadow	buffer
space.	For	example	if	the	shadow	buffer	was	256x256	a	point	at	the	center

would	be	128,	128.
int	y1
The	start	y	coordinate	of	the	line.	This	point	is	normalized	into	shadow	buffer
space.
float	z1
The	start	z	coordinate	of	the	line.	This	is	the	distance	perpendicular	to	the	light
where	0.0	is	right	at	the	light.
int	x2
The	end	x	coordinate	of	the	line.	This	point	is	normalized	into	shadow	buffer
space.
int	y2
The	end	y	coordinate	of	the	line.	This	point	is	normalized	into	shadow	buffer
space.
float	z2
The	end	z	coordinate	of	the	line.	This	is	the	distance	perpendicular	to	the	light
where	0.0	is	right	at	the	light.

Return	Value:
A	value	in	the	range	0.0	to	1.0	which	represents	how	much	of	the	ray	was
inside	the	light	and	how	much	was	outside	the	light.

Default	Implementation:
{	return	1.0f;	}

Class	ShadBufRenderer
See	Also:	Class	ShadowGenerator,	Class	RendContext,	Class
RenderGlobalContext,	Class	ObjLightDesc,	Class	Matrix3.
class	ShadBufRenderer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	is	used	to	generate	a	Shadow	Buffer	which	may	be	used	to	determine
if	a	point	is	in	shadow	or	not.	The	3ds	max	shadow	maps	use	this	object
internally,	for	example.
There	is	a	global	function	that	creates	one	of	these	ShadBufRenderer	objects.
With	one	of	these	developers	can	call	its	Render()	method	to	generate	(render)
a	Shadow	Buffer.
The	rendered	shadow	buffer	stores	a	Z	distance	at	every	point	in	the	buffer.	This
can	then	be	used	to	determine	if	something	is	in	shadow.	To	check	a	certain	point
you	simply	see	if	the	Z	value	is	behind	the	one	in	the	buffer.	That	is,	a	shadow
buffer	tells	one,	from	the	point	of	view	of	a	light,	how	far	it	is	to	the	first	object
for	each	pixel	in	the	buffer.	If	the	Z	point	of	the	thing	being	shadowed	is	farther
than	(behind)	the	corresponding	Z	value	in	the	buffer	then	the	thing	is	in	shadow.
If	it's	closer	than	it	is	not	in	shadow.
The	main	Render()	method	is	typically	called	from	the	Update()	method	of
class	ShadowGenerator	which	is	called	on	every	frame	to	create	a	new
shadow	buffer.
To	use	this	class	you	basically	do	the	following:
Allocate	an	array	of	floating	point	values,	one	float	for	each	point	in	the	shadow
buffer:
	buffer	=	new	float[shadsize*shadsize];
Then	create	a	default	Shadow	Buffer	Renderer	using	the	global	function
provided:
	ShadBufRenderer	*sbr	=	NewDefaultShadBufRenderer();
Then	you	setup	all	the	parameters	for	the	view,	etc	prior	to	calling	the	Render()
method	to	render	the	buffer.	(These	parameters	are	passed	in	to	the
ShadowGenerator::Update()	method).
	int	nRendered	=	sbr->Render(rc,	RGC,	buffer,	parallel,	shadsize,

param,	aspect,	clipDist,	ltDesc,	worldToLight);
You	can	check	the	return	value	to	determine	if	any	objects	were	intersected	by
the	shadow	volume.	If	none	were,	the	shadow	buffer	can	be	freed.
	if	(nRendered==0)	{
		delete	[]	buffer;
		sbr->DeleteThis();
		buffer	=	NULL;
		return	1;
		}
All	methods	of	this	class	are	implemented	by	the	system.

The	following	global	function	is	not	a	member	of	this	class	but	is
available	for	use:
Function:
ShadBufRenderer	*NewDefaultShadBufRenderer();

Remarks:
This	global	function	creates	and	returns	a	pointer	to	a	new	default	shadow
buffer	renderer.

Methods:
public:

Prototype:
virtual	int	Render(RendContext	&rc,	RenderGlobalContext
*RGC,	float	*buf,	BOOL	parallel,	int	shadsize,	float	param,	float
aspect,	float	clipDist,	ObjLightDesc	*ltDesc,	Matrix3
worldToLight)=0;

Remarks:
Compute	a	shadow	Z	buffer	for	the	current	scene	from	the	viewpoint	of	the
light.	NOTE:	The	computed	shadow	buffer	has	positive	Z	values	as	you	go
away	from	the	light,	which	is	the	reverse	of	the	3ds	max	coordinate	system.

Parameters:
RendContext	&rc

The	RendContext	which	is	used	for	the	progress	bar	API.
RenderGlobalContext	*RGC
Points	to	the	RenerGlobalContext	which	is	used	to	retireve	information	about
the	global	rendering	enviornment	(to	get	an	instance	list).
float	*buf
This	is	the	buffer	to	render	to.	This	is	a	pre-allocated	array	of	floats
(shadsize*shadsize).
BOOL	parallel
The	projection	type.	TRUE	if	parallel	projection;	FALSE	if	perspective
projection.
int	shadsize
The	size	of	the	buffer	(shadsize	by	shadsize	pixels).
float	param
The	view	parameter.	For	a	perspective	this	is	the:field-of-view	(in	radians).
For	a	parallel	view	this	is	the	width	in	world	coordinates.
float	aspect
This	is	the	aspect	ratio	of	the	buffer	projection.
float	clipDist
The	clipping	distance.	This	tells	the	shadow	buffer	renderer	to	not	consider
objects	farther	than	this	distance	from	light.
ObjLightDesc	*ltDesc
This	is	the	descriptor	for	light	that	was	passed	in	to	CreateShadowGenerator().
Matrix3	worldToLight
The	world	to	light	transformation	matrix	for	the	light.

Return	Value:
Returns	the	number	of	objects	that	the	shadow	volume	intersected.	If	this
value	is	0,	the	shadow	buffer	can	be	freed	to	save	memory.

Prototype:
virtual	float	Furthest()=0;

Remarks:
After	a	render,	this	method	returns	the	farthest	Z	in	the	shadow	buffer.

Prototype:
virtual	float	Closest()=0;

Remarks:
After	a	render,	this	method	returns	the	closest	Z	in	the	shadow	buffer.

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Deletes	this	ShadowBufRenderer	object.

Class	SoundObj
See	Also:	Class	ReferenceTarget,	Class	Animatable.
class	SoundObj	:	public	ReferenceTarget

Description:
This	is	the	base	class	for	the	creation	of	sound	plug-ins.	The	3ds	max	user	may
choose	a	sound	plug-in	using	the	File	/	Preferences...	Animation	Tab	/	Sound
Plug-In	option.
There	is	always	one	sound	object	in	the	scene.	A	sound	object's	primary	purpose
is	to	provide	a	sound	track	for	the	scene.	The	sound	object	also	serves	as	a	clock
that	controls	timing	when	an	animation	is	played.	This	ensure	the	animation	is
synched	to	the	sound	object.	This	class	has	methods	to	start	and	stop	the	sound
playing,	play	a	specified	range	of	the	sound,	and	toggle	the	sound	on	and	off.
A	sound	plug-in	can	participate	in	Track	View	by	implementing	the	methods	of
Animatable	such	as	PaintTrack().	See	the	Advanced	Topics	section	Track
View	for	details.
Sound	Object	plug-ins	use	a	Super	Class	ID	of	SOUNDOBJ_CLASS_ID.

Methods:

Prototype:
virtual	BOOL	Play(TimeValue	tStart,TimeValue	t0,TimeValue
t1,TimeValue	frameStep)=0;

Remarks:
Implemented	by	the	Plug-In.
When	the	system	calls	this	method	the	plug-in	should	loop	the	playing	of
sound	from	time	t0	to	t1	beginning	at	time	tStart.	It	should	continue	to	loop
until	Stop()	is	called.

Parameters:
TimeValue	tStart
The	time	to	start	playing	the	sound.
TimeValue	t0
The	loop	begin	range.
TimeValue	t1

The	loop	end	range.
TimeValue	frameStep
The	frame	increment.

Return	Value:
TRUE	if	the	sound	was	played;	FALSE	otherwise.

Prototype:
virtual	void	Scrub(TimeValue	t0,TimeValue	t1)=0;

Remarks:
Implemented	by	the	Plug-In.
Implementation	of	this	method	is	optional.	The	plug-in	should	play	the
amount	of	sound	between	time	t0	and	t1.	The	sound	should	only	be	played
once.

Parameters:
TimeValue	t0
The	start	time	for	playback.
TimeValue	t1
The	end	time	for	playback.

Prototype:
virtual	TimeValue	Stop()=0;

Remarks:
Implemented	by	the	Plug-In.
This	stops	the	sound	from	playing.

Return	Value:
The	time	at	which	the	sound	was	stopped.

Prototype:
virtual	TimeValue	GetTime()=0;

Remarks:
Implemented	by	the	Plug-In.
This	returns	the	current	time	as	managed	by	the	SoundObj.

Return	Value:
The	current	time.

Prototype:
virtual	BOOL	Playing()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	the	sound	is	playing;	otherwise	FALSE.

Prototype:
virtual	void	SaveSound(PAVIFILE	pfile,TimeValue	t0,TimeValue
t1)=0;

Remarks:
Implemented	by	the	Plug-In.
This	saves	the	sound	between	the	specified	times	to	the	specified	file.

Parameters:
PAVIFILE	pfile
The	file	to	save	the	sound	track	to.
TimeValue	t0
The	start	of	the	time	range	to	save.
TimeValue	t1
The	end	of	the	time	range	to	save.

Prototype:
virtual	void	SetMute(BOOL	mute)=0;

Remarks:
Implemented	by	the	Plug-In.
Sets	the	sound	to	mute	or	toggles	it	back	on.	This	will	be	called	if	the	Active
checkbox	is	toggled	for	example.

Parameters:
BOOL	mute
Specifies	if	the	sound	should	be	muted.	TRUE	indicates	the	sound	should	be

muted;	FALSE	indicates	the	sound	should	be	enabled.

Prototype:
virtual	BOOL	IsMute()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	the	sound	is	muted;	otherwise	FALSE.

The	following	function	is	not	a	method	of	class	SoundObj	but	is	used	by
the	system	internally:

Function:
SoundObj	*NewDefaultSoundObj();

Remarks:
Implemented	by	the	System.
Returns	a	new	default	sound	object.	This	is	the	standard	one	provided	by	3ds
max.

Class	ColPick
See	Also:	Class	ColorPicker,	Class	HSVCallback,	Class	Class_ID,	Class
IPoint2,	DWORD--COLORREF	Color	Format..
class	ColPick	:	public	InterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	base	class	for	the	creation	of	plug-in	color	selectors.	The	list	of
available	color	pickers	appear	in	the	3ds	max	user	interface	in	the	General	page
of	the	Preferences	dialog.	The	choosen	picker	will	be	called	whenever	a	user
clicks	on	a	3ds	max	color	swatch	control.

Plug-In	Information:

Class	Defined	In	HSV.H

Super	Class	ID	COLPICK_CLASS_ID

Standard	File	Name	Extension	DLU

Extra	Include	File	Needed	HSV.H

Functions:
These	global	functions	are	not	part	of	this	class	but	are	used	internally	by	3ds
max	to	plug	in	the	current	color	picker.	Developers	should	not	need	to	access
these.

Function:
ColPick	*SetCurColPick(ColPick	*colpick);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	global	function	is	used	internally	to	establish	the	current	color	picker
used.

Parameters:
ColPick	*colpick
Points	to	the	color	picker	to	use.

Return	Value:
A	pointer	to	the	current	color	picker.

Function:
ColPick	*GetCurColPick();

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	current	color	picker.

Methods:
public:

Prototype:
virtual	INT_PTR	ModalColorPicker(HWND	hwndOwner,
DWORD	*lpc,	IPoint2	*spos,	HSVCallback	*callBack,	TCHAR
*name)=0;

Remarks:
Implemented	by	the	Plug-In
This	method	is	called	to	bring	up	the	modal	color	picker.

Parameters:
HWND	hwndOwner
The	owning	window	handle
DWORD	*lpc
A	pointer	to	the	color	to	be	edited.	See	DWORD	COLORREF	Format.
IPoint2	*spos
The	starting	position	of	the	dialog.	This	is	set	to	ending	position	on	return.
HSVCallback	*callBack
This	callback	is	called	whenever	color	changes.
TCHAR	*name
The	name	of	color	being	edited

Return	Value:
TRUE	if	the	user	pressed	OK;	FALSE	on	cancel.

Prototype:
virtual	ColorPicker	*CreateColorPicker(HWND
hwndOwner,DWORD	initColor,	IPoint2*	spos,	HSVCallback
*pcallback,	TCHAR	*name,	BOOL	isObjectColor=FALSE)=0;

Remarks:
Implemented	by	the	Plug-In
This	method	is	called	to	create	and	return	a	ColorPicker	object	for	the
modeless	color	picker.

Parameters:
HWND	hwndOwner
The	owning	window	handle.
DWORD	initColor
The	inital	value	of	the	color.	See	DWORD	COLORREF	Format.
IPoint2*	spos
The	starting	position	of	dialog.
HSVCallback	*pcallback
This	callback	is	called	whenever	color	changes.
TCHAR	*name
The	name	of	color	being	edited.
BOOL	isObjectColor=FALSE
This	indicates	the	color	picker	is	being	used	for	the	object	color	in	the
command	panel,	and	the	color	picker	then	displays	the	Add	Color	button

Prototype:
virtual	const	TCHAR	*ClassName()=0;

Remarks:
Implemented	by	the	Plug-In
Returns	the	name	of	the	class.	This	name	appears	in	the	drop	down	list	of
color	picker	choices.

Prototype:
virtual	Class_ID	ClassID()=0;

Remarks:
Implemented	by	the	Plug-In
Returns	the	unique	ClassID	of	this	plug-in.	The	Class_ID	for	the	default	color
picker	is	Class_ID(DEFAULT_COLPICK_CLASS_ID,0).

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Implemented	by	the	Plug-In
This	method	is	called	to	delete	this	instance	of	the	plug-in	class.

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0)=0;

Remarks:
Implemented	by	the	Plug-In
This	method	is	used	for	future	expansion	and	is	currently	not	used.

Class	FrontEndController
This	class	and	its	former	purpose	has	been	replaced	by	the	CUIFrameMgr.

Class	MCInputDevice
See	Also:	Class	MCDeviceBinding,	Class	IMCapManager,	Time,	Character
Strings.
class	MCInputDevice

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	is	the	base	class	for	an	input	device	plug-in.	All	methods	of	this	class	are
implemented	by	the	plug-in.

In	terms	of	the	motion	capture	system,	the	basic	item	that	is	plug-able	is	the
motion	capture	device.	This	is	something	like	a	mouse,	joystick,	or	midi	device.
Developers	implement	two	classes,	this	one,	MCInputDevice,	and
MCDeviceBinding.	There	is	usually	only	one	instance	of	MCInputDevice.
This	is	like	the	virtual	mouse,	or	the	joystick.	This	represents	the	actual	device.
An	instance	of	the	device	binding	represents	an	instance	where	a	motion	capture
controller	has	been	bound	to	a	device,	i.e.	the	user	has	picked	the	device	and
assigned	it	to	a	parameter.	Thus	there	may	be	many	instances	of	the	device
binding.	The	device	binding	is	part	of	the	reference	hierarchy.	The	device	itself
doesn't	usually	have	any	parameters	for	the	user	to	adjust	--	these	are	rather	part
of	the	device	binding.
Some	simple	sample	code	for	the	mouse	motion	capture	device	is	available	in
\MAXSDK\SAMPLES\MOCAP\MCDEVICE.CPP.

Methods:

Prototype:
virtual	TSTR	DeviceName()=0;

Remarks:
Returns	the	name	for	the	input	device.

Prototype:
virtual	MCDeviceBinding	*CreateBinding()=0;

Remarks:
The	motion	capture	utility	creates	a	list	of	all	the	MCInputDevices	in	the
system.	When	the	user	wants	to	pick	one	it	will	call	this	method.	It	returns	a

new	instance	of	the	MCDeviceBinding	class.

Prototype:
virtual	void	UtilityStarted(IMCapManager	*im);

Remarks:
This	method	is	called	when	the	user	enters	the	utility.

Parameters:
IMCapManager	*im
This	is	an	interface	into	the	motion	capture	manager.

Default	Implementation:
{}

Prototype:
virtual	void	UtilityStopped(IMCapManager	*im);

Remarks:
This	method	is	called	when	the	user	leaves	the	utility.

Parameters:
IMCapManager	*im
This	is	an	interface	into	the	motion	capture	manager.

Default	Implementation:
{}

Prototype:
virtual	void	Cycle(UINT	tick);

Remarks:
This	method	is	called	when	the	user	is	in	'Record'	(capture)	mode	or	'Test'
mode.	It	is	called	once	per	millisecond.	For	instance	the	joystick	device	uses
this	method.	To	understand	this	method	consider	the	following	example:
With	MIDI	you	don't	call	a	function	to	see	if	a	key	has	been	pressed	or	not	--
rather	it	is	a	message	based	system	where	you're	notified	if	something
happens.	In	contrast	to	this	is	the	joystick.	If	the	user	moves	the	joystick	the
program	is	not	notified.	Rather	a	developer	must	poll	the	joystick	to	get	its

current	position.	During	motion	capture	one	could	poll	the	joystick	at	every
frame	to	get	its	current	position.	However	this	approach	leads	to	jittering
(aliasing).	The	problem	is	that,	on	average,	the	joystick	is	providing	a	smooth
series	of	values,	but	instantaneously,	the	values	jump	around	a	bit.	So,	the
joystick	motion	capture	plug-in	implements	this	method	to	stores	the	values
returned	at	every	millisecond.	Then	later,	when	needing	to	sample	the	joystick
at	a	certain	time,	the	stored	table	of	values	can	be	averaged	and	this	provides	a
level	of	smoothing.

Parameters:
UINT	tick
The	time	of	this	call	in	milliseconds.

Default	Implementation:
{}

Class	ViewFile
class	ViewFile

Description:
This	class	allows	a	developer	to	replace	the	file	viewer	used	by	3ds	max	(This	is
the	"View	File"	option	in	3ds	max's	File	menu).	By	creating	a	DLL	from	this
class,	and	replacing	the	standard	3ds	max	ViewFile.	DLL	the	system	will	always
use	the	developer	defined	version.	Note:	To	execute	this	plug-in,	put	the	DLL	in
the	same	directory	as	the	3DSMAX.EXE	executable.
The	following	two	functions	are	called	by	the	system	to	create	and	delete	the
instance	of	this	class	that	handles	the	file	viewing.
void	*ViewFileCreate();
This	function	is	implemented	by	the	plug-in	to	create	a	new	instance	of	this
class.	For	example:
void	*ViewFileCreate()	{
	return	new	ViewFile;
}

void	ViewFileDestroy(ViewFile	*v);
This	function	is	implemented	by	the	plug-in	to	delete	the	instance	of	this	class
created	above.	For	example:
void	ViewFileDestroy(ViewFile	*v)	{
	if	(v)
		delete	v;
}

Methods:

Prototype:
void	View(HWND	hWnd)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	by	the	system	to	bring	up	the	file	viewer.

Parameters:
HWND	hWnd

The	parent	window	handle.

See	Also:	\MAXSDK\SAMPLES\VIEWFILE\VIEWFILE.CPP	for	an
example	of	the	standard	3ds	max	file	viewer.

Interface	Class	Overview
See	Also:	Links	to	Interface	Classes,	Class	Interface,	Class	ViewExp,	Class
INode.
3ds	max	provides	a	large	number	of	functions	for	plug-ins	to	use.	There	are	two
approaches	plug-ins	may	use	to	call	these	functions	in	MAX:

1	Plug-Ins	can	directly	call	functions	in	CORE.DLL
2	They	may	call	methods	on	an	interface	pointer.

The	primary	purpose	of	CORE.DLL	is	that	it	contains	implementations	for
some	of	the	methods	of	the	base	classes	that	plug-ins	derive	their	classes	from.
Plug-Ins	generally	don't	call	these	methods	directly,	but	instead	inherit	them	as
part	of	their	derived	class.	CORE.DLL	also	has	other	miscellaneous	functions
that	it	exports.	Plug-ins	link	to	CORE.LIB	so	they	can	simply	call	these
methods	like	any	other	function.
Unlike	CORE.DLL,	3DSMAX.EXE	does	not	export	any	methods.	Instead,	a
plug-in	calls	functions	in	3ds	max	through	a	pointer	to	an	interface	class.	An
interface	class	is	simply	a	class	with	no	data	members	and	all	pure	virtual
methods.	These	classes	are	essentially	just	a	table	of	function	pointers.
Some	of	these	interfaces	are	general.	For	example,	the	class	Interface	provides
methods	to	do	things	like	redraw	the	viewports,	work	with	standard	3ds	max
dialog	boxes,	and	work	with	MAX's	coordinate	systems.	Other	interfaces	have
specific	contexts.	For	instance,	the	ViewExp	interface	class	provides	an
interface	to	a	viewport.	Methods	of	this	interface	refer	to	a	specific	viewport.
Most	interfaces	have	a	specific	life	time	outside	of	which	they	must	not	be	used.
For	instance,	when	a	modifier	becomes	active	in	the	modify	branch	of	the
command	panel,	its	BeginEditParams()	method	is	called	and	an
IObjParams	interface	is	passed	in.	This	interface	pointer	is	defined	to	be	valid
until	(and	including)	the	modifier's	EndEditParams()	method	is	called.	If	a
plug-in	were	to	hang	on	to	the	pointer	outside	of	this	interval	and	then	call	one	of
its	methods,	the	result	would	be	undefined.	Another	example	is	the	INode
interface	pointer,	which	when	passed	in	to	Object::Display(),	is	valid	for	only
the	duration	of	the	function	call.
For	a	list	of	all	the	interfaces	into	3ds	max	see	the	section	Interface	Classes.
Note:	Developer	will	often	see	the	storage	class	attributes	CoreExport	and

DllExport	in	the	source	code.	These	attributes	are	simply	Microsoft-specific
extensions	to	the	C++	language	used	to	enable	3ds	max	to	export	functions,	data,
and	objects	from	a	DLL	so	that	plug-ins	may	call	them.

Class	Point2
See	Also:	Class	IPoint2.
class	Point2

Description:
This	class	describes	a	2D	point	using	float	x	and	y	coordinates.	Methods	are
provided	to	add	and	subtract	points,	multiply	and	divide	by	scalars,	normalize
and	compute	the	dot	product	of	two	Point2s.	All	methods	are	implemented	by
the	system.

Data	Members:
public:
float	x,y;
The	x	and	y	components	of	the	point.
static	const	Point2	Origin;
This	data	member	is	available	in	release	3.0	and	later	only.
This	is	equivalent	to	Point2(0.0f,	0.0f);
static	const	Point2	XAxis;
This	data	member	is	available	in	release	3.0	and	later	only.
This	is	equivalent	to	Point2(1.0f,	0.0f);
static	const	Point2	YAxis;
This	data	member	is	available	in	release	3.0	and	later	only.
This	is	equivalent	to	Point2(0.0f,	1.0f);

Methods:
Constructors

Prototype:
Point2()

Remarks:
Constructor.	No	initialization	is	performed	by	this	constructor.

Prototype:

Point2(float	X,	float	Y)
Remarks:
Constructor.	Data	members	are	initialized	to	X	and	Y.

Prototype:
Point2(double	X,	double	Y)

Remarks:
Constructor.	Data	members	are	initialized	to	X	and	Y	cast	as	floats.

Prototype:
Point2(const	Point2&	a)

Remarks:
Constructor.	Data	members	are	initialized	to	a.x	and	a.y.

Prototype:
Point2(float	af[2])

Remarks:
Constructor.	Data	members	are	initialized	as	x	=	af[0]	and	y	=	af[1].

Prototype:
Point2&	Set(float	X,	float	Y);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	x	and	y	coordinate	to	the	values	passed	and	returns	a	reference	to	this
Point2.

Parameters:
float	X
The	new	x	value.
float	Y
The	new	y	value.

Return	Value:
A	reference	to	this	Point2.

Prototype:
float	DotProd(const	Point2&)	const

Remarks:
Returns	the	dot	product	of	two	Point2's.	This	is	the	sum	of	both	x	values
multiplied	together	and	both	y	values	multiplied	together.

Prototype:
float	Length()	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	length	of	the	point.	This	is	sqrt(v.x*v.x+v.y*v.y);

Prototype:
int	MaxComponent()	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	returns	the	component	with	the	maximum	absolute	value.

Return	Value:
0	for	X,	1	for	Y,	2	for	Z.

Prototype:
int	MinComponent()	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	returns	the	component	with	the	minimum	absolute	value.

Return	Value:
0	for	X,	1	for	Y,	2	for	Z.

Prototype:
Point2	Normalize()	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	returns	a	normalized	version	of	this	Point2.	This	method	is	more
accurate	than	*this/Length()	(internal	computations	are	done	in	double
precision).

Prototype:
int	Equals(const	Point2&	p,	float	epsilon	=	1E-6f);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Compares	this	Point2	and	the	specified	one	to	see	if	the	x	and	y	values	are
within	plus	or	minus	the	specified	tolerance.

Parameters:
const	Point2&	p
The	point	to	compare.
float	epsilon	=	1E-6f
The	tolerance	to	use	in	the	comparison.

Return	Value:
Nonzero	if	the	points	are	'equal';	otherwise	zero.

Prototype:
Point2&	Unify();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	to	unify	(or	normalize)	this	Point2	(in	place)	and	return
the	result.	Internal	computations	are	done	in	double	precision.

Prototype:
float	LengthUnify();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	to	unify	(or	normalize)	this	Point2	(in	place)	and	return
the	previous	length.	Internal	computations	are	done	in	double	precision.

Operators:

Prototype:
float&	operator[](int	i)
const	float&	operator[](int	i)	const

Remarks:
Allows	access	to	x,	y	using	the	subscript	operator.

Return	Value:
A	value	for	i	of	0	will	return	x,	1	will	return	y.

Prototype:
operator	float*()

Remarks:
Returns	the	address	of	the	Point2.x

Prototype:
Point2	operator-()	const

Remarks:
Unary	-.	Negates	both	x	and	y.

Return	Value:
A	Point2	with	-x,	-y.

Prototype:
Point2	operator+()	const

Remarks:
Unary	+.	Returns	the	point	unaltered.

Return	Value:
Returns	the	Point2	unaltered.

Prototype:
Point2&	operator-=(const	Point2&)

Remarks:
Subtracts	a	Point2	from	this	Point2.

Return	Value:
A	Point2	that	is	the	difference	between	two	Point2s.

Prototype:
Point2&	operator+=(const	Point2&)

Remarks:
Adds	a	Point2	to	this	Point2.

Return	Value:
A	Point2	that	is	the	sum	of	two	Point2's.

Prototype:
Point2&	operator*=(float)

Remarks:
Multiplies	this	Point2	by	a	floating	point	value.

Return	Value:
A	Point2	multiplied	by	a	float.

Prototype:
Point2&	operator/=(float)

Remarks:
Divides	this	Point2	by	a	floating	point	value.

Return	Value:
A	Point2	divided	by	a	float.

Prototype:
Point2	operator-(const	Point2&)	const

Remarks:
Subtracts	a	Point2	from	a	Point2.

Return	Value:
A	Point2	that	is	the	difference	between	two	Point2's.

Prototype:
Point2	operator+(const	Point2&)	const

Remarks:
Adds	a	Point2	to	a	Point2.

Return	Value:
The	sum	of	two	Point2's.

Prototype:
float	operator*(const	Point2&)	const

Remarks:
Returns	the	dot	product	of	two	Point2's.	This	is	the	sum	of	both	x	values
multiplied	together	and	both	y	values	multiplied	together.

Prototype:
int	operator==(const	Point2&	p)	const

Remarks:
Equality	operator.	Compares	two	Point2's.

Return	Value:
Nonzero	if	the	Point2's	are	equal;	otherwise	0.

The	following	functions	are	not	methods	of	class	Point2	but	are	available
for	use:

Prototype:
Point2	operator*(float,	const	Point2&)
Point2	operator*(const	Point2&,	float)

Remarks:
Each	returns	a	Point2	multiplied	by	a	scalar.

Prototype:
Point2	operator/(const	Point2&,	float)

Remarks:
Returns	a	Point2	whose	x	and	y	members	are	divided	by	a	scalar.

Prototype:
ostream	&operator<<(ostream&,	const	Point2&)

Remarks:
Formats	the	Point2	for	output	as	in:
(x,	y)

Function:
float	Length(const	Point2&	v)

Remarks:
Returns	the	length	of	the	Point2,	ie:
sqrt(v.x*v.x+v.y*v.y);

Function:
int	MaxComponent(const	Point2&)

Remarks:
Returns	the	component	with	the	maximum	absolute	value.	0=x,	1=y.

Function:
int	MinComponent(const	Point2&)

Remarks:
Returns	the	component	with	the	minimum	absolute	value.	0=x,	1=y.

Function:
Point2	Normalize(const	Point2&)

Remarks:
Returns	a	unit	vector.	This	is	a	Point2	with	each	component	divided	by	the
point	Length().

Class	Point3
See	Also:	Class	IPoint3,	Class	DPoint3,	Class	Matrix3.
class	Point3

Description:
This	class	describes	a	3D	point	using	float	x,	y	and	z	coordinates.	Methods	are
provided	to	add	and	subtract	points,	multiply	and	divide	by	scalars,	and	element
by	element	multiply	and	divide	two	points.
This	class	is	also	frequently	used	to	simply	store	three	floating	point	values	that
may	not	represent	a	point.	For	example,	a	color	value	where	x=red,	y=green,	and
z=blue.	For	color,	the	range	of	values	is	0.0	to	1.0,	where	0	is	0	and	1.0	is	255.
All	methods	are	implemented	by	the	system.
Note:	In	3ds	max,	all	vectors	are	assumed	to	be	row	vectors.	Under	this
assumption,	multiplication	of	a	vector	with	a	matrix	can	be	written	either	way
(Matrix*Vector	or	Vector*Matrix),	for	ease	of	use,	and	the	result	is	the	same	--
the	(row)	vector	transformed	by	the	matrix.

Data	Members:
public:
float	x,	y,	z;
The	x,	y	and	z	components	of	the	point.
static	const	Point3	Origin;
This	data	member	is	available	in	release	3.0	and	later	only.
This	is	equivalent	to	Point3(0.0f,	0.0f,	0.0f);
static	const	Point3	XAxis;
This	data	member	is	available	in	release	3.0	and	later	only.
This	is	equivalent	to	Point3(1.0f,	0.0f,	0.0f);
static	const	Point3	YAxis;
This	data	member	is	available	in	release	3.0	and	later	only.
This	is	equivalent	to	Point3(0.0f,	1.0f,	0.0f);
static	const	Point3	ZAxis;
This	data	member	is	available	in	release	3.0	and	later	only.
This	is	equivalent	to	Point3(0.0f,	0.0f,	1.0f);

Methods:

Prototype:
Point3()

Remarks:
Constructor.	No	initialization	is	performed.

Prototype:
Point3(float	X,	float	Y,	float	Z)

Remarks:
Constructor.	x,	y,	and	z	are	initialized	to	the	values	specified.

Prototype:
Point3(double	X,	double	Y,	double	Z)

Remarks:
Constructor.	x,	y,	and	z	are	initialized	to	the	specified	values	(cast	as	floats).

Prototype:
Point3(int	X,	int	Y,	int	Z)

Remarks:
Constructor.	x,	y,	and	z	are	initialized	to	the	specified	values	(cast	as	floats).

Prototype:
Point3(const	Point3&	a)

Remarks:
Constructor.	x,	y,	and	z	are	initialized	to	the	specified	Point3.

Prototype:
Point3(float	af[3])

Remarks:
Constructor.	x,	y,	and	z	are	initialized	to	af[0],	af[1],	and	af[2]	respectively.

Operators:

Prototype:
float&	operator[](int	i)
const	float&	operator[](int	i)	const

Remarks:
Allows	access	to	x,	y	and	z	using	the	subscript	operator.

Return	Value:
An	value	for	i	of	0	will	return	x,	1	will	return	y,	2	will	return	z.

Prototype:
operator	float*()

Remarks:
Conversion	function.	Returns	the	address	of	the	Point3.x

Prototype:
Point3	operator-()	const

Remarks:
Unary	-	operator.	Negates	x,	y	and	z.

Prototype:
Point3	operator+()	const

Remarks:
Unary	+.	Returns	the	Point3.

Prototype:
inline	Point3&	operator-=(const	Point3&);

Remarks:
Subtracts	a	Point3	from	this	Point3.

Prototype:
inline	Point3&	operator+=(const	Point3&);

Remarks:

Adds	a	Point3	to	this	Point3.

Prototype:
inline	Point3&	operator*=(float);

Remarks:
Multiplies	this	Point3	by	a	floating	point	value.

Prototype:
inline	Point3&	operator/=(float);

Remarks:
Divides	this	Point3	by	a	floating	point	value.

Prototype:
inline	Point3&	operator*=(const	Point3&);

Remarks:
Element-by-element	multiplication	of	two	Point3s:
(x*x,	y*y,	z*z).

Prototype:
int	operator==(const	Point3&	p)	const

Remarks:
Equality	operator.	Test	for	equality	between	two	Point3's.

Return	Value:
Nonzero	if	the	Point3's	are	equal;	otherwise	0.

Prototype:
inline	Point3	operator-(const	Point3&)	const;

Remarks:
Subtracts	a	Point3	from	a	Point3.

Prototype:

inline	Point3	operator+(const	Point3&)	const;
Remarks:
Adds	a	Point3	to	a	Point3.

Prototype:
inline	Point3	operator/(const	Point3&)	const;

Remarks:
Divides	a	Point3	by	a	Point3	element	by	element.

Prototype:
inline	Point3	operator*(const	Point3&)	const;

Remarks:
Multiplies	a	Point3	by	a	Point3	element	by	element.
(x*x,	y*y,	z*z).

Prototype:
Point3	operator^(const	Point3&)	const;

Remarks:
The	cross	product	of	two	Point3's	(vectors).

Return	Value:
The	cross	product	of	two	Point3's.

The	following	functions	are	not	methods	of	Point3	but	are
available	for	use:
Prototype:
inline	float	Length(const	Point3&	v)

Remarks:
Returns	the	'Length'	of	the	point	(vector).	This	is:
sqrt(v.x*v.x+v.y*v.y+v.z*v.z)

Prototype:

inline	float	FLength(const	Point3&	v)
Remarks:
Returns	the	'Length'	of	the	point	(vector)	using	a	faster	assembly	language
implementation	for	square	root.	This	is:
Sqrt(v.x*v.x+v.y*v.y+v.z*v.z)

Prototype:
inline	float	LengthSquared(const	Point3&	v)

Remarks:
The	'Length'	squared	of	the	point.	This	is	v.x*v.x+v.y*v.y+v.z*v.z.

Prototype:
int	MaxComponent(const	Point3&);

Remarks:
Returns	the	component	with	the	maximum	absolute	value.	0=x,	1=y,	2=z.

Prototype:
int	MinComponent(const	Point3&);

Remarks:
Returns	the	component	with	the	minimum	absolute	value.	0=x,	1=y,	2=z.

Prototype:
Point3	Normalize(const	Point3&);

Remarks:
Returns	a	normalized	unit	vector.	This	is	a	Point3	with	each	component
divided	by	the	point	Length().

Prototype:
Point3	FNormalize(const	Point3&);

Remarks:
Returns	a	normalized	unit	vector	using	faster	assembly	language	code	than
that	used	by	Normalize().	This	is	a	Point3	with	each	component	divided	by

the	point	Length().

Prototype:
inline	Point3	operator*(float	f,	const	Point3&	a)

Remarks:
Returns	a	Point3	that	is	the	specified	Point3	multiplied	by	the	specified	float.

Prototype:
inline	Point3	operator*(const	Point3&	a,	float	f)

Remarks:
Returns	a	Point3	that	is	the	specified	Point3	multiplied	by	the	specified	float.

Prototype:
inline	Point3	operator/(const	Point3&	a,	float	f)

Remarks:
Returns	a	Point3	that	is	the	specified	Point3	divided	by	the	specified	float.

Prototype:
inline	Point3	operator+(const	Point3&	a,	float	f)

Remarks:
Returns	a	Point3	that	is	the	specified	Point3	with	the	specified	floating	point
valued	added	to	each	component	x,	y,	and	z.

Prototype:
inline	float	DotProd(const	Point3&	a,	const	Point3&	b);

Remarks:
Returns	the	dot	product	of	two	Point3s.	This	is	the	sum	of	each	of	the
components	multiplied	together,	element	by	element
a.x*b.x+a.y*b.y+a.z*b.z
The	dot	product	has	the	property	of	equaling	the	product	of	the	magnitude
(length)	of	the	two	vector	times	the	cosine	of	the	angle	between	them.

Prototype:
Point3	CrossProd(const	Point3&	a,	const	Point3&	b);

Remarks:
This	returns	the	cross	product	of	the	specified	Point3's	(vectors).	The	cross
product	of	two	vectors	is	a	third	vector,	perpendicular	to	the	plane	formed	by
the	two	vectors.

Prototype:
ULONG	CompressNormal(Point3	p);

Remarks:
This	function	will	compress	a	normal	vector	from	12	bytes	to	4	bytes.	The
vector	has	to	be	<=	1.0	in	length.

Prototype:
Point3	DeCompressNormal(ULONG	n);

Remarks:
This	function	may	be	used	to	decompress	a	surface	normal	from	the	G-Buffer
(ie	the	BMM_CHAN_NORMAL	channel).	The	Point3	returned	is
normalized.	The	decompressed	vector	has	absolute	error	<.001	in	each
component.

Class	Matrix3
See	Also:	Class	Point3,	Matrix	Representations	of	3D	Transformations,	Class
Quat,	Class	AngAxis,	Structure	AffineParts,	Class	BigMatrix.
class	Matrix3

Description:
This	class	implements	a	4x3	3D	transformation	matrix	object.	Methods	are
provided	to	zero	the	matrix,	set	it	to	the	identity,	compute	its	inverse,	apply
incremental	translation,	rotation	and	scaling,	and	build	new	X,	Y	and	Z	rotation
matrices.	Operators	are	provided	for	matrix	addition,	subtraction,	and
multiplication.	All	methods	are	implemented	by	the	system.
Note:	In	3ds	max,	all	vectors	are	assumed	to	be	row	vectors.	Under	this
assumption,	multiplication	of	a	vector	with	a	matrix	can	be	written	either	way
(Matrix*Vector	or	Vector*Matrix),	for	ease	of	use,	and	the	result	is	the	same	--
the	(row)	vector	transformed	by	the	matrix.

Data	Members:
private:
float	m[4][3];
Matrix	storage.
DWORD	flags;
Matrix	Identity	Flags.
POS_IDENT
Indicates	the	translation	row	of	the	matrix	is	the	identity.
ROT_IDENT
Indicates	the	rotation	elements	of	the	matrix	are	the	identity.
SCL_IDENT
Indicates	the	scale	elements	of	the	matrix	are	the	identity.
MAT_IDENT
Indicates	the	matrix	is	the	identity	matrix.	This	is	equivalent	to
(POS_IDENT|ROT_IDENT|SCL_IDENT).

public:
static	const	Matrix3	Identity;
This	data	member	is	available	in	release	3.0	and	later	only.

An	instance	of	an	identity	matrix.

Methods:

Prototype:
Matrix3()

Remarks:
Constructor.	Note	that	no	initialization	is	done.	Use	Zero()	or	Identity(),	or
the	constructors	below.

Prototype:
Matrix3(BOOL	init)

Remarks:
Constructor.	If	TRUE	is	passed	to	the	method	the	matrix	is	set	to	the	identity.

Parameters:
BOOL	init
Specifies	if	the	Matrix3	should	be	initialized	to	the	identity.

Prototype:
Matrix3(float	(*fp)[3]);

Remarks:
Constructor.	The	matrix	is	initialized	to	fp.

Parameters:
float	(*fp)[3]
Specifies	the	initial	values	for	the	matrix.

Prototype:
Matrix3(const	Point3&	U,	const	Point3&	V,	const	Point3&	N,
const	Point3&	T);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Constructor.	Initializes	the	matrix	with	the	row	data	passed	and	validates	the
matrix	flags.

Parameters:
const	Point3&	U
The	data	for	row	0.
const	Point3&	V
The	data	for	row	1.
const	Point3&	N
The	data	for	row	2.
const	Point3&	T
The	data	for	row	3.

Prototype:
void	SetNotIdent()

Remarks:
This	clears	the	MAT_IDENT	flag	to	indicate	the	matrix	is	not	the	identity.	If
any	changes	are	made	to	components	directly	via	GetAddr(),	this	method
must	be	called.

Prototype:
Remarks:
void	SetIdentFlags(DWORD	f)

Remarks:
This	sets	the	specified	identity	flag(s).

Parameters:
DWORD	f
Specifies	the	identity	flag	bit(s)	to	set.	See	Matrix	Identity	Flags	above.

Prototype:
DWORD	GetIdentFlags()	const

Remarks:
Returns	the	identity	flags.

Prototype:

void	ClearIdentFlag(DWORD	f)
Remarks:
Clears	the	specified	identity	flag(s).	See	Matrix	Identity	Flags	above.

Parameters:
DWORD	f
Specifies	the	identity	flag	bit(s)	to	clear.

Prototype:
BOOL	IsIdentity()	const

Remarks:
Returns	TRUE	if	the	matrix	is	the	identity	matrix	(based	on	the	flags);
otherwise	FALSE.

Prototype:
void	ValidateFlags();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	may	be	used	to	recompute	the	*_IDENT	flags	for	this	matrix.
For	instance,	if	you	call	a	method,	such	as
INode::GetObjTMAfterWSM(),	and	it	returns	a	matrix,	you	cannot	use
the	IsIdentity()	method	to	check	if	the	matrix	is	indeed	the	identity.	This	is
because	the	flags	that	method	checks	are	not	initialized	by	the	INode	method.
What	you	can	do	however	is	call	this	method	first.	This	will	validate	the	flags
in	the	matrix	so	they	accuratly	reflect	the	properties	of	the	matrix.	If	after
calling	this	method,	and	then	calling	IsIdentity(),	the	proper	result	would	be
returned.

Prototype:
MRow*	GetAddr()

Remarks:
Returns	the	address	of	this	Matrix3.
The	Matrix3	class	keeps	flags	indicating	identity	for	rotation,	scale,	position,
and	the	matrix	as	a	whole,	and	thus	the	direct	access	via	the	[]	operator	is

restricted	to	prevent	developers	from	modifying	the	matrix	without	updating
the	flags.	This	method,	GetAddr(),	still	lets	you	get	at	the	matrix	itself	and
then	you	can	use	the	[]	operator	on	the	result.	Note:	If	you	change	the	matrix
via	this	pointer,	you	MUST	clear	the	proper	IDENT	flags!
Also	Note:	typedef	float	MRow[3];

Return	Value:
The	address	of	the	Matrix3.

Prototype:
const	MRow*	GetAddr()	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	address	of	this	Matrix3.
The	Matrix3	class	keeps	flags	indicating	identity	for	rotation,	scale,	position,
and	the	matrix	as	a	whole,	and	thus	the	direct	access	via	the	[]	operator	is
restricted	to	prevent	developers	from	modifying	the	matrix	without	updating
the	flags.	This	method,	GetAddr(),	still	lets	you	get	at	the	matrix	itself	and
then	you	can	use	the	[]	operator	on	the	result.	Note:	If	you	change	the	matrix
via	this	pointer,	you	MUST	clear	the	proper	IDENT	flags!
Also	Note:	typedef	float	MRow[3];

Prototype:
void	IdentityMatrix();

Remarks:
Set	this	matrix	to	the	Identity	Matrix.

Prototype:
void	Zero();

Remarks:
This	method	sets	all	elements	of	the	matrix	to	0.0f

Prototype:
Matrix3&	Set(const	Point3&	U,	const	Point3&	V,	const	Point3&

N,	const	Point3&	T);
Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Initializes	the	matrix	with	the	row	data	passed	and	validates	the	matrix	flags.

Parameters:
const	Point3&	U
The	data	for	row	0.
const	Point3&	V
The	data	for	row	1.
const	Point3&	N
The	data	for	row	2.
const	Point3&	T
The	data	for	row	3.

Return	Value:
A	reference	to	this	matrix.

Prototype:
int	Equals(const	Matrix3&	M,	float	epsilon	=	1E-6f)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Compares	the	elements	of	this	matrix	and	the	one	specified	element	by
element	for	equality	within	the	specified	tolerance	epsilon.	Returns	nonzero	if
they	are	'equal';	otherwise	zero.

Parameters:
const	Matrix3&	M
The	matrix	to	compare	against.
float	epsilon	=	1E-6f
The	tolerance	for	comparison.	If	the	values	in	the	matrix	are	within	this	value
(+	epsilon	or	-	epsilon)	they	are	considered	equal.

Prototype:
Point3	GetRow(int	i)	const

Remarks:
Returns	the	specified	row	of	this	matrix.

Parameters:
int	i
Specifies	the	row	to	retrieve.

Prototype:
void	SetRow(int	i,	Point3	p);

Remarks:
Sets	the	specified	row	of	this	matrix	to	the	specified	values.

Parameters:
int	i
Specifies	the	row	to	set.
Point3	p
The	values	to	set.

Prototype:
Point4	GetColumn(int	i)	const;

Remarks:
Returns	the	'i-th'	column	of	this	matrix.

Parameters:
int	i
Specifies	the	column	to	get	(0-2).

Prototype:
void	SetColumn(int	i,	Point4	col);

Remarks:
Sets	the	'i-th'	column	of	this	matrix	to	the	specified	values.

Parameters:
int	i
Specifies	the	column	to	set	(0-2).

Point4	col
The	values	to	set.

Prototype:
Point3	GetColumn3(int	i)	const;

Remarks:
Returns	the	upper	three	entries	in	the	specified	column.

Parameters:
int	i
Specifies	the	partial	column	to	get	(0-2).

Prototype:
void	NoTrans();

Remarks:
This	method	zeros	the	translation	portion	of	this	matrix.

Prototype:
void	NoRot();

Remarks:
This	method	zeros	the	rotation	portion	of	this	matrix.

Prototype:
void	NoScale();

Remarks:
The	method	zeros	the	scale	portion	of	this	matrix	without
orthogonalization.	If	the	matrix	was	sheared	(skewed)	then	the	method	is
not	able	to	remove	scale	component	completely.	Use	Orthogonalize()
method	first,	and	then	NoScale()	to	remove	scale	component	entirely.	Read
SCL_IDENT	flag	to	check	if	NoScale()	method	was	enough	to	make	the
matrix	to	be	orthogonal	(with	perpendicular	axes	of	unit	length).Prototype:
	
	

void	Orthogonalize();
Remarks:
This	is	an	"unbiased"	orthogonalization	of	this	matrix.	The	algorithm	seems	to
take	a	maximum	of	4	iterations	to	converge.	An	orthogonal	matrix	has	an	axis
system	where	each	axis	is	90	degrees	from	the	others	(it's	not	skewed).

Prototype:
void	SetTrans(const	Point3	p)

Remarks:
Sets	the	translation	row	of	this	matrix	to	the	specified	values.	The
POS_IDENT	flag	is	cleared.

Parameters:
const	Point3	p
Specifies	the	values	for	the	translation	row.

Prototype:
void	SetTrans(int	i,	float	v)

Remarks:
Sets	the	specified	component	of	the	translation	row	of	this	matrix	to	the
specified	value.	The	POS_IDENT	flag	is	cleared.

Parameters:
int	i
Specifies	the	component	of	the	translation	row	of	this	matrix	to	set.
float	v
The	value	to	set.

Prototype:
Point3	GetTrans()	const

Remarks:
Returns	the	translation	row	of	this	matrix.

Return	Value:
The	translation	row	of	this	matrix.

Prototype:
void	SetScale(const	Point3	p);

Remarks:
This	method	is	not	currently	implemented.

Prototype:
void	Translate(const	Point3&	p);

Remarks:
Apply	an	incremental	translation	transformation	to	this	matrix.	This	is
equivalent	to	multiplying	on	the	RIGHT	by	the	transform.

Parameters:
const	Point3&	p
Specifies	the	translation.

Prototype:
void	RotateX(float	angle);

Remarks:
Apply	an	incremental	X	rotation	transformation	to	this	matrix.	This	is
equivalent	to	multiplying	on	the	RIGHT	by	the	transform.

Parameters:
float	angle
Specifies	the	X	rotation	in	radians.

Prototype:
void	RotateY(float	angle);

Remarks:
Apply	an	incremental	Y	rotation	transformation	to	this	matrix.	This	is
equivalent	to	multiplying	on	the	RIGHT	by	the	transform.

Parameters:
float	angle
Specifies	the	Y	rotation	in	radians.

Prototype:
void	RotateZ(float	angle);

Remarks:
Apply	an	incremental	Z	rotation	transformation	to	this	matrix.	This	is
equivalent	to	multiplying	on	the	RIGHT	by	the	transform.

Parameters:
float	angle
Specifies	the	Z	rotation	in	radians.

Prototype:
void	Scale(const	Point3&	s,	BOOL	trans	=	FALSE);

Remarks:
Apply	an	incremental	scaling	transformation	to	this	matrix.	This	is	equivalent
to	multiplying	on	the	RIGHT	by	the	transform.

Parameters:
const	Point3&	s
The	scale	values.
BOOL	trans	=	FALSE
If	set	to	TRUE,	the	translation	component	is	scaled.	If	trans	=	FALSE	the
translation	component	is	unaffected.	When	3ds	max	was	originally	written
there	was	a	bug	in	the	code	for	this	method	where	the	translation	portion	of	the
matrix	was	not	being	scaled.	This	meant	that	when	a	matrix	was	scaled	the
bottom	row	was	not	scaled.	Thus	it	would	always	scale	about	the	local	origin
of	the	object,	but	it	would	scale	the	world	axes.	When	this	bug	was
discovered,	dependencies	existed	in	the	code	upon	this	bug.	Thus	it	could	not
simply	be	fixed	because	it	would	break	the	existing	code	that	depended	upon	it
working	the	incorrect	way.	To	correct	this	the	trans	parameter	was	added.	If
this	is	set	to	TRUE,	the	translation	component	will	be	scaled	correctly.	The
existing	plug-ins	don't	use	this	parameter,	it	defaults	to	FALSE,	and	the	code
behaves	the	old	way.

Prototype:
void	PreTranslate(const	Point3&	p);

Remarks:
Apply	an	incremental	translation	transformation	to	this	matrix.	This	is
equivalent	to	multiplying	on	the	LEFT	by	the	transform.

Parameters:
const	Point3&	p
Specifies	the	translation	distance.

Prototype:
void	PreRotateX(float	angle);

Remarks:
Apply	an	incremental	X	rotation	transformation	to	this	matrix.	This	is
equivalent	to	multiplying	on	the	LEFT	by	the	transform.

Parameters:
float	angle
Specifies	the	X	rotation	in	radians.

Prototype:
void	PreRotateY(float	angle);

Remarks:
Apply	an	incremental	Y	rotation	transformation	to	this	matrix.	This	is
equivalent	to	multiplying	on	the	LEFT	by	the	transform.

Parameters:
float	angle
Specifies	the	Y	rotation	in	radians.

Prototype:
void	PreRotateZ(float	angle);

Remarks:
Apply	an	incremental	Z	rotation	transformation	to	this	matrix.	This	is
equivalent	to	multiplying	on	the	LEFT	by	the	transform.

Parameters:
float	angle

Specifies	the	Z	rotation	in	radians.

Prototype:
void	PreScale(const	Point3&	s,	BOOL	trans	=	FALSE);

Remarks:
Apply	an	incremental	scaling	transformation	to	this	matrix.	This	is	equivalent
to	multiplying	on	the	LEFT	by	the	transform.

Parameters:
const	Point3&	s
The	scale	values.
BOOL	trans	=	FALSE
If	trans	=	FALSE	the	translation	component	is	unaffected.

Prototype:
void	SetTranslate(const	Point3&	p);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	this	matrix	to	the	identity	and	the	translation	components	to	the	specified
values.

Parameters:
const	Point3&	p
The	translation	values	to	store.

Prototype:
void	SetRotateX(float	angle);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	this	matrix	to	the	identity	and	the	rotation	components	to	the	specified	X
rotation.

Parameters:
float	angle
The	angle	for	X	rotation	(in	radians).

Prototype:
void	SetRotateY(float	angle);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	this	matrix	to	the	identity	and	the	rotation	components	to	the	specified	Y
rotation.

Parameters:
float	angle
The	angle	for	Y	rotation	(in	radians).

Prototype:
void	SetRotateZ(float	angle);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	this	matrix	to	the	identity	and	the	rotation	components	to	the	specified	Z
rotation.

Parameters:
float	angle
The	angle	for	Z	rotation	(in	radians).

Prototype:
void	SetRotate(const	Quat&	q);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	rotation	components	of	the	matrix	as	specified	by	the	quaternion.	The
translation	and	scale	components	will	match	the	identity	matrix.

Parameters:
const	Quat&	q
Specifies	the	rotation	to	use	for	the	matrix.

Prototype:
void	SetRotate(const	AngAxis&	aa);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	rotation	components	of	the	matrix	as	specified	by	the	AngAxis.	The
translation	and	scale	components	will	match	the	identity	matrix.

Parameters:
const	AngAxis&	aa
Specifies	the	rotation	to	use	for	the	matrix.

Prototype:
void	SetRotate(float	yaw,	float	pitch,	float	roll);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	rotation	components	of	this	matrix	using	yaw,	pitch	and	roll	angles.
There	are	many	different	conventions	for	specifying	a	rotation	by	means	of
three	Euler	angles.	This	function	uses	the	convention	of	rotating	around	the
world	Z	axis,	then	the	X	axis,	then	the	Y	axis;	the	three	arguments	are	given	in
the	order	Y,	X,	Z.
This	one	is	equivalent	to:
	M.IdentityMatrix();
	M.RotateZ(roll);
	M.RotateX(pitch);
	M.RotateY(yaw);
--Which	presupposes	Y	is	vertical,	X	is	sideways,	Z	is	forward

Parameters:
float	yaw
The	yaw	angle	in	radians.
float	pitch
The	pitch	angle	in	radians.
float	roll
The	roll	angle	in	radians.

Prototype:
void	SetAngleAxis();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	rotation	portion	of	the	matrix	to	the	rotation	specified	by	the	angle
and	axis	and	sets	the	translation	portion	to	zeros.

Parameters:
const	Point3&	axis
The	axis	of	rotation.
float	angle
The	angle	of	rotation	about	the	axis	in	radians.

Prototype:
void	SetScale(const	Point3&	s);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	scale	components	of	this	matrix	to	the	specified	values.	The	other
components	to	this	matrix	will	match	the	identity.

Parameters:
const	Point3&	s
The	scale	factors	for	the	matrix.

Prototype:
void	SetFromToUp(const	Point3&	from,	const	Point3&	to,	const
Point3&	up);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	creates	a	matrix	describing	a	viewpoint	which	is	at	the	'from'	location,
looking	toward	the	'to'	location;	the	viewpoint	is	tilted	so	that	the	'up'	vector
points	to	the	top	of	the	view.

Parameters:
const	Point3&	from
This	specifies	the	viewpoint	source	location.
const	Point3&	to

This	vector	specifies	the	direction	of	view.
const	Point3&	up
This	vector	points	to	the	top	of	the	view.

Prototype:
void	Invert();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	inverts	this	matrix.	An	inverted	matrix,	when	multiplied	by	the
original,	yields	the	identity.

Prototype:
BOOL	Parity()	const;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	'parity'	of	the	matrix.	If	one	axis	of	the	matrix	is	scaled	negatively
this	switches	the	'parity'.	However	if	you	scale	two	axes	it	will	flip	it	back.
Three	times	switches	it	again.
When	rendering	a	mesh,	if	you	scale	something	along	one	axis,	it	turns	'inside
out'.	That	is	the	direction	when	the	normals	are	reversed.	This	method	may	be
used	to	detect	that	case	and	then	reverse	the	normals.	The	3ds	max	renderer
does	this	--	if	this	method	returns	TRUE	it	flips	all	the	normals	so	it	won't	turn
inside	out.

Sample	Code:
BOOL	Matrix3::Parity()	const	{
	if	(flags&SCL_IDENT)	return	FALSE;
	Point3	cp	=	CrossProd(GetRow(0),GetRow(1));
	if	(DotProd(cp,GetRow(2))	<	0.0)	return	TRUE;
	return	FALSE;
	}

Prototype:
Point3	PointTransform(const	Point3&	p)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	specified	point	transformed	by	this	matrix.

Parameters:
const	Point3&	p
The	point	to	transform	by	this	matrix.

Prototype:
Point3	VectorTransform(const	Point3&	p)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	specified	vector	transformed	by	this	matrix.

Parameters:
const	Point3&	p
The	vector	to	transform	by	this	matrix.

Prototype:
void	TransformPoints(Point3	*array,	int	n,	int	stride	=
sizeof(Point3));

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Transforms	the	specified	list	of	points	with	this	matrix.

Parameters:
Point3	*array
The	array	of	points	to	transform	with	this	matrix.
int	n
The	number	of	points	in	the	array.
int	stride	=	sizeof(Point3)
The	size	of	the	increment	used	when	moving	to	the	next	point.	If	you	wish	to
transform	an	array	of	data	objects	which	contain	x,	y,	and	z	coordinates	in
order	(such	as	a	Point4,	or	a	structure	containing	a	Point3	as	a	member)	you
can	specify	a	'stride'	value	(for	instance	sizeof(data_object)).

Prototype:
void	TransformPoints(const	Point3	*array,	Point3	*to,	int	n,	int
stride	=	sizeof(Point3),	int	strideTo	=	sizeof(Point3));

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Transforms	the	specified	list	of	points	with	this	matrix	and	stores	the	resulting
transformed	points	in	the	storage	passed.

Parameters:
const	Point3	*array
The	array	of	points	to	transform	(the	source).
Point3	*to
The	array	to	store	the	transformed	points	(the	destination).
int	n
The	number	of	points	in	the	source	array.
int	stride	=	sizeof(Point3)
int	strideTo	=	sizeof(Point3)
The	size	increment	used	when	moving	to	the	next	storage	location.

Prototype:
void	TransformVectors(Point3	*array,	int	n,	int	stride	=
sizeof(Point3));

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Transforms	the	specified	list	of	vectors	with	this	matrix.

Parameters:
Point3	*array
The	array	of	vectors	to	transform	with	this	matrix.
int	n
The	number	of	vectors	in	the	array.
int	stride	=	sizeof(Point3)
The	size	of	the	increment	used	when	moving	to	the	next	vector.	If	you	wish	to
transform	an	array	of	data	objects	which	contain	x,	y,	and	z	coordinates	in
order	(such	as	a	Point4,	or	a	structure	containing	a	Point3	as	a	member)	you

can	specify	a	'stride'	value	(for	instance	sizeof(data_object)).

Prototype:
void	TransformVectors(const	Point3	*array,	Point3	*to,	int	n,	int
stride	=	sizeof(Point3),	int	strideTo	=	sizeof(Point3));

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Transforms	the	specified	list	of	vectors	with	this	matrix	and	stores	the
resulting	transformed	vectors	in	the	storage	passed.

Parameters:
const	Point3	*array
The	array	of	vectors	to	transform	(the	source).
Point3	*to
The	array	to	store	the	transformed	vectors	(the	destination).
int	n
The	number	of	vectors	in	the	source	array.
int	stride	=	sizeof(Point3)
The	size	increment	used	when	moving	to	the	next	source	location.
int	strideTo	=	sizeof(Point3)
The	size	increment	used	when	moving	to	the	next	storage	location.

Prototype:
void	GetYawPitchRoll(float	*yaw,	float	*pitch,	float	*roll);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Retrieves	the	yaw,	pitch	and	roll	angles	represented	by	the	rotation	in	this
matrix.

Parameters:
float	*yaw
The	yaw	rotation	angle	is	stored	here	(in	radians).
float	*pitch
The	pitch	rotation	angle	is	stored	here	(in	radians).
float	*roll

The	roll	rotation	angle	is	stored	here	(in	radians).

Operators:

Prototype:
int	operator==(const	Matrix3&	M)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Compares	the	elements	of	this	matrix	and	the	one	specified	element	by
element	for	exact	equality.	Returns	nonzero	if	they	are	equal;	otherwise	zero.

Parameters:
const	Matrix3&	M
The	matrix	to	compare	against.

Prototype:
Matrix3&	operator-=(const	Matrix3&	M);

Remarks:
Subtracts	a	Matrix3	from	this	Matrix3.

Prototype:
Matrix3&	operator+=(const	Matrix3&	M);

Remarks:
Adds	a	Matrix3	to	this	Matrix3.

Prototype:
Matrix3&	operator*=(const	Matrix3&	M);

Remarks:
Multiplies	this	Matrix3	by	the	specified	Matrix3	(*this	=	(*this)*M;).

Prototype:
Matrix3	operator*(const	Matrix3&)	const;

Remarks:
Perform	matrix	multiplication.

Prototype:
Matrix3	operator+(const	Matrix3&)	const;

Remarks:
Perform	matrix	addition.

Prototype:
Matrix3	operator-(const	Matrix3&)	const;

Remarks:
Perform	matrix	subtraction.

Prototype:
const	Point3&	operator[](int	i)	const;

Remarks:
Returns	a	reference	to	the	'i-th'	Point3	of	the	matrix.

The	following	functions	are	not	methods	of	Matrix3	but	are	available	for
use:

Function:
Matrix3	RotateXMatrix(float	angle);

Remarks:
Builds	a	new	matrix	for	use	as	a	X	rotation	transformation.

Parameters:
float	angle
Specifies	the	angle	of	rotation	in	radians.

Return	Value:
A	new	X	rotation	Matrix3.

Function:
Matrix3	RotateYMatrix(float	angle);

Remarks:
Builds	a	new	matrix	for	use	as	a	Y	rotation	transformation.

Parameters:
float	angle
Specifies	the	angle	of	rotation	in	radians.

Return	Value:
A	new	Y	rotation	Matrix3.

Function:
Matrix3	RotateZMatrix(float	angle);

Remarks:
Builds	a	new	matrix	for	use	as	a	Z	rotation	transformation.

Parameters:
float	angle
Specifies	the	angle	of	rotation	in	radians.

Return	Value:
A	new	Z	rotation	Matrix3.

Function:
Matrix3	TransMatrix(const	Point3&	p);

Remarks:
Builds	a	new	matrix	for	use	as	a	translation	transformation.

Parameters:
const	Point3&	p
Specifies	the	translation	values.

Return	Value:
A	new	translation	Matrix3.

Function:
Matrix3	ScaleMatrix(const	Point3&	s);

Remarks:
Builds	a	new	matrix	for	use	as	a	scale	transformation.

Parameters:
const	Point3&	p
Specifies	the	scale	values.

Return	Value:
A	new	scale	Matrix3.

Function:
Matrix3	RotateYPRMatrix(float	Yaw,	float	Pitch,	float	Roll);

Remarks:
Builds	a	new	matrix	for	use	as	a	rotation	transformation	by	specifying	yaw,
pitch	and	roll	angles.
This	definition	will	depend	on	what	our	coordinate	system	is.	This	one	is
equivalent	to:
M.IdentityMatrix();
M.RotateZ(roll);
M.RotateX(pitch);
M.RotateY(yaw);

Which	presupposes	Y	is	vertical,	X	is	sideways,	Z	is	forward
Parameters:
float	Yaw
Specifies	the	yaw	angle	in	radians.
float	Pitch
Specifies	the	pitch	angle	in	radians.
float	Roll
Specifies	the	roll	angle	in	radians.

Return	Value:
A	new	rotation	Matrix3.

Function:
Matrix3	RotAngleAxisMatrix(Point3&	axis,	float	angle);

Remarks:
Builds	a	new	matrix	for	use	as	a	rotation	transformation	by	specifying	an
angle	and	axis.

Parameters:
Point3&	axis
Specifies	the	axis	of	rotation.	Note	that	this	angle	is	expected	to	be
normalized.
float	angle
Specifies	the	angle	of	rotation.	Note:	The	direction	of	the	angle	in	this	method
is	opposite	of	that	in	AngAxisFromQ().

Return	Value:
A	new	rotation	Matrix3.

Function:
Matrix3	Inverse(const	Matrix3&	M);

Remarks:
Return	the	inverse	of	the	matrix

Parameters:
const	Matrix3&	M

The	matrix	to	compute	the	inverse	of.

Function:
Point3	VectorTransform(const	Matrix3&	M,	const	Point3&	V);

Remarks:
Transform	the	vector	(Point3)	with	the	specified	matrix.

Parameters:
const	Matrix3&	A
The	matrix	to	transform	the	vector	with.
const	Point3&	V
The	vector	to	transform.

Return	Value:
The	transformed	vector	(as	a	Point3).

Function:
Matrix3	XFormMat(const	Matrix3&	xm,	const	Matrix3&	m);

Remarks:
This	method	is	used	to	build	a	matrix	that	constructs	a	transformation	in	a
particular	space.	For	example,	say	you	have	a	rotation	you	want	to	apply,	but
you	want	to	perform	the	rotation	in	another	coordinate	system.	To	do	this,	you
typically	transform	into	the	space	of	the	coordinate	system,	then	apply	the
transformation,	and	then	transform	out	of	that	coordinate	system.	This	method
constructs	a	matrix	that	does	just	this.	It	transformats	matrix	m	so	it	is	applied
in	the	space	of	matrix	xm.	It	returns	a	Matrix3	that	is
xm*m*Inverse(xm).

Parameters:
const	Matrix3&	xm
Specifies	the	coordinate	system	you	want	to	work	in.
const	Matrix3&	m
Specifies	the	transformation	matrix.

Return	Value:
Returns	a	Matrix3	that	is	xm*m*Inverse(xm).

Function:
Point3	operator*(const	Matrix3&	A,	const	Point3&	V);
Point3	operator*(const	Point3&	V,	const	Matrix3&	A);

Remarks:
These	transform	a	Point3	with	a	Matrix3.	These	two	versions	of
transforming	a	point	with	a	matrix	do	the	same	thing,	regardless	of	the	order
of	operands	(linear	algebra	rules	notwithstanding).

Parameters:
const	Point3&	V
The	point	to	transform.
const	Matrix3&	A
The	matrix	to	transform	the	point	with.

Return	Value:
The	transformed	Point3.

Class	Quat
See	Also:	Class	Point3,	Class	Matrix3,	Class	AngAxis.
class	Quat

Description:
This	class	provides	a	compact	representation	for	orientation	in	three	space	and
provides	methods	to	perform	Quaternion	algebra.
Quaternions	provide	an	alternative	representation	for	orientation	in	three-space.
To	reduce	computing,	you	can	substitute	quaternion	multiplication	for	rotation-
matrix	composition.
A	quaternion	is	made	up	of	four	terms:	a	real	scalar	part	which	specifies	the
amount	of	rotation	and	an	imaginary	vector	part	which	defines	the	axis	of
rotation.	If	the	quaternion	is	normalized,	the	scalar	term	equals	the	cosine	of	half
the	angle	of	rotation,	the	vector	term	is	the	axis	of	rotation,	and	the	magnitude	of
the	vector	term	equals	the	sine	of	half	the	angle	of	rotation.
Interpolation	between	two	key	frame	orientations	is	much	easier	using
quaternions	and	produces	smooth	and	natural	motion.	Unlike	Euler	angles,	no
numerical	integration	is	necessary;	quaternions	provide	an	analytic	result	(no
approximations).
The	rotation	convention	in	the	3ds	max	API	is	the	left-hand-rule.	Note	that	this
is	different	from	the	right-hand-rule	used	in	the	3ds	max	user	interface.
For	additional	information	see:	Quaternion	operations:
From	"Quaternion	Calculus	and	Fast	Animation",
by	Ken	Shoemake,	in	notes	for	SIGGRAPH	1987	Course	#	10,
"Computer	Animation:	3-D	Motion	Specification	and	Control".

All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
float	x,y,z,w;
The	x,	y,	z	values	make	up	the	vector	portion.	w	is	the	angle	of	rotation	about
the	vector	(see	remarks	above	for	details).

Methods:

Prototype:
Quat()

Remarks:
Constructor.	No	initialization	is	performed.

Prototype:
Quat(float	X,	float	Y,	float	Z,	float	W)

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.

Prototype:
Quat(double	X,	double	Y,	double	Z,	double	W)

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed	(cast	as
floats).

Prototype:
Quat(const	Quat&	a)

Remarks:
Constructor.	The	data	members	are	initialized	to	the	Quat	passed.

Prototype:
Quat(float	af[4])

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.
x	=	af[0];	y	=	af[1];	z	=	af[2];	w	=	af[3];

Prototype:
Quat(const	Matrix3&	mat);

Remarks:
Constructor.	Convert	the	specified	3x3	rotation	matrix	to	a	unit	quaternion.

Prototype:
Quat(const	AngAxis&	aa);

Remarks:
Constructor.	The	Quat	is	initialized	to	the	AngAxis	passed.

Prototype:
Quat(const	Point3&	V,	float	W);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Constructor.	The	quaternion	is	initialized	from	the	vector	V	and	angle	W
passed.	The	quaternion	is	then	normalized.
	

Prototype:
Quat	Inverse()	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	inverse	of	this	quaternion	(1/q).

Prototype:
Quat	Conjugate()	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	conjugate	of	a	quaternion.

Prototype:
Quat	LogN()	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	natural	logarithm	of	a	UNIT	quaternion.

Prototype:

Quat	Exp()	const;
Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	exponentiate	quaternion	(where	q.w==0).

Operators:

Prototype:
float&	operator[](int	i)

Remarks:
Array	access	operator.	Valid	i	values:	0=x,	1=y,	2=z,	3=w.

Prototype:
const	float&	operator[](int	i)	const

Remarks:
Array	access	operator.	Valid	i	values:	0=x,	1=y,	2=z,	3=w.

Prototype:
operator	float*()

Remarks:
Returns	the	address	of	the	Quaternion.

Unary	operators

Prototype:
Quat	operator-()	const

Remarks:
Unary	negation.	Returns	Quat(-x,-y,-z,-w).

Prototype:
Quat	operator+()	const

Remarks:
Unary	+.	Returns	the	Quat	unaltered.

Assignment	operators

Prototype:
Quat&	operator-=(const	Quat&);

Remarks:
This	operator	is	the	same	as	the	/=	operator.

Prototype:
Quat&	operator+=(const	Quat&);

Remarks:
This	operator	is	the	same	as	the	*=	operator..

Prototype:
Quat&	operator*=(const	Quat&);

Remarks:
Multiplies	this	quaternion	by	a	quaternion.

Prototype:
Quat&	operator*=(float);

Remarks:
Multiplies	this	quaternion	by	a	floating	point	value.

Prototype:
Quat&	operator/=(float);

Remarks:
Divides	this	quaternion	by	a	floating	point	value.

Prototype:
int	operator==(const	Quat&	a)	const;

Remarks:
Returns	nonzero	if	the	quaternions	are	equal;	otherwise	0.

Prototype:
void	Identity()

Remarks:
Sets	this	quaternion	to	the	identity	quaternion	(x=y=z=0.0;	w=1.0).

Prototype:
int	IsIdentity()	const;

Remarks:
Returns	nonzero	if	the	quaternion	is	the	identity;	otherwise	0.

Prototype:
void	Normalize();

Remarks:
Normalizes	this	quaternion,	dividing	each	term	by	a	scale	factor	such	that	the
resulting	sum	or	the	squares	of	all	parts	equals	unity.

Prototype:
Quat&	MakeClosest(const	Quat&	qto);

Remarks:
Modifies	q	so	it	is	on	same	side	of	hypersphere	as	qto.

Prototype:
void	MakeMatrix(Matrix3	&mat,	bool	b=FALSE)	const;

Remarks:
Converts	the	quaternion	to	a	3x3	rotation	matrix.	The	quaternion	need	not	be
unit	magnitude.

Parameters:
Matrix3	&mat
The	matrix.
BOOL	b=FALSE
This	parameter	is	available	in	release	4.0	and	later	only.
When	this	argument	is	set	to	false	(or	omitted),	each	function	performs	as	it

did	before	version	4.0.	When	the	boolean	is	TRUE,	the	matrix	is	made	with	its
terms	transposed.	When	this	transposition	is	specified,	EulerToQuat()	and
QuatToEuler()	are	consistent	with	one	another.	(In	3ds	max	3,	they	have
opposite	handedness).

Prototype:
Quat	operator+(const	Quat&)	const;

Remarks:
This	operator	is	the	same	as	the	*	operator.

Prototype:
Quat	operator-(const	Quat&)	const;

Remarks:
This	operator	is	the	same	as	the	/	operator.

Prototype:
Quat	operator*(const	Quat&)	const;

Remarks:
Returns	the	product	of	two	quaternions.

Prototype:
Quat	operator/(const	Quat&)	const;

Remarks:
Returns	the	ratio	of	two	quaternions:	This	creates	a	result	quaternion	r	=	p/q,
such	that	q*r	=	p.	(Order	of	multiplication	is	important)

The	following	operators	and	functions	are	not	part	of	class	Quat	but	are
available	for	use.

Prototype:
Quat	operator*(float,	const	Quat&);

Remarks:
Multiplies	the	quaternion	by	a	scalar.

Prototype:
Quat	operator*(const	Quat&,	float);

Remarks:
Multiplies	the	quaternion	by	a	scalar.

Prototype:
Quat	operator/(const	Quat&,	float);

Remarks:
Divides	the	quaternion	by	a	scalar.

Prototype:
Quat	Inverse(const	Quat&	q);

Remarks:
Returns	the	inverse	of	the	quaternion	(1/q).

Prototype:
Quat	Conjugate(const	Quat&	q);

Remarks:
Returns	the	conjugate	of	a	quaternion.

Prototype:
Quat	LogN(const	Quat&	q);

Remarks:
Returns	the	natural	logarithm	of	UNIT	quaternion.

Prototype:
Quat	Exp(const	Quat&	q);

Remarks:
Exponentiate	quaternion	(where	q.w==0).

Prototype:
Quat	Slerp(const	Quat&	p,	const	Quat&	q,	float	t);

Remarks:
Spherical	linear	interpolation	of	UNIT	quaternions.
As	t	goes	from	0	to	1,	qt	goes	from	p	to	q.
slerp(p,q,t)	=	(p*sin((1-t)*omega)	+	q*sin(t*omega))	/	sin(omega)

Prototype:
Quat	LnDif(const	Quat&	p,	const	Quat&	q);

Remarks:
Computes	the	"log	difference"	of	two	quaternions,	p	and	q,	as
ln(qinv(p)*q).

Prototype:
Quat	QCompA(const	Quat&	qprev,const	Quat&	q,	const	Quat&
qnext);

Remarks:
Compute	a,	the	term	used	in	Boehm-type	interpolation.
a[n]	=	q[n]*	qexp(-(1/4)*(ln(qinv(q[n])*q[n+1])	+ln(
qinv(q[n])*q[n-1])))

Prototype:
Quat	Squad(const	Quat&	p,	const	Quat&	a,	const	Quat	&b,
	const	Quat&	q,	float	t);

Remarks:
Squad(p,a,b,q;	t)	=	Slerp(Slerp(p,q;t),	Slerp(a,b;t);	2(1-t)t).

Prototype:
Quat	qorthog(const	Quat&	p,	const	Point3&	axis);

Remarks:
Rotate	p	by	90	degrees	(quaternion	space	metric)	about	the	specified	axis.

Prototype:
Quat	squadrev(float	angle,const	Point3&	axis,const	Quat&	p,
	const	Quat&	a,const	Quat&	b,const	Quat&	q,float	t);

Remarks:
Quaternion	interpolation	for	angles	>	2PI.

Parameters:
float	angle
Angle	of	rotation
const	Point3&	axis
The	axis	of	rotation
const	Quat&	p
Start	quaternion
const	Quat&	a
Start	tangent	quaternion
const	Quat&	b
End	tangent	quaternion
const	Quat&	q
End	quaternion
float	t
Parameter,	in	range	[0.0,1.0]

Prototype:
void	RotateMatrix(Matrix3&	mat,	const	Quat&	q);

Remarks:
Converts	the	quaternion	to	a	matrix	and	multiples	it	by	the	specified	matrix.
The	result	is	returned	in	mat.

Prototype:
void	PreRotateMatrix(Matrix3&	mat,	const	Quat&	q);

Remarks:
Converts	the	quaternion	to	a	matrix	and	multiples	it	on	the	left	by	the	specified
matrix.	.	The	result	is	returned	in	mat.

Prototype:
Quat	QFromAngAxis(float	ang,	const	Point3&	axis);

Remarks:
Converts	the	[angle,axis]	representation	to	the	equivalent	quaternion.

Prototype:
void	AngAxisFromQ(const	Quat&	q,	float	*ang,	Point3&	axis);

Remarks:
Converts	the	quaternion	to	the	equivalent	[angle,axis]	representation.

Prototype:
float	QangAxis(const	Quat&	p,	const	Quat&	q,	Point3&	axis);

Remarks:
Compute	the	[angle,axis]	corresponding	to	the	rotation	from	p	to	q.	Returns
angle,	sets	axis.

Prototype:
void	DecomposeMatrix(const	Matrix3&	mat,	Point3&	p,
	Quat&	q,	Point3&	s);

Remarks:
Decomposes	a	matrix	into	a	rotation,	scale,	and	translation	(to	be	applied	in
that	order).	This	only	will	work	correctly	for	scaling	which	was	applied	in	the
rotated	axis	system.	For	more	general	decomposition	see	the	function
decomp_affine().	See	Structure	AffineParts.

Prototype:

Quat	TransformQuat(const	Matrix3	&m,	const	Quat&q);
Remarks:
Returns	the	transformation	of	the	specified	quaternion	by	the	specified	matrix.

Prototype:
inline	Quat	IdentQuat()

Remarks:
Returns	the	identity	quaternion	(Quat(0.0,0.0,0.0,1.0)).

Function:
void	QuatToEuler(Quat	&q,	float	*ang);

Remarks:
Converts	the	quaternion	to	Euler	angles.	When	converting	a	quaternion	to
Euler	angles	using	this	method,	the	correct	order	of	application	of	the	resulting
three	rotations	is	X,	then	Y,	then	Z.	The	angles	are	returned	as	ang[0]=x,
ang[1]=y,	ang[2]=z.

Function:
void	EulerToQuat(float	*ang,	Quat	&q,	int	order);

Remarks:
Converts	Euler	angles	to	a	quaternion.	The	angles	are	specified	as
ang[0]=x,	ang[1]=y,	ang[2]=z.	This	method	is	implemented	as:
void	EulerToQuat(float	*ang,	Quat	&q,	int	order)
{
	Matrix3	mat(1);
	for	(int	i=0;	i<3;	i++)	{
		switch	(orderings[order][i])	{
			case	0:	mat.RotateX(ang[i]);	break;
			case	1:	mat.RotateY(ang[i]);	break;
			case	2:	mat.RotateZ(ang[i]);	break;
			}
		}

	q	=	Quat(mat);
}

Prototype:
ostream	&operator<<(ostream&,	const	Quat&);

Remarks:
Output	on	an	ostream.

Class	Color
See	Also:	Class	AColor,	Structure	BMM_Color_24,	Structure	BMM_Color_32,
Structure	BMM_Color_48,	Structure	BMM_Color_64,	Structure
BMM_Color_fl,	Structure	RealPixel.
class	Color

Description:
This	class	represents	color	as	three	floating	point	values:	r,	g,	and	b.	All	methods
of	this	class	are	implemented	by	the	system.

Data	Members:
public:
float	r,g,b;
These	values	are	in	the	range	0.0	to	1.0.

Methods:

Prototype:
Color()

Remarks:
Constructor.	The	resulting	object	should	be	initialized	with	one	of	the
initialization	methods.

Prototype:
Color(float	R,	float	G,	float	B)

Remarks:
Constructor.	Initializes	the	Color	to	the	RGB	color	values	passed.

Parameters:
float	R
Specifies	the	red	component	of	the	color.
float	G
Specifies	the	green	component	of	the	color.
float	B
Specifies	the	blue	component	of	the	color.

Prototype:
Color(double	R,	double	G,	double	B)

Remarks:
Constructor.	Initializes	the	Color	to	the	RGB	color	values	passed.

Parameters:
double	R
Specifies	the	red	component	of	the	color.
double	G
Specifies	the	green	component	of	the	color.
double	B
Specifies	the	blue	component	of	the	color.

Prototype:
Color(int	R,	int	G,	int	B)

Remarks:
Constructor.	Initializes	the	Color	to	the	RGB	color	values	passed.

Parameters:
int	R
Specifies	the	red	component	of	the	color.
int	G
Specifies	the	green	component	of	the	color.
int	B
Specifies	the	blue	component	of	the	color.

Prototype:
Color(const	Color&	a)

Remarks:
Constructor.	Initializes	the	Color	to	the	Color	passed.

Parameters:
Color&	a
Specifies	the	initial	color.

Prototype:
Color(DWORD	rgb)

Remarks:
Constructor.	Initializes	the	color	to	the	Windows	RGB	value.

Parameters:
DWORD	rgb
Specifies	the	initial	color	via	a	Windows	RGB	value.

Prototype:
Color(Point3	p)

Remarks:
Constructor.	Initializes	the	Color	to	the	value	of	the	Point3	passed.

Parameters:
Point3	p
Specifies	the	color.	r=x,	g=y,	b=z.

Prototype:
Color(float	af[3])

Remarks:
Constructor.	Initializes	the	color	to	the	value	passed.

Parameters:
float	af[3]
Specifies	the	color.	r=af[0],	g=af[1],	b=af[2].

Prototype:
Color(const	BMM_Color_24&	c);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Constructor.	Initializes	this	Color	from	the	24	bit	color	value	passed.

Parameters:
const	BMM_Color_24&	c

The	24	bit	color	to	initialize	from.

Prototype:
Color(const	BMM_Color_32&	c);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Constructor.	Initializes	this	Color	from	the	32	bit	color	value	passed.

Parameters:
const	BMM_Color_32&	c
The	32	bit	color	to	initialize	from.

Prototype:
Color(const	BMM_Color_48&	c);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Constructor.	Initializes	this	Color	from	the	48	bit	color	value	passed.

Parameters:
const	BMM_Color_48&	c
The	48	bit	color	to	initialize	from.

Prototype:
Color(const	BMM_Color_64&	c);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Constructor.	Initializes	this	Color	from	the	64	bit	color	value	passed.

Parameters:
const	BMM_Color_64&	c
The	64	bit	color	to	initialize	from.

Prototype:
Color(const	BMM_Color_fl&	c);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Constructor.	Initializes	this	Color	from	the	floating	point	color	passed.

Parameters:
const	BMM_Color_fl&	c
The	floating	point	color	to	initialize	from.	No	conversion	or	scaling	is	done.

Prototype:
Color(RealPixel	rp);

Remarks:
Constructor.	Initializes	the	color	to	the	RealPixel	structure	passed.

Parameters:
RealPixel	rp
Specifies	the	RealPixel	format	to	convert.

Prototype:
void	Black()

Remarks:
Sets	the	Color	to	black.	r	=	g	=	b	=	0.0f

Prototype:
void	White()

Remarks:
Sets	the	Color	to	white.	r	=	g	=	b	=	1.0f

Prototype:
void	ClampMax()

Remarks:
Makes	all	the	components	of	the	Color	<=	1.0

Prototype:

void	ClampMin()
Remarks:
Makes	all	the	components	of	the	Color	>=	0.0

Prototype:
void	ClampMinMax()

Remarks:
Makes	all	the	components	fall	in	the	range	[0,1]

Prototype:
int	MaxComponent(const	Color&)

Remarks:
Returns	the	index	of	the	component	with	the	maximum	absolute	value.

Parameters:
const	Color&
The	color	to	check.

Return	Value:
The	index	of	the	component	with	the	maximum	absolute	value.	r=0,	g=1,	b=2.

Prototype:
int	MinComponent(const	Color&)

Remarks:
Returns	the	index	of	the	component	with	the	minimum	absolute	value

Parameters:
const	Color&
The	color	to	check.

Return	Value:
The	index	of	the	component	with	the	minimum	absolute	value.	r=0,	g=1,	b=2.

Prototype:
float	MaxVal(const	Color&)

Remarks:
Returns	the	value	of	the	component	with	the	maximum	absolute	value.

Parameters:
const	Color&
The	color	to	check.

Return	Value:
The	value	of	the	component	with	the	maximum	absolute	value.

Prototype:
float	MinVal(const	Color&)

Remarks:
The	value	of	the	component	with	the	minimum	absolute	value.

Parameters:
const	Color&
The	color	to	check.

Return	Value:

Prototype:
inline	float	Length(const	Color&	v)

Remarks:
Returns	the	'length'	of	the	color,	i.e.
	return	(float)sqrt(v.r*v.r+v.g*v.g+v.b*v.b);

Parameters:
const	Color&	v
The	color	to	return	the	length	of.

Return	Value:
The	length	of	the	color.

Operators:

Prototype:
float&	operator[](int	i)

Remarks:
Access	operator.

Parameters:
int	i
The	index	of	the	component	to	return.

Return	Value:
0=r,	1=g,	2=b.

Prototype:
const	float&	operator[](int	i)	const

Remarks:
Access	operator.

Parameters:
int	i
The	index	of	the	component	to	return.

Return	Value:
0=r,	1=g,	2=b.

Prototype:
operator	float*()

Remarks:
Returns	a	pointer	to	the	red	component	of	the	color.	This	may	be	used	to	treat
the	Color	as	an	array	of	three	floats.

Prototype:
operator	DWORD()

Remarks:
Convert	the	Color	to	a	Windows	RGB	color.	See	COLORREF.

Prototype:
operator	Point3()

Remarks:

Convert	the	Color	to	a	Point3.	x=r,	y=g,	z=b.

Prototype:
operator	RealPixel()

Remarks:
Convert	the	Color	to	the	RealPixel	format.

Prototype:
operator	BMM_Color_24();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Converts	this	Color	to	the	BMM_Color_24	format.

	

Prototype:
operator	BMM_Color_32();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Converts	this	Color	to	the	BMM_Color_32	format.

Prototype:
operator	BMM_Color_48();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Converts	this	Color	to	the	BMM_Color_48	format.

Prototype:
operator	BMM_Color_64();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Converts	this	Color	to	the	BMM_Color_64	format.

Prototype:
operator	BMM_Color_fl();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Converts	this	Color	to	the	BMM_Color_fl	format.

Prototype:
Color	operator-()	const

Remarks:
Unary	-	operator.

Return	Value:
The	Color	with	the	components	negated,	i.e.
{	return(Color(-r,-g,-b));	}

Prototype:
Color	operator+()	const

Remarks:
Unary	+	operator.

Return	Value:
The	Color	itself.

Assignment	operators.

Prototype:
inline	Color&	operator-=(const	Color&);

Remarks:
Subtracts	a	Color	from	this	Color.

Return	Value:
A	Color	that	is	the	difference	between	two	Colors.

Prototype:
inline	Color&	operator+=(const	Color&);

Remarks:
Adds	a	Color	to	this	Color.

Return	Value:
A	Color	that	is	the	sum	of	two	Colors.

Prototype:
inline	Color&	operator*=(float);

Remarks:
Multiplies	the	components	of	this	Color	by	a	float.

Return	Value:
A	Color	multiplied	by	a	float.

Prototype:
inline	Color&	operator/=(float);

Remarks:
Divides	the	components	of	a	Color	by	a	float.

Return	Value:
A	Color	divided	by	a	float.

Prototype:
inline	Color&	operator*=(const	Color&);

Remarks:
Performs	element-by-element	multiplying	between	two	Colors.

Return	Value:
A	Color	element-by-element	multiplied	by	another	Color.

Prototype:
int	operator==(const	Color&	p)	const

Remarks:
Test	for	equality	between	two	Colors.

Return	Value:
Nonzero	if	the	Colors	are	equal;	otherwise	0.

Prototype:
int	operator!=(const	Color&	p)	const

Remarks:
Tests	for	inequality	between	two	Colors.

Return	Value:
Nonzero	if	the	Colors	are	not	equal;	otherwise	0.

Prototype:
inline	Color	operator-(const	Color&)	const;

Remarks:
Subtracts	a	Color	from	a	Color.

Return	Value:
A	Color	that	is	the	difference	between	two	Colors.

Prototype:
inline	Color	operator+(const	Color&)	const;

Remarks:
Adds	a	Color	to	a	Color.

Return	Value:
A	Color	that	is	the	difference	between	two	Colors.

Prototype:
inline	Color	operator/(const	Color&)	const;

Remarks:
Divides	a	Color	by	a	Color.

Return	Value:
A	Color	divided	by	a	Color.	r/r,	g/g,	b/b.

Prototype:
inline	Color	operator*(const	Color&)	const;

Remarks:
Multiplies	a	Color	by	a	Color.

Return	Value:
A	Color	multiplied	by	a	Color.	r*r,	g*g,	b*b.

Class	WSModifier
See	Also:	Class	Modifier,	SimpleWSMMod.
class	WSModifier	:	public	Modifier

Description:
This	is	a	base	class	for	creating	world	space	modifiers.	It	simply	provides	a
default	implementation	of	SuperClassID().
World	Space	Modifier	plug-ins	use	a	Super	Class	ID	of	WSM_CLASS_ID.

Methods:

Prototype:
SClass_ID	SuperClassID();

Remarks:
Implemented	by	the	System.
Returns	the	Super	Class	ID	of	this	plug-in	type:	WSM_CLASS_ID.

Class	IKeyControl
See	Also:	Class	Animatable,	Class	IKey,	Class	Control,	List	of	SuperClass	IDs,
Keyframe	and	Procedural	Controller	Data	Access.
class	IKeyControl

Description:
This	is	an	interface	into	the	TCB,	Linear,	and	Bezier	keyframe	controllers.	It
allows	a	developer	to	add,	delete,	retrieve	and	store	the	keys	of	the	controller.
This	is	for	controllers	that	have	made	their	keys	accessible	using	this	interface.
3ds	max	has	done	this	for	its	keyframe	controllers.	It	is	up	to	other	third	party
developers	to	decide	if	they	wish	to	make	their	keys	available	through	this
interface	as	well.	See	below	for	more	details.
It	is	up	to	the	developer	to	make	sure	that	the	IKey*	points	to	a	key	of	the
appropriate	derived	class	based	on	the	ClassID()	of	the	controller.	For	the
details	of	using	these	APIs	see	the	Advanced	Topics	section	Keyframe	and
Procedural	Cotroller	Data	Access.
All	methods	of	this	class	are	implemented	by	the	system.
To	get	a	pointer	to	this	interface	given	a	pointer	to	a	controller,	use	the	following
macro	(defined	in	ANIMTBL.H).	Using	this	macro,	given	any	Animatable,	it
is	easy	to	ask	for	the	control	interface.
#define	GetKeyControlInterface(anim)
((IKeyControl*)anim->GetInterface(I_KEYCONTROL))

A	plug-in	developer	may	use	this	macro	as	follows:
IKeyControl	*ikc	=	GetKeyControlInterface(anim);

This	return	value	will	either	be	NULL	or	a	pointer	to	a	valid	controller	interface.
Here	is	an	example	of	getting	the	controller	interface	from	a	node	in	the	scene.
First	get	the	position	controller	from	the	node	(see	Class	INode)	and	then	get	the
controller	interface.

	Control	*c;
	c	=	node->GetTMController()->GetPositionController();
	IKeyControl	*ikeys	=	GetKeyControlInterface(c);

With	this	controller	interface	you	can	use	its	methods	to	get	information	about
the	keys.

	int	num	=	ikeys->GetNumKeys();
Developers	should	note	that	the	values	that	are	retrieved	from	this	class	may
differ	from	the	values	that	appear	in	Key	Info	in	the	3ds	max	user	interface.	For
instance,	the	Intan	and	Outtan	values	are	multiplied	by	the	global	function
GetFrameRate()	when	displayed.	Additionally,	the	sign	of	angles	(+	or	-)	may
be	reversed	from	the	what	is	found	in	the	UI.	For	example,	the	following	shows
the	values	shown	in	Key	Info	versus	the	values	retrieved	from	GetKey():

Motion	branch	Key	Info:
Key#1
X:	-1.0
Y:	0.0
Z:	0.0
Ang:	0.0
	
Key#2
X:	0.0
Y:	1.0
Z:	0.0
Ang:	90.0
	
Key#3
X:	0.0
Y:	0.0
Z:	1.0
Ang:	90.0

	
ITCBRotKey	key;
ikc->GetKey(i,	&key);
	
Key#1
X:	1.0
Y:	0.0
Z:	0.0
Ang:	0.0
	

Key#2
X:	0.0
Y:	-1.0
Z:	0.0
Ang:	1.57
	
Key#3
X:	0.0
Y:	0.0
Z:	-1.0
Ang:	1.57

Sample	code	in	the	SDK	that	makes	use	of	this	interface	is	the	3D	Studio	Export
plug-in.	See	\MAXSDK\SAMPLES\IMPEXP\3DSEXP.CPP.

The	following	classes	are	available	for	keyframe	data	storage:
Tension/Continuity/Bias:

Class	ITCBKey
Class	ITCBFloatKey
Class	ITCBPoint3Key,
Class	ITCBRotKey
Class	ITCBScaleKey

Bezier:
Class	IBezFloatKey
Class	IBezPoint3Key
Class	IBezQuatKey
Class	IBezScaleKey

Linear:
Class	ILinFloatKey
Class	ILinPoint3Key
Class	ILinRotKey
Class	ILinScaleKey

Note:	Developers	creating	controller	plug-ins	may	wish	to	make	their	keys
accessible	to	others	through	this	interface.	The	way	3ds	max	does	this	is	by
deriving	the	controllers	from	this	class	(IKeyControl)	in	addition	to	class
Control.	So,	multiple	inheritance	is	used,	and	3ds	max	then	implements	the
methods	of	this	class	to	provide	the	interface.
Below	is	the	code	from	3ds	max	implementation	of
Animatable::GetInterface()	(as	part	of	a	template).	Note	the	cast	of	the	this
pointer	to	IKeyControl.

INTERP_CONT_TEMPLATE
void*
InterpControl<INTERP_CONT_PARAMS>::GetInterface(ULONG
id)
	{
	if	(id==I_KEYCONTROL)	{
		return	(IKeyControl*)this;
	}	else	{
		return	Control::GetInterface(id);
		}
	}

Methods:

Prototype:
virtual	int	GetNumKeys()=0;

Remarks:
Returns	the	total	number	of	keys.

Prototype:
virtual	void	SetNumKeys(int	n)=0;

Remarks:
Sets	the	number	of	keys	allocated.	This	may	add	blank	keys	or	delete	existing
keys.	It	is	more	efficient	to	set	a	large	number	of	keys	using	this	method	and
then	calling	SetKey()	to	store	the	values	rather	than	calling	AppendKey()
over	and	over	for	each	key.

Parameters:
int	n
The	new	number	of	keys.

Prototype:
virtual	void	GetKey(int	i,IKey	*key)=0;

Remarks:
Retrieves	the	'i-th'	key	and	stores	the	result	in	key.

Parameters:
int	i
The	index	of	the	key	to	retrieve.
IKey	*key
Storage	for	the	key	data.

Prototype:
virtual	void	SetKey(int	i,IKey	*key)=0;

Remarks:
Sets	the	'i-th'	key.	The	'i-th'	key	must	exist.

Parameters:
int	i
The	index	of	the	key	to	set.
IKey	*key
Pointer	to	the	key	data.

Prototype:
virtual	int	AppendKey(IKey	*key)=0;

Remarks:

This	method	will	append	a	new	key	onto	the	end	of	the	key	list.	Note	that	the
key	list	will	ultimately	be	sorted	by	time.

Parameters:
IKey	*key
Pointer	to	the	key	data	to	append.

Return	Value:
The	key's	index.

Prototype:
virtual	void	SortKeys()=0;

Remarks:
This	method	should	be	called	if	any	changes	are	made	that	would	require	the
keys	to	be	sorted.	The	keys	are	stored	in	order	by	TimeValue.

Prototype:
virtual	DWORD	&GetTrackFlags()=0;

Remarks:
Retrieves	the	track	flags.

Return	Value:
One	or	more	of	the	following	values:
TFLAG_CURVESEL
Determines	if	the	curve	is	selected	in	the	track	view	in	the	function	curve
editor.
TFLAG_RANGE_UNLOCKED
Determines	if	the	range	is	locked	to	the	first	key	and	the	last	key.	If	a	user
goes	into	Position	Ranges	mode	and	moves	the	range	bar,	the	range
becomes	unlocked.
TFLAG_LOOPEDIN
This	is	set	if	the	in	out	of	range	type	is	set	to	loop.
TFLAG_LOOPEDOUT
This	is	set	if	the	out	of	range	type	is	set	to	loop.
TFLAG_COLOR
Set	for	Bezier	Point3	controllers	that	are	color	controllers.

TFLAG_HSV
Set	for	color	controls	that	interpolate	in	HSV	rather	than	RGB.

Class	Object
See	Also:	Class	BaseObject,	Class	Deformer,	Class	Interval,	Class
GraphicsWindow,	Template	Class	Tab,	Geometry	Pipeline	System.
class	Object:	public	BaseObject	,	public	IXTCAccess

Description:
The	object	class	is	the	base	class	for	all	objects.	An	object	is	one	of	two	things:
A	procedural	object	or	a	derived	object.	Derived	objects	are	part	of	the	system
and	may	not	be	created	by	plug-ins.	They	are	containers	for	modifiers.
Procedural	objects	can	be	many	different	things	such	as	cameras,	lights,	helper
objects,	geometric	objects,	etc.	Methods	of	this	class	are	responsible	for	things
such	as	allowing	the	object	to	be	deformed	(changing	its	points),	retrieving	a
deformed	bounding	box,	converting	the	object	between	different	types	(to	a
mesh	or	patch	for	example),	texture	mapping	the	object	(if	appropriate)	and
interacting	with	the	system	regarding	mapping.	There	are	other	methods
involved	in	validity	intervals	for	the	object	and	its	channels,	and	a	method	used
to	return	the	sub-object	selection	state	of	the	object.

Method	Groups:
The	hyperlinks	below	jump	to	the	start	of	groups	of	related	methods	within	the
class:
Deformable	Object	Methods
NURBS	Weight	Related	Methods
Type	Conversion	Methods
Face	and	Vertex	Count	Calculations
Collapse	Methods
Mapping	Methods
Bounding	Box	Method
Object	Name,	Properties,	Display,	and	IntersectRay	Methods
Validity	Interval	Method
Modifier	Stack	Branching
Particle	System	Methods
Parametric	Surface	Access
Shapes	Within	Objects
Object	Integrity	Checking
Sub-Object	Selection

Data	Flow	Evaluation
Extension	Channel	Access
Viewport	Rectangle	Enlargement

Methods:

Deformable	Object	Methods

Prototype:
virtual	int	IsDeformable()

Remarks:
Implemented	by	the	Plug-In.
Indicates	whether	this	object	is	deformable.	A	deformable	object	is	simply	an
object	with	points	that	can	be	modified.	Deformable	objects	must	implement
the	generic	deformable	object	methods	(NumPoints(),	GetPoint(i),
SetPoint(i),	Deform()).
A	deformable	object	is	simply	an	object	with	points	that	can	be	modified.
These	points	can	be	stored	in	any	form	the	object	wants.	They	are	accessed
through	a	virtual	array	interface	with	methods	to	get	and	set	the	'i-th'	point.	If
an	object	has	tangents	for	instance,	it	would	convert	them	to	and	from	points
as	necessary.	For	example,	a	simple	Bezier	spline	object	that	stored	its	control
handles	relative	to	the	knot	would	convert	them	to	be	absolute	when
GetPoint()	was	called	with	'i'	specifying	one	of	the	control	points.	When	the
control	point	is	later	set,	the	object	can	convert	it	back	to	be	relative	to	its
knot.	At	this	point	it	could	also	apply	any	constraints	that	it	may	have,	such	as
maintaining	a	degree	of	continuity.	The	idea	is	that	the	entity	calling
GetPoint(i)	and	SetPoint(i)	doesn't	care	what	the	point	represents.	It	will
simply	apply	some	function	to	the	point.

Return	Value:
Return	nonzero	if	the	object	is	deformable	and	implements	the	generic
deformable	object	methods;	otherwise	0.

Default	Implementation:
{	return	0;	}

Deformable	object	methods.	These	only	need	to	be	implemented	if	the	object

returns	TRUE	from	the	IsDeformable()	method.

Prototype:
virtual	int	NumPoints()

Remarks:
Implemented	by	the	Plug-In.
The	points	of	a	deformable	object	are	accessed	through	a	virtual	array
interface.	This	method	specifies	the	number	of	points	in	the	object.	The
meaning	of	'points'	is	defined	by	the	object.	A	TriObject	uses	the	vertices	as
the	points	for	example.

Default	Implementation:
{	return	0;}

Return	Value:
The	number	of	points	in	the	object.

Prototype:
virtual	Point3	GetPoint(int	i)

Remarks:
Implemented	by	the	Plug-In.
The	points	of	a	deformable	object	are	accessed	through	a	virtual	array
interface.	This	method	returns	the	'i-th'	point	of	the	object.
Note:	If	your	plug-in	is	a	modifier	and	you	want	to	operate	on	the	selected
points	of	the	object	you	are	modifying,	you	can't	tell	which	points	are	selected
unless	you	know	the	type	of	object.	If	it	is	a	generic	deformable	object	there	is
no	way	of	knowing	since	the	way	the	object	handles	selection	is	up	to	it.
Therefore,	if	you	want	to	operate	on	selected	points	of	a	generic	deformable
object,	use	a	Deformer.

Parameters:
int	i
Specifies	which	point	should	be	returned.

Default	Implementation:
{	return	Point3(0,0,0);	}

Return	Value:

The	'i-th'	point	of	the	object.

Prototype:
virtual	void	SetPoint(int	i,	const	Point3&	p)

Remarks:
Implemented	by	the	Plug-In.
The	points	of	a	deformable	object	are	accessed	through	a	virtual	array
interface.	This	method	stores	the	'i-th'	point	of	the	object.

Parameters:
int	i
The	index	of	the	point	to	store.
const	Point3&	p
The	point	to	store.

Prototype:
virtual	BOOL	IsPointSelected(int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	'i-th'	point	is	selected;	otherwise	FALSE.

Parameters:
int	i
The	zero	based	index	of	the	point	to	check.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	float	PointSelection(int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	floating	point	weighted	point	selection	if	the	object	supports	it.	The
default	implementation	just	returns	1.0f	if	selected	and	0.0f	if	not.

Parameters:
int	i
The	zero	based	index	of	the	point	to	check.

Default	Implementation:
{	return	IsPointSelected(i)	?	1.0f	:	0.0f;	}

Prototype:
virtual	void	PointsWereChanged();

Remarks:
Implemented	by	the	Plug-In.
Informs	the	object	that	its	points	have	been	deformed,	so	it	can	invalidate	its
cache.	A	developer	who	uses	the	GetPoint()	/	SetPoint()	approach	to
modifying	an	object	will	call	PointsWereChanged()	to	invalidate	the
object's	cache.	For	example,	if	a	modifier	calls	SetPoint(),	when	it	is	finished
it	should	call	this	method	so	the	object	can	invalidate	and/or	update	its
bounding	box	and	any	other	data	it	might	cache.

Prototype:
virtual	void	Deform(Deformer	*defProc,	int	useSel=0);

Remarks:
Implemented	by	the	Plug-In.
This	is	the	method	used	to	deform	the	object	with	a	deformer.	The	developer
should	loop	through	the	object's	points	calling	the	defProc	for	each	point	(or
each	selected	point	if	useSel	is	nonzero).
The	Deform()	method	is	mostly	a	convenience.	Modifiers	can	implement	a
'Deformer'	callback	object	which	is	passed	to	the	Deform()	method.	The
object	then	iterates	through	its	points	calling	their	deformer's	callback	for	each
point.	The	only	difference	between	using	the	Deform()	method	as	opposed	to
iterating	through	the	points	is	that	the	Deform()	method	should	respect	sub-
object	selection.	For	example,	the	TriObject's	implementation	of	Deform()
iterates	through	its	vertices,	if	the	TriObject's	selection	level	is	set	to	vertex
then	it	only	calls	the	Deformer's	callback	for	vertices	that	are	selected.	This
way	modifiers	can	be	written	that	can	be	applied	only	to	selection	sets	without

any	specific	code	to	check	selected	points.	The	default	implementation	of	this
method	just	iterates	through	all	points	using	GetPoint(i)	and	SetPoint(i).	If
an	object	supports	sub-object	selection	sets	then	it	should	override	this
method.

Parameters:
Deformer	*defProc
A	pointer	to	an	instance	of	the	Deformer	class.	This	is	the	callback	object	that
actually	performs	the	deformation.
int	useSel=0
A	flag	to	indicate	if	the	object	should	use	the	selected	points	only.	If	nonzero
the	selected	points	are	used;	otherwise	all	the	points	of	the	object	are	used.

Default	Implementation:
void	Object::Deform(Deformer	*defProc,int	useSel)	{
	int	nv	=	NumPoints();	
	for	(int	i=0;	i<nv;	i++)
		SetPoint(i,defProc->Map(i,GetPoint(i)));
	PointsWereChanged();
	}

Sample	Code:
This	code	shows	the	TriObject	implementation	of	this	method.	Note	how	it
looks	at	the	useSel	parameter	to	only	call	the	selected	points	if	required.
void	TriObject::Deform(Deformer	*defProc,int	useSel)	{
	int	nv	=	NumPoints();
	int	i;
	if	(useSel)	{
		BitArray	sel	=	mesh.VertexTempSel();
		float	*vssel	=	mesh.getVSelectionWeights	();
		if	(vssel)	{
			for	(i=0;	i<nv;	i++)	{
				if(sel[i])	{
					SetPoint(i,defProc->Map(i,GetPoint(i)));
					continue;
				}
				if	(vssel[i]==0)	continue;

				Point3	&	A	=	GetPoint(i);
				Point3	dir	=	defProc->Map(i,A)	-	A;
				SetPoint(i,A+vssel[i]*dir);
			}
		}	else	{
			for	(i=0;	i<nv;	i++)	if	(sel[i])	SetPoint(i,defProc-
>Map(i,GetPoint(i)));
		}
	}	else	{
		for	(i=0;	i<nv;	i++)
			SetPoint(i,defProc->Map(i,GetPoint(i)));
	}
	PointsWereChanged();
}

NURBS	Relational	Weights
Prototype:
virtual	BOOL	HasWeights();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	the	object	has	weights	for	its	points	that	can	be	set;
otherwise	FALSE.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	double	GetWeight(int	i);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	weight	of	the	specified	point	of	the	object.

Parameters:
int	i

The	point	to	return	the	weight	of.
Default	Implementation:
{	return	1.0;	}

Prototype:
virtual	void	SetWeight(int	i,	const	double	w);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	weight	of	the	specified	point.

Parameters:
int	i
The	point	whose	weight	to	set.
const	double	w
The	value	to	set.

Default	Implementation:
{}

Bounding	Box	Method

Prototype:
virtual	void	GetDeformBBox(TimeValue	t,	Box3&	box,	Matrix3
*tm=NULL,	BOOL	useSel=FALSE);

Remarks:
Implemented	by	the	Plug-In.
This	method	computes	the	bounding	box	in	the	objects	local	coordinates	or	the
optional	space	defined	by	tm.
Note:	If	you	are	looking	for	a	precise	bounding	box,	use	this	method	and	pass
in	the	node's	object	TM	(INode::GetObjectTM())	as	the	matrix.

Parameters:
TimeValue	t
The	time	to	compute	the	box.
Box3&	box

A	reference	to	a	box	the	result	is	stored	in.
Matrix3	*tm=NULL
This	is	an	alternate	coordinate	system	used	to	compute	the	box.	If	the	tm	is
not	NULL	this	matrix	should	be	used	in	the	computation	of	the	result.
BOOL	useSel=FALSE
If	TRUE,	the	bounding	box	of	selected	sub-elements	should	be	computed;
otherwise	the	entire	object	should	be	used.

Type	Conversion	Methods

Prototype:
virtual	int	CanConvertToType(Class_ID	obtype)

Remarks:
Implemented	by	the	Plug-In.
Indicates	whether	the	object	can	be	converted	to	the	specified	type.	If	the
object	returns	nonzero	to	indicate	it	can	be	converted	to	the	specified	type,	it
must	handle	converting	to	and	returning	an	object	of	that	type	from
ConvertToType().
Also	see	Class	ObjectConverter	for	additional	details	on	converting	objects
between	types.

Parameters:
Class_ID	obtype
The	Class_ID	of	the	type	of	object	to	convert	to.	See	Class	Class_ID,	List	of
Class_IDs.

Return	Value:
Nonzero	if	the	object	can	be	converted	to	the	specified	type;	otherwise	0.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	Object*	ConvertToType(TimeValue	t,	Class_ID	obtype)

Remarks:
Implemented	by	the	Plug-In.

This	method	converts	this	object	to	the	type	specified	and	returns	a	pointer	it.
Note	that	if	ConvertToType()	returns	a	new	object	it	should	be	a	completely
different	object	with	no	ties	(pointers	or	references)	to	the	original.
Also	see	Class	ObjectConverter	for	additional	details	on	converting	objects
between	types.
The	following	is	an	issue	that	developers	of	world	space	modifiers	need	to	be
aware	of	if	the	world	space	modifier	specifies	anything	but	generic
deformable	objects	as	its	input	type.	In	other	words,	if	a	world	space	modifier,
in	its	implementation	of	Modifier::InputType(),	doesn't	specifically	return
defObjectClassID	then	the	following	issue	regarding	the	3ds	max	pipeline
needs	to	be	considered.	Developers	of	other	plug-ins	that	don't	meet	this
condition	don't	need	to	be	concerned	with	this	issue.
World	space	modifiers	that	work	on	anything	other	than	generic	deformable
objects	are	responsible	for	transforming	the	points	of	the	object	they	modify
into	world	space	using	the	ObjectState	TM.	To	understand	why	this	is
necessary,	consider	how	3ds	max	applies	the	node	transformation	to	the
object	flowing	down	the	pipeline.
In	the	geometry	pipeline	architecture,	the	node	in	the	scene	has	its
transformation	applied	to	the	object	in	the	pipeline	at	the	transition	between
the	last	object	space	modifier	and	the	first	world	space	modifier.	The	node
transformation	is	what	places	the	object	in	the	scene	--	thus	this	is	what	puts
the	object	in	world	space.	The	system	does	this	by	transforming	the	points	of
the	object	in	the	pipeline	by	the	node	transformation.	This	is	only	possible
however	for	deformable	objects.	Deformable	objects	are	those	that	support
the	Object::IsDeformable(),	NumPoints(),	GetPoint()	and	SetPoint()
methods.	These	deformable	objects	can	be	deformed	by	the	system	using
these	methods,	and	thus	the	system	can	modify	the	points	to	put	them	in
world	space	itself.
If	a	world	space	modifier	does	not	specify	that	it	works	on	deformable
objects,	the	system	is	unable	to	transform	the	points	of	the	object	into	world
space.	What	it	does	instead	is	apply	the	transformation	to	the	ObjectState	TM.
In	this	case,	a	world	space	modifier	is	responsible	for	transforming	the	points
of	the	object	into	world	space	itself,	and	then	setting	the	ObjectState	TM	to
the	identity.	There	is	an	example	of	this	in	the	sample	code	for	the	Bomb
space	warp.	The	Bomb	operates	on	TriObjects	and	implements
InputType()	as	{	return	Class_ID(TRIOBJ_CLASS_ID,0);	}.	Since

it	doesn't	specifically	return	defObjectClassID,	it	is	thus	responsible	for
transforming	the	points	of	the	object	into	world	space	itself.	It	does	this	in	its
implementation	of	ModifyObject()	as	follows:
		if	(os->GetTM())	{
			Matrix3	tm	=	*(os->GetTM());
			for	(int	i=0;	i<triOb->mesh.getNumVerts();	i++)	{
				triOb->mesh.verts[i]	=	triOb->mesh.verts[i]	*	tm;
				}			
			os->obj->UpdateValidity(GEOM_CHAN_NUM,os->tmValid());
			os->SetTM(NULL,FOREVER);
		}
As	the	code	above	shows,	the	Bomb	checks	if	the	ObjectState	TM	is	non-
NULL.	If	it	is,	the	points	of	the	object	are	still	not	in	world	space	and	thus
must	be	transformed.	It	does	this	by	looping	through	the	points	of	the
TriObject	and	multiplying	each	point	by	the	ObjectState	TM.	When	it	is
done,	it	sets	the	ObjectState	TM	to	NULL	to	indicate	the	points	are	now	in
world	space.	This	ensure	that	any	later	WSMs	will	not	transform	the	points
with	this	matrix	again.
For	the	Bomb	world	space	modifier	this	is	not	a	problem	since	it	specifies	in
its	implementation	of	ChannelsChanged()	that	it	will	operate	on	the
geometry	channel	(PART_GEOM).	Certain	world	space	modifiers	may	not
normally	specify	PART_GEOM	in	their	implementation	of
ChannelsChanged().	Consider	the	camera	mapping	world	space	modifier.
Its	function	is	to	apply	mapping	coordinates	to	the	object	it	is	applied	to.	Thus
it	would	normally	only	specify	PART_TEXMAP	for
ChannelsChanged().	However,	since	it	operates	directly	on	TriObjects,
just	like	the	Bomb,	the	system	cannot	transform	the	points	into	world	space,
and	therefore	the	camera	mapping	modifier	must	do	so	in	its	implementation
of	ModifyObject().	But	since	it	is	actually	altering	the	points	of	the	object
by	putting	them	into	world	space	it	is	altering	the	geometry	channel.
Therefore,	it	should	really	specify	PART_GEOM	|	PART_TEXMAP	in
its	implementation	of	ChannelsChanged().	If	it	didn't	do	this,	but	went
ahead	and	modified	the	points	of	the	object	anyway,	it	would	be	transforming
not	copies	of	the	points,	but	the	original	points	stored	back	in	an	earlier	cache
or	even	the	base	object.

This	is	the	issue	developers	need	to	be	aware	of.	To	state	this	in	simple	terms
then:	Any	world	space	modifier	that	needs	to	put	the	points	of	the	object	into
world	space	(since	it	doesn't	implement	InputType()	as
defObjectClassID)	needs	to	specify	PART_GEOM	in	its	implementation
of	ChannelsChanged().

Parameters:
TimeValue	t
The	time	at	which	to	convert.
Class_ID	obtype
The	Class_ID	of	the	type	of	object	to	convert	to.	See	Class	Class_ID,	List	of
Class_IDs.

Return	Value:
A	pointer	to	an	object	of	type	obtype.

Default	Implementation:
{	return	NULL;	}

Sample	Code:
The	following	code	shows	how	a	TriObject	can	be	retrieved	from	a	node.
Note	on	the	code	that	if	you	call	ConvertToType()	on	an	object	and	it
returns	a	pointer	other	than	itself,	you	are	responsible	for	deleting	that	object.
//	Retrieve	the	TriObject	from	the	node
int	deleteIt;
TriObject	*triObject	=	GetTriObjectFromNode(ip->GetSelNode(0),

deleteIt);
//	Use	the	TriObject	if	available
if	(!triObject)	return;
//	...
//	Delete	it	when	done...
if	(deleteIt)	triObject->DeleteMe();

	
//	Return	a	pointer	to	a	TriObject	given	an	INode	or	return	NULL
//	if	the	node	cannot	be	converted	to	a	TriObject
TriObject	*Utility::GetTriObjectFromNode(INode	*node,	int
&deleteIt)	{
	deleteIt	=	FALSE;

	Object	*obj	=	node->EvalWorldState(0).obj;
	if	(obj->CanConvertToType(Class_ID(TRIOBJ_CLASS_ID,	0)))	{
		TriObject	*tri	=	(TriObject	*)	obj->ConvertToType(0,
			Class_ID(TRIOBJ_CLASS_ID,	0));
		//	Note	that	the	TriObject	should	only	be	deleted
		//	if	the	pointer	to	it	is	not	equal	to	the	object
		//	pointer	that	called	ConvertToType()
		if	(obj	!=	tri)	deleteIt	=	TRUE;
		return	tri;
	}
	else	{
		return	NULL;
	}
}

Face	and	Vertex	Count	Calculations
Prototype:
virtual	BOOL	PolygonCount(TimeValue	t,	int&	numFaces,	int&
numVerts);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Retreives	the	number	of	faces	and	vertices	of	the	polyginal	mesh
representation	of	this	object.	If	this	method	returns	FALSE	then	this
functionality	is	not	supported.
Note:	Plug-In	developers	should	use	the	global	function
GetPolygonCount(Object*,	int&,	int&)	to	retrieve	the	number	f	vertices
and	faces	in	an	arbitrary	object.

Parameters:
TimeValue	t
The	time	at	which	to	compute	the	number	of	faces	and	vertices.
int&	numFaces
The	number	of	faces	is	returned	here.
int&	numVerts
The	number	of	vertices	is	returned	here.

Return	Value:
TRUE	if	the	method	is	fully	implemented;	otherwise	FALSE.

Default	Implementation:
{	return	FALSE;	}

Collapse	Stack	Methods
Prototype:
virtual	Class_ID	PreferredCollapseType();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	allows	objects	to	specify	the	class	that	is	the	best	class	to	convert
to	when	the	user	collapses	the	stack.	The	main	base	classes	have	default
implementations.	For	example,	GeomObject	specifies	TriObjects	as	its
preferred	collapse	type	and	shapes	specify	splines	as	their	preferred	collapse
type

Default	Implementation:
{return	Class_ID(0,0);}

Return	Value:
The	Class_ID	of	the	preferred	object	type.	See	List	of	Class_IDs.

Prototype:
virtual	void	GetCollapseTypes(Tab<Class_ID>
&clist,Tab<TSTR*>	&nlist);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
When	the	user	clicks	on	the	Edit	Stack	button	in	the	modify	branch	a	list	of
'Convert	To:'	types	is	presented.	The	use	may	click	on	one	of	these	choices	to
collapse	the	object	into	one	of	these	types	(for	instance,	an	Editable	Mesh	or
an	Editable	NURBS	object).	This	method	returns	a	list	of	Class_IDs	and
descriptive	strings	that	specify	the	allowable	types	of	objects	that	this	object
may	be	collapsed	into.
Note:	Most	plug-ins	call	the	base	class	method	in	Object	in	their
implementation	of	this	method.	The	base	class	implementation	provided	by

Object	checks	if	the	object	can	convert	to	both	an	editable	mesh	and	an
editable	spline.	If	it	can,	these	are	added	to	the	allowable	types.

Parameters:
Tab<Class_ID>	&clist
The	table	of	allowable	Class_IDs.
Tab<TSTR*>	&nlist
The	table	of	pointers	to	strings	that	correspond	to	the	table	of	Class_IDs
above.

Sample	Code:
void	SphereObject::GetCollapseTypes(Tab<Class_ID>
&clist,Tab<TSTR*>	&nlist)
{
Object::GetCollapseTypes(clist,	nlist);
Class_ID	id	=	EDITABLE_SURF_CLASS_ID;
TSTR	*name	=	new	TSTR(GetString(IDS_SM_NURBS_SURFACE));
clist.Append(1,&id);
nlist.Append(1,&name);
}

Prototype:
virtual	Object	*CollapseObject();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	called	on	the	world	space	cache	object	when	the	stack	gets
collapsed,	that	lets	the	pipeline	object	decide,	if	it	wants	to	return	a	different
object	than	itself.	The	default	implementation	simply	returns	this.	A
PolyObject	e.g.	can	create	and	return	an	EditablePolyObject	in	this	method,	so
that	the	collapsed	object	has	a	UI.	I	only	implemented	this	method	for
PolyObject,	but	this	can	potentially	implemented	that	way	for	all	pipeline
objects,	that	currently	pass	up	the	editable	version.
It	is	important,	that	all	places,	that	collapse	the	stack	are	calling	this	method
after	evaluating	the	stack.
It	also	is	important,	that	the	editable	version	implements	this	method	to	simply
return	this,	otherwise	you'll	get	a	non-editable	object	when	you	collapse	an

editable	polyobject.
Return	Value:
A	pointer	to	the	resulting	object.

Default	Implementation:
{	return	this;}

Mapping	Methods

Prototype:
virtual	int	IsMappable()

Remarks:
This	method	lets	you	know	if	the	ApplyUVWMap()	method	is	available	for
this	object.	This	is	used	by	things	like	the	UVW	mapping	modifier,	so	that	it
can	determine	which	objects	can	have	their	mapping	modified.	Returns
nonzero	if	the	object	is	mappable;	otherwise	zero.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	int	NumMapChannels();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	maximum	number	of	channels	supported	by	this	type	of	object.
TriObjects	for	instance	return	MAX_MESHMAPS	which	is	currently	set	to
100.

Default	Implementation:
{	return	IsMappable();	}

Prototype:
virtual	int	NumMapsUsed();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Returns	the	number	of	maps	currently	used	by	this	object.	This	is	at	least	1+
(highest	channel	in	use).	This	is	used	so	a	plug-in	that	does	something	to	all
map	channels	doesn't	always	have	to	do	it	to	every	channel	up	to
MAX_MESHMAPS	but	rather	only	to	this	value.

Default	Implementation:
{	return	NumMapChannels();	}

Prototype:
void	ApplyUVWMap(int	type,float	utile,	float	vtile,	float	wtile,int
uflip,	int	vflip,	int	wflip,	int	cap,const	Matrix3	&tm,	int
channel=1);

Remarks:
This	method	may	be	called	to	map	the	object	with	UVW	mapping	coordinates.
If	the	object	returns	nonzero	from	IsMappable()	then	this	method	should	be
implemented.

Parameters:
int	type
The	mapping	type.	One	of	the	following	values:
MAP_PLANAR
MAP_CYLINDRICAL
MAP_SPHERICAL
MAP_BALL
MAP_BOX

float	utile
Number	of	tiles	in	the	U	direction.
float	vtile
Number	of	tiles	in	the	V	direction.
float	wtile
Number	of	tiles	in	the	W	direction.
int	uflip
If	nonzero	the	U	values	are	mirrored.
int	vflip
If	nonzero	the	V	values	are	mirrored.

int	wflip
If	nonzero	the	W	values	are	mirrored.
int	cap
This	is	used	with	MAP_CYLINDRICAL.	If	nonzero,	then	any	face	normal
that	is	pointing	more	vertically	than	horizontally	will	be	mapped	using	planar
coordinates.
const	Matrix3	&tm
This	defines	the	mapping	space.	As	each	point	is	mapped,	it	is	multiplied	by
this	matrix,	and	then	it	is	mapped.
int	channel=1
This	parameter	is	available	in	release	2.0	and	later	only.
This	indicates	which	channel	the	mapping	is	applied	to.	See	List	of	Mapping
Channel	Index	Values.

Object	Name,	Properties,	Display,	and	IntersectRay	Methods

Prototype:
virtual	int	IsRenderable()=0;

Remarks:
Implemented	by	the	Plug-In.
Indicates	whether	the	object	may	be	rendered.	Some	objects	such	as
construction	grids	and	helpers	should	not	be	rendered	and	can	return	zero.

Return	Value:
Nonzero	if	the	object	may	be	rendered;	otherwise	0.

Prototype:
virtual	int	IsConstObject()

Remarks:
Implemented	by	the	Plug-In.
This	is	called	to	determine	if	this	is	a	construction	object	or	not.

Return	Value:
Nonzero	if	the	object	is	a	construction	object;	otherwise	0.

Default	Implementation:

{	return	0;	}

Prototype:
virtual	void	InitNodeName(TSTR&	s)=0;

Remarks:
Implemented	by	the	Plug-In.
This	is	the	default	name	of	the	node	when	it	is	created.

Parameters:
TSTR&	s
The	default	name	of	the	node	is	stored	here.

Prototype:
virtual	int	UsesWireColor()

Remarks:
Implemented	by	the	Plug-In.
This	method	determines	if	the	object	color	is	used	for	display.

Return	Value:
TRUE	if	the	object	color	is	used	for	display;	otherwise	FALSE.

Default	Implementation:
{	return	TRUE;	}

Prototype:
virtual	int	DoOwnSelectHilite()

Remarks:
Implemented	by	the	Plug-In.
If	an	object	wants	to	draw	itself	in	the	3D	viewports	in	its	selected	state	in
some	custom	manner	this	method	should	return	nonzero.	If	this	item	returns
nonzero,	the	BaseObject::Display()	method	should	respect	the	selected
state	of	the	object	when	it	draws	itself.	If	this	method	returns	zero	the	system
will	use	its	standard	method	of	showing	the	object	as	selected.

Default	Implementation:
{	return	0;	}

Return	Value:
Nonzero	if	the	object	will	draw	itself	in	the	selected	state;	otherwise	0.	If
nonzero,	the	plug-in	developer	is	responsible	for	displaying	the	object	in	the
selected	state	as	part	of	its	Display()	method.

Prototype:
virtual	int	IntersectRay(TimeValue	t,	Ray&	r,	float&	at,	Point3&
norm)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	compute	the	intersection	point	and	surface	normal	at
this	intersection	point	of	the	ray	passed	and	the	object.

Parameters:
TimeValue	t
The	time	to	compute	the	intersection.
Ray&	r
Ray	to	intersect.	See	Class	Ray.
float&	at
The	point	of	intersection.
Point3&	norm
Surface	normal	at	the	point	of	intersection.

Default	Implementation:
{return	FALSE;}

Return	Value:
Nonzero	if	a	point	of	intersection	was	found;	otherwise	0.

See	Also:	The	Mesh	class	implementation	of	this	method.

Prototype:
virtual	BOOL	NormalAlignVector(TimeValue	t,Point3	&pt,	Point3
&norm);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

Objects	that	don't	support	the	IntersectRay()	method	(such	as	helper
objects)	can	implement	this	method	to	provide	a	default	vector	for	use	with	the
normal	align	command	in	3ds	max.

Parameters:
TimeValue	t
The	time	to	compute	the	normal	align	vector.
Point3	&pt
The	point	of	intersection.
Point3	&norm
The	normal	at	the	point	of	intersection.

Return	Value:
TRUE	if	this	method	is	implemented	to	return	the	normal	align	vector;
otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Validity	Interval	Methods

Prototype:
virtual	Interval	ObjectValidity(TimeValue	t)

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	validity	interval	of	the	object	as	a	whole	at	the
specified	time.

Parameters:
TimeValue	t
The	time	to	compute	the	validity	interval.

Default	Implementation:
{	return	FOREVER;	}

Return	Value:
The	validity	interval	of	the	object.

Prototype:
void	UpdateValidity(int	nchan,	Interval	v);

Remarks:
Implemented	by	the	Plug-In.
When	a	modifier	is	applied	to	an	object,	it	needs	to	include	its	own	validity
interval	in	the	interval	of	the	object.	To	do	this,	a	modifier	calls	the
UpdateValidity()	method	of	an	object.	This	method	intersects	interval	v	to
the	nchan	channel	validity	of	the	object.

Parameters:
int	nchan
The	validity	interval	of	the	modifier	is	intersected	with	this	channel	of	the
object.	See	List	of	Object	Channel	Numbers.
Interval	v
The	interval	to	intersect.

Shapes	Within	Objects
Shape	viewports	can	reference	shapes	contained	within	objects,	so	the	system
needs	to	be	able	to	access	the	shapes	within	an	object.	The	following	four
methods	provide	this	access.	These	methods	are	used	by	the	loft	object.	Since
loft	objects	are	made	up	of	shapes,	this	gives	the	system	the	ability	to	query	the
object	to	find	out	if	it	is	a	shape	container.	Most	objects	don't	contain	shapes	so
they	can	just	use	the	default	implementations.

Prototype:
virtual	int	NumberOfContainedShapes();

Remarks:
Implemented	by	the	Plug-In.
Returns	the	number	of	shapes	contained	inside	this	object.	A	shape	container
may	return	zero	if	it	doesn't	currently	have	any	shapes.

Return	Value:
The	number	of	shapes.	A	return	value	of	-1	indicates	this	is	not	a	container.

Default	Implementation:
{	return	-1;	}

Prototype:
virtual	ShapeObject	*GetContainedShape(TimeValue	t,	int	index)

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	ShapeObject	specified	by	the	index	passed	at	the
time	specified.	See	Class	ShapeObject.

Parameters:
TimeValue	t
The	time	to	return	the	shape.
int	index
The	index	of	the	shape.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	void	GetContainedShapeMatrix(TimeValue	t,	int	index,
Matrix3	&mat)

Remarks:
Implemented	by	the	Plug-In.
Returns	the	matrix	associated	with	the	shape	whose	index	is	passed.	This
matrix	contains	the	offset	within	the	object	used	to	align	the	shape	viewport	to
the	shape.

Parameters:
TimeValue	t
The	time	to	return	the	matrix.
int	index
The	index	of	the	shape	whose	matrix	to	return.
Matrix3	&mat
The	matrix	is	returned	here.

Default	Implementation:
{}

Prototype:
virtual	BitArray	ContainedShapeSelectionArray()

Remarks:
Implemented	by	the	Plug-In.
This	is	used	by	the	lofter.	The	lofter	can	have	several	shapes	selected,	and	the
bit	array	returned	here	will	have	a	bit	set	for	each	selected	shape.	See	Class
BitArray.

Return	Value:
Default	Implementation:
{	return	BitArray();	}

Object	Integrity	Checking

Prototype:
virtual	BOOL	CheckObjectIntegrity()

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	for	debugging	only.	The	TriObject	implements	this
method	by	making	sure	its	face's	vert	indices	are	all	valid.

Return	Value:
TRUE	if	valid;	otherwise	FALSE.

Default	Implementation:
{return	TRUE;}

Sub-Object	Selection

Prototype:
virtual	DWORD	GetSubselState()

Remarks:
Implemented	by	the	Plug-In.
For	objects	that	have	sub	selection	levels,	this	method	returns	the	current
selection	level	of	the	object.	For	example,	a	TriObject	has	the	following
selection	levels:	object,	vertex,	face,	edge.	Other	object	types	may	have

different	selection	levels.	The	only	standard	is	that	a	value	of	0	indicates
object	level.

Default	Implementation:
{return	0;}

Return	Value:
The	current	selection	level	of	the	object.

Data	Flow	Evaluation	Methods
Most	plug-in	procedural	objects	do	not	need	to	be	concerned	with	the	following
methods	associated	with	locks,	channels	and	shallow	copies.	The	only	type	of
plug-ins	that	needs	to	be	concerned	with	these	methods	are	objects	that	actually
flow	down	the	pipeline.	Most	procedural	plug-ins	don't	go	down	the	pipeline,
instead	they	convert	themselves	to	a	TriObject	or	PatchObject,	and	these	goes
down	the	pipeline.	It	is	these	TriObjects	or	PatchObject	that	deal	with	these
methods.	However	plug-in	objects	that	actually	flow	down	the	pipeline	will	use
these	methods.	For	more	information	see	the	Advanced	Topics	section	on	the
Geometry	Pipeline	System.

Prototype:
virtual	ObjectState	Eval(TimeValue	t)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	evaluate	the	object	and	return	the	result	as	an
ObjectState.	When	the	system	has	a	pointer	to	an	object	it	doesn't	know	if	it's	a
procedural	object	or	a	derived	object.	So	it	calls	Eval()	on	it	and	gets	back	an
ObjectState.	A	derived	object	managed	by	the	system	may	have	to	call	Eval()
on	its	input	for	example.	A	plug-in	(like	a	procedural	object)	typically	just
returns	itself.
A	plug-in	that	does	not	just	return	itself	is	the	Morph	Object
(\MAXSDK\SAMPLES\OBJECTS\MORPHOBJ.CPP).	This	object
uses	a	morph	controller	to	compute	a	new	object	and	fill	in	an	ObjectState
which	it	returns.

Parameters:
TimeValue	t

Specifies	the	time	to	evaluate	the	object.
Return	Value:
The	result	of	evaluating	the	object	as	an	ObjectState.

Sample	Code:
Typically	this	method	is	implemented	as	follows:
{	return	ObjectState(this);	}

Prototype:
void	LockObject()

Remarks:
Implemented	by	the	System.
This	method	locks	the	object	as	a	whole.	The	object	defaults	to	not	modifiable.

Prototype:
void	UnlockObject()

Remarks:
Implemented	by	the	System.
This	method	unlocks	the	object	as	a	whole.

Prototype:
int	IsObjectLocked()

Remarks:
Implemented	by	the	System.
Returns	nonzero	if	the	object	is	locked;	otherwise	0.

Prototype:
void	LockChannels(ChannelMask	channels)

Remarks:
Implemented	by	the	System.
Locks	the	specified	channels	of	the	object.

Parameters:

ChannelMask	channels
The	channels	to	lock.

Prototype:
void	UnlockChannels(ChannelMask	channels)

Remarks:
Implemented	by	the	System.
Unlocks	the	specified	channel(s)	of	the	object.

Parameters:
ChannelMask	channels
Specifies	the	channels	to	unlock.

Prototype:
ChannelMask	GetChannelLocks()

Remarks:
Implemented	by	the	System.
Returns	the	locked	status	of	the	channels.

Return	Value:
The	channels	of	the	object	that	are	locked.

Prototype:
void	SetChannelLocks(ChannelMask	channels)

Remarks:
Implemented	by	the	System.
Sets	the	locked	status	of	the	object's	channels.

Parameters:
ChannelMask	channels
The	channel	to	set	to	locked.

Prototype:
ChannelMask	GetChannelLocks(ChannelMask	m)

Remarks:
Implemented	by	the	System.
Returns	the	locked	status	of	the	channels.

Parameters:
ChannelMask	m
Not	used.

Return	Value:
The	channels	of	the	object	that	are	locked.

Prototype:
void	CopyChannelLocks(Object	*obj,	ChannelMask
needChannels);

Remarks:
Implemented	by	the	System.
Copies	the	specified	channels	from	the	object	passed.

Parameters:
Object	*obj
The	source	object.
ChannelMask	needChannels
Indicates	the	channels	to	copy.

Prototype:
virtual	Interval	ChannelValidity(TimeValue	t,	int	nchan);

Remarks:
Implemented	by	the	Plug-In.
Retrieve	the	current	validity	interval	for	the	nchan	channel	of	the	object.
Note	that	most	procedural	objects	won't	implement	this	method	since	they
don't	have	individual	channels.	Developers	wanting	to	get	the	validity	interval
for	a	procedural	object	should	use	Object::ObjectValidity()	instead.

Parameters:
TimeValue	t
The	time	to	retrieve	the	validity	interval	of	the	channel.

int	nchan
Specifies	the	channel	to	return	the	validity	interval	of.	See	List	of	Object
Channel	Numbers.

Return	Value:
The	validity	interval	of	the	specified	channel.

Default	Implementation:
return	FOREVER;

Prototype:
virtual	void	SetChannelValidity(int	nchan,	Interval	v);

Remarks:
Implemented	by	the	Plug-In.
Sets	the	validity	interval	of	the	specified	channel.

Parameters:
int	nchan
Specifies	the	channel.	See	List	of	Object	Channel	Numbers.
Interval	v
The	validity	interval	for	the	channel.

Prototype:
virtual	void	InvalidateChannels(ChannelMask	channels)

Remarks:
Implemented	by	the	Plug-In.
This	method	invalidates	the	intervals	for	the	given	channel	mask.	This	just	sets
the	validity	intervals	to	empty	(calling	SetEmpty()	on	the	interval)	.

Parameters:
ChannelMask	channels
Specifies	the	channels	to	invalidate.

Prototype:
void	ReadyChannelsForMod(ChannelMask	channels);

Remarks:
Implemented	by	the	System.
If	the	requested	channels	are	locked,	this	method	will	replace	their	data	with	a
copy	and	unlock	them,	otherwise	it	leaves	them	alone.

Parameters:
ChannelMask	channels
The	channels	to	ready	for	modification.

Prototype:
virtual	Object	*MakeShallowCopy(ChannelMask	channels)

Remarks:
Implemented	by	the	Plug-In.
This	method	must	make	a	copy	of	its	"shell"	and	then	shallow	copy	(see
below)	only	the	specified	channels.	It	must	also	copy	the	validity	intervals	of
the	copied	channels,	and	invalidate	the	other	intervals.

Parameters:
ChannelMask	channels
The	channels	to	copy.

Return	Value:
A	pointer	to	the	shallow	copy	of	the	object.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	void	ShallowCopy(Object*	fromOb,	ChannelMask
channels)

Remarks:
Implemented	by	the	Plug-In.
This	method	copies	the	specified	channels	from	the	fromOb	to	this	and
copies	the	validity	intervals.
A	plug-in	needs	to	copy	the	specified	channels	from	the	specified	object
fromOb	to	itself	by	just	copying	pointers	(not	actually	copying	the	data).	No

new	memory	is	typically	allocated,	this	method	is	just	copying	the	pointers.
Parameters:
Object*	fromOb
Object	to	copy	the	channels	from.
ChannelMask	channels
Channels	to	copy.

Prototype:
virtual	void	NewAndCopyChannels(ChannelMask	channels)

Remarks:
Implemented	by	the	Plug-In.
This	method	replaces	the	locked	channels	with	newly	allocated	copies.	It	will
only	be	called	if	the	channel	is	locked.

Parameters:
ChannelMask	channels
The	channels	to	be	allocate	and	copy.

Prototype:
virtual	void	FreeChannels(ChannelMask	channels)

Remarks:
Implemented	by	the	Plug-In.
This	method	deletes	the	memory	associated	with	the	specified	channels	and
set	the	intervals	associated	with	the	channels	to	invalid	(empty).

Parameters:
ChannelMask	channels
Specifies	the	channels	to	free.

Prototype:
Interval	GetNoEvalInterval()

Remarks:
This	method	is	used	internally.

Prototype:
void	SetNoEvalInterval(Interval	iv);

Remarks:
This	method	is	used	internally.

Prototype:
virtual	void	ReduceCaches(TimeValue	t);

Remarks:
Implemented	by	the	Plug-In.
This	method	give	the	object	the	chance	to	reduce	its	caches.

Parameters:
TimeValue	t
The	time	to	discard	any	caches	the	object	has.

Modifier	Stack	Branching	Methods.

Prototype:
virtual	int	NumPipeBranches(bool	selected	=	true)

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	number	of	pipeline	branches	combined	by	the	object.
This	is	not	the	total	number	of	branches,	but	rather	the	number	that	are	active.
For	example	in	the	boolean	object,	if	the	user	does	not	have	any	operands
selected,	this	methods	would	return	zero.	If	they	have	one	selected	it	would
return	one.

Parameters:
bool	selected	=	true
This	parameter	is	available	in	release	4.0	and	later	only.
This	parameter	must	be	supported	by	all	compound	objects.	In	case	the
selected	parameter	is	true	the	object	should	only	return	the	number	of
pipebranches,	that	are	currently	selected	in	the	UI	(this	is	the	way	it	worked	in
R3	and	before.	In	case	this	parameter	is	false,	the	object	has	to	return	the
number	of	all	branches,	no	matter	if	they	are	selected	or	not

Default	Implementation:
{return	0;}

Prototype:
virtual	Object	*GetPipeBranch(int	i,	bool	selected	=	true)

Remarks:
Implemented	by	the	Plug-In.
Retrieves	sub-object	branches	from	an	object	that	supports	branching.	Certain
objects	combine	a	series	of	input	objects	(pipelines)	into	a	single	object.	These
objects	act	as	a	multiplexer	allowing	the	user	to	decide	which	branch(s)	they
want	to	see	the	history	for.
It	is	up	to	the	object	how	they	want	to	let	the	user	choose.	For	example	the
object	may	use	sub-object	selection	to	allow	the	user	to	pick	a	set	of	objects
for	which	the	common	history	will	be	displayed.
When	the	history	changes	for	any	reason,	the	object	should	send	a	notification
(REFMSG_BRANCHED_HISTORY_CHANGED)	via
NotifyDependents().

Parameters:
int	i
The	branch	index.
bool	selected	=	true
This	parameter	is	available	in	release	4.0	and	later	only.
This	parameter	must	be	supported	by	all	compound	objects.	In	case	the
selected	parameter	is	true	the	object	should	only	return	the	number	of
pipebranches,	that	are	currently	selected	in	the	UI	(this	is	the	way	it	worked	in
R3	and	before.	In	case	this	parameter	is	false,	the	object	has	to	return	the
number	of	all	branches,	no	matter	if	they	are	selected	or	not

Return	Value:
The	'i-th'	sub-object	branch.

Default	Implementation:
{return	NULL;}

Prototype:

virtual	INode	*GetBranchINode(TimeValue	t,	INode	*node,	int	i,
bool	selected	=	true)

Remarks:
Implemented	by	the	Plug-In.
When	an	object	has	sub-object	branches,	it	is	likely	that	the	sub-objects	are
transformed	relative	to	the	object.	This	method	gives	the	object	a	chance	to
modify	the	node's	transformation	so	that	operations	(like	edit	modifiers)	will
work	correctly	when	editing	the	history	of	the	sub	object	branch.	An	object
can	implement	this	method	by	returning	a	pointer	to	a	new
INodeTransformed	that	is	based	on	the	node	passed	into	this	method.	See
Class	INodeTransformed.

Parameters:
TimeValue	t
The	time	to	get	the	INode.
INode	*node
The	original	INode	pointer.
int	i
The	branch	index.
bool	selected	=	true
This	parameter	is	available	in	release	4.0	and	later	only.
This	parameter	must	be	supported	by	all	compound	objects.	In	case	the
selected	parameter	is	true	the	object	should	only	return	the	number	of
pipebranches,	that	are	currently	selected	in	the	UI	(this	is	the	way	it	worked	in
R3	and	before.	In	case	this	parameter	is	false,	the	object	has	to	return	the
number	of	all	branches,	no	matter	if	they	are	selected	or	not

Return	Value:
A	pointer	to	an	INode.	This	can	be	the	original	passed	in	(the	default
implementation	does	this)	or	a	new	INodeTransformed.

Default	Implementation:
{return	node;}

Particle	System	Methods

Prototype:

virtual	BOOL	CanCacheObject()
Remarks:
Implemented	by	the	Plug-In.
This	method	determines	if	this	object	can	have	channels	cached.	Particle
objects	flow	up	the	pipeline	without	making	shallow	copies	of	themselves	and
therefore	cannot	be	cached.	Objects	other	than	particle	system	can	just	use	the
default	implementation.

Return	Value:
TRUE	if	the	object	can	be	cached;	otherwise	FALSE.

Default	Implementation:
{return	TRUE;}

Prototype:
virtual	void	WSStateInvalidate()

Remarks:
Implemented	by	the	Plug-In.
This	is	called	by	a	node	when	the	node's	world	space	state	has	become	invalid.
Normally	an	object	does	not	(and	should	not)	be	concerned	with	this,	but	in
certain	cases	like	particle	systems	an	object	is	effectively	a	world	space	object
an	needs	to	be	notified.

Default	Implementation:
{}

Prototype:
virtual	BOOL	IsWorldSpaceObject()

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	the	object	as	a	world	space	object;	otherwise	FALSE.	World
space	objects	(particles	for	example)	can	not	be	instanced	because	they	exist
in	world	space	not	object	space.	Objects	other	than	particle	system	can	just	use
the	default	implementation.

Default	Implementation:

{return	FALSE;}

Prototype:
virtual	Object	*FindBaseObject();

Remarks:
Implemented	by	the	Plug-In.
This	method	moved	from	IDerivedObject	where	it	was	in	release	1.x.
It	is	called	to	return	a	pointer	to	the	base	object	(an	object	that	is	not	a	derived
object).	This	method	is	overridden	by	DerivedObjects	to	search	down	the
pipeline	for	the	base	object.	The	default	implementation	just	returns	this.	This
function	is	still	implemented	by	derived	objects	and	WSM's	to	search	down
the	pipeline.	This	allows	you	to	just	call	it	on	a	nodes	ObjectRef	without
checking	for	type.

Default	Implementation:
{	return	this;	}

Parametric	Surface	Access
Prototype:
virtual	BOOL	IsParamSurface();

Remarks:
Implemented	by	the	Plug-In.
This	method	is	available	in	release	2.0	and	later	only.
There	are	several	methods	used	to	access	a	parametric	position	on	the	surface
of	the	object.	If	this	method	returns	TRUE	then
Object::GetSurfacePoint()	will	be	called	to	return	a	point	on	the	surface
that	corresponds	to	the	u	and	v	parameters	passed	to	it.	If	this	method	returns
FALSE	then	it	is	assumed	the	object	does	not	support	returning	a	point	on	the
surface	based	on	parameteric	values.	For	sample	code	see
\MAXSDK\SAMPLES\OBJECTS\SPHERE.CPP.	If	the	object	has
several	parametric	surfaces	then	a	second	version	of	GetSurfacePoint()
with	an	integer	which	specifies	which	surface	will	be	called.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	int	NumSurfaces(TimeValue	t);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	parametric	surfaces	within	the	object.	Prior	to	release
3.0	only	one	parametric	object	could	be	accessed.

Parameters:
TimeValue	t
The	time	at	which	to	check.

Default	Implementation:
{return	1;}

Prototype:
virtual	Point3	GetSurfacePoint(TimeValue	t,	float	u,	float
v,Interval	&iv);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	available	in	release	2.0	and	later	only.
This	method	needs	to	be	implemented	if	Object::IsParamSurface()
returns	TRUE.	This	method	is	used	to	retrieve	a	point	on	the	surface	of	the
object	based	on	two	parameters	of	the	surface,	u	and	v.
Note:	This	method	assumes	there	is	a	single	parametric	surface.	If	there	is
more	than	1	(NumSurfaces()	returns	>	1,	use	the	GetSurface()	method
below	which	allows	for	multiple	surfaces.

Parameters:
TimeValue	t
The	time	to	retrieve	the	point.
float	u
The	parameter	along	the	horizontal	axis	of	the	surface.
float	v
The	parameter	along	the	vertical	axis	of	the	surface.
Interval	&iv

This	interval	is	updated	based	on	the	interval	of	the	surface	parameter.
Default	Implementation:
{return	Point3(0,0,0);}

Prototype:
virtual	Point3	GetSurfacePoint(TimeValue	t,	int	surface,	float	u,
float	v,Interval	&iv);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	to	retrieve	a	point	on	the	specified	surface	of	the	object
based	on	two	parameters	of	the	surface,	u	and	v.

Parameters:
TimeValue	t
The	time	to	retrieve	the	point.
int	surface
The	zero	based	index	of	the	surface.	This	number	is	>=0	and
<NumSurfaces().
float	u
The	parameter	along	the	horizontal	axis	of	the	surface.
float	v
The	parameter	along	the	vertical	axis	of	the	surface.
Interval	&iv
This	interval	is	updated	based	on	the	interval	of	the	surface	parameter.

Default	Implementation:
{return	Point3(0,0,0);}

Prototype:
virtual	void	SurfaceClosed(TimeValue	t,	int	surface,	BOOL
&uClosed,	BOOL	&vClosed);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

This	method	allows	the	object	to	return	flags	that	indicate	whether	the
parametric	surface	is	closed	in	the	U	and	V	dimensions.	Set	the	appropriate
closure	variables	to	TRUE	if	the	surface	is	closed	in	that	direction,	FALSE	if	it
is	not.	A	torus,	for	example,	is	closed	in	both	directions.

Parameters:
TimeValue	t
The	time	to	check	the	surface.
int	surface
The	zero	based	index	of	the	surface.	This	number	is	>=0	and
<NumSurfaces().
BOOL	&uClosed
Set	to	TRUE	if	the	surface	is	closed	in	U;	otherwise	to	FALSE.
BOOL	&vClosed
Set	to	TRUE	if	the	surface	is	closed	in	V;	otherwise	to	FALSE.

Default	Implementation:
{uClosed	=	vClosed	=	TRUE;}

Viewport	Rectangle	Enlargement
Prototype:
virtual	void	MaybeEnlargeViewportRect(GraphicsWindow	*gw,
Rect	&rect);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	allows	the	object	to	enlarge	its	viewport	rectangle,	if	it	wants	to.
The	system	will	call	this	method	for	all	objects	when	calculating	the	viewport
rectangle;	the	object	can	enlarge	the	rectangle	if	desired.	This	is	used	by	the
Editable	Spline	code	to	allow	extra	room	for	vertex	serial	numbers,	which	can
extend	outside	the	normal	bounding	rectangle.

Parameters:
GraphicsWindow	*gw
Points	to	the	GraphicsWindow	associated	with	the	viewport.
Rect	&rect

The	enlarged	rectangle	is	returned	here.
Default	Implementation:
{}

Sample	Code:
void	SplineShape::MaybeEnlargeViewportRect(GraphicsWindow
*gw,	Rect	&rect)	{
	if(!showVertNumbers)
		return;
	TCHAR	dummy[256];
	SIZE	size;
	int	maxverts	=	-1;
	for(int	i	=	0;	i	<	shape.splineCount;	++i)	{
		int	verts	=	shape.splines[i]->KnotCount();
		if(verts	>	maxverts)
			maxverts	=	verts;
		}
	sprintf(dummy,"%d",maxverts);
	gw->getTextExtents(dummy,	&size);
	rect.SetW(rect.w()	+	size.cx);
	rect.SetY(rect.y()	-	size.cy);
	rect.SetH(rect.h()	+	size.cy);
	}

Prototype:
virtual	BOOL	GetExtendedProperties(TimeValue	t,	TSTR
&prop1Label,	TSTR	&prop1Data,	TSTR	&prop2Label,	TSTR
&prop2Data);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	allows	an	object	to	return	extended	Properties	fields.	It	is	called
when	the	Object	Properties	dialog	is	being	prepared.	If	you	don't	want	to

display	any	extended	properties,	simply	return	FALSE.
To	display	extended	property	fields,	place	the	field	label	in	the	appropriate
label	string	and	the	display	value	in	a	formatted	string.	Two	fields	are
supplied,	each	with	a	label	and	a	data	string;	if	only	using	one,	make	the
second	label	field	and	data	field	blank	("").	Return	TRUE	to	indicate	you	have
filled	in	the	fields.	The	properties	dialog	will	display	your	returned	values.

Parameters:
TimeValue	t
The	time	at	which	the	strings	are	requested.
TSTR	&prop1Label
The	string	for	the	property	1	label.
TSTR	&prop1Data
The	formatted	data	string	to	appear	as	property	1.
TSTR	&prop2Label
The	string	for	the	property	2	label.
TSTR	&prop2Data
The	formatted	data	string	to	appear	as	property	2.

Return	Value:
TRUE	if	this	method	is	implemented	and	the	fields	are	filled	in;	otherwise
FALSE.

Default	Implementation:
{return	FALSE;}

ExtensionChannel	Access	:
Prototype:
void	AddXTCObject(XTCObject	*pObj,	int	priority	=	0,	int
branchID	=	-1);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	adds	an	extension	object	into	the	pipeline.
Implemented	by	the	System.

Parameters:

XTCObject	*pObj
Points	to	the	extension	object	to	add.
int	priority	=	0
The	priority	of	the	object.	The	methods	(XTCObject::Display(),
PreChanChangedNotify()	etc)	of	higher	priority	XTCObjects	will	be	called
before	those	of	lower	priority	XTCObjects.
int	branchID	=	-1
The	branch	identifier	of	the	object.

Prototype:
int	NumXTCObjects();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	number	of	extension	objects	maintained	by	this	Object.
Implemented	by	the	System.

Prototype:
XTCObject	*GetXTCObject(int	index);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	specified	extension	object.
Implemented	by	the	System.

Parameters:
int	index
The	zero	based	index	of	the	extension	object	to	return.

Prototype:
void	RemoveXTCObject(int	index);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Removes	the	extension	object	as	indicated	by	the	index.
Implemented	by	the	System.

Parameters:
int	index
The	zero	based	index	of	the	extension	object	to	remove.

Prototype:
void	SetXTCObjectPriority(int	index,int	priority);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	priority	for	the	extension	object	whose	index	is	passed.
Implemented	by	the	System.

Parameters:
int	index
The	zero	based	index	of	the	extension	object	to	remove.
int	priority
The	new	priority	to	assign.

Prototype:
int	GetXTCObjectPriority(int	index);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	integer	priority	number	of	the	extension	object	whose	index	is
passed.
Implemented	by	the	System.

Parameters:
int	index
The	zero	based	index	of	the	extension	object	to	check.

Prototype:
void	SetXTCObjectBranchID(int	index,int	branchID);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	branch	ID	of	the	extension	object	whose	index	is	passed.

Implemented	by	the	System.
Parameters:
int	index
The	zero	based	index	of	the	extension	object	whose	branch	ID	is	set.
int	branchID
The	branch	identifier	to	set.

Prototype:
int	GetXTCObjectBranchID(int	index);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	integer	branch	ID	of	the	extension	object	whose	index	is	passed.
Implemented	by	the	System.

Parameters:
int	index
The	zero	based	index	of	the	extension	object	whose	branch	ID	is	to	be
returned.

Prototype:
void	MergeAdditionalChannels(Object	*from,	int	branchID);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	has	to	be	called	whenever	the	CompoundObject	updates	a	branch
(calling	Eval()	on	it).	Object	*from	is	the	object	returned	from
Eval(os.obj).	The	branchID	is	an	integer	that	specifies	that	branch.	The
extension	channel	will	get	a	callback	to
XTCObject::RemoveXTCObjectOnMergeBranches()	and
XTCObject::MergeXTCObject().	By	default	it	returns	true	to
RemoveXTCObjectOnMergeBranches	which	means	that	the	existing
XTCObjects	with	that	branchID	will	be	deleted.	The	method
MergeXTCObject	simply	copies	the	XTCObjects	from	the	incoming	branch
into	the	compound	object.
Implemented	by	the	System.

Parameters:
Object	*from
The	object	to	merge	additional	channels	from.
int	branchID
The	branch	identifier	to	set.

Prototype:
void	BranchDeleted(int	branchID,	bool	reorderChannels);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	has	to	be	called	on	the	CompoundObject	so	it	can	delete	the
XTCObjects	for	the	specified	branch.	The	XTCObject	will	again	have	the
final	decision	if	the	XTCObject	gets	really	deleted	or	not	in	a	callback	to
XTCObject::RemoveXTCObjectOnBranchDeleted()	which	will
return	true	if	the	XTCOject	should	be	removed.
Implemented	by	the	System.

Parameters:
int	branchID
Specifies	which	brach	of	the	compound	object	the	extension	objects	are
deleted	from.
bool	reorderChannels
TRUE	to	reorder	the	channels,	otherwise	FALSE.

Prototype:
void	CopyAdditionalChannels(Object	*from,	bool	deleteOld	=
true,	bool	bShallowCopy	=	false);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	copies	all	extension	objects	from	the	"from"	object	into	the
current	object.	In	case	deleteOld	is	false	the	objects	will	be	appended.	If	it	is
true	the	old	XTCObjects	will	be	deleted.
Implemented	by	the	System.

Parameters:

Object	*from
The	source	object	which	contains	extension	objects.
bool	deleteOld	=	true
If	true	the	original	objects	are	deleted	after	the	copy;	if	false	they	remain	after
the	copy.
bool	bShallowCopy	=	false
If	true	only	a	ShallowCopy()	is	performed;	if	false	a	complete	copy	of	the
objects	is	done.

Prototype:
void	DeleteAllAdditionalChannels();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
This	method	will	delete	all	additional	channels.

The	following	function	is	not	part	of	this	class	but	is	available	for
use:
Function:
void	GetPolygonCount(TimeValue	t,	Object*	pObj,	int&
numFaces,	int&	numVerts);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
This	global	function	(not	part	of	class	Object)	may	be	used	to	count	the
number	of	faces	and	vertices	in	an	object.	It	uses	Object::PolygonCount()
if	it	is	supported,	and	converts	to	TriObject	and	counts	faces	and	vertices
otherwise.

Parameters:
TimeValue	t
The	time	at	which	to	compute	the	number	of	faces	and	vertices.
Object*	pObj
Points	to	the	object	to	check.

int&	numFaces
The	number	of	faces	is	returned	here.
int&	numVerts
The	number	of	vertices	is	returned	here.

Class	Mesh
See	Also:	Class	BitArray,	Class	Face,	Class	TVFace,	Class	Point3,	Class
TriObject,	Class	RNormal,	Class	RVertex,	Class	TriObject,	Class	MeshMap,
Working	with	Meshes,	Class	PerData.
class	Mesh	:	public	BaseInterfaceServer

Description:
The	Mesh	class	is	provided	for	use	by	plug-ins	and	is	used	by	the	system.	It	is
the	data	structure	for	meshes	in	the	system	and	maintains	pointers	to	the	vertices,
faces,	texture	vertices,	etc.	It	provides	methods	to	handle	most	of	the
functionality	that	procedural	objects	must	implement.	All	methods	of	this	class
are	implemented	by	the	system.
Note:	There	is	a	set	of	classes	for	working	with	parts	of	a	mesh	such	as	its	face
structure,	element	structure,	and	cluster	structure.	For	details	see:	Class
AdjEdgeList,	Class	AdjFaceList,	Class	FaceElementList,	Class	FaceClusterList.

Method	Groups:
The	hyperlinks	below	take	you	to	the	start	of	groups	of	related	methods	within
the	class:
Vertex	Methods
Color	Per	Vertex	Methods
Face	Methods
Texture	Vertex-Texture	Face	Methods
Multiple	Map	Support
Vertex	Data	Methods
Render,	HitTest,	Snap	Methods
Bounding	Box	Methods
Edge	Methods
Strips	Methods
Mesh	/	Display	Flags
Selection	Access	Methods
Data	Flow	Evaluation	Methods
IntersectRay,	Weld,	Optimize,	Apply	Mapping	Methods
Normals	/	Smoothing	/	Edges	/	Face	check	Functions
Boolean	Operations	/	Combine	Meshes
Sub-Object	Selection	Color	Control

Operators

Data	Members:
private:

MeshMap	hmaps[NUM_HIDDENMAPS];
The	"Hidden	Maps".	Eventually	these	will	be	supported	by	Patches	and
PolyMeshes,	as	well	as	in	the	general	object	interface.	The	purpose	is	to	use
a	separate,	private	array	for	a	fixed	number	of	these	maps	(unlike	the
allocable	regular	map	array).	This	allows	us	to	reserve	and	support	as	many
map	channels	as	we	need	for	features	such	as	vertex	alpha,	vertex
illumination,	possible	vertex	normals,	or	other	needs	that	may	arise.
The	interface	for	accessing	these	channels	uses	the	usual	map	methods,
with	negative	indices.	For	instance,	hmaps[0]	is	indexed	as
MAP_SHADING,	-1.	hmaps[1]	is	indexed	as	MAP_ALPHA=-2.	So
now	methods	like	Mesh::mapVerts	(int	mp)	have	a	range	of	-
NUM_HIDDENMAPS	to	getNumMaps(),	instead	of	0	to
getNumMaps()	as	before.
NUM_HIDDENMAPS:	The	number	of	"Hidden"	or	negative-indexed
maps	in	objects	which	support	hidden	maps.	(Currently	set	to	2.)
MAP_SHADING:	The	shading	(or	illumination)	map.	Set	to	-1.
MAP_ALPHA:	The	Alpha	channel	map.	Note	that	only	the	x	(or	u)
coordinate	of	the	map	vertices	is	currently	used.	Set	to	-2.

public:

Topology	Data
int	numVerts;
Number	of	vertices.
int	numFaces;
Number	of	faces.
Face	*faces;
Array	of	faces.

Geometry	Data
Point3	*verts;
Array	of	vertex	coordinates.

Texture	Coordinate	Data
int	numTVerts;
Number	of	texture	vertices.
UVVert	*tVerts;
The	array	of	texture	vertices.	This	stores	the	UVW	coordinates.	For	a	2D
mapping	only	two	of	them	are	used,	i.e.	UV,	VW,	or	WU.	This	just	provides
greater	flexibility	so	the	user	can	choose	to	use	UV,	VW,	or	WU.
Note:	typedef	Point3	UVVert;
TVFace	*tvFace;
The	array	of	texture	faces.	There	needs	to	be	one	TVFace	for	every	face,
but	there	can	be	three	indices	into	the	UVVert	array	that	are	any	UVs.	Each
face	of	the	object	can	have	its	own	mapping.
int	numMaps;
This	data	member	is	available	in	release	3.0	and	later	only.
The	number	of	maps	supported	by	the	mesh.	By	default	this	is	2	but	may	be
changed	with	the	multiple	map	methods	listed	below.
MeshMap	*maps;
This	data	member	is	available	in	release	3.0	and	later	only.
When	the	number	of	mapping	channels	is	set	to	a	value	greater	than	1	then
an	instance	of	this	class	is	allocated	for	each	channel	up	to	numMaps.	An
instance	maintains	the	mapping	information	for	a	single	channel.
BitArray	vdSupport;
This	data	member	is	available	in	release	3.0	and	later	only.
This	bit	array	indicates	if	a	particular	vertex	data	channel	is	supported	in
this	mesh.	If	the	bit	is	set	the	channel	is	suported.
PerData	*vData;
This	data	member	is	available	in	release	3.0	and	later	only.
The	array	of	PerData	objects	which	maintain	and	provide	access	to	the
floating	point	vertex	data.	There	is	one	of	these	for	each	supported	channel.
The	first	two	PerData	objects	in	this	array	are	used	internally	by	3ds	max.

Color	Per	Vertex	Data
int	numCVerts;
Number	of	color	vertices.
VertColor	*vertCol;
Array	of	color	vertices.
TVFace	*vcFace;
Array	of	color	per	vertex	faces.
VertColor	*curVCArray;
This	data	member	is	available	in	release	4.0	and	later	only.
Points	to	storage	for	a	possible	external	color	array	(default	=	NULL).	This
can	be	either	an	external	array	or	one	of	the	mapping	channels.	See	the
method	Mesh::setVCDisplayData();
int	curVCChan;
This	data	member	is	available	in	release	4.0	and	later	only.
Storage	for	the	current	mapping	channel	to	use	for	vertex	colors	(default	=
0).
VertColor	*vertColArray;
This	data	member	is	available	in	release	4.0	and	later	only.
When	3ds	max	is	rendering	the	color	values	come	from	this	variable.	This
array	defaults	to	the	internal	vertCol	but	can	be	set	to	an	external	array,	or
a	map	channel.	See	the	method	Mesh::	setVCDisplayData	();
TVFace	*vcFaceData;
This	data	member	is	available	in	release	4.0	and	later	only.
When	3ds	max	is	rendering	the	vertex	color	lookup	comes	from	this
structure.	This	defaults	to	the	vcFace	data	but	if	a	mapping	channel	is	used
for	color	lookup,	its	TVFace	structure	is	used.

Selection	Data
BitArray	vertSel;
Indicates	the	selected	vertices.	There	is	one	bit	for	each	vertex.	Bits	that	are
1	indicate	the	vertex	is	selected.
BitArray	faceSel;
Indicates	the	selected	faces.	There	is	one	bit	for	each	face.	Bits	that	are	1
indicate	the	face	is	selected.
BitArray	edgeSel;
Indicates	the	selected	edges.	There	is	one	bit	for	each	edge	of	each	face.
Bits	that	are	1	indicate	the	edge	is	selected.	The	edge	is	identified	by
3*faceIndex	+	edgeIndex.
BitArray	vertHide;
Hidden	flags	for	vertices.

Display	attribute	flags
DWORD	dispFlags;
These	control	various	aspect	of	the	Mesh	objects	display	and	may	be	one	or
more	of	the	following	values:
DISP_VERTTICKS	-	Display	vertices	as	small	tick	marks.
DISP_SELVERTS	-	Display	selected	vertices.
DISP_SELFACES	-	Display	selected	faces.
DISP_SELEDGES	-	Display	selected	edges.
DISP_SELPOLYS	-	Display	selected	polygons.	Polygons	are	defined
as	adjacent	triangles	with	hidden	edges.	A	selected	face	would	show	all
edges	regardless	of	if	they	were	hidden	edges.	A	polygon	would	only
show	the	edges	of	the	polygon	that	were	not	hidden.

Selection	level
DWORD	selLevel;
This	is	the	current	level	of	selection.	When	all	the	bits	are	0,	the	object	is	at
object	level	selection.	The	selection	level	bits	are:
MESH_OBJECT	-	Object	level.
MESH_VERTEX	-	Vertex	level.
MESH_FACE	-	Face	level.
MESH_EDGE	-	Edge	level.

Normals
int	normalsBuilt;
Nonzero	if	normals	have	been	built	for	the	current	mesh;	otherwise	0.

Render	Data
MeshRenderData	*renderData;
Points	to	the	render	data	used	by	the	renderer.

Methods:

Prototype:
Mesh();

Remarks:
Constructor.	Initializes	the	mesh	object.	The	mesh	counts	are	set	to	0	and	its
pointers	are	set	to	NULL.

Prototype:
Mesh(const	Mesh&	fromMesh);

Remarks:
Constructor.	The	mesh	is	initialized	equal	to	fromMesh.

Prototype:
~Mesh();

Remarks:
Destructor.	Frees	any	allocated	arrays	(faces,	verts,	tverts,	tvfaces).

Prototype:
void	Init();

Remarks:
Initializes	the	mesh	object.	The	mesh	counts	are	set	to	0	and	its	pointers	are	set
to	NULL.	Note:	This	method	is	not	intended	to	be	called	by	developers.	It	is
used	internally.

Prototype:
void	DeleteThis();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

This	method	deletes	this	mesh.

Vertex	Methods

Prototype:
BOOL	setNumVerts(int	ct,	BOOL	keep=FALSE,	BOOL
synchSel=TRUE);

Remarks:
Sets	the	number	of	geometric	vertices	in	the	mesh.

Parameters:
int	ct
Specifies	the	number	of	vertices.
BOOL	keep=FALSE
Specifies	if	the	previous	vertices	should	be	kept.	If	TRUE	the	previous
vertices	are	kept;	otherwise	they	are	discarded.
BOOL	synchSel=TRUE
This	parameter	is	available	in	release	2.0	and	later	only.
If	TRUE	the	selection	set	BitArrays	are	resized	to	fit	the	number	of	vertices;
otherwise	they	are	left	unaltered.

Return	Value:
TRUE	if	storage	was	allocated	and	the	number	of	vertices	was	set;	otherwise
FALSE.

Prototype:
int	getNumVerts()	const

Remarks:
Returns	the	number	of	vertices.

Prototype:
void	setVert(int	i,	const	Point3	&xyz);

Remarks:
Sets	a	single	vertex	in	the	verts	array.

Parameters:
int	i
A	zero	based	index	into	the	verts	array	of	the	vertex	to	store.
const	Point3	&xyz
Specifies	the	coordinate	of	the	vertex.

Prototype:
void	setVert(int	i,	float	x,	float	y,	float	z);

Remarks:
Sets	a	single	vertex	in	the	verts	array.

Parameters:
int	i
A	zero	based	index	into	the	verts	array	of	the	vertex	to	store.
float	x
Specifies	the	X	coordinate	of	the	vertex.
float	y
Specifies	the	Y	coordinate	of	the	vertex.
float	z
Specifies	the	Z	coordinate	of	the	vertex.

Prototype:
Point3&	getVert(int	i);

Remarks:
Returns	the	'i-th'	vertex.

Parameters:
int	i
Specifies	the	index	of	the	vertex	to	retrieve.

Prototype:
Point3*	getVertPtr(int	i);

Remarks:
Returns	a	pointer	to	the	'i-th'	vertex.

Parameters:
int	i
Specifies	the	index	of	the	vertex	address	to	retrieve.

Color	Per	Vertex	Methods

Prototype:
BOOL	setNumVertCol(int	ct,	BOOL	keep=FALSE);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	number	of	color	per	vertex	vertices.

Parameters:
int	ct
The	number	of	color	vertices	to	set.
BOOL	keep=FALSE
If	TRUE	previous	values	are	kept;	otherwise	they	are	discarded.

Return	Value:
TRUE	if	the	value	was	set;	otherwise	FALSE.

Prototype:
int	getNumVertCol()	const;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	number	of	color	per	vertex	vertices.

Prototype:
BOOL	setNumVCFaces(int	ct,	BOOL	keep=FALSE,	int	oldCt=0);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	number	of	color	per	vertex	faces.

Parameters:

int	ct;
The	number	of	color	per	vertex	faces	to	set.
BOOL	keep=FALSE
Specifies	if	the	old	faces	should	be	kept	if	the	array	is	being	resized.	If	FALSE
they	are	freed.
int	oldCt=0
The	length	of	the	existing	VCFaces	array.

Return	Value:
TRUE	if	storage	has	been	allocated	and	the	number	is	set;	otherwise	FALSE.

Prototype:
void	setVCDisplayData(int	mapChan	=	0,	VertColor
*VCArray=NULL,	TVFace	*VCf=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	would	typically	be	called	right	before	display,	as	with	a	node
display	callback,	or	through	an	extension	object.	If	mapChan	parameter	is	set
to	MESH_USE_EXT_CVARRAY	then	the	data	in	VCArray	and	TVFace	is
stored	for	internal	use	and	consequent	drawing.	If	the	arrays	are	NULL	then
the	internal	source	is	used.
	

Parameters:
int	mapChan
the	mapping	channel	to	use.
VertColor	*	VCArray
An	external	array	hosting	the	vertex	colors
TVFace	*	vcf
An	external	array	of	TVFace	indexing	into	the	color	array
	
	

Prototype:
void	setSmoothFlags(int	f);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	should	be	called	when	the	user	has	clicked	on	the	'Smooth'	check
box	in	a	procedural	object.	It	invalidates	the	appropriate	caches	of	the	mesh	so
the	display	is	updated	properly.	If	this	method	is	not	called,	the	internal
topology	cache	might	prevent	the	mesh	from	appearing	changed.

Parameters:
int	f
Nonzero	indicates	smoothed;	zero	unsmoothed.

Prototype:
int	getSmoothFlags();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	state	of	the	smooth	flags.	See	setSmoothFlags()	above.

Face	Methods

Prototype:
BOOL	setNumFaces(int	ct,	BOOL	keep=FALSE,	BOOL
synchSel=TRUE);

Remarks:
Sets	the	number	of	faces	in	the	mesh.

Parameters:
int	ct
Specifies	the	number	of	faces.
BOOL	keep=FALSE
Specifies	if	the	previous	faces	should	be	kept.	If	TRUE	the	previous	faces	are
kept;	otherwise	they	are	discarded.
BOOL	synchSel=TRUE
This	parameter	is	available	in	release	2.0	and	later	only.
If	TRUE	the	selection	set	BitArrays	are	resized	to	fit	the	number	of	faces;
otherwise	they	are	left	unaltered.

Return	Value:
TRUE	if	storage	was	allocated	and	the	number	of	faces	was	set;	otherwise
FALSE.

Prototype:
int	getNumFaces()	const

Remarks:
Returns	the	number	of	faces	in	the	mesh.

Texture	Vertex-Texture	Face	Methods

Prototype:
BOOL	setNumTVerts(int	ct,	BOOL	keep=FALSE);

Remarks:
Sets	the	number	of	texture	vertices	(in	mapping	channel	1).

Parameters:
int	ct
Specifies	the	number	of	texture	vertices.
BOOL	keep=FALSE
Specifies	if	the	previous	texture	vertices	should	be	kept.	If	TRUE	the	previous
texture	vertices	are	kept;	otherwise	they	are	discarded.

Return	Value:
TRUE	if	storage	was	allocated	and	the	number	of	texture	vertices	was	set;
otherwise	FALSE.

Prototype:
int	getNumTVerts()	const

Remarks:
Returns	the	number	of	texture	vertices	(in	mapping	channel	1).

Prototype:
BOOL	setNumTVFaces(int	ct,	BOOL	keep=FALSE,	int	oldCt=0);

Remarks:
Sets	the	number	of	TVFaces.	This	method	is	automatically	called	if	you	set
the	number	of	faces	to	keep	these	two	in	sync	(because	the	number	of
TVFaces	should	be	the	same	as	the	number	of	faces).	The	following	rules
apply:
If	you	have	no	TVFaces	and	keep	is	TRUE	then	the	TVFaces	array	stays
empty.
If	you	have	no	TVFaces	and	keep	is	FALSE	they	are	allocated.
If	you	have	TVFaces	and	ct	=	0	then	the	TVFaces	are	freed.

Parameters:
int	ct
The	number	of	TVFaces.
BOOL	keep=FALSE
Specifies	if	the	old	faces	should	be	kept.
int	oldCt=0
The	length	of	the	existing	TVFaces	array.

Return	Value:
TRUE	if	storage	has	been	allocated	and	the	number	is	set;	otherwise	FALSE.

Prototype:
void	setTVert(int	i,	const	UVVert	&xyz);

Remarks:
Sets	a	single	texture	vertex	in	the	tVerts	array.

Parameters:
int	i
A	zero	based	index	into	the	tVerts	array	of	the	texture	vertex	to	store.
const	UVVert	&xyz
Specifies	the	coordinate	of	the	vertex.

Prototype:
void	setTVert(int	i,	float	x,	float	y,	float	z);

Remarks:

Sets	a	single	texture	vertex	in	the	tVerts	array.
Parameters:
int	i
A	zero	based	index	into	the	tVerts	array	of	the	texture	vertex	to	store.
float	x
Specifies	the	X	coordinate	of	the	texture	vertex.
float	y
Specifies	the	Y	coordinate	of	the	texture	vertex.
float	z
Specifies	the	Z	coordinate	of	the	texture	vertex.

Prototype:
UVVert&	getTVert(int	i)

Remarks:
Returns	the	'i-th'	texture	vertex.

Parameters:
int	i
Specifies	the	index	of	the	texture	vertex	to	retrieve.

Prototype:
UVVert*	getTVertPtr(int	i)

Remarks:
Returns	a	pointer	to	the	'i-th'	texture	vertex.

Parameters:
int	i
Specifies	the	index	of	the	texture	vertex	address	to	retrieve.

Multiple	Map	Support
Prototype:
void	setNumMaps(int	ct,	BOOL	keep=FALSE);

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Set	the	number	of	texture	maps	used	by	this	Mesh.	Note	that	this	call	is	made
automatically	if	Mesh::setMapSupport()	is	called.

Parameters:
int	ct
The	number	of	texture	maps	to	use.	This	is	a	value	between	2	and
MAX_MESHMAPS-1.
BOOL	keep=FALSE
TRUE	to	keep	the	old	mapping	information	after	the	resize;	FALSE	to	discard
it.

Prototype:
int	getNumMaps()	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	mapping	channels	in	use.

Prototype:
BOOL	mapSupport(int	mp)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	specified	mapping	channel	is	supported;	otherwise
FALSE.

Parameters:
int	mp
Specifies	the	channel.	See	List	of	Mapping	Channel	Index	Values.

Prototype:
void	setMapSupport(int	mp,	BOOL	support=TRUE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	whether	the	specified	mapping	channels	is	supported	or	not.

Parameters:
int	mp
Specifies	the	channel.	See	List	of	Mapping	Channel	Index	Values.
BOOL	support=TRUE
TRUE	to	indicate	the	channel	is	supported;	otherwise	FALSE.

Prototype:
void	setNumMapVerts(int	mp,	int	ct,	BOOL	keep=FALSE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	number	of	texture	or	vertex	color	vertices	for	the	specified	mapping
channel	of	this	mesh.

Parameters:
int	mp
Specifies	the	channel.	See	List	of	Mapping	Channel	Index	Values.
int	ct
The	number	of	vertices	to	allocate.
BOOL	keep=FALSE
If	TRUE	previous	values	are	kept;	otherwise	they	are	discarded.

Prototype:
int	getNumMapVerts(int	mp)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	texture	or	vertex	color	verticies	for	the	specified
channel	of	this	mesh.

Parameters:
int	mp
Specifies	the	channel.	See	List	of	Mapping	Channel	Index	Values.

Prototype:
void	setNumMapFaces(int	mp,	int	ct,	BOOL	keep=FALSE,	int

oldCt=0);
Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	number	of	texture	or	vertex	color	faces	for	the	specified	channel	of
this	mesh.

Parameters:
int	mp
Specifies	the	channel.	See	List	of	Mapping	Channel	Index	Values.
int	ct
The	number	of	faces	to	allocate.
BOOL	keep=FALSE
If	TRUE	previous	values	are	kept;	otherwise	they	are	discarded.

Prototype:
UVVert	*mapVerts(int	mp)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	list	of	UVVerts	for	the	specified	channel	of	this
mesh.

Parameters:
int	mp
Specifies	the	channel.	See	List	of	Mapping	Channel	Index	Values.

Prototype:
TVFace	*mapFaces(int	mp)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	list	of	TVFaces	for	the	specified	channel	of	this
mesh.

Parameters:
int	mp
Specifies	the	channel.	See	List	of	Mapping	Channel	Index	Values.

Prototype:
void	setMapVert(int	mp,	int	i,	const	UVVert&xyz);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	a	single	texture	or	vertex	color	value	for	the	specified	channel	of	this
mesh.

Parameters:
int	mp
Specifies	the	channel.	See	List	of	Mapping	Channel	Index	Values.
int	i
The	zero	based	index	of	the	vertex	to	set.
const	UVVert&xyz
The	value	to	set.

Prototype:
void	MakeMapPlanar(int	mp);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Applies	a	simple	planar	mapping	to	the	specified	channel.	This	is	done	by
copying	the	mesh	topology	and	vertex	locations	into	the	map.

Parameters:
int	mp
Specifies	the	channel.	See	List	of	Mapping	Channel	Index	Values.

Prototype:
BitArray	GetIsoMapVerts(int	mp);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	BitArray	with	a	bit	set	for	each	isolated	vertex	(un-referenced	by
any	face)	for	the	specified	channel.

Parameters:
int	mp

Specifies	the	channel.	See	List	of	Mapping	Channel	Index	Values.

Prototype:
void	DeleteMapVertSet(int	mp,	BitArray	set,	BitArray
*fdel=NULL);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deletes	the	map	vertices	indicated.

Parameters:
int	mp
Specifies	the	channel.	See	List	of	Mapping	Channel	Index	Values.
BitArray	set
Indicates	which	map	verts	should	be	deleted.	set.GetSize()	should	equal	this
mesh's	getNumMapVerts(mp).
BitArray	*fdel=NULL
If	non-NULL,	this	points	to	a	BitArray	that	will	be	filled	in	with	the	faces	that
will	need	to	be	deleted	or	have	new	map	verts	assigned	because	they	used	a
map	vert	that	was	deleted.	(The	size	will	be	set	to	this	mesh's	numFaces.)

Prototype:
void	DeleteIsoMapVerts(int	mp);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	deletes	each	isolated	vertex	(un-referenced	by	any	face)	for	the
specified	channel.

Parameters:
int	mp=-1
Specifies	the	channel.	See	List	of	Mapping	Channel	Index	Values.	The	default
value	of	-1	indicates	to	do	all	active	maps.

Prototype:
void	DeleteIsoMapVerts();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	deletes	each	isolated	vertex	(un-referenced	by	any	face)	for	the
all	active	maps.

Prototype:
void	freeMapVerts(int	mp);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deallocates	the	texture	or	vertex	color	vertices	for	the	specified	channel	of	this
mesh.

Parameters:
int	mp
Specifies	the	channel.	See	List	of	Mapping	Channel	Index	Values.

Prototype:
void	freeMapFaces(int	mp);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deallocates	the	texture	or	vertex	color	faces	for	the	specified	channel	of	this
mesh.

Parameters:
int	mp
Specifies	the	channel.	See	List	of	Mapping	Channel	Index	Values.

Vertex	Data	Methods
Prototype:
void	setNumVData(int	ct,	BOOL	keep=FALSE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	number	of	channels	of	vertex	data	used	by	the	mesh.

Parameters:

int	ct
The	number	of	elements	of	vertex	data	to	set.
BOOL	keep=FALSE
If	TRUE	any	old	vertex	data	is	kept;	otherwise	it	is	discarded.

Prototype:
int	getNumVData()	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	vertex	data	channels	maintained	by	this	mesh.

Prototype:
BOOL	vDataSupport(int	vd)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	specified	channel	of	vertex	data	is	available	for	this
mesh;	otherwise	FALSE.

Parameters:
int	vd
The	vertex	data	channel.	See	List	of	Vertex	Data	Index	Options.

Prototype:
void	setVDataSupport(int	vd,	BOOL	support=TRUE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	if	the	specified	channel	of	vertex	data	is	supported	by	this	mesh.

Parameters:
int	vd
The	vertex	data	channel.	See	List	of	Vertex	Data	Index	Options.
BOOL	support=TRUE
TRUE	to	indicate	the	channel	is	supported;	FALSE	to	indicate	it's	not.	If
TRUE	is	specified	then	numVerts	elements	are	allocated	(if	needed).	If

FALSE	is	specified	the	data	for	the	channel	is	freed.

Prototype:
void	*vertexData(int	vd)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	vertex	data	for	the	specified	channel	or	NULL	if	the
channel	is	not	supported.	If	supported	then	the	size	of	this	array	is	numVerts.

Parameters:
int	vd
The	vertex	data	channel.	See	List	of	Vertex	Data	Index	Options.

Prototype:
float	*vertexFloat(int	vd)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	floating	point	vertex	data	for	the	specified	channel	of
this	mesh	or	NULL	if	the	channel	is	not	supported.	If	supported	then	the	size
of	this	array	is	numVerts.

Parameters:
int	vd
The	vertex	data	channel.	See	List	of	Vertex	Data	Index	Options.

Prototype:
void	freeVData(int	vd);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deallocates	the	vertex	data	for	the	specified	chanel.

Parameters:
int	vd
The	vertex	data	channel.	See	List	of	Vertex	Data	Index	Options.

Prototype:
void	freeAllVData();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deallocates	the	vertex	data	from	all	the	channels	and	sets	the	number	of
supported	channels	to	0.

Prototype:
float	*getVertexWeights();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	floating	point	vertex	weight	data.

Prototype:
void	SupportVertexWeights();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	channel	support	for	the	vertex	weights	channel
(VDATA_WEIGHT).

Prototype:
void	ClearVertexWeights();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Clears	(deallocates)	the	vertex	weights	channel	data.

Prototype:
void	freeVertexWeights();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deallocates	the	vertex	weights	channel	data	(same	as
ClearVertexWeights()	above).

Prototype:
float	*getVSelectionWeights();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	floating	point	vertex	selection	weights	data.

Prototype:
void	SupportVSelectionWeights();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	channel	support	for	the	vertex	weights	channel
(VDATA_SELECT).

Prototype:
void	ClearVSelectionWeights();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Clears	(deallocates)	the	vertex	selection	weights	channel	data.

Prototype:
void	freeVSelectionWeights();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deallocates	the	vertex	selection	weights	channel	data	(same	as
ClearVSelectionWeights()	above).

Normals	Methods

Prototype:
void	setNormal(int	i,	const	Point3	&xyz);

Remarks:
Sets	a	single	'rendered'	normal	in	the	rVerts	array	of	RVertex	instances.

Parameters:
int	i
A	zero	based	index	into	the	rVerts	array	of	the	normal	to	store.
const	Point3	&xyz
The	normal	to	store	in	device	coordinates.	This	should	be	a	unit	vector.

Prototype:
Point3&	getNormal(int	i);

Remarks:
Returns	the	'i-th'	'rendered'	normal	from	the	rVerts	array.

Parameters:
int	i
A	zero	based	index	into	the	rVerts	array	of	the	normal	to	get.

Prototype:
void	setFaceNormal(int	i,	const	Point3	&xyz);

Remarks:
Sets	the	'i-th'	face	normal.

Parameters:
int	i
A	zero	based	index	into	the	face	normal	array	of	the	normal	to	store.
const	Point3	&xyz
The	face	normal	to	store.	This	should	be	a	unit	vector.

Prototype:
Point3&	getFaceNormal(int	i);

Remarks:
Returns	the	'i-th'	face	normal.

Parameters:
int	i
Specifies	the	index	of	the	face	normal	to	retrieve.

Prototype:
void	buildNormals();

Remarks:
This	method	resolves	the	normals	on	the	RVertex	array.	If	the	Mesh	already
has	normals	at	each	vertex,	the	normal	is	just	moved	to	the	RVertex	array.
See	Class	RVertex	and	Class	RNormal.
If	you	are	creating	a	Mesh	by	hand,	after	you	are	done	specifying	all	the
vertices	and	faces,	this	method	should	be	called.	This	allocates	the	RVertex
and	RNormal	database	for	the	Mesh.	This	will	allow	you	to	query	the
Mesh	and	ask	about	normals	on	the	vertices.	Also,	if	you	deform	a	Mesh	(i.e.
take	one	of	the	vertices	and	move	it),	you	should	call	this	method	again.
Actually,	if	you	are	only	moving	one	normal	you	only	need	to	smooth	the
polygons	that	share	the	vertex.	However,	there	is	no	method	to	smooth	a
subset	of	a	Mesh,	you	either	have	to	do	it	by	hand	or	call	this	method	to
smooth	the	entire	Mesh.
This	method	also	builds	the	face	normals	for	the	mesh.

Prototype:
void	buildRenderNormals();

Remarks:
This	method	is	similar	to	buildNormals()	above,	but	ignores	the	material
index	(mtlIndex).	In	other	words,	the	difference	between	this	and
buildNormals()	is	that	it	doesn't	look	at	the	mtlIndex	of	the	faces:	normals
of	faces	with	the	same	smoothing	group	are	averaged	regardless.

Prototype:
void	checkNormals(BOOL	illum);

Remarks:
This	method	can	be	used	to	build	the	normals	and	allocate	RVert	space	only
if	necessary.	This	is	a	very	inexpensive	call	if	the	normals	are	already
calculated.	When	illum	is	FALSE,	only	the	RVerts	allocation	is	checked
(since	normals	aren't	needed	for	non-illum	rendering).	When	illum	is	TRUE,
normals	will	also	be	built,	if	they	aren't	already.	So,	to	make	sure	normals	are
built,	call	this	with	illum=TRUE.

Parameters:
BOOL	illum
If	TRUE	then	normals	are	built.	If	FALSE	then	only	the	RVert	array	is
allocated.

Prototype:
RVertex	&getRVert(int	i)

Remarks:
This	method	returns	the	'i-th'	RVertex.

Parameters:
int	i
Specifies	the	index	of	the	RVertex	to	retrieve.

Prototype:
RVertex	*getRVertPtr(int	i)

Remarks:
This	method	returns	a	pointer	to	the	'i-th'	RVertex.

Parameters:
int	i
Specifies	the	index	of	the	RVertex	to	retrieve.

Material	Methods

Prototype:
MtlID	getFaceMtlIndex(int	i);

Remarks:
Retrieves	the	zero	based	material	index	of	the	'i-th'	face.

Parameters:
int	i
Specifies	the	face	index.	This	is	the	zero	based	index	into	the	faces	array.

Prototype:

void	setFaceMtlIndex(int	i,	MtlID	id);
Remarks:
Sets	the	material	index	of	the	'i-th'	face.

Parameters:
int	i
Specifies	the	face	index.	This	is	the	zero	based	index	into	the	faces	array.
MtlID	id
The	material	index	for	the	'i-th'	face.

Prototype:
void	setMtlIndex(MtlID	i);

Remarks:
This	method	is	no	longer	used.

Prototype:
MtlID	getMtlIndex();

Remarks:
This	method	is	no	longer	used.

Prototype:
void	createFaceMtlIndexList();

Remarks:
This	method	is	no	longer	used.

Prototype:
void	freeFaceMtlIndexList();

Remarks:
This	method	is	no	longer	used.

Render	/	Hit	Test	/	Snap	Methods

Prototype:

void	render(GraphicsWindow	*gw,	Material	*ma,	RECT	*rp,
	int	compFlags,	int	numMat=1,	InterfaceServer	*pi	=	NULL);

Remarks:
Renders	this	Mesh	using	the	specified	graphics	window	and	array	of	materials.
Note:	If	a	display	routine	makes	multiple	calls	to	this	method	you	need	to	have
called:
gw->setMaterial(inode->Mtls()[0]);

before	calling	Mesh::render().	If	you	don't	then	you	may	get	the	wrong
material	for	material	ID	0.

Parameters:
GraphicsWindow	*gw
Points	to	the	graphics	window	to	render	to.
Material	*ma
The	list	of	materials	to	use	to	render	the	mesh.	See	Class	Material,	Class
INode	-	Material	methods.
RECT	*rp
Specifies	the	rectangular	region	to	render.	If	the	mesh	should	be	rendered	to
the	entire	viewport	pass	NULL.
int	compFlags
One	or	more	of	the	following	flags:
COMP_TRANSFORM
Forces	recalculation	of	the	model	to	screen	transformation;	otherwise
attempt	to	use	the	cache.
COMP_IGN_RECT
Forces	all	polygons	to	be	rendered;	otherwise	only	those	intersecting	the
box	will	be	rendered.
COMP_LIGHTING
Forces	re-lighting	of	all	vertices	(as	when	a	light	moves);	otherwise	only	re-
light	moved	vertices
COMP_ALL
All	of	the	above	flags.
COMP_OBJSELECTED
If	this	bit	is	set	then	the	node	being	displayed	by	this	mesh	is	selected.

Certain	display	flags	only	activate	when	this	bit	is	set.
int	numMat=1
The	number	of	materials	for	the	mesh.
InterfaceServer	*pi	=	NULL
This	pointer	to	an	InterfaceServer	can	be	used	to	get	hold	of	the	IXTCAccess
pointer.
And	IXTCAccess	interface	can	also	be	obtained	from	the	object	by	calling
Object::GetInterface
(IXTCACCESS_INTERFACE_ID).

Sample	Code:
The	following	code	shows	this	method	being	used	to	render	the	mesh	as	part
of	the	BaseObject::Display()	method:
int	SimpleObject::Display(TimeValue	t,	INode*	inode,
	ViewExp	*vpt,	int	flags)
	{
	if	(!OKtoDisplay(t))	return	0;
	GraphicsWindow	*gw	=	vpt->getGW();
	Matrix3	mat	=	inode->GetObjectTM(t);
	UpdateMesh(t);	//	UpdateMesh()	just	calls	BuildMesh()
	gw->setTransform(mat);
	mesh.render(gw,	inode->Mtls(),
(flags&USE_DAMAGE_RECT)	?	&vpt->GetDammageRect()	:	NULL,
COMP_ALL,	inode->NumMtls());
	return(0);
	}

Prototype:
BOOL	select(GraphicsWindow	*gw,	Material	*ma,
	HitRegion	*hr,	int	abortOnHit	=	FALSE,	int	numMat=1);

Remarks:
Checks	the	given	HitRecord	hr	to	see	if	it	intersects	this	Mesh	object.

Parameters:
GraphicsWindow	*gw
Points	to	the	graphics	window	to	check.

Material	*ma
The	list	of	materials	for	the	mesh.
HitRegion	*hr
This	describes	the	properties	of	a	region	used	for	the	hit	testing.	See	Class
HitRegion.
int	abortOnHit	=	FALSE
If	nonzero,	the	hit	testing	is	complete	after	any	hit;	otherwise	all	hits	are
checked.
int	numMat=1
The	number	of	materials	for	the	mesh.

Return	Value:
TRUE	if	the	item	was	hit;	otherwise	FALSE.

Prototype:
void	snap(GraphicsWindow	*gw,	SnapInfo	*snap,	IPoint2	*p,
Matrix3	&tm);

Remarks:
Checks	to	see	if	there	is	a	snap	point	near	the	given	mouse	point.

Parameters:
GraphicsWindow	*gw
The	graphics	window	in	which	to	check.
SnapInfo	*snap
This	structure	describes	the	snap	settings	used,	and	the	results	of	the	snap	test.
See	Structure	SnapInfo.
IPoint2	*p
The	mouse	point	to	check.
Matrix3	&tm
The	object	transformation	matrix.	This	is	the	transformation	to	place	the	object
into	the	world	coordinate	system.

Sample	Code:
//	Checks	to	see	if	there	is	a	snap	point	near	the	given	mouse	point.
void	TestObject::Snap(TimeValue	t,	INode*	inode,	SnapInfo	*snap,
	IPoint2	*p,	ViewExp	*vpt)	{

	//	Grab	the	object	TM
	Matrix3	tm	=	inode->GetObjectTM(t);
	//	Grab	the	graphics	window
	GraphicsWindow	*gw	=	vpt->getGW();
	//	Make	sure	our	mesh	is	up	to	date
	UpdateMesh(t);	//	UpdateMesh()	just	calls	BuildMesh()
	//	Set	the	transform	in	the	GW
	gw->setTransform(tm);
	//	Let	the	mesh	do	the	work...
	mesh.snap(gw,	snap,	p,	tm);
}

Prototype:
BOOL	SubObjectHitTest(GraphicsWindow	*gw,	Material	*ma,
	HitRegion	*hr,	DWORD	flags,
	SubObjHitList&	hitList,	int	numMat=1);

Remarks:
This	method	may	be	called	to	perform	sub-object	hit	testing	on	this	mesh.

Parameters:
GraphicsWindow	*gw
The	graphics	window	associated	with	the	viewport	the	mesh	is	being	hit	tested
in.
Material	*ma
The	list	of	materials	for	the	mesh.	See	Class	Material,	Class	INode	-	Material
methods.
HitRegion	*hr
This	describes	the	properties	of	a	region	used	for	the	hit	testing.	See	Class
HitRegion.
DWORD	flags
Flags	for	sub	object	hit	testing.	One	or	more	of	the	following	values:
SUBHIT_SELONLY
Selected	only.
SUBHIT_UNSELONLY
Unselected	only.

SUBHIT_ABORTONHIT
Abort	hit	testing	on	the	first	hit	found.
SUBHIT_SELSOLID
This	treats	selected	items	as	solid	and	unselected	items	as	not	solid.
Treating	an	item	as	solid	means	the	face	will	be	hit	if	the	mouse	is
anywhere	inside	the	face	region	and	not	just	over	a	visible	edge.
SUBHIT_USEFACESEL
When	this	bit	is	set,	the	sel	only	and	unsel	only	tests	will	use	the	faces
selection	when	doing	a	vertex	level	hit	test
SUBHIT_VERTS
Hit	test	vertices.
SUBHIT_FACES
Hit	test	faces.
SUBHIT_EDGES
Hit	test	edges.

SubObjHitList&	hitList
The	results	are	stored	here.	See	Class	SubObjHitList.
int	numMat=1
The	number	of	materials	for	the	mesh.

Return	Value:
TRUE	if	the	item	was	hit;	otherwise	FALSE.

Prototype:
void	displayNormals(int	b,	float	sc)

Remarks:
Controls	the	display	of	surface	normals	on	the	mesh	object.
Note	that	there	may	be	more	than	one	normal	per	vertex	if	faces	that	share	the
vertex	are	in	non-overlapping	smoothing	groups.	In	this	case,	all	normals
associated	with	the	given	vertex	are	drawn.

Parameters:
int	b
Nonzero	to	display	the	normals;	zero	to	turn	off	normals	display.
This	can	be	a	combination	of	MESH_DISP_FACE_NORMALS	and

MESH_DISP_VERTEX_NORMALS.	(The	arguments	may	be	or'ed
together	to	display	both.)	For	backwards	compatibility,
MESH_DISP_FACE_NORMALS	is	#define'd	to	be	"1",	so	sending	in
"TRUE"	will	turn	on	display	of	face	normals,	as	before.
float	sc
This	specifies	the	length	that	should	be	used	(in	world	units)	to	display	the
normals.	Since	all	normals	start	out	with	length	=1	they	probably	would	be	too
small	to	see	unless	they	were	scaled

Bounding	Box	Methods

Prototype:
void	buildBoundingBox();

Remarks:
Computes	the	bounding	box	of	the	Mesh.	If	surface	normals	are	displayed,
they	are	taken	into	account	in	the	computation	of	the	box.	The	bounding	box	is
stored	with	the	Mesh	object,	use	getBoundingBox()	to	retrieve	it.

Prototype:
Box3	getBoundingBox(Matrix3	*tm=NULL);

Remarks:
Retrieves	the	bounding	box	of	the	mesh	object.

Parameters:
Matrix3	*tm=NULL
The	optional	TM	allows	the	box	to	be	calculated	in	any	space.	NOTE:	This
computation	will	be	slower	because	all	the	points	must	be	transformed.

Return	Value:
The	bounding	box	of	the	Mesh.

Edge	Methods

Prototype:
void	displayAllEdges(int	b);

Remarks:
Controls	the	display	of	hidden	edges	of	this	mesh	object.	This	just	sets	the
Boolean	in	the	mesh	that	controls	whether	"hidden"	edges	(for	instance	the
diagonals	on	the	sides	of	a	cube)	are	displayed.

Parameters:
int	b
Nonzero	to	display	all	the	hidden	edges;	otherwise	zero.

Prototype:
void	EnableEdgeList(int	e);

Remarks:
This	method	is	used	internally.

Prototype:
void	BuildVisEdgeList();

Remarks:
This	method	is	used	internally.

Prototype:
void	DivideEdge(DWORD	edge,	float	prop,	bool	visDiag1=TRUE,
bool	fixNeighbors=TRUE,	bool	visDiag2=TRUE);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Divides	the	edge,	creating	a	new	point.	The	face	directly	using	this	edge	(face
edge/3)	is	also	divided	in	two,	and	other	faces	using	the	edge	may	optionally
be	split	to	use	the	split	edges.

Parameters:
DWORD	edge
The	edge	to	divide.
float	prop
The	proportion	along	the	edge	to	make	the	division.	An	edge	can	be	expressed
as	ff*3+ee,	where	ff	is	a	face	using	this	edge	and	ee	represents	which	pair	of
vertices	the	edge	is	between,	faces[ff]->v[ee]	and	faces[ff]->v[(ee+1)%3].	The

new	point	is	created	at	(1-prop)	times	the	first	vertex	plus	prop	times	the
second.	prop	may	vary	from	0	to	1.	prop=.5	gives	the	same	result	that
DivideEdge	(DWORD	edge)	would	generate.
bool	visDiag1=TRUE
Indicates	whether	the	"diagonal"	used	to	split	the	primary	face	this	edge	is	on
(edge/3)	is	visible	or	not.
bool	fixNeighbors=TRUE
Indicates	whether	other	faces	using	this	edge	should	also	be	split	to	use	the
two	new	edges,	or	if	they	should	be	left	as	they	were.	In	a	typical	mesh,	there
is	one	other	face	using	this	edge,	the	face	on	the	"other	side"	of	the	edge.	If
fixNeighbors	is	FALSE,	the	"other	side"	in	this	case	would	still	use	the
original	edge,	while	the	face	on	this	side	would	be	split	to	use	the	two	new
edges.	This	would	create	a	"hole"	in	the	mesh.
bool	visDiag2=TRUE
Indicates	whether	the	"diagonals"	used	to	split	other	faces	using	this	edge	are
visible	or	not.	This	argument	is	not	used	if	fixneighbors	is	FALSE.

Prototype:
void	DivideFace(DWORD	face,	DWORD	e1,	DWORD	e2,	float
prop1=.5f,	float	prop2=.5f,	bool	fixNeighbors=TRUE,	bool
split=FALSE);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Cuts	a	face	into	three	faces,	arranged	as	a	quad	and	a	triangle,	by	slicing	from
a	point	on	one	edge	to	a	point	on	another.

Parameters:
DWORD	face
The	face	to	be	divided.
DWORD	e1,	e2
The	index	of	edges	to	be	cut.	For	instance,	if	you	wanted	to	cut	from	the	edge
between	v[0]	and	v[1],	to	the	edge	between	v[2]	and	v[0],	you	would	use	e1=0
and	e2=2.
float	prop1=.5f
The	proportion	along	edge	e1	to	start	cutting.

float	prop2=.5f
The	proportion	along	edge	e2	to	stop	cutting.
bool	fixNeighbors=TRUE
Indicates	whether	faces	also	using	the	cut	edges	should	be	split	to	use	the	new,
subdivided	edges.
bool	split=FALSE
Indicates	that	the	triangle	and	quad	created	by	this	action	should	use	different
vertices.	If	TRUE,	the	vertices	created	by	the	cut	are	duplicated,	with	one	set
being	used	for	faces	on	one	side	and	the	other	set	being	used	by	faces	on	the
other	side.

Prototype:
void	TurnEdge(DWORD	edge,	DWORD	*otherEdge);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Turns	an	edge.	The	quadrilateral	formed	by	the	triangles	on	either	side	of	this
edge	essentially	has	its	diagonal	switched.

Parameters:
DWORD	edge
The	edge	to	be	turned.
DWORD	*otherEdge
If	non-NULL,	this	should	point	to	a	variable	in	which	the	index	of	the	"other
side"	of	this	edge	should	be	stored.	In	essence,	the	two	sides	of	an	edge	used
by	two	faces,	f1	and	f2,	are	stored	in	two	different	locations,	f1*3+e1	and
f2*3+e2,	where	e1,	e2	are	0,	1,	or	2.	This	argument	is	provided	so	you	have
easy	access	to	the	other	side	of	the	edge,	if	desired,	to	make	easy	selection	or
visibility	changes	to	the	edge	or	other	changes	to	the	faces	on	both	sides.

Prototype:
void	DrawVisEdgeList(GraphicsWindow	*gw,	DWORD	flags);

Remarks:
This	is	used	internally.

Prototype:
void	HitTestVisEdgeList(GraphicsWindow	*gw,	int	useFloats,
	int	abortOnHit);

Remarks:
This	is	used	internally.

Prototype:
void	InvalidateEdgeList();

Remarks:
This	is	used	internally.

Prototype:
void	InvalidateGeomCache();

Remarks:
Call	this	method	after	the	geometry	of	this	Mesh	has	changed.	It	invalidates
the	bounding	box,	and	tosses	out	the	cached	normals	and	edge	list.

Prototype:
void	InvalidateTopologyCache();

Remarks:
Call	this	method	after	you	alter	vertex	or	face	lists	or	revise	edge	visibility
flags.	It	will	invalidate	the	edge	and	strip	database	maintained	by	the	mesh.

Prototype:
void	FreeAll();

Remarks:
Cleans	up	the	allocated	arrays.	This	frees	the	Faces,	Verts,	TVerts,	TVFaces,
FaceMtlIndexList	and	invalidates	the	geometry	cache.

Strip	Methods

Prototype:

BOOL	BuildStrips();
Remarks:
This	method	is	available	in	release	2.0	and	later	only.
It	builds	the	strips	database	inside	the	mesh.	See	the	method
BuildStripsAndEdges()	below.

Prototype:
void	BuildStripsAndEdges();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
It	builds	the	strips	and	edges	database	inside	the	mesh.	When	developers
create	a	new	mesh	for	display	then	this	method	should	be	called.	See	the
section	on	Stripping	in	the	Advanced	Topics	section	Working	with	Meshes	for
details	on	this	method.

Prototype:
void	InvalidateStrips();

Remarks:
This	method	invalidates	the	strips	database.

Prototype:
void	Stripify(Strip	*s,	StripData	*sd,	int	vtx);

Remarks:
This	method	is	used	internally.

Prototype:
void	getStripVertColor(GraphicsWindow	*gw,	int	cv,	int	flipped,
MtlID	mID,	DWORD	smGroup,	Point3	&rgb);

Remarks:
This	method	is	used	internally.

Prototype:
void	getStripNormal(GraphicsWindow	*gw,	int	cv,	MtlID	mID,
DWORD	smGroup,	Point3	&nor);

Remarks:
This	method	is	used	internally.

Prototype:
void	Draw3DStrips(GraphicsWindow	*gw,	Material	*ma,	int
numMat);

Remarks:
This	method	is	used	internally.

Prototype:
BOOL	getStripTVert(GraphicsWindow	*gw,	int	cv,	Point3	&uvw);

Remarks:
This	method	is	used	internally.

Prototype:
void	DrawStrips(GraphicsWindow	*gw,	Material	*ma,	int
numMat);

Remarks:
This	method	is	used	internally.

Data	Flow	Evaluation	Methods

Prototype:
void	ShallowCopy(Mesh	*amesh,	ULONG_PTR	channels);

Remarks:
Makes	a	copy	of	the	specified	channels	of	the	specified	Mesh	object's	data
structures	(but	not	all	the	data	in	these	structures)	into	this	Mesh.	For	example
the	verts,	tVerts,	tvFaces,	...	are	not	copied.

Parameters:
Mesh	*amesh
Specifies	the	source	Mesh	to	copy.
ULONG_PTR	channels
Specifies	the	channels	to	copy.	See	List	of	Channels.	Note:	Prior	to	R4	this
parameter	was	an	unsigned	long.

Prototype:
void	DeepCopy(Mesh	*amesh,	ULONG_PTR	channels);

Remarks:
Makes	a	complete	copy	of	the	specified	channels	of	the	specified	Mesh	object
(its	data	structures	and	all	the	data	in	these	structures)	into	this	Mesh.

Parameters:
Mesh	*amesh
Specifies	the	source	Mesh	to	copy.
ULONG_PTR	channels
Specifies	the	channels	to	copy.	See	List	of	Channels.	Note:	Prior	to	R4	this
parameter	was	an	unsigned	long.

Prototype:
void	NewAndCopyChannels(ULONG_PTR	channels);

Remarks:
This	method	replaces	the	specified	channels	with	newly	allocated	copies.

Parameters:
ULONG_PTR	channels
Specifies	the	channels	to	copy.	See	List	of	Channels.	Note:	Prior	to	R4	this
parameter	was	an	unsigned	long.

Prototype:
void	FreeChannels(ULONG_PTR	channels,	int	zeroOthers=1);

Remarks:
Release	the	memory	associated	with	the	specified	channels.	For	example	if	the
TOPO_CHANNEL	is	specified	the	faces	are	freed,	if	the	GEOM_CHANNEL
is	specified	the	vertices	are	freed,	etc.

Parameters:
ULONG_PTR	channels
Specifies	the	channels	to	free.	Channels	not	specified	are	left	intact.	See	List
of	Channels.	Note:	Prior	to	R4	this	parameter	was	an	unsigned	long.
int	zeroOthers=1

If	nonzero	then	the	various	pointers	are	set	to	NULL	and	their	counts	are
zeroed.	For	example	faces,	verts,	tVerts,	and	tvFace	are	set	to	NULL	and
numFaces,	numVerts	and	numTVerts	are	set	to	0.	If	this	is	passed	as	0,
these	pointers	and	counts	are	left	unaltered.

Mesh	/	Display	Flags

Prototype:
void	SetDispFlag(DWORD	f)

Remarks:
Sets	the	state	of	the	display	flags.	See	Data	Members:	above	for	a	list	of	the
display	flags.

Parameters:
DWORD	f
Specifies	the	flags	to	set.

Prototype:
DWORD	GetDispFlag(DWORD	f)

Remarks:
Returns	the	state	of	the	specified	display	flags.	See	Data	Members:	above	for
a	list	of	the	display	flags.

Parameters:
DWORD	f
Specifies	the	flags	to	retrieve.

Prototype:
void	ClearDispFlag(DWORD	f)

Remarks:
Sets	the	state	of	the	specified	display	flags	to	0.

Parameters:
DWORD	f
Specifies	the	flags	to	clear.

Prototype:
void	SetFlag(DWORD	f)

Remarks:
Sets	the	state	of	the	mesh	flags.

Parameters:
DWORD	f
Specifies	the	flags	to	set.	See	List	of	Mesh	Flags.

Prototype:
DWORD	GetFlag(DWORD	f)

Remarks:
Returns	the	state	of	the	specified	mesh	flags.	See	Data	Members:	above	for	a
list	of	the	mesh	flags.

Parameters:
DWORD	f
Specifies	the	flags	to	retrieve.	See	List	of	Mesh	Flags.
	

Prototype:
void	ClearFlag(DWORD	f)

Remarks:
Sets	the	state	of	the	specified	mesh	flags	to	0.

Parameters:
DWORD	f
Specifies	the	flags	to	clear.	See	List	of	Mesh	Flags.

Selection	Access

Prototype:
BitArray&	VertSel()

Remarks:
Retrieves	the	bits	representing	the	vertex	selection	status.	See	Data	Members:

above.
Return	Value:
The	vertex	selection	status.

Prototype:
BitArray&	FaceSel()

Remarks:
Retrieves	the	bits	representing	the	face	selection	status.	See	Data	Members:
above.

Return	Value:
The	face	selection	status.

Prototype:
BitArray	VertexTempSel();

Remarks:
Constructs	a	vertex	selection	list	based	on	the	current	selection	level.	For
example	if	the	selection	level	is	at	object	level	all	the	bits	are	set	(vertices,
faces	and	edges).	If	the	selection	level	is	at	vertex	level	only	the	selected
vertex	bits	are	set.

Return	Value:
A	BitArray	reflecting	the	current	selection	level.

Sample	Code:
BitArray	sel	=	mesh->VertexTempSel();
for	(int	i	=	0;	i	<	mesh->getNumVerts();	i++)	{
	if	(sel[i])	{
...
}
	}

Intersect	Ray	/	Weld	/	Optimize	/	Apply	Mapping

Prototype:
int	IntersectRay(Ray&	ray,	float&	at,	Point3&	norm);

Remarks:
Calculates	the	intersection	of	the	specified	ray	with	this	mesh	object.	This
allows	Mesh	objects	to	easily	implement	the	Object::IntersectRay()
method.

Parameters:
Ray&	ray
Specifies	the	origin	and	direction	of	the	ray	to	intersect	with	the	mesh.	See
Class	Ray.
float&	at
The	computed	point	of	intersection	on	the	surface	of	the	mesh.
Point3&	norm
The	face	normal	at	the	point	of	intersection	(at).

Return	Value:
Nonzero	if	the	ray	intersected	the	mesh	object;	otherwise	0.	Note	that	this
method	ignores	backfaces	when	computing	the	result.

Prototype:
int	IntersectRay(Ray&	ray,	float&	at,	Point3&	norm,	DWORD
&fi,	Point3	&bary);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Calculates	the	intersection	of	the	specified	ray	with	this	mesh	object.	This	new
version	also	returns	the	face	index	that	was	intersected	and	the	barycentric
coordinates	of	that	face.
Barycentric	coordinates	are	the	coordinates	relative	to	the	triangular	face.	The
barycentric	coordinates	of	a	point	p	relative	to	a	triangle	describe	that	point	as
a	weighted	sum	of	the	vertices	of	the	triangle.	If	the	barycentric	coordinates
are	b0,	b1,	and	b2,	then:
p	=	b0*p0	+	b1*p1	+	b2*p2;
where	p0,	p1,	and	p2	are	the	vertices	of	the	triangle.	The	Point3	returned	by
this	method	has	the	barycentric	coordinates	stored	in	its	three	coordinates.
These	coordinates	are	relative	to	the	triangular	face	that	was	intersected.	These
barycentric	coordinates	can	be	used	to	interpolate	any	quantity	whose	value	is

known	at	the	vertices	of	the	triangle.
Parameters:
Ray&	ray
Specifies	the	origin	and	direction	of	the	ray	to	intersect	with	the	mesh.	See
Class	Ray.
float&	at
The	computed	point	of	intersection	on	the	surface	of	the	mesh.
Point3&	norm
The	face	normal	at	the	point	of	intersection	(at).
DWORD	&fi
The	face	index	of	the	face	that	was	intersected	is	returned	here.
Point3	&bary
The	barycentric	coordinates	of	the	face	that	was	hit.

Return	Value:
Nonzero	if	the	ray	intersected	the	mesh	object;	otherwise	0.

Prototype:
void	WeldCollinear(BitArray	&set);

Remarks:
This	method	is	used	internally.

Prototype:
void	Optimize(float	normThresh,	float	edgeThresh,

	float	bias,	float	maxEdge,	DWORD	flags,	MeshOpProgress
*prog=NULL);
Remarks:
Allows	this	Mesh	to	be	reduced	in	complexity	by	reducing	the	number	of
faces	based	on	a	surface	normal	threshold.	Adjacent	faces	whose	difference	in
surface	normal	angle	falls	below	the	specified	threshold	will	be	collapsed	into
a	single	triangle.	The	Mesh	may	also	have	its	edge	visibility	set	based	on	a
surface	normal	threshold.

Parameters:

float	normThresh
When	the	angle	between	adjacent	surface	normals	is	less	than	this	value	the
optimization	is	performed.	This	angle	is	specified	in	radians.
float	edgeThresh
When	the	angle	between	adjacent	surface	normals	is	less	than	this	value	the
auto	edge	is	performed	(if	the	OPTIMIZE_AUTOEDGE	flag	is	set).	This
angle	is	specified	in	radians.
float	bias
When	optimizing	mesh	objects,	as	the	optimization	increases,	you	can	get	lots
of	long	skinny	'degenerate'	triangles	(that	cause	rendering	artifacts).	Increasing
the	bias	parameter	keeps	triangles	from	becoming	degenerate.	The	range	of
values	is	from	0	to	1	(where	0	turns	bias	off).	Values	close	to	1	reduce	the
amount	of	optimization	in	favor	of	maintaining	equilateral	triangles.
float	maxEdge
This	parameter	is	available	in	release	2.0	and	later	only.
This	will	prevent	the	optimize	function	from	creating	edges	longer	than	this
value.	If	this	parameter	is	<=0	no	limit	is	placed	on	the	length	of	the	edges.
DWORD	flags
These	flags	control	the	optimization.	Specify	zero	or	more	of	the	following
values:
OPTIMIZE_SAVEMATBOUNDRIES
Specifies	that	faces	won't	be	collapsed	across	a	material	boundary.
OPTIMIZE_SAVESMOOTHBOUNDRIES
Specifies	that	faces	won't	be	collapsed	across	a	dissimilar	smoothing	group
boundary.
OPTIMIZE_AUTOEDGE
Specifies	that	the	edge	visibility	should	be	set	automatically	based	on	the
angle	between	adjacent	surface	normals.	This	will	only	set	edges	as
invisible	-	it	will	not	set	edges	as	visible.

MeshOpProgress	*prog=NULL
A	callback	used	for	lengthy	optimize	operations.	See	Class	MeshOpProgress.

Prototype:
void	ApplyUVWMap(int	type,float	utile,	float	vtile,

	float	wtile,int	uflip,	int	vflip,	int	wflip,
	int	cap,const	Matrix3	&tm,	int	channel=1);

Remarks:
This	method	may	be	called	to	map	this	Mesh	with	UVW	mapping	coordinates.

Parameters:
int	type
The	mapping	type.	One	of	the	following	values:

MAP_PLANAR
MAP_CYLINDRICAL
MAP_SPHERICAL
MAP_BALL
MAP_BOX

float	utile
Number	of	tiles	in	the	U	direction.
float	vtile
Number	of	tiles	in	the	V	direction.
float	wtile
Number	of	tiles	in	the	W	direction.
int	uflip
If	nonzero	the	U	values	are	mirrored.
int	vflip
If	nonzero	the	V	values	are	mirrored.
int	wflip
If	nonzero	the	W	values	are	mirrored.
int	cap
This	is	used	with	MAP_CYLINDRICAL.	If	nonzero,	then	any	face	normal
that	is	pointing	more	vertically	than	horizontally	will	be	mapped	using	planar
coordinates.
const	Matrix3	&tm
This	defines	the	mapping	space.	As	each	point	is	mapped,	it	is	multiplied	by
this	matrix,	and	then	it	is	mapped.
int	channel=1
This	parameter	is	available	in	release	2.0	and	later	only.

This	indicates	which	channel	the	mapping	is	applied	to	--	channel==1
corresponds	to	the	original	texture	mapping	channel.

Prototype:
MeshMap	&	Map(int	mp);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	map	for	the	specified	map	channel.

Parameters:
int	mp
The	map	channel.

Default	Implementation:
{	return	(mp<0)	?	hmaps[-1-mp]	:	maps[mp];	}

Normals	/	Smoothing	/	Edges	/	Face	check	Functions

Prototype:
void	FlipNormal(int	i);

Remarks:
Flips	the	surface	normal	of	the	'i-th'	face	(this	just	rearranges	the	indices	for
the	face	structure).	This	also	makes	sure	the	edge	flags	are	rearranged	as	well.
If	there	are	UV	coordinates	these	are	rearranged	appropriately.

Parameters:
int	i
The	index	of	the	face	to	flip.

Prototype:
void	UnifyNormals(BOOL	selOnly);

Remarks:
Unifies	the	surfaces	normals	of	this	Mesh.	This	may	be	for	selected	faces,	or
the	entire	mesh.

Parameters:

BOOL	selOnly
If	TRUE	only	the	selected	faces	are	unified.

Prototype:
void	AutoSmooth(float	angle,BOOL	useSel,BOOL
preventIndirectSmoothing=FALSE);

Remarks:
Performs	an	auto	smooth	on	the	mesh,	setting	the	smoothing	groups	based	on
the	surface	normals.

Parameters:
float	angle
The	minimum	angle	between	surface	normals	for	smoothing	to	be	applied,	in
radians.
BOOL	useSel
If	TRUE	only	the	selected	faces	are	smoothed.
BOOL	preventIndirectSmoothing=FALSE
This	parameter	is	available	in	release	2.0	and	later	only.
TRUE	to	turn	on;	FALSE	to	leave	off.	This	matches	the	option	in	the	Smooth
Modifier	UI	--	use	this	to	prevent	smoothing	�leaks"	when	using	this	method.
If	you	use	this	method,	and	portions	of	the	mesh	that	should	not	be	smoothed
become	smoothed,	then	try	this	option	to	see	if	it	will	correct	the	problem.
Note	that	the	problem	it	corrects	is	rare,	and	that	checking	this	slows	the	Auto
Smooth	process.

Prototype:
Edge	*MakeEdgeList(int	*edgeCount,	int	flagdbls=0);

Remarks:
This	method	is	used	internally.

Prototype:
int	DeleteFlaggedFaces();

Remarks:
This	method	removes	faces	from	the	face	list	with	the	FACE_WORK	flag

set.
Return	Value:
The	number	of	faces	deleted.

Prototype:
void	DeleteSelected();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deletes	all	seleted	elements	of	the	current	selection	level.

Prototype:
void	DeleteVertSet(BitArray	set);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deletes	the	vertices	as	specified	by	the	BitArray.

Parameters:
BitArray	set
Set	of	bits	to	indicate	the	vertices	to	delete.

Prototype:
void	DeleteFaceSet(BitArray	set,	BitArray	*isoVert=NULL);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deletes	faces	as	specified	by	the	BitArray.

Parameters:
BitArray	set
Set	of	bits	to	indicate	the	faces	to	delete.
BitArray	*isoVert=NULL
If	non	NULL	then	this	method	will	be	setup	to	flag	vertices	that	were	isolated
by	the	face	deletion.	This	set	can	then	be	passed	to	DeleteVertSet()	to	delete
isolated	vertices.

Prototype:
BOOL	DoesFaceExist(DWORD	v0,	DWORD	v1,	DWORD	v2);

Remarks:
This	method	may	be	called	to	determine	if	an	equivalent	face	already	exists.

Parameters:
DWORD	v0
Index	of	the	first	vertex.
DWORD	v1
Index	of	the	second	vertex.
DWORD	v2
Index	of	the	third	vertex.

Return	Value:
TRUE	if	an	equivalent	face	already	exists;	otherwise	FALSE.

Prototype:
BOOL	RemoveDegenerateFaces();

Remarks:
Removes	faces	that	have	two	or	more	equal	indices.

Return	Value:
TRUE	if	any	degenerate	faces	were	found;	otherwise	FALSE.

Prototype:
BOOL	RemoveIllegalFaces();

Remarks:
Removes	faces	that	have	indices	that	are	out	of	range

Return	Value:
TRUE	if	any	illegal	faces	were	found;	otherwise	FALSE.

Prototype:
Point3	FaceNormal(DWORD	fi,	BOOL	nrmlize=FALSE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

This	method	returns	the	normal	of	the	specified	face.	If	nrmlize	is	TRUE,	it
makes	this	normal	unit	length.	Otherwise,	it's	the	edge	cross-product	length,
which	is	actually	2	times	the	area	of	the	face.

Parameters:
DWORD	fi
Specifies	the	face	whose	normal	is	returned.
BOOL	nrmlize=FALSE
Use	TRUE	to	make	the	normal	unit	length.

Prototype:
Point3	FaceCenter(DWORD	fi);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	returns	the	center	of	the	specified	face.

Parameters:
DWORD	fi
Specifies	the	face	whose	center	is	returned.

Prototype:
float	AngleBetweenFaces(DWORD	f0,	DWORD	f1);

Remarks:
Returns	the	angle	between	two	face	surface	normals	in	radians.

Parameters:
DWORD	f0
Index	of	the	first	face.
DWORD	f1
Index	of	the	second	face.

Prototype:
Point3	BaryCoords(DWORD	face,	Point3	p);

Remarks:
Computes	and	returns	the	barycentric	coordinates	of	a	point	in	the	plane	of	a

face	relative	to	that	face.
Parameters:
DWORD	face
The	index	of	the	face	to	check.
Point3	p
The	input	point.

Return	Value:
The	point	p	barycentric	coordinates.	If	the	point	p	is	inside	the	face	the
returned	values	will	sum	to	one.	Note:	If	the	face	(or	set	of	3	points)	is
degenerate,	ie	if	it	has	a	zero	length	normal	vector	((p1-p0)^(p2-p0)),	the
methods	return	Point3(-1,1,1).

Prototype:
void	FaceCenterTessellate(BOOL	ignoreSel=FALSE);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Tesselates	the	mesh	(or	only	the	selected	faces)	using	the	face/center	method.
This	means	each	face	is	subdivided	by	lines	from	a	new	vertex	at	the	center	to
the	original	vertices.

Parameters:
BOOL	ignoreSel=FALSE
If	TRUE	the	entire	mesh	is	tesselated;	otherwise	only	the	selected	faces.

Prototype:
void	EdgeTessellate(float	tens,BOOL	ignoreSel=FALSE);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Edge	tesselates	the	mesh	using	the	specified	tension	parameter.	This	method
can	operate	on	the	entire	mesh	or	only	the	selection	set.	Edge	tesselation
means	that	faces	are	internally	subdivided,	with	additional	faces	generated
from	a	new	vertex	in	the	middle	of	each	face	edge.

Parameters:
float	tens

The	tension	setting.	This	value	can	range	from	-100.0	to	100.0.	This	value
matches	the	parameter	in	the	Editable	Mesh	user	interface	when	tessellating
faces.
BOOL	ignoreSel=FALSE
If	TRUE	the	entire	mesh	is	tesselated;	otherwise	only	the	selected	faces.

Prototype:
void	IndentSelFaces(float	amount);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Indents	the	selected	faces,	in	a	manner	consistent	with	the	outlining	used	in
Bevel.

Parameters:
float	amount
The	amount	to	indent.

Prototype:
void	ExtrudeFaces(BOOL	doFace=TRUE);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Extrudes	the	selected	faces.	Note	that	this	is	just	a	topological	change.	The
new	extruded	faces	do	not	change	position	but	are	left	on	top	of	the	original
faces.

Parameters:
BOOL	doFace=TRUE
If	TRUE	the	faces	are	extruded.	If	FALSE	then	the	selected	edges	are
extruded.

Prototype:
void	BreakVerts(BitArray	set);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

Splits	the	vertices	specified	in	the	BitArray	so	that	they	are	only	used	by	a
single	face.

Parameters:
BitArray	set
This	array	of	bits,	one	per	vertex	in	the	mesh.	If	the	bit	is	set,	the
corresponding	vertex	in	the	mesh	is	copied	as	required	so	it	is	only	used	by	a
single	face.	If	the	bit	is	not	set	the	vertex	is	ignored.

Prototype:
BitArray	GetIsoVerts();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	returns	a	BitArray	(of	size	numVerts),	where	isolated	verts	are
selected.

Prototype:
void	DeleteIsoVerts();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Deletes	the	vertices	that	aren't	used	by	any	faces.

Prototype:
void	CloneFaces(BitArray	fset);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Creates	a	copy	of	the	faces	and	verts	used	by	those	faces	as	specified	by	the
BitArray	passed.	If	texture	faces	and	vertex	color	faces	are	present	they	are
cloned	as	well.

Parameters:
BitArray	fset
There	is	one	bit	in	this	array	for	each	face	in	the	mesh.	If	the	bit	is	set,	the
corresponding	face	in	the	mesh	is	cloned.	If	the	bit	is	zero	the	face	is	not

cloned.

Prototype:
void	PolyFromFace(DWORD	f,	BitArray	&set,	float	thresh,
BOOL	ignoreVisEdges,	AdjFaceList	*af=NULL);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	bits	for	all	faces	in	the	same	polygon	with	face	f.	Faces	already	selected
in	set	will	not	be	processed	--	so	if	f	is	"set",	nothing	happens.
The	definition	of	a	polygon	is	all	faces	sharing	invisible	edges	with	edge
angles	below	"thresh".

Parameters:
DWORD	f
Specifies	which	face	to	evaluate	--	the	zero	based	index	into	the	faces	array.
BitArray	&set
Specifies	which	faces	are	not	processed.	One	bit	for	each	face	with	set	bits	not
considered.
float	thresh
The	angle	in	radians	which	is	the	threshold	for	defining	a	polygon.	A	polygon
is	all	faces	sharing	invisible	edges	with	edge	angles	below	this	angle.
BOOL	ignoreVisEdges
If	TRUE,	the	edge	visibility	is	ignored	but	the	threshhold	is	still	relevant.
AdjFaceList	*af=NULL
This	adjacent	face	list	can	be	passed	if	there's	one	handy;	otherwise	a	new	one
will	be	computed	by	the	method.

Prototype:
void	ElementFromFace(DWORD	f,	BitArray	&set,	AdjFaceList
*af=NULL);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	sets	bits	for	all	faces	in	the	same	"element",	or	connected
component,	with	face	f.	Faces	already	selected	in	set	will	be	considered

"walls"	for	this	processing	and	will	not	be	evaluated.
Parameters:
DWORD	f
Specifies	which	face	to	evaluate	--	the	zero	based	index	into	the	faces	array.
BitArray	&set
Specifies	which	faces	are	considered	as	barriers	to	the	element	and	are	not
processed.	One	bit	for	each	face	with	set	bits	not	considered.
AdjFaceList	*af=NULL
This	adjacent	face	list	can	be	passed	if	there's	one	handy;	otherwise	a	new	one
will	be	computed	by	the	method.

Prototype:
void	FindVertsUsedOnlyByFaces(BitArray	&	fset,	BitArray	&
vset);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
When	faces	are	deleted	in	Edit	or	Editable	Mesh,	we	often	want	to	be	able	to
delete	the	verts	that	are	isolated	by	this	action.	This	method	generates	the	list
of	verts	that	are	used	only	by	the	specified	set	of	faces.

Parameters:
BitArray	&	fset
This	method	finds	those	vertices	used	only	by	the	faces	indicated	in	this
BitArray.
BitArray	&	vset
This	BitArray	is	completely	overwritten	with	the	result,	and	will	be	set	to	the
right	size	(numVerts)	if	needed.

Prototype:
void	FindOpenEdges(BitArray	&	edges);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	fills	in	a	BitArray	with	the	edges	in	the	mesh	that	are	"open"	or
"one-sided".	(This	is	the	same	as	the	Edit	Mesh	"Select	Open	Edges"

function.)
Parameters:
BitArray	&	edges
This	BitArray	will	be	set	to	size	numFaces*3,	and	only	the	open	edge	bits	will
be	set.

Prototype:
void	FindVertexAngles(float	*vang,	BitArray	*set=NULL);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	calculates,	for	each	vertex,	the	sum	of	the	angles	of	this	vertex's
corner	in	each	face	it's	on.	So	for	instance,	a	point	lying	in	the	middle	of	a	grid
would	always	have	vertex	angle	2*PI,	whereas	a	corner	of	a	box	would	only
have	3*PI/2.

Parameters:
float	*vang
This	should	be	a	pointer	to	an	array	of	size	numVerts.	The	vertex	angle	for
each	vertex	is	put	in	this	array	(in	radians).
BitArray	*set=NULL
If	non-NULL,	this	points	to	a	BitArray	describing	which	vertices	to	find
angles	of.	If	only	some	bits	are	set,	some	computation	time	is	saved.	If	NULL,
all	vertices'	angles	are	found.

Prototype:
void	SetRenderData(MeshRenderData	*p);

Remarks:
Sets	the	mesh	render	data	hung	off	this	Mesh.	This	method	and
GetRenderData()	allow	the	renderer	to	'hang'	data	on	a	mesh.	This	data	can
be	anything	the	renderer	wants.	The	data	will	automatically	be	deleted	when
the	mesh	is	deleted	via	the	DeleteThis()	method.

Parameters:
MeshRenderData	*p
See	Class	MeshRenderData.

Prototype:
MeshRenderData	*GetRenderData();

Remarks:
Returns	the	mesh	render	data	hung	off	this	Mesh.	See	Class	MeshRenderData.
This	method	and	SetRenderData()	allow	the	renderer	to	'hang'	data	on	a
mesh.	This	data	can	be	anything	the	renderer	wants.	The	data	will
automatically	be	deleted	when	the	mesh	is	deleted	via	the	DeleteThis()
method.

Operators:

Prototype:
Mesh&	operator=(const	Mesh&	fromMesh);

Remarks:
Assignment	operator.	Note:	This	operator	does	not	copy	the	rVerts	array.
This	means	that	developers	who	have	specified	normals	will	have	to	explicitly
copy	them	after	a	mesh	assignment	is	done	using	this	operator.	This	is	because
rVerts	are	instance-specific.	In	general,	normals	are	computed	from
smoothing	groups,	and	hence	are	"generated	data".	In	the	case	where	normals
are	specified,	3ds	max	stores	the	data	in	the	rVerts	array	so	as	to	not	waste
space.	The	way	3ds	max	uses	the	mesh	=	operator	assumes	that	the	rVerts	are
not	copied,	and	thus	developers	must	do	the	copying	themselves.

Parameters:
const	Mesh&	fromMesh
Specifies	the	mesh	to	copy.

Prototype:
Mesh	operator+(Mesh	&mesh);

Remarks:
Performs	a	boolean	union	operation.

Parameters:
Mesh	&mesh
Specifies	the	mesh	to	use	as	the	other	operand	of	the	boolean	operation.

Return	Value:
A	new	Mesh	resulting	from	the	boolean	operation.	If	the	operation	fails	an
empty	Mesh	is	returned.

Prototype:
Mesh	operator-(Mesh	&mesh);

Remarks:
Performs	a	boolean	difference	operation.

Parameters:
Mesh	&mesh
Specifies	the	mesh	to	use	as	the	other	operand	of	the	boolean	operation.

Return	Value:
A	new	Mesh	resulting	from	the	boolean	operation.	If	the	operation	fails	an
empty	Mesh	is	returned.

Prototype:
Mesh	operator*(Mesh	&mesh);

Remarks:
Performs	a	boolean	intersection	operation.

Parameters:
Mesh	&mesh
Specifies	the	mesh	to	use	as	the	other	operand	of	the	boolean	operation.

Return	Value:
A	new	Mesh	resulting	from	the	boolean	operation.	If	the	operation	fails	an
empty	Mesh	is	returned.

The	following	global	functions	are	not	part	of	the	Mesh	class:
Function:
void	setUseVisEdge(int	b);

Remarks:
This	is	used	internally.

Function:
int	getUseVisEdge();

Remarks:
This	is	used	internally.

Boolean	Operations	/	CombineMeshes:
The	following	functions	are	not	part	of	class	Mesh	but	are	available	for	use:

Prototype:
int	CalcBoolOp(Mesh	&mesh,	Mesh	&mesh1,	Mesh	&mesh2,	int
op,
MeshOpProgress	*prog	=	NULL,	Matrix3	*tm1	=	NULL,
Matrix3	*tm2	=	NULL,	int	whichInv	=	0,	int	weld	=	TRUE);

Remarks:
Note:	This	method	is	still	in	the	SDK,	but	it	is	now	obselete.	Calls	to
CalcBoolOp()	should	be	replaced	with	calls	to	the	new	MNMesh	form	of
Boolean.	Please	see	the	method	MNMesh::MakeBoolean	in	Class
MNMesh	for	details.
This	function	stores	the	result	of	a	boolean	operation	between	mesh1	and
mesh2	into	mesh.	This	operation	may	be	a	union,	intersection	or	difference.
If	tm1	or	tm2	are	non-NULL,	the	points	of	the	corresponding	mesh	will	be
transformed	by	these	matrices	before	the	boolean	operation.	The	mesh	will	be
transformed	back	by	either	Inverse(tm1)	or	Inverse(tm2)	depending	on
whichInv	(a	value	of	0	will	use	tm1,	a	value	of	1	will	use	tm2,	unless
whichInv	is	-1	in	which	case	it	will	not	be	transformed	back).

Parameters:
Mesh	&mesh
The	result	of	the	boolean	operation	is	stored	here.	mesh	=	mesh1	op
mesh2.
Mesh	&mesh1
The	first	operand.
Mesh	&mesh2
The	second	operand.

int	op
The	boolean	operation.	One	of	the	following	values:
MESHBOOL_UNION
MESHBOOL_INTERSECTION
MESHBOOL_DIFFERENCE

MeshOpProgress	*prog	=	NULL
A	callback	to	display	a	progress.	See	Class	MeshOpProgress.
Matrix3	*tm1	=	NULL
If	non-NULL	then	the	points	of	mesh1	will	transformed	by	this	matrix	before
the	boolean	operation.
Matrix3	*tm2	=	NULL
If	non-NULL	then	the	points	of	mesh2	will	transformed	by	this	matrix	before
the	boolean	operation.
int	whichInv	=	0
If	0,	the	resulting	mesh	will	be	transformed	by	Inverse(tm1).	If	1,	the	resulting
mesh	will	be	transformed	by	Inverse(tm2).	If	-1,	the	mesh	will	not	be
transformed	back.
int	weld	=	TRUE
If	TRUE,	the	vertices	of	the	resulting	mesh	are	welded.

Return	Value:
Nonzero	if	the	operation	completed	successfully;	otherwise	zero.

Prototype:
void	CombineMeshes(Mesh	&mesh,	Mesh	&mesh1,	Mesh
&mesh2,	Matrix3	*tm1=NULL,	Matrix3	*tm2=NULL,	int
whichInv=0);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	may	be	used	to	simply	combine	two	meshes	into	one.

Parameters:
Mesh	&mesh
The	result	of	the	combine	operation	is	stored	here.	mesh	=	mesh1+mesh2.
Mesh	&mesh1

The	first	operand.
Mesh	&mesh2
The	second	operand.
Matrix3	*tm1	=	NULL
If	non-NULL	then	the	points	of	mesh1	will	transformed	by	this	matrix	before
the	boolean	operation.
Matrix3	*tm2	=	NULL
If	non-NULL	then	the	points	of	mesh2	will	transformed	by	this	matrix	before
the	boolean	operation.
int	whichInv=0
If	0,	the	resulting	mesh	will	be	transformed	by	Inverse(tm1).	If	1,	the	resulting
mesh	will	be	transformed	by	Inverse(tm2).	If	-1,	the	mesh	will	not	be
transformed	back.

Sub-Object	Selection	Color	Control
The	following	functions	are	not	part	of	class	Mesh	but	are	available	for	use:

Prototype:
void	SetSubSelColor(Point3	*clr);

Remarks:
This	methods	sets	the	color	used	for	sub-object	selection.

Parameters:
Point3	*clr
The	color	to	use.

Prototype:
Point3	GetSubSelColor();

Remarks:
Returns	the	color	used	for	sub-object	selection.

Class	DADMgr
See	Also:	Class	ReferenceTarget,	List	of	Super	Class	IDs.
class	DADMgr	:	public	InterfaceServer

Description:
Drag	and	drop	functionality	has	been	expanded	to	include	all	map	and	material
buttons¾including	those	in	the	non-standard	materials,	plus	most	cases	of
bitmap	buttons.	As	a	result,	whenever	you	see	a	button	representing	a	material	or
map	you	can	drag	the	button	over	a	like	button	to	display	the	Swap/Copy/Cancel
dialog.	Likewise,	you	can	drag	any	materials	or	maps	from	the	modeless	version
of	the	Materials/Maps	Browser.
The	drag-and-drop	functions	distinguish	between	material	maps	and	bitmaps.	A
bitmap	is	an	image	file,	such	as	a	.tga,	or	.jpg.	A	map	is	an	image	used	by	the
Materials	Editor.	It	might	consist	of	an	image	file,	but	could	just	as	easily	be	a
parametric	image,	such	as	Checkers	or	Noise,	or	it	could	be	a	map	tree
consisting	of	several	different	types	of	maps	or	bitmaps.	Users	can	drag	any	map
slot	or	button	to	any	other	map	slot	or	button¾including	the	sample	slots.	Users
can	drag	the	Bitmap	button	in	the	Bitmap	Parameters	rollout	to	the	Bitmap
button	in	the	Image	area	of	the	Displace	modifier,	and	vice-versa.
Users	can	drag	from:

·	Sample	slots
·	Browser	lists	(text	or	iconic)
·	The	sample-sphere	preview	window	in	the	Browser.
·	Material	map	buttons,	including:

·	The	buttons	in	the	Maps	rollout
·	The	shortcut	map	buttons
·	Any	map	buttons	at	any	level

·	Submaterial	buttons,	such	as	those	found	in	the	Multi/Subobject	material
·	Projector	light	map	button
·	Environment	background	map	button
·	Fog	Color	and	Opacity	maps	buttons

Users	can	drag	to:
·	Objects	in	the	viewports
·	The	Type	button	in	the	Materials	Editor	from	the	Browser.

·	All	of	the	items	in	the	FROM	list,	with	this	exception:	You	can	only	drag	to
the	Browser	when	it	displays	the	material	library.

All	methods	of	this	class	are	implemented	by	the	plug-in.	For	developers	of
plug-in	textures	and	materials	see	Class	TexDADMgr,	Class	MtlDADMgr.
These	classes	provide	implementations	of	these	methods	and	the	objects	can
simply	be	used.

Methods:

Prototype:
virtual	SClass_ID	GetDragType(HWND	hwnd,	POINT	p)=0;

Remarks:
This	method	is	called	on	the	item	that	supports	drag	and	drop	to	see	what	(if
anything)	can	be	dragged	from	the	point	p.	This	method	returns	a	super	class
id	to	indicate	the	type	of	item	that	can	be	dragged	away.	If	it	does	not	support
anything	being	dragged	from	the	specified	point	a	SClass_ID	of	0	should	be
returned.

Parameters:
HWND	hwnd
The	source	window	handle
POINT	p
The	screen	point	(relative	to	the	window	upper	left	as	0,0).

Prototype:
virtual	BOOL	IsNew(HWND	hwnd,	POINT	p,	SClass_ID	type);

Remarks:
If	the	method	GetInstance()	creates	a	new	instance	every	time	it	is	called,
then	the	this	method	should	return	TRUE.	Otherwise	it	should	return	FALSE.
This	prevents	GetInstance()	from	being	called	repeatedly	as	the	drag
progresses.

Parameters:
HWND	hwnd
The	source	window	handle.
POINT	p

The	point	to	drag	from.
SClass_ID	type
The	super	class	ID	to	create.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	ReferenceTarget	*GetInstance(HWND	hwnd,	POINT	p,
SClass_ID	type)=0;

Remarks:
This	method	should	return	a	pointer	to	the	drag	source.

Parameters:
HWND	hwnd
The	source	window	where	the	mouse	down	occured.
POINT	p
The	point	to	drag	from	(position	within	hwnd).
SClass_ID	type
The	super	class	ID	of	the	item	to	create.

Prototype:
virtual	BOOL	OkToDrop(ReferenceTarget	*dropThis,	HWND
hfrom,	HWND	hto,	POINT	p,	SClass_ID	type,	BOOL	isNew	=
FALSE)=0;

Remarks:
This	method	is	called	on	potential	dropee	to	see	if	can	accept	the	specified
type	at	the	specified	point.

Parameters:
ReferenceTarget	*dropThis
A	pointer	to	the	item	to	check.
HWND	hfrom
The	window	handle	of	the	source.
HWND	hto

The	window	handle	of	the	destination.
POINT	p
The	point	to	check.
SClass_ID	type
The	super	class	ID	of	dropThis.
BOOL	isNew	=	FALSE
TRUE	if	the	item	is	a	new	instance;	otherwise	FALSE.

Return	Value:
TRUE	if	the	specified	item	can	be	dropped;	otherwise	FALSE.

Prototype:
virtual	HCURSOR	DropCursor(ReferenceTarget	*dropThis,
HWND	hfrom,	HWND	hto,	POINT	p,	SClass_ID	type,	BOOL
isNew	=	FALSE);

Remarks:
This	method	is	called	on	a	potential	target	to	allow	it	to	substitute	custom
cursors.	It	returns	the	handle	for	the	custom	cursor	to	use	(or	NULL	to	ignore).

Parameters:
ReferenceTarget	*dropThis
The	pointer	to	the	item	to	check.
HWND	hfrom
The	window	handle	of	the	source.
HWND	hto
The	window	handle	of	the	destination.
POINT	p
The	point	to	check.
SClass_ID	type
The	super	class	ID	of	dropThis.
BOOL	isNew	=	FALSE
TRUE	if	the	item	is	a	new	instance;	otherwise	FALSE.

Default	Implementation:
{	return	NULL;}

Prototype:
virtual	int	SlotOwner();

Remarks:
Returns	a	predefined	value	to	indicate	the	source	of	the	drag.

Return	Value:
One	of	the	following	values:
OWNER_MEDIT_SAMPLE
From	a	materials	editor	sample	slot.
OWNER_NODE
From	a	node	in	the	scene.
OWNER_MTL_TEX
From	a	button	in	a	material	or	texture.
OWNER_SCENE
From	a	button	in	a	light,	modifier,	atmospheric	effect,	etc.
OWNER_BROWSE_NEW
From	the	browser	in	the	new	category.
OWNER_BROWSE_LIB
From	the	browser	in	the	library	category.
OWNER_BROWSE_MEDIT
From	the	browser	in	the	materials	editor	category.
OWNER_BROWSE_SCENE
From	the	browser	in	the	scene	category.

Default	Implementation:
{	return	OWNER_MTL_TEX;	}

Prototype:
virtual	void	Drop(ReferenceTarget	*dropThis,	HWND	hwnd,
POINT	p,	SClass_ID	type)=0;

Remarks:
This	is	the	method	called	to	actually	process	the	drop	operation.	This	routine
is	called	on	the	target	with	the	pointer	returned	by	the	source's

GetInstance(),	or	possibly	a	clone	of	it	as	the	dropThis.
Parameters:
ReferenceTarget	*dropThis
A	pointer	to	the	item	to	drop.
HWND	hwnd
The	destination	window	handle	(where	the	mouse	was	released).
POINT	p
The	destination	point	(within	hwnd).
SClass_ID	type
The	type	of	object	being	dropped	--	the	super	class	ID	of	dropThis.

Prototype:
virtual	void	SameWinDragAndDrop(HWND	h1,	POINT	p1,
POINT	p2);

Remarks:
This	method	is	called	when	the	source	and	target	WINDOW	are	the	same.

Parameters:
HWND	h1
The	source/target	window	handle.
POINT	p1
The	source	point.
POINT	p2
The	target	point.

Default	Implementation:
{}

Prototype:
virtual	BOOL	LetMeHandleLocalDAD();

Remarks:
This	lets	the	manager	know	whether	to	call	LocalDragAndDrop()	if	the
same	DADMgr	is	handling	both	the	source	and	target	windows,	or	just	ignore
this	condition.	Return	TRUE	if	LocalDragAndDrop()	should	be	called;

otherwise	FALSE.
Default	Implementation:
{	return	0;	}

Prototype:
virtual	void	LocalDragAndDrop(HWND	h1,	HWND	h2,	POINT
p1,	POINT	p2);

Remarks:
This	is	called	if	the	same	DADMgr	is	handling	both	the	source	and	target
windows,	if	LetMeHandleLocalDAD()	returned	TRUE.

Parameters:
HWND	h1
The	window	handle.
HWND	h2
The	window	handle.
POINT	p1
The	drag	source	point.
POINT	p2
The	drop	destination	point.

Default	Implementation:
{}

Prototype:
virtual	BOOL	AutoTooltip();

Remarks:
If	this	method	returns	TRUE,	then	Custom	Buttons	that	use	this	DAD
Manager	will	automatically	support	a	tooltip	that	matches	the	button	text.
Note	that	this	method	will	only	show	a	tooltip	when	the	button	text	is	too	long
and	thus	exceeds	the	button	size.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	BOOL	CopyOnly(HWND	hwnd,	POINT	p,	SClass_ID
type);

Remarks:
If	a	drag	source	doesn't	want	any	references	being	made	to	the	instance
returned,	then	this	method	should	return	TRUE:	it	will	force	a	copy	to	be
made;	otherwise	return	FALSE.

Parameters:
HWND	hwnd
The	source	window	handle.
POINT	p
The	source	point	(within	hwnd).
SClass_ID	type
The	type	of	object	being	dragged.
	

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	BOOL	AlwaysSendButtonMsgsOnDrop();

Remarks:
Normally	the	mouse	down	and	mouse	up	messages	are	not	sent	to	the	source
window	when	doing	drag	and	drop,	but	if	you	need	them,	return	TRUE.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	BOOL	OkToDropInstance(ReferenceTarget	*dropThis,
HWND	hfrom,	HWND	hto,	POINT	p,	SClass_ID	type);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	called	on	potential	target	to	see	if	can	instance	"dropThis"	at

the	specified	point.	Returns	TRUE	if	it	is	okay	to	drop	the	specified	item	and
FALSE	if	not.

Parameters:
ReferenceTarget	*dropThis
The	pointer	to	the	item	to	check.
HWND	hfrom
The	window	handle	of	the	source.
HWND	hto
The	window	handle	of	the	destination.
POINT	p
The	point	to	check.
SClass_ID	type
The	super	class	ID	of	dropThis.

Default	Implementation:
{	return	TRUE;	}

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.
This	is	reserved	for	future	use.

Parameters:
int	cmd
The	command	to	execute.
ULONG	arg1=0
Optional	argument	1	(defined	uniquely	for	each	cmd).
ULONG	arg2=0
Optional	argument	2.

ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value	(defined	uniquely	for	each	cmd).

Default	Implementation:
{	return	0;	}

Class	TexDADMgr
See	Also:	Class	DADMgr,	Class	ParamDlg.
class	TexDADMgr	:	public	DADMgr

Description:
This	class	is	available	in	release	2.0	and	later	only.
Use	this	class	to	provide	drag	and	drop	functionality	for	materials	sub-
Texmaps.	It	provides	implementations	of	the	methods	of	DADMgr.	If	this
class	is	used	the	ParamDlg	method	FindSubTexFromHWND()	must	be
implemented.

Class	MtlDADMgr
See	Also:	Class	DADMgr.
class	MtlDADMgr:	public	DADMgr

Description:
All	methods	of	this	class	are	implemented	by	the	system.
Use	this	class	to	implement	drag	and	drop	functionality	for	materials	sub-
materials.	.	It	provides	implementations	of	the	methods	of	DADMgr.	If	this
class	is	used	the	ParamDlg	method	FindSubMtlFromHWND()	must	be
implemented.

Class	DADBitmapCarrier
See	Also:	Class	ReferenceTarget.
class	DADBitmapCarrier:	public	ReferenceTarget

Description:
This	class	is	available	in	release	2.0	and	later	only.
It	is	used	to	provide	drag	and	drop	functionality	for	Bitmaps.	See	the	following
global	function	for	getting	a	pointer	to	the	instances	of	this	class.
All	methods	of	this	class	are	implemented	by	the	system.

Function:
DADBitmapCarrier	*GetDADBitmapCarrier();

Remarks:
This	global	function	returns	a	pointer	to	the	BitmapCarrier.	Note	that	there
is	only	two	of	these:	one	for	the	source,	and	one	for	the	destination.
Developers	should	not	delete	these.	Sample	code	using	this	class	is	available
in	\MAXSDK\SAMPLES\MATERIALS\BMTEX.CPP.

Methods:

Prototype:
void	SetName(TSTR	&nm);

Remarks:
Sets	the	name	of	the	bitmap	carrier.

Parameters:
TSTR	&nm
The	name	to	set.

Prototype:
TSTR&	GetName();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	name	of	the	bitmap	carrier.

Class	ICustButton
See	Also:	Class	ICustomControl,	Custom	Controls,	Class	ICustToolbar,	Class
FlyOffData,	Class	DADMgr,	Class	MAXBmpFileIcon.
class	ICustButton	:	public	ICustomControl

Description:
Custom	buttons	may	be	one	of	two	different	forms.	A	Check	button	(which	stays
pressed	in	until	the	user	clicks	on	it	again),	or	a	Pick	button	(which	pops	back
out	as	soon	as	it	is	released).	Buttons	may	be	implemented	as	a	Fly	offs.	A	fly	off
offers	several	alternative	buttons	which	fly	out	from	the	button	after	it	is	press
and	held	briefly.

The	buttons	may	contain	text	or	graphic	images.	Fly	off	buttons	only	use	graphic
images.	The	plug-in	developer	has	control	over	the	appearance	of	the	button	in
each	of	its	four	states	(Enabled&Out,	Enabled&In,	Disabled&Out,
Disabled&In).
Note:	When	the	user	presses	a	button	a	WM_MENUSELECT	message	is
sent	so	that	the	client	can	display	a	status	prompt	describing	the	function	of	the
tool.	The	fuFlags	parameter	is	set	to	this	value:	CMF_TOOLBUTTON.
In	3dsmax	version	4.0	you	can	remove	borders	from	an	ICustButton;
ICustButton	*cb	=	();
cb->Execute(I_EXE_CB_NO_BORDER);

To	initialize	the	pointer	to	the	control	call:

Prototype:
ICustButton	*GetICustButton(HWND	hCtrl);

To	release	the	control	call:

Prototype:
ReleaseICustButton(ICustButton	*ics);

The	value	to	use	in	the	Class	field	of	the	Custom	Control	Properties	dialog	is:
CustButton

Methods:

Prototype:
virtual	void	GetText(TCHAR	*text,	int	ct)=0;

Remarks:
This	retrieves	the	text	displayed	by	the	button.

Parameters:
TCHAR	*text
Storage	for	the	text	to	retrieve.
int	ct
Specifies	the	maximum	length	of	the	string	returned.

Prototype:
virtual	void	SetText(TCHAR	*text)=0;

Remarks:
This	specifies	the	text	displayed	by	the	button.

Parameters:
TCHAR	*text
The	text	to	be	displayed	by	the	button.

Prototype:
virtual	void	SetImage(HIMAGELIST	hImage,	int	iOutEn,	int
iInEn,	int	iOutDis,	int	iInDis,	int	w,	int	h)=0;

Remarks:
This	method	is	used	to	establish	the	images	used	for	the	buttons.

Parameters:
HIMAGELIST	hImage
The	image	list.	An	image	list	is	a	collection	of	same-sized	images,	each	of
which	can	be	referred	to	by	an	index.	Image	lists	are	used	to	efficiently
manage	large	sets	of	icons	or	bitmaps	in	Windows.	All	images	in	an	image	list
are	contained	in	a	single,	wide	bitmap	in	screen	device	format.	An	image	list
may	also	include	a	monochrome	bitmap	that	contains	masks	used	to	draw
images	transparently	(icon	style).	The	Windows	API	provides	image	list

functions,	which	enable	you	to	draw	images,	create	and	destroy	image	lists,
add	and	remove	images,	replace	images,	and	merge	images.
The	next	four	parameters	(iOutEn,	iInEn,	iOutDis,	iInDis)	are	indices
into	the	image	list.	They	indicate	which	images	to	use	for	each	of	the	four
possible	button	states.	You	may	specify	a	unique	image	for	each	one	of	these
states	by	passing	a	different	index	for	each	state.	Or	you	may	supply	a	single
image	to	be	used	for	all	the	states	by	specifying	the	same	index	four	times.
int	iOutEn
Out&Enabled.
int	iInEn
In&Enabled.
int	iOutDis
Out&Disabled.
int	iInDis
In&Disabled.

int	w
The	width	of	the	button	image.
int	h
The	height	of	the	button	image.

Prototype:
virtual	void	SetIcon(MaxBmpFileIcon*	pIcon,	int	w,	int	h)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	sets	the	icon	image	used	for	a	button.

Parameters:
MaxBmpFileIcon*	pIcon
Points	to	the	icon.
int	w
The	width	of	the	button	image.
int	h
The	height	of	the	button	image.

Prototype:
virtual	void	SetInIcon(MaxBmpFileIcon*	pInIcon,	int	w,	int	h)	=
0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	sets	the	icon	image	used	when	a	button	is	pressed.

Parameters:
MaxBmpFileIcon*	pInIcon
Points	to	the	icon.
int	w
The	width	of	the	button	image.
int	h
The	height	of	the	button	image.

Prototype:
virtual	void	SetType(CustButType	type)=0;

Remarks:
This	method	sets	the	button	type.

Parameters:
CustButType	type
One	of	the	following	values:
CBT_PUSH
A	Push	button	pops	back	out	as	soon	as	it	is	released.
CBT_CHECK.
A	Check	button	stays	pressed	in	until	the	user	clicks	on	it	again.

Prototype:
virtual	void	SetFlyOff(int	count,FlyOffData	*data,int	timeOut,int
init,int	dir=FLY_VARIABLE)=0;

Remarks:
This	method	sets	the	button	to	work	as	a	fly	off	control.

Parameters:

int	count
The	number	of	buttons	in	the	fly	off.
FlyOffData	*data
An	array	of	instances	of	the	class	FlyOffData	.	This	class	uses	four	indices
into	the	image	list	to	describe	the	button	in	each	of	the	possible	states:
Out&Enabled,	In&Enabled,	Out&Disabled	and	In&Disabled.
In	the	simple	case,	where	all	the	buttons	have	the	same	image,	you	can	do	the
following:
	FlyOffData	fod[3]	=	{	//	A	three	button	flyoff
		{	0,0,0,0	},	//	The	first	button	uses	a	single	image.
		{	1,1,1,1	},	//	So	does	the	second	button...
		{	2,2,2,2	},	//	So	does	the	third...
		};
Each	button	will	use	the	same	images	regardless	of	its	pressed	in	/	disabled
state.	Note	the	button	is	automatically	drawn	pushed	in	(i.e.	shaded	lighter)
when	the	user	is	dragging	the	cursor	over	the	button,	but	the	actual	image	on
the	button	is	not	changed.
If	you	require	different	images	for	these	states,	supply	different	indices	into
the	image	list	for	each.	See	the	sample	program
\MAXSDK\SAMPLES\HOWTO\CUSTCTRL\CUSTCTRL.CPP
for	an	example	of	how	this	is	done.
int	timeOut
This	is	the	time	in	milliseconds	the	button	must	be	held	pressed	before	the	fly
off	appears.	You	may	specify	0	if	you	want	the	buttons	to	fly	off	immediately.
To	retrieve	the	value	that	3ds	max	uses	internally	for	its	flyoffs	use	a	method
of	Class	Interface	called	GetFlyOffTime().	This	returns	a	value	in
milliseconds.
int	init
This	is	the	initial	button	displayed.
int	dir=FLY_VARIABLE
This	parameter	is	optional.	It	is	used	to	indicate	which	direction	the	buttons
should	fly	off.	The	choices	for	direction	are:
FLY_VARIABLE
The	default.	The	system	will	determine	the	direction	of	the	fly	off.

FLY_UP
The	buttons	fly	off	above.
FLY_DOWN
The	buttons	fly	off	beneath.
FLY_HVARIABLE
The	buttons	will	fly	off	either	left	or	right	with	the	system	determining	the
direction.
FLY_LEFT
The	buttons	fly	off	to	the	left.
FLY_RIGHT
The	buttons	fly	off	to	the	right.

Prototype:
virtual	void	SetCurFlyOff(int	f,BOOL	notify=FALSE)=0;

Remarks:
This	method	establishes	which	button	is	displayed	by	passing	its	index.

Parameters:
int	f
The	index	of	the	flyoff	button	to	display.
BOOL	notify=FALSE
This	indicates	if	the	call	to	this	method	should	notify	the	dialog	proc.	If	TRUE
it	is	notified;	otherwise	it	isn't.

Prototype:
virtual	int	GetCurFlyOff()=0;

Remarks:
Returns	the	index	of	the	button	which	is	currently	displayed.

Prototype:
virtual	BOOL	IsChecked()=0;

Remarks:
Determines	if	the	button	is	checked.	This	method	returns	TRUE	if	the	check

button	is	currently	in	the	In	state	(i.e.	checked)	and	FALSE	otherwise.

Prototype:
virtual	void	SetCheck(BOOL	checked)=0;

Remarks:
Passing	TRUE	to	this	method	sets	the	button	to	the	In	or	checked	state.

Parameters:
BOOL	checked
If	TRUE	the	button	is	set	to	the	checked	state;	if	FALSE	the	button	is
unchecked.

Prototype:
virtual	void	SetCheckHighlight(BOOL	highlight)=0;

Remarks:
This	method	controls	if	the	check	button	is	displayed	in	the	highlight	color
when	pressed	in.

Parameters:
BOOL	highlight
TRUE	if	you	want	the	button	to	use	the	highlight	color;	otherwise	pass
FALSE.

Prototype:
virtual	void	SetButtonDownNotify(BOOL	notify)=0;

Remarks:
Specifies	if	messages	are	sent	when	the	user	clicks	or	releases	the	button.	If
this	method	is	called	with	TRUE,	a	message	is	sent	immediately	whenever	the
button	is	pressed	down	or	released.	The	message	BN_BUTTONDOWN	is
sent	on	button	down	and	BN_BUTTONUP	is	sent	when	the	button	is
released.	The	BN_BUTTONUP	message	is	sent	even	if	the	button	is
released	outside	the	button	rectangle.

Parameters:
BOOL	notify

TRUE	if	notification	should	be	send	by	the	button;	FALSE	if	notifications
should	not	be	sent.

Prototype:
virtual	void	SetRightClickNotify(BOOL	notify)=0;

Remarks:
Specifies	if	messages	are	sent	when	the	user	right	clicks	the	button.

Parameters:
BOOL	notify
If	TRUE,	the	BN_RIGHTCLICK	message	is	sent	whenever	the	users	right
clicks	on	the	button.	If	FALSE	no	message	are	sent	on	right	clicks.

Prototype:
virtual	void	SetHighlightColor(COLORREF	clr)=0;

Remarks:
This	methods	sets	the	highlight	color	for	the	check	button.

Parameters:
COLORREF	clr
The	color	for	the	button.	It	may	be	specified	using	the	RGB	macro,	for
example:	SetHighlightColor(RGB(0,0,255));
There	are	several	pre-defined	colors	which	may	be	used.	These	are:
RED_WASH,	BLUE_WASH	and	GREEN_WASH.	GREEN_WASH
is	the	standard	color	used	for	check	buttons	in	3ds	max	that	instigate	a
command	mode.	While	the	command	mode	is	active	the	button	should	be
displayed	in	GREEN_WASH.	When	the	mode	is	finished	the	button	should
be	returned	to	normal.
	

Prototype:
virtual	COLORREF	GetHighLightColor()=0;

Remarks:
This	methods	returns	the	highlight	color	for	the	check	button.

Prototype:
virtual	void	SetTooltip(BOOL	onOff,	LPSTR	text)=0;

Remarks:
This	method	allows	a	developer	to	add	tooltip	text	to	single	custom	buttons.

Parameters:
BOOL	onOff
TRUE	to	turn	the	tooltip	on;	FALSE	to	turn	it	off.
LPSTR	text
This	may	be	one	of	two	things:
The	tooltip	text	(as	a	TCHAR	*)
This	is	simply	the	text	to	show	up	in	the	tooltip.

The	symbol	LPSTR_TEXTCALLBACK
This	indicates	a	callback	will	be	used.	If	this	is	specified,	the	parent
window	of	the	button	will	get	the	usual	tooltip	"need	text"	notify	message
(TTN_NEEDTEXT).

Prototype:
virtual	void	SetDADMgr(DADMgr	*dad)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	drag	and	drop	manager	for	this	button	control.

Parameters:
DADMgr	*dad
A	pointer	to	the	drag	and	drop	manager	to	set.

Prototype:
virtual	DADMgr	*GetDADMgr()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	a	pointer	to	the	drag	and	drop	manager	for	this	button	control.

Prototype:

virtual	void	SetMacroButtonData(MacroButtonData	*md)=0;
Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	macro	data	for	this	button.

Parameters:
MacroButtonData	*md
The	data	to	set.	See	Class	MacroButtonData.

Prototype:
virtual	MacroButtonData	*GetMacroButtonData()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	any	macro	button	data	for	this	button.	See	Class
MacroButtonData.

Prototype:
virtual	void	SetDisplayProc(PaintProc	*proc)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	callback	object	used	to	display	the	button.
Note:	This	method	is	only	available	in	3D	Studio	VIZ	(not	MAX).

Parameters:
PaintProc	*proc
Points	to	the	callback	object	for	displaying	the	button.
Note:	typedef	LRESULT	CALLBACK	PaintProc(

HDC	hdc,	Rect	rect,	BOOL	in,	BOOL	checked,	BOOL
enabled);

Class	IDADWindow
See	Also:	Class	ICustomControl,	Class	DADMgr,	Custom	Controls.
class	IDADWindow	:	public	ICustomControl

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	is	a	new	type	of	custom	control	used	to	provide	drag	and	drop	to	and
from	things	other	than	Custom	Buttons.	An	example	of	an	item	that	uses	this
control	is	a	sample	sphere	window	in	the	Material	Editor.

To	initialize	the	pointer	to	the	control	call:
Prototype:
IDADWindow	*GetIDADWindow(HWND	hWnd);

To	release	the	control	call:
Prototype:
void	ReleaseIDADWindow(IDADWindow	*idw);

The	value	to	use	in	the	Class	field	of	the	Custom	Control	Properties	dialog	is:
DragDropWindow
All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	void	SetDADMgr(DADMgr	*dadMgr)=0;

Remarks:
Set	the	drag	and	drop	manager	for	this	control.

Parameters:
DADMgr	*dadMgr
A	pointer	to	the	drag	and	drop	manager	for	this	control.

Prototype:
virtual	DADMgr	*GetDADMgr()=0;

Remarks:
Returns	a	pointer	to	the	drag	and	drop	manager	for	this	control.

Prototype:
virtual	void	SetWindowProc(WindowProc	*proc)=0;

Remarks:
This	method	establishes	a	window	proc	that	is	called	to	handle	all	the	normal
processing	after	the	drag	and	drop	processing	is	done.

Parameters:
WindowProc	*proc
The	window	proc.	Note	the	following	typedef:
typedef	LRESULT	CALLBACK	WindowProc(HWND	hwnd,
UINT	message,	WPARAM	wParam,	LPARAM	lParam);
	

#define	SLIDERWINDOWCLASS	_T("SliderControl")
	
//	LOWORD(wParam)	=	ctrlID,
//	HIWORD(wParam)	=	TRUE	if	user	is	dragging	the	slider
interactively.
//	lParam	=	pointer	to	ISliderControl
#define	CC_SLIDER_CHANGE			WM_USER	+	611
	
//	LOWORD(wParam)	=	ctrlID,
//	lParam	=	pointer	to	ISliderControl
#define	CC_SLIDER_BUTTONDOWN	WM_USER	+	612
	
//	LOWORD(wParam)	=	ctrlID,
//	HIWORD(wParam)	=	FALSE	if	user	cancelled	-	TRUE
otherwise
//	lParam	=	pointer	to	ISliderControl
#define	CC_SLIDER_BUTTONUP		WM_USER	+	613

Class	Spline3D
See	Also:	Class	SplineKnot,	Class	PolyLine,	Structure	Knot.
class	Spline3D

Description:
General-purpose	3D	spline	class.	The	BezierShape	class	has	a	list	of	these
splines	that	make	up	the	bezier	shape.	Methods	of	this	class	are	used	to	access
the	properties	of	the	spline.	All	methods	of	this	class	are	implemented	by	the
system.

Method	Groups:
The	following	hyperlinks	take	you	to	the	start	of	groups	of	related	methods
within	the	class:
Constructors	/	Destructor
NewSpline()	/	InvalidateGeomCache()
KnotCount(),	Flags(),	Segments(),	Closed()
AddKnot(),	DeleteKnot(),	GetKnot(),	SetKnot()
Create()	/	StartInsert()
Get/SetKnotType()	/	Get/SetLineType()
ComputeBezPoints()
InterpBezier()	/	InterpBezier3D()	/	TangentBezier3D()	/	TangentCurve3D()
IsAuto()	/	IsBezierPt()	/	IsCorner()
GetBBox()	/	Transform()
SetClosed	/	SetOpen()
Reverse()	/	Append()	/	Prepend()
Get/SetInVec()	/	Get/SetOutVec()
Get/SetVert()	/	Verts()	/	Get/SetKnotPoint()
IsClockWise()	/	SelfIntersects()	/	IntersectsSpline()	/	SurroundsPoint()	/
SplineLength()
MakePolyLine()
Dump()
Internal	Methods	/	Methods	that	should	not	be	used	by	plug-in	developers
Operators

Friend	Classes:
friend	class	BezierShape;

friend	class	SplineShape;

Methods:

Constructors	/	Destructor

Prototype:
Spline3D(int	itype	=	KTYPE_CORNER,int	dtype	=
KTYPE_BEZIER,
int	ptype	=	PARM_UNIFORM);

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.

Prototype:
~Spline3D();

Remarks:
Destructor.

NewSpline()	/	InvalidateGeomCache()

Prototype:
void	NewSpline();

Remarks:
This	method	clears	out	the	spline.	It	frees	the	knots	attributes	array	and	the
bezier	points	array.

Prototype:
void	InvalidateGeomCache();

Remarks:
This	method	makes	sure	the	shape	has	flushed	out	any	cached	data	it	may
have	had.

KnotCount(),	Flags(),	Segments(),	Closed()

Prototype:
inline	int	KnotCount()

Remarks:
Returns	the	Knot	(point)	count.

Prototype:
inline	int	Flags();

Remarks:
Returns	the	private	spline	flags.
SPLINE_CLOSED
This	indicates	if	the	spline	is	closed	or	not.

Prototype:
inline	int	Segments();

Remarks:
Returns	the	number	of	line	segments	in	the	spline.	For	example	if	you	have	a	4
knot	spline	that	is	open	you'll	get	3	segments.

Prototype:
inline	int	Closed();

Remarks:
Returns	the	closed	status.	Nonzero	if	closed;	otherwise	zero.

AddKnot(),	DeleteKnot(),	GetKnot,	SetKnot()

Prototype:
int	AddKnot(SplineKnot	&k,int	where	=	-1);

Remarks:
Add	a	knot	to	the	spline	at	the	specified	location.

Parameters:
SplineKnot	&k
The	knot	to	add.

int	where	=	-1
The	location	to	add	the	knot.	where	<	0	indicates	the	end	of	the	spline.

Return	Value:
Nonzero	on	success;	otherwise	zero.

Prototype:
int	DeleteKnot(int	where);

Remarks:
Delete	the	specified	knot.

Parameters:
int	where
The	location	of	the	knot	to	delete.

Return	Value:
Nonzero	if	the	knot	was	deleted;	otherwise	zero.

Prototype:
void	SetKnot(int	i,	SplineKnot	&k);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	sets	the	'i-th'	knot	object	which	contain	the	knot	point,	in	and	out
vectors,	knot	and	line	types	and	auxiliary	values.

Parameters:
int	i
Specifies	the	knot	to	set.
SplineKnot	&k
The	knot	to	set.

Prototype:
SplineKnot	GetKnot(int	i);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

This	method	gets	the	'i-th'	knot	object	which	contain	the	knot	point,	in	and	out
vectors,	knot	and	line	types	and	auxiliary	values.

Parameters:
int	i
Specifies	the	knot	to	retrieve.

Create()	/	StartInsert()

Prototype:
int	Create(ViewExp	*vpt,int	msg,	int	point,	int	flags,	IPoint2	m,
Matrix3*	mat,	IObjParam	*ip=NULL);

Remarks:
This	method	is	used	internally	by	the	free	form	line	object	SPLINE.CPP.
This	method	allows	the	user	to	use	the	mouse	to	create	a	line.	See	the	sample
code	in	\MAXSDK\SAMPLES\OBJECTS\SPLINE.CPP	for	an
example	of	this	method	in	use.
New	for	3ds	max	2.0	is	an	additional	parameter	is	a	pointer	to	an
IObjParam	object,	which	is	used	to	access	the	DisplayTempPrompt()
mechanism.	The	parameter	is	optional;	omitting	it	allows	the	spline	operation
to	work	as	in	3ds	max	1.x.	Adding	the	parameter	causes	the	spline	to	display
the	delta,	distance	and	angle	of	the	current	segment	being	edited.

Prototype:
int	StartInsert(ViewExp	*vpt,int	msg,	int	point,	int	flags,
IPoint2	theP,	Matrix3*	mat,	int	where);

Remarks:
This	method	is	used	internally	by	the	free	form	line	object	SPLINE.CPP.
See	the	sample	code	in
\MAXSDK\SAMPLES\OBJECTS\SPLINE.CPP	for	an	example	of
this	method	in	use.

Get/SetKnotType()	/	Get/SetLineType()

Prototype:

inline	int	GetKnotType(int	index);
Remarks:
Returns	the	knot	type	from	the	specified	knot.	See	List	of	Spline	Knot	Types.

Parameters:
int	index
The	index	of	the	knot	type	to	return.

Prototype:
int	SetKnotType(int	index,int	type);

Remarks:
Sets	the	knot	type	of	the	specified	knot.

Parameters:
int	index
The	knot	to	set.
int	type
See	List	of	Spline	Knot	Types.

Return	Value:
Nonzero	if	set;	otherwise	zero.

Prototype:
inline	int	GetLineType(int	index);

Remarks:
Returns	the	type	of	line	segment	between	knots	for	the	specified	segment.

Parameters:
int	index
The	index	of	the	segment	whose	line	type	to	return.

Return	Value:
See	List	of	Spline	Line	Types.

Prototype:
int	SetLineType(int	index,int	type);

Remarks:
Sets	the	line	type	of	the	specified	segment.

Parameters:
int	index
The	index	of	the	segment.
int	type
See	List	of	Spline	Line	Types.

Return	Value:
Nonzero	if	set;	otherwise	zero.

ComputeBezPoints()

Prototype:
void	ComputeBezPoints();

Remarks:
This	method	should	be	called	whenever	you	finish	changing	points	on	the
spline.	This	updates	all	the	information	internal	to	the	spline	needed	to
calculate	all	the	bezier	handles.

InterpBezier()	/	InterpBezier3D()	/	TangentBezier3D()	/
TangentCurve3D()

Prototype:
Point2	InterpBezier(IPoint2	*bez,	float	t);

Remarks:
Developers	should	use	InterpBezier3D()	below	instead	of	this	method	and
just	use	the	x	and	y	values	returned.

Prototype:
Point3	InterpBezier3D(int	segment,	float	t,	int
ptype=SPLINE_INTERP_SIMPLE);

Remarks:
This	method	returns	a	point	interpolated	on	a	segment	between	two	knots.

Parameters:
int	segment
The	index	of	the	segment	to	interpolate.
float	t
A	value	in	the	range	of	0.0	to	1.0.	0	is	the	first	knot	and	1	is	the	second	knot.
int	ptype=SPLINE_INTERP_SIMPLE
The	spline	type	to	use.

Return	Value:
The	interpolated	point.

Prototype:
Point3	InterpCurve3D(float	u,	int
ptype=SPLINE_INTERP_SIMPLE);

Remarks:
This	method	returns	a	point	interpolated	on	the	entire	curve.	This	method
returns	a	point	but	you	don't	know	which	segment	the	point	falls	on.	Typically
the	method	InterpBezier3D()	will	give	better	control	of	the	curve	as	it
interpolates	a	bezier	segment.

Parameters:
float	u
A	value	in	the	range	of	0.0	to	1.0	for	the	entire	curve.
int	ptype=SPLINE_INTERP_SIMPLE
The	spline	type	to	use.

Return	Value:
The	interpolated	point.

Prototype:
Point3	TangentBezier3D(int	segment,	float	t,	int
ptype=SPLINE_INTERP_SIMPLE);

Remarks:
This	method	returns	a	tangent	vector	interpolated	on	a	segment	between	two
knots.

Parameters:
int	segment
The	index	of	the	segment.
float	t
A	value	in	the	range	of	0.0	to	1.0.	0	is	the	first	knot	and	1	is	the	second	knot.
int	ptype=SPLINE_INTERP_SIMPLE
The	spline	type	to	use.

Return	Value:
The	tangent	vector.

Prototype:
Point3	TangentCurve3D(float	u,	int
ptype=SPLINE_INTERP_SIMPLE);

Remarks:
This	method	returns	a	tangent	vector	interpolated	on	the	entire	curve.

Parameters:
float	u
A	value	in	the	range	of	0.0	to	1.0	for	the	entire	curve.
int	ptype=SPLINE_INTERP_SIMPLE
The	spline	type	to	use.

Return	Value:
The	tangent	vector.

IsAuto()	/	IsBezierPt()	/	IsCorner()

Prototype:
int	IsAuto(int	i);

Remarks:
Returns	nonzero	if	the	knot	type	is	KTYPE_AUTO	otherwise	zero.

Parameters:
int	i
The	index	of	the	knot.

Prototype:
int	IsBezierPt(int	i);

Remarks:
Returns	nonzero	if	the	knot	type	is	KTYPE_BEZIER	otherwise	zero.

Parameters:
int	i
The	index	of	the	knot.

Prototype:
int	IsCorner(int	i);

Remarks:
Returns	nonzero	if	the	knot	type	is	KTYPE_CORNER	otherwise	zero.

Parameters:
int	i
The	index	of	the	knot.

GetBBox()	/	Transform()

Prototype:
void	GetBBox(TimeValue	t,	Matrix3&	tm,	Box3&	box);

Remarks:
Returns	the	bounding	box	of	the	curve	in	the	space	specified	by	the	tm.

Parameters:
TimeValue	t
This	parameter	is	not	used.
Matrix3&	tm
The	tm	to	transform	the	points	by	prior	to	computing	the	bounding	box.
Box3&	box
The	bounding	box

Prototype:
void	Transform(Matrix3	*tm);

Remarks:
This	method	may	be	used	to	transform	the	points	of	the	spline	into	another
space	defined	by	the	specified	transformation	matrix.

Parameters:
Matrix3	*tm
The	transformation	matrix.

SetClosed	/	SetOpen()

Prototype:
int	SetClosed(int	flag	=	1);

Remarks:
This	method	may	be	used	to	close	or	open	the	spline.	If	the	optional	parameter
is	not	specified	it	is	closed.

Parameters:
int	flag	=	1
Nonzero	to	close;	zero	to	open.

Return	Value:
Nonzero	if	changed,	zero	if	not.

Prototype:
int	SetOpen();

Remarks:
Sets	the	spline	to	open.

Return	Value:
Nonzero	if	changed,	zero	if	not.

Get/SetInVec()	/	Get/SetKnotPoint()	Get/SetOutVec()
Prototype:
Point3	GetInVec(int	i);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

This	method	is	used	to	retrieve	the	'i-th'	in	vector	position	in	absolute
coordinates.

Parameters:
int	i
The	vector	position	to	retrieve.

Prototype:
void	SetInVec(int	i,	const	Point3	&p);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	set	the	'i-th'	in	vector	position	in	absolute	coordinates.

Parameters:
int	i
The	position	to	alter.
const	Point3	&p
The	value	to	set	in	absolute	coordinates.

Prototype:
Point3	GetRelInVec(int	i);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	retrieve	the	'i-th'	in	vector	position	relative	to	the	knot
point.

Parameters:
int	i
The	postion	to	retrieve.

Prototype:
void	SetRelInVec(int	i,	const	Point3	&p);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	sets	the	'i-th'	bezier	in	vector	position	relative	to	the	knot	point.

Parameters:
int	i
The	vector	to	set.
const	Point3	&p
The	vector	data	to	set,	relative	to	the	knot	point.

Prototype:
Point3	GetKnotPoint(int	i);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	methods	returns	the	'i-th'	knot	point.

Parameters:
int	i
Specifies	which	knot	point	to	get.

Prototype:
void	SetKnotPoint(int	i,	const	Point3	&p);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	methods	sets	the	'i-th'	knot	point	to	the	specified	value.

Parameters:
int	i
Specifies	which	knot	point	to	set.
const	Point3	&p
The	value	to	set.

Prototype:
Point3	GetOutVec(int	i);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	retrieve	the	'i-th'	out	vector	position	in	absolute
coordinates.

Parameters:
int	i
Specifies	which	out	vector	point	to	get.

Prototype:
void	SetOutVec(int	i,	const	Point3	&p);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	set	the	'i-th'	out	vector	position	in	absolute	coordinates.

Parameters:
int	i
Specifies	which	out	vector	point	to	get.
const	Point3	&p
The	out	vector	to	set	in	absolute	coordinates.

Prototype:
Point3	GetRelOutVec(int	i);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	retrieve	the	'i-th'	out	vector	position	relative	to	the	knot
point.

Parameters:
int	i
Specifies	the	point	to	get.

Prototype:
void	SetRelOutVec(int	i,	const	Point3	&p);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	set	the	'i-th'	out	vector	position	relative	to	the	knot
point.

Parameters:
int	i
Specifies	the	point	to	set.
const	Point3	&p
The	out	vector	position	to	set	relative	to	the	knot	point.

Get/SetVert()	/	Verts()	/	KnotPoint()

Prototype:
inline	Point3&	GetVert(int	i);

Remarks:
Each	control	point	is	made	up	of	three	points.	The	in	vector	coming	off	the
bezier	control	point,	the	knot	point	itself,	and	the	out	vector.	There	are	these
three	points	for	every	control	point.	This	method	will	return	any	item	in	this
list.

Parameters:
int	i
The	index	into	the	vertex	list.

Prototype:
inline	void	SetVert(int	i,	const	Point3&	p);

Remarks:
This	method	should	not	be	used.

Prototype:
inline	int	Verts();

Remarks:
Returns	the	number	of	vertices.	This	is	always	the	number	of	knots	times	3.

Prototype:
int	GetAux(int	knot);

Remarks:

This	method	is	available	in	release	2.0	and	later	only.
Returns	the	auxilliary	data	associated	with	the	specified	knot.	This	is	used
internally	for	tracking	topological	changes	to	the	spline	during	editing.
Developers	can	use	it	for	temporary	purposes	but	it	will	be	altered	by	the
EditableSpline	(SplineShape)	code.

Parameters:
int	knot
The	knot	to	retrieve	the	data	from.

Prototype:
void	SetAux(int	knot,	int	value);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	first	integer	auxilliary	data	associated	with	the	specified	knot.

Parameters:
int	knot
Specifies	the	knot	to	whose	auxilliary	data	is	set.
int	value
The	value	to	set.

Prototype:
int	GetAux2(int	knot);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	second	integer	auxilliary	data	associated	with	the	specified	knot

Parameters:
int	knot
The	knot	to	retrieve	the	data	from.

Prototype:
void	SetAux2(int	knot,	int	value);

Remarks:

This	method	is	available	in	release	2.0	and	later	only.
Sets	the	second	integer	auxilliary	data	associated	with	the	specified	knot.

Parameters:
int	knot
Specifies	the	knot	to	whose	auxilliary	data	is	set.
int	value
The	value	to	set.

Prototype:
int	GetAux3(int	knot);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	third	integer	auxilliary	data	associated	with	the	specified	knot.
This	field	is	available	for	any	use.

Parameters:
int	knot
Specifies	the	knot	to	whose	auxilliary	data	is	returned.

Prototype:
void	SetAux3(int	knot,	int	value);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	third	integer	auxilliary	data	associated	with	the	specified	knot.	This
field	is	available	for	any	use.

Parameters:
int	knot
Specifies	the	knot	whose	auxilliary	data	is	set.
int	value
The	value	to	set.

Prototype:
int	GetKnotAux(int	knot,	int	which);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	specified	integer	auxilliary	data	associated	with	the	specified	knot.

Parameters:
int	knot
Specifies	the	knot	whose	auxilliary	data	is	returned.
int	which
Specifies	which	auxiliary	field.	One	of	the	following	values:
0=aux1
1=aux2
2=aux3

Prototype:
void	SetKnotAux(int	knot,	int	which,	int	value);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	specified	integer	auxilliary	data	associated	with	the	specified	knot.

Parameters:
int	knot
Specifies	the	knot	whose	auxilliary	data	is	set.
int	which
Specifies	which	auxiliary	field.	One	of	the	following	values:
0=aux1
1=aux2
2=aux3

int	value
The	value	to	set.

Prototype:
int	GetInAux(int	knot,	int	which);

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Returns	the	specified	integer	auxilliary	data	associated	with	the	specified	in
vector.

Parameters:
int	knot
Specifies	the	knot	whose	auxilliary	data	is	returned.
int	which
Specifies	which	auxiliary	field.	One	of	the	following	values:
0=aux1
1=aux2
2=aux3

Prototype:
void	SetInAux(int	knot,	int	which,	int	value);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	specified	integer	auxilliary	data	associated	with	the	specified	in
vector.

Parameters:
int	knot
Specifies	the	knot	whose	auxilliary	data	is	set.
int	which
Specifies	which	auxiliary	field.	One	of	the	following	values:
0=aux1
1=aux2
2=aux3

int	value
The	value	to	set.

Prototype:
int	GetOutAux(int	knot,	int	which);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	specified	integer	auxilliary	data	associated	with	the	specified	out
vector.

Parameters:
int	knot
Specifies	the	knot	whose	auxilliary	data	is	returned.
int	which
Specifies	which	auxiliary	field.	One	of	the	following	values:
0=aux1
1=aux2
2=aux3

Prototype:
void	SetOutAux(int	knot,	int	which,	int	value);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	specified	integer	auxilliary	data	associated	with	the	specified	out
vector.

Parameters:
int	knot
Specifies	the	knot	whose	auxilliary	data	is	set.
int	which
Specifies	which	auxiliary	field.	One	of	the	following	values:
0=aux1
1=aux2
2=aux3

int	value
The	value	to	set.

Prototype:
int	GetVertAux(int	i,	int	which);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	specified	integer	auxilliary	data	associated	with	the	specified
bezier	vertex.

Parameters:
int	i
The	zero	based	bezier	vertex	index.
int	which
Specifies	which	auxiliary	field.	One	of	the	following	values:
0=aux1
1=aux2
2=aux3

Prototype:
void	SetVertAux(int	i,	int	which,	int	value);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	specified	integer	auxilliary	data	associated	with	the	specified	bezier
vertex.

Parameters:
int	i
The	zero	based	bezier	vertex	index.
int	which
Specifies	which	auxiliary	field.	One	of	the	following	values:
0=aux1
1=aux2
2=aux3

int	value
The	value	to	set.

Prototype:
MtlID	GetMatID(int	seg);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	material	ID	for	the	specified	spline	segment.

Parameters:
int	seg
The	zero	based	index	of	the	segment.

Prototype:
void	SetMatID(int	seg,	MtlID	id);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	material	ID	for	the	specified	spline	segment.

Parameters:
int	seg
The	zero	based	index	of	the	segment.
MtlID	id
The	material	ID	to	set.

Prototype:
void	GetSmoothingMap(IntTab	&map);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	allows	this	Spline3D	to	create	a	map	of	smoothing	groups	that
eases	the	creation	of	meshes.
It	fills	in	a	developer	supplied	IntTab	with	smoothing	groups	for	each	segment
of	the	spline.	A	spline	with	4	segments	will	cause	the	IntTab	to	be	set	to	4
entries,	for	example.
Five	smoothing	groups	are	used	for	this	operation,	1<<0	through	1<<4.	Once
you	have	them,	you	can	shift	them	as	needed	for	your	application.	The
smoothing	groups	are	set	up	so	that	segments	connected	by	knots	with
KTYPE_SMOOTH	or	KTYPE_BEZIER	types	are	smoothed	together.

Parameters:

IntTab	&map
A	table	of	integers.	See	Template	Class	Tab.

Reverse()	/	Append()	/	Prepend()

Prototype:
void	Reverse(BOOL	keepZero	=	FALSE,	BOOL
weldCoincidentFirstVertex=TRUE);

Remarks:
This	method	reverses	all	the	points	of	the	spline.

Parameters:
BOOL	keepZero	=	FALSE
This	optional	parameter	is	available	in	release	2.0	and	later	only.
This	parameter	defaults	to	FALSE	in	order	to	retain	backwards	compatibility.
Setting	it	to	TRUE	insures	that	a	closed	spline	will	have	the	same	vertex	as	its
first	point	when	it	is	reversed.	The	parameter	is	ignored	on	open	splines.
BOOL	weldCoincidentFirstVertex=TRUE
Set	this	to	TRUE	to	weld	coincident	first	vertices.	FALSE	to	disable	welding.

Prototype:
void	Append(Spline3D	*spline,	BOOL
weldCoincidentFirstVertex=TRUE);

Remarks:
This	method	appends	the	specified	spline	onto	the	end	of	this	one.	The	splines
should	both	be	opened.

Parameters:
Spline3D	*spline
The	spline	to	append.
BOOL	weldCoincidentFirstVertex=TRUE
Set	this	to	TRUE	to	weld	coincident	first	vertices.	FALSE	to	disable	welding.

Prototype:
void	Prepend(Spline3D	*spline);

Remarks:
This	method	takes	the	specified	spline	and	puts	it	on	the	front	of	this	spline.

Parameters:
Spline3D	*spline
The	spline	to	prepend.

IsClockWise()	/	SelfIntersects()	/	IntersectsSpline()	/
SurroundsPoint()	/	SplineLength()

Prototype:
BOOL	IsClockWise();

Remarks:
Returns	TRUE	if	the	spline	is	clockwise	in	the	XY	plane	(it	ignores	Z);
otherwise	FALSE.	This	call	is	meaningless	if	the	shape	self	intersects.

Prototype:
BOOL	SelfIntersects();

Remarks:
Returns	TRUE	if	the	spline	intersects	itself	in	the	XY	plane	(it	ignores	Z);
otherwise	FALSE.

Prototype:
BOOL	IntersectsSpline(Spline3D	*spline);

Remarks:
Returns	TRUE	if	this	spline	intersects	the	specified	spline	in	the	XY	plane	(it
ignores	Z);	otherwise	FALSE.

Parameters:
Spline3D	*spline
The	spline	to	check.

Prototype:
BOOL	SurroundsPoint(Point2	p);

Remarks:
Returns	TRUE	if	the	specified	point	is	surrounded	(contained	within)	this
spline.

Parameters:
Point2	p
The	point	to	check.

Prototype:
float	SplineLength();

Remarks:
Returns	the	length	of	the	spline.

Prototype:
float	SegmentLength(int	seg);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	length	of	the	specified	segment	of	this	spline.

Parameters:
int	seg
The	zero	based	index	of	the	segment	to	check.

MakePolyLine()

Prototype:
void	MakePolyLine(PolyLine	&line,	int	steps	=	-1,	BOOL	optimize
=	FALSE);

Remarks:
This	creates	a	PolyLine	from	this	spline	given	a	steps	setting	and	an	optimize
parameter.
Note	the	following	constraints	on	this	method.	When	a	ShapeObject	is	asked
to	output	a	PolyShape	with	a	given	number	of	steps	and	FALSE	is	specified
for	optimization,	it	must	output	a	PolyLine	with	[steps	*	pieces	+	pieces	+	1]
vertices	if	it's	an	open	shape	and	[steps	*	pieces	+	pieces]	vertices	if	it's	closed.

Parameters:
PolyLine	&line
The	result	is	stored	here.
int	steps	=	-1
The	number	of	steps	between	knots	in	the	spline.
BOOL	optimize	=	FALSE
If	TRUE,	linear	segments	between	control	points	in	the	spline	will	not
generate	steps	in	between.	It	will	just	be	one	line	segment.

Dump()

Prototype:
void	Dump(int	where);

Remarks:
This	displays	data	about	the	specified	knot	using	DebugPrints().	See
Debugging.

Parameters:
int	where
The	index	of	the	knot.

Internal	Methods	/	Methods	that	should	not	be	used	by	plug-in
developers

Prototype:
int	ShiftKnot(int	where,	int	direction);

Remarks:
This	method	is	used	internally.

Prototype:
Point3	AverageTangent(int	i);

Remarks:
This	method	should	not	be	used.

Prototype:
void	MakeBezCont(int	i);

Remarks:
This	method	should	not	be	used.

Prototype:
void	RedistTangents(int	i,	Point3	d);

Remarks:
This	method	should	not	be	used.

Prototype:
void	FixAdjBezTangents(int	i);

Remarks:
This	method	should	not	be	used.

Prototype:
void	DrawCurve(GraphicsWindow	*gw,	Material	*mtl);

Remarks:
This	method	should	not	be	used.

Prototype:
inline	void	SetEditMode(int	mode);

Remarks:
This	method	should	not	be	used.

Prototype:
IPoint2	ProjectPoint(ViewExp	*vpt,	Point3	fp,	Matrix3	*mat);

Remarks:
This	method	is	used	internally.

Prototype:

Point3	UnProjectPoint(ViewExp	*vpt,	IPoint2	p,	Matrix3	*mat);
Remarks:
This	method	is	used	internally.

Prototype:
void	Snap(GraphicsWindow	*gw,	SnapInfo	*snap,	IPoint2	*p,
Matrix3	&tm);

Remarks:
This	method	is	used	internally.

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
This	method	is	used	internally	to	save	the	class	data	from	disk.

Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
This	method	is	used	internally	to	load	the	class	data	from	disk.

Prototype:
Point3	GetDragVector(ViewExp	*vpt,IPoint2	p,int	i,Matrix3*
mat);

Remarks:
This	method	is	used	internally.

Prototype:
int	AppendPoint(ViewExp	*vpt,const	Point3&	p,	int	where	=	-1);

Remarks:
This	method	is	used	internally.

Prototype:

int	DrawPhase();
Remarks:
This	method	is	used	internally.

Prototype:
int	GetiCur();

Remarks:
This	method	is	used	internally.

Prototype:
inline	int	ParmType()

Remarks:
This	method	is	used	internally.

Prototype:
int	SetParam(int	index,float	param);

Remarks:
This	method	is	used	internally.

Prototype:
float	GetParam(int	index);

Remarks:
This	method	is	used	internally.

Prototype:
virtual	void	CustomParams()

Remarks:
This	method	is	used	internally.

Prototype:
void	CompParams();

Remarks:
This	method	is	used	internally.

Operators:

Prototype:
Spline3D&	operator=(Spline3D&	fromSpline);

Remarks:
Assignment	operator.

Prototype:
Spline3D&	operator=(PolyLine&	fromLine);

Remarks:
Assignment	operator.	This	generates	a	PolyLine	from	the	spline,	where	points
are	added	in	between	the	knots	on	the	spline.	For	example	if	the	steps	value
was	5,	it	will	interpolate	5	points	in	between	each	knot	on	the	spline.

Class	ShapeObject
See	Also:	Class	GeomObject,	Class	PolyShape.
class	ShapeObject	:	public	GeomObject

Description:
ShapeObjects	are	open	or	closed	hierarchical	shapes	made	up	of	one	or	more
pieces.	This	base	class	defines	a	set	of	methods	that	plug-in	shapes	must
implement.
Note:	Many	plug-in	shapes	may	be	derived	from	Class	SimpleSpline	rather	than
this	class	and	have	fewer	methods	to	implement.	See	that	class	for	more	details.
In	release	2.0	and	later	of	3ds	max,	ShapeObjects	are	now	renderable.	This	has
introduced	a	couple	of	important	ramifications.	First,	any	classes	subclassing	off
of	ShapeObject	should	be	sure	to	call	the	ShapeObject	constructor	in	their
constructor,	in	order	to	properly	initialize	the	fields	contained	in	the
ShapeObject.	At	present,	this	is	the	thickness	field,	which	specifies	the	thickness
of	the	mesh	generated	from	the	shape	at	rendering	time.	For	example:
LinearShape::LinearShape()	:	ShapeObject()	{
...

}
Second,	the	ShapeObject	now	contains	Load	and	Save	methods,	which	handle
the	storage	of	the	data	contained	within	the	ShapeObject.	In	order	to	properly
store	this	information,	classes	which	subclass	off	of	ShapeObject	need	to	call	the
ShapeObject	Load	and	Save	methods	before	storing	their	information.	For
example:
IOResult	LinearShape::Save(ISave	*isave)	{
	IOResult	res	=	ShapeObject::Save(isave);
	if(res	!=	IO_OK)
		return	res;
...

	}
	
IOResult	LinearShape::Load(ILoad	*iload)	{
	IOResult	res	=	ShapeObject::Load(iload);

	if(res	!=	IO_OK)
		return	res;
...

	}
The	number	of	ShapeObject	references/subanims	are	defined	as
SHAPE_OBJ_NUM_REFS	and	SHAPE_OBJ_NUM_SUBS	in
\include\object.h	and	are	set	to	the	number	of	references	and	subanims	in
the	ShapeObject	class,	you	can	use	them	to	make	your	code	more	bullet-
proof	should	the	number	of	references	change	in	the	future.	See
maxsdk\include\splshape.h	for	an	example	of	how	they	can	be	used.

Methods:

Prototype:
void	CopyBaseData(ShapeObject	&from);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
In	order	to	simplify	things	for	subclasses	of	ShapeObject,	this	method	is	now
available.	It	should	be	called	whenever	the	ShapeObject-based	object	is
copied.	It	takes	care	of	copying	all	the	data	to	the	ShapeObject	from	another
ShapeObject-based	object
Implemented	by	the	System.

Parameters:
ShapeObject	&from
The	ShapeObject	to	copy	from.

Prototype:
virtual	int	IntersectRay(TimeValue	t,	Ray&	ray,	float&	at,	Point3&
norm)

Remarks:
Implemented	by	the	Plug-In.
Computes	the	intersection	point	of	the	ray	passed	and	the	shape.
Note:	In	release	3	and	later	this	method	has	a	default	implementation	and	it	is
no	longer	necessary	to	define	this	method	in	classes	derived	from

ShapeObject.
Parameters:
TimeValue	t
The	time	to	compute	the	intersection.
Ray&	ray
Ray	to	intersect.
float&	at
The	point	of	intersection.
Point3&	norm
This	parameter	is	available	in	release	3.0	and	later	only.
The	surface	normal	at	the	point	of	intersection.

Return	Value:
Nonzero	if	a	point	of	intersection	was	found;	otherwise	0.

Default	Implementation:
{return	FALSE;}

Access	methods
Prototype:
virtual	BOOL	GetRenderable();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.
The	ShapeObject	class	now	has	a	"renderable"	flag	contained	within	it.	Access
to	this	is	via	this	method	and	SetRenderable().	If	this	is	set	to	TRUE	and	the
node	is	set	to	renderable,	the	spline	will	be	rendered.	This	defaults	to	FALSE.

Prototype:
virtual	void	SetRenderable(BOOL	sw);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.

Sets	the	rendering	flag	to	the	specified	value.
Parameters:
BOOL	sw
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	float	GetThickness(TimeValue	t,	Interval	&ivalid);

Remarks:
Implemented	by	the	System.
Returns	the	shape's	thickness	setting.

Parameters:
TimeValue	t
This	parameter	is	available	in	release	4.0	and	later	only.
The	time	to	obtain	the	thickness.
Interval	&ivalid
This	parameter	is	available	in	release	4.0	and	later	only.
The	validity	interval.

Prototype:
virtual	void	SetThickness(TimeValue	t,	float	thick);

Remarks:
Implemented	by	the	System.
Sets	the	thickness	setting	of	the	shape	to	the	specified	value.

Parameters:
TimeValue	t
This	parameter	is	available	in	release	4.0	and	later	only.
The	time	at	which	to	set	the	thickness.
float	thick
The	new	thickness	setting	for	the	shape.

Prototype:

int	GetSides(TimeValue	t,	Interval	&ivalid);
Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	number	of	sides	for	the	cross-section	of	the	rendering
mesh	version	of	the	shape	for	the	specified	time.

Parameters:
TimeValue	t
The	time	to	obtain	the	thickness.
Interval	&ivalid
The	validity	interval.

Prototype:
void	SetSides(TimeValue	t,	int	s);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	number	of	sides	for	the	rendering	mesh
version	of	the	shape	for	the	specified	time.	The	allowable	ranges	for	this
parameter	are	3-100.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	number	of	sides.
int	s
The	number	of	sides	you	wish	to	set.

Prototype:
float	GetAngle(TimeValue	t,	Interval	&ivalid);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	angle	that	the	cross-section	of	the	rendering	mesh	will
be	rotated	to,	for	the	specified	time.

Parameters:
TimeValue	t

The	time	to	obtain	the	thickness.
Interval	&ivalid
The	validity	interval.

Prototype:
void	SetAngle(TimeValue	t,	float	a);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	cross-section	rotation	angle	for	the
rendering	mesh	version	of	the	shape,	in	degrees,	for	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	angle.
float	a
The	angle	you	wish	to	set,	in	degrees.

Prototype:
float	GetViewportThickness();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	thickness	of	the	viewport	version	of	the	rendering
mesh.	This	is	not	an	animated	parameter.

Prototype:
int	GetViewportSides();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	number	of	sides	for	the	cross-section	for	the	viewport
version	of	the	rendering	mesh.	This	is	not	an	animated	parameter.

Prototype:
void	SetViewportSides(int	s);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	number	of	sides	for	the	viewport	version	of
the	rendering	mesh.	This	is	not	an	animated	parameter.

Parameters:
int	s
The	number	of	viewport	sides	you	wish	to	set.

Prototype:
float	GetViewportAngle();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	angle	that	the	cross-section	of	the	viewport	version	of
the	rendering	mesh	will	be	rotated	to.	This	is	not	an	animated	parameter.

Prototype:
void	SetViewportAngle(float	a);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	angle	that	the	cross-section	of	the	viewport
version	of	the	rendering	mesh	will	be	rotated	to,	in	degrees.	This	is	not	an
animated	parameter.

Parameters:
float	a
The	viewport	angle	you	wish	to	set,	in	degrees.

Prototype:
BOOL	GetDispRenderMesh();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	TRUE	if	the	"Display	Render	Mesh"	switch	is	on.	FALSE
when	the	switch	is	off.

Prototype:
void	SetDispRenderMesh(BOOL	sw);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	turn	the	"Display	Render	Mesh"	switch	on	or	off.

Parameters:
BOOL	sw
TRUE	or	FALSE	to	set	or	unset	the	"Display	Render	Mesh"	switch.

Prototype:
BOOL	GetUseViewport();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	TRUE	if	the	"Use	Viewport	Settings"	switch	is	on.
FALSE	when	the	switch	is	off.

Prototype:
void	SetUseViewport(BOOL	sw);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	turn	the	"Use	Viewport	Settings"	switch	on	or	off.

Parameters:
BOOL	sw
TRUE	or	FALSE	to	set	or	unset	the	"Use	Viewport	Settings"	switch.

Prototype:
BOOL	GetViewportOrRenderer();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	value	of	the	Viewport/Render	switch	and	either
returns	GENMESH_VIEWPORT	or	GENMESH_RENDER.

Prototype:
void	SetViewportOrRenderer(BOOL	sw);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	value	of	the	Viewport/Render	switch.

Parameters:
BOOL	sw
Set	this	parameter	to	GENMESH_VIEWPORT	or
GENMESH_RENDER.

Prototype:
virtual	BOOL	GetGenUVs();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.
Returns	TRUE	if	the	generate	UVs	switch	is	on;	FALSE	if	off.

Prototype:
virtual	void	SetGenUVs(BOOL	sw);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.
Pass	TRUE	to	set	the	generate	UVs	switch	to	on;	FALSE	to	set	it	off.

Parameters:
BOOL	sw
TRUE	for	on;	FALSE	for	off.

Prototype:
void	GetRenderMeshInfo(TimeValue	t,	INode	*inode,	View&	view,
int	&nverts,	int	&nfaces);

Remarks:

This	method	is	available	in	release	2.0	and	later	only.
Returns	information	on	the	rendering	mesh.
Implemented	by	the	System.

Parameters:
TimeValue	t
The	time	to	get	the	information.
INode	*inode
The	node	associated	with	the	mesh.
View&	view
Describes	properties	of	the	view	associated	with	the	render.	See	Class	View.
int	&nverts
The	number	of	vertices	in	the	render	mesh.
int	&nfaces
The	number	of	faces	in	the	render	mesh.

Prototype:
virtual	int	NumberOfVertices(TimeValue	t,	int	curve	=	-1);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	is	used	by	the	Summary	Info	and	Object	Properties	dialogs	to
inform	the	user	how	many	vertices	or	CVs	are	in	the	object.	The	method	is
passed	a	TimeValue	and	a	curve	index;	if	the	curve	index	is	<0,	the	function
should	return	the	number	of	vertices/CVs	in	the	entire	shape.	Otherwise,	it
should	return	the	number	of	vertices/CVs	in	the	specified	curve.

Parameters:
TimeValue	t
The	time	at	which	the	number	of	vertices	is	to	be	computed.
int	curve	=	-1
The	curve	index.	See	note	above.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	int	NumberOfCurves()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	number	of	polygons	in	the	shape.

Prototype:
virtual	BOOL	CurveClosed(TimeValue	t,	int	curve)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	determine	if	the	specified	curve	of	the	shape	is	closed
at	the	time	passed.

Parameters:
TimeValue	t
The	time	to	check.
int	curve
The	index	of	the	curve	to	check.

Return	Value:
TRUE	if	the	curve	is	closed;	otherwise	FALSE.

Prototype:
virtual	Point3	InterpCurve3D(TimeValue	t,	int	curve,	float	param,
int	ptype=PARAM_SIMPLE)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	a	point	interpolated	on	the	entire	curve.	This	method
returns	the	point	but	you	don't	know	which	segment	the	point	falls	on.	See
method	InterpPiece3D().

Parameters:
TimeValue	t
The	time	to	evaluate.
int	curve

The	index	of	the	curve	to	evaluate.
float	param
The	'distance'	along	the	curve	where	0	is	the	start	and	1	is	the	end.
int	ptype=PARAM_SIMPLE
The	parameter	type	for	spline	interpolation.	See	List	of	Parameter	Types	for
Shape	Interpolation.

Return	Value:
The	interpolated	point	on	the	curve.

Prototype:
virtual	Point3	TangentCurve3D(TimeValue	t,	int	curve,	float
param,	int	ptye=PARAM_SIMPLE)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	a	tangent	vector	interpolated	on	the	entire	curve.	Also	see
method	TangentPiece3D().

Parameters:
TimeValue	t
The	time	at	which	to	evaluate	the	curve.
int	curve
The	index	of	the	curve	to	evaluate.
float	param
The	'distance'	along	the	curve	where	0.0	is	the	start	and	1.0	is	the	end.
int	ptype=PARAM_SIMPLE
The	parameter	type	for	spline	interpolation.	See	List	of	Parameter	Types	for
Shape	Interpolation.

Return	Value:
The	tangent	vector

Prototype:
virtual	float	LengthOfCurve(TimeValue	t,	int	curve)=0;

Remarks:

Implemented	by	the	Plug-In.
Returns	the	length	of	the	specified	curve.
Note:	This	method	makes	no	allowance	for	non-uniform	scaling	in	the	object
transform.	To	do	that,	see	the	following	code	fragment	(os	is	the	ObjectState
with	the	shape	object	and	xfm	is	the	NodeTM	of	the	shape	object	node).
	if	(os.obj->SuperClassID()	==	SHAPE_CLASS_ID)	{
		ShapeObject	*sobj;
		sobj	=	(ShapeObject	*)	os.obj;
		int	cct	=	sobj->NumberOfCurves();
		PolyShape	workShape;
		sobj->MakePolyShape(ip->GetTime(),	workShape);
		workShape.Transform(xfm);
		float	len	=	0.0f;
		for	(int	i=0;	i<cct;	i++)
			len	+=	workShape.lines[i].CurveLength();
	}

Parameters:
TimeValue	t
The	time	at	which	to	compute	the	length.
int	curve
The	index	of	the	curve.

Prototype:
virtual	int	NumberOfPieces(TimeValue	t,	int	curve)=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	number	of	sub-curves	in	a	curve.

Parameters:
TimeValue	t
The	time	at	which	to	check.
int	curve

The	index	of	the	curve.

Prototype:
virtual	Point3	InterpPiece3D(TimeValue	t,	int	curve,
int	piece,	float	param,	int	ptye=PARAM_SIMPLE)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	interpolated	point	along	the	specified	sub-curve
(segment).	For	example	consider	a	shape	that	is	a	single	circle	with	four	knots.
If	you	called	this	method	with	curve=0	and	piece=0	and	param=0.0	you'd	get
back	the	point	at	knot	0.	If	you	passed	the	same	parameters	except	param=1.0
you'd	get	back	the	point	at	knot	1.

Parameters:
TimeValue	t
The	time	to	evaluate	the	sub-curve.
int	curve
The	curve	to	evaluate.
int	piece
The	segment	to	evaluate.
float	param
The	position	along	the	curve	to	return	where	0.0	is	the	start	and	1.0	is	the	end.
int	ptype=PARAM_SIMPLE
The	parameter	type	for	spline	interpolation.	See	List	of	Parameter	Types	for
Shape	Interpolation.

Return	Value:
The	point	in	world	space.

Prototype:
virtual	Point3	TangentPiece3D(TimeValue	t,	int	curve,
int	piece,	float	param,	int	ptye=PARAM_SIMPLE)=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	tangent	vector	on	a	sub-curve	at	the	specified	'distance'	along	the

curve.
Parameters:
TimeValue	t
The	time	to	evaluate	the	sub-curve.
int	curve
The	curve	to	evaluate.
int	piece
The	sub-curve	(segment)	to	evaluate.
float	param
The	position	along	the	curve	to	return	where	0	is	the	start	and	1	is	the	end.
int	ptype=PARAM_SIMPLE
The	parameter	type	for	spline	interpolation.	See	List	of	Parameter	Types	for
Shape	Interpolation.

Return	Value:
The	tangent	vector.

Prototype:
virtual	MtlID	GetMatID(TimeValue	t,	int	curve,	int	piece);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	available	in	release	3.0	and	later	only.
This	method	provides	access	to	the	material	IDs	of	the	shape.	It	returns	the
material	ID	of	the	specified	segment	of	the	specified	curve	of	this	shape	at	the
time	passed.	There	is	a	default	implementation	so	there	is	no	need	to
implement	this	method	if	the	shape	does	not	support	material	IDs.
Note:	typedef	unsigned	short	MtlID;

Parameters:
TimeValue	t
The	time	to	evaluate	the	sub-curve.
int	curve
The	zero	based	index	of	the	curve	to	evaluate.
int	piece
The	sub-curve	(segment)	to	evaluate.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	BOOL	CanMakeBezier()

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	determine	if	the	shape	can	be	converted	to	a	bezier
representation.

Return	Value:
TRUE	if	the	shape	can	turn	into	a	bezier	representation;	otherwise	FALSE.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	void	MakeBezier(TimeValue	t,	BezierShape	&shape);

Remarks:
Implemented	by	the	Plug-In.
Creates	the	bezier	representation	of	the	shape.

Parameters:
TimeValue	t
The	time	to	convert.
BezierShape	&shape
The	bezier	representation	is	stored	here.

Default	Implementation:
{}

Prototype:
virtual	ShapeHierarchy	&OrganizeCurves(TimeValue	t,
ShapeHierarchy	*hier=NULL)=0

Remarks:

Implemented	by	the	Plug-In.
This	method	is	called	to	prepare	the	shape	for	lofting,	extrusion,	etc.	This
methods	looks	at	the	shape	organization,	and	puts	together	a	shape	hierarchy.
This	provides	information	on	how	the	shapes	are	nested.

Parameters:
TimeValue	t
The	time	to	organize	the	curves.
ShapeHierarchy	*hier=NULL
This	 class	 provides	 information	 about	 the	 hierarchy.	 See	 Class
ShapeHierarchy.

Prototype:
virtual	void	MakePolyShape(TimeValue	t,	PolyShape	&shape,
int	steps	=	PSHAPE_BUILTIN_STEPS,	BOOL	optimize	=
FALSE)=0;

Remarks:
Implemented	by	the	Plug-In.
Create	a	PolyShape	representation	with	optional	fixed	steps.

Parameters:
TimeValue	t
The	time	to	make	the	PolyShape.
PolyShape	&shape
The	PolyShape	representation	is	stored	here.
int	steps	=	PSHAPE_BUILTIN_STEPS
The	number	of	steps	between	knots.	Values	>=0	indicates	the	use	of	fixed
steps:
PSHAPE_BUILTIN_STEPS
Use	the	shape's	built-in	steps/adaptive	settings	(default).
PSHAPE_ADAPTIVE_STEPS
Force	adaptive	steps.

BOOL	optimize	=	FALSE
If	TRUE	intermediate	steps	are	removed	from	linear	segments.

Prototype:
virtual	int	MakeCap(TimeValue	t,	MeshCapInfo	&capInfo,	int
capType)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	generates	a	mesh	capping	info	for	the	shape.

Parameters:
TimeValue	t
The	time	to	create	the	cap	info.
MeshCapInfo	&capInfo
The	cap	info	to	update.
int	capType
See	List	of	Cap	Types.

Return	Value:
Nonzero	if	the	cap	info	was	generated;	otherwise	zero.

Prototype:
virtual	int	MakeCap(TimeValue	t,	PatchCapInfo	&capInfo)

Remarks:
Implemented	by	the	Plug-In.
This	method	creates	a	patch	cap	info	out	of	the	shape.	Only	implement	this
method	if	CanMakeBezier()	returns	TRUE.

Parameters:
TimeValue	t
The	time	to	create	the	cap	info.
PatchCapInfo	&capInfo
The	cap	info	to	update.

Return	Value:
Nonzero	if	the	cap	info	was	generated;	otherwise	zero.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	BOOL	AttachShape(TimeValue	t,	INode	*thisNode,	INode
*attachNode,	BOOL	weldEnds=FALSE,	float
weldThreshold=0.0f);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	to	attach	the	shape	of	attachNode	to	thisNode	at	the
specified	time.	If	any	endpoints	of	the	curves	in	the	shape	being	attached	are
within	the	threshold	distance	to	endpoints	of	an	existing	curve,	and	the	weld
flag	is	TRUE,	they	should	be	welded.

Parameters:
TimeValue	t
The	time	to	attach.
INode	*thisNode
This	is	the	node	associated	with	this	shape	object.
INode	*attachNode
The	node	of	the	shape	to	attach.
BOOL	weldEnds=FALSE
This	parameter	is	available	in	release	3.0	and	later	only.
If	TRUE	the	endpoints	of	the	shape	should	be	welded	together	(based	on	the
threshold	below).	If	FALSE	no	welding	is	necessary.
float	weldThreshold=0.0f
This	parameter	is	available	in	release	3.0	and	later	only.
If	any	endpoints	of	the	curves	in	the	shape	being	attached	are	within	this
threshold	distance	to	endpoints	of	an	existing	curve,	and	the	weld	flag	is
TRUE,	they	should	be	welded

Return	Value:
Return	TRUE	if	attached;	otherwise	FALSE.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	IOResult	Save(ISave	*isave);

Remarks:
Implemented	by	the	System.
This	method	handles	the	storage	of	the	data	contained	within	the	ShapeObject.
In	order	to	properly	store	this	information,	classes	which	subclass	off	of
ShapeObject	need	to	call	this	methods	before	storing	their	information.

Parameters:
ISave	*isave
An	interface	for	saving	data.	See	Class	ISave.

Prototype:
virtual	IOResult	Load(ILoad	*iload);

Remarks:
Implemented	by	the	System.
This	method	handles	the	loading	of	the	data	contained	within	the	ShapeObject.
In	order	to	properly	load	this	information,	classes	which	subclass	off	of
ShapeObject	need	to	call	this	methods	before	loading	their	information.

Parameters:
ILoad	*iload
An	interface	for	loading	data.	See	Class	ILoad.

Prototype:
virtual	Class_ID	PreferredCollapseType();

Remarks:
Implemented	by	the	System.
This	is	an	implementation	of	the	Object	method.	It	simply	returns
splineShapeClassID.

Prototype:
virtual	BOOL	GetExtendedProperties(TimeValue	t,	TSTR
&prop1Label,	TSTR	&prop1Data,	TSTR	&prop2Label,	TSTR
&prop2Data);

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System.
This	is	an	implementation	of	the	Object	method.	It	fills	in	the	property	fields
with	the	number	of	vertices	and	curves	in	the	shape.

Prototype:
virtual	void	RescaleWorldUnits(float	f);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System.
Objects	derived	from	this	class	which	have	RescaleWorldUnits	methods
implemented	need	to	call	this	method.	The	following	example	is	the
SplineShape	implementation	of	this	method	from	core.
void	SplineShape::RescaleWorldUnits(float	f)	{
	if	(TestAFlag(A_WORK1))
		return;
	//	Call	the	base	class's	rescale	(this	sets	the	A_WORK1	flag)
	ShapeObject::RescaleWorldUnits(f);
	//	Now	rescale	stuff	inside	our	data	structures
	Matrix3	stm	=	ScaleMatrix(Point3(f,	f,	f));
	shape.Transform(stm);
	}
Note	that	the	A_WORK1	flags	is	tested	first	to	be	sure	it	isn't	processing	the
rescale	twice.	The	code	then	calls	ShapeObject::RescaleWorldUnits,	which
sets	the	A_WORK1	flag	and	performs	the	necessary	rescale	methods	for	all
references	for	the	object,	and	scales	the	renderable	thickness	value.

Parameters:
float	f
The	parameter	to	scale.

Prototype:
virtual	void	GenerateMesh(TimeValue	t,	int	option,	Mesh	*mesh);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	generate	a	mesh	based	on	either	the	viewport	or	rendering
parameters	for	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	generate	the	mesh.
int	option
The	option	can	be	either	GENMESH_VIEWPORT,	GENMESH_RENDER,	or
GENMESH_DEFAULT.	When	using	the	default	definition	the	mesh	generator
will	use	whatever	is	in	the	Viewport/Render	switch	in	the	parameter	block.
Mesh	*mesh
A	pointer	to	a	Mesh	object.	If	this	is	set	to	NULL,	the	mesh	will	be	generated
and	cached,	but	not	returned.

Prototype:
virtual	RefResult	NotifyRefChanged(Interval	changeInt,
RefTargetHandle	hTarget,	PartID&	partID,	RefMessage
message);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	will	notify	the	Shape	Object	of	changes	in	values	in	its	parameter
block.	The	ShapeObject�s	parameter	block	is	reference	number	zero.	If
subclasses	implement	this	method,	they	should	pass	any	messages	referring	to
the	ShapeObject�s	parameter	block	to	it.	For	example:
//	If	this	isn't	one	of	our	references,	pass	it	on	to	the	ShapeObject...
if(hTarget	==	GetReference(0))

return	ShapeObject::NotifyRefChanged(
changeInt,	hTarget,	partID,	message);

This	is	a	vital	part	of	the	mechanism;	When	a	parameter	in	the	parameter
block	changes,	the	ShapeObject	must	be	able	to	flush	its	cached	mesh	which
will	no	longer	be	valid.

Parameters:
Interval	changeInt
This	is	the	interval	of	time	over	which	the	message	is	active.
RefTargetHandle	hTarget
This	is	the	handle	of	the	reference	target	the	message	was	sent	by.	The
reference	maker	uses	this	handle	to	know	specifically	which	reference	target
sent	the	message.
PartID&	partID
This	contains	information	specific	to	the	message	passed	in.	Some	messages
don't	use	the	partID	at	all.	See	the	section	List	of	Reference	Messages	for
more	information	about	the	meaning	of	the	partID	for	some	common
messages.
RefMessage	message
The	msg	parameter	passed	into	this	method	is	the	specific	message	which
needs	to	be	handled.	See	List	of	Reference	Messages.

Return	Value:
The	return	value	from	this	method	is	of	type	RefResult.	This	is	usually
REF_SUCCEED	indicating	the	message	was	processed.	Sometimes,	the
return	value	may	be	REF_STOP.	This	return	value	is	used	to	stop	the
message	from	being	propagated	to	the	dependents	of	the	item.

Prototype:
virtual	RefTargetHandle	GetReference(int	i);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	the	ShapeObject	to	return	a	pointer	to	its	parameter	block.
Any	subclasses	implementing	this	method	must	pass	on	the	call	if	it	indicates
the	ShapeObject�s	reference.	For	example:
RefTargetHandle	SomeShape::GetReference(int	i)	{

If(i	==	0)	return	ShapeObject::GetReference(i);
}

Parameters:
int	i

The	reference	handle	to	retrieve.
Return	Value:
The	handle	to	the	Reference	Target.

Prototype:
virtual	void	SetReference(int	i,	RefTargetHandle	rtarg);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	sets	the	ShapeObject�s	parameter	block	pointer.	Any	subclasses
implementing	this	method	must	pass	on	the	call	to	the	ShapeObject	if	it	refers
to	index	0.	For	example:
void	SomeShape::SetReference(int	i,	RefTargetHandle	rtarg)	{

if(i	==	0)	ShapeObject::SetReference(i,	rtarg);
}

Parameters:
int	i
The	virtual	array	index	of	the	reference	to	store.
RefTargetHandle	rtarg
The	reference	handle	to	store.

Prototype:
virtual	Animatable*	SubAnim(int	i);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	ShapeObject�s	animatable	pointer.	Derived	classes
implementing	this	method	must	pass	on	references	to	index	0	to	the
ShapeObject.	For	example::
Animatable*	SomeShape::SubAnim(int	i)	{

if(i	==	0)	return	ShapeObject::SubAnim(i);
}

Parameters:
int	i

This	is	the	index	of	the	sub-anim	to	return.

Prototype:
virtual	TSTR	SubAnimName(int	i);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	name	of	the	animatable�s	name.	Derived	classes
implementing	this	method	must	pass	on	references	to	index	0	to	the
ShapeObject.	For	example:
TSTR	SomeShape::SubAnimName(int	i)	{

if(i	==	0)	return	ShapeObject::SubAnimName(i);
}

Parameters:
int	i
This	is	the	index	of	the	sub-anim�s	name	to	return.

Prototype:
ParamDimension	*GetParameterDim(int	pbIndex);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	parameter	dimension	of	the	parameter	whose	index	is
passed.

Parameters:
int	pbIndex
The	index	of	the	parameter	to	return	the	dimension	of.

Return	Value:
Pointer	to	a	ParamDimension.

Prototype:
TSTR	GetParameterName(int	pbIndex);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

This	method	returns	the	name	of	the	parameter	whose	index	is	passed.
Parameters:
int	pbIndex
The	index	of	the	parameter	to	return	the	dimension	of.

Prototype:
virtual	int	RemapRefOnLoad(int	iref);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	remaps	references	at	load	time	so	that	files	saved	from	previous
versions	of	3ds	max	get	their	references	adjusted	properly	to	allow	for	the	new
ShapeObject	reference.	If	derived	classes	implement	this	method,	they	must
properly	pass	on	the	call	to	the	ShapeObject�s	code.	An	example	from	the
SplineShape	code:
int	SplineShape::RemapRefOnLoad(int	iref)	{

//	Have	the	ShapeObject	do	its	thing	first...
iref	=	ShapeObject::RemapRefOnLoad(iref);	

	if(loadRefVersion	==	ES_REF_VER_0)
return	iref+1;

	return	iref;
}
Note	that	the	SplineShape	first	calls	ShapeObject�s	remapper,	then	applies
its	remapping	operation	to	the	index	returned	by	the	ShapeObject	code.
IMPORTANT	NOTE:	For	this	remapping	to	operate	properly,	the	derived
class	MUST	call	ShapeObject::Save	as	the	first	thing	in	its	::Save	method,	and
must	call	ShapeObject::Load	as	the	first	thing	in	its	::Load	method.	This
allows	the	ShapeObject	to	determine	file	versions	and	the	need	for	remapping
references.

Parameters:
int	iref
The	input	index	of	the	reference.

Return	Value:
The	output	index	of	the	reference.

Prototype:
virtual	int	NumRefs();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
The	ShapeObject	makes	1	reference;	this	is	where	it	tells	the	system.	Any
derived	classes	implementing	this	method	must	take	this	into	account	when
returning	the	number	of	references	they	make.	A	good	idea	is	to	implement
NumRefs	in	derived	classes	as:
Int	SomeShape::NumRefs()	{

return	myNumRefs	+	ShapeObject::NumRefs();
}

Default	Implementation:
{return	1;}

Prototype:
void	BeginEditParams(IObjParam	*ip,	ULONG	flags,Animatable
*prev);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	the	ShapeObject	to	create	its	new	"Rendering"	rollup.	To
use	it,	the	derived	class	simply	calls	it	first	thing	in	its	own	BeginEditParams
method.	An	example	from	the	SplineShape	code:
void	SplineShape::BeginEditParams(IObjParam	*ip,	ULONG
flags,Animatable	*prev)
{

ShapeObject::BeginEditParams(ip,	flags,	prev);
	//	�
}

Parameters:
IObjParam	*ip
The	interface	pointer	passed	to	the	plug-in.

ULONG	flags
The	flags	passed	along	to	the	plug-in	in	Animatable::BeginEditParams().
Animatable	*prev
The	pointer	passed	to	the	plug-in	in	Animatable::BeginEditParams().

Prototype:
void	EndEditParams(IObjParam	*ip,	ULONG	flags,Animatable
*next);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Similarly	to	BeginEditParams,	this	method	allows	the	ShapeObject	to	remove
its	"Rendering"	rollup.	A	derived	class	simply	calls	this	first	thing	in	its	own
EndEditParams.	An	example	from	the	SplineShape	code:
void	SplineShape::EndEditParams(IObjParam	*ip,	ULONG
flags,Animatable	*next)
{

ShapeObject::EndEditParams(ip,	flags,	next);
//	�

}
Parameters:
IObjParam	*ip
The	interface	pointer	passed	to	the	plug-in.
ULONG	flags
The	flags	passed	along	to	the	plug-in	in	Animatable::BeginEditParams().
Animatable	*prev
The	pointer	passed	to	the	plug-in	in	Animatable::BeginEditParams().

Prototype:
Interval	GetShapeObjValidity(TimeValue	t);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	gets	the	validity	interval	for	the	ShapeObject�s	internal

parameters	only.	It	DOES	NOT	include	those	of	the	derived	classes.	So,	if	you
called	this	method	on	a	ShapeObject	that	was	a	circle	with	an	animated	radius,
you	wouldn�t	see	the	effect	of	the	animated	radius	on	the	interval	�	All
you�d	see	would	be	the	interval	of	the	ShapeObject�s	rendering	parameters.
To	get	the	entire	ShapeObject�s	interval,	you	would	call
ShapeObject::ObjectShapeObjValidity(t).

Parameters:
TimeValue	t
The	time	about	which	the	interval	is	computed.

Prototype:
int	Display(TimeValue	t,	INode	*inode,	ViewExp*	vpt,	int	flags);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	displays	the	shape's	generated	mesh	if	necessary.	Objects	derived
from	ShapeObject	will	want	to	have	the	ShapeObject	code	display	the
rendering	mesh	in	the	viewport;	this	method	will	do	that	for	them.	Simply	set
the	viewport	transform	and	call	this	method.	An	example	from	the
SplineShape	code:
int	SplineShape::Display(TimeValue	t,	INode	*inode,	ViewExp*
vpt,	int	flags)
{

Eval(t);
GraphicsWindow	*gw	=	vpt->getGW();
gw->setTransform(inode->GetObjectTM(t));
ShapeObject::Display(t,	inode,	vpt,	flags);
//	�

}
If	the	ShapeObject�s	"Display	Render	Mesh"	switch	is	off,	it	will	do	nothing.
Otherwise,	it	will	display	the	proper	mesh	as	specified	by	its	parameter	block.

Parameters:
TimeValue	t

The	time	to	display	the	object.
INode*	inode
The	node	to	display.
ViewExp	*vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.
int	flags
See	List	of	Display	Flags.

Return	Value:
The	return	value	is	not	currently	used.

Prototype:
virtual	Box3	GetBoundingBox(TimeValue	t,	Matrix3	*tm=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	a	bounding	box	for	the	shape,	if	it�s	active,	if	the
"Display	Render	Mesh"	switch	is	on.	It	is	necessary	to	include	this	box	when
computing	the	bounding	box	for	a	shape,	otherwise	the	viewport	display	will
not	work	properly.

Parameters:
TimeValue	t
The	time	to	get	the	bounding	box.
Matrix3	*tm
The	points	of	ShapeObject	are	transformed	by	this	matrix	prior	to	the
bounding	box	computations.

Prototype:
virtual	void	InvalidateGeomCache();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	very	important	�	It	causes	the	ShapeObject	to	flush	its	cached
rendering	mesh.	Most	objects	have	their	own	"InvalidateGeomCache"

methods;	simply	call	this	when	a	shape	derived	from	ShapeObject	changes
and	it	will	ensure	that	the	rendering	mesh	is	regenerated	the	next	time	it	is
evaluated.	Failure	to	call	this	method	will	result	in	improper	rendering	mesh
updates.

Class	CollisionObject
See	Also:	Class	Point3.
class	CollisionObject	:	public	InterfaceServer

Description:
A	collision	object	can	be	applied	to	a	particle	system	by	a	Space	Warp.	The
collision	object	checks	a	particle's	position	and	velocity	and	determines	if	the
particle	will	collide	with	it	in	the	next	dt	amount	of	time.	If	so,	it	modifies	the
position	and	velocity.

Methods:

Prototype:
virtual	BOOL	CheckCollision(TimeValue	t,Point3	&pos,
Point3	&vel,	float	dt,	int	index,	float	*ct=NULL,	BOOL
UpdatePastCollide=TRUE)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	checks	a	particles	position	and	velocity	to	determine	if	there	was
be	a	collision	between	the	particle	and	this	collision	object.	If	there	was	a
collision,	the	particles	position	and	velocity	should	be	modified.
The	plug-in	may	compute	a	line	segment	between	where	the	particle	is	now,
and	where	it	will	be	in	dt	amount	of	time.	The	plug-in	then	checks	if	the	line
segment	intersects	the	collision	object.	If	so,	it	would	compute	the	resulting
position,	and	modify	the	velocity	vector	vel	to	point	in	the	new	direction
(presumably	reflected	across	the	surface	normal).
3ds	max	3.0	introduced	interparticle	collision	(where	particles	may	collide
with	other	particles).	In	order	to	implement	interparticle	collision	(IPC)	in	the
presence	of	collision	objects,	it	became	necessary	to	generalize	the	operation
of	the	deflectors	so	that	they	didn't	always	work	in	discrete	time	intervals.
That	is,	in	the	general	case	of	an	unidentified	number	of	particles	interacting	in
an	unspecified	way,	it	was	necessary	to	allow	everything	involved	in	that
system	to	update	to	specified	times	without	moving	past	that	time.
In	the	absence	of	IPC	enabled,	the	particle	system	calls	the	bound	collision
objects	with	the	parameter	UpdatePastCollide	==	TRUE,	and	the

deflector	checks	all	collisions,	updates	particles	based	on	their	collisions	with
deflectors	and	the	ensuing,	remaining	time	intervals	in	dt	subsequent	to	the
collisions.
In	the	presence	of	IPC	that	won't	work.	When	IPC	is	active,	all	particles	need
to	be	updated	to	the	time	of	the	first	collision	in	the	system	in	dt,	whether	that
collision	be	between	particles	or	between	particles	and	deflectors.	Thus,	in	the
presence	of	IPC,	all	particle	updates	to	bound	deflectors	are	called	with
UpdatePastCollide	==	FALSE.	In	that	case,	the	collision	objects	return
both	the	position	and	velocity	of	the	updated	particles	and	the	time	at	which
the	collision	occurred.
All	such	times	are	compared,	along	with	all	possible	internally	calculated	IPC
event	times.	If	there	are	any	nonnegative	times	returned	greater	than	or	equal
to	zero,	all	particle	states	are	reverted	to	their	states	at	the	beginning	of	the
interval	and	then	updated	to	the	precise	minimum	time	returned	as	the	earliest
collision.	And	then	everything	starts	up	again	trying	to	update	itself	to	the
next	integral	time,	when	control	can	pass	back	to	whatever	is	asking	the
particles	to	update	themselves.	If	there	are	other	collisions	in	that	time,	it
happens	again.
This	whole	set	of	operations	happens	after	any	true	returns	from	the	trilinear
sort/sweep	correlator	that	looks	for	the	possibility	of	collisions.	If	there	are	no
possible	collisions,	everything	proceeds	through	a	complete	interval	normally.

Parameters:
TimeValue	t
The	time	to	check	for	collision.
Point3	&pos
The	position	of	the	particle	to	check	and	potentially	modify.
Point3	&vel
The	velocity	vector	of	the	particle	to	check	and	potentially	modify.
float	dt
This	is	an	increment	of	time	-	the	step	size.	The	method	checks	if	the	particle
will	collide	in	this	amount	of	time.
int	index
This	parameter	is	available	in	release	2.0	and	later	only.
The	index	of	the	particle	being	collided.

float	*ct=NULL
This	parameter	is	available	in	release	3.0	and	later	only.
An	array	of	floating	point	times	at	which	the	collisions	occurred.
BOOL	UpdatePastCollide=TRUE
This	parameter	is	available	in	release	3.0	and	later	only.
This	is	a	flag	to	tell	the	collision	object	to	update	the	particle	past	the	collision
to	the	remainder	of	input	dt	or	to	output	the	state	of	the	particle	at	the
collision.	In	the	presence	of	interparticle	collision	enable,	we	have	to	update	to
the	times	of	collisions	and	then	retest	from	there.	See	the	Remarks.

Return	Value:
TRUE	if	there	was	a	collision	and	the	position	and	velocity	have	been
modified;	otherwise	FALSE.

Prototype:
virtual	Object	*GetSWObject()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	provides	a	way	of	identifying	the	'parent'	Deflector	for	a
CollisionObject	available	to	a	particle	system.	This	must	be	implemented	by
all	Deflectors.	It	returns	the	object	pointer	to	the	Deflector	from	which	the
Collision	object	is	derived.

Class	ForceField
See	Also:	Class	Point3,	Class	WSMObject.
class	ForceField

Description:
A	Space	Warp	modifier	usually	uses	an	instance	of	this	class	and	implements	the
Force()	method.	The	force	field	is	then	applied	to	the	particle	system	when	the
particle	system	is	bound	to	the	Space	Warp.	This	class	is	similar	in	some	respects
to	the	Deformer	class	as	used	by	a	modifier.	The	difference	is	that	a	deformer
modifies	the	points	of	the	object.	A	force	field	is	really	an	acceleration	-	it
modifies	velocity	rather	than	position.
The	force	field	provides	a	function	of	position	in	space,	velocity	and	time	that
gives	a	force.	The	force	is	then	used	to	compute	an	acceleration	on	a	particle
which	modifies	its	velocity.	Typically,	particles	are	assumed	to	have	a
normalized	uniform	mass	equal	to	1	so	the	acceleration	is	F/M	=	F.

Methods:

Prototype:
virtual	Point3	Force(TimeValue	t,	const	Point3	&pos,	const	Point3
&vel,	int	index)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	compute	a	force	on	the	particle	based	on	its	position,
velocity	and	the	current	time.

Parameters:
TimeValue	t
The	time	to	compute	the	force.
const	Point3	&pos
The	current	position	of	the	particle.
const	Point3	&vel
The	current	velocity	of	the	particle.
int	index
This	parameter	is	available	in	release	2.0	and	later	only.

The	index	of	the	particle	being	forced.
Return	Value:
The	force	vector	as	a	Point3.	This	vector	is	added	to	the	velocity.

Prototype:
virtual	void	DeleteThis();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	callled	to	delete	this	instance	of	the	ForceField.	This	should	be
called,	for	example,	by	developers	who	use	the
WSMObject::GetForceField()	method.

Default	Implementation:
{}

Class	Animatable
See	Also:	Class	Interface,	Class	INode,	List	of	Animatable	Flags,	Class
IGraphObjectManager,	Class	IGraphNode,	Class	Object.
class	Animatable	:	public	InterfaceServer

Description:
This	is	the	base	class	for	almost	all	classes	related	to	animation.	Methods	are
available	for	getting	the	ClassID	and	SuperClassID	of	the	plug-in,	deleting	this
instance	of	the	plug-in	class,	and	parameter	editing	in	the	command	panel.	There
are	also	methods	that	deal	with	the	sub-animatables	of	the	plug-in.	Most	of	the
track	view	related	methods	are	here	as	well.

Method	Groups
These	hyperlinks	take	you	to	the	start	of	groups	of	related	methods	within	the
class.
Bitmap	Related	Methods
Class	Name,	ClassID	and	SuperClassID	Methods
Memory	Management
Parameter	Editing	Methods
Sub-Anims	Methods
Controller	Assignment
Animation	Properties
Make	Unique	Control
Flag	Access	Methods
RenderBegin	and	RenderEnd
System	Plug-in	Related	Methods
Sub-Class	Indication
AppData,	Interfaces,	and	Set/GetProperties	Methods
Operations	to	Keys
Track	View	Methods
Clipboard	Methods
Interactive	Adjustment
AnimTree	and	Auxiliary	File	Enumeration
NoteTracks
Parameter	Block2	Methods
Schematic	View	Methods

Custom	Attributes

Data	Members:
protected:
unsigned	long	aflag;
The	flags.	These	may	be	manipulated	using	the	methods	SetAFlag(),
ClearAFlag(),	and	TestAFlag().	See	List	of	Animatable	Flags.
AnimPropertyList	aprops;
This	is	a	table	of	properties	that	a	plug-in	may	use	for	its	own	storage	needs.
This	table	is	also	used	by	the	system	(for	example	Note	Tracks	and
APP_DATA).	A	plug-in	may	use	this,	for	example,	when	a	class	has	some	data
that	is	used	while	its	user	interface	is	up.	It	can	store	the	UI	data	on	the
property	list	temporarily	and	not	have	to	carry	around	the	data	when	it	is	not
needed.	See	the	methods	of	Template	Class	Tab	for	how	to	add	and	delete
items	from	the	list.	Also	see	the	methods	GetProperty()	and	SetProperty()
and	Class	AnimPropertyList.

Methods:

Class	Name,	ClassID	and	SuperClassID	Methods

Prototype:
virtual	void	GetClassName(TSTR&	s)

Remarks:
Implemented	by	the	Plug-In.
Retrieves	the	name	of	the	plug-in	class.	This	name	is	usually	used	internally
for	debugging	purposes.	For	Material	plug-ins	this	method	is	used	to	put	up
the	material	"type"	name	in	the	Material	Editor.

Parameters:
TSTR&	s
The	string	to	store	the	name	of	the	class.

Prototype:
virtual	Class_ID	ClassID();

Remarks:

Implemented	by	the	Plug-In.
This	method	must	return	the	unique	ID	for	the	object.	If	two	ClassIDs
conflict,	the	system	will	only	load	the	first	one	it	finds.	Therefore	all	ClassIDs
must	be	unique	to	ensure	they	are	loaded	properly.	A	program	is	provided	to
generate	these	randomly.	Generate	a	random	Class_ID.

Return	Value:
The	Class_ID	of	the	plug-in.

See	Also:	Class	ClassID,	List	of	Class	IDs.

Prototype:
virtual	SClass_ID	SuperClassID();

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	a	system	defined	constant	describing	the	class	this	plug-in
class	was	derived	from.	The	entire	list	of	available	super	class	IDs	is	in	the
include	file	PLUGAPI.H.	Note:	typedef	ulong	SClass_ID;

Return	Value:
The	super	class	ID	of	the	plug-in.	See	List	of	Super	Class	IDs.

Memory	Management

Prototype:
virtual	void	DeleteThis();

Remarks:
Implemented	by	the	Plug-In.
When	the	system	needs	to	delete	an	instance	of	a	plug-in	class	it	calls	this
method.	The	developer	must	use	the	same	memory	manager	to	allocate	and
deallocate	memory.	For	example,	if	the	developer	used	the	'new'	operator	to
allocate	memory,	he	or	she	should	use	the	'delete'	operator	to	deallocate	it.	See
the	method	ClassDesc::Create()	for	details	on	the	allocation	of	memory.
Note:	The	default	implementation	of	this	method	contains	an	assert(0)
statement.	This	is	because	developers	MUST	override	this	default
implementation.	If	the	memory	is	not	to	be	deleted	this	method	should	be

javascript:UniqueId0.Click()

implemented	as	{}	so	the	assertion	doesn't	happen.	See	Memory	Allocation.

See	Also:	DLL	Functions	and	Class	Descriptors,	Class	ClassDesc.

Prototype:
virtual	void	BeginEditParams(IObjParam	*ip,ULONG
flags,Animatable	*prev=NULL)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	by	the	system	when	the	user	may	edit	the	item's	(object,
modifier,	controller,	etc.)	parameters.

Parameters:
IObjParam	*ip
This	is	an	interface	pointer	passed	in.	The	developer	may	use	the	interface
pointer	to	call	methods	such	as	AddRollupPage().	Note	that	this	pointer	is
only	valid	between	BeginEditParams()	and	EndEditParams().	A
developer	should	not	hang	onto	and	use	this	pointer	outside	this	interval.
ULONG	flags
These	flags	describe	which	branch	of	the	command	panel	or	dialog	the	item	is
being	editing	in.
BEGIN_EDIT_CREATE
Indicates	an	item	is	being	edited	in	the	create	branch.
BEGIN_EDIT_MOTION
Indicates	a	controller	is	being	edited	in	the	motion	branch.
BEGIN_EDIT_HIERARCHY
Indicates	a	controller	is	being	edited	in	the	Pivot	subtask	of	the	hierarchy
branch.
BEGIN_EDIT_IK
Indicates	a	controller	is	being	edited	in	the	IK	subtask	of	the	hierarchy
branch.
BEGIN_EDIT_LINKINFO
Indicates	a	controller	is	being	edited	in	the	Link	Info	subtask	of	the
hierarchy	branch.

Animatable	*prev=NULL

This	parameter	may	be	used	in	the	motion	and	hierarchy	branches	of	the
command	panel.	This	pointer	allows	a	plug-in	to	look	at	the	ClassID	of	the
previous	item	that	was	being	edited,	and	if	it	is	the	same	as	this	item,	to	not
replace	the	entire	UI	in	the	command	panel,	but	simply	update	the	values
displayed	in	the	UI	fields.	This	prevents	the	UI	from	'flickering'	when	the
current	item	begins	its	edit.	For	example,	if	you	are	in	the	motion	branch	and
are	looking	at	an	item's	PRS	controller	values,	and	then	select	another	item
that	is	displayed	with	a	PRS	controller,	the	UI	will	not	change	-	only	the
values	displayed	in	the	fields	will	change.	If	however	you	selected	a	target
camera	that	has	a	lookat	controller	(not	a	PRS	controller)	the	UI	will	change
because	a	different	set	of	parameters	need	to	be	displayed.	Note	that	for	items
that	are	edited	in	the	modifier	branch	this	field	can	be	ignored.

Prototype:
virtual	void	EndEditParams(IObjParam	*ip,	ULONG
flags,Animatable	*next=NULL)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	user	is	finished	editing	an	objects	parameters.
The	system	passes	a	flag	into	the	EndEditParams()	method	to	indicate	if
the	rollup	page	should	be	removed.	If	this	flag	is	TRUE,	the	plug-in	must	un-
register	the	rollup	page,	and	delete	it	from	the	panel.

Parameters:
IObjParam	*ip
This	is	an	interface	pointer	passed	in.	The	developer	may	use	the	interface
pointer	to	call	methods	such	as	DeleteRollupPage().
ULONG	flags
The	following	flag	may	be	set:
END_EDIT_REMOVEUI
If	TRUE,	the	item's	user	interface	should	be	removed.

Animatable	*next=NULL
This	parameter	may	be	used	in	the	motion	and	hierarchy	branches	of	the
command	panel.	This	pointer	allows	a	plug-in	to	look	at	the	ClassID	of	the
next	item	that	was	being	edited,	and	if	it	is	the	same	as	this	item,	to	not	replace

the	entire	UI	in	the	command	panel.	Note	that	for	items	that	are	edited	in	the
modifier	branch	this	field	can	be	ignored.

Bitmap	Related	Methods
Prototype:
virtual	void	FreeAllBitmaps();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	frees	all	bitmaps	in	this	Animatable	but	doesn't	recurse.	This	is
used	for	freeing	all	the	scene	bitmaps	after	a	render.

Default	Implementation:
{}

Methods	for	Sub-Anims.
See	Also:	Advanced	Topics	Sub-Anims.

Prototype:
virtual	int	NumSubs()

Remarks:
Implemented	by	the	Plug-In.
The	system	uses	a	=	4)	BSPSPopupOnMouseOver(event);;">virtual	array
mechanism	to	access	the	sub-anims	of	a	plug-in.	This	method	returns	the	total
number	of	sub-anims	maintained	by	the	plug-in.	If	a	plug-in	is	using	a
parameter	block	to	manage	its	parameters	it	should	just	return	1	for	all	the
parameters	directed	by	the	parameter	block.

Return	Value:
The	number	of	sub-anims	used	by	the	plug-in.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	Animatable*	SubAnim(int	i)

javascript:BSSCPopup('idx_T_virtual_array.htm');

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	a	pointer	to	the	'i-th'	sub-anim.	If	a	plug-in	is	using	a
parameter	block	to	manage	all	its	parameters	it	should	just	return	a	pointer	to
the	parameter	block	itself	from	this	method.	This	method	may	return	NULL	so
developers	need	to	check	the	return	value	before	calling	other	sub	anim
methods	(such	as	SubAnimName()).

Parameters:
int	i
This	is	the	index	of	the	sub-anim	to	return.

Default	Implementation:
{	return	NULL	};

Prototype:
virtual	TSTR	SubAnimName(int	i);

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	name	of	the	'i-th'	sub-anim	to	appear	in	track	view.
The	system	has	no	idea	what	name	to	assign	to	the	sub-anim	(it	only	knows	it
by	the	virtual	array	index),	so	this	method	is	called	to	retrieve	the	name	to
display.	Developer	need	to	make	sure	the	'i-th'	SubAnim()	is	non-NULL	or
this	method	will	fail.

Parameters:
int	i
The	index	of	the	parameter	name	to	return

Return	Value:
The	name	of	the	'i-th'	parameter.

Prototype:
virtual	BOOL	SelectSubAnim(int	subNum);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

When	a	user	is	in	Track	View	in	Edit	Keys	mode	and	clicks	on	the	green
triangle	of	a	controller	then	this	method	will	be	called	on	the	client	with	the
appropriate	sub	number	that	corresponds	to	it.	For	instance,	the	Editable	Mesh
object	implements	this	to	allow	the	user	to	select	vertices	that	are	animated
from	the	Track	View.

Parameters:
int	subNum
The	index	of	the	sub-anim	that	was	clicked	on.

Return	Value:
TRUE	if	implemented;	otherwise	FALSE.	(Track	View	will	call
RedrawViewports()	if	something	returns	TRUE	from	this	method).

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	ParamDimension*	GetParamDimension(int	i)

Remarks:
Implemented	by	the	Plug-In.
Returns	the	type	of	dimension	of	the	'i-th'	sub-anim.	A	dimension	describes
the	type	and	order	of	magnitude	of	a	sub-anim.

Parameters:
int	i
Specifies	the	sub-anim	(parameter)	to	return	the	dimension	of.

Return	Value:
The	dimension	of	the	'i-th'	sub-anim	(parameter).

Default	Implementation:
{return	defaultDim;}

Prototype:
virtual	DWORD	GetSubAnimCurveColor(int	subNum);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

Implemented	by	the	Plug-In.
Return	the	suggested	color	to	draw	a	sub-anim's	function	curve.	For	example,
the	independent	X,	Y,	Z	position	controller	implements	this	method	to	return
the	suggested	color	for	each	of	it's	sub-controllers.	The	Euler	Angle	Controller
uses	these	so	its	3	sub-controllers	are	drawn	in	different	colors.

Parameters:
int	subNum
The	index	of	the	sub-anim.

Return	Value:
One	of	the	following	values:

PAINTCURVE_GENCOLOR
PAINTCURVE_XCOLOR
PAINTCURVE_YCOLOR
PAINTCURVE_ZCOLOR

Default	Implementation:
{return	PAINTCURVE_GENCOLOR;}

Prototype:
virtual	int	SubNumToRefNum(int	subNum)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	for	copying	and	pasting	in	the	track	view.	It	converts	an
anim	index	to	a	reference	index	or	returns	-1	if	there	is	no	correspondence.	If	a
client	does	not	wish	an	anim	to	be	copied	or	pasted	then	it	can	return	-1	even	if
there	is	a	corresponding	reference	num.

Parameters:
int	subNum
The	anim	index	to	return	the	corresponding	reference	index	of.

Default	Implementation:
{	return	-1}

Return	Value:
The	reference	index	corresponding	to	the	anim	index	passed.	Return	-1	if	there

is	no	correspondence.

Prototype:
virtual	BOOL	CanCopyAnim()

Remarks:
Implemented	by	the	Plug-In.
In	addition	to	SubNumToRefNum(),	if	an	anim	doesn't	want	to	be	copied
(via	Track	View	or	the	Edit	Modifier	Stack	'Copy'	button)	it	can	return	FALSE
from	this	method,	otherwise	it	can	use	the	default	implementation	to	return
TRUE.

Default	Implementation:
{return	TRUE;}

Prototype:
int	HasSubElements(int	type=0);

Remarks:
Implemented	by	the	System.
This	method	is	used	to	determine	if	this	Animatable	has	children	or	sub-anims.
The	type	passed	indicates	what	is	tested.

Parameters:
int	type=0
One	of	the	following	values:
0:	Test	for	node	children.
1:	Test	for	sub-anims.

Return	Value:
Nonzero	if	the	item	has	children	or	sub-anims;	otherwise	zero.

Prototype:
virtual	BOOL	CanDeleteSubAnim(int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	Plug-In.

Returns	TRUE	if	the	specified	sub-anim	controller	can	be	deleted;	otherwise
FALSE.
A	new	"Delete	Controller"	button	has	been	added	to	the	Track	View	toolbar
that	is	enabled	when	one	or	more	delete-able	tracks	are	selected.	This	method
allows	a	plug-in	to	indicate	to	the	Track	View	that	one	or	more	of	its	sub-
controllers	are	delete-able.	This	provides	a	way	to	allow	the	user	to	delete
node	sub-controllers	such	as	the	visibility	track,	"Image	Motion	Blur
Multiplier",	"Object	Motion	Blur	On/Off",	etc.	If	the	user	selects	one	of	the
above-mentioned	tracks	in	the	Track	View	the	"Delete	Controller"	button	will
become	available.

Parameters:
int	i
The	zero	based	index	of	the	sub-anim.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	void	DeleteSubAnim(int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	is	called	to	delete	the	specified	sub-anim	controller.	See	the
remarks	in	CanDeleteSubAnim()	above.

Parameters:
int	i
The	zero	based	index	of	the	sub-anim.

Default	Implementation:
{}

Controller	Assignment

Prototype:
virtual	BOOL	AssignController(Animatable	*control,	int

subAnim);
Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	assign	the	controller	to	the	sub-anim	whose	index	is
passed.

Parameters:
Animatable	*control
The	controller	to	assign.
int	subAnim
The	index	of	the	sub-anim	to	assign	the	controller	to.

Default	Implementation:
{	return	FALSE;	}

Return	Value:
Returns	TRUE	if	the	controller	was	assigned;	otherwise	FALSE.

Animation	Properties

Prototype:
virtual	BOOL	IsAnimated();

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	this	animatable	actually	has	animation;	otherwise	FALSE.
This	method	is	recursive,	so	for	example,	if	you	call	node->IsAnimated()	it
will	return	TRUE	if	any	aspect	of	the	node	is	animated;	otherwise	it	will	return
FALSE.

Default	Implementation:
The	default	implementation	returns	TRUE	if	a	child	anim	has	animation.

Make	Unique	Control

Prototype:
virtual	BOOL	CanMakeUnique()

Remarks:

Implemented	by	the	Plug-In.
An	anim	can	implement	this	method	to	return	FALSE	to	prohibit	make	unique
from	being	applied	to	it.

Default	Implementation:
{return	TRUE;}

Flag	Access

Prototype:
void	SetAFlag(int	mask)

Remarks:
Implemented	by	the	System.
Sets	one	or	more	of	the	bits	of	aflag.

Parameters:
int	mask
The	flags	to	set.

Prototype:
void	ClearAFlag(int	mask)

Remarks:
Implemented	by	the	System.
Clears	(sets	to	zero)	one	or	more	of	the	bits	of	aflag.

Parameters:
int	mask
The	flags	to	clear.

Prototype:
int	TestAFlag(int	mask)

Remarks:
Implemented	by	the	System.
Used	to	test	the	state	of	one	or	more	bits	of	aflag.

Parameters:
int	mask
The	flags	to	test.

Return	Value:
Nonzero	if	the	flags	are	set;	otherwise	0.

Prototype:
virtual	void	FreeCaches()

Remarks:
Implemented	by	the	Plug-In.
This	is	called	to	delete	any	item	that	can	be	rebuilt.	For	example,	the
procedural	sphere	object	has	a	mesh	that	it	caches.	It	could	call
Mesh::FreeAll()	on	the	mesh	from	this	method.	This	will	free	the
vertex/face/uv	arrays.	If	the	sphere	is	ever	evaluated	again	it	can	just	rebuild
the	mesh.	If	an	object	(like	a	sphere)	has	modifiers	applied	to	it,	and	those
modifiers	are	not	animated,	then	the	result	of	the	pipeline	is	cached	in	the
node.	So	there	is	no	reason	for	the	sphere	to	also	have	a	cache	of	its
representation.	Therefore	when	this	method	is	called,	the	sphere	can	free	the
data	of	the	mesh.

Default	Implementation:
{}

AppData,	Interfaces,	and	Properties.
The	following	methods	deal	with	AppData.	This	is	application	specific	data	that
may	be	attached	to	any	Animatable	in	the	scene.	With	these	APIs	any	3ds	max
object	(controller,	object,	node,	modifier,	material,	etc.)	can	have	custom	data
attached	by	other	objects.	These	chunks	are	saved	in	the	.MAX	file	and	can	be
accessed	through	the	object	they	are	attached	to.	Sample	code	using	these	APIs
can	be	found	in	\MAXSDK\SAMPLES\UTILITIES\APPDATA.CPP.

Prototype:
void	AddAppDataChunk(Class_ID	cid,	SClass_ID	sid,	DWORD
sbid,	DWORD	len,	void	*d);

Remarks:

Implemented	by	the	System.
This	method	is	used	to	add	an	AppDataChunk	to	this	Animatable.	The	chunk
is	identified	using	the	Class_ID,	and	SuperClassID	of	the	owner,	and	an	ID	for
sub-chunks.
Note:	Developers	who	want	to	add	appdata	to	the	scene	should	see	the
method:
ReferenceTarget	*Interface::GetScenePointer().

Parameters:
Class_ID	cid
The	Class_ID	of	the	owner	of	the	chunk.
SClass_ID	sid
The	SuperClassID	of	the	owner	of	the	chunk.
DWORD	sbid
An	extra	ID	that	lets	the	owner	identify	its	sub-chunks.
DWORD	len
The	length	of	the	data	in	bytes.
void	*d
Points	to	the	actual	data.	The	data	should	be	allocated	using	standard
malloc()	as	it	will	be	freed	by	the	system	using	free().

Prototype:
AppDataChunk	*GetAppDataChunk(Class_ID	cid,	SClass_ID	sid,
DWORD	sbid);

Remarks:
Implemented	by	the	System.
This	method	is	used	to	retrieve	a	pointer	to	an	AppDataChunk.	The	chunk	is
identified	using	the	Class_ID,	SuperClassID	and	sub-chunk	ID	of	the	owner.

Parameters:
Class_ID	cid
The	Class_ID	of	the	owner	of	the	chunk.
SClass_ID	sid
The	SuperClassID	of	the	owner	of	the	chunk.
DWORD	sbid

An	extra	ID	that	lets	the	owner	identify	its	sub-chunks.
Return	Value:
A	pointer	to	the	AppDataChunk	or	NULL	if	it	could	not	be	found.	See	Class
AppDataChunk.

Prototype:
BOOL	RemoveAppDataChunk(Class_ID	cid,	SClass_ID	sid,
DWORD	sbid);

Remarks:
Implemented	by	the	System.
This	method	is	used	to	delete	an	AppDataChunk.	The	chunk	is	identified	using
the	Class_ID,	SuperClassID	and	sub-chunk	ID	of	the	owner.	Returns	TRUE	if
the	data	was	deleted	and	FALSE	if	it	could	not	be	found.

Parameters:
Class_ID	cid
The	Class_ID	of	the	owner	of	the	chunk.
SClass_ID	sid
The	SuperClassID	of	the	owner	of	the	chunk.
DWORD	sbid
An	extra	ID	that	lets	the	owner	identify	its	sub-chunks.

Return	Value:
TRUE	if	the	chunk	was	removed;	otherwise	FALSE.

Prototype:
void	ClearAllAppData();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.
Calling	this	method	will	remove	all	the	AppData	associated	with	this
Animatable.	Note:	Plugins	that	call	this	method	will	erase	all	appdata	chunks,
not	just	their	own.	Therefore,	it	is	usually	more	appropriate	to	use	the
RemoveAppDataChunk()	API	to	remove	AppData	associated	with	a	specific
Class_ID.

Prototype:
virtual	void*	GetInterface(ULONG	id)

Remarks:
Implemented	by	the	Plug-In.
This	method	provides	a	mechanism	for	extending	the	class	in	the	future.	In
3ds	max	4.0there	are	new	interfaces	that	are	accessed	by	passing	an	id	to	this
method	and	it	will	respond	by	returning	the	corresponding	interface	pointer.
This	method	has	been	used	however	for	a	different	purpose.	It	currently	is
used	to	determine	if	an	object	is	of	a	particular	class.	With	controllers	for
example,	there	is	one	base	class	Control,	however	there	are	many	super
classes	(CTRL_FLOAT_CLASS_ID,	CTRL_SCALE_CLASS_ID,
etc.).	If	you	wanted	to	find	out	if	a	given	Animatable	was	a	controller	you
would	need	to	compare	its	SuperClassID	to	all	the	known	types	and	only	if	it
wasn't	one	of	the	known	types	could	you	be	sure	it	wasn't	a	controller.	Having
to	do	this	is	inconvenient	for	a	developer.
Instead	the	Control	class	implements	this	method.	It	looks	at	the	id,	and	if	it
matches	a	predefined	constant	I_CONTROL,	it	returns	its	this	pointer.	In
this	way,	given	any	Animatable,	it	is	easy	to	find	out	if	it	is	a	controller	by
simply	asking	for	the	control	interface.	There	is	a	macro	that	does	this:
#define	GetControlInterface(anim)
((Control*)anim->GetInterface(I_CONTROL))

A	plug-in	developer	may	use	this	macro	as	follows:
Control	*c	=	GetControlInterface(anim);

This	will	either	be	NULL	or	a	pointer	to	a	valid	controller.
This	is	the	list	of	IDs	currently	defined	for	use	with	this	macro.	Note	that	these
do	NOT	need	to	be	released	with	method	ReleaseInterface().
#define	I_CONTROL	0x00001001
#define	I_MASTER	0x00001010
#define	I_EASELIST	0x00001020
#define	I_MULTLIST	0x00001030
#define	I_BASEOBJECT	0x00001040
#define	I_PARTICLEOBJ	0x00001050
#define	I_KEYCONTROL	0x00001060
#define	I_TEXTOBJECT	0x00001070

#define	I_WAVESOUND			0x00001080
#define	I_SUBMTLAPI			0x00001090
#define	I_MESHSELECT		0x000010A0
#define	I_MESHSELECTDATA	0x000010B0
#define	I_MAXSCRIPTPLUGIN	0x000010C0
#define	I_MESHDELTAUSER		0x000010D0
#define	I_MESHDELTAUSERDATA	0x000010E0
#define	I_SPLINESELECT		0x000010F0
#define	I_SPLINESELECTDATA	0x00001100
#define	I_SPLINEOPS			0x00001110
#define	I_PATCHSELECT		0x00001120
#define	I_PATCHSELECTDATA	0x00001130
#define	I_PATCHOPS			0x00001140
#define	I_COMPONENT			0x0000F010
#define	I_REFARRAY			0x0000F030
#define	I_LINK_TARGET		0x0000F020
#define	I_LAYER				0x0000F040
#define	I_LAYER_MANAGER		0x0000F050
#define	I_REAGENT			0x0000F060

Note:	Plug-in	defined	interfaces	should	be	greater	than	the	following	value:
#define	I_USERINTERFACE	0x0000ffff

These	other	macros	are	defined	for	a	similar	purpose:
#define	GetControlInterface(anim)
((Control*)anim->GetInterface(I_CONTROL))

#define	GetObjectInterface(anim)
((BaseObject*)anim->GetInterface(I_BASEOBJECT))

#define	GetParticleInterface(anim)
((ParticleObject*)anim->GetInterface(I_PARTICLEOBJ))

#define	GetKeyControlInterface(anim)
((IKeyControl*)anim->GetInterface(I_KEYCONTROL))

#define	GetMasterController(anim)
((ReferenceTarget*)anim->GetInterface(I_MASTER))

#define	GetTextObjectInterface(anim)
((ITextObject*)anim->GetInterface(I_TEXTOBJECT))

#define	GetWaveSoundInterface(anim)
((IWaveSound*)anim->GetInterface(I_WAVESOUND))

#define	GetMeshSelectInterface(anim)
((IMeshSelect*)anim->GetInterface(I_MESHSELECT))

#define	GetMeshSelectDataInterface(anim)
((IMeshSelectData*)anim-
>GetInterface(I_MESHSELECTDATA))

#define	GetMeshDeltaUserInterface(anim)
((MeshDeltaUser*)anim-
>GetInterface(I_MESHDELTAUSER))

#define	GetMeshDeltaUserDataInterface(anim)
((MeshDeltaUserData*)anim-
>GetInterface(I_MESHDELTAUSERDATA))

If	a	plug-in	implements	this	method	for	its	own	purposes,	it	would,	in	general,
switch	on	the	id	and	if	it	is	not	aware	of	the	id	it	would	call	this	method	on	the
base	class.	Otherwise	it	could	respond	to	the	id	as	it	needed.	See	the	sample
code	below	for	the	how	the	Control	class	implements	this	method.

Parameters:
ULONG	id
The	id	of	the	interface.

Default	Implementation:
{	return	NULL;	}

Sample	Code:
The	following	is	the	Control	class	implementation	of	this	method.	It	looks	at	the
id	passed,	and	if	it	matches	I_CONTROL	it	returns	its	this	pointer.	Otherwise
it	calls	the	base	class	method.
void*	Control::GetInterface(ULONG	id)
{
if	(id==I_CONTROL)	{
return	this;

}	else	{
return	Animatable::GetInterface(id);
}

}

Prototype:
virtual	void	ReleaseInterface(ULONG	id,void	*i)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	not	currently	used.	It	is	reserved	for	future	use.	Its	purpose	is
for	releasing	an	interface	created	with	GetInterface().

Prototype:
virtual	BaseInterface*	GetInterface(Interface_ID	id);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	Base	Interface	for	the	interface	ID	passed.	The	default
implementation	of	this	method	retrieves	this	information	from	the	ClassDesc
for	the	plug-in.
Any	future	object-based	interfaces	should	be	allocated	unique	Interface_IDs
(you	can	use	Gencid.exe	for	this)	and	made	available	through	this	call.
The	default	implementation	of	GetInterface(Interface_ID)	looks	up	a
standalone	interface	of	the	given	ID	on	the	object's	ClassDesc.	This	gives
access	to	standalone	interfaces	via	any	of	a	plug-in's	objects,	without	having	to
dig	around	for	the	ClassDesc,	so	you	should	fall	back	to	calling	the	default
implementation	if	you	don't	recognize	an	ID	in	your	implementation	of
GetInterface(Interface_ID).

Parameters:
Interface_ID	id
The	unique	ID	of	the	interface	to	get.	See	Class	Interface_ID.

Prototype:
virtual	void	ReleaseInterface(Interface_ID	id,	void*	i);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Releases	the	interface	retrieved	above.

Prototype:
virtual	int	SetProperty(ULONG	id,	void	*data)

Remarks:
Implemented	by	the	Plug-In.
This	is	a	general	method	for	adding	properties,	when	defining	a	new	Interface
would	be	too	cumbersome.	This	method	provides	another	way	to	extend	the
class	without	actually	adding	any	methods.	Sample	code	that	implements	this
method	to	add	properties	to	the	property	list	is	in
\MAXSDK\SAMPLES\CONTROLLERS\PATHCTRL.CPP.	See
below.

Parameters:
ULONG	id
The	id	for	the	property.
void	*data
The	data	to	store.

Return	Value:
Nonzero	if	the	property	was	set;	otherwise	zero.

Default	Implementation:
{	return	0;	}

Sample	Code:
This	code	is	from
\MAXSDK\SAMPLES\CONTROLLERS\PATHCTRL.CPP.	It	is	used
to	save	the	inverse	kinematics	user	interface	parameters	of	the	path	controller.	It
saves	the	property	data	on	the	aprops	property	list.	See	the	Data	Members	at
the	beginning	of	Animatable	for	details	on	aprops.

int	PathPosition::SetProperty(ULONG	id,	void	*data)
	{
	if	(id==PROPID_JOINTPARAMS)	{
		if	(!data)	{
			int	index	=	aprops.FindProperty(id);
			if	(index>=0)	{
				aprops.Delete(index,1);
				}
		}	else	{

			JointParamsPath	*jp	=	(JointParamsPath*)GetProperty(id);
			if	(jp)	{
				*jp	=	*((JointParamsPath*)data);
				delete	(JointParamsPath*)data;
			}	else	{
				aprops.Append(1,(AnimProperty**)&data);
				}
			}
		return	1;
	}	else
	if	(id==PROPID_INTERPUI)	{
		if	(!data)	{
			int	index	=	aprops.FindProperty(id);
			if	(index>=0)	{
				aprops.Delete(index,1);
				}
		}	else	{
			InterpCtrlUI	*ui	=	(InterpCtrlUI*)GetProperty(id);
			if	(ui)	{
				*ui	=	*((InterpCtrlUI*)data);
			}	else	{
				aprops.Append(1,(AnimProperty**)&data);
				}
			}
		return	1;
	}	else	{
		return	Animatable::SetProperty(id,data);
		}
	}

Prototype:
virtual	void	*GetProperty(ULONG	id)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	retrieve	a	property	specified	by	the	id	passed	(as	stored
by	SetProperty()).

Note	for	3ds	max	version	1.1:
Two	new	property	IDs	have	been	added:

PROPID_CLEARCACHES:	When	passed	to	a	texture	map	or
material,	the	material	should	dump	any	of	its	caches.	For	example,	the
bitmap	texture	responds	to	this	by	freeing	the	bitmap	from	memory.	For
sample	code	see
\MAXSDK\SAMPLES\MATERIALS\BMTEX.CPP.
PROPID_HAS_WSM:	When	passed	to	an	INode,	will	return	TRUE	if
the	node	has	World	Space	Modifiers	applied	to	it	or	FALSE	if	it	does	not.
For	sample	code	see
\MAXSDK\SAMPLES\IMPEXP\3DSEXP.CPP.

Note	for	3ds	max	version	1.2:
A	new	id	has	been	created	and	assigned	the	constant:
#define	PROPID_EVAL_STEPSIZE_BUG_FIXED	0x1000.
This	only	effects	the	evaluation	of	objects	when	rendering	them	using
motion	blur.	Motion	blur	works	by	evaluating	the	object	numerous	times
(at	fractions	of	a	frame	apart)	and	combining	these	images	by	blending
them	together.
Originally,	3ds	max	would	make	these	evaluations	in	reverse	order	within
a	sub-frame	--	from	the	last	one,	to	the	second	to	the	last	one,	back	to	the
first	one.	There	is	a	problem	with	this	for	certain	plug-ins	that	need	to
compute	their	state	from	time	0	forward.	For	these	objects,	the	backwards
approach	may	be	too	computationally	intensive.
Both	the	forward	and	backward	approaches	exist	in	3ds	max	and	the
developer	may	choose	which	method	to	use.	3ds	max	interrogates	the
object	to	see	how	it	should	handle	the	evaluation	process	--	either	going
backwards	or	forwards.	It	calls	this	method	with	id	set	to	the	constant
PROPID_EVAL_STEPSIZE_BUG_FIXED.	If	a	plug-in
implements	this	method	to	return	nonzero,	it	means	the	plug-in	works
correctly	using	forward	stepping,	and	3ds	max	will	use	that	approach.	If	a
plug-in	does	not	implement	this	method	and	handle	the	id	of
PROPID_EVAL_STEPSIZE_BUG_FIXED	it	will	return	the
default	value	of	zero.	This	means	the	older	method	of	backwards
evaluation	will	be	used.
Therefore,	a	plug-in	object	that	wants	to	handle	motion	blur	using	forward

stepping	should	implement	this	method,	and	if	passed	an	id	of
PROPID_EVAL_STEPSIZE_BUG_FIXED,	should	return
nonzero.

Parameters:
ULONG	id
The	id	of	the	property	to	retrieve.

Default	Implementation:
{	return	NULL;	}

Sample	Code:
This	code	is	from
\MAXSDK\SAMPLES\CONTROLLERS\PATHCTRL.CPP.	It	is	used
to	restore	the	inverse	kinematics	user	interface	parameters	of	the	path	controller.
It	retrieves	the	property	data	on	the	aprops	property	list.	See	the	Data	Members
at	the	beginning	of	Animatable	for	details	on	aprops.

void*	PathPosition::GetProperty(ULONG	id)
	{
	if	(id==PROPID_INTERPUI	||	id==PROPID_JOINTPARAMS)	{
		int	index	=	aprops.FindProperty(id);
		if	(index>=0)	{
			return	aprops[index];
		}	else	{
			return	NULL;
			}
	}	else	{
		return	Animatable::GetProperty(id);
		}
	}

Clipboard	Methods

Prototype:
virtual	BOOL	CanCopyTrack(Interval	iv,	DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.

Returns	TRUE	if	this	item	can	copy	its	data	over	the	specified	range;
otherwise	returns	FALSE.

Parameters:
Interval	iv
The	interval	of	time	that	would	be	copied.
DWORD	flags
One	or	more	of	the	following	values:
TIME_INCLEFT
Include	the	left	endpoint.
TIME_INCRIGHT
Include	the	right	endpoint.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	CanPasteTrack(TrackClipObject	*cobj,Interval	iv,
DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	this	item	can	paste	its	data	over	the	specified	range;
otherwise	returns	FALSE.

Parameters:
TrackClipObject	*cobj
The	clipboard	object	that	would	be	pasted.	The	item	should	look	at	the
SuperClassID	and	Class_ID	of	the	creator	of	the	clip	object	to	determine	if	it
is	a	suitable	object	to	paste.	See	Class	TrackClipObject.
Interval	iv
The	interval	of	time	that	would	be	pasted.
DWORD	flags
One	or	more	of	the	following	values:
TIME_INCLEFT
Include	the	left	endpoint.

TIME_INCRIGHT
Include	the	right	endpoint.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	TrackClipObject	*CopyTrack(Interval	iv,	DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	copy	the	item's	track	data	over	the	specified	interval.

Parameters:
Interval	iv
The	interval	of	time	over	which	to	copy	the	track	data.
DWORD	flags
One	or	more	of	the	following	values:
TIME_INCLEFT
Include	the	left	endpoint.
TIME_INCRIGHT
Include	the	right	endpoint.

Return	Value:
The	item	should	return	an	instance	of	a	class	derived	from	TrackClipObject
that	contains	the	data	for	the	item.	See	Class	TrackClipObject.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	void	PasteTrack(TrackClipObject	*cobj,	Interval	iv,
DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	paste	the	specified	clip	object	to	this	track.	This
method	will	not	be	called	unless	CanPasteTrack()	returned	TRUE.

Parameters:
TrackClipObject	*cobj
The	data	to	paste.
Interval	iv
The	interval	of	time	to	paste.
DWORD	flags
One	or	more	of	the	following	values:
TIME_INCLEFT
Include	the	left	endpoint.
TIME_INCRIGHT
Include	the	right	endpoint.

Prototype:
virtual	BOOL	CanCopySubTrack(int	subNum,	Interval	iv,
DWORD	flags);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
If	CanCopyTrack()	returns	FALSE	then	this	method	is	called	on	the	sub-
anim	(passing	the	sub	number).
This	is	used	in	particular	for	Parameter	Blocks.	In	that	case,	if	there	is	no
controller	plugged	into	the	track,	the	copying	and	pasting	of	controllers	can't
be	done	(since	there	is	no	controller).	However,	this	method	allows	the
Parameter	Block	to	handle	it.

Parameters:
int	subNum
Specifies	the	sub-anim	to	check.
Interval	iv
The	interval	of	time	over	which	to	copy	the	track	data.
DWORD	flags
One	or	more	of	the	following	values:
TIME_INCLEFT
Include	the	left	endpoint.

TIME_INCRIGHT
Include	the	right	endpoint.

Return	Value:
TRUE	if	the	specified	item	can	copy	its	data	over	the	specified	range;
otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	CanPasteSubTrack(int	subNum,	TrackClipObject
*cobj,	Interval	iv,	DWORD	flags);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
Returns	TRUE	if	the	specified	item	can	paste	its	data	over	the	specified	range;
otherwise	returns	FALSE.
Plug-ins	can	implement	pasting	for	cases	where	their	sub-anims	don't
implement	it.	An	example	of	this	is	the	Parameter	Block	class.	It	implements
this	method	to	allow	pasting	parameters	that	don't	have	controllers	assigned	to
them.	These	aren't	called	on	the	client	unless	the	sub-anim	doesn't	implement
CanPasteTrack().

Parameters:
int	subNum
Specifies	the	sub-anim	to	check.
TrackClipObject	*cobj
The	data	to	paste.
Interval	iv
The	interval	of	time	to	paste.
DWORD	flags
One	or	more	of	the	following	values:
TIME_INCLEFT
Include	the	left	endpoint.
TIME_INCRIGHT

Include	the	right	endpoint.
Return	Value:
TRUE	if	the	specified	item	can	paste	its	data	over	the	specified	range;
otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	TrackClipObject	*CopySubTrack(int	subNum,	Interval	iv,
DWORD	flags);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	is	called	to	copy	the	specified	sub	anim's	track	data	over	the
specified	interval.

Parameters:
int	subNum
The	number	of	the	sub-anim	to	copy.
Interval	iv
The	interval	of	time	over	which	to	copy	the	track	data.
DWORD	flags
One	or	more	of	the	following	values:
TIME_INCLEFT
Include	the	left	endpoint.
TIME_INCRIGHT
Include	the	right	endpoint.

Return	Value:
The	item	should	return	an	instance	of	a	class	derived	from	TrackClipObject
that	contains	the	data	for	the	item.	See	Class	TrackClipObject.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	void	PasteSubTrack(int	subNum,	TrackClipObject
*cobj,Interval	iv,	DWORD	flags);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	is	called	to	paste	the	specified	clip	object	to	the	specified	sub-
anim	track.

Parameters:
int	subNum
The	number	of	the	sub-anim	to	paste.
TrackClipObject	*cobj
The	data	to	paste.
Interval	iv
The	interval	of	time	to	paste.
DWORD	flags
One	or	more	of	the	following	values:
TIME_INCLEFT
Include	the	left	endpoint.
TIME_INCRIGHT
Include	the	right	endpoint.

Default	Implementation:
{}

Interactive	Adjustment

Prototype:
virtual	void	MouseCycleCompleted(TimeValue	t);

Remarks:
This	method	is	available	in	release	2.0	and	later	only	(previously	in	Class
Control	in	1.x).
Implemented	by	the	Plug-In.
This	method	is	called	on	whatever	controller	the	user	is	modifying	with	the

mouse	--	when	the	mouse	button	is	released.	For	example	when	the	user
selects	a	node	in	the	viewports,	then	drags,	then	releases	the	mouse	button,
this	method	is	called.	This	method	will	also	be	called	when	the	user	clicks	on
a	key	in	the	track	view	and	lets	up.	If	a	controller	performs	extensive
calculation	in	its	evaluation	this	method	is	handy.	The	controller	could	perhaps
perform	a	simplified	calculation	during	interactive	adjustment	of	a	node.	Then
when	the	user	releases	the	mouse	button	this	method	is	called	and	the
extensive	calculations	are	performed.
The	default	implementation	of	this	method	is	recursive	so	it	gets	called	on	all
sub-anims	affected	by	a	range	bar	operation.

Parameters:
TimeValue	t
The	time	the	mouse	was	released.

Prototype:
virtual	void	MouseCycleStarted(TimeValue	t);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	is	called	on	whatever	controller	the	user	is	modifying	with	the
mouse	--	when	the	mouse	button	is	pressed.
The	default	implementation	of	this	method	is	recursive	so	it	gets	called	on	all
sub-anims	affected	by	a	range	bar	operation.

Parameters:
TimeValue	t
The	time	the	mouse	was	first	pressed.

Methods	called	when	rendering	is	started	and	finished

Prototype:
virtual	int	RenderBegin(TimeValue	t,	ULONG	flags=0)

Remarks:
Implemented	by	the	Plug-In.

This	method	is	called	once	at	the	beginning	of	each	render.	A	plug-in	can	use
this	method	to	do	any	work	required	before	a	rendering	actually	begins.	For
example,	some	of	the	standard	3ds	max	plug-ins	use	this	method	to	toggle
between	their	'viewport'	state	and	the	'rendering'	state.	The	Optimize	modifier
has	two	settings,	one	for	the	viewports	and	one	for	the	rendering.	When	this
method	is	called	it	then	performs	the	switch	from	viewport	to	renderer.

Parameters:
TimeValue	t
The	time	that	the	render	is	beginning.
ULONG	flags=0
This	is	not	used	in	3ds	max	1.x.
In	3ds	max	2.0	and	later	the	following	flag	value	may	be	checked:
RENDERBEGIN_IN_MEDIT
Indicates	that	the	render	is	occurring	in	the	Material	Editor.

Return	Value:
Nonzero	if	the	method	is	implemented;	otherwise	0.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	int	RenderEnd(TimeValue	t)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	once	at	the	end	of	each	render.

Parameters:
TimeValue	t
The	time	of	the	last	rendered	frame.

Return	Value:
Nonzero	if	the	method	is	implemented;	otherwise	0.

Default	Implementation:
{	return	0;	}

System	Plug-In	Related	Methods

Prototype:
virtual	void	GetSystemNodes(INodeTab	&nodes,	SysNodeContext)

Remarks:
Implemented	by	the	Plug-In.
The	master	controller	of	a	system	plug-in	should	implement	this	method	to
give	3ds	max	a	list	of	nodes	that	are	part	of	the	system.	The	master	controller
should	fill	in	the	given	table	with	the	INode	pointers	of	the	nodes	that	are	part
of	the	system.	This	will	ensure	that	operations	like	cloning	and	deleting	affect
the	whole	system.
Said	another	way,	GetSystemNodes()	should	be	implemented	for	the	master
controller	of	a	system,	and	should	return	a	list	of	pointers	to	all	nodes	that	are
part	of	the	system.	GetInterface()	should	be	implemented	for	the	slave	TM
controllers	of	the	system	and	return	a	pointer	to	the	master	controller.
3ds	max	will	use	GetInterface()	in	the	TM	controller	of	each	selected	node
to	retrieve	the	master	controller	and	then	call	GetSystemNodes()	on	the
master	controller	to	get	the	list	of	nodes.

Parameters:
INodeTab	&nodes
The	table	of	nodes	that	are	part	of	the	system.
SysNodeContext
This	parameter	is	available	in	release	4.0	and	later	only.
Previously,	this	method	gathered	related	(system)	nodes	during	cloning,
deleting,	file	merging	and	saving.
This	parameter	can	be	used	to	specify	the	context	under	that	the	"syetem
nodes"	are	used.	These	are;	kSNCClone,	kSNCDelete,	kSNCFileMerge,
and	kSNCFileSave.

Default	Implementation:
{}

The	following	methods	deal	with	operations	to	Keys	and	Track
View:

Prototype:
virtual	BOOL	BypassTreeView()

Remarks:
Implemented	by	the	Plug-In.
This	method	indicates	to	the	system	that	this	anim	should	not	appear	in	the
Track	View.	Note:	Track	View	was	formally	referred	to	as	Tree	View.	This	is
what	parameter	blocks	do	for	example.	They	don't	show	up	in	track	view,	just
their	sub-anims	do.	This	prevents	the	extra	level	of	the	parameter	block	from
appearing.

Return	Value:
Return	TRUE	to	not	appear	in	the	Track	View.	Note	that	if	you	return	TRUE
your	children	will	appear	in	the	track	view	regardless.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	BOOL	BypassTrackBar();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	indicates	to	the	system	that	this	anim	should	not	appear	in	the
Track	Bar.	The	anim	won't	show	up	in	the	Track	Bar,	just	its	sub-anims	will.
This	function	is	similar	to	BypassTreeView(),	but	refers	to	the	Track	Bar
instead	of	the	Track	View.

Return	Value:
Return	TRUE	to	not	appear	in	the	Track	Bar.	Note	that	if	you	return	TRUE
your	children	will	appear	in	the	Track	Bar	regardless.

Default	Implementation:
{	return	BypassTreeView();	}

Prototype:
virtual	BOOL	BypassPropertyLevel();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	Plug-In.
Use	this	method	in	order	to	cause	parameters	in	this	Animatable	(as	a	sub-
anim)	to	appear	to	reside	at	the	level	of	the	parent	Animatable	in	the	scripter.
Return	TRUE	and	this	Animatable	won't	appear	as	a	property	in	the	scripter
however	it's	sub-anims	children	will.	The	default	implementation	returns
FALSE	indicating	it	will	appear	normally.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	BOOL	InvisibleProperty();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	controls	the	visibility	of	this	Animatable	and	all	of	it	sub-anims
to	appear	as	properties	in	the	scripter.	Return	TRUE	and	it	won't	nor	will	it's
sub-anims.	Returning	FALSE	(the	default	implementation)	causes	this
Animatable	and	it's	sub-anims	to	appear	as	normal.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	int	NumKeys()

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	number	of	keys	managed	by	the	plug-in,	or
NOT_KEYFRAMEABLE	if	it	does	not	work	with	keys.

Default	Implementation:
{return	NOT_KEYFRAMEABLE;}

Prototype:
virtual	TimeValue	GetKeyTime(int	index)

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	time	of	the	key	specified	by	index.

Parameters:
int	index
Specifies	the	key	whose	time	should	be	returned.

Default	Implementation:
{return	0;}

Prototype:
virtual	int	GetKeyIndex(TimeValue	t)

Remarks:
Implemented	by	the	Plug-In.
Returns	the	index	of	the	key	at	time	t	or	-1	if	no	key	is	found	at	the	specified
time.

Parameters:
TimeValue	t
Specifies	the	time	at	which	to	retrieve	the	key	index.

Default	Implementation:
{return	-1;}

Prototype:
virtual	BOOL	GetNextKeyTime(TimeValue	t,DWORD
flags,TimeValue	&nt)

Remarks:
Implemented	by	the	Plug-In.
An	item	should	implement	this	method	to	allow	the	Key	Mode	button	in	3ds
max's	UI	to	function	properly.	If	Key	Mode	is	set,	and	the	user	clicks	the
Previous	Key	or	Next	Key	button,	this	method	will	be	called	to	retrieve	the
next	or	previous	key.

Parameters:
TimeValue	t
The	current	time	(frame	slider	position).
DWORD	flags
One	or	more	of	the	following	value:
NEXTKEY_LEFT
Search	to	the	left.
NEXTKEY_RIGHT
Search	to	the	right.
NEXTKEY_POS
Next	position	key.
NEXTKEY_ROT
Next	rotation	key.
NEXTKEY_SCALE
Next	scale	key.

TimeValue	&nt
The	time	of	the	previous	or	next	key	is	returned	here.

Return	Value:
TRUE	if	the	key	time	was	retrieved;	otherwise	FALSE.

Default	Implementation:
{	return	FALSE;}

Prototype:
virtual	void	CopyKeysFromTime(TimeValue	src,TimeValue
dst,DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	copy	or	interpolate	a	new	key	from	a	source	time	to	a
destination	time.

Parameters:
TimeValue	src
The	source	time.

TimeValue	dst
The	destination	time.
DWORD	flags
These	filter	flags	are	passed	to	a	transform	(Matrix3)	controller.	The	TM	can
decide	what	to	do	with	them.	They	have	obvious	meaning	for	the	PRS
controller.	One	or	more	of	the	following	values:
COPYKEY_POS
Copy	the	position	key.
COPYKEY_ROT
Copy	the	rotation	key.
COPYKEY_SCALE
Copy	the	scale	key.

Prototype:
virtual	void	DeleteKeyAtTime(TimeValue	t)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	delete	the	key	at	the	specified	time.

Parameters:
TimeValue	t
Specifies	the	time	to	delete	the	key.

Default	Implementation:
{}

Prototype:
virtual	BOOL	IsKeyAtTime(TimeValue	t,DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	there	is	a	key	of	the	specified	type	at	the	specified	time;
otherwise	FALSE.

Parameters:
TimeValue	t

Specifies	the	time	to	check	for	a	key.
DWORD	flags
One	or	more	of	the	following	values:
KEYAT_POSITION
KEYAT_ROTATION
KEYAT_SCALE

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	int	GetKeyTimes(Tab<TimeValue>	×,Interval
range,DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	build	a	table	of	time	values,	one	time	for	each	key
within	the	interval	passed.	The	plug-in	should	load	up	the	table	passed	with
the	time	of	each	key	present	over	the	specified	time	range.

Parameters:
Tab<TimeValue>	×
The	table	of	time	values	to	build.	See	Class	Tab.
Interval	range
The	range	of	time	over	which	to	retrieve	the	key	times.	See	Class	Interval.
DWORD	flags
One	of	the	following	values:
KEYAT_POSITION	-	Return	for	Position	keys	only.
KEYAT_ROTATION	-	Return	for	Rotation	keys	only.
KEYAT_SCALE	-	Return	for	Scale	keys	only.

Return	Value:
The	plug-in	should	return	an	offset	so	the	system	can	access	the	keys	using	an
index.	Thus	it	should	return	the	number	of	keys	skipped	because	their	times
were	before	range.Start().	For	example,	say	the	first	keyframe	in	the	interval
passed	was	actually	the	third	key	overall.	The	plug-in	should	return	2	(two
keys	preceded	the	first	one	stored).	In	this	way,	the	system	can	access	the	key

as	the	i-th	key	in	the	table	plus	2.
Default	Implementation:
{return	0;}

Prototype:
virtual	int	GetKeySelState(BitArray	&sel,Interval	range,DWORD
flags)

Remarks:
Implemented	by	the	Plug-In.
When	this	method	is	called,	the	plug-in	should	update	the	BitArray	sel	to
indicate	if	its	keys	present	in	the	interval	passed	are	selected	or	deselected.

Parameters:
BitArray	&sel
The	bit	array	to	update,	one	bit	for	each	key	within	the	interval	range.	If	the
key	is	selected,	the	corresponding	bit	should	be	1,	otherwise	it	should	be	0.
See	Class	BitArray.
Interval	range
The	range	of	time	over	which	to	retrieve	the	key	selected	state.	Class	Interval.
DWORD	flags
One	or	more	of	the	following	values:
KEYAT_POSITION	-	Return	for	Position	keys	only.
KEYAT_ROTATION	-	Return	for	Rotation	keys	only.
KEYAT_SCALE	-	Return	for	Scale	keys	only.
Note:	If	the	flags	are	passed	as	0,	use	ALL	keys	within	the	range.

Return	Value:
The	number	of	keys	skipped	because	their	times	were	before	range.Start().

Default	Implementation:
{return	0;}

Prototype:
void	OpenTreeEntry(int	type,	DWORD	tv)

Remarks:

Implemented	by	the	System.
This	method	may	be	called	to	open	the	specified	Track	View	entry.	The	type
parameter	indicates	if	the	child	tree	or	the	sub-anim	(parameter)	tree	is
opened.

Parameters:
int	type
This	value	may	be	either	0	or	1.	If	0,	the	child	tree	is	opened.	If	1,	the	sub-
anim	tree	is	opened.
DWORD	tv
This	parameter	is	available	in	release	2.0	and	later	only.
It	specifies	which	Track	View(s)	are	altered,	one	bit	for	each	Track	View.	In
3ds	max	2.0	the	open/closed	state	is	independent	for	each	Track	View.	The
low-order	16	bits	represent	the	16	track	views.

Prototype:
void	CloseTreeEntry(int	type,	DWORD	tv)

Remarks:
Implemented	by	the	System.
This	method	may	be	called	to	close	the	specified	Track	View	entry.	The	type
parameter	indicates	if	the	child	tree	or	the	sub-anim	tree	is	closed.

Parameters:
int	type
This	value	may	be	either	0	or	1.	If	0,	the	child	tree	is	closed.	If	1,	the	sub-anim
(parameter)	tree	is	closed.
DWORD	tv
This	parameter	is	available	in	release	2.0	and	later	only.
It	specifies	which	Track	View(s)	are	altered,	one	bit	for	each	Track	View.	In
3ds	max	2.0	the	open/closed	state	is	independent	for	each	Track	View.	The
low-order	16	bits	represent	the	16	track	views.

Prototype:
int	IsTreeEntryOpen(int	type,	DWORD	tv);

Remarks:

Implemented	by	the	System.
Returns	nonzero	if	the	specified	tree	is	opened	for	this	item,	and	zero	if	it	is
closed.

Parameters:
int	type
This	value	may	be	either	0	or	1.	If	0,	the	child	tree	is	checked.	If	1,	the	sub-
anim	(parameter)	tree	is	checked.
DWORD	tv
This	parameter	is	available	in	release	2.0	and	later	only.
Specifies	which	Track	View	to	check	--	one	bit	per	Track	View.

Prototype:
BOOL	GetSelInTrackView(DWORD	tv);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.
Returns	TRUE	if	this	animatable	is	selected	in	the	specified	Track	View;
FALSE	if	not	selected.

Parameters:
DWORD	tv
Specifies	which	Track	View	to	check	--	one	bit	per	Track	View.

Prototype:
void	SetSelInTrackView(DWORD	tv,	BOOL	sel);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.
Sets	the	state	of	this	animatable	to	selected	or	deselected	in	the	specified	Track
View.

Parameters:
DWORD	tv
Specifies	which	Track	View	to	check	--	one	bit	per	Track	View.

BOOL	sel
TRUE	to	select;	FALSE	to	deselect.

Prototype:
BOOL	InTrackViewSelSet(int	which);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.
Returns	TRUE	if	this	animatable	is	in	the	specified	selection	set;	otherwise
FALSE.

Parameters:
int	which
Indicates	the	Track	View	selection	set	to	check	--	this	should	be	>=0	and
<MAX_TRACKVIEW_SELSETS

Prototype:
void	SetTrackViewSelSet(int	which,	BOOL	inOut);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.
Sets	the	selected	or	deselected	state	of	this	animatable	in	the	specified
selection	set.

Parameters:
int	which
Indicates	the	Track	View	selection	set	to	modify	--	this	should	be	>=0	and
<MAX_TRACKVIEW_SELSETS
BOOL	inOut
TRUE	for	in;	FALSE	for	out.

Operations	to	a	selected	block	of	time.

Prototype:

virtual	Interval	GetTimeRange(DWORD	flags);
Remarks:
Implemented	by	the	System.
Returns	an	interval	representing	the	tracks	time	range,	based	on	the	flags
passed.

Parameters:
DWORD	flags
One	or	more	of	the	following	values:
TIMERANGE_SELONLY
The	bounding	interval	of	selected	keys	only.
TIMERANGE_ALL
Whatever	the	channel's	time	range	is	-	usually	the	bounding	interval	of	all
keys.
TIMERANGE_CHILDNODES
The	node's	time	range	should	include	its	child	nodes.
TIMERANGE_CHILDANIMS
A	animatable's	child	anim	ranges	should	be	included.

Return	Value:
An	interval	representing	the	tracks	time	range.

Prototype:
virtual	void	EditTimeRange(Interval	range,DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	change	the	range	of	the	anim	(usually	a	controller)	to
the	given	range.	This	is	the	range	that	is	used	to	compute	the	Out	of	Range
Types.	For	example,	this	method	may	be	called	when	the	user	is	working	in
Position	Range	mode	in	the	Track	View.
Keyframe	controllers	generally	support	this	method.	Other	controllers	may	or
may	not	support	this	method.	For	example,	a	procedural	controller	may	want
to	maintain	a	range	upon	which	the	animation	is	based.	The	user	may	then
move	the	range	bar	around	to	move	the	procedural	animation	around.
The	range	passed	is	the	range	used	to	compute	the	Out	of	Range	Types.	This

may	be	used	for	example	with	the	Loop	ORT	to	extend	the	range,	either	past
the	last	key	or	before	the	first	key,	so	there	is	some	time	to	loop	back	to	the
start.
The	3ds	max	keyframe	controllers	maintain	an	interval	that	is	their	range.	It	is
normally	defined	to	be	the	first	key	to	the	last	key.	If	the	user	goes	into
Position	Range	mode	and	moves	the	range	around,	this	method	is	called.	The
keyframe	controllers	set	a	flag	to	indicate	that	the	range	is	no	longer	linked	to
the	first	key	or	the	last	key.	Then	the	range	is	stored	in	the	interval,	and	this	is
considered	the	'in	range'	portion	of	the	controller.	If	time	is	evaluated	outside
of	this	range	it	applies	the	ORTs	to	determine	the	value.

Parameters:
Interval	range
The	new	range	for	the	anim.
DWORD	flags
EDITRANGE_LINKTOKEYS
If	this	flag	is	set,	the	controller	should	re-establish	the	link	between	the	start
and	end	keys	and	its	range.	This	is	passed	if	the	user	presses	the	link	to	keys
button	in	Track	View.	Thus,	if	one	of	the	ends	of	the	interval	is	at	a	key,
link	it	to	the	key	so	that	if	the	key	moves,	the	interval	moves.

Default	Implementation:
{}

Prototype:
virtual	void	DeleteTime(Interval	iv,	DWORD	flags);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	delete	the	specified	interval	of	time	(or	the	keys
within	the	interval).

Parameters:
Interval	iv
The	interval	of	time	to	delete.
DWORD	flags
One	or	more	of	the	following	values:

TIME_INCLEFT
Include	the	left	endpoint.
TIME_INCRIGHT
Include	the	right	endpoint.
TIME_NOSLIDE
Delete	any	keys	in	the	interval	but	don't	actually	remove	the	block	of	time.

Default	Implementation:
{}

Prototype:
virtual	void	ReverseTime(Interval	iv,	DWORD	flags);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	reverse	the	data	within	the	specified	interval.	For
example,	if	the	interval	passed	is	from	frame	10	to	20,	and	there	is	a	key	at
frame	12,	the	key	should	be	moved	to	frame	18.	Considered	another	way,	if	all
the	times	were	normalized,	and	there	was	a	value	n	between	0	and	1,	n	should
be	changed	to	1-n.

Parameters:
Interval	iv
The	interval	of	time	over	which	to	reverse	the	data.
DWORD	flags
One	or	more	of	the	following	values:
TIME_INCLEFT
Include	the	left	endpoint.
TIME_INCRIGHT
Include	the	right	endpoint.

Default	Implementation:
{}

Sample	Code:
INTERP_CONT_TEMPLATE
void	InterpControl<INTERP_CONT_PARAMS>::ReverseTime(

Interval	iv,
	DWORD	flags)
	{
	Interval	test	=	TestInterval(iv,flags);
	int	n	=	keys.Count();
	HoldTrack();
	for	(int	i	=	0;	i	<	n;	i++)	{
		if	(keys[i].TimeLocked())	continue;
		if	(test.InInterval(keys[i].time))	{
			TimeValue	delta	=	keys[i].time	-	iv.Start();
			keys[i].time	=	iv.End()-delta;
			}
		}
	keys.KeysChanged();
	keys.CheckForDups();
	ivalid.SetEmpty();
	NotifyDependents(FOREVER,	PART_ALL,	REFMSG_CHANGE);
	}

Prototype:
virtual	void	ScaleTime(Interval	iv,	float	s);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	scale	an	interval	of	time	by	the	specified	scale	factor.

Parameters:
Interval	iv
The	interval	of	time	to	scale.	The	origin	of	the	scale	is	at	iv.Start().
float	s
The	scale	factor	for	the	time.

Default	Implementation:
{}

Sample	Code:
INTERP_CONT_TEMPLATE
void	InterpControl<INTERP_CONT_PARAMS>::ScaleTime(Interval

iv,	float	s)
	{
	int	n	=	keys.Count();
	TimeValue	delta	=
		int(s*float(iv.End()-iv.Start()))	+	iv.Start()-iv.End();
	HoldTrack();
	for	(int	i	=	0;	i	<	n;	i++)	{
		if	(keys[i].TimeLocked())	continue;
		if	(iv.InInterval(keys[i].time))	{
			keys[i].time	=
				int(s*float(keys[i].time	-	iv.Start()))	+	iv.Start();
		}	else
		if	(keys[i].time	>	iv.End())	{
			keys[i].time	+=	delta;
			}
		}
	keys.KeysChanged();
	ivalid.SetEmpty();
	NotifyDependents(FOREVER,	PART_ALL,	REFMSG_CHANGE);
	}

Prototype:
virtual	void	InsertTime(TimeValue	ins,	TimeValue	amount)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	insert	the	specified	amount	of	time	at	the	specified
insertion	point.

Parameters:
TimeValue	ins
The	time	to	begin	the	insertion.
TimeValue	amount
The	amount	of	time	to	insert.

Default	Implementation:
{}

Prototype:
virtual	BOOL	SupportTimeOperations()

Remarks:
Implemented	by	the	Plug-In.
If	an	anim	supports	time	operations	in	the	track	view	(cut,	copy,	paste,	etc.),	it
should	implement	this	method	to	return	TRUE.	When	it	is	FALSE	the	user
cannot	select	blocks	of	time	in	the	anim's	track.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	void	MapKeys(TimeMap	*map,	DWORD	flags);

Remarks:
Implemented	by	the	Plug-In.
The	method	is	called	to	update	the	keys	specified	by	the	flags,	using	the
TimeMap	passed.	The	plug-in	should	go	through	the	specified	keys	and
change	their	time	to	TimeMap::map(time).	See	the	sample	code	below	for
how	this	is	done.

Parameters:
TimeMap	*map
This	class	provides	a	method,	map(),	that	is	applied	to	the	keys.	See	Class
TimeMap.
DWORD	flags
The	flags	indicate	the	keys	to	operate	on.	One	or	more	of	the	following	values:
TRACK_DOSEL
Selected	keys	only.
TRACK_DOALL
All	the	keys,	ignore	their	selection	state.
TRACK_SLIDEUNSEL
Slide	unselected	keys	to	the	right.	Keys	are	slid	by	the	amount	the	last	key
was	transformed.
TRACK_RIGHTTOLEFT
Enumerate	right	to	left.	If	TRACK_SLIDEUNSEL	is	set,	keys	will

slide	to	the	left.
TRACK_DOSUBANIMS
Sub-Animatables	keys	as	well.
TRACK_DOCHILDNODES
Child	Nodes	keys	as	well
TRACK_MAPRANGE
The	range,	if	not	locked	to	first	and	last	key,	should	be	mapped	as	well.

Sample	Code:
INTERP_CONT_TEMPLATE
void	InterpControl<INTERP_CONT_PARAMS>::MapKeys(TimeMap
*map,DWORD	flags)
	{
	int	n	=	keys.Count();
	BOOL	changed	=	FALSE;
	if	(!n)	goto	doneMapKeys;
	HoldTrack();
	if	(flags&TRACK_DOALL)	{
		for	(int	i	=	0;	i	<	n;	i++)	{
			if	(keys[i].TimeLocked())	continue;
			keys[i].time	=	map->map(keys[i].time);
			changed	=	TRUE;
			}
	}	else
	if	(flags&TRACK_DOSEL)	{
		BOOL	slide	=	flags&TRACK_SLIDEUNSEL;
		TimeValue	delta	=	0,	prev;
		int	start,	end,	inc;
		if	(flags&TRACK_RIGHTTOLEFT)	{
			start	=	n-1;
			end	=	-1;
			inc	=	-1;
		}	else	{
			start	=	0;
			end	=	n;
			inc	=	1;
			}

		for	(int	i	=	start;	i	!=	end;	i	+=	inc)	{
			if	(keys[i].TimeLocked())	continue;
			if	(keys[i].TestKFlag(KEY_SELECTED))	{
				prev	=	keys[i].time;
				keys[i].time	=	map->map(keys[i].time);
				delta	=	keys[i].time	-	prev;
				changed	=	TRUE;
			}	else	if	(slide)	{
				keys[i].time	+=	delta;
				}
			}
		}
	if	(flags&TRACK_MAPRANGE	&&
keys.TestTFlag(RANGE_UNLOCKED))	{
		TimeValue	t0	=	map->map(keys.range.Start());
		TimeValue	t1	=	map->map(keys.range.End());
		keys.range.Set(t0,t1);
		}
	if	(changed)	{
		keys.KeysChanged();
		ivalid.SetEmpty();
		NotifyDependents(FOREVER,	PART_ALL,	REFMSG_CHANGE);
		}
doneMapKeys:
	Animatable::MapKeys(map,flags);
	}

Prototype:
virtual	void	DeleteKeys(DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	delete	keys,	as	specified	by	the	flags	passed.

Parameters:
DWORD	flags
One	or	more	of	the	following	values:

TRACK_DOSEL
Delete	selected	keys	only.
TRACK_DOALL
Delete	all	keys	(ignore	selection	state).
TRACK_SLIDEUNSEL
Slide	unselected	keys	to	the	right.
TRACK_RIGHTTOLEFT
Enumerate	right	to	left.	If	TRACK_SLIDEUNSEL	is	set,	keys	will
slide	to	the	left.

Default	Implementation:
{}

Prototype:
virtual	void	DeleteKeyByIndex(int	index);

Remarks:
Implemented	by	the	Plug-In.
Deletes	the	key	specified	by	the	index	passed.

Parameters:
int	index
The	index	of	the	key	to	delete.

Default	Implementation:
{}

Prototype:
virtual	void	SelectKeys(TrackHitTab&	sel,	DWORD	flags);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	select	or	deselect	a	set	of	keys	identified	by	the
TrackHitTab	and	the	specified	flags.

Parameters:
TrackHitTab&	sel
The	table	of	track	hit	records.	See	Class	TrackHitRecord	and	Class	Tab.	Note

the	following:	typedef	Tab<TrackHitRecord>	TrackHitTab;
DWORD	flags
Either	SELKEYS_SELECT,	SELKEYS_DESELECT,	or	a
combination	of	SELKEYS_CLEARKEYS	and
SELKEYS_CLEARCURVE	will	be	specified.
One	or	more	of	the	following	values:
SELKEYS_SELECT
The	keys	should	be	selected.
SELKEYS_DESELECT
The	keys	should	be	deselected.
SELKEYS_CLEARKEYS
All	keys	should	be	deselected.
SELKEYS_CLEARCURVE
All	keys	on	the	function	curve	should	be	deselected.
SELKEYS_FCURVE
Indicates	that	we	are	operating	on	the	keys	of	a	function	curve,	and	not	of	a
track.

Default	Implementation:
{}

Prototype:
virtual	void	SelectSubKeys(int	subNum,	TrackHitTab&	sel,
DWORD	flags);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	is	called	on	the	client	when	the	client	takes	over	control	of	an
anims	function	curves.	It's	called	to	select	or	deselect	a	set	of	keys	identified
by	the	TrackHitTab	and	the	specified	flags.

Parameters:
int	subNum
The	index	of	the	sub-anim	to	select	or	deselect

TrackHitTab&	sel
The	table	of	track	hit	records.	See	Class	TrackHitRecord	and	Class	Tab.	Note
the	following:	typedef	Tab<TrackHitRecord>	TrackHitTab;
DWORD	flags
Either	SELKEYS_SELECT,	SELKEYS_DESELECT,	or	a
combination	of	SELKEYS_CLEARKEYS	and
SELKEYS_CLEARCURVE	will	be	specified.
One	or	more	of	the	following	values:
SELKEYS_SELECT
The	keys	should	be	selected.
SELKEYS_DESELECT
The	keys	should	be	deselected.
SELKEYS_CLEARKEYS
All	keys	should	be	deselected.
SELKEYS_CLEARCURVE
All	keys	on	the	function	curve	should	be	deselected.
SELKEYS_FCURVE
Indicates	that	we	are	operating	on	the	keys	of	a	function	curve,	and	not	of	a
track.

Default	Implementation:
{}

Prototype:
virtual	void	SelectSubCurve(int	subNum,BOOL	sel);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	is	called	to	set	the	selected	state	of	the	sub-curve	whose	index	is
passed.

Parameters:
int	subNum
The	index	of	the	sub-anim	to	select	or	deselect

BOOL	sel
TRUE	to	select	the	curve;	FALSE	to	deselect	it.

Default	Implementation:
{}

Prototype:
virtual	void	SelectKeyByIndex(int	i,	BOOL	sel);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	is	called	to	set	the	selected	state	of	the	key	whose	index	is
passed.

Parameters:
int	i
The	key	to	select	or	deselect.
BOOL	sel
TRUE	to	select	the	key;	FALSE	to	deselect	it.

Default	Implementation:
{}

Prototype:
virtual	void	FlagKey(TrackHitRecord	hit);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	have	the	plug-in	flag	or	mark	a	specific	key	identified
by	the	TrackHitRecord.
As	an	example,	when	the	user	goes	to	move	a	selection	set	of	keys	in	the
Track	View,	a	yellow	marker	is	drawn.	To	move	the	group	of	keys,	the	user
clicks	on	a	single	one.	The	system	needs	to	track	this	one	key	as	it	is	moved,
and	needs	a	way	to	identify	it.	This	method	is	called	so	the	developer	can	flag
this	key	as	the	one	that	was	selected.	This	is	needed	because	the	Track	View
doesn't	know	anything	about	a	specific	controllers	ordering	of	keys	and	thus

cannot	refer	to	it	by	index.
The	system	will	call	GetFlagKeyIndex()	(described	below)	to	retrieve	the
index	of	the	key	that	was	flagged.

Parameters:
TrackHitRecord	hit
The	developer	uses	this	class	to	identify	a	key.	This	is	the	hit	record	that	the
controller	gave	the	Track	View	in	the	first	place	to	identify	the	hit.	Thus	this	is
enough	information	to	identify	the	key.	See	Class	TrackHitRecord.

Default	Implementation:
{}

Sample	Code:
INTERP_CONT_TEMPLATE
void
InterpControl<INTERP_CONT_PARAMS>::FlagKey(TrackHitRecord
hit)
	{
	int	n	=	keys.Count();
	for	(int	i	=	0;	i	<	n;	i++)	{
		keys[i].ClearKFlag(KEY_FLAGGED);
		}
	assert(hit.hit>=0&&hit.hit<(DWORD)n);
	keys[hit.hit].SetKFlag(KEY_FLAGGED);
	}

Prototype:
virtual	int	GetFlagKeyIndex();

Remarks:
Implemented	by	the	Plug-In.
Returns	the	index	of	the	key	that	is	flagged,	or	-1	if	no	keys	are	flagged.	See
the	method	above.

Default	Implementation:
{return	-1;}

Sample	Code:

INTERP_CONT_TEMPLATE
int	InterpControl<INTERP_CONT_PARAMS>::GetFlagKeyIndex()
	{
	int	n	=	keys.Count();
	for	(int	i	=	0;	i	<	n;	i++)	{
		if	(keys[i].TestKFlag(KEY_FLAGGED))	{
			return	i;
			}
		}
	return	-1;
	}

Prototype:
virtual	int	NumSelKeys();

Remarks:
Implemented	by	the	Plug-In.
Returns	the	number	of	selected	keys.

Default	Implementation:
{return	0;}

Prototype:
virtual	void	CloneSelectedKeys(BOOL	offset=FALSE);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	make	a	copy	of	the	selected	keys.

Parameters:
BOOL	offset=FALSE
If	TRUE,	set	the	new	key	time	to	be	centered	between	the	original	key	and	the
next	key.

Prototype:
virtual	void	AddNewKey(TimeValue	t,DWORD	flags);

Remarks:

Implemented	by	the	Plug-In.
This	method	is	called	to	add	a	new	key	at	the	specified	time.	The	value	of	the
key	is	set	to	the	value	of	the	previous	key,	or	interpolated	between	keys,	based
on	the	flags	passed.

Parameters:
TimeValue	t
The	time	to	add	the	key.
DWORD	flags
One	or	more	of	the	following	values:
ADDKEY_SELECT
Select	the	new	key	and	deselect	any	other	selected	keys.
ADDKEY_INTERP
If	TRUE	then	initialize	the	new	key	to	the	interpolated	value	at	that	time.	If
FALSE,	initialize	the	key	to	the	value	of	the	previous	key.

Default	Implementation:
{}

Prototype:
virtual	void	MoveKeys(ParamDimensionBase	*dim,float
delta,DWORD	flags);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	move	selected	keys	vertically	in	the	function	curve
editor.	This	moves	the	key	values	but	does	not	alter	the	key	times.	The
developer	adds	the	delta	to	the	selected	key	values,	after	converting	them
using	the	dimension	*dim	passed.	See	the	sample	code	below	for	how	this
may	be	done.

Parameters:
ParamDimensionBase	*dim
This	class	is	used	to	scale	the	parameter's	values	into	and	out	of	units	used	in
the	user	interface.	For	example,	if	the	parameter	was	an	angle,	it	would	be
shown	in	degrees,	but	stored	in	radians.	Methods	of	this	class	allow	the	value
to	be	converted	back	and	forth.	This	is	needed	because	the	delta	passed	is	in

user	interface	units.	Thus	the	selected	key	values	need	to	be	converted	before
the	delta	is	applied.	See	Class	ParamDimensBase.
float	delta
The	amount	to	move	the	keys	(move	the	values	-	not	the	times).	This	is	in	the
units	of	the	user	interface.	For	example,	if	an	angle	has	a	value	in	the	function
curve	editor	of	100	degrees,	100	would	be	passed	as	the	delta.
DWORD	flags
These	are	not	currently	used.

Default	Implementation:
{}

Sample	Code:
INTERP_CONT_TEMPLATE
void
InterpControl<INTERP_CONT_PARAMS>::MoveKeys(ParamDimensionBase
*dim,float	delta,DWORD	flags)
	{
	int	n	=	keys.Count();
	if	(!n)	return;
	float	m	=	1.0f;
	Interval	valid;
	BOOL	changed	=	FALSE;
	HoldTrack();
	for	(int	i	=	0;	i	<	n;	i++)	{
		for	(int	j=0;j<ELS;j++)	{
			if	(keys[i].AnyElemSelected())	{
				m	=	GetMultVal(keys[i].time,valid);
				}
			if	(keys[i].ElemSelected(j))	{
				keys[i][j]	=
					dim->UnConvert(dim->Convert(keys[i][j]*m)+delta)/m;
				changed	=	TRUE;
				}
			}
		}
	if	(changed)	{
		//	FALSE	indicates	that	key	times	didn't

		//	change	so	sorting	isn't	necessary.
		keys.KeysChanged(FALSE);
		ivalid.SetEmpty();
		NotifyDependents(FOREVER,	PART_ALL,	REFMSG_CHANGE);
		}
	}

Prototype:
virtual	void	ScaleKeyValues(ParamDimensionBase	*dim,float
origin,	float	scale,DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	scale	selected	keys	values.	This	scales	the	key	values
but	does	not	alter	the	key	times.	The	developer	scales	the	selected	key	values
about	the	specified	origin,	after	converting	them	using	the	dimension	*dim
passed.
Note	the	following	macro	available	for	scaling	about	an	origin:
#define	ScaleAboutOrigin(val,origin,scale)
	((((val)-(origin))*(scale))+(origin))

Parameters:
ParamDimensionBase	*dim
This	class	is	used	to	scale	the	parameter's	values	into	and	out	of	units	used	in
the	user	interface.	For	example,	if	the	parameter	was	an	angle,	it	would	be
shown	in	degrees,	but	stored	in	radians.	Methods	of	this	class	allow	the	value
to	be	converted	back	and	forth.	See	Class	ParamDimensBase.
float	origin
The	origin	about	which	the	keys	are	scaled.
float	scale
The	scale	factor	to	apply	to	the	key	values.
DWORD	flags
These	are	not	currently	used.

Default	Implementation:
{}

Sample	Code:
INTERP_CONT_TEMPLATE
void	InterpControl<INTERP_CONT_PARAMS>::ScaleKeyValues(
	ParamDimensionBase	*dim,float	origin,float	scale,DWORD	flags)
	{
	int	n	=	keys.Count();
	if	(!n)	return;
	BOOL	changed	=	FALSE;
	HoldTrack();
	for	(int	i	=	0;	i	<	n;	i++)	{
		for	(int	j=0;j<ELS;j++)	{
			if	(keys[i].ElemSelected(j))	{
				keys[i][j]	=	dim->UnConvert(ScaleAboutOrigin(
					dim->Convert(keys[i][j]),origin,scale));
				changed	=	TRUE;
				}
			}
		}
	if	(changed)	{
		keys.KeysChanged(FALSE);
		ivalid.SetEmpty();
		NotifyDependents(FOREVER,	PART_ALL,	REFMSG_CHANGE);
		}
	}

Prototype:
virtual	void	SelectCurve(BOOL	sel)

Remarks:
Implemented	by	the	Plug-In.
The	plug-in	keeps	track	of	whether	its	function	curve	is	selected	or	not.	This
method	is	called	to	have	the	plug-in	select	or	deselect	its	function	curve.

Parameters:
BOOL	sel
TRUE	if	the	curve	should	be	selected;	FALSE	if	it	should	be	deselected.

Default	Implementation:

{}

Prototype:
virtual	BOOL	IsCurveSelected()

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	the	function	curve	is	selected;	otherwise	returns	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	IsKeySelected(int	index)

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	the	key	specified	by	the	index	is	selected;	otherwise	FALSE.

Parameters:
int	index
The	index	of	the	key	to	test.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	int	GetSelKeyCoords(TimeValue	&t,	float	&val,	DWORD
flags);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	determine	the	commonality	of	the	selected	keys	for
display	in	the	time/value	type	in	fields	of	Track	View.	It	is	also	used	to	retrieve
the	value	and/or	time	of	the	selected	keys	(if	there	is	only	one	selected,	or	they
are	common	to	the	selected	keys).	The	flags	parameter	specified	which	values
to	retrieve.	The	return	value	indicates	if	nothing,	or	several	keys	were	selected.
It	also	indicates	if	the	selected	keys	shared	a	common	time	and/or	common

value.
Parameters:
TimeValue	&t
The	time	of	the	selected	keys	is	returned	here	(if	appropriate).
float	&val
The	value	of	the	selected	keys	is	returned	here	(if	appropriate).
DWORD	flags
One	of	the	following	values:
KEYCOORDS_TIMEONLY
Only	the	time	t	needs	to	be	updated.
KEYCOORDS_VALUEONLY
Only	the	value	val	needs	to	be	updated.

Return	Value:
This	indicates	what	was	selected,	and	what	these	keys	had	in	common.	One	or
more	of	the	following	values	should	be	set:
KEYS_NONESELECTED
This	indicates	that	no	keys	are	selected.
KEYS_MULTISELECTED
This	indicates	that	multiple	keys	are	selected.
Both	of	these	last	two	bits	could	be	set.
KEYS_COMMONTIME
If	the	selected	keys	share	the	same	time	then	this	flag	should	be	set.	In	this
case	it	is	appropriate	to	update	t	if	required.
KEYS_COMMONVALUE
If	the	selected	keys	share	the	same	value	then	this	flag	should	be	set.	In	this
case	it	is	appropriate	to	update	val	if	required.

Default	Implementation:
{return	KEYS_NONESELECTED;}

Prototype:
virtual	void	SetSelKeyCoords(TimeValue	t,	float	val,DWORD
flags)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	update	the	time	and/or	value	of	the	selected	keys	as
specified	by	the	flags.	This	is	called	if	the	user	uses	the	time/value	type	in
fields	of	Track	View.

Parameters:
TimeValue	t
The	time	to	set	for	the	selected	keys	(if	the	flags	indicate	this	is	needed).
float	val
The	value	to	set	for	the	selected	keys	(if	the	flags	indicate	this	is	needed).
DWORD	flags
One	of	the	following	values:
KEYCOORDS_TIMEONLY
Only	the	time	needs	to	be	updated.
KEYCOORDS_VALUEONLY
Only	the	value	needs	to	be	updated.

Default	Implementation:
{}

Prototype:
virtual	int	SetSelKeyCoordsExpr(ParamDimension	*dim,	TCHAR
*timeExpr,	TCHAR	*valExpr,	DWORD	flags);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	similar	to	SetSelKeyCoords()	above.	In	that	case	you're
given	a	time	and	a	value	and	are	to	update	the	selected	keys	with	these	values
(based	on	the	flags	passed).	In	this	case,	you	are	instead	passed	time	and	value
expressions	(as	strings).	The	ideas	is	that	these	strings	are	evaulated	as
expressions	and	the	resulting	values	are	used	to	updated	the	selected	keys.	For
instance,	the	user	could	select	a	bunch	of	keys	and	then	type	in	n+45.	This
would	add	45	to	all	the	values	of	the	keys.
Developers	can	use	the	3ds	max	expression	parser	(see	Class	Expr)	to	evaluate

the	strings.	Debug	SDK	users	can	see
\MAXSDKDB\SDKSRC\CTRLTEMP.H	for	an	example	(or	see	the
sample	code	below)).	If	a	plug-in	doesn't	support	this	feature	it	can	return
FALSE	from	this	method	and	the	old	SetSelKeyCoords()	method	will	be
called.	Note	that	the	variable	names	are	defined	as
KEYCOORDS_TIMEVAR	and	KEYCOORDS_VALVAR.

Parameters:
ParamDimension	*dim
This	is	used	to	convert	the	parameter	value	once	you	get	it.
TCHAR	*timeExpr
A	string	containing	the	time	expression.
TCHAR	*valExpr
A	string	containing	the	value	expression.
DWORD	flags
One	of	the	following	values:
KEYCOORDS_TIMEONLY
Only	the	time	t	needs	to	be	updated.
KEYCOORDS_VALUEONLY
Only	the	value	val	needs	to	be	updated.

Return	Value:
This	indicates	what	was	selected,	and	what	these	keys	had	in	common.	One	or
more	of	the	following	values	should	be	set:
KEYCOORDS_EXPR_UNSUPPORTED
Don't	implement	this	method
KEYCOORDS_EXPR_ERROR
Error	in	expression
KEYCOORDS_EXPR_OK
Expression	evaluated

Default	Implementation:
{return	KEYCOORDS_EXPR_UNSUPPORTED;}
	

Sample	Code:

INTERP_CONT_TEMPLATE
int	InterpControl<INTERP_CONT_PARAMS>::SetSelKeyCoordsExpr(
		ParamDimension	*dim,
		TCHAR	*timeExpr,	TCHAR	*valExpr,	DWORD	flags)
	{
	Expr	texpr,	vexpr;	
	float	vin,	vout=0.0f,	tfin,	tfout=0.0f;
	
	if	(timeExpr)	{
		texpr.defVar(SCALAR_VAR,KEYCOORDS_TIMEVAR);
		if	(texpr.load(timeExpr)!=EXPR_NORMAL)	return
KEYCOORDS_EXPR_ERROR;		
		}
	if	(valExpr)	{
		vexpr.defVar(SCALAR_VAR,KEYCOORDS_VALVAR);
		if	(vexpr.load(valExpr)!=EXPR_NORMAL)	return
KEYCOORDS_EXPR_ERROR;		
		}
	
	int	n	=	keys.Count();
	if	(!n)	return	KEYCOORDS_EXPR_OK;
	HoldTrack();
	for	(int	i	=	0;	i	<	n;	i++)	{
		if	(!(flags&KEYCOORDS_VALUEONLY))	{
			if	(keys[i].TimeLocked())	continue;
			if	(keys[i].TestKFlag(KEY_SELECTED))	{				
				tfin	=	float(keys[i].time)/float(GetTicksPerFrame());
				texpr.eval(&tfout,	1,	&tfin);
				keys[i].time	=	int(tfout*GetTicksPerFrame());
				}
			}
		if	(!(flags&KEYCOORDS_TIMEONLY))	{
			for	(int	j=0;j<ELS;j++)	{
				if	(keys[i].ElemSelected(j))	{
					vin	=	dim->Convert(keys[i][j]);
					vexpr.eval(&vout,	1,	&vin);
					keys[i][j]	=	dim->UnConvert(vout);

					}
				}
			}
		}	
	keys.KeysChanged();
	keys.CheckForDups();
	ivalid.SetEmpty();
	NotifyDependents(FOREVER,	PART_ALL,	REFMSG_CHANGE);
	return	KEYCOORDS_EXPR_OK;

Prototype:
virtual	void	AdjustTangents(TrackHitRecord
hit,ParamDimensionBase	*dim,	Rect&	rcGraph,float	tzoom,	int
tscroll,float	vzoom,	int	vscroll,int	dx,int	dy,	DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
If	a	plug-in	has	tangent	handles,	this	method	is	called	if	the	user	adjusts	them.
If	a	plug-in	doesn't	have	tangent	handles,	this	method	may	be	ignored.	This
method	is	called	if	the	user	selects	one	of	the	handles	and	moves	the	mouse.
This	method	is	passed	the	dx,	and	dy	of	the	mouse	motion.
The	plug-in	may	have	any	types	of	handles	it	wishes,	and	it	is	responsible	for
processing	whatever	needs	to	be	done	when	the	user	adjusts	them.	The	method
is	passed	information	about	the	screen	space,	such	as	the	overall	rectangle,	and
time	and	value	scroll	and	zoom	factors.	See	List	of	Screen-Time-Value	Macros
for	macros	to	convert	in	and	out	of	screen	space.

Parameters:
TrackHitRecord	hit
This	identifies	the	handle	that	was	selected	(hit).
ParamDimensionBase	*dim
The	parameter	dimension.	See	Class	ParamDimensionBase.
Rect&	rcGraph
This	is	the	rectangle	of	the	graph	viewport.
float	tzoom
This	is	the	time	zoom	factor.

int	tscroll
This	is	the	time	scroll	factor.
float	vzoom
This	is	the	value	zoom	factor.
int	vscroll
This	is	the	value	scroll	factor.
int	dx
The	mouse	movement	in	screen	coordinates	in	the	x	direction.
int	dy
The	mouse	movement	in	screen	coordinates	in	the	y	direction.
DWORD	flags
One	of	the	following	values:
ADJTAN_LOCK
Indicates	the	tangents	are	locked.
ADJTAN_BREAK
Indicates	the	tangents	have	been	broken.

Default	Implementation:
{}

Drawing	and	hit	testing	tracks

Prototype:
virtual	int	GetTrackVSpace(int	lineHeight)

Remarks:
Implemented	by	the	Plug-In.
Returns	the	vertical	space	occupied	by	the	track	in	units	of	one	line.

Parameters:
int	lineHeight
The	height	of	a	single	line	in	pixels.

Default	Implementation:
{	return	1;	}

Prototype:
virtual	int	HitTestTrack(TrackHitTab&	hits,Rect&	rcHit,Rect&
rcTrack,float	zoom,int	scroll,DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	determine	which	keys	lie	within	the	rcHit	rectangle.
Keys	that	are	hit	are	added	to	the	hits	table.

Parameters:
TrackHitTab&	hits
The	table	of	TrackHitRecords	to	update.	Each	key	that	lies	within	the	hit
rectangle	(is	hit)	should	be	added	to	this	table.	It	is	up	to	the	plug-in	to	define
a	scheme	that	allows	it	to	identify	its	hits	using	the	data	members	of	Class
TrackHitRecord.	Also	see	Class	Tab	for	methods	to	add	to	the	table.
Rect&	rcHit
This	is	the	region	that	was	selected	for	hit	testing.	This	may	be	a	small
rectangle	about	the	mouse	pick	point,	or	a	larger	rectangle	if	the	user	selected
by	window.
Rect&	rcTrack
This	is	the	entire	rectangular	region	of	the	track.
float	zoom
The	is	the	time	zoom	factor.
int	scroll
This	is	the	time	scroll	factor.
DWORD	flags
One	or	more	of	the	following	value:
HITTRACK_SELONLY
Selected	only.
HITTRACK_UNSELONLY
Unselected	only.
HITTRACK_ABORTONHIT
Abort	hit	testing	on	first	hit.
HITCURVE_TESTTANGENTS
Hit	test	curve	tangents.

Return	Value:
One	of	the	following	values:
TRACK_DONE
This	indicates	the	track	was	hit	tested.
TRACK_DORANGE
This	indicates	that	the	system	will	handle	hit	testing	to	the	range	bar	for	the
item.	For	example	a	node	returns	this	value	because	it	does	not	have	any
keys.	Therefore	it	just	lets	the	user	hit	test	the	range	bar.	In	general,
anything	that	is	not	a	leaf	controller	will	not	implement	this	method	and
return	the	default.	The	system	will	then	simply	hit	test	the	range	bar.
TRACK_ASKCLIENT
If	a	plug-in	returns	this	value	then	the	anim's	client	will	be	given	a	chance
to	paint	the	track	in	Track	View.	If	a	client	returns	this	value	then	the
method	PaintSubTrack()	will	be	called.

Default	Implementation:
{	return	TRACK_DORANGE;	}

Prototype:
virtual	int	PaintTrack(ParamDimensionBase	*dim,	HDC
hdc,Rect&	rcTrack,Rect&	rcPaint,	float	zoom,	int	scroll,	DWORD
flags)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	display	the	item	in	the	track	view.	If	an	item	needs	to
draw	itself	in	a	special	fashion,	it	implements	this	method	to	do	so.	For
example,	a	sound	plug-in	may	draw	its	waveform	using	this	method.	If	an	item
does	not	need	to	draw	itself,	the	default	implementation	may	be	used.	This
draws	the	range	bar	for	the	item.
Note:	When	drawing	something	to	appear	in	Track	View,	a	developer	should
not	do	any	clipping	of	their	own.	3ds	max	will	take	care	of	all	clipping	itself.

Parameters:
ParamDimensionBase	*dim
This	parameter	is	available	in	release	2.0	and	later	only.

The	dimension	for	the	parameter	of	this	track.
HDC	hdc
The	handle	of	the	=	4)	BSPSPopupOnMouseOver(event);;">device	context.
Rect&	rcTrack
The	entire	rectangle	of	the	inside	of	the	track.
Rect&	rcPaint
This	is	the	rectangular	region	that	needs	to	be	repainted	-	the	invalid	region.
float	zoom
The	time	zoom	factor.
int	scroll
The	time	scroll	factor.
DWORD	flags
One	or	more	of	the	following	values.	These	are	filters	for	controllers	with
more	than	one	curve.	NOTE:	RGB	controllers	interpret	X	as	red,	Y	as	green,
and	Z	as	blue.
DISPLAY_XCURVE
DISPLAY_YCURVE
DISPLAY_ZCURVE

Return	Value:
One	of	the	following	values:
TRACK_DONE
Indicates	the	track	was	painted.
TRACK_DORANGE
Indicates	the	system	should	draw	the	range	bars	for	the	item.
TRACK_ASKCLIENT
Indicates	the	anim's	client	will	be	given	a	chance	to	paint	the	track	in	Track
View.	See	Animatable::PaintSubTrack()	which	will	be	called	to	do
this.

Default	Implementation:
{	return	TRACK_DORANGE;	}

Prototype:
virtual	int	PaintSubTrack(int	subNum,	ParamDimensionBase

javascript:BSSCPopup('idx_device_context.htm');

*dim,	HDC	hdc,	Rect&	rcTrack,	Rect&	rcPaint,	float	zoom,	int
scroll,	DWORD	flags);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	will	be	called	if	PaintTrack	returns	TRACK_ASKCLIENT.
This	gives	the	anim's	client	a	chance	to	paint	the	tracks	in	Track	View.

Parameters:
int	subNum
Specifies	the	sub-anim	to	paint.
ParamDimensionBase	*dim
The	dimension	for	the	parameter	of	this	track.
HDC	hdc
The	handle	of	the	=	4)	BSPSPopupOnMouseOver(event);;">device	context.
Rect&	rcTrack
The	entire	rectangle	of	the	inside	of	the	track.
Rect&	rcPaint
This	is	the	rectangular	region	that	needs	to	be	repainted	-	the	invalid	region.
float	zoom
The	time	zoom	factor.
int	scroll
The	time	scroll	factor.
DWORD	flags
One	or	more	of	the	following	values.	These	are	filters	for	controllers	with
more	than	one	curve.	NOTE:	RGB	controllers	interpret	X	as	red,	Y	as	green,
and	Z	as	blue.
DISPLAY_XCURVE
DISPLAY_YCURVE
DISPLAY_ZCURVE

Return	Value:
One	of	the	following	values:
TRACK_DONE
Indicates	the	track	was	painted.

javascript:BSSCPopup('idx_device_context.htm');

TRACK_DORANGE
Indicates	the	system	should	draw	the	range	bars	for	the	item.

Default	Implementation:
{return	TRACK_DORANGE;}

Drawing	and	hit	testing	function	curves

Prototype:
virtual	int	PaintFCurves(ParamDimensionBase	*dim,	HDC	hdc,
Rect&	rcGraph,Rect&	rcPaint,	float	tzoom,	int	tscroll,	float
vzoom,	int	vscroll,	DWORD	flags);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	draw	the	function	curve	of	the	anim.

Parameters:
ParamDimensionBase	*dim
The	parameter	dimension.	See	Class	ParamDimensionBase.
HDC	hdc
The	handle	of	the	=	4)	BSPSPopupOnMouseOver(event);;">device	context.
Rect&	rcGraph
The	entire	rectangle	of	the	inside	of	the	graph	region.
Rect&	rcPaint
This	is	the	rectangular	region	that	needs	to	be	repainted	-	the	invalid	region.
float	tzoom
The	time	zoom	factor.
int	tscroll
The	time	scroll	factor.
float	vzoom
The	value	zoom	factor.
int	vscroll
The	value	scroll	factor.
DWORD	flags
One	or	more	of	the	following	values:

javascript:BSSCPopup('idx_device_context.htm');

PAINTCURVE_SHOWTANGENTS
Show	the	curve	tangent	handles.
PAINTCURVE_FROZEN
Show	the	curve	in	a	frozen	state.
These	are	filters	for	controllers	with	more	than	one	curve.	NOTE:	RGB
controllers	interpret	X	as	red,	Y	as	green	and	Z	as	blue.
DISPLAY_XCURVE
DISPLAY_YCURVE
DISPLAY_ZCURVE

PAINTCURVE_GENCOLOR
This	option	is	availabe	in	3ds	max	2.0	and	later	only.
Draw	the	curve	in	its	standard	color.
The	following	options	are	passed	to	float	controllers	indicating	a	sugested
color	for	drawing.
PAINTCURVE_XCOLOR
This	option	is	availabe	in	3ds	max	2.0	and	later	only.
Draw	the	curve	in	red.
PAINTCURVE_YCOLOR
This	option	is	availabe	in	3ds	max	2.0	and	later	only.
Draw	the	curve	in	green.
PAINTCURVE_ZCOLOR
This	option	is	availabe	in	3ds	max	2.0	and	later	only.
Draw	the	curve	in	blue.

Return	Value:
A	plug-in	should	always	return	0.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	int	HitTestFCurves(ParamDimensionBase
*dim,TrackHitTab&	hits,	Rect&	rcHit,	Rect&	rcGraph,float
tzoom,	int	tscroll,float	vzoom,int	vscroll,	DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	hit	test	the	item's	function	curves.	It	is	called	to
determine	which	keys	on	the	curve	lie	within	the	rcHit	rectangle.	Keys	that
are	hit	are	added	to	the	hits	table.

Parameters:
ParamDimensionBase	*dim
The	parameter	dimension.	See	Class	ParamDimensionBase.
TrackHitTab&	hits
The	table	of	TrackHitRecords	to	update.	Each	key	that	lies	within	the	hit
rectangle	(is	hit)	should	be	added	to	this	table.	It	is	up	to	the	plug-in	to	define
a	scheme	that	allows	it	to	identify	its	hits	using	the	data	members	of	Class
TrackHitRecord.	Also	see	Class	Tab	for	methods	to	add	to	the	table.
Rect&	rcHit
This	is	the	region	that	was	selected	for	hit	testing.	This	may	be	a	small
rectangle	about	the	mouse	pick	point,	or	a	larger	rectangle	if	the	user	selected
by	window.
Rect&	rcGraph
This	is	the	entire	rectangle	of	the	graph	region.
float	tzoom
This	is	the	time	zoom	factor.
int	tscroll
This	is	the	time	scroll	factor.
float	vzoom
This	is	the	time	zoom	factor.
int	vscroll
This	is	the	time	scroll	factor.
DWORD	flags
One	or	more	of	the	following	values:
HITTRACK_SELONLY
Selected	only.
HITTRACK_UNSELONLY
Unselected	only.

HITTRACK_ABORTONHIT
Abort	hit	testing	on	first	hit.
HITCURVE_TESTTANGENTS
Hit	Test	curve	tangent	handles.
These	are	filters	for	controllers	with	more	than	one	curve.	NOTE:	RGB
controllers	interpret	X	as	red,	Y	as	green	and	Z	as	blue.
DISPLAY_XCURVE
DISPLAY_YCURVE
DISPLAY_ZCURVE

Return	Value:
One	of	the	following	values	to	indicate	what	was	hit:
HITCURVE_KEY
Hit	one	or	more	keys.
HITCURVE_WHOLE
Hit	the	curve	(anywhere).
HITCURVE_TANGENT
Hit	a	tangent	handle.
HITCURVE_NONE
Nothing	was	hit.
HITCURVE_ASKCLIENT
Ask	the	client	to	hit	test	the	function	curve.	See	HitTestSubFCurve()
below.

Default	Implementation:
{	return	HITCURVE_NONE;	}

Prototype:
virtual	int	PaintSubFCurves(int	subNum,	ParamDimensionBase
*dim,	HDC	hdc,	Rect&	rcGraph,Rect&	rcPaint,	float	tzoom,	int
tscroll,	float	vzoom,	int	vscroll,	DWORD	flags);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	draw	the	specified	sub-anim	function	curve.	This
allows	the	client	to	paint	its	function	curve.

Parameters:
int	subNum
The	sub-anim	number	to	paint.
ParamDimensionBase	*dim
The	parameter	dimension.	See	Class	ParamDimensionBase.
HDC	hdc
The	handle	of	the	=	4)	BSPSPopupOnMouseOver(event);;">device	context.
Rect&	rcGraph
The	entire	rectangle	of	the	inside	of	the	graph	region.
Rect&	rcPaint
This	is	the	rectangular	region	that	needs	to	be	repainted	-	the	invalid	region.
float	tzoom
The	time	zoom	factor.
int	tscroll
The	time	scroll	factor.
float	vzoom
The	value	zoom	factor.
int	vscroll
The	value	scroll	factor.
DWORD	flags
One	or	more	of	the	following	values:
PAINTCURVE_SHOWTANGENTS
Show	the	curve	tangent	handles.
PAINTCURVE_FROZEN
Show	the	curve	in	a	frozen	state.
These	are	filters	for	controllers	with	more	than	one	curve.	NOTE:	RGB
controllers	interpret	X	as	red,	Y	as	green	and	Z	as	blue.
DISPLAY_XCURVE
DISPLAY_YCURVE
DISPLAY_ZCURVE

PAINTCURVE_GENCOLOR
This	option	is	availabe	in	3ds	max	2.0	and	later	only.
Draw	the	curve	in	its	standard	color.

javascript:BSSCPopup('idx_device_context.htm');

The	following	options	are	passed	to	float	controllers	indicating	a	sugested
color	for	drawing.
PAINTCURVE_XCOLOR
This	option	is	availabe	in	3ds	max	2.0	and	later	only.
Draw	the	curve	in	red.
PAINTCURVE_YCOLOR
This	option	is	availabe	in	3ds	max	2.0	and	later	only.
Draw	the	curve	in	green.
PAINTCURVE_ZCOLOR
This	option	is	availabe	in	3ds	max	2.0	and	later	only.
Draw	the	curve	in	blue.

Return	Value:
A	plug-in	should	always	return	0.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	int	HitTestSubFCurves(int	subNum,	ParamDimensionBase
*dim,	TrackHitTab&	hits,	Rect&	rcHit,	Rect&	rcGraph,	float
tzoom,	int	tscroll,	float	vzoom,	int	vscroll,	DWORD	flags);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	if	HitTestFCurves()	returns
HITCURVE_ASKCLIENT.	It	allows	the	client	to	hit	test	its	sub-anim
curves.

Parameters:
int	subNum
The	sub-anim	number	to	hit	test.
ParamDimensionBase	*dim
The	parameter	dimension.	See	Class	ParamDimensionBase.
TrackHitTab&	hits
The	table	of	TrackHitRecords	to	update.	Each	key	that	lies	within	the	hit
rectangle	(is	hit)	should	be	added	to	this	table.	It	is	up	to	the	plug-in	to	define

a	scheme	that	allows	it	to	identify	its	hits	using	the	data	members	of	Class
TrackHitRecord.	Also	see	Class	Tab	for	methods	to	add	to	the	table.
Rect&	rcHit
This	is	the	region	that	was	selected	for	hit	testing.	This	may	be	a	small
rectangle	about	the	mouse	pick	point,	or	a	larger	rectangle	if	the	user	selected
by	window.
Rect&	rcGraph
This	is	the	entire	rectangle	of	the	graph	region.
float	tzoom
This	is	the	time	zoom	factor.
int	tscroll
This	is	the	time	scroll	factor.
float	vzoom
This	is	the	time	zoom	factor.
int	vscroll
This	is	the	time	scroll	factor.
DWORD	flags
One	or	more	of	the	following	values:
HITTRACK_SELONLY
Selected	only.
HITTRACK_UNSELONLY
Unselected	only.
HITTRACK_ABORTONHIT
Abort	hit	testing	on	first	hit.
HITCURVE_TESTTANGENTS
Hit	Test	curve	tangent	handles.
These	are	filters	for	controllers	with	more	than	one	curve.	NOTE:	RGB
controllers	interpret	X	as	red,	Y	as	green	and	Z	as	blue.
DISPLAY_XCURVE
DISPLAY_YCURVE
DISPLAY_ZCURVE

Return	Value:
One	of	the	following	values	to	indicate	what	was	hit:

HITCURVE_KEY
Hit	one	or	more	keys.
HITCURVE_WHOLE
Hit	the	curve	(anywhere).
HITCURVE_TANGENT
Hit	a	tangent	handle.
HITCURVE_NONE
Nothing	was	hit.

Default	Implementation:
{	return	HITCURVE_NONE;	}

Prototype:
virtual	void	EditTrackParams(TimeValue	t,	ParamDimensionBase
*dim,	TCHAR	*pname,	HWND	hParent,	IObjParam	*ip,
DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	for	the	plug-in	to	put	up	a	modal	dialog	and	let	the	user
edit	the	tracks	parameters	for	the	selected	keys.	This	function	should	not
return	until	the	user	has	completed	editing	at	which	time	any	windows	that
were	created	should	be	destroyed.	Unlike	BeginEditParams()	and
EndEditParams()	this	interface	is	modal.

Parameters:
TimeValue	t
This	time	represents	the	horizontal	position	of	where	the	user	right	clicked	to
bring	up	the	modal	edit	track	parameters	dialog.	See	the	flags	below	for	when
this	parameter	is	valid.
ParamDimensionBase	*dim
The	parameter	dimension.	See	Class	ParamDimensionBase.
TCHAR	*pname
The	name	of	the	parameter	as	given	by	the	client.
HWND	hParent
This	is	the	parent	window	that	should	be	used	to	create	any	dialogs.

IObjParam	*ip
An	interface	pointer	available	for	calling	functions	in	3ds	max.
DWORD	flags
One	or	more	of	the	following	values:
EDITTRACK_FCURVE
The	user	is	in	the	function	curve	editor.
EDITTRACK_TRACK
The	user	is	in	one	of	the	track	views.
EDITTRACK_SCENE
The	user	is	editing	a	path	in	the	scene.
EDITTRACK_BUTTON
The	user	invoked	by	choosing	the	properties	button.	In	this	case	the	time
parameter	is	NOT	valid.
EDITTRACK_MOUSE
The	user	invoked	by	right	clicking	with	the	mouse.	In	this	case	the	time
parameter	is	valid.

Default	Implementation:
{}

Prototype:
virtual	int	TrackParamsType()

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	a	value	that	indicates	how	the	track	parameter	editing	is
invoked.

Return	Value:
One	of	the	following	values:
TRACKPARAMS_NONE
Has	no	track	parameters.	If	this	is	returned	then	EditTrackParams()	will
not	be	called.
TRACKPARAMS_KEY
Entered	by	right	clicking	on	a	selected	key.	This	should	be	used	if	the
dialog	provides	parameters	for	the	entire	controller	(for	example	as	the

Noise	controller's	dialog	does).
TRACKPARAMS_WHOLE
Entered	by	right	clicking	anywhere	in	the	track.	This	should	be	used	if	the
dialog	will	represent	the	selection	of	keys	(as	a	key	info	type	dialog	does).

Default	Implementation:
{return	TRACKPARAMS_NONE;}

Prototype:
virtual	int	GetFCurveExtents(ParamDimensionBase	*dim,float
&min,	float	&max,	DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	calculate	the	largest	and	smallest	values	of	the	anim.

Parameters:
ParamDimensionBase	*dim
The	dimension	of	the	anim.	See	Class	ParamDimensionBase.
float	&min
The	smallest	value.	These	are	in	the	units	given	by	the	dimension.	For
example,	if	it	was	an	angle	parameter	that	was	displayed	in	degrees,	the	units
returned	through	min	should	be	in	degrees	as	well.
float	&max
The	largest	value.	These	are	in	the	units	given	by	the	dimension.	For	example,
if	it	was	an	angle	parameter	that	was	displayed	in	degrees,	the	units	returned
through	max	should	be	in	degrees	as	well.
DWORD	flags
These	are	filters	for	controllers	with	more	than	one	curve.	NOTE:	RGB
controllers	interpret	X	as	red,	Y	as	green	and	Z	as	blue.	One	or	more	of	the
following	values:
DISPLAY_XCURVE
DISPLAY_YCURVE
DISPLAY_ZCURVE

Return	Value:
If	this	method	is	processed,	return	nonzero;	otherwise	zero.

Default	Implementation:
{return	0;}

Sub-Class	Indication

Prototype:
virtual	BOOL	IsSubClassOf(Class_ID	classID)

Remarks:
Implemented	by	the	Plug-In.
If	an	object	is	a	sub-class	of	a	particular	class,	it	will	have	a	different
ClassID()	because	it	is	a	different	class.	This	method	allows	an	object	to
indicate	that	it	is	a	sub-class	of	a	particular	class	and	therefore	can	be	treated
as	one.	For	example,	a	class	could	be	derived	from	TriObject.	This	derived
class	would	have	a	different	ClassID()	then	the	TriObject's	class	ID
however	it	still	can	be	treated	(cast)	as	a	TriObject	because	it	is	derived	from
TriObject.	Note	the	default	implelementation:	a	class	is	considered	to	also	be
a	subclass	of	itself.

Parameters:
Class_ID	classID
The	Class_ID	of	the	item	that	this	class	is	a	sub-class	of.

Return	Value:
TRUE	if	this	class	is	a	sub-class	of	classID;	otherwise	FALSE.

Default	Implementation:
{return	classID==ClassID();}

Enumeration	of	Anims	and	Auxiliary	Files

Prototype:
int	EnumAnimTree(AnimEnum	*animEnum,	Animatable	*client,
int	subNum);

Remarks:
Implemented	by	the	System.
This	method	recursively	enumerates	the	Animatable	hierarchy.	It	will	call	the

AnimEnum::proc()	method	passing	it	the	anim,	that	anim's	parent	(the
client),	and	the	sub-anim	index	of	that	anim	to	the	client,	for	every	anim	and
sub-anim	in	the	hierarchy.

Parameters:
AnimEnum	*animEnum
The	callback	object,	called	once	for	each	sub	anim	from	0	to	subNum-1.	See
Class	AnimEnum.
Animatable	*client
The	client	anim.	This	is	the	Animatalbe	whose	sub-anims	are	enumerated.
int	subNum
The	sub-anim	index	of	the	client	at	which	to	begin	the	enumeration.	Pass	0	to
do	them	all.

Return	Value:
One	of	the	following	values:
ANIM_ENUM_PROCEED
ANIM_ENUM_STOP
ANIM_ENUM_ABORT

Prototype:
virtual	void	EnumAuxFiles(NameEnumCallback&	nameEnum,
DWORD	flags)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	enumerate	any	'auxiliary'	files	maintained	by	the	item
and	record	the	filename	with	the	callback.	Entities	which	actually	need	to	load
auxiliary	files	(for	instance	texture	maps)	must	implement	this	method,
possibly	calling	ReferenceMaker::EnumAuxFiles()	also.	The
ReferenceMaker	implementation	simply	calls	itself	on	all	its	references	(see
below).
Class	Interface	has	a	method	that	may	be	used	to	call	this	on	the	entire
system.	This	includes	the	renderer,	materials	editor,	atmospheric	effects,
background,	video	post,	lights,	etc.	--	everything	that	may	have	auxiliary	files
associated	with	it.	After	specifying	the	appropriate	flags	a	list	of	filenames	is
created	that	matched	the	enumeration	conditions	as	specified	by	the	flags.	This

is	used	for	instance	by	the	Archive	function	in	3ds	max	to	grab	a	list	of	bitmap
files	used	by	the	system.

Parameters:
NameEnumCallback&	nameEnum
The	callback	object	that	may	be	used	to	record	the	name.	See	Class
NameEnumCallback.
DWORD	flags
One	or	more	of	the	following	values.	See	List	of	EnumAuxFiles	Flags

Sample	Code:
This	is	the	default	implementation	provided	by	ReferenceMaker.
void	ReferenceMaker::EnumAuxFiles(NameEnumCallback&
nameEnum,	DWORD	flags)	{
	for	(int	i=0;	i<NumRefs();	i++)	{
		ReferenceMaker	*srm	=	GetReference(i);
		if	(srm)	srm->EnumAuxFiles(nameEnum,flags);
		}
	}

Prototype:
virtual	int	NumChildren()

Remarks:
This	method	is	used	internally.

Prototype:
virtual	Animatable*	ChildAnim(int	i)

Remarks:
This	method	is	used	internally.

Prototype:
virtual	TSTR	NodeName();

Remarks:
This	method	is	used	internally.

The	following	methods	deal	with	Note	Tracks.

Prototype:
void	AddNoteTrack(NoteTrack	*note);

Remarks:
Implemented	by	the	System.
This	method	adds	the	specified	note	track.

Parameters:
NoteTrack	*note
The	note	track	to	add.	The	Note	Tracks	provided	by	3ds	max	are	derived	from
Class	DefNoteTrack	(which	is	derived	from	NoteTrack).	See	that	class	for
the	methods	and	data	members	used	to	access	Note	Tracks.

Prototype:
void	DeleteNoteTrack(NoteTrack	*note);

Remarks:
Implemented	by	the	System.
This	method	deletes	the	specified	note	track.

Parameters:
NoteTrack	*note
The	note	track	to	delete.	The	Note	Tracks	provided	by	3ds	max	are	derived
from	Class	DefNoteTrack	(which	is	derived	from	NoteTrack).	See	that	class
for	the	methods	and	data	members	used	to	access	Note	Tracks.

Prototype:
BOOL	HasNoteTracks();

Remarks:
Implemented	by	the	System.
This	method	returns	TRUE	if	the	track	has	note	tracks;	otherwise	FALSE.

Prototype:
int	NumNoteTracks();

Remarks:
Implemented	by	the	System.
This	method	returns	the	number	of	note	tracks.

Prototype:
NoteTrack	*GetNoteTrack(int	i);

Remarks:
Implemented	by	the	System.
This	method	retrieves	the	'i-th'	note	track.

Parameters:
int	i
Specifies	the	note	track	to	retrieve.

Return	Value:
A	pointer	to	a	Note	Track.	The	Note	Tracks	provided	by	3ds	max	are	derived
from	Class	DefNoteTrack	(which	is	derived	from	NoteTrack).	See	that	class
for	the	methods	and	data	members	used	to	access	Note	Tracks.

Parameter	Block2	Methods
Prototype:
virtual	int	NumParamBlocks();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	returns	the	number	of	ParamBlock2s	in	this	instance.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	IParamBlock2*	GetParamBlock(int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Implemented	by	the	Plug-In.
This	method	return	'i-th'	ParamBlock2	in	this	instance	(or	NULL	if	not
available).

Parameters:
int	i
The	zero	based	index	of	the	ParamBlock2	to	return.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	IParamBlock2*	GetParamBlockByID(short	id);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	returns	a	pointer	to	the	ParamBlock2	as	specified	by	the	ID
passed	(or	NULL	if	not	available).

Parameters:
short	id
The	BlockID	of	the	ParamBlock2	instance.

Default	Implementation:
{	return	NULL;	}

Schematic	View	Methods
Prototype:
bool	SvSaveData(ISave	*isave,	USHORT	id);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System.
This	is	the	save	method	for	schematic	view	data.	For	classes	derived	from
ReferenceMaker,	there	is	no	need	to	call	these.	However,	if	you	have	a	class
derived	from	Animatable	and	it	appears	in	the	schematic	view	and	you	want

to	save	schematic	view	properties	for	the	object	(node	position,	selection	state,
etc.)	then	you	have	to	call	this	in	your	Save()	method.

Parameters:
ISave	*isave
An	interface	for	saving	data.	See	Class	ISave.
USHORT	id
The	Chunk	id	(choosen	by	the	developer).

Return	Value:
Returns	true	if	saved	okay;	otherwise	false.

Prototype:
bool	SvLoadData(ILoad	*iLoad);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System.
This	is	the	load	method	for	schematic	view	data.	For	classes	derived	from
ReferenceMaker,	there	is	no	need	to	call	these.	However,	if	you	have	a	class
derived	from	Animatable	and	it	appears	in	the	schematic	view	and	you	want
to	load	schematic	view	properties	for	the	object	(node	position,	selection	state,
etc.)	then	you	have	to	call	this	in	your	Load()	method.

Parameters:
ILoad	*iLoad
An	interface	for	loading	data.	See	Class	ILoad.

Return	Value:
Returns	true	if	loaded	okay;	otherwise	false.

Prototype:
virtual	SvGraphNodeReference
SvTraverseAnimGraph(IGraphObjectManager	*gom,	Animatable
*owner,	int	id,	DWORD	flags);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

This	method	traverses	the	graph	of	objects	in	the	3ds	max	scene,	adding
desired	objects	to	the	schematic	view.	Developers	can	specialize	this
behaviour	by	overriding	this	method	and	adding	whatever	objects	are
interesting	to	the	schematic	view.	Objects	are	added	to	the	schematic	view	by
calling	IGraphObjectManager::AddAnimatable(...).	Reference	lines
are	added	to	the	schematic	view	by	calling
IGraphObjectManager::AddReference(...).	Implementers	of	this
method	should	call	it	recursively	to	process	other	objects	in	the	scene.
See	Class	IGraphObjectManager.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
Animatable	*owner
The	owning	animatable.
int	id
This	is	usually	the	sub-anim	number	(but	can	actually	be	any	value	the
developer	chooses).
DWORD	flags
See	List	of	Schematic	View	AddAnimatable	Flags.

Return	Value:
A	SvGraphNodeReference	object.

Prototype:
SvGraphNodeReference
SvStdTraverseAnimGraph(IGraphObjectManager	*gom,
Animatable	*owner,	int	id);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	a	default	graph	traversal	function	which	can	be	called	from
SvTraverseAnimGraph(...)	above	to	handle	graph	traversal	in	simple
cases.	This	traversal	follows	the	sub-anim	and	child	references.	See	the	code
below.

Parameters:

IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
Animatable	*owner
The	owning	animatable.
int	id
This	is	usually	the	sub-anim	number	(but	can	actually	be	any	value	the
developer	chooses).
DWORD	flags
See	List	of	Schematic	View	AddAnimatable	Flags.

Return	Value:
A	SvGraphNodeReference	object.

Default	Implementation:
//	A	default	graph	traversal	function	which	can	be
//	called	from	SvTraverseAnimGraph(...)	to	handle
//	graph	traversal	in	simple	cases.	Follows	sub-anim
//	and	child	references...
SvGraphNodeReference
Animatable::SvStdTraverseAnimGraph(IGraphObjectManager
*gom,	Animatable	*owner,	int	id,	DWORD	flags)	{
	int	i;
	SvGraphNodeReference	nodeRef;
	SvGraphNodeReference	childNodeRef;
	gom->PushLevel(this);
	nodeRef	=	gom->AddAnimatable(this,	owner,	id,	flags);
	if	(nodeRef.stat	==	SVT_PROCEED)	{
		for	(i	=	0;	i	<	NumSubs();	i++)	{
			if	(SubAnim(i))	{
				childNodeRef	=	SubAnim(i)->SvTraverseAnimGraph(gom,	this,	i,
flags);
				if	(childNodeRef.stat	!=	SVT_DO_NOT_PROCEED)
					gom->AddReference(nodeRef.gNode,	childNodeRef.gNode,
REFTYPE_SUBANIM);
				}
			}

		}
	gom->PopLevel();
	return	nodeRef;
	}

Prototype:
virtual	bool	SvCanInitiateLink(IGraphObjectManager	*gom,
IGraphNode	*gNode);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	true	if	this	animatable	can	be	the	initiator	of	a	link	operation	in	the
schematic	view.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	this	node	in	the	schematic	view.

Prototype:
virtual	bool	SvCanConcludeLink(IGraphObjectManager	*gom,
IGraphNode	*gNode,	IGraphNode	*initiatingGNode);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	true	if	this	animatable	can	be	the	receiver	(parent)	of	a	link	operation
in	the	schematic	view.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	this	node	in	the	schematic	view.
IGraphNode	*initiatingGNode
Points	to	the	child	node	in	the	schematic	view.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	TSTR	SvGetName(IGraphObjectManager	*gom,
IGraphNode	*gNode,	bool	isBeingEdited);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	name	of	the	object	as	it	appears	in	the	schematic	view.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	this	node	in	the	schematic	view.
bool	isBeingEdited
true	if	the	item	is	being	edited;	false	if	not.

Default	Implementation:
{
Animatable	*owner;
int	subNum;
TSTR	name;	
owner	=	gNode->GetOwner();
subNum	=	gNode->GetID();
name	=	owner->SubAnimName(subNum);
return	name;
}

Prototype:
virtual	bool	SvCanSetName(IGraphObjectManager	*gom,
IGraphNode	*gNode);

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Return	true	to	permit	the	object's	name	to	be	edited	in	the	schematic	view.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	this	node	in	the	schematic	view.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	SvSetName(IGraphObjectManager	*gom,
IGraphNode	*gNode,	TSTR	&name);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Called	when	the	user	changes	the	name	of	the	object	in	the	schematic	view.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	this	node	in	the	schematic	view.
TSTR	&name
The	new	name	to	set.

Return	Value:
true	if	the	name	was	changed;	false	if	not.

Prototype:
virtual	bool	SvCanRemoveThis(IGraphObjectManager	*gom,
IGraphNode	*gNode);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Return	true	if	this	object	can	be	removed	in	the	schematic	view;	false	if	not.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	this	node	in	the	schematic	view.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	SvRemoveThis(IGraphObjectManager	*gom,
IGraphNode	*gNode);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	is	called	when	the	user	deletes	this	object	in	the	schematic	view.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	this	node	in	the	schematic	view.

Return	Value:
true	if	deleted;	false	if	not.

Prototype:
virtual	bool	SvIsHighlighted(IGraphObjectManager	*gom,
IGraphNode	*gNode);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	true	if	the	object	is	to	be	highlighted	in	the	schematic	view;	otherwise
false.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.

IGraphNode	*gNode
Points	to	this	node	in	the	schematic	view.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	COLORREF	SvHighlightColor(IGraphObjectManager
*gom,	IGraphNode	*gNode);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	highlight	color	for	this	node.	The	highlight	color	is	used	to	outline
nodes	in	the	schematic	view	when	SvIsHighlighted(...)	returns	true.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	this	node	in	the	schematic	view.

Return	Value:
See	COLORREF-DWORD	format.

Default	Implementation:
{	return	gom-
>SvGetUIColor(SV_UICLR_PLUGIN_HIGHLIGHT);	}

Prototype:
virtual	COLORREF	SvGetSwatchColor(IGraphObjectManager
*gom,	IGraphNode	*gNode);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	color	which	is	used	to	paint	the	triangular	color	swatch	that	appears
in	the	upper-right	hand	corner	of	the	node	in	the	schematic	view.	One	can
return	SV_NO_SWATCH	to	indicate	that	no	swatch	is	to	be	drawn.

Parameters:

IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	this	node	in	the	schematic	view.

Return	Value:
See	COLORREF-DWORD	format.

Default	Implementation:
{	return	SV_NO_SWATCH;	}

Prototype:
virtual	bool	SvIsInactive(IGraphObjectManager	*gom,
IGraphNode	*gNode);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	true	if	this	object	is	inactive;	false	is	active.	The	schematic	view	draws
inactive	nodes	in	a	grayed-out	state.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	this	node	in	the	schematic	view.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	SvLinkChild(IGraphObjectManager	*gom,
IGraphNode	*gNodeThis,	IGraphNode	*gNodeChild);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	called	to	link	this	object	to	the	gNodeChild	passed.

Parameters:

IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNodeThis
Points	to	this	node	in	the	schematic	view.
IGraphNode	*gNodeChild
Points	to	the	child	node	in	the	schematic	view.

Return	Value:
true	if	linked;	false	if	not.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	SvHandleDoubleClick(IGraphObjectManager	*gom,
IGraphNode	*gNode);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	called	when	this	node	is	double-clicked	in	the	schematic	view.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	the	node	in	the	schematic	view.

Return	Value:
true	is	handled;	false	if	not	interested	in	the	event.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	MultiSelectCallback*
SvGetMultiSelectCallback(IGraphObjectManager	*gom,
IGraphNode	*gNode);

Remarks:

This	method	is	called	before	a	multiple	select/deselect	operation	in	the
schematic	view.	Returns	a	callback	used	to	perform	the	(de)selection.	May
return	NULL	if	this	object	cannot	be	selected	in	some	principle	editor	outside
the	schematic	view.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	the	node	in	the	schematic	view.

Return	Value:
A	pointer	to	the	callback	object.	See	Class	MultiSelectCallback.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	bool	SvCanSelect(IGraphObjectManager	*gom,
IGraphNode	*gNode);

Remarks:
Returns	true	if	this	object	can	be	selected	in	some	editor	(viewport,	material
editor,	plug-in	specific	editor,	etc.).	Selection	is	actually	accomplished	by	via
the	SvGetMultiSelectCallback(...)	mechanism	described	above.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	the	node	in	the	schematic	view.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	SvEditProperties(IGraphObjectManager	*gom,
IGraphNode	*gNode);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	reserved	for	future	use.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	TSTR	SvGetTip(IGraphObjectManager	*gom,
IGraphNode	*gNode);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	string	to	be	displayed	in	the	tip	window	for	this	object	in	the
schematic	view.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	the	node	in	the	schematic	view.

Default	Implementation:
{	return	SvGetName(gom,	gNode,	false);	}

Prototype:
virtual	TSTR	SvGetRefTip(IGraphObjectManager	*gom,
IGraphNode	*gNode,	IGraphNode	*gNodeMaker);

Remarks:
Returns	a	string	to	be	displayed	in	the	tip	window	in	the	schematic	view	for	a
reference	from	"gNodeMaker"	to	this.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	the	node	in	the	schematic	view.

IGraphNode	*gNodeMaker
Points	to	the	'maker'	node	in	the	schematic	view.

Sample	Code:
{	return	gNodeMaker->GetAnim()->SvGetName(gom,
gNodeMaker,	false)	+	"	->	"	+	SvGetName(gom,	gNode,	false);	}

Prototype:
virtual	bool	SvCanDetach(IGraphObjectManager	*gom,
IGraphNode	*gNode);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	true	is	this	object	can	respond	to	the	SvDetach(...)	method;	false	if
not.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	the	node	in	the	schematic	view.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	SvDetach(IGraphObjectManager	*gom,	IGraphNode
*gNode);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	called	to	detach	this	object	from	its	owner.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	the	node	in	the	schematic	view.

Return	Value:
Returns	true	if	detached;	otherwise	false.

Default	Implementation:
{	return	false;	}

Prototype:
DWORD	SvGetRefIndex();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	for	internal	use	only.

Prototype:
void	SvSetRefIndex(DWORD	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	for	internal	use	only.

Prototype:
bool	SvDeleteRefIndex();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	for	internal	use	only.

Operators:

Prototype:
Animatable&	operator=(const	Animatable&	an)

Remarks:
Implemented	by	the	System.
Assignment	operator.

The	following	function	is	not	a	part	of	class	Animatable	but	is
available	for	use	with	note	tracks:

Prototype:
NoteTrack	*NewDefaultNoteTrack();

Remarks:
Implemented	by	the	System.
This	function	is	used	internally.	It	returns	a	new	default	note	track.

Custom	Attributes

Prototype:
ICustAttribContainer	*GetCustAttribContainer();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	a	pointer	to	the	custom	attributes	container	interface
class.
See	Class	ICustAttribContainer	for	more	information.
	

Prototype:
void	AllocCustAttribContainer();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allocates	space	for	a	custom	attributes	container.

Prototype:
void	DeleteCustAttribContainer();

Remarks:
This	method	deletes	space	used	by	a	custom	attributes	container.

Animatable
See	Also:	Class	Animatable.
This	is	the	base	class	for	almost	all	classes	related	to	animation.	Most	of	the
track	view-related	methods	are	implemented	here.	Plug-ins	implement	virtual
methods	of	Animatable	to	handle	things	like	the	editing	of	an	item's	parameters
in	the	command	panel,	and	the	access	to	an	item's	animatable	parameters.
NumSubs(),	SubAnim(i),	SubAnimName(i)
These	methods	access	the	plug-ins	animatable	parameters.
BeginEditParams(),	EndEditParams()
These	methods	are	called	by	the	system	when	the	plug-ins	parameters	are	to
be	edited	in	the	command	panel.
SuperClassID(),	ClassID()
These	methods	identify	the	type	of	plug-in	and	its	unique	class	ID.
DeleteThis()
This	method	is	used	to	delete	an	instance	of	a	plug-in	class.

BaseObject
See	Also:	Class	BaseObject.
This	is	the	base	class	for	objects.	Anything	with	a	representation	in	the	3ds	max
3D	viewports	is	derived	from	BaseObject	(including	Modifiers,	whose	gizmos
appear	in	the	viewports).
The	main	methods	of	this	class	are:
Display()
This	is	called	by	the	system	to	have	the	item	display	itself.
HitTest()
This	allows	the	system	to	determine	if	a	mouse	point	intersects	the	item.
Snap()
This	method	allows	the	item	to	participate	in	the	3ds	max	snapping	system.

There	are	several	methods	to	retrieve	the	bounding	box	for	the	object.
GetWorldBoundBox()
This	is	the	world	space	bounding	box.
GetLocalBoundBox()
This	is	the	object	space	bounding	box.

There	are	also	methods	for	sub-object	selection.	Both	procedural	objects	and
modifiers	can	participate	in	sub-object	selection.

Class	BaseObject
See	Also:	Class	ReferenceTarget,	Class	INode,	Class	ViewExp,	Class	Box3,
Class	IPoint2,	Class	Matrix3,	Structure	SnapInfo,	Class	Point3,	Class
CreateMouseCallBack,	Template	Class	Tab,	Class	Interface.
class	BaseObject	:	public	ReferenceTarget

Description:
This	is	the	base	class	for	objects	and	modifiers.	Anything	with	a	representation
in	the	3D	viewports	is	derived	from	BaseObject	(including	modifiers	and
controllers	whose	gizmos	appear	in	the	viewports).	The	methods	here	are	things
such	as	displaying	the	object	in	the	viewports,	checking	for	intersection	of	the
object	and	points	the	user	clicks	with	the	mouse,	snapping	to	the	object,	and
computing	various	bounding	boxes	for	the	object.	Also	there	are	methods	for
returning	the	name	of	the	object	to	appear	in	the	modifier	stack,	a	method	to	deal
with	creating	the	object	in	the	viewports	(if	appropriate),	and	named	selection	set
related	methods.	There	are	also	methods	that	allow	other	plug-ins	to	access	the
changeable	parameters	of	the	object.	Finally	there	are	several	method	that	deal
with	sub-object	selection,	sub-object	display,	sub-object	hit	testing,	and
moving/rotating/scaling	sub-object	components	of	the	object.

Method	Groups:
The	hyperlinks	below	jump	to	the	start	of	groups	of	related	methods	within	the
class:
Object	Name	and	Create	Callback
Object	Level	Display,	Hit	Test,	Snap,	and	Bounding	Box	Methods
Parameter	Block	Access
Named	Selection	Sets
Topology	Change
Sub-Object	Selection
Sub-Object	Cloning
Sub-Object	Display,	Hit	Testing,	and	Bound	Box	Methods
Sub-Object	Center	and	TM	Methods

Methods:

Object	Name	and	Create	Callback

Prototype:
virtual	TCHAR	*GetObjectName()

Remarks:
Implemented	by	the	Plug-In.
Returns	the	name	that	will	appear	in	the	history	browser	(modifier	stack).

Default	Implementation:
{	return	_T("Object");	}

Prototype:
virtual	CreateMouseCallBack*	GetCreateMouseCallBack()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	allows	the	system	to	retrieve	a	callback	object	used	in	creating	an
object	in	the	3D	viewports.	This	method	returns	a	pointer	to	an	instance	of	a
class	derived	from	CreateMouseCallBack.	This	class	has	a	method	proc()
which	is	where	the	programmer	defines	the	user/mouse	interaction	during	the
object	creation	phase.

Return	Value:
A	pointer	to	an	instance	of	a	class	derived	from	CreateMouseCallBack.

Named	Selection	Sets
A	modifier	that	supports	sub-object	selection	can	choose	to	support	named	sub-
object	selection	sets.	Methods	in	the	interface	passed	to	objects	allow	them	to
add	items	to	the	sub-object	selection	set	drop	down	list	in	the	3ds	max	toolbar.	A
modifier	that	wishes	to	support	this	capability	maintains	its	list	of	named	sub-
object	selections.	When	the	user	enters	sub-object	selection	mode	the	modifier
adds	its	named	selection	sets	into	the	drop	down	(using	Interface::
AppendSubObjectNamedSelSet()).	See	the	Advanced	Topics	section	on
Sub-Object	Selection	for	details.

Prototype:
virtual	BOOL	SupportsNamedSubSels();

Remarks:

Implemented	by	the	Plug-In.
Returns	TRUE	if	the	plug-in	supports	named	sub-object	selection	sets;
otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

The	following	three	methods	are	called	when	the	user	picks	items
from	the	drop	down	list.

Prototype:
virtual	void	ActivateSubSelSet(TSTR	&setName);

Remarks:
Implemented	by	the	Plug-In.
When	the	user	chooses	a	name	from	the	drop	down	list	this	method	is	called.
The	plug-in	should	respond	by	selecting	the	set	identified	by	the	name	passed.

Parameters:
TSTR	&setName
The	name	of	the	set	to	select.

Prototype:
virtual	void	NewSetFromCurSel(TSTR	&setName);

Remarks:
Implemented	by	the	Plug-In.
If	the	user	types	a	new	name	into	the	named	selection	set	drop	down	then	this
method	is	called.	The	plug-in	should	respond	by	creating	a	new	set	and	give	it
the	specified	name.

Parameters:
TSTR	&setName
The	name	for	the	selection	set.

Prototype:
virtual	void	RemoveSubSelSet(TSTR	&setName);

Remarks:
Implemented	by	the	Plug-In.
If	the	user	selects	a	set	from	the	drop	down	and	then	chooses	Remove	Named
Selections	from	the	Edit	menu	this	method	is	called.	The	plug-in	should
respond	by	removing	the	specified	selection	set.

Parameters:
TSTR	&setName
The	selection	set	to	remove.

Prototype:
virtual	void	SetupNamedSelDropDown();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
To	support	the	new	Edit	Named	Selections	dialog,	plug-ins	must	implement
this	method.
This	method	is	called	to	rebuild	the	named	selelction	set	drop	down	list.	This
is	usually	done	by	calling	Interface::ClearSubObjectNamedSelSets()
followed	by	calls	to	Interface::	AppendSubObjectNamedSelSet().

Default	Implementation:
{}

Prototype:
virtual	int	NumNamedSelSets();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
To	support	the	new	Edit	Named	Selections	dialog,	plug-ins	must	implement
this	method.
Returns	the	number	of	named	selection	sets.

Default	Implementation:
{return	0;}

Prototype:

virtual	TSTR	GetNamedSelSetName(int	i);
Remarks:
This	method	is	available	in	release	2.0	and	later	only.
To	support	the	new	Edit	Named	Selections	dialog,	plug-ins	must	implement
this	method.
Returns	the	name	of	the	'i-th'	named	selection	set.

Parameters:
int	i
The	index	of	the	selection	set	whose	name	is	returned.

Default	Implementation:
{return	_T("");}

Prototype:
virtual	void	SetNamedSelSetName(int	i,TSTR	&newName);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
To	support	the	new	Edit	Named	Selections	dialog,	plug-ins	must	implement
this	method.
This	methods	sets	the	name	of	the	selection	set	whose	index	is	passed	to	the
name	passed.
Note:	Developers	need	to	implement	Undo	/	Redo	for	modifications	to	their
named	selection	sets.

Parameters:
int	i
The	index	of	the	selection	set	whose	name	is	to	be	set.
TSTR	&newName
The	new	name	for	the	selection	set	the	plug-in	should	store.

Default	Implementation:
{}

Prototype:
virtual	void	NewSetByOperator(TSTR	&newName,Tab<int>

&sets,int	op);
Remarks:
This	method	is	available	in	release	2.0	and	later	only.
To	support	the	new	Edit	Named	Selections	dialog,	plug-ins	must	implement
this	method.
The	user	may	bring	up	the	Edit	Named	Selections	dialog	via	the	Edit	/	Edit
Named	Selection	...	command.	This	dialog	allows	the	user	to	create	new
selection	sets	using	'boolean'	operations	to	the	sets	including	'Combine',
'Subtract	(A-B)',	'Subtract	(B-A)'	and	'Intersection'.	This	method	is	called	on
the	plug-in	to	generate	a	new	selection	set	via	one	of	these	operations.
This	method	assumes	the	developer	will	append	a	new	seleciton	set	with	the
name	passed.	This	will	result	in	two	sets	with	identical	names.	Then	the
system	will	call	RemoveSubSelSet()	afterwards,	so	that	the	first	one	that	is
found	(the	old	one,	since	the	new	one	was	appended)	will	be	deleted.
Note:	Developers	need	to	implement	Undo	/	Redo	for	modifications	to	their
named	selection	sets.	See
\MAXSDK\SAMPLES\MODIFIERS\MESHSEL.CPP	for	an
example.

Parameters:
TSTR	&newName
The	new	name	for	the	selection	set	is	passed	here.
Tab<int>	&sets
A	table	of	the	selection	sets	to	operate	on.	There	are	sets.Count()	sets	in	the
table.
int	op
One	of	the	following	values:
NEWSET_MERGE
The	sets	should	be	merged.
NEWSET_INTERSECTION	
The	sets	should	be	intersected	--	that	is	the	items	common	to	both	sets
should	appear	in	the	new	set.
NEWSET_SUBTRACT
The	new	set	should	be	the	result	of	subtracting	the	1st	thru	nth	set	from	the

0th	set.
Default	Implementation:

{}

Object	Level	Display,	Hit	Test,	Snap,	and	Bounding	Box	Methods

Prototype:
virtual	int	Display(TimeValue	t,	INode*	inode,	ViewExp	*vpt,	int
flags)

Remarks:
Implemented	by	the	Plug-In.
This	is	called	by	the	system	to	have	the	item	display	itself	(perform	a	quick
render	in	viewport,	using	the	current	TM).	Note:	For	this	method	to	be	called
the	object's	validity	interval	must	be	invalid	at	the	specified	time	t.	If	the
interval	is	valid,	the	system	may	not	call	this	method	since	it	thinks	the	display
is	already	valid.

Parameters:
TimeValue	t
The	time	to	display	the	object.
INode*	inode
The	node	to	display.
ViewExp	*vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.
int	flags
See	List	of	Display	Flags.

Return	Value:
The	return	value	is	not	currently	used.

Default	Implementation:
{	return	0;	};

Prototype:
virtual	void	SetExtendedDisplay(int	flags);

Remarks:
This	method	is	used	for	storing	mode-dependent	display	attributes.
Before	an	object's	Display()	method	is	called,	the	appropriate	bits	of	the
extended	display	flag	variable	are	set	and	this	method	is	called.	After	that,	the
Display()	method	is	called.	If	the	object	must	display	itself	differently	based
on	the	settings	of	the	extended	display	bit	fields,	then	the	object	must	save	the
flags	passed	into	the	this	method.	Otherwise,	there	is	no	need	for	the	object	to
store	the	flags.

Parameters:
int	flags
The	flags	to	store.

Default	Implementation:
{}

Prototype:
virtual	int	HitTest(TimeValue	t,	INode*	inode,	int	type,	int
crossing,	int	flags,	IPoint2	*p,	ViewExp	*vpt);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	determine	if	the	specified	screen	point	intersects	the
item.	The	method	returns	nonzero	if	the	item	was	hit;	otherwise	0.

Parameters:
TimeValue	t
The	time	to	perform	the	hit	test.
INode*	inode
A	pointer	to	the	node	to	test.
int	type
The	type	of	hit	testing	to	perform.	See	Hit	Test	Types	for	details.
int	crossing
The	state	of	the	crossing	setting.	If	TRUE	crossing	selection	is	on.
int	flags
The	hit	test	flags.	See	Hit	Test	Flags	for	details.
IPoint2	*p

The	screen	point	to	test.
ViewExp	*vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.

Return	Value:
Nonzero	if	the	item	was	hit;	otherwise	0.

Default	Implementation:
{return	0;}

Prototype:
virtual	void	Snap(TimeValue	t,	INode*	inode,	SnapInfo	*snap,
IPoint2	*p,	ViewExp	*vpt);

Remarks:
Implemented	by	the	Plug-In.
Checks	the	point	passed	for	a	snap	and	updates	the	SnapInfo	structure.
Note:	The	new	snapping	system	introduced	in	release	2.0	causes	this	method
to	no	longer	be	called.	Developers	wanting	to	find	snap	points	on	an	Editable
Mesh	object	should	see	the	method	XmeshSnap::Snap()	in
\MAXSDK\SAMPLES\SNAPS\XMESH\XMESH.CPP.

Parameters:
TimeValue	t
The	time	to	check.
INode*	inode
The	node	to	check.
SnapInfo	*snap
The	snap	info	structure	to	update.
IPoint2	*p
The	screen	point	to	check.
ViewExp	*vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.

Prototype:
virtual	void	GetWorldBoundBox(TimeValue	t,	INode	*	inode,
ViewExp*	vp,	Box3&	box)

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	world	space	bounding	box	for	Objects	(see	below	for
the	Sub-object	gizmo	or	Modifiers	gizmo	version).	The	bounding	box	returned
by	this	method	does	not	need	to	be	precise.	It	should	however	be	calculated
rapidly.	The	object	can	handle	this	by	transforming	the	8	points	of	its	local
bounding	box	into	world	space	and	take	the	minimums	and	maximums	of	the
result.	Although	this	isn't	necessarily	the	tightest	bounding	box	of	the	objects
points	in	world	space,	it	is	close	enough.

Parameters:
TimeValue	t
The	time	to	compute	the	bounding	box.
INode*	inode
The	node	to	calculate	the	bounding	box	for.
ViewExp*	vp
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.
Box3&	box
The	bounding	box	is	returned	through	box.

Prototype:
virtual	void	GetLocalBoundBox(TimeValue	t,	INode*	inode,
ViewExp*	vp,	Box3&	box)

Remarks:
Implemented	by	the	Plug-In.
This	is	the	object	space	bounding	box,	the	box	in	the	object's	local
coordinates.	The	system	expects	that	requesting	the	object	space	bounding	box
will	be	fast.

Parameters:
TimeValue	t

The	time	to	retrieve	the	bounding	box.
INode*	inode
The	node	to	calculate	the	bounding	box	for.
ViewExp*	vp
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.
Box3&	box
The	bounding	box	is	returned	through	box.

Topology	Methods

Prototype:
virtual	BOOL	OKToChangeTopology(TSTR	&modName)

Remarks:
Implemented	by	the	System.
This	method	is	called	to	see	if	any	modifiers	down	in	the	pipeline	depend	on
topology.	It	sends	the	message
REFMSG_IS_OK_TO_CHANGE_TOPOLOGY	to	see	if	any
modifiers	or	objects	down	the	pipeline	depend	on	topology.

Parameters:
TSTR	&modName
This	parameter	is	set	to	the	dependent	modifier's	name	if	there	is	an	item	that
depends	on	topology.

Return	Value:
Returns	TRUE	if	it	is	okay	to	change	the	topology;	FALSE	if	it	is	not	okay	to
change	the	topology.

Prototype:
virtual	BOOL	ChangeTopology()

Remarks:
Implemented	by	the	Plug-In.
This	method	asks	the	question	of	an	object	or	modifier	"Do	you	change
topology"?	An	object	or	modifier	returns	TRUE	if	it	is	capable	of	changing

topology	when	its	parameters	are	being	edited;	otherwise	FALSE.
When	an	item	is	selected	for	editing,	and	there	is	a	modifier	in	the	pipeline
that	depends	on	topology,	the	system	calls	this	method	to	see	if	it	may
potentially	change	the	topology.	If	this	method	returns	TRUE	the	system	will
put	up	a	warning	message	indicating	that	a	modifier	exists	in	the	stack	that
depends	on	topology.

Default	Implementation:
{return	TRUE;}

Prototype:
virtual	void	ForceNotify(Interval&	i)

Remarks:
This	method	is	no	longer	used.

Parameter	Block	Access

Prototype:
virtual	IParamArray	*GetParamBlock();

Remarks:
Implemented	by	the	Plug-In.
An	object	or	modifier	should	implement	this	method	if	it	wishes	to	make	its
parameter	block	available	for	other	plug-ins	to	access	it.	The	system	itself
doesn't	actually	call	this	method.	This	method	is	optional.

Return	Value:
A	pointer	to	the	item's	parameter	block.	See	Class	IParamArray.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	int	GetParamBlockIndex(int	id);

Remarks:
Implemented	by	the	Plug-In.

If	a	plug-in	makes	its	parameter	block	available	(using	GetParamBlock())
then	it	will	need	to	provide	#defines	for	indices	into	the	parameter	block.
These	defines	should	not	be	directly	used	with	the	parameter	block	but	instead
converted	by	this	function	that	the	plug-in	implements.	This	way	if	a
parameter	moves	around	in	a	future	version	of	the	plug-in	the	#define	can	be
remapped.	A	return	value	of	-1	indicates	an	invalid	parameter	id.

Parameters:
int	id
The	parameter	block	id.	See:	List	of	Parameter	Block	IDs.

Return	Value:
The	parameter	block	index	or	-1	if	it	is	invalid.

Default	Implementation:
{return	-1;}

Sub-Object	Selection
Affine	transformation	methods

Prototype:
virtual	void	Move(TimeValue	t,	Matrix3&	partm,	Matrix3&
tmAxis,	Point3&	val,	BOOL	localOrigin=FALSE)

Remarks:
Implemented	by	the	Plug-In.
When	this	method	is	called	the	plug-in	should	respond	by	moving	its	selected
sub-object	components.

Parameters:
TimeValue	t
The	time	of	the	transformation.
Matrix3&	partm
The	'parent'	transformation	matrix.	This	matrix	represents	a	transformation
that	would	take	points	in	the	modifier's	space	and	convert	them	into	world
space	points.	This	is	constructed	as	the	node's	transformation	matrix	times	the
inverse	of	the	ModContext's	transformation	matrix.	The	node	whose
transformation	is	used	is	the	node	the	user	clicked	on	in	the	scene	-	modifiers
can	be	instanced	so	there	could	be	more	than	one	node.

Matrix3&	tmAxis
The	matrix	that	represents	the	axis	system.	This	is	the	space	in	which	the
transformation	is	taking	place.
Point3&	val
This	value	is	a	vector	with	X,	Y,	and	Z	representing	the	movement	along	each
axis.
BOOL	localOrigin=FALSE
When	TRUE	the	transformation	is	occurring	about	the	sub-object's	local
origin.

Prototype:
virtual	void	Rotate(TimeValue	t,	Matrix3&	partm,	Matrix3&
tmAxis,	Quat&	val,	BOOL	localOrigin=FALSE)

Remarks:
Implemented	by	the	Plug-In.
When	this	method	is	called	the	plug-in	should	respond	by	rotating	its	selected
sub-object	components.

Parameters:
TimeValue	t
The	time	of	the	transformation.
Matrix3&	partm
The	'parent'	transformation	matrix.	This	matrix	represents	a	transformation
that	would	take	points	in	the	modifier's	space	and	convert	them	into	world
space	points.	This	is	constructed	as	the	node's	transformation	matrix	times	the
inverse	of	the	ModContext's	transformation	matrix.	The	node	whose
transformation	is	used	is	the	node	the	user	clicked	on	in	the	scene	-	modifiers
can	be	instanced	so	there	could	be	more	than	one	node.
Matrix3&	tmAxis
The	matrix	that	represents	the	axis	system.	This	is	the	space	in	which	the
transformation	is	taking	place.
Quat&	val
The	amount	to	rotate	the	selected	components.
BOOL	localOrigin=FALSE
When	TRUE	the	transformation	is	occurring	about	the	sub-object's	local

origin.	Note:	This	information	may	be	passed	onto	a	transform	controller	(if
there	is	one)	so	they	may	avoid	generating	0	valued	position	keys	for	rotation
and	scales.	For	example	if	the	user	is	rotating	an	item	about	anything	other
than	its	local	origin	then	it	will	have	to	translate	in	addition	to	rotating	to
achieve	the	result.	If	a	user	creates	an	object,	turns	on	the	animate	button,	and
rotates	the	object	about	the	world	origin,	and	then	plays	back	the	animation,
the	object	does	not	do	what	the	was	done	interactively.	The	object	ends	up	in
the	same	position,	but	it	does	so	by	both	moving	and	rotating.	Therefore	both
a	position	and	a	rotation	key	are	created.	If	the	user	performs	a	rotation	about
the	local	origin	however	there	is	no	need	to	create	a	position	key	since	the
object	didn't	move	(it	only	rotated).	So	a	transform	controller	can	use	this
information	to	avoid	generating	0	valued	position	keys	for	rotation	and	scales.

Prototype:
virtual	void	Scale(TimeValue	t,	Matrix3&	partm,	Matrix3&
tmAxis,	Point3&	val,	BOOL	localOrigin=FALSE)

Remarks:
Implemented	by	the	Plug-In.
When	this	method	is	called	the	plug-in	should	respond	by	scaling	its	selected
sub-object	components.

Parameters:
TimeValue	t
The	time	of	the	transformation.
Matrix3&	partm
The	'parent'	transformation	matrix.	This	matrix	represents	a	transformation
that	would	take	points	in	the	modifier's	space	and	convert	them	into	world
space	points.	This	is	constructed	as	the	node's	transformation	matrix	times	the
inverse	of	the	ModContext's	transformation	matrix.	The	node	whose
transformation	is	used	is	the	node	the	user	clicked	on	in	the	scene	-	modifiers
can	be	instanced	so	there	could	be	more	than	one	node.
Matrix3&	tmAxis
The	matrix	that	represents	the	axis	system.	This	is	the	space	in	which	the
transformation	is	taking	place.
Point3&	val
This	value	is	a	vector	with	X,	Y,	and	Z	representing	the	scale	along	X,	Y,	and

Z	respectively.
BOOL	localOrigin=FALSE
When	TRUE	the	transformation	is	occurring	about	the	sub-object's	local
origin.	See	the	note	above	in	the	Rotate	method.

The	following	methods	may	be	used	to	receive	notification	about	the	starting
and	ending	phases	of	transforming	the	item	when	in	sub-object	selection.

Prototype:
virtual	void	TransformStart(TimeValue	t);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	before	the	first	Move(),	Rotate()	or	Scale()	call	and
before	a	hold	is	in	effect.

Parameters:
TimeValue	t
The	current	time	when	this	method	is	called.

Prototype:
virtual	void	TransformHoldingStart(TimeValue	t);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	before	the	first	Move(),	Rotate()	or	Scale()	call	and
after	a	hold	is	in	effect.

Parameters:
TimeValue	t
The	current	time	when	this	method	is	called.

Prototype:
virtual	void	TransformHoldingFinish(TimeValue	t);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	after	the	user	has	completed	the	Move(),	Rotate()	or

Scale()	operation	and	before	the	undo	object	has	been	accepted.
Parameters:
TimeValue	t
The	current	time	when	this	method	is	called.

Prototype:
virtual	void	TransformFinish(TimeValue	t);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	after	the	user	has	completed	the	Move(),	Rotate()	or
Scale()	operation	and	the	undo	object	has	been	accepted.

Parameters:
TimeValue	t
The	current	time	when	this	method	is	called.

Prototype:
virtual	void	TransformCancel(TimeValue	t);

Remarks:
This	method	is	called	when	the	transform	operation	is	canceled	by	a	right-
click	and	the	undo	has	been	canceled.

Parameters:
TimeValue	t
The	current	time	when	this	method	is	called.

Sub-Object	Display,	Hit	Test,	and	Bounding	Box	Methods
The	following	methods	are	for	sub-object	selection.	If	the	derived	class	is	NOT	a
modifier,	the	modContext	pointer	passed	to	some	of	these	methods	will	be
NULL.

Prototype:
virtual	int	Display(TimeValue	t,	INode*	inode,	ViewExp	*vpt,	int
flags,	ModContext*	mc)

Remarks:
Implemented	by	the	Plug-In.
When	this	method	is	called	the	plug-in	should	respond	by	performing	a	quick
render	of	the	modifier	gizmo	in	viewport	using	the	current	TM.
Note	for	Modifiers:	For	this	method	to	be	called	properly,	one	must	send	two
reference	messages	using	NotifyDependents.
In	BeginEditParams	send:

NotifyDependents(Interval(t,t),	PART_ALL,
REFMSG_MOD_DISPLAY_ON);

In	EndEditParams	send:
NotifyDependents(Interval(t,t),	PART_ALL,
REFMSG_MOD_DISPLAY_OFF);

Parameters:
TimeValue	t
The	time	to	display	the	item.
INode*	inode
The	node	to	render.
ViewExp	*vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.
int	flags
See	List	of	Display	Flags.
ModContext*	mc
A	pointer	to	the	modifiers	ModContext.

Return	Value:
Nonzero	if	the	item	was	displayed;	otherwise	0.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	int	HitTest(TimeValue	t,	INode*	inode,	int	type,	int
crossing,	int	flags,	IPoint2	*p,	ViewExp	*vpt,	ModContext*	mc)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	in	modifier	gizmo	hit	testing.	It	is	called	to	determine	if
the	specified	screen	point	intersects	the	gizmo.	The	method	returns	nonzero	if
the	item	was	hit;	otherwise	0.

Parameters:
TimeValue	t
The	time	to	perform	the	hit	test.
INode*	inode
A	pointer	to	the	node	to	test.
int	type
The	type	of	hit	testing	to	perform.	See	Hit	Test	Types	for	details.
int	crossing
The	state	of	the	crossing	setting.	If	TRUE	crossing	selection	is	on.
int	flags
The	hit	test	flags.	See	Hit	Test	Flags	for	details.
IPoint2	*p
The	screen	point	to	test.
ViewExp	*vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.
ModContext*	mc
A	pointer	to	the	modifiers	ModContext.

Return	Value:
Nonzero	if	the	item	was	hit;	otherwise	0.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	void	GetWorldBoundBox(TimeValue	t,	INode*	inode,
ViewExp	*vpt,	Box3&	box,	ModContext	*mc)

Remarks:
Implemented	by	the	Plug-In.

This	method	computes	the	world	space	bounding	box	of	the	modifier	gizmo
(or	any	object	that	when	in	sub-object	mode	has	a	gizmo).

Parameters:
TimeValue	t
The	time	to	compute	the	bounding	box.
INode*	inode
The	node	to	calculate	the	bounding	box	for.
ViewExp	*vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.
Box3&	box
The	bounding	box	is	returned	through	box.
ModContext	*mc
A	pointer	to	the	modifiers	ModContext.
	

Prototype:
virtual	BOOL	HasUVW();

Remarks:
Implemented	by	the	Plug-In.
This	method	is	available	in	release	2.0	and	later	only.
It	is	called	to	find	out	if	the	object	is	has	UVW	coordinates.	This	method
returns	TRUE	if	the	object	has	UVW	coordinates;	otherwise	FALSE.	In	3ds
max	2.0	and	later	there	is	code	in	the	renderer	that	will	automatically	turn	on
the	UVW	coordinates	of	the	base	object	if	UV's	are	missing	(and	needed).	The
base	object	has	to	implement	two	simple	methods	to	make	this	work:
HasUVW()	and	SetGenUVW().
Developers	are	encouraged	to	put	these	methods	in	their	objects:	it	makes
using	the	program	easier	for	the	user.	If	they	are	not	implemented,	it	doesn't
cause	any	real	harm:	it	will	just	operate	as	before	and	put	up	the	missing
UVW's	message.
Here	is	how	the	procedural	sphere	implements	these	methods:
BOOL	SphereObject::GetGenUVW()	{

BOOL	genUVs;
Interval	v;
pblock->GetValue(PB_GENUVS,	0,	genUVs,	v);
return	genUVs;
}
void	SphereObject::SetGenUVW(BOOL	sw)	{
if	(sw==GetGenUVW())	return;
pblock->SetValue(PB_GENUVS,0,	sw);				
}

Important	Note:	The	pblock->SetValue()	will	cause	a	call	to
NotifyDependents(FOREVER,	PART_TEXMAP,
REFMSG_CHANGE),	which	will	invalidate	the	UVW	cache.	It	is
essential	that	this	call	be	made,	so	if	the	'generate	UVW'	boolean	is	not
handled	by	a	parameter	block,	then	NotifyDependents()	needs	to	be	called
explicitly.
Also	Note:	For	"modifiable	objects"	that	pass	up	the	pipeline	getting	modified,
such	as	TriObject,	EditTriObject,	etc.,	which	cannot	generate	their	own
UVWs,	but	can	carry	them	in	their	data	structures,	only	this	HasUVW()
method	needs	to	be	implemented.	For	example,	here	is	the	implementation	for
TriObject:
BOOL	TriObject::HasUVW()	{	return	mesh.tvFace?1:0;	}

Default	Implementation:
{	return	1;	}

Prototype:
virtual	BOOL	HasUVW(int	mapChannel);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
It	is	called	to	find	out	if	the	object	is	has	UVW	coordinates	for	the	specified
mapping	channel.	This	method	returns	TRUE	if	the	object	has	UVW
coordinates;	otherwise	FALSE.	See	the	method	HasUVW()	above	for	more
details.

Parameters:
int	mapChannel
See	List	of	Mapping	Channels	Values.

Default	Implementation:
{	return	(mapChannel==1)	?	HasUVW()	:	FALSE;	}
	

Prototype:
virtual	void	SetGenUVW(BOOL	sw);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	to	change	the	state	of	its	Generate	UVW	boolean.	If	the
state	changes,	the	object	must	send	a	REFMSG_CHANGE	up	the	pipeline
by	calling	NotifyDependents().	This	applies	to	map	channel	1.

Parameters:
BOOL	sw
The	new	state	for	the	generate	UVW	flag.

Default	Implementation:
{}

Prototype:
virtual	void	SetGenUVW(int	mapChannel,	BOOL	sw);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	called	to	change	the	state	of	its	Generate	UVW	boolean	for	the
specified	mapping	channel.	If	the	state	changes,	the	object	must	send	a
REFMSG_CHANGE	up	the	pipeline	by	calling	NotifyDependents().

Parameters:
int	mapChannel
The	mapping	channel	index.	See	List	of	Mapping	Channel	Index	Values.
BOOL	sw

The	new	state	for	the	generate	UVW	flag.
Default	Implementation:
{	if	(mapChannel==1)	SetGenUVW(sw);	}

Prototype:
virtual	void	ShowEndResultChanged(BOOL	showEndResult);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	notifies	the	BaseObject	that	the	end	result	display	has	been
switched	(the	"Show	End	Result"	button	has	been	toggled).	Sometimes	this	is
needed	for	display	changes.
This	method	is	implemented	in	Edit	Mesh,	which	uses	it	as	shown	below:
void	EditMeshMod::ShowEndResultChanged(BOOL
showEndResult)	{

NotifyDependents(FOREVER,	PART_DISPLAY,
REFMSG_CHANGE);
}
This	allows	the	Edit	Mesh	modifier	to	update	itself	in	repsonse	to	a	user	click
of	the	"Show	End	Result"	button	in	the	modifier	panel.

Parameters:
BOOL	showEndResult
TRUE	if	Show	End	Result	is	on;	FALSE	if	off.

Default	Implementation:
{	}

Sub-Object	Cloning

Prototype:
virtual	void	CloneSelSubComponents(TimeValue	t)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	make	a	copy	of	the	selected	sub-object	components	of

the	item.	If	this	is	called	on	an	object,	the	selection	level	of	the	object	is	used
to	determine	which	type	of	sub-objects	are	cloned.	For	instance	in	a	Mesh,	the
selection	level	determines	if	selected	verticies,	edges	or	faces	are	cloned.	If
this	is	called	on	a	Modifier	then	the	selection	level	of	the	modifier	is	used.
Modifiers	call	Interface::GetModContexts()	to	get	a	list	of	ModContexts,
one	for	each	object	the	modifier	is	applied	to.	Then	the	selected	sub-objects
are	cloned	for	each	object	in	the	list.

Parameters:
TimeValue	t
The	time	at	which	to	clone	the	selected	sub-object	components.

Prototype:
virtual	void	AcceptCloneSelSubComponents(TimeValue	t)

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	when	the	user	mouses	up	after	shift-cloning	a	sub-object
selection.

Parameters:
TimeValue	t
The	time	at	which	the	clone	of	the	selected	components	is	being	done.

Default	Implementation:
{}

Sub-Object	Selection

Prototype:
virtual	void	SelectSubComponent(HitRecord	*hitRec,	BOOL
selected,	BOOL	all,	BOOL	invert=FALSE)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	change	the	selection	state	of	the	component	identified
by	hitRec.

Parameters:

HitRecord	*hitRec
Identifies	the	component	whose	selected	state	should	be	set.	See	Class
HitRecord	.
BOOL	selected
TRUE	if	the	item	should	be	selected;	FALSE	if	the	item	should	be	de-selected.
BOOL	all
TRUE	if	all	components	in	the	HitRecord	chain	should	be	selected;	FALSE	if
only	the	top-level	HitRecord	should	be	selected.	(A	HitRecord	contains	a
Next()	pointer;	typically	you	want	to	do	whatever	you're	doing	to	all	the
Next()'s	until	Next()	returns	NULL).
BOOL	invert=FALSE
This	is	set	to	TRUE	when	all	is	also	set	to	TRUE	and	the	user	is	holding	down
the	Shift	key	while	region	selecting	in	select	mode.	This	indicates	the	items	hit
in	the	region	should	have	their	selection	state	inverted

Prototype:
virtual	void	ClearSelection(int	selLevel);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	clear	the	selection	for	the	given	sub-object	level.	All
sub-object	elements	of	this	type	should	be	deselected.	This	will	be	called	when
the	user	chooses	Select	None	from	the	3ds	max	Edit	menu.

Parameters:
int	selLevel
Specifies	the	selection	level	to	clear.

Default	Implementation:
{}

Prototype:
virtual	void	SelectAll(int	selLevel);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	select	every	element	of	the	given	sub-object	level.

This	will	be	called	when	the	user	chooses	Select	All	from	the	3ds	max	Edit
menu.

Parameters:
int	selLevel
Specifies	the	selection	level	to	select.

Default	Implementation:
{}

Prototype:
virtual	void	InvertSelection(int	selLevel);

Remarks:
This	method	is	called	to	invert	the	specified	sub-object	level.	If	the	element	is
selected	it	should	be	deselected.	If	it's	deselected	it	should	be	selected.	This
will	be	called	when	the	user	chooses	Select	Invert	from	the	3ds	max	Edit
menu.

Parameters:
int	selLevel
Specifies	the	selection	level	to	invert.

Default	Implementation:
{}

Prototype:
virtual	int	SubObjectIndex(HitRecord	*hitRec);

Remarks:
Implemented	by	the	Plug-In.
Returns	the	index	of	the	sub-object	element	identified	by	the	HitRecord
hitRec.	See	Class	HitRecord.	The	sub-object	index	identifies	a	sub-object
component.	The	relationship	between	the	index	and	the	component	is
established	by	the	modifier.	For	example	an	edit	modifier	may	allow	the	user
to	select	a	group	of	faces	and	these	groups	of	faces	may	be	identified	as	group
0,	group	1,	group	2,	etc.	Given	a	hit	record	that	identifies	a	face,	the	edit
modifier's	implementation	of	this	method	would	return	the	group	index	that
the	face	belonged	to.

Default	Implementation:
{return	0;}

Prototype:
virtual	void	ActivateSubobjSel(int	level,	XFormModes&	modes)

Remarks:
Implemented	by	the	Plug-In.
When	the	user	changes	the	selection	of	the	sub-object	drop	down,	this	method
is	called	to	notify	the	plug-in.	This	method	should	provide	instances	of	a	class
derived	from	CommandMode	to	support	move,	rotate,	non-uniform	scale,
uniform	scale,	and	squash	modes.	These	modes	replace	their	object	mode
counterparts	however	the	user	still	uses	the	move/rotate/scale	tool	buttons	in
the	toolbar	to	activate	them.	If	a	certain	level	of	sub-object	selection	does	not
support	one	or	more	of	the	modes	NULL	may	be	passed.	If	NULL	is	specified
the	corresponding	toolbar	button	will	be	grayed	out.

Parameters:
int	level
The	sub-object	selection	level	the	command	modes	should	be	set	to	support.	A
level	of	0	indicates	object	level	selection.	If	level	is	greater	than	or	equal	to	1
the	index	refers	to	the	types	registered	by	the	object	in	the	order	they	appeared
in	the	list	when	registered	by	Interface::RegisterSubObjectTypes().	See
Class	Interface.
XFormModes&	modes
The	command	modes	to	support

Sample	Code:
void	SimpleMod::ActivateSubobjSel(int	level,	XFormModes&	modes)
	{
	switch	(level)	{
		case	1:	//	Modifier	box
			modes	=	XFormModes(moveMode,rotMode,nuscaleMode,
				uscaleMode,squashMode,NULL);
			break;
		case	2:	//	Modifier	Center
			modes	=

XFormModes(moveMode,NULL,NULL,NULL,NULL,NULL);
			break;
		}
	NotifyDependents(FOREVER,PART_DISPLAY,REFMSG_CHANGE);
	}

See	Also:	Class	XFormModes.

Sub-Object	Centers	and	TMs

Prototype:
virtual	void	GetSubObjectCenters(SubObjAxisCallback
*cb,TimeValue	t,INode	*node,	ModContext	*mc)

Remarks:
Implemented	by	the	Plug-In.
When	the	user	is	in	a	sub-object	selection	level,	the	system	needs	to	get	the
reference	coordinate	system	definition	from	the	current	modifier	being	edited
so	that	it	can	display	the	axis.	This	method	specifies	the	position	of	the	center.
The	plug-in	enumerates	its	centers	and	calls	the	callback	cb	once	for	each.

Parameters:
SubObjAxisCallback	*cb
The	callback	object	whose	methods	may	be	called.	See	Class
SubObjAxisCallback.
TimeValue	t
The	time	to	enumerate	the	centers.
INode	*node
A	pointer	to	the	node.
ModContext	*mc
A	pointer	to	the	ModContext.

Prototype:
virtual	void	GetSubObjectTMs(SubObjAxisCallback	*cb,
TimeValue	t,INode	*node,	ModContext	*mc)

Remarks:

Implemented	by	the	Plug-In.
When	the	user	is	in	a	sub-object	selection	level,	the	system	needs	to	get	the
reference	coordinate	system	definition	from	the	current	modifier	being	edited
so	that	it	can	display	the	axis.	This	method	returns	the	axis	system	of	the
reference	coordinate	system.	The	plug-in	enumerates	its	TMs	and	calls	the
callback	cb	once	for	each.	See	Sub-Object	Coordinate	Systems.

Parameters:
SubObjAxisCallback	*cb
The	callback	object	whose	methods	may	be	called.
TimeValue	t
The	time	to	enumerate	the	TMs.
INode	*node
A	pointer	to	the	node.
ModContext	*mc
A	pointer	to	the	ModContext.

Prototype:
virtual	void	NotifyPreCollapse(INode	*node,	IDerivedObject
*derObj,	int	index);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	called	before	a	modifier	or	object	is	collapsed.	See	also	Class
NotifyCollapseEnumProc.

Parameters:
INode	*node
Points	to	the	node	for	the	object	being	collapsed.
IDerivedObject	*derObj
If	the	object	associated	with	node	above	is	a	Modifier	this	points	to	the
derived	object.If	it's	an	object	then	this	is	NULL.
int	index
If	the	object	associated	with	node	above	is	a	Modifier	this	is	the	index	of	this
modifier	in	the	DerivedObject..	If	it's	an	object	then	this	is	0.

Default	Implementation:

{}

Prototype:
virtual	void	NotifyPostCollapse(INode	*node,	Object	*obj,
IDerivedObject	*derObj,	int	index);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	called	after	a	modifier	or	object	is	collapsed.	See	also	Class
NotifyCollapseEnumProc.

Parameters:
INode	*node
Points	to	the	node	for	the	object	being	collapsed.
IDerivedObject	*derObj
If	the	object	associated	with	node	above	is	a	Modifier	this	points	to	the
derived	object.	If	it's	an	object	then	this	is	NULL.
int	index
If	the	object	associated	with	node	above	is	a	Modifier	this	is	the	index	of	this
modifier	in	the	DerivedObject.	If	it's	an	object	then	this	is	0.

Default	Implementation:
{}

Prototype:
virtual	int	NumSubObjTypes();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	number	of	sub-object	types	supported	by	the	object	or	modifier.	In
R4	objects	or	modifier	must	override	this	method	and	GetSubObjType()
below.

Default	Implementation:
{	return	0;}

Prototype:

virtual	ISubObjType	*GetSubObjType(int	i);
Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	sub-object	type	for	the	sub-object	whose	index	is
passed.
If	the	parameter	i	passed	is	-1	the	system	requests	an	ISubObjType	for	the
current	SubObjectLevel	that	flows	up	the	modifier	stack.	If	the	subobject
selection	of	the	modifier	or	base	object	does	not	affect	the	sub-object	selection
that	flows	up	the	stack	NULL	must	be	returned.	See	the	sample	code	in
\MAXSDK\SAMPLES\MODIFIERS\MESHSEL.CPP.

Parameters:
int	i
The	zero	based	index	of	the	sub-object	type	to	get.	See	the	remarks	above.

Return	Value:
The	sub-object	type.	See	Class	ISubObjType.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	int	GetSubObjectLevel();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	an	integer	which	indicates	the	current	sub-object	level	of
the	modifier	or	base	object.

Return	Value:
A	value	of	0	indicates	object	level.	A	value	of	1	through
NumSubObjTypes()	are	the	sub-object	levels	in	the	same	order	as	they	are
returned	by	GetSubObjType(int	i)	(with	an	offset	of	1	of	course).

CameraObject
See	Also:	Class	CameraObject.
This	is	the	class	from	which	plug-in	cameras	are	derived.	Camera	objects
implement	methods	that	return	the	properties	of	the	camera.	Some	are	these
methods	are:
EvalCameraState()
This	returns	a	data	structure	containing	the	FOV	and	distance	to	the	target.
These	can	also	be	accessed	by:
Get/SetFOV()
Provides	access	to	the	field	of	view	of	the	camera.
Get/SetTDist()
Provides	access	to	the	target	distance	of	the	camera.

ConstObject
See	Also:	Class	ConstObject.
Plug-In	construction	objects	such	as	the	Grid	Helper	Object	are	subclassed	off
ConstObject.

Control
See	Also:	Class	Control.
Controllers	are	the	objects	in	3ds	max	that	control	animation.	Controllers	come
in	different	types	based	on	the	type	of	data	they	control.	For	example,	transform
controllers	control	the	4x3	matrices	used	to	define	the	position	of	nodes	in	the
scene	while	float	controllers	control	simple	floating	point	values.
Control	is	the	class	from	which	you	may	derived	controller	objects.	Shown
below	are	several	of	the	methods	of	Control:
GetValue()
Retrieves	the	value	of	the	controller	at	the	specified	time,	and	updates	the
validity	interval	passed	in	to	reflect	the	interval	of	the	controller.
SetValue()
Sets	the	value	of	the	controller	at	the	specified	time.
IsLeaf()
The	controller	should	return	TRUE	if	it	has	no	sub	controllers.	For	example,	a
PRS	controller	is	not	a	leaf	controller	(because	it	has	sub-controllers	for
Position,	Rotation	and	Scale),	but	a	simple	keyframed	float	controller	is	a	leaf
controller.
Copy()
When	a	controller	is	assigned	to	a	track	in	the	track	view	the	new	controller	is
plugged	into	the	parameter	and	then	this	method	is	called	on	the	new
controller	with	a	pointer	to	the	old	controller	passed	in.	The	new	controller	can
then	attempt	to	copy	any	data	that	it	can	from	the	old	controller.	At	the	very
least	it	should	initialize	itself	to	the	value	of	the	old	controller	at	frame	0.

GeomObject
See	Also:	Class	GeomObject.
GeomObjects	are	objects	that	have	geometry	and	are	renderable.	The	procedural
sphere,	cylinder	and	box	are	examples	of	GeomObjects.	In	addition	to	the
regular	object	methods,	objects	of	this	class	implement	these	methods:
IsInstanceDependent()
If	an	object	creates	different	meshes	depending	on	the	particular	instance
(view-dependent)	it	should	return	nonzero;	otherwise	0.
GetRenderMesh();
This	method	provides	a	mesh	representation	of	the	object	for	use	by	the
renderer.
GetRenderPatchMesh()
This	method	provides	a	patch	mesh	representation	of	the	object	for	use	by	the
renderer.	If	this	method	returns	NULL,	then	GetRenderMesh()	will	be
called.

HelperObject
See	Also:	Class	HelperObject.
This	is	the	class	from	which	plug-in	helper	objects	are	derived.	These	are	objects
that	are	used	as	aids	in	the	scene	such	as	points,	tape	measurers,	dummy	objects,
etc.

INode
See	Also:	Class	INode.
The	INode	class	is	the	interface	to	nodes	in	the	scene.	It	provides	methods	to
access	various	properties	of	a	node	such	as	its	name,	wire-frame	color,
transformation	matrix,	etc.

Class	INode
See	Also:	Class	ReferenceTarget,	Class	FPMixinInterface,	Class	Interface,	Class
INodeTransformed,	Class	Material,	Class	Matrix3,	Class	Quat,	Class	AngAxis,
Class	Control,	Class	Object,	Class	INodeTab.
class	INode	:	public	ReferenceTarget,	public	FPMixinInterface

Description:
The	INode	class	is	the	interface	to	nodes	in	the	scene.	It	provides	methods	to
access	various	parts	of	a	node	such	as	its	name,	transformation	matrices,	parents
and	children,	display	status,	etc.	All	methods	of	this	class	are	implemented	by
the	system.

Method	Groups:
These	hyperlinks	take	you	to	the	start	of	groups	of	related	methods	within	the
class.
Pipeline	Evaluation
Node	Naming
Parent-Child/Hierarchy	/	Groups
Target	/	Node	Selection
Object	Reference
Display	Attributes
Rendering	Attribues
Vertex	Color	Attributes
Access	to	Node	Transformation	Matrices
Object	Offset	Adjustment
Access	to	Controllers
Access	to	Visibility	Properties
Access	to	Render	Data
Materials
Put	Nodes	in	Foreground	Plane
Active	Grid	Node
Temporary	Storage	of	Data	with	Nodes
User	Properties
Geometry/Graphics	(G)	Buffer	Access
INodeTransformed	methods
IK	Related	Methods

Deleting	the	Node
WSMDerivedObject	Access
XRef	Access
Bone	Methods

Methods:
Prototype:
virtual	const	ObjectState&	EvalWorldState(TimeValue
time,BOOL	evalHidden=TRUE)=0;

Remarks:
This	method	should	be	called	when	a	developer	needs	to	work	with	an	object
that	is	the	result	of	the	node's	pipeline.	This	is	the	object	that	the	appears	in	the
scene.
This	may	not	be	an	object	that	anyone	has	a	reference	to	-	it	may	just	be	an
object	that	has	flowed	down	the	pipeline.	For	example,	if	there	is	a	Sphere	in
the	scene	that	has	a	Bend	and	Taper	applied,	EvalWorldState()	would
return	an	ObjectState	containing	a	TriObject.	This	is	the	result	of	the	sphere
turning	into	a	TriObject	and	being	bent	and	tapered	(just	as	it	appeared	in	the
scene).
If	a	developer	needs	to	access	the	object	that	the	node	in	the	scene	references,
then	the	method	INode::GetObjectRef()	should	be	used	instead.	See
Object	Reference	Methods

Parameters:
TimeValue	time
Specifies	the	time	to	retrieve	the	object	state.
BOOL	evalHidden=TRUE
If	FALSE	and	the	node	is	hidden,	the	pipeline	will	not	actually	be	evaluated
(however	the	TM	will).

Return	Value:
The	ObjectState	that	is	the	result	of	the	pipeline.	See	Class	ObjectState.

Sample	Code:
//	Get	the	object	from	the	node
ObjectState	os	=	node->EvalWorldState(ip->GetTime());

if	(os.obj->SuperClassID()==GEOMOBJECT_CLASS_ID)	{
	obj	=	(GeomObject*)os.obj;
	...
}
The	following	code	shows	how	a	TriObject	can	be	retrieved	from	a	node.
Note	on	the	code	that	if	you	call	ConvertToType()	on	an	object	and	it
returns	a	pointer	other	than	itself,	you	are	responsible	for	deleting	that	object.
//	Retrieve	the	TriObject	from	the	node
int	deleteIt;
TriObject	*triObject	=	GetTriObjectFromNode(ip->GetSelNode(0),

deleteIt);
//	Use	the	TriObject	if	available
if	(!triObject)	return;
//	...
//	Delete	it	when	done...
if	(deleteIt)	triObject->DeleteMe();

	
//	Return	a	pointer	to	a	TriObject	given	an	INode	or	return	NULL
//	if	the	node	cannot	be	converted	to	a	TriObject
TriObject	*Utility::GetTriObjectFromNode(INode	*node,	int
&deleteIt)	{
	deleteIt	=	FALSE;
	Object	*obj	=	node->EvalWorldState(ip->GetTime()).obj;
	if	(obj->CanConvertToType(Class_ID(TRIOBJ_CLASS_ID,	0)))	{
		TriObject	*tri	=	(TriObject	*)	obj->ConvertToType(ip->GetTime(),
			Class_ID(TRIOBJ_CLASS_ID,	0));
		//	Note	that	the	TriObject	should	only	be	deleted
		//	if	the	pointer	to	it	is	not	equal	to	the	object
		//	pointer	that	called	ConvertToType()
		if	(obj	!=	tri)	deleteIt	=	TRUE;
		return	tri;
	}
	else	{
		return	NULL;
	}
}

Node	Naming

Prototype:
virtual	TCHAR*	GetName()=0;

Remarks:
Returns	the	name	of	the	node.

Prototype:
virtual	void	SetName(TCHAR	*s)=0;

Remarks:
Sets	the	name	of	the	node.

Parameters:
TCHAR	*s
The	name	of	the	node.

Prototype:
virtual	ULONG	GetHandle();

Remarks:
This	method	returns	the	unique	node	handle.	Each	node	is	assigned	a	unique
node	handle.

Return	Value:
{	return	0;	}

Transformation	Matrices.
For	additional	information	regarding	transformation	matrices,	see	the	Advanced
Topics	section	on	Node	and	Object	Offset	Transformations.

Prototype:
virtual	Matrix3	GetNodeTM(TimeValue	t,	Interval*
valid=NULL)=0;

Remarks:
This	method	returns	the	world	space	transformation	matrix	of	the	node	at	the

specified	time.	This	matrix	contains	its	parents	transformation.	This	matrix
does	not	include	the	object-offset	transformation,	or	any	world	space	modifier
(Space	Warp)	affects.
If	you	select	a	single	node	and	change	the	reference	coordinate	system	to
'Local',	you'll	see	the	node's	axes	tripod	displayed.	This	tripod	graphically
depicts	the	nodes	transformation	matrix.
The	Node	TM	may	be	considered	the	world	space	transformation	as	far	as
kinematics	is	concerned.	This	is	almost	the	complete	world	space
transformation	as	far	as	the	geometry	of	the	object	is	concerned,	except	it	does
not	include	the	object-offset	transformation.	See	the	method
INode::GetObjectTM()	for	the	complete	world	space	transformation	of	the
geometry	of	the	object.
The	Node	TM	is	inherited.	When	a	node	asks	to	retrieve	its	parents	TM,	it	gets
its	parents	Node	TM.	It	does	not	get	its	parents	Object	TM.	The	object-offset
transformation	is	not	inherited.

Parameters:
TimeValue	t
Specifies	the	time	to	retrieve	the	TM.
Interval*	valid=NULL
Points	to	storage	for	the	validity	interval	of	the	transformation	matrix.	The
interval,	if	passed,	is	intersected	with	the	validity	interval	of	the	NodeTM.

Return	Value:
The	node's	world	space	transform	matrix.

Prototype:
virtual	void	SetNodeTM(TimeValue	t,	Matrix3&	tm)=0;

Remarks:
This	methods	sets	the	node's	world	space	transformation	matrix	(without	the
object-offset	transformation	or	world	space	modifier	affect).	This	method	will
perform	the	appropriate	operation	to	the	node's	transform	controller.	For
example,	if	the	node	has	a	parent,	this	method	will	take	the	parent's
transformation	into	consideration	when	it	calls	SetValue()	on	the	controller.
This	method	can	be	used	to	set	the	world	space	position	of	the	node.

Parameters:

TimeValue	t
Specifies	the	time	to	set	the	transformation	matrix.
Matrix3&	tm
The	node's	world	space	transformation	matrix.

Prototype:
virtual	void	Move(TimeValue	t,	const	Matrix3&	tmAxis,	const
Point3&	val,	BOOL	localOrigin=FALSE,	BOOL
affectKids=TRUE,	int	pivMode=PIV_NONE,	BOOL
ignoreLocks=FALSE)=0;

Remarks:
This	method	may	be	called	to	move	the	node	about	the	specified	axis	system.
Either	the	pivot	point,	or	the	geometry	of	the	object,	or	both	the	pivot	and	the
object	may	be	transformed.	Optionally,	any	children	of	the	node	can	be
counter	transformed	so	they	don't	move.

Parameters:
TimeValue	t
The	time	to	transform	the	node.
const	Matrix3&	tmAxis
The	axis	system	about	which	the	node	is	transformed.
const	Point3&	val
The	amount	of	the	transformation	relative	to	the	axis	system.
BOOL	localOrigin=FALSE
If	TRUE	the	transformation	takes	place	about	the	nodes	local	origin;	otherwise
about	the	world	origin.
BOOL	affectKids=TRUE
If	TRUE	any	child	nodes	are	transformed	along	with	the	parent	node.	If
FALSE	any	children	of	the	node	are	counter	transformed	so	they	don't	move.
int	pivMode=PIV_NONE
One	of	the	following	values:
PIV_NONE
Move	both	the	pivot	point	and	the	geometry	of	the	object.
PIV_PIVOT_ONLY
Move	the	pivot	point	only.

PIV_OBJECT_ONLY
Move	the	geometry	of	the	object	only.

BOOL	ignoreLocks=FALSE
If	TRUE	any	transform	locks	associated	with	the	node	are	ignored;	otherwise
the	locks	govern	the	application	of	the	transformation.

Prototype:
virtual	void	Rotate(TimeValue	t,	const	Matrix3&	tmAxis,	const
AngAxis&	val,	BOOL	localOrigin=FALSE,	BOOL
affectKids=TRUE,	int	pivMode=PIV_NONE,	BOOL
ignoreLocks=FALSE)=0;

Remarks:
This	method	may	be	called	to	rotate	the	node	about	the	specified	axis	system.
Either	the	pivot	point,	or	the	geometry	of	the	object,	or	both	the	pivot	and	the
object	may	be	transformed.	Optionally,	any	children	of	the	node	can	be
counter	transformed	so	they	don't	rotate.

Parameters:
TimeValue	t
The	time	to	transform	the	node.
const	Matrix3&	tmAxis
The	axis	system	about	which	the	node	is	transformed.
const	AngAxis&	val
The	amount	of	the	transformation.
BOOL	localOrigin=FALSE
If	TRUE	the	transformation	takes	place	about	the	nodes	local	origin;	otherwise
about	the	world	origin.
BOOL	affectKids=TRUE
If	TRUE	any	child	nodes	are	transformed	along	with	the	parent	node.	If
FALSE	any	children	of	the	node	are	counter	transformed	so	they	don't	rotate.
int	pivMode=PIV_NONE
One	of	the	following	values:
PIV_NONE
Move	both	the	pivot	point	and	the	geometry	of	the	object.

PIV_PIVOT_ONLY
Move	the	pivot	point	only.
PIV_OBJECT_ONLY
Move	the	geometry	of	the	object	only.

BOOL	ignoreLocks=FALSE
If	TRUE	any	transform	locks	associated	with	the	node	are	ignored;	otherwise
the	locks	govern	the	application	of	the	transformation.

Prototype:
virtual	void	Rotate(TimeValue	t,	const	Matrix3&	tmAxis,	const
Quat&	val,	BOOL	localOrigin=FALSE,	BOOL	affectKids=TRUE,
int	pivMode=PIV_NONE,	BOOL	ignoreLocks=FALSE)=0;

Remarks:
This	method	may	be	called	to	rotate	the	node	about	the	specified	axis	system.
Either	the	pivot	point,	or	the	geometry	of	the	object,	or	both	the	pivot	and	the
object	may	be	transformed.	Optionally,	any	children	of	the	node	can	be
counter	transformed	so	they	don't	rotate.

Parameters:
TimeValue	t
The	time	to	transform	the	node.
const	Matrix3&	tmAxis
The	axis	system	about	which	the	node	is	transformed.
const	Quat&	val
The	amount	of	the	transformation.
BOOL	localOrigin=FALSE
If	TRUE	the	transformation	takes	place	about	the	nodes	local	origin;	otherwise
about	the	world	origin.
BOOL	affectKids=TRUE
If	TRUE	any	child	nodes	are	transformed	along	with	the	parent	node.	If
FALSE	any	children	of	the	node	are	counter	transformed	so	they	don't	rotate.
int	pivMode=PIV_NONE
One	of	the	following	values:
PIV_NONE

Move	both	the	pivot	point	and	the	geometry	of	the	object.
PIV_PIVOT_ONLY
Move	the	pivot	point	only.
PIV_OBJECT_ONLY
Move	the	geometry	of	the	object	only.

BOOL	ignoreLocks=FALSE
If	TRUE	any	transform	locks	associated	with	the	node	are	ignored;	otherwise
the	locks	govern	the	application	of	the	transformation.

Prototype:
virtual	void	Scale(TimeValue	t,	const	Matrix3&	tmAxis,	const
Point3&	val,	BOOL	localOrigin=FALSE,	BOOL
affectKids=TRUE,	int	pivMode=PIV_NONE,	BOOL
ignoreLocks=FALSE)=0;

Remarks:
This	method	may	be	called	to	scale	the	node	about	the	specified	axis	system.
Either	the	pivot	point,	or	the	geometry	of	the	object,	or	both	the	pivot	and	the
object	may	be	transformed.	Optionally,	any	children	of	the	node	can	be
counter	transformed	so	they	don't	scale.

Parameters:
TimeValue	t
The	time	to	transform	the	node.
const	Matrix3&	tmAxis
The	axis	system	about	which	the	node	is	transformed.
const	Point3&	val
The	amount	of	the	transformation.
BOOL	localOrigin=FALSE
If	TRUE	the	transformation	takes	place	about	the	nodes	local	origin;	otherwise
about	the	world	origin.
BOOL	affectKids=TRUE
If	TRUE	any	child	nodes	are	transformed	along	with	the	parent	node.	If
FALSE	any	children	of	the	node	are	counter	transformed	so	they	don't	scale.
int	pivMode=PIV_NONE

One	of	the	following	values:
PIV_NONE
Move	both	the	pivot	point	and	the	geometry	of	the	object.
PIV_PIVOT_ONLY
Move	the	pivot	point	only.
PIV_OBJECT_ONLY
Move	the	geometry	of	the	object	only.

BOOL	ignoreLocks=FALSE
If	TRUE	any	transform	locks	associated	with	the	node	are	ignored;	otherwise
the	locks	govern	the	application	of	the	transformation.

Prototype:
virtual	Matrix3	GetObjectTM(TimeValue	time,	Interval*
valid=NULL)=0;

Remarks:
This	method	returns	the	transformation	matrix	the	object	needs	to	be
multiplied	by	to	transform	it	into	world	space.
At	times,	this	matrix	may	be	the	identity.	For	example,	a	deformable	object
that	has	a	Space	Warp	applied	to	it	would	already	have	been	translated	into
world	space	by	the	space	warp.	Since	the	object	is	already	in	world	space	the
matrix	needed	to	get	it	there	is	the	identity.
This	matrix	would	not	be	the	identity	for	a	deformable	object	with	only	object
space	modifiers	applied.	This	object	would	indeed	need	to	be	transformed.	In
this	case	the	TM	returned	would	include	the	NodeTM	plus	the	object-offset
transformation.	So,	GetObjectTM()	is	dependent	on	the	context	when	it	is
called	--	it	will	either	be	equal	to	GetObjectTMAfterWSM()	or
GetObjectTMBeforeWSM().
Developers	should	use	GetObjectTMBeforeWSM()	if	what	is	wanted	is
the	object	TM	and	not	the	identity	matrix.
For	non-deformable	objects	this	matrix	may	include	the	NodeTM,	the	object-
offset	transformation	and	the	world	space	modifier	affect.
This	matrix	could	be	used,	for	example,	if	you	have	a	TriObject	and	wanted	to
get	the	world	space	coordinate	of	one	of	its	vertices.	You	could	do	this	by
taking	the	vertex	coordinate	in	object	space	and	multiplying	it	by	the	matrix

returned	from	this	method.
This	matrix	is	also	often	used	inside	an	object's	Display()	and	HitTest()
methods.	When	an	object	goes	to	draw	itself	(in	its	BaseObject::Display()
method)	it	is	given	a	node	pointer.	What	the	object	normally	does	is	use	the
node	pointer	and	calls	GetObjectTM().	It	then	takes	the	matrix	returned	and
sets	it	into	the	graphics	window	(using
GraphicsWindow::setTransform()).	In	this	way,	when	the	object	starts
drawing	points	in	object	space,	they	will	be	transformed	with	this	matrix.	This
will	transform	the	points	into	world	space	when	they	are	drawn.
The	Object	TM	is	not	inherited.

Parameters:
TimeValue	time
Specifies	the	time	to	retrieve	the	object's	transform	matrix.
Interval*	valid=NULL
Points	to	storage	for	the	validity	interval	of	the	transformation	matrix.

Return	Value:
The	object's	transformation	matrix.

Prototype:
virtual	Matrix3	GetObjTMBeforeWSM(TimeValue	time,
Interval*	valid=NULL)=0;

Remarks:
This	method	explicitly	retrieves	the	pipeline	ObjectState	TM	before	any	world
space	modifiers	have	been	applied.	This	includes	the	node's	TM	and	the
object-offset	transformation	(but	not	any	world	space	modifier	affect).	See	the
section	on	the	Geometry	Pipeline	for	additional	details	on	this	method.

Parameters:
TimeValue	time
Specifies	the	time	to	retrieve	the	transform	matrix.
Interval*	valid=NULL
Points	to	storage	for	the	validity	interval	of	the	transformation	matrix.

Prototype:

virtual	Matrix3	GetObjTMAfterWSM(TimeValue	time,	Interval*
valid=NULL)=0;

Remarks:
This	method	explicitly	retrieves	the	pipeline	ObjectState	TM	after	any	world
space	modifiers	have	been	applied.	This	includes	the	Node	TM,	the	object-
offset	transformation,	and	any	world	space	modifier	affects.	In	some	cases	a
world	space	modifier	can	actually	deform	the	TM	itself	if	it	cannot	deform	the
object.	Examples	of	this	are	cameras	and	lights.	These	objects	do	not	have	any
'object'	to	deform,	so	the	space	warp	deforms	the	TM	instead.	See	the	section
on	the	Geometry	Pipeline	for	additional	details	on	this	method.
Note:	Beware	of	calling	this	method	from	inside	a	function	that	performs	a
mesh	traversal	as	doing	so	can	invalidate	the	mesh.

Parameters:
TimeValue	time
Specifies	the	time	to	retrieve	the	object's	transform	matrix.
Interval*	valid=NULL
Points	to	storage	for	the	validity	interval	of	the	transformation	matrix.

Prototype:
virtual	Matrix3	GetParentTM(TimeValue	t)=0;

Remarks:
Retrieves	the	parent	node's	transformation	matrix.	This	is	simply	for
convenience.	It	is	the	equivalent	to	the	following	code:

node->GetParentNode()->GetNodeTM();
Parameters:
TimeValue	t
Specifies	the	time	to	retrieve	the	transformation	matrix.

Return	Value:
The	parent	node's	transformation	matrix.

Prototype:
virtual	int	GetTargetTM(TimeValue	t,	Matrix3&	m)=0;

Remarks:

Retrieves	the	target	node's	transformation	matrix.	This	is	simply	for
convenience.	It	is	the	equivalent	to	the	following	code:

node->GetTarget()->GetNodeTM();
Parameters:
TimeValue	t
Specifies	the	time	to	retrieve	the	transformation	matrix.
Matrix3&	m
The	result	is	stored	here.

Return	Value:
Nonzero	if	the	target	matrix	was	retrieved	(the	node	had	a	target);	otherwise	0.

Prototype:
virtual	int	IsTarget()=0;

Remarks:
Determines	if	the	node	is	a	target	node	of	a	lookat	controller.

Return	Value:
Nonzero	if	the	node	is	a	target;	otherwise	0.

Prototype:
virtual	void	SetIsTarget(BOOL	b)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	controls	the	property	of	the	node	indicating	if	it's	a	target	or	not.
Calling	this	is	necessary	when	hooking	up	targets	as	the	target	node	must	have
its	IsTarget()	property	set.

Parameters:
BOOL	b
TRUE	for	set;	FALSE	for	off.

Prototype:
virtual	INode*	GetTarget()=0;

Remarks:

Retrieves	this	node's	target	node	if	any.	Returns	NULL	if	this	node	has	no
target.

Prototype:
virtual	INode*	GetLookatNode()=0;

Remarks:
If	this	node	is	a	target	of	a	lookat	controller,	this	method	finds	the	node	that
looks	at	it.

Return	Value:
The	node	that	looks	at	this	node	or	NULL	if	the	node	is	not	a	target.

Prototype:
virtual	BOOL	GetTransformLock(int	type,	int	axis)=0;

Remarks:
Retrieves	the	specified	transform	lock	state	of	the	node.	When	the	user	is
doing	interactive	Moving	/	Rotating	/	Scaling	these	locks	simply	remove	one
of	the	components.

Parameters:
int	type
See	Transform	Lock	Types.
int	axis
See	Transform	Lock	Axis.

Return	Value:
TRUE	if	the	lock	is	set;	otherwise	FALSE.

Prototype:
virtual	void	SetTransformLock(int	type,	int	axis,	BOOL	onOff)=0;

Remarks:
Sets	the	specified	transform	lock	state	of	the	node.	When	the	user	is	doing
interactive	Moving	/	Rotating	/	Scaling	these	locks	simply	remove	one	of	the
components.

Parameters:

int	type
See	Transform	Lock	Types.
int	axis
See	Transform	Lock	Axis.
BOOL	onOff
TRUE	sets	the	lock	on;	FALSE	sets	the	lock	off.

The	following	methods	invalidate	the	node's	caches

Prototype:
virtual	void	InvalidateTreeTM()=0;

Remarks:
This	method	will	notify	the	node's	subtree	that	the	transformation	matrix	has
changed.	NotifyDependents()	is	called	with	the	message
REFMSG_CHANGE.

Prototype:
virtual	void	InvalidateTM()=0;

Remarks:
This	method	will	invalidate	the	node's	transformation	matrix	cache.

Prototype:
virtual	void	InvalidateWS()=0;

Remarks:
This	method	will	invalidate	the	node's	world	space	cache.

Parent-Child	Hierarchy	manipulation	/	Groups

Prototype:
virtual	INode*	GetParentNode()=0;

Remarks:
Retrieves	the	parent	node	of	this	node.	If	the	node	is	not	linked,	its	parent	is
the	root	node.	This	may	be	checked	using	INode::IsRootNode().

Prototype:
virtual	int	IsRootNode()=0;

Remarks:
Determines	if	this	node	is	the	root	node	(does	not	have	a	parent	node).

Return	Value:
Nonzero	if	the	node	is	the	root	node;	otherwise	0.

Prototype:
virtual	void	AttachChild(INode*	node,	int	keepPos=1)=0;

Remarks:
Makes	the	specified	node	a	child	of	this	node.

Parameters:
INode*	node
Specifies	the	node	to	attach.
int	keepPos=1
If	nonzero,	the	position	of	the	child	node	is	retained	(not	moved);	otherwise	it
may	be	moved.

Prototype:
virtual	void	Detach(TimeValue	t,	int	keepPos=1)=0;

Remarks:
Detaches	this	node	from	its	parent.

Parameters:
TimeValue	t
Specifies	the	time	at	which	to	detach	the	node.
int	keepPos=1
If	nonzero,	the	position	of	the	detached	node	is	retained	(not	moved);
otherwise	it	may	be	moved.

Prototype:
virtual	int	NumberOfChildren()=0;

Remarks:

Returns	the	number	of	children	of	this	node.

Prototype:
virtual	INode*	GetChildNode(int	i)=0;

Remarks:
Retrieves	the	'i-th'	child	node	of	this	node.

Parameters:
int	i
Specifies	the	child	node	to	retrieve.

Prototype:
virtual	BOOL	IsGroupMember()=0;

Remarks:
Returns	TRUE	if	this	node	is	a	member	of	a	group;	otherwise	FALSE.

Prototype:
virtual	BOOL	IsGroupHead()=0;

Remarks:
Returns	TRUE	if	this	node	is	the	head	of	a	group;	otherwise	FALSE.

Prototype:
virtual	BOOL	IsOpenGroupMember();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	this	node	is	a	member	of	an	open	group;	otherwise	FALSE.

Default	Implementation:
{return	0;	}

Prototype:
virtual	BOOL	IsOpenGroupHead();

Remarks:

This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	this	node	is	the	head	of	a	group	and	that	group	is	open;
otherwise	FALSE.

Default	Implementation:
{return	0;	}

Prototype:
virtual	void	SetGroupMember(BOOL	b);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
A	node	is	marked	as	a	group	member	or	not.	This	method	sets	this	state.

Parameters:
BOOL	b
TRUE	to	mark	the	node	as	a	group	member;	FALSE	to	indicate	it's	not	in	a
group.

Prototype:
virtual	void	SetGroupHead(BOOL	b);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
A	node	is	marked	as	the	group	head	or	not.	This	method	sets	this	state.

Parameters:
BOOL	b
TRUE	to	mark	the	node	as	a	group	head;	FALSE	to	indicate	it's	not	a	group
head.

Prototype:
virtual	void	SetGroupMemberOpen(BOOL	b);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
A	node	is	marked	as	an	open	group	member	or	not.	This	method	sets	this	state.

Parameters:

BOOL	b
TRUE	to	mark	the	node	as	a	open;	FALSE	to	indicate	it's	not	open.

Prototype:
virtual	void	SetGroupHeadOpen(BOOL	b);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
A	node	is	marked	as	being	the	head	of	a	group	and	being	open	or	not.	This
method	sets	this	state.

Parameters:
BOOL	b
TRUE	to	mark	the	node	as	an	open	group	head;	FALSE	to	indicate	it's	not	an
open	group	head.

Target	/	Node	Selection
Prototype:
virtual	void	SetTargetNodePair(int	onOff);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	for	hit-testing	and	selecting	node	and	target	as	a	single
unit.
In	3ds	max	2.0	and	later	you	can	click	on	the	line	connecting,	say,	a	camera	to
its	target	and	drag	that	around	in	the	viewports.	Doing	so	moves	both	the
camera	and	its	target	as	a	locked	pair.
To	accomplish	this,	the	camera,	light,	and	tape	measure	objects	(those	with
two	nodes	linked	by	a	Look	At	controller)	check	for	a	hit	on	the	object-target
line.	If	they	get	there	(but	not	at	the	object	or	target	itself),	then	they	call	this
method	passing	TRUE.	Then,	when	a	hit	is	registered,	3ds	max	checks	the
value	of	this	variable	(by	calling	GetTargetNodePair()),	and,	if	it	is	TRUE,
selects	both	the	target	and	the	node.	If	it's	FALSE,	then	either	the	target	or	the
node,	but	not	both,	gets	selected,	as	with	3ds	max	1.x.
For	sample	code	see	\MAXSDK\SAMPLES\OBJECTS\LIGHT.CPP
or	TAPEHELP.CPP.

Parameters:
int	onOff
TRUE	for	on;	FALSE	for	off.

Default	Implementation:
{}

Prototype:
virtual	int	GetTargetNodePair();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	target/node	pair	setting	stored	by	3ds	max.	See
SetTargetNodePair()	above	for	details.

Default	Implementation:
{	return	0;	}

Display	attributes

Prototype:
virtual	void	Hide(BOOL	onOff)=0;

Remarks:
Controls	the	hidden	state	of	the	node	in	the	scene.

Parameters:
BOOL	onOff
Pass	TRUE	to	hide	the	node	in	the	scene;	pass	FALSE	to	make	the	node
visible.

Prototype:
virtual	int	IsHidden(DWORD	hFlags=0)=0;

Remarks:
Determines	if	the	node	is	hidden	in	the	scene.

Parameters:
DWORD	hFlags=0

If	you	pass	0,	you	will	get	the	hidden	state	of	the	node.	If	you	pass	one	or
more	of	the	flags	shown	below,	the	method	checks	the	Class_ID	of	the	node	to
see	if	it's	hidden	by	the	specified	category.	You	may	specify	one	or	more	of	the
following	values:
HIDE_OBJECTS
HIDE_SHAPES
HIDE_LIGHTS
HIDE_CAMERAS
HIDE_HELPERS
HIDE_WSMS
HIDE_SYSTEMS
HIDE_PARTICLES
HIDE_ALL
HIDE_NONE

See	the	method	Interface::GetHideByCategoryFlags()	for	how	you	can
retrieve	the	currently	set	values	to	use	as	the	flags	for	this	method.

Return	Value:
Nonzero	if	the	node	is	hidden;	otherwise	0.

Prototype:
virtual	int	IsNodeHidden()=0;

Remarks:
Returns	nonzero	if	the	node	is	hidden	in	any	way;	otherwise	returns	zero.

Prototype:
virtual	int	IsFrozen()=0;

Remarks:
Determines	if	the	node	is	frozen	in	the	scene.

Return	Value:
Nonzero	if	the	node	is	frozen;	otherwise	0.

Prototype:
virtual	void	Freeze(BOOL	onOff)=	0;

Remarks:
Controls	the	frozen	state	of	the	node	in	the	scene.	A	frozen	node	is	visible	but
cannot	be	picked.

Parameters:
BOOL	onOff
TRUE	if	the	node	should	be	frozen;	FALSE	if	the	node	should	not	be	frozen.

Prototype:
virtual	void	SetShowFrozenWithMtl(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	NODE_SHOW_FRZN_WITH_MTL
flag	in	the	node	so	that	the	node	will	be	displayed	in	a	frozen	state	with
materials	applied.

Parameters:
BOOL	onOff
TRUE	to	set	the	flag;	FALSE	to	disable.

Prototype:
virtual	int	ShowFrozenWithMtl()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	state	of	the
NODE_SHOW_FRZN_WITH_MTL	flag	in	the	node	and	whether	it	is
enabled	or	disabled.

Prototype:
virtual	void	XRayMtl(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
There	is	a	new	X-Ray	Material	display	property	which	allows	you	to	quickly
make	objects	transparent.	This	method	toggles	it	on	or	off	for	this	node.

Parameters:
BOOL	onOff
TRUE	to	use;	FALSE	to	not	use.

Prototype:
virtual	int	HasXRayMtl()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	nonzero	if	the	X-Ray	Material	display	property	is	on	for	the	node;
otherwise	zero.

Prototype:
virtual	int	GetBoxMode()=0;

Remarks:
Determines	if	the	node	is	displayed	in	box	mode	in	the	scene.

Return	Value:
Nonzero	if	the	node	is	displayed	in	box	mode;	otherwise	0.

Prototype:
virtual	void	BoxMode(BOOL	onOff)=0;

Remarks:
Controls	if	the	node	is	displayed	with	a	bounding	box	representation	in	the
scene.

Parameters:
BOOL	onOff
TRUE	to	display	the	node	as	its	bounding	box;	FALSE	for	normal	display.

Prototype:
virtual	void	VertTicks(int	onOff)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	enable	or	disable	the	display	of	vertex	ticks	on	the

node.
Parameters:
int	onOff
TRUE	to	enable;	FALSE	to	disable.

Prototype:
virtual	int	GetVertTicks()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	state	of	the	vertex	ticks	display.	TRUE	if	enabled;
FALSE	if	disabled.

Prototype:
virtual	int	GetAllEdges()=0;

Remarks:
Determines	if	all	the	edges	of	the	node	are	displayed.

Return	Value:
Nonzero	if	all	the	edges	(including	"hidden"	ones)	are	displayed;	otherwise	0.

Prototype:
virtual	void	AllEdges(BOOL	onOff)=0;

Remarks:
Controls	the	display	of	all	the	edges	of	the	node	(including	"hidden"	ones).

Parameters:
BOOL	onOff
TRUE	to	display	all	the	node's	edges;	FALSE	to	not	display	"hidden"	edges.

Prototype:
virtual	int	GetBackCull()=0;

Remarks:
Determines	if	back-face	culling	is	being	used	to	draw	the	node.

Return	Value:
Nonzero	if	back-face	culling	is	used;	otherwise	0.

Prototype:
virtual	void	BackCull(BOOL	onOff)=0;

Remarks:
Controls	if	the	node	is	displayed	using	back-face	culling	(faces	whose	surface
normals	are	pointing	away	from	the	observer	are	not	drawn).

Parameters:
BOOL	onOff
TRUE	if	the	node	should	be	drawn	using	back-face	culling;	FALSE	if	all	faces
should	be	drawn.

Prototype:
virtual	int	GetTrajectoryON();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	nonzero	if	the	trajectory	display	is	on;	zero	if	the	trajectory	display	is
off.

Prototype:
virtual	void	SetTrajectoryON(BOOL	onOff);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	may	be	used	to	turn	on	or	off	the	trajectory	display	for	the	node.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	ShowBone(int	boneVis)=0;

Remarks:

Controls	the	display	of	Bones	in	the	scene.	A	bone	is	just	the	link	(or	line)
connecting	the	node	to	its	parent.	These	are	the	same	options	as	available	in
the	3ds	max	user	interface	in	the	Display	branch,	under	Link	Display,	i.e.
Display	Links	and	Link	Replaces	Object.

Parameters:
int	boneVis
Specifies	the	display	state:
0:	Bones	are	not	drawn.
1:	Bones	are	drawn.
2:	Only	bones	are	shown.

Prototype:
virtual	BOOL	IsBoneOnly();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	the	bone	is	showing	but	the	object	is	hidden;	FALSE	if	both
the	bone	and	the	node	is	hidden.

Prototype:
virtual	void	BoneAsLine(int	onOff)=0;

Remarks:
Controls	the	display	of	Bones	as	simple	lines	in	the	scene.

Parameters:
int	onOff
Nonzero	if	bones	should	be	shown	as	lines	only;	0	for	normal	display.

Prototype:
virtual	BOOL	IsBoneShowing()=0;

Remarks:
Returns	TRUE	if	the	node's	bone	is	turned	on;	otherwise	FALSE.

Prototype:

virtual	DWORD	GetWireColor()=0;
Remarks:
Retrieves	the	node's	wire-frame	color.	See	COLORREF-DWORD	format.

Prototype:
virtual	void	SetWireColor(DWORD	newcol)=0;

Remarks:
Sets	the	node's	wire-frame	color.	This	can	be	any	of	the	16	million	possible
colors	in	24	bit.	See	COLORREF-DWORD	format.

Parameters:
DWORD	newcol
Specifies	the	new	wire-frame	color	for	the	node.	It	may	be	specified	using	the
RGB	macro,	for	example:	RGB(0,0,255);

Prototype:
virtual	int	Selected()=0;

Remarks:
Determines	if	the	node	is	selected.

Return	Value:
Nonzero	if	the	node	is	selected;	otherwise	0.

Prototype:
virtual	int	Dependent()=0;

Remarks:
Returns	nonzero	if	the	node	has	its	dependent	flag	set;	otherwise	0.	This	is
dependent	in	the	sense	of	3ds	max's	Views/Show	Dependencies	mode.	When
in	the	Modify	branch,	Show	Dependencies	will	show	all	the	nodes	that	are
dependent	on	the	current	modifier	or	object	being	editing	by	highlighting	them
in	green.	It	also	set	a	flag	in	the	node.	This	method	allows	a	developer	to
check	this	flag.

Rendering	Attributes

Prototype:
virtual	int	CastShadows()=0;

Remarks:
Retrieves	the	shadow	casting	attribute	of	the	node.

Return	Value:
Nonzero	indicates	the	node	casts	shadows;	zero	if	the	node	does	not	cast
shadows.

Prototype:
virtual	void	SetCastShadows(BOOL	onOff)=0;

Remarks:
Sets	the	shadow	casting	attribute	of	the	node	to	on	or	off.

Parameters:
BOOL	onOff
TRUE	to	turn	shadow	casting	on;	FALSE	to	turn	it	off.

Prototype:
virtual	int	RcvShadows()=0;

Remarks:
Retrieves	the	shadow	receiving	attribute	of	the	node.

Return	Value:
Nonzero	indicates	the	node	receives	shadows;	zero	if	the	node	does	not
receive	shadows.

Prototype:
virtual	void	SetRcvShadows(BOOL	onOff)=0;

Remarks:
Sets	the	shadow	receiving	attribute	of	the	node	to	on	or	off.

Parameters:
BOOL	onOff
TRUE	to	turn	shadow	receiving	on;	FALSE	to	turn	it	off.

Prototype:
virtual	int	MotBlur()=0;

Remarks:
Retrieves	the	type	of	motion	blur	used	by	the	node.

Return	Value:
One	of	the	following	values:
0:	None.
1:	Object	Motion	Blur.
2:	Image	Motion	Blur.

Prototype:
virtual	void	SetMotBlur(int	kind)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	type	of	motion	blur	used	by	the	node.

Parameters:
int	kind
The	kind	of	motion	blur.	One	of	the	following	values:
0:	None.
1:	Object	Motion	Blur.
2:	Image	Motion	Blur.

Prototype:
virtual	float	GetImageBlurMultiplier(TimeValue	t);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	image	motion	blur	multiplier	value	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.

Prototype:
virtual	void	SetImageBlurMultiplier(TimeValue	t,	float	m);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	image	blur	multiplier	value	for	the	node.	This	is	used	to	increase	or
decrease	the	length	of	the	blur	'streak'.

Parameters:
TimeValue	t
The	time	to	set	the	value.
float	m
The	value	to	set.

Prototype:
virtual	Control	*GetImageBlurMultController();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	a	pointer	to	the	controller	for	the	image	blur	multiplier	value.

Prototype:
virtual	void	SetImageBlurMultController(Control	*cont);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	controller	used	for	the	image	blur	multiplier	value.

Parameters:
Control	*cont
Points	for	the	controller	to	use.
	

Prototype:
virtual	BOOL	GetMotBlurOnOff(TimeValue	t);

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	object	motion	blur	controller	is	'on'	at	the	specified	time;
otherwise	FALSE.

Parameters:
TimeValue	t
The	time	to	check.

Default	Implementation:
{	return	1;	}

Prototype:
virtual	void	SetMotBlurOnOff(TimeValue	t,	BOOL	m);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	state	of	the	object	motion	blur	controller	to	on	or	off	at	the	specified
time.

Parameters:
TimeValue	t
The	time	to	set	the	value.
BOOL	m
TRUE	for	on;	FALSE	for	off.

Default	Implementation:
{}

Prototype:
virtual	Control	*GetMotBlurOnOffController();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	controller	handling	the	object	motion	blur	on	/	off
setting.

Default	Implementation:
{	return	NULL;}

Prototype:
virtual	void	SetMotBlurOnOffController(Control	*cont);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	controller	used	for	handling	the	object	motion	blur	on	/	off	setting.

Parameters:
Control	*cont
Points	to	the	controller	to	set.

Default	Implementation:
{}

Prototype:
virtual	int	Renderable()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	nonzero	if	the	renderable	flag	is	on;	zero	if	off.

Prototype:
virtual	void	SetRenderable(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	state	of	the	node's	renderable	flag.	If	this	flag	is	on	the	node	will
appear	in	rendered	images;	if	off	it	won't.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetRenderOccluded(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Sets	the	state	of	the	node's	'Render	Occluded	Object'	flag.
Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetRenderOccluded()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	node's	'Render	Occluded	Object'	flag	is	set;	otherwise
FALSE.

Prototype:
virtual	void	SetApplyAtmospherics(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	"apply	atmospherics"	flag	for	the	node.

Parameters:
BOOL	onOff
TRUE	to	enable	the	flag,	FALSE	to	disable.

Prototype:
virtual	int	ApplyAtmospherics()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	on/off	state	of	the	"apply	atmospherics"	flag.

Prototype:
virtual	void	SetPrimaryVisibility(BOOL	onOff)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	primary	visibility	flag	and	define	whether	or

not	the	node	is	visible	to	the	camera.
Parameters:
BOOL	onOff
TRUE	to	enable	the	flag,	FALSE	to	disable.

Prototype:
virtual	int	GetPrimaryVisibility()	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	on/off	state	of	the	primary	visibility	to	determine
whether	or	not	the	node	is	visible	to	the	camera.

Prototype:
virtual	void	SetSecondaryVisibility(BOOL	onOff)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	secondary	visibility	flag	and	define	whether
or	not	the	node	is	visible	to	reflections	and	refractions..

Parameters:
BOOL	onOff
TRUE	to	enable	the	flag,	FALSE	to	disable.

Prototype:
virtual	int	GetSecondaryVisibility()	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	on/off	state	of	the	secondary	visibility	to	determine
whether	or	not	the	node	is	visible	to	reflections	and	refractions.

Vertex	Color	Attributes
Prototype:

virtual	int	GetCVertMode();
Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	nonzero	if	the	vertex	color	flag	if	on;	otherwise	zero.

Prototype:
virtual	void	SetCVertMode(int	onOff);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	vertex	color	flag	to	on	or	off.	This	controls	the	display	of	assigned
vertex	colors.	Vertex	colors	are	assigned	in	the	editable	mesh	in	vertex	or	face
sub-object	level.	Vertex	colors	only	appear	in	viewports	using	Smooth	or
Smooth	+	Highlight	display	modes,	regardless	of	the	state	of	this	flag.

Parameters:
int	onOff
Nonzero	for	on;	zero	for	off.

Prototype:
virtual	int	GetShadeCVerts();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	nonzero	if	the	vertex	color	shaded	flag	is	on;	zero	if	off.

Prototype:
virtual	void	SetShadeCVerts(int	onOff);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	vertex	color	shaded	flag.	This	determines	whether	the	vertex	colors
appears	shaded	in	the	viewport.	When	this	is	off,	the	colors	are	unshaded,	and
appear	in	their	pure	RGB	values,	looking	a	little	like	self-illuminated
materials.	When	on,	the	colors	appear	like	any	other	assigned	color	in	the
viewports

Parameters:
int	onOff
Nonzero	of	on;	zero	of	off.

Prototype:
void	CopyProperties(INode	*from);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Calling	this	method	copies	the	various	display,	rendering,	bone	and	other
general	parameters	from	the	"from"	object.	This	is	used	in	Edit(able)	Spline
and	Edit(able)	Patch	to	copy	node	settings	into	new	nodes	created	by	the
"Detach"	operations.

Parameters:
INode	*frame
A	pointer	to	the	INode	to	copy	the	properties	from.

Object	Reference

Prototype:
virtual	Object*	GetObjectRef()=0;

Remarks:
Returns	the	object	that	this	node	references	unless	the	node	has	been	bound	to
a	Space	Warp.	In	that	case	this	method	will	not	return	the	WSM	derived	object
even	though	the	node's	object	reference	points	at	it.	Instead	it	will	return	the
item	that	the	WSM	derived	object	references.	Thus,	this	method	will	always
return	essentially	the	object	space	portion	of	the	pipeline.	In	contrast,	see
GetObjOrWSMRef()	below.
See	the	Geometry	Pipeline	section	for	additional	details.

Prototype:
virtual	void	SetObjectRef(Object	*o)=0;

Remarks:
Sets	the	object	that	this	node	references.	See	the	Geometry	Pipeline	section	for

additional	details.
Parameters:
Object	*o
The	object	this	node	will	reference.

Prototype:
virtual	Object	*GetObjOrWSMRef()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	the	actual	object	reference	of	the	node	directly.	So	if	this
node	is	bound	to	a	Space	Warp	this	method	will	return	a	WSM	derived	object.
If	you	want	the	object	space	portion	of	the	pipeline	see	GetObjectRef()
above.

Controller	Access

Prototype:
virtual	Control*	GetTMController()=0;

Remarks:
Retrieves	the	node's	transform	controller.	The	standard	3ds	max	transform
controllers	each	have	sub	-controllers	for	position,	rotation	and	scale.
To	access	the	data	of	the	node's	transform	controller	you	may	use	Class
IKeyControl.	The	following	code	fragment	shows	an	example	of	how	this	may
be	done	for	a	PRS	controller.
	Control	*c;
	c	=	node->GetTMController()->GetPositionController();
	IKeyControl	*ikeys	=	GetKeyControlInterface(c);
With	this	controller	interface	you	can	use	its	methods	to	get	information	about
the	keys,	for	example:
	int	num	=	ikeys->GetNumKeys();

Prototype:
virtual	void	SetTMController(Control	*m3cont)=0;

Remarks:
Sets	the	node's	transform	controller.

Parameters:
Control	*m3cont
The	Matrix3	transform	controller	to	use.

Prototype:
virtual	Control	*GetVisController()=0;

Remarks:
Returns	the	visibility	controller	for	this	node.

Prototype:
virtual	void	SetVisController(Control	*cont)=0;

Remarks:
Sets	the	visibility	controller	for	this	node.

Parameters:
Control	*cont
The	controller	to	use	for	visibility	control.

Visibility	Related	Methods
Prototype:
virtual	float	GetVisibility(TimeValue	t,Interval	*valid=NULL)=0;

Remarks:
Retrieves	the	visibility	of	the	node	at	the	time	passed	and	updates	the	validity
interval	passed.	Values	<	0	indicate	off	while	values	>	0	indicate	on.	The	node
is	fully	visible	(opaque)	when	1.0	and	fully	invisible	(transparent)	when	0.0.

Parameters:
TimeValue	t
The	time	to	get	the	visibility	value.
Interval	*valid=NULL
The	validity	interval	to	update	based	on	the	validity	of	the	visibility.

Prototype:
virtual	void	SetVisibility(TimeValue	t,float	vis)=0;

Remarks:
Sets	the	visibility	of	the	node	to	the	value	passed	at	the	time	passed.

Parameters:
TimeValue	t
The	time	to	set	the	visibility	value.
float	vis
The	visibility	of	the	node	to	set.	This	is	treated	like	a	boolean	value	where	<	0
means	off	and	>	0	means	on.

Prototype:
virtual	float	GetLocalVisibility(TimeValue	t,Interval
*valid=NULL)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	local	visibility	of	the	node.	The	value	returned	from	this	method	is
treated	like	a	boolean	value	where	<	0	means	off	and	>	0	means	on.
If	a	node	returns	TRUE	from	GetInheritVisibility()	then	its	visibility	is
determined	by	this	method.	If	GetInheritVisibility()	method	returns	FALSE
then	the	visibility	of	the	node	is	determined	by	GetVisibility().

Parameters:
TimeValue	t
The	time	to	get	the	local	visibility	value.
Interval	*valid=NULL
The	validity	interval	to	update	based	on	the	validity	of	the	local	visibility
controller.

Prototype:
virtual	BOOL	GetInheritVisibility()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

Returns	TRUE	if	the	node's	visibility	is	determined	by	the	visibility	of	the
parent	of	the	node;	otherwise	returns	FALSE.

Prototype:
virtual	void	SetInheritVisibility(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	to	set	the	state	of	the	node's	inherit	visibility	flag.

Parameters:
BOOL	onOff
Pass	TRUE	to	have	the	node	inherit	its	visibility	from	its	parent;	otherwise
pass	FALSE	and	the	node's	visibility	will	be	determine	by	the	node	itself	(not
its	parent).

Renderer	Materials

Prototype:
virtual	Mtl*	GetMtl()=0;

Remarks:
Returns	a	pointer	to	the	renderer	material	for	the	node.	If	the	value	returned	is
NULL	the	user	has	not	assigned	a	material	yet.	See	Class	Mtl,	Working	with
Materials	and	Textures.

Prototype:
virtual	void	SetMtl(Mtl*	matl)=0;

Remarks:
Sets	the	renderer	material	used	by	the	node.	If	the	value	set	is	NULL	it
indicates	a	material	has	not	been	assigned.	In	this	case,	the	renderer	uses	the
wireframe	color	of	the	node	for	rendering.	See	Class	Mtl,	Working	with
Materials	and	Textures.

Parameters:
Mtl*	matl
The	materials	used	to	render	the	node.

GraphicsWindow	Materials

Prototype:
virtual	Material*	Mtls()=0;

Remarks:
Returns	a	pointer	to	the	GraphicsWindow	materials.	See	NumMtls()
below	for	the	number	of	entries	in	this	array.

Prototype:
virtual	int	NumMtls()=0;

Remarks:
Returns	the	number	of	entries	in	the	array	of	Materials	returned	by	Mtls()
above.

Object-Offset	methods

Prototype:
virtual	void	SetObjOffsetPos(Point3	p)=0;

Remarks:
Sets	the	position	portion	of	the	object	offset	from	the	node.	See	the	Advanced
Topics	section	on	Node	and	Object	Offset	Transformations	for	an	overview	of
the	object	offset	transformation.

Parameters:
Point3	p
Specifies	the	position	portion	of	the	object-offset.

Prototype:
virtual	Point3	GetObjOffsetPos()=0;

Remarks:
Returns	the	position	portion	of	the	object-offset	from	the	node	as	a	Point3.	See
the	Advanced	Topics	section	on	Node	and	Object	Offset	Transformations	for
an	overview	of	the	object	offset	transformation.

Prototype:
virtual	void	SetObjOffsetRot(Quat	q)=0;

Remarks:
Sets	the	rotation	portion	of	the	object-offset	from	the	node.	See	the	Advanced
Topics	section	on	Node	and	Object	Offset	Transformations	for	an	overview	of
the	object	offset	transformation.

Parameters:
Quat	q
The	rotation	offset.

Prototype:
virtual	Quat	GetObjOffsetRot()=0;

Remarks:
Returns	the	rotation	portion	of	the	object-offset	from	the	node.	See	the
Advanced	Topics	section	on	Node	and	Object	Offset	Transformations	for	an
overview	of	the	object	offset	transformation.

Prototype:
virtual	void	SetObjOffsetScale(ScaleValue	sv)=0;

Remarks:
Sets	the	scale	portion	of	the	object-offset	matrix.	See	the	Advanced	Topics
section	on	Node	and	Object	Offset	Transformations	for	an	overview	of	the
object	offset	transformation.

Parameters:
ScaleValue	sv
The	scale	portion	of	the	offset.	See	Class	ScaleValue.

Prototype:
virtual	ScaleValue	GetObjOffsetScale()=0;

Remarks:
Returns	the	scale	portion	of	the	object-offset	from	the	node.	See	Class
ScaleValue.	See	the	Advanced	Topics	section	on	Node	and	Object	Offset
Transformations	for	an	overview	of	the	object	offset	transformation.

Put	Nodes	into	the	Foreground	Plane
Prototype:
virtual	void	FlagForeground(TimeValue	t,BOOL
notify=TRUE)=0;

Remarks:
Flags	the	node	to	put	it	in	the	foreground.	For	additional	information	see
Foreground	/	Background	Planes.

Parameters:
TimeValue	t
The	time	to	put	the	node	in	the	foreground.
BOOL	notify=TRUE
If	TRUE,	the	reference	message	REFMSG_FLAGDEPENDENTS	with
PART_PUT_IN_FG	is	sent.

Active	Grid	Object
Prototype:
virtual	int	IsActiveGrid()=0;

Remarks:
Determines	if	this	node	is	the	active	grid	object.

Return	Value:
Nonzero	indicates	the	node	is	the	active	grid	object;	zero	indicates	it	is	not.
	

Temporary	Storage	of	Data	with	Nodes
Prototype:
virtual	void	SetNodeLong(LONG	l)=0;

Remarks:
This	method	provides	temporary	storage	of	data	with	the	node.	Data	stored
with	the	node	is	only	valid	before	you	return	control.

Parameters:

LONG	l
The	data	to	store	with	the	node.

Prototype:
virtual	LONG	GetNodeLong()=0;

Remarks:
Retrieve	the	data	stored	with	the	node	(using	SetNodeLong()).

Return	Value:
The	data	stored	with	the	node.

Access	to	Render	Data

Prototype:
virtual	RenderData	*GetRenderData()=0;

Remarks:
Returns	the	render	data	for	the	node.	See	Class	RenderData.

Prototype:
virtual	void	SetRenderData(RenderData	*rd)=0;

Remarks:
Sets	the	render	data	for	the	node.

Parameters:
RenderData	*rd
The	render	data	to	set.

Access	user	defined	property	text.
For	additional	overview	information	on	these	methods	see	the	Advanced	Topics
section	Custom	Node	Properties.

Prototype:
virtual	void	GetUserPropBuffer(TSTR	&buf)=0;

Remarks:
This	method	allows	access	to	the	entire	user	defined	property	text	buffer.

Parameters:
TSTR	&buf
The	buffer	to	hold	the	user	defined	property	text.

Prototype:
virtual	void	SetUserPropBuffer(const	TSTR	&buf)=0;

Remarks:
This	method	allows	a	developer	to	set	to	the	entire	user	defined	property	text
buffer.

Parameters:
const	TSTR	&buf
The	buffer	containing	the	user	defined	property	text.

Prototype:
virtual	BOOL	GetUserPropString(const	TSTR	&key,TSTR
&string)=0;

Remarks:
This	method	retrieves	a	string	based	on	the	key	passed.

Parameters:
const	TSTR	&key
The	key	(or	name)	of	the	user	defined	property	text.
TSTR	&string
Storage	for	the	string	to	retrieve.

Return	Value:
TRUE	if	the	key	was	found;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetUserPropInt(const	TSTR	&key,int	&val)=0;

Remarks:
Retrieves	an	integer	value	from	the	node	based	on	the	key	passed.

Parameters:

const	TSTR	&key
The	key	(or	name)	of	the	data	to	retrieve.
int	&val
Storage	for	the	integer	value.

Return	Value:
TRUE	if	the	key	was	found;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetUserPropFloat(const	TSTR	&key,float	&val)=0;

Remarks:
Retrieves	a	floating	point	value	from	the	node	based	on	the	key	passed.

Parameters:
const	TSTR	&key
The	key	(or	name)	of	the	data	to	retrieve.
float	&val
Storage	for	the	float	value.

Return	Value:
TRUE	if	the	key	was	found;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetUserPropBool(const	TSTR	&key,BOOL	&b)=0;

Remarks:
Retrieves	a	boolean	value	from	the	node	based	on	the	key	passed.

Parameters:
const	TSTR	&key
The	key	(or	name)	of	the	data	to	retrieve.
BOOL	&b
Storage	for	the	boolean	value.

Return	Value:
TRUE	if	the	key	was	found;	otherwise	FALSE.

Prototype:

virtual	void	SetUserPropString(const	TSTR	&key,const	TSTR
&string)=0;

Remarks:
Stores	a	string	in	the	node	using	the	key	passed.	If	the	key	name	already	exists
it	is	overwritten;	otherwise	it	is	created.

Parameters:
const	TSTR	&key
The	key	(or	name)	of	the	data	to	store.
const	TSTR	&string
The	string	to	store.

Prototype:
virtual	void	SetUserPropInt(const	TSTR	&key,int	val)=0;

Remarks:
Stores	an	integer	value	in	the	node	using	the	key	passed.	If	the	key	name
already	exists	it	is	overwritten;	otherwise	it	is	created.

Parameters:
const	TSTR	&key
The	key	(or	name)	of	the	data	to	store.
int	val
The	value	to	store.

Prototype:
virtual	void	SetUserPropFloat(const	TSTR	&key,float	val)=0;

Remarks:
Stores	a	floating	point	value	in	the	node	using	the	key	passed.	If	the	key	name
already	exists	it	is	overwritten;	otherwise	it	is	created.

Parameters:
const	TSTR	&key
The	key	(or	name)	of	the	data	to	store.
float	val
The	value	to	store.

Prototype:
virtual	void	SetUserPropBool(const	TSTR	&key,BOOL	b)=0;

Remarks:
Stores	a	boolean	value	in	the	node	using	the	key	passed.	If	the	key	name
already	exists	it	is	overwritten;	otherwise	it	is	created.

Parameters:
const	TSTR	&key
The	key	(or	name)	of	the	data	to	store.
BOOL	b
The	value	to	store.

Prototype:
virtual	BOOL	UserPropExists(const	TSTR	&key)=0;

Remarks:
This	method	simply	checks	to	see	if	a	key	exists.

Parameters:
const	TSTR	&key
The	key	string	to	search	for.

Return	Value:
TRUE	if	the	key	was	found;	otherwise	FALSE.

Geometry/Graphics	(G)	Buffer	ID	Access
Prototype:
virtual	ULONG	GetGBufID()=0;

Remarks:
Returns	the	G-Buffer	ID	of	this	node.	This	is	the	ID	available	in	the
BMM_CHAN_NODE_ID	channel.	See	Working	with	Bitmaps	(G-Buffer)
for	additional	details.

Prototype:
virtual	void	SetGBufID(ULONG	id)=0;

Remarks:
Sets	the	G-Buffer	ID	of	this	node.	This	is	the	ID	available	in	the
BMM_CHAN_NODE_ID	channel.	See	Working	with	Bitmaps	(G-Buffer)
for	additional	details.

Parameters:
ULONG	id
The	G-Buffer	ID.

Prototype:
virtual	UWORD	GetRenderID();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	G-Buffer	render	ID	of	the	node.	This	is	set	by	the	renderer	during
a	video	post	render	when	the	BMM_CHAN_NODE_RENDER_ID	is
requested.

Prototype:
virtual	void	SetRenderID(UWORD	id);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	G-Buffer	render	ID	of	the	node.	This	is	set	by	the	renderer	during	a
video	post	render	when	the	BMM_CHAN_NODE_RENDER_ID	is
requested.

IK	Related	Methods
The	following	methods	deal	with	IK	parameters	associated	with	a	node.

Prototype:
virtual	float	GetPosTaskWeight();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	the	position	weight	for	the	node.

Prototype:
virtual	float	GetRotTaskWeight();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	the	rotation	weight	for	the	node.

Prototype:
virtual	void	SetPosTaskWeight(float	w);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	sets	the	position	weight	for	the	node.

Parameters:
float	w
The	position	weight	for	the	node.	This	value	is	>=	0.0.

Prototype:
virtual	void	SetRotTaskWeight(float	w);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	sets	the	rotation	weight	for	the	node.

Parameters:
float	w
The	rotation	weight	for	the	node.	This	value	is	>=	0.0.

Prototype:
virtual	BOOL	GetTaskAxisState(int	which,int	axis);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	of	FALSE	to	indicate	if	the	specified	axis	is	set	for	position	or
rotation.

Parameters:

int	which
Indicates	if	the	method	returns	the	position	state	or	the	rotation	state:	0
specifies	position;	1	specifies	rotation.
int	axis
The	axis	to	check.	0	specifies	X,	1	specifies	Y,	2	specifies	Z.

Prototype:
virtual	void	SetTaskAxisState(int	which,int	axis,BOOL	onOff);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	specified	axis	state	for	position	or	rotation.

Parameters:
int	which
Indicates	if	the	method	returns	the	position	state	or	the	rotation	state:	0
specifies	position;	1	specifies	rotation.
int	axis
The	axis	to	check.	0	specifies	X,	1	specifies	Y,	2	specifies	Z.
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	DWORD	GetTaskAxisStateBits();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	the	same	information	as	GetTaskAxisState()	above.

Return	Value:
The	first	three	bits	indicate	position	X,	Y	and	Z.	Then	the	next	three	bits
indicate	rotation	X,	Y,	Z.

WSMDerivedObject	Access
Prototype:

virtual	void	CreateWSMDerivedObject();
Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Calling	this	method	will	create	a	WSM	derived	object	for	this	node	if	one
doesn't	already	exist.

Default	Implementation:
{}

Prototype:
virtual	IDerivedObject	*GetWSMDerivedObject();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	pointer	to	the	WSM	Derived	object	for	this	node.	Note	that	there
is	at	most	one	WSM	derived	object	per	node.

Default	Implementation:
{return	NULL;}

Deleting	The	Node
Prototype:
virtual	void	Delete(TimeValue	t,	int	keepChildPosition);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	will	delete	the	node,	handle	removing	it	from	the	hierarchy,	and
handle	undo.		

Parameters:
TimeValue	t
The	time	for	the	deletion.
int	keepChildPosition
If	TRUE	the	position	of	any	children	of	this	node	are	kept	the	same;	otherwise
linked	children	may	move	due	to	the	deletion.

INodeTransformed	methods

Prototype:
virtual	void	DisposeTemporary();

Remarks:
If	this	was	a	temporary	INode	(like	an	INodeTransformed)	then	this
method	will	delete	it.	Also	see	the	method	Interface::GetModContexts().

Prototype:
virtual	INode	*GetActualINode();

Remarks:
In	the	case	of	INodeTransformed,	this	method	retrieves	a	pointer	to	the	real
node.

Return	Value:
A	pointer	to	the	node.

XRef	Access
Scene	XRef	related	methods.	These	methods	are	only	implemented	by	root
nodes.	Note	that	Scene	XRefs	are	stored	as	complete	scenes	with	root	nodes
where	the	XRef	scene	root	node	is	a	child	of	the	current	scene's	root	node.	See
Also:	Class	IXRefObject.

Prototype:
virtual	int	GetXRefFileCount();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	scene	xrefs.

Default	Implementation:
{return	0;}

Prototype:
virtual	TSTR	GetXRefFileName(int	i);

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Returns	the	name	of	the	scene	xref	whose	index	is	passed.

Parameters:
int	i
The	zero	based	index	of	the	scene	xref	(0	to	GetXRefFileCount()-1).

Default	Implementation:
{return	TSTR();}

Prototype:
virtual	void	SetXRefFileName(int	i,TCHAR	*fname,BOOL
reload);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	name	of	the	scene	xref	whose	index	is	passed.

Parameters:
int	i
The	zero	based	index	of	the	scene	xref	(0	to	GetXRefFileCount()-1).
TCHAR	*fname
The	name	to	set.
BOOL	reload
TRUE	to	reload;	FALSE	to	not	reload.

Default	Implementation:
{}

Prototype:
virtual	BOOL	AddNewXRefFile(TSTR	&name,	BOOL
loadNow=TRUE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Adds	the	specified	file	to	the	scene	and	optionally	updates	the	scene	now.

Parameters:

TSTR	&name
The	file	name	to	load.
BOOL	loadNow=TRUE
If	TRUE	the	file	is	loaded	immediately	and	the	scene	updated;	if	FALSE	the
scene	is	now	updated	until	the	user	requests	it.

Return	Value:
TRUE	if	the	XRef	was	loaded;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	DeleteXRefFile(int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	removes	the	'i-th'	Scene	XRef.

Parameters:
int	i
The	zero	based	index	of	the	Scene	XRef	to	load.

Return	Value:
TRUE	if	the	file	was	deleted	from	the	scene;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	BindXRefFile(int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	binds	the	specified	XRef.	This	deletes	the	XRef	after	merging	it
into	the	scene.

Parameters:
int	i
The	zero	based	index	of	the	XRef	to	bind.

Return	Value:
TRUE	if	the	file	was	deleted;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	void	DeleteAllXRefs();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	deletes	all	the	XRefs	from	the	scene.	This	is	called	when	loading
a	new	file,	reseting	or	clearing	the	scene.

Default	Implementation:
{}

Prototype:
virtual	BOOL	ReloadXRef(int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	will	reload	(updates	from	disk)	the	specified	XRef.

Parameters:
int	i
The	zero	based	index	of	the	XRef	to	reload.

Return	Value:
TRUE	if	the	XRef	was	reloaded;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	void	FlagXrefChanged(int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

This	method	indicates	that	the	specified	XRef	has	been	changed	and	should	be
updated.

Parameters:
int	i
The	zero	based	index	of	the	XRef	to	flag.

Default	Implementation:
{}

Prototype:
virtual	BOOL	UpdateChangedXRefs(BOOL	redraw=TRUE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	updates	all	XRefs	which	have	their	changed	flag	set.

Parameters:
BOOL	redraw=TRUE
TRUE	to	redraw	the	scene;	otherwise	FALSE.

Return	Value:
TRUE	if	the	XRefs	were	loaded	okay;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	INode	*GetXRefTree(int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	root	node	of	the	tree	for	the	specified	XRef.	This	method,	when
called	on	a	root	node,	will	access	the	various	XRef	scenes.	Note	that	these	can
be	nested	so	calling	this	on	the	root	node	of	the	scene	will	return	the	root	node
of	one	of	the	scene	XRefs.	Calling	it	on	the	root	node	of	the	scene	XRef	will
get	the	root	node	of	a	nested	XRef	and	so	on.	Note	that	this	is	not	the	parent	of
the	XRef	(see	GetXRefParent()	below).

Parameters:

int	i
The	zero	based	index	of	the	XRef.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	INode	*GetXRefParent(int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	parent	node	of	the	specified	XRef.	This	is	the	node	in	the	scene	(if
any)	which	the	scene	XRef	is	linked	to	through	the	special	bind	function	in	the
scene	XRef	dialog.

Parameters:
int	i
The	zero	based	index	of	the	XRef.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	void	SetXRefParent(int	i,	INode	*par);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	parent	of	the	specified	XRef	to	the	node	passed.

Parameters:
int	i
The	zero	based	index	of	the	XRef.
INode	*par
The	parent	node	to	set.

Default	Implementation:
{}

Prototype:
virtual	BOOL	FindUnresolvedXRefs(Tab<TSTR*>	&fnames);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Generates	a	table	of	names	for	the	unresolved	XRefs	in	the	scene.

Parameters:
Tab<TSTR*>	&fnames
The	table	of	names.	See	Template	Class	Tab.

Return	Value:
Returns	TRUE	if	there	are	still	unresolved	XRefs;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	void	AttemptToResolveUnresolvedXRefs();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	tries	to	load	any	XRefs	that	are	currently	unresolved.

Default	Implementation:
{}

Prototype:
virtual	DWORD	GetXRefFlags(int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	state	of	flags	for	the	specified	XRef.

Parameters:
int	i
The	zero	based	index	of	the	XRef	whose	flags	are	returned.

Return	Value:
See	List	of	XRef	Flag	Bits.

Default	Implementation:
{return	0;}

Prototype:
virtual	void	SetXRefFlags(int	i,DWORD	flag,BOOL	onOff);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	state	of	the	specified	flags	in	the	specified	XRef	to	on	or	off.

Parameters:
int	i
The	zero	based	index	of	the	XRef	whose	flags	are	set.
DWORD	flag
See	List	of	XRef	Flag	Bits.
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Default	Implementation:
{}

Bone	Methods
	

Prototype:
virtual	void	SetBoneNodeOnOff(BOOL	onOff,	TimeValue	t);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	bone	on/off	property	of	the	node.

Parameters:
BOOL	onOff
Pass	TRUE	for	on;	FALSE	for	off.
TimeValue	t
The	time	at	which	to	set	the	property.

Default	Implementation:

{}

Prototype:
virtual	void	SetBoneAutoAlign(BOOL	onOff);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	bone	auto-align	property	of	the	node.

Parameters:
BOOL	onOff
Pass	TRUE	for	on;	FALSE	for	off.

Default	Implementation:
{}

Prototype:
virtual	void	SetBoneFreezeLen(BOOL	onOff);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	bone	freeze	length	property	of	the	node.

Parameters:
BOOL	onOff
Pass	TRUE	for	on;	FALSE	for	off.

Default	Implementation:
{}

Prototype:
virtual	void	SetBoneScaleType(int	which);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	bone	scale	(stretch)	type	to	the	specified	value.

Parameters:
int	which

One	of	the	following	values:
BONE_SCALETYPE_SCALE
BONE_SCALETYPE_SQUASH
BONE_SCALETYPE_NONE

Default	Implementation:
{}

Prototype:
virtual	void	SetBoneAxis(int	which);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	bone	axis	of	the	node	to	the	specified	value.

Parameters:
int	which
One	of	the	following	values:
BONE_AXIS_X
BONE_AXIS_Y
BONE_AXIS_Z

Default	Implementation:
{}

Prototype:
virtual	void	SetBoneAxisFlip(BOOL	onOff);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	state	of	the	bone	axis	flip	toggle.

Parameters:
BOOL	onOff
Pass	TRUE	for	on;	FALSE	for	off.

Default	Implementation:

{}

Prototype:
virtual	BOOL	GetBoneNodeOnOff();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	TRUE	if	the	bone	property	if	on;	FALSE	if	off.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	GetBoneAutoAlign();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	TRUE	if	the	bone	auto-align	property	is	on;	FALSE	if	off.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	GetBoneFreezeLen();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	TRUE	if	the	freeze	length	property	is	on;	FALSE	if	off.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	int	GetBoneScaleType();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	value	which	indicates	the	bone	scale	type.

Return	Value:
One	of	the	following	values:
BONE_SCALETYPE_SCALE
BONE_SCALETYPE_SQUASH
BONE_SCALETYPE_NONE

Default	Implementation:
{return	0;}

Prototype:
virtual	int	GetBoneAxis();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	value	which	indicates	the	bone	axis.

Return	Value:
One	of	the	following	values:
BONE_AXIS_X
BONE_AXIS_Y
BONE_AXIS_Z

Default	Implementation:
{return	0;}

Prototype:
virtual	BOOL	GetBoneAxisFlip();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	TRUE	if	the	axis	flip	toggle	is	on;	FALSE	if	off.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	void	RealignBoneToChild(TimeValue	t);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Calling	this	method	is	the	equivalent	of	pressing	the	Realign	button	in	the	UI.

Parameters:
TimeValue	t
The	time	at	which	to	reset	the	initial	child	position.

Default	Implementation:
{}

Prototype:
virtual	void	ResetBoneStretch(TimeValue	t)	{};

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Calling	this	method	is	the	equivalent	of	pressing	the	Reset	Stretch	button	in
the	UI.	This	will	cause	the	X-axis	of	the	bone	to	realign	to	point	at	the	child
bone	(or	average	pivot	of	multiple	children).

Parameters:
TimeValue	t
The	time	at	which	to	reset	the	bone	stretch.

Default	Implementation:
{}

Prototype:
virtual	Matrix3	GetStretchTM(TimeValue	t,	Interval
*valid=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	strechTM	without	the	object	offset	included.
Normally	matrix	concatenation	occurs	in	the	following	maner:
objectTM	=	objectOffsetTM	*	stretchTM	*	nodeTM
A	plug-in	that	uses	the	objectTM	will	transparently	inherit	the	effects	of	the
stretchTM.	However	if	a	plug-in	(such	as	skin)	wants	the	stretchTM	included

but	not	the	object	offset,	this	method	will	return	the	stretchTM	alone.	If	the
node	is	not	a	bone	or	has	no	stretching,	this	method	will	return	the	identity.

Parameters:
TimeValue	t
The	time	at	which	to	obtain	the	strechtTM.
Interval	*valid	=	NULL
The	interval.

Default	Implementation:
{return	Matrix3(1);}

LightObject
See	Also:	Class	LightObject.
This	is	one	of	the	classes	from	which	plug-in	lights	are	derived.	Light	objects
implement	methods	that	return	the	properties	of	the	light.	Some	are	these
methods	are:
EvalLightState()
This	method	provides	access	to	the	lights	state	which	contains	properties	of
the	light	such	as	color,	intensity,	etc.
CreateLightDesc()
When	the	renderer	goes	to	render	the	scene	it	asks	all	of	the	lights	to	create	an
ObjectLighDesc	object.	This	is	the	method	that	is	called	to	return	this	object.

LinearShape
See	Also:	Class	LinearShape.
Defines	a	linear	shape	object	class.	This	is	a	shape	made	up	of	entirely	linear
segments.

Class	LinearShape
See	Also:	Class	ShapeObject,	Class	PolyShape,	Working	with	Shapes	and
Splines.
class	LinearShape	:	public	ShapeObject

Description:
This	class	represents	a	linear	shape	object.	This	class	is	similar	to	a
SplineShape	except	this	class	uses	a	PolyShape	as	its	data	while	a
SplineShape	uses	a	BezierShape	as	its	data.	Therefore	this	is	a	shape	made
up	of	entirely	linear	segments.	All	methods	of	this	class	are	implemented	by	the
system.

Data	Members:
public:
PolyShape	shape;
The	PolyShape	that	holds	the	linear	shape.

Methods:

Prototype:
LinearShape();

Remarks:
Constructor.

Prototype:
~LinearShape();

Remarks:
Destructor.

Prototype:
PolyShape&	GetShape();

Remarks:
Returns	the	shape	data	member.

Prototype:
void	SetPointFlags();

Remarks:
This	method	does	the	job	of	setting	all	points	in	the	PolyShape	to
POLYPT_KNOT	types,	and	removing	the
POLYPT_INTERPOLATED	flag.	This	is	because	the	LinearShape
knows	nothing	about	its	origin.

Prototype:
virtual	MtlID	GetMatID(TimeValue	t,	int	curve,	int	piece);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	provides	access	to	the	material	IDs	of	the	shape.	It	returns	the
material	ID	of	the	specified	segment	of	the	specified	curve	of	this	shape	at	the
time	passed.	There	is	a	default	implementation	so	there	is	no	need	to
implement	this	method	if	the	shape	does	not	support	material	IDs.
Note:	typedef	unsigned	short	MtlID;

Parameters:
TimeValue	t
The	time	to	evaluate	the	sub-curve.
int	curve
The	zero	based	index	of	the	curve	to	evaluate.
int	piece
The	sub-curve	(segment)	to	evaluate.

Modifier
See	Also:	Class	Modifier.
This	is	the	class	from	which	you	may	derive	modifier	object	plug-ins.	The	main
methods	are:
ModifyObject()
This	is	the	method	that	actually	modifies	the	input	object.	This	is	where	the
modifier	does	its	work.
LocalValidity()
This	is	the	validity	interval	of	the	modifier.	It	is	the	intersection	of	the	validity
intervals	of	any	controllers	the	modifier	has	that	are	animating	the	modifier's
parameters.

Methods	are	available	to	indicate	to	the	system	what	type	of	input	it	needs	from
the	pipeline.
ChannelsUsed()
These	are	channels	that	the	modifier	needs	in	order	to	perform	its
modification.
ChannelsChanged()
These	are	the	channels	that	the	modifier	actually	modifies.
InputType()
This	is	the	type	of	object	that	the	modifier	knows	how	to	modify.	Simple
modifiers	that	just	modify	points	of	an	object	can	operate	on	generic
'Deformable'	objects.	Deformable	objects	are	any	type	of	object	that	has
points.	A	modifier	could	also	work	on	a	particular	type	of	object	such	as	a	tri
object	or	patch	object.

Methods	are	also	available	for	saving	the	data	a	modifier	uses	and	stores
internally	to	manage	its	operation.
LoadLocalData()
SaveLocalData()
When	a	3ds	max	file	is	being	loaded	or	saved,	these	methods	are	called	so	that
the	modifier	can	load	and	save	data	it	needs	for	its	operation.

Mtl
See	Also:	Class	Mtl.
Plug-In	Materials	are	subclassed	off	Mtl.	Some	of	the	methods	of	Mtl	are:
Shade()
This	is	called	by	the	renderer	to	compute	the	color	and	transparency	of	the
material	for	a	given	location.
NumSubMtls()
This	method	returns	the	number	of	sub-materials	used	by	the	material.

MtlBase
See	Also:	Class	MtlBase.
This	is	the	base	class	for	the	creation	of	materials	and	texture	maps	plug-ins.	The
main	methods	are:
Requirements()
Specifies	the	requirements	for	the	material	or	texture	map	(and	its	sub-
materials	or	sub-textures	if	any).	These	are	things	such	as	whether	the	material
is	two	sided,	wire	frame,	or	requires	UV	bump	vectors.
CreateParamDlg()
This	gets	called	when	the	material	or	texture	is	to	be	displayed	in	the	material
editor	parameters	area.

Class	MtlBase
See	Also:	Class	ReferenceTarget,	Class	ISubMap,	Class	Mtl,	Class	Texmap,
Class	ShadeContext,	Class	RenderMapsContext,	Class	RenderGlobalContext,
Class	UVGen,	Class	XYZGen,	Class	PStamp,	Class	Quat.
class	MtlBase	:	public	ReferenceTarget,	public	ISubMap

Description:
This	is	the	base	class	from	which	materials	and	textures	are	subclassed.	Methods
are	provided	to	access	the	name,	flags,	and	sub-materials/maps.	There	is	also	a
method	that	is	called	when	the	material	or	texture	is	to	be	displayed	in	the
material	editor	parameters	area.
Note	the	following	about	dialog	proc	processing	of	sub-map	buttons:
When	you	post	the	message:

PostMessage(hwmedit,	WM_TEXMAP_BUTTON,	i,
(LPARAM)theMtl);

You	are	telling	the	system	that	the	user	clicked	on	the	button	for	the	'i-th'	sub-
map	of	theMtl.	The	message	doesn't	propogate	up	--	it	goes	directly	to	the
materials	editor.	It	then	uses	calls	on	theMtl->SetSubTexmap()	and
theMtl->GetSubTexmap()	to	assign	the	new	map.	So	even	if	your
material	has	some	complicated	internal	hierachical	structure	of	references,	to
the	system	it	is	still	a	simple	"logical"	hierarchy	of	a	material	with	some	sub-
texmaps.

Data	Members:
public:
Quat	meditRotate;
This	data	member	is	available	in	release	2.0	and	later	only.
This	describes	the	rotation	of	the	sample	geometry	in	the	materials	editor.
ULONG	gbufID;
This	is	the	G-Buffer	ID	of	the	material	or	texmap.	This	is	a	"effects	number"
assigned	in	the	materials	editor	to	a	map	or	material,	and	it	will	be	written	into
the	effects	channel	of	the	G-Buffer	when	a	pixel	with	that	material	on	it	is
rendered.	To	implement	this,	each	map	or	material,	in	the	beginning	of	its
Shade(),	EvalColor(),	or	EvalMono()	methods	should	have	the	code:

if	(gbufID)	sc.SetGBufferID(gbufID);

Method	Groups:
The	following	hyperlinks	take	you	to	the	start	of	groups	of	related	methods
within	the	class:
Naming	Methods
BuildMaps	Method
Flag	Access	Methods
Requirement	Methods
Sub-Mtl-Texture	Access
Update	/	Reset	/	Validity
Loading	/	Saving	Methods
User	Interface	Methods
Multiple	Map	Display	in	the	Viewports
G	Buffer	Methods
Enumerate	Auxilliary	Files	Implementation
Postage	Stamp	Image	Methods
Internal	Methods
Operators

Methods:

Prototype:
MtlBase();

Remarks:
Constructor.	The	flags	and	G-buffer	id	are	initialized.

Naming	Methods

Prototype:
TSTR&	GetName()

Remarks:
Implemented	by	the	System.
Returns	the	name	of	the	material	or	texture.

Prototype:

void	SetName(TSTR	s);
Remarks:
Implemented	by	the	System.
Stores	the	name	of	the	material	or	texture.

Prototype:
virtual	TSTR	GetFullName();

Remarks:
Implemented	by	the	System.
This	method	returns	the	name	that	appears	in	the	track	view.	It	returns	the
"Instance	Name(class	Name)".	For	example	"Green	Glass	(Standard)".	The
default	implementation	should	be	used.

Flag	Access	Methods

Prototype:
void	SetMtlFlag(int	mask,	BOOL	val=TRUE)

Remarks:
Implemented	by	the	System.
Alters	the	flags,	either	setting	or	clearing	them,	using	the	mask	and	method
passed.

Parameters:
int	mask
The	flags	to	alter.	See	List	of	Material	Flags.
BOOL	val=TRUE
If	TRUE	the	mask	is	ORed	into	the	flags	(mtlFlags	|=	mask);	otherwise
(mtlFlags	&=	~mask).

Prototype:
void	ClearMtlFlag(int	mask)

Remarks:
Implemented	by	the	System.

Clears	the	specified	flags.
Parameters:
int	mask
The	flags	to	clear.	See	List	of	Material	Flags.

Prototype:
int	TestMtlFlag(int	mask)

Remarks:
Implemented	by	the	System.
Tests	the	specified	flags.	Returns	nonzero	if	the	flags	are	set;	otherwise	zero.
See	List	of	Material	Flags.

Parameters:
int	mask
The	flags	to	test.

Prototype:
BOOL	AnyMulti();

Remarks:
Implemented	by	the	System.
This	method	may	be	called	to	recursively	determine	if	there	are	any	multi-
materials	or	texmaps	in	the	tree.

Return	Value:
TRUE	if	the	material	or	texture	map	has	any	mult-materials;	otherwise
FALSE.

Requirement	Methods

Prototype:
virtual	ULONG	Requirements(int	subMtlNum);

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	cumulative	requirements	of	the	material	and	its	sub-

materials	and	maps.	The	default	implementation	just	ORs	together	the	local
requirements	of	the	material	with	the	requirements	of	all	its	children.	Most
materials	will	only	need	to	implement	LocalRequirements().

Parameters:
int	subMtlNum
Specifies	the	number	of	the	sub-material	whose	requirements	should	be
returned.	-1	may	be	used	to	return	a	value	generated	by	looping	over	all	the
sub-materials	and	ORing	together	the	requirements.

Return	Value:
See	List	of	Material	Requirements.

Default	Implementation:
The	default	implementation	automatically	traverses	the	sub-material/map	tree.
On	any	MtlBase	that	returns	TRUE	for	IsMultiMtl()	it	will	only	recursively
call	the	sub	material	(or	map)	for	the	subMtlNum	called.	The	exception	to
this	is	when	subMtlNum<0:	in	this	case	all	sub-mtls	and	submaps	are
enumerated.	Therefore	the	LocalRequirements()	method	below	only	needs
to	consider	the	material	or	map	itself,	not	the	sub-mtls	and	sub-maps.

Prototype:
virtual	ULONG	LocalRequirements(int	subMtlNum)

Remarks:
Implemented	by	the	Plug-In.
Specifies	various	requirements	for	this	material.	The	value	returned	from	this
method	should	not	include	requirements	of	its	sub-materials	and	sub-maps.

Parameters:
int	subMtlNum
Specifies	the	number	of	the	sub-material	whose	requirements	should	be
returned.

Return	Value:
See	List	of	Material	Requirements.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	void	MappingsRequired(int	subMtlNum,	BitArray	&
mapreq,	BitArray	&bumpreq);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	gives	the	UVW	channel	requirements	of	the	material	and	its	tree.
The	default	implementation	just	OR's	together	the	local	mapping	requirements
of	the	material	with	the	requirements	of	all	its	children.	For	most	materials,	all
they	need	to	implement	is	the	LocalMappingsRequired()	method.

Parameters:
int	subMtlNum
Specifies	the	number	of	the	sub-material	whose	mapping	information	is
retrieved.
BitArray	&mapreq
This	array	of	bits	is	initialized	to	an	empty	set	with	MAX_MESHMAPS
elements.	Each	bit	corresponds	to	a	mapping	channel.	Set	a	bit	to	one	to
indicate	the	material	requires	the	corresponding	UVW	channel.
BitArray	&bumpreq
This	array	of	bits	is	initialized	to	an	empty	set	with	MAX_MESHMAPS
elements.	Each	bit	corresponds	to	a	mapping	channel.	Set	a	bit	to	one	to
indicate	the	material	requires	the	corresponding	bump	mapping	channel.

Prototype:
virtual	void	LocalMappingsRequired(int	subMtlNum,	BitArray
&mapreq,	BitArray	&bumpreq);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	specifies	UVW	channel	requirements	for	the	material:	This
method	should	not	include	UVW	channel	requirements	of	any	sub-materials
and	sub-maps.

Parameters:
int	subMtlNum
Specifies	the	number	of	the	sub-material	whose	mapping	information	is

retrieved.
BitArray	&mapreq
This	array	of	bits	is	initialized	to	an	empty	set	with	MAX_MESHMAPS
elements.	Each	bit	corresponds	to	a	mapping	channel.	Set	a	bit	to	one	to
indicate	the	material	requires	the	corresponding	UVW	channel.
BitArray	&bumpreq
This	array	of	bits	is	initialized	to	an	empty	set	with	MAX_MESHMAPS
elements.	Each	bit	corresponds	to	a	mapping	channel.	Set	a	bit	to	one	to
indicate	the	material	requires	the	corresponding	bump	mapping	channel.

Default	Implementation:
{}

Sample	Code:
All	2D	textures	that	use	UVGen	or	otherwise	select	mapping	channels	need	to
implement	this	method	Here's	an	example:
void	LocalMappingsRequired(int	subMtlNum,	BitArray	&
mapreq,	BitArray	&bumpreq)	{
uvGen->MappingsRequired(subMtlNum,mapreq,bumpreq);
}
All	3D	textures	that	use	the	XYZGen	to	put	up	a	coordinates	rollup	must
implement	this	method.	Here's	an	example:
void	LocalMappingsRequired(int	subMtlNum,	BitArray	&
mapreq,BitArray	&bumpreq)	{
xyzGen->MappingsRequired(subMtlNum,mapreq,bumpreq);
}

BuildMaps	Method
Prototype:
virtual	int	BuildMaps(TimeValue	t,	RenderMapsContext	&rmc)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	for	a	plug-in	to	do	any	work	it	needs	to	do	prior	to
rendering.	For	example	this	is	used	by	the	3ds	max	Mirror	and	Auto	Reflect

materials	to	render	their	bitmaps.
Parameters:
TimeValue	t
The	current	time.
RenderMapsContext	&rmc
Provides	information	about	the	view	being	rendered	and	can	provide	access	to
the	global	rendering	environment	information	via	RenderGlobalContext
*gc	=	rmc.GetGlobalContext().	See	Class	RenderMapsContext	and	Class
RenderGlobalContext.

Return	Value:
Nonzero	on	success;	zero	on	failure.	In	the	case	of	failure	the	renderer	is
halted	(rendering	is	cancelled).

Methods	to	access	sub	texture	maps	of	materials	or	texmaps

Prototype:
virtual	BOOL	IsMultiMtl()

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	TRUE	for	materials	or	textures	that	select	sub-materials
based	on	submaterial	number	(for	example	a	mesh	faceMtlIndex).
The	only	materials	for	which	this	method	should	return	TRUE	are	those	that
choose	to	use	one	of	their	sub-maps	or	sub-mtls	based	on	the	submaterial
number.	For	the	majority	of	materials	and	maps,	they	should	return	FALSE,
and	in	that	case	all	of	the	submaterials	and	maps	are	enumerated	by
MtlBase::Requirements().

Default	Implementation:
{	return	FALSE;	}

Prototype:
void	DeactivateMapsInTree();

Remarks:
Implemented	by	the	System.

This	method	must	be	called	on	a	sub-material	or	sub-map	when	it	is	removed,
in	case	it	or	any	of	its	sub-maps	are	active	in	the	viewport.

Update	/	Reset	/	Validity

Prototype:
virtual	void	Update(TimeValue	t,	Interval&	valid)=0;

Remarks:
Implemented	by	the	Plug-In.
A	material	has	a	Shade()	method,	and	a	texture	map	has	a	EvalColor()
method.	These	are	called	by	the	renderer	for	every	pixel.	This	method	is	called
before	rendering	begins	to	allow	the	plug-in	to	evaluate	anything	prior	to	the
render	so	it	can	store	this	information.	In	this	way	this	information	does	not
need	to	be	calculated	over	and	over	for	every	pixel	when	Shade()	or
EvalColor()	is	called.	This	allows	texture	and	material	evaluation	to	be	more
efficient.	It	is	generally	called	once	at	the	start	of	each	frame,	or	during
interactive	playback	when	the	time	changes.	It	is	not	guaranteed	to	get	called
on	every	frame,	because	if	you	returned	a	validity	interval	that	covers	several
frames,	your	parent	material	won't	bother	to	call	you	if	the	current	frame	is
still	in	that	interval.

Parameters:
TimeValue	t
The	current	time.
Interval&	valid
The	validity	interval	to	update	to	reflect	the	validity	interval	of	the	material	or
texture	at	the	time	passed.

Prototype:
virtual	void	Reset()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	reset	the	material	or	texmap	back	to	its	default	values.

Prototype:

virtual	Interval	Validity(TimeValue	t)=0;
Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	determine	the	validity	interval	of	the	material	or
texture.

Parameters:
TimeValue	t
Specifies	the	time	about	which	to	compute	the	validity	interval.

Return	Value:
The	validity	interval	of	the	item	at	the	specified	time.

User	Interface	Methods

Prototype:
virtual	ParamDlg*	CreateParamDlg(HWND	hwMtlEdit,
IMtlParams	*imp)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	gets	called	when	the	material	or	texture	is	to	be	displayed	in	the
material	editor	parameters	area.	The	plug-in	should	allocate	a	new	instance	of
a	class	derived	from	ParamDlg	to	manage	the	user	interface.
Note:	The	following	is	a	discussion	of	this	CreateParamDlg()	method,	and
the	SetDlgThing()	method,	and	the	way	they	relate	to	the	ParamMap2
system.	A	good	example	for	this	discussion	is	a	texture	map	which	typically
has	several	rollouts,	say	its	texmap	parameters,	a	UVW	coordinates	rollout,
and	an	Output	rollout.
The	normal	way	for	a	texmap	to	implement	these	other	(common)	rollouts	is
for	the	it	to	create	a	UVGen	instance	and	a	TextureOutput	instance	as	'sub-
objects'	in	the	map	and	then	ask	them	to	put	up	their	rollouts	when	it	is	asked
to	do	so	by	the	Materials	Editor	(in	CreateParamDlg()).	The	Materials	Editor
requires	a	ParamDlg	pointer	back	from	the	CreateParamDlg()	on	which	it	calls
methods	to	control	the	UI,	such	as	time	change	updates	or	loading	up	a	new
texmap	of	the	same	class	into	the	UI	when	the	user	switches	them,	so	that	the
whole	UI	doesn't	need	to	be	rebuilt.

Prior	to	the	ParamMap2	system,	a	texmap	would	implement	its	own	ParamDlg
subclass	and	would	keep	track	of	the	UVGen	and	TextureOutput
ParamDialogs	and	pass	on	any	time	change	or	SetThing()	calls	to	them.
ParamMap2	introduced	its	own	ParamDlg	subclass	(Class	IAutoMParamDlg)
that	you	can	ask	it	to	build	for	you	and	have	manage	all	interaction	with	the
Materials	Editor	automatically.	As	before,	this	still	needs	to	know	about	the
other	(sub-object)	ParamDlgs,	and	so	it	has	the	ability	to	keep	a	list	of
'secondary'	ParamDlgs	to	which	it	passes	on	the	SetTime()s	and	SetThing()s.
When	the	Materials	Editor	asks	the	texmap	to	CreateParamDlg(),	the	texmap
asks	its	ClassDesc2	to	build	one	of	these	(ClassDesc2::CreateParamDlgs()).	If
the	texmap	itself	has	multiple	ParamBlock2s,	CreateParamDlgs()	builds	one
ParamDlg	per	pblock/rollout,	makes	the	first	of	them	a	'master'	and	adds	the
rest	as	secondary	ParamDlgs.	The	texmap	then	asks	the	UVGen	and
TextureOutput	objects	to	CreateParamDlg()	for	their	rollouts	and	adds	them	to
the	master	IAutoMParamDlg	also.
Now	consider	the	need	for	the	SetDlgThing()	method	below.	It	is	related	to
the	SetThing()	method	that	the	Materials	Editor	calls	on	the	'master'	ParamDlg
to	switch	into	the	UI	a	texmap	of	the	same	class	as	that	currently	in	the	UI.
Normally,	the	master	IAutoParamDlg	would	propogate	the	SetThing()	to	its
registered	secondary	ParamDlgs.	In	the	case	of	multiple	paramblock2s	in	the
texmap,	this	would	be	correct,	since	the	'thing'	in	this	case	is	the	incoming
texmap.	But	this	doesn't	work	for	the	secondary	UVGen	and	TextureOutput
ParamDlgs;	their	'things'	are	the	UVGen	and	TextureOutput	subobjects	of	the
incoming	map.	So,	IAutoParamDlg	first	calls	SetDlgThing()	on	the	incoming
texmap	so	that	it	gets	a	chance	to	call	the	correct	SetThing()s	on	the	sub-object
ParamDlgs	with	the	appropriate	incoming	sub-objects.	A	clear	example	of	this
is	in	Gradient::SetDlgThing()	in
\MAXSDK\SAMPLES\MATERIALS\GRADIENT.CPP.	It	is	called
once	for	each	secondary	ParamDlg.	For	those	ParamDlgs	that	have	special
SetThing()	requirements,	it	does	the	appropriate	sub-object	SetThing()	and
returns	TRUE.	If	it	does	no	special	handling	for	a	particular	ParamDlg,	it
returns	FALSE,	signalling	to	the	IAutoMParamDlg	that	it	should	do	the
standard	SetThing()	propogation	for	that	dialog.
The	Render	Effects	dialog	has	a	similar	arangment	to	the	Materials	Editor	for
controlling	Effect	UI	and	so	there	is	an	IAutoEParamDlg	that	works
exactly	the	same	way	as	the	IAuotMParamDlg.

Parameters:
HWND	hwMtlEdit
The	window	handle	of	the	materials	editor.
IMtlParams	*imp
The	interface	pointer	for	calling	methods	in	3ds	max.

Return	Value:
A	pointer	to	the	created	instance	of	a	class	derived	from	ParamDlg.

Multiple	Map	Display	in	the	Viewports
Prototype:
virtual	BOOL	SupportsMultiMapsInViewport();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	Plug-In.
Returns	TRUE	if	this	material	supports	the	display	of	multi-maps	in	the
viewports	(interactive	renderer);	FALSE	if	it	doesn't.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	void	SetupGfxMultiMaps(TimeValue	t,	Material	*mtl,
MtlMakerCallback	&cb);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	is	called	to	initalize	the	interactive	renderer	Material	passed	with
the	properties	of	this	MtlBase.
If	a	MtlBase	(material	or	texmap)	wants	to	display	multiple	textures	in	the
viewports,	it	implements
SupportsMultiMapsInViewport()	to	return	TRUE,	and	implements
SetupGfxMultiMaps	to	store	the	necessary	information	in	the	Material
passed	in,	including	the	TextureInfo's	for	each	texture.

The	MtlMakerCallback	passed	in	to	SetupGfxMultiMaps	provides
functions	to	help	in	setting	up	the	"Material"	data	structure.	The	function
NumberTexturesSupported()	lets	you	know	the	capabilities	of	the	current
hardware,	so	you	can	adapt	accordingly.	The	function
GetGfxTexInfoFromTexmap	fills	in	the	fields	of	a	TextureInfo	except
the	texHandle	and	texture	ops.
The	implementation	of	SetupGfxMultiMaps	must	create	the	"texHandle"
for	each	of	the	textures	described	in	its	TextureInfo	array.	It	typically	does
this	by	calling	the	submap's	GetVPDisplayDIB()	method,	and	then	creates
the	texHandle	by	calling	the	callBack	function	MakeHandle(bmi).	To	avoid
doing	this	calculation	when	not	necessary	it	is	best	to	save	the	texHandles
along	with	their	validity	intervals.	Then	when	SetupGfxMultiMaps	is
called,	if	valid	texHandles	are	already	in	hand	they	can	just	be	used	without
recomputing.

Parameters:
TimeValue	t
The	time	at	which	to	evaulate	the	material.
Material	*mtl
Points	to	the	interactive	renderer	material	to	update.
MtlMakerCallback	&cb
This	callback	object	is	provided	as	a	helper	to	fill	in	the	Material	properties
above.	See	Class	MtlMakerCallback.

Default	Implementation:
{}

Loading	and	Saving	Methods
Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
Implemented	by	the	System.
This	method	is	called	to	load	the	material	or	texture	from	disk.	The	common
MtlBase	data	must	be	loaded	as	well.	See	the	code	below.

Parameters:

ILoad	*iload
An	interface	pointer	for	calling	methods	to	load	data.	See	Class	ILoad.

Return	Value:
See	List	of	IOResults.

Sample	Code:
IOResult	Gradient::Load(ILoad	*iload)	{
	IOResult	res;
	int	id;
	while	(IO_OK==(res=iload->OpenChunk()))	{
		switch(id	=	iload->CurChunkID())	{
			case	MTL_HDR_CHUNK:
				res	=	MtlBase::Load(iload);
				break;
			case	MAPOFF_CHUNK+0:
			case	MAPOFF_CHUNK+1:
			case	MAPOFF_CHUNK+2:
				mapOn[id-MAPOFF_CHUNK]	=	0;
				break;
			}
		iload->CloseChunk();
		if	(res!=IO_OK)
			return	res;
		}
	iload->RegisterPostLoadCallback(
		new
ParamBlockPLCB(versions,NUM_OLDVERSIONS,&curVersion,this,1));
	return	IO_OK;
	}

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
Implemented	by	the	System.
This	method	saves	the	plug-in's	data	to	disk..	The	common	MtlBase	data	must
be	saved	as	well.	The	base	class	method	must	be	called	in	a	chunk	at	the
beginning	of	every	Mtl	and	Texmap.

Parameters:
ISave	*isave
An	interface	pointer	available	for	saving	data.	See	Class	ISave.

Return	Value:
See	List	of	IOResults.

Sample	Code:
Note	in	the	code	below	the	base	class	method	is	called	in	a	chunk	before	the
rest	of	the	plug-ins	data	is	saved.
IOResult	Gradient::Save(ISave	*isave)	{
	IOResult	res;
	//	Save	common	stuff
	isave->BeginChunk(MTL_HDR_CHUNK);
	res	=	MtlBase::Save(isave);
	if	(res!=IO_OK)	return	res;
	isave->EndChunk();
	
	for	(int	i=0;	i<NSUBTEX;	i++)	{
		if	(mapOn[i]==0)	{
			isave->BeginChunk(MAPOFF_CHUNK+i);
			isave->EndChunk();
			}
		}
	return	IO_OK;
	}	

Enumerate	Auxilliary	Files	Implementation
Prototype:
void	EnumAuxFiles(NameEnumCallback&	nameEnum,	DWORD
flags);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	an	implementation	of	the	Animatable	method.	This	default
implementation	simply	recurses,	skipping	inactive	subTexmaps	if	appropriate.

GBuffer	(system)	methods.
Prototype:
ULONG	GetGBufID();

Remarks:
Implemented	by	the	System.
Returns	the	G-buffer	ID	of	this	material.

Prototype:
void	SetGBufID(ULONG	id);

Remarks:
Implemented	by	the	System.
Sets	the	G-buffer	ID	of	this	material.

Operators:

Prototype:
MtlBase&	operator=(const	MtlBase&	m);

Remarks:
Implemented	by	the	System.
Materials	and	Texmaps	must	use	this	operator	to	copy	the	common	portion	of
themselves	when	cloning.

Postage	Stamp	Image	Methods
The	Material	/	Map	Browser	supports	the	display	of	small	and	large	icon
images	for	material	and	texture	maps.	The	methods	below	deal	with	the
creation,	access	and	deletion	of	these	images.	The	small	size	image	is	32
pixels.	The	large	size	is	88	pixels.

Prototype:
PStamp*	GetPStamp(int	sz);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.

Returns	a	pointer	to	the	postage	stamp	image	for	the	file.
Parameters:
int	sz
One	of	the	following	values:
PS_SMALL	for	small	(32x32)	images.
PS_LARGE	for	large	(88x88)	images.
PS_TINY	for	tiny	(24x24)	images.

Prototype:
PStamp*	CreatePStamp(int	sz,	BOOL	Render	=	FALSE);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.
Creates	a	postage	stamp	image	and	returns	a	pointer	to	it.	If	the	postage	stamp
image	already	exists	then	it	is	simply	returned.
Here's	an	example	using	this	method	to	display	a	small	material	sample.
	
void	DisplayMB(MtlBase	*mb,	HDC	hdc,	int	x,	int	y)	{
mb->CreatePStamp(0,TRUE);	//	create	and	render	a	small	pstamp
PStamp	*ps	=	mb->GetPStamp(0);
if	(ps)	{
int	d	=	PSDIM(0);
int	scanw	=	ByteWidth(d);
int	nb	=	scanw*d;
UBYTE	*workImg	=	new	UBYTE[nb];
if	(workImg==NULL)

return;
ps->GetImage(workImg);
Rect	rect;
rect.left	=	x;
rect.top	=	y;

rect.right	=	x+d;
rect.bottom	=	y+d;
GetGPort()->DisplayMap(hdc,	rect,0,0,	workImg,	scanw);
delete	[]	workImg;
}

}
Parameters:
int	sz
One	of	the	following	values:
PS_SMALL	for	small	(32x32)	images.
PS_LARGE	for	large	(88x88)	images.
PS_TINY	for	tiny	(24x24)	images.

BOOL	Render	=	FALSE
This	parameter	is	available	in	release	4.0	and	later	only.
If	set	to	true,	the	postage	stamp	bitmap	will	have	the	MtlBase	rendered	into	it
automatically.	The	bitmap	can	then	be	retrieved	using	PStamp::GetImage,
for	drawing	in	the	UI.

Prototype:
void	DiscardPStamp(int	sz);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	System.
Discards	the	postage	stamp	image.

Parameters:
int	sz
One	of	the	following	values:
PS_SMALL	for	small	(32x32)	images.
PS_LARGE	for	large	(88x88)	images.
PS_TINY	for	tiny	(24x24)	images.

Internal	Methods

Prototype:
int	GetMeditObjType()

Remarks:
This	method	is	used	internally.

Prototype:
void	SetMeditObjType(int	t)

Remarks:
This	method	is	used	internally.

Prototype:
int	GetMeditTiling()

Remarks:
This	method	is	used	internally.

Prototype:
void	SetMeditTiling(int	t)

Remarks:
This	method	is	used	internally.

Prototype:
BOOL	TextureDisplayEnabled()

Remarks:
This	method	is	used	internally.
	

The	following	methods	are	for	doing	interactive	texture	display.

Prototype:
virtual	BOOL	SupportTexDisplay()

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	this	texture	supports	being	used	in	the	interactive	renderer;
otherwise	FALSE.	If	the	texture	does	return	TRUE	it	is	expected	to	implement
the	methods	ActivateTexDisplay()	and	GetActiveTexHandle().

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	void	ActivateTexDisplay(BOOL	onoff)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	usage	of	the	texture	the	interactive	renderer
changes.	This	method	must	only	be	implemented	if	SupportTexDisplay()
returns	TRUE.	This	method	does	not	cause	the	texture	map	to	be	drawn	in	the
viewport	but	should	be	called	with	TRUE	as	the	argument	before	this	can
occur.	For	viewport	drawing	of	textures	refer	to
Interface::ActivateTexture()	and	Interface::DeActivateTexture()
instead.

Parameters:
BOOL	onoff
TRUE	if	the	texture	is	being	used;	FALSE	if	it	is	no	longer	being	used.

Default	Implementation:
{}

Prototype:
virtual	DWORD	GetActiveTexHandle(TimeValue	t,
TexHandleMaker&	thmaker)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	retrieve	a	texture	handle	to	this	texture	map.

Parameters:

TimeValue	t
The	time	to	return	the	texture	handle.
TexHandleMaker&	thmaker
This	class	provides	methods	for	creating	a	texture	handle	from	a	3ds	max
bitmap	and	a	Windows	DIB.	It	also	has	a	method	to	retrieve	the	required	size
of	the	texture	map.	See	Class	TexHandleMaker.

Return	Value:
The	texture	handle.

Default	Implementation:
{return	0;}

Prototype:
void	IncrActive();

Remarks:
This	method	is	used	internally.

Prototype:
void	DecrActive();

Remarks:
This	method	is	used	internally.

Prototype:
int	Active();

Remarks:
This	method	is	used	internally.

ReferenceMaker
See	Also:	Class	ReferenceMaker.
Any	entity	that	makes	references	must	be	derived	from	this	class.	A	reference
creates	an	official	record	of	the	dependency	between	a	ReferenceMaker	and	a
ReferenceTarget.	3ds	max	uses	a	messaging	system	to	notify	ReferenceMakers
about	changes	in	their	ReferenceTargets.
ReferenceMaker	provides	two	methods	associated	with	this	system.
NotifyDependents()
A	plug-in	calls	this	method	any	time	it	needs	to	broadcast	a	message	to	all	its
dependents.	Typically	this	is	a	REFMSG_CHANGE	message	indicating
the	plug-in	has	changed.
NotifyRefChanged()
This	method	is	called	by	the	system	when	one	of	the	entities	a	plug-in
references	calls	NotifyDependents()	to	broadcast	a	message.	The	plug-in
implements	NotifyRefChanged()	to	receive	the	messages.

A	reference	maker	must	provide	access	to	its	references	via	the	following
methods:
NumRefs(),	GetReference(i),	SetReference(i)
The	system	calls	these	methods	when	the	plug-in	creates	and	deletes
references.

ReferenceMaker	has	additional	methods	for	creating,	replacing	and	deleting
references.
MakeRefByID()
Makes	a	new	reference	given	the	reference	target	and	the	index	of	the
reference	within	the	reference	maker.
ReplaceReference()
Deletes	a	reference	if	it	is	non-null	and	makes	a	new	reference	to	a	new	target.
DeleteReference()
Deletes	a	particular	reference.
DeleteAllRefsFromMe()
This	method	deletes	all	references	that	the	reference	maker	has.
DeleteAllRefs()
This	deletes	all	references	to	AND	from	the	reference	maker.

EnumDependents()
This	allows	a	reference	target	to	enumerate	all	reference	to	it.	All	reference
targets	have	a	list	of	backpointers	to	entities	that	reference	it.	This	method
enumerates	those	back	pointers	calling	the	given	callback	object	once	per
dependent.

ReferenceMaker	also	has	methods	for	the	loading	and	saving	of	plug-ins.
Load()
This	method	is	called	when	a	3ds	max	file	itself	is	being	loaded.	The	plug-in
would	respond	by	loading	its	data	through	the	given	interface	pointer.	If	the
plug-in	has	references	to	other	sub	components,	the	system	will	automatically
call	Load()	on	the	sub-components.
Save()
This	method	is	called	when	a	3ds	max	file	itself	is	being	saved.	The	plug-in
would	respond	by	saving	its	data	through	the	given	interface	pointer.

Class	ReferenceMaker
See	Also:	Class	Animatable,	Class	ReferenceTarget,	List	of	Reference
Messages,	References,	Class	ILoad,	Class	ISave.
class	ReferenceMaker	:	public	Animatable

Description:
Any	entity	that	makes	references	must	be	derived	from	this	class.	A	reference
creates	a	record	of	the	dependency	between	a	ReferenceMaker	and	a
ReferenceTarget.	3ds	max	uses	a	messaging	system	to	notify	dependent
entities	about	changes.	This	class	has	a	method	that	receives	the	notifications	its
dependents	send	when	they	change.	It	has	methods	that	return	the	number	of
references	if	has,	and	methods	to	get	and	set	these	references.	Also,	there	are
methods	for	creating,	replacing	and	deleting	the	references.	File	input/output	is
handled	via	methods	of	this	class	(Load()	and	Save()).
See	the	Advanced	Topics	section	on	References	for	an	overview	of	the	3ds	max
reference	architecture.

Method	Groups:
The	hyperlinks	below	jump	to	the	start	of	groups	of	related	methods	within	the
class:
Dependent	Notification
Reference	Access	(Num/Get/Set)
Making	/	Replacing	/	Deleting	References
Finding/Checking	Reference	Targets
Loading	/	Saving	Methods

Methods:

Dependent	Notification

Prototype:
virtual	RefResult	NotifyRefChanged(Interval	changeInt,
RefTargetHandle	hTarget,	PartID&	partID,RefMessage
message)=0;

Remarks:

Implemented	by	the	Plug-In.
A	plug-in	which	makes	references	must	implement	a	method	to	receive	and
respond	to	messages	broadcast	by	its	dependents.	This	is	done	by
implementing	NotifyRefChanged().
The	plug-in	developer	usually	implements	this	method	as	a	switch	statement
where	each	case	is	one	of	the	messages	the	plug-in	needs	to	respond	to.
Note:	For	developer	that	need	to	update	a	dialog	box	with	data	about	an	object
you	reference	note	the	following	related	to	this	method:	This	method	may	be
called	many	times.	For	instance,	say	you	have	a	dialog	box	that	displays	data
about	an	object	you	reference.	This	method	will	get	called	many	time	during
the	drag	operations	on	that	object.	If	you	updated	the	display	every	time	you'd
wind	up	with	a	lot	of	'flicker'	in	the	dialog	box.	Rather	than	updating	the
dialog	box	each	time,	you	should	just	invalidate	the	window	in	response	to	the
NotifyRefChanged()	call.	Then,	as	the	user	drags	the	mouse	your	window
will	still	receive	paint	messages.	If	the	scene	is	complex	the	user	may	have	to
pause	(but	not	let	up	on	the	mouse)	to	allow	the	paint	message	to	go	through
since	they	have	a	low	priority.	This	is	the	way	many	windows	in	3ds	max
work.

Parameters:
Interval	changeInt
This	is	the	interval	of	time	over	which	the	message	is	active.	Currently,	all
plug-ins	will	receive	FOREVER	for	this	interval.
RefTargetHandle	hTarget
This	is	the	handle	of	the	reference	target	the	message	was	sent	by.	The
reference	maker	uses	this	handle	to	know	specifically	which	reference	target
sent	the	message.
PartID&	partID
This	contains	information	specific	to	the	message	passed	in.	Some	messages
don't	use	the	partID	at	all.	See	the	section	List	of	Reference	Messages	for
more	information	about	the	meaning	of	the	partID	for	some	common
messages.
RefMessage	message
The	message	parameters	passed	into	this	method	is	the	specific	message
which	needs	to	be	handled.	See	List	of	Reference	Messages.

Return	Value:
The	return	value	from	this	method	is	of	type	RefResult.	This	is	usually
REF_SUCCEED	indicating	the	message	was	processed.	Sometimes,	the
return	value	may	be	REF_STOP.	This	return	value	is	used	to	stop	the
message	from	being	propagated	to	the	dependents	of	the	item.

Reference	Access
3ds	max	manages	the	access	to	an	items	references	by	using	a	virtual	array.	If	the
plug-in	makes	references,	it	must	implement	these	three	methods	handle	access
to	its	references:	NumRefs(),	GetReference(i),	SetReference(i).

Prototype:
virtual	int	NumRefs();

Remarks:
Implemented	by	the	Plug-In.
The	plug-in	implements	this	method	to	return	the	number	of	references	it
makes.	NumRefs()	indicates	valid	values	for	'i'	when	doing	a
GetReference(i)	or	SetReference(i).	An	item	may	return	different	values
at	different	times	if	the	number	of	references	is	changing.

Return	Value:
The	number	of	references	made	by	the	plug-in.

Default	Implementation:
{	return	0;}
	

Prototype:
virtual	RefTargetHandle	GetReference(int	i);

Remarks:
Implemented	by	the	Plug-In.
The	plug-in	implements	this	method	to	return	its	'i	th'	reference.	The	plug-in
simply	keeps	track	of	its	references	using	an	integer	index	for	each	one.	When
the	system	calls	this	method,	the	plug-in	returns	its	'i	th'	reference.

Parameters:

int	i
The	virtual	array	index	of	the	reference	to	get.

Return	Value:
The	reference	handle	of	the	'i-th'	reference.

Default	Implementation:
{	return	NULL;	}
	

Prototype:
virtual	void	SetReference(int	i,	RefTargetHandle	rtarg);

Remarks:
Implemented	by	the	Plug-In.
The	plug-in	implements	this	method	to	store	the	reference	handle	passed	into
its	'i-th'	reference.	The	plug-in	simply	keeps	track	of	its	references	using	an
integer	index	for	each	one.	When	the	system	calls	this	method,	the	plug-in
stores	its	'i-th'	reference.

Parameters:
int	i
The	virtual	array	index	of	the	reference	to	store.
RefTargetHandle	rtarg
The	reference	handle	to	store.

Default	Implementation:
{}
	

Making	/	Replacing	/	Deleting	References

Prototype:
RefResult	MakeRefByID(Interval	refInterval,int	which,
RefTargetHandle	htarget)

Remarks:
Implemented	by	the	System.
This	method	creates	a	reference	between	the	object	which	calls	the	method,

and	the	ReferenceTarget	specified	by	the	htarget	parameter.
Note	that	this	method	calls	SetReference()	after	the	reference	is	made	to
initialize	it.

Parameters:
refInterval
Currently,	all	plug-ins	must	use	FOREVER	for	this	interval.
Indicates	the	interval	of	time	over	which	this	reference	is	active.	Outside	this
interval,	the	reference	is	not	considered	to	be	a	dependency.	This	allows	the
plug-in	to	have	dependent	relationship	over	only	portions	of	an	entire
animation	time	range.	If	a	plug-in	has	a	dependency	over	the	entire	animation
it	may	use	the	pre-defined	interval	FOREVER	for	this	parameter.
which
Indicates	which	virtual	array	index	this	newly	created	reference	is	assigned	to.
The	system	uses	a	virtual	array	mechanism	to	access	the	references	an	item
has.	The	developer	simply	assigns	an	integer	index	to	each	reference.
hTarget
This	parameter	is	the	handle	of	the	item	we	are	making	a	reference	to.

Return	Value:
The	return	value	from	this	method	is	of	type	RefResult.	This	is	usually
REF_SUCCEED	indicating	the	reference	was	created	and	is	registered	by
the	reference	target;	otherwise	REF_FAIL.

Prototype:
RefResult	ReplaceReference(int	which,	RefTargetHandle	newtarg,
BOOL	delOld=TRUE);

Remarks:
Implemented	by	the	System.
This	method	is	used	to	replace	a	reference,	for	example	when	cloning
reference	makers,	to	delete	an	old	reference	and	make	a	new	one.

Parameters:
int	which
The	virtual	array	index	of	the	reference	to	replace.
RefTargetHandle	newtarg

The	new	reference	target
BOOL	delOld=TRUE
If	TRUE,	the	old	reference	is	deleted.

Return	Value:
This	is	usually	REF_SUCCEED	indicating	the	reference	was	replaced;
otherwise	REF_FAIL.

Prototype:
RefResult	DeleteAllRefsFromMe();

Remarks:
Implemented	by	the	System.
Deletes	all	references	from	this	ReferenceMaker.

Return	Value:
This	is	always	REF_SUCCEED	indicating	the	references	were	deleted.

Prototype:
virtual	RefResult	DeleteAllRefsToMe()

Remarks:
Implemented	by	the	System.
This	method	deletes	all	the	references	to	this	reference	maker/reference	target.
This	also	sends	the	REFMSG_TARGET_DELETED	message	to	all
dependents.

Return	Value:
This	is	REF_SUCCEED	if	the	references	were	deleted;	otherwise	it	is
REF_FAIL.

Prototype:
RefResult	DeleteAllRefs();

Remarks:
Implemented	by	the	System.
Deletes	all	references	both	to	and	from	this	item.

Return	Value:

This	is	REF_SUCCEED	if	the	references	were	deleted;	otherwise	it	is
REF_FAIL.

Prototype:
void	DeleteMe();

Remarks:
Implemented	by	the	System.
This	deletes	all	reference	to	and	from	the	item,	sends
REFMSG_TARGET_DELETED	messages,	handles	UNDO,	and	deletes
the	object.

Prototype:
RefResult	DeleteReference(int	i);

Remarks:
Implemented	by	the	System.
This	method	deletes	the	reference	whose	virtual	array	index	is	passed.	The
other	reference	indices	are	not	affected,	i.e.	the	number	of	references	is	not
reduced	nor	are	they	re-ordered	in	any	way.	Note	the	system	calls
SetReference(i,	NULL)	to	set	that	reference	to	NULL.	Also,	if	this	is	the	last
reference	to	the	item,	the	item	itself	is	deleted	by	calling	its	DeleteThis()
method.

Parameters:
int	i
The	virtual	array	index	of	the	reference	to	delete.

Return	Value:
This	is	REF_SUCCEED	if	the	reference	was	deleted;	otherwise	it	is
REF_FAIL.
	

Prototype:
virtual	BOOL	CanTransferReference(int	i)

Remarks:

This	method	is	used	internally.	It	is	used	by	certain	system	objects	that	have
references.	A	reference	maker	can	choose	not	to	let	TransferReferences()
affect	it.	Note	that	plug-ins	probably	should	not	use	this.

Default	Implementation:
{return	TRUE;}

Finding/Checking	Reference	Targets

Prototype:
int	FindRef(RefTargetHandle	rtarg)

Remarks:
Implemented	by	the	System.
This	method	returns	the	virtual	array	index	of	the	reference	target	passed.

Parameters:
RefTargetHandle	rtarg
The	reference	target	to	find	the	index	of.

Return	Value:
The	virtual	array	index	of	the	reference	target	to	find.	If	the	reference	target	is
not	found,	-1	is	returned.

Prototype:
virtual	BOOL	IsRefTarget();

Remarks:
This	function	differentiates	things	subclassed	from	ReferenceMaker	from
subclasses	of	ReferenceTarget.	The	implementation	of	this	method	(in
ReferenceMaker)	returns	FALSE	and	its	implementation	in
ReferenceTarget	returns	TRUE.	This	can	be	useful	when	tracing	back	up
the	reference	hierarchy,	to	know	when	you	run	into	something	that	was
subclassed	directly	off	of	ReferenceMaker,	and	hence	to	stop	the	traversal
at	that	point.

Default	Implementation:
{	return	FALSE;	};

Prototype:
virtual	BOOL	IsRealDependency(ReferenceTarget	*rtarg)

Remarks:
When	a	reference	target's	last	"real"	reference	is	deleted	the	target	is	deleted.
Any	leftover	"non-real"	reference	makers	will	receive	a
REFMSG_TARGET_DELETED	notification.	This	method	returns
TRUE	if	the	reference	dependency	is	"real".	Otherwise	it	returns	FALSE.
Certain	references	are	not	considered	"real"	dependencies.	For	instance,
internally	there	are	certain	reference	makers	such	as	the	object	that	handles
editing	key	info	in	the	motion	branch.	This	object	implements	this	method	to
return	FALSE	because	it	is	not	a	"real"	reference	dependency.	It's	just	needed
while	the	editing	is	taking	place.	Plug-in	developers	dont'	need	to	concern
themselves	with	this	method	because	it	is	used	internally.

Parameters:
ReferenceTarget	*rtarg
A	pointer	to	the	reference	target.

Default	Implementation:
{return	TRUE;}

Loading	/	Saving	Methods

Prototype:
virtual	IOResult	Save(ISave	*isave);

Remarks:
Implemented	by	the	Plug-In.
Called	by	the	system	to	allow	the	plug-in	to	save	its	data.

Parameters:
ISave	*isave
This	pointer	may	be	used	to	call	methods	to	write	data	to	disk.	See	the
Advanced	Topics	section	on	Loading	and	Saving	more	an	overview	of	the
load/save	process.

Return	Value:
IO_OK

The	result	was	acceptable	-	no	errors.
IO_ERROR
This	should	be	returned	if	an	error	occurred.

Default	Implementation:
{	return	IO_OK;	}

Prototype:
virtual	IOResult	Load(ILoad	*iload);

Remarks:
Implemented	by	the	Plug-In.
Called	by	the	system	to	allow	the	plug-in	to	load	its	data.	See	the	Advanced
Topics	section	on	Loading	and	Saving	more	an	overview	of	the	load/save
process.

Parameters:
ILoad	*iload
This	interface	pointer	may	be	used	to	call	methods	to	read	data	from	disk.

Return	Value:
IO_OK
The	result	was	acceptable	-	no	errors.
IO_ERROR
This	should	be	returned	if	an	error	occurred.

Default	Implementation:
{	return	IO_OK;	}

Prototype:
virtual	int	RemapRefOnLoad(int	iref)

Remarks:
This	method	is	used	when	you	have	modified	a	ReferenceMaker	to	add	or
delete	references,	and	are	loading	old	files.	It	gets	called	during	the	reference
mapping	process,	after	the	Load()	method	is	called.	You	determine	what
version	is	loading	in	the	Load(),	and	store	the	version	in	a	variable	which	you
can	look	at	in	RemapRefOnLoad()	to	determine	how	to	remap	references.

The	default	implementation	of	this	method	just	returns	the	same	value	it	is
passed,	so	you	don't	need	to	implement	it	unless	you	have	added	or	deleted
references	from	your	class.	This	method	makes	it	a	lot	easier	to	load	old	files
when	the	reference	topology	has	changed.

Parameters:
int	iref
The	input	index	of	the	reference.

Return	Value:
The	output	index	of	the	reference.

Default	Implementation:
{	return	iref;	};

Prototype:
virtual	void	RescaleWorldUnits(float	f);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	may	be	implemented	to	rescale	the	size	of	all	world	units	in	reference
hierarchy.	Developers	must	call
	if	(TestAFlag(A_WORK1))
		return;
	SetAFlag(A_WORK1);
before	doing	this	on	a	reference	hierarchy.
See	the	sub-section	'Scaling	Parameter	Values'	in	Updating	MAX	1.0	Plug-Ins
to	work	with	MAX	2.0	for	additional	details.

Parameters:
float	f
The	scale	factor.

Prototype:
virtual	void	SaveEnum(SaveEnumProc&	sep,	BOOL
isNodeCall=0);

Remarks:

This	method	is	used	internally.

Prototype:
void	BlockEval()

Remarks:
Implemented	by	the	System.
This	method	is	used	internally.

Prototype:
void	UnblockEval()

Remarks:
Implemented	by	the	System.
This	method	is	used	internally.

Prototype:
int	Evaluating()

Remarks:
Implemented	by	the	System.
This	method	is	used	internally.

Prototype:
RefResult	StdNotifyRefChanged(Interval	changeInt,
RefTargetHandle	hTarget,	PartID	partID,	RefMessage	message,
BOOL	propagate=TRUE);

Remarks:
This	method	is	used	internally.
	

The	following	methods	are	for	release	4.2	or	above

Prototype:
	virtual	void*	GetInterface(ULONG	id)

Remarks:
Returns	a	pointer	to	the	interface.

Parameters:
	ULONG	id
The	id	of	the	interface.

Prototype:
	virtual	BaseInterface*	GetInterface(Interface_ID	id)
Remarks:
Returns	a	pointer	to	the	Base	Interface	for	the	interface	ID	passed.

Parameters:
	Interface_ID	id
The	unique	ID	of	the	interface	to	get

Reference	Target
See	Also:	Class	ReferenceTarget.
Almost	all	plug-ins	are	derived	from	ReferenceTarget.	And	because
ReferenceTarget	is	derived	from	ReferenceMaker,	these	plug-ins	may	also	make
references.
The	primary	methods	allow	deleting	any	references	that	have	been	made	to	the
target,	and	copying	of	the	reference	target.
DeleteAllRefsToMe()
This	method	deletes	all	references	to	the	target.	This	is	often	used	when	an
item	is	being	deleted	and	it	wants	to	remove	all	references	from	itself.
Clone()
This	method	copies	both	the	data	structure	and	all	the	data	residing	in	the	data
structure	of	the	reference	target.

Class	ReferenceTarget
See	Also:	Class	ReferenceMaker,	Class	RefList,	Class	DependentEnumProc,
Class	RemapDir,	References.
class	ReferenceTarget	:	public	ReferenceMaker

Description:
This	class	is	used	by	anything	that	may	need	to	have	references	made	to	it.	Most
plug-ins	are	derived	from	this	class.	This	class	includes	methods	to	send
notification	of	changes	by	the	object,	seeing	which	other	objects	in	the	system
depend	on	it	(reference	it),	and	a	method	used	to	create	a	copy	of	the	object
('clone'	it).	See	the	Advanced	Topics	section	on	References	for	an	overview	of
the	3ds	max	reference	architecture.

Method	Groups:
The	hyperlinks	below	jump	to	the	start	of	groups	of	related	methods	within	the
class:
Dependent	Notification
Cyclic	Reference	Testing	/	Dependency	Testing
Adding	/	Deleting	/	Transfering	References
Dependent	Enumeration
Cloning

Methods:

Dependent	Notification

Prototype:
virtual	RefResult	NotifyDependents(Interval	changeInt,	PartID
partID,	RefMessage	message,	SClass_ID
sclass=NOTIFY_ALL,BOOL	propagate=TRUE,	RefTargetHandle
hTarg=NULL);

Remarks:
Implemented	by	the	System.
This	method	broadcasts	the	message	specified	by	the	message	parameter	to
all	the	items	which	reference	this	item.

Note	the	following	on	how	reference	messages	propogate	(that	is,	travel	to	the
dependents):
When	a	plug-in	sends	a	message	via	NotifyDependents(),	the	message
propagates	to	ALL	the	items	that	reference	it.	And	also	to	all	the	items
which	reference	those	items.	And	so	on.	The	only	exceptions	to	this	are	as
follows:

1)	The	propagate	parameter	passed	is	FALSE.	In	that	case	the
message	only	goes	to	the	immediate	dependents.
2)	If	the	SClass_ID	sclass=NOTIFY_ALL	parameter	limits	the
dependents	to	a	certain	specified	Super	Class.
3)	If	one	of	the	items	that	references	the	plug-in	processes	the	message
inside	its	NotifyRefChanged()	and	returns	REF_STOP	instead	of
REF_SUCCEED.	In	this	case,	the	message	is	not	further
propagated.

Also,	whenever	a	message	propogates,	the	hTarget	parameter	received	in
NotifyRefChanged()	is	reset	to	the	this	pointer	of	the	immediate
dependent	(not	the	originator)	who	propogates	the	message.

Parameters:
Interval	changeInt
Currently	all	plug-ins	must	pass	FOREVER	for	this	interval.	This	indicates
the	interval	of	time	over	which	the	change	reported	by	the	message	is	in	effect.
PartID	partID
This	parameter	is	used	to	pass	message	specific	information	to	the	items
which	will	receive	the	message.	See	the
ReferenceMaker::NotifiyRefChanged()	method	for	more	details.
RefMessage	message
The	message	to	broadcast	to	all	dependents.	See	the
ReferenceMaker::NotifiyRefChanged()	method	for	more	details.	See
List	of	Reference	Messages.
SClass_ID	sclass=NOTIFY_ALL
This	parameter	defaults	to	NOTIFY_ALL.	If	this	value	is	passed	to
NotifyDependents()	all	dependents	will	be	notified.	Other	super	class
values	may	be	passed	to	only	send	the	message	to	certain	items	whose
SuperClassID	matches	the	one	passed.

BOOL	propagate=TRUE
This	parameter	defaults	to	TRUE.	This	indicates	that	the	message	should	be
sent	to	all	'nested'	dependencies.	If	passed	as	FALSE,	this	parameter	indicates
the	message	should	only	be	sent	to	first	level	dependents.	Normally	this
should	be	left	to	default	to	TRUE.
RefTargetHandle	hTarg=NULL
This	parameter	must	always	default	to	NULL.

Return	Value:
This	method	always	returns	REF_SUCCEED.

Prototype:
virtual	void	NotifyForeground(TimeValue	t)

Remarks:
Implemented	by	the	System.
This	method	is	called	to	flag	dependents	into	the	foreground.	The	default
implementation	just	sends	out	the	notification
REFMSG_FLAGDEPENDENTS	with	PART_PUT_IN_FG	as	the
partID.	In	particular,	a	slave	controller	could	override	this	method	and	call	its
master's	version	of	this	method.

Parameters:
TimeValue	t
The	time	to	send	the	notification.

Prototype:
virtual	void	NotifyTarget(int	message,	ReferenceMaker*	hMaker);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Wsed	by	a	ReferenceMaker	to	send	'reverse'	notification	messages	to	its
ReferenceTargets.

Parameters:
int	message
The	message	sent	to	the	reference	target.	See	List	of	Reference	Target
Messages.	**aztodo**	link	this

ReferenceMaker*	hMaker
The	ReferenceMaker	sending	the	message.

Cyclic	Reference	Testing	/	Dependency	Testing

Prototype:
RefResult	TestForLoop(Interval	refInterval,	RefMakerHandle
hmaker);

Remarks:
Implemented	by	the	System.
This	method	may	be	called	to	test	for	cyclical	references.	Normally	developers
don't	need	to	call	this	method	since	when	a	developer	calls	MakeRefByID()
to	make	a	reference	it	performs	its	own	test	internally	and	will	not	succeed	if
there	is	a	cyclical	reference	being	created.

Parameters:
Interval	refInterval
This	interval	is	reserved	for	future	use.	Currently	any	plug-in	should	specify
FOREVER	for	this	interval.
RefMakerHandle	hmaker
The	reference	maker	performing	the	loop	test.

Return	Value:
REF_SUCCEED	if	a	cyclic	reference	would	be	created;	otherwise
REF_FAIL.

Prototype:
HasDependents()

Remarks:
Implemented	by	the	System.
Returns	nonzero	if	the	reference	target	has	items	that	reference	it;	otherwise	0.

Prototype:
RefList&	GetRefList()

Remarks:

Implemented	by	the	System.
Returns	a	list	of	references	to	this	reference	target.

Return	Value:
List	of	references	to	this	reference	target.

Prototype:
void	BeginDependencyTest()

Remarks:
Implemented	by	the	System.
To	see	if	this	reference	target	depends	on	something:	first	call
BeginDependencyTest()	then	call	NotifyDependents()	on	the	thing	with
the	message	REFMSG_TEST_DEPENDENCY.	If
EndDependencyTest()	returns	TRUE	this	target	is	dependent	on	the	thing.

Prototype:
BOOL	EndDependencyTest()

Remarks:
Implemented	by	the	System.
To	see	if	this	reference	target	depends	on	something:	first	call
BeginDependencyTest()	then	call	NotifyDependents()	on	the	thing	with
the	message	REFMSG_TEST_DEPENDENCY.	If
EndDependencyTest()	returns	TRUE	this	target	is	dependent	on	the	thing.

Return	Value:
Returns	TRUE	if	the	target	is	dependent.

Adding	/	Deleting	/	Transfering	References

Prototype:
virtual	void	RefAdded(RefMakerHandle	rm)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	after	making	a	reference.	If	the	target	needs	to	know	it
can	override	it.

Parameters:
RefMakerHandle	rm
The	ReferenceMaker	creating	the	reference.

Prototype:
RefResult	DeleteAllRefsToMe();

Remarks:
Implemented	by	the	System.
This	method	deletes	all	references	to	this	reference	target.

Return	Value:
Always	returns	REF_SUCCEED.

Prototype:
virtual	RefResult	AutoDelete()

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	a	target's	last	reference	is	deleted.	Most	subclasses
will	not	need	to	override	this.	If	you	don't	want	to	be	deleted	when	the	last
reference	is	deleted,	plug	in	a	no-op.
More	likely,	a	developer	would	override	Animatable::DeleteThis()	if	they
didn't	want	to	be	deleted	from	memory.

Return	Value:
Always	returns	REF_SUCCEED.

Prototype:
virtual	void	RefDeleted()

Remarks:
Implemented	by	the	Plug-In.
This	is	called	after	deleting	a	reference	to	a	reference	target,	in	the	case	that
the	target	was	not	deleted.	If	a	target	needs	to	know,	it	should	override	this
method.

Prototype:
virtual	void	RefDeletedUndoRedo();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	when	a	reference	is	deleted	because	of	an	undo	or	a
redo.

Default	Implementation:
{}

Prototype:
virtual	void	RefAddedUndoRedo(RefMakerHandle	rm);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	when	a	reference	is	added	because	of	an	undo	or	a	redo.

Parameters:
RefMakerHandle	rm
The	reference	maker	that	is	now	referencing	this	target.

Default	Implementation:
{}

Prototype:
RefResult	TransferReferences(RefTargetHandle	oldTarget,	BOOL
delOld=FALSE);

Remarks:
Implemented	by	the	System.
This	method	is	used	to	transfer	all	the	references	from	oldTarget	to	this
reference	target.

Parameters:
RefTargetHandle	oldTarget,
The	previous	reference	target.
BOOL	delOld=FALSE);
If	this	is	TRUE	the	previous	reference	target	is	deleted.

Return	Value:
Always	returns	REF_SUCCEED.

Dependent	Enumeration

Prototype:
virtual	int	EnumDependents(DependentEnumProc*	dep);

Remarks:
Implemented	by	the	System.
This	allows	a	reference	target	to	enumerate	all	reference	to	it.	All	reference
targets	have	a	list	of	back	pointers	to	entities	that	reference	it.	This	method
enumerates	those	back	pointers	calling	the	given	callback	object	once	per
dependent.

Parameters:
DependentEnumProc*	dep
The	callback	object	called	for	each	dependent.

Return	Value:
Return	1	to	stop	the	enumeration	and	0	to	continue.

Cloning

Prototype:
virtual	RefTargetHandle	Clone(RemapDir	&remap	=
NoRemap());

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	have	the	plug-in	clone	itself.	This	method	should
copy	both	the	data	structure	and	all	the	data	residing	in	the	data	structure	of
this	reference	target.	The	plug-in	should	clone	all	its	references	as	well.
Important	Note:	See	the	remarks	in	method	BaseClone()	below.

Parameters:
RemapDir	&remap	=	NoRemap()
This	class	is	used	for	remapping	references	during	a	Clone.	See	Class

RemapDir.
Return	Value:
A	pointer	to	the	cloned	item.

Prototype:
virtual	void	BaseClone(ReferenceTarget	*from,	ReferenceTarget
*to,RemapDir	&remap);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	Plug-In.
Important	Note:	All	plug-ins	that	implement	a	Clone()	method	have	to	call
this	BaseClone()	method	with	the	old	and	the	new	object	as	parameters.	The
ordering	in	regards	to	when	is	method	is	called	is	unimportant	however	it
must,	of	course,	be	called	after	the	cloned	object	is	created.
This	method	allows	base	classes	to	copy	their	data	into	a	new	object	created
by	the	clone	operation.	All	overwrites	of	BaseClone()	must	call	the	base
class	implementation.	The	base	class	implementation	copyies	the	CustAttrib
objects	into	the	newly	created	object.

Parameters:
ReferenceTarget	*from
Points	to	the	old	object	to	clone.
ReferenceTarget	*to
Points	to	the	new	object	created.
RemapDir	&remap
This	class	is	used	for	remapping	references	during	a	Clone.	See	Class
RemapDir.

Prototype:
RefResult	MaybeAutoDelete();

Remarks:
This	method	is	used	internally.
	

The	following	methods	are	for	release	4.2	and	above

Prototype:
	virtual	void*	GetInterface(ULONG	id)
Remarks:
Returns	a	pointer	to	the	interface.

Parameters:
	ULONG	id
The	id	of	the	interface.

Prototype:
	virtual	BaseInterface*	GetInterface(Interface_ID	id)
Remarks:
Returns	a	pointer	to	the	Base	Interface	for	the	interface	ID	passed.

Parameters:
	Interface_ID	id
The	unique	ID	of	the	interface	to	get

Object
See	Also:	Class	Object.
The	object	class	is	the	base	class	for	all	objects.	An	object	is	one	of	two	things:
A	procedural	object	or	a	derived	object.	Derived	objects	are	part	of	the	system
and	may	not	be	created	by	plug-ins.	They	are	containers	for	modifiers.
Procedural	objects	can	be	many	different	things	such	as	cameras,	lights,	helper
objects,	geometric	objects,	etc.
These	are	some	of	the	main	methods	of	Object.
InitNodeName()
This	method	provides	a	default	name	for	the	node	in	the	scene	when	the	object
is	first	created.
DoOwnSelectHilite()
If	a	plug-in	overrides	this	method	to	return	TRUE,	then	the	plug-in	becomes
responsible	for	drawing	itself	in	a	selected	state	(if	it	is	selected).	Otherwise,
the	system	sets	the	current	line/material	color	appropriately.
ObjectValidity()
This	method	returns	the	validity	interval	for	the	object.	This	is	the	intersection
of	the	validity	intervals	for	all	of	the	object's	channels.
IsDeformable()
If	an	object	is	deformable	as	a	point	object,	then	it	should	return	TRUE	from
this	method.	A	deformable	object	is	a	generic	point	object	that	supports	the
following	methods:
NumPoints()
Returns	the	number	of	deformable	points
GetPoint(i)
Returns	the	'i-th'	point.
SetPoint(i)
This	method	sets	the	'i-th'	point.
PointsWereChanged()
If	a	modifier	calls	SetPoint(),	when	it	is	finished	it	should	call	this	method	so
the	object	can	invalidate	and/or	update	its	bounding	box	and	any	other	data	it
might	cache.
Deform()

This	is	the	preferred	method	of	deforming	a	deformable	object	rather	than
calling	GetPoint(i)	and	SetPoint(i).	This	method	applies	the	given
deformable	object	to	its	points	(or	just	its	selected	points	if	the	selected
parameter	is	specified).
GetDeformBBox()
Gets	the	bounding	box	of	the	object	in	a	particular	coordinate	system	specified
by	the	given	matrix.	This	will	only	be	called	on	an	object	that	is	itself
deformable.
All	objects	must	be	able	to	convert	to	TriObjects.	And	optionally	they	may
convert	to	other	types.	A	modifier	specifies	the	type	of	object	it	wishes	to
operate	on	(using	InputType()).	The	modifier	may	only	be	applied	if	the
object	is	of	the	type	that	the	modifier	requests	or	is	capable	of	converting	to
that	type.
CanConvertToType()
This	method	returns	a	boolean	to	indicate	if	the	object	can	be	converted	to	the
desired	type	passed	in.
ConvertToType()
If	the	object	can	be	converted	to	the	type	passed	in,	this	method	creates	a	new
instance	of	that	object	type	and	returns	it.
IntersectRay()
This	is	used	for	ray	tracing,	or	defining	planes	of	tangency	at	a	point	(for
example,	defining	a	construction	plane	at	a	specific	point	on	an	object).	It	is
also	used	by	commands	such	as	Place	Highlight	that	require	the	surface
normal	at	a	point	on	an	object.	The	mesh	class	implements	this	method	so	if
your	object	is	represented	by	a	mesh	this	may	be	calculated	automatically.

ParticleObject
See	Also:	Class	ParticleObject.
This	is	the	base	class	from	which	plug-in	particle	systems	may	be	derived.	The
main	methods	are:
ApplyForceField()
A	force	field	can	be	applied	to	a	particle	system	by	a	space	warp.	The	force
field	provides	a	function	of	position	in	space,	velocity	and	time	that	gives	a
force.	The	force	is	then	used	to	compute	an	acceleration	on	a	particle	which
modifies	its	velocity.	This	method	adds	a	force	to	the	list	of	forces	affecting	a
particle	system.
ApplyCollisionObject()
A	collision	object	can	be	applied	to	a	particle	system	by	a	space	warp.	The
collision	object	checks	a	particle's	position	and	velocity	and	determines	if	the
particle	will	collide	with	it.	This	method	adds	a	collision	object	to	the	list	of
collision	objets	affecting	a	particle	system.

PatchObject
See	Also:	Class	PatchObject.
A	bezier	patch	object.	This	class	implements	many	of	the	methods	from
BaseObject,	Object	and	GeomObject	to	work	with	bezier	patches.

ShapeObject
See	Also:	Class	ShapeObject.
ShapeObjects	are	open	or	closed	hierarchical	shape	objects.	This	is	the	base
class	that	SimpleSpline,	SimpleShape,	SplineShape,	and	LinearShape
are	derived	from.	A	ShapeObject	can	be	made	up	of	one	or	more	splines	thus	a
shape	may	have	multiple	'pieces'.

SimpleMod
See	Also:	Class	SimpleMod.
The	SimpleMod	class	supplies	most	of	the	methods	needed	to	implement	a
deformation	modifier,	reducing	the	amount	of	work	needed	to	create	one.	This
class	is	appropriate	for	modifiers	which	alter	the	geometry	(vertices	or	points)	of
an	object.	The	plug-in	must	implement	a	method	to	return	the	Deformer	(the
process	which	actually	modifies	the	objects).	If	the	plug-in	displays	any
animated	parameters	to	the	user	it	must	implement	a	method	to	update	these
parameters	if	the	user	has	changed	the	current	time	slider.
These	are	the	main	methods:
GetDeformer()
This	gets	the	deformer	callback	object	from	the	derived	class.	This	is	the	class
with	methods	that	actually	deforms	the	object.
UpdateUI()
If	the	modifier	is	currently	being	edited,	any	parameters	that	appear	in	the	user
interface	should	be	updated	so	that	if	the	current	time	has	changed,	the	UI	will
properly	reflect	the	parameter	values	at	that	time.
GetValidity()
This	method	computes	the	validity	interval	for	the	modifier.

SimpleObject
See	Also:	Class	SimpleObject.
This	is	a	base	class	to	simplify	the	development	of	procedural	objects.	The
procedural	object	must	represent	itself	as	a	mesh	in	order	to	subclass	off
SimpleObject.

SimpleParticle
See	Also:	Class	SimpleParticle.
Plug-In	particle	systems	may	be	derived	from	SimpleParticle.	The	main	methods
are:
UpdateParticles()
Update	the	state	of	the	particles	at	the	specified	time.
BuildEmitter()
Constructs	the	particle	emitter	at	the	time	passed.
InvalidateUI()
This	is	called	if	the	user	interface	parameters	needs	to	be	updated	because	the
user	moved	to	a	new	time.	The	UI	controls	must	display	values	for	the	current
time.

SimpleShape
See	Also:	Class	SimpleShape.
Plug-In	procedural	shapes	are	subclassed	from	SimpleShape.	The	main	methods
are:
BuildShape()
Called	to	create	the	spline	shape	at	the	specified	time.
ValidForDisplay()
Called	to	determine	if	the	spline	may	be	displayed	at	the	time	passed.
void	InvalidateUI()
This	is	called	if	the	user	interface	parameters	needs	to	be	updated	because	the
user	moved	to	a	new	time.	The	UI	controls	must	display	values	for	the	current
time.

SimpleSpline
See	Also:	Class	SimpleSpline.
This	is	a	class	used	in	the	creation	of	shape	plug-ins.	Most	of	the	3ds	max	shapes
and	splines	are	derived	from	this	class.	For	example,	Line,	Arc,	Circle,	Ellipse
and	Star	are	all	SimpleSplines.

SimpleWSMMod
See	Also:	Class	SimpleWSMMod.
The	SimpleWSMMod	class	supplies	most	of	the	methods	needed	to	implement	a
Space	Warp	plug-in	(world	space	modifier).
To	be	a	Simple	WSM	modifier,	the	following	assumptions	are	made:
	The	modifier	only	modifies	the	geometry	channel.
	The	modifier	uses	an	instance	of	a	class	derived	from	Deformer	to	do	the
modifying.
The	main	methods	are:
GetDeformer()
This	method	is	used	to	retrieve	the	callback	object	that	will	handle	the
deformation.
UpdateUI()
This	method	is	called	when	the	user	has	moved	the	time	slider	to	a	new	time
and	the	UI	parameters	need	to	be	updated	to	reflect	the	correct	value	at	the
new	time.
GetValidity()
The	SimpleWSMMod	class	calls	this	method	to	retrieve	the	validity	interval
of	the	modifier.

Class	SimpleWSMMod
See	Also:	Class	Modifier,	Class	IParamBlock,	Class	INode.
class	SimpleWSMMod	:	public	Modifier

Description:
The	SimpleWSMMod	class	supplies	most	of	the	methods	needed	to	implement	a
world	space	modifier.
To	be	a	'Simple'	WSM	modifier,	the	following	assumptions	are	made:
	The	modifier	only	modifies	the	geometry	channel.
	The	modifier	uses	an	instance	of	a	class	derived	from	Deformer	to	do	the
modifying.
This	class	maintains	a	pointer	to	a	parameter	block.	If	the	client	of
SimpleWSMMod	uses	a	single	parameter	block	then	SimpleWSMMod	can
manage	all	the	methods	associated	with	SubAnims	and	References	for	the	client.
If	the	client	of	SimpleWSMMod	maintains	several	parameter	blocks	then	the
client	must	implement	the	methods	NumSubs(),	SubAnim(i),
SubAnimName(i),	NumRefs(),	GetReference(i)	and	SetReference(i)
and	call	the	SimpleWSMMod	methods	when	'i'	refers	to	the	parameters
maintained	by	SimpleWSMMod.

Data	Members:
Clients	of	SimpleWSMMod	should	use	the	following	pointers	when	the
references	are	created.
protected:
IParamBlock	*pblock;
Pointer	to	a	parameter	block.
WSMObject	*obRef;
Pointer	to	the	world	space	modifier	object	referenced	by	the	WSMModifier.
INode	*nodeRef;
Pointer	to	the	node	in	the	scene	referenced	by	the	WSMModifier.
static	IObjParam	*ip;
Storage	for	the	interface	pointer.
static	SimpleWSMMod	*editMod;
Storage	for	the	modifier	currently	being	edited	in	the	command	panel.

Clients	of	SimpleWSMMod	should	use	the	following	values	as	the
reference	indexes	of	the	object,	node	and	parameter	block.
#define	SIMPWSMMOD_OBREF	0
#define	SIMPWSMMOD_NODEREF	1
#define	SIMPWSMMOD_PBLOCKREF	2
The	example	code	below	(from
\MAXSDK\SAMPLES\HOWTO\RIPPLE.CPP)	shows	how	these	are
used:
MakeRefByID(FOREVER,SIMPWSMMOD_NODEREF,node);
MakeRefByID(FOREVER,	SIMPWSMMOD_PBLOCKREF,
	CreateParameterBlock(descModVer0,
MODPBLOCK_LENGTH,
		CURRENT_MODVERSION));

Methods:

Prototype:
virtual	Deformer&	GetDeformer(TimeValue	t,ModContext
&mc,Matrix3&	mat,Matrix3&	invmat)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	retrieve	the	callback	object	that	will	handle	the
deformation.

Parameters:
TimeValue	t
Specifies	the	time	the	modification	is	being	performed.
ModContext	&mc
A	reference	to	the	ModContext.
Matrix3&	mat
A	reference	to	a	matrix	that	describes	the	space	the	modification	is	supposed
to	happen	in.	This	is	computed	from	the	ModContext	matrix	and	the
controllers	controlling	the	gizmo	and	center	of	the	modifier.	The	plug-in
developers	job	is	simply	to	transform	each	point	to	be	deformed	by	this	matrix
before	it	performs	its	own	deformation	to	the	point.	After	the	modifier	applies
its	own	deformation	to	the	point,	the	developer	transforms	the	point	by	the

inverse	of	this	matrix	(passed	below).
Matrix3&	invmat
This	is	the	inverse	of	the	matrix	above.	See	the	comment	above	for	how	this	is
used.

Return	Value:
A	C++	reference	to	the	deformer	callback	object.

See	Also:	The	Advanced	Topics	section	on	the	Geometry	Pipeline	System.

Prototype:
virtual	void	InvalidateUI()

Remarks:
Implemented	by	the	Plug-In.
This	is	called	if	the	user	interface	parameters	needs	to	be	updated	because	the
user	moved	to	a	new	time.	The	UI	controls	must	display	values	for	the	current
time.

Example:
If	the	plug-in	uses	a	parameter	map	for	handling	its	UI,	it	may	call	a	method	of
the	parameter	map	to	handle	this:	pmapParam->Invalidate();
If	the	plug-in	does	not	use	parameter	maps,	it	should	call	the	SetValue()
method	on	each	of	its	controls	that	display	a	value,	for	example	the	spinner
controls.	This	will	cause	to	the	control	to	update	the	value	displayed.	The	code
below	shows	how	this	may	be	done	for	a	spinner	control.	Note	that	ip	and
pblock	are	assumed	to	be	initialized	interface	and	parameter	block	pointers
	
float	newval;
Interval	valid=FOREVER;
TimeValue	t=ip->GetTime();
//	Get	the	value	from	the	parameter	block	at	the	current	time.
pblock->GetValue(PB_ANGLE,	t,	newval,	valid);
//	Set	the	value.	Note	that	the	notify	argument	is	passed	as
FALSE.
//	This	ensures	no	messages	are	sent	when	the	value	changes.

angleSpin->SetValue(newval,	FALSE);

Prototype:
virtual	Interval	GetValidity(TimeValue	t)

Remarks:
Implemented	by	the	Plug-In.
The	SimpleWSMMod	class	calls	this	method	to	retrieve	the	validity	interval
of	the	modifier.	The	modifier	provides	this	interval	by	starting	an	interval	at
FOREVER	and	intersecting	it	with	each	of	its	parameters	validity	intervals.

Parameters:
TimeValue	t
The	time	to	compute	the	validity	interval.

Default	Implementation:
{return	FOREVER;}

Return	Value:
The	validity	interval	of	the	modifier.

See	Also:	The	Advanced	Topics	section	on	Intervals.

Prototype:
virtual	ParamDimension	*GetParameterDim(int	pbIndex)

Remarks:
Implemented	by	the	Plug-In.
Returns	the	dimension	of	the	parameter	whose	index	is	passed.

Parameters:
int	pbIndex
The	index	of	the	parameter.

Default	Implementation:
{return	defaultDim;}

Return	Value:
The	dimension	of	the	parameter.

See	Also:	Class	ParamDimension.

Prototype:
virtual	TSTR	GetParameterName(int	pbIndex)

Remarks:
Implemented	by	the	Plug-In.
Returns	the	name	of	the	parameter	whose	index	is	passed.

Parameters:
int	pbIndex
Index	of	the	parameter.

Default	Implementation:
{return	TSTR(_T("Parameter"));}

Return	Value:
The	name	of	the	parameter.

Prototype:
WSMObject	*GetWSMObject(TimeValue	t);

Remarks:
Implemented	by	the	System.
Evaluates	the	node	reference	and	returns	the	WSM	object.	If	you	look	in
\MAXSDK\SAMPLES\HOWTO\MISC\SIMPMOD.CPP	you'll	see
that	all	this	method	does	is	call	EvalWorldState()	on	the	Node	reference.

Parameters:
TimeValue	t
The	time	to	get	the	WSMObject.
When	clients	of	SimpleWSMMod	are	cloning	themselves,	they	should	call
this	method	on	the	clone	to	copy	SimpleWSMMod's	data.
void	SimpleWSMModClone(SimpleMod	*smodSource);
Clients	of	SimpleWSMMod	probably	want	to	override	these.	If	they	do	they
should	call	these	from	within	their	methods.
void	BeginEditParams(IObjParam	*ip,	ULONG	flags,Animatable
*prev);
void	EndEditParams(IObjParam	*ip,	ULONG	flags,Animatable
*next);

SimpleWSMObject
See	Also:	Class	WSMObject.
This	is	a	base	class	to	simplify	the	development	of	space	warp	objects.	The
space	warp	must	represent	itself	as	a	mesh	in	order	to	subclass	off
SimpleWSMObject.	The	main	methods	are:
BuildMesh()
This	method	is	called	to	build	the	mesh	representation	of	the	object	using	its
parameter	settings	at	the	time	passed.
InvalidateUI()
This	is	called	if	the	user	interface	parameters	needs	to	be	updated	because	the
user	moved	to	a	new	time.	The	UI	controls	must	display	values	for	the	current
time.
OKtoDisplay()
This	method	returns	a	BOOL	to	indicate	if	it	is	okay	to	draw	the	object	at	the
time	passed.

Class	SimpleWSMObject
See	Also:	Class	WSMObject,	Class	IParamBlock,	Class	Mesh,	Class	Interval.
class	SimpleWSMObject	:	public	WSMObject

Description:
This	is	the	base	class	for	creating	space	warp	objects.	This	class	implements
many	of	the	methods	required	to	create	a	space	warp	object.	The	only	limitation
for	a	space	warp	object	using	SimpleWSMObject	as	a	base	class	is	that	it	must
represent	itself	with	a	mesh.

Data	Members:
Note:	Methods	of	the	base	class	refer	to	these	data	members.	For	example	the
base	class	implementations	of	the	bounding	box	methods	use	the	mesh	data
member.	Therefore	the	plug-in	derived	from	SimpleWSMObject	must	use	these
same	data	members.	These	are	listed	below:
public:
IParamBlock	*pblock;
Pointer	to	a	parameter	block.	Clients	of	SimpleWSMObject	should	use	this
pointer	when	the	pblock	reference	is	created.
Mesh	mesh;
The	mesh	object	that	is	built	by	BuildMesh().
Interval	ivalid;
The	validity	interval	of	the	mesh.

Methods:
Space	warp	object	plug-ins	which	subclass	off	SimpleWSMObject	must
implement	these	methods.	The	default	implementations	are	noted.

Prototype:
virtual	void	BuildMesh(TimeValue	t)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	build	the	mesh	representation	of	the	object	using	its
parameter	settings	at	the	time	passed.

Parameters:

TimeValue	t
The	time	at	which	to	build	the	mesh.

Prototype:
virtual	ParamDimension	*GetParameterDim(int	pbIndex)

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	parameter	dimension	of	the	parameter	whose	index	is
passed.

Parameters:
int	pbIndex
The	index	of	the	parameter	to	return	the	dimension	of.

Return	Value:
Pointer	to	a	ParamDimension.

Example:
return	stdNormalizedDim;

Default	Implementation:
The	default	implementation	returns	defaultDim.

See	Also:	ParamDimension

Prototype:
virtual	TSTR	GetParameterName(int	pbIndex)

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	name	of	the	parameter	whose	index	is	passed.

Parameters:
int	pbIndex
The	index	of	the	parameter	to	return	the	name	of.

Return	Value:
The	name	of	the	parameter.

Default	Implementation:

The	default	implementation	returns	TSTR(_T("Parameter"))

Prototype:
virtual	void	InvalidateUI()

Remarks:
Implemented	by	the	Plug-In.
This	is	called	if	the	user	interface	parameters	needs	to	be	updated	because	the
user	moved	to	a	new	time.	The	UI	controls	must	display	values	for	the	current
time.

Example:
If	the	plug-in	uses	a	parameter	map	for	handling	its	UI,	it	may	call	a	method	of
the	parameter	map	to	handle	this:	pmapParam->Invalidate();
If	the	plug-in	does	not	use	parameter	maps,	it	should	call	the	SetValue()	method
on	each	of	its	controls	that	display	a	value,	for	example	the	spinner	controls.
This	will	cause	to	the	control	to	update	the	value	displayed.	The	code	below
shows	how	this	may	be	done	for	a	spinner	control.	Note	that	ip	and	pblock	are
assumed	to	be	initialized	interface	and	parameter	block	pointers
(IObjParam	*ip,	IParamBlock	*pblock).
float	newval;
Interval	valid=FOREVER;
TimeValue	t=ip->GetTime();
//	Get	the	value	from	the	parameter	block	at	the	current	time.
pblock->GetValue(PB_ANGLE,	t,	newval,	valid);
//	Set	the	value.	Note	that	the	notify	argument	is	passed	as
FALSE.
//	This	ensures	no	messages	are	sent	when	the	value	changes.
angleSpin->SetValue(newval,	FALSE);

Prototype:
virtual	BOOL	OKtoDisplay(TimeValue	t)

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	a	BOOL	to	indicate	if	it	is	okay	to	draw	the	object	at	the

time	passed.	Normally	it	is	always	OK	to	draw	the	object,	so	the	default
implementation	returns	TRUE.	However	for	certain	objects	it	might	be	a
degenerate	case	to	draw	the	object	at	a	certain	time	(perhaps	the	size	went	to
zero	for	example),	so	these	objects	could	return	FALSE.

Parameters:
TimeValue	t
The	time	at	which	the	object	would	be	displayed.

Default	Implementation:
{	return	TRUE;	}

Return	Value:
TRUE	if	the	object	may	be	displayed;	otherwise	FALSE.

SoundObj
See	Also:	Class	SoundObj.
There	is	always	one	sound	object	in	the	scene.	A	sound	object's	primary	purpose
is	to	provide	a	sound	track	for	the	scene,	but	it	also	has	another	important
function;	it	serves	as	a	clock	that	controls	timing	when	an	animation	is	played.
This	ensure	the	animation	is	synched	to	the	sound	object.	It	has	methods	to	start
and	stop	the	animation	playing,	play	a	specified	range	of	the	sound,	and	toggle
the	sound	on	and	off.

SplineShape
See	Also:	Class	SplineShape.
Spline	shape	is	an	implementation	of	a	shape	object.	A	procedural	shape	can
convert	itself	to	a	spline	shape	if	it	needs	to	be	deformed.

Class	SplineShape
See	Also:	Class	ShapeObject,	Class	BezierShape,	Working	with	Shapes	and
Splines.
class	SplineShape	:	public	ShapeObject,	ISplineOps,	ISplineSelect,
ISplineSelectData,	ISubMtlAPI,	AttachMatDlgUser

Description:
Defines	a	spline	object	class.	The	SplineShape	is	the	object	that	flows	down
the	3ds	max	geometry	pipeline.	This	class	is	a	container	for	the	BezierShape
shape.	All	methods	of	this	class	are	implemented	by	the	system.
Spline	Shape	plug-ins	use	a	Super	Class	ID	of	SHAPE_CLASS_ID.

Data	Members:
public:
BezierShape	shape;
The	shapes	of	this	SplineShape.

Methods:

Prototype:
SplineShape();

Remarks:
Constructor.	Initialize	the	member	variables.

Prototype:
~SplineShape();

Remarks:
Destructor.

Prototype:
BezierShape&	GetShape();

Remarks:
Returns	the	BezierShape	data	member	maintained	by	this	class.

Prototype:
void	SelectBySegment(BOOL	interactive	=	TRUE);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	operates	in	vertex	level	only,	and	sets	the	vertex	selection	set
based	on	the	segments	that	are	selected.	Any	vertex	which	is	part	of	a	selected
segment	will	be	selected.

Parameters:
BOOL	interactive
If	set	to	FALSE,	an	Undo	object	is	not	created	and	the	method	does	not	initiate
a	redraw.

Prototype:
void	SelectBySpline(BOOL	interactive	=	TRUE);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	operates	in	vertex	and	segment	level	only,	and	sets	the	vertex	or
segment	selection	set	based	on	the	splines	that	are	selected.	If	in	vertex	mode,
any	vertex	which	is	part	of	a	selected	spline	will	be	selected.	If	in	segment
mode,	any	segment	whcich	is	part	of	a	selected	spline	will	be	selected.

Parameters:
BOOL	interactive
If	set	to	FALSE,	an	Undo	object	is	not	created	and	the	method	does	not	initiate
a	redraw.

Prototype:
virtual	void	GetUIParam(splineUIParam	uiCode,	int	&ret);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	get	the	edit	spline	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:

splineUIParam	uiCode
This	enum	is	currently	empty.
int	&ret
The	returned	value.

Default	Implementation:
{	}

Prototype:
virtual	void	SetUIParam(splineUIParam	uiCode,	int	val);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	edit	spline	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
splineUIParam	uiCode
This	enum	is	currently	empty.
int	val
The	value	to	set.

Default	Implementation:
{	}

Prototype:
virtual	void	GetUIParam(splineUIParam	uiCode,	float	&ret);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	get	the	edit	spline	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
splineUIParam	uiCode
This	enum	is	currently	empty.
float	&ret
The	returned	value.

Default	Implementation:
{	}

Prototype:
virtual	void	SetUIParam(splineUIParam	uiCode,	float	val);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	edit	spline	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
splineUIParam	uiCode
This	enum	is	currently	empty.
float	val
The	value	to	set.

Default	Implementation:
{	}

Prototype:
bool	Editing();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	return	TRUE	if	the	SplineShape	object	or	Edit	Spline
modifier	is	active	in	the	command	panel.

Default	Implementation:
{	return	(ip	&&	(editObj==this))	?	TRUE	:	FALSE;	}

StdControl
See	Also:	Class	StdControl.
The	purpose	of	this	class	is	to	simplify	some	aspects	of	implementing
controllers.	The	only	restriction	when	using	this	class	is	that	the	controller	can
not	evaluate	itself	as	a	function	of	its	input.	This	class	handles	processing	Out	of
Range	Types,	ease	curves	and	multiplier	curves.
There	are	a	few	other	methods	that	StdControl	requires:
Extrapolate()
Extrapolate	is	used	to	calculate	some	of	the	ORTs.	There	are	several	types	of
extrapolations	that	need	to	be	done	and	there	are	template	functions
implemented	in	\MAXSDK\INCLUDE\CONTROL.H	to	do	them.
CreateTempValue()
When	processing	the	ORTs	the	system	might	need	a	temporary	variable	to
hold	an	intermediate	value.	Since	the	system	doesn't	actual	know	the	type	of
the	data	that	the	controller	is	controlling	it	can't	allocate	the	right	amount	of
temporary	storage.	It	calls	this	method	to	do	so.
DeleteTempValue()
This	method	simply	deletes	the	memory	allocated	by	CreateTempValue().
ApplyValue()
Applies	the	given	value	to	the	given	input	value.	For	position,	rotation,	and
scale	controllers,	the	input	value	will	be	a	matrix	and	the	value	being	applied
will	be	a	Point3,	quaternion,	or	ScaleValue,	respectively.	For	other	controllers
the	input	value	is	the	same	type	as	the	value	being	applied.
MultiplyValue()
If	the	controller	has	multiplier	curves	then	the	system	will	calculate	the	factor
from	all	the	multiplier	curves	and	then	ask	the	controller	to	multiply	the	scalar
value	to	the	particular	data	type.

Texmap
See	Also:	Class	Texmap.
Plug-In	2D	and	3D	texture	maps	are	subclassed	off	Texmap.	Some	of	the
methods	of	Texmap	are:
EvalColor()
This	returns	the	color	of	the	texture	map	at	a	specific	location.
EvalNormalPerturb()
This	computes	a	perturbation	to	apply	to	a	normal	for	bump	mapping.

TriObject
See	Also:	Class	TriObject.
A	triangle	mesh	object.	All	procedural	objects	must	be	able	to	convert
themselves	to	TriObjects.	TriObjects	are	"deformable".	This	means	they	have
points	which	a	modifier	may	operate	upon	to	deform	the	geometry.	This	class
provides	default	implementations	of	many	of	the	methods	from	Object	and
GeomObject.

Class	TriObject
See	Also:	Class	GeomObject,	Class	ClassDesc,	Class	Mesh,	Class	TessApprox.
class	TriObject	:	public	GeomObject

Description:
This	class	represents	a	renderable,	deformable,	triangle	mesh	object.	All
procedural	objects	must	be	able	to	convert	themselves	to	TriObjects.	This	class
provides	implementations	of	all	the	required	methods	of	Animatable,
ReferenceMaker,	ReferenceTarget,	Base	Object,	Object,	and	GeomObject.	All
methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
Mesh	mesh;
This	is	the	mesh	of	the	TriObject.	See	Class	Mesh	for	methods	to	manipulate
this	mesh.
The	following	data	members	are	used	by	the	Displacement	Mapping
mechanism	in	3ds	max.
TessApprox	mDispApprox;
The	object	which	describes	the	properties	of	the	tesselation	approximation	of
the	mesh.
bool	mSubDivideDisplacement;
The	subdivision	displacement	flag.	When	TRUE,	displacement	mapping
mechanism	subdivides	mesh	faces	to	accurately	displace	the	map,	using	the
method	and	settings	you	specify	in	the	Subdivision	Presets	and	Subdivision
Method	group	boxes.	When	FALSE,	the	modifier	applies	the	map	by	moving
vertices	in	the	mesh,	the	way	the	Displace	modifier	does.
bool	mDisableDisplacement;
TRUE	to	disable	displacement	mapping;	FALSE	to	enable	it.
bool	mSplitMesh;
The	split	mesh	flag.	This	flag	affects	texture	mapping	as	done	by	the
displacement	mapping	mechanism.	When	on,	the	modifier	splits	the	mesh	into
individual	faces	before	displacing	them:	this	helps	preserve	texture	mapping.
When	off,	the	modifier	uses	an	internal	method	to	assign	texture	mapping.
Default=On.

Methods:

Prototype:
Mesh&	GetMesh();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	reference	to	the	mesh	data	member	of	this	TriObject.

Prototype:
TessApprox&	DisplacmentApprox();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	reference	to	the	mDispApprox	data	member.

Prototype:
bool&	DoSubdivisionDisplacment();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	reference	to	the	boolean	mSubDivideDisplacement	data
member.

Prototype:
bool&	SplitMeshForDisplacement();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	reference	to	the	boolean	mSplitMesh	data	member.

Prototype:
void	SetDisplacmentApproxToPreset(int	preset);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	internally	to	set	the	mDispApprox	data	member	to	one

of	the	low/medium/high	subdivision	presets.

Prototype:
void	DisableDisplacementMapping(BOOL	disable);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	mDisableDisplacement	data	member	to	the	given	state.

Parameters:
BOOL	disable
TRUE	to	disable;	FALSE	to	enable.

Related	Functions:
There	are	several	global	functions	(not	part	of	class	TriObject)	for	dealing	with
TriObjects	and	the	control	of	standard	TriObject	versus	Editable	TriObjects.
These	functions	are	described	below:

Function:
TriObject	*CreateNewTriObject();

Remarks:
This	method	is	used	to	create	a	new	TriObject.	Use	this	instead	of	new
TriObject.	It	will	use	the	registered	descriptor	if	one	is	registered,	otherwise
you'll	get	a	default	TriObject.

Function:
ClassDesc*	GetTriObjDescriptor();

Remarks:
Returns	a	pointer	to	the	class	descriptor	for	the	regular,	standard	TriObject.

Function:
ClassDesc*	GetEditTriObjDesc();

Remarks:
Returns	a	pointer	to	the	class	descriptor	for	the	editable	TriObject.	It	returns
the	default	if	none	has	been	registered.	See	below.

Function:
void	RegisterEditTriObjDesc(ClassDesc*	desc);

Remarks:
A	new	descriptor	can	be	registered	to	replace	the	default	TriObject	descriptor.
This	new	descriptor	will	then	be	used	to	create	TriObjects.

Parameters:
ClassDesc*	desc
The	class	descriptor	to	replace	the	default	TriObject	descriptor.

WSMObject
See	Also:	Class	WSMObject.
WSM	objects	are	the	gizmos	for	space	warps.	WSM	stands	for	World	Space
Modifier,	another	name	for	space	warp.	They	are	usually	non-renderable	by	the
production	renderer	but	may	show	up	in	the	viewports	to	allow	the	user	to	orient
them	in	the	scene.	They	a	single	method	that	they	implement:
CreateWSMMod()
When	the	user	binds	a	node	to	a	space	warp,	a	new	modifier	must	be	created
and	added	to	the	node's	WSM	derived	object.	This	method	creates	the	new
modifier.

Class	WSMObject
See	Also:	Class	Object,	Class	SimpleWSMObject,	Class	ForceField,	Class
CollisionObject.
class	WSMObject	:	public	Object

Description:
This	class	is	a	base	class	used	to	derived	the	helper	object	for	a	space	warp
modifier	(WSM	Modifier).
World	Space	Object	plug-ins	use	a	Super	Class	ID	of
WSM_OBJECT_CLASS_ID.

Methods:

Prototype:
SClass_ID	SuperClassID()

Remarks:
Implemented	by	the	System.
Returns	the	super	class	ID	of	this	plug-in	type:
WSM_OBJECT_CLASS_ID.

Prototype:
virtual	Modifier	*CreateWSMMod(INode	*node)=0;

Remarks:
Implemented	by	the	Plug-In.
When	the	user	binds	a	node	to	a	space	warp,	a	new	modifier	must	be	created
and	added	to	the	node's	WSM	derived	object.	This	method	creates	the	new
modifier.

Parameters:
INode	*node
The	node	of	the	WSMObject.

Return	Value:
A	pointer	to	the	new	modifier.

Prototype:
virtual	int	UsesWireColor();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	method	of	Object.	Below	is	shown	the	default	implementation
provided	by	this	class.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	BOOL	NormalAlignVector(TimeValue	t,Point3	&pt,	Point3
&norm);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	method	of	Object.	Below	is	shown	the	default	implementation
provided	by	this	class.

Default	Implementation:
{pt=Point3(0,0,0);norm=Point3(0,0,-1);return	TRUE;}

Prototype:
virtual	BOOL	SupportsDynamics();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	spacewarp	or	collision	object	supports	Dynamics;	otherwise
FALSE.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	ForceField	*GetForceField(INode	*node);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

Returns	a	pointer	to	a	ForceField.	This	pointer	can	be	used	during	dynamics
calculations,	but	should	not	be	hung	on	to	after	that.	For	example,	you
shouldn't	have	the	pointer	long	enough	for	it	to	be	possible	for	the	user	to
delete	the	space	warp	object.	When	you're	done	using	the	ForceField	call	its
DeleteThis()	method.	This	method	may	be	called	several	times	on	the	same
space	warp	object	with	different	INode*	if	it	is	instanced.

Parameters:
INode	*node
This	is	the	space	warp	object's	node.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	CollisionObject	*GetCollisionObject(INode	*node);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	collision	object	for	the	WSM.	This	works	just	like
GetForceField()	documented	above.

Parameters:
INode	*node
This	is	the	space	warp	object's	node.

Default	Implementation:
{return	NULL;}

Class	IObjParam
See	Also:	Class	Interface.
class	IObjParam	:	public	Interface

Description:
This	class	is	identical	to	Class	Interface.	Refer	to	that	section	for	a	description	of
the	methods.

Class	IObjCreate
See	Also:	Class	Interface,	Class	IObjParam.
class	IObjCreate	:	public	IObjParam

Description:
This	class	is	identical	to	Class	Interface.	Refer	to	that	section	for	a	description	of
the	methods.

Class	ViewExp
See	Also:	List	of	Snap	Flags,	Class	Ray,	Class	Point3,	Class	IPoint2,	Class
Matrix3,	Class	ModContext,	Class	HitData,	Class	GraphicsWindow,	Class
INode.
class	ViewExp	:	public	InterfaceServer

Description:
This	class	provides	methods	to	access	properties	of	the	viewport,	convert	points
between	viewport	and	world	coordinates,	snap	points	and	lengths,	etc.	Many
methods	associated	with	hit	testing	are	also	here.	All	the	methods	of	this	class
are	implemented	by	the	system.

Method	Groups:
The	hyperlinks	below	jump	to	the	start	of	groups	of	related	methods	within	the
class:
Screen	Space	-	World	Space	Conversion
Osnap	Related	Methods
Perspective/Camera	View	Properties
Snapping
Access	to	Viewport	Properties
Node	Level	Hit	Testing
Sub-Object	Level	Hit	Testing
Controller	Gizmo	Hit	Testing
AutoGrid	Related	Methods

Methods:

Screen	Space	-	World	Space	Conversion

Prototype:
virtual	float	NonScalingObjectSize()=0;

Remarks:
The	value	returned	from	this	method	may	be	used	as	a	scale	factor	that	will
counteract	the	viewport	zoom.	For	example,	lights,	cameras,	and	tape	helper
objects	use	this	factor	so	the	size	of	the	node	in	the	scene	remains	constant
when	the	viewport	is	zoomed	in	and	out.

This	value	is	affected	by	the	'Non-Scaling	Object	Size'	spinner	in	the	Viewport
Preferences	dialog,	so	the	user	has	some	control	over	this	as	well.

Sample	Code:
This	sample	is	from
\MAXSDK\SAMPLES\OBJECTS\TAPEHELP.CPP.	The	computed
matrix	is	used	in	several	places	like	displaying,	snapping,	hit	testing,	etc.

void	TapeHelpObject::GetMat(TimeValue	t,	INode*	inode,
	ViewExp*	vpt,	Matrix3&	tm)
	{
	tm	=	inode->GetObjectTM(t);
	tm.NoScale();
	float	scaleFactor	=	vpt->NonScalingObjectSize()	*
		vpt->GetVPWorldWidth(tm.GetTrans())/(float)360.0;
	tm.Scale(Point3(scaleFactor,scaleFactor,scaleFactor));
	}

Prototype:
virtual	Point3	GetPointOnCP(const	IPoint2	&ps)=0;

Remarks:
Returns	a	point	in	world	space	on	the	current	construction	plane	based	on	the
specified	screen	coordinate.

Parameters:
const	IPoint2	&ps
The	2D	screen	point	to	convert	to	a	3D	world	space	coordinate.

Return	Value:
The	world	space	coordinate	on	the	current	construction	plane.

Prototype:
virtual	float	GetCPDisp(const	Point3	base,	const	Point3&	dir,
const	IPoint2&	sp1,	const	IPoint2&	sp2)=0;

Remarks:
This	method	returns	a	length	in	world	space	given	a	start	screen	point,	an	end
screen	point,	a	base	point	and	a	direction	vector.	For	example,	when	creating	a

cylinder,	the	user	clicks	the	mouse	down	to	define	the	center	point	of	the
cylinder	(base),	then	drags	out	a	radius.	They	then	drag	out	a	height	for	the
cylinder.	This	method	is	used	to	return	intermediate	and	final	heights	for	the
cylinder	based	on	the	initial	base	point,	the	direction	vector	(the	Z	axis),	the
start	mouse	point,	and	the	current	point	the	user	is	interactively	adjusting.

Parameters:
const	Point3	base
Base	point	in	object	space.
const	Point3&	dir
Direction	vector	in	object	space.
const	IPoint2&	sp1
Screen	start	point.	This	is	the	point	where	the	user	clicked	down	with	the
mouse.
const	IPoint2&	sp2
Screen	end	point.	This	is	the	point	where	the	user	let	up	the	mouse.

Return	Value:
The	length	in	world	space	based	on	the	screen	points	and	their	projection	onto
the	direction	vector.

Sample	Code:
float	h	=	vpt->SnapLength(vpt-
>GetCPDisp(p[1],Point3(0,0,1),sp1,m));
From	\MAXSDK\SAMPLES\OBJECTS\CYL.CPP	in
CylinderObjCreateCallBack::proc

Prototype:
virtual	Point3	MapScreenToView(IPoint2&	sp,	float	depth)=0;

Remarks:
Given	a	point	on	the	screen	(in	window	coordinates),	and	a	depth	in	view
coordinates,	this	method	maps	the	point	into	view	coordinates.	This	is	just	a
scaling	operation	for	parallel	projections,	but	involves	a	divide	by	Z	for
perspective	projections.

Parameters:
IPoint2&	sp

Point	in	window	coordinates.
float	depth
Depth	in	view	coordinates.

Return	Value:
Point	in	view	coordinates.

Sample	Code:
Point3	p0	=	vpt-
>MapScreenToView(mBase,GetPerspMouseSpeed());

Prototype:
virtual	void	MapScreenToWorldRay(float	sx,	float	sy,	Ray&
ray)=0;

Remarks:
Creates	a	Ray	in	world	space	passing	through	the	specified	pixel	directed
toward	the	scene	in	the	direction	of	view.

Parameters:
float	sx
The	x	screen	coordinate.
float	sy
The	y	screen	coordinate.
Ray&	ray
The	Ray	in	world	space.	See	Class	Ray.

Prototype:
virtual	void	GetAffineTM(Matrix3&	tm)=0;

Remarks:
This	method	retrieves	the	affineTM	which	transforms	from	World	coordinates
to	View	coordinates.	See	the	sample	code	below	for	an	example	of	its	use.

Parameters:
Matrix3&	tm
The	matrix	to	hold	the	affine	TM.

Sample	Code:

//	This	routine	returns	the	view	direction	from	the	active	viewport.
Point3	Utility::GetViewDirection()	{
	Matrix3	aTM,	coordSysTM;
	ViewExp	*ve	=	ip->GetActiveViewport();
	//	The	affine	TM	transforms	from	world	coords	to	view	coords
	//	so	we	need	the	inverse	of	this	matrix
	ve->GetAffineTM(aTM);
	coordSysTM	=	Inverse(aTM);
	//	The	Z	axis	of	this	matrix	is	the	view	direction.
	Point3	viewDir	=	coordSysTM.GetRow(2);
	ip->ReleaseViewport(ve);
	return	viewDir;
}
Note:	You	can	also	get	the	view	position	from	this	matrix.	For	example,	in	the
above	code,	the	statement:
Point3	viewPt	=	coordSysTM.GetRow(3);
gets	the	point	in	space	the	view	is	taken	from.

Prototype:
virtual	BOOL	SetAffineTM(const	Matrix3&	m)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	sets	the	viewport	affine	transformation	and	returns	TRUE	if	the
view	is	a	user	view	(isometric	or	perspective).	If	the	view	is	not	a	user	view
then	the	transformation	is	not	changed	and	the	method	returns	FALSE.	See
SetViewUser()	below.

Parameters:
const	Matrix3&	m
The	transformation	matrix	to	set.

Prototype:
virtual	float	GetScreenScaleFactor(const	Point3	worldPoint)=0;

Remarks:
Returns	the	screen	scale	factor	for	a	point	given	in	world	coordinates.	This

factor	gives	the	width	in	world-space	units	at	the	point's	distance	of	the
viewport.

Parameters:
const	Point3	worldPoint
The	point	in	world	coordinates.

Return	Value:
The	screen	scale	factor	in	world	space	units.

Prototype:
virtual	float	GetVPWorldWidth(const	Point3	wPoint)=0;

Remarks:
Returns	the	viewport	screen	width	factor	in	world	space	at	a	point	in	world
space.

Parameters:
const	Point3	wPoint
The	point	in	world	space.

Return	Value:
The	viewport	screen	width	factor	in	world	space.

Prototype:
virtual	Point3	MapCPToWorld(const	Point3	cpPoint)=0;

Remarks:
Given	a	point	on	the	construction	plane	this	method	returns	the	corresponding
world	space	point.	For	example,	if	you	use	GetPointOnCP()	to	convert	a
screen	coordinate	to	a	point	on	the	construction	plane,	you	could	then	call	this
method	to	convert	that	point	on	the	construction	plane	to	a	world	space	point.

Parameters:
const	Point3	cpPoint
The	point	on	the	construction	plane.

Return	Value:
The	world	space	point.

AutoGrid	Related	Methods
Prototype:
virtual	void	TrackImplicitGrid(IPoint2	m,	Matrix3*	mat	=	NULL,
ULONG	hitTestFlags	=	0)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
If	AutoGrid	is	enabled,	this	method	determines	a	grid	coordinate	system	by
casting	a	ray	into	the	scene	through	the	screen	coordinate	m,	obtaining	a
surface	normal	from	the	closest	node	,	and	using	the	"arbitrary	axis	algorithm"
to	orient	the	xy	axes.	You	can	get	this	coordinate	system	back	by	passing	in	a
pointer	to	a	matrix.	A	tripod	is	displayed	in	the	viewports	showing	the
orientation.

Parameters:
IPoint2	m
The	2D	screen	point	that	the	user	clicked	on.
Matrix3*	mat	=	NULL
The	implicit	grid	coordinate	system	matrix	can	be	retrieved	by	passing	a
pointer	to	a	matrix	here.
ULONG	hitTestFlags	=	0
This	parameter	is	available	in	release	4.0	and	later	only.
See	Hit	Test	Flags.

Prototype:
virtual	void	CommitImplicitGrid(IPoint2	m,	int	mouseflags,
Matrix3*	mat	=	NULL)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
If	AutoGrid	is	enabled,	this	method	creates	a	grid	and	activates	it.	The
mouseflags	parameter	is	used	to	determine	if	the	ALT	key	is	down.	If	it	is,
this	grid	will	not	be	deactivated	in	ReleaseImplicitGrid()	(below).

Parameters:
IPoint2	m

The	2D	screen	point	that	the	user	clicked	on.
int	mouseflags
These	flags	describe	the	state	of	the	mouse	buttons.	See	List	of	Mouse
Callback	Flags.
Matrix3*	mat	=	NULL
Developers	can	get	the	implicit	grid	coordinate	system	back	by	passing	in	a
pointer	to	a	matrix	here.

Prototype:
virtual	void	ReleaseImplicitGrid()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	deactivates	an	implicit	grid	and	restores	the	previously	active
grid.	If	the	implicit	grid	was	committed	with	ALT-key	held	down,	then	this
call	does	nothing.

Osnap	Related	Methods
Prototype:
virtual	void	SnapPreview(const	IPoint2	&in,	IPoint2	&out,
Matrix3	*plane2d=NULL,	DWORD	flags=0)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	method	used	as	part	of	the	osnap	system	in	3ds	max.	It	is	the	method
that	displays	the	snap	marker	in	the	viewports	prior	to	the	first	point	event.	It's
really	just	a	call	to	SnapPoint()	which	returns	nothing.	This	method	should
be	called	in	response	to	a	MOUSE_FREEMOVE	event	from	any	creation
or	transformation	proc	which	calls	SnapPoint().	Here's	an	example	creation
proc:

Sample	Code:
int	PointHelpObjCreateCallBack::proc(ViewExp	*vpt,int	msg,	int
point,	int	flags,	IPoint2	m,	Matrix3&	mat)	{
if	(msg	==	MOUSE_FREEMOVE)

//	Show	a	preview	snap	in	the	viewport	prior	to	the
//	first	point	event.
vpt->SnapPreview(m,m,NULL,	SNAP_IN_3D);
	
if	(msg==MOUSE_POINT||msg==MOUSE_MOVE)	{
switch(point)	{
case	0:
ob->suspendSnap	=	TRUE;
mat.SetTrans(vpt->SnapPoint(m,m,NULL,SNAP_IN_3D));
break;
case	1:
mat.SetTrans(vpt->SnapPoint(m,m,NULL,SNAP_IN_3D));
if	(msg==MOUSE_POINT)	{
ob->suspendSnap	=	FALSE;
return	0;
}
break;
}
}	else
if	(msg	==	MOUSE_ABORT)	{
return	CREATE_ABORT;
}
return	1;
}

Parameters:
const	IPoint2	&in
The	2D	screen	coordinate	to	snap.
IPoint2	&out
The	snapped	2D	screen	coordinate.	This	is	used	if	you	need	to	move	the
mouse	position	to	the	snapped	location.

Matrix3	*plane2d	=	NULL
This	optional	argument	allows	you	to	use	any	plane	(not	just	the	current
construction	plane).
int	flags
See	List	of	Snap	Flags.

Prototype:
virtual	void	GetGridDims(float	*MinX,	float	*MaxX,	float	*MinY,
float	*MaxY)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	internally.	It	fills	up	it's	arguments	with	the	world	space
extents	of	the	home	grid	(i.e.	the	extents	of	the	grid	as	displayed).	It	doesn't
work	for	grid	helper	which	always	display	to	their	size	limits.	This	was
exposed	so	3ds	max	could	do	the	grid	snapping	and	is	not	needed	by	plug-in
developers.

Perspective/Camera	View	Properties

Prototype:
virtual	BOOL	IsPerspView()=0;

Remarks:
Returns	TRUE	if	the	viewport	is	a	perspective	view;	otherwise	returns
FALSE.

Prototype:
virtual	int	GetViewType()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	type	of	view.	One	of	the	following	values:
enum	ViewType	{

VIEW_LEFT,VIEW_RIGHT,VIEW_TOP,VIEW_BOTTOM,VIEW_FRONT,VIEW_BACK,
	VIEW_ISO_USER,	VIEW_PERSP_USER,	VIEW_CAMERA,

VIEW_GRID,	VIEW_NONE,
VIEW_TRACK,	VIEW_SPOT,	VIEW_SHAPE,

VIEW_SCHEMATIC,	VIEW_OTHER
};

Prototype:
virtual	float	GetFOV()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	field	of	view	of	a	perspective	viewport	in	radians.
	

Prototype:
virtual	float	GetFocalDist()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	focal	distance	of	a	perspective	view.

Prototype:
virtual	INode	*GetViewCamera()=0;

Remarks:
Returns	the	INode	pointer	of	the	camera	associated	with	this	viewport.	If	this
is	not	a	camera	view	then	NULL	is	returned.

Prototype:
virtual	void	SetViewCamera(INode	*camNode)=0;

Remarks:
Set	this	viewport	to	a	camera	view.

Parameters:
INode	*camNode
The	camera	node	to	set.

Prototype:
virtual	INode	*GetViewSpot();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	INode	pointer	of	the	spotlight	associated	with	this	viewport.	If	this
is	not	a	spotlight	view	then	NULL	is	returned.

Prototype:
virtual	void	SetViewSpot(INode	*spotNode)=0;

Remarks:
Set	this	viewport	to	a	spotlight	view.

Parameters:
INode	*spotNode
The	spotlight	node	to	set.

Prototype:
virtual	void	SetViewUser(BOOL	persp)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	sets	the	viewport	to	be	a	user	view,	with	the	persp	argument
indicating	whether	this	should	be	a	perspective	or	iso	view.	Note	that	the	user
viewport	defaults	are	used	for	field-of-view,	etc.

Parameters:
BOOL	persp
TRUE	for	perspective;	FALSE	for	isometric.

Snapping

Prototype:
virtual	Point3	SnapPoint(const	IPoint2	&in,	IPoint2	&out,
Matrix3	*plane2d	=	NULL,	int	flags	=	0)=0;

Remarks:
Given	a	2D	screen	coordinate,	this	method	returns	a	3D	point	on	the	current
construction	plane	based	on	the	current	snap	settings	and	flags	passed.

Parameters:

const	IPoint2	&in
The	2D	screen	coordinate	to	snap.
IPoint2	&out
The	snapped	2D	screen	coordinate.	This	is	used	if	you	need	to	move	the
mouse	position	to	the	snapped	location.
Matrix3	*plane2d	=	NULL
This	optional	argument	allows	you	to	use	any	plane	(not	just	the	current
construction	plane).
int	flags
See	List	of	Snap	Flags.

Return	Value:
The	snapped	3D	point	in	world	space.

Prototype:
virtual	float	SnapLength(float	in)=0;

Remarks:
Given	the	distance	passed,	this	method	snaps	the	length	to	the	nearest	snap
increment	and	returns	the	snapped	distance.

Parameters:
float	in
The	input	distance	to	be	snapped.

Return	Value:
The	snapped	distance.

Access	to	Viewport	Properties

Prototype:
virtual	GraphicsWindow	*getGW()=0;

Remarks:
Returns	a	pointer	to	the	instance	of	GraphicsWindow	associated	with	this
viewport.
Note:	A	GraphicsWindow	always	has	a	transform	associated	with	it,	for
faster	object-to-screen	space	conversions.	The	GraphicsWindow	*	returned

by	this	method	may	have	a	non-identity	transform	already	in	place.	A
developer	can	call	gw->setTransform()	with	a	node's	transform	for	fast
work	in	Display	routines.	But	this	value	must	be	explicitly	set	to	the	identity
for	world-to-screen	displays.

Prototype:
virtual	HWND	GetHWnd()=0;

Remarks:
This	returns	the	window	handle	of	the	viewport	-	this	is	the	transparent
window	that	catches	mouse	input.	Note	that	this	window	handle	is	different
than	the	handle	that	can	be	retrieved	from	the	viewport's	GraphicsWindow.
getGW()->getHWnd()	is	the	window	that	things	are	drawn	on.

Return	Value:
The	window	handle	of	the	viewport.

Prototype:
virtual	BOOL	setBkgImageDsp(BOOL	onOff)=0;

Remarks:
This	method	is	used	to	turn	on	and	off	the	background	image	display	in	this
viewport.	Note	that	it	is	necessary	to	redraw	the	viewports	in	order	to	see	the
effect	of	this	method.	Use	the	method	Interface::RedrawViews()	to	do
this.

Parameters:
BOOL	onOff
TRUE	to	turn	the	background	image	on;	FALSE	to	turn	it	off.

Return	Value:
TRUE	if	the	image	was	set;	otherwise	FALSE.

Prototype:
virtual	int	getBkgImageDsp()=0;

Remarks:
Returns	nonzero	if	the	background	image	is	displayed	in	this	viewport;
otherwise	0.

Prototype:
virtual	void	setSFDisplay(int	onOff)=0;

Remarks:
This	method	may	be	used	to	turn	the	safe	frame	display	on	and	off	in	this
viewport.

Parameters:
int	onOff
Nonzero	to	turn	on	the	safe	frame;	zero	to	turn	it	off.

Prototype:
virtual	int	getSFDisplay()=0;

Remarks:
Returns	nonzero	if	the	safe	frame	is	displayed	in	this	viewport;	otherwise	0.

Prototype:
virtual	int	IsWire()=0;

Remarks:
Determines	if	this	viewport	is	in	wire-frame	rendering	mode	(as	opposed	to	a
shaded	mode).

Return	Value:
Nonzero	if	the	viewport	is	in	wire-frame	rendering	mode;	otherwise	0.

Prototype:
virtual	Rect	GetDammageRect()=0;

Remarks:
Returns	the	damaged	rectangle	of	the	viewport.	This	is	the	area	that	needs	to
be	updated	on	the	next	screen	refresh.	This	can	be	used	for	example,	to	pass
into	the	Mesh	method	render()	to	only	display	the	damaged	area	of	the
object.	A	developer	could	also	use	this	in	the	implementation	of	their	own
Display()	method.

Sample	Code:
int	SimpleObject::Display(TimeValue	t,	INode*	inode,

	ViewExp	*vpt,	int	flags)	{
	if	(!OKtoDisplay(t))	return	0;
	GraphicsWindow	*gw	=	vpt->getGW();
	Matrix3	mat	=	inode->GetObjectTM(t);
	UpdateMesh(t);	//	UpdateMesh()	just	calls	BuildMesh()
	gw->setTransform(mat);
	mesh.render(gw,	inode->Mtls(),
		(flags&USE_DAMAGE_RECT)	?	&vpt->GetDammageRect()	:	NULL,
		COMP_ALL,	inode->NumMtls());
	return(0);
}

Prototype:
virtual	void	GetConstructionTM(Matrix3	&tm)=0;

Remarks:
Retrieves	the	transformation	matrix	of	the	construction	plane.

Parameters:
Matrix3	&tm
The	transformation	matrix	is	returned	here.

Prototype:
virtual	void	SetGridSize(float	size)=0;

Remarks:
Sets	the	size	of	the	construction	grid	spacing.

Parameters:
float	size
Specifies	the	grid	spacing.

Prototype:
virtual	float	GetGridSize()=0;

Remarks:
Returns	the	construction	grid	spacing.	This	is	the	grid	spacing	on	a	per
viewport	basis.	It	is	dependent	on	how	far	zoomed	in	or	out	the	user	is.	This	is

the	exact	same	value	that	you	can	see	in	the	right	most	status	panel	below	the
viewports.

Prototype:
virtual	BOOL	IsGridVisible()=0;

Remarks:
Returns	TRUE	if	the	grid	is	turned	on	for	this	viewport;	otherwise	FALSE.
	

Prototype:
virtual	int	GetGridType()=0;

Remarks:
Returns	the	grid	type.	One	of	the	following	values	(from	OBJECT.H):
GRID_PLANE_NONE
GRID_PLANE_TOP
GRID_PLANE_LEFT
GRID_PLANE_FRONT
GRID_PLANE_BOTTOM
GRID_PLANE_RIGHT
GRID_PLANE_BACK

Prototype:
virtual	BOOL	IsActive()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	viewport	is	the	active	on;	otherwise	FALSE.

Prototype:
virtual	BOOL	IsEnabled()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	viewport	is	enabled;	FALSE	if	disabled.

For	node	level	hit-testing

Prototype:
virtual	void	ClearHitList()=0;

Remarks:
Implemented	by	the	System.
Clears	the	list	of	node	level	hit	records.

Prototype:
virtual	INode	*GetClosestHit()=0;

Remarks:
Implemented	by	the	System.
Returns	the	INode	pointer	of	the	node	that	was	the	closest	of	all	those	hit.	If
none	were	hit,	NULL	is	returned.

Prototype:
virtual	INode	*GetHit(int	i)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	INode	pointer	of	the	'i-th'	node	level	hit.

Parameters:
int	i
The	index	of	the	hit	to	retrieve.

Prototype:
virtual	int	HitCount()=0;

Remarks:
Implemented	by	the	System.
Returns	the	number	of	hits	recorded	by	the	last	node	level	hit	test.

For	sub-object	level	hit-testing

Prototype:

virtual	void	LogHit(Node	*nr,	ModContext	*mc,	DWORD	dist,
ulong	info,	HitData	*hitdat	=	NULL)=0;

Remarks:
Implemented	by	the	System.
This	method	records	a	sub-object	level	hit	record	with	the	system	using	the
specified	parameters.	This	hit	can	later	be	retrieved	using	the	method
GetSubObjHitList()	and	the	methods	of	class	HitLog.

Parameters:
Node	*nr
The	node	that	was	hit.
ModContext	*mc
The	ModContext	of	the	modifier.
DWORD	dist
The	'distance'	of	the	hit.	What	the	distance	actually	represents	depends	on	the
rendering	level	of	the	viewport.	For	wireframe	modes,	it	refers	to	the	distance
in	the	screen	XY	plane	from	the	mouse	to	the	sub-object	component.	In	a
shaded	mode,	it	refers	to	the	Z	depth	of	the	sub-object	component.	In	both
cases,	smaller	values	indicate	that	the	sub-object	component	is	'closer'	to	the
mouse	cursor.
ulong	info
Identifies	the	sub-object	component	that	was	hit.
HitData	*hitdat	=	NULL
If	the	info	data	member	is	insufficient	to	indicate	the	sub-object	component
that	was	hit,	pass	an	instance	of	the	HitData	class	that	contains	the	needed
information.

Prototype:
virtual	HitLog&	GetSubObjHitList()=0;

Remarks:
Returns	the	sub-object	hit	list.	See	Class	HitLog.

Prototype:
virtual	void	ClearSubObjHitList()=0;

Remarks:
Clears	the	sub-object	hit	list.	This	deletes	all	previously	saved	HitRecords.

Prototype:
virtual	int	NumSubObjHits()=0;

Remarks:
Returns	the	number	of	sub-object	hits	recorded.

For	controller	apparatus	hit	testing.

Prototype:
virtual	void	CtrlLogHit(INode	*nr,	DWORD	dist,	ulong	info,
DWORD	infoExtra)=0;

Remarks:
This	method	records	a	controller	sub-object	level	hit	record	with	the	system
using	the	specified	parameters.	This	hit	can	later	be	retrieved	using	the	method
GetCtrlHitList()	and	the	methods	of	class	CtrlHitLog.

Parameters:
INode	*nr
The	node	that	was	hit.
DWORD	dist
The	'distance'	of	the	hit.	What	the	distance	actually	represents	depends	on	the
rendering	level	of	the	viewport.	For	wireframe	modes,	it	refers	to	the	distance
in	the	screen	XY	plane	from	the	mouse	to	the	sub-object	component.	In	a
shaded	mode,	it	refers	to	the	Z	depth	of	the	sub-object	component.	In	both
cases,	smaller	values	indicate	that	the	sub-object	component	is	'closer'	to	the
mouse	cursor.
ulong	info
A	general	unsigned	long	value.	Most	controllers	will	just	need	this	to	identity
the	sub-object	element.	The	meaning	of	this	value	(how	it	is	used	to	identify
the	element)	is	up	to	the	plug-in.
DWORD	infoExtra;
If	the	above	hitInfo	data	member	is	not	sufficient	to	describe	the	sub-object
element	this	data	member	may	be	used	as	well.

Prototype:
virtual	CtrlHitLog&	GetCtrlHitList()=0;

Remarks:
Returns	the	list	of	controller	gizmo	hits	recorded.	See	Class	CtrlHitLog.

Prototype:
virtual	void	ClearCtrlHitList()=0;

Remarks:
Clears	the	controller	hit	list.	This	deletes	all	the	HitRecords	previously
recorded.

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.

Parameters:
int	cmd
The	index	of	the	command	to	execute.
ULONG	arg1=0
Optional	argument	1.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	these	parameters.
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	the	meaning	of	this	value.

Class	ILoad
See	Also:	Loading	and	Saving,	Character	Strings,	Class	ISave,	Class
PostLoadCallback,	Class	INode,	Class	ClassDesc,	Class	ClassDirectory,	Class
Interface.
class	ILoad	:	public	InterfaceServer

Description:
This	class	provides	methods	to	load	data	from	disk	and	to	register	post	load
callbacks.
Note:	It	is	not	valid,	to	write	two	CStrs	in	the	same	chunk	of	a	3ds	max	file,
since	ILoad::ReadCStringChunk()	sets	the	size	for	the	string	to	the
ChunkSize.	However	it	is	possible	to	write	other	data,	such	as	two	ints,	into	the
same	chunk.
All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	IOResult	OpenChunk()=0;

Remarks:
This	method	is	used	to	open	a	chunk.	If	OpenChunk()	returns	IO_OK,	use
the	following	3	functions	to	get	the	info	about	the	chunk.	If	it	returns
IO_END	this	indicates	there	are	no	more	chunks	at	this	level.

Return	Value:
IO_OK	-	The	result	was	acceptable	-	no	errors.
IO_END	-	This	is	returned	from	ILoad::OpenChunk()	when	the	end	of
the	chunks	at	a	certain	level	have	been	reached.	It	is	used	as	a	signal	to
terminates	the	processing	of	chunks	at	that	level.
IO_ERROR	-	This	is	returned	if	an	error	occurred.	Note	that	the	plug-in
should	not	put	up	a	message	box	if	a	read	error	occurred.	It	should	simply
return	the	error	status.	This	prevents	a	overabundance	of	messages	from
appearing.

Prototype:

virtual	USHORT	CurChunkID()=0;
Remarks:
This	method	returns	the	ID	of	the	most	recently	opened	chunk.

Prototype:
virtual	ChunkType	CurChunkType()=0;

Remarks:
This	method	returns	the	type	of	the	most	recently	opened	chunk.	This	may	be
one	of	the	following	values:
NEW_CHUNK
CONTAINER_CHUNK
DATA_CHUNK

Prototype:
virtual	ULONG	CurChunkLength()=0;

Remarks:
This	method	returns	the	chunk	length	NOT	including	the	header.

Prototype:
virtual	int	CurChunkDepth()=0;

Remarks:
This	method	is	used	internally	for	checking	for	balanced
OpenChunk/CloseChunk	pairs.

Prototype:
virtual	USHORT	PeekNextChunkID()=0;

Remarks:
This	method	returns	the	ID	of	the	next	chunk	without	opening	it.	It	returns	0	if
there	are	no	more	chunks.

Prototype:
virtual	IOResult	CloseChunk()=0;

Remarks:
This	method	is	used	to	close	the	currently	opened	chunk,	and	position	at	the
next	chunk.

Return	Value:
A	return	value	of	IO_ERROR	indicates	there	is	no	open	chunk	to	close;
otherwise	IO_OK.

Prototype:
virtual	IOResult	Read(void	*buf,	ULONG	nbytes,	ULONG
*nread)=0;

Remarks:
This	method	is	used	to	read	a	block	of	bytes	from	the	output	stream.

Parameters:
void	*buf
A	pointer	to	the	buffer	to	read.
ULONG	nbytes
The	number	of	bytes	to	read.
ULONG	*nread
The	number	of	bytes	that	were	read.

Return	Value:
A	return	value	of	IO_ERROR	indicates	an	error	occurred,	otherwise
IO_OK.

Prototype:
virtual	IOResult	ReadWStringChunk(char**	buf)=0;

Remarks:
This	method	read	a	string	that	was	stored	as	Wide	characters.	Note:	This
method	reads	a	string	from	a	string	chunk.	It	is	assumed	the	chunk	is	already
open,	it	will	NOT	close	the	chunk.

Parameters:
char**	buf
A	pointer	to	an	array	of	characters.

Return	Value:
A	return	value	of	IO_ERROR	indicates	an	error	occurred,	otherwise
IO_OK.

Prototype:
virtual	IOResult	ReadWStringChunk(wchar_t**	buf)=0;

Remarks:
This	method	read	a	string	that	was	stored	as	Wide	chars.	Note:	This	method
reads	a	string	from	a	string	chunk.	It	is	assumed	the	chunk	is	already	open,	it
will	NOT	close	the	chunk.

Parameters:
wchar_t**	buf
A	pointer	to	an	array	of	wide	characters.

Return	Value:
A	return	value	of	IO_ERROR	indicates	an	error	occurred,	otherwise
IO_OK.

Prototype:
virtual	IOResult	ReadCStringChunk(char**	buf)=0;

Remarks:
This	method	reads	a	string	that	was	stored	as	single	byte	characters.

Parameters:
char**	buf
A	pointer	to	an	array	of	single	byte	characters.	This	method	will	allocate	an
internal	buffer,	stored	in	the	ILoadImp	class	that	is	big	enough	to	hold	the
string	chunk	read	in.	You	must	then	copy	or	parse	out	the	data	and	store	it	in
your	own	area:	you	can't	hang	on	to	the	string	pointer	it	hands	back	because	it
will	not	be	valid.

Return	Value:
A	return	value	of	IO_ERROR	indicates	an	error	occurred,	otherwise
IO_OK.

Prototype:

virtual	IOResult	ReadCStringChunk(wchar_t**	buf)=0;
Remarks:
This	method	may	be	used	to	read	a	string	that	was	stored	as	single	byte
characters.

Parameters:
wchar_t**	buf
A	pointer	to	an	array	of	wide	characters.	This	method	will	allocate	an	internal
buffer,	stored	in	the	ILoadImp	class	that	is	big	enough	to	hold	the	string	chunk
read	in.	You	must	then	copy	or	parse	out	the	data	and	store	it	in	your	own	area:
you	can't	hang	on	to	the	string	pointer	it	hands	back	because	it	will	not	be
valid.

Return	Value:
A	return	value	of	IO_ERROR	indicates	an	error	occurred,	otherwise
IO_OK.

Prototype:
virtual	void	SetObsolete()=0;

Remarks:
You	may	call	this	if	you	encounter	obsolete	data	to	cause	a	message	to	be
displayed	after	loading.

Prototype:
virtual	void	RegisterPostLoadCallback(PostLoadCallback	*cb)=0;

Remarks:
Registers	a	procedure	to	be	called	after	loading.	These	will	be	called	in	the
order	that	they	are	registered.	It	is	assumed	that	if	the	callback	needs	to	be
deleted,	the	proc	will	do	it.

Parameters:
PostLoadCallback	*cb
Points	to	the	callback	object.

Prototype:

virtual	TCHAR	*GetDir(int	which)=0;
Remarks:
Retrieves	the	specified	standard	3ds	max	directory	name	(fonts,	scenes,
images,	...).

Parameters:
int	which
Specifies	the	directory	name	to	retrieve.	See	List	of	Directory	Names.	The
constants	are	defined	in	MAXAPI.H

Return	Value:
The	name	of	the	specified	directory.

Prototype:
virtual	void	RecordBackpatch(int	imaker,	void**	patchThis,
DWORD	flags	=	0)=0;

Remarks:
This	method	may	be	used	to	load	a	pointer	from	disk.	This	is	a	pointer	that
was	saved	using	ISave::GetRefID().	You	pass	the	index	returned	from
GetRefID()	and	a	pointer	to	a	pointer	that	will	get	set.	This	method	will
patch	the	address	immediately	if	it	is	available,	otherwise	it	will	happen	later
when	it	is	known.	During	the	load	process	if	you	need	to	work	with	this
information	you'll	have	to	use	a	post	load	callback	since	all	the	addresses	are
not	updated	immediately.	See	RegisterPostLoadCallback()	above.

Parameters:
int	imaker
This	is	the	index	returned	from	ISave::GetRefID().
void**	patchThis
This	is	a	pointer	to	the	pointer	you	want	patched.
DWORD	flags	=	0
This	flag	indicates	that	backpatches	(and	their	subsequent	references)	should
be	merged	as	well.

Prototype:
virtual	void*	GetAddr(int	imaker)=0;

Remarks:
This	method	may	be	used	to	load	a	pointer	from	disk.	It	returns	the	memory
address	of	the	specified	object	Scene	stream.	This	may	be	NULL	if	the	address
is	not	available.	See	RecordBackpatch()	above	for	a	work	around.

Parameters:
int	imaker
This	is	the	index	returned	from	ISave::GetRefID().	that	was	used	to	save
the	pointer.

Prototype:
virtual	void	SetRootAddr(void	*addr)=0;

Remarks:
This	method	is	used	internally.

Prototype:
virtual	void*	GetRootAddr()=0;

Remarks:
This	method	is	used	internally.

Prototype:
virtual	TCHAR	*GetDir(int	which)=0;

Remarks:
Returns	the	name	of	various	directories	used	by	3ds	max.	See	List	of
Directory	Names.

Prototype:
virtual	FileIOType	DoingWhat()=0;

Remarks:
Determines	if	we	are	loading	a	standard	3ds	max	file	(.MAX)	or	a	material
library	(.MAT).

Return	Value:
One	of	the	following	values:

IOTYPE_MAX
IOTYPE_MATLIB

Prototype:
virtual	INode	*RootNode()=0;

Remarks:
Returns	the	root	node	to	attach	to	when	loading	a	node	with	no	parent.

Prototype:
virtual	ClassDesc*	GetClassDesc(USHORT	refID);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	ClassDesc	corresponding	to	the	specified	reference	ID
in	the	ClassDirectory	stream.

Parameters:
USHORT	refID
The	reference	ID	in	the	ClassDirectory	stream.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	DWORD	GetFileSaveVersion();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	function	is	available	to	plug-ins	when	loading	files.	It	returns	a	value
describing	the	version	of	3ds	max	used	to	save	the	file.	The
value	is	composed	of:	LOWORD(value)	=	Build	number.	For	example	41
for	build	#41.	HIWORD(value)	=	MAX_RELEASE	(defined	as	3ds	max
release	version	*	1000),	thus	3ds	max	version	4.0	is	4000

Return	Value:
This	function	returns	0	if	the	file	does	not	contain	this	value.

Default	Implementation:
{	return	0;	}

Class	ISave
See	Also:	Loading	and	Saving,	Character	Strings,	Class	ILoad,	Class	ClassDesc,
Class	ClassDirectory,	Class	Interface.
class	ISave	:	public	InterfaceServer

Description:
This	class	provides	methods	to	save	data	to	disk.
Note:	It	is	not	valid,	to	write	two	CStrs	in	the	same	chunk	of	a	3ds	max	file,
since	ILoad::ReadCStringChunk()	sets	the	size	for	the	string	to	the
ChunkSize.	However	it	is	possible	to	write	other	data,	such	as	two	ints,	into	the
same	chunk.
Note	about	member	alignment:	Please	make	sure	that	when	you	save	data	from
your	plugin	you	save	individual	data	members	using	a	chunk	ID	instead	of
saving	the	image	of	a	class.	Saving	(and	loading)	a	class	image	puts	you	at	risk
of	running	into	member	alignment	problems	and	as	such	could	potentially
corrupt	saved	files.	File	IO	would	be	put	further	at	risk	when	you	keep	Intel’s
IA-64	architecture	in	mind	which	depends	on	member	alignment.	What	you
should	not	do	is	outlined	in	the	following	example	when	loading	a	class	image;
iload->Read(&myclass,	sizeof(MyClass),	&ab);
Once	you	change	the	class	in	such	a	way	that	it	affects	the	data	size	you	run	the
risk	of	having	to	support	different	versions,	file	IO	incompatibility,	and	member
alignment	issues.
The	following	global	function	is	not	part	of	this	class	but	is	available	for	use:

Function:
DWORD	GetSavingVersion();

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	is	reserved	for	future	use	as	of	3ds	max	4.
This	global	function	is	used	to	find	out	if	we	are	saving	an	old	version	.3ds
max	file.	If	this	returns	0,	then	either	we	are	not	in	a	save	or	we	are	saving	the
current	version.	If	it	returns	non-zero,	it	is	the	max	release	number	being
saved,	multiplied	by	1000.	Thus,	when	saving	3ds	max	R2	files,	it	will	return
2000.	This	function	can	be	used	in	NumRefs()	and	GetRef()	to	make	an
objects	references	appear	as	they	did	in	the	old	3ds	max	version.

Methods:
All	methods	of	this	class	are	implemented	by	the	system.

Prototype:
virtual	void	BeginChunk(USHORT	id)	=0;

Remarks:
This	method	is	used	to	begin	a	chunk.	The	ID	passed	need	only	be	unique
within	the	plug-ins	data	itself.

Parameters:
USHORT	id
The	id	for	the	chunk.

Prototype:
virtual	void	EndChunk()=0;

Remarks:
This	method	is	used	to	end	a	chunk,	and	back-patch	the	length.

Prototype:
virtual	int	CurChunkDepth()=0;

Remarks:
This	method	is	used	internally	for	checking	balanced	BeginChunk/EndChunk.

Prototype:
virtual	IOResult	Write(const	void	*buf,	ULONG	nbytes,	ULONG
*nwrit)=0;

Remarks:
This	method	writes	a	block	of	bytes	to	the	output	stream.

Parameters:
const	void	*buf
The	buffer	to	write.
ULONG	nbytes
The	number	of	bytes	to	write.

ULONG	*nwrit
The	number	of	bytes	actually	written.

Return	Value:
IO_OK	-	The	write	was	acceptable	-	no	errors.
IO_ERROR	-	This	is	returned	if	an	error	occurred.	Note	that	the	plug-in
should	not	put	up	a	message	box	if	a	write	error	occurs.	It	should	simply
return	the	error	status.	This	prevents	a	overabundance	of	messages	from
appearing.

Prototype:
virtual	IOResult	WriteWString(const	char	*str)=0;

Remarks:
This	method	is	used	to	write	wide	character	strings.

Parameters:
const	char	*str
The	string	to	write.

Return	Value:
IO_OK	-	The	write	was	acceptable	-	no	errors.
IO_ERROR	-	This	is	returned	if	an	error	occurred.

Prototype:
virtual	IOResult	WriteWString(const	wchar_t	*str)=0;

Remarks:
This	method	is	used	to	write	wide	character	strings.

Parameters:
const	wchar_t	*str
The	string	to	write.

Return	Value:
IO_OK	-	The	write	was	acceptable	-	no	errors.
IO_ERROR	-	This	is	returned	if	an	error	occurred.

Prototype:

virtual	IOResult	WriteCString(const	char	*str)=0;
Remarks:
This	method	is	used	to	write	single	byte	character	strings.

Parameters:
const	char	*str
The	string	to	write.

Return	Value:
IO_OK	-	The	write	was	acceptable	-	no	errors.
IO_ERROR	-	This	is	returned	if	an	error	occurred.

Prototype:
virtual	IOResult	WriteCString(const	wchar_t	*str)=0;

Remarks:
This	method	is	used	to	write	single	byte	character	strings.

Parameters:
const	wchar_t	*str
The	string	to	write.

Return	Value:
IO_OK	-	The	write	was	acceptable	-	no	errors.
IO_ERROR	-	This	is	returned	if	an	error	occurred.

Prototype:
virtual	int	GetRefID(void	*ptarg)=0;

Remarks:
This	method	is	not	normally	used	because	the	reference	hierarchy	is	saved
automatically.	In	certain	cases	however	this	method	is	quite	useful.	This
method	is	used	in	saving	a	pointer	to	some	object	(or	a	table	of	pointers).	This
is	a	pointer	to	one	of	the	objects	that	the	scene	saves	with	the	reference
hierarchy,	but	it	is	not	a	pointer	that	itself	is	a	reference.	For	example	the	Ring
Array	plug-in	uses	this	when	it	saves	its	table	of	nodes	in	the	ring	array.	To
save	these	pointers	you	can	call	this	method	and	it	will	return	an	ID	that	you
can	save	to	disk.	Then	when	you	load	this	ID	from	disk	you	can	call

ILoad::RecordBackpatch()	and	get	back	a	pointer.
Parameters:
void	*ptarg
The	pointer	to	save.

Return	Value:
The	id	that	may	be	saved	to	disk.

Prototype:
virtual	FileIOType	DoingWhat()=0;

Remarks:
Determines	if	we	are	saving	a	standard	3ds	max	file	(.MAX)	or	a	material
library	(.MAT).

Return	Value:
One	of	the	following	values:
IOTYPE_MAX
IOTYPE_MATLIB

Prototype:
virtual	DWORD	SavingVersion();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	function	is	reserved	for	future	use	as	of	3ds	max	4.
This	version	returns	a	value	to	indicate	the	current	version	of	the	file	being
saved.	It	returns	0	0	for	the	current	version,	2000	for	version	2.0,	3000	for	3.0,
etc.	This	basically	duplicates	the	global	function	GetSavingVersion().	In
general,	Save	routines	need	not	to	be	concerned	that	they	are	saving	chunks
types	that	are	unknown	to	the	old	version,	because	they	will	be	skipped	on
load,	but	there	may	be	cases	where	the	Save	routine	needs	to	do	things
differently.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	USHORT	GetClassDescID(ReferenceMaker*	rm);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	returns	a	load	reference	ID	for	the	given	Reference	Maker's
ClassDesc	object	in	the	ClassDirectory	stream.

Parameters:
ReferenceMaker*	rm
Points	to	the	reference	maker.

Default	Implementation:
{	return	0xffff;	}

Class	IScene
See	Also:	Class	ITreeEnumProc,	Class	INode.
class	IScene

Description:
Methods	of	this	class	may	be	used	to	enumerate	the	scene	and	to	flag	certain
nodes	in	the	scene.	Nodes	chosen	by	the	plug-in	may	be	flagged	using	the
EnumTree()	method.	Selected	nodes	may	be	flagged	using
FlagFGSelected().	Animated	nodes	may	be	flagged	using
FlagFGAnimated()	and	dependent	nodes	may	be	flagged	using
FlagFGDependent().

Methods:

Prototype:
virtual	int	EnumTree(ITreeEnumProc	*proc)=0;

Remarks:
Implemented	by	the	System.
This	may	be	called	to	enumerate	every	INode	in	the	scene.	The	callback	may
flag	any	of	these	nodes	(using	INode::FlagForeground()).

Parameters:
ITreeEnumProc	*proc
This	callback	object	is	called	once	for	each	INode	in	the	scene.

Return	Value:
Nonzero	if	the	process	was	aborted	by	the	callback	(TREE_ABORT);
otherwise	0.

Prototype:
virtual	void	FlagFGSelected(TimeValue	t)=0;

Remarks:
Implemented	by	the	System.
Flags	all	selected	nodes	in	the	scene.

Parameters:

TimeValue	t
The	time	to	flag	the	nodes.

Prototype:
virtual	void	FlagFGAnimated(TimeValue	t)=0;

Remarks:
Implemented	by	the	System.
Flags	all	animated	nodes	in	the	scene.

Parameters:
TimeValue	t
The	time	to	flag	the	nodes.

Prototype:
virtual	void	FlagFGDependent(TimeValue	t,	BaseObject	*obj)=0;

Remarks:
Implemented	by	the	System.
Flags	nodes	that	are	dependent	on	the	given	object.

Parameters:
TimeValue	t
The	time	to	flag	the	nodes.
BaseObject	*obj
The	object	whose	dependent	nodes	should	be	flagged.

Class	IMtlParams
See	Also:	Class	Mtl,	Working	with	Materials,	Class	IRollupWindow.
class	IMtlParams	:	public	InterfaceServer

Description:
This	is	the	interface	that	is	passed	in	to	the	material	or	texture	map	when	it	is	in
the	material	editor.	All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	void	MtlChanged()=0;

Remarks:
This	method	may	be	called	to	causes	the	viewports	to	be	redrawn.	It	should	be
called	when	any	parameter	that	affects	the	look	of	the	material	in	the	viewport
has	been	altered.	If	the	material	is	not	on	a	visible	node	in	a	shaded	view,
nothing	will	happen.	This	method	should	NOT	be	called	as	a	spinner	is	being
dragged,	but	only	upon	release	of	the	mouse	button.

Prototype:
virtual	HWND	AddRollupPage(HINSTANCE	hInst,	TCHAR
*dlgTemplate,	DLGPROC	dlgProc,	TCHAR	*title,	LPARAM
param=0,DWORD	flags=0,	int	category	=
ROLLUP_CAT_STANDARD)=0;

Remarks:
This	method	may	be	called	to	add	a	rollup	page	to	the	material	editor	dialog.	It
returns	the	window	handle	of	the	dialog	that	makes	up	the	rollup	page.

Parameters:
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in.
TCHAR	*dlgTemplate
The	dialog	template	for	the	rollup	page.
DLGPROC	dlgProc
The	dialog	proc	to	handle	the	message	sent	to	the	rollup	page.

TCHAR	*title
The	title	displayed	in	the	title	bar.
LPARAM	param=0
Any	specific	data	to	pass	along	may	be	stored	here.	This	may	be	later	retrieved
using	the	GetWindowLong()	call	from	the	Windows	API.
DWORD	flags=0
The	following	flag	is	defined:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
The	window	handle	of	the	rollup	page.

Prototype:
virtual	HWND	AddRollupPage(HINSTANCE	hInst,
DLGTEMPLATE	*dlgTemplate,	DLGPROC	dlgProc,	TCHAR
*title,	LPARAM	param=0,DWORD	flags=0,	int	category	=
ROLLUP_CAT_STANDARD)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

This	method	may	be	called	to	add	a	rollup	page	to	the	material	editor	dialog.	It
returns	the	window	handle	of	the	dialog	that	makes	up	the	rollup	page.	This
method	is	currently	not	used.

Parameters:
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in.
DLGTEMPLATE	*dlgTemplate
The	dialog	template	for	the	rollup	page.
DLGPROC	dlgProc
The	dialog	proc	to	handle	the	message	sent	to	the	rollup	page.
TCHAR	*title
The	title	displayed	in	the	title	bar.
LPARAM	param=0
Any	specific	data	to	pass	along	may	be	stored	here.	This	may	be	later	retrieved
using	the	GetWindowLong()	call	from	the	Windows	API.
DWORD	flags=0
The	following	flag	is	defined:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
The	window	handle	of	the	rollup	page.

Prototype:
virtual	HWND	ReplaceRollupPage(HWND	hOldRollup,
HINSTANCE	hInst,	TCHAR	*dlgTemplate,	DLGPROC	dlgProc,
TCHAR	*title,	LPARAM	param=0,DWORD	flags=0,	int	category
=	ROLLUP_CAT_STANDARD)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	to	replace	the	rollup	page	whose	index	is	passed.

Parameters:
HWND	hOldRollup
The	handle	to	the	rollup	to	replace.
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in.
TCHAR	*dlgTemplate
The	dialog	template	for	the	rollup	page.
DLGPROC	dlgProc
The	dialog	proc	to	handle	the	message	sent	to	the	rollup	page.
TCHAR	*title
The	title	displayed	in	the	title	bar.
LPARAM	param=0
Any	specific	data	to	pass	along	may	be	stored	here.

DWORD	flags=0
Append	rollup	page	flags:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be

displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
The	handle	of	the	replacement	page	is	returned.

Prototype:
virtual	HWND	ReplaceRollupPage(HWND	hOldRollup,
HINSTANCE	hInst,	DLGTEMPLATE	*dlgTemplate,	DLGPROC
dlgProc,	TCHAR	*title,	LPARAM	param=0,DWORD	flags=0,	int
category	=	ROLLUP_CAT_STANDARD)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	to	replace	the	rollup	page	whose	index	is	passed.	This
method	is	currently	not	being	used.

Parameters:
HWND	hOldRollup
The	handle	to	the	rollup	to	replace.
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in.
DLGTEMPLATE	*dlgTemplate
The	dialog	template	for	the	rollup	page.
DLGPROC	dlgProc
The	dialog	proc	to	handle	the	message	sent	to	the	rollup	page.
TCHAR	*title
The	title	displayed	in	the	title	bar.

LPARAM	param=0
Any	specific	data	to	pass	along	may	be	stored	here.

DWORD	flags=0
Append	rollup	page	flags:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
The	handle	of	the	replacement	page	is	returned.

Prototype:
virtual	void	DeleteRollupPage(HWND	hRollup)=0;

Remarks:
This	method	may	be	called	to	remove	a	rollup	page	and	destroy	it.

Parameters:
HWND	hRollup
The	handle	of	the	rollup	window.	This	is	the	handle	returned	from
AddRollupPage().

Prototype:
virtual	void	RollupMouseMessage(HWND	hDlg,	UINT	message,
	WPARAM	wParam,	LPARAM	lParam)=0;

Remarks:
This	method	allows	hand	cursor	scrolling	when	the	user	clicks	the	mouse	in	an
unused	area	of	the	dialog.	When	the	user	mouses	down	in	dead	area	of	the
material	editor,	the	plug-in	should	pass	mouse	messages	to	this	function.
Note:	In	3ds	max	2.0	and	later	only	use	of	this	method	is	no	longer	required	--
the	functionality	happens	automatically.

Parameters:
HWND	hDlg
The	window	handle	of	the	dialog.
UINT	message
The	message	sent	to	the	dialog	proc.
WPARAM	wParam
Passed	in	to	the	dialog	proc.	Pass	along	to	this	method.
LPARAM	lParam
Passed	in	to	the	dialog	proc.	Pass	along	to	this	method.

Example:
case	WM_LBUTTONDOWN:	case	WM_LBUTTONUP:	case
WM_MOUSEMOVE:
im->iMtlParams-
>RollupMouseMessage(hDlg,message,wParam,lParam);

Prototype:
virtual	int	IsRollupPanelOpen(HWND	hwnd)=0;

Remarks:
Returns	nonzero	if	the	rollup	page	whose	handle	is	passed	is	open;	otherwise
zero.

Parameters:
HWND	hwnd
The	window	handle	of	the	rollup	page	to	check.

Prototype:
virtual	int	GetRollupScrollPos()=0;

Remarks:
Returns	the	rollup	scroll	position.	This	is	used,	for	example,	by	the	Standard
material	because	it	saves	and	restores	the	rollup	page	positions	with	the
material.	This	is	just	a	convenience	for	the	user.

Prototype:
virtual	void	SetRollupScrollPos(int	spos)=0;

Remarks:
This	method	may	be	called	to	set	the	rollup	scroll	position.	If	the	position	was
previously	saved,	this	method	may	be	called	to	restore	it.	The	Standard
material	uses	this	method	because	it	saves	and	restores	the	rollup	positions
with	the	material	as	a	convenience	for	the	user.

Parameters:
int	spos
Specifies	the	rollup	scroll	position.

Prototype:
virtual	void	RegisterTimeChangeCallback(TimeChangeCallback
*tc)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Registers	a	callback	object	that	will	get	called	every	time	the	user	changes	the
3ds	max	frame	slider.

Parameters:
TimeChangeCallback	*tc
The	calllback	called	when	the	time	changes.	See	Class	TimeChangeCallback.

Prototype:
virtual	void
UnRegisterTimeChangeCallback(TimeChangeCallback	*tc)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	un-registers	the	time	change	callback.

Parameters:
TimeChangeCallback	*tc
The	calllback	called	when	the	time	changes.	See	Class	TimeChangeCallback.

Prototype:
virtual	void	RegisterDlgWnd(HWND	hDlg)=0;

Remarks:
This	is	called	automatically	in	AddRollupPage(),	so	a	plug-in	doesn't	need
to	do	it.	It	is	now	obsolete.

Parameters:
HWND	hDlg
The	handle	of	the	dialog	window.

Prototype:
virtual	int	UnRegisterDlgWnd(HWND	hDlg)=0;

Remarks:
This	method	is	called	automatically	and	is	now	obsolete.

Parameters:
HWND	hDlg
The	handle	of	the	dialog	window.

Prototype:
virtual	TimeValue	GetTime()=0;

Remarks:
Returns	the	current	time	(the	frame	slider	position).

Return	Value:
The	current	time.
Pick	an	object	from	the	scene

Prototype:
virtual	void	SetPickMode(PickObjectProc	*proc)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Calling	this	methods	puts	the	user	into	a	pick	mode	where	they	can	select
items	in	the	scene.

Parameters:
PickObjectProc	*proc
This	is	the	callback	object	for	the	picking.	Its	methods	allow	for	filtering	the
picks,	changing	cursors	over	valid	hits,	and	allowing	multiple	picks.	See	Class
PickObjectProc.

Prototype:
virtual	void	EndPickMode()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	to	terminate	the	pick	mode.

Prototype:
virtual	IRollupWindow	*GetMtlEditorRollup()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	returns	an	interface	to	Materials	Editor	rollup.

Class	ITrackBar
See	Also:	Class	IKeyControl,	Class	Interface.
class	ITrackBar

Description:
This	class	is	available	in	release	3.0	and	later	only.
The	track	bar	offers	a	quick	way	to	manipulate	keyframes	for	selected	objects.
Keys	are	displayed	on	the	track	bar	just	like	they	are	in	Track	View.	Developers
are	able	to	manipulate	the	track	bar	using	this	class.	There	is	a	method	of	class
Interface	which	returns	a	pointer	to	an	instance	of	this	class:
ITrackBar*	GetTrackBar().

All	methods	of	this	class	are	Implemented	by	the	System.

Methods:
public:

Prototype:
virtual	void	SetVisible(BOOL	bVisible)	=	0;

Remarks:
Sets	the	visibility	of	the	track	bar	to	on	or	off.

Parameters:
BOOL	bVisible
TRUE	to	make	visible;	FALSE	to	hide.

Prototype:
virtual	BOOL	IsVisible()	=	0;

Remarks:
Returns	TRUE	if	the	track	bar	is	visible;	otherwise	FALSE.

Prototype:
virtual	void	SetFilter(UINT	nFilter)	=	0;

Remarks:
The	track	bar	shows	keys	for	all	parametric	animation	as	well	as	transforms.

This	method	sets	the	filter	used	which	determines	which	keys	are	shown	in	the
track	bar.

Parameters:
UINT	nFilter
One	of	the	following	values:
TRACKBAR_FILTER_ALL
Specifies	to	show	all	keys.
TRACKBAR_FILTER_TMONLY
Specifies	to	show	transform	keys	only.
TRACKBAR_FILTER_CURRENTTM
Specifies	to	only	show	keys	for	the	currently	active	transform	(move,	rotate
or	scale).
TRACKBAR_FILTER_OBJECT
Specifies	to	show	keys	for	the	controllers	assigned	anywhere	in	the	pipeline
to	be	included	in	the	TrackBar	key-display.	This	is	essentially	the	modifiers
and	the	base	objects	for	the	selected	nodes	(no	transforms	or	materials).
TRACKBAR_FILTER_MATERIAL
Specifies	to	show	keys	for	the	controllers	assigned	anywhere	for	the
selected	nodes	material	-	all	controllers	in	the	whole	material	tree	will	be
included	in	the	track	bar	display.

Prototype:
virtual	UINT	GetFilter()	=	0;

Remarks:
Returns	the	filter	value	which	determines	which	keys	are	shown	in	the	track
bar.	See	the	list	specified	in	the	method	above	for	details.

Prototype:
virtual	TimeValue	GetNextKey(TimeValue	tStart,	BOOL
bForward)	=	0;

Remarks:
This	method	returns	the	time	of	the	next	key	given	a	start	time	and	a	flag

which	indicates	if	the	search	should	proceed	forward	or	backwards.	This	is
similar	to	the	behavior	of	Animatable::GetNextKeyTime().

Parameters:
TimeValue	tStart
Specifies	the	time	to	start	looking	for	the	next	key.
BOOL	bForward
TRUE	to	return	the	time	of	the	next	key;	FALSE	for	the	previous	key.

Return	Value:
The	time	of	the	next	(or	previous)	key.

Prototype:
virtual	void	RedrawTrackBar(bool	bForce	=	false)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Redraws	the	Track	Bar	if	required	an	optionally	forces	a	redraw	(even	if	not
known	to	be	required).

Parameters:
bool	bForce	=	false
Pass	true	to	force	a	redraw;	false	to	only	redraw	if	3ds	max	deems	it	required.

Prototype:
virtual	void	SetShowFrames(bool	b)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Controls	the	visibility	of	frame	numbers	in	the	Track	Bar.

Parameters:
bool	b
Pass	true	to	show	frame	numbers;	false	to	turn	them	off.

Prototype:
virtual	bool	GetShowFrames()	=	0;

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
Returns	true	if	frame	numbers	are	visible	in	the	Track	Bar;	false	if	not.

Prototype:
virtual	void	SetShowAudio(bool	b)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Controls	the	visibility	of	the	audio	track.

Parameters:
bool	b
Pass	true	to	show	the	audio	track;	false	to	turn	it	off.

Prototype:
virtual	bool	GetShowAudio()	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	true	if	the	audio	track	is	displayed;	false	if	it	is	not.

Prototype:
virtual	void	SetShowSelectionRange(bool	b)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Controls	if	the	selection	range	bar	is	visible	or	not.

Parameters:
bool	b
Pass	true	to	display	the	selection	range	bar;	false	to	turn	it	off.

Prototype:
virtual	bool	GetShowSelectionRange()	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

Returns	true	if	the	selection	range	bar	is	visible;	false	if	it	is	not.

Prototype:
virtual	void	SetSnapToFrames(bool	b)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Controls	the	snap	to	frames	setting.

Parameters:
bool	b
Pass	true	to	turn	it	on;	false	to	turn	it	off.

Prototype:
virtual	bool	GetSnapToFrames()	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	true	if	snap	to	frames	is	on;	false	if	it	is	off.

Prototype:
virtual	void	SetKeyTransparency(int	xp)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	transparency	of	keyframes	displayed	in	the
trackbar.

Parameters:
int	xp
The	transparency	value	between	0	and	255.

Prototype:
virtual	int	GetKeyTransparency()	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	transparency	of	keyframes	displayed	in	the	trackbar.

Return	Value:
The	transparency	value	between	0	and	255.

Prototype:
virtual	void	SetSelKeyTransparency(int	xp)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	transparency	of	selected	keyframes
displayed	in	the	trackbar.

Parameters:
int	xp
The	transparency	value	between	0	and	255.

Prototype:
virtual	int	GetSelKeyTransparency()	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	transparency	of	selected	keyframes	displayed	in	the
trackbar.

Return	Value:
The	transparency	value	between	0	and	255.

Prototype:
virtual	void	SetCursorTransparency(int	xp)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	transparency	of	the	cursor	displayed	in	the
trackbar.

Parameters:
int	xp
The	transparency	value	between	0	and	255.

Prototype:
virtual	int	GetCursorTransparency()	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	transparency	of	the	cursor	displayed	in	the	trackbar.

Return	Value:
The	transparency	value	between	0	and	255.

Class	IXRefObject
See	Also:	Class	Object,	Class	INode.
class	IXRefObject:	public	Object

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	is	an	interface	to	the	parameters	of	an	XRef	object.	Object	XRefs	are
derived	from	this	class.
If	you	have	an	object	pointer	you	can	check	its	super	class	ID	and	class	ID	to	see
if	it	is	an	XRef	object.	Then	you	can	cast	it	to	an	instance	of	this	class	and	call
these	methods.	For	example:
INode	*node	=	ip->GetSelNode(0);
Object	*obj	=	node->GetObjectRef();
if	(obj->SuperClassID()==SYSTEM_CLASS_ID	&&	obj-

>ClassID()==Class_ID(XREFOBJ_CLASS_ID,0))
{

	IXRefObject	*ix	=	(IXRefObject	*)obj;
	ix->BrowseFile(FALSE);
}

However	you	may	have	an	object	that	depends	on	an	XRef	object	(for	example	a
Boolean	with	an	XRef	object	as	one	of	it’s	operands)	or	you	may	have	a	pointer
to	the	object	that	the	XRef	object	references.	In	such	cases	the	only	way	to	know
for	sure	is	to	look	up	and	down	the	pipeline	for	XRef	objects.

Methods:
public:

Prototype:
virtual	void	Init(TSTR	&fname,	TSTR	&oname,	Object	*ob,
BOOL	asProxy=FALSE)=0;

Remarks:
This	method	initializes	a	newly	created	XRef	object.	The	caller	provides	the
name	of	the	file	(fname),	the	name	of	the	object	in	the	file	(oname),	and	a
pointer	to	the	object	being	XRefed	(ob).

Parameters:
TSTR	&fname
The	file	name	is	set	to	this	string.
TSTR	&oname
The	object	name	is	set	to	this	string.
Object	*ob
Points	to	the	object	being	XRefed.
BOOL	asProxy=FALSE
If	TRUE	then	the	above	information	is	considered	to	specify	the	proxy	portion
of	the	XRef.

Prototype:
virtual	void	SetFileName(TCHAR	*name,	BOOL	proxy=FALSE,
BOOL	update=TRUE)=0;

Remarks:
Sets	the	File	name	or	the	Proxy	file	name	depending	on	the	value	passed.

Parameters:
TCHAR	*name
The	name	to	set.
BOOL	proxy=FALSE
TRUE	to	set	the	Proxy	file	name;	FALSE	for	the	XRef	file	name.
BOOL	update=TRUE
TRUE	to	update	the	scene;	FALSE	to	not	update	immediately.

Prototype:
virtual	void	SetObjName(TCHAR	*name,	BOOL
proxy=FALSE)=0;

Remarks:
Sets	the	Object	name	or	the	Proxy	name	depending	on	the	value	passed.

Parameters:
TCHAR	*name
The	name	to	set.

BOOL	proxy=FALSE
TRUE	to	set	the	Proxy	name;	FALSE	to	set	the	Object	name.

Prototype:
virtual	void	SetUseProxy(BOOL	onOff,BOOL	redraw=TRUE)=0;

Remarks:
Sets	the	state	of	the	Use	Proxy	choice	and	optionally	redraws	the	viewports.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.
BOOL	redraw=TRUE
TRUE	to	redraw	the	viewports;	otherwise	FALSE.

Prototype:
virtual	void	SetRenderProxy(BOOL	onOff)=0;

Remarks:
Sets	the	state	of	the	Render	Proxy	option.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetUpdateMats(BOOL	onOff)=0;

Remarks:
Sets	the	state	of	the	Update	Materials	option.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetIgnoreAnim(BOOL	onOff,BOOL
redraw=TRUE)=0;

Remarks:
Sets	the	state	of	the	Ignore	Animation	choice	and	optionally	redraws	the
viewports.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.
BOOL	redraw=TRUE
TRUE	to	redraw	the	viewports;	otherwise	FALSE.

Prototype:
virtual	TSTR	GetFileName(BOOL	proxy=FALSE)=0;

Remarks:
Returns	the	File	name	or	the	Proxy	file	name	depending	on	the	value	passed.

Parameters:
BOOL	proxy=FALSE
TRUE	to	return	the	Proxy	file	name;	FALSE	for	the	XRef	file	name.

Prototype:
virtual	TSTR	GetObjName(BOOL	proxy=FALSE)=0;

Remarks:
Returns	the	Object	name	or	the	Proxy	name	depending	on	the	value	passed.

Parameters:
BOOL	proxy=FALSE
TRUE	to	return	the	Proxy	name;	FALSE	to	return	the	Object	name.

Prototype:
virtual	TSTR	&GetCurFileName()=0;

Remarks:
Returns	the	XRef	File	Name.

Prototype:

virtual	TSTR	&GetCurObjName()=0;
Remarks:
Returns	the	XRef	Object	Name.

Prototype:
virtual	BOOL	GetUseProxy()=0;

Remarks:
Returns	TRUE	if	the	Use	Proxy	option	is	on;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetRenderProxy()=0;

Remarks:
Returns	TRUE	if	the	Render	Proxy	option	is	on;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetUpdateMats()=0;

Remarks:
Returns	TRUE	if	the	Update	Material	option	is	on;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetIgnoreAnim()=0;

Remarks:
Returns	TRUE	if	the	Ignore	Animation	option	is	on;	otherwise	FALSE.

Prototype:
virtual	void	BrowseObject(BOOL	proxy)=0;

Remarks:
This	method	brings	up	the	browse	object	(Merge)	dialog.

Parameters:
BOOL	proxy
TRUE	to	have	Use	Proxy	mode	active;	FALSE	to	have	it	inactive.

Prototype:
virtual	void	BrowseFile(BOOL	proxy)=0;

Remarks:
This	method	brings	up	the	browse	file	(Open	File)	dialog.

Parameters:
BOOL	proxy
TRUE	to	have	Use	Proxy	mode	active;	FALSE	to	have	it	inactive.

Prototype:
virtual	void	ReloadXRef()=0;

Remarks:
Reloads	this	Object	XRef.

Class	ILayer
See	Also:	Class	ReferenceTarget,	Class	ILayerManager,	Class	LayerProperty,
Class	INode.
class	ILayer	:	public	ReferenceTarget

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	is	an	interface	to	the	Layers	functionality	provided	by	3D	Studio	VIZ.
Basically,	Layers	govern	(override)	some	properties	of	the	nodes	which	are	on
the	layer.	For	example,	a	Layer	could	be	used	to	freeze	all	the	nodes	on	it
without	having	to	set	this	property	of	each	node	individually.
Some	of	the	methods	below	are	not	functional	in	3ds	max.	Such	cases	are	noted
in	the	remarks	for	the	method.

Data	Members:
public:
static	const	SClass_ID	kLayerSuperClassID;
The	super	class	ID	of	the	layer	interface	class.

Methods:
public:

Prototype:
virtual	bool	AddToLayer(INode	*rtarg)=0;

Remarks:
Adds	the	specified	node	to	this	layer.

Parameters:
INode	*rtarg
The	node	to	add.

Prototype:
virtual	bool	DeleteFromLayer(INode	*rtarg)=0;

Remarks:
Deletes	the	specified	node	from	this	layer.	Note:	This	method	does	nothing	in
3ds	max.

Parameters:
INode	*rtarg
The	node	to	delete	from	this	layer.

Prototype:
virtual	void	SetName(const	TSTR	&name)=0;

Remarks:
Sets	the	name	of	this	layer.

Parameters:
const	TSTR	&name
The	name	for	this	layer.

Prototype:
virtual	TSTR	GetName()	const=0;

Remarks:
Returns	the	name	of	this	layer.	Note:	The	user	of	this	method	must	delete	the
returned	string.

Prototype:
virtual	void	SetWireColor(DWORD	newcol)=0;

Remarks:
Sets	the	wire	frame	color.

Parameters:
DWORD	newcol
See	COLORREF.

Prototype:
virtual	DWORD	GetWireColor()	const=0;

Remarks:
Returns	the	wire	frame	color.	See	COLORREF.

Prototype:

virtual	void	Hide(bool	onOff)=0;
Remarks:
Sets	the	hidden	state.

Parameters:
bool	onOff
Use	true	for	hidden;	false	for	not	hidden.

Prototype:
virtual	bool	IsHidden()	const=0;

Remarks:
Returns	true	if	hidden;	false	if	not	hidden.

Prototype:
virtual	void	Freeze(bool	onOff)=0;

Remarks:
Sets	the	frozen	state.

Parameters:
bool	onOff
Use	true	for	on;	false	for	off.

Prototype:
virtual	bool	IsFrozen()	const=0;

Remarks:
Returns	true	if	frozen;	false	if	not.

Prototype:
virtual	void	SetRenderable(bool	onOff)=0;

Remarks:
Sets	the	renderable	state.

Parameters:
bool	onOff

Use	true	for	on;	false	for	off.

Prototype:
virtual	bool	Renderable()	const=0;

Remarks:
Returns	true	if	renderable;	false	if	not.

Prototype:
virtual	void	SetPrimaryVisibility(bool	onOff)	=	0;

Remarks:
This	method	allows	you	to	set	or	unset	the	primary	visibility	flag	for	the	layer.

Parameters:
bool	onOff
TRUE	to	set;	FALSE	to	unset.

Prototype:
virtual	bool	GetPrimaryVisibility()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	primary	visibility	flag	for	the	layer	is	set.

Prototype:
virtual	void	SetSecondaryVisibility(bool	onOff)	=	0;

Remarks:
This	method	allows	you	to	set	the	secondary	visibility	flag	for	the	layer.

Parameters:
bool	onOff
TRUE	to	set;	FALSE	to	unset.

Prototype:
virtual	bool	GetSecondaryVisibility()	const	=	0;

Remarks:

This	method	returns	TRUE	if	the	secondary	visibility	flag	for	the	layer	is	set.

Prototype:
virtual	void	XRayMtl(bool	onOff)=0;

Remarks:
Sets	the	X-Ray	material	property.

Parameters:
bool	onOff
Use	true	for	on;	false	for	off.

Prototype:
virtual	bool	HasXRayMtl()	const=0;

Remarks:
Returns	true	if	X-Ray	material	is	set;	false	if	not.

Prototype:
virtual	void	IgnoreExtents(bool	onOff)=0;

Remarks:
Sets	the	ignore	extents	property.

Parameters:
bool	onOff
Use	true	for	on;	false	for	off.

Prototype:
virtual	bool	GetIgnoreExtents()	const=0;

Remarks:
Returns	true	if	ignore	extents	is	on;	false	if	off.

Prototype:
virtual	void	BoxMode(bool	onOff)=0;

Remarks:

Sets	the	box	mode	state.
Parameters:
bool	onOff
Use	true	for	on;	false	for	off.

Prototype:
virtual	bool	GetBoxMode()	const=0;

Remarks:
Returns	true	if	box	mode	is	on;	false	if	off.

Prototype:
virtual	void	AllEdges(bool	onOff)=0;

Remarks:
Sets	the	all	edges	setting.

Parameters:
bool	onOff
Use	true	for	on;	false	for	off.

Prototype:
virtual	bool	GetAllEdges()	const=0;

Remarks:
Returns	true	if	all	edges	is	on;	false	if	off.

Prototype:
virtual	void	VertTicks(bool	onOff)=0;

Remarks:
Sets	the	vertex	ticks	state.

Parameters:
bool	onOff
Use	true	for	on;	false	for	off.

Prototype:
virtual	bool	GetVertTicks()	const=0;

Remarks:
Returns	true	if	vertex	ticks	is	on;	false	if	off.

Prototype:
virtual	void	BackCull(bool	onOff)=0;

Remarks:
Sets	the	backface	culling	state.

Parameters:
bool	onOff
Use	true	for	on;	false	for	off.

Prototype:
virtual	bool	GetBackCull()	const=0;

Remarks:
Returns	true	if	backface	culling	is	on;	false	if	not.

Prototype:
virtual	void	SetCVertMode(bool	onOff)=0;

Remarks:
Sets	the	color	per	vertex	display	mode.

Parameters:
bool	onOff
Use	true	for	on;	false	for	off.

Prototype:
virtual	bool	GetCVertMode()	const=0;

Remarks:
Returns	true	if	the	color	vertex	display	mode	is	on;	otherwise	false.

Prototype:
virtual	void	SetShadeCVerts(bool	onOff)=0;

Remarks:
Sets	the	shaded	color	vertex	display	mode.

Parameters:
bool	onOff
Use	true	for	on;	false	for	off.

Prototype:
virtual	bool	GetShadeCVerts()	const=0;

Remarks:
Returns	true	if	the	shaded	color	vertex	mode	is	on;	false	if	off.

Prototype:
virtual	void	SetCastShadows(bool	onOff)=0;

Remarks:
Sets	the	cast	shadow	state.

Parameters:
bool	onOff
Use	true	for	on;	false	for	off.

Prototype:
virtual	bool	CastShadows()	const=0;

Remarks:
Returns	true	if	cast	shadow	is	on;	false	if	off.

Prototype:
virtual	void	SetRcvShadows(bool	onOff)=0;

Remarks:
Sets	the	receives	shadow	state.

Parameters:

bool	onOff
Use	true	for	on;	false	for	off.

Prototype:
virtual	bool	RcvShadows()	const=0;

Remarks:
Returns	true	if	receives	shadow	is	on;	false	if	off.

Prototype:
virtual	void	SetMotBlur(int	kind)=0;

Remarks:
Sets	the	type	of	motion	blur	used	by	the	layer.

Parameters:
int	kind
The	kind	of	motion	blur.	One	of	the	following	values:
0:	None.
1:	Object	Motion	Blur.
2:	Image	Motion	Blur.

Prototype:
virtual	int	MotBlur()	const=0;

Remarks:
Returns	the	type	of	motion	blur	used	by	the	layer.	One	of	the	following	values:
0:	None.
1:	Object	Motion	Blur.
2:	Image	Motion	Blur.

Prototype:
virtual	int	GetRenderFlags()	const=0;

Remarks:
This	method	is	for	internal	use.

Prototype:
virtual	void	SetRenderFlags(int	flags)=0;

Remarks:
This	method	is	for	internal	use.

Prototype:
virtual	int	GetDisplayFlags()	const=0;

Remarks:
This	method	is	for	internal	use.

Prototype:
virtual	int	AddProperty(LayerProperty	&lprop)=0;

Remarks:
This	method	is	currently	unused	and	reserved	for	future	use.

Prototype:
virtual	int	SetProperty(LayerProperty	&lprop)=0;

Remarks:
This	method	is	currently	unused	and	reserved	for	future	use.

Prototype:
virtual	int	GetProperty(LayerProperty	&lprop)	const=0;

Remarks:
This	method	is	currently	unused	and	reserved	for	future	use.

Prototype:
virtual	bool	Used()	const=0;

Remarks:
Returns	true	if	the	layer	is	used	(nodes	have	been	added);	otherwise	false.

Prototype:

virtual	bool	GetFlag(int	mask)	const=0;
Remarks:
This	method	is	for	internal	use.

Prototype:
virtual	bool	GetFlag2(int	mask)	const=0;

Remarks:
This	method	is	for	internal	use.

Prototype:
virtual	void	UpdateSelectionSet()=0;

Remarks:
This	method	is	for	internal	use	in	VIZ.	Note:	This	method	does	nothing	in	3ds
max.

Prototype:
virtual	int	GetRenderFlags(int	oldlimits)	const	=	0;

Remarks:
This	method	returns	the	render	flags	associated	with	the	layer.

Parameters:
int	oldlimits
The	old	limits	flag.

Prototype:
virtual	void	SetInheritVisibility(bool	onOff)	=	0;

Remarks:
This	method	allows	you	to	set	the	inherit	visibility	flag	for	the	layer.

Parameters:
bool	onOff
TRUE	to	set;	FALSE	to	unset.

Prototype:
virtual	bool	GetInheritVisibility()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	inherit	visibility	flag	for	the	layer	is	set.

Prototype:
virtual	void	Trajectory(bool	onOff,	bool	temp	=	false)	=	0;

Remarks:
This	method	allows	you	to	set	the	display	trajectory	flag	for	the	layer.

Parameters:
bool	onOff
TRUE	to	set;	FALSE	to	unset.
bool	temp	=	false
This	is	used	internally.

Prototype:
virtual	bool	GetTrajectory()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	display	trajectory	flag	for	the	layer	is	set.

Prototype:
virtual	void	SetDisplayByLayer(BOOL	onOff,	INode	*)	=	0;

Remarks:
This	method	allows	you	to	set	the	display	by	layer	flag	on	a	per-node	basis.

Parameters:
bool	onOff
TRUE	to	set;	FALSE	to	unset.
Node	*
The	pointer	to	the	node.

Prototype:

virtual	void	SetRenderByLayer(BOOL	onOff,	INode	*)	=	0;
Remarks:
This	method	allows	you	to	set	the	render	by	layer	flag	on	a	per-node	basis.

Parameters:
bool	onOff
TRUE	to	set;	FALSE	to	unset.
Node	*
The	pointer	to	the	node.

Prototype:
virtual	void	SetMotionByLayer(BOOL	onOff,	INode	*)	=	0;

Remarks:
This	method	allows	you	to	set	the	motion	by	layer	flag	on	a	per-node	basis.

Parameters:
bool	onOff
TRUE	to	set;	FALSE	to	unset.
Node	*
The	pointer	to	the	node.

Prototype:
virtual	BOOL	GetDisplayByLayer(INode	*)	=	0;

Remarks:
This	method	returns	the	state	of	the	display	by	layer	flag	for	the	specified
node.

Parameters:
Node	*
The	pointer	to	the	node.

Return	Value:
TRUE	if	set;	FALSE	if	not	set.

Prototype:
virtual	BOOL	GetRenderByLayer(INode	*)	=	0;

Remarks:
This	method	returns	the	state	of	the	render	by	layer	flag	for	the	specified	node.

Parameters:
Node	*
The	pointer	to	the	node.

Return	Value:
TRUE	if	set;	FALSE	if	not	set.

Prototype:
virtual	BOOL	GetMotionByLayer(INode	*)	=	0;

Remarks:
This	method	returns	the	state	of	the	motion	by	layer	flag	for	the	specified
node.

Parameters:
Node	*
The	pointer	to	the	node.

Return	Value:
TRUE	if	set;	FALSE	if	not	set.

Prototype:
virtual	void	SelectObjects(void)	=	0;

Remarks:
This	method	will	select	the	objects	of	the	layer.

Prototype:
virtual	float	GetImageBlurMultiplier(TimeValue	t)	=	0;

Remarks:
This	method	allows	you	to	set	the	image	blur	multiplier	for	the	layer.

Parameters:
TimeValue	t
The	timevalue	to	get	the	image	blur	multiplier	for.

Prototype:
virtual	void	SetImageBlurMultiplier(TimeValue	t,	float	m)	=	0;

Remarks:
This	method	allows	you	to	set	the	image	blur	multiplier.

Parameters:
TimeValue	t
The	timevalue	to	set	the	image	blur	multiplier	for.
float	m
The	multiplier	to	set.

Prototype:
virtual	bool	GetMotBlurOnOff(TimeValue	t)	=	0;

Remarks:
This	method	returns	the	state	of	the	motion	blur	flag	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	flag.

Prototype:
virtual	void	SetMotBlurOnOff(TimeValue	t,	bool	m)	=	0;

Remarks:
This	method	allows	you	to	set	the	state	of	the	motion	blur	flag	at	the	specified
time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	flag.
bool	m
TRUE	to	turn	on;	FALSE	to	turn	off.

Class	IDerivedObject
See	Also:	Class	Object,	Class	ModContext,	Class	Modifier,	Class	INode,
Geometry	Pipeline	System.
class	IDerivedObject	:	public	Object

Description:
This	class	provides	an	interface	into	derived	objects.	Methods	of	this	class	are
provided	so	developers	can	access	the	modifier	stack,	add	and	delete	modifiers,
etc.	All	methods	of	this	class	are	implemented	by	the	system.
To	use	this	interface	you	must	#include	the	following	file:
#include	"modstack.h"

To	get	an	IDerivedObject	pointer	from	the	pipeline	of	a	node	in	the	scene	first
retrieve	the	object	reference	using	INode::GetOjbectRef().	Given	this
Object	pointer	check	its	SuperClassID	to	see	if	it	is
GEN_DERIVOB_CLASS_ID.	If	it	is,	you	can	cast	it	to	an
IDerivedObject.
Note:	The	following	functions	are	not	part	of	class	IDerivedObject	but	are
available	for	use	in	conjunction	with	its	methods.

Prototype:
IDerivedObject	*CreateDerivedObject(Object	*pob=NULL);

Remarks:
This	method	creates	an	object	space	derived	object.

Parameters:
Object	*pob=NULL
If	non-NULL	then	the	derived	object	will	be	set	up	to	reference	this	object.

Return	Value:
A	pointer	to	the	derived	object.

Prototype:
Object	*MakeObjectDerivedObject(Object	*obj);

Remarks:

Creates	a	new	empty	derived	object,	sets	it	to	point	at	the	given	object	and
returns	a	pointer	to	the	derived	object.

Parameters:
Object	*obj
The	object	reference	of	the	derived	object	will	point	at	this	object.

Return	Value:
A	pointer	to	the	derived	object.

Prototype:
IDerivedObject	*CreateWSDerivedObject(Object	*pob=NULL);

Remarks:
This	method	creates	a	world	space	derived	object.

Parameters:
Object	*pob=NULL
If	non-NULL	then	the	WS	derived	object	will	be	set	up	to	reference	this
object.

Return	Value:
A	pointer	to	the	derived	object.

Methods:

Prototype:
virtual	void	AddModifier(Modifier	*mod,	ModContext
*mc=NULL,	int	before=0)=0;

Remarks:
Adds	a	modifier	to	this	derived	object.

Parameters:
Modifier	*mod
The	modifier	to	add.
ModContext	*mc=NULL
The	mod	context	for	the	modifier.
int	before=0
If	this	value	is	set	to	0	then	the	modifier	will	be	placed	at	the	end	of	the

pipeline	(top	of	stack).	If	this	value	is	set	to	NumModifiers()	then	the
modifier	will	be	placed	at	the	start	of	the	pipeline	(bottom	of	stack).

Prototype:
virtual	Object	*GetObjRef()=0;

Remarks:
Gets	the	object	that	this	derived	object	references.	This	is	the	next	object	down
in	the	stack	and	may	be	the	base	object.

Return	Value:
The	object	that	this	derived	object	references.

Prototype:
virtual	RefResult	ReferenceObject(Object	*pob)=0;

Remarks:
Sets	the	object	that	this	derived	object	references.	This	is	the	next	object	down
in	the	stack	and	may	be	the	base	object.

Parameters:
Object	*pob
The	object	that	this	derived	object	should	reference.

Return	Value:
One	of	the	following	values:
REF_SUCCEED
REF_FAIL

Prototype:
virtual	int	NumModifiers()=0;

Remarks:
Returns	the	number	of	modifiers	this	derived	object	has.

Prototype:
virtual	void	DeleteModifier(int	index=0)=0;

Remarks:

Deletes	the	specified	modifier	from	the	stack.
Parameters:
int	index=0
The	index	of	the	modifier	to	delete.

Prototype:
virtual	Modifier	*GetModifier(int	index)=0;

Remarks:
Returns	the	modifier	specified	by	the	index.

Parameters:
int	index
The	index	of	the	modifier	to	return.

Prototype:
virtual	void	SetModifier(int	index,	Modifier	*mod)=0;

Remarks:
This	method	replaces	the	modifier	in	the	stack	whose	index	is	passed.

Parameters:
int	index
The	index	of	the	modifier	in	the	stack.
Modifier	*mod
The	modifier	that	will	replace	it.

Prototype:
virtual	ModContext*	GetModContext(int	index)=0;

Remarks:
Returns	the	ModContext	of	the	specified	modifier.

Parameters:
int	index
The	index	of	the	modifier	in	the	stack.

Prototype:
virtual	ObjectState	Eval(TimeValue	t,	int	modIndex	=	0)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	evaluate	the	pipeline	starting	with	a	specific
modifier	index.	Prior	to	version	4.0	you	had	to	turn	all	the	modApps	off,
evaluate	and	then	turn	them	on	again.	Now	this	can	be	easily	done	by
specifying	the	modifier	index.

Parameters:
TimeValue	t
Specifies	the	time	to	evaluate	the	object.
int	modIndex	=	0
The	index	of	the	modifier.

Return	Value:
The	result	of	evaluating	the	object	as	an	ObjectState.

Class	ITextObject
See	Also:	Class	Animatable.
class	ITextObject

Description:
This	is	the	text	shape	object	interface.	This	class	gives	access	to	the	standard	3ds
max	text	object.	It	allows	the	text	objects	font,	string,	and	style	bits	to	be
retrieved	and	set.	All	methods	of	this	class	are	implemented	by	the	system.
To	get	a	pointer	to	an	ITextObject	interface	given	a	pointer	to	a	object,	use	the
following	macro	(defined	in	ANIMTBL.H).	Using	this	macro,	given	any
Animatable,	it	is	easy	to	ask	for	the	text	object	interface.
#define	GetTextObjectInterface(anim)
((ITextObject*)anim->GetInterface(I_TEXTOBJECT))

A	plug-in	developer	may	use	this	macro	as	follows:
ITextObject	*ito	=	GetTextObjectInterface(anim);

This	return	value	will	either	be	NULL	or	a	pointer	to	a	valid	text	object	interface.
You	may	then	use	this	pointer	to	call	methods	of	this	class	to	retrieve	and	modify
the	object	data.	For	example:
ito->SetUnderline(TRUE);

Note:	Some	aspects	of	the	text	are	controlled	by	its	parameter	block.	Developers
can	access	the	parameter	block	by	calling	ito->GetParamBlock().	The
following	are	the	indices	into	the	parameter	block	used	to	access	the	size,
kerning	and	leading	parameters:
TEXT_SIZE
TEXT_KERNING
TEXT_LEADING

Methods:

Prototype:
virtual	BOOL	ChangeText(TSTR	string)=0;

Remarks:
This	method	may	be	called	to	change	the	text	string.	Note	that	you	can't
change	the	string	if	the	current	font	is	not	installed.

Parameters:
TSTR	string
The	new	text	string.

Return	Value:
TRUE	if	the	string	is	changed;	otherwise	FALSE.

Prototype:
virtual	BOOL	ChangeFont(TSTR	name,	DWORD	flags)=0;

Remarks:
This	method	may	be	called	to	change	the	text	font.

Parameters:
TSTR	name
The	name	of	the	font.
DWORD	flags
One	or	more	of	the	following	values:
TEXTOBJ_ITALIC
TEXTOBJ_UNDERLINE

Return	Value:
TRUE	if	the	font	was	successfully	changed;	otherwise	FALSE.

Prototype:
virtual	TSTR	GetFont()=0;

Remarks:
Returns	the	name	of	the	text	font.

Prototype:
virtual	TSTR	GetString()=0;

Remarks:
Returns	the	text	string.

Prototype:
virtual	BOOL	GetItalic()=0;

Remarks:
Returns	TRUE	if	the	text	is	italicized;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetUnderline()=0;

Remarks:
Returns	TRUE	if	the	text	is	underlined;	otherwise	FALSE.

Prototype:
virtual	void	SetItalic(BOOL	sw)=0;

Remarks:
Sets	if	the	text	is	italicized	or	not.

Parameters:
BOOL	sw
TRUE	if	the	text	should	be	italicized;	FALSE	if	not.

Prototype:
virtual	void	SetUnderline(BOOL	sw)=0;

Remarks:
Sets	if	the	text	is	underlined	or	not.

Parameters:
BOOL	sw
TRUE	if	the	text	should	be	underlined;	FALSE	if	not.

Class	StdMat
See	Also:	Class	Mtl,	Class	Color,	Working	with	Materials.
class	StdMat	:	public	Mtl

Description:
This	class	provides	access	to	the	properties	of	the	3ds	max	Standard	material.	All
methods	of	this	class	are	implemented	by	the	system.
Note	that	some	properties	such	as	the	texture	maps	used	are	accessed	using
methods	of	the	base	class	MtlBase.	See	that	class,	or	the	Advanced	Topics
section	Working	with	Materials	for	more	details.

Methods	Groups:
The	following	hyperlinks	take	you	to	the	beginning	of	groups	of	related	method
within	the	class.
Setting	material	properties
Retrieving	material	properties

Methods:

Prototype:
virtual	void	SetShading(int	s)=0;

Remarks:
Sets	the	shading	limit	for	the	material.

Parameters:
int	s
One	of	the	following	values:
SHADE_CONST
SHADE_PHONG
SHADE_METAL
SHADE_BLINN

Prototype:
virtual	void	SetSoften(BOOL	onoff)=0;

Remarks:

Sets	the	'Soften'	setting	on	or	off.
Parameters:
BOOL	onoff
TRUE	to	turn	on;	FALSE	to	turn	off.

Prototype:
virtual	void	SetFaceMap(BOOL	onoff)=0;

Remarks:
Sets	the	'Face	Map'	setting	on	or	off.

Parameters:
BOOL	onoff
TRUE	to	turn	on;	FALSE	to	turn	off.

Prototype:
virtual	void	SetTwoSided(BOOL	onoff)=0;

Remarks:
Sets	the	'2	Sided'	setting	on	or	off.

Parameters:
BOOL	onoff
TRUE	to	turn	on;	FALSE	to	turn	off.

Prototype:
virtual	void	SetWire(BOOL	onoff)=0;

Remarks:
Sets	the	'Wire'	setting	on	or	off.

Parameters:
BOOL	onoff
TRUE	to	turn	on;	FALSE	to	turn	off.

Prototype:
virtual	void	SetWireUnits(BOOL	onOff)=0;

Remarks:
Sets	the	wire	size	to	pixels	or	units.

Parameters:
BOOL	onoff
TRUE	for	units;	FALSE	for	pixels.

Prototype:
virtual	void	SetFalloffOut(BOOL	onOff)=0;

Remarks:
Sets	the	opacity	falloff	setting	to	out	or	in.

Parameters:
BOOL	onoff
TRUE	for	Out;	FALSE	for	In.

Prototype:
virtual	void	SetTransparencyType(int	type)=0;

Remarks:
Sets	the	additive	transparency	setting.

Parameters:
int	type
One	of	the	following	values:
TRANSP_SUBTRACTIVE
TRANSP_ADDITIVE
TRANSP_FILTER

Prototype:
virtual	void	SetAmbient(Color	c,	TimeValue	t)=0;

Remarks:
Sets	the	ambient	color	to	the	specified	value	at	the	time	passed.

Parameters:
Color	c
The	color	to	set.

TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetDiffuse(Color	c,	TimeValue	t)=0;

Remarks:
Sets	the	diffuse	color	to	the	specified	value	at	the	time	passed.

Parameters:
Color	c
The	color	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetSpecular(Color	c,	TimeValue	t)=0;

Remarks:
Sets	the	specular	color	to	the	specified	value	at	the	time	passed.

Parameters:
Color	c
The	color	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetFilter(Color	c,	TimeValue	t)=0;

Remarks:
Sets	the	filter	color	to	the	specified	value	at	the	time	passed.

Parameters:
Color	c
The	color	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetShininess(float	v,	TimeValue	t)=0;

Remarks:
Sets	the	shininess	to	the	specified	value	at	the	time	passed.

Parameters:
float	v
The	value	to	set	in	the	range	0	-	1.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetShinStr(float	v,	TimeValue	t)=0;

Remarks:
Sets	the	shininess	strength	to	the	specified	value	at	the	time	passed.

Parameters:
float	v
The	value	to	set	in	the	range	0	-	1.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetSelfIllum(float	v,	TimeValue	t)=0;

Remarks:
Sets	the	self	illumination	to	the	specified	value	at	the	time	passed.

Parameters:
float	v
The	value	to	set	in	the	range	0	-	1.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetOpacity(float	v,	TimeValue	t)=0;

Remarks:
Sets	the	opacity	to	the	specified	value	at	the	time	passed.

Parameters:
float	v
The	value	to	set	in	the	range	0	-	1.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetOpacFalloff(float	v,	TimeValue	t)=0;

Remarks:
Sets	the	opacity	falloff	to	the	specified	value	at	the	time	passed.

Parameters:
float	v
The	value	to	set	in	the	range	0	-	1.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetWireSize(float	s,	TimeValue	t)=0;

Remarks:
Sets	the	wire	size	to	the	specified	value	at	the	time	passed.

Parameters:
float	s
The	value	to	set.	This	value	should	be	>	0.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetIOR(float	v,	TimeValue	t)=0;

Remarks:
Sets	the	index	of	refraction	to	the	specified	value	at	the	time	passed.

Parameters:
float	v
The	value	to	set	in	the	range	0	-	10.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	LockAmbDiffTex(BOOL	onOff)=0;

Remarks:
Locks	or	unlocks	the	ambient/diffuse	textures	together.

Parameters:
BOOL	onOff
TRUE	to	lock;	FALSE	to	unlock.

Prototype:
virtual	void	EnableMap(int	i,	BOOL	onoff)=0;

Remarks:
Enables	or	disables	the	specified	map	type.

Parameters:
int	i
See	List	of	Texture	Map	Indices.
BOOL	onoff
TRUE	to	enable;	FALSE	to	disable.

Prototype:
virtual	BOOL	MapEnabled(int	i)=0;

Remarks:
Returns	TRUE	if	the	specified	map	is	enabled;	otherwise	FALSE.

Parameters:

int	i
See	List	of	Texture	Map	Indices.

Prototype:
virtual	void	SetTexmapAmt(int	imap,	float	amt,	TimeValue	t)=0;

Remarks:
This	method	is	used	to	change	the	'Amount'	setting	of	the	specified	map.

Parameters:
int	imap
See	List	of	Texture	Map	Indices.
float	amt
The	amount	to	set	in	the	range	of	0-1.
TimeValue	t
The	time	at	which	to	set	the	amount.

Prototype:
virtual	float	GetTexmapAmt(int	imap,	TimeValue	t)=0;

Remarks:
Returns	the	amount	setting	of	the	specified	texture	map	at	the	time	passed.
The	returned	range	is	0	to	1.

Parameters:
int	imap
See	List	of	Texture	Map	Indices.
TimeValue	t
The	amount	at	this	time	is	returned.

Prototype:
virtual	void	SetSamplingOn(BOOL	on)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Set	super	sampling	on	or	off	(enabled	or	disabled).

Parameters:

BOOL	on
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	int	GetShading()=0;

Remarks:
Returns	the	shading	limit.	One	of	the	following	values:
SHADE_CONST
SHADE_PHONG
SHADE_METAL
SHADE_BLINN

Prototype:
virtual	BOOL	GetSoften()=0;

Remarks:
Returns	TRUE	if	soften	is	on;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetFaceMap()=0;

Remarks:
Returns	TRUE	if	face	mapping	is	on;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetTwoSided()=0;

Remarks:
Returns	TRUE	if	two	sided	is	on;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetWire()=0;

Remarks:
Returns	TRUE	if	wire	is	on;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetWireUnits()=0;

Remarks:
Returns	TRUE	if	the	wire	size	is	in	units;	FALSE	if	the	wire	size	is	in	pixels.

Prototype:
virtual	BOOL	GetFalloffOut()=0;

Remarks:
Returns	the	opacity	falloff	setting:	1	=	Out,	0	=	In.

Prototype:
virtual	int	GetTransparencyType()=0;

Remarks:
Returns	the	transparency	type.

Return	Value:
int	type
One	of	the	following	values:
TRANSP_SUBTRACTIVE
TRANSP_ADDITIVE
TRANSP_FILTER

Prototype:
virtual	Color	GetAmbient(TimeValue	t)=0;

Remarks:
Returns	the	ambient	color	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	return	the	color.

Prototype:
virtual	Color	GetDiffuse(TimeValue	t)=0;

Remarks:
Returns	the	diffuse	color	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	return	the	color.

Prototype:
virtual	Color	GetSpecular(TimeValue	t)=0;

Remarks:
Returns	the	specular	color	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	return	the	color.

Prototype:
virtual	Color	GetFilter(TimeValue	t)=0;

Remarks:
Returns	the	filter	color	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	return	the	color.

Prototype:
virtual	float	GetShininess(TimeValue	t)=0;

Remarks:
Returns	the	shininess	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	value	at	this	time	is	returned.

Prototype:

virtual	float	GetShinStr(TimeValue	t)=0;
Remarks:
Returns	the	shininess	strength	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	value	at	this	time	is	returned.

Prototype:
virtual	float	GetSelfIllum(TimeValue	t)=0;

Remarks:
Returns	the	self	illumination	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	value	at	this	time	is	returned.

Prototype:
virtual	float	GetOpacity(TimeValue	t)=0;

Remarks:
Returns	the	opacity	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	value	at	this	time	is	returned.

Prototype:
virtual	float	GetOpacFalloff(TimeValue	t)=0;

Remarks:
Returns	the	opacity	falloff	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	value	at	this	time	is	returned.

Prototype:
virtual	float	GetWireSize(TimeValue	t)=0;

Remarks:
Returns	the	wire	size	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	value	at	this	time	is	returned.

Prototype:
virtual	float	GetIOR(TimeValue	t)=0;

Remarks:
Returns	the	index	of	refraction	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	value	at	this	time	is	returned.

Prototype:
virtual	BOOL	GetAmbDiffTexLock()=0;

Remarks:
Returns	TRUE	if	the	ambient-diffuse	texture	lock	is	set;	otherwise	FALSE.

Class	BitmapTex
See	Also:	Class	Texmap,	Class	StdUVGen,	Class	TextureOutput.
class	BitmapTex:	public	Texmap,	public	FPMixinInterface

Description:
This	class	is	an	interface	into	the	Bitmap	texture.	All	methods	of	this	class	are
implemented	by	the	system.

Methods:

Prototype:
virtual	void	SetFilterType(int	ft)=0;

Remarks:
Sets	the	bitmap	filtering	method	used.

Parameters:
int	ft
Image	filtering	types.	One	of	the	following	values:
FILTER_PYR
Pyramidal.
FILTER_SAT
Summed	Area.
FILTER_NADA
None.

Prototype:
virtual	void	SetAlphaSource(int	as)=0;

Remarks:
This	method	may	be	used	to	set	the	alpha	source	for	the	bitmap.

Parameters:
int	as
Alpha	source	types.	One	of	the	following	values:
ALPHA_FILE
Image	alpha	(if	present).

ALPHA_RGB
RGB	Intensity.
ALPHA_NONE
None	(opaque).

Prototype:
virtual	void	SetAlphaAsMono(BOOL	onoff)=0;

Remarks:
The	Mono	Channel	Intensity	may	be	either	RGB	Intensity	or	Alpha.

Parameters:
BOOL	onoff
TRUE	for	Alpha;	FALSE	for	RGB	Intensity.

Prototype:
virtual	void	SetAlphaAsRGB(BOOL	onoff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
The	Alpha	Source	may	be	either	from	the	RGB	channels	or	Image	Alpha
channel.

Parameters:
BOOL	onoff
TRUE	for	RGB;	FALSE	for	Alpha	channel.

Prototype:
virtual	void	SetMapName(TCHAR	*name)=0;

Remarks:
Sets	the	filename	of	the	bitmap	used.

Parameters:
TCHAR	*name
The	filename	of	the	bitmap.

Prototype:

virtual	StdUVGen*	GetUVGen()=0;
Remarks:
Retrieves	a	pointer	to	the	StdUVGen	interface	for	this	bitmap.	This	allows
access	to	the	mapping	parameters	such	as	UV	offsets,	blur,	angle,	noise	level,
etc.

The	following	methods	allow	access	to	the	values	from	the	'Time'	rollup.

Prototype:
virtual	void	SetEndCondition(int	endcond)=0;

Remarks:
Sets	the	end	condition	setting.

Parameters:
int	endcond
The	end	condition.	One	of	the	following	values:
END_LOOP
END_PINGPONG
END_HOLD

Prototype:
virtual	void	SetStartTime(TimeValue	t)=0;

Remarks:
Sets	the	start	time	setting.

Parameters:
TimeValue	t
The	new	start	time.

Prototype:
virtual	void	SetPlaybackRate(float	r)=0;

Remarks:
Sets	the	playback	rate	setting.

Parameters:
float	r

The	new	playback	rate.	This	is	frames	of	the	bitmap	per	frame	of	rendering
time.	If	the	value	is	1	then	you	are	playing	1	frame	for	every	render	frame.	If	it
is	0.5	then	the	bitmap	frame	is	held	for	2	rendering	frames.

Prototype:
virtual	int	GetFilterType()=0;

Remarks:
Returns	the	filter	type.

Return	Value:
One	of	the	following	values:
FILTER_PYR
Pyramidal.
FILTER_SAT
Summed	Area	Table.
FILTER_NADA
None.

Prototype:
virtual	int	GetAlphaSource()=0;

Remarks:
Returns	the	alpha	source.

Return	Value:
One	of	the	following	values:
ALPHA_FILE
ALPHA_RGB
ALPHA_NONE

Prototype:
virtual	int	GetEndCondition()=0;

Remarks:
Returns	the	end	condition	setting.

Return	Value:

One	of	the	following	values:
END_LOOP
END_PINGPONG
END_HOLD

Prototype:
virtual	BOOL	GetAlphaAsMono(BOOL	onoff)=0;

Remarks:
The	Mono	Channel	Intensity	may	be	either	RGB	Intensity	or	Alpha.

Parameters:
BOOL	onoff
This	parameter	is	ignored.

Return	Value:
TRUE	if	Alpha;	FALSE	if	RGB	Intensity.

Prototype:
virtual	BOOL	GetAlphaAsRGB(BOOL	onoff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
The	Alpha	Channel	may	be	either	RGB	or	Image	Alpha.

Parameters:
BOOL	onoff
This	parameter	is	ignored.

Return	Value:
TRUE	for	RGB;	FALSE	for	Image	Alpha.

Prototype:
virtual	TCHAR	*GetMapName()=0;

Remarks:
Returns	the	name	of	the	bitmap	file.

Prototype:

virtual	TimeValue	GetStartTime()=0;
Remarks:
Returns	the	start	frame	setting	as	a	TimeValue.

Prototype:
virtual	float	GetPlaybackRate()=0;

Remarks:
Returns	the	playback	rate	setting.

Prototype:
virtual	StdUVGen*	GetUVGen()=0;

Remarks:
Retrieves	a	pointer	to	the	StdUVGen	interface	for	this	bitmap.	This	allows
access	to	the	mapping	parameters	such	as	UV	offsets,	blur,	angle,	noise	level,
etc.

Prototype:
virtual	TextureOutput*	GetTexout()=0;

Remarks:
Returns	a	pointer	to	a	class	to	access	TextureOutput	properties	of	this	texture.

Prototype:
virtual	Bitmap	*GetBitmap(TimeValue	t);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	a	pointer	to	the	Bitmap	associated	with	this	Bitmap	Texture.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	bitmap.

Prototype:

virtual	void	SetBitmap(Bitmap	*bm);
Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	will	swap	the	bitmap	pointer	without	updating	BitmapInfo.

Parameters:
Bitmap	*bm
A	pointer	to	the	bitmap.

Default	Implementation:
{	}

Prototype:
virtual	BitmapLoadDlg();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	brings	up	a	bitmap	loader	dialog.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	ReloadBitmapAndUpdate();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	forces	the	bitmap	to	reload	and	the	view	to	be	redrawn.

Default	Implementation:
{	return	0;	}

Prototype:
void	fnReload()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	reloads	the	bitmap	texture	and	operates	as	if	the	user	pressed	the

reload	button.

Prototype:
void	fnViewImage()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	view	the	bitmap	texture	image	and	operates	as	if	the	user
pressed	the	view	image	button.

Class	IWaveSound
SeeAlso:	Class	Interface.
class	IWaveSound

Description:
This	class	provides	an	interface	into	3ds	max's	default	WAV	sound	object.	Use
the	Interface	method	GetSoundObject()	to	get	a	pointer	to	the	current	sound
object	and	then	use	the	macro	GetWaveSoundInterface()	on	the	result	to	see
if	it	supports	this	interface.	See	the	sample	code	below:
//	Retrieve	the	current	sound	object
SoundObj	*sound	=	ip->GetSoundObject();
//	Attempt	to	get	a	wave	interface
IWaveSound	*iWave	=	GetWaveSoundInterface(sound);
if	(iWave)	{
iWave->SetSoundFileName(_T("LedZep.wav"))
}

All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	TSTR	GetSoundFileName()=0;

Remarks:
Returns	the	name	of	the	current	sound	file.

Prototype:
virtual	BOOL	SetSoundFileName(TSTR	name)=0;

Remarks:
Sets	the	sound	file.	This	will	cause	the	.WAV	to	be	loaded	into	the	track	view.

Parameters:
TSTR	name
The	name	of	the	sound	file	to	set.

Return	Value:

FALSE	if	the	file	can't	be	opened	or	no	wave	track	exists;	otherwise	TRUE.

Prototype:
virtual	void	SetStartTime(TimeValue	t)=0;

Remarks:
Sets	the	time	offset	for	the	wave	file.

Parameters:
TimeValue	t
The	start	time.

Prototype:
virtual	TimeValue	GetStartTime()=0;

Remarks:
Returns	the	start	time	offset	for	the	wave.

Prototype:
virtual	TimeValue	GetEndTime()=0;

Remarks:
Returns	the	end	time	for	the	wave.

Class	ISplineSelect
See	Also:	Class	Animatable,	Working	with	Shapes	and	Splines.
class	ISplineSelect

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	provides	an	interface	to	the	Spline	Select	Modifer.	To	obtain	a	pointer
to	this	class	use	the	method	Animatable::GetInterface()	passing
I_SPLINESELECT.
For	example:

ISplineSelect	*iss	=	(ISplineSelect*)anim-
>GetInterface(I_SPLINESELECT));
DWORD	sl	=	iss->GetSelLevel();

Methods:
public:

Prototype:
virtual	DWORD	GetSelLevel()=0;

Remarks:
Returns	a	value	indicating	the	current	selection	level	of	the	modifier.	One	of
the	following	values:
SS_VERTEX
SS_SEGMENT
SS_SPLINE
SS_OBJECT

Prototype:
virtual	void	SetSelLevel(DWORD	level)=0;

Remarks:
Sets	the	current	level	of	selection	of	the	modifier.

Parameters:
DWORD	level

The	level	to	set.	One	of	the	following	values:
SS_VERTEX
SS_SEGMENT
SS_SPLINE
SS_OBJECT

Prototype:
virtual	void	LocalDataChanged()=0;

Remarks:
This	method	must	be	called	when	the	selection	level	of	the	modifier	is
changed.	Developers	can	use	the	methods	of	ISplineSelect	to	get	and	set	the
actual	selection	data.	When	a	developers	does	set	any	of	these	selection	sets
this	method	must	be	called	when	done.

Class	ISplineSelectData
See	Also:	Class	ISplineSelect,	Class	Animatable,	Class	BitArray,	Working	with
Shapes	and	Splines,	Class	GenericNamedSelSetList.
class	ISplineSelectData

Description:
This	class	is	available	in	release	3.0	and	later	only.
When	a	developer	gets	the	LocalModData	from	the	ModContext	of	the
Spline	Select	Modifier,	they	may	cast	it	to	this	class	and	use	these	methods.	They
may	be	used	to	get/set	the	vertex/segment/spline	selection	state	of	the	modifier
as	well	as	the	named	selection	sets.
To	obtain	a	pointer	to	this	class	use	the	method	Animatable::GetInterface()
passing	I_SPLINESELECTDATA.
For	example:

ISplineSelectData	*iss	=	(ISplineSelectData*)anim-
>GetInterface(I_SPLINESELECTDATA));
BitArray	vs	=	iss->GetVertSel();

Methods:
public:

Prototype:
virtual	BitArray	GetVertSel()=0;

Remarks:
Returns	a	BitArray	that	reflects	the	current	vertex	selection.	There	is	one	bit
for	each	vertex.	Bits	that	are	1	indicate	the	vertex	is	selected.

Prototype:
virtual	BitArray	GetSegmentSel()=0;

Remarks:
Returns	a	BitArray	that	reflects	the	current	segment	selection.	There	is	one
bit	for	each	segment.	Bits	that	are	1	indicate	the	segment	is	selected.

Prototype:

virtual	BitArray	GetSplineSel()=0;
Remarks:
Returns	a	BitArray	that	reflects	the	current	spline	selection.	There	is	one	bit
for	each	spline.	Bits	that	are	1	indicate	the	spline	is	selected.

Prototype:
virtual	void	SetVertSel(BitArray	&set,	ISplineSelect	*imod,
TimeValue	t)=0;

Remarks:
Sets	the	vertex	selection	of	the	modifier.

Parameters:
BitArray	&set
There	is	one	bit	for	each	vertex.	Bits	that	are	1	indicate	the	vertex	should	be
selected.
ISplineSelect	*imod
Points	to	the	ISplineSelect	instance	(generally	this	is	a	modifier).
TimeValue	t
The	current	time	at	which	the	call	is	made.

Prototype:
virtual	void	SetSegmentSel(BitArray	&set,	ISplineSelect	*imod,
TimeValue	t)=0;

Remarks:
Sets	the	segment	selection	of	the	modifier.

Parameters:
BitArray	&set
There	is	one	bit	for	each	vertex.	Bits	that	are	1	indicate	the	segment	should	be
selected.
ISplineSelect	*imod
Points	to	the	ISplineSelect	instance	(generally	this	is	a	modifier).
TimeValue	t
The	current	time	at	which	the	call	is	made.

Prototype:
virtual	void	SetSplineSel(BitArray	&set,	ISplineSelect	*imod,
TimeValue	t)=0;

Remarks:
Sets	the	spline	selection	of	the	modifier.

Parameters:
BitArray	&set
There	is	one	bit	for	each	spline.	Bits	that	are	1	indicate	the	spline	should	be
selected.
ISplineSelect	*imod
Points	to	the	ISplineSelect	instance	(generally	this	is	a	modifier).
TimeValue	t
The	current	time	at	which	the	call	is	made.

Prototype:
virtual	GenericNamedSelSetList	&GetNamedVertSelList()=0;

Remarks:
Returns	a	reference	to	a	class	used	for	manipulating	the	lists	of	vertex	level
named	selection	sets	associated	with	this	modifier.

Prototype:
virtual	GenericNamedSelSetList	&GetNamedSegmentSelList()=0;

Remarks:
Returns	a	reference	to	a	class	used	for	manipulating	the	lists	of	segment	level
named	selection	sets	associated	with	this	modifier.

Prototype:
virtual	GenericNamedSelSetList	&GetNamedSplineSelList()=0;

Remarks:
Returns	a	reference	to	a	class	used	for	manipulating	the	lists	of	spline	level
named	selection	sets	associated	with	this	modifier.

Class	ISplineOps
See	Also:	Class	ISplineSelect,	Class	Animatable,	Working	with	Shapes	and
Splines.
class	ISplineOps

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	provides	an	interface	to	the	command	modes	and	button	press
operations	of	the	Editable	Spline	object.	To	obtain	a	pointer	to	this	class	use	the
method	Animatable::GetInterface()	passing	I_SPLINEOPS.
For	example:

ISplineOps	*iso	=	(ISplineOps*)anim-
>GetInterface(I_SPLINEOPS));
iso->StartCommandMode(ScmAttach);

Methods:
public:

Prototype:
virtual	void	StartCommandMode(splineCommandMode	mode)=0;

Remarks:
Begins	the	specified	interactive	command	mode.

Parameters:
splineCommandMode	mode
The	mode	to	begin.	One	of	the	following	values:
ScmCreateLine
ScmAttach
ScmInsert
ScmConnect
ScmRefine
ScmFillet
ScmChamfer
ScmBind

ScmRefineConnect
ScmOutline
ScmTrim
ScmExtend
ScmBreak
ScmUnion
ScmCrossInsert

Prototype:
virtual	void	ButtonOp(splineButtonOp	opcode)=0;

Remarks:
Performs	the	same	operation	as	a	button	press	inside	the	Editable	Spline	UI.

Parameters:
splineButtonOp	opcode
The	button	operation	to	execute.	One	of	the	following	values:
SopHide
SopUnhideAll
SopDelete
SopDetach
SopDivide
SopBreak
SopCycle
SopUnbind
SopWeld
SopMakeFirst
SopAttachMultiple
SopExplode
SopReverse
SopClose
SopUnion

SopSubstract
SopIntersect
SopMirrorHoriz
SopMirrorVert
SopMirrorBoth
SopSelectByID
SopFuse

Prototype:
virtual	void	GetUIParam(splineUIParam	uiCode,	int	&ret);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	get	the	edit	spline	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
splineUIParam	uiCode
This	enum	is	currently	empty.
int	&ret
The	returned	value.

Default	Implementation:
{	}

Prototype:
virtual	void	SetUIParam(splineUIParam	uiCode,	int	val);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	edit	spline	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
splineUIParam	uiCode
This	enum	is	currently	empty.

int	val
The	value	to	set.

Default	Implementation:
{	}

Prototype:
virtual	void	GetUIParam(splineUIParam	uiCode,	float	&ret);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	get	the	edit	spline	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
splineUIParam	uiCode
This	enum	is	currently	empty.
float	&ret
The	returned	value.

Default	Implementation:
{	}

Prototype:
virtual	void	SetUIParam(splineUIParam	uiCode,	float	val);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	edit	spline	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
splineUIParam	uiCode
This	enum	is	currently	empty.
float	val
The	value	to	set.

Default	Implementation:

{	}

Class	IPatchSelect
See	Also:	Class	Animatable,	Working	with	Patches.
class	IPatchSelect

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	provides	an	interface	to	the	Patch	Select	Modifer.	To	obtain	a	pointer
to	this	class	use	the	method	Animatable::GetInterface()	passing
I_PATCHSELECT.
For	example:

IPatchSelect	*ips	=	(IPatchSelect*)anim-
>GetInterface(I_PATCHSELECT));
DWORD	sl	=	ips->GetSelLevel();

Methods:
public:

Prototype:
virtual	DWORD	GetSelLevel()=0;

Remarks:
Returns	a	value	indicating	the	current	selection	level	of	the	modifier.	One	of
the	following	values:
PO_VERTEX
PO_EDGE
PO_PATCH
PO_OBJECT

Prototype:
virtual	void	SetSelLevel(DWORD	level)=0;

Remarks:
Sets	the	current	level	of	selection	of	the	modifier.

Parameters:
DWORD	level

The	level	to	set.	One	of	the	following	values:
PO_VERTEX
PO_EDGE
PO_PATCH
PO_OBJECT

Prototype:
virtual	void	LocalDataChanged()=0;

Remarks:
This	method	must	be	called	when	the	selection	level	of	the	modifier	is
changed.	Developers	can	use	the	methods	of	this	class	to	get	and	set	the	actual
selection	data.	When	a	developers	does	set	any	of	these	selection	sets	this
method	must	be	called	when	done.

Class	IPatchSelectData
See	Also:	Class	IPatchSelect,	Class	Animatable,	Class	BitArray,	Working	with
Patches,	Class	GenericNamedSelSetList.
class	IPatchSelectData

Description:
This	class	is	available	in	release	3.0	and	later	only.
When	a	developer	gets	the	LocalModData	from	the	ModContext	of	the
Patch	Select	Modifier,	they	may	cast	it	to	this	class	and	use	these	methods.	They
may	be	used	to	get/set	the	vertex/edge/patch	sub-object	selection	state	of	the
modifier	as	well	as	the	named	selection	sets.
To	obtain	a	pointer	to	this	class	use	the	method	Animatable::GetInterface()
passing	I_PATCHSELECTDATA.
For	example:

IPatchSelectData	*ips	=	(IPatchSelectData*)anim-
>GetInterface(I_PATCHSELECTDATA));
BitArray	vs	=	ips->GetVertSel();

Methods:
public:

Prototype:
virtual	BitArray	GetVertSel()=0;

Remarks:
Returns	a	BitArray	that	reflects	the	current	vertex	selection.	There	is	one	bit
for	each	vertex.	Bits	that	are	1	indicate	the	vertex	is	selected.

Prototype:
virtual	BitArray	GetEdgeSel()=0;

Remarks:
Returns	a	BitArray	that	reflects	the	current	edge	selection.	There	is	one	bit
for	each	edge.	Bits	that	are	1	indicate	the	edge	is	selected.

Prototype:

virtual	BitArray	GetPatchSel()=0;
Remarks:
Returns	a	BitArray	that	reflects	the	current	patch	selection.	There	is	one	bit
for	each	patch.	Bits	that	are	1	indicate	the	patch	is	selected.

Prototype:
virtual	void	SetVertSel(BitArray	&set,	IPatchSelect	*imod,
TimeValue	t)=0;

Remarks:
Sets	the	vertex	selection	of	the	modifier.

Parameters:
BitArray	&set
There	is	one	bit	for	each	vertex.	Bits	that	are	1	indicate	the	vertex	should	be
selected.
IPatchSelect	*imod
Points	to	the	IPatchSelect	instance	(generally	this	is	a	modifier).
TimeValue	t
The	current	time	at	which	the	call	is	made.

Prototype:
virtual	void	SetEdgeSel(BitArray	&set,	IPatchSelect	*imod,
TimeValue	t)=0;

Remarks:
Sets	the	edge	selection	of	the	modifier.

Parameters:
BitArray	&set
There	is	one	bit	for	each	edge.	Bits	that	are	1	indicate	the	edge	should	be
selected.
IPatchSelect	*imod
Points	to	the	IPatchSelect	instance	(generally	this	is	a	modifier).
TimeValue	t
The	current	time	at	which	the	call	is	made.

Prototype:
virtual	void	SetPatchSel(BitArray	&set,	IPatchSelect	*imod,
TimeValue	t)=0;

Remarks:
Sets	the	patch	selection	of	the	modifier.

Parameters:
BitArray	&set
There	is	one	bit	for	each	patch.	Bits	that	are	1	indicate	the	patch	should	be
selected.
IPatchSelect	*imod
Points	to	the	IPatchSelect	instance	(generally	this	is	a	modifier).
TimeValue	t
The	current	time	at	which	the	call	is	made.

Prototype:
virtual	GenericNamedSelSetList	&GetNamedVertSelList()=0;

Remarks:
Returns	a	reference	to	a	class	used	for	manipulating	the	lists	of	vertex	level
named	selection	sets	associated	with	this	modifier.

Prototype:
virtual	GenericNamedSelSetList	&GetNamedEdgeSelList()=0;

Remarks:
Returns	a	reference	to	a	class	used	for	manipulating	the	lists	of	edge	level
named	selection	sets	associated	with	this	modifier.

Prototype:
virtual	GenericNamedSelSetList	&GetNamedPatchSelList()=0;

Remarks:
Returns	a	reference	to	a	class	used	for	manipulating	the	lists	of	patch	level
named	selection	sets	associated	with	this	modifier.

Class	IPatchOps
See	Also:	Class	Animatable,	Working	with	Patches.
class	IPatchOps

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	provides	an	interface	to	the	command	modes	and	button	press
operations	of	the	Editable	Patch	object.	To	obtain	a	pointer	to	this	class	use	the
method	Animatable::GetInterface()	passing	I_PATCHOPS.
For	example:

IPatchOps	*ipo	=	(IPatchOps*)anim-
>GetInterface(I_PATCHOPS));
ipo->StartCommandMode(PcmAttach);

Methods:
public:

Prototype:
virtual	void	StartCommandMode(patchCommandMode	mode)=0;

Remarks:
Begins	the	specified	interactive	command	mode.

Parameters:
patchCommandMode	mode
PcmAttach
PcmExtrude
PcmBevel
PcmCreate
PcmWeldTarget
PcmFlipNormal
PcmBind

Prototype:

virtual	void	ButtonOp(patchButtonOp	opcode)=0;
Remarks:
Performs	the	same	operation	as	a	button	press	inside	the	Editable	Patch	UI.

Parameters:
patchButtonOp	opcode
The	button	operation	to	execute.	One	of	the	following	values:
PopBind
PopUnbind
PopHide
PopUnhideAll
PopWeld
PopDelete
PopSubdivide
PopAddTri
PopAddQuad
PopDetach

Prototype:
virtual	void	GetUIParam(patchUIParam	uiCode,	int	&ret);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	get	the	edit	patch	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
patchUIParam	uiCode
This	enum	is	currently	empty.
int	&ret
The	returned	value.

Default	Implementation:
{	}

Prototype:
virtual	void	SetUIParam(patchUIParam	uiCode,	int	val);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	edit	patch	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
patchUIParam	uiCode
This	enum	is	currently	empty.
int	val
The	value	to	set.

Default	Implementation:
{	}

Prototype:
virtual	void	GetUIParam(patchUIParam	uiCode,	float	&ret);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	get	the	edit	patch	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
patchUIParam	uiCode
This	enum	is	currently	empty.
float	&ret
The	returned	value.

Default	Implementation:
{	}

Prototype:
virtual	void	SetUIParam(patchUIParam	uiCode,	float	val);

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	edit	patch	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
patchUIParam	uiCode
This	enum	is	currently	empty.
float	val
The	value	to	set.

Default	Implementation:
{	}

Template	Class	IFFDMod
See	Also:	Class	Control,	Class	Point3,	Class	IPoint3,	Class	Modifier.
template	<class	T>	class	IFFDMod	:	public	T

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	is	an	interface	into	both	FFD	OS	modifiers	and	also	into	helper
objects	for	FFD	spacewarps.
Given	a	pointer	to	ReferenceTarget	ref,	you	can	use	it	as	follows:
	Class_ID	id	=	ref->ClassID();
	if	(id==FFDNMOSSQUARE_CLASS_ID	||
id==FFDNMOSCYL_CLASS_ID	||
id==FFD44_CLASS_ID	||	id==FFD33_CLASS_ID	||

id==FFD22_CLASS_ID)
		IFFDMod<Modifier>*	ffd	=	(IFFDMod<Modifier>*)ref;			
		//	call	various	methods
	}	
	else	if(id==FFDNMWSSQUARE_CLASS_ID	||	id	=
FFDNMWSCYL_CLASS_ID)
		IFFDMod<WSMObject>*	ffd	=	(IFFDMod<WSMObject>*)ref;
		//	call	various	methods
	}

Methods:
public:

Prototype:
virtual	int	NumPts()=0;

Remarks:
Returns	the	number	of	lattice	control	points.

Prototype:
virtual	int	NumPtConts()=0;

Remarks:

Returns	the	number	of	Control	Ponits	having	controllers.

Prototype:
virtual	Control*	GetPtCont(int	i)=0;

Remarks:
Returns	a	pointer	to	the	'i-th'	Control	Point	controller.

Parameters:
int	i
The	zero	based	index	of	the	Control	Point.

Prototype:
virtual	void	SetPtCont(int	i,Control	*c)=0;

Remarks:
Sets	the	controller	used	by	the	specified	Control	Point.

Parameters:
int	i
The	zero	based	index	of	the	Control	Point.
Control	*c
Points	to	the	controller	to	set.

Prototype:
virtual	Point3	GetPt(int	i)=0;

Remarks:
Returns	the	'i-th'	Control	Point.

Parameters:
int	i
The	zero	based	index	of	the	Control	Point.

Prototype:
virtual	void	SetPt(int	i,	Point3	p)=0;

Remarks:

Sets	the	'i-th'	control	point.
Parameters:
int	i
The	zero	based	index	of	the	Control	Point.
Point3	p
The	point	to	set.

Prototype:
virtual	void	SetGridDim(IPoint3	d);

Remarks:
Sets	the	lattice	dimension.

Parameters:
IPoint3	d
The	dimensions	to	set.

Default	Implementation:
{	}

Prototype:
virtual	IPoint3	GetGridDim();

Remarks:
Returns	the	lattice	dimensions.

Default	Implementation:
{	return	IPoint3(0,0,0);	}

Prototype:
virtual	void	AnimateAll();

Remarks:
This	method	assigns	controllers	to	all	the	Control	Points.

Default	Implementation:
{	}

Prototype:
virtual	void	Conform();

Remarks:
Calling	this	method	is	the	equivalent	of	pressing	the	Conform	button	in	the
FFD	UI.	Note:	This	method	is	not	valid	for	WSMObject's.

Default	Implementation:
{	}

Prototype:
virtual	void	SelectPt(int	i,	BOOL	sel,	BOOL	clearAll=FALSE);

Remarks:
Selects	or	de-selects	the	specified	Control	Point.

Parameters:
int	i
The	zero	based	index	of	the	Control	Point.
BOOL	sel
TRUE	to	select;	FALSE	to	de-selelct.
BOOL	clearAll=FALSE
TRUE	to	clear	all	the	currently	selected	Control	Points	before	setting	the
specified	one;	FALSE	to	leave	the	selected	points	alone.

Default	Implementation:
{	}

Class	IParamBlock
See	Also:	Class	ReferenceTarget,	Class	IParamArray,	Parameter	Maps,	Class
ParamBlockDescID,	Class	Control.
class	IParamBlock	:	public	ReferenceTarget,	public	IParamArray

Description:
This	class	provides	methods	to	work	with	parameter	blocks.	For	more	details	on
parameter	blocks	see	Parameter	Blocks.

Methods:

Prototype:
virtual	BOOL	SetValue(int	i,	TimeValue	t,	float	v)=0;

Remarks:
Implemented	by	the	System.
Whenever	the	developer	needs	to	store	a	value	into	the	parameter	block,	the
SetValue()	method	is	used.	There	are	overloaded	functions	for	each	type	of
value	to	set	(int,	float,	Point3,	and	Color).	Each	method	has	three	parameters.
Below	is	the	float	version	-	the	others	are	similar.

Parameters:
int	i
This	is	the	index	into	the	ParamBlockDesc	array	of	the	parameter	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.
float	v
The	value	to	store.

Return	Value:
If	the	value	was	set	TRUE	is	returned;	otherwise	FALSE	is	returned.

Prototype:
virtual	BOOL	SetValue(int	i,	TimeValue	t,	int	v)=0;

Remarks:
This	is	the	integer	version	of	above.

Prototype:
virtual	BOOL	SetValue(int	i,	TimeValue	t,	Point3&	v)=0;

Remarks:
This	is	the	Point3	version	of	above.

Prototype:
virtual	BOOL	SetValue(int	i,	TimeValue	t,	Color&	v)=0;

Remarks:
This	is	the	Color	version	of	above.

Prototype:
virtual	BOOL	GetValue(int	i,	TimeValue	t,	float	&v,	Interval
&ivalid)=0;

Remarks:
Implemented	by	the	System.
Whenever	the	developer	needs	to	retrieve	a	value	from	the	parameter	block,
the	GetValue()	method	is	used.	There	are	overloaded	functions	for	each	type
of	value	to	retrieve	(int,	float,	Point3,	and	Color).
	
Important	Note:	Developers	need	to	do	range	checking	on	values	returned
from	a	parameter	block	--	a	spinner	custom	control	will	not	necessarily
ensure	that	the	values	entered	by	a	user	and	stored	by	a	parameter	block
are	fixed	to	the	values	allowed	by	the	spinner.	For	example,	the	spinner
control	ensures	that	it	only	displays,	and	the	user	is	only	allowed	to	input,
values	within	the	specified	ranges.	However	the	spinner	is	just	a	front	end
to	a	controller	which	actually	controls	the	value.	The	user	can	thus
circumvent	the	spinner	constraints	by	editing	the	controller	directly	(via
function	curves	in	track	view,	key	info,	etc.).	Therefore,	when	a	plug-in
gets	a	value	from	a	controller	(or	a	parameter	block,	which	may	use	a
controller)	it	is	its	responsibility	to	clamp	the	value	to	a	valid	range.
	
The	GetValue()	method	updates	the	interval	passed	in.	This	method	is
frequently	used	by	developers	to	'whittle'	down	an	interval.	When	a	parameter
of	a	parameter	block	is	animated,	for	any	given	time	there	is	a	interval	over

which	the	parameter	is	constant.	If	the	parameter	is	constantly	changing	the
interval	is	instantaneous.	If	the	parameter	does	not	change	for	a	certain	period
the	interval	will	be	longer.	If	the	parameter	never	changes	the	interval	will	be
FOREVER.	By	passing	an	interval	to	the	GetValue()	method	you	ask	the
parameter	block	to	'intersect'	the	interval	passed	in	with	the	interval	of	the
parameter.	Intersecting	two	intervals	means	returning	a	new	interval	whose
start	value	is	the	greater	of	the	two,	and	whose	end	value	is	smaller	of	the	two.
In	this	way,	the	resulting	interval	represents	a	combined	period	of	constancy
for	the	two	intervals.
This	technique	is	used	to	compute	a	validity	interval	for	an	object.	The
developer	starts	an	interval	off	as	FOREVER,	then	intersects	this	interval
with	each	of	its	animated	parameters	(by	calling	GetValue()).	GetValue()
'whittles'	down	the	interval	with	each	call.	When	all	the	parameters	have	been
intersected	the	result	is	the	overall	validity	interval	of	an	object	at	a	specific
time.

Parameters:
int	i
Index	into	the	ParamBlockDesc	array	of	the	parameter	to	retrieve.
TimeValue	t
The	time	at	which	to	retrieving	a	value.
float	v
The	value	to	store	for	the	parameter	at	the	time.
Interval	&ivalid
The	interval	to	update.

Return	Value:
The	return	value	is	TRUE	if	a	value	was	retrieved.	Otherwise	it	is	FALSE.

See	Also:	Parameter	Blocksin	the	Advanced	Topics	section,	Intervals.

Prototype:
virtual	BOOL	GetValue(int	i,	TimeValue	t,	int	&v,	Interval
&ivalid)=0;

Remarks:
This	is	the	integer	version	of	above.

Prototype:
virtual	BOOL	GetValue(int	i,	TimeValue	t,	Point3	&v,	Interval
&ivalid)=0;

Remarks:
This	is	the	Point3	version	of	above.

Prototype:
virtual	BOOL	GetValue(int	i,	TimeValue	t,	Color	&v,	Interval
&ivalid)=0;

Remarks:
This	is	the	Color	version	of	above.

Prototype:
virtual	SClass_ID	GetAnimParamControlType(int	anim)=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	super	class	ID	of	a	parameters	controller.

Parameters:
int	anim
Specifies	the	parameter	whose	controller	super	class	ID	is	returned.

Prototype:
virtual	ParamType	GetParameterType(int	i)=0;

Remarks:
Returns	the	type	of	the	'i-th'	parameter.

Parameters:
int	i
The	zero	based	index	of	the	parameter	to	retrieve.	See	List	of	Parameter
Types.

Prototype:
virtual	DWORD	GetVersion()=0;

Remarks:
Implemented	by	the	System.
Returns	the	parameter	block	version.

Prototype:
virtual	void	RemoveController(int	i)=0;

Remarks:
Implemented	by	the	System.
Removes	the	'i-th'	controller.

Parameters:
int	i
The	parameter	index	of	the	controller	to	remove.

Prototype:
virtual	Control*	GetController(int	i)=0;

Remarks:
Implemented	by	the	System.
Returns	the	controller	of	the	'i-th'	parameter.

Parameters:
int	i
The	parameter	index	of	the	controller	to	return.

Prototype:
virtual	void	SetController(int	i,	Control	*c,	BOOL
preserveFrame0Value=TRUE)=0;

Remarks:
Implemented	by	the	System.
Sets	the	'i-th'	parameter	controller	to	c.

Parameters:
int	i
The	index	of	the	parameter	to	set.

Control	*c
The	controller	to	set.
BOOL	preserveFrame0Value=TRUE
If	TRUE	the	controllers	value	at	frame	0	is	preserved.

Prototype:
virtual	void	SwapControllers(int	j,	int	k)=0;

Remarks:
Implemented	by	the	System.
Swaps	the	two	controllers	of	the	parameters	whose	indices	are	passed.

Parameters:
int	j,	int	k
The	parameter	indices	whose	controllers	should	be	swapped.

Prototype:
virtual	int	GetRefNum(int	paramNum)=0;

Remarks:
Implemented	by	the	System.
Given	a	parameter	index	this	method	will	return	the	reference	number	of	that
parameter.

Parameters:
int	paramNum
The	parameter	index.

Prototype:
virtual	int	GetAnimNum(int	paramNum)=0;

Remarks:
Implemented	by	the	System.
Given	a	parameter	index	this	method	will	return	the	anim	number.

Parameters:
int	paramNum
The	parameter	index.

Prototype:
virtual	int	AnimNumToParamNum(int	animNum)=0;

Remarks:
Implemented	by	the	System.
Given	an	anim	number	this	method	will	return	the	parameter	index.

Parameters:
int	animNum
The	anim	number.

Prototype:
virtual	void	RescaleParam(int	paramNum,	float	f)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	only	for	use	in	a	ReferenceMaker::RescaleWorldUnits()
implementation:	The	parameter	block	implementation	of
RescaleWorldUnits()	scales	only	tracks	that	have	dimension	type	=
stdWorldDim.	If	letting	the	parameter	block	handle	the	rescaling	is	not
sufficient,	call	this	on	just	the	parameters	you	need	to	rescale.	For	additional
details	on	this	method	see	the	sub-section	called	'Scaling	Parameter	Values'	in
the	section	Updating	MAX	1.0	Plug-Ins	to	work	with	MAX	2.0.

Parameters:
int	paramNum
The	index	into	the	parmeter	block	of	the	parameter	to	rescale.
float	f
The	value	to	scale	by.

Prototype:
virtual	int	LastNotifyParamNum()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	index	into	a	parameter	block	of	the	parameter	that	generated	a
notification.	You	can	call	this	method	when	you	get	a	NotifyRefChanged()

message	from	your	parameter	block	to	determine	exactly	which	parameter	it
was	that	changed.	When	you	have	a	very	complicated	dialog,	for	instance	the
Standard	material,	you	can	use	this	to	selectively	update	controls	in	the	dialog
instead	of	updating	all	of	them,	which	can	feel	pretty	slow	to	the	user.	For
smaller	dialogs	it's	not	worth	the	trouble.

Sample	Code:
	case	REFMSG_CHANGE:
		if	(hTarget==pblock)	{
			int	np	=pblock->LastNotifyParamNum();
			//	...
		}
		break;

The	following	methods	are	not	part	of	class	IParamBlock	but	are
available	for	use:

Prototype:
IParamBlock	*CreateParameterBlock(ParamBlockDesc	*pdesc,
int	count);

Remarks:
Implemented	by	the	System.
This	method	is	used	to	create	a	parameter	block.

Parameters:
ParamBlockDesc	*pdesc
This	is	an	array	of	parameter	block	descriptors.
int	count
This	is	the	number	in	the	array.

Return	Value:
A	pointer	to	the	created	parameter	block.	On	error	NULL	is	returned.

Prototype:
IParamBlock	*CreateParameterBlock(ParamBlockDescID	*pdesc,
int	count,DWORD	version);

Remarks:
Implemented	by	the	System.
This	method	is	used	to	create	a	parameter	block	with	a	version	number	to	aide
in	backwards	compatibility.

Parameters:
ParamBlockDesc	*pdesc
This	is	an	array	of	parameter	block	descriptors.
int	count
This	is	the	number	in	the	array.
DWORD	version
This	is	used	to	indicate	a	version	of	the	parameter	block.	This	is	used	for
backwards	compatibility	when	loading	3ds	max	files	that	were	saved	with	a
previous	version	of	the	parameter	block	structure.	There	is	a	mechanism

which	allows	the	older	format	to	be	converted	to	the	newer	format	so	the	older
files	may	still	be	loaded	and	used.	See	the	Advanced	Topics	section	on
Parameter	Maps	for	more	information.

Return	Value:
A	pointer	to	the	created	parameter	block.	On	error	NULL	is	returned.

Prototype:
IParamBlock	*UpdateParameterBlock(ParamBlockDescID
*pdescOld,	int	oldCount,	IParamBlock
*oldPB,ParamBlockDescID	*pdescNew,	int	newCount,	DWORD
newVersion);

Remarks:
Implemented	by	the	System.
This	creates	a	new	parameter	block,	based	on	an	existing	parameter	block	of	a
later	version.	The	new	parameter	block	inherits	any	parameters	from	the	old
parameter	block	whose	parameter	IDs	match.

Parameters:
ParamBlockDescID	*pdescOld
The	existing	parameter	block	descriptor.
int	oldCount
The	number	of	old	parameters.
IParamBlock	*oldPB
The	old	parameter	block.
ParamBlockDescID	*pdescNew
The	new	parameter	block	descriptor.
int	newCount
The	number	of	new	parameters.
DWORD	newVersion
The	version	of	the	new	parameter	block.

Return	Value:
The	new	parameter	block.

Class	IParamBlock2
See	Also:	Class	ReferenceTarget,	Class	ParamBlockDesc2,	List	of	ParamType2
Choices,	Structure	ParamDef,	Class	PBValidator,	Class	PBAccessor,	Class
PBBitmap,	Class	ParamBlock2PLCB,	Class	ClassDesc2,	Class	Animatable,
Structure	ParamAlias.
class	IParamBlock2	:	public	ReferenceTarget

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	provides	an	interface	for	working	with	parameter	block2s.	There	are
methods	for	getting	and	setting	parameters,	descriptor	access,	parameter	map
access,	etc.

Methods	Groups:
The	hyperlinks	below	take	you	to	the	start	of	groups	of	related	methods	within
the	class:
Version	/	Parameter	Number	/	Local	Name	/	ParamDef	/	BlockID	Access
Descriptor	Access
Index-to/from-ID	Methods
Super	Class	ID	Access
Parameter	Type	and	Local	Name
SetValue()	Parameter	Accessors
GetValue()	Parameter	Accessors
Shortcut	Get	Methods
Table	(Tab<>)	Management
Table	(Tab<>)	Insert	Methods
Table	(Tab<>)	Append	Methods
Keyframe	Checking
Controller	Access
Anim	Num	/	Param	ID	Conversion
Reference	Related	Methods
Parameter	Dimension	Related	Methods
Parameter	Map	Access

Rollout	Access
MAXScript	Default	Parameter	Initialization
Alias	Maintenance
SubAnim	Numbering	Related	Methods
Copying	Parameter	Values	Between	Blocks
Finding	Parameter	IDs
Reset	To	Default	Values
PBAccessor	Get	/	Set	Methods
Validity	of	Parameters

Methods:
public:

Version	/	Parameter	Number	/	Local	Name	/	ParamDef	/	BlockID
/	Owner	Access
Prototype:
virtual	DWORD	GetVersion()=0;

Remarks:
Returns	the	version	of	this	parameter	block.

Prototype:
virtual	int	NumParams()=0;

Remarks:
Returns	the	number	of	parameters	in	this	parameter	block.

Prototype:
virtual	TCHAR*	GetLocalName()=0;

Remarks:
Returns	the	localized	name	for	the	parameter	block.

Prototype:
virtual	ParamDef&	GetParamDef(ParamID	id)=0;

Remarks:
Returns	a	reference	to	the	ParamDef	structure	for	this	parameter	block.

Parameters:
ParamID	id
The	parameter	ID.

Prototype:
virtual	BlockID	ID()=0;

Remarks:
Returns	the	BlockID	of	the	parameter	block.	Note:	typedef	short	BlockID;

Prototype:
virtual	ReferenceMaker*	GetOwner()=0;

Remarks:
Returns	a	pointer	to	the	owner	of	this	parameter	block.

Descriptor	Access
Prototype:
virtual	ParamBlockDesc2*	GetDesc()=0;

Remarks:
Aquires	the	descriptor	for	this	parameter	block.	Call	ReleaseDesc()	when
done.

Prototype:
virtual	void	ReleaseDesc()=0;

Remarks:
Releases	the	descriptor	for	this	parameter	block.	See	GetDesc()	above.

Prototype:
virtual	void	SetDesc(ParamBlockDesc2*	desc)=0;

Remarks:

Sets	the	descriptor	associated	with	the	parameter	block.
Parameters:
ParamBlockDesc2*	desc
Points	to	the	descriptor	to	set.

Index-to/from-ID	Methods
Prototype:
virtual	int	IDtoIndex(ParamID	id)=0;

Remarks:
Returns	the	zero	based	index	of	the	parameter	into	the	parameter	definitions
array	of	the	given	parameter	ID	or	-1	if	not	found.

Parameters:
ParamID	id
The	parameter	ID	whose	index	to	return.

Prototype:
virtual	ParamID	IndextoID()=0;

Remarks:
Returns	the	parameter	ID	of	the	parameter	given	its	index	into	the	parameter
definitions	array.

Parameters:
int	i
The	index	of	the	parameter	whose	ID	is	to	be	returned.

Super	Class	ID	Access
Prototype:
virtual	SClass_ID	GetAnimParamControlType(int	anim)=0;

Remarks:
Returns	the	Super	Class	ID	of	the	parameter's	controller	(specified	by	sub-
anim	number).

Parameters:

int	anim
The	sub-anim	index	of	the	parameter.

Prototype:
virtual	SClass_ID	GetParamControlType(ParamID	id)=0;

Remarks:
Returns	the	Super	Class	ID	of	the	parameter's	controller	(specified	by
paramter	ID).

Parameters:
ParamID	id
The	ID	of	the	parameter.

Parameter	Type	and	Local	Name
Prototype:
virtual	ParamType2	GetParameterType(ParamID	id)=0;

Remarks:
Returns	the	type	of	the	specified	parameter.

Parameters:
ParamID	id
The	ID	of	the	parameter.

Prototype:
virtual	TSTR	GetLocalName(ParamID	id,	int	tabIndex	=	-1)=0;

Remarks:
Returns	the	local	name	for	the	specified	parameter	or	Tab<>	parameter	entry.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	tabIndex	=	-1
If	the	parameter	is	a	table	this	is	the	zero	based	index	into	the	table	of	the
parameter.

SetValue()	Parameter	Accessors
Prototype:
virtual	BOOL	SetValue(ParamID	id,	TimeValue	t,	float	v,	int
tabIndex=0);

Remarks:
Sets	the	floating	point	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
float	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	SetValue(ParamID	id,	TimeValue	t,	int	v,	int
tabIndex=0);

Remarks:
Sets	the	integer	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
int	v
The	value	to	set.
int	tabIndex=0

If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	SetValue(ParamID	id,	TimeValue	t,	Point3&	v,	int
tabIndex=0);

Remarks:
Sets	the	Point3	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
Point3&	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	SetValue(ParamID	id,	TimeValue	t,	Color&	v,	int
tabIndex=0);

Remarks:
Sets	the	Color	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t

The	time	at	which	to	set	the	value.
Color&	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	SetValue(ParamID	id,	TimeValue	t,	TCHAR*	v,	int
tabIndex=0);

Remarks:
Sets	the	string	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
TCHAR*	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	SetValue(ParamID	id,	TimeValue	t,	Mtl*v,	int
tabIndex=0);

Remarks:
Sets	the	Mtl*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
Mtl*v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	SetValue(ParamID	id,	TimeValue	t,	Texmap*	v,	int
tabIndex=0);

Remarks:
Sets	the	Texmap*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
Texmap*	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:

virtual	BOOL	SetValue(ParamID	id,	TimeValue	t,	PBBitmap*	v,
int	tabIndex=0);

Remarks:
Sets	the	PBBitmap*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
PBBitmap*	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	SetValue(ParamID	id,	TimeValue	t,	INode*	v,	int
tabIndex=0);

Remarks:
Sets	the	INode*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
INode*	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	SetValue(ParamID	id,	TimeValue	t,
ReferenceTarget*v,	int	tabIndex=0);

Remarks:
Sets	the	ReferenceTarget*	value	of	the	specified	parameter	at	the	specified
time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
ReferenceTarget*v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	SetValue(ParamID	id,	TimeValue	t,	Matrix3&	v,	int
tabIndex=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	Matrix3	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t

The	time	at	which	to	set	the	value.
Matrix3&	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

GetValue()	Parameter	Accessors
Prototype:
virtual	BOOL	GetValue(ParamID	id,	TimeValue	t,	float&	v,
Interval	&ivalid,	int	tabIndex=0);

Remarks:
Retrieves	the	floating	point	value	of	the	specified	parameter	at	the	specified
time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
float&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetValue(ParamID	id,	TimeValue	t,	int&	v,	Interval
&ivalid,	int	tabIndex=0);

Remarks:
Retrieves	the	integer	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
int&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetValue(ParamID	id,	TimeValue	t,	Point3&	v,
Interval	&ivalid,	int	tabIndex=0);

Remarks:
Retrieves	the	Point3	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
Point3&	v

The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetValue(ParamID	id,	TimeValue	t,	Color&	v,
Interval	&ivalid,	int	tabIndex=0);

Remarks:
Retrieves	the	Color	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
Color&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetValue(ParamID	id,	TimeValue	t,	TCHAR*&	v,

Interval	&ivalid,	int	tabIndex=0);
Remarks:
Retrieves	the	string	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
TCHAR*&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetValue(ParamID	id,	TimeValue	t,	Mtl*&	v,
Interval	&ivalid,	int	tabIndex=0);

Remarks:
Retrieves	the	Mtl*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
Mtl*&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid

This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetValue(ParamID	id,	TimeValue	t,	Texmap*&	v,
Interval	&ivalid,	int	tabIndex=0);

Remarks:
Retrieves	the	Texmap*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
Texmap*&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetValue(ParamID	id,	TimeValue	t,	PBBitmap*&
v,	Interval	&ivalid,	int	tabIndex=0);

Remarks:

Retrieves	the	PBBitmap*	value	of	the	specified	parameter	at	the	specified
time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
PBBitmap*&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetValue(ParamID	id,	TimeValue	t,	INode*&	v,
Interval	&ivalid,	int	tabIndex=0);

Remarks:
Retrieves	the	INode*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
INode*&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.

int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetValue(ParamID	id,	TimeValue	t,
ReferenceTarget*&	v,	Interval	&ivalid,	int	tabIndex=0);

Remarks:
Retrieves	the	ReferenceTarget*	value	of	the	specified	parameter	at	the
specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
ReferenceTarget*&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetValue(ParamID	id,	TimeValue	t,	Matrix3&	v,
Interval	&ivalid,	int	tabIndex=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

Retrieves	the	Matrix3	value	of	the	specified	parameter	at	the	specified	time.
Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
Matrix3&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Shortcut	Get	Methods
Prototype:
virtual	Color	GetColor(ParamID	id,	TimeValue	t=0,	int
tabIndex=0)=0;

Remarks:
Returns	the	Color	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Prototype:
virtual	Point3	GetPoint3(ParamID	id,	TimeValue	t=0,	int
tabIndex=0)=0;

Remarks:
Retrieves	the	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Prototype:
virtual	int	GetInt(ParamID	id,	TimeValue	t=0,	int	tabIndex=0)=0;

Remarks:
Returns	the	integer	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Prototype:
virtual	float	GetFloat(ParamID	id,	TimeValue	t=0,	int
tabIndex=0)=0;

Remarks:
Returns	the	floating	point	value	of	the	specified	parameter	at	the	specified

time.
Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Prototype:
virtual	TimeValue	GetTimeValue(ParamID	id,	TimeValue	t=0,	int
tabIndex=0)=0;

Remarks:
Returns	the	TimeValue	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Prototype:
virtual	Mtl*	GetMtl(ParamID	id,	TimeValue	t=0,	int
tabIndex=0)=0;

Remarks:
Returns	the	Mtl*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.

TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Prototype:
virtual	TCHAR*	GetStr(ParamID	id,	TimeValue	t=0,	int
tabIndex=0)=0;

Remarks:
Returns	the	string	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Prototype:
virtual	Texmap*	GetTexmap(ParamID	id,	TimeValue	t=0,	int
tabIndex=0)=0;

Remarks:
Returns	the	Texmap*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Prototype:
virtual	PBBitmap*	GetBitmap(ParamID	id,	TimeValue	t=0,	int
tabIndex=0)=0;

Remarks:
Returns	the	PBBitmap*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Prototype:
virtual	INode*	GetINode(ParamID	id,	TimeValue	t=0,	int
tabIndex=0)=0;

Remarks:
Returns	the	INode*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Prototype:
virtual	ReferenceTarget*	GetReferenceTarget(ParamID	id,
TimeValue	t=0,	int	tabIndex=0)=0;

Remarks:
Returns	the	ReferenceTarget*	value	of	the	specified	parameter	at	the	specified
time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Prototype:
virtual	PB2Value&	GetPB2Value(ParamID	id,	int	tabIndex=0)=0;

Remarks:
This	methods	is	used	for	getting	a	parameter	value	as	a	PB2Value	reference.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Prototype:
virtual	Matrix3	GetMatrix3(ParamID	id,	TimeValue	t=0,	int
tabIndex=0)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Retrieves	the	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.

TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Table	(Tab<>)	Management
Prototype:
virtual	int	Count(ParamID	id)=0;

Remarks:
Returns	the	number	of	entries	being	used	in	the	table.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.

Prototype:
virtual	void	ZeroCount(ParamID	id)=0;

Remarks:
Set	the	number	of	elements	in	the	table	that	are	actually	used	to	zero.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.

Prototype:
virtual	void	SetCount(ParamID	id,	int	n)=0;

Remarks:
Set	the	number	of	elements	in	the	table	that	are	actually	used	to	n.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	n

The	number	of	elements	to	set.

Prototype:
virtual	int	Delete(ParamID	id,	int	start,int	num)=0;

Remarks:
List-type	delete	of	num	elements	starting	with	start

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	start
The	start	position	for	element	deletion.
int	num
The	number	of	elements	to	delete.

Return	Value:
Returns	the	number	of	items	left	in	the	table.

Prototype:
virtual	int	Resize(ParamID	id,	int	num)=0;

Remarks:
Changes	the	number	of	allocated	items	to	num.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	num
The	new	size	of	the	table.

Return	Value:
Nonzero	if	the	array	was	resized;	otherwise	0.

Prototype:
virtual	void	Shrink(ParamID	id)=0;

Remarks:
Reallocate	so	there	is	no	wasted	space.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.

Prototype:
virtual	void	Sort(ParamID	id,	CompareFnc	cmp)=0;

Remarks:
Sorts	the	array	using	the	compare	function.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
CompareFnc	cmp
Type	of	function	to	pass	to	Sort().	Note:	Sort()	just	uses	the	C	library	qsort
function.	The	developer	must	implement	the	CompareFnc	function.
typedef	int(__cdecl	*CompareFnc)	(const	void	*elem1,	const
void	*elem2);

The	return	value	of	CompareFnc	is	show	below	in	the	relationship	of
elem1	to	elem2:

<	0
if	elem1	less	than	elem2
0
if	elem1	identical	to	elem2
>	0
if	elem1	greater	than	elem2

Sample	Code:
static	int	CompTable(const	void	*elem1,	const	void	*elem2)	{
	TCHAR	*a	=	(TCHAR	*)elem1;
	TCHAR	*b	=	(TCHAR	*)elem2;
	return(_tcscmp(a,b));
}

Table	(Tab<>)	Insert	Methods
Prototype:
virtual	int	Insert(ParamID	id,	int	at,	int	num,	float*	el)=0;

Remarks:
Insert	num	float	elements	at	position	at.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	at
Zero	based	array	index	where	to	insert	the	elements.
int	num
Number	of	elements	to	insert.
float*	el
Array	of	elements	to	insert.

Return	Value:
Returns	at.

Prototype:
virtual	int	Insert(ParamID	id,	int	at,	int	num,	Point3**	el)=0;

Remarks:
Insert	num	Point3*	elements	at	position	at.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	at
Zero	based	array	index	where	to	insert	the	elements.
int	num
Number	of	elements	to	insert.
Point3**	el
Array	of	elements	to	insert.

Return	Value:

Returns	at.

Prototype:
virtual	int	Insert(ParamID	id,	int	at,	int	num,	Color**	el)=0;

Remarks:
Insert	num	Color*	elements	at	position	at.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	at
Zero	based	array	index	where	to	insert	the	elements.
int	num
Number	of	elements	to	insert.
Color**	el
Array	of	elements	to	insert.

Return	Value:
Returns	at.

Prototype:
virtual	int	Insert(ParamID	id,	int	at,	int	num,	TimeValue*	el)=0;

Remarks:
Insert	num	TimeValue	elements	at	position	at.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	at
Zero	based	array	index	where	to	insert	the	elements.
int	num
Number	of	elements	to	insert.
TimeValue*	el
Array	of	elements	to	insert.

Return	Value:

Returns	at.

Prototype:
virtual	int	Insert(ParamID	id,	int	at,	int	num,	TCHAR**	vel)=0;

Remarks:
Insert	num	string	(TCHAR*)	elements	at	position	at.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	at
Zero	based	array	index	where	to	insert	the	elements.
int	num
Number	of	elements	to	insert.
TCHAR**	vel
Array	of	elements	to	insert.

Return	Value:
Returns	at.

Prototype:
virtual	int	Insert(ParamID	id,	int	at,	int	num,	Mtl**	el)=0;

Remarks:
Insert	num	Mtl*	elements	at	position	at.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	at
Zero	based	array	index	where	to	insert	the	elements.
int	num
Number	of	elements	to	insert.
Mtl**	el
Array	of	elements	to	insert.

Return	Value:

Returns	at.

Prototype:
virtual	int	Insert(ParamID	id,	int	at,	int	num,	Texmap**	el)=0;

Remarks:
Insert	num	Texmap*	elements	at	position	at.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	at
Zero	based	array	index	where	to	insert	the	elements.
int	num
Texmap**	el
Array	of	elements	to	insert.

Return	Value:
Returns	at.

Prototype:
virtual	int	Insert(ParamID	id,	int	at,	int	num,	PBBitmap**	el)=0;

Remarks:
Insert	num	PBBitmap*	elements	at	position	at.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	at
Zero	based	array	index	where	to	insert	the	elements.
int	num
Number	of	elements	to	insert.
PBBitmap**	el
Array	of	elements	to	insert.

Return	Value:

Returns	at.

Prototype:
virtual	int	Insert(ParamID	id,	int	at,	int	num,	INode**	v)=0;

Remarks:
Insert	num	INode*	elements	at	position	at.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	at
Zero	based	array	index	where	to	insert	the	elements.
int	num
Number	of	elements	to	insert.
INode**	v
Array	of	elements	to	insert.

Return	Value:
Returns	at.

Prototype:
virtual	int	Insert(ParamID	id,	int	at,	int	num,	ReferenceTarget**
el)=0;

Remarks:
Insert	num	ReferenceTarget*	elements	at	position	at.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	at
Zero	based	array	index	where	to	insert	the	elements.
int	num
Number	of	elements	to	insert.
ReferenceTarget**	el
Array	of	elements	to	insert.

Return	Value:
Returns	at.

Prototype:
virtual	int	Insert(ParamID	id,	int	at,	int	num,	Matrix3**	el)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Insert	num	Matrix3*	elements	at	position	at.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	at
Zero	based	array	index	where	to	insert	the	elements.
int	num
Number	of	elements	to	insert.
Matrix3**	el
Array	of	elements	to	insert.

Return	Value:
Returns	at.

Table	(Tab<>)	Append	Methods
Prototype:
virtual	int	Append(ParamID	id,	int	num,	float*	el,	int
allocExtra=0)=0;

Remarks:
Append	num	float	elements	at	the	end	of	the	array.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	num
The	number	of	elements	to	append	to	the	end	of	the	array.

float*	el
The	elements	to	append.
int	allocExtra=0
If	you	need	to	enlarge	the	array	specify	an	non-zero	value	and	this	many	extra
slots	will	be	allocated.

Return	Value:
Returns	the	number	of	elements	in	use	prior	to	appending.

Prototype:
virtual	int	Append(ParamID	id,	int	num,	Point3**	el,	int
allocExtra=0)=0;

Remarks:
Append	num	Point3*	elements	at	the	end	of	the	array.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	num
The	number	of	elements	to	append	to	the	end	of	the	array.
Point3**	el
The	elements	to	append.
int	allocExtra=0
If	you	need	to	enlarge	the	array	specify	an	non-zero	value	and	this	many	extra
slots	will	be	allocated.

Return	Value:
Returns	the	number	of	elements	in	use	prior	to	appending.

Prototype:
virtual	int	Append(ParamID	id,	int	num,	Color**	el,	int
allocExtra=0)=0;

Remarks:
Append	num	Color*	elements	at	the	end	of	the	array.

Parameters:

ParamID	id
The	permanent	ID	of	the	parameter.
int	num
The	number	of	elements	to	append	to	the	end	of	the	array.
Color**	el
The	elements	to	append.
int	allocExtra=0
If	you	need	to	enlarge	the	array	specify	an	non-zero	value	and	this	many	extra
slots	will	be	allocated.

Return	Value:
Returns	the	number	of	elements	in	use	prior	to	appending.

Prototype:
virtual	int	Append(ParamID	id,	int	num,	TimeValue*	el,	int
allocExtra=0)=0;

Remarks:
Append	num	TimeValue	elements	at	the	end	of	the	array.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	num
The	number	of	elements	to	append	to	the	end	of	the	array.
TimeValue*	el
The	elements	to	append.
int	allocExtra=0
If	you	need	to	enlarge	the	array	specify	an	non-zero	value	and	this	many	extra
slots	will	be	allocated.

Return	Value:
Returns	the	number	of	elements	in	use	prior	to	appending.

Prototype:
virtual	int	Append(ParamID	id,	int	num,	TCHAR**	el,	int

allocExtra=0)=0;
Remarks:
Append	num	string	(TCHAR*)	elements	at	the	end	of	the	array.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	num
The	number	of	elements	to	append	to	the	end	of	the	array.
TCHAR**	el
The	elements	to	append.
int	allocExtra=0
If	you	need	to	enlarge	the	array	specify	an	non-zero	value	and	this	many	extra
slots	will	be	allocated.

Return	Value:
Returns	the	number	of	elements	in	use	prior	to	appending.

Prototype:
virtual	int	Append(ParamID	id,	int	num,	Mtl**	el,	int
allocExtra=0)=0;

Remarks:
Append	num	Mtl*	elements	at	the	end	of	the	array.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	num
The	number	of	elements	to	append	to	the	end	of	the	array.
Mtl**	el
The	elements	to	append.
int	allocExtra=0
If	you	need	to	enlarge	the	array	specify	an	non-zero	value	and	this	many	extra
slots	will	be	allocated.

Return	Value:

Returns	the	number	of	elements	in	use	prior	to	appending.

Prototype:
virtual	int	Append(ParamID	id,	int	num,	Texmap**	el,	int
allocExtra=0)=0;

Remarks:
Append	num	Texmap*	elements	at	the	end	of	the	array.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	num
The	number	of	elements	to	append	to	the	end	of	the	array.
Texmap**	el
The	elements	to	append.
int	allocExtra=0
If	you	need	to	enlarge	the	array	specify	an	non-zero	value	and	this	many	extra
slots	will	be	allocated.

Return	Value:
Returns	the	number	of	elements	in	use	prior	to	appending.

Prototype:
virtual	int	Append(ParamID	id,	int	num,	PBBitmap**	el,	int
allocExtra=0)=0;

Remarks:
Append	num	PBBitmap*	elements	at	the	end	of	the	array.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	num
The	number	of	elements	to	append	to	the	end	of	the	array.
PBBitmap**	el
The	elements	to	append.

int	allocExtra=0
If	you	need	to	enlarge	the	array	specify	an	non-zero	value	and	this	many	extra
slots	will	be	allocated.

Return	Value:
Returns	the	number	of	elements	in	use	prior	to	appending.

Prototype:
virtual	int	Append(ParamID	id,	int	num,	INode**	el,	int
allocExtra=0)=0;

Remarks:
Append	num	INode*	elements	at	the	end	of	the	array.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	num
The	number	of	elements	to	append	to	the	end	of	the	array.
INode**	el
The	elements	to	append.
int	allocExtra=0
If	you	need	to	enlarge	the	array	specify	an	non-zero	value	and	this	many	extra
slots	will	be	allocated.

Return	Value:
Returns	the	number	of	elements	in	use	prior	to	appending.

Prototype:
virtual	int	Append(ParamID	id,	int	num,	ReferenceTarget**	el,	int
allocExtra=0)=0;

Remarks:
Append	num	ReferenceTarget*	elements	at	the	end	of	the	array.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.

int	num
The	number	of	elements	to	append	to	the	end	of	the	array.
ReferenceTarget**	el
The	elements	to	append.
int	allocExtra=0
If	you	need	to	enlarge	the	array	specify	an	non-zero	value	and	this	many	extra
slots	will	be	allocated.

Return	Value:
Returns	the	number	of	elements	in	use	prior	to	appending.

Prototype:
virtual	int	Append(ParamID	id,	int	num,	Matrix3**	el,	int
allocExtra=0)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Append	num	Matrix3*	elements	at	the	end	of	the	array.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	num
The	number	of	elements	to	append	to	the	end	of	the	array.
Matrix3**	el
The	elements	to	append.
int	allocExtra=0
If	you	need	to	enlarge	the	array	specify	an	non-zero	value	and	this	many	extra
slots	will	be	allocated.

Return	Value:
Returns	the	number	of	elements	in	use	prior	to	appending.

Keyframe	Checking
Prototype:
virtual	BOOL	KeyFrameAtTime(int	i,	TimeValue	t,	int

tabIndex=0);
Remarks:
Checks	to	see	if	a	keyframe	exists	for	the	given	parameter	at	the	given	time

Parameters:
int	i
Zero	based	index	of	the	parameter	to	check.
TimeValue	t
The	time	to	check.
int	tabIndex=0
If	the	parameter	is	a	table	this	is	the	zero	based	index	of	the	element	in	the
table	to	check.

Return	Value:
TRUE	if	a	keyframe	exists	at	the	specified	time;	otherwise	FALSE.

Prototype:
virtual	BOOL	KeyFrameAtTime(ParamID	id,	TimeValue	t,	int
tabIndex=0);

Remarks:
Checks	to	see	if	a	keyframe	exists	for	the	given	parameter	at	the	given	time

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	to	check.
int	tabIndex=0
If	the	parameter	is	a	table	this	is	the	zero	based	index	of	the	element	in	the
table	to	check.

Return	Value:
TRUE	if	a	keyframe	exists	at	the	specified	time;	otherwise	FALSE.

Controller	Access
Prototype:

virtual	void	RemoveController(int	i,	int	tabIndex)=0;
Remarks:
Removes	the	'i-th'	controller.

Parameters:
int	i
Specifies	which	controller	using	the	zero	based	index	of	the	parameter	in	the
block.
int	tabIndex
If	the	parameter	is	a	table	this	is	the	zero	based	index	of	the	element	in	the
table	whose	controller	is	removed.

Prototype:
virtual	Control*	GetController(ParamID	id,	int	tabIndex=0)=0;

Remarks:
Returns	a	pointer	to	the	controller	of	the	specified	parameter.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	tabIndex=0
If	the	parameter	is	a	table	this	is	the	zero	based	index	of	the	element	in	the
table	whose	controller	is	returned.

Prototype:
virtual	Control*	GetController(int	i,	int	tabIndex)=0;

Remarks:
Returns	a	pointer	to	the	controller	of	the	specified	parameter.

Parameters:
int	i
Specifies	which	controller	using	the	zero	based	index	of	the	parameter	in	the
block.
int	tabIndex
If	the	parameter	is	a	table	this	is	the	zero	based	index	of	the	element	in	the

table	whose	controller	is	returned.

Prototype:
virtual	void	SetController(int	i,	int	tabIndex,	Control	*c,	BOOL
preserveFrame0Value=TRUE)=0;

Remarks:
Sets	the	'i-th'	parameter	controller	to	the	one	specified.

Parameters:
int	i
Specifies	which	controller	using	the	zero	based	index	of	the	parameter	in	the
block.
int	tabIndex
If	the	parameter	is	a	table	this	is	the	zero	based	index	of	the	element	in	the
table.
Control	*c
The	controller	to	set.
BOOL	preserveFrame0Value=TRUE
If	TRUE	the	controllers	value	at	frame	0	is	preserved.

Prototype:
virtual	void	SwapControllers(int	i1,	int	tabIndex1,	int	i2,	int
tabIndex2)=0;

Remarks:
Swaps	the	two	controllers	of	the	parameters	whose	indices	are	passed.

Parameters:
int	i1
The	zero	based	index	of	one	of	the	parameters	in	the	parameter	block.
int	tabIndex1
If	the	parameter	is	a	table	this	is	the	zero	based	index	of	the	element	in	the
table.
int	i2
The	zero	based	index	of	one	of	the	other	parameters	in	the	parameter	block.

int	tabIndex2
If	the	parameter	is	a	table	this	is	the	zero	based	index	of	the	element	in	the
table.

Reference	Related	Methods
Prototype:
virtual	int	GetRefNum(int	i,	int	tabIndex=0)=0;

Remarks:
Given	a	parameter	index	this	method	will	return	the	reference	number	of	that
parameter.

Parameters:
int	i
The	zero	based	index	of	the	parameter	in	the	parameter	block.
int	tabIndex=0
If	the	parameter	is	a	table	this	is	the	zero	based	index	of	the	element	in	the
table.

Prototype:
virtual	int	GetControllerRefNum(int	i,	int	tabIndex=0)=0;

Remarks:
Returns	the	reference	number	of	the	specified	parameter's	controller	or	-1	if
not	found.

Parameters:
int	i
The	zero	based	index	into	the	parameter	definitions	array	of	the	parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	in	the	table	of	the
parameter.

Prototype:
virtual	ParamID	LastNotifyParamID(int&	tabIndex)=0;

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
Like	LastNotifyParamID(),	but	takes	an	int&	tabIndex	argument	so	that
it	can	return	both	the	ID	of	the	changing	parameter	(as	the	result)	and	the
changing	element	index	for	Tab<>	parameters.
If	the	ParamID	returns	-1	because	no	parameter	is	currently	changing,
tabIndex	is	not	updated.	If	the	change	to	a	Tab<>	parameter	is	not	to	a
single	element	(such	as	a	sort),	the	tabIndex	is	set	to	-1.	For	multiple	inserts,
appends,	deletes,	the	tabIndex	returned	is	the	index	of	the	first	element
inserted,	appended,	deleted.

Parameters:
int&	tabIndex
The	index	of	the	changing	element	for	Tab<>	parameters	is	returned	here.

Prototype:
virtual	void	RefDeleted(ParamID	id,	int	tabIndex=0)=0;

Remarks:
This	method	should	be	called	when	the	parameter	block	owner	has	deleted	the
reference	to	a	reference	target	parameter.	This	sets	the	value	to	NULL	and
invalidates	the	UI	associated	with	the	pblock.	Note	that	this	must	only	be
called	on	P_OWNERS_REF	parameters.

Parameters:
ParamID	id
The	ID	of	the	reference	target	parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
parameter.

Prototype:
virtual	void	EnableNotifications(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Controls	whether	NotifyDependents()	messages	are	sent	when	a	parameter
is	changed,	such	as	through

a	SetValue()	call.	For	example:
pblock->EnableNotifications(FALSE);
...	param	change	code	...
pblock->EnableNotifications(TRUE);
Notifications	are	enabled	by	default.	Note	that	this	is	a	GLOBAL
enable/disable,	ALL	paramblocks	will	be	prevented	from	sending	notifications
while	EnableNotifications(FALSE)	is	in	effect.

Parameters:
BOOL	onOff
TRUE	to	enable	notifications,	FALSE	to	disable	them.

Anim	Num	/	Param	ID	Conversion
Prototype:
virtual	int	GetAnimNum(ParamID	id,	int	tabIndex=0)=0;

Remarks:
Returns	the	sub-anim	number	of	the	parameter	whose	ID	is	passed	or	-1	if	not
found.

Parameters:
ParamID	id
The	parameter	ID	of	the	parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	in	the	table	of	the
parameter.

Prototype:
virtual	int	AnimNumToParamNum(int	animNum,	int&
tabIndex)=0;

Remarks:
Returns	the	index	into	the	parameter	definitions	array	of	the	parameter	whose
sub-anim	index	is	specified	or	-1	if	not	found.

Parameters:

int	animNum
The	zero	based	sub-anim	index	of	the	parameter.
int&	tabIndex
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
parameter.

Parameter	Dimension	Related	Methods
Prototype:
virtual	ParamDimension*	GetParamDimension(int	subAnim)=0;

Remarks:
Returns	the	dimension	of	the	parameter	whose	sub-anim	index	is	passed	or
defaultDim	if	not	found.

Parameters:
int	subAnim
The	zero	based	sub-anim	index	of	the	parameter.

Prototype:
virtual	void	RescaleParam(int	paramNum,	int	tabIndex,	float
f)=0;

Remarks:
This	is	only	for	use	in	a	RescaleWorldUnits()	implementation:	The	parameter
block	implementation	of	RescaleWorldUnits	scales	only	tracks	that	have
dimension	type	=	stdWorldDim.	If	letting	the	parameter	block	handle	the
rescaling	is	not	sufficient,	call	this	on	just	the	parameters	you	need	to	rescale.

Parameters:
int	paramNum
The	index	into	the	parmeter	block	of	the	parameter	to	rescale.
int	tabIndex
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
parameter.
float	f
The	value	to	scale	by.

Parameter	Map	Access
Prototype:
virtual	void	SetMap(IParamMap2*	m,	MapID	map_id	=	0)=0;

Remarks:
This	method	sets	the	parameter	map2	associated	with	this	parameter	block2.

Parameters:
IParamMap2*	m
Points	to	the	parameter	map.
MapID	map_id
This	parameter	is	available	in	release	4.0	and	later	only.
Specifies	the	ID	of	the	map	to	set.

Prototype:
virtual	IParamMap2*	GetMap(MapID	map_id	=	0)=0;

Remarks:
Returns	a	pointer	to	the	parameter	map2	associated	with	this	parameter	block.

Parameters:
MapID	map_id
This	parameter	is	available	in	release	4.0	and	later	only.
Specifies	the	ID	of	the	map	to	get.

Rollout	Access
Prototype:
virtual	void	SetRolloutOpen(BOOL	open,	MapID	map_id	=	0)=0;

Remarks:
Sets	the	rollout	state	to	open	or	closed.
Note:	Normally,	developers	don't	need	to	call	this	method	(or	the	related	ones
below)	explicitly;	they	are	used	internally	to	keep	track	of	rollouts	states.
Instead,	use	the	ClassDesc2	method	RestoreRolloutState()	at	the	end	of	a
BeginEditParams()	or	CreateParamDlg()	to	reset	the	rollouts	to	the
state	last	used	for	the	current	object.

Parameters:
BOOL	open
TRUE	for	open;	FALSE	for	closed.
MapID	map_id
This	parameter	is	available	in	release	4.0	and	later	only.
Specifies	the	ID	of	the	map/rollout	to	set	open/closed	state	for.

Prototype:
virtual	BOOL	GetRolloutOpen(MapID	map_id	=	0)=0;

Remarks:
Returns	TRUE	if	the	rollout	is	open;	FALSE	if	closed.	This	is	normally	used
internally	--	see	the	note	above	in	SetRolloutOpen().

Parameters:
MapID	map_id
This	parameter	is	available	in	release	4.0	and	later	only.
Specifies	the	ID	of	the	map/rollout	to	get	open/closed	state	for.

Prototype:
virtual	void	SetRolloutScrollPos(int	pos,	MapID	map_id	=	0)=0;

Remarks:
Sets	the	rollout	scroll	position.	This	is	normally	used	internally	--	see	the	note
above	in	SetRolloutOpen().

Parameters:
int	pos
The	position	to	set.
MapID	map_id
This	parameter	is	available	in	release	4.0	and	later	only.
Specifies	the	ID	of	the	map/rollout	to	set	scroll	position	for.

Prototype:
virtual	int	GetRolloutScrollPos(MapID	map_id	=	0)=0;

Remarks:

Returns	the	rollout	scroll	position.	This	is	normally	used	internally	--	see	the
note	above	in	SetRolloutOpen().

Parameters:
MapID	map_id
This	parameter	is	available	in	release	4.0	and	later	only.
Specifies	the	ID	of	the	map/rollout	to	get	scroll	position	for.

ParamDlg	Access
Prototype:
virtual	IAutoMParamDlg*	GetMParamDlg()=0;

Remarks:
Returns	a	pointer	to	the	automatic	parameter	dialog	object	for	a	plug-in
material	or	texmap	(which	has	its	interface	in	the	materias	editor).	See	Class
IAutoMParamDlg.

Prototype:
virtual	IAutoEParamDlg*	GetEParamDlg()=0;

Remarks:
Returns	a	pointer	to	the	automatic	parameter	dialog	object	for	the	rendering
effects	plug-in.	See	Class	IAutoEParamDlg.

MAXScript	Default	Parameter	Initialization
Prototype:
virtual	void	InitMSParameters()=0;

Remarks:
This	method	initializes	the	parameters	with	MAXScript	defaults.
The	ParamBlockDesc2	descriptor	lets	you	specify	default	values	for
parameters	(using	the	tag	p_default),	and	these	get	installed	when	you	first
create	an	object	and	its	paramblocks.	Sometimes,	the	default	value	needed	for
interactive	creation	is	not	the	one	you	want	when	creating	an	object	via	the
scripter.	For	example,	a	sphere	should	start	out	with	radius	0	when	you	create
it	interactively,	but	you	want	a	non-zero	default	if	you	create	it	in	the	scripter,

say	with	sphere(),	otherwise	it	would	be	invisible.	There	is	another	tag,
p_ms_default,	that	lets	you	set	a	separate	default	for	scripter-based	creation
(the	p_ms_default	for	sphere	radius	is	25).	This	method	is	used	internally	by
the	scripter	to	set	the	p_ms_default	values	in	after	a	script-based	creation.	It
is	not	normally	used	by	plug-in	developers.

Alias	Maintenance
Prototype:
virtual	void	DefineParamAlias(TCHAR*	alias_name,	ParamID	id,
int	tabIndex=-1)=0;

Remarks:
This	is	used	to	allow	parameter	'aliases'	to	be	set	up	for	MAXScript	use.
Individual	Tab<>	parameter	elements	can	have	aliases.	This	is	used	to	set	up
dynamically-varying	parameters,	such	as	the	texture	maps	in	the	new	Standard
material,	which	sets	up	aliases	for	elements	in	the	texture	map	arrays.

Parameters:
TCHAR*	alias_name
The	name	of	the	alias.
ParamID	id
The	permanent	ID	of	the	parameter.
int	tabIndex=-1
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	of	the	parameter	in	the
table.

Prototype:
virtual	ParamAlias*	FindParamAlias(TCHAR*	alias_name)=0;

Remarks:
Returns	a	pointer	to	a	Structure	ParamAlias	object	which	describes	the
paramater	alias	whose	name	is	passed.	This	includes	the	name,	ParamID	and
Tab<>	index.

Parameters:
TCHAR*	alias_name
The	name	of	the	alias	to	find.

Prototype:
virtual	TCHAR*	FindParamAlias(ParamID	id,	int
tabIndex=-1)=0;

Remarks:
Finds	the	name	of	a	parmameter	alias	using	the	ID	and	Tab<>	index	passed.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	tabIndex=-1
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table.	If	not	a
Tab<>	use	the	default	of	-1.

Return	Value:
The	name	of	the	alias	or	NULL	if	not	found.

Prototype:
virtual	void	ClearParamAliases()=0;

Remarks:
Breaks	the	association	between	the	aliases	and	their	parameters	in	this	block.
The	method	ParamAliasCount()	below	will	return	0	following	this	call.

Prototype:
virtual	int	ParamAliasCount()=0;

Remarks:
Returns	the	number	of	aliases	currently	defined.

Prototype:
virtual	ParamAlias*	GetParamAlias(int	i)=0;

Remarks:
Returns	a	pointer	to	the	'i-th'	alias.	See	Structure	ParamAlias.

Parameters:
int	i
The	zero	based	index	of	the	alias	to	return.

SubAnim	Numbering	Related	Methods
Prototype:
virtual	void	SetSubAnimNum(ParamID	id,	int	subAnimNum,	int
tabIndex=0)=0;

Remarks:
This	method	allows	for	the	arbitrary	ordering	of	sub-anim	numbers	for
parameters	and	Tab<>	parameter	elements.	It	sets	the	sub-anim	number	for	the
specified	parameter.
This	call	lets	you	set	arbitrary	sub-anim	number	ordering	for	the	subAnim
parameters	and	Tab<>	parameter	elements	in	the	block.	You	must	set	numbers
for	ALL	subAnims	and	take	care	that	all	numbers	are	used.	Note	that	in	the
case	of	the	various	ReferenceTarget*	parameter	types,	NULL	values	for	any
parameter	or	Tab<>	elements	are	not	included	the	subAnim	count,	so	if	such	a
parameter	is	made	non-NULL	(or	vice-versa),	you	need	to	reassign	the
subanim	numbers	to	take	that	change	into	account.

Parameters:
ParamID	id
The	permanent	parameter	ID
int	subAnimNum
The	zero	based	sub-anim	number.
int	tabIndex=0
The	zero	based	index	into	the	table	of	the	parameter.

Prototype:
virtual	void	ClearSubAnimMap()=0;

Remarks:
This	method	clears	any	sub-anim	map	used	to	allow	arbitrary	ordering	of	sub-
anim	numbers	for	parameters.

Copying	Parameter	Values	Between	Blocks
Prototype:
virtual	void	Assign(ParamID	id,	IParamBlock2*	src,	ParamID

src_id)=0;
Remarks:
This	method	is	used	for	copying	parameter	values	between	parameter	blocks
(which	is	useful	during	old-version	updating).	This	method	copies	from	the
'src'	block	'src_id'	parameter	into	this	parameter	block's	'id'	parameter.
Developers	are	responsible	for	making	sure	the	types	are	the	same,	otherwise
an	assert()	may	occur.

Parameters:
ParamID	id
This	ID	specifies	the	destination	parameter.
IParamBlock2*	src
Points	to	the	source	parameter	block	2.
ParamID	src_id
The	source	parameter	ID.

Finding	Parameter	IDs
Prototype:
virtual	ParamID	FindRefParam(ReferenceTarget*	ref,	int&
tabIndex)=0;

Remarks:
This	method	that	takes	a	reference	target	object	ref	stored	somewhere	in	this
parameter	block	and	returns	the	ParamID	and	tabIndex	of	the	containing
parameter,	or	-1	if	not	found	in	the	parameter	block.

Parameters:
ReferenceTarget*	ref
The	reference	target	to	find.
int&	tabIndex
The	table	index	if	the	parameter	is	a	Tab<>.

Reset	To	Default	Values
Prototype:
virtual	void	ResetAll(BOOL	updateUI	=	TRUE,	BOOL

callSetHandlers	=	TRUE)=0;
Remarks:
This	method	resets	all	the	parameters	in	the	block	to	their	default	values	and
optionally	updates	any	associated	ParamMap2	UI	that	is	currently	displaying
the	contents	of	the	block.	It	also	optionally	causing	all	the	PBAccessor	Set()
methods	to	be	called	after	the	reset.

Parameters:
BOOL	updateUI	=	TRUE
TRUE	to	update	the	user	inteface;	FALSE	to	not	update.
BOOL	callSetHandlers	=	TRUE
TRUE	to	call	PBAccessor::Set()	for	all	the	parameters;	otherwise	FALSE.

Prototype:
virtual	void	Reset(ParamID	id,	int	tabIndex=-1,	BOOL	updateUI
=	TRUE,	BOOL	callSetHandlers	=	TRUE)=0;

Remarks:
This	method	resets	the	single	parameter	specified	to	its	default	value.	If	the
parameter	is	a	Tab<>	and	the	tabIndex	is	-1,	all	the	elements	in	the	table	are
reset.

Parameters:
ParamID	id
The	ID	of	the	parameter	to	reset.
int	tabIndex=-1
If	the	parameter	is	a	Tab<>	this	is	the	index	into	the	table	of	the	parameter	to
reset.	A	value	of	-1	causes	all	the	elements	in	the	table	to	be	reset.
BOOL	updateUI	=	TRUE
Determines	if	the	user	inteface	is	updated	for	the	parameter.	TRUE	to	update;
FALSE	to	not	update.
BOOL	callSetHandlers	=	TRUE
Determines	if	the	method	PBAccessor::Set()	should	be	called	on	the
parameter.	TRUE	to	call	it;	FALSE	to	not	call	it.

PBAccessor	Get	/	Set	Methods

Prototype:
virtual	void	CallSet(ParamID	id,	int	tabIndex=-1)=0;

Remarks:
This	method	forces	a	call	to	the	PBAccessor::Set()	method	for	the	specified
parameter.	If	the	parameter	is	a	Tab<>	parameter	and	the	tabIndex	is	-1,	all	the
elements	have	the	appropriate	functions	called.

Parameters:
ParamID	id
The	ID	of	the	parameter.
int	tabIndex=-1
If	the	parameter	is	a	Tab<>	parameter	this	is	the	zero	based	index	into	the
table	of	the	element.	A	value	of	-1	causes	all	the	appropriate	Set()	methods	to
be	called.

Prototype:
virtual	void	CallGet(ParamID	id,	int	tabIndex=-1)=0;

Remarks:
This	method	forces	a	call	to	the	PBAccessor::Get()	method	for	the	specified
parameter.	If	the	parameter	is	a	Tab<>	parameter	and	the	tabIndex	is	-1,	all	the
elements	have	the	appropriate	functions	called.

Parameters:
ParamID	id
The	ID	of	the	parameter.
int	tabIndex=-1
If	the	parameter	is	a	Tab<>	parameter	this	is	the	zero	based	index	into	the
table	of	the	element.	A	value	of	-1	causes	all	the	appropriate	Get()	methods	to
be	called.

Prototype:
virtual	void	CallSets()=0;

Remarks:
This	method	forces	a	call	to	the	PBAccessor::Set()	method	for	every
parameter	in	the	block.	Any	parameters	which	are	Tab<>	parameters	will	have

Set()	call	for	every	appropriate	element.

Prototype:
virtual	void	CallGets()=0;

Remarks:
This	method	forces	a	call	to	the	PBAccessor::Get()	method	for	every
parameter	in	the	block.	Any	parameters	which	are	Tab<>	parameters	will	have
Get()	call	for	every	appropriate	element.

Validity	of	Parameters
Prototype:
virtual	void	GetValidity(TimeValue	t,	Interval	&valid)=0;

Remarks:
This	method	updates	the	validity	interval	passed	with	the	cumulative	interval
for	every	parameter	in	the	parameter	block.

Parameters:
TimeValue	t
The	time	about	which	the	interval	is	computed.
Interval	&valid
The	interval	to	update.

Class	IParamMap
See	Also:,	Parameter	Maps,	Class	ParamMapUserDlgProc,	Class	ParamUIDesc,
Parameter	Blocks,	Class	IParamArray,	Class	Interface.

Description:
This	class	provides	methods	to	work	with	parameter	maps.	These	are	things	like
invalidating	the	parameter	map	so	it	gets	redrawn,	working	with	the	parameter
blocks	associated	with	the	parameter	map,	and	establishing	an	optional	dialog
proc	to	handle	controls	not	directly	handled	by	the	pmap.	This	section	also
documents	several	functions	that	are	available	for	creating	and	destroying
parameter	maps	but	are	not	part	of	this	class.
Note:	The	use	of	this	class	requires	the	explicit	inclusion	the	IPARAMM.H
header	file.

The	following	functions	are	not	part	of	this	class	but	are	available	to	create	the
parameter	maps:

Prototype:
IParamMap	*CreateCPParamMap(ParamUIDesc	*desc,int
count,IParamArray	*pb,Interface	*ip,HINSTANCE
hInst,TCHAR	*dlgTemplate,TCHAR	*title,DWORD	flags);

Remarks:
Creates	a	parameter	map	to	handle	the	display	of	parameters	in	the	command
panel.	This	will	add	the	rollup	page	to	the	command	panel.

Parameters:
ParamUIDesc	*desc
The	array	of	ParamUIDescs,	one	element	for	each	control	to	be	managed.
int	count
The	number	of	items	in	the	array	above.
IParamArray	*pb
Pointer	to	an	instance	of	the	class	IParamArray.	This	is	the	pointer	to	the	=	4)
BSPSPopupOnMouseOver(event);;">virtual	array	of	parameters.
Interface	*ip
The	interface	pointer	passed	into	the	BeginEditParams()	method.
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in
TCHAR	*dlgTemplate
Dialog	template	for	the	rollup	page	(created	using	the	resource	editor)
TCHAR	*title
The	title	displayed	in	the	rollup	page	title	bar.
DWORD	flags
A	set	of	flags	to	control	settings	of	the	rollup	page.
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

Return	Value:
A	pointer	to	the	parameter	map	that	is	created.

javascript:BSSCPopup('idx_T_virtual_array.htm');

Prototype:
IParamMap	*ReplaceCPParamMap(HWND	oldhw,	ParamUIDesc
*desc,int	count,	IParamArray	*pb,	Interface	*ip,	HINSTANCE
hInst,	TCHAR	*dlgTemplate,	TCHAR	*title,	DWORD	flags);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	allows	one	to	switch	rollups	in	the	command	panel.	It	creates	the
new	parameter	map	and	calls	Interface::	ReplaceRollupPage().

Parameters:
HWND	oldhw
The	window	handle	of	the	old	rollup.
ParamUIDesc	*desc
The	array	of	ParamUIDescs,	one	element	for	each	control	to	be	managed.
int	count
The	number	of	items	in	the	array	above.
IParamArray	*pb
Pointer	to	an	instance	of	the	class	IParamArray.	This	is	the	pointer	to	the
virtual	array	of	parameters.
Interface	*ip
The	interface	pointer	passed	into	the	BeginEditParams()	method.
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in
TCHAR	*dlgTemplate
Dialog	template	for	the	rollup	page	(created	using	the	resource	editor)
TCHAR	*title
The	title	displayed	in	the	rollup	page	title	bar.
DWORD	flags
A	set	of	flags	to	control	settings	of	the	rollup	page.
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

Return	Value:
A	pointer	to	the	parameter	map	that	is	created.

Prototype:
void	DestroyCPParamMap(IParamMap	*m);

Remarks:
This	function	destroys	a	command	panel	parameter	map.	The	rollup	page	from
the	command	panel	is	removed	and	the	parameter	map	is	deleted.

Parameters:
IParamMap	*m
A	pointer	to	the	parameter	map	to	destroy.

Prototype:
BOOL	CreateModalParamMap(ParamUIDesc	*desc,int
count,IParamArray	*pb,TimeValue	t,HINSTANCE	hInst,TCHAR
*dlgTemplate,HWND	hParent,ParamMapUserDlgProc
*proc=NULL);

Remarks:
This	function	creates	a	parameter	map	that	will	handle	a	parameter	block	in	a
modal	dialog	where	time	does	not	change	and	the	viewport	is	not	redrawn.
Note	that	there	is	no	need	to	destroy	it.	It	executes	the	dialog	and	then	destroys
itself.

Parameters:
ParamUIDesc	*desc
The	array	of	ParamUIDescs,	one	element	for	each	control	to	be	managed.
int	count
The	number	of	items	in	the	array	above.
IParamArray	*pb
Pointer	to	an	instance	of	the	class	IParamArray.	This	is	the	pointer	to	the	=	4)
BSPSPopupOnMouseOver(event);;">virtual	array	of	parameters.
TimeValue	t
This	is	just	the	current	time	when	the	user	is	bringing	up	the	dialog.
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in
TCHAR	*dlgTemplate
Dialog	template	for	the	dialog	box.

javascript:BSSCPopup('idx_T_virtual_array.htm');

HWND	hParent
The	parent	window	handle.
ParamMapUserDlgProc	*proc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMapUserDlgProc	and	set	it	as	the	parameter
map's	user	callback.	See	Class	ParamMapUserDlgProc.

Return	Value:
TRUE	if	the	user	selected	OK;	otherwise	FALSE.

Prototype:
IParamMap	*CreateRParamMap(ParamUIDesc	*desc,int
count,IParamArray	*pb,	IRendParams	*ip,	HINSTANCE
hInst,TCHAR	*dlgTemplate,	TCHAR	*title,	DWORD	flags);

Remarks:
This	function	creates	a	parameter	map	to	handle	the	display	of	render
parameters	or	atmospheric	plug-in	parameters.

Parameters:
ParamUIDesc	*desc
The	array	of	ParamUIDescs,	one	element	for	each	control	to	be	managed.
int	count
The	number	of	items	in	the	array	above.
IParamArray	*pb
Pointer	to	an	instance	of	the	class	IParamArray.	This	is	the	pointer	to	the	array
of	parameters.
IRendParams	*ip
The	interface	pointer	passed	into	CreateParamDlg().
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in
TCHAR	*dlgTemplate
Dialog	template	for	the	rollup	page	(created	using	the	resource	editor)
TCHAR	*title
The	title	displayed	in	the	rollup	page	title	bar.
DWORD	flags

A	flag	to	control	the	settings	of	the	rollup	page:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

Return	Value:
A	pointer	to	the	parameter	map	that	is	created.

Prototype:
void	DestroyRParamMap(IParamMap	*m);

Remarks:
This	function	destroys	a	parameter	map	created	by	CreateRParamMap().
The	rollup	page	is	removed	and	the	parameter	map	is	deleted.

Parameters:
IParamMap	*m
A	pointer	to	the	parameter	map	to	destroy.

Prototype:
IParamMap	*CreateMParamMap(ParamUIDesc	*desc,	int	count,
IParamArray	*pb,	IMtlParams	*ip,	HINSTANCE	hInst,	TCHAR
*dlgTemplate,	TCHAR	*title,	DWORD	flags);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	creates	a	parameter	map	to	handle	the	display	of	texture	map	or
material	parameters	in	the	material	editor.

Parameters:
ParamUIDesc	*desc
The	array	of	ParamUIDescs,	one	element	for	each	control	to	be	managed.
int	count
The	number	of	items	in	the	array	above.
IParamArray	*pb
Pointer	to	an	instance	of	the	class	IParamArray.	This	is	the	pointer	to	the	array
of	parameters.
IMtlParams	*ip

The	interface	pointer.	See	Class	IMtlParams.
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in
TCHAR	*dlgTemplate
Dialog	template	for	the	rollup	page	(created	using	the	resource	editor)
TCHAR	*title
The	title	displayed	in	the	rollup	page	title	bar.
DWORD	flags
A	flag	to	control	the	settings	of	the	rollup	page:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

Return	Value:
A	pointer	to	the	parameter	map	that	is	created.

Prototype:
void	DestroyMParamMap(IParamMap	*m);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	destroys	a	parameter	map	created	by	CreateMParamMap().
The	rollup	page	is	removed	and	the	parameter	map	is	deleted.

Parameters:
IParamMap	*m
A	pointer	to	the	parameter	map	to	destroy.

Methods:

Prototype:
void	Invalidate()

Remarks:
Implemented	by	the	System.
Call	this	method	to	update	(redraw)	the	user	interface	controls.	This	marks	the
UI	controls	as	needing	to	be	updated	and	the	parameter	map	will	take	care	of
it.

Prototype:
void	SetParamBlock(IParamArray	*pb)

Remarks:
Implemented	by	the	System.
This	method	swaps	the	existing	parameter	block	with	a	new	one	and	updates
the	user	interface.	Consider	the	following	example	to	understand	how	this	is
used:	If	a	user	is	in	create	mode,	and	has	created	a	sphere	object,	and	then
goes	to	create	another	sphere,	the	user	interface	stays	up.	The	parameter	map
that	manages	the	UI	is	not	deleted.	When	the	user	creates	the	second	sphere,
the	parameter	map	needs	to	refer	to	the	new	sphere's	parameter	block	(not	the
previous	one	any	longer).	This	method	is	used	to	set	the	parameter	map	to
point	to	the	new	parameter	block.

Parameters:
IParamArray	*pb
A	pointer	to	the	new	parameter	block.

Prototype:
void	SetUserDlgProc(ParamMapUserDlgProc	*proc=NULL)

Remarks:
Implemented	by	the	System.
This	method	allows	the	developer	to	provide	special	handling	for	a	control.
The	developer	provides	a	dialog	proc	to	process	the	message	from	the	control.
This	method	is	used	to	tell	the	parameter	map	that	the	developer	defined
method	should	be	called.	The	given	proc	will	be	called	after	default
processing	is	done.	Note	that	if	the	proc	is	non-NULL	when	the	ParamMap	is
deleted	its	DeleteThis()	method	will	be	called.

Parameters:
ParamMapUserDlgProc	*proc=NULL
A	pointer	to	the	user	dialog	proc	class	to	process	the	control.

Prototype:
virtual	void	SetPBlockIndex(int	mapIndex,	int	blockIndex)=0;

Remarks:

Implemented	by	the	System.
This	method	changes	a	parameter	map	entry	to	refer	to	a	different	item	in	the
parameter	block.	This	is	used	for	example	by	the	Optimize	modifier.	This
modifier	has	two	sets	of	parameters	that	may	be	adjusted	(L1	and	L2).
Optimize	only	maintains	a	single	parameter	block	however.	This	pblock
contains	both	sets	of	parameters.	When	the	user	switches	between	these	two
sets,	this	method	is	called	to	point	the	UI	controls	at	different	indices	in	the
parameter	block.

Parameters:
int	mapIndex
The	map	entry	to	change.
int	blockIndex
The	new	parameter	block	index.

Prototype:
HWND	GetHWnd()

Remarks:
Implemented	by	the	System.
Returns	the	window	handle	of	the	rollup	page	(or	dialog).

Prototype:
IParamArray	*GetParamBlock()

Remarks:
Implemented	by	the	System.
Returns	a	pointer	to	the	parameter	block	managed	by	the	parameter	map.

Class	IParamMap2
See	Also:	Class	IParamBlock2,	Class	ParamBlockDesc2,	Class
ParamMap2UserDlgProc.
class	IParamMap2	:	public	InterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	provides	methods	to	work	with	parameter	map2s.	Methods	are
provided	for	things	like	invalidating	the	parameter	map	so	it	gets	redrawn,
working	with	the	parameter	blocks	associated	with	the	parameter	map,	and
establishing	an	optional	dialog	proc	to	handle	controls	not	directly	handled	by
the	parameter	map.	This	section	also	documents	several	functions	that	are
available	for	creating	and	destroying	parameter	maps	but	are	not	part	of	this
class.
Note:	The	use	of	this	class	requires	the	explicit	inclusion	the	IPARAMM2.H
header	file.

Methods:

Prototype:
virtual	void	Invalidate()=0;

Remarks:
This	method	marks	the	user	interface	as	needing	to	be	updated.	This	affects
the	entire	UI	for	the	parameter	map.

Prototype:
virtual	void	Validate()=0;

Remarks:
This	methods	un-invalidates	the	entire	user	interface.

Prototype:
virtual	void	Invalidate(ParamID	id,	int	tabIndex=0)=0;

Remarks:
This	methods	marks	a	specific	control	in	the	UI	as	requiring	an	update.

Parameters:
ParamID	id
The	permanent	ID	of	the	control	requiring	an	update.
int	tabIndex=0
If	the	control	is	a	Tab<>	then	this	is	the	zero	based	index	into	the	table	of	the
value	to	be	invalidated.

Prototype:
virtual	Interval&	Validity()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Provides	access	to	pmap's	validity	interval.	Returns	a	refernce	to	the	actual
interval	so	it	can	be	modified	if	desired.

Prototype:
virtual	void	UpdateUI(TimeValue	t)=0;

Remarks:
This	method	will	update	the	user	interface	if	the	current	settings	are	not	valid
at	the	given	time	(i.e.,	if	anything	is	animated	at	that	time).

Parameters:
TimeValue	t
The	time	to	check	for	the	update.

Prototype:
virtual	void	RedrawViews(TimeValue	t,	DWORD
flag=REDRAW_NORMAL)=0;

Remarks:
This	method	may	be	called	to	cause	the	viewports	to	be	redrawn.

Parameters:
TimeValue	t
The	time	at	which	to	redraw	the	viewports.
DWORD	flag=REDRAW_NORMAL

You	may	specify	one	of	the	following:
REDRAW_BEGIN
Call	this	before	you	redraw.
REDRAW_INTERACTIVE
This	allows	the	view	quality	to	degrade	to	maintain	interactively.
REDRAW_END
If	during	interactive	redraw	the	state	degraded,	this	will	redraw	the	views	in
the	undegraded	state.
REDRAW_NORMAL
This	redraws	the	views	in	the	undegraded	state.

Prototype:
virtual	void	SetParamBlock(IParamBlock2	*pb)=0;

Remarks:
This	method	swaps	the	existing	parameter	block	with	a	new	one	and	updates
user	interface.

Parameters:
IParamBlock2	*pb
Points	to	the	new	parameter	block2	to	use.

Prototype:
virtual	void	SetUserDlgProc(ParamMap2UserDlgProc
*proc=NULL)=0;

Remarks:
This	method	allows	a	developer	to	provide	special	handling	for	one	or	more
controls.	The	developer	provides	a	dialog	proc	to	process	the	message	from
the	control.	This	method	is	used	to	tell	the	parameter	map	that	the	developer
defined	method	should	be	called.	The	given	proc	will	be	called	after	default
processing	is	done.	Note	that	if	the	proc	is	non-NULL	when	the	ParamMap2	is
deleted	its	DeleteThis()	method	will	be	called.

Parameters:
ParamMap2UserDlgProc	*proc=NULL
Points	to	the	user	dialog	proc	object	to	process	the	controls.

Prototype:
virtual	ParamMap2UserDlgProc	*GetUserDlgProc()=0;

Remarks:
Returns	a	pointer	to	the	user	dialog	proc	for	the	parameter	map	(or	NULL	if
none	is	defined).	See	SetUserDlgProc()	above.

Prototype:
virtual	void	ReplaceParam(ParamID	curParam,	ParamID
newParam);

Remarks:
This	method	changes	a	parameter	map	entry	to	refer	to	a	different	item	in	the
parameter	block.

Parameters:
ParamID	curParam
The	parameter	ID	of	the	item	to	change.
ParamID	newParam
The	new	parameter	ID.

Prototype:
virtual	HWND	GetHWnd()=0;

Remarks:
Returns	the	dialog	window	handle	of	the	parameter	map.

Function:
virtual	MapID	GetMapID()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	parameter	map’s	ID.

Prototype:
virtual	IParamBlock2	*GetParamBlock()=0;

Remarks:

Returns	a	pointer	to	the	parameter	block2	used	by	this	parameter	map.

Prototype:
virtual	BOOL	DlgActive()=0;

Remarks:
Returns	TRUE	if	the	parameter	map	dialog	proc	is	active;	otherwise	FALSE.

Prototype:
virtual	ParamBlockDesc2*	GetDesc()=0;

Remarks:
Returns	a	pointer	to	the	ParamBlockDesc2	instance	for	this	parameter	map.

Prototype:
virtual	void	ActivateDlg(BOOL	onOff)=0;

Remarks:
This	method	is	called	to	indicate	the	dialog	is	going	inactive	or	is	becoming
active.

Parameters:
BOOL	onOff
TRUE	if	becoming	active;	FALSE	for	inactive.

Prototype:
virtual	int	FindSubTexFromHWND(HWND	hw)=0;

Remarks:
This	method	is	sent	to	a	Material	Editor	map	to	find	the	SubTex	index
corresponding	to	the	control	handle.	It	should	return	the	index	of	the	sub-
texmap	corresponding	to	the	window	whose	handle	is	passed.	If	the	handle	is
not	valid	return	-1.

Parameters:
HWND	hw
The	window	handle	of	the	control.

Prototype:
virtual	void	Enable(ParamID	id,	BOOL	onOff,	int	tabIndex=0)=0;

Remarks:
This	method	is	used	to	enable	of	disable	an	individual	user	interface	control.

Parameters:
ParamID	id
The	parameter	ID	of	the	control	to	enable/disable.
BOOL	onOff
TRUE	to	enable;	FALSE	to	disable.
int	tabIndex=0
If	the	control	is	a	Tab<>	then	this	is	the	zero	based	index	in	the	table	of	the
item	to	enable/disable.

Prototype:
virtual	void	SetText(ParamID	id,	TCHAR*	txt,	int	tabIndex=0)=0;

Remarks:
This	method	sets	the	text	of	a	parameter	user	interface	control.

Parameters:
ParamID	id
The	ID	of	the	parameter	whose	user	interface	text	to	change.
TCHAR*	txt
The	new	string	to	display.
int	tabIndex=0
If	the	parmeter	is	a	Tab<>	this	is	the	zero	based	index	of	the	parameter	in	the
table.

Prototype:
virtual	void	SetTooltip(ParamID	id,	BOOL	onOf,	TCHAR*	txt,	int
tabIndex=0)=0;

Remarks:
This	methods	sets	the	tooltip	text	of	specified	parameter	and	can	turn	the
tooltip	on	or	off.

Parameters:
ParamID	id
The	ID	of	the	parameter.
BOOL	onOf
TRUE	for	on;	FALSE	for	off.
TCHAR*	txt
The	tool	tip	text.
int	tabIndex=0
If	the	parmeter	is	a	Tab<>	this	is	the	zero	based	index	of	the	parameter	in	the
table.

Prototype:
virtual	void	SetRange(ParamID	id,	float	low,	float	high,	int
tabIndex=0)=0;

Remarks:
This	method	sets	the	range	of	parameter	for	a	spinner	or	slider	control.

Parameters:
ParamID	id
The	ID	of	the	parameter.
float	low
The	low	range	for	the	spinner	/	slider.
float	high
The	high	range	for	the	spinner	/	slider.
int	tabIndex=0
If	the	parmeter	is	a	Tab<>	this	is	the	zero	based	index	of	the	parameter	in	the
table.

Prototype:
virtual	void	Show(ParamID	id,	BOOL	showHide,	int
tabIndex=0)=0;

Remarks:
This	method	will	show	or	hide	the	specified	control.

Parameters:
ParamID	id
The	ID	of	the	parameter.
BOOL	showHide
TRUE	to	show;	FALSE	to	hide.
int	tabIndex=0
If	the	parmeter	is	a	Tab<>	this	is	the	zero	based	index	of	the	parameter	in	the
table.

Prototype:
virtual	void	SetThing(ReferenceTarget	*m)=0;

Remarks:
This	method	is	called	by	any	IAutoXXParamDlg	when	it	receives	a
SetThing().

Parameters:
ReferenceTarget	*m
The	item	which	was	set.

The	following	functions	are	not	part	of	this	class	but	are	available
for	use.
Function:
BOOL	CreateModalParamMap2(IParamBlock2	*pb,	TimeValue	t,
HINSTANCE	hInst,	TCHAR	*dlgTemplate,	HWND	hParent,
ParamMap2UserDlgProc	*proc=NULL);

Remarks:
This	function	creates	a	parameter	map	that	will	handle	a	parameter	block	in	a
modeless	dialog	where	time	does	not	change	and	the	viewports	are	not
redrawn.	Note	that	there	is	no	need	to	destroy	it.	It	executes	the	dialog	and
then	destorys	itself.
Note,	in	version	4.0	and	later,	this	actually	maps	to	a	call	on	the	explicit	map
ID	overload	of	CreateModalParamMap2()	with	default	map	ID	of	0.

Parameters:

IParamBlock2	*pb
Points	to	the	parameter	block2.
TimeValue	t
The	time	at	which	the	dialog	is	launched.
HINSTANCE	hInst
The	plug-ins	instance	handle.
TCHAR	*dlgTemplate
The	dialog	template.
HWND	hParent
The	parent	window.
ParamMap2UserDlgProc	*proc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.

Return	Value:
Returns	TRUE	if	the	user	selected	OK,	FALSE	otherwise.

Function:
BOOL	CreateModalParamMap2(IParamBlock2	*pb,	TimeValue	t,
HINSTANCE	hInst,	DLGTEMPLATE	*dlgTemplate,	HWND
hParent,	ParamMap2UserDlgProc	*proc=NULL);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
This	function	creates	a	parameter	map	that	will	handle	a	parameter	block	in	a
modeless	dialog	where	time	does	not	change	and	the	viewports	are	not
redrawn.	Note	that	there	is	no	need	to	destroy	it.	It	executes	the	dialog	and
then	destorys	itself.	This	function	is	currently	not	in	use.

Parameters:
IParamBlock2	*pb
Points	to	the	parameter	block2.
TimeValue	t
The	time	at	which	the	dialog	is	launched.
HINSTANCE	hInst
The	plug-ins	instance	handle.

DLGTEMPLATE	*dlgTemplate
The	dialog	template.
HWND	hParent
The	parent	window.
ParamMap2UserDlgProc	*proc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.

Return	Value:
Returns	TRUE	if	the	user	selected	OK,	FALSE	otherwise.

Function:
BOOL	CreateModalParamMap2(MapID	map_id,	IParamBlock2
*pb,	TimeValue	t,	HINSTANCE	hInst,	TCHAR	*dlgTemplate,
HWND	hParent,	ParamMap2UserDlgProc	*proc=NULL);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
Creates	a	parameter	map	that	will	handle	a	parameter	block	in	a	modeless
dialog	where	time	does	not	change	and	the	viewports	are	not	redrawn.	This
overload	of	CreateModalParamMap2()	has	a	new	parameter,	map_id,
that	specifies	the	ID	of	the	parameter	map/rollup	to	be	created	for	this
particular	parameter	block.	See	original	function	for	the	rest	of	the	description.

Function:
IParamMap2	*CreateCPParamMap2(IParamBlock2	*pb,
Interface	*ip,	HINSTANCE	hInst,	TCHAR	*dlgTemplate,
TCHAR	*title,	DWORD	flags,	ParamMap2UserDlgProc*
dlgProc=NULL,	HWND	hOldRollup=NULL,	int	category	=
ROLLUP_CAT_STANDARD);

Remarks:
This	function	creates	a	parameter	map	to	handle	the	display	of	parameters	in
the	command	panel.	This	will	add	a	rollup	page	to	the	command	panel	(or
optionally	replace	an	existing	one).
Note,	in	version	4.0	and	later,	this	actually	maps	to	a	call	on	the	explicit	map

ID	overload	of	CreateCPParamMap2()	with	default	map	ID	of	0.
Parameters:
IParamBlock2	*pb
Points	to	the	parameter	block2.
Interface	*ip
Pass	in	the	plug-ins	interface	pointer.
HINSTANCE	hInst
The	plug-ins	instance	handle.
TCHAR	*dlgTemplate
The	dialog	template.
TCHAR	*title
The	title	displayed	in	the	rollup	page	title	bar.
DWORD	flags
A	flag	to	control	the	settings	of	the	rollup	page:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

ParamMap2UserDlgProc*	dlgProc=NULL,
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.
HWND	hOldRollup=NULL
If	non-NULL	specifies	an	existing	rollup	window	in	the	current	UI	context
that	should	be	replaced	with	the	newly	created	rollup	for	this	map.
int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the

RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
Returns	a	pointer	to	the	parameter	map2.

Function:
IParamMap2	*CreateCPParamMap2(IParamBlock2	*pb,
Interface	*ip,	HINSTANCE	hInst,	DLGTEMPLATE
*dlgTemplate,	TCHAR	*title,	DWORD	flags,
ParamMap2UserDlgProc*	dlgProc=NULL,	HWND
hOldRollup=NULL,	int	category	=	ROLLUP_CAT_STANDARD);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
This	function	creates	a	parameter	map	to	handle	the	display	of	parameters	in
the	command	panel.	This	will	add	a	rollup	page	to	the	command	panel	(or
optionally	replace	an	existing	one).	This	function	is	currently	not	used.

Parameters:
IParamBlock2	*pb
Points	to	the	parameter	block2.
Interface	*ip
Pass	in	the	plug-ins	interface	pointer.
HINSTANCE	hInst
The	plug-ins	instance	handle.
TCHAR	*dlgTemplate
The	dialog	template.
TCHAR	*title
The	title	displayed	in	the	rollup	page	title	bar.
DWORD	flags
A	flag	to	control	the	settings	of	the	rollup	page:
APPENDROLL_CLOSED

Starts	the	page	in	the	rolled	up	state.
ParamMap2UserDlgProc*	dlgProc=NULL,
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.
HWND	hOldRollup=NULL
If	non-NULL	specifies	an	existing	rollup	window	in	the	current	UI	context
that	should	be	replaced	with	the	newly	created	rollup	for	this	map.
int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
Returns	a	pointer	to	the	parameter	map2.

Function:
IParamMap2	*CreateCPParamMap2(MapID	map_id,
IParamBlock2	*pb,	Interface	*ip,	HINSTANCE	hInst,	TCHAR
*dlgTemplate,	TCHAR	*title,	DWORD	flags,
ParamMap2UserDlgProc*	dlgProc=NULL,	HWND
hOldRollup=NULL);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.

Creates	a	parameter	map	to	handle	the	display	of	parameters	in	the	command
panel.	This	overload	of	CreateCPParamMap2()	has	a	new	parameter,
map_id,	that	specifies	the	ID	of	the	parameter	map/rollup	to	be	created	for
this	particular	parameter	block.	See	original	function	for	the	rest	of	the
description.

Function:
void	DestroyCPParamMap2(IParamMap2	*m);

Remarks:
This	function	destroys	a	parameter	map	created	by	CreateCParamMap2().
The	rollup	page	is	removed	and	the	parameter	map	is	deleted.

Parameters:
IParamMap2	*m
A	pointer	to	the	parameter	map2	to	delete.

Function:
IParamMap2	*CreateChildCPParamMap2(IParamBlock2	*pb,
Interface	*ip,	HINSTANCE	hInst,	IParamMap2*	parent,	TCHAR
*dlgTemplate,	TCHAR	*title,	ParamMap2UserDlgProc*
dlgProc=NULL);

Remarks:
This	function	creates	a	child	dialog	of	the	given	parent	parammap	(for	tabbed
dialogs,	etc.).	This	version	takes	an	extra	parent	IParamMap2*	and	creates	a
child	dialog	window	in	the	parent	parammap's	window	(rather	than	a	new
rollup)	that	is	mapped	by	the	new	parammap.	Developers	need	to	call	this
explicitly	once	the	parent	parammap	has	been	created	as	child	parammaps	are
not	created	automatically	by	the	P_AUTO_UI	mechanisms.
Note,	in	version	4.0	and	later,	this	actually	maps	to	a	call	on	the	explicit	map
ID	overload	of	CreateChildCPParamMap2()	with	default	map	ID	of	0.

Parameters:
IParamBlock2	*pb
Points	to	the	parameter	block2.
Interface	*ip

Pass	in	the	plug-ins	rendering	parameters	interface	pointer.
HINSTANCE	hInst
The	plug-ins	instance	handle.
IParamMap2*	parent
The	parent	parameter	map.
TCHAR	*dlgTemplate
The	dialog	template.
TCHAR	*title
The	title	displayed.
ParamMap2UserDlgProc*	dlgProc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.

Return	Value:
Returns	a	pointer	to	the	parameter	map2.

Function:
IParamMap2	*CreateChildCPParamMap2(IParamBlock2	*pb,
Interface	*ip,	HINSTANCE	hInst,	IParamMap2*	parent,
DLGTEMPLATE	*dlgTemplate,	TCHAR	*title,
ParamMap2UserDlgProc*	dlgProc=NULL);

Remarks:
This	functionis	available	in	release	4.0	and	later	only.
This	function	creates	a	child	dialog	of	the	given	parent	parammap	(for	tabbed
dialogs,	etc.).	This	version	takes	an	extra	parent	IParamMap2*	and	creates	a
child	dialog	window	in	the	parent	parammap's	window	(rather	than	a	new
rollup)	that	is	mapped	by	the	new	parammap.	Developers	need	to	call	this
explicitly	once	the	parent	parammap	has	been	created	as	child	parammaps	are
not	created	automatically	by	the	P_AUTO_UI	mechanisms.	This	function	is
currently	not	used.

Parameters:
IParamBlock2	*pb
Points	to	the	parameter	block2.

Interface	*ip
Pass	in	the	plug-ins	rendering	parameters	interface	pointer.
HINSTANCE	hInst
The	plug-ins	instance	handle.
IParamMap2*	parent
The	parent	parameter	map.
TCHAR	*dlgTemplate
The	dialog	template.
TCHAR	*title
The	title	displayed.
ParamMap2UserDlgProc*	dlgProc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.

Return	Value:
Returns	a	pointer	to	the	parameter	map2.

Function:
IParamMap2	*CreateChildCPParamMap2(MapID	map_id,
IParamBlock2	*pb,	Interface	*ip,	HINSTANCE	hInst,
IParamMap2*	parent,	TCHAR	*dlgTemplate,	TCHAR	*title,
ParamMap2UserDlgProc*	dlgProc=NULL);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
Create	a	child	dialog	of	the	given	parent	command	panel	parammap	(for
tabbed	dialogs,	etc.)	This	overload	of	CreateChildCPParamMap2()	has	a
new	parameter,	map_id,	that	specifies	the	ID	of	the	parameter	map/rollup	to
be	created	for	this	particular	parameter	block.	See	original	function	for	the	rest
of	the	description.

Function:
void	DestroyChildCPParamMap2(IParamMap2	*m);

Remarks:

This	function	destroys	a	parameter	map	created	by
CreateChildCPParamMap2().

Parameters:
IParamMap2	*m
Points	to	the	parameter	map2	to	destroy.

Function:
IParamMap2	*CreateRParamMap2(IParamBlock2	*pb,
IRendParams	*ip,	HINSTANCE	hInst,	TCHAR	*dlgTemplate,
TCHAR	*title,	DWORD	flags,	ParamMap2UserDlgProc*
dlgProc=NULL,	int	category	=	ROLLUP_CAT_STANDARD);

Remarks:
Creates	a	parameter	map	to	handle	the	display	of	render	parameters	or
atmospheric	plug-in	parameters.
Note,	in	version	4.0	and	later,	this	actually	maps	to	a	call	on	the	explicit	map
ID	overload	of	CreateRParamMap2()	with	default	map	ID	of	0.

Parameters:
IParamBlock2	*pb
Points	to	the	parameter	block2.
IRendParams	*ip
Pass	in	the	plug-ins	rendering	parameters	interface	pointer.	See	Class
IRendParams.
HINSTANCE	hInst
The	plug-ins	instance	handle.
TCHAR	*dlgTemplate
The	dialog	template.
TCHAR	*title
The	title	displayed	in	the	rollup	page	title	bar.
DWORD	flags
A	flag	to	control	the	settings	of	the	rollup	page:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

ParamMap2UserDlgProc*	dlgProc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.
int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
Returns	a	pointer	to	the	parameter	map2.

Function:
IParamMap2	*CreateRParamMap2(IParamBlock2	*pb,
IRendParams	*ip,	HINSTANCE	hInst,	DLGTEMPLATE
*dlgTemplate,	TCHAR	*title,	DWORD	flags,
ParamMap2UserDlgProc*	dlgProc=NULL,	int	category	=
ROLLUP_CAT_STANDARD);

Remarks:
Creates	a	parameter	map	to	handle	the	display	of	render	parameters	or
atmospheric	plug-in	parameters.

Parameters:
IParamBlock2	*pb
Points	to	the	parameter	block2.

IRendParams	*ip
Pass	in	the	plug-ins	rendering	parameters	interface	pointer.	See	Class
IRendParams.
HINSTANCE	hInst
The	plug-ins	instance	handle.
DLGTEMPLATE	*dlgTemplate
The	dialog	template.
TCHAR	*title
The	title	displayed	in	the	rollup	page	title	bar.
DWORD	flags
A	flag	to	control	the	settings	of	the	rollup	page:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

ParamMap2UserDlgProc*	dlgProc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.
int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
Returns	a	pointer	to	the	parameter	map2.

Function:
IParamMap2	*CreateRParamMap2(MapID	map_id,
IParamBlock2	*pb,	IRendParams	*ip,	HINSTANCE	hInst,
TCHAR	*dlgTemplate,	TCHAR	*title,	DWORD	flags,
ParamMap2UserDlgProc*	dlgProc=NULL);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
Creates	a	parameter	map	to	handle	the	display	of	render	parameters	or
atmospheric	plug-in	parameters.	This	overload	of	CreateRParamMap2()
has	a	new	parameter,	map_id,	that	specifies	the	ID	of	the	parameter
map/rollup	to	be	created	for	this	particular	parameter	block.	See	original
function	for	the	rest	of	the	description.

Function:
void	DestroyRParamMap2(IParamMap2	*m);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	destroys	a	parameter	map	created	by	CreateRParamMap2().
The	rollup	page	is	removed	and	the	parameter	map	is	deleted.

Parameters:
IParamMap2	*m
Points	to	the	parameter	map2	to	destroy.

Function:
IParamMap2*	CreateChildRParamMap2(IParamBlock2	*pb,
IRendParams	*ip,	HINSTANCE	hInst,	IParamMap2*	parent,
TCHAR	*dlgTemplate,	TCHAR	*title,	ParamMap2UserDlgProc*
dlgProc=NULL);

Remarks:
This	function	create	a	parameter	map	for	render	or	atmospheric	parameters	in
a	child	dialog	window	of	the	given	parent	parammap,	used	typically	to	create
tab	child	windows	in	a	tabbed	rollout.	This	version	takes	an	extra	parent
IParamMap2*	and	creates	a	child	dialog	window	in	the	parent	parammap's

window	(rather	than	a	new	rollup)	that	is	mapped	by	the	new	parammap.
Developers	need	to	call	this	explicitly	once	the	parent	parammap	has	been
created	as	child	parammaps	are	not	created	automatically	by	the
P_AUTO_UI	mechanisms.
Note,	in	version	4.0	and	later,	this	actually	maps	to	a	call	on	the	explicit	map
ID	overload	of	CreateChildRParamMap2()	with	default	map	ID	of	0.

Parameters:
IParamBlock2	*pb
Points	to	the	parameter	block2.
IRendParams	*ip
Pass	in	the	plug-ins	material	parameters	interface	pointer.	See	Class
IRendParams.
HINSTANCE	hInst
The	plug-ins	instance	handle.
IParamMap2*	parent
The	parent	parameter	map.
TCHAR	*dlgTemplate
Dialog	template	for	the	rollup	page	(created	using	the	resource	editor)
TCHAR	*title
The	title	displayed	in	the	dialog.
ParamMap2UserDlgProc*	dlgProc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.

Return	Value:
Returns	a	pointer	to	the	parameter	map2	created.

Function:
IParamMap2*	CreateChildRParamMap2(IParamBlock2	*pb,
IRendParams	*ip,	HINSTANCE	hInst,	IParamMap2*	parent,
DLGTEMPLATE	*dlgTemplate,	TCHAR	*title,
ParamMap2UserDlgProc*	dlgProc=NULL);

Remarks:

This	function	is	available	in	release	4.0	and	later	only.
This	function	create	a	parameter	map	for	render	or	atmospheric	parameters	in
a	child	dialog	window	of	the	given	parent	parammap,	used	typically	to	create
tab	child	windows	in	a	tabbed	rollout.	This	version	takes	an	extra	parent
IParamMap2*	and	creates	a	child	dialog	window	in	the	parent	parammap's
window	(rather	than	a	new	rollup)	that	is	mapped	by	the	new	parammap.
Developers	need	to	call	this	explicitly	once	the	parent	parammap	has	been
created	as	child	parammaps	are	not	created	automatically	by	the
P_AUTO_UI	mechanisms.	This	function	is	currently	not	being	used.

Parameters:
IParamBlock2	*pb
Points	to	the	parameter	block2.
IRendParams	*ip
Pass	in	the	plug-ins	material	parameters	interface	pointer.	See	Class
IRendParams.
HINSTANCE	hInst
The	plug-ins	instance	handle.
IParamMap2*	parent
The	parent	parameter	map.
DLGTEMPLATE	*dlgTemplate
Dialog	template	for	the	rollup	page	(created	using	the	resource	editor)
TCHAR	*title
The	title	displayed	in	the	dialog.
ParamMap2UserDlgProc*	dlgProc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.

Return	Value:
Returns	a	pointer	to	the	parameter	map2	created.

Function:
IParamMap2*	CreateChildRParamMap2(MapID	map_id,
IParamBlock2	*pb,	IRendParams	*ip,	HINSTANCE	hInst,
IParamMap2*	parent,	TCHAR	*dlgTemplate,	TCHAR	*title,

ParamMap2UserDlgProc*	dlgProc=NULL);
Remarks:
This	function	is	available	in	release	4.0	and	later	only.
Creates	a	parameter	map	for	render	or	atmospheric	parameters	in	a	child
dialog	window	of	the	given	parent	parammap.	This	overload	of
CreateChildRParamMap2()	has	a	new	parameter,	map_id,	that	specifies
the	ID	of	the	parameter	map/rollup	to	be	created	for	this	particular	parameter
block.	See	original	function	for	the	rest	of	the	description.

Function:
void	DestroyChildRParamMap2(IParamMap2	*m);

Remarks:
This	function	destroys	a	parameter	map	created	by
CreateChildRParamMap2().

Parameters:
IParamMap2	*m
Points	to	the	parameter	map2	to	destroy.

Function:
IParamMap2	*CreateMParamMap2(IParamBlock2	*pb,
IMtlParams	*ip,	HINSTANCE	hInst,	HWND	hmedit,
TexDADMgr*	dad,	MtlDADMgr*	mdad,	TCHAR	*dlgTemplate,
TCHAR	*title,	DWORD	flags,	ParamMap2UserDlgProc*
dlgProc=NULL,	HWND	hOldRollup=NULL,	int	category	=
ROLLUP_CAT_STANDARD);

Remarks:
Creates	a	parameter	map	to	handle	the	display	of	texture	map	or	material
parameters	in	the	material	editor.
Note,	in	version	4.0	and	later,	this	actually	maps	to	a	call	on	the	explicit	map
ID	overload	of	CreateMParamMap2()	with	default	map	ID	of	0.

Parameters:
IParamBlock2	*pb
Points	to	the	parameter	block2.

IMtlParams	*ip
Pass	in	the	plug-ins	material	parameters	interface	pointer.	See	Class
IMtlParams_.
HINSTANCE	hInst
The	plug-ins	instance	handle.
HWND	hmedit
The	window	handle	to	the	materials	editor.
TexDADMgr*	dad
Points	to	the	manager	used	to	handle	drag	and	drop	of	textures.	See	Class
TexDADMgr.
MtlDADMgr*	mdad
Points	to	the	manager	used	to	handle	drag	and	drop	of	materials.	See	Class
MtlDADMgr.
TCHAR	*dlgTemplate
Dialog	template	for	the	rollup	page	(created	using	the	resource	editor)
TCHAR	*title
The	title	displayed	in	the	rollup	page	title	bar.
DWORD	flags
A	flag	to	control	the	settings	of	the	rollup	page:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

ParamMap2UserDlgProc*	dlgProc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.
HWND	hOldRollup=NULL
If	non-NULL	specifies	an	existing	rollup	window	in	the	current	UI	context
that	should	be	replaced	with	the	newly	created	rollup	for	this	map.
int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there

exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
Returns	a	pointer	to	the	parameter	map2	created.

Function:
IParamMap2	*CreateMParamMap2(IParamBlock2	*pb,
IMtlParams	*ip,	HINSTANCE	hInst,	HWND	hmedit,
TexDADMgr*	dad,	MtlDADMgr*	mdad,	DLGTEMPLATE
*dlgTemplate,	TCHAR	*title,	DWORD	flags,
ParamMap2UserDlgProc*	dlgProc=NULL,	HWND
hOldRollup=NULL,	int	category	=	ROLLUP_CAT_STANDARD);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
Creates	a	parameter	map	to	handle	the	display	of	texture	map	or	material
parameters	in	the	material	editor.	This	function	is	currently	not	in	use.

Parameters:
IParamBlock2	*pb
Points	to	the	parameter	block2.
IMtlParams	*ip
Pass	in	the	plug-ins	material	parameters	interface	pointer.	See	Class
IMtlParams_.
HINSTANCE	hInst
The	plug-ins	instance	handle.
HWND	hmedit
The	window	handle	to	the	materials	editor.

TexDADMgr*	dad
Points	to	the	manager	used	to	handle	drag	and	drop	of	textures.	See	Class
TexDADMgr.
MtlDADMgr*	mdad
Points	to	the	manager	used	to	handle	drag	and	drop	of	materials.	See	Class
MtlDADMgr.
DLGTEMPLATE	*dlgTemplate
Dialog	template	for	the	rollup	page	(created	using	the	resource	editor)
TCHAR	*title
The	title	displayed	in	the	rollup	page	title	bar.
DWORD	flags
A	flag	to	control	the	settings	of	the	rollup	page:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

ParamMap2UserDlgProc*	dlgProc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.
HWND	hOldRollup=NULL
If	non-NULL	specifies	an	existing	rollup	window	in	the	current	UI	context
that	should	be	replaced	with	the	newly	created	rollup	for	this	map.
int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags

argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
Returns	a	pointer	to	the	parameter	map2	created.

Function:
IParamMap2	*CreateMParamMap2(MapID	map_id,
IParamBlock2	*pb,	IMtlParams	*ip,	HINSTANCE	hInst,	HWND
hmedit,	TexDADMgr*	dad,	MtlDADMgr*	mdad,	TCHAR
*dlgTemplate,	TCHAR	*title,	DWORD	flags,
ParamMap2UserDlgProc*	dlgProc=NULL,	HWND
hOldRollup=NULL);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
Creates	a	parameter	map	to	handle	the	display	of	texture	map	or	material
parameters	in	the	material	editor.	This	overload	of	CreateMParamMap2()
has	a	new	parameter,	map_id,	that	specifies	the	ID	of	the	parameter
map/rollup	to	be	created	for	this	particular	parameter	block.	See	original
function	for	the	rest	of	the	description.

Function:
void	DestroyMParamMap2(IParamMap2	*m);

Remarks:
This	function	destroys	a	parameter	map	created	by	CreateMParamMap2().
The	rollup	page	is	removed	and	the	parameter	map	is	deleted.

Parameters:
IParamMap2	*m
Points	to	the	parameter	map2	to	destroy.

Function:
IParamMap2	*CreateChildMParamMap2(IParamBlock2	*pb,
IMtlParams	*ip,	HINSTANCE	hInst,	IParamMap2*	parent,
TexDADMgr*	tdad,	MtlDADMgr*	mdad,	TCHAR	*dlgTemplate,

TCHAR	*title,	ParamMap2UserDlgProc*	dlgProc=NULL);
Remarks:
This	function	creates	and	returns	a	child	dialog	of	the	given	parent	parammap
(for	tabbed	dialogs,	etc.).	This	version	takes	an	extra	parent	IParamMap2*	and
create	a	child	dialog	window	in	the	parent	parammap's	window	(rather	than	a
new	rollup)	that	is	mapped	by	the	new	parammap.	Developers	need	to	call	this
explicitly	once	the	parent	parammap	has	been	created	as	child	parammaps	are
not	created	automatically	by	the	P_AUTO_UI	mechanisms.
Note,	in	version	4.0	and	later,	this	actually	maps	to	a	call	on	the	explicit	map
ID	overload	of	CreateChildMParamMap2()	with	default	map	ID	of	0.

Parameters:
IParamBlock2	*pb
Points	to	the	parameter	block2.
IMtlParams	*ip
Pass	in	the	plug-ins	material	parameters	interface	pointer.	See	Class
IMtlParams_.
HINSTANCE	hInst
The	plug-ins	instance	handle.
IParamMap2*	parent
The	parent	parameter	map.
TexDADMgr*	tdad
Points	to	the	manager	used	to	handle	drag	and	drop	of	textures.	See	Class
TexDADMgr.
MtlDADMgr*	mdad
Points	to	the	manager	used	to	handle	drag	and	drop	of	materials.	See	Class
MtlDADMgr_.
TCHAR	*dlgTemplate
Dialog	template	for	the	rollup	page	(created	using	the	resource	editor)
TCHAR	*title
The	title	displayed	in	the	dialog.
ParamMap2UserDlgProc*	dlgProc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.

Return	Value:
Returns	a	pointer	to	the	parameter	map2	created.

Function:
IParamMap2	*CreateChildMParamMap2(IParamBlock2	*pb,
IMtlParams	*ip,	HINSTANCE	hInst,	IParamMap2*	parent,
TexDADMgr*	tdad,	MtlDADMgr*	mdad,	TCHAR	*dlgTemplate,
TCHAR	*title,	ParamMap2UserDlgProc*	dlgProc=NULL);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
This	function	creates	and	returns	a	child	dialog	of	the	given	parent	parammap
(for	tabbed	dialogs,	etc.).	This	version	takes	an	extra	parent	IParamMap2*	and
create	a	child	dialog	window	in	the	parent	parammap's	window	(rather	than	a
new	rollup)	that	is	mapped	by	the	new	parammap.	Developers	need	to	call	this
explicitly	once	the	parent	parammap	has	been	created	as	child	parammaps	are
not	created	automatically	by	the	P_AUTO_UI	mechanisms.	This	function	is
currently	not	being	used.

Parameters:
IParamBlock2	*pb
Points	to	the	parameter	block2.
IMtlParams	*ip
Pass	in	the	plug-ins	material	parameters	interface	pointer.	See	Class
IMtlParams_.
HINSTANCE	hInst
The	plug-ins	instance	handle.
IParamMap2*	parent
The	parent	parameter	map.
TexDADMgr*	tdad
Points	to	the	manager	used	to	handle	drag	and	drop	of	textures.	See	Class
TexDADMgr.
MtlDADMgr*	mdad
Points	to	the	manager	used	to	handle	drag	and	drop	of	materials.	See	Class
MtlDADMgr_.
DLGTEMPLATE	*dlgTemplate

Dialog	template	for	the	rollup	page	(created	using	the	resource	editor)
TCHAR	*title
The	title	displayed	in	the	dialog.
ParamMap2UserDlgProc*	dlgProc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.

Return	Value:
Returns	a	pointer	to	the	parameter	map2	created.

Function:
IParamMap2	*CreateChildMParamMap2(IParamBlock2	*pb,
IMtlParams	*ip,	HINSTANCE	hInst,	IParamMap2*	parent,
TexDADMgr*	tdad,	MtlDADMgr*	mdad,	TCHAR	*dlgTemplate,
TCHAR	*title,	ParamMap2UserDlgProc*	dlgProc=NULL);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
Creates	and	returns	a	child	dialog	of	the	given	material	or	texture	map	parent
parammap	(for	tabbed	dialogs,	etc.)	This	overload	of
CreateChildMParamMap2()	has	a	new	parameter,	map_id,	that
specifies	the	ID	of	the	parameter	map/rollup	to	be	created	for	this	particular
parameter	block.	See	original	function	for	the	rest	of	the	description.

Function:
void	DestroyChildMParamMap2(IParamMap2	*m);

Remarks:
This	function	destroys	a	parameter	map	created	by
CreateChildMParamMap2().

Parameters:
IParamMap2	*m
Points	to	the	parameter	map2	to	destroy.

Function:
BOOL	CreateChildModalParamMap2(MapID	map_id,

IParamBlock2	*pb,	HINSTANCE	hInst,	IParamMap2	*parent,
TCHAR	*dlgTemplate,	TCHAR	*title,	ParamMap2UserDlgProc
*proc=NULL);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
This	function	creates	a	child	dialog	of	the	given	modal	parent	parammap	(for
tabbed	dialogs,	etc.).	Unlike	modal	parent	parammap,	you	do	need	to	destroy
it.	This	version	takes	an	extra	parent	IParamMap2*	and	creates	a	child	dialog
window	in	the	parent	parammap's	window	(rather	than	a	new	rollup)	that	is
mapped	by	the	new	parammap.	Developers	need	to	call	this	explicitly	once	the
parent	parammap	has	been	created	as	child	parammaps	are	not	created
automatically	by	the	P_AUTO_UI	mechanisms.

Parameters:
MapID	map_id
Specifies	the	ID	of	the	parameter	map/rollup	to	be	created	for	this	particular
parameter	block.
IParamBlock2	*pb
Points	to	the	parameter	block2.
HINSTANCE	hInst
The	plug-ins	instance	handle.
IParamMap2*	parent
The	parent	parameter	map.
TCHAR	*dlgTemplate
The	dialog	template.
TCHAR	*title
The	title	displayed	in	the	dialog.
ParamMap2UserDlgProc	*proc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.

Return	Value:
Returns	TRUE	if	the	user	selected	OK,	FALSE	otherwise.

Function:

BOOL	CreateChildModalParamMap2(IParamBlock2	*pb,
HINSTANCE	hInst,	IParamMap2	*parent,	TCHAR
*dlgTemplate,	TCHAR	*title,	ParamMap2UserDlgProc
*proc=NULL);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
This	is	an	overload	that	simply	calls	the	explicit	map	ID	version	of
CreateChildMParamMap2()	with	default	map	ID	of	0.	See	that	version
for	description.

Function:
void	DestroyChildModalParamMap2(IParamMap2	*m);

Remarks:
This	function	destroys	a	parameter	map	created	by
CreateChildModalParamMap2().

Parameters:
IParamMap2	*m
Points	to	the	parameter	map2	to	destroy.

Class	Face
See	Also:	Class	Mesh.
class	Face

Description:
This	class	represents	a	single	triangular	face.	The	class	maintains	three	indices
into	the	vertex	list	for	the	face,	a	32-bit	smoothing	group	for	the	face,	and	32-bits
of	face	flags.	The	flags	also	store	information	about	the	visibility	of	the	face,	the
visibility	of	the	three	edges,	and	whether	or	not	the	face	has	texture	vertices
present.	The	most	significant	16-bits	of	the	face	flags	store	the	material	index.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
DWORD	v[3];
These	are	0	based	indices	into	a	mesh	object's	array	of	vertices.
DWORD	smGroup;
Smoothing	group	bits	for	the	face.
Each	bit	of	this	32	bit	value	represents	membership	in	a	smoothing	group.	The
least	significant	bit	represents	smoothing	group	#1	while	the	most	significant
bit	represents	group	#32.	If	two	adjacent	faces	are	assigned	the	same
smoothing	group	bit,	the	edge	between	them	is	rendered	smoothly.
DWORD	flags;
The	Face	Flags:
Edge	visibility	bits:	If	the	bit	is	1,	the	edge	is	visible.
EDGE_A
EDGE_B
EDGE_C
EDGE_ALL	(EDGE_A|EDGE_B|EDGE_C)

Face	visibility	bit:	If	the	bit	is	1,	the	face	is	hidden.
FACE_HIDDEN

Texture	vertices	bit:	If	the	bit	is	1,	texture	vertices	are	present.	FROM	R5
THIS	IS	NOW	OBSOLETE.	YOU	CAN	USE	MAPSUPPORT
METHODS	INSTEAD

HAS_TVERTS
The	material	ID	is	stored	in	the	HIWORD	of	the	face	flags.
FACE_MATID_SHIFT
This	is	the	number	of	bits	to	shift	the	flags	to	access	the	material.
FACE_MATID_MASK
This	is	a	mask	used	to	access	the	material	ID.

Methods:

Prototype:
Face()

Remarks:
Constructor.	The	smoothing	groups	and	face	flags	are	initialized	to	zero.

Prototype:
MtlID	getMatID()

Remarks:
Retrieves	the	zero	based	material	ID	for	this	face.	Note:	typedef	unsigned
short	MtlID;

Prototype:
void	setMatID(MtlID	id)

Remarks:
Sets	the	material	ID	for	this	face.

Parameters:
MtlID	id
Specifies	the	zero	based	material	index.

Prototype:
void	setSmGroup(DWORD	i)

Remarks:
Sets	the	smoothing	group	bits	for	this	face.

Parameters:

DWORD	i
Specifies	the	smoothing	group	bits	for	this	face.

Prototype:
DWORD	getSmGroup()

Remarks:
Returns	the	smoothing	group	bits	for	this	face.

Prototype:
void	setVerts(DWORD	*vrt)

Remarks:
Sets	the	vertices	of	this	face.

Parameters:
DWORD	*vrt
An	array	of	the	3	vertices	to	store.	These	are	zero	based	indices	into	the	mesh
object's	array	of	vertices.

Prototype:
void	setVerts(int	a,	int	b,	int	c)

Remarks:
Sets	the	vertices	of	this	face.	The	specified	indexes	are	zero	based	indices	into
the	mesh	object's	array	of	vertices.

Parameters:
int	a
Specifies	the	first	vertex.
int	b
Specifies	the	second	vertex.
int	c
Specifies	the	third	vertex.

Prototype:
void	setEdgeVis(int	edge,	int	visFlag);

Remarks:
Sets	the	visibility	of	the	specified	edge.

Parameters:
int	edge
Specifies	the	edge	to	set	the	visibility	of.	You	may	use	0,	1,	or	2.
int	visFlag
One	of	the	following	values:
EDGE_VIS
Sets	the	edge	as	visible.
EDGE_INVIS
Sets	the	edge	as	invisible.

Prototype:
void	setEdgeVisFlags(int	va,	int	vb,	int	vc);

Remarks:
Sets	the	visibility	of	the	all	the	edges.

Parameters:
int	va
Specifies	the	visibility	for	edge	0.	Use	either	EDGE_VIS	or
EDGE_INVIS.
int	vb
Specifies	the	visibility	for	edge	1.	Use	either	EDGE_VIS	or
EDGE_INVIS.
int	vc
Specifies	the	visibility	for	edge	2.	Use	either	EDGE_VIS	or
EDGE_INVIS.

Prototype:
int	getEdgeVis(int	edge)

Remarks:
Retrieves	the	edge	visibility	for	the	specified	edge.

Parameters:

int	edge
Specifies	the	edge.

Return	Value:
Nonzero	if	the	edge	is	visible,	zero	if	the	edge	is	invisible.

Prototype:
DWORD	getVert(int	index)

Remarks:
Returns	the	index	into	the	mesh	vertex	array	of	the	specified	vertex.

Parameters:
int	index
Specifies	the	vertex	to	retrieve.	You	may	use	0,	1	or	2.

Prototype:
DWORD	*getAllVerts()

Remarks:
Retrieves	a	pointer	to	the	vertex	array.

Return	Value:
A	pointer	to	the	vertex	array.

Prototype:
BOOL	Hidden()

Remarks:
Determines	if	the	face	is	hidden	or	visible.

Return	Value:
TRUE	if	the	face	is	hidden;	otherwise	FALSE.

Prototype:
void	Hide()

Remarks:
Hides	this	face	(makes	it	invisible	in	the	viewports).

Prototype:
void	Show()

Remarks:
Shows	this	face	(makes	it	visible	in	the	viewports).

Prototype:
void	SetHide(BOOL	hide)

Remarks:
Sets	the	hidden	state	of	this	face.

Parameters:
BOOL	hide
Specifies	the	hidden	state	for	the	face.	Pass	TRUE	to	hide	the	face;	FALSE	to
show	it.

Prototype:
DWORD	GetOtherIndex(DWORD	v0,	DWORD	v1);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	first	vertex	in	the	face	that	isn't	v0	or	v1.

Parameters:
DWORD	v0
The	zero	based	index	of	one	of	the	vertices	to	check.
DWORD	v1
The	zero	based	index	of	the	other	vertex	to	check.

Return	Value:
The	zero	based	index	of	the	vertex	found	in	the	Mesh's	vertex	list.

Prototype:
DWORD	GetEdgeIndex(DWORD	v0,	DWORD	v1);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	index	of	the	edge	in	the	face	that	goes	from	v0	to	v1,	or	v1	to	v0.

Parameters:
DWORD	v0
The	zero	based	index	of	the	vertex	at	one	end	of	the	edge.
DWORD	v1
The	zero	based	index	of	the	vertex	at	the	other	end	of	the	edge.

Return	Value:
The	zero	based	index	of	the	edge	found	in	the	Fesh's	edge	list.
	

Prototype:
int	Direction(DWORD	v0,	DWORD	v1);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Indicates	order	in	which	vertices	v0	and	v1	appear	in	the	face.

Parameters:
DWORD	v0
One	vertex	on	this	face.
DWORD	v1
Another	vertex	on	this	face.

Return	Value:
1	if	v1	follows	v0	in	sequence	(This	includes	e.g.	when	Face::v[2]	==	v0	and
Face::v[0]	==	v1.)
-1	if	v0	follows	v1	in	sequence
0	if	v0	or	v1	are	not	on	the	face.

Prototype:
DWORD	GetVertIndex(DWORD	v0);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	index	of	the	specified	vertex	in	this	face's	vertex	list	(0,	1	or	2).	If
not	found	3	is	returned.

Parameters:

DWORD	v0
The	zero	based	index	of	the	vertex	to	check.

Prototype:
void	OrderVerts(DWORD	&v0,	DWORD	&v1);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	switches	v0,v1	if	needed	to	put	them	in	face-order.	If	v0	and	v1
are	in	the	order	in	which	they	appear	in	the	face,	or	if	one	or	both	of	them	are
not	actually	on	the	face,	nothing	happens.	If	however	v0	follows	v1,	the	values
of	the	parameters	are	switched,	so	that	they	are	then	in	the	correct	order	for
this	face.

Parameters:
DWORD	&v0
One	vertex	on	this	face.
DWORD	&v1
Another	vertex	on	this	face.

Sample	Code:
Face	&	f	=	mesh.faces[edge.f[0]];
DWORD	v0	=	edge.v[0];
DWORD	v1	=	edge.v[1];
//	Switch	v0,	v1	if	needed	to	match	orientation	in	selected	face.
f.OrderVerts(v0,v1);

Class	TVFace
See	Also:	Class	Mesh.
class	TVFace

Description:
This	class	is	used	for	texture	faces	as	well	as	vertex	colors.	The	class	maintains
an	array	of	three	indices	into	the	object's	tVerts	array.	See	the	Mesh	class	for
details	on	how	its	array	of	TVFaces	and	tVerts	relate.	All	methods	of	this	class
are	implemented	by	the	system.

Data	Members:
public:
DWORD	t[3];
These	are	indices	into	the	mesh	object's	tVerts	array.

Methods:

Prototype:
TVFace()

Remarks:
Constructor.	No	initialization	is	done.

Prototype:
TVFace(DWORD	a,	DWORD	b,	DWORD	c);

Remarks:
Constructor.

Parameters:
DWORD	a
Specifies	the	index	into	the	tVerts	array	for	vertex	0.
DWORD	b
Specifies	the	index	into	the	tVerts	array	for	vertex	1.
DWORD	c
Specifies	the	index	into	the	tVerts	array	for	vertex	2.

Prototype:
void	setTVerts(DWORD	*vrt);

Remarks:
Sets	the	texture	vertices.

Parameters:
DWORD	*vrt
An	array	of	indices	into	the	tVerts	array	for	vertices	0,	1,	and	2.

Prototype:
void	setTVerts(int	a,	int	b,	int	c);

Remarks:
Sets	the	textured	vertices.

Parameters:
int	a
Specifies	the	index	into	the	tVerts	array	for	vertex	0.
int	b
Specifies	the	index	into	the	tVerts	array	for	vertex	1.
int	c
Specifies	the	index	into	the	tVerts	array	for	vertex	2.

Prototype:
DWORD	getTVert(int	index);

Remarks:
Retrieves	one	of	the	texture	vertices.

Parameters:
int	index
Specifies	the	index	of	the	texture	vertex	to	retrieve.	You	may	use	0,	1	or	2.

Return	Value:
The	texture	vertex.

Prototype:

DWORD	*getAllTVerts();
Remarks:
Returns	a	pointer	to	the	array	of	texture	vertices.
	
	

Prototype:
DWORD	GetVertIndex(DWORD	v0);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	index	of	the	specified	texture	vertex	in	this	texture	face's	vertex
list	(0,	1	or	2).	If	not	found	3	is	returned.

Parameters:
DWORD	v0
The	zero	based	index	of	the	texture	vertex	to	check.

Prototype:
DWORD	GetOtherIndex(DWORD	v0,	DWORD	v1);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	first	texture	vertex	in	this	texture	face	that	isn't	v0	or	v1.

Parameters:
DWORD	v0
The	zero	based	index	of	one	of	the	vertices	to	check.
DWORD	v1
The	zero	based	index	of	the	other	vertex	to	check.

Prototype:
int	Direction(DWORD	v0,	DWORD	v1);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Indicates	the	order	in	which	vertices	v0	and	v1	appear	in	the	texture	face.

Parameters:
DWORD	v0
One	vertex	on	this	texture	face.
DWORD	v1
Another	vertex	on	this	texture	face.

Return	Value:
1	if	v1	follows	v0	in	sequence.
-1	if	v0	follows	v1	in	sequence.
0	if	v0	or	v1	are	not	on	the	face.

Prototype:
void	OrderVerts(DWORD	&v0,	DWORD	&v1);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	switches	v0,v1	if	needed	to	put	them	in	face-order.	If	v0	and	v1
are	in	the	order	in	which	they	appear	in	the	texture	face,	or	if	one	or	both	of
them	are	not	actually	on	the	texture	face,	nothing	happens.	If	however	v0
follows	v1,	the	values	of	the	parameters	are	switched,	so	that	they	are	then	in
the	correct	order	for	this	texture	face.

Parameters:
DWORD	&v0
One	vertex	on	this	texture	face.
DWORD	&v1
Another	vertex	on	this	texture	face.

Class	BitmapInfo
See	Also:	Class	Bitmap,	Working	with	Bitmaps,	List	of	Bitmap	Error	Codes.
class	BitmapInfo

Description:
This	class	describes	the	properties	of	a	bitmap	such	as	its	path	name	or	device
name,	width,	height,	gamma,	number	of	frames,	etc.	Methods	are	available	to	set
and	retrieve	these	properties.	All	methods	are	implemented	by	the	system	unless
noted	otherwise.

Method	Groups:
The	following	hyperlinks	jump	to	the	start	of	groups	of	methods	within	the	class:
Flag	Access
Get/Set	Bitmap	Properties	(Type,	Width,	Height,	etc.)
Get/Set	Names,	Devices.
Custom	Flag	Access
Get/Set	Custom	Bitmap	Properties
Miscellaneous
Operators

Methods:

Prototype:
BitmapInfo();

Remarks:
Constructor.	The	following	defaults	are	set	by	this	constructor.
The	width	=	640;
The	height	=	480;
The	custom	width	=	320;
The	custom	height	=	200;
The	custom	flags	=	BMM_CUSTOM_RESFIT	|
BMM_CUSTOM_FILEGAMMA;
The	custom	gamma	=	1.0f;
The	frame	number	=	0;
The	aspect	ratio	=	1.0f;
The	gamma	setting	=	1.0f;

The	name	and	device	name	are	set	to	NULL.
The	looping	flag	=	BMM_SEQ_WRAP;

Prototype:
BitmapInfo(TCHAR	*n);

Remarks:
Constructor.	The	defaults	are	set	as	above	excepting	the	bitmap	name	is	set.

Parameters:
TCHAR	*n
The	bitmap	file	name	is	set.

Prototype:
BitmapInfo(const	BitmapInfo	&bi);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Copy	Constructor.

Parameters:
const	BitmapInfo	&bi
The	BitmapInfo	to	copy	from.

Flag	Access

Prototype:
DWORD	Flags()

Remarks:
Returns	the	flags	of	this	BitmapInfo.	See	Bitmap	Flags.

Prototype:
DWORD	SetFlags(DWORD	f)

Remarks:
Sets	the	flags	for	this	BitmapInfo.	These	are	bitwise	OR-ed	into	the	current
flags.

Parameters:
DWORD	f
The	flag	bits	to	set.	See	Bitmap	Flags.

Return	Value:
The	revised	flags	are	returned.

Prototype:
BOOL	TestFlags(DWORD	f)

Remarks:
Determines	if	a	set	of	flag	bits	are	set.

Parameters:
DWORD	f
The	flag	bits	to	test.	See	Bitmap	Flags.

Return	Value:
TRUE	if	the	bits	are	set;	otherwise	FALSE.

Get/Set	Bitmap	Properties

Prototype:
int	Type()

Remarks:
Returns	the	type	property	of	this	BitmapInfo.	See	Bitmap	Types.

Prototype:
int	SetType(int	t)

Remarks:
Sets	the	type	property	of	this	BitmapInfo	to	the	specified	value.

Parameters:
int	t
Specifies	the	type	of	bitmap.	See	Bitmap	Types.

Return	Value:
The	old	(previous)	type	setting.

Prototype:
WORD	Width()

Remarks:
Returns	the	width	(horizontal	dimension)	property	of	this	BitmapInfo.

Prototype:
WORD	SetWidth(WORD	w)

Remarks:
Sets	the	width	(horizontal	dimension)	property	of	this	BitmapInfo.

Parameters:
WORD	w
Specifies	the	width	setting	in	pixels.

Return	Value:
The	old	(previously	set)	width	of	the	bitmap.

Prototype:
WORD	Height()

Remarks:
Returns	the	height	(vertical	dimension)	setting	of	this	BitmapInfo.

Prototype:
WORD	SetHeight(WORD	h)

Remarks:
Sets	the	height	(vertical	dimension)	property	of	this	BitmapInfo.

Parameters:
WORD	h
Specifies	the	height	setting	in	pixels.

Return	Value:
The	old	(previous)	height	setting.

Prototype:

float	Gamma()
Remarks:
Returns	the	gamma	setting	property	of	this	BitmapInfo.

Prototype:
float	SetGamma(float	g)

Remarks:
Sets	the	gamma	property	of	this	BitmapInfo	to	the	value	passed.

Parameters:
float	g
Specifies	the	gamma	setting.

Return	Value:
The	old	(previous)	gamma	setting.

Prototype:
float	Aspect()

Remarks:
Returns	the	aspect	ratio	property	of	this	BitmapInfo.

Prototype:
float	SetAspect(float	a)

Remarks:
Set	the	aspect	ratio	property	of	this	BitmapInfo	to	the	specified	value.

Parameters:
float	a
Specifies	the	aspect	ratio	setting.

Return	Value:
The	old	(previous)	aspect	ratio	of	the	bitmap.

Frame	Ranges

Prototype:

int	FirstFrame()
Remarks:
Returns	the	first	frame	property	of	this	BitmapInfo.	Note	that	for	a	multi-
frame	bitmap	some	sequences	may	start	with	something	other	than	0.

Prototype:
int	SetFirstFrame(int	f)

Remarks:
Sets	the	first	frame	property	of	this	BitmapInfo.

Parameters:
int	f
Specifies	the	first	frame	setting.

Return	Value:
The	old	(previous)	first	frame	setting.

Prototype:
int	LastFrame()

Remarks:
Returns	the	last	frame	property	of	this	BitmapInfo.

Prototype:
int	SetLastFrame(int	f)

Remarks:
Sets	the	last	frame	property	of	this	BitmapInfo.

Parameters:
int	f
Specifies	the	last	frame.

Return	Value:
The	old	(previous)	frame	setting.

Prototype:

int	NumberFrames()
Remarks:
Returns	the	total	number	of	frames	setting	of	this	BitmapInfo.

Prototype:
int	CurrentFrame()

Remarks:
Returns	the	current	frame	setting	of	this	BitmapInfo.

Prototype:
int	SetCurrentFrame(int	v)

Remarks:
Sets	the	current	frame	setting	of	this	BitmapInfo.

Parameters:
int	v
Specifies	the	current	frame.

Return	Value:
The	old	(previous)	current	frame	setting.

Prototype:
WORD	SequenceOutBound()

Remarks:
When	multi-frame	BitmapIO	loaders	are	reading	a	sequence	of	frames,	this
method	is	called	to	indicate	what	to	do	when	reading	beyond	the	end	of
available	frames.	The	defaults	is	BMM_SEQ_WRAP.

Return	Value:
One	of	the	following	values:
BMM_SEQ_WRAP
Wraps	around	back	to	start	point.
BMM_SEQ_ERROR
Generates	an	error	if	reading	goes	beyond	the	end.
BMM_SEQ_PINGPONG

This	causes	the	sequence	to	turn	around	and	goes	the	other	direction,	back
and	forth.
BMM_SEQ_HOLD
When	the	last	frame	is	reached	it	is	held	and	used	over	and	over.

Prototype:
WORD	SetSequenceOutBound(WORD	s)

Remarks:
Sets	the	sequence	out	of	bounds	property	of	this	BitmapInfo.	When	reading	a
sequence	of	frames,	this	specifies	what	to	do	when	reading	beyond	the	end	of
available	frames.

Parameters:
WORD	s
One	of	the	following	values:
BMM_SEQ_WRAP
Wraps	around	back	to	start	point.
BMM_SEQ_ERROR
Generates	an	error	if	reading	goes	beyond	the	end.
BMM_SEQ_PINGPONG
This	causes	the	sequence	to	turn	around	and	goes	the	other	direction,	back
and	forth.
BMM_SEQ_HOLD
When	the	last	frame	is	reached	it	is	held	and	used	over	and	over.

Return	Value:
The	old	(previous)	value	that	was	set.

Name/Device	Access

Prototype:
const	TCHAR	*Name()

Remarks:
Returns	the	name	property	of	this	BitmapInfo.	This	is	the	full	path	name.	See
TCHAR	*Filename()	for	just	the	file	name.

Prototype:
const	TCHAR	*SetName(const	TCHAR	*n);

Remarks:
Sets	the	name	property	of	this	BitmapInfo.	When	writing	n	should	have	a
fully	qualified	filename.	When	reading,	it	only	matters	if	the	image	is	not	in
the	MAP	path.	Note	that	a	"feature"	of	the	MAP	path	system	is	that	if	an
image	with	same	name	is	found	more	than	once	(in	different	paths),	only	the
first	one	is	seen.
Note:	If	loading	an	image	from	a	device,	make	sure	the	name	is	empty
(bi.SetName(_T(""));).	This	is	automatic	if	you	use
BitmapManager::SelectDeviceInput().	If	you	just	create	a	BitmapInfo
instance	and	set	the	device	name	by	hand	(bi.SetDevice()),	this	is	also
automatic	as	both	name	and	device	names	are	by	default	set	to	NULL	("").
This	is	only	a	concern	if	you	reuse	a	BitmapInfo	class	previously	used	for
image	files.

Parameters:
const	TCHAR	*n
Specifies	the	name	of	the	bitmap.

Return	Value:
The	old	(previous)	name	that	was	set.

Prototype:
const	TCHAR	*Filename()

Remarks:
Returns	just	the	file	name	of	this	BitmapInfo	(not	the	entire	path	name).

Prototype:
const	TCHAR	*Device()

Remarks:
Returns	the	device	name	responsible	for	producing	this	image.	For	file	types,
this	is	just	informative.	For	non-file	types	(devices)	this	is	the	way	this	image
is	identified.	Therefore,	it	is	important	to	save	both	name	and	device	in	order
to	properly	identify	an	image.

Prototype:
const	TCHAR	*SetDevice(const	TCHAR	*d);

Remarks:
This	method	is	used	to	set	the	device	name.

Parameters:
const	TCHAR	*d
The	name	to	set.

Return	Value:
The	device	name	that	was	set.

Prototype:
BOOL	CompareName(BitmapInfo	*bi);

Remarks:
This	method	will	compare	names	taking	in	consideration	both	file	names	and
device	names.	As	devices	don't	have	a	file	name,	this	method	will	first
determine	what	type	of	image	this	is,	and	then	perform	a	proper	comparison.

Parameters:
BitmapInfo	*bi
The	other	BitmapInfo	with	which	to	compare	names.

Return	Value:
TRUE	if	the	BitmapInfos	have	the	same	name	and	device	name;	otherwise
FALSE.

Custom	Input	Processing

Prototype:
WORD	CustWidth()

Remarks:
Returns	the	custom	width	setting	of	this	BitmapInfo.

Prototype:
void	SetCustWidth(WORD	w)

Remarks:
Sets	the	custom	width	setting	for	this	BitmapInfo.

Parameters:
WORD	w
The	new	custom	width	setting.

Prototype:
WORD	CustHeight()

Remarks:
Returns	the	custom	height	setting	of	this	BitmapInfo.

Prototype:
void	SetCustHeight(WORD	h)

Remarks:
Sets	the	custom	height	property	of	this	BitmapInfo.

Parameters:
WORD	h
The	new	custom	height	setting.

Prototype:
int	StartFrame()

Remarks:
Returns	the	custom	start	frame	property	of	this	BitmapInfo.

Prototype:
void	SetStartFrame(int	s)

Remarks:
Sets	the	custom	start	frame	property	to	the	specified	value.

Parameters:
int	s
Specifies	the	start	frame	setting.

Prototype:
int	EndFrame()

Remarks:
Returns	the	custom	end	frame	setting	of	this	BitmapInfo..

Prototype:
void	SetEndFrame(int	e)

Remarks:
Sets	the	custom	end	frame	property	of	this	BitmapInfo.

Parameters:
int	e
The	new	end	frame	setting.

Prototype:
WORD	GetCustomX()

Remarks:
Returns	the	custom	x	offset	setting	of	this	BitmapInfo.

Prototype:
void	SetCustomX(int	x)

Remarks:
Specifies	the	optional	X	coordinate	(offset)	property	of	this	BitmapInfo.	This
specifies	where	to	place	the	image	if	the	image	being	copied	from	one	Bitmap
to	another	is	smaller.

Parameters:
int	x
Specifies	the	custom	X	offset.

Prototype:
WORD	GetCustomY()

Remarks:
Returns	the	custom	Y	offset	setting	of	this	BitmapInfo.

Prototype:
void	SetCustomY(int	y)

Remarks:
Sets	the	optional	Y	coordinate	(offset)	property	of	this	BitmapInfo.	This
specifies	where	to	place	the	image	if	the	image	being	copied	from	one	Bitmap
to	another	is	smaller.

Parameters:
int	y
Specifies	the	custom	y	offset.

Prototype:
float	GetCustomGamma()

Remarks:
Returns	the	custom	gamma	setting	of	this	BitmapInfo.

Prototype:
void	SetCustomGamma(float	g)

Remarks:
Sets	a	custom	gamma	setting	of	this	BitmapInfo	to	the	specified	value.

Parameters:
float	g
Specifies	the	custom	gamma	setting.

Prototype:
int	GetCustomStep()

Remarks:
Returns	the	custom	frame	step	setting	of	this	BitmapInfo.

Prototype:
void	SetCustomStep(int	s)

Remarks:
Sets	the	custom	frame	increment	setting	of	this	BitmapInfo.

Parameters:
int	s
Specifies	the	frame	increment	to	use.

Prototype:
int	GetPresetAlignment()

Remarks:
Returns	the	optional	alignment	setting	of	this	BitmapInfo.	This	indicates
where	to	place	the	image	if	the	image	being	copied	from	one	Bitmap	to
another	is	smaller.

Return	Value:
See	List	of	Bitmap	Alignment	Positions.

Prototype:
void	SetPresetAlignment(int	p)

Remarks:
Establishes	the	optional	alignment	setting	of	this	BitmapInfo.	This	specifies
where	to	place	the	image	if	the	image	being	copied	from	one	Bitmap	to
another	is	smaller.

Parameters:
int	p
Specifies	one	of	the	following	nine	values	that	define	the	position	of	the
bitmap:
See	List	of	Bitmap	Alignment	Positions.

Custom	Input	Flags

Prototype:
DWORD	GetCustomFlags()

Remarks:
Retrieves	the	custom	flags	setting	of	this	BitmapInfo	.	See	List	of	Custom
Bitmap	Flags.

Prototype:
void	SetCustomFlag(DWORD	f)

Remarks:
Sets	the	custom	flag(s)	for	this	BitmapInfo.

Parameters:
DWORD	f
Specifies	the	custom	flags.	See	List	of	Custom	Bitmap	Flags.

Prototype:
void	ResetCustomFlag(DWORD	f)

Remarks:
Clears	the	specified	flag(s)	of	this	BitmapInfo.	See	List	of	Custom	Bitmap
Flags.

Parameters:
DWORD	f
Specifies	the	flag	bits	to	reset.

Prototype:
BOOL	TestCustomFlags(DWORD	f)

Remarks:
Tests	the	custom	flags	of	this	BitmapInfo.	See	List	of	Custom	Bitmap	Flags.

Parameters:
DWORD	f
The	flag	bits	to	test.

Return	Value:
Returns	TRUE	if	the	specified	flags	were	set;	otherwise	FALSE.

Prototype:
void	CopyImageInfo(BitmapInfo	*from);

Remarks:
Copies	the	image	information	of	the	from	BitmapInfo	to	this	bitmap.	Only	the
name,	device	and	image	characteristics	are	copied.	User	info,	such	as	Custom

Width,	etc.	is	not	copied.
The	following	properties	of	the	from	BitmapInfo	are	copied:
from->Name(),from->Device(),from->Width(),	from->Height(),
from->Aspect(),	from->Gamma(),from->Type(),	from->Flags(),
from->FirstFrame(),	from->LastFrame(),	from->CurrentFrame(),
from->GetCustomFlags()

Parameters:
BitmapInfo	*from
The	bitmap	whose	information	will	be	copied.

Prototype:
BOOL	Validate()

Remarks:
Implemented	by	the	System.
This	method	is	used	to	check	the	width,	height,	aspect	ratio,	and	gamma
settings	to	make	sure	they	are	within	an	acceptable	range	of	values.	The
comparison	is	as	follows:
if	(width	<	1	||
height	<	1	||
aspect	<=	0.0	||
gamma	<	MINGAMMA	||
gamma	>	MAXGAMMA)

return	(FALSE);
else

return	(TRUE);
Where:
#define	MINGAMMA	0.2f
#define	MAXGAMMA	5.0f

Return	Value:
TRUE	if	the	BitmapInfo's	settings	are	valid	;	otherwise	FALSE.

Prototype:
HWND	GetUpdateWindow()

Remarks:
Returns	the	window	handle	to	send	progress	or	check	abort	messages	to.

Prototype:
void	SetUpdateWindow(HWND	hwnd)

Remarks:
This	is	used	internally	-	the	system	calls	this	method.	This	is	how	a	window
handle	is	sent	down	to	device	drivers	and	filters	so	they	can	send	progress
reports	and	check	for	cancel.

Prototype:
void	*CreateFmtSpecBlock();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	provides	some	access	to	device	specific	data	(for	instance	the
compression	ratio	in	a	JPEG	file).	This	method	will	return	a	buffer	containing
a	given	device	specific	data	(or	NULL	if	the	device	referenced	is	unknown	or
doesn't	have	"specific	data").	The	buffer	structure	will	depend	on	the	device.
For	all	drivers	shipped	with	the	SDK,	this	structure	is	defined	in	their	header
files	(which	must	be	included	in	the	project	for	which	this	method	is	used).
Internally,	this	method	validates	the	driver,	calls	its	EvaluateConfigure()
method	to	define	the	buffer	size,	creates	this	buffer	and,	if	the	returned	size	is
greater	than	zero,	calls	the	driver's	SaveConfigure()	method	in	order	to	set
default	values.	The	developer	may	then	change	whatever	they	want,	create	and
write	a	file	using	this	BitmapInfo	which	includes	the	device's	specific	data.
There	is	no	need	to	free	this	buffer	as	this	is	handled	by	the	BitmapInfo
destructor.
Note:	The	name	and/or	device	properties	must	be	defined	before	using	this
method.

Operators:

Prototype:
virtual	BitmapInfo	&operator=	(BitmapInfo	&from);

Remarks:
Assignment	operator.	The	data	members	of	the	specified	BitmapInfo	are
copied	to	this	BitmapInfo.

Parameters:
BitmapInfo	&from
The	source	BitmapInfo.

Class	Bitmap
See	Also:	Class	BitmapManager,	Class	BitmapInfo,	Class	BitmapStorage,	Class
GBuffer,	Working	with	Bitmaps.
class	Bitmap	:	public	BaseInterfaceServer

Description:
The	Bitmap	class	is	the	bitmap	itself.	All	image	access	is	done	through	this
class.	The	Bitmap	class	has	methods	to	retrieve	properties	of	the	bitmap	such	as
image	width,	height,	whether	it	is	dithered,	has	an	alpha	channel,	etc.	There	are
methods	to	retrieve	and	store	pixels	from	the	image.	Additional	methods	allow	a
developer	to	copy	bitmaps.	This	class	also	has	methods	to	open	outputs	and
write	multi-frame	files.	All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
protected:
float	gamma;
The	gamma	setting	for	the	bitmap.
Bitmap	*map;
The	bitmap	using	this	output	handler.
BitmapStorage	*storage;
The	storage	used	by	this	INPUT	handler
int	openMode;
The	mode	the	bitmap	is	open	in.
BitmapIO	*prevIO;
BitmapIO	*nextIO;
Linked	list	pointers	for	multiple	output	of	a	single	bitmap.

Method	Groups:
These	hyperlinks	jump	to	the	start	of	groups	of	related	methods	within	the	class.
Memory	Deallocation
Flag	Access
Bitmap	Properties	(Size,	Aspect,	Gamma,	etc.)
Pixel	Access
Palette	Access
Copying	/	Cropping	/	Converting

Channel	Access
Filtering	/	Dithering
Opening	/	Writing	/	Closing
Display	(Virtual	Frame	Buffer)	Methods
Storage	Change	Notificiation
Execute	--	Generic	Expansion	Method

Methods:

Prototype:
inline	BitmapManager	*Manager()

Remarks:
Returns	a	pointer	to	the	bitmap	manager	being	used.

Memory	Deallocation
Prototype:
void	DeleteThis();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	should	be	called	to	free	the	Bitmap.	Note	that	you	should	not
invoke	~Bitmap()	directly	by	calling	delete	on	the	Bitmap	as	was	done	in
3ds	max1.x.	An	assert	will	be	raised	if	you	call	delete	on	a	Bitmap	directly.
Instead	use	this	method.

Flag	Access

Prototype:
inline	DWORD	Flags()

Remarks:
Returns	the	state	of	the	bitmap	flags.	These	flags	describe	properties	of	the
bitmap	such	as	if	the	bitmap	is	flipped	horizontally	or	inverted	vertically,	is
paletted,	is	dithered,	etc.	See	Bitmap	Flags

Prototype:

inline	void	SetFlag(DWORD	flag)
Remarks:
Sets	the	specified	flag	bit(s).

Parameters:
DWORD	flag
The	flag(s)	to	set.	See	Bitmap	Flags.

Prototype:
inline	void	ToggleFlag(DWORD	flag)

Remarks:
Toggles	the	specified	flag	bit(s)	on/off.

Parameters:
DWORD	flag
The	flag(s)	to	toggle.	See	Bitmap	Flags.

Prototype:
inline	void	ClearFlag(DWORD	flag)

Remarks:
Clears	the	specified	flag	bit(s)	(sets	them	to	zero).

Parameters:
DWORD	flag
The	flag(s)	to	clear.	See	Bitmap	Flags.

Bitmap	Properties
The	following	methods	return	properties	of	the	bitmap.	When	these	methods
are	called,	they	are	passed	through	to	the	BitmapStorage	instance
maintained	by	the	Bitmap.	The	BitmapStorage	implements	these	methods
by	returning	the	properties	of	the	BitmapInfo	instance	maintained	by	the
storage.	Therefore,	the	values	returned	from	the	methods	represent	what	is
returned	from	the	BitmapInfo	instance	associated	with	the	Bitmap.

Prototype:

inline	int	Width()
Remarks:
Returns	the	width	of	the	bitmap	(the	horizontal	dimension).

Return	Value:
If	storage	has	been	allocated	the	width	of	the	bitmap;	otherwise	0.

Prototype:
inline	int	Height()

Remarks:
Returns	the	height	(vertical	dimension)	of	the	bitmap.

Return	Value:
If	storage	has	been	allocated	the	height	of	the	bitmap;	otherwise	0.

Prototype:
inline	float	Aspect()

Remarks:
Returns	the	aspect	ratio	of	the	bitmap.

Return	Value:
If	storage	has	been	allocated	the	aspect	ratio	of	the	bitmap;	otherwise	0.0f.

Prototype:
inline	float	Gamma()

Remarks:
Returns	the	gamma	value	for	the	bitmap.

Return	Value:
If	storage	has	been	allocated	the	gamma	of	the	bitmap;	otherwise	0.0f.

Prototype:
inline	int	Paletted()

Remarks:
Returns	whether	the	bitmap	uses	a	palette	(is	not	true	color).

Return	Value:
If	storage	has	been	allocated	returns	nonzero	if	the	bitmap	uses	a	palette
(returns	the	number	of	palette	slots	used);	otherwise	0.

Prototype:
inline	int	IsDithered()

Remarks:
Returns	whether	the	bitmap	is	dithered	or	not.

Return	Value:
If	storage	has	been	allocated	returns	nonzero	if	the	bitmap	is	dithered;
otherwise	0.

Prototype:
inline	int	PreMultipliedAlpha()

Remarks:
Returns	whether	the	bitmap	uses	pre-multiplied	alpha.

Return	Value:
If	storage	has	been	allocated	returns	nonzero	if	the	bitmap	uses	pre-multiplied
alpha;	otherwise	0.

Prototype:
inline	int	HasAlpha()

Remarks:
Returns	whether	the	bitmap	has	an	alpha	channel.

Return	Value:
If	storage	has	been	allocated	returns	nonzero	if	the	bitmap	has	an	alpha
channel;	otherwise	0.

Prototype:
inline	int	MaxRGBLevel()

Remarks:
This	method	returns	the	number	of	bits	per	pixel	for	each	color	component.

For	example	a	24-bit	TARGA	has	a	MaxRGBLevel()	of	8.

Prototype:
virtual	int	MaxAlphaLevel()	=	0;

Remarks:
Implemented	by	the	System.
Returns	the	number	of	bits	per	pixel	in	the	alpha	channel.

Return	Value:
If	storage	has	not	been	allocated	returns	0.

Prototype:
virtual	int	IsHighDynamicRange()	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	nonzero	if	this	is	a	bitmap	that	supports	high	dynamic	range	data;	zero
if	it	doesn't.

Prototype:
BMMRES	GoTo(BitmapInfo	*bi);

Remarks:
This	method	is	used	with	multi-frame	bitmaps	(FLI's,	AVI's,	DDR	devices,
etc.).	It	is	used	to	load	a	frame	to	replace	a	previously	saved	image.	To	define
the	desired	frame,	use:
bi->SetCurrentFrame(frame);

Parameters:
BitmapInfo	*bi
A	pointer	to	the	BitmapInfo.	The	frame	number	information	is	passed	here.

Return	Value:
If	used	with	single	frame	drivers	or	if	the	driver	doesn't	support	this	function,
it	returns	BMMRES_SINGLEFRAME.	If	the	return	value	is
BMMRES_SUCCESS,	a	new	frame	has	been	loaded	into	the	given	bitmap.

Standard	Pixel	Access	Methods.
Note:	The	following	methods	access	pixel	data	one	scanline	at	a	time.	Thus
x+pixels	must	be	less	than	the	bitmap	width.

Prototype:
inline	int	Get16Gray(int	x,int	y,int	pixels,float	*ptr)

Remarks:
Retrieves	the	specified	16-bit	pixel	values	from	the	bitmap.	Note:	This	method
provides	access	to	pixel	data	one	scanline	at	a	time.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.
float	*ptr
Pointer	to	storage	for	the	retrieved	pixel	values.

Return	Value:
Returns	nonzero	if	pixels	were	retrieved;	otherwise	0.	If	storage	has	not	been
allocated	0	is	returned.

Prototype:
int	Put16Gray(int	x,int	y,int	pixels,float	*ptr)

Remarks:
Stores	the	specified	16-bit	pixel	values	into	the	bitmap.	The	pixel	value
pointer	you	pass	to	this	method	may	be	freed	or	reused	as	soon	as	the	function
returns.	Note:	This	method	provides	access	to	pixel	data	one	scanline	at	a
time.

Parameters:
int	x
Destination	x	location.
int	y

Destination	y	location.
int	pixels
Number	of	pixels	to	store.
float	*ptr
Pixel	values	to	store.

Return	Value:
Returns	nonzero	if	pixels	were	stored;	otherwise	0.	If	storage	has	not	been
allocated	0	is	returned.

Prototype:
inline	int	GetPixels(int	x,int	y,int	pixels,BMM_Color_fl	*ptr)

Remarks:
Retrieves	the	specified	64-bit	pixel	values	from	the	bitmap.	Note:	This	method
provides	access	to	pixel	data	one	scanline	at	a	time.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.
BMM_Color_fl	*ptr
Pointer	to	storage	for	the	retrieved	pixel	values.	See	Structure	BMM_Color_fl.

Return	Value:
Returns	nonzero	if	pixels	were	retrieved;	otherwise	0.	If	storage	has	not	been
allocated	0	is	returned.

Prototype:
int	PutPixels(int	x,int	y,int	pixels,BMM_Color_fl	*ptr)

Remarks:
Stores	the	specified	64-bit	pixel	values	into	the	bitmap's	own	local	storage.
The	pointer	you	pass	to	this	method	may	be	freed	or	reused	as	soon	as	the
function	returns.	Note:	This	method	provides	access	to	pixel	data	one	scanline

at	a	time.
Parameters:
int	x
Destination	x	location.
int	y
Destination	y	location.
int	pixels
Number	of	pixels	to	store.
BMM_Color_fl	*ptr
Pixel	values	to	store.	See	Structure	BMM_Color_fl.

Return	Value:
Returns	nonzero	if	pixels	were	stored;	otherwise	0.	If	storage	has	not	been
allocated	0	is	returned.

Prototype:
inline	int	GetLinearPixels(int	x,int	y,int	pixels,BMM_Color_64
*ptr)

Remarks:
Retrieves	the	specified	64-bit	pixel	values	from	the	bitmap.	These	pixels	are
NOT	gamma	corrected	(i.e.	they	have	linear	gamma	-	1.0).	Note:	This	method
provides	access	to	pixel	data	one	scanline	at	a	time.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.
BMM_Color_64	*ptr
Pointer	to	storage	for	the	retrieved	pixel	values.	See	Structure
BMM_Color_64.

Return	Value:
Returns	nonzero	if	pixels	were	retrieved;	otherwise	0.	If	storage	has	not	been

allocated	0	is	returned.

Prototype:
inline	int	GetIndexPixels(int	x,int	y,int	pixels,BYTE	*ptr)

Remarks:
Retrieves	the	specified	pixels	from	the	paletted	bitmap.	The	palette	for	the
image	may	be	accessed	using	GetPalette().	Note:	This	method	provides
access	to	pixel	data	one	scanline	at	a	time.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.
BYTE	*ptr
Pointer	to	storage	for	the	pixel	values.

Return	Value:
Returns	nonzero	if	pixels	were	retrieved;	otherwise	0.	If	storage	has	not	been
allocated	0	is	returned.

Prototype:
inline	int	PutIndexPixels(int	x,int	y,int	pixels,BYTE	*ptr)

Remarks:
Stores	the	pixels	into	the	specified	location	of	the	paletted	bitmap.	The	pixel
value	pointer	you	pass	to	this	method	may	be	freed	or	reused	as	soon	as	the
function	returns.	Note:	This	method	provides	access	to	pixel	data	one	scanline
at	a	time.

Parameters:
int	x
Destination	x	location.
int	y
Destination	y	location.

int	pixels
Number	of	pixels	to	store.
BYTE	*ptr
Pixels	to	store.

Return	Value:
Returns	nonzero	if	pixels	were	stored;	otherwise	0.	If	storage	has	not	been
allocated	0	is	returned.

Palette	Access

Prototype:
inline	int	GetPalette(int	start,int	count,BMM_Color_48	*ptr)

Remarks:
Retrieves	a	portion	of	the	palette	from	the	bitmap.

Parameters:
int	start
The	index	into	the	palette	of	where	to	begin	retrieving	palette	entries.
int	count
The	number	of	palette	entries	to	retrieve.
BMM_Color_48	*ptr
Storage	for	the	palette	entries.	See	Structure	BMM_Color_48.

Return	Value:
Nonzero	if	the	palette	entries	were	retrieved;	otherwise	0.

Prototype:
inline	int	SetPalette(int	start,int	count,BMM_Color_48	*ptr)

Remarks:
Sets	the	specified	portion	of	the	palette	of	this	bitmap.

Parameters:
int	start
The	index	into	the	palette	of	where	to	begin	storing	palette	entries.
int	count

The	number	of	palette	entries	to	store.
BMM_Color_48	*ptr
The	palette	entries	to	store.	See	Structure	BMM_Color_48.

Return	Value:
Nonzero	if	the	palette	entries	were	stored;	otherwise	0.

Copying	/	Cropping	Methods

Prototype:
int	GetFiltered(float	u,	float	v,	float	du,	float	dv,	BMM_Color_fl
*ptr);

Remarks:
This	method	uses	summed	area	table	or	pyramidal	filtering	to	compute	an
averaged	color	over	the	specified	area.	You	must	have	a	filter	plugged	in	for
this	to	work.	See	SetFilter()	below.

Parameters:
float	u,	float	v
The	location	in	the	bitmap	to	filter.	These	values	go	from	0.0	to	1.0	across	the
size	of	the	bitmap.
float	du,	float	dv
The	size	of	the	rectangle	to	sample.	These	values	go	from	0.0	to	1.0	across	the
size	of	the	bitmap.
BMM_Color_fl	*ptr
The	result	is	returned	here	--	the	average	over	the	specified	area.	See	Structure
BMM_Color_fl.	**aztodo**	link	this

Prototype:
inline	int	CopyImage(Bitmap	*from,int	operation,BMM_Color_fl
fillcolor,	BitmapInfo	*bi	=	NULL)

Remarks:
Copies	the	specified	bitmap	to	this	bitmap.

Parameters:
Bitmap	*from

The	source	bitmap.
int	operation
The	type	of	copy	to	perform:
COPY_IMAGE_CROP
Copy	image	to	current	map	size	using	cropping	if	necessary.
COPY_IMAGE_RESIZE_LO_QUALITY
Resize	the	source	image	to	the	destination	map	size	(draft	quality).
COPY_IMAGE_RESIZE_HI_QUALITY
Resize	source	image	to	the	destination	map	size	(final	quality).
COPY_IMAGE_USE_CUSTOM
Resize	based	on	the	Image	Input	Options	(BitmapInfo	*).

BMM_Color_fl	fillcolor
Vacant	areas	of	the	bitmap	are	filled	with	fillcolor	pixels	if	the	operation
specified	is	COPY_IMAGE_CROP	and	one	of	the	source	bitmap
dimensions	is	less	than	the	size	of	this	bitmap.	See	Structure	BMM_Color_fl.
BitmapInfo	*bi	=	NULL
When	using	custom	options	(resize	to	fit,	positioning,	etc.)	this	is	how	the
flags	are	passed	down	to	the	Bitmap	Manager.	This	is	an	optional	argument	--
for	simple	copy	operations,	*bi	can	default	to	NULL.	If	present,	the	code
checks	the	option	flags	and	acts	accordingly.

Return	Value:
Nonzero	if	the	copy	was	performed;	otherwise	0.

Prototype:
inline	int	CopyImage(Bitmap	*from,int	operation,int	fillindex)

Remarks:
Copies	the	specified	bitmap	to	this	bitmap.

Parameters:
Bitmap	*from
The	source	bitmap.
int	operation
The	type	of	copy	to	perform.	See	List	of	Copy	Image	Operations.
int	fillindex

Vacant	areas	of	the	bitmap	are	filled	with	fillindex	pixels	if	the	operation
specified	is	COPY_IMAGE_CROP	and	one	of	the	source	bitmap
dimensions	is	less	than	the	size	of	this	bitmap.

Return	Value:
Nonzero	if	the	copy	was	performed;	otherwise	0.

Prototype:
PBITMAPINFO	ToDib(int	depth	=	24,	UWORD	*gam=NULL,
BOOL	dither=FALSE);

Remarks:
Creates	a	new	Windows	Device	Independent	Bitmap	(DIB)	and	returns	a
pointer	to	it.	The	DIB	bitmap	is	created	from	this	Bitmap.	The	DIB	is
allocated	using	LocalAlloc().	The	pseudo-code	below	show	how	one	may	be
created	and	freed.	Note	that	the	DIB	is	never	used	or	accessed	inside	3ds	max
(the	call	to	ToDib()	is	the	first	and	last	time	that	3ds	max	sees	this	pointer):
PBITMAPINFO	pDib;
pDib	=	bitmap->ToDib();
...
When	you	are	done	using	the	DIB	call:
LocalFree(pDib);

Parameters:
int	depth	=	24
The	bitmap	depth;	either	24	(BGR)	or	32	(BGRO).	If	not	specified	the	default
is	24.
UWORD	*gam=NULL
Specifies	a	pointer	to	an	optional	gamma	table	that	is	used	to	apply	gamma
correction	to	the	color	components	as	part	of	the	conversion	to	a	DIB.	The
table	has	RCOLN	entries.
BOOL	dither=FALSE
Specifies	if	a	random	dither	is	applied	when	reducing	the	color	components
from	16	bits	per	channel	to	8	bits	per	channel	(to	reduce	banding	effects).

Prototype:

BOOL	FromDib(PBITMAPINFO	pbmi);
Remarks:
Converts	the	DIB	to	this	bitmap's	storage	type.	This	bitmap's	storage	must
already	be	allocated	or	the	call	will	fail.	The	source	must	be	16,	24	or	32	bit.
You	cannot	use	an	8	bit	DIB.

Parameters:
PBITMAPINFO	pbmi
The	source	bitmap.

Return	Value:
TRUE	if	the	conversion	was	performed;	otherwise	FALSE.

Prototype:
inline	int	ResizeImage(int	width,int	height,int	newpalette)

Remarks:
This	method	is	not	currently	implemented.

Channel	Access

Prototype:
inline	void	*GetChannel(ULONG	channelID,	ULONG&
chanType)

Remarks:
Returns	a	pointer	to	the	specified	channel	of	the	bitmap,	and	determines	its
type	in	terms	of	bits	per	pixel.

Parameters:
ULONG	channelID
The	channel	to	return	a	pointer	to.	See	List	of	Image	Channels.
ULONG&	chanType
The	type	of	the	returned	channel.	One	of	the	following	values:
BMM_CHAN_TYPE_UNKNOWN
Channel	not	of	a	known	type.
BMM_CHAN_TYPE_8
1	byte	per	pixel

BMM_CHAN_TYPE_16
1	word	per	pixel
BMM_CHAN_TYPE_32
2	words	per	pixel
BMM_CHAN_TYPE_48
3	words	per	pixel
BMM_CHAN_TYPE_64
4	words	per	pixel
BMM_CHAN_TYPE_96
6	words	per	pixel

Prototype:
GBuffer	*GetGBuffer();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	GBuffer	for	the	bitmap	(or	NULL	if	none).

Prototype:
inline	ULONG	CreateChannels(ULONG	channelIDs)

Remarks:
This	method	creates	the	specified	channels.	After	creation,	these	may	be
accessed	using	void	*GetChannel().

Parameters:
ULONG	channelIDs
Specifies	the	channels	to	create.	See	List	of	Image	Channels.

Return	Value:
The	channels	that	are	present.

Prototype:
inline	void	DeleteChannels(ULONG	channelIDs)

Remarks:
Delete	the	specified	channels.

Parameters:
ULONG	channelIDs
Specifies	the	channels	to	delete.	See	List	of	Image	Channels.

Prototype:
inline	ULONG	ChannelsPresent()

Remarks:
Returns	the	channels	that	are	present.	See	List	of	Image	Channels.

Prototype:
inline	RenderInfo	*GetRenderInfo()

Remarks:
This	is	used	internally.	It	returns	a	pointer	to	the	RenderInfo	associated	with
the	storage	if	available;	otherwise	NULL.	See	Class	RenderInfo.

Prototype:
inline	RenderInfo	*AllocRenderInfo()

Remarks:
This	is	used	internally.	It	returns	a	pointer	to	the	RenderInfo	instance	allocated
by	the	storage.	If	this	could	not	be	allocated	NULL	is	returned.	See	Class
RenderInfo.

Prototype:
BOOL	PrepareGChannels(BitmapInfo	*bi);

Remarks:
This	method	is	used	internally.	This	method	will	check	with	the	plug-in	(file	or
device)	defined	in	the	given	BitmapInfo	and	prepare	(create)	the	proper
channels.	If	a	given	channel	already	exists,	no	new	channel	will	be	created.
After	creating	a	bitmap,	use	this	function	to	define	the	optional	channels	that
may	be	required	by	the	given	handler.

Parameters:
BitmapInfo	*bi
Points	to	an	instance	of	BitmapInfo	that	defines	the	properties	of	the	image.

Return	Value:
TRUE	if	the	channels	were	created;	otherwise	FALSE.

Filtering	/	Dithering	Methods

Prototype:
int	GetFiltered(float	u,	float	v,	float	du,	float	dv,	BMM_Color_fl
*ptr);

Remarks:
This	method	uses	summed	area	table	or	pyramidal	filtering	to	compute	an
averaged	color	over	the	specified	area.	You	must	have	a	filter	plugged	in	for
this	to	work.	See	SetFilter()	below.

Parameters:
float	u,	float	v
The	location	in	the	bitmap	to	filter.	These	values	go	from	0.0	to	1.0	across	the
size	of	the	bitmap.
float	du,	float	dv
The	size	of	the	rectangle	to	sample.	These	values	go	from	0.0	to	1.0	across	the
size	of	the	bitmap.
BMM_Color_fl	*ptr
The	result	is	returned	here	--	the	average	over	the	specified	area.

Prototype:
int	SetFilter(UINT	filterType);

Remarks:
Establishes	a	filtering	algorithm	to	be	used	by	the	bitmap.

Parameters:
UINT	filterType
See	List	of	Bitmap	Filter	Types.

Return	Value:
Nonzero	if	the	bitmap	filtering	was	set;	otherwise	0.

Prototype:

inline	int	HasFilter()
Remarks:
Determines	if	the	bitmap	has	a	filter.

Return	Value:
Returns	nonzero	if	the	bitmap	has	a	filter;	otherwise	0.

Prototype:
int	SetDither(UINT	ditherType);

Remarks:
Sets	the	type	of	dithering	used	on	the	bitmap.

Parameters:
UINT	ditherType
The	type	of	dither	to	perform.
BMM_DITHER_NONE
Specifies	no	dithering	is	to	be	performed.
BMM_DITHER_FLOYD
Specifies	the	Floyd-Steinberg	dithering	algorithm.

Return	Value:
Nonzero	if	the	bitmap	dithering	was	set;	otherwise	0.

Prototype:
inline	BitmapFilter	*Filter()

Remarks:
This	method	is	used	internally.	It	returns	a	pointer	to	the	bitmap	filter	used	by
the	bitmap.

Prototype:
int	SetStorage(BitmapStorage	*storage);

Remarks:
Establishes	a	bitmap	storage	to	manage	this	bitmap.

Parameters:
BitmapStorage	*storage

The	storage	to	manage	the	bitmap.
Return	Value:
Nonzero	if	the	storage	was	assigned;	otherwise	0.

Prototype:
inline	BitmapStorage	*Storage()

Remarks:
Returns	the	storage	that	is	managing	this	bitmap.

Return	Value:
A	pointer	to	the	storage.

Prototype:
inline	void	NullStorage();

Remarks:
Sets	the	storage	pointer	to	NULL.

Output	/	Writing	/	Closing	Methods

Prototype:
BMMRES	OpenOutput(BitmapInfo	*bi);

Remarks:
This	method	will	open	the	image	for	output.	This	allows	the	image	to	be
written	to.	Note	that	you	can	pass	a	BitmapInfo	to	this	method	where	you
simply	set	the	name	'by	hand'	(bi->SetName()).	This	will	work	and	the
correct	driver	wil	be	selected	based	on	the	filename	extension.	However	you
won't	be	able	to	set	any	driver	specific	settings	(such	as	compression	settings
for	JPEGs).	The	alternative	way	is	to	use	the	BitmapManger	methods.

Parameters:
BitmapInfo	*bi
Contains	the	name	of	the	image	or	device	to	open	for	output.

Return	Value:
BMMRES_SUCCESS

Indicates	success.
BMMRES_ERRORTAKENCARE
Indicates	that	3ds	max	could	not	find	a	device	to	handle	the	image.
BMMRES_INTERNALERROR
Indicates	the	IO	module	handling	the	image	could	not	be	opened	for	writing.

Prototype:
BMMRES	Write(BitmapInfo	*bi,	DWORD	frame	=
BMM_SINGLEFRAME)

Remarks:
Write	the	image	from	the	BitmapStorage	to	disk.	Note	that	you	must	pass
the	same	BitmapInfo	used	when	the	file	was	first	"Opened	for	Output".	The
main	reason	is	that	any	device	specific	settings	are	kept	in	the	BitmapInfo
object.	Also,	the	custom	options	such	as	gamma	value,	optional	channels,	etc
(if	any)	are	kept	in	this	BitmapInfo	instance.	These	are	assigned	when	the
bitmap	is	first	opened	(for	either	read	or	write).

Parameters:
BitmapInfo	*bi
Contains	the	name	of	the	file	or	device	to	write	to.
DWORD	frame	=	BMM_SINGLEFRAME
Specifies	the	frame	number	to	write.	If	this	is	a	single	image,	allow	frame	to
default	to	single	frame.	This	argument	determines	if	the	file	will	have	the
frame	number	appended	to	it.	If	you	want	the	file	to	have	a	normal	name	(no
frame	number	attached	to	it),	you	must	set	the	frame	argument	to
BMM_SINGLEFRAME.	Any	other	value	is	considered	to	be	a	frame	number
and	it	will	be	appended	to	the	given	filename.

Return	Value:
BMMRES_SUCCESS
Indicates	success.
BMMRES_ERRORTAKENCARE
Indicates	that	3ds	max	could	not	find	a	device	to	handle	the	image.
BMMRES_INTERNALERROR
Indicates	the	IO	module	handling	the	image	could	not	be	opened	for	writing.

Prototype:
BMMRES	WriteAll(DWORD	frame	=	BMM_SINGLEFRAME);

Remarks:
Write	the	image	to	all	the	open	outputs.

Parameters:
DWORD	frame	=	BMM_SINGLEFRAME
Specifies	the	frame	number	to	write.	If	this	is	a	single	image,	allow	frame	to
default	to	single	frame.

Return	Value:
BMMRES_SUCCESS
Indicates	success.
BMMRES_ERRORTAKENCARE
Indicates	that	3ds	max	could	not	find	a	device	to	handle	the	image.
BMMRES_INTERNALERROR
Indicates	the	IO	module	handling	the	image	could	not	be	opened	for	writing.

Prototype:
int	Close(BitmapInfo	*bi,	int	flag	=	BMM_CLOSE_COMPLETE)

Remarks:
Close	the	bitmap.	This	means	the	bitmap	is	no	longer	open	for	writing.

Parameters:
BitmapInfo	*bi
Identifies	the	bitmap	to	close.
int	flag	=	BMM_CLOSE_COMPLETE
See	List	of	Bitmap	Close	Types.

Return	Value:
Nonzero	if	the	image	output	was	closed	without	error;	otherwise	0.

Prototype:
int	CloseAll(int	flag	=	BMM_CLOSE_COMPLETE)

Remarks:
Closes	all	the	open	outputs.

Parameters:
int	flag	=	BMM_CLOSE_COMPLETE
See	List	of	Bitmap	Close	Types.

Return	Value:
Nonzero	if	the	image	outputs	were	closed	without	error;	otherwise	0.

Prototype:
inline	void	UseScaleColors(int	on);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Set	whether	colors	are	scaled	(on)	or	clamped	(off)	when	converting	from
BMM_Color_fl	to	BMM_Color_64.	If	storage	is	not	allocated,	does
nothing.

Prototype:
inline	int	ScaleColors();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Returns	the	last	value	set	by	UseScaleColors.	If	storage	is	not	allocated,
returns	0.

Prototype:
inline	static	void	ClampColor(BMM_Color_64&	out,	const
BMM_Color_fl&	in);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Converts	in	to	out	clamping	the	RGB	components	to	0	to	65535.	The	alpha
component	is	not	copied.

Parameters:
BMM_Color_64&	out
The	result	of	the	conversion.
BMM_Color_fl&	in
The	value	to	convert.

Prototype:
inline	static	void	ClampColorA(BMM_Color_64&	out,	const
BMM_Color_fl&	in);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Converts	in	to	out	clamping	the	RGB	components	to	0	to	65535.

Parameters:
BMM_Color_64&	out
The	result	of	the	conversion.
BMM_Color_fl&	in
The	value	to	convert.

Prototype:
inline	void	ScaleColor	(BMM_Color_64&	out,	BMM_Color_fl	in);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Converts	in	to	out	clamping	the	RGB	components	to	0	to	65535.	The	alpha
component	is	not	copied.

Parameters:
BMM_Color_64&	out
The	result	of	the	conversion.
BMM_Color_fl&	in
The	value	to	convert.

Prototype:
inline	void	ScaleColorA(BMM_Color_64&	out,	const
BMM_Color_fl&	in);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Converts	in	to	out	clamping	the	RGB	components	to	0	to	65535.

Parameters:
BMM_Color_64&	out
The	result	of	the	conversion.
BMM_Color_fl&	in
The	value	to	convert.

Prototype:
inline	void	ClampScaleColor	(BMM_Color_64&	out,	const
BMM_Color_fl&	in);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Converts	in	to	out,	using	the	value	of	ScaleColors()	to	determine	the
clamping	or	scaling.	The	alpha	component	is	not	copied.	If	the	storage	is	not
allocated,	the	clamping	is	performed.

Parameters:
BMM_Color_64&	out
The	result	of	the	conversion.
BMM_Color_fl&	in
The	value	to	convert.

Prototype:
inline	void	ClampScaleColorA	(BMM_Color_64&	out,	const
BMM_Color_fl&	in);

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Converts	in	to	out,	using	the	value	of	ScaleColors()	to	determine	the
clamping	or	scaling.	If	the	storage	is	not	allocated,	the	clamping	is	performed.

Parameters:
BMM_Color_64&	out
The	result	of	the	conversion.
BMM_Color_fl&	in
The	value	to	convert.

Display	(Virtual	Frame	Buffer)	Methods
Prototype:
int	Display(TCHAR	*title=NULL,	int	position=BMM_CN,	BOOL
autonomous=FALSE,	BOOL	savebutton=TRUE,	CropCallback
*crop=NULL,	Bitmap	*cloneMyVFB	=	NULL)

Remarks:
This	method	creates	a	window	for	the	display	of	this	bitmap	and	displays	it.

Parameters:
TCHAR	*title	=	NULL
The	title	to	display	in	the	title	bar	of	the	window.
int	position	=	BMM_CN
Specifies	how	the	bitmap	should	be	positioned.	One	of	the	following	values:
BMM_UL	-	Upper	Left
BMM_LL	-	Lower	Left
BMM_UR	-	Upper	Right
BMM_LR	-	Lower	Right
BMM_CN	-	Center
BMM_RND	-	Used	internally.	Renderer	location.
BMM_VPP	-	Used	internally.	Video	Post	Primary	location.
BMM_VPS	-	Used	internally.	Video	Post	Secondary	location.

BOOL	autonomous	=	FALSE
This	is	reserved	for	internal	use,	always	let	it	default	to	FALSE.

BOOL	savebutton	=	TRUE
This	is	reserved	for	internal	use,	always	let	it	default	to	TRUE.
CropCallback	*crop=NULL
This	parameter	is	available	in	release	2.0	and	later	only.
When	non-NULL	this	will	cause	the	VFB	to	display,	instead	of	its	normal
toolbar,	a	set	of	sliders	for	adjusting	cropping	and	also	will	allow	interactive
adjustment	of	the	cropping	rectangle	in	the	image	window.	See	Class
CropCallback.
Bitmap	*cloneMyVFB	=	NULL
This	parameter	is	available	in	release	4.0	and	later	only.
A	pointer	to	a	bitmap	to	clone	the	VFB	to.

Return	Value:
Nonzero	if	the	bitmap	was	displayed;	otherwise	0.

Prototype:
int	UnDisplay();

Remarks:
Close	the	display	window	associated	with	this	bitmap	(if	any).

Return	Value:
Always	returns	nonzero.

Prototype:
BOOL	IsAutonomousVFB();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	the	virtual	frame	buffer	(VFB)	is	autoomous;	otherwise
FALSE.	For	instance,	Video	Post	has	an	associated	VFB.	When	Video	Post	is
closed	so	is	its	VFB	since	it	belongs	to	it.	In	that	case	the	VFB	is	not
autonomous.	If	the	user	does	a	View	File	command,	that	VFB	is	autonomous.

Prototype:
HWND	GetWindow();

Remarks:

Get	the	window	handle	for	the	displayed	bitmap.
Return	Value:
Returns	the	window	handle,	or	NULL	if	it's	not	displayed	in	a	window.

Prototype:
void	RefreshWindow(RECT	*rect	=	NULL);

Remarks:
Refreshes	the	interior	of	the	display	window	with	the	bitmap	contents.	In
release	3.0	and	later	this	method	respects	the
Bitmap::ShowProgressLine()	setting.	See	that	method	for	more	details.

Parameters:
RECT	*rect	=	NULL
The	region	of	the	display	window	to	refresh	(specified	in	image	coordinates).
If	the	pointer	is	NULL	the	entire	window	is	refreshed.

Prototype:
void	SetCroppingValues(float	u,	float	v,	float	w,	float	h,	BOOL
placeImage);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	when	the	VFB	is	being	displayed	and	you	want	to	change
the	cropping	rectangle	from	your	plug-in.	An	example	of	this	is	available	in
\MAXSDK\SAMPLES\MATERIALS\BMTEX.CPP.

Parameters:
float	u
The	U	value	to	set.
float	v
The	U	value	to	set.
float	w
The	U	value	to	set.
float	h
The	U	value	to	set.

BOOL	placeImage
TRUE	for	place	mode;	FALSE	for	crop.

Prototype:
void	SetWindowTitle(TCHAR	*title);

Remarks:
Sets	the	title	displayed	in	the	display	window's	title	bar.

Parameters:
TCHAR	*title
The	title	to	display.

Storage	Change	Notificiation

Prototype:
void	SetNotify(BitmapNotify	*bmnot=NULL);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	set	a	callback	to	allow	the	developer	to	get	notified	if
the	storage	for	the	Bitmap	has	changed.

Parameters:
BitmapNotify	*bmnot=NULL
The	pointer	to	the	callback	object	implemented	by	the	developer	used	to
provide	notification	when	the	Bitmap's	storage	changes.	See	Class
BitmapNotify.

Prototype:
BitmapNotify	*GetNotify();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	a	pointer	to	the	callback	used	to	notify	a	developer	when	the	Bitmap's
storage	changes.

Default	Implementation:

{	return	bmNotify;	};

Execute	--	Generic	Expansion	Method

Prototype:
INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG	arg2=0,
ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.

Parameters:
int	cmd
The	index	of	the	command	to	execute.
ULONG	arg1=0
Optional	argument	1.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	these	parameters.
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	the	meaning	of	this	value.

Handy	built-in	functions

Prototype:
int	Fill(int	r,int	g,int	b,int	alpha);

Remarks:
Sets	every	pixel	of	the	bitmap	to	the	specified	color	and	alpha	value.

Parameters:
int	r
Specifies	the	red	value	to	fill	with.
int	g
Specifies	the	green	value	to	fill	with.
int	b
Specifies	the	blue	value	to	fill	with.
int	alpha
Specifies	the	alpha	value	to	fill	with.

Return	Value:
Nonzero	if	the	operation	succeeded;	otherwise	FALSE.

Prototype:
void	Print(bool	silent	=	false);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	only	supported	in	3D	Studio	VIZ.

Prototype:
void	ShowProgressLine(int	y);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	for	showing	a	moving	scanline	in	a	virtual	frame	buffer
displaying	this	bitmap.	Here's	how	it	works.	If	you	call
ShowProgressLine(y),	it	clears	any	previously	set	white	line,	and	sets	an
internal	counter:	you	have	to	call	Bitmap::RefreshWindow()	to	get	the

new	white	line	to	show	up.	From	then	that	line	will	be	displayed	as	white.	To
Clear	it	call	ShowProgressLine(-1).

Parameters:
int	y
The	scanline	to	display	as	white	(the	count	begins	at	zero).	Use	a	value	of	-1	to
hide	the	line.

Class	BitmapManager
See	Also:	Class	BitmapInfo,	Class	Bitmap,	Class	BitmapIO,	Class
BitmapStorage,	Working	with	Bitmaps,	List	of	Bitmap	Error	Codes.
class	BitmapManager	:	public	InterfaceServer

Description:
This	class	is	used	to	manage	the	use	of	bitmaps	within	3ds	max.	There	is	a
global	instance	of	this	class	provided	by	3ds	max	that	developers	may	use	to	call
these	methods.	It	is	called	TheManager.	This	class	provides	methods	for
things	such	as	creating	and	loading	bitmaps,	and	access	to	the	bitmap	Map	Path
directories.	There	are	also	methods	for	displaying	some	general	dialogs	that	let
users	select	input	and	output	files	and	devices,	as	well	as	dialogs	for	setting
options	for	the	bitmap	such	as	its	custom	width,	height	and	positioning.
Note:	In	the	3ds	max	release	3.0	SDK	these	methods	were	made	virtual.

Data	Members:
public:
BMMVfbPalette	*pal;
This	is	used	internally	as	the	virtual	framebuffer	palette.

Method	Groups:
The	hyperlinks	below	jump	to	the	start	of	groups	of	related	methods	within	the
class
New	/	Creating	/	Loading	Methods
Display	/	VFB	Related	Methods
User	Interface	(Dialog	Box)	Methods
Host	Access	(Window	handles,	Map	path	directory	access,	etc.)
Error	Processing
Future	Expansion

Methods:

Error	Processing

Prototype:
BOOL	SilentMode()

Remarks:
Determines	if	silent	mode	is	on.	Silent	mode	specifies	if	developers	should
display	error	messages.	If	this	method	returns	FALSE,	error	messages	should
be	displayed.	If	TRUE,	error	message	dialogs	should	not	be	shown.

Return	Value:
Returns	TRUE	if	silent	mode	is	on;	FALSE	otherwise.

Prototype:
void	SysLog(int	type,	char	*format,	...);

Remarks:
This	is	reserved	for	future	use.

Prototype:
BOOL	SetSilentMode(BOOL	s);

Remarks:
This	method	is	used	internally.

Prototype:
void	SetLogLevel(DWORD	level);

Remarks:
This	method	is	used	internally.

Prototype:
DWORD	GetLogLevel();

Remarks:
This	method	is	used	internally.

Display	/	VFB	Related	Methods
Prototype:
void	RefreshAllVFBs();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

This	method	refreshes	the	interior	of	all	the	virtual	frame	buffer	windows	with
each	bitmap's	contents.

Prototype:
void	DeleteAllAutonomousVFBMaps();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	calls	Bitmap::DeleteThis()	on	all	the	bitmaps	whose	virtual
frame	buffers	are	set	to	autonomous.

Future	Expansion
Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.

Parameters:
int	cmd
The	index	of	the	command	to	execute.
ULONG	arg1=0
Optional	argument	1.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	these	parameters.
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	the	meaning	of	this	value.

Host	Interface

Prototype:
virtual	HINSTANCE	AppInst();

Remarks:
Returns	the	application	instance	handle	of	3ds	max	itself.

Prototype:
virtual	HWND	AppWnd();

Remarks:
Returns	the	window	handle	of	3ds	max's	main	window.

Prototype:
virtual	TCHAR	*GetDir(int	i);

Remarks:
Implemented	by	the	System.
Retrieves	the	specified	standard	3ds	max	directory	name	(fonts,	scenes,
images,	etc.).

Parameters:
int	i
Specifies	the	directory	name	to	retrieve.	See	List	of	Directory	Names.

Return	Value:
The	name	of	the	specified	directory.

Prototype:
virtual	BOOL	AddMapDir(TCHAR	*dir,int	update);

Remarks:
For	internal	use	only	-	This	is	used	to	add	a	MAP	PATH	to	the	Map	path	list.

Prototype:
virtual	int	GetMapDirCount();

Remarks:

Returns	the	number	of	map	paths	(used	in	conjunction	with	the	method
below).

Return	Value:
The	number	of	map	paths.

Prototype:
virtual	TCHAR	*GetMapDir(int	i);

Remarks:
Map	paths	are	accessed	using	a	virtual	array	mechanism.	This	method	returns
the	'i-th'	map	path.

Parameters:
int	i
Specifies	the	map	path	to	retrieve.

Return	Value:
The	name	of	the	'i-th'	map	path.

Prototype:
virtual	Interface	*Max();

Remarks:
Implemented	by	the	System.
Returns	an	interface	pointer	for	calling	methods	provided	by	3ds	max.	See
Class	Interface.

Creation	/	Loading
Prototype:
virtual	Bitmap	*NewBitmap();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	to	allocate	and	return	a	pointer	to	a	new	instance	of	the
Bitmap	class.	The	default	constructor	is	used.

Prototype:

virtual	Bitmap	*Create(BitmapInfo	*bi);
Remarks:
This	method	creates	a	new	bitmap	using	the	properties	of	the	BitmapInfo
passed.	For	more	details	on	creating	bitmaps,	see	the	section	Working	with
Bitmaps.	Make	sure	you	delete	the	Bitmap	created	when	you	are	done	using	it.

Parameters:
BitmapInfo	*bi
A	pointer	to	an	instance	of	the	class	BitmapInfo	describing	the	bitmap	to
create.

Return	Value:
A	pointer	to	a	newly	created	instance	of	class	Bitmap.

Prototype:
virtual	Bitmap	*Create(PBITMAPINFO	pbmi);

Remarks:
This	method	is	used	for	creating	a	new	bitmap	from	an	existing	Windows
Device	Independent	Bitmap.	Make	sure	you	delete	the	Bitmap	created	when
you	are	done	using	it.

Parameters:
PBITMAPINFO	pbmi
An	existing	Windows	DIB.	For	more	details	on	creating	bitmaps,	see	the
section	Working	with	Bitmaps.

Return	Value:
Pointer	to	a	new	instance	of	class	Bitmap	created	from	the	DIB.

See	Also:	To	create	a	Windows	DIB	from	a	Bitmap	see	Bitmap::ToDib()

Prototype:
virtual	Bitmap	*Load(BitmapInfo	*bi,	BMMRES	*status	=
NULL)

Remarks:
This	method	loads	a	bitmap	using	the	parameters	specified	by	the
BitmapInfo	pointer.	Make	sure	you	delete	the	Bitmap	created	when	you	are

done	using	it.
Note:	When	several	plug-ins	call	this	method	to	load	the	same	image,	they	all
receive	the	same	pointer	to	one	instance	of	the	BitmapStorage.	So	if	one
plug-in	manipulates	the	image,	the	changes	will	get	reflected	everywhere.	A
developer	may	use	BitmapManager::Create()	followed	by
Bitmap::CopyImage()	to	create	a	unique	instance	of	BitmapStorage.
Also	Note:	One	of	the	methods	in	BitmapInfo	returns	a	window	handle	to
send	progress	report	messages.	If	you	want	to	receive	these	messages	(for
purposes	of	putting	up	a	progress	bar	during	the	load),	set	the	window	handle
(bi->SetUpdateWindow(hWnd))	and	process	BMM_PROGRESS	and
BMM_CHECKABORT	messages.

Parameters:
BitmapInfo	*bi
Specifies	the	properties	of	the	bitmap	to	load.
BMMRES	*status
The	result	of	the	bitmap	load	operation.	See	Bitmap	Error	Codes.

Return	Value:
A	pointer	to	a	new	instance	of	the	class	Bitmap.

Prototype:
virtual	BMMRES	LoadInto(BitmapInfo	*bi,	Bitmap	**map,
BOOL	forceReload=FALSE);

Remarks:
This	method	loads	the	bitmap	specified	by	bi	into	the	bitmap	pointed	to	by
map.	The	normal	Load()	method	creates	a	new	bitmap.	However,	if	you
already	have	an	existing	bitmap	and	simply	want	to	load	in	a	new	frame,	this
method	may	be	used.	Specify	which	bitmap	to	use	using	bi	and	the	map	to
load	into	using	map.	For	instance,	if	you	have	an	AVI	file	and	you	want	to
load	a	new	frame,	you	can	simply	update	the	frame	number	specified	in	the
BitmapInfo	and	call	this	method	passing	the	bitmap	associates	with	the
previous	frame.

Parameters:
BitmapInfo	*bi

Specifies	the	properties	of	the	bitmap	to	load.
Bitmap	**map
A	pointer	to	a	pointer	to	a	bitmap.	This	is	the	bitmap	that	will	be	loaded	into.
BOOL	forceReload=FALSE
If	an	existing	bitmap	that	matches	bi	is	already	loaded,	then	calling	calling
LoadInto()	won't	load	from	the	disk	or	device.	Rather	it	will	just	use	the
existing	in	memory	version.	If	you	want	to	force	the	bitmap	to	be	reloaded
from	the	file	or	device	set	this	to	TRUE.

Return	Value:
The	result	of	the	bitmap	load	operation.	See	Bitmap	Error	Codes.

User	Interface	Methods

Prototype:
virtual	BMMRES	GetImageInfoDlg(HWND	hWnd,	BitmapInfo
*bi,	const	TCHAR	*filename	=	NULL);

Remarks:
This	method	will	display	information	about	the	given	bitmap	in	a	dialog.	The
source	of	the	information	is	either	defined	in	bi->Name()/bi->Device()	or
explicitly	in	the	filename	passed).	This	method	is	an	interface	into
BitmapIO::GetImageInfoDlg().	It	is	not	normally	called	by	developers.
The	default	implementation	is	within	the	Bitmap	Manager.	There	is	a	generic
Image	Info	dialog	that	is	used	unless	the	proper	BitmapIO	class	implements	it
own	dialog	(and	notifies	the	system	through	the	BitmapIO::Capabilities()
method).

Parameters:
HWND	hWnd
The	parent	window	handle	calling	the	dialog.
BitmapInfo	*bi
Defines	the	name	of	the	bitmap	or	device	(unless	specified	below).	The	image
information	fields	of	BitmapInfo	*bi	are	set	with	the	information	loaded	from
the	image.
const	TCHAR	*filename	=	NULL

Specifies	the	filename	to	use	explicitly.
Return	Value:
The	result	of	the	operation.	See	Bitmap	Error	Codes.

Prototype:
virtual	BMMRES	GetImageInfo(BitmapInfo	*bi,	const	TCHAR
*filename	=	NULL);

Remarks:
This	method	is	used	to	get	information	about	an	image,	ie	things	like	image
resolution	(bi->Width()/bi->Height()),	number	of	frames,	etc.	This	is	an
interface	into	BitmapIO::GetImageInfo().	Given	an	image	definition	in
bi.Name()	/	bi.Device()	or	explicitly	in	filename	(this	function	will	place
filename,	if	not	NULL,	into	bi.Name()	before	calling
BitmapIO::GetImageInfo()),	the	proper	device	will	fill	the	data	members
in	BitmapInfo	*bi	with	information	about	the	image.

Parameters:
BitmapInfo	*bi
Defines	the	name	of	the	bitmap	or	device	(unless	specified	below).
const	TCHAR	*filename	=	NULL
Specifies	the	filename	to	use	explicitly.

Return	Value:
The	result	of	the	operation.	See	Bitmap	Error	Codes.

Prototype:
virtual	BOOL	ImageInputOptions(BitmapInfo	*bi,	HWND	hWnd
);

Remarks:
This	method	brings	up	the	standard	3ds	max	Image	Input	Options	dialog	box.
If	the	users	selects	OK	from	the	dialog,	the	appropriate	data	members	of
BitmapInfo	*bi	are	filled	specifying	the	user's	choices.	These	are	the
'Custom'	fields	accessed	using	methods	such	as	GetCustomX(),
GetCustomGamma(),	GetCustomStep(),	etc.

Parameters:
BitmapInfo	*bi
The	instance	of	BitmapInfo	that	is	updated	based	on	the	users	dialog
selections.
HWND	hWnd
The	parent	window	handle	for	the	dialog.

Return	Value:
Returns	TRUE	if	the	users	selects	OK	from	the	dialog;	otherwise	FALSE.

Prototype:
virtual	BOOL	SelectDeviceInput(BitmapInfo	*bi,	HWND	hWnd);

Remarks:
Brings	up	the	standard	3ds	max	Select	Image	Input	Device	dialog	box.	If	the
users	selects	OK	from	the	dialog,	then	bi->Device()	is	set	to	the	name	of	the
users	device	choice.

Parameters:
BitmapInfo	*bi
Points	to	the	instance	of	BitmapInfo	that	is	updated	based	on	the	users	dialog
selections.
HWND	hWnd
The	parent	window	handle	for	the	dialog.

Return	Value:
TRUE	if	the	user	exited	the	dialog	using	OK;	otherwise	FALSE.

Prototype:
virtual	BOOL	SelectDeviceOutput(BitmapInfo	*bi,	HWND
hWnd);

Remarks:
Brings	up	the	standard	3ds	max	Select	Image	Output	Device	dialog	box.	If	the
users	selects	OK	from	the	dialog,	then	bi->Device()	is	set	to	the	name	of	the
users	device	choice.

Parameters:

BitmapInfo	*bi
Points	to	the	instance	of	BitmapInfo	that	is	updated	based	on	the	users	dialog
selections.
HWND	hWnd
The	parent	window	handle	for	the	dialog.

Return	Value:
TRUE	if	the	user	exited	the	dialog	using	OK;	otherwise	FALSE.

Prototype:
virtual	BOOL	SelectFileOutput(BitmapInfo	*bi,	HWND	hWnd,
TCHAR	*title	=	NULL,	ULONG	*pflags	=	NULL);

Remarks:
Brings	up	the	standard	3ds	max	Browse	Images	for	Output	dialog	box.	If	the
users	selects	OK	from	the	dialog,	then	bi->Name()	is	set	to	the	name	of	the
users	file	choice.

Parameters:
BitmapInfo	*bi
Points	to	the	instance	of	BitmapInfo	that	is	updated	based	on	the	users	dialog
selections.
HWND	hWnd
The	parent	window	handle	for	the	dialog.
TCHAR	*title	=	NULL
The	optional	title	string	to	display	in	the	title	bar	of	the	dialog.
ULONG	*pflags	=	NULL
This	parameter	is	available	in	release	4.0	and	later	only.
One	of	the	following:
BMM_ENABLE_SAVE_REGION
This	flag	will	cause	the	"SaveRegion"	check	box	to	appear	in	the	dialog.
BMM_DO_SAVE_REGION
This	flag	will	return	the	state	of	the	check	box.

Return	Value:
TRUE	if	the	user	exited	the	dialog	using	OK;	otherwise	FALSE.
virtual	BOOL	SelectFileOutput	(BitmapInfo	*bi,	HWND	hWnd,	TCHAR

*title	=	NULL,	ULONG	*pflags	=	NULL)

Prototype:
virtual	BOOL	SelectFileInput(BitmapInfo	*bi,	HWND	hWnd,
TCHAR	*title	=	NULL);

Remarks:
Brings	up	the	standard	3ds	max	Browse	Images	for	Input	dialog	box.	If	the
users	selects	OK	from	the	dialog,	then	bi->Name()	is	set	to	the	name	of	the
users	file	choice.

Parameters:
BitmapInfo	*bi
The	instance	of	BitmapInfo	that	is	updated	based	on	the	users	dialog
selections.
HWND	hWnd
The	parent	window	handle	for	the	dialog.
TCHAR	*title	=	NULL
The	optional	title	string	to	display	in	the	title	bar	of	the	dialog.

Return	Value:
TRUE	if	the	user	exited	the	dialog	using	OK;	otherwise	FALSE.

Prototype:
virtual	BOOL	SelectFileInputEx(BitmapInfo	*bi,	HWND	hWnd,
TCHAR	*title	=	NULL,	BOOL	viewonly	=	FALSE);

Remarks:
This	method	brings	up	the	standard	3ds	max	Browse	Images	for	Input	dialog
box	(the	same	as	SelectFileInput())	but	a	"Devices"	button	is	present	so	the
user	can	select	both	image	files	and	image	devices.

Parameters:
BitmapInfo	*bi
The	instance	of	BitmapInfo	that	is	updated	based	on	the	users	dialog
selections.
HWND	hWnd
The	parent	window	handle	for	the	dialog.

TCHAR	*title	=	NULL
The	optional	title	string	to	display	in	the	title	bar	of	the	dialog.
BOOL	viewonly	=	FALSE
If	viewonly	is	set	to	TRUE,	the	View	button	is	hidden	in	the	dialog.

Return	Value:
TRUE	if	the	user	exited	the	dialog	using	OK;	otherwise	FALSE.

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.

Parameters:
int	cmd
The	index	of	the	command	to	execute.
ULONG	arg1=0
Optional	argument	1.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	these	parameters.
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	the	meaning	of	this	value.

Prototype:
virtual	void	BeginSavingLoadErrorFiles()=0;

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	for	accumulating	the	names	of	bitmap	files	that	didn't
load.	Instead	of	having	the	BitmapManager	display	the	missing	file	dialog,	it
now	just	collects	the	names	(which	can	be	retrieved	using
GetLoadErrorFileList()	below).

Prototype:
virtual	NameTab	&GetLoadErrorFileList()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	will	return	a	list	of	names	of	bitmap	files	that	were	not	found	as
discussed	in	the	method	above.	See	Class	NameTab.

Prototype:
virtual	void	EndSavingLoadErrorFiles()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	ends	the	accumulation	of	a	list	of	bitmap	files	that	didn't	load,
and	frees	the	list.	See	the	two	methods	above.

Prototype:
virtual	bool	CanImport(const	TCHAR*	filename)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	true	if	the	extension	of	the	specified	file	name	is	one	of	the	supported
types	(i.e.	there	is	a	BitmapIO	module	for	it);	otherwise	false.

Parameters:
const	TCHAR*	filename
The	file	name	to	check.

Class	IPoint2
See	Also:	Class	Point2.
class	IPoint2

Description:
This	class	describes	a	2D	point	using	int	x	and	y	coordinates.	Methods	are
provided	to	add	and	subtract	points,	multiply	and	divide	by	scalars,	normalize
and	compute	the	dot	product	of	two	IPoint2s.	All	methods	are	implemented	by
the	system.

Data	Members:
public:
int	x,y;

Methods:

Prototype:
IPoint2()

Remarks:
Constructor.

Prototype:
IPoint2(int	X,	int	Y)

Remarks:
Constructor.	Data	members	are	initialized	to	X	and	Y.

Prototype:
IPoint2(const	IPoint2&	a)

Remarks:
Constructor.	Data	members	are	initialized	to	a.x	and	a.y.

Prototype:
IPoint2(int	af[2])

Remarks:

Constructor.	Data	members	are	initialized	as	x	=	af[0]	and	y	=	af[1].

Prototype:
int	DotProd(const	IPoint2&)	const;

Remarks:
Returns	the	dot	product	of	two	IPoint2's.	This	is	the	sum	of	both	x	values
multiplied	together	and	both	y	values	multiplied	together.

Operators:

Prototype:
int&	operator[](int	i)
const	int&	operator[](int	i)	const

Remarks:
Allows	access	to	x,	y	using	the	subscript	operator.

Return	Value:
An	index	of	0	will	return	x,	1	will	return	y.

Prototype:
operator	int*()

Remarks:
Returns	the	address	of	the	IPoint2.x.

Prototype:
IPoint2	operator-()	const

Remarks:
Unary	-.	Negates	both	x	and	y.

Prototype:
IPoint2	operator+()	const

Remarks:
Unary	+.	Returns	the	Ipoint2	unaltered.

Prototype:
IPoint2&	operator-=(const	IPoint2&);

Remarks:
Subtracts	a	IPoint2	from	this	IPoint2.

Prototype:
IPoint2&	operator+=(const	IPoint2&);

Remarks:
Adds	a	IPoint2	to	this	IPoint2.

Prototype:
IPoint2&	operator*=(int);

Remarks:
Multiplies	this	IPoint2	by	an	integer	value.

Prototype:
IPoint2&	operator/=(int);

Remarks:
Divides	this	IPoint2	by	an	integer	value.

Prototype:
IPoint2	operator-(const	IPoint2&)	const;

Remarks:
Subtracts	a	IPoint2	from	a	IPoint2.

Prototype:
IPoint2	operator+(const	IPoint2&)	const;

Remarks:
Adds	a	IPoint2	to	a	IPoint2.

Prototype:

int	operator*(const	IPoint2&)	const;
Remarks:
Returns	the	dot	product	of	two	IPoint2's.	This	is	the	sum	of	both	x	values
multiplied	together	and	both	y	values	multiplied	together.

Prototype:
int	operator==(const	IPoint2&	p)	const

Remarks:
Equality	operator.	Compare	two	IPoint2's.

Return	Value:
Nonzero	if	the	IPoint2's	are	equal;	otherwise	0.
	

The	following	functions	are	not	members	of	class	IPoint2	but	are	available
for	use:

Function:
int	Length(const	IPoint2&	v);

Remarks:
Returns	the	length	of	the	IPoint2,	ie:
sqrt(v.x*v.x+v.y*v.y);

Function:
IPoint2	Normalize(const	IPoint2&);

Remarks:
Returns	a	unit	vector.	This	is	an	IPoint2	with	each	component	divided	by	the
point	Length().

Prototype:
IPoint2	operator*(int,	const	IPoint2&);
IPoint2	operator*(const	IPoint2&,	int);

Remarks:
Each	returns	an	IPoint2	multiplied	by	a	scalar.

Prototype:
IPoint2	operator/(const	IPoint2&,	int);

Remarks:
Returns	an	IPoint2	whose	x	and	y	members	are	divided	by	a	scalar.

Prototype:
ostream	&operator<<(ostream&,	const	IPoint2&);

Remarks:
Formats	the	IPoint2	for	output	as	in
(x,	y).

Prototype:
inline	int	MaxComponent(const	IPoint2&	p)

Remarks:
Returns	the	component	with	the	minimum	abs	value.	0=x,	1=y.

Prototype:
inline	int	MinComponent(const	IPoint2&	p)

Remarks:
Returns	the	component	with	the	minimum	abs	value.	0=x,	1=y.

Class	IPoint3
See	Also:	Class	Point3.
class	IPoint3

Description:
This	class	describes	a	3D	point	using	integer	x,	y	and	z	coordinates.	Methods	are
provided	to	add	and	subtract	points,	multiply	and	divide	by	scalars,	and	element
by	element	multiply	and	divide	two	points.	All	methods	are	implemented	by	the
system.

Methods:

Data	Members:
public:
int	x,y,z;

Prototype:
IPoint3()

Remarks:
Constructor.	No	initialization	is	performed.

Prototype:
IPoint3(int	X,	int	Y,	int	Z)

Remarks:
Constructor.	x,	y,	and	z	are	initialized	to	the	values	specified.

Prototype:
IPoint3(const	IPoint3&	a)

Remarks:
Constructor.	x,	y,	and	z	are	initialized	to	the	IPoint3	specified.

Prototype:
IPoint3(int	ai[3])

Remarks:
Constructor.	x,	y,	and	z	are	initialized	to.	ai[0],	ai[1],	and	ai[2]	respectively.

Prototype:
int	DotProd(const	IPoint3&)	const;

Remarks:
Returns	the	dot	product	of	two	IPoint3s.

Prototype:
IPoint3	CrossProd(const	IPoint3&)	const;

Remarks:
Returns	the	cross	product	of	two	IPoint3's	(vectors).

Operators:

Prototype:
int&	operator[](int	i)
const	int&	operator[](int	i)	const

Remarks:
Allows	access	to	x,	y	and	z	using	the	[]	operator.

Return	Value:
An	index	of	0	will	return	x,	1	will	return	y,	2	will	return	z.

Prototype:
operator	int*()

Remarks:
Conversion	function.	Returns	the	address	of	the	IPoint3.

Prototype:
IPoint3	operator-()	const

Remarks:
Unary	-	operator.	Negates	x,	y	and	z.

Prototype:
IPoint3	operator+()	const

Remarks:
Unary	+.	Returns	the	point	unaltered.

Prototype:
IPoint3&	operator-=(const	IPoint3&);

Remarks:
Subtracts	a	IPoint3	from	this	IPoint3.

Prototype:
IPoint3&	operator+=(const	IPoint3&);

Remarks:
Adds	a	IPoint3	to	this	IPoint3.

Prototype:
IPoint3	operator-(const	IPoint3&)	const;

Remarks:
Subtracts	a	IPoint3	from	a	IPoint3.

Prototype:
IPoint3	operator+(const	IPoint3&)	const;

Remarks:
Adds	a	IPoint3	to	a	IPoint3.

Prototype:
int	operator*(const	IPoint3&)	const;

Remarks:
Returns	the	dot	product	of	two	IPoint3s.

Prototype:

IPoint3	operator^(const	IPoint3&)	const;
Remarks:
The	cross	product	of	two	IPoint3's	(vectors).

Prototype:
int	operator==(const	IPoint3&	p)	const

Remarks:
Test	for	equality	between	two	IPoint3's.

Return	Value:
Nonzero	if	the	IPoint3's	are	equal;	otherwise	0.
	

The	following	functions	are	not	members	of	IPoint3	but	are	available	for
use:

Prototype:
int	MaxComponent(const	IPoint3&);

Remarks:
Returns	the	component	with	the	maximum	absolute	value.	0=x,	1=y,	2=z.

Prototype:
int	MinComponent(const	IPoint3&);

Remarks:
Returns	the	component	with	the	minimum	absolute	value.	0=x,	1=y,	2=z.

Prototype:
inline	float	Length(const	IPoint3&	v)

Remarks:
Returns	the	'Length'	of	the	point.	This	is	sqrt(v.x*v.x+v.y*v.y+v.z*v.z)

Prototype:
ostream	&operator<<(ostream&,	const	IPoint3&);

Remarks:
Formats	the	IPoint3	for	output	as	in:
(x,	y,	z)

Class	Box2
See	Also:	Class	IPoint2,	Data	Types.
class	Box2	:	public	RECT

Description:
This	class	describes	a	2D	rectangular	region	using	integer	coordinates.	This	class
is	sub-classed	from	RECT	(from	the	Windows	API).	Box2	provides	methods	that
return	individual	coordinates	of	the	box,	scale	and	translate	it,	retrieve	its	center,
modify	its	size,	expand	it	to	include	points	or	other	boxes,	and	determine	if
points	are	inside	the	box.	All	methods	are	implemented	by	the	system.

Methods:

Prototype:
Box2();

Remarks:
Constructs	a	Box2	object.	The	box	is	initialized	such	that	it	is	'empty'.	See
IsEmpty()	below.

Prototype:
Box2(const	IPoint2	a,	const	IPoint2	b);

Remarks:
Constructs	a	Box2	object	from	the	specified	corners.

Parameters:
const	IPoint2	a
The	upper	left	corner	of	the	box.
const	IPoint2	b
The	lower	right	corner	of	the	box.

Prototype:
int	IsEmpty();

Remarks:
Determines	whether	the	box	has	been	'Set	Empty'	(see	below).	When	a	box	is
created	using	the	default	constructor	it	is	set	to	'empty'.

Return	Value:
TRUE	if	the	box	is	empty;	FALSE	otherwise.

Prototype:
void	SetEmpty();

Remarks:
Sets	the	box	to	'empty'.	This	indicates	the	box	has	not	had	specific	values	set
by	the	developer.

Prototype:
void	Rectify();

Remarks:
Adjusts	the	coordinates	of	the	box	such	that	top<bottom	and	left<right.

Prototype:
void	Scale(float	f);

Remarks:
Scales	the	coordinates	of	the	box	about	the	center	of	the	box.

Parameters:
float	f
Specifies	the	scale	factor.

Prototype:
void	Translate(IPoint2	t);

Remarks:
Translate	the	box	by	the	distance	specified.

Parameters:
IPoint2	t
The	distance	to	translate	the	box.

Prototype:
IPoint2	GetCenter()

Remarks:
Returns	the	center	of	the	box	(the	midpoint	between	the	box	corners).

Prototype:
int	x()

Remarks:
Returns	the	minimum	x	coordinate	of	the	box.

Prototype:
int	y()

Remarks:
Returns	the	minimum	y	coordinate.

Prototype:
int	w()

Remarks:
Returns	the	width	of	the	box.

Prototype:
int	h()

Remarks:
Returns	the	height	of	the	box.

Prototype:
void	SetW(int	w)

Remarks:
Sets	the	box	width	to	the	width	specified.	The	'right'	coordinate	is	adjusted
such	that:
right	=	left	+	w	-1

Parameters:
int	w

The	new	width	for	the	box.

Prototype:
void	SetH(int	h)

Remarks:
Sets	the	height	of	the	box	to	the	height	specified.	The	'bottom'	coordinate	is
adjusted	such	that:
bottom	=	top	+	h	-1;

Parameters:
int	h
The	new	height	for	the	box.

Prototype:
void	SetX(int	x)

Remarks:
Sets	the	left	coordinate	of	the	box	to	x.

Parameters:
int	x
The	new	value	for	the	left	coordinate.

Prototype:
void	SetY(int	y)

Remarks:
Set	the	top	coordinate	to	y.

Parameters:
int	y
The	new	value	for	the	top	coordinate.

Prototype:
void	SetWH(int	w,	int	h)

Remarks:

Sets	both	the	width	and	height	of	the	box.
Parameters:
int	w
The	new	width	for	the	box.
int	h
The	new	height	of	the	box.

Prototype:
void	SetXY(int	x,	int	y)

Remarks:
Sets	both	the	left	and	top	coordinates	of	the	box.

Parameters:
int	x
The	new	left	coordinate.
int	y
The	new	top	coordinate.

Prototype:
int	Contains(const	IPoint2&	p)	const

Remarks:
Determines	if	the	point	passed	is	contained	within	the	box.	Returns	nonzero	if
the	point	is	inside	the	box;	otherwise	0.

Operators:

Prototype:
Box2&	operator=(const	RECT&	r);
Box2&	operator=(RECT&	r);

Remarks:
Assignment	operators.	Copies	the	specified	source	RECT	into	this	Box2
object.

Prototype:

Box2&	operator+=(const	Box2&	b);
Remarks:
Expands	this	Box2	to	completely	include	box	b.

Prototype:
Box2&	operator+=(const	IPoint2&	p);

Remarks:
Expands	this	Box2	to	include	point	p.

Prototype:
int	operator==(const	Box2&	b)	const

Remarks:
Equality	operator.	Determines	whether	b	is	equal	to	Box2.	Returns	nonzero	if
the	boxes	are	equal;	0	otherwise.

Class	Box3
See	Also:	Class	Point3,	Class	Matrix3.
class	Box3

Description:
This	class	represents	a	3D	box	volume	described	by	two	3D	corner	coordinates.
Box3	provides	methods	that	return	individual	coordinates	of	the	box,	scale	and
translate	it,	retrieve	its	center,	modify	its	size,	expand	it	to	include	points	or	other
boxes,	and	determine	if	points	are	inside	the	box.	All	methods	are	implemented
by	the	system.

Data	Members:
public:
Point3	pmin,pmax;
The	corners	of	the	3D	box.

Methods:

Prototype:
Box3();

Remarks:
Constructor.	The	corners	of	the	box	are	initialized	such	that	the	box	is	'empty'.
See	IsEmpty().

Prototype:
Box3(const	Point3&	p,	const	Point3&	q)

Remarks:
Constructor.	The	corners	of	the	box	are	initialized	to	the	points	passed.
pmin=p;	pmax	=	q.

Prototype:
void	Init();

Remarks:
Initializes	this	box	such	that	pmin	is	a	very	large	value	while	pmax	is	a	small

value.	Thus	the	box	is	'empty'.	See	IsEmpty().

Prototype:
int	IsEmpty()	const;

Remarks:
Determines	if	the	box	is	empty.	This	indicates	the	box	has	not	had	specific
values	set	by	the	developer.

Return	Value:
Nonzero	if	the	box	is	empty;	otherwise	0.

Prototype:
void	MakeCube(const	Point3&	p,	float	side);

Remarks:
Modifies	this	box	such	that	half	the	side	length	is	subtracted	from	pmin	and
added	to	pmax.	This	creates	a	cube	with	the	specified	center	p	and	side
length	side.

Parameters:
const	Point3&	p
Specifies	the	center	point	of	the	cube.
float	side
Specifies	the	side	length.

Prototype:
Point3	Min()	const

Remarks:
Returns	the	value	of	corner	pmin.

Prototype:
Point3	Max()	const

Remarks:
Returns	the	value	of	corner	pmax.

Prototype:
Point3	Center()	const

Remarks:
Returns	the	center	of	this	Box3	as	a	Point3.

Prototype:
Point3	Width()	const

Remarks:
Returns	the	width	of	the	box	as	a	Point3.	This	is	pmax-pmin.

Prototype:
void	Scale(float	s);

Remarks:
Scales	this	box	about	its	center	by	the	specified	scale.

Parameters:
float	s
Specifies	the	scale	factor	for	this	Box3.

Prototype:
void	Translate(const	Point3	&p);

Remarks:
Translates	this	box	by	the	distance	specified.	The	point	is	added	to	each
corner.

Parameters:
const	Point3	&p
Specifies	the	distance	to	translate	the	box.

Prototype:
void	EnlargeBy(float	s);

Remarks:
Enlarges	this	box.	A	Point3	is	created	from	s	as	Point3(s,s,s)	and	added	to

pmax	and	subtracted	from	pmin.	If	the	box	is	'empty',	the	box	is	centered	at
(0,0,0)	and	then	enlarged.

Prototype:
int	Contains(const	Point3&	p)	const;

Remarks:
Determines	if	the	specified	point	p	is	contained	in	this	box.

Parameters:
const	Point3&	p
Specifies	the	point	to	check.

Return	Value:
Nonzero	if	the	specified	point	is	contained	in	this	box;	otherwise	0.

Prototype:
int	Contains(const	Box3&	b)	const;

Remarks:
Determines	if	the	specified	Box3	is	contained	totally	within	this	box.

Parameters:
const	Box3&	b
Specifies	the	box	to	check.

Return	Value:
Nonzero	if	the	specified	box	is	entirely	contained	within	this	box;	otherwise	0.

Operators:

Prototype:
Point3	operator[](int	i)	const;

Remarks:
Operator[]	returns	the	'i-th'	corner	point:
Mapping	:	X	Y	Z
[0]	:	(min,min,min)
[1]	:	(max,min,min)
[2]	:	(min,max,min)

[3]	:	(max,max,min)
[4]	:	(min,min,max)
[5]	:	(max,min,max)
[6]	:	(min,max,max)
[7]	:	(max,max,max)

Parameters:
int	i
Specifies	the	corner	to	retrieve	(0	<=	i	<=	7)

Return	Value:
The	'i-th'	corner	point	as	a	Point3.

Prototype:
Box3&	operator+=(const	Point3&	p);

Remarks:
Expands	this	Box3	to	include	the	Point3	p.

Parameters:
const	Point3&	p
Specifies	the	point	to	expand	the	box	to	include.

Prototype:
Box3&	operator+=(const	Box3&	b);

Remarks:
Expands	this	Box3	to	include	the	Box3	b.

Parameters:
const	Box3&	b
Specifies	the	Box3	to	expand	this	box	to	include.

Prototype:
Box3	operator*(const	Matrix3&	tm)	const;

Remarks:
Returns	a	box	that	bounds	the	8	transformed	corners	of	the	input	box.

Parameters:
const	Matrix3&	tm
Specifies	the	matrix	to	transform	the	box	corners	by.

Class	Matrix2
See	Also:	Class	Point2,	Class	Point3,	Class	Matrix3.
class	Matrix2

Description:
This	class	defines	a	3x2	2D	transformation	matrix.	Methods	are	provided	to	zero
the	matrix,	set	it	to	the	identity	matrix,	translate,	rotate	and	scale	it,	and	compute
its	inverse.	Operators	are	available	for	matrix	addition,	subtraction	and
multiplication.	All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
float	m[3][2];

Methods:

Prototype:
Matrix2()

Remarks:
Constructor.	No	initialization	is	done	in	this	constructor.	Use	Zero()	or
IdentityMatrix()	to	initialize	the	matrix.

Prototype:
Matrix2(float	(*fp)[2]);

Remarks:
Constructor.	The	matrix	is	initialized	using	fp.

Operators:

Prototype:
Matrix2&	operator-=(const	Matrix2&	M);

Remarks:
Subtracts	a	Matrix2	from	this	Matrix2.

Prototype:

Matrix2&	operator+=(const	Matrix2&	M);
Remarks:
Adds	a	Matrix2	to	this	Matrix2.

Prototype:
Matrix2&	operator*=(const	Matrix2&	M);

Remarks:
Matrix	multiplication	between	this	Matrix2	and	M.

Prototype:
operator	float*()

Remarks:
Returns	the	address	of	the	Matrix2.

Prototype:
void	IdentityMatrix();

Remarks:
Sets	this	Matrix2	to	the	Identity	Matrix.

Prototype:
void	Zero();

Remarks:
Set	all	elements	of	this	Matrix2	to	0.0f

Prototype:
Point2	GetRow(int	i)	const;

Remarks:
Returns	the	specified	row	of	this	matrix.

Parameters:
int	i
Specifies	the	row	to	retrieve	(0-2).

Prototype:
void	SetRow(int	i,	Point2	p);

Remarks:
Sets	the	specified	row	of	this	matrix.

Parameters:
int	i
Specifies	the	row	to	set	(0-2).
Point2	p
The	values	to	set.

Prototype:
Point3	GetColumn(int	i);

Remarks:
Returns	the	specified	column	of	this	matrix.

Parameters:
int	i
Specifies	the	column	to	retrieve	(0	or	1).

Prototype:
void	SetColumn(int	i,	Point3	col);

Remarks:
Sets	the	specified	column	of	this	matrix.

Parameters:
int	i
Specifies	the	column	to	set	(0	or	1).
Point3	col
The	values	to	set.

Prototype:
Point2	GetColumn2(int	i);

Remarks:

This	method	returns	a	Point2	containing	the	upper	two	rows	of	the	specified
column.

Parameters:
int	i
Specifies	the	column	to	get	(0	or	1).

Prototype:
void	SetTrans(const	Point2	p);

Remarks:
Sets	the	translation	row	of	the	matrix	to	the	specified	values.

Parameters:
const	Point2	p
The	values	to	set.

Prototype:
void	SetTrans(int	i,	float	v);

Remarks:
Sets	the	specified	element	of	the	translation	row	of	this	matrix	to	the	specified
value.

Parameters:
int	i
Specifies	which	column	to	set	(0	or	1)
float	v
The	value	to	store.

Prototype:
Point2	GetTrans();

Remarks:
Returns	the	translation	row	of	this	matrix.

Prototype:
void	SetTranslate(const	Point2&	s);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Initializes	the	matrix	to	the	identity	then	sets	the	translation	row	to	the
specified	values.

Parameters:
const	Point2&	s
The	values	to	store.

Prototype:
void	SetRotate(float	angle);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Initializes	the	matrix	to	the	identity	then	sets	the	rotation	to	the	specified
value.

Parameters:
float	angle
The	rotation	angle	in	radians.

Prototype:
void	Invert();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	matrix	may	be	used	to	invert	the	matrix	in	place.

Prototype:
void	Translate(const	Point2&	p);

Remarks:
Apply	an	incremental	translation	to	this	matrix.

Parameters:
const	Point2&	p
Specifies	the	amount	to	translate	the	matrix.

Prototype:
void	Rotate(float	angle);

Remarks:
Apply	an	incremental	rotation	to	this	matrix	using	the	specified	angle.

Parameters:
float	angle
Specifies	the	angle	of	rotation.

Prototype:
void	Scale(const	Point2&	s,	BOOL	trans);

Remarks:
Apply	an	incremental	scaling	to	this	matrix	using	the	specified	scale	factors.

Parameters:
const	Point2&	s
The	scale	factors.
BOOL	trans	=	FALSE
If	set	to	TRUE,	the	translation	component	is	scaled.	If	trans	=	FALSE	the
translation	component	is	unaffected.	When	3ds	max	was	originally	written
there	was	a	bug	in	the	code	for	this	method	where	the	translation	portion	of	the
matrix	was	not	being	scaled.	This	meant	that	when	a	matrix	was	scaled	the
bottom	row	was	not	scaled.	Thus	it	would	always	scale	about	the	local	origin
of	the	object,	but	it	would	scale	the	world	axes.	When	this	bug	was
discovered,	dependencies	existed	in	the	code	upon	this	bug.	Thus	it	could	not
simply	be	fixed	because	it	would	break	the	existing	code	that	depended	upon	it
working	the	incorrect	way.	To	correct	this	the	trans	parameter	was	added.	If
this	is	set	to	TRUE,	the	translation	component	will	be	scaled	correctly.	The
existing	plug-ins	don't	use	this	parameter,	it	defaults	to	FALSE,	and	the	code
behaves	the	old	way.

Prototype:
Matrix2	operator*(const	Matrix2&	B)	const;

Remarks:
Perform	matrix	multiplication.

Prototype:
Matrix2	operator+(const	Matrix2&	B)	const;

Remarks:
Perform	matrix	addition.

Prototype:
Matrix2	operator-(const	Matrix2&	B)	const;

Remarks:
Perform	matrix	subtraction.
	

The	following	functions	are	not	members	of	Matrix2	but	are	available	for
use:

Function:
Matrix2	RotateMatrix(float	angle);

Remarks:
Builds	an	identity	matrix	and	sets	the	rotation	components	based	on	the
specified	angle.

Parameters:
float	angle
Specifies	the	angle	of	rotation.

Return	Value:
A	new	Matrix2	object	with	the	specified	rotation	angle.

Function
Matrix2	TransMatrix(const	Point2&	p);

Remarks:
Builds	an	identity	matrix	and	sets	the	specified	translation	components.

Parameters:
const	Point2&	p
Specifies	the	translation.

Return	Value:
A	new	Matrix2	object	with	the	specified	translation.

Function:
Matrix2	ScaleMatrix(const	Point2&	s);

Remarks:
Builds	an	identity	matrix	and	sets	the	specified	scaling	components.

Parameters:
const	Point2&	s
Specifies	the	scale	factors.

Return	Value:
A	new	Matrix2	object	with	the	specified	scale.

Function:
Matrix2	Inverse(const	Matrix2&	M);

Remarks:
Returns	the	inverse	of	the	specified	Matrix2.

Parameters:
const	Matrix2&	M
Specifies	the	matrix	to	return	the	inverse	of.

Return	Value:
The	inverse	of	the	specified	Matrix2.

Function:
Point2	operator*(const	Matrix2&	A,	const	Point2&	V);
Point2	operator*(const	Point2&	V,	const	Matrix2&	A);

Remarks:
Transforms	the	specified	Point2	with	the	specified	Matrix2.

Parameters:
const	Matrix2&	A
The	matrix	to	transform	the	point	with.
const	Point2&	V
The	point	to	transform.

Return	Value:
The	transformed	Point2.

Function:
Point2	VectorTransform(const	Matrix2&	M,	const	Point2&	V);

Remarks:
This	method	transforms	a	2D	point	by	a	2x3	matrix.	This	is	analogous	to	the
3D	case.

Parameters:

const	Matrix2&	M
The	matrix	to	transform	the	point	with.
const	Point2&	V
The	point	to	transform.

Return	Value:
The	transformed	Point2.

Function:
ostream	&operator<<	(ostream&	s,	const	Matrix2&	A);

Remarks:
Formats	the	matrix	for	output.

Structure	AffineParts
See	Also:	Class	Matrix3,	Class	Quat,	Class	Point,	Class	ScaleValue.

Description:
This	structure	and	the	associated	functions	provide	a	way	to	decompose	an
arbitrary	Matrix3	into	its	translation,	rotation,	and	scale	components.
To	use	these	APIs	put	the	following	statement	in	your	source	file:
#include	"decomp.h"

For	a	full	discussion	of	this	decomposition	see	Graphics	Gems	IV	-	Polar	Matrix
Decomposition	by	Ken	Shoemake.	ISBN	0-12-336155-9.
T	F	R	U	K	U'
T	-	translation	matrix
F	-	either	an	identity	matrix	or	negative	identity	matrix
R	-	rotation	defined	by	Quat	q.
U	-	rotates	you	into	the	coordinates	system	where	the	scaling	or	stretching	is
done
K	-	scaling	matrix
U'	-	inverse	of	u.

Structure:
typedef	struct	{
Point3	t;
The	translation	components.
Quat	q;
The	essential	rotation.
Quat	u;
The	stretch	rotation.	This	is	the	axis	system	of	the	scaling	application.
Point3	k;
The	stretch	factors.	These	are	the	scale	factors	for	x,	y	and	z.
float	f;
Sign	of	the	determinant.

}	AffineParts;

Functions:

Prototype:
void	decomp_affine(Matrix3	A,	AffineParts	*parts);

Remarks:
This	will	decompose	a	matrix	into	the	translation,	rotation	and	scale
components	and	store	the	results	in	the	AffineParts	structure	passed.	This
will	return	correct	results	for	off	axis	scale.	This	is	a	fairly	computationally
intensive	iterative	solution	operation.

Parameters:
Matrix3	A
The	input	matrix	to	decompose.
AffineParts	*parts
The	result.	See	above.

Sample	Code:
Note:	If	you	want	to	rebuild	a	Matrix3	from	the	decomposed	parts	you	get
back	from	decomp_affine()the	important	thing	is	the	order	the	parts	are
combined.
Consider	the	following	matrices	constructed	from	the	various	affine	parts:

ptm	=	position	component	(t)
rtm	=	"essential"	rotation	(q)
srtm	=	"stretch"	rotation	(u)
stm	=	scale	component	(k)
ftm	=	the	flip	tm	->	ScaleMatrix(Point3(ap.f,ap.f,ap.f));

Here's	the	correct	way	of	reassembling	the	decomposed	matrix:
Matrix3	srtm,	rtm,	ptm,	stm,	ftm;
ptm.IdentityMatrix();
ptm.SetTrans(ap.t);	
ap.q.MakeMatrix(rtm);
ap.u.MakeMatrix(srtm);
stm	=	ScaleMatrix(ap.k);
mat	=	Inverse(srtm)	*	stm	*	srtm	*	rtm	*	ftm	*	ptm;

Prototype:

void	SpectralDecomp(Matrix3	m,	Point3	&s,	Quat&	q);
Remarks:
This	is	another	way	to	decompose	a	matrix	into	the	scale	and	rotation	parts
(the	position	part	can	be	retrieved	from	the	bottom	row	of	the	matrix).	This
does	not	return	correct	results	for	off	axis	scale.

Parameters:
Matrix3	m
The	input	matrix	to	decompose.
Point3	&s
The	scale	from	the	matrix.
Quat&	q
The	rotation	of	the	matrix.

Prototype:
void	invert_affine(AffineParts	*parts,	AffineParts	*inverse);

Remarks:
This	is	used	to	take	the	AffineParts	and	inverts	them.	This	gives	you	the
equivalent	parts	for	the	inverse	matrix.

Parameters:
AffineParts	*parts
The	input	AffineParts	pointer.
AffineParts	*inverse
The	inverse	of	parts.

Class	AngAxis
See	Also:	Class	Quat,	Class	Point3.
class	AngAxis

Description:
This	class	provides	a	representation	for	orientation	in	three	space	using	an	angle
and	axis.	This	class	is	similar	to	a	quaternion,	except	that	a	normalized
quaternion	only	represents	-PI	to	+PI	rotation.	This	class	will	have	the	number	of
revolutions	stored.	All	methods	of	this	class	are	implemented	by	the	system.
The	rotation	convention	in	the	3ds	max	API	is	the	left-hand-rule.	Note	that	this
is	different	from	the	right-hand-rule	used	in	the	3ds	max	user	interface.

Data	Members:
public:
Point3	axis;
The	axis	of	rotation.
float	angle;
The	angle	of	rotation	about	the	axis	in	radians.	This	angle	is	left	handed.

Methods:

Prototype:
AngAxis()

Remarks:
Constructor.	No	initialization	is	performed.

Prototype:
AngAxis(const	Point3&	axis,float	angle)

Remarks:
Constructor.	Data	members	are	initialized	to	the	specified	values.

Prototype:
AngAxis(float	x,	float	y,	float	z,	float	ang);

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Constructor.	The	AngAxis	is	initialized	from	the	specified	values.

Parameters:
float	x
The	x	component	of	the	axis.
float	y
The	y	component	of	the	axis.
float	z
The	z	component	of	the	axis.
float	ang
The	angle	component	in	radians.

Prototype:
AngAxis(const	Matrix3&	m);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Constructor.	The	AngAxis	is	initialized	with	the	rotation	from	the	specified
matrix.

Parameters:
const	Matrix3&	m
The	rotation	used	to	initialize	the	AngAxis.

Prototype:
AngAxis(const	Quat	&q);

Remarks:
Constructor.	Data	members	are	initialized	equal	to	the	specified	Quat.

Prototype:
AngAxis&	Set(float	x,	float	y,	float	z,	float	ang);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	angle	and	axis	to	the	specified	values.

Parameters:
float	x
Specifies	the	x	component	of	the	axis.
float	y
Specifies	the	xycomponent	of	the	axis.
float	z
Specifies	the	z	component	of	the	axis.
float	ang
Specifies	the	angle	to	set	in	radians.

Return	Value:
A	reference	to	this	AngAxis.

Prototype:
AngAxis&	Set(const	Point3&	ax,	float	ang);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	angle	and	axis	to	the	specified	values.

Parameters:
const	Point3&	ax
Specifies	the	axis	to	set.
float	ang
Specifies	the	angle	to	set	in	radians.

Return	Value:
A	reference	to	this	AngAxis.

Prototype:
AngAxis&	Set(const	Quat&	q);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	angle	and	axis	based	on	the	rotations	from	the	specified	quaternion.

Parameters:
const	Quat&	q

Specifies	the	angle	and	axis	to	use.
Return	Value:
A	reference	to	this	AngAxis.

Prototype:
AngAxis&	Set(const	Matrix3&	m);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	angle	and	axis	based	on	the	rotations	from	the	specified	matrix.

Parameters:
const	Matrix3&	m
Specifies	the	angle	and	axis	to	use.

Return	Value:
A	reference	to	this	AngAxis.

Prototype:
int	GetNumRevs();

Remarks:
Returns	the	number	of	revolutions	represented	by	the	angle.	This	returns
int(angle/TWOPI);

Prototype:
void	SetNumRevs(int	num);

Remarks:
Sets	the	number	of	revolution	to	num.	This	modifies	angle:	angle	+=
float(num)*TWOPI;

Class	ScaleValue
See	Also:	Class	Point3,	Class	Quat.
class	ScaleValue

Description:
A	ScaleValue	describes	an	arbitrary	non-uniform	scaling	in	an	arbitrary	axis
system.	The	Point3	s	gives	the	scaling	along	the	x,	y,	and	z	axes,	and	the
quaternion	q	defines	the	axis	system	in	which	scaling	is	to	be	applied.	All
methods	are	implemented	by	the	system.

Data	Members:
public:
Point3	s;
Scale	components.
Quat	q;
The	axis	system	of	application.

Methods:

Prototype:
ScaleValue()

Remarks:
Constructor.	No	initialization	is	performed.

Prototype:
ScaleValue(const	Point3&	as)

Remarks:
Constructor.	The	scale	data	member	is	initialized	to	as.	The	quaternion	data
member	is	set	to	the	identity.

Prototype:
ScaleValue(const	Point3&	as,	const	Quat&	aq)

Remarks:
Constructor.	The	scale	data	member	is	initialized	to	as.	The	quaternion	data

member	is	set	to	aq.

Operators:

Prototype:
ScaleValue&	operator+=(const	ScaleValue&	s)

Remarks:
Adds	a	ScaleValue	to	this	ScaleValue.

Prototype:
ScaleValue&	operator*=(const	float	s)

Remarks:
Multiplies	this	ScaleValue	by	a	float.	This	updates	the	scale	components.

Prototype:
float&	operator[](int	el)

Remarks:
Array	access	operator.	This	allows	the	scale	components	to	be	accessed	using
the	array	operator.

Parameters:
int	el
Specifies	the	element	to	access:	0=x,	1=y,	2=z.
	

The	following	operators	are	not	part	of	the	ScaleValue	class	but	are
available	for	use:

Prototype:
ScaleValue	operator+(const	ScaleValue&	s0,	const	ScaleValue&
s1);

Remarks:
Returns	the	sum	of	two	ScaleValues.	This	still	multiplies	since	scale	values	are
multiplicative	not	additive.

Prototype:
ScaleValue	operator-(const	ScaleValue&	s0,	const	ScaleValue&
s1);

Remarks:
Returns	the	difference	of	two	ScaleValues.

Prototype:
ScaleValue	operator*(const	ScaleValue&	s,	float	f);

Remarks:
Multiplication	of	a	ScaleValue	and	a	float.

Prototype:
ScaleValue	operator*(float	f,	const	ScaleValue&	s);

Remarks:
Multiplication	of	a	ScaleValue	and	a	float.

Prototype:
ScaleValue	operator+(const	ScaleValue&	s,	float	f);

Remarks:
Returns	the	sum	of	a	ScaleValue	and	a	float.	This	adds	f	to	s.x,	s.y,	and	s.z.

Prototype:

ScaleValue	operator+(float	f,	const	ScaleValue&	s);
Remarks:
Returns	the	sum	of	a	ScaleValue	and	a	float.

Class	GraphicsWindow
See	Also:	Interactive	Renderer:	Graphics	Window,	Class	GWinSetup,	Class
HitRegion,	List	of	Marker	Types,	List	of	Rendering	Limits,	Class	Point3,	Class
IPoint3,	Class	Matrix3,	Class	Interface,	Class	ViewExp.
class	GraphicsWindow	:	public	InterfaceServer

Description:
The	abstract	graphics	window	class.	The	methods	here	provide	low-level	access
to	3ds	max's	graphics	system.	These	methods	are	available	for	plug-ins	to	do	any
graphics	work	not	possible	using	the	standard	high-level	graphics	methods	of
3ds	max.
These	methods	are	for	use	in	the	existing	3ds	max	viewports.	Note	that	these
APIs	are	not	for	casual	use,	as	they	are	not	intended	to	be	a	high	level	graphics
library.	For	example,	many	steps	are	required	to	display	a	single	lit	polygon.
These	APIs	are	optimized	for	speed,	and	not	at	all	for	plug-in	programmer	ease
of	use.
These	methods	are	provided,	however,	so	that	developers	can	do	things	that	are
otherwise	impossible	using	the	high-level	methods.
Developers	should	use	these	methods	with	an	understanding	of	exactly	what
they	are	doing	since	it's	quite	easy	to	crash	3ds	max	when	inappropriate
arguments	are	supplied.	The	calls	are	specifically	optimized	for	exactly	the
way	3ds	max	uses	them.	In	no	way	should	the	calls	in	GraphicsWindow	be
considered	an	"ordinary"	2D/3D	API.	(That's	what	OpenGL,	D3D,	and
HEIDI	are	for.)
One	final	note	of	warning:	most	graphics	windows	methods	execute	in	a	separate
thread	(or	in	multiple	separate	threads)	that	are	owned	by	the	graphics	window.
Thus,	due	to	thread	scheduling,	when	a	bad	argument	or	incorrect	sequencing	of
graphics	windows	calls	causes	3ds	max	to	crash,	it	is	not	at	all	easy	to	figure	out
where	the	problem	is.	In	particular,	the	location	of	the	main	3ds	max	thread	is
not	relevant.
All	the	methods	of	this	class	are	implemented	by	the	system.

Method	Groups:
The	hyperlinks	below	jump	to	the	start	of	related	methods	within	the	class:
Driver/Configuration/Support	Methods
Window	/	Viewport	Transformations	Methods

Drawing	Setup
Drawing	Methods	(text,	polylines,	markers)
Device	Independent	Bitmap	Access
Position/Size/Depth/Clipping	Methods
Get/Set	Buffers	Methods
Texture	Methods
Material	Methods
Lights	and	Camera	Methods
Coordinate	Transformation	Methods
Hit	Testing	Methods
Utility	Functions

Methods:

Driver/Configuration/Support	Methods
Prototype:
virtual	void	postCreate(int	ct,	GraphicsWindow	**gw)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	called	after	all	four	GraphicsWindows	used	by	3ds	max	are	created.
SDK	users	shouldn't	need	this	call

Prototype:
virtual	void	shutdown()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	used	to	tell	the	driver	that	it	is	shutting	down.

Prototype:
virtual	int	getVersion()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	returns	"0x200"	to	indicate	R2.0

Prototype:
virtual	TCHAR	*getDriverString()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	identifies	the	driver	(and	includes	manufacturer	info	if	available)

Prototype:
virtual	void	config(HWND	hWnd)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	called	to	put	up	the	config	dialog	if	the	driver	supports
GW_SPT_CAN_CONFIG

Parameters:
HWND	hWnd
The	parent	window	handle	for	the	dialog.

Prototype:
virtual	int	querySupport(int	what)	=	0;

Remarks:
Determines	if	the	driver	supports	the	specified	feature.

Parameters:
int	what
One	of	the	following	values:
GW_SPT_TXT_CORRECT
This	is	used	to	enable	or	gray-out	the	perspective	correction	right-click
viewport	menu	option.
GW_SPT_GEOM_ACCEL
This	is	used	to	indicate	to	3ds	max	(and	the	mesh	class	in	particular)	that
the	driver	wants	to	handle	all	of	the	3D	data	natively.	In	this	case,	meshes
are	rendered	by	passing	3D	world	space	data	and	letting	the	driver
transform,	clip,	and	light	the	vertices.	If	this	returns	FALSE,	then	the	mesh
class	handles	all	xforms/clip/lighting	calculations	(using	a	lazy	evaluation

algorithm)	and	then	calls	the	hPolygon	or	hPolyline	2	1/2D	calls	for	the
driver	to	rasterize.	(Primitives	that	are	actually	clipped	are	still	sent	to	the
polygon/polyline	methods.)
Right	now,	only	the	OpenGL	driver	returns	TRUE	to	this	query,	but	other
drivers	have	been	developed	that	return	TRUE,	and	the	HEIDI	and	D3D
drivers	may	change	in	the	future.
GW_SPT_TRI_STRIPS
If	this	returns	TRUE,	then	3ds	max	will	try	to	stripify	meshes	before	calling
the	rendering	methods.	Right	now,	the	drivers	just	return	the	user
preference	that	is	set	in	the	driver	config	dialog.	It	defaults	to	TRUE.
GW_SPT_DUAL_PLANES
If	a	driver	has	dual-planes	support	it	returns	TRUE.	Our	OpenGL	display
driver	only	returns	TRUE	for	this	if	the	underlying	display	driver	has
implemented	a	custom	OpenGL	extension	that	allows	us	to	handle	this
efficiently.
GW_SPT_SWAP_MODEL
This	returns	TRUE	if	3ds	max	has	to	redraw	the	whole	scene	any	time	the
viewports	are	exposed.
GW_SPT_INCR_UPDATE
This	returns	TRUE	if	the	driver	can	update	a	rectangular	subset	of	the
viewport	without	trashing	the	image	outside	that	rectangle.	This	is	TRUE
for	most	drivers	that	blit	the	viewport	region	and	FALSE	for	those	that	do
page-flipping	in	the	hardware.	For	OpenGL,	this	is	TRUE	if	the	display
driver	implements	the	Microsoft	glSwapRectHintWIN	extension.
GW_SPT_1_PASS_DECAL
This	is	TRUE	if	the	driver	can	handle	decalling	with	only	one	pass.	Right
now,	this	is	TRUE	for	OpenGL,	but	FALSE	for	HEIDI	and	D3D.	(And	as
with	all	of	these	options,	it	may	change	in	a	given	driver	anytime	in	the
future.)
GW_SPT_DRIVER_CONFIG
This	is	TRUE	if	the	driver	has	a	configuration	dialog	box.	This	is	TRUE	for
all	three	of	our	standard	drivers.
GW_SPT_TEXTURED_BKG
This	is	TRUE	if	the	viewport	background	is	implemented	as	a	textured

rectangle,	and	FALSE	if	it	is	a	blitted	bitmap.
GW_SPT_VIRTUAL_VPTS
This	is	TRUE	if	the	driver	allows	viewports	to	be	made	larger	than	the
physical	window	they	are	attached	to.	Right	now	this	is	ony	TRUE	for
OGL.
GW_SPT_PAINT_DOES_BLIT
This	is	TRUE	if	WM_PAINT	messages	result	in	a	blit	of	the	backbuffer	(as
opposed	to	a	page-flipping	swap).	This	allows	3ds	max	to	do	quick	damage
region	repair,	and	works	together	with	the	GW_SPT_SWAP_MODEL	flag.
GW_SPT_WIREFRAME_STRIPS
This	is	TRUE	if	the	driver	wants	3ds	max	to	send	down	wireframe	models
using	triangle	strips	instead	of	a	bundle	of	2-pt	segments.	This	is	only	used
by	the	OGL	driver,	and	it	is	there	as	a	user-choosable	performance-accuracy
tradeoff	(since	the	strips	are	faster	and	are	back-culled,	but	they
displayhidden	edges	as	though	they	are	visible).

Window	/	Viewport	/	Transformations	Methods
Prototype:
virtual	HWND	getHWnd(void)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	returns	the	"output"	window	handle.	(Input	goes	to	an	invisible	window
above	the	viewport.	The	invisible	window	is	owned	by	MAX.)

Prototype:
virtual	int	isPerspectiveView()	=	0;

Remarks:
Returns	TRUE	if	the	view	is	in	perspective	projection;	otherwise	FALSE
(orthographic	projection).

Prototype:
virtual	void	getTextExtents(TCHAR	*text,	SIZE	*sp)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	the	size	(in	pixels)	that	the	specified	text	string	will
occupy

Parameters:
TCHAR	*text
The	string	to	check.
SIZE	*sp
The	size	is	returned	here.	See	Data	Types.

Prototype:
virtual	void	setTransform(const	Matrix3	&m)	=	0;

Remarks:
Sets	the	current	transformation	matrix,	and	updates	the	modeling	coordinates
to	normalized	projection	coordinates	matrix.	This	routine	also	back-transforms
each	light	and	the	eye	point	(so	that	lighting	can	be	done	in	modeling
coordinates).
This	method	may	be	used	to	set	a	matrix	that	transforms	the	point	passed	to
the	drawing	methods	(like	text(),	marker(),	polyline()	or	polygon()).
Normally	these	methods	expect	world	coordinates.	However	if	this	matrix	is
set	to	an	objects	transformation	matrix	you	can	pass	objects	space	coordinates
and	they	will	be	transformed	into	world	space	(and	then	put	into	screen	space
when	they	are	drawn).	If	however	this	is	set	to	the	identity	matrix	you	would
pass	world	space	coordinates.	You	can	set	this	matrix	to	the	objects	matrix
using	the	following	code:
gw->setTransform(inode->GetObjectTM(t));

Note:	For	world-to-screen	space	conversions	by	the	methods	text(),
marker(),	polyline(),	polygon(),	etc,	a	developer	must	explicitly	set	this
matrix	to	the	identity.	This	is	because	the	GraphicsWindow	transform	may
have	a	non-identity	matrix	already	in	place	from	a	previous	operation.

Parameters:
const	Matrix3	&m
The	new	current	transformation	matrix.

Prototype:
virtual	BOOL	getFlipped()=0;

Remarks:
This	is	used	internally.	It	returns	if	the	determinant	of	the	current	transform	is
positive	or	negative.	If	it's	positive	0	is	returned;	if	it's	negative	1	is	returned.

Prototype:
virtual	void	setVirtualViewportParams(float	zoom,	float	xOffset,
float	yOffset)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	setup	a	virtual	viewport.	Note	that	this	is	a	no-op
unless	GW_SPT_VIRTUAL_VPTS	is	TRUE.	Plug-in	developers	should
not	call	this	method	--	it's	for	internal	use	only.

Prototype:
virtual	void	setUseVirtualViewport(int	onOff)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	set	a	virtual	viewport	as	active.	Note	that	this	is	a	no-op
unless	GW_SPT_VIRTUAL_VPTS	is	TRUE.	Plug-in	developers	should
not	call	this	method	--	it's	for	internal	use	only.

Parameters:
int	onOff
TRUE	to	set	the	virtual	viewport	active;	FALSE	to	make	it	inactive.

Position	/	Size	/	Depth	/	Clipping	Methods

Prototype:
virtual	void	setPos(int	x,	int	y,	int	w,	int	h)	=	0;

Remarks:
Sets	the	size	and	position	of	the	GraphicsWindow.	The	coordinates	are	all
Windows	coordinates	in	the	space	of	the	GraphicsWindows'	parent	window.

(The	origin	is	the	upper	left.)
Parameters:
int	x
Window	x	origin.
int	y
Window	y	origin.
int	w
Window	width.
int	h
Window	height.

Prototype:
virtual	void	setDisplayState(int	s)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
The	specified	value	may	be	sent	to	the	driver	to	indicate	the	display	state	of
the	viewport	window	controlled	by	the	driver.

Parameters:
int	s
The	display	state	to	set.	One	of	the	following	values:
GW_DISPLAY_MAXIMIZED
GW_DISPLAY_WINDOWED
GW_DISPLAY_INVISIBLE

Prototype:
virtual	int	getDisplayState()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	the	current	state.	One	of	the	following	values:
GW_DISPLAY_MAXIMIZED
GW_DISPLAY_WINDOWED
GW_DISPLAY_INVISIBLE

Prototype:
virtual	int	getWinSizeX()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	gets	the	current	window	size	in	X.

Prototype:
virtual	int	getWinSizeY()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	gets	the	current	window	size	in	Y.

Prototype:
virtual	DWORD	getWinDepth(void)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	the	z-buffer	depth	(in	bits)

Prototype:
virtual	DWORD	getHitherCoord()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	the	largest	device	Z	value.

Prototype:
virtual	DWORD	getYonCoord()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	the	smallest	device	Z	value.

Buffer	access	methods:

Prototype:

virtual	BOOL	setBufAccess(int	which,	int	b)	=	0;
Remarks:
This	method	is	used	internally.	Most	drivers	control	two	image	buffers.	One	is
displayed	on	the	screen,	and	the	other	is	used	to	rasterize	geometric	primitives.
When	rasterization	of	a	complete	frame	is	done,	the	off-screen	buffer	is	blitted
onto	the	display	screen.	This	is	referred	to	as	dual-plane	mode.	This	method
will	turn	dual-plane	mode	on	or	off.	This	is	used	internally	by	the
File/Preferences...	Viewport	page	Use	Dual	Planes	toggle.

Parameters:
int	which
Specifies	which	buffer	should	use	dual-planes.
BUF_F_BUFFER
The	image	(Framebuffer)	buffer.
BUF_Z_BUFFER
The	Z	buffer.

int	b
Nonzero	to	enable	access	(toggle	on);	0	to	toggle	off.

Return	Value:
TRUE	if	the	graphics	window	has	access	to	the	specified	buffer;	otherwise
FALSE.

Prototype:
virtual	BOOL	getBufAccess(int	which)	=	0;

Remarks:
This	method	is	used	internally.	It	returns	a	boolean	value	indicating	if	dual
plane	mode	is	on	or	off	for	the	specified	buffer.

Parameters:
The	buffer	whose	dual-planes	setting	will	be	returned.
int	which
The	buffer	whose	dual-planes	setting	will	be	returned.	One	of	the	following
values:
BUF_F_BUFFER
The	Framebuffer.

BUF_Z_BUFFER
The	Z	buffer.

Return	Value:
TRUE	if	the	dual-plane	mode	is	on;	otherwise	FALSE.

Prototype:
virtual	BOOL	getBufSize(int	which,	int	*size)	=	0;

Remarks:
This	method	is	used	internally.	It	retrieves	the	size	of	the	specified	buffer	in
bytes.

Parameters:
int	which
One	of	the	following	values:
int	*size
The	size	of	the	buffer	in	bytes.
Note	the	following	concerning	the	HEIDI	driver.	For	HEIDI	getBufSize()
always	returns	10	if	dual-planes	are	on	(and	0	otherwise).	This	is	because
HEIDI	actually	never	returns	the	image	-	it	keeps	its	own	copy	stored	away.
Thus	the	"logical"	way	to	think	is	that	we	actually	get	a	copy	of	the	buffer	by
calling	getBuf,	and	that	we	give	it	back	by	calling	setBuf.	But	in	reality	(with
the	HEIDI	driver)	getBuf	and	setBuf	only	tell	HEIDI	to	do	some	internal
buffer	manipulation.

Return	Value:
TRUE	if	the	size	was	returned;	otherwise	FALSE.

Prototype:
virtual	BOOL	getBuf(int	which,	int	size,	void	*buf)	=	0;

Remarks:
This	method	is	used	internally.	It	retrieves	the	specified	buffer.

Parameters:
int	which
The	buffer	to	retrieve.	One	of	the	following	values:
BUF_F_BUFFER	-	The	image	Framebuffer.

BUF_Z_BUFFER	-	The	Z	buffer.
int	size
The	number	of	bytes	to	retrieve.	This	must	be	at	least	the	size	returned	from
getBufSize().
void	*buf
Storage	for	the	buffer	data.

Return	Value:
TRUE	if	the	buffer	was	retrieved;	otherwise	FALSE.

Prototype:
virtual	BOOL	setBuf(int	which,	int	size,	void	*buf,	RECT	*rp)	=	0;

Remarks:
Stores	the	specified	buffer.

Parameters:
int	which
The	buffer	to	store.	One	of	the	following	values:
BUF_F_BUFFER	-	The	image	Framebuffer.
BUF_Z_BUFFER	-	The	Z	buffer.

int	size
The	number	of	bytes	to	store.
void	*buf
The	buffer	data.
RECT	*rp
This	allows	only	a	subset	of	the	saved	image	rect	to	be	blitted	back	to	the
screen.

Return	Value:
TRUE	if	the	buffer	was	stored;	otherwise	FALSE.

DIB	Methods

Prototype:
virtual	BOOL	getDIB(BITMAPINFO	*bmi,	int	*size)	=	0;

Remarks:
This	method	returns	the	viewport	image	of	this	graphics	window	in	a	packed
DIB	format.	A	packed	DIB	is	the	standard	BMI	header	followed	immediately
by	all	the	data	bytes	(pixels)	that	make	up	the	image.	This	is	the	standard	way
in	Windows	to	pass	a	DIB	around.	See	the	sample	code	below	for	an	example
of	this	call	in	use.	Note	how	it	is	called	twice:	once	to	get	the	size,	once	to	get
the	DIB.

Parameters:
BITMAPINFO	*bmi
The	BITMAPINFO	structure	defines	the	dimensions	and	color	information	for
a	Windows	device-independent	bitmap	(DIB).	Note	that	if	this	parameter	is
NULL,	then	only	the	size	value	is	returned.
int	*size
The	size	of	the	image	in	bytes.

Return	Value:
TRUE	if	the	image	was	returned;	otherwise	FALSE.

Sample	Code:
The	following	sample	code	saves	the	current	3ds	max	viewport	to	a	user
specified	file.
void	TestGetDIB(IObjParam	*ip)
{
BITMAPINFO	*bmi	=	NULL;
BITMAPINFOHEADER	*bmih;
BitmapInfo	biFile;
Bitmap	*map;
int	size;
TheManager->SelectFileOutput(&biFile,
ip->GetMAXHWnd(),	_T("Testing"));

if(!biFile.Name()[0])
return;

ViewExp	*vpt	=	ip->GetActiveViewport();
vpt->getGW()->getDIB(NULL,	&size);
bmi	=	(BITMAPINFO	*)malloc(size);
bmih	=	(BITMAPINFOHEADER	*)bmi;

vpt->getGW()->getDIB(bmi,	&size);
biFile.SetWidth((WORD)bmih->biWidth);
biFile.SetHeight((WORD)bmih->biHeight);
biFile.SetType(BMM_TRUE_32);
map	=	TheManager->Create(&biFile);
map->OpenOutput(&biFile);
map->FromDib(bmi);
map->Write(&biFile);
map->Close(&biFile);
if(bmi)
free(bmi);

ip->ReleaseViewport(vpt);
}

Prototype:
virtual	BOOL	setBackgroundDIB(int	width,	int	height,
BITMAPINFO	*bmi)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	internally	to	zoom	the	viewport.

Prototype:
virtual	void	setBackgroundOffset(int	x,	int	y)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	internally	to	pan	the	viewport.

Texture	Methods
Prototype:
virtual	int	getTextureSize(int	bkg=FALSE)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

This	method	returns	the	size	of	the	texture	bitmap	that	the	driver	wants	sent	in
to	the	getTextureHandle()	call	(if	bkg	is	FALSE).	If	bkg	is	TRUE,	this
returns	the	size	of	the	texture	that	3ds	max	shoud	send	to	the
setBackgroundDIB()	call.	In	general,	the	return	value	needs	to	be	a	power
of	2,	though	that	could	be	driver-specific

Parameters:
int	bkg=FALSE
TRUE	to	get	the	size	for	setBackgroundDIB();	FALSE	to	get	the	size	for
getTextureHandle().

Prototype:
virtual	DWORD	getTextureHandle(BITMAPINFO	*bmi)	=	0;

Remarks:
This	method	returns	a	handle	for	the	specified	texture	bitmap.	This	handle	is
then	used	with	the	setTextureByHandle()	method	(there	is	only	one	current
texture	active	at	any	time).	The	texture	dimensions	must	be	a	power	of	2.
When	a	material	is	on	an	object,	and	the	material	has	a	texture	map,	and	when
the	button	used	to	display	the	texture	map	is	pressed,	3ds	max	calls	this
method	to	get	the	texture	handle.	This	basically	loads	the	texture	into	the
hardware	RAM	(if	available).	When	this	mapped	object	gets	displayed	the
method	setTextureHanel()	is	called.	When	the	material	is	deleted,	or	the
dispaly	in	viewport	button	is	turned	off,	freeTextureHandle()	is	called.

Parameters:
BITMAPINFO	*bmi
The	DIB	image	to	use	as	a	texture.

Return	Value:
The	texture	handle.

Prototype:
virtual	BOOL	setTextureByHandle(DWORD	handle)	=	0;

Remarks:
This	sets	the	current	texture	to	the	image	whose	handle	is	passed	(see
getTextureHandle()).	The	texture	dimensions	must	be	a	power	of	2.

Parameters:
DWORD	handle
The	handle	of	the	texture	to	make	current.

Prototype:
virtual	void	freeTextureHandle(DWORD	handle)	=	0;

Remarks:
When	you	are	finished	with	the	texture	handle,	call	this	method	to	free	it.

Parameters:
DWORD	handle
The	texture	handle	to	free.

Return	Value:
TRUE	if	the	texture	was	set;	otherwise	FALSE.

Prototype:
virtual	BOOL	setTextureTiling(int	u,	int	v,	int
w=GW_TEX_NO_TILING)	=	0;

Remarks:
Sets	the	way	in	which	textures	are	tiled	across	the	surface	of	the	object.

Parameters:
The	following	parameters	may	use	one	of	these	values:
GW_TEX_NO_TILING
The	texture	clamped	-	Any	UVW	that	is	bigger	than	1	is	interpreted	as
being	1.
GW_TEX_REPEAT
As	the	UVW	numbers	keep	getting	larger	than	1	the	image	is	repeated.
GW_TEX_MIRROR
If	UVW	goes	beyond	1,	the	numbers	are	interpreted	as	going	backwards.
So	if	you	had	0	to	2	it	would	actually	go	0	to	1	then	1	down	to	0.

int	u
The	type	of	texturing	in	the	U	direction.
int	v

The	type	of	texturing	in	the	V	direction.
int	w=GW_TEX_NO_TILING
The	type	of	texturing	in	the	W	direction.

Return	Value:
TRUE	if	the	tiling	mode	was	set;	otherwise	FALSE.

Prototype:
virtual	int	getTextureTiling(int	which)	=	0;

Remarks:
Returns	the	type	of	texture	tiling	set	for	the	particular	direction.
For	example,	if	setTextureTiling(GW_TEX_NO_TILING,
GW_TEX_REPEAT,	GW_TEX_MIRROR)	were	called	first,	then
getTextureTiling(0)	would	yield	GW_TEX_NO_TILING,	and
getTextureTiling(1)	would	yield	GW_TEX_REPEAT.

Parameters:
int	which
This	value	is	0	or	1	and	it	represents	the	U	or	V	direction	respectively.	The
value	2	is	not	yet	implemented.

Return	Value:
GW_TEX_NO_TILING
The	texture	clamped	-	Any	UVW	that	is	bigger	than	1	is	interpreted	as	being
1.
GW_TEX_REPEAT
As	the	UVW	numbers	keep	getting	larger	than	1	the	image	is	repeated.
GW_TEX_MIRROR
If	UVW	goes	beyond	1,	the	numbers	are	interpreted	as	going	backwards.	So	if
you	had	0	to	2	it	would	actually	go	0	to	1	then	1	down	to	0.

Prototype:
virtual	void	setTexTransform(const	Matrix3	&m)	=	0;

Remarks:
This	method	allows	one	to	put	an	affine	transformation	on	a	texture.	This

allows	you	to	translate,	rotate	or	scale	a	texture	on	an	object.
Parameters:
const	Matrix3	&m
The	texture	transformation	matrix.

Prototype:
virtual	void	beginFrame()	=	0;

Remarks:
If	a	developer	is	working	with	an	existing	3ds	max	instance	of
GraphicsWindow	(one	of	MAX's	viewports)	this	method	should	NOT	be
called.

Prototype:
virtual	void	endFrame()	=	0;

Remarks:
As	above,	if	a	developer	is	working	with	an	existing	3ds	max	instance	of
GraphicsWindow	(one	of	MAX's	viewports)	this	method	should	NOT	be
called.

Prototype:
virtual	void	setViewport(int	x,	int	y,	int	w,	int	h)	=	0;

Remarks:
This	method	sets	the	clipping	boundaries	within	a	viewport	within	the
graphics	window.	This	allows	more	than	one	viewport	to	appear	within	a
single	graphics	window.	It	has	the	side-effect	of	building	a	4x4	viewport
matrix.	This	routine	should	be	called	anytime	the	graphics	window	is	resized,
or	else	rendering	will	still	occur	to	the	old	window	size.	(And	since	most
drivers	do	not	do	range-checking	since	it	is	too	time-costly,	this	could	cause	a
system	crash.)

Parameters:
Note:	all	coordinates	are	in	Windows	format,	with	the	origin	in	the	upper	left
int	x
Specifies	the	left	viewport	origin.

int	y
Specifies	the	top	viewport	origin.
int	w
Specifies	the	viewport	width.
int	h
Specifies	the	viewport	height.

Drawing	Setup

Prototype:
virtual	void	resetUpdateRect()	=	0;

Remarks:
This	method	resets	the	update	rectangle.	The	update	rectangle	is	the	region	of
the	screen	that	needs	to	be	updated	to	reflect	items	that	have	changed.	When
the	system	is	done	rendering	items,	the	goal	is	to	only	update	the	region	that
has	actually	been	altered.	This	method	sets	the	update	rectangle	(the	region
that	will	be	blitted	to	the	display)	to	invalid.	In	this	way	when
enlargeUpdateRect()	is	later	called,	the	RECT	passed	will	be	used	as	the
region.

Prototype:
virtual	void	enlargeUpdateRect(RECT	*rp)	=	0;

Remarks:
This	method	enlarges	the	update	rectangle	to	include	the	RECT	passed.	If	rp
is	NULL,	then	the	whole	window	will	later	be	updated.

Parameters:
RECT	*rp
Pointer	to	a	rectangle	(or	NULL).

Prototype:
virtual	int	getUpdateRect(RECT	*rp)	=	0;

Remarks:
This	method	retrieves	the	current	update	rectangle.

Parameters:
RECT	*rp
The	current	update	rectangle.

Return	Value:
Zero	if	the	update	rectangle	is	invalid;	otherwise	nonzero.

Prototype:
virtual	void	setRndLimits(DWORD	l)	=	0;

Remarks:
Sets	the	rendering	limits	used	by	primitive	calls.
Note:	Setting	the	rendering	limits	is	used	in	communication	between	the
various	parts	of	3ds	max	that	handle	the	display	of	objects.	For	example,
setting	this	limit	to	GW_POLY_EDGES	and	then	drawing	a	polygon	won't
result	in	a	polygon	drawn	with	edges.	It	only	sets	a	flag	that	indicates	the	edge
should	be	drawn.
What	happens	is	as	follows.	Inside	the	upper	level	MAX,	part	of	the	code
knows	that	polygon	edges	have	been	turned	on.	However	this	is	not	related
through	the	object	oriented	architecture	to	the	part	of	3ds	max	that	does	the
actual	drawing.	When	3ds	max	goes	to	draw	objects	it	will	see	that	the
polygon	edge	flag	is	on.	This	tells	it	to	do	two	drawing	passed	--	one	to	do	the
polygon,	then	it	calls	outlinePass()	call	with	TRUE,	draws	a	bunch	of	edges,
then	calls	outline	Pass()	with	FALSE.	Thus,	the	drawing	routine	is
responsible	for	looking	at	the	flags	and	drawing	appropriately.	This	method	is
only	responsible	setting	the	limit	which	can	later	be	checked.

Parameters:
DWORD	l
Specifies	the	rendering	limit	used	by	the	viewport.	See	Rendering	Limits.

Prototype:
virtual	DWORD	getRndLimits()	=	0;

Remarks:
Retrieves	the	rendering	limits	used	by	primitive	calls.	See	Rendering	Limits.

Prototype:
virtual	DWORD	getRndMode()	=	0;

Remarks:
Returns	the	current	rendering	mode	used	by	the	viewport.	This	is	a	subset	of
the	rendering	limit,	in	that	any	limits	imposed	by	the	rendering	limit	are	forced
onto	the	current	mode.	See	Rendering	Limits.

Prototype:
virtual	int	getMaxStripLength();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	the	largest	number	of	triangles	that	can	be	in	a	strip

Prototype:
virtual	void	setSkipCount(int	n)	=	0;

Remarks:
Sets	the	number	of	triangles	skipped	when	the	viewport	is	set	as	a	'Fast	View
Display'	viewport.	To	disable	fastview,	specify	1.	Note	that	the
GraphicsWindow	class	doesn't	actually	do	anything	with	this	number	other
than	store	it.	Since	triangles	are	handed	down	to	GFX	one	at	a	time,	it	is	up	to
the	code	that	feeds	triangles	to	the	GraphicsWindow	to	skip	the	specified
number	of	triangles.	The	mesh	rendering	in	3ds	max	uses	the	skip	count	in	this
way.

Parameters:
int	n
Specifies	that	every	'n-th'	triangle	should	be	drawn.	If	set	to	2,	every	other
triangle	should	be	drawn.

Prototype:
virtual	int	getSkipCount()	=	0;

Remarks:
Returns	the	current	skip	count	setting.

Light	and	Camera	Methods

Prototype:
virtual	int	getMaxLights()	=	0;

Remarks:
Returns	the	maximum	number	of	lights	that	may	be	used	by	the	interactive
renderer.

Prototype:
virtual	void	setLight(int	num,	const	Light	*l)	=	0;

Remarks:
Turns	a	light	on	or	off,	and	sets	the	light	parameters.	The	light's	position	is	set
through	the	current	transformation	matrix	at	the	time	of	this	call.	A	particular
light	is	specified	by	its	light	number	(-1	through	getMaxLights()-1).	Light
number	-1	is	reserved	for	ambient	light.	If	a	particular	field	in	the	Light	class
is	not	needed	for	a	particular	type	of	light,	that	field's	value	is	ignored	(for
example,	only	the	color	field	is	used	for	ambient	light.)

Parameters:
int	num
The	light	number	of	the	light	to	set.	This	is	a	value	in	the	range	-1	to
getMaxLights()-1.
const	Light	*l
The	light	class	instance	used	to	set	the	light	parameters.	If	this	is	NULL,	the
light	is	turned	off.

Prototype:
virtual	void	setLightExclusion(DWORD	exclVec)	=	0;

Remarks:
This	allows	a	developer	to	control	if	a	light	is	used	to	render	an	object.	There
is	one	bit	per	light	(bits	0	through	getMaxLights()).	If	the	bit	is	set	the	light
is	NOT	used	to	render	the	object.	If	the	bit	is	off,	the	light	IS	used.	This
method	allows	you	to	set	the	exclusion	vector	controlling	the	lights.

Parameters:

DWORD	exclVec
The	exclusion	vector	controlling	the	lights.

Prototype:
virtual	void	setCamera(const	Camera	&c)	=	0;

Remarks:
This	method	is	no	longer	used.

Prototype:
virtual	void	setCameraMatrix(float	mat[4][4],	Matrix3	*invTM,
int	persp,	float	hither,	float	yon)	=	0;

Remarks:
Sets	the	properties	of	the	current	camera	used	by	the	GraphicsWindow.

Parameters:
float	mat[4][4]
The	transformation	matrix	times	the	projection	matrix.
Matrix3	*invTM
This	is	the	inverse	of	the	affine	part	of	the	camera	transformation	matrix	(not
the	inverse	of	the	projection	part).
int	persp
Nonzero	indicates	this	is	a	perspective	view;	0	is	orthogonal.
float	hither
Near	clip	value.
float	yon
Far	clip	value.

Prototype:
virtual	void	getCameraMatrix(float	mat[4][4],	Matrix3	*invTM,
int	*persp,	float	*hither,	float	*yon)	=	0;

Remarks:
Retrieves	the	properties	of	the	current	camera.

Parameters:

float	mat[4][4]
The	transformation	matrix	times	the	projection	matrix.
Matrix3	*invTM
This	is	the	inverse	of	the	affine	part	of	the	camera	transformation	matrix	(not
the	inverse	of	the	projection	part).
int	*persp
Nonzero	indicates	this	is	a	perspective	view;	0	is	orthogonal.
float	*hither
Near	clip	value.
float	*yon
Far	clip	value.

Material	Methods

Prototype:
virtual	void	setMaterial(const	Material	&m,	int	index=0)	=	0;

Remarks:
Sets	the	current	rendering	material,	and	modifies	the	rendering	mode
parameter	for	controlling	the	rasterizer	driver.	Note:	You	must	have	your
rendering	limit	set	BEFORE	you	set	the	material	because	the	material	setting
may	lower	the	rendering	mode	based	on	the	material	limits.

Parameters:
const	Material	&m
The	new	material	to	instantiate
int	index=0
Indicates	which	material	index	refers	to	the	material	which	gets	set.

Prototype:
virtual	Material	*getMaterial()	=	0;

Remarks:
Returns	the	current	rendering	material.
	

Prototype:
virtual	void	setTransparency(DWORD	settings)	=	0;

Remarks:
Sets	the	current	transparency	flags	for	the	current	pass.
	

Parameters:
DWORD	settings
This	can	be	a	combination	if	GW_TRANSPARENCY	and
GW_TRANSPARENT_PASS	See	Rendering	Limits.	You	also	use	these
settings	in	the	Render	limits	as	well.

Coordinate	Transformation	Methods
Prototype:
virtual	DWORD	hTransPoint(const	Point3	*in,	IPoint3	*out)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	converts	coordinates	to	"h"	format	device	coordinates.	Note:
This	method	maps	points	from	the	GraphicsWindow's	current	transform	to
device	space.	If	the	GraphicsWindow's	transform	is	set	to	the	identity	matrix
then	the	mapping	is	done	from	points	specified	in	world	space.	Otherwise	the
points	given	are	transformed	by	the	GraphicsWindow	transform,	and	are	then
considered	to	be	in	world	space.	Thus,	to	get	a	world-space	to	screen-space
conversion,	you	need	to	set	the	transform	to	the	identity	with	gw-
>setTransform(Matrix3(1)).

Parameters:
const	Point3	*in
The	input	point.
IPoint3	*out
The	output	point	in	integer	format	values	in	the	native	device	coords	for	the
device.	For	HEIDI	and	OpenGL	the	origin	at	the	lower	left.	For	Direct3D	the
origin	is	at	the	upper	left.

Return	Value:

DWORD	containing	the	clipping	flags	for	the	point.	If	a	flag	is	set	it	indicates
the	transformed	point	lies	outside	the	view	volume.	See	List	of	Clip	Flags.

Prototype:
virtual	DWORD	wTransPoint(const	Point3	*in,	IPoint3	*out)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	convert	coordinates	to	"w"	format	device	coordinates.
Note:	This	method	maps	points	from	the	GraphicsWindow's	current	transform
to	device	space.	If	the	GraphicsWindow's	transform	is	set	to	the	identity
matrix	then	the	mapping	is	done	from	points	specified	in	world	space.
Otherwise	the	points	given	are	transformed	by	the	GraphicsWindow
transform,	and	are	then	considered	to	be	in	world	space.	Thus,	to	get	a	world-
space	to	screen-space	conversion,	you	need	to	set	the	transform	to	the	identity
with	gw->setTransform(Matrix3(1)).
	

Parameters:
const	Point3	*in
The	input	point.
IPoint3	*out
The	output	point	in	integer	format	with	the	origin	at	the	upper	left.

Return	Value:
DWORD	containing	the	clipping	flags	for	the	point.	If	a	flag	is	set	it	indicates
the	transformed	point	lies	outside	the	view	volume.	See	List	of	Clip	Flags.

Prototype:
virtual	DWORD	transPoint(const	Point3	*in,	Point3	*out)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	convert	coordinates	to	"h"	floating	point	coordinates.
This	is	just	a	helper	routine	to	avoid	building	up	round-off	error.	3ds	max	uses
it	just	for	IK.	Note:	This	method	maps	points	from	the	GraphicsWindow's
current	transform	to	device	space.	If	the	GraphicsWindow's	transform	is	set	to

the	identity	matrix	then	the	mapping	is	done	from	points	specified	in	world
space.	Otherwise	the	points	given	are	transformed	by	the	GraphicsWindow
transform,	and	are	then	considered	to	be	in	world	space.	Thus,	to	get	a	world-
space	to	screen-space	conversion,	you	need	to	set	the	transform	to	the	identity
with	gw->setTransform(Matrix3(1)).

Parameters:
const	Point3	*in
The	input	point.
Point3	*out
The	output	point	in	floating	point	format	with	the	origin	at	the	lower	left.

Return	Value:
DWORD	containing	the	clipping	flags	for	the	point.	If	a	flag	is	set	it	indicates
the	transformed	point	lies	outside	the	view	volume.	See	List	of	Clip	Flags.

Drawing	Methods
Note:	The	old	device	coordinate	calls	have	been	changed	(or	removed).	In	3ds
max	2.0	and	later,	methods	that	start	with	"h"	take	integer	device	coordinates
with	the	origin	at	the	lower-left.	Calls	with	a	"w"	in	front	take	Windows	device
coordinates	with	the	origin	at	the	upper	left.	Also	Note:	These	"h"	and	"w"
routines	perform	NO	clipping	unless	otherwise	noted	(clipping	at	this	level
would	be	very	expensive).	Drawing	outside	the	allowable	region	is	likely	to
cause	3ds	max	to	crash.

Prototype:
virtual	void	hText(IPoint3	*xyz,	TCHAR	*s)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Draws	2D	fixed	font	annotation	text	to	the	specified	location.	Note:	This
routine	DOES	perform	clipping	of	the	text	if	it	is	off	the	screen.

Parameters:
IPoint3	*xyz
This	is	the	device	coordinate	for	the	text.	The	origin	of	the	text	is	at	the	lower
left	corner.
TCHAR	*s

The	text	to	display.

Prototype:
virtual	void	hMarker(IPoint3	*xyz,	MarkerType	type)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Draws	a	marker	at	the	specified	location.

Parameters:
IPoint3	*xyz
This	is	the	device	coordinate	for	the	marker	(with	the	origin	at	the	lower	left).
MarkerType	type
See	List	of	Marker	Types.

Prototype:
virtual	void	hPolyline(int	ct,	IPoint3	*xyz,	Point3	*rgb,	int	closed,
int	*es)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	draws	a	multi-segment	polyline.

Parameters:
int	ct
The	number	of	points	in	the	polyline.	The	maximum	number	of	points	that
may	be	used	in	drawing	a	polyline	is	32.
IPoint3	*xyz
Array	of	points.	These	are	device	coordinates	with	the	origin	at	the	lower	left.
Point3	*rgb
If	the	shade	mode	is	set	to	smooth	and	these	colors	for	the	vertices	are
specified	the	polyline	will	be	drawn	Gourand	shaded.	This	is	how	3ds	max
draws	lit	wireframes	for	instance.	If	you	simply	want	ordinary	lines	(drawn
using	the	line	color)	pass	NULL.
Note:	The	use	of	these	colors	is	not	supported	under	the	OpenGL	driver.	The
rgb	values	are	ignored.	Only	the	current	material	is	taken	into	consideration.

(This	is	how	OpenGL	works.)
int	closed
If	nonzero	the	first	point	is	connected	to	the	last	point,	i.e.	the	polyline	is
closed.
int	*es
Edge	state	array.	This	is	an	array	that	Indicates	if	the	'i-th'	edge	is	one	of	three
state:
GW_EDGE_SKIP
Nonexistent	-	totally	invisible.
GW_EDGE_VIS
Exists	and	is	solid.
GW_EDGE_INVIS
Exists	and	is	hidden	-	shown	as	a	dotted	line.

You	may	pass	NULL	for	this	array	and	the	method	will	assume	that	the	edges
are	all	solid.

Prototype:
void	hPolyline(int	ct,	IPoint3	*xyz,	Point3	*rgb,	Point3	*uvw,	int
closed,	int	*es);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	draws	a	multi-segment	polyline.

Parameters:
int	ct
The	number	of	points	in	the	polyline.	The	maximum	number	of	points	that
may	be	used	in	drawing	a	polyline	is	32.
IPoint3	*xyz
Array	of	points.	These	are	device	coordinates	with	the	origin	at	the	lower	left.
Point3	*rgb
If	the	shade	mode	is	set	to	smooth	and	these	colors	for	the	vertices	are
specified	the	polyline	will	be	drawn	Gourand	shaded.	This	is	how	3ds	max
draws	lit	wireframes	for	instance.	If	you	simply	want	ordinary	lines	(drawn

using	the	line	color)	pass	NULL.
Note:	The	use	of	these	colors	is	not	supported	under	the	OpenGL	driver.	The
rgb	values	are	ignored.	Only	the	current	material	is	taken	into	consideration.
(This	is	how	OpenGL	works.)
Point3	*uvw
This	is	not	currently	used.	Pass	NULL.
int	closed
If	nonzero	the	first	point	is	connected	to	the	last	point,	i.e.	the	polyline	is
closed.
int	*es
Edge	state	array.	This	is	an	array	that	Indicates	if	the	'i-th'	edge	is	one	of	three
state:
GW_EDGE_SKIP
Nonexistent	-	totally	invisible.
GW_EDGE_VIS
Exists	and	is	solid.
GW_EDGE_INVIS
Exists	and	is	hidden	-	shown	as	a	dotted	line.

You	may	pass	NULL	for	this	array	and	the	method	will	assume	that	the	edges
are	all	solid.

Prototype:
virtual	void	hPolygon(int	ct,	IPoint3	*xyz,	Point3	*rgb,	Point3
*uvw)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	draws	a	multi-point	polygon.

Parameters:
int	ct
The	number	of	points	in	the	polygon.
IPoint3	*xyz
Array	of	points.	These	are	device	coordinates	with	the	origin	at	the	lower	left.

Point3	*rgb
The	color	values	at	the	vertices.	The	rendering	mode	must	include
GW_ILLUM	for	these	values	to	be	used.
Note:	The	use	of	these	colors	is	not	supported	under	the	OpenGL	driver.	The
rgb	values	are	ignored.	Only	the	current	material	is	taken	into	consideration.
(This	is	how	OpenGL	works.)
Point3	*uvw
The	UVW	coordinates.	The	rendering	mode	must	include	GW_TEXTURE
for	these	values	to	be	used.

Prototype:
virtual	void	hTriStrip(int	ct,	IPoint3	*xyz,	Point3	*rgb,	Point3
*uvw)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	for	drawing	a	series	of	triangles	specified	as	'strips'.	It
takes	a	count	of	3	or	more,	and	builds	triangles	in	a	strip.	This	sends	a	lot	less
data	and	the	underlying	graphics	library	has	to	set	up	a	lot	less	data	since	it
can	use	the	previous	information	to	start	the	rasterization.	This	results	in	a
significant	speed	increase.
Note	that	this	routine	does	no	clipping	so	all	the	points	passed	must	be	within
view.

Parameters:
int	ct
The	total	number	of	points.	After	the	first	two	points,	each	new	point	is	used
to	create	a	new	triangle.
IPoint3	*xyz
The	point	data	with	the	origin	at	the	lower	left.	For	instance,	to	draw	a	quad,
the	first	three	points	specify	the	first	triangle	and	the	next	one	is	combined
with	the	previous	two	to	complete	the	square.
The	order	for	these	points	follows	the	'standard'	conventions	for	stripping	used
in	most	graphics	libraries	(for	example	Direct3D,	OpenGL	and	Heidi).
Point3	*rgb

The	colors	for	the	vertices.
Note:	The	use	of	these	colors	is	not	supported	under	the	OpenGL	driver.	The
rgb	values	are	ignored.	Only	the	current	material	is	taken	into	consideration.
(This	is	how	OpenGL	works.)
Point3	*uvw
The	UVW	texture	coordinates	for	the	vertices.

Prototype:
virtual	void	wText(IPoint3	*xyz,	TCHAR	*s)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Draws	2D	fixed	font	annotation	text	to	the	specified	location.	Note:	This
routine	DOES	perform	clipping	of	the	text	if	it	is	off	the	screen.

Parameters:
IPoint3	*xyz
This	is	the	device	coordinate	for	the	text.	The	origin	of	the	text	is	at	the	upper
left	corner.
TCHAR	*s
The	text	to	display.

Prototype:
virtual	void	wMarker(IPoint3	*xyz,	MarkerType	type)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Draws	a	marker	at	the	specified	location.

Parameters:
IPoint3	*xyz
This	is	the	device	coordinate	for	the	marker.
MarkerType	type
See	List	of	Marker	Types.

Prototype:

virtual	void	wPolyline(int	ct,	IPoint3	*xyz,	Point3	*rgb,	int	closed,
int	*es)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	draws	a	multi-segment	polyline.

Parameters:
int	ct
The	number	of	points	in	the	polyline.	The	maximum	number	of	points	that
may	be	used	in	drawing	a	polyline	is	32.
IPoint3	*xyz
Array	of	points.	These	are	device	coordinates	with	the	origin	at	the	upper	left.
Point3	*rgb
If	the	shade	mode	is	set	to	smooth	and	these	colors	for	the	vertices	are
specified	the	polyline	will	be	drawn	Gourand	shaded.	This	is	how	3ds	max
draws	lit	wireframes	for	instance.	If	you	simply	want	ordinary	lines	(drawn
using	the	line	color)	pass	NULL.
Note:	The	use	of	these	colors	is	not	supported	under	the	OpenGL	driver.	The
rgb	values	are	ignored.	Only	the	current	material	is	taken	into	consideration.
(This	is	how	OpenGL	works.)
int	closed
If	nonzero	the	first	point	is	connected	to	the	last	point,	i.e.	the	polyline	is
closed.
int	*es
Edge	state	array.	This	is	an	array	that	Indicates	if	the	'i-th'	edge	is	one	of	three
state:
GW_EDGE_SKIP
Nonexistent	-	totally	invisible.
GW_EDGE_VIS
Exists	and	is	solid.
GW_EDGE_INVIS
Exists	and	is	hidden	-	shown	as	a	dotted	line.

You	may	pass	NULL	for	this	array	and	the	method	will	assume	that	the	edges
are	all	solid.

Prototype:
void	wPolyline(int	ct,	IPoint3	*xyz,	Point3	*rgb,	Point3	*uvw,	int
closed,	int	*es);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	draws	a	multi-segment	polyline.

Parameters:
int	ct
The	number	of	points	in	the	polyline.	The	maximum	number	of	points	that
may	be	used	in	drawing	a	polyline	is	32.
IPoint3	*xyz
Array	of	points.	These	are	device	coordinates	with	the	origin	at	the	upper	left.
Point3	*rgb
If	the	shade	mode	is	set	to	smooth	and	these	colors	for	the	vertices	are
specified	the	polyline	will	be	drawn	Gourand	shaded.	This	is	how	3ds	max
draws	lit	wireframes	for	instance.	If	you	simply	want	ordinary	lines	(drawn
using	the	line	color)	pass	NULL.
Note:	The	use	of	these	colors	is	not	supported	under	the	OpenGL	driver.	The
rgb	values	are	ignored.	Only	the	current	material	is	taken	into	consideration.
(This	is	how	OpenGL	works.)
Point3	*uvw
This	is	not	currently	used.	Pass	NULL.
int	closed
If	nonzero	the	first	point	is	connected	to	the	last	point,	i.e.	the	polyline	is
closed.
int	*es
Edge	state	array.	This	is	an	array	that	Indicates	if	the	'i-th'	edge	is	one	of	three
state:
GW_EDGE_SKIP
Nonexistent	-	totally	invisible.
GW_EDGE_VIS

Exists	and	is	solid.
GW_EDGE_INVIS
Exists	and	is	hidden	-	shown	as	a	dotted	line.

You	may	pass	NULL	for	this	array	and	the	method	will	assume	that	the	edges
are	all	solid.

Prototype:
virtual	void	wPolygon(int	ct,	IPoint3	*xyz,	Point3	*rgb,	Point3
*uvw)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	draws	a	multi-point	polygon.

Parameters:
int	ct
The	number	of	points	in	the	polygon.
IPoint3	*xyz
Array	of	points.	These	are	device	coordinates	with	the	origin	at	the	upper	left.
Point3	*rgb
The	color	values	at	the	vertices.	The	rendering	mode	must	include
GW_ILLUM	for	these	values	to	be	used.
Note:	The	use	of	these	colors	is	not	supported	under	the	OpenGL	driver.	The
rgb	values	are	ignored.	Only	the	current	material	is	taken	into	consideration.
(This	is	how	OpenGL	works.)
Point3	*uvw
The	UVW	coordinates.	The	rendering	mode	must	include	GW_TEXTURE
for	these	values	to	be	used.

Prototype:
virtual	void	wTriStrip(int	ct,	IPoint3	*xyz,	Point3	*rgb,	Point3
*uvw)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

This	method	is	used	for	drawing	a	series	of	triangles	specified	as	'strips'.	It
takes	a	count	of	3	or	more,	and	builds	triangles	in	a	strip.	This	sends	a	lot	less
data	and	the	underlying	graphics	library	has	to	set	up	a	lot	less	data	since	it
can	use	the	previous	information	to	start	the	rasterization.	This	results	in	a
significant	speed	increase.
Note	that	this	routine	does	no	clipping	so	all	the	points	passed	must	be	within
view.

Parameters:
int	ct
The	total	number	of	points.	After	the	first	two	points,	each	new	point	is	used
to	create	a	new	triangle.
IPoint3	*xyz
The	point	data	with	the	origin	at	the	upper	left.	For	instance,	to	draw	a	quad,
the	first	three	points	specify	the	first	triangle	and	the	next	one	is	combined
with	the	previous	two	to	complete	the	square.
The	order	for	these	points	follows	the	'standard'	conventions	for	stripping	used
in	most	graphics	libraries	(for	example	Direct3D,	OpenGL	and	Heidi).
Point3	*rgb
The	colors	for	the	vertices.
Note:	The	use	of	these	colors	is	not	supported	under	the	OpenGL	driver.	The
rgb	values	are	ignored.	Only	the	current	material	is	taken	into	consideration.
(This	is	how	OpenGL	works.)
Point3	*uvw
The	UVW	texture	coordinates	for	the	vertices.

Prototype:
virtual	void	text(Point3	*xyz,	TCHAR	*s)	=	0;

Remarks:
Draws	2D	fixed	font	annotation	text	to	the	specified	location.	This	method
does	perform	clipping.
Note:	This	method	maps	points	from	the	GraphicsWindow's	current	transform
to	screen	space.	If	the	GraphicsWindow's	transform	is	set	to	the	identity
matrix	then	the	mapping	is	done	from	points	specified	in	world	space.
Otherwise	the	points	given	are	transformed	by	the	GraphicsWindow

transform,	and	are	then	considered	to	be	in	world	space.	Thus,	to	get	a	world-
space	to	screen-space	conversion,	you	need	to	set	the	transform	to	the	identity
with	gw->setTransform(Matrix3(1)).

Parameters:
Point3	*xyz
This	is	the	coordinate	for	the	text.
TCHAR	*s
The	text	to	display.	Note:	This	routine	DOES	perform	clipping	of	the	text	if	it
is	off	the	screen.

Prototype:
virtual	void	marker(Point3	*xyz,	MarkerType	type)	=	0;

Remarks:
Draws	a	marker	at	the	specified	location	in	world	space.	This	method	does
perform	clipping.
Note:	This	method	maps	points	from	the	GraphicsWindow's	current	transform
to	screen	space.	If	the	GraphicsWindow's	transform	is	set	to	the	identity
matrix	then	the	mapping	is	done	from	points	specified	in	world	space.
Otherwise	the	points	given	are	transformed	by	the	GraphicsWindow
transform,	and	are	then	considered	to	be	in	world	space.	Thus,	to	get	a	world-
space	to	screen-space	conversion,	you	need	to	set	the	transform	to	the	identity
with	gw->setTransform(Matrix3(1)).

Parameters:
Point3	*xyz
This	is	the	coordinate	for	the	marker.
MarkerType	type
See	List	of	Marker	Types.

Prototype:
virtual	void	polyline(int	ct,	Point3	*xyz,	Point3	*rgb,	Point3	*uvw,
int	closed,	int	*es)	=	0;

Remarks:
Draws	a	multi-segment	polyline	with	the	coordinates	specified	in	world	space.

This	method	does	perform	clipping.
Note:	The	arrays	of	points	and	vertex	related	data	all	must	be	at	least	one
element	larger	than	the	ct	parameter	that	is	passed	in.	The	3D	clipper	will	use
the	"extra"	space	to	clip	as	efficiently	as	possible.	If	room	for	the	extra
element	is	not	provided,	3ds	max	may	crash.
Note:	This	method	maps	points	from	the	GraphicsWindow's	current	transform
to	screen	space.	If	the	GraphicsWindow's	transform	is	set	to	the	identity
matrix	then	the	mapping	is	done	from	points	specified	in	world	space.
Otherwise	the	points	given	are	transformed	by	the	GraphicsWindow
transform,	and	are	then	considered	to	be	in	world	space.	Thus,	to	get	a	world-
space	to	screen-space	conversion,	you	need	to	set	the	transform	to	the	identity
with	gw->setTransform(Matrix3(1)).

Parameters:
int	ct
The	number	of	points	in	the	polyline.	The	maximum	number	of	points	that
may	be	used	in	drawing	a	polyline	is	32.
Point3	*xyz
Array	of	points.	This	array	must	be	at	least	one	element	larger	than	the	ct
parameter	that	is	passed	in.	The	3D	clipper	will	use	the	"extra"	space	to	clip	as
efficiently	as	possible.	If	room	for	the	extra	element	is	not	provided,	3ds	max
will	crash.
Point3	*rgb
If	the	shade	mode	is	set	to	smooth	and	these	colors	for	the	vertices	are
specified	the	polyline	will	be	drawn	Gourand	shaded.	This	is	how	3ds	max
draws	lit	wireframes	for	instance.	If	you	simply	want	ordinary	lines	(drawn
using	the	line	color)	pass	NULL.
Note:	The	use	of	these	colors	is	not	supported	under	the	OpenGL	driver.	The
rgb	values	are	ignored.	Only	the	current	material	is	taken	into	consideration.
(This	is	how	OpenGL	works.)
Point3	*uvw
This	is	not	currently	used.	Pass	NULL.
int	closed
If	nonzero	the	first	point	is	connected	to	the	last	point,	i.e.	the	polyline	is
closed.

int	*es
Edge	state	array.	This	is	an	array	that	Indicates	if	the	'i-th'	edge	is	one	of	three
state:
GW_EDGE_SKIP
Nonexistent	-	totally	invisible.
GW_EDGE_VIS
Exists	and	is	solid.
GW_EDGE_INVIS
Exists	and	is	hidden	-	shown	as	a	dotted	line.

You	may	pass	NULL	for	this	array	and	the	method	will	assume	that	the	edges
are	all	solid.

Prototype:
virtual	void	polylineN(int	ct,	Point3	*xyz,	Point3	*nor,	int	closed,
int	*es)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Draws	a	multi-segment	polyline	with	the	coordinates	specified	in	world	space.
This	method	takes	a	polyline	with	a	normal	for	each	vertex.	This	is	used	for
hardware	accelerated	lit	wireframes	(when	GW_SPT_GEOM_ACCEL	is
TRUE).
Note:	The	arrays	of	points	and	vertex	related	data	all	must	be	at	least	one
element	larger	than	the	ct	parameter	that	is	passed	in.	The	3D	clipper	will	use
the	"extra"	space	to	clip	as	efficiently	as	possible.	If	room	for	the	extra
element	is	not	provided,	3ds	max	may	crash.
This	method	does	perform	clipping.
Note:	This	method	maps	points	from	the	GraphicsWindow's	current	transform
to	screen	space.	If	the	GraphicsWindow's	transform	is	set	to	the	identity
matrix	then	the	mapping	is	done	from	points	specified	in	world	space.
Otherwise	the	points	given	are	transformed	by	the	GraphicsWindow
transform,	and	are	then	considered	to	be	in	world	space.	Thus,	to	get	a	world-
space	to	screen-space	conversion,	you	need	to	set	the	transform	to	the	identity
with	gw->setTransform(Matrix3(1)).

Parameters:

int	ct
The	number	of	points	in	the	polyline.	The	maximum	number	of	points	that
may	be	used	in	drawing	a	polyline	is	32.
Point3	*xyz
Array	of	points.	This	array	must	be	at	least	one	element	larger	than	the	ct
parameter	that	is	passed	in.	The	3D	clipper	will	use	the	"extra"	space	to	clip	as
efficiently	as	possible.	If	room	for	the	extra	element	is	not	provided,	3ds	max
will	crash.
Point3	*nor
The	normal	values	at	the	vertices,	one	for	each	vertex.
int	closed
If	nonzero	the	first	point	is	connected	to	the	last	point,	i.e.	the	polyline	is
closed.
int	*es
Edge	state	array.	This	is	an	array	that	Indicates	if	the	'i-th'	edge	is	one	of	three
state:
GW_EDGE_SKIP
Nonexistent	-	totally	invisible.
GW_EDGE_VIS
Exists	and	is	solid.
GW_EDGE_INVIS
Exists	and	is	hidden	-	shown	as	a	dotted	line.

You	may	pass	NULL	for	this	array	and	the	method	will	assume	that	the	edges
are	all	solid.

Prototype:
virtual	void	polygon(int	ct,	Point3	*xyz,	Point3	*rgb,	Point3	*uvw)
=	0;

Remarks:
Draws	a	multi-point	polygon.	Note:	All	arrays	(xyz,	rgb,	uvw)	must	be	at
least	one	element	larger	than	the	ct	parameter	that	is	passed	in.	The	3D	clipper
will	use	the	"extra"	space	to	clip	as	efficiently	as	possible.	If	room	for	the
extra	element	is	not	provided,	3ds	max	may	crash.

Note:	This	method	maps	points	from	the	GraphicsWindow's	current	transform
to	screen	space.	If	the	GraphicsWindow's	transform	is	set	to	the	identity
matrix	then	the	mapping	is	done	from	points	specified	in	world	space.
Otherwise	the	points	given	are	transformed	by	the	GraphicsWindow
transform,	and	are	then	considered	to	be	in	world	space.	Thus,	to	get	a	world-
space	to	screen-space	conversion,	you	need	to	set	the	transform	to	the	identity
with	gw->setTransform(Matrix3(1)).

Parameters:
int	ct
The	number	of	points	in	the	polygon.
Point3	*xyz
Array	of	points.
Point3	*rgb
The	color	values	at	the	vertices.	The	rendering	mode	must	include
GW_ILLUM	for	these	values	to	be	used.
Note:	The	use	of	these	colors	is	not	supported	under	the	OpenGL	driver.	The
rgb	values	are	ignored.	Only	the	current	material	is	taken	into	consideration.
(This	is	how	OpenGL	works.)
Point3	*uvw
The	UVW	coordinates.	The	rendering	mode	must	include	GW_TEXTURE
for	these	values	to	be	used.

Prototype:
virtual	void	startSegments()	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	begin	efficiently	sending	a	lot	of	3D	line	segments.
First	call	this	method,	then	call	segment()	many	times	(with	two	points),	then
call	endSegments().

Prototype:
virtual	void	segment(Point3	*xyz,	int	vis)	=	0;

Remarks:

This	method	is	available	in	release	2.0	and	later	only.
This	method	draws	a	single	3D	line	segment	between	the	specified	points.	Call
startSegments()	once	before	calling	this	method.

Parameters:
Point3	*xyz
Points	to	the	two	line	endpoints	in	world	space.
int	vis
Nonzero	for	the	segment	to	be	visible;	zero	for	invisible.

Prototype:
virtual	void	endSegments()	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Call	this	method	after	sending	3D	line	segments	with	segment().

Prototype:
virtual	void	polygonN(int	ct,	Point3	*xyz,	Point3	*nor,	Point3
*uvw)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Draws	a	multi-point	polygon.	Note:	All	arrays	(xyz,	nor,	uvw)	must	be	at
least	one	element	larger	than	the	ct	parameter	that	is	passed	in.	The	3D	clipper
will	use	the	"extra"	space	to	clip	as	efficiently	as	possible.	If	room	for	the
extra	element	is	not	provided,	3ds	max	will	crash.
This	method	sends	in	normal	vectors	instead	of	color	for	3D	accelerated
rendering	(when	GW_SPT_GEOM_ACCEL	is	TRUE)
Note:	This	method	maps	points	from	the	GraphicsWindow's	current	transform
to	screen	space.	If	the	GraphicsWindow's	transform	is	set	to	the	identity
matrix	then	the	mapping	is	done	from	points	specified	in	world	space.
Otherwise	the	points	given	are	transformed	by	the	GraphicsWindow
transform,	and	are	then	considered	to	be	in	world	space.	Thus,	to	get	a	world-
space	to	screen-space	conversion,	you	need	to	set	the	transform	to	the	identity
with	gw->setTransform(Matrix3(1)).

Parameters:
int	ct
The	number	of	points	in	the	polygon.
Point3	*xyz
Array	of	points.
Point3	*nor
The	normal	values	at	the	vertices,	one	for	each	vertex.
Point3	*uvw
The	UVW	coordinates.	The	rendering	mode	must	include	GW_TEXTURE
for	these	values	to	be	used.

Prototype:
virtual	void	triStrip(int	ct,	Point3	*xyz,	Point3	*rgb,	Point3	*uvw)
=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	for	drawing	a	series	of	triangles	specified	as	'strips'.	It
takes	a	count	of	3	or	more,	and	builds	triangles	in	a	strip.	This	sends	a	lot	less
data	and	the	underlying	graphics	library	has	to	set	up	a	lot	less	data	since	it
can	use	the	previous	information	to	start	the	rasterization.	This	results	in	a
significant	speed	increase.

Parameters:
int	ct
The	total	number	of	points.	After	the	first	two	points,	each	new	point	is	used
to	create	a	new	triangle.
IPoint3	*xyz
The	point	data.	For	instance,	to	draw	a	quad,	the	first	three	points	specify	the
first	triangle	and	the	next	one	is	combined	with	the	previous	two	to	complete
the	square.
The	order	for	these	points	follows	the	'standard'	conventions	for	stripping	used
in	most	graphics	libraries	(for	example	Direct3D,	OpenGL	and	Heidi).
Point3	*rgb
The	colors	for	the	vertices.

Note:	The	use	of	these	colors	is	not	supported	under	the	OpenGL	driver.	The
rgb	values	are	ignored.	Only	the	current	material	is	taken	into	consideration.
(This	is	how	OpenGL	works.)
Point3	*uvw
The	UVW	texture	coordinates	for	the	vertices.

Prototype:
virtual	void	triStripN(int	ct,	Point3	*xyz,	Point3	*nor,	Point3
*uvw)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	for	drawing	a	series	of	triangles	specified	as	'strips'.	It
takes	a	count	of	3	or	more,	and	builds	triangles	in	a	strip.	This	sends	a	lot	less
data	and	the	underlying	graphics	library	has	to	set	up	a	lot	less	data	since	it
can	use	the	previous	information	to	start	the	rasterization.	This	results	in	a
significant	speed	increase.	This	method	sends	in	normal	vectors	instead	of
color	for	3D	accelerated	rendering	(when	GW_SPT_GEOM_ACCEL	is
TRUE)

Parameters:
int	ct
The	total	number	of	points.	After	the	first	two	points,	each	new	point	is	used
to	create	a	new	triangle.
Point3	*xyz
The	point	data.	For	instance,	to	draw	a	quad,	the	first	three	points	specify	the
first	triangle	and	the	next	one	is	combined	with	the	previous	two	to	complete
the	square.
The	order	for	these	points	follows	the	'standard'	conventions	for	stripping	used
in	most	graphics	libraries	(for	example	Direct3D,	OpenGL	and	Heidi).
Point3	*nor
The	normal	for	each	vertex.
Point3	*uvw
The	UVW	texture	coordinates	for	the	vertices.

Prototype:
virtual	void	startTriangles()	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	to	begin	sending	a	series	of	non-stripped	triangles	to
render.	Call	this	method,	then	any	of	the	triangle*()	methods	many	times,
then	endTriangles()	to	finish.

Prototype:
virtual	void	triangle(Point3	*xyz,	Point3	*rgb)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	sends	a	single	non-stripped	triangle	to	render.	Call
startTriangles()	first.
Note:	This	method	maps	points	from	the	GraphicsWindow's	current	transform
to	screen	space.	If	the	GraphicsWindow's	transform	is	set	to	the	identity
matrix	then	the	mapping	is	done	from	points	specified	in	world	space.
Otherwise	the	points	given	are	transformed	by	the	GraphicsWindow
transform,	and	are	then	considered	to	be	in	world	space.	Thus,	to	get	a	world-
space	to	screen-space	conversion,	you	need	to	set	the	transform	to	the	identity
with	gw->setTransform(Matrix3(1)).

Parameters:
Point3	*xyz
The	three	points	for	the	triangle.
Point3	*rgb
The	color	for	each	vertex.
Note:	The	use	of	these	colors	is	not	supported	under	the	OpenGL	driver.	The
rgb	values	are	ignored.	Only	the	current	material	is	taken	into	consideration.
(This	is	how	OpenGL	works.)

Prototype:
virtual	void	triangleN(Point3	*xyz,	Point3	*nor,	Point3	*uvw)	=	0;

Remarks:

This	method	is	available	in	release	2.0	and	later	only.
This	method	draws	a	single	triangle	by	specifying	the	vertex	points	in	world
space,	a	normal,	and	texture	coordinates	for	each	vertex.
Note:	This	method	maps	points	from	the	GraphicsWindow's	current	transform
to	screen	space.	If	the	GraphicsWindow's	transform	is	set	to	the	identity
matrix	then	the	mapping	is	done	from	points	specified	in	world	space.
Otherwise	the	points	given	are	transformed	by	the	GraphicsWindow
transform,	and	are	then	considered	to	be	in	world	space.	Thus,	to	get	a	world-
space	to	screen-space	conversion,	you	need	to	set	the	transform	to	the	identity
with	gw->setTransform(Matrix3(1)).

Parameters:
Point3	*xyz
The	three	points	for	the	triangle.
Point3	*nor
The	three	normals	for	the	triangle.
Point3	*uvw
The	texture	coordinate	for	each	vertex.

Prototype:
virtual	void	triangleNC(Point3	*xyz,	Point3	*nor,	Point3	*rgb)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	draws	a	single	triangle	by	specifying	the	vertex	points	in	world
space,	a	normal,	and	a	color	for	each	vertex.
Note:	This	method	maps	points	from	the	GraphicsWindow's	current	transform
to	screen	space.	If	the	GraphicsWindow's	transform	is	set	to	the	identity
matrix	then	the	mapping	is	done	from	points	specified	in	world	space.
Otherwise	the	points	given	are	transformed	by	the	GraphicsWindow
transform,	and	are	then	considered	to	be	in	world	space.	Thus,	to	get	a	world-
space	to	screen-space	conversion,	you	need	to	set	the	transform	to	the	identity
with	gw->setTransform(Matrix3(1)).

Parameters:
Point3	*xyz

The	three	points	for	the	triangle.
Point3	*nor
The	normal	for	each	vertex.
Point3	*rgb
The	color	for	each	vertex.

Prototype:
virtual	void	triangleNCT(Point3	*xyz,	Point3	*nor,	Point3	*rgb,
Point3	*uvw)	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	draws	a	single	triangle	by	specifying	the	vertex	points	in	world
space,	a	normal,	a	color,	and	a	texture	coordinate	for	each	vertex.
Note:	This	method	maps	points	from	the	GraphicsWindow's	current	transform
to	screen	space.	If	the	GraphicsWindow's	transform	is	set	to	the	identity
matrix	then	the	mapping	is	done	from	points	specified	in	world	space.
Otherwise	the	points	given	are	transformed	by	the	GraphicsWindow
transform,	and	are	then	considered	to	be	in	world	space.	Thus,	to	get	a	world-
space	to	screen-space	conversion,	you	need	to	set	the	transform	to	the	identity
with	gw->setTransform(Matrix3(1)).

Parameters:
Point3	*xyz
The	three	points	for	the	triangle.
Point3	*nor
The	normal	for	each	vertex.
Point3	*rgb
The	color	for	each	vertex.
Point3	*uvw
The	texture	coordinate	for	each	vertex.

Prototype:
virtual	void	endTriangles()	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Call	this	method	to	finish	rendering	triangles.	See	startTriangles()	above.

Prototype:
virtual	void	lightVertex(const	Point3	&pos,	const	Point3	&nor,
Point3	&rgb)	=	0;

Remarks:
Lights	a	vertex,	using	all	the	current	lights.	The	vertex	appears	to	be
transformed	using	the	current	transformation	matrix,	although	actually	the
calculations	are	done	using	back-transformed	light	coordinates	(for	speed).
The	vertex	position	and	normal	are	passed	in,	and	a	color	is	returned.	The
rendering	uses	the	current	material.

Parameters:
const	Point3	&pos
Vertex	position.
const	Point3	&nor
Vertex	normal.
Point3	&rgb
Returned	color.

Prototype:
virtual	void	updateScreen()	=	0;

Remarks:
This	method	is	used	internally	and	should	not	be	called	by	plug-in	developers.

Prototype:
virtual	void	setColor(ColorType	t,	float	r,	float	g,	float	b)	=	0;

Remarks:
Sets	the	RGB	color	used	for	the	specified	drawing	type	(line,	fill,	text,	clear).

Parameters:
ColorType	t
One	of	the	following	values:

LINE_COLOR
Line	drawing	color.
FILL_COLOR
Polygon	fill	color.
TEXT_COLOR
Text	drawing	color.
CLEAR_COLOR
The	color	that	the	viewport	is	cleared	to	when	you	call	clearScreen().

float	r
Specifies	the	red	amount	0.0	-	1.0.
float	g
Specifies	the	green	amount	0.0	-	1.0.
float	b
Specifies	the	blue	amount	0.0	-	1.0.

Prototype:
virtual	void	clearScreen(RECT	*rp,	int	useBkg	=	FALSE)	=	0;

Remarks:
Clears	the	specified	rectangular	region	of	the	screen.

Parameters:
RECT	*rp
Specifies	the	rectangular	region	to	clear.
int	useBkg	=	FALSE
Specifies	if	the	background	should	be	used	to	fill	the	cleared	area.	Nonzero
indicate	the	background	should	be	used;	0	indicates	the	'clear'	color	should	be
used	(see	setColor()	above).

Hit	Testing	Methods
The	following	methods	are	used	for	hit	testing.	Typically	you	use	these	methods
in	the	following	sequence:
	You	set	a	hit	regions	using	setHitRegion().
	You	clear	the	hit	code	using	clearHitCode().

	You	'render'	a	primitive	using	the	mode	GW_PICK	and	at	whatever	level	you
want	to	check	at.	For	example,	if	you	are	in	interested	in	vertex	hit	testing,	you
would	'render'	a	series	of	markers	(using	iWinMarker()	with
PLUS_SIGN_MRKR)	using	a	rendering	mode	that	included	GW_PICK.
The	GW_PICK	'rendering'	mode	will	cause	the	system	to	perform	hit	testing
rather	than	actually	render	the	item.
	After	each	item	is	'rendered'	you	check	to	see	if	a	hit	was	made	using
checkHitCode().	This	method	returns	TRUE	of	FALSE	based	on	if	a	hit	was
found.	If	you	are	looking	for	just	a	single	hit,	you	could	abort	as	soon	as
checkHitCode()	returns	TRUE.	If	you	are	interested	in	the	closest	hit,	you
loop	through	all	the	items	calling	clearHitCode(),	checkHitCode()	and
getHitDistance().	After	checking	all	the	items	you	simply	choose	the
smallest	hit	distance	from	all	the	items	you've	checked.

Prototype:
virtual	void	setHitRegion(HitRegion	*rgn)	=	0;

Remarks:
Sets	the	hit	region	used	for	hit	testing.	See	Class	HitRegion.

Parameters:
HitRegion	*rgn
The	hit	region	to	use.

Prototype:
virtual	void	clearHitCode()	=	0;

Remarks:
This	methods	clears	the	hit	code.	Call	this	method	before	performing	a	hit	test.

Prototype:
virtual	BOOL	checkHitCode()	=	0;

Remarks:
Returns	TRUE	if	the	hit	code	is	set	indicating	a	hit	was	made;	otherwise
FALSE.

Prototype:
virtual	DWORD	getHitDistance()	=	0;

Remarks:
If	checkHitCode()	returns	TRUE	you	may	call	this	method	to	return	the	hit
distance.	In	wireframe	mode	this	is	the	distance	to	the	line.	In	shaded	mode,
this	is	the	z	distance.	This	allows	you	to	perform	'smart'	hit	testing	by
choosing	the	item	with	the	smallest	hit	distance.	This	method	only	returns
meaningful	values	when	the	hit	region	is	a	point.

Prototype:
virtual	void	setHitCode(BOOL	h)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	drawing	code	to	manually	set	the	state	of	the	hit	code,
which	is	returned	by	the	checkHitCode()	method.	For	more	information	see
the	topic	on	Hit	Testing.
The	new	methods	setHitDistance()	and	setHitCode()	make	it	possible	to
work	with	GraphicsWindow	hit-testing	in	otherwise	impossible	situations.
Why	are	they	necessary?	An	example	from	is	shown	below.	The	patch	object
contains	bezier	spline-based	edges	which	can	consist	of	up	to	102	vertices.
Since	the	GraphicsWindow::polyline	function	can	only	plot	lines	with	up	to	32
vertices,	it	is	impossible	to	plot	these	in	a	single	call	to	the	polyline	function.
Multiple	calls	to	the	polyline	call	do	not	return	a	proper	hitcode	when	using	a
"window"-type	hit	region.	By	using	the	new	setHitCode()	method,	code	can
properly	handle	this	situation.	The	code	below	shows	the	function	in	use	from
the	PatchMesh::renderEdge	method:
int	steps	=	GetMeshSteps();
int	segNum	=	steps+2;
float	fsegNum	=	(float)	(segNum-1);
//	If	steps	are	too	high	for	GraphicsWindow's	buffer,	we	must
draw	it	manually
if((steps	+	2)	>	GW_MAX_VERTS)	{
	Point3	line[2];

	Point3	prev,current(.0f,.0f,.0f);
	BOOL	hitAll	=	TRUE;
	BOOL	hitAny	=	FALSE;
	DWORD	hitDist	=	0xffffffff;
	for(int	terp	=	0;	terp	<	segNum;	terp++)
	{
		prev	=	current;
		current	=	work.InterpCurve3D((float)terp	/	fsegNum);
		if	(terp	!=	0)
		{
			line[0]	=	prev;
			line[1]	=	current;
			gw->clearHitCode();
			gw->polyline(2,	line,	NULL,	NULL,	0,	NULL);
			if(gw->checkHitCode())	{
				hitAny	=	TRUE;
				if(gw->getHitDistance()	<	hitDist)
					hitDist	=	gw->getHitDistance();
			}
			else	hitAll	=	FALSE;
		}
	}
	if(hr	&&	!hr->crossing	&&	hr->type	!=	POINT_RGN)
		gw->setHitCode(hitAll);
	else
		gw->setHitCode(hitAny);
	gw->setHitDistance(hitDist);
}	else	{
	for(int	terp	=	0;	terp	<	segNum;	terp++)
		fixedBuf[terp]	=	work.InterpCurve3D((float)terp	/	fsegNum);

	gw->polyline(steps+2,	fixedBuf,	NULL,	NULL,	0,	NULL);
}
Note	that	the	gw->polyline	call	is	preceded	by	a	call	to	clearHitCode(),
and	followed	by	code	which	checks	the	hit	code,	maintaining	"hitAny"	and
"hitAll"	flags.	When	all	the	segments	are	drawn,	the	gw->setHitCode()	call
is	made,	setting	the	hit	code	depending	on	the	hit	region	type.	When	the	code
which	called	this	function	checks	the	GraphicsWindow�s	hit	code,	it	will
contain	the	proper	value.	This	code	also	keeps	track	of	the	closest	hit	distance
and	places	that	into	the	GraphicsWindow	when	all	line	segments	are	drawn.

Parameters:
BOOL	h
Set	to	TRUE	if	the	hit	code	is	set,	otherwise	FALSE.

Prototype:
virtual	void	setHitDistance(DWORD	d)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	drawing	code	to	manually	set	the	hit	distance,	which	is
returned	by	the	getHitDistance()	method.	For	more	information	see	the
topic	on	Hit	Testing.

Parameters:
DWORD	d
In	wireframe	mode	this	is	the	distance	to	the	line.	In	shaded	mode,	this	is	the	z
distance.

Prototype:
virtual	float	interpWorld(Point3	*world1,	Point3	*world2,	float
sParam,	Point3	*interpPt)	=	0;

Remarks:
This	method	is	used	internally.

Utility	Functions	(not	part	of	class	GraphicsWindows):

Function:
GraphicsWindow	*createGW(HWND	hWnd,	GWinSetup	&gws);

Remarks:
This	function	is	used	internally	to	create	a	new	graphics	window.	Use	of	this
method	is	not	supported	for	plug-ins.

Function:
void	getRegionRect(HitRegion	*hr,	RECT	*rect);

Remarks:
Returns	a	bounding	rectangle	that	encloses	the	entire	hit	region.	For	example
if	the	hit	regions	was	a	fence	region,	this	method	would	return	the	smallest
rectangle	that	included	the	entire	set	of	fence	region	points.

Parameters:
HitRegion	*hr
The	hit	region	to	check.
RECT	*rect
The	returned	bounding	rectangle.

Function:
BOOL	pointInRegion(int	x,	int	y,	HitRegion	*hr);

Remarks:
Returns	TRUE	if	the	specified	point	is	inside	the	region	hr;	otherwise	FALSE.

Function:
int	distToLine(int	x,	int	y,	int	*p1,	int	*p2);

Remarks:
Returns	the	signed	distance	from	x,y	to	the	line	defined	by	p1->p2.

Function:
int	lineCrossesRect(RECT	*rc,	int	*p1,	int	*p2);

Remarks:
Returns	nonzero	if	the	line	defined	by	p1->p2	crosses	into	the	RECT	and	0

otherwise.

Function:
int	segCrossesCircle(int	cx,	int	cy,	int	r,	int	*p1,	int	*p2);

Remarks:
Returns	nonzero	if	the	line	defined	by	p1->p2	crosses	the	circle	center	at	(cx,
cy)	with	a	radius	of	r	0	otherwise.

Function:
BOOL	insideTriangle(IPoint3	&p0,	IPoint3	&p1,	IPoint3	&p2,
IPoint3	&q);

Remarks:
Returns	TRUE	if	the	point	passed	is	inside	the	specified	triangle.

Parameters:
IPoint3	&p0
The	first	point	of	the	triangle.
IPoint3	&p1
The	second	point	of	the	triangle.
IPoint3	&p2
The	third	point	of	the	triangle.
IPoint3	&q
The	point	to	check.

Return	Value:
Returns	TRUE	if	the	point	passed	is	inside	the	specified	triangle;	otherwise
FALSE.

Function:
int	getZfromTriangle(IPoint3	&p0,	IPoint3	&p1,	IPoint3	&p2,
IPoint3	&q);

Remarks:
Returns	the	z	value	of	where	the	projected	screen	point	q	would	intersect	the
triangle	defined	by	(p0,	p1,	p2).

Parameters:
IPoint3	&p0
The	first	point	of	the	triangle.
IPoint3	&p1
The	second	point	of	the	triangle.
IPoint3	&p2
The	third	point	of	the	triangle.
IPoint3	&q
The	screen	point	to	check.

Prototype:
HINSTANCE	GetGraphicsLibHandle(TCHAR	*driverLibName);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	is	not	supported	for	use	in	the	SDK.

Prototype:
BOOL	GraphicsSystemIsAvailable(HINSTANCE	drv);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	is	not	supported	for	use	in	the	SDK.

Prototype:
BOOL	GraphicsSystemCanConfigure(HINSTANCE	drv);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	is	not	supported	for	use	in	the	SDK.

Prototype:
BOOL	GraphicsSystemConfigure(HWND	hWnd,	HINSTANCE
drv);

Remarks:

This	function	is	available	in	release	2.0	and	later	only.
This	function	is	not	supported	for	use	in	the	SDK.

Prototype:
void	FreeGraphicsLibHandle(HINSTANCE	drv);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
This	function	is	not	supported	for	use	in	the	SDK.

Class	CommandMode
See	Also:	Class	MouseCallBack,	Class	ChangeForegroundCallback,
Foreground	/	Background	Planes.
class	CommandMode

Description:
This	base	class	allows	the	developer	to	create	a	command	mode	that	handles
processing	user	interaction	using	the	mouse	in	the	viewports.
See	Also:	The	Advanced	Topics	section	Command	Modes	and	Mouse	Procs.
There	are	methods	in	3ds	max's	Interface	class	to	set	and	get	the	current
command	mode.

Methods:

Prototype:
virtual	int	Class()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	Class	of	the	command	mode.	The	class	describes	the	type	of
command	mode	this	is.	If	the	developer	is	defining	a	command	mode	to	be
used	as	part	of	the	sub-object	manipulation	(Move,	Rotate,	and	Scale)	then
one	of	the	following	pre-defined	values	should	be	used:
MOVE_COMMAND
ROTATE_COMMAND
SCALE_COMMAND
USCALE_COMMAND
SQUASH_COMMAND

If	one	of	these	other	values	is	appropriate	it	may	be	used.	If	not,	the	developer
is	free	to	define	their	own	(as	an	int).
VIEWPORT_COMMAND
SELECT_COMMAND
HIERARCHY_COMMAND
CREATE_COMMAND
MODIFY_COMMAND
MOTION_COMMAND

ANIMATION_COMMAND
CAMERA_COMMAND
NULL_COMMAND
DISPLAY_COMMAND
SPOTLIGHT_COMMAND
PICK_COMMAND

Return	Value:
The	Class	of	the	command	mode.

Prototype:
virtual	int	SuperClass()

Remarks:
Implemented	by	the	Plug-In.
This	method	can	be	ignored.	The	default	implementation	should	be	used.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	int	ID()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	ID	of	the	command	mode.	This	value	should	be	the	constant
CID_USER	plus	some	random	value	chosen	by	the	developer.
As	an	example,	this	method	could	be	implemented	as:
{	CID_USER+0x1423;	}
In	the	special	case	of	the	developer	implementing	a	custom	command	mode	to
be	used	as	part	of	sub-object	manipulation	(Move,	Rotate	or	Scale)	the	value
for	ID()	should	be	one	of	the	following	values:
CID_SUBOBJMOVE
CID_SUBOBJROTATE
CID_SUBOBJSCALE
CID_SUBOBJUSCALE

CID_SUBOBJSQUASH
Note:	if	two	command	modes	conflict	in	this	ID	value,	it	is	not	a	problem,	so
the	uniqueness	is	not	strictly	required.	However,	this	ID()	method	is	often
used	to	check	which	mode	is	active,	so	unless	the	value	for	your	command
mode	is	identifiable	via	this	ID,	you	may	not	be	able	to	recognize	if	your
mode	is	indeed	the	active	one.

Prototype:
virtual	MouseCallBack	*MouseProc(int	*numPoints)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	establishes	the	number	of	points	required	by	the	command	mode
and	returns	a	pointer	to	the	mouse	callback	object	that	is	used	to	process	the
user	input.

Parameters:
int	*numPoints
This	is	where	to	store	the	number	of	points	used	by	the	CommandMode.	If	the
plug-in	needs	to	use	an	undetermined	number	of	points	it	can	specify	a	large
number	for	this	value.	When	the	mouse	proc	has	finished	processing	points	it
returns	FALSE	to	stop	the	point	processing	before	the	number	of	points
specified	here	have	been	entered.

Return	Value:
A	pointer	to	the	mouse	callback	object	that	is	used	to	process	the	user	input.

See	Also:	Class	MouseCallBack.

Prototype:
virtual	ChangeForegroundCallback	*ChangeFGProc()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	a	pointer	to	a	callback	procedure	that	flags	nodes	that	belong	in	the
foreground	plane.	Plug-ins	typically	use	a	standard	callback	object	provided
by	the	system	that	flags	all	nodes	dependent	on	the	plug-in	object.	This
ensures	that	when	the	plug-in	object	changes,	any	nodes	that	change	as	a	result

will	be	in	the	foreground	plane,	making	redraw	time	faster.
These	constants	may	be	specified	to	use	one	of	the	standard	callback	objects
instead	of	an	actual	FG	proc.	For	example	{return
CHANGE_FG_SELECTED;}
CHANGE_FG_SELECTED
Selected	nodes	are	flagged.
CHANGE_FG_ANIMATED
Nodes	that	are	animated	are	flagged.

Return	Value:
A	pointer	to	a	callback	procedure	that	flags	nodes	that	belong	in	the
foreground	plane.

See	Also:	For	additional	information	see	the	Advanced	Topics	section
Foreground	/	Background	Planes.

Prototype:
virtual	BOOL	ChangeFG(CommandMode	*oldMode)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	TRUE	if	the	command	mode	needs	to	change	the
foreground	proc	(using	ChangeFGProc())	and	FALSE	if	it	does	not.	A
command	mode	that	does	not	involve	any	redrawing	of	the	viewports	can	just
return	FALSE.

Parameters:
CommandMode	*oldMode
This	is	the	command	mode	that	is	currently	in	place.	This	may	be	used	for
comparison	with	a	potential	new	mode.	See	the	sample	code	below.

Sample	Code:
The	sample	code	below	checks	to	see	if	the	command	mode	is	already
CHANGE_FG_SELECTED.	If	it	is	there	is	no	reason	to	change	to
foreground	proc	to	this	mode	so	the	method	returns	FALSE.	If	a	different
mode	is	in	place	TRUE	is	returned.
BOOL	ChangeFG(CommandMode	*oldMode)
{	return	(oldMode->ChangeFGProc()	!=

CHANGE_FG_SELECTED);	}
ChangeForegroundCallback	*ChangeFGProc()
{	return	CHANGE_FG_SELECTED;	}

Prototype:
virtual	void	EnterMode()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	a	command	mode	becomes	active.	Usually	a
developer	responds	by	changing	the	state	of	a	control	to	indicate	to	the	user
that	they	have	entered	the	mode.	Typically	this	means	pushing	in	a	tool	button.
When	the	mode	is	finished	the	button	should	be	returned	to	normal	(see
ExitMode()	below).
Note:	A	developer	should	use	the	standard	color	GREEN_WASH	for	check
buttons	that	instigate	a	command	mode.	While	the	command	mode	is	active
the	button	should	be	displayed	in	GREEN_WASH.	See	Class	ICustButton
(specifically	the	method	SetHighlightColor())	for	more	details.

Sample	Code:
iPick->SetHighlightColor(GREEN_WASH);
iPick->SetCheck(TRUE);

Prototype:
virtual	void	ExitMode()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	active	command	mode	is	replaced	by	a
different	mode.	Typically	a	developer	implements	this	method	to	set	the	state
of	the	control	that	invoked	the	command	mode	to	the	'out'	state.	See	Class
ICustButton	(specifically	the	method	SetCheck()).

Sample	Code:
iPick->SetCheck(FALSE);

Class	MouseCallBack
See	Also:	Class	CommandMode.
class	MouseCallBack	:	public	BaseInterfaceServer

Description:
This	class	is	used	to	allow	a	developer	to	capture	the	mouse	events	entered	by
the	user	and	process	them.	To	create	a	mouse	call	back,	derive	a	sub	class	of	this
class	and	implement	the	proc()	method.

Methods:

Prototype:
virtual	int	proc(HWND	hwnd,	int	msg,	int	point,	int	flags,	IPoint2
m);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	a	mouse	event	takes	place	to	handles	its
processing.

Parameters:
HWND	hwnd
The	window	handle	of	the	window	the	user	clicked	in.	This	is	one	of	the
viewports.	An	interface	to	the	viewport	can	be	obtained	from	the	system,
given	this	window	handle.	See	Class	Interface	and	review	the	methods	below:
ViewExp	*GetViewport(HWND	hwnd)
This	method	gets	a	viewport	interface	given	the	window	handle.
void	ReleaseViewport(ViewExp	*vpt)
When	the	developer	is	done	with	the	viewport	interface	they	should	call
this	method	to	release	it.

int	msg
This	message	describes	the	type	of	event	that	occurred.	See	List	of	Mouse
Callback	Messages.
int	point
The	point	number.	this	is	0	for	the	first	click,	1	for	the	second,	etc.
int	flags

These	flags	describe	the	state	of	the	mouse	buttons.	See	List	of	Mouse
Callback	Flags.
IPoint2	m
The	2D	screen	point	that	the	user	clicked	on.	Methods	in	the	viewport
interface	allow	this	point	to	be	converted	into	a	world	space	ray	or	a	3D	view
space	point.	A	world	space	ray	can	be	intersected	with	the	active	construction
plane	which	results	in	a	point	on	the	active	construction	plane.	See	Class
ViewExp.

Return	Value:
TRUE	indicates	the	proc	should	continue	to	process	points;	FALSE	means
stop	processing	points.	If	a	plug-in	supplied	a	large	number	of	points	in	a
command	mode	that	uses	this	mouse	proc,	FALSE	can	be	returned	to	abort	the
processing	before	all	the	points	have	been	entered.

Prototype:
virtual	int	override(int	mode)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	override	the	default	drag	mode.	Most	plug-in	will	not
need	to	replace	the	default	implementation	of	this	method.	What	this	does	is
change	the	way	the	messages	are	sent	relative	to	the	mouse	clicking.
Normally	the	messages	are	sent	as	follows:	When	the	user	clicks	down	this
generates	a	MOUSE_POINT	message.	Then	the	user	drags	the	mouse	with
the	button	down	and	a	series	of	MOUSE_MOVE	messages	are	sent.	When
they	let	up	on	the	mouse	button	a	MOUSE_POINT	messages	is	generated.
Then	as	the	mouse	is	moved	a	series	of	MOUSE_MOVE	messages	are	sent.
Then	they	click	down	on	the	mouse	again,	but	this	time	a	point	message	is	not
generated	until	the	button	is	released.	All	future	points	are	then	only	sent	after
the	mouse	button	has	been	pressed	and	released.

Parameters:
int	mode
The	current	drag	mode.	See	below.

Return	Value:
One	of	the	following	drag	modes	should	be	returned:

CLICK_MODE_DEFAULT
Returned	to	indicate	the	use	of	the	system	mouse	mode.
CLICK_DRAG_CLICK
This	is	the	default	behavior	as	described	above.
CLICK_MOVE_CLICK
In	this	mode,	the	first	point	is	entered	by	clicking	the	mouse	button	down	and
then	letting	it	up.	This	generates	point	0.	In	other	words,	a	MOUSE_POINT
message	is	only	generated	after	the	user	has	pressed	and	released	the	mouse
button.
CLICK_DOWN_POINT
In	this	mode,	point	messages	are	sent	on	mouse-down	only.

Default	Implementation:
{	return	mode;	}

Sample	Code:
A	sample	program	that	uses	the	override	method	is
\MAXSDK\SAMPLES\OBJECTS\SPLINE.CPP.	It	uses
CLICK_DOWN_POINT.

Prototype:
virtual	BOOL	SupportTransformGizmo();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	returns	TRUE	if	the	mouse	proc	supports	a	transform	gizmo;
otherwise	FALSE.
This	method,	and	DeactivateTransformGizmo()	below,	are	normally
implemented	by	the	selection	processor	and	the	existing	mouse	procs.	In	case
a	special	implementation	is	done,	the	following	describes	what	needs	to	be
done:
Since	the	transform	gizmo	is	dependent	on	the	Command	Mode,	the
MouseCallback	itself	decides	if	it	supports	the	use	of	the	transform	gizmo.
When	the	node	axis	(or	transform	gizmo)	is	redrawn,	the	system	will	ask	the
command	mode's	mouse	proc	if	it	supports	transform	gizmos,	and	if	it	does,	it

will	draw	a	gizmo,	instead	of	the	regular	node	axis.
The	same	things	happens	with	the	main	selection	processor	in	3ds	max.	When
the	mouse	is	moved,	the	selection	processor	itself	asks	if	the	MouseCallback
supports	transform	gizmos,	and	if	it	does,	it	will	hit	test	the	gizmo	in	a
MOUSE_FREEMOVE	or	MOUSE_POINT	message.	If	any	of	the
transform	gizmos	hit	test	flags	are	passed	into	the	mouse	procs	hit	tester,	the
transform	gizmo	should	be	hit	tested	as	well	(using
Interface::HitTestTransformGizmo())
When	hit	testing	the	gizmo,	different	flags	will	be	passed	in:
HIT_TRANSFORMGIZMO	is	passed	in	on	a	MOUSE_FREEMOVE
message	so	that	the	axis	is	hit	tested	and	it	hightlights	if	it	is	hit,	but	it	doesn't
actually	switch	the	transform	mode.
In	case	of	a	MOUSE_POINT,	the	flag	will	be	HIT_SWITCH_GIZMO,
and	if	the	axis	is	hit,	the	'hit'	transform	mode	will	be	pushed	on	the	transform
mode	stack.
When	the	mouse	is	released	(MOUSE_POINT	(pt==1),	or
MOUSE_ABORT,	then	the	axis	constraint	should	pop	back	to	the	existing
one,	and	DeactivateTransformGizmo()	is	called.	Inside
DeactivateTransformGizmo()	the	normal	implementation	is	to	pop	the
axis	mode	back.	It	should	also	maintain	a	flag	(set	it	if
HitTestTransformGizmo()	returns	true	and	the
HIT_SWITCH_GIZMO	is	set,	and	clear	it	in
DeactivateTransformGizmo().	The	flag	is	needed	because	you	should	not
call	Interface::PopAxisMode()	unless	the	axis	mode	was	previously
popped.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	void	DeactivateTransformGizmo();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	is	called	to	deactivate	the	transform	gizmo.	See	the	note	above	in

SupportTransformGizmo().
Default	Implementation:
{}

Prototype:
virtual	BOOL	SupportAutoGrid();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Mouse	procs	wishing	to	utilize	the	AutoGrid	feature	should	override	this
method	by	returning	TRUE	and	then	make	the	appropriate	calls	to	the
ViewExp	methods	TrackImpliciGrid(),	CommitImplicitGrid()	and
ReleaseImplicitGrid()	from	the	body	of	their	classes	proc()	method.	For
sample	code	see
\MAXSDK\SAMPLES\MODIFIERS\SURFWRAP\SURFWRAP.CPP

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	TolerateOrthoMode();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	returns	TRUE	if	Ortho	Mode	makes	sense	for	this	creation;
FALSE	if	it	doesn't.	In	general	this	is	only	TRUE	for	splines	and	such.

Default	Implementation:
{return	FALSE;	}

Prototype:
void	setMouseManager(MouseManager	*mm)

Remarks:
This	method	is	used	internally.

Prototype:
MouseManager	*getMouseManager()

Remarks:
This	method	is	used	internally.

The	following	functions	are	not	part	of	this	class	but	are	available
for	use:
Function:
BOOL	GetInMouseAbort();

Remarks:
This	global	function	is	available	in	release	2.0	and	later	only.
This	function	is	not	part	of	this	class	but	is	availalbe	for	use.	It	returns	TRUE
if	any	mouse	proc	is	currently	in	the	process	of	aborting	a	mouse	proc;
otherwise	FALSE.
For	instance,	a	developer	may	be	using	the
Animatable::MouseCycleCompleted()	method	to	put	up	a	dialog	box,
but	need	to	not	put	it	up	if	the	mouse	proc	was	aborting.	This	method	provides
a	way	to	know	if	indeed	the	mouse	proc	is	aborting	so	the	dialog	won't	be
displayed	inside	MouseCycleCompleted().

Return	Value:
TRUE	if	aborting;	otherwise	FALSE.

Function:
float	GetPerspMouseSpeed();

Remarks:
This	global	function	is	not	part	of	class	MouseCallBack	but	is	available	for
use.
Returns	the	mouse	speed	value	used	in	perspective	viewports.	This	value
corresponds	to	the	value	that	the	user	may	set	using	the	3ds	max	command	in
the	File	/	Preferences	.	.	.	Move	/	Rotate	Transform	area.

Function:

void	SetPerspMouseSpeed(float	speed);
Remarks:
This	global	function	is	not	part	of	class	MouseCallBack	but	is	available	for
use.
Sets	the	mouse	speed	value	used	in	perspective	viewports.	This	value
corresponds	to	the	value	that	the	user	may	set	using	the	3ds	max	command	in
the	File	/	Preferences	.	.	.	Move	/	Rotate	Transform	area.

Parameters:
float	speed
The	value	to	set.

Function:
void	SetMoveModeType(int	moveType);

Remarks:
This	global	function	is	not	part	of	class	MouseCallBack	but	is	available	for
use.
Sets	the	mouse	move	mode.	This	value	corresponds	to	the	value	that	the	user
may	set	using	the	3ds	max	command	in	the	File	/	Preferences	.	.	.	Move	/
Rotate	Transform	area.

Parameters:
int	moveType
One	of	the	following	values:
MOVE_INTERSECTION
MOVE_PROJECTION

Function:
int	GetMoveModeType();

Remarks:
This	global	function	is	not	part	of	class	MouseCallBack	but	is	available	for
use.
Returns	the	mouse	move	mode.	This	value	corresponds	to	the	value	that	the
user	may	set	using	the	3ds	max	command	in	the	File	/	Preferences	.	.	.	Move	/
Rotate	Transform	area.

Return	Value:
One	of	the	following	values:
MOVE_INTERSECTION
MOVE_PROJECTION

Class	IParamArray
See	Also:	Class	IParamBlock,	Class	IParamMap.
class	IParamArray

Description:
This	class	represents	a	virtual	array	of	parameters.	Parameter	are	accessed	using
an	integer	index	and	GetValue()	and	SetValue()	methods.	Parameter	blocks
are	one	such	implementation	of	this	class,	but	it	can	also	be	useful	to	implement
a	class	that	abstracts	non-parameter	block	variables.	The	ParamMap	class	uses
this	base	class	so	that	a	ParamMap	can	be	used	to	control	UI	for	not	only
parameter	blocks	but	also	variables	stored	outside	of	parameter	blocks.	The
Advanced	Topics	section	on	Parameter	Maps	discusses	how	this	is	done.

Methods:
Default	implementation	of	these	methods	are	provided	which	simply	return
FALSE.

Prototype:
virtual	BOOL	SetValue(int	i,	TimeValue	t,	float	v);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	system	needs	to	store	a	value	into	a	variable.
There	are	overloaded	functions	for	each	type	of	value	to	set	(int,	float,	and
Point3).	Each	method	has	three	parameters.	Below	is	the	float	version	-	the
others	are	similar.

Parameters:
int	i
This	is	the	index	into	the	virtual	array	of	the	value	to	set.
TimeValue	t
This	is	the	time	at	which	to	set	the	value.
float	v
This	is	the	value	to	set.

Return	Value:
This	is	not	currently	used.

Prototype:
virtual	BOOL	SetValue(int	i,	TimeValue	t,	int	v)

Remarks:
Implemented	by	the	Plug-In.
This	is	the	integer	version	of	above.

Prototype:
virtual	BOOL	SetValue(int	i,	TimeValue	t,	Point3&	v)

Remarks:
Implemented	by	the	Plug-In.
This	is	the	Point3	version	of	above.

Prototype:
virtual	BOOL	GetValue(int	i,	TimeValue	t,	float	&v,	Interval
&ivalid)

Remarks:
Implemented	by	the	Plug-In.
Whenever	the	developer	needs	to	retrieve	a	value	from	the	parameter	block,
the	GetValue()	method	is	used.	There	are	overloaded	functions	for	each	type
of	value	to	retrieve	(int,	float,	Point3,	and	Color).	Each	method	has	four
parameters:

Parameters:
int	i
This	is	the	index	into	the	virtual	array	of	the	value	to	retrieve.
TimeValue	t
This	is	the	time	at	which	to	retrieve	the	value.	For	constants	pass	0.
float	&v
This	is	the	value	to	retrieve.
Interval	&ivalid
This	is	the	validity	interval	to	update	to	reflect	the	validity	of	this	parameter.

Return	Value:
If	the	value	was	retrieved	TRUE	is	returned;	otherwise	FALSE	is	returned.

Prototype:
virtual	BOOL	GetValue(int	i,	TimeValue	t,	int	&v,	Interval
&ivalid)

Remarks:
This	is	the	integer	version	of	above.

Prototype:
virtual	BOOL	GetValue(int	i,	TimeValue	t,	Point3	&v,	Interval
&ivalid)

Remarks:
This	is	the	Point3	version	of	above.

Prototype:
IParamBlock	*GetParamBlock()

Remarks:
Implemented	by	the	System.
If	the	array	uses	a	parameter	block,	this	method	will	return	a	pointer	to	it,
otherwise	it	will	return	NULL.	Note	that	casting	won't	work	because	of
multiple	inheritance.

Return	Value:
Returns	a	pointer	to	the	parameter	block	if	one	is	used;	NULL	otherwise.

Prototype:
virtual	BOOL	KeyFrameAtTime(int	i,	TimeValue	t);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Checks	to	see	if	a	keyframe	exists	for	the	given	parameter	at	the	given	time.
Returns	TRUE	if	a	keyframe	exists	at	the	specified	time;	otherwise	FALSE.

Parameters:
int	i
Zero	based	index	of	the	parameter	to	check.
TimeValue	t

The	time	to	check.
Default	Implementation:
{return	FALSE;}

Class	ICustomControl
See	Also:	Custom	Controls.
class	ICustomControl	:	public	InterfaceServer

Description:
This	is	the	base	class	from	which	the	3ds	max	custom	controls	are	derived.	All
methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	HWND	GetHwnd()=0;

Remarks:
Returns	the	handle	of	the	control.

Prototype:
virtual	void	Enable(BOOL	onOff=TRUE)=0;

Remarks:
This	method	is	used	to	enable	the	control	so	it	may	be	operated	by	the	user.

Parameters:
BOOL	onOff=TRUE
This	parameter	is	available	in	release	2.0	and	later	only.
TRUE	to	enable;	FALSE	to	disable.

Prototype:
virtual	void	Enable2(BOOL	onOff=TRUE)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	internally	and	should	not	be	called	by	plug-in	developers.
This	second	enable	function	is	used	to	disable	and	enable	custom	controls
when	the	associated	parameter	has	a	non-keyframable	parameter.	The	effective
enable	state	is	the	AND	of	these	two	enable	bits.
For	example,	when	a	parameter	has	a	controller	plugged	into	it,	and	the

controller	is	not	keyframable,	any	spinner	control	associated	with	it	won't	be
effective.	That's	because	the	controller	doesn't	take	input	--	it	only	outputs
values.	To	prevent	the	user	from	being	confused	by	the	ineffectiveness	of	the
spinner	the	control	it's	automatically	disabled	by	the	system	using	this	method.

Parameters:
BOOL	onOff=TRUE
TRUE	to	enable;	FALSE	to	disable.

Prototype:
virtual	void	Disable()=0;

Remarks:
This	method	is	used	to	disable	the	control	so	it	may	not	be	selected	or	used.
When	disabled,	the	control	usually	appears	grayed	out.

Prototype:
virtual	BOOL	IsEnabled()=0;

Remarks:
This	returns	TRUE	if	the	control	is	enabled	and	FALSE	if	it	is	disabled.

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.
This	is	reserved	for	future	use.

Parameters:
int	cmd
The	command	to	execute.
ULONG	arg1=0

Optional	argument	1	(defined	uniquely	for	each	cmd).
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value	(defined	uniquely	for	each	cmd).

Default	Implementation:
{	return	0;	}

Class	ICustEdit
See	Also:	Class	ICustomControl,	Custom	Controls.
class	ICustEdit	:	public	ICustomControl

Description:
This	control	is	a	simple	text	input	control.	The	user	may	type	any	string	into	the
field	and	the	plug-in	is	notified	when	the	user	presses	the	ENTER	key.	There	are
also	methods	to	parse	and	return	integer	and	floating	point	values	entered	in	the
control.

To	initialize	the	pointer	to	the	control	call:

Prototype:
ICustEdit	*GetICustEdit(HWND	hCtrl);

To	release	the	control	call:

Prototype:
ReleaseICustEdit(ICustEdit	*ice);

The	value	to	use	in	the	Class	field	of	the	Custom	Control	Properties	dialog	is:
CustEdit
The	following	messages	may	be	sent	by	the	edit	control:
This	message	is	sent	when	the	control	gets	focus	or	when	the	user	presses	the
ENTER	key	while	using	the	control.
WM_CUSTEDIT_ENTER
wParam	contains	the	custom	edit	control	resource	ID.
lParam	contains	the	HWND	of	custom	edit	control.

Methods:

Prototype:
virtual	void	GetText(TCHAR	*text,	int	ct)=0;

Remarks:
This	retrieves	the	text	entered	into	the	control.

Parameters:
TCHAR	*text

Storage	for	the	text	to	retrieve.
int	ct
Specifies	the	maximum	length	of	the	string	returned.

Prototype:
virtual	void	SetText(TCHAR	*text)=0;

Remarks:
This	method	places	the	text	into	the	control	for	editing.

Parameters:
TCHAR	*text
The	text	to	place	in	the	control.

Prototype:
virtual	void	SetText(int	i)=0;

Remarks:
This	method	allows	you	to	pass	in	an	integer	value	to	the	control.	The	integer
is	converted	to	a	string	and	displayed	in	the	control.

Parameters:
int	i
This	value	is	converted	to	a	string	and	displayed	in	the	control.

Prototype:
virtual	void	SetText(float	f,	int	precision=3)=0;

Remarks:
This	method	allows	you	to	pass	in	a	floating	point	value	to	the	control.	The
float	is	converted	to	a	string	and	displayed	in	the	control.

Parameters:
float	f
This	value	is	converted	to	a	string	and	displayed	in	the	control.
int	precision=3
The	precision	argument	is	simply	the	number	of	decimal	places	that	get
represented	in	the	string	that	appears	in	the	edit	field.	So	if	the	arguments	were

(1.0f/3.0f,	3)	then	the	string	"0.333"	would	appear	in	the	edit	field.

Prototype:
virtual	int	GetInt(BOOL	*valid=NULL)=0;

Remarks:
This	method	parses	and	returns	an	integer	value	from	the	control.

Parameters:
BOOL	*valid=NULL
This	pointer,	if	passed,	is	set	to	TRUE	if	the	input	is	'valid';	otherwise	FALSE.
FALSE	indicates	that	something	caused	the	parsing	of	the	input	to	terminate
improperly.	An	example	is	a	non-numeric	character.	So	for	example,	if	the
user	entered	"123jkfksdf"	into	the	field	the	valid	pointer	would	be	set	to
FALSE.

Prototype:
virtual	float	GetFloat(BOOL	*valid=NULL)=0;

Remarks:
This	method	parses	and	returns	a	floating	point	value	from	the	control.

Parameters:
BOOL	*valid=NULL
This	pointer,	if	passed,	is	set	to	TRUE	if	the	input	is	'valid';	otherwise	FALSE.
FALSE	indicates	that	something	caused	the	parsing	of	the	input	to	terminate
improperly.	An	example	is	a	non-numeric	character.	So	for	example,	if	the
user	entered	"123jkfksdf"	into	the	field	this	pointer	would	be	set	to	FALSE.

Prototype:
virtual	void	SetLeading(int	lead)=0;

Remarks:
A	developer	doesn't	normally	need	to	call	this	method.	This	offsets	the	text
vertically	in	the	edit	control.

Parameters:
int	lead
This	parameter	specifies	the	number	of	pixels	to	offset.

Prototype:
virtual	void	WantReturn(BOOL	yesNo)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	allows	custom	handling	of	the	RETURN	key.	If	you	pass	TRUE
to	this	method	an	EN_CHANGE	message	will	be	sent	to	the	control	when
the	RETURN	key	is	pressed.	The	EN_CHANGE	message	is	sent	when	the
user	has	taken	any	action	that	may	have	altered	text	in	an	edit	control	so
developer	need	to	also	call	GotReturn()	(documented	below)	to	see	if	it	was
indeed	a	RETURN	keypress.

Parameters:
BOOL	yesNo
If	TRUE,	then	when	the	user	presses	the	RETURN	key	in	that	control,	the	edit
field	will	send	an	EN_CHANGE	message	to	the	owner,	and	calling
GotReturn()	will	return	TRUE.

Sample	Code:
Below	is	the	way	this	is	handled	by	the	Hit	By	Name	dialog.	In	that	dialog,
when	the	user	enters	a	wild	card	pattern	into	the	name	match	field	and	presses
RETURN,	the	dialog	is	exited	with	the	items	matching	the	pattern	selected.
The	way	this	is	accomplished	is	by	pass	TRUE	to	WantReturn()	and	then
processing	the	EN_CHANGE	message	on	the	control.	If	GotReturn()	is
TRUE	the	Win32	function	PostMessage()	is	used	to	send	the	IDOK
message	to	exit	the	dialog.	If	this	wasn't	done,	pressing	RETURN	in	the	edit
control	would	only	enter	the	text	--	the	user	would	have	to	move	the	mouse
over	the	OK	button	and	press	it.

	case	IDC_HBN_PATTERN:
		if	(HIWORD(wParam)==EN_CHANGE)	{
			iName	=	GetICustEdit(GetDlgItem(hDlg,IDC_HBN_PATTERN));
			iName->GetText(buf,256);
			ct	=	_tcslen(buf);
			if(ct	&&	buf[ct-1]	!=	_T('*'))
				_tcscat(buf,	_T("*"));
			SendMessage(sbn->hList,	LB_RESETCONTENT,	0,	0);

			sbn->SetPattern(GetDlgItem(hDlg,	IDC_HBN_PATTERN),	buf);
			sbn->BuildHitList(ct);
			if(iName->GotReturn())
				PostMessage(hDlg,WM_COMMAND,IDOK,0);
			ReleaseICustEdit(iName);
		}
		break;

Prototype:
virtual	BOOL	GotReturn()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	should	be	called	on	receipt	of	an	EN_CHANGE	message.	It
return	TRUE	if	pressing	the	RETURN	key	generated	the	message;	otherwise
FALSE.

Prototype:
virtual	void	GiveFocus()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Calling	this	method	gives	the	control	the	focus	to	receive	input.

Prototype:
virtual	BOOL	HasFocus()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	the	control	has	the	focus	to	receive	input;	otherwise	FALSE.

Prototype:
virtual	void	WantDlgNextCtl(BOOL	yesNo)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Determines	whether	the	TAB	key	may	be	used	to	jump	to	the	next	control	in

the	tab	sequence.
Parameters:
BOOL	yesNo
TRUE	to	enable	the	TAB	key	to	move	to	the	next	control;	FALSE	to	disable
the	TAB	key	from	moving	the	focus.

Prototype:
virtual	void	SetNotifyOnKillFocus(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Normally	when	a	user	exits	an	edit	filed	the	notification
WM_CUSTEDIT_ENTER	is	sent.	Many	plug-ins	key	off	this	message	to
finalize	the	input	of	values.	For	instance,	if	the	user	is	entering	a	value	into	an
edit	field	and	they	hit	the	TAB	key	to	leave	the	field	the	value	should	be
entered.	Normally	this	is	the	desired	behavior.	However,	as	a	special	case
condition,	if	a	developer	does	not	want	to	update	the	value,	this	method	may
be	called	so	the	WM_CUSTEDIT_ENTER	notification	won't	be	sent
when	the	edit	control	loses	focus.

Parameters:
BOOL	onOff
TRUE	to	turn	on;	FALSE	to	turn	off.

Prototype:
virtual	void	SetBold(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	text	font	in	the	edit	control	to	display	in	a	bold	format	or	normal.

Parameters:
BOOL	onOff
TRUE	to	turn	bolding	on;	FALSE	to	turn	off.

Class	ISpinnerControl
See	Also:	Class	ICustomControl,	Custom	Controls.
class	ISpinnerControl	:	public	ICustomControl

Description:
The	spinner	control	is	used	(usually	in	conjunction	with	the	custom	edit	control)
to	provide	input	of	values	limited	to	a	fixed	type.	For	example,	the	control	may
be	limited	to	the	input	of	only	positive	integers.	The	input	options	are	integer,
float,	universe	(world	space	coordinates),	positive	integer,	positive	float,	positive
universal,	and	time.	This	control	allows	the	user	to	increment	or	decrement	a
value	by	clicking	on	the	up	or	down	arrows.	The	user	may	also	click	and	drag	on
the	arrows	to	interactively	adjust	the	value.	The	Ctrl	key	may	be	held	to
accelerate	the	value	changing	speed,	while	the	Alt	key	may	be	held	to	decrease
the	value	changing	speed.
The	standard	size	used	by	3ds	max	for	the	spinner	control	is	7	wide	by	10	high.
If	you	use	a	larger	size,	the	spinner	control	arrows	will	be	position	in	the	upper
left	corner	of	the	control.
Important	Note:	The	spinner	control	ensures	that	it	only	displays,	and	the
user	is	only	allowed	to	input,	values	within	the	specified	ranges.	However
the	spinner	is	just	a	front	end	to	a	controller	which	actually	controls	the
value.	The	user	can	thus	circumvent	the	spinner	constraints	by	editing	the
controller	directly	(via	function	curves	in	track	view,	key	info,	etc.).
Therefore,	when	a	plug-in	gets	a	value	from	a	controller	(or	a	parameter
block,	which	may	use	a	controller)	it	is	its	responsibility	to	clamp	the	value
to	a	valid	range.

(Spinner	Control)
	(Spinner	and	Edit	control)

To	initialize	the	pointer	to	the	control	call:
ISpinnerControl	*GetISpinner(HWND	hCtrl);
To	release	the	control	call:
ReleaseISpinner(ISpinnerControl	*isc);

The	value	to	use	in	the	Class	field	of	the	Custom	Control	Properties	dialog	is:
SpinnerControl
The	following	messages	may	be	sent	by	the	spinner	control:

This	message	is	sent	when	the	value	of	a	spinner	changes.
CC_SPINNER_CHANGE
lParam	contains	a	pointer	to	the	spinner	control.	You	can	cast	this
pointer	to	a	ISpinnerControl	type	and	then	call	methods	of	the	control.
LOWORD(wParam)	contains	the	ID	of	the	spinner.	This	is	the	named
established	in	the	ID	field	of	the	Custom	Control	Properties	dialog.
HIWORD(wParam)	is	TRUE	if	the	user	is	dragging	the	spinner
interactively.

This	message	is	sent	when	the	user	presses	down	on	the	spinner	buttons.
CC_SPINNER_BUTTONDOWN
lParam	contains	a	pointer	to	the	spinner	control.	You	can	cast	this
pointer	to	a	ISpinnerControl	type	and	then	call	methods	of	the	control.
LOWORD(wParam)	contains	the	ID	of	the	spinner.	This	is	the	named
established	in	the	ID	field	of	the	Custom	Control	Properties	dialog.

This	message	is	sent	when	the	user	releases	a	spinner	button.
CC_SPINNER_BUTTONUP
lParam	contains	a	pointer	to	the	spinner	control.	You	can	cast	this
pointer	to	a	ISpinnerControl	type	and	then	call	methods	of	the	control.
LOWORD(wParam)	contains	the	ID	of	the	spinner.	This	is	the	named
established	in	the	ID	field	of	the	Custom	Control	Properties	dialog.
HIWORD(wParam)	is	FALSE	if	the	user	canceled	and	TRUE
otherwise.

For	example,	if	the	user	is	interactively	dragging	the	spinner,	then	does	a
right	click	to	cancel,	the	following	messages	are	sent:
1	A	CC_SPINNER_BUTTONDOWN	message	indicating	the	user	has
pressed	the	spinner	button.

2	A	series	of	CC_SPINNER_CHANGE	where	HIWORD(wParam)
=	TRUE.	This	indicates	that	the	spinner	is	being	dragged	interactively.

3	A	CC_SPINNER_CHANGE	where	HIWORD(wParam)	=
FALSE.

4	A	CC_SPINNER_BUTTONUP	message	where
HIWORD(wParam)	=	FALSE.	This	indicates	the	user	has	cancelled.

Methods:

Prototype:
virtual	float	GetFVal()=0;

Remarks:
Returns	the	floating	point	value	of	the	control.

Prototype:
virtual	int	GetIVal()=0;

Remarks:
This	method	returns	the	integer	value	of	the	control.

Prototype:
virtual	void	SetAutoScale(BOOL	on=TRUE)=0;

Remarks:
This	method	sets	the	scale	for	the	spinner	based	on	the	current	value	of	the
spinner.	This	allows	the	spinner	to	cover	a	larger	range	of	values	with	less
mouse	motion.	If	you	wish	to	use	auto	scale,	pass	TRUE	to	this	method.

Parameters:
BOOL	on=TRUE
If	you	wish	to	use	auto	scale	pass	TRUE	to	this	method;	otherwise	FALSE.

Prototype:
virtual	void	SetScale(float	s)=0;

Remarks:
This	method	sets	the	value	which	is	added	to	or	subtracted	from	the	current
control	value	as	the	arrow	buttons	are	pressed,	or	the	user	interactively	drags
the	spinner.

Parameters:
float	s
The	value	is	added	to	or	subtracted	from	the	current	control	value.

Prototype:

virtual	void	SetValue(float	v,	int	notify)=0;
Remarks:
This	method	sets	the	value	of	the	control	to	the	specific	floating	point	number
passed.	You	may	pass	FALSE	as	the	notify	parameter	so	the	control	wont	send
a	message	when	you	set	the	value.

Parameters:
float	v
The	new	value	for	the	control.
int	notify
If	TRUE	a	message	is	sent	indicating	the	control	has	changed.
Note	that	sometimes	the	SetValue()	method	is	used	to	update	the	display	of
parameters	in	the	user	interface.	For	example,	if	the	user	changes	the	current
time	and	the	UI	parameters	are	animated,	the	user	interface	controls	must	be
updated	to	reflect	the	value	at	the	new	time.	The	programmer	calls
SetValue()	to	update	the	value	displayed	in	the	control.	This	is	an	example	of
when	to	pass	FALSE	as	the	notify	parameter.	If	you	were	to	pass	TRUE,	a
message	would	be	sent	as	if	the	user	had	actually	enter	a	new	value	at	this
time.	These	are	of	course	very	different	conditions.

Prototype:
virtual	void	SetValue(int	v,	int	notify)=0;

Remarks:
This	method	sets	the	value	to	the	specific	integer	passed.	You	may	pass
FALSE	as	the	notify	parameter	so	the	control	won't	send	a	message	when	you
set	the	value.

Parameters:
int	v
The	new	value	for	the	control.
int	notify
If	TRUE	a	message	is	sent	indicating	the	control	has	changed.

Prototype:
virtual	void	SetLimits(int	min,	int	max,	int	limitCurValue	=

TRUE)=0;
Remarks:
This	method	establishes	the	allowable	limits	for	integer	values	entered.

Parameters:
int	min
The	minimum	allowable	value.
int	max
The	maximum	allowable	value.
int	limitCurValue	=	TRUE
You	may	pass	FALSE	to	the	this	parameter	so	the	control	will	not	send	a
spinner	changed	message	when	the	limits	are	set.

Prototype:
virtual	void	SetLimits(float	min,	float	max,	int	limitCurValue	=
TRUE)=0;

Remarks:
This	method	establishes	the	allowable	limits	for	floating	point	values	entered.

Parameters:
float	min
The	minimum	allowable	value.
float	max
The	maximum	allowable	value.
int	limitCurValue	=	TRUE
You	may	pass	FALSE	to	the	this	parameter	so	the	control	will	not	send	a
spinner	changed	message	when	the	limits	are	set.

Prototype:
virtual	void	LinkToEdit(HWND	hEdit,	EditSpinnerType	type)=0;

Remarks:
When	an	edit	control	is	used	in	conjunction	with	the	spinner	control,	this
method	is	used	to	link	the	two,	so	values	entered	using	the	spinner	are
displayed	in	the	edit	control.	This	method	is	also	used	to	set	the	type	of	value
which	may	be	entered.

Parameters:
HWND	hEdit
The	handle	of	the	edit	control	to	link.
EditSpinnerType	type
The	type	of	value	that	may	be	entered.	One	of	the	following	values:
EDITTYPE_INT
Any	integer	value.
EDITTYPE_FLOAT
Any	floating	point	value.
EDITTYPE_UNIVERSE
This	is	a	value	in	world	space	units.	It	respects	the	system's	unit	settings
(for	example	feet	and	inches).
EDITTYPE_POS_INT
Any	integer	>=	0
EDITTYPE_POS_FLOAT
Any	floating	point	value	>=	0.0
EDITTYPE_POS_UNIVERSE
This	is	a	positive	value	in	world	space	units.	It	respects	the	system's	unit
settings	(for	example	feet	and	inches)	.
EDITTYPE_TIME
This	is	a	time	value.	It	respects	the	system	time	settings	(SMPTE	for
example).

Prototype:
virtual	void	SetIndeterminate(BOOL	i=TRUE)=0;

Remarks:
This	method	is	used	to	show	commonality.	When	several	different	values	are
being	reflected	by	the	spinner,	the	value	is	indeterminate.	When	TRUE,	the
value	field	of	the	spinner	appears	empty.

Parameters:
BOOL	i=TRUE
Pass	TRUE	to	this	method	to	set	the	value	to	indeterminate.

Prototype:
virtual	BOOL	IsIndeterminate()=0;

Remarks:
This	method	returns	TRUE	if	the	current	state	of	the	spinner	is	indeterminate.
See	SetIndeterminate()	above.

Prototype:
virtual	void	SetResetValue(float	v)=0;

Remarks:
A	3ds	max	user	may	right	click	on	the	spinner	buttons	to	reset	them	to	their
'reset'	value	(after	they	have	been	changed).	This	method	specifies	the	value
used	when	the	reset	occurs.

Parameters:
float	v
The	reset	value.

Prototype:
virtual	void	SetResetValue(int	v)=0;

Remarks:
A	3ds	max	user	may	right	click	on	the	spinner	buttons	to	reset	them	to	their
'reset'	value	(after	they	have	been	changed).	This	method	specifies	the	value
used	when	the	reset	occurs.

Parameters:
int	v
The	reset	value.

Prototype:
virtual	void	SetKeyBrackets(BOOL	onOff)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	display	of	the	brackets	surrounding	the	spinner	control	to	on.	This	is
used	to	indicate	if	a	key	exists	for	the	parameter	controlled	by	the	spinner	at

the	current	time.	These	brackets	turned	on	and	off	automatically	if	you	are
using	a	parameter	map	and	parameter	block	to	handle	the	control.	If	not	you'll
need	to	use	this	method.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Sample	Code:
This	example	shows	how	you	do	this	if	you	only	use	a	parameter	block.
case	CC_SPINNER_CHANGE:
	switch	(LOWORD(wParam))	{
		case	IDC_LENSPINNER:
			th->SetLength(th->ip->GetTime(),th->lengthSpin->GetFVal());
			th->lengthSpin->SetKeyBrackets(th->pblock->
				KeyFrameAtTime(PB_LENGTH,th->ip->GetTime()));
			break;
		}
		return	TRUE;

The	following	functions	are	not	part	of	class	ISpinnerControl	but	are
available	for	use	with	spinner	controls.

Function:
void	SetSpinnerPrecision(int	p);

Remarks:
Sets	the	precision	(number	of	decimal	places	displayed)	used	by	the	spinner
control.	Note	that	this	function	also	affects	slider	controls.	See	Class
ISliderControl.

Parameters:
int	p
The	number	of	decimal	places	to	display	in	the	edit	box	linked	to	the	spinner
control.

Function:
int	GetSpinnerPrecision();

Remarks:

Returns	the	number	of	decimal	places	displayed	in	the	edit	box	linked	to	a
spinner	control.	Note	that	this	function	also	affects	slider	controls.	See	Class
ISliderControl.

Spinner	controls	have	a	global	snap	setting.	This	is	set	in	3ds	max	using
File/Preferences...	in	the	General	page	by	changing	the	Spinner	Snap	setting.
When	enabled	this	specifies	an	increment	that	is	applied	to	the	current	spinner
value	each	time	the	UP	or	DOWN	buttons	are	pressed	on	the	spinner	control.

Prototype:
void	SetSnapSpinner(BOOL	b);

Remarks:
This	activates	or	de-activates	the	global	spinner	snap	toggle.

Parameters:
BOOL	b
TRUE	to	activate;	FALSE	to	de-activate.

Prototype:
BOOL	GetSnapSpinner();

Remarks:
Returns	the	global	spinner	snap	setting;	TRUE	if	on;	FALSE	if	off.

Prototype:
void	SetSnapSpinValue(float	f);

Remarks:
This	sets	the	global	spinner	snap	increment	or	decrement	value.

Parameters:
float	f
The	value	that	is	added	to	or	subtracted	from	the	current	spinner	value	when
the	arrow	buttons	are	pressed.

Prototype:
float	GetSnapSpinValue();

Remarks:

Returns	the	global	spinner	snap	increment	or	decrement	value.

Function:
ISpinnerControl	*SetupFloatSpinner(HWND	hwnd,	int	idSpin,	int
idEdit,	float	min,	float	max,	float	val,	float	scale	=	0.1f);

Remarks:
This	global	function	(not	part	of	class	ISpinnerControl)	is	used	for	setting	up
Spinners.	It	performs	the	equivalent	of	the	GetISpinner(),	SetLimits(),
SetValue(),	and	LinkToEdit().

Parameters:
HWND	hwnd
The	handle	of	the	dialog	box	in	which	the	spinner	appears.
int	idSpin
The	ID	of	the	spinner.
int	idEdit
The	ID	of	the	edit	control.
float	min
The	minimum	allowable	value.
float	max
The	maximum	allowable	value.
float	val
The	initial	value	for	the	spinner.
float	scale	=	0.1f
The	initial	scale	value	for	the	spinner.

Return	Value:
A	pointer	to	the	spinner	control.

Sample	Code:
Sample	code	to	initialize	a	spinner	/	edit	control.
to->custCtrlSpin	=	GetISpinner(GetDlgItem(hDlg,
IDC_SPIN_SPINNER));
to->custCtrlSpin->SetLimits(0.0f,	100.0f,	FALSE);
to->custCtrlSpin->SetValue(100.0f,	FALSE);
to->custCtrlSpin->LinkToEdit(GetDlgItem(hDlg,

IDC_SPIN_EDIT),
EDITTYPE_FLOAT);

The	above	code	could	be	replaced	with	the	following	simplified	code:
to->custCtrlSpin	=	SetupFloatSpinner(hDlg,
IDC_SPIN_SPINNER,
IDC_SPIN_EDIT,	0.0f,	100.0f,	100.0f);

Function:
ISpinnerControl	*SetupIntSpinner(HWND	hwnd,	int	idSpin,	int
idEdit,	int	min,	int	max,	int	val);

Remarks:
This	global	function	(not	part	of	class	ISpinnerControl)	is	used	for	setting	up
Spinners.	It	performs	the	equivalent	of	the	GetISpinner(),	SetLimits(),
SetValue(),	and	LinkToEdit().

Parameters:
HWND	hwnd
The	handle	of	the	dialog	box	in	which	the	spinner	appears.
int	idSpin
The	ID	of	the	spinner.
int	idEdit
The	ID	of	the	edit	control.
int	min
The	minimum	allowable	value.
int	max
The	maximum	allowable	value.
int	val
The	initial	value	for	the	spinner.

Return	Value:
A	pointer	to	the	spinner	control.

Function:
void	SetSpinDragNotify(BOOL	onOff);

Remarks:
This	global	function	is	available	in	release	2.0	and	later	only.
This	function	controls	whether	or	not	spinners	send
CC_SPINNER_CHANGE	notifications	while	the	user	adjusts	them	with
the	mouse.

Parameters:
BOOL	onOff
TRUE	to	turn	on;	FALSE	to	turn	off.

Function:
BOOL	GetSpinDragNotify();

Remarks:
This	global	function	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	CC_SPINNER_CHANGE	notifications	are	sent	by
spinners	while	the	user	adjusts	them	with	the	mouse;	FALSE	if	they	are	not
sent.

Class	ICustImage
See	Also:	Class	ICustomControl,	Custom	Controls.
class	ICustImage	:	public	ICustomControl

Description:
The	custom	image	control	provides	a	recessed	area	in	the	dialog	to	display	a
bitmap	image.

To	initialize	the	pointer	to	the	control	call:

Prototype:
ICustImage	*GetICustImage(HWND	hCtrl);

To	release	the	control	call:

Prototype:
ReleaseICustImage(ICustImage	*ici);

The	value	to	use	in	the	Class	field	of	the	Custom	Control	Properties	dialog	is:
CustImage

Methods:

Prototype:
virtual	void	SetImage(HIMAGELIST	hImage,	int	index,	int	w,	int
h)=0;

Remarks:
This	method	sets	the	image	to	display.

Parameters:
HIMAGELIST	hImage
An	image	list.	An	image	list	is	a	collection	of	same-sized	images,	each	of
which	can	be	referred	to	by	its	index.	Image	lists	are	used	to	efficiently
manage	large	sets	of	icons	or	bitmaps	in	Windows.	All	images	in	an	image	list
are	contained	in	a	single,	wide	bitmap	in	screen	device	format.	An	image	list
may	also	include	a	monochrome	bitmap	that	contains	masks	used	to	draw

images	transparently	(icon	style).	The	Windows	API	provides	image	list
functions,	which	enable	you	to	draw	images,	create	and	destroy	image	lists,
add	and	remove	images,	replace	images,	and	merge	images.
int	index
This	is	the	index	of	the	image	to	display	in	the	image	list.
int	w
The	image	width.
int	h
The	image	height.

Class	ICustStatus
See	Also:	Class	ICustomControl,	Custom	Controls,	Class	ICustStatusEdit.
class	ICustStatus	:	public	ICustomControl

Description:
The	custom	status	control	provide	a	recessed	area	of	the	dialog	which	the
developer	may	use	as	a	status	prompt	display.

To	initialize	the	pointer	to	the	control	call:

Prototype:
ICustStatus	*GetICustStatus(HWND	hCtrl);

To	release	the	control	call:

Prototype:
ReleaseICustStatus(ICustStatus	*ics);

The	value	to	use	in	the	Class	field	of	the	Custom	Control	Properties	dialog	is:
CustStatus

Methods:

Prototype:
virtual	void	SetText(TCHAR	*text)=0;

Remarks:
This	method	specifies	the	text	message	to	display.

Parameters:
TCHAR	*text
Points	to	the	text	to	display.

Prototype:
virtual	void	GetText(TCHAR	*text,	int	ct)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Retrieves	the	text	currently	displayed	in	the	custom	status	control.

Parameters:
TCHAR	*text
A	pointer	to	storage	for	the	text	to	return.
int	ct
The	maximum	length	of	the	string	to	return.

Prototype:
virtual	void	SetTextFormat(StatusTextFormat	f)=0;

Remarks:
This	methods	controls	the	formatting	of	the	text	in	the	status	control.

Parameters:
StatusTextFormat	f
One	of	the	following	options:
STATUSTEXT_LEFT
Left	justified	in	the	control.
STATUSTEXT_CENTERED
Centered	in	the	control.
STATUSTEXT_RIGHT
Right	justified	in	the	control.

Prototype:
virtual	void	SetTooltip(BOOL	onOff,	LPSTR	text)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Specifies	the	tooltip	text	to	use	for	a	custom	status	control	and	enables	or
disables	its	availability.

Parameters:
BOOL	onOff
If	TRUE	the	tooltip	text	may	appear;	if	FALSE	the	tooltip	will	not	appear.
LPSTR	text
The	text	to	use	for	the	tooltip.

Class	IColorSwatch
See	Also:	Class	ICustomControl,	Custom	Controls,	COLORREF.
class	IColorSwatch	:	public	ICustomControl

Description:
The	color	swatch	control	puts	up	the	standard	3ds	max	modeless	color	selector
when	the	control	is	clicked	on.	The	plug-in	may	be	notified	as	the	user
interactively	selects	new	colors.

To	initialize	the	pointer	to	the	control	call:

Prototype:
IColorSwatch	*GetIColorSwatch(HWND	hCtrl,	COLORREF	col,
TCHAR	*name);
For	example:
custCSw	=	GetIColorSwatch(GetDlgItem(hDlg,
IDC_CSWATCH),		RGB(255,255,255),	_T("New	Wireframe
Color"));
This	returns	the	pointer	to	the	control,	sets	the	initial	color	selected,	and
displays	the	text	string	passed	in	the	title	bar	of	the	selection	dialog.

To	release	the	control	call:

Prototype:
ReleaseIColorSwatch(IColowSwatch	*ics);

The	value	to	use	in	the	Class	field	of	the	Custom	Control	Properties	dialog	is:
ColorSwatch
This	message	is	sent	as	the	color	is	being	adjusted	in	the	ColorPicker.
CC_COLOR_CHANGE
lParam	=	pointer	to	ColorSwatchControl
LOWORD(wParam)	contains	the	ID	of	the	control.	This	is	the	named
established	in	the	ID	field	of	the	Custom	Control	Properties	dialog.
HIWORD(wParam)	contains	1	if	button	UP,	or	0	if	mouse	drag.

This	message	is	sent	if	the	color	has	been	clicked	on,	before	bringing	up	the
color	picker.

CC_COLOR_SEL
lParam	contains	a	pointer	to	the	ColorSwatch	Control.
LOWORD(wParam)	contains	the	ID	of	the	control.	This	is	the	named
established	in	the	ID	field	of	the	Custom	Control	Properties	dialog.
HIWORD(wParam)	contains	0.

This	message	is	sent	if	another	color	swatch	has	been	dragged	and	dropped	on
this	swatch.
CC_COLOR_DROP
lParam	contains	a	pointer	to	the	ColorSwatch	Control.
LOWORD(wParam)	contains	the	ID	of	the	control.	This	is	the	named
established	in	the	ID	field	of	the	Custom	Control	Properties	dialog.
HIWORD(wParam)	contains	0.
	

This	message	is	sent	when	the	color	picker	is	closed.

CC_COLOR_CLOSE
	
	lParam	contains	a	pointer	to	the	ColorSwatch	Control.

LOWORD(wParam)	contains	the	ID	of	the	control.	This	is	the
named	established	in	the	ID	field	of	the	Custom	Control	Properties
dialog.
HIWORD(wParam)	contains	0.

	

Methods:

Prototype:
virtual	COLORREF	SetColor(COLORREF	c,	int
notify=FALSE)=0;

Remarks:
This	method	sets	the	current	color	value.

Parameters:
COLORREF	c
You	can	pass	specific	RGB	values	in	using	the	RGB	macro.	For	example,	to
pass	in	pure	blue	you	would	use	RGB(0,0,255).
int	notify=FALSE
If	you	pass	TRUE	for	this	parameter,	the	dialog	proc	for	the	dialog	will
receive	the	CC_COLOR_CHANGE	message	each	time	the	color	is
changed.

Return	Value:
This	method	returns	the	old	color.

Prototype:
virtual	COLORREF	GetColor()=0;

Remarks:
This	method	may	be	used	to	retrieve	the	color	selected	by	the	user.

Return	Value:
The	COLORREF	structure	returned	may	be	broken	down	into	individual

RGB	values	by	using	the	GetRValue(color),	GetGValue(color),	and
GetBValue(color)	macros.

Prototype:
virtual	void	ForceDitherMode(BOOL	onOff)=0;

Remarks:
This	method	sets	if	the	color	shown	in	the	color	swatch	is	dithered	on	not.

Parameters:
BOOL	onOff
TRUE	to	force	the	color	to	be	dithered;	otherwise	FALSE.

Prototype:
virtual	void	SetModal()=0;

Remarks:
Call	this	method	to	have	the	color	selector	comes	up	in	a	modal	dialog.	This
forces	the	user	to	select	OK	before	the	user	may	operate	the	rest	of	the
program.

Prototype:
virtual	void	Activate(int	onOff)=0;

Remarks:
This	method	is	called	to	indicate	that	the	color	swatch	is	in	a	dialog	that	has
been	become	active	or	inactive.	A	color	swatch	that	is	in	an	inactive	dialog
will	be	drawn	as	dithered	due	to	the	limited	number	of	color	registers	available
on	an	8-bit	display.

Parameters:
int	onOff
If	TRUE	the	color	swatch	is	in	an	active	dialog.	If	FALSE	the	control	is	in	an
inactive	dialog.

Prototype:
virtual	void	EditThis(BOOL	startNew=TRUE)=0;

Remarks:
If	there	is	already	a	color	picker	up	for	a	color	swatch,	this	method	switches	it
over	to	edit	the	color	swatch	on	which	EditThis()	was	called.

Parameters:
BOOL	startNew=TRUE
If	there	was	no	color	picker	up,	if	this	parameter	is	set	to	TRUE,	then	a	color
picker	is	created.	If	this	parameter	is	set	to	FALSE,	and	there	was	no	color
picker	up,	then	nothing	happens.

Class	ICustToolbar
See	Also:	Custom	Controls.	Class	ToolItem,	Class	MacroButtonData,	Class
CUIFrameMsgHandler,	Class	ICustStatusEdit,	Class	ICustStatus,	Class
ICustButton.
class	ICustToolbar	:	public	ICustomControl

Description:
This	control	allows	the	creation	of	toolbars	containing	buttons	(push,	check,	and
fly-offs),	status	fields,	separators	(spacers),	and	other	Windows	or	user	defined
controls.	Note:	The	standard	size	for	3ds	max	toolbar	button	icons	is	16x15.
In	3ds	max	3.0	and	later	toolbars	may	have	multiple	rows,	or	appear	vertically.
They	may	also	have	macro	buttons	(added	with	the	MacroButtonData	class)
which	may	have	icons	or	text.

To	initialize	the	pointer	to	the	control	call:

Prototype:
ICustToolbar	*GetICustToolbar(HWND	hCtrl);

To	release	the	control	call:

Prototype:
ReleaseICustToolbar(ICustToolbar	*ict);

The	value	to	use	in	the	Class	field	of	the	Custom	Control	Properties	dialog	is:
CustToolbar
Note:	The	TB_RIGHTCLICK	message	is	sent	when	the	user	right	clicks	in
open	space	on	a	toolbar:
Also	Note:	To	add	tooltips	to	the	toolbar	controls	you	can	do	so	by	capturing	the
WM_NOTIFY	message	in	the	dialog	proc.	For	complete	sample	code	see
\MAXSDK\SAMPLES\HOWTO\CUSTCTRL\CUSTCTRL.CPP.	The
specific	message	is	processed	as	shown	below.
case	WM_NOTIFY:
	//	This	is	where	we	provide	the	tooltip	text	for	the
	//	toolbar	buttons...
	if(((LPNMHDR)lParam)->code	==	TTN_NEEDTEXT)	{

			LPTOOLTIPTEXT	lpttt;
			lpttt	=	(LPTOOLTIPTEXT)lParam;
			switch	(lpttt->hdr.idFrom)	{
					case	ID_TB_1:
							lpttt->lpszText	=	_T("Do	Nothing	Up");
							break;
					case	ID_TB_2:
							lpttt->lpszText	=	_T("Do	Nothing	Down");
							break;
					case	ID_TB_3:
							lpttt->lpszText	=	_T("Do	Nothing	Lock");
							break;
					case	IDC_BUTTON1:
							if	(to->custCtrlButtonC->IsChecked())
									lpttt->lpszText	=	_T("Button	Checked");
							else
									lpttt->lpszText	=	_T("Button	Un-Checked");
							break;
					};
			}
	break;

Methods:

Prototype:
virtual	void	SetImage(HIMAGELIST	hImage)=0;

Remarks:
This	method	establishes	the	image	list	used	to	display	images	in	the	toolbar.

Parameters:
HIMAGELIST	hImage
The	image	list.	An	image	list	is	a	collection	of	same-sized	images,	each	of
which	can	be	referred	to	by	an	index.	Image	lists	are	used	to	efficiently
manage	large	sets	of	icons	or	bitmaps	in	Windows.	All	images	in	an	image	list
are	contained	in	a	single,	wide	bitmap	in	screen	device	format.	An	image	list
may	also	include	a	monochrome	bitmap	that	contains	masks	used	to	draw

images	transparently	(icon	style).	The	Windows	API	provides	image	list
functions,	which	enable	you	to	draw	images,	create	and	destroy	image	lists,
add	and	remove	images,	replace	images,	and	merge	images.

Prototype:
virtual	void	AddTool(const	ToolItem&	entry,	int	pos=-1)=0;

Remarks:
The	developer	calls	this	method	once	for	each	item	in	the	toolbar.	The	items
appear	in	the	toolbar	from	left	to	right	in	the	order	that	they	were	added	using
this	method.	(Note	that	this	method	adds	tools	to	the	custom	toolbar	and	not
the	3ds	max	toolbar).

Parameters:
const	ToolItem&	entry
Describes	the	item	to	add	to	the	toolbar.
int	pos=-1
Controls	where	the	added	tool	is	inserted.	The	default	of	-1	indicates	the
control	will	be	added	at	the	right	end	of	the	toolbar.

Prototype:
virtual	void	AddTool2(ToolItem&	entry,	int	pos=-1)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Currently	this	method	is	identical	to	the	AddTool()	method.

Parameters:
ToolItem&	entry
Describes	the	item	to	add	to	the	toolbar.
int	pos=-1
Controls	where	the	added	tool	is	inserted.	The	default	of	-1	indicates	the
control	will	be	added	at	the	right	end	of	the	toolbar.

Prototype:
virtual	void	DeleteTools(int	start,	int	num=-1)=0;

Remarks:
This	method	is	used	to	delete	tools	from	the	toolbar.

Parameters:
int	start
Specifies	which	tool	is	the	first	to	be	deleted.
int	num=-1
Specifies	the	number	of	tools	to	delete.	If	this	parameter	is	-1	(the	default)	it
deletes	'start'	through	count-1	tools.

Prototype:
virtual	void	SetTopBorder(BOOL	on)=0;

Remarks:
Passing	TRUE	to	this	method	draws	a	border	above	the	toolbar.	You	can	see
the	appearance	of	the	top	border	in	the	sample	toolbar	shown	above.	If	this	is
set	to	FALSE,	the	border	is	not	drawn

Parameters:
BOOL	on
TRUE	to	draw	the	border;	FALSE	for	no	border.

Prototype:
virtual	void	SetBottomBorder(BOOL	on)=0;

Remarks:
Passing	TRUE	to	this	method	draws	a	border	beneath	the	toolbar.	You	can	see
the	appearance	of	the	bottom	border	in	the	sample	toolbar	shown	above.	If	this
is	set	to	FALSE,	the	border	is	not	drawn.

Parameters:
BOOL	on
TRUE	to	draw	the	border;	FALSE	for	no	border.

Prototype:
virtual	int	GetNeededWidth(int	rows)=0;

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Returns	the	width	needed	for	specified	number	of	rows.

Parameters:
int	rows
The	number	of	rows.

Prototype:
virtual	void	SetNumRows(int	rows)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	number	of	rows	that	the	toolbar	may	hold.

Parameters:
int	rows
The	number	of	rows	to	set.

Prototype:
virtual	ICustButton	*GetICustButton(int	id)=0;

Remarks:
This	method	is	used	to	return	a	pointer	to	one	of	the	toolbar's	buttons.	Using
this	pointer	you	can	call	methods	on	the	button.	If	you	use	this	method,	you
must	release	the	control	after	you	are	finished	with	it.

Parameters:
int	id
Specifies	the	id	of	the	toolbar	button.

Return	Value:
A	pointer	to	one	of	the	toolbar's	buttons.	If	the	button	is	not	found	it	returns
NULL.	See	Class	ICustButton.

Prototype:
virtual	ICustStatus	*GetICustStatus(int	id)=0;

Remarks:
This	method	is	used	to	return	a	pointer	to	one	of	the	toolbars	status	controls.

Using	this	pointer	you	can	call	methods	on	the	status	control.	If	you	use	this
method,	you	must	release	the	control	after	you	are	finished	with	it.

Parameters:
int	id
Specifies	the	id	of	the	toolbar	button.

Return	Value:
A	pointer	to	one	of	the	toolbars	status	controls.	See	Class	ICustStatus.

Prototype:
virtual	ICustStatusEdit	*GetICustStatusEdit(int	id)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	to	return	a	pointer	to	the	custom	status	edit	control	whose
id	is	passedIf	you	use	this	method,	you	must	release	the	control	after	you	are
finished	with	it.	See	Class	ICustStatusEdit.

Parameters:
int	id
Specifies	the	id	of	the	toolbar	button.

Prototype:
virtual	HWND	GetItemHwnd(int	id)=0;

Remarks:
Returns	the	handle	to	the	toolbar	item	whose	ID	is	passed.

Parameters:
int	id
Specifies	the	id	of	the	toolbar	button.

Prototype:
virtual	int	GetNumItems()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	number	of	items	in	the	toolbar.

Prototype:
virtual	int	GetItemID(int	index)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Each	item	in	the	toolbar	has	an	ID.	When	items	are	programatically	added	to
the	toolbar	via	Class	ToolButtonItem	an	ID	is	passed	to	the	ToolButtonItem
constructor.	This	method	returns	the	ID	for	the	specified	item	in	the	toolbar.

Parameters:
int	index
Specifies	which	toolbar	item	to	return	the	id	of.	This	is	an	index	between	0
and	GetNumItems()-1.

Return	Value:
When	the	button	is	added	using	Class	ToolButtonItem	this	is	the	id	that	is	part
of	that	structure.	When	the	user	operates	a	tool	the	dialog	proc	get	a
WM_COMMAND	message	and	this	is	also	the	id	in
LOWORD(wParam).

Prototype:
virtual	int	FindItem(int	id)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	index	into	the	list	of	toolbar	entries	of	the	item	whose	id	is	passed.

Parameters:
int	id
The	id	of	the	control	to	find.

Prototype:
virtual	void	DeleteItemByID(int	id)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Deletes	the	toolbar	item	whose	id	is	passed.

Parameters:

int	id
The	id	of	the	control	to	delete.

Prototype:
virtual	void	LinkToCUIFrame(HWND	hCUIFrame,
CUIFrameMsgHandler	*msgHandler)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	links	this	toolbar	to	the	CUI	frame	whose	window	handle	and
message	handler	are	passed.

Parameters:
HWND	hCUIFrame
The	window	handle	of	the	CUI	frame	to	link	this	toolbar	to.
CUIFrameMsgHandler	*msgHandler
Points	to	the	message	handler	for	the	CUI	frame.	See	Class
CUIFrameMsgHandler.

Prototype:
virtual	void	GetFloatingCUIFrameSize(SIZE	*sz,	int	rows=1)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	obtain	the	size	of	the	floating	CUI	frame.

Parameters:
SIZE	*sz
The	size	of	the	floating	frame.
int	rows=1
The	number	of	rows	displayed	in	the	floating	frame.

Prototype:
virtual	void	ResetIconImages()	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

This	resets	the	icons	in	the	toolbar.	This	tells	all	the	buttons	in	this	toolbar	to
delete	their	icon	image	cache.	If	a	plug-in	has	created	a	toolbar	with	any
MaxBmpFileIcons	on	it,	it	should	register	a	callback	for	color	changing,	and
call	this	method	on	the	toolbar.	See	Structure	NotifyInfo	for	registering	the
color	change	callback.

Class	IRollupWindow
See	Also:	Class	ICustomControl,	Class	IRollupPanel,	Custom	Controls,	Class
Interface.
class	IRollupWindow	:	public	ICustomControl

Description:
This	control	is	used	to	access	existing	rollup	pages	or	if	you	are	creating	a	dialog
box	which	will	not	be	used	in	the	command	panel.	This	control	may	be	used	to
add	a	container	area	for	rollup	pages	to	be	added	to	the	dialog,	and	provides	a
scroll	bar	just	like	the	command	panel	itself.
Note	that	this	is	a	special	case.	Normally,	adding	rollup	pages	to	the	command
panel	is	done	using	the	simple	AddRollupPage()	method	of	the	Interface
class.	This	control	is	only	used	when	you	want	to	have	a	scrolling	region	for
rollup	pages	in	a	dialog	box.
To	initialize	the	pointer	to	the	control	call:
IRollupWindow	*GetIRollup(HWND	hCtrl);

To	release	the	control	call:
void	ReleaseIRollup(IRollupWindow	*irw);

The	value	to	use	in	the	Class	field	of	the	Custom	Control	Properties	dialog	is:
RollupWindow

Methods:

Prototype:
virtual	void	Show()=0;

Remarks:
This	causes	all	the	rollup	windows	to	be	visible.

Prototype:
virtual	void	Hide()=0;

Remarks:
This	causes	all	the	rollup	windows	to	become	invisible.

Prototype:

virtual	void	Show(int	index)=0;
Remarks:
This	will	make	the	rollup	window	whose	index	is	passed	visible.

Parameters:
int	index
The	index	of	the	rollup	to	show.

Prototype:
virtual	void	Hide(int	index)=0;

Remarks:
This	will	make	the	rollup	window	whose	index	is	passed	invisible.

Parameters:
int	index
The	index	of	the	rollup	to	hide.

Prototype:
virtual	HWND	GetPanelDlg(int	index)=0;

Remarks:
Returns	the	handle	of	the	rollup	page	whose	index	is	passed.

Parameters:
int	index
The	index	of	the	rollup	whose	handle	is	to	be	returned.

Prototype:
virtual	int	GetPanelIndex(HWND	hWnd)=0;

Remarks:
Returns	an	index	to	the	rollup	page	given	its	handle.

Parameters:
HWND	hWnd
The	handle	of	the	rollup.

Prototype:
virtual	void	SetPanelTitle(int	index,TCHAR	*title)=0;

Remarks:
This	method	sets	the	title	text	displayed	in	the	rollup	page	whose	index	is
passed.

Parameters:
int	index
Specifies	the	rollup	whose	title	is	to	be	set.
TCHAR	*title
The	title	string.

Prototype:
virtual	int	AppendRollup(HINSTANCE	hInst,	TCHAR
*dlgTemplate,	DLGPROC	dlgProc,	TCHAR	*title,	LPARAM
param=0,DWORD	flags=0,	int	category	=
ROLLUP_CAT_STANDARD)=0;

Remarks:
This	method	is	used	to	add	a	rollup	page.

Parameters:
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in.
TCHAR	*dlgTemplate
The	dialog	template	for	the	rollup	page.
DLGPROC	dlgProc
The	dialog	proc	to	handle	the	message	sent	to	the	rollup	page.
TCHAR	*title
The	title	displayed	in	the	title	bar.
LPARAM	param=0
Any	specific	data	to	pass	along	may	be	stored	here.
DWORD	flags=0
Append	rollup	page	flags:
APPENDROLL_CLOSED

Starts	the	page	in	the	rolled	up	state.
int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
The	index	of	the	new	page	is	returned.

Prototype:
virtual	int	AppendRollup(HINSTANCE	hInst,	DLGTEMPLATE
*dlgTemplate,	DLGPROC	dlgProc,	TCHAR	*title,	LPARAM
param=0,DWORD	flags=0,	int	category	=
ROLLUP_CAT_STANDARD)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	to	add	a	rollup	page,	but	is	currently	not	used.

Parameters:
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in.
DLGTEMPLATE	*dlgTemplate
The	dialog	template	for	the	rollup	page.
DLGPROC	dlgProc

The	dialog	proc	to	handle	the	message	sent	to	the	rollup	page.
TCHAR	*title
The	title	displayed	in	the	title	bar.
LPARAM	param=0
Any	specific	data	to	pass	along	may	be	stored	here.
DWORD	flags=0
Append	rollup	page	flags:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
The	index	of	the	new	page	is	returned.

Prototype:
virtual	int	ReplaceRollup(int	index,	HINSTANCE	hInst,	TCHAR
*dlgTemplate,	DLGPROC	dlgProc,	TCHAR	*title,	LPARAM
param=0,DWORD	flags=0)=0;

Remarks:
This	method	is	used	to	replace	the	rollup	page	whose	index	is	passed.

Parameters:
int	index
Specifies	the	rollup	whose	to	be	replaced.
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in.
TCHAR	*dlgTemplate
The	dialog	template	for	the	rollup	page.
DLGPROC	dlgProc
The	dialog	proc	to	handle	the	message	sent	to	the	rollup	page.
TCHAR	*title
The	title	displayed	in	the	title	bar.
LPARAM	param=0
Any	specific	data	to	pass	along	may	be	stored	here.

DWORD	flags=0
Append	rollup	page	flags:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

Return	Value:
The	index	of	the	replacement	page	is	returned.

Prototype:
virtual	int	ReplaceRollup(int	index,	HINSTANCE	hInst,
DLGTEMPLATE	*dlgTemplate,	DLGPROC	dlgProc,	TCHAR
*title,	LPARAM	param=0,DWORD	flags=0,	int	category	=
ROLLUP_CAT_STANDARD)=0;;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	to	replace	the	rollup	page	whose	index	is	passed,	but	is
currently	not	used.

Parameters:
int	index
Specifies	the	rollup	whose	to	be	replaced.
HINSTANCE	hInst

The	DLL	instance	handle	of	the	plug-in.
DLGTEMPLATE	*dlgTemplate
The	dialog	template	for	the	rollup	page.
DLGPROC	dlgProc
The	dialog	proc	to	handle	the	message	sent	to	the	rollup	page.
TCHAR	*title
The	title	displayed	in	the	title	bar.
LPARAM	param=0
Any	specific	data	to	pass	along	may	be	stored	here.

DWORD	flags=0
Append	rollup	page	flags:
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
The	index	of	the	replacement	page	is	returned.

Prototype:
virtual	void	DeleteRollup(int	index,	int	count)=0;

Remarks:
This	method	deletes	the	rollup	pages	starting	at	the	index	passed.	The	count
parameter	controls	how	many	pages	are	deleted.

Parameters:
int	index
The	starting	index.
int	count
The	number	of	pages.

Prototype:
virtual	void	SetPageDlgHeight(int	index,int	height)=0;

Remarks:
This	method	is	used	to	change	the	height	of	a	rollup	page.

Parameters:
int	index
The	index	of	the	rollup	to	change.
int	height
The	new	height	of	the	dialog	in	pixels.

Prototype:
virtual	void	SaveState(RollupState	*hState)=0;

Remarks:
This	method	saves	the	state	of	the	rollup	(the	position	of	the	scroll	bars,	which
pages	are	open,	etc...).

Parameters:
RollupState	*hState
Pointer	to	storage	for	the	rollup	state.	Note:	typedef	void	*RollupState;

Prototype:
virtual	void	RestoreState(RollupState	*hState)=0;

Remarks:
This	methods	restores	a	saved	state.

Parameters:
RollupState	*hState
Pointer	to	storage	for	the	rollup	state.	Note:	typedef	void	*RollupState;

Prototype:
virtual	int	GetNumPanels()=0;

Remarks:
This	method	returns	the	number	of	panels	used	in	the	rollup.

Prototype:
virtual	void	DlgMouseMessage(HWND	hDlg,	UINT	message,
WPARAM	wParam,	LPARAM	lParam)=0;

Remarks:
Passing	WM_LBUTTONDOWN,	WM_MOUSEMOVE,	and
WM_LBUTTONUP	to	this	function	allows	hand	cursor	scrolling	with
unused	areas	in	the	dialog.

Parameters:
HWND	hDlg
The	handle	of	the	dialog.
UINT	message
The	message	to	pass	along:	WM_LBUTTONDOWN,
WM_MOUSEMOVE,	or	WM_LBUTTONUP.
WPARAM	wParam
LPARAM	lParam
These	are	passed	as	part	of	the	message	sent	in.	Pass	them	along	to	this
method.

Prototype:
virtual	BOOL	IsPanelOpen(int	index)	=	0;

Remarks:
This	method	return	TRUE	if	the	rollup	page	whose	index	is	passed	is	open	and
FALSE	if	it	is	closed.

Prototype:
virtual	void	SetPanelOpen(int	index,	BOOL	isOpen,	BOOL
ignoreFlags	=	TRUE)	=0;

Remarks:
This	causes	the	page	whose	index	is	passed	to	either	open	or	close.	If	isOpen
is	passed	a	value	of	TRUE,	the	page	is	opened.

Parameters:
int	index
The	page	to	open	or	close.
BOOL	isOpen
If	TRUE,	the	page	is	opened,	if	FALSE	it	is	closed.
BOOL	ignoreFlags	=	TRUE
The	method	would	close	the	panel	if	the	DONTAUTOCLOSE	flag	is	not
set	on	the	rollup.	This	flag	indicates	if	it	should	be	closed	anyway,	even	if	the
flag	is	set.

Prototype:
virtual	int	GetScrollPos()=0;

Remarks:
This	method	returns	the	scroll	position	of	the	window.

Prototype:
virtual	void	SetScrollPos(int	spos)=0;

Remarks:
This	method	sets	the	scroll	position	of	the	window.

Parameters:
int	spos
The	scroll	position	to	set.

Prototype:
virtual	void	MoveRollupPanelFrom(IRollupWindow	*from,
HWND	hPanel,	BOOL	top)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	methods	moves	a	RollupPanel	to	another	RollupWindow.	It	either	inserts
it	at	the	top,	or	appends	it	at	the	end	(depending	on	the	top	parameter)

Parameters:
IRollupWindow	*from
A	pointer	to	the	rollup	window	you	are	moving	from.
HWND	hPanel
The	handle	to	the	destination	panel.
BOOL	top
TRUE	to	insert	at	the	top;	FALSE	to	append	at	the	end.

Prototype:
virtual	int	GetPanelHeight(int	index)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	height	of	the	specified	RollupPanel.

Parameters:
int	index
The	zero	based	index	of	the	rollup	panel.
	

Prototype:
virtual	int	GetScrollHeight()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	height	of	a	RollupWindow,	that	it	is	longer	than	the	visible	area

Prototype:
virtual	IRollupPanel	*GetPanel(HWND	hWnd)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

Returns	a	pointer	to	the	rollup	panel	for	the	specified	window	handle.	An
IRollupPanel	describes	the	properties	of	a	single	rollup.

Parameters:
HWND	hWnd
The	window	handle	to	get	the	rollup	for.

Prototype:
virtual	void	RegisterRollupCallback(IRollupCallback	*callb)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	register	a	rollup	callback	function	to	handle	any
custom	handling	for	dragging	and	dropping	rollouts.

Parameters:
IRollupCallback	*callb
A	pointer	to	the	callback	function	you	wish	to	register.

Prototype:
virtual	void	UnRegisterRollupCallback(IRollupCallback
*callb)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	unregister	a	rollup	callback	function.

Parameters:
IRollupCallback	*callb
A	pointer	to	the	callback	function	you	wish	to	unregister.

Prototype:
virtual	void	RegisterRCMenuItem(IRollupRCMenuItem
*item)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	register	a	rollup	right-click	menu	item	which	will

be	added	to	the	list	of	items.	For	rollups	that	support	Drag	and	Drop	this	is
used	to	register	a	ResetCategories	RightClickMenu.	Reset	Cateories	will	get
rid	of	all	the	changes	that	have	been	made	through	drag	and	drop	and	restore
the	default.

Parameters:
IRollupRCMenuItem	*item
A	pointer	to	the	right-click	menu	item	you	wish	to	register.

Prototype:
virtual	void	UnRegisterRCMenuItem(IRollupRCMenuItem
*item)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	unregister	a	rollup	right-click	menu	item.

Parameters:
IRollupRCMenuItem	*item
A	pointer	to	the	right-click	menu	item	you	wish	to	unregister.

Prototype:
virtual	void	ResetCategories(bool	update	=	true)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	reset	the	category	information	on	all	the	panels	in	the	rollup
window.	The	plugin	will	have	to	be	reloaded	(EndEditParams,
BeginEditparams)	in	order	to	show	this	in	the	UI.

Parameters:
bool	update	=	true
TRUE	to	update	the	layout,	otherwise	FALSE.	Leave	this	on	TRUE.

Prototype:
virtual	void	UpdateLayout()=0;

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	internally

This	function	is	not	part	of	this	class	but	is	available	for	use:
Function:
BOOL	IsRollupPanelOpen(HWND	hDlg);

Remarks:
This	function	returns	TRUE	if	a	particular	rollup	panel	is	open	given	a	handle
to	the	dialog	window	in	the	panel.

Parameters:
HWND	hDlg
Handle	to	the	dialog	window	in	the	panel.

Class	IOffScreenBuf
See	Also:	Custom	Controls.
class	IOffScreenBuf

Description:
This	control	provides	an	off	screen	buffer	which	the	developer	may	draw	into,
then	quickly	blit	onto	the	actual	display	for	flicker	free	image	updates.
To	initialize	the	pointer	to	the	control	call:

Function:
IOffScreenBuf	*CreateIOffScreenBuf(HWND	hCtrl);

To	release	the	control	call:

Function:
DestroyIOffScreenBuf(IOffScreenBuf	*iBuf);

Methods:

Prototype:
virtual	HDC	GetDC()=0;

Remarks:
Returns	a	handle	to	the	display	device	context	(DC)	for	the	off	screen	buffer.
The	display	device	context	can	be	used	in	subsequent	GDI	functions	to	draw
in	the	buffer.

Prototype:
virtual	void	Erase(Rect	*rct=NULL)=0;

Remarks:
This	method	is	used	to	erase	the	buffer.

Parameters:
Rect	*rct=NULL
Specifies	the	rectangular	region	to	erase.	If	NULL	the	entire	buffer	is	erased.

Prototype:

virtual	void	Blit(Rect	*rct=NULL)=0;
Remarks:
This	method	blits	(transfers	the	image	from)	the	buffer	to	the	display.

Parameters:
Rect	*rct=NULL
Specifies	the	rectangular	region	to	blit.	If	NULL	the	entire	buffer	is	blitted.

Prototype:
virtual	void	Resize()=0;

Remarks:
This	method	is	used	to	resize	the	buffer.

Prototype:
virtual	void	SetBkColor(COLORREF	color)=0;

Remarks:
This	sets	the	buffer	to	the	specified	color.

Parameters:
COLORREF	color
The	color	to	set.	You	may	use	the	RGB	macro	to	set	the	color.

Prototype:
virtual	COLORREF	GetBkColor()=0;

Remarks:
This	methods	retrieves	the	background	color	of	the	buffer.

Return	Value:
The	background	color	of	the	buffer.

Class	BitArray
See	Also:	Template	Class	Tab,	Class	BitArrayCallback.
Class	BitArray

Description:
This	class	allows	the	developer	to	define	a	set	of	bit	flags	that	may	be	treated	as
a	virtual	array	and	are	stored	in	an	efficient	manner.	The	class	has	methods	to
set,	clear	and	return	the	i-th	bit,	resize	the	BitArray,	etc.	All	methods	are
implemented	by	the	system.

Methods:

Prototype:
BitArray()

Remarks:
Default	constructor.	Sets	the	number	of	bits	to	0.

Prototype:
BitArray(int	n);

Remarks:
Constructor.

Parameters:
int	i
The	size	of	the	BitArray	in	bits.

Prototype:
BitArray(const	BitArray&	b);

Remarks:
Constructor.	Duplicates	the	BitArray	passed.

Parameters:
const	BitArray&	b
The	BitArray	to	duplicate.

Prototype:
void	SetSize(int	n,	int	save=0)

Remarks:
Sets	the	number	of	bits	used.

Parameters:
int	n
The	number	of	bits	in	the	array.
int	save=0
If	passed	as	1,	the	old	bit	values	will	be	preserved	when	the	array	is	resized.

Prototype:
int	GetSize()

Remarks:
Returns	the	size	of	the	bit	array	in	bits.

Prototype:
void	ClearAll()

Remarks:
Clears	all	the	bits	in	the	array	(sets	them	to	0).

Prototype:
void	SetAll()

Remarks:
Sets	all	the	bits	in	the	array	to	1.

Prototype:
void	Set(int	i)

Remarks:
Set	the	i-th	bit	to	1.

Parameters:
int	i

The	array	index	of	the	bit	to	set.

Prototype:
void	Clear(int	i)

Remarks:
Sets	the	i-th	bit	to	0.

Parameters:
int	i
The	array	index	of	the	bit	to	clear.

Prototype:
void	Set(int	i,	int	b);

Remarks:
Set	the	i-th	bit	to	b.

Parameters:
int	i
The	index	of	the	bit	to	set.
int	b
The	value	to	set,	either	1	or	0.

Prototype:
int	NumberSet()

Remarks:
Returns	the	number	of	bits	set	to	1.

Return	Value:
The	number	of	bits	set	to	1.

Prototype:
BOOL	IsEmpty();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Returns	TRUE	if	no	bits	are	set;	otherwise	FALSE.	This	method	is	much
faster	than	checking	if	NumberSet()	returns	0.

Prototype:
void	Compress()

Remarks:
This	is	not	currently	implemented	and	is	reserved	for	future	use.

Prototype:
void	Expand()

Remarks:
This	is	not	currently	implemented	and	is	reserved	for	future	use.

Prototype:
void	Reverse(BOOL	keepZero	=	FALSE);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Reverses	the	bits	in	the	BitArray.

Parameters:
BOOL	keepZero	=	FALSE
If	TRUE	the	zero	bit	is	kept	where	it	is.

Prototype:
void	Rotate(int	direction,	int	count);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Rotates	the	bits	in	the	BitArray	(with	wraparound).

Parameters:
int	direction
The	direction	to	rotate.
int	count

The	number	of	bits	to	rotate.

Prototype:
void	Shift(int	direction,	int	count,	int	where=0);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Shifts	the	bits	in	the	BitArray	(without	wraparound).

Parameters:
int	direction
One	of	the	following	values:
LEFT_BITSHIFT
RIGHT_BITSHIFT

int	count
The	number	of	bits	to	shift.
int	where=0
This	indicates	where	the	shift	will	begin.	For	example,	if	you	have	a
BitArray	containing:	10101010
and	you	Shift(LEFT_BITSHIFT,	1,	4)	you'll	get:	10100100
All	the	bits	from	4	to	8	are	shifted	one	bit	left,	with	zeroes	shifted	in	from	the
right.	The	first	bit	affected	is	the	where	bit.	If	you	leave	off	the	where
parameter	you'd	get	the	usual:	01010100
The	RIGHT_BITSHIFT	starts	at	that	bit;	it	is	unaffected	because	the
operation	proceeds	to	the	right:	10101010.
Shift(RIGHT_BITSHIFT,	1,	4)	results	in:	10101101.

Prototype:
void	EnumSet(BitArrayCallback	&cb);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	to	enumerate	all	the	elements	that	have	a	"1"	value,	and
call	the	callback	proc()	with	the	index	of	the	element.

Parameters:
BitArrayCallback	&cb
The	callback	object	whose	proc()	method	is	called.

Prototype:
void	DeleteSet(BitArray	&	dset,	int	mult=1);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	allows	you	to	delete	a	selection	of	elements	from	this	BitArray.
This	is	useful,	for	instance,	if	you're	deleting	a	set	of	vertices	from	a	mesh	and
wish	to	keep	the	vertSel	and	vertHide	arrays	up	to	date.

Parameters:
BitArray	&	dset
This	is	a	bit	array	which	represents	which	elements	should	be	deleted.
Typically	(if	mult==1)	dset	will	have	the	same	size	as	(this).
int	mult=1
This	is	a	multiplier	which	indicates	how	many	elements	in	(*this)	are	deleted
for	each	entry	in	dset.	For	instance,	when	deleting	faces	in	a	mesh,	you	also
need	to	delete	the	corresponding	edge	selection	data.	Since	edgeSel[f*3],
edgeSel[f*3+1],	and	edgeSel[f*3+2]	correspond	to	face	f,	you'd	use	mult=3:
faceSel.DeleteSet	(fdel);
edgeSel.DeleteSet	(fdel,	3);

Prototype:
IOResult	Save(ISave*	isave);

Remarks:
Saves	the	BitArray	to	the	3ds	max	file.

Prototype:
IOResult	Load(ILoad*	iload);

Remarks:
Loads	the	BitArray	from	the	3ds	max	file.

Operators:

Prototype:
int	operator[](int	i)	const;

Remarks:
Gets	the	i-th	bit.

Parameters:
int	i
The	index	of	the	bit.

Prototype:
BOOL	operator==(const	BitArray&	b);

Remarks:
This	operator	is	available	in	release	3.0	and	later	only.
Comparison	operator.

Parameters:
const	BitArray&	b
The	BitArray	to	compare	with	this	one.

Return	Value:
TRUE	if	the	BitArrays	are	'equal'	(same	size	and	same	bits	set);	otherwise
FALSE.

Assignment	operators:	These	require	arrays	of	the	same	size!

Prototype:
BitArray&	operator=(const	BitArray&	b)

Remarks:
Assignment	operator.

Prototype:
BitArray&	operator&=(const	BitArray&	b)

Remarks:
AND=	this	BitArray	with	the	specified	BitArray.

Prototype:
BitArray&	operator|=(const	BitArray&	b)

Remarks:
OR=	this	BitArray	with	the	specified	BitArray.

Prototype:
BitArray&	operator^=(const	BitArray&	b)

Remarks:
XOR=	this	BitArray	with	the	specified	BitArray.

Binary	operators:	These	require	arrays	of	the	same	size!

Prototype:
BitArray	operator&(const	BitArray&)	const

Remarks:
AND	two	BitArrays

Prototype:
BitArray	operator|(const	BitArray&)	const

Remarks:
OR	two	BitArrays

Prototype:
BitArray	operator^(const	BitArray&)	const

Remarks:
XOR	two	BitArrays

Unary	operators

Prototype:
BitArray	operator~()

Remarks:

Unary	NOT	function

Class	Class_ID
See	Also:	Dll	Functions	and	Class	Descriptors,	List	of	Class_IDs,	Generate	a
Class_ID.
class	Class_ID

Description:
This	class	represents	the	unique	class	ID	for	a	3ds	max	plug-in.	A	plug-ins
Class_ID	must	be	unique.	A	program	is	provided	with	the	SDK	to	generate
these	ClassIDs.	It	is	VERY	important	you	use	this	program	to	create	the
ClassIDs	for	your	plug-ins.	To	generate	a	random	Class_ID	and	optionally	copy
it	to	the	clipboard,	click	Generate	a	Class_ID.	A	Class_ID	consists	of	two
unsigned	32-bit	quantities.	The	constructor	assigns	a	value	to	each	of	these,	for
example	Class_ID(0xCAD834E2,	0x27E47C5A).
All	the	methods	of	this	class	are	implemented	by	the	system.

javascript:UniqueId0.Click()
javascript:UniqueId1.Click()

Important	Notes:
	Make	sure	you	use	the	program	provided	to	create	your	ClassIDs.	This	will
greatly	reduce	the	likelihood	of	conflicts	between	plug-ins.
	If	you	use	one	of	the	3ds	max	source	code	examples	to	create	your	plug-in,	you
MUST	change	the	existing	Class_ID.	If	you	don't,	you'll	get	a	conflict.	If	two
ClassIDs	conflict,	the	system	will	only	load	the	first	one	it	finds.	The	system
will	post	a	message	when	it	attempts	to	load	the	second	one	noting	that	there	is
a	Class_ID	conflict.
	The	sample	code	plug-ins	used	in	3ds	max	use	0	as	the	second	32-bit	quantity
of	the	Class_ID.	Only	the	built-in	classes	(those	that	ship	with	3ds	max)	should
have	the	second	32	bits	equal	to	0.	All	plug-in	developers	should	use	both	32
bit	quantities.

Methods:

Prototype:
Class_ID(ulong	aa,	ulong	bb)

Remarks:
Constructor.
This	is	the	standard	constructor	to	be	used	by	3ds	max	plug-ins.	Each	of	the
32-bit	quantities	may	be	assigned	separately.

Parameters:
ulong	aa
Assigned	to	the	first	32-bit	quantity.
ulong	bb
Assigned	to	the	second	32-bit	quantity.

Prototype:
Class_ID()

Remarks:
Constructor.
Assigns	a	value	of	0xFFFFFFFF	to	each	32-bit	quantity.

Prototype:

Class_ID(const	Class_ID&	cid)
Remarks:
Constructor.
Creates	a	new	class	ID	with	the	same	values	as	the	argument.

Parameters:
const	Class_ID&	cid
A	reference	to	the	Class	ID	to	copy.

Prototype:
ULONG	PartA()

Remarks:
Returns	the	first	unsigned	32-bit	quantity.

Prototype:
ULONG	PartB()

Remarks:
Returns	the	second	unsigned	32-bit	quantity.

Operators:

Prototype:
int	operator==(const	Class_ID&	cid)	const

Remarks:
Checks	for	equality	between	two	Class	IDs.

Prototype:
int	operator!=(const	Class_ID&	cid)	const

Remarks:
Check	for	Inequality	between	two	Class	IDs.

Prototype:
Class_ID&	operator=(const	Class_ID&	cid)

Remarks:
Assignment	operator.	Note:	In	release	3.0	and	later	this	method	checks	for
self-assignment.

Prototype:
bool	operator<(const	Class_ID&	rhs)	const;

Remarks:
This	operator	is	available	in	release	4.0	and	later	only.
Less	than	operator.	This	returns	true	if	the	specified	Class_ID's	two	parts	are
numerically	less	than	this	Class_ID's;	false	if	not.

	

Class	ClassDesc
See	Also:	Class	ClassDesc2,	Class	IParamBlock2,	Class	ParamBlockDesc2,
Class	ILoad,	Class	ISave,	Class	Interface,	Class	Class_ID.
class	ClassDesc

Description:
Class	descriptors	provide	the	system	with	information	about	the	plug-in	classes
in	the	DLL.	The	developer	creates	a	class	descriptor	by	deriving	a	class	from
ClassDesc	and	implementing	several	of	its	methods.
In	release	3.0	and	later	there	are	new	methods	which	are	supplied	and
implemented	by	ClassDesc2.	These	methods	relate	to	the	parameter	block2
system.
In	release	4.0	plug-ins	wishing	to	use	the	new	Function	Publishing	system	must
use	ClassDesc2	rather	than	this	class	for	their	class	descriptors.	See	Function
Publishing	System.

Methods	Groups:
The	hyperlinks	below	take	you	to	the	start	of	groups	of	related	methods	within
the	class:
Creation	Related	Methods
ClassID	/	SuperClassID	/	ClassName,	Category	Methods
Class	Parameter	Related	Methods
Action	Table	Related	Methods
Manipulator	Related	Methods
ParamBlock2	Related	Methods
Function	Publishing	Related	Methods
Schematic	View	Related	Methods
Generic	Expansion	Function

Methods:

Prototype:
virtual	int	IsPublic()=0;

Remarks:
Implemented	by	the	Plug-In.
Controls	if	the	plug-in	shows	up	in	lists	from	the	user	to	choose	from.

Return	Value:
If	the	plug-in	can	be	picked	and	assigned	by	the	user,	as	is	usually	the	case,
return	TRUE.	Certain	plug-ins	may	be	used	privately	by	other	plug-ins
implemented	in	the	same	DLL	and	should	not	appear	in	lists	for	user	to	choose
from.	These	plug-ins	would	return	FALSE.

Creation	Related	Methods
Prototype:
virtual	void	*Create(BOOL	loading=FALSE)=0;

Remarks:
Implemented	by	the	Plug-In.
3ds	max	calls	this	method	when	it	needs	a	pointer	to	a	new	instance	of	the
plug-in	class.	For	example,	if	3ds	max	is	loading	a	file	from	disk	containing	a
previously	used	plug-in	(procedural	object,	modifier,	controller,	etc...),	it	will
call	the	plug-in's	Create()	method.	The	plug-in	responds	by	allocating	a	new
instance	of	its	plug-in	class.	See	the	Advanced	Topic	section	on	Memory
Allocation	for	more	details.

Parameters:
BOOL	loading=FALSE
This	parameter	is	a	flag	indicating	if	the	class	being	created	is	going	to	be
loaded	from	a	disk	file.	If	the	flag	is	TRUE,	the	plug-in	may	not	have	to
perform	any	initialization	of	the	object	because	the	loading	process	will	take
care	of	it.	See	the	Advanced	Topics	section	on	Loading	and	Saving	for	more
information.
Note:	If	this	parameter	is	TRUE,	developers	must	initialize	their	references	to
NULL.	Otherwise	3ds	max	may	crash.

3ds	max	provides	a	default	plug-in	object	creation	process.	Many	plug-ins	fit
this	form.	When	the	system	is	about	to	create	an	instance	of	the	plug-in	object	it
calls	a	method	BaseObject::GetCreateMouseCallBack().This	method
returns	a	callback	object	whose	proc()	method	handles	the	mouse	input	during
its	creation	phase.	Most	of	the	work	is	then	handled	by	the	system.	The
procedural	sphere	is	an	example	of	this	type	of	plug-in.	Certain	plug-ins	may
have	special	creation	needs	however.	The	target	camera	is	an	example	of	such	a
plug-in.	Because	it	needs	to	create	two	nodes	in	the	scene	(the	camera	and	the

target)	it	requires	a	custom	creation	process.	To	support	these	plug-ins	the
following	two	methods	are	provided.	They	allow	the	plug-in	to	manage	the
creation	process	themselves.	See	the	Advanced	Topics	section	on	Object
Creation	Methods	for	more	details.

Prototype:
virtual	int	BeginCreate(Interface	*i)

Remarks:
Implemented	by	the	Plug-In.
The	custom	creation	process	of	the	plug-in	object	is	handled	by	this	method.
For	example,	a	plug-in	can	create	a	custom	command	mode	and	push	it	on	the
command	stack	to	handle	the	creation	process.
Important	Note:	A	plug-in	that	doesn't	want	to	participate	in	the	standard
object	creation	mechanism	using	CreateMouseCallBack	must	push	a
CommandMode	on	the	stack	in	this	method	and	remove	it	in	EndCreate().
This	is	true	even	if	the	plug-in	doesn't	do	anything	inside	the	mode.	A	mode
has	to	be	pushed	on	the	stack	and	then	later	popped	off	otherwise	a	crash	will
occur	(if	the	default	implementation	of	this	method	is	not	used).	For	more
details	on	object	creation	see	the	Advanced	Topics	section	Object	Creation
Methods.

Parameters:
Interface	*i
An	interface	pointer	the	plug-in	may	use	to	call	functions	in	3ds	max.

Return	Value:
To	use	the	default	creation	process	(the	system	implementation	for	this
method)	return	0;	Return	nonzero	if	the	plug-in	implements	this	method.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	int	EndCreate(Interface	*i)

Remarks:
Implemented	by	the	Plug-In.

The	termination	of	the	custom	creation	process	is	managed	by	the
implementation	of	this	method.	For	example,	the	plug-in	could	remove	a
custom	command	mode	from	the	command	stack.	See	the	Advanced	Topics
section	on	Object	Creation	Methods	for	more	details.

Parameters:
Interface	*i
An	interface	pointer	the	plug-in	may	use	to	call	functions	in	3ds	max.

Return	Value:
To	use	the	system	implementation	for	this	method	return	0;	Return	nonzero	if
the	plug-in	implements	this	method.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	BOOL	OkToCreate(Interface	*i)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	enable	or	disable	the	button	that	allows	the	plug-ins
class	to	be	created.	For	example,	at	certain	times	it	is	not	appropriate	to	for	the
Boolean	object	to	be	created.	When	there	is	not	an	object	of	the	appropriate
type	selected	the	Boolean	object	cannot	be	created.	At	these	times	the	button
should	be	disabled	(the	button	will	appear	as	grayed	out	in	the	Create	branch
of	the	command	panel).	The	button	should	be	enabled	if	there	is	an	object	of
the	appropriate	type	selected.	This	method	allows	a	plug-in	to	control	the	state
of	the	button.

Parameters:
Interface	*i
An	interface	pointer	the	plug-in	may	use	to	call	functions	in	3ds	max.

Return	Value:
TRUE	to	enable	the	class	creation	button;	FALSE	to	disable	it.

Default	Implementation:
{	return	TRUE;	}

Sample	Code:

The	following	code	from
\MAXSDK\SAMPLES\OBJECTS\BOOLOBJ.CPP	demonstrates	an
implementation	of	this	method.	If	there	is	not	a	node	selected,	it	is	not	OK	to	use
the	command	so	the	button	should	appear	disabled.	To	disable	the	button
OkToCreate()	returns	FALSE.	If	the	object	that	is	selected	is	not	of	the
appropriate	type	it	the	button	is	disabled	as	well.

BOOL	BoolObjClassDesc::OkToCreate(Interface	*i)
	{
	if	(i->GetSelNodeCount()!=1)	return	FALSE;
	ObjectState	os	=	i->GetSelNode(0)->GetObjectRef()->Eval(i-
>GetTime());
	if	(os.obj->SuperClassID()!=GEOMOBJECT_CLASS_ID)	{
		return	FALSE;
		}
	return	TRUE;
	}

ClassName,	ClassID,	SuperClass	ID,	Category	Methods
Prototype:
virtual	const	TCHAR*	ClassName()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	name	of	the	class.	This	name	appears	in	the	button	for
the	plug-in	in	the	3ds	max	user	interface.

Return	Value:
The	name	of	the	class.

Prototype:
virtual	SClass_ID	SuperClassID()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	a	system	defined	constant	describing	the	class	this	plug-in
class	was	derived	from.	For	example,	the	Bend	modifier	returns
OSM_CLASS_ID.	This	super	class	ID	is	used	by	all	object	space	modifiers.

See	List	of	SuperClassIDs.
Return	Value:
The	SuperClassID	of	the	plug-in.

Prototype:
virtual	Class_ID	ClassID()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	must	return	the	unique	ID	for	the	object.	If	two	ClassIDs
conflict,	the	system	will	only	load	the	first	one	it	finds.	The	ClassID	consists
of	two	unsigned	32-bit	quantities.	The	constructor	assigns	a	value	to	each	of
these,	for	example	Class_ID(0xA1C8E1D1,	0xE7AA2BE5).	A	developer
should	use	the	random	Class_ID	generator	to	avoid	conflicts	(Generate	a
random	Class_ID).	See	Class	Class_ID	for	more	information.

Return	Value:
The	unique	ClassID	of	the	plug-in.

Prototype:
virtual	Class_ID	SubClassID();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	can	be	used	for	further	categorizing	plugin's.	If	a	plugin	has	sub-
plugins(like	light	>	shadows,	particles	>	operators),	this	method	can	be	used	to
differentiate	them.	sub-plugins	can	be	derived	off	reference	target	but	return	a
particular	class	ID	published	by	the	parent	plugins	SDK	headers.	Then	parent
plugin	can	get	a	list	of	all	reference	targets	whose	SubClassID	matches	the
published	SubClassID

Default	Implementation:
{	return	Class_ID();	}

Prototype:
virtual	const	TCHAR*	Category()=0;

javascript:UniqueId0.Click()

Remarks:
Implemented	by	the	Plug-In.
This	methods	returns	a	string	describing	the	category	a	plug-in	fits	into.	The
category	is	usually	selected	in	the	drop	down	list	in	the	create,	or	utility	branch
of	the	command	panel.	In	the	create	branch,	if	this	is	set	to	be	an	existing
category	(i.e.	"Standard	Primitives",	"Splines",	...)	then	the	plug-in	will	appear
in	that	category.	If	the	category	doesn't	yet	exists	then	it	is	created.	If	the	plug-
in	does	not	need	to	appear	in	the	list,	it	may	simply	return	a	null	string	as	in
_T("").
In	the	modify	branch,	the	category	determines	which	group	it	appears	in	the
Configure	Button	Sets	/	Modifiers	list.	These	are	the	categories	such	as	"MAX
STANDARD",	"MAX	EDIT",	and	"MAX	SURFACE".
This	method	is	also	used	to	distinguish	between	the	various	types	of	texture
maps	so	they	can	be	separated	in	the	Material/Map	Browser.	The	appropriate
string	should	be	returned	by	this	method	of	the	Texmap.	For	example:
const	TCHAR*	Category()	{	return	TEXMAP_CAT_3D;	}

The	options	for	texture	maps	are:
TCHAR	TEXMAP_CAT_2D[];	-	2D	maps.
TCHAR	TEXMAP_CAT_3D[];	-	3D	maps.
TCHAR	TEXMAP_CAT_COMP[];	-	Composite.
TCHAR	TEXMAP_CAT_COLMOD[];	-	Color	modifier.
TCHAR	TEXMAP_CAT_ENV[];	-	Environment.

Class	Parameter	Related	Methods
The	following	three	methods	deal	with	default	settings	for	plug-in	classes.	Most
plug-in	do	not	need	to	be	concerned	with	these	methods.
In	the	3ds	max	user	interface,	from	the	Files	/	Preferences...	menu	on	the
Animation	page	there	is	an	option	for	Controller	Defaults.	There	are	buttons	for
'Set	Defaults...'	and	'Restore	to	Factory	Settings...'.	When	the	user	presses	the
'Set	Defaults...'	button	the	user	is	presented	with	a	list	of	plug-ins	that	have
responded	TRUE	to	the	HasClassParams()	method.	These	plug-ins	have
default	parameters	that	the	user	can	edit.	These	are	the	defaults	used	when	a	new
instance	of	the	plug-in	class	is	created.	When	the	user	picks	an	item	from	the	list,
its	EditClassParams()	method	is	called	to	allow	the	plug-in	to	put	up	a	modal
dialog	to	let	the	user	edit	the	default	parameters.	If	the	user	presses	the	'Reset	to

Factory	Defaults...'	button,	the	ResetClassParams()	method	is	called.	The
plug-in	can	then	be	reset	to	use	any	default	settings	that	it	has.

Prototype:
virtual	BOOL	HasClassParams()

Remarks:
Implemented	by	the	Plug-In.
If	a	plug-in	class	has	default	parameters	that	it	needs	to	allow	the	user	to	edit,
TRUE	should	be	returned	and	EditClassParams()	and
ResetClassParams()	should	be	implemented.	Otherwise	return	FALSE	(the
default).	See	the	description	above.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	void	EditClassParams(HWND	hParent);

Remarks:
Implemented	by	the	Plug-In.
If	the	user	picks	the	class	from	the	list	this	method	is	called.	The	plug-in
should	put	up	a	modal	dialog	that	allows	the	user	to	edit	the	plug-ins	default
parameters.	The	plug-in	should	not	return	until	the	user	has	finished	editing
the	parameters.	See	the	description	above.

Parameters:
HWND	hParent
The	parent	window	handle.

Prototype:
virtual	void	ResetClassParams(BOOL	fileReset=FALSE);

Remarks:
Implemented	by	the	Plug-In.
When	the	user	executes	File	/	Reset	or	presses	the	'Reset	to	Factory	Settings...'
button	in	the	File	/	Preferences...	/	Animation	tab	/	Controller	Defaults	section

this	method	is	called.	The	plug-in	can	respond	by	resetting	itself	to	use	its
default	values.	See	the	description	above.

Parameters:
BOOL	fileReset=FALSE
When	TRUE,	the	user	has	performed	a	File	/	Reset	operation.	When	FALSE,
the	user	is	in	the	Preferences...	dialog	doing	a	reset	controller	defaults
operation.

Action	Table	Related	Methods

These	two	functions	return	keyboard	action	tables	that	plug-ins	can	use

Prototype:
virtual	int	NumActionTables();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	called	at	Dll-load	time	to	get	the	number	of	action	tables	from
a	plug-in.	Note:	If	more	than	one	class	uses	the	table	only	one	of	the	classes
should	export	the	table,	but	they	can	all	use	them.	See	Class	ActionTable.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	ActionTable*	GetActionTable(int	i);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	'i-th'	action	table.	See	Class	ActionTable.

Parameters:
int	i
The	zero	based	index	of	the	table	to	return.

Default	Implementation:
{	return	NULL;	}

Manipulator	Related	Methods

The	following	methods	support	manipulators.	These	methods	are	called	on	the
class	descriptors	of	manipulators	when	manipulate	mode	is	entered,	or	when
selection	changes	while	in	manipulate	mode.

Prototype:
virtual	BOOL	UseSelectionBrackets();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	an	object	to	choose	whether	or	not	it	will	display	selection
brackets	in	shaded	viewports.	The	method	will	return	FALSE	if	no	selection
brackets	are	displayed	or	TRUE	if	it	does	display	selection	brackets.

Default	Implementation:
{	return	TRUE;	}

Prototype:
virtual	BOOL	IsManipulator();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	methods	is	what	is	used	by	the	system	to	determine	whether	the
ClassDesc	describes	a	manipulator.	Returns	TRUE	if	the	class	implements	a
manipulator	object;	otherwise	FALSE.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	BOOL	CanManipulate(ReferenceTarget*	hTarget);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
The	method	returns	true	if	the	class	is	a	manipulator	and	it	manipulates	the
given	base	object,	modifier	or	controller.	When	starting	"Manipulate"	mode,
this	is	called	on	selected	nodes	for	the	base	object,	all	modifiers,	the	TM
controller	and	the	position,	rotation	and	scale	controllers,	if	the	TM	controller

is	a	PRSController.
Parameters:
ReferenceTarget*	hTarget
A	pointer	to	a	reference	target.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	BOOL	CanManipulateNode(INode*	pNode);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	TRUE	if	the	manipulator	applies	to	the	given	node;	otherwise	FALSE.
This	is	a	general	case	if	CanManipulateClassID()	isn't	sufficient.

Parameters:
INode*	pNode
The	node	to	check.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	void*	CreateObjectManipulator(Object*	pObject);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
When	a	manipulator	returns	TRUE	to	CanManipulateClassID(),	the
system	calls	this	method	to	create	an	instance	and	return	a	pointer	to	it.

Parameters:
Object*	pObject
Points	to	the	Object	that	the	manipulator	said	it	could	manipulate.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	void*	CreateTMControlManipulator(Control*	pControl);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
When	a	manipulator	returns	TRUE	to	CanManipulateClassID(),	the
system	calls	this	method	to	create	an	instance	and	return	a	pointer	to	it.

Parameters:
Control*	pControl
Points	to	the	Controller	that	the	manipulator	said	it	could	manipulate.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	void*	CreateModifierManipulator(Modifier*	pModifier);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
When	a	manipulator	returns	TRUE	to	CanManipulateClassID(),	the
system	calls	this	method	to	create	an	instance	and	return	a	pointer	to	it.

Parameters:
Modifier*	pModifier
Points	to	the	Modifier	that	the	manipulator	said	it	could	manipulate.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	void*	CreateManipulator(ReferenceTarget*	hTarget,
INode*	pNode);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
When	a	manipulator	returns	TRUE	to	CanManipulateNode(INode*),	the
system	calls	this	version	of	CreateManipulator()	to	create	an	instance.

Parameters:
ReferenceTarget*	hTarget
Points	to	the	reference	target.
INode*	pNode
Points	to	the	node	that	the	manipulator	said	it	could	manipulate.

Return	Value:
{	return	NULL;	}

Load	/	Save	Related	Methods

The	following	three	methods	may	be	used	to	save	data	associated	with	a	class	in
a	3ds	max	file.	If	you	want	to	save	data	associated	with	the	class	have
NeedsToSave()	return	TRUE	and	implement	the	Save()	and	Load()
methods.

Prototype:
virtual	BOOL	NeedsToSave();

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	there	is	data	associated	with	the	class	that	needs	to	be	saved
in	the	3ds	max	file.	If	this	is	so,	implement	the	Save()	and	Load()	methods
below.	If	there	is	no	class	data	to	save	return	FALSE.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	IOResult	Save(ISave	*is);

Remarks:
Implemented	by	the	Plug-In.
If	NeedsToSave()	returns	TRUE	then	this	method	should	be	implemented	to
save	the	data	associated	with	the	class.

Parameters:
ISave	*is

A	pointer	that	may	be	used	to	call	methods	to	save	data	to	disk.
Return	Value:
IO_OK	if	the	save	was	successful;	otherwise	IO_ERROR.

Prototype:
virtual	IOResult	Load(ILoad	*il);

Remarks:
Implemented	by	the	Plug-In.
If	NeedsToSave()	returns	TRUE	then	this	method	should	be	implemented	to
load	the	data	associated	with	the	class.

Parameters:
ILoad	*il
A	pointer	that	may	be	used	to	load	data	from	a	file.

Return	Value:
IO_OK	if	the	load	was	successful;	otherwise	IO_ERROR.

Parameter	Map	2	Related	Methods
Prototype:
virtual	DWORD	InitialRollupPageState();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	returns	a	DWORD	which	is	used	to	initialize	the	rollup	state	in
both	the	create	branch	and	the	modify	branch.	The	semantics	are	different,
however	for	these	two	cases.	Whenever	the	rollups	are	created	in	the	create
branch,	their	state	will	be	that	specified	by	this	method.	In	the	modify	branch,
the	first	time	an	object	of	this	type	is	modified	the	state	will	be	that	of	this
method,	but	after	that	it	will	remain	what	it	was	last	set	to.

Return	Value:
The	bits	of	this	DWORD	set	indicate	the	corrresponding	rollup	page	is	closed.
The	zero	bit	corresponds	to	the	plug-ins	first	rollup,	the	first	bit	is	the	second
rollup,	etc.	The	value	0x7fffffff	is	returned	by	the	default	implementation	so
the	command	panel	can	detect	this	method	is	not	being	overridden,	and	just

leave	the	rollups	as	is.
Default	Implementation:
{	return	0x7fffffff;	}

Prototype:
virtual	const	TCHAR*	InternalName();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	Plug-In.
Returns	a	string	which	provides	a	fixed,	machine	parsable	internal	name	for
the	plug-in.	This	name	is	used	by	MAXScript.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	HINSTANCE	HInstance();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	Plug-In.
Returns	the	DLL	instance	handle	of	the	plug-in.	This	is	used	so	that	string
resources	can	be	loaded	by	the	ParamBlock2	system.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	int	NumParamBlockDescs();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System.
Returns	the	number	or	ParamBlockDesc2s	used	by	the	plug-in.

Default	Implementation:

{	return	0;	}

Prototype:
virtual	ParamBlockDesc2*	GetParamBlockDesc(int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System.
Returns	a	pointer	to	the	'i-th'	parameter	block	2	descriptor.

Parameters:
int	i
The	zero	based	index	of	the	descriptor	to	return.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	ParamBlockDesc2*	GetParamBlockDescByID(BlockID
id);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System.
Returns	a	pointer	to	the	specified	parameter	block	2	descriptor.

Parameters:
BlockID	id
The	ID	of	the	parameter	block.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	void	AddParamBlockDesc(ParamBlockDesc2*	pbd);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Implemented	by	the	System.
Adds	the	specified	parameter	block	2	descriptor	to	the	list	of	those	maintained
by	the	class.

Parameters:
ParamBlockDesc2*	pbd
Points	to	the	parameter	block	2	descriptor	to	add.

Default	Implementation:
{	}

Prototype:
virtual	void	BeginEditParams(IObjParam	*ip,	ReferenceMaker*
obj,	ULONG	flags,	Animatable	*prev);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System.
This	method	is	called	to	handle	the	beginning	of	the	automatic	command
panel	user	interface	management	provided	by	the	param	map	2	system.	This
method	is	called	by	the	plug-in	from	its	Animatable::BeginEditParams()
method.	The	parameters	passed	to	that	method	are	simply	passed	along	to	this
method.

Parameters:
IObjParam	*ip
The	interface	pointer	passed	to	the	plug-in.
ReferenceMaker*	obj
Points	to	the	plug-in	class	calling	this	method.
ULONG	flags
The	flags	passed	along	to	the	plug-in	in	Animatable::BeginEditParams().
Animatable	*prev
The	pointer	passed	to	the	plug-in	in	Animatable::BeginEditParams().

Default	Implementation:
{	}

Prototype:
virtual	void	EndEditParams(IObjParam	*ip,	ReferenceMaker*
obj,	ULONG	flags,	Animatable	*prev);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System.
This	method	is	called	to	handle	the	ending	of	the	automatic	command	panel
user	interface	management	provided	by	the	param	map	2	system.	This	method
is	called	by	the	plug-in	from	its	Animatable::EndEditParams()	method.
The	parameters	passed	to	that	method	are	simply	passed	along	to	this	method.

Parameters:
IObjParam	*ip
The	interface	pointer	passed	to	the	plug-in.
ReferenceMaker*	obj
Points	to	the	plug-in	class	calling	this	method.
ULONG	flags
The	flags	passed	along	to	the	plug-in	in	Animatable::EndEditParams().
Animatable	*prev
The	pointer	passed	to	the	plug-in	in	Animatable::EndEditParams().

Default	Implementation:
{	}

Prototype:
virtual	void	InvalidateUI(ParamBlockDesc2*	pbd);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System.
Invalidates	the	user	interface	for	the	rollup	or	dialog	managed	by	the	specified
descriptor.	This	will	cause	the	controls	in	that	rollup	to	be	redrawn.

Parameters:
ParamBlockDesc2*	pbd
Points	to	the	parameter	block	2	descriptor	whose	corresponding	UI	is

invalidated.
Default	Implementation:
{	}

Prototype:
virtual	void	MakeAutoParamBlocks(ReferenceMaker*	owner);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System.
This	method	creates	the	automatic	parameter	blocks	for	the	specified	plug-in.
These	are	the	ones	with	the	ParamBlockDesc2.flags
P_AUTO_CONSTRUCT	bit	set.

Parameters:
ReferenceMaker*	owner
Points	to	the	owner	of	the	parameter	block.

Default	Implementation:
{	}

Prototype:
virtual	int	NumParamMaps();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System.
Returns	the	number	of	parameter	map2s	used	by	the	plug-in.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	IParamMap2*	GetParamMap(int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Implemented	by	the	System.
Returns	a	pointer	to	the	'i-th'	parameter	map2.

Parameters:
int	i
The	zero	based	index	of	the	parameter	map2	to	return.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	IParamMap2*	GetParamMap(ParamBlockDesc2*	pbd);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System.
Returns	a	pointer	to	the	parameter	map2	whose	descriptor	is	passed.

Parameters:
ParamBlockDesc2*	pbd
Points	to	the	parameter	block2	descriptor.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	void	SetUserDlgProc(ParamBlockDesc2*	pbd,
ParamMap2UserDlgProc*	proc=NULL);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System.
Sets	the	parameter	map	2	user	dialog	proc	for	the	specified	descriptor.

Parameters:
ParamBlockDesc2*	pbd
Points	to	the	parameter	block	2	descriptor.
ParamMap2UserDlgProc*	proc=NULL

This	object	manages	user	interface	control	that	require	special	processing.	See
Class	ParamMap2UserDlgProc.

Default	Implementation:
{	}

Prototype:
virtual	ParamMap2UserDlgProc*
GetUserDlgProc(ParamBlockDesc2*	pbd);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System.
Returns	a	pointer	to	the	parameter	map	2	user	dialog	proc	(if	any)	for	the
specified	descriptor.

Parameters:
ParamBlockDesc2*	pbd
Points	to	the	parameter	block	2	descriptor.

Return	Value:
See	Class	ParamMap2UserDlgProc.

Default	Implementation:
{	return	NULL;	}

Function	Publishing	Related	Methods
Prototype:
virtual	int	NumInterfaces();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Returns	the	number	of	function	publishing	interfaces	maintained	by	the	class
descriptor.

Prototype:

virtual	FPInterface*	GetInterface(int	i);
Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Returns	a	pointer	to	the	'i-th'	function	publishing	interface.

Parameters:
int	i
The	zero	based	index	of	the	interface	to	return.

Prototype:
virtual	FPInterface*	GetInterface(Interface_ID	id);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	function	publishing	interface	whose	ID	is	specified.

Parameters:
Interface_ID	id
The	inteface	ID.

Prototype:
virtual	FPInterface*	GetInterface(TCHAR*	name);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	function	publishing	interface	whose	name	is	specified.

Parameters:
TCHAR*	name
The	name	of	the	interface.

Prototype:
virtual	void	AddInterface(FPInterface*	fpi);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

Adds	the	specified	interface	to	the	list	maintained	by	this	class	descriptor.
Parameters:
FPInterface*	fpi
Points	to	the	interface	to	add.

Prototype:
virtual	void	ClearInterfaces();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Deletes	all	the	interfaces	maintained	by	the	class	descriptor.

Schematic	View	Related	Methods
Prototype:
virtual	bool	DrawRepresentation(COLORREF	bkColor,	HDC
hDC,	Rect	&rect);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	allows	this	plug-in	class	to	provide	a	custom	image	for	display	in
Schematic	View.

Parameters:
COLORREF	bkColor
The	background	color.	See	COLORREF-DWORD	format.
HDC	hDC
The	handle	for	the	device	context.
Rect	&rect
The	rectangle	to	draw	in.

Return	Value:
TRUE	if	this	class	can	draw	an	image	to	represent	itself	graphically;	otherwise
FALSE.

Default	Implementation:
{	return	FALSE;	}

Generic	Expansion	Function
Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.
This	is	reserved	for	future	use.

Parameters:
int	cmd
The	command	to	execute.
ULONG	arg1=0
Optional	argument	1	(defined	uniquely	for	each	cmd).
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value	(defined	uniquely	for	each	cmd).

Default	Implementation:
{	return	0;	}

Class	GammaMgr
See	Also:	Class	Color,	COLORREF.
class	GammaMgr

Description:
The	gamma	manager	class.	Methods	of	this	class	are	used	to	gamma	correct	and
de-gamma	colors	in	various	formats.	Various	settings	from	the	3ds	max	user
interface	are	also	accessible	via	data	members	of	this	class	(for	example	the
display,	and	file	gamma	settings).	These	settings	may	be	read	but	should	not	be
set	by	a	plug-in	developer.	All	methods	of	this	class	are	implemented	by	the
system.
There	is	a	global	instance	of	this	class	(defined	in
\MAXSDK\INCLUDE\GAMMA.H):
GammaMgr	gammaMgr;

Note	the	following	#defines.	These	are	used	to	reduce	the	size	of	the	gamma
tables	for	correcting	16	bit	values.
#define	RCBITS	13
#define	RCOLN	(1<<RCBITS)

This	class	provides	a	set	of	commonly	used	gamma	tables.	This	class	does	not
provide	tables	for	all	types	of	conversion	however.	For	example	if	you	have	a
different	gamma	setting	that	you	are	using,	or	if	you	are	going	in	a	different
conversion	direction	than	the	tables	provided	here	you	may	use	the	classes
GamConvert16	and	GamConvert8	to	build	gamma	tables.

Data	Members:
public:
BOOL	enable;
Indicates	if	gamma	correction	is	enabled	or	disabled.
BOOL	dithTrue;
Indicates	if	output	dithering	is	to	be	used	for	true	color	images.
BOOL	dithPaletted;
Indicates	if	output	dithering	is	to	be	used	for	paletted	images.
float	dispGamma;
The	display	gamma	setting.

float	fileInGamma;
The	file	input	gamma	setting.
float	fileOutGamma;
The	file	output	gamma	setting.
UBYTE	disp_gamtab[256];
Display	gamma	table	for	drawing	color	swatches	(8->8)
UBYTE	disp_gamtabw[RCOLN];
Display	gamma	table	(RCBITS->8).
UBYTE	file_in_gamtab[256];
File	input	gamma	table	(8->8).
UWORD	file_in_degamtab[256];
For	de-gamifying	bitmaps	on	input.	(8->16)
UWORD	file_out_gamtab[RCOLN];
Gamma	correct	for	file	output,	before	dither	(RCBITS->16).

Methods:

Prototype:
GammaMgr();

Remarks:
Constructor.

Prototype:
inline	COLORREF	DisplayGammaCorrect(COLORREF	col);

Remarks:
Gamma	corrects	the	specified	color	using	the	display	gamma	setting.

Parameters:
COLORREF	col
The	color	to	gamma	correct.

Return	Value:
The	gamma	corrected	color.

Prototype:

Color	DisplayGammaCorrect(Color	c);
Remarks:
Gamma	corrects	the	specified	color	using	the	display	gamma	setting.

Parameters:
Color	c
The	color	to	gamma	correct.

Return	Value:
The	gamma	corrected	color.

Prototype:
void	Enable(BOOL	onOff);

Remarks:
Sets	the	gamma	correction	enabled	setting.

Parameters:
BOOL	onOff
TRUE	to	enable;	FALSE	to	disable.

Prototype:
BOOL	IsEnabled();

Remarks:
Returns	the	gamma	correction	enabled	setting;	TRUE	if	enabled;	FALSE	if
disabled.

Prototype:
void	SetDisplayGamma(float	gam);

Remarks:
Sets	the	display	gamma	setting.

Parameters:
float	gam
The	value	to	set.

Prototype:
float	GetDisplayGamma();

Remarks:
Returns	the	display	gamma	setting.

Prototype:
void	SetFileInGamma(float	gam);

Remarks:
Sets	the	file	input	gamma	setting.

Parameters:
float	gam
The	value	to	set.

Prototype:
float	GetFileInGamma();

Remarks:
Returns	the	file	input	gamma	setting.

Prototype:
void	SetFileOutGamma(float	gam);

Remarks:
Sets	the	file	output	gamma	setting.

Parameters:
float	gam
The	value	to	set.

Prototype:
float	GetFileOutGamma();

Remarks:
Returns	the	file	output	gamma	setting.

The	following	functions	are	not	part	of	class	GammaMgr	but	are	available
for	use.

Prototype:
inline	COLORREF	gammaCorrect(DWORD	c);

Remarks:
Returns	a	gamma	corrected	version	of	the	specified	color	using	the	display
gamma	setting.

Parameters:
DWORD	c
The	color	to	gamma	correct.

Prototype:
inline	UBYTE	gammaCorrect(UBYTE	b);

Remarks:
Returns	a	gamma	corrected	version	of	the	specified	color	using	the	display
gamma	setting.

Parameters:
UBYTE	b
The	color	to	gamma	correct.

Prototype:
void	BuildGammaTab8(UBYTE	gamtab[256],	float	gamma,	int
onoff=TRUE);

Remarks:
Builds	the	gamma	table	that	maps	8->8.

Parameters:
UBYTE	gamtab[256]
The	table	to	build.
float	gamma
The	gamma	setting.
int	onoff=TRUE

TRUE	to	enable;	FALSE	to	disable.

Prototype:
void	BuildGammaTab8(UWORD	gamtab[256],	float	gamma,	int
onoff=TRUE);

Remarks:
Builds	a	gamma	table	that	maps	8->16.

Parameters:
UBYTE	gamtab[256]
The	table	to	build.
float	gamma
The	gamma	setting.
int	onoff=TRUE
TRUE	to	enable;	FALSE	to	disable.

Prototype:
void	BuildGammaTab(UBYTE	gamtab[RCOLN],	float	gamma,
int	onoff=TRUE);

Remarks:
Build	a	gamma	table	that	maps	RCBITS->8.

Parameters:
UBYTE	gamtab[RCOLN]
The	table	to	build.
float	gamma
The	gamma	setting.
int	onoff=TRUE
TRUE	to	enable;	FALSE	to	disable.

Prototype:
void	BuildGammaTab(UWORD	gamtab[RCOLN],	float	gamma,
int	onoff=TRUE);

Remarks:

Build	a	gamma	table	that	maps	RCBITS->16.
Parameters:
UWORD	gamtab[RCOLN]
The	table	to	build.
float	gamma
The	gamma	setting.
int	onoff=TRUE
TRUE	to	enable;	FALSE	to	disable.

Prototype:
float	gammaCorrect(float	v,	float	gamma);

Remarks:
Gamma	corrects	the	value	passed	using	the	specified	gamma	setting.

Parameters:
float	v
The	value	to	gamma	correct.
float	gamma
The	gamma	setting.

Return	Value:
The	gamma	corrected	value.

Prototype:
float	deGammaCorrect(float	v,	float	gamma);

Remarks:
De-gamma	corrects	the	value	passed	using	the	specified	gamma	setting.

Parameters:
float	v
The	value	to	de-gamma	correct.
float	gamma
The	gamma	setting.

Prototype:

UBYTE	gammaCorrect(UBYTE	v,	float	gamma);
Remarks:
Gamma	corrects	the	value	passed	using	the	specified	gamma	setting.

Parameters:
UBYTE	v
The	value	to	gamma	correct.
float	gamma
The	gamma	setting.

Return	Value:
The	gamma	corrected	value.

Prototype:
UBYTE	deGammaCorrect(UBYTE	v,	float	gamma);

Remarks:
De-gamma	corrects	the	value	passed	using	the	specified	gamma	setting.

Parameters:
UBYTE	v
The	value	to	de-gamma	correct.
float	gamma
The	gamma	setting.

Prototype:
UWORD	gammaCorrect(UWORD	c,	float	gamma);

Remarks:
Gamma	corrects	the	value	passed	using	the	specified	gamma	setting.

Parameters:
UWORD	c
The	value	to	gamma	correct.
float	gamma
The	gamma	setting.

Return	Value:
The	gamma	corrected	value.

Prototype:
UWORD	deGammaCorrect(UWORD	c,	float	gamma);

Remarks:
De-gamma	corrects	the	value	passed	using	the	specified	gamma	setting.

Parameters:
UWORD	c
The	value	to	de-gamma	correct.
float	gamma
The	gamma	setting.

Class	Quantizer
See	Also:	BMM_Color_64,	BMM_Color_48,	BMM_Color_24.
class	Quantizer

Description:
Color	quantizer,	for	doing	true-color	to	paletted	conversion.	All	methods	of	this
class	are	implemented	by	the	system.	Create	a	Quantizer	object	by	calling:
Quantizer	*BMMNewQuantizer();

Be	sure	to	call	Quantizer::DeleteThis()	when	done.

Methods:

Prototype:
virtual	int	Partition(BMM_Color_48	*pal,	int	palsize,
BMM_Color_64	*forceCol)=0;

Remarks:
This	method	uses	the	histogram	and	computes	the	palette.

Parameters:
BMM_Color_48	*pal
Storage	for	the	palette	to	compute.
int	palsize
The	size	of	the	palette.
BMM_Color_64	*forceCol
If	there	is	a	color	that	you	want	to	make	sure	is	available	in	the	palette,	you
may	pass	it	here.	This	is	used	for	the	background	color	of	an	image	for
example.	If	this	is	not	NULL	the	quantizer	will	make	up	a	palette	and	make
sure	that	this	color	is	in	it.	For	backgrounds,	this	looks	much	nicer	because	the
background	won't	be	dithered	when	shown	using	the	palette.

Return	Value:
Nonzero	if	the	palette	was	computed;	otherwise	zero.

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
This	method	is	called	to	delete	the	Quantizer	when	you	are	done	with	it.

Prototype:
virtual	int	AllocHistogram(void)=0;

Remarks:
This	method	allocates	the	histogram	used	in	doing	the	conversion.

Return	Value:
Nonzero	if	the	histogram	was	allocated;	otherwise	zero.

Prototype:
virtual	void	AddToHistogram(BMM_Color_64	*image,	int
npix)=0;

Remarks:
Adds	the	specified	colors	to	the	histogram	so	they	are	taken	into	account	in	the
palette	computations.

Parameters:
BMM_Color_64	*image
The	pixels	to	include.
int	npix
The	number	of	pixels	above.

Prototype:
virtual	void	AddToHistogram(BMM_Color_48	*image,	int
npix)=0;

Remarks:
Adds	the	specified	colors	to	the	histogram	so	they	are	taken	into	account	in	the
palette	computations.

Parameters:
BMM_Color_48	*image
The	pixels	to	include.
int	npix

The	number	of	pixels	above.

Prototype:
virtual	void	AddToHistogram(BMM_Color_24	*image,	int
npix)=0;

Remarks:
Adds	the	specified	colors	to	the	histogram	so	they	are	taken	into	account	in	the
palette	computations.

Parameters:
BMM_Color_24	*image
The	pixels	to	include.
int	npix
The	number	of	pixels	above.

Class	ColorPacker
See	Also:	Palettes,	Class	Quantizer.
class	ColorPacker

Description:
Methods	of	this	class	are	used	for	packing	colors	into	a	256	color	paletted
representation.	Create	an	instance	of	this	class	using
BMMNewColorPacker()	described	below.	All	methods	of	this	class	are
implemented	by	the	system.

Prototype:
ColorPacker	*BMMNewColorPacker(int	w,	BMM_Color_48	*pal,
int	npal,	BYTE*	remap=NULL);

Remarks:
This	is	called	to	create	an	instance	of	a	ColorPacker.	When	done,	be	sure	to
call	ColorPacker::DeleteThis().

Parameters:
int	w
The	width	of	bitmap	to	be	packed.
BMM_Color_48	*pal
The	palette	to	use.
int	npal
The	number	of	entries	in	the	palette.
BYTE*	remap=NULL
This	is	a	256	byte	table	that	maps	the	numbers	into	another	number.	This	is
used	so	the	palette	may	be	rearranged	in	Windows	order.	To	make	palettes	for
Windows,	the	best	thing	to	do	is	to	put	the	colors	in	so	that	colors	that
Windows	uses	are	either	left	alone,	or	they	are	occupied	by	the	colors	that	are
least	important	in	the	image.	This	is	because	Windows	will	come	along	and
alter	these	colors.	This	is	the	first	10	colors	and	the	last	10	colors.
The	quantizer	creates	a	palette	from	0-239,	where	0	is	the	most	used	color	and
239	is	the	least	used.	The	color	packer	uses	0-239	as	well,	and	it	operates	most
efficiently	when	the	colors	are	sorted	as	the	quantizer	orders	them.

What	can	be	done	is	to	use	FixPaletteForWindows()	to	rearrange	the
colors	for	the	Windows	palette.	This	creates	the	remap	table	passed	to	this
method.	Then	as	a	last	step	the	remap	table	is	used	to	reorganize	the	palette.
Below	is	the	documentation	for	the	global	function
FixPaletteForWindows().	Sample	code	that	uses	these	APIs	is	in
\MAXSDK\SAMPLES\IO\FLIC\FLIC.CPP.

Prototype:
void	FixPaletteForWindows(BMM_Color_48	*pal,
BMM_Color_48	*newpal,int	ncols,	BYTE	*remap=NULL);

Remarks:
Rearranges	the	palette	pal	(which	has	colors	0..ncols-1	occupied,	in
descending	order	of	frequency),	into	newpal	so	that	the	colors	10-245	are
populated	first,	then	0-9,	then	246-255.	Sets	the	optional	array	remap	to	map
the	old	palette	index	values	to	the	new	ones.

Parameters:
BMM_Color_48	*pal
The	palette	to	rearrange.
BMM_Color_48	*newpal
The	rearranged	palette.
int	ncols
The	number	of	colors	in	the	palette.
BYTE	*remap=NULL
An	array	that	maps	the	old	palette	index	values	to	the	new	ones.

Methods:

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
This	method	is	called	to	delete	the	ColorPacker	when	you	are	done	with	it.

Prototype:
virtual	void	EnableDither(BOOL	onoff)=0;

Remarks:
This	method	is	used	to	enable	dithering	of	the	packed	pixels.	It	defaults	to	the
3ds	max	default.

Parameters:
BOOL	onoff
TRUE	to	enable	dithering;	FALSE	to	disable.

Prototype:
virtual	void	PropogateErrorBetweenLines(BOOL	onoff)=0;

Remarks:
This	method	controls	the	propagation	of	error	between	lines.	For	static	images
this	is	best	left	to	default	to	on.	For	animated	images,	it	is	better	to	set	this	to
off	and	not	propagate	the	error	between	lines.	This	defaults	to	ON.

Parameters:
BOOL	onoff
TRUE	to	enable	error	propagation	between	lines;	FALSE	to	disable.

Prototype:
virtual	void	PackLine(BMM_Color_64*	in,	BYTE	*out,	int	w)=0;

Remarks:
Packs	the	specified	line	of	pixels	into	the	256	color	representation.

Parameters:
BMM_Color_64*	in
The	line	of	pixels	to	pack.
BYTE	*out
The	result,	the	output	pixels.
int	w
The	number	of	pixels	in	the	line.

Prototype:
virtual	void	PackLine(BMM_Color_48*	in,	BYTE	*out,	int	w)=0;

Remarks:

Packs	the	specified	line	of	pixels	into	the	256	color	representation.
Parameters:
BMM_Color_48*	in
The	line	of	pixels	to	pack.
BYTE	*out
The	result,	the	output	pixels.
int	w
The	number	of	pixels	in	the	line.

Class	CStr
See	Also:	Class	WStr,	Character	Strings.
class	CStr

Description:
A	simple	character	string	class.	This	is	the	standard	character	string	class	used	in
MAX.	Methods	and	operators	are	provided	for	calculating	lengths,
concatenation,	substring	operations,	character	searching,	case	conversion,
comparison,	and	formatted	writing.
This	class	automatically	allocates	the	proper	amount	of	space	for	the	string.	This
is	very	handy	in	the	case	of	internationalization	/	localization.	For	example,	if
you	code	something	like:
TSTR	myString	=	GetString(IDS_STRING_ID);

then	myString's	constructor	will	allocate	enough	space	to	store	the	resource
string	no	matter	how	long	it	is.	This	is	much	better	than	doing	the	following:
TCHAR	myString[64];
_tcscpy(myString,	GetString(IDS_STRING_ID));

because	the	resource	string	may	turn	out	to	be	much	longer	than	64	bytes	once
it's	translated	to	German	or	French	(or	whatever).
As	another	example,	if	you	have	the	following	code:
TSTR	str1	=	_T("This	is	string1.");
TSTR	str2	=	_T("This	is	string2.");

Then
TSTR	concatStr	=	str1	+	str2;

will	again	yield	a	(concatenated)	string	will	enough	space	to	hold	the
concatenated	contents	of	str1	and	str2,	automatically.
All	methods	are	implemented	by	the	system.

Methods:

Prototype:
CStr();

Remarks:
Constructor.	The	string	is	set	to	NULL.

Prototype:
CStr(const	char	*cs);

Remarks:
Constructor.	The	string	is	initialized	to	the	string	passed.

Prototype:
CStr(const	wchar_t	*wcstr);

Remarks:
Constructor.	The	string	is	initialized	to	the	string	passed.

Prototype:
CStr(const	CStr&	ws);

Remarks:
Constructor.	The	string	is	initialized	to	the	string	passed.

Prototype:
~CStr()

Remarks:
Destructor.	The	string	is	deleted.

Prototype:
char	*data();

Remarks:
Returns	a	pointer	to	the	string.	If	the	string	is	NULL,	0	is	returned.

Prototype:
const	char	*data()	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	string.	If	the	string	is	NULL,	0	is	returned.

Prototype:
operator	char	*();

Remarks:
Returns	a	pointer	to	the	string.	If	the	string	is	NULL,	0	is	returned.

Prototype:
void	Resize(int	nchars);

Remarks:
Reallocates	the	string	to	contain	nchars	characters.	If	the	string	is	enlarged	it
is	padded	with	blanks.

Parameters:
int	nchars
Specifies	the	new	number	of	characters	for	the	string.

Prototype:
int	Length()	const;

Remarks:
Returns	the	number	of	characters	in	the	string.

Prototype:
int	length()	const;

Remarks:
Returns	the	number	of	characters	in	the	string.

Prototype:
BOOL	isNull();

Remarks:
Returns	TRUE	if	the	string	length	is	0;	otherwise	FALSE.

Prototype:
CStr	&	operator=(const	CStr&	cs);

Remarks:
Assignment	operator.

Prototype:
CStr	&	operator=(const	wchar_t	*wcstr);

Remarks:
Assignment	operator.

Prototype:
CStr	&	operator=(const	char	*cs);

Remarks:
Assignment	operator.	In	release	3.0	and	later	this	method	check	for	self-
assignment.

Prototype:
CStr	operator+(const	CStr&	cs)	const;

Remarks:
Concatenation	operator.	Returns	a	new	string	that	is	this	string	with	string	cs
appended.

Prototype:
CStr&	operator+=(const	CStr&	cs);

Remarks:
Concatenation.	Returns	this	string	with	cs	appended.

Prototype:
CStr&	Append(const	CStr&	cs);

Remarks:
Concatenation.	Returns	this	string	with	cs	appended.

Prototype:
CStr&	append(const	CStr&	cs);

Remarks:
Concatenation.	Returns	this	string	with	cs	appended	to	the	end.

Prototype:
CStr&	remove(int	pos);

Remarks:
Returns	this	string	with	all	characters	from	pos	to	the	end	removed.

Parameters:
int	pos
Specifies	the	last	position	in	the	string.

Prototype:
CStr&	remove(int	pos,	int	N);

Remarks:
Returns	this	string	with	N	characters	removed	from	pos	to	the	end.

Parameters:
int	pos
Specifies	the	position	to	begin	removing	characters.
int	N
Specifies	the	number	of	characters	to	remove.

Prototype:
CStr	Substr(int	start,	int	nchars)	const;

Remarks:
Returns	a	substring	of	this	string,	beginning	at	position	start,	of	length
nchars.

Prototype:
char&	operator[](int	i)

Remarks:
Returns	a	substring	of	this	string	beginning	at	position	i.

Prototype:
const	char&	operator[](int	i)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	substring	of	this	string	beginning	at	position	i.

Prototype:
int	first(char	c)	const;

Remarks:
Returns	the	index	of	the	first	occurrence	of	character	c	in	this	string.	Returns
-1	if	not	found.

Prototype:
int	last(char	c)	const;

Remarks:
Returns	the	index	of	the	last	occurrence	of	character	c	in	this	string.	Returns	-1
if	not	found.

Prototype:
int	operator==(const	CStr	&cs)	const;

Remarks:
Equality	operator.

Return	Value:
Nonzero	if	the	strings	are	equal;	otherwise	0.

Prototype:
int	operator<(const	CStr	&cs)	const;

Remarks:
Returns	nonzero	if	this	string	is	less	than	cs;	otherwise	0.

Prototype:

int	operator<=(const	CStr	&ws)	const;
Remarks:
Returns	nonzero	if	this	string	is	less	than	or	equal	to	ws;	otherwise	0.

Prototype:
int	operator>(const	CStr	&ws)	const;

Remarks:
Returns	nonzero	if	this	string	is	greater	than	ws;	otherwise	0.

Prototype:
int	operator>=(const	CStr	&ws)	const;

Remarks:
Returns	nonzero	if	this	string	is	greater	than	or	equal	to	ws;	otherwise	0.

Prototype:
void	toUpper();

Remarks:
Converts	all	character	of	this	string	to	uppercase.

Prototype:
void	toLower();

Remarks:
Converts	all	character	of	this	string	to	lowercase.

Prototype:
int	printf(const	char	*format,	...);

Remarks:
Formatted	output	to	this	string.	The	internal	buffer	size	for	the	output	string	is
512	bytes.

Return	Value:
The	number	of	character	output	or	EOF	on	error.

Sample	Code:
TSTR	buf;
buf.printf(_T("Rendering	In	Progress:	Frame	%d"),	curFrame);

Class	WStr
See	Also:	Class	CStr,	Character	Strings.
class	WStr

Description:
A	wide	character	string	class.	This	class	uses	16	bits	to	hold	each	character.
Methods	and	operators	are	provided	for	calculating	lengths,	concatenation,
substring	operations,	character	searching,	case	conversion,	comparison,	and
formatted	writing.	All	methods	are	implemented	by	the	system.
OLE	file	IO	requires	the	wide	characters	of	WStr.

Methods:

Prototype:
WStr();

Remarks:
Constructor.	The	string	is	set	to	NULL.

Prototype:
WStr(const	char	*cs);

Remarks:
Constructor.	The	string	is	initialized	to	the	string	passed.

Prototype:
WStr(const	wchar_t	*wcstr);

Remarks:
Constructor.	The	string	is	initialized	to	the	string	passed.

Prototype:
WStr(const	WStr&	ws);

Remarks:
Constructor.	The	string	is	initialized	to	the	string	passed.

Prototype:
~WStr()

Remarks:
Destructor.	The	string	is	deleted.

Prototype:
wchar_t	*data();

Remarks:
Returns	a	pointer	to	the	string.	If	the	string	is	NULL,	0	is	returned.

Prototype:
const	wchar_t	*data()	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	string.	If	the	string	is	NULL,	0	is	returned.

Prototype:
const	wchar_t	*data()	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	string.	If	the	string	is	NULL,	0	is	returned.

Prototype:
operator	wchar_t	*();

Remarks:
Returns	a	pointer	to	the	string.	If	the	string	is	NULL,	0	is	returned.

Prototype:
void	Resize(int	nchars);

Remarks:
Reallocates	the	string	to	contain	nchars	characters.	If	the	string	is	enlarged	it

is	padded	with	blanks.
Parameters:
int	nchars
Specifies	the	new	number	of	characters	for	the	string.

Prototype:
int	Length()	const;

Remarks:
Returns	the	number	of	characters	in	the	string.

Prototype:
int	length()	const;

Remarks:
Returns	the	number	of	characters	in	the	string.

Prototype:
BOOL	isNull();

Remarks:
Returns	TRUE	if	the	string	length	is	0;	otherwise	FALSE.

Prototype:
WStr	&	operator=(const	WStr&	ws);

Remarks:
Assignment	operator.	In	release	3.0	and	later	this	operator	checks	for	self-
assignment.

Prototype:
WStr	&	operator=(const	wchar_t	*wcstr);

Remarks:
Assignment	operator.

Prototype:

WStr	&	operator=(const	char	*cstr);
Remarks:
Assignment	operator.

Prototype:
WStr	operator+(const	WStr&	ws)	const;

Remarks:
Concatenation	operator.	Returns	a	new	string	that	is	this	string	with	string	ws
appended.

Prototype:
WStr	&	operator+=(const	WStr&	ws);

Remarks:
Concatenation.	Returns	this	string	with	ws	appended.

Prototype:
WStr&	Append(const	WStr&	ws)

Remarks:
Concatenation.	Returns	this	string	with	ws	appended.

Prototype:
WStr&	append(const	WStr&	ws);

Remarks:
Concatenation.	Returns	this	string	with	ws	appended.

Prototype:
WStr&	remove(int	pos);

Remarks:
Returns	this	string	with	N	characters	removed	from	pos	to	the	end.

Parameters:
int	pos

Specifies	the	position	to	begin	removing	characters.
int	N
Specifies	the	number	of	characters	to	remove.

Prototype:
WStr	Substr(int	start,	int	nchars)	const;

Remarks:
Returns	a	substring	of	this	string,	beginning	at	position	start,	of	length
nchars.

Prototype:
wchar_t&	operator[](int	i)

Remarks:
Returns	a	substring	of	this	string	beginning	at	position	i.

Prototype:
int	first(wchar_t	c)	const;

Remarks:
Returns	the	index	of	the	first	occurrence	of	character	c	in	this	string.	Returns
-1	if	not	found.

Prototype:
int	last(wchar_t	c)	const;

Remarks:
Returns	the	index	of	the	last	occurrence	of	character	c	in	this	string.	Returns	-1
if	not	found.

Prototype:
int	operator==(const	WStr	&ws)	const;

Remarks:
Equality	operator.

Return	Value:
Nonzero	if	the	strings	are	equal;	otherwise	0.

Prototype:
int	operator<(const	WStr	&ws)	const;

Remarks:
Returns	nonzero	if	this	string	is	less	than	ws;	otherwise	0.

Prototype:
int	operator<=(const	WStr	&ws)	const;

Remarks:
Returns	nonzero	if	this	string	is	less	than	or	equal	to	ws;	otherwise	0.

Prototype:
int	operator>(const	WStr	&ws)	const;

Remarks:
Returns	nonzero	if	this	string	is	greater	than	ws;	otherwise	0.

Prototype:
int	operator>=(const	WStr	&ws)	const;

Remarks:
Returns	nonzero	if	this	string	is	greater	than	or	equal	to	ws;	otherwise	0.

Prototype:
void	toUpper();

Remarks:
Converts	all	character	of	this	string	to	uppercase.

Prototype:
void	toLower();

Remarks:

Converts	all	character	of	this	string	to	lowercase.

Prototype:
int	printf(const	wchar_t	*format,	...);

Remarks:
Formatted	output	to	this	string.

Return	Value:
The	number	of	character	output	or	EOF	on	error.

Sample	Code:
WStr	buf;
buf.printf(_T("Rendering	In	Progress:	Frame	%d"),curFrame);

Class	NameTab
See	Also:	Class	Tab.
class	NameTab	:	public	Tab<TCHAR	*>

Description:
This	class	is	used	to	store	a	table	of	names.	For	example,	this	class	is	used	by
lights	for	their	"Inclusion"	and	"Exclusion"	lists.	This	class	maintains	an	'include'
flag	that	specifies	whether	the	list	of	names	is	things	to	be	included,	or	things	to
be	excluded.	There	is	no	reason	the	NameTab	class	can't	be	used	for	other	things
where	inclusion/exclusion	is	not	relevant:	in	that	case	one	can	just	ignore	the
'include'	flag.	All	methods	are	implemented	by	the	system.

Methods:

Prototype:
NameTab()

Remarks:
Constructor.	The	'include'	flag	is	set	to	FALSE.

Prototype:
void	SetFlag(ULONG	f,	BOOL	b=1)

Remarks:
Sets	the	specified	flag	to	the	specified	value.

Parameters:
ULONG	f
The	flag(s)	to	set.	One	or	more	of	the	following	values:
NT_INCLUDE
This	bit	is	used	to	indicate	"Include"	mode.
NT_AFFECT_ILLUM
This	bit	is	used	to	indicate	the	"Illumination"	check	box	in	the	exclusion	list
dialog.
NT_AFFECT_SHADOWCAST
This	bit	is	used	to	indicate	the	"Shadow	Casting"	check	box	in	the	exclusion
list	dialog.

BOOL	b=1
The	value	to	set.

Prototype:
BOOL	TestFlag(ULONG	f)

Remarks:
Returns	TRUE	if	the	specified	flag(s)	are	set;	otherwise	FALSE.

Parameters:
ULONG	f
The	flag(s)	to	set.	One	or	more	of	the	following	values:
NT_INCLUDE
This	bit	is	used	to	indicate	"Include"	mode.
NT_AFFECT_ILLUM
This	bit	is	used	to	indicate	the	"Illumination"	check	box	in	the	exclusion	list
dialog.
NT_AFFECT_SHADOWCAST
This	bit	is	used	to	indicate	the	"Shadow	Casting"	check	box	in	the	exclusion
list	dialog.

Prototype:
int	AddName(TCHAR	*n);

Remarks:
Appends	the	specified	name	to	the	end	of	the	list.

Parameters:
TCHAR	*n
The	name	to	add.

Return	Value:
Returns	the	number	of	items	in	the	list	prior	to	appending.

Prototype:
void	SetName(int	i,	TCHAR	*n);

Remarks:

Stores	the	specified	name	at	the	specified	position	in	the	list.
Parameters:
int	i
The	position	in	the	list	for	the	name.
TCHAR	*n
The	name	to	store.	If	the	name	is	NULL,	the	'i-th'	entry	is	set	to	NULL.

Prototype:
void	SetSize(int	num);

Remarks:
Sets	the	size	of	the	list.	If	the	new	size	is	smaller	than	the	current	size	entries
are	deleted.

Parameters:
int	num
Specifies	the	size	of	the	list.

Prototype:
void	RemoveName(int	i);

Remarks:
Removes	the	'i-th'	name	from	the	list.

Parameters:
int	i
Specifies	the	index	of	the	name	to	remove.

Prototype:
int	FindName(TCHAR*	n);

Remarks:
Returns	the	index	of	the	name	passed;	otherwise	returns	-1.

Parameters:
TCHAR*	n
The	name	to	find.

Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
Loads	this	NameTab	from	disk.

Parameters:
ILoad	*iload
This	class	provides	methods	to	load	data	from	disk.

Return	Value:
See	Also:	List	of	IO	Results.

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
Saves	this	NameTab	to	disk.

Parameters:
ISave	*isave
This	class	provides	methods	to	save	data	to	disk.

Return	Value:
See	Also:	List	of	IO	Results.

Operators:

Prototype:
NameTab&	operator=(const	NameTab&	n);

Remarks:
Assignment	operator.	The	specified	NameTab	is	copied	to	this	NameTab.

Template	Class	Tab
See	Also:	Class	BitArray.
template	<class	T>	class	Tab

Description:
This	is	a	generic	table	class.	This	is	a	type-safe	variable	length	array	which	also
supports	list-like	operations	of	insertion,	appending	and	deleting.	Two	instance
variables	are	maintained:	nalloc	is	the	number	elements	allocated	in	the	array;
count	is	the	number	actual	used.	(count<=nalloc).	Allocation	is	performed
automatically	when	Insert	or	Append	operations	are	performed.	It	can	also	be
done	manually	by	calling	Resize()	or	Shrink().
Note:	Delete	does	not	resize	the	storage:	to	do	this	call	Shrink().	If	you	are
going	to	do	a	sequence	of	Appends,	its	more	efficient	to	first	call	Resize()	to
make	room	for	them.	Beware	of	using	the	Addr()	function:	it	returns	a	pointer
which	may	be	invalid	after	subsequent	Insert(),	Append(),	Delete(),
Resize(),	or	Shrink()	operations.
Also	note:	In	3ds	max	1.x,	the	method	SetCount(n)	will	set	the	count	to	n,	but
will	not	assure	that	only	n	items	are	allocated.	To	do	that	you	should	call
Resize(n).	This	sets	the	number	allocated.	It	will	also	make	sure	that
count<=numAlloc.	To	make	sure	that	exactly	n	are	allocated	and	that	count
=	n,	call	both	Resize(n)	and	SetCount(n).	In	3ds	max	2.x	and	later	using
SetCount()	will	also	effectively	call	Resize().
The	implementation	minimizes	the	storage	of	empty	Tables:	they	are	represented
by	a	single	NULL	pointer.	Also,	the	major	part	of	the	code	is	generic,	shared	by
different	Tabs	for	different	types	of	elements.
Tabs	may	be	used	on	the	stack,	i.e.	they	may	be	declared	as	a	local	variable	of	a
function	or	method.	You	can	set	the	number	of	elements	in	the	table,	work	with
them,	and	then	when	the	function	returns,	the	destructor	of	the	Tab	is	called,	and
the	memory	will	be	deallocated.
Tabs	are	only	appropriate	for	use	with	classes	that	don't	allocate	memory.	For
example,	Tab<float>	is	fine	while	Tab<TSTR>	is	problematic	(TSTR	is	the	class
used	for	strings	in	3ds	max).	In	this	case,	the	TSTR	class	itself	allocates	memory
for	the	string.	It	relies	on	its	constructor	or	destructor	to	allocate	and	free	the
memory.	The	problem	is	the	Tab	class	will	not	call	the	constructors	and

destructors	for	all	the	items	in	the	table,	nor	will	it	call	the	copy	operator.	As	an
example	of	this,	when	you	assign	a	string	to	another	string,	the	TSTR	class	does
not	just	copy	the	pointer	to	the	string	buffer	(which	would	result	in	two	items
pointing	to	the	same	block	of	memory).	Rather	it	will	allocate	new	memory	and
copy	the	contents	of	the	source	buffer.	In	this	way	you	have	two	individual
pointers	pointing	at	two	individual	buffers.	When	each	of	the	TSTR	destructors
is	called	it	will	free	each	piece	of	memory.	So,	the	problem	with	using	a
Tab<TSTR>	is	that	when	you	assign	a	Tab	to	another	Tab,	the	Tab	copy
constructor	will	copy	all	the	elements	in	the	table,	but	it	will	not	call	the	copy
operator	on	the	individual	elements.	Thus,	if	you	had	a	Tab<TSTR>	and	you
assigned	it	to	another	Tab<TSTR>,	you'd	have	two	TSTRs	pointing	to	the	same
memory.	Then	when	the	second	one	gets	deleted	it	will	be	trying	to	double	free
that	memory.
So	again,	you	should	only	put	things	in	a	Tab	that	don't	allocate	and	deallocate
memory	in	their	destructors.	Thus,	this	class	should	not	be	used	with	classes	that
implement	an	assignment	operator	and	or	destructor	because	neither	are
guaranteed	to	be	called.	The	way	around	this	is	to	use	a	table	of	pointers	to	the
items.	For	example,	instead	of	Tab<TSTR>	use	Tab	<TSTR	*>.	As	another
example,	Tab<int>	is	OK,	while	Tab<BitArray>	would	be	no	good.	In	the
BitArray	case	one	should	use	class	pointers,	i.e.	Tab<BitArray	*>.
All	methods	of	this	class	are	implemented	by	the	system	except	the	compare
function	used	in	sorting	(see	Sort()).

Methods:

Prototype:
Tab(const	Tab&	tb)

Remarks:
Copy	constructor.

Parameters:
const	Tab&	tb
The	table	to	copy.

Prototype:
~Tab()

Remarks:

Destructor.	The	memory	associated	with	the	table	is	freed.

Prototype:
void	Init();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Provides	a	way	of	initializing	a	Tab<>	instance	outside	of	its	constructor.	Can
be	used	to	init	Tab<>	instances	in	malloc'd	memory.

Prototype:
int	Count()	const

Remarks:
Returns	the	number	of	entries	being	used.

Prototype:
void	ZeroCount()

Remarks:
Set	the	number	of	elements	in	the	array	that	are	actually	used	to	zero.

Prototype:
void	SetCount(int	n)

Remarks:
Set	the	number	of	elements	in	the	array	that	are	actually	used	to	n.

Parameters:
int	n
The	number	of	elements	in	the	array	that	are	actually	used.

Prototype:
T*	Addr(const	int	i)	const

Remarks:

Returns	the	address	of	the	i-th	element.	Beware	of	using	this	method	as	it
returns	a	pointer	which	may	be	invalid	after	subsequent	Insert,	Append,
Delete,	Resize,	or	Shrink	operations.

Parameters:
const	int	i
Specifies	the	element	to	return	the	address	of.

Return	Value:
Pointer	to	the	i-th	element.

Prototype:
int	Insert(int	at,	int	num,	T	*el)

Remarks:
Insert	"num"	elements	at	position	"at".

Parameters:
int	at
Array	index	where	to	insert	the	elements.
int	num
Number	of	elements	to	insert.
T	*el
Array	of	elements	to	insert.

Return	Value:
Returns	at.

Prototype:
int	Append(int	num,	T	*el,	int	allocExtra=0)

Remarks:
Append	"num"	elements	at	the	end	of	the	array.	If	you	need	to	enlarge	the
array,	allocate	"allocExtra"	extra	slots

Parameters:
int	num
The	number	of	elements	to	append	to	the	end	of	the	array.
T	*el

The	elements	to	append.
int	allocExtra=0
If	you	need	to	enlarge	the	array,	allocate	"allocExtra"	extra	slots.

Return	Value:
Returns	the	number	of	elements	in	use	(prior	to	appending).

Prototype:
int	Delete(int	start,int	num)

Remarks:
List-type	delete	of	"num"	elements	starting	with	"start"

Parameters:
int	start
The	start	position	for	element	deletion.
int	num
The	number	of	elements	to	delete.

Return	Value:
Returns	the	number	of	items	left	in	the	table.

Prototype:
int	Resize(int	num)

Remarks:
Changes	the	number	of	allocated	items	to	"num".

Parameters:
int	num
The	new	size	of	the	array.

Return	Value:
Nonzero	if	the	array	was	resized;	otherwise	0.

Prototype:
void	Shrink()

Remarks:
Reallocate	so	there	is	no	wasted	space	(nalloc	=	count).

Prototype:
void	Sort(CompareFnc	cmp)

Remarks:
Sorts	the	array	using	the	compare	function.

Parameters:
CompareFnc	cmp
Type	of	function	to	pass	to	Sort().	Note:	Sort()	just	uses	the	C	library	qsort
function.	The	developer	must	implement	the	CompareFnc	function.
typedef	int(__cdecl	*CompareFnc)	(const	void	*elem1,	const	void
*elem2);
The	return	value	of	CompareFnc	is	show	below	in	the	relationship	of	elem1
to	elem2:

<	0
if	elem1	less	than	elem2
0
if	elem1	identical	to	elem2
>	0
if	elem1	greater	than	elem2

	
Sample	Code:

static	int	CompTable(const	void	*elem1,	const	void	*elem2)	{
	TCHAR	*a	=	(TCHAR	*)elem1;
	TCHAR	*b	=	(TCHAR	*)elem2;
	return(_tcscmp(a,b));
}

Operators:

Prototype:
Tab&	operator=(const	Tab&	tb)

Remarks:
Assignment	operator.	The	Tab	maintains	a	pointer	to	the	table	buffer.	This
assignment	operator	copies	the	table	data	from	the	item	you	are	copying	from
into	the	memory	buffer	of	the	item	you	are	copying	to.

Parameters:
const	Tab&	tb
The	table	to	assign.

Prototype:
T&	operator[](const	int	i)	const

Remarks:
Accesses	the	i-th	entry.

Parameters:
const	int	i
The	index	of	the	element	to	access.

Return	Value:
The	i-th	element.

Class	ColorPicker
See	Also:	Class	HSVCallback,	COLORREF	-	DWORD,	Class	IPoint2.
class	ColorPicker	:	public	InterfaceServer

Description:
This	class	allows	a	plug-in	to	create	a	modeless	color	picker	dialog	box.

	
Developers	may	also	create	a	modal	version	of	this	dialog	box.	The	function
available	below	is	defined	for	this	purpose.	Note	that	this	is	not	a	class	method
but	a	global	function.
To	use	these	APIs	you	need	to	#include	"hsv.h".
	

Prototype:
int	HSVDlg_Do(HWND	hwndOwner,	DWORD	*lpc,IPoint2	*spos,
HSVCallback	*callBack,	TCHAR	*name);

Remarks:
This	method	puts	up	the	modal	HSV	color	picker	dialog	box.	This	dialog
appears	below:

Parameters:
HWND	hwndOwner
Owner	window	handle.
DWORD	*lpc
Pointer	to	color	to	be	edited.	See	COLORREF.

IPoint2	*spos
The	starting	position	of	the	upper	left	corner	of	the	dialog	window.	This	is	set
to	the	ending	position	when	the	user	is	done.	You	may	pass	NULL	to	get	the
default	location.
HSVCallback	*callBack
Callback	object	whose	procs	are	called	when	the	color	changes.	See	Class
HSVCallback.
TCHAR	*name
The	name	of	color	being	edited	to	appear	in	the	title	bar.

Return	Value:
Returns	TRUE	if	the	user	exists	the	dialog	with	OK,	otherwise	returns	FALSE.

The	following	functions	are	also	available

Prototype:
ColorPicker	*CreateColorPicker(HWND	hwndOwner,	DWORD
initColor,IPoint2*	spos,	HSVCallback	*pcallback,	TCHAR	*name,
int	objClr=0);

Remarks:
Call	this	function	to	bring	up	the	modeless	color	picker.

Parameters:
HWND	hwndOwner
The	owner	window	handle.
DWORD	initColor
The	initial	color	for	the	color	picker.
IPoint2*	spos
The	initial	screen	position	of	the	upper	left	corner.	NULL	may	be	passed	for
the	default	location.
HSVCallback	*pcallback
The	callback	object	to	respond	to	color	change	events.
TCHAR	*name
The	title	string	in	the	dialog.
int	objClr=0
A	BOOLEAN	used	to	indicate	that	the	ColorPicker	is	being	used	to	set	the
object	color	from	the	control	panel.	In	all	other	cases,	the	default	value	of	0
should	be	used.

Return	Value:
A	pointer	to	a	ColorPicker	object.

Prototype:
void	SetCPInitPos(IPoint2	&pos);

Remarks:
Establishes	the	color	picker	initial	screen	position.

Parameters:
IPoint2	&pos

The	upper	left	corner	screen	coordinate	for	the	color	picker.

Prototype:
IPoint2	GetCPInitPos();

Remarks:
Retrieves	the	color	picker	initial	screen	position.

Return	Value:
The	screen	coordinates	of	the	color	picker.	This	is	the	coordinate	of	the	upper
left	corner.

Methods:

Prototype:
ColorPicker();

Remarks:
Constructor.

Prototype:
virtual	~ColorPicker();

Remarks:
Destructor.

Prototype:
virtual	void	ModifyColor(DWORD	color)=0;

Remarks:
This	method	changes	the	current	color	in	the	color	picker,	but	does	not	change
the	"reset"	color.

Parameters:
DWORD	color
The	current	color.

Prototype:
virtual	void	SetNewColor(DWORD	color,	TCHAR	*name)=0;

Remarks:
Sets	a	new	color	as	current	in	the	dialog.

Parameters:
DWORD	color
The	color	to	set.
TCHAR	*name
A	new	name	to	display	in	the	title	bar.

Prototype:
virtual	DWORD	GetColor()=0;

Remarks:
Returns	the	current	color.

Prototype:
virtual	IPoint2	GetPosition()=0;

Remarks:
Returns	the	screen	position	of	the	upper	left	corner	of	the	dialog	as	a	IPoint2.

Prototype:
virtual	void	Destroy()=0;

Remarks:
This	is	called	when	the	parent	is	going	away.

Prototype:
virtual	void	InstallNewCB(DWORD	col,	HSVCallback	*pcb,
TCHAR	*name)=0;

Remarks:
This	method	is	used	to	add	a	different	callback,	set	a	new	initial	color	and
update	the	title	string.

Parameters:
DWORD	col
The	new	initial	color.

HSVCallback	*pcb
The	new	callback.
TCHAR	*name
The	new	title	string.

Prototype:
virtual	void	RefreshUI();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	called	when	the	display	gamma	changes.

COLORREF	-	DWORD	Color	Format

From	the	Windows	API:
The	COLORREF	value	is	a	32-bit	value	used	to	specify	an	RGB	color.
COLORREF	RGB(
BYTE	bRed,		//	red	component	of	color
BYTE	bGreen,	//	green	component	of	color
BYTE	bBlue		//	blue	component	of	color

);
When	specifying	an	explicit	RGB	color,	the	COLORREF	value	has	the
following	hexadecimal	form:
0x00bbggrr

The	low-order	byte	contains	a	value	for	the	relative	intensity	of	red;	the	second
byte	contains	a	value	for	green;	and	the	third	byte	contains	a	value	for	blue.	The
high-order	byte	must	be	zero.	The	maximum	value	for	a	single	byte	is	0xFF.
Also	see	the	following	macros	in	the	Windows	API:
GetBValue,	GetGValue,	GetRValue,	RGB.

These	are	used	to	create	COLORREF	values	and	break	them	down	into
component	values.	These	can	be	used	as	follows:
COLORREF	fillcolor	=	RGB(48,	96,	192);
int	r	=	(int)	GetRValue(fillcolor);
int	g	=	(int)	GetGValue(fillcolor);
int	b	=	(int)	GetBValue(fillcolor);

Class	MNMesh
See	Also:	Class	FlagUser,	Class	MNFace,	Class	MNVert,	Class	MNEdge,	Class
MNMap,	Class	PerData,	Class	MNMeshBorder,	Class	Mesh,	Class	BitArray,
Template	Class	Tab,	MNMesh	Note	on	Edge	Characteristics,	Class
MNMeshBorder,	MNMesh	Notes	on	Debugging.
class	MNMesh	:	public	FlagUser,	public	BaseInterfaceServer

Description:
This	class	is	available	in	release	2.0	and	later	only.
The	MNMesh	class	is	provided	for	temporary	use	by	plug-ins,	to	help	with
complex	topology-based	modifications	to	Meshes.	It	has	certain	capabilities,
such	as	the	ability	to	recognize	faces	with	more	than	3	sides,	that	are	useful	in
some	applications.	It	is	not	suitable	for	use	as	a	pipeline	object.	All	methods	of
this	class	are	implemented	by	the	system.
MNMesh	has	a	winged-edge	structure	and	a	highly	interlinked	topology.	This	is
very	useful	for	some	modifiers,	but	requires	far	more	memory	&	processing	time
than	an	equivalent	normal	mesh.	It's	convenient	for	the	programmer,	but	may	be
sluggish	for	the	user.
Although	some	methods	can	be	a	bit	slow,	none	of	them	are	non-linear	in	the
amount	of	time	they	take.	Even	the	tessellation	algorithms,	which	can	as	much
as	quadruple	the	size	of	the	meshes,	operate	locally,	vertex	by	vertex,	so	they	are
order-of-n	algorithms.
Note:	You	must	#include	"MNMATH.H"	to	use	this	class	as	it's	not	included
by	default	by	MAX.H.

Methods	Groups:
The	hyperlinks	below	take	you	to	the	start	of	groups	of	related	methods	within
the	class:
	
Initialization	&	Cleanup
Access	to	mesh	components
Adding	new	components
Removing	&	deleting	components
Internal	computation
Component	Targeting	&	Flag	methods
Component	information	methods

Smoothing-group	&	Material	methods
Face-joining	methods
Splitting	methods
Border	methods
Tessellation	&	related	methods
Welding	methods
Boolean	operations
Debugging	methods
Operators

Data	Members:
public:
MNVert	*v;
This	data	member	is	available	in	release	3.0	and	later	only.
The	array	of	MNMesh	verticies.
MNEdge	*e;
This	data	member	is	available	in	release	3.0	and	later	only.
The	array	of	MNMesh	edges.
MNFace	*f;
This	data	member	is	available	in	release	3.0	and	later	only.
The	array	of	MNMesh	faces.
int	numv
This	data	member	is	available	in	release	3.0	and	later	only.
The	number	of	MNVerts	in	v.
int	nume
This	data	member	is	available	in	release	3.0	and	later	only.
The	number	of	MNEdges	in	e.
int	numf
This	data	member	is	available	in	release	3.0	and	later	only.
The	number	of	MNFaces	in	f.
int	numm;
This	data	member	is	available	in	release	3.0	and	later	only.
The	number	of	MNMaps	in	m.
PerData	*vd;

This	data	member	is	available	in	release	3.0	and	later	only.
The	array	of	PerData	objects	which	maintain	and	provide	access	to	the
floating	point	vertex	data.	There	is	one	of	these	for	each	supported	channel.
PerData	objects	are	used	to	store	such	information	as	vertex	weighting	and
weighted	selections.
BitArray	vdSupport;
This	data	member	is	available	in	release	3.0	and	later	only.
This	bit	array	indicates	if	a	particular	vertex	data	channel	is	supported	in	this
MNMesh.	If	the	bit	is	set	the	channel	is	suported.
PerData	*ed;
This	data	member	is	available	in	release	3.0	and	later	only.
The	array	of	PerData	objects	which	maintain	and	provide	access	to	the
floating	point	edge	data.	There	is	one	of	these	for	each	supported	channel.	One
PerData	object	store	edge	weighting	for	NURMS-type	MeshSmooths.
BitArray	edSupport;
This	data	member	is	available	in	release	3.0	and	later	only.
This	bit	array	indicates	if	a	particular	edge	data	channel	is	supported	in	this
MNMesh.	If	the	bit	is	set	the	channel	is	suported.
DWORD	selLevel;
This	data	member	is	available	in	release	3.0	and	later	only.	Note	however	that,
since	MNMeshes	are	not	yet	used	as	pipeline	objects,	the	subobject	selection
methods	are	not	yet	used	in	3ds	max.	Third	party	developers	are	welcome	to
use	these	methods	themselves,	but	they	should	be	aware	that	this	is	a	work-in-
progress.
The	current	MNMesh	selection	level.	One	of	the	following	values:
MNM_SL_OBJECT	-	object	level	selection.
MNM_SL_VERTEX	-	select	vertices
MNM_SL_EDGE	-	select	edges
MNM_SL_FACE	-	select	polygon	faces

DWORD	dispFlags;
This	data	member	is	available	in	release	3.0	and	later	only.	Note	however	that,
since	MNMeshes	are	not	yet	used	as	pipeline	objects,	the	display	methods	and
flags	are	not	yet	used	in	3ds	max.	Third	party	developers	are	welcome	to	use
the	display	methods	themselves,	but	they	should	be	aware	that	this	is	a	work-

in-progress.
The	display	flags.	One	or	more	of	the	following	values:
MNDISP_VERTTICKS	-	Display	vertex	tick	marks.
MNDISP_SELVERTS	-	Display	selected	verticies.
MNDISP_SELFACES	-	Display	selected	faces.
MNDISP_SELEDGES	-	Display	selected	edges.
MNDISP_NORMALS	-	Display	face	normals.
MNDISP_SMOOTH_SUBSEL	-	Analogous	to	the	Mesh	display	flag
MESH_SMOOTH_SUBSEL,	this	indicates	whether	we	should	display
smooth	faces	with	selection-color	outlines	(TRUE)	or	transparent	shaded
faces	(FALSE).
MNDISP_BEEN_DISP	-	Set	when	the	MNMesh	has	been	displayed	(at
the	end	of	the	render	method.)
MNDISP_DIAGONALS	–	Set	when	diagonals	should	be	displayed.

Tab<int>	*vedg;
This	data	member	is	available	in	release	3.0	and	later	only.
This	is	an	array	of	int	Tabs	that	records	which	edges	use	each	vertex.	For
instance,	if	edges	3,	5,	and	6	have	an	endpoint	at	vertex	0,	vedg[0]	would
include	3,	5,	and	6,	though	not	in	any	particular	order.	This	replaces	the	2.5
MNVert::edg	data	member.	Note	that	this	information	is	only	valid	if	the
MN_MESH_FILLED_IN	flag	is	set.
Tab<int>	*vfac;
This	data	member	is	available	in	release	3.0	and	later	only.
This	is	an	array	of	int	Tabs	that	records	which	faces	touch	each	vertex.	For
instance,	if	faces	0,	1,	3,	8,	and	9	use	vertex	0	as	one	of	their	corners,	vfac[0]
would	include	0,	1,	3,	8,	and	9,	though	not	in	any	particular	order.	This
replaces	the	2.5	MNVert::fac	data	member.	Note	that	this	information	is	only
valid	if	the	MN_MESH_FILLED_IN	flag	is	set.

Flags:
For	more	information	on	flags,	see	Class	FlagUser.
MN_MESH_NONTRI
If	set,	this	mesh's	faces	are	not	all	triangles	--	at	least	one	face	has	more	than	3
sides.

MN_MESH_FILLED_IN
If	set,	all	topological	links,	such	as	the	list	of	edges,	are	complete.
MN_MESH_RATSNEST
Some	regular	Meshes	have	more	than	two	faces	referencing	the	same	edge,	or
more	than	one	referencing	it	in	the	same	direction.	These	are	termed	"rats'	nest
meshes".	Since	our	edge	structure	only	permits	1	or	2	faces	(one	in	each
direction),	these	meshes	are	unacceptable.	Upon	conversion,	certain	vertices	&
edges	are	replicated	(increasing	the	vertex	count)	to	separate	these	into
regular,	non-rats'-nest	parts.	If	this	happens,	this	flag	is	set	to	let	you	know	this
change	has	occurred.	In	particular,	converting	this	MNMesh	back	into	a
regular	Mesh	will	produce	a	Mesh	with	more	vertices	than	you	started	with.
MN_MESH_NO_BAD_VERTS
This	indicates	that	the	mesh	has	had	its	vertices	checked	and	"bad"	ones
eliminated	by	EliminateBadVerts	.
MN_MESH_VERTS_ORDERED
This	indicates	that	the	mesh	has	had	its	vertices	ordered	by	the	method
OrderVerts.
MN_MESH_HAS_VOLUME
This	flag	is	available	in	release	2.5	or	later	only.
This	mesh	has	at	least	one	connected	component	which	contains	volume,	i.e.
represents	a	solid	object	with	no	gaps	or	holes.	The	flag	is	set	by	the
MNMesh::FindOpenRegions()	method.
MN_USER(1<<16)
Flag	bits	at	or	above	MN_USER	are	reserved	in	all	MNMesh	components	for
the	plug-in	developer,	if	needed.	Since	FlagUser-derived	classes	have	32	flag
bits,	this	allows	for	up	to	16	user-defined	flags.

Methods:

Initialization	&	Cleanup
Prototype:
MNMesh();

Remarks:
Constructor.	Initializes	the	MNMesh	with	no	components	and	the	default

flags.

Prototype:
MNMesh(Mesh	&from);

Remarks:
Constructor.	Initializes	the	MNMesh	with	the	mesh	"from",	and	fills	in	the
topology	completely	(using	FillInMesh).

Prototype:
MNMesh(const	MNMesh	&from);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Copy	constructor.

Prototype:
~MNMesh();

Remarks:
Destructor.	Frees	all	allocated	memory	(using	Clear).

Prototype:
MNMap	*M(int	mp)	const;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Access	to	the	MNMaps	in	each	MNMesh	is	made	private.	Instead	of	using	the
MNMap	*m	data	member,	you	must	now	use	this	accessor	method.	This
accessor	now	accepts	a	value	in	the	range	-NUM_HIDDENMAPS	to
MNum().

Parameters:
int	mp
The	map	channel

Prototype:

void	DefaultFlags();
Remarks:
Clears	all	flags.

Prototype:
void	Init();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
The	data	members	are	initialized	as	follows:
nv_alloc	=	ne_alloc	=	nf_alloc	=	nm_alloc	=	0;
numv	=	nume	=	numf	=	numm	=	0;
v	=	NULL;
e	=	NULL;
f	=	NULL;
m	=	NULL;
vd	=	NULL;
ed	=	NULL;
vedg	=	NULL;
vfac	=	NULL;
bdgBox.Init();
fnorm	=	NULL;
dispFlags	=	0;
rVerts	=	NULL;
cacheGW	=	NULL;
normalsBuilt	=	0;
norScale	=	0.0f;
selLevel	=	MNM_SL_OBJECT;

Prototype:
void	VAlloc(int	num,	bool	keep=TRUE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Allocates	and	inits	the	specified	number	of	MNVerts.

Parameters:
int	num
The	number	of	verts	to	allocate.
bool	keep=TRUE
If	TRUE	any	previous	verts	are	kept;	otherwise	they	are	discarded.

Prototype:
void	VShrink(int	num=-1);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Shrinks	the	nv_alloc	size	of	the	MNVert	array	to	the	specified	size.

Parameters:
int	num=-1
The	new	size	of	the	array.	The	default	-1	means	to	shrink	array	allocation	to
numv.

Prototype:
void	freeVEdge();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deallocates	any	MNEdges	in	the	vedg	table	and	sets	the	vedg	pointer	to
NULL.

Prototype:
void	VEdgeAlloc();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Allocates	the	vedg	array.

Prototype:
void	freeVFace();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deallocates	the	vfac	array.

Prototype:
void	VFaceAlloc();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Allocates	the	vfac	array.

Prototype:
void	EAlloc(int	num,	bool	keep=TRUE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Allocates	the	MNEdge	data	array	e	with	the	specified	size.

Parameters:
int	num
The	number	of	MNEdges	to	allocate.
bool	keep=TRUE
If	TRUE	any	previously	allocated	edges	are	kept;	otherwise	they	are
discarded.

Prototype:
void	EShrink(int	num=-1);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Reduces	the	ne_alloc	size	of	the	MNEdge	data	array	e	to	the	specified	number
of	elements.

Parameters:

int	num=-1
The	new	size	for	the	array.	The	value	-1	means	to	use	the	current	number	of
edges,	nume.

Prototype:
void	FAlloc(int	num,	bool	keep=TRUE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Allocates	the	MNFace	array	f	with	the	specified	size.

Parameters:
int	num
The	number	of	MNFaces	to	allocate.
bool	keep=TRUE
If	TRUE	any	previously	allocated	faces	are	kept;	otherwise	they	are	discarded.

Prototype:
void	FShrink(int	num=-1);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Reduces	the	nf_alloc	size	of	the	MNFace	data	array	f	to	the	specified	number
of	elements.

Parameters:
int	num=-1
The	new	size	for	the	array.	The	value	-1	means	to	use	the	current	number	of
faces,	numf.

Prototype:
void	MAlloc(int	num,	bool	keep=TRUE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Allocates	the	MNMap	array	m	with	the	specified	size.

Parameters:

int	num
The	number	of	MNMap	elements	to	allocate.
bool	keep=TRUE
If	TRUE	any	previously	allocated	MNMaps	are	kept;	otherwise	they	are
discarded.

Prototype:
void	MShrink(int	num=-1);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Reduces	the	nm_alloc	size	of	the	MNMap	data	array	m	to	the	specified
number	of	elements.

Parameters:
int	num=-1
The	new	size	for	the	array.	The	value	-1	means	to	use	the	current	number	of
maps,	numm.

Prototype:
void	PrepForPipeline	();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	reconciles	flags	with	arrays,	checks	and	modifies	data,	ensures
that	the	caches	are	consistent,	and	prepares	the	MNMesh	pipeline.	For
instance,	if	the	MN_MESH_FILLED_IN	flag	is	absent	but	there	is	still	an
edge	array,	this	will	free	the	edge	array.	This	method	is	important	to	call	if	a
MNMesh	has	been	subjected	to	topology	changing	operations	and	should	be
called	at	the	end	of	any	operation	on	an	MNMesh.

Prototype:
BaseInterface*	GetInterface(Interface_ID	id);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	a	pointer	to	the	base	interface	of	the	associated	and

provided	Interface	ID.
Parameters:
Interface_ID	id
The	interface	ID.

I/O	with	regular	meshes
Prototype:
void	SetFromTri(const	Mesh	&	from);

Remarks:
Clears	out	all	current	information,	and	copies	in	new	faces	&	vertices	from
"from".

Prototype:
void	AddTri(const	Mesh	&	from);

Remarks:
Adds	vertices	and	faces	in	"from"	to	current	MNMesh.

Prototype:
void	OutToTri(Mesh	&	tmesh);

Remarks:
Outputs	current	MNMesh	into	the	mesh	given.	Note	that	even	if	the	MNMesh
was	originally	taken	from	this	Mesh,	the	internal	processing	may	have
changed	PART_TOPO,	PART_GEOM,	PART_SELECT,	PART_MAPPING,
or	PART_VERTCOLOR.

Access	to	components
Prototype:
int	VNum();

Remarks:
Returns	the	number	of	vertices.

Prototype:
MNVert	*V(int	i);

Remarks:
Returns	a	pointer	to	the	i'th	MNVert.

Prototype:
Point3	&P(int	i);

Remarks:
Returns	the	point	in	the	i'th	MNVert.	P(i)	is	the	same	as	V(i)->p.

Prototype:
int	ENum();

Remarks:
Returns	the	number	of	edges.

Prototype:
MNEdge	*E(int	i);

Remarks:
Returns	a	pointer	to	the	i'th	MNEdge.

Prototype:
int	FNum();

Remarks:
Returns	the	number	of	faces.

Prototype:
MNFace	*F(int	i);

Remarks:
Returns	a	pointer	to	the	i'th	MNFace.

Prototype:

void	SetMapNum(int	mpnum);
Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Allocates	and	initializes	the	specified	number	of	MNMap	elements	in	the	m
array.	Initializing	sets	the	number	of	verts	and	faces	in	the	map	to	zero	and	sets
the	MN_DEAD	flag.

Parameters:
int	mpnum
The	number	of	MNMaps	to	allocate	and	initalize.

Prototype:
void	InitMap(int	mp);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Allocates	and	initializes	basic	planar	map,	or	a	white	map	for	the	vertex	color
channel.

Parameters:
int	mp
The	map	channel	to	initialize:
0:	Vertex	Color	channel.
1:	Default	mapping	channel.
2	through	MAX_MESHMAPS-1:	The	new	mapping	channels	available	in
release	3.0.

Prototype:
void	ClearMap(int	mp);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Clears	and	frees	the	specified	map	channel,	setting	the	MN_DEAD	flag.

Parameters:
int	mp
The	map	channel	to	clear.

0:	Vertex	Color	channel.
1:	Default	mapping	channel.
2	through	MAX_MESHMAPS-1:	The	new	mapping	channels	available	in
release	3.0.

Prototype:
UVVert	MV(int	mp,	int	i)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	specified	UVVert	from	the	specified	mapping	channel.

Parameters:
int	mp
The	map	channel.
0:	Vertex	Color	channel.
1:	Default	mapping	channel.
2	through	MAX_MESHMAPS-1:	The	new	mapping	channels	available	in
release	3.0.
int	i
The	zero	based	index	of	the	UVVert	to	return.

Prototype:
MNMapFace	*MF(int	mp,	int	i)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	specified	MNMapFace	from	the	specified	mapping
channel.

Parameters:
int	mp
The	map	channel:
0:	Vertex	Color	channel.
1:	Default	mapping	channel.
2	through	MAX_MESHMAPS-1:	The	new	mapping	channels	available	in

release	3.0.
int	i
The	zero	based	index	of	the	MNMapFace	to	return.

Prototype:
int	TriNum()	const;

Remarks:
Returns	the	total	number	of	triangles;	this	is	a	sum	of	the	number	of	triangles
in	each	face	that	does	not	have	the	MN_DEAD	flag	set.

Prototype:
void	setNumVData(int	ct,	BOOL	keep=FALSE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	specified	number	of	vertex	data	elements.

Parameters:
int	ct
The	number	of	vertex	data	elements	to	set.
BOOL	keep=FALSE
If	TRUE	any	previously	allocated	elements	are	kept;	otherwise	they	are
discarded.

Prototype:
int	VDNum()	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	vertex	data	channels	maintained	by	this	MNMesh.

Prototype:
BOOL	vDataSupport(int	vdChan)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Returns	TRUE	if	the	specified	channel	of	vertex	data	is	available	for	this
MNMesh;	otherwise	FALSE.

Parameters:
int	vdChan
The	vertex	data	channel.	See	List	of	Vertex	Data	Index	Options.

Prototype:
void	setVDataSupport(int	vdChan,	BOOL	support=TRUE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	if	the	specified	channel	of	vertex	data	is	supported	by	this	MNMesh.

Parameters:
int	vdChan
The	vertex	data	channel.	See	List	of	Vertex	Data	Index	Options.
BOOL	support=TRUE
TRUE	to	indicate	the	channel	is	supported;	FALSE	to	indicate	it's	not.	If
TRUE	is	specified	then	elements	are	allocated	(if	needed).	If	FALSE	is
specified	the	data	for	the	channel	is	freed.

Prototype:
void	*vertexData(int	vdChan)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	vertex	data	for	the	specified	channel	or	NULL	if	the
channel	is	not	supported.

Parameters:
int	vdChan
The	vertex	data	channel.	See	List	of	Vertex	Data	Index	Options.

Prototype:
float	*vertexFloat(int	vdChan)	const;

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	floating	point	vertex	data	for	the	specified	channel	of
this	mesh	or	NULL	if	the	channel	is	not	supported.

Parameters:
int	vdChan
The	vertex	data	channel.	See	List	of	Vertex	Data	Index	Options.

Prototype:
void	freeVData(int	vdChan);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deletes	(deallocates)	the	vertex	data	for	the	specified	channel.

Parameters:
int	vdChan
The	vertex	data	channel.	See	List	of	Vertex	Data	Index	Options.

Prototype:
void	freeAllVData();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deallocates	the	vertex	data	from	all	channels	and	sets	the	number	of	supported
channels	to	0.

Prototype:
float	*getVertexWeights();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	floating	point	vertex	weight	data.

Prototype:
void	SupportVertexWeights();

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Sets	the	channel	support	for	the	vertex	weights	channel
(VDATA_WEIGHT).

Prototype:
void	freeVertexWeights();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Frees	(deallocates)	the	vertex	weight	channel	data.

Prototype:
float	*getVSelectionWeights();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	floating	point	vertex	selection	weight	data.

Prototype:
void	SupportVSelectionWeights();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	channel	support	for	the	vertex	weights	channel
(VDATA_SELECT).

Prototype:
void	freeVSelectionWeights();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Frees	(deallocates)	the	vertex	selection	weight	channel	data.

Prototype:
void	setNumEData(int	ct,	BOOL	keep=FALSE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	specified	number	of	edge	data	elements.

Parameters:
int	ct
The	number	of	edge	data	elements	to	set.
BOOL	keep=FALSE
If	TRUE	any	previously	allocated	elements	are	kept;	otherwise	they	are
discarded.

Prototype:
int	EDNum()	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	edge	data	channels	maintained	by	this	MNMesh.

Prototype:
BOOL	eDataSupport(int	edChan)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	specified	channel	of	edge	data	is	available	for	this
MNMesh;	otherwise	FALSE.

Parameters:
int	edChan
The	edge	data	channel.	See	List	of	Edge	Data	Index	Options.

Prototype:
void	setEDataSupport(int	edChan,	BOOL	support=TRUE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	if	the	specified	channel	of	edge	data	is	supported	by	this	MNMesh.

Parameters:

int	edChan
The	edge	data	channel.	See	List	of	Edge	Data	Index	Options.
BOOL	support=TRUE
TRUE	to	indicate	the	channel	is	supported;	FALSE	to	indicate	it's	not.

Prototype:
void	*edgeData(int	edChan)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	edge	data	for	the	specified	channel	or	NULL	if	the
channel	is	not	supported.

Parameters:
int	edChan
The	edge	data	channel.	See	List	of	Edge	Data	Index	Options.

Prototype:
float	*edgeFloat(int	edChan)	const;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	floating	point	edge	data	for	the	specified	channel	of
this	MNMesh	or	NULL	if	the	channel	is	not	supported.

Parameters:
int	edChan
The	edge	data	channel.	See	List	of	Edge	Data	Index	Options.

Prototype:
void	freeEData(int	edChan);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deletes	(deallocates)	the	edge	data	for	the	specified	channel.

Parameters:
int	edChan

The	edge	data	channel.	See	List	of	Edge	Data	Index	Options.

Prototype:
void	freeAllEData();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deallocates	the	edge	data	from	all	channels	and	sets	the	number	of	supported
channels	to	0.

Prototype:
float	*getEdgeKnots();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	floating	point	edge	knot	data.

Prototype:
void	SupportEdgeKnots();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	channel	support	for	the	edge	knot	channel	(EDATA_KNOT).

Prototype:
void	freeEdgeKnots();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Frees	(deallocates)	the	edge	knot	channel	data.

Prototype:
void	VClear(int	vv);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.	It	replaces	the	old
MNVert::Clear	method.

Clears	and	frees	the	flags	and	face/edge	lists	for	the	specified	vertex.
Parameters:
int	vv
The	vertex	to	clear.

Prototype:
void	VInit(int	vv);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.	It	replaces	the	old
MNVert::Init	method.
Initializes	the	specified	MNVert,	clearing	its	flags	and	emptying	its	face	&
edge	lists	(if	vfac	&	edg	are	allocated).

Parameters:
int	vv
The	vertex	to	initialize.

Prototype:
int	VFaceIndex(int	vv,	int	ff,	int	ee=-1);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.	It	replaces	the	old
MNVert::FaceIndex	method.
Returns	the	index	of	face	ff	in	the	vfac[vv]	table.
NOTE	that	if	this	face	cannot	be	found,	or	if	it	cannot	be	found	accompanied
by	edge	ee>-1,	it	will	cause	an	assertion	failure.

Parameters:
int	vv
The	vertex	to	check	the	face	list	of.
int	ff
The	face	to	look	for.
int	ee=-1
In	cases	where	the	same	face	touches	this	vertex	more	than	once,	and	is
therefore	represented	twice	in	the	vfac	table,	an	optional	edge	parameter	is

used	to	specify	which	instance	of	the	face	you	want	the	index	of.	However,	if
the	parent	MNMesh	doesn’t	have	its	vertices	ordered	(as	indicated	by	the
MN_MESH_VERTS_ORDERED	flag),	the	extra	edge	parameter	is
meaningless	and	should	not	be	used.

Prototype:
int	VEdgeIndex(int	vv,	int	ee);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.	It	replaces	the	old
MNVert::EdgeIndex	method.
Finds	the	position	of	edge	ee	in	this	MNVert’s	vedg	table.	Unlike	VFaceIndex
(and	MNFace’s	VertIndex	and	EdgeIndex),	each	vertex	can	only	touch	an	edge
once,	so	there’s	no	need	for	an	additional	parameter.	(There’s	no	such	thing	as
an	edge	with	both	ends	at	the	same	vertex.)

Parameters:
int	vv
The	vertex	whose	edge	list	should	be	searched.
int	ee
The	edge	to	find.

Return	Value:
Returns	-1	if	edge	ee	is	not	in	the	edge	table.

Prototype:
void	VDeleteEdge(int	vv,	int	ee);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.	It	replaces	the	old
MNVert::DeleteEdge	method.
Finds	edge	ee	in	the	vedg[vv]	table	and	removes	it.

Parameters:
int	vv
The	vertex	from	whose	edge	list	the	edge	should	be	deleted.
int	ee
The	edge	to	delete	from	the	vertex’s	edge	list.

Return	Value:
Returns	-1	if	edge	ee	is	not	in	the	edge	table.
	

Prototype:
void	VDeleteFace(int	vv,	int	ff);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.	It	replaces	the	old
MNVert::DeleteFace	method.
Finds	face	ff	in	the	vfac[vv]	table	and	removes	it.	NOTE	that	this	method
causes	an	assertion	failure	if	face	ff	is	not	in	the	vfac	table.	If	ff	occurs	more
than	once,	which	is	possible	on	some	valid	NONTRI	meshes,	only	the	first	ff
is	removed.

Parameters:
int	vv
The	vertex	from	whose	face	list	the	face	should	be	deleted.
int	ff
The	face	to	delete	from	the	vertex’s	face	list.

Prototype:
void	VReplaceEdge(int	vv,	int	oe,	int	ne);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.	It	replaces	the	old
MNVert::ReplaceEdge	method.
Finds	edge	oe	in	the	vedg[vv]	table	and	replaces	it	with	ne.	NOTE	that	this
method	causes	an	assertion	failure	if	edge	oe	is	not	in	the	vedg	table.

Parameters:
int	vv
The	vertex	in	whose	edge	list	the	edge	should	be	replaced.
int	oe
The	edge	to	replace.
int	ne

The	replacement	edge.

Prototype:
void	VReplaceFace(int	vv,	int	of,	int	nf);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.	It	replaces	the	old
MNVert::ReplaceFace	method.
Finds	face	of	in	the	vfac[vv]	table	and	replaces	it	with	nf.	NOTE	that	this
method	causes	an	assertion	failure	if	face	of	is	not	in	the	vfac	table.	If	of
occurs	more	than	once,	which	is	possible	on	some	valid	NONTRI	meshes,
only	the	first	of	is	replaced.

Parameters:
int	vv
The	vertex	in	whose	face	list	the	face	should	be	replaced.
int	of
The	face	to	replace.
int	nf
The	replacement.

Prototype:
void	CopyVert(int	nv,	int	ov);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.	It	replaces	the	old
MNVert::operator=	by	allowing	the	developer	to	copy	face	and	edge
adjacency	information	as	well	as	vertex	location	and	flags.
Copies	the	MNVert	data	from	ov	to	nv.	The	face	and	edge	data	is	copied	too	if
appropriate	(ie	if	MN_MESH_FILLED_IN	is	set	and	vfac	and	vedg	are
allocated).

Parameters:
int	nv
The	destination	index.
int	ov
The	source	index.

Prototype:
void	MNVDebugPrint(int	vv);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.	It	replaces	the	old
MNVert::MNDebugPrint	method.
Uses	DebugPrint	to	print	out	vertex	information	to	the	Debug	Results	window
in	DevStudio.	The	information	consists	of	the	position,	edge	list,	and	face	list.
It	is	generally	a	good	idea	to	put	in	a	DebugPrint	immediately	before	this	with
the	index	of	the	vertex,	so	you	know	which	vertex	is	being	printed	out:
DebugPrint	("Vertex	%d:	",	vid);
MNVDebugPrint(vid);

Parameters:
int	vv
The	zero	based	index	of	the	MNVert	to	debug	print.

Prototype:
BOOL	SubObjectHitTest(GraphicsWindow	*gw,	Material	*ma,
HitRegion	*hr,	DWORD	flags,	SubObjHitList&	hitList,	int
numMat=1);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	may	be	called	to	perform	sub-object	hit	testing	on	this	mesh.

Parameters:
GraphicsWindow	*gw
The	graphics	window	associated	with	the	viewport	the	mesh	is	being	hit	tested
in.
Material	*ma
The	list	of	materials	for	the	mesh.	See	Class	Material
HitRegion	*hr
This	describes	the	properties	of	a	region	used	for	the	hit	testing.	See	Class
HitRegion.
DWORD	flags
Flags	for	sub	object	hit	testing.	One	or	more	of	the	following	values:

SUBHIT_MNUSECURRENTSEL
When	this	bit	is	set,	the	sel	only	and	unsel	only	tests	will	use	the	current
level	(edge	or	face)	selection	when	doing	a	vertex	level	hit	test.)	This	is	like
the	Mesh	hit-testing	flag	SUBHIT_USEFACESEL.
SUBHIT_MNVERTS
SUBHIT_MNFACES
SUBHIT_MNEDGES
SUBHIT_MNTYPEMASK
(SUBHIT_MNVERTS|SUBHIT_MNFACES|SUBHIT_MNEDGES)

SubObjHitList&	hitList
The	results	are	stored	here.	See	Class	SubObjHitList.
int	numMat=1
The	number	of	materials	for	the	mesh.

Return	Value:
TRUE	if	the	item	was	hit;	otherwise	FALSE.

Prototype:
void	UpdateDisplayVertexColors	();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	to	manage	the	display	of	vertex	colors	from	any	channel
(or	those	that	are	passed	in	by	some	calling	routine).	For	instance,	to	set	the
mesh	to	display	the	Illumination	channel	as	the	current	vertex	colors,	you
would	call	SetDisplayVertexColors	(MAP_SHADING).	(Normally,	it
shows	the	standard	vertex	color	channel,	channel	0.)
UpdateDisplayVertexColors()	is	used	to	refresh	the	vertex	color	pointers
just	before	the	MNMesh	displays	itself.

Prototype:
void	SetDisplayVertexColors	(int	chan);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	to	manage	the	display	of	vertex	colors	from	any	channel

(or	those	that	are	passed	in	by	some	calling	routine).	For	instance,	to	set	the
mesh	to	display	the	Illumination	channel	as	the	current	vertex	colors,	you
would	call	SetDisplayVertexColors	(MAP_SHADING).	(Normally,	it
shows	the	standard	vertex	color	channel,	channel	0.)
UpdateDisplayVertexColors()	is	used	to	refresh	the	vertex	color	pointers
just	before	the	MNMesh	displays	itself.

Parameters:
int	chan
The	channel	you	wish	to	use.

Prototype:
void	SetDisplayVertexColors	(UVVert	*mv,	MNMapFace	*mf);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
If	you	have	cached	your	own	vertex	color	information	that	isn't	in	any	of	the
map	channels	provided,	you	can	use	this	method	to	set	the	internal	pointers	to
use	your	data.

Parameters:
UVVert	*mv
The	array	of	UV	vertices.
MNMapFace	*mf
The	map	face	data.

Prototype:
void	FillInFaceEdges	();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Fills	in	the	faces'	edge	arrays	based	on	the	edge	list.

Prototype:
void	FillInVertEdgesFaces	();

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
Fills	in	the	vertex	edge	and	face	lists	based	on	the	edge	list.

Prototype:
Box3	getBoundingBox	(Matrix3	*tm=NULL,	bool
targonly=FALSE);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Retrieves	a	bounding	box	for	the	MNMesh.

Parameters:
Matrix3	*tm
Like	the	corresponding	method	in	class	Mesh,	this	method	takes	an	optional
transform,	so	the	user	can	get	a	bounding	box	in	any	desired	space	(with	a
slower	calculation,	as	all	the	points	must	be	transformed).
bool	targonly
If	set,	only	vertices	with	the	MN_TARG	flag	set	are	used	to	compute	the
bounding	box.

Prototype:
void	ComputeNormal	(int	ff,	Point3	&	N,	Point3	*ctr=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Computes	a	"balanced"	normal,	in	that	the	normal	takes	the	contribution	of	all
vertices	equally.	(This	is	significant	in	the	case	of	nonplanar	polygons.)

Parameters:
int	ff
The	face	you	want	the	normal	of.
Point3	&	N
The	place	to	store	the	computed	normal.
Point3	*ctr
If	not	NULL,	it	points	to	a	place	where	ComputeNormal	should	put	the	face
center.

Prototype:
void	GetVertexSpace	(int	vrt,	Matrix3	&	tm);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Chooses	a	suitable	"local	space",	and	sets	tm's	rotation	to	match	that	space.
Does	not	set	tm's	translation	component.	(This	is	easily	done	by	setting
tm.SetRow	(3,	v[vrt].p).)
The	purpose	of	this	method	is	to	support	a	consistent	definition	of	"local
space"	around	a	given	vertex.	As	usual,	Z	comes	from	the	local	normal;	the	X
direction	is	chosen	to	be	a	particular	edge,	but	then	this	direction	is	modified
to	balance	the	contribution	of	the	other	edges.	(Thus	it	points	roughly	in	the
direction	of	one	edge,	but	moving	other	edges'	far	endpoints	will	rotate	which
way	is	considered	"X"	just	as	much	as	moving	that	edge	will.)

Parameters:
int	vrt
The	vertex	index.
Matrix3	&	tm
The	transformation	matrix.

Prototype:
float	EdgeAngle	(int	ed);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Computes	the	angle	at	the	given	edge.	(In	other	words,	the	angle	between	the
planes	of	the	faces	on	either	side.)	Note	that	in	the	case	of	nonplanar	polygons,
these	planes	are	the	"average"	planes	for	the	polygon,	not	the	plane	of	the
triangle	nearest	the	edge.

Parameters:
int	ed
The	edge	index.

Return	Value:
The	angle	in	radians.

Prototype:
void	FlipNormal(int	faceIndex);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Flips	the	normal	of	the	specified	face,	as	well	as	the	corresponding	map	faces
in	active	maps.	Note	that	doing	this	on	an	isolated	face	with	neighbors	will
cause	an	illegal	condition.	Use	the	FlipElementNormals	method	to	safely	and
completely	flip	the	normals	of	entire	elements	to	avoid	this	problem.
This	method	uses	the	MNFace	and	MNMapFace	methods	"Flip",	which
changes	the	order	of	the	vertices	from	(0,1,2…,deg-1)	to	(0,	deg-1,	deg-2,…1)
and	rearrange	the	edge	and	diagonal	information	accordingly.

Parameters:
int	faceIndex
The	face	index.

Prototype:
void	AutoSmooth	(float	angle,	BOOL	useSel,	BOOL
preventIndirectSmoothing);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Applies	new	smoothing	groups	to	the	whole	mesh	or	to	selected	faces	based
on	angles	between	faces.

Parameters:
float	angle
The	threshold	angle	in	radians.	Edges	with	angles	above	this	amount	will	not
be	smoothed	across.
BOOL	useSel
Indicates	if	the	auto-smoothing	should	be	done	only	on	selected	faces.
BOOL	preventIndirectSmoothing
Sometimes	even	though	two	neighboring	faces	are	more	than	"angle"	apart,
there	may	be	a	path	from	one	to	the	other	via	other	faces,	crossing	only	edges
that	are	less	than	"angle"	apart,	so	they'll	wind	up	sharing	the	same	smoothing
group	anyway.	To	prevent	this	sort	of	"indirect"	smoothing,	set	this	value	to

TRUE.

Prototype:
void	RestrictPolySize	(int	maxdeg);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Subdivides	polygons	as	needed	so	that	no	polygon	has	degree	larger	than
maxdeg.	(For	instance,	if	maxdeg	was	4,	an	octagon	would	have	edges	added
until	it	was	composed	of	3	quads,	or	some	combination	of	quads	and	tris.)

Parameters:
int	maxdeg
Maximum	degrees.

Prototype:
void	MakePlanar	(float	planarThresh);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Makes	all	faces	planar,	within	the	angle	threshold	given,	by	subdividing	them
as	necessary.	(See	MakeFacePlanar.)

Parameters:
float	planarThresh
The	planar	angle	threshold.

Prototype:
void	MakeFacePlanar	(int	ff,	float	planarThresh);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Makes	the	specified	face	planar	by	subdividing	if	necessary.	planarThresh
represents	an	angle	in	radians.	If	the	angle	across	any	of	the	face's	diagonals	is
larger	than	this	amount,	the	face	is	divided	on	that	diagonal.

Parameters:
int	ff

The	face	of	the	index	to	make	planar
float	planarThresh
The	planar	angle	threshold.

Prototype:
UVVert	ExtrapolateMapValue	(int	face,	int	edge,	Point3	&	pt,	int
mp);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Given	a	point	near	a	given	edge	of	a	given	face,	but	near	to	it,	this	method	will
extrapolate	what	that	point's	mapping	coordinates	would	be	in	the	mapping
scheme	used	by	the	face.

Parameters:
int	face
The	face	we	want	to	base	mapping	information	on.
int	edge
The	index	of	the	edge	we're	closest	to	on	the	face.	(This	should	be	the	face-
based	index,	in	the	range	(0,	deg-1),	not	the	index	of	the	edge	in	the
MNMesh.)
Point3	&	pt
The	object-space	coordinates	of	the	point.
int	mp
The	map	channel	we're	analyzing.

Prototype:
void	EliminateDoubledMappingVerts();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
"Doubled"	mapping	vertices	are	individual	map	vertices	that	are	used	to
correspond	to	different	regular	vertices.	For	instance,	a	box	could	have	a
single	(1,1,0)	map	vertex	that	it	uses	in	the	upper-right	corner	of	all	quads.
This	design	is	harmful	to	some	of	our	algorithms,	such	as	the	various
Tessellators.	So	this	method	is	available	to	fix	such	vertices.	It	clones	map

vertices	as	needed	to	ensure	that	a	given	map	vertex	is	only	used	by	one
regular	vertex.	Linear-time	algorithm.

Prototype:
BOOL	CheckForDoubledMappingVerts();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	a	debugging	tool.	All	doubled	mapping	verts	are
DebugPrinted.	Return	value	is	TRUE	if	there	is	at	least	one	doubled	mapping
vertex	(on	at	least	one	map	channel).	FALSE	if	the	mesh	is	clean.	Note	that
this	method	is	not	significantly	faster	than	EliminateDoubledMappingVerts,	so
you	should	not	use	it	to	determine	if	EliminateDoubledMappingVerts	should
be	called.

Prototype:
void	EliminateIsoMapVerts();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Deletes	isolated	mapping	vertices	-	i.e.,	mapping	vertices	that	aren't	used	by
any	mapping	faces.

Prototype:
void	EliminateIsoMapVerts(int	mp);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Deletes	isolated	mapping	vertices	-	i.e.,	mapping	vertices	that	aren't	used	by
any	mapping	faces.	If	the	"int	mp"	parameter	is	given,	the	algorithm	operates
only	on	that	map	channel.	If	not,	the	algorithm	operates	on	all	map	channels.

Parameters:
int	mp
The	map	channel	to	operate	on.

Prototype:

int	SplitEdge	(int	ee,	float	prop,	Tab<int>	*newTVerts);
Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	new	SplitEdge	variant	allows	you	to	recover	information	about	the	new
map	vertices	created	at	the	point	where	the	edge	is	split.	Everything	else	is	the
same	as	the	existing	SplitEdge	(int	ee,	float	prop=.5f)	method.

Parameters:
Tab<int>	*newTVerts
Pointer	to	a	table	in	which	the	new	map	vertices	can	be	stored.	This	table	is	set
to	size	(NUM_HIDDENMAPS	+	numm)*2.	The	two	entries	for	each	map
channel	are	used	to	store	the	two	new	map	vertices	at	this	edge	split:
newTVerts[(NUM_HIDDENMAPS+mp)*2+0]	is	the	map	vertex	for	map
channel	mp	on	the	"f1"	side	of	the	edge,	and	newTVerts[mp*2+1]	is	the	map
vertex	for	the	"f2"	side	if	f2>=0	(or	otherwise	left	uninitialized).	(These	values
are	often,	but	not	always,	the	same.	They	are	different	if	the	map	has	a	seam
along	this	edge.)

Prototype:
void	FacePointBary	(int	ff,	Point3	&	p,	Tab<float>	&	bary);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Finds	"Generalized	Barycentric	Coordinates"	for	the	point	given.	Generalized
barycentric	coordinates	are	not	uniquely	determined	for	polygons	of	degree
greater	than	3,	but	this	algorithm	should	find	a	reasonable	balance,	where	for
instance	a	point	in	the	center	of	a	polygon	would	have	a	significant
contribution	from	all	vertices.
Generalized	barycentric	coordinates	are	a	set	of	floats,	one	per	vertex	in	the
polygon,	such	that	the	sum	of	all	the	floats	is	1,	and	the	sum	of	all	the	floats
times	the	corresponding	vertices	comes	out	to	the	point	given.

Parameters:
int	ff
The	face	we're	finding	barycentric	coordinates	on.
Point3	&	p
The	point	we're	trying	to	find	barycentric	coordinates	for.	If	this	point	is	not	in

the	plane	of	the	polygon,	the	coordinates	produced	should	represent	its
projection	into	the	polygon's	plane.	Points	outside	the	boundary	of	the	polygon
should	be	acceptable;	some	of	the	barycentric	coordinates	will	be	negative	in
this	case.
Tab<float>	&	bary
The	table	to	put	the	results	in.	This	table	is	set	to	size	f[ff].deg.

Prototype:
void	CloneVerts	(DWORD	cloneFlag	=	MN_SEL,	bool
clear_orig=TRUE);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Clones	flagged	vertices,	creating	new	vertices	that	aren't	used	by	any	faces.

Parameters:
DWORD	cloneFlag	=	MN_SEL
Indicates	which	vertices	should	be	cloned.
bool	clear_orig	=	TRUE
If	true,	the	original	vertices	should	have	the	cloneFlag	cleared.	(The	clones
will	always	have	this	flag	set.)

Prototype:
void	CloneFaces	(DWORD	cloneFlag	=	MN_SEL,	bool
clear_orig=TRUE);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Clones	the	flagged	faces,	as	well	as	all	the	vertices	and	edges	that	are	used	by
the	faces.

Parameters:
DWORD	cloneFlag	=	MN_SEL
Indicates	which	faces	should	be	cloned.
bool	clear_orig	=	TRUE
If	true,	the	original	faces	should	have	the	cloneFlag	cleared.	(The	clones	will
always	have	this	flag	set.)

Prototype:
int	DivideFace	(int	ff,	Tab<float>	&	bary);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Divides	a	face	by	creating	a	point	in	the	face's	interior	and	creating	an	edge
from	that	point	to	each	of	the	face's	vertices.	An	n-gon	becomes	n	triangles	by
this	method.

Parameters:
int	ff
The	face	to	divide.
Tab<float>	&	bary
The	generalized	barycentric	coordinates	of	the	point	that	should	be	created.
(See	FacePointBary	for	details	on	barycentric	coordinates.)

Return	Value:
The	index	of	the	newly	created	vertex,	or	-1	if	there's	an	error.

Prototype:
int	CreateFace	(int	degg,	int	*vv);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Creates	a	new	face,	using	the	vertices	given.
Note	that	this	method,	unlike	the	similar	NewFace	method,	maintains	all
topological	links.	If	there's	an	edge	between	vv[0]	and	vv[1]	which	is	already
used	by	some	other	face	(on	the	other	side),	that	edge	is	modified	to	use	this
face	on	its	"f2"	side.	If	there's	an	edge	between	two	sequential	vertices	with
faces	on	both	sides,	the	creation	fails,	because	it	would	create	an	illegal
condition.
This	method	also	creates	map	faces	in	any	active	map	channels	to	maintain	the
validity	of	the	mesh.	These	map	faces	use	the	map	vertices	that	other	faces	use
for	the	vertices	passed	in,	or	if	there	are	no	corresponding	map	vertices	yet,
use	newly	created	map	vertices	with	the	value	(1,1,1).

Parameters:
int	degg

The	degree	of	the	new	face.
int	*vv
A	pointer	to	an	array	of	degg	vertices	for	the	new	face.

Return	Value:
The	index	of	the	new	face,	or	-1	if	the	method	was	unable	to	create	that	face.

Prototype:
bool	MakeFlaggedPlanar	(int	selLev,	DWORD	flag=MN_SEL,
Point3	*delta=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Moves	the	flagged	components	into	their	"average	plane".	(Plane	computed
using	average	component	positions	and	normals.)

Parameters:
int	selLev
Selection	level,	one	of	MNM_SL_VERTEX,	MNM_SL_EDGE,
MNM_SL_FACE,	or	MNM_SL_OBJECT.
DWORD	flag=MN_SEL
The	flag	that	indicates	which	components	to	align.	Ignored	if	msl	is	set	to
MNM_SL_OBJECT.
Point3	*delta=NULL
If	non-NULL,	this	is	presumed	to	point	to	an	array	of	size	equal	to
MNMesh::numv,	and	instead	of	actually	moving	the	vertices,	the	algorithm
stores	offsets	in	this	array	such	that	v[i].p	+	delta[i]	is	in	the	plane.

Return	Value:
Indicates	whether	anything	was	moved.	(Or	if	delta	is	non-NULL,	if	any
deltas	are	nonzero.)

Prototype:
bool	MoveVertsToPlane	(Point3	&	norm,	float	offset,	DWORD
flag=MN_SEL,	Point3	*delta=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

Projects	the	flagged	vertices	into	the	specified	plane.
Parameters:
Point3	&	norm,	float	offset
The	definition	of	the	plane:	DotProd	(norm,	x)	-	offset	=	0.
DWORD	flag=MN_SEL
The	flag	that	indicates	which	vertices	to	move.
Point3	*delta=NULL
If	non-NULL,	this	is	presumed	to	point	to	an	array	of	size	equal	to
MNMesh::numv,	and	instead	of	actually	moving	the	vertices,	the	algorithm
stores	offsets	in	this	array	such	that	v[i].p	+	delta[i]	is	in	the	plane.

Return	Value:
Indicates	whether	anything	was	moved.	(Or	if	delta	is	non-NULL,	if	any
deltas	are	nonzero.)

Prototype:
bool	SplitFlaggedVertices	(DWORD	flag=MN_SEL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Splits	the	flagged	vertices	into	a	clone	for	each	face	using	the	vertex.	For
example,	if	used	on	the	front	top	left	corner	of	a	standard	3ds	max	box,	it
splits	the	vertex	into	3,	one	for	the	front	face,	one	for	the	top	face,	and	one	for
the	left	face.

Parameters:
DWORD	flag=MN_SEL
The	flag	that	indicates	which	vertices	to	split.

Return	Value:
TRUE	if	anything	happened,	FALSE	if	none	of	the	vertices	were	split.	(Note
that	this	method	will	return	FALSE	if	no	vertices	are	flagged,	but	also	if	there
are	flagged	vertices	but	they're	all	on	1	or	0	faces	already.)

Prototype:
bool	SplitFlaggedEdges	(DWORD	flag=MN_SEL);

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
"Splits"	edges	by	breaking	vertices	on	two	or	more	flagged	edges	into	as	many
copies	as	needed.	In	this	way,	any	path	of	flagged	edges	becomes	an	two	open
seams.

Parameters:
DWORD	flag=MN_SEL
Indicates	which	edges	should	be	split.	(Left	at	the	default,	selected	edges	are
split.)

Return	Value:
True	if	any	topological	changes	happened,	false	if	nothing	happened.

Prototype:
bool	DetachFaces	(DWORD	flag=MN_SEL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Detaches	specified	faces	to	a	separate	element,	cloning	vertices	and	edges	as
necessary	on	the	boundary	between	flagged	and	unflagged	faces.

Parameters:
DWORD	flag=MN_SEL
Indicates	which	edges	should	be	split.	(Left	at	the	default,	selected	edges	are
split.)

Return	Value:
True	if	any	faces	were	detached,	false	if	nothing	happened.	(Note	that	the
algorithm	will	return	false	if,	for	instance,	all	flagged	faces	form	elements
which	are	already	distinct	from	those	formed	from	non-flagged	faces.)

Prototype:
bool	DetachElementToObject	(MNMesh	&	nmesh,	DWORD
fflags=MN_SEL,	bool	delDetached=true);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Detaches	specified	faces	to	a	new	MNMesh.

Parameters:
MNMesh	&	mesh
An	empty	new	mesh	into	which	the	detached	faces	(and	accompanying
vertices	and	edges)	should	be	put.
DWORD	fflags=MN_SEL
Indicates	which	faces	should	be	detached.

Return	Value:
True	if	any	faces	were	detached,	false	if	nothing	happened.

Prototype:
bool	ExtrudeFaceClusters	(MNFaceClusters	&	fclust);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Performs	the	topological	component	of	an	extrusion	on	all	face	clusters.	Each
cluster	is	"extruded",	which	means	that	vertices	and	edges	on	the	boundary	of
the	cluster	are	cloned	and	new	faces	and	edges	are	created	to	connect	the
clones	to	the	originals.	(Note	that	nothing	is	moved	in	this	process	-	movement
is	handled	separately.	See	GetExtrudeDirection	for	details.)

Parameters:
MNFaceClusters	&	fclust
A	list	of	face	clusters.	See	the	constructors	in	class	MNFaceClusters	and	the
face	cluster	related	methods	of	class	MNTempData	for	information	on	how	to
set	up	these	clusters	based	on	edge	angles	and	face	flags.

Return	Value:
True	if	any	faces	were	extruded,	false	if	nothing	happened.

Prototype:
bool	ExtrudeFaceCluster	(MNFaceClusters	&	fclust,	int	cl);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Performs	the	topological	component	of	an	extrusion	on	the	specified	face
cluster.	This	means	that	vertices	and	edges	on	the	boundary	of	the	cluster	are
cloned	and	new	faces	and	edges	are	created	to	connect	the	clones	to	the

originals.	(Note	that	nothing	is	moved	in	this	process	-	movement	is	handled
separately.	See	GetExtrudeDirection	for	details.)

Parameters:
MNFaceClusters	&	fclust
A	list	of	face	clusters.	See	the	constructors	in	class	MNFaceClusters	and	the
face	cluster	related	methods	of	class	MNTempData	for	information	on	how	to
set	up	these	clusters	based	on	edge	angles	and	face	flags.
int	cl
The	cluster	we	wish	to	extrude.

Return	Value:
True	if	any	faces	were	extruded,	false	if	nothing	happened.

Prototype:
bool	ExtrudeFaces	(DWORD	flag=MN_SEL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Performs	the	topological	component	of	an	extrusion	on	each	flagged	face
individually.	(This	differs	from	ExtrudeFaceClusters	in	that	each	face	is
treated	like	its	own	cluster.)	Extrusion	means	that	the	vertices	and	edges	used
by	each	flagged	face	are	cloned,	and	new	faces	and	edges	are	created	on	the
"sides"	to	connect	the	clones	to	their	originals.	(Note	that	nothing	is	moved	in
this	process	-	movement	is	handled	separately.	See	GetExtrudeDirection	for
details.)

Parameters:
DWORD	flag=MN_SEL
The	flag	that	identifies	the	faces	we	wish	to	extrude.

Return	Value:
True	if	any	faces	were	extruded,	false	if	nothing	happened.

Prototype:
void	GetExtrudeDirection	(MNChamferData	*mcd,
MNFaceClusters	*fclust=NULL,	Point3	*clustNormals=NULL);

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
Finds	the	direction	vectors	for	the	geometric	component	of	an	extrusion	after
the	topological	component	has	been	completed.	(See	methods
ExtrudeFaceClusters,	ExtrudeFaceCluster,	and	ExtrudeFaces	for	details	on	the
topological	component.)

Parameters:
MNChamferData	*mcd
The	data	structure	in	which	the	extrusion	directions	are	stored.	(Note	that	there
is	no	map	support	for	this	operation,	as	there	is	no	well-defined	way	to	modify
mapping	values	during	an	extrusion	drag.)
MNFaceClusters	*fclust	=	NULL
The	face	clusters.
Point3	*clustNormals	=	NULL
The	cluster	normals.
This	information	is	only	needed	if	we're	extruding	by	cluster	normals.	If	we're
extruding	clusters	by	local	normals	or	just	extruding	faces	separately,	these
parameters	can	be	left	at	NULL.	See	class	MNTempData	for	handy	methods
to	obtain	cluster	normals.

Prototype:
bool	SetVertColor	(UVVert	clr,	int	mp,	DWORD	flag=MN_SEL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	vertex	colors	for	the	specified	vertices.	This	is	done	by	finding	all	map
vertices	in	the	specified	vertex	color	channel	that	correspond	to	each	flagged
vertex	and	setting	them	to	the	color	given.

Parameters:
UVVert	clr
The	color	to	set	the	vertices	to.
int	mp
The	map	channel	-	use	0	for	the	standard	vertex	color	channel,
MAP_SHADING	for	the	vertex	illumination	channel,	or	MAP_ALPHA	for
the	alpha	channel.	(Note	that	alpha	color	values	should	always	be	shades	of
grey	-	clr.r	should	equal	clr.g	and	clr.b.)

DWORD	flag=MN_SEL
Indicates	which	vertices	to	modify	the	colors	of.

Return	Value:
Returns	true	if	any	vertex	colors	were	modified.

Prototype:
bool	SetFaceColor	(UVVert	clr,	int	mp,	DWORD	flag=MN_SEL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	vertex	colors	for	the	specified	faces.	This	is	done	by	finding	all	map
vertices	used	by	flagged	faces	and	setting	them	to	the	color	given.	In	cases
where	a	map	vertex	is	used	by	both	a	flagged	and	an	unflagged	face,	the	map
vertex	is	split	so	that	the	unflagged	faces'	colors	are	unaffected	by	this	change.

Parameters:
UVVert	clr
The	color	to	set	the	faces	to.
int	mp
The	map	channel	-	use	0	for	the	standard	vertex	color	channel,
MAP_SHADING	for	the	vertex	illumination	channel,	or	MAP_ALPHA	for
the	alpha	channel.	(Note	that	alpha	color	values	should	always	be	shades	of
grey	-	clr.r	should	equal	clr.g	and	clr.b.)
DWORD	flag=MN_SEL
Indicates	which	faces	to	modify	the	colors	of.

Return	Value:
Returns	true	if	any	vertex	colors	were	modified.

Prototype:
bool	ChamferVertices	(DWORD	flag=MN_SEL,	MNChamferData
*mcd=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Performs	the	topological	component	of	a	vertex	chamfer	on	the	flagged
vertices,	and	provides	the	data	needed	to	do	the	geometric	component.	That	is

to	say,	this	method	clones	the	flagged	vertices	and	creates	the	new	edges	and
faces	needed	in	a	chamfer	operation.	It	also	determines	the	direction	each
vertex	and	mapping	vertex	will	go	as	the	user	drags	out	the	chamfer	-	but	it
doesn't	actually	move	any	vertices.

Parameters:
DWORD	flag=MN_SEL
Indicates	which	vertices	to	chamfer.
MNChamferData	*mcd=NULL
If	non-NULL,	this	points	to	a	data	structure	which	should	be	filled	with
information	needed	to	perform	the	geometric	component	of	the	chamfer,	such
as	vertex	directions	and	limits.	See	class	MNChamferData	for	additional
information.

Return	Value:
True	if	any	vertices	were	chamfered,	false	otherwise.

Prototype:
bool	ChamferEdges	(DWORD	flag=MN_SEL,	MNChamferData
*mcd=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Performs	the	topological	component	of	an	edge	chamfer	on	the	flagged	edges,
and	provides	the	data	needed	to	do	the	geometric	component.	That	is	to	say,
this	method	clones	the	flagged	edges	and	creates	the	new	vertices	and	faces
needed	in	the	edge	chamfer	operation.	It	also	determines	the	direction	each
vertex	and	mapping	vertex	will	go	as	the	user	drags	out	the	chamfer	-	but	it
doesn't	actually	move	anything.

Parameters:
DWORD	flag=MN_SEL
Indicates	which	edges	to	chamfer.
MNChamferData	*mcd=NULL
If	non-NULL,	this	points	to	a	data	structure	which	should	be	filled	with
information	needed	to	perform	the	geometric	component	of	the	chamfer,	such
as	vertex	directions	and	limits.	See	class	MNChamferData	for	additional
information.

Return	Value:
True	if	any	edges	were	chamfered,	false	otherwise.

Prototype:
bool	FlipElementNormals	(DWORD	flag=MN_SEL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Flips	the	normals	of	the	specified	elements	in	the	mesh.

Parameters:
DWORD	flag=MN_SEL
Indicates	which	elements	should	be	flipped,	in	the	following	way:	any	element
that	has	at	least	one	flagged	face	is	completely	flipped.	Elements	without	any
flagged	faces	are	not.

Return	Value:
Returns	true	if	anything	was	flipped,	false	otherwise.

Prototype:
void	SmoothByCreases	(DWORD	creaseFlag);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	is	an	auto-smooth	algorithm	that	allows	the	developer	to	specify	exactly
which	edges	should	be	creases	and	which	should	be	smoothed	across.	All	face
smoothing	groups	are	rewritten	by	this	algorithm.	This	algorithm	is	used,	for
example,	in	MeshSmooth,	NURMS	style,	when	the	user	turns	on	"smooth
result"	and	applies	crease	values	to	some	edges.

Parameters:
DWORD	creaseFlag
Indicates	which	edges	should	be	treated	as	creases.	Edges	that	have	the	flag
(or	flags)	set	should	be	creases.	Those	that	don't	should	not	be	creases.

Prototype:
int	CutFace	(int	f1,	Point3	&	p1,	Point3	&	p2,	Point3	&	Z,	bool
split);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implements	the	Editable	Poly	Cut	algorithm	from	the	face	level	-	cuts	from	a
point	on	one	face	to	a	point	on	another	face.

Parameters:
int	f1
The	starting	face	of	the	Cut.
Point3	&	p1
The	starting	point	of	the	Cut,	which	should	lie	on	face	f1.
Point3	&	p2
The	end	point	of	the	Cut.
Point3	&	Z
The	view	direction.	All	Cut	algorithms	require	a	view	direction	to	establish	the
plane	that	the	cut	occurs	in.	This	plane	is	defined	by	this	Z	vector	and	by	the
vector	p2-p1.	All	new	vertices	created	by	the	cut	are	in	this	plane.
bool	split
If	true,	the	faces	on	the	top	and	bottom	of	the	cut	should	have	an	open	seam
between	them.	All	the	edges	and	vertices	along	the	cut	(except	for	the	first	and
last	vertex)	are	split	into	two	parts,	one	copy	for	the	top	and	one	for	the
bottom.

Return	Value:
The	last	vertex	created	by	the	cut,	or	-1	if	the	cut	was	unable	to	finish.

Prototype:
int	CutEdge	(int	e1,	float	prop1,	int	e2,	float	prop2,	Point3	&	Z,
bool	split);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implements	the	Editable	Poly	Cut	algorithm	from	the	edge	level	-	cuts	from	a
point	on	one	edge	to	a	point	on	another	edge.

Parameters:
int	e1
The	starting	edge	of	the	Cut.

float	prop1
The	proportion	along	edge	e1	where	the	cut	should	begin.	That	is,	the	first
point	should	be	located	at	(1-prop1)*v[e[e1].v1].p	+	prop1*v[e[e1].v2].p.
int	e2
The	ending	edge	of	the	Cut.
float	prop2
The	proportion	along	edge	e2	where	the	cut	should	end.	That	is,	the	last	point
should	be	located	at	(1-prop2)*v[e[e2].v1].p	+	prop2*v[e[e2].v2].p.
Point3	&	Z
The	view	direction.	All	Cut	algorithms	require	a	view	direction	to	establish	the
plane	that	the	cut	occurs	in.	This	plane	is	defined	by	this	Z	vector	and	by	the
vector	between	the	start	and	end	points.	All	new	vertices	created	by	the	cut	are
in	this	plane.
bool	split
If	true,	the	faces	on	the	top	and	bottom	of	the	cut	should	have	an	open	seam
between	them.	All	the	edges	and	vertices	along	the	cut	(except	for	the	first	and
last	vertex)	are	split	into	two	parts,	one	copy	for	the	top	and	one	for	the
bottom.

Return	Value:
The	last	vertex	created	by	the	cut,	or	-1	if	the	cut	was	unable	to	finish.

Prototype:
int	Cut	(int	startv,	Point3	&	end,	Point3	&	Z,	bool	split);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implements	the	Editable	Poly	Cut	algorithm	from	the	vertex	level	-	cuts	from
one	vertex	to	another.

Parameters:
int	startv
The	starting	vertex	of	the	Cut.
Point3	&	end
The	location	of	the	end	vertex	of	the	Cut.
Point3	&	Z

The	view	direction.	All	Cut	algorithms	require	a	view	direction	to	establish	the
plane	that	the	cut	occurs	in.	This	plane	is	defined	by	this	Z	vector	and	by	the
vector	between	the	start	and	end	points.	All	new	vertices	created	by	the	cut	are
in	this	plane.
bool	split
If	true,	the	faces	on	the	top	and	bottom	of	the	cut	should	have	an	open	seam
between	them.	All	the	edges	and	vertices	along	the	cut	(except	for	the	first	and
last	vertex)	are	split	into	two	parts,	one	copy	for	the	top	and	one	for	the
bottom.

Return	Value:
The	last	vertex	created	by	the	cut,	or	-1	if	the	cut	was	unable	to	finish.

Prototype:
bool	WeldBorderVerts	(int	v1,	int	v2,	Point3	*destination);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Welds	the	specified	border	vertices	together.

Parameters:
int	v1,	int	v2
The	vertices	to	be	welded.	They	must	be	border	vertices,	in	the	sense	that	each
of	them	must	be	used	by	open	edges	(those	on	only	one	face).
Point3	*destination
If	non-NULL,	this	indicates	where	the	joined	vertex	should	be	located.	(If
NULL,	it's	put	at	the	average	location,	(v[v1].p	+	v[v2].p)/2.)

Return	Value:
True	if	anything	was	welded,	false	if	the	operation	could	not	proceed.

Prototype:
bool	WeldBorderEdges	(int	e1,	int	e2);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Welds	the	specified	border	edges	together.

Parameters:

int	e1,	int	e2
The	edges	to	be	welded.	They	must	be	border	edges,	in	the	sense	that	each	of
them	must	be	open	(used	by	only	one	face).	The	result	is	located	where	edge
e2	was.	e[e1].v1	is	joined	to	e[e2].v2,	and	e[e1].v2	is	joined	to	e[e2].v1.

Return	Value:
True	if	anything	was	welded,	false	if	the	operation	could	not	proceed.

Prototype:
bool	WeldBorderVerts	(float	thresh,	DWORD	flag=MN_SEL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Welds	the	specified	border	vertices	together.

Parameters:
float	thresh
The	welding	threshold.	Vertices	further	apart	than	this	distance	(in	object
space)	will	not	be	welded.
DWORD	flag=MN_SEL
Indicates	which	vertices	should	be	welded.	(Non-border	vertices,	those	in	the
"interior"	of	the	surface,	are	ignored	even	if	flagged.)

Return	Value:
True	if	anything	was	welded,	false	otherwise.

Adding	new	components
	
NOTE:	all	face	creation	methods	clear	the	MN_MESH_FILLED_IN,
MN_MESH_NO_BAD_VERTS,	and	MN_MESH_VERTS_ORDERED	flags.
If	your	calling	routine	takes	care	of	the	work	of	updating	or	creating	all	relevant
MNVertices	and	MNEdges,	you	may	be	able	to	set	these	flags	again	--	but	be
careful!	For	some	convenient	face	&	edge	subdivision	methods	that	preserve	a
complete	topology,	check	out	the	Splitting	methods.

Prototype:
int	NewTri(int	a,	int	b,	int	c,	DWORD	smG=0,	MtlID	mt=0);

Remarks:

Creates	a	new	tri-face.	Note	that	no	mapping	coords	or	vertex	colors	can	be
specified.

Parameters:
int	a,b,c
The	indices	of	the	vertices	that	form	this	triangle.
DWORD	smG=0
The	smoothing	group(s)	assigned	to	the	new	face.
MtlID	mt=0
The	material	ID	assigned	to	the	new	face.

Return	Value:
Returns	the	index	of	the	new	face	created.

Prototype:
int	NewTri(int	*vv,	int	*tt,	int	*cc,	DWORD	smG=0,	MtlID	mt=0);

Remarks:
Creates	a	new	face	of	degree	3.	Edge	selection	and	visibility	flags	are	set	to
the	default:	all	visible	and	not	selected.

Parameters:
int	*vv
The	indices	of	the	vertices	that	form	this	face.	(There	must	be	3	of	these.)
int	*tt
If	this	is	not	NULL,	it	points	to	the	indices	of	3	mapping	coordinates	for	this
face.
int	*cc
If	this	is	not	NULL,	it	points	to	the	indices	of	3	vertex	colors	for	this	face.
DWORD	smG
The	smoothing	group(s)	assigned	to	this	face.
MtlID	mt
The	material	ID	assigned	to	this	face

Return	Value:
The	index	of	the	face	created.

Prototype:
int	NewQuad(int	a,	int	b,	int	c,	int	d,	DWORD	smG=0,	MtlID
mt=0);

Remarks:
This	method	will	create	a	new	quad.
Previous	to	4.0	this	method	used	two	tri-faces	that	shared	and	invisible	edge.

Parameters:
int	a,	b,	c,	d
The	indices	of	the	vertices	that	form	this	quad.
DWORD	smG=0
The	smoothing	group(s)	assigned	to	the	new	faces.
MtlID	mt=0
The	material	ID	assigned	to	the	new	faces.

Return	Value:
Returns	the	index	of	the	quad	face	created.

Prototype:
int	NewQuad(int	*vv,	int	*tt,	int	*cc,	DWORD	smG=0,	MtlID
mt=0);

Remarks:
This	method	will	create	a	new	quad.
Previous	to	4.0	this	method	used	two	tri-faces	that	shared	and	invisible	edge.

Parameters:
int	*vv
The	indices	of	the	vertices	that	form	this	face.	(There	must	be	4	of	these.)
int	*tt
If	this	is	not	NULL,	it	points	to	the	indices	of	4	mapping	coordinates	for	this
face.
int	*cc
If	this	is	not	NULL,	it	points	to	the	indices	of	4	vertex	colors	for	this	face.
DWORD	smG
The	smoothing	group(s)	assigned	to	this	face.

MtlID	mt
The	material	ID	assigned	to	this	face

Return	Value:
Returns	the	index	of	the	quad	face	created.

Prototype:
int	NewFace(MNFace	*ff,	int	degg=0,	int	*vv=NULL,	bool
*vis=NULL,	bool	*sel=NULL);

Remarks:
This	method	creates	a	(single)	new	face	with	the	characteristics	given.	The
default	triangulation	for	a	face	of	this	degree	is	used;	if	the	face	is	not	convex,
this	triangulation	may	be	inappropriate.	If	this	is	the	case,	call
RetriangulateFace()	on	this	face	after	it’s	created.

Parameters:
MNFace	*ff
A	current	face	from	which	smoothing	groups,	material	ID,	and	flags	should	be
copied.	If	this	is	NULL,	these	values	are	left	at	their	default	values.
int	degg
The	degree	of	the	face	to	be	created.
int	*vv
The	indices	of	the	vertices	that	form	the	new	face.	(There	must	be	degg	of
these.)
bool	*vis
This	is	an	array	of	visibility	bits	for	the	edges	of	the	new	face.	If	this	is	NULL,
the	default	of	all	edges	being	visible	is	used.	If	this	is	not	NULL,	there	must
be	degg	values.
bool	*sel
This	is	an	array	of	selection	bits	for	the	edges	of	the	new	face.	If	this	is	NULL,
the	default	of	all	edges	not	being	selected	is	used.	If	this	is	not	NULL,	there
must	be	degg	values.

Prototype:
int	AppendNewFaces(int	nfnum);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Appends	the	specified	number	of	MNFaces	to	f.

Parameters:
int	nfnum
The	number	of	MNFaces	to	append.

Return	Value:
The	index	of	the	first	appended	face	(ie	the	old	numf).

Prototype:
void	setNumFaces(int	nfnum);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	specified	number	of	MNFaces	allocated	in	f.

Parameters:
int	nfnum
The	number	of	MNFaces	to	set.

Prototype:
int	RegisterEdge(int	v1,	int	v2,	int	f,	int	fpos);

Remarks:
Edge	creation	tool.	If	there	is	no	edge	currently	joining	vertices	v1	and	v2,	it
creates	such	an	edge.	If	there	is	an	edge	starting	at	v2	and	ending	on	v1,	it
registers	face	f	as	being	on	the	"other	side"	of	the	edge.

Parameters:
int	v1,	v2
The	start	&	end	vertices	of	the	edge	you	wish	to	register.
int	f
The	face	on	the	"left"	side	of	this	edge,	if	you’re	looking	from	v1	towards	v2
with	the	surface	normal	above.
int	fpos
The	index	of	this	edge	in	face	f.	This	is	used	to	extract	visibility	and	selection

information	from	the	face.
Return	Value:
The	index	of	the	new	edge,	or	-1	if	the	edge	already	exists	in	the	specified
direction.

Prototype:
int	SimpleNewEdge(int	v1,	int	v2);

Remarks:
Edge	creation	tool.	Simply	makes	a	new	edge	from	v1	to	v2,	without	worrying
about	whether	such	an	edge	may	already	exist,	or	what	faces	may	be	on	either
side.	Since	edges	are	required	to	have	at	least	one	valid	face	on	them,	using
this	method	obligates	the	developer	to	assign	f1	on	the	new	edge	themselves.

Return	Value:
The	index	of	the	new	edge.

Prototype:
int	NewEdge(int	v1,	int	v2,	int	f,	int	fpos);

Remarks:
Edge	creation	tool.	Requires	the	developer	to	previously	ascertain	that	there	is
no	edge	from	v1	to	v2	or	from	v2	to	v1.

Parameters:
int	v1,	v2
The	start	&	end	vertices	of	the	edge	you	wish	to	create.
int	f
The	face	on	the	"left"	side	of	this	edge,	if	you’re	looking	from	v1	towards	v2
with	the	surface	normal	above.
int	fpos
The	index	of	this	edge	in	face	f.	This	is	used	to	extract	visibility	and	selection
information	from	the	face.

Return	Value:
The	index	of	the	new	edge.

Prototype:

int	AppendNewEdges(int	nenum);
Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Appends	the	specified	number	of	edges.

Parameters:
int	nenum
The	number	of	edges	to	append.

Prototype:
void	setNumEdges(int	nenum);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	number	of	MNEdges	allocated	in	e.

Parameters:
int	nenum
The	number	of	MNEdges	to	set.

Prototype:
int	NewVert(Point3	&p);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Creates	a	new	vertex	(increasing	numv)	and	sets	it	to	the	specified	point.

Parameters:
Point3	&p
The	point	to	which	the	new	vert	should	be	initialized.

Prototype:
int	NewVert(Point3	&p,	int	vid);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.	It	replaces	the	old
MNMesh::NewVert	(Point3	&p,	MNVert	*mv=NULL)	method.

Creates	a	new	vertex	(increasing	numv)	and	initializes	it	to	the	point	p	and	the
flags	and	other	characteristics	of	vertex	vid.

Parameters:
Point3	&p
The	point	to	which	the	new	vert	should	be	initialized.
int	vid
The	index	of	the	existing	MNVert	from	which	flags	and	PerData	info	should
be	copied.	(Only	the	MN_SEL	and	MN_TARG	flags	are	copied.)

Prototype:
int	NewVert(int	vid);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Creates	a	new	vertex	and	initializes	it	to	location,	flags	and	other
characteristics	of	vertex	vid.

Parameters:
int	vid
The	index	of	the	existing	MNVert	from	which	location,	flags	and	PerData	info
should	be	copied.	(Only	the	MN_SEL	and	MN_TARG	flags	are	copied.)

Prototype:
int	NewVert(int	v1,	int	v2,	float	prop);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Creates	a	new	vertex	which	is	a	linear	combination	of	two	existing	vertices.
The	new	vertex	has	the	MN_SEL	and	MN_TARG	flags	of	whichever	vertex
it’s	closest	to.	The	location	and	PerData	info	is	interpolated.

Parameters:
int	v1
The	first	vertex	to	combine.
int	v2
The	second	vertex	to	combine.

float	prop
The	proportion	along	the	segment	from	v1	to	v2	where	the	new	vertex	should
be	located.

Prototype:
int	AppendNewVerts(int	nvnum);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Appends	the	specified	number	of	MNVerts.

Parameters:
int	nvnum
The	number	of	MNVerts	to	append.

Return	Value:
The	index	of	the	first	appended	vertex	(ie	the	old	numv).

Prototype:
void	setNumVerts(int	nvnum);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	number	of	verts,	allocating	if	needed.

Parameters:
int	nvnum
The	desired	number	of	vertices	in	the	mesh.

Removing	&	Deleting	Components

Prototype:
void	CollapseDeadVerts();

Remarks:
Removes	all	MNVerts	with	the	MN_DEAD	flag	from	the	list	of	vertices.	Also,
it	re-indexes	all	the	faces’	and	edges’	vertex	references	to	maintain	mesh
integrity.

Prototype:
void	CollapseDeadEdges();

Remarks:
Removes	all	MNEdges	with	the	MN_DEAD	flag	from	the	list	of	edges.	Also,
re-indexes	all	the	faces’	and	vertices’	edge	references	to	maintain	mesh
integrity.

Prototype:
void	CollapseDeadFaces();

Remarks:
Removes	all	MNFaces	with	the	MN_DEAD	flag	from	the	list	of	faces.	Also,
re-indexes	all	the	edges’	and	vertices’	face	references	to	maintain	mesh
integrity.

Prototype:
void	CollapseDeadStructs();

Remarks:
Performs	all	5	of	the	above	collapse	functions,	safely	removing	all	unused
components	from	this	mesh.

Prototype:
void	Clear();

Remarks:
Reinitializes	all	verts,	faces,	and	edges,	freeing	the	data	members	of	these
components,	but	not	freeing	the	vertex,	edge,	and	face	arrays	themselves.	This
option	is	suitable	if	you	need	to	clear	a	MNMesh	you	will	be	reusing.	numv,
etc,	are	set	to	0.

Prototype:
void	ClearAndFree();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deletes	everything	and	frees	all	relevant	memory.	Leaves	you	with	an	empty

MNMesh	with	the	default	flags.

Prototype:
void	freeVerts();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deletes	the	MNVert	array	and	frees	any	corresponding	vertex	data.

Prototype:
void	freeEdges();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deletes	the	MNEdge	array	and	frees	and	corresponding	edge	data.

Prototype:
void	freeFaces();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deletes	the	MNFace	array.

Prototype:
void	freeMap(int	mp);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deletes	the	MNMap	on	the	specified	map	channel.

Parameters:
int	mp
The	map	channel.
0:	Vertex	Color	channel.
1:	Default	mapping	channel.
2	through	MAX_MESHMAPS-1:	The	new	mapping	channels	available	in
release	3.0.

Prototype:
void	freeMaps();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Deletes	and	frees	all	the	MNMaps.

Prototype:
void	DeleteFlaggedFaces(DWORD	deathflags,	DWORD
nvCopyFlags=0x0);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Deletes	faces	with	any	of	the	death	flags	set,	as	well	as	delete	vertices	and
edges	surrounded	by	faces	with	death	flags,	and	correct	the	mesh	components
remaining.

Parameters:
DWORD	deathflags
The	collection	of	flags	marking	the	faces	you	wish	to	kill.
DWORD	nvCopyFlags=0x0
If	the	NO_BAD_VERTS	flag	is	set	on	this	mesh,	DeleteFlaggedFaces	will
preserve	this	property.	This	may	involve	duplicating	some	vertices.	(See
EliminateBadVerts	for	more	information.)	If	you	have	vertex	flags	that	you
want	preserved	in	this	duplication,	indicate	them	in	nvCopyFlags.	MN_SEL
and	MN_TARG	are	always	copied,	but	all	other	flags	are	cleared	on	the	new
vertex.

Prototype:
void	SetDispFlag(DWORD	f);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	display	flags.

Parameters:
DWORD	f
The	following	flags	are	supported;

MNDISP_VERTTICKS
Displays	vertices	with	tick-marks	(plus	signs).
MNDISP_SELVERTS
Displays	selected	vertices	in	red	(and	soft-selected	vertices	in	soft	selection
colors).
MNDISP_SELFACES
Displays	selected	faces.
MNDISP_SELEDGES
Displays	selected	edges.
MNDISP_NORMALS
Displays	face	normals	on	selected	faces.
MNDISP_DIAGONALS
Displays	diagonals	(using	the	same	drawing	style	as	regular	Meshes	use	for
hidden	edges).

Prototype:
DWORD	GetDispFlag(DWORD	f);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	displFlags	&	f.

Parameters:
DWORD	f
The	following	flags	are	supported;
MNDISP_VERTTICKS
Displays	vertices	with	tick-marks	(plus	signs).
MNDISP_SELVERTS
Displays	selected	vertices	in	red	(and	soft-selected	vertices	in	soft	selection
colors).
MNDISP_SELFACES
Displays	selected	faces.
MNDISP_SELEDGES
Displays	selected	edges.
MNDISP_NORMALS

Displays	face	normals	on	selected	faces.
MNDISP_DIAGONALS
Displays	diagonals	(using	the	same	drawing	style	as	regular	Meshes	use	for
hidden	edges).

Prototype:
void	ClearDispFlag(DWORD	f);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	clear	the	specified	display	flags.

Parameters:
DWORD	f
The	following	flags	are	supported;
MNDISP_VERTTICKS
Displays	vertices	with	tick-marks	(plus	signs).
MNDISP_SELVERTS
Displays	selected	vertices	in	red	(and	soft-selected	vertices	in	soft	selection
colors).
MNDISP_SELFACES
Displays	selected	faces.
MNDISP_SELEDGES
Displays	selected	edges.
MNDISP_NORMALS
Displays	face	normals	on	selected	faces.
MNDISP_DIAGONALS
Displays	diagonals	(using	the	same	drawing	style	as	regular	Meshes	use	for
hidden	edges).

Internal	computation
Prototype:
void	FillInMesh();

Remarks:

If	this	mesh	does	not	have	the	MN_MESH_FILLED_IN	flag,	this	method
completely	recomputes	all	combinatorial	information.	It	re-creates	all
MNEdges	and	MNFace::edg,	MNVert::edg,	and	MNVert::fac	lists	based	on
the	information	in	the	MNFace::vtx	lists.
Since	this	routine	completely	reconstructs	the	combinatorics,	it	clears	the
MN_MESH_VERTS_ORDERED	flag.

Prototype:
bool	EliminateBadVerts	(DWORD	flag=0);

Remarks:
A	"bad"	vertex	in	this	context	is	one	which	is	shared	between	two	distinct
boundaries	for	this	mesh.	As	an	example,	imagine	a	union	between	two
circles,	converted	to	meshes,	that	touch	at	a	single	vertex.	This	causes	a	vertex
to	exist	which	is	on	two	faces,	but	four	edges.	Since	most	vertices	are	on	equal
numbers	of	faces	and	edges	(if	they’re	not	on	a	boundary)	or	on	one	more
edge	than	face	(if	they	are	on	a	boundary),	these	types	of	vertices	can	mess	up
some	forms	of	processing.	This	method	eliminates	such	vertices	by
duplicating	them,	assigning	one	vertex	to	each	boundary.	A	MNMesh	that	has
gone	through	this	method	will	have	the	MN_MESH_NO_BAD_VERTS	flag
set	until	a	method	(such	as	NewFace)	is	called	that	could	conceivably	create
bad	vertices.
EliminateBadVerts	requires	a	filled	in	mesh,	and	will	call	FillInMesh	if	the
MN_MESH_FILLED_IN	flag	is	not	set.

Parameters:
DWORD	flag:
This	parameter	is	available	in	release	4.0	and	later	only.
If	nonzero,	it	indicates	that	only	flagged	vertices	should	be	split	up	if	"bad".

Return	Value:
False	if	nothing	changed,	true	if	at	least	one	bad	vertex	was	found	and	split.
	

Prototype:
void	OrderVert	(int	vid);

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
This	routine	organizes	the	face	and	edge	lists	of	the	specified	vertex	such	that
going	counterclockwise	around	the	vertex	(with	the	surface	normal	pointing
towards	you),	you'll	encounter	edg[0],	fac[0],	edg[1],	fac[1],	etc,	ending	in
either	the	last	face	if	the	vertex	is	not	on	a	boundary	or	the	last	edge	if	the
vertex	is	on	a	boundary.	(If	the	vertex	is	on	a	boundary,	the	first	&	last	edges
are	part	of	that	boundary.)
NOTE:	OrderVert	requires	a	filled-in	mesh	with	no	"bad"	vertices.	Failing	to
adequately	prepare	your	mesh	may	result	in	a	crash.	(See	the	methods
FillInMesh	and	EliminateBadVerts	for	details.)

Prototype:
void	OrderVerts();

Remarks:
This	routine	organizes	the	face	and	edge	lists	of	each	vertex	such	that	going
counterclockwise	around	the	vertex	(with	the	surface	normal	pointing	up),
you’ll	encounter	edg[0],	fac[0],	edg[1],	fac[1],	etc,	ending	in	either	the	last
face	if	the	vertex	is	not	on	a	boundary	or	the	last	edge	if	the	vertex	is	on	a
boundary.	(If	the	vertex	is	on	a	boundary,	the	first	&	last	edges	are	part	of	that
boundary.)
OrderVerts	requires	a	filled-in	mesh	with	no	bad	vertices,	so	it	will	call
FillInMesh	and/or	EliminateBadVerts	as	needed.

Prototype:
void	Triangulate();

Remarks:
Converts	a	MN_MESH_NONTRI	mesh,	with	polygon	faces	and	possibly
hidden	vertices,	into	a	completely	triangulated	mesh,	wherein	all	faces	have
degree	3.	This	routine	is	called	from	OutToTri	if	the
MN_MESH_NONTRI	flag	is	set.

Prototype:
void	TriangulateFace(int	ff);

Remarks:

Triangulates	the	specified	face,	splitting	it	into	as	many	faces	as	are	needed
(deg-2+hdeg*2)	to	represent	all	the	triangles.

Parameters:
int	ff
Specifies	the	face	to	triangulate.

Prototype:
void	InvalidateTopoCache();

Remarks:
Clears	out	topology-dependent	cache	information.	Note	that	this	method	clears
topology-dependent	flags	such	as	MN_MESH_FILLED_IN,	and	thus
invalidates	the	edge	list.	If	you	have	taken	pains	to	preserve	the	integrity	of
your	edge	list,	you	should	set	the	MN_MESH_FILLED_IN	flag
immediately	after	calling	InvalidateTopoCache().

Prototype:
void	Transform(Matrix3	&xfm);

Remarks:
Transforms	all	vertices	&	hidden	vertices	by	xfm.

Prototype:
bool	IsClosed();

Remarks:
Figures	out	if	this	mesh	is	completely	closed.	Meshes	with	the
MN_MESH_RATSNEST	flags	are	automatically	considered	open.	Otherwise,
each	edge	is	checked	to	see	if	it	has	a	face	on	both	sides.	If	so,	the	mesh	is
closed.	Otherwise,	it’s	open.

Prototype:
void	BBox(Box3	&	bbox,	bool	targonly=FALSE);

Remarks:
Calculates	the	bounding	box	of	the	vertices	&	hidden	vertices	of	this	mesh.

Parameters:
Box3	&	bbox
The	computed	bounding	box	is	placed	here.
bool	targonly
If	this	is	TRUE,	only	targeted	vertices	are	used	to	compute	the	bounding	box.
Hidden	vertices,	which	are	also	normally	used,	will	be	ignored	in	this	case,
since	they	cannot	be	targeted.

Prototype:
void	checkNormals	(BOOL	illum);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	can	be	used	to	build	the	normals	and	allocate	RVert	space	only	if
necessary.	This	is	a	very	inexpensive	call	if	the	normals	are	already	calculated.
When	illum	is	FALSE,	only	the	RVerts	allocation	is	checked	(since	normals
aren't	needed	for	non-illum	rendering).	When	illum	is	TRUE,	normals	will
also	be	built,	if	they	aren't	already.	So,	to	make	sure	normals	are	built,	call	this
with	illum=TRUE.

Parameters:
BOOL	illum
If	TRUE	normals	are	built.	If	FALSE	only	the	RVert	array	is	allocated.

Prototype:
void	buildNormals	();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	resolves	the	normals	on	the	RVertex	array.	If	the	MNMesh
already	has	normals	prescribed	on	each	vertex,	the	normal	is	just	moved	to	the
RVertex	array.	See	Class	RVertex	and	Class	RNormal.
If	you	are	creating	or	modifying	a	MNMesh,	after	you	are	done	specifying	all
the	vertices	and	faces,	this	method	should	be	called.	This	allocates	the	RVertex
and	RNormal	database	for	the	MNMesh.	This	will	allow	you	to	query	the
MNMesh	and	ask	about	normals	on	the	vertices.

This	method	also	builds	the	face	normals	for	the	mesh	if	needed.

Prototype:
void	buildRenderNormals();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	similar	to	buildNormals()	above,	but	ignores	the	material
index	(mtlIndex).	In	other	words,	the	difference	between	this	and
buildNormals()	is	that	it	doesn't	look	at	the	mtlIndex	of	the	faces:	normals
of	faces	with	the	same	smoothing	group	are	averaged	regardless.

Prototype:
void	UpdateBackfacing	(GraphicsWindow	*gw,	bool	force);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Updates	the	MN_BACKFACING	flag	in	all	components	based	on	the
specified	view.

Parameters:
GraphicsWindow	*gw
A	pointer	to	the	current	graphics	window.
bool	force
If	the	gw	points	to	the	same	GraphicsWindow	that	it	did	last	time	this	method
was	called,	it	doesn't	necessarily	need	to	update	the	flags.	If	force	is	true,	it
will	update	them	anyway.	(Useful	if	you	think	the	GraphicsWindow
perspective	may	have	changed.)

Prototype:
void	render(GraphicsWindow	*gw,	Material	*ma,	RECT	*rp,	int
compFlags,	int	numMat=1,	InterfaceServer	*pi=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Causes	the	MNMesh	to	display	itself	in	the	indicated	GraphicsWindow.

Parameters:
GraphicsWindow	*gw
Points	to	the	graphics	window	to	render	to.
Material	*ma
The	list	of	materials	to	use	to	render	the	mesh.	See	Class	Material.
RECT	*rp
Specifies	the	rectangular	region	to	render.	If	the	mesh	should	be	rendered	to
the	entire	viewport	pass	NULL.
int	compFlags
One	or	more	of	the	following	flags:
COMP_TRANSFORM
Forces	recalculation	of	the	model	to	screen	transformation;	otherwise
attempt	to	use	the	cache.
COMP_IGN_RECT
Forces	all	polygons	to	be	rendered;	otherwise	only	those	intersecting	the
box	will	be	rendered.
COMP_LIGHTING
Forces	re-lighting	of	all	vertices	(as	when	a	light	moves);	otherwise	only	re-
light	moved	vertices
COMP_ALL
All	of	the	above	flags.
COMP_OBJSELECTED
If	this	bit	is	set	then	the	node	being	displayed	by	this	mesh	is	selected.
Certain	display	flags	only	activate	when	this	bit	is	set.

int	numMat=1
The	number	of	materials	for	the	MNMesh.

Prototype:
void	renderFace	(GraphicsWindow	*gw,	int	ff);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Displays	the	indicated	face	in	the	GraphicsWindow.	This	method	is	usually
called	only	by	MNMesh::render().

Parameters:
GraphicsWindow	*gw
The	GraphicsWindow	in	which	to	display	this	face.
int	ff
The	face	to	display.

Prototype:
void	render3DFace	(GraphicsWindow	*gw,	int	ff);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Displays	the	indicated	face	in	the	GraphicsWindow	using	hardware
acceleration	for	texture	and	lighting	if	available.	This	method	is	usually	called
only	by	MNMesh::render().

Parameters:
GraphicsWindow	*gw
The	GraphicsWindow	in	which	to	display	this	face.
int	ff
The	face	to	display.

Prototype:
void	render3DDiagonals	(GraphicsWindow	*gw,	DWORD
compFlags);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Displays	all	face	diagonals	in	the	GraphicsWindow	using	hardware
acceleration	for	texture	and	lighting	if	available.	See	the	render	method	for	a
description	of	the	parameters.	This	method	is	usually	called	only	by
MNMesh::render().

Prototype:
void	renderDiagonals	(GraphicsWindow	*gw,	DWORD
compFlags);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Displays	all	face	diagonals	in	the	GraphicsWindow.	See	the	render	method	for
a	description	of	the	parameters.	This	method	is	usually	called	only	by
MNMesh::render().

Prototype:
void	renderDiagonal	(GraphicsWindow	*gw,	int	ff,	bool
useSegments=false,	bool	*lastColorSubSel=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Displays	diagonals	for	the	specified	face	in	the	GraphicsWindow.	This	method
is	usually	called	only	by	MNMesh::render().

Parameters:
GraphicsWindow	*gw
The	GraphicsWindow	in	which	to	display	these	diagonals.
int	ff
The	face	to	display	the	diagonals	of.
bool	useSegments	=	false
Indicates	if	we	are	in	segment-drawing	mode.	See	class	GraphicsWindow,
method	segment()	for	details.
bool	*lastColorSubSel=NULL
If	non-NULL,	it	points	to	a	bool	variable	which	should	be	true	if	the	last	color
set	was	the	subobject	selection	color	(GetSubSelColor()),	and	false	if	the
color	is	set	to	the	selected	object	color	(GetSelColor()).	This	saves
processing	time	that	would	be	needed	to	switch	between	the	two	colors.

Prototype:
void	render3DEdges	(GraphicsWindow	*gw,	DWORD
compFlags);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Displays	all	edges	in	the	GraphicsWindow	using	hardware	acceleration	for

texture	and	lighting	if	available.	See	the	render	method	for	a	description	of	the
parameters.	This	method	is	usually	called	only	by	MNMesh::render().

Prototype:
void	renderEdges	(GraphicsWindow	*gw,	DWORD	compFlags);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Displays	all	edges	in	the	GraphicsWindow.	See	the	render	method	for	a
description	of	the	parameters.	This	method	is	usually	called	only	by
MNMesh::render().

Prototype:
void	renderEdge	(GraphicsWindow	*gw,	int	ee,	bool
useSegments=false,	bool	*lastColorSubSel=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Displays	an	edge	in	a	GraphicsWindow.	This	method	is	usually	called	only	by
MNMesh::render().

Parameters:
GraphicsWindow	*gw
The	GraphicsWindow	in	which	to	display	this	edge.
int	ee
The	edge	to	display.
bool	useSegments	=	false
Indicates	if	we	are	in	segment-drawing	mode.	See	class	GraphicsWindow,
method	segment()	for	details.
bool	*lastColorSubSel=NULL
If	non-NULL,	it	points	to	a	bool	variable	which	should	be	true	if	the	last	color
set	was	the	subobject	selection	color	(GetSubSelColor()),	and	false	if	the
color	is	set	to	the	selected	object	color	(GetSelColor()).	This	saves
processing	time	that	would	be	needed	to	switch	between	the	two	colors.

Prototype:

BOOL	select	(GraphicsWindow	*gw,	Material	*ma,	HitRegion
*hr,	int	abortOnHit=FALSE,	int	numMat=1);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Checks	the	given	HitRegion	to	see	if	it	intersects	this	Mesh	object.

Parameters:
GraphicsWindow	*gw
Points	to	the	graphics	window	to	check.
Material	*ma
The	list	of	materials	for	the	mesh.
HitRegion	*hr
This	describes	the	properties	of	a	region	used	for	the	hit	testing.	See	Class
HitRegion.
int	abortOnHit	=	FALSE
If	nonzero,	the	hit	testing	is	complete	after	any	hit.	Note	that	although	there	is
only	one	object	to	hit,	setting	this	to	TRUE	prevents	the	algorithm	from
finding	the	closest	hit	on	the	MNMesh.
int	numMat=1
The	number	of	materials	for	the	mesh.

Return	Value:
TRUE	if	the	item	was	hit;	otherwise	FALSE.

Component	Targeting	&	Flag	methods
Prototype:
void	ClearVFlags(DWORD	fl);

Remarks:
Clears	all	specified	flag	bits	in	all	MNVerts.

Prototype:
void	ClearEFlags(DWORD	fl);

Remarks:
Clears	all	specified	flag	bits	in	all	MNEdges.

Prototype:
void	ClearFFlags(DWORD	fl);

Remarks:
Clears	all	specified	flag	bits	in	all	MNFaces.

Prototype:
void	PaintFaceFlag(int	ff,	DWORD	fl,	DWORD	fenceflags=0x0);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Recursively	sets	flag	on	given	face	and	all	faces	connected	to	it.

Parameters:
int	ff
The	face	to	begin	painting	the	face	flag	on.
DWORD	fl
The	flag	to	set	on	these	faces.
DWORD	fenceflags=0x0
If	nonzero,	this	represents	flags	of	edges	that	should	not	be	crossed.	In	this
way	you	can	set	up	a	"fence"	of	edges	and	set	a	particular	face	flag	on	all	the
faces	within	that	fence.

Prototype:
void	VertexSelect(const	BitArray	&	vsel);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Selects	or	deselects	the	verticies	as	specified	by	on	bits	in	the	given	bit	array.
If	the	bit	array	size	is	smaller	than	the	number	of	verticies	then	only	those
verticies	in	the	bit	array	are	modified.

Parameters:
const	BitArray	&	vsel
Specifies	which	verticies	to	select	or	deselect.

Prototype:
void	EdgeSelect(const	BitArray	&	esel);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Selects	or	deselects	the	edges	as	specified	by	on	bits	in	the	given	bit	array.	If
the	bit	array	size	is	smaller	than	the	number	of	edges	then	only	those	edges	in
the	bit	array	are	modified.

Parameters:
const	BitArray	&	esel
Specifies	which	edges	to	select	or	deselect.

Prototype:
void	FaceSelect(const	BitArray	&	fsel);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Selects	or	deselects	the	faces	as	specified	by	on	bits	in	the	given	bit	array.	If
the	bit	array	size	is	smaller	than	the	number	of	faces	then	only	those	faces	in
the	bit	array	are	modified.

Parameters:
const	BitArray	&	fsel
Specifies	which	faces	to	select	or	deselect.

Prototype:
bool	getVertexSel(BitArray	&	vsel);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Fills	the	given	bit	array	with	the	current	vertex	selection	state.

Parameters:
BitArray	&	vsel
The	results	are	stored	here.	Bits	which	are	on	indicate	selected	verticies.

Prototype:
bool	getEdgeSel(BitArray	&	esel);

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Fills	the	given	bit	array	with	the	current	edge	selection	state.

Parameters:
BitArray	&	esel
The	results	are	stored	here.	Bit	which	are	on	indicate	selected	edges.

Prototype:
bool	getFaceSel(BitArray	&	fsel);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Fills	the	given	bit	array	with	the	current	face	selection	state.

Parameters:
BitArray	&	fsel
The	results	are	stored	here.	Bit	which	are	on	indicate	selected	faces.

Prototype:
bool	getVerticesByFlag(BitArray	&	vset,	DWORD	flags,	DWORD
fmask=0x0);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Creates	a	BitArray	of	all	vertices	using	the	specified	flags.

Parameters:
BitArray	&	vset
The	BitArray	which	is	filled	in.	vset	is	set	to	size	numv.
DWORD	flags
The	flags	to	search	for.
DWORD	fmask=0x0
This	optional	parameter	allows	the	user	to	look	for	particular	combinations	of
on	and	off	flags.	For	instance,	if	flags	is	MN_DEAD	and	fmask	is	0,	the
method	finds	vertices	with	the	MN_DEAD	flag	set.	But	if	flags	is	MN_SEL
and	fmask	is	MN_SEL|MN_DEAD,	it	would	find	vertices	that	have	MN_SEL
set,	but	don’t	have	MN_DEAD	set.

Prototype:
bool	getEdgesByFlag(BitArray	&	eset,	DWORD	flags,	DWORD
fmask=0x0);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Creates	a	BitArray	of	all	edges	using	the	specified	flags.

Parameters:
BitArray	&	eset
The	BitArray	which	is	filled	in.	eset	is	set	to	size	nume.
DWORD	flags
The	flags	to	search	for.
DWORD	fmask=0x0
This	optional	parameter	allows	the	user	to	look	for	particular	combinations	of
on	and	off	flags.	For	instance,	if	flags	is	MN_DEAD	and	fmask	is	0,	the
method	finds	edges	with	the	MN_DEAD	flag	set.	But	if	flags	is	MN_SEL	and
fmask	is	MN_SEL|MN_DEAD,	it	would	find	edges	that	have	MN_SEL	set,
but	don’t	have	MN_DEAD	set.

Prototype:
bool	getFacesByFlag(BitArray	&	fset,	DWORD	flags,	DWORD
fmask=0x0);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Creates	a	BitArray	of	all	faces	using	the	specified	flags.

Parameters:
BitArray	&	fset
The	BitArray	which	is	filled	in.	fset	is	set	to	size	numf.
DWORD	flags
The	flags	to	search	for.
DWORD	fmask=0x0
This	optional	parameter	allows	the	user	to	look	for	particular	combinations	of
on	and	off	flags.	For	instance,	if	flags	is	MN_DEAD	and	fmask	is	0,	the
method	finds	faces	with	the	MN_DEAD	flag	set.	But	if	flags	is	MN_SEL	and

fmask	is	MN_SEL|MN_DEAD,	it	would	find	faces	that	have	MN_SEL	set,
but	don’t	have	MN_DEAD	set.

Prototype:
void	ElementFromFace(int	ff,	BitArray	&	fset);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	bits	for	all	faces	in	the	same	"element",	or	connected	component,	with
face	ff.	Faces	already	selected	in	fset	will	be	considered	"walls"	for	this
processing	and	will	not	be	evaluated.	That	is,	if	ff	is	not	selected,	but	there’s	a
ring	of	faces	around	it	that	is,	the	algorithm	will	stop	at	that	ring.

Parameters:
int	ff
The	zero	based	index	of	the	face.
BitArray	&	fset
The	bits	of	the	faces	in	the	element	are	selected	in	this	array.

Prototype:
void	BorderFromEdge(int	ee,	BitArray	&	eset);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Takes	a	one-sided	edge	and	sets	the	bits	representing	this	edge’s	"border".	(All
one-sided	edges	in	MNMeshes	can	be	grouped	into	chains,	end	to	end,	that
represent	boundaries	of	the	mesh.	For	instance,	in	a	box	with	one	side	deleted,
all	the	one-sided	edges	are	part	of	the	chain	that	goes	around	the	hole.

Parameters:
int	ee
The	edge	to	start	looking	from.	(Note	that	edge	ee	should	be	one-sided	–
e[ee].f2	should	be	-1.
BitArray	&	eset
The	bitarray	to	return	the	border’s	edge	set	in.

Prototype:

void	SetEdgeVis(int	ee,	BOOL	vis=TRUE);
Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	not	only	sets	the	edge’s	MN_EDGE_INVIS	flag,	it	also	sets	the	visedg
state	of	the	faces	on	either	side.	This	is	the	proper	way	to	set	edge	visibility
permanently,	as	the	MNEdge	flag	will	be	lost	if	the	edge	list	needs	to	be
reconstructed.

Parameters:
int	ee
The	edge	whose	visibility	should	be	set.
BOOL	vis=TRUE
The	desired	visibility	–	TRUE	for	visible,	FALSE	for	invisible.

Prototype:
void	SetEdgeSel(int	ee,	BOOL	sel=TRUE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	not	only	sets	the	edge’s	MN_SEL	flag,	it	also	sets	the	edgsel	state	of	the
faces	on	either	side.	This	is	the	proper	way	to	set	edge	selection	permanently,
as	the	MNEdge	flag	will	be	lost	if	the	edge	list	needs	to	be	reconstructed.

Parameters:
int	ee
The	edge	whose	selection	state	should	be	set.
BOOL	sel=TRUE
The	desired	selection	state.

Prototype:
int	TargetVertsBySelection(DWORD	selLevel);

Remarks:
Sets	vertex	MN_TARG	flags	based	on	the	existing	MN_SEL	flags.

Parameters:
DWORD	selLevel

Specifies	which	components	to	check	for	MN_SEL	flags.	If	selLevel	is
MNM_SL_OBJECT,	all	vertices	are	targeted.	If	selLevel	is
MNM_SL_VERTEX,	the	vertices	with	MN_SEL	flags	set	also	have	their
MN_TARG	flags	set.	If	selLevel	is	MNM_SL_FACE	or	MNM_SL_EDGE,
vertices	that	touch	selected	faces	or	edges,	respectively,	have	their	MN_TARG
flags	set.

Return	Value:
The	(highly)	approximate	number	of	targeted	vertices.

Prototype:
int	TargetEdgesBySelection(DWORD	selLevel);

Remarks:
Sets	edge	MN_TARG	flags	based	on	the	existing	MN_SEL	flags.

Parameters:
DWORD	selLevel
Specifies	which	components	to	check	for	MN_SEL	flags.	If	selLevel	is
MNM_SL_OBJECT,	all	edges	are	targeted.	If	selLevel	is	MNM_SL_EDGE,
the	edges	with	MN_SEL	flags	set	also	have	their	MN_TARG	flags	set.	If
selLevel	is	MNM_SL_FACE	or	MNM_SL_VERTEX,	edges	that	touch
selected	faces	or	vertices,	respectively,	have	their	MN_TARG	flags	set.

Return	Value:
The	(highly)	approximate	number	of	targeted	edges.

Prototype:
int	TargetFacesBySelection(DWORD	selLevel);

Remarks:
Sets	face	MN_TARG	flags	based	on	the	existing	MN_SEL	flags.

Parameters:
DWORD	selLevel
Specifies	which	components	to	check	for	MN_SEL	flags.	If	selLevel	is
MNM_SL_OBJECT,	all	faces	are	targeted.	If	selLevel	is	MNM_SL_FACE,
the	faces	with	MN_SEL	flags	set	also	have	their	MN_TARG	flags	set.	If
selLevel	is	MNM_SL_EDGE	or	MNM_SL_VERTEX,	faces	that	touch

selected	edges	or	vertices,	respectively,	have	their	MN_TARG	flags	set.
Return	Value:
The	(highly)	approximate	number	of	targeted	faces.

Prototype:
int	PropegateComponentFlags(DWORD	slTo,	DWORD	flTo,
DWORD	slFrom,	DWORD	flFrom,	bool	ampersand=FALSE,	bool
set=TRUE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	allows	the	developer	to	set	flags	in	one	type	of	component	based	on	what
the	nearby	flags	of	another	type	of	component	are.	For	instance,	you	might
want	to	set	MN_TARG	on	all	vertices	that	are	used	by	faces	with	the
MN_SEL	flag	set;	that	would	be	PropegateComponentFlags
(MESH_VERTEX,	MN_TARG,	MESH_FACE,	MN_SEL);
Another	example:
PropegateComponentFlags	(MNM_SL_OBJECT,	MN_MESH_FILLED_IN,
MNM_SL_EDGE,	MN_DEAD,	FALSE,	FALSE);
This	would	clear	the	MN_MESH_FILLED_IN	flag	from	the	MNMesh	if	any
of	its	MNEdges	were	dead.

Parameters:
DWORD	slTo
The	selection	level	of	the	components	you	wish	to	set.	This	would	be	one	of
MNM_SL_OBJECT,	MNM_SL_VERTEX,	MNM_SL_EDGE,	or
MNM_SL_FACE.
DWORD	flTo
The	flag	to	set.
DWORD	slFrom
The	selection	level	of	the	components	you	wish	to	base	the	selection	upon.
This	would	be	one	of	MNM_SL_OBJECT,	MNM_SL_VERTEX,
MNM_SL_EDGE,	or	MNM_SL_FACE.
DWORD	flFrom
The	flag	to	test.

bool	ampersand=FALSE
When	slFrom	and	slTo	are	different,	this	indicates	whether	the	flags	of	the
nearby	components	should	be	"or'd"	or	"and'd".	If	it's	false,	then	any	flagged
components	in	the	"from"	level	will	cause	the	component	in	the	"to"	level	to
be	affected.	If	true,	then	all	the	components	in	the	"from"	level	that	touch	a
component	in	the	"to"	level	must	be	flagged	in	order	for	the	"to"	level
component	to	be	affected.	(i.e.,	if	from	is	faces	and	to	is	vertices,	a	vertex
would	only	be	modified	if	all	faces	that	use	it	have	the	flFrom	flag	set.)
bool	set=TRUE
If	TRUE	(as	would	be	usual)	the	slTo	components	have	flags	flTo	set.	If
FALSE,	these	flags	would	be	cleared	instead.

Return	Value:
Returns	the	number	of	slFrom	components	that	tested	positive	for	the	flFrom
flags.	(If	0,	nothing	happened.)

Prototype:
void	DetargetVertsBySharpness(float	sharpval);

Remarks:
Clears	the	MN_TARG	flag	on	vertices	representing	relatively	flat	areas,
keeping	the	flag	on	vertices	at	sharper	corners.	The	purpose	of	this	method	is
to	avoid	working	on	smooth	areas	of	the	mesh	in,	for	instance,	tessellation
algorithms	which	are	designed	to	smooth	an	area.	An	example	of	this	is	the
sharpness	option	in	3ds	max’s	MeshSmooth	modifier,	although	the	parameter
there	is	1.0	-	this	value.
Note	that	this	method	requires	filled	in	geometry	and	ordered	vertices,	and
will	call	FillInMesh	and	OrderVerts	as	needed.

Parameters:
float	sharpval
The	threshold	for	determining	whether	a	vertex	is	sharp	enough	to	continue
being	targeted.	A	value	of	0	indicates	that	all	vertices	are	sharp	enough;	a
value	of	1	would	de-target	all	vertices.	The	actual	determination	is	made	by
comparing	the	dot	product	of	any	two	consecutive	face	normals	is	less	that	1	-
2*sharpval.

	

The	following	"fence"	methods	are	useful	for	algorithms	such	as	SabinDoo
wherein	you	don’t	want	to	mix	faces	with	different	characteristics.

Prototype:
void	FenceMaterials();

Remarks:
Sets	the	MN_EDGE_NOCROSS	flag	on	all	edges	that	lie	between	faces	with
different	material	IDs.

Prototype:
void	FenceSmGroups();

Remarks:
Sets	the	MN_EDGE_NOCROSS	flag	on	all	edges	that	lie	between	faces	with
exclusive	smoothing	groups.

Prototype:
void	FenceFaceSel();

Remarks:
Sets	the	MN_EDGE_NOCROSS	flag	on	all	edges	that	lie	between	selected	&
non-selected	faces.	(This	checks	the	MN_SEL,	not	the	MN_TARG,	flags	on
the	faces.)

Prototype:
void	FenceOneSidedEdges();

Remarks:
Sets	the	MN_EDGE_NOCROSS	flag	on	all	edges	that	are	on	the	boundary.

Prototype:
void	FenceNonPlanarEdges(float	thresh=.9999f,	bool
makevis=FALSE);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Sets	MN_EDGE_NOCROSS	flags	on	edges	between	faces	that	aren't	in

the	same	plane.
Parameters:
float	thresh=.9999f
This	is	the	threshold	used	to	determine	if	two	adjacent	faces	have	the	same
normals,	i.e.	lie	in	the	same	plane.	If	the	dot	product	between	the	normals	is
less	than	thresh,	they	are	considered	different,	otherwise	they're	considered	the
same.	The	threshold	angle	between	faces	is	the	arc	cosine	of	this	amount,	so
for	instance	to	set	a	threshold	angle	of	.5	degrees,	you	would	call
FenceNonPlanarEdges	with	a	thresh	of	cos(.5*PI/180.).	The	default	value	is
equivalent	to	about	.81	degrees.
bool	makevis=FALSE
Indicates	whether	nonplanar	edges	should	be	made	visible,	i.e.	have	their
MN_EDGE_INVIS	flag	cleared.	(This	is	sometimes	done	before
MakePolyMesh,	so	it	can	be	used	to	influence	whether	nonplanar	faces	are
joined	together.)

Prototype:
void	SetMapSeamFlags	();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	MN_EDGE_MAP_SEAM	on	all	edges	that	are	"seams"	for	any
active	map(s).	A	map	seam	is	an	edge	where	the	faces	on	either	side	use
different	mapping	vertices	for	at	least	one	end.

Prototype:
void	SetMapSeamFlags	(int	mp);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	MN_EDGE_MAP_SEAM	on	all	edges	that	are	"seams"	for	the
specified	map(s).	A	map	seam	is	an	edge	where	the	faces	on	either	side	use
different	mapping	vertices	for	at	least	one	end.

Parameters:
int	mp

The	map	to	use	to	set	the	seams.	If	left	at	the	default	-1,	it’ll	check	all	active
maps.

Prototype:
void	SetTVSeamFlags();

Remarks:
Sets	the	MN_EDGE_TV_SEAM	flag	on	all	edges	whose	endpoints	on	one
face	have	mapping	coordinates	that	are	offset	from	the	mapping	coordinates	of
the	same	endpoints	on	the	other	face	by	the	same	amount.	Operating	on	a
standard	cylinder	with	mapping	coordinates	assigned,	for	instance,	this	will	set
the	MN_EDGE_TV_SEAM	flag	on	the	column	of	edges	that	forms	the
"wrap"	boundary	for	the	mapping	coordinates.

Prototype:
void	PrepForPipeline	();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Prepares	MNMesh	for	pipeline.	This	just	does	a	few	basic	checks	and
modifies	data	caches	to	be	consistent.	In	particular	it	throws	away	the	edge	list
if	the	MN_MESH_FILLED_IN	flag	is	not	set,	and	it	frees	any	data	in
MN_DEAD	map	channels.	This	is	a	good	method	to	call	at	the	end	of	any
operation	on	an	MNMesh.

Component	information	methods
	
In	the	following	face	center	methods,	hidden	vertices	have	no	effect.

Prototype:
void	ComputeCenters(Point3	*ctr,	bool	targonly=FALSE);

Remarks:
Finds	the	centers	of	all	the	faces,	using	repeated	calls	to	ComputeCenter.

Parameters:
Point3	*ctr
An	array	of	at	least	FNum()	points	for	storing	the	centers.

bool	targonly
If	this	is	TRUE,	centers	will	only	be	computed	for	targeted	faces.	(The	rest	of
the	ctr	array	will	remain	unmodified.)

Prototype:
void	ComputeCenter(int	ff,	Point3	&	ctr);

Remarks:
Finds	the	center	of	face	ff	by	finding	the	average	of	all	its	vertices.

Prototype:
void	ComputeSafeCenters(Point3	*ctr,	bool	targonly=FALSE,	bool
detarg=FALSE);

Remarks:
Finds	the	"safe"	centers	of	all	the	faces,	using	repeated	calls	to
ComputeSafeCenter.

Parameters:
Point3	*ctr
An	array	of	at	least	FNum()	points	for	storing	the	centers.
bool	targonly
If	this	is	TRUE,	centers	will	only	be	computed	for	targeted	faces.	(The	rest	of
the	ctr	array	will	remain	unmodified.)
bool	detarg
If	TRUE,	this	will	remove	the	MN_TARG	flag	from	faces	where	safe	centers
could	not	be	found.

Prototype:
bool	ComputeSafeCenter(int	ff,	Point3	&	ctr);

Remarks:
Finds	the	"safe"	center	of	face	ff,	if	possible.	For	non-convex	faces,	the
average	point	found	in	ComputeCenter	is	unsuitable	for	some	applications
because	it	can	lie	outside	the	face	completely,	or	in	a	region	where	it	cannot
"see"	all	the	faces’	vertices.	(I.e.,	line	segments	from	the	center	to	the	corner
pass	outside	of	the	face.)

This	routine	provides	a	better	solution	in	some	cases	by	finding	the	center	of
the	convex	hull	of	the	face.	The	convex	hull	is	defined	as	the	region	in	a	face
with	a	clear	line-of-sight	to	all	the	corners.	Some	faces,	such	as	the	top	face	in
an	extruded	letter	M,	have	an	empty	convex	hull,	in	which	case	this	routine
fails	and	merely	provides	the	regular	center	given	by	ComputeCenter.

Return	Value:
Returns	TRUE	if	a	safe	center	was	found,	FALSE	if	no	such	center	could	be
found.

Prototype:
void	RetriangulateFace(int	ff);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Throws	out	the	current	triangulation	for	face	ff	and	computes	a	new	one.	Note
that	hidden	vertices	that	actually	fall	outside	of	the	region	of	the	face	will	be
thrown	out	during	this	routine,	since	they	cannot	be	incorporated	into	any
triangulation	and	don’t	make	sense	anyway.

Prototype:
void	BestConvexDiagonals	(int	ff,	int	*diag=NULL);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
If	the	given	face	is	convex,	this	will	often	produce	a	better	diagonals	than
RetriangulateFace	would.	The	diagonals	are	less	likely	to	overuse	any	single
vertex.	The	face	is	not	checked	for	convexity,	but	if	it	is	not	convex	the
diagonals	produced	will	probably	be	self-overlapping.

Parameters:
int	ff
The	face	to	find	a	diagonal	for.
int	*diag=NULL
If	NULL,	the	new	diagonals	are	put	into	the	face's	tri	array.	If	this	tri	is	non-
NULL,	the	diagonals	are	put	here	instead.	Be	sure	that	tri	is	allocated	with
space	for	at	least	(deg-2+hdeg)*3	elements.

Prototype:
void	BestConvexDiagonals	(int	deg,	int	*vv,	int	*diag);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Uses	a	triangulation	scheme	optimized	for	convex	polygons	to	find	a	set	of
diagonals	for	this	sequence	of	vertices,	creating	a	triangulation	for	the	polygon
they	form.

Parameters:
int	deg
The	number	of	vertices	in	the	sequence.
int	*vv
The	array	of	vertices.
int	*diag
A	pointer	to	an	array	of	size	(deg-3)*2	where	the	diagonals	can	be	put.

Prototype:
void	FindDiagonals	(int	ff,	int	*diag);

Remarks:
Finds	a	diagonal	of	face	ff	that	does	not	include	any	hidden	vertices.	This	can
be	used	with	the	method	FindFacePointTri	to	get	a	sub-triangle	and
barycentric	coordinates	for	a	hidden	vertex,	so	that	vertex	can	be	kept	in	the
face	when	the	non-hidden	vertices	are	moved	in	some	way.

Parameters:
int	ff
The	face	to	get	an	external	diagonal	of.
int	*diag
An	array	of	at	least	(F(ff)->deg-2)*3	elements	to	store	the	diagonals	in.

Prototype:
void	FindDiagonals	(int	deg,	int	*vv,	int	*diag);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

This	method	finds	diagonals	for	this	sequence	of	vertices,	creating	a
triangulation	for	the	polygon	they	form.

Parameters:
int	deg
The	number	of	vertices	in	the	sequence.
int	*vv
The	array	of	vertices.
int	*diag
A	pointer	to	an	array	of	size	(deg-3)*2	where	the	diagonals	can	be	put.

Prototype:
void	FaceBBox(int	ff,	Box3	&	bbox);

Remarks:
Finds	the	bounding	box	of	all	vertices	and	hidden	vertices	used	by	face	ff.

Prototype:
int	FindEdgeFromVertToVert(int	vrt1,	int	vrt2);

Remarks:
Finds	an	edge	connecting	these	two	vertices,	if	one	exists.	This	algorithm	is
relatively	fast,	since	it	just	checks	the	edges	in	V(vrt1)’s	edge	list.	However,	it
requires	that	the	MNMesh	be	filled	in,	and	it	WILL	call	the	much	slower
FillInMesh	routine	if	the	MN_MESH_FILLED_IN	flag	is	not	set.

Return	Value:
The	index	of	the	desired	edge,	or	-1	if	no	such	edge	could	be	found.

Prototype:
void	GetVertexSpace	(int	vrt,	Matrix3	&	tm);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Chooses	a	suitable	"local	space",	and	sets	tm's	rotation	to	match	that	space.
Does	not	set	tm's	translation	component.	This	is	easily	done	by	setting
tm.SetRow	(3,	v[vrt].p).

Parameters:
int	vrt
The	vertex	index.
Matrix3	&	tm
The	transformation	matrix.

Prototype:
Point3	GetVertexNormal(int	vrt);

Remarks:
Returns	the	surface	normal	at	the	vertex	vrt.	It	computes	the	normal	by	taking
the	average	of	the	face	normals	from	faces	that	V(vrt)	is	on,	weighted	by	the
angles	of	the	vrt	corners	of	each	of	those	faces.	That	is,	if	vrt	is	at	a	very	acute
angle	on	one	face,	but	a	very	obtuse	angle	on	the	next,	the	face	with	the	obtuse
vrt	corner	will	count	much	more	heavily.	The	return	value	has	a	length	of	1.
This	normal	is	not	related	to	the	normals	used	in	rendering.

Prototype:
Point3	GetEdgeNormal(int	ed);

Remarks:
Returns	the	surface	normal	at	the	edge	ed.	This	is	just	the	average	of	the	face
normals	on	either	side,	or,	if	this	is	an	edge	with	only	one	face,	it’s	just	that
face’s	normal.	The	return	value	has	a	length	of	1.
This	normal	is	not	related	to	the	normals	used	in	rendering.

Prototype:
Point3	GetFaceNormal(int	fc,	bool	nrmlz=FALSE);

Remarks:
Returns	the	surface	normal	of	face	fc.	If	this	face	has	degree	3,	this	is	the	same
as	the	regular	3ds	max	normal	for	this	face.	However,	if	the	face	is	more
complex,	the	normal	may	not	be	the	same	as	the	ones	for	the	component
triangles.

Parameters:
int	fc

The	index	of	the	face	to	find	the	normal	for.
bool	nrmlz
Whether	or	not	to	scale	the	result	to	length	1.	If	this	is	FALSE,	the	length	of
the	return	value	corresponds	(in	planar	faces)	to	the	area	of	the	face,	times	2.

Prototype:
void	FlipNormal(int	faceIndex);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	flips	the	normal	of	the	indicated	face.	This	is	done	by	reordering
the	vertices.	The	faces	for	any	assigned	texture	map	is	handled	as	well.

Parameters:
int	faceIndex
The	index	of	the	face	for	which	to	flip	the	normal.

Prototype:
Point3	GetEdgeNormal(int	vrt1,	int	vrt2);

Remarks:
This	merely	combines	GetEdgeNormal	(int	ed)	with	FindEdge	(int	vrt1,	int
vrt2).	It	returns	the	normal	of	the	edge	connecting	vrt1	to	vrt2,	if	such	an	edge
can	be	found.	(If	there	is	no	such	edge,	it	returns	Point3(0.0f,	0.0f,	0.0f).)

Prototype:
int	FindFacePointTri(int	ff,	Point3	&	pt,	double	*bary,	int	*tri);

Remarks:
Finds	the	sub-triangle	and	(optionally)	barycentric	coordinates	within	that
triangle	of	a	point	that	lies	on	this	face.	For	faces	that	are	not	themselves
triangles,	this	helps	in	particular	to	create	mapping	coordinates	or	vertex
colors	for	new	points	on	this	face.	To	use	this	method,	you	must	now	call
MNFace::GetTriangles	to	get	a	triangle	table,	then	pass	the	contents	of
that	table	to	this	method.	Note	that	the	optional	size	of	the	triangulation	array
was	removed;	this	is	assumed	to	be	(f[ff].deg-2)*3.

Parameters:

int	ff
The	face.
Point3	&	pt
The	point.
double	*bary
An	array	of	3	double-precision	values	to	store	the	barycentric	coordinates	in.
If	this	is	NULL,	barycentric	coordinates	are	not	computed.
int	*tri
An	optional	alternative	triangulation,	such	as	that	produced	by
FindExternalTriangulation.	(If	NULL,	the	face’s	regular	triangulation	is	used.)

Return	Value:
3	times	the	index	of	the	triangle	the	point	is	found	in,	or	-1	if	this	point	doesn’t
seem	to	lie	on	this	face.	That	is,	if	this	point	is	found	in	the	triangle
represented	by	tri[6],	tri[7],	and	tri[8],	this	routine	will	return	6.

Prototype:
UVVert	FindFacePointMapValue(int	ff,	Point3	&	pt,	int	mp);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.	It’s	the	generalized
version	of	the	old	FindFacePointCV	and	FindFacePointTV.
Uses	FindFacePointTri	and	the	mapping	coordinates	of	the	endpoints	of	the
relevant	triangle	to	compute	a	map	vertex	corresponding	to	the	point	pt.	If	the
point	is	not	on	face	ff,	UVVert	(0,0,0)	is	returned.
This	method	is	useful	e.g.	for	getting	map	coordinates	to	match	a	new	vertex
when	dividing	up	a	face.

Parameters:
int	ff
The	face	to	find	map	coordinates	on.
Point3	&	pt
The	point	(lying	on	the	face)	to	find	map	coordinates	for.
int	mp
The	map	channel	to	get	map	coordinates	in.

Prototype:
VertColor	FindFacePointCV(int	ff,	Point3	&	pt);

Remarks:
Uses	FindFacePointTri	and	the	vertex	colors	of	the	endpoints	of	the	relevant
triangle	to	compute	a	vertex	color	corresponding	to	the	point	pt.	If	the	point	is
not	on	face	ff,	VertColor	(0.0f,0.0f,0.0f)	(black)	is	returned.

Prototype:
UVVert	FindFacePointTV(int	ff,	Point3	&	pt);

Remarks:
Uses	FindFacePointTri	and	the	mapping	coordinates	of	the	endpoints	of	the
relevant	triangle	to	compute	mapping	coordinates	corresponding	to	the	point
pt.	If	the	point	is	not	on	face	ff,	UVVert	(0.0f,0.0f,0.0f)	is	returned.

Prototype:
int	IntersectRay	(Ray&	ray,	float&	at,	Point3&	norm);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Provides	the	intersection	point	and	normal	for	the	ray	with	this	mesh.

Parameters:
Ray	&	ray
The	ray	we	want	an	intersection	point	for.
float	&	at
This	is	filled	in	with	a	value	giving	the	intersection	point	along	the	ray.	(The
actual	point	is	computed	by	ray.p	+	ray.dir*at.)
Point3	&	norm
Filled	in	with	the	surface	normal	at	the	intersection	point.

Return	Value:
Returns	TRUE	if	an	intersection	point	was	found,	or	FALSE	if	the	ray	doesn't
intersect	this	MNMesh.

Prototype:

int	IntersectRay	(Ray&	ray,	float&	at,	Point3&	norm,	int	&fi,
Tab<float>	&	bary);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Provides	the	intersection	point	and	normal	for	the	ray	with	this	mesh.

Parameters:
Ray	&	ray
The	ray	we	want	an	intersection	point	for.
float	&	at
This	is	filled	in	with	a	value	giving	the	intersection	point	along	the	ray.	(The
actual	point	is	computed	by	ray.p	+	ray.dir*at.)
Point3	&	norm
Filled	in	with	the	surface	normal	at	the	intersection	point.
int	&	fi
Filled	in	with	the	face	index	for	the	face	that	was	hit	by	the	ray.
Tab<float>	&	bary
Filled	in	with	the	"generalized	barycentric	coordinates"	of	the	intersection
point	on	the	face.	This	is	a	table	of	floats	of	size	f[fi].deg,	where	each	float
represents	the	contribution	of	the	corresponding	face	vertex,	and	where	the
floats	all	sum	to	1.

Return	Value:
Returns	TRUE	if	an	intersection	point	was	found,	or	FALSE	if	the	ray	doesn't
intersect	this	MNMesh.

Prototype:
BitArray	VertexTempSel	(DWORD	fmask=MN_DEAD|MN_SEL,
DWORD	fset=MN_SEL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Gets	the	current	vertex	selection,	based	on	the	current	selection	level.	That	is,
if	the	current	selection	level	is	MNM_SL_VERTEX	and	the	parameters	are
at	their	defaults,	it'll	return	the	current	vertex	selection,	but	if	the	selection
level	is	MNM_SL_FACE,	for	instance,	it'll	return	the	vertices	used	by

currently	selected	faces.
This	method	is	used,	e.g.	in	PolyObject::Deform	to	determine	which	vertices
to	affect	by	pipeline	modifiers.

Parameters:
DWORD	fmask=MN_DEAD|MN_SEL
Indicates	the	flags	we're	trying	to	match	in	the	components	at	the	current
selection	level.
DWORD	fset=MN_SEL
Indicates	which	flags	(from	fmask)	we	want	to	see	set.	The	default	values
mean	"find	components	with	MN_SEL	set	and	MN_DEAD	cleared".

Prototype:
void	ShallowCopy(MNMesh	*amesh,	ULONG_PTR	channels);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Provides	the	guts	of	pipeline	shallow	copying.	Used	by
PolyObject::ShallowCopy().

Prototype:
void	NewAndCopyChannels(ULONG_PTR	channels);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Provides	the	guts	of	pipeline	new	&	copying.	Used	by
PolyObject::NewAndCopyChannels().

Prototype:
void	FreeChannels	(ULONG_PTR	channels,	BOOL
zeroOthers=1);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Provides	the	guts	of	pipeline	channel	freeing.	Used	by
PolyObject::FreeChannels().

Smoothing-group	&	Material	methods
Prototype:
void	Resmooth(bool	smooth=TRUE,	bool	targonly=FALSE,
DWORD	targmask=~0x0);

Remarks:
Applies	new	smoothing	(or	removes	smoothing	groups)	from	selected	areas	of
the	MNMesh.	With	the	default	parameters,	it	smoothes	all	faces	with	the	same
group.

Parameters:
bool	smooth
If	TRUE,	Resmooth	will	generate	a	new	smoothing	group	(using
GetNewSmGroup)	to	apply	to	the	relevant	faces.	All	smoothing	groups
previously	assigned	to	the	faces	will	be	removed.	If	FALSE,	Resmooth	will
strip	all	smoothing	groups,	leaving	the	faces	faceted.
bool	targonly
If	TRUE,	Resmooth	will	not	affect	faces	that	are	do	not	have	the	MN_TARG
flag	set.
DWORD	targmask
Resmooth	will	only	affect	faces	whose	smoothing	groups	are	included	in
targmask.	Some	examples:	with	the	default	value	of	~0x0,	this	is	no	restriction
at	all.	With	a	value	of	0,	Resmooth	will	only	affect	faces	that	previously	had
no	smoothing	group	assigned.	With	a	value	of	0x02,	Resmooth	will	only	affect
faces	that	either	had	smoothing	group	2	(and	nothing	else)	or	no	smoothing
group.
Note:	if	targonly	is	TRUE	and	targmask	is	not	at	the	default,	a	face	must
both	be	targeted	and	have	its	smoothing	groups	fall	into	targmask	in	order	to
be	affected.

Prototype:
DWORD	CommonSmoothing(bool	targonly=FALSE);

Remarks:
Finds	what	smoothing	groups,	if	any,	are	common	to	all	faces	in	this
MNMesh.

Parameters:
bool	targonly
If	this	is	TRUE,	this	routine	will	find	smoothing	groups	that	are	common	to	all
faces	with	MN_TARG	set,	ignoring	the	rest.

Prototype:
DWORD	GetAllSmGroups(bool	targonly=FALSE);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Find	all	smoothing	groups	used	in	this	mesh.

Parameters:
bool	targonly=FALSE
If	TRUE,	this	method	will	return	only	smoothing	groups	set	in	targeted	faces,
i.e.	those	with	the	MN_TARG	flag	set.

Return	Value:
The	return	value	is	a	DWORD	with	every	used	smoothing	bit	set.

Prototype:
DWORD	GetNewSmGroup(bool	targonly=FALSE);

Remarks:
Produces	a	single	smoothing	group	that	is	not	currently	used	in	the	MNMesh.
If	this	is	impossible	because	all	smoothing	groups	are	used	(a	rare	condition),
it	produces	the	least	commonly	used	group.

Parameters:
bool	targonly
If	TRUE,	this	routine	will	find	a	smoothing	group	not	used	by	any	of	the	faces
with	MN_TARG	set.	If	this	is	impossible	because	all	smoothing	groups	are
used	in	targeted	faces,	it	produces	the	least	commonly	used	group.

Prototype:
DWORD	FindReplacementSmGroup(int	ff,	DWORD	os);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Finds	available	smoothing	groups	you	can	use	to	replace	the	given	smoothing

group	without	messing	up	the	mesh's	shading.	This	method	recursively	looks
at	the	entire	region	of	faces	sharing	this	smoother	with	this	face,	and	it	finds
all	smoothing	groups	used	by	neighboring	faces.	Then	it	returns	the	bits	which
are	not	used	by	any	of	them.
This	is	useful	if,	for	instance,	you	want	to	attach	two	separate	mesh
components,	but	you	don't	want	smooth	shading	across	the	join.	It's	used
internally	by	SeparateSmGroups.

Parameters:
int	ff
The	face	to	start	the	examination	on.
DWORD	os
The	old	smoothing	group	you	wish	to	replace.

Return	Value:
All	bits	that	are	available	to	replace	the	old	smoothing	group	with.

Prototype:
void	PaintNewSmGroup(int	ff,	DWORD	os,	DWORD	ns);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Recursively	replaces	the	old	smoothing	group	with	the	new	smoothing	group.
The	recursion	traverses	all	faces	with	the	old	smoother	that	share	an	edge	or	a
vertex.

Parameters:
int	ff
The	face	to	begin	the	replacement	on
DWORD	os
The	old	smoothing	group
DWORD	ns
The	new	smoothing	group

Prototype:
bool	SeparateSmGroups(int	v1,	int	v2);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.

Changes	the	smoothing	groups	on	faces	using	v2	so	that	they	are	distinct	from
any	smoothing	groups	on	faces	using	v1.	This	is	used,	for	instance,	in	joining
the	seam	between	the	operands	MakeBoolean.	Before	welding	each	pair	of
vertices,	this	method	is	called	to	prevent	smoothing	across	the	boolean	seam.

Return	Value:
If,	due	to	overuse	of	the	32	smoothing	groups,	the	algorithm	can't	find	enough
new	ones	to	replace	the	overlapping	smoothing	groups	around	v2,	it	will	do
the	best	it	can	and	return	FALSE.	If	it	succeeds,	it	returns	TRUE.

Prototype:
MtlID	GetNewMtlID(bool	targonly	=	FALSE);

Remarks:
Produces	the	lowest	material	ID	not	used	in	any	faces	in	the	MNMesh.

Parameters:
bool	targonly
If	TRUE,	this	routine	will	instead	find	the	lowest	material	ID	not	used	in	the
targeted	faces	of	this	MNMesh.

Prototype:
DWORD	GetOldSmGroup(bool	targonly=FALSE);

Remarks:
Returns	a	smoothing	group	that	is	currently	used	somewhere	in	the	mesh,	or
returns	zero	if	all	faces	have	no	smoothing.

Parameters:
bool	targonly
If	TRUE,	this	routine	will	find	a	smoothing	group	used	in	one	of	the	targeted
faces,	or	return	zero	if	all	targeted	faces	have	no	smoothing.

Prototype:
void	AutoSmooth(float	angle,BOOL	useSel,BOOL
preventIndirectSmoothing);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

This	method	performs	an	auto	smooth	on	the	mesh,	setting	the	smoothing
groups	based	on	the	surface	normals.

Parameters:
float	angle
The	minimum	angle	between	surface	normals	for	smoothing	to	be	applied,	in
radians.
BOOL	useSel
If	TRUE	only	the	selected	faces	are	smoothed.
BOOL	preventIndirectSmoothing=FALSE
TRUE	to	turn	on;	FALSE	to	leave	off.	This	matches	the	option	in	the	Smooth
Modifier	UI	--	use	this	to	prevent	smoothing	‘leaks"	when	using	this	method.
If	you	use	this	method,	and	portions	of	the	mesh	that	should	not	be	smoothed
become	smoothed,	then	try	this	option	to	see	if	it	will	correct	the	problem.
Note	that	the	problem	it	corrects	is	rare,	and	that	checking	this	slows	the	Auto
Smooth	process.

Prototype:
void	ApplyMapper	(UVWMapper	&	mp,	BOOL	channel=0,
BOOL	useSel=FALSE);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Applies	UVW	Mapper	to	create	the	desired	mapping	in	the	specified	channel.

Parameters:
UVWMapper	&	mp
The	mapping	scheme.	See	class	UVWMapper	for	details.
BOOL	channel=0
The	channel	to	apply	the	map	to.	Channel	0	is	normally	the	vertex	color
channel.	Channels	1-99	are	the	normal	user-accessible	mapping	channels.
Channels	MAP_SHADING	and	MAP_ALPHA	are	used	for	vertex
illumination	and	alpha.
BOOL	useSel=FALSE
Indicates	whether	the	specified	mapping	should	be	applied	only	to	selected
faces	(instead	of	the	whole	object).	In	cases	where	the	map	channel	was
previously	unused,	a	default	map	will	be	applied	to	nonselected	faces,	and	the

specified	map	will	be	applied	to	the	selected	faces.

Face-joining	methods
Prototype:
void	MakePolyMesh();

Remarks:
Turns	a	mesh	with	triangle	faces	into	a	mesh	with	(fewer)	polygon	faces	by
removing	all	hidden	edges.	This	method	can	take	unusually	long	if	there	are
faces	of	ridiculously	high	degree,	such	as	the	top	of	a	cylinder	with	200	sides
but	only	1	cap	segment.	(It	can	be	up	to	an	n-squared	routine	where	n	is	the
number	of	invisible	edges	removed	to	make	a	given	face.)
This	routine	is	essentially	a	bunch	of	calls	to	RemoveEdge(),	followed	by	a
call	to	EliminateCollinearVerts().

Prototype:
void	MakeConvexPolyMesh();

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Turns	a	mesh	with	triangle	faces	into	a	mesh	with	(fewer)	convex	polygon
faces	by	removing	all	hidden	edges	that	aren't	necessary	to	maintain
convexity.	As	of	the	2.5	release	this	method	has	not	been	thoroughly	tested	to
ensure	that	the	result	is	indeed	always	convex	and	that	it	doesn't	leave	edges
that	should	ideally	be	removed.	Therefore	a	call	to	MakeConvex	is
recommended	after	use.	What	we	can	say	about	it	is	that	it	will	not	produce
any	hidden	vertices,	as	MakePolyMesh	does,	and	that	if	you're	going	to	use
MakeConvex	anyway,	MakeConvexPolyMesh	and	MakeConvex	are	more
efficient	than	MakePolyMesh	and	MakeConvex	are.
MakeConvex	essentially	undoes	a	lot	of	the	work	done	by	MakePolyMesh.
MakeConvexPolyMesh	gives	it	much	less	(if	anything)	to	undo.

Prototype:
void	RemoveEdge(int	edge);

Remarks:
Kills	the	edge	and	joins	the	faces	on	either	side.	Does	not	work	with	one-sided

edges.	Re-indexes	triangulation	in	the	resulting	face	to	maintain
MN_MESH_FILLED_IN	integrity.	This	routine	also	checks	the	resulting	face
for	"dangling"	edges:	if	two	faces	share	a	common	boundary	of	3	edges,	and
the	middle	edge	is	removed,	the	other	two	edges	will	actually	have	the	same
face	on	both	sides.	This	is	silly,	so	such	edges	are	also	removed	&	killed,
reducing	the	degree	of	the	face	and	adding	a	hidden	vertex.

Prototype:
void	MakeConvex();

Remarks:
Calls	MakeFaceConvex()	on	all	(non-dead)	faces,	producing	a	mesh	with
100%	convex	faces.

Prototype:
void	MakeFaceConvex(int	ff);

Remarks:
Makes	face	ff	convex,	essentially	by	chopping	off	corners.	The	corners
themselves	become	new	faces.	This	routine	is	actually	recursive:	if	this	face	is
already	convex,	it	returns	without	affecting	it.	If	not,	it	finds	a	suitable	line
(between	outside	vertices)	to	divide	the	face	along,	and	then	calls
MakeFaceConvex()	again	on	both	of	the	smaller	faces.	It	is	crucial	that	the
face	given	to	MakeFaceConvex	has	a	valid	triangulation.

Prototype:
void	EliminateCollinearVerts();

Remarks:
This	routine	scans	through	a	mesh	from	which	invisible	edges	have	been
removed,	looking	for	vertices	that	essentially	seem	to	lie	in	the	middle	of
edges.	Such	"collinear	vertices"	actually	lie	between	two	edges	that	are
parallel,	with	the	same	faces	on	either	side,	and	with	no	other	edges	incident
on	them.	These	are	easily	removed,	and	if	not	removed,	they	can	cause
unpleasant	artifacts	in	some	tessellation	algorithms.
The	removal	of	these	vertices	consists	of	deleting	them,	merging	the	parallel
edges	into	one	(longer)	edge,	and	correcting	the	faces	on	either	side	to	have

one	less	vertex	and	edge.
Note	that	this	is	essentially	the	opposite	of	the	method	SplitEdge.

Prototype:
void	EliminateCoincidentVerts(float	thresh=MNEPS);

Remarks:
This	merges	vertices	that	lie	extremely	close	together,	similar	to	what’s	done
in	Edit	Mesh’s	Weld	function,	but	it	only	affects	vertices	that	are	joined	by	an
edge.	Another	way	of	looking	at	it	is	that	it	uses	weld	to	remove	extremely
small	edges.

Parameters:
float	thresh=MNEPS
This	is	the	maximum	length	of	an	edge	that	will	be	welded	away.	The	default
value	of	MNEPS	is	defined	in	MNCommon.h	to	be	.0001	--	generally	we	use
this	to	delete	edges	of	more	or	less	zero	length.

Splitting	methods

Prototype:
int	SplitEdge(int	ee,	float	prop=.5f);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Creates	a	new	vertex	somewhere	in	the	middle	of	an	edge,	splitting	the	edge
into	two	edges.	Incident	faces	are	updated	in	their	vertex,	edge,	mapping
coordinate,	and	vertex	color	lists,	as	well	as	in	their	triangulation.	This	method
requires	that	MN_MESH_FILLED_IN	be	set	(otherwise	it	will	cause	an
assertion	failure),	and	maintains	the	combinatorics	completely.

Parameters:
int	ee
The	edge	to	split.
float	prop=.5f
The	proportion	along	the	edge	where	the	new	vertex	should	go.	This
proportion	should	be	between	0	and	1.	The	new	vertex	location	is	P(E(ee)-
>v1)*(1.0f-prop)	+	P(E(ee)->v2)*prop.

Return	Value:

The	index	of	the	new	vertex.

Prototype:
int	SplitEdge(int	ff,	int	ed,	float	prop,	bool	right,	int	*nf=NULL,	int
*ne=NULL,	bool	neVis=FALSE,	bool	neSel=FALSE,	bool
allconvex=FALSE);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Splits	an	edge	that	is	specified	from	the	face	level,	and	splits	off	triangles	from
the	adjacent	faces.	This	method	is	often	preferable	in	convex	meshes,	when	it's
important	that	no	nonconvex	faces	are	introduced.	The	other	SplitEdge
methods	leave	faces	with	three	vertices	in	a	line,	which	is	not	strongly	convex.
This	version	makes	a	triangle	out	of	half	of	the	split	edge,	the	next	face	edge,
and	a	diagonal.
Note:	This	method	absolutely	requires	that	the	faces	on	either	side	of	the	edge
being	split	are	Convex.	Use	MakeFaceConvex	if	needed.

Parameters:
int	ff
One	of	the	faces	which	uses	the	edge	you	wish	to	split.
int	ed
The	index	of	the	edge	in	face	ff.
float	prop
The	proportion	along	the	edge	where	the	new	vertex	should	go.	This
proportion	should	be	between	0	and	1.	The	new	vertex	location	is	P(E(ee)-
>v1)*(1.0f-prop)	+	P(E(ee)->v2)*prop.
bool	right
If	FALSE,	the	new	triangle	is	formed	from	the	lower	or	"left"	half	of	the	split
edge.	If	TRUE,	it's	formed	from	the	higher	or	"right"	half.	(These	orientations
make	sense	if	you	imagine	viewing	the	face	from	above	with	the	split	edge	on
the	bottom,	as	pictured.)	If	you	want	the	triangle	to	be	formed	from	the
smaller	half,	use	(prop<=.5f)	for	this	argument.
int	*nf=NULL
If	non-NULL,	this	should	point	to	an	array	of	at	least	2	elements	where	the
new	face	indices	should	be	put.	Nf[0]	is	set	to	the	new	face	created	from	face
ff,	while	nf[1]	is	set	to	the	new	face	created	from	the	face	on	the	other	side	of

the	edge,	if	any.
int	*ne=NULL
If	non-NULL,	this	should	point	to	an	array	of	at	least	3	elements	where	the
new	edge	indices	should	be	put.	Ne[0]	is	set	to	the	new	edge	created	from	the
second	half	of	the	edge	we're	splitting.	Ne[1]	represents	the	diagonal	edge	on
face	ff,	while	ne[2]	represents	the	diagonal	edge	on	the	face	on	the	other	side
of	the	split	edge	(if	any).
bool	neVis=FALSE
Indicates	whether	the	new	edges	ne[1]	and	ne[2]	should	be	visible.
bool	neSel=FALSE
Indicates	whether	the	new	edges	ne[1]	and	ne[2]	should	be	selected.
bool	allconvex=FALSE
Indicates	whether	the	original	faces	on	both	sides	of	the	edge	are	guaranteed	to
be	convex.	If	so,	these	faces	are	retriangulated	with	BestConvexTriangulation;
otherwise,	RetriangulateFace	is	used.

Return	Value:
The	index	of	the	new	vertex.

Prototype:
int	SplitTriEdge(int	ee,	float	prop=.5f,	float	thresh=MNEPS,	bool
neVis=TRUE,	bool	neSel=FALSE);

Remarks:
Creates	a	new	vertex	in	the	middle	of	an	edge,	splitting	the	edge	into	two
edges.	Unlike	SplitEdge,	this	routine	requires	a	triangle	face	on	each	side.
Since	it	has	this,	it	also	creates	new	edges	connecting	the	new	vertex	with	the
point	opposite	the	split	edge	on	each	face.	This	in	turn	splits	the	faces.	So	two
triangles	sharing	this	single	edge	become	four	triangles	with	four	shared	edges
meeting	at	a	single	new	vertex.
This	method	requires	that	MN_MESH_FILLED_IN	be	set	(otherwise	it	will
cause	an	assertion	failure),	and	maintains	the	combinatorics	completely.

Parameters:
int	ee
The	edge	to	split.	Note	that	if	the	faces	on	either	side	do	not	have	deg=3	and
hdeg=0,	an	assertion	failure	will	result.

float	prop
The	proportion	along	the	edge	for	the	new	vertex	to	be	located.	This	ranges
from	0,	at	v1,	to	1,	at	v2.	A	value	of	.3,	for	instance,	would	create	a	new	vertex
at	.7*P(v1)	+	.3*P(v2).
float	thresh
If	prop	is	less	than	thresh	or	more	than	1-thresh,	the	method	will	not	split	the
edge,	and	will	return	v1	or	v2	respectively.	This	is	so	that	calling	routines	can
safely	pass	values	anywhere	from	0	to	1,	without	worrying	about	creating	tiny
"shard"	faces.
bool	neVis
This	tells	whether	the	new	edges	that	split	the	faces	should	be	visible.	(The
new	edge	formed	from	part	of	the	old	edge	takes	such	characteristics	from	the
old	edge.)
bool	neSel
This	tells	whether	the	new	edges	that	split	the	faces	should	be	selected.	(The
new	edge	formed	from	part	of	the	old	edge	takes	such	characteristics	from	the
old	edge.)

Return	Value:
The	index	of	the	new	vertex	created,	or	the	index	of	the	old	vertex	you	can	use
instead	if	you’re	within	thresh	of	the	endpoints.

Prototype:
int	IndentFace(int	ff,	int	ei,	int	nv,	int	*ne=NULL,	bool
nevis=TRUE,	bool	nesel=FALSE);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Uses	a	new	vertex	to	"indent"	one	of	the	sides	of	the	face.	The	indentation
triangle	is	split	off	as	a	new	face,	which	is	returned.

Parameters:
int	ff
The	face	to	be	"indented".
int	ei
The	index	of	the	edge	which	will	be	replaced	by	the	indentation.
int	nv

The	index	of	the	new	vertex.	This	vertex	should	lie	within	the	face,	in	the
face's	plane,	and	should	not	be	connected	to	any	faces	or	edges.
int	*ne=NULL
If	non-NULL,	this	should	point	to	an	array	of	at	least	2	elements	where	the
new	edges	should	be	stored.
bool	nevis=TRUE
Indicates	whether	the	new	edges	should	be	visible.
bool	nesel=FALSE
Indicates	whether	the	new	edges	should	be	selected.

Return	Value:
The	index	of	the	new	face	representing	the	indentation	triangle.

Prototype:
void	SeparateFace(int	ff,	int	a,	int	b,	int	&	nf,	int	&	ne);

Remarks:
This	routine	is	used	in	MakeFaceConvex,	but	can	be	used	outside	of	it	too.	It
takes	a	larger	face	and	divides	it	into	two	smaller	faces,	creating	a	new	edge	in
the	process.
It	is	crucial	that	the	face	given	to	SeparateFace	has	a	valid	triangulation.

Parameters:
int	ff
The	face	to	divide.
int	a,b
The	indices	(in	the	face’s	vtx	list)	of	the	vertices	used	to	divide	the	face.	Note
that	a	and	b	should	be	at	least	two	units	apart	in	each	direction:	a	can’t	be
(b+1)	mod	deg,	and	b	can’t	be	(a+1)	mod	deg.	Also,	the	straight	line
connecting	MNVerts	V(vtx[a])	and	V(vtx[b])	should	not	cross	any	of	the
edges	of	the	face,	otherwise	the	results	will	be	truly	screwed.
int	&	nf
A	variable	to	hold	the	new	face	created	by	this	division.	(Half	the	face	remains
as	face	ff,	the	other	half	is	the	new	face	nf.)
int	&	ne
A	variable	to	hold	the	new	edge	created	by	this	division.

Prototype:
void	SeparateFace(int	ff,	int	a,	int	b,	int	&	nf,	int	&	ne,	bool	neVis,
bool	neSel);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
This	routine	takes	a	larger	face	and	divides	it	into	two	smaller	faces,	creating	a
new	edge	in	the	process.	It	is	crucial	that	the	face	given	to	SeparateFace	has	a
valid	triangulation.

Parameters:
int	ff
The	face	to	divide.
int	a,	b
The	indices	(in	the	face’s	vtx	list)	of	the	vertices	used	to	divide	the	face.	Note
that	a	and	b	should	be	at	least	two	units	apart	in	each	direction:	a	can’t	be
(b+1)	mod	deg,	and	b	can’t	be	(a+1)	mod	deg.	Also,	the	straight	line
connecting	MNVerts	V(vtx[a])	and	V(vtx[b])	should	not	cross	any	of	the
edges	of	the	face,	otherwise	the	results	will	not	be	valid.
int	&	nf
A	variable	to	hold	the	new	face	created	by	this	division.	(Half	the	face	remains
as	face	ff,	the	other	half	is	the	new	face	nf.)
int	&	ne
A	variable	to	hold	the	new	edge	created	by	this	division.
bool	neVis
Indicates	whether	the	new	edge	should	be	visible.	(The	other	version	of
SeparateFace	always	leaves	the	edge	invisible.)
bool	neSel
Indicates	whether	the	new	edge	should	be	selected.	(The	other	version	of
SeparateFace	always	leaves	the	edge	unselected.)

Prototype:
void	Slice(Point3	&	N,	float	off,	float	thresh,	bool	split,	bool
remove,	DWORD	selLevel);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.

Slices	the	MNMesh	along	a	specified	plane,	splitting	edges	and	faces	as
needed	to	divide	faces	into	those	above	and	those	below	the	plane.	Equivalent
to	the	Slice	modifier.

Parameters:
Point3	&	N
The	normal	to	the	slice	plane.	This	should	be	a	unit	vector.
float	off
The	offset	of	the	slice	plane.	For	any	point	X	in	the	plane,	DotProd(N,X)	=
off.
float	thresh
If	a	vertex	lies	within	thresh	of	the	splitting	plane,	ie	if	absf(DotProd	(N,X)	-
offset)	<	thresh	for	a	point	X,	it's	considered	to	be	on	the	plane.	This	prevents
some	points	being	created	extremely	close	to	each	other.	Zero	is	an	acceptable
value;	the	constant	MNEPS	is	what's	used	in	the	Slice	Modifier.
bool	split
Indicates	whether	the	points	and	edges	along	the	slice	should	be	replicated,
dividing	the	mesh	into	separate	"above"	and	"below"	connected	components.
Equivalent	to	the	Slice	modifier's	"Split	Mesh".
bool	remove
Indicates	whether	the	portion	of	the	mesh	above	the	split	plane	should	be
removed.	Equivalent	to	the	Slice	modifier's	"Remove	Top".	(To	"Remove
Bottom",	just	multiply	N	and	off	by	-1.)
DWORD	selLevel
Indicates	whether	the	Slice	effect	should	be	restricted	to	selected	faces.
There	is	no	support	currently	for	slicing	selected	edges	or	vertices,	but
if	selLevel==	MNM_SL_FACE,	only	selected	faces	will	be	sliced	or	removed.

Prototype:
int	SplitTriFace(int	ff,	double	*bary=NULL,	float	thresh=MNEPS,
bool	neVis=TRUE,	bool	neSel=FALSE);

Remarks:
Adds	a	vertex	somewhere	in	a	triangle	face,	and	also	adds	edges	from	that
vertex	to	each	of	the	corners,	splitting	the	face	into	3	smaller	triangle	faces.
The	triangle	face	used	here	can	have	hidden	vertices,	as	long	as	it	is	of	degree

3.	However,	if	the	threshold	parameter	comes	into	play	and	this	routine	calls
SplitTriEdge,	both	this	face	and	the	one	across	the	relevant	edge	will	need	to
have	both	degree	3.	(Otherwise	there’s	an	assertion	failure.)
This	method	requires	that	MN_MESH_FILLED_IN	be	set	(otherwise	it	will
cause	an	assertion	failure),	and	maintains	the	combinatorics	completely.

Parameters:
int	ff
The	face	to	split.
double	*bary
The	barycentric	coordinates	of	the	new	point	you	wish	to	add.	If	this	is	NULL,
the	default	values	of	(1/3,	1/3,	1/3)	(the	middle	of	the	triangle)	are	used.	These
values	MUST	all	fall	between	0	and	1,	and	they	MUST	add	up	to	1	(give	or
take	a	floating	point	error)	to	get	a	sensible	result.
float	thresh
If	one	of	the	barycentric	coordinates	is	greater	than	1-thresh,	that	vertex
dominates	completely.	No	splitting	is	done,	and	that	vertex	is	returned.	If	not,
but	if	one	of	the	barycentric	coordinates	is	less	than	thresh,	the	new	point	must
fall	on	the	opposite	edge.	SplitTriEdge	is	therefore	called	on	that	edge,	and
passes	along	the	value	this	returns.
bool	neVis
Whether	or	not	the	new	edges	connecting	the	new	vertex	to	the	corners	should
be	visible.
bool	neSel
Whether	or	not	the	new	edges	connecting	the	new	vertex	to	the	corners	should
be	selected.

Return	Value:
The	index	of	the	new	vertex	created,	or	the	index	of	the	old	vertex	you	can	use
instead	if	you’re	within	thresh	of	one	of	the	corners.

Prototype:
void	SplitTri6(int	ff,	double	*bary=NULL,	int	*nv=NULL);

Remarks:
This	is	another	way	to	subdivide	a	face	on	a	triangular	mesh	into	sub-triangles.
In	this	case,	4	new	vertices	are	produced,	and	this	face	becomes	6	new	faces.

MN_MESH_FILLED_IN	is	required	and	preserved,	and
MN_MESH_NONTRI	cannot	be	true	when	this	method	is	called.
The	subdivision	technique	is	as	follows:	a	new	point	is	added	at	the
barycentric	coordinates	given	on	the	face	given.	New	points	are	also	added	in
each	edge	of	the	original	face,	such	that	a	line	from	each	of	these	three	new
edge	points	to	the	opposite	original	vertex	passes	through	the	new	center
point.	These	three	edge	points	have	edges	drawn	between	them,	and	have
edges	to	the	new	center	point,	dividing	the	face	into	3	large	outer	triangles	and
3	smaller	inner	triangles.	Neighboring	faces	are	split	into	2	triangles,	since	the
common	edge	is	divided.	This	is	a	useful	subdivision	technique	when	you
know	you're	going	to	want	to	add	a	lot	of	detail	to	a	specific	region	of	a	face.

Parameters:
int	ff
The	face	to	split.
double	*bary=NULL
The	barycentric	coordinates	for	the	center	point.	If	bary	is	NULL,	the	default
barycentric	coordinates	of	(1/3,	1/3,	1/3)	are	used.
int	*nv=NULL
This	is	a	pointer	to	an	array	of	at	least	4	int's	in	which	the	4	new	vertex	indices
should	be	stored.	(This	is	mainly	if	the	calling	routine	needs	to	know	what
these	new	vertices	are.)	If	this	is	NULL,	it	is	ignored.

Border	methods
Prototype:
void	GetBorder(MNMeshBorder	&	brd,	DWORD
selLevel=MESH_OBJECT);

Remarks:
Finds	border	loops	composed	of	all	one-sided	edges.	(One-sided	edges	on	a
mesh	must	necessarily	be	organizable	into	closed	loops	along	the	borders	of
the	mesh.)

Parameters:
MNMeshBorder	&	brd
The	class	in	which	to	put	the	border	loops.	See	Class	MNMeshBorder	for

details.
DWORD	selLevel
The	selection	level	in	the	mesh	to	use	to	decide	whether	the	border	loops	are
targeted	or	not.	For	instance,	with	the	default	MNM_SL_OBJECT,	all	border
loops	are	targeted,	but	with	a	value	of	MNM_SL_VERTEX,	only	those	border
loops	containing	at	least	one	selected	vertex	will	be	targeted.	Same	for
MNM_SL_EDGE.	For	MNM_SL_FACE,	those	loops	touching	at	least	one
selected	face	will	be	targeted.

Prototype:
void	FillInBorders(MNMeshBorder	*b=NULL);

Remarks:
Fills	in	all	the	borders	of	a	mesh.	This	is	what	the	3ds	max	CapHoles	modifier
does.	It	creates	new	faces	on	the	other	side	of	each	of	the	loops.

Parameters:
MNMeshBorder	*b
If	this	is	NULL,	FillInBorders	finds	all	the	borders	with	a	call	to	GetBorders.
If	you	have	already	found	the	borders,	however,	you	can	save	time	by	passing
a	pointer	to	the	MNMeshBorder	class	here.	(This	is	especially	convenient	if
you	wish	to	modify	the	border	targeting;	only	targeted	borders	are	filled	in.)

Prototype:
void	FindOpenRegions();

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Scans	mesh	to	determine	what	parts	of	it	are	open	or	closed.	Consider	a
"submesh"	to	be	one	connected	components	of	faces	and	edges.	Each	submesh
is	open	if	it	has	any	holes,	i.e.	if	there's	at	least	one	edge	which	has	only	one
face.	(The	hole	is	on	the	other	side.)	A	submesh	is	closed	if	it	doesn't	have	any.
This	method	sets	the	MN_FACE_OPEN_REGION	flag	on	all	faces	in	open
submeshes,	and	sets	the	MN_MESH_HAS_VOLUME	flag	if	at	least	one
submesh	is	closed.

Examples:
A	3ds	max	box	has	one	submesh,	itself,	and	it	is	closed.
A	3ds	max	teapot	has	four	distinct	submeshes	(handle,	spout,	lid,	and	body),

and	they	are	all	open.

Prototype:
void	FindEdgeListTCVerts(const	IntTab	&	lp,	IntTab	&	tv,	IntTab
&	cv);

Remarks:
Given	a	complete	loop	boundary	of	edges	in	the	MNMesh,	this	method	will
find	mapping	coordinates	and/or	vertex	colors	for	the	vertices	of	the	loop.

Parameters:
(IntTab	means	Tab<int>)
const	IntTab	&	lp
The	loop	of	edges.
IntTab	&	tv
The	location	to	put	the	mapping	coordinates’	indices.	Since	each	vertex	on	the
loop	lies	can	lie	on	two	faces,	one	corresponding	to	each	border	edge	touching
the	vertex,	there	are	2*lp.Count()	of	these	values.	tv[i*2]	is	the	mapping
vertex	used	for	vertex	E(lp[i])->v1	in	face	E(lp[i])->f1,	while	tv[(i-1)*2+1]	is
the	mapping	vertex	used	for	vertex	E(lp[i-1])->v2	(which	is	also	E(lp[i]->v1)
in	face	E(lp[i-1])->f1.
IntTab	&	cv
The	location	to	put	the	vertex	colors’	indices.	Since	each	vertex	on	the	loop
lies	can	lie	on	two	faces,	one	corresponding	to	each	border	edge	touching	the
vertex,	there	are	2*lp.Count()	of	these	values.	cv[i*2]	is	the	vertex	color	used
for	vertex	E(lp[i])->v1	in	face	E(lp[i])->f1,	while	tv[(i-1)*2+1]	is	the	vertex
color	used	for	vertex	E(lp[i-1])->v2	(which	is	also	E(lp[i]->v1)	in	face	E(lp[i-
1])->f1.

Tessellation	&	related	methods

Prototype:
void	Relax(float	relaxval,	bool	targonly=TRUE);

Remarks:
Similar	to	the	3ds	max	"Relax"	modifier:	this	modifier	moves	each	MNVert
towards	the	average	of	all	vertices	to	which	it	is	connected	(by	MNEdges).

Parameters:
float	relaxval
The	proportion	to	move	it.	If	p	is	the	original	location	of	this	vertex	and	q	is
the	average	point	of	all	vertices	it’s	connected	to,	this	vertex	is	moved	to	p*(1-
relaxval)	+	q*relaxval.	A	value	of	0	generates	no	"relaxation",	1	is	maximum
relaxation,	and	values	below	0	or	above	1	generate	non-relaxing	results.
bool	targonly
If	this	is	set,	only	those	MNVerts	with	the	MN_TARG	flag	set	will	be	moved.

Prototype:
void	FindEdgeListMapVerts(const	Tab<int>	&	lp,	Tab<int>	&	mv,
int	mp);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	map	verts	for	both	ends	of	each	edge	(from	f1's	perspective)	(Very
useful	for	creating	new	faces	at	borders.)	mv[j*2]	is	the	map	vertex
corresponding	to	edge	j's	v1.

Parameters:
const	Tab<int>	&	lp
A	loop	of	border	edges,	such	as	is	generated	by	MNMesh::FindBorders.
Tab<int>	&	mv
The	table	into	which	the	map	vertices	should	be	put.	The	size	is	set	to
2*lp.Count().
int	mp
The	map	channel	we’re	analyzing.

Prototype:
bool	AndersonDo(float	interp,	DWORD	selLevel,
MeshOpProgress	*mop=NULL,	DWORD	subdivFlags=0);

Remarks:
This	is	a	tessellation	routine.	It	breaks	every	MNFace	into	deg	new	faces	with
four	sides.	The	four	vertices	of	each	of	these	new	quads	come	from	the	center
point	of	the	original	face,	one	corner	of	the	original	face,	and	the	middles	of

the	two	edges	on	either	side	of	that	corner.	For	a	demonstration	of	the	effect
this	algorithm	has	on	meshes,	apply	3ds	max’s	MeshSmooth	modifier	with	the
"Quad	Output"	box	checked.	Note	that	this	algorithm	roughly	quadruples	the
size	of	the	MNMesh.

Parameters:
float	interp
This	is	the	proportion	of	relaxation	applied	to	the	original	vertices	to	produce	a
smoothed	result.	Vertices	in	the	result	correspond	to	three	sources:	all	the
original	vertices	are	still	included,	new	vertices	are	produced	at	the	center	of
each	face,	and	new	vertices	are	produced	in	the	middle	of	each	edge.	Face-
vertices	are	always	at	the	exact	center	of	the	original	faces,	but	edge-vertices
and	vertex-vertices	are	relaxed	into	the	mesh	to	improve	smoothness.
DWORD	selLevel
The	selection	level	that	the	Mesh	we’re	modifying	was	set	to.	If	this	selection
level	is	MNM_SL_FACE,	we’d	want	to	keep	non-selected	faces	as
unmodified	as	possible,	whereas	if	the	selection	level	is	MNM_SL_OBJECT
or	MNM_SL_VERTEX,	we	could	break	off	chunks	of	some	unselected	faces
that	touch	modified	vertices.	Again,	observe	the	result	of	MeshSmooth,	with
Quad	Output,	on	various	selection	sets	of	a	mesh	for	examples	of	this
behavior.
MeshOpProgress	*mop=NULL
This	optional	parameter	points	to	an	instance	of	the	virtual	class
MeshOpProgress,	which	is	used	to	allow	the	user	to	abort	out	of	lengthy
calculations.	(SabinDoo	is	a	lengthy	calculation.)	See	class	MeshOpProgress.
DWORD	subdivFlags=0
This	parameter	is	available	in	release	4.0	and	later	only.
There	is	currently	only	one	flag	for	the	extra	argument,
MNM_SUBDIV_NEWMAP.	If	this	flag	is	set,	the	new	mapping	scheme
will	be	used.

Prototype:
void	TessellateByEdges(float	bulge,	MeshOpProgress
*mop=NULL);

Remarks:

This	is	a	tessellation	routine	similar	to	AndersonDo.	It	produces	the	same
topology,	but	bulges	new	vertices	outward	to	maintain	even	curvature	instead
of	bringing	the	original	vertices	inward.	For	a	demonstration	of	the	effect	this
algorithm	has	on	meshes,	apply	3ds	max’s	Tessellate	modifier	with	the	"Edge"
and	"Operate	On:	Polygons"	options	selected.	Note	that	this	algorithm	roughly
quadruples	the	size	of	the	MNMesh.

Parameters:
float	bulge
The	factor	to	"push	out"	new	vertices	by	in	the	direction	of	the	surface
curvature.	Values	of	about	.25	are	reasonable.	This	value	is	equivalent	to	one
hundredth	of	the	value	specified	as	"Tension"	in	the	Tessellate	modifier.
MeshOpProgress	*mop=NULL
A	pointer	to	a	MeshOpProgress.	See	Class	MeshOpProgress	for	details.

Prototype:
void	TessellateByCenters();

Remarks:
This	is	a	tessellation	routine.	Note	that	this	algorithm	roughly	triples	the	size
of	the	MNMesh.	For	an	example	of	how	it	works,	apply	3ds	max’s	Tessellate
modifier	with	the	"Face"	and	"Operate	On:	Polygons"	options	selected.	This
algorithm	splits	each	face	into	deg	triangles,	where	each	triangle	contains	the
center	of	the	face	and	one	edge	from	the	perimeter.

Prototype:
void	SabinDoo(float	interp,	DWORD	selLevel,	MeshOpProgress
*mop=NULL,	Tab<Point3>	*offsets=NULL);

Remarks:
This	is	a	tessellation	routine.	Note	that	this	algorithm	roughly	triples	the	size
of	the	MNMesh.	For	an	example	of	how	it	works,	apply	3ds	max’s
MeshSmooth	modifier	with	"classic"	MeshSmooth	Type.
This	technique	for	tessellation	is	based	on	a	paper,	"A	Subdivision	Algorithm
for	Smoothing	Down	Irregularly	Shaped	Polygons",	published	by	D.	W.	H.
Doo	of	Brunel	University,	Middlesex,	England,	in	IEEE	in	1978.	It	essentially
creates	a	new	face	for	every	vertex,	face,	and	edge	of	the	original	mesh.	The

new	vertices	this	technique	requires	are	made	by	creating	one	vertex	for	each
corner	of	each	original	face.	These	vertices	are	located	on	a	line	from	the
original	face	corner	to	its	center.	All	the	faces	around	a	given	(targeted)	vertex
will	create	such	a	point;	these	points	form	the	corners	of	the	face	created	from
this	vertex.	The	original	faces	become	smaller,	as	they	use	the	new	points
instead	of	their	old	corners.	And	the	four	new	points	created	on	the	faces	on
either	side	of	an	edge,	for	the	endpoints	of	that	edge,	become	the	four	corners
of	the	new	face	representing	the	edge.	Apply	a	MeshSmooth	with	default
values	to	a	3ds	max	box	to	see	how	this	plays	out.

Parameters:
float	interp
The	position	along	the	line	from	a	vertex	to	the	center	of	each	face	to	create
the	new	vertex	at.	If	this	value	is	near	0,	the	original	faces	will	shrink	very
little,	and	the	new	faces	at	the	vertices	and	edges	will	be	very	small.	If	this
value	is	near	1,	the	original	faces	will	shrink	to	almost	nothing,	and	the	new
vertex	faces	will	be	dominant.	Again,	adjust	the	Strength	parameter	in
MeshSmooth	to	gain	an	understanding	of	this	parameter.
DWORD	selLevel
This	parameter	is	included	so	that	special	handling	can	be	applied	to	selected
faces,	if	we’re	at	the	MNM_SL_FACE	selection	level.	Generally,	this
algorithm	works	on	all	targeted	vertices,	affecting	all	faces	that	contain	at	least
one	targeted	vertex.	However,	if	the	vertices	are	targeted	by	whether	or	not
they’re	on	selected	faces,	we’ll	wind	up	"spilling"	the	algorithm	over	into	the
non-selected	faces.	Generally	in	such	routines	as	MeshSmooth,	the	user	would
want	non-selected	faces	not	to	be	affected	at	all.	If	this	is	the	case,	setting	this
value	to	MNM_SL_FACE	will	prevent	faces	without	the	MN_SEL	flag	from
being	affected.
MeshOpProgress	*mop=NULL
This	optional	parameter	points	to	an	instance	of	the	virtual	class
MeshOpProgress,	which	is	used	to	allow	the	user	to	abort	out	of	lengthy
calculations.	(SabinDoo	is	a	lengthy	calculation.)	See	Class	MeshOpProgress.
Tab<Point3>	*offsets=NULL
The	SabinDoo	algorithm	is	typically	used	to	go	from	one	polygonal
approximation	of	a	smooth	surface	to	another	polygonal	approximation	of	4
times	the	size,	but	it	never	actually	returns	the	vertices	as	they	would	appear
on	the	"limit	surface".	If	this	parameter	is	non-NULL,	it’s	filled	in	with	offsets

that	will,	when	added	to	the	vertices	in	the	SabinDoo	result,	take	those	vertices
onto	the	limit	surface.	This	makes	a	smoother	result	that	matches	better
between	different	iterations.

Prototype:
void	SabinDooVert(int	vid,	float	interp,	DWORD	selLevel,	Point3
*ctr,	MeshOpProgress	*mop=NULL,	Tab<Point3>
*offsets=NULL);

Remarks:
This	applies	the	Sabin-Doo	tessellation	technique	described	above	to	a	single
vertex.	The	vertex	is	split	into	as	many	new	vertices	as	there	are	faces	using
this	vertex.	The	incident	faces	are	shrunk	back	to	make	use	of	these	new
vertices,	and	a	new	face	is	created	from	them	representing	the	vertex.	Incident
edges	are	split	into	triangles	using	their	other	end	and	the	appropriate	edge
from	the	new	vertex-face.	To	see	the	result	of	this	algorithm,	apply
MeshSmooth	(with	default	parameters)	to	an	EditableMesh	with	a	single
vertex	selected.

Parameters:
int	vid
The	vertex	to	SabinDoo.
float	interp
The	proportion	from	this	vertex	to	the	center	of	each	of	the	incident	faces	to
put	the	new	vertex	for	that	face.
DWORD	selLevel
If	this	is	equal	to	MNM_SL_FACE,	faces	without	the	MN_SEL	flag	will	not
be	affected.
Point3	*ctr
This	is	a	list	of	centers	of	all	the	faces,	which	cannot	be	NULL.	Since	this
algorithm	changes	the	original	faces,	merely	computing	face	centers	on	the	fly
won’t	work.	(When	SabinDooing	two	vertices	on	a	given	face,	the	second
vertex	will	get	bad	center	information.)	Thus	the	user	should	compute	all	the
face	centers	in	advance	using	ComputeCenters	or	(preferably)
ComputeSafeCenters.
MeshOpProgress	*mop=NULL

This	optional	parameter	points	to	an	instance	of	the	virtual	class
MeshOpProgress,	which	is	used	to	allow	the	user	to	abort	out	of	lengthy
calculations.	(SabinDoo	is	a	lengthy	calculation.)	See	Class	MeshOpProgress.
Tab<Point3>	*offsets=NULL
The	SabinDoo	algorithm	is	typically	used	to	go	from	one	polygonal
approximation	of	a	smooth	surface	to	another	polygonal	approximation	of	4
times	the	size,	but	it	never	actually	returns	the	vertices	as	they	would	appear
on	the	"limit	surface".	If	this	parameter	is	non-NULL,	it’s	filled	in	with	offsets
that	will,	when	added	to	the	vertices	in	the	SabinDoo	result,	take	those	vertices
onto	the	limit	surface.	This	makes	a	smoother	result	that	matches	better
between	different	iterations.
(In	SabinDooVert,	the	offsets	for	the	vertices	created	by	this	method	are	filled
in.	The	offsets	table	is	resized	if	necessary	to	accommodate	this.)

Prototype:
void	CubicNURMS(MeshOpProgress	*mop=NULL,	Tab<Point3>
*offsets=NULL,	DWORD	subdivFlags=0);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	is	a	tessellation	routine.	Note	that	this	algorithm	roughly	quadruples	the
size	of	the	MNMesh.	For	an	example	of	how	it	works,	apply	3ds	max’s
MeshSmooth	modifier	with	"NURMS"	MeshSmooth	Type.
This	technique	for	tessellation	is	based	loosely	on	a	1998	SIGGraph	paper,
"Non-Uniform	Recursive	Subdivision	Surfaces",	by	Sederberg,	Zheng,	Sewell,
and	Sabin,	with	additional	work	by	Autodesk	staff.	Topologically,	it’s	quite
simple,	as	it	creates	a	vertex	in	the	center	of	every	edge	and	face	and	connects
these	vertices	with	quads.	However,	the	geometry	is	a	non-uniform	rational
extension	of	the	old	Catmull-Clark	standard	cubic	subdivision.
To	set	the	vertex	and	edge	weights	used	by	the	algorithm,	use	the	EdgeKnots
and	VertexWeights	methods	of	MNMesh.	Like	other	subdivision	routines,	this
routine	only	subdivides	areas	of	the	MNMesh	indicated	by	the	MN_TARG
flag	on	vertices,	and	uses	the	MNEdge::Uncrossable	method	to	determine
where	the	regional	boundaries	should	be.

Parameters:
MeshOpProgress	*mop=NULL

See	Class	MeshOpProgress	–	provides	a	way	to	abort	the	calculation.
Tab<Point3>	*offsets=NULL
Unused	for	now.
DWORD	subdivFlags=0
This	parameter	is	available	in	release	4.0	and	later	only.
There	is	currently	only	one	flag	for	the	extra	argument,
MNM_SUBDIV_NEWMAP.	If	this	flag	is	set,	the	new	mapping	scheme
will	be	used.

Prototype:
BOOL	CheckForDoubledMappingVerts();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	as	a	debugging	tool.	All	double	mapping	vertices	will	be
debugprinted.	"Doubled"	mapping	verts	are	individual	map	vertices	that	are
used	to	correspond	to	different	regular	vertices.	For	example,	the	standard	map
on	the	box	object	uses	the	same	mapping	vertices	on	the	top	as	on	the	bottom.
This	can	be	a	problem	if	the	user	wants	to	change	the	map	in	one	region,	but
not	the	other.	It	also	causes	problems	in	NURMS	MeshSmooth,	where	the	user
can	change	weights	in	one	region	but	not	in	the	other.

Prototype:
void	EliminateDoubledMappingVerts();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	allow	you	to	eliminate	double	mapping	vertices.	"Doubled"
mapping	verts	are	individual	map	vertices	that	are	used	to	correspond	to
different	regular	vertices.	For	example,	the	standard	map	on	the	box	object
uses	the	same	mapping	vertices	on	the	top	as	on	the	bottom.	This	can	be	a
problem	if	the	user	wants	to	change	the	map	in	one	region,	but	not	the	other.	It
also	causes	problems	in	NURMS	MeshSmooth,	where	the	user	can	change
weights	in	one	region	but	not	in	the	other.

Prototype:

void	EliminateIsoMapVerts();
Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Eliminates	mapping	vertices	that	aren't	used	by	any	mapping	faces.

Prototype:
void	EliminateIsoMapVerts(int	mp);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Eliminates	mapping	vertices	that	aren't	used	by	any	mapping	faces.

Parameters:
int	mp
If	mp>=0,	it	indicates	the	mapping	channel	that	should	have	its	isolated	verts
removed.	If	left	at	the	default,	all	mapping	channels	are	cleared	of	iso	verts.

Welding	methods

Prototype:
bool	WeldVerts(int	a,	int	b);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Welds	vertices	a	and	b,	correcting	the	mesh	topology	to	match.	All	references
to	b	are	moved	to	a,	and	b	is	killed.	If	there	is	a	topological	problem
preventing	the	weld	from	occurring,	the	method	does	nothing	and	returns
FALSE.	If	there	is	no	such	problem,	the	weld	goes	ahead	and	returns	TRUE.
Note	that	if	a	and	b	are	joined	by	an	edge,	this	method	just	calls	WeldEdge	on
that	edge.

Prototype:
bool	WeldEdge(int	ee);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Welds	the	endpoints	of	edge	ee,	correcting	the	mesh	topology	to	match.	All
references	to	E(ee)->v2	are	moved	to	E(ee)->v1,	and	both	ee	and	E(ee)->v2

are	killed.	If	there	is	a	topological	problem	preventing	the	weld	from
occurring,	the	method	does	nothing	and	returns	FALSE.	If	there	is	no	such
problem,	the	weld	goes	ahead	and	returns	TRUE.

Prototype:
bool	WeldBorderVerts	(int	v1,	int	v2,	Point3	*destination);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	welds	vertices	v1	and	v2	together.	Both	vertices	must	be	on
borders,	and	they	cannot	share	an	edge.	If	destination	isn't	NULL,	it	indicates
where	the	welded	vertex	should	be	located.	(If	it	is	NULL,	the	welded	vertex
is	placed	at	the	midpoint	of	the	inputs.)

Parameters:
int	v1,	v2
The	vertex	indices	to	wel.
Point3	*destination
The	destination	of	the	welded	vertex.

Return	Value:
TRUE	if	something	was	welded,	FALSE	otherwise.

Prototype:
bool	WeldBorderEdges	(int	e1,	int	e2);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	welds	edges	e1	and	e2	together.	Both	edges	must	be	on	borders.

Parameters:
int	e1,	e2
The	two	edges	you	want	to	weld.

Return	Value:
TRUE	if	something	was	welded,	FALSE	otherwise.

Prototype:

bool	WeldBorderVerts	(float	thresh,	DWORD	flag=MN_SEL);
Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	welds	all	flagged	border	vertices	within	"thresh"	of	each	other.
Vertices	are	only	welded	pairwise.	If	vert	A's	closest	target	is	vert	B,	but	vert
B	is	closer	to	vert	C,	verts	B	and	C	are	welded	and	A	is	left	out	in	the	cold.

Parameters:
float	thresh
The	threshold.
DWORD	flag=MN_SEL
This	indicates	the	vertices	we	look	at.	If	left	at	the	default,	selected	vertices'
colors	are	analyzed.	If	flag	were	to	equal	MN_WHATEVER,	then	vertices
with	the	MN_WHATEVER	flag	would	have	their	colors	analyzed.

Return	Value:
TRUE	if	something	was	welded,	FALSE	otherwise.

Prototype:
bool	DetachElementToObject	(MNMesh	&	nmesh,	DWORD
fflags=MN_SEL,	bool	delDetached=true);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Detaches	specified	faces	(and	related	vertices	and	edges)	to	a	new	MNMesh.
As	indicated	by	the	name,	the	specified	region	should	be	a	single	element;
crashes	will	occur	if	faces	that	are	flagged	share	vertices	or	edges	with
nonflagged	faces.

Parameters:
MNMesh	&	nmesh
The	new	mesh.	This	is	assumed	to	be	empty.	The	flagged	elements	are	put
here,	and	reindexed	so	there	are	no	unused	components.	(This	occurs	for	all
map	channels	as	well	-	only	the	necessary	map	vertices	are	copied	over.)
DWORD	fflags
The	flags	that	indicate	the	faces	which	compose	the	element	we	want	to
detach.

bool	delDetached=true
Indicates	whether	the	specified	element	should	be	deleted	from	this	MNMesh.

Return	Value:
true	if	anything	was	detached,	false	otherwise.

Boolean	operations

Prototype:
void	PrepForBoolean();

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Prepares	a	MNMesh	for	a	Boolean	operation.	This	is	required	for	successful
Booleans.	Generally,	it	makes	the	mesh	into	a	convex	poly	mesh,	removing
any	hidden	vertices,	finds	open	regions,	and	collapses	dead	structures.

Prototype:
bool	BooleanCut(MNMesh	&	m2,	int	cutType,	int	fstart=0,
MeshOpProgress	*mop=NULL);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
BooleanCut	uses	the	same	techniques	as	MakeBoolean	to	cut	the	faces	of	this
with	the	faces	of	m2.	As	with	Boolean,	both	this	and	m2	should	be	prepared
with	the	PrepForBoolean	method.

Parameters:
MNMesh	&	m2
The	MNMesh	to	use	to	cut	this	one.
int	cutType
One	of	the	following:
BOOLOP_CUT_REFINE
Slice	the	faces	of	this	with	the	surface	of	m2,	but	do	not	separate	the	mesh
along	the	seam.
BOOLOP_CUT_SEPARATE
Slice	and	separate	the	faces	of	this	along	the	surface	of	m2.

BOOLOP_CUT_REMOVE_IN
Slice	the	faces	of	this	with	the	surface	of	m2,	then	remove	all	the	faces	of
this	that	are	inside	m2.
BOOLOP_CUT_REMOVE_OUT
Slice	the	faces	of	this	with	the	surface	of	m2,	then	remove	all	the	faces	of
this	that	are	inside	m2.

int	fstart=0
Indicates	the	face	(of	this)	we	should	start	checking	for	cuts	by	m2.	This	can
be	useful	if,	for	example,	you	know	that	the	first	100	faces	of	this	are	nowhere
near	m2.
MeshOpProgress	*mop=NULL
See	Class	MeshOpProgress.	Provides	a	way	to	abort	the	calculation.

Return	Value:
TRUE	if	finished	successfully;	FALSE	if	aborted	by	the	MeshOpProgress.

Prototype:
bool	MakeBoolean(MNMesh	&	m1,	MNMesh	&	m2,	int	type,
MeshOpProgress	*mop=NULL);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Makes	this	MNMesh	into	a	Boolean	result	of	the	given	MNMeshes.	The
operands	are	not	modified	during	this	process.	The	Boolean	algorithm	is
identical	to	the	one	used	in	the	Boolean	2	compound	object.	Notice	that	there
are	no	transform	arguments,	as	there	are	in	the	previously	used	CalcBoolOp	–
transforms	should	be	applied	to	the	operands	beforehand	using	the
MNMesh::Transform	method.

Parameters:
MNMesh	&	m1
The	first	operand	mesh,	which	should	have	had	PrepForBoolean	called.
MNMesh	&	m2
The	second	operand	mesh,	which	should	have	had	PrepForBoolean	called.
int	type
The	type	of	Boolean.	The	Boolean	types	are	defined	in	mesh.h,	and	are	one	of
MESHBOOL_UNION,	MESHBOOL_INTERSECTION,	or

MESHBOOL_DIFFERENCE.	If	MESHBOOL_DIFFERENCE	is	selected,
operand	m2	is	subtracted	from	operand	m1.	(To	get	the	opposite	result,	just
switch	the	order	of	m1	and	m2.)
MeshOpProgress	*mop=NULL
A	pointer	to	a	MeshOpProgress.	See	Class	MeshOpProgress	for	details.	The
mop	is	initialized	with	the	number	of	faces	in	mesh	1	plus	the	number	of	faces
in	mesh	2	plus	10.	MakeBoolean	aborts	acceptably	if	mop->Progress	returns
FALSE,	in	which	case	the	partially	Booleaned	MNMesh	is	returned.	(Usually
this	consists	of	mesh	1	partially	cut	by	mesh	2,	or	mesh	1	fully	cut	and	mesh	2
partially	cut,	with	no	faces	removed.)	This	argument	may	safely	be	left	at
NULL	if	you	do	not	wish	to	be	updated	on	the	Boolean	progress	or	have	the
capability	to	abort.

Return	Value:
Returns	FALSE	if	the	operation	was	cancelled	by	the	MeshOpProgress	or	if	it
was	unable	to	match	the	seams	of	the	two	operands	at	the	end,	resulting	in	a
mesh	with	holes.	It	returns	TRUE	if	everything	went	well,	producing	a	solid,
hole-free	mesh.
Note	that	it	will	always	return	FALSE	if	one	of	the	operands	has	holes.

Sample	Code:
Sample	code:	the	following	code	can	be	used	to	replace	the	old	CalcBoolOp
method.
BOOL	CalcNewBooleanOp(Mesh	&	mesh,	Mesh	&	mesh1,	Mesh
&	mesh2,	int	op,	MeshOpProgress	*prog=NULL,	Matrix3
*tm1=NULL,	Matrix3	*tm2=NULL,	int	whichinv=0)	{
	MNMesh	m1(mesh1);
	MNMesh	m2(mesh2);
	if(tm1)	m1.Transform(*tm1);
	if(tm2)	m2.Transform(*tm2);
	m1.PrepForBoolean();
	m2.PrepForBoolean();
	MNMesh	mOut;
	mOut.MakeBoolean(m1,	m2,	op,	prog);
	if(whichinv==0)	mOut.Transform(Inverse(*tm1));
	if(whichinv==1)	mOut.Transform(Inverse(*tm2));

mOut.OutToTri(mesh);

	return	TRUE;
}

Prototype:
void	ConnectLoops	(Tab<int>	&	loop1,	Tab<int>	&	loop2,	int	segs,
float	tension,	DWORD	smGroup,	MtlID	mat,	bool	sm_ends);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Connects	two	border	loops	by	filling	in	new	geometry	between	them,	as	is
done	in	the	Connect	compound	object.

Parameters:
Tab<int>	&	loop1
Tab<int>	&	loop2
These	parameters,	which	are	interchangeable,	are	lists	of	edges	that	represent
border	loops	in	the	MNMesh.	It	is	assumed	that	the	MNMesh	is	filled	in,	that
each	of	the	edges	in	the	loops	is	in	fact	one-sided	(e[loop1[i]].f2	==	-1),	and
that	the	edges	go	in	counterclockwise	order	when	looking	from	outside	the
mesh	(so	e[loop1[i]].v1	==	e[loop1[i+1]].v2).	(These	are	the	sort	of	border
loops	you	find	in	an	MNMeshBorder	class.)
int	segs
The	number	of	segments	in	the	bridge.
float	tension
The	tension	of	the	bridge	-	this	controls	how	much	the	surface	tangents	at	each
end	of	the	bridge	affect	the	bridge's	shape.
DWORD	smGroup
These	smoothing	group(s)	should	be	applied	to	the	entire	bridge.	(Use	0	for	a
faceted	bridge.)
MtlID	mat
This	is	the	material	used	for	the	bridge	faces.
bool	sm_ends
If	TRUE,	additional	smoothing	groups	are	applied	to	the	end	faces	of	the
bridge	to	ensure	that	the	bridge	smoothes	with	the	existing	faces	around	each
border	loop.

Prototype:
void	Connect	(MNMeshBorder	&	borderList,	int	segs,	float
tension,	bool	sm_bridge,	bool	sm_ends,	Tab<int>	*vsep=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Connect	automatically	figures	out	which	loops	in	the	given	MNMeshBorder
would	make	good	candidates	for	connecting,	and	calls	ConnectLoop	on	them
all	to	connect	them.	Good	candidates	are	pairs	of	loops	that	face	each	other.
Centers	and	normals	of	each	of	the	"holes"	are	compared	to	find	the	best
matches.

Parameters:
MNMeshBorder	&	borderList
The	boundary	information	for	the	MNMesh	mesh.
int	segs
The	number	of	segments	in	each	bridge.
float	tension
The	tension	of	each	bridge	-	this	controls	how	much	the	surface	tangents	at
each	end	of	the	bridge	affect	the	bridge's	shape.
bool	sm_bridge
If	TRUE,	each	bridge	should	be	smoothed	with	some	unused	smoothing
group.
bool	sm_ends
If	TRUE,	additional	smoothing	groups	are	applied	to	the	end	faces	of	each
bridge	to	ensure	that	the	bridge	smoothes	with	the	existing	faces	around	each
border	loop.
Tab<int>	*vsep=NULL
If	not	NULL,	this	points	to	a	"separation	list"	of	vertices.	Frequently	the	user
wishes	to	connect	two	distinct	object	(as	with	the	Connect	compound	object).
In	these	cases,	the	vertices	of	the	different	connected	components	are	often
grouped	in	distinct	sets:	vertices	0	through	26	come	from	the	first	component,
27	through	118	from	the	second,	etc.	Generally	the	user	would	not	want	a
component	to	connect	to	itself,	but	rather	only	to	other	components.	So	if	non-
NULL,	this	is	assumed	to	point	to	a	list	describing	the	vertex	ranges	for	each
component	-	(0,	27,	119,	etc).	The	list	should	have	size	(number	of

components+1),	and	the	last	element	should	be	MNMesh::numv.	Given	such
an	input,	the	Connect	algorithm	will	only	connect	loops	to	loops	in	other
components.

Prototype:
void	InvalidateGeomCache();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Invalidates	information,	like	bounding	box	and	face	normals,	that’s	dependent
on	Geometry.	Call	after	changing	the	geometry.

Prototype:
void	InvalidateTopoCache();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Invalidates	information,	like	the	edge	list	and	the	render	verts,	that’s
dependent	on	Topology.	Clears	the	MN_MESH_FILLED_IN	and	related	flags
in	MN_MESH_CACHE_FLAGS.

Prototype:
void	allocRVerts();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Allocates	the	"render	vertices"	used	to	optimize	display	routines.	Called	by	the
system	as	needed.

Prototype:
void	updateRVerts(GraphicsWindow	*gw);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Fills	in	the	render	vertices	with	display	coordinates	based	on	the	specified
view.

Prototype:
void	freeRVerts();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Frees	the	"render	vertices"	used	to	optimize	display	routines.

Debugging	Methods
Please	see	the	MNMesh	Notes	on	Debugging	for	more	information.

Prototype:
void	MNDebugPrint(bool	triprint=FALSE);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Uses	DebugPrint	to	print	out	the	entire	MNMesh	to	the	Debug	Results
window	in	DevStudio.	This	can	be	useful	for	tracking	down	bugs.	Be	careful
not	to	leave	MNDebugPrint	calls	in	your	final	build;	they	will	slow	down	your
effect	to	no	purpose.

Parameters:
bool	triprint=FALSE
Controls	whether	or	not	triangulation	information	is	printed	out	for	each	face.
Usually	this	information	isn't	desired.

Prototype:
void	MNDebugPrintVertexNeighborhood(int	vv,	bool
triprint=FALSE);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Uses	DebugPrint	to	print	out	information	about	all	the	edges,	faces,	and
vertices	in	the	immediate	vicinity	of	vertex	vv.

Parameters:
int	vv
The	vertex	whose	information	is	output.
bool	triprint=FALSE
Controls	whether	or	not	triangulation	information	is	printed	out	for	each	face.

Usually	this	information	isn't	desired.

Prototype:
bool	CheckAllData();

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Thoroughly	checks	a	MNMesh	to	make	sure	that	no	components	refer	to	dead
components;	that	when	one	component	refers	to	another,	the	other	refers	back
to	the	first;	and	that	orientation	is	correctly	matched	between	faces	and	edges.
If	everything	checks	out,	TRUE	is	returned.	If	any	errors	are	detected,
DebugPrint	is	used	to	send	a	message	to	the	DevStudio	Debug	Results
window	and	FALSE	is	returned.	Be	careful	not	to	leave	CheckAllData	calls	in
your	final	build;	they	will	slow	down	your	effect	to	no	purpose.
Here	is	the	sort	of	debug	output	you	can	expect.	CheckAllData	always	outputs
one	of	the	following	messages:
Checking	all	data	in	filled-in	MNMesh:	(if	the	mesh	has	the
MN_MESH_FILLED_IN	flag	set)
Checking	all	data	in	MNMesh:	(if	the	mesh	does	not)
	
These	errors	will	be	detected	for	any	mesh:
Face	%d	has	an	out-of-range	vertex:	%d
Face	%d	has	an	out-of-range	tvert:	%d
Face	%d	has	an	out-of-range	cvert:	%d
Face	%d	refs	dead	edge	%d.
Face	%d	has	bad	triangulation	index:	%d
	
These	errors	will	be	detected	only	for	filled-in	meshes:
Face	%d	has	an	out-of-range	edge:	%d
Face	%d	uses	dead	edge	%d.
Face	%d	refs	edge	%d,	but	edge	doesn't	ref	face.
Face	%d	refs	edge	%d	from	vert	%d	to	vert	%d,	but	edge	doesn't	go	there.
Orientation	mismatch	between	face	%d	and	edge	%d.
Face	%d	refs	vertex	%d,	but	vertex	doesn't	ref	face.
Edge	%d	refs	dead	vertex	%d.

Edge	%d	refs	vertex	%d,	but	vertex	doesn't	ref	edge.
Edge	%d	has	no	face-1
Edge	%d	refs	dead	face	%d.
Edge	%d	refs	face	%d,	but	face	doesn't	ref	edge.
Vertex	%d	refs	dead	edge	%d.
Vertex	%d	refs	edge	%d,	but	edge	doesn't	ref	vertex.
Vertex	%d	references	more	faces	than	edges.
Vertex	%d	refs	dead	face	%d.
Vertex	%d	refs	face	%d,	but	face	doesn't	ref	vertex.

Operators
Prototype:
MNMesh	&	operator=(const	MNMesh	&	from);

Remarks:
Assignment	operator.	Allocates	space	&	copies	over	all	data	from	"from".

Prototype:
MNMesh	&	operator+=(const	MNMesh	&	from);

Remarks:
Union	operator.	Adds	all	data	from	"from"	to	this	MNMesh.	Flags
MN_MESH_NONTRI	and	MN_MESH_RATSNEST	are	or’d	together,	while
flags	MN_MESH_FILLED_IN,	MN_MESH_NO_BAD_VERTS,	and
MN_MESH_VERTS_ORDERED	are	and’d	together.	(Uniting	a	rat’s	nest
with	a	non-rat’s	nest	makes	a	rat’s	nest,	but	uniting	a	mesh	with	mapping
coordinates	and	one	without	makes	one	without.)
	

Prototype:
void	ClearSpecifiedNormals	();

Remarks:
This	method	is	available	in	release	5	and	later	only.
Clears	out	the	specified	normal	interface,	if	present.	Removes	it

completely,	so	it	won't	flow	up	the	stack,	etc.
	

Prototype:
void	SpecifyNormals	();

Remarks:
This	method	is	available	in	release	5	and	later	only.
Creates	the	user-specified	normal	interface	in	this	mesh.	Initializes
the	MNNormalSpec's	"Parent"	to	this	mesh,	but	does	not	allocate	normal	faces
or	otherwise	prepare	the	normals.	Note	that	this	interface	will	flow
up	the	pipeline,	in	the	PART_GEOM	and	PART_TOPO	channels.
	

Prototype:
MNNormalSpec	*GetSpecifiedNormals();

Remarks:
This	method	is	available	in	release	5	and	later	only.
Returns	a	pointer	to	the	user-specified	normal	interface,	if	present.
	

Return	Value:
A	pointer	to	this	mesh's	MNNormalSpec	interface,	or	NULL	if	the	interface
has	not	been	created	in	this	mesh.
	

Prototype:
MNNormalSpec	*GetSpecifiedNormalsForDisplay();

Remarks:
This	method	is	available	in	release	5	and	later	only.
	
Returns	a	non-NULL	MNNormalSpec	interface	pointer	only	if	the	interface
is	present,	and	is	prepared	for	use	in	display	-	otherwise,	it	returns
NULL,	and	we	fall	back	on	the	smoothing	groups.

	
A	MNNormalSpec	is	considered	"prepared	for	display"	only	if	the
MNNORMAL_NORMALS_BUILT	and
MNNORMAL_NORMALS_COMPUTED	flags	are	set.
(See	the	MNNormalSpec	methods	BuildNormals	and	ComputeNormals.)

	

Prototype:
void	CopyBasics	(const	MNMesh	&	from,	bool	copyEdges	=	false);

Remarks:
This	method	is	available	in	release	4.5	and	later	only.
Copies	bare	geometry	only	-	no	per-vertex	data,	maps,	or	normals.
Useful	for	keeping	low-memory	local	caches	of	a	mesh	where	map,
vertex	data,	edge	data,	normals,	and	other	interfaces	are	not	required.

Parameters:
const	MNMesh	&	from
The	mesh	to	copy	into	this	mesh.
bool	copyEdges	=	false
Indicates	if	the	winged-edge	array,	as	well	as	vertex	and	face
references	to	edges,	should	be	copied.	If	false,	the
MN_MESH_FILLED_IN	flag	is	cleared	in	this	mesh.

Structure	NotifyInfo
See	Also:	Class	Interface	(callback	methods),	List	of	Notification	Codes.

Description:
3ds	max	supports	a	system	where	a	plug-in	can	ask	to	receive	a	callback	when
certain	events	occur.	These	are	events	such	as	the	system	unit	settings
changing,	system	time	setting	changing,	or	the	user	executing	File/Reset,
File/New,	etc.

This	structure	is	part	of	this	system.	It	is	available	in	release	2.0	and	later	only.
typedef	struct	{
	int	intcode;
	void	*callParam;

This	pointer	is	available	in	release	3.0	and	later	only.
This	parameter	can	be	passed	in	with	the	function

BroadcastNotification(int	code,	void	*callParam).
}	NotifyInfo;
The	plug-in	creates	a	callback	function	to	process	the	notification.	The
notification	callback	function	(NOTIFYPROC)	is	defined	as	follows:
typedef	void	(*	NOTIFYPROC)(void	*param,	NotifyInfo	*info);
The	NotifyInfo	structure	is	passed	to	the	NOTIFYPROC	to	inform	it	of
what	it's	being	notified	about.
The	sample	code	below	shows	how	this	system	may	be	used.

Sample	Code:
//	Declare	the	callback	function
static	void	TimeUnitsChanged(void	*param,	NotifyInfo	*info)	{
	//	Handle	the	units	changing...
}
//	Register	the	callback
RegisterNotification(TimeUnitsChanged,this,
	NOTIFY_TIMEUNITS_CHANGE);
//	When	done,	unregister	the	callback
UnRegisterNotification(TimeUnitsChanged,this,
	NOTIFY_TIMEUNITS_CHANGE);

Related	Functions:

Function:
int	RegisterNotification(NOTIFYPROC	proc,	void	*param,	int
code);

Remarks:
This	global	function	is	called	to	establish	the	connection	between	the	event
and	the	callback.

Parameters:
NOTIFYPROC	proc
The	callback	function	called	when	the	event	occurs.
void	*param
A	pointer	to	a	parameter	which	will	be	passed	to	the	callback	function.
int	code
Specifies	which	notification	to	register.	See	List	of	Notification	Codes.

Return	Value:
Nonzero	if	the	event	was	registered;	otherwise	zero.

Function:
int	UnRegisterNotification(NOTIFYPROC	proc,	void	*param,	int
code);

Remarks:
This	global	function	is	called	to	break	the	connection	between	the	event	and
the	callback.	After	this	function	executes	the	callback	is	no	longer	invoked
when	the	event	occurs.

Parameters:
NOTIFYPROC	proc
The	callback	function	called	when	the	event	occurs.
void	*param
This	parameter	must	be	identical	to	the	param	sent	into
RegisterNotification().	This	function	will	only	unregister	a	callback	if	this
parameter	equals	the	param	sent	in	to	the	RegisterNotification()	function.
int	code

Specifies	which	notification	to	unregister.	See	List	of	Notification	Codes.
Return	Value:
Nonzero	if	the	event	was	unregistered;	otherwise	zero.

Function:
void	BroadcastNotification(int	code);

Remarks:
Calling	this	global	function	causes	the	callback	corresponding	to	the	specified
code	to	be	called.

Parameters:
int	code
Specifies	which	notification	to	broadcast.	See	List	of	Notification	Codes.

Prototype:
void	BroadcastNotification(int	code,	void	*callParam);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
This	causes	the	callback	corresponding	to	the	specified	code	to	be	called	and
passes	the	specified	void*	parameter	along	to	the	callback.

Parameters:
int	code
Specifies	which	notification	to	broadcast.	See	List	of	Notification	Codes.
void	*callParam
This	parameter	is	passed	to	the	callback.	See	the	code
NOTIFY_BITMAP_CHANGED	for	an	example	of	this	in	use.

Function:
int	UnRegisterNotification(NOTIFYPROC	proc,	void	*param);

Remarks:
This	global	function	unregisters	the	callback	from	all	codes

Parameters:
NOTIFYPROC	proc

The	callback	function	called	when	the	event	occurs.
void	*param
A	pointer	to	a	parameter	which	will	be	passed	to	the	callback	function.

Return	Value:
Nonzero	if	the	events	were	unregistered;	otherwise	zero.

Class	SimpleOSMToWSMObject
See	Also:	Class	SimpleWSMObject,	Class	SimpleMod,	Class	Deformer,	Class
IParamMap.
class	SimpleOSMToWSMObject	:	public	SimpleWSMObject

Description:
This	class	is	used	to	allow	any	Object	Space	Modifer	derived	from	SimpleMod
to	easily	be	turned	into	a	World	Space	Modifier	(Space	Warp).
This	is	very	simple	to	do	because	a	modifier	version	already	contains	just	about
everything	that	needs	to	be	done.	This	is	because	the	modifier	works	the	same	--
it	is	just	in	world	space	instead	of	object	space.
All	a	developer	needs	to	do	to	turn	their	SimpleMod	modifier	into	the	WSM
version	is	implement	a	class	derived	from	this	one	and	call	the
SimpleOSMTOWSMObject	constructor	from	their	constructor.	See	the
sample	code	below	(for	the	full	sample	code	using	this	class	see
\MAXSDK\SAMPLES\MODIFIERS\BEND.CPP).
class	BendWSM	:	public	SimpleOSMToWSMObject	{
	public:
		BendWSM()	{}
		BendWSM(BendMod	*m)	:	SimpleOSMToWSMObject(m)	{}
		void	DeleteThis()	{	delete	this;	}
		SClass_ID	SuperClassID()	{return
WSM_OBJECT_CLASS_ID;}
		Class_ID	ClassID()	{return	BENDWSM_CLASSID;}
		TCHAR	*GetObjectName()	{return
GetString(IDS_RB_BEND2);}
	};

These	new	modifier-based	space	warps	are	accessed	in	the	drop-down	category
list	of	the	Space	Warps	branch	of	the	Create	command	panel.	Choose	Modifier-
Based	from	the	list	to	display	buttons	for	each	of	the	new	space	warps.

Data	Members:
public:
SimpleMod	*mod;

Points	to	the	simple	modifier	instance	this	is	based	on.
static	IParamMap	*pmapParam;
Points	to	the	parameter	map	used	to	handle	the	user	interface	for	this	WSM.
These	are	the	parameter	block	indices	for	the	pmap:
#define	PB_OSMTOWSM_LENGTH	0
#define	PB_OSMTOWSM_WIDTH	1
#define	PB_OSMTOWSM_HEIGHT	2
#define	PB_OSMTOWSM_DECAY	3

Methods:

Prototype:
SimpleOSMToWSMObject();

Remarks:
Constructor.

Prototype:
SimpleOSMToWSMObject(SimpleMod	*m);

Remarks:
Constructor.

Parameters:
SimpleMod	*m
This	is	a	pointer	to	the	SimpleMod	instance	this	WSM	is	based	on.

Prototype:
Deformer	&GetDecayDeformer(TimeValue	t,Deformer
&mdef,Point3	origin,Interval	&iv);

Remarks:
Implemented	by	the	System.
This	class	enhances	the	deformation	done	by	the	object	space	modifier	to
include	a	decay	parameter.	This	allows	the	deformation	to	decay	over	distance.
This	helper	method	is	used	internally	in	this.

Class	ImageFilterInfo
See	Also:	Class	ImageFilter,	Class	BitmapInfo,	Class	FrameRange,	Class
ITrackViewNode,	Class	Class_ID.
class	ImageFilterInfo

Description:
This	class	provides	information	to	an	image	filter	plug-in.	This	is	information
such	as	state	of	any	masks	used,	and	the	various	frame	ranges	for	the	video	post
queue.	It	is	analogous	to	the	BitmapInfo	class	in	the	Bitmap	Manager.

Data	Members:
public:
BOOL	maskenabled;
TRUE	if	the	filter	has	a	mask;	otherwise	FALSE.
BOOL	evCopy;
This	is	used	internally	as	a	flag	indicating	this	object	is	a	temporary	copy,	and
not	the	real	thing.	It	is	only	an	issue	when	filters	have	Track	View	Nodes.	This
is	only	used	internally.
BOOL	invertedmask;
TRUE	if	the	mask	is	inverted;	otherwise	FALSE.
BitmapInfo	mask;
The	image	used	as	the	mask.
WORD	maskflag;
This	is	used	internally.	It	indicates	what	part	of	the	mask	image	is	used	to
create	the	grayscale	mask.	It	may	be	one	of	the	following	values:	MASK_R,
MASK_G,	MASK_B,	MASK_A,	MASK_L,	MASK_Z,
MASK_MTL_ID,	MASK_NODE_ID.
BitmapInfo	imgQueue;
This	is	a	BitmapInfo	that	holds	information	about	the	current	Video	Post	main
queue	image	buffer.	This	can	be	used	to	get	Video	Post's	(or	the	target	image's)
resolution,	etc.
FrameRange	QueueRange;
This	defines	the	entire	Video	Post	Queue	range.	This	is	the	range	defined
between	VP	Start	Time	and	VP	End	Time	in	the	video	post	user	interface.

FrameRange	ExecutionRange;
When	the	queue	is	executed,	this	is	the	range	of	frames	being	rendered.
FrameRange	FilterRange;
The	FilterRange	is	where	this	filter	starts	and	ends.

Methods:

Prototype:
virtual	void	SetResource(const	TCHAR	*n);

Remarks:
Filters	may	want	to	identify	themselves	by	something	more	specific	than	their
names	when	they	appear	in	the	video	post	queue.	By	default,	the	name	of	a
filter	is	used	to	identify	it	in	the	video	post	queue,	ie	the	Negative	filter
appears	as	Negative.	Some	filters	may	want	a	more	descriptive	name	to
appear.	For	instance	a	gradient	filter	that	allows	the	user	to	save	named
settings	may	want	the	name	of	the	set	to	appear	rather	than	simply	the	name	of
the	filter	itself.	Thus,	"Flowing	gradient	-	Red	to	Blue"	may	appear	rather	than
"Gradient".	This	method	is	available	for	filters	that	that	give	such	names	to
parameter	sets.	If	not	empty,	the	resource	name	will	be	used	to	identify	the
filter	in	the	Video	Post	Queue.	This	is	saved	along	with	everything	else	by	the
system	(3ds	max).

Parameters:
const	TCHAR	*n
The	name	to	appear,	instead	of	the	filter	name,	in	the	video	post	queue.

Prototype:
virtual	const	TCHAR	*Resource();

Remarks:
Returns	the	resource	name.

Prototype:
virtual	const	TCHAR	*Name();

Remarks:
Returns	the	name	of	the	filter.

Operators:

Prototype:
virtual	ImageFilterInfo	&operator=	(ImageFilterInfo	&from);

Remarks:
Assignment	operator.

Parameters:
ImageFilterInfo	&from
The	source	ImageFilterInfo.

Prototype:
ITrackViewNode	*Node();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	to	return	the	Track	View	node	for	this	filter.	Because
Video	Post	Filter	plug-ins	have	a	short	life,	in	other	words,	they	are	only
loaded	when	they	are	actually	needed	and	deleted	right	after,	the	Track	View
node	information	is	kept	in	the	ImageFilterInfo	class	kept	by	Video	Post	for
each	filter	event.

Prototype:
void	SetNode(ITrackViewNode	*n);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	sets	the	Track	View	node	associated	with	this	ImageFilter.

Parameters:
ITrackViewNode	*n
The	Track	View	node	to	set.

Prototype:
Class_ID	NodeID();

Remarks:

This	method	is	available	in	release	2.0	and	later	only.
Returns	the	Class_ID	of	the	Track	View	node	(if	any).

Prototype:
void	SetNodeID(Class_ID	id);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	stored	Class_ID	of	the	Track	View	node	(if	any).

Parameters:
Class_ID	id
The	id	to	set.

Prototype:
TCHAR	*UserLabel();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	optional	label	entered	by	the	user	while	adding	or	editing	a	filter.
This	label	replaces	the	filter's	name	in	Video	Post's	tracks	in	Track	View	for
easier	identification.	This	is	the	name	that	is	entered	in	the	'Edit	Filter	Event'
dialog	Filter	Plug-In	Label	field.	The	label	defaults	to	Unnamed	in	which	case
the	Filter's	name	appears	(for	example	'Negative').

Prototype:
int	FilterType();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	so	dual	mode	filters	can	detect	what	mode	they	are
running	in	(as	a	filter	or	as	a	compositor).	In	the	3ds	max	1.x	SDK,	filters	that
ran	both	as	filters	and	layers	had	no	way	to	determine	what	mode	they	were
running	while	in	"Setup"	mode	(in	ShowControl()).	At	run	time	they	would
check	for	a	foreground	bitmap.	If	it	was	NULL,	they	were	to	assume	they
were	running	as	simple	filters.	Now	this	method	may	be	used	to	determine
what	mode	they	are	running	in.

Return	Value:
One	of	the	following	values:
FLT_FILTER
FLT_LAYER

Prototype:
void	SetFilterType(int	type);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	internally.

Class	ITrackViewNode
See	Also:	Class	ReferenceTarget,	Class	Interface,	Class	Control,	Class
ImageFilter,	Class	TVNodeNotify.
class	ITrackViewNode	:	public	ReferenceTarget

Description:
This	class	provides	an	interface	to	Track	View	Nodes.	A	Track	View	Node	is
simpy	a	class	that	has	zero	or	more	sub-track	view	nodes	and	zero	or	more	sub-
controllers.	This	is	mainly	used	to	provide	a	place	for	Global	Variable	tracks
(labeled	"Global	Tracks"	in	Track	View)	and	Video	Post	tracks	(labelled	"Video
Post"	in	Track	View).
The	TrackViewNode	sub-nodes	and	sub-controllers	are	identified	by	a	unique	ID
in	the	form	of	a	Class_ID	variable.	This	does	not	necessarily	have	to	be	the
Class_ID	of	an	existing	plug-in,	however	plug-ins	may	wish	to	use	their
Class_ID	for	any	items	they	add	to	be	sure	they	are	unique.
The	Interface	class	provides	access	to	the	root	track	view	node:
virtual	ITrackViewNode	*GetTrackViewRootNode()=0;

From	the	root	track	view	node,	new	nodes	may	be	added.	There	are	two	defined
sub	nodes	identified	by	the	following	#defined	Class_IDs:
#define	GLOBAL_VAR_TVNODE_CLASS_ID
Class_ID(0xb27e9f2a,	0x73fad370)
#define	VIDEO_POST_TVNODE_CLASS_ID
Class_ID(0x482b8d30,	0xb72c8511)

These	can	be	retreived	by	calling	GetNode()	on	the	track	view	root	node	and
passing	in	one	of	the	above	IDs.
All	methods	of	this	class	are	implemented	by	the	system.
Note:	Developers	can	also	create	their	own	track	view	node	using	the	following
global	function:
	
Function:
ITrackViewNode	*CreateITrackViewNode(BOOL
hidden=FALSE);

Remarks:

This	method	is	used	to	add	a	track	view	node.
Parameters:
BOOL	hidden=FALSE
If	FALSE	the	node	is	hidden;	otherwise	it	is	visible	in	the	viewports.

Methods:

Prototype:
virtual	void	AddNode(ITrackViewNode	*node,	TCHAR	*name,
Class_ID	cid,	int	pos=TVNODE_APPEND)=0;

Remarks:
This	method	is	used	to	add	a	track	view	node.

Parameters:
ITrackViewNode	*node
Points	to	the	Track	View	Node	to	add.
TCHAR	*name
The	name	for	the	node	that	appears	in	Track	View.
Class_ID	cid
The	Class_ID	which	identifies	the	plug-in	that	added	the	node.
int	pos=TVNODE_APPEND
The	position	in	the	list	of	nodes	where	this	one	is	added.	If	this	defaults	to
TVNODE_APPEND	the	node	is	added	at	the	end	of	the	list.

Prototype:
virtual	void	AddController(Control	*c,	TCHAR	*name,	Class_ID
cid,	int	pos=TVNODE_APPEND)=0;

Remarks:
This	method	is	used	to	add	a	track	view	controller.

Parameters:
Control	*c
Points	to	the	controller	to	add.
TCHAR	*name
The	name	that	will	appear	in	Track	View.

Class_ID	cid
The	Class_ID	of	the	plug-in	that	adds	the	controller.
int	pos=TVNODE_APPEND
The	position	in	the	list	where	the	controller	is	added.	If	this	defaults	to
TVNODE_APPEND	the	controller	is	added	at	the	end	of	the	list.

Prototype:
virtual	int	FindItem(Class_ID	cid)=0;

Remarks:
A	Track	View	Node	maintains	a	table	that	contains	the	sub-nodes	and	sub-
controllers.	This	method	returns	the	index	into	the	table	of	the	node	or
controller	whose	Class_ID	is	passed.	If	the	Class_ID	could	not	be	found	then
-1	is	returned.

Parameters:
Class_ID	cid
The	Class_ID	to	find.

Prototype:
virtual	void	RemoveItem(int	i)=0;

Remarks:
A	Track	View	Node	maintains	a	table	that	contains	the	sub-nodes	and	sub-
controllers.	This	method	removes	the	'i-th'	sub-node	or	sub-controller	of	the
table.

Parameters:
int	i
The	zero	based	index	into	the	table	of	the	item	to	remove.

Prototype:
virtual	void	RemoveItem(Class_ID	cid)=0;

Remarks:
A	Track	View	Node	maintains	a	table	that	contains	the	sub-nodes	and	sub-
controllers.	This	method	removes	the	sub-node	or	sub-controller	whose

Class_ID	is	passed	from	the	table.
Parameters:
Class_ID	cid
The	Class_ID	used	when	the	node	or	controller	was	added.

Prototype:
virtual	Control	*GetController(int	i)=0;

Remarks:
This	method	returns	a	pointer	to	the	'I-th'	sub-controller.

Parameters:
int	i
The	zero	based	index	of	the	sub-controller.

Prototype:
virtual	Control	*GetController(Class_ID	cid)=0;

Remarks:
This	method	returns	a	pointer	to	the	sub-controller	whose	Class_ID	is	passed.

Parameters:
Class_ID	cid
The	Class_ID	used	when	the	controller	was	added.

Prototype:
virtual	ITrackViewNode	*GetNode(int	i)=0;

Remarks:
This	method	returns	a	pointer	to	the	'i-th'	sub-node.

Parameters:
int	i
The	zero	based	index	of	the	sub-node.

Prototype:
virtual	ITrackViewNode	*GetNode(Class_ID	cid)=0;

Remarks:
This	method	returns	a	pointer	to	the	sub-node	whose	Class_ID	is	passed.

Parameters:
Class_ID	cid
The	Class_ID	used	when	the	controller	was	added.

Prototype:
virtual	int	NumItems()=0;

Remarks:
This	method	returns	the	total	number	of	sub-nodes	and/or	sub-controllers	in
the	table.

Prototype:
virtual	void	SwapPositions(int	i1,	int	i2)=0;

Remarks:
This	method	is	used	to	rearrange	the	elements	in	the	table	so	item	i1	is	where
i2	was	and	i2	is	where	i1	was.

Parameters:
int	i1
The	zero	based	index	into	the	table	of	one	of	the	items	to	swap.
int	i2
The	zero	based	index	into	the	table	of	the	other	item	to	swap.

Prototype:
virtual	TCHAR	*GetName(int	i)=0;

Remarks:
Returns	the	name	of	the	'i-th'	sub-node	or	sub-controller.

Parameters:
int	i
The	zero	based	index	into	the	table	of	the	item	whose	name	to	return.

Prototype:

virtual	void	SetName(int	i,TCHAR	*name)=0;
Remarks:
Sets	the	name	of	the	'i-th'	sub-node	or	sub-controller	to	the	name	passed.

Parameters:
int	i
The	zero	based	index	into	the	table	of	the	item	whose	name	to	set.
TCHAR	*name
The	new	name	for	the	sub-node	or	sub-controller.

Prototype:
virtual	void	RegisterTVNodeNotify(TVNodeNotify	*notify)=0;

Remarks:
Registers	the	track	view	notify	callback	object	so	it	recieves	reference
messages.

Parameters:
TVNodeNotify	*notify
Points	to	the	callback	object	to	register.

Prototype:
virtual	void	UnRegisterTVNodeNotify(TVNodeNotify	*notify)=0;

Remarks:
Un-Registers	the	track	view	notify	callback	object.

Parameters:
TVNodeNotify	*notify
Points	to	the	callback	object	to	register.

Prototype:
virtual	void	HideChildren(BOOL	chide)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	may	be	used	to	prevent	child	nodes	from	showing	up	in	Track	View.

Parameters:
BOOL	chide
Pass	TRUE	to	have	children	hidden;	FALSE	to	have	them	visible.

	

List	of	Image	(G-Buffer)	Channels
See	Also:	Class	GBuffer,	Class	ImageFilter,	Class	Bitmap,	Class	MtlBase,	Class
Interface,	Class	INode,	Structure	RealPixel,	Structure	Color24.
Below	is	an	overview	of	the	image	channels.	The	number	of	bits	per	pixel
occupied	by	the	channel	is	listed.	The	way	the	channel	is	accessed	and	cast	to	the
appropriate	data	type	is	also	shown.
Note:	3ds	max	users	may	store	the	G-Buffer	data	in	offline	storage	in	RLA	or
RPF	files.	For	the	definition	of	the	RLA	or	RPF	format	you	can	look	at	the
source	code	in	\MAXSDK\SAMPLES\IO\RLA\RLA.CPP.
Also	Note:	The	term	'fragment'	is	used	in	the	descriptions	of	the	channels	below.
A	'fragment'	is	the	portion	of	a	triangle	of	a	mesh	that's	seen	by	a	particular	pixel
being	rendered.	It's	as	if	the	pixel	was	a	cookie-cutter	and	chopped	a	visible
section	of	the	triangle	off	for	rendering	--	that	cut	piece	is	called	a	fragment.
BMM_CHAN_Z
Z-buffer,	stored	as	a	float.	The	size	is	32	bits	per	pixel.	This	is	the	channel	that
would	be	used	by	a	depth	of	field	blur	routine	for	instance.	The	Z	value	is	at
the	center	of	the	fragment	that	is	foremost	in	the	sorted	list	of	a-buffer
fragments.	The	Z	buffer	is	an	array	of	float	values	giving	the	Z-coordinate	in
camera	space	of	the	point	where	a	ray	from	the	camera	through	the	pixel
center	first	intersects	a	surface.	All	Z	values	are	negative,	with	more	negative
numbers	representing	points	that	are	farther	from	the	camera.	The	Z	buffer	is
initialized	with	the	value	-1.0E30.	Note	that	this	is	a	change	over	3ds	max	1.x
where	the	Z	buffer	was	previously	initialized	with	1.0E30.	The	negative	value
is	more	appropriate	since	more	negative	values	represent	points	farther	from
the	camera.
Note	that	for	non-camera	viewports	(such	as	Front,	User,	Grid,	Shape,	etc.)	the
values	may	be	both	positive	and	negative.	In	such	cases	the	developer	may	as
well	add	a	large	value	onto	all	the	values	to	make	them	all	positive.	This	is
because	positive	versus	negative	doesn't	really	mean	anything.	It	is	just	the
distance	between	values	that	matters.
As	noted	above,	the	Z	values	in	the	A	buffer	are	in	camera	space.	The
projection	for	a	point	in	camera	space	to	a	point	in	screen	space	is:
Point2	RenderInfo::MapCamToScreen(Point3	p)	{
return	(projType==ProjPerspective)?

Point2(xc	+	kx*p.x/p.z,	yc	+	ky*p.y/p.z):
Point2(xc	+	kx*p.x,	yc	+	ky*p.y);
}

This	function	is	supplied	by	the	RenderInfo	data	structure	which	can	be
obtained	from	the	bitmap	output	by	the	renderer	using	the	function
Bitmap::GetRenderInfo().	Note	that	this	outputs	a	Point2.	There	is	no
projection	for	Z.	As	noted	before,	the	Z	buffer	just	uses	the	camera	space	Z.
float	*zbuffer	=	(float	*)GetChannel(BMM_CHAN_Z,type);

BMM_CHAN_MTL_ID
The	ID	assigned	to	the	material	via	the	Material	Editor.	The	size	is	8	bits	per
pixel.	This	channel	is	currently	settable	to	a	value	between	0	and	8	by	the
'Material	Effects	Channel'	flyoff	in	the	Material	Editor.	A	plug-in	material	can
generated	up	to	255	different	material	ID's	(since	this	is	an	8-bit	quantity).
This	channel	would	be	used	to	apply	an	effect	(i.e.,	a	glow)	to	a	specific
material.
BYTE	*bbuffer	=	(BYTE
*)GetChannel(BMM_CHAN_MTL_ID,type);

BMM_CHAN_NODE_ID
This	is	the	ID	assigned	to	node	via	the	Object	Properties	/	G-buffer	ID	spinner.
The	size	is	16	bits	per	pixel.	This	channel	would	be	used	to	perform	an	effect
(for	example	a	flare)	on	a	specific	node.
WORD	*wbuffer	=	(WORD
*)GetChannel(BMM_CHAN_NODE_ID,type);

BMM_CHAN_UV
UV	coordinates,	stored	as	a	Point2.	The	size	is	64	bits	per	pixel.	If	you	have
UV	Coordinates	on	your	object	this	channel	provides	access	to	them.	This
channel	could	be	used	by	3D	paint	programs	or	image	processing	routines	to
affect	objects	based	on	their	UVs.	The	UV	coordinate	is	stored	as	a	Point2,
using	Point2::x	for	u	and	Point2::y	for	v.	The	UV	coordinates	are	values	prior
to	applying	the	offset,	tiling,	and	rotation	associated	with	specific	texture
maps.
Point2	*pbuffer	=	(Point2
*)GetChannel(BMM_CHAN_UV,type);

BMM_CHAN_NORMAL

Normal	vector	in	view	space,	compressed.	The	size	is	32	bits	per	pixel.	Object
normals	are	available	for	image	processing	routines	that	take	advantage	of	the
normal	vectors	to	do	effects	based	on	curvature	(for	example),	as	well	as	for
3D	paint	programs.	The	normal	value	is	at	the	center	of	the	fragment	that	is
foremost	in	the	sorted	list	of	a-buffer	fragments.
DWORD	*dbuffer	=	(DWORD
*)GetChannel(BMM_CHAN_NORMAL,type);
Note:	The	following	function	is	available	to	decompress	this	value	to	a
standard	normalized	Point3	value	(DWORD	and	ULONG	are	both	32
bit	quantities):
Point3	DeCompressNormal(ULONG	n);
The	decompressed	vector	has	absolute	error	<	0.001	in	each	component.

BMM_CHAN_REALPIX
Non	clamped	colors	in	"RealPixel"	format.	The	size	is	32	bits	per	pixel.	See
Structure	RealPixel.	These	are	'real'	colors	that	are	available	for	physically-
correct	image	processing	routines	to	provide	optical	effects	that	duplicate	the
way	the	retina	works.
RealPixel	*rbuffer	=
	(RealPixel	*)GetChannel(BMM_CHAN_REALPIX,type);

BMM_CHAN_COVERAGE
Pixel	coverage	of	the	front	surface.	This	provides	an	8-bit	value	(0..255)	that
gives	the	coverage	of	the	surface	fragment	from	which	the	other	G-buffer
values	are	obtained.	This	channel	is	being	written	and	read	with	RLA	files,
and	shows	up	in	the	Virtual	Frame	Buffer.	This	may	be	used	to	make	the
antialiasing	in	2.5D	plug-ins	such	as	Depth	Of	Field	filters	much	better.
UBYTE	*gbufCov	=
(UBYTE*)GetChannel(BMM_CHAN_COVERAGE,type);

BMM_CHAN_BG
The	RGB	color	of	what's	behind	the	front	object.	The	size	is	24	bits	per	pixel.
If	you	have	the	image	color	at	a	pixel,	and	the	Z	coverage	at	the	pixel,	then
when	the	Z	coverage	is	<	255,	this	channel	tells	you	the	color	of	the	object	that
was	partially	obscured	by	the	foreground	object.	For	example,	this	info	will	let
you	determine	what	the	"real"	color	of	the	foreground	object	was	before	it	was
blended	(antialiased)	into	the	background.

Color24	*bgbuffer	=	(Color24
*)GetChannel(BMM_CHAN_BG,type);

BMM_CHAN_NODE_RENDER_ID
System	node	number	(valid	during	a	render).	The	size	is	16	bits	per	pixel.
The	renderer	will	set	the	RenderID	of	all	rendered	nodes,	and	will	set	all	non-
rendered	nodes	to	0xffff.	Video	Post	plug-ins	can	use	the
Interface::GetINodeFromRenderID()	method	to	get	a	node	pointer	from
an	ID	in	this	channel.	Note	that	this	channel	is	NOT	saved	with	RLA	files,
because	the	IDs	would	not	be	meaningful	unless	the	scene	was	the	one
rendered.
UWORD	*renderID	=	(UWORD
*)GetChannel(BMM_CHAN_NODE_RENDER_ID,type);
INode	*node	=	ip->GetINodeFromRenderID(*renderID);

BMM_CHAN_COLOR
This	option	is	available	in	release	3.0	and	later	only.
This	is	the	color	returned	by	the	material	shader	for	the	fragment.	It	is	a	24	bit
RGB	color	(3	bytes	per	pixel).
Color24	*c1	=	(Color24
*)GetChannel(BMM_CHAN_COLOR,type);

BMM_CHAN_TRANSP
This	option	is	available	in	release	3.0	and	later	only.
This	is	the	transparency	returned	by	the	material	shader	for	the	fragment.	It	is
a	24	bit	RGB	color	(3	bytes	per	pixel).
Color24	*transp	=	(Color24
*)GetChannel(BMM_CHAN_TRANSP,type);

BMM_CHAN_VELOC
This	option	is	available	in	release	3.0	and	later	only.
This	gives	the	velocity	vector	of	the	fragment	relative	to	the	screen,	in	screen
coordinates.	It	is	a	Point	2	(8	bytes	per	pixel).
Point2	*src	=	(Point2
*)GetChannel(BMM_CHAN_VELOC,type);

BMM_CHAN_WEIGHT
This	option	is	available	in	release	3.0	and	later	only.

This	is	the	sub-pixel	weight	of	a	fragment.	It	is	a	24	bit	RGB	color	(3	bytes
per	pixel).	It	is	the	fraction	of	the	total	pixel	color	contributed	by	the	fragment.
The	sum	of	(color	*weight)	for	all	the	fragments	should	give	the	final	pixel
color.	The	weight	(which	is	an	RGB	triple)	for	a	given	fragment	takes	into
account	the	coverage	of	the	fragment	and	the	transparency	of	any	fragments
which	are	in	front	of	the	given	fragment.
If	c1,	c2,	c3..	etc	are	the	fragment	colors,	and	w2,	w2,	w3...	etc	are	the
fragment	weights,	then
pixel	color	=	c1*w1	+	c2*w2	+c3*w3	+	...	+	cN*wN;

The	purpose	of	the	sub-pixel	weight	is	to	allow	post	processes	to	weight	the
conribution	of	a	post-effect	from	a	particular	fragment.	It	may	also	be
necessary	to	multiply	by	the	fragment’s	own	transparency,	which	is	not
included	in	its	weight.	Note	that	for	fragments	that	have	no	transparent
fragments	in	front	of	them,	the	weight	will	be	equal	to	the	coverage.
Color24	*w1	=	(Color24
*)GetChannel(BMM_CHAN_WEIGHT,type);

BMM_CHAN_NONE
None	of	the	channels	above.
BMM_CHAN_MASK
This	option	is	available	in	release	4.0	and	later	only.
The	4x4	(16	bits	=	1	word)	pixel	coverage	mask.

Required	Changes	to	MAX	2.x	Plug-Ins	to	Run	in
MAX	3.0
See	Also:	What's	New	in	the	MAX	3.0	SDK.

Overview
This	section	provides	general	information	on	the	changes	required	to	all	plug-
ins	to	get	them	running	in	3ds	max	3.0.	It	also	provides	links	to	topics	which
discuss	the	specific	changes	for	many	affected	plug-in	types.	Some	of	these
changes	are	required	while	others	are	optional	but	advantageous.

Current	Compiler	Version
A	new	version	of	the	compiler	is	required.	Visual	C++	6.0	is	used	for	3ds	max
3.0.	Prior	versions	of	the	compiler	are	no	longer	supported.

DLL	and	File	Loading	Changes
The	following	changes	were	made	affecting	the	loading	of	previous	version
DLLs	and	3ds	max	files:
The	value	MAX_API_NUM	was	changed	to	6	and	thus	DLL's	compiled
with	the	R2	API	won't	load.
The	value	MAX_RELEASE	was	changed	from	2500	to	3000	to	indicate
the	current	release.
The	name	of	the	class	directory	in	3ds	max	R3	files	from	was	changed	from
"ClassDirectory2"	to	"ClassDirectory3".	This	will	prevent	3ds	max	R3	files
from	being	loaded	into	3ds	max	R2	(3ds	max	will	put	up	an	Invalid	File
message).

Library	Files	Renamed	and	Eliminated
The	old	\MAXSDK\LIB\UTIL.LIB	file	has	been	renamed	to
MAXUTIL.LIB.	This	prevents	a	conflict	with	a	library	file	provided	by
VC++	6.0.	Therefore,	developers	will	need	to	update	their	projects	to	point	to
the	new	LIB	file	instead.
PATCH.LIB	has	been	eliminated	from	the	SDK.	Now	simply	use
CORE.LIB.

Parameter	Block	and	Parameter	Map	Improvements
There	is	a	new	scheme	for	parameter	blocks	and	parameter	maps	in	release	3.
While	the	old	system	still	exists	and	will	run	fine,	developers	are	encouraged
to	support	this	new	system	in	their	plug-ins.	This	makes	them	available	to	the
macro	recorder,	3ds	max	Scripter	and	Schematic	View.	See	the	Advanced
Topics	section	Parameter	Blocks	and	Maps	in	Release	3	for	implementation
details.

Miscellaneous	Changes	in	R3	That	May	Affect	Plug-Ins
Floating	Dialogs
This	section	relates	to	two	common	bugs	in	previous	versions	of	3ds	max	and
thus	likely	many	plug-ins	that	have	copied	or	imitated	3ds	max's	source	code.
The	problems	are	that	modal	dialogs	aren't	"truly"	modal,	and	that	modeless
dialogs	aren't	getting	disabled	when	other	modal	dialogs	are	presented.
The	first	condition	to	be	on	the	look	out	for	is	the	"Orphaned	Dialog"	type	of
bug.	An	example	of	this	occurs	when	a	user	brings	up	a	modal	dialog,	then
hits	a	3ds	max	toolbar	button	like	"Undo",	and	the	object	that	brought	the
dialog	up	goes	away.	The	problem	here	is	that	the	dialogs	aren't	"modal
enough".	That	is,	when	a	modal	dialog	is	displayed,	one	should	never	be	able
to	hit	any	toolbar	button	or	menu	entry	from	3ds	max's	main	user	interface.
The	problem	is	that	modal	dialogs	created	with	"DialogBox"	of
"DialogBoxParam"	are	only	modal	relative	to	their	parent	window.	The
solution	is	to	use	3ds	max's	main	window	as	the	parent	window	of	any	modal
dialog	created.	Developers	can	get	the	proper	window	handle	to	use	with
Interface::GetMAXHWnd().	Once	this	is	done,	users	can't	hit	"Undo"	or
any	other	operation	from	3ds	max's	main	user	interface	while	a	modal	dialog
is	displayed.
The	second	condition,	where	modeless	dialogs	aren't	disabled,	occurs	because
the	dialog	is	not	registered	with	Windows.	Developers	using	modeless	dialogs
must	call	Interface::	RegisterDlgWnd()	to	prevent	this	problem.
In	Summary:	ALL	modeless	dialogs	in	3ds	max	have	to	be	registered	with
Interface::RegisterDlgWnd()	and	ALL	modal	dialogs	in	3ds	max	have	to
be	a	direct	child	of	3ds	max	(developers	must	use
Interface::GetMAXHWnd()	when	the	dialog	is	created).
Getting	the	Mesh	from	a	TriObject

The	method	TriObject::Mesh()	method	has	been	renamed	to
TriObject::GetMesh().	Plug-ins	using	the	old	method	name	will	have	to	be
changed.
SaveRequired	API	Change
Two	existing	functions	have	been	renamed	and	one	has	been	added.	This
change	will	cause	many	existing	plug-ins	to	fail	to	build,	however	the	fix	is
trivial.	See	below:
The	existing	function:
void	SetSaveRequired(int	b=TRUE)
has	been	renamed	to:
void	SetSaveRequiredFlag(BOOL	b=TRUE)

The	existing	function:
BOOL	GetSaveRequired()
has	been	renamed	to:
BOOL	GetSaveRequiredFlag()

There	is	also	a	new	function:
BOOL	IsSaveRequired().

The	reason	for	these	changes	is	that	these	two	functions	had	misleading
names.	GetSaveRequired()	does	not	tell	you	if	saving	is	required,	it	just
returns	the	value	of	the	'save	required'	bit.	To	really	know	if	saving	is	required,
you	have	to	check	the	undo	buffer	as	well	as	this	flag.	This	is	what	the	new
function	IsSaveRequired()	is	doing.	If	this	function	reports	true,	then	you'll
get	the	prompt	at	reset,	file	open,	etc.	The	same	goes	for
SetSaveRequired(),	SetSaveRequired(TRUE)	will	cause	the	"save
changes"	prompt	to	appear,	but	SetSaveRequired(FALSE)	will	not	prevent
it	from	coming	up	unless	you	also	reset	the	undo	buffer.
Middle	Mouse	Button
The	middle	mouse	button	may	now	be	used	to	perform	the	arc-rotate	function
(by	holding	down	the	Alt-key).	This	new	functionality	necessitated	an	internal
change	where	the	viewport	transformation	might	change	inside	a	plug-ins
mouse	proc.	To	avoid	problems	plug-ins	should	not	cache	the	viewport
transformation	at	the	start	of	the	mouse	proc	as	it	may	change	due	to	the	user
performing	an	arc-rotate.	Very	few	plug-ins	do	this	currently,	but	those	that	do
must	not	rely	on	this	any	longer.

Links	to	Topics	By	Plug-In	Type
This	section	provides	links	to	topics	on	the	required	and	optional	changes	for
each	plug-in	type.
Note	that	all	developers	should	be	sure	to	look	over	the	"Miscellaneous
Changes	in	R3	That	May	Affect	Plug-ins"	section	above	since	there	may	be
important	changes	listed	there	as	well.
Required	Changes	To	Atmospheric	Plug-Ins
Required	Changes	To	Bitmap	Loader/Saver	Plug-Ins
Required	Changes	To	Controller	Plug-Ins
Required	Changes	To	File	Export	Plug-Ins
Required	Changes	To	File	Import	Plug-Ins
Required	Changes	To	Geometric	Objects
Required	Changes	To	Helper	Objects
Required	Changes	To	Light	Plug-Ins
Required	Changes	To	Materials	Plug-Ins
Required	Changes	To	NURBS	Related	Plug-Ins
Required	Changes	To	Particles
Required	Changes	To	Patch	Related	Plug-Ins
Required	Changes	To	Procedural	Shapes
Required	Changes	To	Renderer	Plug-Ins
Required	Changes	To	Shape	Objects
Required	Changes	To	Snap	Plug-Ins
Required	Changes	To	Space	Warps
Required	Changes	To	Texture	Plug-Ins

MAXScript	SDK
See	Also:	Must	Read	Sections	for	All	Developers.

The	MAXScript	SDK	is	a	set	of	Visual	C++	headers	and
import	libraries	that	C++	programmers	can	use	to	extend
MAXScript.	These	extensions	can	be	in	the	form	of	new
built-in	functions,	new	system	globals	or	descriptors	for
new	MAX	plug-in	class	properties.	This	is	useful	for	3rd-
party	plug-in	developers	to	write	custom	scripting
interfaces	for	their	plug-ins,	and	for	programmers	to	do
custom	C++	performance	code	and	drive	it	with	scripts
for	hybrid	tools.
The	scripter	SDK	allows	extensions	to	be	added	either
incrementally	through	a	MAXScript-specific	DLL	file
type	that	is	loaded	by	MAXScript	or	by	runtime	calls
directly	to	MAXScript	from	within	an	existing	plug-in.
The	following	topics	describe	the	SDK:
DLL	Setup
Libraries
Build	Configurations
MAXScript	Value	Constructors
Distinguished	Values
Coercion	to	C++	Types
Protecting	Newly	Created	Values	from	the	Collector
Collector-Safe	Value	Local	Macros
Value	Local	Arrays
Marking	Values	as	Permanent	or	Collectable
Scripter-Callable	Functions

Working	with	MAX	Objects	in	the	SDK
Constructing	Wrappers
Retrieving	Wrapped	Objects
Handling	Deleted	Objects
MAX	ClassIDs	and	Superclass	IDs
The	MAXClass	Constructor
classOf()	and	superClassOf()	Methods	for	MAX	Objects
Collection	Mapping
Array	Access	and	Construction
Stream	I/O
Access	to	the	Compiler	and	Interpreter
Calling	Scripted	Functions
MAXScript	Header	Files
Defining	New	System	Globals
Core	Names

Class	DataClassDesc
See	Also:	Class	ClassDesc,	Class	ClassEntry,	Class	BitmapIO,	Class
SceneImport,	Class	SceneExport.
class	DataClassDesc	:	public	ClassDesc

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	a	"partial"	class	descriptor	for	classes	in	plug-ins	described	by	Registry
entries.	The	registry	is	a	system-defined	database	that	applications	and	system
components	use	to	store	and	retrieve	configuration	data.	This	class	provides	a
"stub"	or	partial	class	description,	as	read	from	the	Registry,	which	provides
basic	descriptive	information	about	the	class	(which	proves	adequate	for	certain
purposes).	Proper	use	of	the	method	ClassEntry::FullCD()	ensures	that	the
partial	class	description	will	be	replaced	by	the	full	one,	which	includes	the
ClassDesc::Create()	method	and	other	functionality.	Note:	With	the	addition
of	delay-loaded	plugins,	the	method	ClassEntry::CD()	may	return	a	pointer	to
an	instance	of	this	class.	This	derived	class	implements	Create()	by	returning
NULL.	Developers	need	to	call	FullCD()	in	order	to	ensure	that	the	class	is
actually	there.
For	additional	details	see	Class	ClassEntry	and	the	Advanced	Topics	section
Deferred	Loading	of	Plug-Ins.

Data	Members:
public:
These	data	members	are	initialized	from	the	Registry.
TSTR	category;
The	category	string	(ClassDesc::Category()).
DWORD	classIDA;
The	first	ulong	of	the	Class_ID	(ClassDesc::ClassID()).
DWORD	classIDB;
The	second	ulong	of	the	Class_ID	(ClassDesc::ClassID()).
DWORD	superClassID;
The	SuperClassID	(ClassDesc::SuperClassID()).
TSTR	className;

The	class	name	(ClassDesc::ClassName()).
DWORD	isPublic;
The	ClassDesc::ISPublic()	return	value.
DWORD	okToCreate;
The	ClassDesc::OkToCreate()	return	value.
DWORD	extCount;
Returns	the	number	of	file	name	extensions	supported
(SceneImport::ExtCount(),SceneExport::ExtCount(),
BitmapIO::ExtCount()).
TSTR	ext;
The	file	name	extension	(SceneImport::Ext(0),	SceneExport::Ext(0),
BitmapIO::Ext(0)).
TSTR	shortDesc;
The	short	ASCII	description	(SceneImport::ShortDesc(),
SceneExport::ShortDesc()).
TSTR	longDesc;
The	long	ASCII	description	(SceneImport::LongDesc(),
SceneExport::LongDesc()).
DWORD	supportsOptions;
The	export	options	(SceneExport::SupportsOptions()).
DWORD	capability;
The	BitmapIO	module	capability	flags	(BitmapIO::Capability()).
DWORD	inputTypeA;
The	first	ulong	of	the	Modifier::InputType()	Class_ID.
DWORD	inputTypeB;
The	second	ulong	of	the	Modifier::InputType()	Class_ID.

Methods:
public:
The	following	are	the	meaningful	methods	from	the	base	class	ClassDesc	which
are	provided	by	this	class.	Other	methods	not	listed	have	basically	NULL	(i.e.
non-functional)	implementations.

Prototype:

int	IsPublic();
Remarks:
Returns	the	isPublic	setting.

Prototype:
const	TCHAR	*ClassName();

Remarks:
Returns	the	class	name	for	the	plug-in	(className).

Prototype:
SClass_ID	SuperClassID();

Remarks:
Returns	the	SuperClassID	(superClassID).	Note:	typedef	ulong
SClass_ID;

Prototype:
Class_ID	ClassID();

Remarks:
Returns	the	Class_ID.	This	is	Class_ID(classIDA,	classIDB).

Prototype:
const	TCHAR	*Category();

Remarks:
Returns	the	category	string.

Prototype:
BOOL	OkToCreate(Interface	*i);

Remarks:
Returns	the	okToCreate	state.

Class	ClassEntry
See	Also:	Class	DllDir,	Class	SubClassList,	Class	ClassDesc,	Class
DataClassDesc,	Class	Class_ID.
class	ClassEntry

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	provides	information	about	a	class	in	the	SubClassList	table	of
classes.	This	is	information	such	as	the	class	ID,	category,	public	status,	usage
count,	etc.
All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
ClassDesc	*CD();

Remarks:
Returns	a	pointer	to	the	class	descriptror	for	this	entry.	Note:	With	the	addition
of	deferred-loaded	plug-ins	introduced	in	3ds	max	3.0,	this	method	may	return
a	pointer	to	an	instance	of	class	DataClassDesc	(a	sub-class	of	ClassDesc).
A	developer	can	tell	if	the	returned	class	is	a	DataClassDesc	object	if
ClassEntry::IsLoaded()	returns	FALSE.	This	derived	class	implements
ClassDesc::Create()	by	returning	NULL.	Developers	need	to	call
ClassEntry::FullCD()	in	order	to	ensure	that	the	class	is	actually	present.
Developers	can	call	this	method	to	retrieve	data	about	the	plug-in	without
forcing	a	load.	It	may	also	be	called	to	get	a	'full'	ClassDesc	if	it	is	known
that	the	plug-in	is	loaded	(IsLoaded()	returns	TRUE).

Prototype:
ClassDesc	*FullCD();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	fetches	the	class	descriptor	from	a	class	entry.	Unlike	CD()
above,	this	method	will	load	the	relevant	DLL	if	its	loading	was	deferred,	and

will	return	a	pointer	to	the	loaded	class	descriptor.	See	Deferred	Loaded	of
Plug-Ins	for	more	details.

Prototype:
int	IsPublic();

Remarks:
Returns	nonzero	if	the	class	is	public;	otherwise	zero.	Non-public	classes	are
those	that	are	meant	for	private	use	by	other	plug-ins.

Prototype:
Class_ID	ClassID();

Remarks:
Returns	the	Class_ID	of	the	entry.

Prototype:
TSTR	&ClassName();

Remarks:
Returns	the	class	name	of	the	entry.

Prototype:
TSTR	&Category();

Remarks:
Returns	a	reference	to	the	category	string	for	this	entry.

Prototype:
int	UseCount();

Remarks:
Returns	the	number	of	instance	of	this	class	used	in	3ds	max.

Prototype:
void	IncUseCount();

Remarks:

This	is	used	internally	to	increment	the	usage	count	for	this	entry.

Prototype:
void	SetUseCount(int	i);

Remarks:
This	is	used	internally	to	set	the	usage	count	for	this	entry.

Prototype:
int	IsAccType(int	accType);

Remarks:
Returns	nonzero	if	this	entry	matches	the	specifed	access	type;	otherwise	zero.

Parameters:
int	accType
One	of	the	following	values:
ACC_PUBLIC	-	public	classes
ACC_PRIVATE	-	non-public	classes

Prototype:
int	DllNumber();

Remarks:
Returns	the	index	into	the	master	DLL	list	of	this	entry.

Prototype:
bool	IsLoaded();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	loaded;	otherwise	FALSE.

Prototype:
int	ClassNumber();

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Returns	the	index	of	the	class	within	the	DLL

Prototype:
void	Set(ClassDesc	*cld,	int	dllN,	int	index);

Remarks:
This	method	is	used	internally.

Prototype:
int	GetScroll();

Remarks:
This	method	is	used	internally.

Prototype:
void	SetScroll(int	s);

Remarks:
This	method	is	used	internally.

Prototype:
BOOL	GetPageState(int	i);

Remarks:
This	method	is	used	internally.

Prototype:
void	SetPageState(int	i,BOOL	state);

Remarks:
This	method	is	used	internally.

Operators:

Prototype:
ClassEntry&	operator=(const	ClassEntry	&ce);

Remarks:

Assignment	operator.

Prototype:
int	operator==(const	ClassEntry	&ce)	const;

Remarks:
Equality	operator.

Class	NURBSTextureChannelSet
See	Also:	Class	NURBSTextureChannel,	NURBSSurface,	Template	Class	Tab.
class	NURBSTextureChannelSet

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	holds	a	table	of	pointers	to	all	the	NURBSTextureChannel	data	for
a	surface.	There	are	methods	to	returns	the	table	data	by	channel	or	by	index	and
a	method	to	add	a	new	texture	channel.

Friend	Classes:
friend	class	NURBSSurface;

Data	Members:
private:
Tab<NURBSTextureChannel*>	mTextureChannels;
A	table	of	pointers	to	the	texture	channel	data.

Methods:
private:

Prototype:
NURBSTextureChannel*	GetChannelByIndex(int	index);

Remarks:
Returns	a	pointer	to	the	texture	channel	object	whose	index	is	specified.

Parameters:
int	index
The	zero	based	index	into	the	table	of	texture	channels	in	the	set.

Prototype:
NURBSTextureChannel*	GetChannel(int	channel);

Remarks:
Returns	a	pointer	to	the	specific	texture	channel	object.	If	not	found	a	new
channel	is	added	with	the	specified	index.

Parameters:
int	channel
The	channel	to	get.	This	is	a	number	in	the	range	0	and	98	which	correspond
to	1	to	99	in	the	user	interface.

Prototype:
NURBSTextureChannel*	AddChannel(int	channel);

Remarks:
Adds	the	specified	channel	and	returns	a	pointer	to	the	allocated	texture
object.

Parameters:
int	channel
The	texture	channel.	This	is	a	number	in	the	range	0	and	98	which	correspond
to	1	to	99	in	the	user	interface.

Prototype:
int	NumChannels();

Remarks:
Returns	the	number	of	channels	in	the	set.

Class	NURBSTextureChannel
See	Also:	Class	NURBSTextureSurface,	Class	NURBSTextureChannelSet,
Class	NURBSSurface,	Class	Point2.
class	NURBSTextureChannel

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	holds	the	data	associated	with	a	single	texture	channel.	This	includes
the	NURBSTextureSurface,	texture	vertices,	channel	number,	tiling,	offset,
and	rotation	settings.	The	tiling,	offset	and	angle	values	are	applied	after	the
texture	surface	is	applied.	This	gives	the	user	more	control	of	the	mapping.

Friend	Classes:
friend	class	NURBSSurface;
friend	class	NURBSTextureChannelSet;

Data	Members:
private:
int	mChannel;
The	UV	coordinates	channel.	This	value	can	range	from	0	to	98.	A	single
surface	can	use	up	to	99	texture	channels.
BOOL	mGenUVs;
TRUE	if	the	generate	UV	setting	is	on	for	this	channel;	otherwise	FALSE.
Point2	mTexUVs[4];
The	texture	vertices	(UV	coordinates).
float	mUTile;
The	U	tiling.
float	mVTile;
The	V	tiling.
float	mUOffset;
The	U	offset.
float	mVOffset;
The	V	offset.
float	mAngle;

The	rotation	angle	in	radians.
NURBSTextureSurface	mTexSurface;
The	texture	surface	associated	this	channel.

Methods:
private:

Prototype:
NURBSTextureChannel(int	channel);

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
mChannel	=	channel;
mGenUVs	=	FALSE;
mTexUVs[0]	=	Point2(0.0f,	0.0f);
mTexUVs[1]	=	Point2(1.0f,	0.0f);
mTexUVs[2]	=	Point2(0.0f,	1.0f);
mTexUVs[3]	=	Point2(1.0f,	1.0f);
mUTile	=	1.0f;
mVTile	=	1.0f;
mUOffset	=	0.0f;
mVOffset	=	0.0f;
mAngle	=	0.0f;

Prototype:
int	GetChannel();

Remarks:
Returns	the	UV	coordinate	channel.

Prototype:
BOOL	GenerateUVs();

Remarks:
Returns	TRUE	if	the	generate	UVs	state	is	on;	otherwise	FALSE.

Prototype:
void	SetGenerateUVs(BOOL	state);

Remarks:
Sets	the	generate	UV	state.

Parameters:
BOOL	state
TRUE	for	on;	FALSE	for	off.

Prototype:
Point2	GetTextureUVs(TimeValue	t,	int	i);

Remarks:
Returns	the	'i-th'	texture	corner	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	texture	vertex.
int	i
The	index	of	the	texture	vertex.	This	is	a	value	in	the	range	0	to	3.

Prototype:
void	SetTextureUVs(TimeValue	t,	int	i,	Point2	pt);

Remarks:
Sets	the	specified	texture	coordinate.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	texture	UV.
int	i
The	index	of	the	UV	to	set.	This	is	a	value	in	the	range	0	to	3.
Point2	pt
The	UV	point	to	set.

Prototype:
void	GetTileOffset(TimeValue	t,	float	&ut,	float	&vt,	float	&uo,

float	&vo,	float	&a);
Remarks:
Retrieves	the	tiling,	offset	and	angle	values	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	values.
float	&ut
The	U	tiling.
float	&vt
The	V	tiling.
float	&uo
The	U	offset.
float	&vo
The	V	offset.
float	&a
The	angle.

Prototype:
void	SetTileOffset(TimeValue	t,	float	ut,	float	vt,	float	uo,	float	vo,
float	a);

Remarks:
Sets	the	tiling,	offset	and	angle	values	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	values.
float	ut
The	U	tiling.
float	vt
The	V	tiling.
float	uo
The	U	offset.
float	vo

The	V	offset.
float	a
The	angle.

Prototype:
NURBSTextureSurface&	GetTextureSurface();

Remarks:
Returns	a	reference	to	the	NURBSTextureSurface	maintained	by	the	class.

Prototype:
void	SetTextureSurface(NURBSTextureSurface&	texSurf);

Remarks:
Set	the	NURBSTextureSurface	maintained	by	the	class.

Parameters:
NURBSTextureSurface&	texSurf
The	texture	surface	to	set.

Class	NURBSTexturePoint
See	Also:	Class	NURBSTextureSurface,	Class	NURBSObject,	Class	Point2.
class	NURBSTexturePoint	:	public	NURBSObject

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	holds	a	single	texture	vertex	in	a	NURBS	texture	surface.	Methods	are
available	to	get	and	set	the	point	in	various	formats.

Data	Members:
protected:
double	mX,	mY;
The	position	of	the	point.

Methods:
public:

Prototype:
NURBSTexturePoint();

Remarks:
Constructor.	The	data	members	(from	NURBSObject)	are	initialized	as
follows:
mKind	=	kNURBSTexturePoint;
mType	=	kNTexturePoint;

Prototype:
virtual	Point2	GetPosition(TimeValue	t);

Remarks:
Returns	the	position	of	the	texture	point	at	the	specified	time	(as	a	Point2).

Parameters:
TimeValue	t
The	time	at	which	to	get	the	position.

Prototype:

virtual	void	GetPosition(TimeValue	t,	float&	x,	float&	y);
Remarks:
Retrieves	the	position	of	the	texture	point	at	the	specified	time	(as	floats).

Parameters:
TimeValue	t
The	time	at	which	to	get	the	position.
float&	x
The	x	position	is	returned	here.
float&	y
The	y	position	is	returned	here.

Prototype:
virtual	void	GetPosition(TimeValue	t,	double&	x,	double&	y);

Remarks:
Retrieves	the	position	of	the	texture	point	at	the	specified	time	(as	doubles).

Parameters:
TimeValue	t
The	time	at	which	to	get	the	position.
double&	x
The	x	position	is	returned	here.
double&	y
The	y	position	is	returned	here.

Prototype:
void	SetPosition(TimeValue	t,	Point2	pt);

Remarks:
Sets	the	position	of	the	point	at	the	specified	time	(using	a	Point2).

Parameters:
TimeValue	t
The	time	at	which	to	set	the	position.
Point2	pt
The	position	to	set.

Prototype:
void	SetPosition(TimeValue	t,	float	x,	float	y);

Remarks:
Sets	the	position	of	the	point	at	the	specified	time	(using	floats).

Parameters:
TimeValue	t
The	time	at	which	to	set	the	position.
float	x
The	x	coordinate	to	set.
float	y
The	y	coordinate	to	set.

Prototype:
void	SetPosition(TimeValue	t,	double	x,	double	y);

Remarks:
Sets	the	position	of	the	point	at	the	specified	time	(using	doubles).

Parameters:
TimeValue	t
The	time	at	which	to	set	the	position.
double	x
The	x	coordinate	to	set.
double	y
The	y	coordinate	to	set.

Class	NURBSSurfaceEdgeCurve
See	Also:	Class	NURBSCurve.
class	NURBSSurfaceEdgeCurve	:	public	NURBSCurve

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	defines	a	dependent	edge	curve.	There	are	methods	available	to	get/set
the	parent	surface	index	and	id,	and	get/set	the	parameter	which	determines	the
location	on	the	surface	the	curve	matches.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSSurfaceEdgeCurve();

Remarks:
Constructr.	The	data	members	are	initialized	as	follows:
	mType	=	kNSurfaceEdgeCurve;
	mpObject	=	NULL;

	mpNSet	=	NULL;
	mParentId	=	0;
	mParentIndex	=	-1;
	mSeed	=	Point2(0.0,	0.0);

Prototype:
virtual	~NURBSSurfaceEdgeCurve();

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:
Sets	the	NURBSId	of	the	specified	parent.

Parameters:
int	index
The	index	into	the	NURBSSet	of	the	parent	surface.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	specified	parent.

Parameters:
NURBSId	id
The	id	to	set.

Prototype:
int	GetParent();

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	parent	object.

Prototype:
NURBSId	GetParentId();

Remarks:
Returns	the	NURBSId	of	the	parent.	Note	that	a	NURBSId	won't	be	valid
until	the	object	has	been	instantiated	in	the	scene.

Prototype:
Point2	GetSeed();

Remarks:
Returns	the	UV	location	of	the	seed	value	on	the	curve.

Prototype:
void	SetSeed(Point2&	seed);

Remarks:
Sets	the	UV	location	of	the	seed	value	on	the	curve.

Parameters:
Point2&	seed
The	seed	value	to	set.

Operators:

Prototype:
NURBSSurfaceEdgeCurve	&operator=(const
NURBSSurfaceEdgeCurve&	curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSSurfaceEdgeCurve&	curve
The	curve	to	assign	from.

Class	NURBSFilletSurface
See	Also:	Class	NURBSSurface.
class	NURBSFilletSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	provides	access	to	the	NURBS	Fillet	Surface.	Methods	are	provided
to	get	/	set	the	parent	surfaces,	get	/	set	the	radius,	and	get	/	set	the	trim	and	trim
flip	settings.

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSFilletSurface();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNFilletSurface;
	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId[0]	=	mParentId[1]	=	0;
	mParentIndex[0]	=	mParentIndex[1]	=	-1;

	mRadius[0]	=	mRadius[1]	=	10.0f;
	mSeed[0]	=	mSeed[1]	=	Point2(0.0,	0.0);
	mCubic	=	TRUE;

Prototype:
virtual	~NURBSFilletSurface();

Remarks:
Destructor.

Prototype:
void	SetParent(int	pnum,	int	index);

Remarks:
Sets	the	specified	parent	surface	(by	NURBSSet	index)	for	the	fillet.

Parameters:
int	pnum
The	parent	surface:	0	or	1.
int	index
The	index	in	the	NURBSSet.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Sets	the	specified	parent	surface	(by	NURBSId)	for	the	fillet.

Parameters:
int	pnum
The	parent	surface:	0	or	1.
NURBSId	id
The	ID	of	the	surface.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	parent	surface.

Parameters:
int	pnum
The	parent	surface:	0	or	1.

Prototype:
NURBSId	GetParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	specified	parent	surface.

Parameters:
int	pnum
The	parent	surface:	0	or	1.

Prototype:
Point2	GetSeed(int	pnum);

Remarks:
Returns	the	UV	location	of	the	seed	value	on	the	specified	surface.

Parameters:
int	pnum
The	parent	surface:	0	or	1.

Prototype:
void	SetSeed(int	pnum,	Point2&	seed);

Remarks:
Sets	the	UV	location	of	the	seed	value	on	the	specified	surface.

Parameters:
int	pnum
The	parent	surface:	0	or	1.
Point2&	seed
The	seed	value	to	set.

Prototype:
BOOL	IsCubic();

Remarks:
Returns	TRUE	if	the	cubic	setting	is	on;	FALSE	if	off.	When	off,	the	radius	is
always	linear.	When	on,	the	radius	is	treated	as	a	cubic	function,	allowing	it	to
change	based	on	the	parent	surface's	geometry.

Prototype:
void	SetCubic(BOOL	cubic);

Remarks:
Sets	the	cubic	setting	to	on	or	off.

Parameters:
BOOL	cubic
TRUE	for	on;	FALSE	for	off.

Prototype:
float	GetRadius(TimeValue	t,	int	rnum);

Remarks:
Returns	the	specified	radius	at	the	time	passed.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	radius.
int	rnum
Specifies	which	radius	to	get:	0	for	start,	1	for	end.

Prototype:
void	SetRadius(TimeValue	t,	int	rnum,	float	radius);

Remarks:
Sets	the	specified	radius	at	the	time	passed.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	radius.

int	rnum
Specifies	which	radius	to	set:	0	for	start,	1	for	end.
float	radius
The	radius	to	set.

Prototype:
BOOL	GetTrimSurface(int	pnum);

Remarks:
Returns	the	trim	surface	setting	for	the	specified	parent	surface.	TRUE	if	on
(trims	the	parent	surface	at	the	edge	of	the	fillet);	FALSE	if	off.

Parameters:
int	pnum
The	parent	surface:	0	or	1.

Prototype:
void	SetTrimSurface(int	pnum,	BOOL	trim);

Remarks:
Sets	the	trim	surface	setting	for	the	specified	parent	surface.

Parameters:
int	pnum
The	parent	surface:	0	or	1.
BOOL	trim
TRUE	for	on	(trims	the	parent	surface	at	the	edge	of	the	fillet);	FALSE	for	off.

Prototype:
BOOL	GetFlipTrim(int	pnum);

Remarks:
Returns	the	state	of	the	trim	flip	setting.	When	set	this	reverses	the	direction	of
the	trim.

Parameters:
int	pnum
The	parent	surface:	0	or	1.

Prototype:
void	SetFlipTrim(int	pnum,	BOOL	flip);

Remarks:
Sets	the	state	of	the	trim	flip	setting.	When	set	this	reverses	the	direction	of	the
trim.

Parameters:
int	pnum
The	parent	surface:	0	or	1.
BOOL	flip
TRUE	for	on;	FALSE	for	off.

Prototype:
NURBSFilletSurface	&	operator=(const	NURBSFilletSurface&
curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSFilletSurface&	curve
The	surface	to	assign.

Class	NURBSProceeduralCurve
See	Also:	Class	NURBSCVCurve,	Class	NURBSCurve.
class	NURBSProceeduralCurve

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	base	class	for	procedurally	defined	curves.	Note	that	this	is	not
subclassed	from	NURBSObject.	You	must	use	the
GenNURBSCVCurveProcedurally()	function.
The	following	typedef-ed	functions	are	used	by	the
GenNURBSCVCurveProcedurally()	function.
Prototype:
typedef	NURBSResult	(*CurveParamRangeProc)(double&	tMin,
double&	tMax);

Remarks:
The	curve	parameter	range	procedure.	This	retrieves	the	minimum	and
maximum	valid	values	for	u	as	passed	to	the	CurveEvalProc().

Parameters:
double&	tMin
The	minimum	value.
double&	tMax
The	maximum	value.

Return	Value:
See	List	of	NURBS	Results	.

Prototype:
typedef	NURBSResult	(*CurveEvalProc)(double	u,	Point3&	pt);

Remarks:
The	curve	evaluation	procedure.	This	retrieves	the	point	on	the	curve	based	on
the	u	parameter.

Parameters:
double	u

Specifies	the	U	point	along	the	curve	to	evaluate.
Point3&	pt
The	output	point	on	the	curve	at	U.

Return	Value:
See	List	of	NURBS	Results	.

Prototype:
typedef	NURBSResult	(*CurveEvalTan)(double	u,	Point3&	pt,
Point3&	tan);

Remarks:
The	curve	point	and	tangent	evaluation	procedure.	This	retrieves	the	point	and
tangent	at	the	point	on	the	curve	based	on	the	U	parameter.

Parameters:
double	u
Specifies	the	point	along	the	curve	to	evaluate.
Point3&	pt
The	output	point	at	U.
Point3&	tan
The	output	tangent	at	U.

Return	Value:
See	List	of	NURBS	Results	.

Prototype:
typedef	NURBSResult	(*CurveArcLengthProc)(double&
arcLength);

Remarks:
Retrieves	the	length	of	the	curve.

Parameters:
double&	arcLength
The	output	arc	length.

Return	Value:
See	List	of	NURBS	Results	.

Data	Members:
public:
CurveParamRangeProc	mParamProc;
The	curve	parameter	range	procedure.	Note:	This	procedure	must	be
implemented.
CurveEvalProc	mEvalProc;
The	curve	evaluate	procedure.	Note:	This	procedure	must	be	implemented.
CurveEvalTan	mEvalTanProc;
The	curve	evaluate	tangent	procedure.	Note:	This	procedure	is	optional.
CurveArcLengthProc	mArcLengthProc;
The	curve	arc	length	procedure.	Note:	This	procedure	is	optional.

Methods:
public:

Prototype:
NURBSProceeduralCurve(CurveParamRangeProc	param,
CurveEvalProc	eval,	CurveEvalTan	tan,	CurveArcLengthProc
arclen);

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.

The	following	global	function	is	not	part	of	this	class	but	is
available	for	use:
Function:
NURBSResult
GenNURBSCVCurveProceedurally(NURBSProceeduralCurve
*pCrv,	double	tolerence,	NURBSCVCurve&	crv);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
To	use	this	API	you	need	to	create	an	instance	of
NURBSProceeduralCurve	setting	at	least	the	ParameterRange	and	Eval
procedures.	The	others	can	be	NULL	unless	you	have	fast	versions	of	them.

The	call	tothis	function	then	fills	in	a	NURBSCVCurve	with	the	curve	that
is	defined	by	the	proceedures	and	the	tolerence.

Parameters:
*pCrv
Points	to	the	NURBSProceeduralCurve	object	used	to	generate	the	curve
procedurally.
double	tolerence
The	tolerance	is	the	allowable	deviation	of	the	approximating	NURBS	surface
to	the	surface	defined	by	the	procs.
NURBSCVCurve&	crv
The	generated	curve	is	returned	here.

Return	Value:
See	List	of	NURBS	Results	.

Class	NURBSProceeduralSurface
See	Also:	Class	NURBSCVSurface,	Class	NURBSSurface.
class	NURBSProceeduralSurface

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	base	class	for	a	proceedurally	defined	surface.	Note:	This	class	is	not
subclassed	from	NURBSObject.	You	must	use	the
GenNURBSCVSurfaceProcedurally()	function.
The	following	typedef-ed	functions	are	used	by	the
GenNURBSCVSurfaceProcedurally()	function.
Prototype:
typedef	NURBSResult	(*SurfParamRangeProc)(double&	uMin,
double&	uMax,	double&	vMin,	double&	vMax);

Remarks:
The	surface	parameter	range	procedure.	This	retrieves	the	minimum	and
maximum	valid	values	for	u	and	v	as	passed	to	the	SurfEvalProc().

Parameters:
double&	uMin
The	min	U	value.
double&	uMax
The	max	U	value.
double&	vMin
The	min	V	value.
double&	vMax
The	max	V	value.

Return	Value:
See	List	of	NURBS	Results	.

Prototype:
typedef	NURBSResult	(*SurfEvalProc)(double	u,	double	v,
Point3&	pt);

Remarks:
This	evaluates	the	surface	for	the	point	or	position	at	a	given	U	and	V
parameter.

Parameters:
double	u
Specifies	the	U	point	along	the	surface	to	evaluate.	This	value	must	be
between	the	uMin	and	uMax	as	returned	from	SurfParamRangeProc().
double	v
Specifies	the	V	point	along	the	surface	to	evaluate.	This	value	must	be
between	the	vMin	and	vMax	as	returned	from	SurfParamRangeProc().
Point3&	pt
The	output	point	on	the	surface	at	(u,v).

Return	Value:
See	List	of	NURBS	Results	.

Prototype:
typedef	NURBSResult	(*SurfEvalTan)(double	u,	double	v,
Point3&	uTan,	Point3&	vTan);

Remarks:
This	evaluates	the	surface	for	the	partial	derivative	with	respect	to	U	and	the
partial	derivative	with	respect	to	V	at	a	given	U	and	V	parameter.	That	partial
derivative	with	respect	to	U	is	a	tangent	vector	in	the	U	direction	and	the
partial	derivative	with	respect	to	V	is	a	tangent	vector	in	the	V	direction.

Parameters:
double	u
Specifies	the	U	point	along	the	curve	to	evaluate.	This	value	must	be	between
the	uMin	and	uMax	as	returned	from	SurfParamRangeProc().
double	v
Specifies	the	V	point	along	the	surface	to	evaluate.	This	value	must	be
between	the	vMin	and	vMax	as	returned	from	SurfParamRangeProc().
Point3&	uTan
The	tangent	along	u.
Point3&	vTan

The	tangent	along	v.
Return	Value:
See	List	of	NURBS	Results	.

Prototype:
typedef	NURBSResult	(*SurfEvalMixedProc)(double	u,	double	v,
Point3&	mixed);

Remarks:
This	evaluates	the	surface	for	the	mixed	partial	derivative	with	respect	to	U
and	V	at	a	given	U	and	V	parameter.

Parameters:
double	u
Specifies	the	U	point	along	the	curve	to	evaluate.	This	value	must	be	between
the	uMin	and	uMax	as	returned	from	SurfParamRangeProc().
double	v
Specifies	the	V	point	along	the	surface	to	evaluate.	This	value	must	be
between	the	vMin	and	vMax	as	returned	from	SurfParamRangeProc().
Point3&	mixed
This	is	the	resulting	mixed	partial	derivative	vector	that	has	been	evaluated.

Return	Value:
See	List	of	NURBS	Results	.

Data	Members:
public:
SurfParamRangeProc	mParamProc;
The	surface	parameter	range	procedure.	Note:	This	procedure	must	be
implemented.
SurfEvalProc	mEvalProc;
The	surface	evaluation	procedure.	Note:	This	procedure	must	be	implemented.
SurfEvalTan	mEvalTanProc;
The	surface	tangent	evaluation	procedure.	Note:	This	procedure	is	optional.
SurfEvalMixedProc	mEvalMixedProc;
The	mixed	partial	derivative	procedure.	Note:	This	procedure	is	optional.

Methods:
public:

Prototype:
NURBSProceeduralSurface(SurfParamRangeProc	param,
SurfEvalProc	eval,	SurfEvalTan	tan,	SurfEvalMixedProc	mixed);

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.
Both	(*SurfEvalTan)	and	(*SurfEvalMixedProc)	are	optional.	If	NULLs
are	provided	for	either	of	these	functions	then	3ds	max	will	resort	to	a	finite
differences	based	solution.

Parameters:

The	following	global	function	is	not	part	of	this	class	but	is
available	for	use:
Function:
NURBSResult
GenNURBSCVSurfaceProceedurally(NURBSProceeduralSurface
*pSurf,	double	tolerence,	NURBSCVSurface&	surf);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
To	use	this	function	you	need	to	create	an	instance	of
NURBSProceeduralSurface	setting	at	least	the	ParameterRange	and	Eval
procedures.	The	others	can	be	NULL	unless	you	have	fast	versions	of	them.
This	call	then	fills	in	a	NURBSCVSurface	with	the	surface	that	is	defined	by
the	procedures	and	the	tolerence.

Parameters:
NURBSProceeduralSurface	*pSurf
Points	to	the	NURBSProceeduralSurface	to	generate	CV	surfaces	from.
double	tolerence
The	tolerance	is	the	allowable	deviation	of	the	approximating	NURBS	surface
to	the	surface	defined	by	the	procs.
NURBSCVSurface&	surf

The	generated	NURBSCVSurface	is	returned	here.
Return	Value:
See	List	of	NURBS	Results	.

List	of	Notification	Codes
See	Also:	Structure	NotifyInfo,	Class	Interface,	Class	Bitmap,	Class
RenderGlobalContext.
The	following	pre-defined	system	notification	codes	may	be	passed	to	the
global	functions	RegisterNotification(),	UnRegisterNotification(),
BroadcastNotification().
NOTIFY_UNITS_CHANGE
Sent	if	the	user	changes	the	unit	setting
NOTIFY_TIMEUNITS_CHANGE
Sent	if	the	user	changes	the	time	format	setting
NOTIFY_VIEWPORT_CHANGE
Sent	if	the	user	changes	the	viewport	layout
NOTIFY_SPACEMODE_CHANGE
Sent	if	the	user	changes	the	reference	coordinate	system.
NOTIFY_SYSTEM_PRE_RESET
Sent	before	3ds	max	is	reset.	This	is	available	in	release	2.0	and	later	only.
NOTIFY_SYSTEM_POST_RESET
Sent	after	3ds	max	is	reset.	This	is	available	in	release	2.0	and	later	only.
NOTIFY_SYSTEM_PRE_NEW
Sent	before	3ds	max	is	NEW'd-out.	This	is	available	in	release	2.0	and	later
only.
NOTIFY_SYSTEM_POST_NEW
Sent	after	3ds	max	is	NEW'd-out.	This	is	available	in	release	2.0	and	later
only.
NOTIFY_FILE_PRE_OPEN
Sent	before	a	new	file	is	opened.	This	is	available	in	release	2.0	and	later	only.
NOTIFY_FILE_POST_OPEN
Sent	after	a	new	file	is	opened	successfully.	This	is	available	in	release	2.0	and
later	only.
NOTIFY_FILE_PRE_MERGE
Sent	before	a	file	is	merged.	This	is	available	in	release	2.0	and	later	only.
Note:	When	merge	is	called	to	load	an	XRef,	developers	can	be	aware	of	this
by	testing	void	*	callParam	to	see	if	it's	non-null.	If	it	is	then	an	XRef	is

being	loaded.
NOTIFY_FILE_POST_MERGE
Sent	after	a	file	is	merged.	This	is	available	in	release	2.0	and	later	only.
Note:	When	merge	is	called	to	load	an	XRef,	developers	can	be	aware	of	this
by	testing	void	*	callParam	to	see	if	it's	non-null.	If	it	is	then	an	XRef	is
being	loaded.
NOTIFY_FILE_PRE_SAVE
Sent	before	a	file	is	saved.	This	is	available	in	release	2.5	and	later	only.
NOTIFY_FILE_POST_SAVE
Sent	after	a	file	is	saved.	This	is	available	in	release	2.5	and	later	only.
NOTIFY_FILE_PRE_SAVE_OLD
This	option	is	reserved	for	future	use	as	of	3ds	max	3.0.
NOTIFY_FILE_POST_SAVE_OLD
This	option	is	reserved	for	future	use	as	of	3ds	max	3.0.
NOTIFY_SELECTIONSET_CHANGED
This	option	is	available	in	release	3.0	and	later	only.
Sent	after	the	selection	set	has	changed.
NOTIFY_BITMAP_CHANGED
This	option	is	available	in	release	3.0	and	later	only.
Sent	after	the	bitmap	is	reloaded	(the	NotifyInfo	structure	pointer
callParam	is	passed	the	TCHAR	*	to	the	bitmap	file	name).	This	is	used
for	updating	bitmaps	that	have	changed.	The	callParam	is	used	to	pass	the
name	of	the	bitmap	file	in	case	it	is	used	in	multiple	changes.	If	the
callParam	is	NULL,	this	notification	will	apply	to	all	bitmaps	(as	is	the	case
when	the	input	file	gamma	changes).
NOTIFY_PRE_RENDER
This	option	is	available	in	release	3.0	and	later	only.
Sent	before	rendering	is	started.
NOTIFY_POST_RENDER
This	option	is	available	in	release	3.0	and	later	only.
Sent	after	rendering	has	finished.
NOTIFY_PRE_RENDERFRAME
This	option	is	available	in	release	3.0	and	later	only.

Sent	before	rendering	each	frame	(the	NotifyInfo	structure	pointer	callParam
is	passed	a	pointer	to	the	RenderGlobalContext).
Note:	At	the	time	of	this	call	the	scene	cannot	be	modified.	The	renderer	has
already	called	GetRenderMesh()	on	all	the	object	instances,	and	the
materials	and	lights	are	already	updated.	If	you	don't	modify	anything	that	is
rendered,	then	it	is	okay	to	use	this	callback.
NOTIFY_POST_RENDERFRAME
This	option	is	available	in	release	3.0	and	later	only.
Sent	after	rendering	each	frame	(the	NotifyInfo	structure	pointer	callParam
is	passed	a	pointer	to	the	RenderGlobalContext).	See	the	note	in
NOTIFY_PRE_RENDERFRAME	above.
NOTIFY_PRE_IMPORT
This	option	is	available	in	release	3.0	and	later	only.
Sent	before	a	file	is	imported	(always).
NOTIFY_POST_IMPORT
This	option	is	available	in	release	3.0	and	later	only.
Sent	after	a	file	is	imported	successfully.
NOTIFY_IMPORT_FAILED
This	option	is	available	in	release	3.0	and	later	only.
Sent	if	an	import	fails	or	is	otherwise	cancelled.
NOTIFY_PRE_EXPORT
This	option	is	available	in	release	3.0	and	later	only.
Sent	before	a	file	is	exported	(always).
NOTIFY_POST_EXPORT
This	option	is	available	in	release	3.0	and	later	only.
Sent	after	a	file	is	exported	successfully.
NOTIFY_EXPORT_FAILED
This	option	is	available	in	release	3.0	and	later	only.
Sent	if	an	export	fails	or	is	otherwise	cancelled.
NOTIFY_NODE_RENAMED
This	option	is	available	in	release	3.0	and	later	only.
Sent	if	a	node	is	renamed.	(the	NotifyInfo	structure	pointer	callParam	is
passed	a	pointer	to	a	struct{	TCHAR*	oldname;	TCHAR*	newname;

}.	See	\MAXSDK\SAMPLES\OBJECTS\LIGHT.CPP	for	an	example
of	this	notification	in	use.
NOTIFY_PRE_PROGRESS
This	option	is	available	in	release	3.0	and	later	only.
Sent	before	the	progress	bar	is	displayed.	The	progress	bar	is	displayed,	for
example,	when	the	Render	Preview	command	is	run.	Note:	If	a	plug-in	uses	a
modeless	window	it	should	hide	the	window	between	this	event	and
NOTIFY_POST_PROGRESS.
NOTIFY_POST_PROGRESS
This	option	is	available	in	release	3.0	and	later	only.
Sent	after	the	progress	bar	is	finished.
NOTIFY_MATLIB_PRE_OPEN
This	option	is	available	in	release	3.0	and	later	only.
Sent	before	loading	a	material	library.
NOTIFY_MATLIB_POST_OPEN
This	option	is	available	in	release	3.0	and	later	only.
Sent	after	loading	a	material	library.	The	callParam	is	a	pointer	to	the
MtlBaseLib	if	successful,	otherwise	it's	NULL.
NOTIFY_MATLIB_PRE_SAVE
This	option	is	available	in	release	3.0	and	later	only.
Sent	before	saving	a	material	library.
NOTIFY_MATLIB_POST_SAVE
This	option	is	available	in	release	3.0	and	later	only.
Sent	after	saving	a	material	library.
NOTIFY_MATLIB_PRE_MERGE
This	option	is	available	in	release	3.0	and	later	only.
Sent	before	merging	a	material	library.
NOTIFY_MATLIB_POST_MERGE
This	option	is	available	in	release	3.0	and	later	only.
Sent	after	merging	a	material	library.
NOTIFY_MODPANEL_SEL_CHANGED
This	option	is	available	in	release	3.0	and	later	only.
Sent	when	the	Modify	Panel	focuses	on	a	new	object	(via	opening	the	Modify

Panel	or	changing	the	selection)
NOTIFY_RENDER_PREEVAL
This	option	is	available	in	release	4.0	and	later	only.
Sent	before	the	render	start	evaluating	objects
NOTIFY_NODE_CREATED
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	a	node	is	created	(callParam	is	pointer	to	node)
NOTIFY_NODE_LINKED
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	a	node	is	linked	(callParam	is	pointer	to	node)
NOTIFY_NODE_UNLINKED
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	a	node	is	unlinked	(callParam	is	pointer	to	node)
NOTIFY_NODE_HIDE
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	a	node	is	hidden	(callParam	is	pointer	to	node)
NOTIFY_NODE_UNHIDE
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	a	node	is	unhidden	(callParam	is	pointer	to	node)
NOTIFY_NODE_FREEZE
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	a	node	is	frozen	(callParam	is	pointer	to	node)
NOTIFY_NODE_UNFREEZE
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	a	node	is	unfrozen	(callParam	is	pointer	to	node)
NOTIFY_NODE_PRE_MTL
This	option	is	available	in	release	4.0	and	later	only.
Node	is	about	to	get	a	new	material	(callParam	is	pointer	to	node)
NOTIFY_NODE_POST_MTL
This	option	is	available	in	release	4.0	and	later	only.
Node	just	got	a	new	material	(callParam	is	pointer	to	node)
NOTIFY_WM_ENABLE
This	option	is	available	in	release	4.0	and	later	only.

Sent	when	the	main	window	gets	an	WM_ENABLE	(BOOL	enabled)
NOTIFY_SYSTEM_SHUTDOWN
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	3ds	max	is	about	to	exit
NOTIFY_SYSTEM_SHUTDOWN2
This	option	is	available	in	release	4.0	and	later	only.
Sent	after	the	scene	is	destroyed.	Most	plug-ins	will	most	likely	not	live	long
enough	to	receive	the	notification.	It	is	important	to	unregister	this	notification
when	your	plug-in	dies.	If	not,	3ds	max	will	try	to	notify	objects	that	don't
exist	anymore.
NOTIFY_SYSTEM_STARTUP
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	3ds	max	starts	up.
NOTIFY_PLUGIN_LOADED
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	a	plug-in	was	just	loaded.	(callParam	is	pointer	to	DllDesc)
NOTIFY_SEL_NODES_PRE_DELETE
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	selected	nodes	will	be	deleted.	(callParam	is	pointer	to
Tab<INode*>)
NOTIFY_SEL_NODES_POST_DELETE
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	selected	nodes	have	just	been	deleted.
NOTIFY_SYSTEM_SHUTDOWN2
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	the	3ds	max	system	shutdown	is	completed.	This	is	the	last
broadcase	sent	before	exit.
NOTIFY_ANIMATE_ON
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	the	Animate	user	interface	mode	is	activated.
NOTIFY_ANIMATE_OFF
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	the	Animate	user	interface	mode	is	de-activated.

NOTIFY_COLOR_CHANGE
This	option	is	available	in	release	4.0	and	later	only.
Sent	when	the	system	is	updating	its	custom	colors.
If	a	plug-in	has	created	a	toolbar	with	any	MaxBmpFileIcons	on	it,	it
should	register	this	callback	for	color	changing,	and	call
ICustToolbar::ResetIconImages()	on	the	toolbar.	See	Class
ICustToolbar,	and	Class	MAXBmpFileIcon.
REFMSG_NODE_MATERIAL_CHANGED
This	option	is	available	in	release	4.0	and	later	only.
This	notification	indicates	that	the	material	changed.
REFMSG_NODE_WSCACHE_UPDATED
This	option	is	available	in	release	4.0	and	later	only.
Sent	whenever	the	mod	stack	gets	re-evaluated.
NOTIFY_PRE_EDIT_OBJ_CHANGE
This	option	is	available	in	release	4.0	and	later	only.
Sent	just	before	the	current	edit	object	is	about	to	change.	This	notifications
are	sent	whenever	the	object	returned	by	Interface::GetCurEditObject()
changes.
NOTIFY_POST_EDIT_OBJ_CHANGE
This	option	is	available	in	release	4.0	and	later	only.
Sent	just	after	the	current	edit	object	changes.	This	notifications	are	sent
whenever	the	object	returned	by	Interface::GetCurEditObject()	changes.
NOTIFY_BEGIN_RENDERING_REFLECT_REFRACT_MAP
This	option	is	available	in	release	5.0	and	later	only.
Sent	when	the	render	begins	to	render	the	Reflect/Refract	map
NOTIFY_BEGIN_RENDERING_ACTUAL_FRAME
This	option	is	available	in	release	5.0	and	later	only.
Sent	when	the	render	begins	to	render	the	full	frame
NOTIFY_BEGIN_RENDERING_TONEMAPPING_IMAGE
This	option	is	available	in	release	5.0	and	later	only.
Sent	when	the	render	begins	to	render	the	Tone	map
NOTIFY_RADIOSITYPROCESS_STARTED
This	option	is	available	in	release	5.0	and	later	only.

Sent	when	radiosity	processing	is	started
NOTIFY_RADIOSITYPROCESS_STOPPED
This	option	is	available	in	release	5.0	and	later	only.
Sent	when	radiosity	processing	is	stopped,	but	not	done
NOTIFY_RADIOSITYPROCESS_RESET
This	option	is	available	in	release	5.0	and	later	only.
Sent	when	radiosity	processing	is	reset
NOTIFY_RADIOSITYPROCESS_DONE
This	option	is	available	in	release	5.0	and	later	only.
Sent	when	radiosity	processing	is	done
NOTIFY_RADIOSITY_PLUGIN_CHANGED
This	option	is	available	in	release	5.0	and	later	only.
Sent	when	radiosity	plugin	is	changed.
NOTIFY_LIGHTING_UNIT_DISPLAY_SYSTEM_CHANGE
This	option	is	available	in	release	5.0	and	later	only.
Sent	when	the	lighting	unit	display	system	is	changed
NOTIFY_TIMERANGE_CHANGE
This	option	is	available	in	release	5.1	and	later	only.
Sent	after	the	animate	time	range	has	been	changed

Class	ViewWindow
See	Also:	Class	Interface.
class	ViewWindow	:	public	InterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	the	base	class	for	the	creation	of	non-3D	windows	that	appear	in	a	3ds	max
viewport.	These	views	are	called	"Extended	Viewports".	In	order	for	a	window
to	appear	inside	a	viewport,	you	need	to	derive	a	class	from	this	class.	An
instance	of	the	derived	class	must	be	registered	via	the
RegisterViewWindow()	call	in	the	Interface	class.	A	given	ViewWindow
derivative	should	only	be	registered	once.
When	developers	have	registered	their	window	types,	the	list	of	available
extended	views	will	appear	in	the	view	selection	pop-up	(either	in	the	right-click
viewport	menu	or	the	Viewport	Configuration	dialog)	as	a	submenu	of	the
"Extended"	view	label.
There	are	two	items	which	should	be	made	in	the	extended	viewport	dialog	proc
code:
Interface::MakeExtendedViewportActive()	should	be	called
whenever	the	user	clicks	in	the	non-3D	window	(so	as	to	deactivate	the
current	3D	window,	and	redirect	commands	like	the	Min/Max	toggle	to	the
non-3D	viewport	window).
Interface::PutUpViewMenu()	should	be	called	when	the	user	right-
clicks	in	a	dead	region	of	the	non-3D	window.	This	brings	up	the	view
selection	menu	so	that	the	user	can	choose	to	replace	the	current	window
with	a	3D	or	other	non-3D	window	without	having	to	go	to	the	Views	|
Viewport	Config	dialog	directly.

All	methods	of	this	class	are	implemented	by	the	plug-in.

Sample	Code:
class	TestViewWindow	:	public	ViewWindow	{
public:
	TCHAR	*GetName()	{	return	_T("TestViewWindow");	}
	HWND	CreateViewWindow(HWND	hParent,	int	x,	int	y,	int	w,

int	h);
	void	DestroyViewWindow(HWND	hWnd);
};
	
HWND	TestViewWindow::CreateViewWindow(HWND	hParent,
int	x,	int	y,	int	w,	int	h)	{
return	CreateWindow("button",	"Test	Button",	WS_VISIBLE
|	WS_CHILD,	x,	y,	w,	h,	hParent,	NULL,
(HINSTANCE)GetWindowLong(hParent,
GWL_HINSTANCE),	NULL);

}
	
void	TestViewWindow::DestroyViewWindow(HWND	hWnd)	{
	DestroyWindow(hWnd);
}
static	TestViewWindow	tvw;

Methods:
public:

Prototype:
virtual	TCHAR	*GetName()=0;

Remarks:
Returns	the	name	of	the	window	type.	For	example,	"Asset	Manager".

Prototype:
virtual	HWND	CreateViewWindow(HWND	hParent,	int	x,	int	y,
int	w,	int	h)=0;

Remarks:
Creates	and	returns	a	handle	to	a	new	extended	view	window.

Parameters:
HWND	hParent
The	handle	of	the	parent	window.

int	x
The	x	coordinate	of	the	window's	upper	left	corner.
int	y
The	y	coordinate	of	the	window's	upper	left	corner.
int	w
The	window	width.
int	h
The	window	height.

Prototype:
virtual	void	DestroyViewWindow(HWND	hWnd)=0;

Remarks:
Destroys	the	previously	created	window	as	specified	by	the	handle.

Parameters:
HWND	hWnd
The	handle	of	the	window	to	destroy.

Prototype:
virtual	BOOL	CanCreate();

Remarks:
Returns	TRUE	if	the	ViewWindow	can	be	created;	otherwise	FALSE.	This
method	can	be	overridden	to	return	FALSE	if	a	ViewWindow	can	only	have	a
single	instance,	and	that	instance	is	already	present.	If	this	method	returns
FALSE,	then	the	menu	item	for	this	ViewWindow	will	be	grayed	out.

Default	Implementation:
{	return	TRUE;	}

Prototype:
virtual	int	NumberCanCreate();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	number	of	instances	of	a	given	window	that	can	be

created.	This	allows,	for	example,	the	UI	to	know	without	physically	creating
a	window	that	only	a	limited	number	of	windows	of	that	type	can	be	created.
A	-1	implies	that	the	count	is	not	known.

Default	Implementation:
{	return	-1;	}

Keyboard	Shortcut	System
Class	ShortcutTable,	Class	ShortcutOperation,	Class	ShortcutCallback
Important	Note:	A	new	system	to	handle	keyboard	accelerators	was	added	for
R4.	This	system	supercedes	those	used	in	previous	release.	For	information	on
this	system	see	the	class	ActionTable.	The	information	shown	below	applies	to
previous	version	of	the	SDK	APIs.

Overview
The	following	is	a	discussion	of	the	plug-in	definable	keyboard	shortcut	system
avaialbe	in	release	3.0	and	later.	The	pre-R3	system	remains	in	place	for
backwards	compatability.
The	keyboard	preferences	dialog	has	been	expanded	to	allow	the	editing	of
keyboard	shortcuts	for	plug-ins.	There	is	a	new	radio	button	added	to	the	set	of
shortcuts,	labeled	"Plug-Ins".	When	this	is	selected	a	drop-down	list	next	to	the
button	is	activated	which	lists	all	the	plug-ins	that	have	registered	keyboard
shortcut	tables.	After	selecting	one	from	the	drop-down	list,	you	can	change	the
shortcuts	in	the	same	way	the	main	UI	shortcuts	are	changed.	This	provides	a
clean	way	for	all	plug-ins	to	make	their	keyboard	shortcuts	available	in	a
uniform	manner.
The	basic	process	works	like	this:	A	developers	assigns	an	ID	and	name	to	each
shortcut	(these	are	stored	in	a	Shortcut	Description).	The	ID	identifies	the	each
shortcut	and	the	name	appears	in	the	3ds	max	user	interface	where	the	shortcuts
are	assigned	to	keys	by	the	user.	An	array	of	these	shortcuts	is	used	to	make	up
something	called	a	Shortcut	Table.	This	table	stores	and	provides	access	to	the
shortcut	data.	These	data	items	are	referred	to	as	Shortcut	Operations.
A	developer	provides	3ds	max	with	the	shortcut	table	data	for	a	plug-in	at	Dll
load	time	using	two	new	methods	of	the	Class	Descriptor.	These	methods	return
the	number	of	shortcut	tables	used	by	the	plug-in	and	return	a	pointer	to	the	'i-th'
table.	These	methods	are	ClassDesc::NumShortcutTables()	and
ClassDesc::GetShortcutTable(int	i).
The	tables	become	active	and	inactive	as	a	whole	by	using	two	method	provided
by	the	Interface	class.	These	are	ActivateShortcutTable()	and
DeactivateShortcutTable().	These	will	normally	be	called	by	a	developer
inside	BeginEditParams()	and	EndEditParams().

Principal	Classes
The	following	is	a	overview	of	the	principal	classes	and	structures	involved	in
making	this	happen:

Class	ShortcutTable:	This	class	provides	storage	for	and	access	to	the
ShortcutOperations.
Class	ShortcutOperation:	This	class	describes	an	operation	that	can	be
attached	to	a	keyboard	shortcut.	There	is	an	ID	sent	to	the	window	proc	when
the	shortcut	is	executed,	a	name	for	the	operation	that	appears	in	the	3ds	max
user	interface	where	the	shortcuts	are	assigned.
Class	ShortcutCallback:	When	the	user	presses	a	shortcut	key	that	is	assigned
in	an	active	table,	it	calls	this	classes	KeyboardShortcut(int	id)	method
with	the	id	of	the	operation.	Here	the	plug-in	should	execute	the	operation.	If
the	state	of	the	plug-in	is	such	that	the	operation	should	not	be	performed	it
can	return	FALSE	from	this	method.	In	this	case	any	system	defined	shortcut
will	be	executed	instead.	If	the	plug-in	returns	TRUE	then	only	the	plug-in
defined	shortcut	is	executed.	A	developer	dervies	a	class	from	this	class	and
passes	an	instance	of	it	to	the	method
Interface::ActivateShortcutTable().
Structure	ShortcutDescription:	This	structure	provides	a	description	of	a
command	for	building	shortcut	tables	from	static	data.	The	structure	holds
the	command	ID	that	is	sent	to
ShortcutCallback::KeyboardShortcut()	method	and	a	resource	ID	for
the	string	that	describes	the	shortcut.	A	pointer	to	an	array	of	these	is	passed
to	the	ShortcutTable	constructor.
Class	ClassDesc:	Two	methods	have	been	added	to	this	class	that	are	called
at	Dll	load	time	to	get	the	shortcut	table(s)	from	the	plug-in.
Class	 Interface:	There	are	new	functions	added	 to	 this	class	 to	activate	and
deactivate	 a	 shortcut	 table.	 These	 are	 normally	 called	 by	 a	 plug-in	 in
BeginEditParams()	and	EndEditParams().	There	are	also	methods	that
allow	one	 to	access	 the	names	and	command	IDs	from	a	specific	keyboard
shortcut	 table.	 See	 Keyboard	 Shortcut	 Table	 Related	 Methods	 in	 class
Interface.

Sample	Code
For	an	example	of	using	this	mechanism	see	the	code	in	the	directory

\MAXSDK\SAMPLES\MODIFIERS\FFD.

Class	MacroButtonData
See	Also:	Class	ToolMacroItem,	Class	MacroEntry,	Class	MacroDir,	Class
ICustButton,	Class	ICustomControl,	Class	ShortcutTable,	Class
ShortcutCallback,	Class	ActionItem,	Keyboard	Shortcut	System.
class	MacroButtonData

Description:
This	class	is	available	in	release	3.0	and	later	only.
A	Macro	Button	is	a	button	which	can	execute	either	a	keyboard	macro	or	macro
script.	This	class	contains	the	data	and	access	methods	for	such	a	UI	button.	This
data	includes	a	macro	type,	command	ID,	macro	script	ID,	label,	tooltip,	image
name,	and	image	ID.
This	object	is	used	in	the	ToolMacroItem	constructor.	There	are	also	methods
of	class	ICustButton	to	get	and	set	the	macro	button	data.

Data	Members:
public:
int	macroType;
The	macro	type.	One	of	the	following	values:
MB_TYPE_KBD
A	keyboard	macro.
MB_TYPE_SCRIPT
A	Script	macro.

ActionTableId	tblID;
The	Shortcut	Action	Table	ID.
void	*cb;
The	ShortcutCallback.	See	Class	ShortcutCallback.	This	is	currently	not	used.
int	cmdID;
The	command	ID.	There	are	method	of	class	Interface	that	provide	access	to
the	command	IDs	for	various	keyboard	shortcut	tables.	See	Keyboard	Shortcut
Related	Methods.
int	macroScriptID;
The	macroScriptID	holds	the	id	of	the	macroScript	associated	with	this	button.
This	id	is	the	MacroID	that	is	used	by	the	methods	in	the	MacroDir	and

MacroEntry	classes	(at	one	time	it	was	an	indirect	reference	to	this	id	and	so
was	typed	as	an	int).	The	id	can	have	values	from	0	to	the	number	of	macro
scripts	currently	defined	in	the	running	3ds	max	or	the	special	value
UNDEFINED_MACRO.
TCHAR	*label;
The	label	text	for	a	text	button.	This	is	used	if	imageID	is	-1.
TCHAR	*tip;
The	tooltip	text.
TCHAR	*imageName;
This	is	the	name	for	the	button	image.	This	is	the	'base'	name	only.	For
example	if	the	actual	image	name	was	Spline_16i.bmp	then	the	name
supplied	here	would	be	Spline.	See	the	remarks	in	Class	CUIFrameMgr	for
details	on	the	image	naming	scheme	the	CUI	system	uses.
int	imageID;
The	image	ID.	If	this	is	set	to	-1	it	indicates	to	use	the	label.	If	it	is	set	to	0	or
greater	it	indicates	this	is	an	image	based	button	and	this	is	the	zero	based
index	of	the	button	that	was	added.	This	then	is	an	ID	into	an	image	group	as
specified	by	imageName.	Said	another	way,	3ds	max	builds	one	large	image
list	internally	and	uses	the	imageName	to	get	an	offset	into	the	list	and	then
uses	this	imageID	as	an	additional	offset	from	the	start	as	indicated	by	the
name	(each	imageName	may	contain	multiple	icons	in	the	single	BMP).
ActionItem*	actionItem;
This	data	member	is	available	in	release	4.0	and	later	only.
A	pointer	to	the	ActionItem.
DWORD	flags;
This	data	member	is	available	in	release	4.0	and	later	only.
These	flags	contain	the	last	state	when	redrawing

Methods:
public:

Prototype:
MacroButtonData();

Remarks:

Constructor.	The	data	members	are	initialized	as	follows:
label	=	tip	=	imageName	=	NULL;	imageID	=	-1;

Prototype:
MacroButtonData(long	tID,	void	*cb,	int	cID,	TCHAR	*lbl,
TCHAR	*tp=NULL,	int	imID=-1,	TCHAR	*imName=NULL);

Remarks:
Constructor.	This	one	is	used	for	keyboard	macro	buttons
(MB_TYPE_KBD).	The	data	members	are	initialized	to	the	values	passed
as	shown:
macroType=MB_TYPE_KBD;	tblID=tID;	this->cb=cb;
cmdID=cID;	imageID=imID;	label=NULL;	SetLabel(lbl);
tip=NULL;	SetTip(tp);	imageName=NULL;
SetImageName(imName);

Prototype:
MacroButtonData(int	msID,	TCHAR	*lbl,	TCHAR	*tp=NULL,
int	imID=-1,	TCHAR	*imName=NULL);

Remarks:
Constructor.	This	one	is	used	for	macro	script	buttons
(MB_TYPE_SCRIPT).	The	data	members	are	initialized	to	the	values
passed	as	shown:
macroType=MB_TYPE_SCRIPT;	macroScriptID=msID;
imageID=imID;	label=NULL;	SetLabel(lbl);	tip=NULL;
SetTip(tp);	imageName=NULL;	SetImageName(imName);

Prototype:
~MacroButtonData();

Remarks:
Destructor.	Any	label,	tooltip	or	image	name	strings	are	deleted.

Prototype:

void	SetLabel(TCHAR	*lbl);
Remarks:
Sets	the	label	text.

Parameters:
TCHAR	*lbl
The	label	to	set.

Prototype:
TCHAR	*GetLabel();

Remarks:
Returns	the	label	text.

Prototype:
void	SetTip(TCHAR	*tp);

Remarks:
Sets	the	tooltip	text.

Parameters:
TCHAR	*tp
The	text	to	set.

Prototype:
TCHAR	*GetTip();

Remarks:
Returns	the	tooltip	text.

Prototype:
void	SetCmdID(int	id);

Remarks:
Sets	the	command	ID.

Parameters:
int	id

The	command	ID	to	set.

Prototype:
int	GetCmdID();

Remarks:
Returns	the	command	ID.

Prototype:
void	SetScriptID(int	id);

Remarks:
Sets	the	script	ID.

Parameters:
int	id
The	script	ID	to	set.

Prototype:
int	GetScriptID();

Remarks:
Returns	the	script	ID.

Prototype:
void	SetImageName(TCHAR	*imName);

Remarks:
Sets	the	image	name.	See	the	imageName	data	member	above	for	details	on
the	name	format.

Parameters:
TCHAR	*imName
The	name	to	set.

Prototype:
TCHAR	*GetImageName();

Remarks:
Returns	the	image	name.

Prototype:
void	SetImageID(int	id);

Remarks:
Sets	the	image	ID.

Parameters:
int	id
The	image	ID	to	set.

Prototype:
int	GetImageID();

Remarks:
Retuns	the	image	ID.

Prototype:
void	SetTblID(ActionTableId	id);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	sets	the	ActionTableID	ID.

Parameters:
ActionTableId	id
The	ActionTableID	ID	to	set.

Prototype:
ActionTableId	GetTblID();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	ActionTableID	ID.

Prototype:

void	SetActionItem(ActionItem*	pAction);
Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	ActionItem.

Parameters:
ActionItem*	pAction
A	point	to	the	ActionItem	to	set.

Prototype:
ActionItem*	GetActionItem();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	a	pointer	to	the	ActionItem.

Prototype:
BOOL	IsActionButton();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	TRUE	if	the	button	is	an	Action	button.	FALSE	if	it	is
not.

Prototype:
MacroButtonData	&	operator=(const	MacroButtonData&	mbd);

Remarks:
Assignment	operator.

Class	ICUIFrame
See	Also:	Class	CUIFrameMgr,	Class	CUIFrameMsgHandler,	Class
ICustToolbar,	Class	ICustomControl.
class	ICUIFrame	:	public	ICustomControl

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	provides	access	to	an	individual	CUI	Frame	(the	name	given	to	the
windows	that	contain	toolbars,	menus,	the	command	panel,	etc.)
To	create	a	floating	tool	palette,	for	example,	you	create	a	CUIFrame,	create	a
toolbar,	and	then	attach	the	two	(similar	to	creating	a	custom	edit	field,	and
custom	spinner,	then	attaching	the	two).	This	is	done	using	the	method
ICustToolbar::LinkToCUIFrame().
When	a	Toolbar	is	part	of	a	CUI	frame	it's	called	a	Tool	Palette.	Tool	Palettes
can	either	float	or	dock	(whereas	a	Toolbar	must	be	placed	by	the	developer	in	a
dialog	using	the	resource	editor).

The	following	global	functions	are	not	part	of	this	class	but	are
available	for	use:
Function:
ICUIFrame	*GetICUIFrame(HWND	hCtrl);

Remarks:
Initializes	the	pointer	to	the	CUI	Frame	control.

Parameters:
HWND	hCtrl
The	window	handle	of	the	control.

Function:
void	ReleaseICUIFrame(ICUIFrame	*icf);

Remarks:
Releases	the	specified	control.

Parameters:

ICUIFrame	*icf
Points	to	the	frame	to	release.

Function:
HWND	CreateCUIFrameWindow(HWND	hParent,	TCHAR
*title,	int	x,	int	y,	int	cx,	int	cy);

Remarks:
Creates	a	CUI	Frame	Window	with	the	specified	window	handle,	size	and	title
parameters.	Values	of	0	may	be	passed	for	x,	y,	cx	and	cy.	This	indicates	that
the	initial	size	doesn't	matter.	For	example,	when	the	3ds	max	CUI	is	created
initially	everything	is	docked.	3ds	max	then	calls
CUIFrameMgr::RecalcLayout()	which	computes	all	the	sizes.	Thus	the
values	passed	don’t	matter	since	they	are	all	going	to	be	recalculated	anyway.

Parameters:
HWND	hParent
The	handle	of	the	parent	window	for	the	frame.
TCHAR	*title
The	title	for	the	frame.	This	effectively	calls	SetName()	below	to	establish	a
name	for	the	frame.
int	x
The	x	coordinate	of	the	upper	left	corner.
int	y
The	y	coordinate	of	the	upper	left	corner.
int	cx
The	x	size.
int	cy
The	y	size.

Return	Value:
If	the	function	succeeds,	the	return	value	is	the	window	handle	to	the	dialog
box.	If	the	function	fails,	the	return	value	is	NULL.

Methods:
public:

Prototype:
virtual	void	SetName(TCHAR	*name)=0;

Remarks:
Sets	the	name	for	the	frame.	This	name	shows	up	as	a	tooltip	and	also	on	the
window	border	if	the	frame	is	floated.	Note	that	the	name	is	also	used	to	store
position	information	in	the	CUI	file.	Therefore	developers	must	use	a	name
and	not	simply	set	it	to	NULL.

Parameters:
TCHAR	*name
The	name	to	set.

Prototype:
virtual	TCHAR	*GetName()=0;

Remarks:
Returns	the	name	of	the	frame.

Prototype:
virtual	void	SetPosType(DWORD	t)=0;

Remarks:
Sets	the	position	type.	This	determines	the	possible	locations	for	the	frame.

Parameters:
DWORD	t
The	position	to	set.	See	List	of	CUI	Frame	Position	Types.

Prototype:
virtual	DWORD	GetPosType()=0;

Remarks:
Retuns	a	DWORD	which	describes	the	position	options	for	this	CUI	Frame.
See	List	of	CUI	Frame	Position	Types.

Prototype:
virtual	void	SetPosRank(int	rank,	int	subrank=0)=0;

Remarks:
This	method	is	for	internal	use	only.	Developers	must	not	assign	the	rank	and
subrank	as	these	are	computed	internally.	Developers	should	create	their
toolbars	'floating'.	Then	when	a	user	docks	the	toolbar	it	will	be	docked
automatically	when	3ds	max	starts	up	the	next	time.

Prototype:
virtual	int	GetPosRank()=0;

Remarks:
Returns	the	positon	rank.	Consider	three	docked	toolbars,	one	alone	on	the	top
line,	and	two	side	by	side	on	the	line	below.	The	top	toolbar	would	have	a	rank
of	0	(and	a	subrank	of	0).	The	toolbar	on	the	left	in	the	line	below	would	have
a	rank	of	1	and	a	subrank	of	0.	The	toolbar	beside	it	to	the	right	would	have	a
rank	of	1	and	a	subrank	of	1.

Prototype:
virtual	int	GetPosSubrank()=0;

Remarks:
Returns	the	position	subrank.	See	GetPosRank()	above.

Prototype:
virtual	BOOL	IsFloating()=0;

Remarks:
Returns	TRUE	if	the	frame	is	floating	(not	docked);	otherwise	FALSE.

Prototype:
virtual	void	Hide(BOOL	b)=0;

Remarks:
Sets	the	frame	to	hidden	or	not.	Note	that	if	a	developer	is	doing	something
like	showing	their	toolbars	at	BeginEditParams()	and	hiding	them	at
EndEditParms()	then	this	method	can	be	used.	In	such	a	case,	if	the	toolbar
is	docked	then	RecalcLayout()	needs	to	be	called	to	update	the	layout.	If	the
toolbars	are	floating	then	RecalcLayout()	does	not	need	to	be	called.

Parameters:
BOOL	b
TRUE	for	hidden;	FALSE	for	not	hidden.

Prototype:
virtual	BOOL	IsHidden()=0;

Remarks:
Returns	TRUE	if	the	frame	is	hidden;	FALSE	if	visible.

Prototype:
virtual	void	SetCurPosition(DWORD	pos)=0;

Remarks:
This	method	is	for	internal	use	only.

Prototype:
virtual	DWORD	GetCurPosition()=0;

Remarks:
Returns	the	current	postion	of	the	frame.	One	of	the	following	values.
CUI_TOP_DOCK
Docked	at	the	top.
CUI_BOTTOM_DOCK
Docked	at	the	bottom.
CUI_LEFT_DOCK
Docked	on	the	left.
CUI_RIGHT_DOCK
Docked	on	the	right.
CUI_FLOATING
The	frame	is	floating	(not	docked).

Prototype:
virtual	void	SetContentType(DWORD	t)=0;

Remarks:

Sets	the	frame	contents	type.	This	specifies	if	this	frame	holds	a	toolbar,	menu
or	a	floating	panel.

Parameters:
DWORD	t
One	or	more	of	the	following	flags:
CUI_TOOLBAR
Set	if	frame	holds	toolbars	and	/	or	tool	palettes.
CUI_MENU
This	is	used	internally	to	set	if	the	frame	holds	a	menu.	Note:	Developers
should	not	create	their	own	menus.	3ds	max	assumes	that	only	one	menu
exists.
CUI_HWND
Set	if	frame	hold	a	generic	window	handle.	The	command	panel	(which	can
be	floated)	is	an	example	of	a	generic	window.

Prototype:
virtual	DWORD	GetContentType()=0;

Remarks:
Returns	a	value	which	indicates	the	frame	contents	type.	One	of	the	following
flags:
CUI_TOOLBAR
Set	if	frame	holds	toolbars	and	/	or	tool	palettes.
CUI_MENU
Set	if	the	frame	holds	a	menu.
CUI_HWND
Set	if	frame	hold	a	generic	window	handle.

Prototype:
virtual	void	SetContentHandle(HWND	hContent)=0;

Remarks:
Sets	the	content	handle.	This	is	the	window	handle	for	the	toolbar,	or	menu
handle	for	a	menu.	Developers	typically	create	Tool	Palettes	by	linking	a
toolbar	to	a	CUIFrame	using	ICustToolbar::LinkToCUIFrame()	and	do

not	need	to	call	this	method	as	it's	done	automatically.
Parameters:
HWND	hContent
The	handle	to	set.

Prototype:
virtual	HWND	GetContentHandle()=0;

Remarks:
Returns	the	content	handle.

Prototype:
virtual	void	SetTabbedToolbar(BOOL	b)=0;

Remarks:
Sets	if	this	frame	represents	a	tabbed	toolbar.	A	tabbed	toolbar	may	have
individual	tabs	added	and	deleted.

Parameters:
BOOL	b
TRUE	for	tabbed;	FALSE	for	not	tabbed.

Prototype:
virtual	BOOL	GetTabbedToolbar()=0;

Remarks:
Returns	TRUE	if	this	frame	is	a	tabbed	toolbar;	otherwise	FALSE.

Prototype:
virtual	void	AddToolbarTab(HWND	hTBar,
CUIFrameMsgHandler	*msgHandler,	TCHAR	*name,	int	pos	=
-1)=0;

Remarks:
Adds	the	toolbar	tab	whose	window	handle	is	passed	to	the	list	of	tabs
maintained	by	this	class.

Parameters:

HWND	hTBar
The	window	handle	of	the	toolbar	tab	to	add.
CUIFrameMsgHandler	*msgHandler
The	message	handler	for	the	tab	or	NULL	if	not	used.
TCHAR	*name
The	name	for	the	tab.
int	pos	=	-1
The	position	for	the	tab.	This	is	the	zero	based	index	where	0	is	at	left	edge	of
those	in	the	frame	and	the	max	value	is	GetToolbarCount()-1.	A	value	of
-1	adds	the	tab	to	the	end	of	the	list	of	tabs.	Also,	for	example,	if	you	specifiy
a	value	of	0	for	an	existing	tabbed	toolbar,	the	new	tab	is	inserted	at	position	0
and	the	others	are	moved	to	the	right.

Prototype:
virtual	void	DeleteToolbarTab(int	pos)=0;

Remarks:
Deletes	the	specified	toolbar	tab.

Parameters:
int	pos
Specifies	the	position	of	the	tab	to	delete.	This	is	the	zero	based	index	where	0
is	at	left	edge	of	those	in	the	frame	and	the	max	value	is
GetToolbarCount()-1.

Prototype:
virtual	int	GetToolbarCount()=0;

Remarks:
Returns	the	number	of	toolbar	tabs	in	this	frame.

Prototype:
virtual	HWND	GetToolbarHWnd(int	pos)=0;

Remarks:
Returns	the	window	handle	of	the	toolbar	tab	whose	position	is	passed.

Parameters:
int	pos
Specifies	the	position	of	the	tab.	This	is	the	zero	based	index	where	0	is	at	left
edge	of	those	in	the	frame	and	the	max	value	is	GetToolbarCount()-1.

Prototype:
virtual	TCHAR	*GetTabName(int	pos)=0;

Remarks:
Returns	the	name	of	the	specified	toolbar	tab.

Parameters:
int	pos
Specifies	the	position	of	the	tab.	This	is	the	zero	based	index	where	0	is	at	left
edge	of	those	in	the	frame	and	the	max	value	is	GetToolbarCount()-1.

Prototype:
virtual	void	SetCurrentTab(int	pos)=0;

Remarks:
Sets	the	currently	active	tab.

Parameters:
int	pos
Specifies	the	position	of	the	tab.	This	is	the	zero	based	index	where	0	is	at	left
edge	of	those	in	the	frame	and	the	max	value	is	GetToolbarCount()-1.

Prototype:
virtual	int	GetCurrentTab()=0;

Remarks:
Returns	the	postion	of	the	currently	active	tab.	This	is	the	zero	based	index
where	0	is	at	left	edge	of	those	in	the	frame	and	the	max	value	is
GetToolbarCount()-1.

Prototype:
virtual	int	GetSize(int	sizeType,	int	dir,	int	orient)=0;

Remarks:
Returns	the	size	of	this	frame	for	the	specified	size	type,	direction	(width	or
height)	and	orientation.
Note:	If	this	frame	has	a	custom	message	handler	(a
CUIFrameMsgHandler	object,	it's	ProcessMessage()	method	is	called
passing	CUI_POSDATA_MSG	which	is	used	to	determine	the	size.

Parameters:
int	sizeType
The	size	type.	See	List	of	CUI	Frame	Size	Types.
int	dir
The	direction	of	the	frame.
CUI_HORIZ:	Width.
CUI_VERT:	Height.

int	orient
The	orientation.	See	List	of	CUI	Frame	Orientations.

Prototype:
virtual	BOOL	InstallMsgHandler(CUIFrameMsgHandler
*msgHandler)=0;

Remarks:
Installs	a	custom	message	processing	routine.

Parameters:
CUIFrameMsgHandler	*msgHandler
Points	to	the	handler	to	install.	See	Class	CUIFrameMsgHandler	for	details.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
virtual	BOOL	SetMenuDisplay(int	md)=0;

Remarks:
Sets	the	menu	display	state.

Parameters:

int	md
One	of	the	following	values:
CUI_MENU_HIDE
CUI_MENU_SHOW_ENABLED
CUI_MENU_SHOW_DISABLED

Prototype:
virtual	int	GetMenuDisplay()=0;

Remarks:
Returns	the	state	of	the	menu	display.	One	of	the	following	values:
CUI_MENU_HIDE
CUI_MENU_SHOW_ENABLED
CUI_MENU_SHOW_DISABLED

Prototype:
virtual	void	SetSystemWindow(BOOL	b)=0;

Remarks:
System	windows	are	those	that	come	up	automatically	inside	MAX.	So
command	panel,	the	main	toolbar,	the	tab	panel	and	the	main	menu	are	all
system	windows.	It	is	not	therefore	appropriate	for	developers	to	declare
themselves	as	system	windows	and	this	method	should	not	be	called	passing
TRUE.

Parameters:
BOOL	b
TRUE	to	set	as	a	system	window;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetSystemWindow()=0;

Remarks:
Returns	TRUE	if	this	CUIFrame	is	a	system	window;	otherwise	FALSE.	See
SetSystemWindow()	above.

Prototype:
virtual	BOOL	ReadConfig(TCHAR	*cfg,	int	startup=FALSE)=0;

Remarks:
This	method	is	for	internal	use	only.

Prototype:
virtual	void	WriteConfig(TCHAR	*cfg)=0;

Remarks:
This	method	is	for	internal	use	only.

Class	CUIFrameMgr
See	Also:	Class	ICUIFrame,	Class	CUIFrameMsgHandler,	Class	ICustToolbar,
Class	ICustomControl,	Class	ICustStatus,	Class	MAXBmpFileIcon.
class	CUIFrameMgr	:	public	BaseInterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
reflect	changes	with	MAXBMPFileIcon	class
This	object	controls	the	overall	operation	of	the	individual	CUI	Frames	(the
name	given	to	the	windows	that	contain	toolbars,	menus,	the	command	panel,
etc.).	There	is	one	instance	of	this	CUIFrameMgr	class	(obtained	by	calling	the
global	function	GetCUIFrameMgr()).	Methods	of	this	class	are	available	to
do	things	like	float	and	dock	individual	windows,	get	pointers	to	frames,	get
pointers	to	button	and	status	controls,	and	bring	up	the	standard	toolbar	right
click	menu	.
Note:	Developers	may	use	their	own	images	on	icon	buttons	that	are	managed	by
this	class	but	the	following	guidelines	must	be	followed:
BMP	files	must	be	put	in	the	\UI\Icons	folder.	This	is	the	UI	directory	under	the
3ds	max	EXE	directory.	This	is	hard	coded	because	it	must	be	retrieved	before
3ds	max	is	fully	started	and	thus	there	is	no	configurable	path	for	it.	There	is	a
command	line	option	however,	(-c),	which	specifies	for	3ds	max	to	look	in	an
alternate	directory	for	the	CUI	file.	In	that	case	the	bitmap	files	should	be
located	in	the	same	directory.
For	more	information	on	the	new	icon	image	system	refer	to	the	chapter	on
external	icons.

The	following	global	functions	are	not	part	of	this	class	but	are
available	for	use:
Function:
CUIFrameMgr	*GetCUIFrameMgr();

Remarks:
Returns	a	pointer	to	the	CUIFrameMgr	which	controls	the	overall	operation	of
CUI	Frames	(the	windows	which	contain	toolbars,	menus,	the	command
panel,	etc).

Function:
void	DoCUICustomizeDialog();

Remarks:
This	global	function	presents	the	Customize	User	Interface	dialog.

Function:
BOOL	AllFloatersAreHidden();

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Returns	TRUE	if	all	floaters	are	hidden;	otherwise	FALSE.

Methods:
public:

Prototype:
CUIFrameMgr();

Remarks:
Constructor.

Prototype:
~CUIFrameMgr();

Remarks:
Destructor.

Prototype:
CUIFrameMsgHandler	*GetDefaultMsgHandler();

Remarks:
Returns	a	pointer	to	the	default	CUI	Frame	Message	Handler.

Prototype:
void	SetAppHWnd(HWND	hApp);

Remarks:
This	method	is	for	internal	use	only.

Prototype:
TCHAR	*GetCUIDirectory();

Remarks:
Returns	the	directory	name	of	the	custom	user	interface	(CUI)	file	location.

Prototype:
void	ProcessCUIMenu(HWND	hWnd,	int	x,	int	y);

Remarks:
This	brings	up	the	CUI	right	click	menu	(wth	the	Add	Tab,	Delete	Tab,	etc
selections).	Also	see	the	global	function	DoCUICustomizeDialog().

Parameters:
HWND	hWnd
The	handle	of	the	window	there	the	mouse	was	clicked.
int	x
The	x	coordinate	of	the	mouse	when	right	clicked.
int	y
The	y	coordinate	of	the	cursor	when	right	clicked.

Prototype:
void	DockCUIWindow(HWND	hWnd,	int	panel,	RECT	*rp	=
NULL,	int	init	=	FALSE);

Remarks:
This	method	docks	the	CUI	window	whose	handle	is	passed.	Developers	who
want	to	dock	a	window	should	use	this	method	by	passing	a	rectangle	which
specifies	the	general	area	of	the	screen	where	the	window	is	to	be	docked.
This	will	cause	3ds	max	reorganize	the	existing	windows.

Parameters:
HWND	hWnd
The	handle	of	the	window	to	dock.
int	panel
The	CUI	docking	panel	location.	One	of	the	following	values:
CUI_TOP_DOCK

Docked	at	the	top.
CUI_BOTTOM_DOCK
Docked	at	the	bottom.
CUI_LEFT_DOCK
Docked	on	the	left.
CUI_RIGHT_DOCK
Docked	on	the	right.

RECT	*rp	=	NULL
This	is	the	rectangle	which	specifies	where	to	dock	the	window.	This	is	the
rectangle	that	a	user	moves	around	the	screen	when	dragging	a	floating
window	over	top	of	a	docking	region.	This	is	specified	in	screen	coordinates.
If	NULL	is	passed	the	window	is	docked	using	CUI_TOP_DOCK.
int	init	=	FALSE
This	is	used	internally	by	3ds	max	when	it's	starting	up.	This	should	always
default	to	FALSE	(don't	override	this	and	pass	TRUE).

Prototype:
void	FloatCUIWindow(HWND	hWnd,	RECT	*rp	=	NULL,	int	init
=	FALSE);

Remarks:
Floats	(un-docks)	the	specified	CUI	Window.

Parameters:
HWND	hWnd
The	window	to	float.
RECT	*rp	=	NULL
Specifies	the	rectangle	in	screen	coordinates	where	the	floating	window
should	reside.	If	NULL	is	passed	the	window	is	restored	to	the	position	it	was
before	it	was	docked	(this	information	is	stored	in	the	CUI	file).
Note:	Calling	this	method	on	an	already	floating	window	will	explicitly	NOT
resize	the	window,	but	rather	just	move	it	to	the	new	origin.	Said	another	way,
only	the	left	and	top	members	of	the	rectangle	are	used	on	an	already	floating
window.	Developers	should	call	the	Win32	API	MoveWindow	or
SetWindowPlacement	to	size	the	window.	See
GetFloatingCUIFrameSize()	below	to	compute	a	size.

int	init	=	FALSE
This	is	used	internally	by	3ds	max	when	it's	starting	up.	This	should	always
default	to	FALSE	(don't	override	this	and	pass	TRUE).

Prototype:
virtual	void	GetFloatingCUIFrameSize(SIZE	*sz,	int	rows=1)=0;

Remarks:
Computes	the	required	size	of	a	floating	CUI	Frame	which	is	linked	to	a
toolbar.	The	values	returned	will	be	zero	if	the	frame	is	not	linked	to	a	toolbar.

Parameters:
SIZE	*sz
The	computed	size	is	returned	here.	sz.cx	is	the	width,	sz.cy	is	the	height.
int	rows=1
The	number	of	rows	for	the	toolbar	used	in	the	computation.

Prototype:
void	SetReservedSize(int	panel,	int	size);

Remarks:
This	method	is	for	internal	use	only.

Prototype:
int	GetReservedSize(int	panel);

Remarks:
This	method	is	for	internal	use	only.

Prototype:
int	GetPanelSize(int	panel,	int	incReserved	=	FALSE);

Remarks:
This	method	is	for	internal	use	only.

Prototype:
void	RecalcLayout(int	entireApp=FALSE);

Remarks:
This	method	may	be	called	to	recalculates	the	layout	of	the	CUI.	Developers
need	to	call	this	method	after	they,	for	example,	add	new	tool	palettes.	A
developer	would	create	the	new	palettes	and	then	call	this	method	when	done.
Otherwise	the	changes	wouldn't	be	reflected	until	the	user	redrew	the
viewports	or	resized	MAX.

Parameters:
int	entireApp=FALSE
TRUE	to	recalculate	the	entire	application,	including	the	viewports.	This	can
be	expensive	(basically	like	an	Interface::ForceCompleteRedraw());
FALSE	will	recalculate	the	top,	botton,	left	and	right	panels	but	won't	redraw
the	viewports.

Prototype:
void	DrawCUIWindows(int	panels=CUI_ALL_PANELS);

Remarks:
This	method	redraws	the	specified	panels.	Typically	developers	don't	need	to
call	this	method.

Parameters:
int	panels=CUI_ALL_PANELS
See	List	of	CUI	Docking	Panel	Locations.

Prototype:
void	SetMacroButtonStates(BOOL	force);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	is	a	very	important	method.	It	redraws	all	the	visible	CUI	buttons	in
MAX,	calling	the	"IsEnabled"	and	
"IsChecked"	handlers	on	the	ActionItems	associated	with	each	button	(if	it	has
one).	If	a	the	"IsEnabled"	handler	returns	FALSE,	the	button	is	grayed	out.	If
the	"IsChecked"	handler	return	TRUE,	the	button	is	draw	pressed	in.
This	method	is	called	internally	by	the	system	on	selection	changes	and
command	mode	changes.	This	handles	the	majority	of	the	cases	where	buttons
need	to	be	redrawn.	However,	if	a	3rd	party	plug-in	changes	some	sort	of

internal	state	that	might	affect	the	return	value	of	an	ActionItem's	IsEnables	or
IsChecked	handler,	then	the	plug-in	should	call	this	method	to	update	the
button	states.	If	this	method	isn't	called,	buttons	may	look	disabled	or	pressed
(or	visa	versa)	when	they	shouldn't	be.	See	Class	ActionItem.

Parameters:
BOOL	force
This	parameter,	if	TRUE,	tells	the	system	to	redraw	the	button	even	if	its	state
hasn't	changed	since	the	last	time	it	was	redrawn.	Normally	this	argument	is
FALSE	so	it	only	redraws	the	buttons	that	changed	state.

Prototype:
void	ResetIconImages();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	for	internal	use	only.	This	is	automatically	called	when	the
system	changes	its	custom	colors.	It	tells	all	the	buttons	on	toolbars	to	toss
their	icon	image	cache.
This	method	only	resets	the	icons	for	toolbars	that	are	part	of	the	CUI	system,
not	for	toolbars	created	by	other	code,	which	is	why	the	ICustToolbar
method	ResetIconImages()	is	needed.	See	the	method
ICustToolbar::ResetIconImages.

Prototype:
int	OverDockRegion(LPPOINT	pt,	DWORD	posType,	int	override
=	FALSE);

Remarks:
Given	a	point	and	a	position	type	this	method	returns	nonzero	if	the	point	is
over	the	specified	docking	region;	otherwise	zero.

Parameters:
LPPOINT	pt
The	input	point	to	check	in	screen	coordinates.
DWORD	posType
See	List	of	CUI	Frame	Position	Types.

int	override	=	FALSE
Passing	TRUE	overrides	the	docking	function	so	that	it	won't	dock.	Passing
FALSE	will	cause	it	to	dock.	Also	note	that	if	the	UI	layout	is	locked,	passing
TRUE	here	will	override	that	lock.
In	the	code	fragment	below	the	state	of	the	Ctrl	key	is	checked	and	used	as	the
docking	override.

Sample	Code:
GetCursorPos(&pt);
overDockRegion	=	GetCUIFrameMgr()->OverDockRegion(&pt,
cf->GetPosType(),	(GetKeyState(VK_CONTROL)	&	0x8000));

Prototype:
HWND	GetItemHwnd(int	id);

Remarks:
Returns	the	window	handle	for	the	item	whose	ID	is	passed.	This	correspond
to	the	method	in	ICustToolbar	but	which	should	no	longer	be	called	for
Tool	Palettes.	It	is	now	also	a	method	of	this	class	because	the	CUI	system
doesn't	know	which	toolbar	a	particular	button	is	on.	For	example,	a	3ds	max
user	in	3.0	can	drag	a	button	from	one	tool	palette	to	another.	No	longer	then
can	one	use	the	previous	GetItemHwnd()	method	since	the	button	has
moved	to	a	different	toolbar.

Parameters:
int	id
The	ID	of	the	control.

Prototype:
ICustButton	*GetICustButton(int	id);

Remarks:
Returns	a	pointer	to	the	custom	button	whose	ID	is	passed	(or	NULL	if	not
found).	In	the	CUIFrameMgr	implementation	of	this	method	it	loops
through	each	toolbar	that	it	has	control	over	and	calls
ICustToolbar::GetICustButton()	on	it.	That	method	returns	NULL	if	it
doesn't	find	the	specified	ID.	The	CUIFrameMgr	keeps	looping	through	the

toolbars	until	it	gets	a	non-NULL	value.	When	it	finds	it	it	returns	the
ICustButton	pointer.

Parameters:
int	id
The	ID	of	the	control.

Prototype:
ICustStatus	*GetICustStatus(int	id);

Remarks:
Returns	a	pointer	to	the	custom	status	control	whose	ID	is	passed.
Returns	a	pointer	to	the	custom	status	control	whose	ID	is	passed	(or	NULL	if
not	found).	In	the	CUIFrameMgr	implementation	of	this	method	it	loops
through	each	toolbar	that	it	has	control	over	and	calls
ICustToolbar::GetICustStatus()	on	it.	That	method	returns	NULL	if	it
doesn't	find	the	specified	ID.	The	CUIFrameMgr	keeps	looping	through	the
toolbars	until	it	gets	a	non-NULL	value.	When	it	finds	it	it	returns	the
ICustStatus	pointer.

Parameters:
int	id
The	ID	of	the	control.

Prototype:
ICUIFrame	*GetICUIFrame(int	i);

Remarks:
Returns	a	pointer	to	the	CUI	Frame	as	specified	by	the	index	passed.

Parameters:
int	i
The	zero	based	index	in	the	list	of	frames	(between	0	and	GetCount()-1).

Prototype:
ICUIFrame	*GetICUIFrame(TCHAR	*name);

Remarks:

Returns	a	pointer	to	the	CUI	Frame	as	specified	by	the	name	passed.
Parameters:
TCHAR	*name
The	name	of	the	frame.

Prototype:
ICUIFrame	*GetICUIFrame(int	panel,	int	rank,	int	subrank);

Remarks:
Returns	a	pointer	to	the	CUI	Frame	as	specified	by	the	panel,	rank	and
subrank	passed.

Parameters:
int	panel
One	of	the	following	values:
int	rank
The	zero	based	rank	index.
int	subrank
The	zero	based	sub-rank	index.

Prototype:
TCHAR	*GetConfigFile();

Remarks:
This	returns	the	path	to	the	CUI	file	in	use.	This	may	be	a	UNC	name.

Prototype:
int	GetButtonHeight(int	sz=0);

Remarks:
Returns	the	bitmap	button	image	height	for	the	specified	size.

Parameters:
int	sz=0
The	size	to	check.	If	0	is	passed	then	the	current	icon	size	is	checked.	One	of
the	following	values:
CUI_SIZE_16

CUI_SIZE_24

Prototype:
int	GetButtonWidth(int	sz=0);

Remarks:
Returns	the	bitmap	button	image	width	for	the	specified	size.

Parameters:
int	sz=0
The	size	to	check.	One	of	the	following	values:
CUI_SIZE_16
CUI_SIZE_24

Prototype:
void	SetMode(int	md);

Remarks:
This	method	is	for	internal	use	only.

Prototype:
int	GetMode();

Remarks:
This	method	is	for	internal	use	only.

Prototype:
void	ExpertMode(int	onOff);

Remarks:
This	method	is	for	internal	use	only.	Calling	this	method	alone	will	not	put	3ds
max	in	Expert	mode.

Prototype:
void	HorizTextButtons(BOOL	b);

Remarks:

This	method	is	for	internal	use	only.

Prototype:
int	GetHorizTextButtons();

Remarks:
This	method	is	for	internal	use	only.

Prototype:
void	FixedWidthTextButtons(BOOL	b);

Remarks:
This	method	is	for	internal	use	only.

Prototype:
int	GetFixedWidthTextButtons();

Remarks:
This	method	is	for	internal	use	only.

Prototype:
void	SetTextButtonWidth(int	w);

Remarks:
This	method	is	for	internal	use	only.

Prototype:
int	GetTextButtonWidth();

Remarks:
This	method	is	for	internal	use	only.

Prototype:
int	GetCount();

Remarks:
Returns	the	number	of	frames	that	exist.

Prototype:
int	SetConfigFile(TCHAR	*cfg);

Remarks:
This	method	is	for	internal	use	only.

Prototype:
int	DeleteSystemWindows(int	toolbarsOnly	=	TRUE);

Remarks:
This	method	is	for	internal	use	only.

Prototype:
int	CreateSystemWindows(int	reset	=	FALSE);

Remarks:
This	method	is	for	internal	use	only.

Prototype:
void	SetImageSize(int	size);

Remarks:
This	method	is	for	internal	use	only.

Prototype:
int	GetImageSize();

Remarks:
This	method	is	for	internal	use	only.

Prototype:
void	SetDefaultData(CUIFrameMsgHandler	*msg,
HIMAGELIST	img16,	HIMAGELIST	img24=NULL);

Remarks:
This	method	is	for	internal	use	only.

Prototype:
int	GetDefaultImageListBaseIndex(SClass_ID	sid,	Class_ID	cid);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	internally	to	create	a	MaxBmpFileIcon	for	a	given	object
type.	These	methods	retrieve	the	file	name	and	base	index	in	the	file	of	the
icon	for	the	given	object	class.	They	are	used	in	the	constructor	for
MaxBmpFileIcon	that	takes	a	class	ID	and	super	class	ID.	This	method	is	for
internal	use	only.

Prototype:
TSTR*	GetDefaultImageListFilePrefix(SClass_ID	sid,	Class_ID
cid);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	internally	to	create	a	MaxBmpFileIcon	for	a	given	object
type.	These	methods	retrieve	the	file	name	and	base	index	in	the	file	of	the
icon	for	the	given	object	class.	They	are	used	in	the	constructor	for
MaxBmpFileIcon	that	takes	a	class	ID	and	super	class	ID.	This	method	is	for
internal	use	only.

Prototype:
int	AddToRawImageList(TCHAR*	pFilePrefix,	int	sz,	HBITMAP
image,	HBITMAP	mask);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	for	internal	use	only.	It	is	used	to	add	images	to	the	icon
manager.	The	icon	manager,	which	is	used	to	implement	the
MaxBmpFileIcon	class,	reads	all	the	.bmp	files	in	the	UI/Icons	directory	at
startup	time.	These	icons	are	specified	by	an	image	file	and	an	alpha	mask.
The	icons	support	two	sizes.	Large,	which	is	24	by	24	and	small,	which	is	15
by	16.	The	icon	manager	stores	the	unprocessed	image	and	alpha	masks	(the
"raw"	images).	Whenever	an	instance	of	MaxBmpFileIcon	needs	to	draw
itself,	it	gets	the	image	list	and	index	of	the	icon	in	the	imagelist	using

GetSmallImageIndex	or	GetLargeImageIndex.

Prototype:
int	LoadBitmapFile(TCHAR	*filename);

Remarks:
This	method	is	for	internal	use	only.

Prototype:
int	LoadBitmapImages();

Remarks:
This	method	is	for	internal	use	only.

Prototype:
int	ReadConfig();

Remarks:
Plug-In	developers	should	not	call	this	method	--	it	is	for	internal	use	only.

Prototype:
int	WriteConfig();

Remarks:
Plug-In	developers	should	not	call	this	method	--	it	is	for	internal	use	only.

Prototype:
void	SetLockLayout(BOOL	lock);

Remarks:
This	method	is	for	internal	use	only.

Prototype:
BOOL	GetLockLayout();

Remarks:
Returns	TRUE	if	the	layout	is	locker;	FALSE	if	unlocked.

Prototype:
void	EnableAllCUIWindows(int	enabled);

Remarks:
This	method	is	for	internal	use	only.

Class	CUIFrameMsgHandler
See	Also:	Class	ICUIFrame,	Class	CUIFrameMgr,	Class	CUIPosData,	Class
ICustomControl.
class	CUIFrameMsgHandler

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	provides	a	way	for	messages	received	by	a	CUIFrame	to	be
processed	in	a	context-specific	fashion.
Since	the	CUI	Frame	is	just	a	window,	it	needs	a	window	proc.	There	is	one	built
into	the	CUI	system,	but	it	may	need	additional	information	that	is	specific	to
how	the	frame	is	being	used.	For	example,	in	3ds	max	the	command	panel	can't
be	resized	horizontally	and	the	default	window	proc	can't	manage	this.
For	such	situations,	the	application	must	install	a	CUIFrameMsgHandler
object.	You	establish	that	this	is	the	handler	for	the	frame	using	the	method
ICUIFrame::InstallMsgHandler(CUIFrameMsgHandler
*msgHandler).
These	message	handlers	have	one	significant	class	method:	ProcessMessage().
If	ProcessMessage()	returns	TRUE,	then	the	CUI	system	assumes	that	the
message	is	completely	handled.	If	it	returns	FALSE,	then	the	standard	CUI
processing	takes	place.	(Note	that	the	message	handler	may	still	return	FALSE,
even	if	it	does	some	processing...).
There	is	a	special	message	(CUI_POSDATA_MSG)	that	is	sent	by	the	CUI
system	to	the	message	handler	to	get	information	on	window	size	constraints,
etc.	An	example	of	processing	this	message	is	shown	below.	In	this	case
editPosData	is	a	static	instance	of	CUIPosData.	That	object	has
GetWidth()	and	GetHeight()	methods	which	return	the	proper	width	and
height	size	for	various	orientations.	See	Class	CUIPosData	for	details.
	case	CUI_POSDATA_MSG:	{
		CUIPosData	**cpd	=	(CUIPosData	**)lParam;
		cpd[0]	=	&editPosData;
		}
		return	TRUE;

Methods:
public:

Prototype:
virtual	int	ProcessMessage(UINT	message,	WPARAM	wParam,
LPARAM	lParam);

Remarks:
This	method	is	called	to	handle	any	processing	not	done	by	the	default	CUI
window	proc.
This	method	should	return	TRUE	if	the	message	is	handled	and	FALSE	if	not.
If	FALSE	is	returned	(or	no	handler	is	defined),	then	the	CUIFrame	simply
passes	WM_COMMAND	messages	on	to	its	parent.	Window	position
messages	are	passed	from	the	CUIFrame	to	the	HWND	of	the	'content'	(either
a	toolbar	or	menu).	Other	messages	are	passed	on	to	the	default	window	proc.
Note:	Developers	should	not	return	TRUE	for	the	entire	ProcessMessage
routine,	since	if	this	is	done,	the	right-click	menu	functionality	will	not	work
(e.g.	docking,	floating,	move-to-shelf,	customize,	etc.).
Also	Note:	Developers	should	not	use	IDs	that	may	conflict	with	the	ones	used
by	the	default	processing	provide	by	MAX.	The	IDs	which	should	be
avoided	are	in	the	40000,	47000,	and	61000	range.	For	instance	the
following	IDs	are	all	invalid	since	they	are	in	those	ranges:	40005,	47900,
61102.	The	reason	this	is	a	problem	is	that	if	you	return	FALSE	after
processing	a	particular	ID,	then	3ds	max	will	go	ahead	and	process	that	ID
also.	And	if	the	ID	matches	one	already	in	MAX,	an	unintended	function	may
get	called.

Parameters:
UINT	message
Specifies	the	message.
WPARAM	wParam
Specifies	additional	message	information.	The	contents	of	this	parameter
depend	on	the	value	of	the	message	parameter.
LPARAM	lParam
Specifies	additional	message	information.	The	contents	of	this	parameter
depend	on	the	value	of	the	message	parameter.

Default	Implementation:

{	return	FALSE;	}

Class	CUIPosData
See	Also:	Class	CUIFrameMsgHandler,	Class	ICustomControl.
class	CUIPosData

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	object	that	provides	the	position	data	when	the
CUIFrameMsgHandler::ProcessMessage()	method	recieves	a
CUI_POSDATA_MSG	message.	The	developer	creates	an	instance	of	this
class	and	implements	the	GetWidth()	and	GetHeight()	methods	which	return
size	information	based	on	the	size	type	and	orientation	passed.

Methods:
public:

Prototype:
virtual	~CUIPosData();

Remarks:
Destructor.

Default	Implementation:
{}

Prototype:
virtual	int	GetWidth(int	sizeType,	int	orient);

Remarks:
Returns	the	width	for	the	specified	size	type	and	orientation.	A	return	value	of
-1	indicates	that	the	frame	doesn't	have	a	specific	needed	value	(it	doesn't
care).

Parameters:
int	sizeType
The	size	type.	See	List	of	CUI	Frame	Size	Types.
int	orient
The	orientation.	See	List	of	CUI	Frame	Orientations.

Default	Implementation:
{	return	50;	}

Prototype:
virtual	int	GetHeight(int	sizeType,	int	orient);

Remarks:
Returns	the	height	for	the	specified	size	type	and	orientation.

Parameters:
int	sizeType
The	size	type.	See	List	of	CUI	Frame	Size	Types.
int	orient
The	orientation.	See	List	of	CUI	Frame	Orientations.

Default	Implementation:
{	return	50;	}

Class	ToolMacroItem
See	Also:	Class	ToolItem,	Class	MacroButtonData,	Class	ICustButton,	Custom
Controls.
class	ToolMacroItem	:	public	ToolItem

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	allows	a	macro	item	control	to	be	added	to	the	toolbar.
	

Data	Members:
public:
MacroButtonData	md;
Points	to	the	macro	button	data	for	this	tool	item.

Methods:
public:

Prototype:
ToolMacroItem(int	wd,	int	ht,	MacroButtonData	*data,	int	or	=
CTB_HORIZ|CTB_VERT|CTB_FLOAT);

Remarks:
Constructor.

Parameters:
int	wd
The	width	of	the	item.
int	ht
The	height	of	the	item.
MacroButtonData	*data
Points	to	the	macro	button	data.
int	or	=	CTB_HORIZ|CTB_VERT|CTB_FLOAT
Specifies	the	orientation.	One	or	more	of	the	following	values:
CTB_HORIZ
CTB_VERT

CTB_FLOAT

Class	MacroDir
See	Also:	Class	MacroEntry,	Class	MacroButtonData.
class	MacroDir	:	public	InterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	provides	access	to	Macro	scripts.	Macro	scripts	(or	macros)	are	scripts
that	live	in	buttons	and	menus	in	the	customizable	UI.	Methods	of	this	class	are
availalble	to	access	macros	using	IDs	or	category	and	name	strings,	methods	to
edit	macro	scripts,	methods	to	execute	macros,	and	methods	for	directory
scanning	and	loading.
The	directory	instance	(access	via	the	global	function	GetMacroScriptDir())
is	used	by	the	CUI	to	provide	a	list	of	available	macros	in	the	toolbar/menu
editor.	The	API	also	provides	a	way	for	the	CUI	to	open	a	macro	editor	to	allow
on-the-fly	creation	of	macro	scripts.
The	macro	script	manager	keeps	a	directory	of	all	known	macros	and	provides
an	API	for	running	and	editing	macros	and	for	accessing	and	updating	the
directory.
Macros	are	normally	entered	into	the	directory	by	the	MAXScript	compiler	as	a
side-effect	of	compiling	a	macro	definition.	Anyone	using	MAXScript	can	at
any	time	eval	a	macro	definition	and	thereby	add	CUI	macro	scripts.
Consequently,	macros	can	be	stored	in	any	script	file	and	be	loaded	just	by
executing	the	file.	The	macro	definition	syntax	permits	any	number	of	macros
per	file.
Most	macros	will	be	stored	in	files	in	a	special	CUI	macro	or	config	directory	so
that	a	user	can	take	all	his	custom	UI	stuff	with	him	by	copying	directories.	(This
directory	supports	recursive	scanning	of	sub-dirs,	so	users	can	organize	their
macros).	On-the-fly	macro	creation	in	the	CUI	editor	or	by	text	drag-and-drop
onto	the	shelf	or	by	evaling	a	definition	in	the	listener	will	generate	a	file	in	this
directory	to	provide	permanent	storage.
Note:	typedef	short	MacroID;
Note:	In	order	to	use	these	methods	you	need	to	#include
"IMACROSCRIPT.H"	and	link	to	"MAXSCRPT.LIB".

The	following	global	functions	are	not	part	of	this	class	but	are
available	for	use:
Function:
MacroDir&	GetMacroScriptDir();

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Returns	a	reference	to	the	macro	script	directory.

Function:
void	InitMacroScriptDir();

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
This	is	an	internal	only	function	used	by	3ds	max	during	startup	to	get	the
macroScript	system	initialized.

Methods:
public:

Prototype:
virtual	MacroEntry*	GetMacro(MacroID	mid)=0;

Remarks:
Returns	a	pointer	to	the	MacroEntry	for	the	macro	script	whose	ID	is	passed.

Parameters:
MacroID	mid
The	ID	of	the	macro.

Prototype:
virtual	MacroEntry*	FindMacro(TCHAR*	category,	TCHAR*
name)=0;

Remarks:
Returns	a	pointer	to	the	MacroEntry	corresponding	to	the	given	category	and
name	strings	passed	(or	NULL	if	not	found).

Parameters:

TCHAR*	category
The	category	name.
TCHAR*	name
The	macro	script	name.

Prototype:
virtual	BOOL	ValidID(MacroID	mid)=0;

Remarks:
Returns	TRUE	if	the	macro	ID	is	valid	(or	unused);	otherwise	FALSE.

Parameters:
MacroID	mid
The	ID	to	check.

Prototype:
virtual	int	Count()=0;

Remarks:
Returns	the	number	of	macro	entries	in	this	macro	directory.

Prototype:
virtual	MacroEntry*	GetMacro(int	index)=0;

Remarks:
Returns	a	pointer	to	the	macro	entry	whose	index	in	the	directory	is	passed.

Parameters:
int	index
The	zero	based	index	of	the	entry.	This	is	a	value	between	0	and	Count()-1.

Prototype:
virtual	MacroEntry*	AddMacro(TCHAR*	category,	TCHAR*
name,	TCHAR*	tooltip,	TCHAR*	buttonText,	TCHAR*
sourceFile,	int	sourceOffset)=0;

Remarks:
Adds	the	macro	whose	parameters	are	passed	and	returns	a	pointer	to	the	new

macro	entry.	This	form	allows	you	to	define	a	macro	that	is	already	in	a	file,
by	giving	a	source	file	name	and	seek	offset	into	that	file.	This	is	typically
used	by	the	MAXScript	compiler	and	.mcr	file	scanner	to	register	macro
definitions	they	come	across.

Parameters:
TCHAR*	category
The	category	for	the	macro.
TCHAR*	name
The	name	for	the	macro.
TCHAR*	tooltip
The	tooltip	text.
TCHAR*	buttonText
The	button	text.
TCHAR*	sourceFile
The	source	file	name.
int	sourceOffset
The	line	number	of	the	first	line	of	the	script	in	the	source	file.

Prototype:
virtual	MacroEntry*	AddMacro(TCHAR*	category,	TCHAR*
name,	TCHAR*	tooltip,	TCHAR*	buttonText,	TCHAR*
sourceText)=0;

Remarks:
Add	or	replaces	a	macro	using	given	source	text	as	the	body	of	the	macro.	In
this	overload,	name	can	be	NULL	in	which	case	a	unique	name	is	generated.
This	form	takes	the	body	of	the	actual	macro	script	as	the	sourceText
argument	and	places	it	in	a	newly-created	file	in	the	UI	directory	and	registers
that	file	and	a	zero	offset	as	the	macro	definition.	All	macroScripts	need	to	be
in	files	somewhere	so	that	they	are	persistent	if	referenced	in	a	CUI	toolbar
that	the	user	saves.	This	form	is	used,	for	example,	by	the	toolbar	manager
when	you	drag	a	piece	of	selected	text	onto	a	toolbar	to	cause	a	script	button
to	be	created.

Parameters:

TCHAR*	category
The	category	for	the	macro.
TCHAR*	name
The	name	for	the	macro	or	NULL	to	generate	a	unique	name.
TCHAR*	tooltip
The	tooltip	text.
TCHAR*	buttonText
The	button	text.
TCHAR*	sourceText
The	source	text.

Prototype:
virtual	BOOL	SetMacro(MacroID	mid,	TCHAR*	tooltip,
TCHAR*	btnText,	TCHAR*	sourceFile,	int	sourceOffset)=0;

Remarks:
Sets	the	parameters	for	the	macro	entry	whose	ID	is	passed.

Parameters:
MacroID	mid
The	macro	ID.
TCHAR*	tooltip
The	tooltip	text.
TCHAR*	btnText
The	button	text.
TCHAR*	sourceFile
The	source	file	name.
int	sourceOffset
The	sorce	offset.

Return	Value:
TRUE	if	set;	FALSE	if	the	ID	was	not	found.

Prototype:
virtual	TCHAR*	MakeNameValid(TCHAR*	s)=0;

Remarks:
This	method	modifies	the	string	in	place	to	be	a	valid	macro	name	(no
punctuations	other	than	spaces).

Parameters:
TCHAR*	s
The	name	string.

Prototype:
virtual	TCHAR*	MakeCategoryValid(TCHAR*	s)=0;

Remarks:
This	method	modifies	the	string	in	place	to	be	a	valid	category	name	(no
punctuations	other	than	spaces).

Parameters:
TCHAR*	s
The	category	string.

Prototype:
virtual	BOOL	EditMacro(MacroID	mid)=0;

Remarks:
This	methods	brings	up	the	editor	for	editing	the	specified	macro	script	text.

Parameters:
MacroID	mid
The	ID	of	the	macro	script	to	edit.

Prototype:
virtual	Value*	Execute(MacroID	mid)=0;

Remarks:
Executes	the	macro	script	whose	ID	is	passed.

Parameters:
MacroID	mid
The	ID	of	the	macro	to	execute.

Return	Value:

A	pointer	to	the	result	of	executing	the	macro.	If	a	developer	does't	care	about
the	result	of	executing	a	macroScript,	which	is	usually	the	case,	then	the
Value*	returned	from	this	method	can	just	be	ignored.	If	a	developer	does
care,	then	the	necessary	information	about	working	with	Value*'s	is	in	the
MAXScript	SDK	documentation.

Prototype:
virtual	void	LoadMacroScripts(TCHAR*	path_name	=	NULL,
BOOL	recurse	=	TRUE)=0;

Remarks:
This	method	loads	all	the	macro	scripts	found	in	the	specified	path	and
optionally	its	sub-directories.	You	can	point	this	method	at	any	directory	and	it
will	scan	it	for	.mcr	files	and	scan	those	for	macroScript	definitions.	3ds	max
uses	this	during	startup	to	scan	the	UI	directory	(recursively)	for	.mcr	files.

Parameters:
TCHAR*	path_name	=	NULL
The	path	to	check.	If	NULL	the	default	path	is	used.
BOOL	recurse	=	TRUE
If	TRUE	nested	sub-directories	are	scanned	and	loaded	as	well.

Prototype:
virtual	void	SetMacroScriptPath(TCHAR*	path_name)=0;

Remarks:
Sets	the	default	path	for	storing	/	searching	macro	script	files.

Parameters:
TCHAR*	path_name
The	path	to	set.

Prototype:
virtual	TCHAR*	GetMacroScriptPath()=0;

Remarks:
Returns	the	default	path	for	storing	/	searching	macro	script	files.

Class	MacroEntry
See	Also:	Class	MacroDir,	Class	MacroButtonData.
class	MacroEntry	:	public	BaseInterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	provides	access	to	a	single	macro	entry.	There	are	methods	provided
to	access	the	macro	ID,	name,	category,	file	name,	tooltip,	UI	button	text,	and
the	UI	button	icon.	MacroEntries	are	returned	from	methods	of	class
MacroDir.
Macro	scripts	(or	macros)	are	scripts	that	live	in	buttons	and	menus	in	the	new
customizable	UI.	The	macro	script	manager	keeps	a	directory	of	all	known
macros	and	provides	an	API	for	running	and	editing	macros	and	for	accessing
and	updating	the	directory.
All	macro	scripts	have	a	name	and	a	category.	The	category	is	used	to	organize
the	macros	into	groupings	and	is	given	to	the	macro	script	at	definition	time.	If
you	look	at	the	macro	scripts	list	in	the	UI	Customize	dialog,	you	see	a	Category
dropdown	with	things	like	'Cameras',	'DragandDrop',	'LightTools',	etc.,	which	is
derived	from	the	all	categories	present	in	the	currently-defined	macroscripts.
Note	that	the	normal	way	to	define	a	macroScript	is	through	MAXScript,	the
.mcr	files	in	the	UI\MacroScripts	directory	contain	examples,	and	they	all	have
category	definitions.
Note:	In	order	to	use	these	methods	you	need	to	#include
"IMACROSCRIPT.H"	and	link	to	"MAXSCRPT.LIB".

Methods:
public:

Prototype:
virtual	MacroID	GetID()=0;

Remarks:
Returns	the	ID	for	this	macro	script.	Note:	typedef	short	MacroID;

Prototype:
virtual	TSTR&	GetName()=0;

Remarks:
Returns	the	name	for	this	macro	script.

Prototype:
virtual	TSTR&	GetCategory()=0;

Remarks:
Returns	the	category	for	this	macro	script.

Prototype:
virtual	TSTR&	GetFileName()=0;

Remarks:
Returns	the	file	name	of	the	script	source	text	for	this	script.

Prototype:
virtual	void	SetFileName(TCHAR*	fn)=0;

Remarks:
Sets	the	file	name	for	the	script	source.

Parameters:
TCHAR*	fn
The	file	name	to	set.

Prototype:
virtual	void	SetOffset(int	o)=0;

Remarks:
Sets	the	offset	for	this	macro	script	entry.	There	can	be	any	number	of
macroScripts	in	a	single	source	file	and	the	offset	keeps	track	of	the	beginning
of	its	definition	in	the	file.

Parameters:
int	o
The	offset	to	set.

Prototype:

virtual	long	GetOffset()=0;
Remarks:
Returns	the	offset	for	this	macro	script	entry.	See	SetOffset()	above.

Prototype:
virtual	Value*	GetCode()=0;

Remarks:
When	the	macroScript	is	defined,	only	its	source	file	and	source	offset	are
registered.	When	the	user	first	runs	it,	the	MAXScript	compiler	is	used	to
compile	the	definition	into	executable	code,	which	is	then	cached	and	used	for
any	later	executions	and	is	what	this	method	returns.	If	this	returns	NULL,	the
macro	hasn't	been	compiled	or	run	yet.	Another	way	to	run	the	macro	is	via
the	MacroEntry::Execute()	and	this	causes	the	code	to	be	cached	as	a	side
effect	also.	Normally,	developers	only	ever	need	to	use	the	Execute()
method,	but	if	they	are	using	the	MAXScript	SDK,	they	can	grab	the	code
using	GetCode()	and	work	with	it	directly.

Prototype:
virtual	TSTR&	GetToolTip()=0;

Remarks:
Returns	the	tooltip	text	for	the	UI	button.

Prototype:
virtual	void	SetToolTip(TCHAR*	tt)=0;

Remarks:
Sets	the	tooltip	text	for	the	UI	button.

Parameters:
TCHAR*	tt
The	tooltip	text	to	set.

Prototype:
virtual	TSTR&	GetButtonText()=0;

Remarks:
Returns	the	UI	button	text	(for	label	buttons).

Prototype:
virtual	void	SetButtonText(TCHAR*	bt)=0;

Remarks:
Sets	the	UI	button	text	(for	label	buttons).

Parameters:
TCHAR*	bt
The	button	text.

Prototype:
virtual	void	SetButtonIcon(TCHAR*	icnf,	int	indx)=0;

Remarks:
Sets	the	UI	button	icon	via	a	base	icon	file	name	and	index	into	the	specified
BMP	bitmap.

Parameters:
TCHAR*	icnf
The	file	name	of	the	BMP	file.	See	the	remarks	in	Class	CUIFrameMgr	for
details	on	the	naming	scheme.
int	indx
The	zero	based	index	of	the	icon	in	the	BMP	file.	The	first	icon	is	0,	the
second	is	1,	etc.

Prototype:
virtual	TSTR&	GetButtonIconFile()=0;

Remarks:
Returns	the	file	name	of	the	icon	file.

Prototype:
virtual	int	GetButtonIconIndex()=0;

Remarks:

Returns	the	zero	based	index	of	the	icon	in	the	icon	file.

Prototype:
virtual	void	SetFlags(short	mask)=0;

Remarks:
Sets	the	specified	flags.

Parameters:
short	mask
The	flags	to	set.	One	or	more	of	the	following	values:
ME_DROPPED_SCRIPT
Macro	made	from	some	drag-and-dropped	text.
ME_SILENT_ERRORS
Macro	won't	report	any	runtime	errors.

Prototype:
virtual	void	ClearFlags(short	mask)=0;

Remarks:
Clears	the	specifed	flags.

Parameters:
short	mask
The	flags	to	clear.	One	or	more	of	the	following	values:
ME_DROPPED_SCRIPT
Macro	made	from	some	drag-and-dropped	text.
ME_SILENT_ERRORS
Macro	won't	report	any	runtime	errors.

Prototype:
virtual	short	GetFlags(short	mask)=0;

Remarks:
Returns	the	state	of	the	specified	flags.

Parameters:
short	mask

The	flags	to	get.	One	or	more	of	the	following	values:
ME_DROPPED_SCRIPT
Macro	made	from	some	drag-and-dropped	text.
ME_SILENT_ERRORS
Macro	won't	report	any	runtime	errors.

Prototype:
virtual	Value*	Execute()=0;

Remarks:
Executes	this	macro	entry.

Return	Value:
A	pointer	to	the	result	of	executing	the	macro.	If	a	developer	does't	care	about
the	result	of	executing	a	macro	script,	which	is	usually	the	case,	then	the
Value*	returned	from	this	method	can	just	be	ignored.	If	a	developer	does
care,	then	the	necessary	information	about	working	with	Value*'s	is	in	the
MAXScript	SDK	documentation.

Class	ISliderControl
See	Also:	Class	ICustomControl,	Class	ISpinnerControl.
class	ISliderControl	:	public	ICustomControl

Description:
This	class	is	available	in	release	3.0	and	later	only.
Important	Note:	The	slider	control	ensures	that	it	only	displays,	and	the
user	is	only	allowed	to	input,	values	within	the	specified	ranges.	However
the	slider	is	just	a	front	end	to	a	controller	which	actually	controls	the	value.
The	user	can	thus	circumvent	the	slider	constraints	by	editing	the	controller
directly	(via	function	curves	in	track	view,	key	info,	etc.).	Therefore,	when	a
plug-in	gets	a	value	from	a	controller	(or	a	parameter	block,	which	may	use
a	controller)	it	is	its	responsibility	to	clamp	the	value	to	a	valid	range.

	

	(Slider	Control)

	('Bracketed'	Slider	Control)
The	custom	slider	control	is	functionality	similar	to	the	custom	spinner	control.
It	supports	the	following	features:
-	can	link	to	custom	edit	box.	
-	right	click	reset	of	value.	
if	not	dragging,	resets	to	default	reset	value.	
if	dragging,	resets	to	previous	value.	
-	shift+right	click	sets	an	animation	key.	
-	red	highlight	for	animated	key	positions.	
It	also	supports	the	following	functionality:
-	dynamically	set	tick	marks	segment	the	slider	track.	
-	default	reset	value	and	last	value	are	visually	indicated.	
-	left	click	in	slider	track	moves	button	to	that	position.	
-	ctrl	key	snaps	to	nearest	tick	mark.	
Also	Note:	Developers	should	use	the	functions	Get/SetSpinnerPrecision()
for	controlling	precision	of	edit	boxes	linked	to	slider	controls.	Those	functions
affect	both	spinners	and	sliders.
To	initialize	the	pointer	to	the	control	call:

Function:
ISliderControl	*GetISlider(HWND	hCtrl);

To	release	the	control	call:

Function:
void	ReleaseISlider(ISliderControl	*isc);

The	value	to	use	in	the	Class	field	of	the	Custom	Control	Properties	dialog	is:
SliderControl
The	following	messages	may	be	sent	by	the	slider	control:
This	message	is	sent	when	the	value	of	a	slider	changes.
CC_SLIDER_CHANGE
lParam	contains	a	pointer	to	the	slider	control.	You	can	cast	this	pointer
to	a	ISliderControl	type	and	then	call	methods	of	the	control.
LOWORD(wParam)	contains	the	ID	of	the	slider.	This	is	the	ID
established	in	the	ID	field	of	the	Custom	Control	Properties	dialog.
HIWORD(wParam)	is	TRUE	if	the	user	is	dragging	the	slider
interactively.

This	message	is	sent	when	the	user	presses	down	on	the	slider.
CC_SLIDER_BUTTONDOWN
lParam	contains	a	pointer	to	the	slider	control.	You	can	cast	this	pointer
to	a	ISliderControl	type	and	then	call	methods	of	the	control.
LOWORD(wParam)	contains	the	ID	of	the	slider.	This	is	the	ID
established	in	the	ID	field	of	the	Custom	Control	Properties	dialog.

This	message	is	sent	when	the	user	releases	a	slider.
CC_SLIDER_BUTTONUP
lParam	contains	a	pointer	to	the	slider	control.	You	can	cast	this	pointer
to	a	ISliderControl	type	and	then	call	methods	of	the	control.
LOWORD(wParam)	contains	the	ID	of	the	slider.	This	is	the	ID
established	in	the	ID	field	of	the	Custom	Control	Properties	dialog.
HIWORD(wParam)	is	FALSE	if	the	user	canceled	and	TRUE
otherwise.

Methods:
public:

Prototype:
virtual	float	GetFVal()=0;

Remarks:
Returns	the	floating	point	value	of	the	control.

Prototype:
virtual	int	GetIVal()=0;

Remarks:
Returns	the	integer	value	of	the	control.

Prototype:
virtual	void	SetNumSegs(int	num)=0;

Remarks:
Sets	the	number	of	segments	(tick	marks)	used	by	the	control.

Parameters:
int	num
The	number	to	set.

Prototype:
virtual	void	SetValue(float	v,	int	notify)=0;

Remarks:
This	method	sets	the	value	of	the	control	to	the	specific	floating	point	number
passed.	You	may	pass	FALSE	as	the	notify	parameter	so	the	control	wont	send
a	message	when	you	set	the	value.

Parameters:
float	v
The	new	value	for	the	control.
int	notify
If	TRUE	a	message	is	sent	indicating	the	control	has	changed;	if	FALSE	no
message	is	sent.

Prototype:

virtual	void	SetValue(int	v,	int	notify)=0;
Remarks:
This	method	sets	the	value	of	the	control	to	the	specific	integer	number
passed.	You	may	pass	FALSE	as	the	notify	parameter	so	the	control	wont	send
a	message	when	you	set	the	value.

Parameters:
int	v
The	new	value	for	the	control.
int	notify
If	TRUE	a	message	is	sent	indicating	the	control	has	changed;	if	FALSE	no
message	is	sent.

Prototype:
virtual	void	SetLimits(int	min,	int	max,	int	limitCurValue	=
TRUE)=0;

Remarks:
This	method	establishes	the	allowable	limits	for	integer	values	entered.

Parameters:
int	min
The	minimum	allowable	value.
int	max
The	maximum	allowable	value.
int	limitCurValue	=	TRUE
You	may	pass	FALSE	to	the	this	parameter	so	the	control	will	not	send	a
spinner	changed	message	when	the	limits	are	set.

Prototype:
virtual	void	SetLimits(float	min,	float	max,	int	limitCurValue	=
TRUE)=0;

Remarks:
This	method	establishes	the	allowable	limits	for	floating	point	values	entered.

Parameters:

float	min
The	minimum	allowable	value.
float	max
The	maximum	allowable	value.
int	limitCurValue	=	TRUE
You	may	pass	FALSE	to	the	this	parameter	so	the	control	will	not	send	a
spinner	changed	message	when	the	limits	are	set.

Prototype:
virtual	void	LinkToEdit(HWND	hEdit,	EditSpinnerType	type)=0;

Remarks:
When	an	edit	control	is	used	in	conjunction	with	the	slider	control,	this
method	is	used	to	link	the	two,	so	values	entered	using	the	slider	are	displayed
in	the	edit	control.	This	method	is	also	used	to	set	the	type	of	value	which	may
be	entered.

Parameters:
HWND	hEdit
The	handle	of	the	edit	control	to	link.
EditSpinnerType	type
The	type	of	value	that	may	be	entered.	One	of	the	following	values:
EDITTYPE_INT
Any	integer	value.
EDITTYPE_FLOAT
Any	floating	point	value.
EDITTYPE_UNIVERSE
This	is	a	value	in	world	space	units.	It	respects	the	system's	unit	settings
(for	example	feet	and	inches).
EDITTYPE_POS_INT
Any	integer	>=	0
EDITTYPE_POS_FLOAT
Any	floating	point	value	>=	0.0
EDITTYPE_POS_UNIVERSE
This	is	a	positive	value	in	world	space	units.	It	respects	the	system's	unit

settings	(for	example	feet	and	inches)	.
EDITTYPE_TIME
This	is	a	time	value.	It	respects	the	system	time	settings	(SMPTE	for
example).

Prototype:
virtual	void	SetIndeterminate(BOOL	i=TRUE)=0;

Remarks:
This	method	is	used	to	show	commonality.	When	several	different	values	are
being	reflected	by	the	slider,	the	value	is	indeterminate.	When	TRUE,	the
value	field	of	the	slider	appears	empty.

Parameters:
BOOL	i=TRUE
Pass	TRUE	to	this	method	to	set	the	value	to	indeterminate.

Prototype:
virtual	BOOL	IsIndeterminate()=0;

Remarks:
This	method	returns	TRUE	if	the	current	state	of	the	slider	is	indeterminate;
otherwise	FALSE.	See	SetIndeterminate()	above.

Prototype:
virtual	void	SetResetValue(float	v)=0;

Remarks:
A	user	may	right	click	on	a	slider	to	reset	it	to	its	'reset'	value	(after	it	has	been
changed).	This	method	specifies	the	value	used	when	the	reset	occurs.

Parameters:
float	v
The	reset	value.

Prototype:
virtual	void	SetResetValue(int	v)=0;

Remarks:
A	user	may	right	click	on	a	slider	to	reset	it	to	its	'reset'	value	(after	it	has	been
changed).	This	method	specifies	the	value	used	when	the	reset	occurs.

Parameters:
int	v
The	reset	value.

Prototype:
virtual	void	SetKeyBrackets(BOOL	onOff)=0;

Remarks:
Sets	the	display	of	the	'brackets'	surrounding	the	slider	control.	This	is	used	to
indicate	if	a	key	exists	for	the	parameter	controlled	by	the	slider	at	the	current
time.	These	brackets	turned	on	and	off	automatically	if	you	are	using	a
parameter	map	and	parameter	block	to	handle	the	control.	If	not	you'll	need	to
use	this	method.	For	a	slider,	the	'brackets'	appear	as	a	colored	dot	in	the
position	marker.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

The	following	functions	are	not	members	of	this	class	but	are
available	for	use:
Function:
ISliderControl	*SetupIntSlider(HWND	hwnd,	int	idSlider,	int
idEdit,	int	min,	int	max,	int	val,	int	numSegs);

Remarks:
This	global	function	is	used	for	setting	up	integer	sliders.	It	performs	the
equivalent	of	the	GetISlider(),	SetLimits(),	SetValue(),	and
LinkToEdit().

Parameters:
HWND	hwnd
The	handle	of	the	dialog	box	in	which	the	slider	appears.

int	idSlider
The	ID	of	the	slider.
int	idEdit
The	ID	of	the	edit	control.
int	min
The	minimum	allowable	value.
int	max
The	maximum	allowable	value.
int	val
The	initial	value	for	the	spinner.
int	numSegs
The	number	of	segments	to	use	for	the	control.

Return	Value:
A	pointer	to	the	slider	control.

Function:
ISliderControl	*SetupFloatSlider(HWND	hwnd,	int	idSlider,	int
idEdit,	float	min,	float	max,	float	val,	int	numSegs);

Remarks:
This	global	function	is	used	for	setting	up	floating	point	sliders.	It	performs
the	equivalent	of	the	GetISlider(),	SetLimits(),	SetValue(),	and
LinkToEdit().

Parameters:
HWND	hwnd
The	handle	of	the	dialog	box	in	which	the	slider	appears.
int	idSlider
The	ID	of	the	slider.
int	idEdit
The	ID	of	the	edit	control.
float	min
The	minimum	allowable	value.
float	max
The	maximum	allowable	value.

float	val
The	initial	value	for	the	spinner.
int	numSegs
The	number	of	segments	to	use	for	the	control.

Return	Value:
A	pointer	to	the	slider	control.

Function:
ISliderControl	*SetupUniverseSlider(HWND	hwnd,	int	idSlider,
int	idEdit,	float	min,	float	max,	float	val,	int	numSegs);

Remarks:
This	global	function	is	used	for	setting	up	'universal'	value	sliders
(EDITTYPE_UNIVERSE	--	these	display	world	space	units).	It	performs
the	equivalent	of	the	GetISlider(),	SetLimits(),	SetValue(),	and
LinkToEdit().

Parameters:
HWND	hwnd
The	handle	of	the	dialog	box	in	which	the	slider	appears.
int	idSlider
The	ID	of	the	slider.
int	idEdit
The	ID	of	the	edit	control.
float	min
The	minimum	allowable	value.
float	max
The	maximum	allowable	value.
float	val
The	initial	value	for	the	spinner.
int	numSegs
The	number	of	segments	to	use	for	the	control.

Return	Value:
A	pointer	to	the	slider	control.

Function:
void	SetSliderDragNotify(BOOL	onOff);

Remarks:
This	function	controls	whether	or	not	sliders	send
CC_SLIDER_CHANGE	notifications	while	the	user	adjusts	them	with	the
mouse.

Parameters:
BOOL	onOff
TRUE	to	turn	on;	FALSE	to	turn	off.

Function:
BOOL	GetSliderDragNotify();

Remarks:
Returns	TRUE	if	CC_SLIDER_CHANGE	notifications	are	sent	by	sliders
while	the	user	adjusts	them	with	the	mouse;	FALSE	if	they	are	not	sent.

Class	ICurveCtl
See	Also:	Class	ReferenceTarget,	Class	ICurve,	Class	CurvePoint,	Class
ResourceMakerCallback,	Class	BitArray,	Class	Interval.

class	ICurveCtl	:	public	ReferenceTarget

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	is	an	interface	to	the	curve	custom	control.	An	example	of	this	control
in	the	3ds	max	user	interface	can	be	seen	in	the	Color	Map	section	of	the	Output
rollup	of	a	2D	Texture	map.	Sample	code	using	these	APIs	is	available	in
\MAXSDK\SAMPLES\UTILITIES\CCUTIL\CCUTIL.CPP.

Methods:
public:

Prototype:
virtual	BOOL	IsActive()=0;

Remarks:
This	method	indicates	if	the	dialog	box	for	the	control	is	up	or	not.	Returns
TRUE	if	active;	otherwise	FALSE.

Prototype:
virtual	void	SetActive(BOOL	sw)=0;

Remarks:
This	method	is	used	to	bring	up	or	close	the	dialog	box.

Parameters:
BOOL	sw
TRUE	to	open;	FALSE	to	close.

Prototype:
virtual	HWND	GetHWND()=0;

Remarks:
Returns	the	window	handle	of	the	control.

Prototype:
virtual	void	SetNumCurves(int	iNum,	BOOL	doUndo=FALSE)=0;

Remarks:
Sets	the	number	of	curves	used	in	this	control.

Parameters:
int	iNum
The	number	of	curves	to	use.
BOOL	doUndo=FALSE
This	parameter	is	available	in	release	4.0	and	later	only.
This	will	cause	the	function	to	register	an	Restore	Object	if	set	to	TRUE.

Prototype:
virtual	int	GetNumCurves()=0;

Remarks:
Returns	the	numbers	of	curves	used	by	the	control.

Prototype:
virtual	void	SetXRange(float	min,	float	max,	BOOL	rescaleKeys	=
TRUE)=0;

Remarks:	
Sets	the	absolute	position	of	the	first	and	last	CurvePoints.

Parameters:
float	min
The	minimum	value.
float	max
The	maximum	value.
BOOL	rescaleKeys	=	TRUE
This	parameter	is	available	in	release	4.0	and	later	only.
This	parameter	controls	whether	changing	the	X	range	will	rescale	the	keys
and	key	tangents	or	not.	When	this	is	TRUE,	the	default,	the	keys	and	tangents
get	resinced	to	the	total	X	range.	Setting	this	to	FALSE	allow	developers	to
have	move	control	over	the	exact	placement	of	keys	and	tangents	when	the	X

range	changes.	This	also	allow	developers	to	set	ranges	from	within	the	points
changed	message	handler	without	getting	into	a	loop.

Prototype:
virtual	void	SetYRange(float	min,	float	max)=0;

Remarks:
This	determines	the	absolute	upper	and	lower	Y-constraint.	This	method	only
has	an	effect	if	the	CC_CONSTRAIN_Y	flag	is	set.

Parameters:
float	min
The	minimum	value.
float	max
The	maximum	value.

Prototype:
virtual	Point2	GetXRange()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	X	Range.

Prototype:
virtual	Point2	GetYRange()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	Y	Range.

Prototype:
virtual	void	RegisterResourceMaker(ReferenceMaker	*rmak)=0;

Remarks:
This	methods	registers	a	callback	object	used	to	handle	certain	aspects	of	the
control.	The	callback	object	will	be	used	for	updating	of	the	display	button
image	list	and	tool	tip	text	for	the	curve	control.	It	also	gets	called	when	the

user	executes	a	Reset	or	creates	a	new	control.
This	registers	a	reference	maker	which	implements	the	method
Animatable::GetInterface()	for	the	id	I_RESMAKER_INTERFACE
by	returning	an	object	derived	from	class	ResourceMakerCallback.

Parameters:
ReferenceMaker	*rmak
Points	to	the	reference	maker	which	returns	the	callback	object.

Prototype:
virtual	BOOL	GetZoomValues(float	*h,	float	*v)=0;

Remarks:
Returns	the	current	zoom	values.

Parameters:
float	*h
Points	to	storage	for	the	horizontal	zoom	value.
float	*v
Points	to	storage	for	the	vertical	zoom	value.

Return	Value:
TRUE	if	valid	values	were	returned;	otherwise	FALSE.

Prototype:
virtual	void	SetZoomValues(float	h,	float	v)=0;

Remarks:
Sets	the	zoom	values.	To	determine	the	values	to	use	developers	should	use
the	CCUtil	plug-in,	create	a	pop-up	window	as	big	as	is	appropriate	for	the
final	control,	adjust	the	zoom	and	scroll	values	interactively,	and	then	simply
read	out	the	values	from	the	CCUtil	user	interface	(GetZoom	and	GetScroll).

Parameters:
float	h
The	horizontal	value	to	set.
float	v
The	vertical	value	to	set.

Prototype:
virtual	BOOL	GetScrollValues(int	*h,	int	*v)=0;

Remarks:
Returns	the	horizontal	and	vertical	scroll	values.

Parameters:
int	*h
Points	to	storage	for	the	horizontal	scroll	value.
int	*v
Points	to	storage	for	the	vertical	scroll	value.

Return	Value:
TRUE	if	valid	values	were	returned;	otherwise	FALSE.

Prototype:
virtual	void	SetScrollValues(int	h,	int	v)=0;

Remarks:
Sets	the	scroll	values.	To	determine	the	values	to	use	developers	should	use
the	CCUtil	plug-in,	create	a	pop-up	window	as	big	as	is	appropriate	for	the
final	control,	adjust	the	zoom	and	scroll	values	interactively,	and	then	simply
read	out	the	values	from	the	CCUtil	user	interface	(GetZoom	and	GetScroll).

Parameters:
int	h
The	horizontal	scroll	value	to	set.
int	v
The	vertical	scroll	value	to	set.

Prototype:
virtual	void	ZoomExtents()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Performs	a	zoom	extents	operation	to	the	curve	view.

Prototype:

virtual	void	SetTitle(TCHAR	*str)=0;
Remarks:
Sets	the	title	of	the	dialog	box	to	the	specified	string.	This	is	only	used	if	the
CC_ASPOPUP	is	used	to	create	a	pop-up	dialog.

Parameters:
TCHAR	*str
The	title	string	to	display.

Prototype:
virtual	ICurve	*GetControlCurve(int	numCurve)=0;

Remarks:
Returns	and	interface	to	the	specified	curve.	This	interface	allows	you	to	set
the	color	of	the	curve	and	retrieve	the	Y	value	of	the	curve	given	an	X	value.

Parameters:
int	numCurve
The	zero	based	index	of	the	curve.

Prototype:
virtual	void	SetDisplayMode(BitArray	&mode)=0;

Remarks:
Determines	which	curves	are	toggled	on.

Parameters:
BitArray	&mode
The	BitArray	to	control	curve	visibility	--	one	bit	for	each	curve.	If	the	bit	is
set	the	curve	is	toggled	on;	otherwise	it	is	toggled	off.

Prototype:
virtual	BitArray	GetDisplayMode()=0;

Remarks:
Returns	a	BitArray	which	indicates	which	curves	are	toggled	on	or	off.

Prototype:

virtual	void	EnableDraw(BOOL	enable)=0;
Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	turn	on/off	the	display	code.	It	is	useful	when	you
are	doing	lots	of	changes	and	don't	want	the	window	to	continually	redraw.

Parameters:
BOOL	enable
TRUE	to	enable;	FALSE	to	disable.

Prototype:
virtual	void	SetCCFlags(DWORD	flags)=0;

Remarks:
Sets	the	curve	control	flags	to	those	passed.

Parameters:
DWORD	flags
See	List	of	Custom	Curve	Control	Flags.

Prototype:
virtual	DWORD	GetCCFlags()=0;

Remarks:
Returns	the	curve	control	flags.	See	List	of	Custom	Curve	Control	Flags.

Prototype:
virtual	void	SetCustomParentWnd(HWND	hParent)=0;

Remarks:
Sets	the	parent	window	for	the	control	if	the	controll	is	not	a	popup	window.

Parameters:
HWND	hParent
The	window	handle	of	the	parent.

Prototype:

virtual	void	SetMessageSink(HWND	hWnd)=0;
Remarks:
Call	this	method	and	the	following	window	messages	will	be	sent	to	the
window	whose	handle	is	passed.	The	contents	of	the	lParam	and	wParam
parameters	passed	to	the	window	proc	are	shown.
WM_CC_SEL_CURVEPT
Sent	when	a	point	is	selected	or	deselected.
lParam	=	ICurve	*	,	LOWORD(wParam)	=	The	number	of	points
which	are	selected.
WM_CC_CHANGE_CURVEPT
Sent	when	a	point	is	changed.
lParam	=	ICurve	*	,	LOWORD(wParam)	=	The	zero	based	index	of
the	changed	point.
WM_CC_CHANGE_CURVETANGENT
Sent	when	a	point's	in	or	out	tangent	is	changed.
lParam	=	ICurve	*	,	LOWORD(wParam)	=	The	zero	based	index	of
the	changed	point,
HIWORD(wParam)	contains	a	flag,	that	indicates	if	the	changed
tangent	is	the	in,	or	out	tangent.	You	can	check	these	flags	as
HIWORD(wParam)	&	IN_CURVETANGENT_CHANGED	and
HIWORD(wParam)	&	OUT_CURVETANGENT_CHANGED,
for	the	in	and	out	tangent	respectively.
WM_CC_DEL_CURVEPT
Sent	when	a	point	is	deleted.
lParam	=	ICurve	*	,	LOWORD(wParam)	=	The	zero	based	index	of
the	deleted	point.
WM_CC_INSERT_CURVEPT
This	option	is	available	in	release	4.0	and	later	only.
lParam	=	ICurve	*,	LOWORD(wParam)	=	The	zero	based	index	of
the	inserted	point.

Parameters:
HWND	hWnd
The	handle	of	the	window	which	will	receive	the	messages.

Prototype:
virtual	void	SetCommandMode(int	ID)=0;

Remarks:
Sets	the	command	mode	in	use	by	the	control.

Parameters:
int	ID
One	of	the	following	values	(which	correspond	directly	to	toolbar	buttons	in
the	UI.	See	the	2D	texture	map	Output	rollup	for	example):
CID_CC_MOVE_XY
CID_CC_MOVE_X	
CID_CC_MOVE_Y	
CID_CC_SCALE
CID_CC_INSERT_CORNER
CID_CC_INSERT_BEZIER

Prototype:
virtual	int	GetCommandMode()=0;

Remarks:
Returns	a	value	which	indicates	the	current	command	mode.	One	of	the
following	values	(which	correspond	directly	to	toolbar	buttons	in	the	UI.	See
the	2D	texture	map	Output	rollup	for	example):
CID_CC_MOVE_XY
CID_CC_MOVE_X	
CID_CC_MOVE_Y	
CID_CC_SCALE
CID_CC_INSERT_CORNER
CID_CC_INSERT_BEZIER

Prototype:
virtual	void	Redraw()=0;

Remarks:

This	method	redraws	the	custom	curve	control.

Prototype:
virtual	Interval	GetValidity(TimeValue	t)=0;

Remarks:
Returns	an	Interval	which	reflects	the	validity	of	every	point	of	every	curve
used	by	the	curve	control.

Parameters:
TimeValue	t
The	time	about	which	the	interval	is	computed.

Prototype:
virtual	void	Update(TimeValue	t,	Interval&	valid)=0;

Remarks:
Updates	the	validity	interval	passed	with	the	overall	validity	of	the	curves	in
the	control.	This	simply	does:

	valid	&=	GetValidity(t);
Parameters:
TimeValue	t
The	time	about	which	the	interval	is	computed.
Interval&	valid
The	interval	which	is	updated.

Prototype:
virtual	void	SetCurrentXValue(float	val)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	sets	the	position	of	the	vertical	line	drawn	over	the	graph	showing	the
current	X	value.	See	flag	CC_SHOW_CURRENTXVAL	in	List	of
Custom	Curve	Control	Flags.

Parameters:
float	val

The	value	to	set.

Class	RightClickMenuManager
See	Also:	Class	RightClickMenu,	Class	Interface.
class	RightClickMenuManager

Description:
Methods	of	this	class	allow	a	developer	to	extend	the	menu	presented	when	a
user	right	clicks	on	an	item	in	the	viewports.	All	methods	of	this	class	are
implemented	by	the	system.

Methods:

Prototype:
void	Register(RightClickMenu	*menu);

Remarks:
This	method	is	used	to	register	an	instance	of	a	class	derived	from
RightClickMenu.	This	allows	its	methods	to	be	called	when	the	user	right
clicks	on	an	object	in	a	viewport.

Parameters:
RightClickMenu	*menu
The	menu	to	set	as	register.

Prototype:
void	Unregister(RightClickMenu	*menu);

Remarks:
This	method	is	used	to	un-register	a	registered	right	click	menu.

Parameters:
RightClickMenu	*menu
The	menu	to	set	as	un-register.

Prototype:
int	AddMenu(RightClickMenu	*menu,	UINT	flags,	UINT	id,
LPCTSTR	data);

Remarks:

This	method	is	called	to	add	items	to	the	right	click	menu	passed.	A	string	or
separator	may	be	added.	Strings	may	be	checked	or	unchecked.	They	may	also
be	disabled	and	grayed.

Parameters:
RightClickMenu	*menu
The	menu	to	add	the	item	to.
UINT	flags
Describes	the	item	being	added.	One	or	more	of	the	following	values:
MF_CHECKED
MF_UNCHECKED
MF_STRING
MF_DISABLED
MF_GRAYED
MF_SEPARATOR

UINT	id
The	id	of	the	selection.	This	is	the	id	passed	to	the
RightClickMenu::Selected()	method	when	the	user	makes	a	selection
from	the	menu.
LPCTSTR	data
The	string	to	display	in	the	menu	(or	NULL	if	adding	a	separator).

Return	Value:
Nonzero	if	the	item	was	added;	otherwise	0.

Prototype:
int	BeginSubMenu(LPCTSTR	name);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	begins	a	new	sub	menu.	Items	added	after	this	call	will	appear	as	sub
choices	of	this	one	until	EndSubMenu()	is	called.

Parameters:
LPCTSTR	name
The	name	to	appear	for	the	sub	menu	item.

Return	Value:
Always	returns	TRUE.

Prototype:
int	EndSubMenu();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	ends	a	sub	menu.	Items	added	after	this	call	will	appear	as	they	did	prior
to	calling	BeginSubMenu().

Return	Value:
Always	returns	TRUE.

Prototype:
void	CleanUp();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	removes	all	sub	menus	from	the	right	click	menu.

Prototype:
void	Init(HMENU	menu,	int	startId,	int	limit,	HWND	hWnd,
IPoint2	m);

Remarks:
This	method	is	used	internally.

Prototype:
void	Process(UINT	id);

Remarks:
This	method	is	used	internally.

Class	DataEntryMouseProc
See	Also:	Class	MouseCallBack,	Class	ViewExp,	Class	Object,	Class	Interface,
Class	Point3,	Class	Matrtix3,	Class	CreateMouseCallBack.
class	DataEntryMouseProc	:	public	MouseCallBack

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	mouse	proc	allows	drawing	in	multiple	viewports,	offsetting	from	the
contruction	plane,	and	orthogonal	and	angle	snapping.	This	allows	developers	to
support	orthogonal	snapping	and	angle	snapping	on	creation	(as	the	Bezier	line
tool	does).	If	the	user	presses	Shift	while	dragging	the	mouse,	the	point	is
snapped	to	the	nearest	quadrant	(ortho	snapping).	If	the	Alt	key	is	held,	the	point
is	snapped	using	the	setting	of	the	angle	snap	system.
The	typical	control	flow	of	this	class	is	that	the	OnPointSelected()	method	is
called	every	time	the	user	clicks	in	the	viewport,	and	OnMouseAbort()	is
called	when	the	user	right	clicks	to	finish	the	curve.	RemoveLastPoint()	is
called	when	backspace	is	pressed,	and	OnMouseMove(Point3&	p)	is	called
every	time	the	mouse	moves	(this	lets	the	developer	update	the	curve
continuously).
This	class	is	a	sub-class	of	MouseCallBack,	but	it	can	also	be	used	as	a
CreateMouseCallBack	to	create	curves	from	the	creation	panel.	To	do	this	you
embed	a	DataEntryMouseProc	in	a	CreateMouseCallBack	as	show	below.
Notice	the	implementation	of	the	virtual	member	StartNewCreation().	This	is	a
new	virtual	method	on	CreateMouseCallBack	that	tells	the	system	whether	the
mouse	proc	is	in	a	state	ready	to	create	a	new	object.	This	was	required,	becase
the	"proc"	function	now	always	returns	"CREATE_STOP"	in	order	to	implement
multi-viewport	input.
class	TopCVCurveCreateMouseProc	:	public
Em3DDataEntryMouseProc	{
public:
TopCVCurveCreateMouseProc()	:
Em3DDataEntryMouseProc()	{}
virtual	BOOL	OnPointSelected();
virtual	void	OnMouseMove(Point3&	p);
virtual	BOOL	AllowAnyViewport();

virtual	void	RemoveLastPoint();
virtual	int	OnMouseAbort();
virtual	BOOL	PerformRedraw()	{	return	FALSE;	}
void	SetObj(EditableCVCurve*	o)	{	mpOb	=	o;	}
virtual	BOOL	StartNewCreation()	{	return	mMouseClick	==	0;	}
friend	class	EditableCVCurve;
private:
EditableCVCurve	*	mpOb;
};
	
class	EditableCVCurveCreateCallBack:	public
CreateMouseCallBack	{
public:
EditableCVCurveCreateCallBack()	{}
	
virtual	int	proc(ViewExp*	vpt,int	msg,	int	point,	int	flags,	IPoint2
m,	Matrix3&	mat);
friend	class	CVBackspaceUser;
friend	class	EditableCVCurve;
virtual	BOOL	StartNewCreation()	{	return
mMouseProc.StartNewCreation();	}
private:
void	RemoveLastPoint();
TopCVCurveCreateMouseProc	mMouseProc;
};
	
int	EditableCVCurveCreateCallBack::proc(ViewExp*	vpt,int	msg,
int	point,	int	flags,	IPoint2	m,	Matrix3&	mat)
{
spTransformMat	=	&mat;
return	mMouseProc.proc(vpt->GetHWnd(),	msg,	point,	flags,	m);
}
static	EditableCVCurveCreateCallBack	nsCreateCB;
	

CreateMouseCallBack*
EditableCVCurve::GetCreateMouseCallBack()
{
nsCreateCB.mMouseProc.SetObj(this);
nsCreateCB.mMouseProc.SetParams(hInstance,	mpEM,	0);
return(&nsCreateCB);
}

Data	Members:
protected:
Object*	mpObject;
This	a	pointer	to	the	object	that	is	using	the	mouse	proc.
int	mMouseClick;
The	number	of	clicks	(i.e.	selected	points)	the	user	has	entered	in	creating	this
object.	It	is	like	the	"point"	parameter	to	"proc".
Tab<Point3>	mPoints;
These	are	the	3D	values	of	the	points	the	user	has	selected.
Tab<IPoint2>	mClickPoints;
These	are	the	2D	viewport	coordinates	the	user	selected.
BOOL	mLiftOffCP;
TRUE	when	in	the	mode	where	we	lift	off	the	construction	plane

Methods:
public:

Prototype:
DataEntryMouseProc(Object*	pObj,	int	cursor,	HINSTANCE
hInst);

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
mpObject	=	pObj;
mCursor	=	cursor;
mInstance	=	hInst;
mMouseClick	=	0;

mDoNotDouble	=	TRUE;
mLiftOffCP	=	FALSE;
mPreviousFlags	=	0;

Prototype:
DataEntryMouseProc();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
mpObject	=	NULL;
mpIp	=	NULL;
mMouseClick	=	0;
mDoNotDouble	=	TRUE;
mCursor	=	0;
mLiftOffCP	=	FALSE;
mPreviousFlags	=	0;
mInstance	=	0;

Prototype:
virtual	BOOL	OnPointSelected();

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	every	time	the	user	clicks	in	the	viewport	to	enter	data.
This	is	the	method	in	NURBS	curves,	for	example,	that	adds	a	new	CV	or
point	to	the	curve.	The	method	can	query	the	mMouseClick	member	to	see
which	point	this	is	in	the	sequence	(like	the	"point"	parameter	to	traditional
MouseCallback	classes),	and	the	3D	value	of	the	point	can	be	determined	from
mPoints[mMouseClick].	The	data	member	mPoints	contains	all	the	3D
points	selected,	and	mClickPoints	is	a	table	of	the	2d	points	where	the	user
clicked	in	the	viewport.

Return	Value:
The	return	value	is	used	to	determine	whether	the	creation	should	continue	or
not.	If	it	returns	TRUE,	more	points	are	selected.	If	it	returns	FALSE,	then	the

creation	is	done.	In	the	case	of	NURBS,	this	is	used	to	implement	the	feature
that	asks	users	if	they	want	to	close	a	curve	when	they	click	on	the	same	point
where	they	started	the	curve.	If	the	answer	is	yes,	this	method	returns	FALSE,
otherwise	it	always	return	TRUE.

Default	Implementation:
{return	TRUE;	}

Prototype:
virtual	void	OnMouseMove(Point3&	p);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	on	every	mouse	move	event.

Parameters:
Point3&	p
The	current	point	in	world	space	of	the	mouse	position.

Default	Implementation:
{}

Prototype:
virtual	BOOL	AllowAnyViewport();

Remarks:
Implemented	by	the	Plug-In.
This	method	tells	the	system	when	to	allow	drawing	in	mutiple	viewports.

Return	Value:
TRUE	to	allow	drawing	between	viewports;	FALSE	to	not	allow	drawing
between	viewports.

Default	Implementation:
{	return	TRUE;	}

Prototype:
virtual	void	RemoveLastPoint();

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	backspace	key	is	pressed.	Typically	this
deletes	the	last	point	entered	by	the	user	so	they	may	correct	its	entry.

Default	Implementation:
{}

Prototype:
virtual	int	OnMouseAbort();

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	creation	is	finished.

Return	Value:
Return	one	of	the	following	value	to	indicate	the	state	of	the	creation	process:
CREATE_CONTINUE
The	creation	process	should	continue.
CREATE_STOP
The	creation	process	has	terminated	normally.
CREATE_ABORT
The	creation	process	has	been	aborted.	The	system	will	delete	the	created
object	and	node.

Default	Implementation:
{	return	CREATE_ABORT;	}

Prototype:
virtual	BOOL	PerformRedraw();

Remarks:
Implemented	by	the	Plug-In.
This	method	indicates	whether	the	mouse	proc	should	perform	redraws.	When
used	in	a	CreateMouseCallBack,	this	should	return	FALSE.

Return	Value:
TRUE	to	have	the	mouse	proc	perform	redraws;	otherwise	FALSE.

Default	Implementation:
{	return	TRUE;	}

Prototype:
virtual	void	SetUseConstructionLine(BOOL	useLine)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	tell	the	object	to	draw	offset	lines.	This	is	called
passing	TRUE	when	the	system	enters	the	mode	where	points	are	lifted	off	the
construction	plane.	It	is	telling	the	object	that	it	needs	to	draw	a	line	between
the	points	supplied	by	SetConstructionLine(int	i,	Point3	p).	It	is	called
passing	FALSE	when	the	offset	procedure	is	complete.
To	see	an	example	of	how	this	is	used,	create	a	NURBS	Point	curve,	and	press
the	Control	key	while	laying	down	a	point.	It	enters	a	mode	that	lets	you	lift
the	point	off	the	construction	plane,	and	draws	a	red	dotted	line	back	to	the	CP
to	give	some	visual	feedback.

Parameters:
BOOL	useLine
TRUE	if	the	mode	is	beginning;	FALSE	if	it	is	ending.

Prototype:
virtual	void	SetConstructionLine(int	i,	Point3	p)	=	0;

Remarks:
These	methods	need	to	be	implemented	to	get	the	offset	line	drawn
This	method	is	called	with	i==0	for	the	start	point	and	with	i==1	for	the	end
point.

Parameters:
int	i
The	point	index:	0	for	the	start	or	1	for	the	end.
Point3	p
The	point	to	draw	to	or	from.

Prototype:

int	proc(HWND	hwnd,	int	msg,	int	point,	int	flags,	IPoint2	m);
Remarks:
Implemented	by	the	System.
This	is	the	method	where	the	developer	defines	the	user	/	mouse	interaction
that	takes	place.

Parameters:
HWND	hwnd
The	window	handle	of	the	window	the	user	clicked	in.	This	is	one	of	the
viewports.
int	msg
This	message	describes	the	type	of	event	that	occurred.	See	List	of	Mouse
Callback	Messages.
int	point
The	point	number.	This	is	0	for	the	first	click,	1	for	the	second,	etc.
int	flags
These	flags	describe	the	state	of	the	mouse	buttons.	See	List	of	Mouse
Callback	Flags.
IPoint2	m
The	2D	screen	point	that	the	user	clicked	on.

Return	Value:
CREATE_STOP	is	returned.
Note:	Notice	the	implementation	of	the	virtual	member
StartNewCreation().	This	is	a	virtual	method	on	CreateMouseCallBack
that	tells	the	system	whether	the	mouse	proc	is	in	a	state	ready	to	creat	a	new
object.	This	was	required,	becase	this	method	now	always	returns
CREATE_STOP	in	order	to	implement	the	multi-viewport	input

Prototype:
void	ClearCreationParams();

Remarks:
Implemented	by	the	System.
This	method	clears	the	creation	parameters.	The	data	members	are	reset	as
follows:

mMouseClick	=	0;
mPoints.SetCount(0);
mClickPoints.SetCount(0);
mLiftOffCP	=	FALSE;
mPreviousFlags	=	0;

Prototype:
void	SetParams(HINSTANCE	hInst,	Object*	pObj,	int	cursor);

Remarks:
Implemented	by	the	System.
This	method	sets	the	parameters	as	follows:
mpObject	=	pObj;
mCursor	=	cursor;
mInstance	=	hInst;

Class	IGraphObjectManager
See	Also:	Class	IGraphNode,	Class	IGraphRef,	Class	Animatable.
class	IGraphObjectManager

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	essentially	represents	an	instance	of	a	schematic	view	window	and
provides	methods	for	adding	nodes	and	node	pointers,	refreshing	the	schematic
view,	accessing	filter	bits	and	updating	and	controlling	the	various	editors	within
3ds	max	in	ways	that	are	not	surfaced	in	the	general	interface.

Methods:
public:

Prototype:
virtual	SvGraphNodeReference	AddAnimatable(Animatable
*anim,	Animatable	*owner,	int	id,	DWORD	flags	=	0)=0;

Remarks:
Adds	an	Animatable	to	the	schematic	view.	Note	that	“owner”	and	“id”	are
actually	arbitrary	–	they	are	used	to	provide	context	for	this	Animatable.	This
means	that	the	plug-in	developer	can	set	them	to	any	value.	They	are	not	used
internally	by	the	schematic	view	except	in	the	"Sv*"	methods	(which	the
developer	can	override).	So,	when	you	add	an	Animatable	to	the	schematic
view,	you	would	typically	add	the	owner	(parent)	Animatable	as	well	as	the
sub-anim	id.	This	allows	you	to,	for	example,	easily	return	the	name	of	the
object	when	queried	by	the	SvGetName(...)	call	(whose	default
implementation	is	shown	below):
TSTR	Animatable::SvGetName(IGraphObjectManager	*gom,
IGraphNode	*gNode,	bool	isBeingEdited)
	{
	Animatable	*owner;
	int	subNum;
	TSTR	name;	
	

	owner	=	gNode->GetOwner();
	subNum	=	gNode->GetID();
	name	=	owner->SubAnimName(subNum);
	
	return	name;
	}

Parameters:
Animatable	*anim
Points	to	the	animatable	to	add.
Animatable	*owner
Points	to	the	owner	of	anim	above	(typically).
int	id
When	nodes	are	added	to	the	schematic	view	via	this	method	this	integer	is
provided.	This	value	is	not	used	internally	by	the	schematic	view.	Rather,	it	is
available	to	implementers	of	the	Animatable::Sv*()	methods	to	aid	in
identifying	the	node.
DWORD	flags	=	0
This	flag	is	some	combination	of	the	following	bit	flags.	See	List	of	Schematic
View	AddAnimatable	Flags.

Return	Value:
A	SvGraphNodeReference	object.

Prototype:
virtual	void	PushLevel(Animatable	*anim,	int	id	=	SV_NO_ID)=0;

Remarks:
During	traversal	of	the	Animatable	graph	via	SvTraverseAnimGraph(...),
this	method	(and	PopLevel()	below)	should	be	called	appropriately	to
maintain	an	ownership	stack.	This	is	required	by	the	schematic	view	when
nodes	are	added	to	the	graph	with	the	SV_DUPLICATE_INSTANCES
flag	set.	Note:	In	3ds	max	3.0,	SV_DUPLICATE_INSTANCES	is	always
on	(i.e.,	the	flag	is	ignored).	Because	of	this,	PushLevel()	and	PopLevel()
should	always	be	called	in	SvTraverseAnimGraph(...).

See	the	sample	code	in	Animatable::SvStdTraverseAnimGraph()	for
an	example	of	this.

Parameters:
Animatable	*anim
This	is	the	Animatable	that	you	are,	in	all	likelihood,	about	to	add	to	the	graph
via	the	AddAnimatable()	call.
int	id	=	SV_NO_ID
This	is	also	the	same	"id"	you'd	pass	into	AddAnimatable().	The	"id"	is
only	required	in	cases	where	it's	impossible	for	the	schematic	view	to
distinguish	between	two	(or	more)	children	in	the	tree	that	have	the	same
Animatable	but	represent	different	sub-anims.	For	example,	a	box	has	both	its
width	and	height	set	to	the	same	controller	(instanced).	In	the	schematic	view,
this	is	still	shown	in	tree	form	so	we	need	the	ID	to	distinguish	between	the
"width"	and	"height"	children.

Prototype:
virtual	void	PopLevel()=0;

Remarks:
Pops	a	level	off	the	animatable	ownership	stack.	See	PushLevel()	above	for
details.

Prototype:
virtual	IGraphRef	*AddReference(IGraphNode	*maker,
IGraphNode	*target,	SvReferenceType	type)=0;

Remarks:
This	method	adds	a	reference	from	the	specified	"maker"	node	to	the	specified
"target"	node.

Parameters:
IGraphNode	*maker
Points	to	the	'maker'	node	in	schematic	view.
IGraphNode	*target
Points	to	the	'target'	node	in	schematic	view.
SvReferenceType	type

One	of	the	following	enum	values:
	REFTYPE_CHILD
	REFTYPE_SUBANIM
	REFTYPE_PLUGIN

Return	Value:
A	pointer	to	an	IGraphRef	object.

Sample	Code:
SvGraphNodeReference
Control::SvTraverseAnimGraph(IGraphObjectManager	*gom,
Animatable	*owner,	int	id,	DWORD	flags)
	{
	int	i;
	SvGraphNodeReference	nodeRef;
	SvGraphNodeReference	childNodeRef;
	
//
//	Test	filter	to	see	if	"Controllers"	are	active.
//	Bail	out	if	they're	off	(being	filtered	out)...
//
	if	(!gom->TestFilter(SV_FILTER_CONTROLLERS))
		return	SvGraphNodeReference();
	
//
//	Push	this	level	in	the	tree.	Note	that	the	sub-anim	id	is	passed
//	in	here	because	it's	possible	that	the	same	instance	of	this	control
//	may	exist	in	multiple	tracks	of	"owner".
//
	gom->PushLevel(this,	id);
	
//
//	Some	flags	are	set	here	pertaining	to	the	control	being	added.
//	Note	that	the	flags	are	also	propagated	down	the	tree
//	by	passing	them	on	to	SubAnim(i)-
>SvTraverseAnimGraph(gom,	this,	i,	flags);

//	SV_DUPLICATE_INSTANCES	tells	the	schematic	view	not	to
//	represent	multiple	instances	with	a	single	node.	Instead	they
//	are	represented	by	multiple	nodes	in	the	schematic	view
//	with	the	"triangle	thingy"	attached	to	the	side	to	indicate
//	shared	instances.	This	flag	is	ignored	in	R3	because
//	this	mode	of	operation	is	globally	enabled
//	SV_INITIALLY_HIDDEN	tells	the	schematic	view	that	this
//	control's	node	is	to	be	initially	displayed	in	the	closed	state.
//	Note	that	this	has	no	effect	if	the	node	already	exists
//	in	the	graph	--	it	only	applies	to	newly	added	nodes.
//
	
	flags	|=	SV_DUPLICATE_INSTANCES	|
SV_INITIALLY_HIDDEN;
	
//
//	The	control	is	added	to	the	schematic	view...
//
	nodeRef	=	gom->AddAnimatable(this,	owner,	id,	flags);
	if	(nodeRef.stat	==	SVT_PROCEED)
		{
//
//	This	control's	sub-anims	are	iterated	over...
//
		for	(i	=	0;	i	<	NumSubs();	i++)
			{
			if	(SubAnim(i))
				{
//
//	SvTraverseAnimGraph(...)	is	recursively	called	to	add	this	sub-
anim	(and	all	its	descendents)	to	the	graph...
//
				childNodeRef	=	SubAnim(i)->SvTraverseAnimGraph(gom,	this,
i,	flags);

	
//
//	Now	a	link	(node	pointer)	is	created	in	the	schematic	between
the	control	(nodeRef.gNode)	and	its	child	sub-anim
(childNodeRef.gNode)....
//
				if	(childNodeRef.stat	!=	SVT_DO_NOT_PROCEED)
					gom->AddReference(nodeRef.gNode,	childNodeRef.gNode,
REFTYPE_SUBANIM);
				}
			}
		}
	
//
//	The	tree	level	is	popped.	Note:	a	PopLevel()	call	must	always	be
paired	with	a	PushLevel()	call!
//
	gom->PopLevel();
	
	return	nodeRef;
	}

Prototype:
virtual	void	SvEditSelectedNodeProperties()=0;

Remarks:
Pops	up	the	property	editor	dialog	on	the	selected	nodes	in	the	schematic	view.

Prototype:
virtual	void	SvSelectInMaterialEditor(IGraphNode	*gNode)=0;

Remarks:
Selects	the	given	node	in	the	material	editor.	Does	nothing	if	"gNode"	does	not
represent	a	material	or	map.

Parameters:

IGraphNode	*gNode
Points	to	the	node	in	schematic	view.

Prototype:
virtual	void	SvSetCurEditObject(IGraphNode	*gNode)=0;

Remarks:
Selects	the	given	node	in	the	modifier	panel.	Does	nothing	if	"gNode"	does
not	represent	an	object.

Parameters:
IGraphNode	*gNode
Points	to	the	node	in	schematic	view.

Prototype:
virtual	void	SvInvalidateView()=0;

Remarks:
Invalidates	the	schematic	view	window.

Prototype:
virtual	void	SvInvalidateNode(IGraphNode	*gNode)=0;

Remarks:
Invalidates	a	node	in	the	schematic	view	window.

Parameters:
IGraphNode	*gNode
Points	to	the	node	in	schematic	view.

Prototype:
virtual	void	SvUpdateMaterialEditor()=0;

Remarks:
Forces	the	material	editor	to	update.

Prototype:
virtual	void	SvUpdateModifierPanel()=0;

Remarks:
Forces	the	modifier	panel	to	update.

Prototype:
virtual	void	SetFilter(DWORD	mask)=0;

Remarks:
Sets	the	specified	filter	bits.

Parameters:
DWORD	mask
See	List	of	IGraphObjectManager	Filter	Bits.

Prototype:
virtual	void	ClearFilter(DWORD	mask)=0;

Remarks:
Clears	the	specified	filter	bits.

Parameters:
DWORD	mask
See	List	of	IGraphObjectManager	Filter	Bits.

Prototype:
virtual	bool	TestFilter(DWORD	mask)=0;

Remarks:
Tets	the	specified	filter	bits.	Returns	true	if	set;	otherwise	false.

Parameters:
DWORD	mask
See	List	of	IGraphObjectManager	Filter	Bits.

Class	IGraphNode
See	Also:	Class	IGraphObjectManager,	Class	Object,	Class	Animatable.
class	IGraphNode

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	represents	a	node	in	the	schematic	view	graph	and	provides	a	few
methods	for	querying	information	about	the	node.

Methods:
public:

Prototype:
virtual	Animatable	*GetAnim()=0;

Remarks:
Returns	the	Animatable	associated	with	this	node.

Prototype:
virtual	IGraphNode	*GetParentNode()=0;

Remarks:
Returns	the	"primary	parent"	of	this	node.	Nodes	can	have	multiple	parents
(objects	referencing	this	node)	so	this	function	is	not	strictly	accurate.	That
said,	many	nodes	have	the	concept	of	an	owner	node,	which	is	what	this
function	returns.

Prototype:
virtual	bool	IsObjectOrModifier()=0;

Remarks:
Returns	true	if	this	node	represents	a	3ds	max	object	or	modifier;	otherwise
false.

Prototype:
virtual	bool	IsMaterial()=0;

Remarks:
Returns	true	if	this	node	represents	a	3ds	max	material	or	texmap;	otherwise
false.

Prototype:
virtual	Animatable	*GetOwner()=0;

Remarks:
Returns	the	"owner"	of	this	node.	Some	nodes	have	multiple	owners.	When
this	is	the	case,	this	function	returns	the	"first"	owner	(the	object	that	first
added	this	node	to	the	schematic	view).

Prototype:
virtual	int	GetID()=0;

Remarks:
Return	the	ID	of	this	node.	When	nodes	are	added	to	the	schematic	view	(via
the	IGraphObjectManager::AddAnimatable(...)	method),	an	integer	is
provided.	This	value	is	not	used	internally	by	the	schematic	view.	Rather,	it	is
available	to	implementers	of	the	Animatable::Sv*()	methods	to	aid	in
identifying	the	node.

Class	IGraphRef
Class	IGraphObjectManager,	Class	IGraphNode,	Class	Object.
class	IGraphRef

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	represents	a	node	pointer	and,	currently,	has	no	methods.

Class	SubClassList
See	Also:	Class	DllDir,	Class	ClassDirectory,	Class	ClassEntry,	Class
ClassDesc,	Class	SClassUIInfo.
class	SubClassList

Description:
This	class	is	available	in	release	2.0	and	later	only.
A	sub	class	list	is	a	table	of	ClassEntry	objects	that	provide	information	on
plug-in	classes	as	well	as	usage	counts	for	these	classes	within	3ds	max.	These
sub	class	lists	are	organized	by	super	class	ID	by	the	ClassDirectory	class.
All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
int	FindClass(Class_ID	subClassID);

Remarks:
Returns	the	index	in	the	list	of	sub-classes	of	the	class	whose	Class_ID	is
passed.

Parameters:
Class_ID	subClassID
Specifies	which	class	to	return	the	index	of.

Prototype:
ulong	SuperID();

Remarks:
Returns	the	Super	class	ID	corresponding	to	this	sub-class	list.

Prototype:
int	Count(int	accType);

Remarks:
Returns	the	number	of	sub-classes	that	match	the	specified	access	type.

Parameters:

int	accType
One	of	the	following	values:
ACC_PUBLIC	-	public	classes
ACC_PRIVATE	-	non-public	classes
ACC_ALL	-	both	of	the	above	(ACC_PUBLIC|ACC_PRIVATE).

Prototype:
int	FindClass(const	TCHAR	*name);

Remarks:
Returns	the	index	in	the	list	of	sub-classes	of	the	class	whose	ClassName()	is
passed.

Parameters:
const	TCHAR	*name
Specifies	which	class	to	return	the	index	of.

Prototype:
int	GetFirst(int	accType);

Remarks:
Returns	the	index	of	the	first	ClassDesc	of	the	specified	type	in	the	list	of
sub-classes.

Parameters:
int	accType
One	of	the	following	values:
ACC_PUBLIC	-	public	classes
ACC_PRIVATE	-	non-public	classes

Prototype:
int	GetNext(int	accType);

Remarks:
Returns	the	index	of	the	next	ClassDesc	of	the	specified	type	(or	-1	at	the
end).

Parameters:

int	accType
One	of	the	following	values:
ACC_PUBLIC	-	public	classes
ACC_PRIVATE	-	non-public	classes

Prototype:
void	AddClass(ClassDesc	*cld,	int	dllNum,	int	index);

Remarks:
This	method	is	used	internally.

Prototype:
void	SetUIInfo(SClassUIInfo	*uiInfo);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Allows	developer	to	provide	some	additional	information	on	a	superclass.
Currently	this	includes	a	color,	and	a	method	which	draws	a	representative
image	in	a	Windows	DC.

Parameters:
SClassUIInfo	*uiInfo
Points	to	the	information	to	set.

Prototype:
SClassUIInfo	*GetUIInfo();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	returns	additional	user	interface	related	information	on	a	given
superclass.	Returns	NULL	if	no	superclass	information	was	assigned.

Prototype:
void	ReplaceClass(int	idx,	ClassDesc	*cld,	int	dllNum,	int	index,
bool	load);

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
This	method	is	for	internal	use	only.

Operators:

Prototype:
int	operator==(const	SubClassList&	lst)	const;

Remarks:
Equality	operator.

Prototype:
int	operator==(const	SubClassList	&sl);

Remarks:
Equality	operator.

	

Prototype:
ClassEntry&	operator[](int	i);

Remarks:
Returns	a	reference	to	the	'i-th'	ClassEntry	for	this	super	class.

Parameters:
int	i
The	index	of	the	entry	to	return.	Valid	values	begin	at	an	index	of	1.

Class	Random
See	Also:	Class	Interface.
class	Random

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	defines	a	Pseudo-random	number	generator	that	precisely	matches	the
behavior	of	the	MSVCRT	6.0	random	routines.	That	is	to	say,	for	equivalent
calls	to	::srand()	and	Random::srand(),	both	::rand()	and	Random::rand()	will
produce	the	same	results.
The	benefit,	however,	in	having	this	class	is	that	each	instantiation	is
independent,	permitting	several	uncoupled	random	number	generators	to	be
present	in	the	system	at	once.	Moreover,	each	instantiation	is	automatically	"pre-
seeded",	making	calls	to	Random::srand	unnecessary	in	most	uses.	Even	arrays
of	Random	items	will	operate	independently.
In	addition	to	providing	the	analogues	to	the	"stdlib"	functions,	this	class	also
provides	two	useful	member	functions	which	can	be	used	to	get	a	random
number	bounded	in	either	a	float	or	int	interval.
Note:	To	use	this	class	be	sure	to	link	to	MAXUTIL.LIB.

Sample	Code:
#include	"random.h"
...
Random	r;
r.srand(1);	//	generally	unnecessary,	seeds	generator	like	stdlib.h's
srand()
r.rand();	//	returns	a	random	number	a	la	stdlib.h's	rand()
r.get();	//	ditto
r.get(16);	//	returns	1	of	16	possible	random	numbers	from	0	to	15
inclusive
r.get(5,2);	//	returns	1	of	3	possible	random	numbers	from	2	to	4
inclusive
r.get(1.0f);	//	returns	1	of	"Random::s_rand_max+1"	floats,	0	<=
value	<	1

r.get(1.0f,0.5f);	//	as	above,	but	limits	the	result	to	0.5	<=	value	<	1
Random::s_rand_max;	//	similar	to	stdlib.h's	RAND_MAX
...

Note	in	all	"get"	cases	that	contain	limits	they	are	specified	(max,	min).	Also	be
aware	that	the	min	value	can	be	attained,	but	the	max	cannot.	That	is	to	say	min
<=	value	<	max.

Data	Members:
public:
static	const	int	s_rand_max;
This	is	akin	to	the	Windows	API	global	RAND_MAX.	The	constant
RAND_MAX	is	the	maximum	value	that	can	be	returned	by	the	rand
function.	RAND_MAX	is	defined	as	the	value	0x7fff.

Methods:
public:

Prototype:
Random();

Remarks:
The	constructor	will	automatically	initialize	the	seed.

Prototype:
void	srand(unsigned	int	seed	=	1);

Remarks:
This	method	is	akin	to	the	global	srand()	function.	From	the	Windows	API
documentation:
The	srand	function	sets	the	starting	point	for	generating	a	series	of
pseudorandom	integers.

Parameters:
unsigned	int	seed	=	1
To	reinitialize	the	generator,	use	1	as	the	seed	argument.	Any	other	value	for
seed	sets	the	generator	to	a	random	starting	point.	rand	retrieves	the
pseudorandom	numbers	that	are	generated.	Calling	rand	before	any	call	to

srand	generates	the	same	sequence	as	calling	srand	with	seed	passed	as	1.

Prototype:
int	rand();

Remarks:
This	method	is	akin	to	the	global	rand()	function.	From	the	Windows	API
documentation:
The	rand	function	returns	a	pseudorandom	integer	in	the	range	0	to
RAND_MAX.	Use	the	srand	function	to	seed	the	pseudorandom-number
generator	before	calling	rand.

Prototype:
inline	int	get(int	max_exclusive	=	s_rand_max+1,	int	min_inclusive
=	0);

Remarks:
Returns	a	random	number	in	the	half-open	interval	[min,	max)	such	that
r=get(max,	min)	:=	min	<=	r	<	max.	Note	that	max	is	the	first	arg,	and	min	is
the	second,	permitting	one	to	select,	for	example,	an	int	in	[0,5)	=	[0,4]	with
"get(5)".	With	no	arguments,	Random::get()	is	equivalent	to
Random::rand().

Parameters:
int	max_exclusive	=	s_rand_max+1
The	maximum	value.
int	min_inclusive	=	0
The	minimum	value.

Prototype:
inline	float	getf(float	max_exclusive	=	1.0f,	float	min_inclusive	=
0.0f);

Remarks:
Returns	a	random	number	in	the	half-open	interval	[min,	max)	such	that
r=get(max,	min)	:=	min	<=	r	<	max.	Note	that	max	is	the	first	arg,	and	min	is
the	second,	permitting	one	to	select,	for	example,	a	float	in	[0.0,	5.0)	with

"getf(5)".	With	no	arguments,	Random::getf()	returns	a	float	in	[0.0,	1.0).
Parameters:
float	max_exclusive	=	1.0f
The	maximum	value.
float	min_inclusive	=	0.0f
The	minimum	value.

Class	MacroRecorder
See	Also:	Class	ClassDesc,	Class	INode,	Class	IParamBlock,	Class
IParamBlock2,	Class	Matrix3,	Class	ReferenceTarget.
class	MacroRecorder	:	public	BaseInterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	provides	various	methods	to	emit	pieces	of	script	to	the	Macro
Recorder.	There	are	also	methods	to	specify	the	nature	of	the	scripts	generated
by	the	user	operating	3ds	max.	Additionally	there	are	methods	to	enable	or
disable	the	recording	of	scripts.
This	class	may	be	used	by	plug-ins	but	is	also	used	internally	as	part	of	the	3ds
max	Macro	Recorder.	Inside	key	areas	of	3ds	max	macro	scripts	are	emitted
corresponding	to	the	operation	being	performed.	For	example	when	a	call	goes
to	a	parameter	block	to	set	a	value	3ds	max	internally	call	this	classes	method
ParamBlock2SetValue(...)	to	emit	script	to	record	the	change.	Thus,	many
operations	a	plug-in	performs	are	recorded	automatically.	There	are	however
operations	a	plug-in	can	perform	which	won't	be	recorded	automatically.	In	these
cases	methods	of	this	class	may	be	used	to	emit	script	to	record	these	operations.
Several	of	the	functions	in	this	class	use	an	ellipsis	argument	(...).	This	ellipsis	is
the	var-args	style	of	passing	information	to	a	method.	This	allows	a	developer	to
pass	a	variable	number	of	values	to	the	method.	These	are	typically	a	set	of	tag
values	followed	by	some	C++	types.	The	sample	code	shown	with	many	of	the
methods	shows	how	this	is	done.	For	a	starting	point	for	more	general
information	on	variable	argument	lists	see	va_arg	in	the	Window	help	file.
Developers	use	the	following	global	instance	of	this	class	to	call	these	methods:
MacroRecorder	*macroRecorder;

Methods:
public:

Prototype:
virtual	void	SetProperty(ReferenceTarget*	targ,	TCHAR*
prop_name,	BYTE	type,	...)=0;

Remarks:

This	provides	a	simple	way	to	emit	a	properly	assignment	script.	An	example
of	this	type	of	script	is	shown	below:
$sphere01.radius	=	50

Parameters:
ReferenceTarget*	targ
Points	to	the	object	whose	property	is	changing.
TCHAR*	prop_name
The	string	which	is	the	name	of	the	property.	This	is	the	fixed	machine-
parsable	name.
BYTE	type
One	of	the	type	tags	from	List	of	Macro	Recorder	Value	Types.
...
This	ellipsis	is	the	var-args	style	of	passing	information	to	a	method.	This
allows	a	developer	to	pass	a	variable	number	of	values	to	a	method.	These	are
typically	a	set	of	'tags'	followed	by	some	C++	data	types.

Prototype:
virtual	void	SetSelProperty(TCHAR*	prop_name,	BYTE	type,
...)=0;

Remarks:
This	provides	a	simple	way	to	emit	a	properly	assignment	script	for	the	current
selection	set.

Parameters:
TCHAR*	prop_name
The	name	of	the	property	to	set.
BYTE	type
One	of	the	type	tags	from	List	of	Macro	Recorder	Value	Types.
...
This	ellipsis	is	the	var-args	style	of	passing	information	to	a	method.	This
allows	a	developer	to	pass	a	variable	number	of	values	to	a	method.	These	are
typically	a	set	of	'tags'	followed	by	some	C++	types.

Sample	Code:
macroRecorder->SetSelProperty(_T("material"),	mr_reftarg,

(Mtl*)dropThis);

Prototype:
virtual	void	FunctionCall(TCHAR*	op_name,	int	arg_count,	int
keyarg_count,	...)=0;

Remarks:
This	method	is	used	to	build	a	MAXScript	function	call.	In	the	general	case,
such	a	call	may	have	positional	arguments	followed	by	keyword	arguments.

Parameters:
TCHAR*	op_name
The	name	of	the	function	to	call.
int	arg_count
The	number	of	positional	arguments	in	the	varargs	section.
int	keyarg_count
The	number	of	keyword	arguments	in	the	varargs	section.
...
This	ellipsis	is	the	var-args	style	of	passing	information	to	a	method.	This
allows	a	developer	to	pass	a	variable	number	of	values	to	a	method.	These	are
typically	a	set	of	'tags'	followed	by	some	C++	types.
See	List	of	Macro	Recorder	Value	Types	for	a	list	of	potential	tags	and
arguments.

Sample	Code:
macroRecorder->FunctionCall(_T("addModifier"),	2,	1,
mr_reftarg,	this,	mr_create,	mod->ClassID(),	mod-
>SuperClassID(),	0,	_T("before"),	mr_int,	before);
This	generates	an	addModifier()	function	call,	such	as:
addModifier	$foo	(bend())	before:3

The	call	has	2	positional	arguments	and	1	keyword	argument	(hence	the	2,	1).
The	first	positional	is	given	as	mr_reftarg,	this	which	refers	to	the	current
node,	the	second	positional	is	given	as	mr_create,	mod->ClassID(),	mod-
>SuperClassID(),	0	which	causes	a	0-argument	constructor	to	be	emitted
for	the	modifier,	and	finally	the	single	keyword	argument	is	given	as
_T("before"),	mr_int,	before	which	is	the	keyword	name	followed	by	the

arg	value.

Prototype:
virtual	void	ScriptString(TCHAR*	s)=0;

Remarks:
Emits	a	piece	of	macro	script	as	a	literal	string.	To	understand	when	this	is
used	consider	the	following	example.	Say	you	have	a	button	in	your	user
interface	which	does	a	certain	thing	but	there	is	no	way	using	the	other	macro
recorder	calls	of	constructing	the	piece	of	script	that	you	need	emitted.	For
instance	the	button	may	invoke	a	for	loop.	In	such	a	case	you	can	use	this
method	to	emit	a	macro	script	string	which	does	a	for	loop.	This	is	a	string,
just	as	you	would	type	it	into	the	MAXScript	Listener.

Parameters:
TCHAR*	s
The	string	to	emit.

Prototype:
virtual	void	Assign(TCHAR*	var_name,	BYTE	type,	...)=0;

Remarks:
This	method	is	called	to	emit	script	to	record	the	assignment	to	a	MAXScript
variable.

Parameters:
TCHAR*	var_name
The	variable	name.
BYTE	type
One	of	the	type	tags	from	List	of	Macro	Recorder	Value	Types.
...
This	ellipsis	is	the	var-args	style	of	passing	information	to	a	method.	This
allows	a	developer	to	pass	a	variable	number	of	values	to	a	method.	These	are
typically	a	set	of	'tags'	followed	by	some	C++	types.

Prototype:
virtual	void	SetCopy(ReferenceTarget*	to_copy)=0;

Remarks:
This	method	is	used	to	signal	that	an	mr_reftarg	argument	in	the	currently
accumulating	script	should	be	emitted	as	a	copy.	For	example,	when	maps	or
materials	are	dragged	onto	sub-map/mtl	buttons	in	the	material	editor,	an
instance/copy	requester	dialog	is	presented	and	depending	on	the	choice,
either	a	direct	assignment	or	assignment	of	a	copy	is	appropriate:
meditMaterials[4].materialList[2]	=	meditMaterials[11]	--
instance
meditMaterials[4].materialList[2]	=	copy	meditMaterials[11]	--
copy

The	actual	assignment	script	is	set	up	using	a	macroRecorder-
>SetProperty()	call	with	the	dropped	map/material	supplied	as	an
mr_reftarg	argument.	In	situations	where	the	copy/instance	status	is	known,
you	can	emit	directly	an	mr_funcall	argument	for	the	copy,	but	there	may	be
situations	in	which	this	choice	is	decided	in	some	piece	of	remote	code	or
control	flow	and	so	you	can	use	this	method	to	condition	the	emitted	script	to
apply	a	'copy	'	call.

Parameters:
ReferenceTarget*	to_copy
The	ReferenceTarget*	object	which	should	be	copied.

Prototype:
virtual	void	Cancel()=0;

Remarks:
This	cancels	and	clears	the	currently	accumulating	script.	This	would	be	used
for	example,	if	the	operation	that	is	being	accumulated	can	be	canceled	by	the
user,	such	as	right-clicking	out	of	a	transform	or	a	geometry	node	create.
There	are	calls	to	macroRecorder()->Cancel()	in	the	MOUSE_ABORT
processing	in	the	default	creation	manager.

Prototype:
virtual	void	EmitScript()=0;

Remarks:

This	signals	the	completion	of	an	accumulating	script,	causing	it	to	be	frozen
in	the	recorder	pane	and	any	new	calls	that	might	have	been	folded	into	the
current	script	will	cause	a	new	one	to	be	started.	For	example,	when	you	drag
the	time	slider,	the	sliderTime	assignment	script	accumulates	the	changes,	but
when	you	let	go	of	the	mouse	button,	an	EmitScript()	is	called,	so	that
subsequent	drags	will	start	a	separate	script	fragment.	Same	with	interactive
transforms	and	node	creation.

Prototype:
virtual	TSTR	GetSubMtlPropName(Mtl*	m,	int	i)=0;

Remarks:
Returns	the	property	name	of	the	'i-th'	sub-material	of	the	specified	material.

Parameters:
Mtl*	m
The	material	whose	'i-th'	sub-material	property	name	is	returned.
int	i
The	zero	based	index	of	the	sub-material.

Prototype:
virtual	TSTR	GetSubTexmapPropName(MtlBase*	m,	int	i)=0;

Remarks:
Returns	the	property	name	of	the	'i-th'	sub-texmap	of	the	specified	material.

Parameters:
MtlBase*	m
The	material	or	texmap	whose	'i-th'	sub-texmap	property	name	is	returned.
int	i
The	zero	based	index	of	the	sub-texmap.

Prototype:
virtual	void	Enable()=0;

Remarks:
Enables	the	Macro	Recorder.	This	call	is	'nestable',	i.e.	it	uses	a	use	counter
internally	so	recursive	or	nested	code	can	manage	local	enables	and	disable

states.

Prototype:
virtual	void	Disable()=0;

Remarks:
Disables	the	Macro	Recorder.	This	allows	the	developer	to	disable	the
automatic	macro	recording.

Prototype:
virtual	BOOL	Enabled()=0;

Remarks:
Returns	TRUE	if	the	Macro	Recroder	is	enabled	(via	Enable()	above);
otherwise	FALSE.

Prototype:
virtual	BOOL	MasterEnable()=0;

Remarks:
In	the	MAXScript	Listener	Window	Macro	Recorder	pulldown	menu	choice	is
an	option	to	enable	or	disable	the	Macro	Recorder.	This	method	corresponds
to	that	state.	It	returns	TRUE	if	enabled;	FALSE	if	disabled.

Prototype:
virtual	void	MasterEnable(BOOL	onOff)=0;

Remarks:
In	the	MAXScript	Listener	Window	Macro	Recorder	pulldown	menu	choice	is
an	option	to	enable	or	disable	the	Macro	Recorder.	This	method	sets	this	state.

Parameters:
BOOL	onOff
TRUE	for	enabled;	FALSE	for	disabled.

Prototype:
virtual	BOOL	ShowCommandPanelSwitch()=0;

Remarks:
Returns	TRUE	if	code	is	emitted	when	command	panels	are	changed;	FALSE
if	code	is	not	emitted.

Prototype:
virtual	void	ShowCommandPanelSwitch(BOOL	onOff)=0;

Remarks:
Determines	if	the	macro	recorder	will	emit	script	for	command	panel	mode
changes.

Parameters:
BOOL	onOff
TRUE	to	record	command	panel	changes;	FALSE	to	ignore	them.

Prototype:
virtual	BOOL	ShowToolSelections()=0;

Remarks:
Returns	TRUE	if	the	macro	recorder	will	emit	script	for	3ds	max	toolbar	tool
selections;	otherwise	FALSE.

Prototype:
virtual	void	ShowToolSelections(BOOL	onOff)=0;

Remarks:
Determines	if	the	macro	recorder	will	emit	script	for	3ds	max	toolbar
selections.

Parameters:
BOOL	onOff
TRUE	to	record	toolbar	selections;	FALSE	to	ignore	them.

Prototype:
virtual	BOOL	ShowMenuSelections()=0;

Remarks:
Returns	TRUE	if	the	macro	recorder	will	emit	script	for	3ds	max	menu

selecitons;	otherwise	FALSE.

Prototype:
virtual	void	ShowMenuSelections(BOOL	onOff)=0;

Remarks:
Determines	if	the	macro	recorder	will	emit	script	for	3ds	max	menu	selections.

Parameters:
BOOL	onOff
TRUE	to	record	menu	selections;	FALSE	to	ignore	them.

Prototype:
virtual	BOOL	EmitAbsoluteSceneNames()=0;

Remarks:
Returns	TRUE	if	specific	node	names	are	used	in	the	generated	code;	FALSE
if	the	current	selection	is	used.

Prototype:
virtual	void	EmitAbsoluteSceneNames(BOOL	onOff)=0;

Remarks:
This	controls	whether	the	code	generated	refers	to	the	exact	node	names	being
operated	or	or	simply	the	current	selection.

Parameters:
BOOL	onOff
TRUE	to	record	absolute	scene	names;	FALSE	to	use	the	selection	set.

Prototype:
virtual	BOOL	EmitAbsoluteSubObjects()=0;

Remarks:
Returns	TRUE	if	recording	absolute	sub-object	numbers;	FALSE	if	using	the
selection	set.

Prototype:

virtual	void	EmitAbsoluteSubObjects(BOOL	onOff)=0;
Remarks:
Determines	if	code	generated	is	relative	to	the	current	sub-object	selection
state	or	if	explicit	sub-object	numbers	are	generated.

Parameters:
BOOL	onOff
TRUE	to	record	explicit,	absolute	sub-object	numbers;	FALSE	to	use	the
selection	set.

Prototype:
virtual	BOOL	EmitAbsoluteTransforms()=0;

Remarks:
Returns	TRUE	if	code	is	generated	using	absolute	transform	assignments;
FALSE	if	relative	transforms	operations	are	generated.

Prototype:
virtual	void	EmitAbsoluteTransforms(BOOL	onOff)=0;

Remarks:
Sets	if	code	is	generated	using	absolute	transform	assignments.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	EmitExplicitCoordinates()=0;

Remarks:
Returns	TRUE	if	the	macro	recorder	emits	explicit	coordinate	contexts;
otherwise	FALSE.	This	determines	whether	explicit	coordinate	contexts	are
emitted	in	the	generated	script.	For	example,	when	you	do	a	move()	call	or	a
.pos	assign	in	MAXScript,	the	coordinates	are	interpreted	with	respect	to	the
current	active	coordinate	system,	in	a	way	similar	to	interactive	transforms	in
the	3ds	max	UI.	You	set	up	the	current	system	using	a	coordsys	context,	like
this:

coordsys	parent	move	$foo	[10,0,0]
which	would	move	the	object	'foo'	[10,0,0]	in	its	parent's	coordinate	system.	If
you	just	say
move	$foo	[10,0,0]

it	will	work	relative	to	the	current	active	coordinate	system.	So,	when	this
method	returns	TRUE	3ds	max	always	sticks	the	coordsys	context	prefix	onto
a	generated	transform	script,	as	set	by	the	user	in	the	coordinate	system	drop-
down.

Prototype:
virtual	void	EmitExplicitCoordinates(BOOL	onOff)=0;

Remarks:
Sets	if	the	code	is	generated	using	explicit	coordinate	contexts.	See
EmitExplicitCoordinates()	above.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	BeginCreate(ClassDesc*	cd,	int	flags=0)=0;

Remarks:
You	would	use	this	method	if	implementing	a	custom	creation	manager.	This
method	starts	a	special	accumulation	'mode'	in	which	certain	other	Macro
Recorder	calls	are	treated	specially	until	the	next	EmitScript().
BeginCreate()	effectively	signals	the	start	of	a	scene	node	creation	and
enters	a	mode	in	which	calls	to	SetNodeTM(),	SetProperty(),
ParamBlockXSetValue()	and	SetSelProperty()	all	generate	keyword
parameters	to	the	current	constructor,	rather	than	emitting	stand-alone	property
assignment	scripts.	Outside	the	'create'	mode,	a	call	to	SetNodeTM()	would
generate	something	like:
move	$foo	[10,0,0]

but	when	in	the	mode	would	add	a	pos:	argument	to	the	constructor:
sphere	radius:20	pos:[10,0,0]

Parameters:
ClassDesc*	cd
Points	to	the	class	descriptor	for	the	plug-in.

Return	Value:
This	tells	you	whether	MAXScript	successfully	entered	the	BeginCreate
mode.	It	will	fail	if	MAXScript	can't	create	the	object	described	by	the
ClassDesc,	so	you	might	use	it	in	some	generic	situations	to	decided	whether
to	call	the	closing	EmitScript().

Prototype:
virtual	void	SetNodeTM(INode*	n,	Matrix3	m)=0;

Remarks:
This	method	is	for	internal	use	only.

Prototype:
virtual	void	ParamBlockSetValue(ParamBlock*	pb,	int	i,	BYTE
type,	...)=0;

Remarks:
This	method	is	for	internal	use	only.

Prototype:
virtual	void	ParamBlock2SetValue(ParamBlock2*	pb,	int	i,	int
tabIndex,	...)=0;

Remarks:
This	method	is	for	internal	use	only.

Prototype:
virtual	void	ParamBlock2SetCount(IParamBlock2*	pb,	int	i,	int
n)=0;

Remarks:
This	method	is	for	internal	use	only.

Prototype:
virtual	BOOL	BeginSelectNode()=0;

Remarks:
This	method	is	for	internal	use	only.

Prototype:
virtual	void	Select(INode*)=0;

Remarks:
This	method	is	for	internal	use	only.

Prototype:
virtual	void	DeSelect(INode*)=0;

Remarks:
This	method	is	for	internal	use	only.

Prototype:
virtual	void	MAXCommand(int	com)=0;

Remarks:
This	method	is	for	internal	use	only.

The	following	global	function	is	not	a	part	of	this	class:
Function:
void	InitMacroRecorder();

Remarks:
This	global	function	is	used	internally	to	inialize	the	macro	recorder	and
should	not	be	called	by	plug-in	developers.

Class	ILayerManager
See	Also:	Class	ReferenceTarget,	Class	ILayer.
class	ILayerManager	:	public	ReferenceTarget

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	is	an	interface	to	the	layer	manager.	Note	that	some	methods	of	this
class	are	not	functional	in	3ds	max	(only	in	3D	Studio	VIZ).

Data	Members:
public:
static	const	SClass_ID	kLayerManagerSuperClassID;
The	super	class	ID	of	the	layer	manager	interface.

Methods:
public:

Prototype:
virtual	bool	AddLayer(ILayer	*layer)=0;

Remarks:
Adds	the	specified	layer.

Parameters:
ILayer	*layer
Points	to	the	layer	to	add.

Return	Value:
Returns	true	if	the	layer	was	added;	false	if	not.

Prototype:
virtual	ILayer	*	CreateLayer(void)	=	0;

Remarks:
Creates	a	layer.	The	name	is	based	on	the	incremented	layer	count.

Prototype:
virtual	BOOL	DeleteLayer(const	TSTR	&	name)	=	0;

Remarks:
Deletes	the	layer	whose	name	is	passed.	Note:	This	method	does	nothing	in
3ds	max.

Parameters:
const	TSTR	&name
The	name	for	the	layer.

Return	Value:
TRUE	if	the	layer	was	deleted,	otherwise	FALSE.

Prototype:
virtual	void	SetCurrentLayer(const	TSTR	&name)=0;

Remarks:
Sets	the	layer	whose	name	is	passed	as	current.

Parameters:
const	TSTR	&name
The	name	for	the	new	current	layer.

Prototype:
virtual	void	SetCurrentLayer()=0;

Remarks:
Sets	the	current	layer	based	on	the	selection	set	(the	common	layer).

Prototype:
virtual	ILayer	*GetCurrentLayer()	const=0;

Remarks:
Returns	an	interface	to	the	current	layer.

Prototype:
virtual	void	EditLayer(const	TSTR	&name)=0;

Remarks:
Edits	the	layer	whose	name	is	passed.	Note:	This	method	does	nothing	in	3ds
max.

Parameters:
const	TSTR	&name
The	name	of	the	layer	to	edit.

Prototype:
virtual	void	DoLayerPropDialog(HWND	hWnd)=0;

Remarks:
Brings	up	the	layer	property	dialog.	Note:	This	method	does	nothing	in	3ds
max.

Parameters:
HWND	hWnd
The	parent	window	handle.

Prototype:
virtual	LayerIterator	*MakeIterator()=0;

Remarks:
This	method	is	for	internal	use	in	VIZ.

Prototype:
virtual	ConstLayerIterator	*MakeConstIterator()	const=0;

Remarks:
This	method	is	for	internal	use	in	VIZ.

Prototype:
virtual	int	GetLayerCount()=0;

Remarks:
Returns	the	number	of	layers.

Prototype:
virtual	ILayer	*GetLayer(const	TSTR	&name)	const=0;

Remarks:
Returns	a	pointer	to	a	layer	interface	for	the	named	layer.

Parameters:
const	TSTR	&name
The	name	of	the	layer	to	get.

Prototype:
virtual	void	DoLayerSelDialog(HWND	hWnd)=0;

Remarks:
Brings	up	the	select	layer	dialog.	Note:	This	method	does	nothing	in	3ds	max.

Parameters:
HWND	hWnd
The	parent	window	handle.

Prototype:
virtual	void	SetupToolList(HWND	hWnd)=0;

Remarks:
Sets	up	the	toolbar	list.	Note:	This	method	does	nothing	in	3ds	max.

Parameters:
HWND	hWnd
The	parent	window	handle.

Prototype:
virtual	void	ExtendMenu(HMENU	hMenu,	bool	geometry	=	true,
bool	grid	=	false)=0;

Remarks:
Extends	the	right	click	menu.	Note:	This	method	does	nothing	in	3ds	max.

Parameters:
HMENU	hMenu
The	handle	of	the	menu	to	append	to.
bool	geometry	=	true
Use	true	to	add	the	geometry	commands;	false	to	not	add	them.
bool	grid	=	false
Use	true	to	add	the	grid	commands;	false	to	not	add	them.

Prototype:
virtual	ILayer	*GetRootLayer()	const=0;

Remarks:
Returns	an	interface	to	the	0	layer.

Prototype:
virtual	void	Reset(BOOL	fileReset	=	FALSE)=0;

Remarks:
Resets	the	layer	manager.

Parameters:
BOOL	fileReset	=	FALSE
This	parameter	is	ignored.

Prototype:
virtual	void	SelectObjectsByLayer(HWND	hWnd)	=	0;

Remarks:
This	method	will	bring	up	the	select	objects	by	layer	dialog.

Parameters:
HWND	hWnd
The	handle	to	the	parent	window.

Class	IKMasterControl
See	Also:	Class	ReferenceTarget,	Class	IKSlaveControl,	Class	Control.
class	IKMasterControl	:	public	ReferenceTarget

Description:
This	class	is	available	in	release	2.0	and	later	only.

The	IK	Controller	requires	that	you	use	the	Bones	system.	When	you	create	the
bones,	a	slave	IK	controller	is	assigned	to	each	bone.	All	of	the	slave	IK
controllers	in	a	single	hierarchy	are,	in	turn,	controlled	by	a	master	IK	controller.
This	class	provides	two	methods	to	work	with	the	master	controller.	To	get	an
interface	to	this	class	call	GetInterface(I_MASTER);	on	the	controller	in
question.	If	the	return	value	is	non-NULL	you	can	cast	the	pointer	to	an	instance
of	this	class.
For	an	example	the	use	of	this	class	see
\MAXSDK\SAMPLES\OBJECTS\BONES.CPP.

Methods:

Prototype:
virtual	void	AddSlaveNode(INode	*node)=0;

Remarks:
Adds	the	specified	node	to	the	list	of	slave	nodes	maintained.

Parameters:
INode	*node
The	node	to	add.

Prototype:
virtual	void	*GetMasterBase()=0;

Remarks:
Returns	a	pointer	to	the	IK	master	object.

Prototype:
virtual	void	SetPosThresh(float	t)=0;

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Sets	the	position	threshold.	If	the	UI	for	the	master	controller	is	not	visible
while	this	method	is	called,	the	screen	is	not	redrawn	to	reflect	the	changes.
After	calling	this	method	you	should	therefore	call
Interface::RedrawViews().

Parameters:
float	t
The	value	to	set.

Prototype:
virtual	void	SetRotThresh(float	t)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	rotation	threshold.	If	the	UI	for	the	master	controller	is	not	visible
while	this	method	is	called,	the	screen	is	not	redrawn	to	reflect	the	changes.
After	calling	this	method	you	should	therefore	call
Interface::RedrawViews().

Parameters:
float	t
The	value	to	set.

Prototype:
virtual	void	SetIterations(int	i)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	iterations	value.	If	the	UI	for	the	master	controller	is	not	visible	while
this	method	is	called,	the	screen	is	not	redrawn	to	reflect	the	changes.	After
calling	this	method	you	should	therefore	call	Interface::RedrawViews().

Parameters:
int	i
The	value	to	set.

Prototype:
virtual	void	SetStartTime(TimeValue	s)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	start	time.	If	the	UI	for	the	master	controller	is	not	visible	while	this
method	is	called,	the	screen	is	not	redrawn	to	reflect	the	changes.	After	calling
this	method	you	should	therefore	call	Interface::RedrawViews().

Parameters:
TimeValue	s
The	time	to	set.

Prototype:
virtual	void	SetEndTime(TimeValue	e)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	end	time.	If	the	UI	for	the	master	controller	is	not	visible	while	this
method	is	called,	the	screen	is	not	redrawn	to	reflect	the	changes.	After	calling
this	method	you	should	therefore	call	Interface::RedrawViews().

Parameters:
TimeValue	e
The	time	to	set.

Prototype:
virtual	float	GetPosThresh()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	position	threshold.

Prototype:
virtual	float	GetRotThresh()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Returns	the	rotation	threshold.

Prototype:
virtual	int	GetIterations()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	iterations	setting.

Prototype:
virtual	TimeValue	GetStartTime()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	start	time.

Prototype:
virtual	TimeValue	GetEndTime()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	end	time.

The	following	function	is	not	part	of	this	class	but	is	available	for
use:

Function:
IKMasterControl	*CreateIKMasterControl();

Remarks:
This	global	function	creates	a	new	IK	master	controller.

Class	MeshDelta
See	Also:	Class	Mesh,	Class	FaceChange,	Class	FaceRemap,	Class
FaceSmooth,	Class	VertMove,	Class	UVVertSet,	Class	MapDelta,	Class
VDataDelta,	Class	AdjEdgeList,	Class	AdjFaceList,	Class	MeshChamferData,
Template	Class	Tab,	Class	BitArray.
class	MeshDelta	:	public	BaseInterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	represents	the	notion	of	a	mesh	edit.
This	is	an	SDK	class	that	represent	some	kind	of	change	to	a	mesh.	This	"delta"
can	include	topological,	geometric,	map,	and/or	selection	changes.	Most
standard	mesh	"edits"	available	in	the	Editable	Mesh	or	Edit	Mesh	interface	are
available	through	the	MeshDelta	SDK,	giving	developers	a	powerful	way	to
manipulate	meshes	while	not	having	to	"sweat	the	details"	of	maintaining	maps
to	match	the	mesh	changes,	updating	edge	selections,	etc.
The	MeshDelta	members	and	methods	make	use	of	a	number	of	mesh-related
classes,	including	Class	FaceChange,	Class	FaceRemap,	Class	FaceSmooth,
Class	VertMove,	Class	UVVertSet,	Class	MapDelta,	Class	VDataDelta,	Class
AdjEdgeList,	Class	AdjFaceList,	Class	MeshChamferData.
While	we	often	talk	about	the	characteristics	of	the	"input	mesh"	that	a
MeshDelta	is	based	on,	all	MeshDeltas	should	be	able	to	cope	with	any	mesh.
Note:	You	must	#include	"MESHDLIB.H"	to	use	this	class	as	it's	not
included	by	default	by	MAX.H.

Methods	Groups:
The	hyperlinks	below	take	you	to	the	start	of	groups	of	related	methods	within
the	class:
Initialization	&	Cleanup
Mesh	Interaction
Composition	and	operators
Characteristics
Lookup	Table	Methods
Basic	Operations
Advanced	additive	operations

Advanced	operations
I/O,	Debugging

Data	Members:
public:
DWORD	vnum
The	expected	number	of	vertices	in	the	input	mesh.
DWORD	fnum;
The	expected	number	of	faces	in	the	input	mesh.
Tab<VertMove>	vMove;
This	data	member	stores	movements	of	input	vertices.	Each	VertMove	consists
of	a	vertex	ID	indicating	which	vertex	should	be	moved	and	a	Point3	offset	in
object	space.	VertMoves	are	stored	in	vertex	ID	order,	and	there	is	never	more
than	one	VertMove	per	original	vertex.
Tab<VertMove>	vClone;
If	the	vClone[i]	record	has	a	vid	of	UNDEFINED,	it's	considered	a	"create",
and	the	coordinates	of	vClone[i].p	are	considered	to	be	in	object	space.	If
vClone[i].vid	is	not	undefined,	it's	the	index	of	a	vertex	"original"	in	the	input
mesh,	and	vClone[i].p	is	treated	as	an	offset	from	that	vertex.	If	the	vertex	is
not	present	in	the	input	mesh,	i.e.	vClone[i].vid	>=	mesh::numVerts,	the	clone
will	not	be	created	in	the	output.	All	creates	and	clones	are	stored	in	the	order
created..
BitArray	vDelete;
This	data	member	stores	deletions	of	vertices	in	the	input	mesh.	vDelete’s	size
is	vnum.
Tab<FaceCreate>	fCreate;
This	data	member	stores	faces	newly	created	as	part	of	the	MeshDelta.	These
are	stored	in	the	order	created.
Tab<FaceRemap>	fRemap;
This	data	member	stores	changes	in	which	vertices	are	used	by	existing	faces.
See	class	FaceRemap	for	more	information.	These	are	stored	in	original	face
order,	and	there	is	never	more	than	one	per	original	face.
Tab<FaceChange>	fChange;
This	data	member	stores	changes	in	input	face	characteristics,	such	as	material
ID,	edge	visibility,	and	face	hiding.	See	class	FaceChange	for	more

information.	These	are	stored	in	original	face	order,	and	there	is	never	more
than	one	per	original	face.
Tab<FaceSmooth>	fSmooth;
This	data	member	stores	changes	in	input	face	smoothing	groups.	See	class
FaceSmooth	for	more	information.	These	are	stored	in	original	face	order,	and
there	is	never	more	than	one	per	original	face.
BitArray	fDelete;
This	data	member	stores	deletions	of	faces	in	the	input	mesh.	The	size	of	this
BitArray	is	fnum.
BitArray	vsel;
This	data	member	stores	the	vertex	selection	of	the	output	mesh.
BitArray	esel;
This	data	member	stores	the	edge	selection	of	the	output	mesh.	As	with	class
Mesh’s	edgeSel	data	member,	this	information	is	indexed	by	side	of	face:
esel[ff*3+k]	is	the	edge	selection	for	face	ff,	side	k.
BitArray	fsel;
This	data	member	stores	the	face	selection	of	the	output	mesh.
BitArray	vhide;
This	data	member	stores	the	vertex	hide	information	of	the	output	mesh.
MapDelta	*map;
Points	to	an	array	of	MapDeltas	which	maintain	any	relevant	changes	to	the
various	map	channels.	The	size	of	this	array	is	always	equal	to
mapSupport.GetSize().
BitArray	mapSupport;
Indicates	which	maps	are	supported	by	this	MeshDelta.
VDataDelta	*vd;
Points	to	an	array	of	VDataDeltas	which	maintain	any	relevant	changes	to	the
various	vertex	data	channels.	The	size	of	this	array	is	always	equal	to
vdSupport.GetSize().
BitArray	vdSupport;
Indicates	which	vertex	data	channels	are	supported	by	this	MeshDelta.

Methods:
public:

Initialization	&	Cleanup
Prototype:
MeshDelta();

Remarks:
Constructor.	Initializes	the	MeshDelta	with	NULL	pointers	and	0’s	for	input
mesh	size.

Prototype:
MeshDelta(const	Mesh	&m);

Remarks:
Constructor.	Initializes	the	MeshDelta	to	be	based	on	the	mesh	given.
MapDeltas	and	VDataDeltas	are	allocated	as	appropriate,	and	vnum	and	fnum
are	set.

Prototype:
~MeshDelta();

Remarks:
Destructor.	Frees	all	allocated	memory,	including	the	MapDeltas.

Prototype:
void	InitToMesh(const	Mesh	&m);

Remarks:
Initializes	the	MeshDelta	to	the	mesh	given,	setting	map	and	vdata	support	as
appropriate.	Does	NOT	clear	out	existing	changes.

Parameters:
const	Mesh	&m
The	mesh	to	init	from.

Prototype:
void	ClearAllOps();

Remarks:
Clears	out	all	existing	mesh	changes.	Zeroes	all	the	vCreate,	vMove,	etc

arrays,	as	well	as	those	in	the	active	MapDeltas.	Does	not	clear	memory.

Prototype:
void	SetInFNum(int	nface);

Remarks:
Sets	the	number	of	faces	in	the	input	mesh.	NOTE	that	if	nface	is	less	than	the
current	fnum,	the	data	relating	to	the	extra	faces	will	be	lost.	(That	is,	if	one	of
your	face	remaps	is	applied	to	face	32,	and	you	SetInFNum	to	30,	that	face
remap	will	be	lost,	and	will	not	be	recovered	if	you	later	SetInFNum	to	35.)	It
is	NOT	necessary	to	call	this	method	before	applying	this	MeshDelta	to	a
smaller	than	expected	Mesh.

Parameters:
int	nface
The	number	of	faces	expected	from	the	input	mesh.

Prototype:
void	SetInVNum(int	nv);

Remarks:
Sets	the	number	of	vertices	in	the	input	mesh.	NOTE	that	if	nv	is	less	than	the
current	vnum,	the	data	relating	to	the	extra	vertices	will	be	lost.	(That	is,	if	one
of	your	vertex	moves	is	applied	to	vertex	32,	and	you	SetInVNum	to	30,	that
vertex	move	will	be	lost,	and	will	not	be	recovered	if	you	later	SetInVNum	to
35.)	It	is	NOT	necessary	to	call	this	method	before	applying	this	MeshDelta	to
a	smaller	than	expected	Mesh.

Parameters:
int	nv
The	number	of	vertices	expected	from	the	input	mesh.

Prototype:
void	SetMapNum(int	num,	bool	keep=TRUE);

Remarks:
Sets	the	number	of	map	channels	used	by	the	MeshDelta	–	allocates	the	"map"
array.

Parameters:
int	num
The	number	of	maps	to	allocate.
bool	keep=TRUE
If	TRUE	any	previous	maps	are	kept;	otherwise	they	are	discarded.

Prototype:
int	GetMapNum();

Remarks:
Gets	the	number	of	map	channels	in	the	MeshDelta	–	equivalent	to
mapSupport.GetSize().

Prototype:
MapDelta	&	Map(int	mp);

Remarks:
Data	accessor	-	gets	the	MapDelta	for	the	specified	map	channel.	Since	in	4.0
we	now	have	"hidden	map	channels"	which	are	accessed	by	negative	indices
(-1	for	MAP_SHADING,	for	example),	data	accessor	methods	like	this	one
should	be	used	instead	of	the	actual	arrays.	(Hidden	map	channels	are	stored
in	a	new	private	data	member,	not	as	part	of	the	public	map	array.)

Prototype:
bool	getMapSupport	(int	mp);

Remarks:
Indicates	whether	the	specified	map	channel	is	supported	by	this	MeshDelta.
Since	in	4.0	we	now	have	"hidden	map	channels"	which	are	accessed	by
negative	indices	(-1	for	MAP_SHADING,	for	example),	data	accessor
methods	like	this	one	should	be	used	instead	of	the	actual	data	members.
(Hidden	map	channel	support	information	is	stored	in	a	new	private	data
member,	not	as	part	of	the	public	mapSupport	BitArray.)

Prototype:
void	setMapSupport	(int	mp,	bool	val=true);

Remarks:
Sets	map	support	in	this	MeshDelta	for	the	specified	map	channel.	Since	in	4.0
we	now	have	"hidden	map	channels"	which	are	accessed	by	negative	indices
(-1	for	MAP_SHADING,	for	example),	data	accessor	methods	like	this	one
should	be	used	instead	of	the	actual	data	members.	(Hidden	map	channel
support	information	is	stored	in	a	new	private	data	member,	not	as	part	of	the
public	mapSupport	BitArray.)

Prototype:
bool	hasMapSupport	();

Remarks:
Indicates	whether	any	map	channel	is	supported	by	this	MeshDelta.

Prototype:
void	SetVDataNum(int	num,	bool	keep=TRUE);

Remarks:
Sets	the	number	of	vertex	data	channels	used	by	the	MeshDelta	–	allocates	the
"vd"	array.

Parameters:
int	num
The	number	of	vertex	data	channels	to	allocate.
bool	keep=TRUE
If	TRUE	any	previous	vertex	data	channels	are	kept;	otherwise	they	are
discarded.

Prototype:
int	GetVDataNum();

Remarks:
Gets	the	number	of	vertex	data	channels	in	the	MeshDelta	–	equivalent	to
vdSupport.GetSize().

Prototype:
void	AddVertexColors();

Remarks:
Activates	the	vertex	color	MapDelta,	adding	whatever	new	map	verts	or	faces
are	needed	to	match	the	current	MeshDelta.	After	calling	this	method,
applying	this	MeshDelta	to	a	mesh	without	vertex	colors	will	result	in	a	vertex
color	map	with	all	white	vertices	and	a	topology	identical	to	the	mesh.

Prototype:
void	AddMap(int	mapID);

Remarks:
Activates	the	specified	MapDelta,	adding	whatever	new	map	verts	or	faces	are
needed	to	match	the	current	MeshDelta.	If	mapID	is	0,	the	standard	vertex
colors	(white)	will	be	applied	(see	AddVertexColors).	Otherwise,	after	calling
this	method,	applying	this	MeshDelta	to	a	mesh	without	the	specified	map
active	will	result	in	a	map	with	the	same	topology	as	the	mesh	and	UVVerts
that	are	copies	of	the	mesh	vertices.

Parameters:
int	mapID
The	map	channel	to	add.	0	represents	vertex	colors,	1	is	the	original	map
channel	(referred	to	in	class	Mesh	by	tVerts	and	tvFaces),	and	2-99	are	the
new	map	channels	(stored	in	meshes	in	the	MeshMap	class).

Prototype:
void	AddVertexData(int	vdChan,	Mesh	*m=NULL);

Remarks:
Activates	the	specified	vertex	data	channel,	creating	a	default	set	of	vertex
data	to	match	the	output	of	the	current	MeshDelta.	("Default"	values	of	vertex
data	depend	on	the	channel,	and	are	given	by	VDataDefault	(vdChan).)

Parameters:
int	vdChan
The	vertex	data	channel
Mesh	*m=NULL
A	pointer	to	the	Mesh	object.

Mesh	Interaction
Prototype:
void	FillInFaces(Mesh	&	m);

Remarks:
To	make	things	easy	for	developers,	it’s	possible	to	create	or	remap	mapping
faces	to	use	UNDEFINED	mapping	verts.	This	routine,	which	is	called	by
Apply	below,	fills	in	those	UNDEFINED	mapping	values	with	the	mapping
vertices	used	by	neighboring	faces,	or,	if	necessary,	by	new	mapping	vertices.
(These	new	mapping	vertices	are	always	(.5,.5,0)	for	regular	map	channels	or
(1,1,1)	for	the	vertex	color	channel.)
This	process	does	not	produce	very	good	maps,	but	it	allows	a	sort	of	minimal
mapping	support	that	prevents	maps	from	being	lost	before	the	user	can	make
their	manual	corrections.

Prototype:
void	Apply(Mesh	&	m);

Remarks:
Changes	the	given	mesh	by	this	MeshDelta,	in	the	following	manner:
First,	any	maps	that	are	supported	by	the	MeshDelta	but	not	by	the	mesh	are
assigned	to	the	mesh	in	their	default	form.	(Vertex	color	channels	are	white,
and	other	maps	are	copies	of	the	mesh	vertices.	All	have	the	same	topology	as
the	mesh.)
Next,	any	UNDEFINED	mapping	verts	in	the	MeshDelta	are	filled	in	by
FillInFaces.
Then	the	new	vertices	are	added,	creates	first,	followed	by	clones.	The	original
vertices	are	then	moved.
The	faces	are	then	modified,	by	applying	all	the	FaceRemaps,	FaceChanges,
and	FaceSmooths	to	the	appropriate	faces.	New	faces	(in	fCreate)	are
appended	to	the	end	of	the	face	list.
Map	changes	are	applied	to	all	active	maps,	and	map	channels	not	supported
by	this	MeshDelta	are	removed.
After	all	that	is	done,	the	vertices	and	faces	marked	in	the	vDelete	and	fDelete
arrays	are	deleted.
Finally,	the	vertex	data,	vertex	hide,	and	selections	kept	in	the	MeshDelta	are

applied	to	the	result.

Prototype:
DWORD	PartsChanged();

Remarks:
Indicates	what	data	channels	of	a	mesh	would	be	changed	by	this	MeshDelta.
For	instance,	a	MeshDelta	with	vertex	moves	but	no	other	changes	would
return	PART_GEOM|PART_SELECT.	PART_GEOM	represents	the	moves,
and	PART_SELECT	represents	the	fact	that	MeshDeltas	always	overwrite
selection	info.	Most	of	the	changes	in	a	MeshDelta	will	alter	PART_TOPO.
PART_VERTCOLOR	and	PART_TEXMAP	may	also	be	returned.
This	is	especially	useful	for	knowing	what	parts	of	a	mesh	to	back	up	in	a
restore	object	for	an	undo/redo.	(See	the	SDK	implementation	of	Editable
Mesh	for	an	example	of	this.)	Also,	it	can	be	used	for	invalidating	temporary
data,	as	in	both	Edit	and	Editable	Mesh.

Composition	&	Operators
MeshDeltas	can	be	multiplied	together	like	Transforms	before	being	applied	to	a
mesh.	This	is	especially	useful	in	Edit	Mesh,	where	a	single	MeshDelta	is	used
to	store	the	current	"state"	of	the	Edit	Mesh,	and	extra	MeshDeltas	are	created
for	each	operation	and	added	on	to	the	main	MeshDelta.
An	example	of	this	is	as	follows:	given	a	Mesh	m	that	we	want	to	divide	a	face
on,	then	we	want	to	break	the	vertex	created	in	the	face	divide.	These	operations
are	adequately	handled	by	the	DivideFace	and	BreakVerts	methods
independently,	but	to	combine	the	two	into	one	operation,	we	must	compose	two
MeshDeltas.
MeshDelta	DivideThenBreak	(const	Mesh	&	m,	int	ff)	{
MeshDelta	md1,	md2;
Mesh	mcopy	=	m;
md1.DivideFace	(mcopy,	ff);
int	nvid	=	md1.vnum;	//	since	DivideFace	creates	exactly	one	vertex,
this	must	be	its	index	in	the	result.
md1.Apply	(mcopy);
md2.InitToMesh	(mcopy);	//	second	MeshDelta	must	be	based	on

first	MeshDelta	result.
BitArray	vset;
vset.SetSize	(mcopy.numVerts);
vset.Set	(nvid);
md2.BreakVerts	(mcopy,	vset);	//	breaks	the	new	vertex	into	a
separate	vert	for	each	face.
md1.Compose	(md2);	//	Adds	the	second	MeshDelta	into	the	first.
return	md1;
}
If	all	we	wanted	was	to	perform	these	operations	on	the	mesh	given,	we	could
have	done	so	without	making	the	composition.	The	point	here	is	to	be	able	to
construct	complex	MeshDeltas	representing	a	series	of	user	operations	while
remaining	flexible	enough	to	respond	to	changes	in	the	actual	mesh	given	as
input.	This	is	a	central	feature	of	the	Edit	Mesh	modifier,	completely	rewritten
for	3.0,	found	in	MAXSDK\SAMPLES\MODIFIERS.

Prototype:
DWORD	Compose(MeshDelta	&	td);

Remarks:
Appends	the	given	MeshDelta	to	the	current	one.

Parameters:
MeshDelta	&	td
The	MeshDelta	to	append.	This	MeshDelta	may	be	modified	to	make	it
suitable,	ie	the	vnum	and	fnum	values	will	be	set	to	the	expected	output	of	the
current	MeshDelta	if	they	don’t	already	match.	(This	may	result	in	the	loss	of
some	data	–	see	"SetInVNum"	and	"SetInFNum"	for	more	information.)

Prototype:
MeshDelta	&	operator*=(MeshDelta	&	td);

Remarks:
Appends	the	given	MeshDelta	to	the	current	one.

Parameters:
MeshDelta	&	td

The	MeshDelta	to	append.	This	MeshDelta	may	be	modified	to	make	it
suitable,	ie	the	vnum	and	fnum	values	will	be	set	to	the	expected	output	of	the
current	MeshDelta	if	they	don’t	already	match.	(This	may	result	in	the	loss	of
some	data	–	see	"SetInVNum"	and	"SetInFNum"	for	more	information.)

Prototype:
MeshDelta	&	operator=(MeshDelta	&	td);

Remarks:
Assignment	operator	–	makes	this	MeshDelta	just	like	the	one	given.

Prototype:
DWORD	ChangeFlags(Tab<DWORD>	*mChannels=NULL);

Remarks:
Indicates	what	parts	of	a	MeshDelta	could	be	changed	if	this	MeshDelta	were
appended	to	it.	This	is	useful	when	backing	up	MeshDelta	for	Restore	Objects.
For	instance,	if	you	had	a	MeshDelta	with	lots	of	face	smoothing	changes,	and
you	wanted	to	compose	it	with	one	that	only	moved	vertices,	there	would	be
no	reason	to	back	up	the	smoothing	changes	for	an	undo.

Parameters:
Tab<DWORD>	*mChannels=NULL
If	non-NULL,	this	points	to	a	table	that	should	be	filled	with	change	flags	for
the	various	map	channels.	The	table	is	set	to	the	number	of	map	channels,	and
each	DWORD	in	it	is	filled	in	by	calling	MapDelta::ChangeFlags	on	the
appropriate	map	channel	(or	left	at	zero	if	the	map	channel	is	inactive.)

Return	Value:
Returns	some	combination	of	the	following	flags,	corresponding	to	the	data
members	that	would	be	changed:
MDELTA_VMOVE
MDELTA_VCREATE
MDELTA_VCLONE
MDELTA_VDELETE
MDELTA_VDATA
MDELTA_FREMAP

MDELTA_FCHANGE
MDELTA_FCREATE
MDELTA_FDELETE
MDELTA_FDATA
MDELTA_NUMBERS
MDELTA_FSMOOTH

Note	that	in	4.0	and	thereafter,	the	MDELTA_VCREATE	and
MDELTA_VCLONE	flags	are	identical	and	represent	the	same
information.	(This	was	not	true	in	3.0	or	3.1.)

Prototype:
void	CopyMDChannels(MeshDelta	&	from,	DWORD	channels,
Tab<DWORD>	*mChannels=NULL);

Remarks:
Copies	the	specified	parts	of	the	MeshDelta.	(Useful	in	combination	with
ChangeFlags	to	create	efficient	Restore	objects.)

Parameters:
MeshDelta	&	from
The	MeshDelta	to	copy	into	this.
DWORD	channels
Indicates	the	parts	to	copy	–	some	combination	of	the	following	flags:
MDELTA_VMOVE
MDELTA_VCREATE
MDELTA_VCLONE
MDELTA_VDELETE
MDELTA_VDATA
MDELTA_FREMAP
MDELTA_FCHANGE
MDELTA_FCREATE
MDELTA_FDELETE
MDELTA_FDATA

MDELTA_NUMBERS
MDELTA_FSMOOTH

Note	that	in	4.0	and	thereafter,	the	MDELTA_VCREATE	and
MDELTA_VCLONE	flags	are	identical	and	represent	the	same
information.	(This	was	not	true	in	3.0	or	3.1.)
Tab<DWORD>	*mChannels=NULL
If	non-NULL,	this	points	to	a	table	that	contains	channels	to	copy	in	the
various	map	channels.	The	table	should	be	of	the	size	of	the	number	of	map
channels.	For	each	active	map	channel	in	from,	the	corresponding	DWORD	in
this	table	is	passed	in	MapDelta::CopyMDChannels	to	copy	the	relevant	parts
of	the	map.

Characteristics
The	following	methods	give	useful	information	about	the	MeshDelta.

Prototype:
DWORD	NumVMove(DWORD	inVNum);

Remarks:
Returns	the	number	of	vertex	moves	that	would	be	applied	to	a	mesh	with	the
specified	number	of	vertices.	If	that	number	equals	this	MeshDelta’s	vnum,
this	is	simply	vMove.Count().

Parameters:
DWORD	inVNum
The	number	of	vertices	in	the	input	mesh	we’re	inquiring	about.

Prototype:
DWORD	NumVClone(DWORD	inVNum);

Remarks:
Returns	the	number	of	vertex	clones	&	creates	that	would	be	applied	to	a	mesh
with	the	specified	number	of	vertices.	If	that	number	equals	this	MeshDelta’s
vnum,	this	is	simply	vClone.Count().	If,	however,	inVNum	is	lower	than	the
expected	vnum,	some	of	the	clones	might	be	eliminated,	reducing	this	number.

Parameters:

DWORD	inVNum
The	number	of	vertices	in	the	input	mesh	we’re	inquiring	about.

Prototype:
DWORD	NumVDelete(DWORD	inVNum);

Remarks:
Returns	the	number	of	vertex	deletes	that	would	be	applied	to	a	mesh	with	the
specified	number	of	vertices.	If	that	number	equals	this	MeshDelta’s	vnum,
this	is	simply	vDelete.NumberSet	().

Parameters:
DWORD	inVNum
The	number	of	vertices	in	the	input	mesh	we’re	inquiring	about.

Prototype:
DWORD	NumFDelete(DWORD	inFNum);

Remarks:
Returns	the	number	of	face	deletes	that	would	be	applied	to	a	mesh	with	the
specified	number	of	faces.	If	inFNum	equals	this	MeshDelta’s	fnum,	this	is
simply	fDelete.NumberSet	().

Parameters:
DWORD	inFNum
The	number	of	faces	in	the	input	mesh	we’re	inquiring	about.

Prototype:
int	NumFCreate	();
Remarks:
Returns	the	number	of	face	creates	in	this	MeshDelta.

Prototype:
DWORD	outVNum();

Remarks:
Returns	the	number	of	vertices	in	the	output	mesh,	assuming	that	the	input

mesh	is	of	the	expected	(vnum)	size.

Prototype:
DWORD	outVNum(int	inVNum);

Remarks:
Returns	the	number	of	vertices	in	the	output	mesh,	assuming	that	the	input
mesh	has	the	specified	number	of	vertices.

Parameters:
DWORD	inVNum
The	number	of	vertices	expected	in	the	input	mesh.

Prototype:
DWORD	outFNum();

Remarks:
Returns	the	number	of	faces	in	the	output	mesh,	assuming	that	the	input	mesh
is	of	the	expected	(fnum)	size.

Prototype:
DWORD	outFNum(int	inFNum);

Remarks:
Returns	the	number	of	faces	in	the	output	mesh,	assuming	that	the	input	mesh
has	the	specified	number	of	faces.

Parameters:
DWORD	inFNum
The	number	of	faces	expected	in	the	input	mesh.

Prototype:
Point3	outVert(Mesh	&	m,	DWORD	v);

Remarks:
Returns	the	expected	location	in	the	output	mesh	of	the	specified	vertex.

Parameters:
Mesh	&	m

The	input	mesh.
DWORD	v
The	vertex	you	want	the	output	location	of.	This	index	is	input-based	–	the
vertex	index	in	m,	not	in	the	output	mesh.

Prototype:
Face	outFace(Mesh	&	m,	DWORD	f);

Remarks:
Returns	the	specified	face	as	it	would	appear	in	the	MeshDelta	output.	Face
Changes,	Smooths,	and	Remaps	are	applied.

Parameters:
Mesh	&	m
The	input	mesh.
DWORD	f
The	index	of	the	face	you	want	the	output	version	of.	This	index	is	input-based
–	the	face	index	in	m,	not	in	the	output	mesh.

Prototype:
DWORD	RemapID(DWORD	ff);

Remarks:
Obtains	the	index	of	the	fRemap	entry	that	relates	to	this	face.

Parameters:
DWORD	ff
The	input-based	face	index.

Return	Value:
If	there	is	such	an	entry,	the	index	is	returned,	so	fRemap[RemapID(ff)].fid	==
ff.	If	there	is	no	remap	record	for	this	face,	the	method	returns	UNDEFINED.

Prototype:
DWORD	IsRemapped(DWORD	ff,	DWORD	vid);

Remarks:
Tells	whether	the	specified	corner	of	the	specified	face	has	been	remapped	in

this	MeshDelta.
Parameters:
DWORD	ff
The	input-based	face	index.
DWORD	vid
The	corner	of	the	face	–	0,	1,	or	2.

Return	Value:
If	this	corner	has	been	remapped,	it	returns	the	vertex	it’s	been	remapped	to.
Otherwise,	it	returns	UNDEFINED.

Prototype:
DWORD	MoveID(DWORD	i);

Remarks:
Obtains	the	index	of	the	vMove	entry	that	relates	to	this	vertex.

Parameters:
DWORD	i
The	input-based	vertex	index.

Return	Value:
The	index	in	the	vMove	array	of	the	vertex	move	corresponding	to	this	vertex,
or	UNDEFINED	if	this	vertex	has	no	move	associated	with	it.

Prototype:
bool	IsVCreate(DWORD	i);

Remarks:
No	longer	used.
This	method	was	used	in	3.0	and	3.1	to	indicate	whether	the	specified	vertex
was	created	as	a	create,	not	a	clone	in	this	MeshDelta.	In	4.0,	we	integrated	the
clone	and	create	records	together,	and	this	method	is	now	set	to	always	return
FALSE.

Parameters:
DWORD	i
The	output-based	vertex	index.

Prototype:
bool	IsVClone(DWORD	i);

Remarks:
Indicates	whether	or	not	the	specified	vertex	is	created	in	this	MeshDelta.

Parameters:
DWORD	i
The	output-based	vertex	index.

Prototype:
DWORD	VCloneOf(DWORD	i);

Remarks:
Tells	you	what	input	vertex	the	specified	output	vertex	is	a	clone	of.

Parameters:
DWORD	i
The	output-based	vertex	index.

Return	Value:
The	index	in	the	input	mesh	of	the	original	vertex	this	one’s	a	clone	of.	If	this
vertex	is	not	a	clone,	UNDEFINED	is	returned.

Prototype:
bool	IsFCreate(DWORD	i);

Remarks:
Indicated	whether	the	specified	face	was	created	in	this	MeshDelta.

Parameters:
DWORD	i
The	face	index	in	the	output	mesh.

Lookup	Table	Methods
Prototype:
void	UpdateLUTs(int	extraV=0,	int	extraF=0);

Remarks:

Updates	the	MeshDelta’s	internal	lookup	tables,	which	make	use	of	all	delete
and	create	records	to	set	up	a	correspondence	between	output	and	input
vertices	and	faces.

Parameters:
int	extraV
If	nonzero,	this	indicates	the	number	of	extra	spaces	that	should	be	added	to
the	lookup	table.	This	is	useful	for	example	if	you	want	the	lookup	table	to
still	be	valid	after	the	next	<extraV>	vertex	creates	or	clones.
int	extraF
If	nonzero,	this	indicates	the	number	of	extra	spaces	that	should	be	added	to
the	lookup	table.	This	is	useful	for	example	if	you	want	the	lookup	table	to
still	be	valid	after	the	next	<extraF>	face	creates.

Prototype:
void	ClearLUTs();

Remarks:
Invalidates	and	clears	the	lookup	tables.	This	usually	only	needs	to	be	called
internally.

Prototype:
DWORD	VLut(DWORD	i);

Remarks:
Finds	the	input	mesh	index	of	the	vertex	with	the	specified	output	mesh	index.
Note	that	these	indices	are	the	same	if	there	are	no	vertex	deletes.

Parameters:
DWORD	i
The	output	mesh	index.

Return	Value:
The	input	mesh	index	of	the	same	vertex.	If	the	vertex	specified	is	actually
created	by	this	MeshDelta,	the	return	value	would	be	vnum+i	for	vClone[i].

Prototype:
DWORD	FLut(DWORD	i);

Remarks:
Finds	the	input	mesh	index	of	the	face	with	the	specified	output	mesh	index.
Note	that	these	indices	are	the	same	if	there	are	no	face	deletes.

Parameters:
DWORD	i
The	output	mesh	index.

Return	Value:
The	input	mesh	index	of	the	same	face.	If	the	face	specified	is	actually	created
by	this	MeshDelta,	the	return	value	would	be	fnum+i	for	fCreate[i].

Prototype:
DWORD	PostVIndex(DWORD	i);

Remarks:
Returns	the	index	in	the	output	mesh	of	the	specified	input	vertex.
Note	that	these	indices	are	the	same	if	there	are	no	vertex	deletes.

Parameters:
DWORD	i
The	index	of	the	vertex	in	the	input	mesh.

Return	Value:
The	output	mesh	index	of	the	same	vertex.	If	the	vertex	was	deleted	in	this
MeshDelta,	UNDEFINED	is	returned.

Prototype:
DWORD	PostFIndex(DWORD	i);

Remarks:
Returns	the	index	in	the	output	mesh	of	the	specified	input	face.
Note	that	these	indices	are	the	same	if	there	are	no	face	deletes.

Parameters:
DWORD	i
The	index	of	the	face	in	the	input	mesh.

Return	Value:
The	output	mesh	index	of	the	same	face.	If	the	face	was	deleted	in	this

MeshDelta,	UNDEFINED	is	returned.

Basic	Operations
These	operations	are	the	"building	blocks"	of	MeshDeltas.	All	of	them	may	be
safely	performed	on	MeshDeltas	that	are	already	quite	complex.	Those	that
accept	DWORD	indices	require	output	mesh	indices,	as	all	operations	are
appended	to	the	end	of	the	existing	delta.

Prototype:
void	Move(int	i,	const	Point3	&	p);

Remarks:
Moves	a	single	vertex.	(Note	that	if	the	same	vertex	is	moved	twice,	the	new
move	is	simply	added	to	the	old	one	–	there	is	never	more	than	one	VertMove
in	the	vMove	array	for	a	single	input	vertex.)

Parameters:
int	i
The	index	of	the	vertex	in	the	output	mesh.
const	Point3	&	p
The	vector	to	move	the	vertex	by.

Prototype:
void	Move(BitArray	&	sel,	const	Point3	&	p);

Remarks:
Moves	the	specified	vertices.	(Note	that	if	the	same	vertex	is	moved	twice,	the
new	move	is	simply	added	to	the	old	one	–	there	is	never	more	than	one
VertMove	in	the	vMove	array	for	a	single	input	vertex.)

Parameters:
BitArray	&	sel
Indicates	which	vertices	should	be	moved.	Vertices	are	indexed	based	on	the
output	mesh.
const	Point3	&	p
The	vector	to	move	the	vertices	by.

Prototype:
void	Move(VertMove	*vm,	int	num);

Remarks:
Adds	in	the	specified	vertex	moves.	(Note	that	if	the	same	vertex	is	moved
twice,	the	new	move	is	simply	added	to	the	old	one	–	there	is	never	more	than
one	VertMove	in	the	vMove	array	for	a	single	input	vertex.)

Parameters:
VertMove	*vm
A	pointer	to	an	array	of	VertMoves	to	apply	to	this	MeshDelta.	Vertices	are
indexed	based	on	the	output	mesh.
int	num
The	size	of	the	VertMove	array.

Prototype:
DWORD	VCreate(Point3	*p,	int	num=1,	BitArray	*sel=NULL,
BitArray	*hide=NULL);

Remarks:
Creates	new	vertices.

Parameters:
Point3	*p
A	pointer	to	an	array	of	points	representing	the	new	vertices.
int	num
The	size	of	the	point	array.
BitArray	*sel=NULL
If	non-NULL,	this	points	to	a	BitArray	of	size	num	that	indicates	which	of
these	new	vertices	should	be	selected.	(If	NULL,	none	of	the	new	vertices	are
selected.)
BitArray	*hide=NULL
If	non-NULL,	this	points	to	a	BitArray	of	size	num	that	indicates	which	of
these	new	vertices	should	be	hidden.	(If	NULL,	none	of	the	new	vertices	are
hidden.)

Return	Value:
The	index	(in	the	output	mesh)	of	the	first	of	these	new	vertices.

Prototype:
DWORD	VClone(DWORD	*v,	int	num=1);

Remarks:
Clones	some	vertices.

Parameters:
DWORD	*v
A	pointer	to	an	array	of	indices	of	verts	that	should	be	cloned.
int	num
The	size	of	the	array.

Return	Value:
The	index	(in	the	output	mesh)	of	the	first	of	the	clones.

Prototype:
DWORD	VClone(DWORD	*v,	Point3	*off,	int	num=1);

Remarks:
Clones	some	vertices.

Parameters:
DWORD	*v
A	pointer	to	an	array	of	ids	of	vertices	that	should	be	cloned.
Point3	*off
A	pointer	to	an	array	of	offsets	for	the	clones.
int	num
The	size	of	the	arrays.

Return	Value:
The	index	(in	the	output	mesh)	of	the	first	of	the	clones.

Prototype:
DWORD	VClone(VertMove	*vm,	int	num=1);

Remarks:
Clones	some	vertices.

Parameters:

VertMove	*vm
A	pointer	to	an	array	of	VertMoves	indicating	which	vertices	should	be	cloned
and	what	offsets	the	clones	should	use.
int	num
The	size	of	the	vm	array.

Return	Value:
The	index	(in	the	output	mesh)	of	the	first	of	the	clones.

Prototype:
DWORD	VClone(DWORD	v);

Remarks:
Clones	a	single	vertex.

Parameters:
DWORD	v
The	index	(in	the	output	mesh)	of	the	vertex	you	wish	to	clone.

Return	Value:
The	index	(in	the	output	mesh)	of	the	clone.

Prototype:
DWORD	VClone(DWORD	v,	Point3	off);

Remarks:
Clones	and	offsets	a	single	vertex.

Parameters:
DWORD	v
The	index	(in	the	output	mesh)	of	the	vertex	you	wish	to	clone.
Point3	off
The	desired	offset	from	the	original	vertex.

Return	Value:
The	index	(in	the	output	mesh)	of	the	clone.

Prototype:
void	VDelete(DWORD	*v,	int	num=1);

Remarks:
Deletes	the	specified	vertices.

Parameters:
DWORD	*v
A	pointer	to	an	array	of	(output-based)	ids	of	the	vertices	that	should	be
deleted.
int	num
The	number	of	vertices	to	delete	(the	size	of	the	v	array).

Prototype:
void	VDelete(BitArray	&	vdel);

Remarks:
Deletes	the	specified	vertices.

Parameters:
BitArray	&	vdel
A	BitArray,	of	size	OutVNum,	indicating	which	of	the	vertices	should	be
deleted.	Vertices	in	this	array	are	indexed	by	output	mesh	order.

Prototype:
DWORD	FCreate(Face	*f,	int	num=1);

Remarks:
Creates	new	faces.
Note:	MapDeltas	must	be	kept	up	to	date	with	all	new	face	creations	–	see
CreateDefaultMapFaces.

Parameters:
Face	*f
A	pointer	to	an	array	of	faces	to	be	added	to	the	MeshDelta.
int	num
The	size	of	the	face	array.

Return	Value:
The	index	(in	the	output	mesh)	of	the	first	of	these	new	faces.

Prototype:
DWORD	FCreate(FaceCreate	*f,	int	num=1);

Remarks:
Creates	new	faces.	This	is	what's	used	to	add	in	face	creations	in	the	all-
important	Compose	method.	It	assumes	that	the	"originals"	in	the	array	of
FaceCreates	are	post-indexed,	and	uses	FLut	and	extracts	originals	for	creates-
of-creates	as	appropriate.
Note:	MapDeltas	must	be	kept	up	to	date	with	all	new	face	creations	–	see
CreateDefaultMapFaces.

Parameters:
FaceCreate	*f
A	pointer	to	an	array	of	face	create	records	to	be	added	to	the	MeshDelta.
int	num
The	size	of	the	face	create	array.

Return	Value:
The	index	(in	the	output	mesh)	of	the	first	of	these	new	faces.

Prototype:
DWORD	FCreateQuad(DWORD	*v,	DWORD	smG=0,	MtlID
matID=0,	int	orig=UNDEFINED);

Remarks:
Creates	2	new	faces,	forming	a	quad.
Note:	MapDeltas	must	be	kept	up	to	date	with	all	new	face	creations	–	see
CreateDefaultMapFaces.

Parameters:
DWORD	*v
A	pointer	to	an	array	of	4	vertices	to	be	used	as	corners	of	the	quad.
DWORD	smG=0
The	smoothing	group	desired	for	the	new	faces.
MtlID	matID=0
The	material	ID	desired	for	the	new	faces.
int	orig=UNDEFINED
This	optional	parameter	sets	the	map	faces	to	undefined.

Return	Value:
The	index	(in	the	output	mesh)	of	the	first	of	these	2	new	faces.

Prototype:
DWORD	FClone(Face	&	f,	DWORD	ff,	DWORD	remapFlags=0,
DWORD	*v=NULL);

Remarks:
Creates	a	new	face	by	copying	an	existing	face.	The	result	is	put	into	the
fCreate	array	and	treated	thereafter	like	a	face	create	–	this	is	different	from
vertex	clones,	which	are	maintained	separately	from	vertex	creates.
Note:	MapDeltas	must	be	kept	up	to	date	with	all	new	face	creations	–	see
CreateDefaultMapFaces.

Parameters:
Face	&	f
The	face	we	wish	to	clone.	(This	is	typically	generated	by	the	outFace
method.)
DWORD	ff
The	(output-based)	index	of	the	face	we’re	cloning.	(This	is	used	to	copy	face
and	edge	selection.)
DWORD	remapFlags=0
DWORD	*v=NULL
If	we	wish	to	remap	any	of	the	corners	of	this	face	while	cloning,	the
appropriate	flags	and	vertices	should	be	passed	in	these	last	two	arguments.	v
should	point	to	an	array	of	3	vertex	(output)	indices,	although	the	ones	not
marked	as	used	by	the	remapFlags	need	not	be	set	to	anything	in	particular.
See	class	FaceRemap	for	more	information	about	face	remapping.

Return	Value:
The	index	(in	the	output	mesh)	of	the	new	face.

Prototype:
DWORD	CreateDefaultMapFaces(int	num=1);

Remarks:
MapDeltas	must	always	keep	their	faces	in	sync	with	the	parent	MeshDelta.	If

the	developer	creates	new	faces,	but	doesn’t	want	to	go	through	the	bother	of
figuring	out	exactly	how	the	related	map	faces	should	look,	this	method	may
be	used	to	create	map	faces	with	UNDEFINED	verts.	These	can	then	be	filled
in	automatically	later.	(See	the	MeshDelta	FillInFaces	method	for	details.)
For	every	face	created	in	the	MeshDelta,	either	CreateDefaultMapFaces
should	be	called,	or	map	faces	should	be	created	in	every	active	map	channel,
using	MapDelta::FCreate	and	related	methods.

Parameters:
int	num=1
The	number	of	default	faces	we	wish	to	create	in	each	active	map	channel.

Prototype:
void	FRemap(FaceRemap	*f,	int	num=1);

Remarks:
Adds	face	remaps	to	this	MeshDelta.	If	the	face	specified	in	each	FaceRemap
already	has	a	remap	record,	the	two	are	combined.	If	the	face	specified	is	a
face	created	by	this	MeshDelta,	the	remap	is	applied	directly	to	the	fCreate
entry	instead	of	being	stored	in	fRemap.

Parameters:
FaceRemap	*f
A	pointer	to	an	array	of	FaceRemap	that	should	be	appended	to	this
MeshDelta.
Note	that	the	faces	and	vertices	in	each	FaceRemap	must	be	indexed	by	their
positions	after	all	of	the	current	MeshDelta’s	creates,	clones,	etc,	but	before
any	vertex	or	face	deletes.	Vertex	index	values	of	0	through	vnum-1	are
considered	to	be	the	original	mesh’s	vertices;	values	above	this	are	cloned	or
created	vertices.	Likewise,	face	index	values	of	0	through	fnum-1	are
considered	to	be	the	original	mesh	faces,	while	fnum	through
fnum+fCreate.Count()-1	are	this	MeshDelta’s	face	creates.
int	num=1
The	number	of	elements	in	the	FaceRemap	array.

Prototype:
void	FRemap(DWORD	f,	DWORD	flags,	DWORD	*v);

Remarks:
Adds	a	face	remap	to	this	MeshDelta.	If	the	face	specified	already	has	a	remap
record,	the	two	are	combined.	If	the	face	specified	is	a	face	created	by	this
MeshDelta,	the	remap	is	applied	directly	to	the	fCreate	entry	instead	of	being
stored	in	fRemap.

Parameters:
DWORD	f
The	face	to	remap.
Note	that	this	face	must	be	indexed	by	its	position	after	all	of	the	current
MeshDelta’s	face	creates,	but	before	any	face	deletes.	Face	index	values	of	0
through	fnum-1	are	considered	to	be	the	original	mesh	faces,	while	fnum
through	fnum+fCreate.Count()-1	are	this	MeshDelta’s	face	creates.
DWORD	flags
Face	Remap	flags	–	these	indicate	which	vertices	should	be	remapped.	The
possibilities	are	FR_V0	(1),	FR_V1	(2),	and	FR_V2	(4).	(See	class
FaceRemap	for	more	information.)
DWORD	*v
A	pointer	to	the	vertices	to	remap	the	face	to	use.	Only	the	positions	indicated
in	the	remap	flags	need	contain	meaningful	data.
Note	that	the	vertices	indicated	here	must	be	indexed	by	their	positions	after
all	of	the	current	MeshDelta’s	creates	and	clones,	but	before	any	vertex	deletes
–	essesntially	input-based	indexing.	Vertex	index	values	of	0	through	vnum-1
are	considered	to	be	the	original	mesh’s	vertices;	values	of	vnum	through
vnum+vCreate.Count()-1	are	considered	to	be	this	MeshDelta’s	newly	created
vertices;	and	values	above	this	are	cloned	vertices.

Prototype:
void	FChange(FaceChange	*f,	int	num=1);

Remarks:
Appends	some	face	changes	to	the	current	MeshDelta.	Face	changes	can
encompass	changes	to	face	material	IDs,	edge	visibility,	or	face	hiding.	See
class	FaceChange	for	more	information.

Parameters:
FaceChange	*f

A	pointer	to	an	array	of	new	face	changes	for	this	MeshDelta.
int	num=1
The	number	of	elements	in	the	FaceChange	array.

Prototype:
void	FChange(DWORD	f,	DWORD	flags,	DWORD	dat);

Remarks:
Changes	the	characteristics	of	one	face.

Parameters:
DWORD	f
The	output-indexed	face	to	change.
DWORD	flags
DWORD	dat
These	two	parameters	describe	the	change	desired.	See	class	FaceChange	for	a
description	of	these	flags.	flags	indicates	which	characteristics	should	be	set,
and	dat	includes	the	on-or-off	state	of	each	flag	we’re	setting.	So	for	example
FChange	(26,	ATTRIB_EDGE_A|	ATTRIB_EDGE_B,	ATTRIB_EDGE_A)
would	set	face	26	to	have	the	first	edge	visible	and	the	second	invisible,
without	changing	the	existing	visibility	for	the	third	edge.

Prototype:
void	SetMatID(DWORD	f,	MtlID	mt);

Remarks:
Sets	the	material	ID	for	the	specified	face.	If	the	face	is	created	by	this
MeshDelta,	the	fCreate	record	is	amended.	If	it’s	an	input	face,	a	FaceChange
record	is	created	or	amended.

Parameters:
DWORD	f
The	output-indexed	face	to	change.
MtlID	mt
The	desired	material	ID.

Prototype:

void	SetEdgeVis(DWORD	f,	DWORD	ed,	BOOL	vis=TRUE);
Remarks:
Sets	the	edge	visibility	for	the	specified	side	of	the	specified	face.	If	the	face	is
created	by	this	MeshDelta,	the	fCreate	record	is	amended.	If	it’s	an	input	face,
a	FaceChange	record	is	created	or	amended.

Parameters:
DWORD	f
The	output-indexed	face	to	change.
DWORD	ed
The	side	of	the	face	to	change	(0,	1,	or	2).
BOOL	vis=TRUE
The	desired	visibility.

Prototype:
void	FSmooth(FaceSmooth	*f,	int	num=1);

Remarks:
Adds	smoothing	group	changes	to	this	MeshDelta.	See	class	FaceSmooth	for
more	information.

Parameters:
FaceSmooth	*f
A	pointer	to	an	array	of	smoothing	change	records.	The	face	IDs	in	these
records	should	be	output-indexed.
int	num=1
The	number	of	elements	in	the	FaceSmooth	array.

Prototype:
void	FSmooth(DWORD	f,	DWORD	mask,	DWORD	val);

Remarks:
Changes	the	smoothing	groups	on	the	specified	face.

Parameters:
DWORD	f
The	output-based	index	of	the	face	to	change.

DWORD	mask
The	smoothing	groups	to	change.
DWORD	val
The	smoothing	group	values.	For	instance,	FSmooth	(32,	7,	2)	would	set
smoothing	group	2	and	clear	groups	1	and	3	for	face	32,	since	mask	has	bits	0,
1,	and	2	set	but	val	only	has	bit	1	set.

Prototype:
void	SetSmGroup(DWORD	f,	DWORD	smG);

Remarks:
Sets	the	smoothing	groups	on	the	specified	face.

Parameters:
DWORD	f
The	output-based	index	of	the	face	to	change.
DWORD	smG
The	smoothing	groups	to	set.	All	bits	not	set	in	this	parameter	are	cleared.

Prototype:
void	FDelete(DWORD	*f,	int	num=1);

Remarks:
Deletes	the	specified	faces.

Parameters:
DWORD	*f
A	pointer	to	an	array	of	output-based	indices	of	faces	we	wish	to	delete.	Note
that	all	the	elements	should	be	based	on	the	output	before	any	deletions	occur.
So	if	you	wanted	to	delete	what	are	currently	faces	3	and	5,	you	could	pass	an
array	with	3	and	5,	you	would	not	have	to	think,	"Ah,	3	will	be	deleted,	so	I
should	use	4	instead	of	5."
int	num=1
The	size	of	the	array.

Prototype:
void	FDelete(BitArray	&	fdel);

Remarks:
Deletes	the	specified	faces.

Parameters:
BitArray	&	fdel
The	faces	to	delete.	The	faces	are	indexed	by	their	output	mesh	positions.

Advanced	additive	operations
The	following	are	more	complex	operations,	built	out	of	the	simple	operations
above.	The	mesh	given	is	expected	to	be	result	of	the	current	MeshDelta.	They
should	all	work	no	matter	how	complex	the	current	MeshDelta	is,	but	they	have
not	been	extensively	tested	on	complex	MeshDeltas.	To	see	how	most	of	these
work,	look	at	Editable	Mesh	or	Edit	Mesh,	both	of	which	have	source	in
MAXSDK\SAMPLES.
Prototype:
void	AutoSmooth(Mesh	&	m,	BitArray	sel,	float	angle,
AdjFaceList	*af=NULL,	AdjEdgeList	*ae=NULL);

Remarks:
Automatically	generates	smoothing	groups	for	the	selected	faces.	Existing
smoothing	groups	are	ignored.	See	the	AutoSmooth	feature	in	Edit	Mesh	for
an	example.

Parameters:
Mesh	&	m
The	mesh,	which	should	match	the	output	of	the	current	MeshDelta,	that
should	be	affected.
BitArray	sel
The	faces	to	AutoSmooth.
float	angle
The	maximum	angle	between	faces	that	should	be	smoothed	together.
AdjFaceList	*af=NULL
A	pointer	to	the	adjacent	face	list	for	this	mesh.	If	NULL,	the	method
constructs	its	own	AdjFaceList.
AdjEdgeList	*ae=NULL
A	pointer	to	the	adjacent	edge	list	for	this	mesh.	If	NULL,	the	method

constructs	its	own	AdjEdgeList.

Prototype:
void	Bevel(Mesh	&	m,	BitArray	vset,	float	outline,	Tab<Point3>
*odir,	float	height,	Tab<Point3>	*hdir);

Remarks:
Moves	the	selected	vertices	along	the	directions	given	to	produce	the
movement	corresponding	to	the	mouse	drags	of	a	Bevel	operation	in	Editable
Mesh.	Note	that	this	method	only	changes	geometry.

Parameters:
Mesh	&	m
The	mesh,	which	should	match	the	output	of	the	current	MeshDelta,	that
should	be	affected.
BitArray	vset
The	set	of	vertices	to	move.
float	outline
The	amount	of	outlining	to	do	in	this	Bevel	move.
Tab<Point3>	*odir
The	outline	direction	for	each	vertex.	This	should	be	given	by
MeshTempData::OutlineDir.	See	the	Edit	Mesh	source	for	details.
float	height
The	amount	of	extrusion	to	do	in	this	Bevel	move.
Tab<Point3>	*hdir
The	extrusion	direction	for	each	vertex.	This	should	be	given	by
MeshTempData::EdgeExtDir	or	FaceExtDir.	See	the	Edit	Mesh	source	for
examples.

Prototype:
DWORD	CreatePolygon(Mesh	&	m,	int	deg,	int	*v,	DWORD
smG=0,	MtlID	matID=0);

Remarks:
Create	a	polygon	of	any	size.	The	polygon	may	be	nonconvex,	but	should	be
(roughly)	coplanar.

Parameters:
Mesh	&	m
The	mesh,	which	should	match	the	output	of	the	current	MeshDelta,	that
should	be	affected.
int	deg
The	number	of	vertices	used	by	this	polygon	(its	degree).
int	*v
The	indices	of	the	vertices	in	Mesh	m	that	this	polygon	should	use.
DWORD	smG=0
The	desired	smoothing	group	for	the	new	polygon.
MtlID	matID=0
The	desired	material	ID	for	the	new	polygon.

Prototype:
void	DeleteVertSet(Mesh	&	m,	BitArray	sel);

Remarks:
Deletes	the	specified	vertices,	along	with	any	faces	that	used	them.

Parameters:
Mesh	&	m
The	mesh,	which	should	match	the	output	of	the	current	MeshDelta,	that
should	be	affected.
BitArray	sel
The	vertices	to	delete.	Any	face	that	uses	any	of	the	vertices	selected	here	will
also	be	deleted.

Prototype:
void	DeleteEdgeSet(Mesh	&	m,	BitArray	sel);

Remarks:
Deletes	all	faces	using	the	specified	edges.	(Doesn’t	delete	any	verts.)

Parameters:
Mesh	&	m
The	mesh,	which	should	match	the	output	of	the	current	MeshDelta,	that

should	be	affected.
BitArray	sel
The	edges	to	delete	the	faces	of.	Edges	are	indexed	by	face*3+side.

Prototype:
void	DeleteFaceSet(Mesh	&	m,	BitArray	sel);

Remarks:
Deletes	the	specified	faces.	(Doesn’t	delete	any	verts.)

Parameters:
Mesh	&	m
The	mesh,	which	should	match	the	output	of	the	current	MeshDelta,	that
should	be	affected.
BitArray	sel
The	faces	to	delete.

Prototype:
void	DeleteSelected(Mesh	&	m);

Remarks:
Deletes	the	current	subobject	selection.	If	m.selLevel	is	MESH_OBJECT,
nothing	is	deleted.	If	it’s	MESH_VERTEX,	the	faces	using	the	selected
vertices	are	also	deleted.

Parameters:
Mesh	&	m
The	mesh,	which	should	match	the	output	of	the	current	MeshDelta,	that
should	be	affected.

Prototype:
void	DeleteIsoVerts(Mesh	&	m);

Remarks:
Deletes	the	vertices	not	in	use	by	any	faces.

Parameters:
Mesh	&	m

The	mesh,	which	should	match	the	output	of	the	current	MeshDelta,	that
should	be	affected.

Prototype:
void	FlipNormal(Mesh	&	m,	DWORD	face);

Remarks:
Flips	the	normal	of	the	specified	face	(by	switching	the	face’s	v[0]	and	v[1]).
(Related	map	faces	are	also	flipped.)

Parameters:
Mesh	&	m
The	mesh,	which	should	match	the	output	of	the	current	MeshDelta,	that
should	be	affected.
DWORD	face
The	face	to	flip.

Prototype:
void	MakeSelFacesPlanar(Mesh	&	m,	BitArray	sel);

Remarks:
Flattens	the	faces	indicated	into	the	same	plane.	The	target	plane	is	determined
by	the	average	of	all	the	face	centers	and	the	average	of	all	the	face	normals.

Parameters:
Mesh	&	m
The	mesh,	which	should	match	the	output	of	the	current	MeshDelta,	that
should	be	affected.
BitArray	sel
The	faces	to	make	coplanar.

Prototype:
void	MakeSelVertsPlanar(Mesh	&	m,	BitArray	sel);

Remarks:
Flattens	the	vertices	indicated	into	the	same	plane.	The	target	plane	is
determined	by	the	average	position	and	normal	of	the	vertices.

Parameters:
Mesh	&	m
The	mesh,	which	should	match	the	output	of	the	current	MeshDelta,	that
should	be	affected.
BitArray	sel
The	vertices	to	make	coplanar.

Prototype:
void	MoveVertsToPlane(Mesh	&	m,	BitArray	sel,	Point3	&	N,
float	offset);

Remarks:
Moves	the	vertices	indicated	into	the	specified	plane.	(The	target	plane	is
defined	as	all	points	which,	when	DotProd’d	with	N,	return	offset.)	All
vertices	are	moved	along	the	normal	vector	N.

Parameters:
Mesh	&	m
The	mesh,	which	should	match	the	output	of	the	current	MeshDelta,	that
should	be	affected.
BitArray	sel
The	vertices	to	move	into	the	plane.
Point3	&	N
The	unit	normal	to	the	plane.
float	offset
The	offset	of	the	plane	(also	its	distance	from	the	origin).

Prototype:
void	RestrictMatIDs(Mesh	&	m,	int	numMats);

Remarks:
Like	the	old	standalone	method	"FitMeshIDsToMaterial",	this	method	limits
the	material	IDs	to	values	between	0	and	numMats-1.	This	is	useful	eg	in
matching	the	number	of	material	Ids	to	the	number	of	materials	used	on	this
node.

Parameters:

Mesh	&	m
The	mesh,	which	should	match	the	output	of	the	current	MeshDelta,	that
should	be	affected.
int	numMats
The	number	of	material	ids	allowed.

Prototype:
void	SelectFacesByFlags(Mesh	&	m,	BOOL	onoff,	DWORD
flagmask,	DWORD	flags);

Remarks:
Sets	or	clears	face	selection	depending	on	whether	they	match	a	pattern	of
flags.	This	is	pretty	much	only	useful	for	selecting	or	deselecting	hidden	faces:

	mdelta.SelectFacesByFlags(*mesh,	FALSE,	FACE_HIDDEN,
FACE_HIDDEN);	//	deselects	hidden	faces.
Parameters:
Mesh	&	m
The	mesh,	which	should	match	the	output	of	the	current	MeshDelta,	that
should	be	affected.
BOOL	onoff
Indicates	whether	faces	should	be	selected	or	deselected	if	they	match	the	flag
pattern.
DWORD	flagmask
Indicates	whether	faces	should	be	selected	or	deselected	if	they	match	the	flag
pattern.
DWORD	flags
Indicates	whether	faces	should	be	selected	or	deselected	if	they	match	the	flag
pattern.

Advanced	operations
The	following	will	initialize	to	the	mesh	given:	they	can't	be	used	to	"add"	ops
to	an	existing	MeshDelta.	(To	add	these	ops,	make	a	new	MeshDelta,	call	one	of
the	following,	and	append	it	to	your	previous	one	with	Compose.)	To	see	how
most	of	these	work,	look	at	Editable	Mesh	or	Edit	Mesh,	both	of	which	have

source	in	MAXSDK\SAMPLES.
Prototype:
void	AttachMesh(Mesh	&	m,	Mesh	&	attachment,	Matrix3	&
relativeTransform,	int	matOffset);

Remarks:
Attaches	another	mesh	to	this	one.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
Mesh	&	attachment
The	mesh	this	MeshDelta	should	attach.
Matrix3	&	relativeTransform
The	transform	taking	the	attachment	mesh	from	its	object	space	to	ours.
int	matOffset
The	offset	that	should	be	applied	to	all	the	material	IDs	in	the	attachment.

Prototype:
void	BreakVerts(Mesh	&	m,	BitArray	vset);

Remarks:
Splits	the	selected	vertices	into	a	separate	vertex	for	every	face	that	uses	them.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	vset
The	vertices	that	should	be	broken.

Prototype:
void	ChamferEdges(Mesh	&	m,	BitArray	eset,	MeshChamferData
&	mcd,	AdjEdgeList	*ae=NULL);

Remarks:
Performs	the	topological	changes	needed	for	an	edge	chamfer,	and	creates	the
information	necessary	to	do	the	geometric	changes.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	eset
The	edges	to	chamfer.
MeshChamferData	&	mcd
A	class	in	which	the	directions	and	limits	of	movement	for	all	the	vertices
involved	in	the	chamfer	should	be	stored.	See	class	MeshChamferData.
AdjEdgeList	*ae=NULL
A	pointer	to	the	adjacent	edge	list	for	this	mesh.	If	NULL,	the	method
constructs	its	own	AdjEdgeList.

Prototype:
void	ChamferMove(Mesh	&	m,	MeshChamferData	&	mcd,	float
amount,	AdjEdgeList	*ae=NULL);

Remarks:
Moves	the	relevant	vertices	to	a	specified	chamfer	value.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
MeshChamferData	&	mcd
A	class	in	which	the	directions	and	limits	of	movement	for	all	the	vertices
involved	in	the	chamfer	have	been	stored	by	a	previous	ChamferVertices	or
ChamferEdges	call.	See	class	MeshChamferData.
float	amount
The	amount	(in	object	space	units)	of	chamfering	to	do.	For	vertex	chamfers,
this	indicates	how	far	along	the	edges	each	point	should	move.	For	edge
chamfers,	it	represents	how	far	along	each	face	each	edge	should	move.
AdjEdgeList	*ae=NULL
A	pointer	to	the	adjacent	edge	list	for	this	mesh.	If	NULL,	the	method
constructs	its	own	AdjEdgeList.

Prototype:

void	ChamferVertices(Mesh	&	m,	BitArray	vset,
MeshChamferData	&	mcd,	AdjEdgeList	*ae=NULL);

Remarks:
Performs	the	topological	changes	needed	for	a	vertex	chamfer,	and	creates	the
information	necessary	to	do	the	geometric	changes.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	vset
The	vertices	that	should	be	chamfered.
MeshChamferData	&	mcd
A	class	in	which	the	directions	and	limits	of	movement	for	all	the	vertices
involved	in	the	chamfer	should	be	stored.	See	class	MeshChamferData.
AdjEdgeList	*ae=NULL
A	pointer	to	the	adjacent	edge	list	for	this	mesh.	If	NULL,	the	method
constructs	its	own	AdjEdgeList.

Prototype:
void	CloneFaces(Mesh	&	m,	BitArray	fset);

Remarks:
Clones	the	specified	faces,	along	with	the	vertices	and	mapping	vertices	they
use.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	fset
The	faces	that	should	be	cloned.

Prototype:
void	CloneVerts(Mesh	&	m,	BitArray	vset);

Remarks:
Clones	the	specified	vertices.	More	efficient	on	an	initialized	MeshDelta	than

VClone,	which	has	to	be	able	to	cope	with	existing	complex	MeshDeltas.
Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	vset
The	vertices	that	should	be	cloned.

Prototype:
void	CollapseEdges(Mesh	&	m,	BitArray	ecol,	AdjEdgeList
*ae=NULL);

Remarks:
Collapses	the	edges	indicated	down	to	a	point.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	ecol
The	edges	to	collapse.
AdjEdgeList	*ae=NULL
A	pointer	to	the	adjacent	edge	list	for	this	mesh.	If	NULL,	the	method
constructs	its	own	AdjEdgeList.

Prototype:
DWORD	Cut(Mesh	&	m,	DWORD	ed1,	float	prop1,	DWORD	ed2,
float	prop2,	Point3	&norm,	bool	fixNeighbors=TRUE,	bool
split=FALSE);

Remarks:
Cuts	the	mesh	from	a	point	on	one	edge	to	a	point	on	another,	along	a	line
drawn	by	looking	at	the	mesh	from	a	particular	viewpoint.	(See	Edit	Mesh’s
Cut	feature	for	an	illustration.)

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.

DWORD	ed1
The	edge	that	the	cut	starts	on.	The	edge	is	indexed	by	face*3+side,	so	the
start	vertex	is	m.faces[ed1/3].v[ed1%3],	and	the	end	vertex	is
m.faces[ed1/3].v[(ed1+1)%3].
float	prop1
The	position	on	the	edge	to	start	the	cut	from.	0	means	the	start	vertex	of	the
edge,	and	1	means	the	end	vertex.
DWORD	ed2
The	edge	that	the	cut	should	end	on.
float	prop2
The	position	on	the	edge	to	finish	the	cut	on.	0	means	the	start	vertex	of	the
edge,	and	1	means	the	end	vertex.
Point3	&norm
The	direction	of	view.	The	cut	will	take	place	on	this	"side"	of	the	mesh,	in	the
plane	formed	by	this	vector	and	the	direction	from	the	start	to	the	end.
bool	fixNeigbors=TRUE
Indicates	whether	the	faces	on	the	other	side	of	each	end	of	the	cut	should	be
split	to	prevent	splits	at	the	ends.
bool	split=FALSE
Indicates	whether	the	cut	should	actually	split	the	mesh	apart	or	just	refine	it
by	adding	geometry.

Prototype:
void	Detach(Mesh	&	m,	Mesh	*out,	BitArray	fset,	BOOL	faces,
BOOL	del,	BOOL	elem);

Remarks:
Detaches	a	subset	of	the	geometry	from	the	mesh	given,	either	separating	it	as
a	new	element	or	creating	a	new	mesh	with	it.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
Mesh	*out
The	new	mesh	into	which	the	detached	portion	can	be	put.	(If	elem	is	TRUE,
this	is	not	used	and	may	be	NULL.)

BitArray	fset
The	selection	to	detach.	If	faces	is	TRUE,	this	is	a	face	selection.	Otherwise,
it’s	a	vertex	selection.
BOOL	faces
If	TRUE,	we	should	detach	the	selected	faces;	otherwise,	we	should	detach	the
selected	vertices.
BOOL	del
Indicates	whether	the	detached	portion	should	be	deleted	from	the	original
mesh.
BOOL	elem
If	TRUE,	we’re	actually	just	detaching	to	an	element,	and	the	out	mesh	will
not	be	used.

Prototype:
void	DivideEdge(Mesh	&	m,	DWORD	ed,	float	prop=.5f,
AdjEdgeList	*el=NULL,	bool	visDiag1=FALSE,	bool
fixNeighbors=TRUE,	bool	visDiag2=FALSE,	bool	split=FALSE);

Remarks:
Divides	the	specified	edge,	adding	a	point	and	dividing	faces	to	match.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
DWORD	ed
The	edge	to	divide,	indexed	as	face*3+side.
float	prop=.5f
The	proportion	along	the	edge	where	the	division	should	occur.	0	is	the	start
vertex,	m.faces[ed/3].v[ed%3],	and	1	is	the	end	vertex,
m.faces[ed/3].v[(ed+1)%3].
AdjEdgeList	*el=NULL
A	pointer	to	the	adjacent	edge	list	for	this	mesh.	If	NULL,	the	method
constructs	its	own	AdjEdgeList	if	needed.
bool	visDiag1=FALSE
Indicates	whether	the	diagonal	connecting	the	new	point	on	this	edge	with	the
far	corner	of	face	ed/3	should	be	visible.

bool	fixNeighbors=TRUE
Indicates	whether	the	face	on	the	other	side	of	this	edge,	that	is,	the	face	using
this	edge	that	isn’t	ed/3,	should	be	divided	as	well	to	prevent	the	introduction
of	a	seam.
bool	visDiag2=FALSE
Indicates	whether	the	diagonal	connecting	the	new	point	on	this	edge	with	the
far	corner	of	the	face	on	the	other	side	of	the	edge	should	be	visible.	(Not	used
if	fixNeighbors	is	FALSE.)
bool	split=FALSE
Indicates	whether	the	method	should	create	separate	vertices	for	the	two
halves	of	the	edge,	splitting	the	mesh	open	along	the	diagonal(s).

Prototype:
void	DivideEdges(Mesh	&	m,	BitArray	eset,	AdjEdgeList
*el=NULL);

Remarks:
Divides	all	the	selected	edges	in	half,	creating	new	points	and	subdividing
faces.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	eset
The	edges	to	divide.
AdjEdgeList	*ae=NULL
A	pointer	to	the	adjacent	edge	list	for	this	mesh.	If	NULL,	the	method
constructs	its	own	AdjEdgeList.

Prototype:
void	DivideFace(Mesh	&	m,	DWORD	f,	float	*bary=NULL);

Remarks:
Divides	the	selected	face	into	3,	by	introducing	a	new	point	on	the	face	and
splitting	the	original	face	along	lines	from	the	corners	to	the	new	point.

Parameters:

Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
DWORD	f
The	face	to	divide.
float	*bary=NULL
A	pointer	to	the	barycentric	coordinates	of	the	new	point	on	the	face.	If
NULL,	the	center	of	the	face	is	used.
Barycentric	coordinates	on	a	triangle	are	a	set	of	three	numbers	between	0	and
1	that	add	up	to	1.	Any	point	on	a	triangle	can	be	uniquely	described	by	a	set
of	these.	The	point	corresponding	to	barycentric	coordinates	(a,b,c)	on	a	face
with	corners	A,B,C	is	a*A	+	b*B	+	c*C.

Prototype:
void	DivideFaces(Mesh	&	m,	BitArray	fset,	MeshOpProgress
*mop=NULL);

Remarks:
Divides	the	selected	faces	into	3,	by	creating	their	center	points	and	splitting
the	original	faces	along	lines	from	the	corners	to	the	center.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	fset
The	faces	to	divide.
MeshOpProgress	*mop=NULL
If	non-NULL,	this	points	to	an	implementation	of	class	MeshOpProgress
which	can	be	used	to	interrupt	the	algorithm	if	it’s	taking	too	long.	See	class
MeshOpProgress	for	details.

Prototype:
void	EdgeTessellate(Mesh	&	m,	BitArray	fset,	float	tens,
AdjEdgeList	*ae=NULL,	AdjFaceList	*af=NULL,
MeshOpProgress	*mop=NULL);

Remarks:

Tessellates	the	mesh.	This	algorithm	is	exactly	the	one	used	in	the	Tessellate
modifier,	when	operating	on	"Faces"	(triangle	icon)	and	in	"Edge"	type.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	fset
The	faces	to	tessellate.
float	tens
The	tension	for	the	edge	tessellation.	This	value	should	be	fairly	small,
between	0	and	.5,	and	corresponds	to	the	value	in	the	Tessellate,	Edit	Mesh,	or
Editable	Mesh	UI’s	divided	by	400.
AdjEdgeList	*ae=NULL
A	pointer	to	the	adjacent	edge	list	for	this	mesh.	If	NULL,	the	method
constructs	its	own	AdjEdgeList.
AdjFaceList	*af=NULL
A	pointer	to	the	adjacent	face	list	for	this	mesh.	If	NULL,	the	method
constructs	its	own	AdjFaceList.
MeshOpProgress	*mop=NULL
If	non-NULL,	this	points	to	an	implementation	of	class	MeshOpProgress
which	can	be	used	to	interrupt	the	algorithm	if	it’s	taking	too	long.	See	class
MeshOpProgress	for	details.

Prototype:
void	ExplodeFaces(Mesh	&	m,	float	thresh,	bool
useFaceSel=FALSE,	AdjFaceList	*af=NULL);

Remarks:
"Explodes"	the	mesh	into	separate	elements.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
float	thresh
The	threshold	angle	between	faces	that	indicates	whether	they	should	be	in	the
same	or	different	element.

bool	useFaceSel=FALSE
Indicates	whether	the	mesh’s	current	face	selection	should	be	used	or	if	the
whole	mesh	should	be	exploded.
AdjFaceList	*af=NULL
A	pointer	to	the	adjacent	face	list	for	this	mesh.	If	NULL,	the	method
constructs	its	own	AdjFaceList.

Prototype:
void	ExtrudeEdges(Mesh	&	m,	BitArray	eset,	Tab<Point3>
*edir=NULL);

Remarks:
Performs	the	topological	changes	necessary	to	extrude	the	indicated	edges.
(The	geometric	component	is	handled	later	by	the	Bevel	method.)

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	eset
The	edges	to	extrude.
Tab<Point3>	*edir=NULL
Fills	in	the	directions	for	moving	all	the	relevant	vertices	to	handle	the
geometric	part	of	the	extrusion.	See	the	Edit	Mesh	or	Editable	Mesh	source	in
MAXSDK\SAMPLES\MODIFIERS	and
MAXSDK\SAMPLES\MESH\EDITABLEMESH	to	see	how	this	is
used.

Prototype:
void	ExtrudeFaces(Mesh	&	m,	BitArray	fset,	AdjEdgeList
*el=NULL);

Remarks:
Performs	the	topological	changes	necessary	to	extrude	the	indicated	faces.
(The	geometric	component	is	handled	later	by	the	Bevel	method.)

Parameters:
Mesh	&	m

The	mesh	this	MeshDelta	should	be	based	on.
BitArray	fset
The	faces	that	should	be	extruded.
AdjEdgeList	*el=NULL
A	pointer	to	the	adjacent	edge	list	for	this	mesh.	If	NULL,	the	method
constructs	its	own	AdjEdgeList.

Prototype:
void	ResetVertWeights(Mesh	&	m);

Remarks:
Resets	all	the	vertex	weights	to	1.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.

Prototype:
void	SetFaceColors(Mesh	&	m,	BitArray	fset,	VertColor	vc	,	int
mp=0);

Remarks:
Sets	the	indicated	faces	to	have	vertex	colors	all	equal	to	the	color	value
specified.	(This	often	involves	creating	new	vertex	color	map	vertices,	so
faces	that	neighbor	the	indicated	faces	are	not	affected.)

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	fset
The	faces	that	should	be	affected.
VertColor	vc
The	desired	color.
int	mp=0
The	map	channel.	Use	0	for	normal	vertex	colors,	MAP_SHADING	for	the
illumination	channel,	and	MAP_ALPHA	for	the	alpha	channel.

Prototype:
void	SetVertColors(Mesh	&	m,	BitArray	vset,	VertColor	vc	,	int
mp=0);

Remarks:
Sets	all	vertex	color	map	vertices	associated	with	the	indicated	vertices	to	the
specified	color.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	vset
The	vertices	that	should	be	affected.	If	more	than	one	map	vertex	is	used	at
this	vertex,	all	of	them	have	their	colors	set.
VertColor	vc
The	desired	color.
int	mp=0
The	map	channel.	Use	0	for	normal	vertex	colors,	MAP_SHADING	for	the
illumination	channel,	and	MAP_ALPHA	for	the	alpha	channel.

Prototype:
void	SetFaceAlpha	(Mesh	&m,	BitArray	fset,	float	alpha,	int
mp=MAP_ALPHA);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	indicated	faces	to	have	face	alpha.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	fset
The	faces	that	should	be	affected.
float	alpha
The	amount	of	alpha
int	mp=MAP_ALPHA
The	map	channel.	Use	0	for	normal	vertex	colors,	MAP_SHADING	for	the

illumination	channel,	and	MAP_ALPHA	for	the	alpha	channel.

Prototype:
void	SetVertAlpha	(Mesh	&m,	BitArray	vset,	float	alpha,	int
mp=MAP_ALPHA);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	indicated	vertices	to	have	face	alpha.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	vset
The	vertices	that	should	be	affected.
float	alpha
The	amount	of	alpha
int	mp=MAP_ALPHA
The	map	channel.	Use	0	for	normal	vertex	colors,	MAP_SHADING	for	the
illumination	channel,	and	MAP_ALPHA	for	the	alpha	channel.

Prototype:
void	ResetVertCorners	(Mesh	&	m);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	resets	the	vertex	corners.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.

Prototype:
void	SetVertWeights(Mesh	&	m,	BitArray	vset,	float	weight);

Remarks:
Sets	the	weights	of	the	specified	vertices.	(These	weight	values	are	only	used

in	MeshSmooth	NURMS	mode	as	of	3ds	max	3.0.)
Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	vset
The	vertices	that	should	have	their	weights	set.
float	weight
The	weight	to	set.

Prototype:
void	Slice(Mesh	&	m,	Point3	N,	float	off,	bool	sep=FALSE,	bool
remove=FALSE,	BitArray	*fslice=NULL,	AdjEdgeList
*ae=NULL);

Remarks:
Slices	the	mesh	along	the	specified	slicing	plane.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
Point3	N
The	normal	of	the	slice	plane.
float	off
These	parameters	define	the	slicing	plane	as	all	points	p	satisfying	the
equation	DotProd(p,N)	=	off.	N	should	be	normalized.
bool	sep=FALSE
Indicates	whether	the	slice	should	separate	the	mesh	into	two	separate
elements	(if	TRUE)	or	just	refine	the	existing	mesh	by	splitting	faces	(if
FALSE).
bool	remove=FALSE
Indicates	whether	the	slice	should	remove	the	portion	of	the	mesh	"below"	the
slicing	plane,	where	"below"	is	defined	as	the	area	where	DotProd	(p,N)	–	off
<	0.	If	remove	is	TRUE,	sep	is	ignored.
BitArray	*fslice=NULL
A	bit	array	containing	the	list	of	faces	to	slice.

AdjEdgeList	*ae=NULL
A	pointer	to	the	adjacent	edge	list	for	this	mesh.	If	NULL,	the	method
constructs	its	own	AdjEdgeList.

Prototype:
void	TurnEdge(Mesh	&	m,	DWORD	ed,	AdjEdgeList	*el=NULL);

Remarks:
"Turns"	the	specified	edge.	Only	works	on	edges	that	have	a	face	on	both
sides.	These	two	faces	are	considered	as	a	quad,	where	this	edge	is	the
diagonal,	and	remapped	so	that	the	diagonal	flows	the	other	way,	between	the
vertices	that	were	opposite	this	edge	on	each	face.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
DWORD	ed
The	edge	to	turn,	indexed	as	face*3+side.
AdjEdgeList	*ae=NULL
A	pointer	to	the	adjacent	edge	list	for	this	mesh.	If	NULL,	the	method
constructs	its	own	AdjEdgeList.

Prototype:
BOOL	WeldByThreshold(Mesh	&	m,	BitArray	vset,	float	thresh);

Remarks:
Welds	all	vertices	that	are	sufficiently	close	together.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	vset
The	vertices	that	are	candidates	for	being	welded.
float	thresh
The	maximum	distance	(in	object	space	units)	between	two	vertices	that	will
allow	them	to	be	welded.

Return	Value:

Returns	TRUE	if	any	vertices	were	welded,	FALSE	if	none	were	within
threshold.

Prototype:
void	WeldVertSet(Mesh	&	m,	BitArray	vset,	Point3
*weldPoint=NULL);

Remarks:
Welds	the	specified	vertices	together	into	one	vertex,	no	matter	how	far	apart
they	are.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	vset
The	vertices	that	should	be	welded.
Point3	*weldPoint=NULL
If	non-NULL,	this	points	to	the	location	we’d	like	to	put	the	weld	result.	(If
NULL,	the	result	is	put	at	the	average	location	of	the	selected	vertices.)

Prototype:
void	PropagateFacing(Mesh	&	m,	BitArray	&	fset,	int	face,
AdjFaceList	&	af,	BitArray	&	done,	BOOL	bias=1);

Remarks:
This	method	is	designed	for	internal	use,	in	UnifyNormals,	but	may	also	be
called	directly.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	fset
The	faces	that	should	be	affected.
int	face
The	starting	face	to	propagate	normal	directions	from.
AdjFaceList	&	af
The	adjacent	face	list	corresponding	to	the	mesh.	Required,	can’t	be	made

locally,	for	efficiency’s	sake.
BitArray	&	done
Keeps	track	of	which	faces	have	had	their	normals	unified.	Faces	that	are	set
here	when	the	call	is	made	will	not	be	processed,	and	will	not	be	crossed	to
reach	other	faces.	Faces	that	are	still	clear	upon	completion	were	not
processed,	probably	because	they	were	on	a	separate	element	from	"face".
BOOL	bias=1
Used	to	keep	track	of	whether	the	current	face	has	been	oriented	correctly.	For
example,	if	the	starting	face	was	not	selected	in	fset,	and	therefore	doesn’t
have	the	right	orientation,	but	you	still	want	selected	faces	in	the	same	element
to	be	corrected,	you	would	submit	FALSE	here.

Prototype:
void	UnifyNormals(Mesh	&	m,	BitArray	fset,	AdjFaceList
*af=NULL);

Remarks:
Unifies	normals	on	selected	faces,	making	the	normals	consistent	from	face	to
face.

Parameters:
Mesh	&	m
The	mesh	this	MeshDelta	should	be	based	on.
BitArray	fset
The	faces	that	should	be	affected.	Nonselected	faces	can	be	traversed	by	the
algorithm,	but	they	will	not	be	corrected	if	their	normals	are	pointing	the
"wrong"	way.
AdjFaceList	*af=NULL
A	pointer	to	the	adjacent	face	list	corresponding	to	the	mesh.	If	NULL,	an
adjacent	face	list	is	computed	by	the	method.

I/O,	Debugging
Prototype:
IOResult	Save(ISave	*save);

Remarks:

Saves	the	MeshDelta	to	a	3ds	max	file.

Prototype:
IOResult	Load(ILoad	*load);

Remarks:
Loads	the	MeshDelta	from	a	3ds	max	file.

Prototype:
void	MyDebugPrint(bool	lut=FALSE,	bool	mp=FALSE);

Remarks:
Prints	out	the	MeshDelta	to	the	DebugPrint	window	in	Developer	Studio.

Parameters:
bool	lut=FALSE
If	TRUE,	the	vertex	and	face	lookup	tables	are	printed	out.
bool	mp=FALSE
Active	map	deltas	are	also	printed	out	if	this	is	TRUE.

Class	VertMove
See	Also:	Class	Mesh,	Class	Point3.
class	VertMove

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	represents	the	notion	of	a	mesh	edit	vertex	move.	The	public	data
members	provide	the	index	of	the	vertex	moved	as	well	as	the	amount	of	the
move	in	X,	Y,	Z.

Data	Members:
public:
DWORD	vid;
The	id	of	the	vertex	moved.
Point3	dv;
The	amount	of	the	move.

Methods:
public:

Prototype:
VertMove();

Remarks:
Constructor.

Prototype:
VertMove(DWORD	i,	Point3	p);

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.

Prototype:
~VertMove();

Remarks:
Destructor.

Prototype:
VertMove	&operator=(VertMove	&	from);

Remarks:
Assignment	operator.

Class	UVVertSet
See	Also:	Class	Mesh,	Class	Point3.
class	UVVertSet

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	represents	the	notion	of	a	mesh	edit	UVW	vertex	assignment.	The
public	data	members	provide	the	index	of	the	vertex	as	well	as	the	UVWVert.

Data	Members:
public:
DWORD	vid;
The	index	of	the	vertex.
UVVert	v;
The	UVW	vertext.

Methods:
public:

Prototype:
UVVertSet();

Remarks:
Constructor.

Prototype:
UVVertSet(DWORD	i,	UVVert	p);

Remarks:
Constructor.	The	data	members	are	initalized	to	the	values	passed.

Prototype:
~UVVertSet();

Remarks:
Destructor.

Prototype:
UVVertSet	&	operator=(UVVertSet	&	from);

Remarks:
Assignment	operator.

Class	FaceRemap
See	Also:	Class	Mesh,	Class	Face,	Class	Point3.
class	FaceRemap

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	represents	the	notion	of	a	mesh	edit	Face	Remap,	which	changes	one
or	more	of	the	verticies	a	face	uses.	It	can	also	alter	the	visibiliy	of	the	face's
edge,	its	hidden	state	and	its	material	ID.

Data	Members:
public:
DWORD	f,
Face	being	remapped.	This	is	a	zero	based	index	into	the	Mesh's	faces	array.
DWORD	flags
Specifies	which	verticies	to	remap.	One	or	more	of	the	following	values:
FR_V0	-	Remap	the	0th	vertex.
FR_V1	-	Remap	the	1st	vertex.
FR_V2	-	Remap	the	2nd	vertex.
FR_ALL	-	Remap	all	the	vertices.

DWORD	v[3];
Array	of	vertex	indicies.	These	indicate	which	vertex	is	used	by	each	specified
corner	of	the	face	being	remapped.

Methods:
public:

Prototype:
FaceRemap();

Remarks:
Constructor.	The	flags	and	f	are	set	to	0.

Prototype:
FaceRemap(DWORD	ff,	DWORD	fl,	DWORD	*vv);

Remarks:
Constructor.

Parameters:
DWORD	ff
The	face	to	remap.
DWORD	fl
The	flags	to	set.
DWORD	*vv
The	array	of	vertex	indicies.

Prototype:
void	Apply(Face	&ff);

Remarks:
Applies	the	vertex	remapping	to	the	given	face	based	on	the	flags	of	this
FaceRemap	object.

Parameters:
Face	&ff
The	face	whose	vertices	are	remapped.

Prototype:
void	Apply(TVFace	&tf);

Remarks:
Applies	the	vertex	remapping	to	the	given	map	face	based	on	the	flags	of	this
FaceRemap	object.

Parameters:
TVFace	&tf
The	texture	face	whose	tVerts	are	remapped	by	the	verts	of	this	FaceRemap
object.	The	v	data	member	used	contains	indices	into	the	mesh	object's	tVerts
array.

Prototype:
void	Apply(FaceRemap	&fr);

Remarks:
Assigns	the	flags	and	verts	of	this	FaceRemap	object	to	the	FaceRemap
passed.

Parameters:
FaceRemap	&fr
The	FaceRemap	whose	flags	and	verts	are	assigned.

Prototype:
Face	operator*(Face	&ff);

Remarks:
Returns	a	new	Face	with	the	FaceRemap	applied.

Prototype:
TVFace	operator*(TVFace	&	ff);

Remarks:
Returns	a	new	TVFace	with	the	FaceRemap	applied.

Class	FaceChange
See	Also:	Class	Mesh,	Class	Face,	Class	Point3.
class	FaceChange

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	represents	the	notion	of	a	mesh	edit	Face	Change,	which	changes	the
visibiliy	of	the	face's	edges,	its	hidden	state	and/or	its	material	ID.

Data	Members:
public:
DWORD	f
The	face	to	change.	This	is	a	zero	based	index	into	the	Mesh's	faces	array.
DWORD	flags
Specifies	which	attributes	to	change.	One	or	more	of	the	following	values:
ATTRIB_EDGE_A	-	Alter	edge	between	v0	and	v1
ATTRIB_EDGE_B	-	Alter	edge	between	v1	and	v2
ATTRIB_EDGE_C	-	Alter	edge	between	v2	and	v0
ATTRIB_EDGE_ALL	-	Alter	all	the	edges.
ATTRIB_HIDE_FACE	-	Alter	the	face	hidden	state.
ATTRIB_MATID	-	Alter	the	material	ID.

DWORD	val;
The	value	containing	the	face	change	information.	Bits	0,	1,	2	hold	the	edge
visibility,	bit	3	holds	the	hidden	state,	and	bits	5-21	hold	the	material	ID.

Methods:
public:

Prototype:
FaceChange();

Remarks:
Constructor.	The	flags	and	f	are	set	to	0.

Prototype:

FaceChange(DWORD	ff,	DWORD	fl,	DWORD	v);
Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.

Parameters:
DWORD	ff
The	index	of	the	face	to	change.	This	is	a	zero	based	index	into	the	Mesh's
faces	array.
DWORD	fl
The	flags	to	set.
DWORD	v
The	value	to	set.

Prototype:
void	Apply(Face	&ff);

Remarks:
Applies	the	face	change	to	the	Face	passed	using	the	flags	of	this	FaceChange
object	to	contol	what's	altered.

Parameters:
Face	&ff
The	face	to	change.

Prototype:
void	Apply(FaceChange	&fa);

Remarks:
Updates	the	flags	and	val	to	the	FaceChange	passed	using	this	FaceChange
and	its	flags.

Parameters:
FaceChange	&fa
The	FaceChange	object	to	alter.

Class	FaceSmooth
See	Also:	Class	Mesh,	Class	Face,	Class	Point3.
class	FaceSmooth

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	represents	the	notion	of	the	edit	mesh	Face	Smooth	operation.	This
updates	the	smoothing	group	infomation	in	the	face.

Data	Members:
public:
DWORD	f
The	face	to	change.	This	is	a	zero	based	index	into	the	Mesh's	faces	array.
DWORD	mask
The	mask	into	the	face	of	the	smoothing	groups.
DWORD	val;
The	smoothing	group	information	to	store.

Methods:
public:

Prototype:
FaceSmooth();

Remarks:
Constructor.	The	flags	and	f	are	set	to	0.

Prototype:
FaceSmooth(DWORD	ff,	DWORD	mk,	DWORD	vl);

Remarks:
Constructor.	The	data	members	are	initalized	to	the	values	passed.

Prototype:
void	Apply(Face	&ff);

Remarks:

Applies	this	smoothing	change	to	the	given	face.
Parameters:
Face	&ff
The	face	to	update.

Prototype:
void	Apply(FaceSmooth	&fs);

Remarks:
Assigns	the	flags	and	val	to	the	given	FaceSmooth	object	from	this	one.

Parameters:
FaceSmooth	&fs
The	FaceSmooth	object	to	alter.

Class	MeshDeltaUser
See	Also:	Class	Mesh,	Class	MeshDelta.
class	MeshDeltaUser	:	public	InterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	a	virtual	class	which	both	Editable	Mesh	(class	EditTriObject)	and	Edit
Mesh	(class	EditMeshMod)	subclass	off	of.	It	contains	interface	methods	for
editable	meshes,	much	like	the	IMeshSelect	class	contains	interface	methods	for
modifiers	and	objects	that	can	select	sub-object	parts	of	meshes.

Methods:
public:

Prototype:
virtual	void	LocalDataChanged(DWORD	parts)=0;

Remarks:
This	method	is	used	to	notify	the	MeshDeltaUser	that	at	least	one	of	its
associated	MeshDeltaUserDatas	has	changed.

Parameters:
DWORD	parts
This	represents	the	parts	of	the	local	data	that	have	changed.	One	or	more	of
the	following	values:
PART_TOPO,	PART_GEOM,	PART_TEXMAP,	PART_MTL,
PART_SELECT,	PART_SUBSEL_TYPE,	PART_DISPLAY,
PART_VERTCOLOR,	PART_GFX_DATA

Prototype:
virtual	void	ToggleCommandMode(meshCommandMode
mode)=0;

Remarks:
This	method	is	used	to	start	up	one	of	the	interactive	command	modes	of	the
editable	mesh.

Parameters:

meshCommandMode	mode
The	mode	to	start.	One	of	the	following	values:
McmCreate,	McmAttach,	McmExtrude,	McmBevel,
McmChamfer,	McmSlicePlane,	McmCut,	McmWeldTarget,
McmFlipNormalMode,	McmDivide,	McmTurnEdge

Prototype:
virtual	void	ButtonOp(meshButtonOp	opcode)=0;

Remarks:
This	method	performs	the	equivalent	operation	as	a	button	press	in	the
editable	mesh	UI.

Parameters:
meshButtonOp	opcode
One	of	the	following	values:
MopHide,	MopUnhideAll,	MopDelete,	MopDetach,	MopBreak,
MopViewAlign,	MopGridAlign,	MopMakePlanar,	MopCollapse,
MopTessellate,	MopExplode,	MopSlice,	MopWeld,
MopShowNormal,	MopAutoSmooth,	MopRemoveIsolatedVerts,
MopSelectOpenEdges,	MopCreateShapeFromEdges,
MopFlipNormal,	MopUnifyNormal,	MopVisibleEdge,
MopInvisibleEdge,	MopAutoEdge,	MopAttachList,
MopSelectByID,	MopSelectBySG,	MopClearAllSG,
MopSelectByColor

Prototype:
virtual	void	GetUIParam(meshUIParam	uiCode,	int	&ret);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	get	the	edit	spline	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
meshUIParam	uiCode

One	of	the	following	values;
MuiSelByVert,	MuiIgBack,	MuiIgnoreVis,	MuiSoftSel,
MuiSSUseEDist,	MuiSSEDist,	MuiSSBack,	MuiWeldBoxSize,
MuiExtrudeType,	MuiShowVNormals,	MuiShowFNormals,
MuiPolyThresh,	MuiFalloff,	MuiPinch,	MuiBubble,
MuiWeldDist,	MuiNormalSize

int	&ret
The	returned	value.

Default	Implementation:
{	}

Prototype:
virtual	void	SetUIParam(meshUIParam	uiCode,	int	val);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	edit	spline	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
meshUIParam	uiCode
One	of	the	following	values;
MuiSelByVert,	MuiIgBack,	MuiIgnoreVis,	MuiSoftSel,
MuiSSUseEDist,	MuiSSEDist,	MuiSSBack,	MuiWeldBoxSize,
MuiExtrudeType,	MuiShowVNormals,	MuiShowFNormals,
MuiPolyThresh,	MuiFalloff,	MuiPinch,	MuiBubble,
MuiWeldDist,	MuiNormalSize

int	val
The	value	to	set.

Default	Implementation:
{	}

Prototype:
virtual	void	GetUIParam(meshUIParam	uiCode,	float	&ret);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	get	the	edit	spline	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
meshUIParam	uiCode
One	of	the	following	values;
MuiSelByVert,	MuiIgBack,	MuiIgnoreVis,	MuiSoftSel,
MuiSSUseEDist,	MuiSSEDist,	MuiSSBack,	MuiWeldBoxSize,
MuiExtrudeType,	MuiShowVNormals,	MuiShowFNormals,
MuiPolyThresh,	MuiFalloff,	MuiPinch,	MuiBubble,
MuiWeldDist,	MuiNormalSize

float	&ret
The	returned	value.

Default	Implementation:
{	}

Prototype:
virtual	void	SetUIParam(meshUIParam	uiCode,	float	val);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	edit	spline	parameters	from	the	command
panel.	Currently	not	in	use.

Parameters:
meshUIParam	uiCode
One	of	the	following	values;
MuiSelByVert,	MuiIgBack,	MuiIgnoreVis,	MuiSoftSel,
MuiSSUseEDist,	MuiSSEDist,	MuiSSBack,	MuiWeldBoxSize,
MuiExtrudeType,	MuiShowVNormals,	MuiShowFNormals,
MuiPolyThresh,	MuiFalloff,	MuiPinch,	MuiBubble,
MuiWeldDist,	MuiNormalSize

float	val

The	value	to	set.
Default	Implementation:
{	}

Class	MeshDeltaUserData
See	Also:	Class	Mesh,	Class	MeshDelta,	Class	MeshDeltaUser,	Class
LocalModData,	Class	Matrix3,	Class	Point3,	Class	Quat,	Class	BitArray.
class	MeshDeltaUserData

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	provides	a	standard	interface	for	modifiers	and	objects	that	use	mesh
deltas	--	specifically	Edit	Mesh	and	Editable	Mesh.
Both	Edit	Mesh	and	Editable	Mesh	have	a	current	"state",	which	can	be
modified	by	MeshDeltas.	In	Editable	Mesh,	this	"state"	is	an	actual	mesh,	while
in	Edit	Mesh,	this	is	one	MeshDelta	per	LocalModData.	This	class	provides
a	standard	interface	to	these:	"MeshDeltaUser"	and	"MeshDeltaUserData".

Methods:
public:

Prototype:
virtual	void	ApplyMeshDelta(MeshDelta	&md,	MeshDeltaUser
*mdu,	TimeValue	t)=0;

Remarks:
This	method	applies	the	MeshDelta.	Everything	that	happens	in	Edit	Mesh	and
Editable	Mesh	goes	through	this	method.	Note	that	in	Edit	Mesh,	the
MeshDeltaUserData	(EditMeshData)	is	separate	from	the	MeshDeltaUser
(EditMeshMod),	though	in	Editable	Mesh,	EditTriObject	subclasses	from	both
of	them.
There's	essentially	one	mesh	that	can	be	edited	per	MeshDeltaUserData,	so
ApplyMeshDelta	is	the	way	to	edit	that	mesh.	ApplyMeshDelta	typically
handles	adding	Restore	objects	(if	theHold.Holding()),	clearing	out	any
temporary	local	caches	that	are	invalidated,	and	notifying	the	pipeline	that	the
mesh	has	changed.

Parameters:
MeshDelta	&md
The	mesh	delta	to	apply.
MeshDeltaUser	*mdu

Points	to	the	mesh	delta	user.
TimeValue	t
The	time	to	apply	the	mesh	delta.

Prototype:
virtual	MeshDelta	*GetCurrentMDState();

Remarks:
Returns	a	pointer	to	the	MeshDelta	object	for	this	application	of	the	Edit	Mesh
modifier.	This	is	only	non-NULL	in	Edit	Mesh.

Default	Implementation:
{	return	NULL;	}

The	following	global	functionis	not	part	of	this	class	but	is
available	for	use:
Function:
void	FindTriangulation(Mesh	&	m,	int	deg,	int	*vv,	int	*tri);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Finds	a	triangulation	of	an	n-sided	polygon	using	vertices	in	the	specified
mesh.	As	long	as	the	vertices	are	coplanar,	this	algorithm	will	find	a	proper
triangulation,	even	for	nonconvex	polygons.

Parameters:
Mesh	&m
The	mesh	containing	the	vertices	used	in	the	polygon.
int	deg
The	size	of	the	polygon.
int	*vv
The	vertex	indices	of	the	polygon,	in	order	around	the	perimeter.	For	instance,
if	deg	is	5	and	w	points	to	an	array	containing	(3,	6,	8,	0,	7),	the	polygon	is
presumed	to	have	the	outline	described	by	m.verts[3],	m.verts[6],	m.verts[8],
m.verts[0],	and	m.verts[7].
int	*tri

This	is	where	the	output	is	placed.	Note	that	this	should	point	to	an	array	of
size	at	least	(deg-2)*3,	to	hold	all	the	triangles.	The	values	placed	in	this	array
are	indices	into	the	w	array	--	that	is,	given	a	5-sided	polygon,	one	triangle	in
this	list	might	be	(0,2,3),	indicating	you	should	use	the	0th,	2nd,	and	3rd
elements	of	w	to	form	the	triangle.	Put	another	way,	to	make	a	face	from	the
n'th	triangle	given	by	this	array,	you	would	set:
f.v[0]	=	w[tri[n*3+0]];
f.v[1]	=	w[tri[n*3+1]];
f.v[2]	=	w[tri[n*3+2]];

Class	VDataDelta
See	Also:	Class	Mesh,	Class	PerData,	Class	MeshDelta.
class	VDataDelta

Description:
This	class	is	available	in	release	3.0	and	later	only.
VDataDelta	is	a	way	for	a	MeshDelta	to	keep	track	of	per-vertex	information.
Like	vertex	selection,	this	information	is	explicitly	set	after	all	topological
changes	performed	by	the	MeshDelta,	so	any	active	vertex	data	channels	are
always	set	to	the	size	outVNum()	for	the	related	MeshDelta.
An	example	of	this	being	used	is	in	Edit	Mesh,	where	you	can	assign	or	modify
vertex	weights.	All	these	changes	and	assignments	are	stored	in	the	Edit	Mesh's
main	MeshDelta.

Data	Members:
public:
PerData	*out;
This	is	where	the	output	vertex	data	is	kept,	if	the	given	vertex	data	channel
has	been	activated.

Methods:
public:

Prototype:
VDataDelta();

Remarks:
Constructor.	The	data	member	out	is	set	to	NULL.

Prototype:
~VDataDelta();

Remarks:
Destructor.	If	out	is	allocated	it	is	deleted.

Prototype:

void	SetVNum(int	nv,	BOOL	keep=FALSE);
Remarks:
Sets	the	size	of	the	output	vertex	data	to	the	value	specified.

Parameters:
int	nv
The	number	of	elements	to	allocate.
BOOL	keep=FALSE
If	TRUE	previous	values	are	kept	(copied	to	the	new	storage);	otherwise	they
are	discarded.

Prototype:
void	Activate(int	vnum,	int	vdID);

Remarks:
If	the	output	vertex	data	has	not	been	allocated	this	method	allocates	it	with
the	specified	number	of	elements.

Parameters:
int	vnum
The	number	of	elements	to	allocate.
int	vdID
The	channel	to	allocate.	One	of	the	following	values:
VDATA_SELECT
VDATA_WEIGHT

Prototype:
void	Set(int	where,	void	*data,	int	num=1);

Remarks:
Sets	the	specified	number	of	elements	of	vertex	data	at	the	location	passed.

Parameters:
int	where
The	zero	based	index	of	the	destination	in	the	out	array.
void	*data
The	source	data.

int	num=1
The	number	of	elements	to	set.

Class	MapDelta
See	Also:	Class	Mesh,	Class	MeshDelta,	Template	Class	Tab.
class	MapDelta

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	an	SDK	class	that	represents	some	kind	of	change	to	a	mesh	map.	This
"delta"	can	include	changes	in	map	vertices	and/or	faces.	It	is	always	a
subordinate	part	of	a	MeshDelta.	Most	of	the	time,	the	programmer	does	not
need	to	worry	about	this	class	directly,	but	can	let	the	parent	MeshDelta	do	most
of	the	work.
Note:	You	must	#include	"MESHDLIB.H"	to	use	this	class	as	it's	not
included	by	default	by	MAX.H.

Methods	Groups:
The	hyperlinks	below	take	you	to	the	start	of	groups	of	related	methods	within
the	class:
Initialization	&	Cleanup
Mesh	Map	Interaction
Composition	and	Operators
Characteristics
Basic	Operations
Debugging

Data	Members:
public:
DWORD	vnum
The	expected	number	of	vertices	in	the	input	mesh
DWORD	fnum;
The	expected	number	of	faces	in	the	input	mesh
Tab<UVVertSet>	vSet;
This	data	member	stores	changes	in	the	mapping	vertices	given	as	input.	See
class	UVVertSet	for	more	information.	UVVertSets	are	stored	in	original	map
vertex	ID	order,	and	there	is	never	more	than	one	UVVertSet	per	original	map
vertex.

Tab<Point3>	vCreate;
This	data	member	stores	mapping	vertices	newly	created	as	part	of	the
MapDelta.	These	are	stored	in	the	order	created.
Tab<TVFace>	fCreate;
This	data	member	stores	map	faces	newly	created	as	part	of	the	MapDelta.
These	are	stored	in	the	order	created.
Tab<FaceRemap>	fRemap;
This	data	member	stores	changes	in	which	map	vertices	are	used	by	existing
map	faces.	See	Class	FaceRemap	for	more	information.	These	are	stored	in
original	face	order,	and	there	is	never	more	than	one	per	original	face.

Methods:
public:

Initialization	&	Cleanup
Prototype:
MapDelta();

Remarks:
Constructor.	Initializes	the	MapDelta	with	empty	tables	and	0’s	for	input	mesh
map	size.

Prototype:
void	ClearAllOps(const	Mesh	&	m);

Remarks:
Clears	out	all	existing	map	changes.	Zeroes	all	the	vCreate,	vSet,	etc	tables.

Prototype:
void	SetInFNum(DWORD	n);

Remarks:
Sets	the	number	of	map	faces	in	the	input	map.	NOTE	that	if	n	is	less	than	the
current	fnum,	the	data	relating	to	the	extra	faces	will	be	lost.	(That	is,	if	one	of
your	face	remaps	is	applied	to	face	32,	and	you	SetInFNum	to	30,	that	face
remap	will	be	lost,	and	will	not	be	recovered	if	you	later	SetInFNum	to	35.)	It

is	NOT	necessary	to	call	this	method	before	applying	this	MapDelta	to	a
smaller	than	expected	Map.

Parameters:
DWORD	n
The	number	of	faces	expected	from	the	input	mesh.

Prototype:
void	SetInVNum(DWORD	n);

Remarks:
Sets	the	number	of	map	vertices	in	the	input	map.	NOTE	that	if	n	is	less	than
the	current	vnum,	the	data	relating	to	the	extra	vertices	will	be	lost.	(That	is,	if
one	of	your	map	vertex	sets	is	applied	to	map	vertex	32,	and	you	SetInVNum
to	30,	that	vertex	set	will	be	lost,	and	will	not	be	recovered	if	you	later
SetInVNum	to	35.)	It	is	NOT	necessary	to	call	this	method	before	applying
this	MapDelta	to	a	smaller	than	expected	Map.

Parameters:
DWORD	n
The	number	of	vertices	expected	from	the	input	mesh.

Mesh	Map	Interaction
Prototype:
void	Apply(UVVert	*tv,	TVFace	*tf,	DWORD	inVNum,	DWORD
inFNum);

Remarks:
Changes	the	given	map	by	this	MapDelta,	in	the	following	manner:
First,	any	maps	that	are	supported	by	the	MeshDelta	but	not	by	the	mesh	are
assigned	to	the	mesh	in	their	default	form.	(Vertex	colors	are	white,	other
maps	are	copies	of	the	mesh	vertices,	and	all	have	the	same	topology	as	the
mesh.)
Next,	any	UNDEFINED	mapping	verts	in	the	MeshDelta	are	filled	in	by
FillInFaces.
Then	the	new	vertices	are	added,	creates	first,	followed	by	clones.	The	original
vertices	are	then	moved.

The	faces	are	then	modified,	by	applying	all	the	FaceRemaps,	FaceChanges,
and	FaceSmooths	to	the	appropriate	faces.	New	faces	(in	fCreate)	are
appended	to	the	end	of	the	face	list.
Map	changes	are	applied	to	all	active	maps,	and	map	channels	not	supported
by	this	MeshDelta	are	removed.
After	all	that	is	done,	the	vertices	and	faces	marked	in	the	vDelete	and	fDelete
arrays	are	deleted.
Finally,	the	vertex	data,	vertex	hide,	and	selections	kept	in	the	MeshDelta	are
applied	to	the	result.

Parameters:
UVVert	*tv
The	map	vertex	array	to	change.	This	should	be	allocated	to	handle	all	the	new
map	vertices	in	the	vCreate	array.
TVFace	*tf
The	map	face	array	to	change.	This	should	be	allocated	to	handle	all	the	new
map	faces	in	the	fCreate	array.
DWORD	inVNum
The	actual	number	of	map	vertices	(which	doesn’t	have	to	match	this
MapDelta’s	vnum)	in	the	input	map.
DWORD	inFNum
The	actual	number	of	map	faces	(which	doesn’t	have	to	match	this	MapDelta’s
fnum)	in	the	input	map.

Composition	&	Operators
See	the	class	MeshDelta	section	on	composition	and	operators	for	more
information.

Prototype:
MapDelta	&	operator*=(MapDelta	&	from);

Remarks:
Appends	the	given	MapDelta	to	the	current	one.

Parameters:
MapDelta	&	td
The	MapDelta	to	append.	This	MapDelta	may	be	modified	to	make	it	suitable,

ie	the	vnum	and	fnum	values	will	be	set	to	the	expected	output	of	the	current
MapDelta	if	they	don’t	already	match.	(This	may	result	in	the	loss	of	some
data	–	see	"SetInVNum"	and	"SetInFNum"	for	more	information.)

Prototype:
MapDelta	&	operator=(MapDelta	&	td);

Remarks:
Equality	operator	–	makes	this	MapDelta	just	like	the	one	given.

Prototype:
DWORD	ChangeFlags();

Remarks:
Indicates	what	parts	of	a	MapDelta	could	be	changed	if	this	MapDelta	were
appended	to	it.	This	is	useful	when	backing	up	the	MapDelta	for	Restore
Objects.	For	instance,	if	you	had	a	MapDelta	with	lots	of	face	remaps,	and	you
wanted	to	compose	it	with	one	that	only	added	map	vertices,	there	would	be
no	reason	to	back	up	the	remaps	for	an	undo.

Return	Value:
Returns	some	combination	of	the	following	flags,	corresponding	to	the	data
members	that	would	be	changed:
MDELTA_VMOVE:	Indicates	that	the	vSet	array	will	be	altered	by	this
MapDelta.
MDELTA_VCREATE:	Indicates	that	the	vCreate	array	will	be	altered	by
this	MapDelta.
MDELTA_FREMAP:	Indicates	that	the	fRemap	array	will	be	altered	by
this	MapDelta.
MDELTA_FCREATE:	Indicates	that	the	fCreate	array	will	be	altered	by
this	MapDelta.

Prototype:
void	CopyMDChannels(MapDelta	&	from,	DWORD	channels);

Remarks:
Copies	the	specified	parts	of	the	MapDelta.	(Useful	in	combination	with

ChangeFlags	to	create	efficient	Restore	objects.)
Parameters:
MapDelta	&	from
The	MapDelta	to	copy	into	this.
DWORD	channels
Indicates	the	parts	to	copy	–	some	combination	of	the	following	flags:
MDELTA_VMOVE:	Copy	the	vSet	array.
MDELTA_VCREATE:	Copy	the	vCreate	array.
MDELTA_FREMAP:	Copy	the	fRemap	array.
MDELTA_FCREATE:	Copy	the	fCreate	array.

Characteristics
The	following	methods	give	useful	information	about	the	MeshDelta.

Prototype:
DWORD	NumVSet(DWORD	inVNum);

Remarks:
Returns	the	number	of	map	vertex	sets	that	would	be	applied	to	a	map	with	the
specified	number	of	map	vertices.	(If	that	number	equals	this	MapDelta’s
vnum,	this	is	simply	vSet.Count().)

Parameters:
DWORD	inVNum
The	number	of	vertices	in	the	input	map	we’re	inquiring	about.

Prototype:
DWORD	outVNum();

Remarks:
Returns	the	number	of	vertices	in	the	output	map,	assuming	that	the	input	map
is	of	the	expected	(vnum)	size.

Prototype:
DWORD	outVNum(int	inVNum);

Remarks:
Returns	the	number	of	vertices	in	the	output	map,	assuming	that	the	input	map
has	the	specified	number	of	map	vertices.

Parameters:
DWORD	inVNum
The	number	of	map	vertices	expected	in	the	input	map.

Prototype:
TVFace	OutFace(TVFace	*mf,	DWORD	ff);

Remarks:
Returns	the	specified	map	face	as	it	would	appear	in	the	MapDelta	output,
taking	into	account	any	remaps.

Parameters:
TVFace	*mf
The	input	map	face	array.
DWORD	f
The	index	of	the	face	you	want	the	output	version	of.

Prototype:
DWORD	RemapID(DWORD	ff);

Remarks:
Obtains	the	index	of	the	fRemap	entry	that	relates	to	this	face.

Parameters:
DWORD	ff
The	map	face	index.

Return	Value:
If	there	is	such	an	entry,	the	index	is	returned,	so	fRemap[RemapID(ff)].fid	==
ff.	If	there	is	no	remap	record	for	this	map	face,	the	method	returns
UNDEFINED.

Prototype:
DWORD	IsRemapped(DWORD	ff,	DWORD	vid);

Remarks:
Tells	whether	the	specified	corner	of	the	specified	face	has	been	remapped	in
this	MapDelta.

Parameters:
DWORD	ff
The	map	face	index.
DWORD	vid
The	corner	of	the	face	–	0,	1,	or	2.

Return	Value:
If	this	corner	has	been	remapped,	it	returns	the	vertex	it’s	been	remapped	to.
Otherwise,	it	returns	UNDEFINED.

Prototype:
DWORD	SetID(DWORD	i);

Remarks:
Obtains	the	index	of	the	vSet	entry	that	relates	to	this	vertex.

Parameters:
DWORD	i
The	map	vertex	index.

Return	Value:
The	index	in	the	vSet	array	of	the	map	vertex	set	corresponding	to	this	vertex,
or	UNDEFINED	if	this	map	vertex	has	not	been	modified.

Prototype:
bool	IsCreate(DWORD	i);

Remarks:
Indicates	whether	the	specified	map	vertex	was	created	in	this	MapDelta.

Parameters:
DWORD	i
The	index	in	the	output	of	the	map	vertex.

Basic	Operations

These	operations	are	the	"building	blocks"	of	MeshDeltas.	All	of	them	may	be
safely	performed	on	MeshDeltas	that	are	already	quite	complex.	Those	that
accept	DWORD	indices	require	output	mesh	indices,	as	all	operations	are
appended	to	the	end	of	the	existing	delta.

Prototype:
void	Set(DWORD	i,	const	UVVert	&	p);

Remarks:
Sets	an	existing	map	vertex	to	the	value	given.	(Note	that	if	the	same	map
vertex	is	set	twice,	the	new	set	simply	replaces	the	old	one	–	there	is	never
more	than	one	UVVertSet	in	the	vSet	array	for	a	single	input	map	vertex.)

Parameters:
int	i
The	index	of	the	map	vertex	to	set.
const	UVVert	&	p
The	value	to	set	the	map	vertex	to.

Prototype:
void	Move(BitArray	&	sel,	const	UVVert	&	p);

Remarks:
Sets	the	specified	vertices	to	the	value	given.	(Note	that	if	the	same	map
vertex	is	set	twice,	the	new	set	simply	replaces	the	old	one	–	there	is	never
more	than	one	UVVertSet	in	the	vSet	array	for	a	single	input	map	vertex.)

Parameters:
BitArray	&	sel
Indicates	which	map	vertices	should	be	set.
const	UVVert	&	p
The	value	to	set	the	map	vertex	to.

Prototype:
DWORD	VCreate(UVVert	*v,	int	num=1);

Remarks:
Creates	new	map	vertices.

Parameters:
UVVert	*v
A	pointer	to	an	array	of	UVVerts	representing	the	new	map	vertices.
int	num
The	size	of	the	UVVert	array.

Return	Value:
The	index	(in	the	output	map)	of	the	first	of	these	new	map	vertices.

Prototype:
void	FCreate(TVFace	*f,	int	num=1);

Remarks:
Creates	new	map	faces.
Note:	MapDeltas	must	be	kept	up	to	date	with	the	parent	MeshDelta	in	all	new
face	creations.	See	the	MeshDelta	method	CreateDefaultMapFaces	for	details.

Parameters:
TVFace	*f
A	pointer	to	an	array	of	map	faces	to	be	added	to	the	MapDelta.
int	num
The	size	of	the	map	face	array.

Prototype:
void	FCreateDefault(int	num=1);

Remarks:
Creates	new	"default"	map	faces,	where	all	the	corners	are	UNDEFINED.
(These	are	later	filled	in	by	a	call	to	the	parent	MeshDelta’s	FillInFaces
method.)
Note:	MapDeltas	must	be	kept	up	to	date	with	the	parent	MeshDelta	in	all	new
face	creations.	See	the	MeshDelta	method	CreateDefaultMapFaces	for	details.

Parameters:
int	num
The	number	of	default	faces	to	create.

Prototype:
void	FCreateQuad(DWORD	*t);

Remarks:
Creates	2	new	faces,	forming	a	quad.
Note:	MapDeltas	must	be	kept	up	to	date	with	the	parent	MeshDelta	in	all	new
face	creations.	See	the	MeshDelta	method	CreateDefaultMapFaces	for	details.

Parameters:
DWORD	*t
A	pointer	to	an	array	of	4	map	vertices	to	be	used	as	corners	of	the	quad.

Prototype:
DWORD	FClone(TVFace	&	tf,	DWORD	remapFlags=0,	DWORD
*v=NULL);

Remarks:
Creates	a	new	map	face	by	copying	(and	optionally	remapping)	the	face	given.
Note:	MapDeltas	must	be	kept	up	to	date	with	the	parent	MeshDelta	in	all	new
face	creations.	See	the	MeshDelta	method	CreateDefaultMapFaces	for	details.

Parameters:
TVFace	&	tf
The	map	face	we	wish	to	clone.	(This	is	typically	generated	by	the	OutFace
method.)
DWORD	remapFlags=0
DWORD	*v=NULL
If	we	wish	to	remap	any	of	the	corners	of	this	map	face	while	cloning,	the
appropriate	flags	and	vertices	should	be	passed	in	these	last	two	arguments.	v
should	point	to	an	array	of	3	map	vertex	indices,	although	the	ones	not	marked
as	used	by	the	remapFlags	need	not	be	set	to	anything	in	particular.	See	class
FaceRemap	for	more	information	about	face	remapping.

Prototype:
void	FRemap(FaceRemap	&	fr);

Remarks:
Adds	a	face	remap	to	this	MapDelta.	If	the	face	specified	in	the	FaceRemap

already	has	a	remap	record,	the	two	are	combined.	If	the	face	specified	is	a
face	created	by	this	MapDelta,	the	remap	is	applied	directly	to	the	fCreate
entry	instead	of	being	stored	in	fRemap.

Parameters:
FaceRemap	&	fr
A	FaceRemap	that	should	be	appended	to	this	MapDelta.

Prototype:
void	FRemap(DWORD	f,	DWORD	flags,	DWORD	*v);

Remarks:
Adds	a	face	remap	to	this	MapDelta.	If	the	face	specified	already	has	a	remap
record,	the	two	are	combined.	If	the	face	specified	is	a	face	created	by	this
MapDelta,	the	remap	is	applied	directly	to	the	fCreate	entry	instead	of	being
stored	in	fRemap.

Parameters:
DWORD	f
The	face	to	remap.
DWORD	flags
Face	Remap	flags	–	these	indicate	which	vertices	should	be	remapped.	The
possibilities	are	FR_V0	(1),	FR_V1	(2),	and	FR_V2	(4).	(See	class
FaceRemap	for	more	information.)
DWORD	*v
A	pointer	to	the	vertices	to	remap	the	face	to	use.	Only	the	positions	indicated
in	the	remap	flags	need	contain	meaningful	data.
Note	that	the	vertices	indicated	here	must	be	indexed	by	their	positions	after
all	of	the	current	MeshDelta’s	creates	and	clones,	but	before	any	vertex	deletes
–	essentially	input-based	indexing.	Vertex	index	values	of	0	through	vnum-1
are	considered	to	be	the	original	mesh’s	vertices;	values	of	vnum	through
vnum+vCreate.Count()-1	are	considered	to	be	this	MeshDelta’s	newly	created
vertices;	and	values	above	this	are	cloned	vertices.

Prototype:
void	FDelete(int	offset,	BitArray	&	fdel);

Remarks:
Deletes	the	specified	faces.	This	only	affects	the	fCreate	array,	and	should
generally	only	be	called	by	the	parent	MeshDelta’s	FDelete	method	to	keep
the	face	create	arrays	in	sync.

Parameters:
int	offset
Indicates	what	position	in	the	fdel	array	corresponds	to	the	first	created	face.
(This	is	necessary	since	the	BitArrays	handed	to	MeshDelta::FDelete
generally	are	based	on	the	indexing	after	the	previous	MeshDelta::fDelete	is
applied.	So	this	value	is	less	than	fnum	if	there	was	some	previous	deletion	of
original	faces	in	the	MeshDelta.)
BitArray	&	fdel
The	faces	to	delete.	The	faces	are	indexed	by	their	output	mesh	positions.

Debugging
Prototype:
void	MyDebugPrint();

Remarks:
Prints	out	all	the	changes	in	this	MapDelta	to	the	DebugPrint	window	in
Developer	Studio.

Class	MeshTempData
See	Also:	Class	Mesh,	Class	AdjEdgeList,	Class	FaceClusterList,	Template
Class	Tab.
class	MeshTempData	:	public	BaseInterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	a	class	for	caching	winged	edge	lists,	face	adjacency	lists,	face	and	edge
clusters,	vertex	normals,	and	other	derived	data	about	a	mesh.
There	is	a	SetMesh()	method	to	set	the	current	mesh	that	the	TempData	is
based	on,	then	there's	a	series	of	methods	to	update	the	cache	and	return	some
sort	of	derived	data.	All	of	these	methods	follow	the	form:
DerivedData	*MeshTempData::DData	(parameters);
DerivedData	is	the	container	for	the	derived	data	requested	(often	a	simple	table,
though	there	are	some	specialized	classes	returned	from	some	methods).	If	the
data	has	already	been	computed,	the	parameters	are	ignored	and	the	cached	data
is	returned.	Otherwise,	the	data	is	computed	from	the	parameters	and	the	current
mesh.
There	are	no	procedures	in	place	to	detect	changes	in	parameters	or	the	mesh
since	the	last	time	a	method	was	called,	so	it's	the	calling	routine's	responsibility
to	free	invalid	structures.	If	you	know	that	only	certain	pipeline	channel,	such	as
GEOM_CHANNEL,	have	changed,	you	can	use	the	Invalidate(DWORD
partsChanged)	method.	(GEOM_CHANNEL	would	free	the	distances-to-
selected-vertices,	for	example,	but	not	the	Adjacent	Edge	List.)
In	particular,	there	is	no	way	for	the	MeshTempData	to	know	when	its	mesh
pointer	is	no	longer	valid,	so	it's	vital	that	the	calling	routine	clear	the	mesh	(with
SetMesh(NULL))	or	stop	using	the	MeshTempData	when	this	happens.
All	data	members	are	private.	They	basically	consist	of	a	series	of	pointers
which	are	initialized	to	NULL	and	then	filled	with	allocated	derived	data	as
requested.	There	is	also	a	NULL-initialized,	private	mesh	pointer	which	is	set
with	SetMesh().
Editable	Mesh	and	Edit	Mesh	both	use	this	class	to	hold	all	the	varieties	of
temporary,	cached	data	they	create	--	examples	are	vertex	normals	and	face
clusters.	This	is	called	"ETTempData"	in	Editable	Mesh	and	"EMTempData"	in

Edit	Mesh.
To	use	MeshTempData,	just	set	it	to	your	mesh	and	start	asking	for	stuff:
MyAlgorithm	(Mesh	*m)	{
MeshTempData	mtd(m);
//	Get	Adjacent	Edge	List.
AdjEdgeList	ae	=	mtd.AdjEList	();
}

Methods	Groups:
The	hyperlinks	below	take	you	to	the	start	of	groups	of	related	methods	within
the	class:
Initialization	and	Class	methods
Methods	to	Get	Data
Data	invalidation	methods

Data	Members:
public:

Initialization	and	Class	methods
Prototype:
MeshTempData();

Remarks:
Constructor.	Sets	all	data	members	to	NULL.

Prototype:
MeshTempData(Mesh	*m);

Remarks:
Constructor.	Sets	the	internal	mesh	pointer	to	the	mesh	passed.

Parameters:
Mesh	*m
The	mesh	to	set.

Prototype:

~MeshTempData();
Remarks:
Destructor.	Frees	all	cached	data.

Prototype:
void	SetMesh(Mesh	*m);

Remarks:
Sets	the	internal	mesh	pointer	to	m.

Parameters:
Mesh	*m
Points	to	the	mesh	to	set.

Methods	to	Get	Data
Prototype:
AdjEdgeList	*AdjEList();

Remarks:
Returns	an	adjacent	edge	list.	See	class	AdjEdgeList	for	more	information.
If	cached,	the	cache	is	returned.	Otherwise	a	cache	is	allocated	and	computed
from	the	current	mesh.

Prototype:
AdjFaceList	*AdjFList();

Remarks:
Returns	an	adjacent	face	list.	See	class	AdjFaceList	for	more	information.	If
cached,	the	cache	is	returned.	Otherwise	a	cache	is	allocated	and	computed
from	the	current	mesh.

Prototype:
FaceClusterList	*FaceClusters();

Remarks:
Returns	a	face	cluster	list,	which	groups	selected	faces	into	"clusters"	for

transformation.	See	class	FaceClusterList	for	more	information.	If	cached,
the	cache	is	returned.	Otherwise	a	cache	is	allocated	and	computed	from	the
current	mesh.

Prototype:
EdgeClusterList	*EdgeClusters();

Remarks:
Returns	an	edge	cluster	list,	which	groups	selected	edges	into	"clusters"	for
transformation.	See	class	EdgeClusterList	for	more	information.	If	cached,
the	cache	is	returned.	Otherwise	a	cache	is	allocated	and	computed	from	the
current	mesh.

Prototype:
Tab<DWORD>	*VertexClusters(DWORD	sl);

Remarks:
Returns	an	index	of	which	cluster,	if	any,	each	vertex	is	in.	If	cached,	the
cache	is	returned.	Otherwise	a	cache	is	allocated	and	computed	from	the
current	mesh	and	the	parameter.

Parameters:
DWORD	sl
Selection	level.	This	should	be	either	MESH_EDGE	or	MESH_FACE,	to
indicate	whether	the	vertex	cluster	information	should	be	based	on	edge	or
face	clusters.	Note	that	this	parameter	is	ignored	if	there's	already	a	vertex
cluster	cache.

Return	Value:
A	table	of	DWORD's	is	returned,	one	for	each	vertex.	If	(*VertexClusters(sl))
[i]	is	UNDEFINED,	vertex	i	is	not	in	any	cluster.	Otherwise,	the	value	for
vertex	i	is	the	cluster	index.

Prototype:
Tab<Point3>	*ClusterNormals(DWORD	sl);

Remarks:
Returns	average	normals	for	each	cluster.	If	cached,	the	cache	is	returned.

Otherwise	a	cache	is	allocated	and	computed	from	the	current	mesh	and	the
parameter.	Note	that	cluster	centers	and	normals	are	computed	and	cached	at
the	same	time,	when	you	call	either	method.

Parameters:
DWORD	sl
Selection	level.	This	should	be	either	MESH_EDGE	or	MESH_FACE,	to
indicate	whether	the	clusters	we're	talking	about	are	the	edge	or	face	clusters.
Note	that	this	parameter	is	ignored	if	there's	already	a	cluster	normal	cache.

Return	Value:
A	table	of	Point3's	is	returned,	one	for	each	cluster.	The	values	are	already
normalized	to	length	1.

Prototype:
Tab<Point3>	*ClusterCenters(DWORD	sl);

Remarks:
Returns	mean	centers	for	each	cluster.	If	cached,	the	cache	is	returned.
Otherwise	a	cache	is	allocated	and	computed	from	the	current	mesh	and	the
parameter.	Note	that	cluster	centers	and	normals	are	computed	and	cached	at
the	same	time,	when	you	call	either	method.

Parameters:
DWORD	sl
Selection	level.	This	should	be	either	MESH_EDGE	or	MESH_FACE,	to
indicate	whether	the	clusters	we're	talking	about	are	the	edge	or	face	clusters.
Note	that	this	parameter	is	ignored	if	there's	already	a	cluster	center	cache.

Return	Value:
A	table	of	Point3's	is	returned,	one	for	each	cluster.

Prototype:
Matrix3	ClusterTM(int	clust);

Remarks:
Uses	the	current	cluster	center	and	normal	caches	to	return	the	"objectspace	to
clusterspace"	transform.	This	is	the	tranform	of	the	"local"	axis	in	moving
edge	or	face	clusters	in	Edit(able)	Mesh.	If	the	cluster	centers	&	normals	have

not	been	cached,	the	identity	matrix	is	returned;	thus	the	control	over	whether
this	is	an	edge	or	face	cluster	is	handled	by	the	last	call	to	ClusterCenters	or
ClusterNormals.

Parameters:
int	clust
The	cluster	you	want	the	transform	for.

Prototype:
Tab<Point3>	*VertexNormals();

Remarks:
Returns	a	table	of	local	average	normals	for	vertices.	This	is	equivalent	to	the
average	normals	computed	by	the	standalone	function:
void	AverageVertexNormals(Mesh	&	mesh,	Tab<Point3>	&
vnormals)
If	cached,	the	cache	is	returned.	Otherwise	a	cache	is	allocated	and	computed
from	the	current	mesh.

Prototype:
Tab<float>	*VSWeight(BOOL	useEdgeDist,	int	edgeIts,	BOOL
ignoreBack,	float	falloff,	float	pinch,	float	bubble);

Remarks:
Returns	Vertex	Selection	weights	(for	affect	region).	If	cached,	the	cache	is
returned.	Otherwise	a	cache	is	allocated	and	computed	from	the	current	mesh
and	the	parameters.	Weights	are	based	on	an	Affect	Region	type	falloff	from
the	current	selection.

Parameters:
BOOL	useEdgeDist
If	useEdgeDist	is	TRUE,	the	distance	between	vertices	is	computed	along
edges.	If	FALSE,	it's	computed	directly	through	space.
int	edgeIts
This	indicates	the	maximum	number	of	edges	the	algorithm	may	travel	along
in	finding	the	distance	between	vertices.	(Maximum	path	length.)
WARNING:	If	useEdgeDist	is	FALSE,	this	is	an	n-squared	algorithm:	it

compares	every	vertex	not	in	the	cluster	with	every	vertex	in	it.	If	useEdgeDist
is	TRUE,	the	time	it	takes	is	proportional	to	the	number	of	verts	in	the	cluster
times	edgeIts.
BOOL	ignoreBack
If	TRUE,	vertices	with	a	normal	(as	computed	in	VertexNormals)	that	points
more	than	90	degrees	away	from	the	average	normal	of	theselection	are	not
given	any	partial	selections.	They're	either	1	if	selected	or	0	otherwise.
float	falloff
The	limit	distance	of	the	effect.	If	distance	>	falloff,	the	function	will	always
return	0.
float	pinch
Use	this	to	affect	the	tangency	of	the	curve	near	distance=0.	Positive	values
produce	a	pointed	tip,	with	a	negative	slope	at	0,	while	negative	values
produce	a	dimple,	with	positive	slope.
float	bubble
Use	this	to	change	the	curvature	of	the	function.	A	value	of	1.0	produces	a
half-dome.	As	you	reduce	this	value,	the	sides	of	the	dome	slope	more	steeply.
Negative	values	lower	the	base	of	the	curve	below	0.

Return	Value:
Returns	a	table	of	float	values,	one	per	vertex,	that	are	1.0	if	the	vertex	is	in
the	current	selection,	0.0	if	it's	more	than	falloff	distance	(or	more	than
edgeIts	edges,	if	(useEdgeDist)),	and
AffectRegionFunction((*SelectionDist(useEdgeDist,	edgeIts)),
falloff,	pinch,	bubble)	otherwise.

Prototype:
Tab<float>	*SelectionDist(BOOL	useEdgeDist,	int	edgeIts);

Remarks:
Computes	the	current	distance	of	each	vertex	from	the	current	selection.	If
cached,	the	cache	is	returned.	Otherwise	a	cache	is	allocated	and	computed
from	the	current	mesh	and	the	parameters.	The	term	"Selected	verts"	below
refers	to	the	vertices	that	are	selected	in	the	mesh's	current	selection	level.
(See	the	Mesh	method	GetTempSel	for	details.)

Parameters:

BOOL	useEdgeDist
If	TRUE,	the	distance	between	vertices	is	computed	along	edges.	If	FALSE,
it's	computed	directly	through	space.
int	edgeIts
This	indicates	the	maximum	number	of	edges	the	algorithm	may	travel	along
in	finding	the	distance	between	vertices.	(Maximum	path	length.).
WARNING:	If	useEdgeDist	is	FALSE,	this	is	an	n-squared	algorithm:	it
compares	every	nonselected	vertex	with	every	selected	one.	If	useEdgeDist
is	TRUE,	the	time	it	takes	is	proportional	to	the	number	of	selected	vertices
times	edgeIts.

Return	Value:
A	table	consisting	of	one	float	value	per	vertex.	If	this	value	is	0,	the	vertex	is
either	selected	or	on	top	of	a	selected	vertex.	Otherwise	it	represents	the
distance	to	the	closest	selected	vertex.	If	useEdgeDist	is	TRUE,	values	of
-1.0	are	returned	for	vertices	with	no	edgeIts-length	path	to	a	selected	vertex.

Prototype:
Tab<float>	*ClusterDist(DWORD	sl,	int	clustId,	BOOL
useEdgeDist,	int	edgeIts);

Remarks:
Computes	the	current	distance	of	each	vertex	from	the	specifed	cluster.	If
cached,	the	cache	is	returned.	Otherwise	a	cache	is	allocated	and	computed
from	the	current	mesh	and	the	parameters.

Parameters:
DWORD	sl
Indicates	whether	we	should	use	edges	(MESH_EDGE)	or	faces
(MESH_FACE)	to	construct	the	clusters,	if	needed.
int	clustId
The	index	of	the	cluster	we're	weasuring	distance	from.
BOOL	useEdgeDist
If	useEdgeDist	is	TRUE,	the	distance	between	vertices	is	computed	along
edges.	If	FALSE,	it's	computed	directly	through	space.
int	edgeIts
This	indicates	the	maximum	number	of	edges	the	algorithm	may	travel	along

in	finding	the	distance	between	vertices.	(Maximum	path	length.)
WARNING:	If	useEdgeDist	is	FALSE,	this	is	an	n-squared	algorithm:	it
compares	every	vertex	not	in	the	cluster	with	every	vertex	in	it.	If	useEdgeDist
is	TRUE,	the	time	it	takes	is	proportional	to	the	number	of	verts	in	the	cluster
times	edgeIts.

Return	Value:
A	table	consisting	of	one	float	value	per	vertex.	If	this	value	is	0,	the	vertex	is
either	selected	or	on	top	of	a	vertex	in	the	cluster.	Otherwise	it	represents	the
distance	to	the	closest	selected	vertex.	If	useEdgeDist	is	TRUE,	values	of
-1.0	are	returned	for	vertices	with	no	edgeIts-length	path	to	a	vertex	in	the
cluster.

Prototype:
Tab<Point3>	*EdgeExtDir(Tab<Point3>	*edir,	int	extrusionType);

Remarks:
Returns	the	direction	each	vertex	should	be	going,	after	a	topological	edge
extrusion,	to	handle	the	geometric	extrusion.	This	should	be	obtained	after
applying	a	MeshDelta::ExtrudeEdges()	to	the	mesh	to	obtain	valid
results.	If	cached,	the	cache	is	returned.	Otherwise	a	cache	is	allocated	and
computed	from	the	current	mesh	and	the	parameters.

Parameters:
Tab<Point3>	*edir
This	should	be	the	edge	direction	table	filled	out	by
MeshDelta::ExtrudeEdges.	It	is	necessary.
int	extrusionType
This	is	one	of	MESH_EXTRUDE_CLUSTER	or
MESH_EXTRUDE_LOCAL,	to	indicate	whether	vertices	should	move
according	to	cluster	or	local	face	normals.

Return	Value:
A	table	of	Point3's,	one	per	vertex,	representing	the	direction	each	vertex
should	move	for	further	extrusion.	The	size	of	each	nonzero	entry	is	set	to	1.

Prototype:

Tab<Point3>	*FaceExtDir(int	extrusionType);
Remarks:
Returns	the	direction	each	vertex	should	be	going,	after	a	topological	face
extrusion,	to	handle	the	geometric	extrusion.	This	should	be	obtained	after
applying	a	MeshDelta::ExtrudeFaces	to	the	mesh	to	obtain	valid	results.	If
cached,	the	cache	is	returned.	Otherwise	a	cache	is	allocated	and	computed
from	the	current	mesh	and	the	parameters.

Parameters:
int	extrusionType
This	is	one	of	MESH_EXTRUDE_CLUSTER	or
MESH_EXTRUDE_LOCAL,	to	indicate	whether	vertices	should	move
according	to	cluster	or	local	face	normals.

Return	Value:
A	table	of	Point3's,	one	per	vertex,	representing	the	direction	each	vertex
should	move	for	further	extrusion.	The	size	of	each	nonzero	entry	is	set	to	1.

Prototype:
Tab<Point3>	*CurrentExtDir();

Remarks:
This	computes	nothing;	it	merely	returns	the	current	extrusion	direction	cache,
if	any.	The	extrusion	direction	is	controlled	by	the	first	call	to	EdgeExtDir	or
FaceExtDir	since	the	last	invalidation.	If	cached,	the	cache	is	returned.
Otherwise	a	cache	is	allocated	and	computed	from	the	current	mesh	and	the
parameters.

Prototype:
Tab<Point3>	*OutlineDir(int	extrusionType);

Remarks:
This	produces	the	"Outline"	direction	of	all	vertices,	based	on	the	current	face
selection.	"Outlining"	is	the	direction	vertices	move	to	move	edges	of	the
current	face	selection	outward	at	a	constant	rate.	They	are	not	set	to	length	1,
but	rather	to	whatever	"rate"	best	makes	the	outline	edges	movemost
consistently,	without	changing	their	angles.

Parameters:
int	extrusionType
This	is	one	of	MESH_EXTRUDE_CLUSTER	or
MESH_EXTRUDE_LOCAL,	to	indicate	whether	vertices	should	move
according	to	cluster	or	local	face	normals.

Prototype:
MeshChamferData	*ChamferData();

Remarks:
Returns	the	cache	of	a	ChamferData	for	use	in	the	MeshDelta	methods,
void	ChamferEdges	(Mesh	&	m,	BitArray	eset,	MeshChamferData
&mcd,	AdjEdgeList	*ae=NULL);
void	ChamferMove	(Mesh	&	m,	MeshChamferData	&mcd,	float
amount,	AdjEdgeList	*ae=NULL);
void	ChamferVertices	(Mesh	&	m,	BitArray	vset,
MeshChamferData	&mcd,	AdjEdgeList	*ae=NULL);
Unlike	other	MeshTempData	methods,	this	method	makes	no	calculations
based	on	the	current	mesh,	but	merely	supplies	a	memory	cache.

Data	Invalidation	Methods:
Prototype:
void	Invalidate(DWORD	part);

Remarks:
Invalidates	all	data	based	on	the	specified	part	of	the	mesh.	In	the	following
chart,	the	columns	represent	the	channels	GEOM_CHANNEL	(G),
TOPO_CHANNEL	(T),	SELECT_CHANNEL	(S),	and
SUBSEL_TYPE_CHANNEL	(U).
X's	indicate	dependency	of	the	specified	data	cache	on	the	given	channel.
Method	to	get	cache	G	T	S	U
AdjEList	X
AdjFList	X
FaceClusters	X	X

EdgeClusters	X	X
VertexClusters	X	X	X
ClusterCenters	X	X	X	X
ClusterNormals	X	X	X	X
VertexNormals	X	X
SelectionDist	X	X	X	X
ClusterDist	X	X	X	X
VSWeight	X	X	X	X
The	extrusion	direction	methods	could	also	be	said	to	be	dependent	on	all	four
channels,	but	is	currently	handled	separately	in	freeBevelInfo.	ChamferData	is
handled	in	freeChamferData,	and	is	not	based	on	the
cached	mesh.
Sample	use:	Suppose	you	use	a	MeshDelta	to	modify	a	mesh,	twice:
DoStuffToMesh	(Mesh	&	m)	{
MeshTempData	foo;
foo.SetMesh	(&m);
MeshDelta	md(m);
md.Op1	(m,	foo.AdjEList());		//	insert	op	of	choice	here
md.Apply	(m);
foo.Invalidate	(md.PartsChanged	());
md.ClearAllOps	();
md.Op2	(m,	foo.VSWeights	());
md.Apply	(m);
foo.Invalidate	(md.PartsChanged	());
}
Only	the	parts	of	foo	that	are	dependent	on	what	was	changed	by	the	first
meshdelta	are	freed.	The	other	parts,	if	any,	remain	cached	for	further
operations.

Parameters:
DWORD	part
One	or	more	of	the	following	channels:

GEOM_CHANNEL,	TOPO_CHANNEL,	SELECT_CHANNEL,
SUBSEL_TYPE_CHANNEL

Prototype:
void	InvalidateDistances();

Remarks:
Uncaches	(frees)	the	distance	dependent	data	returned	by	VSWeight,
SelectionDist,	and	ClusterDist.

Prototype:
void	InvalidateAffectRegion();

Remarks:
Frees	the	VSWeight	data.	This	is	useful,	e.g.,	if	the	mesh	has	not	changed,	but
you	wish	to	change	the	falloff,	pinch,	or	bubble	parameters	to	get	new	vertex
selection	weights.

Prototype:
void	freeClusterDist();

Remarks:
Mainly	for	internal	use,	this	frees	just	the	cluster	distance	data.

Prototype:
void	freeBevelInfo();

Remarks:
Frees	only	the	extrusion	direction	data.

Prototype:
void	freeChamferData();

Remarks:
Frees	only	the	chamfer	data	structure.

Prototype:

void	freeAll();
Remarks:
Frees	all	cached	data.

Class	MeshChamferData
See	Also:	Class	Mesh,	Class	MeshDelta,	Template	Class	Tab.
class	MeshChamferData

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	contains	all	the	data	needed	to	move	points	as	the	user	drags	a
chamfer.	It's	created	by	the	topological	change	that	happens	at	the	start	of	the
chamfer.	It	is	used	to	maintain	chamfer	information	between	several
MeshDelta	methods.	The	strategy	is	this:	The	chamfer	operation	is	divided	into
two	parts,	the	topological	change	and	a	later	geometric	change.	(This	works	well
for	EditableMesh,	where	the	topology	change	is	completed	first,	then	apply	a
series	of	geometry	changes	as	the	user	spins	a	spinner	or	drags	a	mouse.	Each
geometry	change	is	undone	before	the	next	is	applied,	but	the	topology	change
only	happens	once.)
This	class	is	filled	in	by	the	topological	change	with	the	"directions"	for	all	the
geometric	and	mapping	vert	changes:

Data	Members:
public:
Tab<Point3>	vdir;
This	table	contains	the	directions	of	movement	for	each	vertex,	scaled	in	such
a	manner	to	produce	a	consistent	chamfer.
Tab<float>	vmax;
This	table	contains	the	limits	of	motion	for	each	vertex	-	stopping	the	vertices
at	these	limits	will	prevent	them	from	crossing	each	other	or	over	far	edges.
Tab<UVVert>	*mdir;
For	each	active	map	channel	mp,	mdir[mp]	represents	the	directions	of
movement	of	the	map	verts	for	that	channel.	(Map	verts	need	to	be	moved	as
well,	otherwise	the	maps	get	distorted.)

Methods:
public:

Prototype:
MeshChamferData();

Remarks:
Constructor.	This	sets	mdir	to	NULL.

Prototype:
MeshChamferData(const	Mesh	&m);

Remarks:
Constructor.

Parameters:
const	Mesh	&m
The	mesh	to	init	this	MeshChamferData	object	from,	allocating	the	vertex	and
mapping	vertex	tables	as	appropriate.

Prototype:
~MeshChamferData();

Remarks:
Destructor.	If	mdir	is	allocted	it	is	seleted.

Prototype:
void	InitToMesh(const	Mesh	&m);

Remarks:
This	method	sets	up	a	MeshChamferData	based	on	a	given	mesh,
allocating	the	vertex	and	mapping	vertex	tables	as	appropriate.

Parameters:
const	Mesh	&m
The	Mesh	to	init	from.

Prototype:
void	setNumVerts(int	nv,	bool	keep=TRUE,	int	resizer=0);

Remarks:
This	method	simply	allocates	the	vdir	and	vmax	tables,	and	initializes	the	new
members	of	vmax	to	0.	This	method	can	be	applied	to	an	existing
MeshChamferData	to	reflect	an	increase	in	vertices	by	VClone	or	VCreate

operations.
Parameters:
int	nv
The	number	of	verts
bool	keep=TRUE
TRUE	to	keep	if	resized;	FALSE	to	discard.
int	resizer=0
The	number	of	elements	the	vdir	and	vmax	tables	are	resized	beyond	their
current	size.
	

The	following	methods	are	not	part	of	the	class,	but	are	useful	for
debugging

Prototype:
DllExport	void	MeshChamferDataDebugPrint	(MeshChamferData
&	mcd,	int	mapNum);
	

Description
This	function	uses	calls	to	DebugPrint()	to	output	all	the	data	in	the
specified	MeshChamferData	to	the	DebugPrint	buffer	during	debug	runs.	It
is	available	for	programmers'	use,	providing	easy	access	to
MeshChamferData	during	development.	It	ought	to	be	removed	for	release
builds.

	
Parameters:

MeshChamferData	&	mcd
The	MeshChamferData	we	want	to	investigate.

	
int	mapNum

The	number	of	map	channels	in	the	Mesh	associated	with	this
MeshChamferData.	(For	historical	reasons,	this	information	is	not	kept	in
the	MeshChamferData	class.)	Generally	this	is	retrieved	with	a	call	to
Mesh::getNumMaps().

Class	EdgeClusterList
See	Also:	Class	Mesh.
class	EdgeClusterList

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	a	list	of	edge	"clusters"	for	a	given	mesh.	A	typical	application	would	be
in	Edit(able)	Mesh,	where	the	user	has	selected	a	two	separate	groups	of	edges
on	different	parts	of	the	mesh	and	wants	to	extrude	them	both,	or	rotate	both
around	their	local	centers.	Each	"cluster"	is	a	contiguous	group	of	selected
edges.	Like	AdjEdgeLists	and	AdjFaceLists,	this	class	is	only	defined	in	relation
to	some	mesh.
Note:	for	construction	of	this	list,	an	edge	is	considered	selected	on	both	sides	if
it's	selected	on	either.	If	you	select	the	diagonal	on	top	of	a	box,	you	probably
only	selected	one	of	(face	2,	edge	2	=	8)	or	(face	3,	edge	2	=	11).	But	edges	8
and	11	will	both	be	in	the	same	cluster.

Data	Members:
public:
DWORDTab	clust;
The	cluster	IDs	of	all	the	edges	--	this	table	has	size	mesh::numFaces*3.
clust[i]	is	UNDEFINED	if	edge	i	is	not	in	any	cluster	(ie	is	totally	unselected).
DWORD	count;
The	number	of	clusters.

Methods:
public:

Prototype:
EdgeClusterList(Mesh	&mesh,BitArray	&esel,AdjEdgeList
&adj);

Remarks:
Constructor.
Creates	an	edge	cluster	list	from	the	current	selection.	All	adjacent	selected
edges	are	grouped	into	the	same	cluster.

Parameters:
Mesh	&mesh
The	mesh	associated	with	this	EdgeClusterList.
BitArray	&esel
The	bit	array	containing	the	edge	selection	data	for	the	mesh.
AdjEdgeList	&adj
The	adjacent	edge	list	for	the	mesh.

Prototype:
DWORD	ID(int	f,	int	e)	{return	clust[f*3+e];};

Remarks:
Returns	the	cluster	ID	for	face	f,	edge	e.

Parameters:
int	f
The	index	of	the	face	in	the	mesh.
int	e
The	index	of	the	edge	in	the	mesh.

Prototype:
void	MakeVertCluster(Mesh	&mesh,	Tab<DWORD>	&vclust);

Remarks:
Creates	a	list	of	cluster	IDs	for	vertices.

Parameters:
Mesh	&mesh
The	mesh	associated	with	this	EdgeClusterList.
Tab<DWORD>	&	vclust
This	is	where	the	output	goes:	vclust	is	set	to	size	mesh.numVerts,	and	the
value	of	each	entry	in	this	table	tells	which	cluster	the	vertex	has	been
assigned	to,	based	on	the	edges	it's	on.	If	vertex	"v"	is	not	in	any	clusters	(ie
none	of	the	edges	that	use	it	are	in	any	clusters),	vclust[v]	is	UNDEFINED.

Prototype:

void	GetNormalsCenters(Mesh	&mesh,	Tab<Point3>	&	norm,
Tab<Point3>	&	ctr);

Remarks:
This	method	extracts	normal	and	center	information	for	the	various	clusters	of
the	mesh.

Parameters:
Mesh	&mesh
The	mesh	to	evaluate.
Tab<Point3>	&	norm
This	table	has	its	sizes	set	to	the	number	of	clusters	in	the	cluster	list.	Normals
are	computed	as	the	normalized	average	of	the	area-normal	vectors	of	all	faces
in	the	cluster.
Tab<Point3>	&	ctr
This	table	has	its	sizes	set	to	the	number	of	clusters	in	the	cluster	list.	Centers
are	the	average	location	of	the	face	centers	or	edge	centers	--	thus	a	point	on
three	faces	or	edges	in	the	same	cluster	has	more	weight	than	a	point	on	one
face	in	the	cluster.

Prototype:
DWORD	operator[](int	i);

Remarks:
Access	operator.	Returns	the	cluster	ID	for	edge	i	(indexed	as	3*face+edge).

The	following	functions	are	not	part	of	a	class	but	are	available
for	use:
Function:
float	AffectRegionFunction(float	dist,	float	falloff,	float	pinch,	float
bubble);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	is	the	standard	affect	region	function,	based	on	a	distance	and	the	three
affect	region	parameters	(same	as	the	editable	mesh).

This	function	is	a	cubic	curve	which	returns	1	at	distance	0,	0	if	distance	is
greater	than	falloff,	and	other	values	for	distance	between	0	and	falloff.	To
"see"	this	function	graphed,	look	at	the	curve	in	the	Soft	Selection	parameters
in	Edit	Mesh,	Editable	Mesh,	Mesh	Select,	or	Volume	Select.	This	function
currently	is	constructed	as	follows:
	float	u	=	((falloff	-	dist)/falloff);
	float	u2	=	u*u,	s	=	1.0f-u;
	return	(3*u*bubble*s	+	3*u2*(1.0f-pinch))*s	+	u*u2;"

Parameters:
float	dist
The	distance	to	the	selection.	The	method	for	computing	this	distance	is	up	to
the	developer;	for	example	in	Mesh	Select,	it's	the	distance	to	the	nearest
selected	vertex,	while	in	Volume	Select	(with	a	box	or	sphere	selection	region)
it's	the	distance	to	the	selection	volume.
float	falloff
The	limit	distance	of	the	effect.	If	distance	>	falloff,	the	function	will	always
return	0.
float	pinch
Use	this	to	affect	the	tangency	of	the	curve	near	distance=0.	Positive	values
produce	a	pointed	tip,	with	a	negative	slope	at	0,	while	negative	values
produce	a	dimple,	with	positive	slope.
float	bubble
Use	this	to	change	the	curvature	of	the	function.	A	value	of	1.0	produces	a
half-dome.	As	you	reduce	this	value,	the	sides	of	the	dome	slope	more	steeply.
Negative	values	lower	the	base	of	the	curve	below	0.

Return	Value:
Returns	the	strength	of	the	Affect	Region	function	at	the	given	distance.	(In
selection	modifiers,	this	is	the	"soft	selection"	amount,	the	amount	it's
considered	selected.	A	vertex	at	a	distance	with	a	return	value	of	.25,	for
instance,	will	be	affected	1/4	as	strongly	in	a	deformation	as	a	fully	selected
vertex.)

Function:
void	MatrixFromNormal(Point3&	normal,	Matrix3&	mat);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	creates	a	matrix	with	the	normal	as	a	Z-axis.	The	X	and	Y	axes
are	chosen	arbitrarily.

Parameters:
Point3&	normal
The	input	normal	is	specified	here.
Matrix3&	mat
The	output	matrix.

Function:
void	AverageVertexNormals(Mesh	&	mesh,	Tab<Point3>	&
vnormals);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	creates	vertex	normals	that	are	weighted	averages	of	faces	using
each	vertexSmoothing	groups	are	not	used	in	these	computations	--	the
normals	are	those	you	would	expect	with	a	totally	smooth	mesh.

Parameters:
Mesh	&	mesh
The	mesh	whose	average	vertex	normals	are	computed.
Tab<Point3>	&	vnormals
The	output	vertex	normals.	.	This	will	be	set	to	size	mesh.numVerts.

Function:
Point3	AverageSelVertNormal(Mesh&	mesh);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	computes	and	returns	the	average	normal	of	a	group	of	selected
vertices.

Parameters:
Mesh&	mesh

The	mesh	to	check.	The	function	uses	mesh.vertSel	to	check	for	selected
verts.

Function:
Point3	AverageSelVertCenter(Mesh&	mesh);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	computes	and	returns	the	average	center	of	a	group	of	selected
vertices.

Parameters:
Mesh&	mesh
The	mesh	to	check.	The	function	uses	mesh.vertSel	to	check	for	selected
verts.

Function:
void	DeselectHiddenFaces(Mesh	&mesh);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
Removes	hidden	faces	from	the	mesh.faceSel	selection	array.

Parameters:
Mesh&	mesh
The	mesh	to	check.

Function:
void	DeselectHiddenEdges(Mesh	&mesh);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	removes	edges	on	hidden	faces	from	the	mesh.edgeSel
selection	array.

Parameters:
Mesh&	mesh
The	mesh	to	check.

Function:
void	HiddenFacesToVerts(Mesh	&mesh,	BitArray	&alsoHide);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	hides	vertices	that	are	only	used	by	hidden	faces.	If	alsoHide
has	size	mesh.numVerts,	it	is	used	to	indicate	other	vertices	that	should	also
be	hidden.	Note	that	passing	mesh.vertHide	as	alsoHide	will	NOT	WORK,
as	mesh.vertHide	is	overwritten	before	alsoHide	is	read.

Parameters:
Mesh	&mesh
The	mesh	to	check.
BitArray	&alsoHide
If	specified,	this	is	used	to	indicates	other	vertices	that	should	also	be	hidden.

Function:
void	SelectionDistance(Mesh	&	mesh,	float	*selDist);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	computes	distances	from	selected	vertices	(as	indicated	by
mesh.VertexTempSel())	to	non-selected	ones.
NOTE:	This	is	an	order-of-n-squared	algorithm.	Each	unselected	vert	is
compared	with	each	selected	vert.	So,	if	you	have	a	mesh	with	1000	sel	verts
and	1000	unsel	verts,	this	involves	a	million	compares.

Parameters:
Mesh	&	mesh
The	mesh	to	check.
float	*selDist
This	is	assumed	to	be	a	float	array	of	size	mesh.numVerts.	It	is	set	to	-1	for
all	verts	if	there	is	no	selection.	Otherwise,	selected	vertices	have	a	value	of	0,
and	nonselected	vertices	have	the	distance	to	the	nearest	selected	vertex.

Function:

void	SelectionDistance(Mesh	&	mesh,	float	*selDist,	int	iters,
AdjEdgeList	*ae=NULL);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
This	function	computes	distances	from	selected	vertices	(as	indicated	by
mesh.VertexTempSel())	to	non-selected	ones	along	edge	paths.	selDist	is
assumed	to	be	a	float	array	of	size	mesh.numVerts.	selDist	is	set	to	-1	for
all	verts	if	there	is	no	selection.	Otherwise,	selected	vertices	have	selDist
value	0;	non-selected	vertices	that	are	"iters"	or	fewer	edges	away	from	a
selected	vertex	are	assigned	the	shortest	edge-path	distance	to	a	selected
vertex;	and	non-selected	vertices	that	are	more	than	iters	edges	away	are	set
to	-1.	The	AdjEdgeList	is	computed	by	the	algorithm	if	the	one	passed	is
NULL;	otherwise	you	can	save	time	by	passing	a	cached	one	in.
This	is	NOT	an	n-squared	algorithm	like	the	one	above.	It's	more	a	sort	of
order-of-n-times-(iters-squared).

Parameters:
Mesh	&	mesh
The	mesh	to	check.
float	*selDist
An	array	of	floats	of	size	mesh.numVerts.
int	iters
If	0,	Selection	Distance	is	computed	from	each	vertex	to	the	nearest	selected
vertex,	regardless	of	topology.	This	is	a	VERY	EXPENSIVE	ALGORITHM,
which	takes	almost	4	times	as	long	for	twice	as	many	vertices.	If	iters	is	non-
zero,	it	represents	the	number	of	edges	one	should	"travel"	in	trying	to	find	the
nearest	selected	vertex	--	this	means	that	it	only	takes	twice	as	long	for	twice
as	many	verts.	(This	is	like	the	Edge	Distance	parameter	in	EMesh's	Soft
Selection	dialog.)	If	iters	is	0,	ae	is	irrelevant	and	may	be	left	as	NULL.	If	iters
is	nonzero,	an	Adjacent	Edge	List	is	required,	and	will	be	computed	internally
from	the	mesh	if	ae	is	NULL.	(If	you've	got	an	AdjEdgeList	for	this	mesh
handy,	pass	it	in,	otherwise	don't	worry	about	it.)
Note	also	that	if	iters	is	nonzero,	the	distance	is	computed	along	the	edges,	not
directly	through	space.	If	there	is	no	selected	vertex	within	an	iters-length
path,	a	vertex	is	assigned	a	0	selection	value.

AdjEdgeList	*ae=NULL
The	optional	adjacent	edge	list.

Function:
void	ClustDistances(Mesh	&	mesh,	DWORD	numClusts,	DWORD
*vclust,	Tab<float>	**clustDist);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
Computes	distances	from	nonselected	vertices	in	the	mesh	to	each	of	the
vertex	clusters.	This	is	a	VERY	EXPENSIVE	ALGORITHM,	which	takes
almost	4	times	as	long	for	twice	as	many	vertices.
Preparation	for	this	method	would	typically	look	like:
//	given	Mesh	msh,	FaceClusterList	fclust:
Tab<DWORD>	vclust;
fclust.MakeVertCluster	(msh,	vclust);
Tab<float>	**	clustDist;
clustDist	=	new	(Tab<float>	*)[fclust.count];
for	(int	i=0;	i<fclust.count;	i++)	clustDist[i]	=	new	Tab<float>;
ClustDistances	(mesh,	fclust.count,	vclust.Addr(0),	clustDist);

Then	(*clustDist[c])[v]	would	give	the	distance	from	vertex	v	in	the	mesh	to
the	vertices	of	cluster	c.

Parameters:
Mesh	&mesh
The	mesh	the	clusters	are	based	on.
DWORD	numClusts
The	number	of	clusters	in	this	mesh.
DWORD	*vclust
A	pointer	to	an	array	of	vertex	cluster	IDs.	Typically	this	is	a	pointer	to	the
data	in	the	table	created	by	EdgeClusterList::GetVertClusters	or
FaceClusterList::GetVertClusters.
Tab<float>	**clustDist
This	is	an	array	of	<numClusts>	pointers	to	tables	that	will	be	used	to	store
distances	from	various	clusters.	Each	table	will	be	set	to	the	ize	of

mesh.numVerts	and	filled	with	distances	to	the	cluster	that	table	represents.

Function:
void	ClustDistances(Mesh	&	mesh,	DWORD	numClusts,	DWORD
*vclust,	Tab<float>	**clustDist,	int	iters,	AdjEdgeList
*ae=NULL);

Remarks:
This	function	is	available	in	release	3.0	and	later	only.
Computes	distances	from	nonselected	vertices	in	the	mesh	to	each	of	the
vertex	clusters.	Unlike	the	other	version	which	doesn't	have	an	iters	or	ae
parameter,	this	is	a	linear	algorithm	which	computes	distance	along	a	finite
number	of	edges.
Preparation	for	this	method	would	typically	look	like:
//	given	Mesh	msh,	FaceClusterList	fclust:
Tab<DWORD>	vclust;
fclust.MakeVertCluster	(msh,	vclust);
Tab<float>	**	clustDist;
clustDist	=	new	(Tab<float>	*)[fclust.count];
for	(int	i=0;	i<fclust.count;	i++)	clustDist[i]	=	new	Tab<float>;
ClustDistances(mesh,	fclust.count,	vclust.Addr(0),	clustDist);

Then	(*clustDist[c])[v]	would	give	the	distance	from	vertex	v	in	the	mesh	to
the	vertices	of	cluster	c.

Parameters:	
Mesh	&	mesh
The	mesh	the	clusters	are	based	on.
DWORD	numClusts
The	number	of	clusters	in	this	mesh.
DWORD	*vclust
A	pointer	to	an	array	of	vertex	cluster	IDs.	Typically	this	is	a	pointer	to	the
data	in	the	table	created	by	EdgeClusterList::GetVertClusters	or
FaceClusterList::GetVertClusters.
Tab<float>	**clustDist
This	is	an	array	of	<numClusts>	pointers	to	tables	that	will	be	used	to	store

distances	from	various	clusters.	Each	table	will	be	set	to	the	ize	of
mesh.numVerts	and	filled	with	distances	to	the	cluster	that	table	represents.
int	iters
The	maximum	number	of	edges	to	travel	along	looking	for	a	vertex	in	the
given	cluster.
AdjEdgeList	*ae=NULL
Edge	length	computations	require	an	adjacent	edge	list.	If	you	don't	pass	one
in	this	parameter,	it'll	have	to	construct	its	own	from	the	mesh.

Class	UVWMapper
See	Also:	Class	Mesh,	Class	Matrix3,	Class	Point3.
class	UVWMapper

Description:
This	class	is	available	in	release	3.0	and	later	only.
Prior	to	release	3.0,	developers	could	implement	Object::ApplyUVWMap()
in	their	objects,	but	didn't	have	access	to	the	algorithm	3ds	max	uses	internally	to
turn	the	mapping	types	(MAP_BOX,	MAP_PLANE,	etc)	into	an	actual	vertex-
to-mapping-coordinate	function.	This	class	now	makes	this	available.
The	constructors	for	the	class	initialize	the	data	members	with	information	about
the	mapping	desired.	The	main	method,	MapPoint(),	maps	a	point	in	object
space	into	the	UVW	map	defined	by	this	mapper.
Note:	typedef	Point3	UVVert;

Data	Members:
public:
int	type;
The	mapping	type.	One	of	the	following	values:
MAP_PLANAR
MAP_CYLINDRICAL
MAP_SPHERICAL
MAP_BALL
MAP_BOX
MAP_FACE

int	cap;
This	is	used	with	MAP_CYLINDRICAL.	If	nonzero,	then	any	face	normal
that	is	pointing	more	vertically	than	horizontally	will	be	mapped	using	planar
coordinates.
float	utile;
Number	of	tiles	in	the	U	direction.
float	vtile;
Number	of	tiles	in	the	V	direction.

float	wtile;
Number	of	tiles	in	the	W	direction.
int	uflip;
If	nonzero	the	U	values	are	mirrored.
int	vflip
If	nonzero	the	V	values	are	mirrored.
int	wflip;
If	nonzero	the	W	values	are	mirrored.
Matrix3	tm;
This	defines	the	mapping	space.	As	each	point	is	mapped,	it	is	multiplied	by
this	matrix,	and	then	it	is	mapped.

Methods:
public:

Prototype:
UVWMapper();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	type	=	MAP_BOX;
	utile	=	1.0f;
	vtile	=	1.0f;
	wtile	=	1.0f;
	uflip	=	0;
	vflip	=	0;
	wflip	=	0;
	cap	=	0;
	tm.IdentityMatrix();

Prototype:
UVWMapper(int	type,	const	Matrix3	&tm,	int	cap=FALSE,	float
utile=1.0f,	float	vtile=1.0f,	float	wtile=1.0f,int	uflip=FALSE,	int
vflip=FALSE,	int	wflip=FALSE);

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.

Prototype:
UVWMapper(UVWMapper&	m);

Remarks:
Constructor.	The	data	members	are	initialized	from	the	UVWMapper	passed.

Prototype:
UVVert	MapPoint(Point3	p,	const	Point3	&	norm,	int
*nan=NULL);

Remarks:
This	method	maps	a	point	in	object	space	into	the	UVW	map	defined	by	this
mapper.	This	gives	the	UVW	coordinates	for	the	specified	point	according	to
this	mapper's	mapping	scheme.

Parameters:
Point3	p
The	location	of	a	vertex,	i.e.	the	point	being	mapped.	This	point	should	NOT
be	transformed	by	the	UVWMapper's	tm,	as	this	happens	internally.
const	Point3	&	norm
The	direction	of	the	surface	normal	at	p.	This	information	is	only	required	for
types	MAP_BOX	or	MAP_CYLINDRICAL.	See	the	method
NormalMatters()	below.
int	*nan=NULL
If	non-NULL,	this	points	to	an	int	which	should	be	set	to	FALSE	if	this
mapping	is	good	for	all	faces	using	this	vertex,	or	TRUE	if	different	faces
should	have	different	mapping	coordinates.	This	is	generally	set	to	TRUE
more	often	than	absolutely	necessary	to	make	sure	nothing	is	missed.

Return	Value:
The	mapped	point.

Prototype:
UVVert	TileFlip(UVVert	uvw);

Remarks:
Applies	the	UVWMap's	tile	and	flip	parameters	to	the	given	UVVert,	and
returns	the	result..

Parameters:
UVVert	uvw
The	input	UVVert.

Return	Value:
The	modified	UVVert.

Prototype:
int	MainAxis(const	Point3	&	n);

Remarks:
This	method	indicates	which	direction	the	given	vector	"chiefly	points",	after
vector	transformation	by	the	UVWMapper's	transform.

Parameters:
const	Point3	&	n
The	input	vector	whose	main	axis	is	determined.

Return	Value:
One	of	the	following	values:
0:	tm.VectorTransform(n)	points	mainly	in	the	+x	direction.
1:	tm.VectorTransform(n)	points	mainly	in	the	+y	direction.
2:	tm.VectorTransform(n)	points	mainly	in	the	+z	direction.
3:	tm.VectorTransform(n)	points	mainly	in	the	-x	direction.
4:	tm.VectorTransform(n)	points	mainly	in	the	-y	direction.
5:	tm.VectorTransform(n)	points	mainly	in	the	-z	direction.

Prototype:
bool	NormalMatters();

Remarks:
This	method	lets	you	know	whether	the	current	mapping	type	uses	the	normal
information.	If	FALSE,	it	doesn't	matter	what	value	you	pass	as	a	normal	to
MapPoint.	If	TRUE,	the	MainAxis	of	the	normal	is	used	to	determine	the

mapping.

Class	IMeshSelect
See	Also:	Class	Mesh,	Class	LocalModData,	Class	IMeshSelectData.
class	IMeshSelect

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	provides	access	to	selection	data	for	the	Mesh	Select	Modifier,
Editable	Mesh	and	Edit	Mesh	modifier.
To	get	a	pointer	to	this	interface	given	a	pointer	to	a	modifier	or	editable	mesh
object,	use	the	following	macro	(defined	in	ANIMTBL.H).	Using	this	macro,
given	any	Animatable,	it	is	easy	to	ask	for	the	interface.
#define	GetMeshSelectInterface(anim)	((IMeshSelect*)anim-
>GetInterface(I_MESHSELECT))
A	plug-in	developer	may	use	this	macro	as	follows:
IMeshSelect	*ims	=	GetMeshSelectInterface(anim);
This	return	value	will	either	be	NULL	or	a	pointer	to	a	valid	Mesh	Select
interface.

Methods:

Prototype:
virtual	DWORD	GetSelLevel()=0;

Remarks:
Returns	the	current	level	of	selection	for	the	modifier.

Return	Value:
One	of	the	following	values:
IMESHSEL_OBJECT:	Object	level.
IMESHSEL_VERTEX:	Vertex	level.
IMESHSEL_FACE:	Face	level.
IMESHSEL_EDGE:	Edge	level.

Prototype:
virtual	void	SetSelLevel(DWORD	level)=0;

Remarks:
Sets	the	selection	level	of	the	modifier.

Parameters:
DWORD	level
One	of	the	following	values:
IMESHSEL_OBJECT:	Object	level.
IMESHSEL_VERTEX:	Vertex	level.
IMESHSEL_FACE:	Face	level.
IMESHSEL_EDGE:	Edge	level.

Prototype:
virtual	void	LocalDataChanged()=0;

Remarks:
This	method	must	be	called	when	the	LocalModData	of	the	modifier	is
changed.	Developers	can	use	the	methods	of	IMeshSelectData	to	get	and
set	the	actual	selection	for	vertex,	face	and	edge.	When	a	developers	does	set
any	of	these	selection	sets	this	method	must	be	called	when	done.

Prototype:
virtual	BOOL	HasWeightedVertSel();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	this	modifier	or	object	has	weighted	vertex	selection	data
(Soft	Selection	data),	FALSE	if	not.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	BOOL	CanAssignWeightedVertSel();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	this	modifier	or	object	can	assign	weighted	vertex	selection

data;	FALSE	if	it	cannot.
Default	Implementation:
{	return	FALSE;	}

Class	IMeshSelectData
See	Also:	Class	ModContext,	Class	BitArray,	Class	IMeshSelect,	Class
Interface,	Class	GenericNamedSelSetList.
class	IMeshSelectData

Description:
This	class	is	available	in	release	2.0	and	later	only.
When	a	developer	gets	the	LocalModData	from	the	ModContext	of	the
Mesh	Select	Modifier	or	Edit	Mesh	Modifier,	they	may	cast	it	to	this	class	and
use	these	methods.	They	may	be	used	to	get/set	the	vert/face/edge	selection	state
of	the	modifier.	This	class	also	provides	access	to	the	named	sub-object	selection
sets.
To	get	a	pointer	to	this	interface	given	a	pointer	to	a	modifier	use	the	following
macro	(defined	in	ANIMTBL.H).	Using	this	macro,	given	any	Animatable,	it
is	easy	to	ask	for	the	interface.
#define	GetMeshSelectDataInterface(anim)
((IMeshSelectData*)anim->GetInterface(I_MESHSELECTDATA))
A	plug-in	developer	may	use	this	macro	as	follows:
IMeshSelectData	*imsd	=	GetMeshSelectDataInterface(anim);
This	return	value	will	either	be	NULL	or	a	pointer	to	a	valid	Mesh	Select	Data
interface.

Methods:

Prototype:
virtual	BitArray	GetVertSel()=0;

Remarks:
Returns	a	BitArray	that	reflects	the	current	vertex	selection.	There	is	one	bit
for	each	vertex.	Bits	that	are	1	indicate	the	vertex	is	selected.

Prototype:
virtual	BitArray	GetFaceSel()=0;

Remarks:
Returns	a	BitArray	that	reflects	the	current	face	selection.	There	is	one	bit

for	each	face.	Bits	that	are	1	indicate	the	face	is	selected.

Prototype:
virtual	BitArray	GetEdgeSel()=0;

Remarks:
Returns	a	BitArray	that	reflects	the	current	edge	selection.	There	is	one	bit
for	each	edge.	Bits	that	are	1	indicate	the	edge	is	selected.

Prototype:
virtual	void	SetVertSel(BitArray	&set,	IMeshSelect	*imod,
TimeValue	t)=0;

Remarks:
Sets	the	vertex	selection	of	the	modifier.

Parameters:
BitArray	&set
There	is	one	bit	for	each	vertex.	Bits	that	are	1	indicate	the	vertex	is	selected.
IMeshSelect	*imod
This	parameter	is	available	in	release	3.0	and	later	only.
Points	to	the	IMeshSelect	instance	(generally	this	is	a	modifier).
TimeValue	t
This	parameter	is	available	in	release	3.0	and	later	only.
The	current	time	at	which	the	call	is	made.

Prototype:
virtual	void	SetFaceSel(BitArray	&set,	IMeshSelect	*imod,
TimeValue	t)=0;

Remarks:
Sets	the	face	selection	of	the	modifier.

Parameters:
BitArray	&set
There	is	one	bit	for	each	face.	Bits	that	are	1	indicate	the	face	is	selected.

IMeshSelect	*imod
This	parameter	is	available	in	release	3.0	and	later	only.
Points	to	the	IMeshSelect	instance	(generally	this	is	a	modifier).
TimeValue	t
This	parameter	is	available	in	release	3.0	and	later	only.
The	current	time	at	which	the	call	is	made.

Prototype:
virtual	void	SetEdgeSel(BitArray	&set,	IMeshSelect	*imod,
TimeValue	t)=0;

Remarks:
Sets	the	edge	selection	of	the	modifier.

Parameters:
BitArray	&set
There	is	one	bit	for	each	edge.	Bits	that	are	1	indicate	the	edge	is	selected.
IMeshSelect	*imod
This	parameter	is	available	in	release	3.0	and	later	only.
Points	to	the	IMeshSelect	instance	(generally	this	is	a	modifier).
TimeValue	t
This	parameter	is	available	in	release	3.0	and	later	only.
The	current	time	at	which	the	call	is	made.

Prototype:
virtual	GenericNamedSelSetList	&GetNamedVertSelList()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	reference	to	an	instance	of	GenericNamedSelSetList	used	for
storing	vertex	level	named	selection	sets.	This	class	provides	access	to	and	the
ability	to	manipulate	a	list	of	named	selection	sets.

Prototype:
virtual	GenericNamedSelSetList	&GetNamedEdgeSelList()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	reference	to	an	instance	of	GenericNamedSelSetList	used	for
storing	edge	level	named	selection	sets.	This	class	provides	access	to	and	the
ability	to	manipulate	a	list	of	named	selection	sets.

Prototype:
virtual	GenericNamedSelSetList	&GetNamedFaceSelList()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	reference	to	an	instance	of	GenericNamedSelSetList	used	for
storing	face	level	named	selection	sets.	This	class	provides	access	to	and	the
ability	to	manipulate	a	list	of	named	selection	sets.

Prototype:
virtual	void	GetWeightedVertSel(int	nv,	float	*sel)	{};

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Retrieves	the	weighted	vertex	selections	data	(Soft	Selection	data).

Parameters:
int	nv
The	number	of	vertices.
float	*sel
An	array	of	floats	to	store	the	results.

Default	Implementation:
{}

Prototype:
virtual	void	SetWeightedVertSel(int	nv,	float	*sel,	IMeshSelect
*imod,	TimeValue	t);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Sets	the	weighted	vertex	selection	data	(Soft	Selection	data)	to	the	values
passed.

Parameters:
int	nv
The	number	of	vertices.
float	*sel
An	array	of	floats	with	the	data.
IMeshSelect	*imod
Points	to	the	IMeshSelect	object.
TimeValue	t
The	time	at	which	to	set	the	data.

Default	Implementation:
{}

Class	View
See	Also:	Class	GeomObject,	Class	Interface,	Class	Control,	Class	Matrix3,
Class	Point3.
class	View	:	public	InterfaceServer

Description:
This	class	is	passed	in	to	GeomObject::GetRenderMesh()	to	allow	objects
to	do	view	dependent	rendering.	It	is	also	passed	to	Control::EvalVisibility().
For	example	particle	systems	use	this	to	have	the	particles	exactly	face	the
camera	(if	this	option	is	enabled).	If	GetRenderMesh()	is	called	by	the
renderer,	the	methods	of	this	class	are	implemented	by	the	system.	If	a	plug-in	is
calling	this	method,	they	must	implement	these	methods.	The	sample	code
below	shown	a	null	implementation	that	may	be	used	if	a	viewport	is	not
involved:
class	NullView	:	public	View	{
public:
Point2	ViewToScreen(Point3	p)
{	return	Point2(p.x,p.y);	}

NullView()	{
worldToView.IdentityMatrix();
screenW=640.0f;	screenH	=	480.0f;
}

};

Data	Members:
public:
float	screenW,	screenH;
These	hold	the	screen	dimensions	in	pixels	for	width	and	height.
Matrix3	worldToView;
A	transformation	matrix	from	world	into	view	space.	This	is	into	the	camera's
space.
int	projType;
This	data	member	is	available	in	release	2.0	and	later	only.
The	view	projection	type:	0	is	perspective,	1	is	parallel.

float	fov;
This	data	member	is	available	in	release	2.0	and	later	only.
The	field	of	view	in	radians.
float	pixelSize;
This	data	member	is	available	in	release	2.0	and	later	only.
The	pixel	size	setting.
Matrix3	affineTM;
This	data	member	is	available	in	release	2.0	and	later	only.
This	is	the	world	to	camera	transformation	matrix.
DWORD	flags;
This	data	member	is	available	in	release	3.0	and	later	only.
The	following	flag	is	defined.
RENDER_MESH_DISPLACEMENT_MAP
Indicates	that	Displacement	Mapping	is	enabled.	Note	that	this	flag	should
be	tested,	and	not	Interface::GetRendDisplacement(),	because	the
values	may	not	be	the	same	(for	instance	when	rendering	in	the	Materials
Editor).

Methods:

Prototype:
virtual	Point2	ViewToScreen(Point3	p)=0;

Remarks:
This	method	is	used	to	convert	a	point	in	view	space	to	screen	space.	This
includes	any	perspective	projection.

Parameters:
Point3	p
The	point	in	view	space.

Return	Value:
The	point	in	screen	space	(in	pixel	coordinates).

Prototype:
virtual	BOOL	CheckForRenderAbort();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	should	be	used	by	GetRenderMesh()	implementations	that
require	a	lot	of	processing	time.	This	allows	these	processes	to	be	interupted
by	the	user.	An	example	of	this	in	use	is	the	extensive	computations	done	for
displacement	mapping.	These	may	be	interrupted	by	the	user	during	a	render.
So,	any	implementation	of	GetRenderMesh()	which	takes	a	long	time
should	periodically	call	this	method	to	see	if	the	user	has	canceled	the	render

Return	Value:
Returns	TRUE	iff	user	has	cancelled;	otherwise	FALSE.

Default	Implementation:
{	return	FALSE;	}

Class	SpecialFX
See	Also:	Class	ReferenceTarget,	Class	SFXParamDlg,	Class	IRendParams,
Class	Atmospheric,	Class	Effect,	Class	AppendGizmoRestore,	Class
DeleteGizmoRestore.
class	SpecialFX	:	public	ReferenceTarget

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	base	class	for	Atmospheric,	Renderer	Effect,	and	Shader	Plug-Ins.	It
contains	a	few	methods	common	to	each	of	those	plug-in	classes.

Data	Members:
public:
TSTR	name;
This	is	the	name	which	appears	in	Track	View.

Methods:
public:

Prototype:
virtual	BOOL	Active(TimeValue	t);

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	the	effect	is	active;	otherwise	FALSE.

Parameters:
TimeValue	t
The	time	at	which	to	check.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	TSTR	GetName();

Remarks:
Implemented	by	the	Plug-In.

This	method	is	used	to	retrieve	the	name	for	the	plug-in.	This	name	will
appear	in	the	track	view	and	the	list	of	current	atmospheric	or	rendering
effects.

Prototype:
virtual	void	Update(TimeValue	t,	Interval&	valid);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	once	per	frame	when	the	renderer	begins.	This	gives	the
atmospheric	or	rendering	effect	the	chance	to	cache	any	values	it	uses
internally	so	they	don't	have	to	be	computed	on	every	frame.

Parameters:
TimeValue	t
The	current	time	of	the	call.
Interval&	valid
The	validity	interval	of	the	cache	created	by	the	plug-in.	The	plug-in	may	set
this	for	its	own	use.	The	plug-in	can	then	check	if	the	cache	is	up	to	date	and
update	it	if	not.

Prototype:
virtual	SFXParamDlg	*CreateParamDialog(IRendParams	*ip);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	creates	and	returns	a	new	instance	of	a	class	derived	from
SFXParamDlg	to	manage	the	user	interface.	This	put	up	a	modal	dialog	that
lets	the	user	edit	the	plug-ins	parameters.

Parameters:
IRendParams	*ip
This	is	the	interface	given	to	the	plug-in	so	it	may	display	its	parameters.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	BOOL	SetDlgThing(SFXParamDlg*	dlg);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implement	this	if	you	are	using	the	ParamMap2	AUTO_UI	system	and	the
effect	has	secondary	dialogs	that	don't	have	the	effect	as	their	'thing'.	Called
once	for	each	secondary	dialog	for	you	to	install	the	correct	thing.
Note:	Developers	needing	more	information	on	this	method	can	see	the
remarks	for	MtlBase::CreateParamDlg()	which	describes	a	similar	example	of
this	method	in	use	(in	that	case	it's	for	use	by	a	texture	map	plug-in).

Parameters:
SFXParamDlg*	dlg
Points	to	the	ParamDlg.

Return	Value:
Return	TRUE	if	you	process	the	dialog;	otherwise	FALSE.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	int	NumGizmos();

Remarks:
Implemented	by	the	Plug-In.
If	an	atmospheric	or	rendering	effect	has	references	to	gizmos	or	other	objects
in	the	scene	it	can	optionally	provide	access	to	the	object	list.	This	method
returns	the	number	of	gizmos	or	objects	the	plug-in	has.

Default	Implementation:
{return	0;}

Prototype:
virtual	INode	*GetGizmo(int	i);

Remarks:
Implemented	by	the	Plug-In.

Returns	a	pointer	to	the	'i-th'	gizmo	or	object	node.
Parameters:
int	i
The	index	of	the	gizmo	to	return.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	void	DeleteGizmo(int	i);

Remarks:
Implemented	by	the	Plug-In.
Deletes	the	'i-th'	gizmo	or	object	from	those	used	by	the	plug-in.

Parameters:
int	i
The	index	of	the	gizmo	to	delete.

Default	Implementation:
{}

Prototype:
virtual	void	AppendGizmo(INode	*node);

Remarks:
Implemented	by	the	Plug-In.
Adds	the	specified	node	to	the	end	of	the	list	of	gizmos	used	by	the	plug-in.

Parameters:
INode	*node
Points	to	the	node	to	append.

Default	Implementation:
{}

Prototype:
virtual	BOOL	OKGizmo(INode	*node);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	approve	a	node	for	possible	use	as	gizmo.	Return
TRUE	if	the	node	is	okay;	otherwise	FALSE.

Parameters:
INode	*node
The	node	to	check.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	void	EditGizmo(INode	*node);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	select	the	specified	gizmo	and	displays	parameters	for
it	(if	any).
In	the	Special	Effects	section	of	the	light	dialog	there	is	a	button	labelled
'Setup'.	The	Setup	button	brings	up	the	Environment	dialog	(for
Atmospherics)	or	the	Render	Effects	dialog	(for	Render	Effects)	and	selects
the	choosen	effect.	It	also	selects	the	"gizmo"	within	that	effect,	so	if	there	are
particular	parameters	for	each	gizmo	the	user	will	see	them.	Pressing	that
button	causes	this	method	to	be	called.

Parameters:
INode	*node
The	gizmo	node.

Default	Implementation:
{}

Prototype:
virtual	void	InsertGizmo(int	i,	INode	*node);

Remarks:
Implemented	by	the	Plug-In.

Inserts	the	specified	gizmo	node	into	the	list	of	gizmos.	This	method	must	be
defined	to	use	the	DeleteGizmoRestore	class.

Parameters:
int	i
The	zero	based	index	of	the	position	in	the	list	of	where	the	insertion	should
take	place.
INode	*node
The	gizmo	node	to	insert.

Default	Implementation:
{	assert(0);	}

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
Implemented	by	the	System.
To	facilitate	naming	atmospheric	or	rendering	effects,	a	'name'	string	has	been
added	to	the	base	class.	This	method	should	be	called	from	the	developers
sub-classed	Atmospheric	or	Effects	plug-in	to	save	the	name.

Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
Implemented	by	the	System.
To	facilitate	naming	atmospheric	or	rendering	effects,	a	'name'	string	has	been
added	to	the	base	class.	This	method	should	be	called	from	the	developers
sub-classed	Atmospheric	or	Effects	plug-in	to	load	the	name.

Class	AppendGizmoRestore
See	Also:	Class	RestoreObj,	Class	Atmospheric,	Class	Effect,	Class	SpecialFX,
Class	INode.
class	AppendGizmoRestore:	public	RestoreObj

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	enables	implementing	undo	of	Gizmo	assignment	in	Atmosphere	and
Effects	classes.	This	class	provides	implementations	of	the	RestoreObj
methods.	An	instance	of	this	class	can	be	put	on	the	Hold	stack	when	a	Gizmo	is
appended.	For	example:
	if	(theHold.Holding())
		theHold.Put(new	AppendGizmoRestore(this,node));
All	methods	of	this	class	are	implemented	by	the	System.

Data	Members:
public:
SpecialFX	*fx;
Points	to	the	Atmosphere	of	Effect.
INode	*node;
Points	to	the	gizmo	node.

Methods:
public:

Prototype:
AppendGizmoRestore(SpecialFX	*f,	INode	*n);

Remarks:
Constructor.	The	data	members	are	initalized	to	the	values	pased.

Class	DeleteGizmoRestore
See	Also:	Class	RestoreObj,	Class	Atmospheric,	Class	Effect,	Class	SpecialFX,
Class	INode.
class	DeleteGizmoRestore:	public	RestoreObj

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	enables	implementing	undo	of	Gizmo	deletion	in	Atmosphere	and
Effects	classes.	This	class	provides	implementations	of	the	RestoreObj
methods.	An	instance	of	this	class	can	be	put	on	the	Hold	when	a	Gizmo	is
deleted.	For	example:
	if	(theHold.Holding())
		theHold.Put(new	DeleteGizmoRestore(this,nodes[i],i));
All	methods	of	this	class	are	implemented	by	the	System.

Data	Members:
public:
SpecialFX	*fx;
Points	to	the	Atmosphere	of	Effect.
INode	*node;
Points	to	the	gizmo	node.
int	num;
The	index	of	the	gizmo	which	is	being	deleted.

Methods:
public:

Prototype:
DeleteGizmoRestore(SpecialFX	*a,	INode	*n,	int	i);

Remarks:
Constructor.	The	data	members	are	initialized	to	the	parameter	passed.

Class	RenderGlobalContext
See	Also:	Class	ShadeContext,	Class	Renderer,	Class	RenderInstance,	Class
Texmap,	Class	Atmospheric,	Class	Matrix3,	Class	Point2,	Class	Point3,	Class
AColor,	Class	Color,	Class	IRenderElementMgr,	Class	IRenderElement.
class	RenderGlobalContext	:	public	BaseInterfaceServer

Description:
A	pointer	to	an	instance	of	this	class	is	a	data	member	of	the	ShadeContext
(RenderGlobalContext	*globContext;).	This	can	be	used	by	materials,
texmaps,	etc.	to	retireve	information	about	the	global	rendering	enviornment.
This	is	information	such	as	the	renderer	in	use,	the	project	type	for	rendering,	the
output	device	width	and	height,	several	matrices	for	transforming	between
camera	and	world	coordinates,	the	environment	map,	the	atmospheric	effects,	the
current	time,	field	rendering	information,	and	motion	blur	information.
Note	that	raytracing	(and	all	shading	calculations	in	the	default	renderer)	take
place	in	camera	space.
When	a	ray	intersects	on	the	face	edge	it	can	happen	that	no	intersection	is
returned.	One	way	to	handle	this	situation	is	to	perturb	the	ray	minimally	so	it
will	point	in	a	slightly	different	direction.	This	presumes	that	you	are	fairly	sure
that	the	no	intersection	is	probably	not	what	you’re	looking	for.	IntersectRay()
is	linear	in	the	number	of	faces	so	NUM_ATTEMPTS	should	be	kept	small.
for	(perturb=0;	perturb	<	NUM_ATTEMPTS;	perturb++)
{
	Matrix3	ptb;
	float	prop	=	((float)rand())	/	((float)	RAND_MAX);	
//	gets	random	rotation	of	up	to	half	a	degree.

	float	ang	=	PI*prop/360.0f;
	switch	(perturb%3)	{
		case	0:	ptb	=	RotateXMatrix	(ang);	break;
	case	1:	ptb	=	RotateYMatrix	(ang);	break;
	case	2:	ptb	=	RotateZMatrix	(ang);	break;

	}
	ray.dir	=	ptb*ray.dir;

	//	try	IntersectRay()	again,	see	if	you	get	a	hit.
}

Data	Members:
public:
Renderer	*renderer;
A	pointer	to	the	active	renderer.
int	projType;
Returns	the	type	of	projection	used	during	rendering.	One	of	the	following
values:

PROJ_PERSPECTIVE
PROJ_PARALLEL

int	devWidth;
The	width	in	pixels	of	the	output	device.
int	devHeight;
The	height	in	pixels	of	the	output	device.
float	xscale;
The	X	scale	factor	for	mapping	from	world	space	to	screen	space.
float	yscale;
The	Y	scale	factor	for	mapping	from	world	space	to	screen	space.
float	xc;
The	X	center	point	used	in	mapping	from	world	space	to	screen	space.
float	yc;
The	Y	center	point	used	in	mapping	from	world	space	to	screen	space.
BOOL	antialias;
TRUE	if	antialiasing	is	enabled;	otherwise	FALSE.
Matrix3	camToWorld;
This	matrix	may	be	used	to	transform	coordinates	from	camera	space	to	world
space.
Matrix3	worldToCam;
This	matrix	may	be	used	to	transform	coordinates	from	world	space	to	camera
space.
float	nearRange;
The	near	range	setting	of	the	camera.

float	farRange;
The	far	range	setting	of	the	camera.
float	devAspect;
The	pixel	aspect	ratio	of	a	device	pixel.	This	is	the	height	/	width.
float	frameDur;
This	defines	the	duration	of	one	frame	in	floating	point	units.	This	is	used,	for
example,	by	video	post	rendering	where	the	user	can	stretch	time.	A	video	post
frame	might	be	1/2	a	frame	long	for	instance.
Texmap	*envMap;
The	environment	map	(which	may	be	NULL).
Color	globalLightLevel;
This	parameter	is	available	in	release	3.0	and	later	only.
This	is	the	global	light	level.
Atmospheric	*atmos;
The	atmosphere	effects	(which	may	be	NULL).
ToneOperator*	pToneOp;
This	data	member	is	available	in	release	4.0	and	later	only.
The	tone	operator,	may	be	NULL
TimeValue	time;
The	current	time.
BOOL	wireMode;
This	parameter	is	available	in	release	3.0	and	later	only.
TRUE	if	rendering	in	wire	frame	mode;	otherwise	FALSE.
float	wire_thick;
This	parameter	is	available	in	release	3.0	and	later	only.
The	global	wire	thickness.
BOOL	force2Side;
TRUE	if	force	two-sided	rendering	enabled;	otherwise	FALSE.
BOOL	inMtlEdit;
TRUE	if	the	rendering	is	being	done	in	the	materials	editor;	otherwise	FALSE.
BOOL	fieldRender;
TRUE	if	field	rendering	is	being	done;	otherwise	FALSE.
BOOL	first_field;

TRUE	if	this	is	the	first	field;	FALSE	if	it's	the	second.
BOOL	field_order;
Determines	which	field	is	first.	0	if	the	even	first;	1	if	odd	first.
BOOL	objMotBlur;
This	is	used	for	handling	object	motion	blur	in	ray-trace	maps	and	materials.
TRUE	if	object	motion	blur	is	enabled;	FALSE	if	it's	disabled.
int	nBlurFrames;
This	is	used	for	handling	object	motion	blur	in	ray-trace	maps	and	materials.
The	number	of	object	motion	blur	time	slices.	See	Class	RenderInstance.

Methods:

Prototype:
IRenderElementMgr	*GetRenderElementMgr();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	Render	Element	Manager.	See	Class
IRenderElementMgr.

Prototype:
void	SetRenderElementMgr(IRenderElementMgr
*pIRenderElementMgr);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	render	element	manager	being	used.

Parameters:
IRenderElementMgr	*pIRenderElementMgr
Points	to	the	render	element	manager	to	set.

Prototype:
int	NRenderElements();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	number	of	render	elements.

Prototype:
IRenderElement*	GetRenderElement(int	n);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	specified	render	element	(or	NULL	if	not	found).

Parameters:
int	n
The	zero	based	index	of	the	render	element.

Prototype:
Point2	MapToScreen(Point3	p);

Remarks:
Computes	the	screen	space	coordinates	of	the	point	passed	in	world
coordinates.	This	is	implemented	as:

Parameters:
Point3	p
The	point	to	map	to	screen	space.

Prototype:
virtual	FilterKernel*	GetAAFilterKernel();

Remarks:
Returns	a	pointer	to	the	current	anti-aliasing	filter	from	the	renderer.	See	Class
FilterKernel.

Prototype:
virtual	float	GetAAFilterSize();

Remarks:
Returns	the	filter	size	of	the	current	anti-aliasing	filter.

Prototype:
virtual	int	NumRenderInstances();

Remarks:
Returns	the	number	of	RenderInstances.

Prototype:
virtual	RenderInstance*	GetRenderInstance(int	i);

Remarks:
Returns	a	pointer	to	the	'i-th'	RenderInstance.

Parameters:
int	i
Specifies	which	RenderInstance	to	return	(0	through
NumRenderInstances()-1).

Prototype:
virtual	AColor	EvalGlobalEnvironMap(ShadeContext	&sc,	Ray
&r,	BOOL	applyAtmos);

Remarks:
This	method	evaluates	the	global	environment	map	using	the	specified	ray	as	a
point	of	view,	and	returns	the	resulting	color.

Parameters:
ShadeContext	&sc
The	shade	context.
Ray	&r
Defines	the	direction	of	view	of	the	enviornment.	See	Class	Ray.
BOOL	applyAtmos
TRUE	if	atmospheric	effects	should	be	considered;	otherwise	FALSE.

Default	Implementation:
{	return	AColor(0.0f,0.0f,0.0f,1.0f);	}

Prototype:
virtual	void	IntersectRay(RenderInstance	*inst,	Ray&	ray,	ISect
&isct,	ISectList	&xpList,	BOOL	findExit);

Remarks:
This	method	takes	the	specified	ray	and	intersects	it	with	the	single
RenderInstance	inst.

Parameters:
RenderInstance	*inst
The	render	instance	to	intersect.	The	Mesh	may	be	retrieved	via	Mesh&	m	=
*(inst->mesh);
Ray&	ray
Defines	the	direction	to	check.	This	is	the	point	to	look	from,	and	a	normal
vector	specifying	the	direction	to	look.	See	Class	Ray.
ISect	&isct
The	information	about	the	first	opaque	object	hit	by	the	ray	is	returned	here.
See	Structure	ISect.
ISectList	&xpList
The	list	of	transparent	objects	that	are	intersected	on	the	way	to	the	opaque
one	are	returned	here.	See	Class	ISectList.
BOOL	findExit
TRUE	to	compute	the	exit	point;	FALSE	to	not	compute	it.	Once	a	ray	has
been	instersected	with	a	transparent	object	and	you	want	to	find	out	where	the
refracted	ray	leaves	the	object,	this	parameter	may	be	set	to	TRUE.	This
allows	the	ray	to	look	at	the	inside	faces	of	the	object	and	compute	the
intersection	point	at	exit.

Prototype:
virtual	BOOL	IntersectWorld(Ray	&ray,	int	skipID,	ISect	&hit,
ISectList	&xplist,	int	blurFrame	=	NO_MOTBLUR);

Remarks:
This	method	takes	the	specified	ray	and	intersects	it	with	the	entire	3ds	max
scene.

Parameters:
Ray	&ray
Defines	the	direction	to	check.	This	is	the	point	to	look	from,	and	a	normal
vector	specifying	the	direction	to	look.	See	Class	Ray.

int	skipID
This	specifies	an	ID	(from	RenderInstance::nodeID)	that	is	skipped	in	the
intersection	computations.	This	is	used	to	prevent	self	intersection.
ISect	&hit
The	information	about	the	first	opaque	object	hit	by	the	ray	is	returned	here.
See	Structure	ISect.
ISectList	&xplist
The	list	of	transparent	objects	that	are	intersected	on	the	way	to	the	opaque
one	are	returned	here.	See	Class	ISectList.
int	blurFrame	=	NO_MOTBLUR
NO_MOTBLUR	is	used	for	non-motion	blurred	objects.	If	this	is	not	equal
to	NO_MOTBLUR,	it	should	be	in	the	range	0	to	nBlurFrames-1.	In	that
case,	this	method	will	only	consider	blur	objects	corresponding	to	that	blur
sub-frame.
When	object	motion	blur	is	turned	on,	for	each	object,	several	objects	are
generated.	Each	of	these	objects	is	given	a	number.	This	corresponds	to	the
value	RenderInstance::objMotBlurFrame.
This	method	will	always	intersect	objects	that	aren't	motion	blurred.	However,
if	this	is	set	to	a	number	other	than	NO_MOTBLUR,	then	when	it	comes	to
a	motion	blurred	object,	it	will	only	look	at	the	sub-object	corresponding	to
the	specified	slice	in	time.
This	may	be	used	to	do	a	kind	of	dither	where	for	each	of	the	sub-samples,	this
number	is	randomly	selected.	In	this	way	the	different	motion	blur	slices	will
basically	blur	together	and	give	a	motion	blurred	ray	trace	result.

Prototype:
virtual	ViewParams	*GetViewParams();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	a	class	which	describes	the	properties	of	a	view	being
rendered..	See	Class	ViewParams.

Prototype:

virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.

Parameters:
int	cmd
The	index	of	the	command	to	execute.
ULONG	arg1=0
Optional	argument	1.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	these	parameters.
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	the	meaning	of	this	value.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	FILE*	DebugFile();

Remarks:
This	method	is	used	internally.

Default	Implementation:
{	return	NULL;	};

Class	ShadeContext
See	Also:	Working	with	Materials,	Class	LightDesc,	Class
RenderGlobalContext,	Class	Color,	Class	ShadeOutput,	Class	AColor,	Class
UVGen,	Class	Box3,	Class	IPoint2,	Class	Point2,	Class	IRenderElement,	Class
Point3,	Class	Class_ID.
class	ShadeContext	:	public	InterfaceServer

Description:
This	class	is	passed	to	materials	and	texture	maps.	It	contains	all	the	information
necessary	for	shading	the	surface	at	a	pixel.
Normally,	the	ShadeContext	is	provided	by	the	3ds	max	renderer.	However
developers	that	need	to	create	their	own	ShadeContext	for	use	in	passing	to
the	texture	and	material	evaluation	functions	can	do	so	by	deriving	a	class	from
ShadeContext	and	providing	implementations	of	the	virtual	methods.	Some
sample	code	is	available	demonstrating	how	this	is	done	in
\MAXSDK\SAMPLES\OBJECTS\LIGHT.CPP	(see	the	code	for	class
SCLight	:	public	ShadeContext).	The	default	implementations	of	these
methods	are	shown	for	developers	that	need	to	create	their	own	ShadeContext.
Note	that	raytracing	(and	all	shading	calculations	in	the	default	renderer)	takes
place	in	camera	space.
For	 additional	 information	 on	 the	 methods	 DP(),	 Curve(),	 DUVW()	 and
DPdUVW()	see	Additional	Notes.
All	methods	are	implemented	by	the	system	unless	noted	otherwise.

Data	Members:
public:
ULONG	mode;
One	of	the	following	values:
SCMODE_NORMAL
In	normal	mode,	the	material	should	do	the	entire	illumination	including
transparency,	refraction,	etc.
SCMODE_SHADOW
In	shadow	mode,	you	are	just	trying	to	find	out	what	color	the	shadow	is
that	is	falling	on	an	object.	In	this	case,	all	you	care	about	is	transmitted

color.
BOOL	doMaps
Indicates	if	texture	maps	should	be	applied.
BOOL	filterMaps;
Indicates	if	textures	should	be	filtered.
BOOL	shadow
Indicates	if	shadows	should	be	applied.
BOOL	backFace;
Indicates	if	we	are	on	the	back	side	of	a	2-sided	face.
int	mtlNum
The	material	number	of	the	face	being	shaded.	This	is	the	sub-material	number
for	multi-materials.
Color	ambientLight
This	is	the	color	of	the	ambient	light.
int	nLights;
This	is	the	number	of	lights	being	used	in	a	render,	which	is	the	number	of
active	lights	in	the	scene,	or	if	there	are	none,	2	for	the	default	lights.	For
example,	this	is	used	in	the	Standard	material	in	a	loop	like	this:

LightDesc	*l;
for	(int	i=0;	i<sc.nLights;	i++)	{
l	=	sc.Light(i);
..etc
}

int	rayLevel;
This	data	member	is	available	in	release	2.0	and	later	only.
This	is	used	to	limit	the	number	of	reflections	for	raytracing.	For	instance,	if
you're	rendering	a	hall	of	mirrors,	and	the	ray	is	reflecting	back	and	forth,	you
don't	want	the	raytracing	to	go	forever.	Every	time	Texmap::EvalColor()
gets	called	again	on	a	ray	you	create	a	new	ShadeContext	and	bump	up	the
rayLevel	one.	This	allows	you	to	test	this	value	and	see	if	it	has	reached	the
limit	of	how	deep	to	go	(if	it	reaches	a	maximum	level,	you	can	return	black
for	example).
Note	that	it	is	concievable	that	more	than	one	raytrace	material	can	be	in	effect

at	a	time	(from	different	developers).	In	such	a	case,	where	one	surface	might
have	one	raytracer	and	another	surface	a	different	one,	and	a	ray	was	bouncing
back	and	forth	between	them,	each	needs	to	be	aware	of	the	other.	This	is	why
this	value	is	here	--	the	two	texmaps	each	modify	and	check	it.
int	xshadeID;
This	data	member	is	available	in	release	2.0	and	later	only.
This	is	currently	not	used.
RenderGlobalContext	*globContext;
This	data	member	is	available	in	release	2.0	and	later	only.
Points	to	an	instance	of	RenderGlobalContext.	This	class	describes	the
properties	of	the	global	rendering	environment.	This	provides	information
such	as	the	renderer	in	use,	the	project	type	for	rendering,	the	output	device
width	and	height,	several	matrices	for	transforming	between	camera	and	world
coordinates,	the	environment	map,	the	atmospheric	effects,	the	current	time,
field	rendering	information,	and	motion	blur	information.
LightDesc	*atmosSkipLight;
The	light	description	of	lights	to	prevent	self	shadowing	by	volumetric	lights.
RenderGlobalContext	*globContext;
A	pointer	to	the	rendering	global	context.
ShadeOutput	out;
This	is	where	the	material	should	leave	its	results.
The	following	is	a	discussion	of	blending	the	ShadeContext.out.c	and
ShadeContext.out.t	together	to	get	the	final	color:
The	(c,t)	returned	by	shaders	is	interpreted	as	follows:	t.r	is	the
(premultiplied)	alpha	for	the	r-channel,	etc.
So	if	you	want	to	composite	(c,t)	over	a	background	b,
color	=	b*t	+	c	(where	the	multiplication	of	b	and	t	multiplies	the	individual
components).
When	you	want	to	convert	a	(c,t)	to	a	simple	R,G,B,Alpha,	just	average
together	the	components	of	t	to	get	Alpha.	(and	use	the	r,g,b	components	of	c
directly).

Methods:

Prototype:

ShadeContext()
Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
mode	=	SCMODE_NORMAL;	nLights	=	0;	shadow	=	TRUE;
rayLevel	=	0;	globContext	=	NULL;	atmosSkipLight	=	NULL;

Prototype:
void	ResetOutput(int	n	=	-1)

Remarks:
Sets	the	surface	color	output	and	surface	transparency	output	to	Black.

Parameters:
int	n	=	-1
By	supplying	a	negative	value	this	method	will	clear	elements	but	leave	the
number	of	elements	unchanged.

Prototype:
Class_ID	ClassID();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	Class_ID	of	this	ShadeContext.	This	is	used	to	distinguish
different	ShadeContexts.

Default	Implementation:
{	return	Class_ID(0,0);	}

Prototype:
virtual	BOOL	InMtlEditor()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	TRUE	if	this	rendering	is	for	the	material	editor	sample	sphere
(geometry);	otherwise	FALSE.

Prototype:

virtual	int	Antialias();
Remarks:
Returns	the	state	of	the	antialiasing	switch	in	the	renderer	dialog	-	TRUE	if
on;	FALSE	if	off.

Default	Implementation:
{return	0;}

Prototype:
virtual	int	ProjType();

Remarks:
This	method	returns	the	projection	type.

Return	Value:
A	value	of	0	indicates	perspective	projection;	a	value	of	1	indicates	parallel
projection.

Default	Implementation:
{return	0;}

Prototype:
virtual	LightDesc*	Light(int	n)=0;

Remarks:
This	method	returns	the	'i-th'	light.	Use	data	member	nLights	to	get	the	total
number	of	lights.

Parameters:
int	n
Specifies	the	light	to	return.

Prototype:
virtual	TimeValue	CurTime()=0;

Remarks:
Returns	the	current	time	value	(the	position	of	the	frame	slider).

Return	Value:
The	current	time.

Prototype:
virtual	int	NodeID();

Remarks:
Returns	the	node	ID	for	the	item	being	rendered	or	-1	if	not	set.	This	ID	is
assigned	when	the	scene	is	being	rendered	-	each	node	is	simply	given	an	ID	-
0,	1,	2,	3,	etc.

Default	Implementation:
{return	-1;}

Prototype:
virtual	INode	*Node();

Remarks:
Returns	the	INode	pointer	of	the	node	being	rendered.	This	pointer	allows	a
developer	to	access	the	properties	of	the	node.	See	Class	INode.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	Object	*GetEvalObject();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	evaluated	object	for	this	node.	When	rendering,	usually	one	calls
GetRenderMesh()	to	get	the	mesh	to	render.	However,	at	certain	times	you
might	want	to	get	the	object	itself	from	the	node.	For	example,	you	could	then
call	ClassID()	on	the	object	and	determine	its	type.	Then	the	object	could	be
operated	on	procedurally	(for	instance	you	could	recognize	it	as	a	true	sphere,
cylinder	or	torus).	Note	that	this	method	will	return	NULL	if	object	is	motion
blurred.
For	example,	here	is	how	you	can	check	if	the	object	is	a	particle	system:
	//	.	.	.
	Object	*ob	=	sc.GetEvalObject();
	if	(ob	&&	ob->IsParticleSystem())	{

	//	.	.	.
Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	Point3	BarycentricCoords()

Remarks:
The	coordinates	relative	to	triangular	face.	The	barycentric	coordinates	of	a
point	p	relative	to	a	triangle	describe	that	point	as	a	weighted	sum	of	the
vertices	of	the	triangle.	If	the	barycentric	coordinates	are	b0,	b1,	and	b2,
then:

p	=	b0*p0	+	b1*p1	+	b2*p2;
where	p0,	p1,	and	p2	are	the	vertices	of	the	triangle.	The	Point3	returned	by
this	method	has	the	barycentric	coordinates	stored	in	the	its	three	coordinates.
These	coordinates	are	relative	to	the	current	triangular	face	being	rendered.
These	barycentric	coordinates	can	be	used	to	interpolate	any	quantity	whose
value	is	known	at	the	vertices	of	the	triangle.	For	example,	if	a	radiosity
shader	had	available	the	illumination	values	at	each	of	the	three	vertices,	it
could	determine	the	illumination	at	the	current	point	using	the	barycentric
coordinates.

Default	Implementation:
{	return	Point3(0,0,0);}

Prototype:
virtual	int	FaceNumber()=0;

Remarks:
Returns	the	index	of	the	face	being	rendered.	For	the	scan-line	renderer,	which
renders	only	triangle	meshes,	this	is	the	index	of	the	face	in	the	Mesh	data
structure.	This	is	meant	for	use	in	plug-in	utilities	such	as	a	radiosity	renderer,
which	stores	a	table	of	data,	indexed	on	face	number,	in	the	Nodes's	AppData,
for	use	in	a	companion	material.

Prototype:

virtual	Point3	Normal()=0;
Remarks:
Returns	the	interpolated	normal	(in	camera	space).	This	is	the	value	of	the	face
normal	facing	towards	the	camera.	This	is	affected	by	SetNormal()	below.

Prototype:
virtual	void	SetNormal(Point3	p)

Remarks:
This	method	will	set	the	value	of	the	face	normal	facing	towards	the	camera.
This	may	be	used	to	temporarily	perturb	the	normal.	The	Standard	material
uses	this	for	example	because	it	implements	bump	mapping.	It	changes	the
normal	and	then	calls	other	lighting	functions,	etc.	These	other	method	then
see	this	changed	normal	value.	When	it	is	done	it	puts	back	the	previous	value.

Parameters:
Point3	p
The	normal	to	set.

Prototype:
virtual	Point3	OrigNormal();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	original	surface	normal	(not	affected	by	SetNormal()	above.)

Default	Implementation:
{	return	Normal();	}

Prototype:
virtual	float	Curve();

Remarks:
This	is	an	estimate	of	how	fast	the	normal	is	varying.	For	example	if	you	are
doing	environment	mapping	this	value	may	be	used	to	determine	how	big	an
area	of	the	environment	to	sample.	If	the	normal	is	changing	very	fast	a	large
area	must	be	sampled	otherwise	you'll	get	aliasing.	This	is	an	estimate	of

dN/dsx,	dN/dsy	put	into	a	single	value.

Prototype:
virtual	Point3	Gnormal()=0

Remarks:
This	returns	the	geometric	normal.	For	triangular	mesh	objects	this	means	the
face	normal.	Normals	are	unit	vectors.

Prototype:
virtual	Point3	ReflectVector()=0;

Remarks:
This	takes	the	current	view	vector	and	the	current	normal	vector	and	calculates
a	vector	that	would	result	from	reflecting	the	view	vector	in	the	surface.	This
returns	the	reflection	vector.

Prototype:
virtual	Point3	RefractVector(float	ior)=0;

Remarks:
This	is	similar	to	the	method	above	however	it	calculates	the	view	vector
being	refracted	in	the	surface.	This	returns	the	refraction	vector.

Parameters:
float	ior
The	relative	index	of	refraction	between	the	air	and	the	material.

Prototype:
virtual	void	SetIOR(float	ior);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Set	index	of	refraction.

Parameters:
float	ior
The	index	of	refraction	to	set.	This	value	can	be	any	positive	(non-zero)	value.

Default	Implementation:
{}

Prototype:
virtual	float	GetIOR();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	index	of	refraction.

Default	Implementation:
{	return	1.0f;	}

Prototype:
virtual	Point3	CamPos()=0;

Remarks:
Returns	the	camera	position	in	camera	space.	For	the	3ds	max	renderer	this
will	always	be	0,0,0.

Prototype:
virtual	Point3	V()=0

Remarks:
This	method	returns	the	unit	view	vector,	from	the	camera	towards	P,	in
camera	space.

Prototype:
virtual	void	SetView(Point3	p)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	view	vector	as	returned	by	V().

Parameters:
Point3	p
The	view	vector	set.

Prototype:
virtual	Point3	OrigView();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	the	original	view	vector	that	was	not	affected	by
ShadeContext::SetView().

Default	Implementation:
{	return	V();	}

Prototype:
virtual	Point3	P()=0

Remarks:
Returns	the	point	to	be	shaded	in	camera	space.

Prototype:
virtual	Point3	DP()=0

Remarks:
This	returns	the	derivative	of	P,	relative	to	the	pixel.	This	gives	the	renderer	or
shader	information	about	how	fast	the	position	is	changing	relative	to	the
screen.

Prototype:
virtual	void	DP(Point3&	dpdx,	Point3&	dpdy);

Remarks:
This	returns	the	derivative	of	P,	relative	to	the	pixel	-	same	as	above.	This
method	just	breaks	it	down	into	x	and	y.

Prototype:
virtual	Point3	PObj()=0

Remarks:
Returns	the	point	to	be	shaded	in	object	coordinates.

Prototype:
virtual	Point3	DPObj()=0

Remarks:
Returns	the	derivative	of	PObj(),	relative	to	the	pixel.

Prototype:
virtual	Box3	ObjectBox()=0

Remarks:
Returns	the	object	extents	bounding	box	in	object	coordinates.

Prototype:
virtual	Point3	PObjRelBox()=0

Remarks:
Returns	the	point	to	be	shaded	relative	to	the	object	box	where	each
component	is	in	the	range	of	-1	to	+1.

Prototype:
virtual	Point3	DPObjRelBox()=0

Remarks:
Returns	the	derivative	of	PObjRelBox().	This	is	the	derivative	of	the	point
relative	to	the	object	box	where	each	component	is	in	the	range	of	-1	to	+1.

Prototype:
virtual	void	ScreenUV(Point2&	uv,	Point2	&duv)=0;

Remarks:
Retrieves	the	point	relative	to	the	screen	where	the	lower	left	corner	is	0,0	and
the	upper	right	corner	is	1,1.

Parameters:
Point2&	uv
The	point.
Point2	&duv
The	derivative	of	the	point.

Prototype:
virtual	IPoint2	ScreenCoord()=0;

Remarks:
Returns	the	integer	screen	coordinate	(from	the	upper	left).

Prototype:
virtual	Point2	SurfacePtScreen();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Return	the	surface	point	at	the	center	of	the	fragment	in	floating	point	screen
coordinates.	See	the	documentation	for	Sampler::DoSample()	for	an
explanation	of	the	use	of	this	method.	See	Class	Sampler.

Default	Implementation:
{	return	Point2(0.0,0.0);	}

Prototype:
virtual	Point3	UVW(int	channel=0)=0;

Remarks:
Returns	the	UVW	coordinates	for	the	point.

Parameters:
int	channel=0;
Specifies	the	channel	for	the	values.	One	of	the	following:
0:	Vertex	Color	Channel.
1	through	99:	Mapping	Channels.

Prototype:
virtual	Point3	DUVW(int	channel=0)=0

Remarks:
This	method	returns	the	UVW	derivatives	for	the	point.	This	is	used	for
filtering	texture	maps	and	antialiasing	procedurals	that	are	using	UVW.	Note
that	in	standard	3ds	max	textures,	the	UVGen	class	is	used,	and	it	calls	this
method	itself.	See	the	methods	UVGen::GetBumpDP()	for	more	details

for	using	UVGen.	If	you	are	not	using	UVGen	then	you	can	use	this	method
and	UVW().	UVW()	gets	the	UVW	coordinates	of	the	point	and	DUVW()
gets	the	change	in	the	UVWs	for	the	point.	This	tells	you	a	maximum	change
for	each	of	UVW.	This	tells	you	how	much	of	the	area	of	the	map	to	sample.
So	when	you	call	the	Bitmap	method	GetFiltered(float	u,	float	v,	float
du,	float	dv,	BMM_Color_64	*ptr)	this	tells	you	how	big	the	sample
should	be.	This	lets	you	filter	or	average	over	this	area	to	keep	the	map	from
aliasing.

Parameters:
int	channel=0;
Specifies	the	channel	for	the	values.	One	of	the	following:
0:	Vertex	Color	Channel.
1	through	99:	Mapping	Channels.

Prototype:
virtual	void	DPdUVW(Point3	dP[3],	int	channel=0)=0

Remarks:
This	returns	the	bump	basis	vectors	for	UVW	in	camera	space.	Note	that	if
you	want	to	retrieve	these	bump	basis	vectors	that	are	altered	by	the	UVGen
instance	use	the	method	UVGen::GetBumpDP().	Also	see	the	Advanced
Topics	section	Working	with	Materials	and	Textures	for	more	details	on	bump
mapping.

Parameters:
Point3	dP[3]
The	bump	basic	vectors.	dP[0]	is	a	vector	corresponding	to	the	U	direction.
dp[1]	corresponds	to	V,	and	dP[2]	corresponds	to	W.
int	channel=0;
Specifies	the	channel	for	the	values.	One	of	the	following:
0:	Vertex	Color	Channel.
1	through	99:	Mapping	Channels.

Prototype:

virtual	int	BumpBasisVectors(Point3	dP[2],	int	axis,	int
channel=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	should	replace	DpDUVW	over	time	but	is	left	in	place	as	not	to
break	3rd	party	plugins.	If	this	method	returns	1,	that	is	assumed	to	mean	it	is
implemented,	and	it	will	be	used	instead	of	DpDUVW.

Parameters:
Point3	dP[2]
The	bump	basic	vectors.	dP[0]	is	a	vector	corresponding	to	the	U	direction.
dp[1]	corresponds	to	V,	and	dP[2]	corresponds	to	W.
int	axis
Specified	the	2D	cases	for:	AXIS_UV,	AXIS_VW,	or	AXIS_WU.
int	channel=0;
Specifies	the	channel	for	the	values.	One	of	the	following:
0:	Vertex	Color	Channel.
1	through	99:	Mapping	Channels.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	Point3	UVWNormal(int	channel=0);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	a	vector	in	UVW	space	normal	to	the	face	in	UVW	space.
This	can	be	CrossProd(U[1]-U[0],U[2]-U[1]),	where	U[i]	is	the	texture
coordinate	at	the	i-th	vertex	of	the	current	face.	This	may	be	used	for	hiding
textures	on	back	side	of	objects.

Parameters:
int	channel=0;
Specifies	the	channel	for	the	values.	One	of	the	following:
0:	Vertex	Color	Channel.

1	through	99:	Mapping	Channels.

Default	Implementation:
{	return	Point3(0,0,1);	}

Prototype:
virtual	float	RayConeAngle();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	angle	of	a	ray	cone	hitting	this	point.	It	gets	increased/decreased
by	curvature	on	reflection.
Visualize	a	small	pyramid,	with	the	top	at	the	eye	point,	and	its	sides	running
through	each	corner	of	the	pixel	to	be	rendered,	then	onto	the	scene.	Then
visualize	a	small	cone	fitting	inside	this	pyramid.	This	method	returns	the
angle	of	that	cone.	When	rendering,	if	the	ray	cone	goes	out	and	hits	a	flat
surface,	the	angle	of	reflection	will	always	be	constant	for	each	pixel.
However,	if	the	ray	cone	hits	a	curved	surface,	the	angle	will	change	between
pixels.	This	change	in	value	give	some	indication	of	how	fast	the	sample	size
is	getting	bigger.

Default	Implementation:
{	return	0.0f;	}

Prototype:
virtual	float	RayDiam();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	diameter	of	the	ray	cone	at	the	pixel	point	(the	point	it	intersects
the	surface	being	shaded).	This	is	a	dimension	in	world	units.	As	a	ray	is
propogated	it	is	updated	for	each	new	surface	that	is	encountered.

Default	Implementation:
{	return	Length(DP());	}

Prototype:
virtual	AColor	EvalEnvironMap(Texmap	*map,	Point3	view)

Remarks:
This	is	used	by	the	Standard	material	to	do	the	reflection	maps	and	the
refraction	maps.	Given	the	map,	and	a	direction	from	which	you	want	to	view
it,	this	method	changes	the	view	vector	to	be	the	specified	vector	and
evaluates	the	function.

Parameters:
Texmap	*map
The	map	to	evaluate.
Point3	view
The	view	direction.

Return	Value:
The	color	of	the	map,	in	r,	g,	b,	alpha.

Prototype:
virtual	void	GetBGColor(class	Color	&bgCol,	class	Color
&transp,	int	fogBG=TRUE)=0

Remarks:
Retrieves	the	background	color	and	the	background	transparency.

Parameters:
class	Color	&bgCol
The	returned	background	color.
class	Color	&transp
The	returned	transparency.
int	fogBG
Specifies	you	want	the	current	atmospheric	shaders	to	be	applied	to	the
background	color.	If	TRUE	the	shaders	are	applied;	if	FALSE	they	are	not.

Prototype:
virtual	float	CamNearRange()

Remarks:
Returns	the	camera	near	range	set	by	the	user	in	the	camera's	user	interface.

Prototype:

virtual	float	CamFarRange()
Remarks:
Returns	the	camera	far	range	set	by	the	user	in	the	camera's	user	interface.

Prototype:
virtual	Point3	PointTo(const	Point3&	p,	RefFrame	ito)=0;

Remarks:
Transforms	the	specified	point	from	internal	camera	space	to	the	specified
space.

Parameters:
const	Point3&	p
The	point	to	transform.
RefFrame	ito
The	space	to	transform	the	point	to.	One	of	the	following	values:
REF_CAMERA
REF_WORLD
REF_OBJECT

Return	Value:
The	transformed	point,	in	the	specified	space.

Prototype:
virtual	Point3	PointFrom(const	Point3&	p,	RefFrame	ifrom)=0;

Remarks:
Transforms	the	specified	point	from	the	specified	coordinate	system	to	internal
camera	space.

Parameters:
const	Point3&	p
The	point	to	transform.
RefFrame	ifrom
The	space	to	transform	the	point	from.	One	of	the	following	values:
REF_CAMERA
REF_WORLD

REF_OBJECT
Return	Value:
The	transformed	point	in	camera	space.

Prototype:
virtual	Point3	VectorTo(const	Point3&	p,	RefFrame	ito)=0;

Remarks:
Transform	the	vector	from	internal	camera	space	to	the	specified	space.

Parameters:
const	Point3&	p
The	vector	to	transform.
RefFrame	ito
The	space	to	transform	the	vector	to.	One	of	the	following	values:
REF_CAMERA
REF_WORLD
REF_OBJECT

Prototype:
virtual	Point3	VectorFrom(const	Point3&	p,	RefFrame	ifrom)=0;

Remarks:
Transform	the	vector	from	the	specified	space	to	internal	camera	space.

Parameters:
const	Point3&	p
The	vector	to	transform.
RefFrame	ifrom
The	space	to	transform	the	vector	from.	One	of	the	following	values:
REF_CAMERA
REF_WORLD
REF_OBJECT

Prototype:
virtual	Point3	VectorToNoScale(const	Point3&	p,	RefFrame	ito);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Transform	the	vector	from	internal	camera	space	to	the	specified	space
without	scaling.

Parameters:
const	Point3&	p
The	vector	to	transform.
RefFrame	ito
The	space	to	transform	the	vector	to.	One	of	the	following	values:
REF_CAMERA
REF_WORLD
REF_OBJECT

Prototype:
virtual	Point3	VectorFromNoScale(const	Point3&	p,	RefFrame
ifrom);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Transform	the	vector	from	the	specified	space	to	internal	camera	space
without	scaling.
Note:	This	method	was	added	to	correct	a	problem	that	was	occurring	in	3D
Textures	when	the	bump	perturbation	vectors	were	transformed	from	object
space	to	camera	space,	so	they	are	oriented	correctly	as	the	object	rotates.	If
the	object	has	been	scaled,	this	transformation	causes	the	perturbation	vectors
to	be	scale	also,	which	amplifies	the	bump	effect.	This	method	is	used	to	rotate
the	perturbation	vectors	so	they	are	correctly	oriented	in	space,	without	scaling
them.

Parameters:
const	Point3&	p
The	vector	to	transform.
RefFrame	ifrom
RefFrame	ifrom
The	space	to	transform	the	vector	from.	One	of	the	following	values:

REF_CAMERA
REF_WORLD
REF_OBJECT

Prototype:
virtual	void	SetGBufferID(int	gbid);

Remarks:
When	a	map	or	material	is	evaluated	(in	Shade(),	EvalColor()	or
EvalMono()),	if	it	has	a	non-zero	gbufID,	it	should	call	this	routine	to
store	the	gbid	into	the	shade	context.
Note:	Normally	a	texmap	calls	this	method	so	the	index	would	be	set	for	all
of	the	area	covered	by	the	texture.	There	is	no	reason	that	this	has	to	be	done
for	every	pixel	however.	A	texture	could	just	set	the	ID	for	particular	pixels.
This	could	allow	post	processing	routines	(for	example	a	glow)	to	only
process	part	of	a	texture	and	not	the	entire	thing.	For	example,	at	the
beggining	of	texmap's	EvalColor()	one	typically	has	code	that	does:
	if	(gbufid)	sc.SetGBufferID(gbufid);
This	takes	the	gbufid	(which	is	in	MtlBase)	and	(if	it	is	non-zero)	stores	it
into	the	shade	context.	The	renderer,	after	evaluating	the	Shade()	function
for	the	material	at	a	pixel,	looks	at	the	gbufferID	left	in	the	shade	context,
and	stores	it	into	the	gbuffer	at	that	pixel.	So	if	the	texmap	adds	another
condition	like
	if	(inHotPortion)
		if	(gbufid)	sc.SetGBufferID(gbufid);
It	will	do	it	for	just	the	choosen	pixels.

Parameters:
int	gbid
The	ID	to	store.

Prototype:
virtual	AColor	EvalGlobalEnvironMap(Point3	dir);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

Returns	the	color	of	the	global	enviornment	map	from	the	given	view
direction.

Parameters:
Point3	dir
Specifies	the	direction	of	view.

Default	Implementation:
{	return	AColor(0,0,0,0);	}

Prototype:
LightDesc	*GetAtmosSkipLight();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method,	along	with	SetAtmosSkipLight()	below,	are	used	by	the
lights	to	avoid	self-shadowing	when	applying	atmospheric	shadows.	This
method	returns	a	pointer	to	the	LightDesc	instance	currently	calling	the
Atmosphere::Shade()	method	when	computing	atmospheric	shadows.
Here's	how	they	are	used:
(1)	When	computing	the	atmospheric	shadows:(somewhere	in
::LightDesc::Illuminate())	do	the	following:
sc.SetAtmosSkipLight(this);
sc.globContext->atmos->Shade(sc,	lightPos,	sc.P(),	col,	trans);
sc.SetAtmosSkipLight(NULL);
	
(2)	In	LightDesc::TraverseVolume()	do	the	following:
if	(sc.GetAtmosSkipLight()==this)
return;

Default	Implementation:
{	return	atmosSkipLight;	}

Prototype:
void	SetAtmosSkipLight(LightDesc	*lt);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	sets	the	LightDesc	instance	currently	calling	the
Atmosphere::Shade()	method.	See	GetAtmosSkipLight()	above.

Parameters:
LightDesc	*lt
Points	to	the	LightDesc	to	set.

Default	Implementation:
{	atmosSkipLight	=	lt;	}

Prototype:
virtual	BOOL	GetCache(Texmap	*map,	AColor	&c);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	with	texture	maps	only.	If	a	map	is	multiply	instanced
within	the	same	material,	say	on	the	diffuse	channel	and	on	the	shinniness
channel,	it	will	return	the	same	value	each	time	its	evaluated.	Its	a	waste	of
processor	time	to	reevaluate	the	map	twice.	This	method	allows	you	to	cache
the	value	so	it	won't	need	to	be	computed	more	than	once.
Note	that	the	cache	is	automatically	cleared	after	each	ShadeContext	call.	This
is	used	within	one	evaluation	of	a	material	hierarchy.

Parameters:
Texmap	*map
Points	to	the	texmap	storing	the	cache	(usually	the	plug-ins	this	pointer).
AColor	&c
The	color	to	store.

Return	Value:
TRUE	if	the	color	was	returned;	otherwise	FALSE.

Default	Implementation:
{	return	FALSE;	}

Sample	Code:
This	code	from	\MAXSDK\SAMPLES\MATERIALS\NOISE.CPP

and	shows	how	the	cache	is	retrieved	and	stored:
RGBA	Noise::EvalColor(ShadeContext&	sc)	{
	Point3	p,dp;
	if	(!sc.doMaps)	return	black;
	
	AColor	c;
	//	If	the	cache	exists,	return	the	color
	if	(sc.GetCache(this,c))
		return	c;
	//	Otherwise	compute	the	color
	.	.	.
	//	At	the	end	of	the	eval	the	cache	is	stored
	sc.PutCache(this,c);

Prototype:
virtual	BOOL	GetCache(Texmap	*map,	float	&f);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Retrieves	a	floating	point	value	from	the	cache.	See	the	AColor	version	above
for	details.

Parameters:
Texmap	*map
Points	to	the	texmap	storing	the	cache	(usually	the	plug-ins	this	pointer).
float	&f
The	value	to	store.

Return	Value:
TRUE	if	the	value	was	returned;	otherwise	FALSE.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	BOOL	GetCache(Texmap	*map,	Point3	&p);

Remarks:

This	method	is	available	in	release	2.0	and	later	only.
Retrieves	a	Point3	value	from	the	cache.	See	the	AColor	version	above	for
details.

Parameters:
Texmap	*map
Points	to	the	texmap	storing	the	cache	(usually	the	plug-ins	this	pointer).
Point3	&p
The	point	to	store.

Return	Value:
TRUE	if	the	value	was	returned;	otherwise	FALSE.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	void	PutCache(Texmap	*map,	const	AColor	&c);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Puts	a	color	to	the	cache.	See	the	method	GetCache(Texmap	*map,	const
AColor	&c)	above	for	detais.

Parameters:
Texmap	*map
Points	to	the	texmap	storing	the	cache	(usually	the	plug-ins	this	pointer).
const	AColor	&c
The	color	to	store.

Default	Implementation:
{}

Prototype:
virtual	void	PutCache(Texmap	*map,	const	float	f);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

Puts	a	floatint	point	value	to	the	cache.	See	the	method	GetCache(Texmap
*map,	const	AColor	&c)	above	for	detais.

Parameters:
Texmap	*map
Points	to	the	texmap	storing	the	cache	(usually	the	plug-ins	this	pointer).
const	float	f
The	floating	point	value	to	store.

Default	Implementation:
{}

Prototype:
virtual	void	PutCache(Texmap	*map,	const	Point3	&p);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Puts	a	floatint	point	value	to	the	cache.	See	the	method	GetCache(Texmap
*map,	const	AColor	&c)	above	for	detais.

Parameters:
Texmap	*map
Points	to	the	texmap	storing	the	cache	(usually	the	plug-ins	this	pointer).
const	Point3	&p
The	Point3	value	to	store.

Default	Implementation:
{}

Prototype:
virtual	void	TossCache(Texmap	*map);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Removes	the	specified	cache.

Parameters:
Texmap	*map

Points	to	the	texmap	storing	the	cache	(usually	the	plug-ins	this	pointer).
Default	Implementation:
{}

Prototype:
virtual	FILE*	DebugFile();

Remarks:
This	method	is	used	internally.

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.
This	is	reserved	for	future	use.

Parameters:
int	cmd
The	command	to	execute.
ULONG	arg1=0
Optional	argument	1	(defined	uniquely	for	each	cmd).
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value	(defined	uniquely	for	each	cmd).

Default	Implementation:
{	return	0;	}

Prototype:
bool	IsPhysicalSpace()	const;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	TRUE	if	the	operator	really	maps	physical	values	to
RGB,	otherwise	FALSE.	This	method	is	provided	so	shaders	can	determine
whether	the	shading	calculations	are	in	physical	or	RGB	space.

Prototype:
void	ScaledToRGB(T&	energy)	const;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	map	a	scaled	energy	value	into	RGB.	This	converts	a	color
value	which	will	be	stored	in	energy.

Parameters:
T&	energy
The	converted	color	value.

Prototype:
float	ScaledToRGB(float	energy)	const;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	map	a	scaled	energy	value	into	RGB.	This	converts	a
monochrome	value	which	will	be	returned.

Parameters:
float	energy
The	scaled	energy	value.

Prototype:
void	ScaledToRGB();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

This	method	will	map	an	energy	value	int	out.c	into	RGB.	The	converted
value	is	stored	in	out.c.

Prototype:
void	ScalePhysical(T&	energy)	const;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	scale	physical	values	so	they	can	be	used	in	the	renderer.
This	converts	a	color	value	which	will	be	stored	in	energy.

Parameters:
T&	energy
The	converted	color	value.

Prototype:
float	ScalePhysical(float	energy)	const;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	scale	physical	values	so	they	can	be	used	in	the	renderer.
This	converts	a	monochrome	value	which	will	be	returned.

Parameters:
float	energy
The	energy	value.

Prototype:
void	ScaleRGB(T&	energy)	const;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	scale	RGB	values,	just	supplied	to	invert	ScalePhysical.	This
converts	a	color	value	which	will	be	stored	in	energy.

Parameters:
T&	energy
The	converted	color	value.

Prototype:
float	ScaleRGB(float	energy)	const;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	scale	RGB	values,	just	supplied	to	invert	ScalePhysical.	This
converts	a	monochrome	value	which	will	be	returned.

Parameters:
float	energy
The	energy	value.

Prototype:
LightDesc	*GetAtmosSkipLight();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	can	be	used	to	determine	from	within	the	ShadeContext	if	a
volumetric	light	should	be	prevented	from	generating	self-shadows.

Default	Implementation:
{	return	atmosSkipLight;	}
	

Prototype:
void	SetAtmosSkipLight(LightDesc	*lt);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	volumetric	light	that	should	be	prevented
from	generating	self-shadows.

Parameters:
LightDesc	*lt
A	pointer	to	the	light	to	set.

Default	Implementation:
{	atmosSkipLight	=	lt;	}
	

Prototype:
virtual	int	NRenderElements();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	number	of	render	elements.

Default	Implementation:
{	return	globContext->NRenderElements();	}

Prototype:
virtual	IRenderElement	*GetRenderElement(int	n);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	an	interface	to	the	'i-th'	render	element.

Parameters:
int	n
The	zero	based	index	of	the	render	element	to	return.

Default	Implementation:
{	return	globContext->GetRenderElement(n);	}

Prototype:
virtual	Color	DiffuseIllum();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Computes	and	returns	the	incoming	diffuse	illumination	color	(for
matte/shadow).

Notes	on	the	functions	DP(),	Curve(),	DUVW()	and	DPdUVW()
The	functions	DP(),	Curve(),	and	DUVW()	are	all	for	the	purposes	of
antialiasing.	They	give	the	amount	of	variation	of	various	quantities	across	the
pixel.	DPdUVW()	is	for	the	purposes	of	bump	mapping.	This	section
describes	the	method	that	3ds	max's	renderer	uses	for	computing	them.
	

(1)	Point3	DP();
	
This	is	gives	the	approximate	dimension	of	a	3D	box	which	bounds	the
surface	fragment	cut	out	of	the	surface	by	the	current	pixel	being	rendered.	It
can	be	used	for	antialiasing	3D	textures.
	
First	calculate	(where	U	=	{u,v,w})
dP/dx:	the	derivative	of	a	point	on	the	surface	relative	to	the	screen	x-
coordinate.	
dP/dy:	the	derivative	of	a	point	on	the	surface	relative	to	the	screen	y-
coordinate.	
Then	take	the	sum	of	the	absolute	values	of	these:
DP	=	abs(dP/dx)	+	abs(dP/dy).	
	
(2)	Point3	DUVW();
	
This	is	similar	to	DP(),	but	bounds	the	change	in	UVW	space.	It	is	used	for
texture	filtering.
	
First	calculate	(where	U	=	{u,v,w})
dU/dx:	the	derivative	of	{u,v,w}	relative	to	the	screen	x-coordinate.	
dU/dy:	the	derivative	of	{u,v,w}	relative	to	the	screen	y-coordinate.	
Then	take	the	sum	of	the	absolute	values	of	these:
DUVW	=	DU	=	abs(dU/dx)	+	abs(dU/dy).	
	
	
(3)	float	Curve();
	
This	gives	an	approximation	of	the	amount	of	curvature	of	the	surface.	It	is
basically	a	measure	of	the	length	of	a	vector	representing	the	rate	of	change	of
the	surface	normal	across	the	pixel.	It	is	used	to	scale	the	sample	size	in
reflection	mapping.	(high	curvature==>big	sample).
	
Here	is	our	implementation:
	

float	SContext::Curve()	{
		calc_derivs();	//	calculate	dxdx,	etc.
		Point3	nv0	=	actf->GetVertexNormal(0);	//	surface	normal	at	vertex	0
		Point3	nv1	=	actf->GetVertexNormal(1);	//	surface	normal	at	vertex	1
		Point3	nv2	=	actf->GetVertexNormal(2);	//	surface	normal	at	vertex	2
		nv1	-=	nv0;
		nv2	-=	nv0;
		float	dx2	=	LengthSquared(dsdx*nv1	+	dtdx*nv2);
		float	dy2	=	LengthSquared(dsdy*nv1	+	dtdy*nv2);
		return	(float)sqrt(0.5*(dx2+dy2));		
		}
	
Notes:	
calc_derivs()	calculates	the	terms	dsdx,dsdy,	dtdx,	dtdy.	
(s,t)	are	skew	coordinates	of	the	current	point	in	the	face	
relative	to	the	face	vertices	(V0,V1,V2):	
		(i.e.	the	current	point	P	=	V0	+	s*(V1-V0)	+	t*(V2-V0);)
	
		dsdx	is	derivative	of	s	relative	to	screen	x.		
		dsdy	is	derivative	of	s	relative	to	screen	y.		
		dtdx	is	derivative	of	t	relative	to	screen	x.		
		dtdy	is	derivative	of	t	relative	to	screen	y.	
			
		dx2	is	the	length	squared	of	the	change	in	normal	relative	to	screen	x.		
		dy2	is	the	length	squared	of	the	change	in	normal	relative	to	screen	y.		
	
	
(4)	void	DPdUVW(Point3	dP[3]);
	
This	method	returns	the	3	basis	vectors	that	describe	U,V,and	W	axes	in	XYZ
space.
	
The	following	function	computes	the	U	and	V	bump	basis	vectors	for	a
triangle	given	the	texture	coordinates	at	the	three	vertices	of	the	triangle	(tv[]
)	and	the	3D	coordinates	at	the	vertices	(v[]).	It	is	simply	a	solution	using

linear	algebra	for	the	U	and	V	axes	in	terms	of	the	XYZ	coordinates.	It	returns
	
		b[0]	=	DP/DU
		b[1]	=	DP/DV
	
This	function	does	not	compute	DP/DW,	which	at	present	is	a	shortcoming	of
the	scanline	renderer.	It	also	makes	the	assumption	that	the	bump	basis	vectors
are	constant	over	a	given	face,	which	has	worked	out	successfully.
	
void	ComputeBumpVectors(const	Point3	tv[3],	const	Point3	v[3],	Point3
bvec[3])	{
	float	uva,uvb,uvc,uvd,uvk;
	Point3	v1,v2;
	
	uva	=	tv[1].x-tv[0].x;
	uvb	=	tv[2].x-tv[0].x;
	
	uvc	=	tv[1].y-tv[0].y;
	uvd	=	tv[2].y-tv[0].y;
	
	uvk	=	uvb*uvc	-	uva*uvd;
	
	v1	=	v[1]-v[0];
	v2	=	v[2]-v[0];
	
	if	(uvk!=0)	{
		bvec[0]	=	(uvc*v2-uvd*v1)/uvk;
		bvec[1]	=	(uva*v2-uvb*v1)/uvk;
		}
	else	{
		if	(uva!=0)
			bvec[0]	=	v1/uva;
		else	if	(uvb!=0)

			bvec[0]	=	v2/uvb;
		else
			bvec[0]	=	Point3(0.0f,0.0f,0.0f);
		if	(uvc!=0)
			bvec[1]	=	v1/uvc;
		else	if	(uvd!=0)
			bvec[1]	=	v2/uvd;
		else
			bvec[1]	=	Point3(0.0f,0.0f,0.0f);
		}
	bvec[2]	=	Point3(0,0,1);
	}

Class	NURBSExtrudeSurface
See	Also:	Class	NURBSSurface.
class	NURBSExtrudeSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	dependent	extrude	surface.	An	extrude	surface	is	extruded
from	a	curve	sub-object.	It	is	similar	to	a	surface	created	with	the	Extrude
modifier.	The	advantage	is	that	an	extrude	sub-object	is	part	of	the	NURBS
model,	so	you	can	use	it	to	construct	other	curve	and	surface	sub-objects.
Methods	are	available	to	get/set	the	parent	index	and	id,	get/set	the	extrusion
vector	and	get/set	the	extrusion	distance.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSExtrudeSurface();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:

	mType	=	kNExtrudeSurface;
	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId	=	0;
	mParentIndex	=	-1;
	mXForm.IdentityMatrix();
	mDistance	=	0.0;
	mCurveStartParam	=	0.0;

Prototype:
virtual	~NURBSExtrudeSurface();

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	parent	object.

Parameters:
int	index
The	index	into	the	NURBSSet	of	the	parent	surface.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	parent.

Parameters:
NURBSId	id
The	id	to	set.

Prototype:

int	GetParent();
Remarks:
Returns	the	index	in	the	NURBSSet	of	the	parent	object.

Prototype:
NURBSId	GetParentId();

Remarks:
Returns	the	NURBSId	of	the	parent.	Note	that	a	NURBSId	won't	be	valid
until	the	object	has	been	instantiated	in	the	scene.

Prototype:
void	SetAxis(TimeValue	t,	Matrix3&	ray);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	extrusion	axis	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	axis	system.
Matrix3&	ray
The	extrusion	axis.

Prototype:
Matrix3&	GetAxis(TimeValue	t);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	extrusion	axis	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	axis.

Prototype:

void	SetDistance(TimeValue	t,	double	d);
Remarks:
Sets	the	length	of	the	extrudion	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	distance.
double	d
The	distance	to	set.

Prototype:
double	GetDistance(TimeValue	t);

Remarks:
Returns	the	length	of	the	extrudion	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	distance.

Prototype:
void	SetCurveStartPoint(TimeValue	t,	double	startpoint);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	start	point	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	start	point.
double	startpoint
The	start	point	in	the	range	0.0	to	1.0.

Prototype:
double	GetCurveStartPoint(TimeValue	t);

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Returns	the	start	point	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	start	point.

Operators:

Prototype:
NURBSExtrudeSurface	&	operator=(const
NURBSExtrudeSurface&	surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBSExtrudeSurface&	surf
The	surface	to	assign.

Class	NURBSSet
See	Also:	Class	NURBSObject,	Class	NURBSDisplay,	Class	TessApprox,
Class	NURBSFuseSurfaceCV,	Class	NURBSFuseCurveCV,	Template	Class
Tab.
class	NURBSSet	:	public	NURBSObject

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	contains	a	table	of	NURBSObject	entities	used	to	make	up	the	set.
Additionally	it	has	two	fuse	tables:	one	for	fuse	curves	and	one	for	fuse	surfaces.
These	are	used	to	allow	the	CVs	in	the	curves	or	surfaces	to	be	'stitched'	together
so	if	one	curve	or	surface	moves	the	other	moves	with	it.	This	class	also	has
information	required	to	tessellate	the	objects	to	triangle	meshes	for	use	in	the
viewports	and	the	production	renderer.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
protected:
TessApprox	*mpVTess;
This	object	describes	the	properties	of	a	tesselation	approximation	to	the
mathematical	surface	for	representation	in	the	viewports.
TessApprox	*mpRTess;
This	object	describes	the	properties	of	a	tesselation	approximation	to	the
mathematical	surface	for	the	production	renderer.
TessApprox	*mpRTessDisp;
This	object	describes	the	tesselation	properties	for	displacement	mapping	in
the	production	renderer.
TessApprox	*mpVTessCurve;
This	object	describes	the	properties	of	a	tesselation	approximation	to	the
mathematical	curve	for	representation	in	the	viewports.
TessApprox	*mpRTessCurve;
This	object	describes	the	properties	of	a	tesselation	approximation	to	the
mathematical	curve	for	the	production	renderer.
float	mTessMerge;
Controls	the	tessellation	of	surface	sub-objects	whose	edges	are	joined	or	very

nearly	joined.	When	input	to	a	modifier	--	such	as	Mesh	Select	--	requires	a
mesh,	and	when	NURBS	surfaces	are	tessellated	for	production	rendering,	by
default	3ds	max	adjusts	the	tessellation	of	adjoining	surfaces	to	match	each
other,	in	terms	of	the	number	of	faces	along	the	edges.	The	Merge	parameter
controls	how	this	is	done.	If	Merge	is	zero,	adjoining	faces	are	unchanged.
Increasing	the	value	of	Merge	increases	the	distance	3ds	max	uses	to	calculate
how	edges	should	match,	guaranteeing	no	gaps	between	the	surfaces	when
they	are	rendered.
Tab<NURBSObject*>	mObjects;
A	table	of	pointers	to	the	NURBSObjects	in	the	set.
Object	*mpObject;
The	instantiated	object	in	the	scene	associated	with	this	NURBSSet.	This	is
NULL	if	there	isn't	one.
NURBSDisplay	mDisplay;
Controls	the	display	of	the	object	in	the	viewport..

public:
Tab<NURBSFuseSurfaceCV>	mSurfFuse;
A	table	of	objects	used	to	allow	surfaces	in	the	set	to	relate	to	on	another.
Tab<NURBSFuseCurveCV>	mCurveFuse;
A	table	of	objects	used	to	allow	curves	in	the	set	to	relate	to	on	another.

Methods:

Prototype:
NURBSSet();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mpObject	=	NULL;
	mpVTess	=	NULL;
	mpRTess	=	NULL;
	mpRTessDisp	=	NULL;
	mpVTessCurve	=	NULL;
	mpRTessCurve	=	NULL;
	mTessMerge	=	0.01f;

	mDisplay.mDisplayCurves	=	TRUE;
	mDisplay.mDisplaySurfaces	=	TRUE;
	mDisplay.mDisplayLattices	=	FALSE;
	mDisplay.mDisplayShadedLattice	=	FALSE;
	mDisplay.mDisplaySurfCVLattices	=	TRUE;
	mDisplay.mDisplayCurveCVLattices	=	TRUE;
	mDisplay.mDisplayDependents	=	TRUE;
	mDisplay.mDisplayTrimming	=	TRUE;
	mDisplay.mDegradeOnMove	=	TRUE;

Prototype:
~NURBSSet();

Remarks:
Destructor.	Any	tesselation	objects	are	deleted.

Prototype:
void	Clean();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	removes	the	NURBS	Set	connection	to	a	live	NURBS	object.	One	use	of
this	is	so	you	can	call	CreateNURBSObject()	twice	with	the	same
NURBSSet.	You	call	Clean()	in	between	the	calls.	Another	use	is	if	you
want	to	use	the	API	to	copy	a	NURBS	object.	You	could	call
GetNURBSSet()	followed	by	a	Clea()	followed	by	a
CreateNURBSObject().

Prototype:
int	GetNumObjects();

Remarks:
Returns	the	number	of	objects	in	the	set.

Prototype:
void	SetObject(int	index,	NURBSObject*	obj);

Remarks:
This	method	sets	an	object	in	the	table	of	objects	maintained	by	the	set.	If	the
index	is	to	an	existing	object	in	the	set	this	will	replace	that	object.	If	it	is	a
new	index,	all	the	objects	which	follow	this	one	in	the	set	are	set	to	NULL	and
the	one	passed	is	set.

Parameters:
int	index
If	the	index	is	an	existing	object	in	the	set	this	will	replace	the	object.	If	it	is	a
new	index,	all	the	objects	which	follow	this	one	are	set	to	NULL	and	the	one
passed	is	set.
NURBSObject*	obj
Points	to	the	object	to	add	to	the	table.

Prototype:
NURBSObject*	GetNURBSObject(int	index);

Remarks:
Returns	a	pointer	to	the	specified	object	in	the	table.

Parameters:
int	index
The	zero	based	index	of	the	object	to	return.

Prototype:
NURBSObject*	GetNURBSObject(NURBSId	id);

Remarks:
Returns	a	pointer	to	the	specified	object	in	the	table.

Parameters:
NURBSId	id
The	Id	of	the	object	to	return.

Prototype:

void	SetObject(int	index,	NURBSObject*	obj);
Remarks:
Sets	the	specified	NURBSObject	pointer	in	the	table	to	the	specified	pointer.	If
the	value	of	index	is	greater	than	the	number	of	items	in	the	table,	the	table	is
resized	and	any	non-initialized	pointers	are	set	to	NULL.

Parameters:
int	index
The	zero	based	index	of	the	object	to	set.
NURBSObject*	obj
Points	to	the	object	to	set.

Prototype:
int	AppendObject(NURBSObject*	obj);

Remarks:
Adds	the	specified	object	pointer	to	the	end	of	the	table	of	object	pointers.
Note:	This	method	is	ONLY	used	for	adding	an	object	to	a	NURBSSet	that	is
not	yet	in	the	scene.	To	add	an	object	to	an	existing	scene	use	the	global
function	AddNURBSObjects().

Parameters:
NURBSObject*	obj
The	pointer	to	the	object	to	append.

Return	Value:
Returns	the	number	of	objects	in	the	table	prior	to	appending.

Prototype:
void	RemoveObject(int	index);

Remarks:
Removes	the	specified	object	pointer	from	the	table.

Parameters:
int	index
The	zero	based	index	of	the	object	to	remove.

Prototype:
void	DeleteObjects();

Remarks:
Deletes	all	the	objects	that	are	in	the	table.
This	method	frees	all	the	NURBSObjects	in	a	NURBSSet.	A	developer
using	a	NURBSSet	must	call	this	method	to	free	all	the	memory	when	done.

Prototype:
TessApprox*	GetProdTess(NURBSTessType
type=kNTessSurface);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	TessApprox	object	for	the	production	renderer	for	the
specified	tesselation	operation.

Parameters:
NURBSTessType	type=kNTessSurface
The	type	of	tesselation.	See	List	of	NURBSTessTypes.

Prototype:
TessApprox*	GetViewTess(NURBSTessType
type=kNTessSurface);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	TessApprox	object	for	the	viewport	renderer	for	the
specified	tesselation	operation.

Parameters:
NURBSTessType	type=kNTessSurface
The	type	of	tesselation.	See	List	of	NURBSTessTypes.

Prototype:
void	SetProdTess(TessApprox&	tess,	NURBSTessType
type=kNTessSurface);

Remarks:
Sets	the	TessApprox	object	for	the	production	renderer	for	the	specified
tesselation	operation.

Parameters:
TessApprox&	tess
The	tesselation	object.
NURBSTessType	type=kNTessSurface
This	parameter	is	available	in	release	3.0	and	later	only.
The	type	of	tesselation.	See	List	of	NURBSTessTypes.

Prototype:
void	SetViewTess(TessApprox&	tess,	NURBSTessType
type=kNTessSurface);

Remarks:
Sets	the	TessApprox	object	for	the	viewport	renderer	for	the	specified
tesselation	operation.

Parameters:
TessApprox&	tess
The	tesselation	object.
NURBSTessType	type=kNTessSurface
This	parameter	is	available	in	release	3.0	and	later	only.
The	type	of	tesselation.	See	List	of	NURBSTessTypes.

Prototype:
void	ClearViewTess(NURBSTessType	type=kNTessSurface);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Clears	(deletes)	the	specified	tesselation	object	used	for	viewport	rendering.

Parameters:
NURBSTessType	type=kNTessSurface
The	type	of	tesselation.	See	List	of	NURBSTessTypes.

Prototype:
void	ClearProdTess(NURBSTessType	type=kNTessSurface);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Clears	(deletes)	the	specified	tesselation	object	used	for	production	rendering.

Parameters:
NURBSTessType	type=kNTessSurface
The	type	of	tesselation.	See	List	of	NURBSTessTypes.

Prototype:
void	GetTessMerge();

Remarks:
Returns	the	tesselation	merge	value.

Prototype:
void	SetTessMerge(float	merge);

Remarks:
Sets	the	tesselation	merge	value.

Parameters:
float	merge
The	tessellation	merge	value.	Controls	the	tessellation	of	surface	sub-objects
whose	edges	are	joined	or	very	nearly	joined.	When	input	to	a	modifier	--	such
as	Mesh	Select	--	requires	a	mesh,	and	when	NURBS	surfaces	are	tessellated
for	production	rendering,	by	default	3ds	max	adjusts	the	tessellation	of
adjoining	surfaces	to	match	each	other,	in	terms	of	the	number	of	faces	along
the	edges.	The	Merge	parameter	controls	how	this	is	done.	If	Merge	is	zero,
adjoining	faces	are	unchanged.	Increasing	the	value	of	Merge	increases	the
distance	3ds	max	uses	to	calculate	how	edges	should	match,	guaranteeing	no
gaps	between	the	surfaces	when	they	are	rendered.

Prototype:
Object*	GetMAXObject();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	instantiated	object	in	the	scene	associated	with	this
NURBSSet.	This	is	NULL	if	there	isn't	one.

Prototype:
NURBSDisplay	GetDisplaySettings();

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Returns	the	display	settings	for	this	NURBSSet.

Prototype:
void	SetDisplaySettings(NURBSDisplay&	disp);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Sets	the	display	settings	used	by	this	NURBSSet.

Parameters:
NURBSDisplay&	disp
The	settings	to	use.

Class	TessApprox
See	Also:	Class	NURBSSet.
class	TessApprox

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	describes	the	properties	of	a	tesselation	approximation	to	the
mathematical	surface.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
TessType	type;
These	are	the	types	of	tesselation	(one	of	which	is	obsolete).	One	of	the
following	values:
TESS_SET
This	is	the	old	form	of	tesselation	for	Bezier	Patches.	This	is	also	the
default	for	these	patches.	For	instance,	if	you	create	a	Quad	Patch	and	apply
an	Edit	Patch	modifier,	then	exit	sub-object	mode,	you'll	see	a	panel	in	the
rollup	for	'Tesselation'.	The	top	choice	is	'Fixed	(original)'.	This	is	the	same
type	of	tesselation	done	in	3ds	max	1.x.
TESS_PARAM
Specifies	parametric	tesselation.	This	provides	for	a	fixed	number	of	u	by	v
tesselations.	There	are	u	times	v	quadrilaterals	and	each	one	is	split	up	into
two	triangles.
TESS_SPATIAL
Specifies	spatial	tesselation.	This	uses	edge	as	its	parameter.	This	specifies
that	the	size	of	the	tesselation	will	be	the	edge	length	(see	below).	In	view
dependent	tesselation	edge	is	specified	in	pixels.
TESS_CURVE
Specifies	view	dependent	tesselation.	This	uses	the	ang	and	dist	data
members	described	below.
TESS_LDA
This	option	is	available	in	release	3.0	and	later	only.

Specifies	a	method	which	combines	the	spatial	(edge-length)	method	and
the	curvature	(distance	and	angle)	methods.	This	uses	the	ang,	dist	and
edge	data	members	below.
TESS_REGULAR
This	option	is	available	in	release	3.0	and	later	only.
Generates	a	fixed,	regular	tessellation	across	the	surface.	There	are	no
additional	parameters.
TESS_ISO
Obsolete	--	Do	Not	Use.

ViewConfig	vpt_cfg;
This	determines	what	is	displayed	in	the	interactive	renderer.	These
correspond	to	the	controls	in	the	user	interface	(under
Surface/Approximation/Viewports).	This	is	not	available	for	bezier	patches.
One	of	the	following	values:
ISO_ONLY
Only	Iso	lines.	Iso(parametric)	lines	are	similar	to	contour	lines.	The	lines
show	where	the	NURBS	surface	has	a	constant	U	value	or	V	value	or	both.
Iso	line	representations	can	be	less	crowded	and	easier	to	visualize	than
wire	mesh	representations..
ISO_AND_MESH
Iso	lines	and	the	mesh.	When	chosen,	wireframe	viewports	display	iso	line
representations	of	the	surface,	and	shaded	viewports	display	the	shaded
surface.
MESH_ONLY
Just	the	mesh.	When	chosen,	wireframe	viewports	display	the	surface	as	a
wire	mesh,	and	shaded	viewports	display	the	shaded	surface.	In	wireframe
viewports,	this	option	lets	you	see	the	curve	approximation	used	for
viewports.

TessSubdivStyle	subdiv;
This	data	member	is	available	in	release	3.0	and	later	only.
The	type	of	subdivision.	One	of	the	following	values:
SUBDIV_TREE
Subdivides	the	surface	using	a	binary	tree.
SUBDIV_GRID

Subdivides	the	surface	using	a	regular	grid.
SUBDIV_DELAUNAY
Subdivides	the	surface	using	nearly	equilateral	triangles.

BOOL	view;
Specifies	if	this	is	view	dependent	tesselation.	If	TRUE	this	will	tesselate	less
finely	the	farther	away	from	the	camera	the	object	is.	If	FALSE	the	tesselation
does	not	change	based	on	distance	from	the	camera.
int	u;
This	is	used	for	parametric	tesselation.	This	is	the	number	of	tesselations	in	u.
This	is	the	number	of	sub-divisions	for	a	knot	span	for	the	surface.
int	v;
This	is	used	for	parametric	tesselation.	This	is	the	number	of	tesselations	in	v.
int	u_iso;
This	is	used	with	the	ISO	line	display.	This	is	the	number	of	additional
interior	iso	lines	in	u	(there	are	always	lines	along	the	outter	edges).
int	v_iso;
This	is	used	with	the	ISO	line	display.	This	is	the	number	of	additional
interior	iso	lines	in	v	(there	are	always	lines	along	the	outter	edges).
float	ang;
This	is	used	in	curvature	dependent	tesselation	(TESS_CURVE).	If	0.0	is
specified	this	is	ignored.	If	specified	this	ensure	that	no	two	adjacent	face
normals	exceed	this	angle	between	them.	This	value	is	specified	in	radians.
float	dist;
This	is	used	in	curvature	dependent	tesselation	(TESS_CURVE).	If	0.0	is
specified	this	is	ignored.	This	specifies	a	distance	that	cannot	be	exceeded
between	a	vertex	on	the	mesh	and	the	mathematical	surface.	This	is	defined	as
a	percentage	of	the	diagonal	of	the	bounding	box	of	the	individual	surface	in
object	space.	For	instance	if	this	was	set	to	1.0,	the	allowable	error	in
generating	a	tesselation	would	be	1%	of	the	bounding	box	diagonal	distance	of
the	surface.	This	would	be	1/100	(1	%)	of	the	diagonal	distance	of	the
bounding	box.	In	this	way	if	an	object	is	scaled	the	tesselation	remains	the
same.	Additionally,	if	you	have	an	object	with	a	big	surface	and	a	little
surface,	the	smaller	surface	will	get	tesselated	more	finely	because	its	own
bounding	box	is	used.	This	prevents	the	smaller	surface	from	just	becoming	a
single	triangle	for	example.

float	edge;
This	is	the	length	of	an	edge	to	use	in	spatial	(TESS_SPATIAL)	tesselation.
In	view	dependent	tesselation	this	is	specified	in	pixels.	If	not	in	view
dependent	tesselation	this	is	a	percentage	of	the	bounding	box	diagonal	length.
int	minSub;
This	data	member	is	available	in	release	3.0	and	later	only.
For	Grid	or	Tree	subdivisions,	this	limit	controls	the	number	of	recursive
decompositions	that	are	performed	during	tessellation.	This	is	the	minimum
number	of	recursions.
int	maxSub;
This	data	member	is	available	in	release	3.0	and	later	only.
For	Grid	or	Tree	subdivisions,	this	limit	controls	the	number	of	recursive
decompositions	that	are	performed	during	tessellation.	This	is	the	maximum
number	of	recursions.
int	maxTris;
This	data	member	is	available	in	release	3.0	and	later	only.
For	Delaunay	subdivision,	this	specifies	the	maximum	mumber	of	triangles
into	which	the	surface	will	be	divided.

Methods:

Prototype:
TessApprox();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	type	=	TESS_SET;
	u	=	v	=	2;
	u_iso	=	2;
	v_iso	=	3;
	view	=	FALSE;
	ang	=	20.0f;
	dist	=	10.0f;
	edge	=	10.0f;
	vpt_cfg	=	ISO_AND_MESH;

	merge	=	0.0f;
	minSub	=	0;
	maxSub	=	5;
	maxTris	=	20000;
	subdiv	=	SUBDIV_TREE;
	showInteriorFaces	=	FALSE;

Prototype:
TessApprox(TessType	type,	float	distance,	float	edge,	float	angle,
TessSubdivStyle	subdivStyle,	int	minSub,	int	maxSub,	float	m	=
0.0f);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Constructor.	The	data	members	are	initialized	to	the	values	passed.

Prototype:
TessApprox(const	TessApprox	&tess);

Remarks:
Constructor.	The	data	members	are	initialized	from	the	object	passed.

Operators:

Prototype:
TessApprox	&	operator=(const	TessApprox&	tess);

Remarks:
Assignment	operator.

Parameters:
const	TessApprox	&tess
The	object	to	assign.

Prototype:
int	operator==(const	TessApprox	&tess)	const;

Remarks:
Equality	operator.	Returns	nonzero	if	they	are	equal;	otherwise	zero.

Parameters:
const	TessApprox	&tess
The	object	to	compare.

Class	NURBSCurve
See	Also:	Class	NURBSObject,	Class	NURBSTrimPoint.
class	NURBSCurve	:	public	NURBSObject

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	describes	the	properties	of	a	NURBS	curve.	This	includes	its	number
of	trim	points	and	its	open/closed	state.	The	Evaluate()	method	is	used	to
compute	points	on	the	curve.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
protected:
int	mMatID;
This	data	member	is	available	in	release	3.0	and	later	only.
The	material	ID	for	the	curve.

Friend	Classes:
friend	class	NURBSCVCurve;
friend	class	NURBSPointCurve;
friend	class	NURBSBlendCurve;
friend	class	NURBSOffsetCurve;
friend	class	NURBSXFormCurve;
friend	class	NURBSMirrorCurve;
friend	class	NURBSFilletCurve;
friend	class	NURBSChamferCurve;
friend	class	NURBSIsoCurve;
friend	class	NURBSSurfaceEdgeCurve;
friend	class	NURBSProjectVectorCurve;
friend	class	NURBSProjectNormalCurve;
friend	class	NURBSSurfaceNormalCurve;
friend	class	NURBSNBlendSurface;
friend	class	NURBSRuledSurface;
friend	class	NURBSULoftSurface;
friend	class	NURBSUVLoftSurface;

friend	class	NURBSExtrudeSurface;
friend	class	NURBSLatheSurface;
friend	class	NURBSCapSurface;
friend	class	NURBS1RailSweepSurface;
friend	class	NURBS2RailSweepSurface;
friend	class	NURBSMultiCurveTrimSurface;

Methods:
public:

Prototype:
NURBSCurve();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mKind	=	kNURBSCurve;
	mMatID	=	1;

Prototype:
~NURBSCurve();

Remarks:
Destructor.

Prototype:
BOOL	IsClosed();

Remarks:
Returns	TRUE	if	the	curve	is	closed;	otherwise	FALSE.

Prototype:
int	NumTrimPoints();

Remarks:
Returns	the	number	of	trim	points	in	the	curve.

Prototype:

NURBSTrimPoint	GetTrimPoint(TimeValue	t,	int	i);
Remarks:
Returns	the	'i-th'	trim	point.

Parameters:
TimeValue	t
The	time	to	retrieve	the	trim	point.
int	i
The	zero	based	index	of	the	trim	point	to	return.

Prototype:
BOOL	Evaluate(TimeValue	t,	double	u,	Point3&	pt,	Point3&
tangent);

Remarks:
Retrieves	the	point	along	the	curve	at	the	specified	point	and	the	tangent	at
that	point.

Parameters:
TimeValue	t
The	time	to	evaluate	the	curve.
double	u
Specifies	the	point	along	the	curve	to	evaluate.	This	value	must	be	between
the	uMin	and	uMax	as	returned	from	GetParameterRange().
Point3&	pt
The	point	along	the	curve	is	returned	here.
Point3&	tangent
The	tangent	at	the	specified	point	is	returned	here.

Return	Value:
TRUE	if	the	method	was	able	to	evaluate	the	curve;	otherwise	FALSE.

Prototype:
void	GetParameterRange(TimeValue	t,	double&	uMin,	double&
uMax);

Remarks:
Retrieves	the	minimum	and	maximum	valid	values	for	u	as	passed	to
Evaluate().

Parameters:
TimeValue	t
The	time	to	get	the	parameter	range	of	the	curve.
double&	uMin
The	minimum	value	is	returned	here.
double&	uMax
The	maximum	value	is	returned	here.

Prototype:
BOOL	GetNURBSData(TimeValue	t,	int&	degree,	int&	numCVs,
NURBSCVTab&	cvs,	int&	numKnots,	NURBSKnotTab	knots);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Retrieves	data	about	the	NURBSCurve	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	NURBS	information.
int&	degree
The	degree	of	the	curve.
int&	numCVs
The	number	of	CVs.
NURBSCVTab&	cvs
The	table	of	CVs.	Note:	typedef	Tab<NURBSControlVertex>
NURBSCVTab;
int&	numKnots
The	number	of	knots.
NURBSKnotTab	knots
A	table	of	knots	in	U.	Note:	typedef	Tab<double>	NURBSKnotTab;

Return	Value:

TRUE	if	the	data	was	retrieved;	otherwise	FALSE.

Prototype:
int	MatID();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	material	ID	for	the	curve.

Prototype:
void	MatID(int	id);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	material	ID	for	the	curve.

Parameters:
int	id
The	ID	to	set.

Operators:

Prototype:
NURBSCurve	&	operator=(const	NURBSCurve&	curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSCurve&	curve
The	curve	to	assign.

Class	RendParams
See	Also:	Class	Atmospheric,	Class	Effect,	Class	IRenderElementMgr,	Class
ToneOperator.
class	RendParams

Description:
This	class	has	a	set	of	data	members,	and	these	parameters	are	passed	to	the
renderer	when	the	renderer	is	opened.	All	methods	of	this	class	are	implemented
by	the	system.

Data	Members:
public:
RendType	rendType;
The	type	of	rendering	to	perform.	See	the	List	of	Render	Types	for	more
information.
BOOL	isNetRender;
Determines	if	this	is	a	render	on	a	network	slave.
BOOL	fieldRender;
If	TRUE	the	image	will	be	field	rendered;	otherwise	frame	rendered.
int	fieldOrder;
The	field	order	used.	One	of	the	following	values:
0	specifies	even.
1	specifies	odd.

TimeValue	frameDur;
This	is	used,	for	example,	by	video	post.	In	video	post	you	can	stretch	time.	A
video	post	frame	might	be	1/2	frame	long	for	example.	This	data	member
defines	the	duration	of	one	frame	in	TimeValue	units.
BOOL	colorCheck;
Determines	if	the	color	is	ranged	checked.
int	vidCorrectMethod;
Video	correction	method.	One	of	the	following	values:
0	specifies	FLAG	(with	black).
1	specifies	SCALE_LUMA	(scale	luminance).
2	specifies	SCALE_SAT	(scale	saturation).

int	ntscPAL;
Determines	if	the	color	is	range	checked	using	NTSC	or	PAL	standards.	One
of	the	following	values:
0	specifies	NTSC.
1	specifies	PAL.

BOOL	superBlack;
If	TRUE	Super	Black	is	used.
int	sbThresh;
Specifies	the	Super	Black	threshold.
BOOL	rendHidden;
If	TRUE	hidden	objects	are	rendered.
BOOL	force2Side;
If	TRUE	two	sided	materials	are	used	for	all	items	in	the	scene.
BOOL	inMtlEdit;
If	TRUE	the	rendering	is	taking	place	in	the	material	editor.
float	mtlEditTile;
If	rendering	is	taking	place	in	the	material	editor,	scale	tiling.
BOOL	mtlEditAA;
If	TRUE	antialiasing	should	be	done	in	the	material	editor.
BOOL	multiThread;
This	is	used	internally.
BOOL	useEnvironAlpha;
If	TRUE	one	should	use	alpha	from	the	environment	map.
BOOL	dontAntialiasBG;
If	the	low-order	bit	is	set	don't	antialias	against	the	background	(this	is	often
used	for	'sprites'	in	video	games).	For	3ds	max	1.1	and	1.2	(in	2.0	and	later	see
scanBandHeight	below),	this	parameter	may	also	be	used	to	access	the
height	of	the	abuffer	in	scan	lines.	This	may	be	obtained	using	the	following
syntax:
		abufBandHeight	=	rendpar.dontAntialiasBG>>8
BOOL	useDisplacement;
The	apply	displacement	mapping	setting.
bool	useRadiosity;

This	data	member	is	available	in	release	4.0	and	later	only.
Indicates	if	radiosity	should	be	included	in	rendering.
bool	computeRadiosity;
This	data	member	is	available	in	release	4.0	and	later	only.
Indicates	if	radiosity	should	be	computed	before	rendering.
Texmap	*envMap;
The	environment	map.	This	may	be	NULL.
Atmospheric	*atmos;
The	atmosphere	effects.	This	may	be	NULL.	To	the	renderer	it	looks	like	there
is	only	one	atmosphere.	You	can	use	this	atmosphere	and	it	will	go	ahead	and
call	all	the	individual	atmospheric	effects	for	you.
Effect	*effect;
This	data	member	is	available	in	release	3.0	and	later	only.
The	post-processing	effects.	This	may	be	NULL	if	there	aren't	any.
RadiosityEffect*	pRadiosity;
This	data	member	is	available	in	release	4.0	and	later	only.
Points	to	the	radiosity	effect.
ToneOperator*	pToneOp;
This	data	member	is	available	in	release	4.0	and	later	only.
Points	to	the	tone	operator	if	present.	This	may	be	NULL
TCHAR	biFileName[MAX_PATH];
This	data	member	is	available	in	release	4.0	and	later	only.
The	bitmap	output	file	name.
TimeValue	firstFrame;
This	data	member	is	available	in	release	2.0	and	later	only.
This	is	the	first	frame	that	will	be	rendered.	This	lets	Open()	know	the	first
frame	that	will	be	rendered,	so	it	will	not	have	to	evaluate	at	frame	0	when
building.
int	scanBandHeight;
This	data	member	is	available	in	release	2.0	and	later	only.
This	is	the	height	of	a	scan	band	(for	the	default	3ds	max	scanline	renderer).
ULONG	extraFlags;
This	data	member	is	available	in	release	2.0	and	later	only.

RENDER_HIDE_FROZEN
This	option	is	available	in	release	4.0	and	later	only.
Instruct	the	renderer	to	hide	frozen	objects

int	width;
The	image	height.
int	height;
The	image	width.
BOOL	filterBG;
The	filter	background.

Methods:

Prototype:
RendParams();

Remarks:
Constructor.	The	initialization	can	be	seen	in	the	header	file	RENDER.H.

Prototype:
RenderMode	GetRenderMode();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	rendering	mode.	One	of	the	following	values:
RM_Default
This	is	being	used	for	a	normal	rendering.
RM_IReshade
The	render	is	being	used	for	interactive	reshading.

Prototype:
void	SetRenderElementMgr(IRenderElementMgr
*pIRenderElementMgr);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	render	element	manager	used.

Parameters:
IRenderElementMgr	*pIRenderElementMgr
Points	to	the	render	element	manager	to	set.

Prototype:
IRenderElementMgr	*GetRenderElementMgr();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	render	element	manager	interface.

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.

Parameters:
int	cmd
The	index	of	the	command	to	execute.
ULONG	arg1=0
Optional	argument	1.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	these	parameters.
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	the	meaning	of	this	value.

Class	FrameRendParams
See	Also:	Class	RendParams,	Class	Color,	Class	Point2.
class	FrameRendParams	:	public	BaseInterfaceServer

Description:
This	is	passed	to	the	renderer	on	every	frame.	This	provides	information	about
the	ambient	light	color,	the	background	color,	the	duration	of	one	frame,	etc.

Data	Members:
public:
Color	ambient;
The	ambient	light	color.
Color	background;
The	background	color.
Color	globalLightLevel;
This	data	member	is	available	in	release	2.0	and	later	only.
This	is	a	multiplier	that	scales	the	brightness	of	all	scene	lights:	it	doesn't
affect	the	ambient	light	level.
float	frameDuration;
The	duration	of	one	frame	in	units	of	current	frames.	This	describes	how	much
scene	time	is	used	by	one	(video)	frame	time.	For	instance,	in	Video	Post,	you
can	scale	time	so	it's	stretched	out	or	compressed.	In	this	case,	you	may	be
rendering	one	frame	to	video,	but	because	the	scene	is	being	run	at	a	faster
speed	than	normal,	you	in	fact	see	say	2.5	frames	of	the	scene.	Things	such	as
field	rendering	or	motion	blur	must	know	about	this	so	they	know	how	long	a
frame	is	in	terms	of	the	time	of	the	scene.
float	relSubFrameDuration;
This	data	member	is	available	in	release	2.0	and	later	only.
This	is	the	relative	fraction	of	frameDuration	used	by	a	subframe.	Within
the	frameDuration,	if	you're	sub-dividing	the	rendering	up	into	multiple
frames	for	scene	motion	blur,	this	may	be	used.
For	instance,	say	the	duration	(frames)	is	set	to	0.5	and	the	duration
subdivisions	is	5,	then	this	data	member	would	be	0.1.	This	means	that	each
subframe	is	effectively	covering	only	1/10th	of	the	frame	duration.

This	value	is	always	less	than	1.0.
int	regxmin,	regxmax;
These	values	were	members	of	Class	RendParams	prior	to	release	3.
The	x	min	and	max	boundary	values	for	render	region	or	render	blowup	in
device	coordinates.
int	regymin,	regymax;
These	values	were	members	of	Class	RendParams	prior	to	release	3.
The	y	min	and	max	boundary	values	for	render	region	or	render	blowup	in
device	coordinates.
Point2	blowupCenter;
This	parameter	is	available	in	release	3.0	and	later	only.
The	2D	point	at	the	center	of	the	render	blowup	region.
Point2	blowupFactor;
This	parameter	is	available	in	release	3.0	and	later	only.
The	X	and	Y	scale	factors	for	render	blowup.

Methods:

Prototype:
FrameRendParams();

Remarks:
Constructor.	The	frameDuration	is	set	to	1.0	and	relSubFrameDuration
=	1.0f.

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.

Parameters:
int	cmd

The	index	of	the	command	to	execute.
ULONG	arg1=0
Optional	argument	1.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	these	parameters.
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	the	meaning	of	this	value.

Class	ObjLightDesc
See	Also:	Class	LightDesc,	Class	LightRayTraversal,	Class	INode,	Class
Point3,	Class	Matrix3,	Class	Ray,	Class	RendContext,	Class	ShadeContext,
Class	RenderInstance.
class	ObjLightDesc	:	public	LightDesc

Description:
A	light	must	be	able	to	create	one	of	these	objects	to	give	to	the	renderer.	As	the
renderer	is	getting	ready	to	render,	it	will	ask	for	one	of	these	from	each	of	the
lights.	The	Illuminate()	method	(inherited	from	LightDesc)	is	called	by	the
renderer	to	illuminate	a	surface	point.
There	is	an	ObjLightDesc	for	every	instance	of	the	light.	The	renderer	will	ask
each	light	object	to	produce	one	of	these	ObjLightDescs.	It	will	then	set	this
data	up	in	the	node's	render	data	(See	Class	RenderData).	For	example	in	3ds
max's	volume	light	implementation	of	Atmospheric::Update()	it	goes
through	its	node	references	to	lights	and	calls	GetRenderData().	It	then	casts
this	as	an	ObjLightDesc.	This	is	how	a	atmosphere	effect	can	get	access	to
these	descriptors	at	render	time.

Data	Members:
This	data	will	be	set	up	by	the	default	implementation	of	Update().
public:
LightState	ls;
The	light	state	structure.	See	Structure	LightState.
INode	*inode;
This	parameter	is	the	INode	pointer	of	the	instance	of	the	light	that	created
this	ObjLightDesc.
BOOL	uniformScale;
This	indicates	if	the	light's	scale	is	uniform.	TRUE	if	uniform;	otherwise
FALSE.	This	saves	some	steps	in	the	renderer	if	the	scale	is	uniform.
Point3	lightPos;
The	position	of	the	light	in	camera	space.
Matrix3	lightToWorld;
This	is	effectively	the	light	node's	object	TM.	This	matrix	will	transform

points	from	light	space	to	world	space.
Matrix3	worldToLight;
This	matrix	will	transform	points	from	world	space	to	light	space.	This	is	the
inverse	of	above.
Matrix3	lightToCam;
This	matrix	will	transform	points	from	light	space	to	camera	space.	This	is
updated	in	UpdateViewDepParams().
Matrix3	camToLight;
This	matrix	will	transform	points	from	camera	space	to	light	space.	This	is
updated	in	UpdateViewDepParams().	For	example,	the	renderer	would
have	points	in	camera	space.	To	figure	out	if	a	point	was	in	shadow	it	would
transform	the	point	from	camera	space	to	light	space	using	this	matrix.	It
could	then	look	in	the	shadow	buffer	to	see	if	the	point	was	in	shadow.
int	renderNumber;
This	data	member	is	available	in	release	3.0	and	later	only.
This	is	set	by	the	renderer.	It	is	used	in
RenderInstance::CastsShadowsFrom().	This	is	a	number	used	by	the
renderer	to	identify	the	lights	so	it	can	quickly	determine	if	a	given	light	casts
shadows	from	a	given	object.	It	is	for	use	by	the	renderer.

Methods:

Prototype:
ObjLightDesc(INode	*n);

Remarks:
Constructor.	The	inode	data	member	is	initialized	to	n.

Prototype:
virtual	~ObjLightDesc();

Remarks:
Destructor.

Prototype:
virtual	ExclList*	GetExclList()

Remarks:
Implemented	by	the	Plug-In.
Retrieves	the	light's	exclusion	list.

Return	Value:
See	Class	NameTab.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	int	Update(TimeValue	t,	const	RendContext	&rc,
RenderGlobalContext	*rgc,	BOOL	shadows,	BOOL
shadowGeomChanged);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	is	called	once	per	render	to	update	the	light	state	for	things	that
depend	on	the	position	of	objects	and	lights	in	world	space.	A	plug-in	light
could	update	any	data	it	would	need	to	here.	The	default	implementation	is
shown	below.

Parameters:
TimeValue	t
The	time	of	the	render.
const	RendContext	&rc
See	Class	RendContext.
RenderGlobalContext	*rgc
This	pointer	may	be	used	to	retireve	information	about	the	global	rendering
enviornment.
BOOL	shadows
TRUE	if	shadows	are	turned	on	(in	the	render	parameters,	not	the	light
parameters);	otherwise	FALSE.
BOOL	shadowGeomChanged
This	tells	the	Update	procedure	that	the	geometry	of	the	objects	that	are
shadowed	by	the	light	has	changed	(TRUE)	or	not	(FALSE).	If	it	is	a	shadow

buffer,	shadowGeomChanged	==	TRUE	means	it	has	to	re-render	the
shadow	buffer,	shadowGeomChanged	==	FALSE	means	it	can	use	the
shadow	buffer	from	the	previous	frame.

Return	Value:
The	value	return	should	normally	be	1.	A	returned	value	of	0	means	an	error
has	occured	(such	as	out	of	memory)	and	the	render	will	be	halted.

Default	Implementation:
int	ObjLightDesc::Update(TimeValue	t,	const	RendContext&	rc,
RenderGlobalContext	*rgc,	BOOL	shadows,	BOOL
shadowGeomChanged)	{
	if	(inode)	{
		Interval	valid;		
		ObjectState	os	=	inode->EvalWorldState(t);
		assert(os.obj->SuperClassID()==LIGHT_CLASS_ID);
		LightObject*	lob	=	(LightObject	*)os.obj;		
		lob->EvalLightState(t,	valid,	&ls);
		lightToWorld	=	inode->GetObjTMAfterWSM(t);
		worldToLight	=	Inverse(lightToWorld);		
		uniformScale	=	IsUniformScale(lightToWorld);
		affectDiffuse	=	ls.affectDiffuse;
		affectSpecular	=	ls.affectSpecular;
		ambientOnly	=	ls.ambientOnly;
	}	else	{
		uniformScale	=	TRUE;
		lightToWorld.IdentityMatrix();
		worldToLight.IdentityMatrix();
		}
	return	1;
	}

Prototype:
virtual	void	UpdateGlobalLightLevel(Color	globLightLevel);

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Implemented	by	the	Plug-In.
This	method	is	called	to	update	the	light	state	that	depends	on	the	global	light
level.

Parameters:
Color	globLightLevel
The	global	light	level.

Default	Implementation:
{}

Prototype:
virtual	int	UpdateViewDepParams(const	Matrix3&	worldToCam);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	update	the	light	state	that	depends	on	the	view	matrix.
This	is	used	to	cache	certain	computed	quantities	that	are	dependent	on	where
you	are	looking	from.	In	a	given	scene	at	a	given	time,	the	system	may	render
from	several	viewpoints.	This	is	because	of	things	like	reflection	maps	and
mirrors	that	need	to	get	rendered.	This	method	is	called	for	each	of	these
different	viewpoints.

Parameters:
const	Matrix3&	worldToCam
The	world	space	to	camera	space	transformation	matrix.

Prototype:
virtual	Point3	LightPosition();

Remarks:
This	method	is	from	LightDesc.	Here	it	provides	a	default	implementation
returning	the	lightPos	data	member.

Default	Implementation:
{	return	lightPos;	}

Prototype:
virtual	void	TraverseVolume(ShadeContext&	sc,	const	Ray	&ray,
int	samples,	float	tStop,	float	attenStart,	float	attenEnd,	DWORD
flags,	LightRayTraversal	*proc);

Remarks:
Implemented	by	the	Plug-In.
This	function	traverses	a	ray	through	the	light	volume.	This	method	is
implemented	by	plug-in	lights.
Consider	how	the	3ds	max	atmospheric	effects	like	the	volume	lights	use	this
information.	For	each	light	the	atmospheric	effect	is	bound	to,	it	calls	the	this
method	(TraverseVolume())	on	the	light.	The	volume	light	atmospheric
effect	passes	a	callback	to	this	method	(proc).	The	light	then	calls	the	Step()
method	of	the	callback	for	each	partial	segment	of	the	ray.	Given	the
illumination	on	the	segment	it	computes	the	fog	density	over	that	segment.
The	density	may	be	constant	if	noise	is	not	turned	on,	or	it	may	change	if	noise
is	turned	on.	Using	the	fog	density	and	the	illumination	it	computes	the	light
reflected	off	the	atmosphere	for	the	segment.

Parameters:
ShadeContext&	sc
This	is	the	ShadeContext	passed	into	the	Shade()	method	of	the
Atmospheric	effect.	The	shade	context	passed	in	should	only	be	used	for	state
(like	are	shadows	globally	disabled).	The	position,	normal,	etc.	serve	no
purpose.
const	Ray	&ray
Defines	the	world	space	ray	that	will	be	traversed.
int	samples
The	number	of	samples	to	sample	along	the	ray.	A	reasonable	range	is	from
25-100.	This	is	more	or	less	the	suggested	number	of	times	the	proc->Step()
callback	will	be	called.	It	is	not	precisely	however	because	the	system	may
take	greater	or	fewer	steps	than	specified	as	it	needs	to.
float	tStop
This	is	the	end	of	the	ray.	This	is	the	point	at	which	the	traversal	will	stop
(ray.p+tStop*ray.dir).	Note	that	the	traversal	can	terminate	earlier	if	the
callback	returns	FALSE.

float	attenStart
Specifies	a	percent	of	the	light	attenuation	distances	that	should	be	used	for
lighting	during	the	traversal.	This	is	used	so	a	light	can	have	an	attenuation	set
to	a	certain	percent,	and	then	have	the	volume	light	be	attenuated	at	a	different
point.
float	attenEnd
This	specifies	the	ending	percent	of	the	light	attenuation	distances	that	should
be	used	for	lighting	during	the	traversal.
DWORD	flags
There	are	three	ways	the	shadow	maps	can	be	sampled.	If	none	of	these	flags
are	set,	the	shadow	map	is	sampled	directly	(this	is	the	fastest).	One	of	the
following	values:
TRAVERSE_LOWFILTSHADOWS
This	is	a	simple	filtering	where	the	system	samples	a	point	in	the	shadow
map	and	then	some	of	the	neighboring	points.	This	corresponds	to	'Medium'
in	the	Volume	Light	user	interface	(a	value	of	0	for	flags	is	'Low'	--	just
sampling	the	shadow	map	with	no	filtering	at	all).
TRAVERSE_HIFILTSHADOWS
This	is	a	higher	resolution	sampling.	This	corresponds	to	'High'	in	the
Volume	Light	user	interface.
TRAVERSE_USESAMPLESIZE
This	produces	the	highest	quality.	This	corresponds	to	'Use	Light	Sample
Range'	in	the	Volume	Light	user	interface.	This	is	like	a	box	filter,	but	also
takes	into	consideration	the	position	of	the	point	within	the	pixel	to	do
additional	weighting.

LightRayTraversal	*proc
A	developer	derives	a	class	from	LightRayTraversal	and	implements	the
Step()	method.	A	pointer	to	it	is	passed	here	as	the	callback	object.

Default	Implementation:
{}

Class	RenderInstance
See	Also:	Class	Mtl,	Class	LightDesc,	Class	INode,	Class	Object,	Class
Mesh,	Class	Matrix3,	Class	Box3,	Class	Point3,	Class	Interval.
class	RenderInstance

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	provides	information	about	a	single	node	being	rendered.	This
includes	information	such	as	the	mesh	of	the	object,	its	material,	unique	node	ID,
object	space	bounding	extents,	number	of	lights	affecting	it,	material
requirements,	and	normals	and	vertex	coordinates	in	various	spaces	(object	and
camera).

Data	Members:
public:
ULONG	flags;
The	flags	that	describe	the	properties	of	this	instance.	See	List	of	Render
Instance	Flags.
Mtl	*mtl;
This	is	the	material	from	the	node.
float	wireSize;
The	wireframe	size.
Mesh	*mesh;
The	mesh	to	be	rendered.	This	is	the	result	of
GeomObject::GetRenderMesh().
float	vis;
Object	visibility	(between	0.0	and	1.0).	This	is	the	value	the	visibility	track
evaluates	to	at	a	particular	time.
int	nodeID;
A	unique	ID	associated	with	the	node.	It's	unique	within	the	scene	during	a
render.
int	objMotBlurFrame;
This	will	be	equal	to	NO_MOTBLUR	for	all	non-blurred	objects.	For
blurred	objects,	it	takes	on	the	values	(0..nBlurFrames-1)	for	the	successive

blur-instances.
int	objBlurID;
The	purpose	of	this	is	to	differentiate	blur-instances	generated	from	different
nodes.	All	the	blur-instances	for	an	object-motion-blurred	object	will	have	the
same	objBlurID.	This	is	as	distinct	from	nodeID,	which	is	different	for
every	instance.	This	makes	it	possible	to	easily	avoid	intersecting	a	ray	with
all	blur-instances	for	an	object.	If
RenderGlobalContext::IntersectWorld()	is	being	used,	then	passing	in
the	objBlurID	for	the	parameter	skipID	will	have	this	effect.
The	basic	technique	is	this:	When	reflecting	or	refracting	rays,	and	object
motion	blur	is	enabled,	choose	sub-frame	times	randomly	for	the	different	rays
(effectively	giving	a	coarse	stochastic	sampling	of	time).
Matrix3	objToWorld;
This	matrix	can	be	used	to	transform	object	coordinates	to	world	coordinates.
Matrix3	objToCam;
This	matrix	can	be	used	to	transform	object	coordinates	to	camera	coordinates.
Matrix3	normalObjToCam;
This	matrix	can	be	used	for	transforming	surface	normals	from	object	space	to
camera	space.
Matrix3	camToObj;
This	matrix	can	be	used	to	transform	camera	coordinates	to	object	coordinates.
Box3	obBox;
The	object	space	extents	of	the	object	being	rendered.
Point3	center;
The	object	bounding	sphere	center	(in	camera	coordinates)
float	radsq;
The	square	of	the	bounding	sphere's	radius.

Methods:

Prototype:
void	SetFlag(ULONG	f,	BOOL	b);

Remarks:
Sets	the	specified	flag(s)	to	the	state	passed.

Parameters:

ULONG	f
The	flags	to	set.	See	List	of	Render	Instance	Flags.
BOOL	b
The	state	to	set;	TRUE	for	on;	FALSE	for	off.

Prototype:
void	SetFlag(ULONG	f);

Remarks:
Sets	the	specified	flag(s)	to	on.

Parameters:
ULONG	f
The	flags	to	set.	See	List	of	Render	Instance	Flags.

Prototype:
void	ClearFlag(ULONG	f);

Remarks:
Clears	the	specified	flag(s).

Parameters:
ULONG	f
The	flags	to	set	to	zero.	See	List	of	Render	Instance	Flags.

Prototype:
BOOL	TestFlag(ULONG	f);

Remarks:
Returns	TRUE	if	the	specified	flag(s)	are	set;	otherwise	FALSE.

Parameters:
ULONG	f
The	flags	to	set	to	zero.	See	List	of	Render	Instance	Flags.

Prototype:
virtual	RenderInstance	*Next()=0;

Remarks:
Returns	a	pointer	to	the	next	in	RenderInstance	in	the	list.	A	pointer	to	the
first	element	in	the	list	may	to	retrieved	from
RenderGlobalContext::InstanceList().

Prototype:
virtual	Interval	MeshValidity()=0;

Remarks:
Returns	the	validity	interval	of	the	mesh	of	this	render	instance.

Prototype:
virtual	int	NumLights()=0;

Remarks:
Returns	the	number	of	lights	affecting	the	node.

Prototype:
virtual	LightDesc	*Light(int	n)=0;

Remarks:
Returns	a	pointer	to	the	LightDesc	for	the	'i-th'	light	affecting	the	node.

Parameters:
int	n
Specifies	which	light.

Prototype:
virtual	BOOL	CastsShadowsFrom(const	ObjLightDesc&	lt)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	this	particular	instance	will	cast	shadows	from	the	particular
light	based	on	the	light’s	Exclusion/Inclusion	list;	FALSE	if	it	won't	cast
shadows.

Parameters:
const	ObjLightDesc&	lt

Describes	the	light.	See	Class	ObjLightDesc.

Prototype:
virtual	INode	*GetINode()=0;

Remarks:
Returns	the	INode	pointer	for	the	instance.

Prototype:
virtual	Object	*GetEvalObject()=0;

Remarks:
Returns	a	pointer	to	the	evaluated	object	for	the	instance.	You	can	use	this	to
get	more	information	about	the	type	of	object	being	rendered.	For	instance	you
could	look	at	the	Class_ID	and	recognize	it	as	a	sphere,	a	box,	a	torus,	etc.

Prototype:
virtual	ULONG	MtlRequirements(int	mtlNum,	int	faceNum)=0;

Remarks:
Returns	the	material	requirements	of	the	material	assigned	to	the	node.	See
List	of	Material	Requirement	Flags.

Parameters:
int	mtlNum
Specifies	the	number	of	the	sub-material	whose	requirements	should	be
returned.	A	value	of	-1	may	be	passed	to	return	a	value	generated	by	looping
over	all	the	sub-materials	and	ORing	together	the	requirements.
int	faceNum
This	parameter	is	available	in	release	4.0	and	later	only.
This	is	the	integer	face	number	for	objects	which	support	material	per	face	(if
flag	INST_MTL_BYFACE	is	set).	See	Class	IChkMtlAPI.

Prototype:
virtual	Point3	GetFaceNormal(int	faceNum)=0;

Remarks:

Returns	the	geometric	normal	of	the	specified	face	in	object	space.
Parameters:
int	faceNum
Zero	based	index	of	the	face	whose	normal	is	returned.

Prototype:
virtual	Point3	GetFaceVertNormal(int	faceNum,	int	vertNum)=0;

Remarks:
Returns	the	vertex	normal	of	the	specified	face	in	camera	coordinates.

Parameters:
int	faceNum
Zero	based	index	of	the	face	in	the	mesh.
int	vertNum
Zero	based	index	of	the	vertex	in	the	face.

Prototype:
virtual	void	GetFaceVertNormals(int	faceNum,	Point3	n[3])=0;

Remarks:
Returns	the	three	vertex	normals	of	the	specified	face	in	camera	coordinates.

Parameters:
int	faceNum
Zero	based	index	of	the	face	in	the	mesh.
Point3	n[3]
The	normals	are	returned	here.

Prototype:
virtual	Point3	GetCamVert(int	vertnum)=0;

Remarks:
Returns	the	coordinate	for	the	specified	vertex	in	camera	coordinates

Parameters:
int	vertnum

The	zero	based	index	of	the	vertex	in	the	mesh.

Prototype:
virtual	void	GetObjVerts(int	fnum,	Point3	obp[3])=0;

Remarks:
Returns	the	vertices	of	the	specified	face	in	object	coordinates.

Parameters:
int	fnum
Zero	based	index	of	the	face	in	the	mesh.
Point3	obp[3]
The	three	vertices	of	the	face	in	object	coordinates.

Prototype:
virtual	void	GetCamVerts(int	fnum,	Point3	cp[3])=0;

Remarks:
Returns	the	vertices	of	the	specified	face	in	camera	(view)	coordinates.

Parameters:
int	fnum
Zero	based	index	of	the	face	in	the	mesh.
Point3	cp[3]
The	three	vertices	of	the	face	in	camera	coordinates.

Prototype:
virtual	Mtl	*GetMtl(int	faceNum)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Objects	can	provide	a	material	as	a	function	of	face	number	via	the	interface
provided	by	Class	IChkMtlAPI.	This	method	will	return
RenderInstance::mtl	if	flag	INST_MTL_BYFACE	is	not	set.	If
INST_MTL_BYFACE	is	set	it	will	return	the	proper	by-face	material.	See
List	of	Render	Instance	Flags.

Parameters:

int	faceNum
The	zero	based	index	of	the	face	in	the	mesh.
Objects	can	provide	a	material	as	a	function	of	face	number	via	the
IChkMtlAPI	interface	(chkmtlapi.h).

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.

Parameters:
int	cmd
The	index	of	the	command	to	execute.
ULONG	arg1=0
Optional	argument	1.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	these	parameters.
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	the	meaning	of	this	value.

Default	Implementation:
{	return	0;	}

Class	RendContext
See	Also:	Class	ObjLightDesc.
class	RendContext

Description:
This	class	is	passed	into	the	method	ObjLightDesc::Update().	The	methods
of	this	class	are	implemented	by	the	3ds	max	scanline	renderer.	Developer
creating	other	renderer	plug-ins	may	choose	to	implement	the	methods	of	this
class	if	they	wish	to	use	the	same	architecture.	Developers	who	wish	to	take
advantage	of	the	3ds	max	volumetric	light	effects	should	implement	the	methods
of	this	class.	The	volumetric	lights	are	set	up	to	work	with	this	mechanism.

Methods:

Prototype:
virtual	int	Progress(int	done,	int	total)	const;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	update	the	progress	bar	and	check	the	keyboard	and
mouse	for	user	cancellation.	A	plug-in	renderer	should	implement	this	method
by	calling	the	RendProgressCallback::Progress()	method	on	the
RendProgressCallback	passed	in	to	the	Renderer::Render()	method.

Parameters:
int	done
This	is	the	number	completed	so	far.
int	total
This	is	the	total	number	of	things	to	complete.

Return	Value:
Nonzero	to	continue;	zero	if	the	user	has	canceled.

Default	Implementation:
{	return	1;	}

Prototype:
virtual	Color	GlobalLightLevel()	const	=	0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	multiplier	that	scales	the	brightness	of	all	scene	lights:	it	doesn't
affect	the	ambient	light	level.	It	is	included	in	RendContext	so	the	lights	can
use	it	to	multiply	times	the	light's	color.

Class	PatchMesh
See	Also:	Class	Patch,	Class	PatchVec,	Class	PatchEdge,	Class	PatchVert,	Class
BitArray,	Class	TessApprox,	Class	PatchTVert,	Working	with	Patches.
class	PatchMesh	:	public	BaseInterfaceServer

Description:
A	patch	mesh	can	be	made	up	of	any	number	of	patches.	Each	of	these	patches
can	be	three	or	four	sided.	Each	edge	of	a	patch	can	only	be	used	by	either	one
patch	(which	makes	it	an	open	edge)	or	two	patches	(which	makes	it	a
transitional	edge	between	the	two).
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	Patch;

Method	Groups:
The	following	hyperlinks	take	you	to	the	start	of	groups	of	related	methods:
Constructors	/	Destructor
Vert	Access
TVert	Access
Vec	Access
Patch	Access
Edge	Access
RVert	Access
Materials	/	Mapping
buildLinkages()	/	computeInteriors()	/	ApplyConstraints()	/	GetEdge()
Tri	/	Quad	Patch	Creation
Get/Set	Mesh	Steps	and	Adaptive	Switch/TessApprox
Render	/	Snap	/	Hit	Test
Display	Flag	Access
Selection	Access
Data	Flow	Evaluation
Dump()
Operators

Data	Members:
public:

Topology:
int	numVerts;
The	number	of	vertices.
int	numVecs;
The	number	of	vectors.
int	numPatches;
The	number	of	patches.
int	numEdges;
The	number	of	edges.
Patch	*patches;
The	list	of	patches.
PatchVec	*vecs;
The	list	of	PatchVecs.
PatchEdge	*edges;
The	list	of	PatchEdges.
Tab<HookPoint>	hooks;
This	data	member	is	available	in	release	3.0	and	later	only.
This	table	is	used	internally

Geometry:
PatchVert	*verts;
The	list	of	PatchVerts.

Texture	coordinate	assignment:
Tab<int>	numTVerts;
This	data	member	is	available	in	release	3.0	and	later	only.
A	table	containing	the	number	of	texture	vertices	for	each	channel.
Tab<PatchTVert	*>	tVerts;
This	data	member	is	available	in	release	3.0	and	later	only.
A	table	containing	pointers	to	the	texture	vertices	for	each	channel.
Previous	to	R4.0	this	was	a	Tab<UVVert	*>.
Tab<TVPatch	*>	tvPatches;		
This	data	member	is	available	in	release	3.0	and	later	only.
A	table	containing	pointers	to	the	texture	vertex	patches	for	each	channel.

Material	assignment
DWORD	mtlIndex;
The	object	level	material.

Selection
BitArray	vertSel;
The	selected	vertices.
BitArray	edgeSel;
The	selected	edges.
BitArray	patchSel;
The	selected	patches.
int	bezVecVert;
This	is	used	internally.

DWORD	dispFlags;
The	display	attribute	flags.	See	List	of	Patch	Display	Flags.
DWORD	selLevel;
The	current	selection	level.	One	of	the	following	values:
PATCH_OBJECT	-	Object	level.
PATCH_VERTEX	-	Vertex	level.
PATCH_PATCH	-	Patch	level.
PATCH_EDGE	-	Edge	level.

int	cacheSteps;
This	data	member	is	available	in	release	3.0	and	later	only.
The	meshSteps	used	for	the	cache.
BOOL	cacheAdaptive;
This	data	member	is	available	in	release	3.0	and	later	only.
The	adaptive	switch	used	for	the	mesh	cache.
Tab<Point3>	extrudeDeltas;
This	data	member	is	available	in	release	3.0	and	later	only.
This	data	member	is	for	internal	use	only.
Tab<ExtrudeData>	extrudeData;
This	data	member	is	available	in	release	3.0	and	later	only.
This	data	member	is	for	internal	use	only.
BitArray	bevelEdges;
This	data	member	is	available	in	release	3.0	and	later	only.
This	data	member	is	for	internal	use	only.

Tab<float>	edgeDistances;
This	data	member	is	available	in	release	3.0	and	later	only.
This	data	member	is	for	internal	use	only.

Methods:
public:

Constructors	/	Destructor

Prototype:
PatchMesh();

Remarks:
Constructor.	Initializes	data	members	(see	Init()	below).

Prototype:
PatchMesh(PatchMesh&	fromPatch);

Remarks:
Constructor.	This	PatchMesh	is	initialized	from	the	specified	PatchMesh.

Prototype:
void	Init();

Remarks:
Initializes	the	data	members	to	default	values:
meshSteps		=	5;
adaptive		=	FALSE;
rVerts			=	NULL;
cacheGW			=	NULL;
numVerts			=	0;
numVecs			=	0;
numPatches			=	0;
numEdges		=	0;
patches			=	NULL;
edges			=	NULL;
numTVerts.ZeroCount();

tvPatches.ZeroCount();
tVerts.ZeroCount();
vecs			=	NULL;
verts				=	NULL;
mtlIndex			=	0;
flags				=	0;
snapVCt			=	0;
snapPCt			=	0;	
snapV			=	NULL;
snapP			=	NULL;
dispFlags	=	DISP_LATTICE;
selLevel	=	PATCH_OBJECT;
bezVecVert		=	-1;
bdgBox.Init();
cacheSteps	=	-9999;
cacheAdaptive	=	-9999;
prodTess.u	=	5;				
prodTess.v	=	5;				
prodTess.dist	=	2.0f;		
prodTess.ang	=	10.0f;		
prodTess.edge	=	1.0f;		
prodTess.view	=	TRUE;		
dispTess.type	=	TESS_CURVE;	
dispTess.v	=	5;				
dispTess.dist	=	2.0f;		
dispTess.ang	=	10.0f;		
dispTess.edge	=	1.0f;		
dispTess.view	=	TRUE;		
viewTess.u	=	5;		
viewTess.v	=	5;		
viewTess.view	=	FALSE;	
viewTess.ang	=	20.0f;	
viewTess.dist	=	10.0f;	
viewTess.edge	=	10.0f;	

Prototype:
~PatchMesh();

Remarks:
Destructor.	Frees	up	allocated	arrays.

Prototype:
void	CopyPatchDataFrom(PatchMesh	&fromPatchMesh);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
The	following	is	similar	to	operator=,	but	just	takes	the	major	components,	not
the	display	flags,	selection	level,	etc.

Parameters:
PatchMesh	&fromPatchMesh
The	patch	mesh	to	copy	from.

Vert	Access

Prototype:
BOOL	setNumVerts(int	ct,	BOOL	keep	=	FALSE);

Remarks:
Sets	the	number	of	vertices	in	the	patch	mesh.

Parameters:
int	ct
The	new	number	of	vertices.
BOOL	keep	=	FALSE
If	TRUE	any	old	vertices	are	copied	to	the	new	array;	otherwise	they	are
freed.

Return	Value:
TRUE	if	the	number	of	vertices	was	allocated;	otherwise	FALSE.

Prototype:
int	getNumVerts();

Remarks:
Returns	the	number	of	vertices	in	the	patch	mesh.

Prototype:
void	setVert(int	i,	const	Point3	&xyz)

Remarks:
Sets	the	'i-th'	vertex.

Parameters:
int	i
The	index	of	the	vertex	to	set.
const	Point3	&xyz
The	vertex	location.

Prototype:
void	setVert(int	i,	float	x,	float	y,	float	z)

Remarks:
Sets	the	'i-th'	vertex.

Parameters:
int	i
The	index	of	the	vertex	to	set.
float	x,	float	y,	float	z
The	vertex	location.

Prototype:
PatchVert	&getVert(int	i)

Remarks:
Returns	the	'i-th'	vertex.

Parameters:
int	i
The	index	of	the	vertex	to	retrieve.

Prototype:

PatchVert	*getVertPtr(int	i)
Remarks:
Returns	the	address	of	the	'i-th'	vertex.

Parameters:
int	i
The	index	of	the	vertex.

TVert	Access

Prototype:
BOOL	setNumTVerts(int	ct,	BOOL	keep=FALSE);

Remarks:
Sets	the	number	of	mapping	verts	in	the	original	mapping	channel	(channel	1).

Parameters:
int	ct
The	number	of	map	vertices	desired.
BOOL	keep	=	FALSE
If	TRUE,	any	existing	mapping	verts	are	copied	over	into	the	new	array.

Return	Value:
TRUE	if	successful,	FALSE	if	unsuccessful.

Prototype:
int	getNumTVerts()	const;

Remarks:
Returns	the	number	of	mapping	vertices	in	the	original	mapping	channel
(channel	1).

Prototype:
BOOL	setNumTVertsChannel(int	mp,	int	ct,	BOOL
keep=FALSE);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

Sets	the	number	of	mapping	verticies	in	the	original	TV	map	or	vertex	color
channel.

Parameters:
int	mp
Specifies	the	channel.	If	0,	the	number	of	vertices	in	the	original	mapping
channel	(map	channel	1)	is	set.	If	nonzero,	the	number	of	vertices	in	the	vertex
color	channel	(map	channel	0)	is	set.
int	ct
The	number	of	map	vertices	desired.
BOOL	keep=FALSE
If	TRUE,	any	existing	mapping	verts	are	copied	over	into	the	new	array.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
int	getNumTVertsChannel(int	mp);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	number	of	mapping	verts	in	the	original	map	or	vertex	colors.

Parameters:
int	mp
If	0,	the	number	of	vertices	in	the	original	mapping	channel	(map	channel	1)	is
returned.	If	nonzero,	the	number	of	vertices	in	the	vertex	color	channel	(map
channel	0)	is	returned.

Prototype:
PatchTVert	*mapVerts(int	mp);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	list	of	PatchTVerts	for	the	specified	channel	of	this
patch.

Parameters:

int	mp
The	mapping	channel.	In	this	method,	0	is	the	vertex	color	channel,	and
channels	1	through	MAX_MESHMAPS-1	are	the	map	channels.

Prototype:
BOOL	setNumMapVerts(int	mp,	int	ct,	BOOL	keep	=	FALSE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	number	of	mapping	verts	in	the	specified	mapping	channel.

Parameters:
int	mp
The	mapping	channel.	In	this	method,	0	is	the	vertex	color	channel,	and
channels	1	through	MAX_MESHMAPS-1	are	the	map	channels.
int	ct
The	number	of	mapping	verts	desired.
BOOL	keep=FALSE
If	TRUE	any	old	vertices	are	copied	to	the	new	array;	otherwise	they	are
freed.

Return	Value:
TRUE	if	the	number	of	vertices	was	allocated;	otherwise	FALSE.

Prototype:
int	getNumMapVerts(int	mp);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	mapping	verts	in	the	specified	mapping	channel.

Parameters:
int	mp
In	this	method,	0	is	the	vertex	color	channel,	and	channels	1	through
MAX_MESHMAPS-1	are	the	map	channels.

Prototype:

void	setTVert(int	i,	const	UVVert	&xyz)
Remarks:
Sets	the	'i-th'	map	vertex.

Parameters:
int	i
The	index	of	the	map	vertex	to	set.
const	UVVert	&xyz
The	value	to	set.

Prototype:
void	setTVert(int	i,	float	x,	float	y,	float	z)

Remarks:
Sets	the	'i-th'	map	vertex.

Parameters:
int	i
The	index	of	the	map	vertex	to	set.
float	x,	float	y,	float	z
The	values	to	set.

Prototype:
void	setTVertChannel(int	channel,	int	i,	const	UVVert	&xyz);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	'i-th'	map	vertex	of	the	specified	channel.

Parameters:
int	channel
The	mapping	channel.	In	this	method,	0	is	the	vertex	color	channel,	and
channels	1	through	MAX_MESHMAPS-1	are	the	map	channels.
int	i
The	index	of	the	map	vertex	to	set.
const	UVVert	&xyz
The	value	to	set.

Prototype:
void	setTVertChannel(int	channel,	int	i,	float	x,	float	y,	float	z);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	'i-th'	map	vertex	of	the	specified	channel.

Parameters:
int	channel
The	mapping	channel.	In	this	method,	0	is	the	vertex	color	channel,	and
channels	1	through	MAX_MESHMAPS-1	are	the	map	channels.
int	i
The	index	of	the	map	vertex	to	set.
float	x,	float	y,	float	z
The	values	to	set.

Prototype:
void	setTVPatchChannel(int	channel,	int	i,	TVPatch	&tvp);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	'i-th'	map	patch.

Parameters:
int	channel
The	mapping	channel.	In	this	method,	0	is	the	vertex	color	channel,	and
channels	1	through	MAX_MESHMAPS-1	are	the	map	channels.
int	i
The	index	of	the	map	vertex	to	set.
TVPatch	&tvp
The	map	patch	to	set.

Prototype:
void	setTVPatch(int	i,	TVPatch	&tvp);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Sets	the	specified	map	patch.
Parameters:
int	i
The	zero	based	index	of	the	texture	patch	to	set.
TVPatch	&tvp
The	map	patch	to	set.

Prototype:
void	setMapVert(int	mp,	int	i,	const	UVVert	&xyz);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	specified	mapping	vertex	in	the	channel	passed.

Parameters:
int	mp
The	mapping	channel.	In	this	method,	0	is	the	vertex	color	channel,	and
channels	1	through	MAX_MESHMAPS-1	are	the	map	channels.
int	i
The	zero	based	index	of	the	vert	to	set.
const	UVVert	&xyz
The	vert	to	set.

Prototype:
void	setMapVert(int	mp,	int	i,	float	x,	float	y,	float	z);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	specified	mapping	vertex	in	the	channel	passed.

Parameters:
int	mp
The	mapping	channel.	In	this	method,	0	is	the	vertex	color	channel,	and
channels	1	through	MAX_MESHMAPS-1	are	the	map	channels.
int	i
The	zero	based	index	of	the	vert	to	set.

float	x
The	x	coordinate	of	the	vert	to	set.
float	y
The	y	coordinate	of	the	vert	to	set.
float	z
The	z	coordinate	of	the	vert	to	set.

Prototype:
void	setMapPatch(int	mp,	int	i,	const	TVPatch	&tvp);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	specified	mapping	patch	in	the	channel	passed.

Parameters:
int	mp
The	mapping	channel.	In	this	method,	0	is	the	vertex	color	channel,	and
channels	1	through	MAX_MESHMAPS-1	are	the	map	channels.
int	i
The	zero	based	index	of	the	TVPatch	to	set.
const	TVPatch	&tvp
The	map	patch	to	set.

Prototype:
PatchTVert	&getMapVert(int	mp,	int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Previous	to	R4,	this	method	returned	an	UVVert&.
Returns	a	reference	to	the	specified	mapping	vert	from	the	specified	channel.

Parameters:
int	mp
The	mapping	channel.	In	this	method,	0	is	the	vertex	color	channel,	and
channels	1	through	MAX_MESHMAPS-1	are	the	map	channels.
int	i

The	zero	based	index	of	the	vert	to	get.

Prototype:
PatchTVert	*getMapVertPtr(int	mp,	int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Previous	to	R4,	this	method	returned	an	UVVert*.
Returns	a	pointer	to	the	specified	mapping	vert	from	the	specified	channel.

Parameters:
int	mp
The	mapping	channel.	In	this	method,	0	is	the	vertex	color	channel,	and
channels	1	through	MAX_MESHMAPS-1	are	the	map	channels.
int	i
The	zero	based	index	of	the	vert	to	get.

Prototype:
TVPatch	&getMapPatch(int	mp,	int	i);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	reference	to	the	specified	map	patch	from	the	specified	channel.

Parameters:
int	mp
The	mapping	channel.	In	this	method,	0	is	the	vertex	color	channel,	and
channels	1	through	MAX_MESHMAPS-1	are	the	map	channels.
int	i
The	zero	based	index	of	the	map	patch	to	get.

Prototype:
PatchTVert	&getTVert(int	i)

Remarks:
Previous	to	R4,	this	method	returned	an	UVVert&.
Returns	the	'i-th'	map	vertex.

Parameters:
int	i
The	index	of	the	map	vertex	to	retrieve.

Prototype:
PatchTVert	*getTVertPtr(int	i)

Remarks:
Previous	to	R4,	this	method	returned	an	UVVert*.
Returns	a	pointer	to	the	'i-th'	map	vertex.

Parameters:
int	i
The	index	of	the	map	vertex.

Prototype:
PatchTVert	&getTVertChannel(int	channel,	int	i);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Previous	to	R4,	this	method	returned	an	UVVert&.
Returns	the	'i-th'	map	vertex	of	the	specified	channel.

Parameters:
int	channel
The	mapping	channel.	In	this	method,	0	is	the	vertex	color	channel,	and
channels	1	through	MAX_MESHMAPS-1	are	the	map	channels.
int	i
The	index	of	the	map	vertex	to	retrieve.

Prototype:
PatchTVert	*getTVertPtrChannel(int	channel,	int	i);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Previous	to	R4,	this	method	returned	an	UVVert*.
Returns	a	pointer	to	the	'i-th'	map	vertex	of	the	specified	channel.

Parameters:
int	channel
The	mapping	channel.	In	this	method,	0	is	the	vertex	color	channel,	and
channels	1	through	MAX_MESHMAPS-1	are	the	map	channels.
int	i
The	index	of	the	texture	vertex.

TVPatch	Access

Prototype:
BOOL	setNumTVPatches(int	ct,	BOOL	keep=FALSE,	int
oldCt=0);

Remarks:
Sets	the	number	of	map	patches	in	the	original	TV	channel.	(Note	that
setNumMapPatches()	is	called	from	setNumPatches(),	so	this	doesn't
need	to	be	called	separately	once	a	map	channel	is	active.)
Note:
If	the	map	patches	are	NULL	and	keep	=	TRUE	they	stay	NULL.
If	the	map	patches	are	NULL	and	keep	=	FALSE	they	are	allocated,	and
map	verts	also	init	themselves	from	the	main	vert	array.
If	the	map	patches	are	non-NULL	and	ct	=	0	they	are	set	to	NULL	(and
freed)

Parameters:
int	ct
The	number	of	map	patches	desired	--	should	match	the	number	of	patches.
BOOL	keep=FALSE
If	TRUE,	existing	map	patches	are	copied	into	the	new	map	patch	array.	oldCt
should	specify	how	many	patches	were	around	previously.
int	oldCt=0
The	old	number	of	patches.	This	is	important	for	determining	how	much	to
copy	over	when	keep	is	TRUE.

Return	Value:
TRUE	if	storage	has	been	allocated	and	the	number	is	set;	otherwise	FALSE.

Prototype:
BOOL	setNumTVPatchesChannel(int	channel,	int	ct,	BOOL
keep=FALSE,	int	oldCt=0);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	number	of	map	patches	in	the	original	TV	or	vertex	color	channels.
(Note	that	setNumMapPatches()	is	called	from	setNumPatches(),	so	this
doesn't	need	to	be	called	separately	once	a	map	channel	is	active.)
Note:
If	the	map	patches	are	NULL	and	keep	=	TRUE	they	stay	NULL.
If	the	map	patches	are	NULL	and	keep	=	FALSE	they	are	allocated,	and
map	verts	also	init	themselves	from	the	main	vert	array.
If	the	map	patches	are	non-NULL	and	ct	=	0	they	are	set	to	NULL	(and
freed)

Parameters:
int	channel
If	0,	the	number	of	map	patches	in	the	original	map	channel	are	set.	If
nonzero,	the	number	of	map	patches	in	the	vertex	color	channel	is	set.
int	ct
The	number	of	map	patches	desired	--	should	match	the	number	of	patches.
BOOL	keep=FALSE
The	keep	flag.	See	above.
int	oldCt=0
The	old	number	of	patches.	This	is	important	for	determining	how	much	to
copy	over	when	keep	is	TRUE.

Return	Value:
TRUE	if	storage	has	been	allocated	and	the	number	is	set;	otherwise	FALSE.

Prototype:
BOOL	setNumMapPatches(int	channel,	int	ct,	BOOL	keep=FALSE,	int
oldCt=0);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Sets	the	number	of	map	patches	in	the	specified	map	channel.	(Note	that	this	is
called	from	setNumPatches(),	so	it	doesn't	need	to	be	called	separately	once
a	map	channel	is	active.)
Note:
If	the	map	patches	are	NULL	and	keep	=	TRUE	they	stay	NULL.
If	the	map	patches	are	NULL	and	keep	=	FALSE	they	are	allocated,	and
map	verts	also	init	themselves	from	the	main	vert	array.
If	the	map	patches	are	non-NULL	and	ct	=	0	they	are	set	to	NULL	(and
freed).

Parameters:
int	channel
The	mapping	channel.	In	this	method,	0	is	the	vertex	color	channel,	and
channels	1	through	MAX_MESHMAPS-1	are	the	map	channels.
int	ct
The	number	of	map	patches	desired	--	should	match	the	number	of	patches.
BOOL	keep=FALSE
If	TRUE,	existing	map	patches	are	copied	into	the	new	map	patch	array.	oldCt
should	specify	how	many	patches	were	around	previously.
int	oldCt=0
The	old	number	of	patches.	This	is	important	for	determining	how	much	to
copy	over	when	keep	is	TRUE.

Return	Value:
TRUE	if	storage	has	been	allocated	and	the	number	is	set;	otherwise	FALSE.

Prototype:
TVPatch	&getTVPatchChannel(int	channel,	int	i);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	'i-th'	texture	patch	structure	of	the	specified	channel.

Parameters:
int	channel
The	mapping	channel.	In	this	method,	0	is	the	vertex	color	channel,	and
channels	1	through	MAX_MESHMAPS-1	are	the	map	channels.

int	i
The	index	of	the	TVPatch.

Prototype:
TVPatch	&getTVPatch(int	i);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	'i-th'	texture	patch	from	map	channel	1.

Parameters:
int	i
The	index	of	the	TVPatch.

Vec	Access

Prototype:
BOOL	setNumVecs(int	ct,	BOOL	keep	=	FALSE);

Remarks:
Sets	the	number	of	vectors.

Parameters:
int	ct
The	new	vector	count.
BOOL	keep	=	FALSE
If	TRUE	any	previous	vectors	are	copied;	otherwise	they	are	freed.

Return	Value:
TRUE	if	the	number	was	allocated	and	set;	otherwise	FALSE.

Prototype:
int	getNumVecs();

Remarks:
Returns	the	number	of	vectors.

Prototype:

void	setVec(int	i,	const	Point3	&xyz)
Remarks:
Sets	the	'i-th'	vector.

Parameters:
int	i
The	index	of	the	vector	to	set.
const	Point3	&xyz
The	vector	to	set.

Prototype:
void	setVec(int	i,	float	x,	float	y,	float	z)

Remarks:
Sets	the	'i-th'	vector.

Parameters:
int	i
The	index	of	the	vector	to	set.
float	x,	float	y,	float	z
The	vector	values	to	set.

Prototype:
PatchVec	&getVec(int	i)

Remarks:
Returns	the	'i-th'	vector.

Parameters:
int	i
The	index	of	the	vector	to	retrieve.

Prototype:
PatchVec	*getVecPtr(int	i)

Remarks:
Returns	the	address	of	the	'i-th'	vector.

Parameters:
int	i
The	index	of	the	vector.

Patch	Access

Prototype:
BOOL	setNumPatches(int	ct,	BOOL	keep	=	FALSE);

Remarks:
Sets	the	number	of	patches.

Parameters:
int	ct
The	new	patch	count.
BOOL	keep	=	FALSE
If	TRUE	any	previous	patches	are	copied;	otherwise	they	are	freed.

Return	Value:
TRUE	if	the	number	was	allocated	and	set;	otherwise	FALSE.

Prototype:
int	getNumPatches();

Remarks:
Returns	the	number	of	patches.

Edge	Access

Prototype:
BOOL	setNumEdges(int	ct,	BOOL	keep	=	FALSE);

Remarks:
Sets	the	number	of	edges.

Parameters:
int	ct
The	new	edge	count.

BOOL	keep	=	FALSE
If	TRUE	any	previous	edges	are	copied;	otherwise	they	are	freed.

Return	Value:
TRUE	if	the	number	was	allocated	and	set;	otherwise	FALSE.

Prototype:
int	getNumEdges();

Remarks:
Returns	the	number	of	edges.

RVert	Access

Prototype:
PRVertex	&getRVert(int	i)

Remarks:
This	method	is	not	currently	used.

Prototype:
PRVertex	*getRVertPtr(int	i)

Remarks:
This	method	is	not	currently	used.

Material	/	Mapping	Access

Prototype:
void	setMtlIndex(DWORD	i)

Remarks:
This	method	is	no	longer	used.

Prototype:
DWORD	getMtlIndex()

Remarks:

This	method	is	no	longer	used.

Prototype:
void	setNumMaps(int	ct,	BOOL	keep=TRUE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Set	the	number	of	texture	maps	used	by	this	PatchMesh.

Parameters:
int	ct
The	number	to	use.	This	is	a	value	between	2	and	MAX_MESHMAPS-1.
BOOL	keep=TRUE
TRUE	to	keep	the	old	mapping	information	after	the	resize;	FALSE	to	discard
it.

Prototype:
void	setMapSupport(int	chan,	BOOL	init=TRUE);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	allocate	mapping	channels	as	needed.	If	the	map	channel	is
already	present,	no	action	is	taken.	Otherwise,	the	additional	channels	are
created.

Parameters:
int	chan
Specifies	which	channel.	See	List	of	Mapping	Channel	Index	Values.	If	zero
(special	vertex	color	channel)	and	init	is	TRUE,	all	vertex	colors	are
initialized	to	white	(1,1,1).
BOOL	init=TRUE
If	TRUE,	the	channel	is	initialized	to	match	the	PatchMesh�s	structure.

Prototype:
int	getNumMaps();

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	mapping	channels	in	use.

Prototype:
BOOL	getMapSupport(int	mp);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	specified	mapping	channel	is	supported;	otherwise
FALSE.

Parameters:
int	mp
Specifies	which	channel.	See	List	of	Mapping	Channel	Index	Values.

Prototype:
int	NumMapChannels();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	maximum	number	of	possible	mapping	channels.

Prototype:
void	ApplyUVWMap(int	type,
float	utile,	float	vtile,	float	wtile,
int	uflip,	int	vflip,	int	wflip,	int	cap,
const	Matrix3	&tm,	int	channel=1);

Remarks:
This	method	may	be	called	to	map	this	PatchMesh	with	UVW	mapping
coordinates.

Parameters:
int	type
The	mapping	type.	One	of	the	following	values:
MAP_PLANAR
MAP_CYLINDRICAL

MAP_SPHERICAL
MAP_BALL
MAP_BOX

float	utile
Number	of	tiles	in	the	U	direction.
float	vtile
Number	of	tiles	in	the	V	direction.
float	wtile
Number	of	tiles	in	the	W	direction.
int	uflip
If	nonzero	the	U	values	are	mirrored.
int	vflip
If	nonzero	the	V	values	are	mirrored.
int	wflip
If	nonzero	the	W	values	are	mirrored.
int	cap
This	is	used	with	MAP_CYLINDRICAL.	If	nonzero,	then	any	patch
normal	that	is	pointing	more	vertically	than	horizontally	will	be	mapped	using
planar	coordinates.
const	Matrix3	&tm
This	defines	the	mapping	space.	As	each	point	is	mapped,	it	is	multiplied	by
this	matrix,	and	then	it	is	mapped.
int	channel=1
This	parameter	is	available	in	release	2.0	and	later	only.
This	indicates	which	channel	the	mapping	is	applied	to	--	channel==1
corresponds	to	the	original	texture	channel.	Note	that	this	is	a	change	from
what	it	meant	before	release	3.0.	Previously	channel	1	referred	to	the	color	per
vertex	channel	(and	this	parameter	defaulted	to	0).

Prototype:
void	ChangePatchToLinearMapping(int	index);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

This	method	changes	the	mapping	of	a	patch	or	all	selected	patches	to	linear.
Parameters:
int	index
The	index	of	the	patch	for	which	to	change	the	mapping	to	linear.	A	value	<	0
indicates	all	selected	patches	are	to	be	changed	to	linear	mapping.

Prototype:
void	ChangePatchToCurvedMapping(int	index);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	changes	the	mapping	of	a	patch	or	all	selected	patches	to	curved.

Parameters:
int	index
The	index	of	the	patch	for	which	to	change	the	mapping	to	curved.	A	value	<	0
indicates	all	selected	patches	are	to	be	changed	to	curved	mapping.

Prototype:
BOOL	ArePatchesLinearMapped(int	index);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	check	if	one	or	all	selected	patches	have	linear	mapping
applied.

Parameters:
int	index
The	index	of	the	patch	for	which	to	check	if	mapping	is	linear.	A	value	<	0
indicates	all	selected	patches	are	checked	for	linear	mapping.

Return	Value:
TRUE	if	the	specified	patch	or	selected	patches	have	linear	mapping	applied,
otherwise	FALSE.

Prototype:
BOOL	ArePatchesCurvedMapped(int	index);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	check	if	one	or	all	selected	patches	have	curved	mapping
applied.

Parameters:
int	index
The	index	of	the	patch	for	which	to	check	if	mapping	is	curved.	A	value	<	0
indicates	all	selected	patches	are	checked	for	curved	mapping.

Return	Value:
TRUE	if	the	specified	patch	or	selected	patches	have	curved	mapping	applied,
otherwise	FALSE.

Prototype:
BOOL	RecordTopologyTags();

Remarks:
This	method	tags	the	points	in	the	patch	components	to	record	our	topology
(this	stores	identifying	values	in	the	various	aux2	fields	in	the	Patch).	This
information	can	be	used	after	topology-changing	operations	to	remap
information	tied	to	vertices,	edges	and	patches.

Return	Value:
Returns	TRUE	if	tagged	successfully;	otherwise	FALSE.

Prototype:
void	Transform(Matrix3	&tm);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Transforms	the	vertices	and	vectors	of	the	patch	mesh,	re-	computes	the
interior	bezier	points	for	each	patch	in	the	mesh	and	invalidates	the	geometry
cache.

Parameters:
Matrix3	&tm
The	matrix	to	transform	with.

Prototype:
BOOL	Weld(float	thresh,	BOOL	weldIdentical=FALSE,	int
startVert=0);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	internally.

Prototype:
void	DeletePatchParts(BitArray	&delVerts,	BitArray
&delPatches);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	is	a	method	which	may	be	used	to	delete	sets	of	verts	or	patches.

Parameters:
BitArray	&delVerts
A	bit	array	with	bits	set	for	verts	to	delete.
BitArray	&delPatches
A	bit	array	with	bits	set	for	patches	set	to	delete.

Prototype:
void	Subdivide(int	type,	BOOL	propagate);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Subdivides	the	selected	edge	or	patch.

Parameters:
int	type
One	of	the	following	values:
SUBDIV_EDGES
Subdivides	an	edge.
SUBDIV_PATCHES
Subdivides	an	entire	patch

BOOL	propagate

TRUE	to	propogate;	FALSE	to	not	propogate.

Prototype:
void	AddPatch(int	type);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Add	a	patch	of	the	desired	type	to	each	selected	edge	that	doesn't	have	two
patches	attached.

Parameters:
int	type
One	of	the	following	values:
PATCH_TRI
PATCH_QUAD

Prototype:
int	AddHook();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	obsolete	and	should	not	be	used.

Prototype:
int	AddHook(int	index);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	obsolete	and	should	not	be	used.

Prototype:
int	AddHook(int	vertIndex,	int	segIndex);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	obsolete	and	should	not	be	used.

Prototype:
int	RemoveHook();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	obsolete	and	should	not	be	used.

Prototype:
int	UpdateHooks();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	internally.

Prototype:
void	CreateExtrusion(int	type	=	PATCH_PATCH,	BOOL
edgeClone=FALSE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	will	create	all	the	necessary	geometry	for	an	extrusion	operation.

Parameters:
int	type
This	option	is	available	in	release	4.0	and	later	only.
Specifies	the	extrusion	type,	either	PATCH_PATCH	or	PATCH_EDGE.
If	the	extrusion	type	is	set	to	PATCH_EDGE,	then	the	edgeClone
paramter	will	tell	the	function	to	clone	the	selected	edges	prior	to	creating	the
extrusion	geometry.
BOOL	edgeClone
This	option	is	available	in	release	4.0	and	later	only.
The	edge	clone	flag.	If	set	to	TRUE	the	function	will	clone	the	selected	edges
prior	to	creating	the	exstrusion	geometry.

Prototype:
Point3	AverageNormals(int	type	=	PATCH_PATCH);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	will	allow	you	to	obtain	the	average	normal	of	all	selected
patches	or	edges.

Parameters:
int	type
This	option	is	available	in	release	4.0	and	later	only.
Specifies	if	the	average	normal	return	is	based	on	all	selected	patches,	using
PATCH_PATCH,	or	all	selected	edges	using	PATCH_EDGE.

Prototype:
Point3	PatchNormal(int	index);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	internally.

Prototype:
void	MoveNormal(float	amount,	BOOL	useLocalNorms,	int	type);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	internally.

Prototype:
void	FlipPatchNormal(int	index);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	flips	the	normal	of	the	specified	patch.	This	is	done	by	reordering
the	vertices.	If	the	PatchMesh	has	textures	assigned	to	it	then	the	texture
patches	are	processed	as	well.

Parameters:
int	index
The	index	of	the	patch	for	which	you	want	to	flip	the	normal.

Prototype:
void	UnifyNormals(BOOL	useSel);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	makes	sure	the	patches	in	the	operation	set	are	all	facing	the
same	direction.	This	is	determined	by	the	vertex	order	around	the	edges	of	the
patch.

Parameters:
BOOL	useSel
If	this	parameter	is	set	to	TRUE,	the	operation	set	is	the	set	of	selected	patches
as	indicated	by	the	patchSel	BitArray.	If	this	parameter	is	set	to	FALSE,	all
patches	are	processed.

Prototype:
void	AutoSmooth(float	angle,	BOOL	useSel,	BOOL
preventIndirectSmoothing);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	perform	automatic	smoothing	on	the	patch	mesh.	The
smoothing	angle	is	determined	for	each	patch	by	computing	the	normals	at
each	corner	of	the	patch	(using	the	corner	vertex	and	the	two	edge	vectors
connected	to	that	vertex),	then	averaging	the	normals	of	the	two	corners	of
each	edge	to	arrive	at	a	normal	for	that	edge.	These	normals	are	used	to
determine	whether	adjacent	patches	are	within	the	auto-smooth	threshold
angle.

Parameters:
float	angle
The	minimum	angle	between	surface	normals	for	smoothing	to	be	applied,	in
radians.
BOOL	useSel
If	this	parameter	is	set	to	TRUE	then	only	the	selected	patches	are	smoothed.
BOOL	preventIndirectSmoothing
TRUE	to	turn	on;	FALSE	to	leave	it	off.	This	matches	the	option	in	the

Smooth	Modifier	UI	--	use	this	to	prevent	smoothing	�leaks"	when	using	this
method.	If	you	use	this	method,	and	portions	of	the	patch	mesh	that	should	not
be	smoothed	become	smoothed,	then	try	this	option	to	see	if	it	will	correct	the
problem.	Note	that	the	problem	it	corrects	is	rare,	and	that	checking	this	slows
the	automatic	smoothing	process.

Prototype:
void	CreateBevel();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	internally.

Prototype:
void	Bevel(float	amount,	int	smoothStart,	int	smoothEnd);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	internally.

Prototype:
Point3	GetBevelDir(int	patchVertID);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	for	internal	use.

buildLinkages()	/	computeInteriors()	/	ApplyConstraints()	/
GetEdge()

Prototype:
BOOL	buildLinkages(int	patch	=	-1);

Remarks:
This	is	an	important	method	to	call	after	putting	together	a	PatchMesh.	This
method	does	the	work	to	figure	out	how	the	PatchMesh	is	connected
together,	one	patch	to	another.	It	determines	which	edges	are	used	by	which

patches	and	so	on.
Parameters:
int	patch
This	option	is	available	in	release	4.0	and	later	only.
This	optional	parameter	allows	you	to	only	update	adjacency	information	for	a
single	new	patch.	If	the	plugin	code	is	adding	new	patches	and	not	removing
any	others	then	you	can	call	this	method	with	the	new	patch	index	and	the
various	adjacency	information	in	vertices,	vectors,	and	edges	will	be	built.	If
you	call	this	method	for	the	entire	object	(no	parameter	or	patch	<	0)	it	will
destroy	all	adjacency	information	and	rebuild	it	from	scratch.

Return	Value:
TRUE	if	the	patch	mesh	is	valid,	FALSE	if	it	is	not.

Prototype:
void	computeInteriors();

Remarks:
This	method	computes	the	interior	bezier	points	for	each	patch	in	the	mesh.
This	method	should	be	called	after	any	modifications	have	been	made	to	alter
the	PatchMesh	(for	example	changes	to	point	positions).	If	there	are	any
automatic	patches	this	will	compute	the	interior	vectors.

Prototype:
void	ApplyConstraints(BOOL	selOnly	=	FALSE);

Remarks:
This	method	may	be	called	to	apply	the	coplanar	constraints	to	the	patch
mesh.	The	constraints	may	optionally	only	apply	to	selected	vertices.	There	is
a	flag	that	may	be	set	for	a	patch	vertex	(PVERT_COPLANAR).	For
example,	you	can	set	this	flag	to	make	a	vertex	coplanar	with	its	vectors.	If
this	is	done,	then	when	this	method	is	called,	the	patch	code	will	then	go
through	the	PatchMesh	and	find	the	average	plane	that	is	used	by	the	vertex
and	all	the	vectors	associated	with	it.	It	will	then	constrain	all	the	vectors	to	lie
in	this	plane	(by	rotating	them	so	that	they	lie	on	the	plane).	In	this	way	there
will	be	a	consistent	transition	between	the	patches	sharing	the	vertex.

Parameters:
BOOL	selOnly	=	FALSE
If	TRUE	the	constraints	are	only	applied	to	the	selected	vertices;	otherwise	all
vertices.

Prototype:
int	GetEdge(int	v1,	int	v12,	int	v21,	int	v2,	int	p);

Remarks:
This	method	is	used	internally.

ClonePatchParts()	/	SingleEdgesOnly()	/	GetElement()	/
WeldEdges()

Prototype:
void	ClonePatchParts(BitArray	*patches	=	NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	copy	the	patches	specified	by	the	BitArray,	or	by	the	patch
selection	set	if	the	BitArray	patches	pointer	is	NULL.	This	method	is	used	by
Editable	Patch	and	Edit	Patch	to	facilitate	the	shift-copy	operations.

Parameters:
BitArray	*patches
The	array	containing	the	series	of	selected	patches.

Prototype:
BOOL	SingleEdgesOnly();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	examines	the	selected	edges	and	will	return	TRUE	if	all	selected
edges	are	used	by	only	one	single	patch.	If	the	method	returns	FALSE,	there
are	no	edges	selected	or	any	of	the	selected	edges	are	used	by	more	than	one
single	patch.

Prototype:
BitArray&	GetElement(int	index);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	return	a	BitArray	that	defines	the	group	of	patches	defining
an	element	that	contains	the	patch	indicated	by	the	specified	index.	A
PatchMesh	element	is	any	set	of	patches	sharing	common	vertices.

Parameters:
int	index
The	patch	index	for	which	to	return	the	element.

Prototype:
BOOL	WeldEdges();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	weld	any	edges	which	are	selected	and	have	the	same
endpoints.

Return	Value:
TRUE	if	any	welding	took	place,	otherwise	FALSE.

Selection	Weights

Prototype:
float	*GetVSelectionWeights();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	provides	direct	access	to	the	vertex	weights	array	and	is	included
to	match	a	similar	function	in	the	Mesh	class.

Return	Value:
A	pointer	to	the	vertex	weights	array.

Default	Implementation:
{	return	mpVertexWeights;	}

Prototype:
void	SupportVSelectionWeights();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allocates	a	vertex	weights	array,	if	none	is	currently	allocated.
This	method	is	included	to	match	a	similar	function	in	the	Mesh	class.

Conversion	to	Mesh

Prototype:
void	ComputeMesh(Mesh&	msh,	DWORD	convertFlags);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	produce	the	mesh	version	of	the	PatchMesh.

Parameters:
Mesh&	msh
The	mesh	in	which	the	resulting	mesh	should	be	stored.
DWORD	convertFlags
The	flags	modifying	the	mesh	process.
PATCH_CONVERT_KEEPSEL
This	flag	indicates	that	the	subobject	vertex	and	patch	selections	in	the
PatchMesh	should	be	converted	to	subobject	vertex	and	face	selections	in
the	mesh.
PATCH_CONVERT_USESOFTSEL
This	flag	indicates	that	soft	selections	should	be	used	in	the	mesh	to
interpolate	between	selected	and	nonselected	vertices.	(Soft	Selections
cannot	be	based	on	edge	or	patch	selection	in	the	PatchMesh,	only	vertex
selection.)

Render	/	Snap	/	Hit	Test

Prototype:
void	render(GraphicsWindow	*gw,	Material	*ma,	RECT	*rp,	int

compFlags,	int	mumMat=1);
Remarks:
Renders	a	patch	mesh	using	the	specified	graphics	window	and	array	of
materials.

Parameters:
GraphicsWindow	*gw
Points	to	the	graphics	window	to	render	to.
Material	*ma
The	list	of	materials	to	use	to	render	the	patch.
RECT	*rp
Specifies	the	rectangular	region	to	render.	If	the	patch	mesh	should	be
rendered	to	the	entire	viewport	pass	NULL.
int	compFlags
One	or	more	of	the	following	flags:
COMP_TRANSFORM
Forces	recalculation	of	the	model	to	screen	transformation;	otherwise
attempt	to	use	the	cache.
COMP_IGN_RECT
Forces	all	polygons	to	be	rendered;	otherwise	only	those	intersecting	the
box	will	be	rendered.
COMP_LIGHTING
Forces	re-lighting	of	all	vertices	(as	when	a	light	moves);	otherwise	only	re-
light	moved	vertices
COMP_ALL
All	of	the	above	flags.
COMP_OBJSELECTED
If	this	bit	is	set	then	the	node	being	displayed	by	this	mesh	is	selected.
Certain	display	flags	only	activate	when	this	bit	is	set.
COMP_OBJFROZEN
If	this	bit	is	set	then	the	node	being	displayed	by	this	mesh	is	frozen.

int	numMat=1
The	number	of	materials	supported.

Prototype:
BOOL	select(GraphicsWindow	*gw,	Material	*ma,	HitRegion	*hr,
int	abortOnHit	=	FALSE,	int	numMat=1);

Remarks:
Checks	the	given	HitRecord	hr	to	see	if	it	intersects	the	patch	mesh	object.

Parameters:
GraphicsWindow	*gw
Points	to	the	graphics	window	to	check.
Material	*ma
The	list	of	materials	for	the	patch	mesh.
HitRegion	*hr
This	describes	the	properties	of	a	region	used	for	the	hit	testing.	See	Class
HitRegion.
int	abortOnHit	=	FALSE
If	nonzero,	the	hit	testing	is	complete	after	any	hit;	otherwise	all	hits	are
checked.
int	numMat=1
The	number	of	materials	supported.

Return	Value:
TRUE	if	the	item	was	hit;	otherwise	FALSE.

Prototype:
void	snap(GraphicsWindow	*gw,	SnapInfo	*snap,	IPoint2	*p,
Matrix3	&tm);

Remarks:
Checks	to	see	if	there	is	a	snap	point	near	the	given	mouse	point.

Parameters:
GraphicsWindow	*gw
The	graphics	window	in	which	to	check.
SnapInfo	*snap
This	structure	describes	the	snap	settings	used,	and	the	results	of	the	snap	test.
See	Structure	SnapInfo.

IPoint2	*p
The	mouse	point	to	check.
Matrix3	&tm
The	object	transformation	matrix.	This	is	the	transformation	to	place	the	object
into	the	world	coordinate	system.

Prototype:
BOOL	SubObjectHitTest(GraphicsWindow	*gw,	Material	*ma,
HitRegion	*hr,
DWORD	flags,	SubPatchHitList&	hitList,	int	numMat=1);

Remarks:
This	method	may	be	called	to	perform	sub-object	hit	testing	of	the	patch	mesh.

Parameters:
GraphicsWindow	*gw
The	graphics	window	associated	with	the	viewport	the	patch	mesh	is	being	hit
tested	in.
Material	*ma
The	list	of	materials	for	the	patch	mesh.
HitRegion	*hr
This	describes	the	properties	of	a	region	used	for	the	hit	testing.	See	Class
HitRegion.
DWORD	flags
Flags	for	sub	object	hit	testing.	One	or	more	of	the	following	values:
SUBHIT_PATCH_SELONLY
Selected	only.
SUBHIT_PATCH_UNSELONLY
Unselected	only.
SUBHIT_PATCH_ABORTONHIT
Abort	hit	testing	on	the	first	hit	found.
SUBHIT_PATCH_SELSOLID
This	treats	selected	items	as	solid	and	unselected	items	as	not	solid.
Treating	an	item	as	solid	means	the	patch	will	be	hit	if	the	mouse	is
anywhere	inside	the	patch	region	and	not	just	over	a	visible	edge.

SUBHIT_PATCH_VERTS
Hit	test	vertices.
SUBHIT_PATCH_VECS
Hit	test	vectors.
SUBHIT_PATCH_PATCHES
Hit	test	patches.
SUBHIT_PATCH_EDGES
Hit	test	edges.

SubPatchHitList&	hitList
See	Class	SubPatchHitList.
int	numMat=1
The	number	of	materials	for	the	mesh.

Return	Value:
TRUE	if	the	item	was	hit;	otherwise	FALSE.

Bounding	Box	Methods

Prototype:
void	buildBoundingBox();

Remarks:
Computes	the	bounding	box	of	the	patch	mesh.	The	bounding	box	is	stored
with	the	patch	mesh	object,	use	getBoundingBox()	to	retrieve	it.

Prototype:
Box3	getBoundingBox(Matrix3	*tm=NULL);

Remarks:
Retreives	the	bounding	box	of	the	patch	mesh	object.

Parameters:
Matrix3	*tm=NULL
The	optional	TM	allows	the	box	to	be	calculated	in	any	space.

Prototype:

void	renderGizmo(GraphicsWindow	*gw);
Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	render	a	�gizmo�	version	of	the	PatchMesh	and	is	used
primarily	by	Editable	Patch	and	Edit	Patch	to	facilitate	the	Show	End	Result
feature.

Parameters:
GraphicsWindow	*gw
The	graphics	window	associated	with	the	viewport	the	patch	mesh	gizmo
should	be	shown	in.

Data	Flow	Evaluation

Prototype:
void	InvalidateGeomCache();

Remarks:
This	method	should	be	called	when	the	PatchMesh	changes.	It	invalidates
the	caches	of	the	patch	mesh.

Prototype:
void	FreeAll();

Remarks:
Frees	everything	from	the	patch	mesh.

Prototype:
void	ShallowCopy(PatchMesh	*amesh,	ULONG_PTR	channels);

Remarks:
This	method	is	used	internally	in	data	flow	evaluation.

Prototype:
void	DeepCopy(PatchMesh	*amesh,	ULONG_PTR	channels);

Remarks:

This	method	is	used	internally	in	data	flow	evaluation.

Prototype:
void	NewAndCopyChannels(ULONG_PTR	channels);

Remarks:
This	method	is	used	internally	in	data	flow	evaluation.

Prototype:
void	FreeChannels(ULONG_PTR	channels,	int	zeroOthers=1);

Remarks:
This	method	is	used	internally	in	data	flow	evaluation.

Display	Flags	Access

Prototype:
void	SetDispFlag(DWORD	f);

Remarks:
Sets	the	state	of	the	specified	display	flags.

Parameters:
DWORD	f
The	flags	to	set.	See	List	of	Patch	Display	Flags.

Prototype:
DWORD	GetDispFlag(DWORD	f);

Remarks:
Returns	the	state	of	the	specified	display	flags.

Parameters:
DWORD	f
The	flags	to	get.	See	List	of	Patch	Display	Flags.

Prototype:
void	ClearDispFlag(DWORD	f);

Remarks:
Clears	the	specified	display	flags.

Parameters:
DWORD	f
The	flags	to	clear.	See	List	of	Patch	Display	Flags.

Selection	Access

Prototype:
BitArray&	VertSel();

Remarks:
Returns	the	bits	representing	the	vertex	selection	status.	See	the	Data
Members	above.	See	Class	BitArray.

Prototype:
BitArray&	PatchSel();

Remarks:
Returns	the	bits	representing	the	patch	selection	status.	See	the	Data	Members
above.	See	Class	BitArray.

Prototype:
BitArray&	EdgeSel();

Remarks:
Returns	the	bits	representing	the	edge	selection	status.	See	the	Data	Members
above.	See	Class	BitArray.

Prototype:
BitArray	VertexTempSel();

Remarks:
Constructs	a	vertex	selection	list	based	on	the	current	selection	level.	For
example	if	the	selection	level	is	at	object	level	all	the	bits	are	set.	If	the
selection	level	is	at	vertex	level	only	the	selected	vertex	bits	are	set.	See	Class
BitArray.

Tri	/	Quad	Patch	Creation

Prototype:
BOOL	MakeQuadPatch(int	index,	int	va,	int	vab,	int	vba,
int	vb,	int	vbc,	int	vcb,	int	vc,	int	vcd,	int	vdc,
int	vd,	int	vda,	int	vad,	int	i1,	int	i2,	int	i3,
int	i4,	DWORD	sm);

Remarks:
Create	a	quadrilateral	patch	given	a	patch	index	and	a	list	of	all	the	vertices,
vectors,	interiors,	and	a	smoothing	group.

Parameters:
int	index	-	The	index	of	the	patch	to	create	(0>=	index	<	numPatches).
int	va	-	The	first	vertex.
int	vab	-	Vector	ab.
int	vba	-	Vector	ba.
int	vb	-	The	second	vertex.
int	vbc	-	Vector	bc.
int	vcb	-	Vector	cb.
int	vc	-	The	third	vertex.
int	vcd	-	Vector	cd.
int	vdc	-	Vector	dc.
int	vd	-	The	fourth	vertex.
int	vda	-	Vector	da.
int	vad	-	Vector	ad.
int	i1	-	Interior	1.
int	i2	-	Interior	2.
int	i3	-	Interior	3.
int	i4	-	Interior	4.
DWORD	sm	-	The	smoothing	group.

Return	Value:
TRUE	if	the	patch	was	created;	otherwise	FALSE.

Prototype:
BOOL	MakeTriPatch(int	index,	int	va,	int	vab,	int	vba,	nt	vb,

int	vbc,	int	vcb,	int	vc,	int	vca,	int	vac,	nt	i1,	int	i2,
int	i3,	DWORD	sm);

Remarks:
Create	a	triangular	patch	given	a	patch	index	and	a	list	of	all	the	vertices,
vectors,	interiors,	and	a	smoothing	group.

Parameters:
int	index	-	The	index	of	the	patch	to	create	(0>=	index	<	numPatches).
int	va	-	The	first	vertex.
int	vab	-	Vector	ab.
int	vba	-	Vector	ba.
int	vb	-	The	second	vertex.
int	vbc	-	Vector	bc.
int	vcb	-	Vector	cb.
int	vc	-	The	third	vertex.
int	vca	-	Vector	ca.
int	vac	-	Vector	ac.
int	i1	-	Interior	1.
int	i2	-	Interior	2.
int	i3	-	Interior	3.
DWORD	sm	-	The	smoothing	group.

Returns:
TRUE	if	the	patch	was	created;	otherwise	FALSE.

Get/Set	Mesh	Steps	and	Adaptive	Switch/TessApprox

Prototype:
void	SetMeshSteps(int	steps);

Remarks:
Sets	the	number	of	steps	along	each	edge	that	determines	how	fine	the	mesh	is
generated	off	the	patch.

Parameters:
int	steps
The	number	of	steps	to	set.

Prototype:
int	GetMeshSteps();

Remarks:
Returns	the	number	of	mesh	steps.

Prototype:
void	SetMeshStepsRender(int	steps);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	Surface	Render	Steps	setting.

Parameters:
int	steps
The	value	to	set.

Prototype:
int	GetMeshStepsRender();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	Surface	Render	Steps	setting.

Prototype:
void	SetShowInterior(BOOL	si);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	'Show	Interior	Edges'	value.

Parameters:
BOOL	si
TRUE	for	on;	FALSE	for	off.

Prototype:
BOOL	GetShowInterior();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	'Show	Interior	Edge'	setting;	TRUE	if	on;	FALSE	if	off.

Prototype:
void	SetAdaptive(BOOL	sw);

Remarks:
This	is	currently	not	used.	Reserved	for	future	use.

Prototype:
BOOL	GetAdaptive();

Remarks:
This	is	currently	not	used.	Reserved	for	future	use.

Prototype:
void	SetViewTess(TessApprox	tess);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	tesselation	approximation	object	used	for	viewport	rendering.

Parameters:
TessApprox	tess
The	tesselation	approximation	object	to	be	used	for	viewport	rendering.

Prototype:
TessApprox	GetViewTess();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	tesselation	approximation	object	used	for	rendering	in	the
viewports.

Prototype:
void	SetProdTess(TessApprox	tess);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	tesselation	approximation	object	used	for	production	rendering.

Parameters:
TessApprox	tess
The	tesselation	approximation	object	to	be	used	for	production	rendering.

Prototype:
TessApprox	GetProdTess();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	tesselation	approximation	object	used	for	production	rendering.

Prototype:
void	SetDispTess(TessApprox	tess);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	tesselation	approximation	object	used	for	display	in	the	viewports.

Parameters:
TessApprox	tess
The	tesselation	approximation	object	to	be	used	for	the	viewports.

Prototype:
TessApprox	GetDispTess();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	tesselation	approximation	object	used	for	display	in	the	viewports.

Prototype:
BOOL	GetViewTessNormals();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Returns	TRUE	if	normals	are	used	from	the	viewport	tesselator;	otherwise
FALSE.

Prototype:
void	SetViewTessNormals(BOOL	use);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	if	normals	are	used	from	the	viewport	tesselator.

Parameters:
BOOL	use
TRUE	to	use	normals;	FALSE	to	not	use	them.

Prototype:
BOOL	GetProdTessNormals();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	normals	are	used	from	the	production	renderer	tesselator;
otherwise	FALSE.

Prototype:
void	SetProdTessNormals(BOOL	use);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	if	normals	are	used	from	the	production	renderer	tesselator.

Prototype:
BOOL	GetViewTessWeld();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	viewport	mesh	is	welded	after	tesselation;	otherwise
FALSE.

Prototype:
void	SetViewTessWeld(BOOL	weld);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	if	the	viewport	mesh	is	welded	after	tesselation;	otherwise	FALSE.

Parameters:
BOOL	weld
TRUE	to	weld;	FALSE	to	not	weld.

Prototype:
BOOL	GetProdTessWeld();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	production	renderer	mesh	is	welded	after	tesselation;
otherwise	FALSE.

Prototype:
void	SetProdTessWeld(BOOL	weld);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	if	the	production	renderer	mesh	is	welded	after	tesselation;	otherwise
FALSE.

Parameters:
BOOL	weld
TRUE	to	weld;	FALSE	to	not	weld.

Dump()

Prototype:
void	Dump();

Remarks:
This	method	may	be	called	to	dump	the	patch	mesh	structure	via

DebugPrint().	See	Debugging.

Prototype:
int	IntersectRay(Ray&	ray,	float&	at,	Point3&	norm);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Calculates	the	intersection	of	the	specified	ray	with	this	patch	mesh	object.
This	method	calls	the	method	of	the	same	name	on	the	Mesh	cache.

Parameters:
Ray&	ray
Specifies	the	origin	and	direction	of	the	ray	to	intersect	with	the	patch	mesh.
See	Class	Ray.
float&	at
The	computed	point	of	intersection	on	the	surface	of	the	patch	mesh.
Point3&	norm
The	face	normal	at	the	point	of	intersection	(at).

Return	Value:
Nonzero	if	the	ray	intersected	the	mesh	object;	otherwise	0.	Note	that	this
method	ignores	backfaces	when	computing	the	result.

Operators:

Prototype:
PatchMesh&	operator=(PatchMesh&	fromPatchMesh);

Remarks:
Assignment	operator	from	another	PatchMesh.

Prototype:
PatchMesh&	operator=(Mesh&	fromMesh);

Remarks:
Assignment	operator.	This	operator	will	do	the	conversion	from	a	Mesh	to	a
PatchMesh.	Note	that	this	can	get	very	slow	if	there	are	a	lot	of	faces	in	the

mesh.	When	the	system	does	the	conversion	is	must	do	a	fair	amount	of	work
with	its	interior	connection	lists.	It	builds	a	data	base	of	what	is	connected	to
what	and	makes	sure	that	the	PatchMesh	doesn't	have	any	places	where	an
edge	is	used	by	more	than	two	patches.	Also,	for	every	face	in	the	mesh	it
generates	a	triangular	patch.	Therefore	use	this	method	with	some	caution	as	it
can	create	some	very	complex	PatchMesh	objects.

Class	Patch
See	Also:	Class	PatchMesh,	Class	TVPatch,	Working	with	Patches.
class	Patch	:	public	BaseInterfaceServer

Description:
A	PatchMesh	is	made	up	of	a	series	of	Patch	objects	derived	from	this	class.
This	is	similar	to	the	way	faces	relate	to	a	mesh.	All	methods	of	this	class	are
implemented	by	the	system.

Data	Members:
public:
int	type;
The	patch	type.	One	of	the	following	values:
PATCH_UNDEF
Undefined.
PATCH_TRI
Triangular	patch.
PATCH_QUAD
Quadrilateral	patch.

int	v[4];
A	patch	can	have	three	or	four	vertices	based	on	the	type.	The	corner	vertices
on	a	patch	are	referred	to	as	a,	b,	c,	(and	if	it's	a	quad	patch	d).	These	are
ordered	a,	b,	c,	d	going	counter-clockwise	around	the	patch.
int	vec[8];
A	patch	can	have	six	or	eight	vector	points.	The	vectors	are	referred	to	as
follows:	ab	is	the	vector	coming	out	of	vertex	a	towards	b.	ba	is	the	one
coming	out	of	b	towards	a.	bc	is	the	vector	coming	out	of	b	towards	c.	cb	is
the	one	coming	out	of	c	towards	b,	and	so	on.
int	interior[4];
A	patch	can	have	three	or	four	interior	vertices.
Point3	aux[9];
This	is	used	internally	for	triangular	patches	only	(degree	4	control	points).
int	edge[4];
Pointers	into	the	edge	list.	There	can	be	three	or	four	depending	on	the	patch

type.
DWORD	smGroup;
The	smoothing	group.	This	defaults	to	1.	All	patches	are	smoothed	in	a
PatchMesh.
DWORD	flags;
Patch	Flags.	The	following	value	may	be	set.
PATCH_AUTO
Interior	vertices	are	computed	automatically	if	this	flag	is	set	(and	normally
it	is	set).	An	example	of	when	this	flag	would	not	be	set	is	if	you	were
creating	a	primitive	using	patches	that	needed	to	make	special	interior
control	points	to	create	the	shape.	In	this	case	you'd	clear	this	flag	and	then
put	whatever	values	you	needed	into	the	vec	array.
PATCH_HIDDEN
The	patch	is	hidden.
PATCH_LINEARMAPPING
This	option	is	available	in	release	4.0	and	later	only.
The	patch	is	using	the	old	linear	mapping	scheme.
PATCH_USE_CRUVED_MAPPING_ON_VERTEX_COLOR
This	option	is	available	in	release	4.0	and	later	only.
The	patch	is	using	the	new	curved	mapping	for	vertex	colors	also.

int	aux1;
This	data	member	is	available	in	release	3.0	and	later	only.
This	is	used	to	track	topology	changes	during	editing	(Edit	Patch).
int	aux2;
This	data	member	is	available	in	release	3.0	and	later	only.
This	is	used	to	track	topology	changes	during	editing	(PatchMesh).

Methods:

Prototype:
Patch();

Remarks:
Constructor.	The	type	is	set	to	undefined,	the	smooth	group	is	set	to	1,	and	the
flags	indicate	automatic	interior	points.	Note:	This	constructor	does	not

allocate	arrays.	Use	SetType(type).

Prototype:
Patch(Patch&	fromPatch);

Remarks:
Constructor.	The	this	pointer	is	set	to	the	fromPatch.

Prototype:
~Patch();

Remarks:
Destructor.

Prototype:
void	Init();

Remarks:
This	method	is	used	by	the	constructors	internally.	Developers	should	not	call
this	method.

Prototype:
void	setVerts(int	*vrt);

Remarks:
The	vertices	are	copied	from	the	array	passed.	Based	on	the	patch	type	either
three	or	four	vertices	are	copied.

Parameters:
int	*vrt
The	vertices	are	set	to	these	values.	These	values	are	indices	into	the	v	array.

Prototype:
void	setVerts(int	a,	int	b,	int	c);

Remarks:
Sets	the	vertices	for	Tri	Patch	to	those	passed.

Parameters:
int	a,	int	b,	int	c
The	vertices	to	set.	v[0]=a;	v[1]=b;	v[2]=c;	These	values	are	indices	into
the	v	array.

Prototype:
void	setVerts(int	a,	int	b,	int	c,	int	d)

Remarks:
Sets	the	vertices	for	a	Quad	Patch	to	those	passed.

Parameters:
int	a,	int	b,	int	c,	int	d
The	vertices	to	set.	v[0]=a;	v[1]=b;	v[2]=c;	v[3]	=	d;	These	values	are
indices	into	the	v	array.

Prototype:
void	setVecs(int	ab,	int	ba,	int	bc,	int	cb,	int	ca,	int	ac)

Remarks:
Sets	the	vectors	for	a	Tri	Patch	to	those	passed.

Parameters:
int	ab,	int	ba,	int	bc,	int	cb,	int	ca,	int	ac;
The	vectors	to	set.	vec[0]=ab;	vec[1]=ba;	vec[2]=bc;
vec[3]=cb;	vec[4]=ca;	vec[5]=ac;	These	values	are	indices	into	the	vec
array.

Prototype:
void	setVecs(int	ab,	int	ba,	int	bc,	int	cb,	int	cd,
int	dc,	int	da,	int	ad)

Remarks:
Sets	the	vectors	for	a	Quad	patch	to	those	passed.

Parameters:
int	ab,	int	ba,	int	bc,	int	cb,

int	cd,	int	dc,	int	da,	int	ad	;
The	vectors	to	set.	vec[0]=ab;	vec[1]=ba;	vec[2]=bc;	vec[3]=cb;
vec[4]=cd;	vec[5]=dc;	vec[6]=da,	vec[7]=ad;	These	values	are	indices
into	the	vec	array.

Prototype:
void	setInteriors(int	a,	int	b,	int	c)

Remarks:
Sets	the	interior	vertex	values	for	a	Tri	Patch.

Parameters:
The	interior	values	to	set:	interior[0]=a;	interior[1]=b;	interior[2]=c;
These	values	are	indices	into	the	interior	array.

Prototype:
void	setInteriors(int	a,	int	b,	int	c,	int	d)

Remarks:
Sets	the	interior	vertex	values	for	a	Tri	Patch.

Parameters:
int	a,	int	b,	int	c,	int	d
The	interior	values	to	set:	interior[0]=a;	interior[1]=b;	interior[2]=c;
interior[3]=d;	These	values	are	indices	into	the	interior	array.

Prototype:
int	getVert(int	index);

Remarks:
Returns	the	vertex	specified	by	the	index.

Parameters:
int	index
The	vertex	to	retrieve.	This	value	may	be	0,	1,	2	(or	3	if	it's	a	quad	patch).

Prototype:

int	*getAllVerts(void);
Remarks:
Returns	a	pointer	to	the	vertex	array.

Prototype:
int	WhichEdge(int	v1,	int	v2);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	provides	an	easy	way	to	find	out	which	edge	of	a	patch	uses	two
vertices.	Simply	supply	the	two	vertices	of	the	desired	edge	and	call	this
method.

Parameters:
int	v1,	int	v2
The	index	of	the	two	vertices.

Return	Value:
The	index	of	the	edge	within	the	patch	(0	-	2	for	triangular	patches,	0	-	3	for
quad	patches).
CAUTION:	Be	sure	to	check	the	return	value	before	using	it	for	an	index	–	If
the	two	vertices	supplied	are	not	used	as	an	edge	on	this	patch,	-1	is	returned.

Prototype:
int	WhichVert(int	v);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	provides	an	easy	way	to	find	out	which	corner	of	a	patch	uses	a
given	vertex.	Simply	supply	the	vertex	index	and	call	this	method.

Parameters:
int	v
The	index	of	the	vertex.

Return	Value:
The	corner	index	of	the	given	vertex	within	the	patch	(0	-	2	for	triangular
patches,	0	-	3	for	quad	patches).

CAUTION:	Be	sure	to	check	the	return	value	before	using	it	for	an	index	–	If
the	vertex	supplied	is	not	used	as	a	corner	on	this	patch,	-1	is	returned.

Prototype:
Point3	interp(PatchMesh	*pMesh,	float	u,	float	v);

Remarks:
Quadrilateral	patch	interpolator.	This	method	returns	a	point	on	the	surface	of
the	patch	based	on	the	specified	u	and	v	values.

Parameters:
PatchMesh	*pMesh
Points	to	the	PatchMesh	to	interpolate.
float	u
The	u	value	in	the	range	0.0	to	1.0.	This	defines	the	distance	along	one	axis	of
the	patch.
float	v
The	v	value	in	the	range	0.0	to	1.0.	This	defines	the	distance	along	the	other
axis	of	the	patch.

Return	Value:
A	point	on	the	surface	of	the	patch.

Prototype:
Point3	interp(PatchMesh	*pMesh,	float	u,	float	v,	float	w);

Remarks:
Triangle	patch	interpolator.	This	method	returns	a	point	on	the	surface	of	the
patch	based	on	the	specified	u,	v	and	w	values.	The	u,	v,	w	values	are
barycentric	coordinates.	u+v+w	=	1.0.	If	u	is	1,	and	v	and	w	are	0,	the	point	is
at	the	first	vertex.	If	u	is	0,	v	is	1,	and	w	is	0,	then	the	point	is	at	the	second
vertex.	If	u	and	v	are	0	and	w	is	1	then	the	point	is	at	the	third	vertex.	Varying
positions	between	these	values	represent	different	positions	on	the	patch.

Parameters:
PatchMesh	*pMesh
Points	to	the	PatchMesh	to	interpolate.
float	u,	float	v,	float	w

The	barycentric	coordinates.
Return	Value:
A	point	on	the	surface	of	the	patch.

Prototype:
void	ComputeAux(PatchMesh	*pMesh,	int	index);

Remarks:
This	method	is	used	internally.	It	compute	the	degree-4	alias	control	points.

Prototype:
void	computeInteriors(PatchMesh*	pMesh);

Remarks:
Whenever	you	are	done	working	on	a	PatchMesh,	this	method	should	be
called.	If	the	interior	vertices	of	the	patch	are	automatic	it	will	update	them	to
correctly	match	the	changes	to	the	other	vectors.	This	computes	interior
vertices	considering	this	patch	only.

Parameters:
PatchMesh*	pMesh
Points	to	the	PatchMesh	to	compute	the	interior	vertices	of.

Prototype:
void	SetType(int	type,	BOOL	init	=	FALSE);

Remarks:
Sets	the	type	of	the	patch	to	either	Tri	or	Quad	and	optionally	resets	the	arrays.

Parameters:
int	type
The	patch	type.	One	of	the	following	values:
PATCH_TRI	-	Triangular	Patch
PATCH_QUAD	-	Quadrilateral	Patch

BOOL	init	=	FALSE
If	TRUE	the	arrays	are	reset	to	undefined;	otherwise	they	are	left	unchanged.
Normally	this	is	set	to	FALSE.

Prototype:
void	SetAuto(BOOL	sw	=	TRUE);

Remarks:
Sets	the	flag	controlling	if	interior	vertices	are	computed	automatically.

Parameters:
BOOL	sw	=	TRUE
TRUE	to	set;	FALSE	to	clear.

Prototype:
BOOL	IsAuto();

Remarks:
Returns	TRUE	if	the	PATCH_AUTO	flag	is	set;	otherwise	FALSE.

Prototype:
void	SetHidden(BOOL	sw	=	TRUE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	hidden	state	of	the	patch.

Parameters:
BOOL	sw	=	TRUE
TRUE	to	hide;	FALSE	to	unhide.

Prototype:
BOOL	IsHidden();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	patch	is	hidden;	otherwise	FALSE.

Prototype:
void	Dump();

Remarks:

This	may	be	called	to	dump	the	patch	mesh	structure	via	DebugPrint().	See
Debugging.

Operators:

Prototype:
Patch&	operator=(Patch&	from);

Remarks:
Assignment	operator.

Parameters:
Patch&	from
The	patch	to	copy	from.

Class	PatchVec
See	Also:	Class	PatchMesh,	Working	with	Patches.
class	PatchVec

Description:
This	class	represents	a	patch	vector.	This	can	be	either	an	interior	vector	or	an
edge	vector.	All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
Point3	p;
The	vertex	location.
int	vert;
The	vertex	which	owns	this	vector.
IntTab	patches;
These	are	the	patches	that	share	this	vector.	If	the	edge	is	open	there	will	only
be	one	patch.	In	this	case	patches[0]	will	be	used	and	patches[1]	will	be	-1.
Note:	As	of	R4.0	the	previous	array	of	[2]	has	been	replaced	with	the	IntTab
because	vectors	can	now	be	used	by	more	than	two	patches.
DWORD	flags;
The	patch	vector	flag:
PVEC_INTERIOR
This	indicates	the	vector	is	an	interior	vector.	These	are	the	three	vectors
inside	a	tri	patch	or	the	four	inside	a	quad	patch.

int	aux1;
This	data	member	is	available	in	release	3.0	and	later	only.
Used	to	track	topology	changes	during	editing	(Edit	Patch).
int	aux2;
This	data	member	is	available	in	release	3.0	and	later	only.
Used	to	track	topology	changes	during	editing	(PatchMesh).

Methods:

Prototype:
PatchVec();

Remarks:
Constructor.	The	location	is	set	to	0,0,0.	The	vertex	owner	is	set	to	undefined.
The	patches	using	the	vector	is	set	to	undefined.	The	flags	are	set	to	0.

Prototype:
PatchVec(PatchVec	&from);

Remarks:
Constructor.	The	data	members	are	initialized	to	those	of	the	from	patch
vector.

Parameters:
PatchVec	&from
The	vector	to	copy	from.

Prototype:
void	ResetData();

Remarks:
Resets	the	data	members.	The	vertex	owner	is	set	to	undefined.	The	patches
using	the	vector	is	set	to	undefined.

Prototype:
BOOL	AddPatch(int	index);

Remarks:
Adds	the	specified	patch	to	this	vector	table.

Parameters:
int	index
The	index	in	the	PatchMesh	class	patches	table	(patches)	of	the	patch	to
add.

Return	Value:
Returns	TRUE	if	the	patch	was	added;	otherwise	FALSE.

Prototype:
void	Transform(Matrix3	&tm);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Transforms	the	vertex	location	p	by	the	specified	matrix.

Parameters:
Matrix3	&tm
The	matrix	to	transform	the	vertex.

Prototype:
IOResult	Save(ISave*	isave);

Remarks:
This	is	used	internally	to	save	the	data	to	the	.MAX	file.

Prototype:
IOResult	Load(ILoad*	iload);

Remarks:
This	is	used	internally	to	load	the	data	from	the	.MAX	file.

Operators:

Prototype:
PatchVec&	operator=(PatchVec&	from);

Remarks:
Assignment	operator.

Parameters:
PatchVec&	from
The	patch	vector	to	copy	from.

Class	PatchVert
See	Also:	Class	PatchMesh,	Template	Class	Tab,	Working	with	Patches.

Description:
This	class	stores	the	information	associated	with	a	patch	vertex	and	provides
methods	to	access	the	data	associated	with	this	vertex.	All	methods	of	this	class
are	implemented	by	the	system.

Data	Members:
public:
Point3	p;
The	vertex	location.
IntTab	vectors;
The	list	of	vectors	attached	to	this	vertex.	There	can	be	any	number	of	vectors
attached	to	a	vertex.	For	example	consider	the	north	pole	of	a	sphere	made
from	a	set	of	triangular	patches.	If	there	were	16	patches	meeting	at	this	point
there	would	be	16	vectors.	The	table	contains	the	indices	of	these	vectors.	This
is	set	up	automatically	when	a	developer	calls	buildLinkages().
Note:	typedef	Tab<int>	IntTab;
Note	that	the	methods	below	allow	a	developer	to	manipulate	the	tables	of	this
class.	Developers	must	be	careful	when	doing	so	as	it	is	easy	to	corrupt	the
patch	data	structures.	It	may	be	easier	for	developers	to	manipulate	the
patches,	delete	vertices,	etc.,	by	manipulating	them	in	the	PatchMesh	and
then	call	buildLinkages()	again.	The	methods	below	do	work	however	and
may	be	used.
IntTab	patches;
The	list	of	patches	using	this	vertex.
IntTab	edges;
This	data	member	is	available	in	release	4.0	and	later	only.
The	list	of	edges	using	this	vertex.	This	table	will	be	set	up	automatically
when	a	developer	calls	buildLinkages().
DWORD	flags;
The	patch	vertex	flags
PVERT_COPLANAR

This	constrains	things	such	that	this	vertex	and	all	the	vectors	that	are
attached	to	it	are	coplanar.	If	this	is	set,	and	you	call	ApplyConstraints(),
the	system	will	adjust	the	vectors	to	the	average	plane	that	they	are	in	and
then	constrain	them	to	it.
PVERT_CORNER
The	vertex	is	a	corner.
PVERT_HIDDEN
The	vertex	is	hidden.

int	aux1;
Used	to	track	topo	changes	during	editing	(Edit	Patch).
int	aux2;
Used	to	track	topology	changes	during	editing	(PatchMesh).

Methods:

Prototype:
PatchVert();

Remarks:
Constructor.	The	location	is	set	to	0,0,0.	The	flags	are	set	to	0.

Prototype:
PatchVert(PatchVert	&from);

Remarks:
Constructor.	The	data	members	are	copied	from	the	from	PatchVert.

Parameters:
PatchVert	&from
The	source	PatchVert.

Prototype:
~PatchVert();

Remarks:
Destructor.	Deletes	the	elements	from	the	vectors	table	and	patches	table.

Prototype:
void	ResetData();

Remarks:
This	method	deletes	the	elements	from	the	vectors	table	and	patches	table.

Prototype:
int	FindVector(int	index);

Remarks:
Returns	the	index	in	this	classes	vectors	table	of	the	vector	whose	index	is
passed.	If	not	found,	-1	is	returned.

Parameters:
int	index
The	index	in	the	PatchMesh	class	vectors	table	(vecs)	of	the	vector	to	find.

Prototype:
void	AddVector(int	index);

Remarks:
Adds	the	specified	vector	to	this	vector	table.

Parameters:
int	index
The	index	in	the	PatchMesh	class	vectors	table	(vecs)	of	the	vector	to	add.

Prototype:
void	DeleteVector(int	index);

Remarks:
Deletes	the	specified	vector	from	this	vector	table.

Parameters:
int	index
The	index	in	the	PatchMesh	class	vectors	table	(vecs)	of	the	vector	to
delete.

Prototype:
int	FindPatch(int	index);

Remarks:
Returns	the	index	in	this	classes	patches	table	of	the	patch	whose	index	is
passed.	If	not	found,	-1	is	returned.

Parameters:
int	index
The	index	in	the	PatchMesh	class	patches	table	(patches)	of	the	patch	to
find.

Prototype:
void	AddPatch(int	index);

Remarks:
Adds	the	specified	patch	to	this	vector	table.

Parameters:
int	index
The	index	in	the	PatchMesh	class	patches	table	(patches)	of	the	patch	to
add.

Prototype:
void	DeletePatch(int	index);

Remarks:
Deletes	the	patch	specified	by	the	index.

Parameters:
int	index
The	index	in	the	PatchMesh	class	patches	table	(patches)	of	the	patch	to
delete.

Prototype:
int	FindEdge(int	index);

Remarks:
Returns	the	index	in	this	classes	edges	table	of	the	patch	whose	index	is

passed.	If	not	found,	-1	is	returned.
Parameters:
int	index
The	index	in	the	PatchMesh	class	edges	table	(edges)	of	the	edge	to	find.

Prototype:
void	AddEdge(int	index);

Remarks:
Adds	the	specified	edge	to	this	vector	table.

Parameters:
int	index
The	index	in	the	PatchMesh	class	edges	table	(edges)	of	the	edge	to	add.

Prototype:
void	DeleteEdge(int	index);

Remarks:
Deletes	the	edge	specified	by	the	index.

Parameters:
int	index
The	index	in	the	PatchMesh	class	edges	table	(edges)	of	the	edge	to	delete.

Prototype:
void	Transform(Matrix3	&tm);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Transform	the	vertex	by	the	specified	matrix.

Parameters:
Matrix3	&tm
The	matrix	which	transforms	the	point.

Prototype:

void	SetHidden(BOOL	sw	=	TRUE);
Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	hidded	state	of	the	vertex.

Parameters:
BOOL	sw	=	TRUE
TRUE	to	set	to	hidden;	FALSE	for	visible.

Prototype:
BOOL	IsHidden();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	vertex	is	hidden;	otherwise	FALSE.

Prototype:
IOResult	Save(ISave*	isave);

Remarks:
This	method	is	used	internally	to	save	the	class	data	to	disk	storage.

Prototype:
IOResult	Load(ILoad*	iload);

Remarks:
This	method	is	used	internally	to	load	the	class	data	from	disk	storage.

Operators:

Prototype:
PatchVert&	operator=(PatchVert&	from);

Remarks:
Assignment	operator.

Parameters:
PatchVert&	from

The	patch	vertex	to	copy	from.

Class	PatchEdge
See	Also:	Class	PatchMesh,	Working	with	Patches.
class	PatchEdge

Description:
This	class	describes	a	patch	edge	using	the	vertices	at	the	edge	ends,	and	the
indices	of	the	patches	sharing	the	edge.	All	methods	of	this	class	are
implemented	by	the	system.

Data	Members:
public:
int	v1;
Index	of	the	first	vertex.
int	vec12;
Vector	from	v1	to	v2.
int	vec21;
Vector	from	v2	to	v1.
int	v2;
Index	of	second	vertex.
IntTab	patches;
Index	of	the	patches	using	this	edge.	If	the	edge	is	only	used	by	one	patch,
patches[1]	will	be	less	than	zero.	Note:	Previous	to	R4.0	two	separate	integer
variables	(patch1	and	patch2)	were	used.
int	aux1;
This	is	used	to	track	topology	changes	during	editing	(Edit	Patch).
int	aux2;
This	is	used	to	track	topology	changes	during	editing	(PatchMesh).

Methods:

Prototype:
PatchEdge();

Remarks:
Constructor.	The	data	members	are	initialized	as	undefined.

Prototype:
PatchEdge(PatchEdge	&from);

Remarks:
Constructor.	The	data	members	are	initialized	from	the	PatchEdge	passed.

Prototype:
PatchEdge(int	v1,	int	vec12,	int	vec21,	int	v2,	int	p1,	int	p2,	int
aux1=-1,	int	aux2=-1);

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.

Prototype:
IOResult	Save(ISave*	isave);

Remarks:
This	is	used	internally	to	save	the	data	to	the	.MAX	file.

Prototype:
IOResult	Load(ILoad*	iload);

Remarks:
This	is	used	internally	to	load	the	data	from	the	.MAX	file.

Prototype:
void	Dump();

Remarks:
You	may	call	this	method	to	dump	the	patch	edge	structure	via
DebugPrint().	See	Debugging.

Class	TVPatch
See	Also:	Class	Patch,	Class	PatchMesh,	Working	with	Patches.
class	TVPatch

Description:
This	is	a	texture	vertex	patch	structure.	This	is	similar	to	the	TVFace	class	used
with	a	Mesh.	All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
int	tv[4];
Texture	vertices.	There	are	always	four	here,	even	for	Tri	Patches.	These	are
indices	in	the	PatchMesh's	tVerts	array.
int	handles[8];
The	UVW	vertices	for	the	handles.
int	interiors[4];
The	UVW	interior	handles.

Methods:

Prototype:
TVPatch();

Remarks:
Constructor.

Prototype:
TVPatch(TVPatch&	fromPatch);

Remarks:
Constructor.	The	this	pointer	is	set	to	the	fromPatch.

Prototype:
void	Init();

Remarks:
Performs	initialization	by	setting	the	texture	vertices	to	0.

Prototype:
void	setTVerts(int	*vrt,	int	count);

Remarks:
Sets	the	specified	number	of	texture	vertices.

Parameters:
int	*vrt
The	array	of	verts	to	set.
int	count
The	number	to	set.

Prototype:
void	setTVerts(int	a,	int	b,	int	c,	int	d	=	0);

Remarks:
Sets	the	texture	vertices	for	a	Quad	Patch.

Parameters:
int	a,	int	b,	int	c,	int	d	=	0
The	vertices	to	set:	tv[0]=a;	tv[1]=b;	tv[2]=c;	tv[3]=d;

Prototype:
int	getTVert(int	index);

Remarks:
Returns	the	texture	vertex	specified	by	the	index.

Parameters:
int	index
The	index	of	the	texture	vertex	to	return.

Prototype:
int	*getAllTVerts();

Remarks:
Returns	a	pointer	to	the	array	of	texture	vertices.

Prototype:
void	setTHandles(int	*vrt,	int	count);

Remarks:
Sets	the	specified	number	of	texture	(UVW)	handles.

Parameters:
int	*vrt
The	array	of	handles	to	set.
int	count
The	number	to	set.

Prototype:
void	setTHandles(int	a,	int	b,	int	c,	int	d,	int	e,	int	f,	int	g	=	0,	int	h
=	0);

Remarks:
Sets	the	texture	(UVW)	handles	for	a	Quad	Patch.

Parameters:
int	a,	int	b,	int	c,	int	d,	int	e,	int	f,	int	g	=	0,	int	h	=	0
The	handles	to	set:	handles[0]=a;	handles[1]=b;	handles[2]=c;
handles[3]=d;	handles[4]=e;	handles[5]=f;	handles[6]=g;
handles[7]=h;

Prototype:
void	setTInteriors(int	*vrt,	int	count);

Remarks:
Sets	the	specified	number	of	interior	texture	(UVW)	handles.

Parameters:
int	*vrt
The	array	of	interior	handles	to	set.
int	count
The	number	to	set.

Prototype:

void	setTInteriors(int	a,	int	b,	int	c,	int	d	=	0);
Remarks:
Sets	the	interior	texture	(UVW)	handles	for	a	Quad	Patch.

Parameters:
int	a,	int	b,	int	c,	int	d	=	0
The	interior	handles	to	set:	interiors[0]=a;	interiors[1]=b;
interiors[2]=c;	interiors[3]=d;

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
This	method	is	used	internally	in	saving	to	the	MAX	file.

Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
This	method	is	used	internally	in	loading	from	the	MAX	file.

Operators:

Prototype:
TVPatch&	operator=(const	TVPatch&	from);

Remarks:
Assignment	operator.

Parameters:
TVPatch&	from
The	texture	vertex	patch	to	copy	from.

Class	Manipulator
See	Also:	Class	HelperObject,	Class	SimpleManipulator,	Class
IManipulatorMgr,	Class	INode,	Class	ViewExp,	Class	IPoint2,	Class	Box3
class	Manipulator	:	public	HelperObject

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	the	base	class	for	the	development	of	Manipulator	plug-ins.	Shown	are
the	methods	that	need	to	be	implemented	by	the	plug-in.	Most	of	these	methods
are	implemented	by	the	SimpleManipulator	class	so	most	developers	will	not
need	to	use	these	unless	SimpleManipulator	is	not	sufficient.

Data	Members:
protected:
INode*	mpINode;
The	node	being	manipulated

Methods:
public:

Prototype:
Manipulator(INode*	pINode);

Remarks:
Constructor.	The	node	data	member	is	initialized	to	the	node	passed.

Prototype:
virtual	int	HitTest(TimeValue	t,	INode*	pNode,	int	type,	int
crossing,	int	flags,	IPoint2	*pScreenPoint,	ViewExp	*pVpt)	=	0;

Remarks:
This	method	is	called	to	determine	if	the	specified	screen	point	intersects	the
manipulator.	The	method	returns	nonzero	if	the	item	was	hit;	otherwise	0.	This
is	like	the	normal	HitTest()	method	in	the	BaseObject	class.	The	difference
is	that	it	needs	to	log	it	hits	in	the	viewport	SubObjectHitList.	It	does	this
using	the	ManipHitData	class	defined	in	Manipulator.h.

Parameters:
TimeValue	t
The	time	to	perform	the	hit	test.
INode*	pNode
A	pointer	to	the	node	to	test.
int	type
The	type	of	hit	testing	to	perform.	See	Hit	Test	Types	for	details.
int	crossing
The	state	of	the	crossing	setting.	If	TRUE	crossing	selection	is	on.
int	flags
The	hit	test	flags.	See	Hit	Test	Flags	for	details.
IPoint2	*pScreenPoint
Points	to	the	screen	point	to	test.
ViewExp	*pVpt
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.

Return	Value:
Nonzero	if	the	item	was	hit;	otherwise	0.

Prototype:
virtual	int	Display(TimeValue	t,	INode*	pNode,	ViewExp	*pVpt,
int	flags)	=	0;

Remarks:
This	method	lines	the	BaseObject::Display()	method	and	displays	the
manipulator	object.

Parameters:
TimeValue	t
The	time	to	display	the	object.
INode*	pNode
Points	to	the	node	that	is	being	manipulated	by	the	manipulator.
ViewExp	*pVpt
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.
int	flags
See	List	of	Display	Flags.

Return	Value:
The	return	value	is	not	currently	used.

Prototype:
virtual	void	GetLocalBoundBox(TimeValue	t,	INode*	inode,
ViewExp*	vp,	Box3&	box)	=	0;

Remarks:
Used	Internally.
Returns	the	object	space	bounding	box	of	the	manipulator	in	the	object's	local
coordinates.

Parameters:
TimeValue	t
The	time	to	retrieve	the	bounding	box.
INode*	inode
The	node	that	is	being	manipulated	by	the	manipulator.
ViewExp*	vp
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.
Box3&	box
The	bounding	box	is	returned	here.

Prototype:
virtual	bool	AlwaysActive();

Remarks:
This	method	can	be	used	to	tell	the	manipulator	management	system	that	this
manipulator	is	always	active.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	TSTR&	GetManipName()	=	0;

Remarks:
This	method	returns	the	manipulator	name	string.	The	SimpleManipulator

class	uses	this	method	for	the	tooltip	in	the	viewport.

Prototype:
virtual	DisplayState	MouseEntersObject(TimeValue	t,	ViewExp*
pVpt,	IPoint2&	m,	ManipHitData*	pHitData);

Remarks:
This	method	gets	called	when	the	mouse	first	passes	over	a	manipulator
object.	The	return	value	is	used	to	determine	whether	a	redraw	is	needed	or
not.	Normally	manipulators	display	in	a	different	color	when	the	mouse	is
over	them,	so	this	should	return	kFullRedrawNeeded.

Parameters:
TimeValue	t
The	time	to	display	the	object.
ViewExp*	pVpt
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.
IPoint2&	m
The	location	of	the	tooltip.
ManipHitData*	pHitData
A	pointer	to	the	hitdata	containing	information	on	which	manipulator	was	hit.

Return	Value:
The	display	state	indicating	whether	no	redraw,	a	full	redraw,	or	a	post	redraw
is	needed.

Default	Implementation:
{return	kNoRedrawNeeded;	}

Prototype:
virtual	DisplayState	MouseLeavesObject(TimeValue	t,	ViewExp*
pVpt,	IPoint2&	m,	ManipHitData*	pHitData);

Remarks:
This	method	gets	called	when	the	mouse	leaves	the	manipulator	object.	The
return	value	is	used	to	determine	whether	a	redraw	is	needed	or	not.	Normally
manipulators	display	in	a	different	color	when	the	mouse	is	over	them,	so	this
should	return	kFullRedrawNeeded.

Parameters:
TimeValue	t
The	time	to	display	the	object.
ViewExp*	pVpt
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.
IPoint2&	m
The	location	of	the	tooltip.
ManipHitData*	pHitData
A	pointer	to	the	hitdata	containing	information	on	which	manipulator	was	hit.

Return	Value:
The	display	state	indicating	whether	no	redraw,	a	full	redraw,	or	a	post	redraw
is	needed.

Default	Implementation:
{return	kNoRedrawNeeded;	}

Prototype:
virtual	void	OnMouseMove(TimeValue	t,	ViewExp*	pVpt,
IPoint2&	m,	DWORD	flags,	ManipHitData*	pHitData);

Remarks:
This	method	gets	called	when	the	mouse	is	pressed	down	and	moves	within
the	manipulator	context.	It	is	the	method	that	does	the	actual	manipulator.	It	is
up	to	the	manipulator	code	to	turn	the	mouse	position	into	a	new	value	for	the
parameter(s)	being	manipulated.

Parameters:
TimeValue	t
The	time	to	display	the	object.
ViewExp*	pVpt
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.
IPoint2&	m
The	location	of	the	tooltip.
DWORD	flags
Not	used,	should	be	set	to	0.
ManipHitData*	pHitData

A	pointer	to	the	hitdata	containing	information	on	which	manipulator	was	hit.
Default	Implementation:
{	}

Prototype:
virtual	void	OnButtonDown(TimeValue	t,	ViewExp*	pVpt,
IPoint2&	m,	DWORD	flags,	ManipHitData*	pHitData);

Remarks:
This	method	gets	called	when	the	mouse	buttons	is	first	pressed	down	within
the	manipulator	context.

Parameters:
TimeValue	t
The	time	to	display	the	object.
ViewExp*	pVpt
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.
IPoint2&	m
The	location	of	the	tooltip.
DWORD	flags
Not	used,	should	be	set	to	0.
ManipHitData*	pHitData
A	pointer	to	the	hitdata	containing	information	on	which	manipulator	was	hit.

Default	Implementation:
{	}

Prototype:
virtual	void	OnButtonUp(TimeValue	t,	ViewExp*	pVpt,	IPoint2&
m,	DWORD	flags,	ManipHitData*	pHitData);

Remarks:
This	method	gets	called	when	the	mouse	buttons	is	released	within	the
manipulator	context,	and	thus	signals	the	end	of	the	manipulation.

Parameters:
TimeValue	t

The	time	to	display	the	object.
ViewExp*	pVpt
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.
IPoint2&	m
The	location	of	the	tooltip.
DWORD	flags
Not	used,	should	be	set	to	0.
ManipHitData*	pHitData
A	pointer	to	the	hitdata	containing	information	on	which	manipulator	was	hit.

Default	Implementation:
{	}

Prototype:
virtual	INode*	GetINode();

Remarks:
This	method	returns	a	pointer	to	the	INode	that	is	currently	being	manipulated.

Default	Implementation:
{	return	mpINode;	}

Prototype:
virtual	void	DeleteThis();

Remarks:
This	method	deletes	the	manipulator	instance.

Default	Implementation:
{	delete	this;	}

Class	SimpleManipulator
See	Also:	Class	Manipulator,	Class	ISimpleManipulator,	Class	PolyShape,
Class	GizmoShape,	Class	ReferenceTarget,	Class	IParamBlock2,	Class
INode,Class	Mesh,	Class	Point3,	Class	Point2,	Class	ViewExp,	Class
IColorManager,	Class	Ray,	Class	ManipHitData,	List	of	Marker	Types
class	SimpleManipulator:	public	Manipulator,	public	ISimpleManipulator

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	SimpleManipulator	class	provides	a	framework	for	implementing	many
common	manipulators.	It	provides	the	following	services:
·	It	supports	an	arbitrary	number	of	gizmos	made	from	PolyShape	and/or	Mesh

objects.
·	It	creates	and	maintains	tool	tips	in	the	viewport.
·	It	does	hit	testing,	display	and	bounding	box	computations	of	the	gizmos.
·	It	maintains	an	IParamBlock2	for	the	parameters	of	the	Manipulator.
	
This	class	maintains	a	pointer	to	a	parameter	block.	If	the	client	of
SimpleManipulator	uses	a	single	parameter	block	then
SimpleManipulator	can	manage	all	the	methods	associated	with	SubAnims
and	References	for	the	client.
If	the	client	of	SimpleManipulator	maintains	several	parameter	blocks	then
the	client	must	implement	the	methods	NumSubs(),	SubAnim(i),
SubAnimName(i),	NumRefs(),	GetReference(i)	and	SetReference(i)
and	call	the	SimpleManipulator	methods	when	'i'	refers	to	the	parameters
maintained	by	SimpleManipulator.
Samples	of	Manipulators	can	be	found	in	the	SDK,
\MAXSDK\SAMPLES\MANIPULATORS.
The	Function	Publishing	interface	to	SimpleManipulators	is	defined	as:
#define	SIMPLE_MANIP_INTERFACE	Interface_ID(0x617c41d4,
0x6af06a5f)
	
The	following	functions	are	not	part	of	this	class	but	are	available	for	use	with	it

in	the	making	of	gizmo	objects:

Function:
Mesh*	MakeSphere(Point3&	pos,	float	radius,	int	segments);

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Creates	a	new	mesh	sphere	at	the	given	center	position	with	the	specified
radius	and	segments	count.

Parameters:
Point3&	pos
The	center	point	for	the	sphere	in	object	space.
float	radius
The	radius	for	the	sphere.
int	segments
The	number	of	segments	for	the	sphere	mesh.

Return	Value:
A	pointer	to	the	sphere	mesh.	Developers	are	responsible	for	deleting	this
mesh	when	done.

Function:
Mesh*	MakeTorus(Point3&	pos,	float	radius,	float	radius2,	int
segs,	int	sides);

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Create	a	mesh	torus	with	the	given	center	point,	outer	radius,	inner	radius,	and
segment	counts	along	the	two	circular	dimensions	of	the	torus.

Parameters:
Point3&	pos
The	center	point	in	object	space.
float	radius
The	first	radius.
float	radius2
The	second	radius.

int	segs
The	segment	count	along	the	vertical	circular	dimension.
int	sides
The	segment	count	along	the	horizontal	circular	dimension.

Return	Value:
A	pointer	to	the	torus	mesh	created.	Developers	are	responsible	for	deleting
this	mesh	when	done	with	it.

Function:
Mesh*	MakeBox(Point3&	pos,	float	l,	float	w,	float	h,	int	lsegs,	int
wsegs,	int	hsegs);

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Creates	a	mesh	box	with	the	given	center	point,	length,	width	and	height	as
well	as	segment	parameters.

Parameters:
Point3&	pos
The	box	is	built	from	this	position	in	size	along	+X,	+Y	and	+Z.	This
coordinate	is	in	object	space.
float	l
The	length	of	the	box.
float	w
The	width	of	the	box.
float	h
The	height	of	the	box.
int	lsegs
The	number	of	segments	in	the	length	dimension.
int	wsegs
The	number	of	segments	in	the	width	dimension.
int	hsegs
The	number	of	segments	in	the	height	dimension.

Return	Value:
A	pointer	to	the	box	mesh.	Developers	are	responsible	for	deleting	this	mesh

when	done.

Function:
void	AddCubeShape(PolyShape&	shape,	Point3&	pos,	float	size);

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Creates	a	new	series	of	lines	in	the	form	of	a	cube	and	adds	it	to	the	specified
PolyShape	with	the	given	position	and	side	length	size.

Parameters:
PolyShape&	shape
The	PolyShape	to	add	the	box	shape	to.
Point3&	pos
The	position	for	the	center	of	the	cube	shape	in	object	space.
float	size
The	size	of	one	side	of	the	cube	in	object	space.

Data	Members:
protected:
int	mDispSelectedIndex;
The	Index	of	manipulator	that	the	mouse	is	over,	for	display.
TSTR	mToolTip;
The	tooltip	text.
float	mGizmoScale;
The	scaling	factor	of	the	gizmo.
IParamBlock2	*mpPblock;
The	Parameter	Block	2	for	the	manipulator.
RefTargetHandle	mhTarget;
The	handle	to	the	manipulator	reference	target.
MouseState	mState;
The	state	of	the	mouse,	which	is	one	of	the	following:
kMouseIdle
The	mouse	is	idle,	manipulator	not	active	and	the	mouse	is	not	over	it.
kMouseDragging

The	mouse	is	currently	dragging	the	manipulator.
kMouseOverManip
The	mouse	is	over	the	manipulator,	but	it	is	not	being	dragged.

BOOL	mActiveViewOnly;
This	flag	defines	whether	the	manipulator	is	shown	in	the	active	viewport
only.
Interval	mValid;
The	validity	interval	of	the	reference.

Methods:
public:

Prototype:
SimpleManipulator();

Remarks:
Constructor.

Prototype:
SimpleManipulator(INode*	pNode);

Remarks:
Constructor.

Prototype:
~SimpleManipulator();

Remarks:
Destructor.

Prototype:
void	ClearPolyShapes();

Remarks:
Implemented	by	the	system.
Removes	all	of	the	current	gizmos	in	the	manipulator.	This	is	normally	called
at	the	top	of	UpdateShapes()	to	clear	out	any	previous	gizmos	before

creating	new	ones.

Prototype:
void	AppendPolyShape(PolyShape*	pPolyShape,	DWORD	flags	=
0,	Point3&	unselColor	=	GetUIColor(COLOR_SEL_GIZMOS),
Point3&	selColor	=	GetSubSelColor());

Remarks:
Implemented	by	the	system.
This	method	adds	a	new	PolyShape	gizmo	to	the	manipulator.	The	shape	is
defined	in	the	local	coordinates	of	the	node	that	owns	the	manipulator.

Parameters:
PolyShape*	pPolyShape
A	pointer	to	the	poly	shape	to	add.
DWORD	flags	=	0
The	flags	can	have	one	or	more	of	the	following	values:
kGizmoDontDisplay;
Tells	the	gizmo	not	to	display.	It	will	still	hit	test	it.
kGizmoDontHitTest;
Tells	the	gizmo	not	to	hit	test.	It	will	still	display.
kGizmoScaleToViewport;
Tells	the	gizmo	to	scale	itself	to	have	a	constant	size	in	the	viewport.	In	this
case,	the	system	uses	the	ManipulatorGizmo::mGizmoSize	to
determine	how	big	the	manipulator	should	be.	It	interprets	mGizmoSize
as	pixels	it	this	case.	This	flag	only	applies	to	mesh	gizmo	currently.

Point3&	unselColor	=	GetUIColor(COLOR_SEL_GIZMOS)
The	color	of	the	gizmo	when	unselected.
Point3&	selColor	=	GetSubSelColor()
The	color	of	the	gizmo	when	selected.

Prototype:
void	AppendGizmo(GizmoShape*	pGizmoShape,	DWORD	flags	=
0,	Point3&	unselColor	=	GetUIColor(COLOR_SEL_GIZMOS),
Point3&	selColor	=	GetSubSelColor());

Remarks:
Implemented	by	the	system.
This	method	adds	a	new	GIzmoShape	to	the	manipulator.	The	shape	is	defined
in	the	local	coordinates	of	the	node	that	owns	the	manipulator.

Parameters:
GizmoShape*	pGizmoShape
A	pointer	to	the	gizmo	shape	to	add.
DWORD	flags	=	0
The	flags	can	have	one	or	more	of	the	following	values:
kGizmoDontDisplay;
Tells	the	gizmo	not	to	display.	It	will	still	hit	test	it.
kGizmoDontHitTest;
Tells	the	gizmo	not	to	hit	test.	It	will	still	display.
kGizmoScaleToViewport;
Tells	the	gizmo	to	scale	itself	to	have	a	constant	size	in	the	viewport.	In	this
case,	the	system	uses	the	ManipulatorGizmo::mGizmoSize	to
determine	how	big	the	manipulator	should	be.	It	interprets	mGizmoSize
as	pixels	it	this	case.	This	flag	only	applies	to	mesh	gizmo	currently.

Point3&	unselColor	=	GetUIColor(COLOR_SEL_GIZMOS)
The	color	of	the	gizmo	when	unselected.
Point3&	selColor	=	GetSubSelColor()
The	color	of	the	gizmo	when	selected.

Prototype:
void	AppendMesh(Mesh*	pMesh,	DWORD	flags	=	0,	Point3&
unselColor	=	GetUIColor(COLOR_SEL_GIZMOS),	Point3&
selColor	=	GetSubSelColor());

Remarks:
Implemented	by	the	system.
This	method	adds	a	new	Mesh	to	the	manipulator.	The	shape	is	defined	in	the
local	coordinates	of	the	node	that	owns	the	manipulator.

Parameters:
Mesh*	pMesh

A	pointer	to	the	mesh	to	add.
DWORD	flags	=	0
The	flags	can	have	one	or	more	of	the	following	values:
kGizmoDontDisplay;
Tells	the	gizmo	not	to	display.	It	will	still	hit	test	it.
kGizmoDontHitTest;
Tells	the	gizmo	not	to	hit	test.	It	will	still	display.
kGizmoScaleToViewport;
Tells	the	gizmo	to	scale	itself	to	have	a	constant	size	in	the	viewport.	In	this
case,	the	system	uses	the	ManipulatorGizmo::mGizmoSize	to
determine	how	big	the	manipulator	should	be.	It	interprets	mGizmoSize
as	pixels	it	this	case.	This	flag	only	applies	to	mesh	gizmo	currently.

Point3&	unselColor	=	GetUIColor(COLOR_SEL_GIZMOS)
The	color	of	the	gizmo	when	unselected.
Point3&	selColor	=	GetSubSelColor()
The	color	of	the	gizmo	when	selected.

Prototype:
void	AppendMarker(MarkerType	markerType,	Point3&	position,
DWORD	flags	=	0,	Point3&	unselColor	=
GetUIColor(COLOR_SEL_GIZMOS),	Point3&	selColor	=
GetSubSelColor());

Remarks:
Implemented	by	the	system.
This	method	adds	a	new	Marker	to	the	manipulator.	The	shape	is	defined	in
the	local	coordinates	of	the	node	that	owns	the	manipulator.

Parameters:
MarkerType	markerType
The	marker	type	for	marker	gizmos.	See	the	List	of	Marker	Types
Point3&	position
The	position	of	the	marker.
DWORD	flags	=	0
The	flags	can	have	one	or	more	of	the	following	values:

kGizmoDontDisplay;
Tells	the	gizmo	not	to	display.	It	will	still	hit	test	it.
kGizmoDontHitTest;
Tells	the	gizmo	not	to	hit	test.	It	will	still	display.
kGizmoScaleToViewport;
Tells	the	gizmo	to	scale	itself	to	have	a	constant	size	in	the	viewport.	In	this
case,	the	system	uses	the	ManipulatorGizmo::mGizmoSize	to
determine	how	big	the	manipulator	should	be.	It	interprets	mGizmoSize
as	pixels	it	this	case.	This	flag	only	applies	to	mesh	gizmo	currently.

Point3&	unselColor	=	GetUIColor(COLOR_SEL_GIZMOS)
The	color	of	the	gizmo	when	unselected.
Point3&	selColor	=	GetSubSelColor()
The	color	of	the	gizmo	when	selected.

Prototype:
void	AppendText(TCHAR*	pText,	Point3&	position,	DWORD
flags	=	0,	Point3&	unselColor	=
GetUIColor(COLOR_SEL_GIZMOS),	Point3&	selColor	=
GetSubSelColor());

Remarks:
Implemented	by	the	system.
This	method	adds	a	new	Text	to	the	manipulator.	The	shape	is	defined	in	the
local	coordinates	of	the	node	that	owns	the	manipulator.

Parameters:
TCHAR*	pText
The	text	string	to	add.
Point3&	position
The	position	of	the	text.
DWORD	flags	=	0
The	flags	can	have	one	or	more	of	the	following	values:
kGizmoDontDisplay;
Tells	the	gizmo	not	to	display.	It	will	still	hit	test	it.
kGizmoDontHitTest;

Tells	the	gizmo	not	to	hit	test.	It	will	still	display.
kGizmoScaleToViewport;
Tells	the	gizmo	to	scale	itself	to	have	a	constant	size	in	the	viewport.	In	this
case,	the	system	uses	the	ManipulatorGizmo::mGizmoSize	to
determine	how	big	the	manipulator	should	be.	It	interprets	mGizmoSize
as	pixels	it	this	case.	This	flag	only	applies	to	mesh	gizmo	currently.

Point3&	unselColor	=	GetUIColor(COLOR_SEL_GIZMOS)
The	color	of	the	gizmo	when	unselected.
Point3&	selColor	=	GetSubSelColor()
The	color	of	the	gizmo	when	selected.

Prototype:
TSTR&	GetManipName();

Remarks:
Implemented	by	the	system.
This	method	returns	the	manipulator	name.

Prototype:
void	SetGizmoScale(float	gizmoScale);

Remarks:
Implemented	by	the	system.
This	method	allows	you	to	set	the	scale	of	the	gizmo.

Parameters:
float	gizmoScale
The	scale	factor.

Prototype:
TSTR&	GetToolTip();

Remarks:
Implemented	by	the	system.
This	method	returns	the	tooltip	string.	Used	internally.

Default	Implementation:

{	return	mToolTip;	}

Prototype:
void	SetToolTipWnd(HWND	hWnd);

Remarks:
Implemented	by	the	system.
Used	internally.

Prototype:
void	SetToolTipTimer(UINT	timer);

Remarks:
Implemented	by	the	system.
Used	internally.
	

Prototype:
UINT	GetToolTipTimer();

Remarks:
Implemented	by	the	system.
Used	internally.

Prototype:
HWND	GetToolTipWnd();

Remarks:
Implemented	by	the	system.
Used	internally.

Prototype:
IParamBlock2*	GetPBlock();

Remarks:
Implemented	by	the	system.

This	method	returns	a	pointer	to	the	parameter	block.
Default	Implementation:
{	return	mpPblock;	}
	

	
These	must	be	implemented	in	the	sub-class	of	SimpleManipulator

Prototype:
virtual	void	UpdateShapes(TimeValue	t,	TSTR&	toolTip)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	gets	called	whenever	the	manipulator	needs	to	update	its	gizmos.
This	is	implemented	by	the	manipulator	to	create	the	gizmos	based	on	the
current	state	of	the	node	being	manipulated.

Parameters:
TimeValue	t
The	time	at	which	to	update	the	shape.
TSTR&	toolTip
The	tool	tip	text	to	update.

Prototype:
virtual	void	ManipulatorSelected();

Remarks:
Implemented	by	the	system.
Used	internally.

Default	Implementation:
{}

Prototype:
void	SetManipTarget(RefTargetHandle	hTarg);

Remarks:
Implemented	by	the	system.

This	tells	the	SimpleManipulator	to	make	a	reference	to	hTarg.	This	is
normally	called	in	the	contructor	of	a	manipulator	to	set	a	reference	to
whatever	is	being	manipulated.

Parameters:
RefTargetHandle	hTarg
The	handle	to	the	reference	target.

Prototype:
RefTargetHandle	GetManipTarget();

Remarks:
This	method	returns	the	handle	to	the	manipulator	reference	target.

Default	Implementation:
{	return	mhTarget;	}
	

Prototype:
void	SetMouseState(MouseState	state);

Remarks:
This	method	sets	the	state	of	the	mouse.

Parameters:
MouseState	state
One	of	the	following	values:
kMouseIdle
The	mouse	is	idle,	manipulator	not	active	and	the	mouse	is	not	over	it.
kMouseDragging
The	mouse	is	currently	dragging	the	manipulator.
kMouseOverManip
The	mouse	is	over	the	manipulator,	but	it	is	not	being	dragged.

Default	Implementation:
{	mState	=	state;	}

Prototype:

MouseState	GetMouseState();
Remarks:
Implemented	by	the	system.
This	method	returns	the	state	of	the	mouse,	which	is	one	of	the	following
values:	kMouseIdle,	kMouseDragging,	or	kMouseOverManip.

Default	Implementation:
{	return	mState;	}

Prototype:
void	OnButtonDown(TimeValue	t,	ViewExp*	pVpt,	IPoint2&	m,
DWORD	flags,	ManipHitData*	pHitData);

Remarks:
Implemented	by	the	system.
This	method	gets	called	when	the	mouse	buttons	is	pressed	within	the
manipulator	context.	Used	internally.

Parameters:
TimeValue	t
The	time	to	display	the	object.
ViewExp*	pVpt
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.
IPoint2&	m
The	location	of	the	tooltip.
DWORD	flags
Not	used,	should	be	set	to	0.
ManipHitData*	pHitData
A	pointer	to	the	hitdata	containing	information	on	which	manipulator	was	hit.

Prototype:
void	OnMouseMove(TimeValue	t,	ViewExp*	pVpt,	IPoint2&	m,
DWORD	flags,	ManipHitData*	pHitData);

Remarks:
This	method	gets	called	when	the	mouse	is	pressed	down	and	moves	within

the	manipulator	context.	It	is	the	method	that	does	the	actual	manipulator.	It	is
up	to	the	manipulator	code	to	turn	the	mouse	position	into	a	new	value	for	the
parameter(s)	being	manipulated.	It	also	updates	the	tooltip	with	the	current
value	of	the	parameter.

Parameters:
TimeValue	t
The	time	to	display	the	object.
ViewExp*	pVpt
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.
IPoint2&	m
The	location	of	the	tooltip.
DWORD	flags
Not	used,	should	be	set	to	0.
ManipHitData*	pHitData
A	pointer	to	the	hitdata	containing	information	on	which	manipulator	was	hit.

Prototype:
void	OnButtonUp(TimeValue	t,	ViewExp*	pVpt,	IPoint2&	m,
DWORD	flags,	ManipHitData*	pHitData);

Remarks:
Implemented	by	the	system.
This	method	gets	called	when	the	mouse	buttons	is	released	within	the
manipulator	context.	Used	internally.

Parameters:
TimeValue	t
The	time	to	display	the	object.
ViewExp*	pVpt
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.
IPoint2&	m
The	location	of	the	tooltip.
DWORD	flags
Not	used,	should	be	set	to	0.
ManipHitData*	pHitData

A	pointer	to	the	hitdata	containing	information	on	which	manipulator	was	hit.

Prototype:
DisplayState	MouseEntersObject(TimeValue	t,	ViewExp*	pVpt,
IPoint2&	m,	ManipHitData*	pHitData);

Remarks:
Implemented	by	the	system.
This	method	gets	called	when	the	mouse	enters	the	manipulator	object.	Used
interlally.

Parameters:
TimeValue	t
The	time	to	display	the	object.
ViewExp*	pVpt
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.
IPoint2&	m
The	location	of	the	tooltip.
ManipHitData*	pHitData
A	pointer	to	the	hitdata	containing	information	on	which	manipulator	was	hit.

Return	Value:
The	display	state	indicating	whether	no	redraw,	a	full	redraw,	or	a	post	redraw
is	needed.

Prototype:
DisplayState	MouseLeavesObject(TimeValue	t,	ViewExp*	pVpt,
IPoint2&	m,	ManipHitData*	pHitData);

Remarks:
Implemented	by	the	system.
This	method	gets	called	when	the	mouse	leaves	the	manipulator	object.	Used
internally.

Parameters:
TimeValue	t
The	time	to	display	the	object.

ViewExp*	pVpt
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.
IPoint2&	m
The	location	of	the	tooltip.
ManipHitData*	pHitData
A	pointer	to	the	hitdata	containing	information	on	which	manipulator	was	hit.

Return	Value:
The	display	state	indicating	whether	no	redraw,	a	full	redraw,	or	a	post	redraw
is	needed.

Prototype:
IPoint2&	GetTipPos();

Remarks:
Implemented	by	the	system.
This	method	returns	the	position	of	the	tooltip.	Used	internally.

Default	Implementation:
{	return	mToolTipPos;	}

Prototype:
void	GetLocalViewRay(ViewExp*	pVpt,	IPoint2&	m,	Ray&
viewRay);

Remarks:
This	method	is	normally	called	from	a	manipualtor's	OnMouseMove	method.
It	computes	a	ray	that	passes	through	the	given	mouse	point	in	the	given
viewport.	The	result	is	in	the	local	coordinates	of	the	node	owning	the
manipulator.

Parameters:
ViewExp*	pVpt
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.
IPoint2&	m
The	screen	coordinate.
Ray&	viewRay

The	returned	local	view	ray.

Prototype:
Invalidate();

Remarks:
This	method	invalidates	the	validity	interval.

Default	Implementation:
{	mValid	=	NEVER;	}

Prototype:
void	UnRegisterViewChange();

Remarks:
This	method	unregister	the	notifications	so	changes	in	the	view	are	no	longer
registered.

Prototype:
void	SetResettingFlag(BOOL	val);

Remarks:
Used	internally.

Prototype:
BOOL	GetResettingFlag();

Remarks:
Used	internally.

Prototype:
void	KillToolTip();

Remarks:
This	method	will	destroy	the	tooltip	and	its	timer	and	cleans	up.

Prototype:

Point3	GetUnselectedColor();
Remarks:
This	method	returns	the	color	of	the	gizmo	when	unselected.

Class	ToneOperator
See	Also:	Class	SpecialFX,	Class	ToneOperatorInterface,	Class	IRendParams,
Class	RendParams,	Class	RenderGlobalContext,	Class	RenderMapsContext,
Class	ShadeContext,	Class	Interval.
class	ToneOperator	:	public	SpecialFX

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	the	base	class	for	the	creation	of	Tone	Operator	plug-ins.	A	Tone
Operator	performs	two	functions:
1.	It	converts	physically	based	values	to	RGB	for	filtering	and	display.	The

renderer	calls	the	tone	operator	immediately	after	Mtl::Shade	is	called.
2.	It	balances	physical	and	non-physical	lighting.
The	tone	operator	balances	the	physical	and	non-physical	lighting	by	providing	a
scale	relationship	between	them.	The	scale	converts	physical	candelas	to	the
non-physical	value	1.0.	Physically	based	objects	in	the	3ds	max	scene	use	this
scale	to	convert	their	values	for	use	by	the	renderer	and	materials.	The	tone
operator	then	converts	the	scaled	value	to	RGB	for	display.
An	example	of	this	is	the	tone	operator	for	a	radiosity	plug-in.	3ds	max	works	in
a	lighting	space	where	values	run	from	0	to	1	and	don't	have	any	meaning.	Pre-
rendered	Reflection	maps,	Refraction	maps	and	self-illumination	maps	also	use	a
0	to	1	scale	without	any	meaning.	A	radiosity	plug-in	introduces	physical	values
to	3ds	max	that	range	from	0	to	90000	for	the	sun.
So	the	question	is	"How	do	we	mix	these	values	with	physical	values?"	One
solution	is	to	use	a	scale.	Physical	values	are	scaled	to	"3ds	max"	values.	Then
they	are	processed	by	the	shaders	and	materials,	and	then	the	scaled	values	are
converted	to	RGB	by	ScaledToRGB.
So	the	PhysicalUnits,	ScalePhysical	and	ScaleRGB	are	used	to	convert	from	3ds
max	lighting	values	to	physical	lighting	values.	We	can	use	this	to	balance	3ds
max	lights	with	physical	lights,	and	to	assign	physical	values	to	3ds	max	lights
when	we	want	to	use	them	in	a	radiosity	solution.
The	tone	operator	may	include	a	UI	that	allows	the	user	to	set	the	scale,	or	it	can
set	the	scale	apriori.	The	scale	is	also	used	for	reflection	maps,	which	are	usually
implemented	in	32	bit	bitmaps.	If	the	scale	is	set	too	high,	reflection	maps	can
show	banding	because	of	rounding	errors.	If	the	scale	is	set	too	low,	reflection

maps	can	wash	out	because	of	clipping	values	to	0…255.
The	tone	operator	uses	the	standard	Special	Effects	parameter	dialog	class	for	its
user	interface.
Note:	typedef	SFXParamDlg	ToneOpParamDlg;

Methods:
public:

Prototype:
virtual	ToneOpParamDlg	*CreateParamDialog(IRendParams
*ip);

Remarks:
This	method	creates	the	rollup	pages	in	the	render	panel	that	lets	the	user	edit
the	tone	operator’s	parameters.	You	can	use
IRendParams::AddRollupPage	and
IRendParams::DeleteRollupPage	to	manage	your	rollup	pages	directly.
Or,	if	your	parameters	are	stored	in	a	ParamBlock2	object,	you	can	use
CreateRParamMap2	and	DestroyRParamMap2	to	manage	the	rollups.
You	may	return	NULL,	if	no	UI	is	required.

Parameters:
IRendParams	*ip
Points	to	the	render	parameter	dialog	interface.	You	may	call	the	methods	of
that	class	using	this	pointer.

Return	Value:
Pointer	to	the	tone	operator	dialog.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	void	SetActive(bool	active,	TimeValue	t);

Remarks:
Implemented	by	the	Plug-In.
This	method	indicates	whether	the	tone	operator	is	active.	The	default
implementation	does	not	use	the	TimeValue	t.	The	result	of	the	default

implementation	can	be	retrieved	using	SpecialFX::GetActive.	If	you
override	this	method	and	change	the	mechanism	for	storing	this	state,	you
should	also	override	SpecialFX::GetActive	so	the	correct	state	is	returned.

Parameters:
bool	active
A	boolean	indicating	if	the	tone	operator	is	active.
TimeValue	t
The	time	at	which	the	active	check	is	made.

Default	Implementation:
if	(active	^	(TestAFlag(A_ATMOS_DISABLED)	==	0))	{
	if	(active)	{

ClearAFlag(A_ATMOS_DISABLED);
	}
	else	{

SetAFlag(A_ATMOS_DISABLED);
	}
	NotifyDependents(FOREVER,	PART_ALL,
REFMSG_CHANGE);
}

Prototype:
virtual	BOOL	SetDlgThing(ToneOpParamDlg*	dlg);

Remarks:
Implemented	by	the	Plug-In.
Implement	this	if	you	are	using	the	ParamMap2	AUTO_UI	system	and	the
atmosphere	has	secondary	dialogs	that	don't	have	the	effect	as	their	'thing'.
Called	once	for	each	secondary	dialog	for	you	to	install	the	correct	thing.

Parameters:
ToneOpParamDlg*	dlg
Points	tot	he	tone	operator	dialog.

Return	Value:
Return	TRUE	if	you	process	the	dialog,	FALSE	otherwise.

Prototype:
virtual	bool	IsPhysicalSpace()	const;

Remarks:
Implemented	by	the	Plug-In.
Returns	a	boolean	which	indicates	if	this	tone	operator	really	maps	physical
values	to	RGB.	This	method	is	provided	so	shaders	can	determine	whether	the
shading	calculations	are	in	physical	or	RGB	space.

Default	Implementation:
{	return	true;	}

Prototype:
virtual	void	Update(TimeValue	t,	Interval&	valid);

Remarks:
This	method	is	called	once	per	frame	when	the	renderer	begins.	This	gives	the
tone	operator	the	chance	to	cache	any	values	it	uses	internally	so	they	don't
have	to	be	computed	on	every	pixel.	But,	this	method	should	not	be	used	to
perform	any	very	long	tasks.	This	would	be	the	likely	method	that	caches	the
frames	physical	scaling	value.

Parameters:
TimeValue	t
The	time	at	which	the	rendering	is	beginning.
Interval&	valid
The	validity	interval	for	the	update.

Default	Implementation:
{	}

Prototype:
virtual	bool	BuildMaps(TimeValue	t,	RenderMapsContext&	rmc);

Remarks:
This	method	is	called	for	the	operator	to	do	any	work	it	needs	to	do	prior	to
rendering.	You	may	use	this	method	to	perform	a	subrender	to	sample	the

rendered	output	for	histogramming	or	automatic	exposure.
Parameters:
TimeValue	t
The	time	at	which	the	rendering	is	taking	place.
RenderMapsContext&	rmc
The	context	of	the	map	rendering.

Return	Value:
True	means	this	method	succeeded.	False	means	it	didn't.	This	method	should
return	false	if	it	the	sub-render	fails	or	if	it	can't	allocate	memory	or	some
other	error	occurs.	If	BuildMaps	returns	false,	the	render	is	aborted.

Default	Implementation:
{	return	true;	}

Prototype:
virtual	void	ScaledToRGB(float	energy[3])	=	0;

Remarks:
This	method	maps	a	scaled	energy	value	into	RGB.	This	version	converts	a
color	value.	The	converted	color	value	is	stored	in	energy.
This	method	assumes	that	Update()	has	been	called	to	cache	the	various
values	needed	by	the	tone	operator.
Note:	By	using	a	float	array	to	pass	in	color	values,	we	can	use	the	same
routine	to	handle	the	various	classes	used	to	store	color	information,	for
example,	Color,	AColor	and	Point3.

Parameters:
float	energy[3]
The	input	energy	value	to	convert.	The	converted	color	value	is	stored	here	as
well.	The	red,	green	and	blue	components	are	stored	in	that	order	in	the	array.
The	valid	ranges	are	-infinity	to	+infinity,	but	the	returned	value	is	clipped	by
the	renderer	very	quickly	to	[0,1].	The	tone	operator	can	do	it's	own	clipping,
but	it	isn't	required.

Prototype:
virtual	float	ScaledToRGB(float	energy)	=	0;

Remarks:
This	method	maps	a	scaled	energy	value	to	monochrome.	The	converted
monochrome	value	is	returned.	This	method	assumes	that	Update()	has	been
called	to	cache	the	various	values	needed	by	the	tone	operator.

Parameters:
float	energy
The	input	energy	value	to	convert.

Prototype:
virtual	float	GetPhysicalUnit(TimeValue	t,Interval&	valid	=
Interval(0,0))	const	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	physical	value	that	is	scaled	to	1.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	value.
Interval&	valid	=	Interval(0,0)
The	validity	interval	for	the	value.

Prototype:
virtual	void	SetPhysicalUnit(float	value,	TimeValue	t)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	sets	the	physical	value	that	is	scale	to	1.	This	is	simply	a
programatic	method	to	change	the	physical	scaling	of	the	tone	operator.	Valid
values	are	(0,+infinity).

Parameters:
TimeValue	t
The	time	at	which	to	set	the	value.
Interval&	valid	=	Interval(0,0)
The	validity	interval	for	the	value.

Prototype:
virtual	void	ScalePhysical(float	energy[3])	const	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	scale	a	physical	color	value	so	it	may	be	used	in	the
renderer.
This	method	assumes	that	Update	has	been	called	to	cache	the	various	values
needed	by	the	tone	operator.
Note:	By	using	a	float	array	to	pass	in	color	values,	we	can	use	the	same
routine	to	handle	the	various	classes	used	to	store	color	information,	for
example,	Color,	AColor	and	Point3.

Parameters:
float	energy[3]
The	input	and	output	(converted)	color	value.	The	colors	are	stored	as
red=energy[0],	green=energy[1],	and	blue=energy[2].

Prototype:
virtual	float	ScalePhysical(float	energy)	const	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	scale	a	physical	monochrome	value	so	it	may	be	used
in	the	renderer.
This	method	assumes	that	Update	has	been	called	to	cache	the	various	values
needed	by	the	tone	operator.

Parameters:
float	energy
The	input	value	to	scale.

Return	Value:
The	scaled	output	value	is	returned.

Prototype:
virtual	void	ScaleRGB(float	color[3])	const	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	scale	RGB	values	(the	inverse	of	ScalePhysical()).
This	method	assumes	that	Update	has	been	called	to	cache	the	various	values
needed	by	the	tone	operator.

Parameters:
float	color[3]
The	input	values	to	scale	and	storage	for	the	output	scaled	values	as	well.	The
colors	are	stored	as	red=energy[0],	green=energy[1],	and	blue=energy[2].	The
output	values	are	in	the	range	0-1.

Prototype:
virtual	float	ScaleRGB(float	color)	const	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	scale	a	monochrome	value	(the	inverse	of
ScalePhysical()).

Parameters:
float	color
The	input	value	to	scale.

Return	Value:
The	scaled	output	value	is	returned.

Prototype:
bool	GetProcessBackground();

Remarks:
Returns	the	state	of	A_TONEOP_PROCESS_BG,	indicating	whether	the
ToneOperator	will	be	processing	the	background.

Prototype:
void	SetProcessBackground(bool	active);

Remarks:

This	method	allows	you	to	set	A_TONEOP_PROCESS_BG.
Parameters:
bool	active
TRUE	to	activate,	FALSE	to	deactivate.

Class	IMultiPassCameraEffect
See	Also:	Class	ReferenceTarget,	Class	CameraObject.
class	IMultiPassCameraEffect	:	public	ReferenceTarget

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	multipass	camera	effect	allows	modification	of	viewpoints	&	view
directions	or	time	for	each	pass	of	a	multipass	rendering.	Algorithms	such	as
Depth	of	Field,	Scene	motion	blur	can	be	implemented	using	multipass
techniques.
Basically,	a	multipass	camera	effect	is	a	plug-in	to	camera	objects.	It	allows	the
renderer	to	query	the	camera	for	the	view	params	for	each	pass	of	the	rendering,
&	provides	a	dithered	combining	function	to	combine	the	bitmaps	produced	by
each	pass	into	the	final	bitmap.	It	also	allows	time	to	be	manipulated	for	each
rendering	pass,	providing	effects	such	as	motion	blur.

Methods:
public:

Prototype:
virtual	bool	IsCompatible(CameraObject	*pCameraObject)	=	0;

Remarks:
Some	cameras	are	not	compatible	with	some	render	effects,	this	method
allows	cameras	to	list	compatible	effects	in	the	UI	and	as	such	allows	the
effect	to	declare	its	compatibility	with	the	current	camera	object.

Parameters:
CameraObject	*pCameraObject
A	pointer	to	a	camera	object.

Return	Value:
TRUE	if	compatible,	otherwise	FALSE.

Prototype:
virtual	bool	DisplayPasses(TimeValue	renderTime)	=	0;

Remarks:

There	is	a	UI	option	on	multipass	effects	that	indicates	whether	the	renderer
should	display	each	pass	as	it	is	rendered.	Note	this	is	not	used	by	viewport
renderer,	because	of	the	hardware	involvement.	This	method	returns	whether
to	display	individual	passes	as	they	are	computed.

Parameters:
TimeValue	renderTime
The	rendertime	at	which	to	check	the	display	passes.

Return	Value:
TRUE	if	display	is	on,	otherwise	FALSE.

Prototype:
virtual	int	TotalPasses(TimeValue	renderTime)	=	0;

Remarks:
The	multipass	effect	also	has	a	variable	number	of	passes.	This	method	tells
the	renderer	how	many	passes	to	render	per	final	output	frame	and	as	such
returns	the	total	number	of	passes	to	be	rendered

Parameters:
TimeValue	renderTime
The	rendertime	at	which	to	check	the	display	passes.

Prototype:
virtual	ViewParams	*Apply(INode	*pCameraNode,
CameraObject	*pCameraObject,	int	passNum,	TimeValue
&overrideRenderTime)	=	0;

Remarks:
This	method	will	modify	the	camera,	camera	node,	or	time	value	to	affect	each
pass.
This	is	the	modify	function	called	for	each	pass	of	the	frame.	The	effect	can
alter	the	camera	node,	camera	object,	or	override	the	render	time	in	the	course
of	this	call.	3ds	max	renderers	take	an	optional	parameter	viewParams*	that
when	not	NULL	overrides	the	normal	rendering	camera.	When	this	is	called
the	override	render	time	will	be	set	to	the	current	frame	time.	If	the	value	is
changed,	this	will	be	the	time	value	used	for	the	pass.	Note	that	at	the	time	that

apply	is	called,	the	renderer	has	not	yet	been	called,	hence	it	is	possible,	with
care,	to	alter	the	scene	in	a	general	way,	not	just	the	camera	&	time
parameters.	Apply	should	return	NULL	if	the	normal	unmodified	camera	is	to
be	used.

Parameters:
INode	*pCameraNode
A	pointer	to	the	node	of	the	camera.
CameraObject	*pCameraObject
A	pointer	to	the	camera	object.
int	passNum
The	number	of	the	pass.
TimeValue	&overrideRenderTime
The	time	if	you	wish	to	override	the	render	time.

Return	Value:
The	viewparams	returned	by	apply	which	are	supplied	to	the	renderer.

Prototype:
virtual	void	AccumulateBitmap(Bitmap	*pDest,	Bitmap	*pSrc,	int
passNum,	TimeValue	renderTime)	=	0;

Remarks:
This	method	will	blend	each	pass	(src)	into	the	final	accumulator	(dest).
After	each	pass	is	rendered,	it	needs	to	be	combined	into	the	final	output
bitmap.	The	current	multipass	effects	use	a	dithered	combiner,	so	that	hard
edges	from	the	passes	are	more	smoothly	blended.	There	are	many	ways	to	do
this,	with	varying	quality,	so	this	method	allows	different	future
implementations.	Note	that	this	is	not	used	by	the	viewport	renderer,	as	there’s
no	way	to	tell	the	hardware	to	do	this.	Hardware	is	for	fast	&	edgy,	software	is
for	slow	&	smooth.

Parameters:
Bitmap	*pDest
The	destination	bitmap.
Bitmap	*pSrc
The	source	bitmap.

int	passNum
The	number	of	the	pass.
TimeValue	renderTime
The	render	time.

Prototype:
virtual	void	PostRenderFrame()	=	0;

Remarks:
This	method	is	called	after	all	passes	have	been	rendered.
After	all	passes	have	been	rendered	&	accumulated,	this	method	will	be	called
so	that	the	effect	can	do	any	final	cleanup.	Currently	unused,	it	can	be	ignored
by	multipass	effects	if	they	wish.

Prototype:
virtual	RefResult	NotifyRefChanged(Interval	changeInt,
RefTargetHandle	hTarget,	PartID&	partID,	RefMessage
message);

Remarks:
This	method	is	implemented	to	receive	and	respond	to	messages	broadcast	by
all	the	dependants	in	the	entire	system.

Parameters:
Interval	changeInt
This	is	the	interval	of	time	over	which	the	message	is	active.
RefTargetHandle	hTarget
This	is	the	handle	of	the	reference	target	the	message	was	sent	by.	The
reference	maker	uses	this	handle	to	know	specifically	which	reference	target
sent	the	message.
PartID&	partID
This	contains	information	specific	to	the	message	passed	in.	Some	messages
don't	use	the	partID	at	all.	See	the	section	List	of	Reference	Messages	for
more	information	about	the	meaning	of	the	partID	for	some	common
messages.
RefMessage	message

The	msg	parameters	passed	into	this	method	is	the	specific	message	which
needs	to	be	handled.	See	List	of	Reference	Messages.

Return	Value:
The	return	value	from	this	method	is	of	type	RefResult.	This	is	usually
REF_SUCCEED	indicating	the	message	was	processed.	Sometimes,	the
return	value	may	be	REF_STOP.	This	return	value	is	used	to	stop	the
message	from	being	propagated	to	the	dependents	of	the	item.

Default	Implementation:
{	return	REF_SUCCEED;	}

Prototype:
virtual	SClass_ID	SuperClassID();

Remarks:
This	method	returns	the	super	class	ID	of	the	creator	of	the	clip	object.

Default	Implementation:
{	return	MPASS_CAM_EFFECT_CLASS_ID;	}

Class	IReshading
See	Also:	Class	IReshadeFragment,	Class	ShadeContext,	Class	IllumParams
class	IReshading

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	interface	class	is	the	interface	that	must	be	supported	by	materials	and
shaders	to	support	interactive	rendering	in	3ds	max.	If	this	interface	is	not
returned	when	requested	through	GetInterface()	on	the	mtl	or	shader,	then	it	is
determined	they	do	not	support	reshading.	Any	material	that	does	not	support
reshading	is	evaluated	only	at	preshading	time.
In	3ds	max,	interactive	rendering	is	implemented	as	fragment	based	caching
scheme.	It’s	very	much	like	a	giant	multi-layer	g-buffer	with	enough	information
stored	with	each	fragment	to	re-run	the	material	shading	process	without	re-
rendering,	all	stored	in	a	compressed	form.
The	rendering	process	in	divided	into	2	parts:	preshading	and	reshading.
Preshading	builds	the	scene	and	renders	fragments	to	the	compressed	g-buffer,
called	the	rsBuffer.	To	do	this,	it	saves	a	minimal	amount	of	information	with
each	fragment,	then	gives	each	material	and	texture	the	opportunity	to	pre-shade
itself.
Basically,	the	reshader	populates	a	minimal	ShadeContext,	with	the	fragment
center	position	in	camera	space	(where	shading	is	done),	the	shading	normal,	the
sub-pixel	mask,	the	coverage,	pointers	to	the	original	material	and	INode,	light
lists,	screen	bounding	box	of	object,	the	renderID,	and	screen	integer	x	and	y.
Any	other	values	from	the	shade	context	that	a	material,	shader,	texture(future),
atmosphere(future)	or	light(future)	needs	to	save,	it	does	so	at	pre-shade	time,
and	retrieves	the	data	at	reshading	time.	So,	for	example,	the	multi-materials
save	which	material	is	visible,	anisotropic	shaders	save	the	Anisotropic	reference
vector.

Methods:
public:

Prototype:
virtual	ReshadeRequirements	GetReshadeRequirements();

Remarks:
This	method	is	called	by	the	interactive	reshader	after	being	notified	that	the
material	has	changed.	The	return	value	indicates	if	the	material	is	still	valid,	or
needs	to	be	preshaded	or	reshaded.	The	value	should	pertain	only	to	the	latest
change	to	the	material.	If	a	material	doesn't	support	reshading,	it	doesn't	need
to	override	this	function	--	any	change	will	cause	the	nodes	to	which	it's
attached	to	be	re-	preShaded.

Return	Value:
One	of	the	following	values;
RR_None
No	actions	needs	to	be	taken.
RR_NeedPreshade
A	pre-shade	is	needed.
RR_NeedReshade
A	re-shade	is	needed.

Default	Implementation:
{	return	RR_NeedPreshade;	}

Prototype:
virtual	void	PreShade(ShadeContext&	sc,	IReshadeFragment*
pFrag);

Remarks:
This	method	will	pre-shade	the	object	and	cache	any	needed	values	in	the
fragment.
This	method	is	called	on	the	materials/shaders/textures	as	the	reshading	buffer
is	being	built	at	the	same	point	in	the	rendering	process	where	the	materials
shade	function	would	normally	be	called.	Note	that	at	this	time	the	shade
context	is	completely	valid,	as	in	a	normal	rendering.	Any	values	the	material
wishes	to	cache	can	be	attached	to	the	reshading	fragment	passed	in,	and
retrieved	later	at	postShade	time.

Parameters:
ShadeContext&	sc
A	reference	to	the	shade	context.

IReshadeFragment*	pFrag
A	pointer	to	the	fragment.

Default	Implementation:
{	}

Prototype:
virtual	void	PostShade(ShadeContext&	sc,	IReshadeFragment*
pFrag,	int&	nextTexIndex,	IllumParams*	ip	=	NULL);

Remarks:
This	method	will	retrieve	cached	values	and	compute	shade	&	transparency
for	the	fragment.
This	method	is	called	for	the	material	of	each	fragment	as	the	reshading	buffer
is	being	traversed.	Materials	retrieve	whatever	they	may	have	stored	to
complete	the	minimal	shade	context	and	compute	a	shade	for	the	fragment.
PostShade()	calls	to	shaders	contain	an	additional	parameter,	the
IllumParams,	filled	with	the	textured/blended	but	unshaded	values	for	each
texture.	The	shade	context	passed	into	PostShade()	is	the	minimal	shade
context	outlined	above.

Parameters:
ShadeContext&	sc
A	reference	to	the	shade	context.
IReshadeFragment*	pFrag
A	pointer	to	the	fragment.
int&	nextTexIndex
A	reference	to	the	next	texture	index.
IllumParams*	ip	=	NULL
A	pointer	to	the	IllumParams	containing	textured/blended	but	unshaded	values
for	each	texture.

Default	Implementation:
{	}

Class	IInteractiveRender
See	Also:	Class	InterfaceServer,	Class	IIRenderMgr,	Class	INode,	Class
ViewExp,	Class	Bitmap,	Class	DefaultLight,	Class	IRenderProgressCallback,
Class	Animatable	,	Class	ActionTable
class	IInteractiveRender	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	the	abstract	class	(Interface)	for	a	a	renderer	supporting	interactive
rendering.
With	the	likelihood	of	evolving	rendering	and	shading	techniques	which	are
going	to	be	markedly	different	from	what	is	being	used	now,	the	3ds	max	SDK
provides	the	infrastructure	to	support	interactive	rendering.	Since	renderers	are	a
plugin	to	3ds	max	and	since	each	renderer	has	a	different	set	of	resources	and
capabilities	the	interactive	rendering	and	shading	API	has	been	made	as	general
and	independent	as	possible.	The	independence	of	the	renderer	also	means	that
the	renderer	must	do	a	fair	amount	of	work	that	could	be	done	by	the	system	for
all	renderers.
Interactive	rendering	and	shading	is	a	separate	interface	which	can	be	optionally
supported	by	3rd	party	renderers	and	can	be	obtained	by	using	the
GetInterface()	method	on	the	renderer.	I_RENDER_ID	is	passed	as	the	ID
parameter	to	a	renderer's	implementation	of	Animatable::GetInterface().
The	renderer	returns	a	pointer	to	a	class	IInteractiveRender	instance	if	it
supports	interactive	rendering,	otherwise	the	default	implementation	will	return
NULL,	indicating	that	interactive	rendering	is	not	supported.	This	class,
IInteractiveRender	is	defined	in
\MAXSDK\INCLUDE\interactiveRendering.h.
As	it	is,	interactive	renderers	will	reference	any	and	all	objects,	as	well	as	lights
and	materials	in	the	scene	that	they	can	respond	to	changes	from.	Via	the	normal
3ds	max	notification	system	the	interactive	shader	will	then	receive	messages
whenever	one	of	these	referenced	objects	changes	and	it	must	then	decide	how
best	to	update	the	scene	for	the	user.

Methods:
public:

Prototype:
virtual	void	BeginSession()	=	0;

Remarks:
This	method	initiates	the	interactive	rendering	and	will	reference	objects	in	the
scene	so	the	renderer	receives	the	proper	change	notifications.	The	interactive
renderer	will	automatically	update	the	scene	when	these	changes	are	received.
This	is	called	when	the	user	first	invokes	interactive	rendering.	During	the
begin	session	call,	the	renderer	should	reference	any	object	in	the	scene	that	it
can	respond	to	changes	from.	There	are	reference	manager	classes	in	the	SDK
to	ease	this	referencing	in	the	file	referenceManager.h.	many	of	the
parameters	of	interactive	reshading	are	set	up	prior	to	the	call	to
BeginSession(),	here	is	a	code	snippet	from	the	interactive	rendering
manager:
mIRenderInterface->SetOwnerWnd(mpIMaxBitmapViewer-
>GetHDisplayWindow());
mIRenderInterface->SetIIRenderMgr(this);
mIRenderInterface->SetBitmap(mpIMaxBitmapViewer-
>GetBitmap());
mIRenderInterface->SetSceneINode(mpInterface-
>GetRootNode());
mIRenderInterface->SetUseViewINode(false);
mIRenderInterface->SetViewINode(NULL);
mIRenderInterface->SetViewExp(mpViewExp);
mIRenderInterface->SetRegion(mSelectedRegion);
mIRenderInterface->SetDefaultLights(mDefaultLights,
mNumDefaultLights);
mIRenderInterface->SetProgressCallback(

dynamic_cast<IRenderProgressCallback	*>
(&mImageViewerCB)
);
mIRenderInterface->BeginSession();
Consequently,	BeginSession()	can	rely	on	all	these	local	attributes	being

valid.

Prototype:
virtual	void	EndSession()	=	0;

Remarks:
This	method	will	end	an	interactive	rendering	session	and	will	remove	all
references	placed	on	the	scene.

Prototype:
virtual	void	SetOwnerWnd(HWND	hOwnerWnd)	=	0;

Remarks:
This	method	allows	you	to	set	the	owner	window,	which	could	come	in	handy
if	you	want	to	pass	it	to	the	renderer	if	necessary.	The	owner	HWND	is
supplied	to	the	interactive	renderer	so	that	it	may	receive	window	messages
for	the	interactive	window,	update	the	window,	etc.

Parameters:
HWND	hOwnerWnd
A	handle	to	the	owner	window.

Prototype:
virtual	HWND	GetOwnerWnd()	const	=	0;

Remarks:
This	method	allows	you	to	retrieve	the	owner	window.

Prototype:
virtual	void	SetIIRenderMgr(IIRenderMgr	*pIIRenderMgr)	=	0;

Remarks:
This	method	sets	a	pointer	to	the	controlling	renderMgr,	so	that	various	states
can	be	queried.

Parameters:
IIRenderMgr	*pIIRenderMgr
A	pointer	to	the	controlling	interactive	rendering	manager.

Prototype:
virtual	IIRenderMgr	*GetIIRenderMgr(IIRenderMgr
*pIIRenderMgr)	const	=	0;

Remarks:
This	method	allows	you	to	retrieve	a	pointer	to	the	controlling	interactive
render	manager

Parameters:
IIRenderMgr	*pIIRenderMgr
A	pointer	to	the	render	manager	interface.
Used	internally.	This	should	always	be	set	to	NULL.

Prototype:
virtual	void	SetBitmap(Bitmap	*pDestBitmap)	=	0;

Remarks:
This	method	allows	you	to	set	the	destination	bitmap	to	be	rendered	and	re-
rendered	to.	This	destination	bitmap	is	persistent	between	update	renderings,
basically	the	renderer	holds	the	bitmap	and	updates	the	screen	while	the
manager	holds	the	reference	to	the	bitmap	and	controls	its	lifetime.

Parameters:
Bitmap	*pDestBitmap
A	pointer	to	the	destination	bitmap	to	set.

Prototype:
virtual	Bitmap	*GetBitmap(Bitmap	*pDestBitmap)	const	=	0;

Remarks:
This	method	allows	you	to	retrieve	the	destination	bitmap	that’s	being	redered
and	re-rendered	to.

Parameters:
Bitmap	*pDestBitmap
A	pointer	to	the	destination	bitmap.
Used	internally.	This	should	always	be	set	to	NULL.

Prototype:
virtual	void	SetSceneINode(INode	*pSceneINode)	=	0;

Remarks:
This	method	allows	you	to	set	the	scene	root	node.	In	general,	the	idea	of
interactive	rendering	is	to	start	with	a	fixed	scene	and	then	respond	to	changes
in	that	scene.	This	call	sets	the	scene	root	node.	All	items	stemming	from	this
scene	root	that	an	interactive	renderer	can	respond	to	changes	in	should	be
referenced.

Parameters:
INode	*pSceneINode
A	pointer	to	the	scene	root	node.

Prototype:
virtual	INode	*GetSceneINode()	const	=	0;

Remarks:
This	method	returns	a	pointer	to	the	scene’s	root	node.

Prototype:
virtual	void	SetUseViewINode(bool	bUseViewINode)	=	0;

Remarks:
This	method	sets	whether	to	use	the	ViewINode.	When	a	separate	camera
node	is	needed	instead	of	ViewExp,	the	interactive	rendering	manager	will	set
the	viewINode	to	the	interactive	renderer	and	set	UseViewINode	to	TRUE.

Parameters:
bool	bUseViewINode
If	FALSE,	ViewParams	obtained	from	ViewExp	should	be	used.

Prototype:
virtual	bool	GetUseViewINode()	const	=	0;

Remarks:
This	method	returns	FALSE	if	the	ViewParams	obtained	from	ViewExp
should	be	used.	TRUE	would	indicate	that	this	is	not	the	case.

Prototype:
virtual	void	SetViewINode(INode	*pViewINode)	=	0;

Remarks:
This	method	allows	you	to	set	the	View	INode	in	case	a	separate	camera	node
is	needed	instead	of	ViewExp.

Parameters:
INode	*pViewINode
A	pointer	to	the	view	node.

Prototype:
virtual	INode	*GetViewINode()	const	=	0;

Remarks:
This	method	returns	a	pointer	to	the	view	node	if	this	is	used	instead	of
ViewExp.

Prototype:
virtual	void	SetViewExp(ViewExp	*pViewExp)	=	0;

Remarks:
This	method	allows	you	to	set	the	ViewExp.	The	ViewExp	is	the	view
specification	for	docked	windows.	The	interactive	renderer	gets	the	view
params	out	of	the	ViewExp.

Parameters:
ViewExp	*pViewExp
A	pointer	to	the	ViewExp.

Prototype:
virtual	ViewExp	*GetViewExp()	const	=	0;

Remarks:
This	method	returns	a	pointer	to	the	ViewExp	which	is	used	for	the	view
specification	for	docked	windows.

Prototype:

virtual	void	SetRegion(const	Box2	®ion)	=	0;
Remarks:
This	method	allows	you	to	set	the	region	of	the	bitmap	to	be	rendered.
There	are	two	standard	interactive	modes	that	should	be	supported	in	all
interactive	renderers:	region	rendering	and	selected	object	rendering,	and	these
modes	should	ideally	work	in	consort	if	at	all	possible:	scenes	are	often	very
complex	and	the	plugin	renderer	must	be	able	to	limit	complexity	to	increase
interactivity.	Note	that	if	Box2::IsEmpty()	returns	TRUE,	it	indicates	to
render	entire	bitmap.

Parameters:
const	Box2	®ion
A	reference	to	the	rectangular	area.

Prototype:
virtual	const	Box2	&GetRegion()	const	=	0;

Remarks:
This	method	returns	the	region	of	the	bitmap	to	be	rendered.	Note	that	if
Box2::IsEmpty()	returns	TRUE,	it	indicates	to	render	entire	bitmap.

Prototype:
virtual	void	SetDefaultLights(DefaultLight	*pDefLights,	int
numDefLights)	=	0;

Remarks:
This	method	allows	you	to	set	the	default	lights	to	be	used	in	absence	of	scene
lights.	These	lights	will	be	used	when	no	user	specified	lights	are	in	the	scene.
This	should	be	noted	when	the	scene	is	traversed	in	begin	session,	and	of
course	altered	if	new	user	lights	are	created.

Parameters:
DefaultLight	*pDefLights
A	pointer	to	a	default	light	source.
int	numDefLights
The	number	of	default	lights.

Prototype:
virtual	const	DefaultLight	*GetDefaultLights(int	&numDefLights)
const	=	0;

Remarks:
This	method	returns	a	pointer	to	the	default	lights	and	the	number	of	default
lights	which	are	used	in	absence	of	scene	lights.

Parameters:
int	&numDefLights
The	number	of	default	lights	returned.

Prototype:
virtual	void	SetProgressCallback(IRenderProgressCallback
*pProgCB)	=	0;

Remarks:
This	method	allows	you	to	set	an	interactive	rendering	progress	callback
object.
The	Progress/Abort	Callback	should	be	called	by	the	renderer	ideally	about
every	100	milliseconds,	but	the	actual	range	varies	widely.	The	callback
allows	the	manager	to	display	rendering	progress	and/or	abort	a	rendering.

Parameters:
IRenderProgressCallback	*pProgCB
A	pointer	to	the	interactive	rendering	progress	callback	object.

Prototype:
virtual	const	IRenderProgressCallback	*GetProgressCallback()
const	=	0;

Remarks:
This	method	returns	a	pointer	to	the	interactive	rendering	progress	callback
object.

Prototype:
virtual	void	Render(Bitmap	*pDestBitmap)	=	0;

Remarks:
This	method	renders	the	bitmap	using	default	non-interactive	rendering
functionality.	This	is	the	only	actual	command	to	the	interactive	renderer.

Parameters:
Bitmap	*pDestBitmap
The	destination	bitmap	to	render	to.

Prototype:
virtual	ULONG	GetNodeHandle(int	x,	int	y)	=	0;

Remarks:
This	method	returns	the	closest	node	handle	for	a	given	bitmap	pixel	location.
This	can	be	implemented	with	an	item	buffer,	by	using	ray	casting,	or	some
other	method	and	allows	the	interactive	rendering	manager	to	implement
object	selection.

Parameters:
int	x,	int	y
The	x	and	y	coordinate	of	the	bitmap	pixel.

Return	Value:
The	node	handle	or	0	if	there	is	no	node.

Prototype:
virtual	bool	GetScreenBBox(Box2&	sBBox,	INode	*pINode)	=	0;

Remarks:
This	method	returns	the	screen	bounding	box	of	the	corresponding	INode,	so
the	selection	box	corners	can	be	drawn.

Parameters:
Box2&	sBBox
The	screen	bounding	box.
INode	*pINode
The	INode	for	which	you	wish	to	retrieve	the	screen	bounding	box.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	ActionTableId	GetActionTableId()	=	0;

Remarks:
This	method	returns	the	ActionTableId	for	any	action	items	the	renderer	may
implement.	This	method	will	return	0	if	none	are	available.	Action	tables	are
used	as	context	sensitive	command	system	to	generate	quad	menus	and	the
like	from	the	various	objects	in	the	scene.

Prototype:
virtual	ActionCallback	*GetActionCallback()	=	0;

Remarks:
This	method	returns	a	pointer	to	an	ActionCallback	for	any	action	items	the
renderer	may	implement.	This	method	will	return	NULL	if	none	are	available.

Prototype:
virtual	void	*GetInterface();

Remarks:
This	method	provides	a	general	extension	mechanism,	access	to	additional
method	interfaces.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	BOOL	IsRendering()	=	0;

Remarks:
This	method	returns	TRUE	if	the	renderer	is	currently	rendering,	otherwise
FALSE.
When	the	interactive	rendering	manager	gets	a	message	to	shut	down	or	abort
an	interactive	rendering,	there	is	a	potential	race	condition	between	the
interactive	renderer	shutting	down	and	the	shutting	down	of	the	manager
itself,	which	deletes	the	renderer.	Since	it	is	the	renderer	itself	that	decides
when,	what	and	how	to	re-render	the	image,	it’s	not	clear	to	the	manager
whether	a	delete	is	safe.	This	method	allows	the	manager	to	inquire	whether

the	renderer	is	recomputing	the	image.	To	abort	a	rendering,	the	progress/abort
callback	must	be	used.	When	the	abort	is	complete,	IsRendering	will	return
FALSE.

Class	IMBOps
See	Also:	Class	FPStaticInterface,	Class	Bitmap,	Class	CheckAbortCallback.
class	IMBOps:	public	FPStaticInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	classs	is	an	interface	for	Image	Motion	Blur.	This	interface	is	implemented
in	the	Effect	plug-in	MotionBlur.dlv,	which	must	be	present	to	use	it.	This
interface	is	does	NOT	support	scripting,	only	direct	calling.	The	sample	code
below	shows	how	this	is	done:
Sample	Code:
ClassDesc2*	mbcd	=	GET_MBLUR_CD;
if	(mbcd)	{
	IMBOps*	imb	=	GetIMBInterface(mbcd);
	imb->ApplyMotionBlur(bm,	&imbcb,	1.2f);
	}

Methods:
public:

Prototype:
virtual	ULONG	ChannelsRequired(ULONG	flags=0)=0;

Remarks:
Sets	the	channels	required	for	the	image	motion	blur.

Parameters:
ULONG	flags=0
The	following	flag	may	be	set:
IMB_TRANSP
Controls	whether	motion	blur	works	through	transparency.	Setting	it	to	0
saves	memory,	runs	faster.

Prototype:
virtual	int	ApplyMotionBlur(Bitmap	*bm,	CheckAbortCallback

*progCallback=NULL,	float	duration=1.0f,	ULONG
flags=IMB_TRANSP,	Bitmap*	extraBM=NULL)=0;

Remarks:
Applies	the	motion	blur	process	to	the	specified	bitmap.

Parameters:
Bitmap	*bm
The	bitmap	to	apply	the	motion	blur	to.
CheckAbortCallback	*progCallback=NULL
A	pointer	to	a	callback,	allowing	an	abort	check	during	the	progress.
float	duration=1.0f
The	motion	blur	duration.
ULONG	flags=IMB_TRANSP
The	following	flag	may	be	set:
IMB_TRANSP
Controls	whether	motion	blur	works	through	transparency.	Setting	it	to	0
saves	memory,	runs	faster.

Bitmap*	extraBM=NULL
If	the	extraBM	bitmap	is	supplied,	then	that	is	used	as	the	target	color
bitmap,	but	the	gbuffer	information	still	comes	from	the	other,	main,	bitmap.
this	is	used	to	apply	motion	blur	to	render	lements.

Return	Value:
TRUE	if	success,	otherwise	FALSE.

Class	IChkMtlAPI
See	Also:	Class	Mtl,	Class	RenderInstance.
class	IChkMtlAPI

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	provides	interface	methods	used	to	support	indirect	material
referencing	and	enhanced	face	/	material	associations.	Generally,	these	methods
will	need	to	be	implemented	by	the	plug-in	using	them	and	cannot	be	called
from	a	standard	library,	since	the	information	required	is	intimately	associated
with	the	geometry	of	the	object.
All	methods	of	this	class	are	implemented	by	the	Plug-In.

Methods:
public:

Prototype:
virtual	BOOL	SupportsParticleIDbyFace();

Remarks:
Returns	TRUE	if	the	object	can	associate	a	particle	number	with	a	face
number,	and	FALSE	if	not.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	int	GetParticleFromFace(int	faceID);

Remarks:
Returns	the	particle	to	which	the	face	identified	by	faceID	belongs.

Parameters:
int	faceID
The	ID	of	the	face.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	BOOL	SupportsIndirMtlRefs();

Remarks:
Returns	TRUE	if	the	object	can	return	a	material	pointer	given	a	face	being
rendered,	and	FALSE	if	the	object	will	be	associated	for	that	render	pass	with
only	the	material	applied	to	the	node.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	int	NumberOfMtlsUsed();

Remarks:
Returns	the	number	of	different	materials	used	on	the	object.	This	number	is
used	in	enumerating	the	different	materials	via	the	methods	GetNthMtl()
and	GetNthMaxMtlID()	below.

Default	Implementation:
{	return	0;	}

the	following	methods	are	meaningful.

Prototype:
virtual	Mtl	*GetNthMtl(int	n);

Remarks:
If	the	method	SupportsIndirMtlRefs()	above	returns	TRUE	then	this
method	returns	the	different	materials	used	on	the	object.

Parameters:
int	n
The	zero	based	index	of	the	material	used	on	the	object.

Return	Value:
	

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	int	GetNthMaxMtlID(int	n);

Remarks:
If	the	method	SupportsIndirMtlRefs()	above	returns	TRUE	then	this
method	returns	the	maximum	material	ID	number	used	with	the	specified
material	on	the	object

Parameters:
int	n
The	zero	based	index	of	the	material.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	Mtl	*GetMaterialFromFace(int	faceID);

Remarks:
If	the	method	SupportsIndirMtlRefs()	above	returns	TRUE	then	this
method	returns	a	pointer	to	the	material	associated	with	the	face	identified	by
faceID.

Parameters:
int	faceID
The	ID	of	the	face	to	check.

Default	Implementation:
{	return	NULL;	}

Class	IImageViewer
See	Also:	Class	DADMgr	,	Class	BaseInterface,	Class	IMaxBitmapViewer
class	IImageViewer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	an	abstract	interface	class	for	an	image	viewer.

Methods:
public:

Prototype:
virtual	void	PostDisplayCallback::PostDisplayCB(HWND	hWnd)
=	0;

Remarks:
The	PostDisplayCB	method	of	the	PostDisplayCallback	class	is	called	after	an
image	is	displayed	in	the	image	viewer.	Developers	can	use	this	to	do	any
post-display	related	work.

Parameters:
HWND	hWnd
The	handle	of	the	image	viewer	window.

Prototype:
virtual	BaseInterface*
PostDisplayCallback::GetInterface(Interface_ID	id);

Remarks:
This	method	provides	a	way	to	extend	the	class	with	interfaces.

Parameters:
Interface_ID	id
The	interface	ID.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	LRESULT
PreEventHandlerCallback::EventHandlerCB(HWND	hWnd,
UINT	message,	WPARAM	wParam,	LPARAM	lParam,	bool
&propagate)	=	0;

Remarks:
The	EventHanderCB	method	of	the	PreEventHandlerCallback	class	allows
you	to	intercept	window	events	prior	to	them	being	passed	through.

Parameters:
HWND	hWnd
The	handle	of	the	image	viewer	window.
UINT	message
The	message	identifier.
WPARAM	wParam
The	WPARAM	value.
LPARAM	lParam
The	LPARAM	value.
bool	&propagate
TRUE	if	the	message	and	event	are	to	be	propagated,	otherwise	FALSE.

Prototype:
virtual	BaseInterface*
PreEventHandlerCallback::GetInterface(Interface_ID	id);

Remarks:
This	method	provides	a	way	to	extend	the	class	with	interfaces.

Parameters:
Interface_ID	id
The	interface	ID.

Default	Implementation:
{	return	NULL;	}

Prototype:

virtual	void	Show()	=	0;
Remarks:
This	method	will	show	the	image	viewer.	In	the	IMaxBitmapViewer	class,
the	Display()	method	must	initially	be	used	to	display	the	viewer;	this
method	only	displays	the	viewer	after	using	Hide().

Prototype:
virtual	void	Hide()	=	0;

Remarks:
This	method	will	hide	the	image	viewer.	In	the	IMaxBitmapViewer	class,
the	UnDisplay()	method	should	be	used	to	close	the	viewer	when	done;	use
Hide()	to	temporarily	hide	the	window.

Prototype:
virtual	HWND	GetHDisplayWindow()	=	0;

Remarks:
This	method	returns	the	handle	to	the	display	window	of	the	image	viewer.

Prototype:
virtual	void	SetPos(int	x,	int	y,	int	w,	int	h)	=	0;

Remarks:
This	method	allows	you	to	set	the	position	of	the	image	viewer	window.

Parameters:
int	x,	y
The	position	of	the	window.
int	w,	h
The	width	and	height	of	the	window.

Prototype:
virtual	DisplayStyle	GetDisplayStyle()	const	=	0;

Remarks:
This	method	will	return	the	display	style	used	by	the	image	viewer	window,

which	is	either	IV_FLOATING	or	IV_DOCKED.

Prototype:
virtual	void	SetContextHelpId(DWORD	helpID)	=	0;

Remarks:
This	method	allows	you	to	set	the	context	help	identifier	for	the	image	viewer.

Parameters:
DWORD	helpID
The	help	identifier.

Prototype:
virtual	DWORD	GetContextHelpId()	const	=	0;

Remarks:
This	method	returns	the	context	help	identifier.

Prototype:
virtual	void	SetDADMgr(DADMgr	*pDADMgr)	=	0;

Remarks:
This	method	allows	you	to	set	the	drag	and	drop	manager	which	should	be
used	for	the	image	viewer.

Parameters:
DADMgr	*pDADMgr
A	pointer	to	the	drag	and	drop	manager.

Prototype:
virtual	void
SetPreEventHandlerCallback(PreEventHandlerCallback*
pPreEventHandlerCB)	=	0;

Remarks:
This	method	allows	you	to	set	the	pre-event	handler	callback	method.

Parameters:

PreEventHandlerCallback*	pPreEventHandlerCB
A	pointer	to	the	callback	function.

Prototype:
virtual	PreEventHandlerCallback*
GetPreEventHandlerCallback()	const	=	0;

Remarks:
This	method	returns	a	pointer	to	the	pre-event	handler	callback	function.

Prototype:
virtual	void	SetPostDisplayCallback(PostDisplayCallback*
pPostDisplayCB)	=	0;

Remarks:
This	method	allows	you	to	set	the	post	display	callback	function.

Parameters:
PostDisplayCallback*	pPostDisplayCB
A	pointer	to	the	callback	function.

Prototype:
virtual	PostDisplayCallback*	GetPostDisplayCallback()	const	=	0;

Remarks:
This	method	returns	a	pointer	to	the	post	display	callback	function.

Prototype:
virtual	BaseInterface*	GetInterface(Interface_ID	id);

Remarks:
This	method	provides	a	way	to	extend	the	class	with	interfaces.

Parameters:
Interface_ID	id
The	interface	ID.

Default	Implementation:

{	return	NULL;	}

Class	IMenuManager
See	Also:	Class	IMenu,	Class	IMenuBarContext,	Class	IQuadMenuContext,
Class	Interface.
class	IMenuManager

Description:
This	class	is	available	in	release	4.0	and	later	only.
To	get	an	interface	for	calling	the	methods	of	this	class	use
Interface::GetMenuManager().

Methods:
public:

Prototype:
virtual	bool	RegisterMenu(IMenu*	pMenu,	DWORD	flags	=	0)	=
0;

Remarks:
This	method	allows	you	to	add	a	menu	to	the	manager.

Parameters:
IMenu*	pMenu
Points	to	the	menu	to	register.
DWORD	flags	=	0
Not	used.

Return	Value:
Returns	false	if	the	menu	is	already	registered;	true	if	not.

Prototype:
virtual	bool	UnRegisterMenu(IMenu*	pMenu)	=	0;

Remarks:
This	method	allows	you	to	remove	a	menu	form	the	mananger.

Parameters:
IMenu*	pMenu
Points	to	the	menu	to	unregister.

Return	Value:
FALSE	if	the	menu	was	not	registered,	TRUE	if	successfully	unregistered.

Prototype:
virtual	IMenu*	FindMenu(TCHAR*	pTitle)	=	0;

Remarks:
This	method	will	return	a	pointer	to	a	menu	based	on	its	name.

Parameters:
TCHAR*	pTitle
The	name	of	the	menu	to	return.

Return	Value:
A	pointer	to	the	menu	or	NULL	if	the	menu	wasn’t	found.

Prototype:
virtual	IQuadMenu*	FindQuadMenu(TCHAR*	pTitle)	=	0;

Remarks:
This	method	will	return	a	pointer	to	a	quad	menu	based	on	its	name.

Parameters:
TCHAR*	pTitle
The	name	of	the	menu	to	return.

Return	Value:
A	pointer	to	the	quad	menu	or	NULL	if	the	menu	wasn’t	found.

Prototype:
virtual	bool	RegisterMenuBarContext(MenuContextId	contextId,
TCHAR*	pName)	=	0;

Remarks:
This	method	allows	you	to	register	a	new	menu	bar	context

Parameters:
MenuContextId	contextId
The	menu	context	ID.
TCHAR*	pName

The	name	of	the	menu	bar.
Return	Value:
TRUE	if	the	new	menu	is	registered,	FALSE	if	the	menu	was	already
registered.

Prototype:
virtual	bool	RegisterQuadMenuContext(MenuContextId
contextId,	TCHAR*	pName)	=	0;

Remarks:
This	method	allows	you	to	register	a	new	quad	menu	context.

Parameters:
MenuContextId	contextId
The	menu	context	ID.
TCHAR*	pName
The	name	of	the	quad	menu.

Return	Value:
TRUE	if	the	new	quad	menu	is	registered,	FALSE	if	the	quad	menu	was
already	registered.

Prototype:
virtual	int	NumContexts()	=	0;

Remarks:
This	method	returns	the	number	of	contexts	registered.

Prototype:
virtual	IMenuContext*	GetContextByIndex(int	index)	=	0;

Remarks:
This	method	returns	a	pointer	to	a	menu	context	by	the	specified	index.

Parameters:
int	index
The	index	of	the	menu	context	to	retrieve.

Prototype:
virtual	IMenuContext*	GetContext(MenuContextId	contextId)	=
0;

Remarks:
This	method	returns	a	pointer	to	a	menu	context	by	the	specified	menu	context
ID.	This	method	returns	NULL	if	the	context	does	not	exist.

Parameters:
MenuContextId	contextId
The	menu	context	ID.

Prototype:
virtual	void	UpdateMenuBar()	=	0;

Remarks:
This	method	can	be	called	to	update	3ds	max’	main	menu	bar	after	adding	sub-
menu’s	or	menu	items.

Prototype:
virtual	BOOL	LoadMenuFile(TCHAR*	pMenuFile)	=	0;

Remarks:
This	method	allows	you	to	load	a	menu	file	from	disk	and	automatically
update	the	UI	accordingly.

Parameters:
TCHAR*	pMenuFile
The	path	and	filename	of	the	menu	file	to	load.

Return	Value:
TRUE	if	the	menu	file	was	loaded,	otherwise	FALSE.

Prototype:
virtual	BOOL	SaveMenuFile(TCHAR*	pMenuFile)	=	0;

Remarks:
This	method	allows	you	to	save	a	menu	file	to	disk.

Parameters:

TCHAR*	pMenuFile
The	path	and	filename	of	the	menu	file	to	save.

Return	Value:
TRUE	if	the	menu	file	was	saved,	otherwise	FALSE.

Prototype:
virtual	TCHAR*	GetMenuFile()	=	0;

Remarks:
This	method	returns	the	file	name	of	the	currently	loaded	and	active	menu	file.

Prototype:
virtual	BOOL	SetMainMenuBar(IMenu*	pMenu)	=	0;

Remarks:
This	method	allows	you	to	set	the	main	menu	bar.

Parameters:
IMenu*	pMenu
A	pointer	to	the	menu	you	wish	to	set	as	the	main	menu	bar.

Return	Value:
TRUE	if	it	was	set	successfully.

Prototype:
virtual	IMenu*	GetMainMenuBar()	=	0;

Remarks:
This	method	returns	a	pointer	to	the	main	menu	bar.

Prototype:
virtual	BOOL
SetViewportRightClickMenu(IQuadMenuContext::RightClickContext
context,	IQuadMenu*	pQuadMenu)	=	0;

Remarks:
This	method	allows	you	to	set	the	viewport	right-click	menu	to	the	specified
quad	menu.

Parameters:
IQuadMenuContext::RightClickContext	context
See	the	List	of	Right-Click	Contexts.
IQuadMenu*	pQuadMenu
A	pointer	to	the	quad	menu	you	wish	to	set.

Return	Value:
TRUE	if	it	was	set	successfully.

Prototype:
virtual	IQuadMenu*
GetViewportRightClickMenu(IQuadMenuContext::RightClickContext
context)	=	0;

Remarks:
This	method	returns	a	pointer	to	the	current	viewport	right-click	quad	menu.

Parameters:
IQuadMenuContext::RightClickContext	context
See	the	List	of	Right-Click	Contexts..

Prototype:
virtual	bool	GetShowAllQuads(IQuadMenu*	pQuadMenu)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	checks	if	the	"Show	All	Quads"	flag	is	set	for	a	specific
QuadMenu	and	will	return	TRUE	if	the	flag	is	set	or	FALSE	if	the	flag	is	not
set.

Parameters:
IQuadMenu*	pQuadMenu
A	pointer	to	the	QuadMenu	you	wish	to	check	the	flag	for.

Prototype:
virtual	void	SetShowAllQuads(IQuadMenu*	pQuadMenu,	bool
showAll)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	sets	the	"Show	All	Quads"	flag	for	a	specific	QuadMenu.

Parameters:
IQuadMenu*	pQuadMenu
A	pointer	to	the	QuadMenu	you	wish	to	set	the	flag	for.
bool	showAll
TRUE	to	set	the	flag	to	on,	FALSE	to	set	the	flag	off.

Prototype:
virtual	TCHAR*	GetQuadMenuName(IQuadMenu*
pQuadMenu)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	name	given	to	a	specific	QuadMenu	as	a	string.

Parameters:
IQuadMenu*	pQuadMenu
A	pointer	to	the	QuadMenu	for	which	you	wish	to	retrieve	the	name.

Prototype:
virtual	void	SetQuadMenuName(IQuadMenu*	pQuadMenu,
TCHAR*	pName)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	name	of	a	specific	QuadMenu.

Parameters:
IQuadMenu*	pQuadMenu
A	pointer	to	the	QuadMenu	for	which	you	wish	to	set	the	name.
TCHAR*	pName
The	string	containing	the	name	for	the	QuadMenu.

Class	IColorManager
See	Also:	Class	FPStaticInterface	Class	Point3,	COLORREF,	List	of	Standard
Color	IDs,	Generate	a	Class_ID,	Class	GUP,	Getting	and	Setting	User
Preferences.
class	IColorManager	:	public	FPStaticInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	is	an	interface	to	the	Color	Manager.	Within	3ds	max	using	the
Customize	pull	down	menu	/	Customize	User	Interface	choice	/	Colors	tab	a	user
is	able	to	alter	the	colors	used	for	various	UI	elements.	They	can	change	the
saturation,	value	and	transparency	of	elements,	and	load	and	save	color	schemes.
Using	the	methods	of	this	class	developers	can	do	the	same	(the	3ds	max	color
manager	uses	this	class	internally).	Developers	can	add	their	own	named	custom
colors.	Developers	wanting	to	do	this	need	to	pick	a	random	32-bit	ColorId	to
identify	it.	(Note:	typedef	DWORD	ColorId;).	The	Class_ID	generator	may
be	used	for	this	where	only	one	of	the	two	DWORDS	is	used.	See	Class
Class_ID	for	more	details.	The	low	integer	ColorIds	are	reserved	for	3ds	max
internal	use.	These	colors	should	be	registered	on	startup,	so	a	Global	Utility
Plug-In	(GUP)	is	the	best	way	to	handle	this.	See	Class	GUP	for	details.
Methods	that	are	marked	as	internal	should	not	be	used.

The	following	global	functions	are	not	part	of	this	class	but	are
available	for	use:
Function:
IColorManager*	GetColorManager();

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Returns	a	pointer	to	the	color	manager	with	which	you	can	call	the	methods	of
this	class.
Note	the	following	#define	which	may	be	used	to	simplify	coding	a	bit:
#define	ColorMan()	(GetColorManager())

Methods:

javascript:UniqueId0.Click()

public:

Prototype:
virtual	bool	UseStandardWindowsColors()	=	0;

Remarks:
Returns	true	if	the	standard	windows	colors	are	used	and	false	if	custom	colors
are	used.

Prototype:
virtual	void	SetUseStandardWindowsColors(bool
useStandardColors)	=	0;

Remarks:
Sets	whether	standard	windows	colors	are	used	or	not.	This	allows	the
developer	to	tell	the	system	to	use	standard	windows	colors,	instead	of	the
custom	colors.	This	only	affects	calls	to	CustSysColor()	and	not
GetColor().

Parameters:
bool	useStandardColors
Pass	true	to	use	the	standard	windows	color	and	false	to	use	the	custom	colors.

Prototype:
virtual	bool	RegisterColor(ColorId	id,	TCHAR*	pName,
TCHAR*	pCategory,	COLORREF	defaultValue)	=	0;

Remarks:
This	method	registers	a	new	color	with	the	system.	For	plug-in	developers	this
should	be	done	at	startup	using	a	Global	Utility	Plug-in	which	calls	this
method.	See	the	Description	section	above	for	details.	If	developers	want	to
add	a	color	of	their	own,	they	need	to	pick	a	random	32-bit	integer	ColorId	to
identify	it.

Parameters:
ColorId	id
The	ID	of	the	color	to	register.	This	should	be	generated	by	the	developer
using	a	single	DWORD	from	the	output	of	the	Class_ID	program.	See	Class
Class_ID	for	more	details.

TCHAR*	pName
The	name	for	the	color.
TCHAR*	pCategory
The	category	for	the	color.	If	the	name	passed	matches	one	of	the	existing	3ds
max	categories	the	color	will	be	place	in	there,	otherwise	a	new	one	will	be
created.
COLORREF	defaultValue
The	default	value	for	the	color.	This	is	the	value	that	the	color	will	be	reset	to
when	a	3ds	max	user	presses	"Reset"	in	the	color	customization	dialog.	See
COLORREF.

Return	Value:
Returns	false	if	the	color	is	already	registered;	otherwise	true.

Prototype:
virtual	BOOL	LoadColorFile(TCHAR*	pFileName)	=	0;

Remarks:
This	method	will	load	the	specified	color	file	from	the	current	UI	directory.

Parameters:
TCHAR*	pFileName
The	filename	of	the	color	file	to	load.

Return	Value:
TRUE	if	the	load	was	successful,	otherwise	FALSE.

Prototype:
virtual	BOOL	SaveColorFile(TCHAR*	pFileName)	=	0;

Remarks:
This	method	will	save	the	specified	color	file	from	the	current	UI	directory.

Parameters:
TCHAR*	pFileName
The	filename	of	the	color	file	to	save.

Return	Value:
TRUE	if	the	save	process	was	successful,	otherwise	FALSE.

Prototype:
virtual	TCHAR*	GetColorFile()	=	0;

Remarks:
This	method	returns	the	file	name	of	the	current	color	file.

Prototype:
virtual	bool	SetColor(ColorId	id,	COLORREF	color)	=	0;

Remarks:
Sets	the	color	value	of	the	previously	registered	color	whose	ID	is	passed.

Parameters:
ColorId	id
Specifies	which	color	to	set.
COLORREF	color
The	color	value	to	set.	See	COLORREF.

Return	Value:
Returns	true	if	the	color	was	set	and	false	if	the	id	passed	could	not	be	found.

Prototype:
virtual	COLORREF	GetColor(ColorId	id)	=	0;

Remarks:
Returns	the	color	value	of	the	color	whose	ID	is	passed.

Parameters:
ColorId	id
Specifies	which	color	to	get.

Return	Value:
The	color	is	returned	or	black	(RGB(0,0,0))	if	the	ColorId	passed	was	not
found.

Prototype:
virtual	Point3	GetColorAsPoint3(ColorId	id)	=	0;

Remarks:
This	method	returns	the	color	associated	with	a	specified	color	ID	as	a	Point3.

Parameters:
ColorId	id
The	ID	of	the	color	you	wish	to	get.

Prototype:
virtual	HBRUSH	GetBrush(ColorId	id)	=	0;;

Remarks:
Returns	a	handle	to	the	brush	for	the	color	whose	id	is	specified.	NULL	is
returned	if	the	id	passed	is	not	found.	Note	that	the	color	manager	does
resource	management	for	brushes,	so	the	value	returned	should	not	be	deleted.

Parameters:
ColorId	id
The	color	whose	brush	handle	is	returned.

Prototype:
virtual	TCHAR*	GetName(ColorId	id)	=	0;

Remarks:
Returns	the	name	of	the	color	whose	ID	is	passed.

Parameters:
ColorId	id
The	ID	of	the	color.

Prototype:
virtual	TCHAR*	GetCategory(ColorId	id)	=	0;

Remarks:
Returns	the	category	string	of	the	color	whose	ID	is	passed.

Parameters:
ColorId	id
The	ID	of	the	color.

Prototype:
virtual	COLORREF	CustSysColor(int	which)	=	0;

Remarks:
This	method	takes	the	specified	windows	color	definition	(for	example
COLOR_BTNHILIGHT)	and	returns	the	3ds	max	customized	version	of
that	color.	Anyone	writing	a	plug-in	with	custom	windows	code	should	use
this	call	(and	CustSysColorBrush()	below)	instead	of	the	Win32
GetSysColor()	and	GetSysColorBrush()	if	they	want	to	participate	in	the
3ds	max	custom	color	scheme.
Note	the	following	#define	which	may	be	used	to	simplify	coding:
#define	GetCustSysColor(which)	(ColorMan()-
>CustSysColor(which))

Parameters:
int	which
Specifies	the	windows	color	definition.	See	List	of	Standard	Color	IDs.	For	a
full	list	of	windows	color	definitions,	please	refer	to	the	Win32	API,	in
particular	the	methods	GetSysColor()	and	SetSysColor().

Prototype:
virtual	HBRUSH	CustSysColorBrush(int	which)	=	0;

Remarks:
This	method	returns	a	handle	identifying	a	logical	brush	that	corresponds	to
the	specified	color	index.	Note	that	the	color	manager	does	resource
management	for	brushes,	so	the	value	returned	should	not	be	deleted.

Parameters:
int	which
Specifies	the	windows	color	definition.	See	List	of	Standard	Color	IDs.	For	a
full	list	of	windows	color	definitions,	please	refer	to	the	Win32	API,	in
particular	the	methods	GetSysColor()	and	SetSysColor().
Note	the	following	#define	which	may	be	used	to	simplify	coding	a	bit:
#define	GetCustSysColorBrush(which)	(ColorMan()-
>CustSysColorBrush(which))

Prototype:
virtual	Point3	GetOldUIColor(int	which)	=	0;

Remarks:
Returns	the	specified	color	value	for	drawing	various	items	in	the	viewports.
This	is	the	same	as	the	previous	GetUIColor()	function.

Parameters:
int	which
Specifies	which	color	to	retrieve.	See	List	of	Viewport	Drawing	Color	Indices.

Return	Value:
The	color	as	a	Point3.

Prototype:
virtual	COLORREF	GetOldUIColorCOLORREF(int	which)	=	0;

Remarks:
This	method	returns	the	color	associated	with	a	user	interface	color	as	a
COLORREF.

Parameters:
int	which
The	UI	color	index	(see	gfx.h).

Prototype:
virtual	void	SetOldUIColor(int	which,	Point3	*clr)	=	0;

Remarks:
Sets	the	specified	color	value	for	drawing	various	items	in	the	viewports.	This
is	the	same	as	the	previous	SetUIColor()	function.

Parameters:
int	which
Specifies	which	color	to	retrieve.	See	List	of	Viewport	Drawing	Color	Indices.
Point3	*clr
Points	to	the	color	value	to	set.

Prototype:
virtual	Point3	GetOldDefaultUIColor(int	which)	=	0;

Remarks:

Returns	the	default	color	used	for	drawing	various	items	in	the	3ds	max	user
interface.	The	values	returned	are	not	affected	by	the	user's	color	selections	or
those	set	by	SetUIColor().	This	is	the	same	as	the	previous
GetDefaultUIColor()	function.

Parameters:
int	which
Specifies	which	color	to	retrieve.	See	List	of	Viewport	Drawing	Color	Indices.

Prototype:
virtual	float	GetIconColorScale(IconType	type,	IconColorScale
which)	=	0;

Remarks:
Returns	a	floating	point	value	(in	the	range	0.0f	to	1.0f)	that	is	one	of	the	scale
factors	applied	to	the	specified	icon	type.	These	scale	values	used	to	do	image
processing	on	the	icons	at	start-up	time.

Parameters:
IconType	type
The	icon	type.	One	of	the	following	values:
kDisabledIcon
The	disabled	icons.
kEnabledIcon
The	enabled	icons.

IconColorScale	which
The	icon	color	scale.	One	of	the	following	values:
kSaturationScale
The	saturation	scale.
kValueScale
The	value	scale.
kAlphaScale
The	alpha	scale.

Prototype:
virtual	void	SetIconColorScale(IconType	type,	IconColorScale

which,	float	value)	=	0;
Remarks:
Sets	the	specified	scale	factor	for	the	icon	type	passed.	The	color	manager
maintains	the	values	for	the	3ds	max	icon	image	processing	system.
Developers	can	set	values	to	scale	the	saturation,	value	and	transparency	for
enabled	and	disabled	icon	images	using	this	method.

Parameters:
IconType	type
The	icon	type.	One	of	the	following	values:
kDisabledIcon
The	disabled	icons.
kEnabledIcon
The	enabled	icons.

IconColorScale	which
The	icon	color	scale.	One	of	the	following	values:
kSaturationScale
The	saturation	scale.
kValueScale
The	value	scale.
kAlphaScale
The	alpha	scale.

float	value
The	value	to	set	(in	the	range	0.0f	to	1.0f).

Prototype:
virtual	bool	GetIconColorInvert(IconType	type)	=	0;

Remarks:
Returns	true	if	the	invert	flag	is	set	for	the	specified	icon	type	and	false	if	not
set.

Parameters:
IconType	type
The	icon	type.	One	of	the	following	values:
kDisabledIcon

The	disabled	icons.
kEnabledIcon
The	enabled	icons.

Prototype:
virtual	void	SetIconColorInvert(IconType	type,	bool	value)	=	0;

Remarks:
Sets	the	invert	flag	for	the	specified	icon	type	to	on	or	off.

Parameters:
IconType	type
The	icon	type.	One	of	the	following	values:
kDisabledIcon
The	disabled	icons.
kEnabledIcon
The	enabled	icons.

bool	value
Pass	true	for	inverted;	false	for	not	inverted.

Prototype:
virtual	BOOL	SetIconFolder(TCHAR*	pFolder)	=	0;

Remarks:
This	method	takes	the	name	of	a	folder	that	must	be	in	3ds	max	"UI"	folder.	If
the	folder	exists,	then	it	sets	3ds	max	icon	folder	to	point	to	it,	and	redraws	the
UI	with	those	new	icons.Warning:	All	of	the	3ds	max	standard	icon	BMP	files
must	exist	in	that	folder.	If	any	of	the	standard	files	are	missing,	icons	will
appear	blank	in	the	UI.	All	the	icons	files	needed	live	in	the	UI\Icons	folder,
which	is	the	default	icon	folder.

Parameters:
TCHAR*	pFolder
The	icon	folder	to	set.

Prototype:

virtual	void	InitSystemColors()	=	0;
Remarks:
This	method	is	used	internally	to	initialize	the	colors	used	by	the	system	to
their	default	values.	This	should	not	be	called	by	third	party	developers.

Prototype:
virtual	IColorManager*	Copy()	=	0;

Remarks:
This	method	is	used	internally.	It	makes	a	copy	of	the	color	database	that	the
UI	changes,	and	then	it	copies	it	back	to	the	original	to	commit	the	changes.
Third	party	developers	won't	need	to	call	this.

Prototype:
virtual	TCHAR*	GetFileName()	=	0;

Remarks:
Returns	the	file	name	of	the	currently	loaded	color	file.

Prototype:
virtual	COLORREF	GetDefaultColor(ColorId	id)	=	0;

Remarks:
Returns	the	default	color	for	the	specified	ID.	The	default	color	is	the	value
passed	as	defaultValue	in	RegisterColor(),	regardless	if	a	SetColor()	has
been	done	subsequently.	This	is	used	by	the	UI	when	the	user	presses	"Reset"
to	reset	a	color	to	its	default	value.

Parameters:
ColorId	id
The	ID	of	the	color.

Prototype:
virtual	COLORREF	GetOldUIColorCOLORREF(int	which)	=	0;

Remarks:
Returns	the	specified	color	value	for	drawing	various	items	in	the	viewports	as

a	COLORREF.
Parameters:
int	which
Specifies	which	color	to	retrieve.	See	List	of	Viewport	Drawing	Color	Indices.

Prototype:
virtual	void	RepaintUI(RepaintType	type)	=	0;

Remarks:
This	method	allows	you	to	issue	a	repaint	of	the	user	interface.

Parameters:
RepaintType	type
The	type	of	repaint	you	wish	to	issue;	kRepaintAll,	kRepaintTrackBar,
kRepaintTimeBar.

The	following	global	functions	are	used	internally	and	should	not
be	called	by	plug-in	developers
IColorManager*	CreateColorManager(TCHAR*
pDefaultColorFile);
void	DeleteColorManager(IColorManager*	pColorMan);
void	SaveColors();

Class	IDragAndDropMgr
See	Also:	Class	FPStaticInterface,	Class	DragAndDropHandler,	Class	URLTab
class	IDragAndDropMgr	:	public	FPStaticInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	Drag	and	Drop	system	is	managed	through	a	Core	FP	interface
(DND_MGR_INTERFACE),	defined	by	this	class.	It	provides	control	over	the
DnD	system,	manages	handler	registration	and	exposes	some	useful	utility
methods	for	downloading	URL’s,	simulating	drops,	etc.
The	DragAndDropMgr	supports	multiple	DragAndDropHandlers	regsitered
against	a	single	HWND	window.	This	is	to	allow	new	components	and	3rd-party
developers	to	incrementally	add	handlers	for	new	dropTypes	to	common
windows	such	as	viewports	that	the	default	handlers	don't	know	how	to	handle.
The	IDragAndDropMgr::EnableDandD(HWND	hwnd,	BOOL	flag,
DragAndDropHandler*	handler)	method	can	be	called	multiple	times	on
the	same	window	with	different	handler	instances.	The	DnDMgr	keeps	track	of
all	the	DragAndDropHandlers	on	each	window	and	will	call	their	DnD	event
methods	as	needed,	in	order	of	registration,	until	one	of	them	returns	S_OK.	For
example,	on	a	viewport,	the	DefaultDragAndDropHandler	is	registered	by
default.	The	event	methods	(such	as	DragEnter,	DragOver,	Drop,	etc.)	return
E_FAIL	if	the	dropping	IDataObject	or	DropType	is	not	recognized	by	them.
Then,	if	a	new	component	registers	its	own	handler	to	deal	with	some	new
droptype	it	adds,	the	default	handler	will	fail	to	recognize	the	new	droptype	and
so	its	handler	will	be	called	to	process	the	new	drop	type.
Note	that	this	means	DragAndDropHandler	event	methods	must	correctly	return
S_OK	or	E_FAIL	depending	on	whether	they	handle	the	IDataObject	or
DropType	currently	dropping,	so	that	the	appropriate	handler	is	found	and	called
by	the	DnDMgr.
For	an	example,	please	refer	to
\MAXSDK\SAMPLES\HOWTO\DND_TEST.
Function:
IDragAndDropMgr*	GetDragAndDropMgr();

Remarks:

This	function,	which	is	not	part	of	the	class,	allows	you	to	retrieve	a	pointer	to
the	Drag	and	Drop	Manager	interface.	This	will	return	a	pointer	to	the	DnD
manager	interface	from	the	core	interface.

Methods:
public:

Prototype:
virtual	void	EnableDandD(BOOL	flag)=0;

Remarks:
This	method	allows	you	to	globally	enable	or	disable	the	DnD	interface.

Parameters:
BOOL	flag
TRUE	to	enable,	FALSE	to	disable.

Prototype:
virtual	BOOL	IsEnabled()=0;;

Remarks:
This	method	returns	TRUE	if	the	global	DnD	interface	is	enabled,	otherwise
FALSE.

Prototype:
virtual	BOOL	EnableDandD(HWND	hwnd,	BOOL	flag,
DragAndDropHandler*	handler	=	NULL)=0;;

Remarks:
This	method	allows	you	to	enable	DnD	for	a	given	window	(and	its	children).
If	no	custom	DragAndDropHandler	is	supplied,	a	default	one	is	used	that	will
accept	dropped	scene	files	for	opening	and	scripts	for	running.

Parameters:
HWND	hwnd
A	handle	to	the	window	you	wish	to	enable	or	disable	DnD	for.
BOOL	flag
TRUE	to	enable,	FALSE	to	disable.

DragAndDropHandler*	handler	=	NULL
A	pointer	to	a	custom	DnD	handler,	or	NULL	to	accept	a	default	one.

Return	Value:
TRUE	if	the	method	was	successful,	otherwise	FALSE.

Prototype:
virtual	BOOL	DropPackage(HWND	hwnd,	POINT&	point,
URLTab&	package)=0;

Remarks:
This	method	allows	the	simulation	of	a	package	of	files	into	a	window	at	a
given	point.	A	package	of	files,	specified	as	a	list	of	URL	strings	is	the
common	form	of	DropType	data	from	iDrop	sources	and	files	dragged	from
the	Windows	desktop.	The	entire	package	is	downloaded,	as	needed,	but	only
the	first	file	in	the	list	is	actually	dropped	into	3ds	max.	The	other	files	in	the
package	are	presumed	to	be	support	files,	such	as	texmaps	or	xref	sources,	for
the	main	drop	file.	After	the	drop,	the	URL	strings	in	the	URLTab	are
converted	to	fully-specified	path	names	to	local	file	copies,	if	any	had	to	be
downloaded	from	the	web.

Parameters:
HWND	hwnd
A	handle	to	the	window.	If	this	is	set	to	NULL,	the	default	3ds	max	window	is
used.
POINT&	point
The	point	at	which	to	drop.
URLTab&	package
A	reference	to	the	local	copies	of	the	URL	strings.

Return	Value:
TRUE	if	the	drop	was	successful,	otherwise	FALSE.

Prototype:
virtual	BOOL	DownloadPackage(URLTab&	package,	TCHAR*
directory,	HWND	hwnd	=	NULL,	bool	showProgress	=	false)=0;

Remarks:

This	method	serves	as	a	utility	function	that	can	be	used	to	download	a
package	of	URLs	to	the	specified	directory.	If	the	hwnd	argument	is	supplied,
any	progress	or	other	messages	are	centered	over	that	window.

Parameters:
URLTab&	package
A	reference	to	the	local	copies	of	the	URL	strings.
TCHAR*	directory
The	directory	path	string	to	download	to.
HWND	hwnd	=	NULL
A	handle	to	the	window.	If	this	is	set	to	NULL,	the	default	window	is	used.
bool	showProgress	=	false
The	download	progress	dialog	can	be	displayed	by	passing	true.

Return	Value:
TRUE	if	the	download	was	successful,	otherwise	FALSE.

Prototype:
virtual	TCHAR*	GetDownloadDirectory()=0;

Remarks:
This	method	returns	the	fully-specified	path	to	the	directory	in	which	package
drops	are	downloaded.

Prototype:
virtual	int	NumHandlers(HWND	hwnd)=0;

Remarks:
This	method	returns	the	number	of	handlers	associated	with	the	given	window.

Parameters:
HWND	hwnd	=	NULL
A	handle	to	the	window.

Prototype:
virtual	DragAndDropHandler*	GetHandler(HWND	hwnd,	int
i)=0;

Remarks:
This	method	returns	a	pointer	to	a	specified	DnD	hander	of	a	specified
window.

Parameters:
HWND	hwnd	=	NULL
A	handle	to	the	window.
int	i
The	I-th	handler.

Prototype:
virtual	bool	DownloadUrlToDisk(HWND	hwnd,	TCHAR*	url,
TCHAR*	fileName,	DWORD	dlgflags=0)=0;

Remarks:
This	method	allows	you	to	download	the	file	referenced	by	the	URL	to	disk.

Parameters:
HWND	hwnd	=	NULL
A	handle	to	the	window.
TCHAR*	url
The	URL	string	of	the	file	to	download.
TCHAR*	fileName
The	filename	string	of	the	URL	to	store	on	disk.
DWORD	dlgflags=0
Additional	controls	to	the	download	behavior.	Currently	only	one	flag	is
supported,	DOWNLOADDLG_NOPLACE,	which	hides	an	option	in	the
progress	dialog	that	allows	the	user	to	place	(move)	a	dropped	object
immediately	after	being	dropped.

Return	Value:
TRUE	if	the	download	was	successful,	otherwise	FALSE.

Prototype:
virtual	INode*	ImportContextNode()=0;

Remarks:

This	method	returns	a	pointer	to	the	import	context	node.

Class	IParamWireMgr
See	Also:	Class	FPStaticInterface,	Class	Control,	Class	ReferenceTarget
class	IParamWireMgr	:	public	FPStaticInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	interface	that	provides	general	access	to	the	parameter
wiring	functions.	You	can	obtain	a	pointer	to	the	Parameter	Wire	Manager
interface	using;	IParamWireMgr*	GetParamWireMgr().	This	macro	will
return
(IParamWireMgr*)GetCOREInterface(PARAMWIRE_MGR_INTERFACE).
All	methods	of	this	class	are	Implemented	by	the	System.

Methods:
public:

Prototype:
virtual	void	StartParamWire()=0;

Remarks:
This	method	will	launch	the	parameter	wiring	UI	mode.

Prototype:
virtual	void	OpenEditor()=0;

Remarks:
This	method	will	open	up	the	parameter	wiring	dialog	on	the	selected	objects.

Prototype:
virtual	void	EditParams(ReferenceTarget*	leftParent,	int
leftSubNum,	ReferenceTarget*	rightParent,	int	rightSubNum)=0;

Remarks:
This	method	allows	you	to	edit	the	left-	and	right-hand	parameters	and	opens
the	parameter	wiring	dialog	using	the	provided	parameters.

Parameters:

ReferenceTarget*	leftParent
A	pointer	to	the	left-hand	reference	target.
int	leftSubNum
The	sub-animatable	of	the	left-hand	reference	target.
ReferenceTarget*	rightParent
A	pointer	to	the	right-hand	reference	target.
int	rightSubNum
The	sub-animatable	of	the	right-hand	reference	target.

Prototype:
virtual	void	EditControllers(Control*	leftWire,	Control*
rightWire)=0;

Remarks:
This	method	allows	you	to	setup	the	two	controllers	for	the	left-	and	right-
hand	to	edit.

Parameters:
Control*	leftWire
A	pointer	to	the	controller	for	the	left-hand	wire.
Control*	leftWire
A	pointer	to	the	controller	for	the	right-hand	wire.

Prototype:
virtual	void	EditController(Control*	wire)=0;

Remarks:
This	method	is	identical	to	the	EditControllers()	but	accepts	a	single	wire
controller	for	the	left-hand.	This	method	effectively	calls
EditControllers(wire,	NULL).

Parameters:
Control*	wire
A	pointer	to	the	controller	being	edited.

Prototype:

virtual	bool	Connect(ReferenceTarget*	fromParent,	int
fromSubNum,	ReferenceTarget*	toParent,	int	toSubNum,
TCHAR*	toExpr)=0;

Remarks:
This	method	allows	you	to	set	up	a	one-way	wire.

Parameters:
ReferenceTarget*	fromParent
A	pointer	to	the	reference	target	to	wire	from.
int	fromSubNum
The	sub-animatable	to	wire	from.
ReferenceTarget*	toParent
A	pointer	to	the	reference	target	to	wire	to.
int	toSubNum
The	sub-animatable	to	wire	to.
TCHAR*	toExpr
A	string	containing	the	expression	on	the	"to	wire".

Return	Value:
TRUE	if	the	connection	can	be	made,	otherwise	FALSE.

Prototype:
virtual	bool	Connect2Way(ReferenceTarget*	leftParent,	int
leftSubNum,	ReferenceTarget*	rightParent,	int	rightSubNum,
TCHAR*	leftExpr,	TCHAR*	rightExpr=NULL)=0;

Remarks:
This	method	allows	you	to	set	up	a	two-way	wire.

Parameters:
ReferenceTarget*	leftParent
A	pointer	to	the	left-hand	reference	target.
int	leftSubNum
The	sub-animatable	of	the	left-hand	reference	target.
ReferenceTarget*	rightParent
A	pointer	to	the	right-hand	reference	target.

int	rightSubNum
The	sub-animatable	of	the	right-hand	reference	target.
TCHAR*	leftExpr
A	string	containing	the	expression	for	the	left-hand	target.
TCHAR*	rightExpr	=	NULL
A	string	containing	the	expression	for	the	right-hand	target.

Return	Value:
TRUE	if	the	connection	can	be	made,	otherwise	FALSE.

Prototype:
virtual	bool	Disconnect(Control*	wireController)=0;

Remarks:
This	method	allows	you	to	disconnect	a	one-way	wire.

Parameters:
Control*	wireController
A	pointer	to	the	wire	controller	you	wish	to	disconnect.

Return	Value:
TRUE	if	the	disconnect	was	successful,	otherwise	FALSE.

Prototype:
virtual	bool	Disconnect2Way(Control*	wireController1,	Control*
wireController2)=0;

Remarks:
This	method	allows	you	to	disconnect	a	two-way	wire.

Parameters:
Control*	wireController1
A	pointer	to	the	first	wire	controller	you	wish	to	disconnect.
Control*	wireController2
A	pointer	to	the	second	wire	controller	you	wish	to	disconnect.

Return	Value:
TRUE	if	the	disconnect	was	successful,	otherwise	FALSE.

Class	NodeDisplayCallback
See	Also:	Class	InterfaceServer,	Class	INodeDisplayControl,	Class	INode,
Class	ViewExp,	Class	IPoint2.
class	NodeDisplayCallback	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
A	callback	to	allow	plug-ins	that	aren't	actually	objects	(such	as	utilities)	to
control	a	Node's	display.
This	class	enables	you	to	display	extra	information	on	top	of	a	node	in	a
viewport.	Once	activated,	a	plug-in	will	control	the	display	(on/off)	of	a	node’s
world	space	representation	as	well	as	add	data	in	a	viewport	on	a	per	node	basis.
This	approach	allows	you	to	replace	the	drawing	code	of	every	node	without
adding	modifiers	on	top	of	each	of	them.

Methods:
public:

Prototype:
virtual	void	StartDisplay(TimeValue	t,	ViewExp	*vpt,	int	flags)=0;

Remarks:
This	method	is	called	just	before	3ds	max	draws	the	nodes	in	the	scene.

Parameters:
TimeValue	t
The	time	at	which	the	nodes	are	being	drawn.
ViewExp	*vpt
Points	to	an	interface	for	the	viewport	the	node	is	being	drawn	in.
int	flags
These	flags	are	used	internally.

Prototype:
virtual	void	EndDisplay(TimeValue	t,	ViewExp	*vpt,	int	flags)=0;

Remarks:
This	method	is	called	just	after	3ds	max	draws	the	nodes	in	the	scene.

Parameters:
TimeValue	t
The	time	at	which	the	nodes	were	drawn.
ViewExp	*vpt
Points	to	an	interface	for	the	viewport	the	node	is	being	drawn	in.
int	flags
These	flags	are	used	internally.

Prototype:
virtual	bool	Display(TimeValue	t,	ViewExp	*vpt,	int	flags,	INode
*node)=0;

Remarks:
This	method	is	called	for	every	node	to	allow	it	display	itself.

Parameters:
TimeValue	t
The	time	at	which	the	node	is	to	be	drawn.
ViewExp	*vpt
Points	to	an	interface	for	the	viewport	in	which	the	node	is	being	drawn	in.
int	flags
The	display	flags,	which	are;
USE_DAMAGE_RECT
If	this	flag	is	set,	only	the	damaged	area	needs	to	be	displayed.	The
damaged	rectangle	may	be	retrieved	using	INode::GetDamagedRect().
See	Class	INode.
DISP_SHOWSUBOBJECT
This	indicates	if	an	item	should	display	its	sub-object	selection	state.	The
system	will	set	this	flag	is	the	item	is	selected,	the	user	is	in	the	modify
branch,	and	the	item	is	in	sub-object	selection	mode.

INode	*node
Points	to	the	node	being	drawn.

Return	Value:
TRUE	if	displayed,	otherwise	FALSE.

Prototype:
virtual	bool	SuspendObjectDisplay(TimeValue	t,	INode	*node)=0;

Remarks:
This	method	is	called	to	determine	if	the	node	mesh	should	be	displayed.	It
should	return	true;	otherwise	return	false.

Parameters:
TimeValue	t
The	time	at	which	to	check	if	the	node	should	be	displayed.
INode	*node
The	node	to	check.

Prototype:
virtual	void	AddNodeCallbackBox(TimeValue	t,	INode	*node,
ViewExp	*vpt,	Box3&	box)=0;

Remarks:
This	method	will	ask	the	callback	to	participate	in	the	bounding	box
calculation.

Parameters:
TimeValue	t
The	time	at	which	to	calculate	the	bounding	box.
INode	*node
The	node	to	calculate	the	bounding	box	for.
ViewExp	*vpt
Points	to	an	interface	for	the	viewport	in	which	the	node	is	being	drawn	in.
Box3&	box
A	reference	to	the	bounding	box.

Prototype:
virtual	bool	HitTest(TimeValue	t,	INode	*node,	int	type,	int
crossing,	int	flags,	IPoint2	*p,	ViewExp*	vpt)=0;

Remarks:
This	method	hit	tests	the	callback's	mesh.

Parameters:
TimeValue	t
The	time	at	which	to	hit	test.
INode	*node
A	pointer	to	the	node	to	test.
int	type
The	type	of	hit	testing	to	perform.	See	Hit	Test	Types	for	details.
int	crossing
The	state	of	the	crossing	setting.	If	TRUE	crossing	selection	is	on.
int	flags
The	hit	test	flags.	See	Hit	Test	Flags	for	details.
IPoint2	*p
The	screen	point	to	test.
ViewExp*	vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.

Return	Value:
TRUE	if	the	item	was	hit,	otherwise	FALSE.

Prototype:
virtual	void	Activate()=0;

Remarks:
This	method	is	called	when	the	callback	gets	activated.	It	is	up	to	the	callback
to	invalidate	the	screen.

Prototype:
virtual	void	Deactivate()=0;

Remarks:
This	method	is	called	when	the	callback	is	deactivated.

Prototype:
virtual	TSTR	GetName()	const	=	0;

Remarks:
This	method	returns	the	name	of	the	callback	which	is	used	for	display	in	the
menu.	The	user	must	delete	the	string	returned.

Class	XTCObject
See	Also:	Class	InterfaceServer,	Class	Class_ID,	Class	ModContext,	Class
ObjectState,	Class	INode,	Class	Object,	Class	Modifier,	Class
GraphicsWindow,	Class	FPInterface,	List	of	Channel	Bits.,	Class
XTCContainer,	Class	IXTCAccess
class	XTCObject	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	the	base	class	for	an	Extension	Channel	plug-in.	These	plug-ins	are	used
to	allow	a	developer	defined	object	to	flow	down	the	geometry	pipeline.	This
class	provides	an	interface	to	the	extension	object.	This	is	the	virtual	base	class
that	developers	can	derive	objects	from,	that	should	be	inserted	into	the
extension	channel	of	the	object	flowing	up	the	stack.	Extension	Channels	will
expand	the	geometry	pipeline	by	allowing	one	to	add	a	custom	object	to	the
pipeline	object	that	can	flow	down	the	pipeline.	This	object	will	get	notified
whenever	something	in	the	pipeline	changes.	For	example,	if	you	want	to
indicate	when	a	certain	object	becomes	invalid	for	export	to	their	game	engine,
invalid	skin-vertex	assignments,	bound	patches	etc.	By	inserting	an	Extension
Channel	Object	(XTCObject,	for	short)	into	the	pipeline	you	can	accomplish
this,	by	constantly	checking	the	structure	of	the	object	and	displaying	wrong
faces/vertices	etc.	in	the	viewport.
You	can	specify	which	other	channels	it	depends	on	using	DependsOn().	The
extension	object	has	callback	methods	that	get	called	before	and	after	a	modifier
modifies	a	channel	that	the	extension	object	depends	on	using
PreChanChangedNotify()	and	PostChanChangedNotify().	The
extension	object	can	declare	additional	channels	that	it	modifies	using
ChannelsChanged(),	so	that	it	can	make	any	changes	to	the	mesh	before	and
after	the	modification	by	the	modifier.
In	general,	the	Extension	Channel	is	a	transient	data	structure	that	gets	recreated
on	every	pipeline	evaluation.	So	the	object	that	adds	an	extension	channel	to	the
modifier	stack	automatically	makes	it	persistent.	However,	when	the	user
collapses	the	stack,	the	user	might	want	the	Extension	Channel	to	be	preserved
as	well.	In	order	to	accomplish	that,	please	refer	to	the	Class	BaseObject	and	the
methods	NotifyPreCollapse()	and	NotifyPostCollapse().	These	methods

will	be	called	by	the	collapse	code.	It	will	give	the	modifier	or	BaseObject,	that
adds	an	XTC	object	to	the	stack	the	possibility	to	apply	a	modifier,	that	inserts
these	XTC	objects	onto	the	stack	after	the	collapse.	Through	this	mechanism,	the
XTC	will	survive	a	stack	collapse.	The	Pre	and	Post	notifications	will	be	called
through	a	pipeline	enumeration	downstream	(for	more	info	see	Class
GeomPipelineEnumProc).	Developers,	who	are	collapsing	the	stack
programmatically,	have	to	call	this	method.	In	case	this	method	is	not	called,	the
XTC	objects	will	by	default	be	copied	as	well,	since	they	are	part	of	the	object	in
the	wsCache.	However,	they	won't	survive	a	save/load	operation.	In	addition	to
all	this,	XTC	objects	also	have	the	possibility	to	display	their	data	in	the
viewports.	Any	Extension	Channel	Object	can	disable	the	display	of	the	object
itself	and	take	over	the	entire	display	itself,	by	returning	true	in	the	method
SuspendObjectDisplay().
Note:	Modifiers	which	change	the	type	of	object	that	flows	up	the	stack	have	to
copy	the	Extension	Channel	from	the	old	object	into	the	new	one	using
CopyAdditionalChannels()	(e.g.	the	extrude	modifier	has	to	copy	the	XTC
from	the	incoming	spline	to	the	Mesh,	Patch	or	NURBS	object).
Note:	Compound	objects	have	to	merge	the	Extension	Channel	of	the	branched
pipelines	into	the	resulting	pipeline.	This	is	in	general	a	simple	copy	of	the
Extension	Channel	Object	into	the	new	Extension	Channel.	When	the
CompoundObject	evaluates	is	branches	it	would	call
CopyAdditionalChannels(os->obj),	so	that	the	Extension	Channels	of	the
branches	are	copied	over.	In	the	ConvertToType()	method	it	then	has	to	copy
the	Extension	Channels	from	itself	to	the	converted	object	using	obj-
>CopyAdditionalChannels(this).
Also	note	that	the	Extension	Channel	itself	is	implemented	in	Class	Object.	This
means,	that	it	will	be	available	for	all	pipeline	objects	that	get	implemented	in
3ds	max.	For	additional	methods	related	to	extension	objects	see	the	methods	in
Class	Object	->	Extension	Channel	Access.
All	methods	of	this	class	are	implemented	by	the	plug-in.	Default
implementations	are	shown.

Methods:
public:

Prototype:

virtual	Class_ID	ExtensionID()=0;
Remarks:
This	method	returns	the	unique	identifier	for	the	object.

Prototype:
virtual	XTCObject	*Clone()=0;

Remarks:
This	method	is	called	to	create	a	cloned	copy	of	the	object.	The	object	should
create	a	copy	of	itself	and	return	a	pointer	to	it.

Prototype:
virtual	ChannelMask	DependsOn();

Remarks:
This	method	returns	a	ChannelMask	which	specifies	the	channels	that	the
XTCObject	depends	on.	If	a	modifier	changes	a	channel	that	a	XTCObject
depends	on,	its	PreChanChangedNotify()	and
PostChanChangedNotify()	methods	will	be	called.

Return	Value:
See	the	List	of	Channel	Bits.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	ChannelMask	ChannelsChanged();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	a	ChannelMask	which	specifies	the	channels	that	the
extension	object	changes	in	the	PreChanChangedNotify()	and
PostChanChangedNotify()	methods.

Return	Value:
See	the	List	of	Channel	Bits.

Default	Implementation:

{	return	0;	}

Prototype:
virtual	ChannelMask	ChannelsUsed();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	a	ChannelMask	which	specifies	the	channels	that	the
extension	object	uses	in	the	PreChanChangedNotify()	and
PostChanChangedNotify()	methods.

Return	Value:
See	the	List	of	Channel	Bits.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	int	Display(TimeValue	t,	INode*	inode,	ViewExp	*vpt,	int
flags,Object	*pObj);

Remarks:
If	an	XTCObject	wants	to	display	itself	in	the	viewport	it	can	overwrite	this
method.

Parameters:
TimeValue	t
The	time	at	which	the	object	is	to	be	displayed.
INode*	inode
Points	to	the	node	for	the	object.
ViewExp	*vpt
Points	to	the	viewport	interface	for	the	object.
int	flags
See	List	of	Display	Flags.
Object	*pObj
Points	to	the	object	that	the	extension	object	is	a	part	of.

Return	Value:

The	return	value	is	not	currently	used.
Default	Implementation:
{	return	0;	}

Prototype:
virtual	void	PreChanChangedNotify(TimeValue	t,	ModContext
&mc,	ObjectState*	os,	INode	*node,	Modifier	*mod,	bool
bEndOfPipeline);

Remarks:
This	method	is	called	before	a	modifier	is	applied	that	changes	a	channel	that
the	XTCObject	depends	on.

Parameters:
TimeValue	t
The	time	at	which	the	channel	will	be	modified.
ModContext	&mc
The	modifier	context.
ObjectState*	os
The	objectstate	of	the	object.
INode	*node
A	pointer	to	the	node.
Modifier	*mod
A	pointer	to	the	modifier	being	applied.
bool	bEndOfPipeline
TRUE	to	indicate	that	this	is	the	last	change	before	the	wsCache.

Default	Implementation:
{	}

Prototype:
virtual	void	PostChanChangedNotify(TimeValue	t,	ModContext
&mc,	ObjectState*	os,	INode	*node,Modifier	*mod,	bool
bEndOfPipeline);

Remarks:

This	method	will	be	called	after	a	modifier	is	applied	that	changes	a	channel
that	the	XTC	object	depends	on.

Parameters:
TimeValue	t
The	time	at	which	the	channel	will	be	modified.
ModContext	&mc
The	modifier	context.
ObjectState*	os
The	objectstate	of	the	object.
INode	*node
A	pointer	to	the	node.
Modifier	*mod
A	pointer	to	the	modifier	being	applied.
bool	bEndOfPipeline
TRUE	to	indicate	that	this	is	the	last	change	before	the	wsCache.

Default	Implementation:
{	}

Prototype:
virtual	BOOL	SuspendObjectDisplay();

Remarks:
If	the	XTCObject	returns	TRUE	from	this	method	the	object	is	not	displayed
in	the	viewport;	if	FALSE	is	returned	the	Display()	method	will	be	called	to
display	the	object.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
This	method	is	called	to	delete	the	extension	object.

Prototype:
virtual	void	MaybeEnlargeViewportRect(GraphicsWindow	*gw,
Rect	&rect);

Remarks:
This	method	allows	the	object	to	enlarge	its	viewport	rectangle	if	it	wants	to.
The	system	will	call	this	method	for	all	XTCObjects	when	calculating	the
viewport	rectangle;	the	XTCObject	can	enlarge	the	rectangle	if	desired.

Parameters:
GraphicsWindow	*gw
Points	to	the	GraphicsWindow	instance	associated	with	the	viewport	the
object	is	displayed	in.
Rect	&rect
The	viewport	rectangle	for	the	object	which	may	be	modified.

Default	Implementation:
{	}

Prototype:
virtual	bool	RemoveXTCObjectOnMergeBranches(Object
*obFrom,	Object	*obTo);

Remarks:
By	default	the	existing	XTCObjects	will	be	deleted	if	a	branch	updates	In	case
the	XTCObject	wants	to	do	more	intelligent	branching	(not	simply	delete	and
add),	it	can	return	false	from	this	method	so	that	it	can	later	(see
MergeXTCObject()	below)	copy	the	data	from	this	and	other	branches	into
an	existing	XTCObject.

Parameters:
Object	*obFrom
Points	to	the	source	object.
Object	*obTo
Points	to	the	destination	object.

Return	Value:
Returns	true	if	the	object	will	be	deleted;	false	to	do	more	processing	via
MergeXTCObject.

Default	Implementation:
{	return	true;	}

Prototype:
virtual	bool	MergeXTCObject(Object	*obFrom,	Object	*obTo,	int
prio,	int	branchID);

Remarks:
The	default	implementation	just	adds	the	XTCObject	to	the	to	object.	In	case
the	XTCObject	should	do	a	more	intelligent	merge	with	already	existing
XTCObjects	in	the	obTo,	it	has	to	overwrite	this	method.

Parameters:
Object	*obFrom
Points	to	the	source	object.
Object	*obTo
Points	to	the	destination	object.
int	prio
The	priority	to	set.
int	branchID
The	branch	identifier	to	set.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Default	Implementation:
{	obTo->AddXTCObject(this,prio,branchID);	return	true;}

Prototype:
virtual	bool	RemoveXTCObjectOnBranchDeleted(Object
*ComObj,int	branchID,	bool	branchWillBeReordered);

Remarks:
In	case	a	branch	of	a	compound	object	is	deleted	the	XTCObject	will	be	asked
if	the	XTCObject	should	be	deleted	as	well.	In	case	the	XTCObject	represents
a	merge	of	all	branches	the	XTCObject	might	want	to	return	false	to	this
method	and	reassign	itself	to	another	branch,	so	that	the	merged	information	is
not	lost.

Parameters:
Object	*ComObj
A	pointer	to	the	compound	object.
int	branchID
The	branch	identifier	to	set.
bool	branchWillBeReordered
TRUE	if	the	branch	should	be	reordered,	otherwise	FALSE.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Default	Implementation:
{	return	true;	}

Class	GeomPipelineEnumProc
See	Also:	Class	InterfaceServer,	Class	INode,	Class	Object,	Class	Modifier,	,
Class	IDerivedObject,	Class	ModContext,	Class	NotifyCollapseEnumProc.
class	GeomPipelineEnumProc	:	public	InterfaceServer

Description:
This	class	and	its	associated	global	functions	are	available	in	release	4.0	and
later	only.
This	is	the	callback	object	for	the	global	geometry	pipeline	enumeration
functions.	The	single	proc()	method	of	this	class	is	called	as	the	enumeration
takes	place.
The	following	functions	are	not	methods	of	this	class	but	are	available	for	use
with	it	to	begin	the	enumeration:
These	all	start	a	pipeline	enumeration	down	the	pipeline	towards	the	baseobject
and	over	the	baseobjects'	branches	in	case	it	is	a	compound	object.	A	pipleine
enumeration	can	be	started	from	a	Node,	an	Object	or	from	a	Modifier.

Function:
int	EnumGeomPipeline(GeomPipelineEnumProc	*gpep,	INode
*start,	bool	includeEmptyDOs	=	false);

Remarks:
The	global	function	begins	an	enumeration	of	the	geometry	pipeline	using	the
specified	node.

Parameters:
GeomPipelineEnumProc	*gpep
Points	to	the	callback	object	to	process	the	enumeration.
INode	*start
Points	to	the	node	to	start	the	enumeration.
bool	includeEmptyDOs	=	false
In	case	the	flag	includeEmptyDOs	is	declared	as	true,	the	proc	will	be	called
even	for	DerivedObjects,	that	don't	contain	any	modifiers.	In	that	case	the
object	pointer	will	be	NULL,	the	derObj	pointer	will	contain	the
DerivedObject	and	the	index	will	be	-1.

Return	Value:

One	of	the	following	values:
PIPE_ENUM_CONTINUE
PIPE_ENUM_STOP

Function:
int	EnumGeomPipeline(GeomPipelineEnumProc	*gpep,	Object
*start,	bool	includeEmptyDOs	=	false);

Remarks:
The	global	function	begins	an	enumeration	of	the	geometry	pipeline	using	the
specified	object.

Parameters:
GeomPipelineEnumProc	*gpep
Points	to	the	callback	object	to	process	the	enumeration.
Object	*start
Points	to	the	object	to	start	the	enumeration.
bool	includeEmptyDOs	=	false
In	case	the	flag	includeEmptyDOs	is	declared	as	true,	the	proc	will	be	called
even	for	DerivedObjects,	that	don't	contain	any	modifiers.	In	that	case	the
object	pointer	will	be	NULL,	the	derObj	pointer	will	contain	the
DerivedObject	and	the	index	will	be	-1.

Return	Value:
One	of	the	following	values:
PIPE_ENUM_CONTINUE
PIPE_ENUM_STOP

Function:
int	EnumGeomPipeline(GeomPipelineEnumProc	*gpep,
IDerivedObject	*start,	int	modIndex	=	0,	bool	includeEmptyDOs
=	false);

Remarks:
The	global	function	begins	an	enumeration	of	the	geometry	pipeline	using	the
specified	derived	object	and	modifier	index.	The	caller	of	this	method	has	to
provide	the	IDerviedObject	the	Modifier	is	applied	to	and	the	index	of	the

Modifier	in	the	IDerivedObject.	Developers	can	use	the	method
Modifier::GetIDerivedObject()	in	order	to	get	the	IDerviedObject	and
the	index,	given	a	modifier	and	a	ModContext.

Parameters:
GeomPipelineEnumProc	*gpep
Points	to	the	callback	object	to	process	the	enumeration.
IDerivedObject	*start
Points	to	the	derived	object	to	start	the	enumeration.
int	modIndex	=	0
The	zero	based	index	of	the	modifier	in	the	derived	object	to	start	with.
bool	includeEmptyDOs	=	false
In	case	the	flag	includeEmptyDOs	is	declared	as	true,	the	proc	will	be	called
even	for	DerivedObjects,	that	don't	contain	any	modifiers.	In	that	case	the
object	pointer	will	be	NULL,	the	derObj	pointer	will	contain	the
DerivedObject	and	the	index	will	be	-1.

Return	Value:
One	of	the	following	values:
PIPE_ENUM_CONTINUE
PIPE_ENUM_STOP

Methods:
public:

Prototype:
virtual	PipeEnumResult	proc(ReferenceTarget	*object,
IDerivedObject	*derObj,	int	index)=0;

Remarks:
This	is	the	callback	procedure	for	pipeline	enumeration.	The	ReferenceTarget
passed	to	the	proc	can	be	a	Node,	Modifier	or	Object.	In	case	it	is	a	Modifier
the	parameter	derObj	contains	the	DerivedObject	and	the	index	is	the	index
of	this	modifier	in	the	DerivedObject.	In	all	other	cases	derObj	is	NULL	and
index	is	0.

Parameters:
ReferenceTarget	*object

Points	to	the	item	in	the	geometry	pipeline.	This	can	be	a	Node,	Modifier	or
Object.
IDerivedObject	*derObj
If	object	above	is	a	Modifier	this	points	to	the	derived	object.
int	index
If	object	aive	is	a	Modifier	this	is	the	index	of	this	modifier	in	the
DerivedObject.

Return	Value:
One	of	the	following	values	which	determines	how	the	enumeration	proceeds:
PIPE_ENUM_CONTINUE
Specifies	to	continue	the	enumeration.
PIPE_ENUM_STOP
Specifies	to	halt	the	enumeration.

Class	IFaceDataChannel
See	Also:	Class	IDataChannel,	Class	IFaceDataChannelsEnumCallBack	,	Class
IFaceDataMgr
class	IFaceDataChannel	:	public	IDataChannel

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	face-data	channel	interface	and	as	such	is	an	abstraction
of	a	collection	of	data	objects	that	is	associated	with	faces	of	3ds	max	objects.
3ds	max	objects	that	have	face-data	channels	call	the	methods	of	this	interface
when	those	faces	change	in	some	way.	The	data	channels	can	then	react	to	the
changes	to	the	faces.	You	can	use	the	macro
GetFaceDataChannelInterface(obj)	to	obtain	a	pointer	to	this	interface.
Currently	in	version	4.0	only	Meshes	support	face-data	channels.

Methods:
public:

Face	Operations	and	Events
The	face	operations	and	events	are	called	by	the	owner	of	face-data	channels
when	its	faces	change	in	some	way.	It's	up	to	the	face-data	channel	to	do
wathever	it	wants	to	do	on	these	notification	methods.

Prototype:
virtual	BOOL	FacesCreated(ULONG	at,	ULONG	num)	=	0;

Remarks:
This	method	is	called	when	num	new	faces	are	created	at	the	index	at	in	the
object’s	list	of	faces.

Parameters:
ULONG	at
The	index	in	the	object’s	array	of	faces	where	the	new	faces	are	inserted.
ULONG	num
The	number	of	new	faces	which	are	created.

Return	Value:

TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	BOOL	FacesClonedAndAppended(BitArray&	set)	=	0;

Remarks:
This	method	is	called	when	the	owner	object	has	cloned	some	of	its	faces	and
appended	these	to	its	list	of	faces.	The	bits	in	the	set	array	correspond	to	the
cloned	faces.

Parameters:
BitArray&	set
The	array	of	bits.	Note	that	this	array	has	as	many	bits	as	there	are	faces	in	the
owner	object.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	BOOL	FacesDeleted(BitArray&	set)	=	0;

Remarks:
This	method	is	called	when	faces	were	deleted	in	the	owner	object.	The	bits	in
the	set	array	correspond	to	the	deleted	faces.

Parameters:
BitArray&	set
The	array	of	bits.	Note	that	this	array	has	as	many	bits	as	there	are	faces	in	the
owner	object.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	BOOL	FacesDeleted(ULONG	from,	ULONG	num)	=	0;

Remarks:
This	method	is	called	when	faces	were	deleted	in	the	owner	object.	This
method	allows	for	a	more	efficient	deletion	of	a	range	of	data	objects	than	the

previous	BitArray	based	one.
Parameters:
ULONG	from
The	index	in	the	object’s	array	of	faces.	Faces	starting	at	this	index	were
deleted.
ULONG	num
The	number	of	faces	that	were	deleted.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	void	AllFacesDeleted()	=	0;

Remarks:
This	method	is	called	when	all	faces	in	the	owner	object	are	deleted

Prototype:
virtual	BOOL	FaceCopied(ULONG	from,	ULONG	to)	=	0;

Remarks:
This	method	is	called	when	a	face	has	been	copied	from	index	from	in	the
owner	object's	array	of	faces	to	the	face	at	index	to.

Parameters:
ULONG	from
The	index	of	the	source	face.
ULONG	to
The	index	of	the	destination	face.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	BOOL	FaceInterpolated(ULONG	numSrc,	ULONG*
srcFaces,	float*	coeff,	ULONG	targetFace)	=	0;

Remarks:

This	method	is	called	when	a	new	face	has	been	created	in	the	owner	object
based	on	data	interpolated	from	other	faces.

Parameters:
ULONG	numSrc
The	number	of	faces	used	in	the	interpolation.
ULONG*	srcFaces
The	array	of	numSrc	face	indices	into	the	owner	object’s	face	array.	These
faces	were	used	when	creating	the	new	face.
float*	coeff
The	array	of	numSrc	coefficients	used	in	the	interpolation.
ULONG	targetFac
The	index	in	the	owner	object’s	array	of	faces	of	the	newly	created	face.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Geometry	pipeline	(stack)	methods
These	methods	are	called	when	the	owner	object	is	flowing	up	the	pipeline
(stack).	They	must	be	implemented	to	ensure	that	the	face-data	channel	flows	up
the	pipeline	correctly.	The	owner	object	expects	the	face-data	to	do	exactly	what
the	names	of	these	methods	imply.	These	can	be	seen	as	commands	that	are
given	by	the	owner	object	to	the	face-data	channel

Prototype:
virtual	IFaceDataChannel*	CreateChannel()	=	0;

Remarks:
This	method	will	allocate	an	empty	data-channel.

Prototype:
virtual	IFaceDataChannel*	CloneChannel()	=	0;

Remarks:
The	data-channel	needs	to	allocate	a	new	instance	of	itself	and	fill	it	with
copies	of	all	data	items	it	stores.	Note:	This	method	makes	it	more	efficient	to
clone	the	whole	data-channel.

Prototype:
virtual	BOOL	AppendChannel(const	IFaceDataChannel*
fromChan)	=	0;

Remarks:
The	data-channel	needs	to	append	the	data	objects	in	the	fromChan	to	itself.

Parameters:
const	IFaceDataChannel*	fromChan
The	channel	containing	the	data	objects	to	append.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Class	IFaceDataMgr
See	Also:	Class	BaseInterface,	Class	IDataChannel,	Class	IFaceDataChannel
class	IFaceDataMgr	:	public	BaseInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	an	Interface	for	managing	face-data	channels.	Objects	that
wish	to	have	face-data	channels	should	implement	this	interface.	If	this	interface
needs	to	be	changed,	a	new	one	should	be	derived	from	it	and	changed
(IFaceDataMgr2)	and	ensuring	that	objects	support	face-data	implementations	of
both	old	and	new	interfaces.
A	"naive"	extension	of	Mesh	and	MNMesh	with	a	GetInterface	method	are
available	but	there's	no	support	for	interface	lifetime	management.	The	Mesh
and	MNMesh	have	full	control	over	the	lifetime	of	the	face-data	manager	and	as
such,	clients	should	not	cache	an	IFaceDataMgr	interface	aquired	from	Mesh	or
MNMesh.
Please	note	that	only	Meshes	supports	the	IFaceDataMgr	interface.	The
MNMesh	(and	thus	polygons)	does	not	support	it.	As	a	consequence,	if	you
write	a	modifier	that	applies	face	data	to	a	meshes,	and	then	the	pipeline
transforms	this	mesh	into	a	poly	or	patch,	the	face	data	is	lost	at	the	top	of	the
stack.

Methods:
public:

Geometry	pipeline	(stack)	methods
Modifiers	and	procedural	objects	should	call	these	methods	to	add,	remove,	or
retrieve	a	face-data	channel	on	an	object	(mesh,	patch,	poly).

Prototype:
virtual	ULONG	NumFaceDataChans()	const	=	0;;

Remarks:
This	method	returns	the	number	of	face-data	channels.

Prototype:

virtual	IFaceDataChannel*	GetFaceDataChan(const	Class_ID&
ID)	const	=	0;

Remarks:
This	method	returns	a	pointer	to	the	face-data	channel.

Parameters:
const	Class_ID&	ID
The	class	ID	of	the	channel	you	wish	to	retrieve.

Prototype:
virtual	BOOL	AddFaceDataChan(IFaceDataChannel*	pChan)	=
0;

Remarks:
This	method	adds	a	face-data	channel	to	the	object.

Parameters:
IFaceDataChannel*	pChan
A	pointer	to	the	face-data	channel.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	BOOL	RemoveFaceDataChan(const	Class_ID&	ID)	=	0;

Remarks:
This	method	removes	a	face-data	channel	from	the	object.

Parameters:
const	Class_ID&	ID
The	class	ID	of	the	channel	you	wish	to	remove.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Geometry	pipeline	(stack)	methods
The	system	(3ds	max)	should	call	these	methods	to	manage	the	face-data
channels	when	the	object	flows	up	the	stack

Prototype:
virtual	BOOL	AppendFaceDataChan(const	IFaceDataChannel*
pChan)	=	0;

Remarks:
This	method	appends	a	face-data	channel	to	the	object.

Parameters:
const	IFaceDataChannel*	pChan
The	face-data	channel	to	append.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	BOOL	CopyFaceDataChans(const	IFaceDataMgr*	pFrom)
=	0;

Remarks:
This	method	adds	or	appends	face-data	channels	from	the	from	object,	to	this
object	If	the	channel	already	exists	on	this	object,	it's	appended	otherwise	it
gets	added.

Parameters:
const	IFaceDataMgr*	pFrom
The	face-data	channel	to	copy	from.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	void	RemoveAllFaceDataChans()	=	0;

Remarks:
This	method	removes	all	face-data	channels	from	this	object.

Prototype:
virtual	BOOL
EnumFaceDataChans(IFaceDataChannelsEnumCallBack&	cb,

void*	pContext)	const	=	0;
Remarks:
This	method	provides	a	mechanism	for	executing	an	operation	for	all	face-
data-channels	on	this	object:	For	all	face-data-channels	calls
IFaceDataEnumCallBack::proc()	with	a	pointer	to	that	face-data-
channel	and	a	context	data

Parameters:
IFaceDataChannelsEnumCallBack&	cb
A	pointer	to	the	face-data	channel	enumerator	callback.
void*	pContext
A	pointer	to	the	context	data.

Return	Value:
FALSE	if	the	callback	returns	FALSE	for	any	of	the	face-data	channels.

Prototype:
virtual	IOResult	Save(ISave*	isave)	=	0;

Remarks:
Saves	the	face-data	to	the	max	file.

Return	Value:
See	Also:	List	of	IO	Results.

Prototype:
virtual	IOResult	Load(ILoad*	iload)	=	0;

Remarks:
Loads	the	face-data	from	the	max	file.

Return	Value:
See	Also:	List	of	IO	Results.

Prototype:
Interface_ID	GetID();

Remarks:
This	method	returns	the	interface	ID	of	the	object.

Default	Implementation:
{	return	FACEDATAMGR_INTERFACE;	}

Class	ObjectConverter
See	Also:	Class	InterfaceServer,	Class	Class_ID,	Class	Object,	Class	TriObject,
Class	PatchObject.
class	ObjectConverter	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	virtual	class	is	implemented	by	applications	that	want	to	supply	a
conversion	method	from	one	object	type	to	another.	A	typical	use	would	be	to
support	conversion	of	a	native	3ds	max	type	(such	as	TriObject)	to	a	plug-in's
object	type.	There	are	a	set	of	global	functions	that	can	be	used	with	this	class.
These	are	documented	at	the	bottom	of	the	topic.	One	of	these	is	called	to
register	the	ObjectConverter	with	the	system.
Note	that	the	registered	object	converters	are	called	from	the	methods:
Object::CanConvertToType	and	Object::ConvertToType.
So	for	individual	objects	to	support	these,	they'll	need	to	add	the	line
if	(Object::CanConvertToType(obtype))	return	1;
to	the	end	of	their	CanConvertToType	methods	and
if	(Object::CanConvertToType(obtype))
return	Object::ConvertToType(t,	obtype);
to	the	end	of	their	ConvertToType	methods.

Methods:
public:

Prototype:
virtual	Class_ID	ConvertsFrom()=0;

Remarks:
This	method	returns	the	Class	ID	of	the	object	this	converter	converts	from.

Prototype:
virtual	Class_ID	ConvertsTo()=0;

Remarks:
This	method	returns	the	Class	ID	of	the	object	this	converter	converts	to.

Prototype:
virtual	Object	*Convert(Object	*from)=0;

Remarks:
This	method	actually	performs	the	conversion,	creating	and	returning	a	new
object	with	the	class	ID	specified	in	ConvertsTo().

Parameters:
Object	*from
Points	to	the	object	to	convert.

Prototype:
virtual	void	DeleteThis();

Remarks:
This	should	delete	the	ObjectConverter	if	necessary.

Default	Implementation:
{}
	

The	following	global	functions	are	not	part	of	this	class	but	are
available	for	use:
Function:
bool	RegisterObjectConverter(ObjectConverter	*conv);

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Registers	an	object	converter	with	the	system.

Parameters:
ObjectConverter	*conv
Points	to	the	ObjectConverter	instance	to	register.

Return	Value:
Returns	true	if	the	converter	could	be	added;	false	if	not.

Function:

int	CanConvertTriObject(Class_ID	to);
Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Indicates	if	a	TriObject	can	convert	to	the	specified	class	ID.
Note:	this	actually	checks	if	an	Editable	Mesh	object	can	convert	to	the
specified	type,	since	an	Editable	Mesh	is	what	you	get	when	you	call
CreateNewTriObject	().
This	method	may	be	used	in	an	object's	CanConvertToType()	and
ConvertToType()	methods.	If	your	object	supports	conversion	to	a
TriObject,	but	doesn't	support	conversion	to	the	given	class	ID,	you	can	use
this	method	to	find	out	if	TriObjects	can	be	used	as	an	"intermediary".	If	so,
you	can	construct	a	temporary	TriObject,	convert	it	to	the	given	class	ID,	and
call	the	temporary	TriObject's	DeleteThis()	method.

Parameters:
Class_ID	to
The	Class	ID	to	convert	to.

Return	Value:
Nonzero	if	the	TriObject	can	be	converted	to	the	specified	objec	type;
otherwise	zero.

Function:
int	CanConvertPatchObject(Class_ID	to);

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Indicates	if	a	PatchObject	can	convert	to	the	specified	class	ID.

Parameters:
Class_ID	to
The	Class	ID	to	convert	to.

Return	Value:
Nonzero	if	the	PatchObject	can	be	converted	to	the	specified	objec	type;
otherwise	zero.

Function:

int	CanConvertSplineShape(Class_ID	to);
Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Indicates	if	a	SplineObject	can	convert	to	the	specified	class	ID.

Parameters:
Class_ID	to
The	Class	ID	to	convert	to.

Return	Value:
Nonzero	if	the	SplineObject	can	be	converted	to	the	specified	objec	type;
otherwise	zero.

Function:
void	RegisterStaticEditTri(Object	*triob);

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
This	method	will	register	the	object	passed	as	the	editable	tri	object.

Parameters:
Object	*triob
The	object	to	register	as	the	editable	tri	object.

Function:
void	RegisterCollapseType(Class_ID	cid,	TSTR	name,	bool
canSelfConvert=false);

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Registers	a	class	ID	of	an	object	that	the	user	can	collapse	other	objects	to.
The	type	will	only	appear	if	the	current	object	returns	nonzero	from
CanConvertTo(cid).

Parameters:
Class_ID	cid
The	class	ID	the	object	will	collapse	to.
TSTR	name

The	name	of	the	collapse-to	object	type	(such	as	"Editable	Poly").
bool	canSelfConvert=false
Indicates	whether	an	object	should	be	allowed	to	collapse	to	itself.	(false	is
generally	preferred,	so	that	the	collapse-to	menu	only	has	relevant	entries.)

Explicit	Conversion	Functions
See	Also:	Class	Mesh,	Class	PatchMesh,	Class	MNMesh	,	Class
ObjectConverter
The	following	functions	are	available	to	apply	explicit	conversions	of	object
types.

Function:
void	ConvertMeshToPatch	(Mesh	&m,	PatchMesh	&pm,	DWORD
flags=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	function	converts	a	mesh	to	a	patch	mesh.

Parameters:
Mesh	&m
The	mesh	to	convert.
PatchMesh	&pm
The	patchmesh	to	convert	into.
DWORD	flags=0
The	conversion	flags;
CONVERT_KEEPSEL
Translate	subobject	selections,	so	selected	vertices,	edges,	or	surface	areas
(faces	or	patches)	in	the	input	model	is	still	selected	in	the	output.
CONVERT_USESOFTSEL
Translate	soft	selections.	Also,	in	the	case	of	patches	turning	into	meshes
with	more	vertices,	soft	selections	are	used	to	interpolate	between	selected
patch	corners	and	nonselected	ones.
CONVERT_PATCH_USEQUADS
When	converting	to	a	Patch	model,	create	quad	patches	for	any	quads	in	the
input	mesh	or	polymesh.	(Otherwise,	turns	everything	into	triangle
patches).
CONVERT_NO_RELAX
Indicates	in	patch-to-mesh	conversions	that	the	Relax	parameters	in	the
patch	should	be	ignored.

Function:
void	ConvertPatchToMesh	(PatchMesh	&pm,	Mesh	&m,	DWORD
flags=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	function	converts	a	patchmesh	to	a	mesh.

Parameters:
PatchMesh	&pm
The	patchmesh	to	convert.
Mesh	&m
The	mesh	to	convert	into..
DWORD	flags=0
The	conversion	flags;
CONVERT_KEEPSEL
Translate	subobject	selections,	so	selected	vertices,	edges,	or	surface	areas
(faces	or	patches)	in	the	input	model	is	still	selected	in	the	output.
CONVERT_USESOFTSEL
Translate	soft	selections.	Also,	in	the	case	of	patches	turning	into	meshes
with	more	vertices,	soft	selections	are	used	to	interpolate	between	selected
patch	corners	and	nonselected	ones.
CONVERT_PATCH_USEQUADS
When	converting	to	a	Patch	model,	create	quad	patches	for	any	quads	in	the
input	mesh	or	polymesh.	(Otherwise,	turns	everything	into	triangle
patches).
CONVERT_NO_RELAX
Indicates	in	patch-to-mesh	conversions	that	the	Relax	parameters	in	the
patch	should	be	ignored.

Function:
void	ConvertPolyToPatch	(MNMesh	&	from,	PatchMesh	&	to,
DWORD	flags=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

This	function	converts	a	poly	object	to	a	patch	mesh.
Parameters:
MNMesh	&	from
The	poly	mesh	to	convert.
PatchMesh	&	to
The	patchmesh	to	convert	into.
DWORD	flags=0
The	conversion	flags;
CONVERT_KEEPSEL
Translate	subobject	selections,	so	selected	vertices,	edges,	or	surface	areas
(faces	or	patches)	in	the	input	model	is	still	selected	in	the	output.
CONVERT_USESOFTSEL
Translate	soft	selections.	Also,	in	the	case	of	patches	turning	into	meshes
with	more	vertices,	soft	selections	are	used	to	interpolate	between	selected
patch	corners	and	nonselected	ones.
CONVERT_PATCH_USEQUADS
When	converting	to	a	Patch	model,	create	quad	patches	for	any	quads	in	the
input	mesh	or	polymesh.	(Otherwise,	turns	everything	into	triangle
patches).
CONVERT_NO_RELAX
Indicates	in	patch-to-mesh	conversions	that	the	Relax	parameters	in	the
patch	should	be	ignored.

Function:
void	ConvertPatchToPoly	(PatchMesh	&	from,	MNMesh	&	to,
DWORD	flags=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	function	converts	a	patch	mesh	to	a	poly	object.

Parameters:
PatchMesh	&	to
The	patchmesh	to	convert	into.
MNMesh	&	from

The	poly	mesh	to	convert.
DWORD	flags=0
The	conversion	flags;
CONVERT_KEEPSEL
Translate	subobject	selections,	so	selected	vertices,	edges,	or	surface	areas
(faces	or	patches)	in	the	input	model	is	still	selected	in	the	output.
CONVERT_USESOFTSEL
Translate	soft	selections.	Also,	in	the	case	of	patches	turning	into	meshes
with	more	vertices,	soft	selections	are	used	to	interpolate	between	selected
patch	corners	and	nonselected	ones.
CONVERT_PATCH_USEQUADS
When	converting	to	a	Patch	model,	create	quad	patches	for	any	quads	in	the
input	mesh	or	polymesh.	(Otherwise,	turns	everything	into	triangle
patches).
CONVERT_NO_RELAX
Indicates	in	patch-to-mesh	conversions	that	the	Relax	parameters	in	the
patch	should	be	ignored.

Class	ISubObjType
See	Also:	Class	InterfaceServer,	Class	BaseObject,	Class	MaxIcon,	Class
GenSubObjType.
class	ISubObjType	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
Developers	have	to	return	a	class	derived	from	this	class	with	implementations
for	all	the	methods	when	implementing	sub-objects	for	obejcts	and	modifiers
(see	BaseObject::GetSubObjType()).

Methods:
public:

Prototype:
virtual	MaxIcon	*GetIcon()=0;

Remarks:
Returns	a	pointer	to	the	icon	for	this	sub-object	type.	This	icon	appears	in	the
stack	view	beside	the	name.

Prototype:
virtual	TCHAR	*GetName()=0;

Remarks:
Returns	the	name	of	this	sub-object	type	that	appears	in	the	stack	view.

Class	GenSubObjType
See	Also:	Class	ISubObjType,	Class	BaseObject,	Class	MaxIcon.
class	GenSubObjType	:	public	ISubObjType

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	provides	a	generic	implementation	for	sub-object	types.	Instead	of
having	to	create	a	sub-class	of	ISubObjType	the	constructors	of	this	class	may
be	used	to	initialize	private	data	members	of	the	class.	Then	implementations	of
the	GetName()	and	GetIcon()	methods	of	ISubObjType	are	provided	which
simply	return	the	data	members.
This	SubObjectType	will	either	use	the	subObjectIcons_16i.bmp	and
SubObjectIcons_16a.bmp	bitmaps	in	the	UI\ICONS	directory	(for	the
GenSubObjType(int	idx)	constructor),	or	any	other	bmp	file	that	is	specified
in	the	GenSubObjType(TCHAR	*nm,	TCHAR*	pFilePrefix,	int	idx)
constructor.	The	bitmap	files	have	to	reside	in	the	UI\ICONS	directory.
All	methods	of	this	class	are	implemented	by	the	System.

Methods:
public:

Prototype:
GenSubObjType(TCHAR	*nm,	TCHAR*	pFilePrefix,	int	idx)	:
name(nm),	mIcon(NULL),	mIdx(idx),	mFilePrefix(pFilePrefix);

Remarks:
Constructor.	The	private	data	members	are	inialized	to	the	values	passed	and
the	corresponding	Get	methods	of	this	class	will	return	these	data	members.

Parameters:
TCHAR	*nm
The	name	for	this	sub-object	type.
TCHAR*	pFilePrefix
The	BMP	imagelist	file	name	prefix	for	this	sub-object	type.	This	is	the	file
name,	without	the	extension,	and	with	the	assumption	that	the	file	is	in	the
ui\icons	directory.	For	example	specifying	_T("SubObjectIcons")	for	this

parameter	indicates	the	file	UI\ICONS\SubObjectIcons_16i.bmp	if	the
small	icons	are	in	use	and	SubObjectIcons_24i.bmp	if	the	large	icons	are
in	use.
int	idx
This	is	the	one	based	index	into	the	image	list	of	the	icon	to	use.

Prototype:
GenSubObjType(int	idx)	:	mIcon(NULL),	mIdx(idx),
mFilePrefix(_T("SubObjectIcons"));

Remarks:
This	constructor	assumes	that	the	icons	are	in	either
UI\ICONS\SubObjectIcons_16i.bmp	or	SubObjectIcons_24i.bmp
depending	on	which	size	icons	are	in	use	by	the	system.	In	this	case	only	the
index	into	the	image	list	is	required.

Parameters:
int	idx
This	is	the	one	based	index	into	the	image	list	of	the	icon	to	use.

Prototype:
~GenSubObjType();

Remarks:
Destructor.

Prototype:
void	SetName(TCHAR	*nm);

Remarks:
Sets	the	name	for	this	sub-object	type.

Parameters:
TCHAR	*nm
The	name	to	set.

Prototype:

TCHAR	*GetName();
Remarks:
Returns	the	name	for	this	sub-object	type.	This	is	the	implementation	of	the
ISubObjType	method.

Prototype:
MaxIcon	*GetIcon();

Remarks:
Returns	the	icon	for	this	sub-object	type.	This	is	the	implementation	of	the
ISubObjType	method.

Class	MaxIcon
See	Also:	Class	InterfaceServer,	Class	ICustButton,	Class	MaxBmpFileIcon.
class	MaxIcon	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	abstract	class	represents	an	icon	image	for	toolbar	buttons,	icons	in	list
boxes,	etc.	The	class	is	based	on	Win32	ImageLists.	MaxIcons	must	provide	an
image	list	and	index	into	the	list	for	both	large	(24x24)	and	small	(16x15)	icons.

Methods:
public:

Prototype:
virtual	HIMAGELIST	GetDefaultImageList()	=	0;

Remarks:
Returns	the	handle	to	the	image	list	for	the	size	of	icons	that	the	user	has
chosen.

Prototype:
virtual	HIMAGELIST	GetSmallImageList()	=	0;

Remarks:
Returns	the	image	list	for	small	icons.

Prototype:
virtual	HIMAGELIST	GetLargeImageList()	=	0;

Remarks:
Returns	the	image	list	for	large	icons.

Prototype:
virtual	int	GetSmallImageIndex(bool	enabledVersion	=	true,
COLORREF	backgroundColor	=
GetCustSysColor(COLOR_BTNFACE))	=	0;

Remarks:
Returns	the	zero	based	index	into	the	image	list	for	the	small	version	of	this
particular	icon.

Parameters:
bool	enabledVersion	=	true
Pass	true	to	get	the	index	of	the	enabled	version	of	the	icon;	false	to	get	the
disabled	version.
COLORREF	backgroundColor	=
GetCustSysColor(COLOR_BTNFACE)
The	background	color	to	use	for	the	icon.
Specifies	the	windows	color	definition.	See	List	of	Standard	Color	IDs.	For	a
full	list	of	windows	color	definitions,	please	refer	to	the	Win32	API,	in
particular	the	methods	GetSysColor()	and	SetSysColor().

Prototype:
virtual	int	GetLargeImageIndex(bool	enabledVersion	=	true,
COLORREF	backgroundColor	=
GetCustSysColor(COLOR_BTNFACE))	=	0;

Remarks:
Returns	the	zero	based	index	into	the	image	list	for	the	large	version	of	this
particular	icon.

Parameters:
bool	enabledVersion	=	true
Pass	true	to	get	the	enabled	version	of	the	icon	or	false	to	get	the	disabled
version.
COLORREF	backgroundColor	=
GetCustSysColor(COLOR_BTNFACE)
The	background	color	to	use	for	the	icon.
Specifies	the	windows	color	definition.	See	List	of	Standard	Color	IDs.	For	a
full	list	of	windows	color	definitions,	please	refer	to	the	Win32	API,	in
particular	the	methods	GetSysColor()	and	SetSysColor().

Prototype:

int	GetDefaultImageIndex(bool	enabledVersion	=	true,
COLORREF	backgroundColor	=
GetCustSysColor(COLOR_BTNFACE));

Remarks:
Returns	the	zero	based	index	into	the	image	list	for	the	default	version	of	this
particular	icon.

Parameters:
bool	enabledVersion	=	true
Pass	true	to	get	the	enabled	version	of	the	icon	or	false	to	get	the	disabled
version.
COLORREF	backgroundColor	=
GetCustSysColor(COLOR_BTNFACE)
The	background	color	to	use	for	the	icon.
Specifies	the	windows	color	definition.	See	List	of	Standard	Color	IDs.	For	a
full	list	of	windows	color	definitions,	please	refer	to	the	Win32	API,	in
particular	the	methods	GetSysColor()	and	SetSysColor().

Prototype:
virtual	bool	UsesAlphaMask()	=	0;

Remarks:
This	method	returns	true	if	the	icons	has	an	alpha	mask	that	needs	to	be
blended	with	the	background	color	and	false	if	it	doesn't	use	an	alpha	mask.

Class	PolyObject
See	Also:	Class	GeomObject.,	Class	MNMesh
class	PolyObject:	public	GeomObject

Description:
This	class	is	available	in	release	4.0	and	later	only.
3ds	max	4	introduces	a	new	type	of	pipeline	object,	the	polygon-based	mesh
object,	or	PolyObject	for	short.	This	object	is	based	on	the	MNMesh	which
has	been	present	in	the	SDK	for	some	time	and	used	for	3ds	max	effects	like
MeshSmooth,	Boolean,	and	Connect.
PolyObjects	are	more	restricted	than	TriObjects	in	that	they	only	support
"manifold	topology".	That	is	to	say,	you	can't	create	"rat's	nest"	meshes	out	of
polygon	meshes.	Each	edge	in	a	polygon	mesh	can	be	referenced	only	once	on
each	"side",	with	a	well	defined	"outside"	and	"inside"	direction	for	every
element	of	polygons.	In	TriObjects,	you	could	create	a	mesh	with	5	vertices	and
3	faces:	(0,1,2),	(0,1,3),	and	(0,1,4).	This	would	be	illegal	in	PolyObjects
because	the	edge	(0,1)	is	referenced	in	the	(0->1)	direction	by	three	different
faces.	(0,1,2),	(1,0,3)	would	be	a	legal	pair	of	faces,	however,	because	the	(0,1)
edge	is	referenced	only	once	in	each	direction.	This	implies	also	that	the	two
faces	have	consistent	normals	-	there's	a	well-defined	inside	and	outside	at	the
edge.	It's	impossible	to	have	neighboring	faces	have	inconsistent	normals	in	a
PolyObject,	which	is	why	the	FlipNormals	method	in	Editable	Poly	only	works
on	entire	elements.
PolyObjects	have	a	complete	edge	list	present	virtually	all	the	time.	They	also
have	full	topological	links	-	the	edges	reference	the	vertices	and	faces	they	use,
the	faces	reference	the	vertices	and	edges,	and	the	vertices	also	reference	the
edges	and	faces.	This	is	somewhat	wasteful	of	memory,	but	it	makes	it	very	easy
to	navigate	the	mesh	and	do	complex	algorithms	like	subdivision	or	Booleans.
(Of	course	this	also	means	there's	more	to	keep	track	of	in	these	operations.)
Mesh	objects	flowing	up	the	pipeline	should	be	freely	convertible	between
TriObjects	and	PolyObjects.	Virtually	all	data	should	be	preserved	in	converting
back	and	forth	between	these	types.	Exceptions	include	PolyObject	edge	data,
such	as	crease	values,	which	are	lost	upon	conversion	to	TriObjects	(since
TriObjects	have	no	edge	lists).
Virtually	all	the	public	methods	of	PolyObject	are	based	on	the	equivalent

methods	in	TriObject.	class	PolyObject	provides	implementations	of	all	the
required	methods	of	Animatable,	ReferenceMaker,	ReferenceTarget,	Base
Object,	Object,	and	GeomObject.	All	methods	of	this	class	are	implemented	by
the	system.
	

Data	Members:
public:
MNMesh	mm;
See	class	MNMesh	for	information	about	manipulating	the	mesh.

The	following	global	functions	are	not	part	of	this	class	but	are
available	for	use:

Function:
ClassDesc*	GetPolyObjDescriptor();

Remarks:
Gets	the	class	descriptor	for	the	PolyObject.

Function:
void	RegisterEditPolyObjDesc(ClassDesc*	desc);

Remarks:
Allows	a	plugin	to	register	an	Editable	Poly	object.	(This	is	done	by	epoly.dlo
in	the	standard	3ds	max	distribution.)	This	is	the	object	which	is	collapsed	to
when	the	stack	is	collapsed.	The	default	if	no	such	object	is	registered	is	to
simply	collapse	to	a	PolyObject	(which	has	no	UI	parameters).

Parameters:
ClassDesc*	desc
A	pointer	to	the	class	descriptor.

Function:
ClassDesc*	GetEditPolyObjDesc();

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
Gets	the	class	descriptor	for	the	currently	registered	Editable	Poly	object.

Function:
PolyObject	*CreateEditablePolyObject();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	an	Editable	Poly	object	from	the	currently	registered	EPoly	descriptor,
cast	as	a	PolyObject.

Methods:
public:

Prototype:
DWORD	GetSubselState();

Remarks:
This	method	returns	the	selection	levels	defined	for	class	MNMesh:
MNM_SL_OBJECT	(0),	MNM_SL_VERTEX	(1),
MNM_SL_EDGE	(2),	and	MNM_SL_FACE	(3).

Prototype:
void	SetSubSelState(DWORD	s);

Remarks:
This	method	allows	you	to	set	the	selection	levels	defined	for	class	MNMesh:
MNM_SL_OBJECT	(0),	MNM_SL_VERTEX	(1),
MNM_SL_EDGE	(2),	and	MNM_SL_FACE	(3).

Parameters:
DWORD	s
The	selection	level	to	set.

Prototype:
BOOL	CheckObjectIntegrity();

Remarks:
Uses	the	MNMesh::CheckAllData()	method,	which	uses	DebugPrint()
to	give	details	about	any	errors	that	it	finds.

Prototype:
MNMesh&	GetMesh();

Remarks:
Accessor	for	the	MNMesh	mm	data	member.

Displacement	mapping	subdivision	methods	in	PolyObject
Displacement	mapping	in	materials	can	be	enhanced	by	a	subdivision	algorithm
which	subdivides	as	needed	based	on	the	map.	This	algorithm	is	implemented	in
class	TriObject,	but	can	be	accessed	by	PolyObjects	since	they	need	to	convert	to
TriObjects	for	rendering	anyway.	The	following	methods	are	used	to	access	and
set	the	displacement	mapping	parameters.

Prototype:
BOOL	CanDoDisplacementMapping();

Remarks:
Implementation	of	a	class	GeomObject	method	which	indicates	whether	or	not
this	object	supports	displacement	mapping.	It	returns	true	as	long	as
GetDisplacementDisable()	returns	false.

Prototype:
void	SetDisplacementApproxToPreset(int	preset);

Remarks:
Sets	displacement	subdivision	parameters	to	match	one	of	the	standard
displacement	approximation	presets.

Parameters:
int	preset
Should	be	0	for	low,	1	for	medium,	or	2	for	high.

Prototype:

void	SetDisplacementDisable	(bool	disable);
Remarks:
Disables	displacement	subdivision	(without	altering	the	parameters).

Parameters:
bool	disable
TRUE	to	disable;	FALSE	to	enable.

Prototype:
void	SetDisplacementParameters	(TessApprox	&	params);

Remarks:
Sets	most	of	the	displacement	parameters.	See	class	TessApprox	for	details.

Parameters:
TessApprox	&	params
The	tessellation	approximation	data.

Prototype:
void	SetDisplacementSplit	(bool	split);

Remarks:
Controls	displacement	subdivision	splitting.

Parameters:
bool	split
TRUE	to	set;	FALSE	to	unset.

Prototype:
void	SetDisplacement	(bool	displace);

Remarks:
Turns	displacement	on	or	off.

Parameters:
bool	displace
TRUE	to	turn	on;	FALSE	to	turn	off.

Prototype:
bool	GetDisplacementDisable	()	const;

Remarks:
Indicates	whether	displacement	subdivision	is	currently	disabled.

Prototype:
TessApprox	GetDisplacementParameters	()	const;

Remarks:
Accesses	most	of	the	displacement	parameters.	See	class	TessApprox	for
details.

Prototype:
bool	GetDisplacementSplit	()	const;

Remarks:
Indicates	whether	displacement	subdivision	splitting	is	on.

Prototype:
bool	GetDisplacement	()	const;

Remarks:
Indicates	whether	displacement	subdivision	is	on.

Prototype:
TessApprox	&DispParams();

Remarks:
Accessor	method	for	the	displacement	subdivision	parameters	that	can	be
quicker	to	use	than	SetDisplacementParameters()	and
GetDisplacementParameters().
	

Prototype:
		BOOL	IsPointSelected(int	i)
	Remarks:

This	method	is	available	in	release	4.2	and	later	only.
Returns	TRUE	if	the	'i-th'	point	is	selected;	otherwise	FALSE.

Parameters:
	int	i
The	zero	based	index	of	the	point	to	check.

Prototype:
	float	PointSelection(int	i);
	
Remarks:
This	method	is	available	in	release	4.2	and	later	only.
Returns	a	floating	point	weighted	point	selection.

Parameters:
	int	i
The	zero	based	index	of	the	point	to	check.

Return	Value:
Returns	1.0f	if	selected	and	0.0f	if	not.

Prototype:
	float	BOOL	PolygonCount(TimeValue	t,	int&	numFaces,	int&
numVerts);
	
Remarks:
This	method	is	available	in	release	4.2	and	later	only.
Retreives	the	number	of	faces	and	vertices	of	the	polyginal	mesh
representation	of	the	object.	Note:	Plug-In	developers	should	use	the	global
function	GetPolygonCount(Object*,	int&,	int&)	to	retrieve	the	number	f
vertices	and	faces	in	an	arbitrary	object.

	
Parameters:
	

TimeValue	t
The	time	at	which	to	compute	the	number	of	faces	and	vertices.

	int&	numFaces
The	number	of	faces	is	returned	here.

	int&	numVerts
The	number	of	vertices	is	returned	here.

	
Default	Implementation:
	{	return	TRUE;	}

Class	EPoly
See	Also:	Class	FPMixinInterface,	Class	MNMesh,	Class	IParamBlock2,	List	of
Edge	Data	Channels,	List	of	Vertex	Data	Channels
class	EPoly	:	public	FPMixinInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	EPoly	class	is	the	main	interface	to	the	Editable	Poly	Object.	This	class	is	a
virtual	class	with	no	data	members.	More	details	can	be	found	in	the	SDK
samples	under	\MAXSDK\SAMPLES\MESH\EDITABLEPOLY.
	
Cache	and	update	methods
Selection	and	component	flag	access
UI	Button	and	Command	Mode	methods
Transform	Methods
Slice	plane	accessors
Component	data	access	methods
Displacement	approximation	methods
Drag	operations
Regular	Operations

Prototype:
FPInterfaceDesc	*GetDesc();

Remarks:
This	method	returns	a	description	of	the	published	function	interface	(for
scripter	access	to	EPoly	functions).

Prototype:
virtual	MNMesh	*GetMeshPtr();

Remarks:
This	method	returns	a	pointer	to	the	Editable	Poly's	MNMesh.	See	class
MNMesh	for	fun	things	to	do	with	an	MNMesh.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	IParamBlock2	*getParamBlock();

Remarks:
Gets	a	pointer	to	the	Editable	Poly's	parameter	block,	which	can	be	used	to	get
or	set	Editable	Poly	UI	parameters.	(See	class	IParamBlock2	for	more
information	on	access	methods.)	Here	is	a	list	of	the	available	parameters,	as
defined	in	the	epolyParameters	enum	near	the	top	of	iEPoly.h.	(Please	see	the
Editable	Poly	documentation	in	the	normal	3ds	max	User	Reference	file	for
more	information	on	these	parameters.)
Selection	dialog	parameters:
ep_by_vertex:	select	by	vertex	(checkbox)
ep_ignore_backfacing:	Ignore	backfacing	(checkbox)
ep_show_normals:	Currently	unused.
ep_normal_size:	Currently	unused.
Soft	Selection	dialog	parameters:
ep_ss_use:	Use	soft	selection	(checkbox)
ep_ss_retro:	Currently	unused
ep_ss_edist_use:	Use	edge-based	distances	to	compute	soft	selection
(checkbox)
ep_ss_edist:	Maximum	number	of	edges	to	traverse	in	computing	edge-
based	distances	(int	spinner	-	range:	1-999999)
ep_ss_affect_back:	Affect	backfacing	in	soft	selection	(checkbox)
ep_ss_falloff:	Falloff	value	for	soft	selection	(float	spinner)
ep_ss_pinch:	Pinch	value	for	soft	selection	(float	spinner)
ep_ss_bubble:	Bubble	value	for	soft	selection	(float	spinner)
Edit	Geometry	dialog	parameters:
ep_extrusion_type:	Type	of	face	extrusion.	(Radio.)	Values:
0:	Extrude	by	group	(cluster)
1:	Extrude	by	local	normals

2:	Extrude	by	polygon	-	each	polygon	extrudes	separately.
ep_split:	Controls	whether	the	Cut	algorithm	splits	the	mesh	open.
(Checkbox)
ep_refine_ends:	Currently	unused
ep_weld_threshold:	Threshold	for	welding	selected	vertices.	(float	spinner)
ep_weld_pixels:	Pixel	threshold	for	Target	welding	(int	spinner)
Subdivide	dialog	parameters:
ep_ms_smoothness:	Smoothness	value	for	MeshSmooth	type	subdivision
(float	spinner,	range	0-1)
ep_ms_smooth:	Currently	unused.
ep_ms_sep_smooth:	Separate	by	smoothing	groups	for	MeshSmooth	type
subdivision	(checkbox)
ep_ms_sep_mat:	Separate	by	material	IDs	for	MeshSmooth	type
subdivision	(checkbox)
ep_tess_type:	Tessellation	type	(Radio)	Values:
0:	by	edge
1:	by	face.

ep_tess_tension:	Tessellation	tension	(float	spinner)
Surface	Properties	dialog	parameters	(object	level):
ep_surf_subdivide:	Apply	NURMS-style	MeshSmooth	subdivision	to
polymesh.	(checkbox)
ep_surf_subdiv_smooth:	Apply	MeshSmooth	smoothing	group	algorithm
after	subdividing	(checkbox)
ep_surf_ig_sel:	Currently	unused.
ep_surf_iter:	Number	of	iterations	of	subdivision	(int	spinner)
ep_surf_thresh:	"Smoothness"	threshold	for	adaptive	subdivision	(float
spinner,	range	0-1)
ep_surf_riter:	Render	value	of	iterations	(int	spinner)
ep_surf_rthresh:	Render	value	of	smoothness	threshold	(float	spinner,
range	0-1)
ep_surf_use_riter:	Use	Render	iterations	value	when	rendering	(checkbox)

ep_surf_use_rthresh:	Use	Render	smoothness	threshold	when	rendering
(checkbox)
ep_surf_sep_smooth:	Separate	by	smoothing	groups	in	subdivision
(checkbox)
ep_surf_sep_mat:	Separate	by	materials	in	subdivision	(checkbox)
ep_surf_update:	Update	type	for	subdivision	(radio).	Values:
0:	Update	always
1:	Update	when	rendering
2:	Update	manually

Surface	Properties	dialog	parameters	(vertex	level):
ep_vert_sel_color:	Target	color	for	select-by-color	(color	swatch)
ep_vert_selc_r:	Tolerance	of	red	values	in	select-by-color.	(int	spinner,
range	0-255)
ep_vert_selc_g:	Tolerance	of	green	values	in	select-by-color.	(int	spinner,
range	0-255)
ep_vert_selc_b:	Tolerance	of	blue	values	in	select-by-color.	(int	spinner,
range	0-255)
ep_vert_color_selby:	Which	kind	of	color	to	select	by	in	select-by-color.
Radio	values:
0:	Select	by	regular	vertex	color
1:	Select	by	vertex	illumination

Surface	Properties	dialog	parameters	(face	level):
ep_face_smooth_thresh:	Autosmooth	threshold	(float	spinner,	angle	units).
Subdivision	Displacement	parameters	(object	level):
ep_sd_use:	Apply	subdivision	displacement	(checkbox)
ep_sd_split_mesh:	Split	the	mesh	(checkbox)
ep_sd_method:	Subdivision	displacement	method	(radio).	Values:
0:	Regular	method
1:	Spatial	method
2:	Curvature	method
3:	Use	both	spatial	&	curvature	methods.

ep_sd_tess_steps:	Tessellation	steps	(for	regular	method)	(int	spinner)
ep_sd_tess_edge:	Edge	size	(for	spatial	method)	(float	spinner)
ep_sd_tess_distance:	Distance	(for	curvature	method)	(float	spinner)
ep_sd_tess_angle:	Angle	value	(for	curvature	method)	(float	spinner)
ep_sd_view_dependent:	View	dependency	(checkbox)
Advanced	Subdivision	Displacement	parameters:
ep_asd_style:	Subdivision	style.	Radio	values:
0:	Grid-based
1:	Tree-based
2:	Delauney	algorithm.

ep_asd_min_iters:	Minimum	number	of	iterations	(grid	or	tree	style)	(int
spinner)
ep_asd_max_iters:	Maximum	number	of	iterations	(grid	or	tree	style)	(int
spinner)
ep_asd_max_tris:	Maximum	number	of	triangles	(Delauney	style)	(int
spinner)

Default	Implementation:
{	return	NULL;	}

	
Cache	and	update	methods

Prototype:
virtual	void	LocalDataChanged(DWORD	parts);

Remarks:
This	method	is	used	to	indicate	to	the	EPoly	that	some	parts	of	its	mesh	have
changed.	This	is	automatically	handled	by	most	EPoly	methods;	you	only
need	to	use	it	if	you're	directly	manipulating	the	mesh	yourself.

Parameters:
DWORD	parts
Parts	of	the	mesh	that	have	been	changed,	such	as	PART_GEOM,
PART_TOPO,	etc.

Default	Implementation:
{	}

Prototype:
virtual	void	InvalidateSoftSelectionCache();

Remarks:
This	method	invalidates	soft	selection	values	in	the	mesh	and	in	any	cached
data.

Default	Implementation:
{	}

Prototype:
virtual	void	InvalidateDistanceCache();

Remarks:
This	method	invalidates	pre-computed	distances	on	which	soft	selection
values	are	based	(as	well	as	soft	selection	values)	-	note	this	is	automatically
done	when	you	call	LocalDataChanged	(PART_GEOM).	This	should
also	be	done	if	the	soft	selection	parameters	are	changed.

Default	Implementation:
{	}

Prototype:
virtual	void	RefreshScreen();

Remarks:
This	is	a	handy	method	that	does	a	simple	call	to	ip->RedrawViewports.
Also	updates	the	named	selection	dropdown	list.	Also,	if	the	EPoly	project	has
been	compiled	as	a	debug	build,	it	will	verify	that	the	MNMesh	is	free	of
errors	using	the	MNMesh::CheckAllData	method.

Default	Implementation:
{	}

Prototype:

virtual	bool	Editing();
Remarks:
This	method	indicates	if	the	Editable	Poly	object	is	currently	being	edited	in
the	modifier	panel	(and	has	its	UI	present).

Default	Implementation:
{	return	FALSE;	}

	
Selection	and	component	flag	access

Prototype:
virtual	int	GetEPolySelLevel();

Remarks:
This	method	returns	the	EPoly	selection	level,	as	defined	by	the
ePolySelLevel	enum:	One	of	the	following	values;	EP_SL_OBJECT,
EP_SL_VERTEX,	EP_SL_EDGE,	EP_SL_BORDER,
EP_SL_FACE,	EP_SL_ELEMENT.

Default	Implementation:
{	return	EP_SL_OBJECT;	}

Prototype:
virtual	int	GetMNSelLevel();

Remarks:
This	method	returns	the	MNMesh's	selection	level,	as	defined	by	the
PMeshSelLevel	enum	in	MNMesh.h:	one	of	the	following;
MNM_SL_OBJECT,	MNM_SL_VERTEX,	MNM_SL_EDGE,
MNM_SL_FACE.	(Note	that	the	Editable	Poly	selection	levels
EP_SL_BORDER	and	EP_SL_ELEMENT	are	considered	varieties	of
MNM_SL_EDGE	and	MNM_SL_FACE	selection	types,	respectively.)

Default	Implementation:
{	return	MNM_SL_OBJECT;	}

Prototype:

virtual	void	SetEPolySelLevel(int	level);
Remarks:
This	method	sets	the	Editable	Poly	selection	level.

Parameters:
int	level
Possible	values	are	defined	by	the	ePolySelLevel	enum:	one	of
EP_SL_OBJECT,	EP_SL_VERTEX,	EP_SL_EDGE,
EP_SL_BORDER,	EP_SL_FACE,	EP_SL_ELEMENT.

Default	Implementation:
{	}

Prototype:
virtual	bool	EpGetVerticesByFlag(BitArray	&	vset,	DWORD
flags,	DWORD	fmask=0x0);

Remarks:
This	method	fills	in	a	BitArray	depending	on	whether	or	not	each	MNVert
in	the	MNMesh	has	a	particular	flag	or	set	of	flags	set	or	cleared.
Example:	for	instance	to	set	the	BitArray	according	to	selected	vertices,
you'd	just	call	EpGetVerticesByFlag	(vset,	MN_SEL).	But	to	find
vertices	which	do	not	have	the	MN_DEAD	flag	set,	but	which	do	have	the
MN_WHATEVER	flag	set,	you'd	call	EpGetVerticesByFlag	(vset,
MN_WHATEVER,	MN_WHATEVER|MN_DEAD).

Parameters:
BitArray	&	vset
The	array	for	output	to	be	stored	in.	The	vset	will	be	set	to	size	of	the	number
of	verts	in	the	mesh.
DWORD	flags
The	flags	we're	looking	for	in	the	vertices
DWORD	fmask=0x0
The	mask	of	flags	we're	checking.	This	is	automatically	or'd	with	"flags".

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpGetEdgesByFlag(BitArray	&	eset,	DWORD	flags,
DWORD	fmask=0x0);

Remarks:
This	method	fills	in	a	BitArray	depending	on	whether	or	not	each	MNEdge
in	the	MNMesh	has	a	particular	flag	or	set	of	flags	set	or	cleared.
Example:	for	instance	to	set	the	BitArray	according	to	selected	edges,	you'd
just	call	EpGetEdgesByFlag	(eset,	MN_SEL).	But	to	find	edges	which
do	not	have	the	MN_DEAD	flag	set,	but	which	do	have	the
MN_WHATEVER	flag	set,	you'd	call	EpGetEdgesByFlag	(eset,
MN_WHATEVER,	MN_WHATEVER|MN_DEAD).

Parameters:
BitArray	&	vset
The	array	for	output	to	be	stored	in.	eset	will	be	set	to	size	of	the	number	of
edges	in	the	mesh.
DWORD	flags
The	flags	we're	looking	for	in	the	edges
DWORD	fmask=0x0
The	mask	of	flags	we're	checking.	This	is	automatically	or'd	with	"flags".

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpGetFacesByFlag(BitArray	&	fset,	DWORD	flags,
DWORD	fmask=0x0);

Remarks:
This	method	fills	in	a	BitArray	depending	on	whether	or	not	each	MNFace

in	the	MNMesh	has	a	particular	flag	or	set	of	flags	set	or	cleared.
Example:	for	instance	to	set	the	BitArray	according	to	selected	faces,	you'd
just	call	EpGetFacesByFlag	(fset,	MN_SEL).	But	to	find	faces	which	do
not	have	the	MN_DEAD	flag	set,	but	which	do	have	the
MN_WHATEVER	flag	set,	you'd	call	EpGetFacesByFlag	(fset,
MN_WHATEVER,	MN_WHATEVER|MN_DEAD).

Parameters:
BitArray	&	vset
The	array	for	output	to	be	stored	in.	fset	will	be	set	to	size	of	the	number	of
faces	in	the	mesh.
DWORD	flags
The	flags	we're	looking	for	in	the	faces
DWORD	fmask=0x0
The	mask	of	flags	we're	checking.	This	is	automatically	or'd	with	"flags".

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	void	EpSetVertexFlags(BitArray	&vset,	DWORD	flags,
DWORD	fmask=0x0,	bool	undoable=true);

Remarks:
This	method	sets	MNVert	flags	based	on	a	BitArray.
Example:	to	hide	vertices	specified	by	the	BitArray,	you'd	just	call
EpSetVertexFlags	(vset,	MN_HIDE).	To	unhide	the	vertices,	you'd	use
EpSetVertexFlags	(vset,	0,	MN_HIDE).

Parameters:
BitArray	&	vset
This	bitarray	indicates	which	vertices	should	have	their	flags	modified.
DWORD	flags
The	flags	to	set.

DWORD	fmask=0x0
The	flag	mask	-	if	it	includes	bits	not	in	"flags",	those	bits	are	cleared	in	the
specified	vertices.
bool	undoable=true
If	(undoable	&&	theHold.Holding()),	a	restore	object	for	this	flag	change
will	be	added	to	the	current	undo	stack.

Default	Implementation:
{	return;	}

Prototype:
virtual	void	EpSetEdgeFlags(BitArray	&eset,	DWORD	flags,
DWORD	fmask	=	0x0,	bool	undoable=true);

Remarks:
This	method	sets	MNEdge	flags	based	on	a	BitArray.
Example:	to	select	edges	specified	by	the	BitArray,	you'd	just	call
EpSetEdgeFlags	(eset,	MN_SEL).	To	clear	selection	on	the	edges,	you'd
use	EpSetEdgeFlags	(eset,	0,	MN_SEL).

Parameters:
BitArray	&	vset
This	bitarray	indicates	which	edges	should	have	their	flags	modified.
DWORD	flags
The	flags	to	set.
DWORD	fmask=0x0
The	flag	mask	-	if	it	includes	bits	not	in	"flags",	those	bits	are	cleared	in	the
specified	edges.
bool	undoable=true
If	(undoable	&&	theHold.Holding()),	a	restore	object	for	this	flag	change
will	be	added	to	the	current	undo	stack.

Default	Implementation:
{	return;	}

Prototype:

virtual	void	EpSetFaceFlags(BitArray	&fset,	DWORD	flags,
DWORD	fmask	=	0x0,	bool	undoable=true);

Remarks:
This	method	sets	MNFace	flags	based	on	a	BitArray.
Example:	to	hide	faces	specified	by	the	BitArray,	you'd	just	call
EpSetFaceFlags	(fset,	MN_HIDE).	To	unhide	the	faes,	you'd	use
EpSetFaceFlags	(fset,	0,	MN_HIDE).

Parameters:
BitArray	&	vset
This	bitarray	indicates	which	faces	should	have	their	flags	modified.
DWORD	flags
The	flags	to	set.
DWORD	fmask=0x0
The	flag	mask	-	if	it	includes	bits	not	in	"flags",	those	bits	are	cleared	in	the
specified	faces.
bool	undoable=true
If	(undoable	&&	theHold.Holding()),	a	restore	object	for	this	flag	change
will	be	added	to	the	current	undo	stack.

Default	Implementation:
{	return;	}

	
UI	Button	and	Command	Mode	methods
These	methods	allow	the	developer	to	simulate	pushing	the	buttons	available	in
the	UI.	Some	buttons	in	Editable	Poly,	such	as	"Delete",	complete	an	operation
when	pressed.	Others,	such	as	"Create",	enter	into	an	interactive	command	mode
while	they're	depressed.

Prototype:
virtual	void	EpActionButtonOp(int	opcode);

Remarks:
Completes	the	action	corresponding	to	the	specified	UI	button.

Parameters:

int	opcode
The	list	of	"button	operations"	is	defined	by	the	epolyButtonOp	enum.
Select	dialog	button	operations:
epop_hide:	Hide	current	selection
epop_unhide:	Unhide	current	selection
epop_ns_copy:	Copy	named	selection	(brings	up	UI)
epop_ns_paste:	Paste	named	selection	(may	bring	up	UI)

Edit	Geometry	dialog	button	operations:
epop_cap:	Cap	currently	selected	borders
epop_delete:	Delete	current	selection.
epop_detach:	Detach	current	selection.
epop_attach_list:	Attach	any	number	of	nodes	using	the	attach	by	name
dialog.
epop_split:	Split	currently	selected	edges.
epop_break:	Break	currently	selected	vertices
epop_collapse:	Collapse	current	selection
epop_reset_plane:	Reset	the	slice	plane
epop_slice:	Slice
epop_weld_sel:	Weld	current	vertex	or	edge	selection
epop_create_shape:	Create	a	shape	from	current	edge	selection	(brings
up	UI)
epop_make_planar:	Make	current	selection	planar
epop_align_grid:	Align	current	selection	to	construction	grid
epop_align_view:	Align	current	selection	at	right	angles	to	view.
epop_remove_iso_verts:	Remove	isolated	vertices

Subdivide	dialog	button	operations:
epop_meshsmooth:	Subdivide	by	MeshSmooth	(NURMS	Style)
epop_tessellate:	Subdivide	by	Tessellation

Surface	Properties	dialog	button	operations:
Object	Level:
epop_update:	Update	MeshSmooth	subdivision

Vertex	Level:
epop_selby_vc:	Select	by	vertex	color

Face	Level:
epop_retriangulate:	Retriangulate	currently	selected	faces
epop_flip_normals:	Flip	normals	on	currently	selected	elements
epop_selby_matid:	Select	faces	by	Material	ID	(brings	up	UI)
epop_selby_smg:	Select	faces	by	smoothing	groups	(brings	up	UI)
epop_autosmooth:	Autosmooth	currently	selected	faces
epop_clear_smg:	Clear	all	smoothing	groups	on	currently	selected	faces.

	
Default	Implementation:
{	}

Prototype:
virtual	void	EpActionToggleCommandMode(int	mode);

Remarks:
If	the	user	is	currently	in	the	specified	command	mode,	this	method	causes
them	to	exit	it.	If	the	user	is	not,	this	method	will	enter	it.

Parameters:
int	mode
The	list	of	command	modes	is	defined	by	the	epolyCommandMode	enum
and	is	given	here	for	reference.	(Their	names	are	self-explanatory.)
epmode_create_vertex
epmode_create_edge
epmode_create_face
epmode_divide_edge
epmode_divide_face
epmode_extrude_vertex	(note:	currently	inactive)
epmode_extrude_edge	(note:	currently	inactive)
epmode_extrude_face

epmode_chamfer_vertex
epmode_chamfer_edge
epmode_bevel
epmode_sliceplane
epmode_cut_vertex
epmode_cut_edge
epmode_cut_face
epmode_weld
epmode_edit_tri

	
Default	Implementation:
{	}

Prototype:
virtual	void	EpActionEnterPickMode(int	mode);

Remarks:
This	method	enters	the	specified	pick	mode,	which	is	like	a	command	mode
but	relates	to	picking	nodes.

Parameters:
int	mode
Currently	there	is	only	one	pick	mode	supported	by	EPoly,	which	is	defined	in
the	epolyPickMode	enum:	epmode_attach,	which	allows	the	user	to
pick	a	node	to	attach	to	this	Editable	Poly	object.

Default	Implementation:
{	}

Prototype:
virtual	void	EpActionExitCommandModes();

Remarks:
This	method	exits	from	any	command	mode	the	system	currently	may	be	in.

Default	Implementation:

{	}
	
Transform	Methods

Prototype:
virtual	void	MoveSelection(int	level,	TimeValue	t,	Matrix3&
partm,	Matrix3&	tmAxis,	Point3&	val,	BOOL	localOrigin);

Remarks:
This	method	moves	the	current	selection	(including	any	soft	selection)	by	the
specified	amount	in	the	specified	coordinate	system.

Parameters:
int	level
The	enum	ePolySelLevel,	being	one	of	the	following	values;
EP_SL_OBJECT,	EP_SL_VERTEX,	EP_SL_EDGE,
EP_SL_BORDER,	EP_SL_FACE,	EP_SL_ELEMENT.
TimeValue	t
The	time	at	which	to	apply	the	move	operation.
Matrix3&	partm
The	parent	transformation	matrix.
Matrix3&	tmAxis
The	transformation	axis.
Point3&	val
The	vector	describing	the	translation.
BOOL	localOrigin
TRUE	to	move	based	on	the	local	origin,	otherwise	FALSE.

Default	Implementation:
{	}

Prototype:
virtual	void	RotateSelection(int	level,	TimeValue	t,	Matrix3&
partm,	Matrix3&	tmAxis,	Quat&	val,	BOOL	localOrigin);

Remarks:

This	method	rotates	the	current	selection	(including	any	soft	selection)	by	the
specified	amount	in	the	specified	coordinate	system.

Parameters:
int	level
The	enum	ePolySelLevel,	being	one	of	the	following	values;
EP_SL_OBJECT,	EP_SL_VERTEX,	EP_SL_EDGE,
EP_SL_BORDER,	EP_SL_FACE,	EP_SL_ELEMENT.
TimeValue	t
The	time	at	which	to	apply	the	rotate	operation.
Matrix3&	partm
The	parent	transformation	matrix.
Matrix3&	tmAxis
The	transformation	axis.
Quat&	val
The	rotation	quaternion.
BOOL	localOrigin
TRUE	to	rotate	based	on	the	local	origin,	otherwise	FALSE.

Default	Implementation:
{	}

Prototype:
virtual	void	ScaleSelection(int	level,	TimeValue	t,	Matrix3&
partm,	Matrix3&	tmAxis,	Point3&	val,	BOOL	localOrigin);

Remarks:
This	method	scales	the	current	selection	(including	any	soft	selection)	by	the
specified	amount	in	the	specified	coordinate	system.

Parameters:
int	level
The	enum	ePolySelLevel,	being	one	of	the	following	values;
EP_SL_OBJECT,	EP_SL_VERTEX,	EP_SL_EDGE,
EP_SL_BORDER,	EP_SL_FACE,	EP_SL_ELEMENT.
TimeValue	t

The	time	at	which	to	apply	the	rotate	operation.
Matrix3&	partm
The	parent	transformation	matrix.
Matrix3&	tmAxis
The	transformation	axis.
Point3&	val
The	scaling	value.
BOOL	localOrigin
TRUE	to	scale	based	on	the	local	origin,	otherwise	FALSE.

Default	Implementation:
{	}

Prototype:
virtual	void	ApplyDelta(Tab<Point3>	&	delta,	EPoly	*epol,
TimeValue	t);

Remarks:
This	method	applies	a	geometric	"delta"	vector	to	the	current	mesh	at	the
specified	time.	(Note:	if	t!=0	and	the	system's	animate	feature	is	on,	this	will
set	keys.)

Parameters:
Tab<Point3>	&	delta
The	table	of	geometry	delta	vectors.
EPoly	*epol
A	pointer	to	the	editable	poly	object	to	apply	to.
TimeValue	t
The	time	at	which	to	apply	the	geometric	delta.

Default	Implementation:
{	}

	
Slice	plane	accessors

Prototype:

virtual	void	EpResetSlicePlane();
Remarks:
This	method	resets	the	slice	plane.

Default	Implementation:
{	}

Prototype:
virtual	void	EpGetSlicePlane(Point3	&	planeNormal,	Point3	&
planeCenter,	float	*planeSize=NULL);

Remarks:
This	method	returns	the	slice	plane,	as	defined	by	its	normal,	center,	and	size.
(Size	is	irrelevant	for	slicing,	but	defines	the	size	of	the	slice	gizmo	the	user
sees.)

Parameters:
Point3	&	planeNormal
The	plane	normal	vector.
Point3	&	planeCenter
The	plane	center.
float	*planeSize=NULL
The	size	of	the	plane.

Default	Implementation:
{	}

Prototype:
virtual	void	EpSetSlicePlane(Point3	&	planeNormal,	Point3	&
planeCenter,	float	planeSize);

Remarks:
This	method	sets	the	slice	plane	to	have	the	specified	normal,	center,	and	size.
(Unlike	in	EpGetSlicePlane(),	size	is	not	an	optional	argument	here.)

Parameters:
Point3	&	planeNormal
The	plane	normal	vector.

Point3	&	planeCenter
The	plane	center.
float	planeSize
The	size	of	the	plane.

Default	Implementation:
{	}

	
Component	data	access	methods

Prototype:
virtual	Color	GetVertexColor(bool	*uniform=NULL,	int
*num=NULL,	int	mp=0,	DWORD	flag=MN_SEL,	TimeValue
t=0);

Remarks:
This	method	obtains	the	vertex	color	for	the	flagged	vertices	in	the	indicated
map	channel.

Parameters:
bool	*uniform=NULL
If	non-NULL,	the	bool	this	pointer	points	to	is	set	to	true	if	all	flagged	vertices
have	the	identical	color,	and	false	otherwise.	(It's	set	to	true	if	there	are	0
vertices.)
int	*num=NULL
If	non-NULL,	the	number	of	vertices	currently	flagged	is	computed	and	stored
here.
int	mp=0
The	map	channel	we're	using.	Most	vertex	color	applications	use	the	standard
vertex	color	channel,	0.	However,	you	can	also	use	this	method	with	the
Illumination	channel	(MAP_SHADING	=	-1)	or	the	alpha	channel
(MAP_ALPHA	=	-2)	-	or	even	with	a	regular	UVW	map	channel	(1-99).
DWORD	flag=MN_SEL
This	indicates	the	vertices	we	look	at.	If	left	at	the	default,	selected	vertices'
colors	are	analyzed.	If	flag	were	to	equal	MN_WHATEVER,	then	vertices
with	the	MN_WHATEVER	flag	would	have	their	colors	analyzed.

TimeValue	t=0
This	is	not	currently	used.

Return	Value:
The	color	of	the	flagged	vertices,	or	black	(0,0,0)	if	the	vertices'	colors	are	not
the	same.

Default	Implementation:
{	return	Color(1,1,1);	}

Prototype:
virtual	void	SetVertexColor(Color	clr,	int	mp=0,	DWORD
flag=MN_SEL,	TimeValue	t=0);

Remarks:
This	method	sets	the	vertex	color	for	the	flagged	vertices	in	the	indicated	map
channel.

Parameters:
Color	clr
The	color	to	set	the	vertices	to.
int	mp=0
The	map	channel	we're	using.	Most	vertex	color	applications	use	the	standard
vertex	color	channel,	0.	However,	you	can	also	use	this	method	with	the
Illumination	channel	(MAP_SHADING	=	-1)	or	the	alpha	channel
(MAP_ALPHA	=	-2)	-	or	even	with	a	regular	UVW	map	channel	(1-99).
DWORD	flag=MN_SEL
This	indicates	which	vertices	we	set.	If	left	at	the	default,	selected	vertices'
colors	are	set.	If	flag	were	to	equal	MN_WHATEVER,	then	vertices	with
the	MN_WHATEVER	flag	would	have	their	colors	set.
TimeValue	t=0
This	is	not	currently	used.

Default	Implementation:
{	}

Prototype:

virtual	Color	GetFaceColor(bool	*uniform=NULL,	int
*num=NULL,	int	mp=0,	DWORD	flag=MN_SEL,	TimeValue
t=0);

Remarks:
This	method	obtains	the	face	color	for	the	flagged	faces	in	the	indicated	map
channel.

Parameters:
bool	*uniform=NULL
If	non-NULL,	the	bool	this	pointer	points	to	is	set	to	true	if	all	flagged	faces
have	the	identical	color,	and	false	otherwise.	(It's	set	to	true	if	there	are	0
flagged	faces.)
int	*num=NULL
If	non-NULL,	the	number	of	faces	currently	flagged	is	computed	and	stored
here.
int	mp=0
The	map	channel	we're	using.	Most	vertex	color	applications	use	the	standard
vertex	color	channel,	0.	However,	you	can	also	use	this	method	with	the
Illumination	channel	(MAP_SHADING	=	-1)	or	the	alpha	channel
(MAP_ALPHA	=	-2)	-	or	even	with	a	regular	UVW	map	channel	(1-99).
DWORD	flag=MN_SEL
This	indicates	which	vertices	we	set.	If	left	at	the	default,	selected	vertices'
colors	are	set.	If	flag	were	to	equal	MN_WHATEVER,	then	vertices	with
the	MN_WHATEVER	flag	would	have	their	colors	set.
TimeValue	t=0
This	is	not	currently	used.

Return	Value:
The	color	of	the	flagged	faces,	or	black	(0,0,0)	if	the	faces'	colors	are	not	the
same.

Default	Implementation:
{	return	Color(1,1,1);	}

Prototype:
virtual	void	SetFaceColor(Color	clr,	int	mp=0,	DWORD

flag=MN_SEL,	TimeValue	t=0);
Remarks:
This	method	sets	the	vertex	color	for	the	flagged	faces	in	the	indicated	map
channel.

Parameters:
Color	clr
The	color	to	set	the	faces	to.
int	mp=0
The	map	channel	we're	using.	Most	vertex	color	applications	use	the	standard
vertex	color	channel,	0.	However,	you	can	also	use	this	method	with	the
Illumination	channel	(MAP_SHADING	=	-1)	or	the	alpha	channel
(MAP_ALPHA	=	-2)	-	or	even	with	a	regular	UVW	map	channel	(1-99).
DWORD	flag=MN_SEL
This	indicates	which	vertices	we	set.	If	left	at	the	default,	selected	vertices'
colors	are	set.	If	flag	were	to	equal	MN_WHATEVER,	then	vertices	with
the	MN_WHATEVER	flag	would	have	their	colors	set.
TimeValue	t=0
This	is	not	currently	used.

Default	Implementation:
{	}

Prototype:
virtual	float	GetVertexDataValue(int	channel,	int	*numSel,	bool
*uniform,	DWORD	vertexFlags,	TimeValue	t);

Remarks:
This	method	obtains	floating-point	vertex	data	from	the	flagged	vertices	in	the
specified	vertex	data	channel.

Parameters:
int	channel
The	vertex	data	channel	we're	querying.	See	the	List	of	Vertex	Data	Channels
(which	are	defined	in	mesh.h).
int	*numSel

If	non-NULL,	this	is	filled	in	with	the	current	number	of	flagged	vertices.
bool	*uniform
If	non-NULL,	this	is	set	to	indicate	whether	the	currently	flagged	vertices
have	uniform	values	or	not.
DWORD	vertexFlags
Indicates	which	vertices	to	evaluate.	(Use	MN_SEL	to	get	vertex	data	from
selected	vertices.)
TimeValue	t
This	is	not	currently	used.

Return	Value:
The	vertex	data	value	for	the	flagged	vertices.	If	the	vertices'	values	vary,	the
first	value	found	is	returned.

Default	Implementation:
{	return	1.0f;	}

Prototype:
virtual	float	GetEdgeDataValue(int	channel,	int	*numSel,	bool
*uniform,	DWORD	edgeFlags,	TimeValue	t);

Remarks:
This	method	obtains	floating-point	edge	data	from	the	flagged	edges	in	the
specified	edge	data	channel.

Parameters:
int	channel
The	edge	data	channel	we're	querying.	See	the	List	of	Edge	Data	Channels
(which	are	defined	in	mnmesh.h).
int	*numSel
If	non-NULL,	this	is	filled	in	with	the	current	number	of	flagged	edges.
bool	*uniform
If	non-NULL,	this	is	set	to	indicate	whether	the	currently	flagged	edges	have
uniform	values	or	not.
DWORD	edgeFlags
Indicates	which	edges	to	evaluate.	(Use	MN_SEL	to	get	vertex	data	from
selected	vertices.)

TimeValue	t
This	is	not	currently	used.

Return	Value:
The	edge	data	value	for	the	flagged	edges.	If	the	edges'	values	vary,	the	first
value	found	is	returned.

Default	Implementation:
{	return	1.0f;	}

Prototype:
virtual	void	SetVertexDataValue(int	channel,	float	w,	DWORD
vertexFlags,	TimeValue	t);

Remarks:
This	method	sets	floating-point	vertex	data	for	the	flagged	vertices	in	the
specified	vertex	data	channel.

Parameters:
int	channel
The	vertex	data	channel	we're	modifying.	See	the	List	of	Vertex	Data
Channels	(which	are	defined	in	mesh.h).
float	w
The	value	to	set	the	flagged	vertices	to.
DWORD	vertexFlags
Indicates	which	vertices	to	modify.	(Use	MN_SEL	to	set	vertex	data	in
selected	vertices.)
TimeValue	t
This	is	not	currently	used.

Default	Implementation:
{	}

Prototype:
virtual	void	SetEdgeDataValue(int	channel,	float	w,	DWORD
edgeFlags,	TimeValue	t);

Remarks:

This	method	sets	floating-point	edge	data	for	the	flagged	edges	in	the
specified	edge	data	channel.

Parameters:
int	channel
The	edge	data	channel	we're	modifying.	See	the	List	of	Edge	Data	Channels
(which	are	defined	in	mnmesh.h).
float	w
The	value	to	set	the	flagged	edges	to.
DWORD	edgeFlags
Indicates	which	edges	to	modify.	(Use	MN_SEL	to	set	edge	data	in	selected
edges.)
TimeValue	t
This	is	not	currently	used.

Default	Implementation:
{	}

Prototype:
virtual	void	ResetVertexData(int	channel);

Remarks:
This	method	resets	all	vertex	data	in	the	specified	channel.	For	instance,
ResetEdgeData	(VDATA_WEIGHT)	would	reset	all	vertex	weights	to	1.

Parameters:
int	channel
The	vertex	data.	See	the	List	of	Vertex	Data	Channels

Default	Implementation:
{	}

Prototype:
virtual	void	ResetEdgeData(int	channel);

Remarks:
This	method	resets	all	edge	data	in	the	specified	channel.	For	instance,
ResetEdgeData	(EDATA_CREASE)	would	reset	all	edge	crease	values

to	0.
Parameters:
int	channel
The	edge	data	channel.	See	the	List	of	Edge	Data	Channels

Return	Value:
	

Default	Implementation:
{	}

Prototype:
virtual	void	BeginPerDataModify(int	mnSelLevel,	int	channel);

Remarks:
This	method	is	used	in	combination	with	EndPerDataModify	to	store	undo
information	for	any	vertex	or	edge	data	modification.

Parameters:
int	mnSelLevel
Set	to	one	of	MNM_SL_VERTEX	or	MNM_SL_EDGE	for	vertex	or
edge	data	respectively.
int	channel
Indicates	the	channel	of	vertex	or	edge	data	we're	modifying.	For	instance,
BeginPerDataModify	(MNM_SL_EDGE,	EDATA_CREASE)	would
be	used	before	modifying	edge	crease	information.

Default	Implementation:
{	}

Prototype:
virtual	bool	InPerDataModify();

Remarks:
This	method	returns	true	if	we're	between	BeginPerDataModify	and
EndPerDataModify	calls.

Default	Implementation:

{	return	false;	}

Prototype:
virtual	void	EndPerDataModify(bool	success);

Remarks:
This	method	completes	the	undo	object	corresponding	to	the	vertex	or	edge
data	modifications	made	since	the	related	BeginPerDataModify	call.

Parameters:
bool	success
If	FALSE,	the	system	restores	the	original	vertex	colors	and	throws	away	the
undo	object.

Default	Implementation:
{	}

Prototype:
virtual	void	BeginVertexColorModify(int	mp=0);

Remarks:
This	method	is	used	in	combination	with	EndVertexColorModify	to	store
undo	information	for	any	vertex	or	edge	data	modification.

Parameters:
int	mp=0
The	map	channel	we're	using.	Most	vertex	color	applications	use	the	standard
vertex	color	channel,	0.	However,	you	can	also	use	this	method	with	the
Illumination	channel	(MAP_SHADING	=	-1)	or	the	alpha	channel
(MAP_ALPHA	=	-2)	-	or	even	with	a	regular	UVW	map	channel	(1-99).

Default	Implementation:
{	}

Prototype:
virtual	bool	InVertexColorModify();

Remarks:

This	method	returns	true	if	we're	between	BeginVertexColorModify	and
EndVertexColorModify	calls.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	void	EndVertexColorModify(bool	success);

Remarks:
This	method	completes	the	undo	object	corresponding	to	the	vertex	color
modifications	made	since	the	related	BeginVertexColorModify	call.

Parameters:
bool	success
If	FALSE,	the	system	restores	the	original	vertex	colors	and	throws	away	the
undo	object.

Default	Implementation:
{	}

Prototype:
virtual	int	GetMatIndex(bool	*determined,	DWORD
flag=MN_SEL);

Remarks:
This	method	obtains	the	material	index	for	the	selected	faces.

Parameters:
bool	*determined
The	bool	this	points	to	(which	should	not	be	NULL)	is	filled	with:
FALSE	if	there	are	no	selected	faces	or	if	selected	faces	have	different
material	indices
TRUE	if	at	least	one	face	is	selected	and	all	selected	faces	have	the	same
material	ID.

DWORD	flag=MN_SEL
Indicates	which	faces	should	have	their	material	IDs	set.

Return	Value:
The	material	index	of	the	selected	faces,	cast	as	an	int.

Default	Implementation:
{	determined=false;	return	0;	}

Prototype:
virtual	void	SetMatIndex(int	index,	DWORD	flag=MN_SEL);

Remarks:
This	method	sets	the	material	index	for	the	flagged	faces.

Parameters:
int	index
The	material	index	to	set	flagged	faces	to.
DWORD	flag=MN_SEL
Indicates	which	faces	should	have	their	material	IDs	set.

Default	Implementation:
{	}

Prototype:
virtual	void	GetSmoothingGroups(DWORD	faceFlag,	DWORD
*anyFaces,	DWORD	*allFaces=NULL);

Remarks:
This	method	obtains	smoothing	group	information	for	the	specified	faces.

Parameters:
DWORD	faceFlag
Indicates	which	faces	to	read	smoothing	group	information	from.	If	this	value
is	0,	all	faces	are	read.
DWORD	*anyFaces
DWORD	*allFaces=NULL
These	two	parameters	are	where	the	output	is	stored.	"anyFaces"	has	bits	set
that	are	present	in	any	of	the	faces'	smoothing	groups.	"allFaces",	if	non-
NULL,	has	bits	set	that	are	present	in	all	of	the	faces'	smoothing	groups.	In
other	words,	anyFaces	or's	together	the	faces'	groups,	while	allFaces	and's

them	together.
Default	Implementation:
{	if	(anyFaces)	*anyFaces	=	0;	if	(allFaces)	*allFaces	=	0;	}

Prototype:
virtual	void	SetSmoothBits(DWORD	bits,	DWORD	bitmask,
DWORD	flag);

Remarks:
This	method	sets	(or	clears)	smoothing	group	bits	in	the	specified	faces.

Parameters:
DWORD	bits
The	smoothing	group	bits	to	set	in	flagged	faces.
DWORD	bitmask
The	smoothing	group	bits	to	clear	in	flagged	faces
DWORD	flag
Indicates	which	faces	to	set	smoothing	group	information	in.	If	this	value	is	0,
all	faces	are	modified.

Default	Implementation:
{	}

	
Displacement	approximation	methods

Prototype:
virtual	void	SetDisplacementParams();

Remarks:
This	method	copies	displacement	parameters	from	pblock	to	polyobject.

Default	Implementation:
{	}

Prototype:
virtual	void	UpdateDisplacementParams();

Remarks:
This	method	copies	displacement	parameters	from	polyobject	to	pblock.

Default	Implementation:
{	}

Prototype:
virtual	void	UseDisplacementPreset(int	presetNumber);

Remarks:
This	method	engages	a	displacement	approximation	preset.

Parameters:
int	presetNumber
The	presetNumber	values	are	either	0	(low),	1	(medium),	or	2	(high).

Default	Implementation:
{	}

	
Drag	operations

Prototype:
virtual	void	EpfnBeginExtrude(int	msl,	DWORD	flag,	TimeValue
t);

Remarks:
This	method	is	called	at	the	beginning	of	an	interactive	extrusion	operation.
Performs	the	topological	extrusion.

Parameters:
int	msl
Indicates	the	MNMesh-based	selection	level	we're	extruding.	(Currently,	this
must	be	MNM_SL_FACE.)
DWORD	flag
Indicates	the	faces	we're	extruding.
TimeValue	t
The	current	time.

Default	Implementation:

{	}

Prototype:
virtual	void	EpfnEndExtrude(bool	accept,	TimeValue	t);

Remarks:
This	method	is	called	at	the	end	of	an	interactive	extrusion	operation.
Completes	the	RestoreObjects	and	finalizes	the	geometric	edit.

Parameters:
bool	accept
If	TRUE,	end	extrude	normally.	If	FALSE,	cancel	the	extrusion	completely
(undoing	the	original	topological	extrusion).
TimeValue	t
The	current	time.

Default	Implementation:
{	}

Prototype:
virtual	void	EpfnDragExtrude(float	amount,	TimeValue	t);

Remarks:
This	method	is	used	to	drag	the	current	extrusion	to	the	amount	specified.	May
be	called	multiple	times	in	one	session	between	EpfnBeginExtrude	and
EpfnEndExtrude.

Parameters:
float	amount
The	(absolute)	amount	of	the	extrusion
TimeValue	t
The	current	time

Default	Implementation:
{	}

Prototype:
virtual	void	EpfnBeginBevel(int	msl,	DWORD	flag,	bool

doExtrude,	TimeValue	t);
Remarks:
This	method	is	called	at	the	beginning	of	an	interactive	bevel	or	outline
operation.	Performs	the	topological	extrusion	if	necessary,	and	prepares
certain	cached	data.

Parameters:
int	msl
Indicates	the	MNMesh-based	selection	level	we're	beveling.	(Currently,	this
must	be	MNM_SL_FACE.)
DWORD	flag
Indicates	the	faces	we're	extruding.
bool	doExtrude
Indicates	whether	or	not	a	topological	extrusion	should	be	done	for	this	bevel.
(For	instance,	leaving	this	at	false	you	to	do	"outlining",	or	to	adjust	a	previous
bevel.)
TimeValue	t
The	current	time.

Default	Implementation:
{	}

Prototype:
virtual	void	EpfnEndBevel(bool	accept,	TimeValue	t);

Remarks:
This	method	is	called	at	the	end	of	an	interactive	bevel.	Completes	the
RestoreObjects	and	finalizes	the	geometric	edit.

Parameters:
bool	accept
If	TRUE,	end	bevel	normally.	If	FALSE,	cancel	the	bevel	completely	(undoing
any	earlier	topological	extrusion).
TimeValue	t
The	current	time.

Default	Implementation:

{	}

Prototype:
virtual	void	EpfnDragBevel(float	outline,	float	height,	TimeValue
t);

Remarks:
This	method	is	used	to	drag	the	current	bevel	to	the	outline	and	height
specified.	May	be	called	multiple	times	in	one	session	between
EpfnBeginBevel	and	EpfnEndBevel.

Parameters:
float	outline
The	(positive	or	negative)	outline	amount	for	the	bevel.
float	height
The	(positive	or	negative)	height	of	the	bevel.
TimeValue	t
The	current	time

Default	Implementation:
{	}

Prototype:
virtual	void	EpfnBeginChamfer(int	msl,	TimeValue	t);

Remarks:
This	method	is	called	at	the	beginning	of	an	interactive	chamfer	operation.
Performs	the	topological	changes	and	prepares	certain	cached	data.

Parameters:
int	msl
Indicates	the	MNMesh-based	selection	level	we're	chamfering.	(Either
MNM_SL_VERTEX	or	MNM_SL_EDGE.)
TimeValue	t
The	current	time.

Default	Implementation:
{	}

Prototype:
virtual	void	EpfnEndChamfer(bool	accept,	TimeValue	t);

Remarks:
This	method	is	called	at	the	end	of	an	interactive	chamfer.	Completes	the
RestoreObjects	and	finalizes	the	geometric	edits.

Parameters:
bool	accept
If	TRUE,	end	chamfer	normally.	If	FALSE,	cancel	the	chamfer	completely
(undoing	the	earlier	topological	changes).
TimeValue	t
The	current	time.

Default	Implementation:
{	}

Prototype:
virtual	void	EpfnDragChamfer(float	amount,	TimeValue	t);

Remarks:
This	method	is	used	to	drag	the	current	chamfer	to	the	amount	specified.	May
be	called	multiple	times	in	one	session	between	EpfnBeginChamfer	and
EpfnEndChamfer.

Parameters:
float	amount
The	amount	of	the	chamfer.
TimeValue	t
The	current	time

Default	Implementation:
{	}

	
Regular	operations

Prototype:
virtual	bool	EpfnHide(int	msl,	DWORD	flags);

Remarks:
This	method	Hides	flagged	components.

Parameters:
int	msl
MNMesh	selection	level	-	should	be	either	MNM_SL_VERTEX	or
MNM_SL_FACE.
DWORD	flags
Indicates	which	components	to	hide.	For	instance,	MN_SEL	would	cause	it
to	hide	selected	vertices	or	faces.

Return	Value:
TRUE	if	components	were	hidden,	otherwise	FALSE.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnUnhideAll(int	msl);

Remarks:
This	method	unhides	all	components	at	the	specified	level.

Parameters:
int	msl
MNMesh	selection	level	-	should	be	either	MNM_SL_VERTEX	or
MNM_SL_FACE.

Return	Value:
TRUE	if	components	were	unhidden,	otherwise	FALSE.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	void	EpfnNamedSelectionCopy(TSTR	setName);

Remarks:
This	method	copies	the	named	selection	specified	to	the	named	selection
copy/paste	buffer.

Parameters:
TSTR	setName
The	name	of	the	selection	set.

Default	Implementation:
{	}

Prototype:
virtual	void	EpfnNamedSelectionPaste(bool	useDlgToRename);

Remarks:
This	method	pastes	selection	from	named	selection	copy/paste	buffer.

Parameters:
bool	useDlgToRename
Only	matters	if	there	is	a	name	conflict	with	an	existing	named	selection.	If
true,	the	system	should	throw	up	an	interactive	dialog	for	the	user	to	rename
the	selection.	If	false,	3ds	max	should	use	string	techniques	to	rename	the
selection	(by	adding	or	increasing	a	number,	etc.)

Default	Implementation:
{	}

Prototype:
virtual	int	EpfnCreateVertex(Point3	pt,	bool	pt_local=false,	bool
select=true);

Remarks:
This	method	creates	a	new	vertex	in	the	mesh.

Parameters:
Point3	pt
The	location	of	the	new	vertex	in	object	or	world	space.
bool	pt_local=false
If	true,	the	point	passed	is	assumed	to	be	in	object	space.	If	false,	the	point	is
assumed	to	represent	world	space,	and	the	object	space	location	must	be
computed	by	the	method.
bool	select=true

Indicates	if	the	new	vertex	should	be	selected	(have	its	MN_SEL	flag	set).
Return	Value:
The	index	of	the	new	vertex,	or	-1	to	indicate	failure	to	create	the	vertex.

Default	Implementation:
{	return	-1;	}

Prototype:
virtual	int	EpfnCreateEdge(int	v1,	int	v2,	bool	select=true);

Remarks:
This	method	creates	a	new	edge,	dividing	a	polygon	into	two	smaller
polygons.

Parameters:
int	v1,	v2
The	endpoint	vertices	for	this	edge.	These	vertices	must	have	at	least	one	face
in	common,	or	the	creation	will	fail.
bool	select=true
Indicates	if	the	new	edge	should	be	selected	(have	its	MN_SEL	flag	set).

Return	Value:
The	index	of	the	edge	created.

Default	Implementation:
{	return	-1;	}

Prototype:
virtual	int	EpfnCreateFace(int	*v,	int	deg,	bool	select=true);

Remarks:
This	method	creates	a	new	face	on	a	set	of	vertices.

Parameters:
int	*v
An	array	of	vertices	for	this	new	face.	Note	that	each	vertex	must	be	an	"open"
vertex	-	it	either	must	be	on	no	edges	or	faces,	or	it	must	be	part	of	a	border
(i.e.	it's	on	more	edges	than	faces).
int	deg

The	degree	of	the	new	face	-	and	the	size	of	the	"v"	array.
bool	select=true
Indicates	if	the	new	face	should	be	selected	(have	its	MN_SEL	flag	set).

Return	Value:
The	index	of	the	face	created.

Default	Implementation:
{	return	-1;	}

Prototype:
virtual	bool	EpfnCapHoles(int	msl=MNM_SL_EDGE,	DWORD
targetFlags=MN_SEL);

Remarks:
This	method	caps	the	indicated	holes.

Parameters:
int	msl=MNM_SL_EDGE
MNMesh-based	selection	level,	one	of	MNM_SL_VERTEX,
MNM_SL_EDGE,	or	MNM_SL_FACE.	The	holes	are	border	loops
which	can	be	identified	by	containing	selected	edges,	using	selected	vertices,
or	being	touched	by	selected	faces.
DWORD	targetFlags=MN_SEL
The	flags	we're	looking	for	(in	the	vertex,	edge,	or	face	levels,	according	to
msl)	to	identify	the	holes	we	should	cap.

Return	Value:
TRUE	if	any	hole	was	successfully	capped,	otherwise	FALSE

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnDelete(int	msl,	DWORD	delFlag=MN_SEL,	bool
delIsoVerts=false);

Remarks:
This	method	deletes	the	specified	components	(and	any	other	components

dependent	on	them).
Parameters:
int	msl
MNMesh-based	selection	level	for	deletion	to	occur	on;	one	of
MNM_SL_VERTEX,	MNM_SL_EDGE,	or	MNM_SL_FACE.	Note
that	edge	deletion	joins,	rather	than	removes,	the	neighboring	faces.	Border
edges	cannot	be	deleted.	Deleting	an	edge	between	two	quads	makes	a
hexagon.	Etc.
DWORD	delFlag=MN_SEL
The	flag	indicating	components	to	delete.
bool	delIsoVerts=false
If	deleting	faces,	this	indicates	whether	vertices	that	are	left	isolated	by	the
face	deletion	should	also	be	deleted.	(Note	that	in	the	reverse	situation,	faces
dependent	on	deleted	vertices	are	always	deleted.)

Return	Value:
TRUE	if	components	were	deleted,	otherwise	FALSE.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	void	EpfnAttach(INode	*node,	INode	*myNode,	TimeValue
t);

Remarks:
This	method	attaches	the	specified	object	to	this	mesh.	The	object	given	is
first	converted	to	a	polymesh	(if	needed),	then	attached	as	an	element	in	the
Editable	Poly,	then	the	original	is	deleted.

Parameters:
INode	*node
A	pointer	to	the	node	we	want	to	attach.
INode	*myNode
A	pointer	to	this	Editable	Poly's	node	(used	to	match	the	attached	object	to	our
object	space).
TimeValue	t

The	current	time.
Default	Implementation:
{	}

Prototype:
virtual	void	EpfnMultiAttach(INodeTab	&nodeTab,	INode
*myNode,	TimeValue	t);

Remarks:
This	method	attaches	a	bunch	of	nodes	to	this	mesh.	The	objects	in	the	nodes
are	converted	to	polymeshes	if	needed,	then	attached	as	elements	in	this
Editable	Poly.	(Then	the	originals	are	deleted.)

Parameters:
INodeTab	&nodeTab
A	table	of	nodes	we	want	to	attach.
INode	*myNode
A	pointer	to	this	Editable	Poly's	node	(used	to	match	the	attached	objects	to
our	object	space).
TimeValue	t
The	current	time.

Default	Implementation:
{}

Prototype:
virtual	bool	EpfnDetachToElement(int	msl,	DWORD	flag,	bool
keepOriginal);

Remarks:
This	method	detaches	part	of	PolyMesh	to	a	separate	element.

Parameters:
int	msl
Indicates	the	MNMesh-based	selection	level,	one	of	MNM_SL_VERTEX,
MNM_SL_EDGE,	or	MNM_SL_FACE.
DWORD	flag

Flag	indicates	which	components	should	be	detached.	For	instance,
MNM_SL_VERTEX	and	MN_SEL	means	selected	vertices.
bool	keepOriginal
If	TRUE,	the	original	components	are	left	intact	and	a	new	element	is	cloned
instead.

Return	Value:
TRUE	if	elements	are	detached,	otherwise	FALSE.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnDetachToObject(TSTR	name,	int	msl,	DWORD
flag,	bool	keepOriginal,	INode	*myNode,	TimeValue	t);

Remarks:
This	method	detaches	part	of	PolyMesh	to	a	separate	object.

Parameters:
TSTR	name
The	desired	name	for	the	new	node.
int	msl
Indicates	the	MNMesh-based	selection	level,	one	of	MNM_SL_VERTEX,
MNM_SL_EDGE,	or	MNM_SL_FACE.
DWORD	flag
Flag	indicates	which	components	should	be	detached.	For	instance,
MNM_SL_VERTEX	and	MN_SEL	means	selected	vertices.
bool	keepOriginal
If	TRUE,	the	original	components	are	left	intact	and	the	new	object	is	cloned
from	them.
INode	*myNode
A	pointer	to	this	EPoly's	node	(for	transform	and	other	node	property	access).
TimeValue	t
The	current	time.

Return	Value:

TRUE	if	parts	were	detached,	otherwise	FALSE.
Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnSplitEdges(DWORD	flag=MN_SEL);

Remarks:
This	method	"splits"	edges	by	breaking	vertices	on	two	or	more	flagged	edges
into	as	many	copies	as	needed.	In	this	way,	any	path	of	flagged	edges	becomes
two	open	seams.

Parameters:
DWORD	flag=MN_SEL
Indicates	which	edges	should	be	split.	(Left	at	the	default,	selected	edges	are
split.)

Return	Value:
TRUE	if	any	topological	changes	happened,	FALSE	if	nothing	happened.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnBreakVerts(DWORD	flag=MN_SEL);

Remarks:
This	method	breaks	vertices	into	separate	copies	for	each	face	using	them.	For
example,	breaking	one	corner	of	a	box	polymesh	turns	it	into	3	vertices,	one
for	each	side	that	met	at	that	vertex.

Parameters:
DWORD	flag=MN_SEL
Indicates	which	vertices	should	be	broken.	(Left	at	the	default,	selected
vertices	are	broken.)

Return	Value:
TRUE	if	any	topological	changes	happened,	FALSE	if	nothing	happened.

Default	Implementation:

{	return	false;	}

Prototype:
virtual	int	EpfnDivideFace(int	face,	Tab<float>	&bary,	bool
select=true);

Remarks:
This	method	divides	the	face	into	triangles	meeting	at	a	point	described	by
generalized	barycentric	coordinates	on	the	face.	An	n-sided	polygon	will
become	n	triangles	using	this	technique.

Parameters:
int	face
The	face	to	divide.
Tab<float>	&bary
A	table	of	floats,	of	the	same	size	as	the	face's	degree,	indicating	the
contribution	of	each	of	the	face's	vertices	to	the	division	point.	They	should	all
sum	to	1,	indicating	that	the	division	point	is	a	linear	combination	of	the
vertices.	If	they	are	all	equal	(1/n),	the	center	of	the	face	will	be	used.
bool	select=true
Indicates	whether	the	new	triangles	should	have	the	MN_SEL	flag	set	or	not.

Return	Value:
The	index	of	the	new	vertex,	or	-1	for	failure.

Default	Implementation:
{	return	-1;	}

Prototype:
virtual	int	EpfnDivideEdge(int	edge,	float	prop,	bool	select=true);

Remarks:
This	method	divides	an	edge	in	two,	creating	a	new	vertex.

Parameters:
int	edge
The	edge	to	divide.
float	prop

The	proportion	along	the	edge	for	the	new	vertex,	going	from	0	at	the	v1	end
to	1	at	the	v2	end.	For	instance,	a	prop	of	.35	means	that	the	new	point	will	be
located	at;
.65*(v[e[edge].v1].p)	+	.35*(v[e[edge].v2].p)
bool	select=true
Indicates	if	the	new	vertex	should	be	selected.	(The	new	edge	picks	up	its
selection	flag	from	the	old	edge.)

Return	Value:
The	index	of	the	new	vertex,	or	-1	for	failure.

Default	Implementation:
{	return	-1;	}

Prototype:
virtual	bool	EpfnCollapse(int	msl,	DWORD	flag);

Remarks:
This	method	will	collapse	the	current	selection,	turning	each	cluster	(in	edge
or	face	level)	or	all	selected	points	into	a	single	point.	Some	restrictions
inherent	in	a	3ds	max	polygon-based	mesh	may	prevent	a	complete	collapse,	if
the	result	would	have	an	illegal	geometry.

Parameters:
int	msl
MNMesh-based	selection	level,	one	of	MNM_SL_VERTEX,
MNM_SL_EDGE,	or	MNM_SL_FACE.
DWORD	flag
The	flag	on	the	components	we	wish	to	collapse.

Return	Value:
TRUE	if	any	changes	occurred,	FALSE	if	nothing	happened.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	void	EpfnExtrudeFaces(float	amount,	DWORD	flag,

TimeValue	t);
Remarks:
This	method	extrudes	the	flagged	faces	by	the	specified	amount.	Note	that	this
method	uses	the	parameter	block	value	for	ep_extrusion_type.	Values	can
be:
0:	Extrude	by	group	(cluster)
1:	Extrude	by	local	normals
2:	Extrude	by	polygon	-	each	polygon	extrudes	separately.

Parameters:
float	amount
The	height	of	the	extrusion.	Can	be	positive	or	negative.
DWORD	flag
Indicates	which	faces	should	be	beveled.
TimeValue	t
The	current	time.

Default	Implementation:
{	}

Prototype:
virtual	void	EpfnBevelFaces(float	height,	float	outline,	DWORD
flag,	TimeValue	t);

Remarks:
This	method	bevels	the	flagged	faces	by	the	specified	height	and	outline.	Note
that	this	method	uses	the	parameter	block	value	for	ep_extrusion_type	in
making	the	extrusion	component.	Values	can	be:
0:	Extrude	by	group	(cluster)
1:	Extrude	by	local	normals
2:	Extrude	by	polygon	-	each	polygon	extrudes	separately.

Parameters:
float	height
The	height	of	the	desired	bevel.	Can	be	positive	or	negative.

float	outline
The	amount	of	the	outlining	in	the	bevel.	Positive	amounts	make	the	selected
region	larger;	negative	amounts	make	it	smaller.
DWORD	flag
Indicates	which	faces	should	be	beveled.
TimeValue	t
The	current	time.

Default	Implementation:
{	}

Prototype:
virtual	void	EpfnChamferVertices(float	amount,	TimeValue	t);

Remarks:
This	method	chamfers	the	flagged	vertices	by	the	specified	amount.

Parameters:
float	amount
The	amount	of	the	chamfer.
TimeValue	t
The	current	time.

Default	Implementation:
{	}

Prototype:
virtual	void	EpfnChamferEdges(float	amount,	TimeValue	t);

Remarks:
This	method	chamfers	the	flagged	edges	by	the	specified	amount.

Parameters:
float	amount
The	amount	of	the	chamfer.
TimeValue	t
The	current	time.

Default	Implementation:
{	}

Prototype:
virtual	bool	EpfnSlice(Point3	planeNormal,	Point3	planeCenter,
bool	flaggedFacesOnly=false,	DWORD	faceFlags=MN_SEL);

Remarks:
This	method	slices	the	mesh	with	the	specified	plane.

Parameters:
Point3	planeNormal
Point3	planeCenter
The	definition	of	the	plane,	by	the	normal	and	the	"center"	(which	can	be	any
point	in	the	plane).
bool	flaggedFacesOnly=false
If	set,	only	the	flagged	faces	should	be	sliced.	If	false,	all	faces	should	be
sliced.
DWORD	faceFlags=MN_SEL
Indicates	which	faces	should	be	sliced,	if	flaggedFacesOnly	is	TRUE.

Return	Value:
TRUE	if	something	has	been	sliced,	or	FALSE	if	nothing	happened.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnInSlicePlaneMode();

Remarks:
This	method	indicates	whether	the	Editable	Poly	is	currently	in	Slice	Plane
mode.

Default	Implementation:
{	return	false;	}

Prototype:

virtual	int	EpfnCutVertex(int	startv,	Point3	destination,	Point3
projDir);

Remarks:
This	method	cuts	from	one	vertex	to	another.	Note	that	this	algorithm	uses	the
parameter	block	value	for	ep_split,	which	controls	whether	the	cut	algorithm
splits	the	mesh	open.

Parameters:
int	startv
The	starting	vertex	for	the	cut
Point3	destination
The	location	of	the	ending	vertex	for	the	cut.
Point3	projDir
The	direction	of	the	"view".	(projDir	and	the	vector	between	the	two	vertices
define	the	plane	that	the	cut	occurs	in.)

Return	Value:
The	destination	vertex,	or	-1	if	the	cut	was	unable	to	be	completed	for	some
reason.

Default	Implementation:
{	return	-1;	}

Prototype:
virtual	int	EpfnCutEdge(int	e1,	float	prop1,	int	e2,	float	prop2,
Point3	projDir);

Remarks:
This	method	cuts	from	one	edge	to	another.	Note	that	this	algorithm	uses	the
parameter	block	value	for	ep_split,	which	controls	whether	the	cut	algorithm
splits	the	mesh	open.

Parameters:
int	el
The	edge	index	along	that	edge	for	the	start	of	the	cut.
float	propl
The	edge	proportion	along	that	edge	for	the	start	of	the	cut.

int	e2
The	edge	index	along	that	edge	for	the	end	of	the	cut.
float	prop2
The	edge	proportion	along	that	edge	for	the	end	of	the	cut.
Point3	projDir
The	direction	of	the	"view".	(projDir	and	the	vector	between	the	two	endpoints
define	the	plane	that	the	cut	occurs	in.)

Return	Value:
The	vertex	created	at	the	end	of	the	cut,	or	-1	if	the	cut	was	unable	to	be
completed	for	some	reason.

Default	Implementation:
{	return	-1;	}

Prototype:
virtual	int	EpfnCutFace(int	f1,	Point3	p1,	Point3	p2,	Point3
projDir);

Remarks:
This	method	cuts	from	one	face	to	another,	subdividing	the	start	and	end	faces
as	needed	for	precisely	matching	the	given	start	and	end	points.	Note	that	this
algorithm	uses	the	parameter	block	value	for	ep_split,	which	controls
whether	the	cut	algorithm	splits	the	mesh	open.

Parameters:
int	f1
The	face	we	should	start	on.
Point3	p1
The	point	(on	face	f1)	for	the	start	of	the	cut.
Point3	p2
The	point	at	the	end	of	the	cut.
Point3	projDir
The	direction	of	the	"view".	(projDir	and	the	vector	between	the	two	endpoints
define	the	plane	that	the	cut	occurs	in.)

Return	Value:
The	vertex	created	at	the	end	of	the	cut,	or	-1	if	the	cut	was	unable	to	be

completed	for	some	reason.
Default	Implementation:
{	return	-1;	}

Prototype:
virtual	bool	EpfnWeldVerts(int	vert1,	int	vert2,	Point3
destination);

Remarks:
This	method	welds	the	specified	vertices	together	(if	possible),	and	puts	the
result	at	the	location	specified.

Parameters:
int	vert1,	vert2
The	two	vertices	we	wish	to	weld.	Note	that	these	vertices	must	be	"border"
vertices,	that	is,	they	must	be	used	by	some	open	(one-sided)	edges.
Point3	destination
The	desired	location	for	the	result.	Usually	this	is	v[vert1].p,	v[vert2].p,	or
the	average	of	the	two.

Return	Value:
Indicates	if	any	welding	successfully	occurred.	If	FALSE,	nothing	happened.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnWeldEdges(int	edge1,	int	edge2);

Remarks:
This	method	welds	the	first	edge	to	the	second	edge,	leaving	the	result	at	the
location	of	the	second	edge.

Parameters:
int	edge1,	edge2
The	two	edges	we	wish	to	weld.	Note	that	these	must	be	open	(one-sided)
edges.

Return	Value:

Indicates	if	any	welding	successfully	occurred.	(If	false,	nothing	happened.)
Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnWeldFlaggedVerts(DWORD	flag);

Remarks:
This	method	welds	all	flagged	vertices	together	to	their	average	location.

Parameters:
DWORD	flag
Indicates	which	vertices	should	be	welded.	Note	that	these	vertices	must	be
"border"	vertices,	that	is,	they	must	be	used	by	some	open	(one-sided)	edges.

Return	Value:
Indicates	if	any	welding	successfully	occurred.	If	FALSE,	nothing	happened.)

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnWeldFlaggedEdges(DWORD	flag);

Remarks:
This	method	welds	flagged	edges	together.

Parameters:
DWORD	flag
Indicates	which	edges	should	be	welded.	Note	that	these	edges	must	be	open
(one-sided).

Return	Value:
Indicates	if	any	welding	successfully	occurred.	(If	false,	nothing	happened.)

Default	Implementation:
{	return	false;	}

Prototype:

virtual	bool	EpfnCreateShape(TSTR	name,	bool	smooth,	INode
*myNode,	DWORD	edgeFlag=MN_SEL);

Remarks:
This	method	creates	a	new	shape	object	from	flagged	edges	in	the	polymesh.

Parameters:
TSTR	name
The	desired	name	for	the	new	node	containing	the	shape.
bool	smooth
If	TRUE,	the	new	shape	should	be	a	smooth	curve.	If	FALSE,	it	should	be	a
linear	shape	which	exactly	follows	the	edges.
INode	*myNode
A	pointer	to	the	node	of	the	PolyMesh	(used	to	obtain	transform	and	other
node	level	information	for	the	new	shape	node).
DWORD	edgeFlag=MN_SEL
Indicates	which	faces	should	be	used	in	creating	this	shape.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnMakePlanar(int	msl,	DWORD	flag=MN_SEL,
TimeValue	t=0);

Remarks:
This	method	moves	the	flagged	area	into	its	"average	plane".	(Plane	computed
using	average	vertex	positions	and	normals.)

Parameters:
int	msl
MNMesh-based	selection	level,	one	of	MNM_SL_VERTEX,
MNM_SL_EDGE,	or	MNM_SL_FACE.
DWORD	flag=MN_SEL
The	flag	that	indicates	which	components	to	align.	Ignored	if	msl	is	set	to

MNM_SL_OBJECT.
TimeValue	t=0
The	current	time.	(This	action	can	be	used	to	set	a	key	for	animation.)

Return	Value:
Indicates	whether	anything	was	moved.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnMoveToPlane(Point3	planeNormal,	float
planeOffset,	int	msl,	DWORD	flag=MN_SEL,	TimeValue	t=0);

Remarks:
This	method	moved	flagged	region	to	the	plane	given	(by	orthogonal
projection	into	the	plane).

Parameters:
Point3	planeNormal
float	planeOffset
The	definition	of	the	plane.	The	plane	is	that	region	of	points	X	for	which
DotProd	(planeNormal,	X)	=	planeOffset.
int	msl
MNMesh-based	selection	level,	one	of	MNM_SL_VERTEX,
MNM_SL_EDGE,	or	MNM_SL_FACE.
DWORD	flag=MN_SEL
The	flag	that	indicates	which	components	to	align.	Ignored	if	msl	is	set	to
MNM_SL_OBJECT.
TimeValue	t=0
The	current	time.	(This	action	can	be	used	to	set	a	key	for	animation.)

Return	Value:
Indicates	whether	anything	was	moved.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnAlignToGrid(int	msl,	DWORD	flag=MN_SEL);

Remarks:
This	method	aligns	flagged	parts	to	be	on	the	current	construction	plane	(in	the
current	viewport).

Parameters:
int	msl
MNMesh-based	selection	level,	one	of	MNM_SL_OBJECT,
MNM_SL_VERTEX,	MNM_SL_EDGE,	or	MNM_SL_FACE.
DWORD	flag=MN_SEL
The	flag	that	indicates	which	components	to	align.	Ignored	if	msl	is	set	to
MNM_SL_OBJECT.

Return	Value:
Indicates	whether	anything	was	aligned.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnAlignToView(int	msl,	DWORD	flag=MN_SEL);

Remarks:
This	method	aligns	flagged	parts	to	be	at	right	angles	to	the	current	view
(through	the	active	viewport).

Parameters:
int	msl
MNMesh-based	selection	level,	one	of	MNM_SL_OBJECT,
MNM_SL_VERTEX,	MNM_SL_EDGE,	or	MNM_SL_FACE.
DWORD	flag=MN_SEL
The	flag	that	indicates	which	components	to	align.	Ignored	if	msl	is	set	to
MNM_SL_OBJECT.

Return	Value:
Indicates	whether	anything	was	aligned.

Default	Implementation:

{	return	false;	}

Prototype:
virtual	bool	EpfnDeleteIsoVerts();

Remarks:
This	method	deletes	isolated	vertices,	those	that	aren't	used	by	any	faces.

Return	Value:
Indicates	whether	any	vertices	were	deleted.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnMeshSmooth(int	msl,	DWORD	flag=MN_SEL);

Remarks:
This	method	applies	the	NURMS	style	MeshSmooth	algorithm	to	the	flagged
area	of	the	mesh.	Uses	parameter	block	parameters:
ep_ms_smoothness:	Smoothness	value	for	MeshSmooth	type	subdivision
(float	spinner,	range	0-1)
ep_ms_smooth:	Currently	unused.
ep_ms_sep_smooth:	Separate	by	smoothing	groups	for	MeshSmooth	type
subdivision	(checkbox)
ep_ms_sep_mat:	Separate	by	material	IDs	for	MeshSmooth	type
subdivision	(checkbox)

Parameters:
int	msl
MNMesh-based	selection	level,	one	of	MNM_SL_OBJECT,
MNM_SL_VERTEX,	MNM_SL_EDGE,	or	MNM_SL_FACE.
DWORD	flag=MN_SEL
The	flag	that	indicates	which	components	to	meshsmooth.	Ignored	if	msl	is
set	to	MNM_SL_OBJECT.

Return	Value:
TRUE	if	applied,	otherwise	FALSE.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnTessellate	(int	msl,	DWORD	flag=MN_SEL);

Remarks:
This	method	tessellates	flagged	area	of	the	mesh.	Uses	ep_tess_type	and
ep_tess_tension	from	the	param	block.

Parameters:
int	msl
MNMesh-based	selection	level,	one	of	MNM_SL_OBJECT,
MNM_SL_VERTEX,	MNM_SL_EDGE,	or	MNM_SL_FACE.
DWORD	flag=MN_SEL
The	flag	that	indicates	which	components	to	tessellate.	Ignored	if	msl	is	set	to
MNM_SL_OBJECT.

Return	Value:
TRUE	is	tessellated,	otherwise	FALSE.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	void	EpfnForceSubdivision();

Remarks:
This	method	will	cue	an	update	of	the	subdivision	surface	based	on	this
Editable	Poly.	(See	the	Editable	Poly	documentation	on	the	Object-level
Surface	Properties	dialog	for	information	on	this	surface.)	Equivalent	to	the
user	pressing	the	"Update"	button.

Default	Implementation:
{	}

Prototype:
virtual	void	EpfnSelectVertByColor(BOOL	add,	BOOL	sub,	int

mp=0,	TimeValue	t=0);
Remarks:
This	method	selects	(or	deselects)	vertices	based	on	their	color.	Note	that	the
color	to	compare	to	is	part	of	the	parameter	block	-	see	ep_vert_sel_color
and	related	parameters	for	details.

Parameters:
BOOL	add
If	TRUE,	this	selection	should	be	in	addition	to	the	current	selection.	If
FALSE,	only	the	vertices	within	the	color	range	should	be	selected.
BOOL	sub
If	TRUE,	then	instead	of	the	options	under	"add"	above,	the	vertices	within
the	specified	color	range	are	deselected	(while	other	selections	are
unmodified).
int	mp=0
The	map	channel	used	for	vertex	colors.	Use	0	for	the	traditional	vertex	color
channel,	1-99	for	a	texture	map	channel,	MAP_SHADING	for	the	vertex
illumination	channel,	or	MAP_ALPHA	for	the	vertex	alpha	channel.
TimeValue	t=0
The	current	time.

Default	Implementation:
{	}

Prototype:
virtual	void	EpfnSetDiagonal(int	face,	int	corner1,	int	corner2);

Remarks:
This	method	modifies	a	polygon's	triangulation	so	that	the	specified	diagonal
is	part	of	it.

Parameters:
int	face
The	face	whose	triangulation	we	want	to	modify
int	corner1,	corner2
The	endpoints	of	the	new	diagonal.	They	should	be	indices	into	the	vertex	list.
So	for	instance	corner	values	of	(0,3)	would	refer	to	vertices	f[face].vtx[0]

and	f[face].vtx[3].	Note	that	if	(corner1+1)%deg	==	corner2	(or	vice
versa),	or	if	corner1==corner2,	nothing	will	happen.

Default	Implementation:
{	}

Prototype:
virtual	bool	EpfnRetriangulate(DWORD	flag=MN_SEL);

Remarks:
This	method	will	automatically	re-triangulate	flagged	faces,	using	the	standard
polygon	triangulation	algorithm.	Note	that	this	algorithm	is	designed	to	work
well	on	a	single	face,	but	not	necessarily	to	produce	the	best	results	on	groups
of	faces.

Parameters:
DWORD	flag=MN_SEL
Indicates	which	faces	should	be	affected.

Return	Value:
Indicates	whether	anything	happened.	(If	nothing	was	in	fact	flagged,	it
returns	false.)

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	EpfnFlipNormals(DWORD	flag=MN_SEL);

Remarks:
This	method	flips	the	normals	in	selected	elements.	(Note	that	because	of
topological	rules	for	the	PolyMesh,	there	is	no	way	to	flip	a	single	face	-
whole	elements	must	be	flipped	at	once.)

Parameters:
DWORD	flag=MN_SEL
Indicates	which	elements	should	be	flipped.	An	element	is	considered	flagged
if	any	of	its	faces	have	that	flag	set.

Return	Value:

Indicates	which	elements	should	be	flipped.	An	element	is	considered	flagged
if	any	of	its	faces	have	that	flag	set.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	void	EpfnSelectByMat(int	index,	bool	clear,	TimeValue	t);

Remarks:
This	method	selects	or	deselects	faces	by	material	ID.

Parameters:
int	index
The	material	ID	that	indicates	a	face	should	be	affected.
bool	clear
If	TRUE,	these	faces	should	have	their	selection	cleared.	(If	FALSE,	their
selection	is	set.)
TimeValue	t
The	current	time.

Default	Implementation:
{	}

Prototype:
virtual	void	EpfnSelectBySmoothGroup(DWORD	bits,	BOOL
clear,	TimeValue	t);

Remarks:
This	method	selects	or	deselects	faces	by	smoothing	group.

Parameters:
DWORD	bits
The	smoothing	group	bits	that	indicate	a	face	should	be	affected.
BOOL	clear
If	TRUE,	these	faces	should	have	their	selection	cleared.	(If	FALSE,	the
selection	is	set.)
TimeValue	t

The	current	time.
Default	Implementation:
{	}

Prototype:
virtual	void	EpfnAutoSmooth(TimeValue	t);

Remarks:
This	method	autosmooths	the	current	face	selection,	using	the	autosmooth
threshold	set	in	the	parameter	block.

Parameters:
TimeValue	t
The	current	time.

Default	Implementation:
{	}

Prototype:
virtual	void	CollapseDeadStructs();

Remarks:
This	method	deletes	all	the	components	in	all	the	levels	that	have	the
MN_DEAD	flag	set.	Note	that	this	causes	a	renumbering	of	affected
component	levels.	If	you're	deleting	faces	in	the	middle	of	a	complex
operation,	it's	usually	best	to	just	set	their	MN_DEAD	flags,	then	call
CollapseDeadStructs	at	the	end,	so	that	you	don't	have	to	worry	about
other	faces'	indices	changing	before	you're	done.

Default	Implementation:
{	}

Prototype:
virtual	int	EpfnPropagateComponentFlags(int	slTo,	DWORD	flTo,
int	slFrom,	DWORD	flFrom,	bool	ampersand=FALSE,	bool
set=TRUE,	bool	undoable=FALSE);

Remarks:

This	method	is	used	for	setting	flags	in	the	MNMesh	components	based	on
flags	of	other	components	that	they	touch.	This	is	very	versatile.	For	instance,
to	hide	all	faces	that	use	selected	vertices,	you	would	call
EpfnPropegateComponentFlags	(MNM_SL_FACE,	MN_HIDE,
MNM_SL_VERTEX,	MN_SEL,	false,	true,	true).	(Hiding	faces
should	be	undoable.)	To	set	the	MN_WHATEVER	flag	on	all	vertices	that	are
used	only	by	selected	edges,	you'd	call	EpfnPropegateComponentFlags
(MNM_SL_VERTEX,	MN_WHATEVER,	MNM_SL_EDGE,
MN_SEL,	true);

Parameters:
int	slTo
The	selection	level	we	wish	to	modify.	(One	of	MNM_SL_OBJECT,
MNM_SL_VERTEX,	MNM_SL_EDGE,	or	MNM_SL_FACE.)
DWORD	flTo
The	flags	we	wish	to	change	in	that	selection	level.
int	slFromt
The	selection	level	we	wish	to	base	the	changes	on.
DWORD	flFrom
The	flags	that	indicate	a	change	should	happen.
bool	ampersand=FALSE
When	slFrom	and	slTo	are	different,	this	indicates	whether	the	flags	of	the
nearby	components	should	be	"or'd"	or	"and'd".	If	it's	false,	then	any	flagged
components	in	the	"from"	level	will	cause	the	component	in	the	"to"	level	to
be	affected.	If	true,	then	all	the	components	in	the	"from"	level	that	touch	a
component	in	the	"to"	level	must	be	flagged	in	order	for	the	"to"	level
component	to	be	affected.	(i.e.,	if	from	is	faces	and	to	is	vertices,	a	vertex
would	only	be	modified	if	all	faces	that	use	it	have	the	flFrom	flag	set.)
bool	set=TRUE
If	TRUE,	this	parameter	indicates	that	the	flTo	flags	should	be	set	on	targeted
components.	If	false,	it	indicates	that	the	flags	should	be	cleared.	For	instance,
to	clear	MN_HIDE	flags	on	vertices	that	are	used	by	selected	edges,	you'd	call
EpfnPropegateComponentFlags	(MNM_SL_VERTEX,	MN_HIDE,
MNM_SL_EDGE,	MN_SEL,	false,	false,	true);
bool	undoable=FALSE

Indicates	if	this	action	should	create	an	entry	for	the	undo	system.	Changes	to
MN_SEL,	MN_HIDE,	and	MN_DEAD	flags	should	generally	be
undoable,	but	changes	to	more	minor	flags	like	MN_WHATEVER	that	are
used	to	set	up	for	other	operations	generally	don't	have	to	be.

Return	Value:
The	number	of	components	in	the	slTo	level	that	were	affected	by	the	call.	(If
0,	nothing	happened.)

Default	Implementation:
{	return	0;	}

Class	ILookAtConstRotation
See	Also:	Class	Control,	Class	FPMixinInterface.
class	ILookAtConstRotation	:	public	Control	,	public	FPMixinInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	is	an	interface	to	the	LookAt	Constraint	rotation	controller.	You	can
obtain	a	pointer	to	the	list	control	interface	using;
GetILookAtConstInterface(cd).	This	macro	will	return
(ILookAtConstRotation*)(CD)-
>GetFPInterface(LOOKAT_CONSTRAINT_INTERFACE).
LOOKAT_ROT_PBLOCK_REF	may	be	used	to	access	the	look-at
controller's	references:
All	methods	of	this	class	are	Implemented	by	the	System.

Methods:
public:

Prototype:
virtual	INode*	GetTarget(int	targetNumber)=0;

Remarks:
This	method	will	return	a	pointer	to	a	node	of	one	of	the	Look-At	nodes	that
the	Look-At	constraint	controller	targets,	specified	by	targetNumber.

Parameters:
int	targetNumber
The	node	number	in	the	Look-At	target	list	to	be	obtained.

Prototype:
virtual	BOOL	SetTarget(INode	*target,	int	targetNumber)=0;

Remarks:
Sets	one	of	the	Look-At	nodes	that	the	Look-At	constraint	controller	targets,
specified	by	targetNumber.	If	targetNumber	is	greater	than	the	number
of	targets	in	the	current	list,	it	returns	a	FALSE.	In	this	case	use	the	function
AppendTarget.

Parameters:
INode	*node
Points	to	the	node	to	follow.
int	targetNumber
The	node	number	in	the	Look-At	target	list	to	be	set.

Return	Value:
TRUE	if	success;	FALSE	otherwise.

Prototype:
virtual	float	GetTargetWeight(int	targetNumber)=0;

Remarks:
Gets	the	weight	of	one	of	the	Look-At	nodes	that	the	Look-At	constraint
controller	targets,	specified	by	targetNumber.

Parameters:
int	targetNumber
The	node	number	in	the	Look-At	target	list	whose	weight	is	to	be	obtained.

Prototype:
virtual	BOOL	SetTargetWeight(float	weight,	int
targetNumber)=0;

Remarks:
Sets	the	weight	of	one	of	the	Look-At	nodes	that	the	Look-At	constraint
controller	follows,	specified	by	targetNumber.

Parameters:
float	weight
The	weight	to	set.
targetNumber
The	node	number	in	the	Look-At	target	list	whose	weight	is	to	be	set.

Return	Value:
TRUE	if	there	is	more	than	one	Look-At	targets	in	the	list	and	you	are	trying
to	set	weight,	FALSE	otherwise.

Prototype:
virtual	BOOL	AppendTarget(INode	*target,	float	weight=50.0)=0;

Remarks:
Appends	the	current	Look-At	target	list	by	one	and	appends	the	current	Look-
At	target	weightlist	by	one.

Parameters:
INode	*target
The	node	that	is	to	be	appended	to	the	current	Look-At	target	list.
float	weight=50.0
This	is	the	weight	that	is	to	be	assigned	to	the	newly	appended	Look-At	target.
The	default	weight	is	50.0.

Return	Value:
TRUE	if	the	target	was	appended,	otherwise	FALSE.

Prototype:
virtual	int	GetNumTargets()=0;

Remarks:
Returns	the	number	of	nodes	in	the	list	of	nodes	to	look	at.

Prototype:
virtual	BOOL	GetRelative()=0;

Remarks:
Gets	the	relative/absolute	mode	corresponding	to	the	"Keep	Initial	Offset"
checkbox	in	the	UI.

Prototype:
virtual	BOOL	GetVLisAbs()=0;

Remarks:
Gets	the	ViewLine	relative/absolute	mode	corresponding	to	the	"Keep
ViewLine	Length	Absolute"	checkbox	in	the	UI.	When	Viewline	Length	is
absolute,	the	"ViewLine	Length"	spinner	sets	the	length	of	the	ViewLine.	A
negative	length	implies	that	starting	from	the	source	object	the	line	travels
opposite	to	the	direction	of	the	target	object.	The	source/target	distance	has	no

effect	on	the	ViewLine	length	in	this	mode.	If	the	"Keep	ViewLine	Length
Absolute"	checkbox	is	unchecked,	the	ViewLine	length	is	determined	from	the
spinner	value,	which	is	interpreted	as	a	percentage	of	the	source/target
distance.

Return	Value:
TRUE	if	the	ViewLine	length	is	absolute,	FALSE	otherwise.

Prototype:
virtual	void	SetVLisAbs(BOOL	rel)=0;

Remarks:
Sets	the	relative/absolute	mode	corresponding	to	the	"Keep	ViewLine	Length
Absolute"	checkbox	in	the	UI.

Parameters:
BOOL	rel
TRUE	if	"Keep	ViewLine	Length	Absolute"	is	active	(checked),	FALSE
otherwise.

Prototype:
virtual	BOOL	GetUpnodeWorld()=0;

Remarks:
Returns	TRUE	if	the	"World"	checkbox	is	on;	FALSE	if	off.

Prototype:
virtual	BOOL	GetStoUPAxisFlip()=0;

Remarks:
Returns	TRUE	if	the	"selected"	axis	flip	checkbox	is	on;	FALSE	if	off.

Prototype:
virtual	BOOL	GetTargetAxisFlip()=0;

Remarks:
Returns	TRUE	if	the	"source"	axis	flip	checkbox	is	on;	FALSE	if	off.

Prototype:
virtual	BOOL	Get_SetOrientation()=0;

Remarks:
Returns	TRUE	if	the	orientation	flag	is	set,	FALSE	if	off.

Prototype:
virtual	int	GetTargetAxis()=0;

Remarks:
Gets	the	selection	corresponding	to	the	"Select	LookAt	Axis"	button	in	the	UI.
Obtains	which	of	the	source	axes	is	required	to	coincide	with	the	target	axis.

Return	Value:
(0)	if	the	target	axis	coincides	with	the	x	axis	of	the	source	object.	(1)	if	the
target	axis	coincides	with	the	y	axis	of	the	source	object.	(2)	if	the	target	axis
coincides	with	the	z	axis	of	the	source	object.

Prototype:
virtual	int	GetUpNodeAxis()=0;

Remarks:
Gets	the	selection	corresponding	to	the	"Source/Upnode	Alignment:	Aligned
to	UpNode	Axis:"	radiobutton	in	the	UI.	Obtains	which	of	the	upnode	axes	is
required	to	align	with	a	specified	source	axis.

Return	Value:
(0)	if	the	upnode	x	axis	coincides	with	a	specified	source	object.	(1)	if	the
upnode	y	axis	coincides	with	a	specified	source	object.	(2)	if	the	upnode	z	axis
coincides	with	a	specified	source	object.

Prototype:
virtual	int	Get_StoUPAxis()=0;

Remarks:
Gets	the	selection	corresponding	to	the	"Source/Upnode	Alignment:	Aligned
to	UpNode	Axis:"	radiobutton	in	the	UI.	Obtains	which	of	the	source	axes	is
required	to	align	with	a	specified	upnode	axis.

Return	Value:

(0)	if	the	source	x	axis	coincides	with	a	specified	upnode	axis.	(1)	if	the	source
y	axis	coincides	with	a	specified	upnode	axis.	(2)	if	the	source	z	axis	coincides
with	a	specified	upnode	axis.

Prototype:
virtual	void	SetRelative(BOOL	rel)=0;

Remarks:
This	method	allows	you	to	set	the	"relative"	flag.

Parameters:
BOOL	rel
TRUE	to	set	the	relative	flag,	otherwise	FALSE.

Prototype:
virtual	void	SetUpnodeWorld(BOOL	uw)=0;

Remarks:
This	method	allows	you	to	set	the	"World"	flag.

Parameters:
BOOL	uw
TRUE	to	set	the	world	flag,	otherwise	false.

Prototype:
virtual	void	SetTargetAxisFlip(BOOL	rel)=0;

Remarks:
This	method	allows	you	to	set	the	"source"	flip	axis	flag.

Parameters:
BOOL	rel
TRUE	to	set	the	source	flip	axis	flag,	otherwise	FALSE.

Prototype:
virtual	void	SetStoUPAxisFlip(BOOL	rel)=0;

Remarks:
This	method	allows	you	to	set	the	"selected"	axis	flip	flag.

Parameters:
BOOL	rel
TRUE	to	set	the	selected	axis	flip	flag,	otherwise	FALSE.

Prototype:
virtual	void	Set_SetOrientation(BOOL	rel)=0;

Remarks:
This	method	allows	you	to	set	the	orientation	flag.

Parameters:
BOOL	rel
TRUE	to	set	the	orientation	flag,	otherwise	FALSE.

Prototype:
virtual	void	Set_Reset_Orientation()=0;

Remarks:
Resets	to	zero	the	amount	of	orientation	offset,	effected	through	the	"Set
Orientation"	feature.

Prototype:
virtual	void	SetTargetAxis(int	axis)=0;

Remarks:
Sets	the	selection	corresponding	to	the	"Set	Orientation"	button	in	the	UI.
Specifies	which	of	the	source	axes	is	required	to	coincide	with	the	target	axis.

Parameters:
int	axis
(0)	if	TargetAxis	coincides	with	the	X	axis	of	the	source	object.	(1)	if
TargetAxis	coincides	with	the	Y	axis	of	the	source	object.	(2)	if	TargetAxis
coincides	with	the	Z	axis	of	the	source	object

Prototype:
virtual	void	SetUpNodeAxis(int	axis)=0;

Remarks:

Sets	the	selection	corresponding	to	the	"Source/Upnode	Alignment:	Aligned	to
UpNode	Axis:"	radiobutton	in	the	UI.	Specifies	which	of	the	upnode	axes	is
required	to	align	with	a	specified	source	axis.

Parameters:
int	axis
(0)	if	the	upnode	X	axis	coincides	with	a	specified	source	axis.	(1)	if	the
upnode	Y	axis	coincides	with	a	specified	source	axis.	(2)	if	the	upnode	Z	axis
coincides	with	a	specified	source	axis.

Prototype:
virtual	void	Set_StoUPAxis(int	axis)=0;

Remarks:
Sets	the	selection	corresponding	to	the	"Source/Upnode	Alignment:	Aligned	to
UpNode	Axis:"	radiobutton	in	the	UI.	Specifies	which	of	the	source	axes	is
required	to	align	with	a	specified	upnode	axis.

Parameters:
int	axis
(0)	if	the	source	X	axis	coincides	with	a	specified	upnode	axis.	(1)	if	the
source	Y	axis	coincides	with	a	specified	upnode	axis.	(2)	if	the	source	Z	axis
coincides	with	a	specified	upnode	axis.

Prototype:
virtual	void	DeleteTarget(int	targetNumber)=0;

Remarks:
This	method	allows	you	to	delete	a	specified	target.

Parameters:
int	targetNumber
The	zero	based	node	number	in	the	list	of	nodes	the	controller	looks	at.

Class	IOrientConstRotation
See	Also:	Class	Control,	Class	FPMixinInterface.
class	IOrientConstRotation	:	public	Control,	public	FPMixinInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	Orientation	Constraint	matches	the	orientation	of	an	object	to	its	target
without	affecting	its	position.	Multiple	weighted	targets	are	supported.	This	class
is	an	interface	to	the	parameters	of	this	controllers.	You	can	obtain	a	pointer	to
the	list	control	interface	using;	GetIOrientConstInterface(cd).	This	macro
will	return	(IOrientConstRotation*)(CD)-
>GetFPInterface(ORIENT_CONSTRAINT_INTERFACE).
ORIENT_ROT_PBLOCK_REF	may	be	used	to	access	the	orientation
constraint	controller's	references:
All	methods	of	this	class	are	Implemented	by	the	System.

Methods:
public:

Prototype:
virtual	INode*	GetNode(int	targetNumber)=0;

Remarks:
Gets	one	of	the	orientation	nodes	that	the	orientation	constraint	controller
targets,	specified	by	targetNumber.

Parameters:
int	targetNumber
The	node	number	in	the	orientation	target	list	to	be	obtained.

Prototype:
virtual	float	GetTargetWeight(int	targetNumber)=0;

Remarks:
Gets	the	weight	of	one	of	the	orientation	nodes	that	the	orientation	constraint
controller	targets,	specified	by	targetNumber.

Parameters:
int	targetNumber
The	node	number	in	the	orientation	target	list	to	set.

Return	Value:
Returns	the	orientation	target	weight	if	the	targetNumber	is	relevant,	0.0f
otherwise.

Prototype:
virtual	BOOL	SetTargetWeight(int	targetNumber,	float	weight)=0;

Remarks:
Sets	the	weight	of	one	of	the	orientation	nodes	that	the	orientation	constraint
controller	follows,	specified	by	targetNumber.

Parameters:
int	targetNumber
The	node	number	in	the	orientation	target	list	whose	weight	is	to	be	set.
float	weight
The	weight	to	set.

Return	Value:
TRUE	if	there	is	more	than	one	orientation	target	in	the	list	and	you	are	trying
to	set	weight,	FALSE	otherwise.

Prototype:
virtual	BOOL	AppendTarget(INode	*target,	float	weight=50.0)=0;

Remarks:
Appends	the	current	orientation	target	list	by	one	and	appends	the	current
orient_targ_wtlist	(orientation	target	weightlist)	by	one.

Parameters:
INode	*target
The	node	that	is	to	be	appended	to	the	current	orientation	target	list.
float	weight=50.0
This	is	the	weight	that	is	to	be	assigned	to	the	newly	appended	orientation
target.	The	default	weight	is	50.0.

Return	Value:
TRUE	if	the	target	was	appended,	otherwise	FALSE.

Prototype:
virtual	int	GetNumTargets()=0;

Remarks:
Returns	the	number	of	target	nodes	in	the	orientation	target	list.

Prototype:
virtual	BOOL	DeleteTarget(int	selection)=0;

Remarks:
This	method	allows	you	to	delete	a	specified	target.

Parameters:
int	selection
The	node	number	in	the	orientation	target	list	to	delete.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Class	IPosConstPosition
See	Also:	Class	Control,	Class	FPMixinInterface.
class	IPosConstPosition	:	public	Control,	public	FPMixinInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	interface	to	the	Position	Constraint.	You	can	obtain	a
pointer	to	the	position	constraint	interface	using;
GetIPosConstInterface(cd).	This	macro	will	return
(IPosConstPosition*)(CD)-
>GetFPInterface(POS_CONSTRAINT_INTERFACE).
POSPOS_PBLOCK_REF	may	be	used	to	access	the	position	constraint
controller's	references:
All	methods	of	this	class	are	Implemented	by	the	System.

Methods:
public:

Prototype:
virtual	INode*	GetNode(int	targetNumber)=0;

Remarks:
Gets	one	of	the	position	nodes	that	the	position	constraint	controller	targets,
specified	by	targetNumber.

Parameters:
int	targetNumber
The	node	number	in	the	position	target	list	to	be	obtained.

Prototype:
virtual	float	GetTargetWeight(int	targetNumber)=0;

Remarks:
Gets	the	weight	of	one	of	the	position	nodes	that	the	position	constraint
controller	targets,	specified	by	targetNumber.

Parameters:

int	targetNumber
The	node	number	in	the	position	target	list	to	set.

Return	Value:
Returns	the	position	target	weight	if	the	targetNumber	is	relevant,	0.0f
otherwise.

Prototype:
virtual	BOOL	SetTargetWeight(int	targetNumber,	float	weight)=0;

Remarks:
Sets	the	weight	of	one	of	the	position	nodes	that	the	position	constraint
controller	follows,	specified	by	targetNumber.

Parameters:
int	targetNumber
The	node	number	in	the	position	target	list	whose	weight	is	to	be	set.
float	weight
The	weight	to	set.

Return	Value:
TRUE	if	there	is	more	than	one	position	target	in	the	list	and	you	are	trying	to
set	weight,	FALSE	otherwise.

Prototype:
virtual	BOOL	AppendTarget(INode	*target,	float	weight=50.0)=0;

Remarks:
Appends	the	current	position	target	list	by	one	and	appends.

Parameters:
INode	*target
The	node	that	is	to	be	appended	to	the	current	position	target	list.
float	weight=50.0
This	is	the	weight	that	is	to	be	assigned	to	the	newly	appended	position	target.
The	default	weight	is	50.0.

Return	Value:
TRUE	if	the	target	was	appended,	otherwise	FALSE.

	

Prototype:
virtual	int	GetNumTargets()=0;

Remarks:
Returns	the	number	of	target	nodes	in	the	position	target	list.

Prototype:
virtual	BOOL	DeleteTarget(int	selection)=0;

Remarks:
This	method	allows	you	to	delete	a	specified	target.

Parameters:
int	selection
The	node	number	in	the	position	target	list	to	delete.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Class	IPathPosition
See	Also:	Class	Control,	Class	INode.

class	IPathPosition	:	public	Control,	public	FPMixinInterface

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	represents	the	interface	to	the	Path	Position	Controller.	You	can	obtain
a	pointer	to	the	path	position	controller	interface	using;
GetIPathConstInterface(cd).	This	macro	will	return
(IPathPosition*)(CD)-
>GetFPInterface(PATH_CONSTRAINT_INTERFACE).
PATHPOS_PATH_REF	may	be	used	to	access	the	position	constraint
controller's	references	and	PATHPOS_PBLOCK_REF	to	reference	the
parameter	block.
All	methods	of	this	class	are	Implemented	by	the	System.

Methods:
public:

Prototype:
virtual	int	GetNumTargets()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	number	of	nodes	in	the	path	list.

Prototype:
virtual	INode*	GetNode(int	targetNumber)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Gets	one	of	the	path	nodes	that	the	path	controller	follows,	specified	by
targetNumber.

Parameters:

int	targetNumber
The	node	number	in	the	path	list	to	be	obtained.

Prototype:
virtual	float	GetTargetWeight(int	targetNumber)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Gets	the	weight	of	one	of	the	path	nodes	that	the	path	controller	follows,
specified	by	targetNumber,	and	time	t.	If	the	targetNumber	is	not
relevant	then	0.0f	is	returned.

Parameters:
int	targetNumber
The	node	number	in	the	path	list	whose	weight	is	to	be	obtained.

Prototype:
virtual	BOOL	SetTargetWeight(int	targetNumber,	float	weight)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	the	weight	of	one	of	the	path	nodes	that	the	path	controller	follows,
specified	by	targetNumber.

Parameters:
int	targetNumber
The	node	number	in	the	path	list	whose	weight	is	to	be	set.
float	weight
The	weight	to	assign.

Return	Value:
TRUE	if	there	is	more	than	one	path	in	the	list	and	you	are	trying	to	set
weight,	FALSE	otherwise.

Prototype:
virtual	BOOL	AppendTarget(INode	*target,	float	weight=50.0)=0;

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
Appends	the	current	path	list	by	one	and	appends	the	current	weight	list	by
one.

Parameters:
INode	*target
The	node	that	is	to	be	appended	to	the	current	path	list.
float	weight=50.0
The	weight	to	be	assigned	to	the	newly	appended	path.

Prototype:
virtual	BOOL	DeleteTarget(int	selection)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	delete	a	specified	target.

Parameters:
int	selection
The	node	number	in	the	orientation	target	list	to	delete.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	void	SetFollow(BOOL	f)=0;

Remarks:
This	method	allows	you	to	set	the	follow	flag.

Parameters:
BOOL	f
TRUE	for	on,	FALSE	for	off.
	

Prototype:
virtual	BOOL	GetFollow()=0;

Remarks:
This	method	returns	the	state	of	the	follow	flag.	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetBankAmount(float	a)=0;

Remarks:
Sets	the	bank	amount	parameter.
Bank	and	tracking	are	scaled	in	the	UI.
The	bank	values	are	scaled	in	the	user	interface.	The	following	macros	may	be
used	to	convert	to	and	from	the	UI	values.
#define	BANKSCALE	100.0f
#define	FromBankUI(a)	((a)*BANKSCALE)
#define	ToBankUI(a)		((a)/BANKSCALE)

Parameters:
float	a
The	bank	amount.

Prototype:
virtual	float	GetBankAmount()=0;

Remarks:
Returns	the	bank	amount	setting.	See	the	remarks	in	SetBankAmount()
above.

Prototype:
virtual	void	SetBank(BOOL	b)=0;

Remarks:
Sets	the	bank	parameter	to	on	or	off.

Parameters:
BOOL	b
TRUE	for	on;	FALSE	for	off.

Prototype:

virtual	BOOL	GetBank()=0;
Remarks:
Returns	the	on/off	state	of	the	bank	parameter.	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetTracking(float	t)=0;

Remarks:
Sets	the	smoothness	parameter.
The	smoothing	(tracking)	values	are	scaled	in	the	user	interface.	The
following	macros	may	be	used	to	convert	to	and	from	the	UI	values.
#define	TRACKSCALE	0.04f
#define	FromTrackUI(a)	((a)*TRACKSCALE)
#define	ToTrackUI(a)	((a)/TRACKSCALE)

Parameters:
float	t
The	smoothness	setting.

Prototype:
virtual	float	GetTracking()=0;

Remarks:
Returns	the	smoothness	setting.	See	remarks	in	SetTracking()	above.

Prototype:
virtual	void	SetAllowFlip(BOOL	f)=0;

Remarks:
Sets	the	state	of	the	'Allow	Upside	Down'	parameter.

Parameters:
BOOL	f
TRUE	for	on;	FALSE	for	off.

Prototype:

virtual	BOOL	GetAllowFlip()=0;
Remarks:
Returns	the	state	of	the	'Allow	Upside	Down'	parameter.

Return	Value:
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetConstVel(BOOL	cv)=0;

Remarks:
Sets	the	state	of	the	'Constant	Velocity'	parameter.

Parameters:
BOOL	cv
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetConstVel()=0;

Remarks:
Returns	the	state	of	the	'Constant	Velocity'	parameter.

Return	Value:
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetFlip(BOOL	onOff)=0;

Remarks:
Sets	the	state	of	the	'Flip'	parameter.

Parameters:
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetFlip()=0;

Remarks:
Returns	the	state	of	the	'Flip'	parameter.

Return	Value:
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetAxis(int	axis)=0;

Remarks:
Set	the	state	of	the	axis	parameter.

Parameters:
int	axis
The	axis	setting.	One	of	the	following	values:
0:	X	axis.
1:	Y	axis.
2:	Z	axis.

Prototype:
virtual	int	GetAxis()=0;

Remarks:
Returns	the	axis	setting.

Return	Value:
One	of	the	following	values:
0:	X	axis.
1:	Y	axis.
2:	Z	axis.

Prototype:
virtual	void	SetLoop(BOOL	l)=0;

Remarks:
This	method	allows	you	to	set	the	state	of	the	loop	flag.

Parameters:

BOOL	l
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetLoop()=0;

Remarks:
Returns	the	state	of	the	loop	flag.

Return	Value:
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetRelative(BOOL	rel)=0;

Remarks:
This	method	allows	you	to	set	the	state	of	the	relative/absolute	flag.

Parameters:
BOOL	rel
TRUE	to	set	to	relative;	FALSE	to	set	to	absolute.

Prototype:
virtual	BOOL	GetRelative()=0;

Remarks:
Returns	the	state	of	the	relative/absolute	flag.

Return	Value:
TRUE	if	relative	is	on;	FALSE	is	off	(i.e.	absolute).

List	of	Reference	Messages	and	their	PartID
parameters
See	Also:	Class	ReferenceTarget,	Class	INode,	Class	Control.
This	section	describes	some	of	the	common	messages	used	by	references	and	the
meaning	of	the	PartID	parameter	associated	with	these	messages.
Some	messages	are	sent	by	the	system	while	others	are	sent	by	the	plug-in.	Each
method	may	need	to	pass	along	additional	information	so	the	reference	maker
may	process	the	message.	This	information	is	passed	in	the	PartID	parameter.
The	meaning	of	the	information	stored	in	the	PartID	is	specific	to	the	message
sent	along	with	it.
Note	that	not	all	messages	use	the	PartID	parameter	(in	fact	most	don't).	In
these	cases	the	PartID	will	be	set	to	0.	If	the	plug-in	is	sending	the	message,	it
should	set	the	PartID	to	0	if	not	used.	In	the	cases	where	the	PartID	is	used,	it
is	documented	below.
Developers	who	define	their	own	reference	messages	should	do	so	using	a	value
greater	than:
#define	REFMSG_USER	0x00010000
The	system	uses	numbers	less	than	this	value.
REFMSG_CHANGE
This	is	the	most	common	message	sent.	Any	time	a	reference	target	changes	in
a	way	that	may	affect	items	which	reference	it,	this	message	should	be	sent.
Note	the	following	for	the	partIDs	that	are	sent	during	this	message:
PART_HIDESTATE	--	This	is	a	special	partID	sent	by	visibility
controllers	when	they	change	the	hidden	in	viewport	state.
PART_TM	--	This	is	passed	in	partID	when	the	reference	is	to	a	node	in
the	scene	and	its	transformation	matrix	has	changed.
PART_OBJECT_TYPE	--	This	is	sent	if	the	object	type	changes.

Objects	and	Modifier	set	the	PartID	to	the	channel	which	changed.	(See	the
section	on	the	Geometric	Pipeline	for	more	information	on	channels).	There
are	several	specific	PartID	referring	to	channels.	These	are:
	PART_TOPO	=	TOPO_CHANNEL
	PART_GEOM	=	GEOM_CHANNEL

	PART_TEXMAP	=	TEXMAP_CHANNEL
	PART_MTL	=	MTL_CHANNEL
	PART_SELECT	=	SELECT_CHANNEL
	PART_SUBSEL_TYPE	=	SUBSEL_TYPE_CHANNEL
	PART_DISPLAY	=	DISP_ATTRIB_CHANNEL
	PART_VERTCOLOR	=	VERTCOLOR_CHANNEL
REFMSG_TARGET_DELETED
This	message	is	sent	when	a	reference	target	is	deleted.	This	allows	the
reference	maker	to	handle	this	condition	if	it	depends	on	the	deleted	item.	For
example	this	is	sent	when	the	item	you	are	referencing	is	actually	deleted	and
you	need	to	set	your	pointer	to	the	item	to	NULL.
REFMSG_IS_OK_TO_CHANGE_TOPOLOGY
This	message	is	sent	to	ask	a	reference	maker	if	it	is	okay	to	change	the
topology	of	a	node.	If	any	dependents	have	made	topology-dependent
modifiers,	they	should	return	REF_FAIL.	A	return	of	REF_SUCCEED
means	that	the	answer	is	YES,	it	is	okay	to	change	the	topology.	A	return	of
REF_FAIL	means	that	the	answer	is	NO,	it	is	not	okay	to	change	the
topology.
REFMSG_NODE_LINK
This	message	is	sent	by	a	node	when	it	has	a	child	linked	to	it	or	unlinked
from	it.
REFMSG_NODE_NAMECHANGE
This	message	is	sent	by	a	node	when	its	name	has	been	changed.	For	example,
the	path	controller	displays	the	name	of	the	node	in	the	scene	which	it	follows.
It	responds	to	this	message	by	changing	the	name	displayed	in	the	UI.
REFMSG_OBREF_CHANGE
This	message	is	sent	by	a	node	(or	derived	object)	when	the	object	it
references	changes.	Note:	This	message	is	no	longer	used.	It	is	basically
synonymous	with	REFMSG_SUBANIM_STRUCTURE_CHANGED.
REFMSG_MODIFIER_ADDED
This	message	is	sent	by	a	derived	object	when	a	modifier	is	a	added	or
deleted.
REFMSG_CONTROLREF_CHANGE
This	message	is	sent	when	an	animatable	switches	controllers	for	one	of	its

parameters.
REFMSG_GET_PARAM_NAME
A	parameter	block	sends	this	message	to	its	client	when	it	needs	the	name	of
the	i-th	parameter.	The	PartID	is	set	to	a	pointer	to	a	GetParamName
structure.	See	the	Advanced	Topics	section	on	Parameter	Blocks	for	more
details.
REFMSG_GET_PARAM_DIM
A	parameter	block	sends	this	message	to	its	client	when	it	needs	to	know	the
dimension	type	of	the	'i-th'	parameter.	The	PartID	is	set	to	a	pointer	to	a
GetParamDim	structure.	See	the	Advanced	Topics	section	on	Parameter
Blocks	for	more	details.
REFMSG_GET_CONTROL_DIM
A	controller	can	send	this	to	its	client	to	get	its	parameters	dimension.	It
should	set	PartID	to	a	ParamDimension.
REFMSG_TM_CHANGE
This	message	is	sent	by	a	node	when	its	transformation	matrix	has	changed
because	it	was	evaluated	at	a	different	time.	Normally	this	isn't	necessary	-
anyone	depending	on	the	node's	TM	would	have	a	validity	interval	that
reflected	the	validity	of	the	TM.	The	axis	system	doesn't	store	a	validity
interval	so	this	message	is	needed	for	it.
REFMSG_RANGE_CHANGE
A	node	sends	this	message	when	its	animation	range	changes.
REFMSG_LINEHEIGHT_CHANGE
This	message	is	sent	to	the	track	view	when	an	animatable's	line	height
changes.
REFMSG_BECOMING_ANIMATED
A	controller	should	send	this	message	to	the	track	view	when	it	becomes
animated.	If	the	user	has	the	animated	only	filter	on	then	the	track	view	will
display	this	item.
REFMSG_SUBANIM_STRUCTURE_CHANGED
If	a	plug-in	has	a	variable	number	of	parameters	this	message	may	be	used.
This	is	intended	mainly	for	the	track	view	to	tell	it	to	re-generate	the	view
below	the	message	sender's	level.
REFMSG_REF_DELETED
This	message	is	sent	when	a	target	has	had	a	reference	deleted.

REFMSG_REF_ADDED
This	message	is	sent	when	a	target	has	had	a	reference	added.
REFMSG_BRANCHED_HISTORY_CHANGED
This	message	is	sent	by	an	object	that	provides	branching	in	the	history	to
notify	it	that	the	structure	of	the	branches	has	changed.
REFMSG_NODEINSELSET_CHANGED
The	selection	set	sends	this	notification	when	it	receives	a
REFMSG_CHANGE	from	an	item	in	the	selection	set.	The	selection	set
doesn't	propagate	the	REFMSG_CHANGE	message.
REFMSG_TEST_DEPENDENCY
This	method	is	used	to	see	if	this	reference	target	depends	on	something.	In
3ds	max	2.0	and	later,	if	the	partID	is	nonzero,	the	dependency	test	will
include	child	nodes.	Otherwise,	child	nodes	will	not	be	considered	dependents.
See	ReferenceTarget::BeginDependencyTest().
REFMSG_WANT_SHOWPARAMLEVEL
A	Parameter	block	sends	this	to	its	client	to	ask	if	it	should	display	a	distinct
"Parameters"	level	in	the	track	view	hierarchy.	A	pointer	to	a	boolean	is
passed	in	for	PartID:	set	this	to	the	desired	answer.	The	default	is	NO	--	in
this	case	the	message	doesn't	need	to	be	responded	to.
REFMSG_BEFORE_PASTE
REFMSG_NOTIFY_PASTE
These	messages	are	sent	before	and	after	a	paste	has	been	done.	Sent	as
partID	is	a	pointer	to	a	data	structure	containing	three	RefTargetHandle's:	the
reference	maker,	the	old	target,	and	the	new	target.	The	message	is	sent	to	the
reference	maker	initially.
REFMSG_UV_SYM_CHANGE
This	message	is	sent	when	a	UV	Generator	changes	symmetry,	so	interactive
texture	display	updates.
REFMSG_GET_NODE_NAME
The	first	node	that	gets	this	message	will	fill	in	the	TSTR	which	partID
points	to	with	its	name	and	stop	the	message	from	propagating.
REFMSG_SEL_NODES_DELETED
This	message	is	sent	by	the	selection	set	whenever	it	has	just	deleted	nodes.

REFMSG_PRENOTIFY_PASTE
This	message	is	sent	before	a	reference	target	is	pasted.	It	is	sent	by	the	target
about	to	be	replaced.
REFMSG_SHAPE_START_CHANGE
Sent	when	a	shape	enters	a	state	where	it'll	be	changing	a	lot	and	it	would	be	a
good	idea	for	anybody	using	it	for	mesh	generation	to	suppress	updates.
REFMSG_SHAPE_END_CHANGE
Sent	to	terminate	the	above	state.
REFMSG_TEXMAP_REMOVED
A	texture	map	has	been	removed.	This	tells	the	Materials	Editor	to	remove	it
from	the	viewport	if	it	is	active.
REFMSG_FLAG_NODES_WITH_SEL_DEPENDENTS
Sent	by	an	unselected	node	to	see	if	any	selected	nodes	depend	on	it.	The
partID	parameter	points	to	a	boolean.	If	a	selected	node	receives	this
message	it	should	set	the	boolean	to	true	and	return	REF_STOP.
REFMSG_CONTAINED_SHAPE_POS_CHANGE
This	messages	is	sent	by	objects	which	contain	shapes	when	the	position
changes.
REFMSG_CONTAINED_SHAPE_SEL_CHANGE
This	messages	is	sent	by	objects	which	contain	shapes	when	the	selection
changes.
REFMSG_CONTAINED_SHAPE_GENERAL_CHANGE
This	messages	is	sent	by	objects	which	contain	shapes	when	the	selection,	or
the	position	changes.
REFMSG_LOOPTEST
This	tests	for	a	cyclic	reference.	It	will	return	REF_FAIL	if	there	is	a	loop.
REFMSG_BEGIN_EDIT
This	is	used	by	modifiers	to	indicate	when	they	are	beginning	an	edit.	For
example	in	SimpleMod::BeginEditParams()	this	message	is	sent.
REFMSG_END_EDIT
This	is	used	by	modifiers	to	indicate	when	they	are	ending	an	edit.	For
example	in	SimpleMod::EndEditParams()	this	message	is	sent.	Typically
what	a	modifier	will	do	while	it	is	being	edited	it	will	have	its
LocalValidity()	return	NEVER	so	that	a	cache	is	built	before	it.	This	will

ensure	it	is	more	interactive	while	it	is	being	edited.	When	this	message	is	sent
to	indicate	the	edit	is	finished	the	system	can	discard	the	cache.
REFMSG_MOD_DISPLAY_ON
This	is	used	by	modifiers	to	indicate	that	their	apparatus	(gizmo)	is	displayed.
For	example	in	SimpleMod::BeginEditParams()	this	message	is	sent.
REFMSG_MOD_DISPLAY_OFF
This	is	used	by	modifiers	to	indicate	that	their	apparatus	(gizmo)	is	no	longer
displayed.
REFMSG_MOD_EVAL
This	is	sent	by	a	modifier	to	cause	its	ModApp	to	call	Eval()	on	the	modifier.
If	a	modifier	wants	its	ModifyObject()	method	to	be	called	it	can	send	this
message.
The	PartID	should	contain	the	bits	that	specify	which	channels	are	to	be
evaluated,	for	example	PART_GEOM|PART_TOPO	or
ALL_CHANNELS.	The	interval	passed	should	be	set	to	Interval(t,	t),
where	t	is	the	time	the	to	evaluate.	Note	that	before	NotifyDependents()
returns,	ModifyObject()	will	be	called.
REFMSG_SELECT_BRANCH
This	message	is	available	in	release	2.0	and	later	only.
When	an	object	receives	this	message	it	should	do	whatever	it	needs	to	do
(usually	select	the	appropriate	sub-object)	to	make	the	dependent	object	be	the
object	returned	from	Object::GetPipeBranch().	The	partID	will	point	to
an	INode	pointer	that	will	be	filled	in	by	the	first	node	to	receive	this
message.	Thus,	when	an	object	that	supports	branching	in	the	history	receives
this	message	it	selects	the	target	that	sent	the	message.
REFMSG_MOUSE_CYCLE_STARTED
This	message	is	available	in	release	2.0	and	later	only.
This	messages	is	sent	to	dependents	of	the	transform	controllers	of	selected
objects	when	the	user	begins	a	mouse	transformation	in	the	viewports
(move/rotate/scale).
REFMSG_MOUSE_CYCLE_COMPLETED
This	message	is	available	in	release	2.0	and	later	only.
This	message	is	sent	to	dependents	of	the	transform	controllers	of	selected
objects	when	the	user	ends	a	mouse	transformation	in	the	viewports

(move/rotate/scale).
REFMSG_CHECK_FOR_INVALID_BIND
This	message	is	available	in	release	2.0	and	later	only.
Sent	by	a	node	to	other	nodes	(which	depend	on	that	node)	when	the	user
attempts	to	link	another	node	to	a	node.	The	partID	parameter	contains	a
pointer	to	the	new	parent	node.
REFMSG_OBJECT_CACHE_DUMPED
This	message	is	available	in	release	2.0	and	later	only.
Sent	when	a	cache	is	dumped	in	the	pipeline.	A	REFMSG_CHANGE
message	used	to	be	sent,	however	that	was	misleading	since	the	object	itself
didn't	change	even	though	any	old	object	pointer	has	become	invalid.	For
example,	if	a	path	controller	depends	on	a	spline	object	and	that	object	dumps
some	caches	in	the	pipeline,	the	path	controller	hasn't	actually	changed.
REFMSG_SFX_CHANGE
This	message	is	available	in	release	3.0	and	later	only.
Sent	by	Atmospheric	Effects	or	Render	Effects	when	they	make	or	delete	a
reference	to	a	node.	When	Atmospherics	or	Effects	add	or	delete	a	gizmo	they
should	send	this	message	via	NotifyDependents().
REFMSG_OBJECT_REPLACED
This	message	is	available	in	release	3.0	and	later	only.
Sent	when	objects	are	replaced	from	another	scene	(File->Replace).	Other
objects	referencing	the	object	that	is	replaced	may	want	to	perform	some
validity	checking;	this	message	is	more	specific	than
REFMSG_SUMANIM_STRUCTURE_CHANGED
REFMSG_NODE_WIRECOLOR_CHANGED
This	message	is	available	in	release	4.0	and	later	only.
Sent	when	nodes	wireframe	color	is	changed.
REFMSG_NODE_WSCACHE_UPDATED
This	message	is	sent	from	the	node	(without	propagation)	whenever	the	world
state	cache	gets	updated	(e.g.	when	the	pipeline	gets	reevaluated).
REFMSG_NODE_HANDLE_CHANGED
After	merging	nodes	into	the	scene,	all	merged	objects	will	receive	this
reference	notification.	The	PartID	will	be	a	pointer	to	a	merge	manager

interface	that	you	can	use	to	see	if	a	specific	handle	was	converted	and	convert
between	the	old	and	the	new	handle;	IMergeManager*	pMergeManager
=	(IMergeManager*)partID;
REFMSG_NUM_SUBOBJECTTYPES_CHANGED
This	message	is	available	in	release	4.0	and	later	only.
This	message	is	sent	to	indicate	that	the	sub-object	types	have	changed	and
that	the	StackView	should	be	updated.
REFMSG_NODE_MATERIAL_CHANGED
This	message	is	sent	from	the	node	whenever	the	node	material	is	replaced	by
a	different	material.
REFMSG_SUBANIM_NUMBER_CHANGED
This	message	is	available	in	release	4.0	and	later	only.
This	notification	is	sent	to	dependents	when	a	subanim	changes	the	ordering.
It	is	used	by	things	like	scripted	plugins	and	custom	attributes	to	inform
expression	and	wire	controllers	when	the	user	redefines	the	ordering	of
parameters	so	these	controllers	can	keep	pointing	at	the	correct	parameter.	The
PartID	is	a	Tab<DWORD>*	in	which	each	DWORD	contains	an	old-to-
new	mapping	with	the	LOWORD()	=	old	subanim	number	and	the
HIWORD()	=	new	subanim	number	A	new	subanim	ID	of	-1	implies	the
subanim	was	removed.	See
MAXSDK\SAMPLES\CONTROLLERS\EXPRCTRL.CPP	for
example	use.
REFMSG_TAB_ELEMENT_NULLED
This	message	is	available	in	release	4.0	and	later	only.
Sent	by	a	ParamBlock2	to	its	owner	whenever	a	reftarg	element	in	a	Tab<>
parameter	is	forcibly	deleted	and	the	reference	set	to	NULL	(typically	for
INODE_TABs	when	a	scene	node	is	deleted	in	the	viewport).
REFMSG_GET_NODE_HANDLE
This	message	is	available	in	release	4.0	and	later	only.
The	first	node	that	gets	this	message	will	fill	in	the	ULONG	which	partID
points	to	with	its	handle	and	stop	the	message	from	propogating.
REFMSG_END_MODIFY_PARAMS
This	message	is	available	in	release	4.0	and	later	only.
This	will	cause	Animatable::EndEditParams()	to	be	called	on	the	object

displayed	in	the	modify	panel.
REFMSG_BEGIN_MODIFY_PARAMS
This	message	is	available	in	release	4.0	and	later	only.
This	will	cause	Animatable::BeginEditParams()	to	be	called	on	the
object	displayed	in	the	modify	panel.
REFMSG_MODAPP_DELETING
This	message	is	used	internally.
REFMSG_EVAL
This	message	is	used	internally.
REFMSG_RESET_ORIGIN
This	message	is	used	internally.
REFMSG_FLAGDEPENDENTS
This	message	is	used	internally.
REFMSG_TARGET_SELECTIONCHANGE
This	message	is	used	internally.
REFMSG_DISABLE
This	message	is	used	internally.
REFMSG_ENABLE
This	message	is	used	internally.
REFMSG_TURNON
This	message	is	used	internally.
REFMSG_TURNOFF
This	message	is	used	internally.
REFMSG_LOOKAT_TARGET_DELETED
This	message	is	used	internally.
REFMSG_INVALIDATE_IF_BG
This	message	is	used	internally.
REFMSG_OBJXREF_UPDATEMAT
This	message	is	for	internal	use	only.
REFMSG_OBJXREF_GETNODES
This	message	is	for	internal	use	only.
REFMSG_NODE_GI_PROP_CHANGED
It's	broadcasted	when	a	property	in	the	radiosity	prop	page	changes

	
The	following	applies	only	to	release	4.0	and	later.
This	section	describes	the	messages	sent	by	reference	maker	to	its	reference
target.
Developers	who	define	their	own	reference	target	messages	should	do	so	using	a
value	greater	than:
#define	TARGETMSG_USER	0x00010000
The	system	uses	numbers	less	than	this	value.
TARGETMSG_ATTACHING_NODE
This	message	is	sent	to	a	node's	ObjectRef	when	the	node	is	attaching	the
object	to	itself.
TARGETMSG_DELETING_NODE
This	message	is	sent	to	a	node's	ObjectRef	when	the	node	is	about	to	be
explicitly	deleted.
TARGETMSG_DETACHING_NODE
The	message	is	sent	to	a	Node's	ObjectRef	when	the	node	is	detaching
the	object	from	itself

List	of	Miscellaneous	Utility	Functions
See	Also:	Class	Interface.
The	following	functions	are	not	part	of	any	class	but	are	available	as	part	of	the
API.

Function:
int	CoreExecute(int	cmd,	ULONG	arg1=0,	ULONG	arg2=0,
ULONG	arg3=0);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.
This	is	reserved	for	future	use.

Parameters:
int	cmd
The	command	to	execute.
ULONG	arg1=0
Optional	argument	1	(defined	uniquely	for	each	cmd).
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value	(defined	uniquely	for	each	cmd).

Function:
int	MaxMsgBox(HWND	hWnd,	LPCTSTR	lpText,	LPCTSTR
lpCaption,	UINT	type,	UINT	exType=0,	DWORD	*exRet=NULL);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
This	function	provides	an	extended	message	box	functionality.	This	is	used	to

easily	support	message	dialogs	with	a	'Hold'	button	and/or	a	'Don't	Show
Again'	checkbox.	Note	that	MB_ABORTRETRYIGNORE,
MB_YESNOCANCEL,	and	MB_RETRYCANCEL	are	not	supported	by	ths
function	and	will	be	treated	identically	to	MB_OKCANCEL.

Parameters:
HWND	hWnd
The	parent	window	handle.
LPCTSTR	lpText
Address	of	the	string	for	the	dialog	body	text.
LPCTSTR	lpCaption
Address	of	the	string	for	the	dialog	title	caption.
UINT	type
The	type	is	the	similar	to	the	Win32	MessageBox()	API.
UINT	exType=0
The	'extended'	type	supports	the	following	values	(which	are	ORed	together	to
create	this	argument):

MAX_MB_HOLD
Indicates	to	add	a	"Hold"	button	to	the	dialog.
MAX_MB_DONTSHOWAGAIN
Indicates	to	add	a	"Don't	show	this	dialog	again"	checkbox	to	the	dialog.

DWORD	*exRet=NULL
If	non-NULL	and	MAX_MB_DONTSHOWAGAIN	is	specified	above
then	this	DWORD	will	have	the	MAX_MB_DONTSHOWAGAIN	bit	set
if	the	checkbox	was	checked	by	the	user.

Return	Value:
The	return	value	is	zero	if	there	is	not	enough	memory	to	create	the	message
box.	If	the	function	succeeds,	the	return	value	is	similar	to	the	Win32
MessageBox()	API.

Function:
inline	float	Dbl2Flt(double	val,	BOOL	*valid	=	NULL);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.

This	function	is	defined	in	\MAXSDK\INCLUDE\WINUTIL.H.	It
provides	safe	type	casting	from	double	to	float	with	an	indication	of	overflow
returned	in	the	valid	parameter.

Parameters:
double	val
The	value	to	cast.
BOOL	*valid	=	NULL
TRUE	if	the	no	overflow	occurred;	otherwise	FALSE.

Return	Value:
A	float	version	of	the	double	val.

Sample	Code:
Depending	on	machine/compiler	settings,	the	following	code	may	throw	an
under/overflow	exception	or	quietly	return	a	junk	value:
float	val	=	(float)_tcstod(pNptr,	ppEndptr);
A	safer	method	would	be:
BOOL	valid;
float	val	=	Dbl2Flt(_tcstod(pNptr,	ppEndptr),	&valid);

Function:
inline	int	Dbl2Int(double	val,	BOOL	*valid	=	NULL);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
This	function	is	defined	in	\MAXSDK\INCLUDE\WINUTIL.H.	It
provides	safe	type	casting	from	double	to	int	with	an	indication	of	overflow
returned	in	the	valid	parameter.

Parameters:
double	val
The	value	to	cast.
BOOL	*valid	=	NULL
TRUE	if	the	no	overflow	occurred;	otherwise	FALSE.

Return	Value:
An	int	version	of	the	double	val.

Function:
inline	void	SinCos(float	angle,	float	*sine,	float	*cosine);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Returns	both	the	sine	and	cosine	of	the	angle	specified,	as	floats.	This	rountine
uses	assembly	language	on	Intel	CPUs.	This	is	defined	in
\MAXSDK\INCLUDE\GFLOAT.H.

Parameters:
float	angle
The	angle	in	radians.
float	*sine
Points	to	storage	for	the	output	sine	of	the	angle.
float	*cosine
Points	to	storage	for	the	output	cosine	of	the	angle.

Function:
inline	float	Sin(float	angle);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Returns	the	sine	of	the	angle	specified	as	a	float.	This	rountine	uses	assembly
language	on	Intel	CPUs.	This	is	defined	in
\MAXSDK\INCLUDE\GFLOAT.H.

Parameters:
float	angle
The	angle	in	radians.

Function:
inline	float	Cos(float	angle);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Returns	the	cosine	of	the	angle	specified	as	a	float.	This	rountine	uses
assembly	language	on	Intel	CPUs.	This	is	defined	in

\MAXSDK\INCLUDE\GFLOAT.H.
Parameters:
float	angle
The	angle	in	radians.

Function:
inline	float	Sqrt(float	arg);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Returns	the	square	root	of	the	argument	specified	as	a	float.	This	rountine	uses
assembly	language	on	Intel	CPUs.	This	is	defined	in
\MAXSDK\INCLUDE\GFLOAT.H.

Parameters:
float	arg
The	number	whose	square	root	is	computed.

Function:
bool	IsDebugging();

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Returns	true	if	3ds	max	is	running	under	the	debugger;	otherwise	false.

Function:
int	NumberOfProcessors();

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Returns	the	number	of	processors	in	the	machine	3ds	max	is	running	on.

Function:
bool	IsWindows9x();

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.

Returns	true	if	3ds	max	is	running	on	Windows	9x	(95	or	98);	otherwise	false.

Function:
bool	IsWindows98or2000();

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Returns	true	if	3ds	max	is	running	on	Windows	98	or	Windows	2000;
otherwise	false.

Function:
int	GetScreenWidth();

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Returns	the	width	of	the	screen	(taking	into	consideration	if	mutliple	monitors
are	in	use).

Function:
int	GetScreenHeight();

Remarks:
This	global	function	is	available	in	release	4.0	and	later	only.
Returns	the	height	of	the	screen	(taking	into	consideration	if	mutliple	monitors
are	in	use).

Class	CustAttrib
See	Also:	Class	ICustAttribContainer	,	Class	ReferenceTarget	,	Class	ParamDlg,
Class	Animatable
class	CustAttrib:	public	ReferenceTarget

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	Custom	Attributes.
A	sample	on	how	to	use	this	class	is	located	in
\MAXSDK\SAMPLES\HOWTO\CUSTATTRIBUTIL

Methods:
public:

Prototype:
virtual	TCHAR*	GetName();

Remarks:
Implemented	by	the	plugin.
A	CustAttrib	plugin	can	implement	this	method	in	order	to	provide	the	name
that	gets	displayed	in	the	TrackView.

Default	Implementation:
{	return	"Custom	Attribute";}

Prototype:
virtual	ParamDlg	*CreateParamDlg(HWND	hwMtlEdit,
IMtlParams	*imp);

Remarks:
Implemented	by	the	plugin.
This	method	gets	called	when	the	material	or	texture	is	to	be	displayed	in	the
material	editor	parameters	area.	The	plug-in	should	allocate	a	new	instance	of
a	class	derived	from	ParamDlg	to	manage	the	user	interface.

Parameters:
HWND	hwMtlEdit

The	window	handle	of	the	materials	editor.
IMtlParams	*imp
The	interface	pointer	for	calling	methods	in	3ds	max.

Return	Value:
A	pointer	to	the	created	instance	of	a	class	derived	from	ParamDlg.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	bool	CheckCopyAttribTo(ICustAttribContainer	*to);

Remarks:
Implemented	by	the	plugin.
This	method	will	check	if	it	possible	to	copy	the	current	custom	attributes	to
the	specified	custom	attributes	container.

Parameters:
ICustAttribContainer	*to
A	pointer	to	the	custom	attributes	container	you	wish	to	check	for	possible
reception	of	the	custom	attributes..

Return	Value:
TRUE	if	it	is	possible	to	copy,	otherwise	FALSE.

Default	Implementation:
{	return	true;	}

Class	ICollision
See	Also:	Class	CollisionOps,	Class	CollisionPlane,	Class	CollisionSphere,
Class	CollisionVNormal,	Class	CollisionMesh,	Class	ReferenceTarget,	Class
Box3,	Class	Point3
class	ICollision	:	public	ReferenceTarget

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	virtual	class	to	support	collision	objects.	All	collision
detection	classes	should	derive	from	this	class.	The	purpose	of	this	class	is	to
improve	the	particle	collision	system	for	older	particle	systems	and	to	let	other
systems	such	as	Flex	and	MAXScript	benefit	from	a	more	open	architecture	and
to	provide	an	interface	to	determine	if	a	particle	hit	a	surface.	Additionally	three
basic	collision	detection	classes	are	provided,	a	planar,	a	spherical,	and	a	mesh
deflection	class.

Methods:
public:

Prototype:
virtual	int	SuppportedCollisions()	=	0;

Remarks:
This	method	returns	the	collision	type	supported	by	the	engine.

Return	Value:
One	of	the	following;
POINT_COLLISION	for	point	collision,	currently	supported.
SPHERE_COLLISION	for	spherical	collision,	currently	not	supported.
BOX_COLLISION	for	box	collision,	currently	not	supported.
EDGE_COLLISION	for	edge	collision,	currently	not	supported.

Prototype:
virtual	void	PreFrame(TimeValue	t,	TimeValue	dt)	=	0;

Remarks:

This	method	will	be	called	once	before	the	checkcollision	is	called	for	each
frame	which	allows	you	to	do	any	required	initialization.

Parameters:
TimeValue	t
The	time	at	which	to	initialize.
TimeValue	dt
The	delta	of	time	the	particle	wil	travel.

Prototype:
virtual	void	PostFrame(TimeValue	t,	TimeValue	dt)	=	0;

Remarks:
This	method	will	be	called	at	the	end	of	each	frame	solve	to	allow	you	to
destroy	and	deallocate	any	data	you	no	longer	need.

Parameters:
TimeValue	t
The	time	at	which	to	initialize.
TimeValue	dt
The	delta	of	time	the	particle	wil	travel.

Prototype:
virtual	BOOL	CheckCollision	(TimeValue	t,	Point3	pos,	Point3	vel,
float	dt,	float	&at,	Point3	&hitPoint,	Point3	&norm,	Point3
&friction,	Point3	&inheritedVel)	=	0;

Remarks:
This	method	will	be	called	to	execute	a	point	to	surface	collision	and	compute
the	time	at	which	the	particle	hit	the	surface.

Parameters:
TimeValue	t
The	end	time	of	the	particle.
Point3	pos
The	position	of	the	particle	in	world	space.
Point3	vel

The	velocity	of	the	particle	in	world	space.
float	dt
The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:
TRUE	if	there’s	a	collision,	otherwise	FALSE.

Prototype:
virtual	BOOL	CheckCollision	(TimeValue	t,Point3	pos,	float
radius,	Point3	vel,	float	dt,	float	&at,	Point3	&hitPoint,	Point3
&norm,	Point3	&friction,	Point3	&inheritedVel)	=	0;;

Remarks:
This	method	will	be	called	to	execute	a	sphere	to	surface	collision	and
compute	the	time	at	which	the	particle	hit	the	surface.

Parameters:
TimeValue	t
The	end	time	of	the	particle.
Point3	pos
The	position	of	the	particle	in	world	space.
float	radius
The	radius	of	the	sphere.
Point3	vel

The	velocity	of	the	particle	in	world	space.
float	dt
The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:
TRUE	if	there’s	a	collision,	otherwise	FALSE.

Prototype:
virtual	BOOL	CheckCollision	(TimeValue	t,	Box3	box,	Point3	vel,
float	dt,	float	&at,	Point3	&hitPoint,	Point3	&norm,	Point3
&friction,	Point3	&inheritedVel)	=	0;

Remarks:
This	method	will	be	called	to	execute	a	box	to	surface	collision	and	compute
the	time	at	which	the	particle	hit	the	surface.

Parameters:
TimeValue	t
The	end	time	of	the	particle.
Box3	box
The	box	itself.
Point3	vel
The	velocity	of	the	particle	in	world	space.
float	dt

The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:
TRUE	if	there’s	a	collision,	otherwise	FALSE.

Prototype:
virtual	BOOL	CheckCollision	(TimeValue	t,Point3	edgeA,Point3
edgeB	,Point3	vel,	float	dt,	float	&at,	Point3	&hitPoint,	Point3
&norm,	Point3	&friction,	Point3	&inheritedVel)	=	0;

Remarks:
This	method	will	be	called	to	execute	an	edge	to	surface	collision	and	compute
the	time	at	which	the	particle	hit	the	surface.

Parameters:
TimeValue	t
The	end	time	of	the	particle.
Point3	edgeA
The	first	edge.
Point3	edgeB
The	second	edge.
Point3	vel
The	velocity	of	the	particle	in	world	space.
float	dt

The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:
TRUE	if	there’s	a	collision,	otherwise	FALSE.

Class	RandGenerator
class	RandGenerator

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	has	interfaces	for	srand()	and	rand()	methods	of	VC++	and	other
functions	for	random	number	generation.	The	srand()	and	rand()	methods
from	stdlib.h	have	two	main	problems:
a)	It's	not	satisfactorily	random.	The	rand()	function	returns	a	pseudorandom
integer	in	the	range	0	to	0x7fff=32767.	If	we	need	a	lot	of	random	numbers
using	rand()	(i.e.	for	generating	100,000	particles),	we	run	out	of	continuity	of
random	numbers.	Generated	random	numbers	becomes	too	discrete.
b)	The	rand()	method	is	global	function,	not	class	object.	Hence	it	is	shared
between	all	modules	of	your	plug-in.	Changes	in	one	module	may	change
randomness	pattern	in	other	independent	module.	To	solve	this	contradiction,
rand	methods	have	to	be	implemented	as	a	class	object.
The	RandGenerator	does	exactly	that.	It	has	much	more	random	numbers:
RAND_MAX	=	0xFFFFFFFF	=	4,294,967,295.	Also,	using	instances	of	the
class,	it's	much	easier	to	create	separate	threads	of	random	numbers	for	a	specific
module.
	

Data	Members:
public:
static	const	DWORD32	RAND_MAX
This	definition	is	used	to	override	the	VC++	rand	methods.

Methods:
public:

Prototype:
RandGenerator();

Remarks:
Constructor.

Prototype:
void	srand(DWORD32	seed);

Remarks:
This	method	sets	the	starting	point	for	generating	a	series	of	pseudorandom
integers.	To	reinitialize	the	generator,	use	1	as	the	seed	argument.	Any	other
value	for	seed	sets	the	generator	to	a	random	starting	point.	rand()	retrieves
the	pseudorandom	numbers	that	are	generated.	Calling	rand()	before	any	call
to	this	method	generates	the	same	sequence	as	calling	it	with	seed	passed	as	1.

Parameters:
DWORD32	seed
The	starting	seed.

Prototype:
DWORD32	rand(void);

Remarks:
This	method	returns	a	pseudorandom	integer	in	the	range	0	to	RAND_MAX

Prototype:
int	RandSign(void);

Remarks:
This	method	returns	the	random	number	sign,	either	-1	or	1.

Prototype:
float	Rand01(void);

Remarks:
This	method	return	a	random	number	between	0.0f	and	1.0f.

Prototype:
float	Rand11(void);

Remarks:
This	method	return	a	random	number	between	-1.0f	and	1.0f.

Prototype:
float	Rand55(void);

Remarks:
This	method	return	a	random	number	between	-0.5f	and	0.5f.

Prototype:
int	Rand0X(void);

Remarks:
This	method	return	a	random	number	between	0	and	maxnum.

Prototype:
bool	Valid(void)	const;

Remarks:
This	method	returns	TRUE	if	the	random	number	generator	has	been
explicitly	initialized	by	the	srand()	method.

Class	ID3DGraphicsWindow
See	Also:	Class	IDX8VertexShader,	Class	IDX8PixelShader,	Class
BaseInterface
class	ID3DGraphicsWindow	:	public	BaseInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	abstract	interface	to	the	D3D	graphics	window	class.	The	methods	here
provide	low-level	access	to	3ds	max's	Direct-3D	graphics	system.	These
methods	are	available	for	plug-ins	to	do	any	graphics	work	not	possible	using
the	standard	high-level	graphics	methods	of	3ds	max.	These	methods	are	for	use
in	the	existing	3ds	max	viewports.	Note	that	these	APIs	are	not	for	casual	use,	as
they	are	not	intended	to	be	a	high	level	graphics	library.	A	number	of	structures,
classes,	and	data	types	used	here	are	part	of	the	Microsoft	DirectX	SDK.

Methods:
public:

Prototype:
virtual	Interface_ID	GetID();

Remarks:
This	method	returns	the	interface	ID	of	the	class.

Default	Implementation:
{	return	D3D_GRAPHICS_WINDOW_INTERFACE_ID;	}

Prototype:
virtual	LifetimeType	LifetimeControl();

Remarks:
This	method	returns	the	type	of	lifetime	control	for	this	interface.

Default	Implementation:
{	return	noRelease;	}

Prototype:

virtual	LPDIRECT3DDEVICE8	GetDevice()	=	0;
Remarks:
This	method	returns	the	Direct3D	Device	from	GFX.

Prototype:
virtual	LPDIRECT3DVERTEXBUFFER8	GetVertexBuffer(UINT
length,	DWORD	FVF)	=	0;

Remarks:
This	method	returns	the	VertexBuffer	from	GFX.

Parameters:
UINT	length
The	size	of	vertex	buffer.
DWORD	FVF
The	Flexible	Vertex	Format.	Unless	older	Flexible	Vertex	Formats	are	in	use,
FVF	should	be	zero.

Prototype:
virtual	LPDIRECT3DINDEXBUFFER8	GetIndexBuffer(UINT
length,	D3DFORMAT	format)	=	0;

Remarks:
This	method	returns	the	Direct-3D	index	buffer	from	GFX.

Parameters:
UINT	length
The	size	of	vertex	buffer.
D3DFORMAT	format
The	Direct-3D	format	to	use.

Prototype:
virtual	D3DXMATRIX	GetWorldXform()	=	0;

Remarks:
This	method	returns	the	World	transformation	from	GFX	as	a	Direct-3D
Matrix.

Prototype:
virtual	D3DXMATRIX	GetViewXform()	=	0;

Remarks:
This	method	returns	the	View	transformation	from	GFX	as	a	Direct-3D
Matrix.

Prototype:
virtual	D3DXMATRIX	GetProjXform()	=	0;

Remarks:
This	method	returns	the	Projection	transformation	from	GFX	as	a	Direct-3D
Matrix.

Prototype:
virtual	D3DCOLOR	GetColor(ColorType	t)	=	0;

Remarks:
This	method	returns	the	Constant	Color	of	specified	type	from	GFX.

Parameters:
ColorType	t
The	type	of	color	you	wish	to	retrieve.

Prototype:
virtual	Tab<D3DLIGHT8	*>	*GetLights()	=	0;

Remarks:
This	method	returns	a	pointer	to	a	table	of	pointers	to	enabled	Direct3D	Lights
from	GFX

Prototype:
virtual	D3DMATERIAL8	GetMaterial()	=	0;

Remarks:
This	method	returns	the	Direct-3D	Material	from	GFX.

Prototype:

virtual	DWORD	GetTextureTiling(int	texStage,	int	coord)	=	0;
Remarks:
This	method	returns	the	Texture	Tiling	for	specified	texStage	and	coord	from
GFX.

Parameters:
int	texStage
The	specified	texture	stage	to	get	the	tiling	for.
int	coord
The	specified	texture	coordinate	to	get	the	tiling	for.

Prototype:
virtual	D3DXMATRIX	GetTexXform(int	texStage)	=	0;

Remarks:
This	method	returns	the	Texture	Transfrom	for	specified	texStage	from	GFX.

Parameters:
int	texStage
The	specified	texture	stage	to	get	the	texture	transformation	for.

Class	IDX8PixelShader
See	Also:	Class	ID3DGraphicsWindow,	Class	IDX8VertexShader	,	Class
BaseInterface,	Class	Material,	Class	INode
class	IDX8PixelShader:	public	BaseInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	abstract	interface	to	the	Direct-3D	Pixel	Shader	architecture.

Methods:
public:

Prototype:
virtual	Interface_ID	GetID();

Remarks:
This	method	returns	the	interface	ID	of	the	class.

Default	Implementation:
{	return	DX8_PIXEL_SHADER_INTERFACE_ID;	}

Prototype:
virtual	HRESULT	ConfirmDevice(ID3DGraphicsWindow	*gw)	=
0;

Remarks:
This	method	will	confirm	that	the	Direct3D	Device	can	handle	this
PixelShader.

Parameters:
ID3DGraphicsWindow	*gw
A	pointer	to	the	Direct-3D	Graphics	Window.

Prototype:
virtual	HRESULT	ConfirmVertexShader(IDX8VertexShader
*pvs)	=	0;

Remarks:
This	method	will	confirm	that	an	associated	VertexShader	will	work	with	this
PixelShader.

Parameters:
IDX8VertexShader	*pvs
A	pointer	to	the	vertex	shader	to	check	for.

Prototype:
virtual	HRESULT	Initialize(Material	*mtl,	INode	*node)	=	0;

Remarks:
This	method	will	load	the	PixelShader	instructions	and	textures.	PixelShader
instructions	should	be	loaded	once	and	shared	among	all	the	nodes	using	this
PixelShader.	In	addition,	any	textures	necessary	for	the	PixelShader	effect
should	be	loaded	once	and	shared	among	all	the	nodes	using	this	PixelShader.

Parameters:
Material	*mtl
A	pointer	to	the	pixel	shader	material.
INode	*node
A	pointer	to	the	node.

Prototype:
virtual	int	GetNumMultiPass()	=	0;

Remarks:
This	method	returns	the	number	of	passes	for	the	effect	this	PixelShader
creates.	Note	that	this	value	will	depend	on	the	hardware	currently	in	use.

Prototype:
virtual	DWORD	GetPixelShaderHandle(int	numPass)	=	0;

Remarks:
This	method	returns	the	PixelShader	handle	for	the	specified	pass	for	use	in
GFX.

Parameters:

int	numPass
The	pass	for	which	to	return	the	pixelshader	handle.

Prototype:
virtual	HRESULT	SetPixelShader(ID3DGraphicsWindow	*gw,	int
numPass)	=	0;

Remarks:
This	method	allows	you	to	set	the	PixelShader	for	the	specified	pass.	This	call
will	be	made	at	least	once	per	object	to	set	the	per	object	data	for	the
PixelShader	such	as	the	PixelShader	constants.

Parameters:
ID3DGraphicsWindow	*gw
A	pointer	to	the	Direct-3D	Graphics	Window.
int	numPass
The	pass	for	which	to	set	the	pixel	shader.

Class	IDX8VertexShader
See	Also:	Class	IVertexShader,	Class	IDX8PixelShader,	Class
ID3DGraphicsWindow	,	Class	BaseInterface
class	IDX8VertexShader	:	virtual	public	IVertexShader,	public	BaseInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	abstract	interface	to	the	Direct-3D	Vertex	Shader	architecture.
The	drawing	functions	are	necessary	as	something	other	than	a	simple	default
body	if:

·			The	VertexShader	needs	to	add	additional	per	vertex	data	unknown	to
the	Mesh	to	the	VertexBuffer.
·			The	VertexShader	needs	to	have	per	vertex	data	ordered	differently
than	the	standard	position,	normal,	{color,	tex	coords	ordering}.
·			The	VertexShader	is	being	used	to	create	cached	VertexBuffers	or	using
higher	order	surfaces.

In	the	cases	of	DrawMeshStrips()	and	DrawWireMesh(),	the	VertexShader
has	the	option	of	not	only	locking	and	filling	the	VertexBuffer	with	data,	but	also
of	making	the	actual	DrawPrimitive	call.	In	the	case	of	StartLines(),	the
VertexShader	must	make	the	DrawPrimitive	call.	The	VertexShader	indicates
that	it	has	done	the	drawing	by	returning	'true'	in	the	Draw	functions	provided.
In	the	case	where	the	VertexShader	does	not	want	to	do	the	drawing	but	does
want	to	fill	in	a	VertexBuffer	with	data,	the	VertexShader	can	request	the	GFX	to
create	a	VertexBuffer	(and	possibly	an	IndexBuffer)	of	appropriate	size.	The
GetVertexBuffer	and	GetIndexBuffer	calls	on	the	ID3DGraphicsWindow	object
will	do	this	and	return	the	allocated	buffers	in	subsequent	calls	or	reallocate	them
if	necessary.
Please	note	that	if	a	PixelShader	or	PixelShaders	are	in	use,	these	Draw
functions	may	need	to	set	them	for	the	appropriate	passes	of	a	multipass
rendering	if	the	drawing	is	done	in	these	Draw()	functions.	If	the	GFX	is	doing
the	drawing,	then	these	Draw()	functions	are	only	being	used	to	fill	in	the
VertexBuffer	with	data;	the	GFX	will	be	doing	the	drawing	and	will	be	setting

the	PixelShaders	as	appropriate.

Methods:
public:

Prototype:
virtual	Interface_ID	GetID();

Remarks:
This	method	returns	the	interface	ID	of	the	class.

Default	Implementation:
{	return	DX8_VERTEX_SHADER_INTERFACE_ID;	}

Prototype:
virtual	HRESULT	ConfirmDevice(ID3DGraphicsWindow	*gw)	=
0;

Remarks:
This	method	will	confirm	that	the	Direct3D	Device	can	handle	this
VertexShader.

Parameters:
ID3DGraphicsWindow	*gw
A	pointer	to	the	Direct-3D	Graphics	Window.

Prototype:
virtual	HRESULT	ConfirmPixelShader(IDX8PixelShader	*pps)	=
0;

Remarks:
This	method	will	confirm	that	an	associated	PixelShader	will	work	with	this
VertexShader.

Parameters:
IDX8PixelShader	*pps
A	pointer	to	the	pixel	shader	to	confirm	for.

Prototype:
virtual	bool	CanTryStrips()	=	0;

Remarks:
This	method	will	indicate	if	it	can	try	tristrips	for	drawing	or	must	geometry
using	this	VertexShader	be	drawn	as	triangles?	This	should	return	TRUE
unless	additional	per	vertex	data	is	generated	by	this	VertexShader	and	this
data	does	not	map	to	the	Mesh	vertices	in	the	same	way	as	existing	data	the
Mesh	knows	about	such	as	texture	coordinates.

Prototype:
virtual	int	GetNumMultiPass()	=	0;

Remarks:
This	method	returns	the	number	of	passes	for	the	effect	this	VertexShader
creates.	Note	that	this	value	will	depend	on	the	hardware	currently	in	use.

Prototype:
virtual	DWORD	GetVertexShaderHandle(int	numPass)	=	0;

Remarks:
This	method	returns	the	VertexShader	handle	for	the	specified	pass	for	use	in
GFX.

Prototype:
virtual	HRESULT	SetVertexShader(ID3DGraphicsWindow	*gw,
int	numPass)	=	0;

Remarks:
This	method	allows	you	to	set	the	VertexShader	for	the	specified	pass.	This
call	will	be	made	at	least	once	per	object	to	set	the	per	object	data	for	the
VertexShader	such	as	the	VertexShader	constants.

Parameters:
ID3DGraphicsWindow	*gw
A	pointer	to	the	Direct-3D	Graphics	Window.
int	numPass
The	pass	for	which	to	set	the	vertex	shader.

Prototype:
virtual	bool	DrawMeshStrips(ID3DGraphicsWindow	*gw,
MeshData	*data)	=	0;

Remarks:
This	method	will	draw	the	3D	Mesh	as	TriStrips.	Fill	in	the	VertexBuffer	with
data	in	the	order	desired	by	the	VertexShader.

Parameters:
ID3DGraphicsWindow	*gw
A	pointer	to	the	Direct-3D	Graphics	Window.
MeshData	*data
A	pointer	to	the	mesh	data.

Return	Value:
TRUE	if	the	Mesh	has	actually	been	drawn	in	this	call,	FALSE	if	the	GFX	is
required	to	make	the	DrawPrimitive	call.

Prototype:
virtual	bool	DrawWireMesh(ID3DGraphicsWindow	*gw,
WireMeshData	*data)	=	0;

Remarks:
This	method	will	draw	the	3D	Mesh	as	wireframe.	Fill	in	the	VertexBuffer
with	data	in	the	order	desired	by	the	VertexShader.

Parameters:
ID3DGraphicsWindow	*gw
A	pointer	to	the	Direct-3D	Graphics	Window.
WireMeshData	*data
A	pointer	to	the	wire	mesh	data.

Return	Value:
TRUE	if	the	Mesh	has	actually	been	drawn	in	this	call,	FALSE	if	the	GFX	is
required	to	make	the	DrawPrimitive	call.

Prototype:
virtual	void	StartLines(ID3DGraphicsWindow	*gw,

WireMeshData	*data)	=	0;
Remarks:
This	method	will	draw	3D	lines.	A	Mesh	is	being	drawn	by	having	line
segments	handed
down	one	at	a	time.	Pass	in	the	Mesh	data	in	preparation	for	drawing	3D	lines.

Parameters:
ID3DGraphicsWindow	*gw
A	pointer	to	the	Direct-3D	Graphics	Window.
WireMeshData	*data
A	pointer	to	the	wire	mesh	data.

Prototype:
virtual	void	AddLine(ID3DGraphicsWindow	*gw,	DWORD	*vert,
int	vis)	=	0;

Remarks:
This	method	will	draw	3D	lines.	A	Mesh	is	being	drawn	by	having	line
segments	handed
down	one	at	a	time.	Add	the	connectivity	information	for	one	two	point	line
segment.

Parameters:
ID3DGraphicsWindow	*gw
A	pointer	to	the	Direct-3D	Graphics	Window.
DWORD	*vert
The	array	of	vertices.
int	vis
The	visibility	flag.

Prototype:
virtual	bool	DrawLines(ID3DGraphicsWindow	*gw)	=	0;

Remarks:
This	method	will	draw	the	line	segments	accumulated.	This	should	restart	the
filling	of	a	VertexBuffer	with	the	next	AddLine	call	if	additional	data	needs	to

be	drawn	before	EndLines	is	called.
Parameters:
ID3DGraphicsWindow	*gw
A	pointer	to	the	Direct-3D	Graphics	Window.

Return	Value:
TRUE	if	the	Mesh	line	segments	have	actually	been	drawn	in	this	call,	FALSE
if	the	GFX	is	required	to	make	the	DrawPrimitive	call.

Prototype:
virtual	void	EndLines(ID3DGraphicsWindow	*gw,
GFX_ESCAPE_FN	fn)	=	0;

Remarks:
This	method	will	let	the	Mesh	know	that	all	drawing	and	data	access	is
finished.

Parameters:
ID3DGraphicsWindow	*gw
A	pointer	to	the	Direct-3D	Graphics	Window.
GFX_ESCAPE_FN	fn
The	graphics	escape	function.

Prototype:
virtual	void	StartTriangles(ID3DGraphicsWindow	*gw,
MeshFaceData	*data)	=	0;

Remarks:
This	method	will	Draw	3D	triangles.	A	Mesh	is	being	drawn	by	having
triangles	handed	down	one	at	a	time.	Pass	in	the	Mesh	data	in	preparation	for
drawing	3D	triangles.

Parameters:
ID3DGraphicsWindow	*gw
A	pointer	to	the	Direct-3D	Graphics	Window.
MeshFaceData	*data
A	pointer	to	the	mesh	face	data.

Prototype:
virtual	void	AddTriangle(ID3DGraphicsWindow	*gw,	DWORD
index,	int	*edgeVis)	=	0;

Remarks:
This	method	will	Draw	3D	triangles.	A	Mesh	is	being	drawn	by	having
triangles	handed	down	one	at	a	time.	Add	the	connectivity	information	for	one
triangle.

Parameters:
ID3DGraphicsWindow	*gw
A	pointer	to	the	Direct-3D	Graphics	Window.
DWORD	index
The	triangle	index.
int	*edgeVis
The	array	of	edge	visibility	information/

Prototype:
virtual	bool	DrawTriangles(ID3DGraphicsWindow	*gw)	=	0;

Remarks:
This	method	will	draw	the	triangles	accumulated.	This	should	restart	the
filling	of	a	VertexBuffer	with	the	next	AddTriangle	call	if	additional	data
needs	to	be	drawn	before	EndTriangles	is	called.	Return	'true'	if	the	Mesh
triangles	have	actually	been	drawn	in	this	call,	'false'	if	the	GFX	is	required	to
make	the	DrawPrimitive	call.

Parameters:
ID3DGraphicsWindow	*gw
A	pointer	to	the	Direct-3D	Graphics	Window.

Prototype:
virtual	void	EndTriangles(ID3DGraphicsWindow	*gw,
GFX_ESCAPE_FN	fn)	=	0;

Remarks:
This	method	will	let	the	Mesh	know	that	all	drawing	and	data	access	is

finished.
Parameters:
ID3DGraphicsWindow	*gw
A	pointer	to	the	Direct-3D	Graphics	Window.
GFX_ESCAPE_FN	fn
The	graphics	escape	function.

Class	PatchTVert
See	Also:	Class	PatchMesh,	Template	Class	Tab,	Working	with	Patches.

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	stores	the	texture	vertex	information	associated	with	a	patch	and
provides	methods	to	access	this.	All	methods	of	this	class	are	implemented	by
the	system.

Data	Members:
public:
UVVert	p;
The	texture	vertex	location.
int	aux1;
Used	to	track	topology	changes	during	editing	(Edit	Patch).

Methods:

Prototype:
PatchVert();

Remarks:
Constructor.	The	UVVert	is	set	to	0,0,0.	The	aux	member	is	set	to	-1.

Prototype:
PatchTVert(float	u,	float	v,	float	w);

Remarks:
Constructor.	The	UVVert	is	set	to	the	provided	uvw	parameters	passed	to	the
method.	The	aux	member	is	set	to	-1.

Parameters:
float	u,	float	v,	float	w;
The	u,	v,	and	w	values	for	the	texture	vertex.

Operators:

Prototype:

PatchTVert&	operator=(cont	UVVert&	from);
Remarks:
Assignment	operator.

Parameters:
UVVert&	from
The	texture	vertex	to	copy	from.

Prototype:
operator	UVVert&()

Remarks:
Conversion	operator.	Returns	a	reference	to	UVVert	p.

Class	ActionTable
See	Also:	Class	BaseInterfaceServer,	Class	ClassDesc,	Structure
ActionDescription,	Class	ActionItem,	Class	ActionCallback,	Class
ActionContext,	Class	IActionManager,	Class	DynamicMenu,	Class
DynamicMenuCallback,	Class	Interface.
class	ActionTable	:	public	BaseInterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	the	class	used	to	create	Action	Tables.	An	ActionTable	holds	a	set	of
ActionItems,	which	are	operations	that	can	be	tied	to	various	UI	elements,	such
as	keyboard	shortcuts,	CUI	buttons,	the	main	menu	and	the	Quad	menu.	3ds
max’s	core	code	exports	several	ActionTables	for	built-in	operations	in	3ds	max.
Plug-ins	can	also	export	their	own	action	tables	via	methods	available	in
ClassDesc.
All	methods	of	this	class	are	implemented	by	the	system.	Note	however	that
many	methods	are	virtual	and	may	be	customized	by	the	plug-in	developer	as
this	class	may	be	sub-classed	if	required.	See	the	Advanced	Topics	section	UI
Customization	for	details	on	sub-classing	this	class	and	ActionItem.	For	details
on	implementing	an	ActionTable	please	refer	to
\MAXSDK\SAMPLES\MODIFIERS\FFD

Methods:
public:

Prototype:
ActionTable(ActionTableId	id,	ActionContextId	contextId,
TSTR&	name,	HACCEL	hDefaults,	int	numIds,
ActionDescription*	pOps,	HINSTANCE	hInst);

Remarks:
Constructor.	This	constructor	builds	the	action	table	using	an	array	of
descriptors.	It	takes	the	ID	of	the	table,	the	context	id,	a	name	for	the	table,	a
windows	accelerator	table	that	gives	default	keyboard	assignments	for	the
operations,	the	number	of	items,	the	table	of	operation	descriptions,	and	the
instance	of	the	module	where	the	string	resources	in	the	table	are	stored.
At	the	same	time	the	action	table	is	built	developers	need	to	register	the	action

context	ID	with	the	system.	This	is	done	using	the
IActionManager::RegisterActionContext()	method.

Parameters:
ActionTableId	id
The	unique	ID	for	the	ActionTable.	Every	ActionTable	has	a	unique	32-bit
integer	ID.	For	new	tables	exported	by	plug-ins,	the	developer	should	choose	a
random	32-bit	integer.	You	can	use	the	Class_ID	program	to	generate	this
identifier:	See	Class	Class_ID	for	more	details.	Simply	use	one	of	the	two
DWORDs	that	comprise	the	Class_ID	for	the	ActionTableId.
ActionContextId	contextId
The	ActionContextID	associated	with	this	table.	Several	tables	may	share	the
same	ActionContextID.
TSTR&	name
The	name	for	the	ActionTable.
HACCEL	hDefaults
The	handle	of	the	a	windows	accelerator	table	that	gives	default	keyboard
assignments	for	the	operations.
int	numIds
The	number	of	items	in	the	description	array	below.
ActionDescription*	pOps
Points	to	the	array	of	the	operator	descriptors.
HINSTANCE	hInst
The	handle	to	the	instance	of	the	module	where	the	string	resources	in	the
array	of	operator	descriptors	are	stored.

Prototype:
ActionTable(ActionTableId	id,	ActionContextId	contextId,
TSTR&	name);

Remarks:
Constructor.	This	constructor	build	a	new	empty	action	table	with	the	given
ID,	context	ID	and	name.	You	then	need	to	add	ActionItems	to	the	table
separately	using	the	AppendOperation()	method	described	below.

Parameters:

ActionTableId	id
The	unique	ID	for	the	ActionTable.
ActionContextId	contextId
The	ActionContextID	associated	with	this	table.	Several	tables	may	share	the
same	ActionContextID.
TSTR&	name
The	name	for	the	ActionTable.

Prototype:
~ActionTable();

Remarks:
Destructor.	Deletes	all	the	operations	maintained	by	the	table	and	deletes	the
keyboard	accelerator	table	if	in	use.

Prototype:
HACCEL	GetHAccel();

Remarks:
Returns	the	handle	of	the	current	keyboard	accelerator	for	the	table.

Prototype:
void	SetHAccel(HACCEL	hAccel);

Remarks:
Sets	the	current	keyboard	accelerator	for	the	table.

Prototype:
HACCEL	GetDefaultHAccel();

Remarks:
Get	the	default	keyboard	accelerator	table.	This	is	used	when	the	user	has	not
assigned	any	accelerators.

Prototype:
TSTR&	GetName();

Remarks:
Returns	the	name	of	the	ActionTable.	This	is	the	name	in	the	Customize	UI
dialog	drop-down.

Prototype:
ActionTableId	GetId();

Remarks:
Returns	the	ActionTableId	for	this	ActionTable.

Prototype:
ActionContextId	GetContextId();

Remarks:
Returns	the	ActionContextId	for	this	ActionTable.

Prototype:
ActionCallback*	GetCallback();

Remarks:
Get	the	current	callback	associated	with	this	table.	Returns	NULL	if	the	table
is	not	active.

Prototype:
void	SetCallback(ActionCallback*	pCallback);

Remarks:
Sets	the	callback	object	used	by	this	ActionTable.

Parameters:
ActionCallback*	pCallback
Points	to	the	callback	to	set.

Prototype:
int	Count();

Remarks:
Returns	the	number	of	ActionItems	in	the	table.

Prototype:
ActionItem*	operator[](int	i);

Remarks:
This	operator	returns	a	pointer	to	the	'i-th'	ActionItem.

Parameters:
int	i
The	zero	based	index	in	the	list	of	ActionItems.

Prototype:
ActionItem*	GetAction(int	cmdId);

Remarks:
Returns	a	pointer	to	the	ActionItem	associated	with	the	command	ID	passed.

Parameters:
int	cmdId
The	command	ID.

Prototype:
void	AppendOperation(ActionItem*	pAction);

Remarks:
This	method	adds	an	operation	to	the	table.

Parameters:
ActionItem*	pAction
Points	to	the	ActionItem	to	append.

Prototype:
BOOL	DeleteOperation(ActionItem*	pAction);

Remarks:
Remove	an	operation	from	the	table

Parameters:
ActionItem*	pAction
Points	to	the	ActionItem	to	delete.

Return	Value:
TRUE	if	the	operation	was	deleted;	FALSE	if	it	could	not	be	found	and	wasn't.

Prototype:
void	DeleteThis();

Remarks:
Deletes	this	ActionItem.

Default	Implementation:
{	delete	this;	}

Prototype:
virtual	BOOL	GetButtonText(int	cmdId,	TSTR&	buttonText);

Remarks:
This	method	retrieves	the	text	that	will	be	used	when	the	ActionItem	is	on	a
text	button.

Parameters:
int	cmdId
The	unique	ID	of	the	command	whose	button	text	is	retrieved.
TSTR&	buttonText
Storage	for	the	text.

Return	Value:
TRUE	if	the	command	is	in	the	table;	otherwise	FALSE.

Prototype:
virtual	BOOL	GetMenuText(int	cmdId,	TSTR&	menuText);

Remarks:
This	method	retrieves	the	text	to	use	when	the	item	is	on	a	menu	(either	Quad
menu	or	main	menu	bar).	This	can	be	different	from	the	button	text.

Parameters:
int	cmdId
The	unique	ID	of	the	command	whose	menu	text	is	retrieved.
TSTR&	menuText

Storage	for	the	text.
Return	Value:
TRUE	if	the	command	is	in	the	table;	otherwise	FALSE.

Default	Implementation:
{	return	GetButtonText(cmdId,	menuText);	}

Prototype:
virtual	BOOL	GetDescriptionText(int	cmdId,	TSTR&	descText);

Remarks:
This	method	gets	the	text	that	will	be	used	for	tool	tips	and	menu	help.	This	is
also	the	string	that	is	displayed	for	the	operation	in	all	the	lists	in	the
customization	dialogs.

Parameters:
int	cmdId
The	unique	ID	of	the	command	whose	description	text	is	retrieved.
TSTR&	descText
Storage	for	the	text.

Return	Value:
TRUE	if	the	command	is	in	the	table;	otherwise	FALSE.

Prototype:
virtual	BOOL	IsChecked(int	cmdId);

Remarks:
Returns	TRUE	if	the	menu	item	should	be	checked	or	a	CUI	button	should	be
in	the	pressed	state.

Parameters:
int	cmdId
The	unique	ID	of	the	command.

Default	Implementation:
{	return	FALSE;	}

Prototype:

virtual	BOOL	IsItemVisible(int	cmdId);
Remarks:
This	method	determines	if	an	item	is	to	be	visible	on	a	menu.	Returns	TRUE	if
visible;	FALSE	if	not.

Parameters:
int	cmdId
The	unique	ID	of	the	command.

Default	Implementation:
{	return	TRUE;	}

Prototype:
virtual	BOOL	IsEnabled(int	cmdId);

Remarks:
This	method	determines	if	the	operation	is	currently	enabled	and	available.
Returns	TRUE	if	enabled;	FALSE	if	disabled.

Parameters:
int	cmdId
The	unique	ID	of	the	command.

Default	Implementation:
{	return	TRUE;	}

Prototype:
virtual	void	WritePersistentActionId(int	cmdId,	TSTR&
idString);

Remarks:
This	method	will	write	an	action	identifier	to	a	*.CUI	file	or	*.KBD	file.	It’s
default	implementation	is	to	write	the	integer	ID	but	will	be	over-riden	when
command	IDs	are	not	persistent.

Parameters:
int	cmdId
The	unique	ID	of	the	command.
TSTR&	idString

The	action	ID	placed	in	the	string.

Prototype:
virtual	int	ReadPersistentActionId(TSTR&	idString);

Remarks:
This	method	will	read	an	action	identifier	from	a	*.CUI	file	or	*.KBD	file.	It’s
default	implementation	is	to	read	the	integer	ID	but	will	be	over-riden	when
command	IDs	are	not	persistent.

Parameters:
TSTR&	idString
The	action	ID	string.

Return	Value:
This	method	returns	-1	if	the	command	was	not	found	in	the	table.

Prototype:
virtual	MaxIcon*	GetIcon(int	cmdId);

Remarks:
Returns	an	optional	icon	for	the	command,	or	NULL	if	there	is	none.

Parameters:
int	cmdID
The	unique	ID	of	the	command.

Prototype:
void	BuildActionTable(HACCEL	hDefaults,	int	numIds,
ActionDescription*	pOps,	HINSTANCE	hInst);

Remarks:
This	method	will	fill	the	action	table	with	the	given	action	descriptions.

Parameters:
HACCEL	hDefaults
The	handle	of	the	a	windows	accelerator	table	that	provides	keyboard
assignments	for	the	operations.
int	numIds

The	number	of	ID’s	to	add	to	the	action	table.
ActionDescription*	pOps
The	array	of	action	descriptions	to	build	the	table	from.
HINSTANCE	hInst
The	handle	to	the	instance	of	the	module.

Prototype:
ActionItem*	GetCurrentAssignment(ACCEL	accel);

Remarks:
Get	the	action	assigned	to	the	given	accelerator,	if	any.

Parameters:
ACCEL	accel
The	accelerator	key	you	wish	to	check	the	assignment	for.

Prototype:
void	AssignKey(int	cmdId,	ACCEL	accel);

Remarks:
Assign	the	command	to	the	given	accelerator.	Also	removes	any	previous
assignment	to	that	accelerator.

Parameters:
int	cmdId
The	command	ID.
ACCEL	accel
The	accelerator	key	you	wish	to	assign.

Prototype:
void	RemoveShortcutFromTable(ACCEL	accel);

Remarks:
removes	the	given	assignment	from	the	shortcut	table

Parameters:
ACCEL	accel
The	accelerator	key	you	wish	to	remove	from	the	shortcut	table.

Class	GBufReader
See	Also:	Class	GBuffer,	Class	GBufWriter,	Structure	GBufData,	List	of
GBuffer	Channels	Indexes.
class	GBufReader	:	public	InterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	object	returned	by	GBuffer::CreateReader().	Methods	of	this
class	allow	the	G-Buffer	data	to	be	read.
Here	is	an	example	of	reading	multiple	layer	data	from	the	G-Buffer	using
methods	of	this	class.
void	ReadExample(GBuffer	*gb)	{
	float	zr,	UBYTE	midr;
	GBufReader	*rdr	=	gb->CreateReader();
	for	(int	y=0;	y<10;	y++)	{
		rdr->StartLine(y);
		for	(int	x=5;	x<100;	x+=4)	{
			int	res	=	rdr->StartPixel(x);
			rdr->ReadChannelData(GB_Z,(void	*)&zr);
			rdr->ReadChannelData(GB_MTL_ID,(void	*)&midr);
			while	(rdr->StartNextLayer())	{
			rdr->ReadChannelData(GB_Z,(void	*)&zr);
			rdr->ReadChannelData(GB_MTL_ID,(void	*)&midr);

				}
			}
		}
	gb->DestroyReader(rdr);
	}
All	methods	of	this	class	are	implemented	by	the	System.

Methods:
public:

Prototype:

virtual	int	StartLine(int	y)=0;
Remarks:
Call	this	method	to	start	a	new	scan	line.	Call	this	method	before	the	first	scan
line.

Parameters:
int	y
The	zero	based	index	of	the	scan	line	to	start.

Return	Value:
Returns	-1	if	there	was	no	data	for	line,	or	the	x	value	of	first	non-empty	pixel.

Prototype:
virtual	BOOL	StartPixel(int	x)=0;

Remarks:
Call	this	method	to	start	a	new	pixel.	This	method	automatically	starts	the	first
layer.

Parameters:
int	x
The	zero	based	index	of	the	pixel	to	start.

Return	Value:
Returns	TRUE.

Prototype:
virtual	BOOL	StartPixel(int	x,	int	y)=0;

Remarks:
This	method	is	called	to	start	a	new	line	and	pixel.	This	method	is	equivalent
to:
	StartLine(y);
	return	StartPixel(x);

Prototype:
virtual	BOOL	StartNextLayer()=0;

Remarks:

This	method	is	called	to	begin	reading	data	from	a	new	layer.	Do	not	call	this
method	before	reading	the	first	layer.

Return	Value:
TRUE	if	more	data	to	read;	otherwise	FALSE.

Prototype:
virtual	int	NextPixel()=0;

Remarks:
Call	this	method	to	prepare	for	reading	the	next	pixel.

Return	Value:
Returns	TRUE.

Prototype:
virtual	BOOL	ReadChannelData(int	chan,	void	*data)=0;

Remarks:
Reads	a	data	element	from	the	specified	channel	of	the	G-Buffer	from	the
current	scan	line	and	pixel.

Parameters:
The	channel	to	read.	One	of	the	items	from:	List	of	GBuffer	Channels	Indexes.
void	*data
Points	to	storage	for	the	data.

Return	Value:
TRUE	if	data	was	available;	otherwise	FALSE.

Prototype:
virtual	BOOL	ReadAllData(GBufData	*data)=0;

Remarks:
Reads	all	the	data	from	the	G-Buffer	into	the	GBufData	structure	passed
from	the	current	scan	line	and	pixel.

Parameters:
GBufData	*data
Points	to	storage	for	the	data.	See	Structure	GBufData.

Return	Value:
TRUE	if	data	was	available;	otherwise	FALSE.

Prototype:
virtual	BOOL	ModifyChannelData(int	chan,	void	*data)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	values	in	the	specified	layer	to	be	written.	Note	that	it	may
seem	strange,	writing	data	from	the	reader,	but	developers	asked	for	the
capability	of	writing	to	the	already	created	gbuffer,	and	it	is	much	simpler	to
add	this	capability	to	the	GBufReader	than	to	GBufWriter,	which	is	designed
to	construct	gbuffers	from	scratch,	not	modify	existing	ones.

Parameters:
int	chan
Specifies	the	channel	to	write	to.
void	*data
Points	to	the	data	to	write.

Return	Value:
TRUE	indicates	success;	FALSE	indicates	failure.

Prototype:
virtual	BOOL	ModifyAllData(GBufData	*data)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	values	in	the	current	layer	to	be	written.	Note	that	it	may
seem	strange,	writing	data	from	the	reader,	but	developers	asked	for	the
capability	of	writing	to	the	already	created	gbuffer,	and	it	is	much	simpler	to
add	this	capability	to	the	GBufReader	than	to	GBufWriter,	which	is	designed
to	construct	gbuffers	from	scratch,	not	modify	existing	ones.

Parameters:
GBufData	*data
Points	to	the	data	to	write.

Return	Value:

TRUE	indicates	success;	FALSE	indicates	failure.

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Deletes	this	reader	object.	Call	this	method	when	finished.

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.
This	is	reserved	for	future	use.

Parameters:
int	cmd
The	command	to	execute.
ULONG	arg1=0
Optional	argument	1	(defined	uniquely	for	each	cmd).
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value	(defined	uniquely	for	each	cmd).

Default	Implementation:
{	return	0;	}

List	of	Material	Requirement	Flags
See	Also:	Class	MtlBase,	Class	RenderInstance.
Material	requirements	flags.	One	or	more	of	the	following	values:
MTLREQ_2SIDE
The	material	is	2-sided.
MTLREQ_WIRE
The	material	is	a	wire	frame	material.
MTLREQ_WIRE_ABS
The	material	is	a	wire	frame	material,	absolute	size.
MTLREQ_TRANSP
The	material	uses	transparency
MTLREQ_UV
The	material	requires	UVW	coordinates
MTLREQ_FACEMAP
The	material	uses	"face	map"	UV	coordinates.
MTLREQ_XYZ
The	material	requires	object	XYZ	coordinates.
MTLREQ_OXYZ
This	is	not	used.
MTLREQ_BUMPUV
The	material	requires	UV	bump	vectors.
MTLREQ_BGCOL
The	material	requires	the	background	color.
MTLREQ_PHONG
The	material	requires	an	interpolated	normal.
MTLREQ_AUTOREFLECT
The	material	needs	to	build	an	auto-reflect	map.
MTLREQ_AUTOMIRROR
The	material	needs	to	build	an	auto-mirror	map
MTLREQ_NOATMOS
This	suppress	the	atmospheric	shader.	This	is	used	by	the	Matte	material	for
example.	The	matte	material	samples	the	background	itself	and	handles	the

fogging	characteristics.	Thus	it	does	not	need	to	have	the	atmospheric	shader
do	this	again.
MTLREQ_ADDITIVE_TRANSP
Specifies	that	transparent	composites	are	done	additively.	Normally,	if	this	is
not	specified,	the	background	color	is	attenuated.	For	instance,	say	you	have	a
material	that	is	30%	transparent	(70%	opaque).	This	means	that	you	take	30%
of	the	background	color	and	70%	of	the	material	color.
Setting	this	flag	causes	the	computation	to	be	done	by	multiplying	0.7	times
the	material	color	and	then	adding	this	to	the	background	color	(which	is	left
un-attenuated).
MTLREQ_VIEW_DEP
This	flag	is	available	in	release	2.0	and	later	only.
Maps	or	materials	which	depend	on	the	view	should	set	this	bit	in	their
Requirements()	method.
MTLREQ_UV2
This	flag	is	available	in	release	2.0	and	later	only.
The	material	requires	the	second	uv	channel	values	(vertex	colors).
MTLREQ_BUMPUV2
This	flag	is	available	in	release	2.0	and	later	only.
The	material	requires	the	second	uv	channel	bump	vectors.
MTLREQ_PREPRO
This	flag	is	available	in	release	2.0	and	later	only.
Setting	this	flag	will	cause	MtlBase::BuildMaps()	to	be	called	on	every
frame.
MTLREQ_DONTMERGE_FRAGMENTS
This	is	no	longer	used.
MTLREQ_DISPLACEMAP
This	flag	is	available	in	release	2.0	and	later	only.
Material	has	a	Displacement	map	channel.
MTLREQ_SUPERSAMPLE
This	flag	is	available	in	release	2.0	and	later	only.
Material	requires	super	sampling.	This	tells	the	scanline	renderer	that	you
want	super	sampling	(the	Standard	material	uses	this).	This	takes	multiple
samples	spread	around	in	the	pixel	which	provides	an	additional	level	of	anti-

aliasing.
MTLREQ_WORLDCOORDS
This	flag	is	available	in	release	3.0	and	later	only.
Material	has	world	coordinates	that	are	used	in	material	/	map	evaluation	This
flag	is	set	by	UVGen	and	XYZGen	when	world	coordinates	are	involved.	The
renderer	looks	at	this	and	if	it	is	set,	takes	the	validity	interval	of	the	Node's
transform	matrix	into	account	in	computing	the	validity	of	a	displacement
mapped	mesh.
MTLREQ_TRANSP_IN_VP
This	flag	is	available	in	release	4.0	and	later	only.
This	flag	should	be	returned	true	for	any	material	that	wants	to	be	transparent
in	the	viewport.
MTLREQ_FACETED
This	flag	is	available	in	release	4.0	and	later	only.
This	material	should	be	rendered	faceted	in	the	viewports.

Class	FaceCreate
See	Also:	Class	MeshDelta	,	Class	Face
class	FaceCreate

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	notion	of	a	face	create	within	a	MeshDelta.	The	public
data	members	provide	the	index	of	any	original	face	the	new	face	may	be	based
on	as	well	as	the	new	face	itself.	The	virtue	of	providing	the	original	face
information	is	that	we	may	use	it	to	track	per-face	data	that	isn't	contained	within
the	face	itself.
Note	that	this	class	relates	closely	to	the	new	custom	per-face	data	channels.	For
details	on	the	implementations	see	Class	IFaceDataChannel,	Class
IFaceDataMgr.

Data	Members:
public:
DWORD	original;
The	face	in	the	input	mesh	this	new	face	should	copy	properties	from.	If
UNDEFINED,	this	face	is	assumed	to	be	totally	original	and	should	not	copy
properties	from	any	faces	in	the	input	mesh.
Face	face;
The	new	face.

Methods:
public:

Prototype:
FaceCreate	(DWORD	f,	const	Face	&	fc)	:	original(f),	face(fc);

Remarks:
Constructor.
Constructor.	Initializes	data	members	to	the	values	passed.

Default	Implementation:
{	}

Prototype:
FaceCreate	(const	Face	&	fc)	:	original(UNDEFINED),	face(fc);

Remarks:
Constructor.
Constructor.	Initializes	face	to	the	value	passed,	and	initializes	original	to
UNDEFINED.

Default	Implementation:
{	}

Prototype:
FaceCreate	(DWORD	f)	:	original(f);

Remarks:
Constructor.
Constructor.	Initializes	original	to	the	value	passed.	Does	not	initialize	the	face
data	member.

Default	Implementation:
{	}

Prototype:
FaceCreate	()	:	original(UNDEFINED);

Remarks:
Constructor.	Initializes	original	to	UNDEFINED.	Does	not	initialize	the	face
data	member.

Default	Implementation:
{	}

Prototype:
FaceCreate	(const	FaceCreate	&	fc)	:	original(fc.original),
face(fc.face);

Remarks:
Constructor

Constructor.	Initializes	data	members	to	match	those	in	fc.
Default	Implementation:
{	}

Prototype:
FaceCreate	&	operator=	(const	FaceCreate	&	fc);

Remarks:
Assignment	operator.	Sets	all	data	members	to	be	equal	to	those	in	fc.

Default	Implementation:
{	original	=	fc.original;	face=fc.face;	return	*this;	}

Class	MNMapFace
See	Also:	Class	MNMesh,	Class	MNMap.
class	MNMapFace

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	is	a	face	used	to	store	map	vertex	information	for	a	given	face	and
map	channel.	It	replaces	the	information	previously	contained	in	the
MNFace::tvrt	and	MNFace::cvrt	data	members	(prior	to	release	3).
By	way	of	analogy:	MNMapFace	is	to	MNFace	as	TVFace	is	to	Face.
MNMapFace	is	to	MNMap	as	MNFace	is	to	MNMesh	as	TVFace	is	to
MeshMap	as	Face	is	to	Mesh.

Friend	Classes:
friend	class	MNMesh;

Data	Members:
public:
int	deg
Degree	of	this	face.	Must	match	degree	of	related	MNFace	in	MNMesh.
int	*tv
Mapping	vertices	used	by	this	mapping	face.	(This	array	is	of	size	deg).

Methods:
public:

Prototype:
MNMapFace();

Remarks:
Constructor.	Calls	Init().

Prototype:
MNMapFace(int	d);

Remarks:
Constructor.	Sets	the	degree	and	hidden	vertex	count.

Parameters:
int	d
Desired	degree.

Prototype:
~MNMapFace();

Remarks:
Destructor.	Calls	Clear().

Prototype:
void	Init();

Remarks:
Initializes	MNMapFace.	deg	is	set	to	0,	pointers	set	to	NULL.

Prototype:
void	Clear();

Remarks:
Clears	and	frees	MNMapFace.

Prototype:
void	SetAlloc(int	d);

Remarks:
Allocates	enough	memory	in	the	arrays	for	the	face	to	have	degree	d,	but	does
not	actually	set	the	degree.	If	the	arrays	are	already	large	enough	(or	larger),	it
does	not	reallocate	them.

Parameters:
int	d
The	degree	for	this	map	face.

Prototype:
void	SetSize(int	d);

Remarks:
Allocates	enough	memory	in	the	arrays	for	the	face	to	have	degree	d,	but	does
not	actually	set	the	degree.	If	the	arrays	are	already	large	enough	(or	larger),	it
does	not	reallocate	them.	You	generally	don’t	need	to	use	this	method
separately;	MakePoly,	Insert,	and	other	methods	which	may	require	additional
memory	will	call	this	if	needed.

Prototype:
void	MakePoly(int	fdeg,	int	*tt);

Remarks:
Makes	this	face	into	a	polygon	with	the	specified	vertices	and	other
information.

Parameters:
int	fdeg
The	degree	to	set	this	face	to.
int	*tt
The	list	of	vertices	for	this	face.

Prototype:
void	Insert(int	pos,	int	num=1);

Remarks:
Inserts	space	for	more	verticies	at	the	specified	position.

Parameters:
int	pos
The	location	within	the	map	face	where	the	new	vertices	should	be	added.
int	num=1
The	number	of	new	vertices	to	add.

Prototype:
void	Delete(int	pos,	int	num=1);

Remarks:
Deletes	verticies	from	this	map	face.

Parameters:
The	location	within	the	map	face	where	the	vertices	should	be	deleted.
int	num=1
The	number	of	vertices	to	delete.

Prototype:
void	RotateStart(int	newstart);

Remarks:
Re-indexes	the	vertices	and	edges	so	that	the	vertex	in	position	newstart
becomes	the	new	first	vertex.	Triangulation	is	also	corrected.

Parameters:
int	newstart
The	new	first	vertex.

Prototype:
void	Flip();

Remarks:
Reverses	order	of	verts,	effectively	inverting	the	face.

Prototype:
int	VertIndex(int	vv);

Remarks:
Returns	the	position	of	vertex	vv	in	this	face’s	list	of	vertices.

Parameters:
int	vv
The	vertex	whose	index	is	returned.

Prototype:
void	ReplaceVert(int	ov,	int	nv);

Remarks:
Replaces	vertex	ov	with	vertex	nv	in	the	list	of	vertices.

Parameters:
int	ov
The	vertex	to	replace.
int	nv
The	vertex	to	replace	it	with.

Prototype:
MNMapFace	&	operator=(const	MNMapFace	&	from);

Remarks:
Assignment	operator.

Prototype:
void	MNDebugPrint(bool	hinfo=TRUE);

Remarks:
Uses	DebugPrint	to	print	out	information	to	the	Debug	Results	window	in
DevStudio.	This	includes	the	tv	array	and	optionally	the	htv	array.

Parameters:
bool	hinfo=TRUE
If	TRUE	the	htv	array	is	output.

Class	MNFace
See	Also:	Class	FlagUser,	Class	MNFace,	Class	BitArray.
class	MNFace	:	public	FlagUser

Description:
This	class	is	available	in	release	2.0	and	later	only.
MNFace	is	the	face	structure	used	with	the	MNMesh	mesh.	MNFaces	need
not	be	triangles.	They	also	may	contain	"hidden"	vertices	which	are	used	in
converting	the	face	back	to	triangles.	This	"triangulation"	is	always	maintained
in	the	face.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	MNMesh;

Data	Members:
private:
int	dalloc
This	is	the	amount	of	space	allocated	for	verts,	edges,	mapping	coords,	and
other	information	that's	based	on	degree	(deg).
int	talloc
This	is	the	amount	of	space	allocated	for	the	triangulation.

public:
int	deg
Degree:	this	is	the	number	of	vertices	and	edges	that	this	face	has.
int	*vtx
This	is	the	list	of	vertices	that	make	up	the	corners	of	this	face.	Each	value	is
an	index	into	the	parent	MNMesh's	list	of	MNVerts.
int	*edg
This	is	the	list	of	edges	that	border	this	face,	in	order.	Each	edg[i]	goes
between	vtx[i]	and	vtx[(i+1)%deg].	Each	value	is	an	index	into	the	parent
MNMesh’s	list	of	MNEdges.	These	values	may	not	be	valid	if	the	MNMesh’s
MN_MESH_FILLED_IN	flag	is	not	set.
int	*diag
This	is	where	the	triangulation	is	stored.	The	number	of	triangles	in	a	face	is

given	by	deg	-	2	+	hdeg*2.	This	array	contains	three	times	this	number,	for	all
the	corners	of	all	the	sub-triangles.	The	triangle	values	are	indices	into	the	vtx
and	hvtx	arrays	of	this	face.	Hidden	vertices	are	indicated	by	values	less	than
zero:	hvtx[i]	is	represented	by	-1-i.	Thus	a	triangle	(1,	2,	-2)	would	represent	a
triangle	using	vtx[1],	vtx[2],	and	hvtx[-1].	The	diag	array's	allocated	size	is
always	(dalloc-3)*2.	If	dalloc==3	(triangle),	this	pointer	is	NULL.
DWORD	smGroup
This	contains	the	smoothing	groups	assigned	to	this	face.
MtlID	material
This	is	the	material	ID	assigned	to	this	face.
int	track
This	member	is	obsolete	and	should	not	be	used.
BitArray	visedg
Contains	a	visibility	bit	for	each	edge	on	this	face.	See	the	MNMesh	note	on
edge	selection	&	visibility	for	more	information.
BitArray	edgsel
Contains	a	selection	bit	for	each	edge	on	this	face.	See	the	MNMesh	note	on
edge	selection	&	visibility	for	more	information.

Flags:
MN_SEL
Indicates	that	the	face	is	selected.
MN_TARG
Indicates	that	the	face	is	targeted.	(See	the	MNMesh	methods	starting	with	the
words	TargetBy.)
MN_DEAD
Indicates	that	the	face	is	not	used	and	should	be	ignored.	Faces	with	the
MN_DEAD	flag	are	deleted	in	the	next	MNMesh	call	to	CollapseDeadFaces
().
MN_FACE_OPEN_REGION
This	flag	is	available	in	release	2.5	and	later	only.
This	face	is	part	of	a	region	of	the	mesh	that	is	not	closed,	i.e.	there	are	1-sided
edges.	This	means	that	the	mesh	is	not	a	solid	object,	it	has	gaps	or	holes.	The
flag	is	set	by	the
MN_FACE_CHECKED

This	flag	is	available	in	release	2.5	and	later	only.
Reserved	for	internal	use	(in	recursive	face-traversing	algorithms).
MN_FACE_CHANGED
This	flag	can	be	cleared	on	all	faces	before	an	operation	that	moves	some	of
the	vertices	of	an	MNMesh,	then	set	for	each	face	touching	one	of	the	moved
vertices.	This	tells	the	parent	MNMesh	that	these	faces	may	need	to	have
information	such	as	triangulation	recomputed.	This	flag	is	set	by	the	MNMesh
method	SabinDoo	in	particular.

MN_FACE_CULLED
Indicates	that	the	face	is	culled	(used	during	hit-testing).	Release	4.2
and	above
MN_FACE_WHATEVER
Developers	should	not	use	this	flag	and	should	restrict	themselves	to
MN_USER	and	higher	bits.
MN_USER(1<<16)
Flag	bits	at	or	above	MN_USER	are	reserved	in	all	MNMesh	components	for
the	plug-in	developer,	if	needed.	Since	FlagUser-derived	classes	have	32	flag
bits,	this	allows	for	up	to	16	user-defined	flags.

Methods:

Prototype:
MNFace();

Remarks:
Constructor.	Initializes	the	face’s	arrays	to	NULL.

Prototype:
MNFace(int	d);

Remarks:
Constructor.	Initializes	the	face’s	degree	to	d	and	allocates	space	for	all	the
arrays.

Prototype:
MNFace(const	MNFace	*from);

Remarks:
Constructor.	Copies	flags,	smoothing	groups,	and	material	from	"from",	but
initializes	the	face’s	arrays	to	NULL	and	degree	to	0.

Prototype:
~MNFace();

Remarks:

Frees	all	arrays.

Prototype:
void	Init();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Initialize	the	face.

Prototype:
void	SetDeg	(int	d);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Set	the	number	of	edges	and	vertices	this	face	has.

Parameters:
int	d
Number	of	vertices	and	edges.

Prototype:
void	Clear();

Remarks:
Frees	all	arrays,	setting	them	to	NULL,	and	resets	degree.

Prototype:
int	TriNum();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	triangles	in	this	face.

Prototype:
int	FindTriPoint	(int	edge);

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
Given	the	index	of	a	particular	edge,	this	routine	returns	the	point	(distinct
from	edge	and	(edge+1)%deg)	that	forms	a	triangle	with	the	edge,	given	the
current	scheme	of	diagonals.

Parameters:
int	edge
An	index	into	the	vertex	array	(in	the	range	0	to	deg-1)	that	indicates	the
starting	vertex	of	the	edge.	(In	other	words,	the	edge	falls	between	vertex
vtx[edge]	and	vtx[(edge+1)%deg].)

Return	Value:
The	index	of	the	desired	vertex,	again	in	the	(0,deg-1)	range,	or	edge	if	there's
an	error.

Prototype:
int	FindTriPoint	(int	a,	int	b);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Given	two	verts	that	form	a	diagonal	in	the	polygon,	this	method	finds	the
vertex	between	them	that	connects	by	a	diagonal	or	an	outer	edge	to	both	of
them.	(Here,	"between	them"	means	after	a	and	before	b	in	sequence	around
the	outside	of	the	polygon.	If	we	have	an	octagon	where	a=6	and	b=2,	the
result	would	be	7,	0,	or	1.	To	get	the	other	result,	in	the	3,4,5	range,	call	the
method	with	a=2	and	b=6.)

Parameters:
int	a,	b
Two	vertices,	"internally	indexed"	in	the	0	to	deg-1	range.	This	method	is	only
guaranteed	to	work	if	the	vertices	share	a	diagonal.	(Otherwise,	there	may	be
no	solution.)

Return	Value:
The	index	of	the	desired	vertex,	again	in	the	(0,deg-1)	range,	or	a	if	there's	an
error.

Prototype:

void	GetTriangles	(Tab<int>	&tri);
Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	fills	in	the	table	with	the	full	triangulation	for	the	face,	based	on
the	internal	diagonal	list.	The	table	is	set	to	size	(deg-2)*3.

Parameters:
Tab<int>	&tri
The	table	of	triangles.

Prototype:
void	DiagSort	(int	dnum,	int	*diag);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Note	that	this	function	is	not	part	of	the	class	but	is	available	for	us.
This	sorts	the	diagonals	in	the	following	fashion:	each	diagonal	is	reordered	so
that	its	smaller	index	comes	first,	then	its	larger.	Then	the	list	of	diagonals	is
sorted	so	that	it	increases	by	second	index,	then	decreases	by	first	index.	Such
an	ordered	list	for	a	9-gon	might	be	(1,3),(0,3),	(0,4),(5,7),(4,7),(4,8).	(This
order	is	especially	convenient	for	converting	into	triangles	-	it	makes	for	a
linear-time	conversion.)	DiagSort()	uses	qsort	for	speed.

Parameters:
int	dnum
The	size	of	the	diag	array	-	essentially	double	the	number	of	diagonals.
int	*diag
The	diagonals.

Prototype:
void	SetAlloc(int	d,	int	h=0);

Remarks:
Allocates	enough	memory	in	the	arrays	for	the	face	to	have	degree	d,	but	does
not	actually	set	the	degree.	If	the	arrays	are	already	large	enough	(or	larger),	it
does	not	reallocate	them.	You	generally	don’t	need	to	use	this	method
separately;	MakePoly,	Insert,	and	other	methods	which	may	require	additional

memory	will	call	this	if	needed.

Prototype:
void	MakePoly(int	fdeg,	int	*vv,	bool	*vis=NULL,	bool
*sel=NULL);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Makes	this	face	into	a	polygon	with	the	specified	vertices	and	other
information.	This	routine	also	supplies	a	default	triangulation	for	the	face;
however,	since	this	MNFace-level	routine	cannot	access	the	vertex	positions
contained	in	the	parent	MNMesh,	this	triangulation	may	not	work	for	non-
convex	faces.	If	the	face	may	not	be	convex,	a	call	to
MNMesh::RetriangulateFace	for	this	face	will	correct	the	triangulation.

Parameters:
int	fdeg
The	degree	to	set	this	face	to.
int	*vv
The	list	of	vertices	for	this	face.	There	must	be	at	least	fdeg	of	these.	These
values	should	be	indices	into	the	parent	MNMesh’s	array	of	MNVerts.
bool	*vis=NULL
The	edge	visibility	flags	for	the	edges	of	this	face.	If	this	is	NULL,	it	is
ignored;	otherwise,	there	must	be	at	least	fdeg	of	these.	vis[i]	represents	the
visibility	of	the	edge	going	from	vv[i]	to	vv[(i+1)%fdeg].	See	the	MNMesh
note	on	edge	selection	&	visibility	for	more	information.
bool	*sel=NULL
The	edge	selection	flags	for	the	edges	of	this	face.	If	this	is	NULL,	it	is
ignored;	otherwise,	there	must	be	at	least	fdeg	of	these.	sel[i]	represents	the
selection	bit	of	the	edge	going	from	vv[i]	to	vv[(i+1)%fdeg].	See	the	MNMesh
note	on	edge	selection	&	visibility	for	more	information.

Prototype:
void	Insert(int	pos,	int	num=1);

Remarks:
Inserts	space	for	more	vertices	and	edges	on	this	face.	This	is	used,	for

example,	when	two	faces	are	joined,	to	add	room	for	the	vertices	&	edges	of
one	face	to	the	other.	This	routine	also	renumbers	the	existing	vertices	and
corrects	the	existing	face	triangulation,	although	it	cannot	provide	the
triangulation	for	the	new	vertices.	It	reserves	space	for	the	new	triangles	at	the
end	of	the	triangle	array.	If	you	do	not	want	to	compute	the	triangulation	for
the	new	vertices	yourself,	you	may	use	the	MNMesh	RetriangulateFace
method	after	filling	in	the	new	vertices.

Parameters:
int	pos
The	location	within	the	face	where	the	new	vertices	and	edges	should	be
added.
int	num
The	number	of	new	vertices	and	edges.

Prototype:
void	Delete(int	pos,	int	num=1,	int	edir=1,	bool	fixtri=TRUE);

Remarks:
Deletes	vertices	&	edges	from	this	face.	This	routine	also	corrects	the	face
triangulation,	removing	those	triangles	that	include	the	deleted	edges	and	re-
indexing	the	rest.	However,	delete	may	cause	the	triangulation	to	become
invalid,	by	causing	one	or	more	of	the	corrected	triangles	to	have	a	flipped
normal.

Parameters:
int	pos
The	position	of	the	first	vertex	to	be	deleted.
int	num=1
The	number	of	vertices	&	edges	to	delete.
int	edir=1
There	are	two	choices	for	the	edges	to	be	deleted:	we	can	delete	the	edges
going	from	pos	to	pos+1,	pos+1	to	pos+2,	…	pos+num-1	to	pos+num,	or	we
can	delete	pos-1	to	pos,	pos	to	pos+1,	…	pos+num-2	to	pos+num-1.
(pos+num-1	is	the	last	vertex	deleted.)	That	is	to	say,	we	can	delete	the	edges
"before"	the	vertices	we’re	deleting,	or	we	can	delete	the	edges	"after"	them.	If
edir	is	positive,	we	delete	the	edges	after	the	vertices.	If	it’s	negative,	we

delete	the	edges	before.	Keep	in	mind	that	this	also	affects	edge	visibility	and
selection	information	on	this	face.
bool	fixtri=TRUE
This	parameter	is	available	in	release	3.0	and	later	only.
This	argument	indicates	how	far	Delete	should	go	in	fixing	the	triangulation.
Delete	will	always	correct	the	values	of	the	tri	array	to	correspond	to	the
reduced-degree	face.	If	fixtri	is	true,	it	will	also	delete	those	triangles	that	have
collapsed	because	they	had	two	vertices	in	the	deleted	region.	If	not,	it	will
leave	these	triangles	with	overlapping	vertices,	as	in	(0,0,2).

Return	Value:
Delete	returns	TRUE	if	fixtri	is	FALSE.	If	fixtri	is	TRUE,	Delete	will	return
TRUE	if	it	successfully	corrected	the	triangulation,	or	FALSE	if	there	was	a
problem.	If	FALSE	is	returned,	the	triangulation	will	need	to	be	revised	with	a
call	to	RetriangulateFace.

Prototype:
RotateStart(int	newstart);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Re-indexes	the	vertices	and	edges	so	that	the	vertex	in	position	newstart
becomes	the	new	first	vertex.	Triangulation	is	also	corrected.	Mapping
coordinates	and	vertex	colors	are	corrected	automatically.

Prototype:
void	Flip();

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Reverses	order	of	verts,	effectively	inverting	the	face.	vtx[0]	remains
unchanged,	but	vertex	deg-1	becomes	vertex	1,	etc.	Note	that	this	operation
wreaks	havoc	on	nearby	edges	and	should	be	used	with	caution.

Prototype:
int	VertIndex(int	vv,	int	ee=-1);

Remarks:
Returns	the	position	of	vertex	vv	in	this	face’s	list	of	vertices.	For	a	given	face

fc,	if	fc.vtx[i]	=	vv,	fc.VertIndex	(vv)	=	i.
Sometimes	a	single	vertex	from	the	MNMesh’s	MNVert	list	can	be	referenced
more	than	once	by	a	single	face.	The	picture	below	illustrates	this	problem.
The	small	triangle	is	actually	outside	of	the	face,	and	the	vertex	at	the	top	of	it
is	referenced	twice	by	the	face.	Thus	an	additional	edge	parameter	can	be
accepted.	If	ee	is	-1,	it	is	ignored,	and	the	first	instance	of	vv	is	used.	If	ee>-1,
this	method	looks	for	the	instance	of	vv	that	starts	out	edge	ee.	Thus	if
fc.vtx[i]	=	vv	and	fc.vtx[j]	=	vv,	but	fc.edg[i]	!=	ee	and	fc.edg[j]	=	ee,	j	is
returned.
IMPORTANT:	If	no	vertex	is	found	matching	the	given	parameters,	this
method	generates	an	assertion	failure.	Please	be	sure	that	vertex	vv	is	actually
on	the	face	(and	that	edge	ee	follows	it	if	ee	is	not	-1)	before	using	this
method.

Prototype:
int	EdgeIndex(int	ee,	int	vv=-1);

Remarks:
Returns	the	position	of	edge	ee	in	this	face’s	list	of	edges.	For	a	given	face	fc,
if	fc.edg[i]	=	ee,	fc.EdgeIndex	(ee)	=	i.
Sometimes	a	single	edge	from	the	MNMesh’s	MNEdge	list	can	be	referenced
more	than	once	by	a	single	face.	The	small	rectangle	is	actually	outside	of	the
face,	and	the	edge	above	it	is	referenced	twice	by	the	face,	once	in	each
direction.	Thus	an	additional	vertex	parameter	can	be	accepted.	If	vv	is	-1,	it	is
ignored,	and	the	first	instance	of	ee	is	used.	If	vv>-1,	this	method	looks	for	the
instance	of	ee	that	starts	out	with	vertex	vv.	Thus	if	fc.edg[i]	=	ee	and	fc.edg[j]
=	ee,	but	fc.vtx[i]	!=	vv	and	fc.vtx[j]	=	vv,	j	is	returned.
IMPORTANT:	If	no	edge	is	found	matching	the	given	parameters,	this	method
generates	an	assertion	failure.	Please	be	sure	that	edge	ee	is	actually	on	the
face	(and	that	vertex	vv	follows	it	if	vv	is	not	-1)	before	using	this	method.

Prototype:
ReplaceVert(int	ov,	int	nv,	int	ee=-1);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Replaces	vertex	ov	with	vertex	nv	in	the	list	of	vertices.	It	is	possible	for	a

face	to	reference	the	same	vertex	more	than	once,	however	the	combination	of
a	vertex	followed	by	a	specified	edge	is	unique.	Therefore	if	ee<0,	all
instances	of	ov	are	replaced	by	nv,	but	if	not,	only	the	instance	of	ov	followed
by	ee	is	replaced.

Prototype:
ReplaceEdge(int	oe,	int	ne,	int	vv=-1);

Remarks:
Replaces	edge	oe	with	edge	ne	in	the	list	of	edges.	It	is	possible	for	a	face	to
reference	the	same	edge	twice,	however	the	combination	of	an	edge	preceded
by	a	specified	vertex	is	unique.	Therefore	if	vv<0,	all	instances	of	oe	are
replaced	by	ne,	but	if	not,	only	the	instance	of	oe	preceded	by	vv	is	replaced.

Prototype:
void	MNDebugPrint(bool	triprint=FALSE,	bool	hinfo=TRUE);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Uses	DebugPrint	to	print	out	face	information	to	the	Debug	Results	window	in
DevStudio.	The	information	consists	of	the	vertices	and	edges	used	by	this
face.	It	is	generally	a	good	idea	to	put	in	a	DebugPrint	immediately	before	this
with	the	index	of	the	edge,	so	you	know	which	one	is	being	printed	out:
DebugPrint("Face	%d:	",	fid);
F(fid)->MNDebugPrint();

Parameters:
bool	triprint=FALSE
Print	out	triangulation	information.
bool	hinfo=TRUE
Print	out	hidden	vertex	information.

Prototype:
MNFace	&	operator=(const	MNFace	&	from);

Remarks:
Assignment	operator.	Copies	all	information	from	"from",	including
triangulation,	hidden	vertices,	flags,	smoothing	&	material	info,	and	"track".

Prototype:
int	&operator[](int	i);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Access	operator.

Default	Implementation:
{	return	vtx[i];	}

Prototype:
const	int	&operator[](int	i)	const;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Access	operator.

Default	Implementation:
{	return	vtx[i];	}

Class	MNMap
See	Also:	Class	FlagUser,	Class	MNMapFace,	Class	Point3,	Class	Matrix3.
class	MNMap	:	public	FlagUser

Description:
This	class	is	available	in	release	3.0	and	later	only.	It	replaces	the	old	tv	and	cv
arrays	in	MNMesh,	and	the	old	tvrt	and	cvrt	arrays	in	MNFace.
Each	MNMap	holds	the	mapping	information	for	a	particular	map	channel	of	the
MNMesh.	As	with	regular	Mesh	maps,	the	MNMap	holds	an	array	of	map
vertices	and	an	array	of	map	faces	that	define	how	those	mapping	vertices	are
applied	to	the	MNMesh.	The	number	(numf)	of	mapping	faces	should	always
match	the	number	of	faces	in	the	parent	MNMesh,	and	each	MNMapFace	gives
the	map	vertices	for	the	related	MNFace.	The	number	of	map	vertices	may	be
different	from	the	number	of	MNVerts	in	the	parent	MNMesh.

Friend	Classes:
friend	class	MNMesh;

Data	Members:
public:
MNMapFace	*f;
The	array	of	map	faces.
UVVert	*v;
The	array	of	UVVerts.	Note:	typedef	Point3	UVVert;
int	numv
The	number	of	verticies	in	the	v	array.
int	numf;
The	number	of	map	faces	in	the	f	array.

Methods:
public:

Prototype:
MNMap();

Remarks:

Constructor.	This	calls	Init().
	

Prototype:
~MNMap();

Remarks:
Destructor.	This	calls	ClearAndFree().

Prototype:
void	Init();

Remarks:
Initializes	the	map	–	sets	numv	and	numf	to	0,	and	sets	the	pointers	to	NULL.
Also	initializes	private	allocation	related	data	members.

Prototype:
void	VAlloc(int	num,	bool	keep=TRUE);

Remarks:
Allocates	the	specified	number	of	UVVerts	in	the	v	array.	(If	you’re	creating	a
number	of	map	verts,	but	you’re	not	sure	exactly	how	many,	it’s	good	to	pre-
allocate	a	large	number	using	this	method.)	This	method	doesn’t	affect
MNMap::numv,	only	the	allocation	amount.

Parameters:
int	num
The	number	of	UVVerts	to	allocate.
bool	keep=TRUE
If	TRUE	any	previous	verts	are	kept;	otherwise	they	are	discarded.

Prototype:
void	FAlloc(int	num,	bool	keep=TRUE);

Remarks:
Allocates	the	specified	number	of	map	faces	in	the	f	array.	This	method
doesn’t	affect	MNMap::numf,	just	the	number	allocated.

Parameters:
int	num
The	number	of	map	verts	to	allocate.

bool	keep=TRUE
If	TRUE	any	previous	map	faces	are	kept;	otherwise	they	are	discarded.

Prototype:
int	VNum()	const;

Remarks:
Returns	the	current	number	of	UVVerts.

Prototype:
UVVert	V(int	i)	const;

Remarks:
Returns	the	'i-th'	UVVert.

Parameters:
int	i
The	zero	based	index	into	the	v	array	of	the	UVVert	to	return.

Prototype:
int	FNum()	const;

Remarks:
Returns	the	number	of	map	faces.
	

Prototype:
MNMapFace	*F(int	i)	const;

Remarks:
Returns	a	pointer	to	the	'i-th'	map	face.

Parameters:
int	i
The	zero	based	index	of	the	map	face	to	return.

Prototype:
int	NewTri(int	a,	int	b,	int	c);

Remarks:
Like	MNMesh::NewTri,	this	creates	a	new	mapping	face,	of	degree	3,	with	the
specified	map	vertices.

Parameters:
int	a
int	b
int	c
The	mapping	vertices	for	the	new	triangle.

Prototype:
int	NewTri(int	*vv);

Remarks:
Like	MNMesh::NewTri,	this	creates	a	new	mapping	face,	of	degree	3,	with	the
specified	map	vertices.

Parameters:
int	*vv
The	mapping	vertices	for	the	new	triangle.

Prototype:
int	NewQuad(int	a,	int	b,	int	c,	int	d);

Remarks:
Like	MNMesh::NewQuad,	this	creates	a	quad,	with	the	specified	map	vertices.

Parameters:
int	a
int	b
int	c
int	d
The	mapping	vertices	for	this	quad.	(The	two	faces	are	formed	with	mapping
verts	(a,b,c)	and	(c,d,a).

Prototype:
int	NewQuad(int	*vv);

Remarks:
Like	MNMesh::NewQuad,	this	creates	a	quad,	with	the	specified	map	vertices.

Parameters:
int	*vv
The	mapping	vertices	for	this	quad.	(The	two	faces	are	formed	with	mapping

verts	(vv[0],vv[1],vv[2])	and	(vv[2],vv[3],vv[0]).

Prototype:
int	NewFace(int	degg=0,	int	*vv=NULL);

Remarks:
Like	MNMesh::NewFace,	this	creates	a	new	mapping	face	with	the	specified
degree	and	map	vertices.

Parameters:
int	degg=0
The	degree	of	the	new	face.	(Note	that	this	should	match	the	degree	of	the
associated	MNFace.)
int	*vv=NULL
The	new	mapping	vertices,	in	order	around	the	perimeter.

Prototype:
void	setNumFaces(int	nfnum);

Remarks:
Sets	the	number	of	map	faces	keeping	any	previously	allocated	faces.

Parameters:
int	nfnum
The	number	of	faces	to	set.

Prototype:
int	NewVert(UVVert	p,	int	uoff=0,	int	voff=0);

Remarks:
Allocates	storage	for	a	new	specified	UVVert.	An	optional	offset	to	the
UVVert	may	be	supplied.	(The	offset	is	useful	when	you	want	to	create	a	new
UVVert	which	is	on	the	other	side	of	a	seam	in	U	or	V	from	some	existing
UVVert	p.)

Parameters:
UVVert	p
The	UVVert	to	store.
int	uoff=0
If	non-zero	this	is	an	offset	applied	in	U	when	p	is	stored.

int	voff=0
If	non-zero	this	is	an	offset	appled	in	V	when	p	is	stored.

Prototype:
void	setNumVerts(int	nvnum);

Remarks:
Sets	the	number	of	UVVerts	keeping	any	previously	allocated	UVVerts.

Parameters:
int	nvnum
The	number	of	UVVerts	to	set.

Prototype:
void	CollapseDeadVerts(MNFace	*faces);

Remarks:
Eliminates	the	mapping	vertices	not	used	by	any	active	mapping	faces	in	this
map.	(Analogous	to	the	Mesh::DeleteIsoMapVerts	method.)

Parameters:
MNFace	*faces
This	should	point	to	the	MNFace	array	of	the	parent	MNMesh.	This	allows	the
method	to	find	out	if	any	faces	should	be	considered	MN_DEAD,	so	that	it
won’t	mark	such	faces’	map	verts	as	used.	(The	MN_DEAD	flag	is	stored	in
the	MNFace,	but	not	in	the	related	MNMapFaces.)

Prototype:
void	CollapseDeadFaces(MNFace	*faces);

Remarks:
Eliminates	the	MN_DEAD	map	faces	from	the	array.	This	should	be	called
immediately	before	calling	CollapseDeadFaces	on	the	parent	MNMesh,	to
keep	the	face	arrays	in	sync.

Parameters:
MNFace	*faces
The	parent	MNMesh’s	array	of	MNFaces.	This	array	is	used	to	find	out	which
faces	are	MN_DEAD.

Prototype:

void	Clear();
Remarks:
Sets	the	number	of	UVVerts	and	map	faces	to	0.

Prototype:
void	ClearAndFree();

Remarks:
Sets	the	number	of	UVVerts	and	map	faces	to	0	and	deallocates	the	memory.

Prototype:
void	Transform(Matrix3	&	xfm);

Remarks:
Transforms	each	UVVert	with	the	specified	matrix.

Parameters:
Matrix3	&xfm
The	matrix	to	transform	the	UVVerts	by.

Prototype:
MNMap	&	operator=(const	MNMap	&from);

Remarks:
Assignment	operator.

Prototype:
MNMap	&	operator+=(const	MNMap	&from);

Remarks:
Appends	the	specified	MNMap	object	onto	this	MNMap.

Parameters:
const	MNMap	&from
The	source	MNMap.

Prototype:
MNMap	&	operator+=(const	MNMesh	&from);

Remarks:
Appends	a	default	planar	map	corresponding	to	the	mesh	passed	onto	this
map.	This	is	typically	used	when	joining	two	MNMeshes	together	when	one

MNMesh	has	a	map	channel	active	but	the	other	doesn’t.	Rather	than
eliminate	the	map	channel,	we	just	use	the	object	coordinates	of	the	other
mesh	to	generate	a	planar	map	for	its	faces.

Parameters:
const	MNMesh	&from
The	source	MNMesh.

Prototype:
void	ShallowCopy(const	MNMap	&	from);

Remarks:
Copies	pointers.	To	avoid	memory	errors,	this	method	should	only	be	used	by
the	pipeline.

Parameters:
const	MNMap	&	from
The	map	to	copy	pointers	from.

Prototype:
void	NewAndCopy();

Remarks:
Creates	new	pointers	and	copies	over	all	the	data.	To	avoid	memory	errors,
this	method	should	only	be	used	by	the	pipeline.

Prototype:
void	MNDebugPrint(MNFace	*faces);

Remarks:
Uses	DebugPrint	to	print	out	information	about	this	MNMap	to	the	Debug
Results	window	in	DevStudio.	This	includes	all	map	verts	and	faces,	one	per
line.

Parameters:
MNFace	*faces
This	should	be	the	MNFace	array	of	the	parent	MNMesh.	It’s	used	to	prevent
the	DebugPrinting	of	MN_DEAD	faces.

Prototype:
bool	CheckAllData(int	mp,	int	nf,	MNFace	*faces);

Remarks:
Checks	the	MNMap	for	internal	errors,	such	as	a	MNMapFace	referring	to	an
out	of	range	map	vertex.	If	an	error	is	found,	an	error	message	is
DebugPrinted,	and	a	the	method	returns	FALSE.	This	is	strictly	a	debugging
tool	of	no	use	in	releases	–	a	good	way	to	use	it	is	to	say	DbgAssert
(CheckAllData()),	so	it	won’t	be	called	when	not	in	a	Debug	build,	and	so	it’ll
throw	up	an	assertion	failure	if	something’s	wrong.
Error	messages	generated:
Map	%d:	Wrong	number	of	faces.	Should	be	%d,	is	%d.	(Sent	if	nf	!=
MNMap::numf)
Map	%d,	Face	%d	has	wrong	degree.	Should	be	%d,	is	%d.	(Sent	if	f[i].deg	!=
faces[i].deg)
Map	%d,	Face	%d	has	wrong	hdegree.	Should	be	%d,	is	%d.	(Sent	if	f[i].hdeg
!=	faces[i].hdeg)
Map	%d,	Face	%d	has	an	out-of-range	map	vertex:	%d.
Map	%d,	Face	%d	has	an	out-of-range	hidden	map	vertex:	%d

Parameters:
int	mp
The	map	channel	this	MNMap	represents	–	used	to	give	more	helpful	debug
information.
int	nf
The	number	of	faces	of	the	parent	MNMesh.
MNFace	*faces
The	parent	MNMesh’s	face	array.	This	is	used	to	prevent	checking	of
MN_DEAD	faces,	which	may	safely	be	invalid.

Prototype:
IOResult	Save(ISave	*isave,	MNFace	*faces=NULL);

Remarks:
Used	internally	to	save	this	MNMap	to	the	3ds	max	file.

Prototype:
IOResult	Load(ILoad	*iload,	MNFace	*faces=NULL);

Remarks:
Used	internally	to	load	this	MNMap	from	the	3ds	max	file.

Class	RadiosityEffect
See	Also:	:	Class	ObjLightDesc,	Class	RadiosityInterface,	Class
IRadiosityEffectExtension,	Class	NodeDisplayCallback,	Class
IRadiosityPreferences
class	RadiosityEffect	:	public	SpecialFX

Description:
This	class	is	only	available	in	release	5	or	later.
The	class	provides	the	interfaces	for	creating	Advanced	Lighting	plug-ins	in	3ds
max.	RadiosityEffect	plug-ins	are	controlled	through	the	Advanced	Lighting
dialog	from	the	render	menu.
A	RadiosityEffect	behaves	as	a	light	in	the	scene.	An	implementation	of
RadiosityEffect	must	also	provide	an	implementation	of	ObjLightDesc,	to	be
returned	from	RadiosityEffect::CreateLightDesc().	This	ObjLightDesc	is	then
used	by	the	renderer	to	apply	the	radiosity	light	during	a	render.
The	architecture	is	designed	to	support	scene	based	lighting	solvers	(which	use	a
precalculated	solution),	as	well	as	image	based	solvers	(which	calculate	their
solution	at	render	time).	The	method	RunProcess()	and	its	relatives,
StopProcess(),	AbortProcess(),	and	WaitForCompletion()	are	called	by	the
system	to	request	processing	of	a	scene	based	solution.	Image	based	solvers	only
need	stub	implementations	of	these	methods.
See	also	Class	NodeDisplayCallback.	A	RadiosityEffect	can	use	a
NodeDisplayCallback	to	control	the	viewport	display	of	scene	geometry.	In
particular,	it	is	possible	for	a	lighting	solution	to	be	displayed	interactively	in	the
viewport	if	the	NodeDisplayCallback	provides	geometry	with	appropriate	vertex
illumination.
	
A	RadiosityEffect	may	want	to	reference	objects	in	the	scene	to	detect	events
which	invalidate	its	lighting	solution.	A	problem	arises	that	the	RadiosityEffect
can	become	inundated	with	reference	messages,	so	to	address	this	problem	the
RadiosityEffect	should	ignore	any	message	where	the
PART_EXCLUDE_RADIOSITY	flag	is	set	in	the	PartID	of	the	message.	Any
message	where	((partID|PART_EXCLUDE_RADIOSITY)!=0)	is	an	event	that
the	system	deems	should	not	invalidate	the	radiosity,	for	example,	when	texture
display	in	viewport	is	turned	on	or	off.

See	also	IsInterestedInChannels()	in	Class	IRadiosityEffectExtension.
	
All	methods	of	this	class	are	implemented	by	the	plug-in.
	

Methods:

Prototype:
virtual	void	SetActive(bool	active,	TimeValue	t)
	

Remarks:
Enables	or	disables	the	radiosity	effect.	Corresponds	to	the	Active	checkbox	in
the	Advanced	Lighting	dialog.	Although	a	TimeValue	parameter	is	passed	to
this	method,	the	active	state	of	the	plug-in	is	not	animatable.	Plug-ins	should
call	the	default	implementation	of	SetActive(),	optionally	adding	their	own
code.
	

Parameters:
bool	active
Specifies	whether	the	plug-in	is	active	or	inactive
TimeValue	t
Specifies	the	current	scene	time	when	the	method	is	called.
	
	

Prototype:
virtual	IOResult	Merge(ILoad*	iload,)
	

Remarks:
Reserved	for	future	versions.	Not	currently	used
	

Default	Implementation:
{	return	IO_OK;	}
	
	

Prototype:
virtual	RadiosityParamDlg	*CreateParamDlg(IRendParams	*ip)
	

Remarks:
This	method	creates	and	returns	a	new	instance	of	RadiosityParamDlg	to
manager	the	user	interface.	This	displays	one	or	more	rollouts	in	the	Advanced
Lighting	dialog.	A	typical	implementation	would	call
ClassDesc2::CreateParamDialogs()	to	instantiate	the	RadiosityParamDlg.
	

Parameters:
IRendParams	*ip
This	is	the	interface	given	to	the	plug-in	so	it	may	display	its	parameters.
	

Return	Value:
The	instance	of	RadiosityParamDlg	to	manager	the	plug-in’s	UI
	

Default	Implementation:
{	return	NULL;	}
	
	

Prototype:
virtual	BOOL	SetDlgThing(RadiosityParamDlg	*ip)
	

Remarks:
Implement	this	if	you	are	using	the	ParamMap2	AUTO_UI	system	and	the
RadiosityEffect	has	secondary	dialogs	that	don’t	have	the	effect	as	their
‘thing’.	Called	once	for	each	secondary	dialog	for	you	to	install	the	correct
thing.
Note:	Developers	needing	more	information	on	this	method	can	see	the
remarks	for	MtlBase::CreateParamDlg()	which	describes	a	similar	example	of
this	method	in	use	(in	that	case	it’s	for	use	in	a	texture	map	plug-in).
	

Parameters:

RadiosityParamDlg	*ip
Points	to	the	ParamDlg.
	

Return	Value:
Return	TRUE	if	you	process	the	dialog;	otherwise	FALSE
	

Default	Implementation:
{	return	FALSE;	}
	
	

Prototype:
virtual	bool	UseLight(INode*	node)
	

Remarks:
Returns	whether	the	given	light	should	render	it’s	illumination	in	the
production	render.	If	the	return	value	is	true,	the	light	is	disabled	while
rendering.
This	is	used	to	allow	the	radiosity	plug-in	to	override	lights	in	the	scene	with
light	from	it’s	own	solution.
	

Parameters:
INode*	node
The	INode	of	the	light.
	

Return	Value:
Return	true	if	the	light	should	be	enabled	while	rendering;	or	false	if	it	should
be	disabled
	

Default	Implementation:
{	return	true;	}
	
	

Prototype:
virtual	int	NumLightDesc()	const	=	0
	

Return	Value:
The	number	of	ObjLightDesc	objects	the	RadisoityEffect	will	return	from
CreateLightDesc()
	
	

Prototype:
virtual	void	CreateLightDesc(ObjLightDesc**	buffer)	=	0
	

Remarks:
Creates	light	objects	that	the	renderer	can	use	to	get	the	RadiosityEffect’s
contribution.	CreateLightDesc()	creates	a	number	of	ObjLightDesc	objects
indicated	by	NumLightDesc(),	and	stores	their	addresses	in	the	buffer.	Caller
is	responsible	for	ensuring	that	the	buffer	is	large	enough.
Note:	the	caller	will	delete	the	ObjLightDesc	objects	when	the	render	is
completed,	so	this	method	should	dynamically	allocate	the	ObjLightDesc
instances,	rather	than	providing	static	instances.
	

Parameters:
ObjLightDesc**	buffer
The	buffer	into	which	the	ObjLightDesc	pointers	should	be	stored.
	
	

Prototype:
virtual	void	RunProcess(TimeValue	t,	RenderGlobalContext*	rgc,
bool	interactiveRender)	=	0
	

Remarks:
Called	by	the	system	to	start	the	radiosity	processing.	This	should	start	the
process	from	the	beginning,	or	where	it	stopped	previously,	if	applicable.	The
method	should	launch	a	separate	thread	and	return	immediately;	the	system
will	call	WaitForCompletion()	to	wait	for	the	thread	to	complete.

This	is	specific	to	solvers	which	use	a	pre-calculated	solution.	Other	solvers
need	only	a	stub	implementation.
	

Parameters:
TimeValue	t
Specifies	the	scene	time	when	the	method	is	called.
RenderGlobalContext*	rgc
This	can	be	used	to	retrieve	information	about	the	global	rendering
environment.
bool	interactiveRender
Specifies	whether	the	lighting	solution	is	being	calculated	for	interactive
rendering.	Note	that	the	default	renderer	does	not	support	interactive	rendering
with	Advanced	Lighting,	but	other	plug-in	renderers	might	potentially	do	so,
in	which	case	the	RadiosityEffect	should	attempt	to	generate	a	fast,	lower
quality	solution	for	interactive	display.
	
	

Prototype:
virtual	void	StopProcess(bool	allowAbort	=	true)	=	0
	

Remarks:
Stop	the	lighting	calculation.	If	possible,	the	RadiosityEffect	should	attempt	to
reach	an	intermediate	solution,	so	that	calculation	can	be	continued	later.
However,	this	may	take	awhile,	and	If	allowAbort	is	true,	the	RadiosityEffect
is	expected	to	prompt	the	user	with	a	dialog,	asking	if	they	wish	to	abort.
	

Parameters:
bool	allowAbort	node
If	true,	the	RadisoityEffect	is	expected	to	prompt	the	user	with	a	dialog	so	they
may	abort	the	process	of	stopping	the	calculation	and	saving	an	intermediate
solution
	
	

Prototype:
virtual	void	AbortProcess()	=	0
	

Remarks:
Abort	the	lighting	calculation.	The	RadiosityEffect	should	to	abort
immediately,	without	saving	an	intermediate	solution.
	
	

Prototype:
virtual	void	WaitForCompletion(RendContext*	rc	=	NULL,
DWORD	timeout	=	INFINITE)	=	0
	

Remarks:
This	is	called	by	the	system	when	waiting	for	the	lighting	calculation	to	finish.
This	method	should	not	return	to	the	caller	until	the	calculation	is	complete,	or
when	the	timeout	(in	milliseconds)	expires.	The	RendContext	can	be	used	to
display	the	progress	of	the	calculation	to	the	user,	and	to	check	if	the	cancel
button	is	pressed.
	

Parameters:
RendContext*	rc
Use	this	to	display	a	progress	bar	for	the	user,	or	to	detect	when	the	user	hits
the	cancel	button.
DWORD	timeout
An	amount	of	time	(measured	in	milliseconds)	that	the	system	is	willing	to
wait.	The	method	should	measure	its	own	running	time	and	return	to	the	caller
when	the	timeout	expires.
	
	

Prototype:
virtual	bool	NeedsCamVerts(TimeValue	t,	RenderGlobalContext*
rgc,	bool	interactiveRender,	bool	saveMem)
	

Remarks:
Indicates	whether	the	RadiosityEffect	plug-in	wants	the	renderer	to	build
camera-space	vertices.
	

Parameters:
TimeValue*	t
Specifies	the	current	scene	time	when	the	method	is	called.
RenderGlobalContext*	rgc
This	can	be	used	to	retrieve	information	about	the	global	rendering
environment.
bool	interactiveRender
Specifies	whether	the	lighting	solution	is	being	calculated	for	interactive
rendering.	Note	that	the	default	renderer	does	not	support	interactive	rendering
with	Advanced	Lighting,	but	other	plug-in	renderers	might	potentially	do	so,
in	which	case	the	RadiosityEffect	should	attempt	to	generate	a	fast,	lower
quality	solution	for	interactive	display.
bool	saveMem
True	if	the	user	has	selected	“Conserve	Memory”	in	the	Render	Dialog,	under
the	“MAX	Default	Scanline	A-Buffer”	rollout,	or	if	the	render	is	occurring	in
the	material	editor.
	

Return	Value:
True	if	the	RadiosityEffect	wants	the	renderer	to	calculate	camera-space
vertices,	false	otherwise.
	

Default	Implementation:
{	return	false;	}

	

Class	ISpecularCompositeShader
class	ISpecularCompositeShader	:	public	BaseInterface

	

Description:
This	class	is	only	available	in	release	5	or	later.
	
This	class	is	only	used	to	communicate	some	information	between	the	MAX
Standard	Material	and	the	Shaders	for	the	MAX	Standard	Material.	The
information	that	the	Shaders	require	that	wasn't	supplied	previous	is	the
RenderGlobalContext.	This	would	be	used	by	3rd	parties	who	want	to	write
shaders	for	the	MAX	standard	material.	This	is	only	required	if	the	shader
performs	operations	that	are	not	valid	for	arbitrary	light	values.	For	example:
Using	the	default	values,	the	Physical	Sun	has	light	multiplier	values	that	are
around	60.
	
Several	standard	MAX	shaders,	like	the	Aniso	and	ONB	shaders,	composite
specular	highlights	over	the	diffuse	light,	and	the	calculation	looks	something
like:
	
color	=	diffuse	*	(1	-	specular)	+	specular;
	
This	works	fine	as	long	as	specular	is	between	0	and	1.	If	specular	goes	above	1,
you	get	all	kinds	of	unusual	artifacts.	This	calculation	is	done	this	way	to	prevent
color	clipping	because	of	bright	specular	highlights.	With	lighting	values	at	60,
the	specular	is	frequently	greater	than	1.With	an	exposure	control,	the	exposure
control	manages	the	color	clipping	and	we	can	simply	add	the	diffuse	and
specular	components.
	
This	interface	gives	the	shader	a	chance	to	investigate	the	render	parameters	and
decide	how	the	lighting	is	to	be	combined.
	
This	is	usually	done	by	using	multiple	inheritances	and	deriving	the	Shader

Implementation	from	Shader	and	ISpecularCompositeShader.
	
The	Shader	needs	to	override	GetInterface(Interface_ID	id)	and	return	the
address	of	the	ISpecularCompositShader	interface	and	GetRequirements	also
needs	to	be	overriden	to	return	MTLREQ_PREPRO	as	one	of	the	shader
requirements.
	
Then	the	shader	needs	to	implement	ChooseSpecularMethod.	The	typical
implementation	is:
	
void	CombineComponentsCompShader::ChooseSpecularMethod(TimeValue	t,
RenderGlobalContext*	rgc)
{
useComposite	=	true;
if	(rgc	==	NULL)	{
ToneOperatorInterface*	tint	=	static_cast<ToneOperatorInterface*>
(
GetCOREInterface(TONE_OPERATOR_INTERFACE));
if	(tint	!=	NULL)	{
ToneOperator*	top	=	tint->GetToneOperator();
if	(top	!=	NULL	&&	top->Active(t))
useComposite	=	false;
}
}	else	{
ToneOperator*	top	=	rgc->pToneOp;
if	(top	!=	NULL	&&	top->Active(t))
useComposite	=	false;
}
}
	

Methods:

	

Prototype
virtual	void	ChooseSpecularMethod(TimeValue	t,
RenderGlobalContext*	rgc)	=	0
Remarks:
To	be	implemented	Material	Shaders.	Provides	a	selection	mechanism	for	the
specular	methods	provided	by	various	tone	operators	either	provided	by	the
System	or	by	the	implementing	Shader.

	
Parameters:

TimeValue	t
Present	scene	time	value.

RenderGlobalContext	*rgc
Pointer	to	a	RenderGlobalContext	that	encapsulates	the	shared	data	between	a
Standard	Material	and	the	implementing	Shader.
	

Return	Value:
None

Class	IEmissionColor
class	IEmissionColor	:	public	BaseInterface
	

Description:
This	class	is	only	available	in	release	5	or	later.
Function-published	class:	Material	emission	color,	for	self-illuminates	meshes	in
viewport
	

Methods:

Prototype

virtual	Interface_IDGetID()	{	return
EMISSION_COLOR_INTERFACE_ID;	}
Remarks:
Returns	the	Function	Published	interface	ID	for	this	interface.
It	is	#define	EMISSION_COLOR_INTERFACE_ID
Interface_ID(0x4f803aa8,	0x71611798)

Prototype

virtual	LifetimeType	LifetimeControl()	{	return	noRelease;	}
Remarks:
	

Prototype

virtual	void	SetColor(Point3	color)=0;
Remarks:
Sets	the	emission	color	as	Point3.
	

K	Prototype

virtual	Point3	GetColor()=0;
Remarks:
Returns	the	emission	color	as	Point3.

K	Prototype

virtual	void	SetAlpha(float	alpha)=0;
Remarks:
Sets	the	alpha	color	value	for	the	emission	in	the	range	of	0.f	to	1.f.

K	Prototype

virtual	float	GetAlpha()=0;
Remarks:
Gets	the	alpha	color	value	for	the	emission	in	the	range	of	0.f	to	1.f.

	

Class	INodeGIProperties
class	INodeGIProperties	:	public	FPMixinInterface
	

Description:
This	class	is	only	available	in	release	5	or	later.
	
This	class	defines	an	interface	for	accessing	a	node's	global	illumination
properties.
	
An	instance	of	this	interface	can	be	retrieved	using	the	following	line	of	code
(assuming	'node'	is	of	type	INode*):
	
static_cast<INodeGIProperties*>(node-
>GetInterface(NODEGIPROPERTIES_INTERFACE))
	
Geometric	and	object	objects	have	different	properties.	Accessing/setting
geometric	properties	of	non-geometric	objects	is	safe,	but	will	have	no	effect	in
the	global	illumination	solution.
	
Here	is	a	description	of	the	global	illumination	properties:
	
GENERAL	PROPERTIES	(all	types	of	objects)
	

Excluded:	Excluded	objects	should	be	ignored	by	the	radiosity	engine.
The	should	act	as	if	these	objects	do	not	exist.
ByLayer:	Specifies	whether	the	GI	properties	of	this	node's	layer	should
be	used	instead	of	the	local	settings.

	
GEOMETRIC	OBJECTS	(affects	only	geometric	objects):

	

Occluder:	Occluding	objects	will	block	rays	of	light	that	hit	their	surface.
Non-occluding	objects	will	not	block	those	rays,	but	will	still	receive
illumination	if	the	Receiver	property	is	set.
Receiver:	Receiver	objects	will	receive	and	store	illumination	from	rays
of	light	that	hit	their	surface.	Non-receiver	objects	will	not	store
illumination.
Diffuse:	Diffuse	surfaces	will	reflect	and	trasmit	light	based	on	their
diffuse	color	and	transparency	value.
Specular:	Specular	surfaces	will	generate	specular	reflections	and
transparency.	ex.:	glass	is	specular	transparent	and	a	mirror	is	specular
reflective.
UseGlobalMeshSettings:	When	subdividing	the	geometry	for	a	more
accurate	GI	solution,	this	flag	specifies	whether	some	'global'	settings,	or
the	node's	local	ettings	should	be	used.
MeshingEnabled:	When	using	local	settings,	this	specifies	whether
geometry	subdivision	should	occur	on	this	node.
MeshSize:	The	maximum	size,	in	MAX	universe	units,	that	a	face	should
have	after	being	subdivided.
NbRefineSteps:	This	is	the	saved	number	of	refining	steps	to	be
performed	on	this	node	by	the	global	illumination	engine.
ExcludedFromRegather:	Set	to	'true'	to	excluded	an	object	from	the
'regathering'	process.
RayMult:	Specifies	a	multiplier	that	will	increase	or	decrease	the	number
of	rays	cast	for	this	object	when	regathering.

	
LIGHT	OBJECTS	(affects	only	light	sources):
	

StoreIllumToMesh:	Specifies	whether	the	light	emitted	from	this	object
should	be	stored	in	the	GI	solution's	mesh,	and	not	be	re-cast	at	render-
time.

K	Prototype

virtual	void	CopyGIPropertiesFrom(const	INodeGIProperties&
source)	=	0;

Remarks:
Clones	the	properties	from	a	source

K	Prototype

virtual	BOOL	GIGetIsExcluded()	const	=	0;

Remarks:
Saves	local	properties	-	to	be	called	on	every	node

K	Prototype

virtual	void	GISetIsExcluded(BOOL	isExcluded)	=	0;

Remarks:
Saves	local	properties	-	to	be	called	on	every	node.	See	also	GIGetIsExcluded()

K	Prototype

virtual	float	GIGetMeshSize()	const	=	0;

Remarks:
Geometry	object	property	–	retrieves	the	current	mesh	size	for	the	node.

K	Prototype

virtual	void	GISetIsOccluder(BOOL	isOccluder)	=	0;

Remarks:
Geometry	object	property	–	query	for	whether	the	node	is	an	occluder	object	in
the	global	illumination	computations.

K	Prototype

virtual	void	GISetIsReceiver(BOOL	isReceiver)	=	0;

Remarks:
Geometry	object	property	–	query	for	whether	the	node	is	a	receiver	for	global
illumination.

K	Prototype

virtual	void	GISetIsDiffuse(BOOL	isDiffuseReflective)	=	0;

Remarks:
Geometry	object	property	–	query	for	whether	the	node	has	diffuse	properties	for
usage	in	global	illumination.

K	Prototype

virtual	void	GISetIsSpecular(BOOL	isSpecular)	=	0;

Remarks:
Geometry	object	property	–	query	for	whether	the	node	has	specular	properties
for	usage	in	global	illumination.

K	Prototype

virtual	void	GISetUseGlobalMeshSettings(BOOL	globalMeshing)	=
0;

Remarks:
Geometry	object	property	–	set	usage	of	global	rendering	context	mesh
refinement	settings..

K	Prototype

virtual	void	GISetMeshingEnabled(BOOL	meshingEnabled)	=	0;

Remarks:
Geometry	object	property	–	set	whether	mesh	refinement	is	enabled	for	this	pass.

K	Prototype

virtual	void	GISetNbRefineSteps(unsigned	short	nbRefineSteps)	=
0;

Remarks:
Geometry	object	property	–	set	the	number	of	mesh	refinement	steps	for	the
regathering	pass.

K	Prototype

virtual	void	GISetNbRefineStepsDone(unsigned	short
nbRefineStepsDone)	=	0;

Remarks:
Geometry	object	property	–	query	the	number	of	steps	performed	thus	far	during
the	mesh	refinement	stage.

K	Prototype

virtual	void	GISetMeshSize(float	size)	=	0;

Remarks:
Geometry	object	property	–	query	for	the	refinement	mesh	size	for	the
regathering	pass.

K	Prototype

virtual	BOOL	GIGetIsExcludedFromRegather()	const	=	0;

Remarks:
Geometry	object	property	–	query	whether	this	node	is	to	be	excluded	from	the
regathering	pass.

K	Prototype

virtual	void	GISetIsExcludedFromRegather(BOOL	isExcluded)	=	0;

Remarks:
Geometry	object	property	–	set	whether	this	node	is	to	be	excluded	from	the
regathering	pass.

K	Prototype

virtual	BOOL	GIGetStoreIllumToMesh()	const	=	0;

Remarks:
Get	light	object	property.

K	Prototype

virtual	void	GISetStoreIllumToMesh(BOOL	storeIllum)	=	0;

Remarks:
Set	light	object	property.

K	Prototype

virtual	BOOL	GIGetByLayer()	const	=	0;

Remarks:
Get	'by	layer'	flag	for	radiosity	properties.

K	Prototype

virtual	void	GISetByLayer(BOOL	byLayer)	=	0;

Remarks:
Set	the	'by	layer'	flag	for	radiosity	properties.

K	Prototype

virtual	float	GIGetRayMult()	const	=	0;

Remarks:
Getting	regathering	ray	multiplier	node	property

K	Prototype

virtual	void	GISetRayMult(float	rayMult)	=	0;

Remarks:
Setting	regathering	ray	multiplier	node	property.

Class	ISplineIKControl
Description:
This	class	is	only	available	in	release	5	or	later.
	
This	class	refers	to	the	new	modifier	which,	when	assigned	to	a	spline	(or	a
NURBS)	curve,	generates	a	certain	number	of	helper	objects	attached	to	the
knots	of	the	curve.
	
Spline	IK	Control	Modifier	(works	for	NURBS	Point	curve	and	NURBS	CV
Curve	too):	This	is	a	modifier	and	can	be	used	independently	of	the	SplineIK.
When	applied	to	a	spline,	this	modifier	creates	one	point	helper	for	each	knot	of
the	spline.	The	user	can	then	animate	the	spline	by	simply	animating	(position
and	rotation)	the	point	helpers.	Thus	to	animate	the	spline,	the	user	wouldn’t
need	to	get	into	the	sub-object	level.
	
There	are	three	options	Link	Types,	presented	as	a	set	of	3	radio	buttons:
	

	
	
		Link	All	in	Hierarchy	(default):
Makes	a	helper	a	child	to	its	immediately	previous	helper.	So,	Helper#2	is	child
to	Helper#1,	Helper#3	is	child	to	Helper#2,	and	so	on.	Helper#1	is	still	child	to
the	world.	Translation	and	rotation	of	a	helper	then	"solidly"	moves/rotates	part
of	the	spline	_subsequent_	to	the	selected	helper.	The	part	of	the	spline	previous
to	the	helper	is	unaffected.
		Link	All	to	Root
Makes	all	helpers	children	to	Helper#1,	i.e.,	knot#1.	Helper#1	can	be	position
constrained	or	linked	to	another	object,	like	it	is	possible	above.	Additionally
individual	helpers	can	be	moved	and	rotated	without	any	other	helper	being
affect.
		No	Linking			
All	helpers	are	independent	--	not	linked	to	any	other	helper	--	so	that	they	can
be	moved	and	rotated	without	any	other	helper	being	affect.	

		
	"Create	Helpers"	button:
	Helpers	are	not	automatically	added	to	the	spline	on	the	assignment	of	the
modifier.	To	do	that	the	user	need	to	press	the	"Create	Helpers"	button.
Helper	Display:
These	are	the	all	the	options:

center	marker	(default	OFF)
axis	tripod	(default	OFF)
cross	(default	OFF)
box	(default	ON)
size	(default	20.0)
constant	screen	size	(default	OFF)
draw	on	top	(default	ON)	for	a	standard	point	object.

If	the	user	adds	("insert")	a	knot	to	the	spline,	a	new	helper	object	is
automatically	created	at	that	knotpoint.
	
Furthermore,	please	refer	to	the	implementation	project	which	is	in
/maxsdk/samples/modifiers/splineikcontrol.
	
The	following	helper	methods	have	been	added	to	istdplug.h	for	general	access:
	

Methods:
	

Prototype:
virtual	int	GetHelperCount()=0;

Remarks:
Obtain	the	number	of	helpers	created
	

Prototype:

virtual	int	GetKnotCount()=0;

Remarks:
Gets	the	total	number	of	knots	for	spline.
	

Prototype:
virtual	BOOL	LinkToRoot()	=	0;

Remarks:
Makes	all	helpers	children	to	Helper#1,	i.e.,	knot#1.	Helper#1	can	be
position	constrained	or	linked	to	another	object,	like	it	is	possible
above.	Additionally	individual	helpers	can	be	moved	and	rotated
without	any	other	helper	being	affected.
	

Prototype:
virtual	BOOL	LinkInHierarchy()	=	0;

Remarks:
Makes	a	helper	a	child	to	its	immediately	previous	helper.	So,	Helper#2
is	child	to	Helper#1,	Helper#3	is	child	to	Helper#2,	and	so	on.	Helper#1
is	still	child	to	the	world.	Translation	and	rotation	of	a	helper	then
"solidly"	moves/rotates	part	of	the	spline	_subsequent_	to	the	selected
helper.	The	part	of	the	spline	previous	to	the	helper	is	unaffected.
	

Prototype:
virtual	BOOL	UnLink()	=	0;

Remarks:
All	helpers	are	independent	-	not	linked	to	any	other	helper	so	that	they
can	be	moved	and	rotated	without	any	other	helper	being	affected.
	

Prototype:
virtual	BOOL	CreateHelpers(int	knotCt)	=	0;

Remarks:

Helpers	are	not	automatically	added	to	the	spline	on	the	assignment	of
the	modifier.	To	do	that	the	user	need	to	press	the	"Create	Helpers"
button.

Class	MaxBakeElement
See	Also:	Class	IRenderElement	,	Class	MaxRenderElement
class	MaxBakeElement	:	public	MaxRenderElement

Description:
This	class	is	only	available	in	release	5	or	later.
The	class	provides	the	interfaces	for	creating	a	Texture	Baking	plugins	in	3ds
max.	The	texture	baking	plugins	are	controlled	through	the	Maxscript	“Render
To	Texture”.	There	are	methods	available	in	this	class	that	provide	the	ability	to
produce	a	dynamic	UI	in	Maxscript.
This	class	provides	the	basic	infrastructure	for	the	UI	and	Maxscript	interaction,
to	fully	understand	the	workings	of	these	plugins	please	look	at	the
RenderElement	samples
	
For	an	example	of	this	class	in	use	by	Texture	Baking	plug-ins	see
\MAXSDK\SAMPLES\RENDER\RENDERELEMENTS\INCLUDE\STDBAKEELEM.CPP
	
All	methods	of	this	class	are	implemented	by	the	plug-in.
	

Methods:

Prototype:
virtual	void	SetOutputSz(int	xSz,	int	ySz)	=	0
	

Remarks:
Set	the	size	of	the	bitmap	to	be	created
	

Parameters:
int	xSz
Specifies	the	width	of	the	output.
int	ySz
Specifies	the	height	of	the	output.
	

	

Prototype:
virtual	void	GetOutputSz(int&	xSz,	int	&ySz)	=	0
	

Remarks:
Get	the	size	of	the	bitmap	to	be	created
	

Parameters:
int&	xSz
The	new	width
int&	ySz
the	new	height
	

Prototype:
virtual	void	SetFileName(TCHAR*	newName)	=	0
Remarks:
This	is	the	name	used	in	the	UI,	so	it	does	not	consist	of	the	path	–	just	the
actual	file	name
	

Parameters:
TCHAR*	newName
The	name	to	set	for	the	UI

	

Prototype:
virtual	TCHAR	*	GetFileName()const	=	0
	
Remarks:
Returns	the	actual	filename.	See	remark	above
	

Prototype:
virtual	void	SetFileType(TCHAR*	newType)	=	0
	

Remarks:
This	is	full	name	of	the	file	including	path,	that	is	used	by	the	renderer	to
actually	create	the	bitmap	to	store	the	baked	element.	This	should	not	really	be
set	as	it	is	created	dynamically	for	sole	use	by	the	renderer.
	

Parameters:
TCHAR*	newType
The	name	for	the	full	file	name
	

Prototype:
virtual	const	TCHAR*	GetFileType()	const	=	0
	
Remarks:
Returns	the	filename	used	for	this	baked	element	–	See	comment	above
	

Prototype:
virtual	void	SetFileNameUnique(BOOL	on)	=	0
Remarks:
	
	

Prototype:
virtual	BOOL	IsFileNameUnique()	const	=	0
Remarks:

	

Prototype:
virtual	void	SetRenderBitmap(Bitmap*	pBitmap)	=	0
	
Remarks:
The	render	will	create	a	bitmap	from	the	data	available	and	will	pass	the
Bitmap	to	the	plugin.	This	will	be	the	Bitmap	the	max	actually	uses	to	render
to.
	

Parameters:
Bitmap*	pBitmap
The	bitmap	used	for	the	output
	

Prototype:
virtual	Bitmap*	GetRenderBitmap()	const	=	0
	
Remarks:
Returns	the	bitmap	containing	the	final	output
	

Prototype:
virtual	void	SetLightApplied(BOOL	on)	=	0
	
Remarks:
This	defines	whether	the	baker	uses	lighting	or	not.	For	example	a	diffuse
texture	baker	can	specify	whether	the	result	uses	lighting	or	not.
	

Parameters:
BOOL	on
The	state	for	the	lighting	parameter
	

Prototype:
virtual	BOOL	IsLightApplied()	const	=	0
Remarks:
Returns	whether	lighting	is	used	in	the	calculation

	
	

Prototype:
virtual	void	SetShadowApplied(BOOL	on)	=	0
	
	
Remarks:

This	defines	whether	the	baker	uses	shadows	or	not.	For	example	a	diffuse
texture	bake	can	specify	whether	the	result	uses	shadows	or	not.
	

Parameters:
BOOL	on
The	state	for	the	shadow	parameter
	

Prototype:
virtual	BOOL	IsShadowApplied()	const	=	0
	
	
Remarks:
Returns	whether	shadows	are	used	in	the	calculation

	

Prototype:
virtual	void	SetAtmosphereApplied(BOOL	on)	=	0
	
	
Remarks:
Defines	whether	the	texture	baking	uses	Atmosphere	in	the	final	result.
	

Parameters:
BOOL	on
Specifies	whether	Atmospheres	are	used	or	not.
	

Prototype:
virtual	BOOL	IsAtmosphereApplied()	const	=	0
	
Remarks:
Returns	whether	Atmospheres	are	used.	Most	texture	baking	plugins	would
return	false.
	

The	following	methods	are	used	for	the	creation	of	the	Maxscript	UI	in	the
Render	To	Texture	tool
	

Prototype:
virtual	int	GetNParams()	const	=	0
	
Remarks:
Return	the	number	of	parameters	to	be	exposed	to	the	UI
	
	

Prototype:
virtual	const	TCHAR*	GetParamName(int	nParam)	=	0
	
Remarks:
Returns	the	name	used	by	maxscript	for	the	parameter	value	passed	in.	This	is
a	1	based	access,	so	if	GetNParams	returned	8	the	valid	range	for
GetParamName	will	be	1	to	8.
	

Parameters:
int	nParam
The	value	for	the	parameter	whose	name	is	to	be	returned.
	
	

Prototype:
virtual	const	int	FindParamByName(TCHAR*	name)	=	0
	
Remarks:
Returns	the	index	of	the	parameter	based	on	the	name
	
	const	int	FindParamByName1(TCHAR*	name)	{
		for(int	i	=	0;	i	<	8;	++i){
			if(strcmp(name,	GetString(paramNames[i]))	==	0)

				return	i+1;
		}
		return	0;
	}
	

Prototype:
virtual	int	GetParamType(int	nParam)	=	0
	
Remarks:
Currently	only	1	=	Boolean,	0	=	Undefined	are	supported.	In	release	5	this
means	that	any	parameter	you	have	is	defined	and	used	as	a	Boolean	in
maxscript
	

Parameters:
int	nParam
The	value	for	the	parameter	whose	type	is	to	be	returned.

	

Prototype:
virtual	int	GetParamValue(int	nParam)	=	0
	
Remarks:
The	value	to	set	when	the	Render	to	Texture	tool	is	loaded
	

Parameters:
int	nParam
The	value	for	the	parameter	whose	value	is	to	be	returned.
	
	

Prototype:
virtual	void	SetParamValue(int	nParam,	int	newVal)	=	0
	
Remarks:

The	Render	to	Texture	Tool	will	save	out	the	data
Parameters:
int	nParam
The	value	for	the	parameter	whose	value	is	to	be	set
int	newVal
The	value	to	set

Class	IViewportShaderManager
See	Also:	:	Class	IDXShaderManagerInterface

	
class	IViewportShaderManager	:	public	FPStaticInterface

	

Description:
This	class	is	only	available	in	release	5	or	later.
The	class	provides	access	to	the	Viewport	Shaders	the	Viewport	manager	hosts.
	

Methods:

Prototype:
virtual	int	GetNumEffects()=0
Remarks:
This	will	return	the	number	of	viewport	shaders	the	ViewportManager	has	in
its	database.

	

Prototype:
virtual	ReferenceTarget*	GetActiveEffect()=0
	
Remarks:
This	will	return	the	effect	that	is	currently	active	in	the	viewport.	This
ReferenceTarget	can	be	queried	for	any	Interfaces	it	may	be	hosting	including
.
The	following	code	can	be	used	to	get	an	IDXDataBridge	interface	where
effect	is	a	ReferenceTarget
	
IDXDataBridge	*	vp	=	(IDXDataBridge*)effect-
>GetInterface(VIEWPORT_SHADER_CLIENT_INTERFACE);

	

Prototype:

virtual	TCHAR	*	GetEffectName(int	i)=0
	
Remarks:
This	will	return	the	name	of	the	effect	based	on	the	index	passed	in.	This	is	a	1
based	index,	so	that	it	can	be	used	from	Maxscript	directly.	The	reason	for	this
is	that	internally	position	“0”	is	reserved	for	the	“None”	element	in	the	drop
down	list.
	

Parameters:
int	i
The	index	of	the	effect	whose	name	will	be	returned
	

Prototype:
virtual	ReferenceTarget	*	SetViewportEffect(int	i)=0
Remarks:
This	will	set	the	active	effect	and	return	a	pointer	to	it	for	further	setup	etc
	

Parameters:
int	i
The	index	of	the	effect	the	set.
	

Prototype:
virtual	void	ActivateEffect(MtlBase	*	mtl,	BOOL	State)=0
	
Remarks:
For	a	shader	to	be	initialized	and	allowed	to	draw	in	the	viewport	the	material
needs	to	be	told	that	it	contains	a	Hardware	Shader	(or	effect).	This	method
controls	this	flag.

Parameters:
MtlBase	*	mtl
The	material	whose	flag	is	to	be	set

BOOL	State
True	if	the	flag	is	to	be	set	or	FALSE	to	clear	it

Class	IDXDataBridge
See	Also:	:	Class	IDXShaderManagerInterface,	Class
IViewportShaderManager,	Class	IHardwareMaterial

	
class	IDXDataBridge:	public	BaseInterface
	

Description:
This	class	is	only	available	in	release	5	or	later.
This	is	the	interfaced	used	by	the	Viewport	Shader	plugins.	For	the	manager	to
load	up	a	Viewport	Shader	it	must	implement	this	class.
	
As	well	as	implementing	the	dialog	loading	it	also	provides	a	link	to	the	GFX.
This	means	the	developer	is	free	use	IDX8VertexShader	and	IDX8PixelShader
interfaces,	for	more	advanced	shaders.	Examples	of	these	shaders	are
\MAXSDK\SAMPLES\HardwareShaders\Cubemap\Cubemap.cpp
and
\MAXSDK\SAMPLES\HardwareShaders\Membrane\Membrane.cpp
	
An	important	point	to	make	with	the	usage	of	these	plugins	is	in	the	way	the
ViewportManager	loads	them	up.	To	determine	whether	the	plugin	is	a
shader	it	checks	the	Category	in	the	ClassDesc.	This	must	return
“DXViewportEffect”	otherwise	it	will	not	be	listed	in	the	database.	The
reason	for	this	is	that	the	Manager	supports	deferred	loading,	and	this	is
one	way	of	checking	the	plugin	without	requiring	a	full	DLL	load.
	
For	an	example	of	this	class	in	use	by	ViewportShader	plug-ins	see
\MAXSDK\SAMPLES\HardwareShaders\LightMap\Lightmap.cpp
	
If	the	Viewport	Shader	plugin	hosts	any	animated	parameters	that	will	be	viewed
in	the	Trackview	then	it	is	important	the	plugin	implements	the	following
Reference	Message	in	the
	

RefResult	LightMap::NotifyRefChanged(Interval	changeInt,
RefTargetHandle	hTarget,	PartID&	partID,	RefMessage	message)
{
	switch	(message)
	{
		//this	allows	the	manager	to	control	the	TV	better.
		case	REFMSG_WANT_SHOWPARAMLEVEL:
		{
			BOOL	*	pb	=	(BOOL*)(partID);
			*pb	=	TRUE;
			return	REF_STOP;
		}
	}
	return(REF_SUCCEED);
}
	
This	will	make	sure	that	the	Parameters	show	up	under	the	Viewport	Manager	in
the	correct	format.
	
All	methods	of	this	class	are	implemented	by	the	plug-in.
	

Methods:
	

Prototype:

virtual	Interface_ID		GetID()
Remarks:
The	returns	the	unique	ID	for	this	interface.	By	default	it	will	return
VIEWPORT_SHADER_CLIENT_INTERFACE

	

Prototype:

virtual	ParamDlg	*	CreateEffectDlg(HWND	hWnd,	IMtlParams	*
imp)=	0
Remarks:
This	allows	the	Viewport	shader	to	create	a	UI.	This	will	be	added	as	a	child
of	the	Viewport	Manager.

Parameters:
HWND	hWnd
The	window	handle	to	the	parent	window
IMtlParams	*	imp
This	can	be	used	in	the	call	to	CreateParamsDlg.
	

Prototype:

virtual	void	DisableUI()=0
Remarks:
Currently	this	method	is	not	used

	

Prototype:

virtual	TCHAR	*	GetName()=0
	
Remarks:
This	allows	the	plugin	to	return	a	name	to	be	used	in	max.	This	may	be
extended	for	future	use,	but	currently	it	is	only	used	in	the	trackview.

	

Prototype:

virtual	void	SetDXData(IHardwareMaterial	*	pHWMtl,	Mtl	*
pMtl)=0
	
Remarks:
This	allows	the	plugin	to	use	methods	of	Class	IHardwareMaterial	to	perform
custom	drawing	of	an	object.	This	could	be	special	texture	setups	and	control
over	the	Render	States	and	Texture	Stages.	If	the	developer	needs	finer	control

over	the	object,	then	the	r4	interfaces	IDX8VertShader	can	be	used	instead,
and	this	function	will	not	do	anything.	This	method	will	be	called	whenever
the	object	needs	drawing.	For	a	detailed	example	of	this	usage,	please	look	at
the	Lightmap	sample	in	the	sdk
	

Parameters:
IHardwareMaterial	*	pHWMtl
Provides	access	to	various	drawing	techniques

Mtl	*	pMtl
A	pointer	to	the	parent	material.

Class	IHardwareMaterial
See	Also:	Class	IDXDataBridge

	
class	IHardwareMaterial:	public	BaseInterface

Description:
This	class	is	only	available	in	release	5	or	later.
A	pointer	to	this	class	is	provided	by	IDXDataBridge::SetDXData().	The
GFX	layer	will	implement	all	these	methods.	Most	of	the	methods	are	direct
replicas	of	the	DirectX	API	for	SetRenderState	and	SetTextureStageState.
The	reason	for	this	is	that	only	one	thread	can	access	the	graphics	hardware	at
any	one	time.	Using	this	interface	means	that	the	GFX	driver	can	have	its
database	initialized	with	the	DirectX	states	required	for	this	object,	when	it
comes	to	access	the	graphics	device.
To	use	this	class	good	knowledge	of	DirectX	is	needed,	a	copy	of	the	DirectX
documentation	is	also	recommended.
For	an	example	usage	of	this	class	see
MAXSDK\SAMPLES\HardwareShaders\LightMap\Lightmap.cpp

	

Methods:

Prototype:

virtual	Interface_ID		GetID()
Remarks:
The	returns	the	unique	ID	for	this	interface.	By	default	it	will	return
IHARDWARE_MATERIAL_INTERFACE_ID

	

Prototype:

virtual	void	SetFillMode(DWORD	mode)	=	0
Remarks:
This	is	equivalent	to	the	DirectX	method	SetRenderState(FILLMODE,mode)

	

Parameters:
DWORD	mode
A	member	of	D3DFILLMODE

	

Prototype:

virtual	void	SetShadeMode(DWORD	mode)	=	0
Remarks:
This	is	equivalent	to	DirectX	method	SetRenderState(SHADEMODE,mode)
	

Parameters:
DWORD	mode
A	member	of	D3DSHADEMODE

	

Prototype:

virtual	void	SetMaterial(LPD3DXMATERIAL	pMtl)	=	0
Remarks:
Please	see	the	DirectX	documentation	for	more	information	on	this	method

	

Prototype:

virtual	void	SetDiffuseColor(LPD3DXCOLOR	pClr)	=	0
	
Remarks:
Specifies	Diffuse	color	to	be	set	by	using	the	DirectX	data	structure
LPD3DXCOLOR.

	
Prototype:

virtual	void	SetDiffuseColor(Color	c,	float	alpha	=	1.0f)	=	0
Remarks:
Allows	the	Diffuse	color	to	be	set

	
Parameters:
Color	c
The	diffuse	color

float	alpha
The	colors	alpha
	

Prototype:

virtual	void	SetDiffuseColor(Point3	c,	float	alpha	=	1.0f)	=	0
Remarks:
Allows	the	Diffuse	color	to	be	set
	

Parameters:
Point3	c
The	diffuse	color

float	alpha
The	colors	alpha

Prototype:

virtual	void	SetAmbientColor(LPD3DXCOLOR	pClr)	=	0
	
Remarks:
Specifies	the	Ambient	color	to	set	by	using	a	DirectX	data	structure.

	
Prototype:

virtual	void	SetAmbientColor(Color	c,	float	alpha	=	1.0f)	=	0
	
Remarks:
Allows	the	Ambient	color	to	be	set

Parameters:

Color	c
The	ambient	color

float	alpha
The	colors	alpha
	

Prototype:

virtual	void	SetAmbientColor(Point3	c,	float	alpha	=	1.0f)	=	0
	
Remarks:
Allows	the	Ambient	color	to	set

Parameters:
Point3	c
The	ambient	color

float	alpha
The	colors	alpha

	

Prototype:

virtual	void	SetSpecularColor(LPD3DXCOLOR	pClr)	=	0
	
Remarks:
Specifies	the	Specular	color	to	set	by	using	a	DirectX	data	structure.

	
Prototype:

virtual	void	SetSpecularColor(Color	c,	float	alpha	=	1.0f)	=	0
	
Remarks:
Allows	the	Specular	color	to	be	set

Parameters:
Color	c

The	specular	color
float	alpha
The	colors	alpha
	

Prototype:

virtual	void	SetSpecularColor(Point3	c,	float	alpha	=	1.0f)	=	0
	
Remarks:
Allows	the	Specular	color	to	set

Parameters:
Point3	c
The	specular	color

float	alpha
The	colors	alpha

	

Prototype:

virtual	void	SetEmissiveColor(LPD3DXCOLOR	pClr)	=	0
	
Remarks:
Allows	the	Emissive	color	to	set	by	using	a	DirectX	data	structure.

	
Prototype:

virtual	void	SetEmissiveColor(Color	c,	float	alpha	=	1.0f)	=	0
	
Remarks:
Allows	the	Emissive	color	to	be	set
	

Parameters:
Color	c
The	emissive	color

float	alpha
The	colors	alpha
	

Prototype:

virtual	void	SetEmissiveColor(Point3	c,	float	alpha	=	1.0f)	=	0
	
Remarks:
Allows	the	Emissive	color	to	be	set
	

Parameters:
Point3	c
The	emissive	color

float	alpha
The	colors	alpha

	

Prototype:

virtual	void	SetSpecularPower(float	power)	=	0
	
Remarks:
Allows	the	specular	exponent	of	the	material	to	be	set

Parameters:
float	power
The	specular	amount
	

Prototype:

virtual	void	SetNumTexStages(DWORD	numStages)=	0
	
Remarks:
This	sets	the	internal	size	for	the	table	that	will	hold	the	Texture	information
for	the	material.	If	you	are	not	using	any	Texture	stages	then	this	should	be	set

to	zero,	otherwise	it	should	match	exactly	the	number	of	textures	being	used.
Parameters:
DWORD	numStages
The	number	of	Texture	stages

Prototype:

virtual	bool	SetTexture(DWORD	stage,	DWORD_PTR	pTexture)	=
0
Remarks:
This	allows	a	texture	to	be	loaded	to	the	graphics	device.	In	this	case	the
texture	is	loaded/created	by	the	GFX	via	calls	to
IHardwareRenderer::BuildTexture()	which	will	return	a	DWORD_PTR,	which
is	an	internal	representation	of	the	texture.	The	texture	was	allocated	it	will
return	true.
	

Parameters:
DWORD	stage
The	stage	to	hold	the	texture

DWORD_PTR	pTexture
A	texture	pointer	returned	by	IHardwareRenderer::BuildTexture()

Prototype:

virtual	bool	SetTexture(DWORD	stage,	LPCSTR	filename)	=	0
Remarks:
This	allows	a	texture	to	be	loaded	to	the	graphics	device.	The	file	is	assumed
to	exist.	If	successful	it	will	return	true.

Parameters:
DWORD	stage
The	stage	to	hold	the	texture

LPCSTR	filename
A	string	containing	the	filename	of	the	texture	to	load	
	

Prototype:

virtual	bool	SetTextureUVWSource(DWORD	stage,	DWORD	type)
=	0
Remarks:
This	specifies	where	the	Texture	Coordinates	will	be	retrieved.	Most	of	the
time	the	mesh	will	supply	them	so	the	type	would	be	UVSOURCE_HWGEN.
However	a	Viewport	Shader	could	create	them	dynamically	so	would	supply.
If	successful	it	will	return	true.

Parameters:
DWORD	stage
The	stage	to	set

DWORD	type
The	UVW	Source.	It	can	be	any	of	the	following	:-	
UVSOURCE_MESH
UVSOURCE_XYZ
UVSOURCE_MESH2
UVSOURCE_WORLDXYZ
UVSOURCE_FACEMAP
UVSOURCE_HWGEN

	

Prototype:

virtual	bool	SetTextureMapChannel(DWORD	stage,	DWORD
numChan)	=	0
Remarks:
This	specifies	what	mapping	channel	from	the	mesh	the	Texture	Coordinates
will	be	retrieved.	This	is	used	in	the	stripping	code	so	that	the	VertexBuffer	is
populated	with	the	correct	TVs.	If	successful	it	will	return	true.

Parameters:
DWORD	stage
The	stage	to	set

DWORD	type
The	mapping	channel	to	use	

	

Prototype:

virtual	bool	SetTextureCoordIndex(DWORD	stage,	DWORD	index)
=	0
Remarks:
This	specifies	what	texture	coordinate	the	stage	will	use.	This	value	is	used	in
the	DirectX	call	SetTextureStageState(stage,
D3DTSS_TEXCOORDINDEX,	index).	If	successful	it	will	return	true.

Parameters:
DWORD	stage
The	stage	to	set

DWORD	index
The	texture	coordinate	index	to	use

	

Prototype:

virtual	bool	SetTextureTransformFlag(DWORD	stage,	DWORD
flag)	=	0
	
Remarks:
This	specifies	what	texture	flag	the	stage	will	use.	This	value	is	used	in	the
DirectX	call	SetTextureStageState(stage,
D3DTSS_TEXTURETRANSFORMFLAGS,	flag).	If	successful	it	will
return	true.

Parameters:
DWORD	stage
The	stage	to	set

DWORD	flag
The	DirectX	flag	to	set

	

Prototype:

virtual	bool	SetTextureTransform(DWORD	stage,
LPD3DXMATRIX	pTransform)=	0
	
Remarks:
This	specifies	what	texture	flag	the	stage	will	use.	This	value	is	used	in	the
DirectX	call	SetTransform((D3DTRANSFORMSTATETYPE)
(D3DTS_TEXTURE0+stage),	pTransform).	If	successful	it	will	return
true.

Parameters:
DWORD	stage
The	stage	to	set

LPD3DXMATRIX	pTransform
The	DirectX	matrix	to	set	
	

Prototype:

virtual	bool	SetTextureColorOp(DWORD	stage,	DWORD
colorOp)=	0
Remarks:
This	method	is	a	direct	replica	if	the	DirectX	color	operators	used	with
D3DTSS_COLOROP.	Please	refer	to	the	DirectX	documentation	for	further
information

Parameters:
DWORD	stage
The	stage	to	set

DWORD	colorOp
A	member	of	the	DirectX	enumerated	type	D3DTEXTUREOP
	

Prototype:

virtual	bool	SetTextureColorOpArg(DWORD	stage,	DWORD
argNum,	DWORD	colorArg)	=	0
Remarks:

This	method	is	a	direct	replica	if	the	DirectX	Texture	Argument	flag	used	with
D3DTSS_COLOROPARG.	The	argNum	defines	which	argument	to	set.
Please	refer	to	the	DirectX	documentation	for	further	information

	
Parameters:
DWORD	stage
The	stage	to	set
DWORD	argNum

The	argument	index	to	set.	If	this	is	set	to	1	then	D3DTSS_COLORPARG1
will	be	addressed
DWORD	colorArg
The	Argument	to	set.	
	

Prototype:

virtual	bool	SetTextureAlphaOp	(DWORD	stage,	DWORD
alphaArg)=	0
Remarks:
This	method	is	a	direct	replica	if	the	DirectX	alpha	blending	operators	used
with	D3DTSS_ALPHAOP.	Please	refer	to	the	DirectX	documentation	for
further	information

Parameters:
DWORD	stage
The	stage	to	set

DWORD	alphaArg

A	member	of	the	DirectX	enumerated	type	D3DTEXTUREOP
	

Prototype:

virtual	bool	SetTextureAlphaArg(DWORD	stage,	DWORD	argNum,
DWORD	AlphaArg)	=	0
Remarks:
This	method	is	a	direct	replica	if	the	DirectX	Texture	Alpha	Argument	flag

used	with	D3DTSS_APLHAPARG.	The	argNum	defines	which	argument	to
set.	Please	refer	to	the	DirectX	documentation	for	further	information

	
Parameters:
DWORD	stage
The	stage	to	set
DWORD	argNum

The	alpha	argument	index	to	set.	If	this	is	set	to	1	then	D3DTSS_ALPHAARG1
will	be	addressed
DWORD	colorArg

The	Alpha	Argument	to	set.
	
	

Prototype:

virtual	bool	SetVertexShader(DWORD_PTR	pVertexShader)=0
Remarks:
This	method	allows	a	DirectX	vertex	shader	to	be	loaded.	It	is	used	in
conjunction	with	IHardwareRenderer::LoadVertexShader	which	will	return	a
DWORD_PTR	of	internal	storage	for	the	shader.	There	are	methods	in
IHardwareRenderer	that	provide	a	means	to	supply	the	constants	used	in	the
shader.
	

Parameters:
DWORD_PTR	pVertexShader
The	vertex	shader	to	load.
	

Prototype:

virtual	bool	SetPixelShader(DWORD_PTR	pPixelShader)=0
Remarks:
This	method	allows	a	DirectX	pixel	shader	to	be	loaded.	It	is	used	in
conjunction	with	IHardwareRenderer::LoadPixelShader	which	will	return	a

DWORD_PTR	of	internal	storage	for	the	shader.	There	are	methods
IHardwareRenderer	that	provide	a	means	to	supply	the	constants	used	in	the
shader.
	

Parameters:
DWORD_PTR	pPixelShader
The	vertex	shader	to	load

	

Prototype:

virtual	bool	SetEffect(DWORD_PTR	pEffect)=0
Remarks:
This	method	allows	a	DirectX	effect.	It	is	used	in	conjunction	with
IHardwareRenderer::LoadEffectFile	which	will	return	a	DWORD_PTR	of
internal	storage	for	the	file.	There	are	methods	in	IHardwareRenderer	that
provide	a	means	to	connect	the	application	to	the	effects	file.
	

Parameters:
DWORD_PTR	pEffect
The	effect	file	to	load

Class	RotationValue
	

Description:
This	class	is	only	available	in	release	5	or	later.
This	class	is	to	hold	different	representations	of	the	rotation.	In
particular,	it	holds	rotation	value	as	represented	by	Euler	angles	or
quaternion.	Different	types	of	rotation	controllers	may	use	different
representations.	To	avoid	losing	information	due	to	converting	from
one	representation	to	another,	we	can	use	RotationValue	to	hold	the
result.
	
For	example,	the	Skin	pose	feature	reads	rotation	of	a	node	from	the
rotation	controller	and	stores	the	result	in	RotationValue	(c.f.
maxsdk\include\iSkinPose.h).
	
//	Assuming	node	is	a	valid	pointer	to	INode.
ISkinPose*	skpose	=	ISkinPose::GetISkinPose(*node);
//	skpose	should	not	be	null	for	Max	version	5.0	or	later.
RotationValue	rv	=	skpose->SkinRot();
	
It	is	guaranteed	that	rv	keeps	the	original	representation	of	the
controller.
	
Being	asked	of	Euler	angles,	RotationValue	will	return	3	float	numbers
in	the	format	of	Point3.	There	must	be	an	association	between	numbers
and	axes.
	
There	are	two	classes	of	Euler	angle	types.	In	one	class,	the	rotation
axes	are	not	repeated	(non-repetitive).	They	are	enum's	from	kXYZ	to
kZYX.	In	the	other	class,	one	of	the	rotation	axes	is	repeated
(repetitive).	They	are	enum's	from	kXYX	to	kZXZ.	For	convenience,

enum	kReptd	is	used	to	denote	the	starting	one:	kRept	==	kXYX.
	
For	non-repetitive	Euler	angles,	there	are	two	well-defined	methods	to
associate	three	ordered	angles,	to	three	axes.
	
First,	we	can	associate	angles	with	x-,	y-,	and	z-,	axes,	respectively.	The
first	angle,	for	example,	is	always	associated	with	the	x-axis,	no	matter
where	it	appears	in	the	Euler	order.	Suppose
	
Point3	a(0.1,	0.2,	0.3)
	
then	a.x	(==0.1),	a.y(==0.2),	a.z	(==0.3),	are	the	angles	of	the	x-axis,	y-
axis,	and	z-axis,	respectively,	no	matter	whether	the	order	(type)	of	the
Euler	angles	is	kXYZ	or	kZXY.
	
Let's	call	this	way	of	association	by	axis	(name).
	
Second,	we	can	associate	them	by	position:	the	first	angle,	from	left,	is
always	associated	with	the	first	axis	in	the	Euler	angle	order.	For
examples,	the	first	angle	is	applied	to	the	x-axis	for	kXYZ	and	kXZY,
but	to	the	y-axis	for	kYXZ	and	kYZX,	etc.	Suppose	a	is	a	Point3,	a[0]
(==a.x),	a[1]	(==a.y),	a[2]	(==a.z),	are	the	angles	of	the	z-axis,	x-axis,
and	y-axis,	respectively,	for	Euler	type	kZXY.
	
Let's	call	this	way	of	association	by	order.
	
For	repetitive	Euler	type,	the	association	by	axis	is	ambiguous	because
one	axis	may	appear	twice	in	the	Euler	axes.	In	this	case,	"by	order"	is
well	defined.
	
This	class	uses	the	association	of	by	axis	for	non-repetitive	types	and
by	order	for	repetitive	type.	Suppose,

	
Point3	a	=	rv.Euler(RotationValue::kZXZ)	//	repetitive	Euler	type
	
Then,	a[0]	and	a[2]	are	both	applied	to	the	Z	axis,	but	a[0]	corresponds
to	the	first	z-axis	from	left,	a[2]	corresponds	to	the	second	z-axis	(third
axis)	from	left,	and	a[1]	corresponds	to	the	x-axis.
	

Methods:
	

Prototype:
static	bool	IsEuler(int	rep)	{}

Remarks
Conveniency	(static)	method	to	test	whether	an	integer	corresponds	to
an	enum	of	rotation	representations	used	in	RotationValue	of	type	Euler
angles
	

Prototype:
static	bool	IsRepetitive(int	rep)	{	}

Remarks:
Conveniency	(static)	method	to	test	whether	in	cases	where	a	call	to
IsEuler(int	rep)	is	made,	and	the	return	value	is	of	type	Euler	angles,
this	method	call	returns	whether	it	has	repetitive	axes	(such	as	XYX).
	

Prototype:
static	bool	IsQuat(int	rep)	}

Remarks:
Conveniency	(static)	method	to	test	whether	an	integer	corresponds	to
an	enum	of	rotation	representations	used	in	RotationValue	of	type
Quaternion.
	

Prototype:
void	Set(const	Point3&	a,	EulerType	et)	{}

Remarks:
Set	an	object	of	RotationValue	to	an	Euler	angle	representation.	Angles
are	assumed	in	radians.	To	set	to	Euler	angles	of	x,	y,	z,	of	order	XYZ,
do,	for	example:
	

RotationValue	a;
a.Set(Point3(x,	y,	z),	RotationValue::kXYZ);

	

Prototype:
void	Set(const	Quat&	q)	{	}

Remarks:
Set	an	object	of	RotationValue	to	a	quaternion	representation.
	

Prototype:
RotationValue();

Remarks:
Constructor

Prototype:
RotationValue(const	Point3&	a,	EulerType	et);

Remarks:
Constructor

K	Prototype:
RotationValue(const	Quat&	q);

Remarks:
Constructor.

Prototype:

RotationValue(const	RotationValue&	src);

Remarks:
Copy	constructor.

Prototype:
Point3	Euler(EulerType	et	=kXYZ)	const	{}

Remarks:
Used	to	get	the	rotation	in	specific	representation.	Suppose	rv	is	a	RotationValue,
to	get	it	in	terms	of	Euler	angles	of	order	XYZ:
	

rv.Euler();
	
in	order	ZXY:
	

rv.Euler(RotationValue::kZXY);
	
or,	to	get	it	in	quaternion:
	

(Quat)rv;
	
to	get	it	in	matrix	form:
	

(Matrix3)rv
Prototype:
operator	Quat()	const	{}

Remarks:
Please	see	method	Euler()	for	fuller	explanation.

Prototype:
operator	Matrix3()	const;

Remarks:

Please	see	method	Euler()	for	fuller	explanation.

Prototype:
void	PreApplyTo(Matrix3&	m)	const;

Remarks:
Given	a	matrix,	m,	we	can	apply	the	rotation,	rv,	of	RotationValue	from	left	side
(PreApplyTo)
	rv.PreApplyTo(m)	==	((Matrix3)rv)	*	m
Prototype:
void	PostApplyTo(Matrix3&	m)	const;

Remarks:
Given	a	matrix,	m,	we	can	apply	the	rotation,	rv,	of	RotationValue	from	right
side	(PoseApplyTo)
	rv.PoseApplyTo(m)	==	m	*	(Matrix3)rv)
	

Prototype:
void	PostRotate(const	AngAxis&	aa);

Remarks:
To	apply	a	rotation,	aa,	as	represented	as	AngAxis	to	a	RotationValue,	rv,	from
the	right	side,
	

rv.PostRotate(aa)
	
The	internal	representation	of	rv	after	applying	to	it	will	not	be	change.
Mathematically,
	

(Matrix3)rv.PostRotate(aa)	==	((Matrix3)rv)	*	MatrixOf(aa)
	
If	rv	is	in	Euler	angles,	this	method	will	try	to	keep	the	Euler	angles	from
jumping	at	the	borders	of	(+/-)180	degrees.

Prototype:

int	NativeRep()	const	{	return	mRep;	}

Remarks:
Used	to	get	the	internal	representation	and	returns	the	representation	type.	If	it	is
a	Euler	angle	type,	the	first	three	numbers	of	the	Quat	returned	from	GetNative()
are	to	be	interpreted	as	Euler	angles.

Prototype:
Quat	GetNative()	const	{	return	mQ;	}

Remarks:
Used	to	get	the	internal	representation	and	returns	the	actual	float	numbers.

Class	ISkinPose	:	public	FPMixinInterface
	

Description:
	
Interface	class	for	setting	and	getting	a	special,
non-animated,	transformation	pose,	SkinPose.
	

Methods:
	

Prototype:
static	ISkinPose*	GetISkinPose(INode&	n)
	
Remarks:
Method	to	obtain	the	interface	pointer	for	a	given	INode.

	
Parameters:

INode&	n
The	node	having	the	transformation	pose.

	
Return	Value:

ISkinPose*
A	pointer	to	this	interface	class.

	
	

Prototype:
virtual	Point3	SkinPos()	const	=	0;
	
Remarks:
Method	to	obtain	the	position	part	of	the	transformation	pose.

	
Return	Value:

Point3
The	position	of	the	pose	expressed	as	3-vector	(Point3).

	
	

Prototype:
virtual	RotationValue	SkinRot()	const	=	0;
	
Remarks:
Method	to	obtain	the	rotation	part	of	the	transformation	pose.

	
Return	Value:
RotationValue
The	rotation	of	the	pose	expressed	as	an	RotationValue,	which	can	be
quaternion	or	Euler	angle	type.

	
	

Prototype:
virtual	ScaleValue	SkinScale()	const	=	0;
	
Remarks:
Method	to	obtain	the	scale	part	of	the	transformation	pose.

	
Return	Value:

ScaleValue
The	scale	of	the	pose	expressed	as	possibly	unequal	values	along	the	principal
axes	of	a	coordinate	system	whose	orientation	is	defined	by	a	quaternion.

	
	

Prototype:
virtual	void	SetSkinPos(const	Point3&)	=	0;
	
Remarks:
Method	to	set	the	pose	position	to	a	given	point.

	
Parameters:

Point3
The	desired	point	for	the	pose.

	
	

Prototype:
virtual	void	SetSkinRot(const	RotationValue&)	=	0;
	
Remarks:
Method	to	set	the	pose	rotation	to	a	given	value.

	
Parameters:
RotationValue
The	rotation	of	the	pose	expressed	as	an	Euler	angle	or	quaternion	type.

	
	

Prototype:
virtual	void	SetSkinRot(const	Point3&)	=	0;
	
Remarks:
Method	to	set	the	pose	rotation	to	a	given	Euler	angle.

	
Parameters:
Point3
The	rotation	of	the	pose	expressed	as	an	Euler	angle	vector.

	
	

Prototype:
virtual	void	SetSkinScaleFactors(const	Point3&)	=	0;
	
Remarks:

Method	to	set	the	potentially	differing	pose	scale	factors.
	
Parameters:
Point3
The	point	containing	the	scale	factors	x,	y,	and	z.

	
	

Prototype:
virtual	void	SetSkinScaleOrient(const	Quat&)	=	0;
	
Remarks:
Method	to	set	the	orientation	of	the	scale	factor	axes.

	
Parameters:
Quat&
The	quaternion	specifying	the	orientation	of	the	scale	factor	axes.

	
	

Prototype:
virtual	bool	IsSkinPosEnabled()	const	=	0;
	
Remarks:
Method	to	determine	if	the	pose	position	is	enabled.

	
Return	Value:
bool
If	true,	the	pose	position	is	enabled.
If	false,	the	pose	position	is	disabled.

	
	

Prototype:
virtual	bool	IsSkinRotEnabled()	const	=	0;
	
Remarks:
Method	to	determine	if	the	pose	rotation	is	enabled.

	
Return	Value:
bool
If	true,	the	pose	rotation	is	enabled.
If	false,	the	pose	rotation	is	disabled.

	
	

Prototype:
virtual	bool	IsSkinScaleEnabled()	const	=	0;
	
Remarks:
Method	to	determine	if	the	pose	scale	is	enabled.

	
Return	Value:
bool
If	true,	the	pose	scale	is	enabled.
If	false,	the	pose	scale	is	disabled.

	
	

Prototype:
virtual	bool	SkinPoseMode()	const	=	0;
	
Remarks:
Member	function	yielding	a	Boolean	whether	the	node	is	in	the	Skin	Pose
mode.	In	this	mode,	the	node	will	assume	the	skin	pose,	subject	to	“enabled”
flags	of	the	three	(position,	rotation,	and	scale)	parts,	as	its	transformation,

rather	than	from	the	normal	channel,	the	transform	controller.
	
Return	Value:
bool
If	true,	the	node	transformation	is	in	the	skin	pose	mode.
If	false,	it	is	in	the	normal	mode.

	
	

Prototype:
virtual	void	EnableSkinPos(bool)	=	0;
	
Remarks:
Sets	the	state	of	the	pose	position	transform.

	
Parameters:
bool
If	true,	the	pose	position	transform	is	enabled.
If	false,	the	pose	position	transform	is	disabled.

	
	

Prototype:
virtual	void	EnableSkinRot(bool)	=	0;
	
Remarks:
Sets	the	state	of	the	pose	rotation	transform.

	
Parameters:
bool
If	true,	the	pose	rotation	transform	is	enabled.
If	false,	the	pose	rotation	transform	is	disabled.

	

	

Prototype:
virtual	void	EnableSkinScale(bool)	=	0;
	
Remarks:
Sets	the	state	of	the	pose	scale	transform.

	
Parameters:
bool
If	true,	the	pose	scale	transform	is	enabled.
If	false,	the	pose	scale	transform	is	disabled.

	
	

Prototype:
virtual	void	SetSkinPoseMode(bool)	=	0;
	
Remarks:
Puts	the	node	transform	in	the	skin	pose	or	normal	mode.

	
Parameters:
bool
If	true,	the	node	transform	is	put	in	the	skin	pose	mode.
If	false,	the	node	transform	resumes	to	the	normal	mode.

	
	

Prototype:
virtual	void	SetSkinPose(TimeValue)	=	0;
	
Remarks:
Sets	the	state	of	all	three	non-animated	skin	pose	transforms,	subject	to	the

“enabled”	flags,	to	the	animated	normal	pose	at	a	particular	time.
	
Parameters:
TimeValue
Time	at	which	the	animated	normal	pose	is	used	as	the	target	to	set	the	skin
pose	transforms.

	
	

Prototype:
virtual	void	AssumeSkinPose(TimeValue)	=	0;
	
Remarks:
Sets	the	state	of	all	three	animated	normal	pose	transforms,	subject	to	the
“enabled”	flags,	at	a	particular	time,	to	the	non-animated	skin	pose	transforms.

	
Parameters:
TimeValue
Time	at	which	to	set	the	normal	pose	transforms.

	
	

Prototype:
virtual	void	TMSetValue(TimeValue,	SetXFormPacket&)	=	0;
	
Remarks:
This	is	a	utility	method	used	to	set	value	to	the	node	transform.	According	to
whether	it	is	in	the	skin	pose	mode	and	the	three	“enabled”	flags,	it	will	set
value	to	the	TM	controller	or	the	skin	pose	transforms.

	
Parameters:
TimeValue
Time	at	which	to	set	the	pose	transform.

	
SetXFormPacket&
Controller	values	for	the	transform.

	
	

Prototype:
Point3	SkinRotAngles()	const;
	
Remarks:
Method	to	obtaion	the	Euler	angles	of	the	pose	rotation.

	
Return	Value:
Point3
The	Euler	angles	about	x,	y,	and	z.

	
	

Prototype:
Point3	SkinScaleFactors	()	const;
	
Remarks:
Method	to	obtain	the	scale	factors	of	the	pose	transformation.

	
Return	Value:
Point3
The	scale	factors	along	the	x,	y,	and	z	axes.

	
	

Prototype:
Quat	SkinScaleOrient()	const;
	

Remarks:
Method	to	obtain	the	scale	factor	orientation	of	the	pose	transformation.

	
Return	Value:
Quat
The	axis	and	angle	of	the	scale	factor	orientation.

	
	

Prototype:
void	SetSkinScale(const	ScaleValue&);
	
Remarks:
Method	to	set	the	scale	values	for	the	pose	transform.

	
Parameters:
ScaleValue&
The	scale	of	the	pose	expressed	as	possibly	unequal	values	along	the	principal
axes	of	a	coordinate	system	whose	orientation	is	defined	by	a	quaternion.

	
	

Prototype:
void	SetSkinRotAngles(const	Point3&);
	
Remarks:
Method	to	set	the	rotation	angles	for	the	pose	transform.

	
Parameters:
Point3&
The	Euler	angles	of	the	pose	rotation.

	
	

Prototype:
bool	ShowSkinPos()	const;
	
Remarks:
Method	to	determine	if	the	pose	position	component	is	enabled	and	the	node	is
in	the	skin	pose	mode.

	
Return	Value:
bool
If	true,	the	position	of	the	node	transform	will	come	from	the	skin	pose.
If	false,	the	position	of	the	node	transform	comes	from	the	normal	TM
controller.

	
	

Prototype:
bool	ShowSkinRot()	const;
	
Remarks:
Method	to	determine	if	the	pose	rotation	component	is	enabled	and	the	node	is
in	the	skin	pose	mode.

	
Return	Value:
bool
If	true,	the	rotation	of	the	node	transform	will	come	from	the	skin	pose.
If	false,	the	rotation	of	the	node	transform	comes	from	the	normal	TM
controller.

	
	

Prototype:
bool	ShowSkinScale()	const;
	

Remarks:
Method	to	determine	if	the	pose	scale	component	is	enabled	and	the	node	is	in
the	skin	pose	mode.

	
Return	Value:
bool
If	true,	the	scale	of	the	node	transform	will	come	from	the	skin	pose.
If	false,	the	scale	of	the	node	transform	comes	from	the	normal	TM	controller.

	
	

Prototype:
bool	IsACompEnabled()	const;
	
Remarks:
Method	to	determine	if	one	or	more	pose	components;	position,	rotation,	or
scale	are	enabled.

	
Return	Value:
bool
If	true,	one	or	more	components	are	enabled.
If	false,	none	of	the	components	are	enabled.

	
	

Prototype:
virtual	bool	NeedToSave()	const	=	0;
	
Remarks:
Method	to	indicate	that	a	post	transform	component	has	changed	from	the
default	and	needs	to	be	saved.

	
Return	Value:

bool
If	true,	a	pose	component	has	changed.
If	false,	no	pose	component	has	changed.

	
	

Prototype:
virtual	IOResult	Save(ISave*)	const	=	0;
	
Remarks:
Method	to	write	pose	data	to	a	file.

	
Parameters:

ISave*
Pointer	for	use	in	calling	write	methods.

	
Return	Value:
IOResult
If	IO_OK,	the	method	succeeded.
If	IO_ERROR,	the	method	was	unsuccessful.

	
	

Prototype:
virtual	IOResult	Load(ILoad*)	=	0;
	
Remarks:
Method	to	read	pose	data	from	a	file.

	
Parameters:

ILoad*
Pointer	for	use	in	calling	read	methods.

	
Return	Value:
IOResult
If	IO_OK,	the	method	succeeded.
If	IO_ERROR,	the	method	was	unsuccessful.

	
	

Prototype:
virtual	void	Copy(const	ISkinPose&)	=	0;
	
Remarks:
Method	to	copy	data	members	from	an	existing	ISkinPose	instance	to	the
current	one.

	
Parameters:

ISkinPose&
Reference	to	instance	of	this	class	to	copy	from.

	
	

Prototype:
virtual	const	void*	ObjectOf(void*)	const	=	0;
	
Remarks:
Determines	whether	this	is	a	const	object	of	a	particular	subclass	derived	from
ISkinPose.	It	is	used	for	the	internal	implementation	purpose.

	
Parameters:

void*
Pointer	to	the	subclass	identifier	to	test.

	
Return	Value:
void*
Const	pointer	to	subclass.

	
	

Prototype:
virtual	void*	ObjectOf(void*)	const	=	0;
	
Remarks:
Determines	whether	this	is	an	object	of	a	particular	subclass	derived	from
ISkinPose.	It	is	used	for	the	internal	implementation	purpose.

	
Parameters:

void*
Pointer	to	the	subclass	identifier	to	test.

	
Return	Value:
void*
Pointer	to	subclass.

	
	

Prototype:
FPInterfaceDesc*	GetDesc();
	
Remarks:
Method	to	obtain	the	function	publishing	interface	description.

	
Return	Value:
FPInterfaceDesc	*
Pointer	to	the	interface	descriptor.

Class	IUnwrapMod2
Description:
This	class	is	only	available	in	release	5	or	later.
	
The	new	class	allows	for	Normal,	Flatten,	and	Unfold	mapping.	You	can	bring
them	up	through	a	dialog	or	through	a	script	command.	All	these	tools	basically
work	the	same.	They	are	either	applied	to	the	current	selected	faces	or	the	whole
object	if	no	faces	are	selected.
As	this	class	has	been	fully	developed	with	the	new	Function-Published	System
(FPS),	all	of	its	methods	have	a	one-to-one	correspondence	with	MaxScript
commands.	For	the	sake	of	brevity,	references	to	MaxScript	commands	mean
that	there	is	an	attendant	C++	method	in	iunwrap.h	that	is	prepended	by
lowercase	fn.	Examples	of	this	are	as	follows	(MaxScript	and	its	attendant	C++
method):
	
copy	fpCopy();
normalMapNoParams	fnNormalMapNoParams().
	
	
There	are	three	distinct	modes	of	unmapping:
	
Normal	Mapping
Normal	Mapping	is	mapping	based	solely	are	the	normals	provided.	This	is
identically	to	box	mapping	except	you	customize	what	normals	you	want	to
project	on.	There	are	three	methods	to	apply	a	"normalMap"	which	applies	a
normal	map	based	on	the	parameters	passed	in	(see	the	methods	below)	,
"normalMapNoParams"	which	applies	a	normal	map	using	the	default	setting,
and	"normalMapDialog"	which	brings	up	a	dialog	that	lets	you	set	the	setting.
Right	now	there	are	6	types	of	default	mapping	Back/Front,	Left/Right,
Top/Bottom,	Box	Mapping	No	Top,	Box	Mapping,	and	Diamond	mapping.	Just
apply	the	mapping	to	a	teapot	to	see	the	differences	they	are	pretty	obvious	once
you	see	the	effect.	Parameters	in	the	Normal	Mapping	dialog	are:
	

Mapping	Type	which	are	the	6	mapping	types	listed	above.
Spacing	which	determines	how	much	space	there	is	between	each	cluster.
Normalize	Cluster	will	normalize	the	cluster	from	0	to	1
Rotate	Clusters	will	rotate	the	clusters	so	they	take	the	least	amount	of
area.
Align	By	Width	will	sort	the	clusters	by	there	width	otherwise	it	will	use
their	heights.

	
Hitting	the	Save	As	Default	will	take	the	current	setting	and	set	them	as	defaults
for	the	next	time	you	bring	up	the	dialog	and	when	you	use	the	script	command
"normalMapNoParams”.
Flatten	Mapping
Flatten	Mapping	is	similar	to	normal	mapping,	except	it	uses	an	angle	threshold
to	define	the	clusters	and	the	clusters	will	always	be	contiguous	faces.	This	type
of	mapping	will	generate	mapping	that	does	not	overlap	so	it	is	useful	for	baking
textures	and	lighting.	Just	like	normal	mapping	this	comes	in	3	flavors
"flattenMap"	which	applies	a	normal	map	based	on	the	parameters	passed	in	(see
the	methods	below)	,	"flattenMapNoParams"	which	applies	a	map	using	the
default	setting,	and	"flattenMapDialog"	which	brings	up	a	dialog	that	lets	you	set
the	setting.	The	parameters	for	the	Flatten	Map	Dialog	are:
Face	Angle	Threshold	-	when	building	contiguous	faces	this	the	angle	used	to
determine	whether	a	face	is	part	of	that	cluster.	The	larger	this	angle	the	larger
the	cluster	will	be,	but	you	will	get	more	distortion	since	the	texture	faces	area
will	start	deviating	from	there	geometric	face	area.		

Spacing	which	determines	how	much	space	there	is	between	each	cluster.
Normalize	Cluster	will	normalize	the	cluster	from	0	to	1
Rotate	Clusters	will	rotate	the	clusters	so	they	take	the	least	amount	of
area.
Fill	Holes	will	fill	clusters	with	holes.	It	places	smaller	cluster	in	the	gaps
of	larger	clusters.

	
Unfold	Mapping
Unfold	Mapping	where	as	the	Normal	and	Flatten	Mapping	basically	use	a	lot	of
planar	mapping	to	get	their	results,	this	is	an	actual	unfolding	algorithm.	It
guarantees	that	all	texture	faces	will	have	the	exact	same	proportions	as	their
geometric	equivalents,	but	you	may	get	faces	that	overlap.	This	type	of	mapping
is	only	good	on	meshes	that	are	very	regular	things	like	cylinders	etc.	This	has
the	same	type	of	function	calls	as	the	above	"unfoldMap"	which	applies	an
unfold	map	based	on	the	parameters	passed	in	(see	the	methods	below)	,
"unfoldMapNoParams"	which	applies	a	map	using	the	default	setting,	and
"unfoldMapDialog"	which	brings	up	a	dialog	that	lets	you	set	the	setting.	The
parameters	for	the	Unfold	Map	Dialog	are:

Unfold	Type	which	consists	of	Walk	to	closest	face	and	Walk	to	farthest
face.	This	determines	the	order	of	which	face	gets	unfolded.	Under
almost	all	conditions	you	want	to	walk	to	the	closest	face.
Normalize	Cluster	will	normalize	the	cluster	from	0	to	1

	
	
Copy/Paste	allows	you	to	copy	a	texture	face/faces	from	one	part	or	mesh	to
another	or	to	a	new	mesh.	These	functions	are	extremely	topology	dependant	so
if	you	copy	faces	onto	faces	that	have	a	different	topology	or	face	order	you	will
get	unpredictable	results.	There	is	a	"copy"	script	which	takes	the	current
selected	faces	and	puts	them	in	the	copy	buffer.	There	is	the	"Paste"	and
"PasteInstance"	commands	which	do	the	pasting	to	current	selected	faces.
"Paste"	take	one	parameter	called	rotate	which	determines	if	every	time	you
paste	to	the	same	face	whether	the	tvs	are	reoriented.	For	instance	if	you	paste	a
quad	onto	a	another	quad	there	are	actually	4	possible	ways	you	can	paste	it	onto
it.	If	rotate	is	on,	every	time	you	paste	it	will	go	onto	the	next	variation.	"Paste
Instance"	forces	the	faces	that	are	being	pastes	to	use	the	vertices	that	the	copy
buffer	use	(NOTE	you	cannot	paste	instance	across	objects).	This	similar	to
doing	a	regular	paste	and	then	selecting	all	the	overlapping	vertices	and	doing	a
weld.	There	is	no	rotate	option	with	this	method.	As	noted	above	Pasting	faces
that	have	a	different	topology	or	face	order	will	result	in	unpredictable	results.
	

Stitching	allows	you	find	all	the	texture	vertices	that	are	assigned	to	the	same
geometric	vertex	and	bring	them	all	to	the	same	spot	and	weld	them	together.
This	allows	you	take	faces	that	geometrically	contiguous,	but	not	texture	face
contiguous	and	line	them	up.	There	is	a	stitchVerts	command	which	takes
parameters,	stitchVertsNoParams	which	uses	the	current	defaults,	and	a
stitchVertsDialog	which	brings	up	a	dialog	to	apply	a	stitch	and	set	defaults.	The
Stitch	Tool	params	are:
	

Align	Cluster	which	if	checked	and	the	edges	to	be	stitched	are	on
separate	clusters	it	will	try	to	align	the	clusters	and	then	stitch	the
vertices.
Bias	determines	which	direction	the	vertices	will	move	(to	or	from	the
source).	At	a	Bias	of	0.0	the	vertices	will	move	to	the	source	and	1.0	they
will	move	to	the	target.

	
Note	stitching	will	respect	the	soft	selection.
	
	

Methods:
Nb:	the	following	are	MaxScript	commands,	however,	referring	to	the	above
qualifier,	their	C++	method	name	is	the	same	as	in	MaxScript	but	prepended
with	fn.
	
The	format	for	input/output	parameters	is	as	follows:

<output	type>	<name	of	function>	<input	type	params	1…n>
	
copy	-	this	takes	the	selected	faces	and	places	them	in	the	copy	buffer
paste

rotate	TYPE_BOOL	if	this	on,	every	time	you	paste	to	the	same	selection
it	will	try	a	different	variation
This	paste	the	current	copy	buffer	onto	the	current	face	selection.

pasteInstance	this	forces	the	faces	that	are	being	pastes	to	use	the	vertices	that

the	copy	buffer	use	(NOTE	you	cannot	paste	instance	across	objects).	This
similar	to	doing	a	regular	paste	and	then	selecting	all	the	overlapping	vertices
and	doing	a	weld.	There	is	no	rotate	option	with	this	method.
	
SetDebugLevel

level	TYPE_INT	level	of	debug	info	0	means	no	debug	info,	the	higher
the	value	the	more	spam	you	will	see	in	your	script	window
Debugging	tool	so	I	can	control	the	amount	of	debug	info	that	goes	to	the
listener	and	script	window.

	
TYPE_BOOL	getTileMap	-	returns	whether	the	background	is	tiled.
	
setTileMap

tile	TYPE_BOOL	-	whether	or	not	to	tile	the	background
This	allows	you	set	the	tile	state	of	the	background
	

TYPE_INT	getTileMapLimit	-	returns	the	max	number	of	tiles	to	use	in	a
direction
	
setTileMapLimit

limit	TYPE_INT	-	the	number	of	tile	to	limit	in	a	direction
This	allows	you	to	set	the	tile	limit
	

TYPE_FLOAT	getTileMapBrightness	returns	the	brightness	of	the	tiles.
	
setTileMapBrightness	brightness

TYPE_FLOAT	-	the	brightness	of	the	tiled	maps
This	allows	you	to	set	the	brightness	of	the	tiled	maps
	

New	Maxscript	funtions
TYPE_BOOL	getShowMap	returns	the	state	of	the	show	map	button
	
TYPE_VOID	setShowMap
showMap	TYPE_BOOL	the	state	you	want	to	set	the	show	map	button	
Lets	you	set	the	state	of	the	show	map	button	
	

	
	
TYPE_BOOL	getLimitSoftSel	returns	whether	the	soft	selection	limit	is
on/off
	
SetLimitSoftSel

limit	TYPE_BOOL	state	the	to	set	the	soft	selection	limit
Allows	you	to	set	the	soft	selection	limit	state

	
TYPE_INT	getLimitSoftSelRange	returns	the	edge	limit	for	the	for	the
soft	selection
	
setLimitSoftSelRange

range	TYPE_INT	this	is	how	far	out	in	edges	that	soft	selection	will
expand	to

This	lets	you	set	the	edge	limit	range	for	soft	selection
	
TYPE_FLOAT	getVertexWeight
	index	TYPE_INT	the	index	of	the	vertex	you	want	to	inspect
	returns	the	soft	selection	weight	of	a	particular	vertex
	
setVertexWeight
	index	TYPE_INT	the	index	of	the	vertex	you	want	to	change

weight	TYPE_FLOAT	the	soft	selection	weight	you	want	to	set	the	vertex
to

This	lets	you	set	the	soft	selection	weight	of	a	particular	vertex.	Note	once
you	set	the	weight	of	a	vertex,	it	is	tagged	as	being	modified	and	will	not
change	value	unless	you	unmodifiy	or	call	setVertexWeight	on	it	again.
	

TYPE_BOOL	isWeightModified
	index	TYPE_INT	the	index	of	the	vertex	you	want	to	inspect
	This	returns	whether	a	vertex	is	modified	or	not.
	
modifyWeight
	index	TYPE_INT	the	index	of	the	vertex	you	want	to	change

modify	TYPE_BOOL	the	modified	state	of	the	vertex

This	lets	you	set	the	modified	state	of	vertex.	If	a	vertex	is	modified	it
ignores	regular	UI	soft	selection	and	the	vertex	soft	selection	weight	is
locked	to	it	current	state	and	can	only	be	changed	by	the	setVertexWeight
method.

	
TYPE_BOOL	getGeomSelectElementMode	returns	whether	you	are	in
element	mode	for	face
selection	in	the	viewport.
	
setGeomSelectElementMode

mode	TYPE_BOOL	-	the	state	that	you	want	to	put	viewport	selection	in
Lets	you	set	the	viewport	element	mode.

	
TYPE_BOOL	getGeomPlanarThresholdMode	return	the	whether	you
are	in	planar	select	mode.
	
setGeomPlanarThresholdMode

mode	TYPE_BOOL	the	state	that	you	want	to	put	planar	selection	mode
Lets	set	the	planar	selection	mode.

	
TYPE_FLOAT	getGeomPlanarThreshold	return	the	planar	selection
angle	threshold
	
setGeomPlanarThreshold

angle	TYPE_FLOAT	the	angle	threshold
Lets	you	set	the	angle	threshold	for	the	planar	selection	mode.

	
TYPE_INT	getWindowX	returns	the	current	X	position	of	the	Unwrap	Edit
window
	
TYPE_INT	getWindowY	returns	the	current	Y	position	of	the	Unwrap	Edit
window
	
TYPE_INT	getWindowW	returns	the	current	width	of	the	Unwrap	Edit
window
	

TYPE_INT	getWindowH	returns	the	current	height	of	the	Unwrap	Edit
window
	
TYPE_BOOL	getIgnoreBackFaceCull	returns	the	state	of	the	Ignore
Back	Face	mode
	
setIgnoreBackFaceCull
	ignoreBackFaceCull	TYPE_BOOL	state	of	the	Ignore	Back	Faces	mode
	Lets	you	set	the	Ignore	Back	Face	mode
	
TYPE_BOOL	getOldSelMethod	returns	whether	the	system	is	in	the	old
selection	mode.	Where	drag	selection	always	uses	back	faces	and	single	pick
mode	ignore	back	faces.
	
SetOldSelMethod

oldSelMethod	TYPE_BOOL	the	state	of	the	old	selection	method
This	lets	you	set	the	system	back	to	the	old	selection	method.	Where	drag
selection	always	uses	back	faces	and	single	pick	mode	ignore	back	faces.
This	will	override	the	Ignore	Back	Faces	mode.

	
SelectByMatID

matID	TYPE_INT	the	matID	of	the	face	that	you	want	to	select
This	lets	you	select	faces	by	material	ids.

	
selectBySG

sg	TYPE_INT	the	smoothing	group	that	you	want	to	select
This	lets	you	select	faces	by	smoothing	group
	

TYPE_VOID	expandGeomFaceSelection	-	expands	your	current
viewport	face	selection
	
TYPE_VOID	contractGeomFaceSelection	-	contracts	your	current
viewport	face	selection
	
TYPE_BOOL	getAlwaysEdit	-	This	returns	whether	the	always	edit	mode
is	on.	This	mode	will	always	bring	up	the	edit	dialog	when	the	Unwrap	rollup

window	is	displayed.
	
TYPE_VOID	setAlwaysEdit

always	TYPE_BOOL	the	state	that	you	want	to	set	the	always	edit	mode
to.

This	lets	you	set	the	always	edit	mode.	This	mode	will	always	bring	up
the	edit	dialog	when	the	Unwrap	rollup	window	is	displayed.

	
TYPE_BOOL	getShowVertexConnections	this	returns	whether	vertex
connection	indices	are	displayed.	Vertex	Connections	are	TV	vertices	that	share
the	same	geometric	vertices
	
TYPE_VOID	setShowVertexConnections

show	TYPE_BOOL	whether	to	display	the	vertex	connection	data.
This	lets	you	toggle	the	vertex	connection	data.

	
TYPE_BOOL	getFilterSelected	this	returns	the	state	of	the	Filter	Selected
Faces	button
	
TYPE_VOID	setFilterSelected

filter	TYPE_BOOL	the	filter	state
This	lets	you	set	the	Filter	Selected	Faces	button

	
TYPE_BOOL	getSnap	this	returns	the	snap	state.
	
TYPE_VOID	setSnap

snap	TYPE_BOOL	the	snap	state
This	lets	you	set	the	snap	state.

	
TYPE_BOOL	getLock	this	returns	the	lock	selection	state
	
TYPE_VOID	setLock

lock	TYPE_BOOL	state	of	the	lock	selection.
This	lets	you	set	the	state	of	the	lock	selection

	
TYPE_VOID	pack

method	TYPE_INT	-	0	is	a	linear	packing	algorithm	fast	but	not	that
efficient,	1	is	a	recursive	algorithm	slower	but	more	efficient.
spacing	TYPE_FLOAT	-	the	gap	between	cluster	in	percentage	of	the
edge	distance	of	the	square
normalize	TYPE_BOOL	-	whether	the	clusters	will	be	fit	to	0	to	1	space.
rotate	TYPE_BOOL	-	whether	a	cluster	will	be	rotated	so	it	takes	up	less

space.
fillholes	TYPE_BOOL	-	whether	smaller	clusters	will	be	put	in	the	holes
of	the	larger	cluster.
This	lets	you	pack	the	texture	vertex	elements	so	that	they	fit	within	a
square	space.

	
TYPE_VOID	packNoParams	-	this	packs	the	clusters	using	the	default
parameters.
	
TYPE_VOID	packDialog	-	this	brings	up	a	dialog	that	lets	the	user	set	the
parameters	and	then	packs	the	clusters.
	
TYPE_INT	getTVSubObjectMode	sets	the	current	texture	subobject	mode
1	vertices,	2	edges,	3	faces.
	
TYPE_VOID	setTVSubObjectMode

mode	TYPE_INT	-	the	subobject	mode	1	vertices,	2	edges,	3	faces.
Lets	you	set	the	tv	subobject	mode.

	
TYPE_BITARRAY	getSelectedFaces	returns	the	selected	face	list
	
TYPE_VOID	selectFaces

Selection	TYPE_BITARRAY	selection	that	you	want	to	make	the	face
selection

This	lets	you	set	the	face	selection
	
TYPE_BOOL	IsFaceSelected

Index	TYPE_INT	the	index	of	the	face	you	want	to	check
This	lets	you	check	to	see	if	a	face	is	selected.

	

TYPE_INT	getFillMode	-	returns	the	fill	mode	type	for	face	selections.	The
fill	modes	are	as	follows.

FILL_MODE_OFF			1
FILL_MODE_SOLID			2
FILL_MODE_BDIAGONAL		3
FILL_MODE_CROSS		4
FILL_MODE_DIAGCROSS		5
FILL_MODE_FDIAGONAL		6
FILL_MODE_HORIZONAL		7
FILL_MODE_VERTICAL		8

	
TYPE_VOID	setFillMode

mode	TYPE_INT	-	the	fill	mode	that	you	want	to	set
This	lets	you	set	the	fill	mode	for	selected	faces.

	
MoveSelected,	RotateSelected,	RotateSelectedCenter,
ScaleSelectedCenter,	and	ScaleSelected	are	identical	to	there	vertex
counter	parts	but	are	applied	to	the	current	selection.
TYPE_VOID	MoveSelected

Offset	TYPE_POINT3
TYPE_VOID	RotateSelectedCenter

Angle	TYPE_FLOAT
TYPE_VOID	RotateSelected

Angle	TYPE_FLOAT
Axis	TYPE_POINT3

TYPE_VOID	ScaleSelectedCenter
Scale	TYPE_FLOAT
Dir	TYPE_INT

TYPE_VOID	ScaleSelected
Scale	TYPE_FLOAT
Dir	TYPE_INT
Axis	TYPE_POINT3

	
TYPE_BITARRAY	getSelectedEdges	returns	the	selected	edge	list
	

TYPE_VOID	selectEdges
Selection	TYPE_BITARRAY	selection	that	you	want	to	make	the	edge

selection
This	lets	you	set	the	edge	selection
	

TYPE_BOOL	IsEdgeSelected
Index	TYPE_INT	the	index	of	the	edge	you	want	to	check
This	lets	you	check	to	see	if	a	face	is	selected.

	
TYPE_BOOL	getDisplayOpenEdges	returns	whethe	open	edges	will
display
	
TYPE_VOID	setDisplayOpenEdges

displayOpenEdges	TYPE_BOOL	the	state	of	the	open	edge	display
This	lets	you	set	the	open	edge	display
	

TYPE_POINT3	getOpenEdgeColor	returns	the	color	used	for	the	open
edges
	
TYPE_VOID	setOpenEdgeColor

color	TYPE_POINT3	the	color	to	be	used	for	open	edges
This	lets	you	set	the	open	edge	color

	
TYPE_BOOL	getUVEdgeMode	returns	whether	you	are	in	the	UV	Edge
Selection	mode.	This	mode	will	try	to	automatically	select	all	the	U	or	V	edges
when	you	select	an	edge.	Since	this	is	based	on	edges,	the	regular	tri	mesh	may
produce	incorrect	results	since	the	hidden	edges	are	not	taken	into	account.
	
TYPE_VOID	setUVEdgeMode

uvEdgeMode	TYPE_BOOL	the	state	of	the	you	want	to	set	the	UV	Edge
mode
	This	lets	you	set	the	UV	Edge	mode
	
TYPE_VOID	uvEdgeSelect	-	this	is	a	command	that	will	take	your	current
edge	selection	and	try	to	expand	out	along	the	U	and	V	directions.	Works	best
when	you	only	have	one	edge	selected.

	
TYPE_BOOL	getOpenEdgeMode	returns	whether	you	are	in	the	Open
Edge	Selection	mode.	This	mode	will	try	to	automatically	select	all	the	opens
edges	when	you	select	an	open	edge.
	
TYPE_VOID	setOpenEdgeMode

uvOpenMode	TYPE_BOOL	the	state	of	the	you	want	to	set	the	Open
Edge	mode
	This	lets	you	set	the	Open	Edge	mode
	
TYPE_VOID	openEdgeSelect	-	this	is	a	command	that	will	take	your
current	selection	and	try	to	expand	all	the	open	edges	in	it.
	
TYPE_VOID	vertToEdgeSelect	-	this	command	takes	your	vertex	selection
and	converts	it	to	the	edge	selection.
	
TYPE_VOID	vertToFaceSelect	-	this	command	takes	your	vertex	selection
and	converts	it	to	the	face	selection.
	
TYPE_VOID	edgeToVertSelect	-	this	command	takes	your	edge	selection
and	converts	it	to	the	vertex	selection.
	
TYPE_VOID	edgeToFaceSelect	-	this	command	takes	your	edge	selection
and	converts	it	to	the	face	selection.
	
TYPE_VOID	faceToVertSelect	-	this	command	takes	your	face	selection
and	converts	it	to	the	vertex	selection.
	
TYPE_VOID	faceToEdgeSelect	-	this	command	takes	your	face	selection
and	converts	it	to	the	edge	selection.
	
TYPE_BOOL	getDisplayHiddenEdges	return	whether	hidden	edges	of	a
tri	mesh	are	displayed.
	
TYPE_VOID	setDisplayHiddenEdges

displayHiddenEdges	TYPE_BOOL	-	the	state	that	you	want	to	the	hidden

display	to	be.
This	lets	you	turn	on/off	whether	tri	mesh	hidden	edges	are	displayed.

	
TYPE_POINT3	getHandleColor	-	returns	the	color	that	will	be	used	to
display	patch	handles.
	
TYPE_VOID	setHandleColor

color	TYPE_POINT3	-	the	color	that	you	want	to	set	patch	handles	to
This	lets	you	set	the	color	that	will	be	used	to	display	patch	handles.

	
TYPE_BOOL	getFreeFormMode	this	toggle	the	free	form	mode	on	and
off.	This	mode	is	similar	to	the	Photoshops	free	form	mode.	You	select	any
where	inside	the	bounding	rectangle	to	move	the	selection.	You	select	the
corners	to	scale	the	selection,	and	you	you	select	the	edge	centers	to	rotate	the
selection.	You	can	also	move	the	center	cross	which	is	your	rotation	pivot	point.
	
TYPE_VOID	setFreeFormMode

freeFormMode	TYPE_BOOL	the	state	of	the	free	form	mode.
Lets	you	turn	on/off	the	free	from	mode.

	
TYPE_POINT3	getFreeFormColor	returns	the	color	of	the	free	form
gizmo.
	
TYPE_VOID	setFreeFormColor

color	TYPE_POINT3	the	color	that	you	want	the	gizmo	to	be
	This	lets	you	set	the	color	of	the	Free	Form	Gizmo
	
TYPE_VOID	ScaleSelectedXY

ScaleX	TYPE_FLOAT	the	x	scale	factor
ScaleY	TYPE_FLOAT	the	y	scale	factor
Axis	TYPE_POINT3	the	axis	to	scale	around
This	lets	you	nu	scale	the	current	selection	around	an	axis

	
TYPE_VOID	SnapPivot

Pos	TYPE_INT	-	the	pivot	position	where
	1	is	the	center

	2	is	the	lower	left	of	the	selection
	3	is	the	lower	center	of	the	selection
	4	is	the	lower	right	of	the	selection
	5	is	the	right	center	of	the	selection
	6	is	the	upper	right	of	the	selection
	7	is	the	upper	center	of	the	selection
	8	is	the	upper	left	of	the	selection
	9	is	the	left	center	of	the	selection
This	lets	you	quickly	snap	the	free	form	gizmo	pivot	the	bounding

rectangle.
	

	
TYPE_POINT3	getPivotOffset	-	returns	the	pivot	offset	of	the	free	form
gizmo.	This	is	an	offset	from	the	center	of	the	selection.
	
TYPE_VOID	setPivotOffset

offset	TYPE_POINT3	the	offset	of	the	free	form	gizmo	pivot
This	lets	you	set	the	offset	of	the	free	form	gizmo	pivot.
	

TYPE_POINT3	fnGetSelCenter	this	returns	the	selection	center	so	you
can	compute	the	pivot	offset	from	a	world	uv	position.
	
TYPE_BOOL	getPolygonMode

This	returns	whether	the	polygon	mode	for	sub	object	face	mode	is	on.
Polygon	Mode	will	just	select	across	triangles	across	hidden	edges	of	a
triangle.
	

TYPE_VOID	setPolygonMode
mode	TYPE_BOOL	the	state	you	want	to	set	the	Polygon	Mode
This	lets	you	set	the	state	the	of	the	Polygon	Mode
	

TYPE_VOID	PolygonSelect
This	is	command	that	will	take	your	current	selection	and	expand	it	to
include	all	polygons.

	
TYPE_VOID	sketch

IndexList	TYPE_INT_TAB	the	indices	of	the	points	you	want	to	move.
PositionList	TYPE_POINT3_TAB	the	list	of	a	points	you	want	to	align
your	vertices	to.
This	lets	you	align	texture	vertices	to	a	series	of	points
	

TYPE_VOID	sketchNoParams
	This	puts	you	in	sketch	mode	using	the	default	parameters.
	
TYPE_VOID	sketchDialog
	This	brings	up	the	sketch	options	dialog.
	
TYPE_VOID	sketchReverse
	This	will	reverse	the	order	of	the	select	vertices	that	are	being	used	for	sketch
	when	you	use	the	Use	Current	Selection	option.
	
TYPE_INT	getHitSize

This	returns	the	hit	size	whne	you	do	a	single	click	in	pixels.
	

TYPE_VOID	SetHitSize
size	TYPE_INT	the	size	you	want	to	set	the	hit	size	to
This	lets	you	set	the	hit	size	of	a	single	click.

	
TYPE_BOOL	getResetPivotOnSelection

This	will	return	whether	the	Transform	Gizmo	will	reset	when	the
selection	is	changed.
	

TYPE_VOID	SetResetPivotOnSelection
reset	TYPE_BOOL	the	state	you	want	to	set	the	reset	pivot	on	selection
This	lets	you	set	the	Reset	the	Pivot	On	Selection.

				
TYPE_BOOL	getAllowSelectionInsideGizmo

This	returns	whether	a	user	can	select	sub	objects	inside	the	gizmo	or	not.
If	this	is	FALSE	the	user	is	in	move	mode	when	inside	the	gizmo	unless
they	are	over	the	pivot.	If	this	is	TRUE	the	user	is	in	move	mode	when
they	are	inside	and	over	a	selected	sub	object	otherwise	they	are	in	select
mode.

	
TYPE_VOID	Set	AllowSelectionInsideGizmo

select	TYPE_BOOL	-	the	state	you	want	to	set	the	Allow	Selection	Inside
Gizmo	to	be

This	lets	you	set	the	Allow	Selection	Inside	Gizmo	flag
	

TYPE_VOID	SaveCurrentSettingsAsDefault
This	takes	the	current	state	of	Unwrap	UVW	and	save	it	to	the	plugin	cfg
directory	into	a	file	called	unwrapUVW.ini.	The	next	time	the	user	creates
an	Unwrap	UVW	modifier	this	ini	file	will	be	used	to	set	the	defaults.
	

TYPE_VOID	LoadDefault
	This	will	load	the	unwrapUVW.ini	defaults	into	the	current	Unwrap	UVW
modifier.
	
TYPE_BOOL	getShowShared

This	returns	whether	shared	sub	objects	are	displayed.	Shared	sub	objects
are	texture	vertices	or	edges	that	share	the	same	geometric	vertex	or	edge.
	

TYPE_VOID	setShowShared
select	TYPE_BOOL	whether	to	display	shared	sub	objects	or	not.
This	lets	you	toggle	the	Show	Shared	flag.

	
TYPE_POINT3	getSharedColor
	This	returns	the	color	that	will	be	used	to	show	shared	sub	objects.
	
TYPE_VOID	setSharedColor

color	TYPE_POINT3	the	color	to	be	used	for	shared	sub	objects
This	lets	you	set	the	color	to	be	used	for	shared	sub	objects.

	
TYPE_VOID	showIcon

index	TYPE_INT	index	of	the	icon	to	be	display/hidden.	The	icons	are	as
follows:

	1	-	Move	Mode
	2	-	Rotate	Mode
	3	-	Scale	Mode

	4	-	Transform	Mode
	5	-	Mirror	Tool
	6	-	Expand	Selection
	7	-	Contract	Selection
	8	-	Soft	Selection	Falloff
	9	-	Soft	Selection	Space
	10	-	Soft	Selection	Strength
	11	-	Break
	12	-	Target	Weld
	13	-	Weld	Selected
	14	-	Update	Map
	15	-	Show	Map
	16	-	UV/VW/UW	space
	17	-	Properties	Dialog
	18	-	Map	Drop	List
	19	-	U	Spinner
	20	-	V	Spinner
	21	-	W	Spinner
	22	-	Lock	Sub	Object
	23	-	Hide/Show
	24	-	Freeze/Thaw
	25	-	Filter	Selected
	26	-	Mat	Ids
	27	-	Pan	Mode
	28	-	Zoom	Mode
	29	-	Zoom	Region	Mode
	30	-	Fit	Command
	31	-	Snap
show	TYPE_BOOL	whether	to	show	or	hide	this	icon
This	lets	you	turn	on/off	icons	in	the	Unwrap	UVW	Edit	dialog

	
TYPE_BOOL	getSyncSelectionMode
Returns	whether	the	viewport	and	the	dialog	selections	are	synced	
	
TYPE_VOID	setSyncSelectionMode
sync	TYPE_BOOL	
Lets	you	set	whether	the	viewport	and	the	dialog	selections	are	synced	

	
TYPE_VOID	syncTVSelection
This	is	a	commmand	the	synces	the	dialog	to	the	viewport	
	
TYPE_VOID	syncGeomSelection
This	is	a	commmand	the	synces	the	viewport	to	the	dialog	
	
TYPE_POINT3	getBackgroundColor
returns	the	color	of	the	background	in	the	dialog	
	
TYPE_VOID	setBackgroundColor
color	TYPE_POINT3	
Lets	you	set	the	color	of	the	background	in	the	dialog	
	
TYPE_VOID	updateMenuBar
Forces	the	menu	bar	to	update	
	
TYPE_BOOL	getBrightnessAffectsCenterTile
This	returns	whether	the	brightness	value	affects	the	center	tile	
	
TYPE_VOID	setBrightnessAffectsCenterTile
bright	TYPE_BOOL	
This	lets	you	set	whether	the	brightness	value	affects	the	center	tile	
	
TYPE_BOOL	getBlendTileToBackground
This	returns	whether	the	tiled	images	are	blended	to	the	background	color	or
black	
	
TYPE_VOID	setBlendTileToBackground
blend	TYPE_BOOL,	
This	lets	you	set	whether	the	tiled	images	are	blended	to	the	background	color
or	black	
	
TYPE_BOOL	getPaintSelectMode
This	returns	whether	you	are	in	paint	select	mode	
	

TYPE_VOID	setPaintSelectMode
paint	TYPE_BOOL,	
This	lets	you	set	whether	you	are	in	paint	select	mode	
	
TYPE_INT	getPaintSelectSize
Returns	the	size	of	the	paint	select	brush	this	is	clamped	between	1	and	15.	
	
TYPE_VOID	setPaintSelectSize
size	TYPE_INT	
This	lets	you	set	the	size	of	the	paint	select	brush	this	is	clamped	between	1	and
15.	
	
TYPE_VOID	PaintSelectIncSize
This	increments	the	brush	size	by	one	
	
TYPE_VOID	PaintSelectDecSize
This	decrements	the	brush	size	by	one	
	
TYPE_INT	GetTickSize
	Returns	the	size	of	a	selected	vertex	tick
	
TYPE_VOID	SetTickSize

size	TYPE_INT	size	of	the	tick
This	lets	you	set	the	size	of	a	vertex	tick

Class	INodeExposure
class	INodeExposure:	public	FPMixinInterface

Description:
This	class	is	only	available	in	release	5	or	later.
This	interface	provides	the	ability	for	a	node	to	define	whether	it	is	visible	in	any
of	max’s	dialog	boxes.	This	interface	will	be	extended	and	used	by	more	of	3ds
max’s	core	utilities,	but	currently	ONLY	TrackView	and	the	Select
Object/HideObject	dialog	box	use	this	interface.	By	default	this	interface	is
not	available	through	the	default	nodes,	it	needs	to	be	added.
	
To	get	a	pointer	to	this	interface	from	a	node	the	following	code	can	be	used.
	
INodeExposure*	iNE	=	(INodeExposure*)node-
>GetInterface(NODEEXPOSURE_INTERFACE_TOAPPEND)
	
This	will	add	a	new	INodeExposure	interface	to	the	node	if	it	is	not	present.	The
next	time	you	use	this	technique	it	will	only	return	the	interface	and	not	create
another	new	interface.
	

Data	Members:

enum	{	

		kSelectObjects,	kSchematicView,	kMaxscript,

		kMerge,	kMergeAnimation,	kReplace,

		kKeyEditor,	kCurveEditor,	kRangeEditor,

	};
	
This	enum	provides	access	to	the	different	supported	UI	elements.	It	is	used
with	various	methods	of	the	class	to	get/set	the	UI	flags.

	

Methods:

Prototype:

bool	IsExposedInTrackView()	const

Remarks:
This	will	return	true	if	it	is	visible	in	TrackView	or	false	if	it	is	not.	This	will
return	TRUE	is	the	node	is	exposed	in	ANY	of	the	TrackView	states,
kKeyEditor,	kCurveEditor	and	kRangeEditor.	It	will	return	FALSE	if	ALL	are
set	to	false.
	

Prototype:

void	SetExposedInTrackView(bool	state)

Remarks:
This	allows	the	state	of	the	TrackView	exposure	flag	to	be	set	by	the	user.	This
will	set	the	flag	for	all	three	TrackView	flags.	See	comment	in
IsExposedInTrackView().
	

Prototype:

bool	IsExposedInKeyEditor()	const

Remarks:
Specifies	whether	the	node	is	visible	in	the	Key	Editor	of	TrackView

Prototype:

void	SetExposedInKeyEditor(bool	state)

Remarks:
This	allows	the	state	of	the	Key	Editor	of	Trackview	exposure	flag	to	be	set	by
the	user.
	

Prototype:

bool	IsExposedInCurveEditor()	const

Remarks:
Specifies	whether	the	node	is	visible	in	the	Function	Curve	Editor	of	Track

View

Prototype:

void	SetExposedInCurveEditor(bool	state)

Remarks:
This	allows	the	state	of	the	Function	Curve	Editor	of	Track	view	exposure	flag
to	be	set	by	the	user.
	

Prototype:

bool	IsExposedInRangeEditor()	const

Remarks:
Specifies	whether	the	node	is	visible	in	the	Key	Range	Editor	of	Track	View

Prototype:

void	SetExposedInRnageEditor(bool	state)

Remarks:
This	allows	the	state	of	the	Key	Range	Editor	of	Track	view	exposure	flag	to
be	set	by	the	user.
	

Prototype:

bool	IsExposedInSelectObjects()	const

Remarks:
This	will	return	true	if	it	is	visible	in	Selected	Objects/HideObjects	Dialog	box
otherwise	false
	

Prototype:

void	SetExposedInSelectObjects	(bool	state)

Remarks:
This	will	set	the	flag	for	the	exposure	in	Selected	Objects/HideObjects	dialog
box
	

Parameters:
bool	state
The	value	to	set	the	flag
	

Prototype:

virtual	bool	IsExposed(int	ui)	const	=0

Remarks:
This	will	return	the	exposure	state	of	the	UI	element	being	queried
	

Parameters:
int	ui
The	UI	flag	to	query.	This	should	be	a	value	from	the	UI	enum	–	See	data
members	section
	

	

Prototype:

virtual	void	SetExposed(bool	state)	const	=0

Remarks:
This	will	set	the	state	of	all	the	UI	elements	to	the	state	passed	into	the	method
	

Parameters:
bool	state
The	state	to	set	the	nodes	UI	exposure
	

Prototype:

virtual	void	SetExposed(bool	state,	int	ui)	const	=0

Remarks:
This	will	set	the	state	of	the	individual	UI	element	to	the	state	passed	into	the
method
	

Parameters:
bool	state
The	state	to	set	the	nodes	UI	exposure
int	ui
The	UI	element	to	set

Class	INodeLayerProperties
class	INodeLayerProperties	:	public	FPMixinInterface

	

Description:
This	class	is	only	available	in	release	5	or	later.
	
This	class	defines	an	interface	for	accessing	a	node's	global	illumination
properties.
	
An	instance	of	this	interface	can	be	retrieved	using	the	following	line	of	code
(assuming	'node'	is	of	type	INode*):
	
static_cast<INodeGIProperties*>(node-
>GetInterface(NODELAYERPROPERTIES_INTERFACE))
#define	NODELAYERPROPERTIES_INTERFACE
Interface_ID(0x44e025f8,	0x6b071e44)
	
//	Provides	access	to	the	nodes	layer	and	bylayer	bits
public:
virtual	ILayerProperties*	getLayer	(void)	=	0;	
virtual	void	setLayer	(FPInterface	*)	=	0;	
	
virtual	BOOL	getDisplayByLayer	()	=	0;	
virtual	void	setDisplayByLayer	(BOOL)	=	0;	
virtual	BOOL	getRenderByLayer	()	=	0;	
virtual	void	setRenderByLayer	(BOOL)	=	0;	
virtual	BOOL	getMotionByLayer	()	=	0;	
virtual	void	setMotionByLayer	(BOOL)	=	0;	
virtual	BOOL	getColorByLayer	()	=	0;	
virtual	void	setColorByLayer	(BOOL)	=	0;	
virtual	BOOL	getGlobalIlluminationByLayer	()	=	0;	
virtual	void	setGlobalIlluminationByLayer	(BOOL)	=	0;	
};

	

Class	IAssembly	:	public	FPMixinInterface
Description:
	
This	interface	class	allows	for	setting	and	retrieving	assembly	membership
information	to	or	from	nodes.	All	methods	are	implemented	by	the	system
(Max).	Client	code	can	query	an	INode	for	this	interface:
INode*	n;
IAssembly*	a	=	GetAssemblyInterface(n);
	

Methods:
	
Notes	for	Set	methods:
Nodes	can	be	both	assembly	members	and	heads	at	the	same	time.

Prototype
virtual	void	SetAssemblyMember(BOOL	b)	=	0;
	
Remarks:
Method	for	setting	state	of	assembly	member.	To	close	an	assembly	member
call	SetAssemblyMemberOpen(FALSE),	as	documented	below.

	
Parameters:

BOOL	b
Specifies	a	new	state	for	an	assembly	member.
If	TRUE	the	node	is	set	as	an	assembly	member.
If	FALSE	removes	a	closed	or	open	assembly	member	from	membership.	An
open	member	will	be	closed	first	and	then	have	it’s	membership	flag	removed.

	
	
Prototype

virtual	void	SetAssemblyMemberOpen(BOOL	b)	=	0;
	
Remarks:
Method	for	opening	or	closing	an	assembly	member.	It	should	only	be	called
on	members.

	
Parameters:

BOOL	b
Specifies	the	state	of	the	assembly	member.
If	TRUE	the	assembly	member	is	opened.
If	FALSE	the	assembly	member	is	closed.

	
	
Prototype:
virtual	void	SetAssemblyHead(BOOL	b)	=	0;
	
Remarks:
Method	to	designate	an	assembly	member	as	the	assembly	head.

	
Parameters:

BOOL	b
Specifies	the	head	state	of	the	member.
If	TRUE	the	node	is	set	as	the	assembly	head.
If	FALSE	an	open	or	closed	assembly	head	becomes	a	non-head.	If	the	head	is
open,	it	is	first	closed	and	then	the	head	flag	is	removed.	To	close	an	assembly
head	call	SetAssemblyHeadOpen(FALSE),	as	documented	below.

	
	
Prototype:

virtual	void	SetAssemblyHeadOpen(BOOL	b)	=	0;
	
Remarks:
Method	for	opening	or	closing	an	assembly	head.	It	should	only	be	called	on
an	assembly	head.

	
Parameters:

BOOL	b
Specifies	the	state	of	the	assembly	head.
If	TRUE	the	assembly	head	is	opened.
If	FALSE	the	assembly	head	is	closed.

	
	
Notes	for	Query	methods:
	
To	detect	closed	assembly	members	or	assembly	heads,	check	both	the
member/head	flag	and	the	open	member/head	flag	i.e.	IsAssemblyHead()	&&
!IsAssemblyMemberOpen().

	
	
Prototype:

virtual	BOOL	IsAssemblyMember()	const	=	0;
	
Remarks:

Method	to	determine	membership	in	an	assembly.	It	will	work	with	either
open	or	closed	members.

	
Return	Value:
If	TRUE,	node	is	a	member	the	assembly.
If	FALSE,	node	is	not	a	member	of	the	assembly.

	
	
Prototype:

virtual	BOOL	IsAssemblyHead()	const	=	0;
	
Remarks:
Method	to	determine	if	a	node	is	an	assembly	head.	It	works	with	either	open
or	closed	heads.

	
Return	Value:
If	TRUE,	node	is	an	assembly	head.
If	FALSE,	node	is	not	an	assembly	head.

	
	
Prototype:

virtual	BOOL	IsAssemblyMemberOpen()	const	=	0;
	
Remarks:
Method	to	determine	if	an	assembly	member	is	open.

	
Return	Value:
If	TRUE,	the	assembly	member	is	open.
If	FALSE,	the	assembly	member	is	not	open.

	
	
Prototype:

virtual	BOOL	IsAssemblyHeadOpen()	const	=	0;

	
Remarks:
Method	to	determine	if	an	assembly	head	is	open.

	
Return	Value:
If	TRUE,	the	assembly	head	is	open.
If	FALSE,	the	assembly	head	is	not	open.

	
	
Prototype:

virtual	BOOL	IsAssemblyHeadMemberOf(const	IAssembly*
const	assemblyHead)	const	=	0;

	
Remarks:
Method	to	detect	assemblies	within	assemblies.	It	checks	whether	this
assembly	node	is	a	head	node	and	is	also	a	member	of	the	assembly	headed	by
the	node	passed	in	as	a	parameter.
	

Return	Value:
If	TRUE,	node	is	both	a	head	node	and	is	a	member	of	another	assembly.
If	FALSE,	node	is	neither	a	head	node	nor	a	member	of	another	assembly.

	
	
Prototype:

virtual	IOResult	Save(ISave*	isave)	=	0;
	
Remarks:

Write	method	for	implementing	persistence	of	the	underlying	object.
	
Parameters:

ISave*	isave
Pointer	for	write	methods.

	
Return	Value:
IO_OK,	the	call	succeeded.
IO_ERROR,	the	call	was	unsuccessful.
	
Prototype:

virtual	IOResult	Load(ILoad*	iload)	=	0;
	
Remarks:
Read	method	for	implementing	persistence	of	the	underlying	object.

	

Parameters:

ILoad*	iload
Pointer	for	read	methods.

	
Return	Value:
IO_OK,	the	call	succeeded.
IO_ERROR,	the	call	was	unsuccessful.

Class	IAssembly2	:	public	IAssembly
Description:
	
This	new	version	of	the	assembly	interface	extends	IAssembly.	Developers	are
encouraged	to	use	this	version	of	the	assembly	interface.
Client	code	can	query	an	INode	for	this	interface:
INode*	n;
IAssembly2*	a	=	GetAssemblyInterface2(n);
	

Methods:
	
Notes:
	
These	methods	should	be	called	on	assembly	heads	only.	Calling	them	on
members	will	not	affect	the	display	of	the	bounding	box.	The	bounding	box	is
displayed	in	red	(by	default)	around	an	open	assembly.	Turning	it	off	can
reduce	viewport	clutter;	it	won’t	affect	the	functionality	of	the	assembly	(the
way	the	assembly	works).
Calling	these	methods	on	an	assembly	head,	affects	the	display	of	the
bounding	box	only	on	that	assembly.

	
Prototype:

virtual	void	SetAssemblyBBoxDisplay(BOOL	b)	=	0;
	
Remarks:
Implemented	by	the	System.	Method	to	control	the	display	of	an	assembly’s
world	space	bounding	box.

	
Parameters:

BOOL	b
If	TRUE,	display	the	bounding	box.
If	FALSE,	do	not	display	the	bounding	box.

	
	
Prototype:

virtual	BOOL	GetAssemblyBBoxDisplay()	=	0;
	
Remarks:
Implemented	by	the	system.	Method	to	retrieve	the	value	of	the	bounding	box
display	flag.

	
Return	Value:

BOOL
If	TRUE,	the	bounding	box	display	is	enabled.
If	FALSE,	the	bounding	box	display	is	disabled.

Class	IEditNormalsMod
See	Also:	Class	MNMESH	,	Class	MNNormalSpec

	
class	IEditNormalsMod	:	public	FPMixinInterface
	
Description:
This	class	is	available	in	release	5.0	and	later	only.
	
This	class	is	an	interface	used	by	the	scripter	and	the	SDK	to	access
the	Edit	Normals	modifier.	See	the	documentation	for	that	modifier
for	background	on	the	normals	and	the	basic	operations	like	Break
and	Unify.
	
All	but	the	last	two	of	these	methods	are	available	via	the	scripter
with	commands	like:
numNormals	=
$.modifiers[#Edit_Normals].EditNormalsMod.GetNumNormals	()
$.modifiers[#Edit_Normals].EditNormalsMod.SetSelection	#
{1..numNormals}
$.modifiers[#Edit_Normals].EditNormalsMod.Unify	().
	
	
Methods:
	
	
	
.
	
	
Prototype:
int	EnfnGetSelLevel	();
	

	
Remarks:
"Get"	accessor	for	selection	level	-	one	of	these	values:
EN_SL_OBJECT,	EN_SL_NORMAL,	EN_SL_VERTEX,
EN_SL_EDGE,	EN_SL_FACE
	
	
.
	
	
Prototype:
int	EnfnSetSelLevel	(int	selLevel);
	
	
Remarks:
"Set"	accessor	for	selection	level	-	one	of	these	values:
EN_SL_OBJECT,	EN_SL_NORMAL,	EN_SL_VERTEX,
EN_SL_EDGE,	EN_SL_FACE
	
	
.
	
	
Prototype:
bool	EnfnMove	(Point3&	offset,	TimeValue	t);
	
	
Remarks:
Moves	the	ends	of	currently	selected	normals	by	the	offset	indicated
-	then	renormalizes	them	to	unit	length.
	
Note	that	the	time	is	currently	ignored,	as	the	Edit	Normals	modifier
is	not	yet	animatable
	

.
	
	
Prototype:
bool	EnfnRotate	(Quat	&	rotation,	TimeValue	t);
	
	
Remarks:
Rotates	currently	selected	normals	by	the	rotation	indicated.
	
Note	that	the	time	is	currently	ignored,	as	the	Edit	Normals	modifier
is	not	yet	animatable
	
	
Prototype:
bool	EnfnBreakNormals	(BitArray	*normalSelection=NULL,	INode
*pNode=NULL)
	
	
Remarks:
Breaks	the	indicated	normals	into	separate	normals	for	each	face.

Parameters:
	
BitArray	*normalSelection=NULL
An	optional	selection	set	to	use.	If	NULL,	the	current	selection	is
used.
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call

for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
bool	EnfnUnifyNormals	(BitArray	*normalSelection=NULL,	INode
*pNode=NULL)
	
	
Remarks:
Unifies	the	indicated	normals	so	there's	at	most	one	normal	per	vertex.
(Basically	causes	normals	to	be	shared	across	faces	at	a	vertex.)

Parameters:
	
BitArray	*normalSelection=NULL
An	optional	selection	set	to	use.	If	NULL,	the	current	selection	is
used.
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	

Prototype:
bool	EnfnResetNormals	(BitArray	*normalSelection=NULL,	INode
*pNode=NULL)
	
	
Remarks:
Makes	the	indicated	normals	completely	non-explicit	and	unspecified.
Generates
a	rebuild	&	computation	to	determine	the	topology	and	direction	of	the
newly
unspecified	normals.

Parameters:
	
BitArray	*normalSelection=NULL
An	optional	selection	set	to	use.	If	NULL,	the	current	selection	is
used.
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
bool	EnfnSpecifyNormals	(BitArray	*normalSelection=NULL,
INode	*pNode=NULL)
	

	
Remarks:
Specifies	the	normals	indicated	to	be	fixed	to	the	faces	they're	currently
used	by.

Parameters:
	
BitArray	*normalSelection=NULL
An	optional	selection	set	to	use.	If	NULL,	the	current	selection	is
used.
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
bool	EnfnMakeNormalsExplicit	(BitArray
*normalSelection=NULL,	INode	*pNode=NULL)
	
	
Remarks:
Make	the	indicated	normals	explicit,	so	they	won't	be	based	on
underlying	face	normals.

Parameters:
	
BitArray	*normalSelection=NULL

An	optional	selection	set	to	use.	If	NULL,	the	current	selection	is
used.
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
bool	EnfnCopyNormal	(int	normalID,	INode	*pNode=NULL)
	
	
Remarks:
Copies	the	indicated	normal	into	the	Edit	Normals	modifier's	copy/paste
buffer.

Parameters:
	
int	normalID
The	ID	of	the	normal	we	want	to	copy.
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call

for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
bool	EnfnPasteNormal	(BitArray	*normalSelection=NULL,	INode
*pNode=NULL)
	
	
Remarks:
Pastes	the	normal	currently	in	the	Edit	Normals	modifier's	copy/paste
buffer
into	the	normals	indicated,	making	them	specified	and	explicit.

Parameters:
	
BitArray	*normalSelection	=	NULL
An	optional	selection	set	to	use.	If	NULL,	the	current	selection	is
used.
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	

Prototype:
BitArray	*EnfnGetSelection	(INode	*pNode=NULL)
	
	
Remarks:
Returns	a	pointer	to	the	current	selection.

Parameters:
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
bool	EnfnSetSelection	(BitArray	&	selection,	INode	*pNode=NULL)
	
	
Remarks:
Sets	the	normal	selection	to	the	selection	given.

Parameters:
	
BitArray	&	selection
The	desired	selection
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this

parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
Return	Value:
True	if	the	selection	was	changed;	false	if	the	new	selection	was	the
same	as	the	old	selection.
	

Prototype:
bool	EnfnSelect	(BitArray	&	selection,	bool	invert=false,	bool
select=true,	INode	*pNode=NULL)
	
	
Remarks:
Selects,	deselects,	or	inverts	the	selection	of	the	normals	indicated.

Parameters:
	
BitArray	&	selection
The	normals	whose	selection	we	are	trying	to	change
	
bool	invert=false
If	true,	indicates	that	the	normals	in	<selection>	should	have	their
selection	status	inverted
	
bool	select=true
If	<invert>	is	true,	this	is	ignored.	Otherwise,	if	true,	the	normals
indicated	should	be	selected;	if	false,	they	should	be	deselected.
	

INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
Return	Value:
True	if	the	selection	changed,	false	otherwise.
	
	
Prototype:
void	EnfnConvertVertexSelection	(BitArray	&	vertexSelection,
BitArray	&	normalSelection,	INode	*pNode=NULL)
	
	
Remarks:
Converts	a	vertex	selection	into	a	selection	of	normals,	by	setting	bits
on	normals	based	at	selected	faces.

Parameters:
	
BitArray	&	vertexSelection
The	vertex	selection	we're	converting
	
BitArray	&	normalSelection
The	output	normal	selection
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this

parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
Return	Value:
True	if	the	selection	changed,	false	otherwise.
	
Prototype:
void	EnfnConvertEdgeSelection	(BitArray	&	edgeSelection,
BitArray	&	normalSelection,	INode	*pNode=NULL)
	
	
Remarks:
Converts	an	edge	selection	into	a	selection	of	normals,	by	setting	bits
for	normals	used	on	either	end	and	either	side	of	selected	edges.

Parameters:
	
BitArray	&	edgeSelection
The	edge	selection	we're	converting
	
BitArray	&	normalSelection
The	output	normal	selection
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate

call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
void	EnfnConvertFaceSelection	(BitArray	&	faceSelection,	BitArray
&	normalSelection,	INode	*pNode=NULL)
	
	
Remarks:
Converts	a	face	selection	into	a	selection	of	normals,	by	setting	bits
on	normals	used	by	selected	faces.

Parameters:
	
BitArray	&	faceSelection
The	face	selection	we're	converting
	
BitArray	&	normalSelection
The	output	normal	selection
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)

	
Prototype:
int	EnfnGetNumNormals	(INode	*pNode=NULL)
	
	
Remarks:
Returns	the	current	number	of	normals.

Parameters:
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
Point3	*EnfnGetNormal	(int	normalID,	INode	*pNode=NULL,
TimeValue	t=0)
	
	
Remarks:
Returns	a	pointer	to	the	normal	indicated.

Parameters:
	
int	normalID
The	index	of	the	normal

	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
TimeValue	t=0
This	is	currently	unused	-	but	might	be	important	if	we	add	animation
capabilities	to	Edit	Normals	in	the	future.
	
	
Prototype:
void	EnfnSetNormal	(int	normalID,	Point3	&direction,	INode
*pNode=NULL,	TimeValue	t=0)
	
	
Remarks:
Sets	the	indicated	normal	to	a	specific	value.	NOTE	that	this	does
not	set	the	"explicitness"	of	this	normal.	If	the	normal	is	not	made
explicit,	it	will	be	restored	to	its	default	value	the	next	time	non
explicit	normals	are	recomputed.

Parameters:
	
int	normalID
The	index	of	the	normal
	
Point3	&	direction

The	desired	normal	direction.	If	not	already	normalized	to	a	length	of
1,
this	method	will	normalize	it.
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
TimeValue	t=0
This	is	currently	unused	-	but	might	be	important	if	we	add	animation
capabilities	to	Edit	Normals	in	the	future.
	
	
Prototype:
bool	EnfnGetNormalExplicit	(int	normalID,	INode	*pNode=NULL)
	
	
Remarks:
Controls	whether	a	given	normal	is	built	from	smoothing	groups	or	set	to
an	explicit	value
(Also	makes	the	normal	specified	for	all	faces	using	this	normal.)

Parameters:
	
int	normalID
The	index	of	the	normal
	

INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
Prototype:
void	EnfnSetNormalExplicit	(int	normID,	bool	value,	INode
*pNode=NULL)
	
	
Remarks:
Makes	the	indicated	normal	explicit	(or	not).	If	setting	the	normal	to
explicit,	it	will	also	be	set	to	"specified"	on	all	faces	using	it.	If
setting	it	to	non-explicit,	the	modifier	recomputes	all	non-explicit
normals	to	bring	it	up	to	date.

Parameters:
	
int	normalID
The	index	of	the	normal
	
bool	value
True	to	make	this	normal	explicit,	false	to	make	it	non-explicit.
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.

If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
	
Prototype:
int	EnfnGetNumFaces	(INode	*pNode=NULL)
	
	
Remarks:
Returns	the	number	of	faces	in	the	normal	specification..

Parameters:
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
int	EnfnGetFaceDegree	(int	face,	INode	*pNode=NULL)
	

	
Remarks:
Returns	the	degree	of	the	face	indicated.	(3	for	triangle,	4
for	quad,	etc.)

Parameters:
int	face
The	desired	face.
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
	
Prototype:
int	EnfnGetNormalID	(int	face,	int	corner,	INode	*pNode=NULL)
	
	
Remarks:
Gets	the	index	of	the	normal	in	the	indicated	corner	of	the	indicated
face

Parameters:
int	face
The	desired	face.
	
int	corner

The	desired	corner,	in	the	range	of	0	to	EnfnGetFaceDegree(face)-1.
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
void	EnfnSetNormalID	(int	face,	int	corner,	int	normalID,	INode
*pNode=NULL)
	
	
Remarks:
Sets	the	index	of	the	normal	in	the	indicated	corner	of	the	indicated
face

Parameters:
int	face
The	desired	face.
	
int	corner
The	desired	corner,	in	the	range	of	0	to	EnfnGetFaceDegree(face)-1.
	
int	normalID
The	index	of	the	desired	normal
	
INode	*pNode	=	NULL

If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
bool	EnfnGetFaceNormalSpecified	(int	face,	int	corner,	INode
*pNode=NULL)
	
	
Remarks:
Indicates	whether	a	particular	corner	of	a	particular	face	is	specified
to	use	a	specific	normal	or	not.

Parameters:
int	face
The	desired	face.
	
int	corner
The	desired	corner,	in	the	range	of	0	to	EnfnGetFaceDegree(face)-1.
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in

the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
void	EnfnSetFaceNormalSpecified	(int	face,	int	corner,	bool
specified,
	INode	*pNode=NULL)
	
	
Remarks:
Controls	whether	a	corner	of	a	face	uses	a	specific	normal	ID,	or
builds	normals	based	on	smoothing	groups.	If	called	to	set	a	corner
to	unspecified,	it	generates	a	rebuild	of	nonspecified	normals	and
a	recomputation	of	nonexplicit	normals	at	next	update.

Parameters:
int	face
The	desired	face.
	
int	corner
The	desired	corner,	in	the	range	of	0	to	EnfnGetFaceDegree(face)-1.
	
bool	specified
True	to	specify,	false	to	set	as	unspecified.
	
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call

for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
	
Prototype:
int	EnfnGetNumVertices	(INode	*pNode=NULL)
	
	
Remarks:
Returns	the	number	of	vertices	in	the	current	mesh	cache..
	

Parameters:
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
int	EnfnGetVertexID	(int	face,	int	corner,	INode	*pNode=NULL)
	
	

Remarks:
Returns	the	vertex	used	in	a	corner	of	a	face,	in	the	current	mesh	cache.
(Useful	for	determining	the	"base"	of	the	normal	used	in	that	corner	of
that	face.)
	

Parameters:
	
int	face
The	desired	face.
	
int	corner
The	desired	corner,	in	the	range	of	0	to	EnfnGetFaceDegree(face)-1.
	
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
	
Prototype:
Point3	EnfnGetVertex	(int	vertexID,	INode	*pNode=NULL,
TimeValue	t=0)
	
	
Remarks:

Returns	the	location	of	the	vertex	indicated	(in	the	current	mesh	cache).
	

Parameters:
	
int	vertexID
The	desired	vertex.
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
TimeValue	t=0
This	is	currently	unused	-	but	might	be	important	if	we	add	animation
capabilities	to	Edit	Normals	in	the	future.
	
	
Prototype:
int	EnfnGetNumEdges	(INode	*pNode=NULL)
	
	
Remarks:
Returns	the	number	of	edges	in	the	current	mesh	cache.
	

Parameters:
	
INode	*pNode	=	NULL

If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
int	EnfnGetEdgeID	(int	faceIndex,	int	sideIndex,	INode
*pNode=NULL)
	
	
Remarks:
Returns	the	index	of	the	edge	used	on	a	particular	side	of	a	particular
face,	in	the	current	mesh	cache
	

Parameters:
int	faceIndex
The	desired	face.
	
int	side
The	desired	side,	in	the	range	of	0	to
EnfnGetFaceDegree(faceIndex)-1.
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate

call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
int	EnfnGetFaceEdgeSide	(int	faceIndex,	int	edgeIndex,	INode
*pNode=NULL)
	
	
Remarks:
Tells	you	which	side	of	the	face	a	given	edge	is	on.	(Can	be	useful	for
getting	normal	and	vertex	information	around	the	edge.)
	

Parameters:
int	faceIndex
The	desired	face.
	
int	edgeIndex
The	desired	edge
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)

	
Return	Value:
The	side	of	the	face,	in	the	range	of	0	to
EnfnGetFaceDegree(faceIndex)-1,
or	-1	if	the	edge	was	not	found	on	this	face
	
	
Prototype:
int	EnfnGetEdgeVertex	(int	edgeIndex,	int	end,	INode
*pNode=NULL)
	
	
Remarks:
Returns	the	vertex	at	the	end	of	the	edge.
	

Parameters:
int	edgeIndex
The	desired	edge.
	
int	end
The	desired	end	-	either	0	or	1
	
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)

	
	
Prototype:
int	EnfnGetEdgeFace	(int	edgeIndex,	int	side,	INode
*pNode=NULL)	{	return	0;	}
	
	
Remarks:
Tells	you	what	face	is	on	a	particular	side	of	a	particular	edge.
	

Parameters:
int	edgeIndex
The	index	of	the	edge	in	the	MNMesh's	edge	array.
	
int	side
Indicates	which	side	of	the	edge	you	want	the	face	from.	(Values:	0	or
1.)
	
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
Return	Value:
The	index	of	the	desired	face,	or	-1	if	there's	an	error	or	if	there	is
no	face	on	that	side.

	
Prototype:
int	EnfnGetEdgeNormal	(int	edgeIndex,	int	end,	int	side,	INode
*pNode=NULL)
	
	
Remarks:
Returns	the	normal	associated	with	a	particular	end	and	side	of	this	edge.
	

Parameters:
int	edgeIndex
The	index	of	the	edge	in	the	MNMesh's	edge	array.
	
int	end
Indicates	which	end	of	the	edge	should	be	used.	(Values:	0	or	1.)
	
	
int	side
Indicates	which	side	of	the	edge	should	be	used	-	the	edge	may	have
different	normals	used	by	the	faces	on	either	side.	(Values:
0	or	1.)
	
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)

	
Return	Value:
The	index	of	the	desired	normal..
	
	
Prototype:
void	EnfnRebuildNormals	(INode	*pNode=NULL)	{	}
	
	
Remarks:
Forces	the	modifier	to	rebuild	all	non-specified	normals	from	the
face	smoothing	groups.	Note	that	this	can	change	the	number	of
normals	in	some	cases,	and	often	changes	their	order
	

Parameters:
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
void	EnfnRecomputeNormals	(INode	*pNode=NULL)	{	}
	
	
	

Remarks:
Forces	the	modifier	to	recompute	all	non-explicit	normals.
	

Parameters:
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
	
Prototype:
MNMesh	*EnfnGetMesh	(INode	*pNode=NULL,	TimeValue	t=0)
	
	
	
Remarks:
Returns	a	pointer	to	the	cached	copy	of	the	MNMesh	held	by	the
EditNormalsModData.	This	is	a	"stripped-down"	copy	of	the	last	mesh
that	was	output	by	the	modifier.	It	contains	no	maps,	vertex	or
edge	data,	or	normals.	It's	mainly	used	as	a	temporary	"parent"
to	the	localdata's	MNNormalSpec	in	operations	such	as	Display.
	

Parameters:
	
INode	*pNode	=	NULL
If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this

parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
TimeValue	t=0
This	is	currently	unused	-	but	might	be	important	if	we	add	animation
capabilities	to	Edit	Normals	in	the	future.
	
Prototype:
MNNormalSpec	*EnfnGetNormals	(INode	*pNode=NULL,
TimeValue	t=0)
	
	
	
Remarks:
Returns	a	pointer	to	the	MNNormalSpec	used	by	the
EditNormalsModData.
This	MNNormalSpec	is	not	part	of	any	particular	MNMesh,	rather	it's
used	as	the	local	data	of	the	EditNormalsMod	to	indicate	what	normals
should	be	applied	to	the	mesh	coming	up	the	pipe.	Its	"parent"
pointer	is	generally	set	to	NULL,	and	should	be	set	to	a	mesh	like
the	one	you	get	from	EnfnGetMesh	before	you	do	certain	operations.
(See	class	MNNormalSpec	for	details	on	which	methods	require	an
accurate	"parent"	pointer.
	

Parameters:
	
INode	*pNode	=	NULL

If	the	Edit	Normals	modifier	is	instanced	across	several	nodes,	this
parameter	can	be	used	to	indicate	which	node	you	mean	to	modify
normals	in.
If	you	want	to	modify	normals	in	all	nodes,	you	must	make	a	separate
call
for	each	node.	If	NULL,	it	assumes	you	want	to	modify	normals	in
the	"first"
node.	(This	is	fine	if	the	modifier	is	only	applied	to	one	node,	as	is
usually	the	case.)
	
TimeValue	t=0
This	is	currently	unused	-	but	might	be	important	if	we	add	animation
capabilities	to	Edit	Normals	in	the	future.

External	Icons
See	Also:	Class	MaxIcon,	Class	ICustButton
	
Starting	with	3ds	max	version	4.0	most	of	the	icons	used	in	the	software	have
been	externalized,	meaning	that	these	alpha-composted	background	icons	now
reside	as	*.bmp	files	in	the	\UI\Icons	folder	and	are	loaded	during	startup.	Some
of	the	image	processing	that	takes	place	on	these	icons	will	be	outlined	below.
	
Resource	based	icons	can	be	converted	effectively	to	external	icons	and	stored	as
24-bit	image	files	with	associated	24-bit	alpha	mask	image	files.	The	files	follow
a	fairly	standard	naming	convention	so	for	the	following	outline	the	material
editor	icons	and	image	files	will	be	used	as	an	example.	These	can	be	found	in
the	\UI\Icons	folder	as;
	

MeditImages_a.bmp		The	24-bit	icon	alpha	mask
MeditImages_i.bmp		The	24-bit	icon	images

	
One	difference	with	ordinary	icon	formats	is	that	these	use	an	alpha	mask	instead
of	an	XOR	mask.	An	XOR	mask	needs	to	be	inverted	in	order	to	create	a	proper
alpha	mask	out	of	it.	The	process	for	this	is	fairly	straightforward;	copy	the
images	directly	to	a	file	(i.e.	myicons_i.bmp),	invert	the	mask	file	and	storing
that	in	the	associated	file	(i.e.	myicons_a.bmp).	This	process	will	result	in	icons
which	are	identical	to	the	XOR	masked	versions.	Of	course,	you	can	also	tweak
the	alpha	mask	to	give	it	fuzzy	edges	and	other	effects	you	might	like	for	your
icons	to	help	composite	with	the	background	color	in	a	seamless	and	smooth
way.
	
In	the	plugin	code	you	will	need	to	create	image	lists	for	the	icons.	Once	again,
taking	the	material	editor	as	an	example,	you	can	create	the	image	list	in	the
following	manner;
	

hMeditImages	=	ImageList_Create(BUTW,	BUTH,	ILC_COLOR24	|
ILC_MASK,	5,	0);
LoadMAXFileIcon("MeditImages",	hMeditImages,	kBackground,

FALSE);
	
The	first	thing	we	do	is	create	an	image	list	with	24-bit	images	and	a	mask.
Secondly,	the	call	to	LoadMAXFileIcon()	loads	the	images	into	the	image
list.	See	below	for	more	information	on	this	function;
	
If	you	want	your	icons	to	respond	when	the	user	customizes	colors	you	will	need
to	implement	a	color	change	callback	to	reload	the	icons.	This	is	not	required,
but	it	does	make	your	UI	play	nicely	with	the	color	customization	system.	You
need	to	create	a	callback	as	outlined	below;
	

static	void	ColorChangeNotifyProc(void*	param,	NotifyInfo*	pInfo)
{
ImageList_RemoveAll(hMeditImages);
LoadMAXFileIcon("MeditImages",	hMeditImages,	kBackground,

FALSE);
}

	
Then	you	will	need	to	register	it	after	you	load	the	icons	for	the	first	time;
	

RegisterNotification(ColorChangeNotifyProc,	NULL,
NOTIFY_COLOR_CHANGE);
	
This	way	your	buttons	will	always	look	correct	when	the	user	starts	customizing
colors.

Function:
BOOL	LoadMAXFileIcon(TCHAR*	pFile,	HIMAGELIST
hImageList,	ColorId	color,	BOOL	disabled);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	load	the	images	into	the	image	list.

Parameters:

TCHAR*	pFile
The	prefix	of	the	file	name	for	the	icon	BMP	files.	The	path	is	not	included.
The	system	will	look	in	the	UI\Icons	directory,	and	append	"_i.bmp"	for	the
image	file	and	"_a.bmp"	for	the	alpha	mask	file.
HIMAGELIST	hImageList
The	image	list	that	the	icons	will	be	loaded	into.	It	appends	the	images	at	the
end	of	the	list.
ColorId	color
The	id	of	the	background	color	used	to	composite.	All	the	available	"ColorId"
values	are	defined	in	MAXSDK\INCLUDE\iColorMan.h.	Normally	you
will	use	"kBackground"	which	is	the	color	id	for	the	background	color	for	all
MAX	controls.
BOOL	disabled
A	boolean	that	tells	the	system	whether	to	produce	the	disabled	or	enabled
versions	of	the	icons.	This	controls	what	sort	of	image	processing	is	done	on
the	icons.	We	store	a	set	of	scale	values	for	the	saturation,	value	and
transparency	for	both	enabled	and	disabled	icons.	This	flag	determines	which
set	of	values	we	use	when	loading	the	icons.	If	your	original	image	list
contains	both	enabled	and	disabled	versions	of	its	icons,	then	you	can	just	pass
"FALSE"	for	this	parameter	and	use	the	image	list	as	you	did	before.	If	you
want	the	system	to	automatically	create	the	disabled	versions	of	your	icons,
then	you	can	call	this	with	"TRUE".

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

RPF	Files	and	the	G-Buffer

Overview
The	RPF	format	is	the	3ds	max	Rich	Pixel	file	Format	that	supports	the	ability	to
include	arbitrary	image	channels.
RPF	files	replace	RLA	files	as	the	format	of	choice	for	rendering	animations
requiring	further	post-production	or	effects	work.	Many	channels	available	in
RPF	files	are	exclusive	to	this	format.	The	following	is	a	list	of	pointers	(e.g.	a
required	reading	list)	to	information	in	the	SDK	documentation	pertaining	to	the
storage	type	and	format	used	for	the	RPF	format.
	
Class	GBuffer
The	G-Buffer	stores	multiple	layers	at	each	pixel.

	
List	of	Image	(G-Buffer)	Channels
This	section	provides	an	overview	of	the	image	channels	available	with	the
GBuffer	which	relate	directly	to	the	multiple	layer	pixel	information	stored	in
the	RPF	files.

	
List	of	G-Buffer	Channels	Indices
This	section	provides	a	quick	overview	of	the	various	data	size	and	channel
names	relating	to	the	G-Buffer	and	layered	pixel	storage	in	RPF	files.

	
List	of	G-Buffer	Channel	Types
This	section	provides	the	list	of	channel	types	and	the	size	associated	with
these	channels	per	pixel.

	
Structure	GBufData
This	structure	is	used	by	the	Class	GBufReader	and	Class	GBufWriter.

	
Structure	RealPixel
This	structure	represents	an	rgbe	based	pixel	where	e	is	the	base	2	exponent
of	the	maximum	RGB	component	while	rgb	are	the	mantissas	of	RG	and	B
relative	to	e.	This	will	compress	the	essential	data	of	a	floating	point	based

color	into	32	bits.
	
The	actual	RPF	file	source	code	can	be	found	in	the	SDK	samples	directory
under
\MAXSDK\SAMPLES\IO\RLA\RLA.CPP
The	files	still	refer	to	RLA	instead	of	RPF	for	legacy	purposes.

Class	FilterList
class	FilterList

Description:
A	class	whose	sole	purpose	is	for	building	up	a	filter	list	to	pass	to	the	Windows
API	functions	GetSaveFileName()	and	GetOpenFileName().	It
automatically	puts	in	the	embedded	nulls	and	two	terminating	nulls.	All	methods
are	implemented	by	the	system.
Example	usage:
FilterList	filterList;
filterList.Append(_T("MAX	files(*.max)"));
filterList.Append(_T("*.max"));
ofn.lpstrFilter	=	filterList;
GetSaveFileName(&ofn)

Data	Members:
#define	LISTBUFLEN	2048

public:
TCHAR	buf[LISTBUFLEN];
int	length;

Methods:

Prototype:
FilterList();

Remarks:
Constructor.	Sets	buf	to	all	zeros	and	sets	the	length	to	0.

Return	Value:
A	new	FilterList	object.

Prototype:
void	Append(TCHAR	*name);

Remarks:
Appends	the	string	passed	to	buf.

Prototype:
operator	TCHAR	*()

Remarks:
Returns	the	address	of	buf.

Class	Expr
See	Also:	Class	Point3,	List	of	Expression	Types,	List	of	Expression	Variable
Types,	List	of	Expression	Return	Codes,	Character	Strings.
class	Expr

Description:
This	class	may	be	used	by	developers	to	parse	mathematical	expressions.	The
expression	is	created	as	a	character	string	using	a	straightforward	syntax.
Expressions	consist	of	operators	(+,	-,	*,	/,	etc.),	literal	constants	(numbers	like
180,	2.718,	etc.),	variables	(single	floating	point	values	or	vector	(Point3)
values),	and	functions	(mathematical	functions	that	take	one	ore	more	arguments
and	return	a	result).	The	return	value	from	the	expression	may	be	a	floating	point
value	or	a	vector.	There	are	many	built	in	functions,	operators	and	constants
available	for	use.
All	methods	of	this	class	are	implemented	by	the	system.
Developers	wishing	to	use	these	APIs	should	#include
\MAXSDK\INCLUDE\EXPRLIB.H	and	should	link	to
\MAXSDK\LIB\EXPR.LIB.
Sample	code	using	these	APIs	is	shown	below,	and	is	also	available	as	part	of
the	expression	controller	in
\MAXSDK\SAMPLES\CONTROLLERS\EXPRCTRL.CPP.
Variables	may	be	defined	and	used	in	expressions.	Variable	names	are	case
sensitive,	and	must	begin	with	a	letter	of	the	alphabet,	but	may	include	numbers.
They	may	be	any	length.	To	create	a	named	variable,	you	use	the	method
defVar().	This	takes	a	name	and	returns	a	register	number.	Defining	the
variable	creates	storage	space	in	a	list	of	variables	maintained	by	the	parser,	and
the	register	number	is	used	as	an	array	index	into	the	variable	value	arrays
passed	into	the	expression	evaluation	method	(eval()).
To	use	the	variable	in	an	expression	just	use	its	name.	For	example	if	you	define
a	variable	named	radius,	you	can	use	it	in	an	expression	like:	2*pi*radius.	To
give	the	variable	a	value,	you	define	two	arrays	of	variables	and	pass	them	to	the
evaluation	method	(eval()).	There	is	one	array	for	scalar	variables,	and	one	for
vector	variables.	You	pass	these	arrays	along	with	the	number	of	variables	in
each	list.	See	the	sample	code	below	for	an	example.
The	order	of	calling	the	methods	of	this	class	to	evaluate	an	expression	is	as

follows:
Declare	an	expression	instance	(Expr	expr;)
Define	the	expression	(char	e1[]	=	"2*pi*radius";).
Define	any	variables	(expr.defVar(SCALAR_VAR,
_T("radius"));)
Load	the	expression	(expr.load(e1);)
Evaluate	the	expression	(expr.eval(...);)

There	are	no	restrictions	on	the	use	of	white	space	in	expressions	--	it	may	be
used	freely	to	make	expressions	more	readable.	In	certain	instances,	white
space	should	be	used	to	ensure	non-ambiguous	parsing.	For	example,	the	x
operator	is	used	for	to	compute	the	cross	product	of	two	vectors.	If	a	developer
has	several	vectors:	Vec,	Axis	and	xAxis	and	wanted	to	compute	the	cross
product,	VecxAxis	is	ambiguous	while	Vec	x	Axis	is	not.
All	the	necessary	information	to	evaluate	an	expression	is	completely	stored
within	an	expression	object.	For	example,	if	you	are	passed	a	pointer	to	an
expression	object	for	which	some	variables	have	been	defined	that	you	knew
the	value	of,	you	could	get	all	the	information	you	needed	from	the	expression
object	to	completely	evaluate	the	expression.	This	includes	the	expression
string,	variable	names,	variable	types,	and	variable	register	indices.

For	complete	documentation	of	the	built	in	functions	please	refer	to	the	3ds	max
User's	Guide	under	Using	Expression	Controllers.	Below	is	an	overview	of	the
operators,	constants	and	functions	that	are	available:

Expression	Operators:
Scalar	Operators

	Operator	Use	Meaning
	+	p+q	addition
	-	p-q	subtraction
	-	-p	additive	inverse
	*	p*q	multiplication
	/	p/q	division
	^	p^q	power	(p	to	the	power	of	q)
	**	p**q	same	as	p^q

Boolean	Operators
	=	p=q	equal	to
	<	p<q	less	than
	>	p>q	greater	than
	<=	p<=q	less	than	or	equal	to
	>=	p>=q	greater	than	or	equal	to
	|	p|q	logical	OR
	&	p&q	logical	AND

Vector	Operators
	+	V+W	addition
	-	V-W	subtraction
	*	p*V	scalar	multiplication
		V*p	"
	*	V*W	dot	product
	x	VxW	cross	product
	/	V/p	scalar	division
	.	V.x	first	component	(X)
	.	V.y	second	component	(Y)
	.	V.z	third	component	(Z)

Built-In	Constants:
	pi	3.1415...
	e	2.7182...
	TPS	4800	(ticks	per	second)

Expression	Functions:
Trigonometric	Functions
The	angles	are	specified	and	returned	in	degrees.

	sin(p)	sine
	cos(p)	cosine
	tan(p)	tangent
	asin(p)	arc	sine

	acos(p)	arc	cosine
	atan(p)	arc	tangent

Hyperbolic	Functions
	sinh(p)	hyperbolic	sine
	cosh(p)	hyperbolic	cosine
	tanh(p)	hyperbolic	tangent

Conversion	between	Radians	and	Degrees
	radToDeg(p)	takes	p	in	radians	and	returns	the	same	angle	in	degrees
	degToRad(p)	takes	p	in	degrees	and	returns	the	same	angle	in	radians

Rounding	Functions
	ceil(p)	smallest	integer	greater	than	or	equal	to	p.
	floor(p)	largest	integer	less	than	or	equal	to	p.

Standard	Calculations
	ln(p)	natural	(base	e)	logarithm
	log(p)	common	(base	10)	logarithm
	exp(p)	exponential	function	--	exp(e)	=	e^p
	pow(p,	q)	p	to	the	power	of	q	--	p^q
	sqrt(p)	square	root
	abs(p)	absolute	value
	min(p,	q)	minimum	--	returns	p	or	q	depending	on	which	is	smaller
	max(p,	q)	maximum	--	returns	p	or	q	depending	on	which	is	larger
	mod(p,	q)	remainder	of	p	divided	by	q

Conditional
	if	(p,	q,	r)	works	like	the	common	spreadsheet	"if"	--	if	p	is	nonzero
		then	"if"	returns	q,	otherwise	r.

Vector	Handling
	length(V)	the	length	of	V
	unit(V)	returns	a	unit	vector	in	the	same	direction	as	V.
	comp(V,	I)	i-th	component,	where	I=0,	1,	or	2.
		comp([5,6,7],1)	=	6

Special	Animation	Functions
	noise(p,	q,	r)	3D	noise	--	returns	a	randomly	generated	position.
		p,	q,	and	r	are	random	values	used	as	a	seed.

Sample	Code:
The	following	code	shows	how	the	expression	parser	can	be	used.	This	code
evaluates	several	expressions	and	displays	the	results	in	a	dialog	box.	Both
scalar	and	vector	variables	are	used.	One	expression	contains	an	error	to	show
how	error	handling	is	done.

void	Utility::TestExpr()	{
	//	Declare	an	expression	instance	and	variable	storage
	Expr	expr;
	float	sRegs[2];	//	Must	be	at	least	getVarCount(SCALAR_VAR);
	Point3	vRegs[2];	//	Must	be	at	least	getVarCount(VECTOR_VAR);
	float	ans[3];
	int	status;
	
	//	Define	a	few	expressions
	char	e0[]	=	"2+2";
	char	e1[]	=	"2.0	*	pi	*	radius";
	char	e2[]	=	"[1,1,0]	+	axis";
	char	e3[]	=	"[sin(90.0),	sin(radToDeg(0.5*pi)),	axis.z]";
	char	e4[]	=	"2+2*!@#$%";	//	Bad	expression
	
	//	Define	variables
	int	radiusReg	=	expr.defVar(SCALAR_VAR,	_T("radius"));
	int	axisReg	=	expr.defVar(VECTOR_VAR,	_T("axis"));
	//	Set	the	variable	values
	sRegs[radiusReg]	=	50.0f;
	vRegs[axisReg]	=	Point3(0.0f,	0.0f,	1.0f);
	//	Get	the	number	of	each	we	have	defined	so	far
	int	sCount	=	expr.getVarCount(SCALAR_VAR);
	int	vCount	=	expr.getVarCount(VECTOR_VAR);
	
	//	Load	and	evaluate	expression	"e0"
	if	(status	=	expr.load(e0))
		HandleLoadError(status,	expr);

	else	{
		status	=	expr.eval(ans,	sCount,	sRegs,	vCount,	vRegs);
		if	(status	!=	EXPR_NORMAL)
			HandleEvalError(status,	expr);
		else
			DisplayExprResult(expr,	ans);
	}
	//	Load	and	evaluate	expression	"e1"
	if	(status	=	expr.load(e1))
		HandleLoadError(status,	expr);
	else	{
		status	=	expr.eval(ans,	sCount,	sRegs,	vCount,	vRegs);
		if	(status	!=	EXPR_NORMAL)
			HandleEvalError(status,	expr);
		else
			DisplayExprResult(expr,	ans);
	}
	//	Load	and	evaluate	expression	"e2"
	if	(status	=	expr.load(e2))
		HandleLoadError(status,	expr);
	else	{
		status	=	expr.eval(ans,	sCount,	sRegs,	vCount,	vRegs);
		if	(status	!=	EXPR_NORMAL)
			HandleEvalError(status,	expr);
		else
			DisplayExprResult(expr,	ans);
	}
	//	Load	and	evaluate	expression	"e3"
	if	(status	=	expr.load(e3))
		HandleLoadError(status,	expr);
	else	{
		status	=	expr.eval(ans,	sCount,	sRegs,	vCount,	vRegs);
		if	(status	!=	EXPR_NORMAL)
			HandleEvalError(status,	expr);
		else
			DisplayExprResult(expr,	ans);
	}

	//	Load	and	evaluate	expression	"e4"
	if	(status	=	expr.load(e4))
		HandleLoadError(status,	expr);
	else	{
		status	=	expr.eval(ans,	sCount,	sRegs,	vCount,	vRegs);
		if	(status	!=	EXPR_NORMAL)
			HandleEvalError(status,	expr);
		else
			DisplayExprResult(expr,	ans);
	}
}
	
//	Display	the	expression	and	the	result
void	Utility::DisplayExprResult(Expr	expr,	float	*ans)	{
	TCHAR	msg[128];
	
	if	(expr.getExprType()	==	SCALAR_EXPR)	{
		_stprintf(msg,	_T("Answer	to	\"%s\"	is	%.1f"),
			expr.getExprStr(),	*ans);
		Message(msg,	_T("Expression	Result"));
	}
	else	{
		_stprintf(msg,	_T("Answer	to	\"%s\"	is	[%.1f,	%.1f,	%.1f]"),
			expr.getExprStr(),	ans[0],	ans[1],	ans[2]);
		Message(msg,	_T("Expression	Result"));
	}
}
	
//	Display	the	load	error	message
void	Utility::HandleLoadError(int	status,	Expr	expr)	{
	TCHAR	msg[128];
	
	if(status	==	EXPR_INST_OVERFLOW)	{
		_stprintf(_T("Inst	stack	overflow:	%s"),
			expr.getProgressStr());
		Message(msg,	_T("Error"));
	}

	else	if	(status	==	EXPR_UNKNOWN_TOKEN)	{
		_stprintf(msg,	_T("Unknown	token:	%s"),
			expr.getProgressStr());
		Message(msg,	_T("Error"));
	}
	else	{
		_stprintf(msg,
			_T("Cannot	parse	\"%s\".	Error	begins	at	last	char	of:	%s"),
			expr.getExprStr(),	expr.getProgressStr());
		Message(msg,	_T("Error"));
	}
}
	
//	Display	the	evaluation	error	message	
void	Utility::HandleEvalError(int	status,	Expr	expr)	{
	TCHAR	msg[128];
	
	_stprintf(msg,	_T("Can't	parse	expression	\"%s\""),
expr.getExprStr());
	Message(msg,	_T("Error"));
}
	
//	Display	the	specified	message	and	title	in	a	dialog	box
void	Utility::Message(TCHAR	*msg,	TCHAR	*title)	{
	MessageBox(ip->GetMAXHWnd(),
		(LPCTSTR)	msg,	(LPCTSTR)	title,
MB_ICONINFORMATION|MB_OK);
}

Methods:

Prototype:
Expr()

Remarks:
Constructor.	Internal	data	structures	are	initialized	as	empty.

Prototype:

~Expr()
Remarks:
Destructor.	Any	currently	defined	variables	are	deleted.

Prototype:
int	load(char	*s);

Remarks:
This	method	is	used	to	load	an	expression	for	parsing.	An	error	code	is
returned	indicating	if	the	expression	was	loaded.	A	successfully	loaded
expression	is	then	ready	for	evaluation	with	the	eval()	method.

Parameters:
char	*s
The	expression	to	load.

Return	Value:
See	List	of	Expression	Return	Codes.

Prototype:
int	eval(float	*ans,	int	sRegCt,	float	*sRegs,	int	vRegCt=0,	Point3
*vRegs=NULL);

Remarks:
This	method	is	used	to	evaluate	the	expression	loaded	using	load().	It	returns
either	a	scalar	or	vector	result.

Parameters:
float	*ans
The	numeric	result	of	the	expression	is	returned	here,	i.e.	the	answer	.	For
scalar	values	this	is	a	pointer	to	a	single	float.	For	vector	values,	ans[0]	is	x,
ans[1]	=	y,	ans[2]	=	z.	You	can	determine	which	type	of	result	is	returned
using	the	method	getExprType().
int	sRegCt
The	number	of	items	in	the	sRegs	array	of	scalar	variables.
float	*sRegs
Array	of	scalar	variables.
int	vRegCt=0

The	number	of	items	in	the	vRegs	array	of	vector	variables.
Point3	*vRegs=NULL
Array	of	vector	variables.

Return	Value:
See	List	of	Expression	Return	Codes.

Prototype:
int	getExprType();

Remarks:
Returns	the	type	of	expression.	See	List	of	Expression	Types.

Prototype:
TCHAR	*getExprStr();

Remarks:
Returns	a	pointer	to	the	currently	loaded	expression	string.

Prototype:
TCHAR	*getProgressStr();

Remarks:
If	there	was	an	error	parsing	the	expression,	this	method	returns	a	string
showing	what	portion	of	the	expression	was	parsed	before	the	error	occurred.

Prototype:
int	defVar(int	type,	TCHAR	*name);

Remarks:
Defines	a	named	variable	that	may	be	used	in	an	expression.

Parameters:
int	type
The	type	of	variable.	See	List	of	Expression	Variable	Types.
TCHAR	*name
The	name	of	the	variable.	This	name	must	begin	with	a	letter,	may	include
numbers	and	may	be	any	length.

Return	Value:
The	register	number	(into	the	sRegs	or	vRegs	array	passed	to	eval())	of	the

variable.

Prototype:
int	getVarCount(int	type);

Remarks:
This	method	returns	the	number	of	variables	defined	of	the	specified	type.
When	you	call	eval()	on	an	expression,	you	must	make	sure	that	the	variable
arrays	(sRegs	and	vRegs)	are	at	least	the	size	returned	from	this	method.

Parameters:
int	type
See	List	of	Expression	Variable	Types.

Prototype:
TCHAR	*getVarName(int	type,	int	i);

Remarks:
Returns	the	name	of	the	variable	whose	index	is	passed,	or	NULL	if	the
variable	could	not	be	found.

Parameters:
int	type
The	type	the	variable.	See	List	of	Expression	Variable	Types.
int	i
The	register	number	of	the	variable.

Prototype:
int	getVarRegNum(int	type,	int	i);

Remarks:
When	you	define	a	variable	with	defVar(),	you	get	a	back	a	register	number.
If	your	code	is	set	up	in	such	a	way	that	saving	that	register	number	is	not
convenient	in	the	block	of	code	that	defines	it,	you	can	use	this	method	later
on	to	find	out	what	that	return	value	had	been.	For	example,	one	piece	of	code
might	have:

expr->defVar(SCALAR_VAR,	"a");	//	not	saving	return
value...
expr->defVar(SCALAR_VAR,	"b");

and	then	right	before	evaluating	the	expression,	you	might	have	some	code
such	as:

for(i	=	0;	i	<	expr->getVarCount(SCALAR_VAR);	i++)
if(_tcscmp("a",	expr->getVarName(SCALAR_VAR,	i)	==	0)
aRegNum	=	expr->getVarRegNum(SCALAR_VAR,	i);

Of	course,	this	is	a	bit	contrived	--	most	real	examples	would	probably	have
tables	to	store	the	variable	names,	register	numbers,	etc.	and	thus	would	not
need	to	call	this	method.	It	is	available	however,	and	this	makes	the	expression
object	self-contained	in	that	everything	you	need	to	evaluate	an	expression
with	variables	(other	than	the	variable	values	themselves)	is	stored	by	the
expression	object.

Parameters:
int	type
See	List	of	Expression	Variable	Types.
int	i
The	variable	index	returned	from	the	method	defVar().

Return	Value:
The	register	index	for	the	variable	whose	type	and	index	are	passed.

Prototype:
BOOL	deleteAllVars();

Remarks:
Deletes	all	the	variables	from	the	list	maintained	by	the	expression.

Return	Value:
TRUE	if	the	variables	were	deleted;	otherwise	FALSE.

Prototype:
BOOL	deleteVar(TCHAR	*name);

Remarks:
Deletes	the	variable	whose	name	is	passed	from	the	list	maintained	by	the
expression.	Register	numbers	never	get	reassigned,	even	if	a	variable	gets
deleted.	For	example,	if	you	delete	variables	0-9,	and	keep	variable	10,	you're
going	to	need	to	pass	in	an	array	of	size	at	least	11	to	the	eval()	method,	even
though	the	first	10	slots	are	unused.

Parameters:
TCHAR	*name
The	name	of	the	variable	to	delete.

Return	Value:
TRUE	if	the	variable	was	deleted;	otherwise	FALSE	(the	name	was	not
found).

Class	CommandModeChangedCallback
See	Also:	Class	Interface,	Class	CommandMode.
class	CommandModeChangedCallback

Description:
This	is	the	callback	object	for	Interface::
RegisterCommandModeChangedCallback().

Methods:

Prototype:
virtual	void	ModeChanged(CommandMode	*oldM,
CommandMode	*newM)=0;

Remarks:
This	method	is	called	when	the	user	changes	command	modes.

Parameters:
CommandMode	*oldM
The	command	mode	that	was	replaced.
CommandMode	*newM
The	new	command	mode.

Class	TCBGraphParams
See	Also:	Custom	Controls.
class	TCBGraphParams

Description:
The	TCB	Graph	control	displays	a	tension/continuity/bias	graph	in	the	control.

If	you	are	going	to	use	the	TCB	Graph	control	you	must	initialize	it	by	calling
void	InitTCBGraph(HINSTANCE	hInst);

from	DLLMain()
The	value	to	use	in	the	Class	field	of	the	Custom	Control	Properties	dialog	is:
TCBGraph
Send	this	message	to	the	graph	control	with	lParam	pointing	to	a
TCBGraphParams	structure	to	set	the	graph	parameters.
WM_SETTCBGRAPHPARAMS

For	example:
TCBGraphParams	gp;
gp.tens	=	0.0f;	gp.bias	=	0.0f;gp.cont	=	0.0f;
gp.easeFrom	=	0.0f;	gp.easeTo	=	0.0f;
HWND	hGraph	=	GetDlgItem(hDlg,	IDC_TCB_GRAPH);
EnableWindow(hGraph,	TRUE);
SendMessage(hGraph,WM_SETTCBGRAPHPARAMS,0,
(LPARAM)&gp);
UpdateWindow(hGraph);
Note	that	this	control	is	not	derived	from	ICustControl	and	thus	does	not
have	Enable(),	Disable(),	etc.	methods.

Data	Members:
public:
float	tens,	cont,	bias,	easeFrom,	easeTo;
The	tension,	continuity,	bias,	ease	from	and	ease	to	parameters.	Each	value

may	range	from	0.0	to	1.0.

Class	AppDataChunk
See	Also:	Class	Animatable,	Class	Class_ID.
class	AppDataChunk

Description:
This	class	represents	an	individual	AppData	chunk.	All	methods	of	this	class	are
implemented	by	the	system.

Data	Members:
public:
Class_ID	classID;
The	Class_ID	of	the	owner	of	this	chunk.
SClass_ID	superClassID;
The	SuperClassID	of	the	owner	of	this	chunk.
DWORD	subID;
An	extra	ID	that	lets	the	owner	identify	its	sub	chunks.
DWORD	length;
The	length	of	the	data	in	bytes.
void	*data;
The	chunk	data	itself.

Methods:

Prototype:
AppDataChunk(Class_ID	cid,	SClass_ID	sid,	DWORD	sbid,
DWORD	len,	void	*d);

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.	Note	that
the	data	pointer	should	be	allocated	with	standard	malloc()	since	it	will	be
freed	using	free()	in	the	destructor.

Parameters:
Class_ID	cid
The	Class_ID	of	the	owner	of	this	chunk.
SClass_ID	sid

The	SuperClassID	of	the	owner	of	this	chunk.
DWORD	sbid
An	extra	ID	that	lets	the	owner	identify	its	sub	chunks.
DWORD	len
The	length	of	the	data	in	bytes.
void	*d
The	chunk	data	itself.

Prototype:
AppDataChunk();

Remarks:
Constructor.	The	length	is	set	to	0	and	the	data	pointer	set	to	NULL.

Prototype:
~AppDataChunk()

Remarks:
Destructor.	The	AppData	is	freed	using	free(data).	Since	this	is	how	the	data
is	freed,	the	plug-in	must	use	malloc()	to	allocate	the	memory.

Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
The	system	implements	this	method	to	load	the	AppDataChunk	from	disk.

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
The	system	implements	this	method	to	save	the	AppDataChunk	to	disk.

Class	ObjectDataReaderCallback
See	Also:	Class	TriObject.
class	ObjectDataReaderCallback

Description:
3D	Studio	DOS	allowed	developers	to	store	APP_DATA	with	objects	and	nodes
in	the	scene.	When	the	3DS	DOS	file	is	imported	into	3ds	max,	and	no	plug-in
has	registered	to	convert	it,	then	it	is	just	hung	off	the	object	(or	INode	in	the
case	of	KXP	app	data).
A	3ds	max	plug-in	can	register	itself	to	read	a	particular	APP_DATA	chunk
when	a	3DS	DOS	file	is	loaded.	If	a	chunk	is	encountered	that	matches	a
registered	plug-in,	that	plug-in	will	be	asked	to	create	an	instance	of	itself	based
on	the	contents	of	the	APP_DATA	chunk.	The	plug-in	callback	is	given	an
opportunity	to	read	the	chunk	and	create	an	object	other	than	a	TriObject	based
on	the	contents	of	the	chunk	and	the	original	object.
A	plug-in	that	wants	to	process	app	data	registers	a	new	class	derived	from	this
class	by	calling	void
RegisterObjectAppDataReader(ObjectDataReaderCallback	*cb);
The	system	then	maintains	a	list	of	these	ObjectDataReaderCallbacks.

Methods:

Prototype:
virtual	char	*DataName()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	name	that	identifies	the	app	data	chunk.	When	the	3DS	Import
plug-in	is	loading	objects,	it	will	look	for	app	data.	For	each	app	data	chunk
that	the	object	has,	it	will	go	through	the	list	of	registered	callbacks	and	call
this	method	looking	for	a	name	match.	When	it	does	find	a	match	it	will	call
ReadData()	on	the	callback	that	matched.

Prototype:
virtual	Object	*ReadData(TriObject	*obj,	void	*data,	DWORD
len)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	read	the	app	data	and	create	an	instance	of	an	object
based	on	the	data	and	the	original	mesh	object.	For	example,	the	3D	Surfer
plug-in	from	3DS	DOS	creates	a	patch	object	based	on	the	app	data
parameters	and	returns	a	pointer	to	it.

Parameters:
TriObject	*obj
The	original	mesh	object	the	app	data	was	assigned	to.	If	no	callback	was
registered,	this	would	be	the	object	that	would	get	created.
void	*data
Points	to	the	particular	app	data	chunk	handled	by	the	registered	callback.
DWORD	len
The	length	of	the	app	data	chunk.

Return	Value:
The	Object	created	by	the	plug-in	to	hold	the	appdata.	This	would	be	the
object	created	to	take	the	place	of	the	TriObject.	For	example,	consider	a	3DS
object	that	had	appdata	embedded	in	it	which	represented	the	patch	object
from	which	the	mesh	was	created	(like	3D	Surfer	for	example).	This	method
would	take	that	data	and	created	a	patch	object	so	that	the	user	could	work
with	the	object	as	a	patch	object	in	3ds	max	instead	of	a	tri	object.

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	delete	this	callback	object.	When	the	user	exits	3ds
max,	this	method	is	called	on	each	of	the	registered	callbacks.	So	if	the
callback	was	allocated	dynamically,	it	could	free	itself	in	this	implementation.

The	following	functions	are	not	part	of	any	class	but	are	available
for	use:

Prototype:

void	RegisterObjectAppDataReader(ObjectDataReaderCallback
*cb);

Remarks:
Implemented	by	the	System.
This	method	allows	a	plug-in	to	register	a	callback	that	will	be	called	when
reading	a	3DS	file	that	has	a	particular	appdata	chunk.	The	plug-in	callback	is
given	an	opportunity	to	read	the	chunk	and	create	an	object	other	than	a
TriObject	based	on	the	contents	of	the	chunk	and	the	original	object.

Parameters:
ObjectDataReaderCallback	*cb
The	callback	to	read	the	chunk	and	create	an	object.

Prototype:
Object	*ObjectFromAppData(TriObject	*obj,	char	*name,	void
*data,	DWORD	len);

Remarks:
This	function	is	used	internally	by	the	3DS	Import	plug-in.

Note	the	following	about	3DS	App	Data.	If	app	data	is	encountered	and	no	plug-
in	has	registered	to	convert	it,	then	it	is	just	hung	off	the	object	(or	INode	in	the
case	of	KXP	app	data).	For	object	app	data,	TriObject's	super	class	and	class	ID
are	used	to	identify	the	chunk	and	the	sub	ID	is	set	to	0.	For	node	app	data,
INode's	super	class	and	class	ID	are	used	to	identify	the	chunk	and	the	sub	ID	is
set	to	0.
This	single	3ds	max	app	data	chunk	will	contain	the	entire	3DS	app	data	chunk,
which	may	have	sub	chunks	(see	the	IPAS	SDK).	The	following	routines	will
aid	in	parsing	3DS	app	data.

Prototype:
void	GetIDStr(char	*chunk,	char	*idstring);

Remarks:
This	function	gets	the	ID	string	out	of	an	XDATA_ENTRY	chunk	and	null
terminates	it.

Parameters:
char	*chunk

A	pointer	to	the	chunk.
char	*idstring
The	ID	string.

Prototype:
int	FindAppDataChunk(void	*appd,	DWORD	len,	char	*idstring);

Remarks:
Returns	the	offset	into	appd	of	the	specified	chunk	or	-1	if	it	is	not	found.

Parameters:
void	*appd
The	is	the	entire	app	data	chunk	containing	all	the	sub-chunks.
DWORD	len
This	is	the	length	of	the	entire	app	data	chunk.
char	*idstring
The	ID	of	the	chunk	to	find.

Return	Value:
The	offset	into	appd	of	the	specified	chunk	or	-1	if	it	is	not	found.

Prototype:
void	*GetAppDataChunk(void	*appd,	DWORD	len,	char
*idstring);

Remarks:
This	function	is	similar	to	FindAppDataChunk()	above,	but	returns	a
pointer	to	the	chunk	or	NULL	if	it	is	not	found.

Parameters:
void	*appd
The	is	the	entire	app	data	chunk	containing	all	the	sub-chunks.
DWORD	len
This	is	the	length	of	the	entire	app	data	chunk.
char	*idstring
The	ID	of	the	chunk	to	find.

Return	Value:

A	pointer	to	the	chunk	or	NULL	if	it	is	not	found.

Prototype:
int	SetAppDataChunk(void	**pappd,	DWORD	&len,	void
*chunk);

Remarks:
This	function	adds	the	chunk	to	the	appdata	chunk,	preserving	existing
chunks.	chunk	should	point	to	the	new	chunk	header	followed	by	its	data.

Parameters:
void	**pappd
The	is	the	entire	app	data	chunk	containing	all	the	sub-chunks.
DWORD	&len
This	is	the	length	of	the	entire	app	data	chunk.
void	*chunk
A	pointer	to	the	new	chunk	header.

Return	Value:
Nonzero	if	the	chunk	was	added;	otherwise	zero.

Prototype:
int	DeleteAppDataChunk(void	**pappd,	DWORD	&len,	char
*idstring);

Remarks:
Deletes	a	chunk	from	the	appdata	while	preserving	other	chunks.

Parameters:
void	**pappd
The	is	the	entire	app	data	chunk	containing	all	the	sub-chunks.
DWORD	&len
This	is	the	length	of	the	entire	app	data	chunk.
char	*idstring
The	ID	of	the	chunk	to	delete.

Return	Value:
Nonzero	if	the	chunk	was	deleted;	otherwise	zero.

List	of	Class	IDs
See	Also:	Class	Class_ID,	List	of	Super	Class	IDs.
These	are	the	Class_IDs	of	the	standard	built-in	classes.	These	IDs	are	defined	in
\MAXSDK\INCLUDE\PLUGAPI.H.
The	following	are	global	instances	of	several	Class_IDs	defined	by	the	system:
triObjectClassID	-	Triangle	mesh	Objects	(TriObjects).
defObjectClassID	-	General	deformable	object.	These	are	objects	that
provide	points	for	modification.
mapObjectClassID	-	General	texture-mappable	object.
patchObjectClassID	-	Patch	objects.
genericShapeClassID	-	Generic	shapes.
splineShapeClassID	-	Spline	shapes.
linearShapeClassID	-	Linear	shapes.
loftObjectClassID	-	Loft	object.
derivObjClassID	-	Object	space	derived	objects.
WSMDerivObjClassID	-	World	space	derived	objects.

This	Class_ID	is	#defined	for	NURBS	objects	(#define
EDITABLE_SURF_CLASS_ID	Class_ID(0x76a11646,	0x12a822fb)):
EDITABLE_SURF_CLASS_ID	-	NURBS	objects.

Listed	below	are	the	first	ULONG	of	the	8	byte	ID.	The	second	ULONG	is	0	for
all	built-in	classes	(unless	noted	otherwise).	For	example	a	Class_ID	for	a
TriObject	would	read:
Class_ID(TRIOBJ_CLASS_ID,	0);

Note	that	only	built-in	classes	should	have	the	second	ULONG	equal	to	0.	All
plug-in	developers	should	use	both	ULONGs.
The	Class_IDs	are	organized	by	their	SuperClassIDs.
Subclass	of	all	super	classes
STANDIN_CLASS_ID	-	Stand-In

Subclasses	of	REF_MAKER_CLASS_ID
MTL_LIB_CLASS_ID	-	Mtl	Library.
MTLBASE_LIB_CLASS_ID	-	MtlBase	Library.
THE_SCENE_CLASS_ID	-	The	Scene.

MEDIT_CLASS_ID	-	Materials	Editor.
Subclasses	of	GEOMOBJECT_CLASS_ID
Built	into	core
TRIOBJ_CLASS_ID	-	TriObject
PATCHOBJ_CLASS_ID	-	PatchObject

Primitives
BOXOBJ_CLASS_ID	-	Box	Primitive.
SPHERE_CLASS_ID	-	Sphere	Primitive.
CYLINDER_CLASS_ID	-	Cylinder	Primitive.
CONE_CLASS_ID	-	Cone	Primitive.
TORUS_CLASS_ID	-	Torus	Primitive.
TUBE_CLASS_ID	-	Tube	Primitive.
HEDRA_CLASS_ID	-	Hedra	Primitive.
TEAPOT_CLASS_ID1	-	The	teapot	is	unique	in	that	it	uses	both
DWORDs	in	its	class	IDs.
TEAPOT_CLASS_ID2	-	The	teapot	is	unique	in	that	it	uses	both
DWORDs	in	its	class	IDs.
PATCHGRID_CLASS_ID	-	Patch	Grid

Particles
RAIN_CLASS_ID	-	Rain	Particle	System
SNOW_CLASS_ID	-	Snow	Particle	System

Subclasses	of	Object	Snaps
GRID_OSNAP_CLASS_ID	-	Class_ID(0x62f565d6,	0x110a1f97)

Space	Warp	Objects
WAVEOBJ_CLASS_ID	-	Wave	Space	Warp	Object

Shapes
SPLINE3D_CLASS_ID	-	Spline3D	Shape
NGON_CLASS_ID	-	NGon
DONUT_CLASS_ID	-	Donut	Shape
STAR_CLASS_ID	-	Start	Shape
RECTANGLE_CLASS_ID	-	Rectangle	Shape
HELIX_CLASS_ID	-	Hexlix	Shape
ELLIPSE_CLASS_ID	-	Ellipse	Shape

CIRCLE_CLASS_ID	-	Circle	Shape
The	basic	lofter	class
LOFTOBJ_CLASS_ID	-	This	is	the	basic	Loft	object	class
LOFT_DEFCURVE_CLASS_ID	-	This	is	the	class	which	defines	loft
object	deformation	curves.	These	are	the	Scale,	Twist,	Teeter,	Bevel	and	Fit
curves	which	deform	the	basic	loft	object	mesh.

Standard	3ds	max	implementation	of	the	lofter
LOFT_GENERIC_CLASS_ID

Target	objects
TARGET_CLASS_ID	-	Light	and	Camera	target	objects.

Morph	objects
MORPHOBJ_CLASS_ID	-	Morph	objects.

Subclasses	of	CAMERA_CLASS_ID
SIMPLE_CAM_CLASS_ID	-	Free	Camera
LOOKAT_CAM_CLASS_ID	-	Target	Camera

Subclasses	of	LIGHT_CLASS_ID:
OMNI_LIGHT_CLASS_ID	-	Omni	Light
SPOT_LIGHT_CLASS_ID	-	Spot	Light
DIR_LIGHT_CLASS_ID	-	Directional	Light
FSPOT_LIGHT_CLASS_ID	-	Free	Spot	Light
TDIR_LIGHT_CLASS_ID	-	Target	Directional	Light

Subclasses	of	HELPER_CLASS_ID
DUMMY_CLASS_ID	-	Dummy	Object
BONE_CLASS_ID	-	Bones	System
TAPEHELP_CLASS_ID	-	Tape	Helper
GRIDHELP_CLASS_ID	-	Grid	Helper
POINTHELP_CLASS_ID	-	Point	Helper
PROTHELP_CLASS_ID	-	Protractor	(Angle-Measuring)	Helper

Subclasses	of	MATERIAL_CLASS_ID
CMTL_CLASS_ID	-	Top/Bottom	Material.
MULTI_CLASS_ID	-	Multi	Material
DOUBLESIDED_CLASS_ID	-	Double	sided	Material

MIXMAT_CLASS_ID	-	Mix	Material
Subclasses	of	TEXMAP_CLASS_ID
CHECKER_CLASS_ID	-	Checker	Texture
MARBLE_CLASS_ID	-	Marble	3D	Texture
MASK_CLASS_ID	-	Mask	Texture
MIX_CLASS_ID	-	Mix	Texure
NOISE_CLASS_ID	-	Noise	Texture
GRADIENT_CLASS_ID	-	Gradient	Texture
TINT_CLASS_ID	-	Tint	texture
BMTEX_CLASS_ID	-	Bitmap	texture
ACUBIC_CLASS_ID	-	Reflect/refract
MIRROR_CLASS_ID	-	Flat	mirror
COMPOSITE_CLASS_ID	-	Composite	texture
RGBMULT_CLASS_ID	-	RGB	Multiply	texture
FALLOFF_CLASS_ID	-	Falloff	texture
OUTPUT_CLASS_ID	-	Output	texture
PLATET_CLASS_ID	-	Plate	glass	texture
VCOL_CLASS_ID	-	Vertex	Color	texture

Subclasses	of	RENDERER_CLASS_ID
SREND_CLASS_ID	-	Default	scan-line	renderer

Default	material	class	(the	Standard	material)
DMTL_CLASS_ID	-	The	Standard	material,	i.e.	the	default	material.

Subclasses	of	SOUNDOBJ_CLASS_ID
DEF_SOUNDOBJ_CLASS_ID	-	Default	Sound	Object

Subclasses	of	OSM_CLASS_ID
SKEWOSM_CLASS_ID	-	Skew	Object	Space	Modifier
BENDOSM_CLASS_ID	-	Bend	Object	Space	Modifier
TAPEROSM_CLASS_ID	-	Taper	Object	Space	Modifier
TWISTOSM_CLASS_ID	-	Twist	Object	Space	Modifier
UVWMAPOSM_CLASS_ID	-	UVW	Map	Object	Space	Modifier
SELECTOSM_CLASS_ID	-	Volume	Selection	Object	Space	Modifier
MATERIALOSM_CLASS_ID	-	Materiall	Object	Space	Modifier
SMOOTHOSM_CLASS_ID	-	Smooth	Object	Space	Modifier

NORMALOSM_CLASS_ID	-	Normal	Object	Space	Modifier
OPTIMIZEOSM_CLASS_ID	-	Optimize	Object	Space	Modifier
EXTRUDEOSM_CLASS_ID	-	Extrude	Object	Space	Modifier
AFFECTREGION_CLASS_ID	-	Affect	Region	Object	Space
Modifier
SUB_EXTRUDE_CLASS_ID	-	Face	Extrude	Object	Space	Modifier
TESSELLATE_CLASS_ID	-	Tesselate	Object	Space	Modifier
DELETE_CLASS_ID	-	Delete	Mesh	Object	Space	Modifier
MESHSELECT_CLASS_ID	-	Mesh	Select	Object	Space	Modifier
UVW_XFORM_CLASS_ID	-	UVW	XForm	Object	Space	Modifier
SURFREVOSM_CLASS_ID	-	Lathe	Object	Space	Modifier
DISPLACEOSM_CLASS_ID	-	Displace	Object	Space	Modifier
DISPLACE_OBJECT_CLASS_ID	-	Displace	World	Space	Modifier
Object
DISPLACE_WSM_CLASS_ID	-	Displace	World	Space	Modifier
SINEWAVE_OBJECT_CLASS_ID	-	Ripple	Object	Space	Modifier
SINEWAVE_CLASS_ID	-	Ripple	World	Space	Modifier	Object
SINEWAVE_OMOD_CLASS_ID	-	Ripple	World	Space	Modifier
LINWAVE_OBJECT_CLASS_ID	-	Wave	Object	Space	Modifier
LINWAVE_CLASS_ID	-	Wave	World	Space	Modifier	Object
LINWAVE_OMOD_CLASS_ID	-	Wave	World	Space	Modifier
GRAVITYOBJECT_CLASS_ID	-	Gravity	World	Space	Modifier
Object
GRAVITYMOD_CLASS_ID	-	Gravity	World	Space	Modifier
WINDOBJECT_CLASS_ID	-	Gravity	World	Space	Modifier	Object
WINDMOD_CLASS_ID	-	Gravity	World	Space	Modifier
DEFLECTOBJECT_CLASS_ID	-	Deflect	World	Space	Modifier
Object
DEFLECTMOD_CLASS_ID	-	Deflect	World	Space	Modifier
BOMB_OBJECT_CLASS_ID	-	Bomb	World	Space	Modifier	Object
BOMB_CLASS_ID	-	Bomb	World	Space	Modifier

The	following	are	Class_IDs	for	various	controllers:
LININTERP_FLOAT_CLASS_ID	-	Linear	float	controller.
LININTERP_POSITION_CLASS_ID	-	Linear	position	controller

LININTERP_ROTATION_CLASS_ID	-	Linear	rotation	controller
LININTERP_SCALE_CLASS_ID	-	Linear	scale	controller
PRS_CONTROL_CLASS_ID	-	Position/Rotation/Scale	Controller
LOOKAT_CONTROL_CLASS_ID	-	Lookat	controller
HYBRIDINTERP_FLOAT_CLASS_ID	-	Bezier	float	controller.
HYBRIDINTERP_POSITION_CLASS_ID	-	Bezier	position
controller
HYBRIDINTERP_ROTATION_CLASS_ID	-	Bezier	rotation
controller
HYBRIDINTERP_POINT3_CLASS_ID	-	Bezier	Point3	controller
HYBRIDINTERP_SCALE_CLASS_ID	-	Bezier	scale	controller
HYBRIDINTERP_COLOR_CLASS_ID	-	Bezier	color	controller
TCBINTERP_FLOAT_CLASS_ID	-	TCB	Float	Controller
TCBINTERP_POSITION_CLASS_ID	-	TCB	Position	Controller
TCBINTERP_ROTATION_CLASS_ID	-	TCB	Rotation	Controller
TCBINTERP_POINT3_CLASS_ID	-	TCB	Point3	Controller
TCBINTERP_SCALE_CLASS_ID	-	TCB	Scale	Controller
PATH_CONTROL_CLASS_ID	-	Path	Controller
EULER_CONTROL_CLASS_ID	-	Euler	Angle	Controller
EXPR_POS_CONTROL_CLASS_ID	-	Expression	Position
Controller
EXPR_P3_CONTROL_CLASS_ID	-	Expression	Point3	Controller
EXPR_FLOAT_CONTROL_CLASS_ID	-	Expression	Float
Controller
EXPR_SCALE_CONTROL_CLASS_ID	-	Expression	Scale
Controller
EXPR_ROT_CONTROL_CLASS_ID	-	Expression	Rotation
Controller
FLOATNOISE_CONTROL_CLASS_ID	-	Noise	Float	Controller
POSITIONNOISE_CONTROL_CLASS_ID	-	Noise	Position
Controller
POINT3NOISE_CONTROL_CLASS_ID	-	Noise	Point3	Controller
ROTATIONNOISE_CONTROL_CLASS_ID	-	Noise	Rotation
Controller
SCALENOISE_CONTROL_CLASS_ID	-	Noise	Scale	Controller

SURF_CONTROL_CLASSID	-	Surface	Position	Controller
LINKCTRL_CLASSID	-	Link	Inheritance	Controller

List	of	Super	Class	IDs
See	Also:	List	of	Class	IDs.
The	following	Super	Class	IDs	are	defined	in
\MAXSDK\INCLUDE\PLUGAPI.H:	Note:	typedef	ulong	SClass_ID;
GEOMOBJECT_CLASS_ID	-	Used	by	geometric	objects.
CAMERA_CLASS_ID	-	Used	by	plug-in	cameras.
LIGHT_CLASS_ID	-	Used	by	plug-in	lights.
SHAPE_CLASS_ID	-	Used	by	spline	shapes.
HELPER_CLASS_ID	-	Used	by	helper	objects.
SYSTEM_CLASS_ID	-	Used	by	system	plug-ins.
OSM_CLASS_ID	-	Used	by	Object	Space	Modifiers.
WSM_CLASS_ID	-	Used	by	Space	Warp	Modifiers	(World	Space
Modifiers).
WSM_OBJECT_CLASS_ID	-	Used	by	Space	Warp	Objects	(World
Space	Modifier	Objects).
SCENE_IMPORT_CLASS_ID	-	Used	by	Scene	Import	plug-ins.
SCENE_EXPORT_CLASS_ID	-	Used	by	Scene	Export	plug-ins.
BMM_STORAGE_CLASS_ID	-	Bitmap	storage.
BMM_FILTER_CLASS_ID	-	Used	by	Image	Filter	plug-ins.
BMM_IO_CLASS_ID	-	Used	by	Image	Loading/Saving	plug-ins	(IO
Modules).
BMM_DITHER_CLASS_ID	-	Bitmap	dithering.
BMM_COLORCUT_CLASS_ID	-	Bitmap	color	cut.
USERDATATYPE_CLASS_ID	-	This	is	obsolete.
MATERIAL_CLASS_ID	-	Used	by	plug-in	Materials.
TEXMAP_CLASS_ID	-	Used	by	plug-in	Textures.
UVGEN_CLASS_ID	-	Used	by	the	UVGen	class	that	handles	the	UV
coordinate	interface.
XYZGEN_CLASS_ID	-	Used	by	the	XYZGen	class.
TEXOUTPUT_CLASS_ID	-	Used	by	the	TextureOutput	class.
SOUNDOBJ_CLASS_ID	-	Used	by	sound	object	plug-ins.
FLT_CLASS_ID	-	Used	by	image	processing	filter	plug-ins.
RENDERER_CLASS_ID	-	Used	by	plug-in	renderers.

BEZFONT_LOADER_CLASS_ID	-	Used	by	bezier	font	loader	plug-
ins.
REF_MAKER_CLASS_ID	-	These	are	items	such	as	material	libraries,
the	scene,	and	medit.
ATMOSPHERIC_CLASS_ID	-	Used	by	atmospheric	plug-ins.
UTILITY_CLASS_ID	-	Used	by	utility	plug-ins.
TRACKVIEW_UTILITY_CLASS_ID	-	Used	by	Track	View	Utility
plug-ins.
FRONTEND_CONTROL_CLASS_ID	-	Used	by	Front	End	Controller
plug-ins.
MOT_CAP_DEV_CLASS_ID	-	Used	by	Motion	Capture	plug-ins.
MOT_CAP_DEVBINDING_CLASS_ID	-	Used	by	Motion	Capture
Device	Bindings.
OSNAP_CLASS_ID	-	Used	by	Object	Snap	plug-ins.
TEXMAP_CONTAINER_CLASS_ID	-	In	3ds	max	2.0	and	later	this
new	super	class	has	been	added.	This	is	used	by	the	Standard	material	to
contain	its	Texmaps.	The	track	view	filter	code	has	been	modified	so	it	now
looks	for	this	class	and	will	filter	it	out	when	maps	are	being	filtered	out,
instead	of	having	special	purpose	code	for	the	Standard	Material.	This	will
permit	plug-in	developers	to	put	their	Texmaps	down	in	a	sub-directory	like
the	Standard	material	does.
RENDER_EFFECT_CLASS_ID	-	Used	by	Render	Effect	plug-ins	(R3
and	later	only).
FILTER_KERNEL_CLASS_ID	-	Used	by	Anti-Aliasing	Filter	plug-ins
(R3	and	later	only)
SHADER_CLASS_ID	-	Used	by	Shader	plug-ins	which	plug-in	to	the
Standard2	material	(R3	and	later	only).
COLPICK_CLASS_ID	-	Used	by	color	picker	plug-ins	(R3	and	later
only)
SHADOW_TYPE_CLASS_ID	-	Used	by	shadow	generators	(R3	and
later	only)
GUP_CLASS_ID	-	Used	by	Global	Utility	Plug-Ins	(R3	and	later	only)
LAYER_CLASS_ID	-	Used	by	VIZ	layer	(R3	and	later	only).
SCHEMATICVIEW_UTILITY_CLASS_ID	-	Used	by	Schematic
View	(R3	and	later	only)

SAMPLER_CLASS_ID	-	Used	by	Sampler	plug-ins	(R3	and	later	only)
Super-class	ID's	used	by	various	controllers
CTRL_FLOAT_CLASS_ID	-	Used	by	float	controllers.
CTRL_POINT3_CLASS_ID	-	Used	by	Point3	controllers.
CTRL_MATRIX3_CLASS_ID	-	Used	by	Matrix3	controllers.
CTRL_POSITION_CLASS_ID	-	Used	by	position	controllers.
CTRL_ROTATION_CLASS_ID	-	Used	by	rotation	controllers.
CTRL_SCALE_CLASS_ID	-	Used	by	scale	controllers.
CTRL_MORPH_CLASS_ID	-	Used	by	morph	controllers.
	
CTRL_SHORT_CLASS_ID	-	This	SuperClassID	is	obsolete.
CTRL_POINT2_CLASS_ID	-	This	SuperClassID	is	obsolete.
CTRL_QUAT_CLASS_ID	-	This	SuperClassID	is	obsolete.
CTRL_INTEGER_CLASS_ID	-	This	SuperClassID	is	obsolete.
CTRL_POS_CLASS_ID	-	This	SuperClassID	is	obsolete.
CTRL_COLOR_CLASS_ID	-	This	SuperClassID	is	obsolete.
CTRL_COLOR24_CLASS_ID	-	This	SuperClassID	is	obsolete.
CTRL_USERTYPE_CLASS_ID	-	This	SuperClassID	is	obsolete.

Class	ChangeForegroundCallback
See	Also:	Class	CommandMode,	Class	IScene.
class	ChangeForegroundCallback

Description:
The	purpose	of	this	callback	is	to	call	INode::FlagForeground()	for	any
nodes	in	the	scene	that	are	supposed	to	be	in	the	foreground.

Methods:

Prototype:
virtual	BOOL	IsValid()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	this	foreground	callback	is	valid	;	otherwise	FALSE.	When
the	system	needs	to	redraw	the	viewports	the	system	checks	to	see	if	the
current	foreground	callback	is	the	same	one	that	was	in	place	the	last	time.	If	it
is	the	same	the	system	will	call	this	method	to	see	if	the	state	is	valid.	If	the
state	is	not	valid	(this	method	returns	FALSE)	then	the	foreground	and
background	are	re-built	and	then	the	Validate()	method	is	called	so	this
foreground	callback	may	note	that	it	is	invalid.

Prototype:
virtual	void	Invalidate()=0;

Remarks:
Implemented	by	the	Plug-In.
The	system	calls	this	method	of	the	plug-in	when	the	foreground	state	is	no
longer	valid.	The	plug-in	should	set	a	flag	internally	to	indicate	it	is	invalid.
For	example	if	the	current	node	selection	set	changes	the	system	calls	this
method	to	mark	it	as	invalid	so	that	the	next	time	the	system	goes	to	redraw
the	viewports	it	can	determine	that	it	would	need	to	rebuild	the	foreground	and
the	background.

Prototype:

virtual	void	Validate()=0;
Remarks:
Implemented	by	the	Plug-In.
The	system	calls	this	method	when	the	foreground	state	is	valid.	For	example
after	the	foreground	and	background	buffers	have	been	re-built	this	method	is
called.	The	plug-in	should	set	a	flag	internally	to	indicate	it	is	valid.

Prototype:
virtual	void	callback(TimeValue	t,IScene	*scene)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	enumerate	the	scene	and	flag	nodes	in	the	scene	that
need	to	go	in	the	foreground.

Parameters:
TimeValue	t
The	time	to	flag	the	nodes.
IScene	*scene
This	interface	pointer	provides	methods	to	enumerate	all	nodes	in	the	scene,	or
to	flag	nodes	that	are	selected,	animated	or	dependent	on	a	given	node.

Class	FPInterface	(and	Class	FPMixinInterface)
See	Also:	Class	BaseInterface,	Class	ClassDesc,	Class	FPInterfaceDesc,	Class
Interface_ID,	Class	ActionTable,	List	of	FPStatus	Values,	Function	Publishing
System.
class	FPInterface	:	public	BaseInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	Function	Publishing	system	makes	use	of	this	class.	Functions	are	published
in	one	or	more	Interfaces	by	a	plug-in.	Each	interface	is	represented	by	an
instance	of	a	class	derived	from	this	base	class.
Note	that	the	Function	Publishing	class	hierarchy	is	as	follows:
FPInterface:	This	is	the	base	class	for	all	interfaces,	the	prime	client	type	for
using	interfaces.
FPInterfaceDesc:	This	is	the	class	which	contains	interface	metadata.
FPStaticInterface:	This	is	the	class	to	use	as	the	base	class	for	defining
static	or	core	virtual	interface	classes.
FPMixinInterface:	This	is	for	use	as	the	base	class	for	defining	object-
based	mixin	interface	classes,	in	this	case	you	also	use	FPInterfaceDesc	for
mixin	interface	descriptors.

Methods:
public:

Prototype:
virtual	FPInterfaceDesc*	GetDesc()	=	0;

Remarks:
Returns	a	pointer	to	the	class	which	contains	the	interface	=	4)
BSPSPopupOnMouseOver(event);;">metadata.

Prototype:
virtual	FPStatus	Invoke(FunctionID	fid,	TimeValue	t=0,
FPParams*	params=NULL);

Remarks:

javascript:BSSCPopup('idx_metadata.htm');

	
Parameters:
FunctionID	fid
The	function	ID	of	the	function	to	invoke.
TimeValue	t=0
The	timevalue	at	which	to	invoke	the	function.
FPParams*	params=NULL
The	FPParams	to	pass.

Return	Value:
The	FPStatus.	See	the	List	of	FPStatus	Values	for	details

Prototype:
virtual	inline	FPStatus	Invoke(FunctionID	fid,	FPParams*
params);

Remarks:
This	method	will	invoke	the	specified	function.

Parameters:
FunctionID	fid
The	function	ID	of	the	function	to	invoke.
FPParams*	params
The	FPParams	to	pass.

Return	Value:
The	FPStatus.	See	the	List	of	FPStatus	Values	for	details

Prototype:
virtual	FPStatus	Invoke(FunctionID	fid,	TimeValue	t,	FPValue&
result,	FPParams*	params=NULL);

Remarks:
This	method	will	invoke	the	specified	function.

Parameters:
FunctionID	fid
The	function	ID	of	the	function	to	invoke.

TimeValue	t
The	timevalue	at	which	to	invoke	the	function.
FPValue&	result
A	reference	to	the	resulting	FPValue.
FPParams*	params=NULL
The	FPParams	to	pass.

Return	Value:
The	FPStatus.	See	the	List	of	FPStatus	Values	for	details

Prototype:
virtual	inline	FPStatus	Invoke(FunctionID	fid,	FPValue&	result,
FPParams*	params=NULL);

Remarks:
This	method	will	invoke	the	specified	function.

Parameters:
FunctionID	fid
The	function	ID	of	the	function	to	invoke.
FPValue&	result
A	reference	to	the	resulting	FPValue.
FPParams*	params=NULL
The	FPParams	to	pass.

Return	Value:
The	FPStatus.	See	the	List	of	FPStatus	Values	for	details

Prototype:
virtual	FunctionID	FindFn(TCHAR*	name);

Remarks:
This	method	returns	a	function	ID	based	on	the	name	of	the	function	specified.

Parameters:
TCHAR*	name
The	name	of	the	function	to	retrieve	the	Function	ID	for.

Prototype:
virtual	BOOL	IsEnabled(FunctionID	actionID);

Remarks:
This	method	allows	you	to	check	whether	a	specific	action	function	is	enabled,
in	which	case	the	method	will	return	TRUE.	If	the	action	function	is	not
enabled	FALSE	will	be	returned.

Parameters:
FunctionID	actionID
The	function	ID	of	the	action	you	wish	to	check	the	enabled	state	for.

Prototype:
virtual	BOOL	IsChecked(FunctionID	actionID);

Remarks:
This	method	allows	you	to	check	whether	a	specific	action	function	is
checked,	in	which	case	the	method	will	return	TRUE.	If	the	action	function	is
not	checked	FALSE	will	be	returned.

Parameters:
FunctionID	actionID
The	function	ID	of	the	action	you	wish	to	check	the	checked	state	for.

Prototype:
virtual	BOOL	IsVisible(FunctionID	actionID);

Remarks:
This	method	allows	you	to	check	whether	a	specific	action	function	is	visible,
in	which	case	the	method	will	return	TRUE.	If	the	action	function	is	not
visible	FALSE	will	be	returned.

Parameters:
FunctionID	actionID
The	function	ID	of	the	action	you	wish	to	check	the	visibility	state	for.

Prototype:
virtual	FunctionID	GetIsEnabled(FunctionID	actionID);

Remarks:
This	method	will	return	the	isEnabled	ID	for	the	specified	action	function.

Parameters:
FunctionID	actionID
The	function	ID	of	the	action	you	wish	to	get	the	isEnabled	ID	for.

Prototype:
virtual	FunctionID	GetIsChecked(FunctionID	actionID);

Remarks:
This	method	will	return	the	isChecked	ID	for	the	specified	action	function.

Parameters:
FunctionID	actionID
The	function	ID	of	the	action	you	wish	to	get	the	isChecked	ID	for.

Prototype:
virtual	FunctionID	GetIsVisible(FunctionID	actionID);

Remarks:
This	method	will	return	the	isVisible	ID	for	the	specified	action	function.

Parameters:
FunctionID	actionID
The	function	ID	of	the	action	you	wish	to	get	the	isVisible	ID	for.

Prototype:
virtual	bool	Acquire(FPInterfaceCallback*	fpicb=NULL);

Remarks:
This	method	is	called	when	MAXScript	makes	a	reference	to	this	object.	Call
this	method	with	a	non-NULL	FPInterfaceCallback	so	the	interface	can
signal	deletion	(usually	a	mixin).

Parameters:
FPInterfaceCallback*	fpicb=NULL
A	pointer	to	an	FPInterfaceCallback	class.

Return	Value:

This	method	should	return	TRUE	if	it	needs	Release()	called.
Default	Implementation:
{	return	false;	}

Prototype:
virtual	void	Release(FPInterfaceCallback*	fpicb=NULL);

Remarks:
This	method	is	called	when	MAXScript	deletes	a	reference	to	this	object.

Parameters:
FPInterfaceCallback*	fpicb=NULL
A	pointer	to	an	FPInterfaceCallback	class.

Default	Implementation:
{	}

Prototype:
virtual	ActionTable*	GetActionTable();

Remarks:
This	method	returns	a	pointer	to	the	ActionTable.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	void	EnableActions(BOOL	onOff);

Remarks:
This	method	allows	you	to	enable	or	disable	the	entire	set	of	actions	in	the
interface	You	might	want	to	use	this	method	if	the	actions	are	only	to	be	active
during	certain	periods	in	the	running	of	3ds	max.	Usually,	this	control	is
achieved	via	ActionTable	contexts.

Parameters:
BOOL	onOff
TRUE	to	enable	actions,	FALSE	to	disable	them.

Default	Implementation:
{	}

Class	FPMixinInterface
See	Also:	Class	FPInterface,	Class	FPInterfaceDesc,	Function	Publishing
System.
class	FPMixinInterface	:	public	FPInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
A	"Mixin"	interface	provides	a	way	for	a	plug-in	to	expose	some	of	its
functionality	for	use	by	other	plug-ins	or	MAXScript.	The	notion	of	"Mixin"
refers	to	the	idea	that	the	interface	is	a	sub-class	of	the	plug-in	class	and	thus
"mixed	in"	with	it.	Many	classes	in	the	SDK	now	inherit	from	FPMixinInterface
in	order	to	expose	some	of	their	functionality.
Developers	should	see	the	documentation	for	Class	FPInterface	for	reference	on
this	class	as	well.
For	an	overview	of	the	Function	Publishing	System	as	a	whole,	see	the
Advanced	Topics	section	Function	Publishing	System.

Methods:
public:

Prototype:
virtual	FPInterfaceDesc*	GetDescByID(Interface_ID	id);

Remarks:
This	method	is	used	to	directly	implement	FPInterface::GetDesc()	in	your
public	virtual	base	mixin	class,	like	this;
FPInterfaceDesc*	GetDesc()	{	return
GetDescByID(THIS_INTERFACE_ID);	}
Then	implement	a	GetDescByID()	in	the	implementing	class	to	avoid	link
export	issues.

Parameters:
Interface_ID	id
The	unique	interface	ID	by	which	to	get	the	FPInterfaceDesc.

Default	Implementation:

{	return	&nullInterface;	}

Prototype:
virtual	Interface_ID	GetID();

Remarks:
This	method	overrides	GetID()	in	those	interfaces	that	do	not	publish	metadata
but	instead	have	a	unique	Interface_ID	for	quick	internal	identification	in
implementation	code	that	might	be	shared	by	a	bunch	of	mixin	interfaces.

Return	Value:
The	Interface_ID.

Default	Implementation:
{	return	GetDesc()->ID;	}

Class	FPInterfaceDesc
See	Also:	Class	FPInterface,	=	4)	BSPSPopupOnMouseOver(event);;">Class
ClassDesc,	Class	Interface_ID,	Class	FPEnum,	Class	FPFunctionDef,	Class
FPPropDef,	Class	ActionTable,	Template	Class	Tab,	Function	Publishing
System.
class	FPInterfaceDesc	:	public	FPInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	the	Function	Publishing	interface	descriptor.	This	is	usually	a	static
instance	of	the	implementation	interface.	The	constructor	for	this	class	uses	the
same	var-args	technique	used	by	the	ParamBlockDesc2	constructor,	enabling
descriptive	information	for	all	the	functions	in	the	interface	to	be	supplied	in	one
constructor	call.
	
The	FPInterfaceDesc	class,	an	FPInterface	that	contains	the	metadata	for	an
interface,	is	a	distinguished		singleton	instance	per	interface	kept	in	a	Tab<>	in
ClassDesc.	This	class	is	subclassed	typically	by	static	and	core	interfaces	and
instantiated	by	mixins	to	provide	their	metadata.
Note	the	following	typedef:	typedef	FPInterfaceDesc	FPStaticInterface

Data	Members:
public:
Interface_ID	ID;
The	unique	ID	of	the	interface.
TSTR	internal_name;
The	fixed	internal	name	for	the	interface.
StringResID	description;
The	description	string	resource	ID.
ClassDesc*	cd;
Points	to	the	publishing	plug-in's	ClassDesc.
USHORT	flags;
The	flag	bits.	One	or	more	of	the	following	values:
FP_ACTIONS

javascript:BSSCPopup('idx_R_class_classdesc.htm');

Marks	this	as	an	Action	Interface,	holding	only	UI	modal,	zero	parameter
action	functions.
FP_MIXIN
Marks	this	as	a	Mixin	Interface,	it	is	implemented	directly	by	the	plug-in
class,	so	the	methods	in	it	are	virtual	on	the	plugin's	objects.
FP_CORE
Marks	this	as	a	3ds	max	Core	Interface,	available	through
GetCOREInterface(Interface_ID).
FP_STATIC_METHODS
This	interface	is	used	as	a	static	method	interface	in	MAXScript,	properties
are	not	directly	callable
FP_SCRIPTED_CLASS
Internal	use	only:	Belongs	to	a	scripted	plug-in	class.
FP_TEMPORARY
Internal	use	only:	Temporary	descriptor	built	during	scene	load.

Tab<FPFunctionDef*>	functions;
A	table	of	descriptors	for	individual	functions	in	this	interface.
Tab<FPPropDef*>	props;
A	Table	of	descriptors	for	individual	properties	in	this	interface.
Tab<FPEnum*>	enumerations;
A	table	of	any	symbolic	enums	for	the	interface.	This	is	a	Tab<>	of	pointers	to
FPEnum	class	instances	which	themselves	contain	a	Tab<>	of	name,	code
pairs.

The	following	data	members	are	for	scripted	plug-ins	if	this	interface	belongs	to
a	scripted	plug-in	class.
MSPluginClass*	pc;
The	scripted	class	if	non-NULL	(gc-protected	by	the	scripted	plugin	class).
Rollout*	rollout;
The	rollout	if	specified	(gc-protected	by	the	scripted	plugin	class).
ActionTable*	action_table;
The	table	published	for	this	action	interface.
For	more	information,	see	Class	ActionTable.

Methods:

public:

Prototype:
FPInterfaceDesc();

Remarks:
Constructor.	No	initialization	is	performed.

Prototype:
FPInterfaceDesc(Interface_ID	id,	TCHAR*	int_name,
StringResID	descr,	ClassDesc*	cd,	ULONG	flag,	...);

Remarks:
Constructor.

Parameters:
Interface_ID	id
The	unique	ID	of	the	interface.
TCHAR*	int_name
The	fixed	internal	name	for	the	interface.
StringResID	descr
A	string	resource	ID	containing	the	description	for	this	interface	class.
ClassDesc*	cd
A	pointer	to	a	ClassDesc	class	descriptor	of	the	publishing	plug-in.
ULONG	flag
The	flag	bits.	One	or	more	of	the	following	values:	FP_ACTIONS,
FP_MIXIN,	FP_CORE,	FP_STATIC_METHODS,
FP_SCRIPTED_CLASS,	FP_TEMPORARY.	For	a	description	see	the
data	members	descriptions.
...
This	constructor	takes	a	variable	number	of	arguments	representing	the
‘properties’	sections	and	function	definitions.	For	more	information	see	the
advanced	topics	on	Function	Publishing.

Prototype:
virtual	void	Init();

Remarks:
This	is	a	virtual	method	called	by	the	varargs-based	constructors	for	interface
descriptors	and	static	interfaces,	so	that	they	have	an	opportunity	to	do	runtime
initialization	of	any	extra	state	data	you	add	to	these	interfaces	(usually	to
static	interfaces).	Since	such	interfaces	are	usually	constructed	with	the	built-
in	varargs	constructor,	there	is	no	way	to	do	custom	initialization	without	a
hook	like	the	Init()	call.	Your	static	interface	would	provide	an	implementation
of	Init()	to	do	any	special	initialization.

Default	Implementation:
{	}

Prototype:
void	LoadDescriptor(Interface_ID	id,	TCHAR*	int_name,
StringResID	descr,	ClassDesc*	cd,	ULONG	flag,	...);

Remarks:
This	method	relates	to	Init().	In	some	cases,	you	really	do	need	to	provide
your	own	constructor	or	set	of	constructors	for	a	static	interface	or	descriptor,
but	you	still	want	to	be	able	to	load	it	with	all	the	interface	metadata	that	the
built-in	varargs	constructor	does.	You	can	do	this	by	calling	the
LoadDescriptor()	method	at	any	point	in	your	own	constructors	and	it	takes
the	same	arguments	as	the	built-in	varargs	constructor.

Parameters:
Interface_ID	id
The	unique	ID	of	the	interface.
TCHAR*	int_name
The	fixed	internal	name	for	the	interface.
StringResID	descr
A	string	resource	ID	containing	the	description	for	this	interface	class.
ClassDesc*	cd
A	pointer	to	a	ClassDesc	class	descriptor	of	the	publishing	plug-in.
ULONG	flag
The	flag	bits.	One	or	more	of	the	following	values:	FP_ACTIONS,
FP_MIXIN,	FP_CORE,	FP_STATIC_METHODS,

FP_SCRIPTED_CLASS,	FP_TEMPORARY.	For	a	description	see	the
data	members	descriptions.
...
This	method	takes	a	variable	number	of	arguments	representing	the
‘properties’	sections	and	function	definitions.	For	more	information	see	the
advanced	topics	on	Function	Publishing.

Construction	Utilities

Prototype:
void	SetClassDesc(ClassDesc*	i_cd);

Remarks:
This	method	sets	the	ClassDesc	pointer	associated	FPInterfaceDesc	class.	You
can	only	call	this	method	once	on	a	descriptor	and	then	only	if	it	has	been
constructed	initially	with	a	NULL	cd.	See	the	notes	in	the	constructor.
	

Parameters:
ClassDesc*	i_cd
This	points	to	the	ClassDesc	class	descriptor	to	set.

Prototype:
va_list	check_fn(va_list	ap,	int	id);

Remarks:
This	is	used	internally.

Prototype:
va_list	scan_fn(va_list	ap,	int	id,	int	index);

Remarks:
This	is	used	internally.

Prototype:
va_list	check_prop(va_list	ap,	int	id);

Remarks:
This	is	used	internally.

Prototype:
va_list	scan_prop(va_list	ap,	int	id,	int	index);

Remarks:
This	is	used	internally.

Prototype:
va_list	check_enum(va_list	ap,	EnumID	id);

Remarks:
This	is	used	internally.

Prototype:
va_list	scan_enum(va_list	ap,	EnumID	id,	int	index);

Remarks:
This	is	used	internally.

Metadata	Access

Prototype:
FPInterfaceDesc*	GetDesc();

Remarks:
This	method	returns	a	pointer	to	the	descriptor	for	this	Function	Publishing
interface	descriptor.

Default	Implementation:
{	return	this;	}

Prototype:
FPFunctionDef*	GetFnDef(FunctionID	fid);

Remarks:

This	method	returns	a	pointer	to	the	function	definition	of	a	specific	function
identified	by	its	ID.	Calls	to	this	method,	given	an	FPInterface*,	can	be
made	indirectly	through	FPInterface::GetDesc().	For	example;
FPFunctionDef*	fd	=	fpi->GetDesc()->GetFnDef(foo_move);

Parameters:
FunctionID	fid
The	unique	function	ID	used	to	identify	the	function.

Prototype:
ActionTable*	GetActionTable();

Remarks:
This	method	returns	a	pointer	to	the	action	table.

Default	Implementation:
{	return	action_table;	}

Global	Actions

Prototype:
void	EnableActions(BOOL	onOff);

Remarks:
This	method	allows	you	to	enable	or	disable	the	entire	set	of	actions	in	the
interface	You	might	want	to	use	this	method	if	the	actions	are	only	to	be	active
during	certain	periods	in	the	running	of	3ds	max.	Usually,	this	control	is
achieved	via	ActionTable	contexts.

Parameters:
BOOL	onOff;
TRUE	to	enable	actions,	FALSE	to	disable	actions.

Overridable	HInstance	and	resource	access	from	owning	module

Prototype:
virtual	HINSTANCE	HInstance();

Remarks:
This	method	will	return	a	handle	to	the	owning	instance.

Prototype:
virtual	TCHAR*	GetRsrcString(StringResID	id);

Remarks:
This	method	returns	the	string	associated	with	a	specified	String	Resource	ID

Parameters:
StringResD	id
The	string	resource	ID	for	which	you	want	to	obtain	the	string.

Class	Interface_ID
See	Also:	Class	FPInterface,	Function	Publishing	System.
class	Interface_ID

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	is	the	interface	ID	for	the	Function	Publishing	System	of	3ds	max.
This	class	is	structurally	very	similar	to	a	Class_ID,	containing	two	randomly-
chosen	longwords	to	provide	a	unique	global	ID.	The	various	constructors	assign
a	value	to	each	of	these.	There	are	also	methods	to	assign	and	retrieve	the
individual	parts	and	operators	to	check	for	equality	or	inequality.
All	the	methods	of	this	class	are	implemented	by	the	system.

Methods:
public:

Prototype:
Interface_ID();

Remarks:
Constructor.	The	two	parts	of	the	ID	are	initialized	to	0xffffffff.

Prototype:
Interface_ID(const	Interface_ID&	iid);

Remarks:
Constructor.	The	two	parts	of	the	ID	are	initialized	from	the	corresponding
parts	of	the	Interface_ID	passed.

Parameters:
const	Interface_ID&	iid
The	ID	whose	parts	are	used	to	initialize	this	ID.

Prototype:
Interface_ID(ulong	aa,	ulong	bb);

Remarks:

Constructor.	The	two	parts	of	the	ID	are	initialized	from	the	from	the	parts
passed.
	

Parameters:
ulong	aa
Passed	to	initialize	the	first	part	of	the	ID.
ulong	bb
Passed	to	initialize	the	second	part	of	the	ID.

Prototype:
ULONG	PartA();

Remarks:
Returns	the	first	part	of	the	ID.

Prototype:
ULONG	PartB();

Remarks:
Returns	the	second	part	of	the	ID.

Prototype:
void	SetPartA(ulong	aa);

Remarks:
Sets	the	first	part	of	the	ID.

Parameters:
ulong	aa
Passed	to	set	the	first	part.

Prototype:
void	SetPartB(ulong	bb);

Remarks:
Sets	the	second	part	of	the	ID.

Parameters:
ulong	bb
Passed	to	set	the	second	part.

Prototype:
int	operator==(const	Interface_ID&	iid)	const;

Remarks:
Equality	operator.	Returns	nonzero	if	the	two	parts	of	the	ID	are	equal	to	the
ID	passed;	otherwise	zero.

Parameters:
const	Interface_ID&	iid
The	ID	to	check.

Prototype:
int	operator!=(const	Interface_ID&	iid)	const;

Remarks:
Inequality	operator.	Returns	nonzero	if	either	of	the	parts	of	the	ID	are	NOT
equal	to	the	ID	passed;	otherwise	zero.

Parameters:
const	Interface_ID&	iid
The	ID	to	check.

Prototype:
Interface_ID&	operator=(const	Interface_ID&	iid);

Remarks:
Assignment	operator.

Parameters:
const	Interface_ID&	iid
The	ID	to	assign	from.

Class	FPFunctionDef
See	Also:	Class	FPInterface,	Class	FPInterfaceDesc,	Class	FPActionDef,	Class
FPParamDef,	Template	Class	Tab,	Function	Publishing	System,	List	of	Param
Type	Choices	,	List	of	ParamType2	Choices.
class	FPFunctionDef

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	stores	data	about	a	single	function	of	an	FPInterface.	A	table	of
pointers	to	these	objects	is	a	data	member	of	Class	FPInterfaceDesc.

Data	Members:
public:
FunctionID	ID;
The	interface-local	ID	(unique	to	the	interface	only)	used	to	identify	the
function	in	calls.
TSTR	internal_name;
The	fixed	internal	name	for	the	function.
StringResID	description;
The	description	string	resource.
USHORT	flags;
The	internal	flag	bits.	One	of	more	of	the	following	values:
FP_ACTION
Indicates	this	is	an	action	function.
FP_HAS_UI
Indicates	the	action	has	UI	specified.
FP_ICONRES
Indicates	icon	via	resource	ID.
FP_ICONFILE
Indicates	icon	via	bmp	file	+	index.
FP_HAS_SHORTCUT
Indicates	has	default	keyboard	shortcut.
FP_HAS_KEYARGS
Indicates	function	has	some	optional	keyword	args	defined.

FP_VAR_ARGS
Indicates	a	variable	number	of	args,	pass	args	directly	in	a	FPParams
instance.
FP_NO_REDRAW
Do	not	flag	need	for	viewport	redraw	when	function	is	invoked,
MAXScript	defaults	to	flag	redraw.

ParamType2	result_type;
The	type	of	value	returned	by	the	function.
EnumID	enumID;
The	ID	of	symbolic	enumeration	in	owning	interface	if	any.
FPActionDef*	action_def;
The	extra	metadata	if	function	in	an	Action	interface.
Tab<FPParamDef*>	params;
The	descriptors	for	parameters	to	this	function.

Methods:
public:

Prototype:
FPFunctionDef();

Remarks:
Constructor.		The	data	members	are	initialized	as	follows:
flags	=	0;	description	=	0;	action_def	=	NULL;	enumID	=
FP_NO_ENUM;

Class	FPPropDef
See	Also:	Class	FPParamOptions,	List	of	Param	Type	Choices
class	FPPropDef

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	'properties'	section	follows	the	function	definitions.	Each	propery	has	a
single	entry	defining	the	function	IDs	for	the	getter	and	setter	functions,	a	fixed
internal	property	name,	a	descriptor	string	resource	ID	and	the	property	type.	If
the	property	is	read-only	and	there	is	no	setter	function,	specify
FP_NO_FUNCTION	for	the	setter	ID.

Data	Members:
public:
FunctionID	getter_ID;
The	interface-local	ID	for	getter	method.
FunctionID	setter_ID;
The	interface-local	ID	for	setter	method.
TSTR	internal_name;
The	fixed,	internal	name.
StringResID	description;
The	description	string	resource	ID.
USHORT	flags;
The	flag	bits.
ParamType2	prop_type;
The	property	type.
EnumID	enumID;
The	ID	of	symbolic	enumeration	in	owning	interface	if	any.
FPParamOptions*	options;
Present	if	non-NULL,	used	for	setter	param.

Methods:
public:

Prototype:

FPPropDef();
Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
flags	=	0;	description	=	0;	getter_ID	=	setter_ID	=
FPS_NO_SUCH_FUNCTION;	enumID	=	FP_NO_ENUM;	options
=	NULL;

Class	FPActionDef
See	Also:	Class	FPInterface,	Class	FPInterfaceDesc,	Class	FPActionDef,	Class
FPParamDef,	Template	Class	Tab,	Class	MaxIcon,	Function	Publishing	System,
List	of	ControlType2	Choices	,	List	of	ParamType2	Choices.
class	FPActionDef

Description:
This	class	is	available	in	release	4.0	and	later	only.
FPActionDef,	contains	extra	descriptor	info	for	Action	interface	functions.

Data	Members:
public:
TSTR	internal_cat;
The	fixed,	internal	category	name.
StringResID	category;
The	localizable	category	string	resource	ID.
FunctionID	isEnabled_id;
The	interface	function	IDs	for	the	isEnabled	predicate	for	this	action.
FunctionID	isChecked_id;
The	interface	function	IDs	for	the	isChecked	predicate	for	this	action.
FunctionID	isVisible_id;
The	interface	function	IDs	for	the	isVisible	predicate	for	this	action.
ResID	icon_resID;
The	icon	as	resource	ID.
TSTR	icon_file;
The	icon	as	UI	.bmp	filename,	index	pair,	as	per	CUI	icon	specifications.
short	icon_index;
The	index	of	the	icon	associated	with	the	action.
MaxIcon*	icon;
The	MaxIcon	class	data	associated	with	this	action.
StringResID	button_text;
The	button	text	string	resource	ID,	defaults	to	function	description.
StringResID	tool_tip;

The	tooltip	string	resource	ID,	defaults	to	function	description.
StringResID	menu_text;
The	menu	item	text	string	resource	ID,	defaults	to	buttonText	or	function
description.
ControlType2	ctrl_type;
The	type	of	UI	control,	if	f_ui	specified.
ResID	ctrl_pbID;
The	control's	host	parammap	pblock	ID.
MapID	ctrl_mapID;
The	control's	host	parammap	map	ID	within	the	block.
int	ctrl_id;
The	control	dialog	item	ID.
COLORREF	ctrl_hiCol;
The	highlight	color	if	check	button.
ACCEL	shortcut;
The	default	keyboard	shortcut.

Methods:
public:

Prototype:
FPActionDef();

Remarks:
Constructor.
This	will	initialize	the	members	to	their	empty	default	values.

Prototype:
~FPActionDef();

Remarks:
Destructor.

Class	FPParamDef
See	Also:	List	of	ParamType2	Choices,	Class	FPParamOptions,	Template	Class
Tab.
class	FPParamDef

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	contains	a	descriptor	for	each	published	function,	found	in	Tab<>	in
FPInterface.

Data	Members:
public:
TSTR	internal_name;
The	internal	name.
StringResID	description;
The	string	resource	ID	of	the	description.
ParamType2	type;
The	parameter	type.	See	the	List	of	ParamType2	Choices	for	details.
EnumID	enumID;
ID	of	symbolic	enumeration	in	owning	interface	if	any.
USHORT	flags;
The	parameter	definition	flags;
FPP_HAS_RANGE
Indicates	that	the	parameter	definition	contains	a	range.
FPP_HAS_VALIDATOR
Indicates	that	the	parameter	has	a	validator.
FPP_IN_PARAM
In	flag	used	by	_BR	ref	types	to	decide	when	to	pass	in	source	values	or
hand	back	returns.
FPP_OUT_PARAM
Out	flag	used	by	_BR	ref	types	to	decide	when	to	pass	in	source	values	or
hand	back	returns.
FPP_IN_OUT_PARAM
In-Out	flag	used	by	_BR	ref	types	to	decide	when	to	pass	in	source	values

or	hand	back	returns.
FPP_KEYARG
If	p_keyArgDefault	supplied,	the	client	can	use	keyword	args	if	supported
for	this	param.
FPP_INDEX
Parameter	values	used	as	indexes,	always	0-origin	internally,	allows	client
to	map	to	other	origins.

FPParamOptions*	options;
Present	if	non-NULL,	a	pointer	to	the	parameter	options	object.

Methods:
public:

Prototype:
FPParamDef();

Remarks:
Constructor.

Default	Implementation:
{	description	=	0;	options	=	NULL;	flags	=	FPP_IN_OUT_PARAM;
enumID	=	FP_NO_ENUM;	}

Class	FPParams
See	Also:	Class	FPValue
class	FPParams

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	parameters	class	contains	a	Tab<>	of	FPValue's,	being	the	actual
parameters	for	an	FP	Function	call.

Data	Members:
public:
Tab<FPValue>	params;
The	table	of	FPValue’s	contained	in	this	class.

Methods:
public:

Prototype:
FPParams();

Remarks:
Constructor.

Default	Implementation:
{	}

Prototype:
FPParams(int	count,	...);

Remarks:
Constructor.

Parameters:
int	count
The	number	of	parameter	values	to	add.
...
This	method	takes	a	variable	number	of	arguments	representing	the	parameter

values	that	will	be	stored	in	the	params	table.

Prototype:
~FPParams();

Remarks:
Destructor.

Prototype:
void	Load(int	count,	...);

Remarks:
This	method	loads	a	number	of	parameter	values.

Parameters:
int	count
The	number	of	parameter	values	to	add.
...
This	method	takes	a	variable	number	of	arguments	representing	the	parameter
values	that	will	be	stored	in	the	params	table.

Class	FPEnum
See	Also:	Class	FPInterface,	Function	Publishing	System
class	FPEnum

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	contains	an	ID	for	the	enumeration	and	a	table	of	structures	which
contains	a	name	and	an	integer	code	for	each	item.	This	is	used	by	metadata
clients	to	support	symbolic	values	for	TYPE_ENUM	types	(ints).
One	or	more	symbolic	enums,	similar	to	C++	enums,	can	now	be	added	to	an
FPInterface's	metadata,	and	individual	int	parameters	and/or	results	for	functions
in	that	interface	can	be	defined	as	TYPE_ENUM	and	associated	with	one	of
the	enum	lists.	Working	in	a	similar	manner	as	MAXScript,	this	allows	metadata
clients	to	support	symbolic	encodings	for	these	parameters	and	results.
Enums	are	defined	in	the	FPInterface	descriptor	following	the	function	and
property	definitions	as	sets	of	string/code	pairs.	Each	enum	list	is	identified	by	a
unique	integer,	similar	to	function	IDs,	which	is	used	to	associated	a
TYPE_ENUM	parameter	or	result	with	its	enum.	IDs	for	these	would
normally	be	defined	somewhere	near	the	function	IDs	for	an	interface.	For
example:
	
//	function	IDs
enum	{	bmm_getWidth,	bmm_getHeight,	bmm_getType,
bmm_copyImage,	...};
//	enum	IDs
enum	{	bmm_type,	bmm_copy_quality,	...};
	

might	be	some	of	the	IDs	for	a	possible	bitmap	manager	interface.	The	two
enums	provide	symbolic	codes	for	the	bitmap	type	and	copyImage	quality
defines	in	the	"bitmap.h"	SDK	header,	such	as	BMM_PALETTED,
BMM_TRUE_32,	COPY_IMAGE_RESIZE_LO_QUALITY,	etc.	In
the	descriptor	for	the	interface,	any	enum	lists	follow	the	function	and	property
definitions.	They	are	introduced	by	the	special	tag,	'enums',	as	in	the	following
example:

	
static	FPInterfaceDesc	bmmfpi	(

BMM_INTERFACE,	_T("bmm"),	IDS_BMMI,	NULL,
FP_CORE,

...
bmm_copyImage,	_T("copyImage"),	...

_T("copyType"),	IDS_COPYTYPE,	TYPE_ENUM,
bmm_copy_quality,
...
properties,
geo_getType,	geo_setType,	_T("type"),	0,	TYPE_ENUM,

bmm_type,
enums,
bmm_type,	7,

"lineArt",	BMM_LINE_ART,
"paletted",	BMM_PALETTED,
"gray8",	BMM_GRAY_8,
"gray16",	BMM_GRAY_16	,
"true16",	BMM_TRUE_16,
"true32",	BMM_TRUE_32,
"true24",	BMM_TRUE_64,

bmm_copy_quality,	4,
"crop",	COPY_IMAGE_CROP,
"resizeLo",	COPY_IMAGE_RESIZE_LO_QUALITY,
"resizeHi",	COPY_IMAGE_RESIZE_HI_QUALITY,
"useCustom",	COPY_IMAGE_USE_CUSTOM,

end
);

In	the	above	example,	the	enums	are	listed	following	the	function	&	property
definitions.	They	are	introduced	by	the	'enums'	tag	and	consist	of	an	enum	ID
followed	by	a	count	of	items,	followed	by	that	many	string	and	code	pairs.	By

attaching	them	to	the	interface	like	this,	any	number	of	functions	and	properties
in	the	interface	can	use	them.
	
The	above	example	also	has	function	and	property	definitions	showing	the	use	of
TYPE_ENUM.	The	copyImage	function	takes	a	copyType	parameter
which	uses	the	bmm_copy_quality	enum	and	the	type	property	uses	the
bmm_type	enum.	In	all	situations	where	TYPE_xxx	types	can	be	supplied	in
a	descriptor,	including	the	new	property	definitions,	TYPE_ENUM	can	be
used	to	indicate	an	int	by-value	type.	TYPE_ENUM's	must	always	be
followed	by	an	enum	ID.	This	is	the	only	case	in	which	the	type	is	specified	as	a
pair	of	values.	TYPE_ENUM	parameters	and	results	show	up	in	MAXScript
as	#	names.	For	example,	if	a	bmm	interface	was	in	the	variable	'bm1'	and	the
bitmap	type	was	BMM_GRAY_16,
	
bm1.type
->	#gray16
	
bm1.type	=	#true32	--	set	it	to	#true24	(code	is	BMM_TRUE_24)
bm2	=	bm1.copyImage	#resizeHi
	

the	integer	TYPE_ENUM	codes	are	translated	back-and-forth	to	symbolic	#
names	by	MAXScript	using	the	definitions	in	the	FPInterface	descriptor's
enums.	If	you	need	to	access	the	enum	metadata	in	an	FPInterfaceDesc,	it	is
available	in	the	'enumerations'	data	member.	This	is	a	Tab<>	of	pointers	to
FPEnum	class	instances	which	themselves	contain	a	Tab<>	of	name,	code
pairs.	See	class	FPEnum	in	\MAXSDK\INCLUDE\FnPub.h	for	details.
	

Data	Members:
public:
EnumID	ID;
ID	for	this	enumeration
typedef	struct	{
TCHAR*name;

This	is	the	symbolic	name	for	the	enum.
int	code;
This	is	the	equivalent	integer	code.

}	enum_code;
Tab<enum_code>	enumeration;
The	table	of	enumeration	codes.

Class	FPInterfaceCallback
See	Also:	Class	FPInterface,	Function	Publishing	System
class	FPInterfaceCallback

Description:
This	class	is	available	in	release	4.0	and	later	only.
FPInterfaceCallback	class	is	registered	with	an	interface	on	Acquire()	so	that	it
can	be	notified	when	the	interface	goes	away

Methods:
public:

Prototype:
virtual	void	InterfaceDeleted()=0;

Remarks:
This	method	is	called	when	the	interface	is	deleted.

Class	FPValue
See	Also:	List	of	ParamType2	Choices,	Template	Class	Tab.
class	FPValue

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	contains	a	single	value	used	as	part	of	the	Function	Publishing	system.
It's	capable	of	holding	any	of	the	FnPub	supported	types.	This	value	is	used	as	a
parameter	and	as	a	return	value.

Data	Members:
public:
ParamType2	type;
This	data	member	identifies	which	type	of	value	is	stored	in	the	union	below.
The	following	union	contains	a	single	value,	pointer	to	a	single	value,	or	a
pointer	to	a	single	table	(Tab<>)	of	values.
union

	{
	int	i;
	float	f;
	int*	iptr;
	float*	fptr;
	Point3*	p;
	TimeValue	t;
	TCHAR*	s;
	TSTR*	tstr;
	PBBitmap*	bm;
	Mtl*	mtl;
	Texmap*	tex;
	INode*	n;
	ReferenceTarget*	r;
	Matrix3*	m;

	AngAxis*	aa;
	Quat*	q;
	Ray*	ray;
	Point2*	p2;
	BitArray*	bits;
	ClassDesc*	cd;
	Mesh*	msh;
	Object*	obj;
	Control*	ctrl;
	Interval*	intvl;
	POINT*	pt;
	HWND	hwnd;
	IObject*	iobj;
	FPInterface*	fpi;
	void*	ptr;
	Color*	clr;
	FPValue*	fpv;
	Value*	v;
	
	//	Tab<>s	of	above
	Tab<int>*	i_tab;
	Tab<float>*	f_tab;
	Tab<Point3*>*	p_tab;
	Tab<TimeValue>*	t_tab;
	Tab<TCHAR*>*	s_tab;
	Tab<TSTR*>*	tstr_tab;
	Tab<PBBitmap*>*	bm_tab;
	Tab<Mtl*>*	mtl_tab;
	Tab<Texmap*>*	tex_tab;
	Tab<INode*>*	n_tab;

	Tab<ReferenceTarget*>*	r_tab;
	Tab<Matrix3*>*	m3_tab;
	Tab<AngAxis*>*	aa_tab;
	Tab<Quat*>*	q_tab;
	Tab<Ray*>*	ray_tab;
	Tab<Point2*>*	p2_tab;
	Tab<BitArray*>*	bits_tab;
	Tab<ClassDesc*>*	cd_tab;
	Tab<Mesh*>*	msh_tab;
	Tab<Object*>*	obj_tab;
	Tab<Control*>*	ctrl_tab;
	Tab<Interval*>*	intvl_tab;
	Tab<POINT*>*	pt_tab;
	Tab<HWND>*	hwnd_tab;
	Tab<IObject*>*	iobj_tab;
	Tab<FPInterface*>*	fpi_tab;
	Tab<void*>*	ptr_tab;
	Tab<Color*>*	clr_tab;
	Tab<FPValue*>*	fpv_tab;
	Tab<Value*>*	v_tab;
	};

Methods:
public:

Prototype:
FPValue();

Remarks:
Constructor

Default	Implementation:
{	Init();	}

Prototype:
FPValue(FPValue&	from);

Remarks:
Constructor.

Parameters:
FPValue&	from
A	reference	to	a	FPValue	to	copy	from.

Default	Implementation:
{	Init();	*this	=	from;	}

Prototype:
FPValue(int	type,	...);

Remarks:
Constructor

Default	Implementation:
{va_list	ap;	va_start(ap,	type);	ap	=	Loadva(type,	ap);
va_end(ap);}

Prototype:
~FPValue();

Remarks:
Destructor.

Default	Implementation:
{	Free();	}

Prototype:
void	Free();

Remarks:
This	method	will	free	up	all	memory	used	by	the	class.
	

Prototype:
void	Init();

Remarks:
This	method	will	Initialize	FPValue	class.

Default	Implementation:
{	type	=	(ParamType2)TYPE_INT;	s	=	NULL;	}

Prototype:
FPValue&	operator=(FPValue&	sv);

Remarks:
Assignment	operator.

Prototype:
inline	void	Load(int	type,	...);

Remarks:
This	method	will	load	the	FPValue	class	with	the	provided	data.

Parameters:
int	type
The	FPValue	parameter	type	to	load.
...
This	method	takes	a	variable	number	of	arguments.

Default	Implementation:
{va_list	ap;	va_start(ap,	type);	ap	=	Loadva(type,	ap);
va_end(ap);}

Prototype:
inline	void	LoadPtr(int	type,	...);

Remarks:
This	method	will	load	the	FPValue	class	with	the	provided	data.

Parameters:
int	type

The	FPValue	parameter	type	to	load.
...
This	method	takes	a	variable	number	of	arguments.

Return	Value:
{	va_list	ap;	va_start(ap,	type);
ap	=	Loadva(type,	ap,	true);	va_end(ap);	}

Class	FPParamOptions
See	Also:	Class	FPValue,	List	of	ParamType2	Choices,	Template	Class	Tab.
class	FPParamOptions

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	contains	the	optional	parameters	holding	specific	descriptor
information.

Data	Members:
public:
FPValue	range_low;
The	low	range	if	specified.
FPValue	range_high;
The	high	range	if	specified.
FPValidator*	validator;
The	validator	if	specified.
FPValue	keyarg_default;
The	default	if	value	is	optional	keyword	arg
BYTE	pos_param_count;
The	count	of	positional	params	in	event	of	keyword	arg	presence

Methods:
public:

Prototype:
FPParamOptions();

Remarks:
Constructor.

Class	FPValidator
See	Also:	Class	InterfaceServer,	Class	FPInterfaceDesc,	Class	FPValue,	Class
Interface_ID,	Function	Publishing	System.
class	FPValidator	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
An	interface	descriptor	may	contain	validation	information	for	individual
parameters,	so	that	clients	(such	as	MAXScript)	can	validate	values	given	as
parameters	to	FPInterface	calls,	prior	to	making	the	call.	The	validation
information	can	be	in	the	form	of	a	range	of	values	for	int	and	float	types,	or
more	generally,	a	validator	object	that	is	called	to	the	validate	a	parameter	value.
The	validation	info	is	specified	in	the	FPInterface	descriptor	in	optional	tagged
entries	following	the	parameters	to	be	validated.	The	two	possible	tags	are
f_range	and	f_validator.	An	instance	of	this	class	is	used	when	f_validator
is	specified.
Here's	an	example	from	a	possible	mixin	interface	to	Cylinder:
static	FPInterfaceDesc	cylfpi	(
CYL_INTERFACE,	_T("cylMixin"),	0,	&cylinderDesc,	FP_MIXIN,
...
cyl_setRadius,	_T("setRadius"),	0,	TYPE_VOID,	0,	1,
_T("radius"),	0,	TYPE_FLOAT,
f_range,	0.0,	10000.0,
cyl_setDirection,	_T("setDirection"),	0,	TYPE_VOID,	0,	1,
_T("vector"),	0,	TYPE_POINT3,
f_validator,	&cylValidator,
...
end
);
The	"vector"	parameter	in	the	above	example	has	a	validator	object	specified.
This	must	be	a	pointer	to	an	instance	of	a	class	derived	from	the	new	class,
FPValidator,	defined	in	I\MAXSDK\INCLUDE\iFnPub.h.	This	is	a

virtual	base	class,	containing	a	single	method,	Validate(),	that	is	called	to
validate	a	prospective	value	for	a	parameter.	You	would	typically	subclass
FPValidator	in	your	code	and	provide	an	implementation	of	Validate()	to	do
the	validation.

Methods:
public:

Prototype:
virtual	bool	Validate(FPInterface*	fpi,	FunctionID	fid,	int
paramNum,	FPValue&	val,	TSTR&	msg)=0;

Remarks:
This	method	is	called	to	validate	the	value	val	passed	for	the	given	parameter
in	the	function	whose	ID	is	passed	in	the	specified	interface	passed.	If	there
are	many	parameters	to	validate	this	way,	developers	can	choose	to	provide	a
separate	subclass	for	each	parameter	or	a	single	subclass	and	switch	on	the
parameter	identification	supplied.

Parameters:
FPInterface*	fpi
Points	to	the	interface	the	function	is	a	part	of.
FunctionID	fid
The	ID	of	the	function	within	the	interface	above.
int	paramNum
Identifies	which	parameter	within	the	function	above	to	validate.
FPValue&	val
The	value	to	validate.
TSTR&	msg
Update	this	string	with	an	error	message	if	needed.	The	user	of	the	Validator
can	then	display	this	string.

Return	Value:
Returns	true	if	the	value	was	valid;	false	if	invalid.

Class	ClassDesc2
See	Also:	Class	ClassDesc,	Class	Animatable,	Class	ParamBlockDesc2,	Class
IParamMap2,	Class	IObjParam,	Class	ParamMap2UserDlgProc,	Class
IAutoMParamDlg.
class	ClassDesc2	:	public	ClassDesc

Description:
This	class	is	available	in	release	3.0	and	later	only.
A	subclass	of	ClassDesc	which	you	specialize	to	provide	a	class	descriptor	for
plug-in	classes	that	will	use	the	ParamBlock2	system.	It	contains	a	table	of
ParamBlockDesc2s	for	all	the	parameter	blocks	used	in	the	plug-in	and	a	number
of	sets	of	methods	including	access	to	the	block	descriptors,	auto	user	interface
management,	auto	param	block2	construction,	and	access	to	any	automatically-
maintained	ParamMap2s.

Methods:
public:

Prototype:
ClassDesc2();

Remarks:
Constructor.		The	master	ParamDlg	and	Effect	ParamDlg	pointers	are	set	to
NULL.

Prototype:
~ClassDesc2();

Remarks:
Destructor.

Prototype:
void	ResetClassParams(BOOL	fileReset);

Remarks:
This	method	may	be	called	to	restore	all	sticky	parameters	to	their	default
values.

Parameters:
BOOL	fileReset
This	parameter	is	not	used.

Prototype:
int	NumParamBlockDescs();

Remarks:
Implemented	by	the	System.
This	is	a	method	of	the	base	class	ClassDesc.	This	class	provides	an
implementation	of	the	method	used	by	plug-ins	using	the	ParamBlock2
system.
Returns	the	number	of	parameter	block2	descriptors	used	by	this	plug-in	class.

Prototype:
ParamBlockDesc2*	GetParamBlockDesc(int	i);

Remarks:
Implemented	by	the	System.
This	is	a	method	of	the	base	class	ClassDesc.	This	class	provides	an
implementation	of	the	method	used	by	plug-ins	using	the	ParamBlock2
system.
Returns	a	pointer	to	the	'i-th'	parameter	block2	descriptor.

Parameters:
int	i
The	zero	based	index	of	the	parameter	block2	descriptor	to	return.

Prototype:
ParamBlockDesc2*	GetParamBlockDescByID(BlockID	id);

Remarks:
Implemented	by	the	System.
This	is	a	method	of	the	base	class	ClassDesc.	This	class	provides	an
implementation	of	the	method	used	by	plug-ins	using	the	ParamBlock2
system.

Returns	a	pointer	to	the	parameter	block2	descriptor	as	specified	by	its
BlockID.
Note:	typedef	short	BlockID;

Parameters:
BlockID	id
The	permanent	ID	for	the	parameter	block.

Prototype:
ParamBlockDesc2*	GetParamBlockDescByName(TCHAR*
name);

Remarks:
Returns	a	pointer	to	the	parameter	block2	descriptor	as	specified	by	the
descriptor's	internal	name.

Parameters:
TCHAR*	name
The	internal	name	of	the	parameter	block	descriptor.

Prototype:
void	AddParamBlockDesc(ParamBlockDesc2*	pbd);

Remarks:
Implemented	by	the	System.
This	is	a	method	of	the	base	class	ClassDesc.	This	class	provides	an
implementation	of	the	method	used	by	plug-ins	using	the	ParamBlock2
system.
Adds	a	parameter	block2	to	the	list	of	those	maintained	by	this	class
descriptor.

Parameters:
ParamBlockDesc2*	pbd
Points	to	the	parameter	block2	descriptor	of	the	parameter	block2	to	add.

Prototype:
void	ClearParamBlockDescs();

Remarks:
Implemented	by	the	System.
Removes	all	the	parameter	block	2	descriptors	maintained	by	this	plug-in.

Prototype:
void	BeginEditParams(IObjParam	*ip,	ReferenceMaker*	obj,
ULONG	flags,	Animatable	*prev);

Remarks:
Implemented	by	the	System.
This	is	a	method	of	the	base	class	ClassDesc.	This	class	provides	an
implementation	of	the	method	used	by	plug-ins	using	the	ParamBlock2
system.
This	method	is	called	to	handle	the	beginning	of	the	automatic	command
panel	user	interface	management	provided	by	the	param	map	2	system.	This
method	is	called	by	the	plug-in	from	its	Animatable::BeginEditParams()
method.	The	parameters	passed	to	that	method	are	simply	passed	along	to	this
method.

Parameters:
IObjParam	*ip
The	interface	pointer	passed	to	the	plug-in.
ReferenceMaker*	obj
Points	to	the	plug-in	class	calling	this	method.
ULONG	flags
The	flags	passed	along	to	the	plug-in	in	Animatable::BeginEditParams().
Animatable	*prev
The	pointer	passed	to	the	plug-in	in	Animatable::BeginEditParams().

Prototype:
void	EndEditParams(IObjParam	*ip,	ReferenceMaker*	obj,
ULONG	flags,	Animatable	*prev);

Remarks:
Implemented	by	the	System.
This	is	a	method	of	the	base	class	ClassDesc.	This	class	provides	an

implementation	of	the	method	used	by	plug-ins	using	the	ParamBlock2
system.
This	method	is	called	to	handle	the	ending	of	the	automatic	command	panel
user	interface	management	provided	by	the	param	map	2	system.	This	method
is	called	by	the	plug-in	from	its	Animatable::EndEditParams()	method.
The	parameters	passed	to	that	method	are	simply	passed	along	to	this	method.

Parameters:
IObjParam	*ip
The	interface	pointer	passed	to	the	plug-in.
ReferenceMaker*	obj
Points	to	the	plug-in	class	calling	this	method.
ULONG	flags
The	flags	passed	along	to	the	plug-in	in	Animatable::EndEditParams().
Animatable	*prev
The	pointer	passed	to	the	plug-in	in	Animatable::EndEditParams().

Prototype:
void	InvalidateUI();

Remarks:
Implemented	by	the	System.
This	invalidates	the	entire	UI	for	every	parameter	map	of	the	plug-in.

Prototype:
void	InvalidateUI(ParamBlockDesc2*	pbd);

Remarks:
Implemented	by	the	System.
This	is	a	method	of	the	base	class	ClassDesc.	This	class	provides	an
implementation	of	the	method	used	by	plug-ins	using	the	ParamBlock2
system.
This	is	called	if	the	user	interface	parameters	needs	to	be	updated.	This
invalidates	the	entire	UI	managed	by	the	param	map	whose	description	is
passed.

Parameters:

ParamBlockDesc2*	pbd
Points	to	the	parameter	block	descriptor	for	the	rollup.

Prototype:
void	InvalidateUI(ParamBlockDesc2*	pbd,	ParamID	id,	int
tabIndex=-1);

Remarks:
Implemented	by	the	System.
This	is	called	if	a	certain	user	interface	parameter	of	the	specified	parameter
map	needs	to	be	updated.	The	parameter	ID	of	the	control	is	passed.	If	the
parameter	is	a	Tab<>	then	the	index	into	the	table	of	the	parameter	is	passed.

Parameters:
ParamBlockDesc2*	pbd
Points	to	the	parameter	block	descriptor	for	the	rollup.
ParamID	id
The	permanent	parameter	ID	of	the	parameter.
int	tabIndex=-1
If	the	parameter	is	a	Tab<>	then	this	is	the	zero	based	index	into	the	table.	The
default	value	of	-1	indicates	it	is	not	a	table.

Prototype:
void	MakeAutoParamBlocks(ReferenceMaker*	owner);

Remarks:
Implemented	by	the	System.
This	is	a	method	of	the	base	class	ClassDesc.	This	class	provides	an
implementation	of	the	method	used	by	plug-ins	using	the	ParamBlock2
system.
This	method	is	called	to	create	the	parameter	blocks	for	the	plug-in.

Parameters:
ReferenceMaker*	owner
Points	to	the	plug-in	class	calling	this	method.

Prototype:

int	NumParamMaps();
Remarks:
Implemented	by	the	System.
This	is	a	method	of	the	base	class	ClassDesc.	This	class	provides	an
implementation	of	the	method	used	by	plug-ins	using	the	ParamBlock2
system.
Returns	the	number	of	automatically-maintained	parameter	map2s.

Prototype:
IParamMap2*	GetParamMap(ParamBlockDesc2*	pbd,	MapID
map_id	=	0);

Remarks:
Implemented	by	the	System.
This	is	a	method	of	the	base	class	ClassDesc.	This	class	provides	an
implementation	of	the	method	used	by	plug-ins	using	the	ParamBlock2
system.
Returns	a	pointer	to	the	parameter	map2	as	specified	by	the	parameter	block2
pointer	passed.

Parameters:
ParamBlockDesc2*	pbd
Points	to	the	parameter	block	descriptor2	associated	with	this	parameter	map.
MapID	map_id
This	parameter	is	available	in	release	4.0	and	later	only.
Specifies	the	ID	of	the	map/rollout	to	get.

Prototype:
IParamMap2*	GetParamMap(ParamBlockDesc2*	pbd);

Remarks:
Implemented	by	the	System.
This	is	a	method	of	the	base	class	ClassDesc.	This	class	provides	an
implementation	of	the	method	used	by	plug-ins	using	the	ParamBlock2
system.
Returns	a	pointer	to	the	parameter	map2	as	specified	by	the	parameter	block2

pointer	passed.
Parameters:
ParamBlockDesc2*	pbd
Points	to	the	parameter	block	descriptor2	associated	with	this	parameter	map.

Prototype:
void	SetUserDlgProc(ParamBlockDesc2*	pbd,
ParamMap2UserDlgProc*	proc=NULL);

Remarks:
Implemented	by	the	System.
This	is	a	method	of	the	base	class	ClassDesc.	This	class	provides	an
implementation	of	the	method	used	by	plug-ins	using	the	ParamBlock2
system.
This	method	allows	the	developer	to	provide	special	handling	for	controls	not
processed	automatically	by	the	parameter	map	(or	those	that	need	additional
processing).	The	developer	provides	a	dialog	proc	to	process	the	messages
from	the	controls.	This	method	is	used	to	tell	the	parameter	map	that	the
developer	defined	method	should	be	called.	The	given	proc	will	be	called	after
default	processing	is	done.
Note,	in	version	4.0	and	later,	this	actually	maps	to	a	call	on	the	explicit	map
ID	overload	of	SetUserDlgProc()	with	default	map	ID	of	0.

Parameters:
ParamBlockDesc2*	pbd
Points	to	the	parameter	block	descriptor	for	the	parameter	map.
ParamMap2UserDlgProc*	proc=NULL
Points	to	the	class	derived	from	ParamMap2UserDlgProc	which	handles
the	controls.

Prototype:
void	SetUserDlgProc(ParamBlockDesc2*	pbd,	MapID	map_id,
ParamMap2UserDlgProc*	proc=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

This	overload	of	SetUserDlgProc()	has	a	new	parameter,	map_id,	that
specifies	the	ID	of	the	parameter	map/rollup	to	set	the	user	dialog	proc	for.	See
original	function	for	the	rest	of	the	description.

Prototype:
ParamMap2UserDlgProc*	GetUserDlgProc(ParamBlockDesc2*
pbd,	MapID	map_id	=	0);

Remarks:
Implemented	by	the	System.
This	is	a	method	of	the	base	class	ClassDesc.	This	class	provides	an
implementation	of	the	method	used	by	plug-ins	using	the	ParamBlock2
system.
Returns	a	pointer	to	the	user	dialog	proc	associated	with	the	parameter	map	as
specified	by	the	parameter	block	descriptor2	pointer.

Parameters:
ParamBlockDesc2*	pbd
Points	to	the	parameter	block	descriptor	for	the	parameter	map.
MapID	map_id
This	parameter	is	available	in	release	4.0	and	later	only.
Specifies	the	ID	of	the	map/rollout	to	get	the	user	dialog	proc	for.

Prototype:
IAutoMParamDlg*	CreateParamDlgs(HWND	hwMtlEdit,
IMtlParams	*imp,	MtlBase*	obj);

Remarks:
Implemented	by	the	System.
This	method	creates	and	returns	a	pointer	to	the	object	which	handles	the
automatic	processing	of	the	user	interface	in	the	materials	editor.	This	method
loops	over	all	parameter	blocks	which	specify	AUTO_UI	and	makes	the
AutoMParamDlgs	for	them.	The	first	one	becomes	the	master	and	the	others
are	added	to	it.

Parameters:
HWND	hwMtlEdit

The	window	handle	of	the	materials	editor.
IMtlParams	*imp
The	interface	pointer	provided	for	calling	methods	in	3ds	max.
MtlBase*	obj
Points	to	the	plug-in	class	calling	this	method.

Prototype:
IAutoMParamDlg*	CreateParamDlg(BlockID	id,	HWND
hwMtlEdit,	IMtlParams	*imp,	ReferenceTarget*	obj,	MapID
map_id	=	0);

Remarks:
Implemented	by	the	System.
This	method	creates	and	returns	a	pointer	to	the	object	which	handles	the
automatic	processing	of	the	user	interface	in	the	materials	editor.	This	method
makes	an	AutoMParamDlg	for	the	specified	parameter	block.

Parameters:
BlockID	id
The	permanent	ID	of	the	parameter	block.
HWND	hwMtlEdit
The	window	handle	of	the	materials	editor.
IMtlParams	*imp
The	interface	pointer	provided	for	calling	methods	in	3ds	max.
MtlBase*	obj
Points	to	the	plug-in	class	calling	this	method.
MapID	map_id
This	parameter	is	available	in	release	4.0	and	later	only.
Specifies	the	ID	of	the	map/rollout	in	the	parameter	block	to	create
AutoMParamDlg	for.

Prototype:
IAutoEParamDlg*	CreateParamDialogs(IRendParams	*ip,
SpecialFX*	obj);

Remarks:

Implemented	by	the	System.
This	method	creates	and	returns	a	pointer	to	the	object	which	handles	the
automatic	processing	of	the	user	interface	in	the	rendering	effects	dialog.	This
method	loops	over	all	parameter	blocks	which	specify	AUTO_UI	and	makes
the	AutoMParamDlgs	for	them.	The	first	one	becomes	the	master	and	the
others	are	added	to	it.

Parameters:
IRendParams	*ip
The	interface	pointer	provided	for	calling	methods	in	3ds	max.
SpecialFX*	obj
Points	to	the	plug-in	class	calling	this	method.	See	Class	SpecialFX.

Prototype:
IAutoEParamDlg*	CreateParamDialog(BlockID	id,	IRendParams
ip,	SpecialFX	obj,	MapID	mapID=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
This	method	creates	and	returns	a	pointer	to	the	object	which	handles	the
automatic	processing	of	the	user	interface	in	the	rendering	effects	dialog.	This
method	makes	an	AutoEParamDlg	for	the	specified	parameter	block.

Parameters:
BlockID	id
The	permanent	ID	of	the	parameter	block.
IRendParams	*ip
The	interface	pointer	provided	for	calling	methods	in	3ds	max.
SpecialFX*	obj
Points	to	the	plug-in	class	calling	this	method.	See	Class	SpecialFX.
MapID	map_id
Specifies	the	ID	of	the	map/rollout	in	the	parameter	block	to	create
AutoEParamDlg	for.

Prototype:

void	MasterDlgDeleted(IAutoMParamDlg*	dlg);
Remarks:
Implemented	by	the	System.
This	method	is	called	when	an	AutoMParamDlg	is	deleted.

Parameters:
IAutoMParamDlg*	dlg
Pointer	to	the	object	which	handles	the	automatic	processing	of	the	user
interface	in	the	materials	editor.

Prototype:
void	MasterDlgDeleted(IAutoEParamDlg*	dlg);

Remarks:
Implemented	by	the	System.
This	method	is	called	when	an	AutoEParamDlg	is	deleted.

Parameters:
IAutoEParamDlg*	dlg
Pointer	to	the	object	which	handles	the	automatic	processing	of	the	user
interface	in	the	rendering	effects	dialog.

Prototype:
IAutoMParamDlg*	GetMParamDlg();

Remarks:
Implemented	by	the	System.
Returns	the	master	dialog	processing	routine	for	the	materials	editor	plug-in.

Prototype:
IAutoEParamDlg*	GetEParamDlg();

Remarks:
Implemented	by	the	System.
Returns	the	master	dialog	processing	routine	for	the	rendering	effects	plug-in.

Prototype:

void	RestoreRolloutState();
Remarks:
This	method	may	be	called	to	restore	any	saved	rollout	state	(open/closed
condition	and	scrolling	position)	for	any	parameter	map	maintained	by	the
plug-in.

Prototype:
ParamID	LastNotifyParamID(ReferenceMaker*	owner,
IParamBlock2*&	pb);

Remarks:
This	method	scans	all	the	parameter	blocks	in	the	owner	and	returns	the
ParamID	and	parameter	block	making	the	most	recent	change	notification.

Parameters:
ReferenceMaker*	owner
The	owner	of	the	parameter	blocks.
IParamBlock2*&	pb
The	parameter	block	which	made	the	most	recent	notification.

Return	Value:
The	parameter	ID	of	the	parameter	which	made	the	most	recent	notification.

Prototype:
void	Reset(ReferenceMaker*	owner,	BOOL	updateUI	=	TRUE,
BOOL	callSetHandlers	=	TRUE);

Remarks:
This	method	may	be	called	to	reset	all	the	parameters	of	all	know	parameter
blocks	to	their	default	values	and	optionally	update	the	user	interface.

Parameters:
ReferenceMaker*	owner
The	owner	of	this	ClassDesc2.
BOOL	updateUI	=	TRUE
If	TRUE	to	user	inteface	is	updated.	If	FALSE	it's	not.
BOOL	callSetHandlers	=	TRUE

TRUE	to	call	PBAccessor::Set()	for	all	the	parameters;	otherwise	FALSE.

Prototype:
void	GetValidity(ReferenceMaker*	owner,	TimeValue	t,	Interval
&valid);

Remarks:
This	method	updates	the	validity	interval	passed	with	the	cumulative	validity
interval	of	all	the	owner's	parameter	blocks.

Parameters:
ReferenceMaker*	owner
The	owner	of	this	ClassDesc2.
TimeValue	t
The	time	about	which	to	compute	the	interval.
Interval	&valid
The	interval	to	update.

The	following	functions	are	not	part	of	this	class	but	are	available
for	use.
Function:
IParamBlock2	*CreateParameterBlock2(ParamBlockDesc2
pdesc,	ReferenceMaker	iowner);

Remarks:
This	method	is	used	to	create	a	parameter	block2.

Parameters:
ParamBlockDesc2	*pdesc
This	is	an	array	of	parameter	block	descriptors.
ReferenceMaker*	iowner
Points	to	the	owner	of	the	parameter	block.

Return	Value:
A	pointer	to	the	created	parameter	block.	On	error	NULL	is	returned.

Function:

IParamBlock2*	UpdateParameterBlock2(ParamBlockDescID
*pdescOld,	int	oldCount,	IParamBlock	*oldPB,
ParamBlockDesc2*	pdescNew,	IParamBlock2*	newPB=NULL);

Remarks:
This	function	creates	a	new	ParamBlock2,	based	on	an	existing	ParamBlock
of	an	earlier	version.	The	new	parameter	block	inherits	any	parameters	from
the	old	parameter	block	whose	parameter	IDs	match.	This	may	also	be	used	to
partially	update	an	existing	ParamBlock2.

Parameters:
ParamBlockDescID	*pdescOld
The	array	of	parameter	block	descriptors	which	describes	each	parameter	in
the	old	parameter	block.
int	oldCount
The	number	of	elements	in	the	array	above.
IParamBlock	*oldPB
The	old	parameter	block.
ParamBlockDesc2*	pdescNew
Points	to	the	new	parameter	block	2	descriptor.
IParamBlock2*	newPB=NULL
Points	to	an	existing	IParamBlock2	indicating	that	this	paramblock	should	be
filled	in	from	the	old	ParamBlock,	rather	than	creating	a	new	one.

Return	Value:
The	new	parameter	block2.

Function:
void	SetPB2MacroRecorderInterface(MacroRecorder*	mri);

Remarks:
This	function	for	internal	use	only.

Class	ModContext
See	Also:	Class	LocalModData.
class	ModContext	:	public	BaseInterfaceServer

Description:
The	ModContext	stores	information	about	the	space	the	modifier	was	applied	in,
and	allows	the	modifier	to	store	data	is	needs	for	its	operation.	All	methods	are
implemented	by	the	system.

Data	Members:
public:
Matrix3	*tm;
This	matrix	represents	the	space	the	modifier	was	applied	in.	The	modifier
plug-in	uses	this	matrix	when	it	deforms	an	object.	The	plug-in	first
transforms	the	points	with	this	matrix.	Next	it	applies	its	own	deformation.
Then	it	transforms	the	points	back	through	the	inverse	of	this	transformation
matrix.
Box3	*box;
The	Bounding	Box	of	the	Deformation.	This	represents	the	scale	of	the
modifier.	For	a	single	object	it	is	the	bounding	box	of	the	object.	If	the
modifier	is	being	applied	to	a	sub-object	selection	it	represents	the	bounding
box	of	the	sub-object	selection.	If	the	modifier	is	being	applied	to	a	selection
set	of	objects,	then	this	is	the	bounding	box	of	the	entire	selection	set.	For	a
selection	set	of	objects	the	bounding	box	is	constant.	In	the	case	of	a	single
object,	the	bounding	box	is	not	constant.
LocalModData	*localData;
A	pointer	to	an	instance	of	a	class	derived	from	the	LocalModData	class.	This
is	the	part	of	the	ModContext	that	the	plug-in	developer	controls.	It	is	the
place	where	a	modifier	may	store	application	specific	data.

Methods:

Prototype:
ModContext();

Remarks:
Constructor.	The	transformation	matrix,	bounding	box,	and	local	data	pointer

are	initialized	to	NULL.

Prototype:
~ModContext();

Remarks:
Destructor.	The	tm,	bounding	box	and	local	data	are	freed.

Prototype:
ModContext(const	ModContext&	mc);

Remarks:
Constructor.	The	tm,	bounding	box	and	local	data	are	initialized	to	those	of	the
specified	ModContext.

Parameters:
const	ModContext&	mc
The	ModContext	to	copy.

Prototype:
ModContext(Matrix3	*tm,	Box3	*box,	LocalModData
*localData);

Remarks:
Constructor.	The	tm,	bounding	box,	and	local	data	are	initialized	to	those
specified.

Parameters:
Matrix3	*tm
The	transform	matrix	to	copy.
Box3	*box
The	bounding	box	to	copy.
LocalModData	*localData
The	local	data	that	will	be	cloned.

Class	ObjectState
See	Also:	Class	Object,	Class	Matrix3.
class	ObjectState

Description:
The	ObjectState	is	the	structure	that	flows	up	the	geometry	pipeline.	It	contains	a
matrix,	a	material	index,	some	flags	for	channels,	and	a	pointer	to	the	object	in
the	pipeline.

Data	Members:
public:
Object	*obj;
This	is	a	pointer	to	the	object	in	the	pipeline.	The	validity	interval	of	the	object
can	be	retrieved	using	obj->ObjectValidity().

Methods:

Prototype:
ObjectState();

Remarks:
Constructor.	The	object	pointer	is	initialized	to	NULL.

Prototype:
ObjectState(Object	*ob);

Remarks:
Constructor.	The	object	pointer	is	set	to	the	object	passed.	The	tm	pointer	is
set	to	NULL	and	the	tm	and	mtl	validity	intervals	are	set	to	FOREVER.

Parameters:
Object	*ob
The	object	to	initialize	the	object	pointer	to.

Prototype:
ObjectState(const	ObjectState&	os);

Remarks:

Constructor.	The	object	state	is	initialized	to	the	object	state	passed.
Parameters:
const	ObjectState&	os
The	object	state	to	initialized	to	os.

Prototype:
~ObjectState();

Remarks:
Destructor.	If	the	tm	exists,	it	is	deleted.

Prototype:
void	OSSetFlag(ulong	f);

Remarks:
Call	this	method	to	update	the	object	state	flags.

Parameters:
ulong	f
The	flags	to	set.	The	specified	flags	are	ORed	into	the	current	state	of	the
flags.

Prototype:
void	OSClearFlag(ulong	f);

Remarks:
Call	this	method	to	clear	the	specified	object	state	flags.

Parameters:
ulong	f
The	flags	to	clear.

Prototype:
ulong	OSTestFlag(ulong	f)	const;

Remarks:
Call	this	method	to	test	the	specified	flags.

Parameters:
ulong	f
The	flags	to	test.

Return	Value:
Nonzero	if	the	specified	flags	are	all	set;	otherwise	0.

Prototype:
void	OSCopyFlag(ulong	f,	const	ObjectState&	fromos);

Remarks:
Copies	the	specified	flag	settings	from	the	specified	object	state	to	this	object
state.

Parameters:
ulong	f
The	flags	to	copy.
const	ObjectState&	fromos
The	source	object	state.

Prototype:
Interval	tmValid()	const

Remarks:
Returns	the	validity	interval	of	the	object	state's	transformation	matrix.

Prototype:
Interval	mtlValid()	const;

Remarks:
Returns	the	validity	interval	of	the	object	state's	material.

Prototype:
Interval	Validity(TimeValue	t)	const;

Remarks:
Returns	the	validity	interval	of	the	object	state.	If	the	object	is	not	defined,	this
interval	is	NEVER.	Otherwise	it	is	the	intersection	of	the	tm	validity	interval,

the	mtl	validity	interval	and	the	interval	returned	from	obj->ObjectValidity(t).
Parameters:
TimeValue	t
Specifies	the	time	to	retrieve	the	validity	interval.

Return	Value:
The	validity	interval	of	the	object	state.

Prototype:
int	TMIsIdentity()	const;

Remarks:
Returns	nonzero	if	the	object	state's	transformation	matrix	is	the	identity
matrix;	otherwise	zero.

Prototype:
void	SetTM(Matrix3*	mat,	Interval	iv);

Remarks:
Sets	the	object	state's	transformation	matrix	to	the	specified	Matrix3	and	its
validity	interval	to	the	interval	passed.	If	the	specified	matrix	is	NULL,	a	new
Matrix3	is	allocated	and	is	initialized	to	the	identity	matrix.

Parameters:
Matrix3*	mat
Specifies	the	matrix	to	set.
Interval	iv
Specifies	the	validity	interval	to	set.

Prototype:
Matrix3*	GetTM()	const;

Remarks:
Returns	the	object	state's	transformation	matrix.

Prototype:
void	SetIdentityTM();

Remarks:
Sets	the	object	state	tm	to	the	identity	transformation	matrix.

Prototype:
void	ApplyTM(Matrix3*	mat,	Interval	iv);

Remarks:
Applies	the	specified	matrix	to	the	object	state	tm.	The	object	state	tm	is
multiplied	by	the	specified	matrix.	The	specified	interval	is	intersected	with
the	object	state	tm	validity	interval.

Parameters:
Matrix3*	mat
The	matrix	to	apply.
Interval	iv
The	interval	to	intersect	with	the	object	state's	tm	validity	interval.

Prototype:
void	CopyTM(const	ObjectState	&fromos);

Remarks:
Copies	the	object	state	tm	(and	its	validity	interval)	from	the	specified	object
state's	tm.

Parameters:
const	ObjectState	&fromos
The	object	state	whose	tm	is	to	be	copied.

Prototype:
void	CopyMtl(const	ObjectState	&fromos);

Remarks:
Copies	the	object	state	material	(and	its	validity	interval)	from	the	specified
object	state's	material.

Parameters:
const	ObjectState	&fromos
The	object	state	whose	material	is	to	be	copied.

Prototype:
void	Invalidate(ChannelMask	channels,	BOOL
checkLock=FALSE);

Remarks:
Invalidates	the	specified	channels	of	the	object	state's	object.

Parameters:
ChannelMask	channels
The	channels	of	the	object	to	invalidate.
BOOL	checkLock=FALSE
If	checkLock	is	TRUE	and	OBJ_CHANNELS	is	one	of	the	specified
channels,	the	object	the	object	state	points	to	is	not	deleted	if	it	is	locked;
otherwise	it	is	deleted.

Prototype:
void	DeleteObj(BOOL	checkLock=FALSE);

Remarks:
Deletes	the	object	state's	object.

Parameters:
BOOL	checkLock=FALSE
If	checkLock	is	TRUE,	the	object	the	object	state	points	to	is	not	deleted	if	it
is	locked;	otherwise	it	is	always	deleted.

Operators:

Prototype:
ObjectState&	operator=(const	ObjectState&	os);

Remarks:
Assignment	operator.	The	object	pointer,	flags,	transformation	matrix	(and	its
validity	interval),	and	material	(and	its	validity	interval)	are	copied	from	the
specified	object	state.

Class	LocalModData
See	Also:	Class	ModContext.
class	LocalModData	:	public	InterfaceServer

Description:
This	class	allows	a	modifier	to	store	application	specific	data.	A	reference	to	a
pointer	to	an	instance	of	this	class	is	passed	in	to	ModifyObject()	as	part	of	the
ModContext.	The	value	of	the	pointer	starts	out	as	NULL,	but	the	modifier	can
set	it	to	point	at	an	actual	instance	of	a	derived	class.	When	the	mod	app	is
deleted,	if	the	pointer	is	not	NULL,	the	LocalModData	will	be	deleted	-	the
virtual	destructor	allows	this	to	work.

Methods:

Prototype:
virtual	~LocalModData()

Remarks:
Implemented	by	the	Plug-In.
A	plug-in	using	local	data	should	implement	this	method	to	free	its	local	data.

Prototype:
virtual	LocalModData	*Clone()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	allow	a	plug-in	to	copy	its	local	data.	It	is	called	when
the	system	is	copying	a	ModContext.

Return	Value:
The	plug-in	should	return	a	pointer	to	a	new	instance	of	its	LocalModData.

List	of	Channel	Bits
See	Also:	The	Geometry	Pipeline	System,	Object	Modification,	Class	Mesh,
List	of	Object	Channels.
The	pipeline	is	divided	into	the	following	channels:
GEOM_CHANNEL
The	vertices	of	the	object.	Most	modifiers	only	alter	this	channel.
TOPO_CHANNEL
The	topology	channel,	i.e.	the	face	or	polygon	structures.	Smoothing	groups
and	materials	are	also	part	of	this	channel.	Edge	visibility	is	also	part	of	this
channels	since	it	is	an	attribute	of	the	face	structure.
TEXMAP_CHANNEL
The	texture	vertices	and	procedural	mappings.
MTL_CHANNEL
This	is	no	longer	used.	Materials	are	rolled	into	the	Face	data	structure	and	are
part	of	the	topology	channel.
SELECT_CHANNEL
The	sub-object	selection	channel.	An	object's	selection	flows	down	the
pipeline.	What	the	selection	is	actually	comprised	of	is	up	to	the	specific
object	type.	For	example,	TriObjects	have	bits	for	face,	edge	and	vertex
selection.	This	channel	is	the	actual	BitArray	used	(like	selLevel	of	the
Mesh	class).
SUBSEL_TYPE_CHANNEL
This	is	the	current	level	of	selection.	Every	object	that	flows	down	the	pipeline
is	at	a	certain	level	that	corresponds	to	the	Sub-Object	drop	down	in	the	3ds
max	user	interface.	This	channel	indicates	which	level	the	object	is	at.	This	is
also	specific	to	the	object	type.	There	are	32	bits	to	represent	the	level	of
selection.	When	all	the	bits	are	0,	the	object	is	at	object	level	selection.
DISP_ATTRIB_CHANNEL
These	are	miscellaneous	bits	controlling	the	item's	display.	These	bits	are
specific	to	the	type	of	object.	For	the	Mesh	object	these	are	the	surface	normal
scale,	display	of	surface	normals,	edge	visibility	and	display	flags.
EXTENSION_CHANNEL
This	channel	is	available	in	release	4.0	and	later	only.
This	is	the	channel	used	by	extension	channel	objects.

VERTCOLOR_CHANNEL
This	is	the	color	per	vertex	channel.	This	is	also	used	for	the	second	texture
mapping	channel.
GFX_DATA_CHANNEL
This	channel	is	used	internally	by	3ds	max	for	stripping.	Plug-In	developers
don't	need	to	specify	this	channel	as	being	changed	or	used	in	their	plug-ins.
TM_CHANNEL
This	is	the	ObjectState	TM	that	flows	down	the	pipeline.	This	TM	may	be
modified	by	modifiers.
GLOBMTL_CHANNEL
This	is	no	longer	used.	Materials	are	rolled	into	the	Face	data	structure	and	are
part	of	the	topology	channel.
The	following	#defines	may	be	used	to	specify	groups	of	channels:
#define	OBJ_CHANNELS	(TOPO_CHANNEL	|
GEOM_CHANNEL	|	SELECT_CHANNEL	|
TEXMAP_CHANNEL	|	MTL_CHANNEL	|
SUBSEL_TYPE_CHANNEL	|	DISP_ATTRIB_CHANNEL	|
VERTCOLOR_CHANNEL	|	GFX_DATA_CHANNEL	|
DISP_APPROX_CHANNEL	|	EXTENSION_CHANNEL)
#define	ALL_CHANNELS
(OBJ_CHANNELS|TM_CHANNEL|GLOBMTL_CHANNEL)
Note:	Some	of	the	sample	code	specifies	these	channels	as	PART_*	as
opposed	to	*_CHANNEL.	For	example,	PART_GEOM|PART_TOPO
instead	of	GEOM_CHANNEL|TOPO_CHANNEL.	The	proper	usage	is
the	*_CHANNEL	version.

List	of	Viewport	Drawing	Color	Indices
See	Also:	Advanced	Topics	section	Getting	and	Setting	User	Preferences.
The	following	values	may	be	used	to	indicate	which	color	is	returned	by	the
various	APIs	for	getting	and	setting	user	interface	drawing	colors.
COLOR_SELECTION
COLOR_SUBSELECTION
COLOR_FREEZE
COLOR_GRID
COLOR_GRID_INTENS
COLOR_SF_LIVE
COLOR_SF_ACTION
COLOR_SF_TITLE
COLOR_VP_LABELS
COLOR_VP_INACTIVE
COLOR_ARCBALL
COLOR_ARCBALL_HILITE	
COLOR_ANIM_BUTTON
COLOR_SEL_BOXES
COLOR_LINK_LINES
COLOR_TRAJECTORY
COLOR_ACTIVE_AXIS
COLOR_INACTIVE_AXIS
COLOR_SPACE_WARPS
COLOR_DUMMY_OBJ
COLOR_POINT_OBJ
COLOR_POINT_AXES
COLOR_TAPE_OBJ
COLOR_BONES
COLOR_GIZMOS

COLOR_SEL_GIZMOS
COLOR_SPLINE_VECS
COLOR_SPLINE_HANDLES
COLOR_PATCH_LATTICE
COLOR_PARTICLE_EM
COLOR_CAMERA_OBJ
COLOR_CAMERA_CONE
COLOR_CAMERA_HORIZ
COLOR_NEAR_RANGE
COLOR_FAR_RANGE
COLOR_LIGHT_OBJ
COLOR_TARGET_LINE
COLOR_HOTSPOT
COLOR_FALLOFF
COLOR_START_RANGE
COLOR_END_RANGE
COLOR_VIEWPORT_BKG
COLOR_TRAJ_TICS_1
COLOR_TRAJ_TICS_2
COLOR_TRAJ_TICS_3
COLOR_GHOST_BEFORE
COLOR_GHOST_AFTER
COLOR_12FIELD_GRID
COLOR_START_RANGE1
COLOR_END_RANGE1
COLOR_CAMERA_CLIP
COLOR_NURBS_CV
COLOR_NURBS_LATTICE
COLOR_NURBS_CP
COLOR_NURBS_FP

COLOR_NURBS_DEP
COLOR_END_EFFECTOR
COLOR_END_EFFECTOR_STRING
COLOR_JOINT_LIMIT_SEL
COLOR_JOINT_LIMIT_UNSEL
COLOR_IK_TERMINATOR
COLOR_SF_USER
The	following	indicies	are	available	in	R3	and	later	only.
COLOR_VERT_TICKS
COLOR_XRAY
COLOR_GROUP_OBJ
COLOR_MANIPULATOR_X
COLOR_MANIPULATOR_Y
COLOR_MANIPULATOR_Z
COLOR_MANIPULATOR_ACTIVE
COLOR_VPT_CLIPPING
COLOR_DECAY_RADIUS
COLOR_VERT_NUMBERS
COLOR_CROSSHAIR_CURSOR
COLOR_SV_WINBK
COLOR_SV_NODEBK
COLOR_SV_SELNODEBK
COLOR_SV_NODE_HIGHLIGHT
COLOR_SV_MATERIAL_HIGHLIGHT
COLOR_SV_MODIFIER_HIGHLIGHT
COLOR_SV_PLUGIN_HIGHLIGHT
COLOR_SV_SUBANIM_LINE
COLOR_SV_CHILD_LINE
COLOR_SV_FRAME
COLOR_SV_SELTEXT

COLOR_SV_TEXT
COLOR_UNSEL_TAB
COLOR_ATMOS_APPARATUS
COLOR_SUBSELECTION_HARD
COLOR_SUBSELECTION_MEDIUM
COLOR_SUBSELECTION_SOFT
COLOR_SV_UNFOLD_BUTTON
COLOR_SV_GEOMOBJECT_BK
COLOR_SV_LIGHT_BK
COLOR_SV_CAMERA_BK
COLOR_SV_SHAPE_BK
COLOR_SV_HELPER_BK
COLOR_SV_SYSTEM_BK
COLOR_SV_CONTROLLER_BK
COLOR_SV_MODIFIER_BK
COLOR_SV_MATERIAL_BK

Class	HitRecord
See	Also:	Class	HitLog,	Class	HitData.
class	HitRecord

Description:
This	class	provides	a	data	structure	used	during	sub-object	hit-testing.

Friend	Class:
class	HitLog

Data	Members:
public:
INode	*nodeRef;
Points	the	node	that	was	hit.
ModContext	*modContext;
Points	to	the	ModContext	of	the	modifier.
DWORD	distance;
The	'distance'	of	the	hit.	To	classify	as	a	hit,	the	sub-object	component	must	be
within	some	threshold	distance	of	the	mouse.	This	distance	is	recorded	in	the
hit	record	so	that	the	closest	of	all	the	hits	can	be	identified.	What	the	distance
actually	represents	depends	on	the	rendering	level	of	the	viewport.	For
wireframe	modes,	it	refers	to	the	distance	in	the	screen	XY	plane	from	the
mouse	to	the	sub-object	component.	In	a	shaded	mode,	it	refers	to	the	Z	depth
of	the	sub-object	component.	In	both	cases,	smaller	values	indicate	that	the
sub-object	component	is	'closer'	to	the	mouse	cursor.
ulong	hitInfo;
A	general	unsigned	long	value.	Most	modifiers	will	just	need	this	to	identity
the	sub-object	element.	The	edit	mesh	modifier	uses	the	value	to	store	the
index	of	the	vertex	or	face	that	was	hit	for	example.
HitData	*hitData;
In	case	4	bytes	is	not	enough	space	to	identity	the	sub-object	element,	this
pointer	is	available.	To	use	this,	a	developer	would	define	a	class	derived	from
HitData	that	would	contain	the	necessary	data.	The	HitData	class	has	one
member	function,	a	virtual	destructor,	so	the	derived	class	can	be	properly
deleted	when	the	HitRecord	instance	is	deleted.

Methods:

Prototype:
HitRecord();

Remarks:
Constructor.	The	following	initialization	is	performed:	next	=	NULL;
modContext	=	NULL;	distance	=	0;	hitInfo	=	0;	hitData	=	NULL;

Prototype:
HitRecord(INode	*nr,	ModContext	*mc,	DWORD	d,	long	inf,
HitData	*hitdat)

Remarks:
Constructor.	The	data	members	are	initialized	to	the	data	passed.

Prototype:
HitRecord	*Next();

Remarks:
Implemented	by	the	System.
Each	HitRecord	maintains	a	pointer	to	another	HitRecord.	This	method
returns	the	next	hit	record.

Prototype:
~HitRecord();

Remarks:
Implemented	by	the	System.
Destructor.	If	HitData	has	been	allocated,	it	is	deleted	as	well.

Class	HitRegion
See	Also:	Data	Types.
class	HitRegion

Description:
This	class	describes	the	properties	of	a	region	used	for	built-in	hit	testing	of
items	in	the	interactive	renderer.

Data	Members:
public:
int	type;
The	region	type.	One	of	the	following	values:
POINT_RGN
A	single	point.
RECT_RGN
A	rectangular	region.
CIRCLE_RGN
A	circular	region.
FENCE_RGN
An	arbitrary	multi-point	polygon	region.

int	crossing;
If	nonzero,	elements	that	are	contained	within	or	cross	the	region	boundary
are	hit.	If	zero,	only	those	elements	entirely	within	the	boundary	are	hit.	This
is	not	used	for	point	hit	testing.
int	epsilon;
Specifies	the	distance	in	pixels	outside	the	pick	point	within	which	elements
may	be	and	still	be	hit.	This	is	not	used	for	rect,	circle,	or	fence	hit	testing.
union	{
POINT	pt;
RECT	rect;
CIRCLE	circle;
POINT	*pts;

};
The	storage	for	the	region.

Class	HitLog
See	Also:	Class	HitRecord,	Class	HitData.
class	HitLog

Description:
This	class	provides	a	data	structure	for	keeping	a	log	of	hits	during	sub-object
hit-testing.	It	provides	a	list	of	HitRecords	that	may	be	added	to	and	cleared.	A
developer	may	also	request	the	'closest'	hit	record	in	the	list.

Methods:

Prototype:
HitLog();

Remarks:
Constructor.	The	list	of	HitRecords	is	set	to	NULL.

Prototype:
~HitLog();

Remarks:
Destructor.	Clears	the	hit	log.

Prototype:
void	Clear();

Remarks:
Clears	the	log	of	hits	by	deleting	the	list	of	HitRecords.

Prototype:
HitRecord*	First();

Remarks:
Implemented	by	the	System.
Returns	the	first	HitRecord.

Prototype:

HitRecord*	ClosestHit();
Remarks:
Implemented	by	the	System.
Returns	the	HitRecord	that	was	'closest'	to	the	mouse	position	when	hit
testing	was	performed.	This	is	the	HitRecord	with	the	minimum	distance.

Prototype:
void	LogHit(INode	*nr,	ModContext	*mc,
DWORD	dist,	ulong	info,	HitData	*hitdat	=	NULL);

Remarks:
Implemented	by	the	System.
This	method	is	called	to	log	a	hit.	It	creates	a	new	HitRecord	object	using
the	data	passed	and	adds	it	to	the	hit	log.

Parameters:
INode	*nr
The	node	that	was	hit.
ModContext	*mc
The	ModContext	of	the	modifier.
DWORD	dist
The	'distance'	of	the	hit.	What	the	distance	actually	represents	depends	on	the
rendering	level	of	the	viewport.	For	wireframe	modes,	it	refers	to	the	distance
in	the	screen	XY	plane	from	the	mouse	to	the	sub-object	component.	In	a
shaded	mode,	it	refers	to	the	Z	depth	of	the	sub-object	component.	In	both
cases,	smaller	values	indicate	that	the	sub-object	component	is	'closer'	to	the
mouse	cursor.
ulong	info
Identifies	the	sub-object	component	that	was	hit.
HitData	*hitdat	=	NULL
If	the	info	field	is	insufficient	to	indicate	the	sub-object	component	that	was
hit,	pass	an	instance	of	the	HitData	class	that	contains	the	needed
information.

Class	Light
See	Also:	Data	Types.
class	Light	:	public	BaseInterfaceServer

Description:
This	class	describes	the	lights	used	in	the	interactive	renderer.	All	methods	of
this	class	are	implemented	by	the	system.

Methods:

Prototype:
Light();

Remarks:
Class	constructor.	Sets	the	default	values	of	the	light.
type	=	OMNI_LGT;
attenType	=	NO_ATTEN;
atten	=	(float)0.0;
intensity	=	(float)1.0;
angle	=	(float)30.0;
color[0]	=	(float)1.0;
color[1]	=	(float)1.0;
color[2]	=	(float)1.0;

Data	Members:
public:
LightType	type;
One	of	the	following	values:
OMNI_LGT
Omni-directional.
SPOT_LGT
Spot	light.
DIRECT_LGT
Directional	light.
AMBIENT_LGT
Ambient	light	-	global	illumination.

Point3	color;
The	color	of	the	light.	Individual	values	are	from	0.0	to	1.0	with	1.0	as	white.
Attenuation	attenType;
Attenuation	is	not	currently	implemented.	A	developer	should	pass
NO_ATTEN.
float	atten;
Note:	Attenuation	is	not	currently	implemented.
Light	attenuation	factor.
float	intensity;
Light	multiplier	factor.
float	angle;
Angle	of	cone	for	spot	and	cone	lights	in	degrees.
int	shape;
One	of	the	following	values:
GW_SHAPE_RECT	-	Rectangular	spotlights.
GW_SHAPE_CIRCULAR	-	Circular	spotlights.

float	aspect;
The	aspect	ratio	of	the	light.
int	overshoot;
Nonzero	indicates	the	light	supports	overshoot;	otherwise	0.
BOOL	affectDiffuse;
This	data	member	is	available	in	release	2.0	and	later	only.
This	defaults	to	TRUE,	but	if	the	user	set	it	to	FALSE	in	the	light	modifier
panel,	then	the
light	is	not	supposed	to	illuminate	the	diffuse	component	of	an	object's
material.
BOOL	affectSpecular;
This	data	member	is	available	in	release	2.0	and	later	only.
This	defaults	to	TRUE,	but	if	the	user	set	it	to	FALSE	in	the	light	modifier
panel,	then	the
light	is	not	supposed	to	illuminate	the	specular	component	of	an	object's
material.

Class	Interval
See	Also:	Advanced	Topics	sections	on	Intervals	and	Time.
class	Interval

Description:
An	Interval	is	a	class	that	represents	a	length	of	time.	It	has	two	private	data
members,	start	and	end	that	are	each	TimeValues.	A	TimeValue	is	a	single	instant
in	time.	For	more	explanation	see	the	Advanced	Topics	section	on	Intervals.	All
the	methods	of	this	class	are	implemented	by	the	system.
Definitions:
#define	FOREVER	Interval(TIME_NegInfinity,
TIME_PosInfinity)
#define	NEVER	Interval(TIME_NegInfinity,	TIME_NegInfinity)

Methods:

Prototype:
Interval(TimeValue	s,	TimeValue	e)

Remarks:
Constructor	that	assigns	both	the	start	and	end	times	of	the	interval.	If
TimeValue	e	is	less	than
TimeValue	s	the	values	are	swapped	before	they	are	assigned.

Parameters:
TimeValue	s
Specifies	the	start	time.
TimeValue	e
Specifies	the	end	time.

Prototype:
Interval()

Remarks:
Constructor	that	returns	an	EMPTY	interval,	i.e.	having	a	start	and	end	time
equal	to	TIME_NegInfinity

Prototype:
int	InInterval(const	TimeValue	t);

Remarks:
Return	Nonzero	if	the	TimeValue	passed	is	greater	than	or	equal	to	the	start
value	and	less	than	or	equal	to	the	end	value	and	not	equal	to
TIME_NegInfinity.	Returns	0	otherwise.

Parameters:
const	TimeValue	t

Return	Value:
Nonzero	if	the	TimeValue	passed	is	greater	than	or	equal	to	the	start	value	and
less	than	or	equal	to	the	end	value	and	not	equal	to	TIME_NegInfinity;
otherwise	0.

Prototype:
int	InInterval(const	Interval	interval)

Remarks:
Returns	nonzero	if	the	interval	passed	is	contained	within	the	interval;
otherwise	0.
return	InInterval(interval.Start())	&&	InInterval(interval.End());

Parameters:
const	Interval	interval
The	interval	to	check.

Return	Value:
Returns	nonzero	if	the	interval	passed	is	contained	within	the	interval;
otherwise	0.

Prototype:
int	Empty()

Remarks:
Returns	1	if	the	interval	is	EMPTY,	i.e.	has	a	start	and	end	time	equal	to
TIME_NegInfinity.	Returns	0	otherwise.

Prototype:
void	Set(TimeValue	s,	TimeValue	e)

Remarks:
Sets	the	start	and	end	times	for	the	interval.

Parameters:
TimeValue	s
Start	time	for	the	interval.
TimeValue	e
End	time	for	the	interval.

Prototype:
void	SetStart(TimeValue	s)

Remarks:
Sets	the	start	value	only.

Parameters:
TimeValue	s
Start	time	for	the	interval.

Prototype:
void	SetEnd(TimeValue	e)

Remarks:
Sets	the	end	value	only.

Parameters:
TimeValue	e
End	time	for	the	interval.

Prototype:
void	SetEmpty()

Remarks:
Sets	the	interval	to	be	EMPTY,	i.e.	having	a	start	and	end	time	equal	to
TIME_NegInfinity.

Prototype:
void	SetInfinite()

Remarks:
Sets	the	interval	to	be	FOREVER,	i.e.	have	a	start	time	equal
TIME_NegInfinity	and	end	time	equal	to	TIME_PosInfinity.

Prototype:
void	SetInstant(const	TimeValue	t)

Remarks:
Sets	both	the	start	and	end	times	to	the	time	passed.

Prototype:
TimeValue	Start()

Remarks:
Returns	the	start	time	of	the	interval.

Prototype:
TimeValue	End()

Remarks:
Returns	the	end	time	of	the	interval.

Prototype:
TimeValue	Duration()

Remarks:
Implemented	by	the	System.
Returns	the	duration	of	the	interval	(end	points	included).

Operators:

Prototype:
int	operator==(const	Interval&	i)

Remarks:
Checks	for	equality	between	two	Intervals.

Return	Value:
Nonzero	if	the	intervals	are	equal;	otherwise	0.

Prototype:
Interval	operator&(const	Interval	i)	const;

Remarks:
Intersects	Interval	and	i.	The	interval	will	have	a	start	time	of	the	greater	of
the	two	interval	start	times,	and	an	end	value	which	is	the	lesser	of	the	two	end
values.	If	the	end	time	is	less	than	the	start	time,	both	the	start	and	end	times
are	set	to	TIME_NegInfinity.

Return	Value:
An	Interval	that	is	the	intersection	of	the	intervals.

Prototype:
Interval&	operator&=(const	Interval	i)

Remarks:
This	updates	the	invoking	interval	so	it	will	have	a	start	time	of	the	greater	of
the	two	interval	start	times,	and	an	end	value	which	is	the	lesser	of	the	two	end
values.
return	(*this	=	(*this&i));

Prototype:
Interval&	operator+=(const	TimeValue	t)

Remarks:
Expands	the	Interval	to	include	the	TimeValue.
if	(t<start)	start=t;	if	(t>end)	end=t;	return	*this;

Class	IKChainActions
See	Also:	:	Class	IKCmdOps,	Class	IIKChainControl

class	IKChainActions	:	public	FPStaticInterface
	

Description:
This	class	is	only	available	in	release	5	or	later.
	
The	program	interface	to	actions	on	IK	chain	nodes,	which
IKCmdOps::CreateIKChain()	returns.	An	macro	is	defined	to	obtain	a
pointer	to	the	interface:
	
	IKChainActions*	ikchainAction	=
GET_IKCHAIN_FP_INTERFACE;
	
It	should	be	a	valid	pointer	provided	the	IK	system	is	successfully	loaded.
	
The	methods	are	mainly	designed	to	connect	to	the	UI	and	script.	However,	they
can	be	called	programmatically	as	well.	The	action	methods,	those	that	return
FPStatus,	assume	that	a	unique	IK	chain	node	is	currently	selected	and	apply
action	to	it.	Before	an	action	method	is	called,	IsSnapEnabled()	must	be
called	to	test	whether	a	unique	IK	chain	node	is	being	selected.	Such	as:
	
	if	(ikchainAction->IsSnapEnabled())
		ikchainAction->SetPreferredAngles();
	
Methods:
	

Prototype:
virtual	FPStatus	SetPreferredAngles()

Remarks:
It	sets	the	preferred	angles	of	all	bones	on	the	chain	to	the	corresponding	joint

angles	currently	in	force,	which	can	be	FK	or	IK	depending	the	state	of	Enabled.
	

Prototype:
virtual	FPStatus	IKSnapAction()

Remarks:
Applies	IK	Snapping,	which	sets	IK	goal	and	other	parameters,	such	as	the
swivel	angle,	according	to	the	current	state	of	the	bone	chain.	Moreover,	it
invokes	SetPreferredAngles().
	

Prototype:
virtual	FPStatus	FKSnapAction()

Remarks:
Applies	FK	Snapping,	which	assigns	the	currently	active	joint	angles	to	the
corresponding	FK	angles.	Moreover,	it	invokes	SetPreferredAngles().
	

Prototype:
virtual	FPStatus	SnapAction()

Remarks:
It	applies	IKSnapAction()	if	IK	Enabled	is	currently	off,	and
FKSnapAction()	if	IK	Enabled	is	on.
	

Prototype:
virtual	FPStatus	ToggleEnabled()

Remarks:
Toggles	IK	Enabled	state.	If	the	AutoSnap	parameter	of	the	IK	chain	is	true,	it
will	invoke	SnapAction()	before	toggling	the	Enabled	state.
	

Prototype:
virtual	FPStatus	AssumePreferredAngles()

Remarks:
It	assigns	the	preferred	angles	to	the	corresponding	FK	angles	and	then	turn	off
IK	Enabled.

Class	IKSolver
See	Also:	Class	BaseInterfaceServer,	Class	ZeroPlaneMap,	Class	LinkChain,
Inverse	Kinematics
class	IKSolver	:	public	BaseInterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	base	class	that	IK	Solver	plugins	should	derive	from.
The	IK	solver	is	a	pure	mathematical	function	and	does	not	hold	state,	but
instead	just	solves	a	given,	self-contained,	mathematical	problem,	e.g.	the	plugin
solver	does	not	have	influence	on	when	IK	is	invoked	and	what	an	IK	problem	is
(what	is	the	goal	and	what	are	the	joints,	etc.),	but	contributes	to	IK	by	providing
an	answer	on	how	to	solve.	Structurally,	it	is	independent	of	the	SDK	and,	hence,
can	be	built	independently,	except	for	some	theoretically	independent	math
library.	See	the	Inverse	Kinematics	section	for	more	detailed	information.

Methods:
public:

Prototype:
virtual	~IKSolver();

Remarks:
Destructor.

Class	Identity

Prototype:
virtual	SClass_ID	SuperClassID();

Remarks:
Plugins	derived	from	this	class	are	supposed	to	have
IK_SOLVER_CLASS_ID	as	their	super	class	ID.	This	method	should	not
be	overridden.

Default	Implementation:

{	return	IK_SOLVER_CLASS_ID;	}

Prototype:
virtual	Class_ID	ClassID()	=	0;

Remarks:
Implemented	by	the	plug-in.
Returns	the	class	ID	of	the	IK	Solver	plugin.

Prototype:
virtual	void	GetClassName(TSTR&	s);

Remarks:
Implemented	by	the	plug-in.
This	method	returns	the	class	name	of	the	IK	Solver	plugin.	This	name	will
appear	in	the	solver	list	from	which	users	can	pick	or	assign	IK	chains.

Parameters:
TSTR&	s
The	class	name	string.

Default	Implementation:
{	s	=	TSTR(_T("IKSolver"));	}

Solver	Traits

Prototype:
virtual	bool	IsInteractive()	const	=	0;

Remarks:
Implemented	by	the	plug-in.
This	method	indicates	whether	the	IK	Solver	is	a	controller	or	an	interactive
manipulation	tool.	In	the	former,	the	relationship	between	the	goal	and	the
joints	are	permanent:	joints	are	completely	controlled	by	the	goal.	In	the	latter,
the	relationship	is	transient,	existing	only	during	interactive	manipulation.	In
the	end,	IK	solutions	are	registered	at	each	joint,	mostly	likely	as	key-frames,
and	it	no	longer	matters	how	joints	have	got	their	joint	angles.	Only	non-

interactive,	or	controller,	IK	solvers	are	supported	in	R4.	Note	that	Interactive
solvers	do	not	need	an	initial	pose,	instead	it	needs	a	current	pose.

Return	Value:
TRUE	if	the	IK	Solver	is	an	interactive	tool,	otherwise	FALSE.

Prototype:
virtual	bool	IsHistoryDependent()	const	=	0;

Remarks:
Implemented	by	the	plug-in.
At	a	specific	point	in	time,	the	history	dependent	solver	will	reach	solutions
not	only	based	the	state	of	the	goal	at	the	time,	but	also	its	previous	states	(i.e.
history	dependent).	On	the	contrary,	the	history	independent	solver	does	its	job
based	on	the	state	of	the	goal	just	at	the	time.	The	procedural	implication	is
that,	when	the	goal	is	changed	at	time	t,	the	IK	system	would	have	to
invalidate	joints	at	time	t	for	the	history	independent	solver,	and	at	all	times
that	are	greater	or	equal	to	t	for	the	history	dependent	solver.	In	R4,	only
history	dependent	solvers	are	used	by	the	IK	system.

Return	Value:
TRUE	if	the	IK	Solver	is	history	dependent,	otherwise	FALSE.

Prototype:
virtual	bool	UseSlidingJoint()	const	=	0;

Remarks:
Implemented	by	the	plug-in.
This	method	indicates	whether	the	IK	Solver	intends	to	use	the	sliding	joint
(translational	degrees	of	freedom)	of	the	IK	chain.

Return	Value:
TRUE	if	the	sliding	joint	of	the	IK	chain	is	used,	otherwise	FALSE.

Prototype:
virtual	bool	UseSwivelAngle()	const	=	0;

Remarks:
Implemented	by	the	plug-in.

This	method	indicates	whether	the	IK	Solver	intends	to	use	the	swivel	angle
parameter	of	the	IK	chain.

Return	Value:
TRUE	if	the	swivel	angle	of	the	IK	chain	is	used,	otherwise	FALSE.

Prototype:
virtual	bool	DoesOneChainOnly()	const	=	0;

Remarks:
Implemented	by	the	plug-in.
When	two	IK	chains	overlap,	i.e.,	there	is	a	joint	belonging	to	both	IK	chains,
some	solvers	are	able	to	negotiate	between	the	possibly	contending	goals	and
some	are	not.	This	method	indicates	if	the	IK	Solver	does	a	single	chain	only.
For	those	IK	Solvers	that	can	only	solve	one	chain	at	a	time,	the	IK	system
will	pass	to	the	solvers	one	chain	at	a	time	in	a	definitive	order.	In	R4,	only
solvers	that	"do	one	chain	only"	are	used.

Return	Value:
TRUE	if	the	IK	Solver	does	only	one	chain,	otherwise	FALSE.

Prototype:
virtual	bool	IsAnalytic()	const;

Remarks:
Implemented	by	the	plug-in.
This	method	determines	whether	the	IK	Solver	is	analytic	or	needs	to	go
through	iterations.	Solutions	of	an	analytic	IK	Solver	are	not	dependent	on
position	and	rotation	thresholds	or	a	maximum	number	of	iterations.

Return	Value:
TRUE	if	the	IK	Solver	is	analytic,	otherwise	FALSE.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	DoesRootJointLimits()	const;

Remarks:
Implemented	by	the	plug-in.
This	method	determines	whether	the	IK	Solver	handles	root	joint	limits.	If	the
IK	Solver	does	not	do	joint	limits,	the	result	will	be	simply	clamped	into	joint
limits	by	the	IK	system.

Return	Value:
TRUE	if	the	IK	Solver	does	root	joint	limits,	otherwise	FALSE.

Default	Implementation:
{	return	false;}

Prototype:
virtual	bool	DoesJointLimitsButRoot	()	const;

Remarks:
Implemented	by	the	plug-in.
This	method	determines	whether	the	IK	Solver	handles	joint	limits.	If	the	IK
Solver	does	not	do	joint	limits,	the	result	will	be	simply	clamped	into	joint
limits	by	the	IK	system.

Return	Value:
TRUE	if	the	IK	Solver	does	joint	limits,	otherwise	FALSE.

Default	Implementation:
{	return	false;}

Prototype:
virtual	bool	SolveEERotation()	const	=	0;

Remarks:
Implemented	by	the	plug-in.
This	method	determines	whether	the	rotational	part	of	the	goal	node	will	be
used.

Return	Value:
TRUE	if	the	rotational	part	of	the	goal	node	will	be	used,	otherwise	FALSE	to
indicate	that	only	the	position	of	the	goal	node	is	taken	as	the	IK	goal	while
the	rotation	threshold	will	be	irrelevant.

Solution	Parameters

Prototype:
virtual	const	IKSys::ZeroPlaneMap*	GetZeroPlaneMap(const
Point3&	a0,	const	Point3&	n0)	const;

Remarks:
Implemented	by	the	plug-in.
IK	Solvers	may	have	their	own	Zero	Plane	Map.	If	so,	they	must	override	this
method.	The	IK	system	will	need	it	to	perform	IK	snapping,	which	is	setting
the	swivel	angle	based	on	the	current	pose	so	that	the	pose	is	consistent	with
the	swivel	angle.	A	Zero-Plane	map	can	depend	on	the	initial	pose,	which	is
when	the	joint	angles	take	into	account	the	respective	preferred	angles.	In	this
method,	a0	is	to	be	substituted	for	by	the	end	effector	axis,	which	is	a	unit
vector,	and	n0	by	the	solver	plane	normal,	also	a	unit	vector,	when	the	chain	is
at	the	initial	pose.	The	IK	system	will	call	this	function	using
IIKChainControl::InitEEAxis()	and	IIKChainControl::InitPlane()
for	the	two	arguments.

Parameters:
const	Point3&	a0
The	end	effector	axis	unit	vector.
const	Point3&	n0
The	solver	plane	normal.

Return	Value:
A	pointer	to	the	ZeroPlaneMap.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	float	GetPosThreshold()	const	=	0;

Remarks:
This	method	allows	you	to	retrieve	the	position	threshold.

Prototype:
virtual	float	SetPosThreshold(float)	const	=	0;

Remarks:
This	method	allows	you	to	set	the	position	threshold.

Parameters:
float
The	position	threshold	value.

Prototype:
virtual	float	GetRotThreshold()	const	=	0;

Remarks:
This	method	allows	you	to	retrieve	the	rotation	threshold.

Prototype:
virtual	float	SetRotThreshold(float)	const	=	0;

Remarks:
This	method	allows	you	to	set	the	rotation	threshold.

Parameters:
float
The	rotation	threshold	value.

Prototype:
virtual	unsigned	GetMaxIteration()	const	=	0;

Remarks:
This	method	allows	you	to	retrieve	the	maximum	number	of	iterations.

Prototype:
virtual	void	SetMaxIteration(unsigned)	=	0;

Remarks:
This	method	allows	you	to	set	the	maximum	number	of	iterations.

Parameters:

unsigned
The	maximum	number	of	iterations.

Solving	IK

Prototype:
virtual	ReturnCondition	Solve(IKSys::LinkChain&)	=	0;

Remarks:
Implemented	by	the	plug-in.
This	is	the	method	that	the	IK	system	will	call	when	it’s	the	time	to	update	the
joints	according	to	the	IK	goal	and	other	parameters.	The	derived	class	should
override	this	method	if	DoesOneChainOnly()	returns	TRUE	and
HistoryDependent()	returns	FALSE.	Note	that	the	solver	is	not	designed	to
be	invoked	recursively.	The	recursion	logic	existing	among	the	IK	chains	is
taken	care	of	by	the	3ds	max	IK	(sub-)System.	The	data	structure	passed	to	the
Solver	is	transient	and	thus	will	be	discarded	once	the	solution	is	copied	back
to	the	joints.	If	the	return	condition	indicates	failure,	(i.e.	>	0xff)	the	result	will
not	be	copied	back	to	the	joint	nodes	in	the	3ds	max	scene	database.

Parameters:
IKSys::LinkChain&
A	reference	to	the	Link	Chain.

Return	Value:
The	ReturnCondition	bit-set	with	one	or	more	of	the	following	flags;
bLimitReached
The	limit	is	reached.
bLimitClamped
The	limit	is	clamped.
bMaxIterationReached
The	maximum	number	of	iterations	is	reached.
bGoalTooCloseToEE
The	goal	is	too	close	to	the	end	effector.
bInvalidArgument
An	invalid	argument	is	passed.

bInvalidInitialValue
An	invalid	initial	value	is	passed.

Class	IIKChainControl
See	Also:	:	Class	IKCmdOps,	Class	IKChainActions

	

Description:
This	class	is	only	available	in	release	5	or	later.
	
The	interface	class	to	TM	controller	that	the	IK	chain	node	employs.	Suppose
node	is	an	IK	chain	node,	following	code	obtains	the	interface	pointer
	
	IIKChainControl*	ikchain	=	(IIKChainControl*)	node-
>GetTMController()->GetInterface(I_IKChainControl);
	
From	this	pointer,	we	can	get	all	properties	pertinent	to	an	IK	Chain.
	

Methods:
	

Prototype:
virtual	INode*	StartJoint()	const

Remarks:
The	start	joint,	end	joint	of	the	chain,	and	the	node	to	that	this	IK	chain
controller	belongs.
	

Prototype:
virtual	INode*	EndJoint()	const

Remarks:
Please	refer	to	StartJoint().
	

Prototype:
virtual	INode*	GetNode()	const

Remarks:
Please	refer	to	StartJoint().
	

Prototype:
virtual	Point3	ChainNormal(TimeValue	t,	Interval&	valid)

Remarks:
Preferred	angles	are	used	to	start	the	IK	iteration.	Hence,	the	pose	when	joint
angles	assume	the	preferred	angles	is	also	called	the	Initial	Pose	in	the	context	of
IK.	It	is	animatable,	meaning	that	at	different	time,	IK	may	start	iteration	from
different	poses.
	
Let's	call	the	plane	that	the	joints	of	an	IK	chain	the	(IK)	solver	plane.
InitPlane()	and	InitEEAxis()	returns	the	normal	to	the	solver	plane	and	the
axis	from	the	start	joint	to	the	end	joint	(end-effector	axis)	at	the	initial
(preferred	angle)	pose,	at	time	of	input	argument.	They	are	represented	in	the
parent	space	of	the	start	joint.	ChainNormal()	returns	the	normal	in	the	object
space,	as
	
	InitPlane()	==	ChainNormal()	*	startIKCont->PrefRotation()
where
	startIKCont	=	(IIKControl*)StartJoint()->GetController()-
>GetInterface(I_IKControl);
	
Furthermore,	ChainNormal()	takes	as	an	input	argument	a	validity	interval
that	will	be	intersected	by	the	validity	interval	of	the	chain	normal.
	

Prototype:
virtual	Point3	InitPlane(TimeValue)

Remarks:
Please	refer	to	ChainNormal().

Prototype:

virtual	Point3	InitEEAxis(TimeValue)

Remarks:
Please	refer	to	ChainNormal().

Prototype:
virtual	float	InitChainLength(TimeValue)

Remarks:
Please	refer	to	ChainNormal().

Prototype:
virtual	float	SwivelAngle(TimeValue	t,	Interval&	valid)
	
The	swivel	angle	at	time.	The	validity	interval,	valid,	will	be	intersected.
	

Prototype:
virtual	const	IKSys::ZeroPlaneMap*
DefaultZeroPlaneMap(TimeValue)
	
The	zero	plane	is	the	plane	that,	at	each	"start	joint	to	end	joint"	axis,	is	used	as	a
reference	plane	with	regard	to	that	the	swivel	angle	is	defined.	The	zero	plane
map	maps	an	axis	to	a	plane	normal.	The	IK	system	offers	as	a	possible	default
via	DefaultZeroPlaneMap().
	

Prototype:
virtual	SAParentSpace	SwivelAngleParent()	const
	
Whether	the	zero	plane	is	defined	in	the	parent	space	of	the	start	joint,
kSAInStartJoint,	or	in	the	space	of	the	IK	goal,	kSAInGoal.
	

Prototype:
virtual	Solver()	const
	

The	solver	that	is	assigned	to	this	chain.
	

Prototype:
virtual	bool	SolverEnabled(TimeValue,	Interval&	valid)
	
Whether	the	solver	is	enabled	(IK	mode)	or	not	(FK	mode).
	

Prototype:
virtual	bool	CanAutoEnable()	const
	
When	the	chain	is	in	the	FK	mode,	IK	can	still	be	invoked	when	the	goal	is
moved	interactively	if	CanAutoEnabled()	is	true.	It	is	a	PB2	parameter	of
index	kAutoEnable.	It	is	not	animatable.
	

Prototype:
virtual	bool	AutoEnableSet()	const
	
It	is	a	transient	state	that	is	alive	only	at	the	time	when	joint	angles	are	to	be
updated.	Being	true	means	that	the	Enabled	state	of	the	chain	is	off	the	IK	is
turned	on	by	interactive	manipulation.
	

Prototype:
virtual	bool	Valid()	const
	
Whether	this	chain	is	a	valid	one.	It	is	valid	if	it	is	assigned	a	proper	IK	solver
and	it	has	valid	start	joint	and	end	joint.
	

Prototype:
virtual	Interface_ID	GoalInterfaceID()
	
What	IK	goal	interface	this	chain	is	prepaired	for.	For	now,	there	are	two

interfaces:	HI	IK	goal	(IHIIKGoal)	and	Spline	IK	goal	(ISplineIKGoal).	An
IK	chain	will	admit	of	plugin	solvers	that	support	this	goal	interface
(IKSolver::ExpectGoal()).
	

Prototype:
virtual	BaseInterface*	AcquireGoal(TimeValue,	Interval&	valid,
const	Matrix3&	parent_of_start_joint)
	
It	returns	an	interface	to	the	goal	at	the	time.	Validity	interval	is	reconciled.	The
parent	matrix	of	the	start	joint	is	also	returned	in	the	third	argument.

Class	IIKControl
See	Also:	Class	INode,	Class	Control,	Class	Point2,	Class	Point3,	Class
Interval,	Inverse	Kinematics
class	IIKControl

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	TM	controller	for	IK	Chains	and	is	used	for	nodes	that
serve	as	IK	joints.	This	class	is	closely	knit	together	with	the	Class
IIKChainControl	and	form	the	IK	system.	An	interface	pointer	to	the
IKControl	class	can	be	obtained	by	using
Animatable::GetInterface(I_IKCONTROL).	See	the	Inverse	Kinematics
section	for	more	detailed	information.

Methods:
public:

Degrees	of	Freedom

Prototype:
virtual	bool	DofActive(DofAxis)	const	=	0;

Remarks:
This	method	allows	you	to	determine	which	degrees	of	freedom	are	active	and
inactive	for	the	translational	and	rotational	axes.

Parameters:
DofAxis
The	DOF	axis	to	check,	which	is	one	of	the	following	IKSys::TransX,
IKSys::TransY,	IKSys::TransZ,	IKSys::RotX,	IKSys::RotY,
IKSys::RotZ.

Return	Value:
TRUE	if	the	specified	DOF	axis	is	active,	otherwise	FALSE.

Prototype:

virtual	DofSet	ActiveTrans()	const	=	0;
Remarks:
This	method	allows	you	to	determine	which	degrees	of	freedom	are	active	and
inactive	for	the	translational	axes.	The	returned	DofSet	can	be	tested	for
IKSys::DofX,	IKSys::DofX,	and	IKSys::DofX.

Return	Value:
A	DofSet	structure	containing	the	translational	axes.

Prototype:
virtual	DofSet	ActiveRot()	const	=	0;

Remarks:
This	method	allows	you	to	determine	which	degrees	of	freedom	are	active	and
inactive	for	the	rotational	axes.	The	returned	DofSet	can	be	tested	for
IKSys::DofX,	IKSys::DofX,	and	IKSys::DofX.

Return	Value:
A	DofSet	structure	containing	the	translational	axes.

Prototype:
virtual	DofSet	ActiveDofs()	const	=	0;

Remarks:
This	method	allows	you	to	determine	which	degrees	of	freedom	are	active	and
inactive	for	the	translational	and	rotational	axes.	The	returned	DofSet	can	be
tested	for	IKSys::TransX,	IKSys::TransY,	IKSys::TransZ,
IKSys::RotX,	IKSys::RotY,	IKSys::RotZ.

Return	Value:
A	DofSet	structure	containing	the	translational	and	rotational	axes.

IK	Chains

Prototype:
virtual	INodeTab	IKChains(JointType)	const	=	0;

Remarks:

This	method	returns	a	list	of	IK	Chain	nodes.	Note	that	nn	IK	chain	starts	at
the	rotational	joint	of	the	Start	Joint	and	ends	at	the	sliding	joint	of	the	End
Joint.

Parameters:
JointType
The	joint	type,	either	IKSys::SlidingJoint	or	IKSys::RotationalJoint.

Return	Value:
The	node	table	of	IK	Chain	nodes.

Prototype:
virtual	bool	IKBound(TimeValue	t,	JointType	jt)	=	0;

Remarks:
The	parameter	that	decides	whether	an	individual	degree	of	freedom	is	active
is	not	animatable.	There	is	an	animatable	variable	of	IK	chain	that	decides
whether	the	goal	defined	in	the	IK	chain	actually	affects	the	joints	it	covers	at
a	specific	time.	This	method	allows	you	to	query	that.

Parameters:
TimeValue	t
The	time	at	which	to	test	the	joint	type.
JointType	jt
The	joint	type,	either	IKSys::SlidingJoint	or	IKSys::RotationalJoint.

Return	Value:
TRUE	if	bound,	otherwise	FALSE.

Joint	Limits

Prototype:
virtual	bool	DofLowerLimited(DofAxis)	const	=	0;

Remarks:
This	method	allows	you	to	check	if	a	specific	DOF	axis	has	its	lower	bounds
limited.

Parameters:

DofAxis
The	DOF	axis	to	check,	which	is	one	of	the	following	IKSys::TransX,
IKSys::TransY,	IKSys::TransZ,	IKSys::RotX,	IKSys::RotY,
IKSys::RotZ.

Return	Value:
TRUE	if	limited,	otherwise	FALSE.

Prototype:
virtual	bool	DofUpperLimited(DofAxis)	const	=	0;

Remarks:
This	method	allows	you	to	check	if	a	specific	DOF	axis	has	its	upper	bounds
limited.

Parameters:
DofAxis
The	DOF	axis	to	check,	which	is	one	of	the	following	IKSys::TransX,
IKSys::TransY,	IKSys::TransZ,	IKSys::RotX,	IKSys::RotY,
IKSys::RotZ.

Return	Value:
TRUE	if	limited,	otherwise	FALSE.

Prototype:
virtual	Point2	DofLimits(DofAxis)	const	=	0;

Remarks:
This	method	allows	you	to	check	if	a	specific	DOF	axis	has	its	upper	and
lower	bounds	limited.

Parameters:
DofAxis
The	DOF	axis	to	check,	which	is	one	of	the	following	IKSys::TransX,
IKSys::TransY,	IKSys::TransZ,	IKSys::RotX,	IKSys::RotY,
IKSys::RotZ.

Return	Value:
A	Point2	where	X	and	Y	are	the	lower	and	upper	limits,	respectively.

Prototype:
virtual	Point3	TransLowerLimits()	const	=	0;

Remarks:
This	method	allows	you	to	retrieve	the	translation	lower	limits.

Return	Value:
A	Point3	where	X,	Y,	and	Z	represents	the	actual	limits.

Prototype:
virtual	Point3	TransUpperLimits()	const	=	0;

Remarks:
This	method	allows	you	to	retrieve	the	translation	upper	limits.

Return	Value:
A	Point3	where	X,	Y,	and	Z	represents	the	actual	limits.

Prototype:
virtual	Point3	RotLowerLimits()	const	=	0;

Remarks:
This	method	allows	you	to	retrieve	the	rotational	lower	limits.

Return	Value:
A	Point3	where	X,	Y,	and	Z	represents	the	actual	limits.

Prototype:
virtual	Point3	RotUpperLimits()	const	=	0;

Remarks:
This	method	allows	you	to	retrieve	the	rotational	upper	limits.

Return	Value:
A	Point3	where	X,	Y,	and	Z	represents	the	actual	limits.

FK	Sub-Controller	Access

Prototype:

virtual	Control*	FKSubController()	const	=	0;
Remarks:
This	method	allows	you	to	obtain	a	pointer	to	the	Forward	Kinematics	sub-
controller.	Note	that	the	IK	controller	is	not	designed	to	be	instanced.	It	is
expected	to	have	a	unique	node.

Prototype:
virtual	INode*	GetNode()	const	=	0;

Remarks:
This	method	allows	you	to	obtain	a	pointer	to	the	node	that	holds	the	Forward
Kinematics	TM	controller.

Preferred	Angles

Prototype:
virtual	Point3	PrefPosition(TimeValue	t,	Interval&
validityInterval)	=	0;

Remarks:
This	method	allows	you	to	retrieve	the	preferred	angle	of	translation.	Note	that
the	angles	are	constant	with	regard	to	animation	time.

Parameters:
TimeValue	t
The	time	at	which	to	retrieve	the	preferred	angle.
Interval&	validityInterval
The	validity	interval.

Return	Value:
The	X,	Y,	and	Z,	preferred	angles.

Prototype:
virtual	Point3	PrefRotation(TimeValue	t,	Interval&
validityInterval)	=	0;

Remarks:

This	method	allows	you	to	retrieve	the	preferred	angle	of	rotation.	Note	that
the	angles	are	constant	with	regard	to	animation	time.

Parameters:
TimeValue	t
The	time	at	which	to	retrieve	the	preferred	angle.
Interval&	validityInterval
The	validity	interval.

Return	Value:
The	X,	Y,	and	Z,	preferred	angles.

Prototype:
virtual	void	SetPrefTrans(const	Point3&	val,	TimeValue	t	=	0)	=	0;

Remarks:
A	solver	may	start	off	the	solution	process	with	joint	angles	being	set	to
special	values,	preferred	angles.	This	method	allows	you	to	set	the	preferred
angles	of	the	translational	joints.

Parameters:
const	Point3&	val
The	preferred	angles	you	wish	to	set.
TimeValue	t	=	0
The	time	at	which	to	set	them.

Prototype:
virtual	void	SetPrefRot(const	Point3&	val,	TimeValue	t	=	0)	=	0;

Remarks:
A	solver	may	start	off	the	solution	process	with	joint	angles	being	set	to
special	values,	preferred	angles.	This	method	allows	you	to	set	the	preferred
angles	of	the	rotational	joints.

Parameters:
const	Point3&	val
The	preferred	angles	you	wish	to	set.
TimeValue	t	=	0

The	time	at	which	to	set	them.

Prototype:
virtual	void	SetPrefTR(const	Point3&	trans,	const	Point3&	rot,
TimeValue	t	=	0)	=	0;

Remarks:
A	solver	may	start	off	the	solution	process	with	joint	angles	being	set	to
special	values,	preferred	angles.	This	method	allows	you	to	set	the	preferred
angles	of	both	the	translational	and	rotational	joints.

Parameters:
const	Point3&	trans
The	preferred	translational	angles	you	wish	to	set.
const	Point3&	rot
The	preferred	rotational	angles	you	wish	to	set.
TimeValue	t	=	0
The	time	at	which	to	set	them.

Joint	Angles

Prototype:
virtual	Point3	TransValues(TimeValue,	Interval*	=	0)	=	0;

Remarks:
This	method	returns	the	angles	of	sliding	joints	at	a	specific	time.

Parameters:
TimeValue
The	time	at	which	to	retrieve	the	values.
Interval*	=	0
The	validity	interval.	If	non-null	the	validity	interval	will	be	updated.

Prototype:
virtual	Point3	RotValues(TimeValue,	Interval*	=	0)	=	0;

Remarks:

This	method	returns	the	angles	of	rotational	joints	at	a	specific	time.
Parameters:
TimeValue
The	time	at	which	to	retrieve	the	values.
Interval*	=	0
The	validity	interval.	If	non-null	the	validity	interval	will	be	updated.

Prototype:
virtual	void	AssignTrans(const	Point3&,	const	Interval&)	=	0;

Remarks:
This	method	allows	you	to	set	the	angles	of	translational	joints.	Note	that	this
method	does	not	adjust	the	validity	interval.

Parameters:
const	Point3&
The	joint	angles.
const	Interval&
The	validity	interval

Prototype:
virtual	void	AssignRot(const	Point3&,	const	Interval&)	=	0;

Remarks:
This	method	allows	you	to	set	the	angles	of	rotational	joints.	Note	that	this
method	does	not	adjust	the	validity	interval.

Parameters:
const	Point3&
The	joint	angles.
const	Interval&
The	validity	interval

Prototype:
virtual	void	AssignActiveTrans(const	Point3&,	const	Interval&)	=
0;

Remarks:
This	method	allows	you	to	set	the	angles	of	translational	joints.	Note	that	this
method	will	skip	those	degrees	of	freedom	that	are	not	active	and	that	this
method	will	not	adjust	the	validity	interval.

Parameters:
const	Point3&
The	joint	angles.
const	Interval&
The	validity	interval

Prototype:
virtual	void	AssignActiveTrans(const	DofSet&,	const	float[],	const
Interval&)	=	0;

Remarks:
This	method	allows	you	to	set	the	angles	of	translational	joints.	The	active
DOF’s	are	given	as	the	first	argument	of	type	DofSet	and	the	new	values	are
supplied	as	a	float	array	whose	size	should	be	the	same	as	the	DofSet
[DofSet::Count()].Note	that	this	method	does	not	adjust	the	validity	interval.

Parameters:
const	DofSet&
The	degrees	of	freedom.
const	float[]
The	new	angles	you	wish	to	set.
const	Interval&
The	validity	interval

Prototype:
virtual	void	AssignActiveRot(const	Point3&,	const	Interval&)	=	0;

Remarks:
This	method	allows	you	to	set	the	angles	of	rotational	joints.	Note	that	this
method	will	skip	those	degrees	of	freedom	that	are	not	active	and	that	this
method	does	not	adjust	the	validity	interval.

Parameters:

const	Point3&
The	joint	angles.
const	Interval&
The	validity	interval

Prototype:
virtual	void	AssignActiveRot(const	DofSet&,	const	float[],	const
Interval&)	=	0;

Remarks:
This	method	allows	you	to	set	the	angles	of	rotational	joints.	The	active	DOF’s
are	given	as	the	first	argument	of	type	DofSet	and	the	new	values	are	supplied
as	a	float	array	whose	size	should	be	the	same	as	the	DofSet
[DofSet::Count()].Note	that	this	method	does	not	adjust	the	validity	interval.

Parameters:
const	DofSet&
The	degrees	of	freedom.
const	float[]
The	new	angles	you	wish	to	set.
const	Interval&
The	validity	interval

Prototype:
virtual	void	SetTransValid(const	Interval&	valid)	=	0;

Remarks:
This	method	allows	you	to	set	the	validity	interval	for	translational	joint
angles.

Parameters:
const	Interval&	valid
The	validity	interval.

Prototype:
virtual	void	SetRotValid(const	Interval&	valid)	=	0;

Remarks:
This	method	allows	you	to	set	the	validity	interval	for	rotational	joint	angles.

Parameters:
const	Interval&	valid
The	validity	interval.

Prototype:
virtual	void	SetTRValid(const	Interval&	valid)	=	0;

Remarks:
This	method	allows	you	to	set	the	validity	interval	for	both	translational	and
rotational	joint	angles.

Parameters:
const	Interval&	valid
The	validity	interval.

Class	ZeroPlaneMap
See	Also:	Class	Point3,	Inverse	Kinematics
class	ZeroPlaneMap

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	is	defined	in	IKHierarchy.h	and	provides	the	functionality	that,
given	a	unit	axis,	which	is	to	be	substituted	by	the	end	effector	(EE)	Axis,
produces	a	unit	vector,	which	will	be	interpreted	as	the	normal	to	a	plane.	For
more	details	see	the	section	on	Inverse	Kinematics.

Methods:
public:

Prototype:
virtual	~ZeroPlaneMap()

Remarks:
Destructor.

Default	Implementation:
{	}

Prototype:
virtual	Point3	operator()(const	Point3&	EEAxis)	const	=	0;

Remarks:
The	ZeroPlaneMap	call	operator.

Parameters:
const	Point3&	EEAxis
The	end	effector	axis.

Return	Value:
The	unit	vector	described	above.

Class	RootLink
See	Also:	Class	LinkChain,	Class	Link,	Class	Matrix3,	Class	Point3,	Inverse
Kinematics
class	RootLink

Description:
This	class	is	available	in	release	4.0	and	later	only.
A	RootLink	consists	of	a	rotation	plus	a	rigidExtend.	It	transforms	like	this:
To_Coordinate_Frame	=	rigidExtend	*	rotXYZ	*
From_Coordinate_Frame
where	rotXYZ	=	Rot_x(rotXYZ[0])	*	Rot_y(rotXYZ[1])	*
Rot_z(rotXYZ[2]).
Note	that	not	all	the	x,	y,	and	z,	are	degrees	of	freedom.	Only	Active()	ones	are.
We	put	the	whole	rotation	here	so	that	some	solver	may	choose	to	use	it	as	a	full
rotation	and	then	clamp	the	result	to	the	permissible	range.

Data	Members:
public:
Point3	rotXYZ;
The	xyz	rotation.
Point3	initXYZ;
Corresponds	to	the	PrefRotation()	of	the	Start	Joint.
Point3	llimits;
The	lower	limits.
Point3	ulimits;
The	upper	limits.
Matrix3	rigidExtend;
The	rigid	extents.

private:
unsigned	flags;
The	root	link	flags.

Methods:
public:

Prototype:
RootLink():flags(7)

Remarks:
Constructor.

Default	Implementation:
{	}

Prototype:
bool	GetActive(unsigned	i)	const;

Remarks:
This	method	informs	the	Solver	whether	a	particular	component	is	active.

Parameters:
unsigned	i
The	component,	0	through	3	for	x,	y,	and	z,	respectively.

Return	Value:
TRUE	if	the	specified	component	is	active,	otherwise	FALSE.

Default	Implementation:
{	return	flags&(1<<i)?true:false;	}

Prototype:
void	SetActive(unsigned	i,	bool	s);

Remarks:
This	method	allows	you	to	activate	or	deactivate	a	particular	component.

Parameters:
unsigned	i
The	component,	0	through	3	for	x,	y,	and	z,	respectively.
bool	s
TRUE	to	activate,	FALSE	to	deactivate.

Prototype:
bool	GetLLimited(unsigned	i)	const;

Remarks:
This	method	informs	the	Solver	whether	a	particular	component	has	its	lower
limits	active.

Parameters:
unsigned	i
The	component,	0	through	3	for	x,	y,	and	z,	respectively.

Return	Value:
TRUE	if	the	specified	component	is	active,	otherwise	FALSE.

Default	Implementation:
{	return	flags&(1<<(i+3))?true:false;	}

Prototype:
bool	SetLLimited(unsigned	i,	bool	s)	const;

Remarks:
This	method	allows	you	to	activate	or	deactivate	a	particular	component’s
lower	limits.

Parameters:
unsigned	i
The	component,	0	through	3	for	x,	y,	and	z,	respectively.
bool	s
TRUE	to	activate,	FALSE	to	deactivate.

Prototype:
bool	GetULimited(unsigned	i)	const;

Remarks:
This	method	informs	the	Solver	whether	a	particular	component	has	its	upper
limits	active.

Parameters:
unsigned	i
The	component,	0	through	3	for	x,	y,	and	z,	respectively.

Return	Value:
TRUE	if	the	specified	component	is	active,	otherwise	FALSE.

Default	Implementation:
{	return	flags&(1<<(i+6))?true:false;	}

Prototype:
bool	SetULimited(unsigned	i,	bool	s)	const;

Remarks:
This	method	allows	you	to	activate	or	deactivate	a	particular	component’s
upper	limits.

Parameters:
unsigned	i
The	component,	0	through	3	for	x,	y,	and	z,	respectively.
bool	s
TRUE	to	activate,	FALSE	to	deactivate.

Prototype:
Matrix3&	RotateByAxis(Matrix3&	mat,	unsigned	i)	const;

Remarks:
This	method	will	pre-apply	the	rotation	about	the	x,	y,	or	z	axis.	Therefore,
starting	with	the	identity	matrix	mat,
ApplyLinkMatrix(

RotateByAxis(
RotateByAxis(

RotateByAxis(mat,	2),
1),

0),
false)

should	equal	to	LinkMatrix(true).
Parameters:
unsigned	i
The	component,	0	through	3	for	x,	y,	and	z,	respectively.

Prototype:
Matrix3	LinkMatrix(bool	include_rot)	const;

Remarks:
This	method	returns	the	link	matrix	just	defined	if	the	argument	is	TRUE.

Parameters:
bool	include_rot
TRUE	to	return	the	link	matrix,	FALSE	to	return	RigidExtend.

Return	Value:
The	link	matrix,	otherwise	it	simply	returns	RigidExtend.

Prototype:
Matrix3&	ApplyLinkMatrix(Matrix3&	mat,	bool	include_rot)
const;

Remarks:
This	methods	applies	the	LinkMatrix()	to	the	input	matrix,	or	mat	=	mat	*
LinkMatrix(include_rot)

Parameters:
Matrix3&	mat
The	input	matrix.
bool	include_rot
When	applying	the	DOF	part,	or	rotation	part,	to	a	matrix,	this	will	take	place
one	at	a	time	by	calling	RootLink::RotateByAxis().	If	you	want	to	apply
the	whole	link,	while	already	having	applied	the	rotation	part,	you	would	need
to	set	this	flag	to	FALSE.

Return	Value:
The	reference	to	the	input	matrix,	mat.

Class	Link
See	Also:	Class	LinkChain,	Class	RootLink,	Class	Matrix3,	Class	Point3,
Inverse	Kinematics
class	Link

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	a	single	link	in	the	link	chain.	A	Link	is	a	single	degree	of
freedom	rotation	followed	by	a	rigidExtend.	The	DOF	axis	is	specified	by
dofAxis.	It	is	always	active.

Data	Members:
public:
DofAxis	dofAxis;
The	variable	part	of	a	Link	is	of	one	degree	of	freedom.	It	can	be	translational
or	rotational.	One	of	the	following;	TransX,	TransY,	TransZ,	RotX,
RotY,	or	RotZ.
float	dofValue;
The	current	value	with	regard	to	the	degree	of	freedom.
float	initValue;
The	initial	value.
Point2	limits;
The	constrained	lower	and	upper	limits.	[0]	for	the	lower	limit	and	[1]	for	the
upper	limit.

private:
Matrix3	rigidExtend;
The	rigid	extents.
byte	llimited	:	1;
Lower	limit	flag.
byte	ulimited	:	1;
Upper	limit	flag.

Methods:
public:

Prototype:
Link():rigidExtend(0),dofAxis(RotZ);

Remarks:
Constructor.

Default	Implementation:
{	}

Prototype:
~Link();

Remarks:
Destructor.

Default	Implementation:
{	if	(rigidExtend)	delete	rigidExtend;	rigidExtend	=	0;	}

Prototype:
bool	NullLink()	const;

Remarks:
This	method	checks	whether	the	link	is	a	null-link.	When	TRUE,	the	rigid
extend	is	logically	an	identity	matrix.

Default	Implementation:
{	return	rigidExtend?false:true;	}

Prototype:
bool	ZeroLength();

Remarks:
This	method	checks	whether	the	link	has	no	length.	When	TRUE,	it	is	a	pure
rotation	matrix.

Prototype:
bool	LLimited()	const;

Remarks:

This	method	checks	whether	the	degree	of	freedom	is	further	constrained	by
lower	limits.	TRUE	if	constrained,	otherwise	FALSE.

Default	Implementation:
{	return	llimited?true:false;	}

Prototype:
bool	ULimited()	const;

Remarks:
This	method	checks	whether	the	degree	of	freedom	is	further	constrained	by
upper	limits.	TRUE	if	constrained,	otherwise	FALSE.

Default	Implementation:
{	return	ulimited?true:false;	}

Prototype:
Matrix3	DofMatrix()	const;

Remarks:
This	mehod	returns	the	matrix	contribution	by	the	degrees	of	freedom.	Either
it	is	a	pure	rotation	or	a	pure	translation,	of	one	axis.	The	following	identity
holds;
LinkMatrix(true)	º	LinkMatrix(false)	*	DofMatrix()

Prototype:
Matrix3&	DofMatrix(Matrix3&	mat)	const;

Remarks:
This	method	allows	you	to	apply	a	matrix,	mat,	by	the	DofMatrix()	so	that
mat	=	mat	*	DofMatrix().

Parameters:
Matrix3&	mat
The	matrix	to	multiply	by	the	DOF	matrix.

Return	Value:
A	reference	to	the	matrix	argument.

Prototype:
Matrix3	LinkMatrix(bool	include_dof	=	true)	const;

Remarks:
This	method	returns	the	link	matrix	just	defined	if	the	argument	is	TRUE.

Parameters:
bool	include_dof	=	true
TRUE	to	return	the	link	matrix,	FALSE	to	return	RigidExtend.

Return	Value:
The	link	matrix,	otherwise	it	simply	returns	RigidExtend.

Prototype:
Matrix3&	ApplyLinkMatrix(Matrix3&	mat,	bool	include_dof	=
true)	const;

Remarks:
This	methods	applies	the	LinkMatrix()	to	the	input	matrix.

Parameters:
Matrix3&	mat
The	input	matrix.
bool	include_dof	=	true
When	applying	the	DOF	part,	or	rotation	part,	to	a	matrix,	this	will	take	place
one	at	a	time	by	calling	RootLink::RotateByAxis().	If	you	want	to	apply
the	whole	link,	while	already	having	applied	the	rotation	part,	you	would	need
to	set	this	flag	to	FALSE.

Return	Value:
The	reference	to	the	input	matrix,	mat.

Prototype:
void	SetLLimited(bool	s)	const;

Remarks:
This	method	allows	you	to	activate	or	deactivate	the	lower	limits.

Parameters:
bool	s

TRUE	to	activate,	FALSE	to	deactivate.

Prototype:
void	SetULimited(bool	s)	const;

Remarks:
This	method	allows	you	to	activate	or	deactivate	the	upper	limits.

Parameters:
bool	s
TRUE	to	activate,	FALSE	to	deactivate.

Prototype:
void	SetRigidExtend(const	Matrix3&	mat);

Remarks:
This	method	allows	you	to	set	the	RigidEtend	matrix.

Parameters:
const	Matrix3&	mat
The	rigid	extend	matrix	you	wish	to	set.

Class	LinkChain
	

Description:
This	class	is	only	available	in	release	5	or	later.
	
This	class	abstracts	the	data	structure	that	the	IK	system	pass	to	the	plugin
solver.	With	it,	an	IK	problem	becomes	a	pure	mathematical	one	to	the	plugin
solver.
	
A	LinkChain	starts	with	a	rootLink,	followed	by	a	number	of	1D	link.	The
rootLink	has	a	whole	rotation	(c.f.	class	RootLink	in	ikHierarch.h),	as
represented	by	Euler	angles	of	order	XYZ,	rotXYZ.	These	angles	may	be
marked	as	active	or	not.	The	RootLink	exposes	the	whole	rotation	to	allow	the
solver	to	handle	the	start	joint	specially.
	
The	next	1D	link	is	to	be	pivoted	and	aligned	at	the	reference	frame	that	is	offset
from	the	rotation	of	the	RootLink	by	"rigidExtend”.
	

Methods:
	

Prototype:
Matrix3	parentMatrix

Remarks:
This	LinkChain	is	originally	cut	off	from	a	transformation	space	quantified	by
this	matrix.	Specifically,	it	is	the	matrix	that	accumulates	all	transformations
from	the	root	of	the	world	to	the	position	component	of	the	start	joint.
	

Prototype:
unsigned	LinkCount()	const

Remarks:

The	number	of	1D	links	following	the	rootLink.
	

Prototype:
const	Link&	LinkOf(unsigned	i)	const

Remarks:
The	i-th	1D	link.	The	next	link	is	pivoted	and	aligned	at
	
	LinkOf(i).LinkMatrix(true)	*	LinkOf(i-1).LinkMatrix(true)	...	*
LinkOf(0).LinkMatrix(true)	*	rootLink.LinkMatrix(true)
	
This	is	the	extremity	after	the	i-th	link.	The	position	of	the	end	effector,	in
particular,	is	the	extremity	of	the	last	link.
	

Prototype:
Link&	LinkOf(unsigned	i)

Remarks:
Please	refer	to	the	above	entry	for	full	explanation.
	

Prototype:
int	PreBone(unsigned	i)	const

Remarks:
A	1D	link	comprises	a	degree	of	freedom,	which	can	be	rotational	or	prismatic
(sliding),	and	an	offset	transfromation,	"rigidExtend".	If	the	length	of
"rigidExtend"	is	zero,	the	next	1D	link	comes	from	same	joint	of	this	link.
PreBone(i)	returns	the	first	link	that	precedes	the	i-th	link	that	has	non-zero
"rigidExtend."	In	other	words,	LinkOf(PreBone(i)	+	1)	starts	a	new	joint	that
includes	i-th	link	as	one	of	its	degrees	of	freedom.	PreBone(i)	is	always	less	then
i.
	

Prototype:
unsigned	Bone(unsigned	i)	const

Remarks:
Bone(i)	returns	the	first	index,	j,	such	that	j	>=	i	and
LinkOf(j).ZeroLength()	false.	This	is	the	last	link	of	the	bone	that	includes	i-
th	link	as	a	degree	of	freedom.
	

Prototype:
BaseInterface*	GetIKGoal()

Remarks:
Returns	an	interface	pointer	to	the	goal.	The	actual	type	of	goal	can	be	queried
from	the	interface.	(They	are	documented	separately.)
	

Prototype:
void	SetIKGoal(BaseInterface*)

Remarks:
They	are	used	to	set	and	release	the	goal.	The	plugin	solver	should	not	worried
about	it.	The	IK	system	will	use	them	to	the	set	and	release	the	goal.
	

Prototype:
void	ReleaseIKGoal()

Remarks:
Please	refer	to	SetIKGoal()	for	full	explanation.

Class	IKCmdOps
See	Also:	:	Class	IKChainActions,	Class	IIKChainControl

class	IKCmdOps	:	public	FPStaticInterface
	

Description:
This	class	is	only	available	in	release	5	or	later.
	
The	program	interface	to	functions	of	the	IK	system.	To	obtain	a	pointer	to	the
interface,	use
	
	IKCmdOps*	iksys	=	GetCoreInterface(IK_FP_INTERFACE_ID);
	
It	should	be	non-null	if	the	plugin	of	the	IK	system	is	loaded.
	

Methods:
	

Prototype:
virtual	INode*	CreateIKChain(INode*	start,	INode*	end,	const
TCHAR*	solver);

Remarks:
This	method	assigns	an	IK	solver	from	nodes	start	to	end.	To	be	successful,
following	conditions	have	to	be	met:

1.	 Start	must	be	an	ancestor	of	end	in	the	node	hierarchy;
2.	 All	TM	controllers	along	the	chain	must	be	replaceable;
3.	 The	3rd	argument,	solver,	must	be	a	name	of	a	plugin	solver.

	
Upon	success,	it	will	create	an	IK	chain	node	that	contains	these	pieces	of
information	plus	the	IK	goal	and	returns	a	pointer	to	it.	Returning	non-null

pointer	indicates	failure.
	
Example:
	INode*	ikchainNode	=	iksys->CreateIKChain(bone1,	bone4,
_T("HIIKSolver"));
	

Prototype:
virtual	int	SolverCount()	const;

Remarks:
Returns	the	number	of	IK	solvers	that	have	been	loaded	in.
	

Prototype:
virtual	TSTR	SolverName(int	i)	const;

Remarks:
Returns	the	internal	name	of	the	i-th	solver.	This	name	is	used	in
CreateIKChain()	or	the	script.
	

Prototype:
virtual	TSTR	SolverUIName(int	i)	const;

Remarks:
Returns	the	UI	name	of	the	i-th	solver.	The	UI	names	appear	in	the	solver	list	on
the	Motion	Panel,	or	the	Animation	menu.	They	are	localized.

Class	ITCBFloatKey
See	Also:	Class	ITCBKey.
class	ITCBFloatKey	:	public	ITCBKey

Description:
This	class	stores	a	Tension	Continuity	and	Bias	(TCB)	floating	point	key.

Data	Members:
public:
float	val;
The	value	of	the	key.

Class	ITCBPoint3Key
See	Also:	Class	ITCBKey,	Class	Point3.
class	ITCBPoint3Key	:	public	ITCBKey

Description:
This	class	stores	a	Tension	Continuity	and	Bias	(TCB)	Point3	key.

Data	Members:
public:
Point3	val;
The	value	of	the	key.

Class	ITCBRotKey
See	Also:	Class	ITCBKey,	Class	AngAxis.
class	ITCBRotKey	:	public	ITCBKey

Description:
This	class	stores	a	Tension	Continuity	and	Bias	(TCB)	rotation	key.

Data	Members:
public:
AngAxis	val;
The	value	of	the	key.

Class	ITCBScaleKey
See	Also:	Class	ITCBKey,	Class	ScaleValue.
class	ITCBScaleKey	:	public	ITCBKey

Description:
This	class	stores	a	Tension	Continuity	and	Bias	(TCB)	Scale	key.

Data	Members:
public:
ScaleValue	val;
The	value	of	the	key.

Class	IBezFloatKey
See	Also:	Class	IKey.
class	IBezFloatKey	:	public	IKey

Description:
This	class	stores	a	Bezier	floating	point	key.

Data	Members:
public:
float	intan;
The	in	tangent	value.
float	outtan;
The	out	tangent	value.
float	val;
The	value	of	the	key.
float	inLength;
The	in	length	of	the	horizontal	handle.
float	outLength;
The	out	length	of	the	horizontal	handle.

Class	IBezPoint3Key
See	Also:	Class	IKey,	Class	Point3.
class	IBezPoint3Key	:	public	IKey

Description:
This	class	stores	a	Bezier	Point3	key.
The	value	of	the	intan	and	outtan	values	of	IBezPoint3Key	returned	from
GetKey	is	actually	the	tangent	of	the	angle	that	is	spanned	between	the
horizontal	axis	and	the	tangent.	In	order	to	get	the	actual	handle	of	the	tangent	it
is	important	to	know	that	the	horizontal	(time)	distance	from	the	handle	to	the
key	value	is	dependent	on	the	previous	(for	intan)	or	next	(for	outtan)	point.	The
horizontal	distance	is	basically	a	third	of	the	total	distance	between	the	current
key	and	the	previous	(or	next)	key	:
Control	*c	=	node->GetTMController()->GetPositionController();
dt	=	(c->GetKeyTime(PreviousIdx)-c->GetKeyTime(CurrentIdx))	/
3.0f;
since	the	value	in	IBezPoint3Key	pos_key.intan.x	is	the	tan(alpha),	you	can
easily	get	the	vertical	location	of	the	handle	by	calculating	:
tan(alpha)	=	pos_key.intan.x	=	dy/dt	->	dy	=	pos_key.intan.x	*	dt
dt	is	the	horizontal	coordinate	of	the	tangent	handle	relative	to	the	key	value.
dy	is	the	vertical	coordinate	of	the	tangent	handle	relative	to	the	key	value.

Data	Members:
public:
Point3	intan;
The	incoming	tangent	vector.	This	can	be	thought	of	as	the	tangent	handle	of	a
3D	spline.	The	value	is	relative	to	val.
Point3	outtan;
The	outgoing	tangent	vector.	This	can	be	thought	of	as	the	tangent	handle	of	a
3D	spline.	The	value	is	relative	to	val.
Point3	val;
The	value	of	the	key.
Point3	inLength;
The	in	length	of	the	horizontal	handle.

Point3	outLength;
The	out	length	of	the	horizontal	handle.

Class	IBezQuatKey
See	Also:	Class	IKey,	Class	Quat.
class	IBezQuatKey	:	public	IKey

Description:
This	class	stores	a	Bezier	quaternion	key.

Data	Members:
public:
Quat	val;
The	value	of	the	key.

Class	IBezScaleKey
See	Also:	Class	IKey,	Class	Point3,	Class	ScaleValue.
class	IBezScaleKey	:	public	IKey

Description:
This	class	stores	a	Bezier	scale	key.

Data	Members:
public:
Point3	intan;
The	int	tangent	vector.
Point3	outtan;
The	out	tangent	vector.
ScaleValue	val;
The	value	of	the	key.
Point3	inLength;
The	in	length	of	the	horizontal	handle.
Point3	outLength;
The	out	length	of	the	horizontal	handle.

Class	ILinFloatKey
See	Also:	Class	IKey.
class	ILinFloatKey	:	public	IKey

Description:
This	class	stores	a	Linear	floating	point	key.

Data	Members:
public:
float	val;
The	value	of	the	key.

Class	ILinPoint3Key
See	Also:	Class	IKey,	Class	Point3.
class	ILinPoint3Key	:	public	IKey

Description:
This	class	stores	a	Linear	Point3	key.

Data	Members:
public:
Point3	val;
The	value	of	the	key.

Class	ILinRotKey
See	Also:	Class	IKey,	Class	Quat.
class	ILinRotKey	:	public	IKey

Description:
This	class	stores	a	Linear	rotation	key.

Data	Members:
public:
Quat	val;
The	value	of	the	key.

Class	ILinScaleKey
See	Also:	Class	IKey,	Class	ScaleValue.
class	ILinScaleKey	:	public	IKey

Description:
This	class	stores	a	Linear	scale	key.

Data	Members:
public:
ScaleValue	val;
The	value	of	the	key.

Class	AppSave
See	Also:	Class	AppLoad,	Class	AppDataChunk,	Character	Strings.
class	AppSave

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	is	a	general	chunk-ifying	code	useful	for	writing	hierarchical	data
structures	to	a	linear	stream,	such	as	an	AppData	block.

All	methods	of	this	class	are	implemented	by	the	system.
AppSave	will	write	hierarchical	chunks	into	a	private	buffer,	enlarging	it	as
needed.	When	completed,	use	the	methods	BufferPtr()	and
NBytesWritten()	to	get	at	this	buffer.	(AppSave	will	delete	the	buffer	in	its
DeleteThis()	method	,	so	you	need	to	copy	the	buffer	to	save	the	data.)
The	chunk	hierarchy	should	always	have	a	single	highest	level	chunk.	Chunks
can	be	nested	to	any	depth.
A	Chunk	can	contain	either	sub-chunks,	or	data,	but	not	both.

Sample	Code:
	AppSave	*asave	=	NewAppSave(1000);
	asave->BeginChunk(MAIN_CHUNK);
		asave->BeginChunk(CHUNK1);

//	..	write	data
		asave->EndChunk();
	
		asave->BeginChunk(CHUNK2);

//	..	write	data
		asave->EndChunk();
	
		asave->BeginChunk(CHUNK3);

//	..	write	data
		asave->EndChunk();
	asave->EndChunk();	//	end	MAIN_CHUNK

Prototype:

AppSave	*NewAppSave(int	initBufSize);
Remarks:
This	global	function	create	a	new	AppSave	instance.

Parameters:
int	initBufSize
Specifies	the	initial	size	the	internal	buffer	is	allocated	to.	It	will	be	enlarged	if
necessary.

Methods:

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
This	method	deletes	the	AppSave	instance.

Prototype:
virtual	BYTE	*BufferPtr()=0;

Remarks:
This	method	is	used	after	saving	to	get	a	pointer	to	the	buffer	created.

Prototype:
virtual	int	NBytesWritten()=0;

Remarks:
This	method	returns	the	number	of	bytes	that	were	written	in	the	buffer.

Prototype:
virtual	void	BeginChunk(USHORT	id)=0;

Remarks:
This	method	is	used	to	begin	a	chunk.	The	ID	passed	need	only	be	unique
within	the	plug-ins	data	itself.

Parameters:
USHORT	id
The	id	for	the	chunk.

Prototype:
virtual	void	EndChunk()=0;

Remarks:
This	method	is	used	to	end	a	chunk,	and	back-patch	the	length.

Prototype:
virtual	int	CurChunkDepth()=0;

Remarks:
This	method	is	used	internally	for	checking	balanced	BeginChunk/EndChunk.

Prototype:
virtual	IOResult	Write(const	void	*buf,	ULONG	nbytes,	ULONG
*nwrit)=0;

Remarks:
This	method	writes	a	block	of	bytes.

Parameters:
const	void	*buf
The	buffer	to	write.
ULONG	nbytes
The	number	of	bytes	to	write.
ULONG	*nwrit
The	number	of	bytes	actually	written.

Return	Value:
IO_OK	-	The	write	was	acceptable	-	no	errors.
IO_ERROR	-	This	is	returned	if	an	error	occurred.

Prototype:
virtual	IOResult	WriteWString(const	char	*str)=0;

Remarks:
This	method	is	used	to	write	wide	character	strings.

Parameters:

const	char	*str
The	string	to	write.

Return	Value:
IO_OK	-	The	write	was	acceptable	-	no	errors.
IO_ERROR	-	This	is	returned	if	an	error	occurred.

Prototype:
virtual	IOResult	WriteWString(const	wchar_t	*str)=0;

Remarks:
This	method	is	used	to	write	wide	character	strings.

Parameters:
const	wchar_t	*str
The	string	to	write.

Return	Value:
IO_OK	-	The	write	was	acceptable	-	no	errors.
IO_ERROR	-	This	is	returned	if	an	error	occurred.

Prototype:
virtual	IOResult	WriteCString(const	char	*str)=0;

Remarks:
This	method	is	used	to	write	single	byte	character	strings.

Parameters:
const	char	*str
The	string	to	write.

Return	Value:
IO_OK	-	The	write	was	acceptable	-	no	errors.
IO_ERROR	-	This	is	returned	if	an	error	occurred.

Prototype:
virtual	IOResult	WriteCString(const	wchar_t	*str)=0;

Remarks:

This	method	is	used	to	write	single	byte	character	strings.
Parameters:
const	wchar_t	*str
The	string	to	write.

Return	Value:
IO_OK	-	The	write	was	acceptable	-	no	errors.
IO_ERROR	-	This	is	returned	if	an	error	occurred.

Class	AppLoad
See	Also:	Class	AppSave,	Class	AppDataChunk.
class	AppLoad

Description:
This	class	takes	a	chunk-ified	data	stream	(as	written	by	Class	AppSave),	and
provides	routines	for	decoding	it.

This	class	is	available	in	release	2.0	and	later	only.
All	methods	of	this	class	are	implemented	by	the	system.

Prototype:
AppLoad	*NewAppLoad(BYTE	*buf,	int	bufSize);

Remarks:
This	global	function	creates	a	new	AppLoad	instance	for	reading	chunks	out
of	buf:

Parameters:
BYTE	*buf
The	buffer	to	read.
int	bufSize
Specifies	the	nuymber	of	bytes	that	are	valid	in	buf.

Methods:

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
This	method	deletes	the	instance	of	AppLoad.

Prototype:
virtual	IOResult	OpenChunk()=0;

Remarks:
This	method	is	used	to	open	a	chunk.	If	OpenChunk()	returns	IO_OK,	use
the	following	3	functions	to	get	the	information	about	the	chunk.	If	it	returns
IO_END	this	indicates	there	are	no	more	chunks	at	this	level.

Return	Value:
IO_OK	-	The	result	was	acceptable	-	no	errors.
IO_END	-	This	is	returned	when	the	end	of	the	chunks	at	a	certain	level	have
been	reached.	It	is	used	as	a	signal	to	terminate	the	processing	of	chunks	at
that	level.
IO_ERROR	-	This	is	returned	if	an	error	occurred.

Prototype:
virtual	USHORT	CurChunkID()=0;

Remarks:
This	method	returns	the	ID	of	the	most	recently	opened	chunk.

Prototype:
virtual	ChunkType	CurChunkType()=0;

Remarks:
This	method	returns	the	type	of	the	most	recently	opened	chunk.	This	may	be
one	of	the	following	values:

NEW_CHUNK
CONTAINER_CHUNK
DATA_CHUNK

Prototype:
virtual	ULONG	CurChunkLength()=0;

Remarks:
This	method	returns	the	chunk	length	not	including	the	header.

Prototype:
virtual	int	CurChunkDepth()=0;

Remarks:
This	method	is	used	internally	for	checking	for	balanced
OpenChunk/CloseChunk	pairs.

Prototype:
virtual	IOResult	CloseChunk()=0;

Remarks:
This	method	is	used	to	close	the	currently	opened	chunk,	and	position	at	the
next	chunk.

Parameters:
	

Return	Value:
A	return	value	of	IO_ERROR	indicates	there	is	no	open	chunk	to	close;
otherwise	IO_OK.

Prototype:
virtual	USHORT	PeekNextChunkID()=0;

Remarks:
This	method	returns	the	ID	of	the	next	chunk	without	opening	it.	It	returns	0	if
there	are	no	more	chunks.

Prototype:
virtual	IOResult	Read(void	*buf,	ULONG	nbytes,	ULONG	*nread
)=0;

Remarks:
This	method	is	used	to	read	a	block	of	bytes.

Parameters:
void	*buf
A	pointer	to	the	buffer	to	read.
ULONG	nbytes
The	number	of	bytes	to	read.
ULONG	*nread
The	number	of	bytes	that	were	read.

Return	Value:
A	return	value	of	IO_ERROR	indicates	an	error	occurred,	otherwise
IO_OK.

Prototype:
virtual	IOResult	ReadWStringChunk(char**	buf)=0;

Remarks:
This	method	read	a	string	that	was	stored	as	Wide	characters.	Note:	This
method	reads	a	string	from	a	string	chunk.	It	is	assumed	the	chunk	is	already
open,	it	will	NOT	close	the	chunk.

Parameters:
char**	buf
A	pointer	to	an	array	of	characters.

Return	Value:
A	return	value	of	IO_ERROR	indicates	an	error	occurred,	otherwise
IO_OK.

Prototype:
virtual	IOResult	ReadWStringChunk(wchar_t**	buf)=0;

Remarks:
This	method	read	a	string	that	was	stored	as	Wide	characters.	Note:	This
method	reads	a	string	from	a	string	chunk.	It	is	assumed	the	chunk	is	already
open,	it	will	NOT	close	the	chunk.

Parameters:
wchar_t**	buf
A	pointer	to	an	array	of	wide	characters.

Return	Value:
A	return	value	of	IO_ERROR	indicates	an	error	occurred,	otherwise
IO_OK.

Prototype:
virtual	IOResult	ReadCStringChunk(char**	buf)=0;

Remarks:
This	method	reads	a	string	that	was	stored	as	single	byte	characters.

Parameters:
char**	buf

A	pointer	to	an	array	of	single	byte	characters.
Return	Value:
A	return	value	of	IO_ERROR	indicates	an	error	occurred,	otherwise
IO_OK.

Prototype:
virtual	IOResult	ReadCStringChunk(wchar_t**	buf)=0;

Remarks:
This	method	read	a	string	that	was	stored	as	Wide	chars.	Note:	This	method
reads	a	string	from	a	string	chunk.	It	is	assumed	the	chunk	is	already	open,	it
will	NOT	close	the	chunk.

Parameters:
wchar_t**	buf
A	pointer	to	an	array	of	wide	characters.

Return	Value:
A	return	value	of	IO_ERROR	indicates	an	error	occurred,	otherwise
IO_OK.

Class	BigMatrix
See	Also:	Class	Matrix3.
class	BigMatrix

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	implements	an	m	x	n	matrix	for	situations	&	calculations	where	the
usual	4x3	Matrix3	class	is	not	adequate.	BigMatrix	implements	several	useful
matrix	operations,	including	matrix	multiplication	and	inversion,	but	is	not
guaranteed	to	be	especially	efficient.	All	methods	are	implemented	by	the
system.

Data	Members:
public:
int	m,	n
The	dimensions	of	the	matrix.	There	are	m	rows	and	n	columns.
float	*val
The	elements	of	the	matrix.	val[i*n+j]	is	the	value	in	the	i’th	row	and	the	j’th
column.

Methods:

Prototype:
BigMatrix();

Remarks:
Initializer.	Sets	m	and	n	to	zero,	and	val	to	NULL.

Prototype:
BigMatrix(int	mm,	int	nn);

Remarks:
Initializer.	Sets	the	dimensions	of	the	matrix	to	mm	by	nn,	and	allocates	space
for	the	contents.	The	total	size	of	the	matrix,	mm*nn,	cannot	exceed	10,000.

Prototype:
BigMatrix(const	BigMatrix	&	from);

Remarks:
Initializer.	Sets	this	BigMatrix	equal	to	from.

Prototype:
~BigMatrix();

Remarks:
Destructor.	Frees	the	internal	arrays.

Prototype:
void	Clear();

Remarks:
Frees	the	internal	arrays	and	sets	the	matrix’s	size	to	0x0.

Prototype:
int	SetSize(int	mm,	int	nn);

Remarks:
Sets	the	matrix’s	size	to	mm	by	nn,	and	allocates	space	for	the	contents.

Return	Value:
Returns	the	total	size	of	the	matrix	(mm	*	nn)	or	-1	if	there’s	an	error.

Prototype:
float	*operator[](int	i)	const;

Remarks:
Returns	a	pointer	to	the	i’th	row	in	the	matrix.	Thus	for	a	BigMatrix	A,	A[i][j]
is	the	value	in	the	i’th	row	and	the	j’th	column.

Prototype:
BigMatrix	&	operator=(const	BigMatrix	&	from);

Remarks:
Sets	this	BigMatrix	equal	to	from.

Prototype:

void	SetTranspose(BigMatrix	&	trans)	const;
Remarks:
Sets	trans	to	be	the	transpose	of	this	BigMatrix.

Prototype:
float	Invert();

Remarks:
Inverts	this	matrix.	Note	that	this	only	works	if	this	matrix	is	"square",	i.e.	if	m
=	n.	This	algorithm	is	CUBIC	in	the	number	of	rows,	so	be	careful!

Return	Value:
The	determinant	of	the	matrix	(before	inversion)	is	returned.	If	the	return
value	is	0,	the	matrix	could	not	be	inverted.

Prototype:
void	Identity();

Remarks:
If	m	and	n	are	equal,	this	method	sets	this	matrix	to	the	identity.	If	m	and	n	are
not	equal,	it	does	nothing.

Prototype:
void	Randomize(float	scale);

Remarks:
This	method	is	available	in	release	2.5	or	later	only.
Creates	a	random	matrix	for	testing	purposes.	Reseeds	the	random	number
generator	with	the	current	system	time,	for	a	non-reproducible	result.	Values
of	the	matrix	are	set	to	anything	in	the	range	(-scale,	scale).

Prototype:
void	MNDebugPrint();

Remarks:
This	method	is	available	in	release	2.5	or	later	only.
This	method	prints	the	contents	of	the	BigMatrix	to	the	IDE	debugging
window	using	DebugPrints.

Class	INodeTransformed
See	Also:	Class	INode,	Modifier	Stack	Branching

Description:
This	class	provides	a	layer	that	will	add	in	a	transformation	to	the	node's
objectTM.	Most	methods	pass	through	to	the	INode,	except	for	the	objectTM
methods	which	pre-multiply	in	the	given	matrix.	The	methods	of	this	class	are
the	same	as	INode.	See	Class	INode	for	details.	Specifically	see	the	methods
related	to	INodeTransformed	in	INode	-	INodeTransformed	methods.	All
methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
INode	*node;
The	original	INode	pointer.
Matrix3	tm;
The	additional	transformation.
BOOL	deleteMe;
If	set	to	FALSE	this	INodeTransformed	will	not	get	deleted.	This	may	be
used	if	the	object	is	not	allocated	dynamically.	If	you	create	an
INodeTransformed	on	the	stack	you'll	want	to	set	deleteMe	to	FALSE.

Methods:

Prototype:
void	DisposeTemporary();

Remarks:
Deletes	this	INodeTransformed.

Prototype:
INode	*GetActualINode()

Remarks:
Returns	the	actual	INode	pointer	of	this	INodeTransformed.

These	functions	are	not	part	of	this	class	but	are	available	for	use:
INodeTransformed	can	be	allocated	on	the	stack,	but	if	you	need	to	create	one
dynamically,	use	these	methods	to	create	and	delete	them.

Prototype:
INodeTransformed	*CreateINodeTransformed(INode	*n,	Matrix3
tm,BOOL	dm=TRUE);

Remarks:
Creates	an	INodeTransformed	on	the	heap.

Parameters:
INode	*n
The	original	INode	pointer.
Matrix3	tm
The	additional	transformation	matrix.
BOOL	dm=TRUE
If	TRUE	this	item	will	be	deleted;	otherwise	it	is	left	alone.

Return	Value:
A	pointer	to	the	INodeTransformed	created.

Prototype:
void	DeleteINodeTransformed(INodeTransformed	*n);

Remarks:
Deletes	the	INodeTransformed	passed.

Parameters:
INodeTransformed	*n
The	INodeTransformed	to	delete.

Class	MaxNetManager
See	Also:	Class	MaxNet,	Class	MaxNetCallBack,	Structure	ManagerInfo,
Structure	ClientInfo,	Structure	JobsList,	Structure	Job,	Class	CJobText,
Structure	HSERVER,	Structure	JOBFRAMES,	Structure	JobServer,	Structure
ServerList,	Structure	WeekSchedule,	Structure	NetworkStatus
class	MaxNetManager:	public	MaxNet

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	MaxNetManager	class	provides	all	the	methods	to	interact	with	the	network
rendering	functions	provided	and	acts	as	your	primary	interface.	The	API
provided	through	the	MaxNetManager	allows	clients	to	connect	to	the	Network
Rendering	Manager	and	perform	any	and	all	functions	available.	It	encapsulates
all	the	networking	details	leaving	the	client	code	to	concentrate	on	whatever	it
needs	to	do.	The	API	handles	all	networking	code	and	the	intricacies	of	the
communication	protocols	used	by	the	lower	layers.	This	class	is	derived	from	the
MaxNet	class	which	is	solely	used	for	exception	handling	as	shown	below.
	
Sample	Code:
try	{
//	the	code	being	tried

}	catch	(MaxNet*	maxerr)	{
//	handle	the	error
//	do	NOT	delete	maxerr
//	use	maxerr->GetErrorText()	to	get	the	error	description
//	use	maxerr->GetError()	to	get	the	error	code

}

Methods	Groups:
Construction	and	Destruction
Callback	Methods
Session	Methods
Queue	Control

Client	Related	Methods
Job	Related	Methods
Server	Methods
Server	Group	Methods
Network	Archiving	Functions

Construction	and	Destruction
The	following	global	functions	are	not	part	of	class	MaxNetManager	but	are
available	for	use:

Function:
MaxNetManager*	CreateManager();

Remarks:
This	method	will	create	and	return	a	new	instance	of	the	MaxNetManager
class.

Function:
void	DestroyManager(MaxNetManager*	mgr);

Remarks:
This	method	will	destroy	an	instance	of	the	MaxNetManager	class.

Parameters:
MaxNetManager*	mgr
Points	to	the	MaxNetManager	object	to	destroy.

Methods:

Callback	Methods

Prototype:
void	SetCallBack(MaxNetCallBack*	cb);

Remarks:
Sets	a	callback	method	to	receive	information	updates	about	various

asynchronous	events	from	the	MaxNet	API.	It	is	not	required	to	set	up	this
callback.

Parameters:
MaxNetCallBack*	mgr
Points	to	a	MaxNetCallBack	object.

Session	Methods

Prototype:
bool	FindManager(short	port,	char*	manager,	char*	netmask	=
"255.255.255.0");

Remarks:
This	method	will	broadcast	a	message	to	the	local	area	network	in	order	to
look	for	a	Manager.	If	a	Manager	is	found,	the	method	returns	its	name	in
manager.

Parameters:
short	port
Specifies	which	port	will	be	used	to	access	the	Manager.	Unless	there	is	a
specific	reason	to	use	a	particular	port,	use	the	default	DF_MGRPORT.
char*	manager
A	string	representing	the	name	of	the	Manager	will	be	put	into	this	variable.
The	variable	itself	should	be	MAX_PATH	in	size.
char*	netmask
Specifies	which	local	area	network	mask	should	be	used	for	the	scope	of	the
broadcast.	The	default	of	255.255.255.0	should	work	for	most	networks	that
are	not	divided	into	subnets.

Return	Value:
TRUE	if	a	Manager	is	found,	otherwise	FALSE.

Prototype:
void	Connect(short	port,	char*	manager,	bool	enable_callback	=
false);

Remarks:
This	method	allows	you	to	connect	to	a	Network	Rendering	Manager.

Parameters:
short	port
Specifies	which	port	will	be	used	to	access	the	Manager.	Unless	there	is	a
specific	reason	to	use	a	particular	port,	use	the	default	DF_MGRPORT.
char*	manager
A	string	representing	the	name	or	IP	number	of	the	Manager	you	want	to
connect	to.	The	network	name	requires	the	network	to	have	some	form	of
name	to	address	translation.	It	is	recommended	to	use	the	name	provided	by
MaxNetManager::FindManager().
bool	enable_callback	=	false
This	parameter	enables	or	disables	asynchronous	messages	from	the	Manager.
If	you	connect	to	the	Manager	in	order	to	collect	information	about	the
network	queue	then	it	is	recommended	to	enable	(set	to	true)	this	parameter	in
order	to	keep	your	lists	updated.	Otherwise	you	have	to	poll	the	Manager	at
various	times	to	check	for	changes.	When	enabled	calls	will	be	received
though	the	MaxNetCallBack	mechanism	informing	you	whenever	a	new
job	has	been	completed,	an	error	has	occurred,	a	Server	has	changed,	etc.

Prototype:
void	Disconnect();

Remarks:
This	method	will	cause	a	disconnect	from	the	currently	connected	Manager.

Prototype:
void	GetManagerInfo(ManagerInfo*	info);

Remarks:
This	method	allows	basic	information	about	the	Manager	to	be	collected.

Parameters:
ManagerInfo*	info
A	pointer	to	the	Manager	information.

Prototype:
bool	KillManager();

Remarks:
This	method	will	shut	down	the	Manager	and	shut	off	the	entire	system.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.	A	reason	for	failure	might	be	because
this	method	is	called	without	having	the	proper	Manager	rights	such	as
operating	in	read	only	mode.	Further	explanation	can	be	found	in	the
TakeManagerControl()	method.

Prototype:
void	EnableUpdate(bool	enable);

Remarks:
This	method	toggles	updates	from	the	Manager.	For	this	method	to	function
you	will	need	to	enable	the	enable_callback	in
MaxNetManager::Connect().	The	use	of	this	method	allows	you	to
temporarily	disable	updates	from	the	Manager	which	might	be	useful	in	a
situation	when	you	are	submitting	many	jobs	at	once	or	executing	any	other
large	number	of	changes.	Instead	of	receiving	updates	for	all	changes,	you
would	temporarily	disable	the	callbacks	so	you	could	execute	your	many
changes	and	when	done,	re-enable	the	callbacks.

Parameters:
bool	enable
TRUE	or	FALSE	to	enable	or	disable,	respectively.

Queue	Control

Prototype:
bool	QueryManagerControl(bool	wait);

Remarks:
This	method	queries	the	Manager	to	check	if	you	can	take	control	of	the
queue.	If	no	one	has	the	queue	control,	it	will	immediately	return	true.	If
someone	else	has	control,	the	Manager	will	ask	the	controlling	client	if	it

wants	to	relinquish	control.	If	relinquished,	the	method	returns	true,	if	control
is	not	relinquished	the	method	will	return	false.

Parameters:
bool	wait
This	parameter	can	be	set	to	true	in	order	to	wait	for	an	answer	in	case
someone	has	control	over	the	queue,	causing	this	method	not	to	return	until	it
receives	an	answer	from	the	controlling	client.	If	there	is	no	response	from	the
controlling	client,	the	method	will	time	out	in	10	seconds	after	which	it	will
return	true	to	allow	a	request	for	queue	control.

Return	Value:
TRUE	if	allowed	to	request	queue	control,	otherwise	FALSE.

Prototype:
bool	TakeManagerControl();

Remarks:
This	method	allows	the	acquisition	of	control	of	the	queue.

Return	Value:
TRUE	if	control	is	granted,	otherwise	FALSE.

Prototype:
void	GrantManagerControl(bool	grant);

Remarks:
This	method	allows	you	to	issue	a	grant	or	deny	response	to	a
MaxNetCallBack	message.	If	you	are	the	controlling	client	while	another
client	wants	control	of	the	queue	by	calling	the	QueryManagerControl()
method	you	will	receive	a	message	through	the	MaxNetCallBack
mechanism.	If	you	do	not	respond,	control	will	be	taken	away	from	you
automatically	after	10	seconds	and	granted	to	the	requesting	client.

Parameters:
bool	grant
This	parameter	allows	you	to	respond	TRUE	to	relinquish	control	of	the	queue
or	FALSE	if	you	do	not	want	to	relinquish	control.

Prototype:
bool	LockControl(bool	lock);

Remarks:
This	method	allows	you	to	temporarily	lock	the	queue	control	when
performing	a	series	of	changes	and	don’t	want	to	get	interrupted.	While	the
queue	control	is	locked,	no	queries	are	made.	They	all	return	false	to	prevent
anyone	from	taking	control	of	the	queue.	This	method	can	only	be	called	if
you	already	have	queue	control.	Please,	do	not	forget	to	unlock	the	queue
control	after	you	are	done	performing	your	changes.

Parameters:
bool	lock
Set	this	parameter	to	TRUE	if	you	want	to	lock	the	queue	or	FALSE	if	you
want	to	unlock	the	queue.

Return	Value:
TRUE	if	queue	control	could	be	locked,	otherwise	FALSE.

Client	Related	Methods

Prototype:
int	GetClientCount();

Remarks:
This	method	returns	the	number	of	clients	currently	connected	to	the	Manager.

Prototype:
int	ListClients(int	start,	int	end,	ClientInfo*	clientList);

Remarks:
This	method	allows	you	to	list	all	the	clients	currently	connected	to	the
Manager.

Parameters:
int	start
The	first	client	in	the	list	to	return.
int	end

The	last	client	in	the	list	to	return.	If	you	want	the	entire	list	of	clients	at	once
set	the	start	and	end	to	0	and	-1,	respectively.
ClientInfo*	clientList
The	array	to	receive	the	list	of	clients.	This	array	should	be	large	enough	to
receive	the	number	of	clients	requested.

Return	Value:
The	actual	number	of	clients	inserted	in	clientList.	This	could	be	either	equal
to	the	amount	requested	or	less	(if	some	client	disconnected	from	the
Manager).

Job	Related	Methods

Prototype:
int	GetJobCount();

Remarks:
This	method	returns	the	number	of	jobs	in	the	queue.

Prototype:
int	ListJobs(int	start,	int	end,	JobList*	jobList);

Remarks:
This	method	allows	you	to	list	all	the	jobs	in	the	queue.

Parameters:
int	start
The	first	job	in	the	list	to	return.
int	end
The	last	job	in	the	list	to	return.	If	you	want	the	entire	list	of	jobs	at	once	set
the	start	and	end	to	0	and	-1,	respectively.
JobList*	jobList
The	array	to	receive	the	list	of	jobs.	This	array	should	be	large	enough	to
receive	the	number	of	jobs	requested.

Return	Value:
The	actual	number	of	jobs	inserted	in	jobList.	This	could	be	either	equal	to

the	amount	requested	or	less.

Prototype:
void	GetJob(HJOB	hJob,	Job*	job);

Remarks:
This	method	allows	you	to	get	an	individual	job	description	structure.

Parameters:
HJOB	hJob
The	job	handle.
Job*	job
A	pointer	to	a	Job	structure	for	the	received	job.

Prototype:
void	GetJob(HJOB	hJob,	JobList*	jobList);

Remarks:
This	method	allows	you	to	get	a	single	record	for	the	jobList	given	the
specified	job	handle.

Parameters:
HJOB	hJob
The	job	handle.
JobList*	jobList
A	pointer	to	a	JobList	structure	for	the	received	job.

Prototype:
void	GetJobText(HJOB	hJob,	CJobText&	jobText,	int	count);

Remarks:
Use	this	method	to	request	the	CJobText	for	a	particular	job.	(See	the
CJobText	class	description	for	an	explanation).	Some	job	information	are
random	both	in	number	as	they	are	in	size.	The	job	description	structure	(Job)
will	only	show	static	elements.	In	order	to	get	dynamic	elements	or	elements
with	variable	length,	the	CJobText	class	is	used.

Parameters:

HJOB	hJob
The	job	handle.
CjobText&	jobText
A	reference	to	a	CJobText	class	to	receive	the	information.
int	count
The	number	of	elements	you	are	interested	in	receiving.	The	number	of
elements	can	be	found	in	Job.jobtextcount.

Prototype:
void	SetJob(HJOB	hJob,	Job*	job,	CJobText&	jobText,	bool
reset);

Remarks:
This	method	submits	changes	to	an	existing	job.	Once	you	collect	a	job,	you
can	change	settings	in	both	the	Job	structure	as	in	the	CJobText	elements	and
send	it	back	so	the	changes	can	be	applied.
Note	that	you	must	use	a	Getjob()	and	SetJob()	combination	in	order	to
make	sure	all	the	elements	are	correct.	The	Manager	will	automatically
complete	some	of	the	structure	members.	It	is	not	possible	to	create	a	new
structure,	fill	in	the	data,	and	submit	it.	You	can	only	do	that	when	submitting
a	new	job,	which	is	then	handled	by	a	different	set	of	methods.

Parameters:
HJOB	hJob
The	job	handle.
Job*	job
A	pointer	to	the	job	description.
CJobText&	jobText
A	reference	to	a	CJobText	class	with	the	description	of	elements.
bool	reset
This	flag	indicates	whether	or	not	the	job	is	started	from	scratch.	If	set	to
FALSE	it	will	continue	from	the	current	stage.

Prototype:
int	GetJobPriority(HJOB	hJob);

Remarks:
This	method	returns	the	job	priority	value	for	the	specified	Job.

Parameters:
HJOB	hJob
The	handle	to	the	job	for	which	to	obtain	its	priority

Prototype:
bool	SetJobPriority(HJOB	hJob,	int	priority);

Remarks:
This	method	allows	you	to	set	the	priority	of	a	specified	job.

Parameters:
HJOB	hJob
The	handle	to	the	job	for	which	to	obtain	its	priority
int	priority
The	priority	value	you	want	to	assign	to	the	job.

Return	Value:
TRUE	if	the	priority	as	set	successfully,	otherwise	FALSE

Prototype:
void	SetJobOrder(HJOB*	hJob,	DWORD	count);

Remarks:
This	method	allows	you	to	set	the	job	order	for	a	specific	job.

Parameters:
HJOB	hJob
The	handle	to	the	job	for	which	to	obtain	its	priority
DWORD	count
The	job	order	index.

Prototype:
void	DeleteJob(HJOB	hJob);

Remarks:
This	method	will	delete	a	job	from	the	queue	permanently	and	remove	all	files

related	to	the	job.
Parameters:
HJOB	hJob
The	job	handle.

Prototype:
void	SuspendJob(HJOB	hJob);

Remarks:
This	method	will	suspend	a	specific	job.	This	method	is	the	opposite	of
ActivateJob().

Parameters:
HJOB	hJob
The	job	handle

Prototype:
void	ActivateJob(HJOB	hJob);

Remarks:
This	method	will	activate	a	specific	job.	This	method	is	the	opposite	of
SuspendJob().

Parameters:
HJOB	hJob
The	job	handle

Prototype:
int	GetJobServersCount(HJOB	hJob);

Remarks:
This	method	will	return	the	number	of	Servers	assigned	to	a	given	job.

Parameters:
HJOB	hJob
The	job	handle

Prototype:
int	GetJobServers(int	start,	int	end,	HJOB	hJob,	JobServer*
servers);

Remarks:
This	method	will	return	a	list	of	the	Servers	assigned	to	a	given	job.

Parameters:
int	start
The	first	Server	in	the	list	to	return.
int	end
The	last	Server	in	the	list	to	return.	If	you	want	the	entire	list	of	servers	at	once
set	the	start	and	end	to	0	and	-1,	respectively.
HJOB	hJob
The	job	handle.
JobServer*	servers
The	array	to	receive	the	list	of	Servers.	This	array	should	be	large	enough	to
receive	the	number	of	Servers	requested.

Return	Value:
The	actual	number	of	Servers	inserted	in	servers.	This	could	be	either	equal
to	the	amount	requested	or	less.

Prototype:
void	GetJobServerStatus(HJOB	hJob,	HSERVER	hServer,
TCHAR*	status_text);

Remarks:
This	method	allows	you	to	obtain	the	textual	status	of	a	specific	Server	for	a
given	job.	The	JobServer	structure	return	by	GetJobServers()	will	only
describe	the	status	of	a	Server	using	a	flag.	If	the	flag	shows	the	Server	status
is	"Error",	you	can	use	this	method	to	receive	a	more	descriptive	text	message,
like	"Could	not	write	to	d:/path/file.tga".

Parameters:
HJOB	hJob
The	job	handle.
HSERVER	hServer

The	Server	handle.
TCHAR*	status_text
A	pointer	to	a	string	to	receive	the	message.	This	string	should	be
MAX_PATH	long.

Prototype:
void	SuspendJobServer(HJOB	hJob,	HSERVER	hServer);

Remarks:
This	method	will	suspend	a	specific	Server	for	a	given	job.	The	Server	will
stop	working	with	the	given	job	and	start	working	on	another	one,	provided
another	job	exists.	Use	the	AssignJobServer()	to	reactive	it.

Parameters:
HJOB	hJob
The	job	handle.
HSERVER	hServer
The	Server	handle.

Prototype:
void	AssignJobServer(HJOB	hJob,	HSERVER	hServer);

Remarks:
This	method	can	be	used	to	assign	a	Server	to	a	given	job.

Parameters:
HJOB	hJob
The	job	handle.
HSERVER	hServer
The	Server	handle.

Prototype:
int	GetJobFramesCount(HJOB	hJob);

Remarks:
This	method	will	return	the	number	of	frames	for	a	given	job.

Parameters:

HJOB	hJob
The	job	handle.

Prototype:
int	GetJobFrames(int	start,	int	end,	HJOB	hJob,	JOBFRAMES*
frames);

Remarks:
This	method	will	return	a	list	of	frames	for	a	given	job.

Parameters:
int	start
The	first	frame	in	the	list	to	return.
int	end
The	last	frame	in	the	list	to	return.	If	you	want	the	entire	list	of	frames	at	once
set	the	start	and	end	to	0	and	-1,	respectively.
HJOB	hJob
The	job	handle.
JOBFRAMES*	frames
The	array	to	receive	the	list	of	frames	with	information	for	each	individual
frame.	This	array	should	be	large	enough	to	receive	the	number	of	frames
requested.

Return	Value:
The	actual	number	of	frames	inserted	in	frames.	This	could	be	either	equal	to
the	amount	requested	or	less.

Prototype:
int	GetJobLog(int	start,	int	count,	HJOB	hJob,	TCHAR**
buffer);

Remarks:
This	method	will	return	the	log	file	for	a	given	job.

Parameters:
int	start
The	first	log	file	line	to	return	(base	zero,	0	is	the	first	line).

int	count
The	number	of	lines	(rows)	to	return.	If	you	want	the	whole	file	at	once,	set
start	to	0	and	count	to	-1.	Alternatively,	if	you	want	any	lines	added	since
the	last	time	you	call,	set	start	to	the	last	line	you	collected	+	1	and	count	to
-1.
HJOB	hJob
The	job	handle.
TCHAR**	buffer
A	pointer	to	a	TCHAR	array	to	receive	the	lines	of	the	log	file.	The	buffer	will
be	allocated	so	it	will	accommodate	the	incoming	data.	This	array	should	be
freed	using	LocalFree()	when	you	are	finished.

Return	Value:
The	size	of	the	allocated	buffer.	This	is	the	size	of	the	entire	buffer	including
the	last	NULL	terminating	byte.	If	GetJobLog()	returns	0,	it	means	there	are
no	new	log	file	lines	available.

Prototype:
bool	CheckOutputVisibility(TCHAR*	output,	TCHAR*	err);

Remarks:
When	submitting	a	job,	you	can	use	this	method	to	find	out	if	the	Manager	can
write	a	given	output	image	file.	This	is	usually	the	case	when	you	have	the
output	image	file	set	to	a	local	drive.	The	other	participants	in	the	network
rendering	may	not	be	able	to	"see"	this	path	and	they	will	eventually	fail.	This
test	is	not	guaranteed	as	the	Servers	may	have	a	different	set	of	rights	than	the
Manager,	in	which	case	the	Manager	might	fail	the	write	test	while	the	Servers
would	have	no	problem	otherwise.

Parameters:
TCHAR*	output
The	output	image	file	name	you	want	to	check.	This	is	the	full	path	and
filename	(i.e.	d:/badpath/file.tga).
TCHAR*	err
A	TCHAR	string	to	receive	the	error	message	if	one	exists.	This	will	explain
why	the	test	failed	(such	as	path	not	found,	access	denied,	etc.)

Return	Value:

TRUE	if	the	Manager	could	write	to	the	given	path,	otherwise	FALSE.

Prototype:
void	AssignJob(Job*	job,	TCHAR*	archive,	HSERVER*	servers,
CJobText&	jobtext,	DWORD	blocksize	=	0);

Remarks:
This	method	allows	you	to	assign	a	new	job	to	the	network	queue.

Parameters:
Job*	job
The	job	structure	containing	the	information	about	the	job.	See	the	Job
structure	description	for	an	explanation.
TCHAR*	archive
The	full	path	and	filename	of	the	archive	containing	the	job	files.	This	is	the
"*.maz"	file	created	by	the	Maz()	function	in	the	API.
HSERVER*	servers
An	array	containing	the	Servers	assigned	to	this	job.	If	the	job	flag	is	set	to
"use	all	Servers"	and	job.servercount	is	zero,	this	argument	can	be	NULL
(ignored).	Otherwise	it	should	be	an	array	job.servercount	*
sizeof(HSERVERS)	long	with	the	list	of	Servers	to	assign	to	this	job.
CJobText&	jobtext
A	reference	to	a	CJobText	class	with	the	proper	elements.
DWORD	blocksize
An	optional	alternate	block	size	to	use	for	network	transfers.	If	blocksize	is
set	to	zero,	the	API	will	use	the	default	DF_READCHUNK.	You	may	want
to	set	this	to	something	smaller	if	you	are	running	over	slow	connections	such
as	a	modem	connection.	You	may	want	to	make	it	larger	if	you	have	a	high
performance	network.	This	number	will	determine	how	large	of	a	block	of
data	to	send	at	once	to	the	Manager.

Server	Methods

Prototype:
int	GetServerCount();

Remarks:
This	method	will	return	the	number	of	Servers	registered	with	the	Manager.

Prototype:
int	ListServers(int	start,	int	end,	ServerList*	serverList);

Remarks:
This	method	allow	you	to	list	the	Servers	registered	with	the	Manager.

Parameters:
int	start
The	first	Server	to	return.
int	end
The	last	Server	to	return.	If	you	want	the	whole	list	at	once,	set	start	to	0	and
end	to	-1.
ServerList*	serverList
The	array	to	receive	the	list	of	Servers.	This	array	should	be	large	enough	to
receive	the	number	of	Servers	requested.

Return	Value:
The	actual	number	of	Servers	inserted	in	serverList.	This	could	be	either
equal	to	the	amount	requested	or	less.

Prototype:
void	GetServer(HSERVER	hServer,	ServerList*	serverList);

Remarks:
This	method	allows	you	to	get	a	Server	and	retrieve	a	single	record	in	the
serverList	given
the	Server	handle.

Parameters:
HSERVER	hServer
The	handle	to	the	Server.
ServerList*	serverList
A	pointer	to	the	ServerList	in	which	to	retrieve	the	Server.

Prototype:
bool	DeleteServer(HSERVER	hServer);

Remarks:
This	method	allows	you	to	delete	a	Server	from	the	Manager’s	Server	list.	You
can	not	delete	an	active	Server	(i.e.	a	Server	which	is	currently	working	on	a
job).

Parameters:
HSERVER*	hServer
The	Server	handle.

Return	Value:
TRUE	if	the	server	is	successfully	deleted,	otherwise	FALSE.

Prototype:
bool	ResetServerIndex(HSERVER	hServer);

Remarks:
The	Manager	keeps	a	performance	index	for	each	Server.	This	index	is
computed	based	on	the	Server	performance	while	rendering	frames.	All
factors	are	taken	into	consideration	such	as	the	time	it	takes	to	load	a	job,	the
time	it	takes	to	process	requests,	the	time	it	takes	to	render	a	frame,	the
memory	and	CPU	load,	etc.	This	index	is	in	turn	used	internally	to	determine
the	best	distribution	of	workload.	You	can	use	this	method	to	reset	a	Server’s
performance	index.

Parameters:
HSERVER*	hServer
The	Server	handle.

Return	Value:
TRUE	if	resetting	the	Server’s	performance	index	was	successful,	otherwise
FALSE.

Prototype:
void	GetWeekSchedule(HSERVER	hServer,	WeekSchedule*
schedule);

Remarks:

This	method	allows	you	to	obtain	a	given	Server’s	weekly	schedule	structure.
Parameters:
HSERVER*	hServer
The	Server	handle.
WeekSchedule*	schedule
A	pointer	to	a	WeekSchedule	structure	to	receive	the	schedule.

Prototype:
void	SetWeekSchedule(HSERVER	hServer,	WeekSchedule*
schedule);

Remarks:
This	method	allows	you	to	set	a	given	Server’s	weekly	schedule	structure.

Parameters:
HSERVER*	hServer
The	Server	handle.
WeekSchedule*	schedule
A	pointer	to	a	WeekSchedule	structure	with	the	new	weekly	schedule.

Prototype:
void	GetServerNetStat(HSERVER	hServer,	NetworkStatus*
net_stat);

Remarks:
This	method	allows	you	to	obtain	the	network	status	for	a	given	server.	This
method	mostly	serves	as	means	to	check	network	diagnostics.

Parameters:
HSERVER*	hServer
The	Server	handle.
NetworkStatus*	net_stat
A	pointer	to	a	NetworkStatus	structure	to	receive	the	status	data.

Server	Group	Methods

Prototype:
int	GetServerGroupCount();

Remarks:
This	method	will	return	the	number	of	Server	groups.

Prototype:
int	GetServerGroupXCount(int	group);

Remarks:
This	method	will	return	the	number	of	Servers	for	a	given	Server	group.

Parameters:
int	group
The	zero	based	index	into	the	Server	group	list.

Prototype:
int	GetServerGroup(int	group,	int	count,	HSERVER*	grplist,
TCHAR*	name);

Remarks:
This	method	allows	you	to	obtain	a	Server	group.

Parameters:
int	group
The	zero	based	index	into	the	Server	group	list.
int	count
The	number	of	Servers	to	send,	in	order	to	define	the	size	of	the	grplist.
HSERVER*	grplist
The	array	in	which	the	list	of	Servers	will	be	returned.	This	array	should	be
large	enough	to	accommodate	count	Servers.
TCHAR*	name
The	name	of	the	Server	group.	This	string	must	be	at	least	MAX_PATH
long.

Return	Value:
The	number	of	Servers	collected.

Prototype:
void	NewServerGroup(int	count,	HSERVER*	grplist,	TCHAR*
name);

Remarks:
This	method	allows	you	to	submit	(create)	a	new	Server	group.

Parameters:
int	count
The	number	of	Servers	in	the	list.
HSERVER*	grplist
The	array	containing	count	Servers.
TCHAR*	name
The	name	of	the	server	group.

Prototype:
void	DeleteServerGroup(int	group);

Remarks:
This	method	allows	you	to	delete	a	given	Server	group.

Parameters:
int	group
The	zero	based	index	of	the	Server	group	to	delete.

Network	Archiving	Functions
The	following	global	functions	are	not	part	of	class	MaxNetManager	but	are
available	for	use:

Function:
bool	Maz(TCHAR*	archivename,	TCHAR*	file_list,	DWORD*
filesize	=	0);

Remarks:
This	function	creates	a	Network	Rendering	archive.	This	is	the	archive	sent	to
the	manager	when	submitting	a	new	job.	Note	that	even	though	you	can	use
whatever	name	you	feel	like,	the	Manager	and	Servers	will	look	for	a

"jobname.maz"	file.
Parameters:
TCHAR*	archivename
The	full	path	and	filename	of	the	archive	you	want	to	create.
TCHAR*	file_list
A	list	of	NULL	terminated	filenames	to	include	in	the	archive.	You	should
provide	a	full	path	and	filename.	However,	only	the	file	names	will	be	saved
in	the	archive	and	all	files	are	going	to	be	un-archived	in	the	same	directory.
An	example:	file_list[]	=	{"c:\\path\\file.maz\0c:\\anotherpath\\maps.tga\0\0"};
DWORD*	filesize
Optional	pointer	to	a	variable	to	receive	the	accumulated	size	of	all	files
included	in	the	archive.	This	is	the	"uncompressed"	size.	You	can	use	this	to
compute	the	disk	space	necessary	to	uncompress	the	archive.

Return	Value:
TRUE	if	the	archive	was	successfully	created,	otherwise	FALSE.

Function:
bool	UnMaz(TCHAR*	archivename,	TCHAR*	output_path);

Remarks:
This	function	is	the	opposite	of	Maz()	and	will	un-archive	the	given	archive
into	the	specified	directory.

Parameters:
TCHAR*	archivename
The	full	path	and	filename	of	the	archive	you	want	to	un-archive.
TCHAR*	output_path
The	path	you	want	the	files	extracted	to.

Return	Value:
TRUE	if	the	archive	was	successfully	extracted,	otherwise	FALSE.

Function:
void	jobSetJobDefaults(Job*	job);

Remarks:

This	function	will	set	the	default	values	for	the	given	Job	structure.	You	can
use	this	function	to	prevent	frequent	resetting	of	the	structure	and	its	default
fields	such	as	size,	version,	etc.

Parameters:
Job	*job
The	job	structure	containing	the	information	about	the	job.	See	the	Job
structure	description	for	an	explanation.

Function:
bool	jobReadMAXProperties(char*	filename,	Job*	job,
CJobText&	jobText);

Remarks:
This	function	will	initialize	a	job	structure	using	the	data	read	from	a	specified
3ds	max	scene	file.	If	you	would	want	to	submit	a	job	based	on	a	3ds	max	file
alone,	you	would	call	this	function	passing	it	to	the	file	specified.	This
function	takes	care	of	filling	all	the	fields	so	you	can	turn	around	and	just	send
the	job	to	the	queue.	An	example	of	this	can	be	found	in	the	SDK	under
\MAXSDK\SAMPLES\NETRENDER\JOBASSIGN.

Parameters:
char*	filename
The	filename	of	the	3ds	max	scene	file	(*.max).
Job*	job
A	pointer	to	an	empty	job	structure	which	will	be	initialized	by	the	method.
Because	the	function	will	initialize	the	structure	any	values	present	prior	to
calling	this	method	will	be	reset.
CJobText&	jobText
A	reference	to	an	empty	CJobText	class	which	will	be	initialized	by	the
function.	Just	like	the	job	structure,	any	values	present	prior	to	calling	this
function	will	be	reset.

Return	Value:
TRUE	if	reading	the	properties	was	successful,	otherwise	FALSE.

Class	MaxNet
See	Also:	Class	MaxNetManager,	List	of	MaxNet	Errors
class	MaxNet

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	MaxNet	class	serves	as	the	base	class	for	MaxNetManager	and	should	be
treated	as	the	exception	handler	when	using	the	Network	Rendering	API.

Methods:

Prototype:
MaxNet();

Remarks:
Constructor

Prototype:
maxnet_error_t	GetError();

Remarks:
This	method	returns	the	MaxNet	error.	See	the	list	of	MaxNet	error	codes	for
details.

Prototype:
int	GetGError();

Remarks:
This	method	returns	the	MaxNet	error.	See	the	list	of	MaxNet	error	codes	for
details.

Prototype:
const	TCHAR*	GetErrorText();

Remarks:
This	method	returns	the	MaxNet	error	description	string.

List	of	Parameter	Block	IDs
See	Also:	Class	Base	Object	(method	GetParamBlockIndex()).
Interfaces	into	some	of	the	standard	plug-ins	that	ship	with	3ds	max.	These	are
from	the	file	\MAXSDK\INCLUDE\ISTDPLUG.H.
The	following	are	parameter	block	IDs	for	procedural	objects:

Obj/Mod	ID	Data	Type
Arc	ARC_RADIUS	float
	ARC_FROM	float
	ARC_TO	float
	ARC_PIE	int
	ARC_REVERSE	int
Box	BOXOBJ_LENGTH	float
	BOXOBJ_WIDTH	float
	BOXOBJ_HEIGHT	float
	BOXOBJ_WSEGS	int
	BOXOBJ_LSEGS	int
	BOXOBJ_HSEGS	int
	BOXOBJ_GENUVS	int
Circle	CIRCLE_RADIUS	float
Cone	CONE_RADIUS1	float
	CONE_RADIUS2	float
	CONE_HEIGHT	float
	CONE_SEGMENTS	int
	CONE_CAPSEGMENTS	int
	CONE_SIDES	int
	CONE_SMOOTH	int
	CONE_SLICEON	int
	CONE_PIESLICE1	float
	CONE_PIESLICE2	float
	CONE_GENUVS	int
Cylinder	CYLINDER_RADIUS	float
	CYLINDER_HEIGHT	float
	CYLINDER_SEGMENTS	int

	CYLINDER_CAPSEGMENTS	int
	CYLINDER_SIDES	int
	CYLINDER_SMOOTH	int
	CYLINDER_SLICEON	int
	CYLINDER_PIESLICE1	float
	CYLINDER_PIESLICE2	float
	CYLINDER_GENUVS	int
Donut	DONUT_RADIUS1	float
	DONUT_RADIUS2	float
Ellipse	ELLIPSE_LENGTH	float
	ELLIPSE_WIDTH	float
Hedra	HEDRA_RADIUS	float
	HEDRA_FAMILY	int
	HEDRA_P	float
	HEDRA_Q	float
	HEDRA_SCALEP	float
	HEDRA_SCALEQ	float
	HEDRA_SCALER	float
	HEDRA_VERTS	int
	HEDRA_GENUVS	int
Helix	HELIX_RADIUS1	float
	HELIX_RADIUS2	float
	HELIX_HEIGHT	float
	HELIX_TURNS	float
	HELIX_BIAS	float
	HELIX_DIRECTION	int
Ngon	NGON_RADIUS	float
	NGON_SIDES	int
	NGON_CIRCULAR	int
PatchGrid	PATCHGRID_LENGTH	float
	PATCHGRID_WIDTH	float
	PATCHGRID_WSEGS	int
	PATCHGRID_LSEGS	int
	PATCHGRID_TEXTURE	int

Rain/Snow	RSPART_VPTPARTICLES	int
	RSPART_RNDPARTICLES	int
	RSPART_DROPSIZE	float
	RSPART_SPEED	float
	RSPART_DISPTYPE	int
	RSPART_VARIATION	float
	RSPART_STARTTIME	int
	RSPART_LIFETIME	int
	RSPART_EMITTERWIDTH	float
	RSPART_EMITTERHEIGHT	float
	RSPART_HIDEEMITTER	int
	RSPART_BIRTHRATE	float
	RSPART_CONSTANT	int
	RSPART_RENDER	int
	RSPART_TUMBLE	int
	RSPART_SCALE	float
Rectangle	RECTANGLE_LENGTH	float
	RECTANGLE_WIDTH	float
	RECTANGLE_FILLET	float
Sphere	SPHERE_RADIUS	float
	SPHERE_SEGS	int
	SPHERE_SMOOTH	int
	SPHERE_HEMI	float
	SPHERE_SQUASH	int
	SPHERE_RECENTER	int
	SPHERE_GENUVS	int
Star	START_RADIUS1	float
	START_RADIUS2	float
	START_POINTS	int
	START_DISTORT	float
	START_FILLET1	float
	START_FILLET2	float
Teapot	TEAPOT_RADIUS	float
	TEAPOT_SEGS	int

	TEAPOT_SMOOTH	int
	TEAPOT_TEAPART	int
	TEAPOT_BODY	int
	TEAPOT_HANDLE	int
	TEAPOT_SPOUT	int
	TEAPOT_LID	int
	TEAPOT_GENUVS	int
Text	TEXT_SIZE	float
	TEXT_KERNING	float
	TEXT_LEADING	float
Torus	TORUS_RADIUS	float
	TORUS_RADIUS2	float
	TORUS_ROTATION	float
	TORUS_TWIST	float
	TORUS_SEGMENTS	int
	TORUS_SIDES	int
	TORUS_SMOOTH	int
	TORUS_SLICEON	int
	TORUS_PIESLICE1	float
	TORUS_PIESLICE2	float
	TORUS_GENUVS	int
Tube	TUBE_RADIUS	float
	TUBE_RADIUS2	float
	TUBE_HEIGHT	float
	TUBE_SEGMENTS	int
	TUBE_CAPSEGMENTS	int
	TUBE_SIDES	int
	TUBE_SMOOTH	int
	TUBE_SLICEON	int
	TUBE_PIESLICE1	float
	TUBE_PIESLICE2	float
	TUBE_GENUVS	int
Grid	GRIDHELP_LENGTH	float
	GRIDHELP_WIDTH	float

	GRIDHELP_GRID	float
The	following	are	parameter	block	IDs	for	modifiers:
Bend	BEND_ANGLE	float
modifier	BEND_DIR	float
	BEND_AXIS	int
	BEND_DOREGION	int
	BEND_FROM	float
	BEND_TO	float
Bomb	BOMB_STRENGTH	float
space	warp	BOMB_GRAVITY	float
	BOMB_CHAOS	float
	BOMB_DETONATION	int
Deflector	DEFLECTOR_BOUNCE	float
space	warp	DEFLECTOR_WIDTH	float
	DEFLECTOR_HEIGHT	float
Displace		DISPLACE_MAPTYPE	int
(modifier	and	DISPLACE_UTILE	float
space	warp	DISPLACE_VTILE	float
object)	DISPLACE_WTILE	float
	DISPLACE_BLUR	float
	DISPLACE_USEMAP	int
	DISPLACE_APPLYMAP	int
	DISPLACE_STRENGTH	float
	DISPLACE_DECAY	float
	DISPLACE_CENTERLUM	int
	DISPLACE_UFLIP	int
	DISPLACE_VFLIP	int
	DISPLACE_WFLIP	int
	DISPLACE_CENTERLUM	float
	DISPLACE_CAP	int
	DISPLACE_LENGTH	float
	DISPLACE_WIDTH	float
	DISPLACE_HEIGHT	float
	DISPLACE_AXIS	int

Extrude	EXTRUDE_AMOUNT	float
modifier	EXTRUDE_SEGS	int
	EXTRUDE_CAPSTART	int
	EXTRUDE_CAPEND	int
	EXTRUDE_CAPTYPE	int
	EXTRUDE_OUTPUT	int
	EXTRUDE_MAPPING	int
Gravity	GRAVITY_STRENGTH	float
space	warp	GRAVITY_DECAY	float
	GRAVITY_TYPE	int
	GRAVITY_DISPLENGTH	float
Wind	WIND_STRENGTH	float
space	warp	WIND_DECAY	float
	WIND_TYPE	int
	WIND_DISPLENGTH	float
	WIND_TURBULENCE	float
	WIND_FREQUENCY	float
	WIND_SCALE	float
UVW	map	UVWMAP_MAPTYPE	int
modifier	UVWMAP_UTILE	float
	UVWMAP_VTILE	float
	UVWMAP_WTILE	float
	UVWMAP_UFLIP	int
	UVWMAP_VFLIP	int
	UVWMAP_WFLIP	int
	UVWMAP_CAP	int
	UVWMAP_CHANNEL	int
	UVWMAP_LENGTH	float
	UVWMAP_WIDTH	float
	UVWMAP_HEIGHT	float
	UVWMAP_AXIS	int
Noise	NOISEMOD_SEED	int
modifier	NOISEMOD_SCALE	float
	NOISEMOD_FRACTAL	int

	NOISEMOD_ROUGH	float
	NOISEMOD_ITERATIONS	float
	NOISEMOD_ANIMATE	int
	NOISEMOD_FREQ	float
	NOISEMOD_PHASE	int
	NOISEMOD_STRENGTH	Point3
Optimize	OPTMOD_RENDER	int
modifier	OPTMOD_VIEWS	int
	OPTMOD_FACETHRESH1	float
	OPTMOD_EDGETHRESH1	float
	OPTMOD_BIAS1	float
	OPTMOD_PRESERVEMAT1	int
	OPTMOD_PRESERVESMOOTH1	int
	OPTMOD_FACETHRESH2	float
	OPTMOD_EDGETHRESH2	float
	OPTMOD_BIAS2	float
	OPTMOD_PRESERVEMAT2	int
	OPTMOD_PRESERVESMOOTH	int
	OPTMOD_MAXEDGE2	float
	OPTMOD_AUTOEDGE	int
	OPTMOD_MANUPDATE	int
Volume	VOLSEL_LEVEL	int
selection	VOLSEL_METHOD	int
modifier	VOLSEL_TYPE	int
	VOLSEL_VOLUME	int
	VOLSEL_INVERT	int
Ripple/Wave	RWAVE_AMPLITUDE	float
space	warp	RWAVE_AMPLITUDE2	float
object	and	RWAVE_WAVELEN	float
object	space	RWAVE_PHASE	float
modifier	RWAVE_DECAY	float
	(Note:	These	next	three	are	only	valid	for	space	warp	objects).
	RWAVE_CIRCLES	int
	RWAVE_SEGMENTS	int

	RWAVE_DIVISIONS	int
Ripple/Wave	RWAVE_FLEX	float
binding	(modifier)
Skew	SKEW_AMOUNT	float
modifier	SKEW_DIR	float
	SKEW_AXIS	int
	SKEW_DOREGION	int
	SKEW_FROM	float
	SKEW_TO	float
Material	MATMOD_MATID	int
modifier
Smoothing	SMOOTHMOD_AUTOSMOOTH	int
group	SMOOTHMOD_THRESHOLD	float
modifier	SMOOTHMOD_SMOOTHBITS	int
Normal	NORMMOD_UNIFY	int
modifier	NORMMOD_FLIP		int
SurfRev	SURFREV_DEGREES	float
modifier	SURFREV_SEGS	int
	SURFREV_CAPSTART	int
	SURFREV_CAPEND	int
	SURFREV_CAPTYPE	int
	SURFREV_WELDCORE	int
	SURFREV_OUTPUT	int
	SURFREV_MAPPING	int
Taper	TAPER_AMT	float
modifier	TAPER_CRV	float
	TAPER_AXIS	int
	TAPER_EFFECTAXIS	int
	TAPER_SYMMETRY	int
	TAPER_DOREGION	int
	TAPER_FROM	float
	TAPER_TO	float
Twist	TWIST_ANGLE	float
modifier	TWIST_BIAS	float

	TWIST_AXIS	int
	TWIST_DOREGION	int
	TWIST_FROM	float
	TWIST_TO	float
Material	MATMOD_MATID	int
modifier	
Smooth	SMOOTH_AUTOSMOOTH	int
modifier	SMOOTH_THRESHOLD	float
	SMOOTH_SMOOTHBITS	int
Normal	NORMALMOD_UNIFY	int
modifier	NORMALMOD_FLIP	int
Tesselation	TESSMOD_TYPE	int
modifier	TESSMOD_TENSION	float
	TESSMOD_ITERATIONS	int
	TESSMOD_FACE_TYPE	int
UVW	XForm	UVWXFORM_UTILE	float
modifier	UVWXFORM_VTILE	float
	UVWXFORM_WTILE	float
	UVWXFORM_UOFFSET	float
	UVWXFORM_VOFFSET	float
	UVWXFORM_WOFFSET	float
	UVWXFORM_UFLIP	int
	UVWXFORM_VFLIP	int
	UVWXFORM_WFLIP	int
	UVWXFORM_CHANNEL	int

Class	Deformer
See	Also:	Class	Object,	Class	Point3.
class	Deformer

Description:
This	is	the	callback	object	used	by	modifiers	to	deform	"Deformable"	objects.

Methods:

Prototype:
virtual	Point3	Map(int	i,	Point3	p)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	is	the	method	that	is	called	to	deform	or	alter	a	single	point.	Note	that	this
method	needs	to	be	thread	safe.	A	problem	may	occur	when	a	non-local
variable	is	modified	inside	of	Map().	Since	two	versions	of	Map()	could	be
executing	at	the	same	time,	they	could	both	end	up	modifying	the	same
variable	simultaneously	which	usually	causes	problems.	See	the	Advanced
Topics	section	Thread	Safe	Plug-Ins	for	more	details.

Parameters:
int	i
The	index	of	the	point	to	be	altered.	Note:	An	index	of	-1	may	be	passed.	This
indicates	that	the	deformer	is	not	being	applied	to	a	regular	object	but	instead
points	that	are	generated	on	the	fly	for	display	purposes.
Point3	p
The	point	to	be	altered.

Return	Value:
The	altered	point.

Class	GPort
See	Also:	Advanced	Topics	on	Palettes,	Class	Color,	Class	GammaMgr,
COLORREF.
class	GPort

Description:
A	useful	utility	class	for	managing	user	interface	colors.	This	class	has	several
purposes:
	Maintain	the	default	3ds	max	palette	for	doing	256	color	graphics.
	Provides	a	mechanism	for	allocating	"animated	color	slots"	in	the	default
palette	for	use	in	the	user	interface.
	Provide	various	functions	for	doing	dithered	graphics	using	the	default	3ds	max
palette.
All	methods	of	this	class	are	implemented	by	the	system.
The	following	global	function	is	used	to	get	a	pointer	that	may	be	used	to	call	the
methods	of	this	class:

Prototype:
GPort*	GetGPort();

Remarks:
There	is	only	a	single	global	instance	of	this	class,	and	this	method	returns	a
pointer	to	it.	A	developer	may	use	this	pointer	to	call	the	methods	of	GPort.

Sample	Code:
int	animColSlot	=	GetGPort()->GetAnimPalSlot();

Methods:

Prototype:
virtual	int	GetAnimPalSlot()=0;

Remarks:
Returns	a	slot	number	if	available,	-1	if	not.	Typically	this	is	called	in
WM_INITDIALOG	processing	code	for	as	many	slots	as	you	need	(the
total	number	available	is	8).

Return	Value:

A	slot	number	if	available;	otherwise	-1.

Prototype:
virtual	int	AnimPalIndex(int	i)=0;

Remarks:
Retrieves	the	palette	index	associated	with	the	'i-th'	slot.

Parameters:
int	i
Specifies	the	slot.

Prototype:
virtual	void	ReleaseAnimPalSlot(int	i)=0;

Remarks:
Releases	the	specified	animated	palette	slot.	Typically	this	is	called	in	the
WM_DESTROY	code	for	each	slot	obtained	with	GetAnimPalSlot().

Parameters:
int	i
The	palette	slot	to	release.

Prototype:
virtual	void	SetAnimPalEntry(int	i,	COLORREF	cr)=0;

Remarks:
Sets	the	color	associated	with	the	'i-th'	animated	slot.

Parameters:
int	i
The	slot	index.
COLORREF	cr
The	color	to	set.

Prototype:
virtual	void	AnimPalette(HDC	hdc)=0;

Remarks:
After	several	calls	to	SetAnimPalEntry(),	call	this	to	affect	the	HDC's
palette.	This	puts	the	palette	into	the	HDC	so	it	will	take	effect.

Parameters:
HDC	hdc
The	handle	of	the	device	context.

Prototype:
virtual	HPALETTE	PlugPalette(HDC	hdc)=0;

Remarks:
This	method	puts	the	standard	3ds	max	palette	into	the	palette	for	the	HDC,
handing	back	a	handle	to	the	old	palette.

Parameters:
HDC	hdc
The	device	context.

Return	Value:
The	handle	of	the	old	palette.

Prototype:
virtual	void	RestorePalette(HDC	hDC,HPALETTE	hOldPal)=0;

Remarks:
This	method	puts	the	previous	3ds	max	palette	(returned	from	PlugPalette())
into	the	palette	for	the	HDC.

Parameters:
HDC	hDC
The	handle	of	the	device	context.
HPALETTE	hOldPal
The	palette	to	restore.

Prototype:
virtual	HBRUSH	MakeAnimBrush(int	slotNum,	COLORREF	col
)=0;

Remarks:
This	method	creates	a	brush	for	drawing	with	the	specified	animated	palette
slot	color.

Parameters:
int	slotNum
The	animated	palette	slot.
COLORREF	col
The	color	to	use.

Return	Value:
The	handle	of	the	brush	created.

Prototype:
virtual	int	UpdateColors(HDC	hdc)=0;

Remarks:
This	method	calls	the	Windows	API	UpdateColors()	on	the	specified	device
context	handle	hdc.	Call	this	when	you	get	a
WM_PALETTECHANGED	message.

Parameters:
HDC	hdc
The	handle	of	the	device	context.

Return	Value:
Nonzero	if	it	changed	screen	pixel	values;	otherwise	zero.

Prototype:
virtual	void	MapPixels(UBYTE*	inp,	UBYTE	*outp,	int	x,	int	y,
int	width)=0;

Remarks:
This	method	maps	a	single	row	of	pixels	in	24	bit	color	to	indices	into	the
current	GPort	palette,	applying	a	dither	pattern.	This	routine	does	NOT	do
gamma	correction.
Note	that	x	and	y	are	necessary	to	establish	the	dither	pattern	alignment.	The
dither	pattern	covers	the	entire	map,	and	if	you	want	to	just	dither	part	of	it,
you	need	to	tell	this	method	where	you	are	within	the	pattern.

Parameters:
UBYTE*	inp
Points	to	an	array	of	width	BGR	triples.	This	is	a	sequence	of	bytes	structured
as	B,G,R,B,G	R,	etc.	The	first	pixel	is	B,G,R	then	the	next	pixel	is	B,G,R,	etc.
UBYTE	*outp
The	result	-	the	color	indices	into	the	GPort	palette.	This	array	is	width	bytes
in	length.
int	x
The	x	alignment	position.
int	y
The	y	alignment	position.
int	width
The	number	of	items	in	the	arrays	above.

Prototype:
virtual	void	DisplayMap(HDC	hdc,	Rect&	drect,	int	xsrc,	int	ysrc,
UBYTE	*map,	int	bytesPerRow)=0;

Remarks:
Display	an	array	of	24	bit	colors	in	the	HDC.	If	the	current	display	is	8	bit	it
will	display	it	(with	dither)	using	in	the	GPort	palette,	otherwise	it	will	just	blit
to	the	screen.	This	method	does	NOT	do	gamma	correction.

Parameters:
HDC	hdc
The	handle	of	the	device	context.
Rect&	drect
The	destination	rectangle	in	the	hdc.
int	xsrc
The	X	position	within	this	source	raster	of	the	upper	left	corner	of	the
rectangle	to	be	copied.
int	ysrc
The	Y	position	within	this	source	raster	of	the	upper	left	corner	of	the
rectangle	to	be	copied.
UBYTE	*map

Points	to	an	array	of	BGR	triples.
int	bytesPerRow
The	number	of	bytes	per	row	on	each	scanline	of	map.

Prototype:
virtual	void	DisplayMap(HDC	hdc,	Rect&	dest,	Rect&	src,
UBYTE	*map,	int	bytesPerRow)=0;

Remarks:
This	version	of	DisplayMap()	stretches	the	image	if	the	source	rectangle	is
not	the	same	size	as	the	destination	rectangle.	src	should	be	the	size	of	the
image.

Parameters:
HDC	hdc
The	handle	of	the	device	context.
Rect&	dest
The	destination	rectangle	in	the	hdc.
Rect&	src
The	source	rectangle	in	map.
UBYTE	*map
Points	to	an	array	of	RGB	triples.
int	bytesPerRow
The	number	of	bytes	per	row	on	each	scanline	of	map.

Prototype:
virtual	void	DitherColorSwatch(HDC	hdc,	Rect&	r,	Color	c)=0;

Remarks:
This	method	first	gamma	corrects	Color	c	using	the	current	display	gamma.
In	paletted	modes,	it	will	fill	rectangle	r	with	a	dithered	pattern	approximating
Color	c.	In	24	bit	modes	it	just	fills	the	rectangle	with	Color	c.

Parameters:
HDC	hdc
The	handle	of	the	device	context.

Rect&	r
The	rectangle	to	fill.
Color	c
The	color	to	approximate	(8	bit)	or	fill	with	(24	bit).

Prototype:
virtual	void	PaintAnimPalSwatch(HDC	hdc,	DWORD	col,	int	slot,
int	left,	int	top,	int	right,	int	bottom)=0;

Remarks:
This	method	attempts	to	use	the	animated	color	slot	indicated	by	"slot"	to
paint	a	rectangular	color	swatch.	If	slot	is	-1,	it	will	uses
DitherColorSwatch().	This	method	does	handle	gamma	correction.

Parameters:
HDC	hdc
The	handle	of	the	device	context.
DWORD	col
The	color	to	paint.	The	format	is	the	same	as	COLORREF.
int	slot
Specifies	the	slot	to	use.	If	-1	then	DitherColorSwatch()	is	used.
int	left
The	left	coordinate	of	the	rectangular	area	to	paint.
int	top
The	top	coordinate	of	the	rectangular	area	to	paint.
int	right
The	right	coordinate	of	the	rectangular	area	to	paint.
int	bottom
The	bottom	coordinate	of	the	rectangular	area	to	paint.

Prototype:
virtual	HPALETTE	GetPalette()=0;

Remarks:
Returns	the	current	GPort	palette.

The	following	functions	are	not	part	of	class	GPort	but	are
available	for	use
Prototype:
static	inline	void	gammaCorrect(COLORREF&	c)

Remarks:
Gamma	corrects	the	specified	color	using	the	display	gamma	setting.

Parameters:
COLORREF&	c
The	color	to	gamma	correct.

Prototype:
static	inline	void	deGammaCorrect(COLORREF&	c)

Remarks:
Reverses	the	effect	of	gamma	correction	on	the	specified	color.

Parameters:
COLORREF&	c
The	color	to	de-gamma.

Class	ParamDimension
See	Also:	Class	ParamDimensionBase,	List	of	Dimension	Types.

Description:
Any	parameter	that	can	be	controlled	by	a	controller	has	a	dimension.	This
dimension	can	be	considered	a	unit	of	measure.	It	describes	its	type	and	its	order
of	magnitude.	When	a	controller	needs	to	display	the	parameter	values	(for
example	in	the	function	curve	editor)	it	converts	the	value	using	its	parameter
dimension	Convert()	function.	It	can	also	convert	back	using	the	Unconvert()
function.
Some	parameters	are	stored	over	one	range	of	values	and	displayed	in	another.
For	example	parameter	that	use	stdAngleDim	store	their	parameters	in	radians
but	display	them	in	degrees.	By	using	stdAngleDim	the	value	is	converted	to
the	proper	format	for	display.	Some	parameter	dimensions	do	not	perform	any
conversion,	for	example	stdWorldDim.
There	are	several	default	parameter	dims	implemented.	Listed	with	each	one	is
the	type,	convert	functions	and	range	of	values	usually	stored	(these	are	not
enforced	in	any	way).
If	the	type	of	parameter	for	your	plug-in	does	not	fit	within	any	of	the
dimensions	listed	here	you	may	simply	use	defaultDim.	This	performs	no
conversions	and	has	no	range.
ParamDimension	*defaultDim;
Convert()	is	original	value.
UnConvert()	is	original	value.
Range:	None.
ParamDimension	*stdWorldDim;
The	DimType	is	DIM_WORLD
Convert()	return	original	value.
UnConvert()	returns	original	value.
ParamDimension	*stdAngleDim;
The	DimType	is	DIM_ANGLE.
Convert()	is	RadToDeg()
UnConvert()	is	DegToRad()
ParamDimension	*stdColorDim;

The	DimType	is	DIM_COLOR
Convert()	return	original	value.
UnConvert()	returns	original	value.
Range:	0-1
ParamDimension	*stdColor255Dim;
The	DimType	is	DIM_COLOR255
Convert()	is	value	*	255.0f
UnConvert()	is	value	/	255.0f
Range:	0-255
ParamDimension	*stdPercentDim;
The	DimType	is	DIM_PERCENT
Convert()	is	value	*	100.0f
UnConvert()	is	value	/	100.0f
Range:	0-100
ParamDimension	*stdNormalizedDim;
The	DimType	is	DIM_NORMALIZED
Convert()	is	original	value.
UnConvert()	is	original	value.
Range:	0-1
ParamDimension	*stdSegmentsDim;
The	DimType	is	DIM_SEGMENTS
Convert()	is	original	value.
UnConvert()	is	original	value.
ParamDimension	*stdTimeDim;
The	DimType	is	DIM_TIME
Convert()	is	value/GetTicksPerFrame()
UnConvert()is	value*GetTicksPerFrame()	(see	the	section	Time	for	details).

Methods:
If	the	DimType	is	custom	than	the	methods	below	must	be	implemented.	Note:
This	class	is	derived	from	ParamDimensionBase	which	provides	methods
DimensionType(),	Convert()	and	Unconvert().

Prototype:
virtual	float	GetDimScale();

Remarks:
Implemented	by	the	Plug-In.
Returns	the	dimension	scale.

Prototype:
virtual	void	SetDimScale();

Remarks:
Implemented	by	the	Plug-In.
Sets	the	dimension	scale.

Prototype:
virtual	TCHAR	*DimensionName();

Remarks:
Implemented	by	the	Plug-In.
Returns	the	name	of	the	dimension.

Class	GetParamName
See	Also:	ParamDimension.

Description:
This	class	is	used	to	hold	a	parameter	name.	When	a	client	of	a	parameter	block
receives	the	REFMSG_GET_PARAM_NAME	message,	the	partID	field	is
set	to	point	at	one	of	these	structures.	The	client	should	fill	in	the	parameter
name.

Data	Members:
TSTR	name;
Assign	the	parameter	name	to	this	variable.
int	index;
Index	of	the	parameter	in	the	parameter	block.

Methods:

Prototype:
GetParamName(TSTR	n,	int	i)

Remarks:
Constructor.

Class	GetParamDim
See	Also:	ParamDimension.

Description:
This	class	is	used	to	store	a	parameter	dimension.	When	a	client	of	a	parameter
block	receives	the	REFMSG_GET_PARAM_DIM	message,	the	partID
field	is	set	to	point	at	one	of	these	structures.	The	client	should	set	dim	to	point
at	its	dim	descriptor.

Data	Members:
ParamDimension	*dim;
Assign	the	dimension	to	this	variable.
int	index;
Index	of	the	parameter	in	the	parameter	block.

Methods:

Prototype:
GetParamDim(int	i)

Remarks:
Constructor.

Class	ParamBlockDescID
See	Also:	Class	ParamBlockDesc.
class	ParamBlockDescID

Description:
The	parameter	block	descriptor	describes	each	parameter	in	a	parameter	block.
This	version	has	an	ID	used	to	identify	each	parameter.
class	ParamBlockDescID	{
public:
ParamType	type;
UserType	*user;
BOOL	animatable;
DWORD	id;

};

Data	Members:
ParamType	type
The	parameter	type.	See	List	of	Parameter	Types.
UserType	*user
This	value	is	not	currently	used	--	it	must	always	be	passed	as	NULL.
BOOL	animatable
This	is	a	flag	indicating	if	the	parameter	may	be	animated	or	not.	Pass	TRUE
if	the	value	may	be	animated	and	FALSE	if	it	is	constant.
DWORD	id
This	is	an	ID	used	to	identify	this	parameter.	This	provides	a	solution	to	the
problem	of	backwards	compatibility.	If	you	alter	the	parameter	structure	of
your	plug-in	in	the	future	(by	adding	or	deleting	parameters	for	example)
previously	saved	3ds	max	files	will	be	incompatible.	You	can	however	use	a
mechanism	which	uses	these	IDs	to	convert	older	versions	to	the	current
version.	See	the	Advanced	Topics	section	on	Parameter	Maps	for	more	detail
on	how	this	is	done.

Class	ParamUIDesc
See	Also:	Class	IParamMap,	Parameter	Maps.

Description:
The	ParamUIDesc	class	is	used	in	conjunction	with	the	parameter	maps
mechanism.	It	is	used	for	creating	descriptors	that	define	the	properties	of	a	user
interface	control	such	as	its	type	(spinner,	radio	button,	check	box,	etc.),	which
resource	ID	it	refers	to,	and	which	index	into	the	virtual	array	of	parameters	it
uses.	See	the	Advanced	Topics	section	on	Parameter	Maps	for	an	overview	of
how	these	descriptors	are	used.

Methods

Prototype:
ParamUIDesc(int	index,
EditSpinnerType	spinType,int	idEdit,int	idSpin,
float	lowLim,float	highLim,float	scale,
ParamDimension	*dim=defaultDim);

Remarks:
Constructor.	This	constructor	is	used	for	a	float	or	int	controlled	by	a	single
spinner	control:

Parameters:
int	index
This	is	the	index	into	the	IParamArray	virtual	array	of	this	UI	control.
EditSpinnerType	spinType
This	parameter	specifies	the	type	of	value	which	may	be	entered.	The	valid
types	(listed	in	CUSTCONT.H)	are:
	EDITTYPE_INT	-	Any	integer	value.
	EDITTYPE_FLOAT	-	Any	floating	point	value.
	EDITTYPE_UNIVERSE	-	This	is	a	value	in	world	space	units.	It
respects	the	systems	unit	settings	(for	example	feet	and	inches).
	EDITTYPE_POS_INT	-	Any	integer	>=	0
	EDITTYPE_POS_FLOAT	-	Any	floating	point	value	>=	0.0
	EDITTYPE_POS_UNIVERSE	-	This	is	a	positive	value	in	world	space
units.	It	respects	the	systems	unit	settings	(for	example	feet	and	inches)	.

	EDITTYPE_TIME	-	This	is	a	time	value.	It	respects	the	system	time
settings	(SMPTE	for	example).
int	idEdit,	int	idSpin
These	are	the	resource	IDs	the	edit	control	and	the	spinner	control.
float	lowLim
This	is	the	minimum	value	the	spinner	can	take	on.
float	highLim
This	is	the	maximum	value	the	spinner	can	take	on.
float	scale
This	is	the	increment	or	decrement	value	used	when	the	user	uses	the	up	or
down	arrow	buttons	of	the	spinner	control.	You	may	also	pass	the	value
SPIN_AUTOSCALE.	This	causes	3ds	max	to	automatically	adjust	the
value	used	to	increment	or	decrement	based	on	the	current	value	being	edited.
This	allows	the	spinner	to	cover	a	wider	range	of	values	with	less	mouse
movement	or	button	clicking	from	the	user.

Prototype:
ParamUIDesc(int	index,ControlType	type,int	*ctrlIDs,
int	count,int	*vals=NULL);

Remarks:
Constructor.	This	constructor	is	used	for	an	int	controlled	by	n	radio	buttons
where
vals[i]	represents	the	value	if	ctrlIDs[i]	is	checked.	If	vals=NULL	then
ctrlIDs[i]	represents	a	value	of	i.
Or	it	may	be	used	for:
An	int	controlled	by	multiple	check	boxes	where	each	check	boxes	controls	a
single	bit.
vals[i]	specifies	which	bit	ctrlIds[i]	controls.	If	vals=NULL	then	ctrlIDs[i]
controls	the	i-th	bit.

Parameters:
int	index
This	is	the	index	into	the	IParamArray	virtual	array	of	this	UI	control.
ControlType	type

This	specifies	the	type	of	control	to	use.	The	available	control	are:
	TYPE_RADIO	-	Radio	Buttons.
	TYPE_MULTICHEKBOX	-	Multiple	Check	Boxes.	Note:	This	option
is	not	currently	supported.
int	*ctrlIDs
An	array	of	control	IDs.	See	the	Remarks	above.
int	count
This	is	the	number	of	control	IDs	in	the	array	above.
int	*vals=NULL
An	array	of	values.	See	the	Remarks	above.

Prototype:
ParamUIDesc(int	index,ControlType	type,int	id);

Remarks:
Constructor.	This	version	is	used	for	an	int	controlled	by	a	single	check	box
(BOOL)	or	a	Point3	controlled	by	a	color	swatch.

Parameters:
int	index
This	is	the	index	into	the	IParamArray	virtual	array	of	this	UI	control.
ControlType	type
This	specifies	the	type	of	control	to	use.	The	available	control	types	(defined
in	IPARAM.H)	are:
	TYPE_SPINNER	-	Spinner	Control.
	TYPE_RADIO	-	Radio	Button.
	TYPE_SINGLECHEKBOX	-	Single	Check	Box.
	TYPE_MULTICHEKBOX	-	Multiple	Check	Boxes.	Note:	This	option
is	not	currently	supported.
	TYPE_COLORSWATCH	-	Color	Swatch.
int	id
This	is	the	resource	ID	of	the	control.

Prototype:
ParamUIDesc(int	index,EditSpinnerType	spinType,int	idEdit1,

int	idSpin1,int	idEdit2,int	idSpin2,int	idEdit3,
int	idSpin3,float	lowLim,float	highLim,float	scale,
ParamDimension	*dim=defaultDim);

Remarks:
Implemented	by	the	System.
This	version	if	for	a	Point3	controlled	by	3	spinners

Parameters:
int	index
This	is	the	index	into	the	IParamArray	virtual	array	of	this	UI	control.
EditSpinnerType	spinType
This	parameter	specifies	the	type	of	value	which	may	be	entered.	The	valid
types	(listed	in	CUSTCONT.H)	are:
	EDITTYPE_INT	-	Any	integer	value.
	EDITTYPE_FLOAT	-	Any	floating	point	value.
	EDITTYPE_UNIVERSE	-	This	is	a	value	in	world	space	units.	It
respects	the	systems	unit	settings	(for	example	feet	and	inches).
	EDITTYPE_POS_INT	-	Any	integer	>=	0
	EDITTYPE_POS_FLOAT	-	Any	floating	point	value	>=	0.0
	EDITTYPE_POS_UNIVERSE	-	This	is	a	positive	value	in	world	space
units.	It	respects	the	systems	unit	settings	(for	example	feet	and	inches)	.
	EDITTYPE_TIME	-	This	is	a	time	value.	It	respects	the	system	time
settings	(SMPTE	for	example).
int	idEdit1,int	idSpin1
These	are	the	resource	IDs	of	the	first	edit	and	spinner	controls.
int	idEdit2,int	idSpin2
These	are	the	resource	IDs	of	the	second	edit	and	spinner	controls.
int	idEdit3,int	idSpin3
These	are	the	resource	IDs	of	the	third	edit	and	spinner	controls.
float	lowLim
This	is	the	minimum	value	the	spinner	can	take	on.
float	highLim
This	is	the	maximum	value	the	spinner	can	take	on.
float	scale

This	is	the	increment	or	decrement	value	used	when	the	user	uses	the	up	or
down	arrow	buttons	of	the	spinner	control.	You	may	also	pass	the	value
SPIN_AUTOSCALE.	This	causes	3ds	max	to	automatically	adjust	the
value	used	to	increment	or	decrement	based	on	the	current	value	being	edited.
This	allows	the	spinner	to	cover	a	wider	range	of	values	with	less	mouse
movement	or	button	clicking	from	the	user.
ParamDimension	*dim=defaultDim
This	parameter	represents	the	type	and	magnitude	of	the	parameter.	See
ParamDimension.

Class	ParamMapUserDlgProc
See	Also:	IParamMap.

Description:
This	class	is	used	with	parameter	maps.	If	there	is	some	custom	handling
required	by	a	particular	control,	the	client	can	derive	a	class	from
ParamMapUserDlgProc	and	set	it	as	the	parameter	map's	user	callback
(usually	using	SetUserDialogProc()).

Methods:

Prototype:
virtual	BOOL	DlgProc(TimeValue	t,IParamMap	*map,HWND
hWnd,UINT	msg,WPARAM	wParam,LPARAM	lParam)=0;

Remarks:
Implemented	by	the	Plug-In.
This	is	the	dialog	proc	that	will	be	called	to	process	the	control	messages.	This
proc	will	be	called	after	the	default	processing	is	complete.

Parameters:
TimeValue	t
This	is	the	current	time.
IParamMap	*map
This	is	a	pointer	to	the	parameter	map.
HWND	hWnd
This	is	the	handle	to	the	dialog.
UINT	msg
This	is	the	message	that	should	be	processed	by	the	dialog	proc.
WPARAM	wParam
This	is	a	parameter	that	holds	message	specific	information.
LPARAM	lParam
This	is	a	parameter	that	holds	message	specific	information.

Return	Value:
This	is	essentially	the	equivalent	of	a	normal	Windows	dialog	proc,	so	it
should	return	whatever	value	a	normal	dialog	proc	returns	for	the	message.	An

exception	is	that	the	value	REDRAW_VIEWS	may	be	returned	to	cause	the
viewports	to	be	redrawn.

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Implemented	by	the	Plug-In.
If	the	DlgProc	is	non-NULL	when	the	ParamMap	is	deleted	the	DeleteThis()
method	will	be	called.	This	method	is	usually	implemented	as	follows:	void
DeleteThis()	{delete	this;}

Prototype:
virtual	void	Update(TimeValue	t);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	called	whenever	the	dialog	is	being	updated.	If	the	parameter
map	is	invalidated,	3ds	max	will	update	the	user	interface.	When	it	does,	this
method	is	called	so	a	developer	may	do	anything	they	need	to	on	each	update.

Parameters:
TimeValue	t
The	time	at	which	the	update	is	taking	place.

Default	Implementation:
{}

See	Also:	For	more	information	on	Dialog	Procs	see	the	Advanced	Topics
section	on	Custom	Controls.

Class	ParamBlockPLCB
See	Also:	Class	ParamVersionDesc.

Description:
This	is	a	handy	post	load	call	back	for	fixing	up	parameter	blocks.	This	will	look
up	the	version	of	the	loaded	callback	and	fix	it	up	so	it	matches	the	current
version.	NOTE:	this	deletes	itself	when	its	done.	See	Parameter	Maps	for	more
details.

Methods:

Prototype:
ParamBlockPLCB(ParamVersionDesc	*v,int
cnt,ParamVersionDesc	*c,ReferenceTarget	*t,int	refNum);

Remarks:
Constructor.

Parameters:
ParamVersionDesc	*v
This	is	an	array	of	ParamVersionDescs.
int	cnt
This	is	the	number	of	elements	in	the	array	specified	above.
ParamVersionDesc	*c
This	is	a	pointer	to	the	current	version	of	the	ParamVersionDesc.
ReferenceTarget	*t
This	is	a	pointer	to	a	reference	target.	This	is	usually	the	this	pointer	of	the
object.
int	refNum
This	is	the	reference	index	of	the	parameter	block.

See	Also:	Advanced	Topics	section	under	Parameter	Maps	for	an	explanation	of
how	this	is	used.

Class	RefEnumProc
See	Also:	Advanced	Topics	section	on	References.
class	RefEnumProc

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	is	the	callback	object	for	the	global	function
EnumRefHierarchy(ReferenceMaker	*rm,	RefEnumProc	&proc);
This	classes	proc()	method	is	called	for	each	element	in	the	reference	hierarchy.

Methods:

Prototype:
virtual	void	proc(ReferenceMaker	*rm)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	once	for	each	element	in	the	reference	hierarchy.

Parameters:
ReferenceMaker	*rm
A	pointer	to	the	reference	maker	to	this	item.

List	of	Animatable	Flags
The	following	flags	are	bits	of	the	aflag	data	member	of	class	Animatable.	See
methods	Animatable::ClearAFlag(),	SetAFlag()	and	TestAFlag()	to	work
with	these	flags.
A_EVALUATING
This	is	used	internally.
A_NOTIFYDEP
This	is	used	internally.
A_CHILD_TREE_OPEN
This	indicates	the	item	is	a	node	and	its	children	are	opened	up	in	the	track
view.
A_SUBANIM_TREE_OPEN
This	indicates	the	sub-anims	of	the	item	are	opened	up	in	the	track	view.
A_OBJECT_REDUCED
This	is	used	internally.

The	following	flags	depends	on	the	various	sub-classes:
Atmospheric	flags

A_ATMOS_DISABLED
The	atmosphere	effect	is	disabled.

Object	flags
A_OBJ_CREATING
The	object	is	being	created.	It	doesn't	want	to	snap	to	itself.

Modifier	flags
A_MOD_DISABLED
The	modifier	is	disabled.
A_MOD_BEING_EDITED
The	modifier	is	being	edited.
A_MOD_USE_SEL
This	is	not	used	any	longer.

ModApp	flags
A_MODAPP_DISABLED
This	is	used	internally.
A_MODAPP_BEING_EDITED
This	is	used	internally.
A_MODAPP_SELECTED
This	is	used	internally.
A_MODAPP_DISPLAY_ACTIVE
This	is	used	internally.
A_MODAPP_DYNAMIC_BOX
This	is	used	internally.

Derived	Object	Flags
A_DERIVEDOBJ_DONTDELETE
This	is	used	internally.

Control	flags
A_ORT_MASK
This	is	used	internally.

A_ORT_BEFORESHIFT
Bits	5,	6	and	7.
A_ORT_AFTERSHIFT
Bits	8,	9,	10.
A_CTRL_DISABLED
This	is	used	internally.
A_ORT_DISABLED
Indicates	that	the	out	of	range	type	is	disabled.

INode	flags
A_INODE_IK_TERMINATOR
Terminates	the	top	of	an	IK	chain
A_INODE_IK_POS_PINNED
The	position	is	pinned.
A_INODE_IK_ROT_PINNED
The	rotation	is	pinned.

ToneOperator	flags
A_TONEOP_DISABLED
The	exposure	control	is	disabled.
A_TONEOP_PROCESS_BG
The	exposure	control	processes	the	background.

Flags	for	Hold	and	Restore	logic,	for	"lazy	holding",	to	avoid	multiple
holding.

A_HELD
Typically	a	plug-in	would	not	hold	unless	this	flag	was	not	set.	Then	set	it
once	it	has	held	something,	then	clear	it	once	EndHold()	is	called	on	the
RestoreObj.	This	will	keep	it	from	putting	multiple	restore	objects	in	one
cycle.	See	Undo/Redo	for	more	details.
A_SET
This	is	similar	to	above	except	this	is	used	by	controllers.
A_IS_DELETED
This	is	used	internally.
A_BEING_AUTO_DELETED
This	is	used	internally.

Reserved	for	superclass	use
A_SUPERCLASS1
This	is	used	internally.
A_SUPERCLASS2
This	is	used	internally.

These	are	reserved	for	use	by	plug-ins	for	any	purpose	they	need.	No
other	plug-in	will	set	these	flags.

A_PLUGIN1
A_PLUGIN2
A_PLUGIN3
A_PLUGIN4

A_DEPENDENCY_TEST
This	is	used	internally.
A_LOCK_TARGET
Setting	this	flag	will	keep	an	item	from	being	deleted	when	you	delete	a
reference	to	it.	For	example,	if	you	need	to	swap	references	for	two	items.	For
instance,	say	you	have	two	nodes	and	two	objects	and	you	want	to	swap	the
object	reference	of	the	nodes.	If	you	simply	call	ReplaceReference()	on	one
node	with	the	other	node's	object,	the	old	object	will	get	deleted	because
nothing	else	is	referencing	it	anymore.	By	setting	this	flag	temporarily	you	can
keep	it	from	being	deleted	and	perform	the	swap.
The	following	work	flags	may	be	used	by	plug-ins	but	it	is	not	guaranteed	that
they	will	remain	unaltered	by	someone	else.	Therefore	they	are	only	used	for
temporary	storage.
A_WORK1
A_WORK2
A_WORK3
A_WORK4

Class	IRenderElementMgr
See	Also:	Class	IRenderElement,	Class	FPMixinInterface,	Class
ReferenceTarget	,	Render	Elements
class	IRenderElementMgr	:	public	FPMixinInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	interface	for	the	Render	Element	Manager.	A	sample
plugin	of	a	Render	Element	can	be	found	in	the	SDK	samples;
\MAXSDK\SAMPLES\RENDER\RENDERELEMENTS.

Methods:
public:

Prototype:
virtual	BOOL	AppendMergedRenderElement(IRenderElement
*pRenderElement)=0;

Remarks:
This	method	gets	called	by	the	system	to	add	a	Render	Element	when	it	is
merged	from	another	file.

Parameters:
IRenderElement	*pRenderElement
A	pointer	to	the	Render	Element	to	add.

Return	Value:
TRUE	if	the	merging	was	successful,	FALSE	if	it	was	not.

Prototype:
virtual	BOOL	AppendMergedRenderElement(ReferenceTarget
*pRenderElement)=0;

Remarks:
This	method	gets	called	by	the	system	to	add	a	Render	Element	when	it	is
merged	from	another	file	and	ensures	that	the	Reference	Target	is	a	Render
Element.

Parameters:
ReferenceTarget	*pRenderElement
A	pointer	to	the	Render	Element	to	add.

Return	Value:
TRUE	if	the	merging	was	successful,	FALSE	if	it	was	not.

Prototype:
virtual	BOOL	AddRenderElement(IRenderElement
*pRenderElement)=0;

Remarks:
This	method	adds	an	IRenderElement	instance	to	the	manager’s	list.

Parameters:
IRenderElement	*pRenderElement
A	pointer	to	the	Render	Element	to	add.

Return	Value:
TRUE	if	the	addition	was	successful,	FALSE	if	it	was	not.

Prototype:
virtual	BOOL	AddRenderElement(ReferenceTarget
*pRenderElement)=0;

Remarks:
This	method	adds	an	IRenderElement	instance	to	the	manager’s	list	and
ensures	that	the	Reference	Target	is	a	Render	Element.

Parameters:
ReferenceTarget	*pRenderElement
A	pointer	to	the	Render	Element	to	add.

Return	Value:
TRUE	if	the	addition	was	successful,	FALSE	if	it	was	not.

Prototype:
virtual	BOOL	RemoveRenderElement(ReferenceTarget
*pRenderElement)=0;

Remarks:
This	method	removes	an	IRenderElement	instance	from	the	manager’s	list	and
ensures	that	the	Reference	Target	is	a	Render	Element.

Parameters:
ReferenceTarget	*pRenderElement
A	pointer	to	the	Render	Element	to	remove.

Return	Value:
TRUE	if	the	addition	was	successful,	FALSE	if	it	was	not.

Prototype:
virtual	void	RemoveAllRenderElements()=0;

Remarks:
This	method	will	remove	all	the	IRenderElement	instances	from	the	manager’s
list.

Prototype:
virtual	int	NumRenderElements()=0;

Remarks:
This	method	returns	the	number	of	Render	Elements	contained	in	the
manager’s	list.

Prototype:
virtual	IRenderElement	*GetRenderElement(int	index)=0;

Remarks:
This	method	returns	a	pointer	to	a	specific	Render	Element	in	manager's	list.

Parameters:
int	index
The	index	of	the	Render	Element	in	the	manager’s	list.

Return	Value:
A	pointer	to	the	specific	Render	Element	or	NULL	if	the	index	is	invalid.

Prototype:

virtual	void	SetElementsActive(BOOL	elementsActive)=0;
Remarks:
This	method	sets	whether	the	Render	Elements	List	should	be	active	during	a
render.

Parameters:
BOOL	elementsActive
TRUE	to	activate	the	Render	Elements	List,	FALSE	to	deactivate.

Prototype:
virtual	BOOL	GetElementsActive()	const	=	0;

Remarks:
This	method	checks	if	the	Render	Elements	List	is	active	during	a	render	and
will	return	TRUE	if	it	is	or	FALSE	if	it	is	not.

Prototype:
virtual	void	SetDisplayElements(BOOL	displayElements)=0;

Remarks:
This	method	sets	whether	the	Render	Elements	should	be	displayed	in	their
own	(VFB)	viewer	window.

Parameters:
BOOL	displayElements
TRUE	to	display	in	their	own	viewer,	FALSE	if	you	do	not	want	to.

Prototype:
virtual	BOOL	GetDisplayElements()	const	=	0;

Remarks:
This	method	checks	whether	the	Render	Elements	are	displayed	in	their	own
(VFB)	viewer	window	and	will	return	TRUE	if	they	are	or	FALSE	if	they	are
not.

Prototype:
virtual	void	SetCombustionOutputEnabled(BOOL

combustionOutEnabled)=0;
Remarks:
This	method	sets	whether	the	Render	Element	List	should	be	exported	to	a
Combustion	format	file.

Parameters:
BOOL	combustionOutEnabled
TRUE	to	enable	Combustion	format	file	output.

Prototype:
virtual	BOOL	GetCombustionOutputEnabled()	const	=	0;

Remarks:
This	method	checks	whether	the	Render	Element	List	will	be	exported	to	a
Combustion	format	file	and	will	return	TRUE	if	they	are	or	FALSE	if	they	are
not.

Prototype:
virtual	void	SetCombustionOutputPath(const	TCHAR
*combustionOutputPath)=0;

Remarks:
This	method	allows	you	to	set	the	output	path	for	a	Combustion	format	output
file.

Parameters:
const	TCHAR	*combustionOutputPath
The	path	string.

Prototype:
virtual	void	SetCombustionOutputPath(const	TSTR&
combustionOutputPath)=0;

Remarks:
This	method	allows	you	to	set	the	output	path	for	a	Combustion	format	output
file.

Parameters:

const	TSTR&	combustionOutputPath
The	path	string.

Prototype:
virtual	const	TSTR&	GetCombustionOutputPath()	const	=	0;

Remarks:
This	method	returns	the	output	path	for	a	Combustion	format	file.

Prototype:
virtual	const	TCHAR*	GetCombustionOutputPathPtr()	const	=	0;

Remarks:
This	method	returns	the	output	path	for	a	Combustion	format	file.

Class	IRenderElement
See	Also:	Class	SpecialFX,	Class	PBBitmap,	Class	ISave,	Class	ILoad,	List	of
Reference	Messages,	Render	Elements
class	IRenderElement	:	public	SpecialFX

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	the	interface	that	must	be	supported	by	all	render	elements	whether	they
support	the	3ds	max	renderer	or	some	other	renderer.	The	UI	in	the	render	dialog
uses	this	interface	exclusively	to	control	the	element.
The	methods	are	almost	all	state-setting	methods,	with	ones	that	are	settable	by
the	UI	provided	by	both	sets	and	gets.	A	sample	plugin	of	a	Render	Element	can
be	found	in	the	SDK	samples;
\MAXSDK\SAMPLES\RENDER\RENDERELEMENTS.

Methods:
public:

Prototype:
virtual	void	SetEnabled(BOOL	enabled)=0;

Remarks:
This	method	enables	or	disables	the	Render	Element.

Parameters:
BOOL	enabled
Set	to	TRUE	in	order	to	enable	the	Render	Element.	FALSE	to	disable	it.

Prototype:
virtual	BOOL	IsEnabled()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	Render	Element	is	enabled,	otherwise
FALSE.

Prototype:

virtual	void	SetFilterEnabled(BOOL	filterEnabled)=0;
Remarks:
Each	active	render	element	has	the	option	of	either	using	the	current	AA	filter
or	simple	blending	within	the	pixel.	This	method	will	set	the	internal	filter
enable	to	the	value	of	parameter	filterEnabled.

Parameters:
BOOL	filterEnabled
Set	to	TRUE	in	order	to	enable.	FALSE	to	disable	it.

Prototype:
virtual	BOOL	IsFilterEnabled()	const	=	0;

Remarks:
This	method	returns	the	current	state	of	whether	the	AA	filter	is	enabled.

Parameters:
This	method	returns	TRUE	if	filters	for	the	Render	Element	are	enabled,
otherwise	FALSE.

Prototype:
virtual	BOOL	BlendOnMultipass()	const	=0;

Remarks:
This	method	returns	whether	this	element	type	should	be	blended	during
multipass	effects.
When	multipass	camera	effects	such	as	depth	of	field	are	used	in	a	rendering,
each	of	the	separate	elements	may	be	blended	into	a	final	bitmap	like	the
composite	color,	or	they	may	be	"frozen"	after	the	first	pass.	Blending	is	not
appropriate	for	some	elements,	like	z-depth.	This	is	typically	a	query	only,	it	is
unlikely	that	this	will	need	to	be	turned	on	&	off.

Return	Value:
TRUE	if	blending	during	multipass	effects,	otherwise	FALSE.

Prototype:
virtual	void	SetApplyAtmosphere(BOOL	applyAtmosphere)=0;

Remarks:
This	method	enables	or	disables	the	Apply	Atmosphere	flag	for	the	Render
Element.

Parameters:
BOOL	applyAtmosphere
Set	to	TRUE	in	order	to	enable	the	atmospheric	effects	for	the	Render
Element.	FALSE	to	disable	it.

Prototype:
virtual	BOOL	AtmosphereApplied()	const	=	0;

Remarks:
This	method	returns	TRUE	if	atmospheric	effects	for	the	Render	Element	are
enabled,	otherwise	FALSE.

Prototype:
virtual	void	SetApplyShadows(BOOL	applyShadows)=0;

Remarks:
This	method	enables	or	disables	the	Apply	Shadows	flag	for	the	Render
Element.

Parameters:
BOOL	applyShadows
Set	to	TRUE	in	order	to	enable	the	shadows	for	the	Render	Element.	FALSE
to	disable	it.

Prototype:
virtual	BOOL	ShadowsApplied()	const	=	0;

Remarks:
This	method	returns	TRUE	if	shadows	for	the	Render	Element	are	enabled,
otherwise	FALSE.

Prototype:
virtual	void	SetElementName(TCHAR*	newName)=0;

Remarks:
This	method	sets	the	Render	Element’s	name	as	it	appears	in	the	render	dialog.

Parameters:
TCHAR*	newName;
The	name	for	the	Render	Element.

Prototype:
virtual	const	TCHAR*	ElementName()	const	=	0;

Remarks:
This	method	returns	a	string	representing	the	Render	Element’s	name	as	it
appears	in	the	render	dialog.

Prototype:
virtual	void	SetPBBitmap(PBBitmap*	&pPBBitmap)	const	=	0;

Remarks:
This	method	allows	you	to	set	the	bitmapinfo/bitmap	to	use	for	the	Render
Element.
Each	render	element	has	an	output	bitmap.	We	use	the	pb2	style	bitmap	as	it
contains	the	pathname	as	well	as	the	bitmap	&	bitmapInfo	structures	needed
by	windows.	The	bitmap	is	created	by	the	render	element	manager,	then	held
by	the	element	until	it’s	not	needed.	These	are	the	calls	that	set	&	get	the
elements	bitmap.

Parameters:
PBBitmap*	&pPBBitmap
The	pointer	to	the	PBBitmap	reference.

Prototype:
virtual	void	GetPBBitmap(PBBitmap*	&pPBBitmap)	const	=	0;

Remarks:
This	method	allows	you	to	get	the	bitmapinfo/bitmap	that	is	used	for	the
Render	Element.

Parameters:

PBBitmap*	&pPBBitmap
The	pointer	to	the	PBBitmap	reference	which	was	retrieved.

Prototype:
virtual	IRenderElementParamDlg
*CreateParamDialog(IRendParams	*ip);

Remarks:
Each	render	element	may	define	a	rollup	that	will	be	displayed	in	the	render
dialog	when	that	element	is	selected.	Most	current	render	elements	do	not
provide	their	own	rollups,	but	some	like	z-depth	and	blend	do.	This	method
creates	the	elements	parameter	rollup	and	return	it’s	pointer	to	the	system.	If
no	rollup	is	supported,	NULL	should	be	returned.

Parameters:
IRendParams	*ip
A	pointer	to	the	IRendParams	data.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	BOOL	SetDlgThing(IRenderElementParamDlg*	dlg);

Remarks:
Implement	this	method	if	you	are	using	the	ParamMap2	AUTO_UI	system
and	the	IRenderElement	has	secondary	dialogs	that	don't	have	the
IRenderElement	as	their	'thing'.	Called	once	for	each	secondary	dialog,	for
you	to	install	the	correct	‘thing’.	This	method	will	set	the	"thing"	of	a
secondary	dialog.

Parameters:
IRenderElementParamDlg*	dlg
The	pointer	to	the	parameter	dialog.

Return	Value:
TRUE	if	you	process	the	dialog,	otherwise	FALSE.

Default	Implementation:

{	return	FALSE;	};

Prototype:
IOResult	Save(ISave	*iSave)

Remarks:
This	method	handles	saving	the	plugin	data.	it	is	critical	for	merging	that	this
code	is	called	at	the	start	of	a	plug-in's	save	and	load	methods.	SpecialFX's
base	implementation	saves/loads	SpecialFX::name,	which	is	used	to	populate
the	'Merge	Render	Elements'	dialog	box.	if	a	plugin	re-implements	this
function,	it	should	first	call	RenderElement::Save(iSave)	or
IRenderElement::Load(iLoad)

Parameters:
ISave	*iSave
You	may	use	this	pointer	to	call	methods	of	ISave	to	write	data.

Return	Value:
One	of	the	following	values:	IO_OK,	IO_ERROR.

Default	Implementation:
{
	name	=	ElementName();
	return	SpecialFX::Save(iSave);
}

Prototype:
IOResult	Load(ILoad	*iLoad)

Remarks:
This	method	handles	loading	the	plugin	data.	It	is	critical	for	merging	that	this
code	is	called	at	the	start	of	a	plug-in's	save	and	load	methods.	SpecialFX's
base	implementation	saves/loads	SpecialFX::name,	which	is	used	to	populate
the	'Merge	Render	Elements'	dialog	box.	if	a	plugin	re-implements	this
function,	it	should	first	call	RenderElement::Save(iSave)	or
IRenderElement::Load(iLoad)

Parameters:

ILoad	*iLoad
You	may	use	this	pointer	to	call	methods	of	ILoad	to	read	data.

Return	Value:
One	of	the	following	values:	IO_OK,	IO_ERROR.

Default	Implementation:
{	return	SpecialFX::Load(iLoad);	}

Prototype:
virtual	RefResult	NotifyRefChanged(Interval	changeInt,
RefTargetHandle	hTarget,	PartID&	partID,	RefMessage
message);

Remarks:
A	plug-in	which	makes	references	must	implement	this	method	to	receive	and
respond	to	messages	broadcast	by	its	dependents.

Parameters:
Interval	changeInt
This	is	the	interval	of	time	over	which	the	message	is	active.	Currently,	all
plug-ins	will	receive	FOREVER	for	this	interval.
RefTargetHandle	hTarget
This	is	the	handle	of	the	reference	target	the	message	was	sent	by.	The
reference	maker	uses	this	handle	to	know	specifically	which	reference	target
sent	the	message.
PartID&	partID
This	contains	information	specific	to	the	message	passed	in.	Some	messages
don't	use	the	partID	at	all.	See	the	section	List	of	Reference	Messages	for
more	information	about	the	meaning	of	the	partID	for	some	common
messages.
RefMessage	message
The	message	parameters	passed	into	this	method	is	the	specific	message	which
needs	to	be	handled.	See	List	of	Reference	Messages.

Return	Value:
The	return	value	from	this	method	is	of	type	RefResult.	This	is	usually
REF_SUCCEED	indicating	the	message	was	processed.	Sometimes,	the

return	value	may	be	REF_STOP.	This	return	value	is	used	to	stop	the
message	from	being	propagated	to	the	dependents	of	the	item.

Default	Implementation:
{	return	REF_SUCCEED;	}

Prototype:
SClass_ID	SuperClassID();

Remarks:
This	method	returns	the	plugin’s	SuperClass	ID.

Default	Implementation:
{	return	RENDER_ELEMENT_CLASS_ID;	}

Prototype:
virtual	void*	GetInterface(ULONG	id)=0;

Remarks:
This	method	is	being	used	as	a	general	extension	method	in	3dw	max.	The
Render	Elements	use	it	to	get	the	interface	for	a	specific	renderer’s	element
interface.	The	renderer	will	call	this	method	to	see	if	an	IRenderElement	is
compatible	with	it.	By	asking	for	a	specific	renderer	interface,	the	element	can
either	provide	the	interface,	or	return	NULL.	If	NULL	is	returned,	then	this
element	will	not	be	available	for	this	renderer.	Note	that	this	strategy	allows	a
single	render	element	to	support	more	than	one	renderer.	The	max	default
renderer	iid	is	in	\MAXSDK\INCLUDE\renderElements.h	and	is
defined	as	0xeffeeffe,	accessed	through	MaxRenderElement::IID.

Parameters:
ULONG	id
Currently	this	is	not	used	and	is	reserved	for	future	use.

Prototype:
virtual	void	ReleaseInterface(ULONG	id,	void	*i)=0;

Remarks:
This	method	is	not	currently	used.	It	is	reserved	for	future	use.	Its	purpose	is

for	releasing	an	interface	created	with	GetInterface().

Class	IRenderElementCompatible
See	Also:	Class	IRenderElement	,	Render	Elements
class	IRenderElementCompatible

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	system	will	ask	a	Renderer	for	this	interface	by	calling
Renderer::GetInterface	(IRenderElementCompatible::IID).	If	the
Renderer	returns	a	pointer	to	this	interface,	it	is	implied	that	the	Renderer
supports	render	elements.	The	system	will	then	call
IRenderElementCompatible::IsCompatible()	to	determine	if	an
IRenderElement	instance	is	compatible	with	it.	To	determine	compatibility,	the
Renderer	can	call	IRenderElement::GetInterface()	(inherited	from	class
Animatable),	passing	in	an	interface	ID	that	a	compatible	IRenderElement	would
understand.	If	the	Renderer	receives	a	valid	interface	pointer,	it	can	return	TRUE
to	IRenderElementCompatible::IsCompatible().

Methods:
public:

Prototype:
virtual	BOOL	IsCompatible(IRenderElement
*pIRenderElement)=0;

Remarks:
This	method	determines	if	the	specified	IRenderElement	instance	is
compatible	with	the	renderer.

Parameters:
IRenderElement	*pIRenderElement
A	pointer	to	the	IRenderElement	to	check	for	compatibility.

Return	Value:
TRUE	if	the	RenderElement	is	compatible,	FALSE	if	it	is	not.

Class	MaxRenderElement
See	Also:	Class	IRenderElement,	Class	ShadeContext,	Class	IllumParams	,
Render	Elements
class	MaxRenderElement	:	public	IRenderElement

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	the	RenderElement	base	class	for	3ds	max’	default	scanline	renderer.
RenderElement	plugins	that	utilize	ShadeContext	and	IllumParams	should	sub-
class	from	here.	.	All	render	elements	that	support	the	max	renderer	should
derive	from	this	class.	The	class	implements	a	handler	for	the	ShadeOutputIndex
of	the	elements	value	in	the	ShadeOutput	array.	Access	to	the	elements	value	is
accomplished	within	PostIllum	or	PostAtmosphere	by:
	
AColor	myColor;

//	...	do	some	computation
sc.out.elementVals[mShadeOutputIndex]	=	myColor;

//	...	or
sc.out.elementVals[ShadeOutputIndex()]	=	myColor;

	
A	sample	plugin	of	a	Render	Element	can	be	found	in	the	SDK	samples;
\MAXSDK\SAMPLES\RENDER\RENDERELEMENTS.

Data	Members:
protected:
int	mShadeOutputIndex;
The	index	into	element	value	array	in	shadeOutput	class.

Methods:
public:

Prototype:
void	SetShadeOutputIndex(int	shadeOutputIndex);

Remarks:

This	method	sets	the	index	into	the	element	array	in	the	ShadeOutput	class.
This	method	is	implemented	by	this	base	class	&	need	not	be	re-implemented
by	derivative	classes.	Derivative	classes	access	the	index	either	through	the
interface	or	directly	as	mShadeOutputIndex.	Set	is	used	by	the	system	to
assign	an	index	to	each	element.	This	index	persists	throughout	a	single
rendering.

Parameters:
int	shadeOutputIndex
The	shadeOutput	index.

Prototype:
int	ShadeOutputIndex();

Remarks:
This	method	gets	the	index	into	the	element	array	in	the	ShadeOutput	class.
This	method	is	implemented	by	this	base	class	&	need	not	be	re-implemented
by	derivative	classes.	Derivative	classes	access	the	index	either	through	the
interface	or	directly	as	mShadeOutputIndex.	Set	is	used	by	the	system	to
assign	an	index	to	each	element.	This	index	persists	throughout	a	single
rendering.

Prototype:
virtual	void	Update(TimeValue	timeValue)

Remarks:
This	method	will	update	the	element	to	time	timeValue.	Note	that	most
elements	don’t	care.
Update	is	called	to	communicate	the	time	to	the	element.	It	will	be	called	on
each	element	before	the	call	to	PostIllum()	is	executed.	No	current	render
element	uses	this,	but	it	could	prove	useful	someday.	This	class	provides	a
default	stub	implementation,	so	this	need	not	be	implemented	unless	needed.

Parameters:
TimeValue	timeValue
The	timevalue	at	which	the	update	gets	called.

Prototype:
virtual	void	PostIllum(ShadeContext&	sc,	IllumParams&	ip)=0;

Remarks:
This	method	is	used	to	compute	the	element	and	store	the	result	in	the
ShadeContext's	ShadeOutput.
This	is	the	first	of	the	actual	computation	methods	for	the	render	element.
PostIllum()	is	called	by	the	material	just	after	an	illumination	is	computed
for	a	fragment.	Some	materials,	like	the	multi-materials	don’t	compute
illumination	themselves	but	mix	illuminations	from	other	leaf	materials.	Such
materials	do	not	call	PostIllum(),	but	need	to	consider	the	elements	when
blending	the	shadeoutputs	from	the	leaf	materials.	The	ShadeContext	is	the
same	shadecontext	passed	into	the	material’s	shade	method,	&	contains	the
member	variable	‘out’,	which	is	the	current	output	from	the	full	pixel	shading
and	the	storage	place	for	renderElement	values.
The	other	param,	IllumParams,	contains	detailed	information	about	the
shading	process.	Specifically,	the	component-wise	output	from	the	shading
process	is	available	in	the	IllumParams.	Also	the	illumParams	passed	in	are
dependent	on	whether	the	element	has	requested	shadows	or	not.	The	standard
material	keeps	two	sets	of	these	and	supplies	the	one	requested.	This	method
must	be	implemented,	tho	some	elements	merely	stub	it	out	or	clear	the	output
element	value.	It	should	put	it’s	output	is	in
sc.out.elementVals[ShadeOutputIndex()].	Even	if	you	do	not	need	this
function,	it	is	a	good	idea	to	clear	the	element	val.

Parameters:
ShadeContext&	sc
A	reference	to	the	ShadeContext.
IllumParams&	ip
A	reference	to	the	IllumParams.

Prototype:
virtual	void	PostAtmosphere(ShadeContext&	sc,	float	z,	float
prevZ)=0;

Remarks:
This	is	the	second	computation	method	and	is	only	called	if	the	elements	has

atmospheres	applied.	If	it	is	applied,	then	the	element	value	is	retrieved	from
the	shadeContext,	the	atmosphere	is	applied	to	it	&	and	the	output	from	the
atmosphere	is	left	in	sc.out.c	and	sc.out.t.	Last,	PostAtmosphere	is	called
with	the	shadeContext,	and	the	2	z	values	used	by	the	atmosphere	to	compute
it.	If	the	point	is	directly	visible	to	the	camera,	then	prevZ	will	be	0.0f,
otherwise	it	is	the	z	of	the	next	closest	obscuring	transparent	fragment	in	front
of	the	fragment	being	shaded.	It	is	up	to	the	render	element	to	process	the
output	in	sc.out.c	and	save	the	result	in
sc.out.elementVals[ShadeOutputIndex()].	Note	that	when
PostAtmosphere	is	called	the	original	value	set	by	PostIllum	is	saved	in	the
element	val.	This	can	be	overwritten	or	used	in	some	computation.	For
example,	to	separate	atmosphere	from	the	composite	color,	sc.out.c	and
sc.out.	elementVals[ShadeOutputIndex()]	can	be	differenced.

Parameters:
ShadeContext&	sc
A	reference	to	the	ShadeContext.
float	z
The	first	depth	value.
float	prevZ
The	previous	depth	value.

Prototype:
virtual	void*	GetInterface(ULONG	id)=0;

Remarks:
The	renderer	will	call	this	method	to	see	if	IRenderElement	is	compatible	with
it	This	is	used	for	future	expansion	in	interface	classes.	When	the	3ds	max
development	team	needs	to	add	additional	functionality	to	an	interface	class
this	method	provides	a	way	to	do	that	without	breaking	the	API.	If	the	3ds
max	developers	would	add	methods	to	an	existing	class	it	would	invalidate	the
plug-ins	that	used	the	class.	Using	thismethod	allows	additional	functionality
to	be	added	to	the	interface	class	without	breaking	the	API.

Parameters:
ULONG	id
Currently	this	is	not	used	and	is	reserved	for	future	use.

Prototype:
virtual	void	ReleaseInterface(ULONG	id,	void	*i)=0;

Remarks:
This	method	is	not	currently	used.	It	is	reserved	for	future	use.	Its	purpose	is
for	releasing	an	interface	created	with	GetInterface().

Class	IOsnapManager
See	Also:	Class	OsnapHit,	Class	INode,	Class	ViewExp,	Class	Matrix3,The
Advanced	Topics	section	on	Snapping.
class	IOsnapManager

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	provides	an	interface	to	the	OsnapManager.	Developers	who
implement	osnaps	need	to	record	hits	with	the	osnap	manager.	Developers
implementing	command	modes	are	responsible	for	getting	the	snap	preview
done	and	may	be	responsible	for	initializing	and	closing	point	sequences.	See
the	Advanced	Topics	section	on	Snapping	for	more	details.

Methods:

Prototype:
virtual	BOOL	getactive()	const=0;

Remarks:
This	method	is	used	internally	but	may	be	called	to	determine	if	the
OsnapManager	is	currently	on.

Prototype:
virtual	BOOL	getAxisConstraint()=0;

Remarks:
This	method	is	used	internally	but	may	be	called	to	determine	if	the
OsnapManager	will	use	the	system	level	axis	constraints	when	performing
translation.

Prototype:
virtual	void	RecordHit(OsnapHit*	somehit)=0;

Remarks:
When	a	plugin	osnap	finds	a	hit,	it	should	call	this	method	to	record	it	with	the
manager.	This	will	enter	the	hit	in	a	stack	which	is	sorted	based	on	proximity
to	the	cursor	position.	When	multiple	hits	are	recorded	with	the	manager,	the

user	has	the	ability	to	cycle	throught	the	stack.

Parameters:
OsnapHit*	somehit
A	pointer	to	the	hit	to	record.	The	Osnap	plugin	should	instantiate	the	hits	and
the	manager	is	responsible	for	freeing	them.

Prototype:
virtual	BOOL	OKForRelativeSnap()=0;

Remarks:
Some	snaps	only	make	sense	relative	to	a	reference	point.	Consider,	for
example,	the	tangent	snap	which	looks	for	points	of	tangency	on	splines.	You
can	only	find	a	tangent	point	relative	to	a	second	point.	As	objects	are	created
and	manipulated,	the	OsnapManager	maintains	a	list	of	the	Points	that	have
been	input	to	the	current	command	mode.	This	method	tells	you	if	the	first
point	has	been	recorded.

Prototype:
virtual	BOOL	RefPointWasSnapped()=0;

Remarks:
This	method	tells	you	if	the	point	on	the	top	of	the	reference	stack	was
actually	snapped.

Prototype:
virtual	Point3	GetRefPoint(BOOL	top	=	TRUE)=0;

Remarks:
This	method	retrieves	the	Point	on	the	top	of	the	reference	stack.	The	point
returned	is	in	world	space.	Note	that	calling	this	method	when	the	stack	is
empty	will	crash	the	program.	Remember	to	call	OKForRelativeSnap()
first.	Here	are	the	first	few	lines	of	the	tangent	snap’s	main	method.
void	ShapeSnap::Snap(Object*	pobj,	IPoint2	*p,	TimeValue	t)	{	
if(!theman->OKForRelativeSnap())
		return;
//Get	the	reference	point

	Point3	relpoint(theman->GetRefPoint());//the	last	point	the	user
clicked.
//transform	the	reference	point	into	the	node's	coordinate	system
	Matrix3	tm	=	theman->	GetObjectTM();
	relpoint	=	Inverse(tm)	*	relpoint;
.	.	.

Parameters:
BOOL	top	=	TRUE
The	default	is	to	return	the	top	of	the	stack,	i.e.	the	last	point	which	was	input
to	the	command	mode.	If	you	pass	FALSE,	the	bottom	of	the	stack	will	be
returned.

Prototype:
virtual	BOOL	IsHolding()=0;

Remarks:
This	method	is	used	internally.	This	method	tells	if	the	any	hits	were	recorded
with	the	OsnapManager	during	the	last	scene	traversal.

Prototype:
virtual	OsnapHit	&GetHit()=0;

Remarks:
This	method	is	used	internally.	It	returns	the	current	hit	i.e.	the	hit	which	the
manager	is	currently	displaying.

Prototype:
virtual	ViewExp	*GetVpt()=0;

Remarks:
Returns	a	pointer	to	a	ViewExp.	This	is	only	valid	for	the	duration	of	the
current	scene	traversal.	It	is	guaranteed	to	be	valid	while	in	a	plugin’s	Snap()
method.

Prototype:

virtual	INode	*GetNode()=0;
Remarks:
Returns	a	pointer	to	the	node	which	is	currently	being	snapped.

Prototype:
virtual	int	GetSnapStrength()=0;

Remarks:
Returns	the	current	snap	strength.	This	is	the	radius	of	a	circular	area	about	the
cursor.	It	is	the	plugin’s	responsibility	to	determine	if	any	"interesting"	parts	of
the	object	lie	within	this	area.	For	testing	points,	see	the	method
OsnapManager::CheckPotentialHit().

Prototype:
virtual	Matrix3	GetObjectTM()=0;

Remarks:
Returns	the	object	transformation	matrix	of	the	node	which	is	currently	being
snapped.

Prototype:
virtual	TimeValue	GetTime()=0;

Remarks:
Returns	the	animation	time	of	the	current	scene	traversal.

Prototype:
virtual	void	wTranspoint(Point3	*inpt,	IPoint3	*outpt)=0;

Remarks:
This	method	is	not	currently	used.	The	method	transforms	a	point	in	the
current	node’s	object	space	into	screen	space.

Parameters:
Point3	*inpt
A	pointer	to	the	object	space	point.
IPoint3	*outpt

A	pointer	to	storage	for	the	screen	space	point.

Prototype:
virtual	void	Reset()=0;

Remarks:
This	method	may	be	called	to	clear	out	the	OsnapManager’s	reference	point
stack.	Typically	this	is	handled	internally.	However,	objects	which	implement
their	own	creation	processes	may	need	to	call	this	method	upon	completion	of
a	creation	cycle.

Class	HitMesh
See	Also:	Class	Osnap,	The	Advanced	Topics	section	on	Snapping..
class	HitMesh

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	is	a	class	to	hold	a	list	of	object	space	points	for	highlighting	the
geometry	associated	with	a	hit.	One	oddity	of	this	class	is	that	you	need	to
allocate	one	point	more	than	the	number	of	points	you	actually	need.	This
additional	storage	is	used	for	clipping	against	the	viewport	at	display	time.	For
example	the	"endpoint"	snap	would	alocate	a	three-point	hitmesh	to	highlight
the	edge	which	was	hit	(See	the	example	below)	.
The	class	has	data	members	for	the	number	of	points	and	a	pointer	to	the
actual	Point3	list.
In	practice,	developers	need	only	use	the	first	two	methods	shown	below.

Methods:

Prototype:
HitMesh(int	n);

Remarks:
Constructor.	The	number	of	vertices	is	set	to	the	value	n	passed	and	the	points
array	is	allocated	with	that	size.	This	is	the	constructor	that	plugin	developers
will	typically	use	in	conjunction	with	the	setVert()	method	described	below.

Parameters:
int	n
The	number	of	points	to	allocate.

Prototype:
void	setVert(int	i,	const	Point3	&xyz);

Remarks:
Sets	the	'i-th'	vertex	to	the	specified	value.

Parameters:
int	i

The	vertex	to	set.
const	Point3	&xyz
The	value	to	set.
In	practice,	developers	need	only	use	the	two	previous	methods.	The
following	code	segment	from	the	mesh	snap	exemplifies	their	use.
//add	the	hit	points	based	on	the	active	subsnaps
if(GetActive(EDGE_SUB)
)//	The	edge	snapping	is	active	and	we	have	a	hit	on	the	edge
defined	by	from	and	to.
{	
	HitMesh	*hitmesh	=	new	HitMesh(3);	//Allocate	one	more	than	we
need.
	hitmesh->setVert(0,	from);
	hitmesh->setVert(1,	to);
	
	float	dap	=	Length(cursor	-	sf2);
	assert(Length(st2	-	sf2)>=0.0f);
	float	pct	=	(float)sqrt(fabs(dap*dap	-	distance*distance))	/
Length(st2	-	sf2);
	Point3	cand;
	float	pctout	=	gw->interpWorld(&xyz[0],&xyz[1],pct,&cand);
	theman->RecordHit(new	EdgeHit(cand,	this,	EDGE_SUB,
hitmesh,	ifrom,	ito,	pct));
}

Prototype:
HitMesh();

Remarks:
Constructor.	The	number	of	points	is	set	to	zero	and	the	point	list	is	set	to
NULL.

Prototype:
HitMesh(const	HitMesh&	h);

Remarks:
Constructor.	The	number	of	points	and	the	points	are	initialized	from	the
HitMesh	passed.

Parameters:
const	HitMesh&	h
The	HitMesh	to	init	from.

Prototype:
~HitMesh();

Remarks:
Destructor.	If	point	list	is	allocated	it	is	freed.

Prototype:
int	getNumVerts();

Remarks:
Returns	the	number	of	points	in	this	HitMesh.

Prototype:
void	setNumVerts(int	n);

Remarks:
Sets	the	number	of	vertices.	This	frees	any	existing	verts	and	allocates	new
ones.

Parameters:
int	n
The	number	of	points	to	allocate.

Prototype:
Point3&	getVert(int	i);

Remarks:

Returns	the	'i-th'	vertex.

Prototype:
Point3*	getVertPtr();

Remarks:
Returns	a	pointer	to	the	array	of	points.

Operators:

Prototype:
Point3	operator[](int	i);

Remarks:
Access	operator.	Return	the	'i-th'	point.

Parameters:
int	i
Specifies	the	point	to	return.

Class	OsnapHit
See	Also:	Class	IOsnapManager,	Class	Osnap,	Class	HitMesh,	Class	Point3,
Class	IPoint3,	The	Advanced	Topics	section	on	Snapping.
class	OsnapHit	:	public	BaseInterfaceServer

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	encapsulates	the	data	required	to	record	a	snapped	point.	Typically	a
plug-in	creates	instances	of	this	class	and	records	them	with	the
OsnapManager.	The	manager	is	responsible	for	freeing	the	memory
associated	with	recorded	hits.	All	the	methods	of	this	class	are	implemented	by
the	system.	If	a	snap	plugin	needs	to	record	additional	data	for	its	hits,	it	should
derive	from	this	class	and	provide	a	clone	method	which	copies	this	additional
data	and	calls	the	base	classes	clone	method.

Friend	Classes:
friend	class	OsnapManager;
friend	class	Osnap;

Methods:

Prototype:
OsnapHit(Point3	p3,	Osnap*	s,	int	sub,	HitMesh	*m);

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.

Parameters:
Point3	p3
The	point	that	was	hit	in	object	space.
Osnap*	s
Points	to	the	Osnap	instance	which	made	this	hit.
int	sub
The	sub-snap	index	which	made	this	hit.
HitMesh	*m
Points	to	the	mesh	used	to	hilite	the	topology	that	was	hit.

Prototype:
OsnapHit(const	OsnapHit&	h);

Remarks:
Constructor.	The	data	members	are	initialized	from	the	OsnapHit	passed.

Parameters:
const	OsnapHit&	h
The	data	members	are	copied	from	this	OsnapHit.

Prototype:
virtual	~OsnapHit();

Remarks:
Destructor.	If	a	HitMesh	was	allocated	it	is	deleted.

Prototype:
virtual	OsnapHit*	clone();

Remarks:
Returns	a	pointer	to	a	new	instance	of	the	OsnapHit	class	and	initializes	it
with	this	instance.	Developers	deriving	from	this	class	should	overide	this
method.

Prototype:
void	setscreendata(IPoint3	screen3,	int	len);

Remarks:
This	method	is	used	internally.	Sets	the	data	members	associated	with	screen
hit	data.

Parameters:
IPoint3	screen3
The	hit	location	in	screen	space.
int	len
The	distance	from	the	cursor.

Prototype:
boolean	display(ViewExp	*vpt,	TimeValue	t,	Point3	color,	int
markersize,	boolean	markers	=	TRUE,	boolean	hilite	=	TRUE);

Remarks:
This	display	method	is	implemented	by	the	system	and	used	internally.

Parameters:
ViewExp	*vpt
The	viewport	to	display	in.
TimeValue	t
The	current	time.
Point3	color
The	color	to	draw	it	in.
int	markersize
The	relative	size	of	the	icon.
boolean	markers	=	TRUE
Controls	whether	or	not	the	hit	icon	is	drawn.
boolean	hilite	=	TRUE
Controls	whether	or	not	the	mesh	part	of	the	hit	is	drawn.

Prototype:
void	erase(ViewExp	*vpt,	TimeValue	t)	const;

Remarks:
This	method	is	not	currently	used.

Prototype:
void	GetViewportRect(TimeValue	t,ViewExp	*vpt,Rect	*rect,	int
marksize)const;

Remarks:
Implemented	by	the	system.
This	method	determines	the	damage	rectangle	for	this	hit.

Parameters:

TimeValue	t
The	time	at	which	to	compute	the	rectangle.
ViewExp	*vpt
The	viewport	in	which	to	compute	the	rectangle.
Rect	*rect
Points	to	storage	for	the	computed	result.
int	marksize
The	size	of	the	icon.

Prototype:
Point3	GetHitpoint();

Remarks:
Returns	the	hit	location	in	object	space.

Prototype:
Point3	GetWorldHitpoint();

Remarks:
Returns	the	hit	location	in	world	space.

Prototype:
IPoint3	GetHitscreen();

Remarks:
Returns	the	hit	location	in	screen	space.	IPoint3.z	is	the	depth	in	screen
space.

Prototype:
int	GetSubsnap();

Remarks:
Returns	the	sub-snap	index	which	made	this	hit.

Prototype:

INode	*GetNode();
Remarks:
Returns	a	pointer	to	the	node	which	got	hit.

Prototype:
void	Update(TimeValue	t);

Remarks:
This	method	is	not	currently	implemented.

Prototype:
Point3	ReEvaluate(TimeValue	t);

Remarks:
Implemented	by	the	System.
This	method	updates	the	internal	data	to	reflect	a	change	in	time.	For	example,
if	a	hit	is	recorded	on	the	endpoint	of	a	particular	edge	of	a	mesh,	the	node
moving	would	invalidate	the	hit	data	and	a	call	to	this	method	would	be
required	before	using	its	data.

Parameters:
TimeValue	t
The	time	at	which	to	reevaluate	it.

Return	Value:
The	updated	point	in	world	space.

Prototype:
void	Dump()const;

Remarks:
This	method	is	used	internally	for	debugging	and	is	not	implemented	for	plug-
in	use.

Operators:

Prototype:
virtual	OsnapHit&	operator=(const	OsnapHit&	h);

Remarks:
Assignment	operator.

Parameters:
const	OsnapHit&	h
The	OsnapHit	to	assign.

Prototype:
BOOL	operator<(OsnapHit&	hit);

Remarks:
This	comparison	operator	is	used	in	sorting.

Parameters:
OsnapHit&	hit
The	OsnapHit	to	compare.

Return	Value:
TRUE	if	the	distance	from	the	cursor	is	less	than	hit;	otherwise	checks	if	the
depth	in	Z	space	is	less	than	hit:	If	so	TRUE;	otherwise	FALSE.

Prototype:
BOOL	operator>(OsnapHit&	hit);

Remarks:
This	comparison	operator	is	used	in	sorting.

Parameters:
OsnapHit&	hit
The	OsnapHit	to	compare.

Return	Value:
TRUE	if	the	distance	from	the	cursor	is	less	than	hit;	otherwise	checks	if	the
depth	in	Z	space	is	less	than	hit:	If	so	TRUE;	otherwise	FALSE.

Class	OsnapMarker
See	Also:	Class	Osnap,	Class	IOsnapManager,	Class	GraphicsWindow,	Class
IPoint3.
class	OsnapMarker

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	is	used	for	drawing	Osnap	markers	in	the	viewports.	The	marker	is
drawn	as	a	polyline.	The	class	maintains	a	cache	of	the	points	for	the	polyline.
There	are	constructors	used	to	initialize	the	cache	and	a	display()	method	to
draw	the	marker	in	the	specified	viewport.
The	Osnap	class	must	implement	the	GetMarkers()	method	which	typically
returns	pointers	to	these	static	instances.

Methods:

Prototype:
OsnapMarker();

Remarks:
Constructor.	The	cache	of	marker	points	is	set	to	NULL	and	the	number	of
points	is	set	to	0.

Prototype:
OsnapMarker(int	n,	IPoint3	*ppt,	int	*pes);

Remarks:
Constructor.	This	initializes	the	cache	with	the	points	and	edge	flags	passed.

Parameters:
int	n
The	number	of	points	in	the	marker	polyline.
IPoint3	*ppt
The	array	of	points	for	the	polyline.
int	*pes
The	edge	state	array.	This	is	an	array	that	indicates	if	the	'n-th'	edge	is	one	of
three	state:

GW_EDGE_SKIP
Nonexistent	-	totally	invisible.
GW_EDGE_VIS
Exists	and	is	solid.
GW_EDGE_INVIS
Exists	and	is	hidden	-	shown	as	a	dotted	line.

You	may	pass	NULL	for	this	array	and	the	method	will	assume	that	the	edges
are	all	solid.

Prototype:
OsnapMarker(const	OsnapMarker&	om);

Remarks:
Constructor.	The	marker	data	is	initialzed	from	the	OsnapMarker	passed.

Parameters:
const	OsnapMarker&	om
The	settings	are	copied	from	this	OsnapMarker.

Prototype:
~OsnapMarker();

Remarks:
Destructor.	If	any	marker	points	have	been	allocated	for	the	cache	they	are
freed.

Prototype:
void	display(IPoint3	xyz,	int	markersize,	GraphicsWindow	*gw);

Remarks:
This	is	method	is	used	internally	to	display	the	marker	cache	at	the	specified
size	in	the	specified	viewport.	Plugin	developers	need	not	call	this	method.

Operators:

Prototype:
OsnapMarker&	operator=(const	OsnapMarker&	om);

Remarks:
Assignment	operator.

Parameters:
const	OsnapMarker&	om
The	OsnapMarker	to	assign.

Structure	SnapInfo
See	Also:	List	of	Snap	Flags,	Class	ViewExp.
This	structure	describes	the	snap	settings	used	for	an	operation.
typedef	struct	{
int	snapType;
One	of	the	following	values:
SNAP_2D
2-D	Snap.
SNAP_25D
2	1/2-D	Snap.
SNAP_3D
3-D	Snap.

int	strength;
Maximum	snap	distance.
int	vertPriority;
Geometry	vertex	priority.
int	edgePriority;
Geometry	edge	priority.
int	gIntPriority;
Grid	intersection	priority.
int	gLinePriority;
Grid	line	priority.
DWORD	flags;
See	List	of	Snap	Flags.
Matrix3	plane;
Plane	to	use	for	snap	computations.
Point3	bestWorld;
Best	snap	point	in	world	space.
Point2	bestScreen;
Best	snap	point	in	screen	space.
int	bestDist;
Best	snap	point	distance.

int	priority;
Best	point's	priority.

}	SnapInfo;

Class	XFormModes
See	Also:	List	of	Standard	Sub-Object	Modes.
class	XFormModes

Description:
This	class	contains	a	set	of	six	command	mode	pointers	that	make	up	the	XForm
modes.	Plug-in	developers	can	specify	these	for	their	sub-object	types.	See	the
method	ActivateSubobjSel	in	class	BaseObject	or	class	Control	for	more
details.

Data	Members:
public:
CommandMode	*move;
Standard	command	mode	to	process	Move.
CommandMode	*rotate;
Standard	command	mode	to	process	Rotate.
CommandMode	*scale;
Standard	command	mode	to	process	Non-Uniform	Scale.
CommandMode	*uscale;
Standard	command	mode	to	process	Uniform	Scale.
CommandMode	*squash;
Standard	command	mode	to	process	Squash.
CommandMode	*select;
Standard	command	mode	to	process	Selection.

Methods:

Prototype:
XFormModes();

Remarks:
Constructor.	All	the	data	members	are	set	to	NULL.

Prototype:
XFormModes(CommandMode	*move,CommandMode

*rotate,CommandMode	*scale,CommandMode
*uscale,CommandMode	*squash,CommandMode	*select)

Remarks:
Constructor.	The	data	members	are	set	to	the	command	modes	passed.

List	of	Standard	Sub-Object	Modes
Below	is	a	list	of	the	standard	sub-object	selection	command	modes.	These
classes	are	ready	to	be	instantiated	-	no	derived	classes	need	to	be	defined.	The
constructors	are	shown	along	with	their	intended	use.
The	following	modes	are	appropriate	for	any	object	or	modifier	in	the	pipeline
that	needs	to	implement	its	sub-object	selection	modes.	While	these	modes	are
named	...ModBox...	they	are	used	by	objects	as	well	(for	example	the	boolean
object	and	the	loft	object)	-	so	despite	their	name	they	are	not	just	for	use	by
modifiers.
MoveModBoxCMode(BaseObject	*o,	IObjParam	*i)
RotateModBoxCMode(BaseObject	*o,	IObjParam	*i)
UScaleModBoxCMode(BaseObject	*o,	IObjParam	*i)
NUScaleModBoxCMode(BaseObject	*o,	IObjParam	*i)
SquashModBoxCMode(BaseObject	*o,	IObjParam	*i)
SelectModBoxCMode(BaseObject	*o,	IObjParam	*i)

When	controllers	implement	their	sub-object	selection	the	following	modes	may
be	used:
MoveCtrlApparatusCMode(Control	*c,	IObjParam	*i)
RotateCtrlApparatusCMode(Control	*c,	IObjParam	*i)
NUScaleCtrlApparatusCMode(Control	*c,	IObjParam	*i)
SquashCtrlApparatusCMode(Control	*c,	IObjParam	*i)
SquashCtrlApparatusCMode(Control	*c,	IObjParam	*i)
SelectCtrlApparatusCMode(Control	*c,	IObjParam	*i)

For	working	with	modifier	and	sub-object	selection,	two	classes	are	defined	that
the	developer	may	use.	These	are	GenModSelectionProcessor	and
SubModSelectionProcessor.
See	the	Advanced	Topics	section	on	Sub-Object	Selection	for	more	information
on	the	use	of	these	modes.

Class	SubObjAxisCallback
See	Also:	Class	BaseObject,	Class	Control.
class	SubObjAxisCallback

Description:
The	callback	is	used	by	the	two	methods	GetSubObjectCenters()	and
GetSubObjectTMs()	found	in	the	classes	BaseObject	and	Control.

Methods:

Prototype:
virtual	void	Center(Point3	c,int	id)=0;

Remarks:
Implemented	by	the	System.
This	method	is	called	to	specify	the	individual	coordinate	system	center	for
the	axes	whose	id	is	passed.

Parameters:
Point3	c
The	center	point.
int	id
The	id	of	the	axis.

Prototype:
virtual	void	TM(Matrix3	tm,int	id)=0;

Remarks:
Implemented	by	the	System.
This	method	is	called	to	specify	the	individual	coordinate	system
transformation	for	the	axes	whose	id	is	passed.

Parameters:
Matrix3	tm
The	transformation	matrix.
int	id
The	id	of	the	axis.

Prototype:
virtual	int	Type()=0;

Remarks:
Implemented	by	the	System.
The	user	has	three	options	for	center	of	the	coordinate	system,	center	of	the
selection	set,	or	pivot.	For	center	of	the	coordinate	system	the	system	does	not
need	to	call	GetSubObjCenters().	The	plug-in	may	call	this	method	to
determine	which	center	option	it	is	returning	the	Centers	and	TMs	for.

Return	Value:
One	of	the	following	values:
SO_CENTER_SELECTION
SO_CENTER_PIVOT

Time	Function	Reference
See	Also:	Advanced	Topic	Intervals,	Class	Interval.
This	section	documents	the	API	functions	related	to	time.	For	an	overview	of
these	functions	see	the	Advanced	Topics	section	Time.

Function:
int	GetTicksPerFrame();

Remarks:
Returns	the	number	of	ticks	per	frame.

Function:
void	SetTicksPerFrame(int	ticks);

Remarks:
Sets	the	number	of	ticks	per	frame.

Parameters:
int	ticks
The	number	of	ticks	per	frame.

Function:
int	GetFrameRate();

Remarks:
Retrieves	the	current	frame	rate	used	by	3ds	max.	This	is	the	Frames	Per
Second	(FPS)	setting	in	the	Time	Configuration	dialog.

Return	Value:
The	current	frame	rate	in	frames	per	second.

Function:
void	SetFrameRate(int	rate);

Remarks:
Sets	the	current	frame	rate	used	by	3ds	max.	This	is	the	Frames	Per	Second
(FPS)	setting	in	the	Time	Configuration	dialog.	Note:	This	call	is	simply
another	way	to	adjust	the	ticks	per	frame	setting.

Parameters:
int	rate
The	rate	in	frames	per	second.

Function:
TimeDisp	GetTimeDisplayMode();

Remarks:
Returns	the	display	mode	in	use	for	time	values.

Return	Value:
One	of	the	following	values:
DISPTIME_FRAMES
Frame	display	format.
DISPTIME_SMPTE
SMPTE	time	code	format.
DISPTIME_FRAMETICKS
Frame:Ticks	format.
DISPTIME_TIMETICKS
MM:SS:Ticks	format.

Function:
void	SetTimeDisplayMode(TimeDisp	m);

Remarks:
Sets	the	display	mode	for	time	values.	When	this	setting	is	changed	a
notification	is	sent	to	automatically	update	any	UI	controls	containing	time
values	(including	plug-in	custom	controls).

Parameters:
TimeDisp	m
The	time	display	mode.	This	may	be	one	of	the	following	values:
DISPTIME_FRAMES
Frame	display	format.
DISPTIME_SMPTE
SMPTE	time	code	format.

DISPTIME_FRAMETICKS
Frame:Ticks	format.
DISPTIME_TIMETICKS
MM:SS:Ticks	format.

Function:
void	TimeToString(TimeValue	t,TSTR	&string);

Remarks:
Formats	a	time	value	into	a	string	based	on	the	current	frame	rate,	ticks	per
frame	and	display	mode.

Parameters:
TimeValue	t
The	time	to	format.
TSTR	&string
The	string	to	store	the	result.

Function:
void	StringToTime(TSTR	string,TimeValue	&t);

Remarks:
Parses	the	specified	time	string	using	the	current	time	settings	(frame	rate,
ticks	per	frame,	and	time	format)	and	converts	it	to	a	TimeValue.

Parameters:
TSTR	string
The	string	to	convert.
TimeValue	&t
The	TimeValue	to	store	the	result.

The	following	#defines	are	useful	when	working	with	time	(from
\MAXSDK\INCLUDE\MAXTYPES.H).
#define	TIME_TICKSPERSEC	4800
#define	TicksToSec(ticks)	((float)
(ticks)/(float)TIME_TICKSPERSEC)

#define	SecToTicks(secs)	((TimeValue)
(secs*TIME_TICKSPERSEC))
#define	TicksSecToTime(ticks,	secs)	((TimeValue)
(ticks)+SecToTicks(secs))
#define	TimeToTicksSec(time,	ticks,	secs)	{	(ticks)	=
(time)%TIME_TICKSPERSEC;	(secs)	=
(time)/TIME_TICKSPERSEC	;	}
#define	TIME_PosInfinity	0x7fffffff
#define	TIME_NegInfinity	0x80000000
typedef	int	TimeValue;

List	of	Screen-Time-Value	Macros
The	following	macros	are	available	for	use	when	working	with	Track	View.
These	are	used	to	scale	into	and	out	of	screen	space.
#define	TimeToScreen(t,scale,scroll)
(int(floor((t)*(scale)+0.5))	-	(scroll))
Given	a	TimeValue	t,	if	you	have	the	time	scale	and	time	scroll	factors,	this
macro	returns	the	screen	space	X	for	that	time.

#define	ScreenToTime(s,scale,scroll)
((int)floor((s)/(scale)	+	(scroll)/(scale)+0.5))
Given	a	screen	coordinate	s,	if	you	have	the	scale	and	scroll	factors,	this
macro	will	return	a	TimeValue	for	that	screen	position.

#define	ValueToScreen(v,h,scale,scroll)
(h-int(floor((v)*(scale)+0.5))	-	(scroll))
Given	a	Value	v,	if	you	have	the	value	scale	and	value	scroll	factors,	this
macro	returns	the	screen	space	Y	for	that	value.

#define	ScreenToValue(s,h,scale,scroll)
((float(h)-(float(s)+float(scroll)))/(scale))
Given	a	screen	coordinate	s,	if	you	have	the	scale	and	scroll	factors,	this
macro	will	return	a	value	for	that	screen	position.

Class	ActionCallback
See	Also:	Class	BaseInterfaceServer,	Class	ActionTable,	Class	ActionItem,
Class	ActionContext,	Class	IActionManager,	Class	DynamicMenu,	Class
DynamicMenuCallback,	Class	Interface.
class	ActionCallback	:	public	BaseInterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
An	important	part	of	implementing	an	ActionTable	is	creating	a	sub-class	of	this
class.	This	is	an	abstract	class	with	a	virtual	method	called	ExecuteAction(int
id).	Developers	need	to	sub-class	this	class	and	pass	an	instance	of	it	to	the
system	when	they	activate	an	ActionTable.	Then	when	the	system	wants	to
execute	an	action	the	ExecuteAction()	method	is	called.
All	methods	of	this	class	are	implemented	by	the	plug-in.
	

Data	Members:
private:
ActionTable	*mpTable;
Points	to	the	table	that	uses	this	ActionCallback.

Methods:
public:

Prototype:
virtual	BOOL	ExecuteAction(int	id)	=	0;

Remarks:
This	method	is	called	to	actually	execute	the	action.

Parameters:
int	id
The	ID	of	the	item	to	execute.

Return	Value:
This	returns	a	BOOL	that	indicates	if	the	action	was	actually	executed.	If	the
item	is	disabled,	or	if	the	table	that	owns	it	is	not	activated,	then	it	won’t
execute,	and	returns	FALSE.	If	it	does	execute	then	TRUE	is	returned.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	IMenu*	GetDynamicMenu(int	id,	HWND	hwnd,	IPoint2&
m);

Remarks:
This	method	is	called	when	an	action	item	says	it	is	a	dynamic	menu.	This
returns	a	pointer	to	the	menu	itself.

Parameters:
int	id
The	item	ID	which	is	passed	to	the
DynamicMenuCallback::MenuItemSelected()
HWND	hwnd
If	the	menu	is	requested	by	a	right-click	quad	menu,	then	hwnd	is	the	window
where	the	click	occurred.	If	the	item	is	used	from	a	menu	bar,	then	hwnd	will
be	NULL.
IPoint2&	m
If	the	menu	is	requested	by	a	right-click	quad	menu,	then	this	will	be	the	point
in	the	window	where	the	user	clicked.

Default	Implementation:
{	return	NULL;	}

Prototype:
ActionTable*	GetTable();

Remarks:
Returns	a	pointer	to	the	ActionTable	the	callback	uses.

Default	Implementation:
{	return	mpTable;	}

Prototype:
void	SetTable(ActionTable*	pTable);

Remarks:
Sets	the	ActionTable	the	callback	uses.

Parameters:
ActionTable*	pTable
Points	to	the	ActionTable	the	callback	uses.

Default	Implementation:
{	mpTable	=	pTable;	}

Class	ActionContext
See	Also:	Class	ActionTable,	Class	ActionItem,	Class	ActionCallback,	Class
IActionManager,	Class	DynamicMenu,	Class	DynamicMenuCallback,	Class
Interface.
class	ActionContext

Description:
This	class	is	available	in	release	4.0	and	later	only.
Every	ActionTable	also	has	an	ActionContextId	associated	with	it.	This
ActionContextId	can	be	shared	with	other	tables.
When	assigning	keyboard	shortcuts	to	items	in	an	ActionTable,	tables	that	share
a	unique	context	id	are	forced	to	have	unique	shortcuts.	Tables	with	different
context	ids	can	have	overlapping	keyboard	shortcut	assignments.
An	ActionContext	is	an	identifer	of	a	group	of	keyboard	shortcuts.	Examples	are
the	Main	3ds	max	UI,	Track	View,	and	the	Editable	Mesh.	They	are	registered
using	IActionManager::RegisterActionContext().
Note:	typedef	DWORD	ActionContextId;

Methods:
public:

Prototype:
ActionContext(ActionContextId	contextId,	TCHAR	*pName);

Remarks:
Constructor.	The	context	ID	and	the	name	are	initialized	from	the	data	passed.

Parameters:
ActionContextId	contextId
The	ID	for	the	ActionContext.
TCHAR	*pName
The	name	for	the	ActionContext.

Prototype:
TCHAR*	GetName();

Remarks:

Returns	the	name	of	this	ActionContext.

Prototype:
ActionContextId	GetContextId();

Remarks:
Returns	the	ID	of	this	ActionContext.

Prototype:
bool	IsActive();

Remarks:
Returns	true	if	this	ActionContext	is	active;	otherwise	false.	An	active
ActionContext	means	that	it	uses	its	keyboard	accelerators.	This	corresponds
to	the	"Active"	checkbox	in	the	keyboard	customization	UI.

Prototype:
void	SetActive(bool	active);

Remarks:
Sets	the	active	state	of	this	ActionContext.

Parameters:
bool	active
Pass	true	for	active;	false	for	inactive.

Class	IActionManager
See	Also:	Class	ActionTable,	Class	ClassDesc,	Class	ActionItem,	Class
ActionCallback,	Class	ActionContext,	Class	DynamicMenu,	Class
DynamicMenuCallback,	Class	Interface.
class	IActionManager

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	ActionManager	manages	a	set	of	ActionTables,	callbacks	and
ActionContexts.	The	manager	handles	the	keyboard	accelerator	tables	for	each
ActionTable	as	well.	You	get	a	pointer	to	this	class	using
Interface::GetActionManager().

Methods:
public:

Prototype:
virtual	void	RegisterActionTable(ActionTable*	pTable)	=	0;

Remarks:
Register	an	action	table	with	the	manager.	Note	that	most	plug-ins	will	not
need	this	method.	Instead,	plug-ins	export	action	table	with	the	methods	in
ClassDesc.	See	ClassDesc	Action	Table	Methods.

Parameters:
ActionTable*	pTable
Points	to	the	Action	Table	to	register.

Prototype:
virtual	int	NumActionTables()	=	0;

Remarks:
Returns	the	number	of	ActionTables.

Prototype:
virtual	ActionTable*	GetTable(int	i)	=	0;

Remarks:

Returns	a	pointer	to	the	'i-th'	ActionTable.
Parameters:
int	i
The	zero	based	index	of	the	table.

Prototype:
virtual	int	ActivateActionTable(ActionCallback*	pCallback,
ActionTableId	id)	=	0;

Remarks:
This	method	is	called	to	activate	the	action	table.	Some	plug-ins	(for	instance
Modifiers	or	Geometric	Objects)	may	only	want	to	activate	the	table	when
they	are	being	edited	in	the	command	panel	(between	BeginEditParams()	and
EndEditParams()).	Others,	for	instance	Global	Utility	Plug-ins,	may	wish	to
do	so	when	they	are	initially	loaded	so	the	actions	are	always	available.
Note	that	if	this	method	is	called	multiple	times,	only	the	callback	from	the
last	call	will	be	used.

Parameters:
ActionCallback*	pCallback
Points	to	the	callback	object	which	is	responsible	for	executing	the	action.
ActionTableId	id
This	is	the	ID	of	the	table	to	activate.

Return	Value:
TRUE	if	the	action	table	was	activated.	FALSE	if	the	table	is	already	active	or
doesn’t	exist.

Prototype:
virtual	int	DeactivateActionTable(ActionCallback*	pCallback,
ActionTableId	id)	=	0;

Remarks:
This	method	is	called	to	deactivate	the	action	table.	After	the	table	is
deactivated	(for	example	in	EndEditParams())	the	callback	object	can	be
deleted.	Tables	are	initially	active,	please	do	not	call	this	method	without	a
preceding	call	to	ActivateActionTable().

Parameters:
ActionCallback*	pCallback
Points	to	the	callback	object	responsible	for	executing	the	action.	Pass	the
same	callback	that	was	originally	passed	to	ActivateActionTable()	and	do
not	set	this	to	NULL.
ActionTableId	id
The	ID	of	the	table	to	deactivate.

Return	Value:
TRUE	if	the	action	table	was	deactivated.	FALSE	if	the	table	was	already
deactivated	or	doesn’t	exist.

Prototype:
virtual	ActionTable*	FindTable(ActionTableId	id)	=	0;

Remarks:
This	method	returns	a	pointer	to	the	action	table	as	specified	by	it's	ID.

Parameters:
ActionTableId	id
The	ID	of	the	table	to	find.

Prototype:
virtual	BOOL	GetShortcutString(ActionTableId	tableId,	int
commandId,	TCHAR*	buf)	=	0;

Remarks:
Retrieves	the	string	that	describes	the	keyboard	shortcut	for	the	operation.

Parameters:
ActionTableId	tableId
The	ID	of	the	action	table.
int	commandId
The	ID	of	the	command	for	the	action.
TCHAR*	buf
Points	to	storage	for	the	string.

Return	Value:

TRUE	if	found;	FALSE	if	not	found.

Prototype:
virtual	BOOL	GetActionDescription(ActionTableId	tableId,	int
commandId,	TCHAR*	buf)	=	0;

Remarks:
Retrieves	a	string	that	descibes	the	specified	operation	from	the	action	table
whose	ID	is	passed.

Parameters:
ActionTableId	tableId
The	ID	of	the	action	table.
int	commandId
The	ID	of	the	command.
TCHAR*	buf
Points	to	storage	for	the	description	string.

Return	Value:
TRUE	if	the	string	was	returned;	FALSE	if	not.

Prototype:
virtual	BOOL	RegisterActionContext(ActionContextId	contextId,
TCHAR*	pName)	=	0;

Remarks:
Register	the	specified	action	context	with	the	system.	This	is	called	when	you
create	the	action	table	that	uses	this	context.

Parameters:
ActionContextId	contextId
The	context	ID.
TCHAR*	pName
The	name	for	the	action	context.

Return	Value:
If	the	specified	action	context	is	already	registered	FALSE	is	returned;
otherwise	TRUE	is	returned.

Prototype:
virtual	int	NumActionContexts()	=	0;

Remarks:
Returns	the	number	of	ActionContexts.

Prototype:
virtual	ActionContext*	GetActionContext(int	i)	=	0;

Remarks:
Returns	a	pointer	to	the	'i-th'	ActionContext.

Parameters:
int	i
The	zero	based	index	of	the	ActionContext.

Prototype:
virtual	ActionContext*	FindContext(ActionContextId	contextId)	=
0;

Remarks:
Returns	a	pointer	to	the	ActionContext	based	on	it's	ID.	If	not	found	NULL	is
returned.

Parameters:
ActionContextId	contextId
The	ID	whose	context	is	found.

Prototype:
virtual	BOOL	IsContextActive(ActionContextId	contextId)	=	0;

Remarks:
Returns	TRUE	if	the	specified	context	is	active;	otherwise	FALSE.

Parameters:
ActionContextId	contextId
Specifies	the	context	to	check.

Class	DynamicMenu
See	Also:	Class	DynamicMenuCallback,	Class	IMenu,	Class	ActionTable,	Class
ActionItem,	Class	ActionCallback,	Class	ActionContext,	Class
IActionManager,	Class	Interface.
class	DynamicMenu

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	provides	a	simple	way	for	plug-ins	to	produce	the	menu	needed	in	the
ActionItem::GetDynamicMenu()	method.	The	constructor	of	this	class	is
used	to	create	the	menu	and	the	GetMenu()	method	returns	the	appropriate
IMenu	pointer.

Methods:
public:

Prototype:
DynamicMenu(DynamicMenuCallback*	pCallback);

Remarks:
Constructor.

Parameters:
DynamicMenuCallback*	pCallback
Points	to	the	instance	of	the	DynamicMenuCallback	class	that	handles	the
menu	selection.

Prototype:
IMenu*	GetMenu();

Remarks:
Returns	a	pointer	to	the	IMenu.	This	method	may	be	called	after	menu
creation	to	get	a	pointer	to	the	IMenu	created.	This	is	the	required	value	to
return	from	ActionItem::GetDynamicMenu().

Prototype:

void	AddItem(DWORD	flags,	UINT	itemId,	TCHAR*
pItemTitle);

Remarks:
This	method	adds	an	item	to	the	dynamic	menu.

Parameters:
DWORD	flags
One	or	more	of	the	following	values:
kDisabled
Item	is	disabled	(can't	be	selected)
kChecked
Item	has	a	check	mark	beside	it.
kSeparator
Item	is	a	seperator	between	the	previous	menu	item	and	the	next	one.

UINT	itemId
The	ID	for	the	menu	item.
TCHAR*	pItemTitle
The	name	to	appear	for	the	menu	item.

Prototype:
void	BeginSubMenu(TCHAR*	pTitle);

Remarks:
This	begins	a	new	sub	menu.	Items	added	after	this	call	will	appear	as	sub
choices	of	this	one	until	EndSubMenu()	is	called.

Parameters:
TCHAR*	pTitle
The	name	to	appear	for	the	sub	menu	item.

Prototype:
void	EndSubMenu();

Remarks:
This	ends	a	sub	menu.	Items	added	after	this	call	will	appear	as	they	did	prior
to	calling	BeginSubMenu().

Structure	ActionDescription
See	Also:	Class	ActionTable,	Class	ActionItem,	Class	ActionCallback.

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	is	a	helper	structure	used	for	building	ActionTables.	A	static	array	of	these
descriptors	is	passed	to	the	ActionTable	constructor.
struct	ActionDescription	{
int	mCmdID;
A	unique	identifier	for	the	command	(must	be	unique	per	table).	When	an
action	is	executed	this	is	the	command	ID	passed	to
ActionCallback::ExecuteAction().
int	mDescriptionResourceID;
A	string	resource	id	that	describes	the	command.
int	mShortNameResourceID;
A	string	resource	ID	for	a	short	name	for	the	action.	This	name	appears	in	the
list	of	Actions	in	the	Customize	User	Interface	dialog.
int	mCategoryResourceID;
A	string	resource	ID	for	the	category	of	an	operation.	This	name	appears	in	the
Category	drop	down	list	in	the	Customize	User	Interface	dialog.

};

Class	DynamicMenuCallback
See	Also:	Class	DynamicMenu,	Class	IMenu,	Class	ActionTable,	Class
ActionItem,	Class	ActionCallback,	Class	ActionContext,	Class
IActionManager,	Class	Interface.
class	DynamicMenuCallback

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	the	callback	object	for	a	dynamic	menu.	When	a	user	makes	a	selection
from	a	dynamic	menu	the	MenuItemSelected()	method	of	this	class	is	called
to	process	that	selection.

Methods:
public:

Prototype:
virtual	void	MenuItemSelected(int	itemId)	=	0;

Remarks:
This	method	is	called	to	process	the	user's	menu	selection.

Parameters:
int	itemId
The	ID	of	the	item	selected.

Class	ActionItem
See	Also:	Class	ActionTable,	Class	ActionCallback,	Structure
ActionDescription,	Class	ActionContext,	Class	IActionManager,	Class
DynamicMenu,	Class	DynamicMenuCallback,	Class	MAXIcon,	Class	Interface.
class	ActionItem	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	class	ActionItem	is	used	to	represent	the	operation	that	live	in	ActionTables.
ActionItem	is	an	abstract	class	with	operations	to	support	various	UI	operations.
The	system	provides	a	default	implementation	of	this	class	that	works	when	the
table	is	build	with	the	ActionTable::BuildActionTable()	method.	However,
developers	may	want	to	specialize	this	class	for	more	special-purpose
applications.	For	example,	MAXScipt	does	this	to	export	macroScripts	to	an
ActionTable.	Methods	that	are	marked	as	internal	should	not	be	used.
	

Data	Members:
protected:
ActionTable*	mpTable;
Points	to	the	table	that	owns	the	action.

Methods:
public:

Prototype:
virtual	int	GetId()	=	0;

Remarks:
This	method	retrieves	the	unique	identifier	for	the	action.	This	action	must	be
unique	in	the	table,	but	not	does	not	have	to	be	unique	between	tables.

Prototype:
virtual	BOOL	ExecuteAction()	=	0;

Remarks:
Calling	ExecuteAction	causes	the	item	to	be	run.	This	returns	a	BOOL	that

indicates	if	the	action	was	actually	executed.	If	the	item	is	disabled,	or	if	the
table	that	owns	it	is	not	activated,	then	it	won’t	execute,	and	returns	FALSE.

Return	Value:
TRUE	if	the	action	is	executed;	otherwise	FALSE.

Prototype:
virtual	void	GetButtonText(TSTR&	buttonText)	=	0;

Remarks:
This	method	retrieves	the	text	that	will	be	used	when	the	ActionItem	is	on	a
text	button.	The	text	is	stored	into	the	buttonText	parameter.

Parameters:
TSTR&	buttonText
Storage	for	the	retrieved	text.

Prototype:
virtual	void	GetMenuText(TSTR&	menuText)	=	0;

Remarks:
This	method	retrieves	the	text	to	use	when	the	item	is	on	a	menu	(either	Quad
menu	or	main	menu	bar).	This	can	be	different	from	the	button	text.	This
method	is	called	just	before	the	menu	is	displayed,	so	it	can	update	the	text	at
that	time.	For	example,	the	"Undo"	menu	item	in	3ds	max’s	main	menu	adds
the	name	of	the	command	that	will	be	undone.

Parameters:
TSTR&	menuText
Storage	for	the	retrieved	text.

Prototype:
virtual	void	GetDescriptionText(TSTR&	descText)	=	0;

Remarks:
This	method	gets	the	text	that	will	be	used	for	tool	tips	and	menu	help.	This	is
also	the	string	that	is	displayed	for	the	operation	in	all	the	lists	in	the
customization	dialogs.

Parameters:
TSTR&	descText
Storage	for	the	retrieved	text.

Prototype:
virtual	void	GetCategoryText(TSTR&	catText)	=	0;

Remarks:
This	method	retrieves	the	text	for	the	category	of	the	operation.	This	is	used	in
the	customization	dialog	to	fill	the	"category"	drop-down	list.

Parameters:
TSTR&	catText
Storage	for	the	retrieved	text.

Prototype:
virtual	BOOL	IsChecked()	=	0;

Remarks:
This	method	determines	if	the	action	is	in	a	"Checked"	state.	For	menus,	this
means	that	a	check	mark	will	appear	next	to	the	item,	if	this	returns	TRUE.	If
the	item	is	on	a	button,	this	is	used	to	determine	of	the	button	is	in	the
"Pressed"	state.	Note	that	button	states	are	automatically	updated	on	selection
change	and	command	mode	changes.	If	your	plug-in	performs	an	operation
that	requires	the	CUI	buttons	to	be	redrawn,	you	need	to	call	the	method
CUIFrameMgr::SetMacroButtonStates(TRUE).

Prototype:
virtual	BOOL	IsItemVisible()	=	0;

Remarks:
This	method	determines	if	an	item	is	visible	on	a	menu.	If	it	returns	FALSE,
then	the	item	is	not	included	in	the	menu.	This	can	be	used	to	create	items	that
a	context	sensitive.	For	example,	you	may	want	an	item	to	appear	on	a	menu
only	when	the	selected	object	is	of	a	particular	type.	To	do	this,	you	have	this
method	check	the	class	id	of	the	current	selection.

Prototype:
virtual	BOOL	IsEnabled()	=	0;

Remarks:
This	method	determines	if	the	operation	is	currently	available.	If	it	is	on	a
menu,	or	button,	the	item	is	grayed	out	if	this	method	returns	FALSE.	If	it
assigned	to	a	keyboard	shortcut,	then	it	will	not	execute	the	operation	if
invoked.	.	If	your	plug-in	performs	an	operation	that	requires	the	CUI	buttons
to	be	redrawn,	you	need	to	call	the	method
CUIFrameMgr::SetMacroButtonStates(TRUE).
	

Return	Value:
TRUE	for	enabled;	FALSE	for	disabled.

Prototype:
virtual	MaxIcon*	GetIcon()	=	0;

Remarks:
If	you’ve	provided	an	icon	for	this	operation,	you	return	it	with	this	method.	If
no	icon	is	available,	this	returns	NULL.	The	icon	is	used	on	CUI	buttons,	and
in	the	list	of	operations	in	the	customization	dialogs.

Prototype:
virtual	void	DeleteThis()	=	0;

Remarks:
Called	to	delete	the	ActionItem.	This	normally	happens	when	the	table	that
owns	it	is	deleted.

Prototype:
ActionTable*	GetTable();

Remarks:
This	returns	a	pointer	to	the	table	that	owns	the	ActionItem.	An	item	can	only
be	owned	by	a	single	table.

Default	Implementation:
{	return	mpTable;	}

Prototype:
void	SetTable(ActionTable*	pTable);

Remarks:
Sets	the	table	that	owns	the	item.	Used	internally.	May	be	used	if	you
implement	a	custom	sub-class	of	ActionItem.

Parameters:
ActionTable*	pTable
Points	to	the	table	to	set.

Default	Implementation:
{	mpTable	=	pTable;	}

Prototype:
TCHAR*	GetShortcutString();

Remarks:
Returns	the	string	that	describes	all	the	keyboard	shortcuts	associated	with	the
item.	This	will	look	something	like	"Alt+A"	or	"C,	Shift+Alt+Q".	This	returns
NULL	if	no	keyboard	shortcut	is	associated	with	the	item.

Prototype:
virtual	MacroEntry*	GetMacroScript();

Remarks:
Returns	the	representation	of	the	macroScript	for	the	item,	if	it's	implemented
by	a	macroScript,	it	returns	NULL	otherwise.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	BOOL	IsDynamicMenu();

Remarks:
Determines	if	a	menu	is	created	or	if	an	action	takes	place.	If	this	method
returns	TRUE,	then	the	ActionItem	creates	a	menu.	If	it	returns	FALSE	then

an	action	is	performed.
Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	void	SetIsDynamicMenu();

Remarks:
This	method	may	be	called	after	an	action	item	is	created	to	tell	the	system
that	it	is	a	dynamic	menu	action.	Note:	Dynamic	menus	may	be	added	to	the
quad	menus	programmatically	(via	the	IMenuManager	API)	or	'manually'.

Prototype:
virtual	IMenu*	GetDynamicMenu(HWND	hwnd,	IPoint2&	m);

Remarks:
If	the	ActionItem	does	produce	a	menu,	this	method	is	called	to	return	a
pointer	to	the	menu.	See	Class	DynamicMenu	for	an	easy	way	to	produce
these	menus.

Parameters:
HWND	hwnd
If	the	menu	is	requested	by	a	right-click	quad	menu,	then	this	hwnd	is	the
handle	of	the	window	where	the	click	occurred.	If	the	item	is	used	from	a
menu	bar,	this	hwnd	will	be	NULL.
IPoint2&	m
If	the	menu	is	requested	by	a	right-click	quad	menu,	then	this	parameter	is	the
point	in	the	window	where	the	user	clicked.

Return	Value:
A	pointer	to	the	menu.

Default	Implementation:
{	return	NULL;	}

Units	of	Measurement	Reference
This	section	documents	the	API	structures	and	functions	related	to	units	of
measurement.	For	overview	information	see	the	Advanced	Topics	section	Units
of	Measurement.

Structures:
See	Structure	DispInfo.

Function:
double	GetMasterScale(int	type);

Remarks:
Retrieves	the	master	scale	in	terms	of	the	specified	unit	type.	For	example:.
GetMasterScale(UNITS_INCHES)	returns	the	number	of	inches	per
unit.	Returns	-1.0	if	an	invalid	unit	type	is	supplied.

Parameters:
int	type
Supported	unit	types:
UNITS_INCHES
UNITS_FEET
UNITS_MILES
UNITS_MILLIMETERS
UNITS_CENTIMETERS
UNITS_METERS
UNITS_KILOMETERS

Return	Value:
The	master	scale	in	terms	of	the	specified	unit	type.

Function:
void	GetMasterUnitInfo(int	*type,	float	*scale);

Remarks:
Retrieves	the	master	unit	settings	in	effect.	These	are	the	unit	type	(Inches,
Feet,	Meters,	etc.)	and	the	master	scale	setting.

Parameters:

int	*type
Retrieves	the	unit	type	in	effect.	This	may	be	one	of	the	following	values:
Supported	unit	types:
UNITS_INCHES
UNITS_FEET
UNITS_MILES
UNITS_MILLIMETERS
UNITS_CENTIMETERS
UNITS_METERS
UNITS_KILOMETERS

float	*scale
The	master	scale	setting.	This	is	the	value	the	user	entered	in	the
1	Unit	=	XXX	field	of	the	General	Page	in	the	Preference	Settings	dialog	box.

Function:
int	SetMasterUnitInfo(int	type,float	scale);

Remarks:
Set	the	master	unit	settings.	These	are	the	unit	type	(Inches,	Feet,	Meters,	etc.)
and	the	master	scale	setting.

Parameters:
int	*type
Specifies	the	unit	type	to	use.	This	may	be	one	of	the	following	values:
Supported	unit	types:
UNITS_INCHES
UNITS_FEET
UNITS_MILES
UNITS_MILLIMETERS
UNITS_CENTIMETERS
UNITS_METERS
UNITS_KILOMETERS

float	*scale
The	master	scale	setting.

Return	Value:

Nonzero	if	the	information	was	set;	0	if	invalid	values	were	specified	and
nothing	was	stored.

Function:
void	GetUnitDisplayInfo(DispInfo	*info);

Remarks:
Retrieves	the	current	unit	display	information.

Parameters:
DispInfo	*info
Points	to	storage	for	the	display	information.	See	Structure	DispInfo.

Function:
int	SetUnitDisplayInfo(DispInfo	*info);

Remarks:
Sets	the	unit	display	information	used	by	3ds	max.

Parameters:
DispInfo	*info
Points	to	display	information.	See	Structure	DispInfo.

Return	Value:
Nonzero	if	the	information	was	set;	0	if	invalid	values	were	specified	and
nothing	was	stored.

Function:
int	GetUnitDisplayType();

Remarks:
Returns	the	current	unit	display	type.

Return	Value:
One	of	the	following	values:
UNITDISP_GENERIC
UNITDISP_METRIC
UNITDISP_US
UNITDISP_CUSTOM

Function:
int	SetUnitDisplayType(int	type);

Remarks:
Sets	the	current	unit	display	type.

Parameters:
int	type
One	of	the	following	values:
UNITDISP_GENERIC
UNITDISP_METRIC
UNITDISP_US
UNITDISP_CUSTOM

Return	Value:
Nonzero	if	the	value	was	set.	Zero	if	an	improper	value	was	specified.

Function:
TCHAR	*FormatUniverseValue(float	value);

Remarks:
This	function	converts	the	specified	value	to	an	ASCII	representation
according	to	the	current	unit	scale.	Note	that	this	can	cause	a	string	overflow,
especially	when	the	units	are	set	to	miles	or	kilometers.	If	an	overflow	occurs
the	function	returns	a	null	string	(i.e.	_T("")).	Thus	developers	can	check	for
this	condition	using	something	like	if	(buf[0]	==	'\0')	to	see	if	an	overflow
occurred.

Parameters:
float	value
The	input	value	to	convert.

Function:
float	DecodeUniverseValue(TCHAR	*string,	BOOL	*valid	=
NULL);

Remarks:
This	method	parses	the	specified	string	using	the	current	unit	settings	and

converts	it	to	a	floating	point	value.	If	an	error	occurs	in	the	parsing	then	valid
is	set	to	FALSE.

Parameters:
TCHAR	*string
The	input	string	to	convert.
BOOL	*valid	=	NULL
TRUE	if	the	string	was	converted	correctly;	FALSE	on	error.

Class	RestoreObj
See	Also:	Class	Hold,	Undo	and	Redo.
class	RestoreObj	:	public	InterfaceServer

Description:
This	class	is	the	restore	object	used	in	the	undo	/	redo	system	of	3ds	max.

Methods:

Prototype:
virtual	void	Restore(int	isUndo)=0;

Remarks:
Implemented	by	the	Plug-In.
The	developer	implements	this	method	to	restore	the	state	of	the	database	to	as
it	was	when	theHold.Put()	was	called	with	this	restore	object.

Parameters:
int	isUndo
Nonzero	if	Restore()	is	being	called	in	response	to	the	Undo	command;
otherwise	zero.	If	isUndo	is	nonzero,	the	developer	needs	to	save	whatever
data	they	need	to	allow	the	user	to	redo	the	operation.

Prototype:
virtual	void	Redo()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	user	selects	the	Redo	command.	The	developer
should	restore	the	database	to	the	state	prior	to	the	last	Undo	command.

Prototype:
virtual	int	Size()

Remarks:
Implemented	by	the	Plug-In.
Returns	the	size	of	the	restore	object	in	bytes.	This	size	does	not	need	to	be

exact	but	should	be	close.	This	is	used	to	make	sure	all	the	accumulated
restore	objects	do	not	grow	beyond	a	manageable	size.

Default	Implementation:
{	return	1;	}

Return	Value:
The	size	of	the	restore	object	in	bytes.

Prototype:
virtual	void	EndHold()

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	theHold.Accept()	or	theHold.Cancel()	is
called.	This	means	the	restore	object	is	no	longer	held,	it	was	either	tossed	out
or	sent	to	the	undo	system.	The	developer	may	then	call
ClearAFlag(A_HELD)	to	indicate	the	restore	object	is	no	longer	being
held.

Prototype:
virtual	TSTR	Description()

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	internally	to	3ds	max	in	debugging	only.	It	is	used	to
display	a	symbolic	name	for	the	restore	object.

Return	Value:
The	name	of	the	restore	object.

Default	Implementation:
{	return	TSTR(_T("---"));	}

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG_PTR	arg1=0,
ULONG_PTR	arg2=0,	ULONG_PTR	arg3=0);

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.
This	is	reserved	for	future	use.

Default	Implementation:
{return	-1;}

Class	Hold
See	Also:	Class	RestoreObj,	Undo	and	Redo.
class	Hold	:	public	BaseInterfaceServer

Description:
The	undo	/	redo	system	of	3ds	max	uses	a	global	instance	of	this	class	called
theHold.	Developers	call	methods	of	theHold	object	to	participate	in	the	undo
/	redo	system.

Methods:

Prototype:
void	Begin();

Remarks:
Implemented	by	the	System.
When	a	developer	is	about	to	modify	the	database	they	should	check	to	see	if
theHold	is	'holding'.	This	indicates	that	the	Begin()	method	has	been	called.
This	signifies	the	beginning	of	a	potential	undo/redo	operation.	If	theHold	is
not	holding,	they	should	call	Begin().	After	Begin()	has	been	called	the
system	is	ready	to	accept	restore	objects.
In	certain	cases	the	system	may	already	be	'holding'	when	the	plug-in	is	about
to	begin	its	modification	to	the	database.	For	example	controllers	would
normally	not	call	Begin()	because	it	usually	has	been	called	already.	A
procedural	object	will	normally	call	Begin()	because	there	is	no	other	part	of
the	system	that	may	alter	a	procedural	object	so	Begin()	would	not	have	been
called.

Example:
theHold.Begin();

Prototype:
int	Holding();

Remarks:
Implemented	by	the	System.
This	indicates	if	theHold.Begin()	has	been	called.	Any	operation	that

modifies	the	database	checks	to	see	if	theHold	is	currently	in	a	holding	state.
If	the	undo	system	is	'holding'	it	is	ready	to	accept	restore	objects.	For	more
details	see	the	Advanced	Topics	section	on	Undo	/	Redo.

Return	Value:
Nonzero	if	theHold	is	holding;	otherwise	0.

Example:
	if	(theHold.Holding())	{
		...
		}

Prototype:
int	Restoring(int&	isUndo);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Returns	nonzero	if	the	system	is	restoring	and	zero	if	not.

Parameters:
int&	isUndo
This	parameter	is	updated	to	indicate	if	the	restore	is	coming	from	an	undo.	It's
assigned	nonzero	if	it	is;	zero	if	not.

Prototype:
int	Redoing();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Returns	nonzero	if	the	system	is	redoing	and	zero	if	not.

Prototype:
int	RestoreOrRedoing();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

Implemented	by	the	System.
Returns	nonzero	if	the	system	is	restoring	or	redoing	and	zero	if	not.

Prototype:
void	Accept(int	nameID);

Remarks:
Implemented	by	the	System.
Leaves	the	database	in	its	modified	state	and	registers	an	undo	object	with	the
undo	system.	This	will	allow	the	user	to	undo	the	operation.

Parameters:
int	nameID
The	resource	ID	of	the	string	to	appear	in	the	Edit	menu	next	to	Undo	or	Redo.

Example:
theHold.Accept(IDS_MOVE);

Prototype:
void	Accept(TCHAR	*name);

Remarks:
Implemented	by	the	System.
Leaves	the	database	in	its	modified	state	and	registers	an	undo	object	with	the
undo	system.	This	will	allow	the	user	to	undo	the	operation.

Parameters:
TCHAR	*name
The	string	to	appear	in	the	Edit	menu	next	to	Undo	or	Redo.

Prototype:
void	Cancel();

Remarks:
Implemented	by	the	System.
Restores	the	database	to	its	previous	state	and	throws	out	the	restore	object.
This	cancels	the	operation.

Prototype:
void	End();

Remarks:
Implemented	by	the	System.
This	method	is	used	internally	to	3ds	max	and	should	not	be	called	by	a	plug-
in	developer.	It	leaves	the	database	in	its	modified	state	but	throws	out	the
restore	object.

Prototype:
void	Put(RestoreObj	*rob);

Remarks:
Implemented	by	the	System.
The	developer	calls	this	method	to	register	a	new	restore	object	with	the
system.	Once	this	object	is	registered	the	developer	should	set	the	A_HELD
flag	of	Animatable,	i.e.	call	SetAFlag(A_HELD).	This	indicates	that	a
restore	object	is	registered	with	the	system.

Parameters:
RestoreObj	*rob
The	restore	object	to	register.

Example:
Example	code	from	EDMREST.CPP
if	(theHold.Holding())	{
	theHold.Put(new	MeshSelectRestore(meshData,this));
	}

Prototype:
void	Suspend();

Remarks:
Implemented	by	the	System.
This	is	used	internally.	It	temporarily	suspends	holding.

Prototype:

void	Resume();
Remarks:
Implemented	by	the	System.
This	is	used	internally.	It	resumes	holding	if	it	was	suspended.

Prototype:
void	EnableUndo();

Remarks:
Implemented	by	the	System.
This	is	used	internally.	Plug-In	developers	should	not	call	this	method.	Allows
Undo	when	Accept()	is	called.

Prototype:
void	DisableUndo();

Remarks:
Implemented	by	the	System.
This	is	used	internally.	Plug-In	developers	should	not	call	this	method.
Prevents	Undo	when	Accept()	is	called.

Prototype:
void	Restore();

Remarks:
Implemented	by	the	System.
This	method	will	call	Restore()	on	all	the	restore	objects	registered	since	the
last	Begin().	This	restores	the	database	to	the	state	it	was	in	when	Begin()
was	called.	The	restore	objects	are	NOT	deleted.

Prototype:
void	Release();

Remarks:
Implemented	by	the	System.
This	tosses	out	the	restore	objects	since	the	last	Begin()	but	still	continues

holding.
Group	several	Begin-End	lists	into	a	single	Super-group.

Prototype:
void	SuperBegin();

Remarks:
Implemented	by	the	System.
Normally	this	is	NOT	needed	but	in	special	cases	this	can	be	useful.	This
allows	a	developer	to	group	a	set	of	Begin()/Accept()	sequences	to	be	undone
in	one	operation.
Consider	the	case	of	the	user	using	the	Shift-Move	command	to	create	a	new
node	in	the	scene.	There	are	two	parts	to	this	process.	First	the	node	must	be
cloned	and	second	the	position	must	be	tracked	as	the	user	moves	the	mouse
to	place	the	new	node	in	the	scene.	Naturally	if	the	user	wanted	to	Undo	this
operation,	they	would	expect	a	single	selection	of	the	Undo	command	would
accomplish	it.	However	the	process	was	not	a	single	operation.	There	was	the
initial	cloning	of	the	node,	and	then	the	iterative	process	of	moving	the	node	in
the	scene,	restoring	its	position,	moving	it	again,	restoring	it	again,	etc.	Cases
like	this	are	handled	using	methods	of	theHold	named	SuperBegin(),
SuperAccept()	and	SuperCancel().	These	allow	the	developer	to	group
several	restore	objects	together	so	that	they	may	be	undone	via	a	single
selection	of	Undo.	Note	that	in	this	example	it	is	only	necessary	to	use
SuperBegin()	and	SuperAccept()	because	the	move	was	restoring
interactively.	Normally	a	developer	does	NOT	need	to	use	these	methods	even
if	they	have	several	operations	that	modify	the	database.	The	undo	system	will
automatically	register	all	the	restore	objects	needed	as	part	of	the	undo	object
when	theHold.Accept()	is	called	and	these	may	be	undone	using	a	single
UNDO	command.

Sample	Code:
See	the	sample	program
\MAXSDK\SAMPLES\OBJECTS\BONES.CPP.

Prototype:
void	SuperAccept(int	nameID);

Remarks:
Implemented	by	the	System.
When	a	developer	has	used	SuperBegin(),	this	method	is	used	to	Accept.
This	leaves	the	database	in	its	modified	state	and	registers	the	restore	object
with	the	undo	system.	This	will	allow	the	user	to	undo	the	operation.

Parameters:
int	nameID
The	resource	ID	of	the	string	to	appear	in	the	Edit	menu	next	to	Undo	or	Redo.

Sample	Code:
See	the	sample	program
\MAXSDK\SAMPLES\OBJECTS\BONES.CPP.

Prototype:
void	SuperAccept(TCHAR	*name);

Remarks:
Implemented	by	the	System.
When	a	developer	has	used	SuperBegin(),	this	method	is	used	to	Accept.
This	leaves	the	database	in	its	modified	state	and	registers	the	restore	object
with	the	undo	system.	This	will	allow	the	user	to	undo	the	operation.

Parameters:
TCHAR	*name
The	string	to	appear	in	the	Edit	menu	next	to	Undo	or	Redo.

Prototype:
void	SuperCancel();

Remarks:
Implemented	by	the	System.
When	a	developer	has	used	SuperBegin(),	this	method	is	used	to	Cancel.
This	restores	the	database	to	its	previous	state	and	throws	out	the	restore
object.	This	cancels	the	operation.

Sample	Code:
See	the	sample	program

\MAXSDK\SAMPLES\OBJECTS\BONES.CPP.

Prototype:
int	GetGlobalPutCount();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	number	of	times	Put()	has	been	called	in	the	current	session	of
3ds	max.

Class	BitmapStorage
See	Also:	Class	BitmapManager,	Class	BitmapInfo,	Class	Bitmap,	Class
BitmapIO,	List	of	Bitmap	Error	Codes.
class	BitmapStorage	:	public	BaseInterfaceServer

Description:
When	an	image	is	loaded	the	buffer	that	will	hold	it	is	an	instance	of	this	class.
This	class	provides	methods	that	allow	developers	to	access	the	image	data	in	a
uniform	manner	even	though	the	underlying	storage	might	be	1-bit,	8-bit,	16-bit,
32-bit	or	64-bit.	Standard	methods	are	available	for	getting	/	putting	pixels:
Get/PutPixels(),	Get/Put16Gray(),	Get/Put64Pixels(),
Get/PutTruePixels(),	Get/PutIndexPixels(),	etc.
Since	a	developer	accesses	the	storage	through	this	standard	interface,	certain
plug-in	types	may	not	need	to	allocate	memory	for	the	storage.	For	example,	an
image	loader	that	creates	an	image	from	scratch	(such	as	a	gradient	generator).
This	plug-in	would	simply	derive	a	new	type	of	BitmapStorage	and	provide
the	pixels	through	the	common	methods,	creating	them	as	requested.
Note:	The	"Get/PutPixels()"	methods	of	this	class	access	the	image	a	single
scanline	at	a	time.
Also	note:	The	following	global	function	may	be	used	by	image	loader/saver
plug-ins	to	create	an	instance	of	BitmapStorage:

Function:
BitmapStorage	*BMMCreateStorage(BitmapManager	*manager,
UINT	type);

Remarks:
This	global	function	will	create	a	new	instance	of	the	specified	storage	type
and	return	a	pointer	to	it.

Parameters:
BitmapManager	*manager
The	bitmap	manager	used	for	this	storage.
UINT	type
The	type	of	storage	to	create.	One	of	the	following	values:

BMM_LINE_ART
BMM_PALETTED
BMM_GRAY_8
BMM_GRAY_16
BMM_TRUE_16
BMM_TRUE_32
BMM_TRUE_64

Return	Value:
The	bitmap	storage	instance	created	or	NULL	if	the	specified	type	could	not
be	created.

Data	Members:
protected:
int	openMode;
The	mode	the	storage	was	opened	in.	See	Bitmap	Open	Mode	Types.
UINT	usageCount;
The	number	of	bitmaps	using	this	storage.
BitmapManager	*manager;
The	bitmap	manager	associated	with	this	storage.
int	flags;
See	List	of	Bitmap	Flags.
int	type;
See	List	of	Bitmap	Types.
BMM_Color_48	palette[256];
The	palette	entries	(256	max).	See	Structure	BMM_Color_48.
int	paletteSlots;
The	number	of	palette	slots	used.
UWORD	*gammaTable;
The	gamma	correction	table.
RenderInfo	*rendInfo;
A	pointer	to	an	instance	of	RenderInfo.	See	Class	RenderInfo.

public:
BitmapInfo	bi
Describes	the	properties	of	the	bitmap	associated	with	this	storage.

Methods:

Prototype:
inline	BitmapManager	*Manager()

Remarks:
Implemented	by	the	System.
Returns	the	bitmap	manager	for	the	storage.

Prototype:
float	SetGamma(float	gam)

Remarks:
Implemented	by	the	System.
Sets	the	gamma	setting	to	the	value	passed.

Parameters:
floag	gam
The	gamma	setting	to	set.

Prototype:
inline	int	HasGamma()

Remarks:
Implemented	by	the	System.
Returns	nonzero	if	the	gamma	table	has	been	allocated;	otherwise	0.

Prototype:
void	SetHasGamma(BOOL	onOff)

Remarks:
Implemented	by	the	System.
This	method	allocates	or	deallocates	the	gamma	table.

Parameters:
BOOL	onOff
If	TRUE	the	gamma	table	is	allocated;	otherwise	it	is	deleted.

Prototype:
UWORD	*GetInputGammaTable()

Remarks:
Implemented	by	the	System.
This	methods	returns	a	pointer	to	a	gamma	table	that	can	be	used	for
converting	pixels	using	whatever	gamma	value	is	appropriate	for	the	storage.
It	is	typically	called	inside	of	the	GetLinearPixels()	method	of	the
particular	BitmapStorage	subclasses	which	then	use	the	gamma	table	to
convert	pixel	values	to	linear	values.	Plug-In	developers	in	most	cases	will	not
need	to	call	this	method	directly.

Prototype:
inline	int	OpenMode()

Remarks:
Implemented	by	the	System.
Returns	the	mode	the	storage	was	opened	in.	See	Bitmap	Open	Mode	Types.

Prototype:
inline	int	Width()

Remarks:
Implemented	by	the	System.
Returns	the	width	(horizontal	dimension)	of	the	storage's	BitmapInfo	instance
(bi.Width()).

Prototype:
inline	int	Height()

Remarks:
Implemented	by	the	System.
Returns	the	height	(vertical	dimension)	of	the	storage's	BitmapInfo	instance
(bi.Height()).

Prototype:

inline	float	Aspect()
Remarks:
Implemented	by	the	System.
Returns	the	aspect	ratio	of	the	storage's	BitmapInfo	instance	(bi.Aspect()).

Prototype:
inline	float	Gamma()

Remarks:
Implemented	by	the	System.
Returns	the	gamma	setting	of	the	storage's	BitmapInfo	instance
(bi.Gamma()).

Prototype:
inline	int	Paletted()

Remarks:
Implemented	by	the	System.
Determines	if	the	image	is	paletted.	If	the	image	has	a	palette	(indexed	color),
the	number	of	palette	slots	used	is	returned;	otherwise	zero.

Prototype:
inline	int	IsDithered()

Remarks:
Implemented	by	the	System.
Returns	the	dithered	state	of	the	image.	If	the	image	is	dithered	nonzero	is
returned;	otherwise	0,

Prototype:
inline	int	PreMultipliedAlpha()

Remarks:
Implemented	by	the	System.
Determines	if	the	image	has	pre-multiplied	alpha.	If	the	image	has	pre-
multiplied	alpha	nonzero	is	returned;	otherwise	0.

Prototype:
inline	int	HasAlpha()

Remarks:
Implemented	by	the	System.
Determines	if	the	image	has	an	alpha	channel.	If	the	image	has	an	alpha
channel	nonzero	is	returned;	otherwise	0.

Prototype:
inline	void	UseScaleColors(int	on);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Set	whether	colors	are	scaled	(on)	or	clamped	(off)	when	converting	from
BMM_Color_fl	to	BMM_Color_64.

Prototype:
inline	int	ScaleColors();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Returns	the	last	value	set	by	UseScaleColors.

Prototype:
inline	static	void	ClampColor(BMM_Color_64&	out,	const
BMM_Color_fl&	in);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Converts	in	to	out	clamping	the	RGB	components	to	0	to	65535.	The	alpha
component	is	not	copied.

Parameters:
BMM_Color_64&	out

The	result	of	the	conversion.
BMM_Color_fl&	in
The	value	to	convert.

Prototype:
inline	static	void	ClampColorA(BMM_Color_64&	out,	const
BMM_Color_fl&	in);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Converts	in	to	out	clamping	the	RGB	components	to	0	to	65535.

Parameters:
BMM_Color_64&	out
The	result	of	the	conversion.
BMM_Color_fl&	in
The	value	to	convert.

Prototype:
inline	void	ScaleColor	(BMM_Color_64&	out,	BMM_Color_fl	in);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Converts	in	to	out	clamping	the	RGB	components	to	0	to	65535.	The	alpha
component	is	not	copied.

Parameters:
BMM_Color_64&	out
The	result	of	the	conversion.
BMM_Color_fl&	in
The	value	to	convert.

Prototype:
inline	void	ScaleColorA(BMM_Color_64&	out,	const

BMM_Color_fl&	in);
Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Converts	in	to	out	clamping	the	RGB	components	to	0	to	65535.

Parameters:
BMM_Color_64&	out
The	result	of	the	conversion.
BMM_Color_fl&	in
The	value	to	convert.

Prototype:
inline	void	ClampScaleColor	(BMM_Color_64&	out,	const
BMM_Color_fl&	in);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Converts	in	to	out,	using	the	value	of	ScaleColors()	to	determine	the
clamping	or	scaling.	The	alpha	component	is	not	copied.

Parameters:
BMM_Color_64&	out
The	result	of	the	conversion.
BMM_Color_fl&	in
The	value	to	convert.

Prototype:
inline	void	ClampScaleColorA	(BMM_Color_64&	out,	const
BMM_Color_fl&	in);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
Converts	in	to	out,	using	the	value	of	ScaleColors()	to	determine	the

clamping	or	scaling.
Parameters:
BMM_Color_64&	out
The	result	of	the	conversion.
BMM_Color_fl&	in
The	value	to	convert.

Prototype:
inline	int	UsageCount()

Remarks:
Implemented	by	the	System.
Returns	the	number	of	times	this	image	is	being	used	in	the	system.

Prototype:
inline	int	Type()

Remarks:
Implemented	by	the	System.
Returns	the	type	of	bitmap	managed	by	this	storage.	See	List	of	Bitmap	Types.

Prototype:
inline	int	Flags()

Remarks:
Implemented	by	the	System.
Returns	the	bitmap	flags.	See	List	of	Bitmap	Flags.

Prototype:
inline	void	SetFlags(DWORD	f)

Remarks:
Implemented	by	the	System.
Sets	the	specified	flag	bits.	See	List	of	Bitmap	Flags.

Parameters:

DWORD	f
The	flags	to	set.

Prototype:
virtual	int	MaxRGBLevel()	=	0;

Remarks:
This	method	returns	the	number	of	bits	per	pixel	for	each	color	component.
For	example	a	24-bit	TARGA	has	a	MaxRGBLevel()	of	8	(8	red,	8	green,
and	8	blue).

Prototype:
virtual	int	MaxAlphaLevel()	=	0;

Remarks:
Returns	the	number	of	bits	per	pixel	in	the	alpha	channel.

Prototype:
virtual	int	IsHighDynamicRange()	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	nonzero	if	this	storage	uses	high	dynamic	range	data;	otherwise	zero.
See	the	Advanced	Topics	secion	Working	With	Bitmaps	for	details	on	High
Dynamic	Range	bitmaps.

Prototype:
virtual	void	*GetStoragePtr(int	*type)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	get	a	pointer	to	the	beginning	of	the	image	storage.	Not
all	storage	types	can	return	a	valid	pointer.	In	those	cases,	this	method	will	set
the	passed	type	to	BMM_NO_TYPE	and	return	NULL.

Parameters:
int	*type

The	type	of	storage	is	returned	here.	See	List	of	Bitmap	Types.
Default	Implementation:
{	*type	=	BMM_NO_TYPE;	return	(NULL);	}

Prototype:
virtual	void	*GetAlphaPtr(int	*type);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	will	attempt	to	get	a	pointer	to	the	beginning	of	the	image	alpha
storage.	Not	all	storage	types	can	return	a	valid	pointer.	In	those	cases,	this	call
will	fail	and	the	user	should	use	some	other	method	described	below.

Parameters:
int	*type
The	type	of	storage	is	returned	here.	See	List	of	Bitmap	Types.

Default	Implementation:
{	*type	=	BMM_NO_TYPE;	return	(NULL);	}

Below	are	the	standard	methods	for	accessing	image	pixels.	Important	Note:
The	following	"GetPixels()"	methods	operate	on	a	single	scanline	of	the	image
at	a	time.	Thus	the	number	of	pixels+x	must	be	less	than	the	width	of	the	image.

Prototype:
virtual	int	Get16Gray(int	x,	int	y,	int	pixels,	WORD	*ptr)	=	0;

Remarks:
Implemented	by	the	System.
Retrieves	the	specified	16	bit	grayscale	pixels	from	the	storage.	This	method
operates	on	a	single	scanline	of	the	image	at	a	time.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels

Number	of	pixels	to	retrieve.
WORD	*ptr
Pointer	to	storage	for	the	retrieved	pixels.

Return	Value:
Nonzero	if	pixels	were	retrieved;	otherwise	0.

Prototype:
virtual	int	Put16Gray(int	x,	int	y,	int	pixels,	WORD	*ptr)	=	0;

Remarks:
Implemented	by	the	System.
Stores	the	16	bit	grayscale	pixels	to	the	specified	location	in	the	storage.	This
method	operates	on	a	single	scanline	of	the	image	at	a	time.

Parameters:
int	x
Destination	x	location.
int	y
Destination	y	location.
int	pixels
Number	of	pixels	to	store.
WORD	*ptr
Pointer	to	storage	for	the	pixels.

Return	Value:
Nonzero	if	pixels	were	stored;	otherwise	0.

Prototype:
virtual	int	Get16Gray(int	x,	int	y,	int	pixels,	float	*ptr)	=	0;

Remarks:
Implemented	by	the	System.
Retrieves	the	specified	16	bit	grayscale	pixels	from	the	storage.	This	method
operates	on	a	single	scanline	of	the	image	at	a	time.

Parameters:
int	x
Source	x	location.

int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.
float	*ptr
Pointer	to	storage	for	the	retrieved	pixels.

Return	Value:
Nonzero	if	pixels	were	retrieved;	otherwise	0.

Prototype:
virtual	int	Put16Gray(int	x,	int	y,	int	pixels,	float	*ptr)	=	0;

Remarks:
Implemented	by	the	System.
Stores	the	16	bit	grayscale	pixels	to	the	specified	location	in	the	storage.	This
method	operates	on	a	single	scanline	of	the	image	at	a	time.

Parameters:
int	x
Destination	x	location.
int	y
Destination	y	location.
int	pixels
Number	of	pixels	to	store.
float	*ptr
Pointer	to	storage	for	the	pixels.

Return	Value:
Nonzero	if	pixels	were	stored;	otherwise	0.

Prototype:
virtual	int	GetLinearPixels(int	x,int	y,int	pixels,BMM_Color_64
*ptr)	=	0;

Remarks:
Implemented	by	the	Plug-In.

This	method	retrieves	the	specified	64	bit	true	color	pixels	from	the	storage.
Pixels	returned	from	this	method	are	NOT	gamma	corrected.	These	have
linear	gamma	(1.0).	This	method	operates	on	a	single	scanline	of	the	image	at
a	time.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	store.
BMM_Color_64	*ptr
Pointer	to	storage	for	the	pixels.

Return	Value:
Nonzero	if	pixels	were	retrieved;	otherwise	0.

Prototype:
inline	int	GetPixels(int	x,int	y,int	pixels,BMM_Color_64	*ptr)

Remarks:
Retrieves	the	specified	64-bit	pixel	values	from	the	bitmap.	Note:	This	method
provides	access	to	pixel	data	one	scanline	at	a	time.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.
BMM_Color_64	*ptr
Pointer	to	storage	for	the	retrieved	pixel	values.	See	Structure
BMM_Color_64.

Return	Value:
Returns	nonzero	if	pixels	were	retrieved;	otherwise	0.	If	storage	has	not	been

allocated	0	is	returned.

Prototype:
int	PutPixels(int	x,int	y,int	pixels,BMM_Color_64	*ptr)

Remarks:
Stores	the	specified	64-bit	pixel	values	into	the	bitmap's	own	local	storage.
The	pointer	you	pass	to	this	method	may	be	freed	or	reused	as	soon	as	the
function	returns.	Note:	This	method	provides	access	to	pixel	data	one	scanline
at	a	time.

Parameters:
int	x
Destination	x	location.
int	y
Destination	y	location.
int	pixels
Number	of	pixels	to	store.
BMM_Color_64	*ptr
Pixel	values	to	store.	See	Structure	BMM_Color_64.

Return	Value:
Returns	nonzero	if	pixels	were	stored;	otherwise	0.	If	storage	has	not	been
allocated	0	is	returned.

Prototype:
virtual	int	GetLinearPixels(int	x,int	y,int	pixels,BMM_Color_fl
*ptr)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	retrieves	the	specified	64	bit	true	color	pixels	from	the	storage.
Pixels	returned	from	this	method	are	NOT	gamma	corrected.	These	have
linear	gamma	(1.0).	This	method	operates	on	a	single	scanline	of	the	image	at
a	time.

Parameters:
int	x

Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	store.
BMM_Color_fl	*ptr
Pointer	to	storage	for	the	pixels.

Return	Value:
Nonzero	if	pixels	were	retrieved;	otherwise	0.

Prototype:
inline	int	GetPixels(int	x,int	y,int	pixels,BMM_Color_fl	*ptr)

Remarks:
Retrieves	the	specified	64-bit	pixel	values	from	the	bitmap.	Note:	This	method
provides	access	to	pixel	data	one	scanline	at	a	time.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.
BMM_Color_fl	*ptr
Pointer	to	storage	for	the	retrieved	pixel	values.

Return	Value:
Returns	nonzero	if	pixels	were	retrieved;	otherwise	0.	If	storage	has	not	been
allocated	0	is	returned.

Prototype:
int	PutPixels(int	x,int	y,int	pixels,BMM_Color_fl	*ptr)

Remarks:
Stores	the	specified	64-bit	pixel	values	into	the	bitmap's	own	local	storage.

The	pointer	you	pass	to	this	method	may	be	freed	or	reused	as	soon	as	the
function	returns.	Note:	This	method	provides	access	to	pixel	data	one	scanline
at	a	time.

Parameters:
int	x
Destination	x	location.
int	y
Destination	y	location.
int	pixels
Number	of	pixels	to	store.
BMM_Color_fl	*ptr
Pixel	values	to	store.

Return	Value:
Returns	nonzero	if	pixels	were	stored;	otherwise	0.	If	storage	has	not	been
allocated	0	is	returned.

Prototype:
virtual	int	GetIndexPixels(int	x,	int	y,	int	pixels,	unsigned	char
*ptr)	=	0;

Remarks:
Implemented	by	the	System.
Retrieves	the	specified	index	color	pixels	from	the	storage.	This	is	used	to
retrieve	pixels	from	a	paletted	image.	This	method	operates	on	a	single
scanline	of	the	image	at	a	time.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.
unsigned	char	*ptr
Pointer	to	storage	for	the	pixels.

Return	Value:
Nonzero	if	pixels	were	retrieved;	otherwise	0.

Prototype:
virtual	int	PutIndexPixels(int	x,	int	y,	int	pixels,	unsigned	char
*ptr)	=	0;

Remarks:
Implemented	by	the	System.
Stores	the	index	color	pixels	to	the	specified	location	in	the	storage.	This
method	operates	on	a	single	scanline	of	the	image	at	a	time.

Parameters:
int	x
Destination	x	location.
int	y
Destination	y	location.
int	pixels
Number	of	pixels	to	store.
unsigned	char	*ptr
Pointer	to	the	pixels	to	store.

Return	Value:
Nonzero	if	pixels	were	stored;	otherwise	0.

Prototype:
virtual	int	CropImage(int	width,int	height,BMM_Color_64
fillcolor)	=	0;

Remarks:
Implemented	by	the	Plug-In.
Adjusts	the	bitmap	size	to	the	specified	dimensions.	The	image	is	not	resized
to	fit;	it	is	cropped	or	filled	with	fillcolor	pixels	to	accommodate	the	new
size.

Parameters:
int	width

The	new	horizontal	size	for	the	bitmap.
int	height
The	new	vertical	size	for	the	bitmap.
BMM_Color_64	fillcolor
If	the	bitmap's	new	size	is	bigger	than	its	current	size,	this	is	the	color	used	to
fill	the	new	pixels.	See	Structure	BMM_Color_64.

Return	Value:
Nonzero	if	the	image	was	cropped;	otherwise	0.

Prototype:
virtual	int	CropImage(int	width,	int	height,	int	fillindex)	=	0;

Remarks:
Implemented	by	the	Plug-In.
Adjusts	the	bitmap	size	to	the	specified	dimensions.	The	image	is	not	resized
to	fit;	it	is	cropped	or	filled	with	fillindex	pixels	to	accommodate	the	new
size.

Parameters:
int	width
The	new	horizontal	size	for	the	bitmap.
int	height
The	new	vertical	size	for	the	bitmap.
int	fillindex
If	the	bitmap's	new	size	is	bigger	than	its	current	size,	this	is	the	color	used	to
fill	the	new	pixels.

Return	Value:
Nonzero	if	the	image	was	cropped;	otherwise	0.

Prototype:
virtual	int	ResizeImage(int	width,int	height,int	newpalette)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	no	longer	used.

Prototype:
virtual	int	CopyImage(Bitmap	*from,	int	operation,
BMM_Color_64	fillcolor)

Remarks:
Implemented	by	the	Plug-In.
Copies	the	specified	bitmap	to	this	storage.	The	image	is	cropped	or	resized	as
specified.

Parameters:
Bitmap	*from
The	source	bitmap.
int	operation
The	type	of	copy	to	perform:
COPY_IMAGE_CROP
Copy	image	to	current	map	size	using	cropping	if	necessary.
COPY_IMAGE_RESIZE_LO_QUALITY
Resize	the	source	image	to	the	destination	map	size	(draft	quality).
COPY_IMAGE_RESIZE_HI_QUALITY
Resize	source	image	to	the	destination	map	size	(final	quality).
COPY_IMAGE_USE_CUSTOM
Resize	based	on	the	Image	Input	Options	(BitmapInfo	*).

BMM_Color_64	fillcolor
Vacant	areas	of	the	bitmap	are	filled	with	fillcolor	pixels	if	the	operation
specified	is	COPY_IMAGE_CROP	and	one	of	the	source	bitmap
dimensions	is	less	than	the	size	of	this	bitmap.	See	Structure	BMM_Color_64.

Return	Value:
Nonzero	if	the	copy	was	performed;	otherwise	0.

Prototype:
virtual	int	CopyImage(Bitmap	*from,	int	operation,
BMM_Color_64	fillcolor,	BitmapInfo	*bi	=	NULL)	=	0;

Remarks:
Implemented	by	the	Plug-In.

Copies	the	specified	bitmap	to	this	storage.	The	image	is	cropped	or	resized	as
specified.

Parameters:
Bitmap	*from
The	source	bitmap.
int	operation
The	type	of	copy	to	perform:
COPY_IMAGE_CROP
Copy	image	to	current	map	size	using	cropping	if	necessary.
COPY_IMAGE_RESIZE_LO_QUALITY
Resize	the	source	image	to	the	destination	map	size	(draft	quality).
COPY_IMAGE_RESIZE_HI_QUALITY
Resize	source	image	to	the	destination	map	size	(final	quality).
COPY_IMAGE_USE_CUSTOM
Resize	based	on	the	Image	Input	Options	(BitmapInfo	*).

BMM_Color_64	fillcolor
Vacant	areas	of	the	bitmap	are	filled	with	fillcolor	pixels	if	the	operation
specified	is	COPY_IMAGE_CROP	and	one	of	the	source	bitmap
dimensions	is	less	than	the	size	of	this	bitmap.	See	Structure	BMM_Color_64.
BitmapInfo	*bi
When	using	custom	options	(resize	to	fit,	positioning,	etc.)	this	is	how	the
flags	are	passed	down	to	the	Bitmap	Manager.	This	is	an	optional	argument	--
for	simple	copy	operations,	*bi	can	default	to	NULL.	If	present,	the	code
checks	the	option	flags	and	acts	accordingly.

Return	Value:
Nonzero	if	the	copy	was	performed;	otherwise	0.

Prototype:
virtual	int	CopyImage(Bitmap	*from,	int	operation,
BMM_Color_fl	fillcolor,	BitmapInfo	*bi	=	NULL)	=	0;

Remarks:
Implemented	by	the	Plug-In.
Copies	the	specified	bitmap	to	this	storage.	The	image	is	cropped	or	resized	as

specified.
Parameters:
Bitmap	*from
The	source	bitmap.
int	operation
The	type	of	copy	to	perform:
COPY_IMAGE_CROP
Copy	image	to	current	map	size	using	cropping	if	necessary.
COPY_IMAGE_RESIZE_LO_QUALITY
Resize	the	source	image	to	the	destination	map	size	(draft	quality).
COPY_IMAGE_RESIZE_HI_QUALITY
Resize	source	image	to	the	destination	map	size	(final	quality).
COPY_IMAGE_USE_CUSTOM
Resize	based	on	the	Image	Input	Options	(BitmapInfo	*).

BMM_Color_fl	fillcolor
Vacant	areas	of	the	bitmap	are	filled	with	fillcolor	pixels	if	the	operation
specified	is	COPY_IMAGE_CROP	and	one	of	the	source	bitmap
dimensions	is	less	than	the	size	of	this	bitmap.	See	Structure	BMM_Color_fl.
BitmapInfo	*bi
When	using	custom	options	(resize	to	fit,	positioning,	etc.)	this	is	how	the
flags	are	passed	down	to	the	Bitmap	Manager.	This	is	an	optional	argument	--
for	simple	copy	operations,	*bi	can	default	to	NULL.	If	present,	the	code
checks	the	option	flags	and	acts	accordingly.

Return	Value:
Nonzero	if	the	copy	was	performed;	otherwise	0.

Prototype:
virtual	int	CopyImage(Bitmap	*from,int	operation,int	fillindex)

Remarks:
Implemented	by	the	Plug-In.
Copies	the	specified	bitmap	to	this	storage.

Parameters:

Bitmap	*from
The	source	bitmap.
int	operation
The	type	of	copy	to	perform.
COPY_IMAGE_CROP
Copy	image	to	current	map	size	using	cropping	if	necessary.
COPY_IMAGE_RESIZE_LO_QUALITY
Resize	the	source	image	to	the	destination	map	size	(draft	quality).
COPY_IMAGE_RESIZE_HI_QUALITY
Resize	source	image	to	destination	map	size	(final	quality).
COPY_IMAGE_USE_CUSTOM
Resize	based	on	the	Image	Input	Options	(BitmapInfo	*).

int	fillindex
Vacant	areas	of	the	bitmap	are	filled	with	fillindex	pixels	if	the	operation
specified	is	COPY_IMAGE_CROP	and	one	of	the	source	bitmap
dimensions	is	less	than	the	size	of	this	bitmap.

Return	Value:
Nonzero	if	the	copy	was	performed;	otherwise	0.

Prototype:
virtual	int	CopyCrop(Bitmap	*from,	BMM_Color_64	fillcolor);

Remarks:
Implemented	by	the	Plug-In.
Copies	the	specified	bitmap	to	this	storage.	The	image	is	cropped	to	fit.

Parameters:
Bitmap	*from
The	bitmap	to	copy	to	this	bitmap.
BMM_Color_64	fillcolor
The	color	to	use	if	the	source	image	is	smaller	than	the	destination	image.	See
Structure	BMM_Color_64.

Return	Value:
Nonzero	if	the	copy/crop	was	performed;	otherwise	zero.

Prototype:
virtual	int	CopyScaleLow(Bitmap	*from);

Remarks:
Implemented	by	the	System.
This	method	copies	the	specified	bitmap	to	this	storage.	The	source	bitmap	is
scaled	to	fit	using	a	lower	quality	but	faster	algorithm	than
CopyScaleHigh().This	is	an	internal	function	implemented	within
BMM.DLL	for	copying	bitmaps	back	and	forth.	If	a	developer	creates	new
storage	type,	they	will	automatically	get	these	copy	functions	as	these	are
implemented	in	the	base	class.

Parameters:
Bitmap	*from
The	source	bitmap.

Return	Value:
Nonzero	if	the	copy/scale	was	performed;	otherwise	zero.

Prototype:
virtual	int	CopyScaleHigh(Bitmap	*from,	HWND	hWnd,
BMM_Color_64	**buf	=	NULL,	int	w=0,	int	h=0);

Remarks:
Implemented	by	the	System.
This	method	copies	the	specified	bitmap	to	this	storage.	The	source	bitmap	is
scaled	to	fit	using	a	higher	quality	but	slower	algorithm	than
CopyScaleLow().	This	is	an	internal	function	implemented	within
BMM.DLL	for	copying	bitmaps	back	and	forth.	If	a	developer	creates	new
storage	type,	they	will	automatically	get	these	copy	functions	as	these	are
implemented	in	the	base	class.

Prototype:
virtual	int	CopyScaleHigh(Bitmap	*from,	HWND	hWnd,
BMM_Color_fl	**buf	=	NULL,	int	w=0,	int	h=0);

Remarks:
Implemented	by	the	System.

This	method	copies	the	specified	bitmap	to	this	storage.	The	source	bitmap	is
scaled	to	fit	using	a	higher	quality	but	slower	algorithm	than
CopyScaleLow().	This	is	an	internal	function	implemented	within
BMM.DLL	for	copying	bitmaps	back	and	forth.	If	a	developer	creates	new
storage	type,	they	will	automatically	get	these	copy	functions	as	these	are
implemented	in	the	base	class.

Prototype:
virtual	int	GetPalette(int	start,int	count,BMM_Color_48	*ptr)	=	0;

Remarks:
Implemented	by	the	Plug-In.
Retrieves	the	specified	portion	of	the	palette	of	this	storage.

Parameters:
int	start
Zero	based	index	of	the	first	palette	entry	to	retrieve.
int	count
Number	of	palette	entries	to	retrieve.
BMM_Color_48	*ptr
Points	to	storage	for	the	palette	values.	See	Structure	BMM_Color_48.

Return	Value:
Nonzero	if	the	palette	was	retrieved;	otherwise	0.

Prototype:
virtual	int	SetPalette(int	start,	int	count,	BMM_Color_48	*ptr)	=
0;

Remarks:
Implemented	by	the	Plug-In.
Sets	the	specified	portion	of	the	palette	for	this	storage.

Parameters:
int	start
First	palette	index	entry	to	store.
int	count

Number	of	palette	entries	to	store.
BMM_Color_48	*ptr
Points	to	storage	for	the	palette	values.	See	Structure	BMM_Color_48.

Return	Value:
Nonzero	if	the	palette	was	stored;	otherwise	0.

Sample	Code:
See	Load()	in	\MAXSDK\SAMPLES\IO\BMP\BMP.CPP.

Prototype:
virtual	int	GetFiltered(float	u,	float	v,	float	du,	float	dv,
BMM_Color_64	*ptr)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	uses	summed	area	table	or	pyramidal	filtering	to	compute	an
averaged	color	over	a	specified	area.

Parameters:
float	u,	float	v
The	location	in	the	bitmap	to	filter.	These	values	go	from	0.0	to	1.0	across	the
size	of	the	bitmap.
float	du,	float	dv
The	size	of	the	rectangle	to	sample.	These	values	go	from	0.0	to	1.0	across	the
size	of	the	bitmap.
BMM_Color_64	*ptr
The	result	is	returned	here	-	the	average	over	the	specified	area.	See	Structure
BMM_Color_64.

Prototype:
virtual	int	GetFiltered(float	u,float	v,float	du,float
dv,BMM_Color_fl	*ptr)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	Plug-In.

This	method	uses	summed	area	table	or	pyramidal	filtering	to	compute	an
averaged	color	over	a	specified	area	and	outputs	to	a	floating	point	color
structure.

Parameters:
float	u,	float	v
The	location	in	the	bitmap	to	filter.	These	values	go	from	0.0	to	1.0	across	the
size	of	the	bitmap.
float	du,	float	dv
The	size	of	the	rectangle	to	sample.	These	values	go	from	0.0	to	1.0	across	the
size	of	the	bitmap.
BMM_Color_fl	*ptr
The	result	is	returned	here	-	the	average	over	the	specified	area.

Prototype:
virtual	int	Allocate(BitmapInfo	*bi,	BitmapManager	*manager,
int	openMode)	=	0;

Remarks:
Implemented	by	the	System.
This	method	is	called	to	allocate	image	storage.

Parameters:
BitmapInfo	*bi
Points	to	an	instance	of	the	BitmapInfo	class	describing	the	properties	of	the
bitmap.
BitmapManager	*manager
Points	to	the	BitmapManager	for	the	bitmap.
int	openMode
See	Bitmap	Open	Mode	Types.

Return	Value:
Nonzero	if	storage	was	allocated;	otherwise	0.

Prototype:
virtual	void	Scale(float	*,	int,	float	*,	int);

Remarks:

This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
This	method	is	used	internally.

Prototype:
virtual	BOOL	GetSRow(float	*,	int,	float	*,	int);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
This	method	is	used	internally.

Prototype:
virtual	BOOL	PutSRow(float	*,	int,	float	*,	int);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
This	method	is	used	internally.

Prototype:
virtual	BOOL	GetSCol(float	*,	float	*,	int,	int);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
This	method	is	used	internally.

Prototype:
virtual	BOOL	PutSCol(float	*,	float	*,	int,	int);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
This	method	is	used	internally.

Prototype:
virtual	BOOL	ScaleY(Bitmap	*,	BMM_Color_fl	*,	float	*,	float	*,
HWND,	int	cw	=	0,	int	ch	=	0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
This	method	is	used	internally.

Prototype:
virtual	BOOL	ScaleX(Bitmap	*,	BMM_Color_fl	*,	float	*,	float	*,
HWND,	int	cw	=	0,	int	ch	=	0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	System.
This	method	is	used	internally.

Prototype:
virtual	int	CropImage(int	width,int	height,	BMM_Color_fl
fillcolor)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	Plug-In.
Adjusts	the	bitmap	size	to	the	specified	dimensions.	The	image	is	not	resized
to	fit;	it	is	cropped	or	filled	with	fillcolor	pixels	to	accommodate	the	new
size.

Parameters:
int	width
The	new	horizontal	size	for	the	bitmap.
int	height
The	new	vertical	size	for	the	bitmap.
BMM_Color_fl	fillcolor
If	the	bitmap's	new	size	is	bigger	than	its	current	size,	this	is	the	color	used	to
fill	the	new	pixels.	See	Structure	BMM_Color_fl.

Return	Value:
Nonzero	if	the	image	was	cropped;	otherwise	0.

Prototype:
virtual	int	CopyCrop(Bitmap	*from,	BMM_Color_fl	fillcolor)	=	0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Implemented	by	the	Plug-In.
Copies	the	specified	bitmap	to	this	storage.	The	image	is	cropped	to	fit.

Parameters:
Bitmap	*from
The	bitmap	to	copy	to	this	bitmap.
BMM_Color_fl	fillcolor
The	color	to	use	if	the	source	image	is	smaller	than	the	destination	image.	See
Structure	BMM_Color_fl.

Return	Value:
Nonzero	if	the	copy/crop	was	performed;	otherwise	zero.

G-Buffer	Methods.

Prototype:
virtual	void	*GetChannel(ULONG	channelID,	ULONG&
chanType)

Remarks:
Implemented	by	the	Plug-In.
Returns	a	pointer	to	specified	geometry/graphics	buffer	channel,	and
determines	its	pixel	depth.

Parameters:
ULONG	channelID
The	channel	to	return	a	pointer	to.	See	List	of	G-Buffer	Channels.
ULONG&	chanType
The	type	of	the	returned	channel.	One	of	the	following	values:
BMM_CHAN_TYPE_UNKNOWN
Channel	not	of	a	known	type.
BMM_CHAN_TYPE_1
1	bit	per	pixel
BMM_CHAN_TYPE_8
1	byte	per	pixel
BMM_CHAN_TYPE_16
1	word	per	pixel
BMM_CHAN_TYPE_32
2	words	per	pixel
BMM_CHAN_TYPE_48
3	words	per	pixel
BMM_CHAN_TYPE_64
4	words	per	pixel
BMM_CHAN_TYPE_96
6	words	per	pixel

Default	Implementation:
{	return	NULL;}

Prototype:
GBuffer	*GetGBuffer();

Remarks:
Returns	a	pointer	to	the	G-Buffer	associated	with	this	storage.

Prototype:
virtual	ULONG	CreateChannels(ULONG	channelIDs)

Remarks:
Implemented	by	the	Plug-In.
Create	the	specified	channels.

Parameters:
ULONG	channelIDs
Specifies	the	channels	to	create.	See	List	of	G-Buffer	Channels.

Return	Value:
The	channels	that	are	present.

Default	Implementation:
{	return	0;}

Prototype:
virtual	void	DeleteChannels(ULONG	channelIDs)

Remarks:
Implemented	by	the	Plug-In.
Delete	the	specified	channels.

Parameters:
ULONG	channelIDs
Specifies	the	channels	to	delete.	See	List	of	G-Buffer	Channels.

Prototype:
virtual	ULONG	ChannelsPresent()

Remarks:
Implemented	by	the	Plug-In.

Returns	the	channels	that	are	present.	See	List	of	G-Buffer	Channels.
Default	Implementation:
{	return	0;	}

Prototype:
RenderInfo*	AllocRenderInfo();

Remarks:
Implemented	by	the	Plug-In.
Output	bitmaps	can	get	an	instance	of	the	class	RenderInfo,	which	is	written
by	the	renderer.	This	method	will	allocate	an	instance	only	if	a	RenderInfo
doesn't	yet	exist.

Return	Value:
A	pointer	to	a	RenderInfo.	See	Class	RenderInfo.

Prototype:
RenderInfo*	GetRenderInfo();

Remarks:
Implemented	by	the	Plug-In.
Returns	a	RenderInfo	pointer.	See	Class	RenderInfo.

List	of	Bitmap	Types
See	Also:	Class	BitmapStorage,	Class	Color,	Class	AColor,	Structure
LogLUV32Pixel,	Structure	LogLUV24Pixel,	Structure	RealPixel.
The	following	are	the	valid	types	of	bitmaps:

This	type	indicates	'no	type'	yet.
BMM_NO_TYPE
Bitmap	has	not	been	allocated	yet.

The	types	below	may	be	both	read	from	or	written	to:
BMM_LINE_ART
1	bit	monochrome	image.
BMM_PALETTED
8	bit	paletted	image.	Each	pixel	value	is	an	index	into	the	color	table.
BMM_GRAY_8
8	bit	grayscale	bitmap.
BMM_GRAY_16
16	bit	grayscale	bitmap.
BMM_TRUE_16
16	bit	true	color	image.
BMM_TRUE_32
32	bit	color:	8	bits	each	for	Red,	Green,	Blue,	and	Alpha.
BMM_TRUE_64
64	bit	color:	16	bits	each	for	Red,	Green,	Blue,	and	Alpha.
BMM_LOGLUV_32
This	option	is	available	in	release	4.0	and	later	only.
This	format	uses	a	logarithmic	encoding	of	luminance	and	U’	and	V’	in	the
CIE	perceptively	uniform	space.	It	spans	38	orders	of	magnitude	from
5.43571´10-20	to	1.84467´1019	in	steps	of	about	0.3%	luminance	steps.	It
includes	both	positive	and	negative	colors.	A	separate	16	bit	channel	is
kept	for	alpha	values.
BMM_LOGLUV_24
This	option	is	available	in	release	4.0	and	later	only.
This	format	is	similar	to	BMM_LOGLUV_32	except	is	uses	smaller
values	to	give	a	span	of	5	order	of	magnitude	from	1/4096	to	16	in	1.1%

luminance	steps.	A	separate	8	bit	channel	is	kept	for	alpha	values.
BMM_LOGLUV_24A
This	option	is	available	in	release	4.0	and	later	only.
This	format	is	identical	to	BMM_LOGUV_24,	except	the	8	bit	alpha
value	is	kept	with	the	24	bit	color	value	in	a	single	32	bit	word.
BMM_REALPIX_32
This	option	is	available	in	release	4.0	and	later	only.
The	"Real	Pixel"	format.

The	following	types	may	be	read	from,	but	NOT	written	to	(thus	these	should
not	be	used	when	creating	bitmaps	that	you	intend	to	write	to	or	save):
BMM_TRUE_24
24	bit	color:	8	bits	each	for	Red,	Green,	and	Blue.
BMM_TRUE_48
48	bit	color:	16	bits	each	for	Red,	Green,	and	Blue.
BMM_YUV_422
This	is	the	YUV	format	-	CCIR	601.
BMM_BMP_4
4	bit	Windows	BMP	16	color	bitmap
BMM_PAD_24
Padded	24	bit	(in	a	32	bit	register).

Structure	BMM_Color_fl
See	Also:	Class	Bitmap,	Class	BitmapStorage,	Class	BitmapManager,	Working
With	Bitmaps.

Description:
This	structure	is	available	in	release	4.0	and	later	only.
The	High	Dynamic	Range	bitmaps	introduced	in	R4	make	use	of	this	class	to
store	color	information	using	floating	point	values.
typedef	struct	{
float	r,g,b,a;
Storage	for	the	floating	point	color	information.
	

Prototype:
operator	float*();

Remarks:
Returns	the	address	of	the	floating	point	values.

Prototype:
operator	const	float*()	const;

Remarks:
Returns	the	address	of	the	floating	point	values.

Prototype:
static	WORD	clipColor(float	c);

Remarks:
Returns	the	specified	color	c	clipped	(limited	to)	the	range	0	to	65535.
}	BMM_Color_fl;

Structure	LogLUV32Pixel
See	Also:	Class	Color.
struct	LogLUV32Pixel

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	a	32	bit	pixel	format	that	stores	1	bit	for	sign,	15	bits	for	the	log
of	the	luminance,	and	16	bits	of	chroma.
This	class	stores	colors	in	XYZ	space.	XYZ	color	space	is	the	space	define	by
the	CIE	by	the	red	(X),	green	(Y)	and	blue	(Z)	response	curves	of	the	eye.	So	to
calculate	a	color	in	XYZ	space,	you	take	the	incoming	light,	multiply	it	by	each
response	curvey	and	integrate	the	result	over	the	visible	spectrum.	There	are
several	RGB	spaces,	all	depending	on	what	XYZ	coordinates	get	assigned	to	the
red,	green	and	blue	primaries	of	the	space.	The	transformations	between	XYZ
and	RGB	space	are	all	linear	and	can	be	represented	as	3	by	3	matrices.
The	mapping	used	by	XYZtoRGB	and	RGBtoXYZ	is	for	CCIR-709	primaries
and	was	taken	from	the	code	in	the	tiff	reader	for	the	LogLUV32	format.	Both
XYZ	and	RGB	methods	are	supplied,	so	developers	can	supply	different	XYZ	to
RGB	transforms,	if	desired.
This	transform	is	important,	because	in	the	LogLUV32	format	the	log	is	taken	of
the	Y	coordinate	in	XYZ	space.	So,	it	is	important	that	Y	not	be	0.	The	transform
helps	guarantee	this.	In	fact,	Y	is	zero	only	when	r,	g	and	b	are	all	0.

Methods:
public:

Data	Members:
DWORD32	value;
Storage	for	the	pixel	value.

Prototype:
operator	Color()	const;

Remarks:
Returns	this	pixel	format	as	a	Color.

Prototype:
LogLUV32Pixel&	operator=(const	float	c[3])	{	SetRGB(c);	return
*this;	};

Remarks:
Assignment	operator.

Parameters:
const	float	c[3]
The	array	of	color	values	to	assign	in	RGB	order.

Prototype:
void	GetRGB(float	rgb[3])	const;

Remarks:
Retrieves	the	RGB	space	values.

Parameters:
float	rgb[3]
The	results	are	stored	here.

Prototype:
void	SetRGB(const	float	rgb[3]);

Remarks:
Sets	the	RGB	space	values.

Parameters:
const	float	rgb[3]
The	values	to	set.

Prototype:
void	GetXYZ(float	xyz[3])	const;

Remarks:
Retrieves	the	XYZ	space	values.

Parameters:
const	float	xyz[3]

The	results	are	stored	here.

Prototype:
void	SetXYZ(const	float	xyz[3]);

Remarks:
Sets	the	XYZ	space	values.

Parameters:
const	float	xyz[3]
The	values	to	set.

Prototype:
static	void	XYZtoRGB(const	float	xyz[3],	float	rgb[3]);

Remarks:
This	method	converts	from	XYZ	space	to	RGB	space.

Parameters:
const	float	xyz[3]
The	input	values	to	convert.
float	rgb[3]
The	output	values	are	stored	here.

Prototype:
static	void	RGBtoXYZ(const	float	rgb[3],	float	xyz[3]);

Remarks:
This	method	converts	from	RGB	space	to	XYZ	space.

Parameters:
const	float	rgb[3]
The	input	values	to	convert.
float	xyz[3]
The	output	values	are	stored	here.

Structure	LogLUV24Pixel
See	Also:	Class	Color.,	Structure	LogUV32Pixel
struct	LogLUV24Pixel

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	structure	is	a	24	bit	pixel	format	that	stores	10	bits	for	log	of	luminance	and
14	bits	of	chroma.

Data	Members:
unsigned	char	value[3];
Storage	for	the	pixel	value.

Methods:
public:

Prototype:
operator	Color()	const;

Remarks:
This	method	will	return	the	pixel	format	as	a	Color.

Prototype:
LogLUV24Pixel&	operator=(const	float	c[3]);

Remarks:
Assignment	operator.

Parameters:
const	float	c[3]
The	array	of	color	values	to	assign	in	RGB	order.

Prototype:
void	GetRGB(float	rgb[3])	const;

Remarks:
This	method	will	return	the	RGB	space	values.

Parameters:
float	rgb[3]
The	results	are	stored	in	this	array.

Prototype:
void	SetRGB(const	float	rgb[3]);

Remarks:
This	method	allows	you	to	set	the	RGB	space	values.

Parameters:
const	float	rgb[3]
The	values	to	set.

Prototype:
void	GetXYZ(float	xyz[3])	const;

Remarks:
This	method	will	return	the	XYZ	space	values.

Parameters:
float	xyz[3]
The	values	are	stored	in	this	array.

Prototype:
void	SetXYZ(const	float	xyz[3]);

Remarks:
This	method	allows	you	to	set	the	XYZ	space	values.

Parameters:
const	float	xyz[3]
The	values	to	set.

Prototype:
static	void	XYZtoRGB(const	float	xyz[3],	float	rgb[3]);

Remarks:

This	method	will	convert	from	XYZ	space	to	RGB	space.
Parameters:
const	float	xyz[3]
The	input	values	to	convert.
float	rgb[3]
The	output	values	are	stored	in	this	array.

Prototype:
static	void	RGBtoXYZ(const	float	rgb[3],	float	xyz[3]);

Remarks:
This	method	will	convert	from	RGB	space	to	XYZ	space.

Parameters:
const	float	rgb[3]
The	input	values	to	convert.
float	xyz[3]
The	output	values	are	stored	in	this	array.

Class	BitmapStorageLDR
See	Also:	Class	BitmapStorage.
class	BitmapStorageLDR	:	public	BitmapStorage

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	the	base	class	for	the	development	of	plug-in	Bitmap	Storage	plug-ins
that	don't	use	Hight	Dynamic	Range	bitmaps.
Note	that	bVirtual	is	actuall	a	shortcut	macro	for	BMMExport	virtual.
All	methods	of	this	class	are	implemented	by	the	System.

Methods:
public:

Prototype:
bVirtual	int	IsHighDynamicRange();

Remarks:
This	method	returns	0	if	the	bitmap	is	not	a	high	dynamic	range	bitmap	or	1	if
it	is.

Default	Implementation:
{	return(0);	}
	

Prototype:
bVirtual	int	StraightCopy(Bitmap	*from);

Remarks:
Implemented	by	the	System.
This	method	does	a	straightforward	copy	from	the	specified	bitmap.

Parameters:
Bitmap	*from
The	bitmap	to	copy	from.

Prototype:
bVirtual	int	Get16Gray(int	x,int	y,int	pixels,float	*ptr);

Remarks:
Implemented	by	the	System.
Retrieves	the	specified	16	bit	grayscale	pixels	from	the	storage.	This	method
operates	on	a	single	scanline	of	the	image	at	a	time.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.
float	*ptr
Pointer	to	the	storage	for	the	retrieved	pixels.

Return	Value:
Nonzero	if	pixels	were	retrieved;	otherwise	0.

Prototype:
bVirtual	int	Put16Gray(int	x,int	y,int	pixels,float	*ptr);

Remarks:
Implemented	by	the	System.
Stores	the	16	bit	grayscale	pixels	to	the	specified	location	in	the	storage.	This
method	operates	on	a	single	scanline	of	the	image	at	a	time.

Parameters:
int	x
Destination	x	location.
int	y
Destination	y	location.
int	pixels
Number	of	pixels	to	store.
float	*ptr

Pointer	to	the	storage	for	the	pixels.
Return	Value:
Nonzero	if	pixels	were	stored;	otherwise	0.

Prototype:
bVirtual	int	GetLinearPixels(int	x,int	y,int	pixels,BMM_Color_fl
*ptr);

Remarks:
Implemented	by	the	Plug-In.
This	method	retrieves	the	specified	64	bit	true	color	pixels	from	the	storage.
Pixels	returned	from	this	method	are	NOT	gamma	corrected.	These	have
linear	gamma	(1.0).	This	method	operates	on	a	single	scanline	of	the	image	at
a	time.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.
BMM_Color_fl	*ptr
Pointer	to	the	storage	for	the	retrieved	pixels.

Return	Value:
Nonzero	if	pixels	were	retrieved;	otherwise	0.

Prototype:
bVirtual	int	GetPixels(int	x,int	y,int	pixels,BMM_Color_fl	*ptr);

Remarks:
Retrieves	the	specified	64-bit	pixel	values	from	the	bitmap.	Note:	This	method
provides	access	to	pixel	data	one	scanline	at	a	time.

Parameters:
int	x

Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.
BMM_Color_fl	*ptr
Pointer	to	the	storage	for	the	retrieved	pixels.

Return	Value:
Returns	nonzero	if	pixels	were	retrieved;	otherwise	0.	If	storage	has	not	been
allocated	0	is	returned.

Prototype:
bVirtual	int	PutPixels(int	x,int	y,int	pixels,BMM_Color_fl	*ptr);

Remarks:
Stores	the	specified	64-bit	pixel	values	into	the	bitmap's	own	local	storage.
The	pointer	you	pass	to	this	method	may	be	freed	or	reused	as	soon	as	the
function	returns.	Note:	This	method	provides	access	to	pixel	data	one	scanline
at	a	time.

Parameters:
int	x
Destination	x	location.
int	y
Destination	y	location.
int	pixels
Number	of	pixels	to	store.
BMM_Color_fl	*ptr
The	pixels	values	to	store.

Return	Value:
Returns	nonzero	if	pixels	were	stored;	otherwise	0.	If	storage	has	not	been
allocated	0	is	returned.

Prototype:
bVirtual	int	GetIndexPixels(int	x,int	y,int	pixels,unsigned	char

*ptr)	=	0;
Remarks:
Implemented	by	the	System.
Retrieves	the	specified	index	color	pixels	from	the	storage.	This	is	used	to
retrieve	pixels	from	a	paletted	image.	This	method	operates	on	a	single
scanline	of	the	image	at	a	time.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.
unsigned	char	*ptr
Pointer	to	the	storage	for	the	pixels.

Return	Value:
Nonzero	if	pixels	were	retrieved;	otherwise	0.

Prototype:
bVirtual	int	PutIndexPixels(int	x,int	y,int	pixels,unsigned	char
*ptr)	=	0;

Remarks:
Implemented	by	the	System.
Stores	the	index	color	pixels	to	the	specified	location	in	the	storage.	This
method	operates	on	a	single	scanline	of	the	image	at	a	time.

Parameters:
int	x
Destination	x	location.
int	y
Destination	y	location.
int	pixels
Number	of	pixels	to	store.

unsigned	char	*ptr
The	pixels	values	to	store.

Return	Value:
Nonzero	if	pixels	were	stored;	otherwise	0.

Prototype:
bVirtual	int	CropImage(int	width,int	height,BMM_Color_fl
fillcolor);

Remarks:
Implemented	by	the	Plug-In.
Adjusts	the	bitmap	size	to	the	specified	dimensions.	The	image	is	not	resized
to	fit;	it	is	cropped	or	filled	with	fillcolor	pixels	to	accommodate	the	new	size.

Parameters:
int	width
The	new	horizontal	size	for	the	bitmap.
int	height
The	new	vertical	size	for	the	bitmap.
BMM_Color_fl	fillcolor
If	the	bitmap's	new	size	is	bigger	than	its	current	size,	this	is	the	color	used	to
fill	the	new	pixels.

Return	Value:
Nonzero	if	the	image	was	cropped;	otherwise	0.

Prototype:
bVirtual	int	CopyCrop(Bitmap	*from,	BMM_Color_64	fillcolor);

Remarks:
Implemented	by	the	Plug-In.
Copies	the	specified	bitmap	to	this	storage.	The	image	is	cropped	to	fit.

Parameters:
Bitmap	*from
The	bitmap	to	copy	to	this	bitmap.
BMM_Color_64	fillcolor

The	color	to	use	if	the	source	image	is	smaller	than	the	destination	image.
Return	Value:
Nonzero	if	the	copy/crop	was	performed;	otherwise	zero.

Prototype:
bVirtual	int	CopyCrop(Bitmap	*from,	BMM_Color_fl	fillcolor);

Remarks:
Implemented	by	the	Plug-In.
Copies	the	specified	bitmap	to	this	storage.	The	image	is	cropped	to	fit.

Parameters:
Bitmap	*from
The	bitmap	to	copy	to	this	bitmap.
BMM_Color_fl	fillcolor
The	color	to	use	if	the	source	image	is	smaller	than	the	destination	image.

Return	Value:
Nonzero	if	the	copy/crop	was	performed;	otherwise	zero.

Prototype:
bVirtual	int	CopyScaleLow(Bitmap	*from);

Remarks:
Implemented	by	the	System.
This	method	copies	the	specified	bitmap	to	this	storage.	The	source	bitmap	is
scaled	to	fit	using	a	lower	quality	but	faster	algorithm	than
CopyScaleHigh().This	is	an	internal	function	implemented	within
BMM.DLL	for	copying	bitmaps	back	and	forth.	If	a	developer	creates	new
storage	type,	they	will	automatically	get	these	copy	functions	as	these	are
implemented	in	the	base	class.

Parameters:
Bitmap	*from
The	bitmap	to	copy	to	this	bitmap.

Return	Value:
Nonzero	if	the	copy/scale	was	performed;	otherwise	zero.

Prototype:
bVirtual	int	CopyScaleHigh(Bitmap	*from,	HWND	hWnd,
BMM_Color_64	**buf	=	NULL,	int	w=0,	int	h=0);

Remarks:
Implemented	by	the	System.
This	method	copies	the	specified	bitmap	to	this	storage.	The	source	bitmap	is
scaled	to	fit	using	a	higher	quality	but	slower	algorithm	than
CopyScaleLow().	This	is	an	internal	function	implemented	within
BMM.DLL	for	copying	bitmaps	back	and	forth.	If	a	developer	creates	new
storage	type,	they	will	automatically	get	these	copy	functions	as	these	are
implemented	in	the	base	class.

Prototype:
bVirtual	int	CopyScaleHigh(Bitmap	*from,	HWND	hWnd,
BMM_Color_fl	**buf	=	NULL,	int	w=0,	int	h=0);

Remarks:
Implemented	by	the	System.
This	method	copies	the	specified	bitmap	to	this	storage.	The	source	bitmap	is
scaled	to	fit	using	a	higher	quality	but	slower	algorithm	than
CopyScaleLow().	This	is	an	internal	function	implemented	within
BMM.DLL	for	copying	bitmaps	back	and	forth.	If	a	developer	creates	new
storage	type,	they	will	automatically	get	these	copy	functions	as	these	are
implemented	in	the	base	class.

Prototype:
bVirtual	int	CopyImage(Bitmap	*from,int
operation,BMM_Color_64	fillcolor,	BitmapInfo	*bi	=	NULL);

Remarks:
Implemented	by	the	Plug-In.
Copies	the	specified	bitmap	to	this	storage.	The	image	is	cropped	or	resized	as
specified.

Parameters:
Bitmap	*from

The	source	bitmap.
int	operation
The	type	of	copy	to	perform:
COPY_IMAGE_CROP
Copy	image	to	current	map	size	using	cropping	if	necessary.
COPY_IMAGE_RESIZE_LO_QUALITY
Resize	the	source	image	to	the	destination	map	size	(draft	quality).
COPY_IMAGE_RESIZE_HI_QUALITY
Resize	source	image	to	the	destination	map	size	(final	quality).
COPY_IMAGE_USE_CUSTOM
Resize	based	on	the	Image	Input	Options	(BitmapInfo	*).

BMM_Color_64	fillcolor
Vacant	areas	of	the	bitmap	are	filled	with	fillcolor	pixels	if	the	operation
specified	is	COPY_IMAGE_CROP	and	one	of	the	source	bitmap
dimensions	is	less	than	the	size	of	this	bitmap.
BitmapInfo	*bi	=	NULL
When	using	custom	options	(resize	to	fit,	positioning,	etc.)	this	is	how	the
flags	are	passed	down	to	the	Bitmap	Manager.	This	is	an	optional	argument	--
for	simple	copy	operations,	*bi	can	default	to	NULL.	If	present,	the	code
checks	the	option	flags	and	acts	accordingly.

Return	Value:
Nonzero	if	the	copy	was	performed;	otherwise	0.

Prototype:
bVirtual	int	CopyImage(Bitmap	*from,int
operation,BMM_Color_fl	fillcolor,	BitmapInfo	*bi	=	NULL);

Remarks:
Implemented	by	the	Plug-In.
Copies	the	specified	bitmap	to	this	storage.

Parameters:
Bitmap	*from
The	source	bitmap.
int	operation

The	type	of	copy	to	perform:
COPY_IMAGE_CROP
Copy	image	to	current	map	size	using	cropping	if	necessary.
COPY_IMAGE_RESIZE_LO_QUALITY
Resize	the	source	image	to	the	destination	map	size	(draft	quality).
COPY_IMAGE_RESIZE_HI_QUALITY
Resize	source	image	to	the	destination	map	size	(final	quality).
COPY_IMAGE_USE_CUSTOM
Resize	based	on	the	Image	Input	Options	(BitmapInfo	*).

BMM_Color_fl	fillcolor
Vacant	areas	of	the	bitmap	are	filled	with	fillcolor	pixels	if	the	operation
specified	is	COPY_IMAGE_CROP	and	one	of	the	source	bitmap
dimensions	is	less	than	the	size	of	this	bitmap.
BitmapInfo	*bi	=	NULL
When	using	custom	options	(resize	to	fit,	positioning,	etc.)	this	is	how	the
flags	are	passed	down	to	the	Bitmap	Manager.	This	is	an	optional	argument	--
for	simple	copy	operations,	*bi	can	default	to	NULL.	If	present,	the	code
checks	the	option	flags	and	acts	accordingly.

Return	Value:
Nonzero	if	the	copy	was	performed;	otherwise	0.
	

Prototype:
bVirtual	int	CopyImage(Bitmap	*from,int	operation,int	fillindex);

Remarks:
Implemented	by	the	Plug-In.
Copies	the	specified	bitmap	to	this	storage.

Parameters:
Bitmap	*from
The	source	bitmap.
int	operation
The	type	of	copy	to	perform:
COPY_IMAGE_CROP

Copy	image	to	current	map	size	using	cropping	if	necessary.
COPY_IMAGE_RESIZE_LO_QUALITY
Resize	the	source	image	to	the	destination	map	size	(draft	quality).
COPY_IMAGE_RESIZE_HI_QUALITY
Resize	source	image	to	the	destination	map	size	(final	quality).
COPY_IMAGE_USE_CUSTOM
Resize	based	on	the	Image	Input	Options	(BitmapInfo	*).

int	fillindex
Vacant	areas	of	the	bitmap	are	filled	with	fillcolor	pixels	if	the	operation
specified	is	COPY_IMAGE_CROP	and	one	of	the	source	bitmap
dimensions	is	less	than	the	size	of	this	bitmap.

Return	Value:
Nonzero	if	the	copy	was	performed;	otherwise	0.

Prototype:
bVirtual	int	GetFiltered(float	u,float	v,float	du,float
dv,BMM_Color_fl	*ptr);

Remarks:
Implemented	by	the	Plug-In.
This	method	uses	summed	area	table	or	pyramidal	filtering	to	compute	an
averaged	color	over	a	specified	area.

Parameters:
float	u,	float	v
The	location	in	the	bitmap	to	filter.	These	values	go	from	0.0	to	1.0	across	the
size	of	the	bitmap.
float	du,	float	dv
The	size	of	the	rectangle	to	sample.	These	values	go	from	0.0	to	1.0	across	the
size	of	the	bitmap.
BMM_Color_fl	*ptr
The	result	is	returned	here	-	the	average	over	the	specified	area.

Class	BitmapStorageHDR
See	Also:	Class	BitmapStorage.
class	BitmapStorageHDR	:	public	BitmapStorage

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	the	base	class	for	the	development	of	plug-in	Bitmap	Storage	plug-ins
that	use	Hight	Dynamic	Range	bitmaps.
All	methods	of	this	class	are	implemented	by	the	System.

Methods:
public:

Prototype:
bVirtual	int	IsHighDynamicRange();

Remarks:
Implemented	by	the	System.
This	method	returns	0	if	the	bitmap	is	not	a	high	dynamic	range	bitmap	or	1	if
it	is.

Default	Implementation:
{	return(1);	}

Prototype:
bVirtual	int	StraightCopy(Bitmap	*from);

Remarks:
Implemented	by	the	System.
This	method	does	a	straightforward	copy	from	the	specified	bitmap.

Parameters:
Bitmap	*from
The	bitmap	to	copy	from.

Prototype:

bVirtual	int	Get16Gray(int	x,int	y,int	pixels,WORD	*ptr);
Remarks:
Implemented	by	the	System.
Retrieves	the	specified	16	bit	grayscale	pixels	from	the	storage.	This	method
operates	on	a	single	scanline	of	the	image	at	a	time.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.
WORD	*ptr
Pointer	to	the	storage	for	the	retrieved	pixels.

Return	Value:
Nonzero	if	pixels	were	retrieved;	otherwise	0.

Prototype:
bVirtual	int	Put16Gray(int	x,int	y,int	pixels,WORD	*ptr);

Remarks:
Implemented	by	the	System.
Stores	the	16	bit	grayscale	pixels	to	the	specified	location	in	the	storage.	This
method	operates	on	a	single	scanline	of	the	image	at	a	time.

Parameters:
int	x
Destination	x	location.
int	y
Destination	y	location.
int	pixels
Number	of	pixels	to	store.
WORD	*ptr
Pointer	to	the	storage	for	the	pixels.

Return	Value:
Nonzero	if	pixels	were	stored;	otherwise	0.

Prototype:
bVirtual	int	GetLinearPixels(int	x,int	y,int	pixels,BMM_Color_64
*ptr);

Remarks:
Implemented	by	the	Plug-In.
This	method	retrieves	the	specified	64	bit	true	color	pixels	from	the	storage.
Pixels	returned	from	this	method	are	NOT	gamma	corrected.	These	have
linear	gamma	(1.0).	This	method	operates	on	a	single	scanline	of	the	image	at
a	time.

Parameters:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.
BMM_Color_64	*ptr
Pointer	to	the	storage	for	the	retrieved	pixels.

Return	Value:
Nonzero	if	pixels	were	retrieved;	otherwise	0.

Prototype:
bVirtual	int	GetPixels(int	x,int	y,int	pixels,BMM_Color_64	*ptr);

Remarks:
int	x
Source	x	location.
int	y
Source	y	location.
int	pixels
Number	of	pixels	to	retrieve.

BMM_Color_fl	*ptr
Pointer	to	the	storage	for	the	retrieved	pixels.

Return	Value:
Returns	nonzero	if	pixels	were	retrieved;	otherwise	0.	If	storage	has	not	been
allocated	0	is	returned.

Prototype:
bVirtual	int	PutPixels(int	x,int	y,int	pixels,BMM_Color_64	*ptr);

Remarks:
Stores	the	specified	64-bit	pixel	values	into	the	bitmap's	own	local	storage.
The	pointer	you	pass	to	this	method	may	be	freed	or	reused	as	soon	as	the
function	returns.	Note:	This	method	provides	access	to	pixel	data	one	scanline
at	a	time.

Parameters:
int	x
Destination	x	location.
int	y
Destination	y	location.
int	pixels
Number	of	pixels	to	store.
BMM_Color_fl	*ptr
The	pixels	values	to	store.

Return	Value:
Returns	nonzero	if	pixels	were	stored;	otherwise	0.	If	storage	has	not	been
allocated	0	is	returned.

Prototype:
bVirtual	int	CropImage(int	width,int	height,BMM_Color_64
fillcolor);

Remarks:
Implemented	by	the	Plug-In.
Adjusts	the	bitmap	size	to	the	specified	dimensions.	The	image	is	not	resized
to	fit;	it	is	cropped	or	filled	with	fillcolor	pixels	to	accommodate	the	new	size.

Parameters:
int	width
The	new	horizontal	size	for	the	bitmap.
int	height
The	new	vertical	size	for	the	bitmap.
BMM_Color_64	fillcolor
If	the	bitmap's	new	size	is	bigger	than	its	current	size,	this	is	the	color	used	to
fill	the	new	pixels.

Return	Value:
Nonzero	if	the	image	was	cropped;	otherwise	0.

Prototype:
bVirtual	int	CropImage(int	width,int	height,int	fillindex);

Remarks:
Implemented	by	the	Plug-In.
Adjusts	the	bitmap	size	to	the	specified	dimensions.	The	image	is	not	resized
to	fit;	it	is	cropped	or	filled	with	fillcolor	pixels	to	accommodate	the	new	size.

Parameters:
int	width
The	new	horizontal	size	for	the	bitmap.
int	height
The	new	vertical	size	for	the	bitmap.
int	fillindex
If	the	bitmap's	new	size	is	bigger	than	its	current	size,	this	is	the	color	used	to
fill	the	new	pixels.

Return	Value:
Nonzero	if	the	image	was	cropped;	otherwise	0.

Prototype:
bVirtual	int	CopyCrop(Bitmap	*from,	BMM_Color_64	fillcolor);

Remarks:
Implemented	by	the	Plug-In.

Copies	the	specified	bitmap	to	this	storage.	The	image	is	cropped	to	fit.
Parameters:
Bitmap	*from
The	bitmap	to	copy	to	this	bitmap.
BMM_Color_64	fillcolor
The	color	to	use	if	the	source	image	is	smaller	than	the	destination	image.

Return	Value:
Nonzero	if	the	copy/crop	was	performed;	otherwise	zero.

Prototype:
bVirtual	int	CopyCrop(Bitmap	*from,	BMM_Color_fl	fillcolor);

Remarks:
Implemented	by	the	Plug-In.
Copies	the	specified	bitmap	to	this	storage.	The	image	is	cropped	to	fit.

Parameters:
Bitmap	*from
The	bitmap	to	copy	to	this	bitmap.
BMM_Color_fl	fillcolor
The	color	to	use	if	the	source	image	is	smaller	than	the	destination	image.

Return	Value:
Nonzero	if	the	copy/crop	was	performed;	otherwise	zero.

Prototype:
bVirtual	int	CopyScaleLow(Bitmap	*from);

Remarks:
Implemented	by	the	System.
This	method	copies	the	specified	bitmap	to	this	storage.	The	source	bitmap	is
scaled	to	fit	using	a	lower	quality	but	faster	algorithm	than
CopyScaleHigh().This	is	an	internal	function	implemented	within
BMM.DLL	for	copying	bitmaps	back	and	forth.	If	a	developer	creates	new
storage	type,	they	will	automatically	get	these	copy	functions	as	these	are
implemented	in	the	base	class.

Parameters:
Bitmap	*from
The	bitmap	to	copy	to	this	bitmap.

Return	Value:
Nonzero	if	the	copy/scale	was	performed;	otherwise	zero.

Prototype:
bVirtual	int	CopyScaleHigh(Bitmap	*from,	HWND	hWnd,
BMM_Color_64	**buf	=	NULL,	int	w=0,	int	h=0);

Remarks:
Implemented	by	the	System.
This	method	copies	the	specified	bitmap	to	this	storage.	The	source	bitmap	is
scaled	to	fit	using	a	higher	quality	but	slower	algorithm	than
CopyScaleLow().	This	is	an	internal	function	implemented	within
BMM.DLL	for	copying	bitmaps	back	and	forth.	If	a	developer	creates	new
storage	type,	they	will	automatically	get	these	copy	functions	as	these	are
implemented	in	the	base	class.

Prototype:
bVirtual	int	CopyScaleHigh(Bitmap	*from,	HWND	hWnd,
BMM_Color_fl	**buf	=	NULL,	int	w=0,	int	h=0);

Remarks:
Implemented	by	the	System.
This	method	copies	the	specified	bitmap	to	this	storage.	The	source	bitmap	is
scaled	to	fit	using	a	higher	quality	but	slower	algorithm	than
CopyScaleLow().	This	is	an	internal	function	implemented	within
BMM.DLL	for	copying	bitmaps	back	and	forth.	If	a	developer	creates	new
storage	type,	they	will	automatically	get	these	copy	functions	as	these	are
implemented	in	the	base	class.

Prototype:
bVirtual	int	CopyImage(Bitmap	*from,int
operation,BMM_Color_64	fillcolor,	BitmapInfo	*bi	=	NULL);

Remarks:
Implemented	by	the	Plug-In.
Copies	the	specified	bitmap	to	this	storage.	The	image	is	cropped	or	resized	as
specified.

Parameters:
Bitmap	*from
The	source	bitmap.
int	operation
The	type	of	copy	to	perform:
COPY_IMAGE_CROP
Copy	image	to	current	map	size	using	cropping	if	necessary.
COPY_IMAGE_RESIZE_LO_QUALITY
Resize	the	source	image	to	the	destination	map	size	(draft	quality).
COPY_IMAGE_RESIZE_HI_QUALITY
Resize	source	image	to	the	destination	map	size	(final	quality).
COPY_IMAGE_USE_CUSTOM
Resize	based	on	the	Image	Input	Options	(BitmapInfo	*).

BMM_Color_64	fillcolor
Vacant	areas	of	the	bitmap	are	filled	with	fillcolor	pixels	if	the	operation
specified	is	COPY_IMAGE_CROP	and	one	of	the	source	bitmap
dimensions	is	less	than	the	size	of	this	bitmap.
BitmapInfo	*bi	=	NULL
When	using	custom	options	(resize	to	fit,	positioning,	etc.)	this	is	how	the
flags	are	passed	down	to	the	Bitmap	Manager.	This	is	an	optional	argument	--
for	simple	copy	operations,	*bi	can	default	to	NULL.	If	present,	the	code
checks	the	option	flags	and	acts	accordingly.

Return	Value:
Nonzero	if	the	copy	was	performed;	otherwise	0.

Prototype:
bVirtual	int	CopyImage(Bitmap	*from,int
operation,BMM_Color_fl	fillcolor,	BitmapInfo	*bi	=	NULL);

Remarks:

Implemented	by	the	Plug-In.
Copies	the	specified	bitmap	to	this	storage.

Parameters:
Bitmap	*from
The	source	bitmap.
int	operation
The	type	of	copy	to	perform:
COPY_IMAGE_CROP
Copy	image	to	current	map	size	using	cropping	if	necessary.
COPY_IMAGE_RESIZE_LO_QUALITY
Resize	the	source	image	to	the	destination	map	size	(draft	quality).
COPY_IMAGE_RESIZE_HI_QUALITY
Resize	source	image	to	the	destination	map	size	(final	quality).
COPY_IMAGE_USE_CUSTOM
Resize	based	on	the	Image	Input	Options	(BitmapInfo	*).

BMM_Color_fl	fillcolor
Vacant	areas	of	the	bitmap	are	filled	with	fillcolor	pixels	if	the	operation
specified	is	COPY_IMAGE_CROP	and	one	of	the	source	bitmap
dimensions	is	less	than	the	size	of	this	bitmap.
BitmapInfo	*bi	=	NULL
When	using	custom	options	(resize	to	fit,	positioning,	etc.)	this	is	how	the
flags	are	passed	down	to	the	Bitmap	Manager.	This	is	an	optional	argument	--
for	simple	copy	operations,	*bi	can	default	to	NULL.	If	present,	the	code
checks	the	option	flags	and	acts	accordingly.

Return	Value:
Nonzero	if	the	copy	was	performed;	otherwise	0.

Prototype:
bVirtual	int	CopyImage(Bitmap	*from,int	operation,int	fillindex);

Remarks:
Implemented	by	the	Plug-In.
Copies	the	specified	bitmap	to	this	storage.

Parameters:

Bitmap	*from
The	source	bitmap.
int	operation
The	type	of	copy	to	perform:
COPY_IMAGE_CROP
Copy	image	to	current	map	size	using	cropping	if	necessary.
COPY_IMAGE_RESIZE_LO_QUALITY
Resize	the	source	image	to	the	destination	map	size	(draft	quality).
COPY_IMAGE_RESIZE_HI_QUALITY
Resize	source	image	to	the	destination	map	size	(final	quality).
COPY_IMAGE_USE_CUSTOM
Resize	based	on	the	Image	Input	Options	(BitmapInfo	*).

int	fillindex
Vacant	areas	of	the	bitmap	are	filled	with	fillcolor	pixels	if	the	operation
specified	is	COPY_IMAGE_CROP	and	one	of	the	source	bitmap
dimensions	is	less	than	the	size	of	this	bitmap.

Return	Value:
Nonzero	if	the	copy	was	performed;	otherwise	0.

Prototype:
bVirtual	int	GetFiltered(float	u,float	v,float	du,float
dv,BMM_Color_64	*ptr);

Remarks:
Implemented	by	the	Plug-In.
This	method	uses	summed	area	table	or	pyramidal	filtering	to	compute	an
averaged	color	over	a	specified	area.

Parameters:
float	u,	float	v
The	location	in	the	bitmap	to	filter.	These	values	go	from	0.0	to	1.0	across	the
size	of	the	bitmap.
float	du,	float	dv
The	size	of	the	rectangle	to	sample.	These	values	go	from	0.0	to	1.0	across	the
size	of	the	bitmap.

BMM_Color_fl	*ptr
The	result	is	returned	here	-	the	average	over	the	specified	area.

	

Class	AColor
See	Also:	Class	Color,	Structure	BMM_Color_24,	Structure	BMM_Color_32,
Structure	BMM_Color_48,	Structure	BMM_Color_64,	Structure
BMM_Color_fl,	Structure	RealPixel.
class	Acolor

Description:
This	class	represents	color	as	four	floating	point	values:	r,	g,	b,	and	an	alpha
channel	a.	All	methods	of	this	class	are	implemented	by	the	system.
Also	note	the	following	typedef:
typedef	AColor	RGBA;

Data	Members:
public:
	float	r,g,b,a;
	These	values	are	in	the	range	0.0	to	1.0.

Methods:

Prototype:
AColor()

Remarks:
Constructor.	The	resulting	object	should	be	initialized	with	one	of	the
initialization	methods.

Prototype:
AColor(float	R,	float	G,	float	B,	float	A=1.0f)

Remarks:
Constructor.	Initializes	the	AColor	to	the	RGBA	color	values	passed.

Prototype:
AColor(double	R,	double	G,	double	B,	double	A=1.0)

Remarks:
Constructor.	Initializes	the	AColor	to	the	RGBA	color	values	passed	(cast	to

float).

Prototype:
AColor(int	R,	int	G,	int	B,	int	A=0)

Remarks:
Constructor.	Initializes	the	AColor	to	the	RGBA	color	values	passed	(cast	to
float).

Prototype:
AColor(const	AColor&	c)

Remarks:
Constructor.	Initializes	the	AColor	to	the	AColor	passed.

Prototype:
AColor(const	Color&	c,	float	alph=1.0f)

Remarks:
Constructor.	Initializes	the	AColor	to	the	Color	passed,	optionally	specifying
an	alpha	value.

Prototype:
AColor(DWORD	rgb,	float	alph=1.0f);

Remarks:
Constructor.	Initializes	the	color	to	the	Windows	RGB	value,	optionally
specifying	an	alpha	value.

Prototype:
AColor(float	af[4])

Remarks:
Constructor.	Initializes	the	color	to	the	value	passed.

Parameters:
float	af[3]
Specifies	the	color.	r=af[0],	g=af[1],	b=af[2],	a=af[3].

Prototype:
AColor(const	BMM_Color_24&	c);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Constructor.	Initializes	this	AColor	from	the	24	bit	color	value	passed.

Parameters:
const	BMM_Color_24&	c
The	24	bit	color	to	initialize	from.

Prototype:
AColor(const	BMM_Color_32&	c);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Constructor.	Initializes	this	AColor	from	the	32	bit	color	value	passed.

Parameters:
const	BMM_Color_32&	c
The	32	bit	color	to	initialize	from.

Prototype:
AColor(const	BMM_Color_48&	c);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Constructor.	Initializes	this	AColor	from	the	48	bit	color	value	passed.

Parameters:
const	BMM_Color_48&	c
The	48	bit	color	to	initialize	from.

Prototype:
AColor(const	BMM_Color_64&	c);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

Constructor.	Initializes	this	AColor	from	the	64	bit	color	value	passed.
Parameters:
const	BMM_Color_64&	c
The	64	bit	color	to	initialize	from.

Prototype:
AColor(const	BMM_Color_fl&	c);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Constructor.	Initializes	this	AColor	from	the	floating	point	color	passed.

Parameters:
const	BMM_Color_fl&	c
The	floating	point	color	to	initialize	from.	No	conversion	or	scaling	is	done.

Prototype:
void	Black()

Remarks:
Sets	this	AColor	to	black.	r	=	g	=	b	=	0.0f;	a=	1.0f

Prototype:
void	White()

Remarks:
Sets	the	AColor	to	white.	r	=	g	=	b	=	a	=	1.0f

Prototype:
void	ClampMin();

Remarks:
Makes	all	the	components	of	the	AColor	>=	0.0

Prototype:
void	ClampMax();

Remarks:
Makes	all	the	components	of	the	AColor	<=	1.0

Prototype:
void	ClampMinMax();

Remarks:
Makes	all	the	components	of	the	AColor	fall	in	the	range	0.0	to	1.0.

Prototype:
float&	operator[](int	i)
const	float&	operator[](int	i)	const

Remarks:
Access	operators.

Parameters:
int	i
The	index	of	the	component	to	return.

Return	Value:
0=r,	1=g,	2=b,	3=a.

Prototype:
operator	float*();

Remarks:
Conversion	function.
Returns	a	pointer	to	the	AColor.

Prototype:
operator	DWORD()

Remarks:
Convert	the	AColor	to	a	Windows	RGB	color.	See	COLORREF.

Return	Value:
A	Windows	RGB	color.

Prototype:
operator	Point3();

Remarks:
Convert	the	AColor	to	a	Point3.

Return	Value:
A	Point3.	x=r,	y=g,	z=b.

Prototype:
operator	BMM_Color_24();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Converts	this	AColor	to	the	BMM_Color_24	format.

	

Prototype:
operator	BMM_Color_32();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Converts	this	AColor	to	the	BMM_Color_32	format.

Prototype:
operator	BMM_Color_48();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Converts	this	AColor	to	the	BMM_Color_48	format.

Prototype:
operator	BMM_Color_64();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Converts	this	AColor	to	the	BMM_Color_64	format.

Prototype:
operator	BMM_Color_fl();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Converts	this	AColor	to	the	BMM_Color_fl	format.

Prototype:
AColor	operator-()	const

Remarks:
Unary	-	operator.

Return	Value:
The	Color	with	the	components	negated,	i.e.
{	return(AColor(-r,-g,-b,	-a));	}

Prototype:
AColor	operator+()	const

Remarks:
Unary	+	operator.

Return	Value:
The	AColor	itself.

Prototype:
inline	AColor&	operator-=(const	AColor&);

Remarks:
Subtracts	an	AColor	from	this	AColor.

Return	Value:
A	Color	that	is	the	difference	between	two	Colors.

Prototype:
inline	AColor&	operator+=(const	AColor&);

Remarks:
Adds	an	AColor	to	this	AColor.

Return	Value:
An	AColor	that	is	the	sum	of	two	AColors.

Prototype:
inline	AColor&	operator*=(float);

Remarks:
Multiplies	the	components	of	this	AColor	by	a	float.

Return	Value:
An	AColor	multiplied	by	a	float.

Prototype:
inline	AColor&	operator/=(float);

Remarks:
Divides	the	components	of	this	AColor	by	a	float.

Return	Value:
An	AColor	divided	by	a	float.

Prototype:
inline	AColor&	operator*=(const	AColor&);

Remarks:
Performs	element-by-element	multiplying	between	two	AColors.

Return	Value:
This	AColor	element-by-element	multiplied	by	another	AColor.

Prototype:
int	operator==(const	AColor&	p)	const

Remarks:
Test	for	equality	between	two	AColors.

Return	Value:
Nonzero	if	the	AColors	are	equal;	otherwise	0.

Prototype:
int	operator!=(const	AColor&	p)	const

Remarks:

Tests	for	inequality	between	two	AColors.
Return	Value:
Nonzero	if	the	AColors	are	not	equal;	otherwise	0.

Prototype:
inline	AColor	operator-(const	AColor&)	const;

Remarks:
Subtracts	an	AColor	from	an	AColor.

Return	Value:
An	AColor	that	is	the	difference	between	two	AColors.

Prototype:
inline	AColor	operator+(const	AColor&)	const;

Remarks:
Adds	an	AColor	to	an	AColor.

Return	Value:
An	AColor	that	is	the	difference	between	two	AColors.

Prototype:
inline	AColor	operator/(const	AColor&)	const;

Remarks:
Divides	an	AColor	by	an	AColor.

Return	Value:
An	AColor	divided	by	an	AColor.	r/r,	g/g,	b/b,	a/a.

Prototype:
inline	AColor	operator*(const	AColor&)	const;

Remarks:
Multiplies	an	AColor	by	an	AColor.

Return	Value:
An	AColor	multiplied	by	an	AColor.	r*r,	g*g,	b*b,	a*a.

Prototype:
inline	AColor	operator^(const	AColor&)	const;

Remarks:
Cross	product	of	two	AColors.

Return	Value:
An	AColor	that	is	the	cross	product	of	two	AColors.

Prototype:
int	MaxComponent(const	Color&)

Remarks:
Returns	the	index	of	the	component	with	the	maximum	absolute	value.

Parameters:
const	Color&
The	color	to	check.

Return	Value:
The	index	of	the	component	with	the	maximum	absolute	value.	r=0,	g=1,	b=2,
a=3.

Prototype:
int	MinComponent(const	Color&)

Remarks:
Returns	the	index	of	the	component	with	the	minimum	absolute	value.

Parameters:
const	Color&
The	color	to	check.

Return	Value:
The	index	of	the	component	with	the	minimum	absolute	value.	r=0,	g=1,	b=2,
a=3.

Prototype:
inline	AColor	operator*(float	f,	const	AColor&	a)
inline	AColor	operator*(const	AColor&	a,	float	f)

Remarks:
Multiplies	each	component	of	an	AColor	by	a	float.

Return	Value:
An	AColor	with	each	component	multiplied	by	a	float.

Prototype:
inline	AColor	CompOver(const	AColor	&fg,	const	AColor&	bg)

Remarks:
Composite	fg	over	bg,	assuming	associated	alpha,	i.e.	pre-multiplied	alpha	for
both	fg	and	bg
This	is:	fg	+	(1.0f-fg.a)*bg

Parameters:
const	AColor	&fg
Specifies	the	foreground	color	to	composite.
const	AColor&	bg
Specifies	the	background	color	to	composite	over.

Return	Value:
The	resulting	AColor.

Class	StdCubic
See	Also:	Class	Texmap.
class	StdCubic	:	public	Texmap

Description:
This	class	provides	access	to	the	parameters	of	the	standard	3ds	max
Reflect/Refract	texture.	All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	void	SetSize(int	n,	TimeValue	t)=0;

Remarks:
Sets	the	map	size	parameter.

Parameters:
int	n
The	size	in	pixels.
TimeValue	t
The	time	to	set	the	value.

Prototype:
virtual	void	SetDoNth(BOOL	onoff)=0;

Remarks:
Sets	the	'Every	Nth	Frame'	or	'First	Frame	Only'	toggle.

Parameters:
BOOL	onoff
TRUE	for	'Every	Nth	Frame';	FALSE	for	'First	Frame	Only'.

Prototype:
virtual	void	SetNth(int	n)=0;

Remarks:
Sets	the	'Nth	Frame'	parameter	to	the	specified	value.

Parameters:

int	n
The	Nth	Frame	setting.

Prototype:
virtual	void	SetApplyBlur(BOOL	onoff)=0;

Remarks:
Sets	or	clears	the	'Apply	blur'	checkbox.

Parameters:
BOOL	onoff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetBlur(float	b,	TimeValue	t)=0;

Remarks:
Sets	the	blur	setting	to	the	specified	value	at	the	specified	time.

Parameters:
float	b
The	value	to	set.
TimeValue	t
The	time	to	set	the	value.

Prototype:
virtual	void	SetBlurOffset(float	b,	TimeValue	t)=0;

Remarks:
Sets	the	blur	offset	setting	to	the	specified	value	at	the	specified	time.

Parameters:
float	b
The	value	to	set.
TimeValue	t
The	time	to	set	the	value.

Prototype:

virtual	void	UseHighDynamicRange(BOOL	onoff)=0;
Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	if	the	reflect	/	refract	texture	uses	high	dynamic	range	bitmaps	or	not.	See
Working	With	Bitmaps	for	details	on	high	dynamic	range	bitmaps.

Parameters:
BOOL	onoff
Pass	TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	int	GetSize(TimeValue	t)=0;

Remarks:
Returns	the	size	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.

Prototype:
virtual	BOOL	GetDoNth()=0;

Remarks:
Returns	the	state	of	the	'Every	Nth	Frame'	or	'First	Frame	Only'	toggle.

Return	Value:
BOOL	onoff
TRUE	is	'Every	Nth	Frame';	FALSE	is	'First	Frame	Only'.

Prototype:
virtual	int	GetNth()=0;

Remarks:
Returns	the	Nth	Frame	setting.

Prototype:

virtual	BOOL	GetApplyBlur()=0;
Remarks:
Returns	the	state	of	the	'Apply	blur'	checkbox.

Return	Value:
TRUE	is	on;	FALSE	is	off.

Prototype:
virtual	float	GetBlur(TimeValue	t)=0;

Remarks:
Returns	the	blur	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.

Prototype:
virtual	float	GetBlurOffset(TimeValue	t)=0;

Remarks:
Returns	the	blur	offset	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.

Class	StdMirror
See	Also:	Class	Texmap.
class	StdMirror	:	public	Texmap

Description:
This	class	provides	access	to	the	3ds	max	Flat	Mirror	material.	All	methods	of
this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	void	SetDoNth(BOOL	onoff)=0;

Remarks:
This	method	determines	if	'Every	Nth	Frame'	or	'First	Frame	Only'	is	used.

Parameters:
BOOL	onoff
TRUE	for	Every	Nth	Frame;	FALSE	for	First	Frame	Only.

Prototype:
virtual	void	SetNth(int	n)=0;

Remarks:
This	methods	controls	the	'Nth	Frame'	value.

Parameters:
int	n
The	number	of	frames.

Prototype:
virtual	void	SetApplyBlur(BOOL	onoff)=0;

Remarks:
This	method	controls	the	'Apply	Blur'	check	box	setting.

Parameters:
BOOL	onoff
TRUE	to	toggle	on;	FALSE	to	toggle	off.

Prototype:
virtual	void	SetBlur(float	b,	TimeValue	t)=0;

Remarks:
Sets	the	specified	blur	value	at	the	specified	time.

Parameters:
float	b
The	blur	value	to	set	in	the	range	0.0	to	100.0
TimeValue	t
The	time	at	which	to	set	the	blur	value.

Prototype:
virtual	void	UseHighDynamicRange(BOOL	onoff)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	if	the	mirror	texture	uses	high	dynamic	range	bitmaps	or	not.	See
Working	With	Bitmaps	for	details	on	high	dynamic	range	bitmaps.

Parameters:
BOOL	onoff
Pass	TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetDoNth()=0;

Remarks:
Determines	if	'Every	Nth	Frame'	or	'First	Frame	Only'	is	used.

Return	Value:
TRUE	if	Every	Nth	Frame	is	in	use;	FALSE	if	First	Frame	Only	is	in	use.

Prototype:
virtual	int	GetNth()=0;

Remarks:
Returns	the	Nth	Frame	setting.

Prototype:
virtual	BOOL	GetApplyBlur()=0;

Remarks:
Returns	TRUE	if	the	Apply	Blur	check	box	is	on;	otherwise	FALSE.

Prototype:
virtual	float	GetBlur(TimeValue	t)=0;

Remarks:
Returns	the	blur	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	retrieve	the	blur	setting.

Structure	BMM_Color_24
See	Also:	Class	Bitmap,	Class	BitmapStorage,	Class	BitmapManager.
typedef	struct	{
BYTE	r,g,b;
24	bit	color:	8	bits	each	for	Red,	Green,	and	Blue.

}	BMM_Color_24;

Structure	BMM_Color_32
See	Also:	Class	Bitmap,	Class	BitmapStorage,	Class	BitmapManager.
typedef	struct	{
BYTE	r,g,b,a;
32	bit	color:	8	bits	each	for	Red,	Green,	Blue,	and	Alpha.

}	BMM_Color_32;

Structure	BMM_Color_48
See	Also:	Class	Bitmap,	Class	BitmapStorage,	Class	BitmapManager.
typedef	struct	{
WORD	r,g,b;
48	bit	color:	16	bits	each	for	Red,	Green,	and	Blue.

}	BMM_Color_48;

Structure	BMM_Color_64
See	Also:	Class	Bitmap,	Class	BitmapStorage,	Class	BitmapManager.
typedef	struct	{
WORD	r,g,b,a;
64	bit	color:	16	bits	each	for	Red,	Green,	Blue,	and	Alpha.

}	BMM_Color_64;

Structure	RealPixel
See	Also:	Class	Color.
struct	RealPixel

Description:
This	structure	describes	color	in	terms	of	r,	g,	b,	e.
This	is	taken	from	GraphicsGems	II,	"Real	Pixels"	by	Greg	Ward	of	Lawrence
Berkeley	Laboratory.	What	it	means	is	this:	"e"	is	the	base	2	exponent	of	the
maximum	RGB	component,	and	r,g,b	are	the	mantissas	of	R,G,and	B,	relative
to	this	exponent.	It	essentially	compresses	the	essential	data	of	a	floating	point
color	into	32	bits.
Quoting	from	Graphics	Gems	II:
"It	appears	that	this	format	favors	the	largest	primary	value	at	the	expense	of
accuracy	in	the	other	two	primaries.	This	is	true,	but	it	also	is	true	that	the	largest
value	dominates	the	displayed
pixel	color	so	that	the	other	primaries	become	less	noticeable"
One	GBuffer	option	is	to	write	out	the	image	in	RealPixel	format,	storing	NON
CLAMPED	colors.	This	could	be	used	by	a	Video	Post	process	to	detect	those
areas	of	the	image	where	the	intensity	goes	beyond	1	and	apply	halo	and	flare
effects	much	more	realistically.
There	are	functions	for	converting	between	floating	point	and	RealPixel	format:
RealPixel	MakeRealPixel(float	r,	float	g,	float	b);
ExpandRealPixel(RealPixel	&rp,	float&	r,	float	&g,	float&	b);

as	well	as	methods	in	RealPixel	and	Color.

Structure	Data:
unsigned	char	e;
The	base	2	exponent	of	the	maximum	RGB	component.
unsigned	char	r,g,b;
The	mantissas	of	R,G,and	B,	relative	to	this	exponent.

Operators:

Prototype:
operator	Color();

Remarks:
Converts	the	RealPixel	format	to	the	Color	format.

List	of	Copy	Image	Operations
COPY_IMAGE_CROP
Copy	image	to	current	map	size	using	cropping	if	necessary.
COPY_IMAGE_RESIZE_LO_QUALITY
Resize	the	source	image	to	the	destination	map	size	(draft	quality).
This	is	a	resize	from	50x50	to	150x150	using
COPY_IMAGE_RESIZE_LO_QUALITY

COPY_IMAGE_RESIZE_HI_QUALITY
Resize	source	image	to	the	destination	map	size	(final	quality).
This	is	a	resize	from	50x50	to	150x150	using
COPY_IMAGE_RESIZE_HI_QUALITY

COPY_IMAGE_USE_CUSTOM
Resize	based	on	the	Image	Input	Options	(BitmapInfo	pointer).

Pixel	Storage	Types
The	following	structures	are	defined	for	storing	pixel	data:
typedef	struct	{
BYTE	r,g,b;
}	BMM_Color_24;
This	is	used	for	storing	24	bit	color:	8	bits	each	for	Red,	Green,	and	Blue.
	
typedef	struct	{
BYTE	r,g,b,a;
}	BMM_Color_32;
This	is	used	for	storing	32	bit	color:	8	bits	each	for	Red,	Green,	Blue,	and
Alpha.
	
typedef	struct	{
WORD	r,g,b;
}	BMM_Color_48;
This	is	used	for	storing	48	bit	color:	16	bits	each	for	Red,	Green,	and	Blue.
	
typedef	struct	{
WORD	r,g,b,a;
}	BMM_Color_64;
This	is	used	for	storing	64	bit	color:	16	bits	each	for	Red,	Green,	Blue,	and
Alpha.

Class	PixelBuf
See	Also:	Template	Class	PixelBufT.
class	PixelBuf

Description:
This	class	lets	you	set	up	a	buffer	for	pixels	that	will	automatically	deallocate	the
buffer	when	it	goes	out	of	scope.	All	methods	of	this	class	are	implemented	by
the	system.

Methods:

Prototype:
inline	PixelBuf(int	width)

Remarks:
Constructor.	This	allocates	the	pixel	buffer	using	the	specified	width.

Parameters:
int	width
The	number	of	pixels	to	allocate	for	the	buffer.

Prototype:
inline	~PixelBuf();

Remarks:
Destructor.	The	pixel	buffer	is	deallocated.

Prototype:
inline	BMM_Color_64	*Ptr();

Remarks:
Returns	the	address	of	the	pixel	buffer.

Prototype:
int	Fill(int	start,	int	count,	BMM_Color_64	color)

Remarks:
Fills	the	specified	portion	of	the	pixel	buffer	with	the	specified	color.

Parameters:
int	start
The	start	location	for	the	fill.
int	count
The	number	of	pixels	to	fill.
T	color
The	color	to	use	as	the	fill.

Return	Value:
Nonzero	if	filled;	otherwise	0.

Template	Class	PixelBufT
See	Also:	Structure	BMM_Color_24,	Structure	BMM_Color_32,	Structure
BMM_Color_48,	Structure	BMM_Color_64.
template	<Structure	T>	Structure	PixelBufT

Description:
These	templated	classes	allow	you	to	set	up	a	buffer	for	pixels	that	will
automatically	deallocate	the	buffer	when	they	goes	out	of	scope.	All	methods	of
this	class	are	implemented	by	the	system.
Note	the	following	typedefs	set	up	for	the	standard	pixel	storage	formats.
typedef	PixelBufT<UBYTE>	PixelBuf8;
typedef	PixelBufT<USHORT>	PixelBuf16;
typedef	PixelBufT<BMM_Color_24>	PixelBuf24;
typedef	PixelBufT<BMM_Color_32>	PixelBuf32;
typedef	PixelBufT<BMM_Color_48>	PixelBuf48;
typedef	PixelBufT<BMM_Color_64>	PixelBuf64;

Methods:

Prototype:
inline	PixelBufT(int	width);

Remarks:
Constructor.	This	allocates	the	pixel	buffer	using	the	specified	width.

Parameters:
int	width
The	number	of	pixels	to	allocate	for	the	buffer.

Prototype:
inline	~PixelBufT();

Remarks:
Destructor.	The	pixel	buffer	is	deallocated.

Prototype:

inline	T*	Ptr();
Remarks:
Returns	the	address	of	the	pixel	buffer.

Prototype:
int	Fill(int	start,	int	count,	T	color)

Remarks:
Fills	the	specified	portion	of	the	pixel	buffer	with	the	specified	color.

Parameters:
int	start
The	start	location	for	the	fill.
int	count
The	number	of	pixels	to	fill.
T	color
The	color	to	use	as	the	fill.

Return	Value:
Nonzero	if	filled;	otherwise	0.

Operators:

Prototype:
inline	T&	operator[](int	i);

Remarks:
Array	operator.	This	allows	access	to	the	pixel	buffer	using	the	[]	operator.

Parameters:
int	i
The	index	to	access.

List	of	Bitmap	Filter	Types
Specifies	the	type	of	filtering	to	perform.	One	of	the	following	values:
BMM_FILTER_NONE
Specifies	no	filtering	should	be	performed.
BMM_FILTER_SUM
Specifies	summed	area	filtering.
BMM_FILTER_PYRAMID
Specifies	pyramidal	filtering.
BMM_FILTER_DUMMY
This	is	no	longer	used.
The	Pyramidal	and	Summed	Area	options	provide	two	methods	of	pixel
averaging	that	antialias	the	bitmaps	in	mapped	materials.
Both	methods	require	approximately	the	same	rendering	time.	Summed-area
filtering	generally	yields	superior	results	but	requires	much	more	memory.
Pyramidal	filtering	requires	the	program	to	allocate	memory	equal	to
approximately	133%	of	the	size	of	the	bitmap.	By	comparison,	summed-area
filtering	requires	the	program	to	allocate	approximately	400%	of	the	size	of
the	bitmap.
Use	summed-area	filtering	only	for	smaller	bitmaps,	and	avoid	using	any	more
such	bitmaps	in	a	scene	than	necessary.
Pyramidal	filtering	is	quite	adequate	for	most	purposes.	However,	because	it
applies	filtering	as	a	function	of	distance,	irregular	antialiasing	may	occur	on
detailed	texture	maps	that	are	applied	to	a	plane	receding	into	the	distance.
The	effect	of	pyramidal	filtering	on	extreme	perspectives	such	as	this	is	even
more	noticeable	in	animations,	where	portions	of	the	texture	map	appear	to
"swim."

List	of	Video	Color	Check	Utilities
These	functions	may	be	used	to	correct	a	pixel	with	RGB	values	that	will	give
"unsafe"	values	of	chrominance	signal	or	composite	signal	amplitude	when
encoded	into	an	NTSC	or	PAL	color	signal.	This	happens	for	certain	high-
intensity	high-saturation	colors	that	are	rare	in	real	scenes,	but	can	easily	be
present	in	computer	generated	images.

Prototype:
void	BuildHotTable(int	video_type	=	VID_NTSC);

Remarks:
Implemented	by	the	System.
A	developer	will	never	to	need	to	call	this	method.	It	is	maintained	by	MAX.
The	table	that	is	stored	depends	only	on	the	state	of	the	NTSC/PAL	switch	and
3ds	max	updates	it	whenever	this	switch	is	changed,	and	on	startup.

Parameters:
int	video_type	=	VID_NTSC
The	type	of	color	checking	to	perform.	One	of	the	following	values:
VID_NTSC
VID_PAL

Prototype:
int	HotLimit(Color48	*thepix,	int	method	=	HOT_SCALE_LUM);

Remarks:
Implemented	by	the	System.
This	method	is	called	to	perform	the	video	color	check	for	each	pixel.

Parameters:
Color48	*thepix
The	pixel	to	check	and	correct	if	necessary.
int	method	=	HOT_SCALE_LUM
One	of	the	following	values:
HOT_FLAG
Flag	the	pixel	as	black.

HOT_SCALE_LUM
Correct	by	scaling	the	luminance.
HOT_SCALE_SAT
Correct	by	scaling	the	saturation.

Return	Value:
Nonzero	if	the	color	was	corrected;	otherwise	if	no	problems	then	zero.

Class	SetXFormPacket
See	Also:	Class	Control,	Class	Matrix3,	Class	Quat,	Class	AngAxis,	Class
Point3.
class	SetXFormPacket

Description:
This	class	is	used	to	allow	a	transform	(Matrix3)	controller	to	know	that	it	is
being	specifically	moved,	rotated,	or	scaled.
When	SetValue()	is	called	on	a	controller,	the	val	pointer	is	passed	in	for	a
certain	data	type.	For	a	transform	(Matrix3)	controller	SetValue()	passes	in	a
pointer	to	an	instance	of	this.	This	provides	higher	level	information	to	the
transform	controller	than	what	is	provided	by	passing	a	matrix.	For	example,	if
rotation	is	taking	place,	the	XFORM_ROTATE	command	would	be	used.	In
this	way	the	PRS	transform	controller	would	not	make	position	or	scale	keys
since	it	knows	only	rotation	is	taking	place.	Typically	one	of	the	different
constructors	is	used	depending	on	the	command	needed.	All	methods	of	this
class	are	implemented	by	the	system.

Data	Members:
public:
SetXFormCommand	command;
The	command.	The	transform	controller	takes	the	val	pointer	and	casts	it	to	an
instance	of	this	class	and	looks	at	this	data	member	to	see	which	operation	is
being	performed.
One	of	the	following	values:
XFORM_MOVE
The	move	command.	An	incremental	move	is	being	applied	to	the	matrix.
XFORM_ROTATE
The	rotate	command.	An	incremental	rotation	is	being	applied	to	the
matrix.
XFORM_SCALE
The	scale	command.	An	incremental	scaling	is	being	applied	to	the	matrix.
XFORM_SET
To	just	set	the	matrix	without	telling	the	controller	any	other	higher	level
information	this	command	may	be	used.	This	just	sets	the	value	of	the

matrix	(it	is	not	incremental).	Any	time	a	node	modifies	a	Matrix3
controller,	it	will	set	the	method	to	get	CTRL_RELATIVE,	and	the
packet	command	is	set	to	XFORM_SET.

Matrix3	tmParent;
The	parent	matrix.
Matrix3	tmAxis;
This	usually	represents	the	coordinate	system	one	is	moving,	rotating,	or
scaling	in.	However,	if	the	command	is	XFORM_SET,	then	tmAxis	is
the	actual	matrix	being	set.
Point3	p;
If	the	command	is	XFORM_MOVE	or	XFORM_SCALE,	then	this
contains	the	amount	of	the	move	or	scale.
Quat	q;
If	the	command	is	XFORM_ROTATE	then	this	contains	the	amount	of	the
rotation.
AngAxis	aa;
If	the	command	is	XFORM_ROTATE	this	will	also	contain	the	amount	of
the	rotation.	This	form	can	represent	multiple	revolutions	however	(as
opposed	to	Quat	q).
BOOL	localOrigin;
Indicates	the	local	axis	is	being	used.	If	TRUE	it	is;	otherwise	it	is	not.	If	the
rotation	or	scaling	is	occurring	about	the	pivot	point	this	is	TRUE.

Methods:

Prototype:
SetXFormPacket(const	Matrix3&	mat,const	Matrix3&
par=Matrix3(1))

Remarks:
Constructor.	The	XFORM_SET	command.

Parameters:
const	Matrix3&	mat
The	tmAxis	value.

const	Matrix3&	par=Matrix3(1)
The	tmParent	value.

Prototype:
SetXFormPacket(Point3	pt,	const	Matrix3&	par=Matrix3(1),
	const	Matrix3&	a=Matrix3(1))

Remarks:
Constructor.	The	XFORM_MOVE	command.

Parameters:
Point3	pt
The	p	value.
const	Matrix3&	par=Matrix3(1)
The	tmParent	value.
const	Matrix3&	a=Matrix3(1)
The	tmAxis	value.

Prototype:
SetXFormPacket(Quat	qt,	BOOL	l,	const	Matrix3&
par=Matrix3(1),
	const	Matrix3&	a=Matrix3(1))

Remarks:
Constructor.	The	XFORM_ROTATE	command.

Parameters:
Quat	qt
The	q	value.
BOOL	l
The	localOrigin	value.
const	Matrix3&	par=Matrix3(1)
The	tmParent	value.
const	Matrix3&	a=Matrix3(1)
The	tmAxis	value.

Prototype:
SetXFormPacket(AngAxis	aA,	BOOL	l,	const	Matrix3&
par=Matrix3(1),
	const	Matrix3&	a=Matrix3(1))

Remarks:
Constructor.	The	XFORM_ROTATE	command.

Parameters:
AngAxis	aA
The	aa	value.
BOOL	l
The	localOrigin	value.
const	Matrix3&	par=Matrix3(1)
The	tmParent	value.
const	Matrix3&	a=Matrix3(1)
The	tmAxis	value.

Prototype:
SetXFormPacket(Point3	pt,	BOOL	l,	const	Matrix3&
par=Matrix3(1),
	const	Matrix3&	a=Matrix3(1))

Remarks:
Constructor.	The	XFORM_SCALE	command.

Parameters:
Point3	pt
The	p	value.
BOOL	l
The	localOrigin	value.
const	Matrix3&	par=Matrix3(1)
The	tmParent	value.
const	Matrix3&	a=Matrix3(1)
The	tmAxis	value.

Prototype:
SetXFormPacket();

Remarks:
Constructor.	This	constructor	is	provided	in	case	you	want	to	set	the	data
members	yourself.

Class	IKDeriv
See	Also:	Class	Control.
class	IKDeriv

Description:
This	class	provides	method	that	a	plug-in	calls	in	its	implementation	of	the
Control	method	CompDerivs().	All	methods	of	this	class	are	implemented	by
the	system.

Methods:

Prototype:
virtual	int	NumEndEffectors()=0;

Remarks:
This	method	returns	the	number	of	end	effectors.	There	may	be	multiple	end
effectors	if	there	is	branching	in	the	IK	chain.	For	example	if	the	plug-in	is	a
controller	controlling	a	torso	there	might	be	two	end	effectors	-	the	two	feet.
The	plug-ins	implementation	of	CompDerivs()	should	loop	through	each
end	effector	and	call	DP()	and	DR()	for	each	end	effector.	Thus	this	method
tells	the	plug-in	how	many	times	it	needs	to	loop.

Return	Value:
The	number	of	end	effectors

Prototype:
virtual	Point3	EndEffectorPos(int	index)=0;

Remarks:
If	a	plug-in	needs	to	know	the	position	of	an	end	effector	to	calculate	its
derivative	it	may	call	this	method	to	retrieve	it.	This	method	is	used	to	return
the	position	of	the	end	effector	whose	index	is	passed.

Parameters:
int	index
The	index	of	the	end	effector	whose	position	will	be	returned.

Prototype:
virtual	void	DP(Point3	dp,int	index)=0;

Remarks:
The	plug-in	calls	this	method	to	specify	the	derivative	of	the	position	of	the
end	effector	with	respect	to	the	parameter	whose	index	is	passed.

Parameters:
Point3	dp
The	derivative	of	the	position	of	the	end	effector	with	respect	to	the	parameter.
int	index
The	index	of	the	end	effector.

Prototype:
virtual	void	DR(Point3	dr,int	index)=0;

Remarks:
Implemented	by	the	Plug-In.
Allows	the	plug-in	to	specify	the	derivative	of	the	orientation	in	terms	of	Euler
angle	of	the	end	effector	with	respect	to	the	parameter.

Parameters:
Point3	dr
The	derivative	of	the	orientation	in	terms	of	Euler	angles	of	the	end	effector
with	respect	to	the	parameter.
int	index
The	index	of	the	end	effector.

Prototype:
virtual	void	NextDOF()=0;

Remarks:
This	method	is	called	after	a	plug-in	has	called	the	above	methods	DP()	and
DR()	for	one	of	its	parameters	and	it	needs	to	call	them	again	for	the	next
parameter.

Class	IKEnumCallback
See	Also:	Class	Control.
class	IKEnumCallback

Description:
This	class	is	for	enumerating	IK	parameters.	This	callback	is	called	once	for
each	parameter	a	controller	has.	This	callback	is	implemented	by	the	system	and
passed	into	the	method	EnumIKParams()	of	the	controller.

Methods:

Prototype:
virtual	void	proc(Control	*c,	int	index)=0;

Remarks:
Implemented	by	the	System.
The	plug-in	calls	this	method	once	for	each	parameter	(degree	of	freedom	it
has).	It	passes	a	pointer	to	itself	and	the	index	of	the	parameter.

Parameters:
Control	*c
The	controller	itself	is	passed	here.
int	index
The	index	of	the	parameter.	For	example	a	position	controller	with	three
degrees	of	freedom	(X,	Y,	Z)	would	call	this	method	three	times	passing	it	and
index	of	0,	then	1,	then	2.

Class	JointParams
See	Also:	Class	AnimProperty,	Class	Control,	Class	InterpCtrlUI.
class	JointParams	:	public	AnimProperty

Description:
This	class	handles	the	data	storage	and	user	interface	for	inverse	kinematic	joint
parameters.	The	default	3ds	max	controllers	use	this	data	structure	to	store	their
IK	information.	Plug-in	controllers	don't	have	to	unless	they	want	to.
Note	the	following	is	a	dialog	proc	for	handling	joint	parameters	that	is	exported
for	use	by	plug-ins.
BOOL	CALLBACK	JointParamDlgProc(HWND	hWnd,UINT
message,
	WPARAM	wParam,LPARAM	lParam);

Data	Members:
public:
float	*min,	*max;
Pointers	to	an	array	of	floats	corresponding	to	the	number	of	degrees	of
freedom	These	are	the	From	and	To	parameters.
float	*damping;
Pointer	to	an	array	of	floating	point	Damping	parameters	for	each	degree	of
freedom.
float	scale;
This	is	a	scale	factor	applied	to	the	values	in	the	spinner	edit	fields.	This	is	to
make	them	more	sensible	to	the	user.	For	example	a	percentage	that	is	stored
internally	as	0.0	to	1.0	could	be	presented	to	the	user	as	0.0	to	100.0	by	using	a
scale	of	100.
DWORD	flags;
One	or	more	of	the	following	values:
JNT_XACTIVE
JNT_YACTIVE
JNT_ZACTIVE
JNT_XLIMITED
JNT_YLIMITED

JNT_ZLIMITED
JNT_XEASE
JNT_YEASE
JNT_ZEASE
JNT_LIMITEXACT
JNT_ROLLOPEN
JNT_ROT
JNT_POS

int	dofs;
The	number	of	degrees	of	freedom	the	plug-in	has.

Operators:

Prototype:
JointParams&	operator=(JointParams&	j);

Remarks:
Assignment	operator.

Methods:

Prototype:
JointParams(DWORD	type=JNT_POS,int	dofs=3,float	s=1.0f);

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.

Prototype:
JointParams(const	JointParams	&j);

Remarks:
Constructor.	The	data	members	are	initialized	to	those	of	the	JointParam
passed.

Prototype:
~JointParams();

Remarks:

Destructor.

Prototype:
DWORD	ID();

Remarks:
Implemented	by	the	System.
Returns	the	ID	of	the	AnimProperty	-	PROPID_JOINTPARAMS

Prototype:
BOOL	IsDefault();

Remarks:
Implemented	by	the	System.
Returns	TRUE	if	the	current	state	of	the	parameters	are	the	defaults.

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
Implemented	by	the	System.
This	method	may	be	called	to	save	the	joint	properties	to	the	3ds	max	file.

Parameters:
ISave	*isave
This	pointer	may	be	used	to	call	methods	to	write	data	to	disk.	See	Class
ISave.

Return	Value:
One	of	the	following	values:
IO_OK	-	The	result	was	acceptable	-	no	errors.
IO_ERROR	-	This	is	returned	if	an	error	occured.

Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
Implemented	by	the	System.

This	method	is	called	to	load	the	joint	properties	from	the	3ds	max	file.
Parameters:
ILoad	*iload
This	pointer	may	be	used	to	call	methods	to	load	data	from	disk.	See	Class
ILoad.

Return	Value:
One	of	the	following	values:
IO_OK	-	The	result	was	acceptable	-	no	errors.
IO_ERROR	-	This	is	returned	if	an	error	occured.

Prototype:
float	ConstrainInc(int	index,float	v,float	delta);

Remarks:
Implemented	by	the	System.
This	method	applies	constraints	to	the	given	delta	based	on	parameters	and	the
current	value	v.	It	uses	the	current	min/max	limits	to	constrain	the	result:
v+delta	so	that	v+delta	<	max	and	v+delta	>	min.	It	returns	a	new	delta	such
that	the	previous	will	both	be	TRUE.	If	ease	is	turned	on,	then	the	values	will
be	slowed	down	as	they	approach	the	limits.	It	also	applies	the	damping	if
turned	on.

Parameters:
int	index
This	is	the	index	of	the	parameter.	For	example	on	a	position	controller	the
index	could	be	0	(x),	1	(y),	or	2	(z).
float	v
The	current	value	of	the	parameter.
float	delta
The	increment	to	apply.

Return	Value:
A	new	delta	value.	Usually	it	will	return	delta,	but	if	the	value	was
constrained,	then	the	value	may	be	smaller	or	larger.

Prototype:

BOOL	Active(int	i);
Remarks:
Implemented	by	the	System.
Returns	TRUE	if	the	specified	joint	is	active;	otherwise	FALSE.

Parameters:
int	i
One	of	the	following	values:
0	=	X
1	=	Y
2	=	Z

Return	Value:
TRUE	if	the	joint	is	active;	otherwise	FALSE.

Prototype:
BOOL	Limited(int	i)

Remarks:
Implemented	by	the	System.
Returns	TRUE	if	the	joint	is	limited;	otherwise	FALSE.

Parameters:
int	i
One	of	the	following	values:
0	=	X
1	=	Y
2	=	Z

Return	Value:
TRUE	if	the	joint	is	limited;	otherwise	FALSE.

Prototype:
BOOL	Ease(int	i)

Remarks:
Implemented	by	the	System.
Returns	TRUE	if	the	joint	has	the	Ease	property	set;	otherwise	FALSE.

Parameters:
int	i
One	of	the	following	values:
0	=	X
1	=	Y
2	=	Z

Return	Value:
TRUE	if	the	joint	has	the	Ease	property	set;	otherwise	FALSE.

Prototype:
DWORD	Type()

Remarks:
Implemented	by	the	System.
Returns	the	type	of	joint,	sliding	or	rotation.	This	will	either	be	JNT_POS
for	sliding	joints	of	JNT_ROT	for	rotational	joints.

Prototype:
BOOL	RollupOpen()

Remarks:
Implemented	by	the	System.
Returns	TRUE	if	the	rollup	page	if	open;	otherwise	FALSE.

Prototype:
void	SetActive(int	i,BOOL	s)

Remarks:
Implemented	by	the	System.
Sets	the	specified	joint	to	the	specified	active	or	inactive	state.

Parameters:
int	i
One	of	the	following	values:
0	=	X
1	=	Y

2	=	Z
BOOL	s
TRUE	to	set	the	joint	active;	otherwise	FALSE.

Prototype:
void	SetLimited(int	i,BOOL	s)

Remarks:
Implemented	by	the	System.
Sets	the	specified	joint	to	the	specified	limited	or	not	limited	state.

Parameters:
int	i
One	of	the	following	values:
0	=	X
1	=	Y
2	=	Z

BOOL	s
TRUE	to	set	the	joint	as	limited;	otherwise	FALSE.

Prototype:
void	SetEase(int	i,BOOL	s)

Remarks:
Implemented	by	the	System.
Sets	the	specified	joint	to	the	specified	eased	or	not	eased	state.

Parameters:
int	i
One	of	the	following	values:
0	=	X
1	=	Y
2	=	Z

BOOL	s
TRUE	to	set	the	joint	as	eased;	otherwise	FALSE.

Prototype:
void	SetType(DWORD	type)

Remarks:
Implemented	by	the	System.
Sets	the	type	of	joint.

Parameters:
DWORD	type
Specifies	the	type	of	joint.	One	of	the	following	values:
JNT_POS	-	Sliding	joint.
JNT_ROT	-	Rotating	joint.

Prototype:
void	SetRollOpen(BOOL	open)

Remarks:
Implemented	by	the	System.
Set	the	rollup	page	as	open	or	closed.

Parameters:
BOOL	open
TRUE	to	open	the	page;	FALSE	to	close	it.

Prototype:
virtual	void	SpinnerChange(InterpCtrlUI	*ui,WORD	id,
	ISpinnerControl	*spin,BOOL	interactive);

Remarks:
Implemented	by	the	Plug-In.
This	is	called	when	the	user	is	interactively	manipulating	one	of	the	spinner
controls	or	enters	a	value	into	a	spinner's	edit	field.	This	method	has	a	default
implementation.

Parameters:
InterpCtrlUI	*ui
This	is	simply	a	container	class	to	hold	some	data	while	the	controllers
parameters	are	being	edited.

WORD	id
The	spinner	control	id.
ISpinnerControl	*spin
A	pointer	to	the	spinner	control.
BOOL	interactive
TRUE	if	the	user	is	doing	an	interactive	adjustment;	otherwise	FALSE.

	

These	methods	manage	the	joint	parameters	dialog.

Prototype:
void	InitDialog(InterpCtrlUI	*ui);

Remarks:
Implemented	by	the	System.
This	is	used	internally.

Prototype:
void	EndDialog(InterpCtrlUI	*ui,BOOL	dontDel=FALSE);

Remarks:
Implemented	by	the	System.
This	is	used	internally.

Prototype:
void	SpinnerDown(InterpCtrlUI	*ui,WORD	id,ISpinnerControl
*spin);

Remarks:
Implemented	by	the	System.
This	is	used	internally.

Prototype:
void	SpinnerUp(InterpCtrlUI	*ui,WORD	id,ISpinnerControl
*spin,
	BOOL	accept);

Remarks:
Implemented	by	the	System.
This	is	used	internally.

Prototype:
void	Command(InterpCtrlUI	*ui,WORD	notify,	WORD	id,

HWND	hCtrl);
Remarks:
Implemented	by	the	System.
This	is	used	internally.

Prototype:
void	EnableDisable(InterpCtrlUI	*ui);

Remarks:
Implemented	by	the	System.
This	is	used	internally.

Class	EaseCurveList
See	Also:	Class	ReferenceTarget,	Class	Control.
class	EaseCurveList	:	public	ReferenceTarget

Description:
This	class	represents	a	list	of	ease	curves.

The	macro	used	to	access	this	class	is	defined	as	follows:
#define	GetEaseListInterface(anim)	((EaseCurveList*)anim-
>GetInterface(I_EASELIST))

This	may	be	used	to	access	the	methods	of	this	class	as	follows:
EaseCurveList	*el	=	GetEaseListInterface(client);
	if	(el)	{
		int	num	=	el->NumEaseCurves();
		//	...

All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
EaseCurveList();

Remarks:
Constructor.

Prototype:
~EaseCurveList();

Remarks:
Destructor.	All	the	references	are	deleted	from	this	class.

Prototype:
TimeValue	ApplyEase(TimeValue	t,Interval	&valid);

Remarks:
Returns	a	TimeValue	that	reflects	the	TimeValue	passed	modified	by	each
of	the	enabled	ease	curves	in	the	list.

Parameters:
TimeValue	t
The	base	time	which	is	eased	by	the	curves.
Interval	&valid
The	validity	interval	which	is	updated	by	each	of	the	ease	curves	in	the	list.

Prototype:
void	AppendEaseCurve(Control	*cont);

Remarks:
Adds	the	specified	ease	curve	to	the	end	of	the	ease	curve	list.

Parameters:
Control	*cont
Points	to	the	ease	curve	to	append.

Prototype:
void	DeleteEaseCurve(int	i);

Remarks:
Deletes	the	'i-th'	ease	curve	in	the	list.

Parameters:
int	i
The	index	of	the	ease	curve	to	delete.

Prototype:
void	DisableEaseCurve(int	i);

Remarks:
Disables	the	'i-th'	ease	curve	in	the	list.

Parameters:
int	i
The	index	of	the	ease	curve	to	disable.

Prototype:

void	EnableEaseCurve(int	i);
Remarks:
Enables	the	'i-th'	ease	curve	in	the	list.

Parameters:
int	i
The	index	of	the	ease	curve	to	enable.

Prototype:
BOOL	IsEaseEnabled(int	i);

Remarks:
Returns	TRUE	if	the	'i-th'	ease	curve	is	enabled;	otherwise	FALSE.

Parameters:
int	i
The	index	of	the	ease	curve	to	check.

Prototype:
int	NumEaseCurves();

Remarks:
Returns	the	number	of	ease	curves	in	the	list.

Class	MultCurveList
See	Also:	Class	ReferenceTarget,	Class	Control.
class	MultCurveList	:	public	ReferenceTarget

Description:
This	class	is	a	list	of	multiplier	curves.

The	macro	used	to	access	this	class	is	defined	as	follows:
#define	GetMultListInterface(anim)	((MultCurveList*)anim-
>GetInterface(I_MULTLIST))

This	may	be	used	to	access	the	methods	of	this	class	as	follows:
MultCurveList	*ml	=	GetMultListInterface(client);
	if	(ml)	{
		int	num	=	ml->NumMultCurves();
		//	...

All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
MultCurveList();

Remarks:
Constructor.

Prototype:
~MultCurveList();

Remarks:
Destructor.	All	referrences	are	removed	from	this	class.

Prototype:
float	GetMultVal(TimeValue	t,Interval	&valid);

Remarks:
This	method	starts	with	a	value	of	1.0f,	mutiplies	it	by	each	enabled	mutiplier
curve	value	in	the	list,	and	returns	the	resulting	value.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	multipler	values.
Interval	&valid
The	interval	that	is	adjusted	to	reflect	the	validity	of	all	the	multipler	curve
controllers	validity.

Prototype:
void	AppendMultCurve(Control	*cont);

Remarks:
Adds	the	specified	multiplier	curve	to	the	end	of	the	multiplier	curve	list.

Parameters:
Control	*cont
Points	to	the	multiplier	curve	to	append.

Prototype:
void	DeleteMultCurve(int	i);

Remarks:
Deletes	the	'i-th'	multiplier	curve.

Parameters:
int	i
The	index	of	the	multiplier	curve	to	delete.

Prototype:
void	DisableMultCurve(int	i);

Remarks:
Disables	the	'i-th'	multiplier	curve.

Parameters:
int	i
The	index	of	the	multiplier	curve	to	disable.

Prototype:

void	EnableMultCurve(int	i);
Remarks:
Enables	the	'i-th'	multiplier	curve.

Parameters:
int	i
The	index	of	the	multiplier	curve	to	enable.

Prototype:
BOOL	IsMultEnabled(int	i);

Remarks:
Returns	TRUE	if	the	'i-th'	multiplier	curve	is	enabled;	otherwise	FALSE.

Parameters:
int	i
The	index	of	the	multiplier	curve	to	check.

Prototype:
int	NumMultCurves();

Remarks:
Returns	the	number	of	multiplier	curves	in	the	list.

Class	INoiseControl
See	Also:	Class	Control.
class	INoiseControl	:	public	StdControl

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	provides	access	to	noise	controller's	parameters.	All	noise	controllers
are	derived	from	this	class.
All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	void	SetSeed(int	seed)=0;

Remarks:
Sets	the	seed	value	for	the	noise	controller.

Parameters:
int	seed
The	seed	value,	greater	than	or	equal	to	zero.

Prototype:
virtual	int	GetSeed()=0;

Remarks:
Returns	the	seed	value.

Prototype:
virtual	void	SetFrequency(float	f)=0;

Remarks:
Sets	the	frequency	parameter.

Parameters:
float	f
The	value	to	set,	greater	than	zero.

Prototype:
virtual	float	GetFrequency()=0;

Remarks:
Returns	the	frequency	value.

Prototype:
virtual	void	SetFractal(BOOL	f)=0;

Remarks:
Sets	the	fractal	setting	on	or	off.

Parameters:
BOOL	f
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetFractal()=0;

Remarks:
Returns	the	state	of	the	fractal	setting.	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetRoughness(float	f)=0;

Remarks:
Sets	the	roughness	setting.

Parameters:
float	f
The	value	to	set,	between	0.0	and	1.0.

Prototype:
virtual	float	GetRoughness()=0;

Remarks:
Returns	the	roughness	setting.

Prototype:
virtual	void	SetRampIn(TimeValue	in)=0;

Remarks:
Sets	the	ramp	in	setting.

Parameters:
TimeValue	in
The	value	to	set,	greater	than	or	equal	to	zero.

Prototype:
virtual	TimeValue	GetRampIn()=0;

Remarks:
Returns	the	ramp	in	setting.

Prototype:
virtual	void	SetRampOut(TimeValue	out)=0;

Remarks:
Sets	the	ramp	out	setting.

Parameters:
TimeValue	out
The	value	to	set,	greater	than	or	equal	to	zero.

Prototype:
virtual	TimeValue	GetRampOut()=0;

Remarks:
Returns	the	ramp	out	setting.

Prototype:
virtual	void	SetPositiveOnly(int	which,BOOL	onOff)=0;

Remarks:
Sets	the	positive	only	setting	(>0)	for	the	specified	axis	to	the	specified	value.

Parameters:

int	which
Specifes	the	axis.	One	of	the	following	values:
0:	X,	1:	y,	2:	Z.

BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetPositiveOnly(int	which)=0;

Remarks:
Returns	the	positive	only	setting	(>0)	for	the	specified	axis	to	the	specified
value.

Parameters:
int	which
Specifes	the	axis.	One	of	the	following	values:
0:	X,	1:	y,	2:	Z.

Prototype:
virtual	Control	*GetStrengthController()=0;

Remarks:
Returns	a	pointer	to	the	controller	for	the	strength	parameter.

Prototype:
virtual	void	SetStrengthController(Control	*c)=0;

Remarks:
Sets	the	controller	used	for	the	strength	parameter.

Parameters:
Control	*c
Points	to	the	controller	to	set.

Class	ISurfPosition
See	Also:	Class	Control,	Class	INode.
class	ISurfPosition	:	public	Control

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	provides	access	to	the	surface	position	controller's	parameters.
The	following	values	may	be	used	to	access	the	surface	controller's	references.
SURFCONT_U_REF
SURFCONT_V_REF
SURFCONT_SURFOBJ_REF

All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	void	SetSurface(INode	*node)=0;

Remarks:
Sets	the	node	that	this	controller	uses	as	the	surface	object.

Parameters:
INode	*node
Points	to	the	node	to	set.

Prototype:
virtual	int	GetAlign()=0;

Remarks:
Returns	the	alignment	setting.

Return	Value:
One	of	the	following	values:
0:	No	Alignment.
1:	Align	to	U.
2:	Align	to	V.

Prototype:
virtual	void	SetAlign(int	a)=0;

Remarks:
Sets	the	alignment	setting.

Parameters:
int	a
One	of	the	following	values:
0:	No	Alignment.
1:	Align	to	U.
2:	Align	to	V.

Prototype:
virtual	BOOL	GetFlip()=0;

Remarks:
Returns	the	flip	setting.	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetFlip(BOOL	f)=0;

Remarks:
Sets	the	flip	setting.

Parameters:
BOOL	f
TRUE	for	on;	FALSE	for	off.

Class	ILinkCtrl
See	Also:	Class	Control.

class	ILinkCtrl	:	public	Control,	public	FPMixinInterface

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	represents	the	interface	to	the	Link	Controller.	You	can	obtain	a
pointer	to	the	link	controller	interface	using;	GetLinkConstInterface(cd).
This	macro	will	return
(LinkConstTransform*)(CD)-
>GetFPInterface(LINK_CONSTRAINT_INTERFACE).
Developers	may	use	the	following	values	to	access	the	references	of	the	Link
controller.
LINKCTRL_CONTROL_REF
The	TM	controller
LINKCTRL_FIRSTPARENT_REF
The	index	of	the	first	parent	node.
LINKCTRL_PBLOCK_REF
The	parameter	block.

All	methods	of	this	class	are	Implemented	by	the	System.

Methods:
public:

Prototype:
virtual	int	GetNumTargets()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	number	of	parents	(links).

Prototype:
virtual	TimeValue	GetLinkTime(int	i)=0;

Remarks:

Returns	the	start	time	associated	with	the	'i-th'	link.
Parameters:
int	i
Specifies	which	parent	(link).

Prototype:
virtual	void	SetLinkTime(int	i,	TimeValue	t)=0;

Remarks:
Sets	the	start	time	associated	with	the	'i-th'	link.	See	LinkTimeChanged()
below.	Note:	This	method	also	sorts	the	indices	according	to	increasing	time
values.

Parameters:
int	i
Specifies	which	parent	(link).
TimeValue	t
The	time	to	set.

Prototype:
virtual	void	LinkTimeChanged()=0;

Remarks:
This	method	should	be	called	after	changing	link	times.	Note:	This	method
also	sorts	the	indices	according	to	increasing	time	values.

Prototype:
virtual	void	AddNewLink(INode	*node,TimeValue	t)=0;

Remarks:
Adds	a	new	link	at	the	specified	time.

Parameters:
INode	*node
Points	to	the	node	of	the	link	to	add.
TimeValue	t
The	time	to	change	to	this	link.

Prototype:
virtual	void	DeleteTarget(int	selection)=0;

Remarks:
This	method	will	delete	the	specified	link.

Parameters:
int	selection
Specifies	which	link	to	delete.

Prototype:
virtual	int	GetFrameNumber(int	targetNumber)=0;

Remarks:
This	method	returns	the	start	frame	of	the	specified	target.

Parameters:
int	targetNumber
The	target	number	for	which	to	get	the	start	frame.

Prototype:
virtual	BOOL	SetFrameNumber(int	targetNumber,	int
frameNumber)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	start	frame	of	the	specified	target.

Parameters:
int	targetNumber
The	target	number	for	which	to	set	the	start	frame.
int	frameNumber
The	time	value.

Return	Value:
TRUE	if	the	start	frame	is	set,	otherwise	FALSE.

Prototype:

virtual	BOOL	SetTarget(INode	*target,	int	targetNumber)=0;
Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Sets	one	of	the	link	nodes	that	the	link	constraint	controller	targets,	specified
by	targetNumber.	If	targetNumber	is	greater	than	the	number	of	targets
in	the	current	list,	it	returns	a	FALSE.	In	this	case	use	the	function
AppendTarget.

Parameters:
INode	*target
Points	to	the	node	to	follow
int	targetNumber
The	node	number	in	the	link	target	list	to	be	set.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	BOOL	AddTarget(INode	*target,	int	frameNo)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	append	a	target.

Parameters:
INode	*target
The	target	node	to	append.
int	frameNo
The	frame	time.

Return	Value:
TRUE	if	the	target	was	appended,	otherwise	FALSE.

Prototype:
virtual	INode*	GetNode(int	targetNumber)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.

This	method	returns	one	of	the	link	nodes	that	the	link	constraint	controller
targets,	specified	by	targetNumber.

Parameters:
int	targetNumber
The	node	number	in	the	link	target	list	to	be	obtained.

Class	ILookatControl
See	Also:	Class	Control.
class	ILookatControl	:	public	Control

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	provides	access	to	the	LookAt	Controller	parameters.
Developers	may	use	the	following	values	to	access	the	references	of	the	Look
At	controller.
LOOKAT_TARGET_REF
LOOKAT_POS_REF
LOOKAT_ROLL_REF
LOOKAT_SCL_REF

All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	void	SetFlip(BOOL	f)=0;

Remarks:
Sets	the	flip	setting.

Parameters:
BOOL	f
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	GetFlip()=0;

Remarks:
Returns	the	state	of	the	flip	setting.	TRUE	if	on;	FALSE	if	off.

Prototype:
virtual	void	SetAxis(int	a)=0;

Remarks:

Sets	the	axis	setting.
Parameters:
int	a
One	of	the	following	values:
0:	X	axis.
1:	Y	axis.
2:	Z	axis.

Prototype:
virtual	int	GetAxis()=0;

Remarks:
Returns	the	axis	setting.

Return	Value:
One	of	the	following	values:
0:	X	axis.
1:	Y	axis.
2:	Z	axis.

List	of	Additional	Controller	Related	Functions
See	Also:	Class	Control,	Class	StdControl.

Description:
The	following	functions	may	be	used	to	control	the	playing	and	suspension	of
animation,	get	and	set	the	start	and	end	animation	times,	and	returns	new
instances	of	default	controllers	of	various	types.

Functions:
The	functions	below	allow	a	developer	to	control	the	state	of	the	'Animate'
button	in	the	user	interface,	and	also	set	if	animate	mode	is	on	or	off.	The	pseudo
code	below	demonstrate	how	these	methods	might	be	used.	If	you	need	to	do
something	associated	with	a	controller	but	did	not	want	keys	to	be	generated	you
could	write:
SuspendAnimate();
AnimateOff();
//	do	some	things...
ResumeAnimate();
This	ensures	that	animate	mode	is	unchanged	after	you're	through.	The
animate	button	never	changes	appearance	so	the	user	doesn't	have	to	be	aware
that	anything	is	happening.

Prototype:
int	Animating();

Remarks:
Determines	if	the	animate	button	is	on.	Returns	nonzero	if	on;	zero	if	off.

Prototype:
void	AnimateOn();

Remarks:
This	method	logically	turns	animating	on	but	does	not	change	the	appearance
of	the	button.

Prototype:

void	AnimateOff();
Remarks:
This	method	logically	turns	animating	off	but	does	not	change	the	appearance
of	the	button.

Prototype:
void	SuspendAnimate();

Remarks:
Suspend	the	animation	from	running.	This	method	uses	a	stack	so	if	several
calls	are	made	to	the	SuspendAnimate(),	they	must	all	be	resumed	before
animation	will	resume.

Prototype:
void	ResumeAnimate();

Remarks:
Resume	suspended	animation.	The	method	SuspendAnimate()	uses	a	stack
so	if	several	calls	are	made	to	SuspendAnimatie(),	they	must	all	be
resumed	using	this	method	before	the	animation	will	resume.

Prototype:
TimeValue	GetAnimStart();

Remarks:
Retrieves	the	start	time	of	the	animation.

Prototype:
TimeValue	GetAnimEnd();

Remarks:
Retrieves	the	end	time	of	the	animation.

Prototype:
void	SetAnimStart(TimeValue	s);

Remarks:

Sets	the	start	time	of	the	animation.

Prototype:
void	SetAnimEnd(TimeValue	e);

Remarks:
Sets	the	end	time	of	the	animation.

Prototype:
Control	*NewDefaultFloatController();

Remarks:
Returns	an	instance	of	the	default	float	controller.

Prototype:
Control	*NewDefaultPoint3Controller();

Remarks:
Returns	an	instance	of	the	default	Point3	controller.

Prototype:
Control	*NewDefaultMatrix3Controller();

Remarks:
Returns	an	instance	of	the	default	Matrix3	controller.

Prototype:
Control	*NewDefaultPositionController();

Remarks:
Returns	an	instance	of	the	default	position	controller.

Prototype:
Control	*NewDefaultRotationController();

Remarks:
Returns	an	instance	of	the	default	rotation	controller.

Prototype:
Control	*NewDefaultScaleController();

Remarks:
Returns	an	instance	of	the	default	scale	controller.

Prototype:
Control	*NewDefaultColorController();

Remarks:
Returns	an	instance	of	the	default	color	controller.

Prototype:
Control	*NewDefaultBoolController();

Remarks:
Returns	an	instance	of	the	default	boolean	controller.

Prototype:
Control*	CreateInterpFloat();

Remarks:
Creates	and	returns	a	pointer	to	a	new	Bezier	float	controller.

Prototype:
Control*	CreateInterpPosition();

Remarks:
Creates	and	returns	a	pointer	to	a	new	Bezier	position	controller.

Prototype:
Control*	CreateInterpPoint3();

Remarks:
Creates	and	returns	a	pointer	to	a	new	Bezier	Color	controller.

Prototype:

Control*	CreateInterpRotation();
Remarks:
Creates	and	returns	a	pointer	to	a	new	TCB	Rotation	controller.

Prototype:
Control*	CreateInterpScale();

Remarks:
Creates	and	returns	a	pointer	to	a	new	Bezier	Scale	controller.

Prototype:
Control*	CreatePRSControl();

Remarks:
Creates	and	returns	a	pointer	to	a	new	PRS	transform	controller.

Prototype:
Control*	CreateLookatControl();

Remarks:
Creates	and	returns	a	pointer	to	a	new	Look	At	transform	controller.

Prototype:
void	SetDefaultController(SClass_ID	sid,	ClassDesc	*desc);

Remarks:
Sets	the	default	controller	of	the	specified	type	to	the	controller	whose
ClassDesc	is	passed.

Parameters:
SClass_ID	sid
The	Super	Class	ID.	See	List	of	Super	Class	IDs.
ClassDesc	*desc
Points	to	the	Class	Descriptor	for	the	controller.	See	Class	ClassDesc.

Prototype:

ClassDesc	*GetDefaultController(SClass_ID	sid);
Remarks:
Returns	a	pointer	to	the	Class	Descriptor	for	the	default	controller	of	the
specified	type.

Parameters:
SClass_ID	sid
The	Super	Class	ID.	See	List	of	Super	Class	IDs.

Prototype:
void	SetDefaultColorController(ClassDesc	*desc);

Remarks:
Sets	the	default	Color	controller.

Parameters:
ClassDesc	*desc
Points	to	the	Class	Descriptor	for	the	controller.	See	Class	ClassDesc.

Prototype:
void	SetDefaultBoolController(ClassDesc	*desc);

Remarks:
Sets	the	default	Boolean	controller.

Parameters:
ClassDesc	*desc
Points	to	the	Class	Descriptor	for	the	controller.	See	Class	ClassDesc.

Prototype:
void	ApplyScaling(Matrix3	&m,	const	ScaleValue	&v);

Remarks:
This	method	may	be	used	to	apply	a	ScaleValue	to	the	specified	Matrix3.	This
is	used	in	controller	implementation	of	GetValue()	when	the
GetSetMethod	is	CTRL_RELATIVE	and	the	controller	is	a	scale
controller.

The	global	functions	below	provide	access	to	the	default	tangent
types	for	both	the	Bezier	and	TCB	controllers.
Prototype:
void	GetBezierDefaultTangentType(int	&in,	int	&out);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
Retrieves	the	default	tange	types	for	the	Bezier	controller.

Parameters:
int	&in
The	in	tangent	value.
int	&out
The	out	tangent	value.

Prototype:
void	SetBezierDefaultTangentType(int	in,	int	out);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
Sets	the	default	tange	types	for	the	Bezier	controller.

Parameters:
int	&in
The	in	tangent	value.
int	&out
The	out	tangent	value.

Prototype:
void	GetTCBDefaultParams(float	&t,	float	&c,	float	&b,	float
&easeIn,	float	&easeOut);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
Retrieves	the	default	tange	types	for	the	TCB	controller.

Parameters:

float	&t
The	tension	setting.
float	&c
The	continuity	setting.
float	&b
The	bias	setting.
float	&easeIn
The	ease	in	value.
float	&easeOut
The	ease	out	value.

Prototype:
void	SetTCBDefaultParams(float	t,	float	c,	float	b,	float	easeIn,
float	easeOut);

Remarks:
This	function	is	available	in	release	2.0	and	later	only.
Sets	the	default	tange	types	for	the	TCB	controller.

Parameters:
float	t
The	tension	setting.
float	c
The	continuity	setting.
float	b
The	bias	setting.
float	easeIn
The	ease	in	value.
float	easeOut
The	ease	out	value.

Class	DefaultLight
See	Also:	Class	Renderer,	Class	Matrix3,	Structure	LightState.
class	DefaultLight

Description:
This	class	describes	a	default	light.	An	array	of	these	default	lights	is	passed	into
the	method	Renderer::Open().

Data	Members:
public:f
LightState	ls;
Describes	the	properties	of	the	light.
Matrix3	tm;
This	is	the	transformation	of	the	light	that	controls	its	position	in	the	scene.
Note:	In	3ds	max	3.0	the	production	renderer	has	been	modified	so	that	if	a
DefaultLight	is	passed	into	Renderer::Open()	with	a	transformation	matrix
that	is	all	zeros,	the	renderer	will	interpret	this	to	mean	that	on	each	frame	it
should	create	a	light	located	at	the	view	point,	pointing	in	the	view	direction.
This	allows	the	implementation	of	the	new	viewport	1-light	option	so	that	it
tracks	the	camera	during	an	animated	camera	move.

Structure	LightState
See	Also:	Class	GenLight,	Class	LightObject,	Class	Color,	Class	Matrix3.

Description:
This	structure	describes	the	properties	of	a	light.
struct	LightState	{
LightType	type;
One	of	the	following	values:
(from	enum	LightType	{	OMNI_LGT,	SPOT_LGT,
DIRECT_LGT,	AMBIENT_LGT	};):
OMNI_LGT	-	Omnidirectional
SPOT_LGT	-	Spot	(cone)
DIRECT_LGT	-	Directional	(parallel)
AMBIENT_LGT	-	Global

Matrix3	tm;
The	transformation	matrix	of	the	light.
Color	color;
The	color	of	the	light	(its	intensity).
float	intens;
The	multiplier	applied	to	the	color.
float	hotsize;
The	hotspot	size	in	degrees.
float	fallsize;
The	hotspot	falloff	size	in	degrees.
int	useNearAtten;
This	data	member	is	available	in	release	2.0	and	later	only.
Nonzero	if	near	attenuation	is	used;	otherwise	zero.
float	nearAttenStart;
This	data	member	is	available	in	release	2.0	and	later	only.
The	near	attenuation	start	value.
float	nearAttenEnd;
This	data	member	is	available	in	release	2.0	and	later	only.

The	near	attenuation	end	value.
int	useAtten;
Nonzero	if	(far)	attenuation	is	used;	otherwise	zero.
float	attenStart;
The	(far)	start	attenuation	value.
float	attenEnd;
The	(far)	end	attenuation	value.
int	shape;
One	of	the	following	values:
RECT_LIGHT
CIRCLE_LIGHT

float	aspect;
The	aspect	ratio	of	the	light.
BOOL	overshoot;
TRUE	if	the	light	supports	overshoot;	otherwise	FALSE.
BOOL	shadow;
TRUE	if	shadows	are	on;	otherwise	FALSE.
BOOL	on;
TRUE	if	the	light	is	on;	otherwise	FALSE.
BOOL	affectDiffuse;
TRUE	if	affect	diffuse	is	on;	otherwise	FALSE.
BOOL	affectSpecular;
TRUE	if	affect	specular	is	on;	otherwise	FALSE.

};

Class	LightDesc
See	Also:	Class	RenderData,	Class	LightRayTraversal,	Class	ObjLightDesc,
Class	ShadeContext,	Class	Color,	Class	Point3.
class	LightDesc	:	public	RenderData

Description:
This	class	has	a	method	Illuminate()	used	to	determine	the	color	and	direction
of	the	light	striking	the	point	sc.P()	and	a	method	to	get	the	position	of	the	light.
It	also	has	two	public	data	members	that	determine	if	the	diffuse	and	specular
colors	of	objects	are	affected.

Data	Members:
public:
BOOL	affectDiffuse;
This	data	member	is	available	in	release	2.0	and	later	only.
If	TRUE	the	light	affects	the	diffuse	color;	otherwise	it	does	not.
BOOL	affectSpecular;
This	data	member	is	available	in	release	2.0	and	later	only.
If	TRUE	the	light	affects	the	specular	color;	otherwise	it	does	not.
BOOL	ambientOnly;
This	data	member	is	available	in	release	3.0	and	later	only.
If	TRUE	the	light	affects	the	ambient	color	only;	otherwise	it	does	not.
DWORD	extra;
This	data	member	is	available	in	release	3.0	and	later	only.
This	is	not	currently	used	and	is	available	for	use	in	the	future.

Methods:

Prototype:
LightDesc();

Remarks:
Constructor.	The	affectDiffuse	and	affectSpecular	data	members	are	set	to
TRUE.

Prototype:

virtual	BOOL	Illuminate(ShadeContext&	sc,	Point3&	normal,
Color&	color,	Point3	&dir,	float	&dot_nl,	float	&diffuseCoef);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	determine	the	color	and	direction	of	illumination	from
the	light	that	is	hitting	the	point	(sc.P()).

Parameters:
ShadeContext&	sc
Describes	the	properties	of	the	point	to	shade.	The	point	itself	is	sc.P().
Point3&	normal
The	normal	to	the	surface	in	camera	space.
Color&	color
The	color	that	is	returned.	This	is	the	brightness	of	light	striking	the	point
(sc.P())
Point3	&dir
The	direction	that	the	light	is	coming	from.
float	&dot_nl
This	provides	a	bit	of	optimization	as	most	lights	will	have	to	calculate	this
quantity.	This	is	the	dot	product	between	the	light	vector	and	the	normal	to	the
surface.
float	&diffuseCoef
This	parameter	should	be	set	by	the	Illuminate	function.	The	default	value	is
the	same	as	dot_nl.	It	will	be	used	by	shading	functions	instead	of	dot_nl	to
compute	the	diffuse	illumination	of	the	surface.	The	built-in	lights	use	the	new
"Contrast"	parameter	(which	has	a	range	of	[0..100])	to	compute	the
diffuseCoef	from	the	dot_nl	by	the	Contrast	function:
//	precomputed:
float	a	=	contrast/200.0f	+	0.5f;	//	so	"a"	varies	from	.5	to	1.0
kA	=	(2.0f-1.0f/a);
kB	=	1.0f-kA;
	
//	called	by	Illuminate()	to	compute	diffuseCoef	from	dot_nl.

float	ContrastFunc(float	nl)	{
//	the	"Bias"	function	described	in	Graphics	Gems	IV,	pp.	401ff
		return	(contrast==0.0f)?	nl	:	nl/(kA*nl+kB);
}

Return	Value:
Returns	FALSE	if	the	hitpoint	is	outside	the	effective	range	of	the	light	or	if
the	normal	of	the	surface	faces	away	from	the	light.	This	is	a	hint	to	the
material	that	the	light	dd	not	calculate	its	illumination	because	it	is	assumed	it
wasn't	going	to	be	used.	If	TRUE	the	point	is	being	illuminated.

Default	Implementation:
{	return	0;}

Prototype:
virtual	Point3	LightPosition();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	position	of	the	light.

Default	Implementation:
{	return	Point3(0,0,0);	}

Class	LightRayTraversal
See	Also:	Class	ObjLightDesc.
class	LightRayTraversal

Description:
This	is	a	callback	class	that	can	be	given	to	a	ObjLightDesc	to	have	a	ray
traced	through	the	light	volume.	A	plug-in	derives	a	class	from	this	one	and
passes	it	as	a	callback	in	the	ObjLightDesc	method	TraverseVolume().	This
allows	a	developer	to	integrate	the	illumination	of	a	segment	due	to	a	light.	t0
and	t1	define	the	segment	in	terms	of	the	given	ray.
This	is	what	the	3ds	max	spotlights	do:	First	they	break	the	segment	up	into
three	main	pieces.	The	first	piece	is	from	the	camera	to	where	the	ray	intersects
the	lights	cone	volume.	The	callback	Step()	is	called	once	over	this	segment	(t0
and	t1	will	have	this	first	piece).	The	illumination	is	constant	over	this	entire
segment	from	t0	to	t1.	It	is	a	constant	black	since	the	light	is	not	illuminating	it
at	all.
The	next	segment	is	inside	the	cone.	This	segment	will	be	broken	up	into	small
pieces.	First	as	it's	stepping	along	it	will	be	between	the	falloff	and	the	hotspot.
The	illumination	over	this	segment	goes	from	black	to	brighter	and	brighter	as	it
moves	towards	to	hotspot.	Across	the	entire	hotspot	region	the	illumination	may
be	constant.	Then	as	it	steps	from	the	hotspot	to	the	falloff	the	illumination	will
go	back	down	to	black.
Inside	the	hotspot	region,	if	shadows	are	turned	on,	the	light	may	be	brighter	or
darker	depending	on	if	it's	inside	a	shadow	or	on	the	edge	of	a	shadow.	The	light
handles	all	of	this.	It	takes	care	of	the	shadows,	attenuation,	etc.
Now	consider	how	the	3ds	max	atmospheric	effects	such	as	the	volume	lights
use	this	information.	For	each	light	that	they	are	bound	to,	they	call	the	method
TraverseVolume()	on	the	light.	The	volume	light	atmospheric	effect	passes
this	callback	to	the	TraverseVolume()	method.	The	light	then	calls	this	Step()
method	of	the	callback	for	each	partial	segment	of	the	ray.	Given	the
illumination	on	the	segment	(illum)	it	computes	the	fog	density	over	that	piece.
The	density	may	be	constant	if	noise	is	not	turned	on,	or	it	may	vary	if	noise	is
turned	on.	Using	the	fog	density	and	the	illumination	it	computes	the	light
reflected	off	the	atmosphere	for	the	segment.

Methods:

Prototype:
virtual	BOOL	Step(float	t0,	float	t1,	Color	illum	,	float
distAtten)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	for	every	step	defined	by	t0	and	t1.	The	illumination
over	this	segment	is	passed	in	illum.

Parameters:
float	t0
The	start	of	the	segment.	This	is	a	distance	along	the	ray.	The	ray	is	made	up
of	a	point	p	and	a	unit	length	direction	vector	dir.	The	point	defined	by	t0	is
thus	ray.p+t0*ray.dir.
float	t1
The	end	of	the	segment.	This	is	a	distance	along	the	ray.	The	ray	is	made	up	of
a	point	p	and	a	unit	length	direction	vector	dir.	The	point	defined	by	t1	is
thus	ray.p+t1*ray.dir.
Color	illum
The	light	intensity	over	the	entire	segment.	It	can	be	assumed	that	the	light
intensity	is	constant	for	the	segment.
float	distAtten
This	parameter	is	available	in	release	2.0	and	later	only.
This	parameter	may	be	used	so	that	volume	effects	can	use	the	distance
attenuation	value	as	an	input	variable	to	their	effects.	For	instance,	the	volume
light	uses	this	to	change	the	fog	color	based	on	the	distance	from	the	light.

Return	Value:
TRUE	to	continue;	FALSE	to	halt	the	integration	(stop	the	traversal).

Class	ParamDlg
See	Also:	Class	Mtl,	Class	Texmap,	Working	with	Materials	and	Textures.
class	ParamDlg	:	public	InterfaceServer

Description:
Every	MtlBase	sub-class	defines	a	ParamDlg	to	manage	its	part	of	the	material
editor.

Methods:

Prototype:
virtual	Class_ID	ClassID()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	unique	Class_ID	of	the	plug-in	this	dialog	manages.	See	Class
Class_ID.

Prototype:
virtual	void	SetThing(ReferenceTarget	*m)=0;

Remarks:
Implemented	by	the	Plug-In.
This	sets	the	current	material	or	texture	being	edited	to	the	material	or	texture
passed.

Parameters:
ReferenceTarget	*m
The	material	or	texture	to	set	as	current.

Prototype:
virtual	ReferenceTarget*	GetThing()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	current	material	or	texture	being	edited.

Prototype:
virtual	void	SetTime(TimeValue	t)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	current	time	has	changed.	This	gives	the
developer	an	opportunity	to	update	any	user	interface	data	that	may	need
adjusting	due	to	the	change	in	time.

Parameters:
TimeValue	t
The	new	current	time.

Prototype:
virtual	void	ReloadDialog()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	should	stuff	values	into	all	the	parameter	dialog's	controls,	edit
fields	etc.	In	fact	this	method	is	now	only	called	after	doing	a	"Reset".	It	is
also	useful	inside	the	material/map	when	a	NotifyRefChanged()	is
processed	it	may	need	to	be	called.

Prototype:
virtual	void	ActivateDlg(BOOL	onOff)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	dialog	box	becomes	active	or	inactive.
Currently	this	is	used	when	working	with	color	swatch	custom	controls.	Color
swatches	need	to	know	when	the	dialog	box	becomes	active	or	inactive
because	they	change	their	method	of	drawing	themselves.	When	the	dialog	is
active,	color	swatches	are	drawn	in	pure	color	(this	requires	a	color	register	in
the	palette).	When	the	dialog	becomes	inactive	the	color	swatches	are	drawn
using	dithered	painting.	This	is	needed	because	there	are	only	8	available	color
registers.
A	method	of	the	color	swatch	control	is	called	to	indicate	if	it	is	in	an	active	or

inactive	dialog.	See	the	sample	code	below.	Also	see	Class	IColorSwatch.
Parameters:
BOOL	onOff
TRUE	if	the	dialog	is	active;	otherwise	FALSE.

Sample	Code:
void	NoiseDlg::ActivateDlg(BOOL	onOff)	{
	for	(int	i=0;	i<NCOLS;	i++)
		cs[i]->Activate(onOff);
	}

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	by	the	system	to	delete	an	instance	of	this	class.	A
developer	must	use	the	same	memory	manager	to	delete	the	item	as	they	did	to
allocate	it	(in	MtlBase::CreateParamDlg()).	For	example	if	a	developer
used	the	new	operator	to	allocate	the	memory,	this	method	would	be
implemented	as	{	delete	this;	}

Prototype:
virtual	int	FindSubTexFromHWND(HWND	hwnd);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	needs	to	be	implemented	if	the	plug-in	texmap	is	using	a
TexDADMgr.	It	should	return	the	index	of	the	sub-texmap	corresponding	to
the	window	whose	handle	is	passed.	If	the	handle	is	not	valid	return	-1.

Parameters:
HWND	hwnd
The	window	handle	to	check.

Default	Implementation:
{	return	-1;}

Sample	Code:
int	CellTexParamDlg::FindSubTexFromHWND(HWND	hw)	{
	if	(hw==GetDlgItem(pmap-
>GetHWnd(),IDC_CELLTEX_CELLCOLOR_MAP))
		return	0;
	if	(hw==GetDlgItem(pmap-
>GetHWnd(),IDC_CELLTEX_DIVCOL1_MAP))
		return	1;
	if	(hw==GetDlgItem(pmap-
>GetHWnd(),IDC_CELLTEX_DIVCOL2_MAP))
		return	2;
	return	-1;
	}

Prototype:
virtual	int	FindSubMtlFromHWND(HWND	hwnd);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	needs	to	be	implemented	if	the	plug-in	material	is	using	a
MtlDADMgr.	It	should	return	the	index	of	the	sub-map	corresponding	to	the
window	whose	handle	is	passed.	If	the	handle	is	not	valid	return	-1.

Parameters:
HWND	hwnd
The	window	handle	to	check.

Default	Implementation:
{	return	-1;}

Class	UVGen
See	Also:	Class	MtlBase,	Class	ShadeContext,	Class	MapSampler,	Class
Point2,	Class	Point3,	Class	Matrix3.
class	UVGen	:	public	MtlBase

Description:
Most	texture	maps	that	use	UV	coordinates	will	use	an	instance	of	this	class.
This	class	encapsulates	much	of	the	user	interface	functionality	for	setting
mirroring,	tiling	and	so	on.	These	are	the	settings	found	in	the	'Coordinate'	and
'Noise'	rollup	pages.	This	class	generates	UV	coordinates	based	on	the	results	of
a	UV	source	provided	by	the	plug-in	and	the	user	specified	transformations.	An
instance	of	this	class	is	referenced	by	all	the	2D	texture	maps.	All	methods	of
this	class	are	implemented	by	the	system.

Methods:
The	following	four	methods	are	the	only	ones	a	plug-in	needs	to	call	typically:

Prototype:
virtual	AColor	EvalUVMap(ShadeContext	&sc,	MapSampler*
samp,
	BOOL	filter=TRUE)=0;

Remarks:
This	method	is	called	to	evaluate	the	color	of	the	map	based	on	the
ShadeContext.	It	takes	into	account	the	users	selections	for	mirroring,	tiling,
noise,	etc.	from	the	UVGen	rollups.

Parameters:
ShadeContext	&sc
Describes	the	properties	of	the	point	to	evaluate.
MapSampler*	samp
This	is	a	callback	used	to	sample	the	map.	The	plug-in	creates	an	instance	of
this	class,	and	implements	its	methods.	A	pointer	to	the	instance	is	passed
here.	The	methods	of	the	class	sample	the	texture	for	a	single	UV	coordinate.
BOOL	filter=TRUE
If	TRUE	the	texture	will	be	filtered.

Return	Value:

The	result	as	an	AColor.

Prototype:
virtual	float	EvalUVMapMono(ShadeContext	&sc,	MapSampler*
samp,
	BOOL	filter=TRUE)=0;

Remarks:
This	method	is	called	to	evaluate	the	value	of	the	map	based	on	the
ShadeContext.	It	takes	into	account	the	users	selections	for	mirroring,	tiling,
noise,	etc.	from	the	UVGen	rollups.

Parameters:
ShadeContext	&sc
Describes	the	properties	of	the	point	to	evaluate.
MapSampler*	samp
This	is	a	callback	used	to	sample	the	map.	The	plug-in	creates	an	instance	of
this	class,	and	implements	its	methods.	A	pointer	to	the	instance	is	passed
here.	The	methods	of	the	class	sample	the	texture	for	a	single	UV	coordinate.
BOOL	filter=TRUE
If	TRUE	the	texture	will	be	filtered.

Return	Value:
The	result	as	a	float.

The	following	two	methods	are	called	for	bump	mapping	to	retrieve	a	normal
perturbation.	The	calling	sequence	for	these	methods	is	shown	in	the	sample
code	below.	This	code	takes	the	sum	of	the	U	derivative	times	the	U	bump
vector,	and	the	V	derivative	times	the	V	bump	vector.	The	result	is	the	normal
perturbation	returned	from	EvalNormalPerturb().
Point3	BMTex::EvalNormalPerturb(ShadeContext&	sc)	{
	Point3	dPdu,	dPdv;
	if	(thebm==NULL)
		return	Point3(0,0,0);
	uvGen->GetBumpDP(sc,dPdu,dPdv);	//	get	bump	basis	vectors
	Point2	dM	=(.01f)*uvGen-
>EvalDeriv(sc,&mysamp,filterType!=FILTER_NADA);

	return	texout->Filter(dM.x*dPdu+dM.y*dPdv);
	}
Note:	In	the	following	code	you'll	see	the	'text	book'	Blinn's	algorithm	and	the
'Lazy'	approach	that	is	actually	used.	During	testing	it	was	determined	that
these	two	methods	are	visually	identical.	The	'Lazy'	algorithm	avoids	the
cross	products	however.

Point3	Gradient::EvalNormalPerturb(ShadeContext&	sc)	{
	Point3	dPdu,	dPdv;
	Point2	dM	=	uvGen->EvalDeriv(sc,&mysamp);
	uvGen->GetBumpDP(sc,dPdu,dPdv);
#if	0
	//	Blinn's	algorithm
	Point3	N	=	sc.Normal();
	Point3	uVec	=	CrossProd(N,dPdv);
	Point3	vVec	=	CrossProd(N,dPdu);
	return	dM.x*uVec-dM.y*vVec;
#else
	//	Lazy	algorithm
	return	texout->Filter(dM.x*dPdu+dM.y*dPdv);
#endif
	}

Prototype:
virtual	void	GetBumpDP(ShadeContext&	sc,	Point3&	dPdu,
Point3&	dPdv)=0;

Remarks:
This	method	may	be	called	to	compute	dPdu	and	dPdv	bump	basis	vectors
for	bump	mapping.	These	are	two	vector	in	3D	space	that	give	you	the	U	and
V	axis	of	the	map	space.	This	is	like	taking	the	map	space	into	3D	space	so
you	can	determine	where	the	U	axis	is	and	where	the	V	axis	is.
Note:	In	3ds	max	3.0	and	later	these	vectors	are	always	normalized.	This
change	makes	it	so	bump	mapping	is	invariant	when	a	Rescale	World	Units	is
performed.
See	the	Advanced	Topics	section	on	Working	with	Materials	and	Textures	for

more	information	on	bump	mapping.
Parameters:
ShadeContext&	sc
Describes	the	properties	of	the	point	to	evaluate.
Point3&	dPdu,	Point3&	dPdv
The	bump	basis	vectors	are	returned	here.

Prototype:
virtual	Point2	EvalDeriv(ShadeContext&	sc,	MapSampler*	samp,
	BOOL	filter=TRUE)=0;

Remarks:
This	gets	the	amount	that	U	and	V	are	changing.	It	takes	into	account	the	users
selections	for	mirroring,	tiling,	noise,	etc.	from	the	UVGen	rollups.

Parameters:
ShadeContext&	sc
Describes	the	properties	of	the	point	to	evaluate.
MapSampler*	samp
This	is	a	callback	used	to	sample	the	map.	The	plug-in	creates	an	instance	of
this	class,	and	implements	its	methods.	A	pointer	to	the	instance	is	passed
here.	The	methods	of	the	class	sample	the	texture	for	a	single	UV	coordinate.
BOOL	filter=TRUE
If	TRUE	the	texture	will	be	filtered.

Return	Value:
df/du,	df/dv	as	a	Point2.

Prototype:
virtual	void	GetUV(ShadeContext&	sc,	Point2&	UV,	Point2&
dUV)=0;

Remarks:
This	method	is	not	normally	called	directly.	It	retrieves	the	UV	coordinates
(depending	on	if	they	are	explicit,	shrinked-wrapped	environment,	etc.)	and
transforms	them	using	the	offsets	and	noise	parameters	entered	by	the	user.	It
does	not	do	the	mirroring	or	tiling.	It	then	returns	the	texture	coordinates	and

derivatives	for	antialiasing.
Parameters:
ShadeContext&	sc
Describes	the	properties	of	the	point	to	evaluate.
Point2&	UV
The	UV	texture	coordinates	for	the	point.
Point2&	dUV
The	derivatives	of	UV	for	the	point	to	shade.	This	describes	how	big	of	a
range	in	UV	space	the	current	pixel	covers.

Prototype:
virtual	void	GetUVTransform(Matrix3	&uvtrans)=0;

Remarks:
This	method	is	used	internally	to	provide	information	to	the	interactive
renderer.

Prototype:
virtual	int	GetTextureTiling()=0;

Remarks:
This	method	is	used	internally	to	provide	information	to	the	interactive
renderer.

Prototype:
virtual	int	GetUVWSource()=0;

Remarks:
This	method	returns	the	source	for	the	texture	vertices.

Return	Value:
One	of	the	following	values:
UVWSRC_EXPLICIT
Use	explicit	mesh	texture	vertices	from	channel	1.
UVWSRC_EXPLICIT2
Use	explicit	mesh	texture	vertices	from	channel	2.

UVWSRC_OBJXYZ
Generate	planar	UVW	mapping	coordinates	from	the	object	XYZ	on-the-
fly.

Prototype:
virtual	void	SetUVWSource(int	s)=0;

Remarks:
This	method	sets	the	source	for	the	texture	vertices.

Parameters:
int	s
One	of	the	following	values:
UVWSRC_EXPLICIT
Use	explicit	mesh	texture	vertices	from	one	of	the	mapping	channels	(as
established	by	SetMapChannel()	below).
UVWSRC_EXPLICIT2
Use	explicit	mesh	texture	vertices	from	the	Vertex	Color	Channel.
UVWSRC_OBJXYZ
Generate	planar	UVW	mapping	coordinates	from	the	object	XYZ	on-the-
fly.
UVWSRC_WORLDXYZ
This	parameter	is	available	in	release	3.0	and	later	only.
Generate	planar	uvw	mapping	from	world	xyz	on-the-fly.

Prototype:
virtual	void	SetMapChannel(int	s);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	mapping	channel	used	when	UVWSRC_EXPLICIT	is	in	effect.

Parameters:
int	s
The	mapping	channel	value	to	set.

Default	Implementation:
{}

Prototype:
virtual	int	SymFlags()=0;

Remarks:
This	method	is	used	internally.

Prototype:
virtual	void	SetSymFlags(int	f)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	is	used	internally.

Prototype:
virtual	void	SetClipFlag(BOOL	b)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	sets	the	clip	flag.	The	clip	flag	controls	whether	the	U,V	values
passed	to	MapSampler	by	EvalUVMap()	and	EvalUVMapMono()	are
clipped	to	the	[0..1]	interval	or	not.	It	defaults	to	ON	(i.e.,	clipped).
If	an	object	is	covered	by	a	texture,	and	that	texture	repeats	(is	tiled),	this
methods	can	be	used	to	tell	you	which	tile	you're	in.	This	allows	one	to	do
something	depending	on	which	tile	it	is.	This	is	done,	for	example,	in	the
Bitmap	texture,	when	'Jitter	Placement'	is	on,	so	each	tile	can	be	moved	about
slightly.	For	an	example	of	this	see
\MAXSDK\SAMPLES\MATERIALS\BMTEX.CPP.	If	you	need	this
information,	you	can	just	call	uvGen->SetClipFlag(FALSE)	(for	instance
in	your	Update()	method)	and	then	use	int(u)	and	int(v)	to	get	the	this	info.
(You'd	use	frac(u)	and	frac(v)	to	get	clipped	versions	of	u,v.)

Parameters:
BOOL	b
TRUE	to	clip;	FALSE	to	not	clip.

Prototype:
virtual	BOOL	GetClipFlag()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	returns	the	clip	flag.	The	clip	flag	controls	whether	the	U,V
values	passed	to	MapSampler	by	EvalUVMap()	and
EvalUVMapMono()	are	clipped	to	the	[0..1]	interval	or	not.	It	defaults	to
ON	(i.e.,	clipped).	See	SetClipFlag()	above.

Return	Value:
TRUE	for	clipped;	FALSE	if	not	clipped.

Prototype:
virtual	int	GetAxis()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Return	the	axis	(mapping	coordinate	system)	used.

Return	Value:
One	of	the	following	values:
AXIS_UV
AXIS_VW
AXIS_WU

Prototype:
virtual	void	SetAxis(int	ax)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	axis	(mapping	coordinate	system)	used.

Parameters:
int	ax
One	of	the	following	values:
AXIS_UV
AXIS_VW
AXIS_WU

Prototype:
virtual	void	InitSlotType(int	sType)=0;

Remarks:
Developers	typically	don't	need	to	call	this	method.	In	the	Coordinates	rollup
in	the	user	interface	for	a	texture	map	are	two	options.	These	options	are
Texture	or	Environment.	The	slot	type	is	one	of	these	two	options.	There	are	a
variety	of	texture	coordinate	types.	There	are	the	type	assigned	to	the	object
and	the	environment	type	(Spherical,	Cylindrical,	Shrink-wrap,	Screen).	This
method	is	used	initialize	the	radio	button	in	the	dialog	based	on	the	sType
passed	and	update	the	drop	down	list.

Parameters:
int	sType
One	of	the	following	values:
MAPSLOT_TEXTURE
This	is	either	texture	coordinates.
MAPSLOT_ENVIRON
Environment	coordinates.

Prototype:
virtual	void	SetRollupOpen(BOOL	open)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	UVGen	rollup	state	to	open	or	closed.

Parameters:
BOOL	open
TRUE	for	open;	FALSE	for	closed.

Prototype:
virtual	BOOL	GetRollupOpen()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	open	or	closed	state	of	the	UVGen	rollup.

Return	Value:
TRUE	is	open;	FALSE	is	closed.

Class	MapSampler
See	Also:	Class	UVGen,	Class	ShadeContext.

Description:
A	texture	map	implements	this	class	and	passes	it	into	the	UVGen	methods
EvalUVMap(),	EvalUVMapMono(),	and	EvalDeriv()	to	evaluate	itself
with	tiling	&	mirroring.	Each	of	the	methods	of	this	class	are	used	to	sample	the
map	at	a	single	UV	coordinate.

Methods:

Prototype:
virtual	AColor	Sample(ShadeContext&	sc,	float	u,	float	v)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	required.	It	is	called	to	sample	the	map	at	a	single	UV
coordinate.	This	method	should	not	try	to	antialias	the	map,	it	should	just
return	the	value.	Take	for	example	a	bitmap	texture	implementing	this	method.
If	the	u	values	passed	was	0.5	and	the	v	value	passed	was	0.5,	the	plug-in
would	just	return	the	pixel	value	at	the	center	of	the	bitmap	as	an	AColor.

Parameters:
ShadeContext&	sc
The	ShadeContext.
float	u
The	U	value	in	the	range	of	0.0	to	1.0
float	v
The	V	value	in	the	range	of	0.0	to	1.0

Return	Value:
The	sampled	value	as	an	AColor.

Prototype:
virtual	AColor	SampleFilter(ShadeContext&	sc,	float	u,
	float	v,	float	du,	float	dv)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	required.	It	is	called	to	return	a	value	from	the	map	that	is	the
averaged	value	over	the	specified	region	of	width	du	and	height	dv,	centered
at	u,	v.	Certain	map	types	may	use	the	du	and	dv	values	directly	to	perform
antialiasing	of	the	map.

Parameters:
ShadeContext&	sc
The	ShadeContext.
float	u
The	U	value	in	the	range	of	0.0	to	1.0
float	v
The	V	value	in	the	range	of	0.0	to	1.0
float	du
This	parameter	can	be	considered	the	width	of	a	small	rectangle	center	on	u,v.
The	u	and	v	value	are	guaranteed	to	be	inside	this	rectangle.
float	dv
This	parameter	can	be	considered	the	height	of	a	small	rectangle	center	on	u,v.
The	u	and	v	value	are	guaranteed	to	be	inside	this	rectangle.

Return	Value:
The	sampled	value	as	an	AColor.

Prototype:
virtual	float	SampleMono(ShadeContext&	sc,	float	u,	float	v)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	optional	as	a	default	implementation	is	provided.	It	may	be
implemented	however	if	a	certain	map	type	can	be	more	efficient	in	evaluating
a	mono	channel.	For	example	a	noise	function	that	produces	a	single	floating
point	value	as	a	function	of	UV.	This	method	is	called	to	sample	the	map	at	a
single	UV	coordinate.	This	method	should	not	try	to	antialias	the	map,	it
should	just	return	the	value.

Parameters:

ShadeContext&	sc
The	ShadeContext.
float	u
The	U	value	in	the	range	of	0.0	to	1.0
float	v
The	V	value	in	the	range	of	0.0	to	1.0

Return	Value:
The	sampled	value	as	an	float.

Default	Implementation:
{	return	Intens(Sample(sc,u,v));	}

Prototype:
virtual	float	SampleMonoFilter(ShadeContext&	sc,	float	u,
	float	v,	float	du,	float	dv)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	optional.	It	is	called	to	return	a	value	from	the	map	that	is	the
averaged	value	over	the	specified	region	of	width	du	and	height	dv,	centered
at	u,	v.	Certain	map	types	may	use	the	du	and	dv	values	directly	to	perform
antialiasing	of	the	map.

Parameters:
ShadeContext&	sc
The	ShadeContext.
float	u
The	U	value	in	the	range	of	0.0	to	1.0
float	v
The	V	value	in	the	range	of	0.0	to	1.0
float	du
This	parameter	can	be	considered	the	width	of	a	small	rectangle	center	on	u,v.
The	u	and	v	value	are	guaranteed	to	be	inside	this	rectangle.
float	dv
This	parameter	can	be	considered	the	height	of	a	small	rectangle	center	on
u,v.	The	u	and	v	value	are	guaranteed	to	be	inside	this	rectangle.

Return	Value:
The	sampled	value	as	an	float.

Default	Implementation:
{	return	Intens(SampleFilter(sc,u,v,du,dv));	}

Class	XYZGen
See	Also:	Class	MtlBase,	Class	ShadeContext,	Class	Point3.
class	XYZGen	:	public	MtlBase

Description:
This	class	generates	Point3	coordinates	based	on	the	ShadeContext.	A
reference	to	one	of	these	is	referenced	by	all	3D	texture	maps.	XYZGen	does
for	3D	Texmaps	what	UVGen	does	for	2D	Texmaps.	It	puts	up	the	3D
"Coordinates"	rollup,	and	supplies	the	3D	Texmap	with	transformed	3D
coordinates.	All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	void	GetXYZ(ShadeContext&	sc,	Point3&	p,	Point3&
dp)=0;

Remarks:
This	method	retrieves	coordinates	and	derivatives	for	antialiasing.	It	returns
the	coordinates	in	the	"Object	Coordinate	System",	scaled	and	rotated	by	the
parameters	given	in	the	Coordinates	rollup.	The	default	transformation	is	the
identity	transform,	so	you	just	get	Object	coordinates.	For	instance,	if	you
have	a	sphere	of	radius	100,	you	will	get	coordinates	ranging	from	-100	to
+100.
A	developer	might	wonder	why	3ds	max	don't	use	some	normalized
coordinates	space.	This	was	considered,	but	it	has	some	real	problems.	Say
you	make	something	by	assembling	several	boxes,	of	varying	sizes,	and	then
apply	a	wood	texture	to	the	whole	thing.	You	want	the	wood	texture	to	be	at
the	same	scale	for	all	the	pieces,	not	smaller	on	the	smaller	pieces,	and	thus
that	doesn't	work.

Parameters:
ShadeContext&	sc
Describes	the	properties	of	the	point	to	be	shaded.
Point3&	p
The	3D	point	is	returned	here.
Point3&	dp

The	derivative	of	the	3D	point	is	returned	here.

Prototype:
virtual	BOOL	IsStdUVGen();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	asks	the	question	'Is	this	class	an	instance	of	StdUVGen?'.	The
derived	class	StdUVGen	implements	this	to	return	TRUE.	Others	use	the
default	implementation	to	return	FALSE.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	void	SetRollupOpen(BOOL	open)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	XYZGen	rollup	state	to	open	or	closed.

Parameters:
BOOL	open
TRUE	for	open;	FALSE	for	closed.

Prototype:
virtual	BOOL	GetRollupOpen()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	open	or	closed	state	of	the	XYZGen	rollup.

Return	Value:
TRUE	is	open;	FALSE	is	closed.

Prototype:
virtual	void	GetBumpDP(ShadeContext&	sc,	Point3*	dP);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	returns	the	transformed	bump	unit	vectors	for	3D	bump	mapping.
The	3D	textures	need	to	use	these	in	computing	the	gradient.

Parameters:
ShadeContext&	sc
Describes	the	properties	of	the	point	to	be	shaded.
Point3*	dP
The	3	unit	vectors	for	computing	differentials	are	returned	here.

Default	Implementation:
{}

Sample	Code:
Here	is	a	typical	use	of	XYZGen->GetBumpDP()	to	compute	the	bump	mapping
for	a	3D	texture:
Point3	Marble::EvalNormalPerturb(ShadeContext&	sc)	{
	float	del,d;
	Point3	p,dp;
	if	(!sc.doMaps)	return	Point3(0,0,0);
	if	(gbufID)	sc.SetGBufferID(gbufID);
	xyzGen->GetXYZ(sc,p,dp);
	if	(size==0.0f)	size=.0001f;
	p	*=	FACT/size;
	d	=	MarbleFunc(p);
	del	=	20.0f;
	Point3	np;
	Point3	M[3];
	xyzGen->GetBumpDP(sc,M);
	np.x	=	(MarbleFunc(p+del*M[0])	-	d)/del;
	np.y	=	(MarbleFunc(p+del*M[1])	-	d)/del;
	np.z	=	(MarbleFunc(p+del*M[2])	-	d)/del;
	np	*=	100.0f;
	return	sc.VectorFrom(np,REF_OBJECT);
	}

Class	TextureOutput
See	Also:	Class	MtlBase,	Class	AColor,	Class	Point3.
class	TextureOutput	:	public	MtlBase

Description:
This	class	is	used	by	texture	maps	to	put	up	the	'Output'	rollup	in	the	materials
editor,	and	perform	the	output	filtering.	Currently	this	provides	control	over	the
Output	Amount,	RGB	Level,	and	RGB	Offset.	In	the	future	this	may	be
enhanced	to	include	other	things	that	are	often	desirable	on	the	output	stage.
These	are	things	like	tinting,	color	shifting,	etc.	All	methods	of	this	class	are
implemented	by	the	system.
A	plug-in	will	typically	call	these	methods	from	the	implementations	of
EvalColor(),	EvalMono(),	etc.	This	is	just	done	as	a	final	adjustment	to	scale
or	offset	the	value.	The	code	below	is	from	the	Gradient	texture	map.

AColor	Gradient::EvalColor(ShadeContext&	sc)	{
	return	texout->Filter(uvGen->EvalUVMap(sc,&mysamp));
	}
float	Gradient::EvalMono(ShadeContext&	sc)	{
	return	texout->Filter(uvGen-
>EvalUVMapMono(sc,&mysamp));
	}

Methods:

Prototype:
virtual	AColor	Filter(AColor	c)	=	0;

Remarks:
Filters	the	specified	AColor	and	returns	it.

Parameters:
AColor	c
The	color	to	filter.

Return	Value:
The	filtered	color	as	an	AColor.

Prototype:
virtual	float	Filter(float	f)	=	0;

Remarks:
Filters	the	specified	float	value	and	returns	it.

Parameters:
float	f
The	value	to	filter.

Return	Value:
The	filtered	value.

Prototype:
virtual	Point3	Filter(Point3	p)	=	0;

Remarks:
Filters	the	specified	Point3	value	and	returns	it.

Parameters:
Point3	p
The	Point3	to	filter.

Return	Value:
The	filtered	Point3.

Prototype:
virtual	float	GetOutputLevel(TimeValue	t)	=	0;

Remarks:
Returns	the	output	level	(amount)	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	retrieve	the	output	level.

Prototype:
virtual	void	SetOutputLevel(TimeValue	t,	float	v)	=	0;

Remarks:

Sets	the	output	level	at	the	specified	time.
Parameters:
TimeValue	t
The	time	to	set	the	output	level.
float	v
The	value	of	the	output	level.

Prototype:
virtual	void	SetInvert(BOOL	onoff)=0;

Remarks:
Sets	the	state	of	the	'Invert'	toggle	in	the	Output	rollup.

Parameters:
BOOL	onoff
TRUE	to	turn	on;	FALSE	to	turn	off.

Prototype:
virtual	BOOL	GetInvert()=0;

Remarks:
Returns	the	state	of	the	'Invert'	toggle	in	the	Output	rollup.

Return	Value:
TRUE	is	on;	FALSE	is	off.

Prototype:
virtual	void	SetRollupOpen(BOOL	open)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	'Output'	rollup	page	to	open	or	closed.

Parameters:
BOOL	open
TRUE	to	open	the	rollup;	FALSE	to	close	it.

Prototype:
virtual	BOOL	GetRollupOpen()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	open	or	closed	state	of	the	'Output'	rollup.

Return	Value:
TRUE	for	open;	FALSE	for	closed.

Class	MultiMtl
See	Also:	Class	Mtl.
class	MultiMtl	:	public	Mtl

Description:
This	class	provides	access	to	the	developer	alterable	properties	of	the	3ds	max
Multi/Sub-Object	material.

Methods:

Prototype:
virtual	void	SetNumSubMtls(int	n)=0;

Remarks:
Sets	the	number	of	sub-materials	for	the	multi-material.

Parameters:
int	n
The	number	of	sub-materials.
	

Prototype:
virtual	void	GetSubMtlName(int	mtlid,	TSTR	&s)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Retrieves	the	name	of	the	sub-material	whose	ID	is	passed.

Parameters:
int	mtlid
The	zero	based	index	of	the	sub-material.
TSTR	&s
The	name	is	returned	here.

Prototype:
virtual	void	SetSubMtlAndName(int	mtlid,	Mtl	*m,	TSTR
&subMtlName)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Retrieves	the	name	and	pointer	to	the	material	for	the	specified	sub-material.

Parameters:
int	mtlid
The	zero	based	index	of	the	sub-material.
Mtl	*m
Points	to	the	sub-material.
TSTR	&subMtlName
The	name	is	returned	here.

Class	StdUVGen
See	Also:	Class	UVGen.
class	StdUVGen	:	public	UVGen

Description:
This	class	provides	access	to	the	parameters	of	the	3ds	max	UVGen	class.	These
are	the	settings	in	the	'Coordinates'	and	'Noise'	rollups	such	as	UV	offsets,	angle,
blur,	noise	level,	etc.	All	methods	of	this	class	are	implemented	by	the	system.

Methods	Groups:
The	following	hyperlinks	take	you	to	the	beginning	of	groups	of	related	method
within	the	class.
Setting	properties
Retrieving	properties

Methods:

Setting	properties
Prototype:
virtual	void	SetCoordMapping(int)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	mapping	type	to	one	of	the	specified	values.

Parameters:
int
The	mapping	type.	One	of	the	following	values:
UVMAP_EXPLICIT
Explicit	Texture	mapping.
UVMAP_SPHERE_ENV
Spherical	Environment	mapping.
UVMAP_CYL_ENV
Cylindrical	Environment	mapping.
UVMAP_SHRINK_ENV
Shrink	Wrap	Environment	mapping.

UVMAP_SCREEN_ENV
Screen	Environment	mapping.

Prototype:
virtual	void	SetUOffs(float	f,	TimeValue	t)=0;

Remarks:
Sets	the	U	Offset	setting	to	the	specified	value	at	the	time	passed.

Parameters:
float	f
The	value	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetVOffs(float	f,	TimeValue	t)=0;

Remarks:
Sets	the	V	Offset	setting	to	the	specified	value	at	the	time	passed.

Parameters:
float	f
The	value	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetUScl(float	f,	TimeValue	t)=0;

Remarks:
Sets	the	U	tiling	setting	to	the	specified	value	at	the	time	passed.

Parameters:
float	f
The	value	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetVScl(float	f,	TimeValue	t)=0;

Remarks:
Sets	the	V	tiling	setting	to	the	specified	value	at	the	time	passed.

Parameters:
float	f
The	value	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetAng(float	f,	TimeValue	t)=0;

Remarks:
Sets	the	angle	setting	to	the	specified	value	at	the	time	passed.

Parameters:
float	f
The	value	to	set	in	radians.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetUAng(float	f,	TimeValue	t)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	U	Angle	setting	the	specified	value	at	the	time	passed.

Parameters:
float	f
The	angle	to	set	in	radians.
TimeValue	t
The	time	at	which	to	set	the	angle.

Prototype:
virtual	void	SetVAng(float	f,	TimeValue	t)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	V	Angle	setting	the	specified	value	at	the	time	passed.

Parameters:
float	f
The	angle	to	set	in	radians.
TimeValue	t
The	time	at	which	to	set	the	angle.

Prototype:
virtual	void	SetWAng(float	f,	TimeValue	t)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	W	Angle	setting	the	specified	value	at	the	time	passed.

Parameters:
float	f
The	angle	to	set	in	radians.
TimeValue	t
The	time	at	which	to	set	the	angle.

Prototype:
virtual	void	SetBlur(float	f,	TimeValue	t)=0;

Remarks:
Sets	the	blur	to	the	specified	value	at	the	time	passed.

Parameters:
float	f
The	value	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetBlurOffs(float	f,	TimeValue	t)=0;

Remarks:
Sets	the	blur	offset	to	the	specified	value	at	the	time	passed.

Parameters:
float	f
The	value	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetNoiseAmt(float	f,	TimeValue	t)=0;

Remarks:
Sets	the	noise	amount	to	the	specified	value	at	the	time	passed.

Parameters:
float	f
The	value	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetNoiseSize(float	f,	TimeValue	t)=0;

Remarks:
Sets	the	noise	size	to	the	specified	value	at	the	time	passed.

Parameters:
float	f
The	value	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetNoiseLev(int	i,	TimeValue	t)=0;

Remarks:
Sets	the	noise	level	to	the	specified	value	at	the	time	passed.

Parameters:
int	i
The	value	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetNoisePhs(float	f,	TimeValue	t)=0;

Remarks:
Sets	the	noise	phase	to	the	specified	value	at	the	time	passed.

Parameters:
float	f
The	value	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetTextureTiling(int	tiling)=0;

Remarks:
Sets	the	texture	tiling	setting.

Parameters:
int	tiling
See	List	of	Texture	Symmetry	Flags.

Prototype:
virtual	void	SetMapChannel(int	i)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	mapping	channel	to	the	specified	value.

Parameters:
int	i
The	channel	to	set.

Prototype:
virtual	void	SetFlag(ULONG	f,	ULONG	val)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	UVGen	flags.

Parameters:
ULONG	f
See	List	of	Texture	Symmetry	Flags.
ULONG	val
The	value	to	set.

Prototype:
virtual	void	SetHideMapBackFlag(BOOL	b)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	hide	map	back	flag.

Parameters:
BOOL	b
TRUE	to	set	the	flag;	FALSE	to	disable.

Retrieving	properties

Prototype:
virtual	int	GetCoordMapping(int)=0;

Remarks:
Retrieves	the	coordinate	mapping	type.

Parameters:
int

This	parameter	is	not	used.
Return	Value:
One	of	the	following	values:
UVMAP_EXPLICIT
UVMAP_SPHERE_ENV
UVMAP_CYL_ENV
UVMAP_SHRINK_ENV
UVMAP_SCREEN_ENV

Prototype:
virtual	float	GetUOffs(TimeValue	t)=0;

Remarks:
Retrieves	the	U	Offset	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.

Prototype:
virtual	float	GetVOffs(TimeValue	t)=0;

Remarks:
Retrieves	the	V	Offset	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.

Prototype:
virtual	float	GetUScl(TimeValue	t)=0;

Remarks:
Retrieves	the	U	Tiling	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.

Prototype:
virtual	float	GetVScl(TimeValue	t)=0;

Remarks:
Retrieves	the	V	Tiling	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.

Prototype:
virtual	float	GetAng(TimeValue	t)=0;

Remarks:
Retrieves	the	angle	setting	in	radians.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.

Prototype:
virtual	float	GetUAng(TimeValue	t)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	U	Angle	setting	(in	radians)	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	angle.

Prototype:
virtual	float	GetVAng(TimeValue	t)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	V	Angle	setting	(in	radians)	at	the	specified	time.

Parameters:

TimeValue	t
The	time	at	which	to	return	the	angle.

Prototype:
virtual	float	GetWAng(TimeValue	t)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	W	Angle	setting	(in	radians)	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	angle.

Prototype:
virtual	float	GetBlur(TimeValue	t)=0;

Remarks:
Retrieves	the	blur	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.

Prototype:
virtual	float	GetBlurOffs(TimeValue	t)=0;

Remarks:
Retrieves	the	blur	offset	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.

Prototype:
virtual	float	GetNoiseAmt(TimeValue	t)=0;

Remarks:

Retrieves	the	noise	amount	setting	at	the	specified	time.
Parameters:
TimeValue	t
The	time	to	retrieve	the	value.

Prototype:
virtual	float	GetNoiseSize(TimeValue	t)=0;

Remarks:
Retrieves	the	noise	size	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.

Prototype:
virtual	int	GetNoiseLev(TimeValue	t)=0;

Remarks:
Retrieves	the	noise	level	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.

Prototype:
virtual	float	GetNoisePhs(TimeValue	t)=0;

Remarks:
Retrieves	the	noise	phase	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	retrieve	the	value.

Prototype:
virtual	int	GetTextureTiling()=0;

Remarks:
Returns	the	texture	tiling	flags.

Return	Value:
See	List	of	Texture	Symmetry	Flags.

Prototype:
virtual	int	GetMapChannel()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	mapping	channel.

Prototype:
virtual	int	GetFlag(ULONG	f)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	flag	status	of	the	UVGen.

Parameters:
ULONG	f
See	List	of	Texture	Symmetry	Flags.

Prototype:
virtual	BOOL	GetHideMapBackFlag()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	state	of	the	hide	map	back	flag.

Class	StdXYZGen
See	Also:	Class	XYZGen.
class	StdXYZGen:	public	XYZGen

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	provides	access	to	the	parameters	of	the	3ds	max	XYZGen	class.
The	XYZGen	class	puts	up	the	3D	'Coordinates'	rollup.

Methods:

Prototype:
BOOL	IsStdXYZGen();

Remarks:
This	is	an	implementation	of	a	method	of	XYZGen.	This	returns	TRUE	to
indicate	this	is	a	StdXYZGen	instance.

Prototype:
virtual	void	SetCoordSystem(int	s)=0;

Remarks:
Sets	the	coordinate	system	used.

Parameters:
int	s
The	coordinate	system	to	set.	One	of	the	following	values:
XYZ_COORDS	-	Object	XYZ
UVW_COORDS	-	Explicit	Map	Channel
UVW2_COORDS	-	Vertex	Color	Channel
XYZ_WORLD_COORDS	-	World	XYZ.	This	option	is	available	in
release	3.0	and	later	only.

Prototype:
virtual	void	SetBlur(float	f,	TimeValue	t)=0;

Remarks:

Sets	the	Blur	setting	to	the	specified	value	at	the	specified	time.
Parameters:
float	f
The	value	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetBlurOffs(float	f,	TimeValue	t)=0;

Remarks:
Sets	the	Blur	Offset	setting	to	the	specified	value	at	the	specified	time.

Parameters:
float	f
The	value	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetOffs(int	axis,	float	f,	TimeValue	t)=0;

Remarks:
Sets	the	specified	Offset	setting	to	the	specified	value	at	the	specified	time.

Parameters:
int	axis
The	axis	to	set.	0	for	X,	1	for	Y,	2	for	Z.
float	f
The	value	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetScl(int	axis,	float	f,	TimeValue	t)=0;

Remarks:
Sets	the	specified	Tiling	(Scale)	setting	to	the	specified	value	at	the	specified
time.

Parameters:
int	axis
The	axis	to	set.	0	for	X,	1	for	Y,	2	for	Z.
float	f
The	value	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetAng(int	axis,	float	f,	TimeValue	t)=0;

Remarks:
Sets	the	specified	Angle	setting	to	the	specified	value	at	the	specified	time.

Parameters:
int	axis
The	axis	to	set.	0	for	X,	1	for	Y,	2	for	Z.
float	f
The	value	to	set.
TimeValue	t
The	time	at	which	to	set	the	value.

Prototype:
virtual	void	SetMapChannel(int	i)=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	mapping	channel	to	the	specified	value.

Parameters:
int	i
The	mapping	channel	to	set.

Prototype:
virtual	int	GetCoordSystem()=0;

Remarks:
Returns	the	coordinate	system	in	use.	One	of	the	following	values:
XYZ_COORDS	-	Object	XYZ
UVW_COORDS	-	Explicit	Map	Channel
UVW2_COORDS	-	Vertex	Color	Channel
XYZ_WORLD_COORDS	-	World	XYZ.	This	option	is	available	in
release	3.0	and	later	only.

Prototype:
virtual	float	GetBlur(TimeValue	t)=0;

Remarks:
Returns	the	Blur	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	retrieve	the	value.

Prototype:
virtual	float	GetBlurOffs(TimeValue	t)=0;

Remarks:
Returns	the	Blur	Offset	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	retrieve	the	value.

Prototype:
virtual	float	GetScl(int	axis,	TimeValue	t)=0;

Remarks:
Returns	the	Tiling	(Scale)	setting	for	the	specified	axis	at	the	specified	time.

Parameters:

int	axis
The	axis	to	set.	0	for	X,	1	for	Y,	2	for	Z.
TimeValue	t
The	time	at	which	to	retrieve	the	value.

Prototype:
virtual	float	GetAng(int	axis,	TimeValue	t)=0;

Remarks:
Returns	the	Angle	setting	for	the	specified	axis	at	the	specified	time.

Parameters:
int	axis
The	axis	to	set.	0	for	X,	1	for	Y,	2	for	Z.
TimeValue	t
The	time	at	which	to	retrieve	the	value.

Prototype:
virtual	int	GetMapChannel()=0;

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	mapping	channel.

Class	MtlBaseLib
See	Also:	Class	ReferenceTarget,	Class	MtlBaseList,	Class	MtlBase,	Class
Interface.
class	MtlBaseLib	:	public	ReferenceTarget,	public	MtlBaseList

Description:
This	class	is	a	library	of	MtlBase	entries.	To	get	a	list	of	the	currently	loaded
materials	use:
	MtlBaseLib&	Interface::GetMaterialLibrary().
When	you	load	a	material	library,	you	can	enumerate	all	the	materials	that	it
contains.	MtlBaseLib	is	subclassed	off	of	MtlBaseList	which	is	a
Tab<MtlHandle>,	so	for	example,	you	can	do	the	following	to	work	with
each	material:
	for	(int	i=0;	i<mlib.Count();	i++)	{	DoSomething(mlib[i]);	}
For	additional	information	on	this	class	see	the	Advanced	Topics	sectoin
Working	with	Materials	and	Textures.	All	methods	of	this	class	are	implemented
by	the	system.

Methods:

Prototype:
virtual	void	Remove(MtlBase	*m);

Remarks:
Removes	the	specified	MtlBase	from	the	library.

Parameters:
MtlBase	*m
The	MtlBase	to	remove.

Prototype:
virtual	void	Add(MtlBase	*m);

Remarks:
Adds	the	specified	MtlBase	to	the	library.

Parameters:

MtlBase	*m
The	MtlBase	to	add.

Prototype:
virtual	void	RemoveDuplicates();

Remarks:
Removes	all	duplicate	MtlBases	from	the	library.

Prototype:
void	DeleteAll();

Remarks:
Removes	all	MtlBases	from	the	library	and	deletes	all	references.

Prototype:
~MtlBaseLib();

Remarks:
Destructor.	All	references	are	deleted.

List	of	Texture	Map	Indices
See	Also:	Class	MtlBase,	Class	Shader.
The	Standard	Material	texture	map	index	used	by	Blinn,	Phong,	Constant,	Metal
(defined	in	\MAXSDK\INCLUDE\STDMAT.H).	One	of	the	following
values:
ID_AM	-	Ambient	(value	0)
ID_DI	-	Diffuse	(value	1)
ID_SP	-	Specular	(value	2)
ID_SH	-	Shininess	(value	3).	In	R3	and	later	this	is	called	Glossiness.
ID_SS	-	Shininess	strength	(value	4).	In	R3	and	later	this	is	called	Specular
Level.
ID_SI	-	Self-illumination	(value	5)
ID_OP	-	Opacity	(value	6)
ID_FI	-	Filter	color	(value	7)
ID_BU	-	Bump	(value	8)
ID_RL	-	Reflection	(value	9)
ID_RR	-	Refraction	(value	10)
ID_DP	-	Displacement	(value	11)

Class	MultiTex
See	Also:	Class	Texmap,	Class	Color,	Working	with	Materials	and	Textures.
class	MultiTex	:	public	Texmap

Description:
This	class	provides	access	to	the	developer	settable	properties	of	the	3ds	max
multi-textures	such	as	Composite,	Tint	and	Mix.	All	methods	of	this	class	are
implemented	by	the	system.

Methods:

Prototype:
virtual	void	SetNumSubTexmaps(int	n);

Remarks:
Sets	the	number	of	sub-texmaps	for	this	texmap.

Parameters:
int	n
The	number	of	sub-texmaps.

Prototype:
virtual	void	SetColor(int	i,	Color	c,	TimeValue	t=0);

Remarks:
Sets	the	color	of	the	'i-th'	sub-texmap	to	the	specified	color	at	the	time	passed.

Parameters:
int	i
The	index	of	the	sub-texmap	to	set.
Color	c
The	color	to	set.
TimeValue	t=0
The	time	at	which	to	set	the	color.

Class	GradTex
See	Also:	Class	MultiTex,	Class	TextureOutput.
class	GradTex:	public	MultiTex

Description:
This	class	provides	access	to	the	3ds	max	Gradient	texture.	All	methods	of	this
class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	StdUVGen*	GetUVGen()=0;

Remarks:
Retrieves	a	pointer	to	the	StdUVGen	interface	for	this	texture.	This	allows
access	to	the	mapping	parameters	such	as	UV	offsets,	blur,	angle,	noise	level,
etc.

Prototype:
virtual	TextureOutput*	GetTexout()=0;

Remarks:
Retrieves	a	pointer	to	the	TextureOutput	for	this	texture.	This	allows	access
to	the	RGB	level	and	output	and	the	output	amount.

Prototype:
virtual	void	SetMidPoint(float	m,	TimeValue	t=0);

Remarks:
Sets	the	'Color	2	Position'	setting	at	the	time	passed.

Parameters:
float	m
The	value	to	set	in	the	range	of	0.0	to	1.0.
TimeValue	t=0
The	time	to	set	the	value.

Class	StdFog
See	Also:	Class	Atmospheric,	Class	Texmap.
class	StdFog	:	public	Atmospheric

Description:
This	class	provides	access	to	the	settings	of	the	Standard	Fog	Atmospheric	plug-
in	of	3ds	max.	All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	void	SetColor(Color	c,	TimeValue	t)=0;

Remarks:
Sets	the	fog	color.

Parameters:
Color	c
The	color	to	set.
TimeValue	t
The	time	to	set	the	color.

Prototype:
virtual	void	SetUseMap(BOOL	onoff)=0;

Remarks:
Sets	the	state	of	the	'Use	Map'	toggle.

Parameters:
BOOL	onoff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetUseOpac(BOOL	onoff)=0;

Remarks:
Sets	the	state	of	the	use	opacity	map	toggle.

Parameters:

BOOL	onoff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetColorMap(Texmap	*tex)=0;

Remarks:
Set	the	color	map	used.

Parameters:
Texmap	*tex
The	map	to	set.

Prototype:
virtual	void	SetOpacMap(Texmap	*tex)=0;

Remarks:
Set	the	opacity	map	used.

Parameters:
Texmap	*tex
The	map	to	set.

Prototype:
virtual	void	SetFogBackground(BOOL	onoff)=0;

Remarks:
Sets	the	state	of	the	fog	background	toggle.

Parameters:
BOOL	onoff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetType(int	type)=0;

Remarks:
Set	the	type	of	fog,	layered	or	standard.

Parameters:
int	type
The	type	of	fog:	0	=	Standard;	1	=	Layered.

Prototype:
virtual	void	SetNear(float	v,	TimeValue	t)=0;

Remarks:
Sets	the	standard	fog	near	percentage.

Parameters:
float	v
The	value	to	set	in	the	range	0	to	1.
TimeValue	t
The	time	to	set	the	value.

Prototype:
virtual	void	SetFar(float	v,	TimeValue	t)=0;

Remarks:
Sets	the	standard	fog	far	percentage.

Parameters:
float	v
The	value	to	set	in	the	range	0	to	1.
TimeValue	t
The	time	to	set	the	value.

Prototype:
virtual	void	SetTop(float	v,	TimeValue	t)=0;

Remarks:
Sets	the	layered	fog	top	value.

Parameters:
float	v
The	value	to	set.
TimeValue	t

The	time	to	set	the	value.

Prototype:
virtual	void	SetBottom(float	v,	TimeValue	t)=0;

Remarks:
Sets	the	layered	fog	bottom	value.

Parameters:
float	v
The	value	to	set.
TimeValue	t
The	time	to	set	the	value.

Prototype:
virtual	void	SetDensity(float	v,	TimeValue	t)=0;

Remarks:
Sets	the	layered	fog	density	setting.

Parameters:
float	v
The	value	to	set	(>	0).
TimeValue	t
The	time	to	set	the	value.

Prototype:
virtual	void	SetFalloffType(int	tv)=0;

Remarks:
Sets	the	falloff	type	to	top,	bottom	or	none.

Parameters:
int	tv
One	of	the	following	values:
FALLOFF_TOP
FALLOFF_BOTTOM
FALLOFF_NONE

Prototype:
virtual	void	SetUseNoise(BOOL	onoff)=0;

Remarks:
Sets	the	state	of	the	'Horizon	Noise'	toggle.

Parameters:
BOOL	onoff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetNoiseScale(float	v,	TimeValue	t)=0;

Remarks:
Set	the	'Horizon	Noise	Size'	setting.

Parameters:
float	v
The	value	to	set.
TimeValue	t
The	time	to	set	the	value.

Prototype:
virtual	void	SetNoiseAngle(float	v,	TimeValue	t)=0;

Remarks:
Set	the	'Horizon	Noise	Angle'	setting.

Parameters:
float	v
The	value	to	set	in	radians.
TimeValue	t
The	time	to	set	the	value.

Prototype:
virtual	void	SetNoisePhase(float	v,	TimeValue	t)=0;

Remarks:

Set	the	'Horizon	Noise	Phase'	setting.
Parameters:
float	v
The	value	to	set.
TimeValue	t
The	time	to	set	the	value.

Prototype:
virtual	Color	GetColor(TimeValue	t)=0;

Remarks:
Returns	the	fog	color	at	the	time	passed.

Parameters:
TimeValue	t
The	time	to	get	the	color.

Prototype:
virtual	BOOL	GetUseMap()=0;

Remarks:
Returns	the	state	of	the	'Use	Map'	toggle.

Return	Value:
TRUE	is	on;	FALSE	is	off.

Prototype:
virtual	BOOL	GetUseOpac()=0;

Remarks:
Returns	the	state	of	the	use	opacity	map	toggle.

Return	Value:
TRUE	is	on;	FALSE	is	off.

Prototype:
virtual	Texmap	*GetColorMap()=0;

Remarks:
Returns	the	color	map	used.

Prototype:
virtual	Texmap	*GetOpacMap()=0;

Remarks:
Returns	the	opacity	map	used.

Prototype:
virtual	BOOL	GetFogBackground()=0;

Remarks:
Returns	the	state	of	the	fog	background	toggle.

Return	Value:
TRUE	is	on;	FALSE	is	off.

Prototype:
virtual	int	GetType()=0;

Remarks:
Returns	the	type	of	fog,	layered	or	standard.

Return	Value:
The	type	of	fog:	0	=	Standard;	1	=	Layered.

Prototype:
virtual	float	GetNear(TimeValue	t)=0;

Remarks:
Returns	the	standard	fog	near	percentage.

Parameters:
TimeValue	t
The	time	to	get	the	value.

Prototype:
virtual	float	GetFar(TimeValue	t)=0;

Remarks:
Returns	the	standard	fog	far	percentage.

Parameters:
TimeValue	t
The	time	to	get	the	value.

Prototype:
virtual	float	GetTop(TimeValue	t)=0;

Remarks:
Returns	the	layered	fog	top	value.

Parameters:
TimeValue	t
The	time	to	get	the	value.

Prototype:
virtual	float	GetBottom(TimeValue	t)=0;

Remarks:
Returns	the	layered	fog	bottom	value.

Parameters:
TimeValue	t
The	time	to	get	the	value.

Prototype:
virtual	float	GetDensity(TimeValue	t)=0;

Remarks:
Returns	the	layered	fog	density	setting.

Parameters:
TimeValue	t
The	time	to	get	the	value.

Prototype:

virtual	int	GetFalloffType()=0;
Remarks:
Returns	the	falloff	type	to	top,	bottom	or	none.

Return	Value:
One	of	the	following	values:
FALLOFF_TOP
FALLOFF_BOTTOM
FALLOFF_NONE

Prototype:
virtual	BOOL	GetUseNoise()=0;

Remarks:
Returns	the	state	of	the	'Horizon	Noise'	toggle.

Return	Value:
TRUE	is	on;	FALSE	is	off.

Prototype:
virtual	float	GetNoiseScale(TimeValue	t)=0;

Remarks:
Returns	the	'Horizon	Noise	Size'	setting.

Parameters:
TimeValue	t
The	time	to	get	the	value.

Prototype:
virtual	float	GetNoiseAngle(TimeValue	t)=0;

Remarks:
Returns	the	'Horizon	Noise	Angle'	setting.

Parameters:
TimeValue	t
The	time	to	get	the	value.

Prototype:
virtual	float	GetNoisePhase(TimeValue	t)=0;

Remarks:
Returns	the	'Horizon	Noise	Phase'	setting.

Parameters:
TimeValue	t
The	time	to	get	the	value.

Class	AdjEdgeList
See	Also:	Class	DWORDTab,	Template	Class	Tab,	Class	MEdge,	Class	Mesh.
class	AdjEdgeList

Description:
This	class	represents	an	edge	adjacency	list	for	meshes.	For	any	given	vertex	in	a
mesh	this	class	has	a	table	of	DWORDs.	These	DWORDs	are	indices	into	the
edge	table	(Tab<MEdge>	edge).	The	edges	table	stores	the	edges	adjacent	to
the	vertex.	So,	each	vertex	has	a	list	of	indices	into	the	edge	list	that	give	it	the
list	of	edges	adjacent	to	the	vertex.	All	methods	of	the	class	are	implemented	by
the	system.

Data	Members:
public:
DWORDTab	*list;
This	is	an	array	of	DWORDTabs,	one	per	vertex.	The	Tab	is	a	list	of	indices
into	the	edge	list,	one	for	each	edge	adjacent	to	the	vertex.
Tab<MEdge>	edges;
The	table	of	edges.
int	nverts;
The	size	of	list.

Methods:

Prototype:
AdjEdgeList(Mesh&	amesh);

Remarks:
Constructor.	Builds	an	adjacency	list	from	the	specified	mesh.	This	class
require	the	mesh	to	be	constructed	so	that	each	edge	has	exactly	one	or	two
faces.

Parameters:
Mesh&	amesh
The	mesh	to	build	the	adjacency	list	from.

Prototype:

~AdjEdgeList();
Remarks:
Destructor.	Deletes	the	list.

Prototype:
int	FindEdge(DWORD	v0,	DWORD	v1);

Remarks:
Finds	the	edge	in	the	edge	table	that	has	the	two	specified	vertices.

Parameters:
DWORD	v0,	DWORD	v1
The	vertices.

Return	Value:
The	index	into	the	edge	table.

Prototype:
int	FindEdge(DWORDTab&	vmap,	DWORD	v0,	DWORD	v1);

Remarks:
This	method	is	used	internally	as	part	of	the	Optimize	modifier.

Prototype:
void	TransferEdges(DWORD	from,	DWORD	to,	DWORD
except1,
	DWORD	except2,	DWORD	del);

Remarks:
This	method	is	used	internally	as	part	of	the	Optimize	modifier.

Prototype:
void	RemoveEdge(DWORD	from,	DWORD	e);

Remarks:
This	method	is	used	internally	as	part	of	the	Optimize	modifier.

Prototype:

void	OrderVertEdges(DWORD	v,	Face	*faces,	Tab<DWORD>
*flist=NULL);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Each	vertex	has	a	list	of	edges	in	the	data	member	AdjEdgeList::list.	This
method	reorders	the	elements	of	that	list	so	that	the	edges	are	in	order	going
around	the	vertex.	The	direction	should	be	counterclockwise	as	seen	from
outside	the	mesh	surface,	though	this	necessarily	breaks	down	with	some	rats'
nest	situations.

Parameters:
DWORD	v
The	vertex	whose	edges	should	be	ordered.
Face	*faces
A	pointer	to	the	faces	for	this	mesh.
Tab<DWORD>	*flist=NULL
If	non-NULL,	this	points	to	an	array	where	the	faces	using	this	vertex	should
be	stored	(in	order).

Prototype:
void	OrderAllEdges(Face	*faces);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	simply	calls	OrderVertEdges()	on	all	the	vertices.

Parameters:
Face	*faces
A	pointer	to	the	faces	for	this	mesh.

Prototype:
void	GetFaceList(DWORD	v,	Tab<DWORD>	&	flist);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	places	a	list	of	all	faces	using	this	vertex	in	flist.	The	faces	are	in	no

particular	order.
Parameters:
DWORD	v
The	vertex	to	check.
Tab<DWORD>	&	flist
The	table	of	faces.

Prototype:
void	AddEdgeToVertex(DWORD	v,DWORD	e);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Appends	the	specified	edge	to	the	specified	vertex.

Parameters:
DWORD	v
The	vertex	the	edge	is	added	to.
DWORD	e
The	edge	to	add.

Prototype:
void	AddEdge(DWORD	fi,	DWORD	v1,	DWORD	v2);

Remarks:
This	is	used	internally.

Operators:

Prototype:
DWORDTab&	operator[](int	i);

Remarks:
Array	access	operator.	Returns	the	'i-th'	list	element.

Class	AdjFaceList
See	Also:	Class	AdjFace,	Class	AdjEdgeList.
class	AdjFaceList

Description:
This	class	represents	a	face	adjacency	list	for	meshes.	This	class	require	the
mesh	to	be	constructed	so	that	each	edge	has	exactly	one	or	two	faces.	It	will
work	with	other	meshes	but	may	give	misleading	results	(developers	may	wish
to	call	mesh.RemoveDegenerateFaces()	to	attempt	to	correct	the	mesh	to
work	with	this	class).	All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
Tab<AdjFace>	list;
The	table	of	adjacent	faces,	one	for	each	face.

Methods:

Prototype:
AdjFaceList(Mesh&	mesh,AdjEdgeList&	el);

Remarks:
Constructor.	The	mesh	and	edge	list	passed	define	the	mesh	used	to	construct
the	face	list.

Operators:

Prototype:
AdjFace&	operator[](int	i);

Remarks:
Access	operator.	Returns	the	set	of	adjacent	face	for	the	i-th	face.

Class	FaceElementList
See	Also:	Class	AdjEdgeList,	Class	AdjFaceList.
class	FaceElementList

Description:
This	class	may	be	used	to	access	the	various	elements	that	compose	a	mesh.
Given	a	Mesh	object	mesh,	the	calls	below	allow	a	developer	to	access	the
element	number	for	a	particular	face,	and	the	total	number	of	elements	in	the
mesh.
AdjEdgeList	ae(mesh);
AdjFaceList	af(mesh,	ae);
FaceElementList	elem(mesh,	af);

All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
DWORDTab	elem;
This	gives	the	element	number	for	a	particular	face,	i.e.	elem[i]	gives	the
element	number	for	face	i.
DWORD	count;
The	total	number	of	elements.

Methods:

Prototype:
FaceElementList(Mesh	&mesh,	AdjFaceList&	af);

Remarks:
Constructor.

Parameters:
Mesh	&mesh
The	mesh	that	the	element	list	is	being	built	for.
AdjFaceList&	af
The	face	list	for	the	mesh.

Operators:

Prototype:
DWORD	operator[](int	i);

Remarks:
Accesses	the	i-th	element	of	the	table.

Class	FaceClusterList
See	Also:	Class	AdjFaceList,	Class	BitArray.
class	FaceClusterList

Description:
This	is	a	list	of	face	"clusters"	for	a	given	mesh.	A	typical	application	would	be
in	Edit(able)	Mesh,	where	the	user	has	selected	two	separate	groups	of	faces	on
different	parts	of	the	mesh	and	wants	to	extrude	them	both,	or	rotate	both	around
their	local	centers.	Each	"cluster"	is	a	contiguous	group	of	selected	faces.	Like
AdjEdgeLists	and	AdjFaceLists,	this	class	is	only	defined	in	relation	to	some
mesh.
This	class	may	be	used	to	group	faces	together	based	on	the	angle	between	their
normals	or	by	their	selection	status.
All	methods	of	this	class	are	implemented	by	the	system.	Note	that	the
functionality	provided	by	this	class	is	not	available	in	the	1.0	release	of	the	SDK.
Later	releases	(1.1,	1.2,	etc)	do	support	it.

Data	Members:
public:
DWORDTab	clust;
The	cluster	number	(id),	one	for	each	face.	Non-selected	faces	have
UNDEFINED	for	their	id.
The	cluster	IDs	of	all	the	faces	--	this	table	has	size	mesh::numFaces.
clust[i]	is	UNDEFINED	if	face	i	is	not	in	any	cluster	(ie	is	unselected).
DWORD	count;
The	number	of	clusters.

Methods:

Prototype:
FaceClusterList(Mesh	*mesh,	AdjFaceList&	adj,	float	angle,
BOOL	useSel);

Remarks:
Constructor.	This	version	separates	clusters	using	a	minimum	angle	and
optionally	the	selection	set.	A	developer	creates	one	of	these	cluster	lists	by

specifying	the	mesh,	the	face	list	and	an	angle.	What	is	built	is	a	cluster
number	for	each	face	identifying	what	cluster	it	is	in.
For	example,	if	you	create	one	of	these	for	a	sphere	and	set	the	angle	threshold
to	90	degrees,	you	would	get	back	one	cluster,	and	the	cluster	id	for	everything
would	be	0.	If	you	ran	it	on	a	box,	and	you	set	the	angle	to	<	90	degrees,	you
would	get	back	6	ids.	Two	faces	in	the	box	would	have	id	0,	two	would	have
id	1,	etc.

Parameters:
Mesh	*mesh
The	mesh	to	create	the	list	for.
AdjFaceList&	adj
The	face	list	for	this	mesh.
float	angle
The	maximum	angle	(in	radians)	that	can	be	used	in	joining	adjacent	faces	into
the	same	cluster.
BOOL	useSel
If	FALSE,	selection	is	ignored	and	all	faces	are	grouped	into	clusters	by	angle.
If	TRUE,	only	selected	faces	are	grouped	into	clusters,	but	angle	is	still
relevant.	Non-selected	faces	will	have	UNDEFINED	for	their	id.

Prototype:
FaceClusterList(BitArray&	fsel,	AdjFaceList&	adj);

Remarks:
Constructor.	This	version	separates	clusters	using	the	selection	set.	In	this	case
a	cluster	is	defined	as	a	set	of	faces	that	are	selected	and	are	adjacent.	For
example	you	could	have	a	sphere	with	some	faces	selected	on	one	side,	and
another	group	of	faces	selected	on	the	other	side.	Each	group	of	adjacent	and
selected	faces	would	comprise	clusters	within	the	mesh.	This	is	used	for
example	by	the	axis	tripods	in	3ds	max	where	each	selected	group	of	faces
gets	their	own	coordinate	system.
In	this	case	the	unselected	faces	will	not	be	in	any	cluster.	These	store	the
value	UNDEFINED	for	their	id.

Parameters:
BitArray&	fsel

This	bit	array	defines	the	face	selected	state	that	the	clusters	will	be	grouped
by.	Each	bit	in	the	bit	array	corresponds	to	the	parallel	index	in	the	mesh	face
table.
AdjFaceList&	adj
The	face	list	for	this	mesh.

Prototype:
void	MakeVertCluster(Mesh	&mesh,	Tab<DWORD>	&vclust);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Creates	a	list	of	cluster	IDs	for	vertices.

Parameters:
Mesh	&mesh
The	mesh	associated	with	this	FaceClusterList.
Tab<DWORD>	&vclust
This	is	where	the	output	goes:	vclust	is	set	to	size	mesh.numVerts,	and	the
value	of	each	entry	in	this	table	tells	which	cluster	the	vertex	has	been
assigned	to,	based	on	the	faces	it's	on.	If	vertex	"v"	is	not	in	any	clusters	(ie
none	of	the	faces	that	use	it	are	in	any	clusters),	vclust[v]	is	UNDEFINED.
In	cases	where	a	vertex	is	in	two	clusters,	the	larger	face	index	is	dominant.
(In	other	words,	if	a	vertex	6	is	on	faces	2	and	7,	which	are	in	two	separate
clusters,	and	face	9,	which	isn't	in	any	cluster,	it	gets	its	cluster	ID	from	face	7.
This	can	happen	if	two	selection	regions	touch	at	a	vertex	instead	of	along	an
edge.)

Prototype:
void	GetNormalsCenters(Mesh	&mesh,	Tab<Point3>	&norm,
Tab<Point3>	&ctr);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Computes	average	normals	and	centers	for	all	face	clusters.	Within	a	cluster,
normals	are	weighted	by	the	area	of	the	face	--	a	face	twice	as	big	contributes
twice	as	much	to	the	cluster	normal.	(Mathematically,	we	just	total	up	the	non-
normalized	cross-products	of	each	face,	which	are	equivalent	to	2*(area)*(face

normal).	Then	we	normalize	the	cluster	total.)	Face	centers	are	directly
averaged,	without	weighting.

Parameters:
Mesh	&mesh
The	mesh	associated	with	this	FaceClusterList.
Tab<Point3>	&norm
The	average	normal	table	to	store	the	results	in.	This	is	set	to	size
FaceClusterList::count,	the	number	of	clusters.
Tab<Point3>	&ctr
The	average	center	table	to	store	the	results	in.	This	is	set	to	size
FaceClusterList::count,	the	number	of	clusters.

Prototype:
void	GetBorder(DWORD	clustID,	AdjFaceList	&af,
Tab<DWORD>	&cbord);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Each	face	cluster	is	a	set	of	faces	connected	by	shared	edges.	This	method
finds	a	cluster's	boundary,	which	can	be	expressed	as	a	sequence	of	edges	on
faces	in	the	cluster	(where	the	other	side	of	each	edge	has	no	face	or	has	a	face
not	in	this	cluster).	If	there	is	more	than	one	boundary,	as	for	instance	in	the
faces	that	make	up	the	letter	"o"	in	a	ShapeMerge	with	Text,	both	boundaries
are	returned	in	no	particular	order.

Parameters:
DWORD	clustID
The	cluster	to	get	the	border	of.
AdjFaceList	&af
The	adjacent	face	list	associated	with	this	FaceClusterList.
Tab<DWORD>	&cbord
The	table	where	the	output	goes.	If	there	are	no	borders	(as	for	instance	in	a
sphere	with	all	faces	selected),	it	remains	empty.	Otherwise,	this	is	filled	with
a	series	of	edge	indices,	then	an	UNDEFINED	to	mark	the	end	of	each	border.
So	for	instance	if	this	cluster	represents	the	front	face	of	a	default	box,	cbord
will	contain	4	edge	indices	and	an	UNDEFINED.	If	the	cluster	represents	all

the	side	faces	of	a	cylinder,	but	not	the	top	or	bottom,	there	are	two	borders:
on	24-sided	cylinder,	you'd	get	the	24	edge	indices	representing	the	bottom	lip
of	the	cylinder,	then	an	UNDEFINED,	then	the	24	edge	indices	representing
the	top	lip,	followed	by	another	UNDEFINED.	(As	elsewhere,	edges	are
indexed	by	face*3+eid,	where	face	is	the	face	(in	the	cluster)	the	edge	is	on,
and	eid	is	the	index	of	the	edge	on	that	face.)

Prototype:
void	GetOutlineVectors(Mesh	&	m,	AdjFaceList	&af,
Tab<Point3>	&cnorms,	Tab<Point3>	&odir);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	creates	"outline"	directions	for	the	vertices	on	the	edge	of	the	clusters.
These	are	used	in	Edit(able)	Mesh's	new	"Bevel"	operation	(when	you	Bevel
by	"Group").	These	vectors,	which	are	all	perpendicular	to	the	cluster	normals,
point	in	the	direction	and	speed	vertices	must	travel	in	order	to	move	the	edges
out	at	a	consistent	rate	without	changing	the	shape	of	the	outline	of	the	cluster.
To	see	how	this	works,	create	a	Prism	in	3ds	max	("Extended	Primitives")
with	dimensions	like	20	x	40	x	40	x	40,	and	apply	an	Edit	Mesh.	Select	all	the
faces	on	the	top	of	the	prism,	and	spin	the	Bevel	spinner	up	and	down.	Notice
that	the	vertex	at	the	sharpest	point	moves	faster	than	the	other	2,	but	that	the
edges	all	remain	parallel	to	their	original	positions.	The	essence	of	Outlining	is
that	the	edges	move	at	a	constant	rate,	and	the	vertices	move	faster	or	slower
to	make	this	happen.	(This	strategy	is	also	used	in	the	Bevel	and	Path	Bevel
modifiers.)

Parameters:
Mesh	&	m
The	mesh	associated	with	this	FaceClusterList
AdjFaceList	&af
The	adjacent	face	list	associated	with	this	FaceClusterList
Tab<Point3>	&cnorms
The	cluster	normals,	as	computed	by	GetNormalsCenters
Tab<Point3>	&odir
A	table	to	put	the	outline	direction	result	in.	This	is	set	to	size	mesh.numVerts.

Entries	for	vertices	that	are	not	on	a	cluster	border	are	all	(0,0,0).	Entries	for
cluster	border	vertices	are	scaled,	such	that	if	you	move	all	vertices	the
specified	amount,	each	cluster's	border	edges	will	move	by	one	3ds	max	unit.

Operators:

Prototype:
DWORD	operator[](int	i)

Remarks:
Access	operator.	Returns	the	cluster	ID	for	face	i.

Class	NURBSObject
See	Also:	Class	NURBSSurface,	Class	NURBSControlVertex,	Class
NURBSPoint,	Class	NURBSCurve,	Class	NURBSSet,	List	of	NURBSObjects
Types.
class	NURBSObject

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	is	the	base	class	for	many	of	the	other	classes	in	the	NURBS	API.	It
provides	a	common	set	of	methods	that	each	of	them	use.	It	has	methods	to	get
and	set	the	name	of	the	item,	and	methods	to	deal	with	error	processing.	To
determine	the	type	of	object	the	derived	class	is	use	the	method	GetType().
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
protected:
TCHAR	mName[NURBS_NAME_SIZE];
The	name	of	the	NURBS	object.	The	maximum	length	of	this	name	including
the	terminating	NULL	is	specified	using	the	following	#define:	#define
NURBS_NAME_SIZE	80
NURBSType	mType;
The	type	of	NURBS	object	this	is.	See	List	of	NURBSObjects	Types.
NURBSKind	mKind;
The	kind	of	NURBS	object	this	is.	See	List	of	NURBSObjecct	Kinds.
NURBSId	mId;
This	is	the	ID	of	the	NURBS	object	used	to	specify	the	parent	object	in	many
of	the	dependent	point,	curves	and	surface	classes.	This	ID	is	not	persistant
across	sessions	and	should	not	be	saved	to	a	file.	A	NURBSId	is	defined	as
follows:	typedef	unsigned	long	NURBSId;
Object	*mpObject;
When	an	object	is	instantiated	in	the	3ds	max	scene	this	pointer	is	filled	in.
For	example,	if	you	use	the	function	CreateNURBSObject()	and	pass	a
NURBSSet,	this	data	member	is	filled	in	to	point	to	the	actual	editable
NURBS	object	in	3ds	max	that	this	NURBSObject	is	a	part	of.

NURBSSet*	mpNSet;
When	an	object	is	instantiated	in	the	3ds	max	scene	this	pointer	is	filled	in.
This	points	to	the	NURBSSet	this	object	is	a	contained	within.
BOOL	mSelected;
TRUE	if	the	object	is	selected;	otherwise	FALSE.

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	mId	to	0	and	mpObject	pointer	to	NULL.	This	effectively	breaks
the	relation	between	this	NURBSObject	and	a	NURBSSet.

Parameters:
NURBSIdTab	ids
This	parameter	is	not	used.

public:

Prototype:
NURBSObject();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mName[0]	=	'\0';
	mId	=	0;
	mpObject	=	NULL;
	mpNSet	=	NULL;
	mSelected	=	FALSE;

Prototype:
~NURBSObject();

Remarks:
Destructor.

Prototype:
void	SetName(TCHAR	*name);

Remarks:
Sets	the	name	of	the	item	to	the	specified	string.

Parameters:
TCHAR	*name
The	name	to	set.

Prototype:
TCHAR	*GetName();

Remarks:
Returns	a	pointer	to	the	name	of	the	item.

Prototype:
NURBSType	GetType();

Remarks:
Returns	the	specific	type	of	object	this	is.	See	List	of	NURBSObjects	Types.

Prototype:
NURBSType	GetKind();

Remarks:
Returns	the	specific	kind	of	object	this	is.	See	List	of	NURBSObjects	Kinds.

Prototype:
NURBSId	GetId();

Remarks:
Returns	the	NURBSId	of	this	NURBSObject.	This	ID	is	not	persistant
across	sessions	and	should	not	be	saved	to	a	file.

Prototype:
void	SetId(NURBSId	id);

Remarks:
Sets	the	NURBSId	of	this	NURBSObject.

Parameters:
NURBSId	id
The	ID	to	set.

Prototype:
int	GetIndex();

Remarks:
Returns	the	index	in	the	NURBSSet	of	this	object	or	-1	if	there	isn't	an
associated	NURBSSet.

Prototype:
void	SetNSet(NURBSSet	*nset);

Remarks:
Sets	the	pointer	to	the	NURBSSet	maintained	by	the	object.

Parameters:
NURBSSet	*nset
The	pointer	to	set.

Prototype:
NURBSSet*	GetNSet();

Remarks:
Returns	a	pointer	to	the	NURBSSet	maintained	by	this	class.

Prototype:
void	SetObject(Object	*object);

Remarks:
Sets	the	pointer	to	the	3ds	max	editable	NURBS	object	maintained	by	this
object.

Parameters:

Object	*object
The	pointer	to	set.

Prototype:
Object*	GetMAXObject();

Remarks:
Returns	a	pointer	to	the	Object	maintained	by	this	class.

Prototype:
BOOL	IsSelected();

Remarks:
Returns	TRUE	if	the	object	is	selected;	otherwise	FALSE.

Prototype:
void	SetSelected(BOOL	set);

Remarks:
Sets	the	object	to	selected	or	not.

Parameters:
BOOL	set
TRUE	to	select	the	object;	FALSE	to	de-select	it.

Operators:

Prototype:
NURBSObject	&	operator=(const	NURBSObject&	pt);

Remarks:
Assignment	operator.

Parameters:
const	NURBSObject&	pt
The	NURBSObject	to	assign.

Class	NURBSSurface
See	Also:	Class	NURBSObject,	NURBSTextureSurface,	Template	Class	Tab,
Class	NURBSTextureChannelSet.
class	NURBSSurface	:	public	NURBSObject

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	describes	the	properties	of	a	NURBS	surface.	This	includes	its
material	ID,	texture/tiling	options,	renderable	state,	open/closed	state,	and
normal	inverted	state.	The	Evaluate()	method	is	used	to	compute	points	and
tangents	on	the	surface.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSCVSurface;
friend	class	NURBSPointSurface;
friend	class	NURBSBlendSurface;
friend	class	NURBSNBlendSurface;
friend	class	NURBSOffsetSurface;
friend	class	NURBSXFormSurface;
friend	class	NURBSMirrorSurface;
friend	class	NURBSCapSurface;
friend	class	NURBSIsoCurve;
friend	class	NURBSProjectVectorCurve;
friend	class	NURBSProjectNormalCurve;
friend	class	NURBSSurfSurfIntersectionCurve;
friend	class	NURBSCurveOnSurface;
friend	class	NURBSPointCurveOnSurface;
friend	class	NURBSMultiCurveTrimSurface;
friend	class	NURBSTextureChannel;
friend	class	NURBSTextureChannelSet;

Data	Members:
protected:
BOOL	mGenUVs;
TRUE	if	the	'Generate	Mapping	Coordinates'	checkbox	is	on;	otherwise
FALSE.
BOOL	mFlipNormals;
TRUE	if	the	surface	normals	are	inverted;	otherwise	FALSE.
BOOL	mRenderable;
TRUE	if	the	surface	may	be	rendered;	otherwise	FALSE.
int	mMatID;
The	material	ID	for	the	surface.
BOOL	mClosedInU,	mClosedInV;
The	surface	closed	flags.
NURBSTextureChannelSet	mTextureChannelSet;
This	data	member	is	available	in	release	3.0	and	later	only.
This	is	the	set	of	texture	mapping	channels	used	by	this	surface.
BOOL	mFlipNormals;
TRUE	if	normals	are	flipped	for	the	surface;	otherwise	FALSE.
BOOL	mRenderable;
TRUE	if	the	surface	is	renderable;	otherwise	FALSE.
int	mMatID;
The	zero	based	material	ID	for	the	surface.
BOOL	mClosedInU
TRUE	if	the	surface	is	closed	in	U;	otherwise	FALSE.
BOOL	mClosedInV;
TRUE	if	the	surface	is	closed	in	V;	otherwise	FALSE.
TessApprox	*mpVTess;
This	data	member	is	available	in	release	3.0	and	later	only.
Points	to	the	TessApprox	object	for	the	viewport	(optional).
TessApprox	*mpRTess;
This	data	member	is	available	in	release	3.0	and	later	only.
Points	to	the	TessApprox	object	for	the	production	renderer	(optional).
TessApprox	*mpRTessDisp;

This	data	member	is	available	in	release	3.0	and	later	only.
Points	to	the	TessApprox	object	for	displacement	mapping	(optional).
TessApprox	*mpVTessCurve;
This	data	member	is	available	in	release	3.0	and	later	only.
Points	to	the	TessApprox	object	for	tesselating	curves	in	the
viewports(optional).
TessApprox	*mpRTessCurve;
This	data	member	is	available	in	release	3.0	and	later	only.
Points	to	the	TessApprox	object	for	tesselating	curves	in	the	production
renderer	(optional).

Methods:

Prototype:
NURBSSurface();

Remarks:
Constructor.	The	surface	is	initialized	as	follows:
	mKind	=	kNURBSSurface;
	mFlipNormals	=	FALSE;
	mRenderable	=	TRUE;
	mMatID	=	1;
	mpVTess	=	NULL;
	mpRTess	=	NULL;
	mpRTessDisp	=	NULL;
	mpVTessCurve	=	NULL;
	mpRTessCurve	=	NULL;

Prototype:
~NURBSSurface();

Remarks:
Destructor.	Any	TessApprox	objects	are	freed.

Prototype:

BOOL	Renderable();
Remarks:
Returns	TRUE	if	the	surface	is	renderable;	otherwise	FALSE.

Prototype:
void	Renderable(BOOL	state);

Remarks:
Sets	the	renderable	flag	to	the	specified	state.

Parameters:
BOOL	state
TRUE	for	renderable;	FALSE	for	non-renderable.

Prototype:
BOOL	FlipNormals();

Remarks:
Returns	the	state	of	the	flip	normals	flag.

Prototype:
void	FlipNormals(BOOL	state);

Remarks:
Set	the	state	of	the	flip	normals	flag.

Parameters:
BOOL	state
TRUE	if	the	normals	should	be	flipped;	FALSE	for	not	flipped.

Prototype:
BOOL	GenerateUVs(int	channel	=	0);

Remarks:
Returns	TRUE	if	the	generate	UV	mapping	coordinates	flag	is	set	for	the
specified	channel;	otherwise	FALSE.

Parameters:

int	channel	=	0
The	channel.	This	is	a	number	in	the	range	0	and	98	which	correspond	to	1	to
99	in	the	user	interface.

Prototype:
void	SetGenerateUVs(BOOL	state,	int	channel	=	0);

Remarks:
Sets	the	state	of	the	generate	UV	mapping	coordinates	flag.

Parameters:
BOOL	state
TRUE	for	on;	FALSE	for	off.
int	channel	=	0
The	channel.	This	is	a	number	in	the	range	0	and	98	which	correspond	to	1	to
99	in	the	user	interface.

Prototype:
int	MatID();

Remarks:
Returns	the	material	ID.

Prototype:
void	MatID(int	id);

Remarks:
Sets	the	mateials	ID	to	the	specified	value.

Parameters:
int	id
Specifies	the	material	ID	to	set.

Prototype:
Point2	GetTextureUVs(TimeValue	t,	int	i,	int	channel	=	0);

Remarks:
Returns	the	specified	texture	coordinate.

Parameters:
TimeValue	t
The	time	to	get	the	texture	UVs.
int	i
The	zero	based	index	of	the	coordinate	to	return.	This	value	must	be	>=0	and
<	4.
int	channel	=	0
The	channel.	This	is	a	number	in	the	range	0	and	98	which	correspond	to	1	to
99	in	the	user	interface.

Prototype:
void	SetTextureUVs(TimeValue	t,	int	i,	Point2	pt,	int	channel	=	0);

Remarks:
Set	the	specified	texture	coordinate	to	the	specified	value.

Parameters:
TimeValue	t
The	time	to	set	the	texture	UVs.
int	i
The	zero	based	index	of	the	texture	coordinate	to	set.	This	value	must	be	>=	0
and	<	4.
Point2	pt
The	texture	coordinate	value	to	set.
int	channel	=	0
The	channel.	This	is	a	number	in	the	range	0	and	98	which	correspond	to	1	to
99	in	the	user	interface.

Prototype:
void	GetTileOffset(TimeValue	t,	float	&ut,	float	&vt,	float	&uo,
float	&vo,	int	channel	=	0);

Remarks:
Retrieves	the	texture	tiling	and	offset	values	for	the	surface.

Parameters:

TimeValue	t
The	time	to	get	the	tile	offset.
float	&ut
The	tiling	value	in	the	U	direction.
float	&vt
The	tiling	value	in	the	V	direction.
float	&uo
The	offset	value	in	the	U	direction.
float	&vo
The	offset	value	in	the	V	direction.
int	channel	=	0
The	channel.	This	is	a	number	in	the	range	0	and	98	which	correspond	to	1	to
99	in	the	user	interface.

Prototype:
void	SetTileOffset(TimeValue	t,	float	ut,	float	vt,	float	uo,	float	vo,
int	channel	=	0);

Remarks:
Sets	the	texture	tiling	and	offset	values	for	the	surface.

Parameters:
TimeValue	t
The	time	to	set	the	tile	offset.
float	ut
The	tiling	value	in	the	U	direction.
float	vt
The	tiling	value	in	the	V	direction.
float	uo
The	offset	value	in	the	U	direction.
float	vo
The	offset	value	in	the	V	direction.
int	channel	=	0

The	channel.	This	is	a	number	in	the	range	0	and	98	which	correspond	to	1	to
99	in	the	user	interface.

Prototype:
NURBSTextureSurface&	GetTextureSurface(int	channel);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	reference	to	the	texture	surface	used	by	this	surface	for	the	specified
channel.

Parameters:
int	channel
The	channel.	This	is	a	number	in	the	range	0	and	98	which	correspond	to	1	to
99	in	the	user	interface.

Prototype:
void	SetTextureSurface(int	channel,	NURBSTextureSurface&
texSurf);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	texture	surface	used	by	this	surface	for	the	specified	channel.

Parameters:
int	channel
The	channel.	This	is	a	number	in	the	range	0	and	98	which	correspond	to	1	to
99	in	the	user	interface.
NURBSTextureSurface&	texSurf
The	texture	surface	to	set.

Prototype:
int	NumChannels();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	channels	used	by	the	surface.

Prototype:
int	GetChannelFromIndex(int	index);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	channel	number	corresponding	to	the	specified	index	into	the
NURBSTextureChannelSet.

Parameters:
int	index
The	zero	based	index	into	the	NURBSTextureChannelSet.

Prototype:
BOOL	IsClosedInU();

Remarks:
Returns	TRUE	if	the	surface	is	closed	in	the	U	direction;	otherwise	FALSE.

Prototype:
BOOL	IsClosedInV();

Remarks:
Returns	TRUE	if	the	surface	is	closed	in	the	V	direction;	otherwise	FALSE.

Prototype:
BOOL	Evaluate(TimeValue	t,	double	u,	double	v,	Point3&	pt,
Point3&	dPdU,	Point3&	dPdV);

Remarks:
Retrieves	the	point	on	the	surface,	and	the	u	and	v	derivatives	based	on	the
parameters	u	and	v.

Parameters:
TimeValue	t
The	time	at	which	to	evaluate	the	surface.
double	u
The	value	at	which	to	evaluate	the	surface	in	u.	This	value	must	be	between
the	uMin	and	uMax	as	returned	from	GetParameterRange().

double	v
The	value	at	which	to	evaluate	the	surface	in	v.	This	value	must	be	between
the	vMin	and	vMax	as	returned	from	GetParameterRange().
Point3&	pt
The	point	on	the	surface.
Point3&	dPdU
The	derivative	along	u.
Point3&	dPdV
The	derivative	along	v.

Return	Value:
TRUE	if	the	method	was	able	to	evaluate	the	surface;	otherwise	FALSE.

Prototype:
BOOL	Evaluate(TimeValue	t,	double	u,	double	v,	Point3&	pt,
Point3&	dPdU,	Point3&	dPdV,	Point3&	d2PdU2,	Point3&
d2PdV2,	Point3&	d2PdUdV);

Remarks:
Retrieves	the	point	on	the	surface,	and	the	u	and	v	derivatives	and	second
derivatives	based	on	the	parameters	u	and	v.

Parameters:
TimeValue	t
The	time	at	which	to	evaluate	the	surface.
double	u
The	value	at	which	to	evaluate	the	surface	in	u.	This	value	must	be	between
the	uMin	and	uMax	as	returned	from	GetParameterRange().
double	v
The	value	at	which	to	evaluate	the	surface	in	v.	This	value	must	be	between
the	vMin	and	vMax	as	returned	from	GetParameterRange().
Point3&	pt
The	point	on	the	surface.
Point3&	dPdU
The	derivative	along	u.

Point3&	dPdV
The	derivative	along	v.
Point3&	d2PdU2
The	second	derivative	along	u.
Point3&	d2PdV2
The	second	derivative	along	v.
Point3&	d2PdUdV

Return	Value:
TRUE	if	the	method	was	able	to	evaluate	the	surface;	otherwise	FALSE.

Prototype:
void	GetParameterRange(TimeValue	t,	double&	uMin,	double&
uMax,	double&	vMin,	double&	vMax);

Remarks:
Retrieves	the	minimum	and	maximum	valid	values	for	u	and	v	as	passed	to
Evaluate().

Parameters:
TimeValue	t
The	time	at	which	to	get	the	parameter	range.
double&	uMin
The	minimum	value	in	u	is	returned	here.
double&	uMax
The	maximum	value	in	v	is	returned	here.
double&	vMin
The	minimum	value	in	u	is	returned	here.
double&	vMax
The	maximum	value	in	v	is	returned	here.

Prototype:
BOOL	GetNURBSData(TimeValue	t,	int&	degreeInU,	int&
degreeInV,	int&	numInU,	int&	numInV,	NURBSCVTab&	cvs,
int&	numKnotsInU,	int&	numKnotsInV,	NURBSKnotTab	uKnots,

NURBSKnotTab	vKnots);
Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Retrieves	data	about	the	NURBSSurface	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	NURBS	information.
int&	degreeInU
The	degree	of	the	surface	in	U.
int&	degreeInV
The	degree	of	the	surface	in	V.
int&	numInU
The	number	of	CVs	in	U.
int&	numInV
The	number	of	CVs	in	V.
NURBSCVTab&	cvs
The	table	of	CVs.	Note:	typedef	Tab<NURBSControlVertex>
NURBSCVTab;
int&	numKnotsInU
The	number	of	knots	in	U.
int&	numKnotsInV
The	number	of	knots	in	V.
NURBSKnotTab	uKnots
A	table	of	knots	in	U.	Note:	typedef	Tab<double>	NURBSKnotTab;
NURBSKnotTab	vKnots
A	table	of	knots	in	V.

Return	Value:
TRUE	if	the	data	was	retrieved;	otherwise	FALSE.

Prototype:
BOOL	GetCLPTextureSurfaceData(TimeValue	t,	int	channel,	int&
degreeInU,	int&	degreeInV,	int&	numInU,	int&	numInV,

NURBSCVTab&	cvs,	int&	numKnotsInU,	int&	numKnotsInV,
NURBSKnotTab	uKnots,	NURBSKnotTab	vKnots);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
This	method	retrieves	the	Chord	Length	Parameterization	Texture	Surface
data.

Parameters:
TimeValue	t
The	time	at	which	to	retrieve	the	data.
int	channel
The	texture	channel.	This	is	a	number	in	the	range	0	and	98	which	correspond
to	1	to	99	in	the	user	interface.
int&	degreeInU
The	degree	of	the	surface	in	U.
int&	degreeInV
The	degree	in	V.
int&	numInU
The	number	of	CVs	in	U.
int&	numInV
The	number	of	CVs	in	V.
NURBSCVTab&	cvs
The	table	of	CVs.	Note:	typedef	Tab<NURBSControlVertex>
NURBSCVTab;
int&	numKnotsInU
The	number	of	knots	in	U.
int&	numKnotsInV
The	number	of	knots	in	V.
NURBSKnotTab	uKnots
A	table	of	knots	in	U.	Note:	typedef	Tab<double>	NURBSKnotTab;
NURBSKnotTab	vKnots
A	table	of	knots	in	V.

Return	Value:
TRUE	if	the	data	was	retrieved;	otherwise	FALSE.

Prototype:
int	NumTrimLoops(TimeValue	t);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Returns	the	number	of	trim	loops	at	the	specified	time.	Each	loop	may	be
made	up	of	several	curves.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	number.

Prototype:
int	NumCurvesInLoop(TimeValue	t,	int	loop);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Returns	the	number	of	curves	in	the	specified	trim	loop.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	number.
int	loop
The	zero	based	index	of	the	trim	loop.

Prototype:
BOOL	Get2dTrimCurveData(TimeValue	t,	int	loop,	int	curve,	int&
degree,	int&	numCVs,	NURBSCVTab&	cvs,	int&	numKnots,
NURBSKnotTab	knots);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Retrieves	data	about	the	specified	2D	trim	curve	in	use	by	the	surface.

Parameters:
TimeValue	t
The	time	at	which	to	retrieve	the	data.

int	loop
The	zero	based	index	of	the	trim	loop.
int	curve
The	zero	based	index	of	the	trim	curve	within	the	loop.
int&	degree
The	degree	of	the	curve	is	returned	here.
int&	numCVs
The	number	of	CVs.
NURBSCVTab&	cvs
The	table	of	CVs.	Note:	typedef	Tab<NURBSControlVertex>
NURBSCVTab;
int&	numKnots
The	number	of	knots.
NURBSKnotTab	knots
A	table	of	knots.	Note:	typedef	Tab<double>	NURBSKnotTab;

Return	Value:
TRUE	if	the	data	was	retrieved;	otherwise	FALSE.

Prototype:
BOOL	Get3dTrimCurveData(TimeValue	t,	int	loop,	int	curve,	int&
degree,	int&	numCVs,	NURBSCVTab&	cvs,	int&	numKnots,
NURBSKnotTab	knots);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Retrieves	data	about	the	specified	2D	trim	curve	in	use	by	the	surface.

Parameters:
TimeValue	t
The	time	at	which	to	retrieve	the	data.
int	loop
The	zero	based	index	of	the	trim	loop.
int	curve
The	zero	based	index	of	the	trim	curve	within	the	loop.

int&	degree
The	degree	of	the	curve	is	returned	here.
int&	numCVs
The	number	of	CVs.
NURBSCVTab&	cvs
The	table	of	CVs.	Note:	typedef	Tab<NURBSControlVertex>
NURBSCVTab;
int&	numKnots
The	number	of	knots.
NURBSKnotTab	knots
A	table	of	knots.	Note:	typedef	Tab<double>	NURBSKnotTab;

Return	Value:
TRUE	if	the	data	was	retrieved;	otherwise	FALSE.

Prototype:
TessApprox*	GetProdTess(NURBSTessType
type=kNTessSurface);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	TessApprox	object	used	for	production	rendering	of
the	specified	type.

Parameters:
NURBSTessType	type=kNTessSurface
The	tesselation	type.	See	List	of	NURBSTessTypes.

Prototype:
TessApprox*	GetViewTess(NURBSTessType
type=kNTessSurface);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	TessApprox	object	used	for	viewport	rendering	of	the
specified	type.

Parameters:
NURBSTessType	type=kNTessSurface
The	tesselation	type.	See	List	of	NURBSTessTypes.

Prototype:
void	SetProdTess(TessApprox&	tess,	NURBSTessType
type=kNTessSurface);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	TessApprox	object	used	for	production	rendering	of	the	specified
type.

Parameters:
TessApprox&	tess
The	object	to	set.
NURBSTessType	type=kNTessSurface
The	tesselation	type.	See	List	of	NURBSTessTypes.

Prototype:
void	SetViewTess(TessApprox&	tess,	NURBSTessType
type=kNTessSurface);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	TessApprox	object	used	for	viewport	rendering	of	the	specified	type.

Parameters:
TessApprox&	tess
The	object	to	set.
NURBSTessType	type=kNTessSurface
The	tesselation	type.	See	List	of	NURBSTessTypes.

Prototype:
void	ClearViewTess(NURBSTessType	type=kNTessSurface);

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Clears	(deletes)	the	TessApprox	object	used	for	viewport	rendering	of	the
specified	type.

Parameters:
NURBSTessType	type=kNTessSurface
The	tesselation	type.	See	List	of	NURBSTessTypes.

Prototype:
void	ClearProdTess(NURBSTessType	type=kNTessSurface);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Clears	(deletes)	the	TessApprox	object	used	for	production	rendering	of	the
specified	type.

Parameters:
NURBSTessType	type=kNTessSurface
The	tesselation	type.	See	List	of	NURBSTessTypes.

Operators:

Prototype:
NURBSSurface	&	operator=(const	NURBSSurface&	curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSSurface&	curve
The	surface	to	assign.

Class	NURBSControlVertex
See	Also:	Class	NURBSObject,	Class	NURBSSurface,	Class	NURBSSet,	Class
NURBSPoint,	Class	NURBSCurve,	Class	NURBSFuseSurfaceCV,	Class
NURBSFuseCurveCV.
class	NURBSControlVertex	:	public	NURBSObject

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	represents	a	control	vertex	in	a	NURBS	curve.	Methods	are	available
to	get	and	set	the	point	position,	and	get/set	the	weight.
All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
NURBSControlVertex();

Remarks:
Constructor.	The	name	is	set	to	NULL,	the	points	are	set	to	0.0f	and	the
weight	is	set	to	1.0.

Prototype:
~NURBSControlVertex();

Remarks:
Destructor.

Prototype:
void	SetPosition(TimeValue	t,	Point3	pt);

Remarks:
Sets	the	position	of	the	control	vertex.

Parameters:
TimeValue	t
The	time	to	set	the	position.
Point3	pt

Specifies	the	position	to	set.

Prototype:
void	SetPosition(TimeValue	t,	float	x,	float	y,	float	z);

Remarks:
Sets	the	position	of	the	control	vertex.

Parameters:
TimeValue	t
The	time	to	set	the	position.
float	x,	float	y,	float	z
Specifies	the	position	to	set.

Prototype:
void	SetPosition(TimeValue	t,	double	x,	double	y,	double	z);

Remarks:
Sets	the	position	of	the	control	vertex.

Parameters:
TimeValue	t
The	time	to	set	the	position.
double	x,	double	y,	double	z
Specifies	the	position	to	set.

Prototype:
Point3	GetPosition(TimeValue	t);

Remarks:
Returns	the	position	of	the	control	vertex.

Parameters:
TimeValue	t
The	time	to	get	the	position.

Prototype:

void	GetPosition(TimeValue	t,	float&	x,	float&	y,	float&	z);
Remarks:
Retrieves	the	position	of	the	control	vertex.

Parameters:
TimeValue	t
The	time	to	get	the	position.
float&	x
The	X	coordinates	is	returned	here.
float&	y
The	Y	coordinates	is	returned	here.
float&	z
The	Z	coordinates	is	returned	here.

Prototype:
void	GetPosition(TimeValue	t,	double&	x,	double&	y,	double&	z);

Remarks:
Retrieves	the	position	of	the	control	vertex.

Parameters:
TimeValue	t
The	time	to	get	the	position.
double&	x
The	X	coordinates	is	returned	here.
double&	y
The	Y	coordinates	is	returned	here.
double&	z
The	Z	coordinates	is	returned	here.

Prototype:
void	SetWeight(TimeValue	t,	float	wt);

Remarks:
Sets	the	weight	of	the	control	vertex.

Parameters:
TimeValue	t
The	time	to	set	the	weight.
float	wt
Specifies	the	weight	to	set.	This	is	a	value	greater	than	zero.	Larger	values
cause	the	CV	to	have	a	greater	effect,	thus	the	curve	or	surface	will	try	to	pass
closer	to	the	CV.

Prototype:
void	SetWeight(TimeValue	t,	double	wt);

Remarks:
Sets	the	weight	of	the	control	vertex.

Parameters:
TimeValue	t
The	time	to	set	the	weight.
double	wt
Specifies	the	weight	to	set.	.	This	is	a	value	greater	than	zero.	Larger	values
cause	the	CV	to	have	a	greater	effect,	thus	the	curve	or	surface	will	try	to	pass
closer	to	the	CV.

Prototype:
void	GetWeight(TimeValue	t,	float&	wt);

Remarks:
Retrieves	the	weight	of	the	control	vertex.

Parameters:
TimeValue	t
The	time	to	get	the	weight.
float&	wt
The	weight	is	returned	here.

Prototype:
double	GetWeight(TimeValue	t);

Remarks:
Returns	the	weight	of	the	control	vertex.

Parameters:
TimeValue	t
The	time	to	get	the	weight.

Prototype:
void	GetWeight(TimeValue	t,	double&	wt);

Remarks:
Retrieves	the	weight	of	the	control	vertex.

Parameters:
TimeValue	t
The	time	to	get	the	weight.
double&	wt
The	weight	is	returned	here.

Operators:

Prototype:
NURBSControlVertex	&	operator=(const	NURBSControlVertex&
cv);

Remarks:
Assignment	operator.

Parameters:
const	NURBSControlVertex&	cv
The	control	vertex	to	assign.

Prototype:
BOOL	operator==(const	NURBSControlVertex&	cv);

Remarks:
Equality	operator.	Compares	if	the	coordinates	and	weight	are	the	same.

Parameters:
const	NURBSControlVertex&	cv

The	control	vertex	to	compare.
Return	Value:
TRUE	if	the	CVs	are	equal;	otherwise	FALSE.

Prototype:
BOOL	operator!=(const	NURBSControlVertex&	cv);

Remarks:
Inequality	operator.	Compares	if	the	coordinates	or	weight	are	not	the	same.

Parameters:
const	NURBSControlVertex&	cv
The	control	vertex	to	compare.

Return	Value:
TRUE	if	the	CVs	are	not	equal;	otherwise	FALSE.

Class	NURBSPoint
See	Also:	Class	NURBSObject,	Class	NURBSSurface,	Class	NURBSSet,	Class
NURBSControlVertex,	Class	NURBSCurve,	Class	NURBSFuseSurfaceCV,
Class	NURBSFuseCurveCV.
class	NURBSPoint	:	public	NURBSObject

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	describes	a	point	in	3	space	using	double	precision	X,	Y	and	Z
coordinates.	Methods	are	available	for	getting	the	point	coordinates	a	floats,
doubles	or	a	Point3.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
protected:
double	mX,	mY,	mZ;
The	X,	Y	and	Z	coordinates	for	the	point.

Methods:

Prototype:
Point3	GetPosition();

Remarks:
Returns	the	point	position	as	a	Point3.

Prototype:
void	GetPosition(float&	x,	float&	y,	float&	z);

Remarks:
Retrieves	the	point	position	using	single	precision.

Parameters:
float&	x
The	X	coordinate	is	returned	here.
float&	y
The	Ycoordinate	is	returned	here.

float&	z
The	Z	coordinate	is	returned	here.

Prototype:
void	GetPosition(double&	x,	double&	y,	double&	z);

Remarks:
Retrieves	the	point	position	using	double	precision.

Parameters:
double&	x
The	X	coordinate	is	returned	here.
double&	y
The	Ycoordinate	is	returned	here.
double&	z
The	Z	coordinate	is	returned	here.

Class	NURBSFuseSurfaceCV
See	Also:	Class	NURBSSurface,	Class	NURBSSet,	Class
NURBSControlVertex,	Class	NURBSPoint,	Class	NURBSCurve,	Class
NURBSFuseCurveCV.
class	NURBSFuseSurfaceCV

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	may	be	used	with	a	NURBSSet	to	fuse	two	CVs	in	a	surface.	This
causes	the	CVs	to	reference	one	another	so	if	you	move	one	the	other	moves
with	it.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
int	mSurf1,	mSurf2;
The	zero	based	indices	of	the	surfaces	to	fuse.	These	may	be	the	same	value.
Note	that	this	is	not	the	index	in	the	NURBSSet	of	these	items.	Rather	it	is
the	index	of	CV	surface	in	list	of	CV	surfaces	in	the	NURBSSet.	For	instance,
if	there	were	first	two	CV	curves	and	then	two	CV	surfaces	in	the
NURBSSet,	mSurf1	would	be	0	and	mSurf2	would	be	1	since	the	CV
curves	don't	count.
int	mRow1,	mCol1,	mRow2,	mCol2;
The	indices	of	the	row	and	column	CVs	of	surface	1	and	surface	2	to	fuse.

Methods:

Prototype:
NURBSFuseSurfaceCV();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
mSurf1	=	mSurf2	=	0;
mRow1	=	mCol1	=	mRow2	=	mCol2	=	0;

Class	NURBSFuseCurveCV
See	Also:	Class	NURBSSurface,	Class	NURBSSet,	Class
NURBSControlVertex,	Class	NURBSPoint,	Class	NURBSCurve,	Class
NURBSFuseSurfaceCV.
class	NURBSFuseCurveCV

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	may	be	used	with	a	NURBSSet	to	fuse	two	CVs	in	a	curve.	This
causes	the	CVs	to	reference	one	another	so	if	you	move	one	the	other	moves
with	it.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
int	mCurve1,	mCurve2;
The	zero	based	indices	of	the	curves	to	fuse.	These	may	be	the	same	value.
Note	that	this	is	not	the	index	in	the	NURBSSet	of	these	items.	Rather	it	is
the	index	of	CV	curve	in	list	of	CV	curves	in	the	NURBSSet.	For	instance,	if
there	were	first	two	CV	surfaces	and	then	two	CV	curves	in	the	NURBSSet,
mCurve1	would	be	0	and	mCurve2	would	be	1	since	the	CV	surfaces	don't
count.
int	mCV1,	mCV2;
The	indices	of	the	CVs	of	curve1	and	curve2	to	fuse.

Methods:

Prototype:
NURBSFuseCurveCV();

Remarks:
Constructor.		The	data	members	are	initialized	as	follows:
mCurve1	=	mCurve2	=	0;
mCV1	=	mCV2	=	0;

Class	NURBSIndependentPoint
See	Also:	Class	NURBSPoint.
class	NURBSIndependentPoint	:	public	NURBSPoint

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	is	used	to	create	an	independent,	free-standing	point.	There	are
methods	to	set	the	position	of	the	point	in	various	floating	point	formats	and
operators	to	compare	points.
All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
NURBSIndependentPoint();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNPoint;
	mX	=	mY	=	mZ	=	0.0;

Prototype:
virtual	~NURBSIndependentPoint();

Remarks:
Destructor.

Prototype:
void	SetPosition(TimeValue	t,	Point3	pt);

Remarks:
Sets	the	position	of	the	point	at	the	specified	time	(as	a	Point3).

Parameters:
TimeValue	t
Specifies	the	time	to	set	the	position.
Point3	pt

The	position	to	set.

Prototype:
void	SetPosition(TimeValue	t,	float	x,	float	y,	float	z);

Remarks:
Sets	the	position	of	the	point	at	the	specified	time	(as	floats).

Parameters:
TimeValue	t
Specifies	the	time	to	set	the	position.
float	x
The	X	position	to	set.
float	y
The	Y	position	to	set.
float	z
The	Z	position	to	set.

Prototype:
void	SetPosition(TimeValue	t,	double	x,	double	y,	double	z);

Remarks:
Sets	the	position	of	the	point	at	the	specified	time	(as	doubles).

Parameters:
TimeValue	t
Specifies	the	time	to	set	the	position.
double	x
The	X	position	to	set.
double	y
The	Y	position	to	set.
double	z
The	Z	position	to	set.

Operators:

Prototype:
BOOL	operator==(const	NURBSIndependentPoint&	pt);

Remarks:
Equality	operator.	Compares	if	the	X,	Y	and	Z	coordinates	are	equal.

Parameters:
const	NURBSIndependentPoint&	pt
The	point	to	compare.

Return	Value:
TRUE	if	equal;	otherwise	FALSE.

Prototype:
BOOL	operator!=(const	NURBSIndependentPoint&	pt);

Remarks:
Inequality	operator.	Compares	if	the	X,	Y	and	Z	coordinates	are	not	equal.

Parameters:
const	NURBSIndependentPoint&	pt
The	point	to	compare.

Return	Value:
TRUE	if	any	of	the	coordinates	are	not	equal;	otherwise	FALSE.

Prototype:
NURBSIndependentPoint	&	operator=(const
NURBSIndependentPoint&	pt);

Remarks:
Assignment	operator.

Parameters:
const	NURBSIndependentPoint&	pt
The	point	to	assign.

Class	NURBSTrimPoint
See	Also:	List	of	NURBS	Trim	Directions.

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	point	on	a	curve	used	to	trim	a	portion	of	the	curve	from	the
point	towards	one	of	the	ends	of	the	curve.	The	trim	point	is	defined	by	a
parameter	and	a	direction.	For	instance,	consider	a	CV	curve	that	exists	in	the
parameter	space	from	0.0	to	1.0.	If	there	is	a	trim	point	in	the	middle	of	the	curve
the	parameter	for	the	point	would	be	0.5.	If	the	portion	that	was	being	trimmed
off	was	from	0.5	to	1.0	then	the	trim	direction	would	be	positive.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet;

Methods:

Prototype:
NURBSTrimPoint(double	parameter,	NURBSTrimDirection
direction)	:	mParameter(parameter),	mDirection(direction);

Remarks:
Constructor.

Parameters:
double	parameter
This	is	point	in	parameter	space	at	which	the	trim	point	exists.
NURBSTrimDirection	direction
The	positive	or	negative	direction	in	parameter	space	of	the	portion	that	is
being	trimmed	off.	The	direction	can	also	be	set	to	'none'	so	no	trimming	is
done.

Prototype:
double	GetParameter();

Remarks:
Returns	the	point	in	parameter	space	at	which	the	trim	point	exists.

Prototype:
NURBSTrimDirection	GetDirection();

Remarks:
Returns	the	trim	direction	(positive,	negative,	or	none)	describing	which
portion	of	the	curve	is	trimmed	off.

Class	NURBSPointConstPoint
See	Also:	Class	NURBSObject,	List	of	NURBSConst	Types,	Class	Point3.

class	NURBSPointConstPoint	:	public	NURBSObject

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	is	used	to	create	a	dependent	point	that	lies	at	a	point	or	relative	to	it.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
protected:
NURBSId	mParentId;
The	id	of	the	parent	object.
int	mParentIndex;
The	index	in	the	NURBSSet	of	the	parent	object.
NURBSConstType	mCType;
The	type	of	constraint	in	use.
Point3	mOffset;
The	offset	from	the	object	that	the	point	is.

Friend	Classes:
friend	class	NURBSSet;

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSPointConstPoint();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNPointCPoint;
	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId	=	0;
	mParentIndex	=	-1;
	mCType	=	kNConstOnObject;
	mOffset	=	Point3(0,0,0);

Prototype:
~NURBSPointConstPoint();

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:
Sets	the	parent	index	to	the	specified	value.

Parameters:
int	index
The	parent	index	to	set.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Sets	the	parent	ID	to	the	specified	value.

Parameters:

NURBSId	id
The	parent	ID	to	set.

Prototype:
int	GetParent();

Remarks:
Returnst	the	parent	index.

Prototype:
NURBSId	GetParentId();

Remarks:
Returns	the	NURBSId	of	the	parent.	Note	that	a	NURBSId	won't	be	valid
until	the	object	has	been	instantiated	in	the	scene.

Prototype:
void	SetPointType(NURBSConstType	type);

Remarks:
Sets	the	type	of	point.

Parameters:
NURBSConstType	type
Specifies	the	type	of	point	to	set.	See	List	of	NURBSConst	Types.

Prototype:
NURBSConstType	GetPointType();

Remarks:
Returns	the	type	of	construction	point	this	is.	See	List	of	NURBSConst	Types.

Prototype:
void	SetOffset(TimeValue	t,	Point3	pt);

Remarks:
Sets	the	offset	value	at	the	specified	time.

Parameters:
TimeValue	t
Specifies	the	time	at	which	the	offset	is	set.
Point3	pt
The	offset	value	to	set.	This	value	is	specified	in	object	coordinates.

Prototype:
Point3	GetOffset(TimeValue	t);

Remarks:
Returns	the	offset	value	at	the	specified	time	in	object	coordinates.

Parameters:
TimeValue	t
The	time	to	retrieve	the	offset.

Operators:

Prototype:
NURBSPointConstPoint	&	operator=(const
NURBSPointConstPoint&	pt);

Remarks:
Assignment	operator.

Parameters:
const	NURBSPointConstPoint&	pt
The	construction	point	to	assign.

Class	NURBSCurveConstPoint
See	Also:	Class	NURBSObject,	List	of	NURBSConst	Types,	Class	Point3.
class	NURBSCurveConstPoint	:	public	NURBSObject

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	is	used	to	create	a	dependent	point	that	lies	on	a	curve	or	relative	to	it.
The	point	can	either	be	on	the	curve	or	off	the	curve.	If	it	is	on	the	curve,	the	U
Position	is	the	only	control	of	its	location.	The	U	Position	specifies	a	location
along	the	curve	(based	on	the	curve’s	local	U	axis).	There	are	three	ways	to
displace	the	point’s	location	relative	to	the	U	position:

Offset	moves	the	point	according	to	a	relative	(object	space)	X,Y,Z	location.
Normal	moves	the	point	along	the	direction	of	the	curve’s	normal.	(Negative
values	move	it	opposite	to	the	normal.)
U	Position
Tangent	moves	the	point	along	the	tangent	of	the	U	Position.

All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
protected:
NURBSId	mParentId;
The	NURBSId	of	the	parent	curve.
int	mParentIndex;
The	index	in	the	NURBSSet	of	the	parent	curve.
NURBSConstType	mCType;
The	type	of	constraint	in	use.
Point3	mOffset;
The	offset	amount.
float	mNormal;
The	distance	along	the	normal.
float	mUTangent;
The	distance	along	the	tangent.
double	mUParam;

Specifies	the	point	along	the	parent	curve.
BOOL	mTrimCurve;
The	point	that	is	constrained	to	the	curve	may	be	used	to	trim	the	curve.
BOOL	mFlipTrim;
If	TRUE	the	curve	is	trimmed	from	the	point	towards	low	parameter	space.	If
FALSE	the	curve	is	trimmed	from	the	point	towards	high	parameter	space.

Friend	Classes:
friend	class	NURBSSet;

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSCurveConstPoint();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNCurveCPoint;
	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId	=	0;
	mParentIndex	=	-1;
	mCType	=	kNConstOnObject;

	mOffset	=	Point3(0,0,0);
	mNormal	=	0.0f;
	mUTangent	=	0.0f;
	mUParam	=	0.0;
	mTrimCurve	=	FALSE;
	mFlipTrim	=	FALSE;

Prototype:
virtual	~NURBSCurveConstPoint();

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:
Sets	the	parent	index	to	the	specified	value.

Parameters:
int	index
The	parent	index	to	set.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Sets	the	parent	ID	to	the	specified	value.

Parameters:
NURBSId	id
The	parent	ID	to	set.

Prototype:
int	GetParent();

Remarks:

Returns	the	parent	index.

Prototype:
NURBSId	GetParentId();

Remarks:
Returns	the	NURBSId	of	the	parent.	Note	that	a	NURBSId	won't	be	valid
until	the	object	has	been	instantiated	in	the	scene.

Prototype:
void	SetPointType(NURBSConstType	type);

Remarks:
Sets	the	point	type.

Parameters:
NURBSConstType	type
Specifies	the	construction	point	type.	See	List	of	NURBSConst	Types.

Prototype:
NURBSConstType	GetPointType();

Remarks:
Returns	the	point	type.	See	List	of	NURBSConst	Types.

Prototype:
void	SetOffset(TimeValue	t,	Point3	pt);

Remarks:
Sets	the	offset	value	at	the	specified	time.

Parameters:
TimeValue	t
Specifies	the	time	at	which	the	offset	value	is	set.
Point3	pt
The	offset	to	set	in	object	space.

Prototype:

Point3	GetOffset(TimeValue	t);
Remarks:
Returns	the	offset	value	in	object	space	at	the	specified	time.

Parameters:
TimeValue	t
Specifies	the	time	at	which	the	offset	value	is	returned.

Prototype:
void	SetUParam(TimeValue	t,	double	param);

Remarks:
Sets	the	U	Parameter	for	the	point.

Parameters:
TimeValue	t
Specifies	the	time	at	which	the	value	is	set.
double	param
The	U	parameter	to	set.

Prototype:
double	GetUParam(TimeValue	t);

Remarks:
Returns	the	U	parameter	at	the	specified	time.

Parameters:
TimeValue	t
Specifies	the	time	at	which	the	value	is	returned.

Prototype:
void	SetNormal(TimeValue	t,	float	dist);

Remarks:
Sets	the	normal	distance	at	the	specified	time.

Parameters:
TimeValue	t

Specifies	the	time	at	which	the	value	is	set.
float	dist
The	distance	to	set.

Prototype:
float	GetNormal(TimeValue	t);

Remarks:
Returns	the	distance	along	the	normal	at	the	specified	time.

Parameters:
TimeValue	t
Specifies	the	time	at	which	the	value	is	returned.

Prototype:
void	SetUTangent(TimeValue	t,	float	dist);

Remarks:
Set	the	U	tangent	value	at	the	specified	time.

Parameters:
TimeValue	t
Specifies	the	time	at	which	the	value	is	set.
float	dist
The	distance	to	set.

Prototype:
float	GetUTangent(TimeValue	t);

Remarks:
Returns	the	U	tangent	value	at	the	specified	time.

Parameters:
TimeValue	t
Specifies	the	time	at	which	the	value	is	returned.

Prototype:

BOOL	GetTrimCurve();
Remarks:
Returns	TRUE	if	this	point	is	used	to	trim	the	curve	and	FALSE	if	it	is	not.

Prototype:
void	SetTrimCurve(BOOL	trim);

Remarks:
Sets	the	trim	curve	boolean.

Parameters:
BOOL	trim
TRUE	to	indicate	this	point	is	used	to	trim	the	curve;	FALSE	to	indicate	the
curve	is	not	trimmed	beyond	the	point.

Prototype:
BOOL	GetFlipTrim();

Remarks:
Returns	the	state	of	the	flip	trim	boolean.

Prototype:
void	SetFlipTrim(BOOL	flip);

Remarks:
Sets	the	state	of	the	flip	trim	boolean.

Parameters:
BOOL	flip
TRUE	to	indicate	the	curve	is	trimmed	from	the	point	towards	low	parameter
space.	Use	FALSE	to	indicate	the	curve	is	trimmed	from	the	point	towards
high	parameter	space.

Operators:

Prototype:
NURBSCurveConstPoint	&	operator=(const
NURBSCurveConstPoint&	pt);

Remarks:
Assignment	operator.

Parameters:
const	NURBSCurveConstPoint&	pt
The	point	to	assign.

Class	NURBSCurveCurveIntersectionPoint
See	Also:	Class	NURBSPoint.
class	NURBSCurveCurveIntersectionPoint	:	public	NURBSPoint

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	is	used	to	create	a	dependent	point	at	the	intersection	of	two	curves.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
protected:
NURBSId	mParentId[2];
The	ids	of	the	two	parent	curves.
int	mParentIndex[2];
The	indicies	of	the	two	parent	curves	in	the	NURBSSet.
BOOL	mTrimCurve[2];
Indicates	the	point	that	is	constrained	to	the	curve	may	be	used	to	trim	the
curve.
BOOL	mFlipTrim[2];
If	TRUE	the	curve	is	trimmed	from	the	point	towards	low	parameter	space.	If
FALSE	the	curve	is	trimmed	from	the	point	towards	high	parameter	space.

Friend	Classes:
friend	class	NURBSSet;

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:

NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSCurveCurveIntersectionPoint();

Remarks:
Constructor.	The	data	members	are	initialized	by	value:
mType	=	kNCurveCurveIntersectionPoint;
mpObject	=	NULL;
mpNSet	=	NULL;
mParentId[0]	=	mParentId[1]	=	0;
mParentIndex[0]	=	mParentIndex[1]	=	-1;
mCurveParam[0]	=	mCurveParam[1]	=	0.0;
mTrimCurve[0]	=	mTrimCurve[1]	=	FALSE;
mFlipTrim[0]	=	mFlipTrim[1]	=	FALSE;

Prototype:
virtual	~NURBSCurveCurveIntersectionPoint();

Remarks:
Destructor.

Prototype:
double	GetCurveParam(int	curveNum);

Remarks:
Returns	the	point	in	parameter	space	of	the	specified	curve	of	the	point	of
intersection.

Parameters:
int	curveNum
The	parent	curve	number:	0	or	1.

Prototype:

void	SetParent(int	pnum,	int	index);
Remarks:
Sets	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	pnum
The	parent	number:	0	or	1.
int	index
The	index	into	the	NURBSSet	of	the	parent	surface.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	specified	parent.

Parameters:
int	pnum
The	parent	number:	0	or	1.
NURBSId	id
The	id	to	set.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	pnum
The	parent	number:	0	or	1.

Prototype:
NURBSId	GetParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	specified	parent.	Note	that	a	NURBSId	won't

be	valid	until	the	object	has	been	instantiated	in	the	scene
Parameters:
int	pnum
The	parent	number:	0	or	1.

Prototype:
BOOL	GetTrimCurve(int	pnum);

Remarks:
Returns	TRUE	if	this	point	is	used	to	trim	the	specified	curve	and	FALSE	if	it
is	not.

Parameters:
int	pnum
The	parent	curve	number:	0	or	1.

Prototype:
void	SetTrimCurve(int	pnum,	BOOL	trim);

Remarks:
Sets	the	trim	curve	boolean	for	the	specified	curve.

Parameters:
int	pnum
The	parent	curve	number:	0	or	1.
BOOL	trim
TRUE	to	indicate	this	point	is	used	to	trim	the	curve;	FALSE	to	indicate	the
curve	is	not	trimmed	beyond	the	point.

Prototype:
BOOL	GetFlipTrim(int	pnum);

Remarks:
Returns	the	state	of	the	flip	trim	boolean.

Parameters:
int	pnum
The	parent	curve	number:	0	or	1.

Return	Value:
TRUE	indicates	the	specified	curve	is	trimmed	from	the	point	towards	low
parameter	space.	FALSE	indicates	the	curve	is	trimmed	from	the	point
towards	high	parameter	space.

Prototype:
void	SetFlipTrim(int	pnum,	BOOL	flip);

Remarks:
Sets	the	state	of	the	flip	trim	boolean	for	the	specified	parent	curve.

Parameters:
int	pnum
The	parent	curve	number:	0	or	1.
BOOL	flip
TRUE	to	indicate	the	curve	is	trimmed	from	the	point	towards	low	parameter
space.	Use	FALSE	to	indicate	the	curve	is	trimmed	from	the	point	towards
high	parameter	space.

Operators:

Prototype:
NURBSCurveCurveIntersectionPoint	&	operator=(const
NURBSCurveCurveIntersectionPoint	&pt);

Remarks:
Assignment	operator.

Parameters:
const	NURBSCurveCurveIntersectionPoint	&pt
The	intersection	point	to	assign.

Class	NURBSSurfConstPoint
See	Also:	Class	NURBSObject,	List	of	NURBSConst	Types.
class	NURBSSurfConstPoint	:	public	NURBSObject

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	is	used	to	create	a	dependent	point	on	a	surface	or	related	to	it.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
protected:
NURBSId	mParentId;
The	NURBSId	of	the	parent	surface.
int	mParentIndex;
The	index	in	the	NURBSSet	of	the	parent	surface.
NURBSConstType	mCType;
The	type	of	constraint	used	by	the	point.
Point3	mOffset;
The	offset	amount.
float	mNormal;
The	distance	along	the	normal.
float	mUTangent;
The	positive	tangent	offset	in	U.	At	the	location	in	parameter	space	of	the
constrained	point	is	a	tangent	to	the	surface.	This	is	the	distance	along	the
positive	U	tangent	in	parameter	space.
double	mUParam;
The	point	is	constrained	to	exist	on	the	parent	surface.	The	surface	itself	is
defined	over	a	parameter	range.	The	point	is	defined	at	a	point	in	the	parent
surface	parameter	space.	This	is	the	location	of	the	point	in	the	parent	surface
parameter	space	in	U.
float	mVTangent;
This	is	the	distance	along	the	positive	V	tangent	in	parameter	space.
double	mVParam;
This	is	the	location	of	the	point	in	the	parent	surface	parameter	space	in	V.

Friend	Classes:
friend	class	NURBSSet;

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSSurfConstPoint();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNSurfaceCPoint;
	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId	=	0;
	mParentIndex	=	-1;
	mCType	=	kNConstOnObject;
	mOffset	=	Point3(0,0,0);
	mNormal	=	0.0f;
	mUTangent	=	0.0f;
	mUParam	=	0.0;
	mVTangent	=	0.0f;
	mVParam	=	0.0;

Prototype:
virtual	~NURBSSurfConstPoint();

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	parent	object.

Parameters:
int	index
The	index	into	the	NURBSSet	of	the	parent	surface.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	specified	parent.

Parameters:
NURBSId	id
The	id	to	set.

Prototype:
int	GetParent();

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	parent	object.

Prototype:
NURBSId	GetParentId();

Remarks:
Returns	the	NURBSId	of	the	parent.	Note	that	a	NURBSId	won't	be	valid
until	the	object	has	been	instantiated	in	the	scene

Prototype:
void	SetPointType(NURBSConstType	type);

Remarks:
Sets	the	type	of	constrained	point	this	is.	See	List	of	NURBSConst	Types.

Parameters:
NURBSConstType	type
The	type	of	the	constrained	point.

Prototype:
NURBSConstType	GetPointType();

Remarks:
Returns	the	type	of	constrained	point	this	is.	See	List	of	NURBSConst	Types.

Prototype:
void	SetUParam();

Remarks:
Sets	the	position	of	the	point	in	the	parent	U	parameter	space.

Parameters:
TimeValue	t
The	time	to	set	the	U	parameter.
double	param
The	value	to	set.

Prototype:
double	GetUParam(TimeValue	t);

Remarks:
Returns	the	position	of	the	point	in	the	parent	U	parameter	space.

Parameters:
TimeValue	t
The	time	to	get	the	U	parameter.

Prototype:
void	SetVParam(TimeValue	t,	double	param);

Remarks:
Sets	the	position	of	the	point	in	the	parent	V	parameter	space.

Parameters:
TimeValue	t
The	time	to	set	the	U	parameter.
double	param
The	value	to	set.

Prototype:
double	GetVParam(TimeValue	t);

Remarks:
Returns	the	position	of	the	point	in	the	parent	V	parameter	space.

Parameters:
TimeValue	t
The	time	to	get	the	Vparameter.

Prototype:
void	SetOffset(TimeValue	t,	Point3	pt);

Remarks:
Sets	the	offset	of	the	point	from	the	parent	surface.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	offset.
Point3	pt
The	offset	to	set.

Prototype:
Point3	GetOffset(TimeValue	t);

Remarks:

Returns	the	offset	of	the	point	from	the	parent	surface	at	the	specified	time.
Parameters:
TimeValue	t
The	time	at	which	to	get	the	offset.

Prototype:
void	SetNormal(TimeValue	t,	float	dist);

Remarks:
Sets	the	distance	along	the	normal	to	the	surface	of	the	point	at	the	specified
time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	distance.
float	dist
The	distance	to	set.

Prototype:
float	GetNormal(TimeValue	t);

Remarks:
Returns	the	distance	along	the	normal	to	the	surface	of	the	point	at	the
specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	distance.

Prototype:
void	SetUTangent(TimeValue	t,	float	dist);

Remarks:
Sets	the	distance	along	the	U	tangent	of	the	point.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	distance.

float	dist
The	distance	to	set.

Prototype:
float	GetUTangent(TimeValue	t);

Remarks:
Returns	the	distance	along	the	U	tangent	of	the	point.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	distance.

Prototype:
void	SetVTangent(TimeValue	t,	float	dist);

Remarks:
Sets	the	distance	along	the	V	tangent	of	the	point.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	distance.
float	dist
The	distance	to	set.

Prototype:
float	GetVTangent(TimeValue	t);

Remarks:
Returns	the	distance	along	the	V	tangent	of	the	point.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	distance.

Operators:

Prototype:
NURBSSurfConstPoint	&	operator=(const

NURBSSurfConstPoint&	pt);
Remarks:
Assignment	operator.

Parameters:
const	NURBSSurfConstPoint&	pt
The	point	to	assign.

Class	NURBSPointCurve
See	Also:	Class	NURBSCurve,	Class	NURBSIndependentPoint.
class	NURBSPointCurve	:	public	NURBSCurve

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	curve	that	uses	points	to	describe	its	shape.	All	the	points	lie
on	the	curve	itself.	There	are	methods	to	get/set	the	number	of	points	in	the
curve,	get/set	the	points	themselves,	refine	the	curve	(add	points	without
changing	its	shape),	and	to	get/set	the	transformation	matrix	used	by	the	curve.
This	matrix	is	used	to	set	the	postion	of	the	curve	in	the	NURBSSet.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Data	Memberss:
protected:
NURBSIndependentPoint	*mpPts;
Array	of	independent	points.
BOOL	mClosed;
TRUE	if	the	curve	is	closed;	otherwise	FALSE.
int	mNumPts;
The	number	of	independent	points.

Methods:

Prototype:
NURBSPointCurve();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNPointCurve;
	mClosed	=	FALSE;
	mpPts	=	NULL;

Prototype:
virtual	~NURBSPointCurve();

Remarks:
Destructor.	If	any	points	were	allocated	they	are	freed	and	the	cache	is	cleared.

Prototype:
void	Close();

Remarks:
Closes	the	point	curve.

Prototype:
BOOL	IsClosed();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	curve	is	closed;	otherwise	FALSE.

Prototype:
void	SetNumPts(int	num);

Remarks:
Sets	the	number	of	points	in	the	point	curve.	Note	that	any	previous	point	data
is	not	maintained	when	the	new	number	is	set.

Parameters:
int	num
The	number	of	points	in	the	curve.

Prototype:
int	GetNumPts();

Remarks:
Returns	the	number	of	points	in	the	curve.

Prototype:

void	GetNumPts(int	&num);
Remarks:
Retrieves	the	number	of	points	in	the	curve.

Parameters:
int	&num
The	result	is	stored	here.

Prototype:
NURBSIndependentPoint*	GetPoint(int	index);

Remarks:
Returns	a	pointer	to	the	specified	point.

Parameters:
int	index
The	zero	based	index	of	the	point	to	get.

Prototype:
void	SetPoint(int	index,	NURBSIndependentPoint	&pt);

Remarks:
Sets	the	specified	point	in	the	curve.

Parameters:
int	index
The	zero	based	index	of	the	point	to	set.
NURBSIndependentPoint	&pt
The	point	to	set.

Prototype:
void	SetTransformMatrix(TimeValue	t,	SetXFormPacket&
xPack);

Remarks:
Sets	the	transformation	matrix	for	the	NURBSPointCurve.	This	controls
the	relative	position	of	the	item	within	a	NURBSSet.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	matrix.
SetXFormPacket&	xPack
An	instance	of	the	XFormPacket	class	that	describes	the	properties	of	the
transformation.	See	Class	SetXFormPacket.

Prototype:
Matrix3	GetTransformMatrix(TimeValue	t);

Remarks:
Returns	the	transformation	matrix	that	controls	the	relative	position	of	the
point	curve	in	the	NURBSSet.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	matrix.

Prototype:
void	Refine(TimeValue	t,	double	u);

Remarks:
This	method	adds	a	new	point	at	the	specified	location	on	the	curve	without
changing	its	shape.	The	point	is	specified	as	a	distance	in	U	parameter	space.
Note	that	calling	this	method	causes	all	animation	of	the	curve	to	be	removed.

Parameters:
TimeValue	t
The	time	at	which	to	refine	the	curve.	The	curve	may	be	animated,	and	thus
the	underlying	parameter	space	may	be	changing.	So	when	the	u	value	is
specified	it	must	relate	to	the	curve	at	a	specific	time.
double	u
The	point	at	which	to	refine	the	curve.	Developers	should	use	the	method
NURBSCurve::GetParameterRange()	to	get	the	valid	range	of	values
that	may	be	passed	here.

Operators:

Prototype:
NURBSPointCurve	&	operator=(const	NURBSPointCurve&
curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSPointCurve&	curve
The	curve	to	assign.

Class	NURBSCVCurve
See	Also:	Class	NURBSCurve,	Class	NURBSControlVertex.
class	NURBSCVCurve	:	public	NURBSCurve

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	NURBS	CV	Curve.	CV	Curves	have	control	vertices.	The
position	of	the	control	vertices	(CVs)	controls	the	shape	of	the	curve.	Unlike
spline	vertices,	CVs	don’t	necessarily	lie	on	the	curve	they	define.	The	CVs
define	a	control	lattice	which	surrounds	the	NURBS	curve.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
protected:
NURBSControlVertex	*mpCVs;
Array	of	control	vertices.
double	*mpKnots;
Array	of	knots.
BOOL	mClosed;
TRUE	if	the	curve	is	closed;	otherwise	FALSE.
int	mOrder;
The	order	of	the	curve.
int	mNumKnots;
The	number	of	knots.
int	mNumCVs;
The	number	of	control	verticies.
NURBSAutoParam	mAutoParam;
This	data	member	is	available	in	release	3.0	and	later	only.
Controls	automatic	reparameterization.	See	List	of	NURBSAutoParam	Types.

Friend	Classes:
friend	class	NURBSSet;

Methods:
public:

Prototype:
NURBSCVCurve();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNCVCurve;
	mClosed	=	FALSE;
	mpCVs	=	NULL;
	mpKnots	=	NULL;

Prototype:
virtual	~NURBSCVCurve();

Remarks:
Destructor.	If	the	knots	and	CV	arrays	are	allocated	they	are	freed	and	any
caches	are	cleared.

Prototype:
void	Close();

Remarks:
Closes	the	curve.

Prototype:
void	SetOrder(int	order);

Remarks:
Sets	the	order	of	the	curve.	This	is	one	more	than	the	degree	of	polynomial	of
any	segment	of	the	curve.	All	curves	have	a	degree.	The	degree	of	a	curve	is
the	highest	exponent	in	the	equation	used	to	represent	it.	A	linear	equation	is
degree	1,	a	quadratic	equation	degree	2.	NURBS	curves	typically	are
represented	by	cubic	equations	and	have	a	degree	of	3.

Parameters:
int	order
Specifies	the	order	of	the	curve.

Prototype:
int	GetOrder();

Remarks:
Returns	the	order	of	the	curve.

Prototype:
void	SetNumKnots(int	num);

Remarks:
Sets	the	number	of	knots	in	the	curve.	Note	that	the	previous	knot	data	is	NOT
maintained
Because	they	are	generated	mathematically,	NURBS	curves	have	a	parameter
space	in	addition	to	the	3D	geometric	space	in	which	they	are	displayed.
Specifically,	an	array	of	values	called	knots	specifies	the	extent	of	influence	of
each	control	vertex	(CV)	on	the	curve	or	surface.

Parameters:
int	num
Specifies	the	number	of	knots	for	the	curve.

Prototype:
int	GetNumKnots();

Remarks:
Returns	the	number	of	knots	in	the	curve.

Prototype:
void	SetNumCVs(int	num);

Remarks:
Set	the	number	of	control	vertices	in	the	curve.	Note	that	the	previous	control
vertex	data	is	NOT	maintained.

Parameters:
int	num
Specifies	the	number	of	control	vertices.

Prototype:
void	GetNumCVs(int&	num);

Remarks:
Retrieves	the	number	of	control	vertices.

Parameters:
int&	num
The	number	is	stored	here.

Prototype:
int	GetNumCVs();

Remarks:
Returns	the	number	of	control	vertices.

Prototype:
double	GetKnot(int	index);

Remarks:
Returns	the	knot	value	whose	index	is	passed.

Parameters:
int	index
Specifies	which	knot	value	to	return.

Prototype:
void	SetKnot(int	index,	double	value);

Remarks:
Sets	the	specified	knot	to	the	specified	value.

Parameters:
int	index
The	0	based	index	of	the	knot	to	set.
double	value
Specifies	the	value	to	set.

Prototype:
NURBSControlVertex	*GetCV(int	index);

Remarks:
Returns	a	pointer	to	the	specified	control	vertex	of	the	curve.

Parameters:
int	index
The	0	based	index	of	the	control	vertex	to	return.

Prototype:
void	SetCV(int	index,	NURBSControlVertex	&cv);

Remarks:
Sets	the	specified	control	vertex	to	the	CV	passed.

Parameters:
int	index
The	0	based	index	of	the	control	vertex	to	set.
NURBSControlVertex	&cv
The	CV	to	set.

Prototype:
void	SetTransformMatrix(TimeValue	t,	SetXFormPacket&
xPack);

Remarks:
Sets	the	transformation	matrix	for	the	NURBSCVCurve.	This	controls	the
relative	position	of	the	item	within	a	NURBSSet.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	matrix.
SetXFormPacket&	xPack
An	instance	of	the	XFormPacket	class	that	describes	the	properties	of	the
transformation.	See	Class	SetXFormPacket.

Prototype:
Matrix3	GetTransformMatrix(TimeValue	t);

Remarks:
Returns	the	transformation	matrix	of	the	NURBSCVCurve	at	the	specified
time.

Parameters:
TimeValue	t
The	time	at	which	to	retrieve	the	matrix.

Prototype:
NURBSAutoParam	AutoParam();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	current	settings	for	automatic	reparameterization.	See	List	of
NURBSAutoParam	Types.

Prototype:
void	AutoParam(TimeValue	t,	NURBSAutoParam	param);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	automatic	reparameterization	settings	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	set	them.
NURBSAutoParam	param
The	settings	to	establish.	See	List	of	NURBSAutoParam	Types.

Prototype:
void	Reparameterize(TimeValue	t,	NURBSParamaterization
param);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

This	method	reparameterizes	this	CV	sub-object.	This	can	be	used	to	provide	a
better	relation	between	control	point	locations	and	the	shape	of	the	sub-object.

Parameters:
TimeValue	t
The	time	to	reparameterize.
NURBSParamaterization	param
The	type	of	reparameterizing	to	perform.	See	List	of	NURBSParamaterization
Types.

Prototype:
void	EndsOverlap(BOOL&	overlap);

Remarks:
This	method	determines	if	the	ends	of	the	curve	overlap	even	though	the	curve
may	not	be	closed	(that	is,	the	tangents	match	at	the	ends).

Parameters:
BOOL&	overlap
The	result	is	returned	here:	TRUE	if	the	ends	overlap;	otherwise	FALSE.

Prototype:
void	Refine(TimeValue	t,	double	u);

Remarks:
By	specifying	a	parameter	point	on	the	curve,	this	method	adds	a	new	control
vertex	to	the	curve.	It	moves	all	the	other	CVs	but	maintains	the	shape	of	the
curve.	Note	that	this	causes	the	loss	of	any	animation	on	the	curve.

Parameters:
TimeValue	t
The	time	at	which	to	refine	the	curve.	If	the	curve	is	animated	the	u	parameter
below	is	time	dependent.
double	u
Specifies	the	distance	along	the	curve	to	add	the	CV.	See	the	base	class
method	GetParameterRange()	for	the	valid	range	of	values	for	this
parameter.

Prototype:
void	Insert(TimeValue	t,	double	u);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
This	method	places	a	new	CV	along	the	current	CV	hull	at	the	specified
parameter	point.	This	method	leaves	all	the	other	CVs	in	place	and	changes
the	shape	of	the	curve.	This	method	preserves	animation.

Parameters:
TimeValue	t
The	time	at	which	to	refine	the	curve.	If	the	curve	is	animated	the	u	parameter
below	is	time	dependent.
double	u
Specifies	the	distance	along	the	curve	to	add	the	CV.	See	the	base	class
method	GetParameterRange()	for	the	valid	range	of	values	for	this
parameter.

Operators:

Prototype:
NURBSCVCurve	&	operator=(const	NURBSCVCurve&	curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSCVCurve&	curve
The	NURBSCVCurve	to	assign.

Class	NURBSBlendCurve
See	Also:	Class	NURBSCurve.
class	NURBSBlendCurve	:	public	NURBSCurve

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	dependent	blend	curve.	A	blend	curve	connects	the	specified
end	of	one	curve	to	the	specified	end	of	another,	blending	the	curvature	of	the
parents	to	create	a	smooth	curve	between	them.	Methods	are	available	to	get/set
the	parent	indices	and	ids,	to	get/set	the	ends	of	the	curves	used	for	the	blend,
and	to	get/set	the	tension	values	used.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSBlendCurve();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNBlendCurve;

	mpObject	=	NULL;
	mpNSet	=	NULL;
	for	(int	i	=	0;	i	<	2;	i++)	{
		mParentId[i]	=	0;
		mParentIndex[i]	=	-1;
		mParentEnd[i]	=	TRUE;
		mTension[i]	=	1.0;
	}

Prototype:
~NURBSBlendCurve();

Remarks:
Destructor.	The	cache	is	cleared.

Prototype:
void	SetParent(int	pnum,	int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	pnum
The	parent	number:	0	or	1.
int	index
The	index	into	the	NURBSSet	of	the	parent	object.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	specified	parent.

Parameters:
int	pnum
The	parent	number:	0	or	1.

NURBSId	id
The	id	to	set.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	pnum
The	parent	number:	0	or	1.

Prototype:
NURBSId	GetParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	parent.	Note	that	a	NURBSId	won't	be	valid
until	the	object	has	been	instantiated	in	the	scene

Parameters:
int	pnum
The	parent	number:	0	or	1.

Prototype:
void	SetEnd(int	pnum,	BOOL	end);

Remarks:
Sets	if	the	beginning	or	end	of	the	specified	curve	is	used	for	the	blend.

Parameters:
int	pnum
The	parent	number:	0	or	1.
BOOL	end
TRUE	to	use	the	end	of	the	curve;	FALSE	to	use	the	beginning.	The	beginning
of	the	curve	has	lesser	parameter	values	than	the	end.

Prototype:

BOOL	GetEnd(int	pnum);
Remarks:
Indicates	if	the	beginning	or	end	of	the	specified	curve	is	used	for	the	blend.

Parameters:
int	pnum
The	parent	number:	0	or	1.

Return	Value:
TRUE	if	the	end	of	the	curve	is	used;	FALSE	if	the	beginning	is	used.

Prototype:
void	SetTension(TimeValue	t,	int	pnum,	double	ten);

Remarks:
Sets	the	tension	value	for	the	specified	parent	curve.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	tension
int	pnum
The	parent	number:	0	or	1.
double	ten
The	tension	value	to	set.

Prototype:
double	GetTension(TimeValue	t,	int	pnum);

Remarks:
Returns	the	tension	value	for	the	specified	parent	curve.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	tension
int	pnum
The	parent	number:	0	or	1.

Operators:

Prototype:
NURBSBlendCurve	&	operator=(const	NURBSBlendCurve&
curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSBlendCurve&	curve
The	curve	to	assign.

Class	NURBSOffsetCurve
See	Also:	Class	NURBSCurve.
class	NURBSOffsetCurve	:	public	NURBSCurve

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	dependent	offset	curve.	An	offset	curve	is	offset	from	the
original,	parent	curve.	It	lies	in	the	same	plane	as	its	parent,	and	is	normal	to	the
original.	Methods	are	available	to	get/set	the	parent	index	and	id	and	to	get/set
the	distance	from	the	parent	curve.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSOffsetCurve();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNOffsetCurve;

	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId	=	0;
	mParentIndex	=	-1;
	mDistance	=	0.0;

Prototype:
~NURBSOffsetCurve();

Remarks:
Destructor.	The	cache	is	cleared.

Prototype:
void	SetParent(int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	parent	object.

Parameters:
int	index
The	index	into	the	NURBSSet	of	the	parent	curve.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	parent.

Parameters:
NURBSId	id
The	id	to	set.

Prototype:
int	GetParent();

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Prototype:
NURBSId	GetParentId();

Remarks:
Returns	the	NURBSId	of	the	parent.	Note	that	a	NURBSId	won't	be	valid
until	the	object	has	been	instantiated	in	the	scene

Prototype:
void	SetDistance(TimeValue	t,	double	d);

Remarks:
Sets	the	distance	of	the	offset	curve	from	the	original	in	3ds	max	units	at	the
specified	time.

Parameters:
TimeValue	t
The	time	to	set	the	offset	distance.
double	d
The	distance	to	set.

Prototype:
double	GetDistance(TimeValue	t);

Remarks:
Returns	the	distance	of	the	offset	curve	from	the	parent	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	get	the	offset	distance.

Operators:

Prototype:
NURBSOffsetCurve	&	operator=(const	NURBSOffsetCurve&
curve);

Remarks:
Assignment	operator.

Parameters:

const	NURBSOffsetCurve&	curve
The	curve	to	assign.

Class	NURBSXFormCurve
See	Also:	Class	NURBSCurve.
class	NURBSXFormCurve	:	public	NURBSCurve

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	dependent	transform	(xform)	curve.	A	transform	curve	is	a
copy	of	the	original	curve	with	a	different	position,	rotation,	or	scale.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSXFormCurve();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNXFormCurve;
	mpObject	=	NULL;
	mpNSet	=	NULL;

	mParentId	=	0;
	mParentIndex	=	-1;
	mXForm.IdentityMatrix();

Prototype:
~NURBSXFormCurve();

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	index
The	index	into	the	NURBSSet	of	the	parent	curve.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	parent.

Parameters:
NURBSId	id
The	id	to	set.

Prototype:
int	GetParent();

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	parent	object.

Prototype:

NURBSId	GetParentId();
Remarks:
Returns	the	NURBSId	of	the	parent.	Note	that	a	NURBSId	won't	be	valid
until	the	object	has	been	instantiated	in	the	scene

Prototype:
void	SetXForm(TimeValue	t,	Matrix3&	mat);

Remarks:
Sets	the	transformation	used	to	move/rotate/scale	the	curve	from	the	original.

Parameters:
TimeValue	t
The	time	to	set	the	transformation.
Matrix3&	mat
The	transformation	matrix	to	set.

Prototype:
Matrix3&	GetXForm(TimeValue	t);

Remarks:
Returns	the	transformation	used	to	move/rotate/scale	the	curve	from	the
original.

Parameters:
TimeValue	t
The	time	to	get	the	transformation.

Operators:

Prototype:
NURBSXFormCurve	&	operator=(const	NURBSXFormCurve&
curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSXFormCurve&	curve

The	curve	to	assign.

Class	NURBSMirrorCurve
See	Also:	Class	NURBSCurve,	List	of	NURBSMirrorAxis	Types.
class	NURBSMirrorCurve	:	public	NURBSCurve

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	dependent	mirror	curve.	A	mirror	curve	is	similar	to	a	mirror
object	that	you	create	using	the	Mirror	tool	(on	the	3ds	max	toolbar)	or	the
Mirror	modifier.	It	is	the	original	curve	relfected	about	one	or	two	axes.	Methods
are	available	to	get/set	the	parent	index	and	id,	to	get/set	the	reflection	axis,	and
to	get/set	the	offset	distance.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSMirrorCurve();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNMirrorCurve;

	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId	=	0;
	mParentIndex	=	-1;
	mXForm.IdentityMatrix();
	mAxis	=	kMirrorX;
	mDistance	=	0.0;

Prototype:
~NURBSMirrorCurve();

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	parent	object.

Parameters:
int	index
The	index	into	the	NURBSSet	of	the	parent	curve.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	specified	parent.

Parameters:
NURBSId	id
The	id	to	set.

Prototype:
int	GetParent();

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	parent	object.

Prototype:
NURBSId	GetParentId();

Remarks:
Returns	the	NURBSId	of	the	parent.	Note	that	a	NURBSId	won't	be	valid
until	the	object	has	been	instantiated	in	the	scene

Prototype:
void	SetAxis(NURBSMirrorAxis	axis);

Remarks:
Sets	the	axis	or	axes	of	reflection	for	the	curve.

Parameters:
NURBSMirrorAxis	axis
Specifies	the	axis	or	axes	of	reflection.

Prototype:
NURBSMirrorAxis	GetAxis();

Remarks:
Returns	the	axis	or	axes	of	reflection	for	the	curve.

Prototype:
void	SetXForm(TimeValue	t,	Matrix3&	mat);

Remarks:
This	is	an	additional	transformation	applied	to	the	axis	specification.	This
corresponds	to	the	gizmo	they	user	may	use	interactively	to	alter	the	location
of	the	mirror	axis.	This	is	exactly	equivalent	to	setting	the	transform	on	the
gizmo	of	a	mirror	modifier.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	transformation.

Matrix3&	mat
The	transformation	to	set.

Prototype:
Matrix3&	GetXForm(TimeValue	t);

Remarks:
Returns	the	additional	transformation	applied	to	the	mirror	axis	at	the
specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	transformation	matrix.

Prototype:
void	SetDistance(TimeValue	t,	double	d);

Remarks:
Sets	the	offset	distance	of	the	curve.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	distance.
double	d
The	distance	to	set.

Prototype:
double	GetDistance(TimeValue	t);

Remarks:
Returns	the	offset	distance	of	the	curve.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	distance.

Operators:

Prototype:

NURBSMirrorCurve	&	operator=(const	NURBSMirrorCurve&
curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSMirrorCurve&	curve
The	curve	to	assign.

Class	NURBSFilletCurve
See	Also:	Class	NURBSCurve.
class	NURBSFilletCurve	:	public	NURBSCurve

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	dependent	fillet	curve.	A	fillet	is	a	curve	that	creates	a
circular	arc	corner	between	two	parent	curves.	Methods	are	available	to	get/set
the	parent	indices	and	ids,	get/set	the	trim	state	of	the	curves,	get/set	which	ends
of	the	curves	are	used,	and	get/set	the	radius	of	the	fillet.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSFilletCurve();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNFilletCurve;

	mpObject	=	NULL;
	mpNSet	=	NULL;
	mRadius	=	10.0;
	for	(int	i	=	0;	i	<	2;	i++)	{
		mParentId[i]	=	0;
		mParentIndex[i]	=	-1;
		mParentEnd[i]	=	TRUE;
		mTrimCurve[i]	=	TRUE;
		mFlipTrim[i]	=	FALSE;
	}

Prototype:
~NURBSFilletCurve();

Remarks:
Destructor.

Prototype:
void	SetParent(int	pnum,	int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	pnum
The	parent	number:	0	or	1.
int	index
The	index	into	the	NURBSSet	of	the	parent	curve.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	specified	parent.

Parameters:
int	pnum
The	parent	number:	0	or	1.
NURBSId	id
The	id	to	set.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	pnum
The	parent	number:	0	or	1.

Prototype:
NURBSId	GetParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	specified	parent.	Note	that	a	NURBSId	won't
be	valid	until	the	object	has	been	instantiated	in	the	scene.

Parameters:
int	pnum
The	parent	number:	0	or	1.

Prototype:
void	SetEnd(int	pnum,	BOOL	end);

Remarks:
Parameters:
int	pnum
The	parent	number:	0	or	1.
BOOL	end
TRUE	to	use	the	end	of	the	curve;	FALSE	to	use	the	beginning.

Prototype:
BOOL	GetEnd(int	pnum);

Remarks:
Returns	which	end	of	the	specified	curve	is	used	for	the	fillet.	TRUE	if	the	end
of	the	curve	is	used;	FALSE	if	the	beginning	is	used.

Parameters:
int	pnum
The	parent	curve	number:	0	or	1.

Prototype:
void	SetRadius(TimeValue	t,	double	radius);

Remarks:
Sets	the	radius	for	the	fillet	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	radius	value.
double	radius
The	radius	to	set.

Prototype:
double	GetRadius(TimeValue	t);

Remarks:
Returns	the	radius	of	the	fillet	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	return	the	fillet	value.

Prototype:
void	SetTrimCurve(int	pnum,	BOOL	trim);

Remarks:
Sets	if	the	specified	curve	is	trimmed	beyond	the	fillet.

Parameters:
int	pnum
The	parent	curve	number:	0	or	1.
BOOL	trim
TRUE	to	trim	the	curve	beyond	the	fillet;	otherwise	FALSE.

Prototype:
BOOL	GetTrimCurve(int	pnum);

Remarks:
Determines	if	the	specified	curve	is	trimmed	beyond	the	fillet.	TRUE	if	the
curve	is	trimmed;	otherwise	FALSE.

Parameters:
int	pnum
The	parent	curve	number:	0	or	1.

Prototype:
BOOL	GetFlipTrim(int	pnum);

Remarks:
Returns	the	flip	state	for	the	specified	curve.

Parameters:
int	pnum
The	parent	curve	number:	0	or	1.

Return	Value:
TRUE	if	flip	is	set;	FALSE	it	not.

Prototype:
void	SetFlipTrim(int	pnum,	BOOL	flip);

Remarks:
Sets	the	flip	state	for	the	specified	curve.

Parameters:
int	pnum
The	parent	curve	number:	0	or	1.

BOOL	flip
TRUE	to	flip;	FALSE	to	not	flip.

Operators:

Prototype:
NURBSFilletCurve	&	operator=(const	NURBSFilletCurve&
curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSFilletCurve&	curve
The	curve	to	assign.

Class	NURBSChamferCurve
See	Also:	Class	NURBSCurve.
class	NURBSChamferCurve	:	public	NURBSCurve

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	dependent	chamfer	curve.	A	chamfer	is	a	curve	that	creates	a
straight	line	corner	between	two	parent	curves.	Methods	are	availalble	to	get/set
the	parent	indices	and	ids,	to	get/set	which	ends	of	the	curves	are	used	for	the
chamfer,	get/set	the	trim	settings	for	each	curve,	and	to	get/set	the	length	of	the
curve	back	from	the	selected	end	that	represents	the	start	of	the	chamfer.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSChamferCurve();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNChamferCurve;

	mpObject	=	NULL;
	mpNSet	=	NULL;
	for	(int	i	=	0;	i	<	2;	i++)	{
		mParentId[i]	=	0;
		mParentIndex[i]	=	-1;
		mParentEnd[i]	=	TRUE;
		mTrimCurve[i]	=	TRUE;
mFlipTrim[i]	=	FALSE;
		mLength[i]	=	0.0;
	}

Prototype:
~NURBSChamferCurve();

Remarks:
Destructor.	The	cache	is	cleared.

Prototype:
void	SetParent(int	pnum,	int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	pnum
The	parent	number:	0	or	1.
int	index
The	index	into	the	NURBSSet	of	the	parent	object.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	specified	parent.

Parameters:
int	pnum
The	parent	number:	0	or	1.
NURBSId	id
The	id	to	set.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	pnum
The	parent	number:	0	or	1.

Prototype:
NURBSId	GetParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	specified	parent.	Note	that	a	NURBSId	won't
be	valid	until	the	object	has	been	instantiated	in	the	scene.

Parameters:
int	pnum
The	parent	number:	0	or	1.

Prototype:
void	SetEnd(int	pnum,	BOOL	end);

Remarks:
Sets	which	end	of	the	specified	curve	is	used	for	the	chamfer.

Parameters:
int	pnum
The	parent	number:	0	or	1.
BOOL	end

TRUE	to	use	the	end	of	the	curve;	FALSE	to	use	the	beginning.

Prototype:
BOOL	GetEnd(int	pnum);

Remarks:
Returns	which	end	of	the	specified	curve	is	used	for	the	chamfer.	TRUE	if	the
end	of	the	curve	is	used;	FALSE	if	the	beginning	is	used.

Parameters:
int	pnum
The	parent	curve	number:	0	or	1.

Prototype:
void	SetLength(TimeValue	t,	int	pnum,	double	length);

Remarks:
Sets	the	length	for	the	specified	parent	curve	back	from	the	end	that	defines
the	beginning	of	the	chamfer,	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	chamfer	length.
int	pnum
The	parent	curve	number:	0	or	1.
double	length
The	chamfer	length	to	set.

Prototype:
double	GetLength(TimeValue	t,	int	pnum);

Remarks:
Returns	the	length	of	the	chamfer	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	chamfer	length.

int	pnum
The	parent	curve	number:	0	or	1.

Prototype:
void	SetTrimCurve(int	pnum,	BOOL	trim);

Remarks:
Sets	if	the	specified	curve	is	trimmed	beyond	the	chamfer.

Parameters:
int	pnum
The	parent	curve	number:	0	or	1.
BOOL	trim
TRUE	to	trim	the	curve	beyond	the	chamfer;	otherwise	FALSE.

Prototype:
BOOL	GetTrimCurve(int	pnum);

Remarks:
Determines	if	the	specified	curve	is	trimmed	beyond	the	fillet.	TRUE	if	the
curve	is	trimmed;	otherwise	FALSE.

Parameters:
int	pnum
The	parent	curve	number:	0	or	1.

Prototype:
BOOL	GetFlipTrim(int	pnum);

Remarks:
Returns	the	flip	state	for	the	specified	curve.

Parameters:
int	pnum
The	parent	curve	number:	0	or	1.

Return	Value:
TRUE	if	flip	is	set;	FALSE	it	not.

Prototype:
void	SetFlipTrim(int	pnum,	BOOL	flip);

Remarks:
Sets	the	flip	state	for	the	specified	curve.

Parameters:
int	pnum
The	parent	curve	number:	0	or	1.
BOOL	flip
TRUE	to	flip;	FALSE	to	not	flip.

Operators:

Prototype:
NURBSChamferCurve	&	operator=(const
NURBSChamferCurve&	curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSChamferCurve&	curve
The	curve	to	assign.

Class	NURBSIsoCurve
See	Also:	Class	NURBSCurve.
class	NURBSIsoCurve	:	public	NURBSCurve

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	dependent	iso	curve.	U	and	V	iso	curves	are	dependent
curves	created	along	lines	of	constant	parameter	value	of	a	NURBS	surface.
Note	the	difference	between	"Iso	Lines",	which	are	a	display	artifact,	and	"Iso
Curves"	which	are	the	dependent	objects.	There	are	methods	available	to	get/set
the	parent	surface	index	and	id,	get/set	the	direction	of	the	iso	curve,	and	get/set
the	parameter	which	determines	the	location	on	the	surface	the	curve	matches.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSIsoCurve();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:

	mType	=	kNIsoCurve;
	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId	=	0;
	mParentIndex	=	-1;
	mIsU	=	TRUE;
	mParam	=	0.0;
	mTrim	=	FALSE;
	mFlipTrim	=	FALSE;
	mSeed	=	Point2(0.0,	0.0);

Prototype:
~NURBSIsoCurve();

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	index
The	index	into	the	NURBSSet	of	the	parent	surface.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	specified	parent.

Parameters:
NURBSId	id
The	id	to	set.

Prototype:
int	GetParent();

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	parent	object.

Prototype:
NURBSId	GetParentId();

Remarks:
Returns	the	NURBSId	of	the	parent.	Note	that	a	NURBSId	won't	be	valid
until	the	object	has	been	instantiated	in	the	scene.

Prototype:
void	SetDirection(BOOL	isU);

Remarks:
Sets	the	direction	of	the	iso	curve,	either	U	or	V.

Parameters:
BOOL	isU
TRUE	for	U;	FALSE	for	V.

Prototype:
BOOL	GetDirection();

Remarks:
Returns	TRUE	if	the	iso	curve	is	in	the	U	direction;	FALSE	for	the	V
direction.

Prototype:
void	SetParam(TimeValue	t,	double	p);

Remarks:
Sets	the	parameter	which	determines	where	on	the	surface	the	iso	curve	is
defined.

Parameters:
TimeValue	t
The	time	at	which	to	evaluate	the	surface.
double	p
The	parameter	defining	the	location	on	the	surface.

Prototype:
double	GetParam(TimeValue	t);

Remarks:
Returns	the	parameter	which	determines	where	on	the	surface	the	iso	curve	is
defined.

Parameters:
TimeValue	t
The	time	at	which	to	evaluate	the	surface.

Prototype:
BOOL	GetTrim();

Remarks:
Returns	the	state	of	the	trim	flag.	When	set	the	surface	is	trimmed	against	the
curve.	When	not	set,	the	surface	isn’t	trimmed

Prototype:
void	SetTrim(BOOL	trim);

Remarks:
Sets	the	state	of	the	trim	flag.	When	set	the	surface	is	trimmed	against	the
curve.	When	not	set,	the	surface	isn’t	trimmed

Parameters:
BOOL	trim
TRUE	to	trim;	FALSE	to	not	trim.

Prototype:
BOOL	GetFlipTrim();

Remarks:
Returns	the	state	of	the	trim	flip	flag.	When	set	this	trims	the	surface	in	the

opposite	direction

Prototype:
void	SetFlipTrim(BOOL	flip);

Remarks:
Sets	the	state	of	the	trim	flip	flag.	When	set	this	trims	the	surface	in	the
opposite	direction

Parameters:
BOOL	flip
TRUE	to	flip;	FALSE	to	not	flip.

Prototype:
Point2	GetSeed();

Remarks:
Returns	the	UV	location	of	the	seed	value	on	the	curve.

Prototype:
void	SetSeed(Point2&	seed);

Remarks:
Sets	the	UV	location	of	the	seed	value	on	the	curve.

Parameters:
Point2&	seed
The	seed	value	to	set.

Operators:

Prototype:
NURBSIsoCurve	&	operator=(const	NURBSIsoCurve&	curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSIsoCurve&	curve
The	curve	to	assign.

Class	NURBSPointSurface
See	Also:	Class	NURBSSurface,	Class	NURBSIndependentPoint.
class	NURBSPointSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	surface	that	uses	points	to	describe	its	shape.	This	class	has
methods	to	close	the	surface	in	U	and	V,	set	the	number	of	points	in	U	and	V,
and	get/set	the	points	in	U	and	V.	There	is	also	a	method	to	add	additional	points
to	the	surface.	The	point	surface	has	a	transformation	matrix	used	to	set	the
relative	position	of	the	surface	in	a	NURBSSet.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:

Prototype:
NURBSPointSurface();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNPointSurface;
	mClosedInU	=	FALSE;
	mClosedInV	=	FALSE;
	mpPts	=	NULL;

Prototype:
virtual	~NURBSPointSurface();

Remarks:
Destructor.	Any	allocated	points	are	deleted.

Prototype:
void	CloseInU();

Remarks:
This	method	closes	the	surface	in	the	U	direction.

Prototype:
void	CloseInV();

Remarks:
This	method	closes	the	surface	in	the	V	direction.

Prototype:
void	SetNumPts(int	u,	int	v);

Remarks:
Sets	the	number	of	points	in	the	surface	in	the	U	and	V	directions.	Any
previously	allocated	points	are	not	maintained	when	the	new	number	is	set.

Parameters:
int	u
The	number	of	points	in	U.
int	v
The	number	of	points	in	V.

Prototype:
int	GetNumUPts();

Remarks:
Returns	the	number	of	points	in	the	U	direction.

Prototype:
int	GetNumVPts();

Remarks:
Returns	the	number	of	points	in	the	V	direction.

Prototype:
void	GetNumPts(int	&u,	int	&v);

Remarks:
Retrieves	the	number	of	points	in	both	the	U	and	V	directions.

Parameters:
int	&u
The	number	in	U	is	stored	here.
int	&v
The	number	in	V	is	stored	here.

Prototype:
NURBSIndependentPoint*	GetPoint(int	u,	int	v);

Remarks:
Returns	a	pointer	to	the	specified	point	in	the	surface.

Parameters:
int	u
The	zero	based	index	of	the	point	in	the	U	direction.
int	v
The	zero	based	index	of	the	point	in	the	V	direction.

Prototype:
void	SetPoint(int	u,	int	v,	NURBSIndependentPoint&	pt);

Remarks:
Sets	the	specified	point	in	the	surface	to	the	point	passed.

Parameters:
int	u
The	zero	based	index	of	the	point	in	the	U	direction.
int	v
The	zero	based	index	of	the	point	in	the	V	direction.
NURBSIndependentPoint&	pt
The	point	to	set.

Prototype:

void	SetTransformMatrix(TimeValue	t,	SetXFormPacket&	mat);
Remarks:
Sets	the	transformation	matrix	for	the	NURBSPointSurface.	This	controls
the	relative	position	of	the	surface	within	a	NURBSSet.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	matrix.
SetXFormPacket&	xPack
An	instance	of	the	XFormPacket	class	that	describes	the	properties	of	the
transformation.	See	Class	SetXFormPacket.

Prototype:
Matrix3	GetTransformMatrix(TimeValue	t);

Remarks:
Returns	the	transformation	matrix	of	the	NURBSPointSurface	at	the
specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	retrieve	the	matrix.

Prototype:
void	Refine(TimeValue	t,	double	u,	double	v,	int	U_V_Both);

Remarks:
This	method	adds	a	new	point	at	the	specified	location	on	the	surface	without
changing	the	shape	of	the	surface.	The	location	may	be	specified	as	a	U	value
or	a	V	value,	or	both.
If	you	refine	in	U	(U_V_Both	=	0)	you	must	specify	v
If	you	refine	in	V	(U_V_Both	=	1)	you	must	specify	u
If	you	refine	in	U	and	V	(U_V_Both	=	-1)	you	must	specify	u	and	v

Parameters:
TimeValue	t
The	time	at	which	to	refine	the	surface.

double	u
The	location	for	the	point	in	U	space	(range	0.0	to	1.0).
double	v
The	location	for	the	point	in	V	space	(range	0.0	to	1.0).
int	U_V_Both
This	value	must	be	0,	1	or	-1.
If	0	the	refinement	is	done	in	u	(and	v	is	specified).
If	1	the	refinement	is	done	in	v	(and	u	is	specified).
If	-1	the	refinement	is	done	in	both	u	and	v	(and	both	u	and	v	must	be
specified).

Operators:

Prototype:
NURBSPointSurface	&	operator=(const	NURBSPointSurface&
surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBSPointSurface&	surf
The	surface	to	assign.

Class	NURBSCVSurface
See	Also:	Class	NURBSSurface.
class	NURBSCVSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	surface	that	uses	control	vertices	(CVs)	to	describe	its	shape.
The	CVs	define	a	control	lattice	which	surrounds	the	surface.	This	class	has
methods	to	close	the	surface	in	U	and	V,	set	its	order	in	U	and	V,	set	the	number
of	knots	and	CVs	in	U	and	V,	and	get/set	the	knots	and	CVs	in	U	and	V.	There	is
also	a	method	to	add	additional	CVs	to	the	surface.	The	CV	surface	has	a
transformation	matrix	used	to	position	the	surface	within	a	NURBSSet.
All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
NURBSCVSurface();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNCVSurface;
	mRigid	=	FALSE;
	mClosedInU	=	FALSE;
	mClosedInV	=	FALSE;
	mpCVs	=	NULL;
	mpUKnots	=	NULL;
	mpVKnots	=	NULL;
	mNumUCVs	=	0;
	mNumVCVs	=	0;
	mNumUKnots	=	0;
	mNumVKnots	=	0;
	mUOrder	=	0;
	mVOrder	=	0;

	mAutoParam	=	kNotAutomatic;

Prototype:
virtual	~NURBSCVSurface();

Remarks:
Destructor.

Prototype:
BOOL	IsRigid();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	surface	is	'rigid';	otherwise	FALSE.

Prototype:
void	SetRigid(BOOL	isRigid);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	'rigid'	state	of	the	surface.

Parameters:
BOOL	isRigid
TRUE	for	on;	FALSE	for	off.

Prototype:
NURBSAutoParam	AutoParam();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	automatic	parameterization	setting.	See	List	of
NURBSAutoParam	Types.

Prototype:
void	AutoParam(TimeValue	t,	NURBSAutoParam	param);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	automatic	parameterization	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	parameterization.
NURBSAutoParam	param
See	List	of	NURBSAutoParam	Types_.

Prototype:
void	Reparameterize(TimeValue	t,	NURBSParamaterization
param);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	reparameterization	type	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	sets	the	reparameterization	type.
NURBSParamaterization	param
See	List	of	NURBSParamaterization	Types.

Prototype:
void	CloseInU();

Remarks:
This	method	closes	the	surface	in	the	U	direction.	The	aligns	the	surface	edge
to	edge	in	U	and	sets	the	tangents	to	match.

Prototype:
void	CloseInV();

Remarks:
This	method	closes	the	surface	in	the	V	direction.	The	aligns	the	surface	edge
to	edge	in	V	and	sets	the	tangents	to	match.

Prototype:
void	SetUOrder(int	order);

Remarks:
Sets	the	order	of	the	surface	in	the	U	direction.

Parameters:
int	order
Specifies	the	order	of	the	surface	in	the	U	direction.

Prototype:
int	GetUOrder();

Remarks:
Returns	the	order	of	the	surface	in	the	U	direction.

Prototype:
int	GetVOrder();

Remarks:
Returns	the	order	of	the	surface	in	the	V	direction.

Prototype:
void	SetVOrder(int	order);

Remarks:
Sets	the	order	of	the	surface	in	the	V	direction.

Parameters:
int	order
Specifies	the	order	of	the	surface	in	the	V	direction.

Prototype:
void	SetNumUKnots(int	num);

Remarks:
Sets	the	number	of	knots	in	the	U	direction.	Note	that	the	knot	data	is	not
maintained.

Parameters:
int	num
Specifies	the	number	of	knots	in	the	U	direction.

Prototype:
void	SetNumVKnots(int	num);

Remarks:
Sets	the	number	of	knots	in	the	V	direction.	Note	that	the	knot	data	is	not
maintained.

Parameters:
int	num
Specifies	the	number	of	knots	in	the	V	direction.

Prototype:
int	GetNumUKnots();

Remarks:
Returns	the	number	of	knots	in	the	U	direction.

Prototype:
int	GetNumVKnots();

Remarks:
Returns	the	number	of	knots	in	the	V	direction.

Prototype:
void	SetNumCVs(int	u,	int	v);

Remarks:
Sets	the	number	of	control	vertices	in	both	the	U	and	V	directions.	Note	that
the	CV	data	is	not	maintained.

Parameters:
int	u
Specifies	the	number	of	control	vertices	in	the	U	direction.
int	v

Specifies	the	number	of	control	vertices	in	the	V	direction.

Prototype:
int	GetNumUCVs();

Remarks:
Returns	the	number	of	control	vertices	in	the	U	direction.

Prototype:
int	GetNumVCVs();

Remarks:
Returns	the	number	of	control	vertices	in	the	V	direction.

Prototype:
void	GetNumCVs(int	&u,	int	&v);

Remarks:
Returns	the	number	of	control	vertices	in	both	the	U	and	V	directions.

Parameters:
int	&u
The	number	of	CVs	in	the	U	direction	is	returned	here.
int	&v
The	number	of	CVs	in	the	V	direction	is	returned	here.

Prototype:
double	GetUKnot(int	index);

Remarks:
Returns	the	specified	knot	value	in	the	U	direction.

Parameters:
int	index
The	0	based	index	of	the	knot	value	to	return.

Prototype:

double	GetVKnot(int	index);
Remarks:
Returns	the	specified	knot	value	in	the	V	direction.

Parameters:
int	index
The	0	based	index	of	the	knot	value	to	return.

Prototype:
void	SetUKnot(int	index,	double	value);

Remarks:
Sets	the	specified	knot	in	the	U	direction	to	the	specified	value.

Parameters:
int	index
The	0	based	index	of	the	knot	value	to	set.
double	value
The	value	to	set.

Prototype:
void	SetVKnot(int	index,	double	value);

Remarks:
Sets	the	specified	knot	in	the	U	direction	to	the	specified	value.

Parameters:
int	index
The	0	based	index	of	the	knot	value	to	set.
double	value
The	value	to	set.

Prototype:
NURBSControlVertex	&GetCV(int	u,	int	v);

Remarks:
Returns	the	specified	control	vertex	of	this	surface.

Parameters:
int	u
The	0	based	index	in	the	U	direction.
int	v
The	0	based	index	in	the	V	direction.

Prototype:
void	SetCV(int	u,	int	v,	NURBSControlVertex	&cv);

Remarks:
Sets	the	specified	control	vertex.

Parameters:
int	u
The	0	based	index	in	the	U	direction.
int	v
The	0	based	index	in	the	V	direction.
NURBSControlVertex	&cv
The	control	vertex	to	set.

Prototype:
void	SetTransformMatrix(TimeValue	t,	SetXFormPacket&	mat);

Remarks:
Sets	the	transformation	matrix	for	the	NURBSCVSurface.	This	matrix
controls	the	relative	position	of	the	surface	within	a	NURBSSet.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	matrix.
SetXFormPacket&	xPack
An	instance	of	the	XFormPacket	class	that	describes	the	properties	of	the
transformation	(specifically	if	it's	being	moved,	rotated,	or	scaled).	See	Class
SetXFormPacket.

Prototype:

Matrix3	GetTransformMatrix(TimeValue	t);
Remarks:
Returns	the	transformation	matrix	of	the	NURBSCVSurface	at	the
specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	retrieve	the	matrix.

Prototype:
void	EdgesOverlap(BOOL&	uOverlap,	BOOL&	vOverlap);

Remarks:
This	method	determines	if	the	edges	of	the	surface	overlap	in	U	and/or	V	even
though	the	surface	may	not	be	closed	(that	is,	the	tangents	match	at	the	edges).

Parameters:
BOOL&	uOverlap
The	U	result	is	returned	here:	TRUE	if	the	edges	overlap	in	U;	otherwise
FALSE.
BOOL&	vOverlap
The	V	result	is	returned	here:	TRUE	if	the	edges	overlap	in	V;	otherwise
FALSE.

Prototype:
void	Refine(TimeValue	t,	double	u,	double	v,	int	U_V_Both);

Remarks:
This	method	adds	a	control	vertex	at	the	specified	point	on	the	surface	without
changing	the	shape	of	the	surface.	The	other	CV	points	will	move	to	maintain
the	current	shape.	The	point	may	be	specified	as	a	U	value	or	a	V	value,	or
both.
If	you	refine	in	U	(U_V_Both	=	0)	you	must	specify	v
If	you	refine	in	V	(U_V_Both	=	1)	you	must	specify	u
If	you	refine	in	U	and	V	(U_V_Both	=	-1)	you	must	specify	u	and	v

Parameters:

TimeValue	t
The	time	at	which	to	refine	the	surface.
double	u
The	position	for	the	point	in	U	space.
double	v
The	position	for	the	point	in	V	space.
int	U_V_Both
This	value	must	be	0,	1	or	-1.
If	0	the	refinement	is	done	in	u	(and	v	is	specified).
If	1	the	refinement	is	done	in	v	(and	u	is	specified).
If	-1	the	refinement	is	done	in	both	u	and	v	(and	both	u	and	v	must	be
specified).

Prototype:
void	Insert(TimeValue	t,	double	u,	double	v,	int	U_V_Both);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
This	method	adds	a	new	CV	to	the	surface	and	changes	its	shape.	The	other
CVs	will	not	move	as	they	do	in	Refine().	This	method	preserves	any
existing	animation	of	the	surface.

Parameters:
TimeValue	t
The	time	at	which	to	refine	the	surface.
double	u
The	position	for	the	point	in	U	space.
double	v
The	position	for	the	point	in	V	space.
int	U_V_Both
This	value	must	be	0,	1	or	-1.
If	0	the	refinement	is	done	in	u	(and	v	is	specified).
If	1	the	refinement	is	done	in	v	(and	u	is	specified).
If	-1	the	refinement	is	done	in	both	u	and	v	(and	both	u	and	v	must	be
specified).

Operators:

Prototype:
NURBSCVSurface	&	operator=(const	NURBSCVSurface&	surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBSCVSurface&	surf
The	CV	surface	to	assign.

Class	NURBSBlendSurface
See	Also:	Class	NURBSSurface.
class	NURBSBlendSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	dependent	blend	surface.	A	blend	surface	connects	the	edge
of	one	surface	to	the	edge	of	another,	blending	the	curvature	of	the	parents	to
create	a	smooth	surface	between	them.	Methods	are	available	to	get/set	the
parents,	parent	Ids,	tension	parameters	and	surface	normal	matching	state.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSBlendSurface();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNBlendSurface;

	mpObject	=	NULL;
	mpNSet	=	NULL;
	for	(int	i	=	0;	i	<	2;	i++)	{
		mParentId[i]	=	0;
		mParentIndex[i]	=	-1;
		mParentEdge[i]	=	0;
		mFlip[i]	=	FALSE;
		mTension[i]	=	1.0;
		mCurveStartParam[i]	=	0.0;
	}

Prototype:
virtual	~NURBSBlendSurface();

Remarks:
Destructor.

Prototype:
void	SetParent(int	pnum,	int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	pnum
The	parent	number:	0	or	1.
int	index
The	index	into	the	NURBSSet	of	the	parent	surface.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	specified	parent.

Parameters:
int	pnum
The	parent	number:	0	or	1.
NURBSId	id
The	id	to	set.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	pnum
The	parent	number:	0	or	1.

Prototype:
NURBSId	GetParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	specified	parent.	Note	that	a	NURBSId	won't
be	valid	until	the	object	has	been	instantiated	in	the	scene.

Parameters:
int	pnum
The	parent	number:	0	or	1.

Prototype:
void	SetEdge(int	pnum,	int	edge);

Remarks:
Sets	which	edge	of	the	specified	surface	is	used	for	the	blend.

Parameters:
int	pnum
The	parent	number:	0	or	1.
int	edge

One	of	the	following	values:
0:	The	low	U	edge.
1:	The	high	U	edge.
2:	The	low	V	edge.
3:	The	high	V	edge.

Prototype:
int	GetEdge(int	pnum);

Remarks:
Returns	an	integer	that	determines	which	edge	of	the	specified	surface	is	used
for	the	blend.

Parameters:
int	pnum
The	parent	number:	0	or	1.

Return	Value:
One	of	the	following	values:
0:	The	low	U	edge.
1:	The	high	U	edge.
2:	The	low	V	edge.
3:	The	high	V	edge.

Prototype:
void	SetTension(TimeValue	t,	int	pnum,	double	ten);

Remarks:
Sets	the	tension	value	for	the	specified	parent	surface.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	tension	value.
int	pnum
The	parent	number:	0	or	1.
double	ten

The	tension	value	to	set.

Prototype:
double	GetTension(TimeValue	t,	int	pnum);

Remarks:
Returns	the	tension	value	for	the	specified	parent	surface.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	tension	value.
int	pnum
The	parent	number:	0	or	1.

Prototype:
void	SetFlip(int	pnum,	BOOL	flip);

Remarks:
This	allows	one	to	control	the	matching	of	parent	surface	normals	when
creating	the	blend	surface.	For	example,	normally	when	you	create	a	blend
surface	between	two	parent	surfaces	you	don't	want	a	'bow	tie'	surface	(one
with	the	ends	rotated	180	degrees	so	it	crosses	on	itself	in	the	middle).	If	you
simply	match	the	parent	normals	you'll	occasionally	get	a	'bow	tie'	surface.	To
prevent	this	you	use	this	method	to	set	a	state	indicating	that	one	or	the	other
should	be	flipped	before	it's	used.	In	this	way,	when	the	blend	is	created,	a
'bow	tie'	won't	occur.

Parameters:
int	pnum
The	number	of	the	parent	surface:	0	or	1.
BOOL	flip
TRUE	to	match	the	parent	surface	normal;	FALSE	to	not	match	it.

Prototype:
BOOL	GetFlip(int	pnum);

Remarks:

Returns	the	flip	state	of	the	specified	parent	surface.
Parameters:
int	pnum
The	number	of	the	parent	surface:	0	or	1.

Prototype:
void	SetCurveStartPoint(TimeValue	t,	int	pnum,	double
startpoint);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	start	point	for	the	specified	parent	curve.	Note:	This	is	only	applicable
if	the	parent	is	a	closed	curve.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	start	point.
int	pnum
The	number	of	the	parent	surface:	0	or	1.
double	startpoint
The	start	point	in	the	range	0.0	to	1.0.

Prototype:
double	GetCurveStartPoint(TimeValue	t,	int	pnum);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	start	point	of	the	specified	parent	curve.
Note:	This	is	only	applicable	if	the	parent	is	a	closed	curve.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	start	point.
int	pnum
The	number	of	the	parent	surface:	0	or	1.

Operators:

Prototype:
NURBSBlendSurface	&	operator=(const	NURBSBlendSurface&
surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBSBlendSurface&	surf
The	surface	to	assign.

Class	NURBSOffsetSurface
See	Also:	Class	NURBSSurface.
class	NURBSOffsetSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	dependent	offset	surface.	An	Offset	surface	is	offset	a
specified	distance	from	the	original	along	the	parent	surface’s	normals.	Methods
are	available	to	get/set	the	parent	index	and	parent	Ids,	and	to	get/set	the	offset
distance	of	the	surface.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSOffsetSurface();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNOffsetSurface;

	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId	=	0;
	mParentIndex	=	-1;
	mDistance	=	0.0;

Prototype:
virtual	~NURBSOffsetSurface();

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	index
The	index	into	the	NURBSSet	of	the	parent	surface.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Sets	the	Id	of	the	parent	surface.

Parameters:
NURBSId	id
The	Id	to	set.

Prototype:
int	GetParent();

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	parent	surface.

Prototype:
NURBSId	GetParentId();

Remarks:
Returns	the	NURBSId	of	the	parent	surface.	Note	that	a	NURBSId	won't	be
valid	until	the	object	has	been	instantiated	in	the	scene.

Prototype:
void	SetDistance(TimeValue	t,	double	d);

Remarks:
Sets	the	offset	distance	of	the	surface	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	offset	a	value.
double	d
A	distance	of	the	offset	in	3ds	max	units.

Prototype:
double	GetDistance(TimeValue	t);

Remarks:
Returns	the	distance	of	the	offset	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	offset	a	value.

Operators:

Prototype:
NURBSOffsetSurface	&	operator=(const	NURBSOffsetSurface&
surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBSOffsetSurface&	surf

The	surface	to	assign.

Class	NURBSXFormSurface
See	Also:	Class	NURBSSurface.
class	NURBSXFormSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	dependent	transform	(xform)	surface.	A	transform	surface	is
a	copy	of	the	original	surface	with	a	different	position,	rotation,	or	scale.
Methods	are	available	to	get/set	the	indices	of	the	parent	surface	in	the
NURBSSet	and	the	parent	Ids	and	to	specify/retrieve	the	transformation	used
on	the	surface.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSXFormSurface();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNXFormSurface;

	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId	=	0;
	mParentIndex	=	-1;
	mXForm.IdentityMatrix();

Prototype:
virtual	~NURBSXFormSurface();

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	parent	object.

Parameters:
int	index
The	index	in	the	NURBSSet	of	the	parent	object.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Set	the	NURBSId	of	the	parent	object.

Parameters:
NURBSId	id
The	Id	to	set.

Prototype:
int	GetParent();

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	parent	object.

Prototype:
NURBSId	GetParentId();

Remarks:
Returns	the	NURBSId	of	the	parent	object.

Prototype:
void	SetXForm(TimeValue	t,	Matrix3&	mat);

Remarks:
Sets	the	transformation	from	the	parent	surface.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	transformation.
Matrix3&	mat
The	transformation	to	set.

Prototype:
Matrix3&	GetXForm(TimeValue	t);

Remarks:
Returns	the	transformation	from	the	parent	surface.

Parameters:
TimeValue	t
The	time	at	which	the	transformation	is	returned.

Operators:

Prototype:
NURBSXFormSurface	&	operator=(const
NURBSXFormSurface&	surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBSXFormSurface&	surf
The	surface	to	assign.

Class	NURBSMirrorSurface
See	Also:	Class	NURBSSurface,	List	of	NURBSMirrorAxis	Types.
class	NURBSMirrorSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	dependent	mirror	surface.	A	mirror	surface	is	similar	to	a
mirror	object	that	you	create	using	the	Mirror	tool	(on	the	3ds	max	toolbar)	or
the	Mirror	modifier.	It	is	the	original	surface	relfected	about	one	or	two	axes.
Methods	are	available	to	get/set	the	indices	of	the	parent	surface	in	the
NURBSSet	and	the	parent	Ids,	to	get/set	the	mirror	axes,	to	get/set	the	mirror
distance,	and	to	set	the	transformation	used	to	position	the	surface	in	the
NURBSSet.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSMirrorSurface();

Remarks:

Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNMirrorSurface;
	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId	=	0;
	mParentIndex	=	-1;
	mXForm.IdentityMatrix();
	mAxis	=	kMirrorX;
	mDistance	=	0.0;

Prototype:
virtual	~NURBSMirrorSurface();

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	parent	object.

Parameters:
int	index
The	index	in	the	NURBSSet	of	the	parent	object

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	parent	object.

Parameters:
NURBSId	id
The	NURBSId	of	the	parent	object.

Prototype:
int	GetParent();

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	parent	object.

Prototype:
NURBSId	GetParentId();

Remarks:
Returns	the	NURBSId	of	the	parent.	Note	that	a	NURBSId	won't	be	valid
until	the	object	has	been	instantiated	in	the	scene.

Prototype:
void	SetAxis(NURBSMirrorAxis	axis);

Remarks:
Sets	the	mirror	axis	to	the	specified	constant.

Parameters:
NURBSMirrorAxis	axis
The	mirror	axis	to	set.

Prototype:
NURBSMirrorAxis	GetAxis();

Remarks:
Returns	the	axis	or	axes	of	reflection	for	the	surface.

Prototype:
void	SetXForm(TimeValue	t,	Matrix3&	mat);

Remarks:
This	is	an	additional	transformation	applied	to	the	axis	specification.	This
corresponds	to	the	gizmo	the	user	may	use	interactively	to	alter	the	location	of
the	mirror	axis.	This	is	exactly	equivalent	to	setting	the	transform	on	the
gizmo	of	a	mirror	modifier.

Parameters:

TimeValue	t
The	time	at	which	to	set	the	transformation.
Matrix3&	mat
The	transformation	to	set.

Prototype:
Matrix3&	GetXForm(TimeValue	t);

Remarks:
Returns	the	additional	transformation	applied	to	the	mirror	axis	at	the
specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	transformation	matrix.

Prototype:
void	SetDistance(TimeValue	t,	double	d);

Remarks:
This	is	just	like	the	offset	parameter	in	the	mirror	modifier.	It	is	an	offset	from
the	center	of	the	local	coordinate	system	for	the	mirror	object	that	moves	the
mirror,	in	the	direction	specified	by	the	mirror	axis.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	offset.
double	d
The	offset	distance.

Prototype:
double	GetDistance(TimeValue	t);

Remarks:
Returns	the	offset	distance	of	the	mirror	at	the	specified	time.

Parameters:
TimeValue	t

The	time	at	which	to	return	the	offset.

Operators:

Prototype:
NURBSMirrorSurface	&	operator=(const
NURBSMirrorSurface&	surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBSMirrorSurface&	surf
The	surface	to	assign.

Class	NURBSRuledSurface
See	Also:	Class	NURBSSurface.
class	NURBSRuledSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	dependent	ruled	surface.	A	ruled	surface	is	generated	from
two	curve	sub-objects.	It	lets	you	use	curves	to	design	the	two	opposite	borders
of	a	surface.	Methods	are	available	to	get/set	the	indices	of	the	parent	surface	in
the	NURBSSet	and	the	parent	Ids	and	to	set	the	surface	normal	matching	state
of	the	surfaces.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSRuledSurface();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNRuledSurface;

	mpObject	=	NULL;
	mpNSet	=	NULL;
	for	(int	i	=	0;	i	<	2;	i++)	{
		mParentId[i]	=	0;
		mParentIndex[i]	=	-1;
		mFlip[i]	=	FALSE;
		mCurveStartParam[i]	=	0.0;
	}

Prototype:
virtual	~NURBSRuledSurface();

Remarks:
Destructor.

Prototype:
void	SetParent(int	pnum,	int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	pnum
The	parent	number:	0	or	1.
int	index
The	index	in	the	NURBSSet	of	the	specified	parent	object.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	specified	parent.

Parameters:
int	pnum
The	parent	number:	0	or	1.

NURBSId	id
The	id	to	set.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	pnum
The	parent	number:	0	or	1.

Prototype:
NURBSId	GetParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	specified	parent.	Note	that	a	NURBSId	won't
be	valid	until	the	object	has	been	instantiated	in	the	scene

Parameters:
int	pnum
The	parent	number:	0	or	1.

Prototype:
void	SetFlip(int	pnum,	BOOL	flip);

Remarks:
This	allows	one	to	control	the	matching	of	parent	surface	normals	when
creating	the	ruled	surface.	For	example,	normally	when	you	create	a	ruled
surface	between	two	parent	curves	you	don't	want	a	'bow	tie'	surface	(one	with
the	ends	rotated	180	degrees	so	it	crosses	on	itself	in	the	middle).	If	you
simply	match	the	parent	normals	you'll	get	a	'bow	tie'	surface.	To	prevent	this
you	use	this	method	to	set	a	state	indicating	that	one	or	the	other	should	be
flipped	before	it's	used.	In	this	way,	when	the	ruled	surface	is	created,	a	'bow
tie'	won't	occur.

Parameters:

int	pnum
The	number	of	the	parent	curve:	0	or	1.
BOOL	flip
TRUE	to	match	the	parent	surface	normal;	FALSE	to	not	match	it.

Prototype:
BOOL	GetFlip(int	pnum);

Remarks:
Returns	the	flip	state	of	the	specified	parent	curve.

Parameters:
int	pnum
The	number	of	the	parent	curve:	0	or	1.

Prototype:
void	SetCurveStartPoint(TimeValue	t,	int	pnum,	double
startpoint);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	start	point	for	the	specified	parent	curve.	Note:	This	is	only	applicable
if	the	parent	is	a	closed	curve.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	start	point.
int	pnum
The	number	of	the	parent	curve:	0	or	1.
double	startpoint
The	start	point	in	the	range	0.0	to	1.0.

Prototype:
double	GetCurveStartPoint(TimeValue	t,	int	pnum);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Returns	the	start	point	for	the	specified	parent	curve.	Note:	This	is	only
applicable	if	the	parent	is	a	closed	curve.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	start	point.
int	pnum
The	number	of	the	parent	curve:	0	or	1.

Operators:

Prototype:
NURBSRuledSurface	&	operator=(const	NURBSRuledSurface&
surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBSRuledSurface&	surf
The	surface	to	assign.

Class	NURBSULoftSurface
See	Also:	Class	NURBSSurface.
class	NURBSULoftSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	dependent	U	Loft	surface.	A	U	Loft	surface	interpolates	a
surface	across	multiple	curve	sub-objects.	The	curves	become	U-axis	contours	of
the	surface.	Methods	are	available	to	get/set	the	number	of	curves	used	to	make
the	loft,	append	curves	to	the	list,	get/set	the	parent	ids,	and	get/set	the	flipped
state	for	each	of	the	curves.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSULoftSurface();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNULoftSurface;

	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId.SetCount(0);
	mParentIndex.SetCount(0);
	mFlip.SetCount(0);
	mCurveStartParam.SetCount(0);
	mTension.SetCount(0);
	mUseTangents.SetCount(0);
	mFlipTangents.SetCount(0);
	mAutoAlign	=	FALSE;
	mCloseLoft	=	FALSE;

Prototype:
virtual	~NURBSULoftSurface();

Remarks:
Destructor.

Prototype:
void	SetNumCurves(int	num);

Remarks:
Sets	the	number	of	curves	used	by	the	U	loft.

Parameters:
int	num
The	number	of	curves	to	set.

Prototype:
int	GetNumCurves();

Remarks:
Returns	the	number	of	curves	used	by	the	surface.

Prototype:

int	AppendCurve(int	index,	BOOL	flip);
Remarks:
Adds	a	curve	to	the	end	of	the	list	of	curves	used	to	make	the	U	loft	surface.

Parameters:
int	index
The	index	of	the	curve	to	add	in	the	NURBSSet.
BOOL	flip
TRUE	to	flip	the	orientation	of	this	curve's	normal	used	to	build	the	loft;
otherwise	FALSE.

Return	Value:
The	number	of	curves	in	the	list	prior	to	this	one	being	added.

Prototype:
int	AppendCurve(NURBSId	id,	BOOL	flip);

Remarks:
Adds	a	curve	to	the	end	of	the	list	of	curves	used	to	make	the	U	loft	surface.

Parameters:
NURBSId	id
The	NURBS	id	of	the	curve	to	add.
BOOL	flip
TRUE	to	flip	the	orientation	of	this	curve's	normal	used	to	build	the	loft;
otherwise	FALSE.

Prototype:
void	SetParent(int	pnum,	int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	pnum
The	parent	number,	0,	1,	2,	etc.
int	index
The	index	into	the	NURBSSet	of	the	parent	surface.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	specified	parent.

Parameters:
int	pnum
The	parent	number,	0,	1,	2,	etc.
NURBSId	id
The	id	to	set.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	pnum
The	parent	number,	0,	1,	2,	etc.

Prototype:
NURBSId	GetParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	specified	parent.	Note	that	a	NURBSId	won't
be	valid	until	the	object	has	been	instantiated	in	the	scene

Parameters:
int	pnum
The	parent	number,	0,	1,	2,	etc.

Prototype:
void	SetFlip(int	pnum,	BOOL	flip);

Remarks:
This	method	allows	one	to	control	the	matching	of	parent	normals	when

creating	the	U	loft	surface.
Parameters:
int	pnum
The	parent	number,	0,	1,	2,	etc.
BOOL	flip
TRUE	to	flip	the	orientation	of	the	normal	when	building	the	surface	at	this
curve;	otherwise	FALSE.

Prototype:
BOOL	GetFlip(int	pnum);

Remarks:
Returns	the	flip	state	of	the	specified	parent	normal.

Parameters:
int	pnum
The	parent	number,	0,	1,	2,	etc.

Prototype:
void	SetCurveStartPoint(TimeValue	t,	int	pnum,	double
startpoint);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	start	point	for	the	specified	parent	curve.	Note:	This	is	only	applicable
if	the	parent	is	a	closed	curve.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	start	point.
int	pnum
The	parent	number,	0,	1,	2,	etc.
double	startpoint
The	start	point	in	the	range	0.0	to	1.0.

Prototype:

double	GetCurveStartPoint(TimeValue	t,	int	pnum);
Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	start	point	for	the	specified	parent	curve.	Note:	This	is	only
applicable	if	the	parent	is	a	closed	curve.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	start	point.
int	pnum
The	parent	number,	0,	1,	2,	etc.

Prototype:
void	SetCurveTension(TimeValue	t,	int	pnum,	double	tension);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	curve	tension	for	the	specified	parent	curve.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	tension.
int	pnum
The	parent	number,	0,	1,	2,	etc.
double	tension
The	tension	value	to	set.

Prototype:
double	GetCurveTension(TimeValue	t,	int	pnum);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	tension	setting	of	the	specified	parent	curve	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	tension.

int	pnum
The	parent	number,	0,	1,	2,	etc.

Prototype:
void	SetCurveUseSurfaceTangent(int	pnum,	BOOL	useTangent);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	curve	use	surface	tangent	setting.	If	the	curve	is	a	curve	on	surface,
turning	this	on	causes	the	U	loft	to	use	the	tangency	of	the	surface.	This	can
help	blend	a	loft	smoothly	onto	a	surface.

Parameters:
int	pnum
The	parent	number,	0,	1,	2,	etc.
BOOL	useTangent
TRUE	to	use	the	tangent;	otherwise	FALSE.

Prototype:
BOOL	GetCurveUseSurfaceTangent(int	pnum);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	curve	use	surface	tangent	setting	is	on;	FALSE	if	off.

Parameters:
int	pnum
The	parent	number,	0,	1,	2,	etc.

Prototype:
void	SetFlipTangent(int	pnum,	BOOL	flipTangent);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	flip	tangent	setting	for	the	specified	parent	curve.

Parameters:
int	pnum

The	parent	number,	0,	1,	2,	etc.
BOOL	flipTangent
TRUE	to	flip	the	tangent;	otherwise	FALSE.

Prototype:
BOOL	GetFlipTangent(int	pnum);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	tangent	is	flipped	for	the	specified	parent	curve;
otherwise	FALSE.

Parameters:
int	pnum
The	parent	number,	0,	1,	2,	etc.

Prototype:
void	SetAutoAlign(BOOL	autoalign);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	if	auto	align	is	on	or	off.

Parameters:
BOOL	autoalign
TRUE	for	on;	FALSE	for	off.

Prototype:
BOOL	GetAutoAlign();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	auto	align	is	on;	otherwise	FALSE.

Prototype:
void	SetCloseLoft(BOOL	closeLoft);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	if	the	loft	is	closed	or	not.

Parameters:
BOOL	closeLoft
TRUE	for	closed;	FALSE	for	open.

Prototype:
BOOL	GetCloseLoft();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	loft	is	closed;	otherwise	FALSE.

Operators:

Prototype:
NURBSULoftSurface	&	operator=(const	NURBSULoftSurface&
surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBSULoftSurface&	surf
The	surface	to	assign.

Class	NURBSLatheSurface
See	Also:	Class	NURBSSurface.
class	NURBSLatheSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	defines	a	dependent	lathe	surface.	A	lathe	surface	is	generated	from	a
curve	sub-object.	It	is	similar	to	a	surface	created	with	the	Lathe	modifier.	The
advantage	is	that	a	lathe	sub-object	is	part	of	the	NURBS	model,	so	you	can	use
it	to	construct	other	curve	and	surface	sub-objects.	Methods	are	available	to
get/set	the	parent	index	and	id,	get/set	the	axis	and	amount	rotation	of	the	lathe.
All	methods	of	this	class	are	implemented	by	the	system.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSLatheSurface();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNLatheSurface;

	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId	=	0;
	mParentIndex	=	-1;
	mXForm.IdentityMatrix();
	mRotation	=	360.0;
	mCurveStartParam	=	360.0;

Prototype:
virtual	~NURBSLatheSurface();

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	parent	object.

Parameters:
int	index
The	index	into	the	NURBSSet	of	the	parent	surface.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	specified	parent.

Parameters:
NURBSId	id
The	id	to	set.

Prototype:
int	GetParent();

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Prototype:
NURBSId	GetParentId();

Remarks:
Returns	the	NURBSId	of	the	parent.	Note	that	a	NURBSId	won't	be	valid
until	the	object	has	been	instantiated	in	the	scene

Prototype:
void	SetAxis(TimeValue	t,	Matrix3&	ray);

Remarks:
Sets	the	axis	to	use	for	the	surface	of	revolution	by	specifying	a	time	and	a
axis	system.

Parameters:
TimeValue	t
The	time	at	which	the	axis	is	set.
Matrix3&	ray
Specifies	the	axis	for	revolution.	See	Class	Matrix3.

Prototype:
Matrix3&	GetAxis(TimeValue	t);

Remarks:
Returns	the	axis	system	for	the	surface	of	revolution.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	axis.

Prototype:
void	SetRotation(TimeValue	t,	double	degrees);

Remarks:
Sets	the	amount	of	rotation	for	the	surface.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	amount.
double	degrees
The	angle	of	the	revolution	in	degrees.

Prototype:
double	GetRotation(TimeValue	t);

Remarks:
Returns	the	angle	of	the	revolution	in	degrees.

Parameters:
TimeValue	t
The	time	at	which	to	return	the	angle.

Prototype:
void	SetCurveStartPoint(TimeValue	t,	double	startpoint);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	start	point	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	start	point.
double	startpoint
The	start	point	to	set	in	the	range	0.0	to	1.0.

Prototype:
double	GetCurveStartPoint(TimeValue	t);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	start	point	at	the	specified	time.

Parameters:

TimeValue	t
The	time	at	which	to	get	the	start	point.

Operators:

Prototype:
NURBSLatheSurface	&	operator=(const	NURBSLatheSurface&
surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBSLatheSurface&	surf
The	surface	to	assign.

Class	NURBSCurveSurfaceIntersectionPoint
See	Also:	Class	NURBSPoint.
class	NURBSCurveSurfaceIntersectionPoint	:	public	NURBSPoint

Description:
This	class	is	available	in	release	2.5	and	later	only.
This	class	is	used	to	create	a	dependent	point	at	the	intersection	of	a	curve	and	a
surface.

Data	Members:
protected:
NURBSId	mParentId[2];
The	NURBSIds	of	the	parent	surface	and	curve.	Parent	0	should	be	the	surface
parent	1	should	be	the	curve.
int	mParentIndex[2];
The	NURBSSet	indexes	of	the	parent	surface	and	curve.	Parent	0	should	be
the	surface	parent	1	should	be	the	curve.
double	mSeed;
The	seed	location	is	a	U	position	along	the	length	of	the	parent	curve.
BOOL	mTrimCurve;
The	trim	curve	flag.
BOOL	mFlipTrim;
The	trim	flip	flag.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a

NURBSSet.
Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSCurveSurfaceIntersectionPoint(void);

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNCurveSurfaceIntersectionPoint;
	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId[0]	=	mParentId[1]	=	0;
	mParentIndex[0]	=	mParentIndex[1]	=	-1;
	mSeed	=	0.5;
	mTrimCurve	=	FALSE;
	mFlipTrim	=	FALSE;

Prototype:
virtual	~NURBSCurveSurfaceIntersectionPoint(void);

Remarks:
Destructor.

Prototype:
void	SetSeed(double	seed);

Remarks:
Sets	the	seed	value.

Parameters:
double	seed
The	U	position	along	the	length	of	the	parent	curve.

Prototype:

double	GetSeed();
Remarks:
Returns	the	seed	value.

Prototype:
void	SetParent(int	pnum,	int	index);

Remarks:
Establishes	the	curve	or	surface	used	by	specifying	its	index	in	the
NURBSSet.

Parameters:
int	pnum
Pass	0	for	the	surface;	1	for	the	curve.
int	index
The	index	in	the	NURBSSet	of	the	curve	or	surface.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Establishes	the	curve	or	surface	used	by	specifying	its	NURBSId.

Parameters:
int	pnum
Pass	0	for	the	surface;	1	for	the	curve.
NURBSId	id
The	id	to	set.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	parent	curve	or	surface.

Parameters:
int	pnum
Pass	0	for	the	surface;	1	for	the	curve.

Prototype:

NURBSId	GetParentId(int	pnum);
Remarks:
Returns	the	NURBSId	of	the	parent	curve	or	surface.

Parameters:
int	pnum
Pass	0	for	the	surface;	1	for	the	curve.

Prototype:
BOOL	GetTrimCurve();

Remarks:
Returns	the	state	of	the	trim	curve	flag.	TRUE	causes	trimming;	FALSE	does
not.

Prototype:
void	SetTrimCurve(BOOL	trim);

Remarks:
Sets	the	state	of	the	trim	curve	flag.

Parameters:
BOOL	trim
TRUE	to	trim;	FALSE	to	not	trim.

Prototype:
BOOL	GetFlipTrim();

Remarks:
Returns	the	state	of	the	trim	flip	flag.	TRUE	for	flipped;	FALSE	for	not
flipped.

Prototype:
void	SetFlipTrim(BOOL	flip);

Remarks:
Sets	the	state	of	the	trim	flip	flag.

Parameters:
BOOL	flip
TRUE	to	flip;	FALSE	to	not	flip.

Prototype:
NURBSCurveSurfaceIntersectionPoint	&	operator=(const
NURBSCurveSurfaceIntersectionPoint	&pt);

Remarks:
Assignment	operator.

Parameters:
const	NURBSCurveSurfaceIntersectionPoint	&pt
The	point	to	assign.

Class	NURBSProjectNormalCurve
See	Also:	Class	NURBSCurve,	Class	Point2.
class	NURBSProjectNormalCurve	:	public	NURBSCurve

Description:
This	class	is	available	in	release	2.5	and	later	only.
This	class	provides	access	to	the	Normal	Proejcted	Curve.	A	Normal	Projected
curve	lies	on	a	surface.	It	is	based	on	an	existing	curve,	which	is	projected	onto
the	surface	in	the	direction	of	the	surface's	normals.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSProjectNormalCurve(void);

Remarks:
Constructor.

Prototype:
virtual	~NURBSProjectNormalCurve(void);

Remarks:

Destructor.

Prototype:
void	SetParent(int	pnum,	int	index);

Remarks:
Sets	the	surface	or	curve	used	by	specifying	its	index	into	the	NURBSSet.

Parameters:
int	pnum
Pass	0	for	the	surface	and	1	for	the	curve.
int	index
The	index	in	the	NURBSSet	of	the	surface	or	curve.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Sets	the	surface	or	curve	used	by	specifying	its	NURBSId.

Parameters:
int	pnum
Pass	0	for	the	surface	and	1	for	the	curve.
NURBSId	id
The	id	of	the	surface	or	curve.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	surface	or	curve	in	use.

Parameters:
int	pnum
Pass	0	for	the	surface	and	1	for	the	curve.

Prototype:
NURBSId	GetParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	surface	or	curve	in	use.

Parameters:
int	pnum
Pass	0	for	the	surface	and	1	for	the	curve.

Prototype:
BOOL	GetTrim();

Remarks:
Returns	the	state	of	the	trim	flag.	When	set	the	surface	is	trimmed	against	the
curve.	When	not	set,	the	surface	isn’t	trimmed

Prototype:
void	SetTrim(BOOL	trim);

Remarks:
Sets	the	state	of	the	trim	flag.	When	set	the	surface	is	trimmed	against	the
curve.	When	not	set,	the	surface	isn’t	trimmed

Parameters:
BOOL	trim
TRUE	to	trim;	FALSE	to	not	trim.

Prototype:
BOOL	GetFlipTrim();

Remarks:
Returns	the	state	of	the	trim	flip	flag.	When	set	this	trims	the	surface	in	the
opposite	direction

Prototype:
void	SetFlipTrim(BOOL	flip);

Remarks:
Sets	the	state	of	the	trim	flip	flag.	When	set	this	trims	the	surface	in	the
opposite	direction

Parameters:
BOOL	flip
TRUE	to	flip;	FALSE	to	not	flip.

Prototype:

void	SetSeed(Point2&	seed);
Remarks:
Sets	the	UV	location	of	the	seed	value	on	the	surface.	If	there	is	a	choice	of
projections,	the	projection	closest	to	the	seed	point	is	the	one	used	to	create	the
curve.

Parameters:
Point2&	seed
The	seed	value	to	set.

Prototype:
Point2	GetSeed();

Remarks:
Returns	the	UV	location	of	the	seed	value	on	the	surface.

Prototype:
NURBSProjectNormalCurve	&	operator=(const
NURBSProjectNormalCurve&	curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSProjectNormalCurve&	curve
The	curve	to	assign.

Class	NURBSProjectVectorCurve
See	Also:	Class	NURBSCurve,	Class	Point2,	Class	Point3.
class	NURBSProjectVectorCurve	:	public	NURBSCurve

Description:
This	class	is	available	in	release	2.5	and	later	only.
This	class	provides	access	to	the	Vector	Projected	Curve.	A	Vector	Projected
curve	lies	on	a	surface.	This	is	almost	the	same	as	a	Normal	Projected	curve,
except	that	the	projection	from	the	existing	curve	to	the	surface	is	in	the
direction	of	a	vector	that	you	can	control.	Vector	projected	curves	may	be	used
for	trimming.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSProjectVectorCurve(void);

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNProjectVectorCurve;

	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId[0]	=	mParentId[1]	=	0;
	mParentIndex[0]	=	mParentIndex[1]	=	-1;
	mTrim	=	FALSE;
	mFlipTrim	=	FALSE;
	mSeed	=	Point2(0.0,	0.0);
	mPVec	=	Point3(0.0,	0.0,	1.0);

Prototype:
virtual	~NURBSProjectVectorCurve(void);

Remarks:
Destructor.

Prototype:
void	SetParent(int	pnum,	int	index);

Remarks:
Parameters:
int	pnum
Pass	0	for	the	surface	and	1	for	the	curve.
int	index
The	index	in	the	NURBSSet	of	the	surface	or	curve.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Sets	the	surface	or	curve	used	by	specifying	its	NURBSId.

Parameters:
int	pnum
Pass	0	for	the	surface	and	1	for	the	curve.
NURBSId	id
The	id	of	the	surface	or	curve.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	into	the	NURBSSet	of	surface	or	curve	used.

Parameters:
int	pnum
Pass	0	for	the	surface	and	1	for	the	curve.

Prototype:
NURBSId	GetParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	surface	or	curve	used.

Parameters:
int	pnum
Pass	0	for	the	surface	and	1	for	the	curve.

Prototype:
BOOL	GetTrim();

Remarks:
Returns	the	state	of	the	trim	flag.	When	set	the	surface	is	trimmed	against	the
curve.	When	not	set,	the	surface	isn’t	trimmed

Prototype:
void	SetTrim(BOOL	trim);

Remarks:
Sets	the	state	of	the	trim	flag.	When	set	the	surface	is	trimmed	against	the
curve.	When	not	set,	the	surface	isn’t	trimmed

Parameters:
BOOL	trim
TRUE	to	trim;	FALSE	to	not	trim.

Prototype:
BOOL	GetFlipTrim();

Remarks:

Returns	the	state	of	the	trim	flip	flag.	When	set	this	trims	the	surface	in	the
opposite	direction.

Prototype:
void	SetFlipTrim(BOOL	flip);

Remarks:
Sets	the	state	of	the	trim	flip	flag.	When	set	this	trims	the	surface	in	the
opposite	direction

Parameters:
BOOL	flip
TRUE	to	flip;	FALSE	to	not	flip.

Prototype:
Point2	GetSeed();

Remarks:
Returns	the	UV	location	of	the	seed	value	on	the	surface.

Prototype:
void	SetSeed(Point2&	seed);

Remarks:
Sets	the	UV	location	of	the	seed	value	on	the	surface.	If	there	is	a	choice	of
projections,	the	projection	closest	to	the	seed	point	is	the	one	used	to	create	the
curve.

Parameters:
Point2&	seed
The	seed	value	to	set.

Prototype:
void	SetPVec(TimeValue	t,	Point3&	pvec);

Remarks:
Sets	the	projection	vector	used	at	the	time	passed.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	projection	vector.

Point3&	pvec
The	vector	to	set.

Prototype:
Point3&	GetPVec(TimeValue	t);

Remarks:
Returns	the	projection	vector	used	at	the	time	passed.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	projection	vector.

Prototype:
NURBSProjectVectorCurve	&	operator=(const
NURBSProjectVectorCurve&	curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSProjectVectorCurve&	curve
The	curve	to	assign.

Class	NURBSSurfaceNormalCurve
See	Also:	Class	NURBSCurve.
class	NURBSSurfaceNormalCurve	:	public	NURBSCurve

Description:
This	class	is	available	in	release	2.5	and	later	only.
This	provides	access	to	the	Surface	Normal	Curve.	This	is	a	curve	created	at	a
specified	distance	from	a	surface	and	normal	to	it.
Note:	The	parent	curve	specified	below	must	have	one	of	the	following	types:
surface-surface	intersection,	U	Iso,	V	Iso,	normal	projected,	vector	projected,
CV	curve	on	surface,	or	point	curve	on	surface.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSSurfaceNormalCurve(void);

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNSurfaceNormalCurve;

	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId	=	0;
	mParentIndex	=	-1;

Prototype:
virtual	~NURBSSurfaceNormalCurve(void);

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:
Establishes	the	parent	curve	to	use	by	passing	its	index	in	the	NURBSSet.

Parameters:
int	index
The	index	in	the	NURBSSet	of	the	parent	curve	to	use.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Establishes	the	parent	curve	to	use	by	passing	its	NURBSId.

Parameters:
NURBSId	id
The	id	of	the	parent	curve	to	use.

Prototype:
int	GetParent();

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	parent	curve.

Prototype:
NURBSId	GetParentId();

Remarks:
Returns	the	NURBSId	of	the	parent	curve.

Prototype:
void	SetDistance(TimeValue	t,	double	dist);

Remarks:
Set	the	distance	along	the	normal	of	the	curve	from	the	surface	at	the	specified
time.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	distance.
double	dist
The	distance	along	the	normal	from	the	surface	to	the	curve.

Prototype:
double	GetDistance(TimeValue	t);

Remarks:
Returns	the	distance	along	the	normal	from	the	surface	to	the	curve.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	distance.

Prototype:
NURBSSurfaceNormalCurve	&	operator=(const
NURBSSurfaceNormalCurve&	curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSSurfaceNormalCurve&	curve
The	curve	to	assign.

Class	NURBSSurfSurfIntersectionCurve
See	Also:	Class	NURBSCurve,	Class	Point2.
class	NURBSSurfSurfIntersectionCurve	:	public	NURBSCurve

Description:
This	class	is	available	in	release	2.5	and	later	only.
This	class	provides	access	to	the	Surface-Surface	Intersection	Curve.	This	is	a
curve	that	is	defined	by	the	intersection	of	two	surfaces.	You	can	use	surface-
surface	intersection	curves	for	trimming.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSSurfSurfIntersectionCurve(void);

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNSurfSurfIntersectionCurve;
	mpObject	=	NULL;
	mpNSet	=	NULL;

	mParentId[0]	=	mParentId[1]	=	0;
	mParentIndex[0]	=	mParentIndex[1]	=	-1;
	mTrim[0]	=	mTrim[1]	=	FALSE;
	mFlipTrim[0]	=	mFlipTrim[1]	=	FALSE;
	mSeed	=	Point2(0.0,	0.0);

Prototype:
virtual	~NURBSSurfSurfIntersectionCurve(void);

Remarks:
Destructor.

Prototype:
void	SetParent(int	pnum,	int	index);

Remarks:
Sets	the	surface	or	curve	by	specifying	its	index	into	the	NURBSSet.

Parameters:
int	pnum
Pass	0	for	the	surface	and	1	for	the	curve.
int	index
The	index	into	the	NURBSSet	of	the	object	to	set.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Sets	the	surface	or	curve	by	specifying	its	index	into	the	NURBSSet.

Parameters:
int	pnum
Pass	0	for	the	surface	and	1	for	the	curve.
NURBSId	id
The	id	of	the	object	to	set.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	into	the	NURBSSet	of	the	curve	or	surface.

Parameters:
int	pnum
Pass	0	for	the	surface	and	1	for	the	curve.

Prototype:
NURBSId	GetParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	curve	or	surface.

Parameters:
int	pnum
Pass	0	for	the	surface	and	1	for	the	curve.

Prototype:
BOOL	GetTrim(int	tnum);

Remarks:
Returns	the	state	of	the	specified	trim	flag.	When	on,	the	surface	is	trimmed
against	the	intersection	curve.	When	off,	the	surface	isn’t	trimmed.

Parameters:
int	tnum
Passing	0	trims	the	first	parent	surface,	and	passing	1	trims	the	second	parent
surface

Prototype:
void	SetTrim(int	tnum,	BOOL	trim);

Remarks:
Sets	the	state	of	the	specified	trim	flag.	When	on,	the	surface	is	trimmed
against	the	intersection	curve.	When	off,	the	surface	isn’t	trimmed.

Parameters:
int	tnum
Passing	0	trims	the	first	parent	surface,	and	passing	1	trims	the	second	parent
surface
BOOL	trim

TRUE	to	trim;	FALSE	to	not	trim.

Prototype:
BOOL	GetFlipTrim(int	tnum);

Remarks:
Returns	the	state	of	the	trim	flip	flag.	When	on,	the	specified	surface	is
trimmed	in	the	opposite	direction.

Parameters:
int	tnum
0	for	the	first	surface;	1	for	the	second	surface.

Prototype:
void	SetFlipTrim(int	tnum,	BOOL	flip);

Remarks:
Sets	the	state	of	the	trim	flip	flag.	When	on,	the	specified	surface	is	trimmed	in
the	opposite	direction.

Parameters:
int	tnum
0	for	the	first	surface;	1	for	the	second	surface.
BOOL	flip
TRUE	to	flip;	FALSE	not	to	flip.

Prototype:
void	SetSeed(Point2&	seed);

Remarks:
Change	the	UV	location	of	the	seed	value	on	the	first	surface.	If	there	is	a
choice	of	intersections,	the	intersection	closest	to	the	seed	point	is	the	one
used	to	create	the	curve.

Parameters:
Point2&	seed
The	UV	location.

Prototype:
Point2	GetSeed();

Remarks:
Returns	the	UV	location	of	the	seed	value	on	the	first	surface.	If	there	is	a
choice	of	intersections,	the	intersection	closest	to	the	seed	point	is	the	one
used	to	create	the	curve.

Prototype:
NURBSSurfSurfIntersectionCurve	&	operator=(const
NURBSSurfSurfIntersectionCurve&	curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSSurfSurfIntersectionCurve&	curve
The	curve	to	assign.

Class	NURBSCurveOnSurface
See	Also:	Class	NURBSCVCurve.
class	NURBSCurveOnSurface	:	public	NURBSCVCurve

Description:
This	class	is	available	in	release	2.5	and	later	only.
This	class	provides	access	to	the	CV	curve	on	surface	parameters.	These	curves
can	be	used	for	trimming	the	surface	they	lie	on.

Friend	Classes:
friend	class	NURBSSet

Methods:

Prototype:
NURBSCurveOnSurface(void);

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNCurveOnSurface;
	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId	=	0;
	mParentIndex	=	-1;
	mTrim	=	FALSE;
	mFlipTrim	=	FALSE;

Prototype:
virtual	~NURBSCurveOnSurface(void);

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:

Sets	the	index	in	the	NURBSSet	of	the	parent	surface.
Parameters:
int	index
The	index	into	the	NURBSSet	of	the	parent	surface.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	parent.

Parameters:
NURBSId	id
The	id	to	set.

Prototype:
int	GetParent();

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Prototype:
NURBSId	GetParentId();

Remarks:
Returns	the	NURBSId	of	the	parent.	Note	that	a	NURBSId	won't	be	valid
until	the	object	has	been	instantiated	in	the	scene.

Prototype:
BOOL	GetTrim();

Remarks:
Returns	the	state	of	the	trim	surface	toggle.

Prototype:
void	SetTrim(BOOL	trim);

Remarks:
Sets	the	state	of	the	trim	surface	toggle.

Parameters:

BOOL	trim
TRUE	to	trim	the	surface	at	the	curve;	FALSE	to	not	trim.

Prototype:
BOOL	GetFlipTrim();

Remarks:
Returns	the	state	of	the	trim	flip	toggle.

Prototype:
void	SetFlipTrim(BOOL	flip);

Remarks:
Sets	the	state	of	the	trim	flip	toggle.	This	controls	which	portion	of	the	surface
is	trimmed.

Parameters:
BOOL	flip
TRUE	for	on;	FALSE	for	off.

Prototype:
NURBSCurveOnSurface	&	operator=(const
NURBSCurveOnSurface&	curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSCurveOnSurface&	curve
The	curve	to	assign.

Class	NURBSPointCurveOnSurface
See	Also:	Class	NURBSPointCurve.
class	NURBSPointCurveOnSurface	:	public	NURBSPointCurve

Description:
This	class	is	available	in	release	2.5	and	later	only.
This	class	provides	access	to	the	point	curve	on	surface	parameters.	These
curves	can	be	used	for	trimming	the	surface	they	lie	on.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSPointCurveOnSurface(void);

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNPointCurveOnSurface;
	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId	=	0;

	mParentIndex	=	-1;
	mTrim	=	FALSE;
	mFlipTrim	=	FALSE;

Prototype:
virtual	~NURBSPointCurveOnSurface(void);

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:
Sets	the	index	in	the	NURBSSet	of	the	parent	surface.

Parameters:
int	index
The	index	in	the	NURBSSet	of	the	parent	surface.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Sets	the	NURBSId	of	the	parent.

Parameters:
NURBSId	id
The	id	to	set.

Prototype:
int	GetParent();

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	parent	surface.

Prototype:
NURBSId	GetParentId();

Remarks:
Returns	the	NURBSId	of	the	parent	surface.	Note	that	a	NURBSId	won't	be

valid	until	the	object	has	been	instantiated	in	the	scene.

Prototype:
BOOL	GetTrim();

Remarks:
Returns	the	state	of	the	trim	toggle.

Prototype:
BOOL	GetFlipTrim();

Remarks:
Returns	the	state	of	the	trim	flip	toggle.

Prototype:
void	SetFlipTrim(BOOL	flip);

Remarks:
Sets	the	state	of	the	trim	flip	toggle.	This	controls	which	portion	of	the	parent
surface	is	trimmed.

Parameters:
BOOL	flip
TRUE	for	flipped;	FALSE	for	not.

Prototype:
NURBSPointCurveOnSurface	&	operator=(const
NURBSPointCurveOnSurface&	curve);

Remarks:
Assignment	operator.

Parameters:
const	NURBSPointCurveOnSurface&	curve
The	curve	to	assign.

Class	NURBSUVLoftSurface
See	Also:	Class	NURBSSurface.
class	NURBSUVLoftSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.5	and	later	only.
This	class	provides	access	to	the	UV	Loft	Surface.	This	surface	is	similar	to	the
U	Loft	surface,	but	has	a	set	of	curves	in	the	V	dimension	as	well	as	the	U
dimension.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSUVLoftSurface(void);

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNUVLoftSurface;
	mpObject	=	NULL;
	mpNSet	=	NULL;

	mUParentId.SetCount(0);
	mUParentIndex.SetCount(0);
	mVParentId.SetCount(0);
	mVParentIndex.SetCount(0);

Prototype:
virtual	~NURBSUVLoftSurface(void);

Remarks:
Destructor.

Prototype:
void	SetNumUCurves(int	num);

Remarks:
Sets	the	number	of	curves	in	the	U	dimension.

Parameters:
int	num
The	number	of	curves	to	use	in	the	U	dimension.

Prototype:
int	GetNumUCurves(void);

Remarks:
Returns	the	number	of	curves	in	the	U	dimension.

Prototype:
int	AppendUCurve(int	index);

Remarks:
Appends	the	specified	curve	(by	NURBSSet	index)	to	the	list	of	U	curves.

Parameters:
int	index
The	index	in	the	NURBSSet	of	the	curve	to	use.

Prototype:
int	AppendUCurve(NURBSId	id);

Remarks:

Appends	the	specified	curve	(by	NURBSId)	to	the	list	of	U	curves.
Parameters:
NURBSId	id
The	NURBSId	of	the	curve	to	use.

Return	Value:
Returns	the	number	of	curves	in	the	set	prior	to	appending.

Prototype:
void	SetUParent(int	pnum,	int	index);

Remarks:
Sets	the	specified	parent	curve	(by	NURBSSet	index)	as	the	speciifed	curve	in
the	surface.

Parameters:
int	pnum
The	index	into	the	list	of	U	curves	of	the	parent	curve	to	set.
int	index
The	index	into	the	NURBSSet	of	the	parent	curve	to	set.

Prototype:
void	SetUParentId(int	pnum,	NURBSId	id);

Remarks:
Sets	the	specified	parent	curve	(by	NURBSId)	as	the	speciifed	curve	in	the
surface.

Parameters:
int	pnum
The	index	into	the	list	of	U	curves	of	the	parent	curve	to	set.
NURBSId	id
The	NURBSId	of	the	parent	curve	to	set.

Prototype:
int	GetUParent(int	pnum);

Remarks:
Returns	the	index	into	the	NURBSSet	of	the	specified	parent	curve.

Parameters:
int	pnum
The	zero	based	index	of	the	parent	curve.

Prototype:
NURBSId	GetUParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	specified	parent	curve.	Note	that	a	NURBSId
won't	be	valid	until	the	surface	has	been	instantiated	in	the	scene.

Parameters:
int	pnum
The	zero	based	index	of	the	parent	curve.

Prototype:
void	SetNumVCurves(int	num);

Remarks:
Sets	the	number	of	curves	in	the	V	dimension.

Parameters:
int	num
The	number	of	curves	to	use	in	the	V	dimension.

Prototype:
int	GetNumVCurves(void);

Remarks:
Returns	the	number	of	curves	in	the	V	dimension.

Prototype:
int	AppendVCurve(int	index);

Remarks:
Appends	the	specified	curve	(by	NURBSSet	index)	to	the	list	of	V	curves.

Parameters:
int	index
The	index	in	the	NURBSSet	of	the	curve	to	use.

Return	Value:

Returns	the	number	of	curves	in	the	set	prior	to	appending.

Prototype:
int	AppendVCurve(NURBSId	id);

Remarks:
Appends	the	specified	curve	(by	NURBSId)	to	the	list	of	U	curves.

Parameters:
NURBSId	id
The	NURBSId	of	the	curve	to	use.

Return	Value:
Returns	the	number	of	curves	in	the	set	prior	to	appending.

Prototype:
void	SetVParent(int	pnum,	int	index);

Remarks:
Sets	the	specified	parent	curve	(by	NURBSSet	index)	as	the	speciifed	curve
in	the	surface.

Parameters:
int	pnum
The	index	into	the	list	of	V	curves	of	the	parent	curve	to	set.
int	index
The	index	into	the	NURBSSet	of	the	parent	curve	to	set.

Prototype:
void	SetVParentId(int	pnum,	NURBSId	id);

Remarks:
Sets	the	specified	parent	curve	(by	NURBSId)	as	the	speciifed	curve	in	the
surface.

Parameters:
int	pnum
The	index	into	the	list	of	V	curves	of	the	parent	curve	to	set.
NURBSId	id
The	NURBSId	of	the	parent	curve	to	set.

Prototype:
int	GetVParent(int	pnum);

Remarks:
Returns	the	index	into	the	NURBSSet	of	the	specified	parent	curve.

Parameters:
int	pnum
The	zero	based	index	of	the	parent	curve.

Prototype:
NURBSId	GetVParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	specified	parent	curve.	Note	that	a	NURBSId
won't	be	valid	until	the	surface	has	been	instantiated	in	the	scene.

Parameters:
int	pnum
The	zero	based	index	of	the	parent	curve.

Prototype:
NURBSUVLoftSurface	&	operator=(const
NURBSUVLoftSurface&	surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBSUVLoftSurface&	surf
The	surface	to	assign.

Class	NURBSNBlendSurface
See	Also:	Class	NURBSSurface.
class	NURBSNBlendSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.5	and	later	only.
This	class	provides	access	to	the	Multisided	Blend	surface.	A	Multisided	Blend
surface	is	a	surface	that	"fills	in"	the	edges	defined	by	three	or	four	other	curve
or	surfaces.	Unliked	a	regular,	two-sided	Blend	surface,	the	curves	or	surfaces
edges	must	form	a	closed	loop¾that	is,	they	must	completely	surround	the
opening	the	Multisided	Blend	will	cover.
Note:	For	the	blend	to	work,	the	curves	that	define	the	blend	must	form	a	loop
(that	is,	sequence	head	to	tail,	and	the	ends	must	match).

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSNBlendSurface(void);

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNNBlendSurface;
	mpObject	=	NULL;

	mpNSet	=	NULL;
	for	(int	i	=	0;	i	<	4;	i++)	{
		mParentId[i]	=	0;
		mParentIndex[i]	=	-1;
		mParentEdge[i]	=	0;
	}

Prototype:
virtual	~NURBSNBlendSurface(void);

Remarks:
Destructor.

Prototype:
void	SetParent(int	pnum,	int	index);

Remarks:
Sets	the	specified	parent	curve	or	surface	(by	NURBSSet	index)	as	the
speciifed	edge	for	the	surface.

Parameters:
int	pnum
The	index	of	the	parent	curve	or	surface	to	set.
int	index
The	index	in	the	NURBSSet	of	the	curve	or	surface.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Sets	the	specified	parent	curve	or	surface	(by	NURBSId)	as	the	speciifed	edge
for	the	surface.

Parameters:
int	pnum
The	index	of	the	parent	curve	or	surface	to	set.
NURBSId	id
The	id	of	the	curve	or	surface	to	set.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	curve	or	surface.

Parameters:
int	pnum
The	index	of	the	parent	curve	or	surface	to	get.

Prototype:
NURBSId	GetParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	specified	curve	or	surface.

Parameters:
int	pnum
The	index	of	the	parent	curve	or	surface	to	get.

Prototype:
void	SetEdge(int	pnum,	int	edge);

Remarks:
If	using	a	surface	for	the	blend	surface	edge,	this	method	indicates	which	edge
on	the	surface	to	use.

Parameters:
int	pnum
The	index	of	the	parent	surface.
int	edge
The	edge	to	use	for	the	blend.	One	of	the	following	values:
0:	The	low	U	edge.
1:	The	high	U	edge.
2:	The	low	V	edge.
3:	The	high	V	edge.

Prototype:
int	GetEdge(int	pnum);

Remarks:
Returns	the	edge	used	by	the	specified	surface	to	create	the	blend.

Parameters:
int	pnum
The	index	of	the	parent	surface.

Return	Value:
The	edge	used	for	the	blend.	One	of	the	following	values:
0:	The	low	U	edge.
1:	The	high	U	edge.
2:	The	low	V	edge.
3:	The	high	V	edge.

Prototype:
NURBSNBlendSurface	&	operator=(const
NURBSNBlendSurface&	surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBSNBlendSurface&	surf
The	surface	to	assign.

Class	NURBS1RailSweepSurface
See	Also:	Class	NURBSSurface.
class	NURBS1RailSweepSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.5	and	later	only.
This	class	provides	access	to	the	1-Rail	Sweep	Surface.	A	1-Rail	Sweep	Surface
uses	at	least	two	curves.	One	curve,	the	"rail,"	defines	one	edge	of	the	surface.
The	other	curves	define	the	surface's	cross	sections.	The	cross-section	curves
should	intersect	the	rail	curve.	If	the	cross	sections	don't	intersect	the	rail,	the
resulting	surface	is	unpredicable.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBS1RailSweepSurface();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kN1RailSweepSurface;
	mpObject	=	NULL;

	mpNSet	=	NULL;
	mRailId	=	NULL;
	mRailIndex	=	-1;
	mParentId.SetCount(0);
	mParentIndex.SetCount(0);
	mFlip.SetCount(0);
	mCurveStartParam.SetCount(0);
	mSnapCrossSections	=	FALSE;
	mRoadlike	=	FALSE;
	mXForm.IdentityMatrix();

Prototype:
virtual	~NURBS1RailSweepSurface();

Remarks:
Destructor.

Prototype:
void	SetParentRail(int	index);

Remarks:
Establishes	the	curve	to	use	as	the	rail	by	specifying	its	index	in	the
NURBSSet.

Parameters:
int	index
The	index	in	the	NURBSSet.

Prototype:
void	SetParentRailId(NURBSId	id);

Remarks:
Establishes	the	curve	to	use	as	the	rail	by	specifying	its	NURBSId.

Parameters:
NURBSId	id
The	id	of	the	rail	curve	to	use.

Prototype:
int	GetParentRail();

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	rail	curve.

Prototype:
NURBSId	GetParentRailId();

Remarks:
Returns	the	NURBSId	of	the	rail	curve.

Prototype:
void	SetNumCurves(int	num);

Remarks:
Sets	the	number	of	cross-section	curves.

Parameters:
int	num
The	number	of	cross-section	curves	to	use.

Prototype:
int	GetNumCurves(void);

Remarks:
Returns	the	number	of	cross-section	curves	used.

Prototype:
int	AppendCurve(int	index,	BOOL	flip);

Remarks:
Adds	a	curve	to	the	end	of	the	list	of	cross-section	curves	by	specifying	the
index	in	the	NURBSSet.

Parameters:
int	index
The	index	in	the	NURBSSet	of	the	cross-section	curve	to	append.
BOOL	flip
TRUE	to	reverse	(or	flip)	the	direction	of	the	curve;	FALSE	to	use	the	non-
reversed	orientation.

Return	Value:
The	number	of	cross-section	curves	prior	to	appending.

Prototype:
int	AppendCurve(NURBSId	id,	BOOL	flip);

Remarks:
Adds	a	curve	to	the	end	of	the	list	of	cross-section	curves	by	specifying	a
NURBSId.

Parameters:
NURBSId	id
Specifies	the	cross-section	curve	to	append.
BOOL	flip
TRUE	to	reverse	(or	flip)	the	direction	of	the	curve;	FALSE	to	use	the	non-
reversed	orientation.

Return	Value:
The	number	of	cross-section	curves	prior	to	appending.

Prototype:
void	SetParent(int	pnum,	int	index);

Remarks:
Specifies	the	curve	to	use	as	a	cross-section	via	its	index	in	the	NURBSSet.

Parameters:
int	pnum
The	zero	based	index	of	the	curve	to	set.
int	index
The	index	in	the	NURBSSet	of	the	curve.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Specifies	the	curve	to	use	as	a	cross-section	via	its	NURBSId.

Parameters:
int	pnum

The	zero	based	index	of	the	curve	to	set.
NURBSId	id
The	id	of	the	curve.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	cross-section	curve.

Parameters:
int	pnum
The	zero	based	index	of	the	curve	to	get.

Prototype:
NURBSId	GetParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	specified	cross-section	curve.

Parameters:
int	pnum
The	zero	based	index	of	the	curve	to	get.

Prototype:
void	SetFlip(int	pnum,	BOOL	flip);

Remarks:
Sets	the	reversed	(or	flipped)	state	of	the	specified	cross-section	curve.

Parameters:
int	pnum
The	zero	based	index	of	the	curve.
BOOL	flip
TRUE	to	reverse	the	direction;	FALSE	for	the	normal	direction.

Prototype:
BOOL	GetFlip(int	pnum);

Remarks:

Returns	the	reversed	(or	flipped)	state	of	the	specified	cross-section	curve.
TRUE	is	reversed;	FALSE	is	not.

Parameters:
int	pnum
The	zero	based	index	of	the	curve.

Prototype:
void	SetParallel(BOOL	para);

Remarks:
Sets	the	state	of	the	parallel	flag.	When	on,	it	ensures	that	the	sweep	surface's
normal	is	parallel	to	the	rail.

Parameters:
BOOL	para
TRUE	for	on;	FALSE	for	off.

Prototype:
BOOL	GetParallel();

Remarks:
Returns	the	state	of	the	parallel	flag.	When	TRUE,	3ds	max	ensures	that	the
sweep	surface's	normal	is	parallel	to	the	rail.

Prototype:
void	SetCurveStartPoint(TimeValue	t,	int	pnum,	double
startpoint);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	start	point	for	the	specified	parent	curve.	Note:	This	is	only	applicable
if	the	parent	is	a	closed	curve.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	start	point.
int	pnum
The	zero	based	index	of	the	curve	in	the	set	of	cross	sections.

double	startpoint
The	start	point	in	the	range	0.0	to	1.0.

Prototype:
double	GetCurveStartPoint(TimeValue	t,	int	pnum);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	start	point	of	the	specified	parent	curve.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	start	point.
int	pnum
The	zero	based	index	of	the	curve	in	the	set	of	cross	sections.
	

Prototype:
void	SetSnapCS(BOOL	snapCS);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	snap	cross	sections	setting.	When	on,	cross-section	curves	are
translated	so	they	intersect	the	rail.

Parameters:
BOOL	snapCS
TRUE	for	on;	FALSE	for	off.

Prototype:
BOOL	GetSnapCS();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	snap	to	Cross	Section	is	on;	otherwise	FALSE.

Prototype:

void	SetRoadlike(BOOL	roadlike);
Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	roadlike	setting	to	on	or	off.	When	on,	the	sweep	uses	a	constant	up-
vector	so	the	cross	sections	twist	uniformly	as	they	travel	along	the	rail.	In
other	words,	the	cross	sections	bank	like	a	car	following	a	road,	or	a	camera
following	a	path	controller	in	3ds	max.

Parameters:
BOOL	roadlike
TRUE	for	on;	FALSE	for	off.

Prototype:
BOOL	GetRoadlike();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	the	roadlike	setting	is	on;	otherwise	FALSE.

Prototype:
void	SetAxis(TimeValue	t,	Matrix3&	ray);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	axis	of	the	sweep.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	axis.
Matrix3&	ray
The	axis	system	to	set.

Prototype:
Matrix3&	GetAxis(TimeValue	t);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.

Returns	the	axis	of	the	sweep.
Parameters:
TimeValue	t
The	time	at	which	to	get	the	axis.

Operators:

Prototype:
NURBS1RailSweepSurface	&	operator=(const
NURBS1RailSweepSurface&	surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBS1RailSweepSurface&	surf
The	surface	to	assign.

Class	NURBS2RailSweepSurface
See	Also:	Class	NURBSSurface.
class	NURBS2RailSweepSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.5	and	later	only.
This	class	provides	access	to	the	2-Rail	Sweep	Surface.	A	2-Rail	Sweep	surface
uses	at	least	three	curves.	Two	curves,	the	"rails,"	define	the	two	edges	of	the
surface.	The	other	curves	define	the	surface's	cross	sections.	A	2-Rail	Sweep
surface	is	similar	to	a	1-Rail	sweep.	The	additional	rail	gives	you	more	control
over	the	shape	of	the	surface.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBS2RailSweepSurface();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kN2RailSweepSurface;
	mpObject	=	NULL;

	mpNSet	=	NULL;
	mParentId.SetCount(0);
	mParentIndex.SetCount(0);
	mRailParentId[0]	=	mRailParentId[1]	=	NULL;
	mRailParentIndex[0]	=	mRailParentIndex[1]	=	-1;
	mCurveStartParam.SetCount(0);
	mSnapCrossSections	=	FALSE;

Prototype:
virtual	~NURBS2RailSweepSurface();

Remarks:
Destructor.

Prototype:
void	SetNumCurves(int	num);

Remarks:
Sets	the	number	of	cross-section	curves.

Parameters:
int	num
The	number	of	cross-section	curves	to	use.

Prototype:
int	GetNumCurves(void);

Remarks:
Returns	the	number	of	cross-section	curves	used.

Prototype:
int	AppendCurve(int	index,	BOOL	flip);

Remarks:
Adds	a	curve	to	the	end	of	the	list	of	cross-section	curves	by	specifying	the
index	in	the	NURBSSet.

Parameters:
int	index

The	index	in	the	NURBSSet	of	the	cross-section	curve	to	append.
BOOL	flip
TRUE	to	reverse	(or	flip)	the	direction	of	the	curve;	FALSE	to	use	the	non-
reversed	orientation.

Return	Value:
The	number	of	cross-section	curves	prior	to	appending.

Prototype:
int	AppendCurve(NURBSId	id,	BOOL	flip);

Remarks:
Adds	a	curve	to	the	end	of	the	list	of	cross-section	curves	by	specifying	a
NURBSId.

Parameters:
NURBSId	id
Specifies	the	cross-section	curve	to	append.
BOOL	flip
TRUE	to	reverse	(or	flip)	the	direction	of	the	curve;	FALSE	to	use	the	non-
reversed	orientation.

Return	Value:
The	number	of	cross-section	curves	prior	to	appending.

Prototype:
void	SetParent(int	pnum,	int	index);

Remarks:
Specifies	the	curve	to	use	as	a	cross-section	via	its	index	in	the	NURBSSet.

Parameters:
int	pnum
The	zero	based	index	of	the	curve	to	set.
int	index
The	index	in	the	NURBSSet	of	the	curve.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Specifies	the	curve	to	use	as	a	cross-section	via	its	NURBSId.

Parameters:
int	pnum
The	zero	based	index	of	the	curve	to	set.
NURBSId	id
The	id	of	the	curve.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	cross-section	curve.

Parameters:
int	pnum
The	zero	based	index	of	the	curve	to	get.

Prototype:
NURBSId	GetParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	specified	cross-section	curve.

Parameters:
int	pnum
The	zero	based	index	of	the	curve	to	get.

Prototype:
void	SetFlip(int	pnum,	BOOL	flip);

Remarks:
Sets	the	reversed	(or	flipped)	state	of	the	specified	cross-section	curve.

Parameters:
int	pnum
The	zero	based	index	of	the	curve.
BOOL	flip
TRUE	to	reverse	the	direction;	FALSE	for	the	normal	direction.

Prototype:
BOOL	GetFlip(int	pnum);

Remarks:
Returns	the	reversed	(or	flipped)	state	of	the	specified	cross-section	curve.
TRUE	is	reversed;	FALSE	is	not.

Parameters:
int	pnum
The	zero	based	index	of	the	curve.

Prototype:
void	SetParallel(BOOL	para);

Remarks:
Sets	the	state	of	the	parallel	flag.	When	off,	it	allows	the	cross	section	curve	to
bank	to	follow	the	rails.	If	on,	it	maintains	the	initial	orientation	of	the	cross
section	during	the	course	of	the	sweep

Parameters:
BOOL	para
TRUE	for	on;	FALSE	for	off.

Prototype:
BOOL	GetParallel();

Remarks:
Returns	the	state	of	the	parallel	flag.

Prototype:
void	SetScale(BOOL	scale);

Remarks:
To	allow	the	cross	sections	to	run	along	the	rails,	the	cross	section	curves	may
need	to	be	scaled.	This	method	controls	if	the	scaling	is	done	uniformly	or
non-uniformly.

Parameters:
BOOL	scale
TRUE	to	scale	uniformly;	FALSE	to	scale	non-uniformly.

Prototype:
BOOL	GetScale();

Remarks:
Returns	TRUE	if	the	cross	section	curves	are	scaled	uniformly;	FALSE	for
non-uniformly.

Prototype:
void	SetRailParent(int	pnum,	int	index);

Remarks:
Specifies	the	index	in	the	NURBSSet	of	the	first	or	second	rail	curve	to	use.

Parameters:
int	pnum
Pass	0	for	the	first	rail	curve;	1	for	the	second	rail	curve.
int	index
The	index	in	the	NURBSSet	of	the	curve	to	use	as	a	rail.

Prototype:
void	SetRailParentId(int	pnum,	NURBSId	id);

Remarks:
Specifies	the	NURBSId	of	the	first	or	second	rail	curve	to	use.

Parameters:
int	pnum
Pass	0	for	the	first	rail	curve;	1	for	the	second	rail	curve.
NURBSId	id
The	id	of	the	curve	to	use	as	a	rail.

Prototype:
int	GetRailParent(int	pnum);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	parent	rail	curve.

Parameters:
int	pnum
Pass	0	for	the	first	rail	curve;	1	for	the	second	rail	curve.

Prototype:
NURBSId	GetRailParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	specified	parent	rail	curve.

Parameters:
int	pnum
Pass	0	for	the	first	rail	curve;	1	for	the	second	rail	curve.

Prototype:
void	SetSnapCS(BOOL	snapCS);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	snap	cross	sections	setting.	When	on,	cross-section	curves	are
translated	so	they	intersect	the	rail.

Parameters:
BOOL	snapCS
TRUE	for	on;	FALSE	for	off.

Prototype:
BOOL	GetSnapCS();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	snap	cross	sections	is	on;	otherwise	FALSE.

Prototype:
void	SetCurveStartPoint(TimeValue	t,	int	pnum,	double
startpoint);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	start	point	for	the	specified	parent	curve	at	the	time	passed.

Parameters:

TimeValue	t
The	time	at	which	to	set	the	start	point.
int	pnum
Pass	0	for	the	first	rail	curve;	1	for	the	second	rail	curve.
double	startpoint
The	start	point	in	the	range	of	0.0	to	1.0.

Prototype:
double	GetCurveStartPoint(TimeValue	t,	int	pnum);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	start	point	for	the	specified	parent	curve	at	the	time	passed.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	start	point.
int	pnum
Pass	0	for	the	first	rail	curve;	1	for	the	second	rail	curve.

Operators:

Prototype:
NURBS2RailSweepSurface	&	operator=(const
NURBS2RailSweepSurface&	surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBS2RailSweepSurface&	surf
The	surface	to	assign.

Class	NURBSCapSurface
See	Also:	Class	NURBSSurface.
class	NURBSCapSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.5	and	later	only.
This	class	provides	access	to	the	Cap	Surface.	A	Cap	Surface	is	a	surface	that
caps	a	closed	curve	or	the	edge	of	a	closed	surface.	Caps	are	especially	useful
with	extruded	surfaces.

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSCapSurface(void);

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNCapSurface;
	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId	=	0;
	mParentIndex	=	-1;

	mParentEdge	=	-1;
	mCurveStartParam	=	0.0;

Prototype:
virtual	~NURBSCapSurface(void);

Remarks:
Destructor.

Prototype:
void	SetParent(int	index);

Remarks:
Establishes	the	curve	or	surface	that's	capped	by	specifying	its	index	in	the
NURBSSet.

Parameters:
int	index
The	index	in	the	NURBSSet	of	the	curve	or	surface	to	cap.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
Establishes	the	curve	or	surface	that's	capped	by	specifying	its	NURBSId.

Parameters:
NURBSId	id
The	id	of	the	curve	or	surface	to	cap.

Prototype:
int	GetParent(void);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	curve	or	surface	that's	capped.

Prototype:
NURBSId	GetParentId(void);

Remarks:
Returns	the	NURBSId	of	the	curve	or	surface	that's	capped.

Prototype:
void	SetEdge(int	edge);

Remarks:
Establishes	which	edge	of	the	closed	parent	surface	is	capped.

Parameters:
int	edge
The	edge	to	cap.	One	of	the	following	values:
0:	The	low	U	edge.
1:	The	high	U	edge.
2:	The	low	V	edge.
3:	The	high	V	edge.

Prototype:
int	GetEdge();

Remarks:
Returns	the	edge	of	the	closed	parent	surface	is	capped.

Return	Value:
One	of	the	following	values:
0:	The	low	U	edge.
1:	The	high	U	edge.
2:	The	low	V	edge.
3:	The	high	V	edge.

Prototype:
void	SetCurveStartPoint(TimeValue	t,	double	startpoint);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	start	point	for	the	curve.	Note:	This	is	only	applicable	if	the	parent	is	a
closed	curve.

Parameters:
TimeValue	t
The	time	to	set	the	start	point.

double	startpoint
The	start	point	to	set.

Prototype:
double	GetCurveStartPoint(TimeValue	t);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	start	point	for	the	curve.	Note:	This	is	only	applicable	if	the	parent
is	a	closed	curve.

Parameters:
TimeValue	t
The	time	to	get	the	start	point.

Prototype:
NURBSCapSurface	&	operator=(const	NURBSCapSurface&
surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBSCapSurface&	surf
The	surface	to	assign.

Class	NURBSMultiCurveTrimSurface
See	Also:	Class	NURBSSurface.
class	NURBSMultiCurveTrimSurface	:	public	NURBSSurface

Description:
This	class	is	available	in	release	2.5	and	later	only.
This	class	provides	access	to	the	Multicurve	Trim	Surface	which	is	a	surface	that
is	trimmed	by	multiple	curves	forming	a	loop.

Friend	Classes:
friend	class	NURBSSet

Methods:
protected:

Prototype:
void	Clean(NURBSIdTab	ids);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	methods	breaks	the	relation	between	this	NURBSObject	and	a
NURBSSet.

Parameters:
NURBSIdTab	ids
A	table	with	the	IDs	of	each	object	in	the	NURBSSet.

public:

Prototype:
NURBSMultiCurveTrimSurface();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mType	=	kNMultiCurveTrimSurface;
	mpObject	=	NULL;
	mpNSet	=	NULL;
	mParentId.SetCount(0);

	mParentIndex.SetCount(0);
	mSurfaceId	=	NULL;
	mSurfaceIndex	=	-1;
	mFlipTrim	=	FALSE;
	

Prototype:
virtual	~NURBSMultiCurveTrimSurface();

Remarks:
Destructor.

Prototype:
void	SetNumCurves(int	num);

Remarks:
Sets	the	number	of	curves	used	for	the	trim	loop.

Parameters:
int	num
The	number	of	curves	to	use.
	

Prototype:
int	GetNumCurves(void);

Remarks:
Returns	the	number	of	curves	used	for	the	trim	loop.

Prototype:
int	AppendCurve(int	index);

Remarks:
Adds	the	specified	curve	(using	a	NURBSSet	index)	to	the	end	of	the	list	of
curves	comprising	the	trim	loop.

Parameters:
int	index
The	index	into	the	NURBSSet	of	the	curve	to	add.

Return	Value:
The	number	of	curves	in	the	loop	prior	to	appending.

Prototype:
int	AppendCurve(NURBSId	id);

Remarks:
Adds	the	specified	curve	(using	a	NURBSSet	index)	to	the	end	of	the	list	of
curves	comprising	the	trim	loop.

Parameters:
NURBSId	id
The	id	to	use.

Return	Value:
The	number	of	curves	in	the	loop	prior	to	appending.

Prototype:
void	SetParent(int	pnum,	int	index);

Remarks:
Sets	the	specified	curve	in	the	trim	loop	to	the	curve	specified	by	an	index	into
the	NURBSSet.

Parameters:
int	pnum
Zero	based	index	of	which	curve	to	set.
int	index
The	index	into	the	NURBSSet	of	the	curve	to	use.

Prototype:
void	SetParentId(int	pnum,	NURBSId	id);

Remarks:
Sets	the	specified	curve	in	the	trim	loop	to	the	curve	specified	by	a
NURBSId.

Parameters:
int	pnum
Zero	based	index	of	which	curve	to	set.

NURBSId	id
The	id	of	the	curve	to	use.

Prototype:
int	GetParent(int	pnum);

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	specified	parent	object.

Parameters:
int	pnum
Zero	based	index	of	which	curve	to	get.

Prototype:
NURBSId	GetParentId(int	pnum);

Remarks:
Returns	the	NURBSId	of	the	specified	curve	in	the	trim	loop.

Parameters:
int	pnum
Zero	based	index	of	which	curve	to	get.

Prototype:
void	SetSurfaceParent(int	index);

Remarks:
Sets	the	surface	that's	trimmed	by	specifying	it's	index	into	the	NURBSSet.

Parameters:
int	index
The	index	in	the	NURBSSet	of	the	surface.

Prototype:
void	SetSurfaceParentId(NURBSId	id);

Remarks:
Sets	the	surface	that's	trimmed	by	specifying	it's	NURBSId.

Parameters:
NURBSId	id

The	id	of	the	surface.

Prototype:
int	GetSurfaceParent();

Remarks:
Returns	the	index	in	the	NURBSSet	of	the	surface	that	is	trimmed.

Prototype:
NURBSId	GetSurfaceParentId();

Remarks:
Returns	the	NURBSId	of	the	surface	that's	trimmed.

Prototype:
BOOL	GetFlipTrim();

Remarks:
Returns	the	state	of	the	flip	trim	flag.	This	controls	which	side	of	the	curve	is
trimmed	from	the	surface.

Prototype:
void	SetFlipTrim(BOOL	flip);

Remarks:
Sets	the	state	of	the	flip	trim	flag.

Parameters:
BOOL	flip
TRUE	to	flip;	FALSE	to	not	flip.

Operators:

Prototype:
NURBSMultiCurveTrimSurface	&	operator=(const
NURBSMultiCurveTrimSurface&	surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBSMultiCurveTrimSurface&	surf

The	surface	to	assign.

Class	NURBSTextureSurface
See	Also:	Class	NURBSControlVertex,	Class	NURBSSurface,	Class
NURBSTexturePoint.
class	NURBSTextureSurface

Description:
This	class	is	available	in	release	2.5	and	later	only.
A	NURBS	texture	surface	is	a	surface	associated	with	the	surface	sub-object.	3ds
max	uses	the	texture	surface	to	control	how	materials	are	mapped.	In	effect,
changing	the	texture	surface	stretches	or	otherwise	changes	the	UV	coordinates
for	the	surface,	altering	the	mapping.
This	class	provides	access	to	the	NURBS	Texture	Surface.	This	is	a	2D	(not	3D)
surface	that	lives	in	the	parameter	space	of	the	corresponding	NURBSSurface
which	controls	the	texture	mapping	used	by	the	NURBSSurface.

Methods:

Prototype:
NURBSTextureSurface();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mMapperType	=	kNMapDefault;
	mpPoints	=	NULL;

Prototype:
~NURBSTextureSurface();

Remarks:
Destructor.	Any	mpPoints	are	deleted.

Prototype:
NURBSTexSurfType	MapperType();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	NURBS	Texture	Surface	Type.	See	List	of	NURBS	Texture

Surface	Types.

Prototype:
void	SetMapperType(NURBSTexSurfType	type);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	NURBS	Texture	Surface	Type.

Parameters:
NURBSTexSurfType	type
The	type	to	set.	See	List	of	NURBS	Texture	Surface	Types.

Prototype:
void	SetParent(int	index);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	sets	the	Id	of	the	"source"	surface	for	a	kNMapSurfaceMapper
texture	surface,	it	should	be	NULL	in	other	cases.	This	is	only	used	if	the
NURBSTexSurfType	is	set	the	kNMapSufaceMapper.	In	that	case	the
texture	surface	is	generated	by	projecting	the	texture	of	another	NURBS
surface	sub-object	in	the	NURBS	model.	The	projection	travels	along	the
direction	of	the	normals	of	the	source	surface.	Projected	texture	surfaces	are
relational.	This	method	set	the	parent	surface	which	is	projected.

Parameters:
int	index
The	index	in	the	NURBSSet	of	the	source	surface.

Prototype:
void	SetParentId(NURBSId	id);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	sets	the	index	in	the	NURBSSet	of	the	"source"	surface	for	a
kNMapSurfaceMapper	texture	surface.	This	is	only	used	if	the

NURBSTexSurfType	is	set	the	kNMapSufaceMapper.	In	that	case	the
texture	surface	is	generated	by	projecting	the	texture	of	another	NURBS
surface	sub-object	in	the	NURBS	model.	The	projection	travels	along	the
direction	of	the	normals	of	the	source	surface.	Projected	texture	surfaces	are
relational.	This	method	set	the	parent	surface	which	is	projected.

Parameters:
NURBSId	id
The	ID	of	the	source	surface.

Prototype:
int	GetParent();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	index	in	the	NURBSSet	of	the	surface	that's	mapped.

Prototype:
NURBSId	GetParentId();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	ID	of	the	surface	that's	mapped.

Prototype:
void	SetNumPoints(int	u,	int	v);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	number	of	points	in	U	and	V	for	the	texture	surface.

Parameters:
int	u
The	number	of	points	in	U.
int	v
The	number	of	points	in	V.

Prototype:
int	GetNumUPoints();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	points	in	U.

Prototype:
int	GetNumVPoints();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	number	of	points	in	V.

Prototype:
void	GetNumPoints(int	&u,	int	&v);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Retrieves	the	number	of	points	in	U	and	V.

Parameters:
int	&u
The	number	of	points	in	U	is	returned	here.
int	&v
The	number	of	points	in	V	is	returned	here.

Prototype:
NURBSTexturePoint*	GetPoint(int	u,	int	v);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	a	pointer	to	the	specified	NURBS	Texture	Point.

Parameters:
int	u
Specifies	the	U	point.

int	v
Specifies	the	V	point.

Prototype:
void	SetPoint(int	u,	int	v,	NURBSTexturePoint&	pnt);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	specified	NURBS	Texture	Point.

Parameters:
int	u
Specifies	the	U	point.
int	v
Specifies	the	V	point.
NURBSTexturePoint&	pnt
The	point	to	set.

Prototype:
NURBSTextureSurface	&	operator=(const
NURBSTextureSurface&	surf);

Remarks:
Assignment	operator.

Parameters:
const	NURBSTextureSurface&	surf
The	surface	to	assign.

List	of	NURBS	Results
See	Also:	Working	With	NURBS.
These	results	show	up	when	one	is	modifiying	existing	objects.	This	enum	has
the	following	choices:
kNOk
The	function	succeeded.
kNInvalidObject
The	specified	object	was	invalid.	For	example,	if	you	use	the
SetSurfaceApprox()	function	and	specify	a	non-NURBS	object	as	input
you'll	get	this	error.
kNInvalidId
The	specified	ID	was	invalid.	For	example,	if	you	use	the	Transform()
function	and	pass	an	invalid	NURBSId	you'll	get	this	error.
kNInvalidParameter
A	specified	parameter	was	invalid.	For	example	if	you	tried	to	create	a	cone
using	GenNURBSConeSurface()	with	a	radius	<=0	you'd	get	this	error.
kNBad
The	function	failed.	This	is	a	catch-all	for	any	kind	of	unwanted	result	not
covered	above.

Class	NURBSDisplay
See	Also:	Class	NURBSSet.
class	NURBSDisplay

Description:
This	class	is	available	in	release	2.5	or	later.
This	class	provides	information	about	the	display	of	the	NURBSSet	in	the	3D
viewports.	An	instance	of	this	class	is	maintained	by	each	NURBSSet.

Data	Members:
BOOL	mDisplayCurves;
TRUE	if	curves	are	displayed;	otherwise	FALSE.
BOOL	mDisplaySurfaces;
TRUE	if	surfaces	are	displayed;	otherwise	FALSE.
BOOL	mDisplayLattices;
TRUE	if	lattices	are	displayed;	otherwise	FALSE.
BOOL	mDisplaySurfCVLattices;
TRUE	if	surface	CV	lattices	are	displayed;	otherwise	FALSE.
BOOL	mDisplayCurveCVLattices;
TRUE	if	curve	CV	lattices	are	displayed;	otherwise	FALSE.
BOOL	mDisplayDependents;
TRUE	if	dependent	sub-objects	are	displayed;	otherwise	FALSE.
BOOL	mDisplayTrimming;
TRUE	if	surface	trimming	is	displayed;	otherwise	FALSE.
BOOL	mDegradeOnMove;
TRUE	if	the	surface	may	degrade	while	transforming	it;	otherwise	FALSE.

Methods:

Prototype:
NURBSDisplay();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	mDisplayCurves	=	TRUE;

	mDisplaySurfaces	=	TRUE;
	mDisplayLattices	=	FALSE;
	mDisplaySurfCVLattices	=	TRUE;
	mDisplayCurveCVLattices	=	TRUE;
	mDisplayDependents	=	TRUE;
	mDisplayTrimming	=	TRUE;
	mDegradeOnMove	=	TRUE;

Prototype:
NURBSDisplay	&	operator=(const	NURBSDisplay&	disp);

Remarks:
Assignment	operator.

Parameters:
const	NURBSDisplay&	disp
The	object	to	assign.

List	of	NURBSSubObjectLevel	Options
See	Also:	Class	NURBSSurface,	Class	NURBSSet.
One	of	the	following	enum	values	describes	the	sub-object	level	of	the	object.
kNTopLevel
The	object	level.
kNSurfaceCVLevel
The	surface	CV	sub-object	level.
kNSurfaceLevel
The	surface	level.
kNCurveCVLevel
The	curve	CV	sub-object	level.
kNPointLevel
The	point	sub-object	level.
kNCurveLevel
The	curve	sub-object	level.
kNImportsLevel
The	imports	level.

Class	BezierShape
See	Also:	Class	ShapeObject,	Class	Spline3D,	Class	PatchCapInfo,	Class
ShapeVSel,	Class	ShapeSSel,	Class	ShapePSel,	Class	Material,	Working	with
Shapes	and	Splines.
class	BezierShape	:	public	BaseInterfaceServer

Description:
Defines	a	basic	bezier	shape	object.	The	BezierShape	is	effectively	a
collection	of	Bezier	Splines.	For	example	the	3ds	max	Donut	object	has	two
splines	in	a	hierarchy	to	make	a	shape.	The	BezierShape	contains	these
splines.

Method	Groups:
The	following	hyperlinks	jump	to	the	start	of	groups	of	related	methods	within
the	class:
Constructors	/	Destructor	/	Init()
Get/SetVert()
Render	/	Select	/	Snap	/	HitTest
Shape	Hierarchy	/	Reverse()	/	MakeFirst()
MakePolyShape()	/	ReadyCachedPolyShape()
Bounding	Box	/	Transform()	/	InvalidateGeomCache()	/	InvalidateCapCache()	/
FreeAll()
Data	Flow	Evaluation
Display	Flags
Selection	/	UpdateSels()
Load()	/	Save()
SplineCount()	/	GetSpline()	/	NewSpline()	/	AddSpline()	/	DeleteSpline()	/
InsertSpline()	/	NewShape()
Get/SetClosures()
GetNumVerts()	/	GetNumSegs()
Capping	Methods
Operators

Data	Members:
public:
PatchCapInfo	patchCap;

Patch	capping	cache	(mesh	capping	and	hierarchy	caches	stored	in	PolyShape
cache)
BOOL	patchCapCacheValid;
Indicates	if	the	patch	cap	is	valid	or	not.
Spline3D	**splines;
A	pointer	to	the	list	of	splines.
int	splineCount;
The	number	of	splines	in	this	shape.
int	steps;
Number	of	steps	(a	value	of	-1	will	use	adaptive).
BOOL	optimize;
Setting	this	to	TRUE	optimizes	linear	segments
ShapeVSel	vertSel;
The	selected	vertices.
ShapeSSel	segSel;
The	selected	segments.
ShapePSel	polySel;
The	selected	polygons.
int	bezVecPoly;
This	is	used	internally	in	hit	testing.
int	bezVecVert;
This	is	used	internally	in	hit	testing.
DWORD	selLevel;
Selection	level.
SHAPE_OBJECT	-	Object	level	selection.
SHAPE_SPLINE	-	Spline	level	selection	(a	single	polygon	within	the
shape).
SHAPE_SEGMENT	-	Segment	level	selection.
SHAPE_VERTEX	-	Vertex	level	selection.

DWORD	dispFlags;
Display	attribute	flags.	See	List	of	BezierShape	Display	Flags.
Tab<bindShape>	bindList;
The	table	of	bind	points.	See	Template	Class	Tab.

	

Methods:

Constructors	/	Destructor	/	Init()

Prototype:
BezierShape();

Remarks:
The	data	members	are	initialized	as	follows:
splines	=	NULL;
splineCount	=	0;
dispFlags	=	0;
selLevel	=	SHAPE_OBJECT;
bdgBox.Init();
bezVecPoly	=	-1;
bezVecVert	=	-1;
vertSel.Empty();
segSel.Empty();
polySel.Empty();
optimize	=	FALSE;
steps	=	5;

Prototype:
BezierShape(BezierShape&	fromShape);

Remarks:
Constructor.	The	shape	is	initialized	based	on	the	fromShape.

Prototype:
void	Init();

Remarks:
Initializes	the	BezierShape.	The	data	members	are	initialized	as	follows:
splines	=	NULL;

splineCount	=	0;
dispFlags	=	0;
selLevel	=	SHAPE_OBJECT;
bdgBox.Init();
bezVecPoly	=	-1;
bezVecVert	=	-1;
vertSel.Empty();
segSel.Empty();
polySel.Empty();
optimize	=	FALSE;
steps	=	5;

Prototype:
~BezierShape();

Remarks:
Destructor.	All	the	splines	in	this	shape	are	cleared.

Get/SetVert()

Prototype:
Point3&	GetVert(int	poly,	int	i);

Remarks:
Returns	the	'i-th'	vertex	of	the	specified	spline.

Parameters:
int	poly
The	index	into	the	splines	list	where	poly	>=	0	and	poly	<	splineCount.
int	i
The	index	of	the	control	point	in	the	spline.

Prototype:
void	SetVert(int	poly,	int	i,	const	Point3	&xyz);

Remarks:
Sets	the	'i-th'	vertex	of	the	specified	spline.

Parameters:
int	poly
The	index	into	the	splines	list	where	poly	>=	0	and	poly	<	splineCount.
int	i
The	index	of	the	vertex	in	the	spline.
const	Point3	&xyz
The	point	to	set.

Render	/	Select	/	Snap	/	HitTest

Prototype:
void	Render(GraphicsWindow	*gw,	Material	*ma,	RECT	*rp,	int
compFlags,	int	numMat);

Remarks:
This	is	used	internally	to	render	the	shape.

Prototype:
BOOL	Select(GraphicsWindow	*gw,	Material	*ma,	HitRegion	*hr,
int	abortOnHit	=	FALSE);

Remarks:
This	is	used	internally	to	hit	test	the	shape.

Prototype:
void	Snap(GraphicsWindow	*gw,	SnapInfo	*snap,	IPoint2	*p,
Matrix3	&tm);

Remarks:
This	is	used	internally	to	snap	to	the	shape.

Prototype:
void	Snap(GraphicsWindow	*gw,	SnapInfo	*snap,	IPoint2	*p,
Matrix3	&tm,	DWORD	flags);

Remarks:

This	is	used	internally	to	snap	to	the	shape.

Prototype:
BOOL	SubObjectHitTest(GraphicsWindow	*gw,	Material	*ma,
HitRegion	*hr,
DWORD	flags,	SubShapeHitList&	hitList);

Remarks:
This	method	is	used	internally	to	perform	sub-object	hit	testing	of	the	shape.

Prototype:
float	FindSegmentPoint(int	poly,	int	segment,	GraphicsWindow
*gw,
Material	*ma,	HitRegion	*hr,	int	ptype	=	PARAM_SIMPLE);

Remarks:
This	is	used	for	hit	testing.	This	method	returns	a	value	from	0.0	to	1.0	that
tells	you	where	a	hit	was	found	on	a	particular	segment.	Sample	code	that	uses
this	is	the	edit	spline	modifier	in
\MAXSDK\SAMPLES\MODIFIERS\EDITSPL.H.	This	allows	a
refinement	of	the	hit	testing.

Parameters:
int	poly
The	index	of	the	spline.
int	segment
The	index	of	the	segment.
GraphicsWindow	*gw
The	graphics	window	where	the	hit	test	was	done.
Material	*ma
The	list	of	materials.
HitRegion	*hr
The	hit	region.	See	Class	HitRegion.
int	ptype	=	PARAM_SIMPLE
This	parameter	is	available	in	release	4.0	and	later	only.
This	allows	the	caller	to	get	the	location	on	the	segment	in	either	parameter

space	or	normalized	distance	space.	Both	return	values	of	0-1.	For	proper
backward	compatibility,	the	default	parameter	type	is	PARAM_SIMPLE.
The	other	option	is	PARAM_NORMALIZED.

Bounding	Box	/	Transform()	/	InvalidateGeomCache()	/
InvalidateCapCache()	/	FreeAll()

Prototype:
void	BuildBoundingBox(void);

Remarks:
Computes	the	bounding	box	of	the	splines	making	up	this	bezier	shape	object.
The	result	is	stored	in	the	bdgBox	data	member.

Prototype:
Box3	GetBoundingBox(Matrix3	*tm=NULL);

Remarks:
Returns	the	bounding	box	of	the	splines	making	up	this	bezier	shape	object.
The	optional	TM	allows	the	box	to	be	calculated	in	any	space.

Parameters:
Matrix3	*tm=NULL
The	matrix	to	transform	the	points	before	computing	the	bounding	box.

Prototype:
void	GetDeformBBox(TimeValue	t,	Box3&	box,	Matrix3	*tm,
BOOL	useSel);

Remarks:
Computes	the	bounding	box	of	this	shape.

Parameters:
TimeValue	t
This	parameter	is	not	used.
Box3&	box
The	result	is	stored	here.

Matrix3	*tm
The	points	of	each	spline	in	this	shape	are	deformed	using	this	matrix.
BOOL	useSel
If	TRUE	the	box	is	computed	about	the	selected	vertices	only;	otherwise	all
points.

Prototype:
void	Transform(Matrix3	&tm);

Remarks:
Transforms	the	points	of	each	poly	in	the	shape	by	the	matrix	passed.

Parameters:
Matrix3	&tm
The	transformation	matrix.

Prototype:
void	InvalidateGeomCache();

Remarks:
This	method	should	be	called	when	a	shape	changes.	It	invalidates	the	caches
of	the	shape.	This	resets	the	bounding	box,	and	removes	the	hierarchy,	cap	and
shape	caches.

Prototype:
void	InvalidateCapCache();

Remarks:
This	method	is	used	internally.

Prototype:
void	FreeAll();

Remarks:
Frees	everything	from	the	shape.

Data	Flow	Evaluation

Prototype:
void	ShallowCopy(BezierShape	*ashape,	ULONG_PTR	channels);

Remarks:
This	method	is	used	internally	in	data	flow	evaluation

Prototype:
void	DeepCopy(BezierShape	*ashape,	ULONG_PTR	channels);

Remarks:
This	method	is	used	internally	in	data	flow	evaluation

Prototype:
void	NewAndCopyChannels(ULONG_PTR	channels);

Remarks:
This	method	is	used	internally	in	data	flow	evaluation

Prototype:
void	FreeChannels(ULONG_PTR	channels,	int	zeroOthers=1);

Remarks:
This	method	is	used	internally	in	data	flow	evaluation

Display	Flag	Access

Prototype:
void	SetDispFlag(DWORD	f);

Remarks:
Sets	the	state	of	the	specified	display	flags.

Parameters:
DWORD	f
The	flags	to	set.	See	List	of	BezierShape	Display	Flags.

Prototype:
DWORD	GetDispFlag(DWORD	f);

Remarks:
Returns	the	state	of	the	specified	display	flags.

Parameters:
DWORD	f
The	flags	to	get.	See	List	of	BezierShape	Display	Flags.

Prototype:
void	ClearDispFlag(DWORD	f);

Remarks:
Clears	the	specified	display	flags.

Parameters:
DWORD	f
The	flags	to	clear.	See	List	of	BezierShape	Display	Flags.

Selection	/	UpdateSels()

Prototype:
BitArray	VertexTempSel(int	poly,	int	level	=	-1);

Remarks:
Constructs	a	vertex	selection	list	based	on	the	current	selection	level	for	the
specified	spline.	For	example	if	the	selection	level	is	at	object	level	all	the	bits
are	set.	If	the	selection	level	is	at	vertex	level	only	the	selected	vertex	bits	are
set.	See	Class	BitArray.

Parameters:
int	poly
The	index	into	the	splines	data	member.
int	level	=	-1
This	allows	a	selction	level	to	be	optionally	specified.	For	example	if	the
selection	level	is	at	object	level	all	the	bits	are	set.	If	the	selection	level	is	at
vertex	level	only	the	selected	vertex	bits	are	set.	One	of	the	following	values:
SHAPE_OBJECT
SHAPE_SPLINE
SHAPE_SEGMENT

SHAPE_VERTEX

Prototype:
BitArray	VertexTempSelAll(int	poly	=	-1,	BOOL	includeVecs	=
FALSE,	int	level	=	0,	BOOL	forceSel	=	FALSE);

Remarks:
This	method	looks	at	the	selection	state	for	the	selection	level	and	sets	the
appropriate	bits	based	on	the	selection	set	unless	forceSel	is	TRUE.	If
forceSel	is	TRUE,	it	acts	as	if	every	item	in	the	selection	set	for	the	specified
spline	was	set.	It's	an	easy	way	to	select	entire	splines.
See	Class	BitArray.

Parameters:
int	poly	=	-1
The	index	into	the	splines	data	member	(-1	means	use	all).
BOOL	includeVecs	=	FALSE
If	set,	this	method	will	set	the	bits	for	vectors	associated	with	selected	knots.
int	level	=	0
This	allows	a	selction	level	to	be	optionally	specified.	For	example	if	the
selection	level	is	at	object	level	all	the	bits	are	set.	If	the	selection	level	is	at
vertex	level	only	the	selected	vertex	bits	are	set.	One	of	the	following	values:
SHAPE_OBJECT
SHAPE_SPLINE
SHAPE_SEGMENT
SHAPE_VERTEX

BOOL	forceSel	=	FALSE
If	TRUE,	it	acts	as	if	every	item	in	the	selection	set	for	the	specified	spline
was	set.	It's	an	easy	way	to	select	entire	splines.	For	example,	selecting	spline
2	regardless	of	the	spline-level	selection	state:
VertexTempSelAll(2,	FALSE,	SHAPE_SPLINE,	TRUE);
This	just	builds	the	selection	set	as	if	spline	2	was	completely	selected.
Otherwise,	the	spline	bits	would	have	only	been	selected	if
BezierShape::polySel.sel[2]	was	set.
Incidentally,	the	following	calls	will	do	exactly	the	same	thing:

VertexTempSelAll(2,	FALSE,	SHAPE_VERTEX,	TRUE);
VertexTempSelAll(2,	FALSE,	SHAPE_SEGMENT,	TRUE);
For	what	it's	worth,	the	SHAPE_SPLINE	version	is	the	most	efficient.

Prototype:
void	UpdateSels(BOOL	save	=	FALSE);

Remarks:
This	is	a	very	important	call	to	make.	When	you	are	done	adding	polygons	to
the	shape	you	should	call	this	method.	This	method	updates	a	set	of	embedded
selection	set	data	within	the	shape.	This	selection	set	data	tells	what	polygons
are	selected,	what	segments	are	selected,	and	what	control	points	are	selected.
This	resets	the	sizes	of	the	selection	bit	arrays	for	this	shape.

Parameters:
BOOL	save	=	FALSE
This	parameter	is	available	in	release	4.0	and	later	only.
This	optional	parameter	preserves	the	selection	set	information	when	set	to
TRUE,	and	erases	it	when	set	to	FALSE.	The	default,	FALSE,	is	present	for
backward	compatibility,	where	there	was	no	argument.

Load()	/	Save()

Prototype:
IOResult	Save(ISave*	isave);

Remarks:
Saves	the	shape	data	to	the	.MAX	file.

Prototype:
IOResult	Load(ILoad*	iload);

Remarks:
Loads	the	shape	data	from	the	.MAX	file.

SplineCount()	/	GetSpline()	/	NewSpline()	/	AddSpline()	/
DeleteSpline()	/	InsertSpline()	/	NewShape()

Prototype:
inline	int	SplineCount();

Remarks:
Returns	the	number	of	splines	in	this	shape.

Prototype:
Spline3D*	GetSpline(int	index);

Remarks:
Returns	a	pointer	to	the	spline	specified	by	the	index	passed.

Parameters:
int	index
Specifies	which	spline	to	return.	This	is	an	index	into	the	splines	data
member.

Prototype:
Spline3D*	NewSpline(int	itype	=	KTYPE_CORNER,int	dtype	=
KTYPE_BEZIER,
int	ptype	=	PARM_UNIFORM);

Remarks:
Creates	and	adds	an	empty	spline	to	the	shape.

Parameters:
int	itype	=	KTYPE_CORNER
The	initial	knot	type	you	get	when	you	click	and	release	the	mouse	during
spline	creation.	See	List	of	Knot	Types.
int	dtype	=	KTYPE_BEZIER
The	drag	knot	type	used	when	you	click	and	drag	to	create	a	vertex	during
spline	creation.	See	List	of	Knot	Types.
int	ptype	=	PARM_UNIFORM
This	parameter	is	not	used.	Let	it	default	to	PARM_UNIFORM.

Return	Value:
A	pointer	to	the	newly	created	spline.

Prototype:
Spline3D*	AddSpline(Spline3D*	spline);

Remarks:
Add	an	existing	spline	to	this	shape	as	the	last	one	in	the	list.	Note	that	this
copies	only	the	pointer,	it	does	not	copy	the	entire	spline,	so	do	not	delete	the
spline	anywhere	else.	This	will	do	it	when	it's	done	with	it.

Parameters:
Spline3D*	spline
The	spline	to	add.

Return	Value:
A	pointer	to	the	spline	passed	or	NULL	if	the	call	failed.

Prototype:
int	DeleteSpline(int	index);

Remarks:
Deletes	the	specified	spline.

Parameters:
int	index
The	index	into	the	splines	data	member.

Return	Value:
Nonzero	on	success;	otherwise	zero.

Prototype:
int	InsertSpline(Spline3D*	spline,	int	index);

Remarks:
Inserts	the	specified	spline	into	the	spline	list	at	the	location	passed.

Parameters:
Spline3D*	spline
The	spline	to	add.
int	index
The	index	in	to	the	splines	data	member	indicating	where	to	insert	the	spline.

Return	Value:

Nonzero	on	success;	otherwise	zero.

Prototype:
void	NewShape();

Remarks:
This	method	deletes	every	spline	in	the	shape.

Prototype:
void	AddAndWeld(BezierShape	&from,	float	weldThreshold);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	used	for	adding	the	splines	from	one	BezierShape	to	another,
with	a	weld	threshold	that	will	weld	endpoints	of	the	new	splines	onto
endpoints	of	existing	splines.	Calling	this	method	will	cause	the	splines	of	the
"from"	shape	to	be	added	to	those	of	the	shape.	If	any	endpoints	in	the	"from"
shape	are	within	the	specified	weld	threshold,	they	will	be	automatically
welded.

Parameters:
BezierShape	&from
The	shape	whose	splines	are	added.
float	weldThreshold
The	endpoint	weld	threshold.

GetNumVerts()	/	GetNumSegs()

Prototype:
int	GetNumVerts();

Remarks:
Returns	the	total	number	of	vertices	in	the	entire	shape.

Prototype:
int	GetNumSegs();

Remarks:

Returns	the	total	number	of	segments	in	the	entire	shape.

Get/SetClosures()

Prototype:
void	GetClosures(BitArray&	array);

Remarks:
For	each	spline	in	this	shape,	this	method	sets	the	corresponding	bit	if	the
shape	is	closed	and	clears	the	bit	is	the	shape	is	open.

Parameters:
BitArray&	array
The	BitArray	to	update.

Prototype:
void	SetClosures(BitArray&	array);

Remarks:
Sets	the	closed	state	of	each	spline	in	this	shape	based	on	the	BitArray	passed.

Parameters:
BitArray&	array
Indicates	which	shapes	should	be	closed:	1	=	closed;	0	=	open.

Shape	Hierarchy	/	Reverse()	/	MakeFirst()

Prototype:
ShapeHierarchy	&OrganizeCurves(TimeValue	t,	ShapeHierarchy
*hier	=	NULL);

Remarks:
This	methods	looks	at	the	shape	organization,	and	puts	together	a	shape
hierarchy.	This	provides	information	on	how	the	shapes	are	nested.	For
example	on	a	donut	object	with	two	circles,	this	method	determines	which
circle	is	inside	the	other	one.

Parameters:
TimeValue	t

This	parameter	is	not	used.
ShapeHierarchy	*hier	=	NULL
If	non-NULL	the	result	is	store	here	(in	addition	to	being	returned).	See	Class
ShapeHierarchy.

Return	Value:
The	result	is	returned	here.

Prototype:
void	Reverse(int	poly,	BOOL	keepZero	=	FALSE);

Remarks:
Reverses	the	spline	whose	index	is	passed.

Parameters:
int	poly
The	spline	to	reverse.
BOOL	keepZero	=	FALSE
This	optional	parameter	is	available	in	release	2.0	and	later	only.
This	parameter	defaults	to	FALSE	in	order	to	retain	backwards	compatibility.
Setting	it	to	TRUE	insures	that	a	closed	spline	will	have	the	same	vertex	as	its
first	point	when	it	is	reversed.	The	parameter	is	ignored	on	open	splines.

Prototype:
void	Reverse(BitArray	&reverse,	BOOL	keepZero	=	FALSE);

Remarks:
Reverses	the	splines	of	this	shape	if	the	corresponding	bit	in	reverse	is	set.

Parameters:
BitArray	&reverse
If	the	bit	is	set	the	spline	is	reversed;	otherwise	it	is	left	alone.
BOOL	keepZero	=	FALSE
This	optional	parameter	is	available	in	release	2.0	and	later	only.
This	parameter	defaults	to	FALSE	in	order	to	retain	backwards	compatibility.
Setting	it	to	TRUE	insures	that	a	closed	spline	will	have	the	same	vertex	as	its
first	point	when	it	is	reversed.	The	parameter	is	ignored	on	open	splines.

Prototype:
void	MakeFirst(int	poly,	int	vertex);

Remarks:
Sets	the	specified	vertex	of	the	specified	poly	as	the	first	vertex.	On	an	open
polygon	this	has	to	be	one	of	the	end	control	points.	On	a	closed	shape	it
doesn't	matter.

Parameters:
int	poly
The	poly	to	update.
int	vertex
The	vertex	to	make	first.

MakePolyShape()	/	ReadyCachedPolyShape()

Prototype:
void	MakePolyShape(PolyShape	&pshp,	int	steps	=	-1,	BOOL
optimize	=	FALSE);

Remarks:
Makes	a	PolyShape	from	this	shape.

Parameters:
PolyShape	&pshp
The	results	are	stored	here.
int	steps	=	-1
The	number	of	steps	between	knots	in	the	spline.
BOOL	optimize	=	FALSE
If	TRUE,	linear	segments	between	control	points	in	the	spline	will	not
generate	steps	in	between.	It	will	just	be	one	line	segment.

Prototype:
void	ReadyCachedPolyShape();

Remarks:
This	method	is	used	internally.

Capping	Methods

Prototype:
int	MakeCap(TimeValue	t,	MeshCapInfo	&capInfo,	int	capType);

Remarks:
This	method	is	passed	a	capping	information	structure	and	it	will	compute	the
information	it	needs	to	make	a	mesh	cap	for	this	shape.

Parameters:
TimeValue	t
This	parameter	is	not	used.
MeshCapInfo	&capInfo
The	capping	information.	See	Class	MeshCapInfo.
int	capType
See	List	of	Shape	Capping	Types.

Return	Value:
Nonzero	if	the	method	succeeded;	otherwise	zero.

Prototype:
int	MakeCap(TimeValue	t,	PatchCapInfo	&capInfo);

Remarks:
This	method	is	passed	a	capping	information	structure	and	it	will	compute	the
information	it	needs	to	make	a	patch	cap	for	this	shape.

Parameters:
TimeValue	t
This	parameter	is	not	used.
PatchCapInfo	&capInfo
The	capping	information.	See	Class	PatchCapInfo.

Return	Value:
Nonzero	if	the	method	succeeded;	otherwise	zero.

Prototype:
int	ReadyPatchCap();

Remarks:
This	method	is	used	internally	by	the	BezierShape	code.	When	you	call
BezierShape::MakeCap(TimeValue	t,	PatchCapInfo	&capInfo),	if
the	patch	cap	data	isn't	cached,	this	method	is	called	to	build	it.	Calling	it	is
not	normally	necessary,	or	a	good	idea	--	it	builds	the	PatchCapInfo	data
structure	regardless	of	whether	it's	cached	or	not.	Just	call	the	MakeCap()
method	to	get	the	cap	information	and	the	caching	is	done	automatically.

Prototype:
void	CopyShapeDataFrom(BezierShape	&fromShape);

Remarks:
This	method	copies	the	shapes,	selection	sets	and	any	caches	from	the	source
object.	It	does	not	copy	selection	level,	or	display	information.

Parameters:
BezierShape	&fromShape
The	shape	to	copy	from.

Prototype:
void	PrepVertBaseIndex();

Remarks:
This	method	is	used	internally.

Prototype:
int	GetVertIndex(int	poly,	int	vert);

Remarks:
This	method	provides	an	easy	way	to	derive	a	simple	index	for	any	vertex	in
any	spline	in	the	shape.

Parameters:
int	poly
The	zero	based	index	of	the	spline.
int	vert
The	zero	based	index	of	the	vertex.

Return	Value:
A	zero	based	index	for	vertex.

Prototype:
void	GetPolyAndVert(int	index,	int	&polyOut,	int	&vertOut);

Remarks:
This	method	takes	a	vertex	index	and	turns	it	back	into	a	poly	/	vertex	pair
(see	GetVertIndex()	above).

Parameters:
int	index
The	input	index.
int	&polyOut
The	output	poly.
int	&vertOut
The	output	vertex.

Prototype:
int	GetTotalVerts();

Remarks:
Returns	the	total	number	of	verticies	in	the	shape.

Prototype:
void	PrepKnotBaseIndex();

Remarks:
This	method	is	used	internally,	automatically.

Prototype:
int	GetKnotIndex(int	poly,	int	knot);

Remarks:
This	method	returns	an	index	for	any	knot	in	any	spline	in	the	shape.

Parameters:
int	poly

The	input	poly	number.
int	knot
The	input	know	number.

Return	Value:
The	zero	based	index	of	the	knot.

Prototype:
void	GetPolyAndKnot(int	index,	int	&polyOut,	int	&knotOut);

Remarks:
This	method	computes	a	poly	/	knot	pair	from	an	index	(see
GetKnotIndex()	above).

Parameters:
int	index
The	input	knot	index.
int	&polyOut
The	output	index	of	the	poly	it	is	a	part	of.
int	&knotOut
The	output	knot	number.

Prototype:
int	GetTotalKnots();

Remarks:
Returns	the	total	number	of	knots	in	the	shape.

Prototype:
BOOL	DeleteSelVerts(int	poly);

Remarks:
Deletes	the	selected	vertices	for	the	specified	poly	in	the	shape.

Parameters:
int	poly
The	zero	based	index	of	the	polygon.

Return	Value:

TRUE	if	any	were	deleted;	FALSE	if	none	were	deleted.

Prototype:
BOOL	DeleteSelSegs(int	poly);

Remarks:
Deletes	the	selected	polygons	for	the	specified	poly	in	the	shape.

Parameters:
int	poly
The	zero	based	index	of	the	polygon.

Return	Value:
TRUE	if	any	were	deleted;	FALSE	if	none	were	deleted.

Prototype:
BOOL	DeleteSelectedVerts();

Remarks:
Deletes	the	selected	vertices	for	all	polys	in	the	shape.

Return	Value:
TRUE	if	any	were	deleted;	FALSE	if	none	were	deleted.

Prototype:
BOOL	DeleteSelectedSegs();

Remarks:
Deletes	the	selected	segments	for	all	polys	in	the	shape.

Return	Value:
TRUE	if	any	were	deleted;	FALSE	if	none	were	deleted.

Prototype:
BOOL	DeleteSelectedPolys();

Remarks:
Deletes	the	selected	polygons	for	all	polys	in	the	shape.

Return	Value:

TRUE	if	any	were	deleted;	FALSE	if	none	were	deleted.

Prototype:
BOOL	CloneSelectedParts(BOOL	reverse=FALSE);

Remarks:
Copies	the	selected	geometry	(segments	or	polys),	reversing	if	needed.

Parameters:
BOOL	reverse=FALSE
TRUE	to	reverse;	FALSE	to	leave	alone.

Return	Value:
Returns	TRUE	if	anything	was	copied.

Prototype:
BOOL	RecordTopologyTags(int	channel=0);

Remarks:
Tags	the	points	in	the	spline	components	to	record	the	topology	of	the	shape.
(This	stores	identifying	values	in	the	Spline3D's	Knot::aux	fields	for	each
control	point).	This	info	can	be	used	after	topology-changing	operations	to
remap	information	tied	to	control	points.

Parameters:
int	channel=0
This	parameter	is	available	in	release	3.0	and	later	only.
Specifies	which	auxiliary	channel.	One	of	the	following	values:
0=aux2
1=aux3

Return	Value:
Returns	FALSE	if	>	32767	knots	or	polys	(it	can't	record	that	many).

Prototype:
Point3	InterpCurve3D(int	poly,	float	param,	int
ptype=PARAM_SIMPLE);

Remarks:

This	method	returns	a	point	interpolated	on	the	specified	spline	on	the	entire
curve.	This	method	returns	the	point	but	you	don't	know	which	segment	the
point	falls	on.	See	method	InterpPiece3D().

Parameters:
int	poly
The	zero	based	index	of	the	spline.
float	param
The	position	along	the	curve	to	return	where	0	is	the	start	and	1	is	the	end.
int	ptype=PARAM_SIMPLE
The	parameter	type	for	spline	interpolation.	See	List	of	Parameter	Types	for
Shape	Interpolation.

Return	Value:
The	interpolated	point	on	the	curve.

Prototype:
Point3	TangentCurve3D(int	poly,	float	param,	int
ptype=PARAM_SIMPLE);

Remarks:
This	method	returns	a	tangent	vector	interpolated	on	the	entire	curve	of	the
specified	spline.	Also	see	method	TangentPiece3D().

Parameters:
int	poly
The	zero	based	index	of	the	spline.
float	param
The	position	along	the	curve	to	return	where	0	is	the	start	and	1	is	the	end.
int	ptype=PARAM_SIMPLE
The	parameter	type	for	spline	interpolation.	See	List	of	Parameter	Types	for
Shape	Interpolation.

Return	Value:
The	tangent	vector

Prototype:

Point3	InterpPiece3D(int	poly,	int	piece,	float	param,	int
ptype=PARAM_SIMPLE);

Remarks:
This	method	returns	the	interpolated	point	along	the	specified	sub-curve
(segment)	for	the	specified	spline.	For	example	consider	a	shape	that	is	a
single	circle	with	four	knots.	If	you	called	this	method	with	curve=0	and
piece=0	and	param=0.0	you'd	get	back	the	point	at	knot	0.	If	you	passed	the
same	parameters	except	param=1.0	you'd	get	back	the	point	at	knot	1.

Parameters:
int	poly
The	zero	based	index	of	the	spline.
int	piece
The	sub-curve	(segment)	to	evaluate.
float	param
The	position	along	the	curve	to	return	where	0	is	the	start	and	1	is	the	end.
int	ptype=PARAM_SIMPLE
The	parameter	type	for	spline	interpolation.	See	List	of	Parameter	Types	for
Shape	Interpolation.

Return	Value:
The	point	in	world	space.

Prototype:
Point3	TangentPiece3D(int	poly,	int	piece,	float	param,	int
ptype=PARAM_SIMPLE);

Remarks:
Returns	the	tangent	vector	of	the	specified	spline	on	a	sub-curve	at	the
specified	'distance'	along	the	curve.

Parameters:
int	poly
The	zero	based	index	of	the	spline.
int	piece
The	sub-curve	(segment)	to	evaluate.
float	param

The	position	along	the	curve	to	return	where	0	is	the	start	and	1	is	the	end.
int	ptype=PARAM_SIMPLE
The	parameter	type	for	spline	interpolation.	See	List	of	Parameter	Types	for
Shape	Interpolation.

Prototype:
float	LengthOfCurve(int	poly);

Remarks:
Returns	the	length	of	the	specified	spline.

Parameters:
int	poly
The	index	of	the	spline	to	check.

Prototype:
MtlID	GetMatID(int	poly,	int	piece);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	material	ID	for	the	specified	spline	and	segment	of	this	shape.

Parameters:
int	poly
The	zero	based	index	of	the	spline.
int	piece
The	zero	based	index	of	the	segment	of	the	spline.

Prototype:
void	GetTopology(BezierShapeTopology	&topo);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Retrieves	information	on	the	shape	topology.

Parameters:
BezierShapeTopology	&topo
The	object	which	is	updated	with	the	shape	data.	See	Class

BezierShapeTopology.

Prototype:
BOOL	PerformTrimOrExtend(IObjParam	*ip,	ViewExp	*vpt,
ShapeHitData	*hit,	IPoint2	&m,	ShapeContextCallback	&cb,	int
trimType,	int	trimInfinite);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	provides	a	way	for	a	BezierShape	to	trim	and	extend	splines.
This	method	is	meant	to	perform	as	part	of	a	mouse-centered	operation	--
Click	on	the	part	of	the	spline	and	pass	the	hitrecord,	viewport	and	mouse
point	to	the	trim	function.

Parameters:
IObjParam	*ip
The	interface	pointer.	See	Class	Interface.
ViewExp	*vpt
The	viewport	the	user	clicked	in.	See	Class	ViewExp.
ShapeHitData	*hit
The	hit	record	for	the	selection.	See	Class	ShapeHitData.
IPoint2	&m
The	point	the	user	clicked	on	in	the	viewport.	See	Class	IPoint2.
ShapeContextCallback	&cb
The	callback	object.	See	Class	ShapeContextCallback.
int	trimType
Specifies	if	the	operation	is	a	Trim	or	an	Extend.	One	of	the	following	values:
SHAPE_TRIM
SHAPE_EXTEND

int	trimInfinite
This	is	set	to	TRUE	for	infinite	projections.

Return	Value:
This	returns	TRUE	if	the	trim	or	extend	was	performed.

Prototype:

void	BindKnot(BOOL	isEnd,	int	segIndex,	int	splineSegID,	int
splinePointID);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	binds	a	knot	to	a	segment.	A	bind	acts	as	a	constraint,	it
constrains	the	first	point	or	the	end	point	of	a	spline	to	the	mid	point	of	a
segment.

Parameters:
BOOL	isEnd
Specifies	whether	the	first	or	last	point	is	bound.	TRUE	for	the	end;	FALSE
for	the	start.
int	segIndex
The	index	of	the	segment	to	be	bound	to.
int	splineSegID
The	index	of	the	spline	that	contains	the	segment.
int	splinePointID
The	index	of	spline	that	is	being	bound.

Prototype:
void	UnbindKnot(int	splineID,	BOOL	isEnd);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	unbinds	the	specified	spline.

Parameters:
int	splineID
The	index	of	spline	that	is	being	bound.
BOOL	isEnd
Specifies	whether	the	first	or	last	point	is	unbound.	TRUE	for	the	end;	FALSE
for	the	start.

Prototype:
void	UpdateBindList(BOOL	useGeomTracking=FALSE);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	needs	to	be	called	when	the	topology	changes	to	update	the	bind
list.

Parameters:
BOOL	useGeomTracking=FALSE
This	parameter	is	available	in	release	4.0	and	later	only.
This	allows	the	update	to	be	dependant	on	previous	recorded	topology	or
geometry.	If	this	flag	is	set	to	TRUE	it	uses	the	old	method	of	using	the
geometry	to	rebuild	the	binds,	else	it	uses	the	new	method	which	uses	the	aux
flags	of	the	splines	which	store	the	old	topology	indices.	Normally	this	will	be
FALSE	since	most	of	the	times	the	topology	tracking	is	more	accurate,	it
should	be	set	to	TRUE	when	there	is	no	initial	topology	to	work	from	for
instance	when	attaching	or	detaching	geometry.

Prototype:
BOOL	HideSelectedSegs();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Hides	the	selected	segments.

Return	Value:
TRUE	if	any	were	hidden.	FALSE	if	none	were	hidden.

Prototype:
BOOL	HideSelectedVerts();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Hides	the	segments	attached	to	the	selected	vertices.

Return	Value:
TRUE	if	any	were	hidden.	FALSE	if	none	were	hidden.

Prototype:
BOOL	HideSelectedSplines();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Hides	the	segments	attached	to	the	selected	splines.

Return	Value:
TRUE	if	any	were	hidden.	FALSE	if	none	were	hidden.

Prototype:
BOOL	UnhideSegs();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Unhides	all	the	segments	in	the	shape.

Return	Value:
TRUE	if	any	were	unhidden.	FALSE	if	none	were	unhidden.

Operators:

Prototype:
BezierShape&	operator+=(BezierShape&	from);

Remarks:
This	lets	you	add	another	shape	to	this	one.

Prototype:
BezierShape&	operator=(BezierShape&	fromShape);

Remarks:
Assignment	operator.

Prototype:
BezierShape&	operator=(PolyShape&	fromShape);

Remarks:
Assignment	operator.

Class	PolyShape
See	Also:	Class	ShapeObject,	Class	PolyLine,	Class	ShapeVSel,	Class
ShapeSSel,	Class	ShapePSel,	Class	ShapeHierarchy.
class	PolyShape

Description:
A	multi-polygon	shape	class.	This	class	is	used	in	the	caching	of	bezier	shapes.
This	is	used	for	doing	a	one	time	interpolation	of	a	bezier	shape	into	a	form	that
is	the	same	shape	but	doesn't	require	any	further	interpolation.	In	this	way	the
system	can	do	the	complex	calculations	once,	store	the	shape	into	this
PolyShape	representation,	and	not	have	to	go	through	the	cubic	spline
calculations	to	figure	out	where	the	points	are	in	the	future.	This	class	maintains
an	array	of	PolyLines.
This	is	used	for	example	in	the	Extrude	modifier.	The	first	thing	it	does	is
generate	a	PolyShape	from	the	bezier	shape	it	is	extruding.	This	PolyShape	is
then	used	to	generate	the	mesh.

Method	Groups:
The	following	hyperlinks	take	you	to	the	start	of	groups	of	related	methods
within	the	class:
Constructors	/	Destructor	/	Init()	/	GetMatID()
SetNumLines()	/	NewShape()	/	NewLine()
Append	/	Insert	/	Delete	/	Reverse()
Bounding	Box	/	InvalidateGeomCache()	/	InvalidateCapCache()
Render	/	Select	/	Snap	/	Transform
Capping	Methods
Selection	/	UpdateSels()
Shape	Hierarchy
Data	Flow	Evaluation
Dump()	/	Load()	/	Save()
Operators

Data	Members:
public:
int	numLines;
The	number	of	lines	in	the	polyshape.

PolyLine	*lines;
The	array	of	lines.
DWORD	flags;
These	are	not	currently	used.
Box3	bdgBox;
Stores	the	bounding	box	surrounding	each	PolyLine	in	the	shape.
ShapeVSel	vertSel;
The	selected	vertices.
ShapeSSel	segSel;
The	selected	segments.
ShapePSel	polySel;
The	selected	polygons.
DWORD	selLevel;
The	selection	level.	One	of	the	following	values:
SHAPE_OBJECT	-	Object	level	selection.
SHAPE_SPLINE	-	Spline	level	selection.
SHAPE_SEGMENT	-	Segment	level	selection.
SHAPE_VERTEX	-	Vertex	level	selection.

DWORD	dispFlags;
Display	attribute	flags.
DISP_VERTTICKS	-	Display	vertices	as	ticks.
DISP_SELVERTS	-	Display	selected	vertices.
DISP_SELSEGMENTS	-	Display	selected	segments.
DISP_SELPOLYS	-	Display	selected	polygons.

The	following	capping	and	cache	information	is	used	internally:
MeshCapInfo	morphCap;
The	morph	cap	information.
BOOL	morphCapCacheValid;
Determines	if	the	morph	cap	is	valid.
MeshCapInfo	gridCap;
The	grid	cap	information.
BOOL	gridCapCacheValid;
Determines	if	the	grid	cap	is	valid.

PatchCapInfo	patchCap;
The	patch	cap	information.
BOOL	patchCapCacheValid;
Determines	if	the	patch	cap	is	valid.
ShapeHierarchy	cachedHier;
Hierarchy	cache.
BOOL	hierCacheValid;
Determines	if	the	hierarchy	cache	is	valid.

Methods:

Constructors	/	Destructor	/	Init()	/	GetMatID

Prototype:
PolyShape();

Remarks:
Constructor.	The	number	of	lines	is	set	to	0,	the	lines	array	is	set	to	NULL,	the
flags	and	display	flags	are	set	to	0,	the	selection	level	is	set	to
SHAPE_OBJECT,	the	geometry	cache	is	invalidated,	and	the	masterObject	is
set	to	NULL.

Prototype:
PolyShape(PolyShape&	from);

Remarks:
Constructor.	The	PolyShape	is	initialized	from	the	specified	PolyShape.

Prototype:
~PolyShape();

Remarks:
Destructor.

Prototype:
void	Init();

Remarks:
PolyShape::Init()	is	a	special	version	used	by	the	constructors	and	should
not	be	called	by	plug-in	developers.	If	you	need	to	clear	out	a	PolyShape	use
NewShape()	described	below.

Prototype:
MtlID	GetMatID(int	poly,	int	piece);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	material	ID	for	the	specified	segment	of	the	specified	poly.

Parameters:
int	poly
The	zero	based	index	of	the	poly.
int	piece
The	zero	based	index	of	the	segment.

SetNumLines()	/	NewShape()	/	NewLine()

Prototype:
BOOL	SetNumLines(int	count,	BOOL	keep	=	TRUE);

Remarks:
Sets	the	number	of	polygons	used	by	the	poly	shape.

Parameters:
int	count
The	number	of	lines.
BOOL	keep	=	TRUE
If	TRUE	any	old	lines	are	copied	to	the	new	storage;	otherwise	they	are	freed.

Return	Value:
TRUE	if	the	number	of	lines	were	set;	otherwise	FALSE.

Prototype:
void	NewShape();

Remarks:
This	deletes	all	the	lines	from	the	PolyShape	and	clears	the	shape	out.	Use
this	method	instead	of	Init()	above.

Prototype:
PolyLine*	NewLine();

Remarks:
Creates	a	new	PolyLine	and	appends	it	to	the	end	of	the	list	of	lines
maintained	by	this	PolyShape.

Return	Value:
The	address	of	the	newly	added	line.

Append	/	Insert	/	Delete	/	Reverse()

Prototype:
void	Append(PolyLine	&l);

Remarks:
Appends	the	specified	PolyLine	to	the	end	of	the	lines	list.

Parameters:
PolyLine	&l
The	PolyLine	to	append.

Prototype:
void	Insert(int	where,	PolyLine&	l);

Remarks:
Inserts	the	specified	PolyLine	at	the	location	passed.

Parameters:
int	where
The	index	into	the	lines	list	specifying	where	to	insert	the	PolyLine.
PolyLine&	l
The	PolyLine	to	insert.

Prototype:
void	Delete(int	where);

Remarks:
Deletes	the	specified	PolyLine	from	the	lines	list.

Parameters:
int	where
The	index	into	the	lines	list	specifying	which	line	to	delete.

Prototype:
void	Reverse(int	poly,	BOOL	keepZero=FALSE);

Remarks:
Reverses	the	PolyLine	whose	index	is	passed.

Parameters:
int	poly
The	spline	to	reverse.
BOOL	keepZero=FALSE
This	should	normally	be	passed	as	TRUE.	If	TRUE,	and	the	polyline	is	closed,
this	method	will	make	sure	that	vertex	zero	is	the	same	on	the	reversed	version
as	on	the	non-reversed	version.	Otherwise	if	passed	as	FALSE	the	last	vertex
becomes	the	first	vertex,	and	the	first	vertex	becomes	the	last.	This	is	an
important	distinction	for	the	lofter	because	it	always	wants	vertex	zero	to	be	in
the	same	place.

Prototype:
void	Reverse(BitArray	&reverse,	BOOL	keepZero=FALSE);

Remarks:
Reverses	the	splines	of	this	shape	if	the	corresponding	bit	in	reverse	is	set.
The	BitArray	has	one	bit	for	each	polyline.

Parameters:
BitArray	&reverse
If	the	bit	is	set	the	spline	is	reversed;	otherwise	it	is	left	alone.
BOOL	keepZero=FALSE

This	should	normally	be	passed	as	TRUE.	If	TRUE,	and	the	polyline	is	closed,
this	method	will	make	sure	that	vertex	zero	is	the	same	on	the	reversed	version
as	on	the	non-reversed	version.	Otherwise	if	passed	as	FALSE	the	last	vertex
becomes	the	first	vertex,	and	the	first	vertex	becomes	the	last.	This	is	an
important	distinction	for	the	lofter	because	it	always	wants	vertex	zero	to	be	in
the	same	place.

Bounding	Box	/	InvalidateGeomCache()	/	InvalidateCapCache()

Prototype:
void	BuildBoundingBox();

Remarks:
Builds	a	bounding	box	surrounding	every	line	in	the	lines	list.	The	bounding
box	is	returned	through	the	bdgBox	data	member.

Prototype:
Box3	GetBoundingBox(Matrix3	*tm=NULL);

Remarks:
Returns	the	bounding	box	of	the	PolyLines	in	this	PolyShape.	The	optional
TM	allows	the	box	to	be	calculated	in	any	space.

Parameters:
Matrix3	*tm=NULL
The	points	of	the	PolyLines	in	this	PolyShape	are	transformed	by	this
matrix	prior	to	the	bounding	box	computations.

Prototype:
void	GetDeformBBox(TimeValue	t,	Box3&	box,	Matrix3	*tm,
BOOL	useSel);

Remarks:
Computes	the	bounding	box	of	this	PolyShape.

Parameters:
TimeValue	t
The	time	at	which	to	evaluate	the	bounding	box.

Box3&	box
The	result	is	stored	here.
Matrix3	*tm
The	points	of	each	PolyLine	in	this	PolyShape	are	deformed	using	this
matrix.
BOOL	useSel
If	TRUE	the	box	is	computed	about	the	selected	vertices	only;	otherwise	all
points.

Prototype:
void	InvalidateGeomCache(BOOL	unused);

Remarks:
Invalidates	the	cache	of	each	line	in	the	PolyShape.	The	bounding	box	is	set
to	empty.	This	method	also	invalidates	the	capping	caches.

Parameters:
BOOL	unused
This	parameter	is	not	used.

Prototype:
void	InvalidateCapCache();

Remarks:
Invalidates	the	morph,	and	grid	cap	caches.

Render	/	Select	/	Snap	/	Transform

Prototype:
void	Render(GraphicsWindow	*gw,	Material	*ma,	RECT	*rp,	int
compFlags);

Remarks:
This	method	is	used	internally.

Prototype:

BOOL	Select(GraphicsWindow	*gw,	Material	*ma,	HitRegion	*hr,
int	abortOnHit	=	FALSE);

Remarks:
This	method	is	used	internally.

Prototype:
void	Snap(GraphicsWindow	*gw,	SnapInfo	*snap,	IPoint2	*p,
Matrix3	&tm);

Remarks:
This	method	is	used	internally.

Prototype:
void	Snap(GraphicsWindow	*gw,	SnapInfo	*snap,	IPoint2	*p,
Matrix3	&tm,	DWORD	flags);

Remarks:
This	method	is	used	internally.

Prototype:
void	Transform(Matrix3	&tm);

Remarks:
Transforms	the	vertices	of	each	PolyLine	in	this	PolyShape	by	the	specified
matrix.

Parameters:
Matrix3	&tm
The	transformation	matrix.

Capping	Methods

Prototype:
int	MakeCap(TimeValue	t,	MeshCapInfo	&capInfo,	int	capType);

Remarks:
This	method	may	be	called	to	fill	in	the	MeshCapInfo	passed	with	the

appropriate	capping	information.	See	Working	with	Patches	for	more	details
on	capping.	This	method	is	used	for	meshes.	The	method	below	is	used	for
patches.

Parameters:
TimeValue	t
This	should	be	passed	as	the	current	time.	You	may	retrieve	this	using
Interface::GetTime().	See	Class	Interface.
MeshCapInfo	&capInfo
This	information	is	filled	in	by	this	method.	See	Class	MeshCapInfo.
int	capType
The	cap	type.	See	List	of	Shape	Capping	Types.

Return	Value:
Nonzero	if	the	cap	info	was	set	up	successfully;	otherwise	zero.

Prototype:
int	MakeCap(TimeValue	t,	PatchCapInfo	&capInfo);

Remarks:
This	method	may	be	called	to	fill	in	the	PatchCapInfo	passed	with	the
appropriate	capping	information.	This	method	is	used	for	patches.	Note	that	it
is	generally	not	recommended	to	try	to	create	patch	caps	from	PolyShapes.
The	patch	cap	uses	bezier	information,	so	it	is	much	better	to	use	a
BezierShape	to	make	a	patch	cap.	It	is	very	inefficient	to	do	this	with	a
PolyShape.

Parameters:
TimeValue	t
This	should	be	passed	as	the	current	time.	You	may	retrieve	this	using
Interface::GetTime().	See	Class	Interface.
PatchCapInfo	&capInfo
This	information	is	filled	in	by	this	method.	See	Class	PatchCapInfo.

Return	Value:
Nonzero	if	the	cap	info	was	set	up	successfully;	otherwise	zero.

Prototype:

int	Make3DSCap(MeshCapInfo	&capInfo,	DWORD	options	=	0);
Remarks:
This	method	is	used	internally.

Prototype:
int	MakeGridCap(MeshCapInfo	&capInfo);

Remarks:
This	method	is	used	internally.

Dump()	/	Load()	/	Save()

Prototype:
void	Dump(TCHAR	*title	=	NULL);

Remarks:
This	may	be	called	to	display	information	about	the	PolyShape	to	the	debug
window	via	DebugPrint().	See	Debugging.

Parameters:
TCHAR	*title	=	NULL
A	string	to	be	display	before	the	PolyShape	data	is	displayed.

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
This	method	is	used	internally	in	saving	to	the	MAX	file.

Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
This	method	is	used	internally	in	loading	from	the	MAX	file.

Shape	Hierarchy

Prototype:
void	UpdateCachedHierarchy();

Remarks:
This	method	is	used	internally.

Prototype:
ShapeHierarchy	&OrganizeCurves(TimeValue	t,	ShapeHierarchy
*hier	=	NULL);

Remarks:
This	methods	looks	at	the	shape	organization,	and	puts	together	a	shape
hierarchy.	This	provides	information	on	how	the	shapes	are	nested.	For
example	on	a	donut	object	with	two	circles,	this	method	determines	which
circle	is	inside	the	other	one.

Parameters:
TimeValue	t
This	parameter	is	not	used.
ShapeHierarchy	*hier	=	NULL
If	non-NULL	the	result	is	store	here	(in	addition	to	being	returned).	See	Class
ShapeHierarchy.

Return	Value:
The	result	is	store	here.

Selection	/	UpdateSels()

Prototype:
BitArray	VertexTempSel(int	poly);

Remarks:
Constructs	a	vertex	selection	list	based	on	the	current	selection	level	of	the
specified	poly.	For	example	if	the	selection	level	is	at	object	level	all	the	bits
are	set.	If	the	selection	level	is	at	vertex	level	only	the	selected	vertex	bits	are
set.	See	Class	BitArray.

Parameters:
int	poly

The	poly	whose	selection	level	is	constructed.

Prototype:
void	UpdateSels();

Remarks:
This	is	a	very	important	call	to	make.	Whenever	you	have	changed	the
PolyShape,	for	example	after	you	are	done	adding	polygons	to	the	shape	or
have	changed	the	number	of	points	in	a	shape,	you	should	call	this	method.
This	method	updates	a	set	of	embedded	selection	set	data	within	the	shape.
This	selection	set	data	tells	what	polygons	are	selected,	what	segments	are
selected,	and	what	control	points	are	selected.	This	resets	the	sizes	of	the
selection	bit	arrays	for	this	shape.

Data	Flow	Evaluation

Prototype:
void	ShallowCopy(PolyShape	*ashape,	ULONG_PTR	channels);

Remarks:
This	method	is	used	internally	in	data	flow	evaluation	in	the	pipeline.

Prototype:
void	DeepCopy(PolyShape	*ashape,	ULONG_PTR	channels);

Remarks:
This	method	is	used	internally	in	data	flow	evaluation	in	the	pipeline.

Prototype:
void	NewAndCopyChannels(ULONG_PTR	channels);

Remarks:
This	method	is	used	internally	in	data	flow	evaluation	in	the	pipeline.

Prototype:
void	FreeChannels(ULONG_PTR	channels,	int	zeroOthers=1);

Remarks:

This	method	is	used	internally	in	data	flow	evaluation	in	the	pipeline.

Operators:

Prototype:
PolyShape&	operator=(PolyShape&	from);

Remarks:
Assignment	operator.

Prototype:
PolyShape&	operator=(BezierShape&	from);

Remarks:
Assignment	operator.	Note	that	this	operator	does	not	offer	as	much	control	as
calling	the	method	on	the	BezierShape	itself	named	MakePolyShape().
That	version	allows	you	to	specify	the	number	of	steps	and	an	optimize
parameter.	These	options	are	not	available	on	this	simple	assignment	operator.

Class	PolyLine
See	Also:	Class	PolyPt,	Class	PolyShape.
class	PolyLine

Description:
This	class	describes	a	single	polygon	in	a	PolyShape	using	linear	segments.	All
methods	of	this	class	are	implemented	by	the	system.

Method	Groups:
The	following	hyperlinks	take	you	to	the	start	of	groups	of	related	methods
within	the	class:
Constructors	/	Destructor	/	Init()	/	GetMatID()
Opened/Closed/Self	Intersects/Clockwise/Surrounds
Point/SetNumPts()/CurveLength()
SpliceLine()	/	HitsSegment()	/	HitsPolyLine()
Vertex	/	Segment	counts
Append	/	Insert	/	Delete	/	Reverse()
Bounding	Box	/	InvalidateGeomCache()
Render	/	Select	/	Snap	/	Transform
Interpolated	Points	/	Tangent	Vectors
Capping	Methods
Dump()
Operators

Data	Members:
public:
int	numPts;
The	number	of	points	in	the	polyline.
PolyPt	*pts;
The	points	themselves.
DWORD	flags;
PolyLine	flags.	One	or	more	of	the	following	values:
POLYLINE_CLOSED
Indicates	the	polyline	is	closed.
POLYLINE_NO_SELF_INT

Ignore	self-intersections.	This	is	used	internally	in	the	patch	capping	to
indicate	that	this	line	always	returns	FALSE	from	the	self	intersects	test.
Normally	this	should	not	be	set.

Box3	bdgBox;
The	bounding	box	of	the	polyline.
float	cachedLength;
The	length	of	the	polyline.
float	*lengths;
Cached	lengths	for	each	point
float	*percents;
Cached	percentages	for	each	point
BOOL	cacheValid;
Indicates	if	the	cache	is	valid.

Methods:

Constructors	/	Destructor	/	Init	/	GetMatID()

Prototype:
PolyLine();

Remarks:
Constructor.	The	number	of	points	is	set	to	zero,	the	points	array	is	set	to
NULL,	the	flags	are	set	to	0,	the	cache	validity	is	set	to	FALSE	and	the
bounding	box	is	set	to	empty.

Prototype:
PolyLine(PolyLine&	from);

Remarks:
Constructor.	The	PolyLine	is	initialized	using	from.

Prototype:
~PolyLine();

Remarks:

Destructor.	The	array	of	points	is	freed.

Prototype:
void	Init();

Remarks:
Initializes	the	PolyLine.	The	pts	array	is	freed,	the	number	of	points	is	set	to
0,	and	the	cache	validity	is	set	to	FALSE.

Prototype:
MtlID	GetMatID(int	segment);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Returns	the	material	ID	for	the	specified	segment.

Parameters:
int	segment
The	zero	based	index	of	the	segment.

Opened	/	Closed	/	Self	Intersects	/	Clockwise	/	Surrounds	Point	/
SetNumPts()

Prototype:
void	Close();

Remarks:
Call	this	method	to	indicate	the	polyline	is	closed.

Prototype:
BOOL	IsClosed();

Remarks:
Returns	TRUE	if	the	polyline	is	closed;	otherwise	FALSE.

Prototype:
void	Open();

Remarks:
Call	this	method	to	indicate	the	polyline	is	open.

Prototype:
BOOL	IsOpen();

Remarks:
Returns	TRUE	if	the	polyline	is	open;	otherwise	FALSE.

Prototype:
void	SetNoSelfInt();

Remarks:
Call	this	method	to	set	the	self	intersects	flag.	This	is	used	in	the	patch
capping	to	indicate	that	this	line	always	returns	FALSE	from	the	self	intersects
test.	Normally	this	should	not	be	set.

Prototype:
BOOL	IsNoSelfInt()

Remarks:
Returns	TRUE	if	the	no	self	intersect	flag	is	set;	otherwise	FALSE.

Prototype:
BOOL	IsClockWise();

Remarks:
Returns	TRUE	if	the	polyline	is	clockwise	in	the	XY	plane	(it	ignores	Z);
otherwise	FALSE.	If	the	PolyLine	self	intersects,	the	results	from	this
method	are	meaningless.

Prototype:
BOOL	SelfIntersects(BOOL	findAll	=	FALSE,
IntersectionCallback3D	*cb	=	NULL);

Remarks:
Returns	TRUE	if	the	polyline	intersects	itself	in	the	XY	plane	(it	ignores	Z);

otherwise	FALSE.
Parameters:
BOOL	findAll	=	FALSE
TRUE	to	find	all	self	intersections.	FALSE	to	find	only	the	first	self
intersection.
IntersectionCallback3D	*cb	=	NULL
A	pointer	to	an	IntersectionCallback3D	class.

Prototype:
float	CurveLength();

Remarks:
Returns	the	length	of	the	PolyLine.

Prototype:
BOOL	SurroundsPoint(Point2	&point);

Remarks:
Returns	TRUE	if	the	specified	point	is	surrounded	(contained	within)	this
spline.	This	method	should	only	be	called	on	closed	PolyLines.

Parameters:
Point2	&point
The	point	to	check.

Vertex	/	Segment	counts

Prototype:
int	Verts()

Remarks:
Returns	the	number	of	vertices	(points)	in	the	polyline.

Prototype:
int	Segments();

Remarks:

Returns	the	number	of	segments	(edges	between	vertices)	of	the	polyline.

Prototype:
BOOL	SetNumPts(int	count,	BOOL	keep	=	TRUE);

Remarks:
Sets	the	number	of	points	in	the	polyline.

Parameters:
int	count
The	number	to	set.
BOOL	keep	=	TRUE
If	TRUE	any	existing	points	are	copied	to	the	new	array;	otherwise	they	are
freed.

Return	Value:
TRUE	if	the	number	of	points	was	set;	otherwise	FALSE.

Append()	/	Insert()	/	Delete()	/	Reverse()

Prototype:
void	Append(PolyPt&	p);

Remarks:
Appends	the	specified	point	to	the	polyline.	This	adds	the	point	to	the	end	of
the	points	list.

Parameters:
PolyPt&	p
The	point	to	append.

Prototype:
void	Insert(int	where,	PolyPt&	p);

Remarks:
Inserts	the	specified	point	at	the	location	passed.

Parameters:
int	where

The	pts	array	index	indicating	where	to	insert	the	point.
PolyPt&	p
The	point	to	insert.

Prototype:
void	Delete(int	where);

Remarks:
Deletes	the	specified	point.

Parameters:
int	where
The	pts	array	index	indicating	which	point	to	delete.

Prototype:
void	Reverse(BOOL	keepZero=FALSE);

Remarks:
Reverses	the	order	of	the	points	in	the	polyline.

Parameters:
BOOL	keepZero=FALSE
This	should	normally	be	passed	as	TRUE.	If	TRUE,	and	the	polyline	is	closed,
this	method	will	make	sure	that	vertex	zero	is	the	same	on	the	reversed	version
as	on	the	non-reversed	version.	Otherwise	if	passed	as	FALSE	the	last	vertex
becomes	the	first	vertex,	and	the	first	vertex	becomes	the	last.	This	is	an
important	distinction	for	the	lofter	because	it	always	wants	vertex	zero	to	be	in
the	same	place.

Bounding	Box	/	InvalidateGeomCache()

Prototype:
void	BuildBoundingBox();

Remarks:
Computes	the	bounding	box	of	the	polyline.	The	result	is	stored	in	the
bdgBox	data	member.

Prototype:
Box3	GetBoundingBox(Matrix3	*tm=NULL);

Remarks:
Returns	the	bound	box	of	the	polyline.	The	optional	TM	allows	the	box	to	be
calculated	in	any	space.

Parameters:
Matrix3	*tm=NULL
The	points	of	the	polyline	are	multiplied	by	this	matrix	before	the	box
computation.

Prototype:
void	InvalidateGeomCache();

Remarks:
This	method	makes	sure	the	PolyLine	has	flushed	out	any	cached	data	it	may
have	had.	This	resets	the	bounding	box	size	and	sets	the	cache	validity	to
FALSE.	This	should	be	called	when	any	points	have	been	changed	in	the
polyline.

Render	/	Select	/	Snap	/	Transform

Prototype:
void	Render(GraphicsWindow	*gw,	Material	*ma,	RECT	*rp,	int
compFlags,	int	numMat);

Remarks:
This	method	is	used	internally.

Prototype:
void	Render(GraphicsWindow	*gw,	Material	*ma,	in	numMat,
BOOL	colorSegs,	BitArray	&segsel);

Remarks:
This	method	is	used	internally.

Prototype:

BOOL	Select(GraphicsWindow	*gw,	Material	*ma,	HitRegion	*hr,
int	abortOnHit	=	FALSE);

Remarks:
This	method	is	used	internally.

Prototype:
void	Snap(GraphicsWindow	*gw,	SnapInfo	*snap,	IPoint2	*p,
Matrix3	&tm,	DWORD	flags);

Remarks:
This	method	is	used	internally.

Prototype:
void	Transform(Matrix3	&tm);

Remarks:
Transforms	the	points	of	the	polyline	by	the	specified	matrix.

Parameters:
Matrix3	&tm
The	matrix	to	transform	the	points.

Dump()

Prototype:
void	Dump(TCHAR	*title	=	NULL);

Remarks:
You	may	call	this	method	to	dump	the	polyline	structure	via	DebugPrint().
See	Debugging.

Parameters:
TCHAR	*title	=	NULL
This	title	string	is	displayed	using	a	DebugPrint()	before	the	rest	of	the	data.

Splice()	/	HitsSegment()	/	HitsPolyLine()

Prototype:
void	SpliceLine(int	where,	PolyLine	&source,	int	splicePoint);

Remarks:
This	method	is	used	internally	as	part	of	the	capping	mechanism	and	should
not	be	used.

Prototype:
BOOL	HitsSegment(Point2	p1,	Point2	p2,	BOOL	findAll=FALSE,
IntersectionCallback3D	*cb	=	NULL);

Remarks:
Returns	TRUE	if	the	line	segment	defined	between	points	p1	and	p2
intersects	this	PolyLine;	otherwise	FALSE.

Parameters:
Point2	p1,	Point2	p2
The	endpoints	of	the	line	to	check.
BOOL	findAll=FALSE
TRUE	to	find	all	intersections.	FALSE	to	find	only	the	first	intersection.
IntersectionCallBack3D	*cb	=	NULL
A	pointer	to	an	IntersectionCallback3D	class.

Prototype:
BOOL	HitsPolyLine(PolyLine	&line,	BOOL	findAll=FALSE,
IntersectionCallback3D	*cb	=	NULL);

Remarks:
Returns	TRUE	if	the	specified	PolyLine	intersects	this	PolyLine;	otherwise
FALSE.

Parameters:
PolyLine	&line
The	PolyLine	to	check
BOOL	findAll=FALSE
TRUE	to	find	all	intersections.	FALSE	to	find	only	the	first	intersection.
IntersectionCallBack3D	*cb	=	NULL

A	pointer	to	an	IntersectionCallback3D	class.

Capping	Methods

Prototype:
int	Cap3DS(CapVert	*capverts,	MeshCapInfo	&capInfo,	DWORD
options	=	0);

Remarks:
This	method	is	used	internally.

Interpolated	Points	/	Tangent	Vectors

Prototype:
Point3	InterpPiece3D(int	segment,	float	t);

Remarks:
This	method	returns	a	point	interpolated	on	a	segment	between	two	points.

Parameters:
int	segment
The	index	of	the	segment	to	interpolate.
float	t
A	value	in	the	range	of	0.0	to	1.0.	0	is	the	first	point	and	1	is	the	second	point.

Return	Value:
The	interpolated	point.

Prototype:
Point3	InterpCurve3D(float	u,	int
ptype=POLYSHP_INTERP_SIMPLE);

Remarks:
This	method	returns	a	point	interpolated	on	the	entire	curve.	This	method
returns	a	point	but	you	don't	know	which	segment	the	point	falls	on.

Parameters:
float	u
A	value	in	the	range	of	0.0	to	1.0	for	the	entire	curve.

int	ptype=POLYSHP_INTERP_SIMPLE
This	parameter	is	available	in	release	2.0	and	later	only.
The	parameter	type	for	interpolation.	The	default	value	is	based	on	segments
(rather	than	the	entire	curve).	See	List	of	Parameter	Types	for	PolyLine
Interpolation.

Return	Value:
The	interpolated	point.

Prototype:
Point3	TangentPiece3D(int	segment,	float	t);

Remarks:
This	method	returns	a	tangent	vector	interpolated	on	a	segment	between	two
points.

Parameters:
int	segment
The	index	of	the	segment.
float	t
A	value	in	the	range	of	0.0	to	1.0.	0	is	the	first	point	and	1	is	the	second	point.

Return	Value:
The	tangent	vector.

Prototype:
Point3	TangentCurve3D(float	u,	int
ptype=POLYSHP_INTERP_SIMPLE);

Remarks:
This	method	returns	a	tangent	vector	interpolated	on	the	entire	curve.

Parameters:
float	u
A	value	in	the	range	of	0.0	to	1.0	for	the	entire	curve.
int	ptype=POLYSHP_INTERP_SIMPLE
This	parameter	is	available	in	release	2.0	and	later	only.
The	parameter	type	for	interpolation.	The	default	value	is	based	on	segments

(rather	than	the	entire	curve).	See	List	of	Parameter	Types	for	PolyLine
Interpolation.

Return	Value:
The	tangent	vector.

Operators:

Prototype:
PolyLine&	operator=(PolyLine&	from);

Remarks:
Assignment	operator.

Prototype:
PolyLine&	operator=(Spline3D&	from);

Remarks:
Assignment	operator.	This	generates	a	polyline	from	the	spline.

Prototype:
PolyPt&	operator[](int	index);

Remarks:
Array	access	operator.	Returns	the	specified	point	in	the	pts	array.

Class	INodeTab
See	Also:	Class	Interface,	Template	Class	Tab,	Class	INode.
class	INodeTab	:	public	Tab<INode*>;

Description:
This	class	is	used	to	hold	a	list	of	INode	pointers.	Methods	of	the	template	class
Tab	are	used	to	manipulate	the	table.

Class	NameEnumCallback
See	Also:	Class	Animatable,	Class	NameTab.
class	NameEnumCallback

Description:
This	class	is	the	callback	object	passed	to	Interface::EnumAuxFiles()	and	to
Animatable::EnumAuxFiles().	A	developer	derives	a	class	from	this	class
and	implements	the	RecordName()	method	to	store	each	name	as	it's	passed	to
it.	At	the	end	of	the	EnumAuxFiles()	processing,	the	table	of	names	may	be
used.	See	Class	NameTab	for	help	storing	the	names.

Methods:

Prototype:
virtual	void	RecordName(TCHAR	*name)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	record	the	name	passed.

Parameters:
TCHAR	*name
The	name	to	store.

List	of	EnumAuxFiles	Flags
See	Also:	Class	Interface,	Class	Animatable.
One	or	more	of	the	following	values:
FILE_ENUM_INACTIVE
Enumerate	inactive	files.	Inactive	files	are	those	that	aren't	being	used
currently.	For	instance,	a	texture	map	file	that	is	present,	but	not	activated
in	the	materials	editor	user	interface,	is	considered	inactive.
FILE_ENUM_VP
Enumerate	video	post	files.
FILE_ENUM_RENDER
Enumerate	render	files.
FILE_ENUM_ALL
Enumerate	ALL	files	(this	is	the	same	as:

FILE_ENUM_INACTIVE|FILE_ENUM_VP|FILE_ENUM_RENDER
FILE_ENUM_MISSING_ONLY
Enumerate	missing	files	only.
FILE_ENUM_1STSUB_MISSING
Just	enumerate	the	first	file	named	by	an	IFL	(Image	File	List)	if	missing.
FILE_ENUM_DONT_RECURSE
Don't	enumerate	references.
FILE_ENUM_CHECK_AWORK1
Don't	enumerate	things	with	flag	A_WORK1	set.

Class	TimeChangeCallback
See	Also:	Class	Interface.
class	TimeChangeCallback

Description:
A	callback	object	passed	to	Interface::RegisterTimeChangeCallback().
The	method	TimeChange()is	called	every	time	the	user	changes	the	frame
slider	allowing	the	plug-in	to	respond.

Methods:

Prototype:
virtual	void	TimeChanged(TimeValue	t)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	every	time	the	user	changes	the	frame	slider.

Parameters:
TimeValue	t
The	time	the	user	has	moved	the	frame	slider	to.

See	Also:	Methods	RegisterTimeChangeCallback()	and
UnRegisterTimeChangeCallback()	in	Class	Interface.

Class	ViewportDisplayCallback
See	Also:	Class	Interface,	Class	ViewExp,	Data	Types.
class	ViewportDisplayCallback

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	is	a	callback	object	that	enables	plug-ins	that	aren't	actually	objects
(such	as	utility	plug-ins)	to	draw	in	the	3ds	max	viewports.	See	the	methods	in
class	Interface	that	register	and	unregister	this	callback	object:
Inteface::RegisterViewportDisplayCallback(),	and
Interface::UnRegisterViewportDisplayCallback()
Also	see	the	method
Interface::NotifyViewportDisplayCallbackChanged().

Methods:

Prototype:
virtual	void	Display(TimeValue	t,	ViewExp	*vpt,	int	flags)=0;

Remarks:
This	method	is	called	to	allow	the	plug-in	to	draw	in	the	viewports.

Parameters:
TimeValue	t
The	current	time	when	this	method	is	called.
ViewExp	*vpt
An	interface	into	the	viewport.
int	flags
These	flags	are	used	internally.

Prototype:
virtual	void	GetViewportRect(TimeValue	t,	ViewExp	*vpt,	Rect
*rect)=0;

Remarks:
Retrieves	the	dimensions	of	the	specified	viewport	given	an	ViewExp

interface	to	it.

Parameters:
TimeValue	t
The	time	to	get	the	viewport	rectangle.
ViewExp	*vpt
Specifies	which	viewport
Rect	*rect
The	rectangle	is	returned	here.

Prototype:
virtual	BOOL	Foreground()=0;

Remarks:
This	method	should	return	TRUE	if	the	object	changes	a	lot	or	FALSE	if	it
doesn't	change	very	much.	This	method	relates	to	the	foreground/background
display	system	used	by	3ds	max.	Basically,	items	that	change	a	lot	are	placed
in	the	foreground	buffer.	Items	that	don't	change	much	are	placed	in	the
background	buffer	and	simply	biltted	to	the	dispaly.	See	the	Advanced	Topics
section	on	Foreground	/	Background	Planes	for	more	details.	Most	plug-ins
can	simply	return	TRUE	because	they	are	not	likely	to	be	very	heavyweight
objects	(they	are	usually	just	a	gizmo	or	apparatus	image)	and	can	simply	go
into	the	foreground.	On	the	other	hande,	some	items,	for	instance	the	3ds	max
home	grid,	don't	change	and	can	always	go	into	the	background.	The	home
grid	only	changes	when	the	view	direction	is	changed	in	which	case
everything	is	redrawn.

Class	ExitMAXCallback
See	Also:	Class	Interface,	Structure	NotifyInfo.
class	ExitMAXCallback

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	is	a	callback	object	that	will	get	called	before	the	program	exits.

All	methods	of	this	class	are	implemented	by	the	plug-in.

Methods:

Prototype:
virtual	BOOL	Exit(HWND	hWnd)=0;

Remarks:
This	method	is	called	when	3ds	max	is	about	to	exit.

Parameters:
HWND	hWnd
The	main	3ds	max	window	handle.

Return	Value:
TRUE	to	exit;	FALSE	to	abort	the	exit	and	remain	in	3ds	max.

Class	AxisChangeCallback
See	Also:	Class	Interface.
class	AxisChangeCallback

Description:
This	is	the	callback	used	with	Interface::RegisterAxisChangeCallback().

Methods:

Prototype:
virtual	void	proc(Interface	*ip)=0;

Remarks:
This	callback	object	will	be	notified	any	time	the	user	changes	the	reference
coordinate	system	by:
	Changing	the	transform	coordinate	system	drop-down	menu.
	Changing	the	state	of	the	transform	center	fly-off.
	Changing	X,	Y,	Z,	XY,	YZ,	ZX	constraint	buttons/fly-off.
	Using	an	accelerator	or	anything	else	that	changes	the	above.

Parameters:
Interface	*ip
A	pointer	available	for	calling	methods	provided	by	3ds	max.

Class	RedrawViewsCallback
See	Also:	Class	Interface.
class	RedrawViewsCallback

Description:
This	is	the	callback	used	with
Interface::RegisterRedrawViewsCallback().

Methods:

Prototype:
virtual	void	proc(Interface	*ip)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	will	be	called	after	all	the	viewports	have	completed	drawing.

Parameters:
Interface	*ip
A	pointer	for	calling	functions	available	in	3ds	max.

Class	SelectFilterCallback
See	Also:	Class	InterfaceServer,	Class	Interface.
class	SelectFilterCallback	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	a	call-back	class	for	the	selection	filter	drop	down	in	the	tab	panel.	This
allows	plug-ins	to	add	additional	filters	to	this	list.

Methods:
public:

Prototype:
virtual	TCHAR*	GetName()=0;

Remarks:
Returns	the	name	of	the	filter	that	will	appear	in	the	drop	down	list	in	the	tab
panel.

Prototype:
virtual	BOOL	IsFiltered(SClass_ID	sid,	Class_ID	cid,	INode
*node)	=	0;

Remarks:
This	is	the	method	that	does	the	filtering	of	the	node.	It	returns	TRUE	if	the
node	may	be	selected;	FALSE	if	it	is	not	selectable.

Parameters:
SClass_ID	sid
The	Super	Class	ID	of	the	node.
Class_ID	cid
The	Class	ID	of	the	node.
INode	*node
Points	to	the	node	to	check.

Class	DisplayFilterCallback
See	Also:	Class	Interface.
class	DisplayFilterCallback	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	a	call-back	class	for	the	display	filter	list	in	the	Hide	by	Category	rollup
of	the	Display	command	panel.	This	allows	plug-ins	to	add	additional	filters	to
this	list.

Data	Members:
public:
BOOL	on;
Determines	if	the	callback	is	on	or	off.	If	a	callback	is	selected	in	the	list	in	the
Display	Panel	list	it	is	on;	else	it's	off.

Methods:
public:

Prototype:
virtual	TCHAR*	GetName()=0;

Remarks:
Returns	the	name	that	will	appear	in	the	drop	down	list	in	the	display	panel
when	the	callback	is	registered.

Prototype:
virtual	BOOL	IsVisible(SClass_ID	sid,	Class_ID	cid,	INode
*node)=0;

Remarks:
This	is	the	method	that	does	the	filtering	of	the	node.	It	returns	TRUE	if	the
node	is	visible;	FALSE	if	it	is	not	visible.

Parameters:
SClass_ID	sid
The	Super	Class	ID	of	the	node.

Class_ID	cid
The	Class	ID	of	the	node.
INode	*node
Points	to	the	node	to	check.

List	of	Standard	Command	Modes
See	Also:	Class	Interface,	Command	Modes	and	Mouse	Procs,	Class	Command
Mode.
One	of	the	following	values:

XForm	Command	Modes
CID_OBJMOVE
CID_OBJROTATE
CID_OBJSCALE
CID_OBJUSCALE
CID_OBJSQUASH
CID_OBJSELECT

Hierarchy	/	Space	warp	Command	Modes
CID_LINK
CID_BINDWSM

Viewport	Command	Modes
CID_ZOOMVIEW
CID_ZOOMREGION
CID_PANVIEW
CID_ROTATEVIEW
CID_ZOOMALL
CID_RNDREGION

Camera	Command	Modes
CID_CAMFOV
CID_CAMDOLLY
CID_CAMPERSP
CID_CAMTRUCK
CID_CAMROTATE
CID_CAMROLL

Class	EventUser
See	Also:	Class	EventRouter,	Class	Interface.
class	EventUser

Description:
This	is	a	generic	event	notification	system.	The	only	two	places	this	is	currently
used	are	for	when	the	Delete	key	is	pressed	or	the	Delete	menu	item	is	selected,
and	when	the	Backspace	key	is	pressed.	The	usage	can	be	seen	in
\MAXSDK\SAMPLES\MODIFIERS\EDITPAT.CPP,	where	the	Edit
Patch	modifier	sets	up	for	notification	of	Delete	operations.	It	is	also	used	in
EDITSPL.CPP	where	it	deals	with	deletion	of	selected	items.
To	use	it:
1	Create	an	EventUser	object.
2	Register	the	EventUser	object	with	the	appropriate	router.
3	The	EventRouter	will	call	the	EventUser's	Notify()	method	when	the	event
occurs.

4	When	you're	done	with	the	EventUser	object,	call	the	EventRouter's
UnRegister()	method.	This	will	delete	the	EventUser	from	the	router's
notification	system.

5	If	your	code	is	part	of	a	window	proc,	call	the	router's	Register	and
UnRegister	methods	when	the	window	receives	WM_ACTIVATE	messages.
This	will	properly	uncouple	the	notification	system	when	the	window	is
deactivated.

Methods:

Prototype:
virtual	void	Notify()=0;

Remarks:
Implemented	by	the	Plug-In.
This	is	the	proc	called	by	the	EventRouter	when	the	event	occurs.

Class	ArcballDialog
See	Also:	Class	ArcballCallback.
class	ArcballDialog

Description:
This	class	is	available	in	release	2.0	and	later	only.
An	instace	of	this	class	is	created	when	the	global	function	ArcballDialog
*CreateArcballDialog()	is	called.	The	DeleteThis()	method	of	this	class	is
used	to	free	the	memory	allocated	by	CreateArcballDialog().	Call	it	when
you	are	done	using	the	dialog	box.

Methods:

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
This	method	is	called	to	delete	the	instance	of	the	class.

Class	TrackViewPick
See	Also:	Class	ReferenceTarget,	Class	Interface	(see	the	method
TrackViewPickDlg).

Description:
This	class	stores	the	result	of	a	selection	from	the	Track	View	Pick	dialog.

Data	Members:
ReferenceTarget	*anim;
The	item	the	user	picked.
ReferenceTarget	*client;
The	owner	of	the	anim.
int	subNum;
Sub-animatable	number	of	the	anim.

Class	TrackViewFilter
See	Also:	Class	Animatable.
class	TrackViewFilter	:	public	InterfaceServer

Description:
This	is	the	callback	object	used	to	filter	selections	in	the	track	view.

Methods:

Prototype:
virtual	BOOL	proc(Animatable	*anim,	Animatable	*client,int
subNum)=0;

Remarks:
Implemented	by	the	Plug-In.
This	is	the	callback	object	proc	used	to	filter	selections	in	the	track	view.

Parameters:
Animatable	*anim
The	item	the	user	picked.
Animatable	*client
The	owner	of	the	anim.
int	subNum
The	sub-animatable	number	of	the	anim.

Return	Value:
Return	TRUE	to	accept	the	anim	as	selectable;	otherwise	FALSE.

Prototype:
virtual	BOOL	TextColor(Animatable	*anim,	Animatable	*client,
int	subNum,	COLORREF&	color);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	the	filter	to	control	the	color	of	the	label	text	used	for	the
anim.

Parameters:

Animatable	*anim
The	item	the	user	picked.
Animatable	*client
The	owner	of	the	anim.
int	subNum
The	sub-animatable	number	of	the	anim.
COLORREF&	color
The	color	for	the	label	text.	See	COLORREF-DWORD	format.

Return	Value:
TRUE	for	the	Treeview	to	use	the	color	in	the	color	argument,	FALSE	to
ignore	that	color	and	use	the	system	default.

Default	Implementation:
{	return	FALSE;	}

Class	ExclList
See	Also:	Class	INode,	Class	ILoad,	Class	ISave,	Class	IMergeManager
class	ExclList	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	an	exclusion	list	and	is	a	direct	parallel	to	the	NameTab,
and	converting	from	using	one	to	the	other	is	fairly	simple.

Methods:
public:

Prototype:
ExclList();

Remarks:
Constructor.

Prototype:
void	SetFlag(ULONG	f,	BOOL	b=1);

Remarks:
Sets	the	specified	flag	to	the	specified	value.

Parameters:
ULONG	f
The	flag(s)	to	set.	One	or	more	of	the	following	values:
NT_INCLUDE
This	bit	is	used	to	indicate	"Include"	mode.
NT_AFFECT_ILLUM
This	bit	is	used	to	indicate	the	"Illumination"	check	box	in	the	exclusion	list
dialog.
NT_AFFECT_SHADOWCAST
This	bit	is	used	to	indicate	the	"Shadow	Casting"	check	box	in	the
exclusion	list	dialog.

BOOL	b=1

The	value	to	set.

Prototype:
BOOL	TestFlag(ULONG	f);

Remarks:
Returns	TRUE	if	the	specified	flag(s)	are	set;	otherwise	FALSE.

Parameters:
ULONG	f
The	flag(s)	to	set.	One	or	more	of	the	following	values:
NT_INCLUDE
This	bit	is	used	to	indicate	"Include"	mode.
NT_AFFECT_ILLUM
This	bit	is	used	to	indicate	the	"Illumination"	check	box	in	the	exclusion	list
dialog.
NT_AFFECT_SHADOWCAST
This	bit	is	used	to	indicate	the	"Shadow	Casting"	check	box	in	the
exclusion	list	dialog.

Prototype:
int	Count();

Remarks:
This	method	returns	the	number	of	handles	in	the	table.

Prototype:
void	Set(int	i,	INode	*node);

Remarks:
This	method	allows	you	to	set	a	specified	entry	in	the	table	to	the	specified
node.

Parameters:
int	i
The	index	in	the	table.
INode	*node

The	node	to	set.

Prototype:
int	FindNode(INode	*node);

Remarks:
Returns	the	index	of	the	node	passed;	otherwise	returns	-1.

Parameters:
INode	*node
The	node	to	find.

Prototype:
int	AddNode(INode	*node);

Remarks:
Appends	the	specified	node	to	the	end	of	the	list.

Parameters:
INode	*node
The	node	to	add.

Return	Value:
Returns	the	number	of	items	in	the	list	prior	to	appending.

Prototype:
void	RemoveNode(INode	*node);

Remarks:
Removes	thes	node	from	the	list.

Parameters:
INode	*node
The	node	to	remove.

Prototype:
void	RemoveNode(int	i);

Remarks:

Removes	the	'i-th'	name	from	the	list.
Parameters:
int	i
Specifies	the	index	of	the	node	to	remove.

Prototype:
void	SetSize(int	num);

Remarks:
Sets	the	size	of	the	list.	If	the	new	size	is	smaller	than	the	current	size	entries
are	deleted.

Parameters:
int	num
Specifies	the	size	of	the	list.

Prototype:
SetCount(int	num);

Remarks:
Sets	the	size	of	the	list.	If	the	new	size	is	smaller	than	the	current	size	entries
are	deleted.

Parameters:
int	num
Specifies	the	size	of	the	list.

Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
Loads	this	ExclList	from	disk.

Parameters:
ILoad	*iload
This	class	provides	methods	to	load	data	from	disk.

Return	Value:
See	Also:	List	of	IO	Results.

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
Saves	this	ExclList	to	disk.

Parameters:
ISave	*isave
This	class	provides	methods	to	save	data	to	disk.

Return	Value:
See	Also:	List	of	IO	Results.

Prototype:
void	OnMerge(IMergeManager*	imm);

Remarks:
This	method	takes	care	of	setting	the	merge	manager	interface.

Parameters:
IMergeManager*	imm
A	pointer	to	the	merge	manager	interface.

Prototype:
INode*	operator[]	(const	int	i);

Remarks:
Index	operator.

Prototype:
ExclList&	operator=(const	ExclList&	e);

Remarks:
Assignment	operator.

Prototype:
ExclList&	operator=(const	NameTab&	n);

Remarks:

Assignment	operator.

List	of	Material	Browser	Flags
One	or	more	of	the	following	values:
BROWSE_MATSONLY
Materials	only.
BROWSE_MAPSONLY
Maps	only.
BROWSE_INCNONE
Include	'None'	as	an	option.
BROWSE_INSTANCEONLY
Only	allow	instances,	not	copies.

Class	HitByNameDlgCallback
See	Also:	Class	Interface.
class	HitByNameDlgCallback

Description:
This	is	the	callback	object	used	with	Interface::DoHitByNameDialog().

Methods:

Prototype:
virtual	TCHAR	*dialogTitle()

Remarks:
Implemented	by	the	Plug-In.
Returns	the	title	string	displayed	in	the	dialog.

Default	Implementation:
{	return	_T("");	}

Prototype:
virtual	TCHAR	*buttonText()

Remarks:
Implemented	by	the	Plug-In.
Returns	the	text	displayed	in	the	'Select'	or	'Pick'	button.

Default	Implementation:
{	return	_T("");	}

Prototype:
virtual	BOOL	singleSelect()

Remarks:
Implemented	by	the	Plug-In.
Returns	TRUE	if	the	user	may	only	make	a	single	selection	in	the	list	at	one
time;	otherwise	FALSE.

Default	Implementation:

{	return	FALSE;	}

Prototype:
virtual	BOOL	useFilter()

Remarks:
Implemented	by	the	Plug-In.
This	gives	the	callback	the	opportunity	to	filter	out	items	from	the	list.	This	is
called	before	the	dialog	is	presented.	It	returns	TRUE	if	the	filter()	method
(below)	should	be	called;	otherwise	FALSE.

Default	Implementation:
{	return	TRUE;	}

Prototype:
virtual	int	filter(INode	*node)

Remarks:
Implemented	by	the	Plug-In.
This	method	will	be	called	if	useFilter()	above	returned	TRUE.	This	gives
the	callback	the	chance	to	filter	out	items	from	the	list	before	they	are
presented	to	the	user	in	the	dialog.	This	is	called	once	for	each	node	that
would	otherwise	be	presented.	Return	nonzero	to	accept	the	item	and	zero	to
skip	it.

Parameters:
INode	*node
The	node	to	check	for	inclusion	in	the	list.

Return	Value:
Nonzero	to	accept	the	item	and	zero	to	skip	it.

Default	Implementation:
{	return	TRUE;	}

Prototype:
virtual	BOOL	useProc()

Remarks:

Implemented	by	the	Plug-In.
Normally,	when	the	user	selects	OK	from	the	dialog,	the	system	selects	all	the
chosen	nodes	in	the	scene.	At	times	a	developer	may	want	to	do	something
other	than	select	the	chosen	nodes.	If	this	method	returns	TRUE	then	the
nodes	in	the	list	will	not	be	selected,	but	the	proc()	method	is	called	instead
(see	below).	If	this	method	returns	FALSE,	then	the	nodes	are	selected	in	the
scene	and	proc()	is	not	called.

Default	Implementation:
{	return	TRUE;	}

Prototype:
virtual	void	proc(INodeTab	&nodeTab)

Remarks:
Implemented	by	the	Plug-In.
This	allows	the	plug-in	to	process	the	nodes	chosen	from	the	dialog	in	any
manner.	For	example	if	the	developer	wanted	to	delete	the	nodes	chosen	using
this	dialog,	they	would	implement	useProc()	to	return	TRUE	and	this	method
to	delete	all	the	nodes	in	the	table	passed.

Parameters:
INodeTab	&nodeTab
A	table	of	those	nodes	selected	by	the	user.	See	Template	Class	Tab.

Default	Implementation:
{}

Prototype:
virtual	BOOL	doCustomHilite()

Remarks:
Implemented	by	the	Plug-In.
Normally,	when	the	dialog	is	entered,	the	nodes	in	the	scene	that	are	selected
are	highlighted	in	the	list.	If	this	method	returns	TRUE,	the	developer	may
control	which	items	are	hightlighted	by	implementing	doHilite()	(see	below).
If	this	method	returns	FALSE	the	selected	nodes	will	have	their	names
highlighted	in	the	list.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	BOOL	doHilite(INode	*node)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	for	each	item	in	the	list	if	doCustomHilite()	returns
TRUE.	This	method	returns	TRUE	or	FALSE	to	control	if	each	item	is
highlighted.

Parameters:
INode	*node
The	node	to	check.

Return	Value:
TRUE	to	highlight	the	node	in	the	list;	FALSE	to	not	highlight	it.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	BOOL	showHiddenAndFrozen();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	defaults	to	returning	FALSE,	which	means	that	hidden	and	frozen	objects
will	not	be	included	in	the	select	by	name	dialog	list.	If	this	method	is
overridden	to	return	TRUE,	then	hidden	and	frozen	nodes	will	be	sent	through
the	user-supplied	filter	as	in	version	1.x.	(Note	that,	apart	from	Unhide	by
Name	and	Unfreeze	by	Name,	the	new	default	behavior	is	likely	to	be	correct
for	all	uses	of	this	class.)

Default	Implementation:
{	return	FALSE;	}

Class	SpaceArrayCallback
See	Also:	Class	Interface,	Class	ShapeObject,	Class	Spline3D,	Class	Point3.
class	SpaceArrayCallback

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	callback	object	for	the	method
Interface::DoSpaceArrayDialog(SpaceArrayCallback
*sacb=NULL)=0
This	is	the	method	which	brings	up	the	Spacing	tool.	This	lets	the	user	distribute
objects	based	on	the	current	selection	along	a	path	defined	by	a	spline	or	a	pair
of	points.
The	callback	is	mostly	for	use	for	plug-ins	that	need	to	use	the	spacing	tool	as	a
way	of	generating	spacing	information.	If	one	wants	to	customize	the	default
behaviour	of	the	dialog,	they	derive	a	class	from	this	one	and	implement	the
virtual	methods.	The	non-virtuals	simply	provide	access	to	the	spacing
information.	This	is	both	for	setting	the	defaults	before	calling	the	spacing	tool
as	well	as	getting	out	the	information	after	using	the	spacing	tool.

Methods:
public:

Prototype:
SpaceArrayCallback();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
path	=	NULL;	start	=	end	=	space	=	0.0f;	count	=	1;	oType	=
NODE_CPY;	sType	=	SPACE_CENTER;	follow	=	false;	context
=	CTXT_FREE;	width	=	0.0f;	countLimit	=	INT_MAX;

Prototype:
virtual	~SpaceArrayCallback();

Remarks:
Destructor.

Prototype:
virtual	bool	isModal();

Remarks:
Implemented	by	the	Plug-in.
If	this	method	returns	false,	the	dialog	is	presented	as	a	modeless	dialog.

Default	Implementation:
{	return	true;	}

Prototype:
virtual	bool	doPickPath();

Remarks:
Implemented	by	the	Plug-in.
If	this	method	returns	true,	the	path	picking	buttons	are	turned	on.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	TCHAR	*dialogTitle();

Remarks:
Implemented	by	the	Plug-in.
Returns	the	title	for	the	dialog	(e.g.	Space	Array	Tool).

Default	Implementation:
{	return	_T("");	}

Prototype:
virtual	TCHAR	*startMessage();

Remarks:
Implemented	by	the	Plug-in.
Returns	the	message	to	be	displayed	in	the	static	display	right	after	the	dialog
comes	up.

Default	Implementation:

{	return	_T("");	}

Prototype:
virtual	TCHAR	*buttonText();

Remarks:
Implemented	by	the	Plug-in.
Returns	the	button	text.

Default	Implementation:
{	return	_T("OK");	}

Prototype:
virtual	bool	isSilent();

Remarks:
Implemented	by	the	Plug-in.
If	this	method	returns	true,	the	spacing	tool	generates	points,	but	the	actual
dialog	is	not	presented	to	the	user.	This	is	currently	used,	for	example,	by	the
Stairs	in	VIZ	to	generate	spacing	information	for	the	mesh.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	bool	doObjectType();

Remarks:
Implemented	by	the	Plug-in.
If	this	method	returns	false,	then	the	Instance,	Copy,	Reference	radio	buttons
are	disabled	(greyed	out).

Default	Implementation:
{	return	true;	}

Prototype:
virtual	void	proc();

Remarks:
Implemented	by	the	Plug-in.
This	method	is	called	after	the	spacing	information	is	generated.	It	is	here	that
a	developer	using	this	callback	could	get	the	updated	values,	perform	some
calculation	of	their	own,	etc.

Default	Implementation:
{}

Prototype:
ShapeObject	*getPath();

Remarks:
Implemented	by	the	System.
Returns	a	pointer	to	the	path	ShapeObject.

Prototype:
void	setPath(ShapeObject	*p);

Remarks:
Implemented	by	the	System.
Sets	the	path	used	(as	a	ShapeObject).

Parameters:
ShapeObject	*p
Points	to	the	shape	object	to	use	as	a	path.

Prototype:
void	setPath(Point3	pt1,	Point3	pt2);

Remarks:
Implemented	by	the	System.
Sets	the	points	for	the	path.

Parameters:
Point3	pt1
One	of	the	endpoints.
Point3	pt2

The	other	endpoint.

Prototype:
void	setPath(Spline3D	*s);

Remarks:
Implemented	by	the	System.
Sets	the	path	used.

Parameters:
Spline3D	*s
Points	to	the	path	to	use.

Prototype:
float	getStart();

Remarks:
Implemented	by	the	System.
Returns	the	start	offset.

Prototype:
float	getEnd();

Remarks:
Implemented	by	the	System.
Returns	the	end	offset.

Prototype:
float	getSpace();

Remarks:
Implemented	by	the	System.
Returns	the	spacing.

Prototype:
int	getCount();

Remarks:
Implemented	by	the	System.
Returns	the	object	count.

Prototype:
void	setContext(CTYPE	c);

Remarks:
Implemented	by	the	System.
Sets	the	context.

Parameters:
CTYPE	c
One	of	the	following	values:
CTXT_FREE	-	Free	Center
CTXT_CNTRCOUNT	-	Divide	Evenly,	Objects	at	Ends
CTXT_CNTRSPACE	-	Centered,	Specify	Spacing
CTXT_END	-	End	Offset
CTXT_ENDCOUNT	-	End	Offset,	Divide	Evenly
CTXT_ENDSPACE	-	End	Offset,	Specify	Spacing
CTXT_START	-	Start	Offset
CTXT_STARTCOUNT	-	Start	Offset,	Divide	Evenly
CTXT_STARTSPACE	-	Start	Offset,	Specify	Spacing
CTXT_FULLSPACE	-	Specify	Offset	and	Spacing
CTXT_FULLCOUNT	-	Specify	Offsets,	Divide	Evenly
CTXT_ENDLOCK	-	Space	from	End,	Unbounded
CTXT_ENDLOCKCOUNT	-	Space	from	End,	Specify	Number
CTXT_ENDLOCKSPACE	-	Space	from	End,	Specify	Spacing
CTXT_STARTLOCK	-	Space	from	Start,	Unbounded
CTXT_STARTLOCKCOUNT	-	Space	from	Start,	Specify	Number
CTXT_STARTLOCKSPACE	-	Space	from	Start,	Specify	Spacing
CTXT_FULLLOCKSPACE	-	Specify	Spacing,	Matching	Offsets

CTXT_FULLLOCKCOUNT	-	Divide	Evenly,	No	Objects	at	Ends

Prototype:
int	getContext();

Remarks:
Implemented	by	the	System.
Returns	the	context.	See	setContext()	above.

Prototype:
float	getWidth();

Remarks:
Implemented	by	the	System.
Returns	the	width.	This	is	the	width	of	the	object	to	be	arrayed.	It	is	a	single
value	so	can	be	calculated	any	way	the	user	wishes.	In	the	default	spacing	tool
this	is	calculated	based	on	the	x	size	of	the	bounding	box.

Prototype:
void	setWidth(float	nWidth);

Remarks:
Implemented	by	the	System.
Sets	the	width.	See	getWidth()	above.

Parameters:
float	nWidth
The	width	to	set.

Prototype:
void	setStart(float	f);

Remarks:
Implemented	by	the	System.
Sets	the	start	offset.

Parameters:

float	f
The	start	offset	to	set.

Prototype:
void	setEnd(float	f);

Remarks:
Implemented	by	the	System.
Sets	the	end	offset.

Parameters:
float	f
The	end	offset	to	set.

Prototype:
void	setSpace(float	f);

Remarks:
Implemented	by	the	System.
Sets	the	spacing.

Parameters:
float	f
The	spacing	to	set.

Prototype:
void	setCount(int	n);

Remarks:
Implemented	by	the	System.
Sets	the	count.

Parameters:
int	n
The	count	to	set.

Prototype:

bool	getFollow();
Remarks:
Implemented	by	the	System.
Returns	true	if	Follow	is	set	(checked);	otherwise	false.

Prototype:
void	setFollow(bool	t);

Remarks:
Implemented	by	the	System.
Sets	the	Follow	state	(checkbox).

Parameters:
bool	t
Use	true	for	checked;	false	for	un-checked.

Prototype:
OTYPE	getObjectCreationType();

Remarks:
Implemented	by	the	System.
Returns	the	object	creation	type.	One	of	the	following	values:
NODE_CPY	--	Copy
NODE_INST	--	Instance
NODE_REF	--	Reference

Prototype:
void	setObjectCreationType(OTYPE	t);

Remarks:
Implemented	by	the	System.
Sets	the	object	creation	type.	One	of	the	following	values:
NODE_CPY	--	Copy
NODE_INST	--	Instance
NODE_REF	--	Reference

Prototype:
STYPE	getSpacingType();

Remarks:
Implemented	by	the	System.
Returns	the	spacing	type.	One	of	the	following	values:
SPACE_CENTER
SPACE_EDGE

Prototype:
void	setSpacingType(STYPE	s);

Remarks:
Implemented	by	the	System.
Sets	the	spacing	type.

Parameters:
STYPE	s
One	of	the	following	values:
SPACE_CENTER
SPACE_EDGE

Prototype:
void	setMessage(char	*buf);

Remarks:
Implemented	by	the	System.
Sets	the	message	string.

Prototype:
void	setCountLimit(int	limit);

Remarks:
Implemented	by	the	System.
Sets	a	limit	on	the	count.

Parameters:

int	limit
The	limit	to	set.

Prototype:
int	getCountLimit();

Remarks:
Implemented	by	the	System.
Returns	the	limit	on	the	count.

List	of	Directory	Names
See	Also:	Class	Interface.
The	following	is	a	list	of	the	various	standard	3ds	max	directories	whose	name
may	be	retrieved.	See	the	method	Interface::GetDir().
APP_FONT_DIR

Sample	result	=	D:\3dsmax\Fonts
APP_SCENE_DIR

Sample	result	=	D:\3dsmax\Scenes
APP_IMPORT_DIR

Sample	result	=	D:\3dsmax\Meshes
APP_EXPORT_DIR

Sample	result	=	D:\3dsmax\Meshes
APP_HELP_DIR

Sample	result	=	D:\3dsmax\Help
APP_EXPRESSION_DIR

Sample	result	=	D:\3dsmax\Express
APP_PREVIEW_DIR

Sample	result	=	D:\3dsmax\Previews
APP_IMAGE_DIR

Sample	result	=	D:\3dsmax\Images
APP_SOUND_DIR

Sample	result	=	D:\3dsmax\Sounds
APP_PLUGCFG_DIR

Sample	result	=	D:\3dsmax\PlugCFG
APP_MAXSTART_DIR

Sample	result	=	D:\3dsmax\Scenes
APP_VPOST_DIR

Sample	result	=	D:\3dsmax\VPost
APP_DRIVERS_DIR

Sample	result	=	D:\3dsmax\Drivers
APP_AUTOBACK_DIR

Sample	result	=	D:\3dsmax\AutoBack
APP_MATLIB_DIR

This	option	is	available	in	release	3.0	and	later	only.
Sample	result	=D:\3dsmax\MatLibs

APP_SCRIPTS_DIR
This	option	is	available	in	release	3.0	and	later	only.
Sample	result	=D:\3dsmax\Scripts

APP_STARTUPSCRIPTS_DIR
This	option	is	available	in	release	3.0	and	later	only.
Sample	result	=D:\3dsmax\Scripts\Startup

APP_UI_DIR
This	option	is	available	in	release	3.0	and	later	only.
Sample	result=D:\3dsmax\UI

APP_MAXROOT_DIR
Sample	result	=	d:\3dsmax\

Class	DllDir
See	Also:	Class	DllDesc,	Class	ClassDirectory,	Class	ClassDesc,	Class
ClassEntry,	Class	Interface.
class	DllDir

Description:
This	class	is	available	in	release	2.0	and	later	only.
It	provides	access	to	the	DLL	Directory	which	is	a	list	of	every	DLL	loaded	in
3ds	max.	It	also	contains	the	Class	Directory	which	maintains	lists	of	all
classes	implemented	in	these	DLLs.
The	following	diagram	shows	the	relationship	between	the	classes	that	make
up	the	Dll	Directory	structure.	The	lines	in	the	diagram	indicate	how	the
objects	are	accessed.	Class	DllDir	provides	access	to	a	list	of	DllDesc
objects.	Each	of	these	has	a	list	of	ClassDesc	objects.	The	ClassDesc	is	the
object	implemented	by	the	plug-in	to	let	3ds	max	know	about	it's	classification
and	capabilities.	Class	DllDir	also	provides	access	to	the	ClassDirectory
which	provides	access	to	the	a	table	of	SubClassList	objects	which	are
grouped	by	super	class	ID.	Each	SubClassList	has	a	series	of	ClassEntry
objects.	The	ClassEntry	object	provides	information	about	the	plug-in
classes	(some	of	the	same	information	as	the	class	descriptor,	usage	counts,
etc.).
	

Note:	To	get	a	reference	to	the	central	DLL	directory	see	the	method
Interface::GetDllDir().
All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
int	Count();

Remarks:
Returns	the	number	of	DLLs	currently	loaded.

Prototype:
int	LoadDllsFromDir(TCHAR	*directory,	TCHAR	*wildcard,
HWND	hwnd=NULL);

Remarks:
This	method	may	be	called	to	load	DLLs	from	the	specified	directory.

Parameters:
TCHAR	*directory
Point	to	a	null-terminated	string	that	specifies	a	valid	directory	or	path	to	load

the	DLLs	from.
TCHAR	*wildcard
Points	to	a	null-terminated	string	that	contains	wildcard	characters	(*	and	?).
HWND	hwnd=NULL
This	parameter	is	not	currently	used.

Return	Value:
Nonzero	if	successful;	zero	on	error.

Prototype:
ClassDirectory&	ClassDir();

Remarks:
Returns	a	reference	to	the	ClassDirectory	for	this	DLL	directory.

Prototype:
void	UnloadAllDlls();

Remarks:
This	method	unloads	every	DLL	3ds	max	has	loaded.	This	calls	the	Win32
function	FreeLibrary()	on	every	DLL	handle	in	the	DLL	directory.

Prototype:
bool	LoadADll(TCHAR	*d,	bool	late);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	is	for	internal	use	only.

Operators:

Prototype:
DllDesc&	operator[](int	i);

Remarks:
Access	operator.	This	returns	a	reference	to	the	'i-th'	DllDesc.

Parameters:
int	i

Zero	based	index	of	specifying	which	DllDesc	to	return.

Class	LogSys
See	Also:	Class	Interface.
class	LogSys

Description:
MAX	maintains	a	log	file	that	contains	the	text	of	error	/	warning	/	information	/
debug	messages	generated	by	the	system	and	plug-ins.	This	class	is	used	to	work
with	the	log	and	send	messages	to	it.	The	log	file	is	placed	in	the	Network
directory	and	is	called	Max.Log.	To	access	this	facility	from	anywhere	in	MAX
use	the	pointer	returned	fro	the	method	Interface::Log().	All	methods	of	this
class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	DWORD	LogTypes();

Remarks:
This	method	is	used	to	find	out	what	log	types	are	enabled	.	See	List	of
System	Error	Log	Message	Types.	The	type	values	are	ORed	together	to
create	the	value	returned.

Prototype:
virtual	void	SetLogTypes(DWORD	types);

Remarks:
This	method	is	used	to	set	the	log	types	that	are	enabled.

Parameters:
DWORD	types
See	List	of	System	Error	Log	Message	Types.

Prototype:
virtual	void	LogEntry(DWORD	type,	BOOL	dialogue,	TCHAR
*title,	TCHAR	*text,...)=0;

Remarks:
This	method	is	used	to	log	the	error.

Parameters:

DWORD	type
Defines	the	type	of	log	entry.	See	List	of	System	Error	Log	Message	Types.
BOOL	dialogue
One	of	the	following	values:

NO_DIALOG
If	this	entry	is	just	some	information	you	don't	want	a	dialogue	for,	or	if
you	are	handling	the	dialogue	yourself	use	this	value.
DISPLAY_DIALOG
Use	this	value	if	you	want	the	message	to	be	displayed	in	a	dialogue.	The
system	will	determine	if	displaying	a	dialogue	is	appropriate	based	on
network	rendering	mode.

TCHAR	*title
This	title	string	is	optional.	If	non	NULL,	it	will	be	used	to	define	the	module.
TCHAR	*text,...
This	parameter	(and	any	other	additional	arguments	that	follow)	make	up	the
format	specification.	The	format	matches	the	standard	C	printf()	function.

Sample	Code:
TheManager->Max()->Log()->LogEntry(SYSLOG_ERROR,
NO_DIALOG,	NULL,	_T("%s	-	%s\n"),	ShortDesc(),	errText);

Prototype:
virtual	int	Longevity();

Remarks:
Returns	the	conditions	under	which	the	log	is	deleted.

Return	Value:
One	of	the	following	values:

SYSLOG_LIFE_EVER
The	log	is	never	deleted.
SYSLOG_LIFE_DAYS
This	log	is	maintained	for	this	number	of	days.
SYSLOG_LIFE_SIZE
The	log	is	maintained	until	it	reaches	this	many	kilobytes	(KB).

Prototype:
virtual	void	SetLongevity(int	type);

Remarks:
Sets	the	conditions	under	which	the	log	is	deleted.

Parameters:
int	type
One	of	the	following	values:

SYSLOG_LIFE_EVER
The	log	is	never	deleted.
SYSLOG_LIFE_DAYS
This	log	is	maintained	for	this	number	of	days.
SYSLOG_LIFE_SIZE
The	log	is	maintained	until	it	reaches	this	many	kilobytes	(KB).

Prototype:
virtual	DWORD	LogDays();

Remarks:
Returns	the	conditions	under	which	the	log	is	cleared.

Return	Value:
One	of	the	following	values:

SYSLOG_LIFE_EVER
The	log	is	never	deleted.
SYSLOG_LIFE_DAYS
This	log	is	maintained	for	this	number	of	days.
SYSLOG_LIFE_SIZE
The	log	is	maintained	until	it	reaches	this	many	kilobytes	(KB).

Prototype:
virtual	DWORD	LogSize();

Remarks:
Returns	the	size	of	the	current	log	file	in	kilobytes	(KB).

Prototype:

virtual	void	SetLogDays(DWORD	days);
Remarks:
Set	the	number	of	days	the	log	is	maintained.

Parameters:
DWORD	days
The	number	of	days	to	maintain	the	log.	After	this	many	days	after	creation
the	log	is	deleted.

Prototype:
virtual	void	SetLogSize(DWORD	size);

Remarks:
Set	the	maximum	size	in	kilobytes	(KB)	of	the	log	file.	After	this	size	is
reached	the	log	file	is	deleted.

Parameters:
DWORD	size
The	maximum	size	in	kilobytes	(KB)	of	the	log	file.

Prototype:
void	SetQuietMode(bool	quiet);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Enables	or	disables	'quiet'	mode.	When	set	to	quiet	mode,	the
LogSys::LogEntry(...)	method	will	not	bring	up	any	dialog	boxes	--	it	will
act	as	it	does	in	network	rendering	mode.	Note:	After	setting	quiet	mode,	do
not	forget	to	clear	it	when	you	are	done,	since	the	user	will	not	see	any	error
messages	from	the	renderer	while	quiet	mode	is	enabled.

Parameters:
bool	quiet
TRUE	to	enable;	FALSE	to	disable.

Prototype:
bool	GetQuietMode();

Remarks:

This	method	is	available	in	release	3.0	and	later	only.
Returns	TRUE	if	'quiet'	mode	is	enabled	or	FALSE	if	it's	disabled.	See
SetQuietMode()	above.

Prototype:
virtual	void	SaveState()=0;

Remarks:
This	method	is	used	internally.

Prototype:
virtual	void	LoadState()=0;

Remarks:
This	method	is	used	internally.

List	of	MAX	Command	IDs
See	Also:	Class	Interface.
The	following	command	IDs	may	be	passed	to	the	method:
Interface::ExecuteMAXCommand(int	id);

MAXCOM_RESET_FILE
MAXCOM_TIME_CONFIG
MAXCOM_UNFREEZE_BY_HIT
MAXCOM_BOX_TOGGLE
MAXCOM_CYCLE_SELECT_METHOD
MAXCOM_ZOOM_OUT_2X_ALL
MAXCOM_ZOOM_IN_2X_ALL
MAXCOM_IZOOM_OUT
MAXCOM_IZOOM_IN
MAXCOM_IPAN
MAXCOM_SHOW_LAST_IMG
MAXCOM_APPLY_IK
MAXCOM_KEY_MODE
MAXCOM_TOGGLE_IK
MAXCOM_SHADE_SELECTED
MAXCOM_SELECT_BY_COLOR
MAXCOM_ZOOMEXT_SEL
MAXCOM_ZOOMEXT_SEL_ALL
MAXCOM_CREATE_MODE
MAXCOM_MODIFY_MODE
MAXCOM_HIERARCHY_MODE
MAXCOM_MOTION_MODE
MAXCOM_DISPLAY_MODE
MAXCOM_UTILITY_MODE
MAXCOM_TEXTURE_CORRECT
MAXCOM_ZOOM_OUT_2X
MAXCOM_ZOOM_IN_2X
MAXCOM_DEF_LGT_TOGGLE
MAXCOM_VPT_SHAPE

MAXCOM_GROUP_ATTACH
MAXCOM_GROUP_DETACH
MAXCOM_PREV_MOD
MAXCOM_NEXT_MOD
MAXCOM_SAVEPLUS
MAXCOM_VIEW_FILE
MAXCOM_UNHIDE_BY_NAME
MAXCOM_UNFREEZE_BY_NAME
MAXCOM_SPINSNAP_TOGGLE
MAXCOM_HIDE_INV
MAXCOM_FREEZE_INV
MAXCOM_UNFREEZE_ALL
MAXCOM_WIRE_SMOOTH
MAXCOM_WIRE_FACET
MAXCOM_BOX_MODE
MAXCOM_BACKFACE
MAXCOM_TRAJECTORIES
MAXCOM_UNHIDE_ALL
MAXCOM_SCALE_CYCLE
MAXCOM_IK_TERMINATOR
MAXCOM_RENDER_SCENE
MAXCOM_RENDER_LAST
MAXCOM_QUICK_RENDER
MAXCOM_GRID_NUDGE_UP
MAXCOM_GRID_NUDGE_DOWN
MAXCOM_CYCLE_SUBLEVEL
MAXCOM_HIDE_SELECTION
MAXCOM_FREEZE_SELECTION
MAXCOM_SHADE_TOGGLE
MAXCOM_MIRROR
MAXCOM_ARRAY
MAXCOM_ALIGN
MAXCOM_ALIGNNORMALS
MAXCOM_HOLD

MAXCOM_FETCH
MAXCOM_SWAP_LAYOUTS
MAXCOM_SAFEFRAME_TOGGLE
MAXCOM_FILE_MERGE
MAXCOM_TIME_BACK
MAXCOM_TIME_FORWARD
MAXCOM_TIME_PLAY
MAXCOM_VIEWS_REDRAW
MAXCOM_UNITSETUP
MAXCOM_DRAWINGAIDS
MAXCOM_SHOWHOMEGRID
MAXCOM_ACTHOMEGRID
MAXCOM_ACTGRIDOBJ
MAXCOM_GRIDS_ALIGN
MAXCOM_BACKGROUND
MAXCOM_SHOWAXISICON
MAXCOM_FULLINTERACT
MAXCOM_VPTCONFIG
MAXCOM_VIDEOPOST
MAXCOM_PREVIEW
MAXCOM_VIEWPREVIEW
MAXCOM_RENAMEPREVIEW
MAXCOM_TOOL_DUALPLANES
MAXCOM_LINK
MAXCOM_UNLINK
MAXCOM_BINDWSM
MAXCOM_SELECT
MAXCOM_MOVE
MAXCOM_ROTATE
MAXCOM_SCALE
MAXCOM_TREEVIEW
MAXCOM_MTLEDIT
MAXCOM_PANVIEW
MAXCOM_DOLLY

MAXCOM_PERSP
MAXCOM_ROLL
MAXCOM_FOV
MAXCOM_TRUCK
MAXCOM_PANCAMERA
MAXCOM_ANGLE_SNAP_TOGGLE
MAXCOM_EDIT_REDO
MAXCOM_VIEW_REDO
MAXCOM_VPT_TRACK
MAXCOM_VPT_BOTTOM
MAXCOM_SUBOBJECT_SEL
MAXCOM_VPT_CAMERA
MAXCOM_VPT_SPOT
MAXCOM_HIDE_CAMERA_TOGGLE
MAXCOM_VPT_DISABLE
MAXCOM_VPT_FRONT
MAXCOM_VPT_GRID
MAXCOM_GRID_TOGGLE
MAXCOM_TOOL_HLIST
MAXCOM_HIDE_HELPER_TOGGLE
MAXCOM_VPT_ISO_USER
MAXCOM_VPT_BACK
MAXCOM_VPT_LEFT
MAXCOM_HIDE_LIGHT_TOGGLE
MAXCOM_TOOL_ANIMMODE
MAXCOM_FILE_NEW
MAXCOM_OVERRIDE
MAXCOM_FILE_OPEN
MAXCOM_HIDE_OBJECT_TOGGLE
MAXCOM_VPT_PERSP_USER
MAXCOM_ACCEL_PAN
MAXCOM_HIDE_SHAPE_TOGGLE
MAXCOM_VPT_RIGHT
MAXCOM_ROTATEVIEW

MAXCOM_SNAP_TOGGLE
MAXCOM_FILE_SAVE
MAXCOM_FILE_SAVEAS
MAXCOM_FILE_IMPORT
MAXCOM_FILE_PREFERENCES
MAXCOM_HIDE_SYSTEM_TOGGLE
MAXCOM_VPT_TOP
MAXCOM_EDIT_DELETE
MAXCOM_EDIT_SELECTALL
MAXCOM_EDIT_SELECTNONE
MAXCOM_EDIT_SELECTINVERT
MAXCOM_RNS
MAXCOM_TTI
MAXCOM_PROPERTIES
MAXCOM_GROUP_GROUP
MAXCOM_GROUP_OPEN
MAXCOM_GROUP_CLOSE
MAXCOM_GROUP_UNGROUP
MAXCOM_TIME_END
MAXCOM_HELP_ABOUT
MAXCOM_TOOL_X
MAXCOM_TOOL_Y
MAXCOM_TOOL_Z
MAXCOM_TOOL_XY
MAXCOM_TIME_START
MAXCOM_SELECT_CHILD
MAXCOM_SELECT_PARENT
MAXCOM_SPACEBAR
MAXCOM_TOOL_MAXIMIZE
MAXCOM_TOOL_ZOOMREGION
MAXCOM_HIDE_WSM_TOGGLE
MAXCOM_TOOL_CENTER
MAXCOM_TOOL_ZOOM
MAXCOM_TOOL_ZOOMALL

MAXCOM_EDIT_UNDO
MAXCOM_TOOL_ZOOMEXTENTS
MAXCOM_VIEWS_UNDO
MAXCOM_TOOL_ZOOMEXTENTS_ALL
MAXCOM_TOGGLE_SOUND
MAXCOM_VPT_TAB
MAXCOM_VPT_SHIFTTAB
MAXCOM_CONFIGURE_PATHS
MAXCOM_ADAPTIVE_PERSP_GRID_TOGGLE
MAXCOM_TOOL_EDIT_MOD_STACK
MAXCOM_TOOL_EDGES_ONLY_TOGGLE
MAXCOM_PERCENT_SNAP_TOGGLE
MAXCOM_SNAPMODE_TOGGLE
MAXCOM_RENDER_ATMOSPHERE
MAXCOM_VIEWS_SAVEACTIVEVIEW
MAXCOM_VIEWS_RESTOREACTIVEVIEW
MAXCOM_VIEWS_SHOWDEP
MAXCOM_FILE_EXPORT
MAXCOM_EDIT_PLACEHIGHLIGHT
MAXCOM_EDIT_SNAPSHOT
MAXCOM_TOOL_REGION_TOGGLE
MAXCOM_FILE_SUMMARYINFO
MAXCOM_SCHEMATICVIEW

List	of	Interface::Execute	Command	Options
See	Also:	Class	Interface
In	MAX	2.5,	the	following	#defines	may	be	passed	as	the	cmd	argument	to
the	method	Interface::Execute().
Note	that	these	may	be	removed	from	MAX	3.0.	Developers	may	wish	to	use
the	API	provided	by	Structure	NotifyInfo	for	pre	and	post	save	callbacks.
I_EXEC_REGISTER_POSTSAVE_CB
This	command	registers	a	callback	which	is	called	after	a	File	/	Save
operation	has	occured.
For	example,	here's	how	you	would	use	it:
static	GenericCallback	mycb;
GetCOREInterface()-
>Execute(I_EXEC_REGISTER_POSTSAVE_CB,&mycb);
and	when	you	are	done:
GetCOREInterface()-
>Execute(I_EXEC_UNREGISTER_POSTSAVE_CB,&mycb);
For	another	way	to	do	this,	see	Structure	NotifyInfo.

I_EXEC_UNREGISTER_POSTSAVE_CB
This	command	un-registers	a	callback	which	is	called	after	a	File	/	Save
operation	has	occured.
I_EXEC_REGISTER_PRESAVE_CB
This	command	registers	a	callback	which	is	called	before	a	File	/	Save
operation	has	occured.
I_EXEC_UNREGISTER_PRESAVE_CB
This	command	un-registers	a	callback	which	is	called	before	a	File	/	Save
operation	has	occured.

List	of	Extended	Display	Modes
See	Also:	Class	Interface	(methods	SetExtendedDisplayMode()	and
GetExtendedDisplayMode()).
Extended	display	modes.	One	or	more	of	the	following	values:
EXT_DISP_NONE
None	in	effect.
EXT_DISP_SELECTED
The	object	is	selected.
EXT_DISP_TARGET_SELECTED
The	object's	target	is	selected.
EXT_DISP_LOOKAT_SELECTED
The	object's	lookat	node	is	selected.
EXT_DISP_ONLY_SELECTED
The	object	is	the	only	thing	selected.
EXT_DISP_DRAGGING
The	object	is	being	"dragged".
EXT_DISP_ZOOM_EXT
The	object	is	being	tested	for	zoom	extents.

Class	MAXFileOpenDialog
See	Also:	Class	Interface.
class	MAXFileOpenDialog

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	allows	a	custom	file	open	dialog	to	be	used.	This	object	is	set	using
the	method	Interface::SetMAXFileOpenDlg().

Methods:
public:

Prototype:
virtual	BOOL	BrowseMAXFileOpen(TSTR&	fileName,	TSTR*
defDir,	TSTR*	defFile)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	bring	up	the	custom	file	open	dialog.	It	request	a	file
name	from	the	user	and	stores	the	result	in	fileName.

Parameters:
TSTR&	fileName
Set	this	to	the	file	name	choosen	by	the	user.
TSTR*	defDir
The	default	directory	to	look	in.
TSTR*	defFile
The	default	file	name	to	use.

Return	Value:
TRUE	if	the	user	OKed	the	dialog;	FALSE	on	cancel.

Class	MAXFileSaveDialog
See	Also:	Class	Interface.
class	MAXFileSaveDialog

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	allows	a	custom	file	save	dialog	to	be	used.	This	object	is	set	using	the
method	Interface::SetMAXFileSaveDlg().

Methods:
public:

Prototype:
virtual	BOOL	BrowseMAXFileSave(TSTR&	fileName)=0;

Remarks:
This	method	is	called	to	bring	up	the	custom	file	save	dialog.	It	request	a	file
name	from	the	user	and	stores	the	result	in	fileName.

Parameters:
TSTR&	fileName
Set	this	to	the	file	name	choosen	by	the	user.

Return	Value:
TRUE	if	the	user	OKed	the	dialog;	FALSE	on	cancel.

Class	Material
See	Also:	Class	TextureInfo,	Template	Class	Tab,	Class	Point3,	Rendering
Limits.
class	Material	:	public	BaseInterfaceServer

Description:
This	class	describes	the	properties	of	a	material	used	by	the	interactive	renderer.

Data	Members:
public:
Point3	Ka;
Ambient	color	setting.	The	values	for	x,	y,	and	z	range	from	0.0	to	1.0.	These
correspond	to	red,	green,	and	blue	respectively.
Point3	Kd;
Diffuse	color	setting.	The	values	for	x,	y,	and	z	range	from	0.0	to	1.0.	These
correspond	to	red,	green,	and	blue	respectively.
Point3	Ks;
Specular	color	setting.	The	values	for	x,	y,	and	z	range	from	0.0	to	1.0.	These
correspond	to	red,	green,	and	blue	respectively.
float	shininess;
Shininess	setting.	This	value	ranges	from	0.0	to	1.0.
float	shinStrength;
Shininess	strength	setting.	This	value	ranges	from	0.0	to	1.0.
float	opacity;
Opacity	setting.	This	value	ranges	from	0.0	to	1.0.
float	selfIllum;
Self	Illumination	setting.	This	value	ranges	from	0.0	to	1.0.
int	dblSided;
Double	sided	material	setting.	Nonzero	indicates	double	sided	material;
otherwise	single	sided.
int	shadeLimit;
Shading	limit	setting.	See	Rendering	Limits.
Tab<TextureInfo>	texture;
The	table	of	textures	used	by	this	material.

Methods:

Prototype:
Material();

Remarks:
Class	constructor.	The	data	members	are	initialized	as	follows:
	Ka[0]	=	Ka[1]	=	Ka[2]	=	0.3f;
	Kd[0]	=	Kd[1]	=	Kd[2]	=	0.9f;
	Ks[0]	=	Ks[1]	=	Ks[2]	=	0.9f;
	shininess		=	10.0f;
	shinStrength	=	1.0f;
	opacity			=	1.0f;
	selfIllum		=	0.0f;
	dblSided		=	0;
	shadeLimit		=	3;
	TextureInfo	texInfo;
	texture.Append(1,	&texInfo);

Prototype:
~Material();

Remarks:
Class	destructor.

Class	ModContextList
See	Also:	Template	Class	Tab,	Class	Interface	(method	GetModContexts())
class	ModContextList	:	public	Tab<ModContext*>;

Description:
A	modifier	may	be	applied	to	several	objects	in	the	scene.	The
Interface::GetModContexts()	method	retrieves	a	list	of	all	the	ModContexts
for	the	current	place	in	the	history.	This	class	is	used	as	a	table	to	hold	the	list	of
ModContexts.

Class	NameMaker
See	Also:	Class	Interface.
class	NameMaker

Description:
This	class	is	used	with	method	Interface::NewUniqueName().	All	methods
of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	void	MakeUniqueName(TSTR	&name)=0;

Remarks:
This	method	is	used	to	make	a	unique	version	of	the	name	passed	and	return
it.	This	method	is	much	more	efficient	than
Interface::MakeNameUnique(),	which	does	a	brute	force	enumeration	of
the	scene	hierarchy	for	every	call.	On	creation,	the	NameMaker	builds	a
directory	which	has	one	entry	for	each	"base"	name,	such	as	"Sphere",
"Camera",	"Block",	and	along	with	each	the	maximum	number	suffix	for	that
base	name	in	the	scene.	When	you	call:
	nm->MakeNameUnique
it	only	has	to	look	at	this	relatively	small	list.	It	also	caches	the	last	hit,	for
further	efficiency.

Parameters:
TSTR	&name
This	is	the	name	that	is	made	unique	(it	contains	both	the	source	and	the
result).

Prototype:
virtual	void	AddName(TSTR	&name)=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	allows	you	to	seed	the	name	maker	table	with	your	own	names.
This	was	used,	for	example,	because	3ds	max	uses	NameMakers	to	name	sub-

objects	in	the	NURBS	object,	and	it's	not	appropriate	to	have	the	table	seeded
with	top-level	object	names,	but	only	with	the	existing	sub-object	names.

Parameters:
TSTR	&name
The	name	to	add.

Class	PickNodeCallback
See	Also:	Class	Interface.
class	PickNodeCallback

Description:
This	class	is	used	to	filter	nodes	during	a	hit	test.	See	the	methods
Interface::PickNode().	and	PickModeCallback::GetFilter().

Methods:

Prototype:
virtual	BOOL	Filter(INode	*node)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	should	return	TRUE	if	the	node	passed	is	an	acceptable	hit	and
FALSE	otherwise.

Parameters:
INode	*node
The	node	to	test.

Return	Value:
Return	TRUE	if	this	is	an	acceptable	hit,	FALSE	otherwise.

Class	PickModeCallback
See	Also:	Class	IObjParam,	Class	ViewExp,	Class	Interface,	Class	IPoint2.
class	PickModeCallback	:	public	InterfaceServer

Description:
This	class	is	the	callback	object	passed	to	Interface::SetPickMode().

Methods:

Prototype:
virtual	BOOL	HitTest(IObjParam	*ip,	HWND	hWnd,ViewExp
*vpt,	IPoint2	m,	int	flags)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	whenever	the	pick	mode	needs	to	hit	test.

Parameters:
IObjParam	*ip
An	interface	pointer	available	to	call	functions	defined	by	3ds	max.
HWND	hWnd
The	window	handle.
ViewExp	*vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.
IPoint2	m
Point	to	check	in	screen	coordinates.
int	flags
The	flags	for	hit	testing.	See	List	of	Hit	Test	Flags.

Return	Value:
Return	TRUE	if	something	was	hit;	otherwise	FALSE.

Sample	Code:
//	This	implementation	use	the	Interface::PickNode	method
//	to	perform	the	hit	test.
{
	return	ip->PickNode(hWnd,m,&thePickFilt)?TRUE:FALSE;

}

Prototype:
virtual	BOOL	Pick(IObjParam	*ip,ViewExp	*vpt)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	user	picks	something.

Parameters:
IObjParam	*ip
An	interface	pointer	available	to	call	functions	defined	by	3ds	max.
ViewExp	*vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.	The	vpt	should	have	the	result	of	the	hit	test	in	it.

Return	Value:
Return	TRUE	to	end	the	pick	mode;	FALSE	to	stay	in	the	pick	mode.	Note
that	returning	TRUE	will	set	the	command	mode	to	MOVE.	When	a	plug-in	is
in	the	create	branch,	setting	the	command	mode	to	move	ends	the	creation
process.

Prototype:
virtual	BOOL	PickAnimatable(Animatable*	anim);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	gets	called	when	a	node	or	controller	is	picked	from	Trackview
or	Schematic	view	The	track	will	not	be	selected	in	trackview	if	the	this
function	returns	FALSE.	Override	this	function	if	you	wish	to	support	and
receive	nodes	or	controllers	picked	from	trackview.

Parameters:
Animatable*	anim
A	pointer	to	the	animatable	object.

Return	Value:
TRUE	if	the	Pick	Mode	callback	accepts	the	animatable	object,	otherwise
FALSE.

Default	Implementation:
{	return	TRUE;	}

Prototype:
virtual	BOOL	RightClick(IObjParam	*ip,ViewExp	*vpt);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	user	right-clicks	or	presses	ESC.

Parameters:
IObjParam	*ip
An	interface	pointer	available	to	call	functions	defined	by	3ds	max.
ViewExp	*vpt
An	interface	pointer	that	may	be	used	to	call	methods	associated	with	the
viewports.	The	vpt	should	have	the	result	of	the	hit	test	in	it.

Return	Value:
TRUE	to	end	the	pick	mode,	FALSE	to	continue	picking.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	void	EnterMode(IObjParam	*ip)

Remarks:
Implemented	by	the	Plug-In.
Called	when	the	mode	is	entered.	The	developer	may	provide	any	pre-
processing	here.

Parameters:
IObjParam	*ip
An	interface	pointer	available	to	call	functions	defined	by	3ds	max.

Prototype:
virtual	void	ExitMode(IObjParam	*ip)

Remarks:
Implemented	by	the	Plug-In.
Called	when	the	mode	is	exited.	The	developer	may	provide	any	post-
processing	here.

Parameters:
IObjParam	*ip
An	interface	pointer	available	to	call	functions	defined	by	3ds	max.

Prototype:
virtual	HCURSOR	GetDefCursor(IObjParam	*ip)

Remarks:
Implemented	by	the	Plug-In.
Called	to	get	the	default	cursor	to	use.

Return	Value:
The	handle	of	the	default	cursor.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	HCURSOR	GetHitCursor(IObjParam	*ip)

Remarks:
Implemented	by	the	Plug-In.
Called	to	get	the	hit	test	cursor	to	use.

Return	Value:
The	handle	of	the	hit	test	cursor.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	PickNodeCallback	*GetFilter()

Remarks:

Implemented	by	the	Plug-In.
This	method	is	called	if	the	user	hits	the	H	key	while	in	your	pick	mode.	You
can	provide	a	filter	to	filter	the	name	list.	See	Class	PickNodeCallback.

Return	Value:
A	pointer	to	an	instance	of	PickNodeCallback.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	BOOL	AllowMultiSelect();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implement	this	method	to	return	TRUE	to	allow	the	user	to	pick	more	than
one	thing.	In	that	case	the	Pick()	method	may	be	called	more	than	once.

Return	Value:
TRUE	to	allow	multiple	picks;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Class	PreviewParams
See	Also:	Class	Interface.

Description:
The	data	members	of	this	class	are	used	to	specify	the	options	for	creating	a
preview	of	the	active	viewport.	A	pointer	to	an	instance	of	this	class	is	passed
into	the	Interface	method:
virtual	void	CreatePreview(PreviewParams	*pvp=NULL)=0;

Data	Members:
public:

BOOL	outputType;
Specifies	the	output	file	or	device.	This	value	may	be	either	0,	1	or	2.
0	specifies	the	default	AVI	codec.
1	specifies	the	user	picks	a	file.
2	specifies	the	user	picks	device.
nit	pctSize;
Specifies	the	percentage	(0-100)	of	current	rendering	output	resolution.
int	start;
The	start	frame	limits.
int	end;
The	end	frame	limit.
int	skip;
Specifies	how	many	frames	are	skipped	between	rendered	frames.	The	is
similar	to	the	'Every	Nth	Frame'	parameter	in	the	user	interface.
int	fps;
The	frames	per	second	setting.
BOOL	dspGeometry;
If	TRUE	is	displayed	in	the	viewports;	otherwise	it	is	not	shown.
BOOL	dspShapes;
If	TRUE	shapes	are	displayed	in	the	preview;	otherwise	they	are	not	shown.
BOOL	dspLights;
If	TRUE	lights	are	displayed	in	the	preview;	otherwise	they	are	not	shown.

BOOL	dspCameras;
If	TRUE	cameras	are	displayed	in	the	preview;	otherwise	they	are	not
shown.
BOOL	dspHelpers;
If	TRUE	helper	objects	are	displayed	in	the	preview;	otherwise	they	are	not
shown.
BOOL	dspSpaceWarps;
If	TRUE	space	warp	helper	objects	are	displayed	in	the	preview;	otherwise
they	are	not	shown.
BOOL	dspGrid;
If	TRUE	the	grid	lines	are	displayed	in	the	preview;	otherwise	they	are	not
shown.
BOOL	dspSafeFrame;
If	TRUE	the	safe	frames	are	displayed	in	the	preview;	otherwise	they	are
not	shown.
BOOL	dspFrameNums;
If	TRUE	frame	numbers	are	shown	in	the	preview;	otherwise	they	are	not
shown.
int	rndLevel;
Specifies	the	rendering	level	used	(these	are	the	same	options	available	to
the	user	when	setting	viewport	rendering	levels).	Valid	values	are
0,1,2,3,4,6,7.
0	specifies	smooth	with	highlights.
1	specifies	smooth	without	highlights.
2	specifies	faceted	with	highlights
3	specifies	faceted	without	highlights.
4	specifies	lit	wireframe	mode.
6	spcifies	unlit	wireframe.
7	specifies	box	mode.
int	dspBkg;
If	nonzero	the	background	image	is	displayed;	otherwise	it	is	not	used.

List	of	Render	Types
See	Also:	Class	Interface.
One	of	the	following	values:

RENDTYPE_NORMAL
The	currently	selected	viewport	(the	same	as	the	MAX	'View'	option).
RENDTYPE_REGION
This	is	the	same	as	the	MAX	'Region'	option.
RENDTYPE_BLOWUP
This	is	the	same	as	the	MAX	'Blowup'	option.
RENDTYPE_SELECT
This	renders	the	selected	objects	only	(the	same	as	the	MAX	'Selected'
option).
RENDTYPE_REGIONCROP
This	is	the	same	as	the	MAX	'Crop'	option.
RENDTYPE_REGION_SEL
This	type	is	available	in	release	4.0	and	later	only.
Does	a	region	render	using	the	bounding	rectangle	of	the	selection.
Note:	Not	to	be	passed	into	plugin	renderers.	The	purpose	is	for	passing	to
Interface::OpenCurRenderer(),	which	converts	them	into
RENDTYPE_REGION	and	RENDTYPE_REGIONCROP,	respectively.
RENDTYPE_CROP_SEL
This	type	is	available	in	release	4.0	and	later	only.
Does	a	crop	render	using	the	bounding	rectangle	of	the	selection
Note:	Not	to	be	passed	into	plugin	renderers.	The	purpose	is	for	passing	to
Interface::OpenCurRenderer(),	which	converts	them	into
RENDTYPE_REGION	and	RENDTYPE_REGIONCROP,	respectively.

Class	ViewParams
See	Also:	Class	Matrix3,	Class	Renderer,	Class	RendParams.
class	ViewParams	:	public	BaseInterfaceServer

Description:
This	class	describes	the	properties	of	a	view	that	is	being	rendered.	These	are
properties	such	as	the	type	of	view	(parallel	or	perspective),	its	clipping
distances,	width,	height,	zoom	factor,	field-of-view,	etc.

Data	Members:
public:
Matrix3	prevAffineTM;
This	is	the	world	space	to	camera	space	transformation	matrix	computed	2
ticks	before	the	affineTM	matrix	below.
Matrix3	affineTM;
This	matrix	will	take	a	point	in	world	space	and	convert	it	to	camera	space	(or
world	to	view	space	if	it's	a	viewport).	The	camera	coordinates	are	set	up
looking	down	the	-Z	axis,	X	is	to	the	right,	and	Y	is	up.
int	projType;
One	of	the	following	values:
PROJ_PERSPECTIVE
The	view	is	a	perspective	projection.
PROJ_PARALLEL
The	view	is	a	parallel	projection.

float	hither,	yon;
The	hither	and	yon	clipping	distances.
float	distance;
This	data	member	is	available	in	release	3.0	and	later	only.
The	distance	from	the	view	point	to	the	image	(view)	plane.
float	zoom;
The	zoom	factor	of	the	viewport	for	parallel	projection.	The	zoom	factor	gives
the	amount	of	magnification	relative	to	a	standard	view	width	of	400	pixels.
This	is	best	explained	via	the	following	code	fragment:
ComputeViewParams()	computes	the	projection	factors	for	a	given	view,

and	MapToScreen()	applies	these	factors	to	map	a	point	from	3D	camera
coordinates	to	2D	screen	coordinates.
#define	VIEW_DEFAULT_WIDTH	((float)400.0)
void	SRendParams::ComputeViewParams(const
ViewParams&vp)	{
	if	(vp.projType	==	PROJ_PERSPECTIVE)	{
		float	fac	=	-(float)(1.0	/	tan(0.5*(double)vp.fov));
		xscale	=	fac*dw2;	//	dw2	=	float(devWidth)/2.0
		yscale	=	-devAspect*xscale;
		}
	else	{
		xscale	=
(float)devWidth/(VIEW_DEFAULT_WIDTH*vp.zoom);
		yscale	=	-devAspect*xscale;
		}
	}
Point2	SRendParams::MapToScreen(Point3	p)	{
	Point2	s;
	if	(proj_type==PROJ_PERSPECTIVE)	{
		s.x	=	dw2	+	xscale*p.x/p.z;
		s.y	=	dh2	+	yscale*p.y/p.z;
		}
	else	{
		s.x	=	dw2	+	xscale*p.x;
		s.y	=	dh2	+	yscale*p.y;
		}
	return	s;
	}

float	fov;
Field	of	view	in	radians	for	perspective	projections.
float	nearRange;
This	data	member	is	available	in	release	2.0	and	later	only.
The	near	environment	range	setting	(used	for	fog	effects).
float	farRange;

This	data	member	is	available	in	release	2.0	and	later	only.
The	far	environment	setting	(used	for	fog	effects).

Methods:

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.

Parameters:
int	cmd
The	index	of	the	command	to	execute.
ULONG	arg1=0
Optional	argument	1.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	these	parameters.
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	the	meaning	of	this	value.

Class	RendProgressCallback
See	Also:	Class	Renderer.
class	RendProgressCallback

Description:
This	class	is	a	callback	passed	in	to	the	renderer.	The	system	passes	this	callback
to	the	renderer,	and	the	renderer	will	use	these	methods	whenever	it	is	doing
something	that	is	going	to	take	some	time.	For	instance	when	transforming
objects	it	can	update	the	progress	bar.	This	is	also	passed	in	to	the	shadow	buffer
code	so	the	shadow	buffer	can	show	its	progress.	All	methods	of	this	class	are
implemented	by	the	system.	They	are	called	by	a	plug-in	renderer.

Methods:

Prototype:
virtual	void	SetTitle(const	TCHAR	*title)=0;

Remarks:
Allows	the	plug-in	to	set	the	string	displayed	in	renderer	dialog.

Parameters:
const	TCHAR	*title
The	string	to	display.

Prototype:
virtual	int	Progress(int	done,	int	total)=0;

Remarks:
Allows	the	plug-in	to	update	the	renderer	progress	display.

Parameters:
int	done
The	number	of	items	completed	so	far.
int	total
The	total	number	of	items	to	process.

Return	Value:
RENDPROG_CONTINUE

Continue	to	process.
RENDPROG_ABORT
Stop	processing.

Prototype:
virtual	void	SetCurField(int	which);

Remarks:
Sets	the	field	number	display.

Parameters:
int	which
FIELD_FIRST
FIELD_SECOND
FIELD_NONE

Prototype:
virtual	void	SetSceneStats(int	nlights,	int	nrayTraced,	int
nshadowed,	int	nobj,	int	nfaces)

Remarks:
The	plug-in	renderer	should	call	this	on	every	frame,	passing	in	values	for	the
various	parameters.	These	are	displayed	in	the	rendering	in	progress	dialog.

Parameters:
int	nlights
The	total	number	of	lights.
int	nrayTraced
The	number	of	lights	using	raytraced	shadows.
int	nshadowed
The	number	of	lights	using	shadows.
int	nobj
The	total	number	of	objects.
int	nfaces
The	total	number	of	faces.

List	of	Render	Setting	IDs
See	Also:	Class	Interface.
One	of	the	following	values:

RS_Production
The	MAX	Production	renderer.
RS_Draft
The	MAX	Draft	renderer.
RS_IReshade
The	MAX	Interactive	Renderer.

Hit	Test	Types
The	following	are	the	various	type	of	hit	testing:
HITTYPE_POINT
Hit	test	by	a	single	pick	point.
HITTYPE_BOX
Hit	test	by	a	rectangular	area.
HITTYPE_CIRCLE
Hit	test	by	circular	selection	area.
HITTYPE_FENCE
Hit	testing	by	an	arbitrary	polygon	fence.
HITTYPE_SOLID
Hit	test	a	face	as	if	it	was	solid	(even	in	wireframe	mode).	Treating	an	item	as
solid	means	the	face	will	be	hit	if	the	mouse	is	anywhere	inside	the	face	region
and	not	just	over	a	visible	edge.	For	example	in	3ds	max	when	an	object	is	not
selected	and	you	put	the	mouse	over	it	to	select	it,	you	need	to	put	it	over	the
wireframe.	When	an	object	is	selected	however	you	can	put	the	mouse
anywhere	over	the	object	and	the	system	still	considers	this	a	valid	area	for	hit
testing.	This	later	case	is	treating	the	faces	of	the	selected	object	as	solids.

Hit	Test	Flags
The	following	are	the	various	hit	test	flags.	You	may	use	these	flags	in
combination,	for	example:	HIT_SELONLY	|	HIT_SELSOLID.
HIT_SELONLY
Hit	test	selected	items	only.
HIT_UNSELONLY
Hit	test	unselected	items	only.
HIT_ABORTONHIT
Abort	the	process	of	hit	testing	after	finding	any	hit.
HIT_SELSOLID
This	treats	selected	items	as	solid	and	unselected	items	as	not	solid.	Treating
an	item	as	solid	means	the	face	will	be	hit	if	the	mouse	is	anywhere	inside	the
face	region	and	not	just	over	a	visible	edge.
HIT_ANYSOLID
This	treats	any	item	as	solid.
HIT_TRANSFORMGIZMO
This	option	is	available	in	release	3.0	and	later	only.
Hit	test	the	transform	gizmo.
HIT_SWITCH_GIZMO
This	option	is	available	in	release	3.0	and	later	only.
The	selection	processor	that	does	the	hit-testing	will	include	this	flag	when
hit-testing	on	a	MOUSE_POINT	message,	because	when	this	flag	is	active
and	the	transform	gizmo's	hit-testing	hits	the	manipulator,	it	should	switch	the
axis	mode	to	the	axis	that	is	hit.	Normally	the	transform	gizmo	hit-testing	will
only	highlight	the	axis	if	it	hits	it	-	but	when	this	flag	is	active	it	should	also
set	the	axis	mode	(using	PushAxisMode()	or	SetAxisMode())
HIT_MANIP_SUBHIT
This	option	is	available	in	release	4.0	and	later	only.
Hit	test	sub-manipulators.

List	of	PropertySet	Options
See	Also:	Class	Interface.
One	of	the	following	values:
PROPSET_SUMMARYINFO
This	corresponds	to	the	File	Properties	Summary	tab	properties
PROPSET_DOCSUMMARYINFO
This	corresponds	to	the	File	Properties	Contents	tab	properties	(Document
Contents)
PROPSET_USERDEFINED
This	corresponds	to	the	File	Properties	Custom	tab	properties

List	of	Marker	Types
See	Also:	Class	GraphicsWindow.
The	following	are	the	available	marker	types:
POINT_MRKR
This	marker	is	a	single	pixel	on	the	display.
HOLLOW_BOX_MRKR
This	marker	is	a	small	box	centered	on	the	point.
PLUS_SIGN_MRKR
This	marker	is	a	plug	sign	(+)	at	the	point.
ASTERISK_MRKR
This	marker	is	an	asterisk	(*)	at	the	point.
X_MRKR
This	marker	is	an	X	at	the	point.
BIG_BOX_MRKR
This	marker	is	a	large	box	centered	on	the	point.
CIRCLE_MRKR
This	marker	is	a	circle	at	the	point.
TRIANGLE_MRKR
This	marker	is	triangle	centered	on	the	point.
DIAMOND_MRKR
This	marker	is	diamond	centered	on	the	point.
SM_HOLLOW_BOX_MRKR
This	marker	is	a	hollow	box	at	the	point.
SM_CIRCLE_MRKR
This	marker	is	small	circle	at	the	point.
SM_TRIANGLE_MRKR
This	marker	is	small	triangle	centered	on	the	point.
SM_DIAMOND_MRKR
This	marker	is	small	diamond	centered	on	the	point.
DOT_MRKR
This	option	is	available	in	release	3.0	and	later	only.

This	marker	is	a	large	dot.
SM_DOT_MRKR
This	option	is	available	in	release	3.0	and	later	only.
This	marker	is	a	smaller	dot.

Class	ParticleSys
See	Also:	Class	GraphicsWindow,	Marker	Types,	Class	HitRegion.
class	ParticleSys

Description:
This	class	describes	a	particle	system.	Methods	are	available	to	display,	hit	test,
and	compute	the	bounding	box	of	the	particle	system.	Other	methods	allocate
and	free	the	particles	and	allow	custom	particle	drawing	procedures	to	be	used.

Data	Members:
public:
Tab<Point3>	points;
The	location	of	each	particle.
Tab<Point3>	vels;
The	velocity	of	each	particle	(optional).
Tab<TimeValue>	ages;
The	age	of	each	particle	(optional).
float	size;
The	world	space	radius	of	a	particle.

Methods:

Prototype:
void	Render(GraphicsWindow	*gw,	MarkerType
type=POINT_MRKR);

Remarks:
Implemented	by	the	System.
Draws	the	particle	system	into	the	GraphicsWindow.

Parameters:
GraphicsWindow	*gw
The	graphics	window	into	which	to	particle	system	is	to	be	drawn.
MarkerType	type=POINT_MRKR
One	of	the	following	values:
See	Marker	Types.

Prototype:
BOOL	HitTest(GraphicsWindow	*gw,	HitRegion	*hr,
int	abortOnHit=FALSE,	MarkerType	type=POINT_MRKR);

Remarks:
Implemented	by	the	System.
This	method	hit	tests	the	particle	system	and	returns	TRUE	if	the	particle
system	was	hit.

Parameters:
GraphicsWindow	*gw
The	graphics	window	to	hit	test	in.
HitRegion	*hr
Pointer	to	an	instance	of	HitRegion	describing	the	hit	test	region.
int	abortOnHit=FALSE
If	TRUE	the	hit	testing	should	be	aborted	upon	the	first	successful	hit;
otherwise	hit	testing	should	continue	through	all	particles.
MarkerType	type=POINT_MRKR
The	type	of	particle	marker	being	used.	One	of	the	following	values:
See	Marker	Types.

Return	Value:
TRUE	if	a	particle	is	hit;	otherwise	FALSE.

Prototype:
Box3	BoundBox(Matrix3	*tm=NULL);

Remarks:
Implemented	by	the	System.
Returns	the	3D	bounding	box	of	the	particles.

Parameters:
Matrix3	*tm=NULL
If	not	NULL,	this	is	the	optional	space	to	compute	the	bounding	box	in.

Prototype:
void	FreeAll();

Remarks:
Implemented	by	the	System.
Sets	all	the	counts	to	0.	This	will	be	the	points,	and	if	used,	the	velocities	and
ages.

Prototype:
void	SetCount(int	c,	DWORD	flags);

Remarks:
Implemented	by	the	System.
Sets	the	size	of	the	particle	system.	This	is	to	at	least	set	the	number	of	points
in	the	particle	system.	The	flags	indicate	if	optional	parameters	velocities	and
ages	should	be	allocated	as	well.

Parameters:
int	c
The	size	for	each	allocated	table.
DWORD	flags
One	or	more	of	the	following	values:
PARTICLE_VELS	-	Velocities	should	be	allocated.
PARTICLE_AGES	-	Particles	ages	should	be	allocated.

Prototype:
int	Count();

Remarks:
Implemented	by	the	System.
Returns	the	number	of	points	in	the	particle	system.

Prototype:
BOOL	Alive(int	i)

Remarks:
Implemented	by	the	System.
Determines	if	particle	i	is	alive	(has	not	expired).

Parameters:

int	i
The	index	of	the	particle	to	check.

Return	Value:
TRUE	if	the	'i-th'	particle	is	alive;	otherwise	FALSE.

Prototype:
void	SetCustomDraw(CustomParticleDisplay	*d);

Remarks:
Implemented	by	the	System.
Establishes	a	custom	draw	callback	object.	This	allows	the	particles	to	be
displayed	in	any	manner	desired	(not	just	using	the	standard	point	markers).
See	Class	CustomParticleDisplay.

Parameters:
CustomParticleDisplay	*d
The	custom	draw	callback	object.

Operators:

Prototype:
Point3&	operator[](int	i)

Remarks:
Implemented	by	the	System.
Returns	the	'i-th'	point	of	the	particle	system.

Class	ISubMtlAPI
See	Also:	Working	with	Materials.

Description:
This	class	is	available	in	release	2.5	and	later	only.
In	3ds	max	2.5	this	is	only	supported	for	objects	flowing	down	the	geometry
pipeline.
This	class	is	used	if	you	wish	to	support	the	direct	assignment	of	sub	materials	to
selected	faces.	For	a	reference	implementation	of	this	class,	please	refer	to	the
code	in
\MAXSDK\SAMPLES\MESH\EDITABLEMESH\TRIOBJED.CPP.

Methods:
public:

Prototype:
virtual	MtlID	GetNextAvailMtlID()=0;

Remarks:
This	method	returns	a	material	ID	that	is	currently	not	used	by	the	object.	If
the	current	face	selection	share	one	single	MtlDI	that	is	not	used	by	any	other
faces,	you	should	use	it.

Prototype:
virtual	BOOL	HasFaceSelection()=0;

Remarks:
This	method	indicates	if	you	are	active	in	the	modifier	panel	and	have	an
active	face	selection.	Return	TRUE	if	so,	otherwise	FALSE.

Prototype:
virtual	void	SetSelFaceMtlID(MtlID	id,	BOOL	bResetUnsel	=
FALSE)=0;

Remarks:
This	method	sets	the	selected	faces	to	the	specified	material	ID..

Parameters:
MtlID	id

The	material	id	to	set	for	the	selected	faces.
BOOL	bResetUnsel	=	FALSE
If	TRUE,	then	you	should	set	the	remaining	unselected	face	material	IDs	to	0.

Prototype:
virtual	int	GetSelFaceUniqueMtlID()=0;

Remarks:
This	method	returns	the	material	ID	of	the	selected	face(s).	If	multiple	faces
are	selected	they	should	all	have	the	same	MtlID	--	otherwise	you	should
return	-1.	If	faces	other	than	the	selected	share	the	same	material	ID,	then
return	-1.

Prototype:
virtual	int	GetSelFaceAnyMtlID()=0;

Remarks:
This	method	returns	the	material	ID	of	the	selected	face(s).	If	multiple	faces
are	selected	they	should	all	have	the	same	MtlID,	otherwise	return	-1.

Prototype:
virtual	int	GetMaxMtlID()=0;

Remarks:
This	method	returns	the	highest	MtlID	on	the	object.

Class	AttachMatDlgUser
See	Also:	Class	Object,	Class	Modifier.
class	AttachMatDlgUser

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	provides	a	general	way	for	objects	to	handle	the	attach	materials
dialog	presented	when	users	attach	objects	to	each	other.	To	use	this	class	do	the
following:
1)	Subclass	your	modifier	or	editable	object	off	this	class	as	shown	below.
Implement	the	four	functions	that	give	access	to	the	attach/condense	options.
2)	Now	your	class	simply	calls	the	global	DoAttachMatOptionDialog()
function,	which	deals	with	the	parameters	uniformly	for	all	users.	The
implementation	in	Edit	Spline	is	like	so:
class	EditSplineMod	:	public	Modifier,	...,	AttachMatDlgUser	{
.	.	.
		static	int	attachMat;
		static	BOOL	condenseMat;
.	.	.
		//	from	AttachMatDlgUser
		int	GetAttachMat()	{	return	attachMat;	}
		void	SetAttachMat(int	value)	{	attachMat	=	value;	}
		BOOL	GetCondenseMat()	{	return	condenseMat;	}
		void	SetCondenseMat(BOOL	sw)	{	condenseMat	=	sw;	}
	
And	the	statics	are	defined	as:
int	EditSplineMod::condenseMat	=	FALSE;
int	EditSplineMod::attachMat	=	ATTACHMAT_NEITHER;

Function:
BOOL	DoAttachMatOptionDialog(IObjParam	*ip,
AttachMatDlgUser	*user);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
This	displays	the	dialog	that	you	currently	get	in	Edit(able)	mesh	when	you
attach	objects	to	each	other.	It	gives	options	for	how	to	deal	with	combining
materials,	and	whether	or	not	to	condense	materials	which	have	excess
material	slots.

Parameters:
IObjParam	*ip
The	interface	pointer.
AttachMatDlgUser	*user
Points	to	the	AttachMatDlgUser	object.

Return	Value:
TRUE	if	the	user	OKed	the	dialog;	FALSE	if	the	user	Cancelled.

Methods:
public:

Prototype:
virtual	int	GetAttachMat()=0;

Remarks:
Returns	the	attach	material	setting.	One	of	the	following	values:
ATTACHMAT_IDTOMAT
Match	material	IDs	to	material.
ATTACHMAT_MATTOID
Match	Material	to	Material	IDs.
ATTACHMAT_NEITHER
Do	not	modifiy	Material	IDs	or	Material.

Prototype:
virtual	void	SetAttachMat(int	value)=0;

Remarks:
Sets	the	attach	material	value.

Parameters:
int	value

One	of	the	following	values:
ATTACHMAT_IDTOMAT
Match	material	IDs	to	material.
ATTACHMAT_MATTOID
Match	Material	to	Material	IDs.
ATTACHMAT_NEITHER
Do	not	modifiy	Material	IDs	or	Material.

Prototype:
virtual	BOOL	GetCondenseMat()=0;

Remarks:
Returns	the	condense	material	and	IDs	settings.

Prototype:
virtual	void	SetCondenseMat(BOOL	sw)=0;

Remarks:
Sets	the	condense	material	and	IDs	setting.

Parameters:
BOOL	sw
TRUE	for	on;	FALSE	for	off.

List	of	Display	Flags
One	or	more	of	the	following	values:
USE_DAMAGE_RECT
If	this	flag	is	set,	only	the	damaged	area	needs	to	be	displayed.	The	damaged
rectangle	may	be	retrieved	using	INode::GetDamagedRect().	See	Class
INode.
DISP_SHOWSUBOBJECT
This	indicates	if	an	item	should	display	its	sub-object	selection	state.	The
system	will	set	this	flag	is	the	item	is	selected,	the	user	is	in	the	modify
branch,	and	the	item	is	in	sub-object	selection	mode.

Class	RemapDir
See	Also:	Class	ReferenceTarget.
class	RemapDir

Description:
This	class	is	used	for	remapping	references	during	a	Clone.	It	is	used	when
cloning	items	that	are	instanced	so	that	the	plug-in	can	maintain	the	same
instance	relationship	within	the	clone.	All	methods	of	this	class	are	implemented
by	the	system.

Methods:

Prototype:
virtual	RefTargetHandle	CloneRef(RefTargetHandle	oldTarg);

Remarks:
In	the	ReferenceTarget::Clone()	procedure	when	an	item	is	cloning	itself
it	should	clone	all	its	references.	Instead	of	calling	Clone()	on	all	of	its
references	it	should	instead	call	this	method	passing	it	the	item	to	copy.	This
method	will	return	a	copy	of	the	item	or	a	pointer	to	a	copy	of	the	item	if	it
was	already	copied.

Parameters:
RefTargetHandle	oldTarg
This	is	the	item	that	is	to	be	copied.

Return	Value:
A	copy	of	the	item	or	a	pointer	to	a	copy	of	the	item	if	it	was	already	copied.

Prototype:
virtual	void	PatchPointer(RefTargetHandle*	patchThis,
RefTargetHandle	oldTarg)=0;

Remarks:
This	method	is	used	to	patch	the	pointer	for	cloned	items.	This	method	is	used
by	system	plug-ins	for	example.	The	Ring	Array	system	has	an	array	of	nodes
it	maintains.	When	the	system	is	cloned	this	method	is	used	to	clone	the	table
of	nodes.	The	new	ring	array	master	controller	will	also	have	a	table	of	nodes,

but	it	does	not	want	the	pointer	to	point	to	the	old	nodes,	it	should	point	to	the
new	cloned	nodes.	The	nodes	may	not	be	cloned	yet	at	the	time	the	master
controller	was	cloned	however.	This	method	allows	the	pointer	to	be	changed
to	point	at	the	new	nodes.

Parameters:
RefTargetHandle*	patchThis
The	pointer	should	point	at	this	item.
RefTargetHandle	oldTarg
The	original	target.

Sample	Code:
The	following	sample	code	demonstrates	the	use	of	this	method	to	patch	the
pointer	to	the	table	of	nodes	maintained	by	the	ring	array	system.

RefTargetHandle	RingMaster::Clone(RemapDir&	remap)	{
	int	i;
RingMaster*	newm	=	new	RingMaster();
	newm->ReplaceReference(0,pblock->Clone(remap));
	newm->numNodes	=	numNodes;
	newm->nodeTab.SetCount(numNodes);
	for	(i=0;	i<numNodes;	i++)	newm->nodeTab[i]	=	NULL;
	for	(i=0;	i<numNodes;	i++)	{
		remap.PatchPointer((RefTargetHandle*)&newm->nodeTab[i],
			(RefTargetHandle)nodeTab[i]);
		}
	return(newm);
	}

Prototype:
virtual	RefTargetHandle	FindMapping(RefTargetHandle	from)=0;

Remarks:
If	an	item	has	been	cloned,	this	method	will	return	the	cloned	copy	of	it.	If	it
has	not	been	cloned,	NULL	will	be	returned.

Parameters:
RefTargetHandle	from
The	item	to	check.

Prototype:
virtual	void	AddEntry(RefTargetHandle	hfrom,	RefTargetHandle
hto)=0;

Remarks:
This	method	is	used	internally.

Prototype:
virtual	void	Backpatch()=0;

Remarks:
This	method	is	used	internally.

Prototype:
virtual	void	Clear()=0;

Remarks:
This	method	is	used	internally.

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
This	method	is	used	internally.

Class	CreateMouseCallBack
See	Also:	Class	BaseObject	(method	GetCreateMouseCallBack()),	Class
ViewExp,	Class	Matrix3,	Class	IPoint2.
class	CreateMouseCallBack

Description:
This	is	the	callback	object	for	handling	the	creation	process	of	a	plug-in	object.

Methods:

Prototype:
virtual	int	proc(ViewExp	*vpt,	int	msg,	int	point,	int	flags,	IPoint2
m,	Matrix3&	mat)=0;

Remarks:
Implemented	by	the	Plug-In.
This	is	the	method	where	the	developer	defines	the	user	/	mouse	interaction
that	takes	place	during	the	creation	phase	of	an	object.

Parameters:
ViewExp	*vpt
The	viewport	the	creation	process	is	taking	place	in.
int	msg
This	message	describes	the	type	of	event	that	occurred.	See	List	of	Mouse
Callback	Messages.
int	point
The	point	number.	this	is	0	for	the	first	click,	1	for	the	second,	etc.
int	flags
These	flags	describe	the	state	of	the	mouse	button	and	keyboard	Shift/Ctrl/Alt
keys.	See	List	of	Mouse	Callback	Flags.
IPoint2	m
The	2D	screen	point	that	the	user	clicked	on.	Methods	in	the	viewport
interface	allow	this	point	to	be	converted	into	a	world	space	ray	or	a	3D	view
space	point.	A	world	space	ray	can	be	intersected	with	the	active	construction
plane	which	results	in	a	point	on	the	active	construction	plane.	See	Class
ViewExp.

Matrix3&	mat
This	represents	the	transformation	of	the	object	relative	to	the	construction
plane.	Typically	the	plug-in	would	get	a	point	on	the	construction	plane	based
on	the	screen	point	that	the	user	clicked	on	and	set	the	translation	component
of	this	matrix	based	on	that	point.

Return	Value:
Return	one	of	the	following	value	to	indicate	the	state	of	the	creation	process:
CREATE_CONTINUE
The	creation	process	should	continue.	In	this	case	the	mouse	is	captured.
CREATE_STOP
The	creation	process	has	terminated	normally.	In	this	case	the	mouse	is	no
longer	captured	and	input	is	then	allowed	again	from	any	viewport.
CREATE_ABORT
The	creation	process	has	been	aborted.	The	system	will	delete	the	created
object	and	node.

Prototype:
virtual	int	override(int	mode)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	override	the	default	drag	mode.	Most	plug-in	will	not
need	to	replace	the	default	implementation	of	this	method.	What	this	does	is
change	the	way	the	messages	are	sent	relative	to	the	mouse	clicking.
Normally	the	messages	are	sent	as	follows:	When	the	user	clicks	down	this
generates	a	MOUSE_POINT	message.	Then	the	user	drags	the	mouse	with
the	button	down	and	a	series	of	MOUSE_MOVE	messages	are	sent.	When
they	let	up	on	the	mouse	button	a	MOUSE_POINT	messages	is	generated.
Then	as	the	mouse	is	moved	a	series	of	MOUSE_MOVE	messages	are	sent.
Then	they	click	down	on	the	mouse	again,	but	this	time	a	point	message	is	not
generated	until	the	button	is	released.	All	future	points	are	then	only	sent	after
the	mouse	button	has	been	pressed	and	released.

Parameters:
int	mode
The	current	drag	mode.	See	below.

Return	Value:
One	of	the	following	drag	modes	should	be	returned:
CLICK_MODE_DEFAULT
Returned	to	indicate	the	use	of	the	system	mouse	mode.
CLICK_DRAG_CLICK
This	is	the	default	behavior	as	described	above.
CLICK_MOVE_CLICK
In	this	mode,	the	first	point	is	entered	by	clicking	the	mouse	button	down
and	then	letting	it	up.	This	generates	point	0.	In	other	words,	a
MOUSE_POINT	message	is	only	generated	after	the	user	has	pressed
and	released	the	mouse	button.
CLICK_DOWN_POINT
In	this	mode,	point	messages	are	sent	on	mouse-down	only.

Default	Implementation:
{	return	mode;	}

Sample	Code:
A	sample	program	that	uses	the	override	method	is
\MAXSDK\SAMPLES\OBJECTS\SPLINE.CPP.	It	uses
CLICK_DOWN_POINT.

Prototype:
virtual	BOOL	StartNewCreation();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	gets	called	by	the	CreationManager	to	determine	if	the	mouse	proc	is
really	starting	a	new	object.	The	mouse	proc	for	creating	always	returns
CREATE_STOP,	which	is	how	it	keeps	the	mouse	from	being	captured,	and
this	function	tells	the	system	if	it	is	really	ready	to	start	a	new	object.	Thus,
this	is	called	only	if	the	mouse	proc	returned	CREATE_STOP	to	see	if	the
object	is	really	in	a	state	to	start	a	new	node.

Return	Value:
TRUE	if	the	mouse	proc	is	ready	to	start	a	new	object;	otherwise	FALSE.

Default	Implementation:

{	return	TRUE;	}

Prototype:
virtual	BOOL	TolerateOrthoMode();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Called	by	the	system	to	determine	if	ortho	mode	makes	sense	for	this	creation.
Typcially	this	only	makes	sense	for	splines	and	NURBS	curves.

Return	Value:
TRUE	if	ortho	mode	is	okay;	otherwise	FALSE.

Default	Implementation:
{	return	FALSE;	}

List	of	Parameter	Types	for	Shape	Interpolation
See	Also:	Class	ShapeObject.
One	of	the	following	values:
PARAM_SIMPLE
Parameter	space	based	on	segments.	This	simple	interpolation	is	interpolating
based	on	parameter	space	--	If	a	spline	has	4	segments,	the	first	segment	is
parameter	values	0-0.25,	the	second	0.25-0.5,	the	third	0.5-0.75	and	the	fourth
0.75-1.0.	This	is	regardless	of	the	length	of	each	segment.
PARAM_NORMALIZED
Parameter	space	normalized	to	curve	length.	This	interpolation	normalizes	the
parameter	space	to	distance	along	the	length	of	a	spline.	So	parameter	space	0
is	the	start,	1.0	is	the	end	and	0.5	is	halfway	along	the	actual	length	of	the
curve.

Structure	CameraState
See	Also:	Class	GenCamera.
struct	CameraState	{
BOOL	isOrtho;	
Flag	to	indicate	if	the	camera	uses	orthographic	projection	(TRUE)	or
perspective	(FALSE).
float	fov;
The	camera	field-of-view	in	radians.
float	tdist;
Target	distance	for	free	cameras.
BOOL	horzLine;
Horizon	line	display	state.
int	manualClip;
Flag	to	indicate	if	camera	has	manual	clipping	enabled.
float	hither;
Hither	clipping	plane	distance.
float	yon;
Yon	clipping	plane	distance.
float	nearRange;
Near	camera	range	radius.
float	farRange;
Far	camera	range	radius.

};
Note:	The	camera	looks	down	the	negative	Z	axis,	with	X	to	the	right	and	Y	up.

Class	ModContextEnumProc
See	Also:	Class	ModContext.
class	ModContextEnumProc

Description:
Callback	object	used	with	Modifier::EnumModContexts().	The	proc()
method	is	called	by	the	system.

Methods:

Prototype:
virtual	BOOL	proc(ModContext	*mc)=0

Remarks:
Implemented	by	the	Plug-In.
This	is	called	by	Modifier::EnumModContexts().

Parameters:
ModContext	*mc
The	ModContext.

Return	Value:
Return	FALSE	to	stop,	TRUE	to	continue.

See	Also:	Modifier::EnumModContexts(),	Modifier.

Structure	TMComponentsArg
See	Also:	Class	Control,	Class	Matrix3,	Class	Point3,	Class	Interval,	Class
Quat,	Class	ScaleValue.
struct	TMComponentsArg

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	for	collecting	the	return	results	of
Control::GetLocalTMComponents.	Position,	Rotation,	or	Scale,
controllers	will	put	results	at	the	respective	component	when	the	corresponding
pointer	is	not	NULL.

Function:
TMComponentsArg():position(0),rotation(0),scale(0),rotRep(kUnknown);

Remarks:
Constructor.

Function:
TMComponentsArg(Point3*	pos,	Interval*	posInv,	float*	rot,
Interval*	rotInv,	ScaleValue*	scl,	Interval*	sclInv)	:
position(pos),posValidity(posInv),rotation(rot),rotValidity(rotInv),
scale(scl),sclValidity(sclInv);

Remarks:
Constructor.

Data:
Point3*	position;
If	not	NULL	this	is	the	position.
Interval*	posValidity;
If	not	NULL	this	points	to	the	validity	interval	for	the	position.
float*	rotation;
If	not	NULL	this	is	the	rotation	and	should	be	a	float[4].
Interval*	rotValidity;
If	not	NULL	this	points	to	the	validity	interval	for	the	rotation.

RotationRep	rotRep;
The	rotation	representation.	This	defines	what	the	4	numbers	in	the	rotation
array	mean.	One	of	the	following	enum	values:
kXYZ	-	Same	as	EULERTYPE_XYZ
kXZY	-	Same	as	EULERTYPE_XZY
kYZX	-	Same	as	EULERTYPE_YZX
kYXZ	-	Same	as	EULERTYPE_YXZ
kZXY	-	Same	as	EULERTYPE_ZXY
kZYX	-	Same	as	EULERTYPE_ZYX
kXYX	-	Same	as	EULERTYPE_XYX
kYZY	-	Same	as	EULERTYPE_YZY
kZXZ	-	Same	as	EULERTYPE_ZXZ
kQuat	-	A	quaternion	representation.
kUnknown	–	An	unknown	representation.

ScaleValue*	scale;
If	non-NULL	this	is	the	ScaleValue.
Interval*	sclValidity;
The	validity	interval	for	the	ScaleValue.

List	of	Out	of	Range	Types.
Out	of	Range	Types	provide	several	methods	of	extrapolating	the	pattern	of	key
dots	in	a	track.	These	patterns	are	applied	to	the	animation	outside	the	range	of
all	keys	in	the	track.	The	list	of	options	is	below:

One	of	the	following	values:
ORT_CONSTANT
The	tracks	values	before	or	after	the	range	of	keys	remains	constant.
ORT_CYCLE
This	causes	the	key	pattern	to	repeat	cyclically.
ORT_LOOP
This	is	the	same	as	ORT_CYCLE	with	continuity.
ORT_OSCILLATE
This	is	referred	to	as	"Ping-Pong"	in	the	3ds	max	user	interface.	This	reverses
the	range	of	keys	values	to	cause	the	pattern	to	oscillate.
ORT_LINEAR
This	takes	the	slope	at	the	end	key	in	the	range	and	extrapolate	with	that	slope.
ORT_IDENTITY
3ds	max	will	only	set	this	ORT	for	Ease	Curves.	This	only	is	used	when
mapping	time	to	time.	The	slope	will	be	set	to	one	(a	45	degree	diagonal
starting	at	the	end	of	the	key	range).
ORT_RELATIVE_REPEAT
This	causes	the	key	pattern	to	repeat	with	the	first	key	taking	off	where	the	last
key	left	off.

Class	InitJointData
See	Also:	Class	Control.
class	InitJointData

Description:
This	class	is	passed	to	Control::InitIKJoints()	which	is	called	when
importing	R4	3DS	files	that	have	IK	joint	data.

Data	Members:
public:
BOOL	active[3];
The	joint	active	settings.	Index	0=X,	1=Y,	2=Z.
BOOL	limit[3];
The	joint	limit	settings.	Index	0=X,	1=Y,	2=Z.
BOOL	ease[3];
The	joint	ease	settings.	Index	0=X,	1=Y,	2=Z.
Point3	min,	max,	damping;
The	joint	min,	max	and	damping	settings.

Class	InitJointData2
See	Also:	Class	InitJointData
class	InitJointData2	:	public	InitJointData

Description:
This	class	is	passed	to	Control::InitIKJoints2()	which	is	called	when
importing	R4	3DS	files	that	have	IK	joint	data.	This	class	contains	the	added
preferredAngle	parameter.

Data	Members:
public:
Point3	preferredAngle;
The	preferred	angle.
DWORD	flags;
Not	used	(must	be	0),	reserved	for	future	expansion.

Prototype:
InitJointData2();

Remarks:
Constructor.

Class	DOFParams
See	Also:	Class	Control.
class	DOFParams

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	structure	is	passed	to	the	method	Control::GetDOFParams().
Controllers	that	support	IK	can	provide	information	about	their	Degree	Of
Freedoms	(DOFs)	so	that	bones	can	display	this	information.	The	first	3	DOFs
are	assumed	to	be	position	and	the	next	3	are	assumed	to	be	rotation

Data	Members:
public:
BOOL	display[6];
Indicates	if	this	DOF	should	be	displayed.
Point3	axis[6];
Specifies	the	DOF	axis.
Point3	pos[6];
Specifies	the	base	of	the	axis.
BOOL	limit[6];
Indicates	if	the	joint	is	limited	at	all.
float	min[6];
Specifies	the	minimum	limit.
float	max[6];
Specifies	the	maximum	limit.
float	curval[6];
Specifies	the	current	value	of	the	parameter.
BOOL	sel[6];
Indicates	if	the	DOF	should	be	highlighted.
BOOL	endEffector;
Indicates	if	there	is	an	end	effector	for	this	controller.
Matrix3	eeTM;

Specifies	the	world	transformation	matrix	of	the	end	effector	(if	present).

Class	IKClipObject
See	Also:	Class	Control.
class	IKClipObject

Description:
This	class	is	used	to	store	IK	parameters	that	have	been	copied	to	a	clipboard.
The	plug-in	derives	a	class	from	this	class	to	store	their	data	and	implements	the
methods	that	describe	the	creator	object.	The	plug-in	should	also	implement	the
DeleteThis()	method	to	delete	the	instance	of	the	class.

Methods:

Prototype:
virtual	SClass_ID	SuperClassID()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	super	class	ID	of	the	creator	of	the	clip	object.

Prototype:
virtual	Class_ID	ClassID()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	class	ID	of	the	creator	of	the	clip	object.

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Implemented	by	the	Plug-In.
The	system	calls	this	method	to	delete	the	clip	object	after	it	has	been	used.

Class	CtrlHitRecord
class	CtrlHitRecord

Description:
This	class	provides	a	data	structure	used	during	controller	gizmo	hit-testing.	All
methods	are	implemented	by	the	system.

Friend	Class:
class	CtrlHitLog;

Data	Members:
public:
INode	*nodeRef;
This	identifies	the	node	the	user	has	clicked	on.
DWORD	distance;
The	'distance'	of	the	hit.	What	the	distance	actually	represents	depends	on	the
rendering	level	of	the	viewport.	For	wireframe	modes,	it	refers	to	the	distance
in	the	screen	XY	plane	from	the	mouse	to	the	sub-object	component.	In	a
shaded	mode,	it	refers	to	the	Z	depth	of	the	sub-object	component.	In	both
cases,	smaller	values	indicate	that	the	sub-object	component	is	'closer'	to	the
mouse	cursor.
ulong	hitInfo;
A	general	unsigned	long	value.	Most	controllers	will	just	need	this	to	identity
the	sub-object	element.	The	meaning	of	this	value	(how	it	is	used	to	identify
the	element)	is	up	to	the	plug-in.
DWORD	infoExtra;
If	the	above	hitInfo	data	member	is	not	sufficient	to	describe	the	sub-object
element	this	data	member	may	be	used	as	well.

Methods:

Prototype:
CtrlHitRecord()

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:	next=NULL;
distance=0;

	hitInfo=0;	nodeRef=NULL;

Prototype:
CtrlHitRecord(CtrlHitRecord	*nxt,INode	*nr,	DWORD	d,
	ulong	inf,	DWORD	extra)

Remarks:
Constructor.	The	data	members	are	initialized	to	the	data	passed.

Prototype:
CtrlHitRecord	*Next()

Remarks:
Each	CtrlHitRecord	maintains	a	pointer	to	another	CtrlHitRecord.	This
method	returns	the	next	hit	record.

List	of	Miscellaneous	Control	Functions	and
Templates
See	Also:	Class	StdControl,	List	of	Additional	Controller	Related	Functions.

Description:
The	following	functions	are	available	for	help	with	Out	of	Range	Type	(ORT)
processing.	All	functions	are	implemented	by	the	system.

Prototype:
inline	TimeValue	CycleTime(Interval	i,TimeValue	t)

Remarks:
Returns	a	TimeValue	that	is	the	specified	time	mod	the	interval	length.	The
returned	time	is	somewhere	within	the	interval	passed.	This	cycles	the	time	so
that	is	appears	within	the	interval.

Parameters:
Interval	i
The	interval	the	returned	time	is	within.
TimeValue	t
The	time	to	cycle.

Prototype:
inline	int	NumCycles(Interval	i,TimeValue	t)

Remarks:
Returns	the	number	of	times	the	TimeValue	cycles	through	the	interval.

Parameters:
Interval	i
The	interval	the	time	is	checked	against.
TimeValue	t
The	time	to	check.

Note:	Types	that	use	these	template	functions	must	support	the	following
operators:
T	+	T,	T	-	T,	T	*	float,	T	+	float

Prototype:
template	<class	T>	T	LinearExtrapolate(TimeValue	t0,	TimeValue
t1,
	T	&val0,	T	&val1,	T	&endVal)

Remarks:
Performs	a	linear	extrapolation	and	returns	the	result.

Parameters:
TimeValue	t0
The	time	you	are	extrapolating	from.
TimeValue	t1
The	time	you	are	extrapolating	to.
T	&val0
The	first	value	you	want	to	use	to	extrapolate	from.
T	&val1
The	second	value	you	want	to	use	to	extrapolate	from.
T	&endVal
The	value	at	time	t0.

Return	Value:
The	extrapolated	value	associated	with	time	t1.

Prototype:
template	<class	T>	T	RepeatExtrapolate(Interval	range,
TimeValue	t,
	T	&startVal,	T	&endVal,	T	&cycleVal);

Remarks:
Performs	a	repeat	extrapolation	and	returns	the	result.	This	will	cycle	the	time
t	into	the	interval	range.

Parameters:
Interval	range
The	range	for	which	you	are	repeating	over.
TimeValue	t
The	time	you	are	extrapolating	to.

T	&startVal
The	value	at	the	start	of	the	range.
T	&endVal
The	value	at	the	end	of	the	range.
T	&cycleVal
The	value	of	the	function	at	the	cycled	point.

Prototype:
template	<class	T>	T	IdentityExtrapolate(TimeValue	endPoint,
TimeValue	t,
	T	&endVal);

Remarks:
Performs	a	linear	extrapolation	using	a	slope	of	one	and	a	point	and	returns	the
result.

Parameters:
TimeValue	endPoint
The	end	point	time.
TimeValue	t
The	time	to	evaluate.
T	&endVal
The	value	of	the	endPoint	time.

Prototype:
Quat	LinearExtrapolate(TimeValue	t0,	TimeValue	t1,	Quat	&val0,
	Quat	&val1,	Quat	&endVal);

Remarks:
The	Quat	version	of	above.

Prototype:
Quat	RepeatExtrapolate(Interval	range,	TimeValue	t,	Quat
&startVal,
	Quat	&endVal,	Quat	&cycleVal);

Remarks:
The	Quat	version	of	above.

Prototype:
Quat	IdentityExtrapolate(TimeValue	endPoint,	TimeValue	t,	Quat
&endVal);

Remarks:
The	Quat	version	of	above.

Prototype:
template	<class	T>	T	LinearInterpolate(const	T	&v0,const	T
&v1,float	u)

Remarks:
The	functions	performs	a	linear	interpolation	between	v0	and	v1	using	u	as
the	interpolation	parameter.

Parameters:
const	T	&v0
The	first	value.
const	T	&v1
The	second	value.
float	u
The	interpolation	parameter	in	the	range	0	to	1.

Prototype:
inline	Quat	LinearInterpolate(const	Quat	&v0,const	Quat
&v1,float	u)

Remarks:
The	Quat	version	of	above.

Prototype:
inline	ScaleValue	LinearInterpolate(const	ScaleValue	&v0,
	const	ScaleValue	&v1,float	u)

Remarks:
The	ScaleValue	version	of	above.

Prototype:
inline	Interval	TestInterval(Interval	iv,	DWORD	flags)

Remarks:
This	function	take	the	interval	passed	and	checks	the	flags	and	modifies	the
interval	based	on	the	state	of	the	flags.

Parameters:
Interval	iv
The	interval	to	modify.
DWORD	flags
One	of	the	following	values:

TIME_INCLEFT
TIME_INCRIGHT

Return	Value:
The	revised	interval.

Prototype:
inline	Quat	ScaleQuat(Quat	q,	float	s)

Remarks:
Returns	a	quaternion	scaled	by	the	specified	factor.	This	scales	the	'angle'	of
the	quaternion	by	s.

Parameters:
Quat	q
The	quaternion	to	scale.
float	s
The	scale	factor.

Class	ImpInterface
See	Also:	Class	ImpNode,	Class	Interval,	Class_ID,	Class	GenLight,	Class
GenCamera.
class	ImpInterface

Description:
Import	Interface	class.	Methods	of	this	class	allow	the	plug-in	to	create	nodes	in
the	scene,	create	camera	and	light	objects,	and	create	objects	by	specifying	a
super	class	ID	and	Class	ID.	Methods	are	also	available	to	bind	target	nodes	to
their	Look	At	nodes.	All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	ImpNode	*CreateNode()	=	0;

Remarks:
Creates	a	new	node.	Methods	of	ImpNode	may	be	used	to	assign	properties
to	the	node.	See	AddNodeToScene()	to	add	a	node	to	the	scene	given	its
ImpNode	pointer.

Return	Value:
An	ImpNode	pointer	that	may	be	used	to	set	properties	of	the	node.

Prototype:
virtual	void	RedrawViews()	=	0;

Remarks:
Redraws	the	3ds	max	viewports.

Prototype:
virtual	GenCamera	*CreateCameraObject(int	type)	=	0;

Remarks:
Creates	a	camera	object	and	returns	a	pointer	to	it.	The	GenCamera	pointer
may	be	used	to	set	the	properties	of	the	camera	object.

Parameters:

int	type
One	of	the	following	values:
FREE_CAMERA
TARGETED_CAMERA

Prototype:
virtual	Object	*CreateTargetObject()	=	0;

Remarks:
Creates	a	target	object	and	returns	a	pointer	to	it.

Prototype:
virtual	GenLight	*CreateLightObject(int	type)	=	0;

Remarks:
Creates	a	light	object	and	returns	a	pointer	to	it.	The	GenLight	pointer	may	be
used	to	set	the	properties	of	the	light	object.

Parameters:
int	type
One	of	the	following	values:
OMNI_LIGHT	-	Omnidirectional
TSPOT_LIGHT	-	Targeted
DIR_LIGHT	-	Directional
FSPOT_LIGHT	-	Free

Prototype:
virtual	void	*Create(SClass_ID	sclass,	Class_ID	classid)=0;

Remarks:
Creates	an	object	given	its	Super	Class	ID	and	its	Class	ID.

Parameters:
SClass_ID	sclass
The	super	class	ID	of	the	node	to	create.
Class_ID	classid
The	unique	class	ID	of	the	node	to	create.

Return	Value:
A	pointer	to	the	item.

Prototype:
virtual	int	BindToTarget(ImpNode	*laNode,	ImpNode
*targNode)=0;

Remarks:
This	method	binds	a	node	to	a	target	using	a	Look	At	controller.	This	is
typically	used	with	target	spotlights	and	cameras	to	bind	them	to	their	target
node.

Parameters:
ImpNode	*laNode
The	node	that	will	have	the	Look	At	controller	assigned.
ImpNode	*targNode
The	target	node.

Return	Value:
Nonzero	if	successful;	otherwise	0.

Prototype:
virtual	void	AddNodeToScene(ImpNode	*node)=0;

Remarks:
Adds	a	node	to	the	scene	given	its	ImpNode	pointer.

Parameters:
ImpNode	*node
The	node	to	add	to	the	scene.

Prototype:
virtual	void	SetAnimRange(Interval&	range)=0;

Remarks:
Sets	the	animation	range	for	the	node.

Parameters:
Interval&	range

Specifies	the	animation	range.

Prototype:
virtual	Interval	GetAnimRange()=0;

Remarks:
Retrieves	the	animation	range	for	the	node	(as	an	Interval).

Prototype:
virtual	void	SetEnvironmentMap(Texmap	*txm)=0;

Remarks:
Sets	the	current	environment	map	to	the	specified	map.

Parameters:
Texmap	*txm
The	map	to	set.

Prototype:
virtual	void	SetAmbient(TimeValue	t,	Point3	col)=0;

Remarks:
Sets	the	ambient	light	color	at	the	specified	time.

Parameters:
TimeValue	t
The	time	to	set	the	color.
Point3	col
The	light	color	to	set.

Prototype:
virtual	void	SetBackGround(TimeValue	t,Point3	col)=0;

Remarks:
Sets	the	background	color	at	the	specified	time.

Parameters:
TimeValue	t

The	time	to	set	the	color.
Point3	col
The	light	color	to	set.

Prototype:
virtual	void	SetUseMap(BOOL	onoff)=0;

Remarks:
Sets	the	state	of	the	environment	'Use	Map'	toggle.

Parameters:
BOOL	onoff
TRUE	to	turn	on;	FALSE	to	turn	off.

Prototype:
virtual	void	AddAtmosphere(Atmospheric	*atmos)=0;

Remarks:
Adds	the	specified	atmospheric	effect	to	the	environment.

Parameters:
Atmospheric	*atmos
The	atmospheric	effect.	See	Class	Atmospheric.

Prototype:
virtual	int	NewScene()=0;

Remarks:
This	method	deletes	all	existing	geometry	in	the	scene.

Class	ExpInterface
See	Also:	Class	IScene.
class	ExpInterface

Description:
Export	Interface	class.	A	data	member	of	this	class	allows	the	plug-in	to
enumerate	all	nodes	in	the	scene.

Data	Members:
IScene	*theScene;
A	pointer	to	the	scene.	See	Class	IScene.

Class	SFXParamDlg
See	Also:	Class	Effect,	Class	Atmospheric	,	Class	Sampler.
class	SFXParamDlg	:	public	InterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
An	instance	of	this	class	is	returned	by	a	rendering	effect,	atmopsheric	plug-in,
or	sampler	when	it	is	asked	to	put	up	its	rollup	page	in	the	user	interface.

Methods:
public:

Prototype:
virtual	Class_ID	ClassID()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	unique	Class_ID	of	this	item.

Prototype:
virtual	void	SetThing(ReferenceTarget	*m)=0;

Remarks:
Implemented	by	the	Plug-In.
This	sets	the	current	filter,	sampler,	atmospheric	or	rendering	effect	being
edited	to	the	one	passed	and	updates	the	user	interface	controls	to	reflect	the
state	of	the	new	'thing'.

Parameters:
ReferenceTarget	*m
The	effect	to	save	as	current.

Prototype:
virtual	ReferenceTarget*	GetThing()=0;

Remarks:
Implemented	by	the	Plug-In.

This	returns	the	current	filter,	sampler,	atmospheric	or	rendering	effect	being
edited.

Prototype:
virtual	void	SetTime(TimeValue	t);

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	current	time	has	changed.	This	gives	the
developer	an	opportunity	to	update	any	user	interface	data	that	may	need
adjusting	due	to	the	change	in	time.

Parameters:
TimeValue	t
The	new	current	time.

Default	Implementation:
{}

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Implemented	by	the	Plug-In.
Deletes	this	instance	of	the	class.

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.

Parameters:
int	cmd
The	index	of	the	command	to	execute.

ULONG	arg1=0
Optional	argument	1.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	these	parameters.
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	the	meaning	of	this	value.

Default	Implementation:
{	return	0;	}

Class	IRendParams
See	Also:	Class	TimeChangeCallback,	Class	RendPickProc.
class	IRendParams	:	public	InterfaceServer

Description:
This	is	the	interface	given	to	a	renderer,	or	atmospheric	effect	when	it	needs	to
display	its	parameters.	For	a	renderer,	the	Render	Scene	dialog	may	be	extended
using	this	class.	All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	TimeValue	GetTime()=0;

Remarks:
Returns	the	current	position	of	the	frame	slider.

Prototype:
virtual	void	RegisterTimeChangeCallback(TimeChangeCallback
*tc)=0;

Remarks:
Register	a	callback	object	that	will	get	called	every	time	the	user	changes	the
frame	slider.

Parameters:
TimeChangeCallback	*tc
The	callback	object	to	register.

Prototype:
virtual	void
UnRegisterTimeChangeCallback(TimeChangeCallback	*tc)=0;

Remarks:
Un-registers	a	callback	object	registered	using
RegisterTimeChangeCallback().

Parameters:

TimeChangeCallback	*tc
The	callback	object	to	un-register.

Prototype:
virtual	MtlBase	*DoMaterialBrowseDlg(HWND	hParent,DWORD
flags,BOOL	&newMat,BOOL	&cancel)=0;

Remarks:
Brings	up	the	material	browse	dialog	allowing	the	user	to	select	a	material.

Parameters:
HWND	hParent
The	parent	window	handle.
DWORD	flags
See	List	of	Material	Browser	Flags.
BOOL	&newMat
Set	to	TRUE	if	the	material	is	new	OR	cloned;	otherwise	FALSE.
BOOL	&cancel
Set	to	TRUE	if	the	user	cancels	the	dialog;	otherwise	FALSE.

Return	Value:
The	material	returned	will	be	NULL	if	the	user	selects	'None'

Prototype:
virtual	HWND	AddRollupPage(HINSTANCE	hInst,	TCHAR
*dlgTemplate,	DLGPROC	dlgProc,	TCHAR	*title,	LPARAM
param=0,DWORD	flags=0,	int	category	=
ROLLUP_CAT_STANDARD)=0;

Remarks:
This	method	adds	rollup	pages	to	the	dialog	and	returns	the	window	handle	of
the	page.

Parameters:
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in.
TCHAR	*dlgTemplate

The	dialog	template	for	the	rollup	page.
DLGPROC	dlgProc
The	dialog	proc	to	handle	the	message	sent	to	the	rollup	page.
TCHAR	*title
The	title	displayed	in	the	title	bar.
LPARAM	param=0
Any	specific	data	to	pass	along	may	be	stored	here.	This	may	be	later	retrieved
using	the	GetWindowLong()	call	from	the	Windows	API.
DWORD	flags=0
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly
done,	so	that	this	system	works	with	param	maps	as	well.

Return	Value:
The	window	handle	of	the	rollup	page.

Prototype:
virtual	HWND	AddRollupPage(HINSTANCE	hInst,
DLGTEMPLATE	*dlgTemplate,	DLGPROC	dlgProc,	TCHAR
*title,	LPARAM	param=0,DWORD	flags=0,	int	category	=
ROLLUP_CAT_STANDARD)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	adds	rollup	pages	to	the	dialog	and	returns	the	window	handle	of
the	page.	This	method	is	currently	not	being	used.

Parameters:
HINSTANCE	hInst
The	DLL	instance	handle	of	the	plug-in.
DLGTEMPLATE	*dlgTemplate
The	dialog	template	for	the	rollup	page.
DLGPROC	dlgProc
The	dialog	proc	to	handle	the	message	sent	to	the	rollup	page.
TCHAR	*title
The	title	displayed	in	the	title	bar.
LPARAM	param=0
Any	specific	data	to	pass	along	may	be	stored	here.	This	may	be	later	retrieved
using	the	GetWindowLong()	call	from	the	Windows	API.
DWORD	flags=0
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

int	category	=	ROLLUP_CAT_STANDARD
The	category	parameter	provides	flexibility	with	regard	to	where	a	particular
rollup	should	be	displayed	in	the	UI.	RollupPanels	with	lower	category	fields
will	be	displayed	before	RollupPanels	with	higher	category	fields.	For
RollupPanels	with	equal	category	value	the	one	that	was	added	first	will	be
displayed	first.	Allthough	it	is	possible	to	pass	any	int	value	as	category	there
exist	currently	5	different	category	defines:	ROLLUP_CAT_SYSTEM,
ROLLUP_CAT_STANDARD,	and	ROLLUP_CAT_CUSTATTRIB.
When	using	ROLLUP_SAVECAT,	the	rollup	page	will	make	the	provided
category	sticky,	meaning	it	will	not	read	the	category	from	the
RollupOrder.cfg	file,	but	rather	save	the	category	field	that	was	passed	as
argument	in	the	CatRegistry	and	in	the	RollupOrder.cfg	file.
The	method	will	take	the	category	of	the	replaced	rollup	in	case	the	flags
argument	contains	ROLLUP_USEREPLACEDCAT.	This	is	mainly

done,	so	that	this	system	works	with	param	maps	as	well.
Return	Value:
The	window	handle	of	the	rollup	page.

Prototype:
virtual	void	DeleteRollupPage(HWND	hRollup)=0;

Remarks:
Removes	a	rollup	page	and	destroys	it.

Parameters:
HWND	hRollup
The	handle	of	the	rollup	window.	This	is	the	handle	returned	from
AddRollupPage().

Prototype:
virtual	void	RollupMouseMessage(HWND	hDlg,	UINT	message,
WPARAM	wParam,	LPARAM	lParam)=0;

Remarks:
This	allows	hand	cursor	scrolling	when	the	user	clicks	the	mouse	in	an	unused
area	of	the	dialog.	When	the	user	mouses	down	in	dead	area	of	the	dialog,	the
plug-in	should	pass	mouse	messages	to	this	function	which	will	pass	them	on
to	the	rollup.
Note:	In	3ds	max	2.0	and	later	only	use	of	this	method	is	no	longer	required	--
the	functionality	happens	automatically.

Parameters:
HWND	hDlg
The	window	handle	of	the	dialog.
UINT	message
The	message	sent	to	the	dialog	proc.
WPARAM	wParam
Passed	in	to	the	dialog	proc.	Pass	along	to	this	method.
LPARAM	lParam
Passed	in	to	the	dialog	proc.	Pass	along	to	this	method.

Prototype:
virtual	void	SetPickMode(RendPickProc	*proc)=0;

Remarks:
This	will	set	the	command	mode	to	a	standard	pick	mode.	The	callback
implements	hit	testing	and	a	method	that	is	called	when	the	user	actually	picks
an	item.

Parameters:
RendPickProc	*proc
The	callback	object.	See	Class	RendPickProc.

Prototype:
virtual	void	EndPickMode()=0;

Remarks:
If	a	plug-in	is	finished	editing	its	parameters	it	should	not	leave	the	user	in	a
pick	mode.	This	method	will	flush	out	any	pick	modes	in	the	command	stack.

Prototype:
virtual	void	PutMtlToMtlEditor(MtlBase	*mb)=0;

Remarks:
When	a	plugin	has	a	Texmap,	clicking	on	the	button	associated	with	that	map
should	cause	this	routine	to	be	called.

Parameters:
MtlBase	*mb
The	MtlBase	(Texmap	or	Mtl)	to	put	to	the	materials	editor.

Prototype:
virtual	float	GetMaxPixelSize()	=	0;

Remarks:
This	method	is	used	internally.

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.

Parameters:
int	cmd
The	index	of	the	command	to	execute.
ULONG	arg1=0
Optional	argument	1.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	these	parameters.
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	the	meaning	of	this	value.

Class	ShadeOutput
See	Also:	Class	ShadeContext,	Class	Color.
class	ShadeOutput	:	public	BaseInterfaceServer

Description:
An	instance	of	this	class	is	a	data	member	of	the	ShadeContext.	This	is	used	to
contain	the	computed	color	and	transparency	of	the	pixel	being	shaded	by	a
material.	All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
ULONG	flags;
These	flags	are	not	currently	used.
Color	c;
Shaded	color	of	the	pixel.
Color	t;
Transparency	of	the	pixel.
float	ior;
Index	of	refraction	of	the	pixel.
int	gbufId;
The	G-buffer	ID.	This	allows	the	MixIn()	method	to	pick	the	id	of	the
material	which	was	blended	in	the	highest	proportion.

Methods:

Prototype:
void	MixIn(ShadeOutput&	a,	float	f);

Remarks:
This	method	is	used	to	blend	the	output	of	two	texmaps,	for	example,	in	the
Mix	texmap.	The	function	is	:
void	ShadeOutput::MixIn(ShadeOutput	&a,	float	f)	{
	if	(f<=0.0f)	{
		(*this)	=	a;
		return;
		}

	else	if	(f>=1.0f)	{
		return;
		}
	else	{
		float	s	=	1.0f	-	f;
		flags	|=	a.flags;
		c	=	s*a.c	+	f*c;
		t	=	s*a.t	+	f*t;
		ior	=	s*a.ior	+	f*ior;
		if	(f<=0.5f)	gbufId	=	a.gbufId;
		}
	}
This	does	a	blend	of	a	with	(*this).	This	blend	is	applied	to	the	color,
transparency,	and	index	of	refraction.	The	flags	of	are	OR'ed	together.

Parameters:
ShadeOutput&	a
The	output	of	the	texmap	to	blend	in.
float	f
The	amount	to	blend	in,	i.e.:
a.MixIn(b,	1.0f)	results	in	100%	of	a	and	none	of	b.

Prototype:
void	Reset(int	n	=	-1)

Remarks:
Implemented	by	the	System.
This	method	resets	the	data	member	such	that:	c	is	set	to	black,	t	is	set	to
black,	ior	is	set	to	1.0,	gbufId	is	set	to	0,	and	the	flags	are	set	to	0.

Parameters:
int	n	=	-1
By	supplying	a	negative	value	this	method	will	clear	elements	but	leave	the
number	of	elements	unchanged.

Class	TexHandleMaker
See	Also:	Class	TexHandle,	Class	Bitmap,	Class	BitmapInfo.
class	TexHandleMaker

Description:
This	class	provides	several	ways	to	create	a	texture	handle.	The	handle	may	be
created	from	a	3ds	max	bitmap	or	a	Windows	Device	Independent	Bitmap.	This
class	also	provides	methods	to	determine	the	desired	size	of	the	bitmap.

Methods:

Prototype:
virtual	TexHandle*	CreateHandle(Bitmap	*bm,	int	symflags=0,
int	extraFlags=0)=0;

Remarks:
Implemented	by	the	System
This	method	is	called	to	create	a	texture	handle	from	a	3ds	max	bitmap.

Parameters:
Bitmap	*bm
The	bitmap	to	create	a	handle	to.
int	symflags=0
See	List	of	Texture	Symmetry	Flags.
int	extraFlags=0;
One	of	the	following	values:
EX_MULT_ALPHA
Set	this	flag	if	alpha	is	not	premultiplied	in	the	Bitmap.
EX_RGB_FROM_ALPHA
Set	this	flag	to	make	the	map	using	the	alpha	channel	of	the	bitmap	to
define	the	gray	level.
EX_OPAQUE_ALPHA
Specifies	to	make	the	map	using	opaque	alpha.
EX_ALPHA_FROM_RGB
Specifies	to	make	alpha	from	the	intensity	of	the	map.

Return	Value:
A	pointer	to	the	texture	handle.

Prototype:
virtual	TexHandle*	CreateHandle(BITMAPINFO	*bminf,	int
symflags=0,	int	extraFlags=0)=0;

Remarks:
Implemented	by	the	System
This	method	is	called	to	create	a	texture	handle	from	a	32	bit	Windows	Device
Independent	Bitmap.

Parameters:
BITMAPINFO	*bminf
The	bitmap	to	create	a	handle	to.
int	symflags=0
See	List	of	Texture	Symmetry	Flags.
int	extraFlags=0;
One	of	the	following	values:
EX_MULT_ALPHA
Set	this	flag	if	alpha	is	not	premultiplied	in	the	Bitmap.
EX_RGB_FROM_ALPHA
Set	this	flag	to	make	the	map	using	the	alpha	channel	of	the	bitmap	to
define	the	gray	level.
EX_OPAQUE_ALPHA
Specifies	to	make	the	map	using	opaque	alpha.
EX_ALPHA_FROM_RGB
Specifies	to	make	alpha	from	the	intensity	of	the	map.

Return	Value:
A	pointer	to	the	texture	handle.

Prototype:
virtual	BITMAPINFO	*BitmapToDIB(Bitmap	*bm,	int	symflags,
int	extraFlags,	BOOL	forceW=0,	BOOL	forceH=0)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	creates	a	32	bit	Windows	Device	Independent	Bitmap	with	the
specified	symflags	and	extraflags	already	incorporated	and	returns	a	pointer	to
the	associated	BitmapInfo.

Parameters:
Bitmap	*bm
Points	to	the	bitmap	to	create	the	handle	to.
int	symflags
See	List	of	Texture	Symmetry	Flags.
int	extraFlags
One	of	the	following	values:
EX_MULT_ALPHA
Set	this	flag	if	alpha	is	not	premultiplied	in	the	Bitmap.
EX_RGB_FROM_ALPHA
Set	this	flag	to	make	the	map	using	the	alpha	channel	of	the	bitmap	to
define	the	gray	level.
EX_OPAQUE_ALPHA
Specifies	to	make	the	map	using	opaque	alpha.
EX_ALPHA_FROM_RGB
Specifies	to	make	alpha	from	the	intensity	of	the	map.

BOOL	forceW=0
If	this	parameter	is	non-zero	it	is	used	as	the	width	of	the	final	DIB.
BOOL	forceH=0
If	this	parameter	is	non-zero	it	is	used	as	the	height	of	the	final	DIB

Prototype:
virtual	TexHandle*	MakeHandle(BITMAPINFO*	bminf)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	a	texture	handle	made	from	a	32	bit	DIB	that	has	the	symflags,	and
extraflags	already	incorporated.	This	takes	ownership	of	the	BITMAPINFO*.

Parameters:
BITMAPINFO*	bminf
Points	to	the	BitmapInfo	for	the	DIB.

Prototype:
virtual	BOOL	UseClosestPowerOf2()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	TRUE	if	the	bitmap	does	not	need	to	be	square	and	FALSE	if	it	does
need	to	be	square.

Prototype:
virtual	int	Size()=0;

Remarks:
Implemented	by	the	System.
This	method	may	be	called	to	determine	the	desired	size	for	the	bitmap.	The
system	ultimately	needs	a	square	bitmap	that	is	a	power	of	2	in	width	and
height.	If	you	already	have	a	bitmap	around,	just	pass	it	in	to
CreateHandle()	and	it	will	be	converted.	If	you	are	creating	a	bitmap	from
scratch	(i.e.	a	procedural	texture),	then	you	should	make	it	Size()	in	width	in
height,	and	save	the	system	an	extra	step.	In	either	case	you	own	your	bitmap,
and	are	responsible	for	ultimately	freeing	it.

Return	Value:
The	size	of	the	desired	bitmap.

Class	NameAccum
See	Also:	Class	Texmap.
class	NameAccum

Description:
This	class	provides	a	method	AddMapName()	that	is	called	when	a	Texmap	is
attempting	to	load	its	map	and	it	cannot	be	found.

Methods:

Prototype:
virtual	void	AddMapName(TCHAR	*name)=0;

Remarks:
Implemented	by	the	System.
This	method	is	called	to	add	the	name	of	a	map	that	was	not	found.

Parameters:
TCHAR	*name
The	name	to	add.

List	of	Procedural	Texture	Clamping,	Noise	and	Misc
Functions
See	Also:	Class	Texmap,	Class	AColor,	Class	Color,	Class	Point2,	Class
Point3.
The	following	functions	are	available	for	use	in	the	creation	of	procedural
textures.	These	are	based	on	the	code	provided	in	the	book:
Kenton	Musgrave,	Darwyn	Peachey,	Ken	Perlin,	Steven	Worley,	Texturing
and	Modeling	A	Procedural	Approach	(Cambridge,	MA:	Academic	Press,
Inc.,	1994).	ISBN:	0-12-228760-6.
Consult	this	book	for	additional	insight	into	the	use	of	these	functions.

Prototype:
float	boxstep(float	a,	float	b,	float	x);

Remarks:
This	function	returns	0	if	x	is	less	than	a,	a	linear	interpolation	between	0	and
1	if	x	is	greater	than	or	equal	to	a	and	less	than	or	equal	to	b,	and	1	if	x	is
greater	than	b.	This	function	is	a	smoother	version	of	step()	using	a	linear
ramp.	The	function	boxstep()	is	defined	like	this:

float	boxstep(float	a,	float	b,	float	x)	{
	return	clamp((x-a)/(b-a),0.0f,	1.0f);
}

The	boxstep()	function.
For	comparison,	note	that	step()	returns	values	of	0	when	x	is	less	than	a	and
1	when	x	is	greater	than	or	equal	to	a.	This	function	is	not	part	of	the	SDK	but
step()	is	defined	like	this:

float	step(float	a,	float	x)	{
return	(float)(x	>=	a);

}

The	step()	function.
Parameters:
float	a
The	limit	for	the	x	value	where	the	function	will	return	0.
float	b
The	limit	for	the	x	value	where	the	function	will	return	1.
float	x
A	floating	point	value.

Prototype:
float	smoothstep(float	a,	float	b,	float	x);

Remarks:
This	function	is	similar	to	step(),	but	instead	of	a	sharp	transition	from	0	to	1
at	a	specified	threshold,	it	makes	a	gradual	transition	from	0	to	1	beginning	at
threshold	a	and	ending	at	threshold	b.	To	do	this,	this	function	uses	a	cubic
function	whose	slope	is	0	at	a	and	b	and	whose	value	is	0	at	a	and	1	at	b.	This
function	thus	provides	a	still	smoother	version	of	step()	using	a	cubic	spline.
The	smoothstep()	function	is	used	(instead	of	step())	in	many	procedural
textures	because	sharp	transitions	often	result	in	artifacts.

The	smoothstep()	function.
Parameters:
float	a

The	limit	for	the	x	value	where	the	function	will	return	0.
float	b
The	limit	for	the	x	value	where	the	function	will	return	1.
float	x
A	floating	point	value.

Prototype:
float	clamp(float	x,	float	a,	float	b);

Remarks:
This	function	returns	a	when	x	is	less	than	a,	the	value	of	x	when	x	is	between
a	and	b,	and	the	value	b	when	x	is	greater	than	b.	The	function	clamp()	is
defined	as	follows:

float	clamp(float	x,	float	a,	float	b)	{
	return	(x	<	a	?	a	:	(x	>	b	?	b	:	x));
}

The	clamp()	function.
Parameters:
float	x
A	floating	point	value.
float	a
A	floating	point	value.
float	b
A	floating	point	value.

Prototype:
float	mod(float	x,	float	m);

Remarks:
This	function	returns	x	Mod	m	and	handles	negatives	correctly.	The	standard

math	functions	fmod()	and	fmodf()	return	negative	results	if	the	fist	operand,
x,	is	negative.	This	function	will	return	the	positive	remainder	when	dividing
x	by	m.

Parameters:
float	x
A	floating	point	value.
float	m
A	floating	point	value.

Prototype:
int	mod(int	x,	int	m);

Remarks:
This	function	returns	x	Mod	m	and	handles	negatives	correctly.
This	function	returns	x	Mod	m	and	handles	negatives	correctly.	The	standard
C	remainder	operator	%	return	negative	results	if	the	fist	operand,	x,	is
negative.	This	function	will	return	the	positive	remainder	when	dividing	x	by
m.

Parameters:
int	x
An	integer	value.
int	m
An	integer	value.

Prototype:
float	sramp(float	x,	float	a,	float	b,	float	d);

Remarks:
This	function	makes	a	sort	of	straight	segment	S	curve.

sramp()	is	a	for	x	less	than	a-d	and	b	for	x	greater	than	b+d.
for	a+d	<	x	<	b-d	sramp(x)	=	x
for	a-d	<	x	<	a+d	sramp()	makes	a	smooth	transition	(parabolic)	from
sramp'	=	0	to	sramp'	=	1
for	b-d	<	x	<	b+d	sramp()	makes	a	smooth	transition	(parabolic)	from
sramp'	=	1	to	sramp'	=	0

Parameters:
float	x
A	floating	point	value.
float	a
A	floating	point	value.
float	b
A	floating	point	value.
float	d
A	floating	point	value.

Prototype:
float	threshold(float	x,	float	a,	float	b);

Remarks:
This	function	returns	0	if	x	is	less	than	a,	1	if	x	is	greater	than	b,	otherwise	it
returns	x.

Parameters:
float	x
A	floating	point	value.
float	a
A	floating	point	value.
float	b
A	floating	point	value.

Prototype:
float	bias(float	a,	float	b);

Remarks:
This	function	performs	a	mapping	across	the	unit	interval	[0,	1]	where	the
result	is	within	the	unit	interval.	That	is,	if	b	is	within	the	interval	0	to	1,	the
result	of	bias()	is	within	the	interval	0	to	1.	This	function	is	defined	such	that
bias(a,	0.5)=a.	The	function	looks	like:

float	bias(float	a,	float	b)	{
	return	(float)pow(a,	log(b)	/	log(0.5f));
}

The	bias()	function.
	

Parameters:
float	a
The	parameter	that	determines	the	shape	of	the	mapping.
float	b
A	floating	point	value.

Prototype:
float	gain(float	a,	float	b);

Remarks:
This	function	performs	a	mapping	across	the	unit	interval	[0,	1]	where	the
result	is	within	the	unit	interval.	That	is,	if	b	is	within	the	interval	0	to	1,	the
result	of	gain()	is	within	the	interval	0	to	1.	This	function	is	defined	such	that
gain(a,	0.5)=a.	Above	and	below	0.5,	this	function	consists	of	two	scaled
down	bias()	curves	forming	an	S-shaped	curve.	The	function	looks	like:

float	gain(float	a,	float	b)
{
	float	p	=	(float)log(1.0f	-	b)	/	(float)log(0.5f);
	
	if	(a	<	.001f)
		return	0.f;
	else	if	(a	>	.999f)
		return	1.0f;
	if	(a	<	0.5f)
		return	(float)pow(2	*	a,	p)	/	2;
	else

		return	1.0f	-	(float)pow(2.0	*	(1.	-	a),	(double)p)	/	2;
}

The	gain()	function.
Parameters:
float	a
The	parameter	that	determines	the	shape	of	the	mapping.
float	b
A	floating	point	value.

The	following	are	noise	functions	over	1,	2,	and	3	dimensions:
These	are	all	simply	noise	functions	of	different	dimension.	They	return	values
in	the	range	[-1,1].

Prototype:
float	noise1(float	arg);

Remarks:
This	function	is	an	approximation	of	white	noise	blurred	to	dampen
frequencies	beyond	some	value.	The	return	value	is	in	the	range	[-1,	1].

Parameters:
float	arg
A	floating	point	value.

Prototype:
float	noise2(Point2	p);

Remarks:
This	function	is	an	approximation	of	white	noise	blurred	to	dampen
frequencies	beyond	some	value.	The	return	value	is	in	the	range	[-1,	1].

Parameters:
Point2	p
A	Point2	value.

Prototype:
float	noise3(Point3	p);

Remarks:
This	is	a	noise	function	over	R3	--	implemented	by	a	pseudo-random	tricubic
spline.	This	function	is	an	approximation	of	white	noise	blurred	to	dampen
frequencies	beyond	some	value.	The	return	value	is	in	the	range	[-1,	1].

Parameters:
Point3	p
A	Point3	value.

Prototype:
float	noise4(Point3	p,	float	time);

Remarks:
This	function	is	an	approximation	of	white	noise	blurred	to	dampen
frequencies	beyond	some	value.	The	return	value	is	in	the	range	[-1,	1].

Parameters:
Point3	p
A	Point3	value.
float	time
A	floating	point	value.

Prototype:
float	noise3DS(Point3	p);

Remarks:
This	is	3DStudio's	Noise	function:	its	only	slightly	different	from	noise3()
scaled	up	by	factor	of	1.65	and	clamped	to	-1,+1.
The	following	#define	is	also	available:

#define	NOISE(p)	((1.0f+noise3DS(p))*.5f)
Macro	to	map	the	value	returned	from	the	noise3DS()	function	into
interval	[0,1].

Parameters:
Point3	p
A	Point3	value.

Prototype:
float	turbulence(Point3&	p,	float	freq);

Remarks:
This	turbulence	function	is	a	simple	fractal	generating	loop	built	on	top	of	the
noise	function.	It	is	used	to	make	marble,	clouds,	explosions,	etc.	It	returns	a
value	in	the	range	[0,	1].

Parameters:
Point3&	p
The	input	point.
float	freq
A	floating	point	frequency.

Prototype:
int	Perm(int	v);

Remarks:
This	function	simply	uses	v	as	a	lookup	into	a	table	to	return	a	different
number.	It	only	uses	the	low	9	bits	of	the	number	(0-512)	and	returns	a
number	in	that	range.

Parameters:
int	v
An	integer	value.

Prototype:
float	fBm1(float	point,	float	H,	float	lacunarity,	float	octaves);

Remarks:
This	function	is	a	fractional	Brownian	motion	fractal	(or	fBm	for	short)	that
returns	a	floating	point	value.	This	version	of	the	fBm	is	said	to	be
"homogeneous"	(the	same	everywhere)	and	"isotropic"	(the	same	in	all
directions).

Parameters:

float	point
The	function	is	evaluated	at	this	value.
float	H
The	fractal	increment	parameter.	When	H	=	1,	the	function	is	relatively
smooth;	as	H	goes	to	0,	the	function	approaches	white	noise.
float	lacunarity
The	gap	between	successive	frequencies.	This	is	usually	set	to	2.0.
float	octaves
The	number	of	frequencies	in	the	function.

Prototype:
float	fBm1(Point2	point,	float	H,	float	lacunarity,	float	octaves);

Remarks:
This	function	is	a	fractional	Brownian	motion	fractal	(or	fBm	for	short)	that
returns	a	floating	point	value.

Parameters:
Point2	point
The	function	is	evaluated	at	this	point.
float	H
The	fractal	increment	parameter.	When	H	=	1,	the	function	is	relatively
smooth;	as	H	goes	to	0,	the	function	approaches	white	noise.
float	lacunarity
The	gap	between	successive	frequencies.	This	is	usually	set	to	2.0.
float	octaves
The	number	of	frequencies	in	the	function.

Prototype:
float	fBm1(Point3	point,	float	H,	float	lacunarity,	float	octaves);

Remarks:
This	function	is	a	fractional	Brownian	motion	fractal	(or	fBm	for	short)	that
returns	a	floating	point	value.

Parameters:
Point3	point

The	function	is	evaluated	at	this	point.
float	H
The	fractal	increment	parameter.	When	H	=	1,	the	function	is	relatively
smooth;	as	H	goes	to	0,	the	function	approaches	white	noise.
float	lacunarity
The	gap	between	successive	frequencies.	This	is	usually	set	to	2.0.
float	octaves
The	number	of	frequencies	in	the	function.

Prototype:
float	spline(float	x,	int	nknots,	float	*knot);

Remarks:
This	function	is	used	to	map	a	number	into	another	number.	The	function	is	a
one-dimensional	Catmull-Rom	interpolating	spline	through	a	set	of	knot
values.	The	parameter	of	the	spline	is	a	floating	point	value.	If	x	is	0,	the	result
is	the	second	knot	value.	If	x	is	1,	the	result	is	the	final	knot	value.	For	values
between	0	and	1,	the	value	interpolates	smoothly	between	the	values	of	the
knots	from	the	second	knot	to	the	second	to	last	knot.	The	first	and	last	knot
values	determine	the	derivatives	of	the	spline	at	the	endpoint.

The	spline	()	function.
Parameters:
float	x
A	floating	point	value.
int	nknots
The	number	of	knots.	Because	the	spline	is	a	cubic	polynomial	there	must	be
at	least	four	knots.
float	*knot
An	array	of	floating	point	knot	values.

Prototype:
Color	color_spline(float	x,	int	nknots,	Color	*knot);

Remarks:
This	function	is	used	to	map	a	number	into	a	color.	The	function	is	a	one-
dimensional	Catmull-Rom	interpolating	spline	through	a	set	of	knot	values.
The	parameter	of	the	spline	is	a	floating	point	value.	If	x	is	0,	the	result	is	the
second	knot	value.	If	x	is	1,	the	result	is	the	final	knot	value.	For	values
between	0	and	1,	the	value	interpolates	smoothly	between	the	values	of	the
knots	from	the	second	knot	to	the	second	to	last	knot.	The	first	and	last	knot
values	determine	the	derivatives	of	the	spline	at	the	endpoint.

Parameters:
float	x
A	floating	point	value.
int	nknots
The	number	of	knots.	Because	the	spline	is	a	cubic	polynomial	there	must	be
at	least	four	knots.
Color	*knot
An	array	of	Color	knot	values.

Prototype:
inline	int	FLOOR(float	x);

Remarks:
This	function	provides	a	faster	version	of	the	standard	C	function	floor().	It
returns	a	floating-point	value	representing	the	largest	integer	that	is	less	than
or	equal	to	x.

Parameters:
float	x
A	floating	point	value.

Prototype:
inline	float	frac(float	x)

Remarks:
This	function	returns	the	fraction	(non-integer)	part	of	the	value	passed.	This
is	defined	as:

{	return	x	-	(float)FLOOR(x);	}
Parameters:
float	x
The	value	whose	fractional	portion	is	to	be	returned.

Prototype:
inline	float	fmax(float	x,	float	y);

Remarks:
This	function	returns	x	if	it	is	greater	than	y;	otherwise	it	returns	y.

Parameters:
float	x
One	of	the	floating	point	values	used	in	the	comparison.
float	y
One	of	the	floating	point	values	used	in	the	comparison.

Prototype:
inline	float	fmin(float	x,	float	y);

Remarks:
This	function	returns	x	if	it	is	less	than	y;	otherwise	it	returns	y.

Parameters:
float	x
One	of	the	floating	point	values	used	in	the	comparison.
float	y
One	of	the	floating	point	values	used	in	the	comparison.

Prototype:
inline	AColor	AComp(AColor	cbot,	AColor	ctop);

Remarks:
This	function	performs	an	alpha-composite	of	ctop	on	top	of	cbot,	assuming
pre-multiplied	alpha.
This	is	defined	as:
{

float	ia	=	1.0f	-	ctop.a;

return	(ctop	+	ia*cbot);
}

Parameters:
AColor	cbot
The	color	that	is	composited	over.
AColor	ctop
The	color	to	composite	on	top.

Return	Value:
The	composited	color.

Prototype:
void	CellFunction(Point3	v,int	n,float	*dist,int
*celIDs=NULL,Point3	*grads=NULL,float	gradSmooth=0.0f);

Remarks:
This	is	the	noise	function	used	by	the	3ds	max	Cellular	texture.	The	idea	is
that	there	is	a	set	of	cells	randomly	distributed	through	space.	This	function
returns	the	distances	to	the	closest	cells.
Developers	using	this	function	should	refer	to	the	following	paper	upon	which
this	function	is	based.	A	Cellular	Basis	Function	by	Steven	Worley	in	the
SIGGRAPH	1996	Conference	Procedings.

Parameters:
Point3	v
The	3D	input	point.
int	n
The	number	of	elements	in	the	arrays	below.
float	*dist
A	set	of	distances	are	returned	here.	This	is	the	distance	to	the	closest	cell,	the
second	closest	cell,	etc.
int	*celIDs=NULL
An	optional	array	of	integers	to	store	cell	IDs.	This	returns	a	value	used	to
identify	the	cell.	Since	the	functions	works	with	a	set	of	cells	distributed
through	space,	if	two	input	points	returned	the	same	closest	cell,	then	they
would	both	have	this	same	cell	ID	for	their	closest	cell.

This	is	used	in	the	Cellular	texture	to	modulate	the	color.	The	cell	color	is
varied	by	some	random	amount	by	using	this	value	is	used	as	the	random	seed.
Thus	the	value	is	constant	throughout	the	cell.	See	the	function
RandFromCellID(int	id)	below.
Point3	*grads=NULL
An	optional	array	point	Point3s	used	to	get	the	partial	derivatives	with	respect
to	X,	Y	and	Z	for	the	function.	This	is	used	for	bump	mapping.
float	gradSmooth=0.0f
This	equate	to	the	'Bump	Smoothing'	spinner	in	the	Cellular	texmap	UI.	The
derivative	of	the	function	(the	distance	to	the	closest	cell)	has	a	discontinuity
as	it	switches	from	cell	to	cell.	Thus	the	gradients	above	have	a	discontinuity.
This	value	basically	smoothes	off	the	discontinuity.	The	range	is	0.0	to	1.0.

Prototype:
void	FractalCellFunction(Point3	v,float	iterations,	float
lacunarity,int	n,float	*dist,int	*celIDs=NULL,Point3
*grads=NULL,float	gradSmooth=0.0f);

Remarks:
This	is	a	fractal	version	of	above.	It	has	additional	parameter	for	iterations
and	lacunariy.

Parameters:
Point3	v
The	3D	input	point.
float	iterations
This	corresponds	to	the	'Interations'	parameter	in	the	Celluar	UI.	Varying	this
value	gives	different	results.
float	lacunarity
The	is	the	'Roughness'	parameter	in	the	Cellular	UI.	Varying	this	value	gives
different	results.
int	n
The	number	of	elements	in	the	arrays	below.
float	*dist
A	set	of	distances	are	returned	here.	This	is	the	distance	to	the	closest	cell,	the

second	closest	cell,	etc.
int	*celIDs=NULL
An	optional	array	of	integers	to	store	cell	IDs.	This	returns	a	value	used	to
identify	the	cell.	Since	the	functions	works	with	a	set	of	cells	distributed
through	space,	if	two	input	points	returned	the	same	closest	cell,	then	they
would	both	have	this	same	cell	ID	for	their	closest	cell.
This	is	used	in	the	Cellular	texture	to	modulate	the	color.	The	cell	color	is
varied	by	some	random	amount	by	using	this	value	is	used	as	the	random	seed.
Thus	the	value	is	constant	throughout	the	cell.	See	the	function
RandFromCellID(int	id)	below.
Point3	*grads=NULL
An	optional	array	point	Point3s	used	to	get	the	partial	derivatives	with	respect
to	X,	Y	and	Z	for	the	function.	This	is	used	for	bump	mapping.
float	gradSmooth=0.0f
This	equate	to	the	'Bump	Smoothing'	spinner	in	the	Cellular	texmap	UI.	The
derivative	of	the	function	(the	distance	to	the	closest	cell)	has	a	discontinuity
as	it	switches	from	cell	to	cell.	Thus	the	gradients	above	have	a	discontinuity.
This	value	basically	smoothes	off	the	discontinuity.	The	range	is	0.0	to	1.0.

Prototype:
float	RandFromCellID(int	id);

Remarks:
Returns	a	random	number	in	the	range	0.0	to	1.0	based	on	the	cellID	passed.

Parameters:
int	id
The	seed	for	the	random	number	generator.

Prototype:
void	setdebug(int	i);

Remarks:
This	function	is	used	internally.

List	of	Texture	Symmetry	Flags
See	Also:	Class	StdUVGen,	Class	TexHandleMaker.
One	or	more	of	the	following	flag	bit	values.	These	may	be	ORed	together.
U_WRAP
If	set	this	indicates	the	texture	map	is	tiled	in	the	U	direction.
V_WRAP
If	set	this	indicates	the	texture	map	is	tiled	in	the	V	direction.
U_MIRROR
If	set	this	indicates	the	texture	map	is	mirrored	in	the	U	direction.
V_MIRROR
If	set	this	indicates	the	texture	map	is	mirrored	in	the	V	direction.

List	of	Map	Slot	Types
See	Also:	Class	MtlBase.
One	of	the	following	values:
MAPSLOT_TEXTURE
Identifies	a	slot	which	holds	a	texture	map.
MAPSLOT_ENVIRON
Identifies	a	slot	which	holds	an	environment	map.
MAPSLOT_DISPLACEMENT
This	option	is	available	in	release	3.0	and	later	only.
Identifies	a	slot	which	holds	a	displacement	map.
MAPSLOT_BACKGROUND
This	option	is	available	in	release	4.0	and	later	only.
Identifies	a	slot	which	holds	a	background	map.

Class	TimeChange
See	Also:	Class	TimeChangeCallback,	Class	ImageFilter.
class	TimeChange	:	public	TimeChangeCallback

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	provides	a	callback	when	the	user	moves	the	Video	Post	time	slider.
This	happens	internally,	developers	must	only	respond	to	the
FLT_TIMECHANGED	message.	See	List	of	ImageFilter	Related	Messages.

Data	Members:
public:
BOOL	set;
Indicate	the	callback	is	register	with	3ds	max.
ImageFilter	*filter;
Points	to	the	filter	who's	notified	on	the	time	change.

Methods:

Prototype:
TimeChange();

Remarks:
Constructor.	The	data	member	set	is	made	FALSE.

Prototype:
void	TimeChanged(TimeValue	t);

Remarks:
This	method	is	called	when	the	user	moves	the	3ds	max	time	slider	to	a	new
time.

Parameters:
TimeValue	t
The	current	time	(position	of	the	time	slider).

Class	UndoNotify
See	Also:	Class	TVNodeNotify.
class	UndoNotify	:	public	TVNodeNotify

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	can	be	used	so	an	ImageFilter	plug-in	can	get	notified	on	a	change
to	one	of	its	Track	View	Nodes.
This	class	provides	an	implementation	of	the	NotifyRefChanged()	method	of
class	TVNodeNotify.	The	constructor	of	this	class	stores	a	window	handle.
Usually	this	is	the	control	dialog	window	handle	of	the	ImageFilter	plug-in	using
this	class.	Upon	receipt	of	a	message	via
TVNodeNotify::NotifyRefChanged()	this	implementation	sends	a
FLT_UNDO	message	to	the	ImageFilter	control	dialog	window	proc	and
invalidates	the	window.	Most	filters	will	set	a	flag	indicating	that	an	undo	has
occurred	when	they	get	the	FLT_UNDO	message,	and	actually	update	the	UI
controls	when	they	process	the	WM_PAINT	message.	This	is	because	the
FLT_UNDO	message	may	be	sent	many	time	and	the	controls	shouldn't	be
updated	each	time	(as	they	might	appear	to	'flicker').	See	the	code	for	the
Negative	filter	in
\MAXSDK\SAMPLES\FILTERS\NEGATIVE\NEGATIVE.CPP	for
details.
All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
UndoNotify(HWND	hwnd);

Remarks:
Constructor.

Parameters:
HWND	hwnd
The	control	dialog	window	handle	where	the	FLT_UNDO	message	will	be
sent.	This	window	handle	is	also	passed	to	InvalidateRectangle()	so	a

WM_PAINT	message	will	be	sent.

List	of	Image	Filter	Capability	Flags
One	or	more	of	the	following	values.	These	flags	may	be	ORed	together.
IMGFLT_NONE
Indicates	the	plug-in	has	none	of	the	capabilities	below.	Use	this	constant	for
the	capability	if	this	is	the	case.
IMGFLT_MASK
Indicates	the	plug-in	supports	masking.
IMGFLT_CONTROL
Indicates	the	plug-In	has	a	control	panel.	This	informs	the	system	to	call	the
plug-ins	ShowControl()	method	when	the	user	selects	the	Setup	button.	If
the	filter	does	not	have	a	control	panel	do	not	set	this	bit	and	the	setup	button
will	be	grayed	out	in	the	3ds	max	user	interface.
IMGFLT_FILTER
Indicates	the	plug-in	is	a	filter.
IMGFLT_COMPOSITOR
Indicates	the	plug-In	is	a	compositor.	If	the	plug-in	is	a	layer	type	of	filter,	it
should	set	this	bit.
IMGFLT_THREADED
Indicates	the	plug-in	is	thread	aware.	If	this	flag	is	NOT	set,	3ds	max	will
avoid	multithreading	this	plug-in.

List	of	ImageFilter	Related	Messages
See	Also:	Class	ImageFilter.
The	following	message	are	sent	to	3ds	max	from	an	Image	Filter	plug-in.	This
can	be	done	using	the	SendMessage()	Win32	function:
LRESULT	SendMessage(
	HWND	hwnd,			//	handle	of	destination	window
	UINT	uMsg,			//	message	to	send
	WPARAM	wParam,	//	first	message	parameter
	LPARAM	lParam		//	second	message	parameter
);
FLT_PROGRESS
Sent	by	the	plug-in	to	notify	3ds	max	of	its	current	progress.
wParam:	Current	amount	processed
lParam:	Total	amount	to	process.

FLT_CHECKABORT
Sent	by	the	plug-in	to	check	for	process	interruption.	The	host	should	return
FALSE	(by	setting	*lParam)	if	it's	OK	to	continue	or	TRUE	to	abort
processing.
wParam:	Pass	0.
lParam:	Pointer	to	a	BOOL.
FLT_TEXTMSG
Sent	by	the	plug-in	to	display	a	text	message	to	the	user.
wParam:	0
lParam:	LPCTSTR

The	following	message	are	sent	by	3ds	max	to	a	Image	Filter	plug-in	or	to	3ds
max	from	an	Image	Filter.	These	may	be	processed	inside	a	dialog	proc	(for
example	the	filter's	Control()	method).
Sample	Code:

BOOL	ImageFilter_Negative::Control(HWND	hWnd,UINT
message,WPARAM	wParam,LPARAM	lParam)	{
	switch	(message)	{
		case	FLT_UNDO:

			undo	=	true;
			break;
		case	FLT_TIMECHANGED:
			//	.	.	.

	
FLT_TIMECHANGED
Sent	by	3ds	max	to	the	plug-in	to	notify	the	time	has	changed	(the	user
moved	the	time	slider	in	3ds	max).
wParam:	0
lParam:	TimeValue	t
FLT_UNDO
Sent	by	3ds	max	to	the	plug-in	to	notify	that	an	Undo	operation	has	been
done.	The	plugin	will	set	some	boolean	internally	and	wait	for	the	next
WM_PAINT	message	in	order	to	update	any	spinners	or	other	values	that
may	have	been	undone.	The	filter	manager	sends	this	message	(if	you
register	for	the	notification	with	RegisterTVNodeNotify())	and	an	undo
operation	was	performed.
wParam:	0
lParam:	0

Class	GBufWriter
See	Also:	Class	GBuffer,	Class	GBufReader,	Structure	GBufData,	List	of
GBuffer	Channels	Indexes.
class	GBufWriter	:	public	InterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	writer	object	returned	from	GBuffer::CreateWriter().	This	class
assumes	pixels	are	created	in	increasing	order	of	x.
Here	is	an	example	of	writing	multiple	layer	data	to	the	G-Buffer	using	methods
of	this	class.
	GBuffer	*gb	=	NewDefaultGBuffer();
	gb->SetRasterSize(100,10);
	gb->CreateChannels((1<<GB_Z)|(1<<GB_MTL_ID)|(1<<GB_BG));
	gb->InitBuffer();
	
	GBufWriter	*wrt	=	gb->CreateWriter();
	for	(int	y=0;	y<10;	y++)	{
		wrt->StartLine(y);
		BOOL	bb	=	0;
		for	(int	x=5;	x<100;	x+=4)	{
			wrt->StartPixel(x);
			wrt->StartNextLayer();
			float	z	=	5.0f*float(x)*float(y);
			wrt->WriteChannelData(GB_Z,(void	*)&z);
			UBYTE	mid	=	36+x;
			wrt->WriteChannelData(GB_MTL_ID,(void	*)&mid);
			Color24	c;
			c.r	=	10+x;	c.g	=	20+x;	c.b	=	30+x;
			wrt->WriteChannelData(GB_BG,(void	*)&c);
	
			wrt->StartNextLayer();
			z	=	15.0f*float(x)*float(y);
			wrt->WriteChannelData(GB_Z,(void	*)&z);

			mid	=	26+x;
			wrt->WriteChannelData(GB_MTL_ID,(void	*)&mid);
			c.r	=30+x;	c.g	=	20+x;	c.b	=	10+x;
			wrt->WriteChannelData(GB_BG,(void	*)&c);
	
			if	(bb)	{
				wrt->StartNextLayer();
				z	=	17.0f*float(x)*float(y);
				wrt->WriteChannelData(GB_Z,(void	*)&z);
				mid	=	64+x;
				wrt->WriteChannelData(GB_MTL_ID,(void	*)&mid);
				c.r	=	130+x;	c.g	=	120+x;	c.b	=	110+x;
				wrt->WriteChannelData(GB_BG,(void	*)&c);
				}
			bb	=	!bb;
			}
		wrt->EndLine();
		}
	gb->DestroyWriter(wrt);
All	methods	of	this	class	are	implemented	by	the	System.

Methods:
public:

Prototype:
virtual	void	StartLine(int	y)=0;

Remarks:
This	method	should	be	called	before	writing	every	line.

Parameters:
int	y
The	zero	based	index	of	the	scan	line	to	start.

Prototype:
virtual	void	StartPixel(int	x)=0;

Remarks:
This	method	must	be	called	before	writing	each	pixel	and	must	be	called	with
increasing	x	values	on	a	line.

Parameters:
int	x
The	zero	based	index	of	the	pixel	to	start.

Prototype:
virtual	void	StartNextLayer()=0;

Remarks:
This	method	must	be	called	before	writing	the	first	layer.

Prototype:
virtual	BOOL	WriteChannelData(int	chan,	void	*data)=0;

Remarks:
Call	this	method	to	write	a	data	element	to	the	specified	channel	of	the	G-
Buffer	to	the	current	scan	line	and	pixel.

Parameters:
int	chan
See	List	of	GBuffer	Channels	Indexes.
void	*data
Points	to	the	G-Buffer	data	to	write.

Return	Value:
TRUE	on	success;	FALSE	on	failure.

Prototype:
virtual	BOOL	WriteAllData(GBufData	*data)=0;

Remarks:
This	method	writes	all	the	channel	data	from	the	GBufData	structure	passed	to
the	current	scan	line	and	pixel.

Parameters:
GBufData	*data

Points	to	the	G-Buffer	data	to	write.	See	Structure	GBufData.
Return	Value:
TRUE	on	success;	FALSE	on	failure.

Prototype:
virtual	BOOL	EndLine()=0;

Remarks:
This	method	should	be	called	after	writing	each	line.

Return	Value:
TRUE	on	success;	FALSE	on	failure.

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Deletes	this	writer	object.	Call	this	method	when	finished	using	it.

List	of	G-Buffer	Channel	Types
See	Also:	List	of	Image	Channels,	List	of	G-Buffer	Channel	Indexes.
These	are	the	recognized	types	of	G-Buffer	channels.	The	types	are	defined	by
the	number	of	bits	per	pixel	for	the	channel.	One	of	the	following	values:
BMM_CHAN_TYPE_8
1	byte	per	pixel
BMM_CHAN_TYPE_16
1	word	per	pixel	(2	bytes)
BMM_CHAN_TYPE_24
3	bytes	per	pixel
BMM_CHAN_TYPE_32
2	words	per	pixel	(4	bytes)
BMM_CHAN_TYPE_48
3	words	per	pixel	(6	bytes)
BMM_CHAN_TYPE_64
4	words	per	pixel	(8	bytes)
BMM_CHAN_TYPE_96
6	words	per	pixel	(12	bytes)
BMM_CHAN_TYPE_UNKNOWN
Channel	is	not	of	a	known	type.

Class	RenderInfo
See	Also:	Class	Ray,	Class	Point2,	Class	Point3.
class	RenderInfo

Description:
This	class	provides	information	about	the	rendering	environment.	All	methods	of
this	class	are	implemented	by	the	system.

Data	Members:
public:
ProjectionType	projType;
The	projection	type:	One	of	the	following	values:
ProjPerspective
ProjParallel

float	kx,ky;
3D	to	2D	projection	scale	factor.
float	xc,yc;
The	screen	origin.
BOOL	fieldRender;
Indicates	if	the	image	is	field	rendered.
BOOL	fieldOdd;
If	TRUE,	the	first	field	is	Odd	lines.
TimeValue	renderTime[2];
Render	time	for	the	2	fields,	if	field	rendering.	If	not,	use	renderTime[0].
Matrix3	worldToCam[2];
The	world	to	camera	transformation	matrix;	worldToCam[0]	is	for	field	0,
worldToCam[1]	is	for	field	1.	Use	worldToCam[0]	if	not	field	rendering.
Matrix3	camToWorld[2];
The	camera	to	world	transformation	matrix;	camToWorld[0]	is	for	field	0,
camToWorld[1]	is	for	field	1.	Use	camToWorld[0]	if	not	field	rendering.
Rect	region;
This	data	member	is	available	in	release	4.0	and	later	only.
This	rectangle	holds	the	sub-region	in	the	image	that	was	rendered	if	the	last

render	was	a	region	render.	If	it	was	not	a	region	render	then	the	rectangle	is
empty.

Methods:

Prototype:
RenderInfo();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	renderTime[0]	=	renderTime[1]	=	0;
	worldToCam[0].IdentityMatrix();
	worldToCam[1].IdentityMatrix();
	camToWorld[0].IdentityMatrix();
	camToWorld[1].IdentityMatrix();
	fieldRender	=	fieldOdd	=	FALSE;
	projType	=	ProjPerspective;
	kx	=	ky	=	1.0f;
	xc	=	yc	=	400.0f;

Prototype:
Point2	MapWorldToScreen(Point3	p,	int	field=0)

Remarks:
Maps	the	specified	world	point	to	a	screen	point.

Parameters:
Point3	p
The	world	point.
int	field=0
The	field	order.	This	specifies	which	camToWorld	matrix	is	used	in	the
conversion.

Return	Value:
The	2D	screen	point.

Prototype:
Point2	MapCamToScreen(Point3	p);

Remarks:
Maps	the	specified	point	in	camera	space	to	screen	space	and	returns	it.

Parameters:
Point3	p
The	point	to	convert.

Prototype:
Ray	MapScreenToCamRay(Point2	p);

Remarks:
Returns	the	viewing	ray	through	the	screen	point,	in	camera	space.

Parameters:
Point2	p
The	screen	point.

Prototype:
Ray	MapScreenToWorldRay(Point2	p,	int	field=0);

Remarks:
Returns	the	viewing	ray	through	the	specified	screen	point,	in	world	space.

Parameters:
Point2	p
The	screen	space	point.
int	field=0
The	field	order	-	specifies	which	camToWorld	matrix	is	used	in	the
conversion.

List	of	G-Buffer	Channels	Indexes
See	Also:	List	of	Image	Channels,	List	of	G-Buffer	Channel	Types.
These	#defines	are	indexes	to	the	GBuffer	methods	such	as	GBDataSize(int	i),
GBChannelName(int	i),	etc.
One	of	the	following	values:
GB_Z
Z-Buffer	depth
GB_MTL_ID
Material	ID	assigned	via	the	Material	Editor.
GB_NODE_ID
Node	ID	assigned	via	the	Properties	dialog.
GB_UV
UV	coordinates.
GB_NORMAL
Normal	vector	in	view	space.
GB_REALPIX
Non	clamped	colors	in	"RealPixel"	format.
GB_COVERAGE
Pixel	coverage	of	the	front	surface.
GB_BG
The	RGB	color	of	what's	behind	the	front	object.
GB_NODE_RENDER_ID
System	node	number	(valid	during	a	render).
GB_COLOR
The	color	returned	by	the	material	shader	for	the	fragment.
GB_TRANSP
The	transparency	returned	by	the	material	shader	for	the	fragment.
GB_VELOC
Velocity	vector	of	the	fragment	relative	to	the	screen.
GB_WEIGHT
Weight	of	layers	contribution	to	pixel	color.
GB_MASK

Sub	pixel	coverage	mask

Class	CheckAbortCallback
See	Also:	Class	Effect.
class	CheckAbortCallback

Description:
This	class	is	available	in	release	3.0	and	later	only.
Implemented	by	the	System	(for	Render	Effect	plug-ins	inside	the
Effect::Apply()	method).
The	Check()	method	of	this	class	may	be	called	to	check	if	the	user	did
something	to	abort	the	application	of	the	effect.

Methods:

Prototype:
virtual	BOOL	Check()=0;

Remarks:
Returns	TRUE	if	user	has	done	something	to	cause	an	abort;	otherwise
FALSE.

Prototype:
virtual	int	Progress(int	done,	int	total)=0;

Remarks:
This	method	is	should	be	called	by	each	Effect	plug-in	as	it	proceeds	through
the	image	to	update	the	progress	bar.

Parameters:
int	done
The	amount	done,	i.e.	the	current	state	of	the	image	processsing.	This	is
usually	the	number	of	scan	lines	processed	so	far.
int	total
The	total	number	of	updates.	This	is	usually	the	number	of	pixels	in	height	of
the	image.

Return	Value:
Returns	TRUE	if	user	has	done	something	to	cause	an	abort;	otherwise
FALSE.

Prototype:
virtual	void	SetTitle(const	TCHAR	*title)=0;

Remarks:
This	method	is	called	internally	by	the	calling	code	--	plug-ins	don't	need	to
call	this	method.

Bitmap	Open	Mode	Types
The	following	values	indicate	the	open	mode	for	an	image:
BMM_NOT_OPEN
Image	not	opened	yet.
BMM_OPEN_R
Image	opened	in	Read-only	mode.
BMM_OPEN_W
Image	opened	in	Write-only	mode.	No	reads	will	occur.

BitmapIO	Capability	Flags
These	flags	describe	the	capabilities	of	the	IO	module.	These	should	be	OR'ed
together	as	required	to	define	the	properties	of	the	IO	module.	For	example:
return	BMMIO_WRITER	|	BMMIO_RANDOM_WRITES	|
BMMIO_EXTENSION	|

BMMIO_INFODLG	|	BMMIO_CONTROLWRITE;
BMMIO_NONE
Not	defined	yet.
BMMIO_READER
Reads	files.
BMMIO_WRITER
Writes	files.
BMMIO_RANDOM_WRITES
Can	write	frames	in	any	order.
BMMIO_MULTIFRAME
File	contains	multiple	frames	(i.e.	FLC,	AVI,	...)
BMMIO_EXTENSION
Uses	file	extension	(File	Filter	Type),	i.e.	.EPS,	.PS.	Plug-In's	returning	this
will	be	expected	to	implement	ExtCount(),	and	Ext(int	i).	This	is	also	used
to	identify	a	plug-in	as	a	"File	Type"	as	opposed	to	a	"Device	Type".
BMMIO_FRAMEBUFFER
Frame	Buffer	Driver.
BMMIO_GRABBER
Device	Grabs	Video.
BMMIO_THREADED
This	is	not	used.	All	plug-ins	are	expected	to	be	thread	aware.
BMMIO_RANDOM_ACCESS
This	is	not	used.
BMMIO_NON_CONCURRENT_ACCESS
Device	cannot	handle	multiple,	concurrent	requests	(FLC,	AVI,	VTR's,	etc.).
BMMIO_OWN_VIEWER
If	this	flag	is	set,	3ds	max	will	call	the	driver's	own	ShowImage()	method	to

handle	displaying	the	image	as	opposed	to	using	the	generic	Virtual	Frame
Buffer
BMMIO_INFODLG
If	the	device	is	able	to	show	its	own	image	information	dialog	this	flag	should
be	set.	Otherwise,	the	3ds	max	must	call
BitmapManager::GetImageInfo()	and	display	a	generic	information
dialog.
BMMIO_UNINTERRUPTIBLE
If	a	driver	cannot	be	started	and	stopped	this	flag	should	be	set.	This	is	an
'Uninterruptible	Driver'.	For	example	the	AVI,	FLIC,	etc.	cannot	stop	and	go
and	thus	define	this	flag.
BMMIO_EVALMATCH
Drivers	that	may	have	a	different	image	for	the	same	given	3ds	max	frame	and
same	file/device	name	should	set	this	flag	and	implement	the
BitmapIO::EvalMatch()	method.
BMMIO_IFL
If	this	flag	is	set,	instead	of	calling	the	Load()	method	3ds	max	will	call	the
GetImageName()	method.	3ds	max	will	then	process	the	given	image	name
accordingly.
The	following	flags	relate	to	the	plug-in's	control	dialog.	There	is	only	a	single
call	to	the	plug-in's	control	panel	but	the	call	specifies	the	nature	of	the
operation	going	on.	It's	up	to	the	plug-in	to	provide	different	interfaces	if
needed.	If	one	control	serves	two	or	more	services,	all	the	pertinent	flags
should	be	set.
BMMIO_CONTROLREAD
Device	Driver	has	a	Control	Panel	for	Read	Operations
BMMIO_CONTROLWRITE
Device	Driver	has	a	Control	Panel	for	Write	Operations
BMMIO_CONTROLGENERIC
This	flag	is	no	longer	used.

Bitmap	Error	Codes
The	following	error	codes	are	used	by	the	functions	that	use	or	return
BMMRES	types:
BMMRES_SUCCESS
Success	-	No	error	occurred.
BMMRES_ERRORTAKENCARE
Error	-	The	function	has	already	taken	appropriate	action	to	process	the	error.

The	errors	below	require	the	user	to	be	informed.
BMMRES_FILENOTFOUND
The	file	being	accessed	was	not	found.
BMMRES_MEMORYERROR
Insufficient	memory	for	the	requested	operation.
BMMRES_NODRIVER
Device	driver	responsible	for	the	image	not	present.
BMMRES_IOERROR
Input	/	Output	error.
BMMRES_INVALIDFORMAT
The	file	being	access	was	not	of	the	proper	format	for	the	requested
operation.
BMMRES_CORRUPTFILE
The	file	being	accessed	was	corrupt.
BMMRES_SINGLEFRAME
Results	from	a	goto	request	on	a	single	frame	image.
BMMRES_INVALIDUSAGE
Bad	argument	passed	to	function	(developer	mistake).
BMMRES_ERRORRETRY
This	is	no	longer	used.	Use	BMMRES_RETRY	below.
BMMRES_NUMBEREDFILENAMEERROR
This	may	be	passed	as	an	errorcode	to
BitmapIO::ProcessImageIOError().
BMMRES_INTERNALERROR
An	internal	error	occurred.
BMMRES_BADFILEHEADER
A	file	header	error	occurred.
BMMRES_CANTSTORAGE
This	is	used	internally.
BMMRES_RETRY
This	is	returned	if	the	user	selects	Retry	from	the	3ds	max	Image	IO	Error
dialog	box.	This	dialog	is	presented	by	the	method
BitmapIO::ProcessImageIOError().

BMMRES_BADFRAME
Invalid	Frame	Number	Requested

List	of	Bitmap	Close	Types
One	of	the	following	values:
BMM_CLOSE_COMPLETE
Close	and	save	the	image.
BMM_CLOSE_ABANDON
Close	but	abandon	the	image.
Many	bitmap	loader	/	savers	do	not	make	use	of	these	flags.	An	example	of
one	that	does	is	the	FLC	saver.	When	a	FLC	file	is	closed,	it	goes	through
each	image	and	calculates	the	palette.	This	can	take	a	long	time.	If	the	user
cancels	the	operation	they	will	not	want	to	wait	for	this	to	happen.	Thus	this
flag	is	passed	to	indicate	that	the	user	has	canceled	and	this	processing	should
not	occur.

Class	IUtil
See	Also:	Class	UtilityObj.
class	IUtil

Description:
This	class	provides	a	single	method	to	allow	the	developer	to	close	their	utility
plug-in	in	the	command	panel.

Methods:

Prototype:
virtual	void	CloseUtility()=0;

Remarks:
Implemented	by	the	System.
A	developer	may	call	this	method	to	close	the	current	utility	in	the	command
panel.	If	a	plug-in	developer	chooses	to	use	a	Close	button	in	one	of	their
rollup	pages	this	method	should	be	called	when	the	user	has	selected	the	Close
button.	This	method	simply	tells	the	system	that	the	plug-in	should	be	closed.
A	developer	does	not	need	to	use	this	method.	It	is	just	available	if	a	developer
wants	to	have	a	specific	termination	point	to	their	utility	plug-in.

Class	ITreeEnumProc
See	Also:	Class	IScene,	Class	INode.
class	ITreeEnumProc

Description:
This	is	the	callback	object	used	by	IScene::EnumTree().	To	use	it,	derive	a
class	from	this	class,	and	implement	the	callback	method.

Methods:

Prototype:
virtual	int	callback(INode	*node)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	may	flag	the	node	passed	based	on	some	property	of	the	node.

Parameters:
INode	*node
The	node.	The	INode	class	has	a	method	FlagForeground()	that	may	be
used	to	flag	this	node	to	go	into	the	foreground.

Return	Value:
One	of	the	following	values	may	be	returned	to	control	how	enumeration
continues:
TREE_CONTINUE
Continue	enumerating.
TREE_IGNORECHILDREN
Don't	enumerate	the	children	of	this	node,	but	continue	enumerating.
TREE_ABORT
Stop	enumerating.

Class	ITVUtility
See	Also:	Class	Animatable,	Class	TrackViewUtility,	Class	Interval,	Class
Interface,	Class	Control.
class	ITVUtility

Description:
This	class	is	an	interface	that	is	given	to	track	view	utilities	that	allows	them	to
access	the	track	view	they	were	launched	from.	All	methods	of	this	class	are
implemented	by	the	system.

Methods:

Prototype:
virtual	int	GetNumTracks()=0;

Remarks:
Returns	the	total	number	of	visible	(open)	tracks	in	Track	View.	This
determines	valid	values	to	use	for	'i'	in	the	methods	below.

Prototype:
virtual	Animatable	*GetAnim(int	i)=0;

Remarks:
Returns	a	pointer	to	the	Animatalbe	for	the	'i-th'	track.

Parameters:
int	i
Specifies	the	track.

Prototype:
virtual	Animatable	*GetClient(int	i)=0;

Remarks:
Returns	a	pointer	to	the	client	of	the	'i-th'	track.	This	is	the	'parent'	or	'owner'
of	the	'i-th'	item.

Parameters:
int	i

Specifies	the	track.

Prototype:
virtual	int	GetSubNum(int	i)=0;

Remarks:
Returns	the	sub-anim	number	of	the	'i-th'	track.

Parameters:
int	i
Specifies	the	track.

Prototype:
virtual	TSTR	GetTrackName(int	i)=0;

Remarks:
Returns	the	name	of	the	'i-th'	track.

Parameters:
int	i
The	index	of	the	track	whose	name	is	returned.

Prototype:
virtual	BOOL	IsSelected(int	i)=0;

Remarks:
Returns	TRUE	if	the	'i-th'	track	is	selected;	otherwise	FALSE.

Parameters:
int	i
The	index	of	the	track	to	test.

Prototype:
virtual	void	SetSelect(int	i,BOOL	sel)=0;

Remarks:
Sets	the	selected	state	of	the	'i-th'	track	to	the	state	passed.

Parameters:

int	i
The	index	of	the	track	whose	selected	state	is	set.
BOOL	sel
Specifies	the	selected	state.	TRUE	for	selected;	FALSE	for	not	selected.

Prototype:
virtual	HWND	GetTrackViewHWnd()=0;

Remarks:
Returns	the	windows	handle	of	the	main	Track	View	window.

Prototype:
virtual	int	GetMajorMode()=0;

Remarks:
Returns	a	value	to	indicate	the	current	mode	Track	View	is	operating	in.	This
is	one	of	five	modes.

Return	Value:
One	of	the	following	values:

TVMODE_EDITKEYS
TVMODE_EDITTIME
TVMODE_EDITRANGES
TVMODE_POSRANGES
TVMODE_EDITFCURVE

Prototype:
virtual	Interval	GetTimeSelection()=0;

Remarks:
Returns	the	current	interval	of	selected	time.

Prototype:
virtual	BOOL	SubTreeMode()=0;

Remarks:
Returns	TRUE	if	'Modify	Subtree'	mode	is	active;	otherwise	FALSE.

Prototype:
virtual	Animatable	*GetTVRoot()=0;

Remarks:
Returns	a	pointer	to	the	Track	View	Root.

Prototype:
virtual	void	TVUtilClosing(TrackViewUtility	*util)=0;

Remarks:
This	must	be	called	when	a	track	view	utility	is	closing	so	that	it	can	be
unregistered	from	notifications

Parameters:
TrackViewUtility	*util
Points	to	the	utility	that	is	closing.	This	is	usually	called	by	passing	the	this
pointer	as	in:	TVUtilClosing(this);

Class	RendParamDlg
See	Also:	Class	Renderer.
class	RendParamDlg

Description:
An	instance	of	this	class	is	created	by	Renderer::CreateParamDlg().	Since
this	dialog	is	modeless	and	non-interactive,	as	the	user	changes	parameters	in	the
dialog,	the	renderer	does	not	need	to	update	its	state.	When	the	user	is	through,
they	may	choose	'OK'	or	'Cancel'	from	the	dialog.	If	the	user	selects	OK	then	the
AcceptParams()	method	will	be	called.	If	the	user	selects	Cancel,	then	the
RejectParams()	method	is	called.

Methods:

Prototype:
virtual	void	AcceptParams()=0;

Remarks:
Implemented	by	the	Plug-In.
If	the	user	selects	OK	from	the	dialog,	this	method	will	be	called,	at	which
time	the	renderer	can	read	the	parameters	out	of	the	UI	and	modify	its	state.

Prototype:
virtual	void	RejectParams();

Remarks:
Implemented	by	the	Plug-In.
If	this	method	is	called,	typically	the	renderer	will	not	have	to	do	anything
since	it	has	not	yet	modified	its	state,	but	if	for	some	reason	it	has,	it	should
restore	its	state.

Default	Implementation:
{}

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Implemented	by	the	Plug-In.
Deletes	this	instance	of	the	class.	The	instance	is	allocated	by
Renderer::CreateParamDialog().

Class	BaseShader
See	Also:	Class	SpecialFX,	Class	ShaderParamDlg,	Class	ShadeContext,	Class
IllumParams,	Class	IMtlParams,	Class	StdMat2,	Class	Mtl,	Class	Color,	Class
ILoad,	Class	ISave.
class	BaseShader	:	public	SpecialFX

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	one	of	the	base	classes	for	the	creation	of	Shaders	which	plug-in	to	the
Standard	material.	Note:	Developers	should	derive	their	plug-in	Shader	from
Class	Shader	rather	than	this	class	directly	since	otherwise	the	interactive
renderer	won't	know	how	to	render	the	Shader	in	the	viewports.
Developers	of	this	plug-in	type	need	to	understand	how	the	Standard	material
and	the	Shader	work	together.
Every	material	has	a	Shader.	The	Shader	is	the	piece	of	code	which	controls	how
light	is	reflected	off	the	surface.	The	Standard	material	is	basically	the	mapping
mechanism.	It	handles	all	the	texturing	for	the	material.	It	also	manages	the	user
interface.	This	simplifies	things	so	the	Shader	plug-in	only	needs	to	worry	about
the	interaction	of	light	on	the	surface.
Prior	to	release	3	developers	could	write	Material	plug-ins	that	performed	their
own	shading,	however	ths	was	usually	a	major	programming	task.	Release	3
provides	the	simpler	Shader	plug-in	that	would	benefit	from	sharing	all	the
common	capabilities.	The	Standard	material,	with	its	'blind'	texturing
mechanism,	makes	this	possible.	It	doesn't	know	what	it	is	texturing	--	it	simply
texturing	'stuff'.	The	shader	names	the	channels	(map),	fills	in	the	initial	values,
specifies	if	they	are	a	single	channel	(mono)	or	a	triple	channel	(color).	The
Standard	material	handles	the	rest	including	managing	the	user	interface.
Most	of	the	code	in	a	Shader	has	to	do	with	supplying	this	information	to	a
Standard	material.	The	values	are	passed	and	received	back	in	class
IllumParams.	There	is	a	single	method	in	a	shader	which	actually	does	the
shading.	This	is	the	Illum()	method.

Plug-In	Information:

Class	Defined	In	SHADER.H

Super	Class	ID	SHADER_CLASS_ID

Standard	File	Name	Extension	DLB

Extra	Include	File	Needed	SHADERS.H

Methods	Groups:
The	hyperlinks	below	take	you	to	the	start	of	groups	of	related	methods	within
the	class:
Mapping	Channel	Access
Dialog	(Rollup)	Access
Illumination	Related	Methods
Standard	Parameter	Access
Compositing	Method
Load	/	Save	Methods

Methods:
public:

Dialog	(Rollup)	Access
Prototype:
virtual	ShaderParamDlg*	CreateParamDialog(HWND
hOldRollup,	HWND	hwMtlEdit,	IMtlParams	*imp,	StdMtl2*
theMtl,	int	rollupOpen,	int	n=0)=0;

Remarks:
This	method	creates	and	returns	a	pointer	to	a	ShaderParamDlg	object	and
puts	up	the	dialog	which	lets	the	user	edit	the	Shader's	parameters.

Parameters:
HWND	hOldRollup
The	window	handle	of	the	old	rollup.	If	non-NULL	the	IMtlParams	method
ReplaceRollup	method	is	usually	used	instead	of	AddRollup()	to	present	the
rollup.
HWND	hwMtlEdit
The	window	handle	of	the	material	editor.

IMtlParams	*imp
The	interface	pointer	for	calling	methods	in	3ds	max.
StdMtl2*	theMtl
Points	to	the	Standard	material	being	edited.
int	rollupOpen
TRUE	to	have	the	UI	rollup	open;	FALSE	if	closed.
int	n=0
This	parameter	is	available	in	release	4.0	and	later	only.
Specifies	the	number	of	the	rollup	to	create.	Reserved	for	future	use	with
multiple	rollups.

Prototype:
virtual	ShaderParamDlg*	GetParamDlg(int	n=0)=0;

Remarks:
Returns	a	pointer	to	the	ShaderParamDlg	object	which	manages	the	user
interface.

Parameters:
int	n=0
This	parameter	is	available	in	release	4.0	and	later	only.
Specifies	the	rollup	to	get	ShaderParamDlg	for.	Reserved	for	future	use
with	multiple	rollups.

Prototype:
virtual	void	SetParamDlg(ShaderParamDlg*	newDlg,	int	n=0)=0;

Remarks:
Sets	the	ShaderParamDlg	object	which	manages	the	user	interface	to	the
one	passed.

Parameters:
ShaderParamDlg*	newDlg
Points	to	the	new	ShaderParamDlg	object.
int	n=0
This	parameter	is	available	in	release	4.0	and	later	only.

Specifies	the	rollup	to	set	ShaderParamDlg	for.	Reserved	for	future	use
with	multiple	rollups.
	

Standard	Parameter	Access
Prototype:
virtual	ULONG	SupportStdParams()=0;

Remarks:
Returns	a	value	which	indicates	which	of	the	standard	parameters	are
supported.

Return	Value:
See	List	of	Shader	Standard	Parameter	Flags.

Prototype:
virtual	void	ConvertParamBlk(ParamBlockDescID	*descOld,	int
oldCount,	IParamBlock	*oldPB)=0;

Remarks:
This	method	is	only	required	for	R2.5	shaders	to	convert	the	previous
Standard	material	parameter	blocks	to	the	current	version.

Parameters:
ParamBlockDescID	*descOld
Points	to	the	old	parameter	block	descriptor.
int	oldCount
The	number	in	the	array	of	parameters	above.
IParamBlock	*oldPB
Points	to	the	old	parameter	block.

Prototype:
virtual	int	NParamDlgs();

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	number	of	rollups	this	shader	is	requesting.

Default	Implementation:
{	return	1;	}

Illumination	Related	Methods

Prototype:
virtual	void	Illum(ShadeContext	&sc,	IllumParams	&ip)=0;

Remarks:
This	is	the	illumination	function	for	the	Shader.
Developers	will	find	it	very	helpful	to	review	the	Mtl::Shade()	method	of
the	Standard	material.	This	is	the	main	method	of	the	material	which	computes
the	color	of	the	point	being	rendered.	This	code	is	available	in
\MAXSDK\SAMPLES\MATERIALS\STDMTL2.CPP.	This	code
shows	how	the	Standard	calls	Shader::GetIllumParams(),	sets	up
mapping	channels,	calls	this	Illum()	method,	and	calls	the
Shader::CombineComponents()	method	when	all	done.

Parameters:
ShadeContext	&sc
The	ShadeContext	which	provides	information	on	the	pixel	being	shaded.
IllumParams	&ip
The	object	whose	data	members	provide	communication	between	3ds	max	and
the	shader.	Input	values	are	read	from	here	and	output	values	are	stored	here.
Note	that	the	XOut	(ambIllumout,	etc)	data	members	of	this	class	are
initialized	to	0	before	the	first	call	to	this	method.
The	input	to	this	method	has	the	textured	illumination	parameters,	the	bump
perturbed	normal,	the	view	vector,	the	raw	(unattenuated)	colors	in	the
reflection	and	refraction	directions,	etc.

Sample	Code:
Below	is	a	brief	analysis	of	the	standard	Blinn	shader	Illum()	method.	This	is	the
standard	'computer	graphics	look'	type	shader	supplied	with	3ds	max.	The	entire
method	follows:
void	Blinn2::Illum(ShadeContext	&sc,	IllumParams	&ip)	{
	LightDesc	*l;

	Color	lightCol;
	
	//	Blinn	style	phong
	BOOL	is_shiny=	(ip.channels[ID_SS].r	>	0.0f)	?	1:0;
	double	phExp	=	pow(2.0,	ip.channels[ID_SH].r	*	10.0)	*	4.0;
	
	for	(int	i=0;	i<sc.nLights;	i++)	{
		l	=	sc.Light(i);
		register	float	NL,	diffCoef;
		Point3	L;
		if	(l->Illuminate(sc,ip.N,lightCol,L,NL,diffCoef))	{
			if	(l->ambientOnly)	{
				ip.ambIllumOut	+=	lightCol;
				continue;
				}
			if	(NL<=0.0f)
				continue;
	
			//	diffuse
			if	(l->affectDiffuse)
				ip.diffIllumOut	+=	diffCoef	*	lightCol;
	
			//	specular	(Phong2)
			if	(is_shiny&&l->affectSpecular)	{
				Point3	H	=	Normalize(L-ip.V);
				float	c	=	DotProd(ip.N,H);	
				if	(c>0.0f)	{
					if	(softThresh!=0.0	&&	diffCoef<softThresh)	{
						c	*=	Soften(diffCoef/softThresh);
						}
					c	=	(float)pow((double)c,	phExp);
					ip.specIllumOut	+=	c	*	ip.channels[ID_SS].r	*	lightCol;
					}
				}
			}
		}
	

	//	Apply	mono	self	illumination
	if	(!	selfIllumClrOn){
		float	si	=	ip.channels[ID_SI].r;
		ip.diffIllumOut	=	(si>=1.0f)	?	Color(1.0f,1.0f,1.0f)	:
				ip.diffIllumOut	*	(1.0f-si)	+	si;
	}	else	{
		//	colored	self	illum,
		ip.selfIllumOut	+=	ip.channels[ID_SI];
	}
	//	now	we	can	multiply	by	the	clrs,
	ip.ambIllumOut	*=	ip.channels[ID_AM];
	ip.diffIllumOut	*=	ip.channels[ID_DI];
	ip.specIllumOut	*=	ip.channels[ID_SP];
	
	//	the	following	is	applicable	only	in	R4

int	chan	=	ip.stdIDToChannel[ID_RL];
	ShadeTransmission(sc,	ip,	ip.channels[chan],	ip.refractAmt);
	chan	=	ip.stdIDToChannel[ID_RR];
	ShadeReflection(sc,	ip,	ip.channels[chan]);
	CombineComponents(sc,	ip);
}
Some	of	the	key	parts	of	this	method	are	discussed	below:
The	is_shiny	line	sets	a	boolean	based	on	if	the	Shader	has	a	shininess	setting	>
0.	Note	that	the	Blinn	shader	uses	the	same	channel	ordering	as	the	original
Standard	material	so	it	can	index	its	channels	using	the	standard	ID	ID_SS.
BOOL	is_shiny=	(ip.channels[ID_SS].r	>	0.0f)	?	1:0;
Next	the	'Phong	Exponent'	is	computed.	This	is	just	a	function	that	is	used	to
give	a	certain	look.	It	uses	2^(Shinniness	*10)	*	4.	This	calculation	simply	'feels
right'	and	gives	a	good	look.
double	phExp	=	pow(2.0,	ip.channels[ID_SH].r	*	10.0)	*	4.0;
The	following	loop	sums	up	the	effect	of	each	light	on	this	point	on	surface.
for	(int	i=0;	i<sc.nLights;	i++)	{
Inside	the	loop,	the	light	descriptor	is	grabbed	from	the	ShadeContext:
		l	=	sc.Light(i);
The	LightDesc::Illuminate()	method	is	then	called	to	compute	some	data:

		if	(l->Illuminate(sc,ip.N,lightCol,L,NL,diffCoef))	{
To	Illuminate()	is	passed	the	ShadeContext	(sc),	and	the	normal	to	the	surface
(ip.N)	(pointing	away	from	the	surface	point).
The	method	returns	the	light	color	(lightCol),	light	vector	(L)	(which	points
from	the	surface	point	to	the	light),	the	dot	product	of	N	and	L	(NL)	and	the
diffuse	coefficient	(diffCoef).	The	diffuse	coefficient	is	similar	to	NL	but	has
the	atmosphere	between	the	light	and	surface	point	taken	into	account	as	well.
The	next	piece	of	code	checks	if	the	light	figures	into	the	computations:
			if	(NL<=0.0f)
				continue;
If	NL<0	then	the	cosine	of	the	vectors	is	greater	than	90	degrees.	This	means	the
light	is	looking	at	the	back	of	the	surface	and	is	therefore	not	to	be	considered.
The	next	statement	checks	if	the	light	affect	the	diffuse	channel	(lights	may
toggle	on	or	off	their	ability	to	affect	the	diffuse	and	specular	channels.)
			if	(l->affectDiffuse)
				ip.diffIllumOut	+=	diffCoef	*	lightCol;
If	the	light	affects	the	diffuse	channel	then	the	diffuse	illumination	output
component	of	the	IllumParams	is	added	to.	This	is	done	by	multiplying	the
diffuse	coefficient	(returned	by	LightDesc::Illuminate())	times	the	light	color
(also	returned	by	LightDesc::Illuminate()).	Notice	that	the	diffIllumOut	is
being	accumulated	with	each	pass	of	the	light	loop.
The	next	section	of	code	involves	the	specular	component.	If	the	light	is	shiny,
and	it	affects	the	specular	channel	a	vector	H	is	computed.
			if	(is_shiny&&l->affectSpecular)	{
Note	the	following	about	this	H	vector	computation.	Most	vectors	are
considered	pointing	from	the	point	on	the	surface.	The	view	vector
(IllumParams::V)	does	not	follow	this	convention.	It	points	from	the	'eye'
towards	the	surface.	Thus	it's	reversed	from	the	usual	convention.
H	is	computed	to	be	the	average	of	L	and	V.	This	is	(L+V)/2.	Since	we
normalize	this	we	don't	have	to	divide	by	the	2.	So,	if	V	followed	the	standard
convention	this	would	be	simply	L+V.	Since	it	doesn't	it	is	L+(-ip.V)	or	L-
ip.V.
				Point3	H	=	Normalize(L-ip.V);

Next	the	dot	product	of	N	and	H	is	computed	and	stored	in	c.	When	you	take	the
dot	product	of	two	normalized	vectors	what	is	returned	is	the	cosine	of	the	angle
between	the	vectors.
				float	c	=	DotProd(ip.N,H);	
If	c>0	and	the	diffuse	coefficient	is	less	than	the	soften	threshold	then	c	is
modified	by	a	'softening'	curve.
				if	(c>0.0f)	{
					if	(softThresh!=0.0	&&	diffCoef<softThresh)	{
						c	*=	Soften(diffCoef/softThresh);
						}
Note	that	the	Soften()	function	is	defined	in
\MAXSDK\SAMPLES\MATERIALS\SHADERUTIL.CPP	and
developers	can	copy	this	code.
					c	=	(float)pow((double)c,	phExp);
Next,	c	is	raised	to	the	power	of	the	Phong	exponent.	This	is	effectively	taking	a
cosine	(a	smooth	S	curve)	and	raising	it	to	a	power.	As	it	is	raised	to	a	power	it
becomes	a	sharper	and	sharper	S	curve.	This	is	where	the	shape	of	the	highlight
curve	in	the	Materials	Editor	UI	comes	from.
That	completes	the	pre	computations	for	the	specular	function.	Then	c	is
multiplied	by	the	specular	strength	(ip.channels[ID_SS].r)	times	the	light	color
(lightCol).	The	result	is	summed	in	specular	illumination	out
(ip.specIllumOut).
					ip.specIllumOut	+=	c	*	ip.channels[ID_SS].r	*	lightCol;
					}
				}
			}
That	completes	the	light	loop.	It	happens	over	and	over	for	each	light.
Next	the	self	illumunation	is	computed.	If	the	Self	Illumination	Color	is	not	on,
then	the	original	code	for	doing	mono	self	illumination	is	used.
	//	Apply	mono	self	illumination
	if	(!	selfIllumClrOn){
		float	si	=	ip.channels[ID_SI].r;
		ip.diffIllumOut	=	(si>=1.0f)	?	Color(1.0f,1.0f,1.0f)	:
				ip.diffIllumOut	*	(1.0f-si)	+	si;
	}	else	{

Otherwise	the	self	illumination	color	is	summed	in	to	the	Self	Illumination	Out
(ip.selfIllumOut).
		//	colored	self	illum,
		ip.selfIllumOut	+=	ip.channels[ID_SI];
	}
Then,	we	multiply	by	the	colors	for	ambient,	diffuse	and	specular.
	ip.ambIllumOut	*=	ip.channels[ID_AM];
	ip.diffIllumOut	*=	ip.channels[ID_DI];
	ip.specIllumOut	*=	ip.channels[ID_SP];
The	results	are	ambIllumOut,	diffIllumOut,	and	specIllumOut.	Note	that
these	components	are	not	summed.	In	R3	and	earlier	these	results	would	be
returned	to	the	Standard	material.	However,	R4	introduces	a	couple	extra	steps.
Finally,	we	call	ShadeTransmission()	and	ShadeReflection()	to	apply	the
transmission/refraction	and	reflection	models.	The	core	implementation	of	3ds
max	provides	the	standard	models,	but	the	shader	can	override	these	methods	to
compute	its	own	models.

int	chan	=	ip.stdIDToChannel[ID_RL];
	ShadeTransmission(sc,	ip,	ip.channels[chan],	ip.refractAmt);
	chan	=	ip.stdIDToChannel[ID_RR];
	ShadeReflection(sc,	ip,	ip.channels[chan]);
	
In	R4,	It	is	a	shader’s	responsibility	to	combine	the	components	of	the	shading
process	prior	to	exiting	Illum()	(in	R3,	this	was	the	responsibility	of	the
Standard	material).	In	order	to	combine	these	values	together	to	produce	the
final	color	for	that	point	on	the	surface	(IllumParams.finalC),	the	shader
should	call	CombineComponents()	method.	The	Shader	base	class	provides	a
default	implementation	which	simply	sums	everything	together	and	multiplies
by	the	opacity.
	virtual	void	CombineComponents(IllumParams&	ip)
	{
		ip.finalC	=	ip.finalOpac	*
			(ip.ambIllumOut	+	ip.diffIllumOut	+	ip.selfIllumOut)
			+	ip.specIllumOut	+	ip.reflIllumOut	+	ip.transIllumOut	;
}

Prototype:
virtual	void	AffectReflection(ShadeContext	&sc,	IllumParams
&ip,	Color	&rcol)=0;

Remarks:
Note:	This	method	has	been	superceded	by	ShadeReflection()	and	is
obsolete	in	release	4.0	and	later.
This	method	provides	the	shader	with	an	opportunity	to	affect	the	reflection
code.

Parameters:
ShadeContext	&sc
The	ShadeContext	which	provides	information	on	the	pixel	being	shaded.
IllumParams	&ip
The	object	whose	data	members	provide	communication	between	3ds	max	and
the	shader.
Color	&rcol
The	input	reflection	color	is	passed	in	here	and	the	resulting	'affected'	color	is
stored	here.

Sample	Code:
A	simple	example	like	Phong	does	the	following:
void	AffectReflection(ShadeContext	&sc,	IllumParams	&ip,	Color
&rcol)
{

rcol	*=	ip.channels[ID_SP];
};
If	a	color	can	affect	the	reflection	of	light	off	a	surface	than	it	can	usually
affect	the	reflection	of	other	things	off	a	surface.	Thus	some	shaders	influence
the	reflection	color	using	the	specular	color	and	specular	level.	For	instance
the	Multi	Layer	Shader	does	the	following:
#define	DEFAULT_GLOSS2	0.03f	
void	MultiLayerShader::AffectReflection(ShadeContext	&sc,
IllumParams	&ip,	Color	&rcol)
{

	float	axy	=	DEFAULT_GLOSS2;
	float	norm	=	1.0f	/	(4.0f	*	PI	*	axy);
	rcol	*=	ip.channels[_SPECLEV1].r	*	ip.channels[_SPECCLR1]	*
norm;
}

Prototype:
virtual	void	GetIllumParams(IllumParams*	ip)=0;

Remarks:
This	method	updates	the	channels	(as	well	as	other)	data	member	of	the
IllumParams	object	passed	to	it	with	the	local	variables	of	the	material	for
possible	mapping	prior	to	being	given	to	the	Shader's	Illum()	method.	The
shader	plug-in	copies	the	state	of	all	its	parameters	(at	their	current	animation
state)	into	the	data	members	of	the	IllumParams	passed.

Parameters:
IllumParams*	ip
Points	to	the	IllumParams	to	update.

Prototype:
virtual	void	ShadeReflection(ShadeContext	&sc,	IllumParams
&ip,	Color	&mapClr);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Compute	the	reflected	color	from	the	sc,	ip,	and	reflection	map	(or	ray)	color.
The	core	implementation	of	this	provides	the	standard	3ds	max	reflection
model.	To	support	the	standard	reflection	model,	a	shader	may	call	this	default
implementation.

Parameters:
ShadeContext&	sc
The	context	which	provides	information	on	the	pixel	being	shaded.
IllumParams&	ip
The	object	whose	data	members	provide	communication	between	3ds

max	and	the	shader.
Color	&mapClr
The	input	reflection	(or	ray)	color	is	passed	in	here	and	the	resulting
'affected'	color	is	stored	here.

Prototype:
virtual	void	ShadeTransmission(ShadeContext	&sc,	IllumParams
&ip,	Color	&mapClr,	float	amount);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Compute	the	transmission/refraction	color	for	the	sample..	The	core
implementation	of	this	provides	the	standard	3ds	max	reflection	model.	To
support	the	standard	transmission/refraction	model,	a	shader	may	call	this
default	implementation.

Parameters:
ShadeContext&	sc
The	context	which	provides	information	on	the	pixel	being	shaded.
IllumParams&	ip
The	object	whose	data	members	provide	communication	between	3ds
max	and	the	shader.
Color	&mapClr
The	input	refraction	(or	ray)	color	is	passed	in	here	and	the	resulting
'affected'	color	is	stored	here.
float	amount
The	level	of	the	amount	spinner	for	the	refraction	channel.

Mapping	Channel	Access
Prototype:
virtual	long	nTexChannelsSupported()=0;

Remarks:
Returns	the	number	of	texture	map	map	channels	supported	by	this	Shader.

Prototype:
virtual	TSTR	GetTexChannelName(long	nTextureChan)=0;

Remarks:
Returns	the	name	of	the	specified	texture	map	channel.

Parameters:
long	nTextureChan
The	zero	based	index	of	the	texture	map	channel	whose	name	is	returned.

Prototype:
virtual	TSTR	GetTexChannelInternalName(long	nTextureChan);

Remarks:
Returns	the	internal	name	of	the	specified	texture	map.	The	Standard	material
uses	this	to	get	the	fixed,	parsable	internal	name	for	each	texture	channel	it
defines.

Parameters:
long	nTextureChan
The	zero	based	index	of	the	texture	map	whose	name	is	returned.

Default	Implementation:
{	return	GetTexChannelName(nTextureChan);	}

Prototype:
virtual	long	ChannelType(long	nTextureChan)=0;

Remarks:
Returns	the	channel	type	for	the	specified	texture	map	channel.	There	are	four
channels	which	are	part	of	the	Material	which	are	not	specific	to	the	Shader.
All	other	channels	are	defined	by	the	Shader	(what	they	are	and	what	they	are
called.)	The	four	which	are	not	the	province	of	the	Shader	are	Bump,
Reflection,	Refraction	and	Displacement.	For	example,	Displacement
mapping	is	really	a	geometry	operation	and	not	a	shading	one.	The	channel
type	returned	from	this	method	indicates	if	the	specified	channel	is	one	of
these,	or	if	it	is	a	monochrome	channel,	a	color	channel,	or	is	not	a	supported
channel.

Parameters:

long	nTextureChan
The	zero	based	index	of	the	texture	map	whose	name	is	returned.

Return	Value:
Texture	channel	type	flags.	One	or	more	of	the	following	values:
UNSUPPORTED_CHANNEL
Indicates	the	channel	is	not	supported	(is	not	used).
CLR_CHANNEL
A	color	channel.	The	Color.r,	Color.g	and	Color.b	parameters	are	used.
MONO_CHANNEL	
A	monochrome	channel.	Only	the	Color.r	is	used.
BUMP_CHANNEL
The	bump	mapping	channel.
REFL_CHANNEL
The	reflection	channel.
REFR_CHANNEL
The	refraction	channel.
DISP_CHANNEL
The	displacement	channel.
ELIMINATE_CHANNEL
Indicates	that	the	channel	is	not	supported.	For	example,	a	certain	Shader
might	not	support	displacement	mapping	for	some	reason.	If	it	didn't,	it
could	use	this	channel	type	to	eliminate	the	support	of	displacement
mapping	for	itself.	It	would	be	as	if	displacement	mapping	was	not	included
in	the	material.	None	of	the	3ds	max	shaders	use	this.
SKIP_CHANNELS
This	is	used	internally	to	indicate	that	the	channels	to	be	skipped.

Prototype:
virtual	long	StdIDToChannel(long	stdID)=0;

Remarks:
Returns	the	index	of	this	Shader's	channels	which	corresponds	to	the	specified
Standard	materials	texture	map	ID.	This	allows	the	Shader	to	arrange	its
channels	in	any	order	it	wants	in	the	IllumParams::channels	array	but

enables	the	Standard	material	to	access	specific	ones	it	needs	(for	instance	the
Bump	channel	or	Reflection	channel).

Parameters:
long	stdID
The	ID	whose	corresponding	channel	to	return.	See	List	of	Texture	Map
Indices.

Return	Value:
The	zero	based	index	of	the	channel.	If	there	is	not	a	corresponding	channel
return	-1.

Sample	Code:
This	can	be	handled	similar	to	below	where	an	array	is	initialized	with	the
values	of	this	plug-in	shader's	channels	that	correspond	to	each	of	the	standard
channels.	Then	this	method	just	returns	the	correspond	index	from	the	array.
static	int	stdIDToChannel[N_ID_CHANNELS]	=	{
0,	1,	2,	5,	4,	-1,	7,	8,	9,	10,	11,	12
};
long	StdIDToChannel(long	stdID){	return
stdIDToChannel[stdID];	}

Prototype:
virtual	void	Reset()=0;

Remarks:
This	method	is	called	when	the	Shader	is	first	activated	in	the	dropdown	list	of
Shader	choices.	The	Shader	should	reset	itself	to	its	default	values.

Compositing	Method
Prototype:
virtual	void	CombineComponents(ShadeContext	&sc,
IllumParams&	ip);

Remarks:
This	method	does	the	final	compositing	of	the	various	illumination
components.	A	default	implementation	is	provided	which	simply	adds	the

components	together.	Developers	who	want	to	do	other	more	specialized
composition	can	override	this	method.	For	example,	a	certain	Shader	might
want	to	composited	highlights	over	the	underlying	diffuse	component	since
the	light	is	reflected	and	the	diffuse	color	wouldn't	fully	show	through.	Such	a
Shader	would	provide	its	own	version	of	this	method.

Parameters:
ShadeContext	&sc
The	ShadeContext	which	provides	information	on	the	pixel	being	shaded.
IllumParams&	ip
The	illumination	parameters	to	composite	and	store.

Default	Implementation:
virtual	void	CombineComponents(IllumParams&	ip)
{
	ip.finalC	=	ip.finalOpac	*
		(ip.ambIllumOut	+	ip.diffIllumOut	+	ip.selfIllumOut)
		+	ip.specIllumOut	+	ip.reflIllumOut	+	ip.transIllumOut	;
}

Prototype:
virtual	ULONG	GetRequirements(int	subMtlNum)=0;

Remarks:
Returns	the	requirements	of	the	Shader	for	the	specified	sub-material.	Many
objects	in	the	rendering	pipeline	use	the	requirements	to	tell	the	renderer	what
data	needs	to	be	available.	The	Shader's	requirements	are	OR'd	with	the
combined	map	requirements	and	returned	to	the	renderer	via	the	Stdmtl2's
GetRequirements()	function.

Parameters:
int	subMtlNum
This	parameter	is	not	used.

Return	Value:
One	or	more	of	the	following	flags:
See	List	of	Material	Requirement	Flags.

Load	/	Save	Methods
Prototype:
IOResult	Save(ISave	*isave)=0;

Remarks:
Saves	the	plug-in's	name.	This	should	be	called	at	the	start	of	a	plug-in's
Save()	method.

Parameters:
ISave	*isave
An	interface	for	saving	data.

Prototype:
IOResult	Load(ILoad	*iload)=0;

Remarks:
Loads	the	plug-in's	name.	This	should	be	called	at	the	start	of	a	plug-in's
Load()	method.

Parameters:
ILoad	*iload
An	interface	for	loading	data.

Class	SamplingCallback
See	Also:	Class	Sampler,	Class	ShadeContext,	Class	Color,	Class	Point2.
class	SamplingCallback	:	public	InterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	callback	object	for	the	DoSamples()	method	of	class	Sampler.	The
SampleAtOffset()	method	is	the	one	that	actually	computes	the	shading	value
for	the	Sampler.

Methods:
public:

Prototype:
virtual	BOOL	SampleAtOffset(Color	&col,	Color	&trans,	Point2&
sample,	float	sampleScale)=0;

Remarks:
This	is	the	method	that	integrates	the	sampler	into	the	renderer.	The	plug-in
Sampler	calls	this	method	to	actually	perform	a	sample	at	the	specified	2D
point.	This	method	computes	the	output	color	and	transparency.

Parameters:
Color	&col
The	output	color.
Color	&trans
The	output	transparency.
Point2&	sample
The	2D	sample	point.
float	sampleScale
The	scale	of	the	sample.	This	parameter	is	the	way	a	sampler	tells	the	shader
to	use	the	whole	pixel	(sampleScale=1)	size	for	texture	samples	or	some
fraction.	This	scale	is	an	edge	scale	not	an	area	scale,	so	if	you	want	samples
1/4	pixel	large	the	sampleScale	should	be	1/2.

Return	Value:
TRUE	if	the	sample	was	processed;	FALSE	if	the	clipped	sample	was	ignored.

Class	HSVCallback
See	Also:	Class	ColorPicker,	List	of	Color	Conversion	Utilities.
class	HSVCallback

Description:
This	class	provides	methods	that	are	called	when	using	the	modeless	color
picker.	All	methods	of	this	class	are	implemented	by	the	Plug-In.

Methods:

Prototype:
virtual	void	ColorChanged(DWORD	col,	BOOL	buttonUp)=0;

Remarks:
Implemented	by	the	Plug-In.
This	callback	proc	gets	called	after	the	user	changes	the	color.	Implement	this
method	to	handle	interactive	updates.

Parameters:
DWORD	col
The	new	color.
BOOL	buttonUp
Indicates	if	the	mouse	button	has	been	released	(is	up).	TRUE	if	the	button	is
up;	FALSE	if	it	is	down.

Prototype:
virtual	void	BeingDestroyed(IPoint2	pos)=0;

Remarks:
Implemented	by	the	Plug-In.
This	callback	proc	gets	called	when	the	color	picker	is	closed:

Parameters:
IPoint2	pos
The	last	screen	position	of	the	color	picker	before	it	was	closed.

Prototype:

virtual	void	ButtonDown()
Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	user	has	pressed	the	mouse	button.

Default	Implementation:
{}

Prototype:
virtual	void	ButtonUp(BOOL	accept)

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	user	has	released	the	mouse	button.

Parameters:
BOOL	accept
TRUE	if	the	mouse	button	was	released	normally;	FALSE	if	the	user	canceled.

Default	Implementation:
{}

Class	MCDeviceBinding
See	Also:	Class	ReferenceTarget,	Class	MCInputDevice,	Class
IMCParamDlg,	Class	IRollupWindow.
class	MCDeviceBinding	:	public	ReferenceTarget

Description:
An	instance	of	this	class	is	created	when	a	motion	capture	controller	binds	one
of	its	parameters	to	a	device.	The	main	purpose	of	this	class	is	to	store	any
parameters	that	describe	the	binding.

Methods:

Prototype:
virtual	MCInputDevice	*GetDevice()=0;

Remarks:
Returns	a	pointer	to	the	bound	input	device.

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Deletes	this	instace	of	the	class.

Prototype:
virtual	TSTR	BindingName()=0;

Remarks:
Returns	the	name	of	the	bound	input	device.

Prototype:
virtual	float	Eval(TimeValue	t)=0;

Remarks:
A	device	binding	is	the	thing	that	the	controller	evaluates	to	get	the	value	of
the	device.	Everything	is	simply	a	scalar	parameter.	So	for	example	even	for	a
device	like	a	mouse	that	has	X	and	Y	motion	the	device	binding	will	break
down	into	simply	X	or	Y.	This	method	is	used	to	return	the	value	of	the	device

at	the	instant	this	method	is	called.

Parameters:
TimeValue	t
The	time	at	which	this	method	is	called.

Prototype:
virtual	void	AddRollup(IMCParamDlg	*dlg)=0;

Remarks:
This	method	is	called	to	allow	the	binding	to	put	up	any	user	interface	it	has
into	the	command	panel	via	rollup	pages.

Parameters:
IMCParamDlg	*dlg
The	IRollupWindow	data	member	of	this	class	may	be	used	to	add	the
rollup	page.

Sample	Code:
dlg->iRoll->AppendRollup(
		hInstance,
		MAKEINTRESOURCE(IDD_MC_MOUSE),
		MouseDeviceDlgProc,
		GetString(IDS_RB_MOUSEDEVICE),
		(LPARAM)dlg);

Prototype:
virtual	void	UpdateRollup(IRollupWindow	*iRoll)=0;

Remarks:
This	method	is	called	to	allow	the	plug-in	to	update	the	values	in	its	user
interface	rollup.

Parameters:
IRollupWindow	*iRoll
The	interface	into	the	command	panel	rollups.	The	GetPanelDlg()	method
may	be	used	to	return	the	window	handle	of	the	dialog	and	this	HWND	may
be	used	to	update	the	controls.

Prototype:
virtual	void	BeginActivate(BOOL	reset=TRUE);

Remarks:
This	method	is	called	when	the	binding	becomes	active.

Parameters:
BOOL	reset=TRUE
If	TRUE	3ds	max	is	being	reset;	otherwise	this	is	the	first	time	the	binding	is
becoming	active.

Default	Implementation:
{}

Prototype:
virtual	void	EndActivate();

Remarks:
This	method	is	called	when	the	binding	has	been	released.

Default	Implementation:
{}

Prototype:
virtual	void	Accumulate(TimeValue	t);

Remarks:
This	method	is	called	50	times	per	second	during	motion	capture.
To	understand	how	this	is	used	consider	the	following	two	situations	for	a
motion	capture	device:
1.	The	motion	capture	device	is	a	joystick,	and	the	position	of	the	joystick

directly	maps	to	a	range	of	some	parameter.	In	this	case,	if	you	need	to
evaluate	the	parameter,	you	simply	evaluate	the	joystick	(inside	the	Eval()
method).	The	position	establishes	the	value.

2.	A	different	case	is	where	you	have	a	parameter	at	a	starting	value,	and	if	the
joystick	is	moved,	to	say	the	right,	the	value	is	incremented.	If	the	joystick
is	moved	to	the	left	the	value	is	decremented.	In	this	case	the	value	can
theoretically	reach	any	value.	What	is	needed	is	for	the	value	to	be
incremented	and	decremented	in	a	consistent	fashion.	If	the	joystick	is

polled	only	during	the	Eval()	method,	and	the	value	is	incremented	or
decremented	there,	it	may	be	a	problem.	If	two	things	are	using	the	same
motion	capture	device,	the	value	will	be	incremented	or	decremented	twice
inside	Eval().	This	will	cause	the	value	to	grow	or	shrink	twice	as	fast.	If
three	things	evaluated	the	same	joystick	it	would	move	three	times	as	fast
because	it	would	get	incremented	three	times	per	frame.	The	solution	is	to
use	this	method.	It	is	called	50	times	per	second.	The	increments	are	done
inside	this	method,	and	when	the	Eval()	method	is	called	the	accumulated
state	is	simply	returned.	This	works	because	the	method	is	called	a	fixed
number	of	times	per	second	regardless	of	the	number	of	items	evaluating
the	device.

Parameters:
TimeValue	t
The	current	time	when	this	method	is	called.

Default	Implementation:
{}

Class	IMCapManager
See	Also:	Class	MCDeviceBinding,	Class	IMCapManager.
class	IMCapManager

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	is	an	interface	into	the	motion	capture	manager.	This	interface	is	passed	to
plug-ins	derived	from	class	MCDeviceBinding.	All	methods	of	this	class	are
implemented	by	the	system.

Methods:

Prototype:
virtual	void	MidiNote(int	channel,	int	note)=0;

Remarks:
This	method	is	obsolete.

Prototype:
virtual	TimeValue	GetTime()=0;

Remarks:
This	method	returns	the	current	time	at	which	it	is	called.	This	is	an	aide	for
devices	where	interaction	is	happening	asynchronously	(the	MIDI	interface	is
an	example	of	this).	The	MIDI	motion	capture	device	uses	a	separate	thread	to
track	the	MIDI	keyboard.	When	the	user	presses	a	key,	the	MIDI	device	plug-
in	needs	to	record	which	key	was	pressed	and	when.	It	calls	this	method	to
grab	the	current	3ds	max	time	at	which	it	happened.

Class	DPoint3
class	DPoint3

Description:
This	class	describes	a	3D	point	using	double	precision	x,	y	and	z	coordinates.
Methods	are	provided	to	add	and	subtract	points,	multiply	and	divide	by	scalars,
and	element	by	element	multiply	and	divide	two	points.	All	methods	are
implemented	by	the	system.

Data	Members:
public:
double	x,y,z;

Methods:

Prototype:
DPoint3()

Remarks:
Constructor.	No	initialization	is	performed.

Prototype:
DPoint3(double	X,	double	Y,	double	Z)

Remarks:
Constructor.	x,	y,	and	z	are	initialized	to	the	values	specified.

Prototype:
DPoint3(const	DPoint3&	a)

Remarks:
Constructor.	x,	y,	and	z	are	initialized	to	the	DPoint3	specified.

Prototype:
DPoint3(double	af[3])

Remarks:
Constructor.	x,	y,	and	z	are	initialized	to.	af[0],	af[1],	and	af[2]	respectively.

Operators:

Prototype:
double&	operator[](int	i)
const	double&	operator[](int	i)	const

Remarks:
Allows	access	to	x,	y	and	z	using	the	subscript	operator.

Return	Value:
An	index	of	0	will	return	x,	1	will	return	y,	2	will	return	z.

Prototype:
operator	double*()

Remarks:
Conversion	function.	Returns	the	address	of	the	DPoint3.x

Prototype:
DPoint3	operator-()	const

Remarks:
Unary	-	operator.	Negates	both	x,	y	and	z.

Prototype:
DPoint3	operator+()	const

Remarks:
Unary	+.	Returns	the	point	unaltered.

Prototype:
DPoint3&	operator-=(const	DPoint3&);

Remarks:
Subtracts	a	DPoint3	from	this	DPoint3.

Prototype:
DPoint3&	operator+=(const	DPoint3&);

Remarks:
Adds	a	DPoint3	to	this	DPoint3.

Prototype:
DPoint3&	operator*=(double);

Remarks:
Each	element	of	this	DPoint3	is	multiplied	by	the	specified	double.

Prototype:
DPoint3&	operator/=(double);

Remarks:
Each	element	of	this	DPoint3	is	divided	by	the	specified	double.

Prototype:
DPoint3	operator-(const	DPoint3&)	const;

Remarks:
Subtracts	a	DPoint3	from	a	DPoint3.

Prototype:
DPoint3	operator+(const	DPoint3&)	const;

Remarks:
Adds	a	DPoint3	to	a	DPoint3.

Prototype:
double	operator*(const	DPoint3&)	const;

Remarks:
Computes	the	dot	product	of	this	DPoint3	and	the	specified	DPoint3.

Prototype:
DPoint3	operator^(const	DPoint3&)	const;

Remarks:
Computes	the	cross	product	of	this	DPoint3	and	the	specified	DPoint3.

The	following	functions	are	not	methods	of	DPoint3	but	are	available	for
use:

Prototype:
double	Length(const	DPoint3&);

Remarks:
Returns	the	'Length'	of	the	point.	This	is	sqrt(v.x*v.x+v.y*v.y+v.z*v.z)

Prototype:
int	MaxComponent(const	DPoint3&);

Remarks:
Returns	the	component	with	the	maximum	absolute	value.	0=x,	1=y,	2=z.

Prototype:
int	MinComponent(const	DPoint3&);

Remarks:
Returns	the	component	with	the	minimum	absolute	value.	0=x,	1=y,	2=z.

Prototype:
DPoint3	Normalize(const	DPoint3&);

Remarks:
Returns	a	unit	vector.	This	is	a	DPoint3	with	each	component	divided	by	the
point	Length().

Prototype:
DPoint3	CrossProd(const	DPoint3&	a,	const	DPoint3&	b);

Remarks:
Returns	the	cross	product	of	two	DPoint3s.

Prototype:
double	DotProd(const	DPoint3&	a,	const	DPoint3&	b);

Remarks:

Returns	the	dot	product	of	two	DPoint3s.

Class	IKey
See	Also:	Class	IKeyControl,	Class	Animatable.
class	IKey

Description:
This	is	the	base	class	for	keys	that	are	part	of	the	controller	interface.	This	class
stores	the	time	of	the	key,	and	some	flags	that	describe	the	properties	of	the	key.

Data	Members:
public:
TimeValue	time;
The	time	of	the	key.
DWORD	flags;
The	flag	bits	for	keys.	One	or	more	of	the	following	values:
General	flags
IKEY_SELECTED
The	key	is	selected.
IKEY_XSEL
In	the	function	curve	editor	X	is	selected.
IKEY_YSEL
In	the	function	curve	editor	Y	is	selected.
IKEY_ZSEL
In	the	function	curve	editor	Z	is	selected.
IKEY_FLAGGED
The	key	is	flagged.	See	Animatable::	FlagKey().
IKEY_TIME_LOCK
The	key	is	locked	in	time	so	it	won't	move.

TCB	specific	key	flags:
TCBKEY_QUATVALID
The	quaternion	TCB	key	has	inside	it	both	a	quaternion	and	an	angle	axis.
When	this	bit	is	set	the	angle/axis	is	derived	from	the	quaternion	instead	of
vice/versa.

Bezier	specific	key	flags:

BEZKEY_CONSTVELOCITY
This	key	is	interpolated	using	arclength	as	the	interpolation	parameter.
BEZKEY_XBROKEN
BEZKEY_YBROKEN
BEZKEY_ZBROKEN
Indicates	if	the	tangent	handles	are	locked	together.	Broken	means	not
locked.
The	following	macros	may	be	used	to	test	and	set	the	tangent	locks:
TangentsLocked(f,j);
SetTangentLick(f,j,l);

The	following	macros	may	be	used	to	access	the	hybrid	tangent	types:
GetInTanType(f);
GetOutTanType(f);
SetINTanType(f,t);
SetOutTanType(f,t);

Methods:

Prototype:
IKey();

Remarks:
Constructor.	The	time	and	flags	are	set	to	zero.

Class	ITCBKey
See	Also:	Class	IKey.
class	ITCBKey	:	public	IKey

Description:
This	is	the	base	class	for	Tension	Continuity	and	Bias	keys.

Data	Members:
public:
float	tens;
The	tension	setting.	Values	are	in	the	range	-1.0	to	1.0,	where	0.0	is	the
default.
float	cont;
The	continuity	setting.	Values	are	in	the	range	-1.0	to	1.0,	where	0.0	is	the
default.
float	bias;
The	bias	setting.	Values	are	in	the	range	-1.0	to	1.0,	where	0.0	is	the	default.
float	easeIn;
The	ease	in	value.	Values	are	in	the	range	0.0	to	50.0,	where25.0	is	the	default.
float	easeOut;
The	ease	out	value.	Values	are	in	the	range	0.0	to	50.0,	where	25.0	is	the
default.

List	of	Mapping	Channel	Index	Values
See	Also:	Class	Object,	Class	Mesh.
The	mesh	mapping	channel	may	be	specified	as	one	of	the	following:
0:	Vertex	Color	channel.
1:	Default	mapping	channel	(the	TVert	array).
2	through	MAX_MESHMAPS-1:	The	new	mapping	channels	available	in
release	3.0.

Class	Ray
See	Also:	Class	Point3.
class	Ray

Description:
This	class	describes	a	vector	in	space	using	an	origin	point	p,	and	a	unit
direction	vector	dir.

Data	Members:
public:
Point3	p;
Point	of	origin.
Point3	dir;
Unit	direction	vector.

List	of	Object	Channel	Numbers
See	Also:	List	of	Channel	Bits.
The	following	are	the	indices	that	may	be	used	for	the	object	channels.	These
values	are	used	in	the	methods	Object::UpdateValidity(),
Object::SetChannelValidity()	and	Object::ChannelValidity().
TOPO_CHAN_NUM
The	topology	channel	number.	The	actual	value	is	0.
GEOM_CHAN_NUM
The	geometry	channel	number.	The	actual	value	is	1.
TEXMAP_CHAN_NUM
The	texture	vertices	and	procedural	mappings	channels	number.	The	actual
value	is	2.
MTL_CHAN_NUM
This	is	no	longer	used.	Materials	are	rolled	into	the	topology	channel	number.
The	actual	value	is	3.
SELECT_CHAN_NUM
The	sub-object	selection	channel	number.	The	actual	value	is	4.
SUBSEL_TYPE_CHAN_NUM
This	is	the	current	level	of	selection	number.	The	actual	value	is	5.
DISP_ATTRIB_CHAN_NUM
The	display	channel	number.	The	actual	value	is	6.
VERT_COLOR_CHAN_NUM
The	vertex	colors	number.	This	is	also	used	for	the	second	mapping	channel.
The	actual	value	is	7.
GFX_DATA_CHAN_NUM
The	stripping,	edge	list,	etc.	channel	number.	The	actual	value	is	8.
DISP_APPROX_CHAN_NUM
The	displacement	approximation	channel	number.	The	actual	value	is	9.
EXTENSION_CHAN_NUM
This	channel	number	is	available	in	release	4.0	and	later	only.
The	extension	object	channel	number.	The	actual	value	is	10.
Note:	Developers	must	not	get	confused	between	these	object	channel
numbers	(TOPO_CHAN_NUM,	GEOM_CHAN_NUM,	etc.)	and	the

channel	bits	(TOPO_CHANNEL,	GEOM_CHANNEL,	etc.).	Some
methods	refer	to	the	channel	by	number	and	some	by	bit.	Developers	must	not
confuse	these	two	as	the	compiler	will	not	catch	this	as	an	error.	See	List	of
Channel	Bits.

Class	RNormal
See	Also:	Class	Mesh,	Class	RVertex,	Class	GraphicsWindow.
class	RNormal

Description:
The	'rendered'	normal	class.	RNormals	are	stored	as	unit	vectors	in	object
space.	An	instance	of	this	class	is	maintained	by	the	RVertex	class	since	the
RVertex	is	what	gets	rendered	(lit),	and	the	lighting	methods	need	to	know
about	the	normals.	All	methods	of	this	class	are	implemented	by	the	system.
Note:	This	class	is	used	internally	by	3ds	max.	Developers	who	need	to	compute
face	and	vertex	normals	for	a	mesh	should	instead	refer	to	the	Advanced	Topics
section	Computing	Face	and	Vertex	Normals.

Data	Members:
private:
Point3	normal;
The	normal	as	a	unit	vector.	Note	that	if	you	set	this	normal,	you	should	call
the	method	normalize()	if	you	are	not	sure	the	normal	is	already	unit	length.
DWORD	smGroup;
The	smoothing	group.	Normals	are	attached	to	smoothing	groups	in	the	sense
that	one	vertex,	if	it	is	shared	by	two	triangles	with	different	smoothing
groups,	will	have	two	normals	associated	with	it	--	one	for	each	smoothing
group.
MtlID	mtlIndex;
The	material	index.	If	one	vertex	is	shared	between	two	materials,	there	will
be	two	normals.	Therefore	the	material	index	is	stored	with	the	normal	as	well.
Note:	typedef	unsigned	short	MtlID;
Point3	rgb;
The	RGB	value.

Methods:

Prototype:
RNormal();

Remarks:
Constructor.	The	smoothing	group	and	material	index	are	set	to	zero.

Prototype:
void	setNormal(const	Point3	&nor);

Remarks:
Sets	the	normal	to	the	specified	value.

Parameters:
const	Point3	&nor
The	normal	value	to	set.

Prototype:
void	addNormal(const	Point3	&nor);

Remarks:
Adds	the	specified	value	to	the	value	of	the	normal.

Parameters:
const	Point3	&nor
The	normal	value	to	add	to	the	existing	value.

Prototype:
void	normalize();

Remarks:
Converts	the	normal	to	a	unit	vector.

Prototype:
Point3	&getNormal();

Remarks:
Returns	the	normal.

Prototype:
void	setSmGroup(DWORD	g);

Remarks:
Sets	the	smoothing	group	to	the	specified	value.

Parameters:
DWORD	g
The	smoothing	group	value	to	set.

Prototype:
void	addSmGroup(DWORD	g);

Remarks:
ORs	the	specified	smoothing	group	value	to	the	existing	value.

Parameters:
DWORD	g
The	smoothing	group	bits	to	set.

Prototype:
DWORD	getSmGroup();

Remarks:
Returns	the	smoothing	group	value.

Prototype:
void	setMtlIndex(MtlID	i);

Remarks:
Sets	the	material	index	to	the	specified	value.

Parameters:
MtlID	i
The	material	index	value	to	set.

Prototype:
MtlID	getMtlIndex();

Remarks:
Returns	the	material	index.

Prototype:
void	setRGB(Point3	&clr);

Remarks:
Sets	the	RGB	value.

Parameters:
Point3	&clr
The	RGB	color	to	set.

Prototype:
Point3	&getRGB();

Remarks:
Returns	the	RGB	value.

Class	RVertex
See	Also:	Class	RNormal,	Class	Mesh,	Class	GraphicsWindow.
class	RVertex

Description:
A	RVertex	is	a	rendered	vertex.	A	vertex	becomes	a	RVertex	after	it	has	been
transformed.	A	RVertex	has	a	position	(x,	y,	z	coordinate)	that	is	stored	in
device	coordinates.	These	are	stored	in	the	data	member	fPos[3].
One	vertex	in	a	Mesh	can	be	shared	between	many	different	smoothing	groups.
In	the	3ds	max	Mesh	database,	the	vertices	are	shared,	however	the	normals	are
not.	This	is	why	an	RVertex	has	a	RNormal	data	member.	For	example,	if	you
had	a	sphere	that	had	the	top	and	bottom	hemi-spheres	smoothed	separately	(i.e.
not	smoothed	across	the	equator),	then	the	vertices	across	the	equator	would
have	two	RNormals	for	each	RVertex	while	the	other	vertices	would	have
one.	There	may	be	as	many	RNormals	as	there	are	smoothing	groups	colliding
at	a	vertex.	However,	it	is	by	far	the	most	common	case	to	have	one,	and
anything	other	than	one	or	two	is	very	rare.
For	purposes	of	smoothing,	as	many	RNormals	are	allocated	as	required	and
are	stored	in	this	class.	RNormals	are	kept	in	this	RVertex	class	since	the
RVertex	is	what	gets	rendered	(lit).	When	you	light	a	vertex	you	need	to	know
its	normal	direction.	Thus	the	RNormal(s)	are	stored	in	this	class	(using	data
member	rn	or	*ern).
All	methods	of	this	class	are	implemented	by	the	system.
Note:	This	class	is	used	internally	by	3ds	max.	Developers	who	need	to	compute
face	and	vertex	normals	for	a	mesh	should	instead	refer	to	the	Advanced	Topics
section	Computing	Face	and	Vertex	Normals.

Data	Members:
public:
DWORD	rFlags;
The	flags	contain	the	clip	flags,	the	number	of	normals	at	the	vertex,	and	the
number	of	normals	that	have	already	been	rendered.	These	are	used	internally.
For	example,	the	clipping	flags	are	used	to	see	if	the	RVertex	can	be	either
trivially	accepted	or	rejected	when	rendering.

#define	NORCT_MASK			0x000000ffUL
#define	SPECIFIED_NORMAL	0x00004000UL
#define	OUT_LEFT				0x00010000UL
#define	OUT_RIGHT				0x00020000UL
#define	OUT_TOP				0x00040000UL
#define	OUT_BOTTOM			0x00080000UL
#define	RECT_MASK				0x000f0000UL
#define	RND_MASK				0xfff00000UL
#define	RND_NOR0				0x00100000UL
#define	RND_NOR(n)			(RND_NOR0	<<	(n))
union	{
	int	iPos[3];

//	This	position	is	no	longer	used.
	float	fPos[3];

//	This	is	used	to	store	the	position	in	device	coordinates,	[0]=x,	[1]=y,
[2]=z.

	};
RNormal	rn;
If	a	single	RNormal	is	used,	it	is	stored	here.
RNormal	*ern;
In	some	cases,	there	may	be	two	or	more	RNormals	per	vertex.	If	this	is	the
case,	these	'extra'	RNormals	are	allocated	and	the	pointer	to	the	memory	is
stored	here.	If	these	are	used,	then	data	member	rn	is	not	used	(rn	is	copied
into	ern[0]).

Methods:

Prototype:
RVertex();

Remarks:
Constructor.	The	flags	are	set	to	zero	and	the	ern	pointer	is	set	to	NULL.

Prototype:
~RVertex();

Remarks:
Destructor.

Class	MeshMap
See	Also:	Class	Mesh.
class	MeshMap

Description:
This	class	is	available	in	release	3.0	and	later	only.
In	3ds	max	3.0	and	later	the	user	may	work	with	more	than	2	mapping	channels.
When	the	mapping	channel	is	set	to	a	value	greater	than	1	(by	using	a	UVWMap
Modifier	for	example)	then	an	instance	of	this	class	is	allocated	for	each	channel
up	to	the	value	specified.	It	maintains	the	mapping	information	for	a	single
channel.
An	array	of	instances	of	this	class	is	carried	by	the	Mesh	class	in	the	public	data
member:
MeshMap	*maps;

All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
DWORD	flags;
The	mapping	flags.	One	or	more	of	the	following	values:
MESHMAP_USED
Indicates	this	mapping	channel	is	actually	used	(carries	mapping
information).
MESHMAP_TEXTURE
Indicates	this	is	a	texture	mapping	channel.
MESHMAP_VERTCOLOR
Indicates	this	is	a	vertex	color	channel.
MESHMAP_USER
Indicates	the	channel	is	used	for	a	developer	purpose.

UVVert	*tv;
Array	of	texture	vertices.	This	stores	the	UVW	coordinates	for	the	mapping
channel.	Note:	typedef	Point3	UVVert;
TVFace	*tf;
The	texture	vertex	faces.	There	needs	to	be	one	TVFace	for	every	face	in	the

Mesh,	but	there	can	be	three	indices	into	the	UVVert	array	that	are	any	UV's.
int	vnum;
The	number	of	elements	in	the	UVVert	array.
int	fnum;
The	number	of	elements	in	the	TVFace	array.

The	following	global	functions	are	not	part	of	the	class	but	are
available	for	use

Prototype:
DWORD	MapChannelID	(int	mp);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Returns	the	Channel	ID	of	the	map	channel.	if	mp>=1,	this	always	returns
TEXMAP_CHANNEL.	For	mp<1,	including	the	hidden	map	channels,
this	is	currently	always	VERTCOLOR_CHANNEL.	In	the	future	it	may
include	map	channels	that	are	actually	part	of	GEOM_CHANNEL	or
something.

Parameters:
int	mp
The	map	channel.

Prototype:
int	MapChannelNum	(int	mp);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Similar	to	MapChannelID,	but	this	returns	the	CHAN_NUM
version:TEXMAP_CHAN_NUM,	VERTCOLOR_CHAN_NUM,	etc.

Parameters:
int	mp
The	map	channel.

Methods:
public:

Prototype:
MeshMap();

Remarks:
Constructor.	The	flags	are	cleared,	the	vertex	and	face	numbers	are	set	to	0,
and	the	tv	and	tf	pointers	are	set	to	NULL.

Prototype:
~MeshMap();

Remarks:
Destructor.	If	the	tv	and	tf	arrays	are	allocated	they	are	deleted.

Prototype:
int	getNumVerts();

Remarks:
Returns	the	number	of	UVVerts.

Prototype:
void	setNumVerts(int	vn,	BOOL	keep=FALSE);

Remarks:
Sets	the	number	of	UVVerts	allocated	to	the	specified	value.

Parameters:
int	vn
The	new	number	of	UVVerts	to	allocate.
BOOL	keep=FALSE
If	TRUE	any	previously	allocated	UVVerts	are	maintained	(up	to	the
maximum	set	by	vn).	If	FALSE	they	are	discarded.

Prototype:
int	getNumFaces();

Remarks:
Returns	the	number	of	TVFaces.

Prototype:
void	setNumFaces(int	fn,	BOOL	keep=FALSE);

Remarks:
Set	the	number	of	TVFaces	allocated	to	the	specified	value.

Parameters:
int	fn
The	new	number	of	TVFaces	to	allocate.
BOOL	keep=FALSE
If	TRUE	any	previously	allocated	TVFaces	are	maintained	(up	to	the
maximum	set	by	fn).	If	FALSE	they	are	discarded.

Prototype:
void	Clear();

Remarks:
Clears	(deletes)	the	tv	and	tf	arrays	and	sets	the	counts	to	zero.

Prototype:
BitArray	GetIsoVerts();

Remarks:
This	method	returns	a	BitArray	with	size	vnum,	where	isolated	(unused)
vertices	are	selected.

Prototype:
void	DeleteVertSet(BitArray	set,	BitArray	*delFace=NULL);

Remarks:
This	method	is	used	to	delete	vertices	from	a	mesh	map.

Parameters:
BitArray	set
The	array	of	bits	where	mapping	vertices	you	want	to	delete	are	set.

BitArray	*delFace=NULL
This	is	an	optional	parameter.	If	non-NULL,	it's	filled	with	a	record	of	which
faces,	if	any,	were	using	the	specified	map	verts	and	should	therefore	be
deleted	or	considered	invalid.	(Note:	in	normal	usage,	it's	preferable	to	remove
any	compromised	faces	_before_	deleting	vertices,	so	this	parameter	would
rarely	be	used.)

Prototype:
void	DeleteFaceSet(BitArray	set,	BitArray	*isoVert=NULL);

Remarks:
This	method	is	used	to	delete	faces	from	a	mesh	map.

Parameters:
BitArray	set
This	is	a	list	of	mapping	faces	to	delete.
BitArray	*isoVert=NULL
If	non-NULL,	this	BitArray	is	filled	with	a	list	of	map	vertices	that	were	used
by	the	deleted	faces	but	not	by	any	remaining	faces.	(This	is	a	list	of	"newly
isolated"	map	vertices.)
NOTE:	The	number	and	arrangement	of	faces	in	a	MeshMap	should	always
agree	with	the	"parent"	mesh.	It's	safest	in	most	cases	to	just	let	this	be
handled	by	Mesh::DeleteFaceSet().

Prototype:
void	SetFlag(DWORD	fl);

Remarks:
Sets	the	specified	flag(s).

Parameters:
DWORD	fl
The	flags	to	set.	See	the	public	data	member	flags	above.

Prototype:
void	ClearFlag(DWORD	fl);

Remarks:
Clears	the	specified	flag(s).

Parameters:
DWORD	fl
The	flags	to	clear.	See	the	public	data	member	flags	above.

Prototype:
BOOL	GetFlag(DWORD	fl);

Remarks:
Returns	TRUE	if	the	specified	flag(s)	are	set;	otherwise	FALSE.

Parameters:
DWORD	fl
The	flags	to	check.	See	the	public	data	member	flags	above.

Prototype:
BOOL	IsUsed();

Remarks:
Returns	TRUE	if	this	mapping	channel	is	being	used;	otherwise	FALSE.

Prototype:
void	SwapContents(MeshMap	&from);

Remarks:
Exchanges	the	data	between	this	MeshMap	object	and	the	specified	one.	The
flags,	vnum	and	fnum	values	are	exchanged.	The	UVVert	and	TVFace
pointers	are	swapped.

Parameters:
MeshMap	&from
The	MeshMap	instance	to	swap	with.

Prototype:
MeshMap	&	operator=(MeshMap	&	from);

Remarks:
Assignment	operator.

Parameters:
MeshMap	&from
The	MeshMap	to	assign.

Class	PerData
See	Also:	Class	Mesh.
class	PerData

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	is	used	for	per	-'something'	floating-point	information.	For	example,	it
is	used	with	Meshes	to	keep	track	of	such	per-vertex	information	as	weighted
(Affect	Region	or	Soft)	selections	and	vertex	weights.	It	is	used	in	MNMesh	to
store	per-edge	data	(edge	weights).
Currently	there's	only	one	"type"	of	data	supported,	floating	point	values,	but
this	may	be	extended	in	the	future.	PerData	arrays	in	Meshes	and	MNMeshes
cannot	be	reserved	for	plug-ins	at	this	time;	3ds	max	maintains	the	list	in
MESH.H	of	the	reserved	vertex	data	channels,	and	in	MNMESH.H	for	the
MNEdge	data	channels.
The	methods	of	this	class	are	deliberately	made	to	look	like	Tab<>	methods.	All
methods	of	this	class	are	implemented	by	the	system.

Data	Members:
All	data	members	are	public.
int	dnum;
The	number	of	elements	of	per-vertex	data.
int	type;
The	type	of	data	held	by	this	class.	At	present	the	only	3ds	max	defined	option
is:
PERDATA_TYPE_FLOAT

int	alloc;
The	number	of	elements	currently	allocated	in	the	data	array.
void	*data;
Points	to	the	actual	data.

The	following	functions	are	not	methods	of	this	class	but	are
available	for	use:
Function:

int	VertexDataType(int	vdID);
Remarks:
Returns	the	type	of	data	supported,	i.e.	PERDATA_TYPE_FLOAT.

Parameters:
int	vdID
This	parameter	is	ignored.

Function:
void	*VertexDataDefault(int	vdID);

Remarks:
Returns	a	pointer	to	a	default	floating	point	value	for	the	specified	channel.

Parameters:
int	vdID
One	of	the	following	values:
VDATA_SELECT	-	Soft	Selection
VDATA_WEIGHT	-	Vertex	weights	(for	NURMS	MeshSmooth)
VDATA_ALPHA	-	Vertex	Alpha	values	(R4	and	later	only)
VDATA_CORNER	-	Cornering	values	for	subdivision	use	(R4	and	later
only)

Methods:
public:

Prototype:
PerData();

Remarks:
Constructor.	The	number	of	elements	is	set	to	0,	the	type	is	set	to	0	and	the
data	pointer	is	set	to	NULL.

Prototype:
PerData(int	n,	int	tp);

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:

data=NULL;	dnum=0;	alloc=0;	type=tp;
Parameters:
int	n
The	number	of	elements	to	allocate.
int	tp
The	type	to	set.

Prototype:
~PerData();

Remarks:
Destructor.	Any	allocated	data	is	freed	and	the	count	and	type	are	set	to	0.

Prototype:
int	DataSize();

Remarks:
Returns	the	number	of	bytes	used	by	the	base	data	type	for	the	vertex	data.
This	is	only	implemented	for	a	type	of	VDATA_TYPE_FLOAT	in	which
case	it	returns	sizeof(float).	Other	cases	simply	return	0.

Prototype:
void	*AllocData(int	num);

Remarks:
Allocates	and	returns	a	pointer	to	an	array	of	floats	of	the	specified	size.

Parameters:
int	num
The	number	of	floats	to	allocate.

Prototype:
void	FreeData(void	*addr);

Remarks:
Deletes	the	specified	array	of	floats.

Parameters:
void	*addr
Points	to	the	array	of	floats	to	free.

Prototype:
void	*Addr(void	*ptr,	int	at);

Remarks:
Returns	the	address	of	the	specified	element	in	the	array	passed.

Parameters:
void	*ptr
The	array	whose	at-th	element	address	is	returned.
int	at
The	zero	based	index	of	the	element.

Prototype:
void	*Addr(int	at);

Remarks:
Returns	the	address	of	the	specified	element	in	the	data	array.

Parameters:
int	at
The	zero	based	index	of	the	element.

Prototype:
void	CopyData(void	*to,	void	*from,	int	num=1);

Remarks:
Copies	the	specified	number	of	elements	between	the	two	data	arrays.

Parameters:
void	*to
Points	to	the	destination	data	array.
void	*from
Points	to	the	source	data	array.

int	num=1
The	number	of	elements	to	copy.

Prototype:
void	CopyData(int	to,	int	from,	int	num=1);

Remarks:
Copies	the	specified	number	of	elements	between	the	two	specified	locations
in	the	data	array.

Parameters:
int	to
The	zero	based	index	into	the	data	array	of	the	destination.
int	from
The	zero	based	index	into	the	data	array	of	the	source.
int	num=1
The	number	of	elements	to	copy.

Prototype:
void	WeightedSum(void	*to,	void	*fr1,	float	prop1,	void	*fr2,	float
prop2);

Remarks:
Computes	the	weighted	sum	of	the	arguments	passed.	This	is	effectivly	c	=
a*prop1	+	b*prop2.
This	is	used,	for	example,	in	splitting	an	edge,	where	we	would	want	to
interpolate	the	vertex	weight	values	from	the	edge's	endpoints	to	create	the
weight	for	the	new	vertex.

Parameters:
void	*to
A	pointer	to	the	location	in	which	the	result	should	be	stored.
void	*fr1
A	pointer	to	the	first	value	to	be	summed.
float	prop1
The	weight	given	to	the	first	value.

void	*fr2
A	pointer	to	the	second	value.
float	prop2
The	weight	given	to	the	second	value.

Prototype:
void	WeightedSum(int	to,	int	fr1,	float	prop1,	int	fr2,	float	prop2);

Remarks:
Computes	the	weighted	sum	of	the	arguments	passed.	This	is	similar	to	the
method	above	except	to,	fr1,	and	fr2	are	indices	of	the	values	in	the	PerData
array.	That	is,	PerData::WeightedSum	(c,	a,	prop1,	b,	prop2),	where	a,	b,	and	c
are	ints	between	0	and	PerData::dnum-1,	is	equivalent	to	the	call
PerData::WeightedSum	(PerData::Addr(c),	PerData::Addr(a),	prop1,
PerData::Addr(b),	prop2).

Parameters:
int	to
The	index	in	the	PerData	array	of	the	location	in	which	the	result	should	be
stored.
int	fr1
The	index	of	the	first	value	to	be	summed	in	the	PerData	array.
float	prop1
The	weight	given	to	the	first	value.
int	fr2
The	index	of	the	second	value	to	be	summed	in	the	PerData	array.
float	prop2
The	weight	given	to	the	second	value.

Prototype:
void	setAlloc(int	num,	BOOL	keep=TRUE);

Remarks:
Sets	the	number	of	elements	allocated	in	the	data	array.

Parameters:
int	num

The	number	of	elements	to	allocate.
BOOL	keep=TRUE
If	TRUE	previous	values	are	kept	(copied	to	the	new	storage);	otherwise	they
are	discarded.

Prototype:
void	SetCount(int	num,	BOOL	keep	=	FALSE);

Remarks:
Sets	the	number	of	elements	allocated	in	the	data	array	and	sets	the	dnum
member	to	num.

Parameters:
int	num
The	number	of	elements	to	allocate.
BOOL	keep	=	FALSE
If	TRUE	previous	values	are	kept	(copied	to	the	new	storage);	otherwise	they
are	discarded.

Prototype:
void	Shrink();

Remarks:
Reduces	the	size	of	the	data	array	to	contain	dnum	elelemts.

Prototype:
int	Count();

Remarks:
Returns	the	number	of	elements	used	(dnum)

Prototype:
void	Clear();

Remarks:
Clears	(deletes)	any	allocated	data	and	sets	the	count	and	type	to	0.

Prototype:
void	DeleteSet(BitArray	del);

Remarks:
Removes	any	element	whose	corresponding	element	in	the	BitArray	is	not	set.

Parameters:
BitArray	del
Specifies	which	elements	to	delete.	Data	elelemts	corresponding	to	bits	that
are	on	remain;	for	bits	that	are	off	the	elements	are	deleted.

Prototype:
void	Delete(int	at,	int	num);

Remarks:
Deletes	the	specifiec	number	of	elements	from	the	specified	location	in	the
data	array.

Parameters:
int	at
The	location	to	delete	elements.
int	num
The	number	of	elements	to	delete.

Prototype:
void	Insert(int	at,	int	num,	void	*el);

Remarks:
Inserts	the	specified	number	of	data	elements	into	the	specified	location	in	the
data	array.

Parameters:
int	at
The	zero	based	index	of	the	location	for	the	insert.
int	num
The	number	of	elements	to	insert.
void	*el
The	data	to	insert.

Prototype:
void	Append(int	num,	void	*el);

Remarks:
Appends	the	specified	elements	to	the	data	array.

Parameters:
int	num
The	number	of	elements	to	append.
void	*el
The	data	to	append.

Prototype:
void	InsertCopies(int	at,	int	num,	void	*el);

Remarks:
Inserts	the	specified	number	of	elements	into	the	data	array	at	the	given
location.

Parameters:
int	at
The	zero	based	index	of	the	location	to	insert	the	data.
int	num
The	number	of	elements	to	insert.
void	*el

Prototype:
void	AppendCopies(int	num,	void	*el);

Remarks:
Appends	the	specified	number	of	elements	to	the	data	array.

Parameters:
int	num
The	number	of	elements	to	append.
void	*el
The	data	to	append.

Prototype:
void	SwapContents(PerData	&from);

Remarks:
Swaps	the	contents	of	this	PerData	object	and	the	specified	one.

Parameters:
PerData	&from
The	object	to	swap	with.

Prototype:
PerData	&operator=(PerData	&from);

Remarks:
Assignment	operator.

Parameters:
PerData	&from
The	VertexData	source.

List	of	Vertex	Data	Index	Options
See	Also:	Class	Mesh,	Class	MNMesh,	Class	PerData.
The	following	are	the	vertex	data	channel	index	values	for	use	with	the	vertex
data	methods	of	class	Mesh,	class	EPoly,	and	class	MNMesh.
VDATA_SELECT:	The	vertex	soft	selection	data.	This	is	index	0.
VDATA_WEIGHT:	The	vertex	weight	data.	This	is	index	1.
2	through	MAX_VERTDATA-1:	Developer	defined	data.	Note:	#define
MAX_VERTDATA	100

Class	SubObjHitList
See	Also:	Class	MeshSubHitRec.
class	SubObjHitList

Description:
This	class	describes	a	list	of	sub-object	hit	records.	All	methods	of	this	class	are
implemented	by	the	system.

Methods:

Prototype:
SubObjHitList();

Remarks:
Constructor.	The	list	is	set	to	NULL.

Prototype:
~SubObjHitList()

Remarks:
Destructor.	All	the	hit	records	are	deleted.

Prototype:
MeshSubHitRec	*First();

Remarks:
Returns	the	first	item	in	the	hit	list.

Prototype:
void	AddHit(DWORD	dist,	int	index);

Remarks:
Allocates	and	adds	a	new	hit	record	to	the	list.

Parameters:
DWORD	dist
The	distance	of	the	hit.
int	index

The	index	of	the	hit.

List	of	Mesh	Flags
See	Also:	Class	Mesh.
One	or	more	of	the	following	values:
MESH_EDGE_LIST
This	flag	is	obsolete.
MESH_LOCK_RENDDATA
Setting	this	flag	prevents	render	data	from	being	deleted	(except	when	the
mesh	is	deleted).
MESH_BEEN_DSP
This	flag	is	reserved	for	internal	use.

Class	MeshOpProgress
See	Also:	Class	Mesh.
class	MeshOpProgress

Description:
A	callback	used	while	doing	a	lengthy	operation	to	a	mesh.	A	developer	creates
an	instance	of	this	class	and	passes	a	pointer	to	it	into	the	CalcBoolOp()	or
Optimize()	function.

Methods:

Prototype:
virtual	void	Init(int	total)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	once	with	the	total	number	of	increments.

Parameters:
int	total
The	total	number	of	increments.

Prototype:
virtual	BOOL	Progress(int	p)=0;
Implemented	by	the	Plug-In.
This	method	is	called	over	and	over	with	a	new	value	for	p.	The	percentage
complete	is	p/total.

Parameters:
int	p
The	number	completed	so	far.

Return	Value:
If	TRUE	processing	will	continue.	If	FALSE	processing	is	aborted.

Class	MeshRenderData
See	Also:	Class	Mesh.
class	MeshRenderData

Description:
A	developer	may	derive	a	class	from	this	class,	put	any	required	data	in	it,	and
then	hang	this	data	off	a	Mesh.	This	is	done	using	the	methods	of	Class	Mesh:
void	SetRenderData(MeshRenderData	*p);
Sets	the	mesh	render	data	hung	off	this	Mesh.
MeshRenderData	*	GetRenderData();
Gets	a	pointer	to	the	MeshRenderData.

Methods:

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Implemented	by	the	Plug-In.
Deletes	this	instance	of	the	class.

Class	FlyOffData
See	Also:	Custom	Controls,	Class	ICustButton.
class	FlyOffData

Description:
This	class	uses	four	indices	into	the	image	list	to	describe	the	button	in	each	of
the	possible	states:	Out&Enabled,	In&Enabled,	Out&Disabled	and	In&Disabled.
An	array	of	instances	of	this	class	are	passed	into	the	method
ICustButton::SetFlyOff().

Data	Members:
These	four	data	members	are	indices	into	the	image	list.	They	indicate	which
images	to	use	for	each	of	the	four	possible	button	states:
You	may	specify	a	unique	image	for	each	one	of	these	states	by	passing	a
different	index	for	each	state.	Or	you	may	supply	a	single	image	to	be	used	for
all	the	states	by	specifying	the	same	index	four	times.
public:
int	iOutEn;
Out&Enabled.
int	iInEn;
In&Enabled
int	iOutDis;
Out&Disabled.
int	iInDis;
In&Disabled.

Class	MaxBmpFileIcon
See	Also:	Class	MaxIcon,	Class	ICustButton.
class	MaxBmpFileIcon:	public	MaxIcon

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	implementation	of	MaxIcon	is	for	the	icon	images	that	are	stored	as	".bmp"
files	in	3ds	max's	UI	directory.	This	is	used	by	the	macroScript	facility	in
MAXSrcipt	to	specify	icons.	See	the	MAXScript	documentation	for
"macroScript"	for	the	exact	meaning	of	the	filename	and	index	and	details.

Methods:
public:

Prototype:
MaxBmpFileIcon(TCHAR*	pFilePrefix,	int	index);

Remarks:
Constructor.

Parameters:
TCHAR*	pFilePrefix
The	file	prefix	to	initialize	with.
int	index
The	index	of	the	icon.

Prototype:
MaxBmpFileIcon(SClass_ID	sid,	Class_ID	cid);

Remarks:
Constructor.

Parameters:
SClass_ID	sid
The	superclass	ID
Class_ID	cid
The	class	ID/

Prototype:
HIMAGELIST	GetDefaultImageList();

Remarks:
Returns	the	handle	to	the	image	list	for	the	size	of	icons	that	the	user	has
chosen.

Prototype:
HIMAGELIST	GetSmallImageList();

Remarks:
Returns	the	image	list	for	small	icons.

Prototype:
HIMAGELIST	GetLargeImageList();

Remarks:
Returns	the	image	list	for	large	icons.

Prototype:
int	GetSmallImageIndex(bool	enabledVersion	=	true,	COLORREF
backgroundColor	=	GetCustSysColor(COLOR_BTNFACE));

Remarks:
Returns	the	zero	based	index	into	the	image	list	for	the	small	version	of	this
particular	icon.

Parameters:
bool	enabledVersion	=	true
Pass	true	for	the	enalbed	version	of	the	icon;	false	for	the	disabled	version.
COLORREF	backgroundColor	=
GetCustSysColor(COLOR_BTNFACE)
The	background	color	for	use	in	alpha	blending.	The	files	that	define	these
icons	always	have	an	alpha	mask,	and	so	a	background	color	is	needed	to
blend	it	with.

Prototype:

int	GetLargeImageIndex(bool	enabledVersion	=	true,
COLORREF	backgroundColor	=
GetCustSysColor(COLOR_BTNFACE));

Remarks:
Returns	the	zero	based	index	into	the	image	list	for	the	large	version	of	this
particular	icon.

Parameters:
bool	enabledVersion	=	true
Pass	true	for	the	enalbed	version	of	the	icon;	false	for	the	disabled	version.
COLORREF	backgroundColor	=
GetCustSysColor(COLOR_BTNFACE)
The	background	color	for	use	in	alpha	blending.	The	files	that	define	these
icons	always	have	an	alpha	mask,	and	so	a	background	color	is	needed	to
blend	it	with.

Prototype:
bool	UsesAlphaMask();

Remarks:
Returns	true	if	the	icon	uses	an	alpha	mask;	otherwise	false.

Prototype:
TSTR&	GetFilePrefix();

Remarks:
Returns	the	directory	of	the	icon.

Prototype:
int	GetIndex();

Remarks:
Returns	the	index	of	the	icon	in	the	image	file	list.

Class	SplineKnot
See	Also:	Class	Spline3D.
class	SplineKnot

Description:
This	class	describes	a	single	knot	in	a	spline.
In	3ds	max	2.0	and	later	there	are	methods	which	provide	full	access	to	the
private	data	members	of	the	class.
All	methods	of	this	class	are	implemented	by	the	system.

Description:
private:
int	ktype;
The	knot	type.
int	ltype;
The	line	type.
Point3	point;
The	point	location.
Point3	inVec;
The	in	vector.
Point3	outVec;
The	out	vector.
int	aux;
This	is	simply	an	integer	value	which	may	be	used	for	temporary	storage	of
data	associated	with	the	knot.	This	data	will	be	overwritten	by	the	internal
EditSpline	code.
int	aux2;
Used	to	track	topo	changes	in	spline	editing.
Spline	Knot	Summary:
Picture	a	bezier	spline	with	three	knots,	going	from	left	to	right:
A--->AB----BA<---B--->BC----CB<---C
The	knot	points	are	A,	B	and	C.	The	vectors	are	labeled	the	same	as	patch
vectors	(AB	is	the	vector	from	A	going	toward	B,	the	vector	from	B	to	A	is
labeled	BA,	and	so	on).

In	this	diagram,	AB	is	the	OUT	vector	for	knot	A.	BA	is	the	IN	vector	for	knot
B.	BC	is	the	OUT	vector	for	knot	B,	and	CB	is	the	IN	vector	for	knot	C.
Because	this	is	an	open	spline,	knot	A	doesn't	use	its	IN	vector,	and	knot	C
doesn't	use	its	OUT	vector.
The	IN	and	OUT	terminology	is	based	on	the	way	a	spline	flows	from	the	first
knot	to	the	last.	If	the	spline	is	reversed,	the	IN	and	OUT	sense	is	reversed,	as
well.
Regarding	the	vectors,	the	only	difference	between	a	circle	and	a	square	is	that
the	square	has	vectors	that	are	at	the	same	location	as	the	knot	point	(in	other
words,	zero	length	vectors)	causing	sharp	corners.	The	circle	uses	vectors
which	cause	each	segment	to	bulge	to	form	a	quarter-circle.
Take	a	look	at	the	\MAXSDK\SAMPLES\OBJECTS\NGON.CPP
source	file	for	an	example	of	how	the	vectors	are	generated	to	form	a	linear
NGON	versus	a	circular	one.

Friend	Classes:
friend	class	Spline3D;
friend	class	SplineKnotAssy;

Methods:

Prototype:
SplineKnot(int	k,	int	l,	Point3	p,	Point3	in,	Point3	out,	int	a1=	-1,
int	a2=	-1,	int	a3=	-1,	int	Ia1=	-1,	int	Ia2=	-1,	int	Ia3=	-1,	int	Oa1=
-1,	int	Oa2=	-1,	int	Oa3=	-1,	DWORD	f=0);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Constructor.	The	data	members	are	initialized	to	the	values	passed.

Prototype:
inline	int	Ktype();

Remarks:
Returns	the	knot	type.

Return	Value:
See	List	of	Spline	Knot	Types.

Prototype:
inline	void	SetKtype(int	t);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	knot	type.

Parameters:
int	t
The	type	to	set.	See	List	of	Spline	Knot	Types.

Prototype:
inline	int	Ltype();

Remarks:
Returns	the	line	type.

Return	Value:
See	List	of	Spline	Line	Types.

Prototype:
inline	void	SetLtype(int	t);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	line	type.

Parameters:
int	t
The	type	to	set.	See	List	of	Spline	Line	Types.

Prototype:
inline	int	Aux();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Provides	access	to	the	first	integer	chunk	of	auxiliary	data	for	the	knot.

Prototype:
inline	void	SetAux(int	a);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	first	integer	of	auxilliary	data	for	the	knot.

Parameters:
int	a
The	value	to	set.

Prototype:
inline	int	Aux2();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Provides	access	to	the	second	integer	of	auxiliary	data	for	the	knot.

Prototype:
inline	void	SetAux2(int	a);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	second	integer	of	auxilliary	data	for	the	knot.

Parameters:
int	a
The	value	to	set.

Prototype:
inline	Point3	Knot();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	point	location	for	the	knot.

Prototype:

inline	void	SetKnot(Point3	p);
Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	point	location	for	the	knot.

Parameters:
Point3	p
The	point	to	set.

Prototype:
inline	Point3	InVec();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	in	vector	for	the	knot.

Prototype:
inline	void	SetInVec(Point3	p);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	in	vector	for	the	knot.

Parameters:
Point3	p
The	in	vector	to	set.

Prototype:
inline	Point3	OutVec();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	the	out	vector	for	the	knot.

Prototype:
inline	void	SetOutVec(Point3	p);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Sets	the	out	vector	for	the	knot.

Parameters:
Point3	p
The	out	vector	to	set.

Structure	Knot
See	Also:	Class	Spline3D.
This	structure	holds	data	about	a	single	knot.
typedef	struct	{
int	ktype;
See	List	of	Spline	Knot	Types.
int	ltype;
See	List	of	Spline	Line	Types.
float	du;
This	parameter	is	used	internally.
int	aux;
This	auxiliary	data	is	used	internally	in	capping	to	link	the	knot	point	to	a
point	on	the	patch	mesh.	A	developer	may	use	this	data	member	to	store
information	with	the	knot,	but	this	data	will	be	overwritten	if	any	capping	is
done.

}	Knot;

List	of	Spline	Knot	Types
Knot	types.	One	of	the	following	values:
KTYPE_AUTO
This	type	of	knot	generates	the	bezier	handles	automatically	to	produce	a
smooth	curve.	With	this	knot	type	the	bezier	handles	are	invisible.
KTYPE_CORNER
This	knot	type	produces	a	sharp	corner.
KTYPE_BEZIER
This	knot	type	produces	bezier	handles	that	are	collinear	(the	bezier	vectors
coming	out	of	the	knot	are	collinear).	These	handles	are	constrained	to	be
collinear	so	if	the	user	moves	one	handle	the	other	will	move	to	remain
collinear.	Also	if	the	user	moves	the	handle	towards	or	away	from	the	knot	the
other	handle	will	move	the	corresponding	amount	in	the	proper	scale.
KTYPE_BEZIER_CORNER
This	knot	type	has	bezier	handles	but	they	are	not	constrained	to	be	opposite
each	other.

List	of	Spline	Line	Types
Line	types.	One	of	the	following	values:
LTYPE_CURVE
This	specifies	that	the	segment	should	interpolate	based	on	the	bezier	handles
for	the	segment.
LTYPE_LINE
This	specifies	that	the	segment	should	go	straight	from	knot	to	knot	and	ignore
the	bezier	handles.

Class	ShapeHierarchy
See	Also:	Class	GenericHierarchy,	Class	BitArray.
class	ShapeHierarchy

Description:
This	class	stores	the	hierarchy	tree	of	a	shape	object.	In	addition	it	stores	a
BitArray	with	an	entry	for	each	polygon	in	the	shape	which	indicates	whether
that	polygon	should	be	reversed	in	order	to	provide	the	proper
clockwise/counterclockwise	ordering	for	the	nested	shapes.	All	methods	of	this
class	are	implemented	by	the	system.

Data	Members:
public:
GenericHierarchy	hier;
Describes	the	hierarchy.
BitArray	reverse;
Indicates	whether	that	polygon	should	be	reversed	in	order	to	provide	the
proper	clockwise	/	counterclockwise	ordering	for	the	nested	shapes.	There	is
one	bit	in	the	bit	array	for	every	polygon	in	the	shape.	For	example,	if	you
pass	in	two	nested	circles	and	they	are	both	clockwise,	the	outermost	circle
will	have	its	reverse	bit	set	to	indicate	it	should	be	reversed	in	order	to	be
properly	extruded	or	lofted.	This	is	because	for	nested	shapes	the	outermost
circle	should	be	counterclockwise.

Methods:

Prototype:
ShapeHierarchy();

Remarks:
Constructor.	No	initialization	is	performed.

Prototype:
ShapeHierarchy(int	polys);

Remarks:
Constructor.	This	constructor	clears	out	the	hierarchy,	sets	the	number	of

polygons	to	poly	and	clears	all	the	bits	in	the	BitArray.
Parameters:
int	polys
The	number	of	polygons	in	the	hierarchy.

Prototype:
void	New(int	polys	=	0);

Remarks:
This	methods	clears	out	the	hierarchy,	sets	the	number	of	polygons	to	poly
and	clears	all	the	bits	in	the	BitArray.

Parameters:
int	polys	=	0
The	number	of	polygons	in	the	hierarchy.

Operators:

Prototype:
ShapeHierarchy	&operator=(ShapeHierarchy	&from);

Remarks:
Assignment	operator.

Parameters:
ShapeHierarchy	&from
The	source	shape	hierarchy.

List	of	Shape	Capping	Types
The	following	are	the	capping	types	supported:
CAPTYPE_MORPH
This	type	of	cap	only	uses	the	existing	vertices	in	the	PolyShape	to	generate
the	cap.	The	capping	code	does	the	best	job	it	can	given	this	constraint
however	it	is	possible	to	wind	up	with	long	sliver-like	faces	on	the	cap.	This	is
referred	to	as	a	morph	cap	because	if	you	cap	a	shape	using	this	method	it
does	not	generate	any	new	vertices	and	you	can	then	morph	between	shapes
with	the	same	number	of	vertices.
CAPTYPE_GRID
This	type	of	cap	generates	new	vertices	in	the	interior	of	the	shape	in	a	grid
pattern.	This	helps	to	break	up	the	shape	and	helps	reduce	slivering.	Grid
capping	will	generate	different	number	of	vertices	based	on	the	shape	and	thus
the	shapes	are	not	morphable.

Class	AnimPropertyList
See	Also:	Class	AnimProperty,	Class	Animatable,	Class	Tab.
class	AnimPropertyList	:	public	Tab<AnimProperty*>

Description:
This	class	is	simply	a	table	of	anim	properties.	It	has	a	single	method	to	locate	a
given	id	in	the	list.	See	Class	Tab	for	details	on	how	to	manipulate	the	table.

Methods:

Prototype:
int	FindProperty(DWORD	id,int	start=0);

Remarks:
Implemented	by	the	System.
Returns	the	table	index	of	the	property	whose	id	is	passed.

Parameters:
DWORD	id
The	id	to	find.
int	start=0
A	table	index	that	may	be	used	to	define	an	alternate	starting	point	for	the
search.	This	is	a	index	into	the	table	of	properties.

Return	Value:
The	table	index	of	the	property,	or	if	not	found,	-1.

Class	TrackClipObject
See	Also:	Class	Animatable.
class	TrackClipObject

Description:
If	a	plug-in	supports	track	view	copy/paste	operations	this	object	is	used.	A	plug-
in	should	derive	a	class	from	this	base	class	to	store	the	data	associated	with	the
objects	tracks,	and	implement	the	methods	that	identify	the	creator	of	the	clip
object.

Data	Members:
public:
Interval	clip;
Specifies	the	interval	of	time	clipped.

Methods:

Prototype:
TrackClipObject(Interval	iv);

Remarks:
Constructor.

Parameters:
Interval	iv
The	interval	of	the	time	clip.

Prototype:
virtual	int	NumKeys();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
Returns	the	number	of	keys	in	the	clip	object.

Default	Implementation:
{return	0;}

Prototype:
virtual	BOOL	GetKeyVal(int	i,	void	*val);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
Retrieves	the	value	of	the	'i-th'	key.

Parameters:
int	i
Specifies	the	key	to	return.
void	*val
The	value	of	the	key	is	stored	here.

Return	Value:
TRUE	if	the	value	was	retrieved;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	SetKeyVal(int	i,	void	*val);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implemented	by	the	Plug-In.
Sets	the	value	of	the	'i-th'	key.

Parameters:
int	i
Specifies	the	key	to	store.
void	*val
The	value	of	the	key	is	passed	here.

Return	Value:
TRUE	if	the	value	was	stored;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	SClass_ID	SuperClassID()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	identify	the	creator	of	the	clip	object	by	returning	the
SuperClassID	of	the	creator.

Prototype:
virtual	Class_ID	ClassID()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	ClassID	of	the	creator	of	the	clip	object.

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	delete	this	instance	of	the	clip	object.

Class	TimeMap
See	Also:	Class	Animatable.
class	TimeMap

Description:
This	class	is	used	by	Animatable::MapKeys().	It	provides	a	method	map()
that	is	used	to	apply	the	mapping	required	by	the	system	to	the	TimeValue
passed.

Methods:

Prototype:
virtual	TimeValue	map(TimeValue	t)=0;

Remarks:
Implemented	by	the	System.
This	is	a	time	map	function	that	takes	a	TimeValue	and	returns	a	TimeValue.	A
plug-in	developer	just	calls	this	map	method	to	alter	the	TimeValue.

Parameters:
TimeValue	t
This	is	the	input	time.

Return	Value:
The	modified	time.

Prototype:
virtual	TimeValue	prevmap(TimeValue	t)=0;

Remarks:
This	method	is	not	used.

Class	TrackHitRecord
See	Also:	Class	Animatable,	Template	Class	Tab.
class	TrackHitRecord

Description:
When	hit	testing	is	done,	this	class	has	data	members	used	to	identify	the	key
that	was	hit.	The	manner	these	are	used	is	up	to	the	developer.	For	example,	the
hit	member	may	be	used	as	an	index	into	the	table	of	keys.	If	a	developer	needed
additional	information,	the	flags	could	be	used.	The	system	does	not	use	these
itself	-	the	developer	just	needs	to	establish	a	consistent	way	to	recognize	its	own
keys	and	tag	them	as	hit.
There	is	a	typedef	that	defines	a	table	of	these	TrackHitRecords.	It	is	defined
as:
typedef	Tab<TrackHitRecord>	TrackHitTab;

Data	Members:
public:
DWORD	hit;
DWORD	flags;

Methods:

Prototype:
TrackHitRecord(DWORD	h=0,DWORD	f=0)

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.

Class	ParamDimensionBase
See	Also:	Class	ParamDimension.

Description:
This	class	(along	with	ParamDimension)	describes	the	dimension	of	a	parameter.
This	dimension	can	be	considered	a	unit	of	measure.	It	describes	the	parameter's
type	and	order	of	magnitude.
The	dimension	type	and	possibly	the	dimension	scale	(if	the	type	is	custom)	are
used	to	determine	a	scale	factor	for	the	parameter.	When	a	controller	is	drawing
a	function	curve,	it	only	needs	to	use	the	Convert()	function	-	the	scale	factor	is
rolled	into	the	single	'vzoom'	parameter	passed	to
Animatable::PaintFCurves().	So,	for	a	controller	to	plot	a	value	'val'	at	time
t	it	would	do	the	following:
int	x	=	TimeToScreen(t,tzoom,tscroll);
int	y	=	ValueToScreen(dim-
>Convert(val),rect.h()-1,vzoom,vscroll);

Methods:

Prototype:
virtual	DimType	DimensionType()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	dimension	type	of	the	parameter.	See	List	of	Dimension	Types.

Prototype:
virtual	float	Convert(float	value)=0;

Remarks:
Implemented	by	the	Plug-In.
When	a	controller	needs	to	display	the	parameter	values	(for	example	in	the
function	curve	editor)	it	converts	the	value	using	this	method.

Parameters:
float	value
The	value	to	convert.

Return	Value:
The	converted	value.

Prototype:
virtual	float	UnConvert(float	value)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	un-converted	a	converted	value.

Parameters:
float	value
The	value	to	un-convert.

Return	Value:
The	un-converted	value.

Class	AnimEnum
See	Also:	Class	Animatable.
class	AnimEnum

Description:
This	class	is	the	callback	object	for	Animatable::EnumAnimTree().	This
keeps	track	of	the	depth	of	the	enumeration.

Methods:

Prototype:
virtual	int	proc(Animatable	*anim,	Animatable	*client,	int
subNum)=0;

Remarks:
Implemented	by	the	Plug-In.
This	is	the	method	called	by	EnumAnimTree().

Parameters:
Animatable	*anim
The	sub	anim.
Animatable	*client
The	client	anim.	This	is	the	parent	with	a	sub-anim	of	anim.
int	subNum
The	index	of	the	sub-anim	that	anim	is	to	client.	For	example,	if	you	were	to
call	client->SubAnim(subNum)	it	would	return	anim.

Return	Value:
One	of	the	following	values:
ANIM_ENUM_PROCEED
Continue	the	enumeration	process.
ANIM_ENUM_STOP
Stop	the	enumeration	process	at	this	level.
ANIM_ENUM_ABORT
Abort	the	enumeration	processing.

Prototype:
AnimEnum(int	s	=	SCOPE_OPEN,	int	deep	=	0)

Remarks:
Constructor.	Sets	default	scope	and	depth	if	specified.

Return	Value:
A	new	AnimEnum	object.

Prototype:
void	SetScope(int	s)

Remarks:
Implemented	by	the	System.
Sets	the	scope.	See	below	for	possible	values.

Parameters:
int	s
Specifies	the	scope	to	set.	See	below.

Prototype:
int	Scope()

Remarks:
Implemented	by	the	System.
Returns	the	scope.

Return	Value:
One	or	more	of	the	following	scope	values:
SCOPE_DOCLOSED
Do	closed	animatables.
SCOPE_SUBANIM
Do	the	sub	anims
SCOPE_CHILDREN
Do	the	node	children
SCOPE_OPEN
Do	all	open	animatables
Equal	to	(SCOPE_SUBANIM|SCOPE_CHILDREN)

SCOPE_ALL
Do	all	animatables.
Equal	to	(SCOPE_OPEN|SCOPE_DOCLOSED)

Prototype:
void	IncDepth()

Remarks:
Implemented	by	the	System.
Increments	the	depth	count.

Prototype:
void	DecDepth()

Remarks:
Implemented	by	the	System.
Decrements	the	depth	count.

Prototype:
int	Depth()

Remarks:
Implemented	by	the	System.
Returns	the	depth	count.

Class	DefNoteTrack
See	Also:	Class	NoteKeyTab,	Class	Animatable.
class	DefNoteTrack	:	public	NoteTrack

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	is	3ds	max's	implementation	of	Note	Tracks.	It	provides
implementation	for	the	Animatable	methods	that	let	the	keys	work	in	Track
View.	Developers	use	this	class	to	access	the	table	of	keys	associated	with	a
track.	Methods	of	class	Animatable	are	available	to	get	access	to	this	class.

Function:
NoteTrack	*NewDefaultNoteTrack();

Remarks:
This	global	function	is	not	part	of	this	class	but	is	available	for	use.	It	creates
and	returns	a	pointer	to	a	new	Note	Track.

Data	Members:
public:
NoteKeyTab	keys;
The	table	of	note	keys	for	the	track.

Methods:
The	methods	of	this	class	are	all	implemented	and	used	internally.

List	of	Schematic	View	AddAnimatable	Flags
See	Also:	Class	Animatable.
These	are	bit	flags	which	can	be	passed	to
IGraphObjectManager::AddAnimatable(...)	and
Animatable::SvTraverseAnimGraph(....).
One	or	more	of	the	following	values:
SV_INITIALLY_HIDDEN
If	set,	newly	created	node	will	be	in	the	hidden	state.	If	the	node	already
exists	in	the	graph,	the	flag	is	ignored.
SV_DUPLICATE_INSTANCES
If	set,	shared	instances	of	an	animatable	will	produce	multiple	graph	nodes
in	the	schematic	view	instead	of	a	single	shared	graph	node.
SV_INITIALLY_CLOSED
If	set,	the	newly	created	children	of	the	newly	created	node	will	be	in	the
hidden	state.	If	the	node	already	exists	in	the	graph,	the	flag	is	ignored.
Children	of	this	node	that	already	exist	in	the	graph	will	not	have	their
visibility	state	changed.

Class	MultiSelectCallback
See	Also:	Class	Animatable.
class	MultiSelectCallback

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	callback	object	used	to	perform	the	(de)selection	via	Animatable::
SvGetMultiSelectCallback().
Schematic	view	supports	multiple	selection.	When	the	user	selects	a	set	of
objects	in	the	schematic	view	and	then	"transfers"	that	selection	set	to	the	rest	of
max	(either	by	having	"synchronize	selection"	on	or	by	manually	moving	the
selection	out),	there	are	a	number	of	ambiguities	that	can	arise.	For	example,
some	of	the	objects	in	the	schematic	view	cannot	be	selected	in	the	viewports,
material	editor,	or	modifier	stack.	Another	example:	the	material	editor	only
supports	one	active	material/map	but	many	materials	and	maps	can	be	selected
simultaneously	in	the	schematic	view.	The	"MultiSelectCallback"	system	exists
order	to	handle	these	cases	and	to	handle	selection	synchronization	between	SV
and	future	editors	in	3ds	max.	When	the	schematic	view	attempts	to	synchronize
selection	by	moving	the	SV	selection	set	to	the	"outside"	world,	it	follows	this
procedure:
1.	First	SV	calls	SvGetMultiSelectCallback(...)	on	all	the	visible	SV	nodes	to
"collect"	MultiSelectCallback	objects.	Objects	that	want	to	synchronize	their
selection	state	with	the	schematic	view	(not	a	common	or	trivial	operation	--	this
is	really	more	associated	with	adding	a	new	editor	in	3ds	max	rather	than	adding
new	plugin)	return	a	pointer	to	a	static	instance	of	a	MultiSelectCallback	derived
object.	There	is	only	one	instance	of	a	MultiSelectCallback	per	editor.
Furthermore,	if	an	editor	displays	objects	of	many	classes,	all	the	classes	should
override	SvGetMultiSelectCallback(...)	to	return	the	same	MultiSelectCallback
instance.	This	implies	that,	as	far	as	the	schematic	view	is	concerned,	there	is
never	more	than	one	primary	editor	class	associated	with	any	particular	object
class	(currently,	viewports	for	nodes,	material	editor	for	materials	and	maps	and
the	modifier	panel	for	modifiers).
For	example,	here	is	the	code	in	BaseNode	that	returns	the	MultiSelectCallback
instance	for	nodes	(this	is	the	MultiSelectCallback	used	for	viewports):
class	BaseNodeMSelCB	:	public	MultiSelectCallback

	{
	private:
	bool	clear;
	BaseNodeTab	selNodeTab;
	BaseNodeTab	deselNodeTab;
	
	public:
	int	Priority()	{	return	1000;	}
	void	Begin(IGraphObjectManager	*gom,	bool	clear);
	void	Select(IGraphObjectManager	*gom,	IGraphNode	*gNode,
bool	isSelected);
	void	End(IGraphObjectManager	*gom);
	};
static	BaseNodeMSelCB	baseNodeMSelCB;
MultiSelectCallback*
BaseNode::SvGetMultiSelectCallback(IGraphObjectManager
*gom,	IGraphNode	*gNode)
	{
	return	&baseNodeMSelCB;
	}
2.	For	each	selection	class	(unique	MultiSelectCallback	instance),	the	schematic
views	calls	"Begin(...)".	This	is	the	spot	where	any	"pre-selection"	preparation
takes	place.	The	order	that	the	MultiSelectCallback	instances	are	called	in	is
determined	by	their	priority.	The	priority	is	returned	by	the	"Priority()"	method.
MultiSelectCallback's	with	a	higher	priority	(lower	value)	are	called	before	those
with	a	lower	priority	(higher	value).	For	example,	here	is	the	Begin	associated
with	the	viewports:
void	BaseNodeMSelCB::Begin(IGraphObjectManager	*gom,	bool
clear)
		{
		this->clear	=	clear;
//
//	If	the	"clear"	bool	is	true,	the	current	viewport	selection	set	is
cleared...

//
		if	(clear)
			GetActiveSelSet()->Clear(FALSE);
//
//	Some	housekeeping	in	preparation	for	the	select...
//
		selNodeTab.Resize(0);
		deselNodeTab.Resize(0);
		}
3.	For	each	of	objects	in	the	schematic	view	whose	selection	state	is	changing,
the	object's	MultiSelectCallback	instance	is	retrieved	(again)	and	the	"Select"
method	is	called.	Here	is	where	the	actual	selection/deselection	work	can	take
place.	I	say	"can"	because,	in	practice,	the	select	method	usually	just	collects	all
the	objects	to	be	selected	and	all	the	objects	to	be	deselected	into	lists	which	are
then	processed	in	the	"End(...)"	method.	This	is	simply	for	performance	--	it	is
often	more	efficient	to	set	the	selection	state	of	a	group	of	objects	all	at	once.
Here's	the	"Select(...)"	method	from	BaseNode:
void	Select(IGraphObjectManager	*gom,	IGraphNode	*gNode,	bool
isSelected)
		{
		BaseNode	*baseNode	=	(BaseNode	*)	gNode->GetAnim();
	
		if	(isSelected)
			{
			if	(!baseNode->IsRootNode()	&&	!baseNode->IsFrozen()	&&
!baseNode->IsHidden())
				selNodeTab.AppendNode(baseNode,	FALSE);
			}
		else
			{
			if	(baseNode->Selected())
				deselNodeTab.AppendNode(baseNode,	FALSE);
			}
		}

4.	Finally,	for	each	selection	class	(unique	MultiSelectCallback	instance),	the
schematic	views	calls	"End(...)".	This	is	the	spot	where	any	"post-selection"
operations	take	place.	For	example,	here	is	the	"End(...)"	for	the	BaseNode
(viewports):
void	End(IGraphObjectManager	*gom)
		{
		if	(selNodeTab.Count()	>	0	||	deselNodeTab.Count()	>	0)
			{
			theHold.Begin();
			if	(selNodeTab.Count()	>	0)
				GetActiveSelSet()->SelectMultiple(selNodeTab,	FALSE);
	
			if	(deselNodeTab.Count()	>	0)
				GetActiveSelSet()->DeselectMultiple(deselNodeTab,	FALSE);
	
			theHold.Accept(getResMgr().getString(IDS_SV_SELECT,
appInst));
			RedrawViewports(GetCurTime(),	VP_DONT_SIMPLIFY);
			}
		else
			{
			if	(clear)
				RedrawViewports(GetCurTime(),	VP_DONT_SIMPLIFY);
			}
		}

Methods:
public:

Prototype:
virtual	int	Priority()=0;

Remarks:
Returns	the	priority	of	the	callback.	MultiSelectCallback's	with	a	higher
priority	(lower	value)	are	called	before	those	with	a	lower	priority	(higher
value).

Prototype:
virtual	void	Begin(IGraphObjectManager	*gom,	bool	clear)=0;

Remarks:
Called	to	begin	the	multi-selection	process.	This	is	the	spot	where	any	"pre-
selection"	operations	take	place.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
bool	clear
true	to	clear	the	previous	selection;	false	to	leave	intact.

Prototype:
virtual	void	Select(IGraphObjectManager	*gom,	IGraphNode
*gNode,	bool	isSelected)=0;

Remarks:
This	method	selects	or	deselects	the	node	passed.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.
IGraphNode	*gNode
Points	to	the	node	in	schematic	view.
bool	isSelected
true	if	select;	false	if	deselect.

Prototype:
virtual	void	End(IGraphObjectManager	*gom)=0;

Remarks:
Called	when	done.	This	is	the	spot	where	any	"post-selection"	operations	take
place.

Parameters:
IGraphObjectManager	*gom
Points	to	the	schematic	view	window	manager.

Class	ICustAttribContainer
See	Also:	Class	CustAttrib	,	Class	RemapDir	,	Class	ReferenceTarget
class	ICustAttribContainer	:	public	ReferenceTarget

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	interface	class	to	a	custom	attributes	container.

Methods:
public:

Prototype:
virtual	int	GetNumCustAttribs()=0;

Remarks:
This	method	returns	the	number	of	custom	attributes.

Prototype:
virtual	CustAttrib	*GetCustAttrib(int	i)=0;

Remarks:
This	method	allows	you	to	retrieve	the	custom	attribute	by	its	specified	index.

Parameters:
int	i
The	index	of	the	custom	attribute	you	with	to	obtain.

Prototype:
virtual	void	AppendCustAttrib(CustAttrib	*attribute)=0;

Remarks:
This	method	allows	you	to	append	a	custom	attribute.

Parameters:
CustAttrib	*attribute
A	pointer	to	the	custom	attribute	you	wish	to	add.

Prototype:
virtual	void	SetCustAttrib(int	i,	CustAttrib	*attribute)=0;

Remarks:
This	method	allows	you	to	set	the	custom	attribute	at	the	specified	index.

Parameters:
int	i
The	index	for	which	to	set	the	custom	attribute.
CustAttrib	*attribute
A	pointer	to	the	custom	attribute	you	wish	to	set.

Prototype:
virtual	void	InsertCustAttrib(int	i,	CustAttrib	*attribute)=0;

Remarks:
This	method	allows	you	to	insert	a	custom	attribute	at	the	specified	index.

Parameters:
int	i
The	index	at	which	to	insert	the	custom	attribute.
CustAttrib	*attribute
A	pointer	to	the	custom	attribute	you	wish	to	insert.
	

Return	Value:
	

Prototype:
virtual	void	RemoveCustAttrib(int	i)=0;

Remarks:
This	method	allows	you	to	remove	a	custom	attribute.

Parameters:
int	i
The	index	of	the	custom	attribute	to	remove.

Prototype:

virtual	ParamDlg*	CreateParamDlg(HWND	hwMtlEdit,
IMtlParams	*imp)=0;

Remarks:
This	method	gets	called	when	the	material	or	texture	is	to	be	displayed	in	the
material	editor	parameters	area.	The	plug-in	should	allocate	a	new	instance	of
a	class	derived	from	ParamDlg	to	manage	the	user	interface.

Parameters:
HWND	hwMtlEdit
The	window	handle	of	the	materials	editor.
IMtlParams	*imp
The	interface	pointer	for	calling	methods	in	3ds	max.

Return	Value:
A	pointer	to	the	created	instance	of	a	class	derived	from	ParamDlg.

Prototype:
virtual	void	CopyParametersFrom(ReferenceMaker	*from,
RemapDir	&remap)=0;

Remarks:
This	method	will	copy	the	parameters	from	a	specified	reference	maker.

Parameters:
ReferenceMaker	*from
A	pointer	to	the	reference	maker	to	copy	the	parameters	from.
RemapDir	&remap
This	class	is	used	for	remapping	references	during	a	Clone.	See	Class
RemapDir.

Prototype:
virtual	Animatable	*GetOwner()=0;

Remarks:
This	method	returns	a	pointer	to	the	owner	of	the	custom	attributes.

Prototype:

virtual	void	DeleteThis()=0;
Remarks:
Self	deletion.

Class	NotifyCollapseEnumProc
See	Also:	Class	GeomPipelineEnumProc,	Class	BaseObject,	Class	Object,	Class
IDerivedObject.
class	NotifyCollapseEnumProc	:	public	GeomPipelineEnumProc

Description:
This	class	is	available	in	release	4.0	and	later	only.
Whenever	the	modifier	stack	is	collapsed	the	code	has	to	notify	all	objects	in	the
stack	with	a	Pre	and	a	Post	notification.	In	order	to	do	this,	this	class	can	be	used
in	conjunction	with	the	method	EnumGeomPipleine().	In	the	constructor	one
can	specify,	if	it	is	a	pre-	or	post-	collapse	notification.	In	case	it	is	a	post
collapse	the	object	that	represents	the	result	of	the	collapse	has	to	be	provided	as
well.	The	INode	pointer	to	the	beginning	of	the	pipeline	that	was	collapsed	has
to	be	provided	in	both	cases.
All	methods	of	this	class	are	implemented	by	the	System.

Methods:
public:

Prototype:
NotifyCollapseEnumProc(bool	preCollapse,	INode	*n,	Object
*collapsedObj	=	NULL)	:	bPreCollapse(preCollapse),	node(n),
collapsedObject(collapsedObj);

Remarks:
Constructor.	The	private	data	members	are	initialized	by	the	passed
parameters.

Parameters:
bool	preCollapse
Indicates	if	this	is	a	pre-	collapse	or	a	post-	collapse.	Pass	true	for	pre	and	false
for	post.
INode	*n
Points	to	the	node	at	the	beginning	of	the	pipeline	that	was	collapsed.
Object	*collapsedObj	=	NULL
If	this	is	a	post-	collapse	then	points	to	the	object	which	is	the	result	of	the
collapse.

Sample	Code:
The	following	code	fragment	shows	using	this	constructor	and	then	the
EnumGeomPipeline	with	this	object:
NotifyCollapseEnumProc	PreNCEP(true,node);
EnumGeomPipeline(&PreNCEP,node);

Prototype:
virtual	PipeEnumResult	proc(ReferenceTarget
*object,IDerivedObject	*derObj,	int	index);

Remarks:
This	is	the	implementation	of	the	EnumGeomPipeline	callback	method	proc()
which	calls	BaseObject::NotifyPreCollapse	or
BaseObject::NotifyPostCollapse	as	required.

Transform	Lock	Types
See	Also:	Class	INode.
One	of	the	following	values:
INODE_LOCKPOS
Position	locked.
INODE_LOCKROT
Rotate	locked.
INODE_LOCKSCL
Scale	locked.

Transform	Lock	Axis
See	Also:	Class	INode.
One	of	the	following	values:
INODE_LOCK_X
X	axis	locked.
INODE_LOCK_Y
Y	axis	locked.
INODE_LOCK_Z
Z	axis	locked.

Class	RenderData
See	Also:	Class	INode-Access	To	Render	Data,	Class	LightDesc.
class	RenderData	:	public	InterfaceServer

Description:
This	class	has	a	single	virtual	method	to	delete	the	class.	For	example,	when
LightDesc	objects	are	deleted	this	is	the	method	to	do	so.

Methods:

Prototype:
virtual	void	DeleteThis();

Remarks:
Implemented	by	the	Plug-In.
This	method	is	used	to	delete	an	instance	of	the	class.

Default	Implementation:
{delete	this;	}

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.
This	is	reserved	for	future	use.

Parameters:
int	cmd
The	command	to	execute.
ULONG	arg1=0
Optional	argument	1	(defined	uniquely	for	each	cmd).
ULONG	arg2=0

Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value	(defined	uniquely	for	each	cmd).

Default	Implementation:
{	return	0;	}

List	of	XRef	Flag	Bits
See	Also:	Class	INode.
The	following	flags	are	used	by	the	methods	INode::SetXRefFlags	and
GetXRefFlags.
XREF_UPDATE_AUTO
Indicates	automatic	XRef	file	updating	is	on.
XREF_BOX_DISP
Indicates	the	Box	display	option	is	set.
XREF_HIDDEN
Indicates	the	XRef	is	hidden.
XREF_DISABLED
Indicates	the	XRef	is	diabled.
XREF_IGNORE_LIGHTS
Indicates	the	XRef	will	ignore	the	lights	in	the	file.
XREF_IGNORE_CAMERAS
Indicates	the	XRef	will	ignore	the	cameras	in	the	file.
XREF_IGNORE_SHAPES
Indicates	the	XRef	will	ignore	the	shapes	in	the	file.
XREF_IGNORE_HELPERS
Indicates	the	XRef	will	ignore	the	helpers	in	the	file.
XREF_IGNORE_ANIM
Indicates	the	XRef	will	ignore	the	animation	in	the	file.
XREF_FILE_CHANGE
This	bit	is	set	when	a	change	notification	is	sent	indicating	that	the	file	may
have	changed.	We	don't	know	for	sure	if	the	file	actually	changed	but	the	ref
should	be	reloaded.
XREF_LOAD_ERROR
This	bit	will	be	set	when	a	ref	can't	be	resolved.

Class	ISubMap
See	Also:	Class	MtlBase,	Class	Texmap,	Class	ParamDlg,	Class
ReferenceTarget.
class	ISubMap

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	methods	of	this	class	provide	access	to	the	sub-textures	of	a	MtlBase.	These
properties	include	the	number	of	sub-maps,	the	slot	type,	on	/	off	state,	etc.
The	MtlBase	class	sub-classes	from	this	class.	If	a	developer	is	creating	a	plug-in
derived	from	MtlBase	(for	instance	a	Material	or	Texture)	then	implementations
of	these	methods	are	required.	Developers	may	call	these	methods	on	an	existing
MtlBase	sub-class.

Methods:
public:

Prototype:
virtual	int	NumSubTexmaps()

Remarks:
Implemented	by	the	Plug-In.
Returns	the	number	of	sub-textures	managed	by	this	material	or	texture.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	Texmap*	GetSubTexmap(int	i)

Remarks:
Implemented	by	the	Plug-In.
Returns	a	pointer	to	the	'i-th'	sub-texmap	managed	by	the	material	or	texture.
Note:	For	the	3ds	max	Standard	material,	the	sub-texmap	index	used	with	this
method	is	shown	in	List	of	Texture	Map	Indices.

Parameters:
int	i

Specifies	the	texmap	to	return.
Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	int	MapSlotType(int	i)

Remarks:
Implemented	by	the	Plug-In.
In	the	Coordinates	rollup	in	the	user	interface	for	a	texture	map	are	two
options.	These	options	are	Texture	or	Environment.	The	slot	type	is	one	of
these	two	options,	texture	coordinates	or	environment	coordinates.	There	are	a
variety	of	texture	coordinate	types.	There	are	the	type	assigned	to	the	object
and	the	environment	type	(Spherical,	Cylindrical,	Shrink-wrap,	Screen).	This
method	is	used	to	determine	the	type	required	by	the	particular	sub-texture.
This	is	either	texture	coordinates	(MAPSLOT_TEXTURE)	or
environment	coordinates	(MAPSLOT_ENVIRON).

Parameters:
int	i
The	index	of	the	sub-texture	whose	slot	type	to	return.

Return	Value:
See	List	of	Map	Slot	Types.

Default	Implementation:
{	return	MAPSLOT_TEXTURE;	}

Prototype:
virtual	void	SetSubTexmap(int	i,	Texmap	*m);

Remarks:
Implemented	by	the	Plug-In.
Stores	the	'i-th'	sub-texmap	managed	by	the	material	or	texture.
Note:	For	the	3ds	max	Standard	material,	the	sub-texmap	index	used	with	this
method	is	shown	in	List	of	Texture	Map	Indices.

Parameters:

int	i
The	index	of	the	storage	for	the	texmap.
Texmap	*m
The	texmap	to	store.

Default	Implementation:
{}

Prototype:
virtual	int	SubTexmapOn(int	i)

Remarks:
Implemented	by	the	Plug-In.
Returns	nonzero	if	the	specified	sub-texmap	is	on;	otherwise	zero.	Some
materials	may	have	user	interface	controls	to	toggle	the	sub-maps	on	and	off.
The	Standard	material	has	such	controls	for	example.

Parameters:
int	i
The	index	of	the	sub-texmap	to	check.

Default	Implementation:
{	return	1;	}

Prototype:
virtual	TSTR	GetSubTexmapSlotName(int	i);

Remarks:
Implemented	by	the	Plug-In.
This	method	returns	the	slot	name	of	the	'i-th'	sub-texmap.	This	name	appears
in	the	materials	editor	dialog.	For	instance,	if	you	are	in	a	material	and	then
you	go	down	into	a	map,	this	is	the	name	that	appears	just	below	the	'Get
Material'	icon.	For	example,	in	the	Standard	material	when	you	choose	one	of
the	maps,	the	map	name	appears	to	let	you	know	which	slot	you	are	working
on.	For	the	Standard	material,	this	may	be	"Ambient",	"Diffuse",	"Specular",
etc.

Parameters:
int	i

Specifies	the	slot	whose	name	is	returned.
Default	Implementation:

The	default	implementation	returns	an	empty	("")	string.

Prototype:
TSTR	GetSubTexmapTVName(int	i);

Remarks:
Implemented	by	the	Plug-In.
Returns	the	name	to	appear	in	Track	View	of	the	'i-th'	sub-texmap.

Parameters:
int	i
Specifies	the	sub-texmap	whose	name	is	returned.

Prototype:
virtual	BOOL	SetDlgThing(ParamDlg*	dlg);

Remarks:
This	method	is	called	by	the	ParamMap2	AUTO_UI	system	if	the
material/texmap	is	letting	the	system	build	an	AutoMParamDlg	for	it.	This
method	is	called	on	a	material/texmap	coming	into	an	exsting	set	of
ParamDlgs,	once	for	each	secondary	ParamDlg	and	it	should	set	the
appropriate	'thing'	into	the	given	dlg	(the	'thing'	being,	for	example,	a
Texout*	or	UVGen*).	Return	FALSE	if	dlg	is	unrecognized.
Note:	See	the	discussion	above	in	CreateParamDlg()	for	additional	details
on	this	method.

Parameters:
ParamDlg*	dlg
Points	to	the	ParamDlg	to	check.	See	Class	ParamDlg.

Return	Value:
TRUE	if	the	dlg	passed	is	recognized;	FALSE	if	unrecognized.

Default	Implementation:
{	return	FALSE;	}

Sample	Code:

BOOL	Gradient::SetDlgThing(ParamDlg*	dlg)
{
	if	(dlg	==	uvGenDlg)
		uvGenDlg->SetThing(uvGen);
	else	if	(dlg	==	texoutDlg)
		texoutDlg->SetThing(texout);
	else
		return	FALSE;
	return	TRUE;
}

Prototype:
void	CopySubTexmap(HWND	hwnd,	int	ifrom,	int	ito);

Remarks:
Implemented	by	the	System.
This	method	is	used	to	handle	the	drag-and-drop	of	texmaps.	A	developer
implements	the	logic	to	handle	the	drag	and	drop.	Once	they	have	the
information	about	what	slot	was	dropped	on	what	other	slot,	this	method	may
be	called	to	handle	the	copying.	This	is	used	by	the	3ds	max	Standard
material.

Parameters:
HWND	hwnd
The	rollup	page	window	handle.
int	ifrom
The	source	texmap.
int	ito
The	destination	texmap.

Prototype:
virtual	ReferenceTarget	*GetRefTarget()=0;

Remarks:
Implemented	by	the	System.

The	implementation	of	this	method	is	provided	by	MtlBase.	It	returns	its	this
pointer.

Class	RenderMapsContext
See	Also:	Class	INode,	Class	ViewParams,	Structure	SubRendParams,	Class
Matrix3,	Class	Box3,	Class	Point4,	Class	Bitmap,	Class	RenderGlobalContext.
class	RenderMapsContext

Description:
An	instance	of	this	class	is	passed	into	the	MtlBase::BuildMaps()	method.
This	is	used	for	the	Mirror	and	Automatic	Cubic	maps.	These	maps	callback	to
methods	of	this	class	to	perform	a	rendering	from	a	particular	view.	Sample	code
using	these	methods	is	available	in
\MAXSDK\SAMPLES\MATERIALS\MIRROR.CPP	and
ACUBIC.CPP.	All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	INode	*GetNode()=0;

Remarks:
Returns	the	INode	pointer	of	the	node	being	rendered.	This	pointer	allows	a
developer	to	access	the	properties	of	the	node.	See	Class	INode.

Prototype:
virtual	int	NodeRenderID()=0;

Remarks:
Returns	the	node	ID	for	the	item	being	rendered	or	-1	if	not	set.	This	ID	is
assigned	when	the	scene	is	being	rendered	-	each	node	is	simply	given	an	ID:
0,	1,	2,	3,	etc.	The	NodeRenderID()	is	simply	a	number	automatically
assigned	to	every	node	being	rendered	so	that	they	can	be	differentiated	in
texture	maps	such	as	the	Auto-cubic,	which	needs	to	store	a	cubic	map	for
each	node	it	is	applied	to.

Prototype:
virtual	void	GetCurrentViewParams(ViewParams	&vp)=0;

Remarks:

Retrieves	the	current	view	dependent	parameters.
Parameters:
ViewParams	&vp
The	ViewParams	instance	to	update.

Prototype:
virtual	void	GetSubRendParams(SubRendParams	&srp)=0;

Remarks:
Retrieves	the	sub-render	parameters.

Parameters:
SubRendParams	&srp
The	SubRendParams	instance	to	update.

Prototype:
virtual	int	SubMtlIndex()=0;

Remarks:
Returns	the	current	sub	material	index	or	-1	if	at	node	material	level.

Prototype:
virtual	void	FindMtlPlane(float	pl[4])=0;

Remarks:
Computes	the	plane	containing	the	current	material	or	sub	material.	This	is
used	by	the	Flat	Mirror	material.

Parameters:
float	pl[4]
The	plane	containing	the	current	material	or	sub	material.	The	four	float
values	in	pl[4]	represent	the	plane	equation.	If	you	call	the	four	values	A,B,C
and	D,	then	the	plane	equation	of	the	plane	is	Ax	+	By	+	cZ	+	D	=	0.

Prototype:
virtual	void	FindMtlScreenBox(Rect	&sbox,	Matrix3*
viewTM=NULL,	int	mtlIndex=-1)=0;

Remarks:
This	method	computes	the	rectangle	in	screen	space	of	the	specified	material.
This	uses	the	viewTM,	but	assumes	the	remaining	view	params	(devWidth,
devHeight,	devAspect,	fov)	are	the	same	as	the	main	render.	This	method	is
specific	to	the	Flat	Mirror	material.

Parameters:
Rect	&sbox
The	resulting	2D	box.
Matrix3*	viewTM=NULL
The	view	matrix.
int	mtlIndex=-1
The	material	index,	or	-1	if	a	node	level	material.

Prototype:
virtual	Box3	CameraSpaceBoundingBox()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	computes	the	bounding	box	in	camera	space	of	the	object
associated	with	the	reflection	or	refraction	map	being	built	in	a	call	to	a	map's
BuildMaps()	method.

Prototype:
virtual	Box3	ObjectSpaceBoundingBox()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	method	computes	the	bounding	box	in	object	space	of	the	object
associated	with	the	reflection	or	refraction	map	being	built	in	a	call	to	a	map's
BuildMaps()	method.

Prototype:
virtual	Matrix3	ObjectToWorldTM()=0;

Remarks:
This	method	is	available	in	release	2.0	and	later	only.

This	method	returns	the	object	to	world	transformation.

Prototype:
virtual	RenderGlobalContext	*GetGlobalContext();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Returns	a	pointer	to	a	class	that	describes	properties	of	the	rendering
environment.

Prototype:
virtual	int	Render(Bitmap	*bm,	ViewParams	&vp,
SubRendParams	&srp,	Point4	*clipPlanes=NULL,	int
nClipPlanes=0)=0;

Remarks:
Renders	the	scene	and	stores	in	the	result	into	bm.

Parameters:
Bitmap	*bm
The	Bitmap	to	render	the	result	to.	The	properties	of	this	bitmap	define	the
properties	of	the	render	(such	as	the	width	and	height).
ViewParams	&vp
The	ViewParams.
SubRendParams	&srp
The	SubRendParams.
Point4	*clipPlanes=NULL
This	revised	parameter	is	available	in	release	2.0	and	later	only.
This	is	a	pointer	to	an	array	of	Point4s,	each	of	which	represents	a	clip	plane.
If	it	is	non-null,	the	renderer	will	clip	all	objects	against	these	planes	in
addition	to	the	normal	left/right/top/bottom	clipping.	This	is	used	by	the
Mirror	material	to	clip	away	stuff	that	is	behind	the	mirror.	If	not	needed	this
may	default	to	NULL.
int	nClipPlanes=0
This	parameter	is	available	in	release	2.0	and	later	only.
The	number	of	clipping	planes	above.	A	maximum	of	6	is	possible.

Return	Value:
Nonzero	on	success;	otherwise	zero.

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.

Parameters:
int	cmd
The	index	of	the	command	to	execute.
ULONG	arg1=0
Optional	argument	1.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	these	parameters.
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	the	meaning	of	this	value.

Class	PStamp
See	Also:	Class	AnimProperty.
class	PStamp:	public	AnimProperty

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	is	used	internally	by	the	Material	/	Map	Browser	which	supports	the
display	of	small	and	large	icon	images	for	material	and	texture	maps.	This
class	is	the	postage	stamp	image	object.
The	width	in	bytes	of	the	image	pixel	array	is	given	by	the	following	macro,
where	w	is	pixel	width.
#define	ByteWidth(w)	(((w*3+3)/4)*4)

Methods:

Prototype:
virtual	int	Width()=0;

Remarks:
Returns	the	width	of	the	image	in	pixels.

Prototype:
virtual	int	Height()=0;

Remarks:
Returns	the	height	of	the	image	in	pixels.

Prototype:
virtual	void	SetImage(UBYTE	*img)=0;

Remarks:
Sets	the	image	for	the	postage	stamp.

Parameters:
UBYTE	*img
This	is	an	array	of	RGB	triplets.

Prototype:
virtual	void	GetImage(UBYTE	*img)=0;

Remarks:
Retrieves	the	image	bytes	of	the	postage	stamp.

Parameters:
UBYTE	*img
This	is	an	array	of	RGB	triplets.

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
This	method	is	called	to	delete	this	instance	of	the	class.

Prototype:
virtual	IOResult	Load(ILoad	*iload)=0;

Remarks:
This	method	is	used	to	load	the	postage	stamp	image.

Prototype:
virtual	IOResult	Save(ISave	*isave)=0;

Remarks:
This	method	is	used	to	save	the	postage	stamp	image.

List	of	Material	Flags
See	Also:	Class	MtlBase.
One	or	more	of	the	following	values:
MTL_IN_SCENE
The	material	is	being	used	in	the	scene.
MTL_BEING_EDITED
The	material's	parameters	are	being	displayed	in	the	Material	Editor.
MTL_SUB_BEING_EDITED
This	material	OR	sub-material	texmap	is	being	displayed	in	the	Material
Editor.
MTL_TEX_DISPLAY_ENABLED
Interactive	texture	display	is	enabled.
MTL_MEDIT_BACKGROUND
The	material	has	the	background	shown	in	Material	Editor.
MTL_MEDIT_BACKLIGHT
The	material	is	backlight	in	Material	Editor.
MTL_MEDIT_OBJTYPE
The	object	type	displayed	in	Material	Editor.
MTL_MEDIT_TILING
The	tiling	setting	of	the	Material	Editor.
MTL_MEDIT_VIDCHECK
The	video	check	state	of	the	Material	Editor.
MTL_BROWSE_OPEN1
This	is	for	internal	use	only.
MTL_BROWSE_OPEN2
This	is	for	internal	use	only.

Class	IAutoMParamDlg
See	Also:	Class	ParamDlg,	Class	IParamMap2,	Class	IMtlParams,	Class
ParamMap2UserDlgProc.
class	IAutoMParamDlg	:	public	ParamDlg

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	Auto	ParamDlg	class	for	Material	Editor	auto-UI,	instanced	by
ClassDesc2::CreateParamDlg().	It	maintains	a	table	of	secondary
ParamDlgs	for	master	ParamDlgs	(eg,	the	one	returned	from	CreateParamDlg())
and	will	broadcast	appropriate	method	calls	to	them	as	the	master	receives	them.

Methods:
public:

Prototype:
virtual	void	InvalidateUI()=0;

Remarks:
This	method	causes	the	user	interface	controls	to	be	re-drawn.

Prototype:
virtual	void	MtlChanged()=0;

Remarks:
This	method	may	be	called	to	causes	the	viewports	to	be	redrawn.	It	should	be
called	when	any	parameter	that	affects	the	look	of	the	material	in	the	viewport
has	been	altered.	If	the	material	is	not	on	a	visible	node	in	a	shaded	view,
nothing	will	happen.	This	method	should	not	be	called	as	a	spinner	is	being
dragged,	but	only	upon	release	of	the	mouse	button.

Prototype:
virtual	int	NumDlgs()=0;

Remarks:
Returns	the	number	of	secondary	dialogs.

Prototype:
virtual	void	AddDlg(ParamDlg*	dlg)=0;

Remarks:
Adds	the	specified	dialog	as	another	secondary	dialog.

Parameters:
ParamDlg*	dlg
Points	to	the	parameter	dialog	to	add.

Prototype:
virtual	ParamDlg*	GetDlg(int	i)=0;

Remarks:
Returns	a	pointer	to	the	'i-th'	secondary	dialog.

Parameters:
int	i
The	zero	based	index	of	the	dialog	to	return.

Prototype:
virtual	void	SetDlg(int	i,	ParamDlg*	dlg)=0;

Remarks:
Sets	the	'i-th'	dialog	to	the	one	passed.

Parameters:
int	i
The	zero	based	index	of	the	dialog	to	set.
ParamDlg*	dlg
Points	to	the	parameter	dialog	to	set.

Prototype:
virtual	void	DeleteDlg(ParamDlg*	dlg)=0;

Remarks:
This	method	is	used	for	deleting	secondary	dialogs	from	a	master
IAutoMParamDlg.	Use	this	along	with	AddDlg()	if	you	are	dynamically
changing	the	set	of	rollups	for	the	plugin,	so	that	the	P_AUTO_UI	system

can	correctly	manage	all	current	secondary	rollups.
Parameters:
ParamDlg*	dlg
Points	to	the	ParamDlg	to	delete.

Prototype:
virtual	IParamMap2*	GetMap()=0;

Remarks:
Returns	a	pointer	to	the	parameter	map2	of	this	primary	(master)	dialog.

This	function	is	not	part	of	this	class	but	is	available	for	use.
Function:
IAutoMParamDlg*	CreateAutoMParamDlg(HWND	hMedit,
IMtlParams	*i,	MtlBase*	mtl,	IParamBlock2*	pb,	ClassDesc2*	cd,
HINSTANCE	inst,	TCHAR*	dlgTemplate,	TCHAR*	title,	int
rollFlags,	ParamMap2UserDlgProc*	dlgProc=NULL);

Remarks:
This	function	may	be	called	to	create	a	parameter	map2	for	use	in	the	material
editor	dialog.
Note,	in	version	4.0	and	later,	this	actually	maps	to	a	call	on	the	explicit	map
ID	overload	of	CreateAutoMParamDlg()	with	default	map	ID	of	0.

Parameters:
HWND	hMedit
The	window	handle	of	the	materials	editor.
IMtlParams	*i
The	interface	pointer	for	materials.	See	Class	IMtlParams.
MtlBase*	mtl
Points	to	the	material	calling	this	function.
IParamBlock2*	pb
Points	to	the	parameter	block	instance	associated	with	the	parameter	map.
ClassDesc2*	cd
The	class	descriptor2	for	the	plug-in	creating	the	parameter	map.

HINSTANCE	inst
The	plug-ins	DLL	instance	handle.
TCHAR*	dlgTemplate
Dialog	template	for	the	rollup	page	(created	using	the	resource	editor)
TCHAR*	title
The	title	displayed	in	the	rollup	page	title	bar.
int	rollFlags
A	set	of	flags	to	control	settings	of	the	rollup	page.
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

ParamMap2UserDlgProc*	dlgProc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.
HWND	hOldRollup=NULL
An	optional	window	handle	to	allow	supplying	an	existing	rollup	that	will	be
replaced	by	the	newly	cerated	one.

Return	Value:
A	pointer	to	an	interface	for	managing	the	parameter	map2.

Function:
IAutoMParamDlg*	CreateAutoMParamDlg(MapID	map_id,
HWND	hMedit,	IMtlParams	*i,	MtlBase*	mtl,	IParamBlock2*	pb,
ClassDesc2*	cd,	HINSTANCE	inst,	TCHAR*	dlgTemplate,
TCHAR*	title,	int	rollFlags,	ParamMap2UserDlgProc*
dlgProc=NULL);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
This	function	may	be	called	to	create	a	parameter	map2	for	use	in	the	material
editor	dialog.	This	overload	of	CreateAutoMParamDlg()	has	a	new
parameter,	map_id,	that	specifies	the	ID	of	the	parameter	map/rollup	to	be
created	for	this	particular	parameter	block.	See	original	function	for	the	rest	of
the	description.

Function:

IAutoEParamDlg*	CreateAutoEParamDlg(IRendParams	*i,
Effect*	e,	IParamBlock2*	pb,	ClassDesc2*	cd,	HINSTANCE	inst,
TCHAR*	dlgTemplate,	TCHAR*	title,	int	rollFlags,
ParamMap2UserDlgProc*	dlgProc=NULL);

Remarks:
This	function	creates	an	AutoEParamDlg	for	render	effects.
Note,	in	version	4.0	and	later,	this	actually	maps	to	a	call	on	the	explicit	map
ID	overload	of	CreateAutoEParamDlg()	with	default	map	ID	of	0.

Parameters:
IRendParams	*i
An	interface	pointer	for	rendering	effects.
Effect*	e
Points	to	the	rendering	effect	calling	this	function.
IParamBlock2*	pb
Points	to	the	parameter	block	instance	associated	with	the	parameter	map.
ClassDesc2*	cd
The	class	descriptor2	for	the	plug-in	creating	the	parameter	map.
HINSTANCE	inst
The	plug-ins	DLL	instance	handle.
TCHAR*	dlgTemplate
Dialog	template	for	the	rollup	page	(created	using	the	resource	editor)
TCHAR*	title
The	title	displayed	in	the	rollup	page	title	bar.
int	rollFlags
A	set	of	flags	to	control	settings	of	the	rollup	page.
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

ParamMap2UserDlgProc*	dlgProc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client
can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.

Return	Value:
A	pointer	to	an	interface	for	managing	the	parameter	map2.

Function:
IAutoEParamDlg*	CreateAutoEParamDlg(MapID	map_id,
IRendParams	*i,	Effect*	e,	IParamBlock2*	pb,	ClassDesc2*	cd,
HINSTANCE	inst,	TCHAR*	dlgTemplate,	TCHAR*	title,	int
rollFlags,	ParamMap2UserDlgProc*	dlgProc=NULL);

Remarks:
This	function	is	available	in	release	4.0	and	later	only.
This	function	creates	an	AutoEParamDlg	for	render	effects.	This	overload	of
CreateAutoEParamDlg()	has	a	new	parameter,	map_id,	that	specifies	the
ID	of	the	parameter	map/rollup	to	be	created	for	this	particular	parameter
block.	See	original	function	for	the	rest	of	the	description.

Class	MtlMakerCallback
See	Also:	Class	TexHandleMaker,	Class	TextureInfo,	Class	MtlBase,	Class
Texmap,	Class	Material.
class	MtlMakerCallback:	public	TexHandleMaker

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	the	callback	used	with	the	new	multi-texture	interface	provided	by
method	MtlBase::SetupGfxMultiMaps().

Methods:
public:

Prototype:
virtual	void	GetGfxTexInfoFromTexmap(TimeValue	t,
TextureInfo&	texinf,	Texmap	*txm)=0;

Remarks:
This	method	updates	all	the	fields	of	the	TextureInfo	instance	exept	the	texture
handle	and	the	texture	ops.

Parameters:
TimeValue	t
The	time	at	which	the	texture	is	evaluated.
TextureInfo&	texinf
The	texture	info	which	is	updated.
Texmap	*txm
Points	to	the	texmap	as	the	source	for	the	texture	info	update.

Prototype:
virtual	BOOL	NumberTexturesSupported()=0;

Remarks:
This	method	returns	the	number	of	textures	that	the	hardware+driver	supports.

List	of	IOResults
One	of	the	following	values:
IO_OK
The	result	was	acceptable	-	no	errors.
IO_END
This	is	returned	from	ILoad::OpenChunk()	when	the	end	of	the	chunks	at
a	certain	level	have	been	reached.	It	is	used	as	a	signal	to	terminates	the
processing	of	chunks	at	that	level.
IO_ERROR
This	is	returned	if	an	error	occurred.	Note	that	the	plug-in	should	not	put	up	a
message	box	if	a	read	error	occurred.	It	should	simply	return	the	error	status.
This	prevents	a	excess	of	messages	from	appearing.

Class	RefList
See	Also:	Class	RefListItem.
class	RefList

Description:
The	method	GetRefList()	returns	a	list	of	references	to	a	reference	target.	This
class	is	linked	list	of	references.	All	methods	of	this	class	are	implemented	by
the	system.

Data	Members:
public:
RefListItem*	first;

Methods:

Prototype:
RefList()

Remarks:
Constructor.	The	list	is	set	to	NULL.

Prototype:
RefListItem*	FirstItem()

Remarks:
Returns	the	first	item	in	the	list.

Prototype:
RefResult	DeleteItem(RefMakerHandle	hmaker,	int	eval);

Remarks:
Deletes	the	specified	item	from	the	list.

Parameters:
RefMakerHandle	hmaker
The	item	to	delete.
int	eval
If	nonzero	then	when	inside	of	NotifyDependents(),	just	set	maker	to

NULL.
Return	Value:
If	the	item	was	deleted	REF_SUCCEED	is	returned;	otherwise
REF_INVALID	is	returned.

Prototype:
RefResult	AddItem(RefMakerHandle	hmaker);

Remarks:
Adds	the	specified	item	to	the	list.

Parameters:
RefMakerHandle	hmaker
The	item	to	add.

Return	Value:
Returns	REF_SUCCEED.

Prototype:
void	Cleanup();

Remarks:
This	method	removes	null	entries	from	the	list.

Class	DependentEnumProc
See	Also:	Class	ReferenceTarget.
class	DependentEnumProc

Description:
This	class	is	a	callback	object	for	the
ReferenceTarget::EnumDependents()	method.	The	proc()	method	is
called	by	the	system.

Methods:

Prototype:
virtual	int	proc(ReferenceMaker	*rmaker)=0;

Remarks:
Implemented	by	the	Plug-In.
This	is	the	method	called	by	system	from
ReferenceTarget::EnumDependents().

Parameters:
ReferenceMaker	*rmaker
A	pointer	to	the	reference	maker

Return	Value:
One	of	the	following	values:
DEP_ENUM_CONTINUE
This	continues	the	enumeration.
DEP_ENUM_HALT
The	stops	the	enumeration.
DEP_ENUM_SKIP
This	option	is	available	in	release	3.0	and	later	only.
Reference	Targets	can	have	multiple	Reference	Makers	(dependents).	In
certain	instances	when	EnumDependents()	is	used	to	enumerate	them	you	may
not	want	to	travel	up	all	of	the	"branches".	By	returning	DEP_ENUM_SKIP
from	this	method	you	tell	the	enumerator	to	not	enumerate	the	current
Reference	Maker's	dependents	but	not	to	halt	the	eumeration	completely.

List	of	Snap	Flags
See	Structure	SnapInfo.
One	or	more	of	the	following	values:
SNAP_IN_3D
Snap	to	all	points.
SNAP_IN_PLANE
Snap	only	to	points	on	the	construction	(or	optionally	specified)	plane.
SNAP_UNSEL_OBJS_ONLY
Ignore	selected	nodes	when	considering	snap	points.
SNAP_SEL_OBJS_ONLY
Ignore	unselected	nodes	when	considering	snap	points.
SNAP_UNSEL_SUBOBJ_ONLY
Ignore	selected	sub-object	geometry	when	considering	snap	points.
SNAP_SEL_SUBOBJ_ONLY
Ignore	unselected	sub-object	geometry	when	considering	snap	points.
SNAP_FORCE_3D_RESULT
Override	user	settings	to	force	snap	in	3D.
SNAP_OFF_PLANE
This	is	used	internally	to	snap	only	to	points	off	the	plane.
Many	of	the	objects	call	GetCPDisp()	when	they	want	to	snap	lenghts	etc.
This	method	knew	nothing	about	the	snapping	that	was	added	in	3ds	max	2.0
so	it	had	to	be	retrofited	to	call	SnapPoint().	This	is	where
SNAP_OFF_PLANE	is	called.	It	forces	the	osnapmanager	to	only	consider
points	which	are	OFF	the	current	construction	plane.
SNAP_TRANSPARENTLY
This	is	used	internally	to	suppresses	any	display	in	the	viewports.	This	can	be
used	to	provide	a	way	of	snapping	to	arbitray	screen	points	without	giving
feedback.
SNAP_APPLY_CONSTRAINTS
This	is	used	internally	to	suppresses	any	display	in	the	viewports.
SNAP_PROJ_XAXIS
This	is	used	internally	to	suppresses	any	display	in	the	viewports.

SNAP_PROJ_YAXIS
This	is	used	internally	to	suppresses	any	display	in	the	viewports.
SNAP_PROJ_ZAXIS
This	is	used	internally	to	suppresses	any	display	in	the	viewports.

Class	HitData
See	Also:	Class	HitRecord.
class	HitData

Description:
This	class	is	used	during	sub-object	hit	testing	to	identify	sub-object
components.	If	the	4	bytes	available	in	the	info	data	member	of	HitRecord	are
insufficient	to	identify	the	sub-object	component	an	instance	of	this	class	can	be
created	to	contain	the	necessary	data.

Methods:

Prototype:
virtual	~HitData();

Remarks:
Implemented	by	the	Plug-In.
The	virtual	destructor	allows	the	instance	of	HitData	to	be	deleted	when	the
HitRecord	that	points	to	it	is	deleted.

List	of	Mouse	Callback	Flags
One	or	more	of	the	following	values	describing	the	state	of	the	Shift/Ctrl/Alt
keys	and	mouse	buttons:
MOUSE_SHIFT
Indicates	the	Shift	key	is	pressed.
MOUSE_CTRL
Indicates	the	Ctrl	key	is	pressed.
MOUSE_ALT
Indicates	the	Alt	key	is	pressed.
MOUSE_LBUTTON
Indicates	the	Left	button	is	down.
MOUSE_MBUTTON
Indicates	the	Middle	button	is	down.
MOUSE_RBUTTON
Indicates	the	Right	button	is	down.

Class	CtrlHitLog
class	CtrlHitLog

Description:
This	class	provides	a	data	structure	for	keeping	a	log	of	hits	during	controller
gizmo	hit-testing.	It	provides	a	list	of	CtrlHitRecords	that	may	be	added	to
and	cleared.	A	developer	may	also	request	the	'closest'	hit	record	in	the	list.	All
methods	are	implemented	by	the	system.

Methods:

Prototype:
CtrlHitLog()

Remarks:
Constructor.

Prototype:
void	Clear();

Remarks:
Clears	the	list	of	hits.

Prototype:
CtrlHitRecord*	First()

Remarks:
Returns	the	first	hit	record	in	the	list.

Prototype:
CtrlHitRecord*	ClosestHit();

Remarks:
Returns	the	CtrlHitRecord	that	was	'closest'	to	the	mouse	position	when	hit
testing	was	performed.

Prototype:

void	LogHit(INode	*nr,DWORD	dist,ulong	info,DWORD
infoExtra);

Remarks:
This	method	is	called	to	log	a	hit.	It	creates	a	new	CtrlHitRecord	object
using	the	data	passed	and	adds	it	to	the	hit	log.

Parameters:
INode	*nr
The	node	whose	gizmo	was	hit.
DWORD	dist
The	'distance'	of	the	hit.	What	the	distance	actually	represents	depends	on	the
rendering	level	of	the	viewport.	For	wireframe	modes,	it	refers	to	the	distance
in	the	screen	XY	plane	from	the	mouse	to	the	sub-object	component.	In	a
shaded	mode,	it	refers	to	the	Z	depth	of	the	sub-object	component.	In	both
cases,	smaller	values	indicate	that	the	sub-object	component	is	'closer'	to	the
mouse	cursor.
ulong	hitInfo;
A	general	unsigned	long	value.	Most	controllers	will	just	need	this	to	identity
the	sub-object	element.	The	meaning	of	this	value	(how	it	is	used	to	identify
the	element)	is	up	to	the	plug-in.
DWORD	infoExtra;
If	the	above	hitInfo	data	member	is	not	sufficient	to	describe	the	sub-object
element	this	data	member	may	be	used	as	well.

Class	PostLoadCallback
See	Also:	Class	ILoad,	References.
class	PostLoadCallback	:	public	InterfaceServer

Description:
This	is	the	callback	object	used	by	ILoad::RegisterPostLoadCallback().
The	proc()	method	will	be	called	when	everything	has	been	loaded	and	all	the
references	are	in	place.	It	is	assumed	that	if	the	callback	needs	to	be	deleted,	the
proc()	method	will	do	it.

Methods:

Prototype:
virtual	void	proc(ILoad	*iload)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	will	be	called	when	loading	is	complete.

Parameters:
ILoad	*iload
This	class	provides	methods	to	load	data	from	disk.

Prototype:
virtual	int	Priority();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	determines	the	order	that	the	various	registered	callbacks
execute.	This	method	is	overridden,	for	example,	by	the	ParmBlock2
PostLoadCallbacks	to	return	1	so	it	can	execute	before	the	others.

Return	Value:
The	allowable	return	values	are	0	to	10,	with	5	being	the	default.	0	is	reserved
for	ParamBlock2PLCB	and	ParamBlockPLCB..

Default	Implementation:
{	return	5;	}

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.
This	is	reserved	for	future	use.

Parameters:
int	cmd
The	command	to	execute.
ULONG	arg1=0
Optional	argument	1	(defined	uniquely	for	each	cmd).
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value	(defined	uniquely	for	each	cmd).

Default	Implementation:
{	return	0;	}

Class	ClassDirectory
See	Also:	Class	DllDir,	Class	SubClassList,	Class	Class_ID,	Class	ClassDesc.
class	ClassDirectory

Description:
This	class	is	available	in	release	2.0	and	later	only.
It	provides	a	table	of	SubClassList	objects,	one	for	each	pluggable	super	class.
Methods	are	provided	for	accessing	specific	sub	class	lists	by	specifying	a	super
class	ID,	and	retrieving	the	class	descriptors	or	class	entries	of	the	classes	in	the
lists.
All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
int	Count();

Remarks:
Returns	the	number	of	class	lists	in	the	class	directory.

Prototype:
SubClassList*	GetClassList(SClass_ID	superClassID);	

Remarks:
Returns	a	pointer	to	the	list	of	sub-classes	derived	from	the	specified	super
class	ID.

Parameters:
SClass_ID	superClassID
The	super	class	ID	whose	list	of	sub-classes	are	to	be	returned.

Prototype:
ClassDesc*	FindClass(SClass_ID	superClassID,	Class_ID
subClassID);

Remarks:
Returns	a	pointer	to	the	class	descriptor	for	the	class	whose	super	class	ID	and
class	ID	are	passed.

Parameters:
SClass_ID	superClassID
The	super	class	ID	which	specifies	which	sub	class	list	to	search.
Class_ID	subClassID
The	class	ID	of	the	class	to	find.

Prototype:
ClassEntry	*FindClassEntry(SClass_ID	superClassID,	Class_ID
subClassID);

Remarks:
Returns	a	pointer	to	the	class	entry	for	the	class	whose	super	class	ID	and	class
ID	are	passed.

Parameters:
SClass_ID	superClassID
The	super	class	ID	which	specifies	which	sub	class	list	to	search.
Class_ID	subClassID
The	class	ID	of	the	class	to	find.

Prototype:
void	AddSuperClass(SClass_ID	superClassID);

Remarks:
This	method	is	used	internally	only	to	add	a	new	Super	Class	ID	to	the	list
maintained	by	this	class.
Important	Note:	It	is	illegal	to	create	your	own	Super	Class	of	persistent
objects	in	3ds	max.	3ds	max	will	crash	if	a	scene	is	saved	and	later	loaded	into
a	system	that	doesn't	have	a	plug-in	added	Super	Class.	The	problem	is	that
3ds	max	needs	a	stand-in	class	for	each	'plug-able'	Super	Class	and	if	a	plug-in
is	loaded	that	requires	(but	doesn't	have)	a	stand-in,	an	assertion	is	fired.
The	only	legal	Super	Classes	that	you	can	derive	your	plug-in	from	are	listed
List	of	Super	Class	IDs.

Prototype:
int	AddClass(ClassDesc	*cdesc,	int	dllNum,	int	index);

Remarks:
This	method	is	used	internally	to	add	a	class	descriptor	to	the	list	maintained
by	this	class.

Operators:

Prototype:
SubClassList&	operator[](int	i){	return(*cl[i]);}

Remarks:
Returns	a	reference	to	the	'i-th'	sub	class	list.

Parameters:
int	i
Specifies	which	sub	class	list	to	return	a	reference	to.	This	value	is	between	0
and	Count()-1.

Class	PickObjectProc
See	Also:	Class	IMtlParams,	Class	INode.
class	PickObjectProc

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	is	the	callback	object	passed	to	IMtlParams::SetPickMode().	It	gets	set
so	the	user	can	pick	objects	in	the	scene.	Its	methods	allow	for	filtering	the
picks,	changing	cursors	over	valid	hits,	and	allowing	multiple	picks.
All	methods	of	this	class	are	implemented	by	the	plug-in.

Methods:

Prototype:
virtual	BOOL	Pick(INode	*node)=0;

Remarks:
This	method	is	called	when	the	user	picks	something.

Parameters:
INode	*node
This	is	the	node	that	was	selected.

Return	Value:
Return	TRUE	to	end	the	pick	mode;	FALSE	to	ignore	the	pick	and	to	continue
to	allow	the	user	to	pick.

Prototype:
virtual	BOOL	Filter(INode	*node)=0;

Remarks:
This	method	is	called	to	allow	the	callback	to	filter	hits.	It	should	return	TRUE
if	this	is	an	acceptable	hit;	FALSE	otherwise.

Parameters:
INode	*node
This	is	the	node	that	was	selected.

Prototype:
virtual	void	EnterMode();

Remarks:
This	method	is	called	when	the	pick	mode	has	been	entered.	The	developer
may	provide	any	pre-processing	here.

Default	Implementation:
{}

Prototype:
virtual	void	ExitMode();

Remarks:
This	method	is	called	when	the	pick	mode	has	been	exited.	The	developer	may
provide	any	post-processing	here.

Default	Implementation:
{}

Prototype:
virtual	HCURSOR	GetDefCursor();

Remarks:
This	method	is	called	to	get	the	default	(non-hit)	cursor	to	use.

Return	Value:
The	handle	of	the	non-pickable	object	cursor	or	NULL	if	the	default	cursor
should	be	used.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	HCURSOR	GetHitCursor();

Remarks:
This	method	is	called	to	get	the	pickable	object	cursor	to	use.

Return	Value:
The	handle	of	the	pickable	object	cursor	or	NULL	if	the	default	cursor	should

be	used.
Default	Implementation:
{return	NULL;}

Prototype:
virtual	BOOL	AllowMultiSelect();

Remarks:
This	method	determines	if	multiple	objects	can	be	picked.	Returning	TRUE
allows	the	user	to	pick	more	than	one	thing.	In	this	case	the	Pick()	method
may	be	called	more	than	once.

Default	Implementation:
{return	FALSE;}

Class	LayerProperty
See	Also:	Class	ReferenceTarget,	Class	ILayerManager.
class	LayerProperty	:	public	ReferenceTarget

Description:
This	class	is	available	in	release	3.0	and	later	only.
The	methods	of	this	class	are	currently	unused	and	reserved	for	internal	use	as	of
release	3.0.
class	LayerProperty	:	public	ReferenceTarget

Methods:
public:

Prototype:
LayerProperty();

Remarks:
Constructor.
This	will	set	the	layer	ID	to	-1	and	an	empty	name	string.

Default	Implementation:
{	}

Prototype:
LayerProperty(const	TSTR	&	name,	int	id);

Remarks:
Constructor.
This	will	initialize	the	layer	property	with	the	name	and	ID	of	the	property.

Default	Implementation:
{	}

Prototype:
virtual	~LayerProperty();

Remarks:

Destructor.
Default	Implementation:
{	}

Prototype:
virtual	void	SetProperty(const	int	d)	=	0;

Remarks:
This	method	allows	you	to	set	the	integer	property.

Parameters:
const	int	d
The	property	to	set.

Prototype:
virtual	void	SetProperty(const	float	d)	=	0;

Remarks:
This	method	allows	you	to	set	the	floating	point	property.

Parameters:
const	float	d
The	property	to	set.

Prototype:
virtual	void	SetProperty(const	Point3	&	d)	=	0;

Remarks:
This	method	allows	you	to	set	the	Point3	property.

Parameters:
const	Point3	&	d
The	property	to	set.

Prototype:
virtual	void	SetProperty(const	TSTR	&	d)	=	0;

Remarks:

This	method	allows	you	to	set	the	string	property.
Parameters:
const	TSTR	&	d
The	property	to	set.

Prototype:
virtual	void	SetProperty(void	*	d)	=	0;

Remarks:
This	method	allows	you	to	set	the	property.

Parameters:
void	*	d
A	pointer	to	the	property	data	to	set.

Prototype:
virtual	bool	GetProperty(int	&	i)	const	=	0;

Remarks:
This	method	returns	the	layer	property.

Parameters:
int	&	i
The	property	data.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	bool	GetProperty(float	&	f)	const	=	0;

Remarks:
This	method	returns	the	layer	property.

Parameters:
float	&	f
The	property	data.

Return	Value:

TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	bool	GetProperty(Point3	&	p)	const	=	0;

Remarks:
This	method	returns	the	layer	property.

Parameters:
Point3	&	p
The	property	data.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	bool	GetProperty(TSTR	&	n)	const	=	0;

Remarks:
This	method	returns	the	layer	property.

Parameters:
TSTR	&	n
The	property	data.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	bool	GetProperty(void	*	v)	const	=	0;

Remarks:
This	method	returns	the	layer	property.

Parameters:
void	*	v
The	property	data.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
int	GetID()	const;

Remarks:
This	method	returns	the	property	ID.

Prototype:
void	SetID(int	id);

Remarks:
This	method	allows	you	to	set	the	property	ID.

Parameters:
int	id
The	ID	to	set.

Prototype:
TSTR	GetName()	const;

Remarks:
This	method	returns	the	property	name.

Prototype:
void	SetName(const	TSTR	&	name);

Remarks:
This	method	allows	you	to	set	the	property	name.

Parameters:
const	TSTR	&	name
The	property	name	to	set.

Class	GenericNamedSelSetList
See	Also:	Class	BitArray.

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	is	a	tool	for	manipulating	lists	of	named	selection	sets.	This	class	is
used	by	modifiers	such	as	the	edit	mesh,	mesh	select,	spline	select	and	edit
patch.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
Tab<TSTR*>	names;
A	table	of	names,	one	for	each	selection	set.
Tab<BitArray*>	sets;
The	bit	array	pointers	for	the	selection	sets.
Tab<DWORD>	ids;
A	table	of	Ids,	one	for	each	selection	set.

Methods:
public:

Prototype:
~GenericNamedSelSetList();

Remarks:
Destructor.	The	names	and	sets	are	deleted.

Prototype:
BitArray	*GetSet(TSTR	name);

Remarks:
Returns	a	pointer	to	the	bit	array	corresponding	to	the	specified	name.	If	the
set	is	not	found	NULL	is	returned.

Parameters:
TSTR	name

The	name	of	the	selection	set	to	retrieve.

Prototype:
BitArray	*GetSet(DWORD	id);

Remarks:
Returns	a	poniter	to	the	bit	array	corresponding	to	the	specified	ID.	If	the	set	is
not	found	NULL	is	returned.

Parameters:
DWORD	id
The	id	of	the	selection	set	to	retrieve.

Prototype:
BitArray	*GetSetByIndex(int	index);

Remarks:
Returns	a	pointer	to	the	bit	array	corresponding	to	the	specified	index	in	the
list.	If	the	set	is	not	found	NULL	is	returned.

Parameters:
int	index
The	zero	based	index	of	the	selection	set	to	retrieve	(>=	0	and	<	sets.Count()).

Prototype:
int	Count();

Remarks:
Returns	the	number	of	selection	sets.

Prototype:
void	AppendSet(BitArray	&nset,	DWORD	id=0,	TSTR
name=_T(""));

Remarks:
Appends	the	named	selection	set	data	to	the	list	of	sets	maintained	by	this
class.

Parameters:

BitArray	&nset
The	selection	set	data	to	append.
DWORD	id=0
An	ID	for	the	selection	set.
TSTR	name=_T("")
The	name	for	the	selection	set.

Prototype:
void	InsertSet(int	pos,	BitArray	&nset,	DWORD	id=0,	TSTR
&name=TSTR(""));

Remarks:
Inserts	the	named	selection	set	data	into	the	list	of	sets	maintained	by	this
class.

Parameters:
int	pos
The	position	in	the	list	where	this	named	selection	set	should	be	inserted.	If
pos	>=	Count(),	AppendSet()	is	automatically	used	instead.
BitArray	&nset
The	selection	set	data	to	insert.
DWORD	id=0
An	ID	for	the	selection	set.
TSTR	&name=TSTR("")
The	name	for	the	selection	set.

Prototype:
int	InsertSet(BitArray	&nset,DWORD	id=0,TSTR
&name=TSTR(""));

Remarks:
This	method	is	similar	to	InsertSet()	above,	however	instead	of	accepting	an
explicit	location	this	method	inserts	the	new	set	alphabetically	in	the	list.	(Of
course,	this	requires	an	alphabetized	list	to	work	properly,	although	there's	no
problem	if	the	list	is	not	alphabetized.)

Parameters:

BitArray	&nset
The	selection	set	data	to	insert.
DWORD	id=0
An	ID	for	the	selection	set.
TSTR	&name=TSTR("")
The	name	for	the	selection	set.

Return	Value:
The	position	where	the	set	was	inserted.

Prototype:
BOOL	RemoveSet(TSTR	name);

Remarks:
Removes	the	selection	set	whose	name	is	passed.

Parameters:
TSTR	name
The	name	of	the	selection	set	to	remove.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	RemoveSet(DWORD	id);

Remarks:
Removes	the	selection	set	whose	ID	is	passed.

Parameters:
DWORD	id
The	id	of	the	selection	set	to	retrieve.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
void	SetSize(int	size);

Remarks:

Resizes	the	selectin	set	bit	arrays	to	the	specified	number	of	bits.	The	old
selection	set	data	is	preserved.

Parameters:
int	size
The	new	size	for	the	bit	arrays	in	bits.

Prototype:
void	DeleteSetElements(BitArray	&set,int	m=1);

Remarks:
This	method	is	not	currently	used.	What	it	does	however,	is	go	through	all	of
the	named	selection	sets	and	deletes	array	elements	according	to	which	bits
are	set	in	the	given	bit	array.	It	could	be	used	to	keep	the	named	selection	set
bit	arrays	in	line	with	the	vertex	array	(for	example).

Prototype:
void	DeleteSet(int	i);

Remarks:
Deletes	the	named	selection	set	whose	index	is	passed.

Parameters:
int	i
The	zero	based	index	of	the	set	to	delete	(>=0	and	<	sets.Count()).

Prototype:
BOOL	RenameSet(TSTR	&oldName,	TSTR	&newName);

Remarks:
This	locates	the	named	selection	set	oldName	and	renames	it	to	newName.

Parameters:
TSTR	&oldName
The	old	name	of	the	set.
TSTR	&newName
The	new	name	for	the	set.

Return	Value:

TRUE	if	the	operation	succeeded;	otherwise	FALSE.	It	will	only	fail	if	the
oldName	set	is	not	present.

Prototype:
void	Alphabetize();

Remarks:
Alphabetizes	the	list	of	names.

Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
This	method	is	used	internally	to	load	the	selection	sets	from	disk.

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
This	method	is	used	internally	to	save	the	selection	sets	to	disk.

Prototype:
BitArray	&operator[](int	i);

Remarks:
Returns	a	reference	to	the	'i-th'	selection	set.

Parameters:
int	i
The	zero	based	index	of	the	selection	set	to	return.

Prototype:
GenericNamedSelSetList&	operator=(GenericNamedSelSetList&
from);

Remarks:
Assignment	operator.	This	list	of	sets	is	emptied	and	then	copied	from	the	list
passed.

Parameters:
GenericNamedSelSetList&	from
The	list	of	selection	sets	to	copy.

List	of	Parameter	Types
See	Also:	Class	IParamBlock,	Class	ParamBlockDesc,	Class
ParamBlockDescID.
The	Parameter	Type	-	One	of	the	following	types	may	be	used:
	TYPE_INT	-	Integers	values.
	TYPE_FLOAT	-	Floating	point	value.
	TYPE_POINT3	-	Point	values.
	TYPE_RGBA	-	Colors	values	-	Red,	Green,	Blue	and	Alpha.
	TYPE_BOOL	-	Boolean	values.
	TYPE_MATRIX3	-	A	Matrix3	data	type	value.	This	type	is	available	in
4.0	and	later	only.
	TYPE_MATRIX3_TAB	-	A	table	of	Matrix3	data	type	values.	is
available	in	4.0	and	later	only.

Class	ParamBlockDesc2
See	Also:	Class	ClassDesc2,	Class	ParamMap2UserDlg,	Class	Mtl,	Class
Texmap,	Class	PBBitmap,	Class	PBAccessor,	Class	INode,	Class	Color,	Class
Point3,	Class	ReferenceTarget,	Structure	ParamDef,	List	of	ParamType	Choice,
List	of	ParamTags	Choices.
class	ParamBlockDesc2	:	public	BaseInterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
In	the	Parameter	Block2	scheme	there	is	one	ParamBlockDesc2	object	per	entire
Parameter	Block2.
This	class	is	used	when	adding	a	paramblock	descriptor	for	each	parameter
block2.	This	is	usually	done	in	the	form	of	a	static	instance	of	this	class.	The
constructor	takes	a	number	of	fixed,	block-related	arguments	and	then	a	varargs-
based	variable	list	of	arguments	that	define	the	block	and	its	parameters.
All	methods	of	this	class	are	implemented	by	the	System.

Method	/	Specification	Groups:
The	hyperlinks	below	take	you	to	the	start	of	groups	of	related	methods	or
constructor	vararg	specifications	within	the	class:

Constructors
<required_block_specs>
<auto_construct_block_refno>
<auto_ui_parammap_specs>
<required_param_specs>
<optional_tagged_param_specs>

Data	Members:
public:
ParamDef*	paramdefs;
Array	of	parameter	definitions.
ClassDesc2*	cd;
This	is	the	class	descriptor	of	the	class	which	owns	this	parameter	block
descriptor.

TCHAR*	int_name;
This	is	the	internal	name	of	this	parameter	descriptor.	This	name	is	not
localized.	Internal	names	are	meant	to	be	parsable	as	identifiers.	As	such	they
should	begin	with	an	alpha	character,	have	only	alphanumerics,	and	have	no
spaces,	punctuations,	etc.	The	convention	for	multi-word	names	is	to	use
studly-caps,	eg,	paintRadius.
int	local_name;
This	is	the	string	table	resource	ID	for	the	localized	(sub-anim)	name.
BlockID	ID;
The	permanent	parameter	block	ID.
USHORT	count;
The	number	of	parameters	in	block.
ULONG	version;
This	is	the	parameter	block	version.
BYTE	flags;
One	or	more	of	the	following	values	(see	the	constructor	argument	flags
below	for	details):

P_CLASS_PARAMS
P_AUTO_CONSTRUCT
P_AUTO_UI
P_USE_PARAMS
P_INCLUDE_PARAMS
P_SCRIPTED_CLASS
P_TEMPORARY
P_HASCATEGORY
P_CALLSETS_ON_LOAD
P_TEMPLATE_UI

Note:	The	following	data	members	are	optional	and	used	by	the	auto-construct
code:
int	ref_no;
The	reference	number	for	the	auto-constructed	parameter	block.
int	dlg_template;

The	rollout	dialog	template	resource.
int	title;
String	table	resource	ID	of	the	rollout	title.
int	test_flags;
The	ClassDesc2::Begin/EndEditParams()	test	flags.	See	the	flag_mask
parameter	description	below	for	details.
int	rollup_flags;
This	is	used	to	control	rollup	creation.	See	the	rollup_flags	parameter
description	below	for	details.
ParamMap2UserDlgProc*	dlgProc;
Points	to	the	parameter	map	user	dialog	proc	(if	used).
MSPluginClass*	pc;
If	this	ParamBlockDesc2	belongs	to	a	scripted	plug-in	this	points	to	the
scripted	class	(or	NULL	otherwise).	See	MAXScript	SDK.
Value*	rollout;
If	this	ParamBlockDesc2	belongs	to	a	scripted	plug-in	this	points	to	rollout
name.	See	MAXScript	SDK.
IParamBlock2*	class_params;
Pointer	to	class	parameter	block	if	the	CLASS_PARAM	flag	is	specified	for
the	block.	See	the	flags	descriptions	below	for	details.

Prototype:
void	AddParam(ParamID	id,	...);

Remarks:
This	method	is	used	for	building	descriptors	incrementally.	It	adds	a	parameter
to	an	existing	descriptor.
Note	that	you	must	not	modify	a	descriptor	with	this	function	once	it	has	been
used	to	construct	a	ParamBlock2	(for	instance	in	object	creation);	there	is	no
version	control	in	place	and	crashes	or	unpredictable	results	can	occur.

Parameters:
ParamID	id,	...
This	function	takes	a	single	parameter	definition	in	exactly	the	same	varargs
format	as	the	ParamBlockDesc2	constructor.	See	Constructors.

Prototype:
void	ReplaceParam(ParamID	id,	...);

Remarks:
This	method	is	used	for	modifying	a	descriptors	incrementally.	It	overrides	an
existing	parameter	definition	of	same	ID	passed.	Note:	You	must	not	modify	a
descriptor	with	this	method	once	it	has	been	used	to	construct	a	ParamBlock2.

Parameters:
ParamID	id,	...
This	function	takes	a	single	parameter	definition	in	exactly	the	same	varargs
format	as	the	ParamBlockDesc2	constructor.	See	Constructors.

Prototype:
void	DeleteParam(ParamID	id);

Remarks:
Deletes	the	specified	parameter	from	the	descriptor.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter	to	delete.

Prototype:
void	ParamOption(ParamID	id,	int	option_tag,	...);

Remarks:
This	method	is	used	for	modifying	a	descriptor	incrementally.	It	alters	a
parameter	definition	optional	information	tag	of	an	existing	descriptor.	Note:
You	must	not	modify	a	descriptor	with	this	method	once	it	has	been	used	to
construct	a	ParamBlock2.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	option_tag,	...
This	method	takes	a	single	tagged	option	in	the	same	varargs	format	as	the
tagged	parameter	options	in	the	ParamBlockDesc2	constructor.	See
<optional_tagged_param_specs>

Prototype:
void	SetClassDesc(ClassDesc2*	cd);

Remarks:
This	method	sets	the	ClassDesc2	pointer	maintained	by	this	class.	You	can
only	call	this	method	once	on	a	descriptor	and	then	only	if	it	has	been
constructed	initially	with	a	NULL	cd.	See	the	notes	in	the	constructor.

Parameters:
ClassDesc2*	cd
Points	to	the	ClassDesc	to	set.

Constructors
Prototype:
ParamBlockDesc2(BlockID	ID,	TCHAR*	int_name,	int
local_name,	ClassDesc2*	cd,	BYTE	flags,	...);

Remarks:
This	constructor	takes	a	number	of	fixed,	block-related	arguments	and	then	a
varargs-based	variable	list	of	arguments	that	define	the	block	and	its
parameters.
The	format	of	the	definitions	in	this	shown	below,	but	basically	is	in	the	form
of	a	sequence	of	fixed	specs	followed	by	a	variable	number	of	tagged	optional
specs	for	each	parameter.

Parameters:
The	generic	form	for	the	parameters	of	this	constructor	is	shown	below:
ParamBlockDesc2(<required_block_specs>,
[<auto_construct_block_refno>,]

[<auto_ui_parammap_specs>,]
{<required_param_specs>,

{<optional_tagged_param_specs>,}
end

,}
end);

That	is:

1.	Required	block	specs	&	per-block	flags,	followed	by,	
2.	Optional	owning	object	reference	number	for	the	block	if	auto-construct,
followed	by,	
3.	Optional	parameter	map	specs	if	auto-ui,	followed	by,	
4.	Zero	or	more	parameter	specs,	comprising:	
a.	Required	parameter	specs,	followed	by,	
b.	Zero	or	more	optional	parameter	specs,	each	with	is	own	leading	tag,		
the	list	terminated	by	an	'end'	tag,	followed	by,	
5.	an	'end'	tag	
	
<required_block_spec>
The	following	required	first	arguments	to	the	constructor	form	the
"required_block_spec"	and	"per	block	flags":
BlockID	ID
The	permanent	block	ID	for	the	parameter	block2.
TCHAR*	int_name
The	internal	name	string.	This	name	is	not	localized.	Internal	names	are	meant
to	be	parsable	as	identifiers.	As	such	they	should	begin	with	an	alpha
character,	have	only	alphanumerics,	and	have	no	spaces,	punctuations,	etc.
The	convention	for	multi-word	names	is	to	use	studly-caps,	eg,	paintRadius.
int	local_name
The	resource	ID	of	the	localized	(sub-anim)	name	string.
ClassDesc2*	cd
Points	to	the	class	descriptor2	of	the	owning	class.	This	is	used	to	add	this
descriptor	to	the	ClassDesc2's	table	of	block	descriptors	for	the	class.	Note:
This	value	may	be	passed	as	NULL	for	situations	where	the	blocks	owning
ClassDesc2	is	not	available	for	static	initializations	(such	as	in	a	separate	file).
Before	using	the	descriptor	for	any	block	construction,	the	ClassDesc2*	must
be	initialized	with	the	method:
void	ParamBlockDesc2::SetClassDesc(ClassDesc2*	cd);

You	can	only	call	this	method	once	on	a	descriptor	and	then	only	if	it	has	been
constructed	initially	with	a	NULL	cd.
BYTE	flags
Per	block/descriptor	flags.	One	or	more	of	the	following	values	(they	may	be
added	together	as	in	P_AUTO_CONSTRUCT	+	P_AUTO_UI).

P_CLASS_PARAMS
Indicates	this	block	holds	class-level	parameters	which	are	attached	to	the
ClassDesc2	for	the	plug-in.	Such	class	level	parameters	are	shared	by
each	instance	of	the	class.	The	block	is	automatically	allocated	by	and
stored	in	the	descriptor.	You	get	at	its	parameters	via
GetValue()/SetValue()	calls	on	the	descriptor.
P_AUTO_CONSTRUCT
Indicates	the	parameter	block2	will	be	constructed	and	referenced
automatically	to	its	owner	in	the	call	to
ClassDesc2::MakeAutoParamBlocks().	If	this	flag	is	set,	the
parameter	block's	reference	number	in	the	owning	object	should	be	given
immediately	following	the	flag	word	in	the	descriptor	constructor.	See
<auto_construct_block_refno>.
P_AUTO_UI
Indicates	this	block	supports	automatic	UI	rollout	management	in	calls	to
ClassDesc2::BeginEditParams(),
ClassDesc2::EndEditParams(),ClassDesc2::CreateParamDlg(),
ClassDesc2::CreateParamDialog(),	etc.
If	set,	the	<auto_ui_parammap_specs>	must	be	supplied	in	the
descriptor	constructor.
P_HASCATEGORY
This	parameter	is	available	in	release	4.0	and	later	only.
The	category	field	that	can	be	used	to	order	rollups	(see	Class
IRollupWindow)	to	various	Parameter	Map	creation	methods.	In	order	to
use	the	category	field	with	AutoUI,	this	flag	has	to	be	declared	together
with	P_AUTO_UI	in	the	ParamBlockDesc2.	An	additional	int,	that
describes	the	category	has	to	be	appended	to	the	parameter	list	after	the
ParamMap2UserDlgProc*	proc	parameter.	The	same	thing	is	true
for	multimaps.	The	P_HASCATEGORY	field	can	only	be	declared	for
the	whole	pblock.	That	means,	that	every	multimap	has	to	have	the
category	parameter.	To	use	the	standard	value
ROLLUP_CAT_STANDARD	can	be	used.	In	the	example	below
4900	is	used	as	the	integer	describing	the	category;
static	ParamBlockDesc2	std2_shader_blk	(std2_shader,

_T("shaderParameters"),	0,	&stdmtl2CD,
P_AUTO_CONSTRUCT	+	P_AUTO_UI	+

P_HASCATEGORY,	SHADER_PB_REF,
//rollout
IDD_DMTL_SHADER4,	IDS_KE_SHADER,	0,	0,

&shaderDlgProc,	4900,
//	params
std2_shader_type,	_T("shaderType"),	TYPE_INT,	0,

IDS_JW_SHADERTYPE,
	
P_USE_PARAMS
Indicates	that	this	block	shares	(exactly)	the	paramdefs	from	another
descriptor.	This	is	used	to	specify	an	already	established
ParamBlockDesc2	instance	whose	parameters	you	wish	to	share.	This
effectively	gives	the	referring	descriptor	a	pointer	to	the	established
descriptors	'paramdefs'	array.	In	this	case	no	other	parameters	definition
can	be	supplied	to	referencing	descriptors	constructor.	See	the	sample
code	below.
P_INCLUDE_PARAMS
Indicates	that	this	block	loads	in	a	copy	the	paramdefs	from	another
descriptor.	This	is	used	to	take	a	copy	of	an	already	established
descriptor's	parameters,	to	which	you	can	add	extra	parameter	definitions
in	the	referencing	descriptors	constructor.	This	provides	a	kind	of	poor-
man's	factoring	of	common	parameters,	but	note	it	is	a	copy;	any
subsequent	changes	to	the	establised	descriptor's	parameter	definitions	are
not	reflected	in	the	referencing	descriptor.
You	give	the	pointer	to	the	ParamBlockDesc2	supplying	the	existing
parameter	definitions	following	the	other	optional	block-level	parameters:
following	the	flag	word	is	the	block's	reference	number	if
P_AUTO_CONSTRUCT	is	specified,	then	the	rollout	dialog	template
info	if	P_AUTO_UI	is	specified,	then	the	pointer	to	the	sourcing
descriptor	if	P_USE_PARAMS	or	P_INCLUDE_PARAMS	is
specified.	For	example:
static	ParamBlockDesc2	metal2_param_blk	(shdr_params,

_T("shaderParameters"),	0,	&metalCD,
P_AUTO_CONSTRUCT	+	P_USE_PARAMS,
	//	pblock	refno
	0,
	//	use	params	from	existing	descriptor
	&const_param_blk
);

P_SCRIPTED_CLASS
This	is	for	internal	use	only.	It	means	that	the	descriptor	was	defined	on
the	fly	as	a	side-effect	of	writing	a	scripted	plug-in.
P_TEMPORARY
This	is	for	internal	use	only.
P_TEMPLATE_UI
This	indicates	that	dialog	templates	will	be	provided	or	constructed.
P_CALLSETS_ON_LOAD
Signals	that	this	block	should	have	CallSets()	called	on	it	during	post-
load	processing	on	scene	loads	&	merges.	This	effectively	ensures	that	all
PBAccessor::Set()	methods	will	be	called	after	the	flagged	pblock2	is
fully	loaded,	so	that	they	can	track	loaded	param	values,	for	example.	This
allows	a	single	point	of	param	value	tracking	in	the	PBAccessor::Set()
and	precludes	the	need	for	individual	objects	to	implement	PLCBs	to	do
this	tracking	themselves.
P_MULTIMAP
This	flag	is	available	in	release	4.0	and	later	only.
Indicates	that	the	block	being	described	will	have	more	than	one
rollup/map.	If	you	specify	this	flag,	the	constructor	interprets	the	rollup
template	and	parameter	definitions	arguments	in	a	modified	syntax.	Here's
a	sample	rework	of	the	main	pblock	in	GeoSphere	into	two	rollups:
	
enum	{	geo_map_1,	geo_map_2	};		//	enum	IDs	for	the	2
parammaps
	

static	ParamBlockDesc2	geo_param_blk	(geo_params,
_T("GeosphereParameters"),	0,	&gsphereDesc,
P_AUTO_CONSTRUCT	+
P_AUTO_UI	+	P_MULTIMAP,	PBLOCK_REF_NO,
//	map	rollups
2,
geo_map_1,	IDD_GSPHERE_1,	IDS_PARAMETERS_1,	0,	0,
NULL,
geo_map_2,	IDD_GSPHERE_2,	IDS_PARAMETERS_2,	0,	0,
NULL,
//	params
geo_hemi,	_T("hemisphere"),	TYPE_BOOL,
P_ANIMATABLE,	IDS_HEMI,
p_default,	FALSE,
		p_ui,	geo_map_2,	TYPE_SINGLECHEKBOX,	IDC_HEMI,
end,
geo_segs,	_T("segs"),	TYPE_INT,	P_ANIMATABLE,
IDS_RB_SEGS,
p_default,	4,
p_range,	MIN_SEGMENTS,	MAX_SEGMENTS,
p_ui,	geo_map_1,	TYPE_SPINNER,	EDITTYPE_INT,
IDC_SEGMENTS,	IDC_SEGSPINNER,	0.05f,
end,
geo_radius,	_T("radius"),	TYPE_FLOAT,	P_ANIMATABLE	+
P_RESET_DEFAULT,	IDS_RB_RADIUS,
p_default,	0.0,
p_ms_default,	25.0,
p_range,	MIN_RADIUS,	MAX_RADIUS,
p_ui,	geo_map_1,	TYPE_SPINNER,	EDITTYPE_UNIVERSE,
IDC_RADIUS,	IDC_RADSPINNER,	1.0,
p_uix,	geo_map_2,

end,
...
	
First,	there	is	an	enum	to	provide	IDs	for	the	two	maps	in	the	main	block,
geo_map_1	and	geo_map_2.	The	P_MULTIMAP	flag	is	added	to
the	block	flags	in	the	main	descriptor	constructor	arguments	to	indicate
multiple	pmaps	present.	If	P_AUTO_UI	is	specified,	the	usual	single
rollup	template	spec	is	replaced	by	a	count	(of	rollups)	followed	by	that
many	sets	of	rolup	specs,	each	beginning	with	the	associated	mapID.	The
auto	UI	mechanism	will	add	the	rollups	in	the	order	given	in	this	list.
In	the	parameter	definition	section,	the	only	change	is	to	the	p_ui	option,
which	now	requires	a	map	ID	before	the	rest	of	the	UI	specification	to	say
which	rollup/map	the	spec	relates	to.	In	this	case,	we've	put	the
hemisphere	checkbox	in	the	2nd	rollup	and	the	segs	and	radius	spinners	in
the	first.
There	is	also	a	new	option,	p_uix,	which	is	used	to	say	that	the	parameter
is	to	appear	in	more	than	one	rollup.	In	this	case,	the	radius	spinner	also
shows	up	in	the	2nd	rollup,	geo_map_2.	When	you	do	this,	all	the
controls	that	connect	to	this	parameter	are	ganged	together;	they	all
change	when	any	one	of	them	changes	and	all	show	keyframe	highlights
and	so	on.	The	current	limitations	on	this	are	that	the	type	of	UI	control
and	its	various	dialog	template	item	IDs	must	be	the	same	in	each	rollup
in	which	it	appears.

<auto_construct_block_refno>
If	P_AUTO_CONSTRUCT	is	specified	in	the	required	per	block	/	descriptor
flags	(BYTE	flags	above)	then	the	integer	reference	number	of	the	parameter
block2	in	the	plug-in	needs	to	be	specified:
int	ref_no
This	is	the	same	number	that	the	plug-in	would	use	to	get	and	set	the
parameter	block	referrence	in	GetReference()	and	SetReference().

<auto_ui_parammap_specs>
If	P_AUTO_UI	is	specified	in	the	required	per	block	/	descriptor	flags	(BYTE
flags	above)	then	the	following	arguments	to	the	constructor	are	required:
int	dialog_template_ID,	int	dialog_title_res_ID,	int	flag_mask,	int

rollup_flags,	ParamMap2UserDlgProc*	proc
Each	of	these	is	described	below:
int	dialog_template_ID
The	ID	of	the	dialog	template	(eg	IDD_something).
int	dialog_title_res_ID
The	string	table	resource	ID	for	the	title	of	the	dialog.
int	flag_mask
This	is	used	by	ClassDesc2::BeginEditParams()	and
ClassDesc2::EndEditParams()	to	determine	whether	the	ParamMap2
shold	be	created/deleted	on	this	call.	All	the	bits	in	the	supplied	mask	must
be	on	in	the	Begin/EndEditParams	flag	longword	for	the	action	to	take	place.
int	rollup_flags
This	flag	is	used	to	control	rollup	creation.	You	may	pass:
APPENDROLL_CLOSED
to	have	the	rollup	added	in	the	closed	(rolled	up)	state.	Otherwise	pass	0.
ParamMap2UserDlgProc*	proc
If	there	are	controls	in	the	dialog	that	require	special	processing	this	user
dialog	proc	can	be	implemented	to	process	them.	See	Class
ParamMap2UserDlgProc.	If	not	used	then	NULL	should	be	passed.

<required_param_specs>
The	required	parameter	spec	is	formatted	as	shown	below.	There	is	one	of	these
for	each	of	the	controls	managed	by	the	parameter	map.	They	are	followed	by	an
<optional_tagged_param_spec>.
ParamID	id,	TCHAR*	internal_name,	ParamType	type,	[int
table_size,]	int	flags,	int	local_name_res_ID,
Each	of	these	is	described	below:
ParamID	id
The	permanent,	position-independent	ID	for	the	parameter.
TCHAR*	internal_name
The	internal	name	for	the	parameter.
ParamType	type
The	type	of	parameter.	See	List	of	ParamType	Choices.

[int	table_size]
If	the	type	is	one	of	the	Tab<>	types,	you	need	to	supply	an	initial	table	size
which	can	be	0.
int	flags
The	per	parameter	flag	bits.	This	should	be	a	bitwise	OR	of	one	or	more	of
the	following:
P_ANIMATABLE
Indicates	the	parameter	is	animatable.
P_TRANSIENT
Indicates	the	parameter	should	not	be	saved	in	the	scene	file.	One	might
do	this,	for	example,	for	virtual	parameters	that	don't	actually	hold	data
but	reflect	data	held	elsewhere	in	the	object	(and	accessed	via	a
PBAccessor)	which	is	saved	explicitly	by	it.	This	might	save	file	space.	In
some	cases,	parameters	might	be	provided	that	are	derived	from	other
state	in	the	object	that	is	computed	each	time	you	load	the	object	and
made	available	say	as	a	help	to	script	authors.	In	these	cases	also,	you
might	decide	not	to	take	up	file	space.
P_NO_INIT
This	is	obsolete.
P_COMPUTED_NAME
Indicates	to	call	a	compute	name	function	to	get	a	dynamically-computed
name.	This	allows	a	plug-in	to	provide	a	dynamically-created	local	name
for	a	parameter	or	Tab<>	parameter	entry.	If	you	specify	this	parameter
flag,	you	also	need	to	suppy	a	p_accessor	PBAccessor	instance	pointer
that	has	the	GetLocalName()	method	implemented.
P_COMPUTED_DIM
Indicates	to	call	a	compute	dimension	function	to	get	a	dynamically-
computed	dimension.	See	the	optional_tagged_param_spec	p_dim.
P_RESET_DEFAULT
Indicates	to	not	make	creation	parameters	sticky,	rather	always	reset	to
default	values.
P_SUBANIM
Indicates	this	is	a	non-animatable	reference	target	parameter	to	be

published	as	a	sub-anim	(which	makes	it	visible	in	Track	View)
P_TV_SHOW_ALL
This	is	used	for	Tab<>	animatables,	and	indicates	to	show	all	entries	in
Track	View	even	if	no	controller	assigned.
P_NO_REF
For	reference	target	parameters,	this	indicates	to	not	maintain	the
reference	automatically	(rather	simply	keep	a	copy	of	the	pointer).
P_OWNERS_REF
Indicates	this	is	a	reference	target	parameter	owned	by	the	parameter
block's	owner	not	the	block	itself.	Make	sure	to	supply	the	owner's
reference	number	in	a	p_refno	specification.	If	neither	P_REF_NO	or
P_OWNERS_REF	is	set,	the	parameter	block	owns	and	maintains	the
reference.
P_SUBTEX
Indicates	a	texmap	parameter	is	kept	by	the	owner	using	the
MtlBase::xSubTexmap	methods.	Provide	the	integer	index	of	the	sub-
texmap	using	the	param	tag	p_subtexno.
You	would	use	this	flag	in	materials	or	texmaps	that	contain	other
texmaps	as	parameters,	in	which	these	'sub'	maps	are	not	stored	in	the
ParamBlock2	and	are	not	accessible	as	direct	references	on	the	parent
map	or	material,	but	are	accessible	via	the
MtlBase::GetSubTexmap()/SetSubTexmap()	protocol.
Specifying	this	P_SUBTEX	flag	signals	this	situation	and	looks	for	a
p_subtexno	parameter	option	to	give	the	sub-texmap	number	for	the	map.
For	example,	the	Standard	material	stores	all	its	maps	in	a	separate
structure	that	appears	as	a	single	reference	in	the	Standard	material.	In	this
case,	the	individual	texmaps	are	not	direct	references	on	the	material,	but
are	accessible	on	the	material	via	GetSubTexmap()/SetSubTexmap().
Note	that	P_OWNERS_REF	and	P_SUBTEX	are	both	primarly	intended
for	use	when	re-coding	existing	plug-ins	in	which	the	sub-maps	are
already	managed	by	the	owner	in	some	way.	If	you	are	implementing	a
new	plug-in,	you	should	just	let	the	ParamBlock2	host	them	for	you	and
then	you	don't	have	to	bother	with	either	of	these	flags.
P_CAN_CONVERT

Indicates	the	p_classID	validator	is	used	in	a	CanConvertoTo()	call,
rather	than	as	exact	classID	match.
P_VARIABLE_SIZE
Indicates	a	Tab<>	parameter	is	variable	in	size.	This	allows	scripted
changes.
P_NO_AUTO_LABELS
Disables	the	automatic	setting	of	button	text	for	texmaps,	materials,	files,
etc.	You	can	use	the	method	IParamMap2::SetText()	to	set	it	by	hand.
P_SHORT_LABELS
This	is	for	use	with	TYPE_TEXMAP,	TYPE_MTL	and
TYPE_BITMAP	parameters	that	are	associated	with	ParamMap2
picker	buttons.	If	you	specify	this	flag,	a	shortened	form	of	the	object
name	is	installed	in	the	picker	button	label.	For	texmaps	and	materials,	the
MtlBase::GetName()	rather	than	MtlBase::GetFullName()	is	used,
and	for	bitmaps	just	the	filename	rather	than	the	full	pathname	is	used.

int	local_name_res_ID
The	localized	name	for	the	parameter.	This	is	a	ID	for	the	resource	in	the
string	table.

<optional_tagged_param_specs>
There	may	be	zero	or	more	optional	tagged	parameter	specs,	each	with	its	own
leading	tag,	with	the	entire	list	terminated	by	an	'end'	tag.	This	list	of	tagged
arguments	has	the	following	form:
<tag>,	<optional_param_spec>,

For	the	possible	tags	and	the	specification	arguments	see	List	of	ParamTags
Choices.

Methods:
public:

Prototype:
USHORT	Count();

Remarks:
Returns	the	number	of	parameters	in	the	block.

Prototype:
DWORD	Version();

Remarks:
Returns	the	version	of	the	parameter	block.

Prototype:
int	IDtoIndex(ParamID	id);

Remarks:
Returns	the	index	into	the	parameter	definition	array	of	the	parameter	whose
ID	passed.

Parameters:
ParamID	id
The	permanent	parameter	ID.

Prototype:
ParamID	IndextoID(int	i);

Remarks:
Returns	the	permanent	parameter	ID	of	the	parameter	whose	index	is	passed.

Parameters:
int	i
The	zero	based	index	of	the	parameter	in	the	paramdefs	array.

Prototype:
ParamDef&	GetParamDef(ParamID	id);

Remarks:
This	method	is	used	for	accessing	a	parameter's	ParamDef	structure.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.

Prototype:

BOOL	SetValue(ParamID	id,	TimeValue	t,	float	v,	int
tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Sets	the	floating	point	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
float	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	SetValue(ParamID	id,	TimeValue	t,	int	v,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Sets	the	integer	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
int	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the

value	to	set.
Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	SetValue(ParamID	id,	TimeValue	t,	Point3&	v,	int
tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Sets	the	Point3	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
Point3&	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	SetValue(ParamID	id,	TimeValue	t,	Color&	v,	int
tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Sets	the	Color	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.

TimeValue	t
The	time	at	which	to	set	the	value.
Color&	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	SetValue(ParamID	id,	TimeValue	t,	TCHAR*	v,	int
tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Sets	the	string	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
TCHAR*	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	SetValue(ParamID	id,	TimeValue	t,	Mtl*	v,	int
tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Sets	the	Mtl*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
Mtl*v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	SetValue(ParamID	id,	TimeValue	t,	Texmap*	v,	int
tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Sets	the	Texmap*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
Texmap*	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	SetValue(ParamID	id,	TimeValue	t,	PBBitmap*	v,	int
tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Sets	the	PBBitmap*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
PBBitmap*	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	SetValue(ParamID	id,	TimeValue	t,	INode*	v,	int
tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Sets	the	INode*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t

The	time	at	which	to	set	the	value.
INode*	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	SetValue(ParamID	id,	TimeValue	t,	ReferenceTarget*	v,	int
tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Sets	the	ReferenceTarget*	value	of	the	specified	parameter	at	the	specified
time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
ReferenceTarget*v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	SetValue(ParamID	id,	TimeValue	t,	Matrix3&	v,	int
tabIndex=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	with	static	class	parameter	blocks	only.
Sets	the	Matrix3	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	set	the	value.
Matrix3&	v
The	value	to	set.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	set.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	GetValue(ParamID	id,	TimeValue	t,	float&	v,	Interval
&ivalid,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Retrieves	the	floating	point	value	of	the	specified	parameter	at	the	specified
time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
float&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved

parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	GetValue(ParamID	id,	TimeValue	t,	int&	v,	Interval
&ivalid,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Retrieves	the	integer	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
int&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	GetValue(ParamID	id,	TimeValue	t,	Point3&	v,	Interval
&ivalid,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Retrieves	the	Point3	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
Point3&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	GetValue(ParamID	id,	TimeValue	t,	Color&	v,	Interval
&ivalid,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Retrieves	the	Color	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
Color&	v
The	value	to	retrieve	is	returned	here.

Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	GetValue(ParamID	id,	TimeValue	t,	TCHAR*&	v,	Interval
&ivalid,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Retrieves	the	string	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
TCHAR*&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	GetValue(ParamID	id,	TimeValue	t,	Mtl*&	v,	Interval

&ivalid,	int	tabIndex=0);
Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Retrieves	the	Mtl*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
Mtl*&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	GetValue(ParamID	id,	TimeValue	t,	Texmap*&	v,	Interval
&ivalid,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Retrieves	the	Texmap*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
Texmap*&	v

The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	GetValue(ParamID	id,	TimeValue	t,	PBBitmap*&	v,
Interval	&ivalid,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Retrieves	the	PBBitmap*	value	of	the	specified	parameter	at	the	specified
time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
PBBitmap*&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	GetValue(ParamID	id,	TimeValue	t,	INode*&	v,	Interval
&ivalid,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Retrieves	the	INode*	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
INode*&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	GetValue(ParamID	id,	TimeValue	t,	ReferenceTarget*&	v,
Interval	&ivalid,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Retrieves	the	ReferenceTarget*	value	of	the	specified	parameter	at	the
specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.

TimeValue	t
The	time	at	which	to	get	the	value.
ReferenceTarget*&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
BOOL	GetValue(ParamID	id,	TimeValue	t,	Matrix3&	v,	Interval
&ivalid,	int	tabIndex=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	with	static	class	parameter	blocks	only.
Retrieves	the	Matrix3	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t
The	time	at	which	to	get	the	value.
Matrix3&	v
The	value	to	retrieve	is	returned	here.
Interval	&ivalid
This	is	the	validity	interval	which	is	updated	by	the	validity	of	the	retrieved
parameter.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
TRUE	on	success;	otherwise	FALSE.

Prototype:
Color	GetColor(ParamID	id,	TimeValue	t=0,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Returns	the	Color	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
The	Color	value	of	the	parameter.

Prototype:
Point3	GetPoint3(ParamID	id,	TimeValue	t=0,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Retrieves	the	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
The	Point3	value	of	the	parameter

Prototype:
int	GetInt(ParamID	id,	TimeValue	t=0,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Returns	the	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
The	integer	value	of	the	parameter.

Prototype:
float	GetFloat(ParamID	id,	TimeValue	t=0,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Returns	the	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
The	floating	point	value	of	the	parameter.

Prototype:
TimeValue	GetTimeValue(ParamID	id,	TimeValue	t=0,	int
tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Returns	the	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
The	TimeValue	value	of	the	parameter.

Prototype:
TCHAR*	GetStr(ParamID	id,	TimeValue	t=0,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Returns	the	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the

value	to	get.
Return	Value:
The	TimeValue	value	of	the	parameter.

Prototype:
Mtl*	GetMtl(ParamID	id,	TimeValue	t=0,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Returns	the	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
A	pointer	to	the	Mtl	object.

Prototype:
Texmap*	GetTexmap(ParamID	id,	TimeValue	t=0,	int
tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Returns	the	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0

If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
A	pointer	to	the	Texmap.

Prototype:
PBBitmap*	GetBitmap(ParamID	id,	TimeValue	t=0,	int
tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Returns	the	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
A	pointer	to	the	PBBitmap	object.

Prototype:
INode*	GetINode(ParamID	id,	TimeValue	t=0,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Returns	the	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.

int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
A	pointer	to	the	INode.

Prototype:
ReferenceTarget*	GetReferenceTarget(ParamID	id,	TimeValue
t=0,	int	tabIndex=0);

Remarks:
This	method	is	used	with	static	class	parameter	blocks	only.
Returns	the	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
A	pointer	to	the	ReferenceTarget.

Prototype:
Matrix3	GetMatrix3(ParamID	id,	TimeValue	t=0,	int	tabIndex=0);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	used	with	static	class	parameter	blocks	only.
Retrieves	the	value	of	the	specified	parameter	at	the	specified	time.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.

TimeValue	t=0
The	time	at	which	to	get	the	value.
int	tabIndex=0
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
value	to	get.

Return	Value:
The	Matrix3	value	of	the	parameter

Prototype:
TCHAR*	GetString(int	id);

Remarks:
Returns	a	string	resource	from	plug-in	module's	resource.

Parameters:
int	id
The	permanent	ID	of	the	parameter.

Prototype:
void	InvalidateUI();

Remarks:
This	method	invalidates	any	current	parameter	map2	user	interface	currently
open	for	this	descriptor.

Prototype:
void	InvalidateUI(ParamID	id,	int	tabIndex=-1);

Remarks:
This	method	invalidates	the	control	whose	parameter	ID	is	specified.

Parameters:
ParamID	id
The	permanent	ID	of	the	parameter.
int	tabIndex=-1
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	of	parameter	whose
associated	control	is	to	be	redrawn.

Prototype:
void	SetUserDlgProc(ParamMap2UserDlgProc*	proc=NULL);

Remarks:
This	method	allows	for	special	handling	for	a	set	of	controls.	The	developer
provides	a	dialog	proc	object	to	process	the	message	from	the	controls.	This
method	is	used	to	tell	the	parameter	map	that	the	developer	defined	method
should	be	called.	The	given	proc	will	be	called	after	default	processing	is
done.	Note	that	if	the	proc	is	non-NULL	when	the	ParamMap	is	deleted	its
DeleteThis()	method	will	be	called.
Note,	in	version	4.0	and	later,	this	actually	maps	to	a	call	on	the	explicit	map
ID	overload	of	SetUserDlgProc()	with	default	map	ID	of	0.

Parameters:
ParamMap2UserDlgProc*	proc=NULL
A	pointer	to	the	user	dialog	proc	object	to	process	the	control.

Prototype:
void	SetUserDlgProc(MapID	map_id,	ParamMap2UserDlgProc*
proc=NULL);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	overload	of	SetUserDlgProc()	has	a	new	parameter,	map_id,	that
specifies	the	ID	of	the	parameter	map/rollup	to	set	the	user	dialog	proc	for.	See
original	function	for	the	rest	of	the	description.

Prototype:
ParamMap2UserDlgProc*	GetUserDlgProc(MapID	map_id	=	0);

Remarks:
Returns	the	user	dialog	proc	for	the	parameter	map	associated	with	this
descriptor.

Parameters:
MapID	map_id
This	parameter	is	available	in	release	4.0	and	later	only.
Specifies	the	ID	of	the	map/rollout	to	get	the	user	dialog	proc	for.

Prototype:
void	SetOwnerRefNo(ParamID	id,	int	refno);

Remarks:
This	method	allows	dynamic	setting	of	the	P_OWNERS_REF	reference
number	for	given	Reference	Target	parameter.

Parameters:
ParamID	id
The	permanent	ID	for	the	parameter.
int	refno
The	reference	number	to	set.

Prototype:
int	GetOwnerRefNo(ParamID	id);

Remarks:
This	method	returns	the	P_OWNERS_REF	reference	number	for	given
Reference	Target	parameter.

Parameters:
ParamID	id
The	permanent	ID	for	the	parameter.

Prototype:
void	SetSubTexNo(ParamID	id,	int	texno);

Remarks:
Sets	the	sub-texture	number	for	the	specified	texmap	parameter.	You	can	use
this	to	dynamically	change	a	parameter's	sub	object	number.

Parameters:
ParamID	id
The	parameter	ID	for	the	texmap.
int	texno
The	sub-texture	number	to	set.

Prototype:

void	SetSubMtlNo(ParamID	id,	int	mtlno);
Remarks:
Sets	the	sub-material	number	for	the	specified	texmap	parameter.	You	can	use
this	to	dynamically	change	a	parameter's	sub	object	number.

Parameters:
ParamID	id
The	parameter	ID	for	the	material.
int	mtlno
The	sub-material	number	to	set.

Prototype:
int	GetSubTexNo(ParamID	id);

Remarks:
Returns	the	sub-texture	number	for	the	specified	parameter.

Parameters:
ParamID	id
The	ID	of	the	parameter.

Prototype:
int	GetSubMtlNo(ParamID	id);

Remarks:
Returns	the	sub-material	number	for	the	specified	parameter.

Parameters:
ParamID	id
The	ID	of	the	parameter.

Prototype:
void	SetInitFile(ParamID	id,	TCHAR*	s);

Remarks:
This	method	allows	dynamic	setting	of	the
TYPE_OPEN/SAVEFILEBUTTON	p_init_file	field.

Parameters:
ParamID	id
The	permanent	ID	for	the	parameter.
TCHAR*	s
The	string	to	set.

Prototype:
TCHAR*	GetInitFile(ParamID	id);

Remarks:
This	method	returns	the	TYPE_OPEN/SAVEFILEBUTTON
p_init_file	field.

Parameters:
ParamID	id
The	permanent	ID	for	the	parameter.

List	of	ParamType2	Choices
See	Also:	Class	ParamBlockDesc2,	Template	Class	Tab,	Class
ParamDimension,	Class	Mtl,	Class	Texmap,	Class	INode,	Class	PBBitmap,
Class	ReferenceTarget.
The	following	are	the	valid	types	for	parameters	in	parameter	blocks.
The	type	is	passed	to	the	ParamBlockDesc2	constructor	as	the	ParamType
type	argument	of	the	<required_param_spec>.
The	first	group	are	single	parameters	while	the	second	are	tables	of	the	first	set
of	parameters.
TYPE_FLOAT
A	single	floating	point	value.
TYPE_INT
A	single	integer	value.
TYPE_RGBA
A	Point3	value	with	an	implied	stdColor255Dim	dimension.
TYPE_POINT3
A	Point3	data	type	value.
TYPE_BOOL
An	integer	used	as	a	boolean	value.
TYPE_ANGLE
A	floating	point	value	with	an	implied	stdAngleDim	dimension.
TYPE_PCNT_FRAC
A	floating	point	with	an	implied	stdPercentDim	dimension.
TYPE_WORLD
Specify	that	a	parameter	represents	world	distance	units.	This	implies	a
parameter	dimension	of	stdWorldDim.
TYPE_STRING
A	character	string	(TCHAR*).	The	string	has	a	local	copy	made	and
managed	by	the	paramblock.
TYPE_FILENAME
This	is	the	same	as	TYPE_STRING,	but	is	used	with

TYPE_FILEOPENBUTTON	and	TYPE_FILESAVEBUTTON
parameter	map	controls.
TYPE_HSV
This	option	is	obsolete.
TYPE_COLOR_CHANNEL
A	single	floating	point	value	with	an	implied	stdColor255Dim	dimension.
TYPE_TIMEVALUE
A	single	integer	value	used	as	a	TimeValue	--	implies	a	stdTimeDim
dimension.
TYPE_RADIOBTN_INDEX
This	is	currently	unused	but	intended	to	allow	specification	of	state	names	to
make	scripter	access	symbolic.
TYPE_MTL
A	pointer	to	a	material	object	(Mtl*).	This	can	be	one	of	three	types:	a
reference	owned	by	the	parameter	block,	a	reference	owned	by	the	block
owner,	or	no	reference	management	(just	a	copy	of	the	pointer).
TYPE_TEXMAP
A	pointer	to	a	texmap	object	(Texmap*).	This	can	be	one	of	three	types:	a
reference	owned	by	the	parameter	block,	a	reference	owned	by	the	block
owner,	or	no	reference	management	(just	a	copy	of	the	pointer).
TYPE_BITMAP
A	pointer	to	a	Bitmap/BitmapInfo	object	(PBBitmap*).	This	can	be	one	of
three	types:	a	reference	owned	by	the	parameter	block,	a	reference	owned	by
the	block	owner,	or	no	reference	management	(just	a	copy	of	the	pointer).
TYPE_INODE
A	pointer	to	a	node	(INode*).	This	can	be	one	of	three	types:	a	reference
owned	by	the	parameter	block,	a	reference	owned	by	the	block	owner,	or	no
reference	management	(just	a	copy	of	the	pointer).
TYPE_REFTARG
A	pointer	to	a	Reference	arget	(ReferenceTarget*),	all	the	RefTarg	types
in	this	group	can	be	one	of	three	types:	Reference	owned	by	parameter	block,
Reference	owned	by	block	owner,	No	reference	management	(just	a	copy	of
the	pointer).

TYPE_INDEX
This	is	used	for	parameters	that	are	0-based,	but	exposed	to	MAXScript	as	1-
based.	For	example	a	vertex	index.
TYPE_MATRIX3
A	standard	max	Matrix3
TYPE_PBLOCK2
A	pointer	to	an	IParamBlock2	object.
	

The	following	are	tables	of	the	above	data	types:
TYPE_FLOAT_TAB
A	table	of	floating	point	values.
TYPE_INT_TAB
A	table	of	integer	values.
TYPE_RGBA_TAB
A	table	of	Point3	values	with	an	implied	stdColor255Dim	dimension.
TYPE_POINT3_TAB
A	table	of	Point3	data	type	values.
TYPE_BOOL_TAB
A	table	of	integers	used	as	a	set	of	boolean	values.
TYPE_ANGLE_TAB
A	table	of	floating	point	value	with	an	implied	stdAngleDim	dimension.
TYPE_PCNT_FRAC_TAB
A	table	of	same	as	TYPE_STRING,	but	is	used	with
TYPE_FILEOPENBUTTON	and	TYPE_FILESAVEBUTTON
parameter	map	controls.

	TYPE_WORLD_TAB
A	table	of	parameters	that	represents	world	distance	units.	This	implies	a
parameter	dimension	of	stdWorldDim.
TYPE_STRING_TAB
A	table	of	character	strings	(TCHAR*).
TYPE_FILENAME_TAB

A	table	of	filenames	(TYPE_FILENAME	--	see	notes	above).
TYPE_HSV_TAB
This	option	is	obsolete.
TYPE_COLOR_CHANNEL_TAB
A	table	of	floating	point	values	with	an	implied	stdColor255Dim
dimension.
TYPE_TIMEVALUE_TAB
A	table	of	integer	value	used	as	a	TimeValue	--	implies	stdTimeDim
dimension.
TYPE_RADIOBTN_INDEX_TAB
This	is	currently	unused.
TYPE_MTL_TAB
A	table	of	material	object	pointers	(see	TYPE_MTL	above).
TYPE_TEXMAP_TAB
A	table	of	texmap	object	pointers	(see	TYPE_TEXMAP	above).
TYPE_BITMAP_TAB
A	table	of	TYPE_BITMAP	values	(see	above).
TYPE_INODE_TAB
A	table	of	TYPE_INODE	values	(see	above).
TYPE_REFTARG_TAB
A	table	of	TYPE_REFTARG	values	(see	above).
TYPE_MSFLOAT	=	255
This	option	is	obsolete.
TYPE_UNSPECIFIED	=	-255
This	option	is	obsolete.

Structure	ParamDef
See	Also:	Class	ParamBlockDesc2,	Structure	PB2Value,	Class	PBValidator,
Class	PBBitmap,	List	of	ParamType2	Choices,	Class	ParamDimension,
Template	Class	Tab.
struct	ParamDef

Description:
This	structure	is	available	in	release	3.0	and	later	only.
The	data	members	of	this	class	provide	a	definition	of	a	parameter.	An	array	of
these	parameter	definitions	is	a	data	member	of	class	ParamBlockDesc2.
struct	ParamDef
{
ParamID	ID;
This	is	the	permanent,	position	independent	ID	of	the	parameter.
TCHAR*	int_name;
This	is	a	fixed	internal	name	of	the	parameter.	This	name	is	not	localized.
Internal	names	are	meant	to	be	parsable	as	identifiers.	As	such	they	should
begin	with	an	alpha	character,	have	only	alphanumerics,	and	have	no	spaces,
punctuations,	etc.	The	convention	for	multi-word	names	is	to	use	studly-caps,
eg,	paintRadius.
ParamType2	type;
This	is	the	type	of	the	parameter.	See	List	of	ParamType2	Choices.
int	flags;
They	are	the	per-parameter	constructor	flags	(P_ANIMATABLE,
P_TRANSIENT,	etc.)	Normally,	the	flags	are	set	up	as	a	result	of	things
you	specify	in	the	ParamBlockDesc2	constructor	and	should	generally	be
read-only	at	runtime.
int	local_name;
This	is	the	string	table	resource	ID	for	the	localized	(sub-anim)	name.
ParamDimension*	dim;
This	is	the	parameter	dimension.	See	Class	ParamDimension.
PB2Value	def;
The	default	value	for	the	parameter.

PB2Value	ms_def;
This	is	the	default	value	for	MAXScript	and	the	MacroRecorder.
PB2Value	cur_def;
This	is	the	current	'sticky'	default	value,	used	to	maintain	creation	defaults
within	a	session.
int	description;
This	is	a	one	sentence	description.	Use	a	string	resource	ID.
PB2Value	range_low;
This	indicates	the	low	allowable	range	used	in	MAXScript	validation	and
spinner	setup.
PB2Value	range_high;
This	indicates	the	high	allowable	range	used	in	MAXScript	validation	and
spinner	setup.
PBValidator*	validator;
Points	to	an	instance	of	the	validator	object.	This	object	has	a	Validate()
method	used	to	check	if	the	parameter	is	valid.
PBAccessor*	accessor;
Points	to	an	instance	of	an	accessor	object.	Any	parameter	in	a	block	can	have
an	accessor	callback	object	that	has	its	Get()	or	Set()	method	called
whenever	the	parameter	is	accessed.	This	may	be	used	to	provide	access	to
dynamically-computed	virtual	parameters	and	sometimes	to	allow	parameter-
specific	processing	by	the	class	as	the	parameter	in	the	block	is	modified.
short	tab_size;
If	the	parameter	is	a	table	(Tab<>)	this	is	the	initial	table	size.
short	ref_no;
This	is	a	block-owner's	reference	number	for	non-hosted	ReferenceTargets
parameters.
short	subtex_no;
This	is	a	block-owner's	SubTex	index	for	Texmap	parameters	in	Mtl	owners.
Class_ID	class_ID;
This	is	the	Class_ID	validator	for	reference	targets.
SClass_ID	sclass_ID;
This	is	the	SClass_ID	validator	for	reference	targets	(similar	to	above).
ControlType2	ctrl_type;

This	is	the	type	of	user	interface	control.
EditSpinnerType	spin_type;
This	is	the	spinner	type	if	the	associated	UI	control	is	a	spinner.	One	of	the
following	values	may	be	used:
EDITTYPE_INT
Any	integer	value.
EDITTYPE_FLOAT
Any	floating	point	value.
EDITTYPE_UNIVERSE
This	is	a	value	in	world	space	units.	It	respects	the	system's	unit	settings
(for	example	feet	and	inches).
EDITTYPE_POS_INT
Any	integer	>=	0
EDITTYPE_POS_FLOAT
Any	floating	point	value	>=	0.0
EDITTYPE_POS_UNIVERSE
This	is	a	positive	value	in	world	space	units.	It	respects	the	system's	unit
settings	(for	example	feet	and	inches)	.
EDITTYPE_TIME
This	is	a	time	value.	It	respects	the	system	time	settings	(SMPTE	for
example).

int*	ctrl_IDs;
This	is	the	array	of	control	IDs	for	this	parameter.
short	ctrl_count;
This	is	the	number	of	controls	in	the	ctrl_IDs	array	above.
int*	val_bits;
These	are	radio	button	vals	or	bit	numbers	for	int	bits	controlled	by	multiple
checkboxes.	The	numbers	in	the	int	array	are	used	to	indicate	which	bit	to	flip
in	the	TYPE_INT	parameter	depending	on	the	state	of	the	associated	(by
order)	checkbox.	This	is	not	yet	implemented.
float	scale;
This	is	the	scale	given	to	the	ISpinnerControl,	as	is	used	in
SetupFloatSpinner(),	for	example.
int	numSegs;

This	is	the	slider	segments	count.
ParamID*	enable_ctrls;
The	array	of	which	other	parameters	have	their	UI	controls	automatically
enabled	by	this	parameter.
short	enable_count;
This	is	the	number	of	parameter	IDs	in	the	enable_ctrls	array	above.
int	prompt;
The	status	line	prompt	string	resource	ID	for	various	picker	buttons.
int	caption;
The	caption	string	resource	ID	for	open/save	file	dialogs.
TCHAR*	init_file;
The	initial	filename	for	open/save	file	dialogs.
int	file_types;
The	file	types	string	resource	ID	for	open/save	file	dialogs	(in	MAXScript
type:	form)
void	DeleteThis();
This	function	deletes	this	instance	of	the	structure.

Class	PBValidator
See	Also:	Structure	ParamDef,	List	of	Type	2	Params,	Class	ParamBlockDesc2.
class	PBValidator	:	public	InterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
A	pointer	to	an	instance	of	this	class	is	a	data	member	of	struct	ParamDef	and
is	also	used	by	the	p_validator	tag	in	a	ParamBlockDesc2	constructor.	Any
parameter	can	have	a	custom	validator.	This	is	used	by	the	scripter	and	node	pick
button	filter	for	example.	If	you	want	to	validate	a	parameter	block	2	value
create	an	instance	of	this	class	and	implement	the	Validate()	method.

Methods:
public:

Prototype:
virtual	BOOL	Validate(PB2Value&	v)=0;

Remarks:
Returns	TRUE	if	the	given	PB2Value	if	valid;	otherwise	FALSE.

Parameters:
PB2Value&	v
The	value	to	check.

Prototype:
virtual	BOOL	Validate(PB2Value&	v,	ReferenceMaker*	owner,
ParamID	id,	int	tabIndex);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
A	variant	of	Validate()	method	to	PBValidate	which	supplies	more	context
than	the	original	Validate(),	effectively	giving	the	same	context	information
as	the	Set()	&	Get()	methods	in	a	PBAccessor.

Parameters:
PB2Value&	v

The	value	to	check.
ReferenceMaker*	owner
Points	to	the	owner	of	the	parameter.
ParamID	id
The	permanent	ID	of	the	parameter.
int	tabIndex
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	of	the	parameter	in	the
table.

Prototype:
virtual	void	DeleteThis();

Remarks:
This	method	that	can	be	used	to	destroy	dynamically	allocated	instances	of
this	class.

Default	Implementation:
{	}

Class	PBAccessor
See	Also:	Structure	ParamDef,	List	of	ParamType2	Choices,	Class
ReferenceMaker,	Structure	PB2Value.
class	PBAccessor	:	public	InterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
Any	parameter	in	a	block	can	have	an	accessor	callback	object	that	has	its	Get()
or	Set()	method	called	whenever	the	parameter	is	accessed.	This	may	be	used	to
provide	access	to	dynamically-computed	virtual	parameters	and	sometimes	to
allow	parameter-specific	processing	by	the	class	as	the	parameter	in	the	block	is
modified	(such	as	keeping	object	data	members	up-to-date).
The	Get()	and	Set()	methods	are	called	at	all	times	when	a	parameter	is
accessed,	including	parameters	that	are	animated.	The	Get()	method	is	called
after	the	controller	is	accessed,	so	the	current	controller	value	is	seen	and	can	be
optionally	overridden	in	the	Get()	method.	Note	that	the	controller	is	accessed
whenever	the	3ds	max	time	is	changed	(such	as	a	frame	slider	move)	and	so	the
Get()	method	will	be	called	each	frame	as	this	happens.
A	pointer	to	an	instance	of	this	class	is	a	data	member	of	the	ParamDef
structure.

Methods:
public:

Prototype:
virtual	void	Get(PB2Value&	v,	ReferenceMaker*	owner,	ParamID
id,	int	tabIndex,	TimeValue	t,	Interval	&valid);

Remarks:
This	method	is	called	when	the	specified	owner	object	accesses	(gets)	the
value	v.	This	is	called	after	the	controller	is	accessed,	so	the	current	controller
value	is	seen	and	can	be	optionally	overridden	in	the	this	method.	Note	that
the	controller	is	accessed	whenever	the	3ds	max	time	is	changed	(such	as	a
slider	move)	and	so	this	method	will	be	called	each	frame	as	this	happens.

Parameters:
PB2Value&	v

The	value	being	accessed.
ReferenceMaker*	owner
Points	to	the	owner	of	the	parameter.
ParamID	id
The	permanent	ID	of	the	parameter.
int	tabIndex
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	of	the	parameter	in	the
table.
TimeValue	t
The	current	time	the	get	is	taking	place.
Interval	&valid
The	validity	interval	for	the	value.

Default	Implementation:
{}

Prototype:
virtual	void	Set(PB2Value&	v,	ReferenceMaker*	owner,	ParamID
id,	int	tabIndex	TimeValue	t);

Remarks:
This	method	is	called	when	the	specified	owner	objects	sets	the	value	v.	This
is	called	just	before	calling	SetValue()	on	the	parameters	controller,	so	it	can
take	note	of	the	value	going	in	and	change	it	if	desired.

Parameters:
PB2Value&	v
The	value	being	set.
ReferenceMaker*	owner
Points	to	the	owner	of	the	parameter.
ParamID	id
The	permanent	ID	of	the	parameter.
int	tabIndex
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	of	the	parameter	in	the
table.
TimeValue	t

The	current	time	the	set	is	taking	place.
Default	Implementation:
{}

Function:
virtual	void	TabChanged(tab_changes	changeCode,
Tab<PB2Value>*	tab,	ReferenceMaker*	owner,	ParamID	id,	int
tabIndex,	int	count);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	is	called	when	a	Tab<>	parameter	has	a	change	made	to	its	table
structure.

Parameters:
tab_changes	changeCode
Describes	the	change	that	has	just	occurred	to	the	Tab<>	parameter.	One	of
the	following	enumerations:

enum	tab_changes	{	tab_insert,	tab_append,	tab_delete,
tab_ref_deleted,	tab_setcount,	tab_sort	};

Tab<PB2Value>*	tab
Points	to	the	actual	Tab<>	in	the	pblock	parameter.
ReferenceMaker*	owner
Points	to	the	owner	of	the	parameter.
ParamID	id
The	permanent	ID	of	the	parameter.
int	tabIndex
The	start	index	of	the	change	(for	tab_insert,	tab_append,	tab_delete,
tab_ref_deleted)
int	count
The	number	of	elements	changed	(for	tab_insert,	tab_append,
tab_delete).

Prototype:

virtual	BOOL	KeyFrameAtTime(ReferenceMaker*	owner,
ParamID	id,	int	tabIndex,	TimeValue	t);

Remarks:
Checks	to	see	if	a	keyframe	exists	for	the	given	parameter	at	the	given	time.
Returns	TRUE	if	a	keyframe	exists	at	the	specified	time;	otherwise	FALSE.
For	parameters	not	directly	hosted	in	the	parameter	block	that	are	internally
animatable,	this	provides	a	keyframe	query	callback	so	that	any	ParamMap2
spinners	associated	with	these	'virtual'	parameters	can	show	keyframe	status
for	the	underlying	parameter.	In	these	cases,	developers	should	implement	this
method	for	the	parameter	usually	asking	the	underlying	parameter	for	its
keyframe	state.

Parameters:
ReferenceMaker*	owner
Points	to	the	owner	of	the	parameter.
ParamID	id
The	permanent	ID	of	the	parameter.
int	tabIndex
TimeValue	t
The	current	time.

Default	Implementation:
{	return	FALSE;	}

Prototype:
virtual	TSTR	GetLocalName(ReferenceMaker*	owner,	ParamID
id,	int	tabIndex);

Remarks:
This	allows	a	plug-in	to	provide	a	dynamically-created	local	name	for	a
parameter	or	Tab<>	parameter	entry.	If	you	specify	the
P_COMPUTED_NAME	parameter	flag,	you	also	need	to	suppy	a
p_accessor	PBAccessor	instance	pointer	that	has	this	method	implemented.

Parameters:
ReferenceMaker*	owner
Points	to	the	owner	of	the	parameter.

ParamID	id
The	permanent	ID	of	the	parameter.
int	tabIndex
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	of	the	parameter	in	the
table.

Default	Implementation:
{	return	_T("");	}

Prototype:
virtual	void	DeleteThis();

Remarks:
This	method	that	can	be	used	to	destroy	dynamically	allocated	instances	of
this	class.

Default	Implementation:
{	}

Class	PBBitmap
See	Also:	Class	IParamBlock2,	Class	Bitmap,	Class	BitmapInfo,	Class
BitmapManager.
class	PBBitmap

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	a	Bitmap/BitmapInfo	wrapper	class.	It	is	used	by	ParamBlock2s	to	store
bitmap	information.	The	class	has	two	public	data	members	that	hold	the
BitmapInfo	and	the	Bitmap	itself.

Data	Members:
public:
BitmapInfo	bi;
Stores	the	BitmapInfo	for	the	bitmap.
Bitmap	*bm;
Points	to	the	Bitmap	itself.

Methods:
public:

Prototype:
PBBitmap(BitmapInfo	&bi);

Remarks:
Implemented	by	the	System
Constructor.	The	BitmapInfo	data	member	is	initialized	to	the	BitmapInfo
passed.	The	Bitmap	pointer	is	set	to	NULL.

Prototype:
PBBitmap();

Remarks:
Implemented	by	the	System
Constructor.	The	Bitmap	pointer	is	set	to	NULL.

Prototype:
~PBBitmap();

Remarks:
Implemented	by	the	System
Destructor.	The	Bitmap,	if	allocated,	is	deallocated.

Prototype:
void	Load();

Remarks:
Implemented	by	the	System
The	BitmapManager	is	used	to	Load	the	bitmap	as	specified	by	the
BitmapInfo.

Prototype:
PBBitmap*	Clone();

Remarks:
Implemented	by	the	System
Makes	a	copy	of	the	bitmap	and	returns	a	pointer	to	it.

Class	ParamBlock2PLCB
See	Also:	Class	PostLoadCallback,	Class	ILoad.
class	ParamBlock2PLCB	:	public	PostLoadCallback

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	a	post	load	call	back	for	fixing	up	parameter	block2s.	This	callback
handles	conversion	of	pre-ParamBlock2	versions	of	an	object	to	a	ParamBlock2
version.	NOTE:	this	thing	deletes	itself	when	it's	done.

Data	Members:
All	data	members	are	public.
ParamVersionDesc*	versions;
This	is	an	array	of	ParamVersionDesc2s.
int	count;
This	is	the	number	in	the	array	specified	above.
ParamBlockDesc2*	curdesc;
This	is	a	pointer	to	the	current	version	of	the	description.
ReferenceTarget*	targ;
This	is	a	pointer	to	a	reference	target.	This	is	usually	the	this	pointer	of	the
object.
int	pbRefNum;
This	is	the	reference	index	of	the	parameter	block.

Methods:
public:

Prototype:
ParamBlock2PLCB(ParamVersionDesc	*v,	int	cnt,
ParamBlockDesc2*	pd,	ReferenceTarget	*t,	int	refNum);

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.

Prototype:

void	proc(ILoad	*iload);
Remarks:
This	methods	handles	the	conversion	of	edition	1	ParamBlocks	to	the	new
ParamBlock2s.

Parameters:
ILoad	*iload
An	interface	for	loading	files.

Structure	ParamAlias
See	Also:	Class	IParamBlock2,	Class	ParamBlockDesc2.

Description:
This	structure	is	available	in	release	3.0	and	later	only.
This	stucture	provides	information	about	a	parameter	alias.	Aliases	allow
individual	parameters	or	Tab<>	parameter	elements	to	be	named.	See	the
methods	IParamBlock2::DefineParamAlias,	FindParamAlias,	etc.
typedef	struct
{
TCHAR*	alias;
The	name	of	the	alias.
ParamID	ID;
The	permanent	ID	of	the	parameter.
int	tabIndex;
If	the	parameter	is	a	Tab<>	this	is	the	zero	based	index	into	the	table	of	the
parameter.	If	the	parameter	is	not	a	table	this	is	-1.

}	ParamAlias;

Class	IAutoEParamDlg
See	Also:	Class	ParamDlg,	Class	IParamMap2,	Class	IRendParams,	Class
ParamMap2UserDlgProc.
class	IAutoEParamDlg	:	public	EffectParamDlg

Description:
This	class	is	available	in	release	3.0	and	later	only.
Auto	ParamDlg	class	for	Effects	auto-UI,	instanced	by
ClassDesc2::CreateParamDialog().	It	maintains	a	table	of	secondary
EffectParamDlg	for	master	EffectParamDlg	(e.g.,	the	one	returned	from
CreateParamDialog())	and	will	broadcast	appropriate	method	calls	to	them	as	the
master	receives	them.

Methods:
public:

Prototype:
virtual	void	InvalidateUI()=0;

Remarks:
This	method	causes	the	user	interface	controls	to	be	re-drawn.

Prototype:
virtual	int	NumDlgs()=0;

Remarks:
Returns	the	number	of	secondary	dialogs.

Prototype:
virtual	void	AddDlg(SFXParamDlg*	dlg)=0;

Remarks:
Adds	the	specified	dialog	as	another	secondary	dialog.

Parameters:
SFXParamDlg*	dlg
Points	to	the	parameter	dialog	to	add.

Prototype:
virtual	SFXParamDlg*	GetDlg(int	i)=0;

Remarks:
Returns	a	pointer	to	the	'i-th'	secondary	dialog.

Parameters:
int	i
The	zero	based	index	of	the	dialog	to	return.

Prototype:
virtual	void	SetDlg(int	i,	SFXParamDlg*	dlg)=0;

Remarks:
Sets	the	'i-th'	dialog	to	the	one	passed.

Parameters:
int	i
The	zero	based	index	of	the	dialog	to	set.
SFXParamDlg*	dlg
Points	to	the	parameter	dialog	to	set.

Prototype:
virtual	void	DeleteDlg(SFXParamDlg*	dlg)=0;

Remarks:
This	method	is	used	for	deleting	secondary	dialogs	from	a	master
IAutoEParamDlg.	Use	this	along	with	AddDlg()	if	you	are	dynamically
changing	the	set	of	rollups	for	the	plugin,	so	that	the	P_AUTO_UI	system
can	correctly	manage	all	current	secondary	rollups.

Parameters:
SFXParamDlg*	dlg
Points	to	the	ParamDlg	to	delete.

Prototype:
virtual	IParamMap2*	GetMap()=0;

Remarks:

Returns	a	pointer	to	the	parameter	map2	of	this	primary	(master)	dialog.

The	following	function	is	not	a	method	of	this	class	but	is
available	for	use:
Function:
IAutoEParamDlg*	CreateAutoEParamDlg(IRendParams	*i,
Effect*	e,	IParamBlock2*	pb,	ClassDesc2*	cd,	HINSTANCE	inst,
TCHAR*	dlgTemplate,	TCHAR*	title,	int	rollFlags,
ParamMap2UserDlgProc*	dlgProc=NULL);

Remarks:
This	function	creates	an	AutoEParamDlg	for	render	effects.

Parameters:
IRendParams	*i
An	interface	pointer	for	rendering	effects.
Effect*	e
Points	to	the	rendering	effect	calling	this	function.
IParamBlock2*	pb
Points	to	the	parameter	block	instance	associated	with	the	parameter	map.
ClassDesc2*	cd
The	class	descriptor2	for	the	plug-in	creating	the	parameter	map.
HINSTANCE	inst
The	plug-ins	DLL	instance	handle.
TCHAR*	dlgTemplate
Dialog	template	for	the	rollup	page	(created	using	the	resource	editor)
TCHAR*	title
The	title	displayed	in	the	rollup	page	title	bar.
int	rollFlags
A	set	of	flags	to	control	settings	of	the	rollup	page.
APPENDROLL_CLOSED
Starts	the	page	in	the	rolled	up	state.

ParamMap2UserDlgProc*	dlgProc=NULL
If	there	is	some	custom	handling	required	by	a	particular	control,	the	client

can	derive	a	class	from	ParamMap2UserDlgProc	and	set	it	as	the	parameter
map's	user	callback.

Return	Value:
A	pointer	to	an	interface	for	managing	the	parameter	map2.

Class	ParamMap2UserDlgProc
See	Also:	Class	ParamBlockDesc2,	Class	ClassDesc2.
class	ParamMap2UserDlgProc

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	is	used	with	the	release	3	parameter	map	system.	If	there	are	controls
which	require	custom	handling	you	can	create	an	object	from	this	class	and	set	it
as	the	parameter	map's	user	callback	(usually	using	SetUserDialogProc()).

Methods:
public:

Prototype:
virtual	BOOL	DlgProc(TimeValue	t,	IParamMap2	*map,	HWND
hWnd,	UINT	msg,	WPARAM	wParam,	LPARAM	lParam)=0;

Remarks:
Implemented	by	the	Plug-In.
This	is	the	dialog	proc	that	will	be	called	to	process	the	control	messages.	This
proc	will	be	called	after	the	default	processing	is	complete.

Parameters:
TimeValue	t
This	is	the	current	time.
IParamMap2	*map
This	is	a	pointer	to	the	parameter	map.
HWND	hWnd
This	is	the	handle	to	the	dialog.
UINT	msg
This	is	the	message	that	should	be	processed	by	the	dialog	proc.
WPARAM	wParam
This	is	a	parameter	that	holds	message	specific	information.
LPARAM	lParam
This	is	a	parameter	that	holds	message	specific	information.

Return	Value:

This	is	essentially	the	equivalent	of	a	normal	Windows	dialog	proc,	so	it
should	return	whatever	value	a	normal	dialog	proc	returns	for	the	message.	An
exception	is	that	the	value	REDRAW_VIEWS	may	be	returned	to	cause	the
viewports	to	be	redrawn.

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	delete	this	object.	If	the	DlgProc	is	non-NULL	when
the	ParamMap	is	deleted	this	method	will	be	called.

Prototype:
virtual	void	SetThing(ReferenceTarget	*m);

Remarks:
Implemented	by	the	Plug-In.
This	gets	called	if	the	DlgProc	is	registered	with	a	parameter	map	associated
with	one	of	the	IAutoXXXParamDlg	instances	and	that	dialog	has
SetThing()	called	on	it.	This	provides	a	simple	way	for	the	user	dialog	proc
to	track	changes	to	the	underlying	object	in	the	parameter	map.

Parameters:
ReferenceTarget	*m
The	item	that	was	set.

Default	Implementation:
{}

Prototype:
virtual	void	Update(TimeValue	t,	Interval&	valid,	IParamMap2*
pmap);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	is	a	variant	of	Update()	method	in	ParamMap2UserDlgProc	used	to

supply	more	context,	including	the	pmap	itself	and	its	validity	interval.
Changes	you	make	to	the	validity	internal	passed	in	affect	the	validity	interval
of	the	whole	parammap.

Parameters:
TimeValue	t
The	time	at	which	the	update	is	taking	place.
Interval&	valid
The	validity	interval	of	the	parameter	map.
IParamMap2	*pmap
The	parameter	map	the	user	dialog	proc	is	associated	with.

Bitmap	Flags
See	Also:	Class	BitmapStorage.
The	following	flag	bits	describe	properties	of	the	bitmap:
MAP_READY
This	bitmap	has	had	memory	allocated	to	it,	or	is	accessible	directly.
MAP_HAS_ALPHA
The	bitmap	has	an	alpha	channel.	This	flag	can	be	checked	from	a
BitmapInfo	instance	(bi.Flags()&MAP_HAS_ALPHA)),	but	not	from	a
Bitmap	instance	(bmap->Flags()	&	MAP_HAS_ALPHA).	Therefore	if
you	have	a	Bitmap,	use	the	Bitmap's	HasAlpha()	method	to	see	if	the
map	has	an	alpha	channel.
MAP_ALPHA_PREMULTIPLIED
The	bitmap	has	pre-multiplied	alpha.
MAP_PALETTED
The	bitmap	uses	a	palette	(not	true	color).
MAP_DITHERED
The	bitmap	is	dithered.
MAP_FLIPPED
The	bitmap	is	flipped	horizontally.
MAP_INVERTED
The	bitmap	is	inverted	vertically.
MAP_USE_SCALE_COLORS
This	option	is	available	in	release	4.0	and	later	only.
The	bitmap	should	scale	colors	when	high	dynamic	range	values	are	out	of
gamut.
MAP_LEGAL_DELETE
This	flag	is	for	internal	use	only.
MAP_VIEW_FILTERED
This	flag	is	used	for	testing	internally.
MAP_FRAME_SYSTEM_LOCKED
This	flag	is	no	longer	used.
MAP_NOFLAGS

The	bitmap	has	none	of	the	characteristics	below.
MAP_ALL_FLAGS
Indicates	ALL	the	flags	are	set.

List	of	Bitmap	Alignment	Positions
One	of	the	following	nine	values	define	the	position	of	the	bitmap:

1	|	2	|	3
----+---+----
4	|	5	|	6
----+---+----
7	|	8	|	9
BMM_CUSTOM_POSNW
Top	Left	Position	(1)
BMM_CUSTOM_POSN
Top	Center	Position	(2)
BMM_CUSTOM_POSNE
Top	Right	Position	(3)
BMM_CUSTOM_POSW
Middle	Left	Position	(4)
BMM_CUSTOM_POSCN
Middle	Center	Position	(5)
BMM_CUSTOM_POSE
Middle	Right	Position	(6)
BMM_CUSTOM_POSSW
Bottom	Left	Position	(7)
BMM_CUSTOM_POSS
Bottom	Center	Position	(8)
BMM_CUSTOM_POSSE
Bottom	Right	Position	(9)

List	of	Custom	Bitmap	Flags
The	Custom	Bitmap	Flags.	These	may	be	ORed	together	as	in:
BMM_CUSTOM_GAMMA	|	BMM_CUSTOM_SIZE

One	or	more	of	the	following	flags	may	be	used.
BMM_CUSTOM_GAMMA
Custom	gamma	setting.
BMM_CUSTOM_SIZE
Custom	size	setting.
BMM_CUSTOM_RESFIT
Bitmap	is	to	be	resized.
BMM_CUSTOM_POS
Bitmap	has	a	custom	positioning.
BMM_CUSTOM_FILEGAMMA
Bitmap	has	a	custom	file	gamma	setting.

Class	CropCallback
See	Also:	Class	Bitmap.
class	CropCallback

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	is	a	callback	for	interactive	adjustment	of	bitmap	"Cropping
rectangle",	passed	in	as	an	argument	to	the	Bitmap::Display()	method.	See
\MAXSDK\SAMPLES\MATERIALS\BMTEX.CPP	for	sample	code.

All	methods	of	this	class	are	implemented	by	the	plug-in.

Methods:

Prototype:
virtual	float	GetInitU()=0;

Remarks:
Returns	the	initial	U	value.

Prototype:
virtual	float	GetInitV()=0;

Remarks:
Returns	the	initial	V	value.

Prototype:
virtual	float	GetInitW()=0;

Remarks:
Returns	the	initial	W	value.

Prototype:
virtual	float	GetInitH()=0;

Remarks:
Returns	the	initial	H	value.

Prototype:
virtual	BOOL	GetInitMode()=0;

Remarks:
Returns	TRUE	for	place	mode;	FALSE	for	crop	mode.	In	crop	mode	the
image	is	clipped	at	the	edges.	In	place	mode,	the	image	is	resized	or	moved.

Prototype:
virtual	void	SetValues(float	u,	float	v,	float	w,	float	h,	BOOL
md)=0;

Remarks:
This	method	is	called	to	set	the	values	as	the	user	is	making	adjustments.	If	the
parameters	may	be	animated,	use	Interface::GetTime()	to	retrieve	the	time
they	are	being	set	for.

Parameters:
float	u
The	U	parameter	to	set.
float	v
The	V	parameter	to	set.
float	w
The	W	parameter	to	set.
float	h
The	H	parameter	to	set.
BOOL	md
The	mode	being	set.	TRUE	is	place	mode;	FALSE	is	crop.

Prototype:
virtual	void	OnClose()=0;

Remarks:
This	method	is	called	when	the	cropping	adjustment	window	is	closed.

Class	BitmapNotify
See	Also:	Class	Bitmap,	Class	BitmapStorage.
class	BitmapNotify

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	is	a	callback	for	notifying	bitmaps	that	their	storage	has	changed,
and	if	any	on	screen	displays	need	to	be	refreshed.	This	is	installed	as	a
callback	via	the	method	Bitmap::SetNotify().

All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
virtual	int	Changed(ULONG	flags)=0;

Remarks:
This	method	is	called	when	the	storage	for	the	Bitmap	has	changed.

Parameters:
ULONG	flags
One	of	the	following:
BMNOTIFY_FLAG_STORAGE_CHANGE,	notifies	that	the	storage	(the
contents	of	the	bitmap)	has	changed.
BMNOTIFY_FLAG_FILE_CHANGE,	notifies	that	that	bitmap	file	has
changed,	probably	by	an	external	program.	The	bitmap	should	be	reloaded.
Note	that	by	the	time	this	call	is	made,	the	API	has	already	checked	to	see	if
the	user	has	set	the	global	preferences	asking	for	these	changes	to	be
automatically	reloaded.

Prototype:
virtual	void	VFBClosed();

Remarks:
This	method	is	called	when	Virtual	Frame	Buffer	is	closed.

Default	Implementation:
{}

Class	GWinSetup
See	Also:	Class	GraphicsWindow.
class	GWinSetup

Description:
This	class	is	the	graphics	window	setup	structure.	An	instance	of	this	class	is
passed	to	the	function	createGW()	to	create	a	new	graphics	window.
Note:	This	is	no	longer	available	for	use	by	plug-ins	in	3ds	max	2.0	and	later.

List	of	Rendering	Limits
See	Class	GraphicsWindow.
These	are	the	flags	for	specifying	rendering	limits.	One	or	more	of	the	following
values:
GW_NO_ATTS
Not	attributes	are	specified.
GW_WIREFRAME
Wireframe	rendering	mode.
GW_ILLUM
This	indicates	that	you	have	colors	per	vertex	in	your	polygons	and	that	they
should	be	used.	If	you	had	colors	per	vertex	but	this	flag	was	not	set,	the
colors	would	be	ignored.
GW_PERSPECTIVE_CORRECT
In	this	mode	textures	are	corrected	for	perspective	display.
GW_POLY_EDGES
This	option	is	available	in	release	2.0	and	later	only.
This	mode	causes	polygon	edges	(Edged	Faces)	to	be	on.
GW_FLAT
Flat	(facet)	shading	mode.
GW_SPECULAR
This	enables	specular	highlight	display.
GW_TEXTURE
This	enables	texture	display.
GW_Z_BUFFER
When	coordinates	are	specified	for	drawing	primitives	they	have	x,	y,	and	z
values.	Sometimes	when	drawing	entities	in	the	viewports	it	is	desirable	to
ignore	the	z	values.	For	example	in	the	3ds	max	viewports	the	text	that	display
the	type	of	viewport	(Front,	Left,	...)	are	drawn	without	z	values.	So	are	the
arc-rotate	circle	control	and	the	axis	tripods.	These	items	are	drawn	without
this	flag	being	set	so	they	always	show	up	in	front.
GW_BACKCULL
Backface	culling	is	used.	Entities	whose	surface	normal	face	away	from	the
view	direction	are	not	drawn.

GW_TWO_SIDED
Faces	are	displayed	regardless	of	their	surface	normal	orientation.
GW_COLOR_VERTS
This	option	is	available	in	release	2.0	and	later	only.
This	turns	on	color-per-vertex	display.
GW_SHADE_CVERTS
This	option	is	available	in	release	2.0	and	later	only.
This	modifies	GW_COLOR_VERTS.	If	set,	then	lighting	is	enabled	and
the	vertex	colors	are	used	to	modulate	the	colors	that	result	from	lighting.	If
off,	then	the	colors	on	each	vertex	are	used	directly	to	shade	the	triangle.	(Note
that	when	3ds	max	uses	GW_SHADE_CVERTS	mode,	it	puts	a	white
diffuse-only	material	on	the	object	so	that	it	appears	that	the	colors	are	shaded
without	distortion.)
Described	further,	when	shading	is	OFF,	then	the	vertex	colors	are	used
directly.	This	is	equivalent	to	saying	that	they	are	modulated	by	a	pure	white
self-illuminated	material	(i.e.	the	color	values	are	"modulated	(multiplied)	by
1"	--	so	they	don't	change).
When	shading	is	ON,	the	diffuse	white	material	is	illuminated	by	the	scene
lighting,	resulting	in	shades	ranging	from	black	to	white	(0	to	1),	with	most
vertices	being	some	shade	of	pure	gray.	When	the	vertex	colors	are	modulated
by	the	material	color,	they	get	multiplied	(in	general)	by	a	number	less	than	1,
which	makes	them	appear	darker.
The	RGB	components	of	the	colors	are	modulated	uniformly,	so	that	there	is
no	shift	from,	say,	red	to	green.	That	would	happen	if	the	underlying	material
was	not	evenly	weighted	(i.e.	a	pure	gray	lying	between	black	and	white).	Said
another	way,	only	the	intensity	of	the	vertex	colors	is	changed	when	shading	is
on,	not	luminance,	chrominance,	etc.
GW_PICK
This	indicates	hit	testing	will	be	performed	(not	rendering).
GW_BOX_MODE
Objects	are	shown	using	their	bounding	box.
GW_ALL_EDGES
All	edges	of	the	item	are	shown	(including	hidden	ones).
GW_VERT_TICKS

This	option	is	available	in	release	2.0	and	later	only.
This	mode	is	really	a	pseudo-mode,	in	that	it	doesn't	actually	cause	GFX	do
anything	differently,	but	rather	is	tested	by	the	Mesh	class,	which	sends	down
vertex	markers	(+)	if	the	mode	is	on.
GW_LIGHTING
This	is	the	same	as	(GW_ILLUM	|	GW_SPECULAR)
GW_TRANSPARENCY
Specifies	to	use	Transparency
GW_TRANSPARENT_PASS	
Specifies	a	Second	pass	to	perform	Blended	Transparency

Clip	Flags
View	volume	clip	flags.	Flags	are	provided	for	each	of	the	six	planes	bounding
the	viewing	frustrum.	One	or	more	of	the	following	values:
GW_LEFT_PLANE
GW_RIGHT_PLANE
GW_BOTTOM_PLANE
GW_TOP_PLANE
GW_FRONT_PLANE
GW_BACK_PLANE

List	of	Mouse	Callback	Messages
This	message	describes	the	type	of	event	that	occurred.
MOUSE_ABORT
When	the	user	aborts	a	mouse	procedure,	for	example	when	they	are	dragging
the	mouse	and	they	right	click,	this	message	is	sent.
MOUSE_IDLE
This	message	is	used	internally.
MOUSE_POINT
This	message	is	sent	when	the	user	has	clicked	a	point.
MOUSE_MOVE
This	message	is	sent	when	the	mouse	input	is	captured	and	the	user	moved	the
mouse.	When	mouse	input	is	captured	all	mouse	events	continue	to	go	to	the
current	window	even	when	the	mouse	is	move	outside	the	limits	of	the
window.	This	is	when	the	user	is	'dragging'.
MOUSE_DBLCLICK
This	is	sent	when	the	user	has	double	clicked	the	mouse.
MOUSE_INIT
This	is	sent	when	the	mouse	proc	is	plugged	in	as	the	current	mouse	proc.	If	a
plug-in	needed	to	perform	some	kind	of	initialization	when	it	was	first	became
current	this	message	could	be	processed.
MOUSE_UNINIT
This	is	sent	when	the	mouse	proc	is	un-plugged	as	the	current	mouse	proc.
MOUSE_FREEMOVE
This	message	is	similar	to	a	MOUSE_MOVE	message	except	it	is	not
called	when	the	mouse	is	in	a	'drag'	session.	This	means	that	mouse	input	is
not	captured.	If	mouse	input	is	not	captured	and	the	mouse	is	moved	outside
the	current	window,	the	current	window	will	no	longer	receive	the	mouse
messages.
MOUSE_KEYBOARD
This	is	not	used.	Keyboard	input	is	processed	by	registering	an	accelerator
table.	See	Class	Interface	for	the	methods	to	register	a	keyboard	accelerator.
Also	see	the	section	Keyboard	Accelerators	and	Dialog	Messages.
MOUSE_PROPCLICK

This	message	is	sent	on	a	right	click,	when	nothing	is	selected,	and	the	user	is
not	over	any	selectable	object.	For	example,	this	is	how	the	unfreeze-by-hit
pick	mode	knows	to	abort	if	the	user	presses	the	right	mouse	button.	Note	that
this	is	different	than	if	you	right	click	while	dragging	-	in	that	case	you	get	a
MOUSE_ABORT	message.

Class	ICustStatusEdit
See	Also:	Class	ICustomControl.
class	ICustStatusEdit	:	public	ICustomControl

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	control	mimics	the	edit	control	as	well	as	a	status	control.	It	may	be	set	to
'read-only'	so	the	user	can	read	but	cannot	edit	the	displayed	string.
The	value	to	use	in	the	Class	field	of	the	Custom	Control	Properties	dialog	is:
CustStatusEdit
Function:
ICustStatusEdit	*GetICustStatusEdit(HWND	hCtrl);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Used	to	initalize	and	return	a	pointer	to	the	control.

Parameters:
HWND	hCtrl
The	window	handle	of	the	control.

Function:
void	ReleaseICustStatusEdit(ICustStatusEdit	*ice);

Remarks:
This	global	function	is	available	in	release	3.0	and	later	only.
Used	to	release	the	control	when	finished.

Parameters:
ICustStatusEdit	*ice
Points	to	the	control	to	release.

Methods:
public:

Prototype:
virtual	void	GetText(TCHAR	*text,	int	ct)=0;

Remarks:
Retrieves	the	text	entered	into	the	control.

Parameters:
TCHAR	*text
Storage	for	the	text	to	retrieve.
int	ct
Specifies	the	maximum	length	of	the	string	returned.

Prototype:
virtual	void	SetText(TCHAR	*text)=0;

Remarks:
This	method	places	the	text	into	the	control	for	editing.

Parameters:
TCHAR	*text
The	text	to	place	in	the	control.

Prototype:
virtual	void	SetText(int	i)=0;

Remarks:
This	method	allows	you	to	pass	in	an	integer	value	to	the	control.	The	integer
is	converted	to	a	string	and	displayed	in	the	control.

Parameters:
int	i
This	value	is	converted	to	a	string	and	displayed	in	the	control.

Prototype:
virtual	void	SetText(float	f,	int	precision=3)=0;

Remarks:
This	method	allows	you	to	pass	in	a	floating	point	value	to	the	control.	The
float	is	converted	to	a	string	and	displayed	in	the	control.

Parameters:
float	f

This	value	is	converted	to	a	string	and	displayed	in	the	control.
int	precision=3
The	precision	argument	is	simply	the	number	of	decimal	places	that	get
represented	in	the	string	that	appears	in	the	edit	field.	So	if	the	arguments	were
(1.0f/3.0f,	3)	then	the	string	"0.333"	would	appear	in	the	edit	field.

Prototype:
virtual	int	GetInt(BOOL	*valid=NULL)=0;

Remarks:
This	method	parses	and	returns	an	integer	value	from	the	control.

Parameters:
BOOL	*valid=NULL
This	pointer,	if	passed,	is	set	to	TRUE	if	the	input	is	'valid';	otherwise	FALSE.
FALSE	indicates	that	something	caused	the	parsing	of	the	input	to	terminate
improperly.	An	example	is	a	non-numeric	character.	So	for	example,	if	the
user	entered	"123jkfksdf"	into	the	field	the	valid	pointer	would	be	set	to
FALSE.

Prototype:
virtual	float	GetFloat(BOOL	*valid=NULL)=0;

Remarks:
This	method	parses	and	returns	a	floating	point	value	from	the	control.

Parameters:
BOOL	*valid=NULL
This	pointer,	if	passed,	is	set	to	TRUE	if	the	input	is	'valid';	otherwise	FALSE.
FALSE	indicates	that	something	caused	the	parsing	of	the	input	to	terminate
improperly.	An	example	is	a	non-numeric	character.	So	for	example,	if	the
user	entered	"123jkfksdf"	into	the	field	this	pointer	would	be	set	to	FALSE.

Prototype:
virtual	void	SetLeading(int	lead)=0;

Remarks:
A	developer	doesn't	normally	need	to	call	this	method.	This	offsets	the	text

vertically	in	the	edit	control.
Parameters:
int	lead
This	parameter	specifies	the	number	of	pixels	to	offset.

Prototype:
virtual	void	WantReturn(BOOL	yesNo)=0;

Remarks:
This	method	allows	custom	handling	of	the	RETURN	key.	If	you	pass	TRUE
to	this	method	an	EN_CHANGE	message	will	be	sent	to	the	control	when	the
RETURN	key	is	pressed.	The	EN_CHANGE	message	is	sent	when	the	user
has	taken	any	action	that	may	have	altered	text	in	an	edit	control	so	developer
need	to	also	call	GotReturn()	(documented	below)	to	see	if	it	was	indeed	a
RETURN	keypress.

Parameters:
BOOL	yesNo
If	TRUE,	then	when	the	user	presses	the	RETURN	key	in	that	control,	the	edit
field	will	send	an	EN_CHANGE	message	to	the	owner,	and	calling
GotReturn()	will	return	TRUE.

Prototype:
virtual	BOOL	GotReturn()=0;

Remarks:
This	method	should	be	called	on	receipt	of	an	EN_CHANGE	message.	It
return	TRUE	if	pressing	the	RETURN	key	generated	the	message;	otherwise
FALSE.

Prototype:
virtual	void	GiveFocus()=0;

Remarks:
Calling	this	method	gives	the	control	the	focus	to	receive	input.

Prototype:

virtual	BOOL	HasFocus()=0;
Remarks:
Returns	TRUE	if	the	control	has	the	focus	to	receive	input;	otherwise	FALSE.

Prototype:
virtual	void	WantDlgNextCtl(BOOL	yesNo)=0;

Remarks:
Determines	whether	the	TAB	key	may	be	used	to	jump	to	the	next	control	in
the	tab	sequence.

Parameters:
BOOL	yesNo
TRUE	to	enable	the	TAB	key	to	move	to	the	next	control;	FALSE	to	disable
the	TAB	key	from	moving	the	focus.

Prototype:
virtual	void	SetNotifyOnKillFocus(BOOL	onOff)=0;

Remarks:
Normally	when	a	user	exits	an	edit	filed	the	notification
WM_CUSTEDIT_ENTER	is	sent.	Many	plug-ins	key	off	this	message	to
finalize	the	input	of	values.	For	instance,	if	the	user	is	entering	a	value	into	an
edit	field	and	they	hit	the	TAB	key	to	leave	the	field	the	value	should	be
entered.	Normally	this	is	the	desired	behavior.	However,	as	a	special	case
condition,	if	a	developer	does	not	want	to	update	the	value,	this	method	may
be	called	so	the	WM_CUSTEDIT_ENTER	notification	won't	be	sent	when	the
edit	control	loses	focus.

Parameters:
BOOL	onOff
TRUE	to	turn	on;	FALSE	to	turn	off.

Prototype:
virtual	void	SetBold(BOOL	onOff)=0;

Remarks:
Sets	the	text	font	in	the	edit	control	to	display	in	a	bold	format	or	normal.

Parameters:
BOOL	onOff
TRUE	to	turn	bolding	on;	FALSE	to	turn	off.

Prototype:
virtual	void	SetReadOnly(BOOL	onOff)=0;

Remarks:
Sets	if	the	control	is	'read-only'.	That	is,	the	string	is	displayed	but	cannot	be
edited.

Parameters:
BOOL	onOff
TRUE	for	read-only;	FALSE	to	allow	editing.

Class	ToolItem
See	Also:	Custom	Controls,	Class	ToolImageItem.
class	ToolItem

Description:
This	class	describes	the	properties	of	an	item	in	a	3ds	max	custom	toolbar.

Data	Members:
public:
ToolItemType	type;
See	List	of	Tool	Item	Types.
int	id
The	ID	for	the	control.
DWORD	helpID
For	plug-in	developers	this	id	should	be	set	to	0.	Basically,	the	main	3ds	max
help	file	contains	help	tags	that	are	tied	to	various	parts	of	the	3ds	max	UI,
allowing	the	right	help	page	to	come	up	when	UI	help	is	requested.	In
particular,	if	you	press	the	?	button	on	the	toolbar,	then	press	another	toolbar
button,	you'll	get	help	on	that	button's	functionality.	This	is	because	internally
pressing	the	button	yields	a	help	ID	that	indexes	into	the	help	file.	But	since
the	same	help	ID	must	be	compiled	into	the	help	file	and	into	MAX,	and	since
the	main	3ds	max	helpfile	can	not	be	rebuilt	by	developers,	they	cannot	use
this	functionality.
int	w
The	width	of	the	button	image.
int	h
The	height	of	the	button	image.
int	orient;
This	data	member	is	available	in	release	3.0	and	later	only.
The	orientation	of	the	item.	One	of	the	following	values:
CTB_HORIZ
CTB_VERT
CTB_FLOAT

Methods:

Prototype:
virtual	~ToolItem()

Remarks:
Destructor.

Class	ToolButtonItem
See	Also:	Class	ToolItem,	Class	MAXBmpFileIcon,	Custom	Controls.
class	ToolButtonItem	:	public	ToolItem

Description:
This	class	describes	the	properties	of	a	3ds	max	custom	toolbar	button.

Note,	you	can	use	MaxBmpFileIcons	on	a	toolbar	button
using	the	new	constructor	in	custcont.h:

ToolButtonItem(ToolItemType	t,
MaxBmpFileIcon*	pIcon,
int	iW,	int	iH,	int	wd,int	ht,
int	ID,	DWORD	hID=0,	TCHAR	*lbl	=	NULL,
int	or	=	CTB_HORIZ|CTB_VERT|CTB_FLOAT)

Data	Members:
public:
The	following	four	data	members	(iOutEn,	iInEn,	iOutDis,	iInDis)	are
indices	into	the	image	list.	They	indicate	which	images	to	use	for	each	of	the
four	possible	button	states.	You	may	specify	a	unique	image	for	each	one	of
these	states	by	passing	a	different	index	for	each	state.	Or	you	may	supply	a
single	image	to	be	used	for	all	the	states	by	specifying	the	same	index	four
times.
int	iOutEn
Out&Enabled.
int	iInEn
In&Enabled.
int	iOutDis
Out&Disabled.
int	iInDis
In&Disabled.

int	iw
The	width	of	the	button	image.
int	ih

The	height	of	the	button	image.
TCHAR	*label;
This	data	member	is	available	in	release	4.0	and	later	only.
The	label	describing	the	tool	button	item.
MaxBmpFileIcon	*mpIcon;
This	data	member	is	available	in	release	4.0	and	later	only.
A	pointer	to	the	icon	image	associated	with	the	button.
MaxBmpFileIcon	*mpInIcon;
This	data	member	is	available	in	release	4.0	and	later	only.
A	pointer	to	the	in	icon	image	associated	with	the	button.

Methods:

Prototype:
ToolButtonItem(ToolItemType	t,	int	iOE,	int	iIE,	int	iOD,	int	iID,
int	iW,	int	iH,	int	wd,	int	ht,	int	ID,	DWORD	hID=0,	TCHAR	*lbl
=	NULL,	int	or	=	CTB_HORIZ|CTB_VERT|CTB_FLOAT)

Remarks:
Constructor.

Parameters:
ToolItemType	t
See	List	of	Tool	Item	Types.
int	iOE
The	Out&Enabled	index.
int	iIE
The	In&Enabled	index.
int	iOD
The	Out&Disabled	index.
int	iID
The	In&Disabled	index.
int	iW
The	image	width	(size	of	the	bitmap	in	the	ImageList).
int	iH
The	image	height	(size	of	the	bitmap	in	the	ImageList).

int	wd
The	width	of	the	button.
int	ht
The	height	of	the	button.
int	ID
The	ID	of	the	control.
DWORD	hID=0
The	help	ID.	For	plug-in	developers	this	id	should	be	set	to	0.
TCHAR	*lbl	=	NULL
The	label	of	the	button.
int	or	=	CTB_HORIZ|CTB_VERT|CTB_FLOAT
The	allowable	orientation	of	the	item.	This	may	be	one	or	more	of	the
following:
CTB_HORIZ	-	Horizontal
CTB_VERT	-	Vertical
CTB_FLOAT	-	Floating	(not	docked)

Prototype:
ToolButtonItem(ToolItemType	t,	MaxBmpFileIcon*	pIcon,	int	iW,
int	iH,	int	wd,int	ht,	int	ID,	DWORD	hID=0,	TCHAR	*lbl	=
NULL,	int	or	=	CTB_HORIZ|CTB_VERT|CTB_FLOAT);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Constructor.

Parameters:
ToolItemType	t
See	List	of	Tool	Item	Types.
MaxBmpFileIcon*	pIcon
A	pointer	to	the	icon	associated	with	the	button.
int	iW
The	image	width	(size	of	the	bitmap	in	the	ImageList).
int	iH

The	image	height	(size	of	the	bitmap	in	the	ImageList).
int	wd
The	width	of	the	button.
int	ht
The	height	of	the	button.
int	ID
The	ID	of	the	control.
DWORD	hID=0
The	help	ID.	For	plug-in	developers	this	id	should	be	set	to	0.
TCHAR	*lbl	=	NULL
The	label	of	the	button.
int	or	=	CTB_HORIZ|CTB_VERT|CTB_FLOAT
The	orientation	of	the	button	item.

Prototype:
ToolButtonItem(ToolItemType	t,	MaxBmpFileIcon*	pIcon,
MaxBmpFileIcon*	pInIcon,	int	iW,	int	iH,	int	wd,int	ht,	int	ID,
DWORD	hID=0,	TCHAR	*lbl	=	NULL,	int	or	=
CTB_HORIZ|CTB_VERT|CTB_FLOAT);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Constructor.

Parameters:
ToolItemType	t
See	List	of	Tool	Item	Types.
MaxBmpFileIcon*	pIcon
A	pointer	to	the	icon	associated	with	the	button.
MaxBmpFileIcon*	pInIcon
A	pointer	to	the	in	icon	associated	with	the	button.
int	iW
The	image	width	(size	of	the	bitmap	in	the	ImageList).
int	iH
The	image	height	(size	of	the	bitmap	in	the	ImageList).

int	wd
The	width	of	the	button.
int	ht
The	height	of	the	button.
int	ID
The	ID	of	the	control.
DWORD	hID=0
The	help	ID.	For	plug-in	developers	this	id	should	be	set	to	0.
TCHAR	*lbl	=	NULL
The	label	of	the	button.
int	or	=	CTB_HORIZ|CTB_VERT|CTB_FLOAT
The	orientation	of	the	button	item.

Class	IRollupPanel
class	IRollupPanel	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	interface	for	a	rollup	panel	and	describes	the	properties
of	that	panel	(which	is	one	rollup).	You	can	obtain	a	pointer	to	the	IRollupPanel
class	for	any	given	specified	window	by	calling
IRollupWindow::IRollupPanel	*GetPanel(HWND	hWnd);

Methods:
public:

Prototype:
virtual	HINSTANCE	GetHInst()=0;

Remarks:
This	method	returns	a	handle	to	the	rollup	panel	instance.

Prototype:
virtual	DWORD_PTR	GetResID()=0;

Remarks:
This	method	returns	the	resource	ID	of	the	rollup	panel.

Prototype:
virtual	BOOL	operator==(const	IRollupPanel&	id)=0;

Remarks:
Equality	test	operator.

Prototype:
virtual	int	GetCategory()=0;

Remarks:
This	method	returns	the	rollup	panel	category	identifier.

Prototype:
virtual	void	SetCategory(int	cat)=0;

Remarks:
This	method	allows	you	to	set	the	category	identifier	for	the	rollup	panel.

Parameters:
int	cat
The	category	identifier	to	set.

Prototype:
virtual	HWND	GetHWnd()=0;

Remarks:
This	method	returns	a	handle	to	the	rollup	window.

Prototype:
virtual	HWND	GetRollupWindowHWND()=0;

Remarks:
This	method	returns	a	handle	to	the	actual	panel	in	the	rollup	window.

Prototype:
virtual	HWND	GetTitleWnd()=0;

Remarks:
This	method	returns	a	handle	to	the	window	from	which	you	can	get	the	title
through	the	GWLP_USERDATA.

Class	BitArrayCallback
See	Also:	Class	BitArray.
class	BitArrayCallback

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	callback	object	for	the	method	BitArray::EnumSet().	The	proc
method	is	called	for	each	"1"	in	the	BitArray.

Methods:
public:

Prototype:
virtual	void	proc(int	n)=0;

Remarks:
This	method	is	called	for	each	"1"	in	the	BitArray.

Parameters:
int	n
This	is	the	zero	based	index	into	the	BitArray	of	the	element	which	is	"1".

Class	GamConvert16
See	Also:	Class	GammaMgr,	Class	GamConvet8.
class	GamConvert16

Description:
A	temporary	table	for	converting	16->16.	A	developer	may	define	an	instance	of
this	class	and	it	will	build	a	gamma	correction	table.	The	constructor	will	build
the	table	with	the	specified	gamma	setting	and	the	destructor	will	free	the	table.
All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
GamConvert16(float	gam=1.0f);

Remarks:
Constructor.	The	gamma	table	is	built	using	the	specified	gamma	setting.

Prototype:
~GamConvert16();

Remarks:
Destructor.	The	gamma	table	is	deleted.

Prototype:
void	SetGamma(float	gam);

Remarks:
Sets	the	gamma	setting	to	the	value	specified	and	builds	the	gamma	table.

Parameters:
float	gam
The	gamma	value	to	set.

Prototype:
UWORD	Convert(UWORD	v);

Remarks:

Gamma	corrects	the	specified	color.
Parameters:
UWORD	v
The	color	to	gamma	correct.

Return	Value:
The	gamma	corrected	value.

Class	GamConvert8
See	Also:	Class	GammaMgr,	Class	GamConvert16.
class	GamConvert8

Description:
A	temporary	table	for	converting	8->16.	A	developer	may	define	an	instance	of
this	class	and	it	will	build	a	gamma	correction	table.	The	constructor	will	build
the	table	with	the	specified	gamma	setting	and	the	destructor	will	free	the	table.
All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
GamConvert8(float	gam=1.0f);

Remarks:
Constructor.	The	gamma	table	is	built	using	the	specified	gamma	setting.

Prototype:
void	SetGamma(float	gam);

Remarks:
Sets	the	gamma	setting	to	the	value	specified	and	builds	the	gamma	table.

Parameters:
float	gam
The	gamma	value	to	set.

Prototype:
UWORD	Convert(UBYTE	v);

Remarks:
Gamma	corrects	the	specified	color.

Parameters:
UBYTE	v
The	color	to	gamma	correct.

Return	Value:

The	gamma	corrected	value.

Class	FlagUser
See	Also:	Class	MNMesh.
	
Class	FlagUser

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	is	a	handy	class	to	subclass	off	of	when	you're	designing	a	class	with
flags.	It	contains	one	private	data	member,	a	DWORD,	with	the	flag	info.	It
then	implements	a	bunch	of	handy	flag-related	functions.	All	methods	of	this
class	are	implemented	by	the	system.

Data	Members:
private:
DWORD	FlagUserFlags;
Stores	the	flags.

Methods:

Prototype:
FlagUser();

Remarks:
Constructor.	Sets	FlagUserFlags	to	0,	clearing	all	flag	bits.

Prototype:
void	SetFlag(DWORD	fl,	bool	val=TRUE);

Remarks:
Sets	flags.	Each	bit	that	is	set	in	fl	is	assigned	the	value	val.

Prototype:
void	ClearFlag(DWORD	fl);

Remarks:
Clears	flags.	Each	bit	that	is	set	in	fl	is	cleared.

Prototype:
bool	GetFlag(DWORD	fl)	const;

Remarks:
Checks	if	flags	are	set.

Return	Value:
TRUE	if	any	of	the	bits	set	in	fl	are	set	in	this	FlagUser.	FALSE	if	none	of
them	are.

Prototype:
void	ClearAllFlags();

Remarks:
Sets	FlagUserFlags	to	0,	clearing	all	flag	bits.

Prototype:
void	CopyFlags(DWORD	fl);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Copies	all	flag	bits	over	from	fl.

Prototype:
void	CopyFlags(const	FlagUser	&	fu);

Remarks:
Copies	all	flag	bits	over	from	fu.

Prototype:
void	CopyFlags(const	FlagUser	*	fu);

Remarks:
Copies	all	flag	bits	over	from	*fu.

Prototype:
void	CopyFlags(DWORD	fl,	DWORD	mask);

Remarks:
Copies	from	fl	only	those	bits	set	in	mask.

Prototype:
void	CopyFlags(const	FlagUser	&fu,	DWORD	mask);

Remarks:
Copies	from	fu	only	those	bits	set	in	mask.

Prototype:
void	CopyFlags(const	FlagUser	*fu,	DWORD	mask);

Remarks:
Copies	from	*fu	only	those	bits	set	in	mask.

Prototype:
void	OrFlags(const	FlagUser	&	fu);

Remarks:
Sets	all	flags	that	are	set	in	fu.

Prototype:
void	OrFlags(const	FlagUser	*	fu);

Remarks:
Sets	all	flags	that	are	set	in	*fu.

Prototype:
void	AndFlags(const	FlagUser	&	fu);

Remarks:
Clears	all	flags	that	are	clear	in	fu.

Prototype:
void	AndFlags(const	FlagUser	*	fu);

Remarks:

Clears	all	flags	that	are	clear	in	*fu.

Prototype:
bool	FlagMatch(DWORD	fmask,	DWORD	fl)	const;

Remarks:
Checks	whether	all	the	bits	that	are	set	in	fmask	are	the	same	in	this	FlagUser
and	in	fl.

Prototype:
bool	FlagMatch(DWORD	fmask,	const	FlagUser	&	fu)	const;

Remarks:
Checks	whether	all	the	bits	that	are	set	in	fmask	are	the	same	in	this	FlagUser
and	in	fu.

Prototype:
bool	FlagMatch(DWORD	fmask,	const	FlagUser	*	fu)	const;

Remarks:
Checks	whether	all	the	bits	that	are	set	in	fmask	are	the	same	in	this	FlagUser
and	in	*fu.

Prototype:
DWORD	ExportFlags()	const;

Remarks:
Returns	a	DWORD	equal	to	FlagUserFlags.

Prototype:
void	ImportFlags(DWORD	fl);

Remarks:
Sets	FlagUserFlags	equal	to	fl.	Same	as	CopyFlags	(fl),	but	it’s	included	for
"linguistic	completeness".

Class	MNVert
See	Also:	Class	FlagUser,	Class	MNMesh,	Template	Class	Tab.
class	MNVert	:	public	FlagUser

Description:
This	class	is	available	in	release	2.0	and	later	only.
MNVert	is	the	vertex	class	used	with	the	MNMesh	mesh.	MNVerts	have	not	only
a	Point3	location,	but	also	some	flags.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
Point3	p
The	location	of	this	MNVert.
int	orig
This	data	member	is	obsolete	and	should	not	be	used.

Flags:
For	more	information	on	flags,	see	Class	FlagUser.
MN_SEL
Indicates	that	the	vertex	is	selected.
MN_TARG
Indicates	that	the	vertex	is	targeted.	(See	the	MNMesh	methods	starting	with
the	words	TargetBy.)
MN_DEAD
Indicates	that	the	vertex	is	not	used	and	should	be	ignored.	Vertices	with	the
MN_DEAD	flag	are	deleted	in	the	next	MNMesh	call	to	CollapseDeadVerts
().
MN_BACKFACING
Indicates	that	the	vertex	faces	"backwards"	in	the	current	viewport.	(Changes
often.)
MN_WHATEVER
Developers	should	not	use	this	flag	and	should	restrict	themselves	to
MN_USER	and	higher	bits.
MN_VERT_DONE

Set	in	algorithms	that	may	accidentally	revisit	the	same	vertex	twice,	to	keep
them	from	processing	it	the	second	time.
MN_VERT_HIDDEN
Different	from	MN_HIDDEN	-	means	a	vert	is	on	a	face's	hvtx	list,	rather	than
existing	independently	of	faces.
MN_USER(1<<16)
Flag	bits	at	or	above	MN_USER	are	reserved	in	all	MNMesh	components	for
the	plug-in	developer,	if	needed.	Since	FlagUser-derived	classes	have	32	flag
bits,	this	allows	for	up	to	16	user-defined	flags.

Methods:

Prototype:
MNVert();

Remarks:
Constructor.
This	method	initializes	the	MNVert.

Prototype:
MNVert	&	operator=(MNVert	&	from);

Remarks:
Assignment	operator.	Copies	over	all	data	from	"from".

Class	MNEdge
See	Also:	Class	FlagUser,	Class	MNMesh.
class	MNEdge	:	public	FlagUser

Description:
This	class	is	available	in	release	2.0	and	later	only.
MNEdge	is	the	edge	class	used	with	the	MNMesh	mesh.	MNEdges	are	"winged-
edge"	structures,	which	means	they	keep	track	of	a	start	vertex,	an	end	vertex,
and	the	(unique)	face	that	uses	the	start	and	end	vertices	in	that	order.	If	there	is	a
face	that	uses	the	end	and	start	vertices	in	that	order,	i.e.	that	travels	this	edge	in
the	other	direction,	it	is	also	recorded.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
int	v1,	v2
The	start	and	end	vertices.	These	values	are	indices	into	the	parent	MNMesh’s
list	of	MNVerts.
int	f1
The	(unique)	face	that	references	this	edge	in	the	forward	direction.	This	value
is	an	index	into	the	parent	MNMesh’s	list	of	MNFaces.
int	f2
The	face	(if	any)	that	references	this	edge	in	the	backward	direction.	Faces
with	f2=-1	are	considered	"one-sided",	and	lie	on	the	boundary	of	a	hole	in	the
mesh.	This	value	is	an	index	into	the	parent	MNMesh’s	list	of	MNFaces.
int	track
This	data	member	is	obsolete	and	should	not	be	used.

Flags:
For	more	information	on	flags,	see	Class	FlagUser.
MN_SEL
Indicates	that	the	edge	is	selected.
MN_TARG
Indicates	that	the	edge	is	targeted.	(See	the	MNMesh	methods	starting	with	the
words	TargetBy.)

MN_DEAD
Indicates	that	the	edge	is	not	used	and	should	be	ignored.	Edges	with	the
MN_DEAD	flag	are	deleted	in	the	next	MNMesh	call	to	CollapseDeadEdges
().
MN_EDGE_INVIS
Both	faces	using	this	edge	consider	it	invisible.
MN_EDGE_HALFINVIS
One	face	using	this	edge	considers	it	invisible.
MN_EDGE_NOCROSS
This	edge	should	not	be	crossed	in	algorithms	like	MNMesh::SabinDoo	that
can	"mix"	faces	across	edges.
MN_EDGE_TV_SEAM
This	edge	lies	on	a	mapping	coordinate	"seam".	You	must	use
MNMesh::SetTVSeamFlags	on	a	mesh	with	mapping	coordinates	in	order	to
set	these	flags	correctly.
MN_EDGE_WHATEVER
Developers	should	not	use	this	flag	and	should	restrict	themselves	to
MN_USER	and	higher	bits.
MN_USER(1<<16)
Flag	bits	at	or	above	MN_USER	are	reserved	in	all	MNMesh	components	for
the	plug-in	developer,	if	needed.	Since	FlagUser-derived	classes	have	32	flag
bits,	this	allows	for	up	to	16	user-defined	flags.

Methods:

Prototype:
MNEdge();

Remarks:
Constructor.	Initializes	both	faces	to	-1	and	both	vertices	to	0.

Prototype:
MNEdge(int	vv1,	int	vv2,	int	fc);

Remarks:
Constructor.	Initializes	edge	to	run	from	vv1	to	vv2	with	f1	set	to	fc.

Prototype:
void	Init();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Initializes	v1,	v2	and	f1	to	0,	f2	to	-1	and	track	to	-1.

Prototype:
int	OtherFace(int	ff);

Remarks:
Assuming	that	ff	is	one	of	the	faces	using	this	edge,	OtherFace	will	return	the
other.	If	the	edge	is	one-sided,	-1	will	be	returned.	If	ff	is	not	one	of	the	faces,
f2	(which	may	be	-1)	will	be	returned.

Prototype:
int	OtherVert(int	vv);

Remarks:
Assuming	that	vv	is	one	of	the	vertices	on	this	edge,	OtherVert	will	return	the
other.	If	vv	is	not	one	of	the	faces,	v2	will	be	returned.

Prototype:
void	Invert();

Remarks:
Flips	the	edge	around,	so	that	it	now	goes	from	what	was	v2	to	what	was	v1.
f1	and	f2	are	also	switched.	This	should	not	be	called	on	one-sided	edges.

Prototype:
void	ReplaceFace(int	of,	int	nf,	int	vv1=-1);

Remarks:
This	method	is	available	in	release	2.5	or	later	only.
Replaces	face	of	with	face	nf	in	the	edge	records.	NOTE	that	this	method
causes	an	assertion	failure	if	face	of	is	not	currently	used	by	the	edge.	If	of	is
on	both	sides	of	the	edge,	which	is	possible	on	some	valid	NONTRI	meshes,	a
nonnegative	vv1	is	used	to	specify	which	side	is	replaced.	Vv1	should	be	the

"starting	vertex"	for	the	edge	on	face	of.	Assertion	failures	will	also	result	if
vv1	is	nonnegative	and	is	not	either	of	the	edge’s	verts,	or	if	vv1	indicates	that
of	should	be	the	edge’s	f1,	but	it	is	not,	etc.

Prototype:
void	ReplaceVert(int	ov,	int	nv);

Remarks:
This	method	is	available	in	release	2.5	or	later	only.
Replaces	vertex	ov	in	the	edge	records	with	vertex	nv.	NOTE	that	this	method
causes	an	assertion	failure	if	vertex	ov	is	not	used	by	this	edge

Prototype:
bool	Uncrossable();

Remarks:
If	this	edge	has	the	MN_EDGE_NOCROSS	flag	set,	or	if	it	has	no	second
face,	this	method	returns	TRUE.	Otherwise,	it	returns	FALSE.	It's	a	shorthand
equivalent	for	(GetFlag(MN_EDGE_NOCROSS)	||(f2<0)).

Prototype:
void	MNDebugPrint();

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Uses	DebugPrint	to	print	out	edge	information	to	the	Debug	Results	window
in	DevStudio.	The	information	consists	of	the	vertices	and	faces	using	this
edge.	It	is	generally	a	good	idea	to	put	in	a	DebugPrint	immediately	before
this	with	the	index	of	the	edge,	so	you	know	which	one	is	being	printed	out:
DebugPrint("Edge	%d:	",	eid);
E(eid)->MNDebugPrint();

Prototype:
MNEdge	&	operator=(const	MNEdge	&	from);

Remarks:
Assignment	operator.	Copies	over	all	data.

Prototype:
int&	operator[](int	i);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Vertex	access	operator.

Default	Implementation:
{	return	i	?	v2	:	v1;	}

Prototype:
const	int&	operator[](int	i)	const;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
Vertex	access	operator.

Default	Implementation:
{	return	i	?	v2	:	v1;	}

Class	MNMeshBorder
See	Also:	Class	MNMesh,	Template	Class	Tab,	Class	BitArray.
class	MNMeshBorder

Description:
This	class	is	available	in	release	2.0	and	later	only.
MNMeshBorder	is	a	small	class	used	to	hold	boundary	information	for	an
MNMesh	mesh.	The	principal	data	contained	is	a	table	of	tables	of	int’s,	which
represent	edge	lists	in	the	MNMesh.	These	edge	lists	form	closed	loops	of	one-
sided	edges:	boundaries,	or	borders,	of	the	mesh.	These	edges	are	stored	in	order
such	that	E(loop(i)[j])->v1	is	the	same	as	E(loop(i)[j+1])->v2,	E(loop(i)[j+1])-
>v1	==	E(loop(i)[j+2])->v2,	and	so	on.	(This	is	the	right-hand,	counterclockwise
order	when	looking	down	on	the	hole	from	outside	the	mesh.)
Most	3ds	max	primitives	have	no	borders,	but	the	Patch	Grid,	when	converted	to
a	mesh,	is	an	example	of	one	with	a	single	border.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
private:
Tab<IntTab	*>	bdr
IntTab	is	itself	a	Tab<int>.	We	use	a	table	of	Tab<int>	pointers	(rather	than	a
table	of	Tab<int>’s)	for	clean	memory	allocation	&	freeing.	However,	this	is
an	unwieldy	structure,	so	it’s	kept	private.
BitArray	btarg
This	is	simply	an	array	of	targeting	bits	for	each	of	the	boundary	loops	in	bdr.

Methods:

Prototype:
~MNMeshBorder();

Remarks:
Destructor;	frees	all	reserved	memory.	There	is	no	Constructor	for	this	class,
since	both	data	members	have	their	own,	adequate	constructors.

Prototype:

void	Clear();
Remarks:
Frees	all	reserved	memory	and	reinitializes	the	data,	producing	an	empty
border.

Prototype:
int	Num();

Remarks:
Returns	the	number	of	border	loops	for	the	MNMesh	analyzed.

Prototype:
IntTab	*Loop(int	i);

Remarks:
Returns	a	pointer	to	the	i’th	border	loop.

Prototype:
bool	LoopTarg(int	i);

Remarks:
Indicates	whether	border	loop	i	is	targeted	or	not.

Prototype:
MNDebugPrint(MNMesh	*m);

Remarks:
This	method	is	available	in	release	2.5	and	later	only.
Uses	DebugPrint	to	print	out	the	MNMesh	borders	to	the	Debug	Results
window	in	DevStudio.	This	can	be	useful	for	tracking	down	bugs.	Be	careful
not	to	leave	MNDebugPrint	calls	in	your	final	build;	they	will	slow	down	your
effect	to	no	purpose.

Parameters:
MNMesh	*m
The	MNMesh	to	which	this	MNMeshBorder	refers	is	required	to	give	more
details	about	the	border.

MNMesh	Note	on	Edge	Characteristics.
See	Also:	Class	MNMesh,	Class	Mesh.
Regular	3ds	max	Meshes	consist	of	faces	and	vertices;	they	have	no	real	edges
as	such.	Edge	characteristics	such	as	visibility	and	selection	are	referenced	by
face.	For	example,	the	edgeSel	data	member	of	a	Class	Mesh	has	3*numFaces
members.	Each	set	of	three	values	edgeSel[i*3],	edgeSel[i*3+1],	and
edgeSel[i*3+2]	represent	the	selection	of	the	three	edges	(going	from	vertex	0	to
vertex	1,	vertex	1	to	vertex	2,	and	vertex	2	to	vertex	0,	respectively)	of	face	i.
There	are	similar	issues	in	MNMesh	for	a	number	of	reasons.	Edge	selection	and
visibility	data	must	initially	be	stored	in	the	MNFace	members,	since	until	we
call	FillInMesh	there	are	no	MNEdges	to	store	them	in.	There	are	a	number	of
methods	in	the	library	(and	many	more	the	developer	could	design)	which	would
invalidate	the	topological	data,	rendering	the	MNEdge	list	invalid.	Also,
eventually,	we’re	going	to	want	to	convert	each	MNMesh	back	into	a	regular
Mesh	using	OutToTri,	so	it’s	convenient	to	store	edge	selection	and	visibility
information	in	the	faces	for	this	purpose.
Thus,	although	the	MNEdges	contain	MN_SEL	and	MN_EDGE_INVIS	flags,
the	more	fundamental	location	for	this	data	is	in	the	MNFaces	using	that	edge.
When	altering	an	MNMesh	to	make	edges	visible	or	invisible,	or	to	change	their
selection	status,	be	sure	to	make	the	changes	in	the	MNFaces	using	the	edge,
otherwise	the	information	can	be	easily	overwritten,	and	generally	won’t	get
passed	to	the	output	Mesh.
With	3.0,	there	are	simple	new	methods	to	do	this:
void	MNMesh::SetEdgeVis	(int	ee,	BOOL	vis=TRUE);
void	MNMesh::SetEdgeSel	(int	ee,	BOOL	sel=TRUE);
Otherwise,	here’s	an	example	of	how	to	set	all	the	information	yourself.	I	want
to	make	edge	ee	visible	and	selected	in	the	following	code:
void	MakeEdgeVisAndSel(MNMesh	&	mm,	int	ee)	{
	assert(mm.GetFlag(MN_MESH_FILLED_IN));
	MNEdge	*me	=	mm.E(ee);
	MNFace	*mf1	=	mm.F(me->f1);
	MNFace	*mf2	=(me->f2>-1)	?	mm.F(me->f2)	:	NULL;
	
	//	Change	the	edge	as	desired

	me->ClearFlag(MN_EDGE_INVIS	|
MN_EDGE_HALF_INVIS);
	me->SetFlag(MN_SEL);
	
	//	Make	the	corresponding	changes	in	face	1
	int	i;
i	=	mf1->EdgeIndex(ee);
mf1->visedg.Set(i);
mf1->edgsel.Set(i);
	
//	Make	the	corresponding	changes	in	face	2
if(mf2)	{
	i	=	mf2->EdgeIndex(ee);
	mf2->visedg.Set(i);
	mf2->edgsel.Set(i);
}

}

MNMesh	Notes	on	Debugging
See	Also:	Class	MNMesh.

MNDebugPrint:
Please	familiarize	yourself	with	the	new	MNDebugPrint	methods	in
MNVert,	MNEdge,	MNFace,	MNMesh,	and	MNMeshBorder.	These
functions	print	out	detailed	ASCII	summaries	of	the	component	or	mesh,	which
can	be	an	invaluable	aid	in	tracking	bugs.	Also,	during	your	debugging	phase,
frequent	calls	to	MNMesh::CheckAllData	can	be	very	useful.	But,	since	the
MNDebugPrint	and	CheckAllData	functions	are	highly	time	intensive	and
serve	no	useful	purpose	for	a	released	plug-in,	you	should	check	to	remove	them
all	before	release.
As	an	example,	here	is	the	MNMesh::MNDebugPrint	output	from	a
standard	3ds	max	box,	after	applying	MakePolyMesh.	Mapping	coordinates,
vertex	colors,	and	face	triangulation	may	also	be	included.
MNMesh	Debug	Output:	8	verts,	12	edges,	6	faces
Vertex	0:(-17.185,	-26.798,	0.000)	Edges:(0	3	9)	Faces:(0	2	5)
Vertex	1:(17.185,	-26.798,	0.000)	Edges:(2	3	8)	Faces:(0	2	3)
Vertex	2:(-17.185,	26.798,	0.000)	Edges:(0	1	11)	Faces:(0	4	5)
Vertex	3:(17.185,	26.798,	0.000)	Edges:(1	2	10)	Faces:(0	3	4)
Vertex	4:(-17.185,	-26.798,	24.984)	Edges:(4	7	9)	Faces:(1	2	5)
Vertex	5:(17.185,	-26.798,	24.984)	Edges:(4	5	8)	Faces:(1	2	3)
Vertex	6:(-17.185,	26.798,	24.984)	Edges:(6	7	11)	Faces:(1	4	5)
Vertex	7:(17.185,	26.798,	24.984)	Edges:(5	6	10)	Faces:(1	3	4)
Edge	0:	verts(0	2),	face	0,	rev-face	5
Edge	1:	verts(2	3),	face	0,	rev-face	4
Edge	2:	verts(3	1),	face	0,	rev-face	3
Edge	3:	verts(1	0),	face	0,	rev-face	2
Edge	4:	verts(4	5),	face	1,	rev-face	2
Edge	5:	verts(5	7),	face	1,	rev-face	3
Edge	6:	verts(7	6),	face	1,	rev-face	4
Edge	7:	verts(6	4),	face	1,	rev-face	5
Edge	8:	verts(1	5),	face	2,	rev-face	3
Edge	9:	verts(4	0),	face	2,	rev-face	5

Edge	10:	verts(3	7),	face	3,	rev-face	4
Edge	11:	verts(2	6),	face	4,	rev-face	5
Face	0:	verts(0	2	3	1)	edges(0v	1v	2v	3v)
Face	1:	verts(4	5	7	6)	edges(4v	5v	6v	7v)
Face	2:	verts(0	1	5	4)	edges(3v	8v	4v	9v)
Face	3:	verts(1	3	7	5)	edges(2v	10v	5v	8v)
Face	4:	verts(3	2	6	7)	edges(1v	11v	6v	10v)
Face	5:	verts(2	0	4	6)	edges(0v	9v	7v	11v)

	
Assertion	failures:
MNMeshes	have	a	complex,	interlinked	topology.	Without	frequent	assertions,	a
mistake	in	one	part	of	the	code	can	result	in	a	failure	much	further	down	the	line.
Since	an	assertion	failure	in	itself	provides	little	diagnostic	information,	each	AF
in	MNMath.dll	is	accompanied	by	a	DebugPrint	message	giving	more
information	about	the	problem.	If	this	information	does	not	immediately	lead	to
a	solution,	try	using	assert	(CheckAllData())	between	each	of	your	MNMesh
operations.
If	you	call	an	MNMesh	function	that	produces	an	inexplicable	error	after	your
MNMesh	has	successfully	had	all	its	data	checked	with
MNMesh::CheckAllData,	please	contact	SDK	support.
To	give	a	simple	example,	suppose	you	had	an	application	which	created	an
MNMesh	from	a	Mesh,	made	it	into	a	polygonal	mesh,	split	a	single	face,	and
returned.
SplitUp(Mesh	&	mesh)	{
	MNMesh	mm(mesh);
	mm.MakePolyMesh();
	mm.SplitTriEdge(0,	.5f);
	mm.OutToTri(mesh);
}

You	try	it	out	on	a	geosphere,	and	it	works	fine.	But	then	you	try	it	out	on	a	box,
and	for	some	reason	you	get	an	assertion	failure	somewhere	in	the	MNMath.dll
source.	By	running	3ds	max	under	the	debugger,	you	can	reproduce	the	error.	If
you	check	the	Debug	output	in	Visual	Studio,	you’ll	find	the	message:
MNMesh::SplitTriEdge	error:	edge’s	face	1(0)	not	a	triangle.

So	you	check	with	the	documentation	and	realize	that	SplitTriEdge	is	an	edge-
splitting	function	that	only	works	on	triangulated	meshes.	To	do	the	same	thing
to	a	PolyMesh,	you	need	to	use	one	of	the	variants	of	SplitEdge.	So	you	can	fix
your	code	by	either	removing	mm.MakePolyMesh(),	triangulating	with	a	call	to
mm.Triangulate(),	or	just	calling	mm.SplitEdge	(0,	.5f)	instead	of	SplitTriEdge.
Imagine	a	more	complicated	case:	in	the	middle	of	a	series	of	complex	MNMesh
modifications	made	by	your	program,	you	need	to	recompute	the	triangulation	of
one	of	the	higher-degree	faces	with	a	call	to	MNMesh::RetriangulateFace.	For
some	reason,	this	generates	an	assertion	failure.	Checking	the	Debug	output,	you
find	the	cryptic	message:
MNMesh::RetriangulateFace	internal	error.

This	could	mean	one	of	two	things.	First	of	all,	the	MNMesh	could	have	had
some	of	its	data	scrambled	before	the	call	to	RetriangulateFace.	You	can	check
this	by	adding	an	assert	(mm.CheckAllData	()),	where	mm	is	your	MNMesh,
immediately	before	the	call	to	RetriangulateFace.	CheckAllData	performs	a
time-intensive	series	of	checks	on	the	mesh	structure,	checking	each	mesh
component	against	the	components	it’s	supposed	to	be	linked	to,	checking	that
nothing	references	a	dead	component,	and	so	on.	If	any	errors	are	found,	the
check	will	fail,	and	CheckAllData	will	print	diagnostic	information	to	the	Debug
output.
If	CheckAllData	gives	your	mesh	a	clean	bill	of	health,	but	you’re	still	getting	an
"internal	error",	or	just	an	"error"	with	no	further	info,	you	may	have	found	a
bug.	Please	contact	SDK	support.

List	of	Edge	Data	Index	Options
See	Also:	Class	MNMesh,	Class	PerData.
The	following	are	the	edge	data	channel	index	values	for	use	with	the	edge	data
methods	of	class	MNMesh	and	class	EPoly.
EDATA_KNOT:	The	edge	knot	data.	This	is	index	0.
EDATA_CREASE:	The	crease	data.	This	is	index	1.
1	through	MAX_EDGEDATA-1:	Developer	defined	data.	Note:	#define
MAX_EDGEDATA	10

Class	MNTempData
See	Also:	Class	BaseInterfaceServer,	Class	MNMesh,	Class	MNFaceClusters,
Class	MNEdgeClusters	,	Class	MNFaceElement,	Class	MNChamferData
class	MNTempData	:	public	BaseInterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	a	class	for	caching	face	and	edge	clusters,	vertex	normals,	and	other
derived	data	about	an	MNMesh.	There	is	a	SetMesh()	method	to	set	the
current	mesh	that	the	TempData	is	based	on,	then	there's	a	series	of	methods	to
update	the	cache	and	return	some	sort	of	derived	data.	All	of	these	methods
follow	the	form:
	

DerivedData	*MNTempData::DData(parameters);
	
DerivedData	is	the	container	for	the	derived	data	requested	(often	a	simple	table,
though	there	are	some	specialized	classes	returned	from	some	methods).	If	the
data	has	already	been	computed,	the	parameters	are	ignored	and	the	cached	data
is	returned.	Otherwise,	the	data	is	computed	from	the	parameters	and	the
current	mesh.
There	are	no	procedures	in	place	to	detect	changes	in	parameters	or	the	mesh
since	the	last	time	a	method	was	called,	so	it's	the	calling	routine's	responsibility
to	free	invalid	structures.	If	you	know	that	only	certain	pipeline	channels,	such
as	GEOM_CHANNEL,	have	changed,	you	can	use	the
Invalidate(DWORD	partsChanged)	method.	(GEOM_CHANNEL
would	free	the	distances-to-selected-vertices,	for	example,	but	not	the	Edge
Clusters.)
In	particular,	there	is	no	way	for	the	MNTempData	to	know	when	its	mesh
pointer	is	no	longer	valid,	so	it's	vital	that	the	calling	routine	clear	the	mesh	(with
SetMesh(NULL))	or	stop	using	the	MNTempData	when	this	happens.
All	data	members	are	private.	They	basically	consist	of	a	series	of	pointers
which	are	initialized	to	NULL	and	then	filled	with	allocated	derived	data	as
requested.	There	is	also	a	NULL-initialized,	private	mesh	pointer	which	is	set
with	SetMesh().	Editable	Poly	uses	this	class	to	hold	all	the	varieties	of

temporary,	cached	data	it	creates	--	examples	are	vertex	normals	and	face
clusters.
To	use	MNTempData,	just	set	it	to	your	mesh	and	start	asking	for	stuff:
	

MyAlgorithm	(MNMesh	*m)	{
MNTempData	mtd(m);
//	Get	Edge	Clusters.
MNEdgeClusters	*eclust	=	mtd.EdgeClusters	();

}

Methods:
public:

Prototype:
MNTempData	();

Remarks:
Constructor.	Sets	all	data	members	to	NULL.

Prototype:
MNTempData	(MNMesh	*m);

Remarks:
Constructor.	Sets	the	internal	mesh	pointer	to	the	mesh	passed.	(Sets	all	other
data	members	to	NULL.)

Parameters:
MNMesh	*m
The	internal	mesh	pointer	to	set.

Prototype:
~MNTempData	();

Remarks:
Destructor.

Prototype:
void	SetMesh	(MNMesh	*m);

Remarks:
Sets	the	internal	mesh	pointer	to	m.

Parameters:
MNMesh	*m
The	internal	mesh	pointer	to	set.

Default	Implementation:
{	mesh	=	m;	}

Prototype:
MNFaceClusters	*FaceClusters	(DWORD
clusterFlags=MN_SEL);

Remarks:
This	method	returns	a	face	cluster	list,	which	groups	selected	faces	into
"clusters"	for	transformation.	See	Class	MNFaceClusters	for	more
information.	If	cached,	the	cache	is	returned.	Otherwise	a	cache	is	allocated
and	computed	from	the	current	mesh.

Parameters:
DWORD	clusterFlags=MN_SEL
The	face	flags	to	cluster	the	faces	by.	For	instance,	with	the	default	value,
faces	are	clustered	by	their	selection.

Prototype:
MNEdgeClusters	*EdgeClusters	(DWORD
clusterFlags=MN_SEL);

Remarks:
Returns	an	edge	cluster	list,	which	groups	selected	edges	into	"clusters"	for
applying	transforms.	See	Class	MNEdgeClusters	for	more	information.	If
cached,	the	cache	is	returned.	Otherwise	a	cache	is	allocated	and	computed
from	the	current	mesh.

Parameters:

DWORD	clusterFlags=MN_SEL
The	edge	flags	to	cluster	the	edges	by.	For	instance,	with	the	default	value,
edges	are	clustered	by	their	selection.

Prototype:
Tab<int>	*VertexClusters	(int	sl,	DWORD
clusterFlags=MN_SEL);

Remarks:
This	method	returns	an	index	of	which	cluster,	if	any,	each	vertex	is	in.	If
cached,	the	cache	is	returned.	Otherwise	a	cache	is	allocated	and	computed
from	the	current	mesh	and	the	parameter.

Parameters:
int	sl
The	selection	level.	This	should	be	either	MNM_SL_EDGE	or
MNM_SL_FACE,	to	indicate	whether	the	vertex	cluster	information	should
be	based	on	edge	or	face	clusters.	Note	that	this	parameter	is	ignored	if	there's
already	a	vertex	cluster	cache.
DWORD	clusterFlags=MN_SEL
The	edge	or	face	flags	to	cluster	the	edges	or	faces	by.	For	instance,	with	the
default	value,	edges	or	faces	are	clustered	by	their	selection.	Note	that	this
parameter	is	ignored	if	there's	already	a	vertex	cluster	cache.

Return	Value:
A	table	of	DWORD's	is	returned,	one	for	each	vertex.	If
(VertexClusters(sl))[i]	is	UNDEFINED,	vertex	i	is	not	in	any	cluster.
Otherwise,	the	value	for	vertex	i	is	the	cluster	index.

Prototype:
Tab<Point3>	*ClusterNormals	(int	sl,	DWORD
clusterFlags=MN_SEL);

Remarks:
This	method	returns	average	normals	for	each	cluster.	If	cached,	the	cache	is
returned.	Otherwise	a	cache	is	allocated	and	computed	from	the	current	mesh
and	the	parameter.	Note	that	cluster	centers	and	normals	are	computed	and
cached	at	the	same	time,	when	you	call	either	method.

Parameters:
int	sl
The	selection	level.	This	should	be	either	MNM_SL_EDGE	or
MNM_SL_FACE,	to	indicate	whether	the	vertex	cluster	information	should
be	based	on	edge	or	face	clusters.	Note	that	this	parameter	is	ignored	if	there's
already	a	cluster	normal	cache.
DWORD	clusterFlags=MN_SEL
The	edge	or	face	flags	to	cluster	the	edges	or	faces	by.	For	instance,	with	the
default	value,	edges	or	faces	are	clustered	by	their	selection.	Note	that	this
parameter	is	ignored	if	there's	already	a	cluster	normal	cache.

Return	Value:
A	table	of	Point3's	is	returned,	one	for	each	cluster.	The	values	are	already
normalized	to	length	1.

Prototype:
Tab<Point3>	*ClusterCenters	(int	sl,	DWORD
clusterFlags=MN_SEL);

Remarks:
This	method	returns	mean	centers	for	each	cluster.	If	cached,	the	cache	is
returned.	Otherwise	a	cache	is	allocated	and	computed	from	the	current	mesh
and	the	parameter.	Note	that	cluster	centers	and	normals	are	computed	and
cached	at	the	same	time,	when	you	call	either	method.

Parameters:
int	sl
Selection	level.	This	should	be	either	MNM_SL_EDGE	or
MNM_SL_FACE,	to	indicate	whether	the	clusters	we're	talking	about	are
the	edge	or	face	clusters.	Note	that	this	parameter	is	ignored	if	there's	already
a	cluster	center	cache.
DWORD	clusterFlags=MN_SEL
The	edge	or	face	flags	to	cluster	the	edges	or	faces	by.	For	instance,	with	the
default	value,	edges	or	faces	are	clustered	by	their	selection.	Note	that	this
parameter	is	ignored	if	there's	already	a	cluster	center	cache.

Return	Value:

A	table	of	Point3's	is	returned,	one	for	each	cluster.

Prototype:
Matrix3	ClusterTM	(int	clust);

Remarks:
This	method	uses	the	current	cluster	center	and	normal	caches	to	return	the
"objectspace	to	clusterspace"	transform.	This	is	the	tranform	of	the	"local"
axis	in	moving	edge	or	face	clusters	in	Editable	Poly.	If	the	cluster	centers	and
normals	have	not	been	cached,	the	identity	matrix	is	returned;	thus	the	control
over	whether	this	is	an	edge	or	face	cluster	is	handled	by	the	last	call	to
ClusterCenters	or	ClusterNormals.

Parameters:
int	clust
The	cluster	you	want	the	transform	for.

Prototype:
Tab<Point3>	*VertexNormals	();

Remarks:
This	method	returns	a	table	of	local	average	normals	for	vertices.	These
normals	are	computed	using	the	MNMesh::GetVertexNormal()	method,
wherein	each	face's	contribution	to	the	vertex	normal	is	weighted	by	the	face
angle	at	the	vertex.

Prototype:
Tab<float>	*VSWeight	(BOOL	useEdgeDist,	int	edgeIts,	BOOL
ignoreBack,	float	falloff,	float	pinch,	float	bubble,	DWORD
selFlags=MN_SEL);

Remarks:
This	method	returns	Vertex	Selection	weights	(for	soft	selection).	If	cached,
the	cache	is	returned.	Otherwise	a	cache	is	allocated	and	computed	from	the
current	mesh	and	the	parameters.	Weights	are	based	on	the	standard	soft
selection	falloff	from	the	currently	selected	vertices.
Note:	If	useEdgeDist	is	FALSE,	this	is	an	n-log-n	algorithm:	it	compares

every	vertex	not	in	the	cluster	with	every	vertex	in	it.	If	useEdgeDist	is
TRUE,	the	time	it	takes	is	proportional	to	the	number	of	verts	in	the	cluster
times	edgeIts.

Parameters:
BOOL	useEdgeDist
If	set	to	TRUE,	the	distance	between	vertices	is	computed	along	edges.	If	set
to	FALSE,	it's	computed	directly	through	space.
int	edgeIts
This	indicates	the	maximum	number	of	edges	the	algorithm	may	travel	along
in	finding	the	distance	between	vertices.	(Maximum	path	length.)
BOOL	ignoreBack
If	set	to	TRUE,	vertices	with	a	normal	(as	computed	in	VertexNormals)	that
points	more	than	90	degrees	away	from	the	average	normal	of	the	selection	are
not	given	any	partial	selections.	They're	either	1	if	selected	or	0	otherwise.
float	falloff
The	limit	distance	of	the	effect.	If	distance	>	falloff,	the	function	will	always
return	0.
float	pinch
Use	this	to	affect	the	tangency	of	the	curve	near	distance=0.	Positive	values
produce	a	pointed	tip,	with	a	negative	slope	at	0,	while	negative	values
produce	a	dimple,	with	positive	slope.
float	bubble
Use	this	to	change	the	curvature	of	the	function.	A	value	of	1.0	produces	a
half-dome.	As	you	reduce	this	value,	the	sides	of	the	dome	slope	more	steeply.
Negative	values	lower	the	base	of	the	curve	below	0.
DWORD	selFlags=MN_SEL
Indicates	what	flag	defines	the	hard	selection	we're	basing	this	soft	selection
on.

Return	Value:
A	table	of	float	values,	one	per	vertex,	that	are	1.0	if	the	vertex	is	in	the
current	selection,	0.0	if	it's	more	than	falloff	distance	(or	more	than	edgeIts
edges,	if	(useEdgeDist)),	and
AffectRegionFunction((*SelectionDist(useEdgeDist,	edgeIts)),	falloff,	pinch,
bubble)	otherwise.

Prototype:
Tab<float>	*SelectionDist	(BOOL	useEdgeDist,	int	edgeIts,
DWORD	selFlags=MN_SEL);

Remarks:
This	method	computes	the	current	distance	of	each	vertex	from	the	current
selection.	If	cached,	the	cache	is	returned.	Otherwise	a	cache	is	allocated	and
computed	from	the	current	mesh	and	the	parameters.	The	term	"Selected
verts"	below	refers	to	the	vertices	that	are	selected	in	the	mesh's	current
selection	level.	See	the	Mesh	method	GetTempSel()	for	details.
NOTE:	If	useEdgeDist	is	FALSE,	this	is	an	n-log-n	algorithm:	it	compares
every	nonselected	vertex	with	every	selected	one.	If	useEdgeDist	is	TRUE,
the	time	it	takes	is	proportional	to	the	number	of	selected	vertices	times
edgeIts.

Parameters:
BOOL	useEdgeDist
If	set	to	TRUE,	the	distance	between	vertices	is	computed	along	edges.	If	set
to	FALSE,	it's	computed	directly	through	space.
int	edgeIts
This	indicates	the	maximum	number	of	edges	the	algorithm	may	travel	along
in	finding	the	distance	between	vertices.	(Maximum	path	length.).
DWORD	selFlags=MN_SEL
Indicates	what	flag	defines	the	hard	selection	we're	basing	this	soft	selection
on.

Return	Value:
A	table	consisting	of	one	float	value	per	vertex.	If	this	value	is	0,	the	vertex	is
either	selected	or	on	top	of	a	selected	vertex.	Otherwise	it	represents	the
distance	to	the	closest	selected	vertex.	If	useEdgeDist	is	TRUE,	values	of
-1.0	are	returned	for	vertices	with	no	edgeIts-length	path	to	a	selected	vertex.

Prototype:
Tab<float>	*ClusterDist	(int	sl,	DWORD	clusterFlags,	int	clustId,
BOOL	useEdgeDist,	int	edgeIts);

Remarks:

This	method	computes	the	current	distance	of	each	vertex	from	the	specified
cluster.	If	cached,	the	cache	is	returned.	Otherwise	a	cache	is	allocated	and
computed	from	the	current	mesh	and	the	parameters.
NOTE:	If	useEdgeDist	is	FALSE,	this	is	an	n-log-n	algorithm:	it	compares
every	vertex	not	in	the	cluster	with	every	vertex	in	it.	If	useEdgeDist	is
TRUE,	the	time	it	takes	is	proportional	to	the	number	of	verts	in	the	cluster
times	edgeIts.

Parameters:
int	sl
Indicates	whether	we	should	use	edges	(MNM_SL_EDGE)	or	faces
(MNM_SL_FACE)	to	construct	the	clusters,	if	needed.
DWORD	clusterFlags
The	edge	or	face	flags	to	cluster	the	edges	or	faces	by.	For	instance,	if
clusterFlags==MN_SEL,	edges	or	faces	are	clustered	by	selection.
int	clustId
The	ID	of	the	cluster	we're	measuring	distance	from.
BOOL	useEdgeDist
If	set	to	TRUE,	the	distance	between	vertices	is	computed	along	edges.	If	set
to	FALSE,	it's	computed	directly	through	space.
int	edgeIts
This	indicates	the	maximum	number	of	edges	the	algorithm	may	travel	along
in	finding	the	distance	between	vertices.	(Maximum	path	length.)

Return	Value:
A	table	consisting	of	one	float	value	per	vertex.	If	this	value	is	0,	the	vertex	is
either	selected	or	on	top	of	a	vertex	in	the	cluster.	Otherwise	it	represents	the
distance	to	the	closest	selected	vertex.	If	useEdgeDist	is	TRUE,	values	of
-1.0	are	returned	for	vertices	with	no	edgeIts-length	path	to	a	vertex	in	the
cluster.

Prototype:
Tab<Point3>	*OutlineDir	(int	extrusionType,	DWORD
clusterFlags=MN_SEL);

Remarks:

This	method	produces	the	"Outline"	direction	of	all	vertices,	based	on	the
current	face	selection.	"Outlining"	is	the	direction	vertices	move	to	move
edges	of	the	current	face	selection	outward	at	a	constant	rate.	They	are	not	set
to	length	1,	but	rather	to	whatever	"rate"	best	makes	the	outline	edges	move
most	consistently,	without	changing	their	angles.

Parameters:
int	extrusionType
This	is	one	of	MESH_EXTRUDE_CLUSTER	or
MESH_EXTRUDE_LOCAL,	to	indicate	whether	vertices	should	move
according	to	cluster	or	local	face	normals.
DWORD	clusterFlags=MN_SEL
The	face	flags	to	cluster	the	faces	by.	For	instance,	if	left	at	the	default	value,
faces	are	clustered	by	selection.	Note	that	this	parameter	is	ignored	if	the
extrusionType	is	LOCAL.

Prototype:
MNChamferData	*ChamferData();

Remarks:
This	method	returns	the	cache	of	a	ChamferData	for	use	in	the	MNMesh
Chamfer	methods.	Unlike	other	MeshTempData	methods,	this	method
makes	no	calculations	based	on	the	current	mesh,	but	merely	supplies	a
memory	cache.	(Computing	this	information	is	left	to	the	MNMesh	methods
GetExtrudeDirection,	ChamferVertices,	and	ChamferEdges.)

Prototype:
void	Invalidate	(DWORD	part);

Remarks:
This	method	invalidates	all	data	based	on	the	specified	part	of	the	mesh.	In	the
following	chart,	the	columns	represent	the	channels	GEOM_CHANNEL
(G),	TOPO_CHANNEL	(T),	SELECT_CHANNEL	(S),	and
SUBSEL_TYPE_CHANNEL	(U).	X's	indicate	dependency	of	the
specified	data	cache	on	the	given	channel.
	

Method	to	get	cache G T S U

	 	 	 	 	

FaceClusters 	 X X 	

EdgeClusters 	 X X 	

VertexClusters 	 X X X

ClusterCenters X X X X

ClusterNormals X X X X

VertexNormals X X 	 	

SelectionDist X X X X

ClusterDist X X X X

VSWeight X X X X

	
NOTE:	ChamferData	and	the	Outline	direction	info	are	handled	separately
in	freeChamferData	and	freeBevelInfo.

Parameters:
DWORD	part
One	or	more	of	the	following	channels:	GEOM_CHANNEL,
TOPO_CHANNEL,	SELECT_CHANNEL,
SUBSEL_TYPE_CHANNEL.

Prototype:
void	InvalidateDistances	();

Remarks:
This	method	Uncaches	(frees)	the	distance	dependent	data	returned	by
VSWeight,	SelectionDist,	and	ClusterDist.

Prototype:
void	InvalidateSoftSelection	();

Remarks:
This	method	frees	the	VSWeight	data	(but	not	the	underlying	distance-from-
selection	info).	This	is	useful,	e.g.,	if	the	mesh	has	not	changed,	but	you	wish
to	change	the	falloff,	pinch,	or	bubble	parameters	to	get	new	vertex	selection
weights.

Prototype:
void	freeClusterDist	();

Remarks:
This	method	is	mainly	for	internal	use,	this	frees	just	the	cluster	distance	data.

Prototype:
void	freeBevelInfo	();

Remarks:
This	method	frees	only	the	outlining	data.

Prototype:
void	freeChamferData();

Remarks:
This	method	frees	only	the	chamfer	data	structure.

Prototype:
void	freeAll	();

Remarks:
This	method	frees	all	cached	data	of	any	kind.

Global	Functions
The	following	global	methods	are	also	available	for	use,	though	the	related
methods	in	the	MNTempData	class	are	more	highly	recommended.

Prototype:
void	SelectionDistance	(MNMesh	&	mesh,	float	*selDist,	DWORD
selFlags);

Remarks:
This	function	computes	the	current	distance	of	each	vertex	from	the	current
selection.	NOTE:	This	is	an	n-log-n	algorithm:	it	compares	every	non-selected
vertex	with	every	selected	one.

Parameters:

MNMesh	&	mesh
The	mesh	we're	computing	distances	in.
float	*selDist
A	pointer	to	an	array	of	floats	of	size	mesh.VNum().	This	array	is	filled	in
with	one	float	value	per	vertex.	If	this	value	is	0,	the	vertex	is	either	selected
or	"on	top	of"	a	selected	vertex.	Otherwise	it	represents	the	distance	to	the
closest	selected	vertex.
DWORD	selFlags
Indicates	what	flag	defines	the	hard	selection	we're	basing	this	soft	selection
on.	(MN_SEL	is	generally	best.)

Prototype:
void	SelectionDistance	(MNMesh	&	mesh,	float	*selDist,	int	iters,
DWORD	selFlags);

Remarks:
This	function	computes	the	current	distance	of	each	vertex	from	the	current
selection,	along	paths	of	edges.	NOTE:	This	is	an	n-log-n	algorithm:	it
compares	every	non-selected	vertex	with	every	selected	one.

Parameters:
MNMesh	&	mesh
The	mesh	we're	computing	distances	in.
float	*selDist
A	pointer	to	an	array	of	floats	of	size	mesh.VNum().	This	array	is	filled	in
with	one	float	value	per	vertex.	If	this	value	is	0,	the	vertex	is	either	selected
or	"on	top	of"	a	selected	vertex.	Otherwise	it	represents	the	distance	to	the
closest	selected	vertex.	Values	of	-1	are	used	to	indicate	vertices	that	are	more
that	iters	edges	away	from	any	selected	vertex.
int	iters
This	indicates	the	maximum	number	of	edges	the	algorithm	may	travel	along
in	finding	the	distance	between	vertices.	(Maximum	path	length.).
DWORD	selFlags
Indicates	what	flag	defines	the	hard	selection	we're	basing	this	soft	selection
on.	(MN_SEL	is	generally	best.)

Prototype:
void	ClustDistances	(MNMesh	&	mesh,	int	numClusts,	int	*vclust,
Tab<float>	**clustDist);

Remarks:
Computes	the	current	distance	of	each	vertex	from	the	specified	cluster.	If
cached,	the	cache	is	returned.	Otherwise	a	cache	is	allocated	and	computed
from	the	current	mesh	and	the	parameters.
NOTE:	This	is	an	n-log-n	algorithm	for	each	cluster:	it	compares	every	vertex
not	in	the	cluster	with	every	vertex	in	it.

Parameters:
MNMesh	&	mesh
The	MNMesh	these	cluster	distances	are	based	on.
int	numClusts
The	number	of	clusters	available.
int	*vclust
A	pointer	into	the	vertex	cluster	table.
Tab<float>	**clustDist
An	array	of	pointers	to	tables	which	will	be	filled	with	one	float	value	per
vertex.	The	table	pointed	to	by	clustDist[i]	contains	the	cluster	distances	for
cluster	i.	Note	that	clustDist	must	be	allocated,	for	instance	by	clustDist	=
new	(Tab<float>*)[numClusts],	and	must	have	its	members	allocated,	for
instance	by	clustDist[i]	=	new	Tab<float>,	by	the	calling	routine.	If	a
value	in	a	table	is	0,	the	vertex	is	either	selected	or	on	top	of	a	vertex	in	the
cluster.	Otherwise	it	represents	the	distance	to	the	closest	selected	vertex.	If
useEdgeDist	is	TRUE,	values	of	-1.0	are	returned	for	vertices	with	no
edgeIts-length	path	to	a	vertex	in	the	cluster.

Prototype:
void	ClustDistances	(MNMesh	&	mesh,	int	numClusts,	int	*vclust,
Tab<float>	**clustDist,	int	iters);

Remarks:
Computes	the	current	distance	of	each	vertex	from	the	specified	cluster.	If
cached,	the	cache	is	returned.	Otherwise	a	cache	is	allocated	and	computed

from	the	current	mesh	and	the	parameters.
NOTE:	This	algorithm	takes	time	proportional	to	the	number	of	verts	in	each
cluster	times	iters	times	the	number	of	clusters.

Parameters:
MNMesh	&	mesh
The	MNMesh	these	cluster	distances	are	based	on.
int	numClusts
The	number	of	clusters	available.
int	*vclust
A	pointer	into	the	vertex	cluster	table.
Tab<float>	**clustDist
An	array	of	pointers	to	tables	which	will	be	filled	with	one	float	value	per
vertex.	The	table	pointed	to	by	clustDist[i]	contains	the	cluster	distances	for
cluster	i.	Note	that	clustDist	must	be	allocated,	for	instance	by	clustDist	=
new	(Tab<float>	*)[numClusts],	and	must	have	its	members	allocated,
for	instance	by	clustDist[i]	=	new	Tab<float>,	by	the	calling	routine.	If	a
value	in	a	table	is	0,	the	vertex	is	either	selected	or	on	top	of	a	vertex	in	the
cluster.	Otherwise	it	represents	the	distance	to	the	closest	selected	vertex.
Values	of	-1.0	are	returned	for	vertices	with	no	iters-length	path	to	a	vertex	in
the	cluster.
int	iters
The	maximum	edge	path	length	to	compute	distance	along	(in	number	of
edges).

Class	MNChamferData
See	Also:	Class	MNTempData,	Class	MNMesh
class	MNChamferData

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	contains	all	the	data	needed	to	move	points	(and	map	vertices)	as	the
user	drags	a	chamfer	or	extrude.	It's	created	by	the	topological	change	that
happens	at	the	start	of	the	chamfer	or	extrude.	The	strategy	is	this:	The
chamfer/extrude	operation	is	divided	into	two	parts,	the	topological	change	and	a
later	geometric	change.	(This	works	well	for	Editable	Poly,	where	the	topology
change	is	completed	first,	then	apply	a	series	of	geometry	changes	as	the	user
spins	a	spinner	or	drags	a	mouse.	Each	geometry	change	is	undone	before	the
next	is	applied,	but	the	topology	change	only	happens	once.)
This	class	is	first	initialized	to	a	mesh.	Then	its	data	is	filled	in	by	the
topological	change.	This	data	is	used	to	find	"directions"	for	all	the	geometric
and	mapping	vert	changes	over	the	course	of	the	geometric	modification.
For	convenient	caching,	it	is	recommended	that	you	use	this	class	through	the
MNTempData	class.

Data	Members:
private:
Tab<UVVert>	hmdir[NUM_HIDDENMAPS];
The	direction	vectors	for	mapping	vertices	in	any	active	"hidden"	mapping
channels.

public:
Tab<Point3>	vdir;
The	related	direction	vectors	for	mapping	vertices	in	all	active	mapping
channels.
Tab<Point3>	vmax;
The	maximum	amount	each	vector	may	be	applied	(before	vertices	start
crossing	over	each	other).
Tab<UVVert>	*mdir;
The	related	direction	vectors	for	mapping	vertices	in	all	active	mapping
channels.

Methods:
public:

Prototype:
MNChamferData	();

Remarks:
Constructor.

Default	Implementation:
{	mdir=NULL;	}

Prototype:
MNChamferData	(const	MNMesh	&	m);

Remarks:
Constructor.
This	constructor	Initializes	to	the	mesh	passed	(allocates	mapping	channels,
etc.)

Parameters:
const	MNMesh	&	m
The	specified	mesh.

Default	Implementation:
{	mdir=NULL;	InitToMesh(m);	}

Prototype:
~MNChamferData	();

Remarks:
Destructor.

Default	Implementation:
{	if	(mdir)	delete	[]	mdir;	}

Prototype:
void	InitToMesh	(const	MNMesh	&	m);

Remarks:
This	method	sets	up	the	MNChamferData	based	on	a	given	mesh,
allocating	the	vertex	and	mapping	vertex	tables	as	appropriate.

Parameters:
const	MNMesh	&	m
The	Mesh	to	initialize	from.

Prototype:
void	setNumVerts	(int	nv,	bool	keep=TRUE,	int	resizer=0);

Remarks:
This	method	simply	allocates	the	vdir	and	vmax	tables,	and	initializes	the
new	members	of	vmax	to	0.	(Note:	this	method	can	be	applied	to	an	existing
MNChamferData	to	reflect	an	increase	in	vertices	in	the	MNMesh	as
topological	changes	occur.)

Parameters:
int	nv
The	number	of	vertices.
bool	keep=TRUE
TRUE	to	keep	old	data	if	resized;	FALSE	to	discard	old	data.
int	resizer=0
The	number	of	extra	elements	the	vdir	and	vmax	tables	are	resized	beyond
their	current	size.	(Extra	allocation	space	to	prevent	excessive	reallocation.)

Prototype:
void	ClearLimits	();

Remarks:
Clears	all	the	vmax	limits	to	-1	(no	limit).

Prototype:
void	GetDelta	(float	amount,	Tab<Point3>	&	delta);

Remarks:
Uses	vectors	and	limits	to	obtain	the	offsets	corresponding	to	a	certain	extrude

or	chamfer	amount.
Parameters:
float	amount
The	amount	of	the	extrude	or	chamfer.
Tab<Point3>	&	delta
A	table	(with	size	set	equal	to	the	number	of	vertices,	aka	vdir.Count())
containing	the	geometric	offset	for	each	vertex	in	the	mesh.

Prototype:
bool	GetMapDelta	(MNMesh	&	mm,	int	mapChannel,	float
amount,	Tab<UVVert>	&	delta);

Remarks:
Uses	map	vectors	and	limits	to	obtain	the	mapping	offsets	corresponding	to	a
certain	extrude	or	chamfer	amount.

Parameters:
MNMesh	&	mm
The	mesh	this	MNChamferData	is	based	on.
int	mapChannel
The	index	of	the	map	channel	(from	-NUM_HIDDENMAPS	to
mm.MNum()).
float	amount
The	amount	of	the	extrude	or	chamfer.
Tab<UVVert>	&	delta
The	offsets	for	each	mapping	vertex	in	this	map	in	the	mesh.

Prototype:
Tab<UVVert>	&	MDir	(int	mp);

Remarks:
Data	accessor.	This	method	returns	the	appropriate	map	info.	If	mp	>=	0,	it
returns	the	member	of	the	mdir	array.	If	mp	<	0,	it	returns	the	member	of	the
hmdir	array	(in	keeping	with	"hidden	map	channel"	indexing	conventions).

Default	Implementation:

{	return	(mp<0)	?	hmdir[-1-mp]	:	mdir[mp];	}
	
	

The	following	are	not	part	of	the	class	but	are	useful	for	debugging

	Prototype:
	DllExport	void	MNChamferDataDebugPrint	(MNChamferData	&
mcd,	int	mapNum);

	Description
This	function	uses	calls	to	DebugPrint()	to	output	all	the	data	in	the	specified
MNChamferData	to	the	DebugPrint	buffer	during	debug	runs.	It	is	available
for	programmers'	use,	providing	easy	access	to	MNChamferData	during
development.	It	ought	to	be	removed	for	release	builds.

	Parameters:
	MNChamferData	&	mcd
The	MNChamferData	we	want	to	investigate.

	int	mapNum
The	number	of	map	channels	in	the	MNMesh	associated	with	this
MNChamferData	.	(For	historical	reasons,	this	information	is	not	kept	in	the
MNChamferData	class.)	Generally	this	is	retrieved	with	a	call	to
MNMesh::MNum().

Class	FrameRange
See	Also:	Class	ImageFilterInfo.
class	FrameRange

Description:
This	class	describes	a	range	of	frames	and	provides	methods	to	access	the	first,
last,	current	and	number	of	frames	in	the	range.	All	methods	of	this	class	are
implemented	by	the	system.

Methods:

Prototype:
virtual	int	First()

Remarks:
Returns	the	first	frame	number	of	this	range.

Prototype:
virtual	int	Last()

Remarks:
Returns	the	last	frame	number	of	this	range.

Prototype:
virtual	int	Count()

Remarks:
Returns	the	number	of	frames	in	this	range.

Prototype:
virtual	int	Current()

Remarks:
Returns	the	current	frame	of	this	range.

Prototype:
virtual	int	Elapsed()

Remarks:
Returns	the	elapsed	time	of	this	range.

Prototype:
virtual	void	SetFirst(int	u)

Remarks:
Sets	the	first	frame	number	for	this	range	to	the	specified	value.

Parameters:
int	u
Specifies	the	new	first	frame	number.

Prototype:
virtual	void	SetLast(int	u)

Remarks:
Sets	the	last	frame	number	for	this	range	to	the	specified	value.

Parameters:
int	u
Specifies	the	new	last	frame	number.

Prototype:
virtual	void	SetCurrent(int	u)

Remarks:
Sets	the	current	frame	number	for	this	range	to	the	specified	value.

Parameters:
int	u
Specifies	the	new	current	frame	number.

Class	TVNodeNotify
See	Also:	Class	ITrackViewNode,	Class	UndoNotify.
class	TVNodeNotify

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	is	the	callback	object	for
ITrackViewNode::RegisterTVNodeNotify().	Developers	should	derive
their	class	from	this	class	and	implement	the	NotifyRefChanged()	method.
This	allows	the	Track	View	Node	to	intercept	reference	notifications	when
they	use	a	Track	View	Node.
For	an	example	of	this	class	in	use	by	ImageFilter	plug-ins	see	class
UndoNotify	in	\MAXSDK\INCLUDE\FILTERS.H.	It	is	sub-classed
from	this	class	and	provides	an	implementation	of	NotifyRefChanged().

All	methods	of	this	class	are	implemented	by	the	plug-in.

Methods:

Prototype:
virtual	RefResult	NotifyRefChanged(Interval	changeInt,
RefTargetHandle	hTarget,	PartID&	partID,	RefMessage
message)=0;

Remarks:
A	plug-in	which	makes	references	must	implement	this	method	to	receive	and
respond	to	messages	broadcast	by	its	dependents.

Parameters:
Interval	changeInt
This	is	the	interval	of	time	over	which	the	message	is	active.	Currently,	all
plug-ins	will	receive	FOREVER	for	this	interval.
RefTargetHandle	hTarget
This	is	the	handle	of	the	reference	target	the	message	was	sent	by.	The
reference	maker	uses	this	handle	to	know	specifically	which	reference	target
sent	the	message.
PartID&	partID

This	contains	information	specific	to	the	message	passed	in.	Some	messages
don't	use	the	partID	at	all.	See	the	section	List	of	Reference	Messages	for
more	information	about	the	meaning	of	the	partID	for	some	common
messages.
RefMessage	message
The	message	parameters	passed	into	this	method	is	the	specific	message
which	needs	to	be	handled.	See	List	of	Reference	Messages.

Return	Value:
The	return	value	from	this	method	is	of	type	RefResult.	This	is	usually
REF_SUCCEED	indicating	the	message	was	processed.	Sometimes,	the
return	value	may	be	REF_STOP.	This	return	value	is	used	to	stop	the
message	from	being	propagated	to	the	dependents	of	the	item.

DLL	Setup	(SDK)

MAXScript	plug-in	extensions	are	packaged	as	Win32
DLL's	in	almost	exactly	the	same	way	as	standard	MAX
plug-ins.	They	are	named	with	a	specific	suffix	to	fit	in
with	the	MAX	plug-in	naming	scheme	(.DLX)	and
should	be	installed	in	one	of	the	MAX	plug-in
directories.	MAXScript	looks	for	and	loads	all	the
*.DLX	files	it	finds	in	the	MAX	plug-in	directories.
You	should	be	familiar	with	the	section	on	MAX	plug-in	construction
in	the	MAX	SDK	documentation	because	the	following	notes
primarily	describe	what	is	different	about	setting	up	MAXScript	plug-
ins.
The	plug-in's	external	interface	is	defined	with	a	.DEF	file,	as	are
MAX	plug-ins,	but	in	this	case	there	are	only	three	entry	points:
LIBRARY	<plugin_name>
EXPORTS
LibDescription	@1	
LibInit	@2	
LibVersion	@3	
SECTIONS
.data	READ	WRITE	

The	LibDescription	and	LibVersion	entry	points	are	the	same	as	for
MAX	plug-ins.	The	LibInit	entry	is	called	by	MAX	after	MAXScript
has	loaded	itself	and	all	its	.DLX	plug-ins	so	that	each	can	perform
any	runtime	initialization.	MAXScript	is	fully	functional	at	the	time
these	init	functions	are	called.
The	following	code	shows	a	typical	DLX	entry	point	implementation
(this	is	from	sample.cpp	in	the	SDK).	All	of	the	required	headers	are
included	by	the	master	header	file,	MAXscrpt.h,	including	Max.h
for	MAX	SDK-related	code.

#include	"MAXScrpt.h"
	
HMODULE	hInstance;
	
BOOL	APIENTRY
DllMain(HMODULE	hModule,	DWORD	ul_reason_for_call,
LPVOID	lpReserved)
{
static	BOOL	controlsInit	=	FALSE;	
switch	(ul_reason_for_call)	
{	
case	DLL_PROCESS_ATTACH:	
//	Hang	on	to	this	DLL's	instance	handle.	
hInstance	=	hModule;	
if	(!controlsInit)	
{	
controlsInit	=	TRUE;	
//	Initialize	Win95	controls	
InitCommonControls();	
}	
break;	
}	
return(TRUE);	
}
	
__declspec(dllexport)	void
LibInit()
{
//	do	any	setup	here.	MAXScript	is	fully	up	at	this	point.	
}
	
__declspec(dllexport)	const	TCHAR	*
LibDescription()

{
return	_T("Sample	MAXscript	DLX");
}
	
__declspec(dllexport)	ULONG
LibVersion()
{
return	VERSION_3DSMAX;
}
	

If	any	Win32	common	controls	or	MAX	custom	controls
are	to	be	used	in	the	DLL,	you	should	initialize	them
during	process	attach,	in	the	same	way	you	would	in	a
MAX	DLL.	For	the	LibVersion	entry	point,	you	should
return	the	current	3DSMAX	version	as	shown.

Libraries	(SDK)

The	MAXScript	SDK	API	is	defined	in	the	various
headers	and	the	import	library,	Maxscrpt.lib,	supplied
with	the	SDK.	You	should	add	this	library	to	your	project
along	with	any	MAX	SDK	import	libraries	needed	to
support	MAX	SDK	use.	The	header	files	are	described	in
the	MAXScript	Header	Files	topic.

Build	Configurations	(SDK)

For	the	moment,	there	is	no	Debug	version	of	the	SDK.
You	should	configure	VC++	builds	as	you	would	Hybrid
MAX	SDK	plug-in	builds	(that	is,	exactly	as	Debug	with
code	generation	set	for	Multi-threaded	DLL	rather	than
Debug	Multi-threaded	DLL).

MAXScript	Value	Constructors	(SDK)

In	the	course	of	implementing	new	extensions	to
MAXScript,	you	will	encounter	the	need	to	create
MAXScript	values,	perhaps	to	pass	back	results	or	to
work	with	other	parts	of	the	MAXScript	API.	This	topic
describes	the	MAXScript	value	classes,	their
constructors	and	how	to	cooperate	with	the	automatic
garbage	collector.
All	computable	values	in	MAXScript	are	instances	of	classes	derived
from	Value.	MAXScript	is	polymorphic	across	all	Value	subclasses.
These	values	are	allocated	in	a	separate,	garbage	collected	heap,	and
carry	their	own	runtime	typing	info.
All	non-static	instances	of	the	Value	class	family	should	be	heap-
allocated	with	the	'new'	operator	or	one	of	the	following	intern()
functions	so	that	garbage	collection	will	work.
Certain	classes	with	immutable	instances	provide	interning	functions
in	place	of	C++	constructors	that	may	implement	caches	or	other
interning	mechanisms.	In	particular,	Name	instances	are	always	be
created	with	Name::intern()	to	ensure	pointer	equality	on	names.
static	Value*	Float::intern(float	init_val);
static	Value*	Integer::intern(int	init_val);
static	Value*	Name::intern(char*	str);
static	Value*	Name::find_intern(char*	str);
static	Value*	MSTime::intern(TimeValue	t);
	
AngAxisValue	(const	AngAxis&	iaa);
AngAxisValue	(const	Matrix3&	m);
AngAxisValue	(const	Quat&	q);
AngAxisValue	(float	angle,	Point3	axis);
AngAxisValue	(float*	angles);

AngAxisValue	(Value*	angle,	Value*	axis);
AngAxisValue	(Value*);
Array	(int	init_size);
ColorValue	(AColor	col);
ColorValue	(BMM_Color_64&	col);
ColorValue	(Color	col);
ColorValue	(COLORREF	col);
ColorValue	(float	r,	float	g,	float	b,	float	a	=	1.0f);
ColorValue	(Point3	col);
ColorValue	(Point3Value*	col);
EulerAnglesValue	(const	AngAxis&);
EulerAnglesValue	(const	Matrix3&);
EulerAnglesValue	(const	Quat&);
EulerAnglesValue	(float	ax,	float	ay,	float	az);
Matrix3Value	(const	AngAxis&	aa);
Matrix3Value	(const	Matrix3&	im);
Matrix3Value	(const	Point3&	row0,	const	Point3&	row1,
const	Point3&	row2,	Point3&	row3);	
Matrix3Value	(const	Quat&	q);
Matrix3Value	(float*	angles);
Matrix3Value	(int	i);
MSInterval	(Interval	i);
MSInterval	(TimeValue	s,	TimeValue	e);
Point2Value	(float	x,	float	y);
Point2Value	(POINT	ipoint);
Point2Value	(Point2	ipoint);
Point2Value	(Value*	x,	Value*	y);
Point3Value	(float	x,	float	y,	float	z);
Point3Value	(Point3	init_point);
Point3Value	(Value*	x,	Value*	y,	Value*	z);
QuatValue	(AngAxis&	aa);
QuatValue	(const	Quat&	init_quat);
QuatValue	(float	w,	float	x,	float	y,	float	z);

QuatValue	(float*	angles);
QuatValue	(Matrix3&	m);
QuatValue	(Value*	val);
QuatValue	(Value*	w,	Value*	x,	Value*	y,	Value*	z);
RayValue	(Point3	init_origin,	Point3	init_dir);
RayValue	(Ray	init_ray);

Distinguished	Values	(SDK)

There	are	several	distinguished	values	in	MAXScript	that
are	implemented	as	static	instances	of	their	classes,	as
follows:
Undefined	undefined;
Ok	ok;
Unsupplied	unsupplied;
Boolean	true_value;
Boolean	false_value;

Because	these	are	static	instances,	you	need	to	remember
to	work	with	their	addresses:
return	&ok;	//	return	the	ok	value
	
if	(val	==	&true_value)	//	value	true?
...	

Coercion	to	C++	Types	(SDK)

The	Value	class	defines	the	following	virtual	functions
for	converting	selected	Value	instances	to	appropriate
C++	types.	Value	subclasses	implement	the	converters
that	make	sense	for	them.	Attempting	an	unsupported
conversion	will	generate	a	descriptive	MAXScript
runtime	error.
In	most	cases,	MAXScript	Value	classes	act	as	wrappers	for	C++
types	and	classes.	Converters	that	yield	pointer	types	all	return
pointers	to	the	value	being	wrapped,	so	take	care	when	modifying	the
data	and	be	aware	that	the	collector	may	invalidate	the	pointer
underneath	you	(the	topic	Protecting	Newly	Created	Values	from	the
Collector	shows	you	ways	to	prevent	this).	At	the	moment,	the
collector	is	synchronous	and	will	only	run	if	needed	during	an
allocate.
class	Value
virtual	float	to_float();	
virtual	char*	to_string();	
virtual	int	to_int();	
virtual	BOOL	to_bool();	
virtual	Point3	to_point3();	
virtual	Point2	to_point2();	
virtual	AColor	to_acolor();	
virtual	INode*	to_node();	
virtual	Ray	to_ray();	
virtual	Interval	to_interval();	
virtual	Quat	to_quat();	
virtual	AngAxis	to_angaxis();	
virtual	Matrix3&	to_matrix3();	
virtual	float*	to_eulerangles();	
virtual	Mtl*	to_mtl();	

virtual	Texmap*	to_texmap();	
virtual	Modifier*	to_modifier();	
virtual	TimeValue	to_timevalue();	
virtual	Control*	to_controller();	

Protecting	Newly	Created	Values	from	the	Collector	(SDK)

Value	family	instances	created	in	running	C++	code	are
immediately	visible	to	the	collector.	The	collector	cannot
see	references	in	plain	C++	local	or	global	variables,	so
to	prevent	them	from	being	collected	while	just	in	C++
variables,	you	can	use	the	following	macros	to	ensure	the
collector	leaves	them	alone.	You	also	need	to	do	this	if
you	take	a	value	out	of	some	structure	such	that	nothing
else	is	referencing	it	and	still	want	to	keep	hold	of	it	in	a
C++	variable.
An	important	convention	is	that	values	you	get	in	arguments	passed
to	you	are	guaranteed	to	be	protected	by	someone	up	the	call	chain.
You	must	ensure	this	convention	holds	yourself	for	any	function	you
call.
See	Also:
Collector-Safe	Value	Local	Macros

Collector-Safe	Value	Local	Macros	(SDK)

The	general	approach	is	to	declare	special	C++	local
variables	that	are	known	by	the	collector	to	contain
protected	values.	You	declare	them	with	one	of	the
following	macros:
one_value_local(name);
two_value_locals(name1,	name2);
three_value_locals(name1,	name2,	name3);
...	etc.,	up	to	eight	locals.		

They	are	declared	as	type	Value*	to	be	able	to	hold	any
MAXScript	value.	There	are	also	explicitly	typed
variants:
one_typed_value_local(type	name);
two_typed_value_local(type1	name1,	type2	nam2);
...

For	example,
two_typed_value_locals(Array*	result,	String*	item);

These	locals	are	implemented	as	members	in	a	local	struct	named	'vl',
so	you	work	with	them	as	members	of	that	struct:
two_typed_value_locals(Array*	result,	String*	item);
...	
vl.result	=	new	Array	(5);
...	
vl.item	=	new	String	("foo");
...
vl.result->append(vl.item);
...

There	can	be	only	one	value_local	declaration	macro	per	C++	block.

Value	locals	variables	must	be	explicitly	dismissed	before	the	block
is	exited.	One	way	to	do	this	is	with	the	macro:
pop_value_locals();

At	this	point,	the	collector	protection	is	lost.	In	some	cases,	however,
you	want	to	return	one	of	the	new	values	as	the	result	and	this	value
must	continue	to	be	protected	from	the	collector.	The	macro:
return_value(r);

will	do	this.	It	both	dismisses	the	value	locals	and	places	the	return
value	in	a	protected	area.	This	return	value	protection	will	last	as	the
value	passes	out	through	any	number	of	levels	of	return	until	the	next
return_value()	use.
In	another	case,	you	may	have	taken	a	value	out	of	some	rooted
structure	(say	an	array	in	a	MAXScript	global)	and	want	to	hand	that
back	as	a	function	result.	To	protect	it	against	being	collected	if,	for
example,	that	rooted	structure	gets	dropped,	you	can	use	the	macro:
return_protected(r);

which	protects	the	return	value	as	does	return_value(),	but	doesn't
dismiss	any	value	locals.
All	functions	in	the	MAXScript	core	that	return	potentially	new
values,	including	all	the	new	operators,	use	one	of	these	return	value
protection	schemes.	Since	this	means	that	a	new	value	returned	to	you
is	safe	until	another	function	call	or	operation	that	might	create
another	new	value,	you	can	forego	the	value_local	protection	in	those
cases	in	which	you	are	immediately	returning	the	new	value.
One	thing	to	note	about	these	protected	variables	is	that	they	are
considered	to	be	part	of	the	root	set	and	are	scanned	by	the	collector
for	internal	references,	so	you	only	need	to	protect	the	top-level
object	if	you	are	constructing	some	tree	of	values.
There	are	some	examples	of	these	macros	in	use	in	the	Scripter-

Callable	Functions	topic.

Value	Local	Arrays	(SDK)

Sometimes,	the	number	of	new	locals	to	be	protected	is
unknown	at	compile	time.	To	handle	this,	you	can	use	the
following	macros	that	create	protected	arrays	of	values.
One	form	creates	the	array	on	the	stack	using	_alloca()
and	so	is	useful	inside	one	function	call,	the	other	puts
the	array	in	the	heap	and	so	can	be	used	across	functions.
In	both	cases,	you	also	need	to	declare	a	Value**	variable	to	hold	the
pointer	to	the	array.
Stack-resident
value_local_array(pointer_var,	count);	//	allocate
pop_value_local_array(pointer_var);	//	dismiss

Heap-resident
value_temp_array(pointer_var,	count);	//	allocate
realloc_value_temp_array(pointer_var,	count,	old_count);	//	grow
pop_value_temp_array(pointer_var);	//dismiss

For	example,
Value**	items;
...	
value_local_array(items,	n);
...	
for	(int	i	=	0;	i	<	n;	i++)
items[i]	=	Float::intern(data[i]);
...	
pop_value_local_array(items);
...	

Marking	Values	as	Permanent	or	Collectable	(SDK)

You	can	also	mark	a	value	as	permanent	by	calling	the
make_permanent()	member	function	on	it:
vl.foo->make_permanent();

From	then	on	the	value	is	in	the	root	set	and	will	be	scanned	for
internal	references	but	is	not	eligible	for	collection.	This	operation	is
fairly	heavy-weight	and	so	should	not	be	used	in	place	of	value_local
variables.
You	can	also	make	a	permanent	value	collectable	again	by	calling	the
member	function	make_collectable():
foo->make_collectable();

Scripter-Callable	Functions	(SDK)

Scripter-callable	functions	are	represented	by	instances
of	the	Function	family	of	classes.	These	descend	from
Value	and	so	are	all	first-class	values	in	MAXScript.	For
the	moment,	this	document	only	describes	non-
polymorphic	primitive	functions,	of	which	there	are	three
kinds.
Primitive	functions	are	defined	using	one	of	the	three	declaration
macros:
def_visible_primitive(fn,	name);
def_mapped_primitive(fn,	name);
def_lazy_primitive(fn,	name);

corresponding	to	the	3	primitive	function	types.	Mapped	primitives
are	automatically	mapped	over	collection	first	arguments	and	lazy
primitives	have	their	arguments	delivered	as	unevaluated	code
fragments	(see	the	Access	to	the	Compiler	and	Interpreter	topic	for
more	details).
The	first	argument	to	these	macros	is	the	implementing	C++	function,
the	second	is	a	string	literal	giving	the	scripter-visible	name	for	the
function.	This	string	winds	up	naming	a	MAXScript	global	variable
that	contains	the	Primitive	instance	representing	the	function.
All	the	def_x	macros	have	several	replaceable	definitions	in	different
header	files.	One	is	used	to	statically	instantiate	the	Primitive	object
that	represents	the	function,	another	to	create	externs	in	a	header	file.
The	convention	throughout	the	MAXScript	codebase	is	to	gather	sets
of	related	scripter	function	definitions	in	'protocol'	files	(eg,
mathpro.h)	and	include	in	various	places	with	different	def_x	macro
definitions	in	force.
The	def_x	macro	definition	headers	relevant	to	Primitive	function

defs	are	as	follows:
"defextfn.h"	-	generate	externs	from	def_x	macros
"definsfn.h"	-	generate	static	instances	from	def_x	macros

A	side-effect	of	using	the	instantiating	form	of	the	def_	macros	is	that
a	scripter	global	variable	named	by	the	second	argument	is
automatically	created	and	loaded	with	the	representing	instance;	you
don't	have	to	do	anything	else	to	make	them	visible	in	the	scripter.
Example:
#include	"definsfn.h"
def_visible_primitive(open_file,"openFile");	
def_visible_primitive(query_box,"queryBox");	
def_lazy_primitive	(quote,"quote");	
def_mapped_primtive	(dump,"dump");	

The	implementing	C++	functions	you	provide	to	these	macros	must
have	the	following	signature	to	conform	to	scripter	calling
conventions:
Value*	func_cf(Value**	arg_list,	int	count);

Further,	the	C++	function	name	is	a	derivative	of	the	name	given	in
the	def_x	macro	(to	avoid	some	naming	conflicts).	It	is	constructed
by	appending	'_cf'	to	the	name	give,	so:
def_visible_primitive(open_file,	"openFile");

would	refer	to:
Value*	open_file_cf(Value**	arg_list,	int	count)	{	...	}

The	arguments	from	the	script	call	are	delivered	in	call	order	in	the
arg_list	array	which	is	count	Value*'s	long.	The	function	must	return
a	Value*,	which	for	otherwise	void	functions,	should	be	the
distinguished	value	ok.
Note	that	the	caller-protects-new-values	convention	means	that	values
in	the	arg_list	array	are	already	protected	from	the	collector.

There	is	no	implicit	type	or	argument	checking	in	this	calling
mechanism	-	you	have	to	do	it	yourself	in	the	called	function.	There
are	several	macros	to	help	with	this:
check_arg_count(fn_name,	wanted_count,	got_count);
type_check(val,	class,	fn_name_or_description);

Example:
Value*	open_file_cf(Value**	arg_list,	int	count)
{
//	check	we	have	1	arg	and	that	it's	a	string
check_arg_count(openFile,	1,	count);
type_check(arg_list[0],	String,	"openFile	filename");
...	
char*	fn	=	arg_list[0]->to_string();
...	
}

In	this	example,	you	could	have	left	out	the	type_check()	and	let	the
to_string()	converter	complain	if	it	didn't	have	a	string,	but	the	error
message	might	be	less	descriptive.
MAXScript	functions	also	support	keyword	argument	passing.	The
keyword	arguments	are	placed	in	the	arg_list	after	all	the	positional
args,	preceded	by	a	marker	value	(accessible	in	the	Value*	global,
keyarg_marker).	The	arguments	are	passed	in	pairs,	a	keyword	Name
and	the	argument's	value,	one	after	the	other	in	the	arg_list	array.
There	are	several	macros	to	help	extract	keyword	arguments.	All
assume	that	the	C++	function	parameter	names	are	'arg_list'	and
'count'	as	shown	in	the	above	examples.
key_arg(key);

get	the	named	arg	value	or	&unsupplied	if	not	present
	

key_arg_or_default(key,	def);

get	the	named	argument	or	the	default	value	'def'	if	not	supplied

int_key_arg(key,	var,	def);
get	named	key	arg	into	Value*	'var'	variable	and	return	it	as	a	C++	int,
return	'def'	if	not	supplied.

float_key_arg(key,	var,	def);
get	named	key	arg	into	Value*	'var'	variable	and	return	it	as	a	C++	float,
return	'def'	if	not	supplied.

bool_key_arg(key,	var,	def);
get	named	key	arg	into	Value*	'var'	variable	and	return	it	as	a	C++
BOOL,	return	'def'	if	not	supplied.

There	is	also	a	macro	for	checking	positional	argument	counts	in	the
presence	of	keyword	args:
check_arg_count_with_keys(fn,	wanted,	got);

Examples:
The	following	'delete_file'	example	shows	an	arg	count	check,
conversion	of	first	argument	(arg_list[0])	to	a	string	and	the	return	of
MAXScript	'true'	or	'false'	values.
def_visible_primitive(delete_file,	"deleteFile");
	
...	
	
Value*
delete_file_cf(Value**	arg_list,	int	count)
{
//	deleteFile	"file_name"
	
check_arg_count("deleteFile",	1,	count);
BOOL	result	=	DeleteFile(arg_list[0]->to_string());
return	result	?	&true_value	:	&false_value;
}

The	'file_in'	example	shows	working	with	an	optional	keyword
argument	'quiet'.	The	required	arg	count	is	checked	with
check_arg_count_with_keys()	in	this	case.
Two	typed	value	locals	are	declared,	one	to	hold	the	temporary
FileStream	instance	and	the	other	to	hold	the	fileIn	result.
def_visible_primitive(file_in,	"fileIn");
	
...	
	
Value*
file_in_cf(Value**	arg_list,	int	count)
{
//	fileIn	"filename"	[quiet:true]
	
check_arg_count_with_keys("fileIn",	1,	count);
two_typed_value_locals(FileStream*	file,	Value*	result);
Value*	quiet	=	key_arg_or_default(quiet,	&true_value);
type_check(quiet,	Boolean,	"fileIn	quiet:");
Value*	result;
	
//	open	a	temp	fileStream
vl.file	=	(new	FileStream)->open(arg_list[0]->to_string(),	"rt");
if	(vl.file	==	(FileStream*)&undefined)
throw	RuntimeError
(GetString(IDS_FILEIN_CANT_OPEN_FILE),
arg_list[0]);	
	
//	pass	it	to	the	stream-based	file_in
try
{
vl.result	=	file_in(vl.file,	(quiet	==	&true_value));
}

catch	(...)
{
//	catch	any	errors	and	close	the	temp	filestream
vl.file->close();
throw;
}
	
//	pop	value	locals	&	return	fileIn	result
return_value(vl.result);
}
The	implementation	of	the	file_in()	function	is	given	as	another
example	later	in	these	notes.

Useful	Globals

Interface*	MAXScript_interface;	--	MAX	interface	object

Exported	Value*	Virtual	Functions

void	print();	--	print	representation	to	listener
void	sprin1(CharStream*	s);	--	print	representation	on	stream	with
no	
--	terminating	\n

Listener	Window	I/O

mputs(char*);	--	print	string	to	listener
mprintf(char*	fmt,	...);	--	printf	to	listener

MAXScript	Exception	Classes
Compile	and	runtime	errors	are	reported	in	MAXScript	using	the	C++
exception-handling	mechanism.	A	MAXScript	exception	class
hierarchy	is	defined	for	these	errors,	as	follows:
class	MAXScriptException
class	UnknownSystemException
class	SignalException
class	CompileError

class	SyntaxError
class	TypeError
class	NoMethodError
class	AccessorError
class	AssignToConstError
class	ArgCountError
class	RuntimeError
class	IncompatibleTypes
class	ConversionError

Common	exception	constructors:
AccessorError	(Value*	target,	Value*	prop)
ArgCountError	(char*	fn_name,	int	wanted,	int	got);
ConversionError	(Value*	val,	char*	typename);
IncompatibleTypes	(Value*	v1,	Value*	v2);
RuntimeError	(char*	description);
RuntimeError	(char*	desc_part1,	char*	desc_part1);
RuntimeError	(char*	description,	Value*	implicated_value);
RuntimeError	(char*	desc_part1,	char*	desc_part1,
Value*	implicated_value);	
RuntimeError	(Value*	implicated_value);
TypeError	(char*	descr,	Value*	wrong_val,
ValueMetaClass*	should_be	=	NULL);	

An	error	is	signalled	by	throwing	one	of	these	exceptions,	for
example:
if	(arg_list[0]->to_int()	>	max_index)
throw	RuntimeError	("Index	out	of	range:	",	arg_list[0]);	

Working	with	MAX	Objects	in	the	SDK	(SDK)

All	of	the	MAX-side	objects	accessible	in	MAXScript
are	represented	by	instances	of	the	MAXWrapper	family
of	classes.	As	the	name	suggests,	these	are	wrappers	for
MAX	object	references	that	live	in	the	garbage-collected
MAXScript	world.	The	wrapped	reference	is	a	standard
MAX	reference	created	with
ReferenceMaker::MakeRefByID();	the	MAXWrapper
class	inherits	from	both	Value	and	ReferenceMaker.	This
reference	allows	MAXScript	to	be	notified	of	MAX-side
changes	to	the	object,	particularly	deletion.
The	wrapper	class	family	is	as	follows:
Value,	ReferenceMaker
MAXWrapper		
MAXNode	
MAXModifier	
MAXControl	
MAXKey	
MAXMaterial	
MAXMultiMaterial	
MAXTexture	
MAXMaterialLibrary	
MAXObject	
MAXSubAnim	
There	is	also	a	Value	subclass,	MAXBitMap,	which	can	be	used
to	wrap	MAX	Bitmaps,	but	it	is	not	a	ReferenceMaker	because
Bitmaps	in	MAX	are	not	referenceable	in	this	way.

It	should	be	clear	which	wrapper	classes	wrap	which	MAX-side
entities,	except	perhaps	for	MAXSubAnim	which	is	used	to	wrap
objects	you	only	know	as	Animatables	that	are	accessible	inside	other

Max	objects	via	the	Animatable::SubAnim()	function.	This	is	used
in	MAXScript	to	wrap	things	like	modifier	gizmo	sub-objects,	for
example.

Constructing	Wrappers	(SDK)

There	are	three	ways	to	make	wrapper	values	for	a	MAX
object	you	have	in	hand,	depending	on	how	much	you
know	about	what	kind	of	object	it	is.

1.	 If	you	know	its	an	Object*,	a	Control*,	or	Modifier*,	etc.,	you
can	use	a	wrapper	class	constructor	directly.	The	available
constructors	are:

MAXNode	(INode*	node);
MAXModifier	(Modifier*	mod);
MAXControl	(Control*	cont,	ParamDimension*	dim);
MAXControl	(Control*	cont);
MAXObject	(Object*	obj);
MAXKey	(Control*	icont,	int	ikey,	ParamDimension*	dim);
MAXKey	(Control*	icont,	int	ikey);
MAXMaterial	(Mtl*	imat);
MAXMultiMaterial	(MultiMtl*	imat);
MAXMaterialLibrary	(MtlBaseLib&	ilib);
MAXMaterialLibrary	(MtlBaseLib*	ilib);
MAXMaterialLibrary	();
MAXTexture	(Texmap*	imap);
MAXBitMap	();
MAXBitMap	(BitmapInfo	bi,	Bitmap*	bm);

1.	 If	you	know	you	have	a	ReferenceTarget*,	you	can	use	the	static
member	function:

static	MAXClass::make_wrapper_for(ReferenceTarget*	ref);
This	looks	at	ClassIDs	and	SClassIDs	inside	the	object	and	chooses	the
appropriate	wrapper	class.

2.	 If	you	want	to	wrap	a	subanim	inside	a	known	ReferenceTarget*,
you	can	use	the	MAXSubAnim	constructor:

MAXSubAnim	(ReferenceTarget*	ref,	int	subanim_num);

Remember,	these	all	construct	new	MAXScript	values	in	the
MAXScript	heap,	subject	immediately	to	potential	collection.	You
have	to	use	one	of	the	protection	schemes	mentioned	in	the	Protecting
Newly	Created	Values	from	the	Collector	topic	to	ensure	the	value	is
not	collected	while	you	are	still	working	with	it.

Retrieving	Wrapped	Objects	(SDK)

You	can	get	MAX	objects	out	of	MAXScript	wrapper
values	in	several	ways:

1.	 Using	one	of	the	coercion	virtual	functions	that	are	implemented
on	the	appropriate	wrapper	classes:

virtual	INode*	to_node();
virtual	Mtl*	to_mtl();
virtual	Texmap*	to_texmap();
virtual	Modifier*	to_modifier();
virtual	Control*	to_controller();

For	example,
INode*	node	=	arg_list[0]->to_node();

2.	 Using	the	general	purpose	MAXWrapper	virtual	function,
get_max_object():

virtual	ReferenceTarget*	get_max_object();

Note	that	this	function	will	retrieve	the	base	object	in	a	node
inside	a	MAXNode	wrapper	value,	rather	than	the	INode	itself.
The	reason	for	this	is	explained	in	the	MAX	ClassIDs	and
SuperclassIDs	topic.

3.	 Using	the	ReferenceMaker	member	function,	GetReference().	All
MAXWrapper	objects	store	their	MAX-side	object	reference
as	reference	0,	so:

ref	=	arg_list[1]->GetReference(0);

Handling	Deleted	Objects	(SDK)

There	is	a	potential	in	MAXScript	for	a	wrapper	value	to
reference	a	deleted	MAX	object.	This	might	happen,	for
example,	if	a	MAX	global	variable	contains	a	MAXNode
value	and	the	user	interactively	deletes	the	object	that	the
MAXNode	references.	It	is	critical	for	any	code	that
works	with	wrapper	values	to	first	check	to	make	sure
the	wrapped	MAX	objects	are	not	deleted	using	the
macro:
deletion_check(val);

which	takes	a	MAXWrapper	derived	class	instance.	This	macro	will
throw	an	appropriate	runtime	error	if	the	MAX	object	referenced	by	'val'
is	deleted.	If	you	want	to	handle	the	error	reporting	yourself	or	perform
some	conditional	code,	you	can	test	the	MAXWrapper	public	data
member,	ref_deleted,	which	holds	a	C++	BOOL.

You	typically	only	need	to	do	this	checking	once	on	entry	to	your
code	because	scripts	always	run	synchronously	-	MAXScript	locks
out	the	MAX	UI	so	users	cannot	do	things	to	the	scene	that	would
potentially	crash	a	running	script.

MAX	Class	IDs	and	Superclass	IDs	(SDK)

You'll	notice	that	the	MAXScript	wrapper	classes
correspond	roughly	to	MAX	object	superclasses,	there
are	no	C++	classes	in	MAXScript	for	individual	MAX
object	classes	(Box,	Sphere,	Bend,	StdMaterial,	etc.).
This	is	primarily	because	the	MAX	object	classes	present
in	any	running	copy	of	MAX	is	dynamic	depending	on
the	plug-ins	that	are	loaded.	MAXScript	deals	with	this
in	much	the	same	way	the	MAX	SDK	does	by	having
descriptor	classes	whose	instances	define	individual
MAX	plug-in	classes.	There	are	two	MAXScript	classes
for	this	MAXScript-specific	metadata,	both	Value
subclasses	so	their	instances	can	be	manipulated	as
values	in	the	scripter:
Value
MAXSuperClass	
MAXClass	

The	MAXSuperClass	instances	correspond	to	object	superclasses	in
MAX	and	there	is	one	instance	per	MAX	superclass	ID.	The
MAXClass	instances	correspond	roughly	to	ClassDesc	instances	in
MAX	and	there	is	one	MAXClass	instance	per	MAX	Class	ID.
All	of	the	superclass	instances	and	most	of	the	MAXClass	instances
corresponding	to	the	core	objects	in	MAX	are	statically	instantiated
in	MAXScript.	There	are	also	many	MAXClass	instances	created
dynamically	by	the	MAXScript	plug-in	scanner	which	attempts	to
construct	metadata	for	3rd-party	and	new	MAX	plug-ins	that	it	finds
as	MAX	starts	up.
MAXScript	extension	DLLs	can	statically	define	new	MAXClass
instances	to	provide	complete	metadata	for	new	or	3rd-party	MAX

plug-ins.	The	advantage	of	doing	this	is	that	you	can	typically	provide
a	much	more	complete	description	for	new	MAX	object	classes	than
the	plug-in	scanner	can	construct.
These	are	declared	as	static	instances	using	the	MAXClass
constructor	described	below.	As	an	example,	here	is	the	definition	for
the	Box	primitive	object	from	the	MAXScript	core:
MAXClass	box
("Box",	Class_ID(BOXOBJ_CLASS_ID,	0),
GEOMOBJECT_CLASS_ID,	&geom_class,	0,
accessors,	
paramblock,	
"length",	BOXOBJ_LENGTH,	TYPE_FLOAT,	25.0,	
"width",	BOXOBJ_WIDTH,	TYPE_FLOAT,	25.0,	
"height",	BOXOBJ_HEIGHT,	TYPE_FLOAT,	25.0,	
"widthsegs",	BOXOBJ_WSEGS,	TYPE_INT,	1,	
"lengthsegs",	BOXOBJ_LSEGS,	TYPE_INT,	1,	
"heightsegs",	BOXOBJ_HSEGS,	TYPE_INT,	1,	
"mapcoords",	BOXOBJ_GENUVS,	TYPE_BOOL,	FALSE,	
end,	
end,	
end	
);

This	declares	a	static	instance	named	'box'	that	defines	a	scripter-
visible	name,	the	MAX	class	ID	and	superclass	ID,	and	specifies	the
MAXSuperClass	instance	for	this	class	and	a	set	of	MAX	SDK
ParamBlock-based	properties.	The	property	definitions	define	a
scripter-visible	name,	parameter	ID,	type	info	and	a	useful	default
value,	used	when	creating	instances	of	the	class	in	the	scripter.	The
property	definitions	can	also	include	properties	not	carried	in
ParamBlocks,	for	which	you	supply	getter	and	setter	C++	functions,
so	you	can	define	any	number	of	real	or	virtual	properties.

As	a	side-effect	of	this	declaration,	a	scripter	global	variable	of	the
given	name	is	created	and	loaded	with	the	MAXClass	value.	Scripts
can	use	this	value	both	as	a	class	value	in	methods	such	as	classOf()
and	to	construct	new	MAX	objects.	MAXClass	values,	like	several
other	class	values	in	MAXScript	can	be	'applied'	like	a	constructor	in
C++	to	a	set	of	arguments	to	create	instances	of	themselves.	In	the
case	of	MAXClass	instances,	all	the	properties	you	describe	in	its
constructor	can	be	used	as	creation	arguments	in	MAXScript.

The	MAXClass	Constructor	(SDK)

The	MAXClass	constructor	you	should	use	for	static
instances	is	as	follows:
MAXClass	(char*	cname,	//	scripter-visible	class	name
Class_ID	cid,	//	MAX	class	ID	
SClass_ID	sid,	//	MAX	superclass	ID	
MAXSuperClass*	superclass,	//	MAXScript	MAXSuperClass	
short	cflags,	//	option	flags	(see	below)	
...	//	accessor	definitions	
);	
The	cflags	value	can	be	one	or	more	of:
md_no_create

This	class	is	not	instantiable.	Scripts	cannot	use	this	class	a	a	constructor.
Typically	specified	on	object	classes	that	cannot	exist	alone	(such	as
spacewarp	bindings)	but	are	still	accessible	in	the	scripter.

md_use_getref0
md_use_getref1
md_direct_index

These	three	flags	relate	to	ParamBlock-hosted	properties.	It	turns	out	that
core	MAX	objects	use	ParamBlocks	in	a	variety	of	non-standard	ways
and	these	flags	basically	cover	the	possibilities.	According	to	the	docs,
object	classes	that	use	a	ParamBlock	can	implement
Object::GetParamBlock()	to	return	a	pointer	to	the	block.	Some
MAX	classes	do	and	some	don’t.	All	of	them	stick	the	block	in
reference(0)	or	reference(1),	so	if	the	class	does	not	implement
GetParamBlock()	you	can	specify	md_use_getref0	or
md_use_getref1	accordingly.	If	neither	of	these	flags	are	specified	and
there	are	paramblock	accessors	defined,	MAXScript	will	use
GetParamBlock().
Further,	the	docs	suggest	that	all	classes	should	implement
Object::GetParamBlockIndex()	to	map	logical	parameter	ID's	into
ParamBlock	indexes.	Again,	only	some	of	the	MAX	core	classes	do	this

and	some	of	them	do	it	inconsistently.	The	md_direct_index	flag
indicates	that	the	parameter	IDs	in	the	accessor	definitions	are	direct
indexes	into	the	ParamBlock.	If	not	this	flag	is	not	specified,	MAXScript
uses	GetParamBlockIndex()	to	map	the	given	IDs	to	paramblock
indexes.

md_auto_parms
This	flag	indicates	that	the	properties	defined	are	in	addition	to	any
properties	that	can	be	discovered	by	the	MAXScript	plug-in	scanner.	This
gives	you	a	way	to	incrementally	add	definitions	for	just	those	properties
that	are	not	housed	in	ParamBlocks	or	are	not	properly	exposed	there.

The	property	accessor	definitions	are	supplied	in	the	…	varargs	to
the	MAXClass	constructor.	These	take	the	form	of	tagged	lists	of
specifiers	each	terminated	with	an	'end'	tag.	The	tags	are	enumerated
constants	defined	in	MAXObj.h.
The	syntax	for	these	is	as	follows:
property_defs	::=	[<accessors>,]	end
accessors	::=	accessors,	[<pb_props>,]	[<fn_props>]
pb_props	::=	paramblock,	{	<pb_prop>,	}	end
pb_prop	::=	<name_str>	<param_id>	<type>	[<default_val>]
fn_props	::=	fns,	{	<fn_prop>,	}	end
fn_prop	::=	<name_str>	<getter_fn>	<setter_fn>	<type>
[<default_val>]

Where:
<param_id>	is	a	ParamBlock	parameter	ID	or	ParamBlock	index
depending	on	whether	the	md_direct_index	flag	was	specified.
<type>	is	one	of:
TYPE_MSFLOAT	//	float
TYPE_INT	//	integer
TYPE_RGBA	//	point3	of	0-255	externally,	0-1	internally
TYPE_POINT3
TYPE_BOOL

TYPE_ANGLE	//	degrees	externally,	radians	internally
TYPE_PCNT_FRAC	//	percent	externall,	0-1	float	internally
TYPE_STRING
TYPE_HSV	//	point3	of	0-255	externally,	0-1	internally
TYPE_COLOR_CHANNEL	//	0-255	float	externally,	0-1
internally
TYPE_TIMEVALUE	//	frames	externally,	tick	TimeValue
internally
TYPE_UNSPECIFIED

Some	of	the	types	imply	automatic	scaling	between	scripter	visible
values	and	internal	parameter	values.	For	example,	TYPE_ANGLE
causes	radians-to-degree	conversion	on	the	away	out	to	the	scripter
for	property	gets	and	degrees-to-radians	conversion	on	the	way	in
from	the	scripter	for	property	sets.
TYPE_UNSPECIFIED	can	only	be	used	in	fns	property	definitions
and	means	that	the	accessor	functions	take	care	of	the	type
conversions	and	that	there	is	no	default	value.
The	<default_val>	default	values	must	be	of	the	correct	C++	type	or
definition	parsing	may	fail.
Default	value	C++	type	
TYPE_MSFLOAT	float
TYPE_INT	int
TYPE_RGBA	three	comma-separated	floats
TYPE_POINT3	three	comma-separated	floats
TYPE_BOOL	BOOL
TYPE_ANGLE	float
TYPE_PCNT_FRAC	float
TYPE_STRING	string
TYPE_HSV	three	comma-separated	floats
TYPE_COLOR_CHANNEL	float
TYPE_TIMEVALUE	float

TYPE_UNSPECIFIED	--	no	default	value	--

If	you	do	not	wish	to	specify	a	default	value,	perhaps
because	the	property	is	a	synonym	for	another	which
already	has	a	default	value	specified,	make	the	type	-ve
(put	a	minus	in	front	of	the	type	code)	and	leave	out	the
default.
The	signature	for	the	getter	and	setter	functions	supplied	in	the	fns
section	is:
Value*	getter_fn(ReferenceTarget*	obj,	Value*	prop,	TimeValue	t,
Interval&	valid);		
void	setter_fn(ReferenceTarget*	obj,	Value*	prop,	TimeValue	t,
Value*	val);	

When	these	functions	are	invoked	by	the	MAXScript	property
accessor	system,	you	can	be	sure	the	ReferenceTarget	parameter
points	to	a	MAX	object	of	the	Class	ID	specified	in	the	MAXClass
constructor	referencing	these	functions.	The	TimeValue	and	Interval
parameters	are	used	in	the	same	way	as	they	are	on	the	Control	and
IParamBlock	GetValue()	and	SetValue()	member	functions	in	the
MAX	SDK.

Here	are	some	more	examples:
MAXClass	quadpatch
("Quadpatch",	Class_ID(PATCHGRID_CLASS_ID,	0),
GEOMOBJECT_CLASS_ID,	
&geom_class,	md_use_getref0	+	md_direct_index,
accessors,	
paramblock,	
"length",	PATCHGRID_LENGTH,	TYPE_MSFLOAT,	25.0,	
"width",	PATCHGRID_WIDTH,	TYPE_MSFLOAT,	25.0,	
"widthsegs",	PATCHGRID_WSEGS,	TYPE_INT,	1,	

"lengthsegs",	PATCHGRID_LSEGS,	TYPE_INT,	1,	
end,	
end,	
end	
);	
MAXClass	text
("Text",	Class_ID(TEXT_CLASS_ID,	0),	SHAPE_CLASS_ID,
&shape,	0,		
accessors,	
paramblock,	
"size",	TEXT_SIZE,	TYPE_FLOAT,	100.0,	
end,	
fns,	
"text",	get_txt_strng,	set_txt_strng,	TYPE_UNSPECIFIED,	
"font",	get_txt_font,	set_text_font,	TYPE_UNSPECIFIED,	
"italic",	get_txt_italic,	set_txt_italic,	TYPE_BOOL,	FALSE,	
"underline",	get_txt_under,	set_txt_under,	TYPE_BOOL,	FALSE,	
end,	
end,	
end	
);

The	Text	class	defines	both	ParamBlock	and	function-
based	properties.	It	is	typical	only	to	specify	type
information	for	function-based	properties	when	you	want
to	give	default	values.
These	are	the	MAXSuperClass	static	instances	you	can	reference	in
MAXClass	constructors.	They	are	externed	in	the	header	file
"Maxclses.h".
geom_object
modifier
shape

helper_object
spacewarp_object
light_object
camera_object
material_class
texture_map
system_object
utility_plugin
spacewarp_modifier
float_controller
point3_controller
position_controller
quat_controller
rotation_controller
scale_controller
matrix3_controller
morph_controller

classOf()	and	superClassOf()	Methods	for	MAX	Objects	(SDK)

Even	though	the	individual	MAX	object	classes	are	not
represented	by	C++	classes	in	MAXScript,	they	are
considered	classes	at	the	scripter	level,	represented	by
the	MAXClass	values.	Accordingly,	the	MAXScript
class	inquiry	methods,	classOf(),	superClassOf()	and
isAKindOf(),	are	implemented	in	the	C++
MAXWrapper	classes	to	use	the	appropriate	MAXClass
instance	as	the	class	of	the	wrapped	object	when	called
on	MAX	object	wrapper	values,	such	as	scene	nodes,
modifiers,	or	controllers.	On	scene	nodes,	the	classOf()
function	always	returns	the	class	of	the	world-state	of	the
object,	its	state	at	the	top	of	the	modifier	stack.
Examples:

classOf	$foo.bend	=>	Bend
superClassOf	$foo.bend	=>	Modifier
classOf	$baz.position.controller	=>	Bezier_position
superClassOf	$baz.position.controller	=>	Position_controller

In	order	to	determine	the	class	of	the	base	object,	you	can
use	the	.baseObject	property	of	the	scene	node,	for
example	on	a	line	with	an	extrude	modifier:
classOf	$line01	=>	Editable_mesh
classOf	$line01.baseObject	=>	Shape

Collection	Mapping	(SDK)

For	Object	Sets,	Pathnames,	Modifer/Key/NodeChildren
Arrays	and	Arrays.
The	following	virtual	functions	are	defined	on	Value	and
implemented	by	those	classes	that	support	them	to	provide	a
collection	mapping	mechanism.	Those	that	support	mapping	return
true	from	the	virtual	function	predicate	is_collection().	The
MAXScript	'for	x	in	y	...'	loop	statement	relies	on	these	mapping
functions,	for	example.	Attempting	to	map	a	non-collection	results	in
a	descriptive	MAXScript	runtime	error.
Some	of	the	functions	are	driven	by	a	mapping	structure,	'node_map',
defined	below.
Only	PathNames,	ObjectSets	and	Nodes	implement	the	'_path'
variants.	Mapping	over	a	scene	node	Value	(MAXNode	instance),
effectively	maps	over	its	descendants.
class	Value

Value*	map(node_map&	m);
map	node	structure	over	collection

Value*	map_path(PathName*	path,	node_map&	m);
map	node	collection	over	values	matching	pathname

Value*	find_first(BOOL	(*test_fn)(INode*	node,	int	level,	void*
arg),
void*	test_arg);	

find	first	node	matching	test

Value*	get_path(PathName*	path);
get	the	non-wild-card	pathname-specified	node

struct	node_map
{
value_vfvfn_ptr;	//	virtual	fn	to	map	

value_cfcfn_ptr;	//	or,	c	fn	to	map	(one	or	the	other	must	be	null)	
Value**arg_list;	//	args	to	pass	on...	
intcount;	
BOOL(*selector)(INode*,	int,	void*);	//	set	selector	fn	
void*sel_arg;	//	arg	for	the	selector	
intget_index;	//	index	if	we	are	doing	an	indexed	get	
intget_count;	//	local	running	traverse	count	during	get	
Value**get_result_p;	//	ptr	to	result	holder	for	indexed	get	
Array*collection;	//	append	map	results	here	if	non-null	(used	
//	in	for	...	collect)	
shortflags;	//	control	flags	
};
	
#define	NM_INVERT0x0001	//	invert	map	order,	map	parents	last
on
//	the	way	out	of	the	recursion	
#define	NM_SELECT0x0002	//	applying	a	select,	adjust	clear	flag
#define	NM_GET	0x0004	//	doing	a	get,	return	get_index'th	item

Array	Access	and	Construction	(SDK)

Arrays	are	useful	for	passing	multiple	values	back	and
forth;	there	is	no	multiple-value	return	mechanism	in
MAXScript.
Arrays	in	MAXScript	are	dynamic	and	will	grow	as	necessary	(by	a
factor	of	1.5	when	needed).	You	can	set	the	initial	extent	size	on
creation.	Uninitialized	elements	are	set	to	&undefined.
As	with	all	Value	creation	inside	C++	code,	a	freshly	created	array
must	be	protected	from	garbage	collection,	either	by	placing	it
immediately	inside	some	other	protected	value,	or	by	using	the
protection	macros	described	in	the	Protecting	Newly	Created	Values
from	the	Collector	topic.
Array(int	init_size);	//	constructor	allocates	initial	array	size
	
Value*	append(Value*);
Value*	get(int	index);
Value*	map(node_map&	m);

Stream	I/O	(SDK)

MAXScript	contains	a	number	of	character	stream
classes	that	are	used	primarily	by	the	compiler	and	by	the
text	I/O	subsystem.	These	are	all	Value	subclasses	and	so
are	first-class	MAXScript	values.	If	you	want	to	call	the
compiler	directly	or	pass	or	take	stream	values	from
scripts,	you	should	use	these	classes.
The	text	file	I/O	classes	and	functions	in	MAXScript	create	and	work
on	FileStream	instances.
FileStream
FileStream::FileStream	();	
FileStream*	open(char*	file_name,	char*	mode);	
char	get_char();	
void	unget_char(char	c);	
char	peek_char();	
int	at_eos();	
void	rewind();	
void	flush_to_eol();	
char	putch(char	c);	
char*	puts(char*	str);	
int	printf(const	char	*format,	...);	
void	flush();	
void	close();	

You	can	construct	and	pass	StringStreams	to	the
compiler	if	you	want	to	compile	pieces	of	source	text.
StringStream
StringStream(char*	init_string);	
StringStream(Value*	init_string_value);	
StringStream(int	ilen);	
	

void	init(char*	init_string);	
char*	puts(char*	str);	
char	putch(char	c);	
int	printf(const	char	*format,	...);	

Access	to	the	Compiler	and	Interpreter	(SDK)

The	compiler	in	MAXScript	can	be	invoked	to	compile
source	in	files	or	strings	into	executable	code.	You	gain
access	to	it	by	creating	an	instance	of	the	Parser	class
with	the	following	constructor:
Parser(CharStream*	errout);

Debugging	and	error	output	is	sent	to	the	given	'errout'
charstream.	Typically,	you	would	specify	the	current
standard	output	for	this,	which	defaults	to	the	Listener
window,	for	example:
Parser*	reader	=	new	Parser	(thread_local(current_stdout));

Any	number	of	Parsers	can	be	instantiated	and	active;
they	each	encapsulate	a	separate	compile	environment
including	lexical	scoping	tables	and	source	stream
tracking.
The	following	Parser	member	functions	are	used	to	compile	source
code	in	a	CharStream	instance,	either	a	FileStream	or	a	StringStream
(see	the	Stream	I/O	topic	for	details	on	constructing	these	streams).
Value*	compile(CharStream*	stream);

Compile	the	next	complete	expression	in	the	given	stream.	The	stream
pointer	is	left	at	the	end	of	the	expression	compiled,	so	you	can
repeatedly	call	compile()	to	step	through	source	an	expression	at	a	time.
Remember	that	MAXScript	is	expression-based,	so	'expression'	here
means	any	MAXScript	construct	including	all	the	control	structures,
function	definitions,	blocks,	utility	definitions,	etc.

Value*	compile_factor(CharStream*	stream);
Compile	the	next	MAXScript	<operand>	in	the	source	stream.	See	the
MAXScript	Grammar	topic	for	the	exact	definition	of	<operand>.	The

MAXScript	function	readValue()	uses	compile_factor()	to	get	the
next	value	in	a	text	file,	so	it	is	capable	of	reading	global	variable
references,	array	indexes,	property	references,	pathnames,	etc.	as	well	as
simple	literals.

Value*	compile_all(CharStream*	stream);
Compile	the	whole	stream	into	one	piece	of	executable	code.

The	compile	functions	all	return	a	MAXScript	value
containing	the	executable	code,	usually	a	CodeTree
instance,	but	possibly	a	Number	or	String	if	the
expression	you	give	it	to	compile	is	a	simple	literal.	The
code	is	executed	by	invoking	the	Value	virtual	function
eval()	on	it.	For	example,
Value*	code	=	reader->compile(source);	//	compile	an	expr
result	=	code->eval();	//	execute	it

In	the	case	of	simple	values,	this	is	a	no-op	and	just
returns	the	value.	The	code	returned	from	the	compiler	is
always	a	first-class	MAXScript	value	that	you	can	store
for	later	execution	or	pass	back	to	running	scripts.
Here	is	the	low-level	file_in()	function	in	MAXScript,	showing	how
the	compiler	and	interpreter	are	used.
Value*	file_in(CharStream*	source,	int	quiet)
{
three_typed_value_locals(Parser*	parser,	Value*	code,	Value*
result);	
CharStream*	out	=	thread_local(current_stdout);	
vl.parser	=	new	Parser	(out);	
if	(!quiet)	
source->log_to(out);	
//	loop	through	file	compiling	and	evaluating	all	expressions	

try	
{	
source->flush_whitespace();	
while	(!source->at_eos())	
{	
vl.code	=	vl.parser->compile(source);	
vl.result	=	vl.code->eval();	
if	(!quiet)	
vl.result->print();	
source->flush_whitespace();	
}	
source->close();	
}	
catch	(...)	
{	
//	catch	any	errors	and	tell	what	file	we	are	in	if	any	
out->puts("Error	occurred	during	fileIn:	");	
source->sprin1(out);	
out->puts("\n");	
throw;	
}	
//	return	last	expression	in	stream	as	result
if	(vl.result	==	NULL)
vl.result	=	&ok;	
return_value(vl.result);	
}

Calling	Scripted	Functions	(SDK)

If	you	have	a	scripted	function	value	in	hand	(an	instance
of	the	class	MAXScriptFunction),	you	can	invoke	it
directly	using	the	Value	virtual	function	apply():
virtual	Value*	apply(Value**	arglist,	int	count);

MAXScript	Header	Files	(SDK)

There	are	many	header	files	supplied	with	the
MAXScript	SDK	in	the	directory	'includes'.	The
following	list	shows	the	main	ones	you	might	use:
Maxscrpt.h	The	main	MAXScript	header.	It	includes	most	of	the

core	headers	required	for	the	MAXScript	API	and
'Max.h',	needed	for	any	MAX	SDK	code.

defextfn.h	Scripter-callable	function	definition	macros.	See	the
section	definsfn.h	in	the	Scripter-callable	functions
topic	for	details.

MAXObj.h	The	prime	MAXWrapper	header,	used	if	you	are
constructing	or	accessing	any	of	the	main	MAXScript
values	that	represent	MAX	objects	within
MAXScript.	See	the	Working	with	MAX	Objects	in
the	SDK	topic	for	more	details	on	this	and	the	rest	of
the	header	files	in	this	group.

MAXKeys.h	MAXScript	classes	for	wrapping	MAX	controller
keys.

MAXMats.h	MAXScript	classes	for	wrapping	MAX	materials	and
texture	maps.

BitMaps.h	MAXScript	class	for	wrapping	MAX	bitmaps.
Maxclses.h	Defines	all	the	static	MAXClass	and	MAXSuperclass

instances	which	provide	MAXScript-specific
metadata	for	the	most	of	the	core	MAX	classes.

The	following	headers	define	most	of	the	foundation
classes	in	MAXScript.	Many	of	them	are	basically
wrappers	for	primitive	C++	types	or	MAX	SDK	classes,
such	as	Point2,	TimeValue,	etc.	You	would	include	these
headers	if	you	need	to	create	or	access	any	instances	of
these	classes.

3DMath.h	All	the	MAXScript	linear	algebra	classes
Arrays.h	The	Array	class.
ColorVal.h	MAXScript	color	class.
Funcs.h	Scripter	functions.
HashTab.h	MAXScript's	internal	hashtable	class.
MSTime.h	Time	classes.
Name.h	MAXScript's	Name	class.
Numbers.h	Float	and	Integer	classes.
Parser.h	The	MAXScript	compiler.
Streams.h	Character	stream	I/O,	notable	FileStream.
Strings.h	Character	string	class.

Defining	New	System	Globals	(SDK)

You	can	define	new	system	global	variables	with	the
define_system_global()	function.	It	has	the	following
signature:
void	define_system_global(TCHAR*	name,
Value*	(*getter)(),	
Value*	(*setter)(Value*));	

Where	name	points	to	the	string	naming	the	new	global
and	getter	and	setter	are	pointers	to	the	getter	and	setter
functions	for	the	variable.	For	example:
{
...	
define_system_global("frameRate",	get_frame_rate,
set_frame_rate);	
...	
}
	
...
	
Value*
get_frame_rate()
{
return	Integer::intern(GetFrameRate());	
}
Value*
set_frame_rate(Value*	val)
{
SetFrameRate(val->to_int());	
return	val;	
}

Core	Names	(SDK)

Instances	of	the	class	Name	are	used	extensively
throughout	MAXScript	as	variable	and	parameter	names,
keyword	argument	tags,	symbolic	arguments,	etc.	Names
are	immutable,	interned	values	-	the	same	name	string
always	(caselessly)	interns	to	the	same	Name	value.	To
save	interning	overhead,	many	common	names	are
interned	once	during	MAXScript	startup	and	made
available	in	C++	global	variables.
The	following	list	shows	the	pre-interned	name	globals	with	the
convention	that	the	name	for	the	global	is	the	interned	name	with	an
'n_'	prefix.
n_about
n_across
n_active
n_align
n_allKeys
n_ambientmap
n_ambientmapamount
n_ambientmapenable
n_angle
n_aspect
n_axis
n_beep
n_bezier
n_bezierCorner
n_bias
n_bitmap
n_blur
n_bumpmap

n_bumpmapamount
n_bumpmapenable
n_button
n_camera
n_cameras
n_caption
n_center
n_change
n_changed
n_checkbox
n_checkbutton
n_checked
n_children
n_close
n_color
n_colorPicker
n_columns
n_combobox
n_constant
n_constantVelocity
n_continuity
n_contrast
n_controller
n_coordsys
n_corner
n_current
n_curve
n_custom
n_cycle
n_default
n_determinantsign
n_diffusemap
n_diffusemapamount

n_diffusemapenable
n_dir
n_display
n_distance
n_dontSort
n_dropdownList
n_easeFrom
n_easeTo
n_edge
n_edittext
n_enabled
n_entered
n_even
n_faces
n_fast
n_featureBounds
n_fieldorder
n_fieldwidth
n_filename
n_filter
n_filtermap
n_filtermapamount
n_filtermapenable
n_float
n_for
n_force2sided
n_frame
n_framerange
n_from
n_fromframe
n_gamma
n_geometry
n_grayscale

n_grid
n_group
n_height
n_helpers
n_hidden
n_incleft
n_incright
n_inTangent
n_inTangentType
n_integer
n_interpolate
n_into
n_isAnimated
n_items
n_keep
n_keys
n_label
n_labels
n_left
n_length
n_lengthsegs
n_level
n_lights
n_line
n_linear
n_linkToKeys
n_listbox
n_local
n_loop
n_matchSpace
n_material
n_materialIDs
n_max

n_message
n_middle
n_mode
n_motionBounds
n_name
n_netrender
n_noCloseButton
n_nodeTM
n_noslide
n_nthframe
n_numfaces
n_numframes
n_numsubs
n_numtrackers
n_numverts
n_object
n_objects
n_off
n_offset
n_on
n_opacitymap
n_opacitymapamount
n_opacitymapenable
n_open
n_outputdevice
n_outputfile
n_outputheight
n_outputOnly
n_outputSize
n_outputwidth
n_outTangent
n_outTangentType
n_palette

n_parent
n_pickbutton
n_picked
n_pickedobject
n_pingPong
n_pivot
n_pixelaspect
n_point3
n_pos
n_position
n_pressed
n_quiet
n_radiobuttons
n_range
n_rank
n_rankDistance
n_redraw
n_reflectionmap
n_reflectionmapamount
n_reflectionmapenable
n_refractionmap
n_refractionmapamount
n_refractionmapenable
n_relativeRepeat
n_renderatmosphericeffects
n_renderfields
n_renderhiddenobjects
n_rgb
n_right
n_rightToLeft
n_rolledUp
n_rollout
n_rotation

n_rotationpart
n_scale
n_scalepart
n_scalerotationpart
n_screen
n_select
n_selected
n_selectedtracker
n_selection
n_selfillummap
n_selfillummapamount
n_selfillummapenable
n_selOnly
n_shapes
n_shinestrengthmap
n_shinestrengthmapamount
n_shinestrengthmapenable
n_shininessmap
n_shininessmapamount
n_shininessmapenable
n_simple
n_size
n_slide
n_slow
n_smooth
n_spacewarps
n_specularmap
n_specularmapamount
n_specularmapenable
n_spinner
n_state
n_step
n_steps

n_superblack
n_systems
n_target
n_tension
n_text
n_textureVerts
n_time
n_title
n_to
n_toframe
n_toolTip
n_transform
n_translationpart
n_type
n_value
n_vertices
n_vfb
n_videocolorcheck
n_width
n_widthsegs
n_world
n_worldUnits
n_x
n_x_locked
n_x_rotation
n_y
n_y_locked
n_y_rotation
n_z
n_z_locked
n_z_rotation

Class	ShortcutTable
See	Also:	Structure	ShortcutDescription,	Class	ClassDesc,	Class
ShortcutOperation,	Class	ShortcutCallback.
class	ShortcutTable

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	represents	a	table	of	accelerators	used	by	plug-ins.	A	plug-in	can	have
various	keyboard	shortcut	tables	it	uses.	These	tables	hold	a	name	that	appears	in
the	Preference	Settings	dialog	/	Keyboard	tab	/	Plug-Ins	dropdown	list,	a	unique
ID	for	the	table,	the	number	of	shortucts	in	the	table,	and	storage	for	each	of	the
Shortcut	operations.
The	number	and	a	pointer	to	the	'i-th'	shortcut	table	are	returned	by	the	methods
ClassDesc::NumShortcutTables()	and
ClassDesc::GetShortcutTable(int	i).
For	an	example	of	using	this	mechanism	see	the	code	in	the	directory
\MAXSDK\SAMPLES\MODIFIERS\FFD.
All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
ShortcutTable(ShortcutTableId	id,	TSTR&	name,	HACCEL
hDefaults,	int	numIds,	ShortcutDescription*	pOps,	HINSTANCE
hInst);

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.	A	typical
call	to	this	constructor	looks	like	this:
const	ShortcutTableId	kNURBSShortcuts	=	0x34f274e4;
#define	NumElements(array)	(sizeof(array)	/	sizeof(array[0]))
	
ShortcutTable	*GetShortcuts()	{
TSTR	name	=	GetString(IDS_JUST_NURBS);
HACCEL	hAccel	=	LoadAccelerators(hInstance,

MAKEINTRESOURCE(IDR_NURBS_SHORTCUTS));
int	numOps	=	NumElements(spShortcuts);
ShortcutTable*	pTab;
pTab	=	new	ShortcutTable(kNURBSShortcuts,
name,	hAccel,	numOps,	spShortcuts,	hInstance);
return	pTab;
}

Parameters:
ShortcutTableId	id
This	is	the	unique	ID	for	the	table.	Typically	developers	use	'half'	a	ClassID	as
output	by	the	ClassID	Generator	program.	See	the	example	above.	Note:
typedef	long	ShortcutTableId;
TSTR&	name
This	is	the	name	for	the	table	which	appears	in	the	3ds	max	UI	in	the	Files	/
Preference	Settings	/	Keyboard	tab	/	Plug-In	drop	down	list.
HACCEL	hDefaults
This	is	the	handle	to	the	default	keyboard	accelerators.	When	a	plug-in
registers	a	shortcut	table	it	needs	to	give	the	system	a	table	of	default	shortcut
assignments.	It	doesn't	need	to	give	all	the	operations	default	assignments,	but
it	does	need	to	give	it	a	table	of	defaults.	This	table	could	be	empty.	This	table
is	also	used	to	implement	the	"Reset	Category"	button	on	the	keyboard
preferences	dialog.
int	numIds
This	is	the	size	of	the	array	of	shortcut	descriptors	specified	below.
ShortcutDescription*	pOps
Points	to	the	array	of	shortcut	descriptors.
HINSTANCE	hInst
The	Dll	instance	handle	of	the	plug-in.

Prototype:
~ShortcutTable();

Remarks:
Destructor.	Any	memory	allocated	by	the	constructor	is	freed	here.

Prototype:
HACCEL	GetHAccel();

Remarks:
Returns	the	handle	of	the	currently	active	keyboard	accelerator	table.

Prototype:
void	SetHAccel(HACCEL	hAccel);

Remarks:
Sets	the	currently	active	keyboard	accelerator	table.

Parameters:
HACCEL	hAccel
The	handle	to	use.

Prototype:
HACCEL	GetDefaultHAccel();

Remarks:
Returns	the	handle	of	the	table	of	default	shortcut	assignments	that	are
registered	in	the	constructor	for	ShortcutTable.

Prototype:
TSTR&	GetName();

Remarks:
Returns	the	name	of	the	table	to	use	in	the	Preference	Settings	/	Keyboard	tab	/
Plug-Ins	drop	down	list.

Prototype:
ShortcutTableId	GetId();

Remarks:
Returns	the	unique	identifier	of	the	table.	Note:	typedef	long
ShortcutTableId;

Prototype:

int	Count();
Remarks:
Returns	the	number	of	shortcut	operations	in	the	table.

Prototype:
void	DeleteThis();

Remarks:
Deletes	this	instance	of	the	class.

Prototype:
ShortcutOperation&	operator[](int	i);

Remarks:
Provides	access	to	the	table	of	shortcut	descriptions.

Parameters:
int	i
The	zero	based	index	of	the	entry	to	get.

Class	ShortcutOperation
See	Also:	Class	ShortcutTable,	Class	ShortcutCallback,	Class	Interface,	Class
ClassDesc.

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	describes	an	operation	that	can	be	attached	to	a	shortcut.	Each	shortcut
stores	an	ID	that	is	passed	to	the	window	proc	when	the	shortcut	is	executed,	a
name	for	the	shortcut	operation	that	appears	in	the	list	of	accelerators	in	a	table,
and	an	enabled/disabled	state.	Methods	of	this	class	provide	access	to	each	of
these.
All	methods	of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
ShortcutOperation();

Remarks:
Constructor.	The	command	ID	is	set	to	zero,	the	name	is	set	to	NULL	and	the
enabled	state	is	set	to	FALSE.

Prototype:
int	GetId();

Remarks:
Returns	the	command	ID	sent	to	the	window	proc	when	the	shortcut	is
executed.

Prototype:
void	SetId(int	id);

Remarks:
Sets	the	command	ID	sent	to	the	window	proc.

Parameters:
int	id
The	ID	to	set.

Prototype:
TCHAR*	GetName();

Remarks:
Returns	the	name	of	the	operation	the	user	sees	in	the	Preference	Settings	/
Keyboard	tab	/	command	list	for	Plug-Ins.

Prototype:
void	SetName(TCHAR*	pName);

Remarks:
Sets	the	name	of	the	operation	the	user	sees.

Parameters:
TCHAR*	pName
The	name	to	set.

Class	ShortcutCallback
See	Also:	Class	ShortcutOperation,	Class	ShortcutTable,	Class	Interface.
class	ShortcutCallback

Description:
This	class	is	available	in	release	3.0	and	later	only.
An	instance	of	a	class	derived	from	this	class	is	passed	into	the	method
Interface::	ActivateShortcutTable().
When	the	user	presses	a	shortcut	key	that	is	assigned	in	an	active	table,	the
system	calls	the	KeyboardShortcut(int	id)	method	of	this	class	with	the	id	of
the	operation.
KeyboardShortcut()	should	normally	return	TRUE.	If	the
KeyboardShortcut()	call	returns	FALSE,	the	system	will	ignore	that	shortcut
and	process	any	system	shortcut	for	the	key.	This	lets	the	plug-in	selectively
override	system	defined	shortcuts.	For	example,	NURBS	use	"H"	to	bring	up	a
sub-object	hit	by	name	dialog	when	in	a	sub-object	level,	but	at	the	top-level,
"H"	is	ignored	and	the	system	hit-by-name	dialog	comes	up	instead.
The	KeyboardShortcut()	method	is	always	where	the	keyboard	shortcut	will
be	handled.	Note:There	is	no	need	for	a	window	proc	to	handle	the	message	as
the	old	RegisterAccelTable()	call	required.	The	old	RegisterAccelTable()
functionality	has	not	been	removed	(for	backward	source	compatibility)	,	but
new	plug-ins	should	use	the	new	ShortcutTable	mechanism.

Methods:
public:

Prototype:
virtual	BOOL	KeyboardShortcut(int	id)	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	user	press	a	shortcut	key	assigned	to	an	active
table.

Parameters:
int	id

The	id	of	the	operation	associated	with	the	key.
Return	Value:
TRUE	to	process	the	shortcut;	FALSE	to	ignore	the	shortcut	and	process	any
system	shortcut	for	the	key.

Structure	ShortcutDescription
See	Also:	Class	ShortcutTable.

Description:
This	structure	is	available	in	release	3.0	and	later	only.
It	provides	a	description	of	a	command	for	building	shortcut	tables	from	static
data.	A	pointer	to	an	array	of	these	is	passed	to	the	ShortcutTable	constructor.
Typically	one	is	declared	like	this:
static	ShortcutDescription	spShortcuts[]	=	{
ID_CURVE_TOGGLE,	IDS_DISPLAY_CURVES,
ID_DISP_DEP_TOGGLE,	IDS_DISPLAY_DEPENDENTS,
...

};
struct	ShortcutDescription	{
int	mCmdID;
This	is	the	command	ID.
int	mResourceID;
This	is	the	resource	ID	of	the	description	string.

};

List	of	CUI	Frame	Position	Types
See	Also:	Class	ICUIFrame.
One	or	more	of	the	following	flag	values	(which	may	be	ORed	together,	as	in
CUI_HORIZ_DOCK	|	CUI_VERT_DOCK	|	CUI_FLOATABLE	|
CUI_SM_HANDLES):

CUI_TOP_DOCK
May	be	docked	at	the	top.
CUI_BOTTOM_DOCK
May	be	docked	at	the	bottom.
CUI_LEFT_DOCK
May	be	docked	on	the	left.
CUI_RIGHT_DOCK
May	be	docked	on	the	right.
The	flags	below	are	combinations	of	those	above:
CUI_ALL_DOCK
May	be	docked	in	any	of	the	positions	above	(same	as
(CUI_TOP_DOCK|CUI_BOTTOM_DOCK|CUI_LEFT_DOCK|CUI_RIGHT_DOCK)).
CUI_HORIZ_DOCK
May	be	docked	at	the	top	or	the	bottom.
(CUI_TOP_DOCK|CUI_BOTTOM_DOCK)
CUI_VERT_DOCK
May	be	docked	at	the	left	or	the	right.
(CUI_LEFT_DOCK|CUI_RIGHT_DOCK)

The	flags	below	control	if	the	frame	may	be	floated,	connected,	or	should
display	handles:
CUI_FLOATABLE
The	frame	may	be	floated.
CUI_FLOATING
This	is	a	synonym	for	CUI_FLOATING	above.
CUI_CONNECTABLE
This	is	not	currently	implemented.
CUI_SM_HANDLES

Set	this	flag	if	frame	should	display	size/move	handles	and	it	is
resized/moved.

List	of	CUI	Frame	Size	Types
See	Also:	Class	ICUIFrame.
The	size	type.	One	of	the	following	values:
CUI_MIN_SIZE	-	The	minimum	size.
CUI_MAX_SIZE	-	The	maximum	size.
CUI_PREF_SIZE	-	The	preferred	size.	3ds	max	does	not	currently	take
advantage	of	this	size,	only	MIN	and	3ds	max	are	used.

List	of	CUI	Frame	Orientations
See	Also:	Class	ICUIFrame.
The	orientation.	One	or	more	of	the	following	values:
CUI_HORIZ	-	Horizontal	orientation.
CUI_VERT	-	Vertical	orientation.
CUI_FLOAT	-	As	a	floating	toolbar.

List	of	CUI	Docking	Panel	Locations
See	Also:	Class	CUIFrameMgr.
One	or	more	of	the	following	values:
CUI_TOP_PANEL
CUI_BOTTOM_PANEL
CUI_LEFT_PANEL
CUI_RIGHT_PANEL
CUI_FIXED_PANELS	--	This	is	the	same	as:

(CUI_TOP_PANEL|CUI_BOTTOM_PANEL|CUI_LEFT_PANEL|CUI_RIGHT_PANEL)
CUI_FLOATING_PANELS
CUI_ALL_PANELS	--This	is	the	same	as:

(CUI_FIXED_PANELS|CUI_FLOATING_PANELS)

Class	ICurve
See	Also:	Class	ReferenceTarget,	Class	ICurveCtl,	Class	CurvePoint,
COLORREF,	Class	BitArray.
class	ICurve	:	public	ReferenceTarget

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	is	an	interface	to	a	single	curve	used	by	a	ICurveCtl.	A	pointer	to
one	of	these	is	returned	from	the	method	ICurveCtl::GetControlCurve().
All	methods	of	this	class	are	implemented	by	the	system.

Methods:
public:

Prototype:
virtual	void	SetPenProperty(COLORREF	color,	int	width	=	0,	int
style	=	PS_SOLID)=0;

Remarks:
Sets	the	pen	properties	of	a	curve

Parameters:
COLORREF	color
The	color	for	the	curve	lines.
int	width	=	0
The	width	of	the	lines	in	pixels.
int	style	=	PS_SOLID
The	pen	style	to	use.	One	of	the	following	types	may	be	used.	See	the	Win32
API	Reference	for	more	information	on	pen	styles.
PS_SOLID
PS_DASH
PS_DOT
PS_DASHDOT
PS_DASHDOTDOT
PS_NULL

PS_INSIDEFRAME

Prototype:
virtual	void	GetPenProperty(COLORREF	&color,	int	&width,	int
&style)=0;

Remarks:
Retrieves	the	color,	width	and	style	of	a	curve.

Parameters:
COLORREF	&color
The	color	in	use.
int	&width
The	width	in	use.
int	&style
The	style	in	use.	One	of	the	following	types:
PS_SOLID
PS_DASH
PS_DOT
PS_DASHDOT
PS_DASHDOTDOT
PS_NULL
PS_INSIDEFRAME

Prototype:
virtual	void	SetDisabledPenProperty(COLORREF	color,	int	width
=	0,	int	style	=	PS_SOLID)=0;

Remarks:
Sets	the	pen	properties	of	a	curve	if	it	is	disabled.

Parameters:
COLORREF	color
The	color	to	set.
int	width	=	0

The	width	to	set.
int	style	=	PS_SOLID
The	style	to	set.	One	of	the	following	types:
PS_SOLID
PS_DASH
PS_DOT
PS_DASHDOT
PS_DASHDOTDOT
PS_NULL
PS_INSIDEFRAME

Prototype:
virtual	void	GetDisabledPenProperty(COLORREF	&color,	int
&width,	int	&style)=0;

Remarks:
Retrieves	the	color	of	a	curve	if	it	is	disabled.

Parameters:
COLORREF	&color
The	color	in	use.
int	&width
The	width	in	use.
int	&style
The	style	in	use.	One	of	the	following	types:
PS_SOLID
PS_DASH
PS_DOT
PS_DASHDOT
PS_DASHDOTDOT
PS_NULL
PS_INSIDEFRAME

Prototype:
virtual	float	GetValue(TimeValue	t,	float	fX,	Interval	&ivalid	=
FOREVER,	BOOL	UseLookupTable	=	FALSE)=0;

Remarks:
Returns	the	Y-value	for	a	given	X-Value	of	the	curve.	Note	that	values	outside
the	X-range	are	extrapolated	from	the	curve	using	a	straight	line	based	on	the
tangents	of	the	first	or	last	point.

Parameters:
TimeValue	t
The	time	to	get	the	value.
float	fX
The	input	X	value.
Interval	&ivalid	=	FOREVER
The	validity	interval	which	is	updated	by	this	method	to	reflect	the	validity	of
the	curve.
BOOL	UseLookupTable	=	FALSE
If	TRUE	a	lookup	table	is	used	to	get	the	value	(for	speed).	If	FALSE	the
value	is	computed.
This	is	used	to	speed	up	value	access.	The	default	value	for	the	lookup	table
size	is	1000.	The	lookup	table	will	be	calculated	whenever	this	method	is
called	with	TRUE	and	the	current	lookup	table	is	not	initialized	yet,	or	invalid
(it	will	be	invalidated,	when	a	point	or	tangent	is	moved,	or	the	time	has
changed	in	case	it	is	animated).

Prototype:
virtual	void	SetCanBeAnimated(BOOL	Animated)=0;

Remarks:
Sets	if	the	curve	can	be	animated	or	not.

Parameters:
BOOL	Animated
TRUE	if	it	can	be	animated;	FALSE	if	it	can't.

Prototype:

virtual	BOOL	GetCanBeAnimated()=0;
Remarks:
Returns	TRUE	if	the	curve	can	be	animated;	otherwise	FALSE.

Prototype:
virtual	int	IsAnimated(int	index)=0;

Remarks:
Returns	nonzero	if	the	specified	point	is	animated;	otherwise	zero.

Parameters:
int	index
The	zero	based	index	of	the	curve	to	check.

Prototype:
virtual	int	GetNumPts()=0;

Remarks:
Returns	the	number	of	points	in	the	curve.

Prototype:
virtual	void	SetNumPts(int	count)=0;

Remarks:
Sets	the	number	of	points	in	the	curve.

Parameters:
int	count
The	number	to	set.

Prototype:
virtual	BitArray	GetSelectedPts()=0;

Remarks:
Returns	a	BitArray	which	contains	the	selected	/	de-selected	state	for	each
point.	The	BitArray	is	GetNumPts()	in	size	where	the	0-th	bit	corresponds	to
the	0-th	point.

Prototype:
virtual	void	SetSelectedPts(BitArray	&sel,	int	flags)=0;

Remarks:
Sets	the	selected	state	of	the	points	in	the	curve	using	the	BitArray	passed.
Bits	which	are	are	affected	as	specified	by	the	flags.

Parameters:
BitArray	&sel
Specifies	which	points	are	affected.	The	0-th	bit	corresponds	to	the	0-th	point.
int	flags
One	or	more	of	the	following	values:
SELPTS_SELECT
Select	the	points.
SELPTS_DESELECT
De-select	the	points.
SELPTS_CLEARPTS
If	this	bit	is	set	the	method	de-selects	(clears)	all	the	points	before
performing	the	operation	as	specified	by	the	flags	above.

Prototype:
virtual	void	SetPoint(TimeValue	t,	int	index,	CurvePoint	*point,
BOOL	CheckConstraints	=	TRUE,	BOOL	notify	=	TRUE)=0;

Remarks:
Sets	the	specified	point	at	the	time	passed.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	point.
int	index
The	zero	based	index	of	the	point	in	the	curve.
CurvePoint	*point
Points	to	the	curve	point	to	set.
BOOL	CheckConstraints	=	TRUE
When	you're	setting	a	point,	it	checks	the	in	and	outtan	handles	to	prevent
them	from	going	beyond	the	previous	or	next	point's	location,	since	that	would

create	an	invalid	curve.	Thus	the	Curve	Control	will	adjust	the	tangents	due	to
the	constraints.	However,	if	you	set	the	first	point,	there	is	no	next	point,	to
check	the	tangent	location	against,	thus	you	have	to	have	a	possibility	to	turn
CheckConstraints	off,	so	the	constraints	won't	be	checked	(developers	have	to
make	sure	that	they	are	inserting	valid	points/tangents.)
BOOL	notify	=	TRUE
This	parameter	is	available	in	release	4.0	and	later	only.
This	allows	developers	to	control	whether	the	command	sends	windows
messages	or	not.	When	set	to	FALSE	windows	messages	are	not	sent	to	the
message	handler.	This	lets	developers	constrain	points	when	the	user	attempts
to	move	them	without	getting	into	a	message	loop.	When	TRUE	messages	are
sent.

Prototype:
virtual	CurvePoint	GetPoint(TimeValue	t,	int	index,	Interval
&valid	=	FOREVER)=0;

Remarks:
Retrieves	data	about	the	specfied	point	and	updates	the	validity	interval	to
reflect	the	validity	of	the	point's	controller.

Parameters:
TimeValue	t
The	time	to	get	the	data.
int	index
The	zero	based	index	of	the	point.
Interval	&valid	=	FOREVER
The	validity	interval	which	is	updated.

Prototype:
virtual	void	SetOutOfRangeType(int	type)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	allows	you	to	set	the	out	of	range	type.

Parameters:

int	type
Currently	these	types	are	supported;
CURVE_EXTRAPOLATE_LINEAR
CURVE_EXTRAPOLATE_CONSTANT

Prototype:
virtual	int	GetOutOfRangeType()=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	returns	the	out	of	range	type.

Return	Value:
One	of	the	following;	CURVE_EXTRAPOLATE_LINEAR,
CURVE_EXTRAPOLATE_CONSTANT

Prototype:
virtual	int	Insert(int	where,	CurvePoint	&p)=0;

Remarks:
Inserts	the	specified	point	at	the	location	passed.

Parameters:
int	where
This	value	becomes	the	new	index	of	the	point.
CurvePoint	&p
The	point	to	insert.

Return	Value:
Nonzero	if	the	point	was	inserted;	otherwise	zero.

Prototype:
virtual	int	Insert(int	where,	CurvePoint&	p,	BOOL
do_not_hold)=0;

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	is	identical	to	the	Insert	above	but	allows	you	to	turn	off/on	the	hold	that

occurs.this	is	useful	when	you	are	doing	interactive	inserts	and	moves	from
code,	the	original	Insert	hold	would	often	get	in	the	way

Parameters:
int	where
This	value	becomes	the	new	index	of	the	point.
CurvePoint	&p
The	point	to	insert.
BOOL	do_not_hold
TRUE	in	order	not	to	hold;	otherwise	FALSE.

Return	Value:
Nonzero	if	the	point	was	inserted;	otherwise	zero.

Prototype:
virtual	void	Delete(int	index)=0;

Remarks:
Deletes	the	point	whose	index	is	passed.

Parameters:
int	index
The	zero	based	index	of	the	point	to	delete.

Prototype:
virtual	void	SetLookupTableSize(int	size)=0;

Remarks:
This	method	sets	the	size	of	the	Curve	Control	lookup	table.	The	lookup	table
allows	users	of	the	Curve	Control	to	easily	speed	up	their	value	access.	The
default	value	for	the	lookup	table	size	is	1000.	The	lookup	table	will	be
calculated	whenever	GetValue()	is	called	with	the	parameter
UseLookupTable==TRUE	and	the	current	LookupTable	is	not	initialized
yet,	or	invalid	(it	will	be	invalidated,	when	a	point	or	tangent	is	moved,	or	the
time	has	changed	in	case	it	is	animated).

Parameters:
int	size

The	size	to	set.

Prototype:
virtual	int	GetLookupTableSize()=0;

Remarks:
Returns	the	current	size	of	the	lookup	table.	See	SetLookupTableSize()
above.

Class	CurvePoint
See	Also:	Class	ICurve.
class	CurvePoint

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	stores	data	about	a	single	point	on	a	curve	used	by	the	custom	curve
control.

Data	Members:
public:
Point2	p;
The	curve	point.
Point2	in;
The	in	tangent,	relative	to	p.
Point2	out;
The	out	tangent,	relative	to	p.
int	flags;
One	or	more	of	the	following	values	which	describes	the	type	of	curve	point:
CURVEP_BEZIER
Indicates	the	point	is	a	bezier	smooth	point.
CURVEP_CORNER
Indicates	the	point	is	a	corner	point.
To	get	a	Bezier	Corner	use:
CURVEP_CORNER	&	CURVEP_BEZIER

CURVEP_LOCKED_Y
Indicates	the	point	is	locked	in	Y.
CURVEP_LOCKED_X
Indicates	the	point	is	locked	in	X.
CURVEP_SELECTED
Indicates	the	point	is	selected.
CURVEP_ENDPOINT
Indicates	a	constrained	endpoint	on	the	curve.

CURVEP_NO_X_CONSTRAINT
Indicates	a	point	should	not	be	constrained	to	X.

Class	ResourceMakerCallback
See	Also:	Class	ICurveCtl.
class	ResourceMakerCallback
public:

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	callback	object	may	be	used	to	handle	custom	bitmaps	and	tooltips	for	the
display	buttons	of	a	curve	control.	There	are	also	methods	which	get	called	to
handle	the	situations	when	a	curve	is	reset	or	a	new	curve	is	created.
All	methods	of	this	class	are	implemented	by	the	plug-in.

Methods:
public:

Prototype:
virtual	BOOL	SetCustomImageList(HIMAGELIST
&hCTools,ICurveCtl	*pCCtl);

Remarks:
This	method	is	called	to	set	the	image	list.
This	callback	is	used	to	update	the	HIMAGELIST	to	handle	custom	bitmaps
on	the	display	buttons.	The	image	list	has	to	have	2*NumCurves	16x15
bitmaps.	The	format	for	the	first	set	of	images	is	for	Out&In	Enabled.	The
second	set	is	for	Out&In	Disabled	(which	are	not	yet	used).

Parameters:
HIMAGELIST	&hCTools
A	reference	to	the	image	list	to	set.	An	HIMAGELIST	is	a	Win32	data	type
that	is	a	handle	to	an	image	list.
ICurveCtl	*pCCtl
This	pointer	can	be	used	to	determine	which	ICurveCtl	calls	the	callback,	in
case	the	plugin	uses	many	CurveControls	and	want	to	set	different	bitmaps	for
different	CurveControls.

Return	Value:
If	the	image	list	was	assigned	the	callback	should	return	TRUE.	If	it	returns
FALSE,	the	default	bitmaps	will	be	used.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	BOOL	GetToolTip(int	iButton,	TSTR	&ToolTip,ICurveCtl
*pCCtl);

Remarks:
This	callback	allows	the	developer	to	assign	custom	ToolTips	to	the	display
buttons.	One	simply	has	to	assing	a	string	to	the	ToolTip	parameter	for	the
specified	button	number.

Parameters:
int	iButton
The	zero	based	index	of	the	button	whose	tool	tip	text	to	retrieve.
TSTR	&ToolTip
The	string	for	the	tool	tip	text.
ICurveCtl	*pCCtl
This	pointer	can	be	used	to	determine	which	ICurveCtl	calls	the	callback,	in
case	the	plugin	uses	many	CurveControls	and	want	to	set	different	Tooltips	for
different	CurveControls.

Return	Value:
TRUE	if	the	method	is	implemented	to	use	custom	tooltips;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	void	ResetCallback(int	curvenum,	ICurveCtl	*pCCtl);

Remarks:
This	methods	gets	called	when	the	user	preses	the	Reset	button	(cross	symbol)
in	the	user	interface	(if	the	control	is	using	the	upper	toolbar).

Parameters:
int	curvenum
The	zero	based	index	of	the	curve.

ICurveCtl	*pCCtl
Points	to	the	interface	for	the	custom	curve	control.

Default	Implementation:
{}

Prototype:
virtual	void	NewCurveCreatedCallback(int	curvenum,	ICurveCtl
*pCCtl);

Remarks:
This	method	gets	called	after	the	curve	control	creates	a	new	curve.	The
developer	can	set	the	default	values	here	for	the	new	curve.	This	call	will	be	a
result	of	a	call	to	SetNumCurves(i)	where	the	new	size	is	bigger	than	the
old	size.

Parameters:
int	curvenum
The	zero	based	index	of	the	curve.
ICurveCtl	*pCCtl
Points	to	the	interface	for	the	custom	curve	control.

Default	Implementation:
{}

List	of	Custom	Curve	Control	Flags
See	Also:	Class	ICurveCtl.
These	flags	control	various	display	aspects	of	the	custom	curve	control.	See	the
methods	ICurveCtl::SetCCFlags()	and	GetCCFlags().
Developers	can	easily	review	these	by	running	the	curve	control	utility	CCUtil	in
\MAXSDK\SAMPLES\UTILITIES\CCUTIL.
One	or	more	of	the	following	values:
CC_DRAWBG
Specifies	to	draw	the	white	background	in	the	graph	window.
CC_DRAWGRID
Specifies	to	draw	the	grid	lines	and	coordinates	in	the	graph	window.
CC_DRAWUTOOLBAR
Specifies	to	draw	the	upper	toolbar	above	the	control.
CC_SHOWRESET	
Specifies	to	display	the	Reset	button	in	the	upper	toolbar.
CC_DRAWLTOOLBAR
Specifies	to	draw	the	lower	toolbar	beneath	the	control.
CC_DRAWSCROLLBARS
Specifies	to	draw	the	horizontal	and	vertical	scroll	bars	for	the	control.
CC_AUTOSCROLL
Specifies	to	do	auto	scrolling.	Auto	scroll	happens	when	you	drag	a
CurvePoint	out	of	the	currently	visible	range.	In	case	you're	zoomed	in,	the
window	will	automtically	scroll.
CC_DRAWRULER	
Specifies	to	draw	a	small	moveable	ruler	window	(measures	horizontal
coordinates).
CC_ASPOPUP
Specifies	to	create	the	control	as	a	pop-up	with	a	title	string.	Have	the
Window	as	popup	window.	If	this	is	not	set,	it's	important	to	set	the
SetCustomParentWnd(HWND	hParent)=0;	to	the	parent	of	the
CurveControl	Window.
CC_CONSTRAIN_Y
Specifies	that	no	points	(or	handles)	can	be	moved	out	of	the	value	that	is

set	by	SetYRange().
CC_HIDE_DISABLED_CURVES
Specifies	that	disabled	curves	won't	be	displayed	at	all.	If	this	is	not	set,	the
disabled	curves	will	be	drawn	by	the	color	set	by
SetDisabledPenProperty().
Note:	The	following	flags	may	be	specified	to	enable	a	right	click	menu
with	choices	used	to	activate	the	corresponding	command	mode	(for
instance	if	the	upper	toolbar	is	not	present	where	these	choice	are	also
available).
CC_RCMENU_MOVE_XY
CC_RCMENU_MOVE_X
CC_RCMENU_MOVE_Y
CC_RCMENU_SCALE
CC_RCMENU_INSERT_CORNER
CC_RCMENU_INSERT_BEZIER
CC_RCMENU_DELETE	
CC_SHOW_CURRENTXVAL	(a	flag	to	allow	a	vertical	bar	to	be
drawn	over	the	graph	to	show	the	current	X	value)
Also	note:	One	looses	the	automatic	switch	from	insert	to	move	mode	when
right-clicking,	if	a	RightClick	menu	is	active.	Also	note	the	following	'user'
features:
-	Pressing	Control	key	while	inserting	keys	will	insert	the	opposite	type	of
key	than	what's	currently	selected	(bezier	or	corner).

Pressing	the	Shift	key	while	moving	a	tangent	convertes	a	bezier	key
into	a	bezier	corner	key.

CC_SINGLESELECT
This	flag	allows	the	user	to	single	select	a	point	normally	if	a	bunch	of
points	are	stacked	in	area	if	you	click	on	the	area	you	get	all	of	them	with
this	flag	you	get	the	first	one.
CC_NOFILTERBUTTONS
This	flag	turns	off	the	curve	visible/editable	toggle	in	the	top	of	the	menu

bar	useful	for	when	you	have	lots	of	curves	and	want	to	do	the	display
management	yourself.

Class	RightClickMenu
See	Also:	Class	RightClickMenuManager,	Class	Interface,	Class	IPoint2.
class	RightClickMenu

Description:
This	class	provides	methods	to	work	with	the	right	click	menu	that	pops	up	when
the	user	right	clicks	over	an	item	in	a	viewport.	Methods	of	this	class	are	used	to
initialize	the	menu	and	process	the	users	selections.	A	developer	derives	a	class
from	this	class.	For	sample	code	see
\MAXSDK\SAMPLES\MODIFIERS\EDITPATCH\EDITPAT.CPP.
Also	see	the	method	Interface::GetRightClickMenuManager().

Methods:

Prototype:
virtual	void	Init(RightClickMenuManager*	manager,	HWND
hWnd,	IPoint2	m)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	user	right	clicks	on	an	object	in	the	scene.	At
this	point	you	can	determine	what	you	need	in	the	menu,	and	add	these	items
using	manager->AddMenu().

Parameters:
RightClickMenuManager*	manager
The	menu	manager.	You	may	use	this	pointer	to	call	methods	of	this	class	(for
example	to	add	items	to	the	menu).
HWND	hWnd
The	window	handle	the	user	right	clicked	in.
IPoint2	m
The	screen	point	the	user	right	clicked	on.

Prototype:
virtual	void	Selected(UINT	id)=0;

Remarks:

Implemented	by	the	Plug-In.
This	method	is	called	when	the	user	has	selected	an	item	from	the	menu.

Parameters:
UINT	id
This	is	the	id	of	the	users	selection.	This	id	is	established	when	the	developer
calls	RightClickMenuManager::AddMenu().

List	of	IGraphObjectManager	Filter	Bits
See	Also:	Class	IGraphObjectManager.
The	filter	bits:	One	or	more	of	the	following	values:
SV_FILTER_SELOBJECTS
Show	only	Selected	objects.
SV_FILTER_OBJECTMODS
Show	Modified	Objects.
SV_FILTER_BASEPARAMS
Show	Base	Objects.
SV_FILTER_MATPARAMS
Show	Materials.
SV_FILTER_GEOM
Show	geometry	nodes.
SV_FILTER_SHAPES
Show	shape	nodes.
SV_FILTER_LIGHTS
Show	light	nodes.
SV_FILTER_CAMERAS
Show	camera	nodes.
SV_FILTER_HELPERS
Show	helper	nodes.
SV_FILTER_WARPS
Show	space	warps.
SV_FILTER_VISIBLE_OBJS
Show	only	Visible	objects.
SV_FILTER_CONTROLLERS
Show	controllers.
SV_FILTER_ANIMATEDONLY
Show	only	animated	nodes.
SV_FILTER_MAPS
Show	maps.
SV_FILTER_BONES

Show	bone	base	objects.

Class	SClassUIInfo
See	Also:	Class	SubClassList,	COLORREF.
class	SClassUIInfo

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	allows	developers	to	provide	some	additional	information	on	a
superclass.	Currently	this	includes	a	color,	and	a	method	which	draws	a
representative	image	in	a	Windows	DC.
DrawRepresentation(...)	can	return	false	to	indicate	that	no	image	was	drawn.
DrawRepresentation(...)	should	cache	its	image	(if	applicable)	as	the	method	is
called	repeatedly	while	drawing	certain	UI	components	(like	the	schematic
view).

Methods:
public:

Prototype:
virtual	COLORREF	Color(SClass_ID	superClassID);

Remarks:
Returns	a	color	associated	with	the	specified	super	class.	This	is	currently	used
to	draw	nodes	in	the	schematic	view	at	extreme	zoom-outs	where	it	is
impossible	to	draw	legible	node	names.

Parameters:
SClass_ID	superClassID
The	Super	Class	whose	associated	color	to	return.

Default	Implementation:
{	return	RGB(128,	128,	128);	}

Prototype:
virtual	bool	DrawRepresentation(SClass_ID	superClassID,
COLORREF	bkColor,	HDC	hDC,	Rect	&rect);

Remarks:
Draws	an	image	which	represents	the	superclass	(usually	an	icon)	in	a

rectangle	in	a	given	Windows	DC.	The	implementation	should	attempt	to	draw
the	image	as	fast	as	possible	as	this	method	is	called	repeatedly	while	drawing
certain	UI	components.

Parameters:
SClass_ID	superClassID
The	super	class	to	draw.
COLORREF	bkColor
This	is	the	average	background	color	of	the	surface	on	which	the	image	is
being	drawn.	It	can	be	used,	if	desired,	to	antialias	the	image.
HDC	hDC
The	handle	to	the	device	context.
Rect	&rect
The	rectangle	to	draw	in.

Return	Value:
Return	false	if	no	image	was	drawn	and	a	generic	stand-in	image	will	be	used.

Default	Implementation:
{	return	false;	}

List	of	Macro	Recorder	Value	Types
See	Also:	Class	MacroRecorder,	Class	Point3,	Class	Matrix3,	Class	Color,
Class	AngAxis,	Class	Quat,	Class	BitArray,	Class	PBBitmap,	Class	Class_ID,
Class	ParamDimension.
One	of	the	following	macro	recorder	type	tags	followed	by	the	argument(s)
indicated.	Depending	upon	the	case	there	may	be	one,	two	or	three	arguments	as
noted:
Basic	C	Types:
mr_int
An	integer.	Follow	the	tag	with	the	int.
Example	code:	91462
mr_float
A	floating	point	value.	Follow	the	tag	with	a	double.
Example	code:	123.45
mr_string
A	string.	Follow	the	tab	with	the	string	(TCHAR*).
Example	code:	"Benson"
mr_bool
A	boolean.	Follow	the	tag	with	a	int.
Example	code:	true

MAX	SDK	Types:
mr_point3
A	Point3.	Follow	the	tag	with	a	Point3*.
Example	code:	[10,0,0]
mr_color
A	Color.	Follow	the	tag	with	a	Color*.
Example	code:	color	12	128	0
mr_angaxis
An	AngAxis.	Follow	the	tag	with	an	AngAxis*.
Example	code:	angleAxis	45[1,0,0]
mr_quat

A	Quaternion.	Follow	the	tag	with	a	Quat*.
Example	code:	quat	1	0	0	0
mr_time
A	TimeValue,	follow	the	tag	with	a	TimeValue.
Example	code:	22f
mr_reftarg
A	Reference	Target	pointer.	Follow	the	tag	with	a	ReferenceTarget*.
Example	code:	$foo	or	$baz.modifiers[2]	or	$foo.material,	etc.
mr_bitarray
A	bit	array.	Follow	the	tag	with	a	pointer	to	a	BitArray*.
Example	code:	#{1..20,	30,34..100}
mr_pbbitmap
A	parameter	block2	bitmap	object.	Follow	the	tag	with	a	PBBitmap*.
Example	code:	bitMap	640	480	fileName:"fuz.bmp"
mr_matrix3
A	Matrix3.	Follow	the	tag	with	a	Matrix3*.
Example	code:	matrix3	[1,0,0]	[0,1,0]	[0,0,1]	[10,0,0]
mr_dimfloat
A	floating	point	value	with	the	specified	ParamDimension.	Follow	the	tag
with:	ParamDimension*,	double.
Example	code:	123.45	(scaled	by	the	dimension)
mr_dimpoint3
A	Point3	value	with	the	specified	ParamDimension.	Follow	the	tag	with:
ParamDimension*,	Point3*.
Example	code:	[10,0,0]	(scaled	by	the	dimension)
mr_classid
A	Class	ID,	follow	the	tag	with	a	Class_ID	and	a	SClass_ID.
Example	code:	box	(the	class	variable	name)
mr_create
A	constructor	call	for	the	class.	Follow	the	tag	with:	Class_ID,	SClass_ID,
int,	<args>

The	int	parameter	is	the	number	of	keyword	args	following,	these	are
specified	in	pairs	as	TCHAR*,	<arg>
Example	code:	sphere	radius:20	pos:[10,0,0]
mr_angle
A	floating	point	value	with	a	ParamDimension	of	a	stdAngleDim.	Follow
the	tag	with	a	double.
Example	code:	90
mr_percent
A	floating	point	value	with	a	ParamDimension	of	stdPercentDim.	Follow
the	tag	with	a	double.
Example	code:	10

MAXScript	Types:
mr_sel
A	selection	set.	This	tag	works	alone	with	no	additional	data.	This	tag	denotes
the	current	scene	node	selection	and	will	emit	as	either	a	'$'	or	an	array	of
explicit	objects,	depending	on	the	state	of	the	EmitAbsoluteSceneNames()
flag.
Example	code:	$	or	$sphere01
mr_funcall
A	function	call.	Follow	the	tag	with	an	int,	int,	<args>
The	first	int	parameter	is	the	number	of	positional	arguments,	given	first	in	the
<args>	items,	as	<arg>,	the	second	int	parameter	is	the	number	of	keyword
args	following	the	positional	args	in	<args>,	given	as	TCHAR*,	<arg>	pairs.
Example	code:	foo	x	y	z	output:f
mr_varname
A	variable	name.	Follow	the	tag	with	a	string	(TCHAR*).
Example	code:	baz
mr_index
An	index.	Follow	the	tag	with:	<op_arg>,	<index_arg>
<op_arg>	is	an	<arg>	specifying	the	operand	to	be	indexed	and
<index_arg>	is	an	<arg>	specifying	the	index	value.
Example	code:	meditMaterials[3]

mr_prop
A	property	name.	Follow	the	tag	with	TCHAR*,	<arg>.	The	TCHAR*	is
the	property	name,	the	<arg>	specifies	the	item	being	accessed.
Example	code:	$foo.pos
mr_nurbssel
A	NURBS	selection	level.	Follow	the	tag	with:	int,	ReferenceTarget*
The	int	parameter	is	the	selection	level	desired	of	the	specified	NURBS	base
object.
Example	code:	#{1..20,	50..100}
This	is	an	example	of	a	BitArray	literal	in	MAXScript,	so	it	says	sub-objects	1
through	20	and	50	through	100	are	currently	selected	at	the	given	level	(the
int)	in	the	NURBS	ReferenceTarget*	base	object.
mr_name
A	name.	Follow	the	tag	with	a	string	(TCHAR	*).
Example	code:	#relational
Note:	A	name	in	MAXScript	is	a	simple	symbolic	value,	often	used	instead	of
numbers	to	denote	options	in	some	function	call.	For	example,	when	setting
the	motion	blur	of	a	scene	node,	one	can	say:
$foo.motionBlur	=	#image	(or	#none,	or	#object)
generated,	perhaps	by:
macroRecorder->SetSelProperty(_T("motionBlur"),	mr_name,
blurname);
or	when	choosing	g-buffer	channels	in	the	render()	function,	one	would	say:
bm	=	render	camera:$c1	channels:#(#zdepth,	#coverage,
#objectID)

Class	IKSlaveControl
See	Also:	Class	Control,	Class	IKMasterControl,	Class	Point3,	Class	Quat.
class	IKSlaveControl	:	public	Control

Description:
This	class	is	available	in	release	2.0	and	later	only.
The	IK	Controller	requires	that	you	use	the	Bones	system.	When	you	create	the
bones,	a	slave	IK	controller	is	assigned	to	each	bone.	All	of	the	slave	IK
controllers	in	a	single	hierarchy	are,	in	turn,	controlled	by	a	master	IK	controller.
This	class	provides	access	to	the	slave	controller	parameters.
If	you	have	a	pointer	to	a	TM	controller	you	may	test	the	Class_ID	against
IKSLAVE_CLASSID	to	determine	if	it	is	an	IK	Slave	Controller.
For	an	example	the	use	of	this	class	see
\MAXSDK\SAMPLES\OBJECTS\BONES.CPP.

Methods:
public:

Prototype:
virtual	IKMasterControl	*GetMaster()=0;

Remarks:
Returns	a	pointer	to	the	IKMasterControl	that	manages	this	IK	slave
controller.

Prototype:
virtual	void	SetDOF(int	which,	BOOL	onOff)=0;

Remarks:
Sets	the	specified	degree	of	freedom	to	on	or	off.

Parameters:
int	which
Specifies	which	degree	of	freedom	to	modify.	Pass	a	value	between	1	and	6.
The	first	3	DOFs	are	position	and	the	next	3	are	rotation.
BOOL	onOff
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetInitPos(Point3	pos)=0;

Remarks:
Sets	the	initial	position	to	the	value	passed.

Parameters:
Point3	pos
The	initial	position	to	set.

Prototype:
virtual	void	SetInitRot(Point3	rot)=0;

Remarks:
Sets	the	initial	rotation	to	the	value	passed.

Parameters:
Point3	rot
The	initial	rotation	to	set.

Prototype:
virtual	void	MakeEE(BOOL	onOff,DWORD	which,Point3
pos,Quat	rot)=0;

Remarks:
For	any	IK	solution	you	explicitly	move	one	object.	3ds	max	uses	IK
calculations	to	move	and	rotate	all	other	objects	in	the	kinematic	chain	to	react
to	the	object	you	moved.	The	object	that	you	move	is	the	end	effector.	There
are	two	types	of	end	effectors;	Position	and	Rotation.	This	method	create	or
deletes	an	end	effector	for	position	or	rotation	or	both.

Parameters:
BOOL	onOff
Controls	if	the	end	effector	is	on	or	off	(creates	or	deletes	the	end	effector
controller).	TRUE	to	create;	FALSE	to	delete.
DWORD	which
Specifies	which	end	effector(s)	to	modify.	Set	the	low	order	bit	for	position,
the	second	bit	for	rotation,	or	set	both	for	position	and	rotation.
Point3	pos
The	initial	position	set	at	time	0	for	the	position	controller

(CTRL_ABSOLUTE).
Quat	rot
The	initial	rotation	set	at	time	0	for	the	rotation	controller
(CTRL_ABSOLUTE).

The	following	function	is	not	part	of	this	class	but	is	available	for
use:

Function:
IKSlaveControl	*CreateIKSlaveControl(IKMasterControl
*master,INode	*slaveNode);

Remarks:
This	global	function	creates	and	returns	a	pointer	to	a	new	IK	slave	controller
by	specifying	the	master	controller	and	a	node	to	which	the	slave	controller	is
assigned.

Parameters:
IKMasterControl	*master
Points	to	the	master	controller	to	use.
INode	*slaveNode
Points	to	the	slave	node	to	use.

Structure	ISect
See	Also:	Class	RenderGlobalContext,	Class	RenderInstance,	Class	ISectList.

Description:
This	structure	is	available	in	release	2.0	and	later	only.
This	structure	is	updated	by	the	RenderGlobalContext::IntersectWorld()
and	RenderGlobalContext::IntersectRay()	methods.	It	stores	information
about	the	intersection	of	a	ray	and	a	single	triangle	in	a	mesh.
struct	ISect	{
float	t;
The	ray	that	was	intersected	has	a	unit	vector	specifying	a	direction.	The	ray
defines	an	infinite	line	in	the	specified	direction.	If	you	take	this	value	t	and
multiply	it	by	the	direction	itself	it	gives	a	point	on	the	ray.	This	specifies	a
distance	along	the	vector.	For	instance	if	this	way	5.0,	the	point	would	5.0
units	along	the	ray	vector.	This	is	the	point	of	intersection	along	the	ray.
BOOL	exit;
TRUE	if	the	ray	is	exiting	the	object;	otherwise	FALSE.
BOOL	backFace;
TRUE	if	the	ray	hits	a	back	face	of	the	triangle;	otherwise	FALSE.
RenderInstance	*inst;
Points	to	the	render	instance	associated	with	this	triangle	hit.
int	fnum;
The	face	number	of	the	triangle.
Point3	bc;
The	barycentric	coordinates	of	the	intersection.
Point3	p;
The	intersection	point	in	object	coordinates.
Point3	pc;
The	intersection	point	in	camera	coordinates.
ULONG	matreq;
The	material	requirements	of	the	intersected	face.	See	List	of	Material
Requirement	Flags.

int	mtlNum;
The	material	number	for	a	multi-material.
ISect	*next;
Points	to	the	next	ISect	structure	in	the	list.
};

Class	ISectList
See	Also:	Structure	ISect.
class	ISectList

Description:
This	class	is	available	in	release	2.0	and	later	only.
It	provides	a	list	of	ray	/	triangle	intersection	sturctures	(struct	ISect).	Methods
are	available	for	initializing	the	list,	adding	to	the	list,	and	selectively	removing
items	from	the	list.
All	methods	of	this	class	are	implemented	by	the	system.
Note	the	following	global	functions	may	be	used	to	create	and	free	instances	of
this	class.

Function:
ISect	*GetNewISect();

Remarks:
This	global	function	is	available	in	release	2.0	and	later	only.
Returns	a	pointer	to	a	new	ISect	structure.
Function:
void	DiscardISect(ISect	*is);

Remarks:
This	global	function	is	available	in	release	2.0	and	later	only.
Deletes	the	ISect	structure	whose	pointer	is	passed.
Parameters:
ISect	*is
Points	to	the	ISect	structure	to	free.

Data	Members:
public:
ISect	*first;
A	pointer	to	the	first	intersection.

Methods:

Prototype:
ISectList();

Remarks:
Constructor.	The	list	is	set	to	empty.

Prototype:
~ISectList();

Remarks:
Destructor.	The	list	is	freed.	first	is	set	to	NULL.

Prototype:
BOOL	IsEmpty();

Remarks:
Returns	TRUE	if	the	list	is	empty;	otherwise	FALSE.

Prototype:
void	Add(ISect	*is);

Remarks:
Adds	the	specified	ISect	to	the	list	with	the	most	distant	layers	first.

Parameters:
ISect	*is
Points	to	the	ISect	structure	to	add	to	the	list.

Prototype:
void	Prune(float	a);

Remarks:
Removes	the	ISect	structures	from	the	list	whose	t	values	are	less	than	or
equal	to	the	specified	value	a.

Parameters:
float	a
The	ray	parameter	used	for	comparison.

Prototype:
void	Init();

Remarks:
Deletes	any	items	from	the	list	and	sets	first	to	NULL.

List	of	NURBSTess	Types
See	Also:	Class	NURBSSurface,	Class	TessApprox,	Class	NURBSSet.
One	of	the	following	enum	values	determines	the	tesselation	type.
kNTessSurface
Surface	tesselation.
kNTessDisplacement
Displacement	tesselation.
kNTessCurve
Curve	tesselation.

List	of	Render	Instance	Flags
See	Also:	Class	RenderInstance.
One	or	more	of	the	following	values:
INST_HIDE
Indicates	the	instance	is	hidden.
INST_CLIP
Indicates	this	is	a	clip	instance:	ray	tracers	should	skip	it	.
INST_BLUR
Indicates	this	is	a	secondary	motion	blur	instance:	ray	tracers	can	skip	it.
INST_RCV_SHADOWS
Indicates	the	instance	receives	shadows.
INST_TM_NEGPARITY
Indicates	the	mesh	is	inside-out:	need	to	reverse	normals	on-the-fly.
INST_MTL_BYFACE
Indicates	the	instance's	object	supports	the	material-by-face	interface.	See
Class	IChkMtlAPI.

List	of	Patch	Display	Flags
One	or	more	of	the	following	values:
DISP_VERTTICKS
Display	vertices	as	tick	marks
DISP_SELVERTS
Display	selected	vertices.
DISP_SELPATCHES
Display	selected	patches.
DISP_SELEDGES
Display	selected	edges.
DISP_SELPOLYS
Display	selected	polygons.
DISP_LATTICE
Display	the	patch	lattice.
DISP_VERTS
This	is	used	by	the	Edit	Patch	modifier	to	indicate	if	the	vertices	are	displayed
or	not.	This	may	be	toggled	on	or	off.

Class	SubPatchHitList
See	Also:	Class	PatchMesh,	Class	PatchSubHitRec.
class	SubPatchHitList

Description:
This	class	describes	a	list	of	sub-patch	hit	records.	Methods	are	available	to
return	the	first	PatchSubHitRec	in	the	list,	and	to	add	hits	to	the	list.	All	methods
of	this	class	are	implemented	by	the	system.

Methods:

Prototype:
SubPatchHitList();

Remarks:
Constructor.	The	first	sub	hit	is	set	to	NULL.

Prototype:
~SubPatchHitList();

Remarks:
Destructor.	The	list	of	patch	hits	are	deleted.

Prototype:
PatchSubHitRec	*First();

Remarks:
Returns	the	first	sub	hit	record.

Prototype:
void	AddHit(DWORD	dist,	PatchMesh	*patch,	int	index,	int	type)

Remarks:
Creates	a	new	sub	hit	record	and	adds	it	to	the	list.

Parameters:
DWORD	dist
The	distance	of	the	hit.	If	the	user	is	in	wireframe	mode,	this	is	the	distance	in

pixels	to	the	item	that	was	hit.	If	the	user	is	in	shaded	mode,	this	is	the	Z	depth
distance.	Smaller	numbers	indicate	a	closer	hit.
PatchMesh	*patch
The	PatchMesh	associated	with	this	sub-patch	hit.
int	index
The	index	of	the	sub-object	component.	For	example,	if	vertices	were	being
hit	tested,	this	would	be	the	index	into	the	vertex	table.
int	type
The	type	of	the	hit.	One	of	the	following	values:
PATCH_HIT_PATCH
PATCH_HIT_EDGE
PATCH_HIT_VERTEX
PATCH_HIT_VECTOR
PATCH_HIT_INTERIOR

Class	IManipulatorMgr
See	Also:	Class	FPStaticInterface
class	IManipulatorMgr	:	public	FPStaticInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	the	abstract	interface	class	for	Manipulator	Manager	Objects
The	Interface	ID	of	this	class	is	MANIP_MGR_INTERFACE.

Methods:
public:

Prototype:
virtual	Mesh*	MakeSphere(Point3&	pos,	float	radius,	int
segments)=0;

Remarks:
This	method	allows	you	to	create	a	spherical	mesh	gizmo.

Parameters:
Point3&	pos
The	position	of	the	sphere.
float	radius
The	radius	of	the	sphere
int	segments
The	number	of	segments	in	the	sphere.

Return	Value:
A	pointer	to	the	resulting	mesh.

Prototype:
virtual	Mesh*	MakeTorus(Point3&	pos,	float	radius,	float	radius2,
int	segs,	int	sides)=0;

Remarks:
This	method	allows	you	to	create	a	torus	mesh	gizmo.

Parameters:
Point3&	pos
The	position	of	the	torus.
float	radius
The	radius	of	the	torus.
float	radius2
The	second	radius	of	the	torus.
int	segs
The	number	of	segments	in	the	torus.
int	sides
The	number	of	sides	of	the	torus.

Return	Value:
A	pointer	to	the	resulting	mesh.

Prototype:
virtual	Mesh*	MakeBox(Point3&	pos,	float	l,	float	w,	float	h,	int
lsegs,	int	wsegs,	int	hsegs)=0;

Remarks:
This	method	allows	you	to	create	a	box	mesh	gizmo.

Parameters:
Point3&	pos
The	position	of	the	box.
float	l
The	length	of	the	box.
float	w
The	width	of	the	box.
float	h
The	height	of	the	box.
int	lsegs
The	length	segments	of	the	box.
int	wsegs
The	width	segments	of	the	box.

int	hsegs
The	height	segments	of	the	box.

Return	Value:
A	pointer	to	the	resulting	mesh.

Prototype:
virtual	Plane*	MakePlane()=0;

Remarks:
This	method	creates	a	default	plane	gizmo.

Prototype:
virtual	Plane*	MakePlane(Point3&	p1,	Point3&	p2,	Point3&
p3)=0;

Remarks:
This	method	creates	a	plane	gizmo.

Parameters:
Point3&	p1
The	first	point	of	the	plane.
Point3&	p2
The	second	point	of	the	plane.
Point3&	p3
The	third	point	of	the	plane.

Prototype:
virtual	Plane*	MakePlane(Point3&	normal,	Point3&	point)=0;

Remarks:
This	method	creates	a	plane	gizmo.

Parameters:
Point3&	normal
The	normal	of	the	plane
Point3&	point
The	center	point	in	space	of	the	plane.

Prototype:
virtual	Plane*	GetmsXYPlane()=0;

Remarks:
This	method	returns	the	XY	plane.

Prototype:
virtual	Plane*	GetmsXZPlane()=0;

Remarks:
This	method	returns	the	XZ	plane.

Prototype:
virtual	Plane*	GetmsYZPlane()=0;

Remarks:
This	method	returns	the	YZ	plane.

Prototype:
virtual	GizmoShape*	MakeGizmoShape()=0;

Remarks:
This	method	will	create	a	default	gizmo	shape.

Prototype:
virtual	GizmoShape*	MakeCircle(Point3&	center,	float	radius,	int
segments)=0;

Remarks:
This	method	will	make	a	circular	gizmo	shape.

Parameters:
Point3&	center
The	center	of	the	circle.
float	radius
The	radius	of	the	circle.
int	segments
The	number	of	segments	of	the	circle.

Return	Value:
A	pointer	to	the	resulting	gizmo	shape.

Class	ISimpleManipulator
See	Also:	Class	FPMixinInterface,	Class	SimpleManipulator	Class	Interface,
Class	PolyShape,	Class	Mesh,	Class	Point3,	Class	Point2,	Class	ViewExp,	Class
IColorManager,	Class	Ray,	Class	ManipHitData,	List	of	Marker	Types
class	ISimpleManipulator	:	public	FPMixinInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	ISimpleManipulator	class	is	an	interface	to	SimpleManipulators	with	built-
in	ParamBlock2	support	and	a	variety	of	additionally	useful	methods.

Methods:
public:

Prototype:
virtual	void	ClearPolyShapes()=0;

Remarks:
Implemented	by	the	system.
Removes	all	of	the	current	gizmos	in	the	manipulator.	This	is	normally	called
at	the	top	of	UpdateShapes()	to	clear	out	any	previous	gizmos	before
creating	new	ones.

Prototype:
virtual	void	AppendPolyShape(PolyShape*	pPolyShape,	DWORD
flags	=	0,	Point3&	unselColor	=
GetUIColor(COLOR_SEL_GIZMOS),	Point3&	selColor	=
GetSubSelColor())=0;

Remarks:
Implemented	by	the	system.
This	method	adds	a	new	PolyShape	gizmo	to	the	manipulator.	The	shape	is
defined	in	the	local	coordinates	of	the	node	that	owns	the	manipulator.

Parameters:
PolyShape*	pPolyShape
A	pointer	to	the	poly	shape	to	add.

DWORD	flags	=	0
The	flags	can	have	one	or	more	of	the	following	values:
kGizmoDontDisplay
Instruct	the	gizmo	not	to	display.	It	will	still	hit-test.
kGizmoDontHitTest
Instruct	the	gizmo	not	to	do	any	hit	testing.	It	will	still	display.
kGizmoScaleToViewport
Instruct	the	gizmo	to	scale	itself	to	have	a	constant	size	in	the	viewport.	In
this	case	the	system	will	use	the	ManipulatorGizmo::mGizmoSize	to
determine	how	big	the	manipulator	should	be.	It	interprets	mGizmoSize
as	pixels	in	this	case.

Point3&	unselColor	=	GetUIColor(COLOR_SEL_GIZMOS)
The	color	of	the	gizmo	when	unselected.
Point3&	selColor	=	GetSubSelColor()
The	color	of	the	gizmo	when	selected.

Prototype:
virtual	void	AppendGizmo(GizmoShape*	pGizmoShape,	DWORD
flags	=	0,	Point3&	unselColor	=
GetUIColor(COLOR_SEL_GIZMOS),	Point3&	selColor	=
GetSubSelColor())=0;

Remarks:
Implemented	by	the	system.
This	method	adds	a	new	GizmoShape	to	the	manipulator.	The	shape	is	defined
in	the	local	coordinates	of	the	node	that	owns	the	manipulator.

Parameters:
GizmoShape*	pGizmoShape
A	pointer	to	the	gizmo	shape	to	add.
DWORD	flags	=	0
The	flags	can	have	one	or	more	of	the	following	values:
kGizmoDontDisplay
Instruct	the	gizmo	not	to	display.	It	will	still	hit-test.
kGizmoDontHitTest

Instruct	the	gizmo	not	to	do	any	hit	testing.	It	will	still	display.
kGizmoScaleToViewport
Instruct	the	gizmo	to	scale	itself	to	have	a	constant	size	in	the	viewport.	In
this	case	the	system	will	use	the	ManipulatorGizmo::mGizmoSize	to
determine	how	big	the	manipulator	should	be.	It	interprets	mGizmoSize
as	pixels	in	this	case.

Point3&	unselColor	=	GetUIColor(COLOR_SEL_GIZMOS)
The	color	of	the	gizmo	when	unselected.
Point3&	selColor	=	GetSubSelColor()
The	color	of	the	gizmo	when	selected.

Prototype:
virtual	void	AppendMesh(Mesh*	pMesh,	DWORD	flags	=	0,
Point3&	unselColor	=	GetUIColor(COLOR_SEL_GIZMOS),
Point3&	selColor	=	GetSubSelColor())=0;

Remarks:
Implemented	by	the	system.
This	method	adds	a	new	mesh	to	the	manipulator.	The	mesh	is	defined	in	the
local	coordinates	of	the	node	that	owns	the	manipulator.

Parameters:
Mesh*	pMesh
A	pointer	to	the	mesh	to	add.
DWORD	flags	=	0
The	flags	can	have	one	or	more	of	the	following	values:
kGizmoDontDisplay
Instruct	the	gizmo	not	to	display.	It	will	still	hit-test.
kGizmoDontHitTest
Instruct	the	gizmo	not	to	do	any	hit	testing.	It	will	still	display.
kGizmoScaleToViewport
Instruct	the	gizmo	to	scale	itself	to	have	a	constant	size	in	the	viewport.	In
this	case	the	system	will	use	the	ManipulatorGizmo::mGizmoSize	to
determine	how	big	the	manipulator	should	be.	It	interprets	mGizmoSize
as	pixels	in	this	case.

Point3&	unselColor	=	GetUIColor(COLOR_SEL_GIZMOS)
The	color	of	the	gizmo	when	unselected.
Point3&	selColor	=	GetSubSelColor()
The	color	of	the	gizmo	when	selected.

Prototype:
virtual	void	AppendMarker(MarkerType	markerType,	Point3&
position,DWORD	flags	=	0,	Point3&	unselColor	=
GetUIColor(COLOR_SEL_GIZMOS),	Point3&	selColor	=
GetSubSelColor())=0;

Remarks:
Implemented	by	the	system.
This	method	adds	a	new	marker	to	the	manipulator.

Parameters:
MarkerType	markerType
The	marker	type	to	add.
Point3&	position
The	position	of	the	marker.
DWORD	flags	=	0
The	flags	can	have	one	or	more	of	the	following	values:
kGizmoDontDisplay
Instruct	the	gizmo	not	to	display.	It	will	still	hit-test.
kGizmoDontHitTest
Instruct	the	gizmo	not	to	do	any	hit	testing.	It	will	still	display.
kGizmoScaleToViewport
Instruct	the	gizmo	to	scale	itself	to	have	a	constant	size	in	the	viewport.	In
this	case	the	system	will	use	the	ManipulatorGizmo::mGizmoSize	to
determine	how	big	the	manipulator	should	be.	It	interprets	mGizmoSize
as	pixels	in	this	case.

Point3&	unselColor	=	GetUIColor(COLOR_SEL_GIZMOS)
The	color	of	the	gizmo	when	unselected.
Point3&	selColor	=	GetSubSelColor()
The	color	of	the	gizmo	when	selected.

Prototype:
virtual	void	AppendText(TCHAR*	pText,	Point3&	position,
DWORD	flags	=	0,	Point3&	unselColor	=
GetUIColor(COLOR_SEL_GIZMOS),	Point3&	selColor	=
GetSubSelColor())=0;

Remarks:
Implemented	by	the	system.
This	method	adds	a	new	text	entry	to	the	manipulator.

Parameters:
TCHAR*	pText
The	string	containing	the	text	to	add.
Point3&	position
The	position	of	the	text.
DWORD	flags	=	0
The	flags	can	have	one	or	more	of	the	following	values:
kGizmoDontDisplay
Instruct	the	gizmo	not	to	display.	It	will	still	hit-test.
kGizmoDontHitTest
Instruct	the	gizmo	not	to	do	any	hit	testing.	It	will	still	display.
kGizmoScaleToViewport
Instruct	the	gizmo	to	scale	itself	to	have	a	constant	size	in	the	viewport.	In
this	case	the	system	will	use	the	ManipulatorGizmo::mGizmoSize	to
determine	how	big	the	manipulator	should	be.	It	interprets	mGizmoSize
as	pixels	in	this	case.

Point3&	unselColor	=	GetUIColor(COLOR_SEL_GIZMOS)
The	color	of	the	gizmo	when	unselected.
Point3&	selColor	=	GetSubSelColor()
The	color	of	the	gizmo	when	selected.

Prototype:
virtual	MouseState	GetMouseState()=0;

Remarks:
This	method	returns	the	current	status	of	the	mouse.

Return	Value:
One	of	the	following	values:
kMouseIdle
The	mouse	is	idle,	manipulator	not	active	and	the	mouse	is	not	over	it.
kMouseDragging
The	mouse	is	currently	dragging	the	manipulator.
kMouseOverManip
The	mouse	is	over	the	manipulator,	but	it	is	not	being	dragged.

Prototype:
virtual	void	GetLocalViewRay(ViewExp*	pVpt,	IPoint2&	m,
Ray&	viewRay)=0;

Remarks:
This	method	gets	the	view	ray	going	through	the	given	screen	coordinate.	The
result	is	in	local	coordinates	of	the	owning	INode.

Parameters:
ViewExp*	pVpt
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.
IPoint2&	m
The	screen	coordinate.
Ray&	viewRay
The	returned	local	view	ray.

Prototype:
virtual	void	UpdateShapes(TimeValue	t,	TSTR&	toolTip)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	gets	called	whenever	the	manipulator	needs	to	update	its	gizmos.
This	is	implemented	by	the	manipulator	to	create	the	gizmos	based	on	the
current	state	of	the	node	being	manipulated.

Parameters:
TimeValue	t
The	time	value	at	which	the	shapes	should	be	updated.

TSTR&	toolTip
The	tooltip	string.

Prototype:
virtual	void	OnMouseMove(TimeValue	t,	ViewExp*	pVpt,
IPoint2&	m,	DWORD	flags,	ManipHitData*	pHitData)=0;

Remarks:
This	method	gets	called	when	the	mouse	moves	within	the	manipulator
context.

Parameters:
TimeValue	t
The	time	to	display	the	object.
ViewExp*	pVpt
An	interface	that	may	be	used	to	call	methods	associated	with	the	viewports.
IPoint2&	m
The	screen	coordinates	of	the	mouse.
DWORD	flags
Not	used,	should	be	set	to	0.
ManipHitData*	pHitData
A	pointer	to	the	hitdata	containing	information	on	which	manipulator	was	hit.

Class	GizmoShape
See	Also:	Class	SimpleManipulator,	Class	ISimpleManipulator,	Class
FPMixinInterface,	Class	PolyLine,	Class	PolyShape
class	GizmoShape	:	public	FPMixinInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	main	gizmo	shape.
The	Function	Publishing	interface	to	SimpleManipulators	is	defined	as:
#define	MANIP_GIZMO_INTERFACE	Interface_ID(0x124e3169,
0xf067ad4)
	

Data	Members:
private:
PolyShape	mPolyShape;
The	gizmo	polyshape.
PolyLine	mLine;
A	poly	line.

Methods:
public:

Prototype:
GizmoShape();

Remarks:
Constructor.

Default	Implementation:
{	mLine.Init();	}

Prototype:
void	StartNewLine();

Remarks:

This	method	instructs	the	gizmo	shape	to	start	(append)	a	new	line	segment.

Prototype:
AppendPoint(Point3&	p);

Remarks:
This	method	instructs	the	gizmo	shape	to	append	a	new	point	to	the	line
segment.

Parameters:
Point3&	p
The	vertex	point	to	add.

Prototype:
PolyShape*	GetPolyShape();

Remarks:
This	method	returns	a	pointer	to	the	gizmo’s	poly	shape.

Prototype:
Transform(Matrix3&	tm);

Remarks:
This	method	allows	you	to	transform	the	gizmo	shape.

Parameters:
Matrix3&	tm
The	transformation	matrix.

Class	ManipHitData
See	Also:	Class	HitData,	Class	Manipulator
class	ManipHitData	:	public	HitData

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	a	special	storage	class	for	hit	records	that	keep	track	of	which
manipulator	was	hit.
	

Data	Members:
public:
Manipulator*	mpManip;
A	pointer	to	the	manipulator	associated	with	the	hit	data.
int	mShapeIndex;
The	index	of	the	selected	manipulator.

Methods:
public:

Prototype:
ManipHitData(Manipulator*	pManip);

Remarks:
Constructor.

Parameters:
Manipulator*	pManip
A	pointer	to	the	manipulator	to	use.

Prototype:
ManipHitData();

Remarks:
Constructor.

Prototype:

~ManipHitData();
Remarks:
Destructor.

Prototype:
virtual	ManipHitData*	Copy();

Remarks:
This	method	allows	you	to	copy	the	hit	data.

Default	Implementation:
{	return	new	ManipHitData(mpManip);	}

Class	ToneOperatorInterface
See	Also:	Class	FPStaticInteface,	Class	ToneOperator.
class	ToneOperatorInterface	:	public	FPStaticInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	allows	plug-ins	and	the	scripter	to	get	access	to	the	tone	operator
assigned	to	a	scene.	You	can	get	a	pointer	to	the	interface	using	the	global
interface	pointer	in	this	manner:
ToneOperatorInterace*	toneOpInt	=
static_cast<ToneOperatorInterface*>
(GetCOREInterface(TONE_OPERATOR_INTERFACE));
If	the	return	value	is	NULL,	the	running	version	of	3ds	max	doesn’t	support	tone
operators.	If	the	return	value	is	not	NULL,	you	can	use	these	methods	to	perform
some	scene	management.

Methods:
public:

Prototype:
virtual	void	OpenToneOperatorPanel()=0;

Remarks:
This	method	opens	the	tone	operator	panel	UI.	If	the	panel	has	been
minimized,	it	is	restored.

Prototype:
virtual	void	CloseToneOperatorPanel()=0;

Remarks:
This	method	closes	the	tone	operator	panel	UI.

Prototype:
virtual	void	MinimizeToneOperatorPanel()=0;

Remarks:
This	method	minimizes	the	tone	operator	panel	UI.

Prototype:
virtual	ToneOperator*	GetToneOperator()	const	=	0;

Remarks:
This	method	returns	the	current	tone	operator	assigned	to	a	scene.	If	no	tone
operator	is	assigned	NULL	is	returned.

Prototype:
virtual	void	SetToneOperator(ToneOperator*	op)	=	0;

Remarks:
This	method	assigns	a	tone	operator	to	the	scene.	To	remove	a	tone	operator,
assign	NULL.	When	a	new	tone	operator	is	assigned	the	current	operator	is
removed	automatically.

Prototype:
virtual	void
RegisterToneOperatorChangeNotification(ToneChangeCallback
callback,	void*	param)	=	0;

Remarks:
This	method	registers	a	callback	that	is	called	when	the	tone	operator	is
changed.	Note	the	definition	of	ToneChangeCallback:
typedef	void	(*ToneChangeCallback)(ToneOperator*	newOp,
ToneOperator*	oldOp,	void*	param);

Parameters:
ToneChangeCallback	callback
The	callback	to	register.
void*	param
This	parameter	is	passed	to	the	callback	function	as	the	parameter	argument
when	it	is	called.

Prototype:
virtual	void
UnRegisterToneOperatorChangeNotification(ToneChangeCallback
callback,	void*	param)	=	0;

Remarks:
This	method	un-registers	a	callback	that	was	registered	by
RegisterToneOperatorChangeNotification.	Note	the	definition	of
ToneChangeCallback:
typedef	void	(*ToneChangeCallback)(ToneOperator*	newOp,
ToneOperator*	oldOp,	void*	param);

Parameters:
ToneChangeCallback	callback
The	callback	to	un-register.
void*	param
This	parameter	is	passed	to	the	callback	function	as	the	parameter	argument
when	it	is	called.

Class	IReshadeFragment
See	Also:	Class	InterfaceServer,	Class	IReshading,	Class	Point2,	Class	Point3
class	IReshadeFragment	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	Reshade	Fragment	interface	is	the	materials/shaders/textures	interface	to
reshading	fragments.	This	interface	is	only	concerned	with	saving	and	retrieving
values	in	the	fragments	variable	sized	cache.	Values	are	always	saved	in
multiples	of	32	bit	words,	and	they	can	be	a	variety	of	types,	colors,	float’s,	int’s,
etc.	Unit	vectors	are	compressed	to	a	single	32	bit	word.	Point2	and	Point3	data
types	save	multiple	floats.
Color	channels	will	be	compressed	to	a	32	bit	rgba	color	and	saved	in	the	cache.
Color32	channels	are	only	used	internally.	This	is	the	‘raw’	form	of	what’s
stored,	other	forms	may	be	accessed	from	this	class.
Float	and	integer	channels	are	stored	uncompressed,	they	are	stored	directly	in
the	32	bits.
The	Point2	&	Point3	channels	are	shells	that	store	multiple	float	channels	so
these	values	will	be	uncompressed.	These	should	be	used	with	great	caution,	as
this	memory	is	stored	per	fragment,	in	a	scene	with	100,000	fragments	of	a	given
material,	a	point3	channel	will	add	1.2	megabytes	to	the	storage	for	the
reshading	buffer.

Methods:
public:

Prototype:
virtual	int	NChannels()=0;

Remarks:
This	method	returns	the	number	of	textures	for	the	fragment.

Prototype:
virtual	int	NFirstChannel()=0;

Remarks:

This	method	returns	the	index	of	the	first	channel.

Prototype:
virtual	int	NTextures()=0;

Remarks:
This	method	returns	the	number	of	textures.

Prototype:
virtual	Color32	Channel(int	nChan)=0;

Remarks:
This	method	returns	the	specified	channel.

Parameters:
int	nChan
The	channel	you	wish	to	return.

Prototype:
virtual	void	SetChannel(int	nChan,	Color32	c)=0;

Remarks:
This	method	allows	you	to	set	a	channel	in	raw	mode	to	a	new	value.

Parameters:
int	nChan
The	channel	you	wish	to	set.
Color32	c
The	new	value	to	set.

Prototype:
virtual	void	AddChannel(Color32	c)=0;

Remarks:
This	method	allows	you	to	add	a	new	color	channel	in	raw	mode	to	the	end	of
the	cache.

Parameters:

Color32	c
The	channel	value	you	wish	to	set.

Prototype:
virtual	void	AddColorChannel(RGBA	tex)=0;

Remarks:
This	method	allows	you	to	add	a	new	color	channel	to	the	end	of	the	cache.
The	color	will	be	compressed	to	32bits.

Parameters:
RGBA	tex
The	color	channel	value	you	wish	to	add.
	

Prototype:
virtual	void	AddFloatChannel(float	f)=0;

Remarks:
This	method	allows	you	to	add	a	float	channel	in	the	fragment	cache.

Parameters:
float	f
The	channel	value	to	add.

Prototype:
virtual	void	AddIntChannel(int	i)=0;

Remarks:
This	method	allows	you	to	add	an	integer	channel	in	the	fragment	cache.

Parameters:
int	i
The	integer	value	to	add.

Prototype:
virtual	void	AddUnitVecChannel(Point3	v)=0;

Remarks:
This	method	allows	you	to	add	a	unit	vector	channel	in	the	fragment	cache,
compressed	to	32-bits.

Parameters:
Point3	v
The	unit	vector	to	add.

Prototype:
virtual	void	AddPoint2Channel(Point2	p)=0;

Remarks:
This	method	allows	you	to	add	a	Point2	channel	in	the	fragment	cache,
uncompressed.

Parameters:
Point2	p
The	Point2	to	add.

Prototype:
virtual	void	AddPoint3Channel(Point3	p)=0;

Remarks:
This	method	allows	you	to	add	a	Point3	channel	in	the	fragment	cache,
uncompressed.

Parameters:
Point3	p
The	Point3	to	add.

Prototype:
virtual	void	SetColorChannel(int	nChan,	RGBA	tex)=0;

Remarks:
This	method	sets	the	existing	color	channel	number	nChan	to	the	new	value.

Parameters:
int	nChan
The	color	channel	number.

RGBA	text
The	new	color	value.

Prototype:
virtual	void	SetFloatChannel(int	nChan,	float	f)=0;

Remarks:
This	method	allows	you	to	set	a	float	channel	in	the	fragment	cache	to	a	new
value.

Parameters:
int	nChan
The	float	channel	number.
float	f
The	new	value	to	set.

Prototype:
virtual	void	SetIntChannel(int	nChan,	int	i)=0;

Remarks:
This	method	allows	you	to	set	an	int	channel	in	the	fragment	cache	to	a	new
value.

Parameters:
int	nChan
The	int	channel	number.
int	i
The	new	value	to	set.

Prototype:
virtual	void	SetUnitVecChannel(int	nChan,	Point3	v)=0;

Remarks:
This	method	allows	you	to	set	a	unit	vector	channel	in	the	fragment	cache	to	a
new	value.

Parameters:
int	nChan

The	unit	vector	channel	number.
Point3	v
The	new	value	to	set.

Prototype:
virtual	void	SetPoint2Channel(int	nChan,	Point2	p)=0;

Remarks:
This	method	allows	you	to	set	a	Point2	channel	in	the	fragment	cache	to	a	new
value.

Parameters:
int	nChan
The	Point2	channel	number.
Point2	p
The	new	value	to	set.

Prototype:
virtual	void	SetPoint3Channel(int	nChan,	Point3	p)=0;

Remarks:
This	method	allows	you	to	set	a	Point3	channel	in	the	fragment	cache	to	a	new
value.

Parameters:
int	nChan
The	Point3	channel	number.
Point3	p
The	new	value	to	set.

Prototype:
virtual	RGBA	GetColorChannel(int	nChan)=0;

Remarks:
This	method	will	return	an	existing	color	channel,	expanded	to	float	RGBA.

Parameters:

int	nChan
The	color	channel	you	wish	to	return.

Prototype:
virtual	float	GetFloatChannel(int	nChan)=0;

Remarks:
This	method	will	return	an	existing	float	channel.

Parameters:
int	nChan
The	float	channel	you	wish	to	return.

Prototype:
virtual	int	GetIntChannel(int	nChan)=0;

Remarks:
This	method	will	return	an	existing	int	channel.

Parameters:
int	nChan
The	int	channel	you	wish	to	return.

Prototype:
virtual	Point3	GetUnitVecChannel(int	nChan)=0;

Remarks:
This	method	will	return	an	existing	unit	vector	channel.

Parameters:
int	nChan
The	unit	vector	channel	you	wish	to	return.

Prototype:
virtual	Point2	GetPoint2Channel(int	nChan)=0;

Remarks:
This	method	will	return	an	existing	Point2	channel.

Parameters:
int	nChan
The	Point2	channel	you	wish	to	return.

Prototype:
virtual	Point3	GetPoint3Channel(int	nChan)=0;

Remarks:
This	method	will	return	an	existing	Point3	channel.

Parameters:
int	nChan
The	Point3	channel	you	wish	to	return.

Class	IllumParams
See	Also:	Class	Shader,	Class	Point3,	Class	Color.
class	IllumParams	:	public	BaseInterfaceServer

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	allows	the	Standard	material	to	get	the	parameters	from	a	Shader
plug-in.	It	also	allows	the	Shader	to	supply	its	computed	color	data	back	to	the
Standard	material.	The	Standard	material	will	handle	the	texturing	but	it	needs	to
know	the	color	before	the	texturing	is	done.
The	shader	object	holds	some	raw	parameters.	But	these	parameters	may	be
textured.	So	for	each	pixel	that	will	be	shaded,	the	3ds	max	shade	routine	asks
the	shader	to	fill	in	the	raw	values.	Then	it	applies	the	texture	over	the	top	of	any
of	the	values	which	are	textured.

Data	Members:
public:
Shader*	pShader;
This	parameter	is	available	in	release	4.0	and	later	only.
A	pointer	to	the	shader.
Mtl*	pMtl;
This	parameter	is	available	in	release	4.0	and	later	only.
A	pointer	to	the	material	being	shaded	or	NULL	if	it’s	a	background.
Color	channels[32];
A	color	channel	for	each	of	the	possible	parameters	that	may	be	textured.	Note
that	these	channels	don't	have	specific	meanings.	They	are	defined	by	each
Shader.	The	Shader	tells	the	Standard	material	what	data	is	in	these	channels
using	its	ChannelType()	and	StdIDToChannel()	methods.
float	falloffOpac;
Shaders	using	standard	opacity	can	ignore	this	data	member.	This	is	available
for	certain	Shaders	which	don't	use	the	standard	3ds	max	transparency
equation.	This	allows	these	Shaders	to	simulate	the	3ds	max	version.	This	is
the	pre-computed	textured	opacity	with	standard	falloff	applied.	The	value
here	is	pre-computed	to	consider	all	the	standard	opacity	settings	of	falloff
direction,	etc.	The	standard	transparency	computation	then	uses	this	after

shading.	So	a	shader	could	modify	this	value	if	it	wanted	to	to	affect	the
transparency.
Note:	The	regular	opacity	can	be	obtained	from	the	channel	data.
float	kR;
This	value	is	used	when	there	is	a	reflection	and	an	atmosphere	present.
Normally	if	there	is	no	atmosphere	(for	instance	no	Fog	in	the	scene)	then	the
transparency	of	the	reflection	is	100%	(it	is	unaffected).	However,	if	there	is
an	atmosphere	present	it	will	impart	some	level	of	opacity.	This	opacity	(alpha
value)	is	not	available	via	the	reflection	color.	Thus	this	data	member	is	here
to	provide	this	opacity	information	to	the	Shader.
This	value	is	the	alpha	which	is	returned	by	the	reflection	query	that	has	the
transparency	of	the	atmosphere	contained	within	it,	which	is	then	multiplied
by	the	Amount	spinner.	This	can	then	be	used	either	by	the	Shader	or	by	the
standard	handling	for	reflection	maps.
ULONG	hasComponents;
These	are	the	bits	for	the	active	components	of	bump,	reflection,	refraction
and	opacity	mapping.	If	the	bit	is	set	that	component	is	active.	This	provides	a
quick	way	for	a	Shader	to	check	if	they're	used	(as	opposed	to	looking	through
the	channels	array	searching	for	these	channel	types).
HAS_BUMPS	--	If	bump	mapping	is	present	this	is	set.
HAS_REFLECT	--	If	there	is	any	kind	of	reflection	(raytraced,	etc)	then
this	is	set.
HAS_REFRACT	--	If	there	is	any	kind	of	refraction	then	this	is	set..
HAS_OPACITY	--	If	opacity	mapping	is	used	this	is	set.
HAS_REFLECT_MAP	--	If	there	is	a	reflection	map	only	this	is	set.
This	is	used	by	the	Straus	shader	for	example.	If	it	sees	a	reflection	map
present	it	dims	the	diffuse	channel.
HAS_REFRACT_MAP	--	If	there	is	a	refraction	map	only	then	this	is
set.

ULONG	stdParams;
The	standard	parameter	bits.	See	List	of	Shader	Standard	Parameter	Flags.
This	is	filled	in	by	the	Standard	material.
Color	ambIllumOut;
This	is	the	ambient	output	from	the	Illum()	method.

Color	diffIllumOut;
This	is	the	diffuse	output	from	the	Illum()	method.
Color	transIllumOut;
This	is	the	transparency	output	from	the	Illum()	method.
Color	selfIllumOut;
This	is	the	self	illumination	output	from	the	Illum()	method.
Color	specIllumOut;
This	is	the	specular	illumination	output	from	the	Illum()	method.
Color	reflIllumOut;
This	is	the	reflection	output	from	the	Illum()	method.	Certain	shaders	may
wish	to	store	the	reflection	output	here	(as	opposed	to	providing	it	in	the
channels	array).	This	is	the	'"raw	"	color	from	the	direction	of	reflection
(unattenuated).	Some	combiner	implementations
(Shader::CombineComponents())can	get	the	reflection	data	here,	others
may	get	it	from	the	channels.
float	diffIllumIntens;
Used	only	by	reflection	dimming,	intensity	of	diffIllum	prior	to	color	multiply.
float	finalAttenuation;
The	final	attenuation	for	combining	components.
float	finalOpac;
This	is	the	final	opacity	value	used	for	combining	components	together	in
Shader::CombineComponents().
Color	finalC;
This	is	the	final	output	color	that	the	Shader::CombineComponents()
composites	together.
Color	finalT;
This	is	the	final	Shader	transparency	color	output.

Methods:
public:

Prototype:
void	ClearOutputs();

Remarks:

This	method	is	called	by	the	Standard	material	prior	to	calling	the	Illum()
method	of	the	Shader.	It	sets	to	black	all	the	output	colors:
ambIllumOut=diffIllumOut=transIllumOut=selfIllumOut=
	specIllumOut=reflIllumOut=Color(0.0f,	0.0f,	0.0f);

Class	InterfaceServer
See	Also:	Class	BaseInterface,	Class	IObject,	Function	Publishing	System.
class	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
Class	InterfaceServer	is	the	base	class	for	interface	servers	in	3ds	max	and
should	be	inherited	by	any	class	that	wishes	to	implement	the	GetInterface()
protocol.	The	InterfaceServer	also	adds	a	data	member	for	storing	interfaces,
typically	extension	interfaces	added	to	maintain	API	binary	compatibility.

Methods:
public:

Prototype:
virtual	BaseInterface*	GetInterface(Interface_ID	id)	=	0;

Remarks:
Returns	a	pointer	to	the	interface	whose	ID	is	specified.

Parameters:
Interface_ID	id
The	ID	of	the	interface	to	return.

Default	Implementation:
{	return	NULL;	}

Class	IIRenderMgr
See	Also:	Class	InterfaceServer,	Class	IInteractiveRender	,
IIRenderMgrSelector	,	Class	ViewExp
class	IIRenderMgr	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	abstract	(interface)	for	an	interactive	rendering
manager.

Methods:
public:

Prototype:
virtual	bool	CanExecute()	=	0;

Remarks:
This	method	will	indicate	the	viewport	has	valid	data	and	can	execute.

Prototype:
virtual	void	SetActive(bool	active)	=	0;

Remarks:
This	method	allows	you	to	activate	and	deactivate	the	current	interactive
rendering	manager.

Parameters:
bool	active
TRUE	to	enable;	FALSE	to	disable.

Prototype:
virtual	TCHAR*	GetName()	=	0;

Remarks:
This	method	will	return	the	name	of	the	render	manager.

Prototype:

virtual	bool	IsActive()	=	0;
Remarks:
This	method	returns	TRUE	if	the	current	interactive	rendering	manager	is
active,	otherwise	FALSE.

Prototype:
virtual	BOOL	AreAnyNodesSelected()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	rendering	manager	has	any	selected	notes	or
FALSE	if	there	are	none.

Prototype:
virtual	IIRenderMgrSelector*	GetNodeSelector()	=	0;

Remarks:
This	method	allows	you	to	get	the	interface	that	determines	whether	nodes	are
selected.

Prototype:
virtual	HWND	GetHWnd()	const	=	0;

Remarks:
This	method	returns	a	handle	to	the	current	window	which	is	being	rendered
to.

Prototype:
virtual	ViewExp	*GetViewExp()	=	0;

Remarks:
This	method	returns	a	pointer	to	the	ViewExp	associated	with	the	current
interactive	rendering	manager.

Prototype:
virtual	void	SetPos(int	X,	int	Y,	int	W,	int	H)	=	0;

Remarks:

This	method	allows	you	to	set	the	position	and	size	of	the	window	being
rendered	to.

Parameters:
int	X,	int	Y
The	x	and	y	screen	coordinates	of	the	window.
int	W,	int	H
The	width	and	height	of	the	window.

Prototype:
virtual	void	Show()	=	0;

Remarks:
This	method	will	show	the	window	currently	being	rendered	to.

Prototype:
virtual	void	Hide()	=	0;

Remarks:
This	method	will	hide	the	window	currently	being	rendered	to.

Prototype:
virtual	void	UpdateDisplay()	=	0;

Remarks:
This	method	will	issue	an	update	of	the	current	display.

Prototype:
virtual	void	Render()	=	0;

Remarks:
This	method	starts	the	actual	rendering	process.

Prototype:
virtual	void	SetDelayTime(int	msecDelay)	=	0;

Remarks:
This	method	allows	you	to	set	the	delay	time	in	milliseconds.

Prototype:
virtual	int	GetDelayTime()	=	0;

Remarks:
This	method	returns	the	delay	time	in	milliseconds.

Prototype:
virtual	void	Close()	=	0;

Remarks:
This	method	will	close	the	window	currently	being	rendered	to.

Prototype:
virtual	void	Delete()	=	0;

Remarks:
This	method	will	delete	this	render	manager.

Prototype:
virtual	void	SetCommandMode(CommandMode	commandMode)
=	0;

Remarks:
This	method	allows	you	to	set	the	command	mode.

Parameters:
CommandMode	commandMode
One	of	the	following;	CMD_MODE_DRAW_REGION,	or
CMD_MODE_SELECT_OBJECT.

Prototype:
virtual	CommandMode	GetCommandMode()	const	=	0;

Remarks:
This	method	returns	the	command	mode,	which	is	one	of	the	following;
CMD_MODE_DRAW_REGION,	or
CMD_MODE_SELECT_OBJECT.

Prototype:
virtual	void	SetActOnlyOnMouseUp(bool	actOnlyOnMouseUp)	=
0;

Remarks:
This	method	allows	you	to	define	whether	an	interactive	rendering	action	and
update	should	be	issued	when	the	mouse	button	is	released	upward.

Parameters:
bool	actOnlyOnMouseUp
TRUE	to	act	only	on	mouse-up,	otherwise	FALSE.
	

Prototype:
virtual	bool	GetActOnlyOnMouseUp()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	interactive	rendering	action	and	update
should	be	issued	when	the	mouse	button	is	released	upward,	otherwise
FALSE.

Prototype:
virtual	void	ToggleToolbar()	const	=	0;

Remarks:
This	method	toggles	the	toolbar	display	mode	(for	docked	windows).

Prototype:
virtual	IImageViewer::DisplayStyle	GetDisplayStyle()	const	=	0;

Remarks:
This	method	returns	the	display	style	of	the	window	being	rendered	in,	which
is	one	of	the	following;	IV_FLOATING	or	IV_DOCKED.

Prototype:
virtual	BOOL	IsRendering()	=	0;

Remarks:

This	method	returns	TRUE	if	the	renderer	is	currently	rendering,	otherwise
FALSE.

Prototype:
static	IIRenderMgr*	GetActiveIIRenderMgr();

Remarks:
This	method	returns	a	pointer	to	the	active	interactive	rendering	manager,	or
NULL	if	none	exist.

Prototype:
static	unsigned	int	GetNumIIRenderMgrs();

Remarks:
This	method	returns	the	number	of	interactive	rendering	managers.

Prototype:
static	IIRenderMgr*	GetIIRenderMgr(unsigned	int	i);

Remarks:
This	method	returns	a	pointer	to	the	I-th	interactive	rendering	manager.

Parameters:
unsigned	int	i
The	index	of	the	IIRenderMgr	to	return.

Class	IRenderProgressCallback
See	Also:	Class	IInteractiveRender,	Class	RendProgressCallback	,	Class	Color
class	IRenderProgressCallback	:	public	RendProgressCallback

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represent	a	callback	object	which	can	be	used	with	an	interactive
renderer.
Information	set	via	RendProgressCallback::SetCurField()	or
RendProgressCallback::SetSceneStats()	will	be	ignored.	if	a	title	is	set	via
the	inherited	method	SetTitle(),	it	will	appear	in	the	main	status	bar,	but	will	be
replaced	by	the	'IRenderTitle'	when	necessary.

Methods:
public:

Prototype:
virtual	void	SetProgressLineOrientation(LineOrientation
orientation)	=	0;

Remarks:
This	method	allows	you	to	set	the	orientation	of	the	progress	line	shown
during	rendering.

Parameters:
LineOrientation	orientation
The	line	orientation	which	is	one	of	the	following;	LO_Horizontal	or
LO_Vertical.

Prototype:
virtual	LineOrientation	GetProgressLineOrientation()	const	=	0;

Remarks:
This	method	allows	you	to	retrieve	the	orientation	of	the	progress	line	shown
during	rendering.

Return	Value:

The	line	orientation	which	is	one	of	the	following;	LO_Horizontal	or
LO_Vertical.

Prototype:
virtual	void	SetProgressLineColor(const	Color&	color)	=	0;

Remarks:
This	method	allows	you	to	set	the	color	of	the	progress	line	shown	during
rendering.

Parameters:
const	Color&	color
The	color	to	set	the	progress	line	to.

Prototype:
virtual	const	Color&	GetProgressLineColor()	const	=	0;

Remarks:
This	method	returns	the	color	of	the	progress	line	shown	during	rendering.

Prototype:
virtual	void	SetIRenderTitle(const	TCHAR	*pProgressTitle)	=	0;

Remarks:
This	method	allows	you	to	set	the	current	title.	This	will	appear	in	the	main
status	bar	as	"'Title':	xx%	complete".	If	no	title	is	provided,	'ActiveShade'	will
be	used	instead.

Parameters:
const	TCHAR	*pProgressTitle
The	progress	title	string.

Prototype:
virtual	const	TCHAR	*GetIRenderTitle()	const	=	0;

Remarks:
This	method	returns	the	current	title.

Class	FPStaticInterface
See	Also:	Class	FPInterfaceDesc.
class	FPStaticInterface:	public	FPInterfaceDesc

Description
This	class	is	currently	the	same	as	FPInterfaceDesc	as	per	the	following
typedef:
typedef	FPInterfaceDesc	FPStaticInterface
See	Class	FPInterfaceDesc	for	details.

Class	BaseInterface
See	Also:	Class	InterfaceServer,	Class	InterfaceNotifyCallback,	Class
FPInterface,	Function	Publishing	System.
class	BaseInterface	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	base	class	for	interfaces	in	3ds	max.	The	BaseInterface
class	should	be	used	as	the	base	class	for	any	new	interface	class	in	3ds	max	and
provides	basic	identity,	memory	management,	and	cloning	methods.	Class
FPInterface,	which	is	part	of	the	Function	Publishing	system,	has	the
BaseInterface	class	as	its	base	class.

Methods:
public:

Prototype:
virtual	Interface_ID	GetID()	=	0;

Remarks:
This	method	returns	the	unique	interface	ID.

Prototype:
virtual	LifetimeType	LifetimeControl()

Remarks:
This	method	allows	enquiries	into	the	actual	lifetime	policy	of	a	client	and
provide	a	server-controlled	delete	notify	callback.

Return	Value:
One	of	the	following	LifetimeTypes:
noRelease
Do	not	call	release,	use	interface	as	long	as	you	like.
immediateRelease
The	interface	is	only	good	for	one	calls.	The	release	is	implied	so	a	call	to
release	is	not	required.

wantsRelease
The	clients	are	controlling	the	lifetime,	so	the	interface	needs	a	Release()
when	the	client	has	finished.	This	is	the	default.
serverControlled
The	server	controls	the	lifetime	and	will	use	the	InterfaceNotifyCallback	to
inform	the	code	when	it	is	gone.

Default	Implementation:
{	return	noRelease;	}

Prototype:
virtual	void
RegisterNotifyCallback(InterfaceNotifyCallback<BaseInterface>*
incb);

Remarks:
This	method	allows	you	to	register	an	interface	notify	callback.

Parameters:
InterfaceNotifyCallback<BaseInterface>*	incb
A	pointer	to	the	interface	notify	callback.

Default	Implementation:
{	}

Prototype:
virtual	void
UnRegisterNotifyCallback(InterfaceNotifyCallback<BaseInterface>*
incb);

Remarks:
This	method	allows	you	to	un-register	an	interface	notify	callback.

Parameters:
InterfaceNotifyCallback<BaseInterface>*	incb
A	pointer	to	the	interface	notify	callback.

Default	Implementation:

{	}

Prototype:
virtual	bool	Acquire(InterfaceNotifyCallback*	incb=NULL);

Remarks:
This	method	is	part	of	the	interface	reference	management	and	can	be
implemented	by	dynamically	allocated	interfaces	for	ref-count	based	lifetime
control).	This	method	should	return	TRUE	if	it	needs	Release()	to	be	called.

Parameters:
InterfaceNotifyCallback*	incb
A	pointer	to	an	InterfaceNotifyCallback	class	which	will	be	used	to	signal
deletion	(usually	a	mixin).

Default	Implementation:
{	return	false;	}

Prototype:
virtual	void	Release(InterfaceNotifyCallback*	incb=NULL);

Remarks:
This	method	is	called	when	a	reference	to	this	object	is	deleted.

Parameters:
InterfaceNotifyCallback*	incb
A	pointer	to	an	InterfaceNotifyCallback	class	which	will	be	used	to	signal
deletion	(usually	a	mixin).

Default	Implementation:
{	}

Prototype:
virtual	void	DeleteInterface();

Remarks:
This	method	can	be	used	as	a	direct	interface	delete	request.

Default	Implementation:

{	}

Prototype:
virtual	BaseInterface*	CloneInterface(void*	remapDir	=	NULL);

Remarks:
This	method	allows	you	to	clone	the	base	interface.

Parameters:
void*	remapDir
The	RemapDir	passed	to	the	clone	method.

Default	Implementation:
{	return	NULL;	}

Class	IMaxBitmapViewer
See	Also:	Class	IImageViewer,	Class	Bitmap,	Class	CropCallback
class	IMaxBitmapViewer	:	public	IImageViewer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	an	abstract	interface	class	for	a	default	bitmap	viewer.
The	following	functions	are	available	for	use	but	are	not	part	of	the	class
IMaxBitmapViewer.
Note	that	the	minimum	size	of	the	floating	window	is	390	x	325.

Function:
IMaxBitmapViewer*	CreateIMaxBitmapViewer(Bitmap*
pBitmap,	IImageViewer::DisplayStyle	displayStyle);

Remarks:
This	function	allows	you	to	create	a	new	bitmap	viewer	as	either	a	floating
window	or	docked	in	a	viewport.

Parameters:
Bitmap*	pBitmap
The	bitmap	to	use	with	the	viewer.	This	should	not	be	NULL.
IImageViewer::DisplayStyle	displayStyle
The	display	style	for	the	viewer,	which	is	either	IV_FLOATING	or
IV_DOCKED.

Return	Value:
A	pointer	to	a	new	IMaxBitmapViewer	or	NULL	if	the	viewer	could	not	be
created.

Function:
void	ReleaseIMaxBitmapViewer(IMaxBitmapViewer	*);

Remarks:
This	method	will	delete	and	release	the	specified	bitmap	viewer.	This	method
should	not	be	used	while	the	viewer	is	being	displayed.	Use	UnDisplay()	or

Hide()	before	calling	this	method.
Parameters:
IMaxBitmapViewer	*
A	pointer	to	the	viewer.

Methods:
public:

Prototype:
virtual	void	SetBitmap(Bitmap*	pBitmap)	=	0;

Remarks:
This	method	allows	you	to	set	the	bitmap	which	should	be	displayed	in	the
bitmap	viewer.
Note:	This	is	for	internal	use	only.

Parameters:
Bitmap*	pBitmap
A	pointer	to	the	bitmap	to	display.

Prototype:
virtual	Bitmap*	GetBitmap()	const	=	0;

Remarks:
This	method	returns	a	pointer	to	the	bitmap	that	is	being	displayed	by	the
bitmap	viewer.

Prototype:
virtual	void	SetCropCB(CropCallback*	pCropCallback)	=	0;

Remarks:
This	method	allows	you	to	set	the	crop	callback	function	which	will	assist	in
interactive	adjustments	of	the	bitmap	cropping	rectangle.	This	method	should
not	be	called	after	the	window	has	been	displayed.	Preferably	the	callback
should	be	set	before	the	window	is	displayed	or	after	the	window	has	been
destroyed.

Parameters:

CropCallback*	pCropCallback
A	pointer	to	the	callback	function	to	set.

Prototype:
virtual	CropCallback*	GetCropCB()	const	=	0;

Remarks:
This	method	returns	a	pointer	to	the	crop	callback	function	used	by	the	bitmap
viewer.

Prototype:
virtual	void	SetAutonomous(bool	isAutonomous)	=	0;

Remarks:
This	method	allows	you	to	set	whether	the	bitmap	viewer	is	autonomous	or
not.	When	the	bitmap	viewer	is	set	in	autonomous	mode,	the	viewer	will	not
have	a	clone	button,	although	the	viewer	will	not	display	a	clone	button	unless
the	save	button	is	also	displayed.	Changes	will	not	take	effect	until	the	next
time	the	viewer	is	displayed	using	Display().

Parameters:
bool	isAutonomous
TRUE	to	set	the	viewer	to	autonomous,	otherwise	FALSE.

Prototype:
virtual	bool	GetAutonomous()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	viewer	is	autonomous,	otherwise	FALSE.
When	the	bitmap	viewer	is	set	in	autonomous	mode,	the	viewer	will	not	have
a	clone	button,	although	the	viewer	will	not	display	a	clone	button	unless	the
save	button	is	also	displayed.

Prototype:
virtual	void	SetCurrentPosition(WindowPosition	currentPosition)
=	0;

Remarks:

A	call	to	this	method	will	never	impact	the	current	opened	window.	This
function	should	be	used	prior	to	calling	Display()	in	order	to	specify	the
position	of	the	next	created	window.

Prototype:
virtual	WindowPosition	GetCurrentPosition()	const	=	0;

Remarks:
This	method	returns	the	current	position	of	the	bitmap	viewer.

Prototype:
virtual	void	SetShowSaveButton(bool	showSaveButton)	=	0;

Remarks:
This	method	allows	you	to	set	whether	or	not	the	save	button	should	be	shown
as	part	of	the	bitmap	viewer	window.	A	change	will	not	take	effect	until	the
next	time	the	viewer	is	opened	via	Display().

Parameters:
bool	showSaveButton
TRUE	to	show;	FALSE	to	hide.

Prototype:
virtual	bool	GetShowSaveButton()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	save	button	is	shown	as	part	of	the	bitmap
viewer	window,	otherwise	FALSE.

Prototype:
virtual	bool	Display(TCHAR	*title,	WindowPosition	position	=
WPos_Center)	=	0;

Remarks:
This	method	will	display	the	bitmap	image	viewer.	Note	that	the	Show()	and
Hide()	methods	have	no	effect	until	the	window	is	initialized	by	a	call	to
Display().	This	method	should	not	be	called	when	the	window	is	already

open	and	this	method	can’t	be	used	to	create	a	docked	viewer.
You	should	also	not	call	this	twice	on	this	interface.	The	second	time	the
function	is	called,	the	viewer	will	loose	all	references	to	the	previoulsy	opened
window.	To	switch	images	using	the	same	bitmap	viewer,	a	call	to
"UnDisplay"	should	be	made	to	close	the	previous	window	before	calling	this
method	again.
	

Parameters:
TCHAR	*title
The	title	of	the	window	to	set.
WindowPosition	position	=	WPos_Center
The	window	position	you	wish	to	set,	which	is	one	of	the	following	enum
values;	WPos_NULL,	WPos_UpperLeft,	WPos_LowerLeft,
WPos_UpperRight,	WPos_LowerRight,	WPos_Center.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	bool	Display(TCHAR	*title,	HWND	hParent,	int	x,	int	y,
int	w,	int	h)	=	0;

Remarks:
This	method	will	display	the	bitmap	image	viewer.	Note	that	the	Show()	and
Hide()	methods	have	no	effect	until	the	window	is	initialized	by	a	call	to
Display().	For	docked	viewers,	the	hParent	parameter	is	the	window	into
which	te	viewer	will	be	docked.	For	floating	viewers,	the	parameter	has	no
effect.
You	should	also	not	call	this	twice	on	this	interface.	The	second	time	the
function	is	called,	the	viewer	will	loose	all	references	to	the	previoulsy	opened
window.	To	switch	images	using	the	same	bitmap	viewer,	a	call	to
"UnDisplay"	should	be	made	to	close	the	previous	window	before	calling	this
method	again.

Parameters:
TCHAR	*title

The	title	of	the	window	to	set.
HWND	hParent
A	handle	to	the	parent	window.
int	x,	y,	h,	w
The	position	and	dimensions	of	the	window.
Note	that	these	parameters	will	be	ignored	unless	'Current	Position'	is
WPos_NULL.

Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Prototype:
virtual	bool	UnDisplay()	=	0;

Remarks:
This	method	will	undisplay	the	current	bitmap	image.	The	Show()	and
Hide()	methods	will	no	longer	function	after	the	window	is	destroyed.

Prototype:
virtual	void	ClearScreen()	=	0;

Remarks:
This	method	will	clear	the	bitmap	image	viewer	window	contents.	This	will
not	delete	the	window	as	it	would	using	the	Delete	button	on	the	viewer
toolbar	which	actually	deletes	the	contents	of	the	bitmap.

Prototype:
virtual	POINT	XFormScreenToBitmap(const	POINT	&pt)	const	=
0;

Remarks:
This	method	will	transform	a	specified	point	between	the	window’s	client
coordinates	and	the	bitmap	coordinates	and	return	the	result.

Parameters:
const	POINT	&pt
The	point	on	screen.

Prototype:
virtual	POINT	XFormBitmapToScreen(const	POINT	&pt)	const	=
0;

Remarks:
This	method	will	transform	a	specified	point	between	the	window’s	client
coordinates	and	the	bitmap	coordinates	and	return	the	result.

Parameters:
const	POINT	&pt
The	point	on	the	bitmap.

Prototype:
virtual	Rect	XFormScreenToBitmap(const	Rect	&rect)	const	=	0;

Remarks:
This	method	will	transform	a	specified	rectangle	between	the	window’s	client
coordinates	and	the	bitmap	coordinates	and	return	the	result.

Parameters:
const	Rect	&rect
The	screen	rectangle.

Prototype:
virtual	Rect	XFormBitmapToScreen(const	Rect	&rect)	const	=	0;

Remarks:
This	method	will	transform	a	specified	rectangle	between	the	window’s	client
coordinates	and	the	bitmap	coordinates	and	return	the	result.

Parameters:
const	Rect	&rect
The	bitmap	rectangle.

Prototype:
virtual	void	ShowToolbar(bool	show)	=	0;

Remarks:
This	method	allows	you	to	set	whether	the	toolbar	should	be	shown	as	part	of

the	bitmap	image	viewer	window.
Parameters:
bool	show
TRUE	to	show;	FALSE	to	hide.

Prototype:
virtual	void	ToggleToolbar()	=	0;

Remarks:
This	method	allows	you	to	toggle	the	toolbar	of	the	bitmap	image	viewer
window	on	and	off.

Prototype:
virtual	void	GetDrawableRect(Rect&	drawableRect)	=	0;

Remarks:
This	method	will	retrieve	the	portion	of	the	window's	client	area	that	is	safe	to
draw	in	(in	client	coordinates	and	below	the	toolbar).	This	method	can	return	a
value	larger	than	the	displayed	bitmap	if	the	window	size	is	large	enough.

Parameters:
Rect&	drawableRect
The	client	area.

Prototype:
virtual	void	RefreshWindow(Rect*	pRefreshRegion	=	NULL)	=	0;

Remarks:
This	method	will	refresh	the	region	of	the	window,	or	the	entire	window	if
region	is	NULL

Parameters:
Rect*	pRefreshRegion	=	NULL
The	region	of	the	window	you	wish	to	refresh.

Class	IMenu
See	Also:	Class	IMenuElement,	Class	IMenuItem,	Class	IMenuGlobalContext,
Class	IMenuLocalContext,	Structure	MenuEvent,	Class	IPoint2,	Class	Interface.
class	IMenu	:	public	IMenuElement

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	abstract	class	represents	an	interface	for	a	menu	item.	Methods	that	are
marked	as	internal	should	not	be	used.

Methods:
public:

Prototype:
virtual	void	SetIMenuGlobalContext(IMenuGlobalContext*
pIMenuGlobalContext)	=	0;

Remarks:
This	method	is	used	internally.
This	method	sets	a	new	context	for	the	menu,	invalidating	the	menu's	cache.

Parameters:
IMenuGlobalContext*	pIMenuGlobalContext
Points	to	the	context	to	set.

Prototype:
virtual	IMenuLocalContext*	GetIMenuLocalContext()	=	0;

Remarks:
This	method	is	used	internally.
Returns	a	pointer	to	the	menu's	local	context.

Prototype:
virtual	int	NumItems()	const	=	0;

Remarks:
Returns	the	number	of	items	in	the	menu.

Prototype:
virtual	IMenuItem*	GetItem(int	position)	=	0;

Remarks:
Returns	a	pointer	to	the	specified	menu	item.

Parameters:
int	position
The	position/index	in	the	menu.

Prototype:
virtual	void	AddItem(IMenuItem*	item,	int	position	=	-1)	=	0;

Remarks:
This	method	adds	the	specified	item	into	the	menu	at	the	position	passed.	The
default	position	is	at	the	end.

Parameters:
IMenuItem*	item
Points	to	the	menu	item	to	add.
int	position	=	-1
Position	0	indicates	the	beginnng	of	the	list.	A	negative	or	otherwise	invalid
position	defaults	to	end	of	list.

Prototype:
virtual	void	RemoveItem(int	position)	=	0;

Remarks:
Removes	the	item	from	the	menu	whose	position	is	passed.

Parameters:
int	position
The	zero	based	index	in	the	list	of	the	item	to	remove.	Position	0	is	the	first
item.

Prototype:
virtual	void	RemoveItem(IMenuItem*	item)	=	0;

Remarks:

Removes	the	specified	item	from	the	menu	(if	it	indeed	appears	in	the	menu).
Parameters:
IMenuItem*	item
Points	to	the	menu	item	to	remove.

Prototype:
virtual	IPoint2	GetMaxItemSize()	=	0;

Remarks:
This	method	is	used	internally.
Returns	the	maximum	size	of	all	items	in	the	menu	in	pixels.

Prototype:
virtual	void	Initialize()	=	0;

Remarks:
This	method	is	used	internally.
This	method	is	called	before	menu	is	first	displayed	during	a	user	/	menu
interaction.

Prototype:
virtual	void	PostMenuInteraction()	=	0;

Remarks:
This	method	is	used	internally.
This	method	is	called	after	a	user	/	menu	interaction.

Prototype:
virtual	bool	HandleEvent(MenuEvent	event)	=	0;

Remarks:
This	method	is	used	internally.
This	method	is	called	to	handle	an	event	occuring	within	the	menu.

Parameters:
MenuEvent	event
A	menu	event	structure	containing	the	event	data.

Return	Value:
TRUE	if	the	event	was	handled	successfully,	otherwise	FALSE.

	

Prototype:
virtual	void	Show(DisplayMethod	displayMethod	=
DM_NORMAL,	Box2	*rect	=	NULL)	=	0;

Remarks:
This	method	is	used	internally.
This	method	will	display	the	menu	using	the	provided	display	method.

Prototype:
virtual	void	Hide(DisplayMethod	displayMethod	=
DM_NORMAL)	=	0;

Remarks:
This	method	is	used	internally.
This	method	will	hide	the	menu	using	the	provided	display	method.

Prototype:
virtual	IMenuItem*	FindAccelItem(TCHAR	accelerator)	=	0;

Remarks:
This	method	is	used	internally.
Finds	and	returns	a	pointer	to	the	menu	item	whose	accelerator	is	passed.

Parameters:
TCHAR	accelerator
The	single	character	of	the	accelerator.

Return	Value:
A	pointer	to	the	menu	item	or	NULL	if	not	found.

Prototype:
virtual	IMenuItem*	FindNewSelectedItem()	=	0;

Remarks:
This	method	is	used	internally.
Returns	a	pointer	to	the	currently	selected	menu	item.

Prototype:
virtual	void	Display(IMenu*	pParentMenu	=	NULL)	=	0;

Remarks:
This	method	is	used	internally.
This	method	displays	the	menu.

Parameters:
IMenu*	pParentMenu	=	NULL
Points	to	the	parent	menu.

Prototype:
virtual	void	DisplayItems(IPoint2&	origin,	bool	descending)	=	0;

Remarks:
This	method	is	used	internally.

Prototype:
virtual	void	Undisplay()	=	0;

Remarks:
This	method	is	used	internally.
This	methods	removes	the	menu	from	the	display.

Prototype:
virtual	bool	IsDisplayingSubMenu()	=	0;

Remarks:
This	method	is	used	internally.
Returns	TRUE	if	the	menu	is	displaying	a	sub-menu;	otherwise	FALSE.

Prototype:
virtual	void	TimerElapsed(EventParam	timingType)	=	0;

Remarks:
This	method	is	used	internally.
This	method	notifies	the	menu	that	the	timer	has	elapsed.

Prototype:
virtual	void	SetShowTitle(bool	showTitle)	=	0;

Remarks:
This	method	is	used	internally.
Sets	whether	to	show	the	title	or	not.

Parameters:
bool	showTitle
Pass	true	to	show	the	title;	false	to	not	show	it.

Prototype:
virtual	bool	GetShowTitle()	const	=	0;

Remarks:
This	method	is	used	internally.
Returns	true	if	a	title	is	shown;	otherwise	false.

Prototype:
virtual	void	SetCustomTitle(const	TCHAR	*customTitle)	=	0;

Remarks:
Sets	the	custom	title	to	the	string	passed.

Parameters:
const	TCHAR	*customTitle
Points	to	the	string	to	use.

Prototype:
virtual	const	TSTR&	GetCustomTitle()	const	=	0;

Remarks:
Returns	the	custom	title	string.

Prototype:
virtual	void	SetUseCustomTitle(bool	useCustomTitle)	=	0;

Remarks:
Sets	if	the	item	should	use	a	custom	title.

Parameters:
bool	useCustomTitle
Pass	true	to	use	a	custom	title;	false	to	not	use	one.

Prototype:
virtual	bool	GetUseCustomTitle()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	menu	uses	a	custom	title,	otherwise	FALSE.

Prototype:
virtual	void	SetUseGlobalWidths(bool	useGlobalWidths)	=	0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	instruct	the	menu	to	use	global	widths	in	order	to
show	the	title.

Parameters:
bool	useGlobalWidths
TRUE	to	use	global	widths,	otherwise	FALSE.

Prototype:
virtual	bool	GetUseGlobalWidths()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	TRUE	if	the	menu	uses	global	widths	in	order	to	show
the	title,	otherwise	FALSE.

Prototype:
virtual	bool	NoVisibleItems()	=	0;

Remarks:
This	method	is	used	internally.
Returns	true	if	the	menu	has	no	visible	items	in	it;	otherwise	false.

The	following	functions	are	not	part	of	the	class	but	are	available
for	use.

Function:
IMenu	*	GetIMenu();

Remarks:
This	method	will	return	a	pointer	to	the	IMenu.

Prototype:
void	ReleaseIMenu(IMenu	*);

Remarks:
This	method	will	release	the	specified	IMenu.

Parameters:
IMenuItem	*
A	pointer	to	the	IMenu	you	wish	to	release.

Class	IMenuBarContext
See	Also:	Class	IMenuContext,	Class	Interface.
class	IMenuBarContext:	public	IMenuContext

Description:
This	class	is	available	in	release	4.0	and	later	only.
	

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	abstract	class	represents	an	interface	for	a	menu	bar	context.	Methods	that
are	marked	as	internal	should	not	be	used.

Methods:
public:

Prototype:
virtual	void	SetMenu(IMenu*	pMenu)	=	0;

Remarks:
This	method	allows	you	to	set	the	menu	associated	with	this	context.

Parameters:
IMenu*	pMenu
A	pointer	to	the	menu.

Prototype:
virtual	IMenu*	GetMenu()	=	0;

Remarks:
This	method	returns	a	pointer	to	the	menu	associated	with	this	context.

Prototype:
virtual	HMENU	CreateWindowsMenu()	=	0;

Remarks:
Used	Internally.

This	method	will	create	a	new	windows	menu	and	return	it’s	handle.

Prototype:
virtual	void	UpdateWindowsMenu()	=	0;

Remarks:
Used	Internally.
This	method	will	update	the	current	windows	menu.

Prototype:
virtual	HMENU	GetCurWindowsMenu()	=	0;

Remarks:
Used	Internally.
This	method	returns	the	handle	to	the	current	windows	menu.

Prototype:
virtual	void	ExecuteAction(int	cmdId)	=	0;

Remarks:
This	method	executes	an	action	based	on	the	provided	command	ID.

Parameters:
int	cmdId
The	command	ID	of	the	action	to	execute.

Prototype:
virtual	bool	CommandIDInRange(int	cmdId)	=	0;

Remarks:
Used	internally.

Parameters:
int	cmdId
The	command	ID.

Class	IQuadMenuContext
See	Also:	Class	IMenuContext,	Class	Interface,	List	of	Right-Click	Contexts.
class	IQuadMenuContext:	public	IMenuContext

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	abstract	class	represents	the	interface	for	a	quad	menu	bar	context	and
provides	the	functionality	to	manage	the	quad	menu	context	by	adding	and
removing	menu	sections.
Note	that	methods	marked	for	internal	use	only	should	not	be	used.
	

Methods:
public:

Prototype:
virtual	bool	AddQuadMenu(IQuadMenu*	pMenu,	TCHAR*
pName)	=	0;

Remarks:
This	method	allows	you	to	add	a	new	quad	menu	to	the	context.

Parameters:
IQuadMenu*	pMenu
A	pointer	to	the	quad	menu	you	wish	to	add.
TCHAR*	pName
The	name	of	the	quad	menu.

Return	Value:
TRUE	if	the	quad	menu	is	successfully	added,	otherwise	FALSE.

Prototype:
virtual	void	SetMenu(int	index,	IQuadMenu*	pMenu,	TCHAR*
pName)	=	0;

Remarks:
This	method	allows	you	to	set	a	quad	menu	for	a	slot	in	the	context.

Parameters:
int	index
The	index	of	the	slot	in	the	context.
IQuadMenu*	pMenu
A	pointer	to	the	quad	menu	you	wish	to	set.
TCHAR*	pName
The	name	of	the	quad	menu.

Prototype:
virtual	void	RemoveMenu(int	index)	=	0;

Remarks:
This	method	allows	you	to	remove	a	quad	menu	from	the	context.

Parameters:
int	index
The	index	of	the	quad	menu	to	remove.

Prototype:
virtual	int	MenuCount()	=	0;

Remarks:
This	method	returns	the	number	of	quad	menu’s	in	this	context.

Prototype:
virtual	IQuadMenu*	GetMenu(int	index)	=	0;

Remarks:
This	method	returns	a	pointer	to	a	quad	menu	based	on	its	index	in	the
context.

Parameters:
int	index
The	index	of	the	quad	menu	you	wish	to	retrieve.

Prototype:
virtual	int	GetCurrentMenuIndex()	=	0;

Remarks:
This	method	returns	the	index	of	the	currently	set	default	right-click	menu.

Prototype:
virtual	void	SetCurrentMenuIndex(int	index)	=	0;

Remarks:
This	method	allows	you	to	set	the	current	default	right-click	menu.

Parameters:
int	index
The	index	of	the	menu	you	wish	to	set	as	the	default	menu.

Prototype:
virtual	bool	GetShowAllQuads(int	index)	=	0;

Remarks:
This	method	returns	the	state	of	the	"Show	All	Menus"	flag	in	each	quad
registered	in	the	menu	manager.	TRUE	if	the	flag	is	set	or	FALSE	if	the	flag	is
not	set.

Parameters:
int	index
The	index	of	the	quad	menu.

Prototype:
virtual	void	SetShowAllQuads(int	index,	bool	showAll)	=	0;

Remarks:
This	method	allows	you	to	set	the	"Show	All	Menus"	flag	in	each	quad
registered	in	the	menu	manager.

Parameters:
int	index
The	index	of	the	quad	menu.
bool	showAll
Set	this	parameter	to	TRUE	if	you	wish	to	enable	the	"Show	All	Menus"	flag.
Otherwise	FALSE.

Prototype:
virtual	RightClickContext	GetRightClickContext()	=	0;

Remarks:
This	method	queries	the	state	of	the	modifier	keys	and	returns	the	appropriate
context.

Return	Value:
See	the	List	of	Right-Click	Contexts..

Prototype:
virtual	IQuadMenu*	GetRightClickMenu(RightClickContext
context)	=	0;

Remarks:
This	method	returns	a	pointer	to	the	quad	menu	which	has	been	assigned	to
the	specified	right-click	context,	or	NULL	if	no	menu	is	assigned.

Parameters:
RightClickContext	context
See	the	List	of	Right-Click	Contexts..

Prototype:
virtual	void	SetRightClickMenu(RightClickContext	context,
IQuadMenu	*pMenu)	=	0;

Remarks:
This	method	allows	you	to	set	the	quad	menu	associated	with	a	specific	right-
click	context.

Parameters:
RightClickContext	context
See	the	List	of	Right-Click	Contexts..
IQuadMenu	*pMenu
A	pointer	to	the	quad	menu	you	wish	to	set.

Prototype:
virtual	int	FindMenu(IQuadMenu*	pMenu)	=	0;

Remarks:
This	method	returns	the	index	for	a	specified	quad	menu,	or	-1	if	the	menu	is
not	in	the	context.

Parameters:
IQuadMenu*	pMenu
A	pointer	to	the	quad	menu	you	wish	to	obtain	the	index	of.

Prototype:
virtual	IQuadMenu*	FindMenuByTitle(TCHAR*	pTitle)	=	0;

Remarks:
This	method	returns	a	pointer	to	a	quad	menu	by	specifying	the	title	of	the
menu	you	wish	to	find.	NULL	will	be	returned	if	the	menu	was	not	found.

Parameters:
TCHAR*	pTitle
The	title	string	of	the	menu.

List	of	Right-Click	Contexts
See	Also:	Class	IQuadMenuContext,	Class	IMenuManager
This	is	the	list	of	the	right-click	contexts:
kNonePressed
No	key	is	pressed.
kShiftPressed
The	shift	key	is	pressed.
kAltPressed
The	alt	key	is	pressed.
kControlPressed
The	control	key	is	pressed.
kShiftAndAltPressed
The	shift	and	alt	keys	are	pressed.
kShiftAndControlPressed
The	shift	and	control	keys	are	pressed.
kControlAndAltPressed
The	control	and	alt	keys	are	pressed.
kShiftAndAltAndControlPressed
The	shift,	alt,	and	control	keys	are	pressed.

List	of	Standard	Color	IDs
See	Also:	Class	IColorManager.
This	is	the	list	of	the	standard	color	IDs	that	3ds	max	registers:
kBackground	--	Used	for	all	windows	backgrounds.
kText	--Used	for	static	and	button	text
kActiveCommand	--Used	for	active	command	mode	buttons
kHilight	--	COLOR_BTNHILIGHT
kShadow	--	COLOR_BTNSHADOW
kWindow	--	COLOR_WINDOW
kActiveCaption	--	COLOR_ACTIVECAPTION
kToolTipBackground	--	COLOR_INFOBK
kToolTipText	--	COLOR_INFOTEXT
kHilightText	--	COLOR_HILIGHTTEXT
kWindowText	--	COLOR_WINDOWTEXT
kItemHilight	--	COLOR_HILIGHT
kSubObjectColor	--	This	is	the	blue	sub-object	color
k3dDarkShadow	--	COLOR_3DDKSHADOW
k3dLight	--	COLOR_3DLIGHT
kAppWorkspace	--	COLOR_APPWORKSPACE
kTrackbarBg
kTrackbarBgSel
kTrackbarText
kTrackbarTicks
kTrackbarKeys
kTrackbarSelKeys
kTrackbarCursor
kPressedButton
kTimeSliderBg
kViewportBorder

kActiveViewportBorder
kRollupTitleFace
kRollupTitleText
kRollupTitleHilight
kRollupTitleShadow
kSelectionRubberBand
kStackViewSelection	--	This	is	the	yellow	sub-object	color.

Class	DragAndDropHandler
See	Also:	Class	IDragAndDropMgr,	Class	DropType
class	DragAndDropHandler	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	DragAndDropHandler	class	is	the	base	class	from	which	specialized
drag-and-drop	handlers	should	be	derived.	Instances	of	these	classes	can	be
registered	with	the	DragAndDropMgr	when	enabling	a	window	for	DnD
activity	and	virtual	methods	on	them	are	called	to	handle	the	various	DnD
events.	Use	IDragAndDropMgr::EnableDnD(hwnd,	flag,	handler)	to
enable	DnD	in	a	window	and	specify	the	DragAndDropHandler	instance
that	will	handle	DnD	events	for	that	window.	Note	that	the	event	method	calls	all
deliver	the	current	target	window	as	an	explicit	argument,	so	one	instance	can
potentially	be	shared	among	many	windows.	Further,	a	parent	window	can	be
enabled	for	DnD	and	this	effectively	causes	all	child	windows	to	be	enabled	and
handled	by	the	given	handler	(unless	overriden	by	an	explicit	EnableDnD	with
a	different	handler	on	a	child).
	
//	enable	DnD	on	my	window
GetDragAndDropMgr()->EnabledDnD(hWnd,	TRUE,
&myHandler);

There	are	actually	two	sets	of	DnD	event	handler	virtual	methods	in	the	base
class,	a	low-level	set	that	equates	to	the	methods	on	the	OLE	IDropTarget
interface	that	take	raw	IDataObject	drop	data	and	a	high-level	set	that	take
fully-parsed	DropType	drop	data.	The	low-level	methods	have	default
implementations	provided	that	do	this	parsing	and	call	the	corresponding	high-
level	method,	so	in	most	cases	you	only	need	to	provide	implementations	for	the
high-level	methods.	You	would	provide	implementations	of	the	low-level
methods	if	custom	parsing	of	the	IDataObject	was	required.

Data	Members:
protected:
DropType*	current_droptype;

Cache	for	the	currently	parsed	DropType.	This	is	usually	filled	in	during
DragEnter()	processing	in	the	DragAndDropHandler	for	the	current
window.
static	IDragAndDropMgr*	dndMgr;
Cached	pointer	to	the	DnD	manager.	For	use	by	subclasses.

Methods:
public:

Prototype:
virtual	HRESULT	DragEnter(HWND	window,	IDataObject*
pDataObject,	DWORD	grfKeyState,	POINTL	pt,	DWORD*
pdwEffect);

Remarks:
Override	this	method	in	your	DragAndDropHandler	subclass	to	get	low-
level	control	over	DnD	operations.	This	is	just	a	redirect	of	the	identical
method	called	on	the	OLE	IDropTarget	interface,	see	MSDN	docs	for
details.
The	default	implementation	for	this	methods	use	the	DropClipFormat	and
DropType	classes	to	recognize	and	parse	the	incoming	IDataObject	into	a
DropType	instance	and	hand	this	to	the	associated	high-level	DnD	handler
methods	desribed	next.	As	an	example,	here	is	the	default	DragEnter()
implementation	which	does	the	initial	parsing	on	entry	to	a	window:
	
//	DragAndDropHandler	default	methods,	parse	IDataObject	into
//	DropTypes	&	hand-off	main	DnD	methods	to	specific	handlers
HRESULT	DragAndDropHandler::DragEnter(HWND	hWnd,
IDataObject*	pDataObject,	DWORD	grfKeyState,	POINTL	pt,
DWORD*	pdwEffect)
{
	current_droptype	=	NULL;
	//	look	for	one	of	our	accepted	clip	formats
	DropClipFormat*	cf	=

DropClipFormat::FindClipFormat(pDataObject);
	if	(cf	!=	NULL)
	{
		//	have	one,	get	it	to	parse	it	into	a	DropType	subclass
		current_droptype	=	cf->ParseDataObject(pDataObject);
		if	(current_droptype	!=	NULL)
		{
			//	got	recognizable	drop	data,

//	pass	on	to	high-level	method
			if(pdwEffect)
				*pdwEffect	=	DROPEFFECT_LINK|DROPEFFECT_COPY;
			POINT	p	=	{	pt.x,	pt.y	};
			DragEnter(hWnd,	current_droptype,

grfKeyState,	p,	pdwEffect);
			return	S_OK;
		}
	}
	//	nothing	for	us
	if(pdwEffect)
		*pdwEffect	=	DROPEFFECT_NONE;
	return	S_OK;
}

Parameters:
HWND	window
The	specified	handle	to	the	window	in	which	the	DnD	event	is	occuring.	This
is	one	of	the	windows	that	was	enabled	via	a
IDragAndDropMgr::EnabledDnD()	call,	so	it	may	be	the	parent	of	the
lowest-level	window	that	the	mouse	is	actually	over.
IDataObject*	pDataObject
The	incoming	IDataObject.
DWORD	grfKeyState

The	specified	current	state	of	the	keyboard	modifier	keys	on	the	keyboard.
Valid	values	can	be	a	combination	of	any	of	the	flags	MK_CONTROL,
MK_SHIFT,	MK_ALT,	MK_BUTTON,	MK_LBUTTON,
MK_MBUTTON,	and	MK_RBUTTON.
POINTL	pt
The	specified	current	cursor	coordinates	in	the	coordinate	space	of	the	drop-
target	window.
DWORD*	pdwEffect
On	entry,	pointer	to	the	value	of	the	pdwEffect	parameter	of	the
DoDragDrop	function.	On	return,	must	contain	one	of	the	effect	flags	from
the	Win32	DROPEFFECT	enumeration,	which	indicates	what	the	result	of
the	drop	operation	would	be.

Return	Value:
Standard	return	values	of	E_OUTOFMEMORY,	E_INVALIDARG,
F_UNEXPECTED,	and	E_FAIL,	S_OK.

Prototype:
virtual	HRESULT	Drop(HWND	window,	IDataObject*
pDataObject,	DWORD	grfKeyState,	POINTL	pt,	DWORD*
pdwEffect);

Remarks:
This	method	will	parse	the	dropped	dataObject.

Parameters:
HWND	window
The	specified	handle	to	the	window	in	which	the	DnD	event	is	occuring.	This
is	one	of	the	windows	that	was	enabled	via	a
IDragAndDropMgr::EnabledDnD()	call,	so	it	may	be	the	parent	of	the
lowest-level	window	that	the	mouse	is	actually	over.
IDataObject*	pDataObject
The	incoming	IDataObject.
DWORD	grfKeyState
The	specified	current	state	of	the	keyboard	modifier	keys	on	the	keyboard.
Valid	values	can	be	a	combination	of	any	of	the	flags	MK_CONTROL,

MK_SHIFT,	MK_ALT,	MK_BUTTON,	MK_LBUTTON,
MK_MBUTTON,	and	MK_RBUTTON.
POINTL	pt
The	specified	current	cursor	coordinates	in	the	coordinate	space	of	the	drop-
target	window.
DWORD*	pdwEffect
On	entry,	pointer	to	the	value	of	the	pdwEffect	parameter	of	the
DoDragDrop	function.	On	return,	must	contain	one	of	the	effect	flags	from
the	Win32	DROPEFFECT	enumeration,	which	indicates	what	the	result	of
the	drop	operation	would	be.

Return	Value:
Standard	return	values	of	E_OUTOFMEMORY,	E_INVALIDARG,
F_UNEXPECTED,	and	E_FAIL,	S_OK.

Prototype:
virtual	HRESULT	DragOver(HWND	window,	DWORD
grfKeyState,	POINTL	pt,	DWORD	*	pdwEffect);

Remarks:
This	method	handles	the	process	of	dragging	over	a	drop	target.

Parameters:
HWND	window
The	specified	handle	to	the	window	in	which	the	DnD	event	is	occuring.	This
is	one	of	the	windows	that	was	enabled	via	a
IDragAndDropMgr::EnabledDnD()	call,	so	it	may	be	the	parent	of	the
lowest-level	window	that	the	mouse	is	actually	over.
DWORD	grfKeyState
The	specified	current	state	of	the	keyboard	modifier	keys	on	the	keyboard.
Valid	values	can	be	a	combination	of	any	of	the	flags	MK_CONTROL,
MK_SHIFT,	MK_ALT,	MK_BUTTON,	MK_LBUTTON,
MK_MBUTTON,	and	MK_RBUTTON.
POINTL	pt
The	specified	current	cursor	coordinates	in	the	coordinate	space	of	the	drop-
target	window.

DWORD*	pdwEffect
On	entry,	pointer	to	the	value	of	the	pdwEffect	parameter	of	the
DoDragDrop	function.	On	return,	must	contain	one	of	the	effect	flags	from
the	Win32	DROPEFFECT	enumeration,	which	indicates	what	the	result	of
the	drop	operation	would	be.

Return	Value:
Standard	return	values	of	E_OUTOFMEMORY,	E_INVALIDARG,
F_UNEXPECTED,	and	E_FAIL,	S_OK.

Prototype:
virtual	HRESULT	DragEnter(HWND	window,	DropType*	type,
DWORD	grfKeyState,	POINT&	pt,	DWORD*	pdwEffect);

Remarks:
This	is	the	high-level	method	called	to	handle	DnD	events	with	already
recognized	and	parsed	data	object.	Override	the	above	methods	as	needed	in
your	DragAndDropHandler	subclass	to	handle	DnD	events.

Parameters:
HWND	window
The	specified	handle	to	the	window	in	which	the	DnD	event	is	occuring.	This
is	one	of	the	windows	that	was	enabled	via	a
IDragAndDropMgr::EnabledDnD()	call,	so	it	may	be	the	parent	of	the
lowest-level	window	that	the	mouse	is	actually	over.
DropType*	type
The	specified	Pointer	to	the	DropType	instance	that	corresponds	to	the	data
in	the	dropped	IDataObject.	You	can	use	the	DropType::TypeCode()
method	to	determine	the	droptype	(see	the	built-in	codes	in	the	DropType
section).	Each	DropType	subclass	instance	has	utility	methods	and	public
data	members	containing	the	parsed	drop	data.	See	each	subclass	definition	for
details.
DWORD	grfKeyState
The	specified	current	state	of	the	keyboard	modifier	keys	on	the	keyboard.
Valid	values	can	be	a	combination	of	any	of	the	flags	MK_CONTROL,
MK_SHIFT,	MK_ALT,	MK_BUTTON,	MK_LBUTTON,

MK_MBUTTON,	and	MK_RBUTTON.
POINT&	pt
The	specified	current	cursor	coordinates	in	the	coordinate	space	of	the	drop-
target	window.
DWORD*	pdwEffect
On	entry,	pointer	to	the	value	of	the	pdwEffect	parameter	of	the
DoDragDrop	function.	On	return,	must	contain	one	of	the	effect	flags	from
the	Win32	DROPEFFECT	enumeration,	which	indicates	what	the	result	of
the	drop	operation	would	be.

Return	Value:
Standard	return	values	of	E_OUTOFMEMORY,	E_INVALIDARG,
F_UNEXPECTED,	and	E_FAIL,	S_OK.

Default	Implementation:
{	return	E_FAIL;	}

Prototype:
virtual	HRESULT	Drop(HWND	window,	DropType*	type,
DWORD	grfKeyState,	POINT&	pt,	DWORD*	pdwEffect);

Remarks:
This	method	will	parse	the	dropped	dataObject.
Here's	an	example	implementation	of	Drop()	in	the	default	handler:
	
HRESULT	DefaultDragAndDropHandler::Drop(HWND	hwnd,
DropType*	type,
DWORD	grfKeyState,	POINT&	pt,	DWORD*	pdwEffect)
{
	//	This	could	take	a	while,	set	wait	cursor
	HCURSOR	hOldCursor	=	SetCursor(LoadCursor(NULL,
IDC_WAIT));
	HRESULT	result	=	S_OK;
	
	//	load	the	dropped	data	if	needed

	if	(type->Load())
	{
		//	see	if	dropped	on	a	viewport,	if	so	adjust	point

//	to	be	vp-relative
		HWND	vpwin	=	FindDropViewport(hwnd,	pt);
	
		//	Handle	the	drop	depending	on	drop	type
		BOOL	bRet;
		switch	(type->TypeCode())
		{
			case	SCENEFILE_DROPTYPE:
				bRet	=	HandleDroppedGeom(

hwnd,	vpwin,	pt,
sceneFileDropType.current_package[0]);

				break;
			case	IMAGEFILE_DROPTYPE:
				bRet	=	HandleDroppedBitmap(

hwnd,	vpwin,	pt,
imageFileDropType.current_package[0]);

				break;
			case	DROPSCRIPTEFILE_DROPTYPE:
				bRet	=	HandleDroppedDropScript(

hwnd,	vpwin,	pt,
dropScriptFileDropType.current_package[0]);

				break;
		}

	result	=	bRet	?	S_OK	:	E_FAIL;
	}
	//	restore	cursor
	SetCursor(hOldCursor);

	return	result;
}

Parameters:
HWND	window
The	specified	handle	to	the	window	in	which	the	DnD	event	is	occuring.	This
is	one	of	the	windows	that	was	enabled	via	a
IDragAndDropMgr::EnabledDnD()	call,	so	it	may	be	the	parent	of	the
lowest-level	window	that	the	mouse	is	actually	over.
DropType*	type
The	specified	Pointer	to	the	DropType	instance	that	corresponds	to	the	data
in	the	dropped	IDataObject.	You	can	use	the	DropType::TypeCode()
method	to	determine	the	droptype	(see	the	built-in	codes	in	the	DropType
section).	Each	DropType	subclass	instance	has	utility	methods	and	public
data	members	containing	the	parsed	drop	data.	See	each	subclass	definition	for
details.
DWORD	grfKeyState
The	specified	current	state	of	the	keyboard	modifier	keys	on	the	keyboard.
Valid	values	can	be	a	combination	of	any	of	the	flags	MK_CONTROL,
MK_SHIFT,	MK_ALT,	MK_BUTTON,	MK_LBUTTON,
MK_MBUTTON,	and	MK_RBUTTON.
POINT&	pt
The	specified	current	cursor	coordinates	in	the	coordinate	space	of	the	drop-
target	window.
DWORD*	pdwEffect
On	entry,	pointer	to	the	value	of	the	pdwEffect	parameter	of	the
DoDragDrop	function.	On	return,	must	contain	one	of	the	effect	flags	from
the	Win32	DROPEFFECT	enumeration,	which	indicates	what	the	result	of
the	drop	operation	would	be.

Return	Value:
Standard	return	values	of	E_OUTOFMEMORY,	E_INVALIDARG,
F_UNEXPECTED,	and	E_FAIL,	S_OK.

Default	Implementation:
{	return	E_FAIL;	}

Prototype:
virtual	HRESULT	DragOver(HWND	window,	DWORD
grfKeyState,	POINT&	pt,	DWORD	*	pdwEffect);

Remarks:
This	method	handles	the	process	of	dragging	over	a	drop	target.

Parameters:
HWND	window
The	specified	handle	to	the	window	in	which	the	DnD	event	is	occuring.	This
is	one	of	the	windows	that	was	enabled	via	a
IDragAndDropMgr::EnabledDnD()	call,	so	it	may	be	the	parent	of	the
lowest-level	window	that	the	mouse	is	actually	over.
DWORD	grfKeyState
The	specified	current	state	of	the	keyboard	modifier	keys	on	the	keyboard.
Valid	values	can	be	a	combination	of	any	of	the	flags	MK_CONTROL,
MK_SHIFT,	MK_ALT,	MK_BUTTON,	MK_LBUTTON,
MK_MBUTTON,	and	MK_RBUTTON.
POINT&	pt
The	specified	current	cursor	coordinates	in	the	coordinate	space	of	the	drop-
target	window.
DWORD*	pdwEffect
On	entry,	pointer	to	the	value	of	the	pdwEffect	parameter	of	the
DoDragDrop	function.	On	return,	must	contain	one	of	the	effect	flags	from
the	Win32	DROPEFFECT	enumeration,	which	indicates	what	the	result	of
the	drop	operation	would	be.
	

Return	Value:
Standard	return	values	of	E_OUTOFMEMORY,	E_INVALIDARG,
F_UNEXPECTED,	and	E_FAIL,	S_OK.

Default	Implementation:
{	return	E_FAIL;	}

Prototype:
virtual	HRESULT	DragLeave(HWND	window);

Remarks:
This	method	handles	the	process	of	the	drag	operation	leaving	the	drop	target
window.

Parameters:
HWND	window
The	specified	handle	to	the	window	in	which	the	DnD	event	is	occuring.	This
is	one	of	the	windows	that	was	enabled	via	a
IDragAndDropMgr::EnabledDnD()	call,	so	it	may	be	the	parent	of	the
lowest-level	window	that	the	mouse	is	actually	over.

Return	Value:
Standard	return	values	of	E_OUTOFMEMORY,	E_INVALIDARG,
F_UNEXPECTED,	and	E_FAIL,	S_OK.

Default	Implementation:
{	return	E_FAIL;	}

Prototype:
virtual	void	Acquire();

Remarks:
This	method	is	called	called	when	the	DnD	manager	starts	managing	DnD
events	for	a	particular	window	for	this	handler.	You	can	provide	an
implementation	if	you	need	to	keep	track	of	extant	uses	of	the	handler	(say,	by
ref-counting)	or	to	do	handler-specific	cleanup.

Default	Implementation:
{	}

Prototype:
virtual	void	Release();

Remarks:
This	method	is	called	called	when	the	DnD	manager	stops	managing	DnD
events	for	a	particular	window	for	this	handler.	You	can	provide	an
implementation	if	you	need	to	keep	track	of	extant	uses	of	the	handler	(say,	by
ref-counting)	or	to	do	handler-specific	cleanup.

Default	Implementation:
{	}

Class	URLTab
See	Also:	Class	DragAndDropHandler
	
class	URLTab	:	public	Tab<TCHAR*>

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	URLTab	class	is	a	Tab<TCHAR*>	utility	class	that	is	used	by	certain
components	in	the	Drag	and	Drop	manager	to	hold	and	pass	around	packages	of
file	URLs.	The	class	manages	its	own	local	copies	of	URL	strings.	This	class
represents	the	additional	API	support	by	URLTab,	over-and-above	that	provided
by	any	Tab<>	template	instantiation.

Data	Members:
protected:
BOOL	downloaded;
This	flag	is	set	to	indicate	the	URL	package	has	been	downloaded	and	names
will	reflect	local	copies.

Methods:
public:

Prototype:
URLTab();

Remarks:
Constructor.

Default	Implementation:
{	downloaded	=	FALSE;	}

Prototype:
~URLTab();

Remarks:
Destructor.

URLTabs	manage	their	own	local	string	element	copies,	the	destructor	frees	all
these	strings.

Default	Implementation:
{	Clear();	}

Prototype:
URLTab&	operator=(const	Tab<TCHAR*>&	tb);

Remarks:
Assignment	operator.

Prototype:
URLTab&	operator=(const	URLTab&	tb);

Remarks:
Assignment	operator.

Prototype:
void	Add(TCHAR*	url);

Remarks:
This	method	adds	a	URL	string	to	the	package.	A	local	copy	of	the	string	will
be	made.

Parameters:
TCHAR*	url
The	URL	string	to	add.

Prototype:
void	Change(int	i,	TCHAR*	url);

Remarks:
This	method	replaces	the	i'th	element	by	deletes	the	old	string,	taking	a	local
copy	of	the	new	one.	This	is	used	by	the	various	loaders	to	replace	a	URL	with
its	local	copy	path	name	upon	download.

Parameters:
int	i

The	index	of	the	URL	to	replace.
TCHAR*	url
The	new	URL	string.

Prototype:
void	Clear();

Remarks:
This	method	clears	the	package	(deletes	all	the	strings),	zeros	the	Tab<>	and
resets	'downloaded'	to	FALSE.

Class	INodeDisplayControl
See	Also:	Class	InterfaceServer,	Class	NodeDisplayCallback,	Class	INode.
class	INodeDisplayControl	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	is	an	interface	that	is	used	to	register	the	node	display	callback.	To	get
a	pointer	to	this	interface	the	developer	should	use	the	following	macro:
#define	GetNodeDisplayControl(i)	((INodeDisplayControl*)i-
>GetInterface(I_NODEDISPLAYCONTROL))

Methods:
public:

Prototype:
virtual	void	RegisterNodeDisplayCallback(NodeDisplayCallback
*cb)=0;

Remarks:
Register	a	node	display	callback	which	can	be	used	to	control	the	display	of
nodes	in	the	scene.

Parameters:
NodeDisplayCallback	*cb
Points	to	the	callback	object.

Prototype:
virtual	void
UnRegisterNodeDisplayCallback(NodeDisplayCallback	*cb)=0;

Remarks:
Un-registers	the	node	display	callback.

Parameters:
NodeDisplayCallback	*cb
Points	to	the	callback	object.

Prototype:
virtual	bool	SetNodeCallback(NodeDisplayCallback*	hook)=0;

Remarks:
Sets	the	current	current	callback.	The	callback	must	be	previously	registered.

Parameters:
NodeDisplayCallback*	hook
Points	to	the	node	display	callback	to	set.

Return	Value:
Returns	true	if	the	callback	was	set;	otherwise	false.

Prototype:
virtual	NodeDisplayCallback*	GetNodeCallback()=0;

Remarks:
Returns	a	pointer	to	the	current	current	callback.	The	callback	must	be
previously	registered.

Prototype:
virtual	void	InvalidateNodeDisplay()=0;

Remarks:
Viewport	refresh	routine.	Tthis	function	only	invalidates	the	display,	it's	up	to
the	callback	to	select	the	correct	redraw	technique.

Class	XTCContainer
See	Also:	Class	XTCObject
class	XTCContainer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	a	container	class	for	XTCObjects.

Data	Members:
public:
XTCObject	*obj;
A	pointer	to	the	XTCObject.
int	prio;
The	priority.
int	branchID;
The	branch	identifier.

Methods:
public:

Prototype:
XTCContainer();

Remarks:
Constructor.

Default	Implementation:
{obj	=	NULL;	prio	=	0;	branchID	=	-1;}

Class	IXTCAccess
See	Also:	Class	Object,	Class	XTCObject
class	IXTCAccess

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	provides	an	interface	to	access	Extension	Channels.

Methods:
public:

Prototype:
virtual	Interface_ID	GetID();

Remarks:
This	method	returns	the	IXTCAccess	interface	ID.

Default	Implementation:
{	return	IXTCACCESS_INTERFACE_ID;	}

Prototype:
virtual	LifetimeType	LifetimeControl();

Remarks:
This	method	allows	enquiries	into	the	actual	lifetime	policy	of	a	client	and
provide	a	server-controlled	delete	notify	callback.

Return	Value:
One	of	the	following	LifetimeTypes:
noRelease
Do	not	call	release,	use	interface	as	long	as	you	like.
immediateRelease
The	interface	is	only	good	for	one	calls.	The	release	is	implied	so	a	call	to
release	is	not	required.
wantsRelease
The	clients	are	controlling	the	lifetime,	so	the	interface	needs	a	Release()
when	the	client	has	finished.	This	is	the	default.

serverControlled
The	server	controls	the	lifetime	and	will	use	the	InterfaceNotifyCallback	to
inform	the	code	when	it	is	gone.

Default	Implementation:
{	return	noRelease;	}

Prototype:
virtual	void	AddXTCObject(XTCObject	*pObj,	int	priority	=	0,
int	branchID	=	-1)=0;

Remarks:
This	method	adds	an	extension	object	into	the	pipeline.

Parameters:
XTCObject	*pObj
The	extension	object	you	wish	to	add.
int	priority	=	0
The	priority	to	set.
int	branchID	=	-1
The	branch	identifier	to	set.

Prototype:
virtual	int	NumXTCObjects()=0;

Remarks:
This	method	returns	the	number	of	extension	objects.
	

Prototype:
virtual	XTCObject	*GetXTCObject(int	index)=0;

Remarks:
This	method	returns	the	I-th	extension	object.

Parameters:
int	index
The	index	of	the	extension	object	to	return.

Prototype:
virtual	void	RemoveXTCObject(int	index)=0;

Remarks:
This	method	allows	you	to	remove	the	I-th	extension	object.

Parameters:
int	index
The	index	of	the	extension	object	you	wish	to	remove.

Prototype:
virtual	void	SetXTCObjectPriority(int	index,int	priority)=0;

Remarks:
This	method	allows	you	to	set	the	priority	for	the	I-th	extension	object.

Parameters:
int	index
The	index	of	the	extension	object	for	which	to	set	the	priority.
int	priority
The	priority	to	set.

Prototype:
virtual	int	GetXTCObjectPriority(int	index)=0;

Remarks:
This	method	returns	the	priority	for	the	I-th	extension	object.

Parameters:
int	index
The	index	of	the	extension	object.

Prototype:
virtual	void	SetXTCObjectBranchID(int	index,int	branchID)=0;

Remarks:
This	method	allows	you	to	set	the	branch	identifier	for	the	I-th	extension
object.

Parameters:
int	index
The	index	of	the	extension	object.
int	branchID
The	branch	identifier	to	set.

Prototype:
virtual	int	GetXTCObjectBranchID(int	index)=0;

Remarks:
This	method	returns	the	branch	identifier	for	the	I-th	extension	object.

Parameters:
int	index
The	index	of	the	extension	object.

Prototype:
virtual	void	MergeAdditionalChannels(Object	*from,	int
branchID)=0;

Remarks:
This	method	has	to	be	called	whenever	the	CompoundObject	updates	a	branch
(calling	Eval	on	it).	Object	*from	is	the	object	returned	from	Eval	(os.obj);
branchID	is	an	int,	that	specifies	that	branch.	The	extension	channel	will	get	a
callback	to	RemoveXTCObjectOnMergeBranches()	and
MergeXTCObject().	By	default	it	returns	true	to
RemoveXTCObjectOnMergeBranches(),	which	means,	that	the	existing
XTCObjects	with	that	branchID	will	be	deleted.	The	method
MergeXTCObject()	simply	copies	the	XTCObjects	from	the	incoming
branch	into	the	compound	object.

Parameters:
Object	*from
The	object	from	which	to	merge	additional	channels
int	branchID
The	branch	identifier.

Prototype:
virtual	void	BranchDeleted(int	branchID,	bool
reorderChannels)=0;

Remarks:
This	method	has	to	be	called	on	the	CompoundObject,	so	it	can	delete	the
XTCObjects	for	the	specific	branch.	The	XTCObject	will	have	again	the	final
decision	if	the	XTCObject	gets	really	deleted	or	not	in	a	callback	to
RemoveXTCObjectOnBranchDeleted(),	which	will	return	true,	if	the
XTCObject	should	be	removed.

Parameters:
int	branchID
The	branch	identifier.
bool	reorderChannels
TRUE	to	reorder	the	channels,	otherwise	FALSE.

Prototype:
virtual	void	CopyAdditionalChannels(Object	*from,	bool
deleteOld	=	true,	bool	bShallowCopy	=	false)=0;

Remarks:
This	method	copies	all	extension	objects	from	the	"from"	objects	into	the
current	object.	In	case	deleteOld	is	false,	the	objects	will	be	appended.	In	case
it	is	true,	the	old	XTCObjects	will	be	deleted.

Parameters:
Object	*from
The	object	to	copy	from.
bool	deleteOld	=	true
TRUE	to	delete	the	old	channel,	FALSE	to	append	the	channels.
bool	bShallowCopy	=	false
TRUE	to	create	a	shallow	copy,	FALSE	to	create	a	deep	copy.

Prototype:
virtual	void	DeleteAllAdditionalChannels()=0;

Remarks:
This	method	allows	you	to	delete	all	additional	channels.

Class	IDataChannel
See	Also:	Class	InterfaceServer,	Class	Class_ID,	Class	IFaceDataChannel,
Class	IFaceDataChannelsEnumCallBack
class	IDataChannel	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
A	data	channel	is	a	homogeneous	collection	of	objects	of	a	user	defined	type
(data	objects).	Data	channels	are	uniquely	identified	by	a	Class_ID.	Data
channels	can	be	associated	with	any	element	type	of	a	3ds	max	object:	faces	or
vertexes	of	Meshes,	etc.	You	can	use	the	macro
GetDataChannelInterface(obj)	to	obtain	a	pointer	to	this	interface.

Methods:
public:

Prototype:
virtual	Class_ID	DataChannelID()	const	=0;

Remarks:
This	method	returns	the	unique	class	ID	of	the	channel.

Prototype:
virtual	ULONG	Count()	const;

Remarks:
This	method	returns	the	number	of	data	objects	in	this	channel.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	void	DeleteThis()	=	0;

Remarks:
Destructor.	Deletes	self.

Class	IFaceDataChannelsEnumCallBack
See	Also:	Class	IDataChannel,	Class	IFaceDataChannel	,	Class	IFaceDataMgr
class	IFaceDataChannelsEnumCallBack

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	an	interface	class	that	will	allow	a	callback	procedure	to	execute	for	all
face	data	channels	of	an	object.	You	should	derive	your	own	classes	from	this
interface	and	overwrite	the	Proc()	method	to	call	the	desired
IFaceDataChannel	method.	It	is	up	to	the	derived	class	to	interpret	the
context	parameter	passed	to	Proc().
Classes	that	hold	face	data	channels	can	implement	the	method:
EnumFaceDataChannels(IFaceDataEnumCallBack&	cb,	void*
pContext)
This	method	would	be	called	with	a	reference	to	an	instance	of	a	class	derived
from	IFaceDataEnumCallBack	in	which	Proc()	is	overwritten.	The
implementation	of	EnumFaceDataChannels	would	call	cb.Proc	for	each	of
the	face-data	channels	of	the	object
Note:	Do	not	delete	data	channels	from	within	the	Proc().	This	could	lead	to
unexpected	behaviour.

Methods:
public:

Prototype:
virtual	BOOL	Proc(IFaceDataChannel*	pChan,	void*	pContext)	=
0;

Remarks:
The	callback	method	that	should	be	overridden.

Parameters:
IFaceDataChannel*	pChan
A	pointer	to	the	face-data	channel	interface.
void*	pContext

A	pointer	to	the	context	data.
Return	Value:
TRUE	if	successful,	otherwise	FALSE.

Class	CollisionOps
See	Also:	Class	ICollision,	Class	CollisionPlane,	Class	CollisionSphere,	Class
CollisionVNormal,	Class	CollisionMesh,	Class	Box3,	Class	Point3,	Class
FPInterface
class	CollisionOps	:	public	FPInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	operation	interface	to	the	collision	detection	system.
The	interface	ID	is	defined	as	COLLISION_FO_INTERFACE.	To	obtain	a
pointer	to	this	interface	you	can	use	the	macro
GetCollisionOpsInterface(cd),	which	will	return	(CollisionOps	*)(cd)-
>GetFPInterface(COLLISION_FO_INTERFACE).

Methods:
public:

Prototype:
virtual	int	SuppportedCollisions(ReferenceTarget	*r)	=	0;

Remarks:
This	method	returns	the	collision	type	supported	by	the	engine.
	

Parameters:
ReferenceTarget	*r
A	pointer	to	the	reference	target	to	check	the	collision	type	for.

Return	Value:
One	of	the	following;
POINT_COLLISION	for	point	collision,	currently	supported.
SPHERE_COLLISION	for	spherical	collision,	currently	not	supported.
BOX_COLLISION	for	box	collision,	currently	not	supported.
EDGE_COLLISION	for	edge	collision,	currently	not	supported.

Prototype:

virtual	void	PreFrame(ReferenceTarget	*r,	TimeValue	&t,
TimeValue	&dt)	=	0;

Remarks:
This	method	will	be	called	once	before	the	checkcollision	is	called	for	each
frame	which	allows	you	to	do	any	required	initialization.

Parameters:
ReferenceTarget	*r
A	pointer	to	the	reference	target.
TimeValue	t
The	time	at	which	to	initialize.
TimeValue	dt
The	delta	of	time	the	particle	wil	travel.

Prototype:
virtual	void	PostFrame(ReferenceTarget	*r,	TimeValue	&t,
TimeValue	&dt)	=	0;

Remarks:
This	method	will	be	called	at	the	end	of	each	frame	solve	to	allow	you	to
destroy	and	deallocate	any	data	you	no	longer	need.

Parameters:
ReferenceTarget	*r
A	pointer	to	the	reference	target.
TimeValue	t
The	time	at	which	to	initialize.
TimeValue	dt
The	delta	of	time	the	particle	wil	travel.

Prototype:
virtual	BOOL	CheckCollision	(ReferenceTarget	*r,TimeValue	t,
Point3	pos,	Point3	vel,	float	dt,	float	&at,	Point3	&hitPoint,	Point3
&norm,	Point3	&friction,	Point3	&inheritedVel)	=	0;

Remarks:

This	method	will	be	called	to	execute	a	point	to	surface	collision	and	compute
the	time	at	which	the	particle	hit	the	surface.

Parameters:
ReferenceTarget	*r
A	pointer	to	the	reference	target.
TimeValue	t
The	end	time	of	the	particle.
Point3	pos
The	position	of	the	particle	in	world	space.
Point3	vel
The	velocity	of	the	particle	in	world	space.
float	dt
The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:
TRUE	if	there’s	a	collision,	otherwise	FALSE.

Prototype:
virtual	BOOL	CheckCollision	(ReferenceTarget	*r,TimeValue
t,Point3	pos,	float	radius,	Point3	vel,	float	dt,	float	&at,	Point3
&hitPoint,	Point3	&norm,	Point3	&friction,	Point3	&inheritedVel)
=	0;;

Remarks:
This	method	will	be	called	to	execute	a	sphere	to	surface	collision	and
compute	the	time	at	which	the	particle	hit	the	surface.

Parameters:
ReferenceTarget	*r
A	pointer	to	the	reference	target.
TimeValue	t
The	end	time	of	the	particle.
Point3	pos
The	position	of	the	particle	in	world	space.
float	radius
The	radius	of	the	sphere.
Point3	vel
The	velocity	of	the	particle	in	world	space.
float	dt
The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:
TRUE	if	there’s	a	collision,	otherwise	FALSE.

Prototype:
virtual	BOOL	CheckCollision	(ReferenceTarget	*r,TimeValue	t,

Box3	box,	Point3	vel,	float	dt,	float	&at,	Point3	&hitPoint,	Point3
&norm,	Point3	&friction,	Point3	&inheritedVel)	=	0;

Remarks:
This	method	will	be	called	to	execute	a	box	to	surface	collision	and	compute
the	time	at	which	the	particle	hit	the	surface.

Parameters:
ReferenceTarget	*r
A	pointer	to	the	reference	target.
TimeValue	t
The	end	time	of	the	particle.
Box3	box
The	box	itself.
Point3	vel
The	velocity	of	the	particle	in	world	space.
float	dt
The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:
TRUE	if	there’s	a	collision,	otherwise	FALSE.

Prototype:

virtual	BOOL	CheckCollision	(ReferenceTarget	*r,TimeValue
t,Point3	edgeA,Point3	edgeB	,Point3	vel,	float	dt,	float	&at,	Point3
&hitPoint,	Point3	&norm,	Point3	&friction,	Point3	&inheritedVel)
=	0;

Remarks:
This	method	will	be	called	to	execute	an	edge	to	surface	collision	and	compute
the	time	at	which	the	particle	hit	the	surface.

Parameters:
ReferenceTarget	*r
A	pointer	to	the	reference	target.
TimeValue	t
The	end	time	of	the	particle.
Point3	edgeA
The	first	edge.
Point3	edgeB
The	second	edge.
Point3	vel
The	velocity	of	the	particle	in	world	space.
float	dt
The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:

TRUE	if	there’s	a	collision,	otherwise	FALSE.

Class	CollisionPlane
See	Also:	Class	ICollision,	Class	CollisionOps,	Class	CollisionSphere,	Class
CollisionVNormal,	Class	CollisionMesh,	Class	Box3,	Class	Point3,	Class
IParamBlock2,	Class	INode,	Class	Control
class	CollisionPlane	:	public	ICollision

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	planar	collision	object	with	the	ClassID	defined	as
PLANAR_COLLISION_ID.	This	class	allows	you	to	define	a	plane	in
space	and	determine	if	a	particle	hit	it.

Data	Members:
private:
INode	*node;
The	associated	node.

public:
IParamBlock2	*pblock;
The	parameter	block	data.	You	can	use	the	following	enum	parameter	ID’s:
collisionplane_width
collisionplane_height
collisionplane_quality
collisionplane_node

Interval	validity;
The	validity	interval.
Matrix3	tm;
The	plane’s	TM.
Matrix3	invtm;
The	inverse	TM.
Matrix3	prevInvTm;
The	cached	previous	inverse	TM.
int	initialTime;
The	initial	time.

Tab<Matrix3>	invTmList;
The	table	of	inverse	TM’s.
float	width,	height;
The	width	and	height	of	the	plane.
int	quality;
The	collision	quality	value.

Methods:
public:

Prototype:
CollisionPlane();

Remarks:
Constructor.

Prototype:
~CollisionPlane();

Remarks:
Destructor.

Prototype:
int	SuppportedCollisions();

Remarks:
This	method	determines	the	type	of	collisions	that	are	supported.

Return	Value:
One	of	the	following;
POINT_COLLISION	for	point	collision,	currently	supported.
SPHERE_COLLISION	for	spherical	collision,	currently	not	supported.
BOX_COLLISION	for	box	collision,	currently	not	supported.
EDGE_COLLISION	for	edge	collision,	currently	not	supported.

Default	Implementation:
{	return	POINT_COLLISION;	}

Prototype:
void	PreFrame(TimeValue	t,	TimeValue	dt);

Remarks:
This	method	will	be	called	once	before	the	checkcollision	is	called	for	each
frame	which	allows	you	to	do	any	required	initialization.

Parameters:
TimeValue	t
The	time	at	which	to	initialize.
TimeValue	dt
The	delta	of	time	the	particle	wil	travel.

Prototype:
void	PostFrame(TimeValue	t,	TimeValue	dt);

Remarks:
This	method	will	be	called	at	the	end	of	each	frame	solve	to	allow	you	to
destroy	and	deallocate	any	data	you	no	longer	need.

Parameters:
TimeValue	t
The	time	at	which	to	initialize.
TimeValue	dt
The	delta	of	time	the	particle	wil	travel.

Default	Implementation:
{}

Prototype:
virtual	BOOL	CheckCollision	(TimeValue	t,	Point3	pos,	Point3	vel,
float	dt,	float	&at,	Point3	&hitPoint,	Point3	&norm,	Point3
&friction,	Point3	&inheritedVel)	=	0;

Remarks:
This	method	will	be	called	to	execute	a	point	to	surface	collision	and	compute
the	time	at	which	the	particle	hit	the	surface.

Parameters:

TimeValue	t
The	end	time	of	the	particle.
Point3	pos
The	position	of	the	particle	in	world	space.
Point3	vel
The	velocity	of	the	particle	in	world	space.
float	dt
The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:
TRUE	if	there’s	a	collision,	otherwise	FALSE.

Prototype:
virtual	BOOL	CheckCollision	(TimeValue	t,Point3	pos,	float
radius,	Point3	vel,	float	dt,	float	&at,	Point3	&hitPoint,	Point3
&norm,	Point3	&friction,	Point3	&inheritedVel)	=	0;;

Remarks:
This	method	will	be	called	to	execute	a	sphere	to	surface	collision	and
compute	the	time	at	which	the	particle	hit	the	surface.

Parameters:
TimeValue	t
The	end	time	of	the	particle.

Point3	pos
The	position	of	the	particle	in	world	space.
float	radius
The	radius	of	the	sphere.
Point3	vel
The	velocity	of	the	particle	in	world	space.
float	dt
The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:
TRUE	if	there’s	a	collision,	otherwise	FALSE.

Prototype:
virtual	BOOL	CheckCollision	(TimeValue	t,	Box3	box,	Point3	vel,
float	dt,	float	&at,	Point3	&hitPoint,	Point3	&norm,	Point3
&friction,	Point3	&inheritedVel)	=	0;

Remarks:
This	method	will	be	called	to	execute	a	box	to	surface	collision	and	compute
the	time	at	which	the	particle	hit	the	surface.

Parameters:
TimeValue	t
The	end	time	of	the	particle.

Box3	box
The	box	itself.
Point3	vel
The	velocity	of	the	particle	in	world	space.
float	dt
The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:
TRUE	if	there’s	a	collision,	otherwise	FALSE.

Prototype:
virtual	BOOL	CheckCollision	(TimeValue	t,Point3	edgeA,Point3
edgeB	,Point3	vel,	float	dt,	float	&at,	Point3	&hitPoint,	Point3
&norm,	Point3	&friction,	Point3	&inheritedVel)	=	0;

Remarks:
This	method	will	be	called	to	execute	an	edge	to	surface	collision	and	compute
the	time	at	which	the	particle	hit	the	surface.

Parameters:
TimeValue	t
The	end	time	of	the	particle.
Point3	edgeA
The	first	edge.

Point3	edgeB
The	second	edge.
Point3	vel
The	velocity	of	the	particle	in	world	space.
float	dt
The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:
TRUE	if	there’s	a	collision,	otherwise	FALSE.

Prototype:
void	SetWidth(TimeValue	t,	float	w);

Remarks:
Sets	the	width	of	the	plane.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	width.
float	w
The	width.

Default	Implementation:
{	pblock->SetValue(collisionplane_width,t,w);	}

Prototype:
void	SetHeight(TimeValue	t,	float	h);

Remarks:
Sets	the	height	of	the	plane.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	height.
float	h
The	height.

Default	Implementation:
{	pblock->SetValue(collisionplane_height,t,h);	}

Prototype:
void	SetQuality(TimeValue	t,	int	q);

Remarks:
Sets	the	quality	of	the	solve.	This	is	the	maximum	number	of	iterations	the
solver	will	take	to	find	the	hit	point.	The	lower	quality	the	mire	likely	a
particle	will	leak	through	the	surface	but	the	faster	the	solver	will	be.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	quality.
int	q
The	quality	value.

Default	Implementation:
{	pblock->SetValue(collisionplane_quality,t,q);	}

Prototype:
void	SetNode(TimeValue	t,	INode	*n);

Remarks:
Sets	the	node	which	drives	the	TM	to	put	the	plane	in	world	space.

Parameters:

TimeValue	t
The	time	at	which	to	set	the	node.
INode	*n
The	node	to	set.

Default	Implementation:
{	pblock->SetValue(collisionplane_node,t,n);	node	=	n;	}

Prototype:
void	SetWidth(Control	*c);

Remarks:
Sets	the	controller	for	the	plane	width.

Parameters:
Control	*c
A	pointer	to	the	controller	to	set.

Default	Implementation:
{	pblock->SetController(collisionplane_width,0,c);	}

Prototype:
void	SetHeight(Control	*c);

Remarks:
Sets	the	controller	for	the	plane	height.

Parameters:
Control	*c
A	pointer	to	the	controller	to	set.

Default	Implementation:
{	pblock->SetController(collisionplane_height,0,c);	}

Prototype:
void	SetQuality(Control	*c);

Remarks:
Sets	the	quality	of	the	solve.	This	is	the	maximum	number	of	iterations	the

solver	will	take	to	find	the	hit	point.	The	lower	quality	the	mire	likely	a
particle	will	leak	through	the	surface	but	the	faster	the	solver	will	be.

Parameters:
Control	*c
A	pointer	to	the	controller	to	set.

Default	Implementation:
{	pblock->SetController(collisionplane_quality,0,c);	}

Prototype:
void	DeleteThis();

Remarks:
Self	deletion.

Default	Implementation:
{	delete	this;	}

Prototype:
Class_ID	ClassID();

Remarks:
This	method	returns	the	class	ID.

Default	Implementation:
{return	PLANAR_COLLISION_ID;}

Prototype:
SClass_ID	SuperClassID();

Remarks:
This	method	returns	the	super	class	ID.

Default	Implementation:
{return	REF_MAKER_CLASS_ID;}

Prototype:
int	NumRefs();

Remarks:
This	method	returns	the	number	of	references.

Default	Implementation:
{	return	1;	}

Prototype:
RefTargetHandle	GetReference(int	i);

Remarks:
This	method	returns	the	I-th	parameter	block.

Default	Implementation:
{	return	pblock;	}

Prototype:
void	SetReference(int	i,	RefTargetHandle	rtarg);

Remarks:
This	method	allows	you	to	set	the	I-th	parameter	block.

Parameters:
int	i
The	I-th	parameter	block	to	set.
RefTargetHandle	rtarg
The	reference	target	handle	to	the	parameter	block.

Default	Implementation:
{pblock	=	(IParamBlock2*)rtarg;}

Prototype:
RefTargetHandle	Clone(RemapDir	&remap	=	NoRemap());

Remarks:
This	method	is	called	to	have	the	plug-in	clone	itself.	This	method	should
copy	both	the	data	structure	and	all	the	data	residing	in	the	data	structure	of
this	reference	target.	The	plug-in	should	clone	all	its	references	as	well.

Parameters:

RemapDir	&remap	=	NoRemap()
This	class	is	used	for	remapping	references	during	a	Clone.	See	Class
RemapDir.

Return	Value:
A	pointer	to	the	cloned	item.

Prototype:
RefResult	NotifyRefChanged(Interval	changeInt,
RefTargetHandle	hTarget,	PartID&	partID,RefMessage	message);

Remarks:
A	plug-in	which	makes	references	must	implement	this	method	to	receive	and
respond	to	messages	broadcast	by	its	dependents.

Parameters:
Interval	changeInt
This	is	the	interval	of	time	over	which	the	message	is	active.
RefTargetHandle	hTarget
This	is	the	handle	of	the	reference	target	the	message	was	sent	by.	The
reference	maker	uses	this	handle	to	know	specifically	which	reference	target
sent	the	message.
PartID&	partID
This	contains	information	specific	to	the	message	passed	in.	Some	messages
don't	use	the	partID	at	all.	See	the	section	List	of	Reference	Messages	for
more	information	about	the	meaning	of	the	partID	for	some	common
messages.
RefMessage	message
The	msg	parameters	passed	into	this	method	is	the	specific	message	which
needs	to	be	handled.	See	List	of	Reference	Messages.

Return	Value:
The	return	value	from	this	method	is	of	type	RefResult.	This	is	usually
REF_SUCCEED	indicating	the	message	was	processed.	Sometimes,	the
return	value	may	be	REF_STOP.	This	return	value	is	used	to	stop	the
message	from	being	propagated	to	the	dependents	of	the	item.

Class	CollisionVNormal
See	Also:	Class	ICollision,	Class	CollisionOps,	Class	CollisionPlane,	Class
CollisionSphere,	Class	CollisionMesh,	Class	Box3,	Class	Point3
class	CollisionVNormal

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	a	general	list	of	collision	vertex	normals.

Data	Members:
public:
Point3	norm;
The	normal	vector
DWORD	smooth;
The	smoothing	flag.
CollisionVNormal	*next;
A	pointer	to	the	next	normal	in	the	linked	list.
BOOL	init;
The	initialization	flag.

Methods:
public:

Prototype:
CollisionVNormal();

Remarks:
Constructor.

Default	Implementation:
{smooth=0;next=NULL;init=FALSE;norm=Point3(0,0,0);}

Prototype:
CollisionVNormal(Point3	&n,DWORD	s);

Remarks:

Constructor.
Parameters:
Point3	&n
The	vector	to	initialize	with.
DWORD	s
The	smoothing	flag	to	initialize	with.

Default	Implementation:
{next=NULL;init=TRUE;norm=n;smooth=s;}

Prototype:
~CollisionVNormal();

Remarks:
Destructor.

Default	Implementation:
{delete	next;}

Prototype:
void	AddNormal(Point3	&n,DWORD	s);

Remarks:
Add	a	vector	to	the	list.

Parameters:
Point3	&n
The	vector	to	add.
DWORD	s
The	smoothing	flag	to	add.

Prototype:
Point3	&GetNormal(DWORD	s);;

Remarks:
Returns	the	specified	normal	from	the	list.

Parameters:

DWORD	s
The	index	of	the	normal	in	the	list.

Prototype:
void	Normalize();

Remarks:
This	method	normalizes	the	vector.

Class	CollisionMesh
See	Also:	Class	ICollision,	Class	CollisionOps,	Class	CollisionPlane,	Class
CollisionSphere,	Class	CollisionVNormal,	Class	Box3,	Class	Point3,	Class
IParamBlock2,	Class	INode,	Class	Control
class	CollisionMesh	:	public	ICollision

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	planar	collision	object	with	the	ClassID	defined	as
MESH_COLLISION_ID.	This	class	allows	you	to	define	a	plane	in	space
and	determine	if	a	particle	hit	it.

Data	Members:
private:
INode	*node;
The	associated	node.

public:
IParamBlock2	*pblock;
The	parameter	block	data.	You	can	use	the	following	enum	parameter	ID’s:
collisionmesh_hit_face_index
collisionmesh_hit_bary
collisionmesh_node

Interval	validity;
The	validity	interval.
Matrix3	tm;
The	plane’s	TM.
Matrix3	invtm;
The	inverse	TM.
Matrix3	tmPrev;
The	previous	TM.
Matrix3	prevInvTm;
The	cached	previous	inverse	TM.
float	radius;

The	radius	of	the	sphere.
Mesh	*dmesh;
The	mesh	pointer.
int	nv,	nf;
The	mesh	number	of	vertices	and	number	of	faces.
CollisionVNormal	*vnorms;
The	collision	vertex	normals.
Point3	*fnorms;
The	face	normals.

Methods:
public:

Prototype:
CollisionMesh();

Remarks:
Constructor.

Prototype:
~CollisionMesh();

Remarks:
Destructor.

Prototype:
int	SuppportedCollisions();

Remarks:
This	method	determines	the	type	of	collisions	that	are	supported.

Return	Value:
One	of	the	following;
POINT_COLLISION	for	point	collision,	currently	supported.
SPHERE_COLLISION	for	spherical	collision,	currently	not	supported.
BOX_COLLISION	for	box	collision,	currently	not	supported.

EDGE_COLLISION	for	edge	collision,	currently	not	supported.
Default	Implementation:
{	return	POINT_COLLISION;	}

Prototype:
void	PreFrame(TimeValue	t,	TimeValue	dt);

Remarks:
This	method	will	be	called	once	before	the	checkcollision	is	called	for	each
frame	which	allows	you	to	do	any	required	initialization.

Parameters:
TimeValue	t
The	time	at	which	to	initialize.
TimeValue	dt
The	delta	of	time	the	particle	wil	travel.

Prototype:
void	PostFrame(TimeValue	t,	TimeValue	dt);

Remarks:
This	method	will	be	called	at	the	end	of	each	frame	solve	to	allow	you	to
destroy	and	deallocate	any	data	you	no	longer	need.

Parameters:
TimeValue	t
The	time	at	which	to	initialize.
TimeValue	dt
The	delta	of	time	the	particle	wil	travel.

Default	Implementation:
{}

Prototype:
virtual	BOOL	CheckCollision	(TimeValue	t,	Point3	pos,	Point3	vel,
float	dt,	float	&at,	Point3	&hitPoint,	Point3	&norm,	Point3
&friction,	Point3	&inheritedVel)	=	0;

Remarks:
This	method	will	be	called	to	execute	a	point	to	surface	collision	and	compute
the	time	at	which	the	particle	hit	the	surface.

Parameters:
TimeValue	t
The	end	time	of	the	particle.
Point3	pos
The	position	of	the	particle	in	world	space.
Point3	vel
The	velocity	of	the	particle	in	world	space.
float	dt
The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:
TRUE	if	there’s	a	collision,	otherwise	FALSE.

Prototype:
virtual	BOOL	CheckCollision	(TimeValue	t,Point3	pos,	float
radius,	Point3	vel,	float	dt,	float	&at,	Point3	&hitPoint,	Point3
&norm,	Point3	&friction,	Point3	&inheritedVel)	=	0;;

Remarks:
This	method	will	be	called	to	execute	a	sphere	to	surface	collision	and

compute	the	time	at	which	the	particle	hit	the	surface.
Parameters:
TimeValue	t
The	end	time	of	the	particle.
Point3	pos
The	position	of	the	particle	in	world	space.
float	radius
The	radius	of	the	sphere.
Point3	vel
The	velocity	of	the	particle	in	world	space.
float	dt
The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:
TRUE	if	there’s	a	collision,	otherwise	FALSE.

Prototype:
virtual	BOOL	CheckCollision	(TimeValue	t,	Box3	box,	Point3	vel,
float	dt,	float	&at,	Point3	&hitPoint,	Point3	&norm,	Point3
&friction,	Point3	&inheritedVel)	=	0;

Remarks:
This	method	will	be	called	to	execute	a	box	to	surface	collision	and	compute

the	time	at	which	the	particle	hit	the	surface.
Parameters:
TimeValue	t
The	end	time	of	the	particle.
Box3	box
The	box	itself.
Point3	vel
The	velocity	of	the	particle	in	world	space.
float	dt
The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:
TRUE	if	there’s	a	collision,	otherwise	FALSE.

Prototype:
virtual	BOOL	CheckCollision	(TimeValue	t,Point3	edgeA,Point3
edgeB	,Point3	vel,	float	dt,	float	&at,	Point3	&hitPoint,	Point3
&norm,	Point3	&friction,	Point3	&inheritedVel)	=	0;

Remarks:
This	method	will	be	called	to	execute	an	edge	to	surface	collision	and	compute
the	time	at	which	the	particle	hit	the	surface.

Parameters:

TimeValue	t
The	end	time	of	the	particle.
Point3	edgeA
The	first	edge.
Point3	edgeB
The	second	edge.
Point3	vel
The	velocity	of	the	particle	in	world	space.
float	dt
The	delta	of	time	that	the	particle	travels	(t-dt	being	the	start	of	time	of	the
particle)
float	&at
The	point	in	time	that	the	collision	occurs	with	respect	to	the	dt.
Point3	&hitPoint
The	point	of	collision.
Point3	&norm
The	bounce	vector	component	of	the	final	velocity.
Point3	&friction
The	friction	vector	component	of	the	final	velocity.
Point3	inheritedVel
The	approximated	amount	of	velocity	inherited	from	the	motion	of	the
deflector.

Return	Value:
TRUE	if	there’s	a	collision,	otherwise	FALSE.

Prototype:
void	SetNode(TimeValue	t,	INode	*n);

Remarks:
Sets	the	node	which	drives	the	TM	to	put	the	plane	in	world	space.

Parameters:
TimeValue	t
The	time	at	which	to	set	the	node.

INode	*n
The	node	to	set.

Default	Implementation:
{	pblock->SetValue(collisionmesh_node,t,n);	node	=	n;	}

Prototype:
void	DeleteThis();

Remarks:
Self	deletion.

Default	Implementation:
{	delete	this;	}

Prototype:
Class_ID	ClassID();

Remarks:
This	method	returns	the	class	ID.

Default	Implementation:
{return	SPHERICAL_COLLISION_ID;}

Prototype:
SClass_ID	SuperClassID();

Remarks:
This	method	returns	the	super	class	ID.

Default	Implementation:
{return	REF_MAKER_CLASS_ID;}

Prototype:
int	NumRefs();

Remarks:
This	method	returns	the	number	of	references.

Default	Implementation:

{	return	1;	}

Prototype:
RefTargetHandle	GetReference(int	i);

Remarks:
This	method	returns	the	I-th	parameter	block.

Default	Implementation:
{	return	pblock;	}

Prototype:
void	SetReference(int	i,	RefTargetHandle	rtarg);

Remarks:
This	method	allows	you	to	set	the	I-th	parameter	block.

Parameters:
int	i
The	I-th	parameter	block	to	set.
RefTargetHandle	rtarg
The	reference	target	handle	to	the	parameter	block.

Default	Implementation:
{pblock	=	(IParamBlock2*)rtarg;}

Prototype:
RefTargetHandle	Clone(RemapDir	&remap	=	NoRemap());

Remarks:
This	method	is	called	to	have	the	plug-in	clone	itself.	This	method	should
copy	both	the	data	structure	and	all	the	data	residing	in	the	data	structure	of
this	reference	target.	The	plug-in	should	clone	all	its	references	as	well.

Parameters:
RemapDir	&remap	=	NoRemap()
This	class	is	used	for	remapping	references	during	a	Clone.	See	Class
RemapDir.

Return	Value:
A	pointer	to	the	cloned	item.

Prototype:
RefResult	NotifyRefChanged(Interval	changeInt,
RefTargetHandle	hTarget,	PartID&	partID,RefMessage	message);

Remarks:
A	plug-in	which	makes	references	must	implement	this	method	to	receive	and
respond	to	messages	broadcast	by	its	dependents.

Parameters:
Interval	changeInt
This	is	the	interval	of	time	over	which	the	message	is	active.
RefTargetHandle	hTarget
This	is	the	handle	of	the	reference	target	the	message	was	sent	by.	The
reference	maker	uses	this	handle	to	know	specifically	which	reference	target
sent	the	message.
PartID&	partID
This	contains	information	specific	to	the	message	passed	in.	Some	messages
don't	use	the	partID	at	all.	See	the	section	List	of	Reference	Messages	for
more	information	about	the	meaning	of	the	partID	for	some	common
messages.
RefMessage	message
The	msg	parameters	passed	into	this	method	is	the	specific	message	which
needs	to	be	handled.	See	List	of	Reference	Messages.

Return	Value:
The	return	value	from	this	method	is	of	type	RefResult.	This	is	usually
REF_SUCCEED	indicating	the	message	was	processed.	Sometimes,	the
return	value	may	be	REF_STOP.	This	return	value	is	used	to	stop	the
message	from	being	propagated	to	the	dependents	of	the	item.

Class	IVertexShader
See	Also:	Class	ID3DGraphicsWindow	,	Class	Mesh,	Class	INode,	Class
MNMesh
class	IVertexShader

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	abstract	interface	for	a	vertex	shader.

Methods:
public:

Prototype:
virtual	HRESULT	Initialize(Mesh	*mesh,	INode	*node)	=	0;

Remarks:
This	method	loads	VertexShader	instructions,	create	any	additional	per	vertex
data	on	a	per	node	basis.	VertexShader	instructions	should	be	loaded	once	and
shared	among	all	the	nodes	using	this	VertexShader.	Additional	per	vertex	data
should	be	(re)created	only	when	the	associated	node	data	changes.	In	addition,
if	there	is	sufficient	memory,	VertexBuffers	can	be	created	and	updated	only
when	node	data	changes	in	order	to	improve	rendering	performance.

Parameters:
Mesh	*mesh
A	pointer	to	the	mesh	to	initialize.
INode	*node
A	pointer	to	the	node	to	initialize.

Prototype:
virtual	HRESULT	Initialize(MNMesh	*mnmesh,	INode	*node)	=
0;

Remarks:
This	method	loads	VertexShader	instructions,	create	any	additional	per	vertex
data	on	a	per	node	basis.	VertexShader	instructions	should	be	loaded	once	and

shared	among	all	the	nodes	using	this	VertexShader.	Additional	per	vertex	data
should	be	(re)created	only	when	the	associated	node	data	changes.	In	addition,
if	there	is	sufficient	memory,	VertexBuffers	can	be	created	and	updated	only
when	node	data	changes	in	order	to	improve	rendering	performance.

Parameters:
MNMesh	*mnmesh
A	pointer	to	the	MNMesh	to	initialize.
INode	*node
A	pointer	to	the	node	to	initialize.

Class	BaseInterfaceServer
See	Also:	Class	InterfaceServer,	Class	BaseInterface
class	BaseInterfaceServer	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	BaseInterface	server	class	specializes	the	InterfaceServer	class	with	an
implementation	based	on	a	Tab<>	of	interface	pointers	for	storing	interfaces,
typically	extension	interfaces,	and	providing	an	interface	iteration	protocol.
class	IObject	in	the	Function	Publishing	System	specializes	class
BaseInterfaceServer.	The	class	contains	a	protected	table	of	BaseInterface
pointers.	Class	IObject	is	an	example	of	a	class	which	is	based	on	the
BaseInterfaceServer	class.

Methods:
public:

Prototype:
virtual	BaseInterface*	GetInterface(Interface_ID	id);

Remarks:
This	method	returns	a	pointer	to	the	BaseInterface	of	the	specified	interface.

Parameters:
Interface_ID	id
The	interface	ID	for	which	to	return	the	BaseInterface.

Prototype:
virtual	int	NumInterfaces()	const;

Remarks:
This	method	returns	the	number	of	interfaces.

Default	Implementation:
{	return	interfaces.Count();	}

Prototype:

virtual	BaseInterface*	GetInterfaceAt(int	i)	const;
Remarks:
This	method	returns	a	pointer	to	the	BaseInterface	of	the	I-th	interface.

Parameters:
int	i
The	index	of	the	interface	in	the	table.

Default	Implementation:
{	return	interfaces[i];	}
	

Prototype:
~BaseInterfaceServer();

Remarks:
Destructor.

Structure	GBufData
See	Also:	List	of	Image	Channels,	Class	GBufReader,	Class	GBufWriter,	Class
GBuffer,	Structure	RealPixel,	Structure	Color24,	Class	Point2,	List	of	G-Buffer
Channel	Types.
This	structure	is	used	by	the	GBufReader	and	GBurWriter	code	to	hold	the
G-Buffer	data.
struct	GBufData	{
float	z;
The	floating	point	depth	value	at	the	center	of	the	fragment	that	is	foremost	in
the	sorted	list	of	a-buffer	fragments.
UBYTE	mtl_id;
The	ID	assigned	to	the	material	via	the	Material	Editor.
UWORD	node_id;
This	is	the	ID	assigned	to	node	via	the	Object	Properties	/	G-buffer	ID	spinner.
Point2	uv;
UV	coordinates,	stored	as	a	Point2.
DWORD	normal;
Normal	vector	in	view	space,	compressed.
RealPixel	realpix;
Non	clamped	colors	in	"RealPixel"	format.
UBYTE	coverage;
Pixel	coverage	of	the	front	surface.
UWORD	rend_id;
The	renderer	will	set	this	ID	for	all	rendered	nodes,	and	will	set	all	non-
rendered	nodes	to	0xffff.
Color24	color;
This	is	color	returned	by	the	material	shader	for	the	fragment.
Color24	transp;
This	is	transparency	returned	by	the	material	shader	for	the	fragment.
Color24	weight;
This	is	the	sub-pixel	weight	of	a	fragment.
Point2	veloc;
This	gives	the	velocity	vector	of	the	fragment	relative	to	the	screen,	in	screen

coordinates.
};

Class	RadiosityInterface
See	Also:	:	Class	RadiosityEffect
class	RadiosityInterface	:	public	FPStaticInterface

Description:
This	class	is	only	available	in	release	5	or	later.
This	class	provides	access	to	the	Advanced	Lighting	dialog.	It	allows	you	to
open	and	close	the	dialog,	and	get	or	set	the	currently	active	Advanced	Lighting
plug-in.	This	class	is	a	function-published	static	interface;	you	can	use
GetCOREInterface()	to	obtain	an	instance	of	the	class,	as	follows:
	RadiosityInterface	r	=	static_cast<IRadiosityInterface*>
(GetCOREInterface(RADIOSITY_INTERFACE))
This	interface	is	also	accessible	via	MAXScript	as	“SceneRadiosity”.
All	methods	of	this	class	are	implemented	by	the	system.
	

Methods:

Prototype:
virtual	void	OpenRadiosityPanel()	=	0
	

Remarks:
Displays	the	Advanced	Lighting	dialog,	unless	it	is	already	displayed.
	
	

Prototype:
virtual	void	CloseRadiosityPanel()	=	0
	
Remarks:
Hides	the	Advanced	Lighting	dialog,	if	it	is	currently	displayed.
	
	

Prototype:
virtual	void	MinimizeRadiosityPanel()	=	0

	
Remarks:
Minimizes	the	Advanced	Lighting	dialog	if	it	is	open.
	
	

Prototype:
virtual	RadiosityEffect*	GetRadiosity	()	=	0
	

Return	value:
Returns	a	pointer	to	the	currently	active	Advanced	Lighting	plug-in
(RadiosityEffect)	if	any.
	
	

Prototype:
virtual	void	SetRadiosity	(RadiosityEffect*	op)	=	0
	

Remarks:
Sets	the	given	Advanced	Lighting	plug-in	(RadiosityEffect)	as	the	active	one
in	the	UI.	When	switching	Advanced	Lighting	types	in	the	UI,	a	dialog
sometimes	appears,	warning	that	the	current	lighting	solution	will	be
discarded;	but	this	dialog	is	not	displayed	when	using	SetRadiosity().	It	is	also
valid	to	pass	NULL	as	a	parameter,	in	which	case	no	active	lighting	plug-in
will	be	active.
	

Parameters:
RadiosityEffect*	op
The	RadiosityEffect	instance	to	be	made	active,	or	NULL	if	no	lighting	plug-
in	should	be	active.

Class	IRadiosityEffectExtension
See	Also:	:	Class	RadiosityEffect
class	IRadiosityEffectExtension	:	public	BaseInterface

Description:
This	class	is	only	available	in	release	5	or	later.
This	class	provides	additional	functionality	for	class	RadiosityEffect.	Given	an
instance	of	RadiosityEffect,	you	may	retrieve	the	extension	interface	as	follows:
	IRadiosityEffectExtension*	r	=	static_cast<IRadiosityEffectExtension*>
(radiosityInstance-
>GetInterface(IRADIOSITYEFFECT_EXTENSION_INTERFACE));
If	the	result	is	NULL,	the	RadiosityEffect	does	not	support	this	interface.
All	methods	of	this	class	are	implemented	by	the	plug-in.
	

Methods:

Prototype:
virtual	bool	useDefaultLight(const	DefaultLight&	defLight)	const	=
0
	

Remarks:
Returns	whether	the	specified	default	light	should	be	used	by	the	scanline
renderer.	The	scanline	renderer	normally	creates	default	lights	when	there	are
no	lights	in	the	scene.	A	radiosity	plug-in	could	override	this	if	it	uses	objects
other	than	lights	as	light	sources	(e.g.	self-emitting	surfaces)
	

Parameters:
Const	DefaultLight&	defLight
A	default	light	created	by	the	scanline	renderer	when	it	begins	rendering.
	

Return	value:
Returns	whether	or	not	the	scanline	renderer	should	use	the	light	for	the
current	rendering.

	
	

Prototype:
virtual	bool	IsInterestedInChannels(PartID	part)	const
	

Remarks:
This	is	used	to	control	reference	messages	sent	to	the	RadiosityEffect	plug-in.
It	allows	the	RadiosityEffect	to	tell	the	system	which	messages	will	not
invalidate	the	lighting	solution.
If	the	RadiosityEffect	decides	that	all	messages	of	a	given	PartID	are
irrelevant	to	the	lighting	solution,	it	can	return	false	when	that	PartID	flag	is
present	in	the	input	parameter	(and	no	other,	more	relevant,	PartID	flags	are
present).	Otherwise	it	should	return	true,	indicating	it	needs	those	messages.
If	the	return	value	is	false,	the	system	will	add	the	PartID	flag
PART_EXCLUDE_RADIOSITY	to	all	appropriate	reference	messages;	this
flag	generically	indicates	an	event	which	should	not	invalidate	a	radiosity
solution.	The	RadiosityEffect	will	still	receive	the	message	but	can	ignore	it.
Other	modules	which	need	to	discriminate	messages	pertinent	radiosity,	can
also	check	this	flag.
As	an	example	of	when	this	is	important,	an	edit	mesh	modifier	may	send
change	messages	which	are	meant	to	flush	internal	caches	but	not	relevant	to
radiosity.	As	the	message	propagates,	some	PartID	flags	are	added	in	order	to
force	modifiers	to	re-evaluate	downstream	in	the	stack.	This	may	confuse	the
radiosity	engine	into	invalidating	its	lighting	solution.	But	the	edit	mesh
ensures	the	original	message	bears	the	PART_EXCLUDE_RADIOSITY	flag,
and	as	subsequent	messages	inherit	the	flag,	the	RadiosityEffect	can	correctly
ignore	the	message.
	

Parameters:
PartID	part
One	or	more	PartID	flags	defining	the	category	of	messages	to	be	filtered.
	

Return	value:
Whether	or	not	to	filter	the	given	messages,	by	setting	their

PART_EXCLUDE_RADIOSITY	PartID	flag.
	
	

Prototype:
virtual	Interface_ID	GetID()
	

Remarks:
This	returns	the	ID	of	the	interface,
IRADIOSITYEFFECT_EXTENSION_INTERFACE,	and	should	not	be
overridden	by	an	implementation	class.
	

Return	value:
The	IRadiosityEffectExtension	interface	ID,
IRADIOSITYEFFECT_EXTENSION_INTERFACE.
	

Default	Implementation:
{	return	IRADIOSITYEFFECT_EXTENSION_INTERFACE;	}

Class	IRadiosityPreferences
See	Also:	:	Class	RadiosityEffect
class	IRadiosityPreferences	:	public	FPStaticInterface

Description:
This	class	is	only	available	in	release	5	or	later.
This	class	defines	the	interface	for	accessing	the	Advanced	Lighting	Preferences
from	the	'Advanced	Lighting'	tab	in	the	preferences	dialog.	It	also	provides
access	to	the	use/compute	advanced	lighting	controls	found	in	the	Rendering
dialog.	This	is	a	function-published	static	interface;	you	can	use
GetCOREInterface()	to	obtain	an	instance	of	the	class,	as	follows:
	IRadiosityPreferences*	r	=	static_cast<IRadiosityPreferences*>
(GetCOREInterface(IRADIOSITYPREFERENCES_INTERFACE));
This	interface	is	also	accessible	via	MAXScript	as	“RadiosityPreferences”.
All	methods	of	this	class	are	implemented	by	the	system.
	

Methods:

Prototype:
virtual	BOOL	GetAutoProcessObjectRefine()	const	=	0
	

Remarks:
Returns	the	state	of	the	checkbox	“Automatically	Process	Refine	Iterations
Stored	in	Geometric	Objects”,	in	the	preferences	dialog	Advanced	Lighting
tab
	
	

Prototype:
virtual	void	SetAutoProcessObjectRefine(BOOL	val)	=	0
	

Remarks:
Sets	the	state	of	the	checkbox	“Automatically	Process	Refine	Iterations	Stored
in	Geometric	Objects”,	in	the	preferences	dialog	Advanced	Lighting	tab
	

Parameters:
BOOL	val
TRUE	for	on;	FALSE	for	off.
	
	

Prototype:
virtual	BOOL	GetDisplayReflectanceInMEditor()	const	=	0
	

Remarks:
Returns	the	state	of	the	checkbox	“Display	Reflectance	&	Transmittance
Information”,	in	the	preferences	dialog	Advanced	Lighting	tab
	
	

Prototype:
virtual	void	SetDisplayReflectanceInMEditor(BOOL	val)	=	0
	

Remarks:
Sets	the	state	of	the	checkbox	“Display	Reflectance	&	Transmittance
Information”,	in	the	preferences	dialog	Advanced	Lighting	tab
	

Parameters:
BOOL	val
TRUE	for	on;	FALSE	for	off.
	
	

Prototype:
virtual	BOOL	GetDisplayInViewport()	const	=	0
	

Remarks:
Returns	the	state	of	the	checkbox	“Display	Radiosity	in	Viewports”,	in	the
preferences	dialog	Advanced	Lighting	tab
	
	

Prototype:
virtual	void	SetDisplayInViewport(BOOL	val)	=	0
	

Remarks:
Sets	the	state	of	the	checkbox	“Display	Radiosity	in	Viewports”,	in	the
preferences	dialog	Advanced	Lighting	tab
	

Parameters:
BOOL	val
TRUE	for	on;	FALSE	for	off.
	
	

Prototype:
virtual	BOOL	GetDisplayResetWarning()	const	=	0
	

Remarks:
Returns	the	state	of	the	checkbox	“Display	Reset	Warning”,	in	the	preferences
dialog	Advanced	Lighting	tab
	
	

Prototype:
virtual	void	SetDisplayResetWarning(BOOL	val)	=	0
	

Remarks:
Sets	the	state	of	the	checkbox	“Display	Reset	Warning”,	in	the	preferences
dialog	Advanced	Lighting	tab
	

Parameters:
BOOL	val
TRUE	for	on;	FALSE	for	off.
	
	

Prototype:
virtual	BOOL	GetDisplayWarningOnGIPropsChange()	const	=	0
	

Remarks:
Returns	the	state	of	the	checkbox	“Display	Undo	Warning	on	Proeprties
Change”,	in	the	preferences	dialog	Advanced	Lighting	tab
	
	

Prototype:
virtual	void	SetDisplayWarningOnGIPropsChange(BOOL	val)	=	0
	

Remarks:
Sets	the	state	of	the	checkbox	“Display	Undo	Warning	on	Proeprties	Change”,
in	the	preferences	dialog	Advanced	Lighting	tab
	

Parameters:
BOOL	val
TRUE	for	on;	FALSE	for	off.
	
	

Prototype:
virtual	BOOL	GetSaveScene()	const	=	0
	

Remarks:
Returns	the	state	of	the	checkbox	“Save	Scene	Information	in	MAX	File”,	in
the	preferences	dialog	Advanced	Lighting	tab
	
	

Prototype:
virtual	void	SetSaveScene(BOOL	val)	=	0
	

Remarks:
Sets	the	state	of	the	checkbox	“Save	Scene	Information	in	MAX	File”,	in	the

preferences	dialog	Advanced	Lighting	tab
	

Parameters:
BOOL	val
TRUE	for	on;	FALSE	for	off.
	
	
	

Prototype:
virtual	BOOL	GetUseRadiosity()	const	=	0
	

Remarks:
Returns	the	state	of	the	“Use	Advanced	Lighting”	checkbox	in	the	render
dialog
	
	

Prototype:
virtual	void	SetUseRadiosity(BOOL	val)	=	0
	

Remarks:
Sets	the	state	of	the	“Use	Advanced	Lighting”	checkbox	in	the	render	dialog
	

Parameters:
BOOL	val
TRUE	for	on;	FALSE	for	off.
	
	
	

Prototype:
virtual	BOOL	GetComputeRadiosity()	const	=	0
	

Remarks:

Returns	the	state	of	the	“Compute	Advanced	Lighting	when	Required”
checkbox	in	the	render	dialog
	
	

Prototype:
virtual	void	SetComputeRadiosity(BOOL	val)	=	0
	

Remarks:
Sets	the	state	of	the	“Compute	Advanced	Lighting	when	Required”	checkbox
in	the	render	dialog
	

Parameters:
BOOL	val
TRUE	for	on;	FALSE	for	off.

Class	IDXShaderManagerInterface
See	Also:	Class	IViewportShaderManager

	
class	IDXShaderManagerInterface	:	public	FPStaticInterface

Description:
This	class	is	only	available	in	release	5	or	later.
The	class	provides	access	to	the	Viewport	Manager	feature	in	release	5.	The
viewport	manager	controls	the	loading	of	Viewport	Shaders	in	3ds	max	and	is
displayed	on	each	material.	The	class	provides	methods	to	query	the	manager	to
find	out	whether	it	is	visible	or	active,	and	also	to	retrieve	the	active	shader.
	
The	viewport	manager	ONLY	works	in	DirectX	mode.	It	can	however	be	visible
in	Heidi	and	OpenGL,	so	as	to	provide	the	artist	feedback	when	loading
someone	else’s	file.
	
There	is	a	global	method	you	can	call	to	get	access	to	the	DX	manager.
	
IDXShaderManagerInterface*	GetDXShaderManager()
	

Methods:
	

Prototype:
virtual	CustAttrib*	FindViewportShaderManager	(MtlBase*	mtl)=0
	
Remarks:
This	method	will	check	the	Material	passed	into	find	out	whether	it	contains
the	ViewportManager	Custom	Attribute.	If	it	does	it	will	return	its	pointer,
otherwise	it	will	be	NULL.	This	pointer	can	safely	be	cast	to
IViewportShaderManager.
	

Parameters:
MtlBase*	mtl

The	material	to	search	for	the	Viewport	Manager.
	

Prototype:
virtual	CustAttrib*	AddViewportShaderManager(MtlBase*	mtl)=0
Remarks:
This	method	will	add	the	ViewportManager	custom	atrribute	to	the	material
supplied.	If	successful	it	will	return	the	newly	created	custom	attribute.	This
pointer	can	safely	be	cast	to	IViewportShaderManager.

	
Parameters:
MtlBase*	mtl
The	material	to	add	the	Viewport	Manager	to

	

Prototype:
virtual	void	SetVisible(BOOL	show=TRUE)=0
	
Remarks:
This	method	allows	the	system	to	either	show	or	hide	the	ViewportManager.
This	will	physically	remove	it	from	the	Material	Editor,	whoever	the	manager
will	still	exist	on	the	material

	
Parameters:
BOOL	show
The	value	to	set	the	visible	state	of	the	manager.
		

Prototype:
virtual	BOOL	IsVisible	()=0
	
Remarks:
This	method	will	return	the	actual	visible	state	of	the	manager

Class	IHardwareRenderer
Description:
This	class	is	only	available	in	release	5	or	later.
This	interface	provides	access	to	the	DirectX	interfaces	on	the	drawing	thread	of
max.	This	allows	creation	and	loading	of	various	DirectX	objects	such	as
Textures.	This	class	has	many	interfaces	not	currently	implemented,	although
they	will	compile	and	link	correctly.	This	is	due	to	support	for	DirectX	9,
meaning	that	when	a	compatible	driver	is	released	these	methods	will	be
implemented.	The	documentation	for	this	class	only	deals	with	methods	that
developers	can	and	would	normally	use.
The	basic	idea	of	this	class	is	to	provide	the	developer	with	access	to	the	DirectX
device	without	actually	giving	the	developer	total	control,	and	thus	possibility	to
de-stable	the	3ds	max	Viewports.
	
A	pointer	to	this	class	can	be	obtained	with	the	following	code	snippet:	-
	
ViewExp	*pview	=	GetCOREInterface()->GetActiveViewport();
GraphicsWindow	*gw	=	pview->getGW();
IHardwareRenderer	*	phr	=	(IHardwareRenderer	*)gw-
>GetInterface(HARDWARE_RENDERER_INTERFACE_ID);
	
For	an	example	usage	of	this	class	see
MAXSDK\SAMPLES\HardwareShaders\LightMap\Lightmap.cpp

	

Methods:

Prototype:

Virtual	DWORD_PTR	BuildTexture(BITMAPINFO	*bmi,	UINT
miplevels,	DWORD	usage,	DWORD	format)

Remarks:
This	will	create	a	DX	texture	stored	in	local	storage.	The	pointer	returned	can	be
used	in	IHardwareMaterial::SetTexture	method.	An	example	of	using	this

method	can	be	seen	in	the	Lightmap	sample.
	
Parameters:
BITMAPINFO	*bmi
A	pointer	to	the	bitmap	from	which	the	texture	will	be	created
UINT	miplevels
The	number	of	miplevels	to	create
DWORD	usage
The	usage	falg	is	the	same	as	for	D3DXCreateTexture	–	see	the	DirectX
documentation	for	more	information
DWORD	format
The	pixel	format	for	the	texture

Prototype:
Virtual	DWORD_PTR	LoadTexture(LPCSTR	filename)

Remarks:
This	simple	loads	a	texture	from	the	supplied	filename	using	the	default	options
for	D3DXCreateTextureFromFile.	Please	refer	to	the	DirectX	documentation	for
further	information.

Class	MNNormalSpec
See	Also:	Class	MNMESH	,	Class	MNNormalFace

	
class	MNNormalSpec	:	public	IPipelineClient,	public	FlagUser
	
Description:
This	class	is	available	in	release	5.0	and	later	only.
	
This	class	is	an	interface	used	to	store	user-specified	normals
(as	created	in	the	Edit	Normals	modifier).	These	normals	have	very
limited	pipeline	support.	They	are	used	for	viewport	display,	but	not
for	rendering.
	
The	MNNormalSpec	contains	three	types	of	normals:
	
-	Unspecified	-	these	are	the	usual	normals	that	are	computed	from
smoothing	groups.	All	normals	are	unspecified	by	default.	
	
-	Specified	-	these	are	normals	that	are	intended	for	use	by	particular
corners	of	particular	faces,	without	regard	to	smoothing	groups.	For	
instance,	you	can	create	a	box,	apply	Edit	Normals,	select	a	group	of	
normals	at	a	particular	vertex,	and	click	"Unify".	Now	those	three	
faces	are	told	to	specifically	use	that	one	unified	normal,	and	they	
ignore	their	smoothing	groups	at	that	vertex	(which	would	normally	
tell	them	they	should	each	have	their	own	normal).	
	
-	Explicit	-	these	are	normals	that	are	set	to	particular	values.
For	instance,	if	the	user	wants	to	use	the	Edit	Normals	Move	or
Rotate	
commands	to	set	a	normal	to	something	other	than	its	default	value,	
it	has	to	be	made	explicit,	so	it	won't	be	recomputed	based	on	the	
face	normals.	All	explicit	normals	are	also	considered	to	be

specified..
	

Flags:
MNNORMAL_NORMALS_BUILT
Indicates	that	non-specified	normals	have	been	constructed	using
smoothing	groups.	If	not	set,	non-specified	normals	may	be	invalid.
	
MNNORMAL_NORMALS_COMPUTED
Indicates	that	non-explicit	normals	have	been	computed	using
geometrically
computed	face	normals.	(If	not	set,	only	explicit	normals	may	be
assumed
to	be	pointing	the	right	direction.)

	

Data	Members
All	data	members	are	private.
	
int	mNumNormalAlloc,	mNumFaceAlloc;
The	current	allocation	length	of	the	mpNormal	and	mpFace	arrays.
	
int	mNumNormals,	mNumFaces;
The	number	of	normals	and	faces	in	the	mpNormal	and	mpFace
arrays.
(May	be	less	than	the	actual	allocation	above.)
	
MNNormalFace	*mpFace;
The	array	of	normal	faces.
	
Point3	*mpNormal;
The	array	of	normals,	all	of	which	should	be	either	length	1	or
(occasionally)	0.
	

BitArray	mNormalExplicit;
Indicates	whether	mpNormal[i]	is	explicit	or	computed	from	face
normals.
	
BitArray	mNormalSel;
Current	normal	selection.
	
float	mDisplayLength;
The	length	to	use	when	displaying,	hit	testing,	or	moving	normals.
	
MNMesh	*mpParent;
A	pointer	to	the	"parent"	MNMesh	that	owns	this	MNNormalSpec.
This	parent
information	is	required	for	some	operations,	such	as	display.	(Such
operations	should	indicate	below	where	parent	information	is
required.)

	
:

Methods:
	
Prototype:
MNNormalSpec	();
	
	
Remarks:
Constructor.	Initializes	all	data	members.
	

Prototype:
~	MNNormalSpec	();
	
	
Remarks:

Destructor.	Calls	ClearAndFree().
	
	
Prototype:
void	Initialize();
	
	
Remarks:
Initializes	all	data	members.	Do	not	call	if	memory	has	already	been
allocated,	or	that	memory	will	be	leaked.
	

Prototype:
bool	NAlloc	(int	num,	bool	keep=TRUE);
	
	
Remarks:
Sets	the	size	of	the	normal	array
	
Return	Value:
True	if	successful;	false	indicates	a	failed	memory	allocation.
	
Prototype:
void	NShrink	();
	
	
Remarks:
Reduces	the	allocation	size	down	to	the	actual	number	of	normals.
	
	
Prototype:
bool	FAlloc	(int	num,	bool	keep=TRUE);
	
	

Remarks:
Sets	the	size	of	the	face	array.
	
Return	Value:
True	if	successful;	false	indicates	a	failed	memory	allocation.
	
	
Prototype:
void	FShrink	();
	
	
Remarks:
Reduces	the	allocation	size	down	to	the	actual	number	of	faces.
	
	
Prototype:
void	Clear	();
	
	
Remarks:
Clears	out	all	data,	but	doesn't	necessarily	free	array	memory.
	
	
Prototype:
void	ClearAndFree	();
	
	
Remarks:
Clears	out	all	data	and	frees	all	memory.
	
Prototype:
int	GetNumFaces	()	const
	

	
Remarks:
Returns	the	current	number	of	faces	in	the	MNNormalSpec
	
Prototype:
bool	SetNumFaces	(int	numFaces);
	
	
Remarks:
Sets	the	current	number	of	faces	in	the	MNNormalSpec,
increasing	the	allocation	size	as	needed.
	
Return	Value:
True	if	successful;	false	indicates	a	failed	memory	allocation.
	
Prototype:
int	GetNumNormals	()	const
	
	
Remarks:
Returns	the	current	number	of	normals	in	the	MNNormalSpec
	
Prototype:
bool	SetNumNormals	(int	numNormals);
	
	
Remarks:
Sets	the	current	number	of	normals	in	the	MNNormalSpec,
increasing	the	allocation	size	as	needed.
	
Return	Value:
True	if	successful;	false	indicates	a	failed	memory	allocation.
	

Prototype:
Point3	&	Normal	(int	normID)	const
	
	
Remarks:
Returns	the	normal	indicated.	Since	it	returns	a	reference,
you	can	use	it	as	a	set	method	as	well:
Normal(i)	=	Normalize	(Point3(1,1,0));
(Note	that	all	normals	should	be	normalized	to	a	length	of	1.)
	

Prototype:
Point3	*	GetNormalArray	()	const
	
	
Remarks:
Returns	a	pointer	to	the	whole	normal	array.
	
Prototype:
bool	GetNormalExplicit	(int	normID)	const
	
	
Remarks:
Indicates	whether	a	given	normal	is	explicit	or	not.
	
Prototype:
void	SetNormalExplicit	(int	normID,	bool	value);
	
	
Remarks:
Sets	a	particular	normal	to	be	explicit	or	not.	Note	that	if
you	make	a	normal	non-explicit,	it	may	need	to	be	recomputed,
so	you	may	want	to	call	ComputeNormals	or	at	least	clear	the
MNNORMAL_NORMALS_COMPUTED	flag.

	

Parameters:
int	normID
The	index	of	the	normal
	
	
bool	value
True	to	make	the	normal	explicit;	false	to	make	it	non-explicit.
	
	

Prototype:
MNNormalFace	&	Face(int	faceID)	const
	
	
Remarks:
Returns	the	indicated	face.
	

Prototype:
MNNormalFace	*	GetFaceArray	()	const
	
	
Remarks:
Returns	a	pointer	to	the	whole	face	array.
	
Prototype:
void	SetParent	(MNMesh	*pMesh);
	
	
Remarks:
Tells	the	MNNormalSpec	what	MNMesh	"owns"	it.
This	"Parent"	MNMesh	is	used	in	methods	such	as
Display,	Hit-Testing,	and	certain	operations	like
Unify	to	get	information	about	the	vertices	that

normals	are	based	on.	(There's	no	vertex	info
in	the	MNNormalSpec	itself.)
	
If	you	have	an	isolated	MNNormalSpec	which	doesn't
really	have	an	associated	"parent",	you	can
temporarily	set	this	to	a	mesh	with	the	right	sort
of	faces	and	vertices,	but	you	should	clear	it
afterwards	by	calling	SetParent	(NULL).	See	the
Edit	Normals	modifier	source	in
maxsdk\samples\mesh\EditablePoly\EditNormals.cpp
for	an	example	of	this	sort	of	usage.
	
	
Prototype:
Point3	&	GetNormal	(int	face,	int	corner);
	
	
Remarks:
Returns	the	normal	used	by	the	indicated	face,	in	the	indicated	corner.
	
Prototype:
void	SetNormal	(int	face,	int	corner,	Point3	&	normal);
	
	
Remarks:
Creates	a	new	(explicit)	normal	and	uses	it	in	the	indicated
corner	of	the	indicated	face.	If	"normal"	is	not	already
normalized,	this	method	will	take	care	of	it.
	
Prototype:
int	GetNormalIndex	(int	face,	int	corner);
	
	

Remarks:
Returns	the	index	of	the	normal	used	in	the	indicated	corner
of	the	indicated	face.
	
Prototype:
void	SetNormalIndex	(int	face,	int	corner,	int	normalIndex);
	
	
Remarks:
Sets	the	index	of	the	normal	used	in	the	indicated	corner	of
the	indicated	face,	and	marks	it	as	specified.
	
	
Prototype:
int	NewNormal	(Point3	&	normal,	bool	explic=true);
	
	
Remarks:
Creates	a	new	normal	at	the	end	of	the	normal	array.
	

Parameters:
Point3	&	normal
The	desired	normal	direction.	Will	be	normalized	to	a	length
of	1	by	the	method	if	needed.
	
bool	explic=true
Indicates	whether	the	new	normal	should	be	considered	explicit
or	not.
	
Prototype:
void	SetSelection	(BitArray	&	newSelection);
	
	

Remarks:
Sets	the	current	normal	selection.
	
Prototype:
BitArray	&	GetSelection();
	
	
Remarks:
Returns	the	current	normal	selection.
	
	
Prototype:
void	SetDisplayLength	(float	displayLength);
	
	
Remarks:
Sets	the	current	length	used	for	normal	display,	hit-testing,	and
Translations.
	
Prototype:
float	GetDisplayLength	();
	
	
Remarks:
Returns	the	current	length	used	for	normal	display,	hit-testing,	and
Translations.
	
	
Prototype:
void	Display	(GraphicsWindow	*gw,	bool	showSel);
	
	
Remarks:

Requires	an	accurate	"parent"	pointer	(see	SetParent).
	
Displays	the	current	normals	in	the	graphics	window	indicated.
If	"showSel"	is	true,	selected	normals	are	displayed	in	the
usual	subobject	selection	color.
	
Prototype:
bool	HitTest	(GraphicsWindow	*gw,	HitRegion	*hr,	DWORD	flags,
SubObjHitList&	hitList);
	
	
Remarks:
Requires	an	accurate	"parent"	pointer	(see	SetParent).	Hit-tests	on	the
current	normals.
	

Parameters:
GraphicsWindow	*gw
The	window	to	hit-test	in.
	
HitRegion	*hr
A	hit	region,	typically	generated	by	a	call	like
MakeHitRegion(hr,type,	crossing,4,p);
	
	
DWORD	flags
Hit	testing	flags.	Please	see	BaseObject::HitTest	for	a	description	of
these	flags	and	of	the	"type"	and	"crossing"	variables	used	to	generate
the	HitRegion.
	
SubObjHitList	&	hitList
Where	the	hits	get	stored.
	
	

Return	Value:
True	if	a	hit	was	found;	false	if	not.
	
	

Prototype:
Box3	GetBoundingBox	(Matrix3	*tm=NULL,	bool
selectedOnly=false);
	
	
Remarks:
Requires	an	accurate	"parent"	pointer	(see	SetParent).	Computes	the
bounding	box	of	the	normals.
	

Parameters:
Matrix3	tm=NULL
An	optional	transform	for	computing	the	bounding	box	in	a	different
space	(such	as	world	space).
	
bool	selectedOnly=false
Indicates	whether	all	normals	should	be	included	in	the	bounding
box,
or	only	selected	ones.
	
	

Prototype:
void	ClearNormals	();
	
	
Remarks:
This	method	dumps	all	unspecified	normals.	Best	to	use	only	from
within	BuildNormals,
since	it	leaves	all	unspecified	normals	in	faces	initialized	to	-1.
	

	
Prototype:
void	CollapseDeadFaces	();
	
	
Remarks:
Requires	an	accurate	"parent"	pointer	(see	SetParent).
	
This	method	is	used	in	conjunction	with	the	parent	MNMesh's
CollapseDeadFaces	method	to	keep	the	normal	faces	in	synch	with
the	parent	MNMesh	faces.	It	removes	any	normal	face	whose
equivalent	face	in	the	parent	mesh	is	considered	"Dead".
Called	by	MNMesh::CollapseDeadFaces,	so	you	generally	don't
need	or	want	to	call	it	separately.
	
Prototype:
void	BuildNormals	();
	
	
Remarks:
Requires	an	accurate	"parent"	pointer	(see	SetParent).
	
Fills	in	the	mpSpecNormal	data	by	building	all	the	unspecified	normals,
and	computing	non-explicit	ones.	Does	nothing	if	face	array	is	not
allocated	yet!
	
	
Prototype:
void	ComputeNormals	();
	
	
Remarks:
Requires	an	accurate	"parent"	pointer	(see	SetParent).

	
This	method	just	recomputes	the	directions	of	non-explicit	normals,
without	rebuilding	the	normal	list.
	
Prototype:
void	CheckNormals	();
	
	
Remarks:
Requires	an	accurate	"parent"	pointer	(see	SetParent).
	
This	checks	our	flags	and	calls	BuildNormals	or	ComputeNormals	as
needed.
	
Prototype:
MNNormalSpec	&	operator=	(const	MNNormalSpec	&	from);
	
	
Remarks:
Typical	=	operator.	Allocates	arrays	in	this,	and	makes	copies	of	all
the	data	in	"from".	Does	NOT	copy	"Parent"	pointer.
	
Prototype:
void	CopySpecified	(const	MNNormalSpec	&	from);
	
	
Remarks:
This	is	similar	to	operator=,	but	copies	only	the	specified	and	explicit
information	from	"from".	Result	will	need	to	have	BuildNormals	and
ComputeNormals
called.
	
Prototype:

MNNormalSpec	&	operator+=	(const	MNNormalSpec	&	from);
	
	
Remarks:
Adds	the	faces	and	normals	from	"from"	to	our	normal	spec,
renumbering	the
normals	so	they	don't	conflict	with	existing	ones.	Called	by	the
"AppendAllChannels"	method	below	(which	itself	is	called	by
MNMesh::operator+=).
	
Prototype:
void	MNDebugPrint	(bool	printAll=false);
	
	
Remarks:
Uses	"DebugPrint"	to	output	information	about	this	MNNormalSpece	to
the
Debug	buffer	in	DevStudio.
	

Parameters:
bool	printAll=false
If	false,	only	explicit	normals	and	faces	using	specified	normals	will
be
printed	out.	If	true,	all	normals	and	faces	will	be	completely	printed
out.
	
	
Here	is	what	the	output	looks	like	on	a	box	with	mostly	default	(non-
specified)
normals,	but	with	one	corner	"Unified"	into	a	single	specified	normal:
	
If	printAll	=	true,	you'll	see:
MNNormalSpec	Debug	Output:	22	normals,	6	faces
Normal	(Non)	0:	0.577350,	-0.577350,	0.577350

Normal	(Non)	1:	0.000000,	0.000000,	-1.000000
Normal	(Non)	2:	0.000000,	0.000000,	-1.000000
Normal	(Non)	3:	0.000000,	0.000000,	-1.000000
Normal	(Non)	4:	0.000000,	0.000000,	-1.000000
Normal	(Non)	5:	0.000000,	0.000000,	1.000000
Normal	(Non)	6:	0.000000,	0.000000,	1.000000
Normal	(Non)	7:	0.000000,	0.000000,	1.000000
Normal	(Non)	8:	0.000000,	-1.000000,	0.000000
Normal	(Non)	9:	0.000000,	-1.000000,	0.000000
Normal	(Non)	10:	0.000000,	-1.000000,	0.000000
Normal	(Non)	11:	1.000000,	0.000000,	0.000000
Normal	(Non)	12:	1.000000,	0.000000,	0.000000
Normal	(Non)	13:	1.000000,	0.000000,	0.000000
Normal	(Non)	14:	0.000000,	1.000000,	0.000000
Normal	(Non)	15:	0.000000,	1.000000,	0.000000
Normal	(Non)	16:	0.000000,	1.000000,	0.000000
Normal	(Non)	17:	0.000000,	1.000000,	0.000000
Normal	(Non)	18:	-1.000000,	0.000000,	0.000000
Normal	(Non)	19:	-1.000000,	0.000000,	0.000000
Normal	(Non)	20:	-1.000000,	0.000000,	0.000000
Normal	(Non)	21:	-1.000000,	0.000000,	0.000000
Normal	Selection:
0	6	13	17
Normal	faces:	_	before	normal	index	means	non-specified.
Face	0:	_1	_2	_3	_4
Face	1:	_5	0	_6	_7
Face	2:	_8	_9	0	_10
Face	3:	_11	_12	_13	0
Face	4:	_14	_15	_16	_17
Face	5:	_18	_19	_20	_21
	
If	printAll	is	false,	you'll	just	see:
	
MNNormalSpec	Debug	Output:	22	normals,	6	faces

Normal	Selection:
0	6	13	17
Face	1:	_	0	_	_
Face	2:	_	_	0	_
Face	3:	_	_	_	0
	
	

Prototype:
bool	CheckAllData	(int	numParentFaces);
	
	
Remarks:
Performs	a	series	of	internal	checks	to	verify	that	the	normal
data	is	consistent.	If	there	are	any	problems,	messages	are
sent	out	via	DebugPrint.
	

Parameters:
int	numParentFaces
The	number	of	faces	in	the	parent	MNMesh.	(This	method	does	not
require	an	accurate	"parent"	pointer,	but	it	does	require	this
number	to	be	accurate.
	
Return	Value:
True	if	everything	checks	out	ok,	false	if	not.
	
	

Prototype:
IOResult	Save	(ISave	*isave);
	
	
Remarks:
Called	by	the	system.	Saves	the	MNNormalSpec	to	the	buffer.
	

Prototype:
IOResult	Load	(ILoad	*iload);
	
	
Remarks:
Called	by	the	system.	Loads	the	MNNormalSpec	from	the	buffer.
	
	
Prototype:
bool	Transform	(Matrix3	&	xfm,	BOOL	useSel=false,	BitArray
*normalSelection=NULL);
	
	
Remarks:
Transforms	the	normals.	Note	that	since	normals	are	always	considered
to	be	unit
length	vectors,	scales	and	translations	are	not	effective.	Translations	drop
out
because	we	use	the	VectorTransform	method	to	transform	the	normals,
and	scales	drop
out	because	we	renormalize	the	normals	to	a	length	of	1	afterwards.
	

Parameters:
Matrix3	&	xfm
The	desired	transform.
	
BOOL	useSel=false
Indicates	whether	all	normals	should	be	translated,	or	only	selected
ones.
	
BitArray	*normalSelection=NULL
The	desired	transform.
	

BOOL	useSel=false
If	non-NULL,	this	represents	a	selection	of	normals	that	should	be
used	instead	of
the	usual	selection,	when	deciding	which	normals	to	transform.
	
Return	Value:
True	if	something	was	modified.	False	would	indicate	that	no	normals
were	changed,
perhaps	because	there	are	no	normals	in	the	spec	or	because	none	were
selected.
	
	
Prototype:
bool	Translate	(Point3	&	translate,	BOOL	useSel=true,	BitArray
*normalSelection=NULL);
	
	
Remarks:
This	is	used	to	give	a	translation-like	effect	to	normals.	It's	used	in	the
Edit
Normals	"Move"	mode.	Essentially	it	drags	the	"top"	of	the	normals	by
the	amount
given,	and	then	renormalizes	the	vectors	to	unit	length.	It	uses	the
current
display	length	as	well,	so	the	formula	is	basically
mpNormal[i]	=	Normalize	(mpNormal[i]*mDisplayLength	+	translate);
	
This	gives	a	fairly	natural	result	in	Edit	Normals	Move.
	

Parameters:
Point3	&	translate
The	desired	translation.
	

BOOL	useSel=false
Indicates	whether	all	normals	should	be	translated,	or	only	selected
ones.
	
BitArray	*normalSelection=NULL
If	non-NULL,	this	represents	a	selection	of	normals	that	should	be
used	instead	of
the	usual	selection,	when	deciding	which	normals	to	translate.
	
Return	Value:
True	if	something	was	modified.	False	would	indicate	that	no	normals
were	changed,
perhaps	because	there	are	no	normals	in	the	spec	or	because	none	were
selected.
	
	
Prototype:
bool	BreakNormals	(BOOL	useSel=true,	BitArray
*normalSelection=NULL);
	
	
Remarks:
"Breaks"	normals	so	that	none	are	shared	between	faces.	Broken	normals
are	set	to	Specified	(but	not	explicit.)
	

Parameters:
BOOL	useSel=false
Indicates	whether	all	normals	should	be	affected,	or	only	selected
ones.
	
BitArray	*normalSelection=NULL
If	non-NULL,	this	represents	a	selection	of	normals	that	should	be
used	instead	of

the	usual	selection,	when	deciding	which	normals	to	affect.
(Irrelevant	if
useSel=false.)
	
Return	Value:
True	if	something	was	modified.	False	would	indicate	that	no	normals
were	changed,
perhaps	because	there	are	no	normals	present	or	because	none	were
selected,
or	because	selected	normals	were	already	fully	broken	and	specified.
	
If	the	return	value	is	true,	the	MNNORMAL_NORMALS_BUILT	and
MNNORMAL_NORMALS_COMPUTED	flags	are	cleared,	because	the
newly	broken
normals	need	to	be	rebuilt	and	computed.
	
Prototype:
bool	UnifyNormals	(BOOL	useSel=true,	BitArray
*normalSelection=NULL);
	
	
Remarks:
Requires	an	accurate	"parent"	pointer	(see	SetParent).
	
This	method	unifies	selected	normals	so	that	there's	a	maximum	of	one
per	vertex.	For	instance,	a	default	box	has	3	normals	at	every	vertex.
You	can	select	2	or	3	of	them	and	click	"Unify"	in	Edit	Normals,	and
the	normals	will	be	shared	across	the	faces	that	use	them.	See	Edit
Normals	documentation	for	more	information.
	
This	method	does	not	unify	normals	that	are	based	at	different	vertices.
If	you	want	separate	vertices	to	use	the	same	normal,	you	must	use	more
direct,	low-level	methods	like	SetNormalIndex.
	

Unified	normals	are	set	to	specified	(but	not	explicit).
	

Parameters:
BOOL	useSel=false
Indicates	whether	all	normals	should	be	affected,	or	only	selected
ones.
	
BitArray	*normalSelection=NULL
If	non-NULL,	this	represents	a	selection	of	normals	that	should	be
used	instead	of
the	usual	selection,	when	deciding	which	normals	to	affect.
(Irrelevant	if
useSel=false.)
	
Return	Value:
True	if	something	was	modified.	False	would	indicate	that	no	normals
were	changed,
perhaps	because	there	are	no	normals	present	or	because	none	were
selected,
or	because	selected	normals	were	already	fully	unified	and	specified.
	
If	the	return	value	is	true,	the	MNNORMAL_NORMALS_BUILT	and
MNNORMAL_NORMALS_COMPUTED	flags	are	cleared,	because	the
newly	unified
normals	need	to	be	rebuilt	and	computed.
	
	
Prototype:
bool	SpecifyNormals	(BOOL	useSel=true,	BitArray
*normalSelection=NULL);
	
	
Remarks:

Specifies	the	indicated	normals.	DOESN'T	remove	the	explicitness	of
the	normals.
(That	should	be	done	separately	with	MakeNormalsExplicit,
value=false.)

Parameters:
BOOL	useSel=false
Indicates	whether	all	normals	should	be	affected,	or	only	selected
ones.
	
BitArray	*normalSelection=NULL
If	non-NULL,	this	represents	a	selection	of	normals	that	should	be
used	instead	of
the	usual	selection,	when	deciding	which	normals	to	affect.
(Irrelevant	if
useSel=false.)
	
Return	Value:
True	if	something	was	modified.	False	would	indicate	that	no	normals
were	changed,
perhaps	because	there	are	no	normals	present	or	because	none	were
selected,	or	because
they	were	all	already	specified.
	

Prototype:
bool	MakeNormalsExplicit	(BOOL	useSel=true,	BitArray
*normalSelection=NULL,	bool	value=true);
	
	
Remarks:
Makes	the	indicated	normals	both	specified	and	explicit.

Parameters:
BOOL	useSel=false
Indicates	whether	all	normals	should	be	affected,	or	only	selected

ones.
	
BitArray	*normalSelection=NULL
If	non-NULL,	this	represents	a	selection	of	normals	that	should	be
used	instead	of
the	usual	selection,	when	deciding	which	normals	to	affect.
(Irrelevant	if
useSel=false.)
	
bool	value=true
I	Indicates	whether	the	normals	should	be	set	to	explicit,	or	non-
explicit.
	
	
Return	Value:
True	if	something	was	modified.	False	would	indicate	that	no	normals
were	changed,
perhaps	because	there	are	no	normals	present	or	because	none	were
selected.
	
If	value=false	and	the	return	value	is	true,	the
MNNORMAL_NORMALS_COMPUTED
flag	is	cleared,	because	the	newly	nonexplicit	normals	need	to	be
computed
	
.
	
	
Prototype:
bool	ResetNormals	(BOOL	useSel=true,	BitArray
*normalSelection=NULL);
	
	

Remarks:
Resets	the	indicated	normals	to	be	completely	non-explicit	and	non-
specified.

Parameters:
BOOL	useSel=false
Indicates	whether	all	normals	should	be	affected,	or	only	selected
ones.
	
BitArray	*normalSelection=NULL
If	non-NULL,	this	represents	a	selection	of	normals	that	should	be
used	instead	of
the	usual	selection,	when	deciding	which	normals	to	affect.
(Irrelevant	if
useSel=false.)
	
	
Return	Value:
True	if	something	was	modified.	False	would	indicate	that	no	normals
were	changed,
perhaps	because	there	are	no	normals	present	or	because	none	were
selected.
	
If	the	return	value	is	true,	the	MNNORMAL_NORMALS_BUILT	and
MNNORMAL_NORMALS_COMPUTED	flags	are	cleared,	because	the
newly	nonspecified
normals	need	to	be	rebuilt	and	computed.

List	of	Expression	Types
One	of	the	following	values:

SCALAR_EXPR
Scalar	expression.	This	is	a	single	floating	point	value.
VECTOR_EXPR
Vector	expression.	The	eval()	method	returns	the	result	as	an	array	of
floating	point	values:

ans[0]	=	x,	ans[1]	=	y,	ans[2]	=	z.
The	method	getExprType()	may	be	used	to	determine	the	type	of	the
expression	result.

List	of	Expression	Variable	Types
See	Also:	Class	Point3.
One	of	the	following	values:

SCALAR_VAR
Scalar	variable.	This	is	a	single	floating	point	value.
VECTOR_VAR
Vector	variable.	This	is	a	Point3	value	when	passed	to	the	eval()
method.	The	x,	y,	z	public	data	members	of	the	Point3	are	the	values
representing	the	vector.	Vectors	are	specified	in	an	expression	by
enclosing	the	three	values	in	square	brackets,	i.e.	"[]".	For	example,	this	is
a	unit	vector	parallel	to	the	world	Z	axis:	[0,0,1].

List	of	Expression	Return	Codes
One	of	the	following	values:

EXPR_NORMAL
No	problems,	expression	evaluated	successfully.
EXPR_INST_OVERFLOW
Expression	caused	an	instruction	stack	overflow	during	parsing.
EXPR_UNKNOWN_TOKEN
Unknown	function,	constant,	or	register	found	during	parsing.
EXPR_TOO_MANY_VARS
Expression	caused	a	value	stack	overflow.
EXPR_TOO_MANY_REGS
Register	array	overflow,	or	register	number	too	big.
EXPR_CANT_EVAL
Function	can't	be	evaluated	with	given	arguments.
EXPR_CANT_PARSE
Expression	can't	be	parsed	syntactically.

List	of	FPStatus	Values
See	Also:	Class	FPInterface,	Function	Publishing	System.
One	of	the	following	values	are	returned	from	the	various	FPInterface	methods:
FPS_FAIL
This	status	indicates	a	failure.
FPS_NO_SUCH_FUNCTION
The	function	called	does	not	exist.
FPS_ACTION_DISABLED
The	action	is	disabled.
FPS_OK
Indicates	a	success.

List	of	ControlType2	Choices
See	Also:	Class	IParamBlock2,	Structure	ParamDef,	Class	ParamBlockDesc2.

Description:
This	data	is	available	in	release	3.0	and	later	only.
This	is	the	list	of	user	interface	control	choices	available	for	use	with	parameter
block2s.	There	is	one	of	these	associated	with	each	parameter	definition	in	a
ParamBlockDesc2.
enum	ControlType2
{
TYPE_SPINNER
A	custom	spinner	control.
TYPE_RADIO
A	radio	button	control.
TYPE_SINGLECHEKBOX
A	single	checkbox	control.
TYPE_MULTICHEKBOX
A	multiple	checkbox	control.	This	control	type	is	not	currently	supported.
TYPE_COLORSWATCH
A	color	swatch	color	control.
TYPE_EDITBOX
An	edit	box	control.
TYPE_CHECKBUTTON
A	check	button	control.	This	button's	state	is	either	pressed	or	not.
TYPE_PICKNODEBUTTON
A	node	picker	button.
TYPE_TEXMAPBUTTON
A	texture	map	selector	button.	This	button	supports	drag	and	drop	of	texmaps.
TYPE_MTLBUTTON
A	material	selector	button.	This	button	supports	drag	and	drop	of	materials.
TYPE_FILEOPENBUTTON
A	file	open	button.
TYPE_FILESAVEBUTTON

A	file	save	button.
TYPE_INTLISTBOX
A	list	box	control	for	integers.
TYPE_FLOATLISTBOX
A	list	box	control	for	floats.
TYPE_STRINGLISTBOX
A	list	box	control	for	strings.
TYPE_NODELISTBOX
A	list	box	control	for	nodes.
TYPE_MAPLISTBOX
A	list	box	control	for	maps.
TYPE_SLIDER
A	custom	slider	control.

};

Class	MaxNetCallBack
See	Also:	Class	MaxNetManager
class	MaxNetCallBack

Description:
This	class	is	available	in	release	4.0	and	later	only.
If	you	want	to	use	the	call	back	mechanisms	provided	by	the	MaxNetManager
class,	you	create	your	own	class	derived	from	MaxNetCallBack	and	pass	it	as
the	argument	for	MaxNetManager::SetCallBack().	All	methods	are
optional.	You	need	only	to	implement	those	you	want.

Methods:

Prototype:
bool	Progress(int	total,	int	current);

Remarks:
This	method	is	called	whenever	a	lengthy	operation	is	under	way.	This
includes	large	block	transfers,	file	transfers,	etc.

Parameters:
int	total
A	total	amount	of	information	to	process.
int	current
From	the	total	amount,	this	is	the	current	position.

Return	Value:
TRUE	if	you	want	to	cancel	the	operation,	otherwise	FALSE.

Prototype:
void	ProgressMsg(const	TCHAR	*message);

Remarks:
This	method	is	called	to	provide	a	textual	message	regarding	the	current
process	which	is	under	way	(connecting	to	a	Manager,	waiting	for	a	reply,
etc.)

Parameters:

const	TCHAR*	message
The	text	message.

Prototype:
void	ManagerDown();

Remarks:
This	method	is	called	for	messages	which	are	sent	to	indicate	that	the	Manager
was	shut	down	and	is	no	longer	available	to	service	any	requests.

Prototype:
void	Update();

Remarks:
This	method	is	called	to	indicate	something	has	changed.	This	message	is	sent
whenever	a	new	job	is	sent	to	the	queue,	a	Server	changed	its	state,	an	error
occurred,	etc.	This	allows	you	to	be	kept	up	to	date	without	the	need	to	poll
the	Manager	from	time	to	time.	Note	that	these	messages	are	queued	up.	That
is,	if	10	jobs	are	deleted	at	once	or	any	number	of	changes	occur	within	a	short
period,	you	will	only	receive	one	Update()	call.

Prototype:
void	QueryControl(TCHAR*	station);

Remarks:
This	method	is	called	if	someone	requests	control	over	the	queue.	If	you	do
not	have	control	over	the	queue,	you	do	not	need	to	respond	to	this	message.	If
you	have	control	over	the	queue	and	do	nothing	when	this	call	is	received,	the
Manager	will	timeout	and	take	control	over	the	queue.	If	you	have	control
over	the	queue,	you	should	respond	to	this	message	using
MaxNetManager::GrantManagerControl()	passing	either	a	true	value,
indicating	you	are	granting	control,	or	a	false	value,	indicating	you	do	not
want	to	relinquish	control.

Parameters:
TCHAR*	station
The	name	of	the	computer	requesting	control.

Prototype:
void	QueueControl();

Remarks:
This	method	is	called	in	order	to	notify	that	someone	took	control	of	the
queue.

Structure	ManagerInfo
See	Also:	Class	MaxNetManager,	Structure	NetworkStatus,	Structure
ConfigurationBlock

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	information	about
a	Manager.
typedef	struct	{
DWORD	size;
The	size	of	the	structure,	being	sizeof(ManagerInfo).
DWORD	version;
The	version	information,	defined	by	_MANAGER_INFO_VERSION.
ConfigurationBlock	cfg;
The	network	system	configuration	data.	Refer	to	this	structure	for	more
information.
NetworkStatus	net_status;
The	network	status	information.
int	servers;
The	number	of	servers	registered.
int	jobs;
The	number	of	jobs.
char	reserved[32];
Reserved	for	future	use.

}	ManagerInfo;

Structure	ClientInfo
See	Also:	Class	MaxNetManager,	Structure	ConfigurationBlock

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	information	about
a	Client.
typedef	struct	{
DWORD	size;
The	size	of	the	structure,	being	sizeof(ClientInfo).
DWORD	version;
The	version	information,	defined	by	_CLIENTINFO_VERSION.
ConfigurationBlock	cfg;
The	network	system	configuration	data.	Refer	to	this	structure	for	more
information.
bool	controller;
TRUE	if	the	Client	is	currently	controlling	the	queue.
short	udp_port;
The	UDP	port	being	used	for	network	communications.
char	reserved[32];
Reserved	for	future	use.

}	ClientInfo;

Structure	JobList
See	Also:	Class	MaxNetManager,	Structure	Job

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	information	the
state	of	a	job.
typedef	struct	{
Job	job;
The	structure	containing	the	job	details.
HJOB	hJob;
The	handle	to	the	job.
WORD	state;
The	current	state	of	the	job,	which	is	one	of	the	following	values:
JOB_STATE_COMPLETE
The	job	is	complete.
JOB_STATE_WAITING
The	job	is	waiting	to	be	rendered.
JOB_STATE_BUSY
The	job	is	busy	rendering.
JOB_STATE_ERROR
The	job	experienced	an	error.
JOB_STATE_SUSPENDED
The	job	is	suspended.

}	JobList;

Structure	Job
See	Also:	Class	MaxNetManager,	Structure	AlertData,	Structure	MaxJob,
Structure	CombustionJob

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	information	about
a	job.
typedef	struct	{
DWORD	size;
The	size	of	the	structure,	being	sizeof(Job).
DWORD	version;
The	structure	version	information,	defined	by	_JOB_VERSION.
DWORD	server_pid;
The	server	Process	ID	which	is	used	by	3ds	max	to	check	server's	health.
DWORD	flags;
The	job	flags,	defined	as	the	following	values:
JOB_VP
Video	Post	(otherwise	is	Render	Scene).
JOB_NONC
Non	concurrent	driver	(Accom	DDR,	AVI,	etc.)
JOB_MAPS
The	Include	Maps	flag.
JOB_NONSTOP
Uninterruptible	driver	(AVI,	FLC,	etc.)
JOB_SKIPEXST
Skip	Existing	Frames.
JOB_ALLSERVERS
Allow	the	use	of	all	available	servers.
JOB_INACTIVE
This	flag	indicates	the	job	is	suspended
JOB_COMPLETE
This	read-only	flag	indicates	that	the	job	is	complete.

JOB_IGNORESHARE
Ignore	the	Manager's	job	share,	always	request	archives.
JOB_SKIPOUTPUTTST
This	flag	indicates	that	the	server	should	not	test	the	output	path.
JOB_NONSEQFRAMES
Non	sequential	frames	such	as	1,3,5-10,	etc.
JOB_COMBUSTIONJOB
This	flag	indicates	the	job	is	a	Combustion	specific	job.
JOB_NOTARCHIVED
This	flag	indicates	an	uncompressed	file	(i.e.	not	an	archive).
JOB_ASSIGN_VP
This	is	a	legacy	support	flag,	defined	as	JOB_VP.
JOB_ASSIGN_RND
This	is	a	legacy	support	flag.

HJOB	hJob;
Handle	to	the	job,	assigned	by	the	Manager	when	a	job	is	created/submitted.
This	handle	will	be	read-only	after	its	creation.
char	name[MAX_PATH];
The	name	of	the	job.
DWORD	filesize;
This	variable	is	used	internally	when	transferring	an	archive	and	specifies	its
size.
DWORD	filesizeextracted;
This	variable	is	used	internally	when	transferring	an	archive	and	specifies	its
uncompressed	size.
SYSTEMTIME	submission;
The	system	time,	set	when	a	job	is	created/submitted.
SYSTEMTIME	startjob;
The	system	time,	set	when	a	job	starts.
SYSTEMTIME	endjob;
The	system	time,	set	when	a	job	is	completed.
int	servercount;
The	number	of	servers	defined	for	the	job	(can	be	0	if

JOB_ALLSERVERS	is	set).
AlertData	alerts;
The	alert	notification	data	structure.
int	jobtextcount;
The	number	of	JobTextInfo	records.
int	firstframe;
The	first	frame	in	the	range.
int	lastframe;
The	last	frame	in	the	range.
int	step;
The	frame	step	value	(i.e.	every	n-th	frame).
int	width;
The	frame	output	width.
int	height;
The	frame	output	height.
int	frames_completed;
The	number	of	frames	completed.
char	priority;
The	job	priority	level.
char	reserved[32];
Reserved	for	future	use.
union	{
MaxJob	maxJob
Specific	information	about	a	job	pertaining	to	3ds	max.
CombustionJob	combustionJob
Specific	information	about	a	job	pertaining	to	Combustion.

}
}	Job;

Class	CJobText
See	Also:	Class	MaxNetCallBack,	Structure	JobText,	List	of	Job	Text	Types
class	CJobText

Description:
This	class	is	available	in	release	4.0	and	later	only.
The	CJobText	class	stores	job	information	which	is	of	a	dynamic	nature	or	of
variable	length.

Methods:
public:

Prototype:
~CJobText();

Remarks:
Destructor.	The	CJobText	buffers	will	be	deallocated.

Prototype:
int	Count();

Remarks:
This	method	return	the	number	of	JobText	buffers	in	the	list.
Note:	Developers	should	use	Job.jobtextcount	to	find	out	how	many	elements
there	are.

Prototype:
int	Add(JobText*	jt);

Remarks:
This	method	will	add	another	JobText	buffer.

Parameters:
JobText*	jt
A	pointer	to	the	JobText	buffer	to	add.

Return	Value:

The	number	of	JobText	buffers.

Prototype:
void	Delete(int	idx,	int	count	=	1);

Remarks:
This	method	will	delete	one	or	a	sequence	of	buffers.

Parameters:
int	idx
The	position	of	the	first	index	to	be	deleted.
int	count
The	number	of	entries	to	delete.

Prototype:
void	Reset();

Remarks:
This	method	will	reset	and	deallocate	the	CJobText	buffers.

Prototype:
JobText*	Buffer();

Remarks:
This	method	will	return	a	pointer	to	the	actual	JobText	buffer.

Prototype:
int	BufferSize();

Remarks:
This	method	returns	the	total	size	of	the	JobText	buffer.

Prototype:
int	FindJobText(JOB_TEXT_TYPE	tp,	int	start	=	0);

Remarks:
This	method	allows	you	to	search	for	a	JobText	entry	by	its	type.	Refer	to	the
list	of	Job	Text	types	for	details.

Parameters:
JOB_TEXT_TYPE	tp
The	Job	Text	type	you	wish	to	find.
int	start
The	start	position	from	which	to	initiate	the	search	process.

Return	Value:
The	index	of	the	entry	which	was	found,	or	-1	if	not	found.

Prototype:
bool	GetTextItem(TCHAR*	text,	JOB_TEXT_TYPE	type,	int
start	=	0,	int*	idx	=	0);

Remarks:
This	method	retrieves	an	index	based	on	it’s	Text	Type.	Refer	to	the	List	of
Job	Text	Types	for	details.

Parameters:
TCHAR*	text
A	pointer	to	the	text	buffer	which	will	be	filled	in	by	the	method.
JOB_TEXT_TYPE	type
The	Job	Text	type	you	wish	to	find.
int	start
The	start	position	from	which	to	retrieve	the	text	item.
int*	idx
A	pointer	to	the	index	found.

Return	Value:
TRUE	if	the	method	was	successful,	otherwise	FALSE.

Prototype:
bool	GetUser(TCHAR*	user);

Remarks:
This	method	will	retrieve	the	user	name	associated	with	a	job.

Parameters:
TCHAR*	user

The	user	name	which	was	retrieved.
Return	Value:
TRUE	if	the	user	name	was	retrieved,	otherwise	FALSE.

Prototype:
bool	GetComputer(TCHAR*	computer);

Remarks:
This	method	will	retrieve	the	computer	name	associated	with	a	job.

Parameters:
TCHAR*	computer
The	computer	name	which	was	retrieved.

Return	Value:
TRUE	if	the	computer	name	was	retrieved,	otherwise	FALSE.

Prototype:
bool	GetFrames(TCHAR*	frames);

Remarks:
This	method	will	retrieve	the	frame	sequence	(such	as	the	"1,2,4,5-40"	types).

Parameters:
TCHAR	*frames
The	frames	retrieved.

Return	Value:
TRUE	if	the	frame	sequence	string	was	retrieved,	otherwise	FALSE.

Prototype:
bool	GetShare(TCHAR*	share);

Remarks:
This	method	will	retrieve	the	Manager’s	network	share	associated	with	a	job.

Parameters:
TCHAR*	share
The	network	share	which	was	retrieved.

Return	Value:
TRUE	if	the	network	share	was	retrieved,	otherwise	FALSE.

Operators:

Prototype:
JobText&	operator[](const	int	i);

Remarks:
This	access	operator	returns	a	reference	to	a	JobText	entry.

Parameters:
const	int	i
The	index	of	the	JobText	buffer	to	return.

Structure	HSERVER
See	Also:	Class	MaxNetManager

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	as	a	handle	to	a	server.
typedef	struct	{
BYTE	addr[8];
The	handle	to	a	server	by	it’s	mac	(Ethernet)	address.

}	HSERVER;

Structure	JOBFRAMES
See	Also:	Class	MaxNetManager,	Structure	HSERVER

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	a	job’s	frame
progress	information.
typedef	struct	{
char	state;
The	current	state	of	this	frame	which	is	one	of	the	following	values:
FRAME_WAITING
The	frame	is	waiting	to	be	assigned	and	rendered.
FRAME_ASSIGNED
The	frame	is	assigned	to	the	server.
FRAME_COMPLETE
The	frame	has	completed	rendering.
NO_FRAME
There	are	no	frames	to	be	rendered.

int	frame;
The	frame	number.
HSERVER	hServer;
The	handle	to	the	server	rendering	this	frame.
DWORD	elapsed;
The	time	it	took	to	render	this	frame,	in	milliseconds.

}	JOBFRAMES;

Structure	JobServer
See	Also:	Class	MaxNetManager,	Structure	HSERVER

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	information	about
the	servers	in	the	job	queue.
typedef	struct	{
HSERVER	hServer;
The	handle	to	the	server.
char	status;
The	current	state	of	the	server,	which	is	one	of	the	following	values:
JOB_SRV_IDLE
The	server	is	idle.
JOB_SRV_BUSY
The	server	is	busy.
JOB_SRV_FAILED
The	server	is	has	failed	(rendering	error).
JOB_SRV_ABSENT
The	server	is	absent.
JOB_SRV_SUSPENDED
The	server	is	suspended,	out	of	work	schedule.
JOB_SRV_BUSYOTHER
The	server	is	busy	with	another	job.
JOB_SRV_ERROR
The	server	experienced	a	connection	error.
JOB_SRV_COOL_OFF
The	server	is	"cooling	off"	(i.e.	in	error	recovery).

bool	failed;
This	variable	is	used	internally.
bool	active;
Indicates	that	the	server	is	active	in	the	job.
int	cur_frame;

The	frame	which	is	currently	being	rendered.
float	thours;
The	total	hours	the	server	has	spent	rendering.
int	frames;
The	total	number	of	frames	the	server	has	rendered.

}	JobServer;

Structure	ServerList
See	Also:	Class	MaxNetManager,	Structure	HSERVER,	Structure	ServerInfo

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	global	server	state
information.
If	hJob	is	a	valid	handle	(i.e.	non	0)	and	frame	holds	a	NO_FRAME,	this
means	this	server	has	just	be	assigned	a	job	or	it	is	in	between	frames	(no	frames
assigned).	Most	likely	it	is	loading	3ds	max.	The	transition	in	between	frames	is
in	the	nanosecond	level,	but	seeing	as	it	is	possible,	it	cannot	be	discarded.
	
typedef	struct	{
HSERVER	hServer;
The	handle	to	the	server.
HJOB	hJob;
The	handle	to	the	job	that	the	server	is	currently	working	on,	if	there	is	one.
int	frame;
The	frame	the	server	is	currently	rendering,	if	there	is	one.
SYSTEMTIME	frame_started;
The	time	the	server	had	the	frame	assigned.
WORD	state;
The	current	state	of	the	server	which	is	one	of	the	following	values:
SERVER_STATE_ABSENT
The	server	is	absent.
SERVER_STATE_IDLE
The	server	is	idle.
SERVER_STATE_BUSY
The	server	is	busy.
SERVER_STATE_ERROR
The	server	is	experiencing	an	error.
SERVER_STATE_SUSPENDED
The	server	has	been	suspended..

ServerInfo	info;
The	server	information	structure	containing	the	server	details.

}	ServerList;

Structure	WeekSchedule
See	Also:	Class	MaxNetManager,	Structure	Schedule

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	weekly	scheduling
information.
typedef	struct	{
Schedule	day[7];
The	hourly	schedule	configuration	for	each	day	of	the	week.
int	AttendedPriority;
The	attended	priority	value	which	is	one	of	the	following	values:
HIGHPRIORITY,	LOWPRIORITY,	or	IDLEPRIORITY.
int	UnattendedPriority;
The	unattended	priority	value	which	is	one	of	the	following	values:
HIGHPRIORITY,	LOWPRIORITY,	or	IDLEPRIORITY.

}	WeekSchedule;

Structure	NetworkStatus
See	Also:	Class	MaxNetManager

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	network	status
information.
typedef	struct	{
DWORD	dropped_packets;
The	number	of	packets	dropped	due	to	buffer	overflows.
DWORD	bad_packets;
The	number	of	bad	formed	packets.
DWORD	tcprequests;
The	total	number	of	TCP	requests	since	boot	time.
DWORD	udprequests;
The	total	number	of	UDP	requests	since	boot	time.
SYSTEMTIME	boot_time;
The	system	boot	time.
char	reserved[32];
Reserved	for	future	use.

}	NetworkStatus;

List	of	MaxNet	Errors
See	Also:	Class	MaxNetManager,	Class	CJobText,	Structure	JobText
The	list	of	the	various	MaxNet	error	codes	available,	defined	as	the	enum
maxnet_error_t.
MAXNET_ERR_NONE
No	error.
MAXNET_ERR_CANCEL
Cancellation	Error.
MAXNET_ERR_NOMEMORY
An	out	of	memory	error	has	occurred.
MAXNET_ERR_FILEIO
A	file	IO	error	has	occurred.
MAXNET_ERR_BADARGUMENT
Bad	arguments	were	passed	along.
MAXNET_ERR_NOTCONNECTED
A	connection	was	not	established.
MAXNET_ERR_NOTREADY
Windows	Network	Not	Installed	or	Not	Initialized.
MAXNET_ERR_IOERROR
An	IO	error	has	occurred.
MAXNET_ERR_CMDERROR
A	command	error	has	occurred.
MAXNET_ERR_HOSTNOTFOUND
The	specific	host	could	not	be	found.
MAXNET_ERR_BADSOCKETVERSION
Winsock.dll	is	obsolete.
MAXNET_ERR_WOULDBLOCK
An	internal	blocking	error	has	occurred.
MAXNET_ERR_SOCKETLIMIT
No	more	available	TCP/IP	Sockets.
MAXNET_ERR_CONNECTIONREFUSED
A	connection	has	been	refused.	Service	not	installed	on	host	computer.

MAXNET_ERR_ACCESSDENIED
Access	to	a	host	was	denied.
MAXNET_ERR_TIMEOUT
A	network	time-out	has	occurred.
MAXNET_ERR_BADADDRESS
A	bad	network	address	was	supplied.
MAXNET_ERR_UNKNOWN
An	unknown	error	has	occurred.

List	of	Dimension	Types
See	Also:	Class	ParamDimension.
One	of	the	following	values:
DIM_NONE
DIM_WORLD
DIM_ANGLE
DIM_COLOR
DIM_COLOR255
DIM_PERCENT
DIM_NORMALIZED
DIM_SEGMENTS
DIM_TIME
DIM_CUSTOM

Class	ParamBlockDesc
See	Also:	Class	ParamBlockDescID.
class	ParamBlockDesc

Description:
The	parameter	block	descriptor	describes	each	parameter	in	a	parameter	block.
class	ParamBlockDesc	{
public:
ParamType	type;
UserType	*user;
BOOL	animatable;

};

Data	Members:
ParamType	type
The	parameter	type.	See	List	of	Parameter	Types.
UserType	*user
This	value	is	not	used	--	it	must	always	be	passed	as	NULL.
BOOL	animatable
This	is	a	flag	indicating	if	the	parameter	may	be	animated	or	not.	Pass	TRUE
if	the	value	may	be	animated	and	FALSE	if	it	is	constant.

Class	ParamVersionDesc
Description:
This	structure	describes	a	version	of	the	parameter	block.

Data	Members:
ParamBlockDescID	*desc;
This	is	an	array	of	parameter	block	descriptors.
int	count;
This	is	the	number	of	items	in	the	array.
DWORD	version;
This	is	the	version	number.

Methods:

Prototype:
ParamVersionDesc(ParamBlockDescID	*d,int	c,int	v);

Remarks:
Constructor.

Parameters:
ParamBlockDescID	*d
This	is	an	array	of	parameter	block	descriptors.
int	c
This	is	the	number	of	items	in	the	array.
int	v
This	is	the	version	number.

Structure	DispInfo
Below	is	the	display	information	structure.	This	structure	holds	the	information
describing	3ds	max's	current	system	of	measurement.	This	includes	the	type	of
units	used,	how	they	are	displayed	and	any	custom	unit	name	and	scale.
typedef	struct	{
int	dispType;
Unit	Display	Type.	One	of	the	following	values:
UNITDISP_GENERIC
UNITDISP_METRIC
UNITDISP_US
UNITDISP_CUSTOM

int	metricDisp;
Metric	display	option.	One	of	the	following	values:
UNIT_METRIC_DISP_MM
UNIT_METRIC_DISP_CM
UNIT_METRIC_DISP_M
UNIT_METRIC_DISP_KM

int	usDisp;
US	display	option.	One	of	the	following	values:
UNIT_US_DISP_FRAC_IN
UNIT_US_DISP_DEC_IN
UNIT_US_DISP_FRAC_FT
UNIT_US_DISP_DEC_FT
UNIT_US_DISP_FT_FRAC_IN
UNIT_US_DISP_FT_DEC_IN

int	usFrac;
US	fraction	option.	One	of	the	following	values:
UNIT_FRAC_1_1
UNIT_FRAC_1_2
UNIT_FRAC_1_4
UNIT_FRAC_1_8
UNIT_FRAC_1_10

UNIT_FRAC_1_16
UNIT_FRAC_1_32
UNIT_FRAC_1_64
UNIT_FRAC_1_100

const	TCHAR	*customName;
Custom	unit	name.
float	customValue;
Custom	unit	value.
int	customUnit;
Custom	unit	reference.
Note:	The	three	custom	settings	above	are	related	as	follows:	If	for	example
the	customName	is	set	to	"FL"	for	furlongs	(which	is	equal	to	660	feet),
customValue	should	equal	660.0	and	customUnit	should	equal
UNITS_FEET.

}	DispInfo;

Class	AnimProperty
See	Also:	Class	Animatable.
class	AnimProperty

Description:
This	is	the	base	class	for	classes	that	can	be	hung	off	an	animatable's	property
list.	When	an	animatable	is	deleted,	its	properties	will	be	deleted	and	their	virtual
destructor	will	be	called.

Methods:

Prototype:
virtual	BOOL	DontDelete();

Remarks:
Implemented	by	the	Plug-In.
When	the	animatable	is	destroyed	it	will	normally	delete	all	the	properties.	If	a
plug-in	wants	to	add	a	property	to	the	list	that	it	does	not	want	deleted	it	can
implement	this	method	to	return	TRUE.

Return	Value:
TRUE	if	the	item	should	not	be	deleted;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Prototype:
virtual	DWORD	ID()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	ID	of	the	property.	Values	above	PROPID_USER	can	be	used
by	plug-ins.	Note:	that	a	plug-in	should	only	put	user	defined	properties	on	its
own	list.	So	IDs	only	have	to	be	unique	within	a	plug-in.	If	a	plug-in	needs	to
attach	data	to	another	object,	it	can	do	so	via	APP_DATA.

Class	InterpCtrlUI
See	Also:	Class	AnimProperty,	Class	JointParams.
class	InterpCtrlUI	:	public	AnimProperty

Description:
This	is	simply	a	container	class	to	hold	some	data	while	the	controllers
parameters	are	being	edited.	All	methods	of	this	class	are	implemented	by	the
system.

Data	Members:
public:
HWND	hParams;
The	window	handle	of	the	rollup	page.
IObjParam	*ip;
The	interface	pointer.
Control	*cont;
The	controller	that	is	being	edited.

Methods:

Prototype:
InterpCtrlUI(HWND	h,IObjParam	*i,Control	*c)

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.

Prototype:
~InterpCtrlUI();

Remarks:
Destructor.

Prototype:
DWORD	ID();

Remarks:

Returns	the	property	list	of	id:	PROPID_INTERPUI

Class	MtlBaseList
See	Also:	Template	Class	Tab,	Class	MtlBase,	Class	Interface.
class	MtlBaseList:	public	Tab<MtlBaseHandle>

Description:
A	simple	list	of	MtlBases.	All	methods	of	this	class	are	implemented	by	the
system.

Note	the	following	typedefs:
typedef	MtlBase*	MtlBaseHandle;
typedef	Mtl*	MtlHandle;
typedef	Texmap*	TexmapHandle;

Methods:

Prototype:
int	AddMtl(MtlBase	*m,	BOOL	checkUnique=TRUE);

Remarks:
Adds	the	specified	MtlBase	to	the	list.

Parameters:
MtlBase	*m
The	MtlBase	to	add.
BOOL	checkUnique=TRUE
If	TRUE	this	method	checks	to	make	sure	the	MtlBase	is	unique,	and	will	only
add	it	if	so.

Return	Value:
Nonzero	if	the	MtlBase	was	added;	otherwise	zero.

Prototype:
int	FindMtl(MtlBase	*m);

Remarks:
Finds	the	specified	MtlBase	in	this	material	list	and	returns	its	index.	Returns
-1	if	not	found.

Parameters:

MtlBase	*m
The	MtlBase	to	find.

Prototype:
int	FindMtlByName(TSTR&	name);

Remarks:
Finds	the	specified	material	by	name	and	returns	its	index.	Returns	-1	if	not
found.

Parameters:
TSTR&	name
The	name	to	find.

Prototype:
void	RemoveEntry(int	n);

Remarks:
Removes	the	specified	MtlBase	from	the	list.

Parameters:
int	n
The	index	of	the	MtlBase	to	remove.

Prototype:
void	Empty();

Remarks:
Removes	all	MtlBases	from	the	list.

Class	DWORDTab
See	Also:	Class	Tab,	Class	AdjEdgeList.
class	DWORDTab	:	public	Tab<DWORD>

Description:
This	class	is	simply	a	table	of	DWORDs	(32-bit	values.)

Class	MEdge
See	Also:	Class	AdjEdgeList,	Class	Mesh.
class	MEdge

Description:
This	class	describes	a	single	edge	of	a	mesh	object	that	is	adjacent	to	a	vertex.
This	is	an	edge	that	is	coming	out	of	the	vertex.	This	is	used	in	adjacency	lists.

Data	Members:
public:
DWORD	f[2];
The	indices	into	the	meshes	face	table	of	the	two	faces	that	share	this	edge.
DWORD	v[2];
The	indices	into	the	meshes	vertex	table	of	the	two	vertices	of	this	edge.

Methods:
public:

Prototype:
int	EdgeIndex(Face	*faces,	int	side);

Remarks:
Returns	the	index	of	the	edge	in	the	face	on	side	side.	So:	given	a	Mesh	mesh
and	an	MEdge	*me,	int	eid	=	me->EdgeIndex	(mesh.faces,	0);	then
mesh.faces[me->f[0]].v[eid]	and	mesh.faces[me->f[0]].v[(eid+1)%3]	are	the
endpoints	of	the	edge.
In	particular,	mesh.edgeSel[me->f[0]*3+eid]	tells	whether	this	edge	is
selected.

Parameters:
Face	*faces
The	list	of	faces	from	the	mesh.
int	side
Either	0	or	1,	indicating	whether	we	should	find	this	result	for	the	face	on	side
0	or	on	side	1.

Prototype:

BOOL	Selected(Face	*faces,	BitArray	&esel);
Remarks:
Returns	TRUE	if	this	edge	is	selected	on	either	side;	or	FALSE	if	it	is	not
selected	on	either.

Parameters:
Face	*faces
The	list	of	faces	from	the	mesh.
BitArray	&esel
The	edge	selection	BitArray	from	the	mesh.

Prototype:
BOOL	Visible(Face	*faces);

Remarks:
Returns	TRUE	if	this	edge	is	visible	on	either	side;	or	FALSE	if	it	is	not
visible	on	either.

Parameters:
Face	*faces
The	list	of	faces	from	the	mesh.

Prototype:
BOOL	Hidden(Face	*faces);

Remarks:
Returns	TRUE	if	all	the	faces	using	this	edge	are	hidden;	otherwise	FALSE.

Parameters:
Face	*faces
The	list	of	faces	from	the	mesh.

Prototype:
Point3	Center(Point3	*verts);

Remarks:
Returns	the	center	of	this	edge.

Parameters:

Point3	*verts
The	list	of	vertices	from	the	mesh.

Prototype:
BOOL	AFaceSelected(BitArray	&fsel);

Remarks:
Returns	TRUE	if	one	(or	both)	of	the	faces	sharing	the	edge	is	selected;
otherwise	FALSE.

Parameters:
BitArray	&fsel
The	face	selection	bit	array.

Prototype:
Point3	ButterFlySubdivide(Mesh	*mesh,	AdjFaceList	*af,	float
tens);

Remarks:
Returns	a	point	suitable	for	use	in	standard	tessellation.

Parameters:
Mesh	*mesh
A	pointer	to	the	associated	mesh.
AdjFaceList	*af
A	pointer	to	the	associated	AdjFaceList.
float	tens
The	tension	parameter,	as	seen	in	the	Tessellate	modifier.

Prototype:
UVVert	ButterFlyMapSubdivide	(Mesh	*mesh,	AdjFaceList	*af,
float	tens,	int	mp,	bool	&	seam,	UVVert	&	side2);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	creates	a	map	vertex	for	the	middle	of	this	edge	using	the
Butterfly	tessellation	scheme.	Designed	to	create	map	vertices	to	go	with	the

vertex	created	by	ButterFlySubdivide().
Parameters:
Mesh	*mesh
A	pointer	to	the	associated	mesh.
AdjFaceList	*af
A	pointer	to	the	associated	AdjFaceList.
float	tens
The	tension	parameter,	as	seen	in	the	Tessellate	modifier.
int	mp
The	map	channel	we	want	to	get	a	result	for.
bool	&	seam
If	this	is	set	to	true	by	the	algorithm,	then	there's	a	mapping	seam	on	this	edge,
and	different	map	vertices	should	be	used	on	each	side.
UVVert	&	side2
If	there's	a	seam,	this	contains	the	mapping	result	for	the	second	side.	The
return	value	matches	the	mapping	scheme	on	face	f[0];	side2	matches	the
scheme	on	face	f[1].

Return	Value:
The	desired	mapping	coordinates.

Prototype:
DWORD	OtherVert(DWORD	vv);

Remarks:
Returns	the	index	of	the	other	vertex	using	this	edge.

Parameters:
DWORD	vv
The	index	of	a	vertex	using	the	edge.

Prototype:
DWORD	OtherFace(DWORD	ff);

Remarks:
Returns	the	index	of	the	other	face	using	this	edge.

Parameters:
DWORD	ff
The	index	of	a	face	using	this	edge.

Class	AdjFace
See	Also:	Class	AdjFaceList.
class	AdjFace

Description:
This	class	describes	a	single	face	for	use	in	AdjFaceLists.

Data	Members:
public:
DWORD	f[3];
The	indices	of	the	faces	adjacent	to	this	one.	These	are	indices	into	the	mesh
face	table.

Methods:

Prototype:
AdjFace();

Remarks:
Constructor.	The	face	indices	are	set	to	UNDEFINED.

List	of	NURBSObject	Types
See	Also:	Class	NURBSObject,	Class	NURBSSurface,	Class
NURBSControlVertex,	Class	NURBSPoint,	Class	NURBSCurve.
One	of	the	following	enum	values	describes	the	type	of	NURBSObject	this	is.
The	sub-classed	NURBSObject	returns	one	of	these	values	in	GetType().
kNPoint
Specifies	a	NURBSIndependentPoint	object.
kNPointCPoint
Specifies	a	NURBSPointConstPoint	object.
kNCurveCPoint
Specifies	a	NURBSCurveConstPoint	object.
kNCurveCurveIntersectionPoint
Specifies	a	NURBSCurveCurveIntersectionPoint	object.
kNSurfaceCPoint
Specifies	a	NURBSSurfConstPoint	object.
kNCurveSurfaceIntersectionPoint
Specifies	a	NURBSCurveSurfaceIntersectionPoint	object.
kNTexturePoint
This	option	is	available	in	release	3.0	and	later	only.
Specifies	a	NURBSTexturePoint	object.
kNCV
Specifies	a	NURBSControlVertex	object.
kNCVCurve
Specifies	a	NURBSCVCurve	object.
kNPointCurve
Specifies	a	NURBSPointCurve	object.
kNBlendCurve
Specifies	a	NURBSBlendCurve	object.
kNOffsetCurve
Specifies	a	NURBSOffsetCurve	object.
kNXFormCurve
Specifies	a	NURBSXFormCurve	object.

kNMirrorCurve
Specifies	a	NURBSMirrorCurve	object.
kNFilletCurve
Specifies	a	NURBSFilletCurve	object.
kNChamferCurve
Specifies	a	NURBSChamferCurve	object.
kNIsoCurve
Specifies	a	NURBSIsoCurve	object.
kNProjectVectorCurve
Specifies	a	NURBSProjectVectorCurve	object.
kNProjectNormalCurve
Specifies	a	NURBSProjectNormalCurve	object.
kNSurfSurfIntersectionCurve
Specifies	a	NURBSSurfSurfIntersectionCurve	object.
kNCurveOnSurface
Specifies	a	NURBSCurveOnSurface	object.
kNPointCurveOnSurface
Specifies	a	NURBSPointCurveOnSurface	object.
kNSurfaceNormalCurve
Specifies	a	NURBSSurfaceNormalCurve	object.
kNSurfaceEdgeCurve
This	option	is	available	in	release	3.0	and	later	only.
Specifies	a	NURBSSurfaceEdgeCurve	object.
kNCVSurface
Specifies	a	NURBSCVSurface	object.
kNPointSurface
Specifies	a	NURBSPointSurface	object.
kNBlendSurface
Specifies	a	NURBSBlendSurface	object.
kNOffsetSurface
Specifies	a	NURBSOffsetSurface	object.
kNXFormSurface
Specifies	a	NURBSXFormSurface	object.

kNMirrorSurface
Specifies	a	NURBSMirrorSurface	object.
kNRuledSurface
Specifies	a	NURBSRuledSurface	object.
kNULoftSurface
Specifies	a	NURBSULoftSurface	object.
kNExtrudeSurface
Specifies	a	NURBSExtrudeSurface	object.
kNLatheSurface
Specifies	a	NURBSLatheSurface	object.
kNUVLoftSurface
Specifies	a	NURBSUVLoftSurface	object.
kNNBlendSurface
Specifies	a	NURBSNBlendSurface	object.
kN1RailSweepSurface
Specifies	a	NURBS1RailSweepSurface	object.
kN2RailSweepSurface
Specifies	a	NURBS2RailSweepSurface	object.
kNCapSurface
Specifies	a	NURBSCapSurface	object.
kNMultiCurveTrimSurface
Specifies	a	NURBSMultiCurveTrimSurface	object.
kNFilletSurface
This	option	is	available	in	release	3.0	and	later	only.
Specifies	a	NURBSFilletSurface	object.

List	of	NURBSObject	Kinds
See	Also:	Class	NURBSObject.
One	of	the	following	enum	values	describes	the	kind	of	NURBSObject	this	is
(sub-classed	from	which	base	class).	The	sub-classed	NURBSObject	returns
one	of	these	values	in	GetKind().
kNURBSPoint
Specifies	a	NURBSPoint	object.
kNURBSTexturePoint
This	option	is	available	in	release	3.0	and	later	only.
Specifies	a	NURBSTexturePoint	object.
kNURBSCV
Specifies	a	NURBSControlVertex	object.
kNURBSCurve
Specifies	a	NURBSCurve	object.
kNURBSSurface
Specifies	a	NURBSSurface	object.

List	of	NURBS	Trim	Directions
See	Also:	Class	NURBSTrimPoint.
One	of	the	following	enum	values	describes	a	direction	for	a	trim	to	the	curve.
This	defines	the	side	of	the	curve	to	keep	relative	to	the	trim	point.
kNone	=	0
Specifies	the	curve	on	both	sides	of	the	point	should	be	kept	--	no	trimming	is
done.
kPositive	=	1
Specifies	the	curve	on	the	positive	side	of	the	curve	should	be	kept.	The
positive	side	is	the	side	between	the	point	towards	greater	values	in	the	curve
parameter	space.
kNegative	=	2
Specifies	the	curve	on	the	negative	side	of	the	curve	should	be	kept.	The
negative	side	is	the	side	between	the	point	towards	lesser	values	in	the	curve
parameter	space.

List	of	NURBSConst	Types
See	Also:	Class	NURBSPointConstPoint,	Class	NURBSCurveConstPoint,	Class
NURBSSurfConstPoint.
One	of	the	following	enum	values	describes	the	type	of	NURBSConst	this	is.
For	example,	these	correspond	to	the	types	of	dependent	points	available	in	the
NURBS	Surface	user	interface	in	the	'Surface	Point'	rollup.
Constrained	objects	are	those	that	exist	in	the	parameter	space	of	other	objects.
kNConstOnObject
Indicates	the	point	is	actually	on	the	surface	of	the	object.
kNConstOffset
Indicates	the	points	is	offset	some	distance	(specified	in	object	space)	from	the
surface	of	the	object.
kNConstNormal
Indicates	the	point	is	offset	some	distance	along	the	normal	to	the	curve	or
surface.
kNConstTangent
Indicates	the	point	is	offset	some	U	and/or	V	distance	along	the	tangent	from
the	curve	or	surface.	If	the	value	is	positive	it's	the	tangent	that	heads	in	the
direction	of	increasing	parameter	value;	if	negative	it's	the	tangent	that	heads
in	the	direction	of	decreasing	parameter	value.

List	of	NURBSAutoParam	Types
See	Also:	Class	NURBSCVCurve,	Class	NURBSCVSurface.
One	of	the	following	enum	values	describes	how	automatic	reparameterization	is
handled.
kNotAutomatic
Specifies	that	the	reparameterization	is	not	automatic.	When	it	is	automatic,
curves	are	reparameterized	as	they	are	editied.
kAutoCentripetal
Chooses	the	chord-length	algorithm	for	reparameterization.	Chord-length
reparameterization	spaces	knots	(in	parameter	space)	based	on	the	square	root
of	the	length	of	each	curve	segment.
kAutoUniform
Spaces	the	knots	uniformly.	A	uniform	knot	vector	has	the	advantage	that	the
curve	or	surface	changes	only	locally	when	you	edit	it.	With	chord-length
parameterization,	moving	any	CV	can	potentially	change	the	entire	sub-object.

List	of	NURBSParamaterization	Types
See	Also:	Class	NURBSCVCurve,	Class	NURBSCVSurface.
One	of	the	following	enum	values	describes	the	types	or	reparameterization.
kCentripetal
Chooses	the	chord-length	algorithm	for	reparameterization.	Chord-length
reparameterization	spaces	knots	(in	parameter	space)	based	on	the	square	root
of	the	length	of	each	curve	segment.
kUniform
Spaces	the	knots	uniformly.	A	uniform	knot	vector	has	the	advantage	that	the
curve	or	surface	changes	only	locally	when	you	edit	it.	With	chord-length
parameterization,	moving	any	CV	can	potentially	change	the	entire	sub-object.

List	of	NURBSMIrrorAxis	Types
See	Also:	Class	NURBSMirrorCurve,	Class	NURBSMirrorSurface.
One	of	the	following	enum	values	describe	the	axis	of	reflection	for	a	mirror
curve	or	surface.
kMirrorX
kMirrorY
kMirrorZ
kMirrorXY
kMirrorXZ
kMirrorYZ

List	of	NURBS	Texture	Surface	Types
See	Also:	Class	NURBSTextureSurface,	Class	NURBSControlVertex,	Class
NURBSSurface.
Determines	the	type	of	texture	surface	generated.	One	of	the	following	values:
kNMapDefault
Automatically	generates	a	texture	surface.	This	method	evenly	distributes	the
texture,	and	attempts	to	compensate	for	stretching	of	the	surface.
kNMapUserDefined
Generates	a	texture	surface	that	the	user	can	edit.	A	user	may	edit	the	user-
defined	texture	surface	either	by	using	an	Edit	Texture	Surface	dialog	(as	in
versions	of	3ds	max	prior	to	release	3),	or	by	editing	texture	points	directly	in
the	viewports.
kNMapSufaceMapper
Generates	the	texture	surface	by	projecting	the	texture	of	another	NURBS
surface	sub-object	in	the	NURBS	model.	The	projection	travels	along	the
direction	of	the	normals	of	the	source	surface.	Projected	texture	surfaces	are
relational.

Class	PatchCapInfo
See	Also:	Working	with	Shapes	and	Splines.
class	PatchCapInfo

Description:
This	is	the	information	class	for	patch	capping.	All	methods	of	this	class	are
implemented	by	the	system.	Developers	must	only	declare	an	instance	of	this
class	and	then	call	MakeCap()	on	the	shape.

Data	Members:
public:
CapPatchTab	patches;
This	is	used	internally.
PatchCapVertTab	verts;
This	is	used	internally.
PatchCapVecTab	vecs;
This	is	used	internally.
Point3Tab	newVerts;
This	is	used	internally.
Point3Tab	newVecs;
This	is	used	internally.

Methods:

Prototype:
void	Init(BezierShape	*shape);

Remarks:
This	method	is	used	internally.

Prototype:
void	FreeAll();

Remarks:
This	method	is	used	internally.

Operators:

Prototype:
PatchCapInfo	&operator=(PatchCapInfo	&from)

Remarks:
Assignment	operator	used	internally.

Class	ShapeVSel
See	Also:	Class	BitArray,	Class	PolyShape.
class	ShapeVSel

Description:
This	class	stores	and	provides	access	to	shape	vertex	selection	data.	All	methods
of	this	class	are	implemented	by	the	system.

Data	Members:
public:
int	polys;
The	number	of	splines	in	the	shape.
BitArray	*sel;
An	array	of	BitArrays,	one	for	each	spline.

Methods:

Prototype:
ShapeVSel();

Remarks:
Constructor.	The	number	of	splines	is	set	to	0.	The	BitArray	pointer	is	set	to
NULL.

Prototype:
void	Insert(int	where,	int	count=0);

Remarks:
Creates	and	inserts	a	new	BitArray	into	sel.

Parameters:
int	where
The	index	into	sel	indicating	where	to	insert	the	new	BitArray.
int	count=0
The	number	of	bits	in	the	new	BitArray.

Prototype:

void	Delete(int	where);
Remarks:
Deletes	the	specified	BitArray	from	the	sel	list.

Parameters:
int	where
The	index	into	sel	indicating	which	BitArray	to	delete.

Prototype:
void	SetSize(BezierShape&	shape,	BOOL	save=FALSE);

Remarks:
Sets	the	number	of	splines	and	allocates	the	corresponding	number	of
BitArrays	based	on	the	shape	passed.	The	size	of	each	BitArray	is	set	to	the
number	of	vertices	in	each	polyline.

Parameters:
BezierShape&	shape
The	shape	whose	splines	determine	the	sizes	set.
BOOL	save=FALSE
TRUE	to	keep	the	previous	BitArray	contents.	FALSE	to	discard	it.
	

Prototype:
void	SetSize(PolyShape&	shape,	BOOL	save=FALSE);

Remarks:
Sets	the	number	of	splines	and	allocates	the	corresponding	number	of
BitArrays	based	on	the	shape	passed.	The	size	of	each	BitArray	is	set	to	the
number	of	vertices	in	each	spline.

Parameters:
PolyShape&	shape
The	shape	whose	lines	determine	the	sizes	set.
BOOL	save=FALSE
TRUE	to	keep	the	previous	BitArray	contents.	FALSE	to	discard	it.

Prototype:
void	ClearAll();

Remarks:
Clears	every	bit	for	every	poly.

Prototype:
void	Empty();

Remarks:
Sets	the	size	of	every	poly	BitArray	to	0.

Prototype:
IOResult	Save(ISave*	isave);

Remarks:
Saves	the	ShapeVSel	to	disk.

Prototype:
IOResult	Load(ILoad*	iload);

Remarks:
Loads	the	ShapeVSel	from	disk.

Operators:

Prototype:
ShapeVSel&	operator=(ShapeVSel&	from);

Remarks:
Assignment	operator.

Class	ShapeSSel
See	Also:	Class	BitArray,	Class	PolyShape.
class	ShapeSSel

Description:
This	class	stores	and	provides	access	to	shape	segment	selection	data.	All
methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
int	polys;
The	number	of	splines	in	the	shape.
BitArray	*sel;
An	array	of	BitArrays,	one	for	each	spline.

Methods:

Prototype:
ShapeSSel();

Remarks:
Constructor.	Initialize	the	class	members.

Constructor.	The	number	of	splines	is	set	to	0.	The	BitArray	pointer	is	set
to	NULL.Prototype:
~ShapeSSel();

Remarks:
Destructor.	Any	BitArrays	are	freed.

Prototype:
void	Insert(int	where,	int	count=0);

Remarks:
Creates	and	inserts	a	new	BitArray	into	sel.

Parameters:
int	where

The	index	into	sel	indicating	where	to	insert	the	new	BitArray.
int	count=0
The	number	of	bits	in	the	new	BitArray.

Prototype:
void	Delete(int	where);

Remarks:
Deletes	the	specified	BitArray	from	the	sel	list.

Parameters:
int	where
The	index	into	sel	indicating	which	BitArray	to	delete.

Prototype:
void	SetSize(BezierShape&	shape,	BOOL	save=FALSE);

Remarks:
Sets	the	number	of	splines	and	allocates	the	corresponding	number	of
BitArrays	based	on	the	shape	passed.	The	size	of	each	BitArray	is	set	to	the
number	of	segments	in	each	polyline.

Parameters:
BezierShape&	shape
The	shape	whose	splines	determine	the	sizes	set.
BOOL	save=FALSE
TRUE	to	keep	the	previous	BitArray	contents.	FALSE	to	discard	it.

Prototype:
void	SetSize(PolyShape&	shape,	BOOL	save=FALSE);

Remarks:
Sets	the	number	of	splines	and	allocates	the	corresponding	number	of
BitArrays	based	on	the	shape	passed.	The	size	of	each	BitArray	is	set	to	the
number	of	segments	in	each	spline.

Parameters:
PolyShape&	shape

The	shape	whose	lines	determine	the	sizes	set.
BOOL	save=FALSE
TRUE	to	keep	the	previous	BitArray	contents.	FALSE	to	discard	it.

Prototype:
void	ClearAll();

Remarks:
Clears	every	bit	for	every	poly.

Prototype:
void	Empty();

Remarks:
Sets	the	size	of	every	poly	BitArray	to	0.

Prototype:
IOResult	Save(ISave*	isave);

Remarks:
Saves	the	ShapeSSel	to	disk.

Prototype:
IOResult	Load(ILoad*	iload);

Remarks:
Loads	the	ShapeSSel	from	disk.

Operators:

Prototype:
ShapeSSel&	operator=(ShapeSSel&	from);

Remarks:
Assignment	operator.

Class	ShapePSel
See	Also:	Class	BitArray,	Class	PolyShape.
class	ShapePSel

Description:
This	class	stores	and	provides	access	to	shape	polygon	(spline)	selection	data.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
int	polys;
The	number	of	splines	in	the	shape.
BitArray	sel;
One	bit	for	each	spline	in	the	shape.

Methods:

Prototype:
ShapePSel();

Remarks:
Constructor.	Initialize	the	class	members.

Prototype:
~ShapePSel();

Remarks:
Destructor.

Prototype:
void	Insert(int	where);

Remarks:
Resizes	the	BitArray	sel	to	include	a	new	bit	at	the	specified	location.

Parameters:
int	where
The	location	for	the	new	bit	in	the	BitArray.

Prototype:
void	Delete(int	where);

Remarks:
Deletes	the	specified	bit	from	the	BitArray.

Parameters:
int	where
Indicates	which	bit	to	delete.

Prototype:
void	SetSize(BezierShape&	shape,	BOOL	save=FALSE);

Remarks:
Sets	the	number	of	splines	and	resizes	the	BitArray	based	on	the	shape	passed.

Parameters:
BezierShape&	shape
The	shape	whose	splines	determine	the	sizes	set.
BOOL	save=FALSE
TRUE	to	keep	the	previous	BitArray	contents.	FALSE	to	discard	it.

Prototype:
void	SetSize(PolyShape&	shape,	BOOL	save=FALSE);

Remarks:
Sets	the	number	of	splines	and	resizes	the	BitArray	based	on	the	shape	passed.

Parameters:
PolyShape&	shape
The	shape	whose	lines	determine	the	sizes	set.
BOOL	save=FALSE
TRUE	to	keep	the	previous	BitArray	contents.	FALSE	to	discard	it.

Prototype:
void	Set(int	index);

Remarks:

Sets	the	bit	specified	by	the	index	to	1.
Parameters:
int	index
The	bit	to	set.

Prototype:
void	Set(int	index,	int	value);

Remarks:
Sets	the	bit	specified	by	the	index	to	the	value	passed.

Parameters:
int	index
The	bit	to	set	or	clear.
int	value
The	value	to	set,	either	0	or	1.

Prototype:
void	Clear(int	index);

Remarks:
Clears	the	bit	specified	by	the	index	to	1.

Parameters:
int	index
The	bit	to	clear.

Prototype:
void	ClearAll();

Remarks:
Clears	all	the	bits	in	the	array	(sets	them	to	0).

Prototype:
void	Empty();

Remarks:

Sets	the	size	of	sel	to	0.

Prototype:
IOResult	Save(ISave*	isave);

Remarks:
Saves	the	BitArray	to	disk.

Prototype:
IOResult	Load(ILoad*	iload);

Remarks:
Loads	the	BitArray	from	disk.

Operators:

Prototype:
ShapePSel&	operator=(ShapePSel&	from);

Remarks:
Assignment	operator.

Prototype:
int	operator[](int	index)	const;

Remarks:
Array	access	operator.

List	of	BezierShape	Display	Flags
See	Also:	Class	BezierShape.
One	or	more	of	the	following	values:
DISP_VERTTICKS
Display	vertices	as	tick	marks.
DISP_BEZHANDLES
Display	bezier	handles.
DISP_SELVERTS
Display	selected	vertices.
DISP_SELSEGMENTS
Display	selected	segments.
DISP_SELPOLYS
Display	selected	polygons.
DISP_UNSELECTED
Used	by	the	lofter.	Indicates	the	shape	is	unselected.	The	shape	is	drawn	in
white,	overriding	any	colors	that	the	BezierShape	class	would	have	used.
DISP_SELECTED
Used	by	the	lofter.	Indicate	the	shape	is	selected.	The	shape	is	drawn	using	the
selection	color,	overriding	any	colors	that	the	BezierShape	class	would	have
used.
DISP_ATSHAPELEVEL
Used	by	the	lofter.	Indicates	the	shape	is	at	the	current	level.	The	shape	is
drawn	in	green,	overriding	any	colors	that	the	BezierShape	class	would	have
used.
DISP_VERT_NUMBERS
This	flag	is	available	in	release	3.0	and	later	only.
When	this	bit	is	set,	and	vertex	ticks	are	being	displayed,	the	shape	is	drawn
with	vertex	numbers	in	addition	to	the	ticks.
DISP_VERT_NUMBERS_SELONLY
This	flag	is	available	in	release	3.0	and	later	only.
When	this	bit	is	set	and	the	DISP_VERT_NUMBERS	bit	is	set,	only	the
numbers	of	selected	vertices	are	displayed.
DISP_SPLINES_ORTHOG

This	bit	is	reserved	for	internal	use.

Class	MeshCapInfo
See	Also:	Working	with	Shapes	and	Splines.
class	MeshCapInfo

Description:
The	information	class	for	mesh	capping	(MORPH	or	GRID).	All	the	data
members	and	methods	of	this	class	are	used	internally.	Developers	must	only
declare	an	instance	of	this	class	and	then	call	MakeCap()	on	the	shape.

Data	Members:
public:
CapFaceTab	faces;
This	is	used	internally.
MeshCapVertTab	verts;
This	is	used	internally.
Point3Tab	newVerts;
This	is	used	internally.

Methods:

Prototype:
void	Init(PolyShape	*shape);

Remarks:
This	method	is	used	internally.

Prototype:
void	FreeAll();

Remarks:
This	method	is	used	internally.

Operators:

Prototype:
MeshCapInfo	&operator=(MeshCapInfo	&from);

Remarks:

Assignment	operator	used	internally.

Class	BezierShapeTopology
See	Also:	Class	BezierShape,	Template	Class	Tab,	Class	BitArray.
class	BezierShapeTopology

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	has	data	members	and	methods	used	to	build	and	store	topology
information	on	a	BezierShape.	This	class	is	used	with	the
BezierShape::GetTopology()	method.

Data	Members:
public:
BOOL	ready;
TRUE	if	the	data	has	been	built;	otherwise	FALSE.
IntTab	kcount;
A	table	of	integers	containing	the	knot	count	for	each	bezier	spline	in	the
shape.
BitArray	closed;
A	bit	array	containing	a	1	for	each	closed	spline	or	a	0	for	each	open	one	in	the
shape.

Methods:
public:

Prototype:
BezierShapeTopology();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
ready	=	FALSE;

Prototype:
void	Build(BezierShape	&shape);

Remarks:
Builds	the	topology	data	for	the	specified	shape.

Parameters:
BezierShape	&shape
The	shape	whose	topology	data	will	be	built.

Prototype:
IOResult	Save(ISave	*isave);

Remarks:
Used	internally	to	save	the	shape	topology	data.

Prototype:
IOResult	Load(ILoad	*iload);

Remarks:
Used	internally	to	load	the	shape	topology	data.

Prototype:
int	operator==(const	BezierShapeTopology&	t);

Remarks:
Assignment	operator.

Class	ShapeHitData
See	Also:	Class	HitData.
class	ShapeHitData	:	public	HitData

Description:
This	is	a	storage	class	for	hit	records	used	in	hit	testing	to	know	which	specific
shape	object	was	hit.	All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
BezierShape	*shape;
The	shape	that	was	hit.
int	poly;
The	polygon	of	the	shape	that	was	hit.
int	index;
The	index	of	the	sub-object	entity	that	was	hit.

Methods:

Prototype:
ShapeHitData(BezierShape	*shape,	int	poly,	int	index)

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.

Class	ShapeContextCallback
See	Also:	Class	BezierShape,	Class	ModContext.
class	ShapeContextCallback

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	class	has	a	method	used	for	retrieving	other	shapes	in	the	current	editing
context.	This	class	provides	a	way	for	the
BezierShape::PerformTrimOrExtend	method	to	access	the	shapes	being
trimmed.

Methods:
public:

Prototype:
virtual	BezierShape	*GetShapeContext(ModContext	*context)=0;

Remarks:
This	method	will	be	called	with	a	ModContext	pointer;	the	function	should
return	the	shape	for	that	context.	This	is	only	used	in	modifier	applications,
where	more	than	one	shape	object	is	being	modified.	See
\MAXSDK\SAMPLES\MODIFIERS\EDITSPL.CPP	for	an	example
of	its	use.

Parameters:
ModContext	*context
Points	to	the	ModContext	for	the	shape	the	modifier	is	applied	to.

Return	Value:
A	pointer	to	the	BezierShape	for	the	context.

Class	PolyPt
See	Also:	Class	PolyLine.
class	PolyPt

Description:
This	class	represents	a	single	point	of	a	PolyLine.	All	methods	of	this	class	are
implemented	by	the	system.

Data	Members:
public:
Point3	p;
The	location	of	the	point.
DWORD	flags;
Predefined	PolyPt	flags.	Note	that	developers	can	use	bits	0-7	of	the	flags	for
their	own	use.	Bits	8	and	above	are	used	by	the	system.
If	you	are	converting	some	other	type	of	shape	or	spline	to	a	PolyShape	(and
thus	PolyLines)	you	can	set	certain	flags	to	make	things	operate	smoother.
These	flags	are	described	below:
POLYPT_KNOT
This	indicates	if	this	point	in	the	PolyLine	corresponds	to	a	knot	in	the
original	spline.	For	example	if	you	had	a	circle	that	was	a	bezier	spline	it
should	have	four	of	the	points	in	the	PolyLine	designated	as
POLYPT_KNOT.	These	are	the	points	at	the	12	o'clock,	3	o'clock,	6
o'clock	and	9	o'clock	positions.	Then	all	the	other	points	would	be
POLYPT_INTERPOLATED.	This	is	used	to	make	capping	more
efficient,	for	example,	the	system	generally	tries	to	attach	to	a	knot	when
making	connections	between	polygons.
POLYPT_INTERPOLATED
This	indicates	the	point	is	an	interpolated	point	(not	a	knot).
POLYPT_SMOOTH
If	you	convert	to	a	PolyLine,	use	this	bit	to	control	smoothing	of	the
resulting	shape.	If	this	bit	is	set,	it	means	that	any	mesh	generated	will	share
smoothing	across	the	edge.	For	example,	all	the	points	on	a	curved	section
of	a	spline	between	knots	will	have	this	flag	set.	Then	depending	on	the

knot	type	(if	it's	a	corner	or	bezier	corner)	then	this	smooth	flag	will	not	be
set.	If	this	shape	is	then	extruded	or	lofted	this	information	is	used	to
determine	smoothing	groups.	If	this	flag	is	set	you'll	get	a	smooth	transition
however	if	this	bit	is	not	set	you'll	get	a	nice	sharp	corner.
POLYPT_SEG_SELECTED
The	segment	that	starts	with	this	point	is	selected.	This	is	used	in	the
drawing	routines	so	that	PolyShapes	generated	from	BezierShapes	will	still
have	the	selected	segments	drawn	in	the	selected	color.
POLYPT_BRIDGE
This	flag	is	used	internally	by	the	capping	code.
POLYPT_SPLICE
This	flag	is	used	internally	by	the	capping	code.
POLYPT_VISEDGE
This	flag	is	used	internally	by	the	capping	code.
POLYPT_NO_SPLICE
This	flag	is	used	internally	by	the	capping	code.

int	aux;
Auxiliary	data	attached	to	this	point	(usually	a	mesh	vertex	number	for
capping).
DWORD	flags2;
This	flag	contains	the	material	information	for	the	segments.	The	mat	ID	is
stored	in	the	HIWORD.
#define	POLYPT_MATID_SHIFT	16
#define	POLYPT_MATID_MASK		0xFFFF

Methods:

Prototype:
PolyPt();

Remarks:
Constructor.	The	point	p	is	set	to	0,0,0,	flags	and	flags2	are	set	to	0,	aux	is
set	to	0.

Prototype:

PolyPt(Point3	ip,	DWORD	f	=	0,	int	a=0,	DWORD	f2=0);
Remarks:
Constructor.	The	point,	flags,	aux	and	flags2	data	members	are	initialized	to
the	data	passed.

Prototype:
inline	MtlID	GetMatID();

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	gets	the	material	ID	on	a	per-segment	basis	within	the	spline	or
polyline.

Prototype:
inline	void	SetMatID(MtlID	id);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
This	method	sets	the	material	ID	on	a	per-segment	basis	within	the	spline	or
polyline.

Parameters:
MtlID	id
The	ID	to	set.

List	of	Parameter	Types	for	PolyLine	Interpolation
See	Also:	Class	PolyLine.
One	of	the	following	values:
POLYSHP_INTERP_SIMPLE
Parameter	space	based	on	segments.	This	simple	interpolation	is	interpolating
based	on	parameter	space	--	If	a	polyline	has	4	segments,	the	first	segment	is
parameter	values	0-0.25,	the	second	0.25-0.5,	the	third	0.5-0.75	and	the	fourth
0.75-1.0.	This	is	regardless	of	the	length	of	each	segment.
POLYSHP_INTERP_NORMALIZED
Parameter	space	normalized	to	curve	length.	This	interpolation	normalizes	the
parameter	space	to	distance	along	the	length	of	a	polyline.	So	parameter	space
0	is	the	start,	1.0	is	the	end	and	0.5	is	halfway	along	the	actual	length	of	the
curve.

Class	EventRouter
See	Also:	Class	EventUser.
class	EventRouter

Description:
Event	router	functionality.	All	methods	of	this	class	are	implemented	by	the
system.

Methods:

Prototype:
void	Register(EventUser	*user);

Remarks:
Register	and	activate	an	event	user.

Parameters:
EventUser	*user
The	EventUser	to	activate.

Prototype:
void	UnRegister(EventUser	*user);

Remarks:
Remove	an	event	user	from	the	list	(automatically	re-activates	the	previous
user).

Parameters:
EventUser	*user
The	EventUser	to	remove.

Prototype:
BOOL	Process();

Remarks:
Process	the	event.

Return	Value:
TRUE	if	the	event	was	handed	off	to	a	user.

Class	ArcballCallback
See	Also:	Class	ArcballDialog,	Class	Quat.
class	ArcballCallback

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	provides	methods	to	work	with	a	general	arcball	dialog	box	for
doing	3D	rotations.	This	dialog	appears	below:

To	use	these	APIs	you'll	need	to	#include	"arcdlg.h"
All	methods	of	this	class	are	implemented	by	the	plug-in.
Sample	code	can	be	found	in
\MAXSDK\SAMLES\HOWTO\CUSTCTRL\CUSTCTRL.CPP.
Function:
ArcballDialog	*CreateArcballDialog(ArcballCallback	*cb,	HWND
hwndOwner,	TCHAR*	title=NULL);

Remarks:
This	global	function	is	provided	by	3ds	max	and	is	used	to	create	the	arcball
dialog	box.	Then	the	methods	of	your	callback	class	are	called	based	on	the
user's	use	of	the	dialog.	Be	sure	to	call	the	ArcballDialog::DeleteThis()
method	when	done.

Parameters:
ArcballCallback	*cb
The	callback	whose	methods	are	called	based	on	the	user's	interaction	with	the

dialog	controls.
HWND	hwndOwner
The	window	handle	of	the	dialog	owner.
TCHAR*	title=NULL
The	title	string	to	be	displayed	in	the	dialog.

Return	Value:
A	new	instance	of	the	ArcballDialog	class.	Be	sure	to	call	its	DeleteThis()
method	when	done.

Methods:

Prototype:
virtual	void	StartDrag()=0;

Remarks:
This	method	is	called	when	a	drag	operation	begins.	The	developer	may	want
to	save	the	start	state	at	this	point.

Prototype:
virtual	void	EndDrag()=0;

Remarks:
This	method	is	called	when	a	drag	operation	ends.

Prototype:
virtual	void	Drag(Quat	q,	BOOL	buttonUp)=0;

Remarks:
This	method	is	called	during	a	drag	operation.

Parameters:
Quat	q
The	relative	rotation	from	the	start	rotation.
BOOL	buttonUp
If	TRUE	this	indicates	if	the	mouse	button	is	up	(has	been	released);	if	FALSE
the	button	is	down.

Prototype:
virtual	void	CancelDrag()=0;

Remarks:
This	method	is	called	when	the	right	mouse	button	is	clicked	during	a	drag
operation	to	cancel	it.

Prototype:
virtual	void	BeingDestroyed()=0;

Remarks:
This	method	is	called	if	the	dialog	box	window	was	closed.	Note	that
developers	should	not	call	ArcballDialog::DeleteThis()	from	inside	this
method.

Class	IMergeManager
See	Also:	Class	InterfaceServer,	List	of	Reference	Messages	,	Class	ExclList
class	IMergeManager	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	facilitates	taking	care	of	node	handles	when	merging	and	xref’ing
scenes.
	
When	nodes	are	merged,	their	handles	will	be	reassigned	so	that	their	handles
will	not	conflict	with	existing	nodes	in	the	scene.	After	the	merge	process	has
completed,	all	merged	objects	will	receive	a	reference	notification;
REFMSG_NODE_HANDLE_CHANGED.	The	PartID	will	be	a	pointer
to	a	merge	manager	interface	that	you	can	use	to	see	if	a	specific	handle	was
converted	and	convert	between	the	old	and	the	new	handle.	IMergeManager*
pMergeManager	=	(IMergeManager*)partID;	If	a	plug-in	uses	node
handles	in	a	persistent	manner	it	has	to	intercept	this	reference	message	and
convert	the	previous	handles	to	the	newly	generated	handles.

Methods:
public:

Prototype:
virtual	ULONG	GetNewHandle(ULONG	oldHandle)	=	0;

Remarks:
This	method	allows	you	to	obtain	a	new	handle.

Parameters:
ULONG	oldHandle
The	old	handle	you	wish	to	obtain	a	new	one	for.

Return	Value:
The	new	handle.

Prototype:

virtual	bool	HandleExist(ULONG	handle)	=	0;
Remarks:
This	method	allows	you	to	check	if	a	handle	already	exists.

Parameters:
ULONG	handle
The	handle	you	wish	to	check	for.

Return	Value:
TRUE	if	the	handle	exists;	otherwise	FALSE.

Class	DllDesc
See	Also:	Class	DllDir,	Class	ClassDesc,	Class	Interface,	DLL	Functions	and
Class	Descriptors.
class	DllDesc

Description:
This	class	is	available	in	release	2.0	and	later	only.
This	class	provides	information	about	a	DLL.	Every	DLL	in	3ds	max	may
implement	any	number	of	classes.	This	class	has	methods	which	return	the
number	of	classes	implemented	in	the	DLL,	a	description	string	for	the	DLL,
and	a	method	to	unmap	the	DLL	from	memory.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
HINSTANCE	handle;
The	DLL	instance	handle.
TSTR	fname;
The	file	name	the	DLL	was	loaded	from.

Methods:

Prototype:
const	TCHAR	*Description();

Remarks:
Returns	the	Description	defined	in	the	LibDescription()	function.

Prototype:
int	NumberOfClasses();

Remarks:
Returns	the	number	of	classes	implemented	in	the	DLL.	This	is	the	value
returned	by	the	library	function	LibNumberClasses().

Prototype:

void	Free();
Remarks:
This	method	decrements	the	reference	count	of	the	DLL.	When	the	reference
count	reaches	zero,	the	module	is	unmapped	from	the	address	space	of	the
calling	process.

Operators:

Prototype:
ClassDesc	*operator[](int	i);

Remarks:
Returns	a	pointer	to	the	'i-th'	class	descriptor.

Parameters:
int	i
The	zero	based	index	of	the	ClassDesc	to	return.

Prototype:
int	operator==(const	DllDesc&	dd)	const;

Remarks:
Equality	operator.	Returns	nonzero	if	the	DllDesc	passed	matches	this	one;
otherwise	zero.

List	of	System	Error	Log	Message	Types
See	Also:	Class	LogSys.
There	are	four	types	of	log	entries.	In	the	preference	dialog,	the	user	can	select
what	types	of	log	entries	they	want	to	be	generated.	This	is	the	way	a	user	can
control	the	verbosity	of	the	log	file	in	some	meaningful	way.	Developers	are
encouraged	to	be	very	verbose	about	information	and	debug	messages	--	the
Log()	functions	should	be	used	to	record	any	events	out	of	the	ordinary.	As
the	user	can	elect	to	ignore	these	messages	they	are	perfect	for
troubleshooting.
One	or	more	of	the	following	values	(these	values	may	be	ORed	together	(i.e.
SYSLOG_ERROR|SYSLOG_WARN):
SYSLOG_ERROR
An	error	message.	An	example	of	this	type	is	a	fatal	error.
SYSLOG_WARN
A	warning	message.	An	example	of	this	type	is	a	message	telling	the	user
the	MAX	file	just	loaded	is	obsolete	and	needs	to	be	resaved.	This	option
may	not	be	selected	by	the	MAX	user	via	the	UI	but	it	is	available	for	use
(it's	used	internally	often).
SYSLOG_INFO
An	information	message.	An	example	of	this	is	a	message	indicating	a	new
MAX	file	has	been	loaded.
SYSLOG_DEBUG
A	debugging	message.	This	message	type	is	for	anything	you	think	might
help	trace	problems	that	the	user	is	having	with	your	program.

Class	TextureInfo
See	Also:	Class	MtlMakerCallback,	Class	Material,	Class	Matrix3.
class	TextureInfo	:	public	BaseInterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	describes	a	texture	used	by	the	interactive	renderer.	This	includes	all
the	information	about	the	mapping	channel,	tiling,	etc.	A	table	of	these	is
maintained	by	the	texture	data	member	of	class	Material.
There	are	data	members	related	to	maps	which	specify	how	the	texture	should	be
applied.	These	are	specified	independently	for	color	and	alpha	and	include	a
scale.	For	example,	for	normal	multiplication	(modulation)	application	of	a
texture,	the	entries	would	be:
colorOp	=	GW_TEX_MODULATE
colorAlphaSource	=	GW_TEX_TEXTURE
colorScale	=	GW_TEX_SCALE_1X
alphaOp	=	GW_TEX_MODULATE
alphaAlphaSource	=	GW_TEX_TEXTURE
alphaScale	=	GW_TEX_SCALE_1X

For	applying	a	texture	with	alpha	blending,	the	entry	would	be:
colorOp	=	GW_TEX_ALPHA_BLEND
colorAlphaSource	=	GW_TEX_TEXTURE
colorScale	=	GW_TEX_SCALE_1X
alphaOp	=	GW_TEX_LEAVE
alphaAlphaSource	=	GW_TEX_TEXTURE
alphaScale	=	GW_TEX_SCALE_1X

For	applying	an	opacity	map,	the	entry	would	be:
colorOp	=	GW_TEX_LEAVE
colorAlphaSource	=	GW_TEX_TEXTURE
colorScale	=	GW_TEX_SCALE_1X
alphaOp	=	GW_TEX_REPLACE
alphaAlphaSource	=	GW_TEX_TEXTURE
alphaScale	=	GW_TEX_SCALE_1X

Data	Members:
public:
int	useTex;
Indicates	if	the	material	uses	textures.	Nonzero	indicates	textures	are	used.
int	faceMap;
Indicates	if	the	material	is	face	mapped.	Nonzero	indicates	it	is.
DWORD_PTR	textHandle;
The	texture	handle.
int	uvwSource;
The	UVW	source	used.
UVSOURCE_MESH
Use	UVW	coordinates	from	a	standard	map	channel.
UVSOURCE_XYZ
Compute	UVW	from	object	XYZ.
UVSOURCE_MESH2
Use	UVW2	(Vertex	Color)	coordinates.
UVSOURCE_WORLDXYZ
Use	World	XYZ	as	UVW.

int	mapChannel;
The	mapping	channel	used.
Matrix3	textTM;
The	texture	transformation	matrix.
UBYTE	tiling[3];
The	UVW	tiling.	One	of	the	following	values:
GW_TEX_REPEAT
GW_TEX_MIRROR
GW_TEX_NO_TILING

UBYTE	colorOp;	
The	color	texture	operation.	One	of	the	following	values:
GW_TEX_LEAVE
Use	the	source	pixel	value
GW_TEX_REPLACE
Use	the	texture	pixel	value

GW_TEX_MODULATE
Multiply	the	source	with	the	texture
GW_TEX_ADD
Add	the	source	and	texture	
GW_TEX_ADD_SIGNED
Add	the	source	and	texture	with	an	0.5	subtraction
GW_TEX_SUBTRACT
Subtract	the	source	from	the	texture
GW_TEX_ADD_SMOOTH
Add	the	source	and	the	texture	then	subtract	their	product
GW_TEX_ALPHA_BLEND
Alpha	blend	the	texture	with	the	source
GW_TEX_PREMULT_ALPHA_BLEND
Alpha	blend	the	source	with	a	premultiplied	alpha

UBYTE	colorAlphaSource;
The	color	blend	alpha	source.	One	of	the	following	values:
GW_TEX_ZERO
Use	no	alpha	value
GW_TEX_SOURCE
Use	the	source	alpha
GW_TEX_TEXTURE
Use	the	texture	alpha
GW_TEX_CONSTANT
Use	a	constant	BGRA	color	as	an	alpha
GW_TEX_PREVIOUS
Use	the	previous	texture	stage	alpha

UBYTE	colorScale;
The	color	scale	factor.	One	of	the	following	values:
GW_TEX_SCALE_1X
Multiply	the	tex	op	result	by	1
GW_TEX_SCALE_2X
Multiply	the	tex	op	result	by	2
GW_TEX_SCALE_4X

Multiply	the	tex	op	result	by	4
UBYTE	alphaOp;
The	alpha	texture	operation.	One	of	the	following	values:
GW_TEX_LEAVE
Use	the	source	pixel	value
GW_TEX_REPLACE
Use	the	texture	pixel	value
GW_TEX_MODULATE
Multiply	the	source	with	the	texture
GW_TEX_ADD
Add	the	source	and	texture	
GW_TEX_ADD_SIGNED
Add	the	source	and	texture	with	an	0.5	subtraction
GW_TEX_SUBTRACT
Subtract	the	source	from	the	texture
GW_TEX_ADD_SMOOTH
Add	the	source	and	the	texture	then	subtract	their	product
GW_TEX_ALPHA_BLEND
Alpha	blend	the	texture	with	the	source
GW_TEX_PREMULT_ALPHA_BLEND
Alpha	blend	the	source	with	a	premultiplied	alpha

UBYTE	alphaAlphaSource;
The	alpha	blend	alpha	source.	One	of	the	following	values:
GW_TEX_ZERO
Use	no	alpha	value
GW_TEX_SOURCE
Use	the	source	alpha
GW_TEX_TEXTURE
Use	the	texture	alpha
GW_TEX_CONSTANT
Use	a	constant	BGRA	color	as	an	alpha
GW_TEX_PREVIOUS
Use	the	previous	texture	stage	alpha

UBYTE	alphaScale;
The	alpha	scale	factor.	One	of	the	following	values:
GW_TEX_SCALE_1X
Multiply	the	tex	op	result	by	1
GW_TEX_SCALE_2X
Multiply	the	tex	op	result	by	2
GW_TEX_SCALE_4X
Multiply	the	tex	op	result	by	4

Methods:
public:

Prototype:
TextureInfo();

Remarks:
Constructor.	The	data	members	are	initialized	as	follows:
	useTex			=	1;
	faceMap			=	0;
	textHandle			=	0;
	uvwSource		=	UVSOURCE_MESH;
	mapChannel		=	1;
	tiling[0]	=	tiling[1]	=	tiling[2]	=	GW_TEX_REPEAT;
	colorOp			=	GW_TEX_MODULATE;
	colorAlphaSource	=	GW_TEX_TEXTURE;
	colorScale		=	GW_TEX_SCALE_1X;
	alphaOp			=	GW_TEX_LEAVE;
	alphaAlphaSource	=	GW_TEX_TEXTURE;
	alphaScale		=	GW_TEX_SCALE_1X;

Prototype:
~TextureInfo();

Remarks:

Destructor.

Class	CustomParticleDisplay
See	Also:	Class	ParticleSys,	Class	GraphicsWindow.
class	CustomParticleDisplay

Description:
This	class	allow	a	plug-in	particle	system	to	provide	its	own	custom	drawing
routine.	Implement	the	DrawParticle()	method	of	this	class	and	register	this
callback	with	the	SetCustomDraw()	method	of	class	ParticleSys.

Methods:

Prototype:
virtual	void	DrawParticle(GraphicsWindow	*gw,
ParticleSys	&parts,	int	i)=0;

Remarks:
Implemented	by	the	Plug-In.
Draws	the	'i-th'	particle	of	the	specified	particle	system.

Parameters:
GraphicsWindow	*gw
The	window	into	which	to	draw	the	particle.
ParticleSys	&parts
The	particle	system	whose	'i-th'	particle	is	to	be	drawn.
int	i
The	index	of	the	particle	to	draw.

Class	ImpNode
See	Also:	Class	ImpInterface,	Class	INode,	Class	Matrix3,	Class	Point3.
class	ImpNode

Description:
Import	Node	class.	Methods	of	this	class	may	be	used	to	set	various	properties	of
the	node.	All	methods	of	this	class	are	implemented	by	the	system.
Sample	Code:
The	following	sample	code	fragment	(from
\MAXSDK\SAMPLES\IMPEXP\DXFIMP.CPP)	demonstrates	the	use	of
many	of	the	methods	of	this	class.

ImpNode	*node	=	iface->CreateNode();
if	(node)	{
	TriObject	*tri	=	CreateNewTriObject();
	//	Now	find	the	center	of	the	vertices	and	use	that	as	the	pivot
	int	verts	=	m->getNumVerts();
	Point3	accum(0,0,0);
	for(int	i	=	0;	i	<	verts;	++i)
		accum	+=	m->verts[i];
	Point3	delta	=	accum	/	(float)verts;
	for(i	=	0;	i	<	verts;	++i)
		m->verts[i]	-=	delta;
	tri->mesh	=	*m;
	node->Reference(tri);
	Matrix3	tm;
	tm.IdentityMatrix();//	Reset	initial	matrix	to	identity
	tm.SetTrans(delta);	//	Add	in	the	center	point
	node->SetTransform(0,tm);
	iface->AddNodeToScene(node);
	node->SetName(_T(n->name));
	}

Methods:

Prototype:
virtual	RefResult	Reference(ObjectHandle	obj)	=	0;

Remarks:
Sets	the	object	that	this	node	references.

Parameters:
ObjectHandle	obj
The	object	to	reference.

Return	Value:
One	of	the	following	values:
	REF_FAIL
The	operation	failed.
	REF_SUCCEED
The	operation	succeeded.

Prototype:
virtual	void	SetTransform(TimeValue	t,	Matrix3	tm)	=	0;

Remarks:
Sets	the	transformation	matrix	of	the	node.

Parameters:
TimeValue	t
The	time	to	set	the	matrix.
Matrix3	tm
The	new	transformation	matrix	of	the	node.

Prototype:
virtual	void	SetName(const	TCHAR	*newname)	=	0;

Remarks:
Sets	the	name	of	the	node.

Parameters:
const	TCHAR	*newname
The	new	name	for	the	node.

Prototype:
virtual	void	SetPivot(Point3	p)	=	0;

Remarks:
Sets	the	pivot	point	of	the	node.

Parameters:
Point3	p
The	pivot	point	of	the	node.

Prototype:
virtual	INode	*GetINode()=0;

Remarks:
Returns	the	INode	pointer	for	the	node.

Class	RendPickProc
See	Also:	Class	IRendParams.
class	RendPickProc

Description:
An	instance	of	this	class	is	passed	to	IRendParams::SetPickMode().	This	is
a	callback	that	gets	called	as	the	user	tries	to	pick	objects	in	the	scene.

Methods:

Prototype:
virtual	BOOL	Pick(INode	*node)=0;

Remarks:
Implemented	by	the	Plug-In.
Called	when	the	user	picks	something.

Parameters:
INode	*node
The	node	that	was	selected.

Return	Value:
TRUE	to	end	the	pick	mode;	FALSE	to	continue.

Prototype:
virtual	BOOL	Filter(INode	*node)=0;

Remarks:
Implemented	by	the	Plug-In.
Return	TRUE	if	this	is	an	acceptable	hit;	otherwise	FALSE.

Parameters:
INode	*node
The	node	that	was	selected.

Prototype:
virtual	void	EnterMode()

Remarks:

Implemented	by	the	Plug-In.
This	method	is	called	as	the	mode	is	entered.

Default	Implementation:
{}

Prototype:
virtual	void	ExitMode()

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	when	the	mode	is	exited.

Default	Implementation:
{}

Prototype:
virtual	HCURSOR	GetDefCursor()

Remarks:
Implemented	by	the	Plug-In.
Returns	the	handle	of	the	default	cursor.	This	is	the	cursor	to	use	when	the
user	is	NOT	over	a	pickable	object.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	HCURSOR	GetHitCursor()

Remarks:
Implemented	by	the	Plug-In.
Returns	the	handle	of	the	hit	cursor.	This	is	the	cursor	to	use	when	the	user	IS
over	a	pickable	object.

Default	Implementation:
{return	NULL;}

Prototype:
virtual	BOOL	AllowMultiSelect();

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
Implement	this	method	to	return	TRUE	to	allow	the	user	to	pick	more	than
one	thing.	In	that	case	the	Pick()	method	may	be	called	more	than	once.

Return	Value:
TRUE	to	allow	multiple	picks;	otherwise	FALSE.

Default	Implementation:
{return	FALSE;}

Class	TexHandle
See	Also:	Class	TexHandleMaker.
class	TexHandle

Description:
This	class	defines	a	texture	handle.	A	pointer	to	an	instance	of	this	class	is
returned	from	the	methods	of	TexHandleMaker.	Methods	of	this	class	allow
the	handle	to	be	retrieved	and	to	delete	the	handle.

Methods:

Prototype:
virtual	DWORD	GetHandle()	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	retrieve	the	texture	handle.

Prototype:
virtual	void	DeleteThis()	=	0;

Remarks:
Implemented	by	the	Plug-In.
This	method	is	called	to	delete	the	instance	of	the	texture	handle.

Class	ShaderParamDlg
See	Also:	Class	ParamDlg,	Class	StdMat2,	Class	Shader.
class	ShaderParamDlg	:	public	ParamDlg

Description:
This	class	is	available	in	release	3.0	and	later	only.
A	pointer	to	an	instance	of	this	class	is	returned	by	a	Shader	when	it	is	asked	to
put	up	its	rollup	page.

Methods:
public:

Prototype:
virtual	Class_ID	ClassID()=0;

Remarks:
Implemented	by	the	Plug-In.
Returns	the	unique	Class_ID	of	this	object.

Prototype:
virtual	void	SetThing(ReferenceTarget	*m)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	sets	the	current	shader	being	edited	to	the	shader	passed.

Parameters:
ReferenceTarget	*m
The	Shader	to	set	as	current.

Prototype:
virtual	void	SetThings(StdMat2*	pMtl,	Shader*	pShader)=0;

Remarks:
Implemented	by	the	Plug-In.
This	method	sets	the	current	Standard	material	(and	its	shader)	being	edited	to
the	ones	passed.

Parameters:
StdMtl2*	pMtl
The	Standard	material	to	set	as	current.
Shader*	pShader
The	Shader	to	set	as	current.

Prototype:
virtual	ReferenceTarget*	GetThing()=0;

Remarks:
Returns	the	a	pointer	to	the	current	material	being	edited.	Note	that	in	most	of
the	Get/SetThing()	methods	in	the	SDK	the	'Thing'	is	the	actual	plug-in.	In	this
case	it's	not.	It	the	material	which	is	using	this	Shader.

Prototype:
virtual	Shader*	GetShader()=0;

Remarks:
This	method	returns	a	pointer	to	the	current	Shader.

Prototype:
virtual	void	SetTime(TimeValue	t);

Remarks:
This	method	is	called	when	the	current	time	has	changed.	This	gives	the
developer	an	opportunity	to	update	any	user	interface	data	that	may	need
adjusting	due	to	the	change	in	time.

Parameters:
TimeValue	t
The	new	current	time.

Default	Implementation:
{}

Prototype:
virtual	void	DeleteThis()=0;

Remarks:
This	method	is	called	to	delete	this	instance	of	the	class.
For	dynamically	created	global	utility	plugins,	this	method	has	to	be
implemented	and	should	have	a	implementation	like	{	delete	this;	}

Prototype:
virtual	BOOL	PanelProc(HWND	hwndDlg,	UINT	msg,	WPARAM
wParam,	LPARAM	lParam)=0;

Remarks:
This	is	the	dialog	procedure	for	the	user	interface	controls	of	the	Shader.

Parameters:
HWND	hwndDlg
The	window	handle	of	the	rollup	page.
UINT	msg
The	message	to	process.
WPARAM	wParam
The	first	dialog	parameter.
LPARAM	lParam
The	second	dialog	parameter.

Return	Value:
Except	in	response	to	the	WM_INITDIALOG	message,	the	procedure	should
return	nonzero	if	it	processes	the	message,	and	zero	if	it	does	not.	In	response
to	a	WM_INITDIALOG	message,	the	dialog	box	procedure	should	return	zero
if	it	calls	the	SetFocus	function	to	set	the	focus	to	one	of	the	controls	in	the
dialog.	Otherwise,	it	should	return	nonzero,	in	which	case	the	system	sets	the
focus	to	the	first	control	in	the	dialog	that	can	be	given	the	focus.

Prototype:
virtual	void	LoadDialog(int	draw)=0;

Remarks:
This	method	is	used	to	load	the	user	interface	controls	with	their	current
values.

Parameters:

int	draw
This	parameter	is	not	currently	used.

Prototype:
virtual	HWND	GetHWnd()=0;

Remarks:
This	method	returns	the	window	handle	of	the	rollup	panel.

Prototype:
virtual	int	FindSubTexFromHWND(HWND	hw)=0;

Remarks:
This	method	returns	the	index	of	the	sub-texmap	corresponding	to	the	window
whose	handle	is	passed.	If	the	handle	is	not	valid	return	-1.

Parameters:
HWND	hw
The	window	handle	to	check.

Prototype:
virtual	void	UpdateOpacity()=0;

Remarks:
This	method	is	called	to	update	the	opacity	parameter	of	the	plug-in	in	the	user
interface.

Prototype:
virtual	void	UpdateMapButtons()=0;

Remarks:
This	method	is	called	to	update	the	map	buttons	in	the	user	interface.	For
example	it	can	put	a	"	"	or	"m"	or	"M"	on	the	button	face	based	on	the
state	of	the	map.

Class	StdMat2
See	Also:	Class	StdMat,	Class	Shader,	Class	Sampler,	Class	Class_ID.
class	StdMat2	:	public	StdMat

Description:
This	class	is	available	in	release	3.0	and	later	only.
This	is	the	base	class	for	all	materials	supporting	the	plug-in	shader	mechanism.
The	3ds	max	Standard	material	is	derived	from	this	class.

Methods:
public:

Prototype:
virtual	BOOL	KeyAtTime(int	id,	TimeValue	t)=0;

Remarks:
Returns	TRUE	if	the	specified	parameter	whose	ID	is	passed	has	a	key	at	the
time	passed;	otherwise	FALSE.

Parameters:
int	id
The	ID	of	the	parameter	to	check.
TimeValue	t
The	time	to	check.

Prototype:
virtual	int	GetMapState(int	indx)=0;

Remarks:
Returns	a	value	to	indicate	the	state	of	the	specified	map.	One	of	the	following
values:
0:	No	map	present.
1:	Map	present	but	disabled.
2:	Map	present	and	on.

Parameters:

int	indx
The	index	of	the	map	to	check.	See	List	of	Texture	Map	Indices.

Prototype:
virtual	TSTR	GetMapName(int	indx)=0;

Remarks:
Returns	the	name	of	the	map	whose	index	is	passed.

Parameters:
int	indx
The	index	of	the	map	to	check.	See	List	of	Texture	Map	Indices.

Prototype:
virtual	void	SyncADTexLock(BOOL	lockOn)=0;

Remarks:
This	method	is	called	when	the	state	of	the	Ambient/Diffuse	Texture	lock	is
toggled.	The	material	should	store	the	setting	and	update	the	UI	as	required.

Parameters:
BOOL	lockOn
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	BOOL	SwitchShader(Class_ID	id)=0;

Remarks:
This	method	is	called	when	a	new	Shader	has	been	selected.

Parameters:
Class_ID	id
The	Class_ID	of	the	new	shader	to	switch	to.

Prototype:
virtual	Shader*	GetShader()=0;

Remarks:
Returns	a	pointer	to	the	Shader	in	use.	See	Class	Shader	for	details	on	this

plug-in	type.

Prototype:
virtual	BOOL	IsFaceted()=0;

Remarks:
Returns	TRUE	if	the	shader	is	faceted;	otherwise	FALSE.	The	pre-R3
Constant	shader	is	faceted.	The	other	shaders	are	not.

Prototype:
virtual	void	SetFaceted(BOOL	on)=0;

Remarks:
Sets	the	faceted	setting	of	the	Shader.

Parameters:
BOOL	on
TRUE	if	it	is	faceted;	FALSE	if	not.

Prototype:
virtual	long	StdIDToChannel(long	id)=0;

Remarks:
Returns	the	index	of	the	mapping	channels	which	corresponds	to	the	specified
Standard	materials	texture	map	ID.

Parameters:
long	id
The	ID	whose	corresponding	channel	to	return.	See	List	of	Texture	Map
Indices.

Return	Value:
The	zero	based	index	of	the	channel.	If	there	is	not	a	corresponding	channel
return	-1.

Prototype:
virtual	void	SetShading(int	s);

Remarks:

Sets	the	active	shader	to	the	one	specified.	The	supported	types	are	the	pre-R3
shaders.

Parameters:
int	s
One	of	the	following	values	(all	other	values	are	a	NOOP):
SHADE_CONST	(Phong,	faceted).
SHADE_PHONG
SHADE_METAL
SHADE_BLINN

Default	Implementation:
{}

Prototype:
virtual	int	GetShading();

Remarks:
Returns	one	of	the	pre-R3	shader	types.	If	an	R3	shader	type	is	active,
SHADE_BLINN	is	returned.

Return	Value:
One	of	the	following	values:
SHADE_CONST	(Phong,	faceted).
SHADE_PHONG
SHADE_METAL
SHADE_BLINN

Default	Implementation:
{	return	-1;	}

Prototype:
virtual	BOOL	SwitchSampler(Class_ID	id)=0;

Remarks:
This	method	is	called	when	the	active	Sampler	is	switched.

Parameters:

Class_ID	id
The	Class_ID	of	the	new	Sampler.

Prototype:
virtual	Sampler	*GetPixelSampler()=0;

Remarks:
Returns	a	pointer	to	the	sampler	used.

Prototype:
virtual	BOOL	GetSelfIllumColorOn(int	mtlNum=0,	BOOL
backFace=FALSE)=0;

Remarks:
Returns	the	Self	Illumination	Color	On	setting.	TRUE	if	on;	FALSE	if	off.

Parameters:
These	parameters	are	not	used	and	may	be	ignored.

Prototype:
virtual	Color	GetSelfIllumColor(int	mtlNum,	BOOL	backFace)=0;

Remarks:
Returns	the	Self	Illumination	Color	setting.

Parameters:
These	parameters	are	not	used	and	may	be	ignored.

Prototype:
virtual	Color	GetSelfIllumColor(TimeValue	t)=0;

Remarks:
Returns	the	Self	Illumination	Color	setting	at	the	specified	time.

Parameters:
TimeValue	t
The	time	at	which	to	get	the	color.

Prototype:

virtual	void	SetSelfIllumColorOn(BOOL	on)=0;
Remarks:
Sets	the	Self	Illumination	Color	On	setting

Parameters:
BOOL	on
TRUE	for	on;	FALSE	for	off.

Prototype:
virtual	void	SetSelfIllumColor(Color	c,	TimeValue	t)=0;

Remarks:
Sets	the	Self	Illumination	Color	setting	at	the	specified	time.

Parameters:
Color	c
The	color	to	set.
TimeValue	t
The	time	at	which	to	set	the	color.

List	of	Shader	Standard	Parameter	Flags
See	Also:	Class	Shader,	Class	IllumParams.
These	are	the	flags	that	are	returned	in	Shader::SupportStdParams()or
stored	in	IllumParams::stdParams.
One	or	more	of	the	following	values:

STD_PARAM_NONE
This	indicates	none	of	the	flags	below.
STD_PARAM_ALL	
This	indicates	all	of	the	flags	below.
STD_PARAM_METAL
This	bit	is	only	used	by	the	Metal	shader.
STD_PARAM_LOCKDS
Indicate	support	for	the	Diffuse	/	Specular	lock.
STD_PARAM_LOCKAD
Indicates	support	for	the	Ambient	/	Diffuse	lock.
STD_PARAM_LOCKADTEX
Indicates	support	for	the	Ambient	/	Diffuse	texture	lock.
STD_PARAM_SELFILLUM
Indicates	support	for	the	Self	Illumination	parameter.
STD_PARAM_SELFILLUM_CLR
Indicates	support	for	the	Self	Illumination	color	parameter.
STD_PARAM_AMBIENT_CLR
Indicates	support	for	the	Ambient	color	parameter.
STD_PARAM_DIFFUSE_CLR
Indicates	support	for	the	Diffuse	color	parameter.
STD_PARAM_SPECULAR_CLR
Indicates	support	for	the	Specular	color	parameter.
STD_PARAM_FILTER_CLR
Indicates	support	for	the	Filter	color	parameter.
STD_PARAM_GLOSSINESS
Indicates	support	for	the	Glossiness	parameter.
STD_PARAM_SOFTEN_LEV

Indicates	support	for	the	Soften	Level	parameter.
STD_PARAM_SPECULAR_LEV
Indicates	support	for	the	Specular	Level	parameter.
STD_PARAM_DIFFUSE_LEV
Indicates	support	for	the	Diffuse	Level	parameter.
STD_PARAM_DIFFUSE_RHO
Indicates	support	for	the	Roughness	parameter.
STD_PARAM_ANISO
Indicates	support	for	the	Specular	Highlight	Anisotropy	parameter.
STD_PARAM_ORIENTATION
Indicates	support	for	the	Specular	Highlight	Orientation	parameter.
STD_PARAM_REFL_LEV
This	is	reserved	for	future	use.
STD_PARAM_SELFILLUM_CLR_ON
Indicates	support	for	the	Self	Illumination	Color	On/Off	checkbox.
STD_BASIC2_DLG
This	bit	is	only	set	by	the	three	pre-R3	shaders	(Phong,	Blinn,	and	Metal).
If	this	bit	is	not	set	then	the	Basic	Parameters	dialog	is	replaced	by	the	one
provided	by	the	plug-in	shader.
STD_EXTRA_DLG
Indicates	support	for	the	Extended	Parameters	rollout.	If	this	bit	is	not	set
one	provided	by	the	plug-in	shader	will	be	used	instead.
The	following	three	flags,	when	set,	enable	the	specified	controls	in	the
Extended	Parameters	rollout.

STD_EXTRA_REFLECTION
Indicates	support	for	Reflection	Dimming	parameters	(Apply,	Dim
Level,	Refl	Level).
STD_EXTRA_REFRACTION
Indicates	support	for	Index	of	Refraction	parameter.
STD_EXTRA_OPACITY
Indicates	support	for	Opacity	parameters	(Amount,	In/Out,	Type).

List	of	Color	Conversion	Utilities
The	following	global	functions	are	available	for	color	conversion.	These	are
defined	in	\MAXSDK\INCLUDE\HSV.H.

Prototype:
void	RGBtoHSV(DWORD	rgb,	int	*ho,	int	*so,	int	*vo);

Remarks:
Converts	the	specified	color	in	RGB	to	HSV.

Parameters:
DWORD	rgb
The	RGB	color	to	convert.
int	*ho
The	hue	output.
int	*so
The	saturation	output.
int	*vo
The	value	output.

Prototype:
DWORD	HSVtoRGB(int	H,	int	S,	int	V);

Remarks:
Converts	the	specified	color	in	HSV	color	to	RGB.

Parameters:
int	H
The	input	hue.
int	S
The	input	saturation.
int	V
The	input	value.

Return	Value:
The	RGB	color	as	a	DWORD.	See	COLORREF.

Prototype:
void	HSVtoHWBt(int	h,	int	s,	int	v,	int	*ho,	int	*w,	int	*bt);

Remarks:
Converts	the	specified	color	in	HSV	color	to	Hue	Whiteness	and	Blackness
(HWBt).

Parameters:
int	h
The	input	hue.
int	s
The	input	saturation.
int	v
The	input	value.
int	*ho
The	hue	output.
int	*w
The	whiteness	output.
int	*bt
The	blackness	output.

Prototype:
void	HWBttoHSV(int	h,	int	w,	int	bt,	int	*ho,	int	*s,	int	*v);

Remarks:
Converts	the	specified	color	in	Hue	Whiteness	and	Blackness	(HWBt)	color	to
HSV.

Parameters:
int	h
The	hue	input.
int	w
The	whiteness	input.
int	bt
The	blackness	input.
int	*ho

The	hue	output.
int	*s
The	saturation	output.
int	*v
The	value	output.

Class	IMCParamDlg
See	Also:	Class	ReferenceMaker,	Class	MCDeviceBinding,	Class
IRollupWindow.
class	IMCParamDlg	:	public	ReferenceMaker

Description:
This	class	is	an	interface	to	allow	the	plug-in	to	provide	a	user	interface	in	the
command	panel.	It	has	two	data	members.

Data	Members:
public:
MCDeviceBinding	*binding;
Returns	a	pointer	to	the	device	binding.
IRollupWindow	*iRoll;
This	is	an	interface	into	the	command	panel.	Its	methods	may	be	used	to	work
with	rollup	pages	and	alter	UI	controls.

Class	MeshSubHitRec
See	Also:	Class	Mesh,	Class	BitArray.
class	MeshSubHitRec

Description:
This	class	allows	access	to	the	sub-object	hit	records	used	in	Mesh	hit	testing.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
DWORD	dist;
The	distance	of	the	hit.	If	the	user	is	in	wireframe	mode,	this	is	the	distance	in
pixels	to	the	item	that	was	hit.	If	the	user	is	in	shaded	mode,	this	is	the	Z	depth
distance.	Smaller	numbers	indicate	a	closer	hit.
int	index;
The	index	of	the	sub-object	component.	For	example,	if	faces	were	being	hit
tested,	this	would	be	the	index	of	the	mesh's	BitArray	faceSel.	For	edges,	this
is	the	index	into	the	edgeSel	BitArray,	where	the	index	is
3*faceIndex+edgeIndex.
DWORD	flags;
These	are	not	currently	used.

Methods:

Prototype:
MeshSubHitRec(DWORD	dist,	int	index,	MeshSubHitRec	*next);

Remarks:
Constructor.	The	data	members	are	initialized	to	the	data	members	passed.

Prototype:
MeshSubHitRec(DWORD	dist,	int	index,	DWORD	flags,
MeshSubHitRec	*next)

Remarks:
Constructor.	The	data	members	are	initialized	to	the	data	members	passed.

Prototype:
MeshSubHitRec	*Next();

Remarks:
Returns	the	next	mesh	sub	hit	record.

Class	GenericHierarchy
See	Also:	Class	HierarchyEntry.
class	GenericHierarchy

Description:
This	is	a	utility	class	for	describing	hierarchies	of	shapes.	All	methods	of	this
class	are	implemented	by	the	system.
This	is	used	in	generating	mesh	objects	from	shapes.	In	order	for	a	mesh	object
to	be	generated	correctly,	nested	shapes	must	be	oriented	clockwise	or	counter-
clockwise	depending	on	their	level	of	nesting.	For	example,	a	donut	shape	with
two	circular	curves	will	have	the	outer	shape	going	counter-clockwise	and	the
inner	shape	going	clockwise.	If	a	third	shape	was	nested	inside	both	of	these,	its
points	would	be	going	counter-clockwise.

Methods:

Prototype:
GenericHierarchy()

Remarks:
Constructor.	The	hierarchy	is	set	as	initially	empty.

Prototype:
void	AddEntry(int	data,	int	parent	=	-1);

Remarks:
This	method	adds	one	entry	given	its	parent.

Parameters:
int	data
The	polygon	index	of	the	entry	to	add.
int	parent	=	-1
The	index	of	the	parent	of	the	entry.

Prototype:
int	Entries();

Remarks:
Returns	the	total	number	of	members	in	the	hierarchy.

Prototype:
HierarchyEntry*	GetStart();

Remarks:
Retrieves	the	first	item	under	the	root.

Return	Value:
The	first	HierarchyEntry	under	the	root.

Prototype:
HierarchyEntry*	FindEntry(int	data,	HierarchyEntry*	start	=
NULL);

Remarks:
Finds	the	specified	entry	in	the	hierarchy.

Parameters:
int	data
The	polygon	index	of	the	entry	to	find.
HierarchyEntry*	start	=	NULL
The	entry	at	which	to	begin	the	search.	If	NULL	is	specified	the	search	starts
at	the	root.

Return	Value:
A	pointer	to	the	HierarchyEntry	of	the	found	entry.	If	not	found,	NULL	is
returned.

Prototype:
int	NumberOfChildren(int	data);

Remarks:
Returns	the	number	of	children	for	this	item.

Parameters:
int	data
The	index	of	the	polygon	to	return	the	number	of	children	of.

Prototype:
int	GetChild(int	data,	int	index);

Remarks:
Returns	the	specified	child	of	the	specified	entry.

Parameters:
int	data
The	index	of	the	polygon	whose	child	is	to	be	returned.
int	index
Specifies	which	child	to	return.

Return	Value:
The	specified	child	of	the	entry.

Prototype:
void	New();

Remarks:
Clear	out	the	hierarchy	tree.

Prototype:
void	Sort();

Remarks:
Sorts	the	hierarchy	tree	by	children	/	siblings.	This	is	used	internally	as	all	the
sorting	is	done	automatically	as	the	hierarchy	is	generated.

Prototype:
BOOL	IsCompatible(GenericHierarchy&	hier);

Remarks:
Determines	if	this	hierarchy	and	the	specified	hierarchy	are	compatible.

Parameters:
GenericHierarchy&	hier
The	hierarchy	to	check	for	compatibility.

Return	Value:
TRUE	if	the	hierarchies	are	compatible;	otherwise	FALSE.

Prototype:
void	Dump(HierarchyEntry*	start	=	NULL);

Remarks:
This	method	is	used	internally	to	DebugPrint()	the	tree.	See	Debugging.

Prototype:
TSTR&	SortKey();

Remarks:
Returns	the	sort	key	for	the	hierarchy.	This	is	used	internally.

Operators:

Prototype:
GenericHierarchy&	operator=(GenericHierarchy&	from);

Remarks:
Copy	operator.

Parameters:
GenericHierarchy&	from
The	hierarchy	to	copy	from.

Class	NoteKeyTab
See	Also:	Class	NoteKey,	Template	Class	Tab,	Class	DefNoteTrack,	Class
Animatable.
class	NoteKeyTab	:	public	Tab<NoteKey*>

Description:
This	class	is	table	of	pointers	to	NoteKey	objects	which	store	data	about	a	Note
Track	in	Track	View.	See	Template	Class	Tab	for	details	on	manipulating	this
table.

Methods:
public:

Prototype:
~NoteKeyTab();

Remarks:
Destructor.	Deletes	all	the	keys	in	the	table.

Prototype:
void	Clear();

Remarks:
Deletes	all	the	keys	in	the	table.

Prototype:
void	DelKey(int	i);

Remarks:
Deletes	the	specified	key.

Parameters:
int	i
The	zero	based	index	of	the	key	to	delete.

Prototype:
void	KeysChanged();

Remarks:
This	method	is	used	internally	to	sort	the	keys	by	time.

Operators:
public:

Prototype:
NoteKeyTab	&operator=(NoteKeyTab	&keys);

Remarks:
Assignment	operator.

Parameters:
NoteKeyTab	&keys
The	table	of	keys	to	assign.

Structure	SubRendParams
See	Also:	Class	RenderMapsContext.
struct	SubRendParams	:	public	BaseInterfaceServer

Description:
This	structure	contains	information	on	rendering	for	Mirror	and	Automatic
Cubic	materials.	This	is	used	by	the	methods	of	the	RenderMapsContext
class.

Structure:
struct	SubRendParams	{
RendType	rendType;
The	rendering	type	being	done.	See	the	List	of	Render	Types	for	more
information.
BOOL	fieldRender;
TRUE	if	field	rendering	is	being	used;	otherwise	FALSE.
BOOL	evenLines;
This	is	used	when	field	rendering.	TRUE	if	doing	even	numbered	scanlines;
FALSE	for	odd	numbered.
BOOL	doingMirror;
This	is	used	as	part	of	implementing	the	Mirror	material.	It	should	be	FALSE
in	all	other	cases.
int	devWidth,	devHeight;
The	dimensions	in	pixels	of	Bitmap	tobm.
float	devAspect;
The	aspect	ratio	of	Bitmap	tobm.
int	xorg,	yorg;
The	location	on	the	screen	of	the	upper	left	corner	of	the	output	bitmap.
int	xmin,xmax,ymin,ymax;
The	area	of	the	screen	being	rendered.
Point2	blowupCenter;
This	parameter	is	available	in	release	4.0	and	later	only.
The	2D	point	at	the	center	of	the	render	blowup	region.
Point2	blowupFactor;

This	parameter	is	available	in	release	4.0	and	later	only.
The	X	and	Y	scale	factors	for	render	blowup.

Prototype:
virtual	INT_PTR	Execute(int	cmd,	ULONG	arg1=0,	ULONG
arg2=0,	ULONG	arg3=0);

Remarks:
This	method	is	available	in	release	2.0	and	later	only.
This	is	a	general	purpose	function	that	allows	the	API	to	be	extended	in	the
future.	The	3ds	max	development	team	can	assign	new	cmd	numbers	and
continue	to	add	functionality	to	this	class	without	having	to	'break'	the	API.

Parameters:
int	cmd
The	index	of	the	command	to	execute.
ULONG	arg1=0
Optional	argument	1.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	these	parameters.
ULONG	arg2=0
Optional	argument	2.
ULONG	arg3=0
Optional	argument	3.

Return	Value:
An	integer	return	value.	See	the	documentation	where	the	cmd	option	is
discussed	for	more	details	on	the	meaning	of	this	value.
};

Class	Point4
See	Also:	Class	Point3.
class	Point4

Description:
This	class	describes	a	point	using	float	x,	y,	z	and	w	coordinates.	Methods	are
provided	to	add	and	subtract	points,	multiply	and	divide	by	scalars,	and	element
by	element	multiply	and	divide	two	points.	All	methods	are	implemented	by	the
system.
This	class	is	available	in	release	2.0	and	later	only.

Data	Members:
public:
float	x,	y,	z,	w;
The	x,	y,	z	and	w	components	of	the	point.
static	const	Point4	Origin;
This	is	equivalent	to	Point4(0.0f,	0.0f,	0.0f,	0.0f);
static	const	Point4	XAxis;
This	is	equivalent	to	Point4(1.0f,	0.0f,	0.0f,	0.0f);
static	const	Point4	YAxis;
This	is	equivalent	to	Point4(0.0f,1.0f,	0.0f,	0.0f);
static	const	Point4	ZAxis;
This	is	equivalent	to	Point4(0.0f,	0.0f,1.0f,	0.0f);
static	const	Point4	WAxis;
This	is	equivalent	to	Point4(0.0f,	0.0f,	0.0f,1.0f);

Methods:

Prototype:
Point4	()

Remarks:
Constructor.	No	initialization	is	performed.

Prototype:
Point4(float	X,	float	Y,	float	Z,	float	W)

Remarks:
Constructor.	x,	y,	z	and	w	are	initialized	to	the	values	specified.

Prototype:
Point4(double	X,	double	Y,	double	Z,	double	W)

Remarks:
Constructor.	x,	y,	z	and	w	are	initialized	to	the	specified	values	(cast	as	floats).

Prototype:
Point4(int	X,	int	Y,	int	Z,	int	W)

Remarks:
Constructor.	x,	y,	z	and	w	are	initialized	to	the	specified	values	(cast	as	floats).

Prototype:
Point4(const	Point3&	a,	float	W=0)

Remarks:
Constructor.	x,	y,	z	and	w	are	initialized	to	the	specified	Point3	and	W.

Prototype:
Point4(float	af[4])

Remarks:
Constructor.	x,	y,	z	and	w	are	initialized	to	af[0],	af[1],	af[2]	and	af[3]
respectively.

Prototype:
inline	Point4&	Set(float	X,	float	Y,	float	Z,	float	W);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Sets	the	x,	y,	z	and	w	coordinate	to	the	values	passed	and	returns	a	reference	to
this	Point4.

Parameters:
float	X
The	new	x	value.
float	Y
The	new	y	value.
float	Z
The	new	z	value.
float	W
The	new	w	value.

Return	Value:
A	reference	to	this	Point4.

Prototype:
int	Equals(const	Point4&	p,	float	epsilon	=	1E-6f);

Remarks:
This	method	is	available	in	release	3.0	and	later	only.
Compares	this	Point4	and	the	specified	one	to	see	if	the	x,	y,	z	and	w	values
are	within	plus	or	minus	the	specified	tolerance.

Parameters:
const	Point4&	p
The	point	to	compare.
float	epsilon	=	1E-6f
The	tolerance	to	use	in	the	comparison.

Return	Value:
Nonzero	if	the	points	are	'equal';	otherwise	zero.

Operators:

Prototype:
float&	operator[](int	i)
const	float&	operator[](int	i)	const

Remarks:
Allows	access	to	x,	y,	z	and	w	using	the	subscript	operator.

Return	Value:
An	value	for	i	of	0	will	return	x,	1	will	return	y,	2	will	return	z	and	3	will
return	w.

Prototype:
operator	float*()

Remarks:
Conversion	function.	Returns	the	address	of	the	Point4.x

Prototype:
Point4	operator-()	const

Remarks:
Unary	-	operator.	Negates	x,	y,	z	and	w.

Prototype:
Point4	operator+()	const

Remarks:
Unary	+.	Returns	the	Point4.

Prototype:
inline	Point4&	operator-=(const	Point4&);

Remarks:
Subtracts	a	Point4	from	this	Point4.

Return	Value:
A	Point4	that	is	the	difference	between	two	Point4s.

Prototype:
inline	Point4&	operator+=(const	Point4&);

Remarks:
Adds	a	Point4	to	this	Point4.

Return	Value:
A	Point4	that	is	the	sum	of	two	Point4s.

Prototype:
inline	Point4&	operator*=(float);

Remarks:
Multiplies	this	Point4	by	a	floating	point	value.

Return	Value:
A	Point4	multiplied	by	a	float.

Prototype:
inline	Point4&	operator/=(float);

Remarks:
Divides	this	Point4	by	a	floating	point	value.

Return	Value:
A	Point4	divided	by	a	float.

Prototype:
inline	Point4&	operator*=(const	Point4&);

Remarks:
Element-by-element	multiplication	of	two	Point4s:
(x*x,	y*y,	z*z,	w*w).

Return	Value:
A	Point4	element-by-element	multiplied	by	another	Point4.

Prototype:
int	operator==(const	Point4&	p)	const

Remarks:
Equality	operator.	Test	for	equality	between	two	Point4's.

Return	Value:
Nonzero	if	the	Point4's	are	equal;	otherwise	0.

Prototype:
inline	Point4	operator-(const	Point4&)	const;

Remarks:
Subtracts	a	Point4	from	a	Point4.

Return	Value:
A	Point4	that	is	the	difference	between	two	Point4s.

Prototype:
inline	Point4	operator+(const	Point4&)	const;

Remarks:
Adds	a	Point4	to	a	Point4.

Return	Value:
A	Point4	that	is	the	sum	of	two	Point4s.

Prototype:
inline	Point4	operator/(const	Point4&)	const;

Remarks:
Divides	a	Point4	by	a	Point4	element	by	element.

Return	Value:
A	Point4	resulting	from	dividing	a	Point4	by	a	Point4	element	by	element.

Prototype:
inline	Point4	operator*(const	Point4&)	const;

Remarks:
Multiplies	a	Point4	by	a	Point4	element	by	element.
(x*x,	y*y,	z*z,	w*w).

Return	Value:
A	Point4	resulting	from	the	multiplication	of	a	Point4	and	a	Point4.

Prototype:
inline	Point4	operator*(float	f,	const	Point4&	a)

Remarks:
Returns	a	Point4	that	is	the	specified	Point4	multiplied	by	the	specified	float.

Prototype:
inline	Point4	operator*(const	Point4&	a,	float	f)

Remarks:
Returns	a	Point4	that	is	the	specified	Point4	multiplied	by	the	specified	float.

Prototype:
inline	Point4	operator/(const	Point4&	a,	float	f)

Remarks:
Returns	a	Point4	that	is	the	specified	Point4	divided	by	the	specified	float.

Prototype:
inline	Point4	operator+(const	Point4&	a,	float	f)

Remarks:
Returns	a	Point4	that	is	the	specified	Point4	with	the	specified	floating	point
valued	added	to	each	component	x,	y,	z	and	w.

Class	RefListItem
See	Also:	Class	RefList.
class	RefListItem

Description:
This	class	represents	a	single	entry	in	a	RefList.

Data	Members:
public:
RefMakerHandle	maker;
RefListItem	*next;

Methods:

Prototype:
RefListItem(RefMakerHandle	hmaker,	RefListItem	*list)

Remarks:
Constructor.	The	data	members	are	assigned.

List	of	ParamTags	Choices
See	Also:	Class	ParamBlockDesc2,	List	of	ParamType	Choices,	Class
PBAccessor,	Class	PBValidator,	Class	ParamDimension.
These	are	the	parameter	definition	optional	information	tags.	These	tags	are	used
in	the	ParamBlockDesc2	main	constructor	as	part	of	the
<optional_tagged_param_specs>.	The	typical	format	is:
<tag>,	<optional_param_spec>,

The	following	options	are	available.	The	hyperlinks	take	you	to	the	start	of	each
tag	description.
enum	ParamTags
{
p_default,
p_ms_default,
p_range,	
p_ui,
p_uix,
p_validator,
p_accessor,
p_vals,
p_refno,
p_subtexno,
p_submtlno,
p_dim,
p_classID,
p_sclassID,
p_enabled,
p_enable_ctrls,
p_prompt,
p_caption,
p_init_file,

p_file_types,
end,

};

Option	Descriptions:
p_default

The	default	value	assigned	when	a	block	is	first	created.	It	must	be	of	the
correct	type	to	match	the	ParamType	of	the	parameter	(for	example	float
for	TYPE_FLOATs,	int	for	TYPE_INTs,	Color(x,y,z)	for	TYPE_RGBA,
Point3(x,y,z)	for	TYPE_POINT3s,	etc.)	Defaults	can	only	be	supplied	for	the
following	base	types:
TYPE_ANGLE,	TYPE_PCNT_FRAC,
TYPE_COLOR_CHANNEL,	TYPE_FLOAT,
TYPE_TIMEVALUE,	TYPE_INT,	TYPE_BOOL,
TYPE_RADIOBTN_INDEX,	TYPE_POINT3,	TYPE_RGBA,
TYPE_STRING,	TYPE_FILENAME,	TYPE_MATRIX3

Examples:
p_default,			FALSE,
p_default,			1,
p_default,			Point3(0,0,0),
p_default,			25.0,

p_ms_default
This	establishes	the	default	value	used	during	MAXScript	creation.	For
example	the	MAXScript	command	sphere.radius	defaults	to	25.0	when
created	by	the	scripter,	but	p_default	is	set	to	0.0	so	interactive	creation
starts	out	with	a	point-sized	sphere	when	the	first	mouse	click	is	made.
Example:
p_ms_default,	25.0,

p_range
This	establishes	allowable	ranges	used	in	MAXScript	validation	and	spinner
setup.	Supplied	as	two	values	of	the	correct	type	(as	described	in	p_default,
above).	Ranges	can	only	be	supplied	for	the	following	types:

TYPE_ANGLE,	TYPE_PCNT_FRAC,
TYPE_COLOR_CHANNEL,	TYPE_FLOAT,
TYPE_TIMEVALUE,	TYPE_INT,
TYPE_RADIOBTN_INDEX,	TYPE_POINT3,	TYPE_RGBA

Example:
p_range,			-99999999.0,	99999999.0,

p_ui
This	is	the	user	interface	control	specification.
This	optional	tag	takes	a	variable	list	of	arguments	depending	on	the	type	of
UI	control	specified.	This	sequence	of	arguments	is	similar	in	form	to	the
ParamDescUI	class	constructors	in	the	pre-release	3	ParamMap	system.
Following	the	p_ui	tag,	one	of	the	following	control	types	should	be
specified.	Following	that	are	further	specs	as	defined	in	each	type.
Note:	If	a	p_ui	is	supplied	for	a	Tab<>	parameter	type	and	the	control	is
not	of	on	the	ListBox	types,	the	table	size	should	be	fixed	and	supplied	in
the	<required_param_specs>	table_size	field,	and	you	should	supply	a	set	of
dialog	item	ID's	for	each	element	in	the	table.	See	the	example	in
TYPE_SPINNER	below.
Control	Types	Links

Single	Controls
TYPE_SPINNER
TYPE_SLIDER
TYPE_RADIO
TYPE_CHECKBUTTON
TYPE_SINGLECHEKBOX
TYPE_MULTICHEKBOX
TYPE_COLORSWATCH
TYPE_EDITBOX
TYPE_PICKNODEBUTTON
TYPE_TEXMAPBUTTON
TYPE_BITMAPBUTTON
TYPE_MTLBUTTON

TYPE_FILEOPENBUTTON
TYPE_FILESAVEBUTTON

List	Box	Controls
TYPE_NODELISTBOX
TYPE_INTLISTBOX
TYPE_FLOATLISTBOX
TYPE_STRINGLISTBOX

			TYPE_POINT3LISTBOX
	

TYPE_SPINNER:
This	is	a	standard	MAX	spinner	control.	It	requires	a	spinner	type,	list	of
dialog	item	resource	IDs	and	a	display	scale.	The	spinner	type	can	be	one
of	the	EditSpinnerType	values	described	below:
EDITTYPE_INT
Any	integer	value.
EDITTYPE_FLOAT
Any	floating	point	value.
EDITTYPE_UNIVERSE
This	is	a	value	in	world	space	units.	It	respects	the	system's	unit
settings	(for	example	feet	and	inches).
EDITTYPE_POS_INT
Any	integer	>=	0
EDITTYPE_POS_FLOAT
Any	floating	point	value	>=	0.0
EDITTYPE_POS_UNIVERSE
This	is	a	positive	value	in	world	space	units.	It	respects	the	system's
unit	settings	(for	example	feet	and	inches)	.
EDITTYPE_TIME
This	is	a	time	value.	It	respects	the	system	time	settings	(SMPTE	for
example).

The	list	of	dialog	item	IDs	depends	on	the	ParamType	of	the	parameter.
For	TYPE_POINT3	and	TYPE_RGBA,	you	supply	3	pairs	of	IDs,	one	for

each	coordinate,	each	pair	specifying	the	editbox	and	spinner	IDs.	For	the
other	you	specify	one	editbox/spinner	pair	of	IDs.	The	display	scale	can
be	a	floating	point	value	or	the	special	value	SPIN_AUTOSCALE.
Eg:
p_ui,	TYPE_SPINNER,	EDITTYPE_UNIVERSE,
IDC_RADIUS,	IDC_RADSPINNER,	SPIN_AUTOSCALE,

If	the	parameter	is	a	table	type	then,	as	with	all	other	control	types,	you
must	specify	a	fixed	table	size	and	supply	a	list	of	dialog	item	IDs,	one	set
for	each	element	in	the	tab.	Eg,	for	a	3	element	table:
p_ui,	TYPE_SPINNER,	EDITTYPE_UNIVERSE,
IDC_RADIUS1,	IDC_RADSPINNER1,
IDC_RADIUS2,	IDC_RADSPINNER2,
IDC_RADIUS3,	IDC_RADSPINNER3,
SPIN_AUTOSCALE,

	
This	control	type	an	be	used	with	any	of	the	following	ParamTypes:
TYPE_ANGLE,	TYPE_PCNT_FRAC,
TYPE_COLOR_CHANNEL,	TYPE_FLOAT,
TYPE_TIMEVALUE,	TYPE_INT,	TYPE_POINT3,
TYPE_RGBA
	

TYPE_SLIDER:
This	is	a	standard	3ds	max	slider	control.	It	requires	a	type,	list	of	dialog
item	resource	IDs	and	a	number	of	ticks.	The	slider	type	can	be	one	of	the
EditSpinnerType	values	described	below:
EDITTYPE_INT
Any	integer	value.
EDITTYPE_FLOAT
Any	floating	point	value.
EDITTYPE_UNIVERSE
This	is	a	value	in	world	space	units.	It	respects	the	system's	unit
settings	(for	example	feet	and	inches).
EDITTYPE_POS_INT

Any	integer	>=	0
EDITTYPE_POS_FLOAT
Any	floating	point	value	>=	0.0
EDITTYPE_POS_UNIVERSE
This	is	a	positive	value	in	world	space	units.	It	respects	the	system's
unit	settings	(for	example	feet	and	inches)	.
EDITTYPE_TIME
This	is	a	time	value.	It	respects	the	system	time	settings	(SMPTE	for
example).

The	list	of	dialog	item	IDs	depends	on	the	ParamType	of	the	parameter.
For	TYPE_POINT3	and	TYPE_RGBA,	you	supply	3	pairs	of	IDs,	one	for
each	coordinate,	each	pair	specifying	the	editbox	and	slider	IDs.	For	the
other	you	specify	one	editbox/slider	pair	of	IDs.	The	segment	count	is	the
number	of	ticks	in	the	slider.
Eg:
p_ui,	TYPE_SPINNER,	EDITTYPE_UNIVERSE,
IDC_EDITBOX,	IDC_SLIDER,	numSegs

For	Point3	you	can	do	the	following:
p_ui,	TYPE_SPINNER,	EDITTYPE_UNIVERSE,
IDC_EDITBOX1,	IDC_SLIDER1,IDC_EDITBOX2,
IDC_SLIDER2,	IDC_EDITBOX3,	IDC_SLIDER3,	numSegs

This	control	type	an	be	used	with	any	of	the	following	ParamTypes:
TYPE_ANGLE,	TYPE_PCNT_FRAC,
TYPE_COLOR_CHANNEL,	TYPE_FLOAT,
TYPE_TIMEVALUE,	TYPE_INT,	TYPE_POINT3,
TYPE_RGBA
	

TYPE_RADIO:
This	is	the	standard	Win32	radio	button	control.	Following	the
TYPE_RADIO,	supply	an	int	count	of	the	number	of	radiobuttons	in
this	group	and	then	a	list	of	dialog	item	IDs	for	each	button.	This	can	only
be	used	with	TYPE_INT	parameters.	The	value	of	the	parameter
defaults	to	the	ordinal	number	of	the	radio	button,	starting	at	0.	You	can

optionally	supply	a	p_vals	tag	immediately	following	the
TYPE_RADIO	p_ui,	which	should	be	followed	by	a	list	of	numbers,
one	for	each	radio	button.	These	numbers	will	become	the	(non-ordinal)
parameter	value	corresponding	to	which	button	is	set.
TYPE_CHECKBUTTON:
This	control	functions	just	like	TYPE_SINGLECHEKBOX
documented	below	but	is	represented	by	a	button	in	either	a	pressed	in	or
un-pressed	state.
TYPE_SINGLECHEKBOX:
This	is	the	standard	Win32	checkbox.	Follow	the
TYPE_SINGLECHEKBOX	with	the	dialog	item	ID	of	the	checkbox.
This	can	only	be	used	with	TYPE_INT	or	TYPE_BOOL	parameters.
TYPE_MULTICHEKBOX:
This	control	type	is	not	currently	supported.
TYPE_COLORSWATCH:
This	is	a	3ds	max	color-picker	swatch.	Follow	the
TYPE_COLORSWATCH	with	the	dialog	item	ID	of	the	swatch
custom	control.	This	can	only	be	used	with	TYPE_POINT3	or
TYPE_RGBA	parameters.
TYPE_EDITBOX:
This	is	a	3ds	max	custom	editbox	control.	Follow	the
TYPE_EDITBOX	with	the	dialog	item	ID	of	the	EditBox	custom
control.	This	can	only	be	used	with	TYPE_STRING	and
TYPE_FILENAMAE	parameters.
TYPE_PICKNODEBUTTON:
This	is	a	3ds	max	CustButton	control	used	in	a	CBT_CHECK	mode	with
GREEN_WASH	highlight	color,	as	per	node	picking	button	conventions.
Follow	the	control	type	with	the	dialog	item	ID	of	the	CustButton	custom
control.	When	the	user	presses	this	button	a	PickModeCallback	command
mode	is	entered	and	the	user	can	pick	a	scene	node	under	the	filtering	of
any	validation	supplied	(see	tags	p_validator,	p_classID	and
p_sclassID).	This	can	only	be	used	with	TYPE_INODE	parameters.
Use	the	p_prompt	tag	to	supply	a	status	line	prompt.
TYPE_TEXMAPBUTTON:

This	is	a	3ds	max	CustButton	control	used	in	a	CBT_PUSH	mode.	Follow
the	control	type	with	the	dialog	item	ID	of	the	CustButton	custom	control.
This	button	throws	up	a	Map	selector	dialog	when	pressed	and	is	Map
drag-and-drop	sensitive.	This	can	only	be	used	with	TYPE_TEXMAP
parameters.	Use	the	p_prompt	tag	to	supply	a	status	line	prompt.
TYPE_MTLBUTTON:
3ds	max	CustButton	control	used	in	a	CBT_PUSH	mode.	Follow	the
control	type	with	the	dialog	item	ID	of	the	CustButton	custom	control.
This	button	throws	up	a	Material	selector	dialog	when	pressed	and	is
Material	drag-n-drop	sensitive.	This	can	only	be	used	with	TYPE_MTL
parameters.	Use	the	p_prompt	tag	to	supply	a	status	line	prompt.
TYPE_BITMAPBUTTON:
This	is	a	3ds	max	CustButton	control	used	in	a	CBT_PUSH	mode.	Follow
the	control	type	with	the	dialog	item	ID	of	the	CustButton	custom	control.
This	button	throws	up	a	standard	3ds	max	Bitmap	browser	when	pressed
and	is	Bitmap	drag-and-drop	sensitive.	Can	only	be	used	with
TYPE_BITMAP	parameters.	Use	the	p_prompt	tag	to	supply	a	status
line	prompt.
TYPE_FILEOPENBUTTON:
This	is	a	3ds	max	CustButton	control	used	in	a	CBT_PUSH	mode.	Follow
the	control	type	with	the	dialog	item	ID	of	the	CustButton	custom	control.
This	button	throws	up	a	standard	Windows	Open	File	dialg	for	selecting	a
file	name.	Can	only	be	used	with	TYPE_STRING	and
TYPE_FILENAME	parameters.	Use	any	of	the	p_caption,	p_init_file	and
p_file_types	tagsto	further	control	the	dialog.
TYPE_FILESAVEBUTTON:
This	is	a	3ds	max	CustButton	control	used	in	a	CBT_PUSH	mode.	Follow
control	type	with	the	dialog	item	ID	of	the	CustButton	custom	control.
This	button	throws	up	a	standard	Windows	Save	File	dialog	for	selecting	a
file	name.	Can	only	be	used	with	TYPE_STRING	and
TYPE_FILENAME	parameters.	Use	any	of	the	p_caption,	p_init_file	and
p_file_types	tags	to	further	control	the	dialog.
TYPE_INTLISTBOX:
TYPE_FLOATLISTBOX:
This	specifies	a	series	of	controls	for	displaying	and	managing	a	ListBox

control	containing	an	int	or	float	Tab<>	parameter.	The	setup	consists	of	a
ListBox	control,	3	buttons	for	adding,	replacing	and	deleting	items	in	the
list	and	a	3ds	max	spinner	to	supply	source	values	for	Add	&	Replace.
After	the	control	type,	you	supply	4	dialog	item	IDs.	The	first	is	the
ListBox	control,	then	dialog	item	IDs	for	3	CustButton	controls	for	an
Add,	Replace	and	Delete	button,	respectively.	Follow	these	with	a	spinner
type,	editbox/spinner	dialog	item	ID	pair	and	a	display	scale,	exactly	as
for	TYPE_SPINNER	above.	You	can	supply	the	value	0	for	any	of	the
Add,	Replace,	or	Delete	buttons	if	you	don't	need	them	in	the	dialog.	This
can	only	be	used	with	the	following	parameter	types:
For	TYPE_INTLISTBOX:
TYPE_TIMEVALUE_TAB,	TYPE_INT,	TYPE_INT_TAB

For	TYPE_FLOATLISTBOX:
TYPE_ANGLE_TAB,	TYPE_PCNT_FRAC_TAB,
TYPE_COLOR_CHANNEL_TAB,	TYPE_FLOAT_TAB

The	Add/Replace/Delete	buttons	automatically	keep	the	Tab<>	parameter
in	step	with	the	list.
The	TYPE_INT	parameter	type	and	TYPE_INTLISTBOX	control
type	combination	is	recognized	specially	and	is	used	to	allow	a	dropdown
list	to	be	associated	with	an	int	parameter	such	that	the	selection	index	in
the	dropdown	becomes	the	integer	parameter	value.	In	this	mode,	after	the
control	type	you	supply	the	ListBox	control	ID,	then	a	count	followed	by
that	many	string	resource	IDs.	These	strings	are	used	to	populate	the
dropdown.

		Eg:
p_ui,	TYPE_INTLISTBOX,	<list_ctrl_id>,	<num_items>,	[
<item1_str_id>,	<item2_str_id>,	...]

These	are	the	list	control	res	ID,	followed	by	a	list	of	initial	string	items	to
load	up	given	as	a	count	(which	can	be	0	--	you	can	load	them	up
dynamically	in	the	dialog	proc),	and	then	a	list	of	string	resource	IDs.	See
the	std2_shader_type	parameter	in
\MAXSDK\SAMPLES\MATERIALS\STDMTL2.CPP	for	an
example.
TYPE_STRINGLISTBOX:
A	series	a	controls	for	displaying	and	managing	a	ListBox	control

containing	an	string	Tab<>	parameter.	The	setup	consists	of	a	ListBox
control,	3	buttons	for	adding,	replacing	and	deleting	items	in	the	list	and	a
3ds	max	CustEdit	box	to	supply	source	strings	for	Add	&	Replace.	After
the	control	type,	you	supply	4	dialog	item	IDs.	The	first	is	the	ListBox
control,	then	dialog	item	IDs	for	3	CustButton	controls	for	an	Add,
Replace	and	Delete	button,	respectively.	Follow	these	with	the	CustEdit
control	dialog	item	ID.	You	can	supply	the	value	0	for	any	of	the	Add,
Replace,	Delete	buttons	or	CustEdit	control	IDs	if	you	don't	need	them	in
the	dialog.	Can	only	use	with	TYPE_STRING_TAB	parameters.
The	Add/Replace/Delete	buttons	automatically	keep	the	Tab<>	parameter
in	step	with	the	list.
TYPE_NODELISTBOX:
A	series	a	controls	for	displaying	and	managing	a	ListBox	control
containing	an	INode	Tab<>	parameter.	The	setup	consists	of	a	ListBox
control,	3	buttons	for	picking,	replacing	and	deleting	items	in	the	list.
After	the	control	type,	you	supply	4	dialog	item	IDs.	The	first	is	the
ListBox	control,	then	dialog	item	IDs	for	3	CustButton	controls	for	a	Pick,
Replace	and	Delete	button,	respectively.	THe	Pick	and	Replace	buttons
act	exactly	as	TYPE_PICKNODEBUTTONS	to	get	nodes	to	add-to	or
replace-in	the	list.	You	can	supply	the	value	0	for	any	of	the	Add,	Replace,
Delete	buttons	IDs	if	you	don't	need	them	in	the	dialog.	Can	only	use	with
TYPE_INODE_TAB	parameters.
The	Pick/Replace/Delete	buttons	automatically	keep	the	Tab<>	parameter
in	step	with	the	list,	including	managing	References	as	needed.
TYPE_POINT3LISTBOX:
A	series	a	controls	for	displaying	and	managing	a	ListBox	control
containing	an	Point3	Tab<>	parameter.	The	setup	consists	of	a	ListBox
control,	3	buttons	for	adding,	replacing	and	deleting	items	in	the	list,	a
source	spinner	type,	three	pairs	of	editboxes	and	spinners,	and	a	display
scale.	After	the	control	type,	you	supply	4	dialog	item	IDs.	The	first	is	the
ListBox	control,	then	dialog	item	IDs	for	3	CustButton	controls	for	an
Add,	Replace	and	Delete	button,	respectively.	Follow	this	with	the	source
spinner	type,	the	editbox	and	spinner	for	the	first	item,	the	editbox	and
spinner	for	the	second	item,	the	editbox	and	spinner	for	the	third	item,	and
finally	the	display	scale.	Note	that	you	can	only	use	this	with
TYPE_POINT3_TAB	parameters.

	
p_uix

This	option	is	available	in	release	4.0	and	later	only.
This	specifies	which	additional	rollup/map	the	parameter	is	supposed	to
appear	in.

	
p_validator

Specifies	a	validator	object	(see	Class	PBValidator).	You	supply	a	pointer	to
an	instance	of	a	class	derived	from	PBValidator.	This	class	has	a
Validate()	method	which	can	return	TRUE	if	the	PB2Value	passed	to	it	is
valid	and	FALSE	otherwise.	This	can	be	used	for	instance	by	a	node	pick
button	to	check	if	a	choosen	node	is	acceptable.
Example:
p_validator,	&fOutValidator,

	
p_accessor

Specifies	an	accessor	object	(see	Class	PBAccessor).	You	supply	a	pointer	to
an	instance	of	a	class	derived	from	PBAccessor.	This	class	is	used	to
provide	a	parameter	Get/SetValue	callback.	The	callback	can	be	used	to
monitor	parameter	value	changes,	or	to	implement	dynamically-computed
virtual	parameters.	The	class	has	two	virtual	methods,	Get()	and	Set(),	each
given	a	PB2Value&,	parameter	ID,	etc.	In	the	case	of	a	Get()	you	can
modify	the	value	in	the	PB2Value&	to	implement	a	virtual	get.
Example:		
p_accessor,		&cmap_accessor,

p_vals
This	defines	radio	button	values	in	button	order	if	button	settings	need	to
correspond	to	non-ordinal	numbers.	The	value	of	the	parameter	defaults	to
the	ordinal	number	of	the	radio	button,	starting	at	0.	You	can	optionally
supply	this	tag	immediately	following	the	TYPE_RADIO	p_ui.	This	tag
should	be	followed	by	a	list	of	numbers,	one	for	each	radio	button.	These
numbers	will	become	the	(non-ordinal)	parameter	value	corresponding	to
which	button	is	set.

Example:
p_vals,		0,1,2,4,3	,

p_refno
This	is	used	if	the	flag	value	in	a	<required_param_specs>	includes
P_OWNERS_REF.	For	these	reftarg	parameters	this	specifies	the
reference	number	in	the	block's	owner	for	this	reference.	If	the	parameter	is	a
Tab<>,	then	the	reference	number	supplied	is	the	base	reference	number	of
the	0'th	element,	with	sequential	reference	numbers	for	the	following
elements.
Example:
p_refno,		UVGEN_REF,

p_subtexno
For	Texmap	items	in	Mtls	this	defines	the	integer	SubTexmap	index	for	this
Texmap	in	the	owner	Mtl.	This	is	used	by	TYPE_TEXMAPBUTTON
ParamMap2	control	types	to	give	to	the	Material	Edtor	for	automatic	button
and	Drag	And	Drop	handling.
Example:
p_subtexno,		0,

p_submtlno
Defines	the	sub-material	integer	index	for	this	Mtl	in	an	owner	Mtl.	This	is
used	by	TYPE_MTLBUTTON	ParamMap2	control	types	to	give	to	the
Material	Edtor	for	automatic	button	and	Drag	And	Drop	handling.
Example:
p_submtlno,		1,

p_dim
This	allows	you	to	supply	a	dimension	for	this	parameter.	You	specify	a
ParamDimension*	as	the	argument.	Certain	parameter	types	have	an
implied	dimensions	(see	List	of	ParamType	Choices	for	details).	Defaults	to
defaultDim.
Example:
p_dim,				stdWorldDim,

p_classID
This	specifies	the	class	ID	used	as	a	validator	for	the	various	reftarg

parameters.	This	is	used	by	the	scripter,	picknode	filter,	etc.	For	example,	if
you	supply	this	in	a	TYPE_INODE	parameter	and	use	a
TYPE_PICKNODE	parammap	control,	the	picker	uses	this	class	ID	in
the	picking	filter.	If	you	set	P_CAN_CONVERT	in	the	parameter's	flag,	it
applies	an	Object::CanConvertTo()	test	to	the	node's	world	state	using
the	Class_ID	supplied	to	perform	the	filter	test.

p_sclassID
This	specifies	the	super	class	ID	used	as	a	validator	for	the	various	reftarg
parameters.	For	example,	if	you	supply	this	in	a	TYPE_INODE	parameter
and	use	a	TYPE_PICKNODE	parammap	control,	the	picker	uses	this
super	class	ID	in	the	picking	filter.
Example:
p_sclassID,		SHAPE_CLASS_ID,

p_enabled
The	associated	UI	controls	are	enabled	by	default.
supply	TRUE	or	FALSE	to	indicate	whether	associated	UI	controls	are
enabled	or	disabled	when	the	rollout	dialog	is	first	opened.	If	not	supplied,
defaults	to	enabled.	Can	be	overridden	by	p_enable_ctrls	below.
Example:
p_enabled,		FALSE,

p_enable_ctrls
for	TYPE_BOOLs,	lists	which	other	params	would	be	automatically	UI
enabled/disabled	by	this	param
for	TYPE_BOOL	parametes,	lists	which	other	params	should	be
automatically	UI	enabled/disabled	by	changes	in	state	of	this	parameter.	This
allows	you	to	easily	set	up	conditional	enabling	of	other	UI	controls	based	on
the	state	of	the	controlling	parameter.
Example:
p_enable_ctrls,	3,	sel_falloff,	sel_pinch,	sel_bubble,

p_prompt
This	sets	the	status	line	prompt	string	resource	ID	for	various	picker	buttons.
Example:
	p_prompt,	IDS_PICK_CAM_PROMPT,

p_caption
This	is	a	caption	string	resource	ID	for	TYPE_FILEOPENBUTTON	or
TYPE_FILESAVEBUTTON	open/save	file	dialogs.

p_init_file
This	establishes	the	initial	filename	for	open/save	file	dlgs.	Use	a	direct
string	for	the	argument,	not	a	resource	ID.	The	filename	can	be	changed	at
runtime;	do	this	by	setting	the	init_file	member	of	the	ParamDef	for	the
parameter,	e.g.:	pbdesc->GetParamDef(file_param).init_file	=
new_file_name;

p_file_types
This	is	used	by	open/save	file	dialogs.	The	argument	is	a	string	resource	ID.
This	string	sets	up	the	file	type	drop-down	in	the	open/save	dialog.	It	is	in	the
following	form:
"<description1>|<pattern1>|<description2>|<pattern2>|...|"
In	other	words,	it	is	a	sequence	of	file	type	descriptions	and	file	type	patterns
each	separated	by	a	'|'	vertical	bar	and	terminated	by	a	'|'	vertical	bar.	For
example:
"Data(*.dat)|*.dat|Excel(*.csv)|*.csv|All|*.*|"
specifies	3	types	in	the	file	type	dropdown,	the	first	reading	"Data(*.dat)"
and	matching	*.dat	and	the	second	reading	"Excel(*.csv)"	and	matching
*.csv	and	the	third	reading	"All"	and	matching	any	file.

end
Signals	the	end	of	the	<required_param_specs>	entry.

Structure	PB2Value
See	Also:	Class	IParamBlock2,	Class	PBAccessor,	Class	PBBitmap,	Class
ReferenceTarget,	Class	Control.

Description:
This	structure	is	available	in	release	3.0	and	later	only.
This	structure	holds	the	value	in	a	ParamBlock2	or	PBAccessor.
typedef	struct
{
	union
	{
		int	i;

This	is	used	by:	TYPE_INT,	TYPE_BOOL.
		float	f;

This	is	used	by:	TYPE_FLOAT,	TYPE_ANGLE,
TYPE_PCNT_FRAC,	TYPE_COLOR_CHANNEL.

		Point3*	p;
This	is	used	by:	TYPE_POINT3,	TYPE_RGBA.

		TimeValue	t;
This	is	used	by	TYPE_SPINNER	when	the	EditSpinnerType	is
EDITTYPE_TIME.

		TCHAR*	s;
This	is	used	by	TYPE_EDITBOX	or	TYPE_STRING.

		PBBitmap*	bm;
This	is	used	by	TYPE_BITMAP.

		ReferenceTarget*	r;
A	generic	reference	target	pointer	(Mtl*,	Texmap*,	INode*).

		Matrix3*	m;
This	is	used	by	TYPE_MATRIX3.	This	member	is	available	in	release
4.0	and	later	only.

		Control*	control;

This	value	replaces	the	i,f,p	or	t	values	if	they	are	actually	animated	(and
thus	have	a	controller	assigned).

	};
	BYTE	flags;
	These	flags	are	for	internal	use	only,	do	not	alter	them.
}	PB2Value;

Class	ToolImageItem
See	Also:	Class	ToolItem.
class	ToolImageItem	:	public	ToolItem

Description:
This	class	allows	a	developer	to	use	an	image	in	the	toolbar.	This	is	used
internally	as	part	of	the	object	snap	code.	All	methods	of	this	class	are
implemented	by	the	system.

Methods:

Prototype:
ToolImageItem(int	w,int	h,int	k,int	id,	int
y=CENTER_TOOL_VERTICALLY,DWORD	hID=0);

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.	The	type
parameter	of	ToolItem	is	set	to	CTB_IMAGE.

List	of	Tool	Item	Types
See	Also:	Class	ToolItem.
One	of	the	following	values:
CTB_PUSHBUTTON
A	push	button.	These	buttons	pop	back	out	as	soon	as	they	are	released	by	the
user.
CTB_CHECKBUTTON
A	check	button.	These	buttons	stay	pressed	in	until	the	user	presses	them
again.
CTB_MACROBUTTON
This	option	is	available	in	release	3.0	and	later	only.
A	macro	button.	These	may	contain	icons	or	text.
CTB_SEPARATOR
A	separator	or	spacer.	This	is	used	to	separate	groups	of	items	in	the	toolbar.
CTB_STATUS
A	status	control.	These	may	be	used	to	display	text.
CTB_IMAGE
An	image	control.
CTB_OTHER
A	user	defined	tool	type.

Class	MNFaceClusters
See	Also:	Class	MNTempData,	Class	MNMesh
class	MNFaceClusters

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	may	be	used	for	grouping	faces	in	an	MNMesh	into	clusters	for
applying	transformations.	Depending	on	the	constructor	used,	it	may	group	faces
into	clusters	based	on	minimal	angles	between	faces,	on	face	selections,	or	on
both.	The	class	contains	a	list	of	face	"clusters"	for	a	given	mesh.	A	typical
application	would	be	in	Editable	Poly,	where	the	user	has	selected	two	separate
groups	of	faces	on	different	parts	of	the	mesh	and	wants	to	extrude	them	both,	or
rotate	both	around	their	local	centers.	Each	"cluster"	is	a	contiguous	group	of
selected	faces.	This	class	is	only	defined	in	relation	to	some	MNMesh.
For	convenient	caching,	it	is	recommended	that	you	use	this	class	through	the
MNTempData	class.
All	methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
Tab<int>	clust;
The	cluster	number,	one	for	each	face.	Note	that	non-selected	faces	have
UNDEFINED	for	their	id.
int	count;
The	total	number	of	clusters	in	the	MNMesh.

Methods:
public:

Prototype:
MNFaceClusters	(MNMesh	&mesh,	DWORD	clusterFlags);

Remarks:
Constructor.
This	method	will	create	face	cluster	lists	based	on	the	specified	MNMesh.

Each	contiguous	group	of	selected	faces	is	grouped	into	a	cluster.
Parameters:
MNMesh	&mesh
The	mesh	these	clusters	are	based	on.
DWORD	clusterFlags
The	face	flags	to	cluster	the	faces	by.
For	instance,	if	this	value	was	set	to	MN_SEL,	then	faces	would	be	clustered
by	their	selection.

Prototype:
MNFaceClusters	(MNMesh	&	mesh,	float	angle,	DWORD
clusterFlags);

Remarks:
This	method	is	available	in	release	4.0	and	later	only.
This	method	will	create	face	cluster	lists	based	on	the	specified	MNMesh.
Cluster	boundaries	will	be	determined	by	the	angle	between	faces	and
optionally	by	the	face	flags.

Parameters:
MNMesh	&mesh
The	mesh	these	clusters	are	based	on.
float	angle
The	minimum	edge	angle	(in	radians)	used	to	define	a	separation	between
clusters.
DWORD	clusterFlags
The	face	flags	to	cluster	the	faces	by.
For	instance,	if	this	value	was	set	to	MN_SEL,	then	faces	would	be	clustered
by	their	selection.	If	this	value	is	set	to	0,	then	the	clusters	are	based	only	on
edge	angles.

Prototype:
int	operator[](int	i);

Remarks:
Index	operator	for	accessing	cluster	data.

Default	Implementation:
{	return	clust[i];	}

Prototype:
void	MakeVertCluster(MNMesh	&mesh,	Tab<int>	&	vclust);

Remarks:
This	method	will	create	a	table	indicating	which	face	cluster	each	vertex	in	the
mesh	is	in.

Parameters:
MNMesh	&mesh
The	mesh	this	face	cluster	is	based	on.
Tab<int>	&	vclust
The	table	of	vertex	clusters.	This	is	set	to	size	mesh.VNum().	Values	of
UNDEFINED	(0xffffffff)	in	the	table	indicate	that	a	vertex	is	not	in	any
cluster.	If	a	vertex	is	in	two	clusters	(because	it's	a	point	where	corners	of	two
clusters	touch),	the	higher-indexed	face's	cluster	is	dominant.

Prototype:
void	GetNormalsCenters	(MNMesh	&mesh,	Tab<Point3>	&	norm,
Tab<Point3>	&	ctr);

Remarks:
Computes	average	normals	and	centers	for	each	of	the	face	clusters.

Parameters:
MNMesh	&mesh
The	mesh	this	face	cluster	is	based	on.
Tab<Point3>	&	norm
The	tables	where	the	normals	should	be	put.	Each	of	these	tables	has	its	size
set	to	the	number	of	clusters,	and	is	indexed	by	cluster.
Tab<Point3>	&	ctr
The	tables	where	the	centers	should	be	put.	Each	of	these	tables	has	its	size	set
to	the	number	of	clusters,	and	is	indexed	by	cluster.

Prototype:
void	GetBorder	(MNMesh	&mesh,	int	clustID,	Tab<int>	&
cbord);

Remarks:
This	method	will	finds	the	edge	list	that	borders	this	cluster.	This	edge	list	is	a
set	of	closed	loops	of	edges,	which	may	be	empty.	For	instance,	if	the	mesh	is
a	sphere,	and	all	the	faces	are	in	the	cluster,	there	are	no	border	edges	for	the
cluster.	But	if	one	horizontal	row	of	faces,	such	as	the	faces	just	above	the
equator,	are	in	the	cluster,	then	the	edges	above	those	faces	form	one	loop,
while	the	edges	below	form	another.

Parameters:
MNMesh	&mesh
The	mesh	this	face	cluster	is	based	on.
int	clustID
The	ID	of	the	cluster	we	want	to	get	the	border	of.
Tab<int>	&	cbord
The	table	for	putting	the	border	output.	This	table	is	set	up	as	follows:	each
border	loop	is	represented	by	a	series	of	edge	indices,	followed	by	a	-1	to
indicate	a	separation	between	loops.	So	a	result	of	size	10	with	data	1,	4,	6,	9,
-1,	2,	10,	15,	14,	-1,	would	indicate	two	border	loops	consisting	of	four	edges
each.	The	order	of	the	edges	in	the	loops	is	chosen	so	that	as	you	look	from
outside	the	mesh	and	follow	the	path	of	the	edges,	the	face	cluster	will	always
be	on	the	left.

Prototype:
void	GetOutlineVectors	(MNMesh	&	m,	Tab<Point3>	&	cnorms,
Tab<Point3>	&	odir);

Remarks:
This	method	will	retrieve	the	"outline"	direction	for	the	border	of	the	cluster.
This	is	the	direction	used	in	the	"Outline"	feature	in	Editable	Poly	face	level,
as	well	as	in	the	Bevel	command	mode.

Parameters:
MNMesh	&m
The	mesh	this	face	cluster	is	based	on.

Tab<Point3>	&	cnorms
The	cluster	normals,	as	computed	in	the	GetNormalsCenters	method.	(This
data	is	input,	not	output.)
Tab<Point3>	&	odir
This	is	where	the	outline	vectors	are	stored.	This	table	is	set	to	size
mesh.VNum(),	and	stores	one	direction	vector	for	each	vertex.	Most
direction	vectors	are	usually	zero,	since	most	vertices	are	not	on	the	cluster's
border.	All	vectors	are	scaled	so	that	moving	along	them	moves	the	cluster's
border	edges	by	one	unit.	(For	instance,	the	length	of	a	vector	at	a	right	angle
between	two	border	edges	would	be	sqrt(2),	so	that	each	edge	can	move	by	1
unit	"out"	from	the	cluster.)

Class	MNEdgeClusters
See	Also:	Class	MNTempData,	Class	MNMesh
class	MNEdgeClusters

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	a	list	of	edge	"clusters"	for	a	given	MNMesh.	A	typical
application	would	be	in	Editable	Poly,	where	the	user	has	selected	a	two	separate
groups	of	edges	on	different	parts	of	the	mesh	and	wants	to	rotate	both	around
their	local	centers.	Each	"cluster"	is	a	contiguous	group	of	selected	edges	(ie
they	all	touch	each	other).	This	class	is	only	defined	in	relation	to	some
MNMesh.
For	convenient	caching,	it	is	recommended	that	you	use	this	class	through	the
MNTempData	class.

Data	Members:
public:
Tab<int>	clust;
The	cluster	IDs	of	all	the	edges	–	this	table	has	size	MNMesh::nume.
clust[i]	is	UNDEFINED	if	edge	i	is	not	in	any	cluster.
int	count;
The	total	number	of	clusters.

Methods:
public:

Prototype:
MNEdgeClusters	(MNMesh	&mesh,	DWORD	clusterFlags);

Remarks:
Constructor.

Parameters:
MNMesh	&m
The	mesh	these	clusters	are	based	on.
DWORD	clusterFlags

The	edge	flags	to	cluster	the	edges	by.
For	instance,	if	this	value	was	set	to	MN_SEL,	then	edges	would	be	clustered
by	their	selection.

Prototype:
int	operator[](int	i);

Remarks:
Index	operator	to	access	cluster	data.

Default	Implementation:
{	return	clust[i];	}

Prototype:
void	MakeVertCluster	(MNMesh	&mesh,	Tab<int>	&	vclust);

Remarks:
This	method	will	create	a	list	of	cluster	IDs	for	vertices.

Parameters:
MNMesh	&m
The	mesh	associated	with	these	MNEdgeClusters.
Tab<int>	&	vclust
This	is	where	the	output	goes:	vclust	is	set	to	size	MNMesh::numv,	and
the	value	of	each	entry	in	this	table	tells	which	cluster	the	vertex	has	been
assigned	to,	based	on	the	edges	using	it.	If	vertex	"v"	is	not	in	any	clusters
(i.e.	none	of	the	edges	that	use	it	are	in	any	clusters),	vclust[v]	is
UNDEFINED.

Prototype:
void	GetNormalsCenters	(MNMesh	&mesh,	Tab<Point3>	&	norm,
Tab<Point3>	&	ctr);

Remarks:
This	method	extracts	normal	and	center	information	for	each	of	the	edge
clusters.

Parameters:

MNMesh	&m
The	mesh	associated	with	these	MNEdgeClusters.
Tab<Point3>	&	norm
This	table	has	its	size	set	to	the	number	of	clusters	in	the	cluster	list.	Normals
are	computed	as	the	normalized	average	of	the	normal	vectors	of	all	edges	in
the	cluster.
Tab<Point3>	&	ctr
This	table	has	its	size	set	to	the	number	of	clusters	in	the	cluster	list.	Centers
are	the	average	location	of	the	edge	centers	--	thus	a	point	on	three	edges	in
the	same	cluster	has	more	weight	than	a	point	on	only	one	edge	in	the	cluster.

Class	MNFaceElement
See	Also:	Class	MNTempData,	Class	MNMesh
class	MNFaceElement

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	is	used	to	assist	in	the	process	of	sorting	MNMesh	faces	into
separate	elements.
For	convenient	caching,	it	is	recommended	that	you	use	this	class	through	the
MNTempData	class.

Data	Members:
public:
Tab<int>	elem;
The	list	indicating	which	element	each	face	is	in.	The	size	is	the	number	of
faces	in	the	associated	MNMesh.
int	count;
The	total	number	of	elements	in	the	associated	MNMesh.

Methods:
public:

Prototype:
MNFaceElement	(MNMesh	&mesh);

Remarks:
Constructor.
This	method	will	create	an	element	list	based	on	the	specified	MNMesh.

Parameters:
MNMesh	&mesh
A	reference	to	the	MNMesh	for	which	to	create	the	element	list.

Prototype:
int	operator[](int	i);

Remarks:
Index	operator	for	accessing	elements.

Default	Implementation:
{	return	elem[i];	}

Class	PatchSubHitRec
See	Also:	Class	PatchMesh.
class	PatchSubHitRec

Description:
This	class	represents	a	single	hit	record	for	sub-patch	level	hit	testing.	All
methods	of	this	class	are	implemented	by	the	system.

Data	Members:
public:
DWORD	dist;
The	distance	of	the	hit.	If	the	user	is	in	wireframe	mode,	this	is	the	distance	in
pixels	to	the	item	that	was	hit.	If	the	user	is	in	shaded	mode,	this	is	the	Z	depth
distance.	Smaller	numbers	indicate	a	closer	hit.
PatchMesh	*patch;
The	PatchMesh	associated	with	this	sub-patch	hit.
int	index;
The	index	of	the	sub-object	component.	For	example,	if	vertices	were	being
hit	tested,	this	would	be	the	index	into	the	vertex	table.
int	type;
The	type	of	the	hit.	One	of	the	following	values:
PATCH_HIT_PATCH
PATCH_HIT_EDGE
PATCH_HIT_VERTEX
PATCH_HIT_VECTOR
PATCH_HIT_INTERIOR

Methods:

Prototype:
PatchSubHitRec(DWORD	dist,	PatchMesh	*patch,	int	index,
int	type,	PatchSubHitRec	*next);

Remarks:
Constructor.	The	data	members	are	set	to	the	values	passed.

Prototype:
PatchSubHitRec	*Next();

Remarks:
Returns	the	next	sub	hit	record.

Class	IObject
See	Also:	Class	BaseInterfaceServer,	Class	FPInterface,	Class	FPInterfaceDesc,
Function	Publishing,	Class	InterfaceServer,
class	IObject	:	public	BaseInterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	the	base	class	used	to	publish	functions	from	those	objects	not	derived
from	Animatable.	A	developer	inherits	from	this	class	and	implements	the
methods	of	this	class	to	provide	information	about	the	interfaces	published	by
the	class.
There	is	a	corresponding	ParamType2	type	code,	TYPE_IOBJECT,	that
allows	instances	of	these	classes	to	be	passed	and	returned	in	FPInterface
methods.	This	provides	a	simple	form	of	user-defined	type,	in	the	sense	that
these	instance	collections	are	passed	as	interfaces	rather	than	pointers.
MAXScript	has	wrapper	value	classes	for	IObjects	and	so	this	mechanism
provides	a	light-weight	alternative	to	the	MAXScript	SDK	facilities	for	adding
new	wrapper	value	classes	to	the	scripter.
MAXScript	also	calls	the	AcquireInterface()	and	ReleaseInterface()
methods	on	IObjects	as	it	creates	and	collects	these	wrappers,	so	that	IObject
objects	can	keep	track	of	MAXScript's	extant	references	to	them.

Methods:
public:
	
Prototype:
virtual	TCHAR*	GetIObjectName()	=	0;

Remarks:
Returns	the	object/class	name.

Default	Implementation:
{	return	_T("");	}

Prototype:
virtual	int	NumInterfaces()	const	=	0;

Remarks:
Returns	the	number	of	interfaces	published	by	this	object.

Default	Implementation:
{	return	0;	}

Prototype:
virtual	BaseInterface	*GetInterfaceAt(int	i)	const	=	0;

Remarks:
Returns	a	pointer	to	the	'i-th'	interface.

Parameters:
int	i
The	zero	based	index	of	the	interface	to	return.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	BaseInterface*	GetInterface(Interface_ID	id)	=	0;

Remarks:
Returns	a	pointer	to	the	interface	whose	ID	is	specified.

Parameters:
Interface_ID	id
The	ID	of	the	interface	to	return.

Default	Implementation:
{	return	NULL;	}

Prototype:
virtual	void	AcquireIObject();

Remarks:
This	method	is	called	when	MAXScript	makes	a	reference	to	this	object.	This
is	part	of	the	IObject	reference	management	and	can	be	implemented	by
dynamically	allocated	IObjects	for	ref-count	based	lifetime	control.

Default	Implementation:
{	}

Prototype:
virtual	void	ReleaseIObject();

Remarks:
This	method	is	called	when	MAXScript	deletes	a	reference	to	this	object.	This
is	part	of	the	IObject	reference	management	and	can	be	implemented	by
dynamically	allocated	IObjects	for	ref-count	based	lifetime	control.

Default	Implementation:
{	}

Prototype:
virtual	void	DeleteIObject();

Remarks:
This	method	is	the	virtual	destructor	for	the	IObject.

Default	Implementation:
{	}

Class	IIRenderMgrSelector
See	Also:	Class	InterfaceServer,	Class	IInteractiveRender	,	Class
InterfaceServer,	Class	INode
class	IIRenderMgrSelector	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	abstract	(interface)	for	an	interactive	rendering	manager
selector	to	assist	in	the	process	of	determining	the	nodes	that	are	selected	by	the
interactive	rendering	manager.

Methods:
public:

Prototype:
virtual	BOOL	IsSelected(INode*	pINode);

Remarks:
This	method	returns	whether	the	specified	node	is	selected.	By	default	all
nodes	are	selected	and	should	therefore	be	shaded.

Parameters:
INode*	pINode
The	node	to	test.

Default	Implementation:
{	return	TRUE;	}

Class	InterfaceNotifyCallback
See	Also:	Class	BaseInterface,	Function	Publishing	System.
class	InterfaceNotifyCallback

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	provides	a	callback	mechanism	which	can	be	registered	with	an
interface	on	Acquire()	so	that	it	can	be	notified	when	the	interface	goes	away	as
the	server	controls	the	lifetime.

Methods:
public:

Prototype:
virtual	void	InterfaceDeleted(BaseInterface*	bi);

Remarks:
This	method	gets	called	to	notify	the	server	is	deleting	the	interface.

Parameters:
BaseInterface*	bi
A	pointer	to	the	appropriate	BaseInterface.

Default	Implementation:
{	}

Prototype:
virtual	BaseInterface*	GetInterface(Interface_ID	id);

Remarks:
Returns	a	pointer	to	the	interface	whose	ID	is	specified,	for	future	notification
extensions.

Parameters:
Interface_ID	id
The	ID	of	the	interface	to	return.

Return	Value:

{	return	NULL;	}

Class	IMenuElement
See	Also:	Class	IMenuItem,	Class	IPoint2,	Class	Box2
class	IMenuElement

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	abstract	class	represents	an	interface	for	any	menu	element.	Methods	that
are	marked	as	internal	should	not	be	used.

Methods:
public:

Prototype:
virtual	void	SetOrigin(const	IPoint2&	origin,	OriginLocation
location)	=	0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	the	element’s	origin	and	origin	location.

Parameters:
IPoint2&	origin
The	x,	y	coordinates	of	the	origin.
OriginLocation	location
The	origin	location,	either	one	of;	UPPER_LEFT,	LOWER_LEFT,
LOWER_RIGHT,	or	UPPER_RIGHT.

Prototype:
virtual	const	IPoint2&	GetOrigin()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	x,	y	coordinates	of	the	element’s	origin.

Prototype:

virtual	void	SetVisible(bool	visible)	=	0;
Remarks:
This	method	allows	you	to	set	the	visibility	of	the	element.

Parameters:
bool	visible
TRUE	for	visible,	FALSE	for	invisible.

Prototype:
virtual	bool	GetVisible()	=	0;

Remarks:
This	method	returns	the	visibility	of	the	element.	TRUE	if	the	element	is
visible,	otherwise	FALSE.

Prototype:
virtual	void	SetTitle(const	TCHAR	*customTitle)	=	0;

Remarks:
This	method	allows	you	to	set	the	item’s	title.

Parameters:
TCHAR	*customTitle
The	title	string.

Prototype:
virtual	const	TSTR&	GetTitle()	=	0;

Remarks:
This	method	returns	the	item’s	title	string.

Prototype:
virtual	void	SetEnabled(bool	enabled)	=	0;

Remarks:
This	method	allows	you	to	enable	and	disable	the	element.

Parameters:

bool	enabled
TRUE	to	enable,	FALSE	to	disable.

Prototype:
virtual	bool	GetEnabled()	=	0;

Remarks:
This	method	returns	the	state	of	the	element.	TRUE	if	it’s	enabled,	FALSE	if
it’s	disabled.

Prototype:
virtual	const	IPoint2&	GetSize()	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	element’s	size	in	the	menu’s	coordinate	space.

Prototype:
virtual	const	Box2&	GetRect()	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	element’s	rectangle	size	in	the	menu’s	coordinate
space.

Prototype:
virtual	bool	IsInRect(const	IPoint2&	point)	=	0;

Remarks:
This	method	is	used	internally.
This	method	determines	if	a	specific	point	is	inside	the	element’s	rectangle.

Parameters:
IPoint2&	point
The	point	to	test.

Return	Value:
TRUE	if	the	point	is	inside	the	rectangle,	otherwise	FALSE.

Class	IMenuItem
See	Also:	Class	IMenuElement,	Class	IMenuGlobalContext,	Class
IMenuLocalContext,	Class	ActionItem,	Class	IMenu,	Class	MaxIcon	,	Class
IQuadMenuSettings
class	IMenuItem	:	public	IMenuElement,	public	FPMixinInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	abstract	class	represents	an	interface	for	a	menu	item.	Methods	that	are
marked	as	internal	should	not	be	used.

Methods:
public:

Prototype:
virtual	void	SetIMenuLocalContext(IMenuLocalContext*
pIMenuLocalContext)	=	0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	a	new	(local)	context	for	the	menu,	invalidating
the	menu’s	cache.

Parameters:
IMenuLocalContext*	pIMenuLocalContext
A	pointer	to	the	new	local	context	object	you	wish	to	set.

Prototype:
virtual	ActionMode	GetActionMode()	const	=	0;

Remarks:
This	method	returns	the	current	action	mode.	When	item	selection	instigates
an	action	item,	calls	functions,	or	displays	a	submenu	the	action	mode	changes
to	indicate	the	exact	state	the	system	is	in.

Return	Value:
Either	of	the	following;	AM_INACTIVE,	AM_SEPARATOR,

AM_ITEM,	AM_FN,	AM_SUBMENU,	AM_ITEM_SUBMENU

Prototype:
virtual	bool	ExecuteAction()	const	=	0;

Remarks:
This	method	will	execute	the	current	action.

Return	Value:
TRUE	if	the	action	was	executed	successfully,	otherwise	FALSE.

Prototype:
virtual	void	ActAsSeparator()	=	0;

Remarks:
This	method	allows	you	to	make	the	item	act	as	an	item	seperator.

Prototype:
virtual	bool	IsSeparator()	const	=	0;

Remarks:
This	method	determines	if	the	item	is	acting	as	a	seperator	(TRUE)	or	not
(FALSE).

Prototype:
virtual	void	SetActionItem(ActionItem*	pActionItem)	=	0;

Remarks:
This	method	allows	you	to	set	the	current	action	item.	Note	that
GetActionItem()	returns	NULL	if	the	ActionMode	is	not	AM_ITEM.

Parameters:
ActionItem*	pActionItem
The	action	item	you	wish	to	set.

Prototype:
virtual	ActionItem*	GetActionItem()	const	=	0;

Remarks:
This	method	returns	a	pointer	to	the	current	action	item,	or	NULL	if	the
ActionMode	is	not	AM_ITEM.

Prototype:
virtual	void	SetActionFn(ActionFn	actionFn)	=	0;

Remarks:
This	method	allows	you	to	set	the	current	action	function.	Note	that
GetActionFn()	returns	NULL	if	the	ActionMode	is	not	AM_FN.	A
lso	note:	typedef	void	(*	ActionFn)(void);

Parameters:
ActionFn	actionFn
The	action	function	you	wish	to	set.

Prototype:
virtual	const	ActionFn	GetActionFn()	const	=	0;

Remarks:
This	method	returns	the	current	action	function,	or	NULL	if	the	ActionMode
is	not	AM_FN.
Note:	typedef	void	(*	ActionFn)(void);

Prototype:
virtual	void	SetSubMenu(IMenu*	menu)	=	0;

Remarks:
This	method	allows	you	to	set	the	submenu.	Note	that	GetSubMenu()
returns	NULL	if	the	ActionMode	is	not	AM_SUBMENU.

Parameters:
IMenu*	menu
The	submenu	you	wish	to	set.

Prototype:
virtual	IMenu*	GetSubMenu()	=	0;

Remarks:
This	method	returns	a	pointer	to	the	submenu,	or	NULL	if	the	ActionMode	is
not	AM_SUBMENU.

Prototype:
virtual	void	SetPreDisplayCB(PreDisplayCB	preDisplayCB)	=	0;

Remarks:
This	method	allows	you	to	set	the	pre-display	callback.
Note:	typedef	void	(*	PreDisplayCB)(IMenuItem&	menuItem);

Parameters:
PreDisplayCB	preDisplayCB
The	callback	to	set.

Prototype:
virtual	const	PreDisplayCB	GetPreDisplayCB()	const	=	0;

Remarks:
This	method	returns	the	pre-display	callback.

Prototype:
virtual	void	Display(bool	leftToRight)	=	0;

Remarks:
This	method	is	used	internally.

Prototype:
virtual	TCHAR	GetAccelerator()	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	item’s	accelerator,	or	0	if	none	is	assigned.

Prototype:
virtual	void	SetIcon(MaxIcon*	pMaxIcon)	=	0;

Remarks:
This	method	allows	you	to	set	the	item’s	icon.

Parameters:
MaxIcon*	pMaxIcon
A	pointer	to	a	MaxIcon	to	set.

Prototype:
virtual	const	MaxIcon*	GetIcon()	const	=	0;

Remarks:
This	method	returns	a	pointer	to	the	item’s	icon.

Prototype:
virtual	void	SetChecked(bool	checked)	=	0;

Remarks:
This	method	allows	you	to	set	the	checked	state	of	the	item.

Parameters:
bool	checked
TRUE	to	check	the	item,	FALSE	to	uncheck	the	item.

Prototype:
virtual	bool	GetChecked()	=	0;

Remarks:
This	method	returns	TRUE	if	the	item	is	checked	or	FALSE	if	it	is	unchecked.

Prototype:
virtual	void	SetHighlighted(bool	highlighted)	=	0;

Remarks:
This	method	allows	you	to	set	the	highlighted	state	of	the	item.

Parameters:
bool	highlighted
TRUE	to	highlight	the	item,	FALSE	if	you	do	not	want	to	highlight	the	item.

Prototype:
virtual	bool	GetHighlighted()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	item	is	highlighted,	otherwise	FALSE.

Prototype:
virtual	void	SetUseCustomTitle(bool	useCustomTitle)	=	0;

Remarks:
This	method	allows	you	to	tell	the	item	it	should	use	a	custom	title,	which	is
set	through	SetTitle().

Parameters:
bool	useCustomTitle
TRUE	to	use	a	custom	title,	FALSE	to	use	the	default.

Prototype:
virtual	bool	GetUseCustomTitle()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	item	is	using	a	custom	title	or	FALSE	if	it’s
using	a	default.

Prototype:
virtual	void	SetDisplayFlat(bool	displayFlat)	=	0;

Remarks:
This	method	allows	you	to	set	whether	the	submenu-item	should	be	displayed
‘flat’.

Parameters:
bool	displayFlat
TRUE	to	set	to	flat,	otherwise	FALSE.

Prototype:
virtual	bool	GetDisplayFlat()	const	=	0;

Remarks:

This	method	returns	TRUE	if	the	submenu-item	should	be	displayed	‘flat’,
otherwise	FALSE.

Prototype:
virtual	void	PostMenuInteraction()	=	0;

Remarks:
This	method	is	used	internally.
This	method	is	called	after	the	user/menu	interaction	is	done	after	which	it	will
clear	the	caches	for	ActionItem	handler	values.

The	following	functions	are	not	part	of	the	class	but	are	available
for	use.

Function:
IMenuItem	*	GetIMenuItem();

Remarks:
This	method	will	return	a	pointer	to	the	IMenuItem.

Prototype:
void	ReleaseIMenuItem(IMenuItem	*);

Remarks:
This	method	will	release	the	specified	IMenuItem.

Parameters:
IMenuItem	*
A	pointer	to	the	IMenuItem	you	wish	to	release.

Class	IMenuGlobalContext
See	Also:	Class	ImenuItem,	Class	IMenuSettings,	Class	IMenuTimer,	Class
ItemID,	Class	IPoint2
class	IMenuGlobalContext

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	abstract	class	represents	an	global	context	interface	for	all	menus	that	might
be	displayed	during	a	user’s	menuing	action	and	is	used	internally.	Methods	that
are	marked	as	internal	should	not	be	used.

Methods:
public:

Prototype:
virtual	void	SetIMenuSettings(IMenuSettings*	pIMenuSettings)	=
0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	the	menu	settings	associated	with	this	global
context.

Parameters:
IMenuSettings*	pIMenuSettings
A	pointer	to	a	menu	settings	object.

Prototype:
virtual	IMenuSettings*	GetIMenuSettings()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	a	pointer	to	the	menu	settings	associated	with	this	global
context.

Prototype:

virtual	void	UpdateCursorPosition()	=	0;
Remarks:
This	method	is	used	internally.
This	method	updates	the	cursor	position	from	Win32.

Prototype:
virtual	const	IPoint2&	GetCursorPosition()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	cached	cursor	position.

Return	Value:
The	x	and	y	coordinates	of	the	cursor.

Prototype:
virtual	const	IPoint2&	GetInitialCursorPosition()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	cached	initial	cursor	position	(i.e.	the	coordinate
where	the	user	clicked).

Return	Value:
The	x	and	y	coordinates	of	the	cached	initial	cursor	position.

Prototype:
virtual	void	SetInitialCursorPosition(IPoint2&	initPos)	=	0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	the	cached	initial	cursor	position	(i.e.	the
coordinate	where	the	user	clicked).

Parameters:
IPoint2&	initPos
The	x	and	y	coordinate	of	the	cursor	position.

Prototype:
virtual	void	SetIMenuTimer(IMenuTimer*	pIMenuTimer)	=	0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	a	global	timer	for	the	menu’s	global	context.

Parameters:
IMenuTimer*	pIMenuTimer
A	pointer	to	the	menu	timer	object,

Prototype:
virtual	IMenuTimer*	GetIMenuTimer()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	a	pointer	to	the	global	timer	for	the	menu’s	global
context.

Prototype:
virtual	void	SetHDisplayWnd(HWND	hDisplayWnd)	=	0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	the	handle	to	the	display	window.

Parameters:
HWND	hDisplayWnd
The	handle	to	the	display	window.

Prototype:
virtual	HWND	GetHDisplayWnd()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	handle	to	the	display	window.

Prototype:

virtual	void	SetHMessageWnd(HWND	hDisplayWnd)	=	0;
Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	the	handle	to	the	message	window

Parameters:
HWND	hDisplayWnd
The	handle	to	the	message	window.

Prototype:
virtual	HWND	GetHMessageWnd()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	handle	to	the	message	window.

Prototype:
virtual	void	SetHDisplayDC(HDC	hDisplayDC)	=	0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	a	handle	to	the	display	device	context.

Parameters:
HDC	hDisplayDC
The	handle	to	the	display	device	context.

Prototype:
virtual	HDC	GetHDisplayDC()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	handle	to	the	display	device	context.

Prototype:
virtual	void	SetTitleHFont(HFONT	hTitleFont)	=	0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	the	handle	to	the	title	font.

Parameters:
HFONT	hTitleFont
The	handle	to	the	title	font.

Prototype:
virtual	HFONT	GetTitleHFont()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	handle	to	the	title	font.

Prototype:
virtual	void	SetItemHFont(HFONT	hItemFont)	=	0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	the	handle	to	the	item	font.

Parameters:
HFONT	hItemFont
The	handle	to	the	item	font.

Prototype:
virtual	HFONT	GetItemHFont()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	handle	to	the	item	font.

Prototype:
virtual	void	SetAcceleratorHFont(HFONT	hItemFont)	=	0;

Remarks:
This	method	is	used	internally.

This	method	allows	you	to	set	the	handle	to	the	accelerator	font.
Parameters:
HFONT	hItemFont
The	handle	to	the	accelerator	font.

Prototype:
virtual	HFONT	GetAcceleratorHFont()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	handle	to	the	accelerator	font.

Prototype:
virtual	void	SetUniformItemSize(const	IPoint2&	itemSize)	=	0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	the	menu’s	maximum	uniform	item	size.

Parameters:
IPoint2&	itemSize
The	size	rectangle.

Prototype:
virtual	const	IPoint2&	GetUniformItemSize()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	menu’s	maximum	uniform	item	size	as	a	rectangle.

Prototype:
virtual	int	GetTitleBarHeight()	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	height	of	the	title	bar,	not	counting	the	border.

Prototype:
virtual	ItemID&	GetCurrentItemID()	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	ItemID	of	the	menu/item	triplet	that’s	currently	being
traversed.

Prototype:
virtual	ItemID&	GetSelectionItemID()	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	ItemID	of	the	menu/item	triplet	that’s	currently
selected.

Prototype:
virtual	bool	HasSelection()	=	0;

Remarks:
This	method	is	used	internally.
This	method	will	determine	selection	is	available	and	will	return	TRUE	if
selection	is	available	or	FALSE	if	it	is	not.

Prototype:
virtual	bool	IsCurrentMenuSelected()	=	0;;

Remarks:
This	method	is	used	internally.
This	method	will	determine	the	selection	status	of	the	current	menu	and	will
return	TRUE	if	the	current	menu	is	selected	or	FALSE	if	it	is	not.

Prototype:
virtual	bool	IsCurrentItemSelected()	=	0;

Remarks:
This	method	is	used	internally.

This	method	will	determine	the	selection	status	of	the	current	menu	and	item
and	will	return	TRUE	if	the	current	menu	and	item	are	selected	or	FALSE	if
they	are	not.

Prototype:
virtual	void	SelectCurrentItem()	=	0;

Remarks:
This	method	is	used	internally.
This	method	selects	the	current	item.

Class	IMenuLocalContext
See	Also:	Class	IMenuItem,	Class	IMenuColors,	Class	IPoint2
class	IMenuLocalContext

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	abstract	class	represents	a	local	context	interface	for	a	specific	menu	and	is
used	internally.	Methods	that	are	marked	as	internal	should	not	be	used.

Methods:
public:

Prototype:
virtual	void	SetHDrawDC(HDC	hDrawDC)	=	0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	the	handle	to	the	drawing	device	context.

Parameters:
HDC	hDrawDC
The	handle	to	the	drawing	device	context.

Prototype:
virtual	HDC	GetHDrawDC()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	handle	to	the	drawing	device	context.

Prototype:
virtual	void	SetLocalCursorPosition(const	IPoint2&
localCursorPos)	=	0;

Remarks:
This	method	is	used	internally.

This	method	allows	you	to	set	the	cursor	position	in	the	local	coordinate
system	of	the	menu.

Parameters:
const	IPoint2&	localCursorPos
The	cursor	position	coordinates.

Prototype:
virtual	const	IPoint2&	GetLocalCursorPosition()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	cursor	position	in	the	local	coordinate	system	of	the
menu.

Prototype:
virtual	void	SetMenuItemWidth(int	menuWidth)	=	0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	the	menu’s	current	width.

Parameters:
int	menuWidth
The	menu	width.

Prototype:
virtual	int	GetMenuItemWidth()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	menu’s	current	width.

Prototype:
virtual	void	SetLevel(int	level)	=	0;

Remarks:
This	method	is	used	internally.

This	method	allows	you	to	set	the	menu’s	current	level.	Submenus	are	indexed
by	a	level	>	0.

Parameters:
int	level
The	current	level	to	set.

Prototype:
virtual	int	GetLevel()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	menu’s	current	level.

Prototype:
virtual	void	SetLastExecutedItemPath(Tab<IMenuItem	*>
*pExecutedItemPath)	=	0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	the	menu’s	last	executed	item	path.	The	item
path	is	a	table	of	IMenuItem	entries,	listing	the	selected	item	at	each	menu
level.

Parameters:
Tab<IMenuItem	*>	*pExecutedItemPath
A	pointer	to	the	item	path.

Prototype:
virtual	Tab<IMenuItem	*>	*GetLastExecutedItemPath()	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	menu’s	last	executed	item	path.	The	item	path	is	a
table	of	IMenuItem	entries,	listing	the	selected	item	at	each	menu	level.

Prototype:

virtual	void	SetMenuColors(const	MenuColors	*pMenuColors)	=
0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	the	menu’s	current	colors.

Parameters:
MenuColors	*pMenuColors
A	pointer	to	the	menu	colors.

Prototype:
virtual	const	MenuColors	*GetMenuColors()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	a	pointer	to	the	menu’s	current	colors.

Prototype:
virtual	void	SetIMenuGlobalContext(IMenuGlobalContext*
pIMenuGlobalContext,	int	level,	Tab<IMenuItem	*>
*pExecutedItemPath,	const	MenuColors	*pMenuColors)	=	0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	the	global	menu	context.

Parameters:
IMenuGlobalContext*	pIMenuGlobalContext
A	pointer	to	the	menu’s	global	context	object.
int	level
The	menu	level.
Tab<IMenuItem	*>	*pExecutedItemPath
A	pointer	to	the	item	path.	The	item	path	is	a	table	of	IMenuItem	entries,
listing	the	selected	item	at	each	menu	level.
MenuColors	*pMenuColors
A	pointer	to	the	menu	colors.

Prototype:
virtual	IMenuGlobalContext*	GetIMenuGlobalContext()	const	=
0;

Remarks:
This	method	is	used	internally.
This	method	returns	a	pointer	to	the	menu’s	global	context	object.

Structure	MenuEvent
See	Also:	Class	IMenu,	Class	Interface.
Structure	MenuEvent

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	internally.
	
struct	MenuEvent
{
Event	mEvent;
EVENT_BEGIN_TRACK
EVENT_CURSOR_DOWN
EVENT_RIGHT_CURSOR_DOWN
EVENT_CURSOR_MOVED
EVENT_CURSOR_UP
EVENT_END_TRACK
EVENT_KEY
EVENT_RIGHT_CURSOR_UP

unsigned	int	mEventParam;
EP_NULL
EP_SHOW_SUBMENU
EP_HIDE_SUBMENU

};

Class	IMenuContext
See	Also:	Class	InterfaceServer,	Class	IMenuBarContext,	Class	Interface.
class	IMenuContext	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	interface	to	the	various	menu	types	such	as	MenuBar,
QuadMenus,	and	right-click	Popup	Menus.	The	class	provides	the	fundamental
basis	for	the	ID,	Type,	and	Name.
	

Methods:
public:

Prototype:
virtual	MenuContextId	GetId()	=	0;

Remarks:
This	method	returns	the	Menu	Context	ID.

Prototype:
virtual	MenuContextType	GetType()	=	0;

Remarks:
This	method	returns	the	Menu	Contex	Type.	One	of	the	following	values:
kMenuContextMenuBar
The	context	for	the	main	menu	bar.
kMenuContextQuadMenu
The	context	for	the	quad	menu.
kMenuContextPopupMenu
The	context	for	the	Ctrl-right	click	popup	menu.

Prototype:
virtual	TSTR&	GetName()	=	0;

Remarks:

This	method	returns	the	name	of	the	Menu	Context.

Class	DropType
See	Also:	Class	DropClipFormat,	Class	FileDropType,	Class
DropScriptDropType	,	List	of	DropTypes
class	DropType	:	public	IDropSource,	public	IDataObject

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	the	base	class	for	droppable	content	types.	Distinguished	instances	of
subclasses	represent	different	types	of	drop	content,	such	as	a	file	distinguished
by	file	suffix	or	a	scene	object	The	active	DropClipFormat	parses	dropped
IDataObject	into	one	of	these	dropped	types,	filling	its	data	members	with
appropriate	guff	from	the	data	object.
Each	DropClipFormat	can	encompass	multiple	possible	types	of	dropped
data.	For	example,	the	iDrop	package	can	drop	max	files,	image	files,	script
files,	etc.	The	DropClipFormat	classes	parse	raw	dropped	clipboard	data	into
one	of	the	DropType	family	of	classes.	These	contain	recognizer	predicates,
extracted	data	from	the	current	drop,	and	utilities	for	working	with	the	data,	such
as	URL	downloads,	script	compile	&	execution,	etc.	Custom	drop-types	can	be
created	by	subclassing	one	of	the	DropType	base	classes.	The	built-in
DropTypes	are	listed	in	the	List	of	DropTypes

Data	Members:
protected:
static	IDragAndDropMgr*	dndMgr;
Cached	pointer	to	the	DnD	manager.
static	bool	dragging;
The	drop	source	state.
static	POINT	startPt;
The	drag	and	drop	starting	point.
static	WPARAM	startKeyState;
They	starting	state	of	the	keyboard.
static	HWND	startWnd;
The	handle	to	the	starting	window.
static	bool	loaded;

Flags	if	the	current	packages	is	already	downloaded.
public:
static	IDataObject*	current_dataobject;
Currently	dropping	IDataObject.	Filled	in	by	the	low-level	DragEnter()
code.

Methods:
public:

Prototype:
DropType();

Remarks:
Constructor.

Prototype:
static	void	Init();

Remarks:
This	method	clears	the	currently-parsed	drop	data.

Default	Implementation:
{	current_dataobject	=	NULL;	loaded	=	false;	}

Prototype:
virtual	int	TypeCode()=0;

Remarks:
This	method	returns	the	typecode	of	the	DropType.

Prototype:
virtual	bool	IsDropType(int	code);

Remarks:
This	method	returns	TRUE	if	the	DropType	is	of	the	specified	DropType	code,
otherwise	FALSE.
Each	DropType	subclass	is	given	a	unique	integer	code	that	can	be	used	for

type-testing,	switching,	etc.	The	TypeCode()	method	must	be	implemented
to	return	this	code	and	isDropType()	to	test	against	the	given	code	(this	is
provided	to	that	intermediate	DropType	base	classes	with	codes	can
effectively	support	superclass	testing).	The	codes	for	the	built-in	DropTypes
are	given	by	the	following	defined	symbols	which	are	listed	in	the	List	of
DropTypes

Parameters:
int	code
The	DropType	code.

Default	Implementation:
{	return	code	==	TypeCode();	}

Prototype:
virtual	bool	Load(bool	showProgress	=	true);

Remarks:
Subclasses	should	implement	this	method	if	they	need	to	perform	any
droptype-specific	loading	prior	to	clipformat	data	use.	For	example,	the	URL
package	types	all	download	any	web-resident	files	in	this	method.	Control	any
implemented	progress	dialog	with	the	showProgress	parameter.

Parameters:
bool	showProgress	=	true
The	download	progress	dialog	can	be	displayed	by	passing	true.

Default	Implementation:
{	return	true;	}

Prototype:
virtual	DWORD	DropEffect();

Remarks:
This	method	returns	the	dropeffect	currently	supported	by	the	accepted
dropping	type.

Default	Implementation:
{	return	DROPEFFECT_MOVE;	}

Structure	Color24
See	Also:	Structure	Color48,	Structure	Color64.
Note:	typedef	uchar	UBYTE;
struct	Color24	{
	uchar	r,g,b;
	8	bits	for	each	of	the	Red,	Green	and	Blue	components.
	};

Class	MNNormalFace
	
class	MNNormalFace
	
Description:
This	class	is	available	in	release	5.0	and	later	only.
This	class	is	a	face	used	to	store	specified	normal	information	for	a
given	face.	An	array	of	these	faces	is	used	as	a	data	member
of	class	MNNormalSpec,	in	much	the	same	way	as	an	MNMapFace
array	is	a	data	member	of	class	MNMap.
.

Methods:
	
Prototype:
MNNormalFace	()
	
Remarks:
Constructor	-	initializes	mDegree	to	0,	mpNormalID	to	NULL.
	
	

Prototype:
MNNormalFace	(int	degree)
	
Remarks:
Constructor	-	initializes	to	the	degree	specified.
.
	

Prototype:
~MNNormalFace	()
	
Remarks:
Destructor	-	frees	data	members.

	

Prototype:
void	Init();
	
Remarks:
Initializes	data	members.	This	is	useful	in	situations	where	the	default
constructor	may	not	have	been	properly	called,	such	as
MNNormalFace	*fc	=	new	MNNormalFace[10];
	
It	should	not	be	called	on	an	MNNormalFace	with	data	allocated,	or	that
memory	will	leak.
	

Prototype:
void	Clear();
	
Remarks:
Frees	all	allocated	data,	sets	degree	to	0.
	
Prototype:
int	GetDegree();
	
Remarks:
Returns	the	face's	degree.
	
	
Prototype:
int	SetDegree	(int	degree);
	
Remarks:
Sets	the	face's	degree.
	
	
Prototype:

int	GetNormalID(int	corner);
	
Remarks:
Accessor	for	normal	in	a	particular	corner	of	the	face.
	

Parameters:
int	corner
The	(zero-based)	index	of	the	corner	of	the	face.	(A	quad	face	has
corners	0,	1,	2,	and	3.)
	

Return	Value:
Index	of	normal	(in	parent	MNNormalSpec's	normal	array),	or	-1	if
"corner"
is	out	of	range.
	
Prototype:
int	SetNormalID	(int	corner,	int	norm);
	
Remarks:
Sets	the	normal	ID	used	in	a	particular	corner.
	

Parameters:
int	corner
The	(zero-based)	index	of	the	corner	of	the	face.	(A	quad	face	has
corners	0,	1,	2,	and	3.)
int	norm
The	index	of	the	normal	(in	the	parent	MNNormalSpec's	normal
array).
	
Prototype:
bool	GetSpecified	(int	corner)
	

Remarks:
Indicates	whether	the	normal	used	in	a	particular	corner	is	specified	or
not.
	

Parameters:
int	corner
The	(zero-based)	index	of	the	corner	of	the	face.	(A	quad	face	has
corners	0,	1,	2,	and	3.)
	
Prototype:
void	SetSpecified	(int	corner,	bool	value=true);
	
Remarks:
Controls	whether	the	normal	used	in	a	particular	corner	of	the	face	is
specified	or	not.
	

Parameters:
int	corner
The	(zero-based)	index	of	the	corner	of	the	face.	(A	quad	face	has
corners	0,	1,	2,	and	3.)
	

Parameters:
bool	value
Whether	the	corner	should	have	a	specified	(true)	or	unspecified
(false)	normal.
	
Prototype:
void	SpecifyNormalID	(int	corner,	int	norm);
	
Remarks:
Specifies	that	a	particular	corner	of	the	face	should	use	a	given
normal	index.

	

Parameters:
int	corner
The	(zero-based)	index	of	the	corner	of	the	face.	(A	quad	face	has
corners	0,	1,	2,	and	3.)
	

Parameters:
int	norm
The	index	of	the	normal	(in	the	parent	MNNormalSpec's	normal
array).
	
	
Prototype:
void	Insert	(int	pos,	int	num=1);
	
	
Remarks:
Inserts	space	for	more	normals	into	an	existing	face.	(Designed	to	be
used	in	conjunction	with	MNFace::Insert,	to	increase	the	size	of	a
polygon	and	add	new	vertices	&	normals.)
.

Parameters:
int	pos
The	location	within	the	face	where	the	new	normals	will	be	added.
	

Parameters:
int	num=1
The	number	of	new	normals	to	add.
	
Prototype:
void	Delete	(int	pos,	int	num=1);
	

	
Remarks:
Deletes	normals	from	this	map	face.	(Designed	to	be	used	in	conjunction
with	MNFace::Delete,	to	decrease	the	size	of	a	polygon	and	remove
vertices	&	normals.).

Parameters:
int	pos
The	location	within	the	face	where	the	new	normals	will	be	deleted.
	

Parameters:
int	num=1
The	number	of	new	normals	to	delete.
	
	
Prototype:
void	RotateStart	(int	newstart);
	
	
Remarks:
Deletes	normals	from	this	map	face.	(Designed	to	be	used	in	conjunction
with	MNFace::Delete,	to	decrease	the	size	of	a	polygon	and	remove
vertices	&	normals.).

Parameters:
int	newstart
The	new	first	normal
	
Prototype:
void	Flip	();
	
	
Remarks:
Reverses	order	of	normals,	effectively	inverting	the	face.	(Designed

to	be	used	in	conjunction	with	MNFace::Flip.)
	
Prototype:
MNNormalFace	&	operator=	(const	MNNormalFace	&	from);
	
	
Remarks:
Typical	=	operator	-	calls	SetDegree	to	make	this	face	the	same	size	as
"from",	then	copies	the	specification	data	and	the	normalIDs.
	
	
Prototype:
MNNormalFace	&	operator=	(const	MNFace	&	from);
	
	
Remarks:
Sets	the	degree	of	this	NormalFace	to	that	of	the	MNFace	given..
	
	
Prototype:
void	ShallowTransfer	(MNNormalFace	&	from);
	
	
Remarks:
"Shallow-copies"	data	from	"from".	This	is	dangerous	to	use	-	the
pointer
to	the	normal	ID	array	is	the	same	in	both	faces	after	this	is	called.
It's	typically	used	by	MNNormal::FAlloc,	when	resizing	the	whole	face
array.
	

Prototype:
void	MNDebugPrint	(bool	printAll=false);
	

	
Remarks:
Uses	"DebugPrint"	to	output	information	about	this	MNNormalFace	to
the
Debug	buffer	in	DevStudio.	Output	is	formatted	as	follows:	suppose	we
have	a	5-sided	face,	with	normals	{4,5,6,7,8},	and	only	the	normals
in	corners	1	and	2	(i.e.	normals	5	and	6)	are	specified.
	
MNDebugPrint	(true)	would	generate:
_4	5	6	_7	_8
MNDebugPrint	(false)	would	generate:
_	5	6	_	_
	
This	is	mainly	used	as	part	of	MNNormalSpec::MNDebugPrint.
	
	

Prototype:
IOResult	Save	(ISave	*isave);
	
	
Remarks:
Called	by	the	system.	Saves	the	face's	data	to	the	stream	given.
	
Prototype:
IOResult	Load	(ILoad	*iload);
	
	
Remarks:
Called	by	the	system.	Loads	the	face's	data	from	the	stream	given.

Structure	ConfigurationBlock
See	Also:	Class	MaxNetManager,	Structure	ManagerInfo,	Structure	ServerInfo,
Structure	ClientInfo

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	information	about
the	system.
typedef	struct	{
DWORD	dwTotalPhys;
The	system’s	total	physical	memory,	retrieved	through
GlobalMemoryStatus().
DWORD	dwNumberOfProcessors;
The	number	of	processors	in	the	system,	retrieved	through
GetSystemInfo().
DWORD	dwMajorVersion;
The	system’s	major	version,	retrieved	through	GetVersionEx().
DWORD	dwMinorVersion;
The	system’s	minor	version,	retrieved	through	GetVersionEx().
DWORD	dwBuildNumber;
The	system’s	build	number,	retrieved	through	GetVersionEx().
DWORD	dwPlatformId;
The	system’s	platform	ID,	retrieved	through	GetVersionEx().
TCHAR	szCSDVersion[128];
The	system’s	CSD	version,	retrieved	through	GetVersionEx().
char	user[MAX_PATH];
The	logged	in	user’s	name,	retrieved	through	GetUserName().
char	tempdir[MAX_PATH];
The	temporary	directory,	retrieved	through	ExpandEnvironmentStrings().
char	name[MAX_PATH];
The	name	of	the	computer,	retrieved	through	GetComputerName().
char	workDisk;

The	disk,	indexed	by	drive	letter,	used	for	server	files	such	as	incomming	jobs.
The	index	is	alphabetical,	disk	A	=	0,	disk	B	=	1,	etc.
DWORD	disks;
The	bit	map	representing	the	available	disks.	Disk	A	=	0x1,	B	=	0x2,	C	=	0x4,
etc.
DWORD	diskSpace[26];
The	space	available	on	disks	in	MegaBytes,	indexed	by	drive	letter.	Disk	A	=
diskSpace[0],	B	=	diskSpace[1],	etc.
BYTE	mac[8];
The	computer	NIC	hardware	address	(00:00:00:00:00:00),	which	is	6	bytes
and	2	padding	bytes.
char	reserved[32];
Reserved	for	future	use.

}	ConfigurationBlock;

Structure	AlertData
See	Also:	Class	MaxNetManager,	Structure	Job

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	information	about
the	alert	notifications.
typedef	struct	{
bool	alertEnabled;
This	flag	specifies	if	the	alerts	are	enabled.
int	nthFrames;
Use	every	n-th	frame	for	a	progress	report.
DWORD	notifications;
This	bit	map	represents	the	enabled	alerts,	which	are	following	values:
NOTIFY_FAILURE
Notify	on	failure.
NOTIFY_PROGRESS
Notify	on	progress.
NOTIFY_COMPLETION
Notify	on	completion.

}	AlertData;

Structure	MaxJob
See	Also:	Class	MaxNetManager,	Structure	Job,	Structure	SceneInfo,	Structure
MaxJobRenderElements

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	information	about
a	3ds	max	specific	job.
typedef	struct	{
bool	init;
This	flag	determines	if	the	structure	is	valid.
bool	gammacorrection;
This	flag	determines	is	gamma	correction	is	used.
float	gammavaluein;
The	input	gamma	value	for	maps.
float	gammavalueout;
The	output	gamma	value	for	output	images.
float	pixelaspect;
The	pixel	aspect	ratio.
SceneInfo	sceneInfo;
The	scene	information	data	structure.
MaxJobRenderElements	re;
The	render	elements	data	structure.
char	reserved[64];
Reserved	for	future	use.

}	MaxJob;

Structure	CombustionJob
See	Also:	Class	MaxNetManager,	Structure	Job

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	information	about
a	Combustion	specific	job.
typedef	struct	{
bool	init;
This	flag	determines	if	the	structure	is	valid.
char	reserved[128];
Reserved	for	future	use.

}	CombustionJob;

Structure	JobText
See	Also:	Class	MaxNetManager,	Class	CJobText,	Structure	TextBufferOutput,
Structure	JobRenderElements,	List	of	Job	Text	Types

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	textural
information	regarding	a	job.
typedef	struct	{
JOB_TEXT_TYPE	type;
The	Job	Text	type.	See	the	List	of	Job	Text	Types	for	details.
union	{
TCHAR	text[256];
The	text	buffer	contents.
TextBufferOutput	output
The	output	text	buffer.
JobRenderElement	re
The	Render	Elements	details	of	the	job.

}
}	JobText;

List	of	Job	Text	Types
See	Also:	Class	MaxNetManager,	Class	CJobText,	Structure	JobText
The	list	of	the	various	JobText	types	(JOB_TEXT_TYPE)	available.
JOB_TEXT_USER
The	user	name.
JOB_TEXT_COMPUTER
The	computer	name	for	job	submissions.
JOB_TEXT_MANAGER_SHARE
The	manager’s	share	where	it	can	find	jobs.	Filled	by	the	Manager.
JOB_TEXT_FRAMES
The	frame	sequence	(such	as	the	"1,2,4,5-40"	types).	Otherwise	frames	are
defined	in	Job.
JOB_TEXT_MAX_OUTPUT
The	output	image	file	name,	for	3ds	max	jobs.
JOB_TEXT_CMB_OUTPUT
The	output	image	file	name,	for	Combustion	jobs.
JOB_TEXT_RENDER_ELEMENT
The	list	of	Render	Elements.
JOB_TEXT_CAMERA
The	list	of	cameras.
JOB_TEXT_RESERVED
This	type	is	reserved	for	future	use.

Structure	ServerInfo
See	Also:	Class	MaxNetManager,	Structure	NetworkStatus,	Structure
ConfigurationBlock

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	information	about
a	Server.
typedef	struct	{
DWORD	size;
The	size	of	the	structure,	being	sizeof(ServerInfo).
DWORD	version;
The	version	information,	defined	by	_SERVER_INFO_VERSION.
float	total_frames;
The	total	number	of	frames	rendered.
float	total_time;
The	total	time	spent	rendering,	in	hours.
ConfigurationBlock	cfg;
The	network	system	configuration	data.	Refer	to	this	structure	for	more
information.
NetworkStatus	net_status;
The	network	status	information.
char	reserved[32];
Reserved	for	future	use.

}	ServerInfo;

Structure	Schedule
See	Also:	Class	MaxNetManager,	Structure	WeekSchedule

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	hourly	scheduling
information.
typedef	struct	{
DWORD	hour;
This	bit	map	represents	the	hourly	schedule	where	24	bits	represent	the	hours.
A	bit	set	to	0	indicates	it’s	allowed	to	work,	a	bit	set	to	1	indicates	it’s	not
allowed	to	work.

}	JOBFRAMES;

Class	HierarchyEntry
See	Also:	Class	GenericHierarchy.
class	HierarchyEntry

Description:
This	class	represents	an	entry	in	a	GenericHierarchy.	All	methods	of	the	class
are	implemented	by	the	system.

Data	Members:
public:
int	data;
This	is	the	polygon	number.	For	example	a	donut	shape	will	have	polygon	0
and	polygon	1.	This	is	an	index	into	the	list	of	polygons	for	the	shape.
int	children;
Number	of	children	of	this	entry.
HierarchyEntry	*parent;
Points	to	the	parent	entry.
HierarchyEntry	*sibling;
Points	to	the	first	sibling.
HierarchyEntry	*child;
Points	to	the	first	child.
TSTR	sortKey;
The	sort	key.	This	is	used	internally	by	the	hierarchy	so	that	it	can	determine
whether	two	hierarchies	are	compatible.	Developers	shouldn't	alter	this	value.

Methods:

Prototype:
HierarchyEntry();

Remarks:
Constructor.	The	entry	is	initialized	as	empty.

Prototype:
HierarchyEntry(int	d,	HierarchyEntry	*p,	HierarchyEntry	*s);

Remarks:
Constructor.	The	entry	is	initialized	to	the	data	passed.

Parameters:
int	d
The	value	for	data.	This	is	the	polygon	number.
HierarchyEntry	*p
The	parent	pointer	is	initialized	to	this	value.
HierarchyEntry	*s
The	sibling	pointer	is	initialized	to	this	value.

Prototype:
int	HierarchyLevel();

Remarks:
Returns	the	level	in	the	hierarchy	this	entry	represents.	This	is	the	number	of
parents	this	item	has.	The	root	level	is	not	counted.

Return	Value:
The	level	in	the	hierarchy	of	this	entry.

Prototype:
void	AddChild(int	d);

Remarks:
Adds	a	new	child	entry	to	this	entry	using	the	data	specified.

Parameters:
int	d
The	data	value	of	the	child.	This	is	the	polygon	number.

Prototype:
int	GetChild(int	index);

Remarks:
Returns	the	specified	child	of	this	entry.

Parameters:

int	index
The	child	to	retrieve.

Return	Value:
The	specified	child	of	this	entry.	If	the	specified	index	is	greater	than	or	equal
to	the	number	of	children	INVALID_HIERARCHY	is	returned.

Prototype:
int	Children()

Remarks:
Returns	the	number	of	children	of	this	entry.

Prototype:
void	Sort();

Remarks:
Sorts	the	hierarchy	using	the	sortKeys.

Class	NoteKey
See	Also:	Class	NoteKeyTab,	Class	DefNoteTrack,	Class	Animatable.
class	NoteKey

Description:
This	class	contains	the	data	for	a	single	note	of	a	Note	track	in	Track	View.	This
includes	the	time,	text	and	flags	for	the	notes.

Data	Members:
public:
TimeValue	time;
The	time	of	the	note.
TSTR	note;
The	text	of	the	note.
DWORD	flags;
The	note	flags.	One	or	more	of	the	following	values:
NOTEKEY_SELECTED
The	key	is	selected.
NOTEKEY_LOCKED
The	key	is	locked.
NOTEKEY_FLAGGED
The	key	is	flagged.

Methods:
public:

Prototype:
NoteKey(TimeValue	t,const	TSTR	&n,DWORD	f=0);

Remarks:
Constructor.	The	data	members	are	initialized	to	the	values	passed.

Prototype:
NoteKey(NoteKey&	n);

Remarks:

Constructor.	The	data	members	are	initialized	from	the	NoteKey	passed.

Prototype:
void	SetFlag(DWORD	mask);

Remarks:
Sets	the	specified	flags.

Parameters:
DWORD	mask
The	flags	to	set.

Prototype:
void	ClearFlag(DWORD	mask);

Remarks:
Clears	(sets	to	zero)	the	specified	flags.

Parameters:
DWORD	mask
The	flags	to	clear.

Prototype:
BOOL	TestFlag(DWORD	mask);

Remarks:
Tests	the	specified	flags.	Returns	TRUE	if	set;	otherwise	FALSE.

Parameters:
DWORD	mask
The	flags	to	test.

Class	IQuadMenuSettings
See	Also:	Class	IMenuItem	,	Class	ImenuSettings,	Class	IMenuColors
class	IQuadMenuSettings	:	public	IMenuSettings,	public	FPStaticInterface

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	abstract	class	represents	an	interface	for	quad	menu	settings.	The	methods
contained	in	this	class	allow	you	to	access	and	control	all	quad	menu	related
settings	and	configuration	parameters.

Methods:
public:

Prototype:
virtual	void	SetFirstQuadDisplayed(QuadIndex
firstQuadDisplayed)	=	0;

Remarks:
This	method	allows	you	to	set	the	first	quad	which	will	be	displayed	when	a
quad	menu	pops	up.

Parameters:
QuadIndex	firstQuadDisplayed
The	quad	index,	one	of	the	following;	QUAD_ONE,	QUAD_TWO,
QUAD_THREE,	or	QUAD_FOUR.

Prototype:
virtual	QuadIndex	GetFirstQuadDisplayed()	const	=	0;

Remarks:
This	method	returns	the	index	of	the	first	quad	which	will	be	displayed.

Return	Value:
The	quad	index,	one	of	the	following;	QUAD_ONE,	QUAD_TWO,
QUAD_THREE,	or	QUAD_FOUR.

Prototype:

virtual	void	SetUseUniformQuadWidth(bool
useUniformQuadWidth)	=	0;

Remarks:
This	method	allows	you	to	set	whether	the	quad	menu	has	a	uniform	width.

Parameters:
bool	useUniformQuadWidth
TRUE	to	set	the	uniform	width,	FALSE	to	set	it	to	non-uniform.

Prototype:
virtual	bool	GetUseUniformQuadWidth()	const	=	0;

Remarks:
This	method	returns	the	status	of	the	uniform	width	flag	for	the	quad	menu.
TRUE	if	the	quad	menu	has	been	set	to	use	uniform	width,	otherwise	FALSE.

Prototype:
virtual	void	SetUseUniformQuadWidthBOOL(BOOL
useUniformQuadWidth)	=	0;

Remarks:
This	method	allows	you	to	set	whether	the	quad	menu	has	a	uniform	width.
This	version	of	SetUseUniformQuadWidth()	is	provided	for	the	function
publishing	system.

Parameters:
BOOL	useUniformQuadWidth
TRUE	to	set	the	uniform	width,	FALSE	to	set	it	to	non-uniform.

Prototype:
virtual	BOOL	GetUseUniformQuadWidthBOOL()	const	=	0;

Remarks:
This	method	returns	the	status	of	the	uniform	width	flag	for	the	quad	menu.
TRUE	if	the	quad	menu	has	been	set	to	use	uniform	width,	otherwise	FALSE.
This	version	of	GetUseUniformQuadWidth()	is	provided	for	the	function
publishing	system.

Prototype:
virtual	void	SetMirrorQuad(bool	mirrorQuad)	=	0;

Remarks:
This	method	allows	you	to	set	whether	the	quad	menus	are	mirrored	left	to
right.

Parameters:
bool	mirrorQuad
TRUE	to	mirror	the	menus,	otherwise	FALSE.

Prototype:
virtual	bool	GetMirrorQuad()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	quad	menu	is	mirrored	left	to	right,
otherwise	FALSE.

Prototype:
virtual	void	SetMirrorQuadBOOL(BOOL	mirrorQuad)	=	0;

Remarks:
This	method	allows	you	to	set	whether	the	quad	menus	are	mirrored	left	to
right.	This	version	of	SetMirrorQuad()	is	provided	for	the	function
publishing	system.

Parameters:
BOOL	mirrorQuad
TRUE	to	mirror	the	menus,	otherwise	FALSE.

Prototype:
virtual	BOOL	GetMirrorQuadBOOL()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	quad	menu	is	mirrored	left	to	right,
otherwise	FALSE.	This	version	of	GetMirrorQuad()	is	provided	for	the
function	publishing	system.

Prototype:
virtual	void	SetMoveCursorOnReposition(bool
moveCursorOnReposition)	=	0;

Remarks:
This	method	allows	you	to	set	whether	the	cursor	moves	when	the	quad	menu
is	repositioned	because	of	clipping	the	edge	of	the	screen.

Parameters:
bool	moveCursorOnReposition
TRUE	to	move	the	cursor,	otherwise	FALSE.

Prototype:
virtual	bool	GetMoveCursorOnReposition()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	cursor	moves	when	the	quad	menu	is
repositioned	because	of	clipping	the	edge	of	the	screen,	otherwise	FALSE.

Prototype:
virtual	void	SetMoveCursorOnRepositionBOOL(BOOL
moveCursorOnReposition)	=	0;

Remarks:
This	method	allows	you	to	set	whether	the	cursor	moves	when	the	quad	menu
is	repositioned	because	of	clipping	the	edge	of	the	screen.	This	version	of
SetMoveCursorOnReposition()	is	provided	for	the	function	publishing
system.

Parameters:
BOOL	moveCursorOnReposition
TRUE	to	move	the	cursor,	otherwise	FALSE.

Prototype:
virtual	BOOL	GetMoveCursorOnRepositionBOOL()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	cursor	moves	when	the	quad	menu	is

repositioned	because	of	clipping	the	edge	of	the	screen,	otherwise	FALSE.
This	version	of	GetMoveCursorOnReposition()	is	provided	for	the
function	publishing	system.

Prototype:
virtual	void	SetReturnCursorAfterReposition(bool
returnCursorAfterReposition)	=	0;

Remarks:
This	method	allows	you	to	set	whether	the	cursor	is	moved	the	opposite
distance	that	it	was	automatically	moved	when	the	quad	menu	is	repositioned
because	of	clipping	the	edge	of	the	screen.

Parameters:
bool	returnCursorAfterReposition
TRUE	to	set	the	flag,	otherwise	FALSE.

Prototype:
virtual	bool	GetReturnCursorAfterReposition()	const	=	0;

Remarks:
This	method	returns	TRUE	if	the	cursor	is	moved	the	opposite	distance	that	it
was	automatically	moved	when	the	quad	menu	is	repositioned	because	of
clipping	the	edge	of	the	screen,	otherwise	FALSE.

Prototype:
virtual	void	SetReturnCursorAfterRepositionBOOL(BOOL
returnCursorAfterReposition)	=	0;

Remarks:
This	method	allows	you	to	set	whether	the	cursor	is	moved	the	opposite
distance	that	it	was	automatically	moved	when	the	quad	menu	is	repositioned
because	of	clipping	the	edge	of	the	screen.	This	version	of
GetReturnCursorAfterReposition()	is	provided	for	the	function
publishing	system.

Parameters:
BOOL	returnCursorAfterReposition

TRUE	to	set	the	flag,	otherwise	FALSE.

Prototype:
virtual	BOOL	GetReturnCursorAfterRepositionBOOL()	const	=
0;

Remarks:
This	method	returns	TRUE	if	the	cursor	is	moved	the	opposite	distance	that	it
was	automatically	moved	when	the	quad	menu	is	repositioned	because	of
clipping	the	edge	of	the	screen,	otherwise	FALSE.	This	version	of
GetReturnCursorAfterReposition()	is	provided	for	the	function
publishing	system.

Prototype:
virtual	void	SetCursorLocInBox_0to1(float	x,	float	y)	=	0;

Remarks:
This	method	allows	you	to	set	the	initial	location	of	the	cursor	in	the	center
quad	box.

Parameters:
float	x,	float	y
The	location	of	the	cursor,	as	a	ratio	of	the	box	size,	between	0.0	and	1.0.

Prototype:
virtual	float	GetCursorLocXInBox_0to1()	const	=	0;

Remarks:
This	method	returns	the	initial	x	location	of	the	cursor	in	the	center	quad	box,
as	a	ratio	of	the	box	size,	between	0.0	and	1.0.

Prototype:
virtual	float	GetCursorLocYInBox_0to1()	const	=	0;

Remarks:
This	method	returns	the	initial	y	location	of	the	cursor	in	the	center	quad	box,
as	a	ratio	of	the	box	size,	between	0.0	and	1.0.

Prototype:
virtual	const	MenuColors	*GetMenuColors(int	quadNum)	const	=
0;

Remarks:
This	method	returns	the	color	array	for	a	specific	quad.

Parameters:
int	quadNum
The	quad	to	obtain	the	color	array	for,	(numbered	1	through	4).

Prototype:
virtual	void	SetTitleBarBackgroundColor(int	quadNum,	const
Color&	color)	=	0;

Remarks:
This	method	allows	you	to	set	the	title	bar	background	color	for	a	specific
quad.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).
Color&	color
The	color	to	set.

Prototype:
virtual	const	Color&	GetTitleBarBackgroundColor(int	quadNum)
const	=	0;

Remarks:
This	method	returns	the	title	bar	background	color	of	a	specific	quad.	This
method	returns	the	color	as	a	Color.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:

virtual	COLORREF	GetTitleBarBackgroundColorRef(int
quadNum)	const	=	0;

Remarks:
This	method	returns	the	title	bar	background	color	of	a	specific	quad.	This
method	returns	the	color	as	a	COLORREF.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	void	SetTitleBarTextColor(int	quadNum,	const	Color&
color)	=	0;

Remarks:
This	method	allows	you	to	set	the	title	bar	text	color	for	a	specific	quad.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).
Color&	color
The	color	to	set.

Prototype:
virtual	const	Color&	GetTitleBarTextColor(int	quadNum)	const	=
0;

Remarks:
This	method	returns	the	title	bar	text	color	of	a	specific	quad.	This	method
returns	the	color	as	a	Color.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	COLORREF	GetTitleBarTextColorRef(int	quadNum)

const	=	0;
Remarks:
This	method	returns	the	title	bar	text	color	of	a	specific	quad.	This	method
returns	the	color	as	a	COLORREF.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	void	SetItemBackgroundColor(int	quadNum,	const
Color&	color)	=	0;

Remarks:
This	method	allows	you	to	set	the	item	background	color	for	a	specific	quad.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).
Color&	color
The	color	to	set.

Prototype:
virtual	const	Color&	GetItemBackgroundColor(int	quadNum)
const	=	0;

Remarks:
This	method	returns	the	item	background	color	of	a	specific	quad.	This
method	returns	the	color	as	a	Color.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	COLORREF	GetItemBackgroundColorRef(int	quadNum)
const	=	0;

Remarks:
This	method	returns	the	item	background	color	of	a	specific	quad.	This
method	returns	the	color	as	a	COLORREF.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	void	SetItemTextColor(int	quadNum,	const	Color&	color)
=	0;

Remarks:
This	method	allows	you	to	set	the	item	text	color	for	a	specific	quad.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).
Color&	color
The	color	to	set.

Prototype:
virtual	const	Color&	GetItemTextColor(int	quadNum)	const	=	0;

Remarks:
This	method	returns	the	item	text	color	of	a	specific	quad.	This	method	returns
the	color	as	a	Color.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	COLORREF	GetItemTextColorRef(int	quadNum)	const	=
0;

Remarks:
This	method	returns	the	item	text	color	of	a	specific	quad.	This	method	returns

the	color	as	a	COLORREF.
Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	void	SetLastExecutedItemTextColor(int	quadNum,	const
Color&	color)	=	0;

Remarks:
This	method	allows	you	to	set	the	last	executed	item	text	color	for	a	specific
quad.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).
Color&	color
The	color	to	set.

Prototype:
virtual	const	Color&	GetLastExecutedItemTextColor(int
quadNum)	const	=	0;

Remarks:
This	method	returns	the	last	executed	item	text	color	of	a	specific	quad.	This
method	returns	the	color	as	a	Color.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	COLORREF	GetLastExecutedItemTextColorRef(int
quadNum)	const	=	0;

Remarks:
This	method	returns	the	last	executed	item	text	color	of	a	specific	quad.	This

method	returns	the	color	as	a	COLORREF.
Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	void	SetHighlightedItemBackgroundColor(int	quadNum,
const	Color&	color)	=	0;

Remarks:
This	method	allows	you	to	set	the	highlighted	item	background	color	for	a
specific	quad.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).
Color&	color
The	color	to	set.

Prototype:
virtual	const	Color&	GetHighlightedItemBackgroundColor(int
quadNum)	const	=	0;

Remarks:
This	method	returns	the	highlighted	item	background	color	of	a	specific	quad.
This	method	returns	the	color	as	a	Color.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	COLORREF	GetHighlightedItemBackgroundColorRef(int
quadNum)	const	=	0;

Remarks:
This	method	returns	the	highlighted	item	background	color	of	a	specific	quad.

This	method	returns	the	color	as	a	COLORREF.
Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	void	SetHighlightedItemTextColor(int	quadNum,	const
Color&	color)	=	0;

Remarks:
This	method	allows	you	to	set	the	highlighted	item	text	color	for	a	specific
quad.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).
Color&	color
The	color	to	set.

Prototype:
virtual	const	Color&	GetHighlightedItemTextColor(int	quadNum)
const	=	0;

Remarks:
This	method	returns	the	highlighted	item	text	color	of	a	specific	quad.	This
method	returns	the	color	as	a	Color.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	COLORREF	GetHighlightedItemTextColorRef(int
quadNum)	const	=	0;

Remarks:
This	method	returns	the	highlighted	item	text	color	of	a	specific	quad.	This

method	returns	the	color	as	a	COLORREF.
Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	void	SetBorderColor(int	quadNum,	const	Color&	color)	=
0;

Remarks:
This	method	allows	you	to	set	the	border	color	for	a	specific	quad.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).
Color&	color
The	color	to	set.

Prototype:
virtual	const	Color&	GetBorderColor(int	quadNum)	const	=	0;

Remarks:
This	method	returns	the	border	color	of	a	specific	quad.	This	method	returns
the	color	as	a	Color.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	COLORREF	GetBorderColorRef(int	quadNum)	const	=	0;

Remarks:
This	method	returns	the	border	color	of	a	specific	quad.	This	method	returns
the	color	as	a	COLORREF.

Parameters:

int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	void	SetDisabledShadowColor(int	quadNum,	const	Color&
color)	=	0;

Remarks:
This	method	allows	you	to	set	the	disabled	shadow	color	for	a	specific	quad.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).
Color&	color
The	color	to	set.

Prototype:
virtual	const	Color&	GetDisabledShadowColor(int	quadNum)
const	=	0;

Remarks:
This	method	returns	the	disabled	shadow	color	of	a	specific	quad.	This	method
returns	the	color	as	a	Color.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	COLORREF	GetDisabledShadowColorRef(int	quadNum)
const	=	0;

Remarks:
This	method	returns	the	disabled	shadow	color	of	a	specific	quad.	This	method
returns	the	color	as	a	COLORREF.

Parameters:
int	quadNum

The	quad	(numbered	1	through	4).

Prototype:
virtual	void	SetDisabledHighlightColor(int	quadNum,	const
Color&	color)	=	0;

Remarks:
This	method	allows	you	to	set	the	disabled	highlight	color	for	a	specific	quad.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).
Color&	color
The	color	to	set.

Prototype:
virtual	const	Color&	GetDisabledHighlightColor(int	quadNum)
const	=	0;

Remarks:
This	method	returns	the	disabled	highlight	color	of	a	specific	quad.	This
method	returns	the	color	as	a	Color.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Prototype:
virtual	COLORREF	GetDisabledHighlightColorRef(int
quadNum)	const	=	0;

Remarks:
This	method	returns	the	disabled	highlight	color	of	a	specific	quad.	This
method	returns	the	color	as	a	COLORREF.

Parameters:
int	quadNum
The	quad	(numbered	1	through	4).

Class	IMenuSettings
See	Also:	Class	IMenuGlobalContext
class	IMenuSettings

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	abstract	class	represents	an	interface	for	all	general	menu	settings.	Methods
that	are	marked	as	internal	should	not	be	used.

Methods:
public:

Prototype:
virtual	bool	IsTokenValid(const	ValidityToken&	token)	=	0;

Remarks:
This	method	is	used	internally.
This	method	checks	if	a	token	is	valid.

Parameters:
ValidityToken&	token
A	reference	to	a	token	for	which	to	check	its	validity.

Return	Value:
TRUE	if	the	token	is	valid,	otherwise	FALSE.

Prototype:
virtual	void	UpdateValidityToken(ValidityToken&	token)	const	=
0;

Remarks:
This	method	is	used	internally.
This	method	updates	the	validity	token.

Parameters:
ValidityToken&	token
A	reference	to	a	token	to	update.

Prototype:
virtual	void	ResetDefaults()	=	0;

Remarks:
This	method	will	reset	the	menu	settings	to	their	defaults.

Prototype:
virtual	void	SetBorderSz(int	borderSz)	=	0;

Remarks:
This	method	allows	you	to	set	the	menu	border	size.

Parameters:
int	borderSz
The	border	size	in	pixels.

Prototype:
virtual	int	GetBorderSz()	const	=	0;

Remarks:
This	method	returns	the	menu	border	size.

Prototype:
virtual	void	SetHorizontalMarginInPoints(int
horizontalMarginInPoints)	=	0;

Remarks:
This	method	allows	you	to	set	the	menu’s	horizontal	margin	size.

Parameters:
int	horizontalMarginInPoints
The	horizontal	margin	size	in	points.

Prototype:
virtual	int	GetHorizontalMarginInPoints()	const	=	0;

Remarks:
This	method	returns	the	menu’s	horizontal	margin	size	(in	points).

Prototype:
virtual	int	GetHorizontalMargin(HDC	hDC)	const	=	0;

Remarks:
This	method	returns	the	menu’s	horizontal	margin,	in	pixels.

Parameters:
HDC	hDC
A	handle	to	a	device	context.

Prototype:
virtual	void	SetVerticalMarginInPoints(int
verticalMarginInPoints)	=	0;

Remarks:
This	method	allows	you	to	set	the	menu’s	vertical	margin	size.

Parameters:
int	verticalMarginInPoints
The	vertical	margin	size	in	points.

Prototype:
virtual	int	GetVerticalMarginInPoints()	const	=	0;

Remarks:
This	method	returns	the	menu’s	vertical	margin	size	(in	points).

Prototype:
virtual	int	GetVerticalMargin(HDC	hDC)	const	=	0;

Remarks:
This	method	returns	the	menu’s	vertical	margin,	in	pixels.
	

Parameters:
HDC	hDC
A	handle	to	a	device	context.

Prototype:
virtual	void	SetItemFontFace(TCHAR*	szItemFontFace)	=	0;

Remarks:
This	method	allows	you	to	set	the	menu	item’s	font	typeface.

Parameters:
TCHAR*	szItemFontFace
A	string	containing	the	typeface	name.

Prototype:
virtual	const	TCHAR*	GetItemFontFace()	const	=	0;

Remarks:
This	method	returns	the	name	of	the	menu	item’s	font	typeface.

Prototype:
virtual	void	SetTitleFontFace(TCHAR*	szTitleFontFace)	=	0;

Remarks:
This	method	allows	you	to	set	the	menu	title’s	font	typeface.

Parameters:
TCHAR*	szTitleFontFace
A	string	containing	the	typeface	name.

Prototype:
virtual	const	TCHAR*	GetTitleFontFace()	const	=	0;

Remarks:
This	method	returns	the	name	of	the	menu	title’s	font	typeface.

Prototype:
virtual	void	SetItemFontSize(int	itemFontSize)	=	0;

Remarks:
This	method	allows	you	to	set	the	menu	item’s	font	size.

Parameters:

int	itemFontSize
The	size	of	the	font,	in	points.

Prototype:
virtual	int	GetItemFontSize()	const	=	0;

Remarks:
This	method	returns	the	menu	item’s	font	size,	in	points.

Prototype:
virtual	void	SetTitleFontSize(int	titleFontSize)	=	0;

Remarks:
This	method	allows	you	to	set	the	menu	title’s	font	size.

Parameters:
int	titleFontSize
The	size	of	the	font,	in	points.

Prototype:
virtual	int	GetTitleFontSize()	const	=	0;

Remarks:
This	method	returns	the	menu	title’s	font	size,	in	points.

Prototype:
virtual	void	SetUseUniformItemHeight(bool
useUniformItemHeight)	=	0;

Remarks:
This	method	allows	you	to	set	the	status	of	a	menu	item’s	uniform	height	flag.

Parameters:
bool	useUniformItemHeight
TRUE	to	set	the	uniform	height	flag	ON,	FALSE	to	set	it	to	OFF.

Prototype:

virtual	bool	GetUseUniformItemHeight()	const	=	0;
Remarks:
This	method	returns	TRUE	or	FALSE	if	the	menu	item’s	uniform	height	flag
is	set	or	not	set,	respectively.

Prototype:
virtual	void	SetUseUniformItemHeightBOOL(BOOL
useUniformItemHeight)	=	0;

Remarks:
This	method	allows	you	to	set	the	status	of	a	menu	item’s	uniform	height	flag.
This	version	of	SetUniformItemHeight()	is	provided	for	the	function
publishing	system.

Parameters:
BOOL	useUniformItemHeight
TRUE	to	set	the	uniform	height	flag	ON,	FALSE	to	set	it	to	OFF.

Prototype:
virtual	BOOL	GetUseUniformItemHeightBOOL()	const	=	0;

Remarks:
This	method	returns	TRUE	or	FALSE	if	the	menu	item’s	uniform	height	flag
is	set	or	not	set,	respectively.	This	version	of	GetUniformItemHeight()	is
provided	for	the	function	publishing	system.

Prototype:
virtual	void	SetOpacity(float	opacity)	=	0;

Remarks:
This	method	allows	you	to	set	the	menu’s	opacity	value.

Parameters:
float	opacity
The	opacity	value,	ranging	from	0.0	–	1.0.

Prototype:

virtual	float	GetOpacity()	const	=	0;
Remarks:
This	method	returns	the	menu’s	opacity	value.

Prototype:
virtual	void	SetDisplayMethod(DisplayMethod	displayMethod)	=
0;

Remarks:
This	method	allows	you	to	set	a	menu’s	display	method.

Parameters:
DisplayMethod	displayMethod
The	display	method	(enum),	which	is	either	of	the	following;
DM_NORMAL,	DM_STRETCH,	DM_FADE,
DM_NUM_METHODS

Prototype:
virtual	DisplayMethod	GetDisplayMethod()	const	=	0;

Remarks:
This	method	returns	the	menu’s	display	method,	which	is	either	of	the
following;	DM_NORMAL,	DM_STRETCH,	DM_FADE,
DM_NUM_METHODS

Prototype:
virtual	void	SetAnimatedSteps(unsigned	int	steps)	=	0;

Remarks:
This	method	allows	you	to	set	the	menu’s	number	of	animated	steps	for	the
‘growing’	effect.

Parameters:
unsigned	int	steps
The	number	of	steps.

Prototype:

virtual	unsigned	int	GetAnimatedSteps()	const	=	0;
Remarks:
This	method	returns	the	menu’s	number	of	animated	steps	used	for	the
‘growing’	effect.

Prototype:
virtual	void	SetAnimatedStepTime(unsigned	int	ms)	=	0;

Remarks:
This	method	allows	you	to	set	the	menu’s	animated	step	time.

Parameters:
unsigned	int	ms
The	animated	step	time,	in	milliseconds.

Prototype:
virtual	unsigned	int	GetAnimatedStepTime()	const	=	0;

Remarks:
This	method	returns	the	menu’s	animated	step	time,	in	milliseconds.

Prototype:
virtual	void	SetSubMenuPauseTime(unsigned	int	ms)	=	0;

Remarks:
This	method	allows	you	to	set	the	delay	before	a	submenu	is	displayed.

Parameters:
unsigned	int	ms
The	delay,	in	milliseconds.

Prototype:
virtual	unsigned	int	GetSubMenuPauseTime()	const	=	0;

Remarks:
This	method	returns	the	delay	before	a	submenu	is	displayed,	in	milliseconds.

Prototype:
virtual	void	SetUseLastExecutedItem(bool	useLastExecutedItem)
=	0;

Remarks:
This	method	allows	you	to	set	the	"last	executed	item"	flag	which	determines
whether	to	use	the	menu’s	last	executed	item	when	the	user	clicks	on	the
menu’s	titlebar.

Parameters:
bool	useLastExecutedItem
TRUE	to	turn	ON	the	flag,	FALSE	to	turn	the	flag	off.

Prototype:
virtual	bool	GetUseLastExecutedItem()	const	=	0;

Remarks:
This	method	returns	whether	the	"last	executed	item"	flag	is	set	(TRUE)	or	not
set	(FALSE).	The	flag	determines	whether	to	use	the	menu’s	last	executed
item	when	the	user	clicks	on	the	menu’s	titlebar.

Prototype:
virtual	void	SetUseLastExecutedItemBOOL(BOOL
useLastExecutedItem)	=	0;

Remarks:
This	method	allows	you	to	set	the	"last	executed	item"	flag	which	determines
whether	to	use	the	menu’s	last	executed	item	when	the	user	clicks	on	the
menu’s	titlebar.	This	version	of	SetUseLastExecutedItem()	is	provided	for
the	function	publishing	system.
	

Parameters:
BOOL	useLastExecutedItem
TRUE	to	turn	ON	the	flag,	FALSE	to	turn	the	flag	off.

Prototype:

virtual	BOOL	GetUseLastExecutedItemBOOL()	const	=	0;
Remarks:
This	method	returns	whether	the	"last	executed	item"	flag	is	set	(TRUE)	or	not
set	(FALSE).	The	flag	determines	whether	to	use	the	menu’s	last	executed
item	when	the	user	clicks	on	the	menu’s	titlebar.	This	version	of
GetUseLastExecutedItem()	is	provided	for	the	function	publishing
system.

Prototype:
virtual	void	SetRepositionWhenClipped(bool
repositionWhenClipped)	=	0;

Remarks:
This	method	allows	you	to	set	the	flag	which	controls	and	determines	whether
the	menu	is	repositioned	when	near	the	edge	of	the	screen.

Parameters:
bool	repositionWhenClipped
TRUE	to	turn	repositioning	ON,	FALSE	to	turn	it	OFF.

Prototype:
virtual	bool	GetRepositionWhenClipped()	const	=	0;

Remarks:
This	method	returns	the	status	of	the	flag	which	controls	and	determines
whether	the	menu	is	repositioned	when	near	the	edge	of	the	screen.

Return	Value:
TRUE	if	the	flag	is	ON,	otherwise	FALSE.

Prototype:
virtual	void	SetRepositionWhenClippedBOOL(BOOL
repositionWhenClipped)	=	0;

Remarks:
This	method	allows	you	to	set	the	flag	which	controls	and	determines	whether
the	menu	is	repositioned	when	near	the	edge	of	the	screen.	This	version	of
SetRepositionWhenClipped()	is	provided	for	the	function	publishing

system.
Parameters:
BOOL	repositionWhenClipped
TRUE	to	turn	repositioning	ON,	FALSE	to	turn	it	OFF.

Prototype:
virtual	BOOL	GetRepositionWhenClippedBOOL()	const	=	0;

Remarks:
This	method	returns	the	status	of	the	flag	which	controls	and	determines
whether	the	menu	is	repositioned	when	near	the	edge	of	the	screen.	This
version	of	GetRepositionWhenClipped()	is	provided	for	the	function
publishing	system.

Return	Value:
TRUE	if	the	flag	is	ON,	otherwise	FALSE.

Prototype:
virtual	void	SetRemoveRedundantSeparators(bool
removeRedundantSeparators)	=	0;

Remarks:
This	method	allows	you	to	set	the	flag	which	controls	and	determines	whether
the	menu	should	remove	redundant	separators.

Parameters:
bool	removeRedundantSeparators
TRUE	to	turn	the	flag	ON,	FALSE	to	turn	it	OFF.

Prototype:
virtual	bool	GetRemoveRedundantSeparators()	const	=	0;

Remarks:
This	method	returns	the	status	of	the	flag	which	controls	and	determines
whether	the	menu	should	remove	redundant	separators.

Return	Value:
TRUE	if	the	flag	is	ON,	otherwise	FALSE.

Prototype:
virtual	void	SetRemoveRedundantSeparatorsBOOL(BOOL
removeRedundantSeparators)	=	0;

Remarks:
This	method	allows	you	to	set	the	flag	which	controls	and	determines	whether
the	menu	should	remove	redundant	separators.	This	version	of
SetRemoveRedundantSeparators()	is	provided	for	the	function
publishing	system.

Parameters:
BOOL	removeRedundantSeparators
TRUE	to	turn	the	flag	ON,	FALSE	to	turn	it	OFF.

Prototype:
virtual	BOOL	GetRemoveRedundantSeparatorsBOOL()	const	=
0;

Remarks:
This	method	returns	the	status	of	the	flag	which	controls	and	determines
whether	the	menu	should	remove	redundant	separators.	This	version	of
GetRemoveRedundantSeparators()	is	provided	for	the	function
publishing	system.

Return	Value:
TRUE	if	the	flag	is	ON,	otherwise	FALSE.

Class	IMenuTimer
See	Also:	Class	IMenu	,	Class	IMenuGlobalContext
class	IMenuTimer

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	abstract	class	represents	an	interface	for	a	timer	and	is	used	internally.
Methods	that	are	marked	as	internal	should	not	be	used.

Methods:
public:

Prototype:
virtual	bool	IsRunning()	=	0;

Remarks:
This	method	is	used	internally.
This	method	indicates	whether	the	timer	is	running	or	not	by	returning	TRUE
or	FALSE.

Prototype:
virtual	void	Start(IMenu*	pIMenu,	EventParam	timingType)	=	0;

Remarks:
This	method	is	used	internally.
This	method	starts	or	restarts	a	timer	for	a	specified	IMenu.

Prototype:
virtual	void	Stop()	=	0;

Remarks:
This	method	is	used	internally.
This	method	will	stop	the	timer.

Prototype:

virtual	void	CheckTime()	=	0;
Remarks:
This	method	is	used	internally.
This	method	instructs	the	timer	to	check	the	time.	If	the	time	has	elapsed	it
will	notify	its	IMenu	client.

Prototype:
virtual	bool	HasElapsed()	=	0;

Remarks:
This	method	is	used	internally.
This	method	indicates	whether	the	timer	has	elapsed	by	returning	TRUE	or
FALSE.

Prototype:
virtual	void	SetElapseTime(unsigned	int	elapseTime)	=	0;

Remarks:
This	method	is	used	internally.
This	method	allows	you	to	set	the	elapse	time	for	the	timer.

Parameters:
unsigned	int	elapseTime
The	time	at	which	the	timer	should	elapse

Prototype:
virtual	unsigned	int	GetElapseTime()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	elapse	time	that’s	been	set	for	the	timer.

Prototype:
virtual	IMenu*	GetIMenu()	const	=	0;

Remarks:
This	method	is	used	internally.

This	method	returns	a	pointer	to	the	IMenu	client	associated	with	the	timer.

Prototype:
virtual	EventParam	GetTimingType()	const	=	0;

Remarks:
This	method	is	used	internally.
This	method	returns	the	timing	type	for	the	timer.

Class	ItemID
See	Also:	Class	IMenu,	Class	IMenuItem	,	Class	IMenuGlobalContext
class	ItemID

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	is	used	internally.	Methods	that	are	marked	as	internal	should	not	be
used.
	

Data	Members:
public:
IMenu*	mpMenu;
IMenuItem*	mpItem;

Methods:
public:

Prototype:
ItemID();

Remarks:
This	method	is	used	internally.
Constructor.	Initialized	mpMenu(NULL)	and	mpItem(NULL).

Default	Implementation:
{	}

Prototype:
void	Null();

Remarks:
This	method	is	used	internally.
Set	mpMenu	=	NULL	and	mpItem	=	NULL.

Prototype:

friend	bool	operator==(ItemID&	a,	ItemID&	b);
Remarks:
This	method	is	used	internally.
This	operator	tests	for	equality	of	two	ItemID’s.

Parameters:
ItemID&	a,	ItemID&	b
The	two	ItemID’s	you	wish	to	test	for	equality.

Prototype:
friend	bool	operator!=(ItemID&	a,	ItemID&	b);

Remarks:
This	method	is	used	internally.
This	operator	tests	for	inequality	of	two	ItemID’s.

Parameters:
ItemID&	a,	ItemID&	b
The	two	ItemID’s	you	wish	to	test	for	inequality.

Default	Implementation:
{	return	!(a	==	b);	}

Class	IMenuColors
See	Also:	Class	Color
class	IMenuColors

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	represents	the	container	for	a	menu’s	color	settings	and	is	used
internally.	Methods	that	are	marked	as	internal	should	not	be	used.
	

Data	Members:
public:
Color	mTitleBarBackgroundColor;
The	title	bar	background	color.
Color	mTitleBarTextColor;
The	title	bar	text	color.
Color	mItemBackgroundColor;
The	item	background	color.
Color	mItemTextColor;
The	item	text	color
Color	mLastExecutedItemTextColor;
The	last	executed	item	text	color.
Color	mHighlightedItemBackgroundColor;
The	highlighted	item	background	color.
Color	mHighlightedItemTextColor;
The	highlighted	item	text	color.
Color	mBorderColor;
The	border	color.
Color	mDisabledShadowColor;
The	disabled	shadow	color.
Color	mDisabledHighlightColor;
The	disabled	highlight	color.

Methods:

public:

Prototype:
MenuColors();

Remarks:
This	method	is	used	internally.
Constructor.

Default	Implementation:
{	ResetDefaults();	}

Prototype:
void	ResetDefaults();

Remarks:
This	method	is	used	internally.
This	method	resets	the	menu	colors	to	their	defaults.

Default	Implementation:
{
	mTitleBarBackgroundColor	=	Color(.0f,	.0f,	.0f);
mTitleBarTextColor	=	Color(.75f,	.75f,	.75f);
mItemBackgroundColor	=	Color(.75f,	.75f,	.75f);
mItemTextColor	=	Color(.0f,	.0f,	.0f);
mLastExecutedItemTextColor	=	Color(.95f,	.85f,	.0f);
mHighlightedItemBackgroundColor	=	Color(.95f,	.85f,	.0f);
mHighlightedItemTextColor	=	Color(.0f,	.0f,	.0f);
mBorderColor	=	Color(.0f,	.0f,	.0f);
mDisabledShadowColor	=	Color(.5f,	.5f,	.5f);
mDisabledHighlightColor	=	Color(1.0f,	1.0f,	1.0f);

}

Class	DropClipFormat
See	Also:	Class	DropType,	Class	VIZableClipFmt,	Class	DropScriptClipFmt,
List	of	DropTypes
class	DropClipFormat	:	public	InterfaceServer

Description:
This	class	is	available	in	release	4.0	and	later	only.
DropClipFormat	is	the	base	class	for	the	various	supported	clipboard	formats
contained	in	a	dropped	IDataObject.	Subclasses	represent	particular
IDataObject	clip	format	or	package	of	related	formats	that	can	be	accepted	by
various	windows	in	3ds	max.	The	prime	responsibility	of	each	is	to	recognize	its
presence	in	a	dropped	IDataObject	and	to	parse	the	data	object	into	one	of	the
supported	DropTypes.	Each	subclass	should	have	a	singleton	instance	created.
This	is	automatically	registered	with	the	DnD	system	for	use	in	the	clipform
recognition	routines.

Data	Members:
protected:
static	Tab<DropClipFormat*>	clipFmts;
The	table	of	supported	clip	formats.

Methods:
public:

Prototype:
DropClipFormat();

Remarks:
Constructor.
Each	DropClimFormat	instance	created	is	kept	in	the	clipFmts	table

Prototype:
static	DropClipFormat*	FindClipFormat(IDataObject*
pDataObject);

Remarks:

This	method	returns	a	pointer	to	the	DropClipFormat	(singleton)
corresponding	to	the	clip	format	in	the	given	IDataObject,	or	NULL	if	the
IDataObject	contains	no	recognizable	formats.	This	is	primarily	used	by	the
low-level	default	DragEnter()	function	in	DnD	manager.

Parameters:
IDataObject*	pDataObject
The	data	object	you	wish	to	return	the	clip	format	for.

Prototype:
virtual	bool	CheckClipFormat(IDataObject*	pDataObject)

Remarks:
This	method	should	be	implemented	by	each	subclass	to	detect	the	presence	of
its	clipformat(s)	in	the	given	IDataObject.	See	ParseDataObject()	below
for	a	detailed	example.

Parameters:
IDataObject*	pDataObject
The	data	object.

Return	Value:
TRUE	if	the	data	was	queries	successfully,	otherwise	FALSE.

Default	Implementation:
{	return	false;	}

Prototype:
virtual	DropType*	ParseDataObject(IDataObject*	pDataObject);

Remarks:
This	method	should	be	implemented	by	each	subclass	to	parse	its	clipformat(s)
in	the	given	IDataObject	into	the	corresponding	DropType	subclass
instance.	For	example,	the	DropClipFormats	that	accept	dropped	files	will
typically	return	one	of	the	FileDropType	subclasses	depending	on	the
filename	suffix.	A	list	of	built-in	clipformats:
	
IDropPackageClipFmt		iDrop	XML	package

VIZableClipFmt			VIZable	file	URL
DropScriptClipFmt		internal	dropScript
	
Here's	an	example	(simplified)	VIZableClipFmt	implementation,	which
accepts	a	custom	CF_MAXURL	clip	format	containing	the	URL	of	a	file.
CheckClipFormat()	returns	true	if	it	finds	the	CF_MAXURL	clipboard
format	present	in	the	given	IDataObject.	Because	this	is	a	dropping	file,
ParseDataObject()	clears	the	current	droptype	data	(the
FileDropType::Init(),	extracts	the	file	name	from	the	IDataObject	and
installs	it	into	the	FileDropType	current_package	variable.	It	then	asks
the	FileDropType	class	to	recognize	the	actual	file	type	being	dropped	and
return	the	corresponding	FileDropType	subclass	instance	(using
FileDropType::FindDropType()).
	
bool	VIZableClipFmt::CheckClipFormat(IDataObject*
pDataObject)
{
	//	accept	CF_MAXURL	clip	formats
	FORMATETC	fmt	=	{	NULL,	NULL,	DVASPECT_CONTENT,
-1,	NULL	};
	fmt.cfFormat	=	RegisterClipboardFormat(_T("CF_MAXURL"));
	fmt.tymed	=	TYMED_HGLOBAL;
	return	SUCCEEDED(pDataObject->QueryGetData(&fmt))	==
TRUE;
}
DropType*	VIZableClipFmt::ParseDataObject(IDataObject*
pDataObject)
{
	//	parse	a	CF_MAXURL	clipformat	into	one	of	the	FileDropTypes
&
	//	fill	in	the	FileDropType::current_packge	URLTab
	HRESULT	hr;

	FORMATETC	fmt	=	{	NULL,	NULL,	DVASPECT_CONTENT,
-1,	NULL	};
	STGMEDIUM	stg	=	{	TYMED_NULL,	NULL,	NULL	};
	
	fmt.tymed	=	TYMED_HGLOBAL;
	fmt.cfFormat	=	RegisterClipboardFormat(_T("CF_MAXURL"));
	
	//	clear	out	the	file	drop	current	data
	FileDropType::Init();
	
	//	look	for	CF_MAXURL	formats
	hr	=	pDataObject->GetData(&fmt,	&stg);
	if(SUCCEEDED(hr))
	{
		//	found,	get	the	max	file	name

TCHAR	szUrl[MAX_PATH];
		ZeroMemory(szUrl,	sizeof(szUrl));
		wcstombs(szUrl,

reinterpret_cast<wchar_t*>(GlobalLock(stg.hGlobal)),
MAX_PATH-1);

		GlobalUnlock(stg.hGlobal);
		ReleaseStgMedium(&stg);
		//	add	it	to	the	current_package	URLTab
		FileDropType::current_package.Add(szUrl);
	}
	

//	if	we	have	a	non-NULL	package,	get	the	appropriate
//	FileDropType	(usually	based	on	file	extension),	by	asking	the
//	utility	DropType	finder	in	FileDropType

	if	(FileDropType::current_package.Count()	>	0)
return	FileDropType::FindDropType(

FileDropType::current_package[0],	pDataObject);
	else
		return	NULL;
}

Parameters:
IDataObject*	pDataObject
The	data	object.

Return	Value:
A	pointer	to	the	drop-type.

Default	Implementation:
{	return	NULL;	}

Class	FileDropType
See	Also:	Class	DropType,	,	Class	URLTab,	Class	SceneFileDropType,	Class
ImageFileDropType,	Class	ImportFileDropType,	Class	ScriptFileDropType,
List	of	DropTypes
class	FileDropType	:	public	DropType

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	is	an	intermediate	base	class	for	drop	content	that	comes	in	the	form	of	a
package	of	filenames	or	URLS.	This	class	maintains	a	list	of	all	its	subclass
singleton	instances	and	provides	utility	methods	for	finding	an	appropriate
subclass	instance,	based	on	the	dropped	filename,	and	for	download	URL
packages.

Data	Members:
protected:
static	Tab<FileDropType*>	fileDropTypes;
The	table	of	FileDropTypes.
static	TSTR	download_directory;
Cache	for	current	default	URL	package	download	directory	.

public
static	URLTab	current_package;
Currently	dropping	URL	package.	Filled	in	by	the	active	DropClipFormat
in	its	ParseDataObject()	method	.

Methods:
public:

Prototype:
FileDropType();

Remarks:
Constructor.

Prototype:

static	void	Init();
Remarks:
This	method	clears	the	currently-parsed	drop	data.

Default	Implementation:
{	current_package.Clear();	DropType::Init();	}

Prototype:
virtual	int	TypeCode()=0;

Remarks:
This	method	returns	the	typecode	of	the	DropType.

Default	Implementation:
{	return	FILE_DROPTYPE;	}

Prototype:
virtual	bool	IsDropType(int	code);

Remarks:
This	method	returns	TRUE	if	the	DropType	is	of	the	specified	DropType	code,
otherwise	FALSE.

Parameters:
int	code
The	DropType	code.

Default	Implementation:
{	return	code	==	TypeCode()	||	code	==	FILE_DROPTYPE;	}

Prototype:
virtual	bool	Load(bool	showProgress	=	true);

Remarks:
This	method	will	load	the	URLTab	in	current_package	(filled	in	by	the	current
DropClipFormat).

Parameters:
bool	showProgress	=	true

The	download	progress	dialog	can	be	displayed	by	passing	true.

Prototype:
static	FileDropType*	FindDropType(TCHAR*	filename,
IDataObject*	pDataObject	=	NULL);

Remarks:
This	method	finds	and	returns	the	FileDropType	subclass	corresponding	to
the	given	filename	suffix.	See	the	List	of	DropTypes	for	more	details.

Parameters:
TCHAR*	filename
The	filename	suffix.
IDataObject*	pDataObject	=	NULL
A	pointer	to	the	IDataObject.

Return	Value:
The	FileDropType	that	corresponds	to	the	filename	suffix.	This	could	be	one
of	the	following;	sceneFileDropType,	imageFileDropType,
importFileDropType,	dropScriptFileDropType.

Prototype:
virtual	bool	CheckDropType(TCHAR*	filename);

Remarks:
Subclasses	should	implement	this	method	to	recognize	the	file	types
associated	with	this	drop	type.	This	is	used	by	FindDropType().

Parameters:
TCHAR*	filename
The	filename	suffix.

Return	Value:
TRUE	if	the	filename	suffix	checks	out,	otherwise	FALSE.

Default	Implementation:
{	return	false;	}

Prototype:

static	bool	DownloadPackage(URLTab&	package,	TCHAR*
szDirectory,	HWND	hwnd	=	NULL,	bool	showProgress	=	true);

Remarks:
This	method	serves	as	a	utility	function	that	can	be	used	to	download	a
package	of	URLs	to	the	specified	directory.	If	the	hwnd	argument	is	supplied,
any	progress	or	other	messages	are	centered	over	that	window.

Parameters:
URLTab&	package
A	reference	to	the	local	copies	of	the	URL	strings.
TCHAR*	directory
The	directory	path	string	to	download	to.
HWND	hwnd	=	NULL
A	handle	to	the	window.	If	this	is	set	to	NULL,	the	default	3ds	max	window	is
used.
bool	showProgress	=	false
The	download	progress	dialog	can	be	displayed	by	passing	true.

Return	Value:
TRUE	if	the	download	was	successful,	otherwise	FALSE.

Prototype:
static	TCHAR*	GetDownloadDirectory();

Remarks:
This	method	returns	the	fully-specified	path	to	the	directory	in	which	package
drops	are	downloaded.

Prototype:
static	bool	DownloadUrlToDisk(HWND	hwnd,	TCHAR*	szUrl,
TCHAR*	szPathname,	DWORD	flags=0);

Remarks:
This	method	allows	you	to	download	the	file	referenced	by	the	URL	to	disk.

Parameters:
HWND	hwnd	=	NULL

A	handle	to	the	window.
TCHAR*	url
The	URL	string	of	the	file	to	download.
TCHAR*	fileName
The	filename	string	of	the	URL	to	store	on	disk.
DWORD	flags=0
Additional	controls	to	the	download	behavior.	Currently	only	one	flag	is
supported,	DOWNLOADDLG_NOPLACE,	which	hides	an	option	in	the
progress	dialog	that	allows	the	user	to	place	(move)	a	dropped	object
immediately	after	being	dropped.

Return	Value:
TRUE	if	the	download	was	successful,	otherwise	FALSE.

Class	DropScriptDropType
See	Also:	Class	DropType,	Class	DragAndDropHandler,	Class	FPParams,	Class
MacroEntry,	List	of	DropTypes
class	DropScriptDropType	:	public	DropType

Description:
This	class	is	available	in	release	4.0	and	later	only.
This	class	is	an	intermediate	base	class	for	drop	content	that	comes	in	the	form
of	a	dropScript.	This	is	a	special	kind	of	macroScript	that	implements	dropScript
event	handlers	(see	the	DropScript	documentation	for	details.)	The	prime
subclass	is	DropScriptFileDropType	which	recognizes	files	of	type	.ds.	The
parsed	data	for	this	type	is	a	single	parsed	macroScript,	represented	as	a
MacroEntry	pointer.	The	DropScriptDropType	class	provides	utility
methods	for	compiling	a	.ds	file	into	the	current_dropscript	slot	and	for
running	the	DnD-associated	handlers	in	the	current	dropScript.
	
The	methods	RunDropScriptDragEnter(FPParams*	params),
RunDropScriptDragOver(FPParams*	params)	and
RunDropScriptDrop(FPParams*	params)	take	care	of	the	‘on	droppable’
handler	in	the	current_dropscript,	if	supplied.	The
DragAndDropHandler::DragEnter	call	is	usualy	made	once	on	initial
entry	to	a	registered	DnD	target	window	and
DragAndDropHandler::DragOver	is	usually	called	as	the	mouse	moves
over	this	window.	In	both	cases,	the	handler	returns	true	or	false	to	indicate
whether	the	dropping	dropScript	will	be	accepted.	If	a	handler	is	not	supplied,
the	dropScript	is	always	deemed	droppable.	If	the	handler	returns	false,	the	not-
droppable	cursor	is	shown.
The	handler	is	called	with	a	set	of	arguments,	supplied	by	the
DragAndDropHandler,	that	usually	depends	on	the	window	currently	under
the	mouse	pointer.	For	example,	over	a	viewport,	the	current	mouse	coordinates,
scene	node	under	the	mouse,	slot	number	in	a	list	window,	etc.	By	convention,
the	first	argument	is	positional	and	always	a	window	type	name,	such	as
"Viewport"	or	"MaterialEditor",	and	all	the	others	are	keyword	arguments,	since
they	will	vary	from	window	to	window.	They	are	delivered	to	the
RunDropScriptXXX	methods	in	a	Function	Publishing	FPParam	object,	so

that	handler	code	needs	to	deal	as	little	as	possible	with	the	MAXScript	SDK.
Here's	an	example	code	fragment	from	the	default	drop	handler:
	
FPParams	params	(6,

TYPE_NAME,	(vpwin	?	_T("viewport")	:	_T("max")),
TYPE_KEYARG_MARKER,
TYPE_NAME,	_T("node"),
TYPE_INODE,	m_nodectx,
TYPE_NAME,	_T("point"),
TYPE_POINT,	&pt);

//	run	the	dragEnter	handler	&	set	dropeffect	based	on	result
if	(dropScriptFileDropType.RunDropScriptDragEnter(¶ms))

*pdwEffect	=	DROPEFFECT_COPY;
else

*pdwEffect	=	DROPEFFECT_NONE;
In	the	above	code,	the	handler	is	called	with	3	actual	arguments,	one	position
and	two	keyword.	They	are	loaded	into	the	'params'	instance	with	the
FPParams	varargs	constructor.	The	first	is	the	positional	window	name,	in
this	case	either	#viewport	or	#max,	then	comes	a	special
TYPE_KEYARG_MARKER	signalling	that	the	following	arguments	are
keyword.	The	keyword	args	are	given	in	pairs,	name	then	value,	in	this	case
node:	and	point:.	See	the	Function	Publishing	system	documentation	for	full
details	on	using	the	FPParams	class	for	passing	parameter	blocks.	An	example
droppable	handler	might	be	as	follows:
	
on	droppable	window	node:	do

return	window	==	#viewport	and	superclassOf	node	==	Shape
This	handler	effectively	makes	the	dropScript	droppable	if	the	mouse	is	over	a
Shape	object	in	a	viewport	window.	Notice	that	the	function	only	looks	at	the
node:	keyword	argument	in	this	definition;	arguments	delivered	as	keyword
arguments	can	vary	from	call	to	call	and	the	called	function	can	choose	to	look	at
only	subset	of	them.

Data	Members:
public
static	MacroEntry*	current_dropscript;
Cache	for	current	macroScript.	See
\MAXSDK\INCLUDE\iMacroScript.h	for	the	MacroScript	manager
public	API.	There	are	also	utility	methods	in	DropScriptDropType	that	do	all
the	necessary	DnD	compiling	&	running	of	macroScripts,	so	you	only	have	to
deal	with	the	MacroScript	manager	for	special	processing.

Methods:
public:

Prototype:
virtual	int	TypeCode()=0;

Remarks:
This	method	returns	the	typecode	of	the	DropType.

Default	Implementation:
{	return	DROPSCRIPT_DROPTYPE;	}

Prototype:
virtual	bool	IsDropType(int	code);

Remarks:
This	method	returns	TRUE	if	the	DropType	is	of	the	specified	DropType	code,
otherwise	FALSE.

Parameters:
int	code
The	DropType	code.

Default	Implementation:
{	return	code	==	TypeCode()	||	code	==
DROPSCRIPT_DROPTYPE;	}

Prototype:

virtual	DWORD	DropEffect();
Remarks:
This	method	returns	the	dropeffect	currently	supported	by	the	accepted
dropping	type.

Default	Implementation:
{	return	DROPEFFECT_MOVE;	}

	
The	following	methods	provide	assistance	for	developing	custom	drag-and-drop
handlers	that	want	to	accept	dropScripts.	They	work	on	the	shared
current_dropscript	static	data	member	in	DropScriptDropType.

Prototype:
BOOL	CompileDropScript(TCHAR*	filename);

Remarks:
This	method	parses	the	given	file,	looking	for	a	single	macroScript	definition.
If	successful,	interns	the	macroScript	and	places	its	corresponding
MacroEntry*	in	the	current_dropscript	static	data	member.	Note	that	if
there	is	more	code	than	just	a	single	macroScript	in	the	file,	only	the	last
macroScript	definition	is	taken;	the	other	code	is	NOT	executed,	so	you
cannot	include	auxiliary	global	functions	and	other	prep	code	in	the	file.	These
should	be	inside	the	body	of	the	macroScript,	as	local	data	and	functions.

Parameters:
TCHAR*	filename
The	filename	of	the	script.

Return	Value:
TRUE	if	successfully	compiled,	otherwise	FALSE.

Prototype:
BOOL	RunDropScriptDragEnter(FPParams*	params);

Remarks:
This	methods	takes	care	of	the	‘on	droppable’	handler	in	the
current_dropscript,	if	supplied.	If	the	handler	returns	false,	the	not-
droppable	cursor	is	shown.

Parameters:
FPParams*	params
The	set	of	arguments	for	the	handler.

Return	Value:
TRUE	if	droppable	script	will	be	accepted,	otherwise	FALSE.

Prototype:
BOOL	RunDropScriptDragOver(FPParams*	params);

Remarks:
This	methods	takes	care	of	the	‘on	droppable’	handler	in	the
current_dropscript,	if	supplied,	during	the	process	of	dragging	contents
over	the	drop	target.	If	the	handler	returns	false,	the	not-droppable	cursor	is
shown.

Parameters:
FPParams*	params
The	set	of	arguments	for	the	handler.

Return	Value:
TRUE	if	droppable	script	will	be	accepted,	otherwise	FALSE.

Prototype:
BOOL	RunDropScriptDrop(FPParams*	params);

Remarks:
This	methods	takes	care	of	the	‘on	droppable’	handler	in	the
current_dropscript,	if	supplied	and	handles	the	parsing	of	the	dropped
script.	If	the	handler	returns	false,	the	not-droppable	cursor	is	shown.

Parameters:
FPParams*	params
The	set	of	arguments	for	the	handler.

Return	Value:
TRUE	if	droppable	script	will	be	accepted,	otherwise	FALSE.

Prototype:

void	InitDragDropCheck(MacroEntry*	dropscript,	LPARAM
mousePt,	WPARAM	keyState,	HWND	hwnd);

Remarks:
This	method	will	initialize	a	drag	and	drop	check.

Parameters:
MacroEntry*	dropscript
The	drop	script	macro	entry.
LPARAM	mousePt
The	initial	mouse	cursor	position.
WPARAM	keyState
They	initial	state	of	the	keyboard.
HWND	hwnd
The	handle	to	the	initial	start	window.

Prototype:
bool	ReadyToDrag();

Remarks:
This	method	returns	TRUE	if	the	system	is	ready	to	drag,	otherwise	FALSE.

Default	Implementation:
{	return	current_dropscript	!=	NULL;	}

List	of	DropTypes
See	Also:	Class	DropType	,	Class	DragAndDropHandler
The	following	is	the	list	of	built-in	DropTypes	provided	with	3ds	max.	The
DropTypes	are	listed	by	their	class	name	and	DropType	code.	This	type	code	can
be	obtained	by	using	the	DropType::TypeCode()	method.	Third-party
DropType	subclasses	should	use	random	codes	above	0x1000000.
	
FileDropType	(FILE_DROPTYPE)
Intermediate	base	class	for	drop	content	in	the	form	of	a	package	of	file	names
or	URL’s.
SceneFileDropType	(SCENEFILE_DROPTYPE)
The	*.max	scene	file.
ImageFileDropType	(IMAGEFILE_DROPTYPE)
The	image	files	(.bmp,	.tga,	etc.).
ImportFileDropType	(IMPORTFILE_DROPTYPE)
The	importable	files	(.3ds,	.dxf,	etc.).
ScriptFileDropType	(SCRIPTFILE_DROPTYPE)
The	script	files	(.ms,	.mse,	.mcr).
DropScriptDropType	(DROPSCRIPT_DROPTYPE)
Intermediate	base	class	for	drop	content	in	the	form	of	a	dropScript.
DropScriptFileDropType	(DROPSCRIPTFILE_DROPTYPE)
The	drop	script	files	(.ds,	.dse).
MSZipPackageFileDropType	(MSZIPFILE_DROPTYPE)
The	script	zip	package	files	(.mzp).
BitmapDropType	(BITMAP_DROPTYPE)
The	bitmap	type.

Structure	Color48
See	Also:	Class	Structure	Color24,	Structure	Color64.
Note:	typedef	unsigned	short	USHORT;
struct	Color48	{
	UWORD	r,g,b;
	16	bits	for	each	of	the	Red,	Green	and	Blue	components.
	};

Structure	SceneInfo
See	Also:	Class	MaxNetManager,	Structure	MaxJob

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	store	information	about
the	scene.
typedef	struct	{
int	objects;
The	number	of	objects	in	the	scene.
int	faces;
The	total	number	of	faces	in	the	scene.
int	lights;
The	total	number	of	lights	in	the	scene.
int	start;
The	scene	start	time.
int	end;
The	scene	end	time.
DWORD	flags;
This	variable	contains	all	the	flags	relating	to	the	scene’s	rendering	options,
which	are	following	values:
SCENE_SHADOWMAPPED
The	shadowmapped	flag.
SCENE_RAYTRACED
The	raytraced	flag.
SCENE_VIDEOCOLORCHECK
The	video	color	check	flag.
SCENE_TWOSIDED
The	render	two	sided	flag..
SCENE_RENDERHIDEN
The	render	hidden	objects	flag.
SCENE_RENDERATMOSPHER
The	render	atmospheric	effects	flag.

SCENE_SUPERBLACK
The	render	super	black	flag.
SCENE_RENDERALPHA
The	render	alpha	data	flag.
SCENE_SERIALNUMBERING
The	serial	numbering	flag.
SCENE_DITHER256
The	dither	256	color	flag.
SCENE_DITHERTRUE
The	dither	true	color	flag.
SCENE_RENDERFIELDS
The	render	fields	flag.
SCENE_DISPLACEMENT
The	render	displacement	flag.
SCENE_EFFECTS
The	render	effects	flag.
SCENE_FIELDORDER
The	field	ordering,	0	for	even	and	1	for	odd.

}	SceneInfo;

Structure	MaxJobRenderElements
See	Also:	Class	MaxNetManager,	Structure	MaxJob

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	is	used	by	the	Network	Rendering	API	to	enable	or	disable	Render
Elements.
typedef	struct	{
bool	enabled;
This	flag	determines	if	render	elements	are	enabled	or	not.

}	MaxJobRenderElements;

Structure	TextBufferOutput
See	Also:	Class	MaxNetManager,	Structure	JobText

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	contains	the	actual	information	for	the	output	text	buffer.
typedef	struct	{
bool	device;
The	device	flag	will	be	set	to	TRUE	if	the	output	is	sent	to	a	device	instead	of
a	file.
float	gamma;
The	output	gamma	for	the	device,	which	is	optional.	If	the	gamma	value	is	set
to	0.0,	this	value	will	be	ignored.
TCHAR	data[256];
The	text	output	buffer.

}	TextBufferOutput;

Structure	JobRenderElement
See	Also:	Class	MaxNetManager,	Structure	JobText

Description:
This	structure	is	available	in	release	4.0	and	later	only.
This	structure	contains	the	details	on	a	specific	Render	Element	for	a	job.
typedef	struct	{
bool	enabled;
This	flag	indicates	if	the	Render	Element	is	enabled	or	disabled.
bool	filterenabled;
This	flag	indicates	if	filters	are	enabled	or	disabled	for	the	Render	Element.
bool	atmosphere_applied;
This	flag	indicates	if	atmospheric	effects	are	enabled	or	disabled	for	the
Render	Effect.
bool	shadows_applied;
This	flag	indicates	if	shadows	are	to	be	applied	for	the	Render	Effect.
TCHAR	name[128];
The	name	of	the	Render	Effect.
TCHAR	output[MAX_PATH];
The	output	path	and	file	name	of	the	resulting	Render	Element.

}	JobRenderElement;

	3ds max Plug-In SDK

