
ODBC	and	SQL	Server



Programming	ODBC	SQL	Server	Applications
ODBC	is	a	standard	definition	of	an	application	programming	interface	(API)
used	to	access	data	in	relational	or	indexed	sequential	access	method	(ISAM)
databases.	Microsoft®	SQL	Server™	supports	ODBC	as	one	of	the	native	APIs
for	writing	C,	C++,	and	Microsoft	Visual	Basic®	applications	that	communicate
with	SQL	Server.	SQL	Server	Setup	installs	an	ODBC	driver	for	use	with	SQL
Server	when	it	installs	the	SQL	Server	client	utilities.

ODBC	defines	a	call-level	interface,	or	CLI.	A	CLI	is	defined	as	a	set	of
function	calls	and	their	associated	parameters.	A	CLI	definition	uses	a	native
programming	language	to	call	functions;	therefore	a	CLI	requires	no	extensions
to	the	underlying	programming	language.	This	contrasts	with	an	embedded	API,
such	as	Embedded	SQL,	where	the	API	is	defined	as	an	extension	of	the	source
code	for	a	programming	language,	and	applications	using	the	API	must	be
precompiled	in	a	separate	step.

ODBC	aligns	with	the	following	specification	and	standard	for	relational	SQL
database	CLI	definitions:

The	X/Open	CAE	specification	Data	Management:	SQL	Call-Level
Interface	(CLI)

ISO/IEC	9075-3:1995	(E)	Call-Level	Interface	(SQL/CLI)

While	C,	C++,	and	Visual	Basic	applications	can	be	written	to	call	ODBC
directly,	Microsoft	also	provides	several	APIs	that	map	over	ODBC.	These	APIs
are	simpler	than	ODBC	itself,	or	offer	improved	integration	with	their	respective
programming	languages:

Microsoft	Visual	Basic	Remote	Data	Objects	(RDO)

Microsoft	Visual	Basic	Data	Access	Objects	(DAO)

Microsoft	Visual	C++®	development	system	MFC	database	classes



Microsoft	Visual	C++	development	system	DAO	classes

While	Visual	Basic	applications	can	be	written	directly	to	the	ODBC	API,	they
are	usually	written	to	either	the	RDO	or	DAO	APIs.

SQL	Server	programs	that	are	written	using	the	ODBC	API	communicate	with
SQL	Server	through	C	function	calls.	The	SQL	Server-specific	versions	of	the
ODBC	functions	are	implemented	in	a	SQL	Server	ODBC	driver.	The	driver
passes	SQL	statements	to	SQL	Server	and	returns	the	results	of	the	statements	to
the	application.	ODBC	applications	are	also	interoperable	with	drivers	for
heterogeneous	data	sources.

The	SQL	Server	ODBC	driver	complies	with	the	Microsoft	Win32®	ODBC	3.51
specification.	The	ODBC	function	calls	in	this	document	use	ODBC	3.51	syntax.
The	driver	supports	applications	written	with	the	ODBC	2.5	or	earlier	versions
of	the	ODBC	functions	in	the	manner	defined	in	the	ODBC	3.51	specification.

ODBC	enables	a	database	to	become	an	integral	part	of	an	application.	SQL
statements	can	be	incorporated	into	the	application,	allowing	the	application	to
retrieve	and	update	values	from	a	database.	Values	from	the	database	can	be
placed	in	program	variables	for	manipulation	by	the	application.	Conversely,
values	in	program	variables	can	be	written	to	the	database.

ODBC	enables	applications	to	access	a	variety	of	data	sources,	including	a	wide
range	of	relational	databases	and	local	ISAM	data.	ODBC	supports	applications
in	the	Microsoft	Windows®	2000,	Microsoft	Windows	98,	Microsoft	Windows
95,	and	Microsoft	Windows	NT®	4.0	operating	environments.

Tools	for	developing	C	and	C++	applications	using	the	ODBC	API	are	available
in	the	Microsoft	ODBC	Software	Development	Kit	(SDK).	The	ODBC	SDK	is
part	of	the	Microsoft	Developer	Network	(MSDN®)	Professional	subscription.
The	ODBC	SDK	can	also	be	downloaded	from	the	Microsoft	Web	site,	and	is
available	in	the	Microsoft	ODBC	3.0	Software	Development	Kit	and
Programmer's	Reference	available	from	Microsoft	Press®.	The	ODBC	driver	for
SQL	Server	is	included	with	SQL	Server.	Visual	Basic	includes	all	the
components	necessary	to	build	applications	using	the	RDO	and	DAO	APIs.
Visual	C++	includes	all	the	components	necessary	to	build	C	and	C++
applications	using	the	DAO	and	MFC	database	classes.

http://www.Microsoft.com/isapi/redir.dll?Prd=uda&Ar=home


ODBC	and	SQL	Server



Getting	Started	with	ODBC
These	topics	explain	how	to	use	ODBC	to	communicate	with	Microsoft®	SQL
Server™.



ODBC	and	SQL	Server



ODBC	Syntax	Conventions

Convention Used	for
UPPERCASE Transact-SQL	functions	and	statements,	and	C	macro

names.
monospace Sample	commands	and	program	code.

italic Function	parameter	names	and	information	that	the
user	or	the	application	must	provide.

bold Function	names,	parameter	keywords,	and	other	syntax
that	must	be	typed	exactly	as	shown.



ODBC	and	SQL	Server



System	Requirements	for	ODBC
To	access	Microsoft®	SQL	Server™	data,	you	must	have	the	following
software:

SQL	Server	ODBC	driver

SQL	Server

Network	software	on	the	computers	on	which	the	driver	and	SQL
Server	reside	(not	required	when	connecting	to	a	local	(nonnetwork)
desktop	instance	of	SQL	Server)

The	hardware	and	software	requirements	of	each	of	these	components	follow.



ODBC	and	SQL	Server

SQL	Server	ODBC	Driver
The	Microsoft®	SQL	Server™	ODBC	driver	requires:

Microsoft	Windows®	2000,	Microsoft	Windows	95,	or	Microsoft
Windows	98	on	Intel	computers.

Or

Microsoft	Windows	NT®	4.0	on	Intel	computers.

For	more	information	about	the	hardware	and	software	required	for	SQL	Server
clients,	see	Hardware	and	Software	Requirements	for	Installing	SQL	Server.

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server

SQL	Server
To	use	the	Microsoft®	SQL	Server™	ODBC	driver	to	access	data	in	SQL	Server
databases,	you	must	have	SQL	Server	version	4.21a	or	later.	The	catalog	stored
procedures	must	be	installed	on	your	SQL	Server.	You	may	need	to	install	the
catalog	stored	procedures	shipped	with	this	driver	when	you	use	versions	4.21a,
6.0,	or	6.5	of	SQL	Server.	For	more	information,	see	Upgrading	the	Catalog
Stored	Procedures	(ODBC).	For	more	information	about	the	hardware	and
software	required	by	ODBC	SQL	Server,	see	Basic	Installation	Options.

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server

Network	Software
Network	software	is	required	to	connect	the	clients	running	the	Microsoft®	SQL
Server™	ODBC	driver	to	the	server	on	which	the	instance	of	SQL	Server
resides.	To	connect	to	a	server	running	an	instance	of	SQL	Server,	you	can	use
Microsoft	Windows	NT®	4.0,	Microsoft	Windows®	2000,	Microsoft	Windows
95,	Microsoft	Windows	98,	or	a	compatible	network	such	as	Novell	NetWare	or
Banyan	VINES.	For	more	information	about	the	hardware	and	software	required
by	each	network,	see	the	network	documentation.

The	SQL	Server	ODBC	driver	communicates	with	network	software	through	the
SQL	Server	Net-Library	interface,	which	requires	a	Net-Library	dynamic-link
library	(DLL).	The	SQL	Server	2000	ODBC	driver	requires	the	SQL	Server
2000	versions	of	the	Net-Library	.dll	files.	These	are	installed	when	you	run	the
client	portion	of	SQL	Server	Setup.	For	more	information	about	supported
network	configurations	and	Net-Library	files,	see	Basic	Installation	Options.

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



Installing	the	SQL	Server	ODBC	Driver
The	Microsoft®	SQL	Server™	ODBC	driver	is	installed	automatically	when
you	install	the	SQL	Server	client	software	on	a	computer	running	Microsoft
Windows	NT®	4.0,	Microsoft	Windows®	2000,	Microsoft	Windows	98,	or
Microsoft	Windows	95.	For	more	information	about	installing	SQL	Server	client
software,	see	Basic	Installation	Options.

If	you	have	servers	running	SQL	Server	versions	4.21a,	6.0,	or	6.5,	you	must
install	the	Instcat.sql	file	included	with	this	driver	on	those	servers	before	using
the	driver	to	access	them.	Each	version	of	the	SQL	Server	ODBC	driver	is
developed	in	conjunction	with	a	specific	version	of	the	catalog	stored
procedures.	Instcat.sql	upgrades	the	catalog	stored	procedures	to	the	version
required	by	the	ODBC	driver.	This	version	of	the	catalog	stored	procedures	is
compatible	with	existing	SQL	Server	applications.

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



Upgrading	the	Catalog	Stored	Procedures	(ODBC)
The	Microsoft®	SQL	Server™	ODBC	driver	uses	a	set	of	system	stored
procedures,	known	as	catalog	stored	procedures,	to	obtain	information	from	the
SQL	Server	system	catalog.	SQL	Server	installs	the	catalog	stored	procedures
automatically	when	you	install	or	upgrade	SQL	Server.	The	Instcat.sql	file
included	with	this	driver	includes	minor	updates	to	the	catalog	stored
procedures.	If	this	version	of	the	SQL	Server	ODBC	driver	will	be	used	against
SQL	Server	version	6.5	or	earlier	versions,	the	SQL	Server	system	administrator
must	upgrade	the	catalog	stored	procedures	on	the	earlier	SQL	Server.
Upgrading	the	catalog	stored	procedures	does	not	affect	the	operation	of	existing
SQL	Server	clients.

Running	the	SQL	Server	2000	ODBC	driver	against	an	earlier	version	of	SQL
Server	that	has	earlier	versions	of	catalog	stored	procedures	generates	an	error:

The	ODBC	catalog	stored	procedures	installed	on	server	<server_name>
version	<old_version_number>;	version	<new_version_number>	or	later	is	
required	to	ensure	proper	operation.	Please	contact	your	system	
administrator.

To	upgrade	the	catalog	stored	procedures



ODBC	and	SQL	Server



Adding	a	Data	Source
ODBC	applications	typically	connect	to	a	database	through	an	ODBC	data
source.	Each	ODBC	data	source	on	a	client	computer	has	a	unique	data	source
name,	or	DSN.	An	ODBC	data	source	for	the	Microsoft®	SQL	Server™	ODBC
driver	includes	all	the	information	required	to	connect	to	a	server	running	an
instance	of	SQL	Server,	plus	options,	such	as	a	default	database	or	the	type	of
security	to	use.

There	are	three	types	of	ODBC	data	sources:

User	data	source

User	data	sources	are	specific	to	the	Microsoft	Windows	NT®	4.0,
Microsoft	Windows®	2000,	Microsoft	Windows	95,	or	Microsoft
Windows	98	account	in	effect	when	they	are	created.	They	are	not
visible	to	any	other	login	account.	They	are	not	always	visible	to
applications	running	as	a	service	on	a	Windows	NT	4.0	computer.

System	data	source

System	data	sources	are	visible	to	all	login	accounts	on	a	client.	They
are	always	visible	to	applications	running	as	a	service	on	a	Windows
NT	4.0	computer.

File	data	source

File	data	sources	were	added	with	ODBC	version	3.0.	File	data	sources
are	not	stored	in	the	system	registry.	They	are	stored	in	a	file	on	the
client.

There	are	several	ways	to	add	a	data	source:

ODBC	Administrator

The	ODBC	Administrator	is	installed	in	Control	Panel.	The	ODBC
Administrator	has	tabs	for	user,	system,	and	file	data	sources.	Click	the
proper	tab,	click	Add,	and	then	select	the	SQL	Server	ODBC	driver.
The	ODBC	Administrator	then	starts	the	SQL	Server	DSN
Configuration	Wizard.



SQLConfigDataSource

User	or	system	data	sources	can	be	created	by	an	ODBC	application
that	calls	the	SQLConfigDataSource	function	with	the	fRequest
parameter	set	to	either	ODBC_ADD_DSN	or	ODBC_ADD_SYS_DSN.

SQLWriteFileDSN

A	file	data	source	can	be	created	by	an	ODBC	application	that	calls	the
SQLWriteFileDSN	function.

SQLDriverConnect

If	an	application	specifies	the	SAVEFILE	keyword	in	the	connect	string
of	a	successful	call	to	SQLDriverConnect,	a	file	data	source	is	created
using	the	information	specified	in	the	SQLDriverConnect	connect
string.

SQLCreateDataSource

An	ODBC	application	can	call	the	function	SQLCreateDataSource	to
display	an	ODBC	dialog	box	that	guides	a	user	through	creating	a	data
source.

Data	sources	that	reference	the	SQL	Server	ODBC	driver	contain	driver-specific
information	and	options.	When	a	data	source	is	created	with	either
SQLConfigDataSource	or	SQLWriteFileDSN,	all	of	the	driver-specific
information	is	supplied	through	keyword-value	pairs	in	a	character	string	passed
to	the	function.	When	a	data	source	is	created	using	the	ODBC	Administrator	or
the	SQLCreateDataSource	dialog	box,	the	SQL	Server	DSN	Creation	wizard	is
invoked	to	help	you	perform	the	steps	to	specify	the	driver-specific	information.

The	help	file	for	the	SQL	Server	DSN	Creation	Wizard	contains	information	on
the	driver-specific	options	defined	through	the	wizard.	These	options	can	also	be
specified	as	keywords	in	SQLConfigDataSource.	For	more	information	about
the	driver-specific	options	that	can	be	specified	with	SQLConfigDataSource,
see	SQLConfigDataSource.	The	same	driver-specific	options	can	also	be
specified	as	keywords	in	the	connect	string	for	SQLDriverConnect.	For	more
information	about	the	keywords	and	their	meanings,	see	SQLDriverConnect.

To	start	the	Microsoft	SQL	Server	DSN	Configuration	Wizard



ODBC	and	SQL	Server



Deleting	a	Data	Source
ODBC	data	sources	can	be	deleted	in	several	ways:

Double-click	the	ODBC	Administrator	icon	in	Control	Panel,	select
the	data	source,	and	then	click	Delete.

Call	SQLConfigDataSource	with	the	fRequest	parameter	set	to	either
SQL_REMOVE_DSN	or	SQL_REMOVE_SYS_DSN.

Delete	file	data	sources	by	deleting	the	file	containing	the	data	source.

To	delete	a	data	source



ODBC	and	SQL	Server



Connecting	to	a	SQL	Server	Data	Source
After	an	ODBC	data	source	has	been	defined,	you	can	connect	to	an	instance	of
Microsoft®	SQL	Server™	from	ODBC	applications	using	the	data	source.	Some
ODBC	applications	are	written	to	connect	through	data	sources	and	typically
open	a	dialog	box	or	accept	a	parameter	for	the	ODBC	data	source	with	which
you	want	to	connect.	Other	ODBC	applications	are	written	to	connect	without	a
data	source.	These	applications	can	display	their	own	dialog	box	to	get	the
information	required	to	connect,	or	they	can	have	the	ODBC	driver	display	its
dialog	box	to	get	the	connection	information.	SQL	Query	Analyzer	is	an
example	of	an	ODBC	application	that	does	not	use	a	data	source;	Microsoft
Excel	is	an	example	of	an	ODBC	application	that	does	use	a	data	source.



ODBC	and	SQL	Server

Using	odbcping	to	Verify	a	Connection
You	can	use	the	odbcping	utility	to	check	whether	ODBC	is	properly	installed
by	connecting	to	a	server	using	the	Microsoft®	SQL	Server™	ODBC	driver.
This	utility	is	a	32-bit	application	stored	in	the	\Mssql7\Binn	directory.

To	verify	ODBC	connectivity

ODBC

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



Creating	an	ODBC	Application
ODBC	architecture	has	four	components	that	perform	the	following	functions.

Component Function
Application Calls	ODBC	functions	to	communicate	with	an	ODBC

data	source,	submits	SQL	statements,	and	processes
result	sets.

Driver	Manager Manages	communication	between	an	application	and
all	ODBC	drivers	used	by	the	application.

Driver Processes	all	ODBC	function	calls	from	the
application,	connects	to	a	data	source,	passes	SQL
statements	from	the	application	to	the	data	source,	and
returns	results	to	the	application.	If	necessary,	the
driver	translates	ODBC	SQL	from	the	application	to
native	SQL	used	by	the	data	source.

Data	source Contains	all	information	a	driver	needs	to	access	a
specific	instance	of	data	in	a	DBMS.

An	application	that	uses	the	ODBC	interface	to	communicate	with	an	instance	of
Microsoft®	SQL	Server™	performs	the	following	tasks:

Connects	with	a	data	source

Sends	SQL	statements	to	the	data	source

Processes	the	results	of	statements	from	the	data	source

Processes	errors	and	messages

Terminates	the	connection	to	the	data	source

A	more	complex	application	written	for	the	SQL	Server	ODBC	driver	might	also
perform	the	following	tasks:



Use	cursors	to	control	location	in	a	result	set

Request	commit	or	rollback	operations	for	transaction	control

Perform	distributed	transactions	involving	two	or	more	servers

Run	stored	procedures	on	the	remote	server

Call	catalog	functions	to	inquire	about	the	attributes	of	a	result	set

Perform	bulk	copy	operations

Manage	long	data	(text,	ntext,	and	image	columns)	operations

Control	failover	servers	in	case	the	primary	server	becomes	unavailable

Log	performance	data	and	long-running	queries

To	make	ODBC	function	calls,	a	C	or	C++	application	must	include	the	Sql.h,
Sqlext.h,	and	Sqltypes.h	header	files.	To	make	calls	to	the	ODBC	installer	API
functions,	an	application	must	include	the	Odbcinst.h	header	file.	A	Unicode
ODBC	application	must	include	the	Sqlucode.h	header	file.	ODBC	applications
must	be	linked	with	the	Odbc32.lib	file.	ODBC	applications	that	call	the	ODBC
installer	API	functions	must	be	linked	with	the	Odbccp32.lib	file.	By	default,
SQL	Server	Setup	2000	installs	these	header	files	into	the	C:\Program
Files\Microsoft	SQL	Server\80\Tools\DevTools\Include	directory	and	the	library
files	into	C:\Program	Files\Microsoft	SQL	Server\80\Tools\DevTools\Lib	when
the	SQL	Server	development	tools	are	installed.	The	latest	versions	of	these	files
can	be	downloaded	with	the	latest	Microsoft	Data	Access	SDK	from	the
Microsoft	Web	site.

Many	ODBC	drivers,	including	the	SQL	Server	ODBC	driver,	offer	driver-
specific	ODBC	extensions.	To	take	advantage	of	SQL	Server	ODBC	driver-

http://www.Microsoft.com/isapi/redir.dll?Prd=uda&Ar=home


specific	extensions,	an	application	should	include	the	Odbcss.h	header	file.	This
header	file	contains:

SQL	Server	ODBC	driver-specific	connection	attributes.

SQL	Server	ODBC	driver-specific	statement	attributes.

SQL	Server	ODBC	driver-specific	column	attributes.

SQL	Server-specific	data	types.	

SQL	Server-specific	user-defined	data	types.

SQL	Server	ODBC	driver-specific	SQLGetInfo	types.

SQL	Server	ODBC	driver	diagnostics	fields.

SQL	Server-specific	diagnostic	dynamic	function	codes.

C/C++	type	definitions	for	SQL	Server-specific	native	C	data	types
(returned	when	columns	bound	to	C	data	type	SQL_C_BINARY).

Type	definition	for	the	SQLPERF	data	structure.

Bulk	copy	macros	and	prototypes	to	support	bulk	copy	API	usage
through	an	ODBC	connection.

Call	the	distributed	query	meta	data	API	functions	for	lists	of	linked
servers	and	their	catalogs.

Any	C	or	C++	ODBC	application	that	uses	the	bulk	copy	feature	of	the	SQL



Server	2000	ODBC	driver	must	be	linked	with	the	Odbcbcp.lib	file.
Applications	calling	the	distributed	query	meta	data	API	functions	must	also	be
linked	with	Odbcbcp.lib.	The	Odbcss.h	and	Odbcbcp.lib	files	are	distributed	as
part	of	the	SQL	Server	developer's	tools.	The	SQL	Server	Include	and	Lib
directories	should	be	in	the	compiler's	INCLUDE	and	LIB	paths.	If	you	have
downloaded	a	version	of	the	Microsoft	Data	Access	SDK	whose	dates	are	later
than	the	dates	for	SQL	Server	version	7.0,	place	the	MSDA	directories	before	the
SQL	Server	7.0	directories;	for	example:

LIB=c:\msdasdk\odbc\lib;C:\Program	Files\Microsoft	SQL	Server\80\Tools\DevTools\Lib;c:\msdev\lib;c:\msdev\mfc\lib
INCLUDE=c:\msdasdk\odbc\include;C:\Program	Files\Microsoft	SQL	Server\80\Tools\DevTools\Include;c:\msdev\include;
c:\msdev\mfc\include

One	design	decision	made	early	in	the	process	of	building	an	application	is
whether	the	application	needs	to	have	multiple	ODBC	calls	outstanding	at	the
same	time.	There	are	two	methods	for	supporting	multiple	concurrent	ODBC
calls:

ODBC	asynchronous	mode	

Multithreading



ODBC	and	SQL	Server



Asynchronous	Mode	and	SQLCancel
Some	ODBC	functions	can	operate	either	synchronously	or	asynchronously.	(For
more	information	about	ODBC	functions,	see	the	ODBC	3.0	Programmer's
Reference.)	The	application	can	enable	asynchronous	operations	for	either	a
statement	handle	or	a	connection	handle.	If	the	option	is	set	for	a	connection
handle,	it	affects	all	statement	handles	on	the	connection	handle.	The	application
uses	the	following	statements	to	enable	or	disable	asynchronous	operations:

SQLSetConnectAttr(hdbc,	SQL_ATTR_ASYNC_ENABLE,
																		SQL_ASYNC_ENABLE_ON,	SQL_NTS);
SQLSetConnectAttr(hdbc,	SQL_ATTR_ASYNC_ENABLE,
																		SQL_ASYNC_ENABLE_OFF,	SQL_NTS);
SQLSetStmtAttr(hstmt,	SQL_ATTR_ASYNC_ENABLE,
																		SQL_ASYNC_ENABLE_ON,	SQL_NTS);
SQLSetStmtAttr(hstmt,	SQL_ATTR_ASYNC_ENABLE,
																		SQL_ASYNC_ENABLE_OFF,	SQL_NTS);

When	an	application	calls	an	ODBC	function	in	synchronous	mode,	the	driver
does	not	return	control	to	the	application	until	it	is	notified	that	the	server	has
completed	the	command.

When	operating	asynchronously,	the	driver	immediately	returns	control	to	the
application,	even	before	sending	the	command	to	the	server.	The	driver	sets	the
return	code	to	SQL_STILL_EXECUTING.	The	application	can	then	perform
other	work.

When	the	application	tests	for	completion	of	the	command,	it	makes	the	same
function	call	with	the	same	parameters	to	the	driver.	If	the	driver	has	not	yet
received	an	answer	from	the	server,	it	will	again	return
SQL_STILL_EXECUTING.	The	application	must	test	the	command
periodically	until	the	return	code	is	something	other	than
SQL_STILL_EXECUTING.	When	the	application	gets	some	other	return	code,
even	SQL_ERROR,	it	knows	the	command	has	completed.

Sometimes	a	command	is	outstanding	for	a	long	time.	If	the	application	needs	to
cancel	the	command	without	waiting	for	a	reply,	it	can	do	so	by	calling



SQLCancel	with	the	same	statement	handle	as	the	outstanding	command.	This
is	the	only	time	SQLCancel	should	be	used.	Some	programmers	use
SQLCancel	when	they	have	processed	part	way	through	a	result	set	and	want	to
cancel	the	rest	of	the	result	set.	SQLMoreResults	or	SQLCloseCursor	should
be	used	to	cancel	the	remainder	of	an	outstanding	result	set,	not	SQLCancel.

See	Also

SQLCloseCursor

SQLMoreResults



ODBC	and	SQL	Server



Multithreaded	Applications
The	Microsoft®	SQL	Server™	ODBC	driver	is	a	multithreaded	driver.	Writing	a
multithreaded	application	is	an	alternative	to	using	asynchronous	calls	to	process
multiple	ODBC	calls.	A	thread	can	make	a	synchronous	ODBC	call,	and	other
threads	can	process	while	the	first	thread	is	blocked	waiting	for	the	response	to
its	call.	This	model	is	more	efficient	than	making	asynchronous	calls	because	it
eliminates	overhead	such	as	network	traffic	and	making	repeated	ODBC
function	calls	testing	for	SQL_STILL_EXECUTING.

Asynchronous	mode	is	still	an	effective	method	of	processing.	The	performance
improvements	of	a	multithreaded	model	are	not	enough	to	justify	rewriting
asynchronous	applications.	If	users	are	converting	DB-Library	applications	that
use	the	DB-Library	asynchronous	model,	it	is	easier	to	convert	them	to	the
ODBC	asynchronous	model.



ODBC	and	SQL	Server



Communicating	with	SQL	Server
For	an	ODBC	application	to	communicate	with	an	instance	of	Microsoft®	SQL
Server™,	it	must	allocate	environment	and	connection	handles	and	connect	to
the	data	source.	After	a	connection	is	established,	the	application	can	send
queries	to	the	server	and	process	any	result	sets.	When	the	application	has
finished	using	the	data	source,	it	disconnects	from	the	data	source	and	frees	the
connection	handle.	When	the	application	has	freed	all	of	its	connection	handles,
it	frees	the	environment	handle.

An	application	can	connect	to	any	number	of	data	sources.	The	application	can
use	a	combination	of	drivers	and	data	sources,	the	same	driver	and	a
combination	of	data	sources,	or	even	the	same	driver	and	multiple	connections	to
the	same	data	source.

See	Also

SQLSetEnvAttr



ODBC	and	SQL	Server



Allocating	an	Environment	Handle
Before	an	application	can	call	any	ODBC	function,	it	must	initialize	the	ODBC
environment	and	allocate	an	environment	handle,	which	is	the	global	context
handle	and	placeholder	for	the	other	handles	in	ODBC.	This	is	done	by	calling
SQLAllocHandle	with	the	HandleType	parameter	set	to	SQL_HANDLE_ENV
and	InputHandle	set	to	SQL_NULL_HANDLE.

After	allocating	the	environment	handle,	the	application	must	set	environment
attributes	to	indicate	which	version	of	ODBC	function	calls	it	will	be	using.	To
use	the	ODBC	3.x	functions,	call	SQLSetEnvAttr	with	the	Attribute	parameter
set	to	SQL_ATTR_ODBC_VERSION	and	ValuePtr	set	to	SQL_OV_ODBC3.

How	to	allocate	handles	and	connect	to	SQL	Server



ODBC	and	SQL	Server



Allocating	a	Connection	Handle
Before	the	application	can	connect	to	a	data	source	or	driver,	it	must	allocate	a
connection	handle.	This	is	done	by	calling	SQLAllocHandle	with	the
HandleType	parameter	set	to	SQL_HANDLE_DBC	and	InputHandle	pointing	to
an	initialized	environment	handle.

The	characteristics	of	the	connection	are	controlled	by	setting	connection
attributes.	For	example,	because	transactions	occur	at	the	connection	level,	the
transaction	isolation	level	is	a	connection	attribute.	Similarly,	the	login	time-out,
or	number	of	seconds	to	wait	while	trying	to	connect	before	timing	out,	is	a
connection	attribute.

Connection	attributes	are	set	with	SQLSetConnectAttr,	and	their	current
settings	are	retrieved	with	SQLGetConnectAttr.	If	SQLSetConnectAttr	is
called	before	a	connection	is	attempted,	the	ODBC	Driver	Manager	stores	the
attributes	in	its	connection	structure	and	sets	them	in	the	driver	as	part	of	the
connection	process.	Some	connection	attributes	must	be	set	before	the
application	attempts	to	connect;	others	can	be	set	after	the	connection	has
completed.	For	example,	SQL_ATTR_ODBC_CURSORS	must	be	set	before	a
connection	is	made,	but	SQL_ATTR_AUTOCOMMIT	can	be	set	after
connecting.

Applications	running	against	Microsoft®	SQL	Server™	version	6.0	or	later	can
sometimes	improve	their	performance	by	resetting	the	Tabular	Data	Stream
(TDS)	network	packet	size.	The	default	packet	size	is	set	at	the	server,	at	4	KB.
A	packet	size	of	4	KB	to	8	KB	generally	gives	the	best	performance.	If	testing
shows	that	it	performs	better	with	a	different	packet	size,	the	application	can
reset	the	packet	size.	ODBC	applications	can	do	this	before	connecting	by
calling	SQLSetConnectionAttr	with	the	SQL_ATTR_PACKET_SIZE	option.
Some	applications	perform	better	with	a	larger	packet	size,	but	performance
improvements	are	generally	minimal	for	packet	sizes	larger	than	8	KB.

The	SQL	Server	ODBC	driver	has	a	number	of	extended	connection	attributes
that	an	application	can	use	to	increase	its	functionality.	Some	of	these	attributes
control	the	same	options	that	can	be	specified	in	data	sources	and	used	to
override	whatever	option	is	set	in	a	data	source.	For	example,	if	an	application
uses	quoted	identifiers,	it	can	set	the	driver-specific	attribute



SQL_COPT_SS_QUOTED_IDENT	to	SQL_QI_ON	to	ensure	this	option	is
always	set	regardless	of	the	setting	in	any	data	source.

How	to	allocate	handles	and	connect	to	SQL	Server



ODBC	and	SQL	Server



SQL	Server	ODBC	Data	Sources
A	Microsoft®	SQL	Server™	data	source	name	(DSN)	identifies	an	ODBC	data
source	containing	all	of	the	information	that	an	ODBC	application	needs	to
connect	to	a	SQL	Server	database	on	a	specific	server.	There	are	two	ways	you
can	define	an	ODBC	data	source	name:

On	a	client	computer,	in	Control	Panel,	double-click	32-bit	ODBC.

In	an	ODBC	application,	call	SQLConfigDataSource.

A	SQL	Server	data	source	contains:

The	name	of	the	data	source.

Any	information	needed	to	connect	to	a	specific	instance	of	SQL	Server.

The	default	database	to	use	on	a	specific	instance	of	SQL	Server
(optional).

Settings	such	as	which	ANSI	options	to	use,	whether	to	log
performance	statistics,	and	so	on	(optional).

An	ODBC	application	is	not	required	to	connect	through	a	data	source.
However,	the	application	must	provide	the	same	connectivity	information	to	an
ODBC	connect	function	that	the	driver	would	otherwise	find	in	a	DSN.



ODBC	and	SQL	Server



Connecting	to	a	Data	Source
After	allocating	environment	and	connection	handles	and	setting	any	connection
attributes,	the	application	connects	to	the	data	source	or	driver.	There	are	three
functions	you	can	use	to	connect:

SQLConnect

SQLDriverConnect

SQLBrowseConnect

SQLConnect

SQLConnect	is	the	simplest	connection	function.	It	accepts	three	parameters:	a
data	source	name,	a	user	ID,	and	a	password.	Use	SQLConnect	when	these
three	parameters	contain	all	the	information	needed	to	connect	to	the	database.
To	do	this,	build	a	list	of	data	sources	using	SQLDataSources;	prompt	the	user
for	a	data	source,	user	ID,	and	password;	and	then	call	SQLConnect.

SQLConnect	assumes	that	a	data	source	name,	user	ID,	and	password	are
sufficient	to	connect	to	a	data	source	and	that	the	ODBC	data	source	contains	all
other	information	the	ODBC	driver	needs	to	make	the	connection.	Unlike
SQLDriverConnect	and	SQLBrowseConnect,	SQLConnect	does	not	use	a
connection	string.

SQLDriverConnect
SQLDriverConnect	is	used	when	more	information	than	the	data	source	name,
user	ID,	and	password	is	required.	One	of	the	parameters	to	SQLDriverConnect
is	a	connection	string	containing	driver-specific	information.	You	might	use
SQLDriverConnect	instead	of	SQLConnect	for	the	following	reasons:

To	specify	driver-specific	information	at	connect	time.

To	request	that	the	driver	prompt	the	user	for	connection	information.



To	connect	without	using	an	ODBC	data	source.

The	SQLDriverConnect	connection	string	contains	a	series	of	keyword-value
pairs	that	specify	all	connection	information	supported	by	an	ODBC	driver.	Each
driver	supports	the	standard	ODBC	keywords	(DSN,	FILEDSN,	DRIVER,	UID,
PWD,	and	SAVEFILE)	in	addition	to	driver-specific	keywords	for	all	connection
information	supported	by	the	driver.	SQLDriverConnect	can	be	used	to	connect
without	a	data	source.	For	example,	an	application	that	is	designed	to	make	a
"DSN-less"	connection	to	an	instance	of	Microsoft®	SQL	Server™	can	call
SQLDriverConnect	with	a	connection	string	that	defines	the	login	ID,
password,	network	library,	server	name	to	connect	to,	and	default	database	to
use.

When	using	SQLDriverConnect,	there	are	two	options	for	prompting	the	user
for	any	needed	connection	information:

Application	dialog	box

You	can	create	an	application	dialog	box	that	prompts	for	connection
information,	and	then	calls	SQLDriverConnect	with	a	NULL	window
handle	and	DriverCompletion	set	to	SQL_DRIVER_NOPROMPT.
These	parameter	settings	prevent	the	ODBC	driver	from	opening	its
own	dialog	box.	This	method	is	used	when	it	is	important	to	control	the
user	interface	of	the	application.

Driver	dialog	box

You	can	code	the	application	to	pass	a	valid	window	handle	to
SQLDriverConnect	and	set	the	DriverCompletion	parameter	to
SQL_DRIVER_COMPLETE,	SQL_DRIVER_PROMPT,	or
SQL_DRIVER_COMPLETE_REQUIRED.	The	driver	will	then
generate	a	dialog	box	to	prompt	the	user	for	connection	information.
This	method	simplifies	the	application	code.

SQLBrowseConnect

SQLBrowseConnect,	like	SQLDriverConnect,	uses	a	connection	string.
However,	by	using	SQLBrowseConnect,	an	application	can	construct	a
complete	connection	string	iteratively	with	the	data	source	at	run	time.	This
allows	the	application	to	do	two	things:



Build	its	own	dialog	boxes	to	prompt	for	this	information,	thereby
retaining	control	over	its	user	interface.

Browse	the	system	for	data	sources	that	can	be	used	by	a	particular
driver,	possibly	in	several	steps.

For	example,	the	user	might	first	browse	the	network	for	servers	and,
after	choosing	a	server,	browse	the	server	for	databases	accessible	by
the	driver.

When	SQLBrowseConnect	completes	a	successful	connection,	it	returns	a
connection	string	that	can	be	used	on	subsequent	calls	to	SQLDriverConnect.

The	SQL	Server	ODBC	driver	always	returns	SQL_SUCCESS_WITH_INFO	on
a	successful	SQLConnect,	SQLDriverConnect,	or	SQLBrowseConnect.
When	an	ODBC	application	calls	SQLGetDiagRec	after	getting
SQL_SUCCESS_WITH_INFO,	it	can	receive	the	following	messages:

5701

Indicates	that	SQL	Server	put	the	user's	context	into	the	default	database
defined	in	the	data	source,	or	into	the	default	database	defined	for	the	login
ID	used	in	the	connection	if	the	data	source	did	not	have	a	default	database.

5703

Indicates	the	language	being	used	on	the	server.

The	following	example	shows	the	message	returned	on	a	successful	connection
by	the	system	administrator:

szSqlState	=	"01000",	*pfNativeError	=	5701,
szErrorMsg="[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]
							Changed	database	context	to	'pubs'."
szSqlState	=	"01000",	*pfNativeError	=	5703,
szErrorMsg="[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]
							Changed	language	setting	to	'us_english'."

You	can	ignore	messages	5701	and	5703;	they	are	only	informational.	You



should	not,	however,	ignore	a	SQL_SUCCESS_WITH_INFO	return	code
because	messages	other	than	5701	or	5703	may	be	returned.	For	example,	if	a
driver	connects	to	a	server	running	an	instance	of	SQL	Server	with	outdated
catalog	stored	procedures,	one	of	the	errors	returned	through	SQLGetDiagRec
after	a	SQL_SUCCESS_WITH_INFO	is:

SqlState:			01000
pfNative:			0
szErrorMsg:	"[Microsoft][ODBC	SQL	Server	Driver]The	ODBC
												catalog	stored	procedures	installed	on	server
												my65server	are	version	06.50.0193;	version	07.00.0205
												or	later	is	required	to	ensure	proper	operation.
												Please	contact	your	system	administrator."

The	error	handling	function	of	an	application	for	SQL	Server	connections	should
call	SQLGetDiagRec	until	it	returns	SQL_NO_DATA.	It	should	then	act	on	any
messages	other	than	the	ones	with	a	pfNative	code	of	5701	or	5703.

To	use	connections



ODBC	and	SQL	Server



Disconnecting	from	a	Data	Source
When	an	application	has	finished	using	a	data	source,	it	calls	SQLDisconnect.
SQLDisconnect	frees	any	statements	that	are	allocated	on	the	connection	and
disconnects	the	driver	from	the	data	source.	After	disconnecting,	the	application
can	call	SQLFreeHandle	to	free	the	connection	handle.	Before	exiting,	an
application	also	calls	SQLFreeHandle	to	free	the	environment	handle.

After	disconnecting,	an	application	can	reuse	the	allocated	connection	handle,
either	to	connect	to	a	different	data	source,	or	to	reconnect	to	the	same	data
source.	The	decision	to	remain	connected,	as	opposed	to	disconnecting	and
reconnecting	later,	requires	that	the	application	writer	consider	the	relative	costs
of	each	option:	both	connecting	to	a	data	source	and	remaining	connected	can	be
relatively	costly,	depending	on	the	connection	medium.	In	making	a	correct
tradeoff,	the	application	must	also	make	assumptions	about	the	likelihood	and
timing	of	further	operations	on	the	same	data	source.	An	application	may	also
need	to	use	more	than	one	connection.

To	use	connections



ODBC	and	SQL	Server



Executing	Queries
After	an	ODBC	application	initializes	a	connection	handle	and	connects	with	a
data	source,	it	allocates	one	or	more	statement	handles	on	the	connection	handle.
The	application	can	then	execute	Microsoft®	SQL	Server™	statements	on	the
statement	handle.	The	general	sequence	of	events	in	executing	an	SQL	statement
is:

1.	 Set	any	required	statement	attributes.

2.	 Construct	the	statement.

3.	 Execute	the	statement.

4.	 Retrieve	any	result	sets.

After	an	application	retrieves	all	of	the	rows	in	all	of	the	result	sets	returned	by
the	SQL	statement,	it	can	execute	another	query	on	the	same	statement	handle.	If
an	application	determines	that	it	is	not	required	to	retrieve	all	of	the	rows	in	a
particular	result	set,	it	can	cancel	the	remainder	of	the	result	set	by	calling	either
SQLMoreResults	or	SQLCloseCursor.

If,	in	an	ODBC	application,	it	is	necessary	to	execute	the	same	SQL	statement
multiple	times	with	different	data,	use	a	parameter	marker,	denoted	by	a	question
mark	(?),	in	the	construction	of	an	SQL	statement:

INSERT	INTO	MyTable	VALUES	(?,	?,	?)

Each	parameter	marker	can	then	be	bound	to	a	program	variable	by	calling
SQLBindParameter.

After	all	SQL	statements	execute	and	their	result	sets	process,	the	application
frees	the	statement	handle.

The	SQL	Server	ODBC	driver	supports	multiple	statement	handles	per
connection	handle.	Transactions	are	managed	at	the	connection	level,	so	all	work



done	on	all	statement	handles	on	a	single	connection	handle	are	managed	as	part
of	the	same	transaction.

See	Also

SQLBindParameter

SQLCloseCursor

SQLMoreResults



ODBC	and	SQL	Server



Allocating	a	Statement	Handle
Before	an	application	can	execute	a	statement,	it	must	allocate	a	statement
handle.	It	does	this	by	calling	SQLAllocHandle	with	the	HandleType	parameter
set	to	SQL_HANDLE_STMT	and	InputHandle	pointing	to	a	connection	handle.

Statement	attributes	are	characteristics	of	the	statement	handle.	Sample
statement	attributes	can	include	whether	to	use	bookmarks	and	what	kind	of
cursor	to	use	with	the	statement's	result	set.	Statement	attributes	are	set	with
SQLSetStmtAttr,	and	their	current	settings	are	retrieved	with
SQLGetStmtAttr.	There	is	no	requirement	that	an	application	set	any	statement
attributes;	all	statement	attributes	have	defaults;	some	are	driver-specific.

Use	caution	in	the	use	of	several	ODBC	statement	and	connection	options.
Calling	SQLSetConnectAttr	with	fOption	set	to
SQL_ATTR_LOGIN_TIMEOUT	controls	the	amount	of	time	an	application
waits	for	a	connection	attempt	to	timeout	while	waiting	to	establish	a	connection
(0	specifies	an	infinite	wait).	Sites	with	slow	response	times	can	set	this	value
high	to	ensure	connections	have	sufficient	time	to	complete,	but	the	interval
should	always	be	low	enough	to	give	the	user	a	response	in	a	reasonable	amount
of	time	if	the	driver	cannot	connect.

Calling	SQLSetStmtAttr	with	fOption	set	to	SQL_ATTR_QUERY_TIMEOUT
sets	a	query	time-out	interval	to	protect	the	server	and	the	user	from	long-
running	queries.

Calling	SQLSetStmtAttr	with	fOption	set	to	SQL_ATTR_MAX_LENGTH
limits	the	amount	of	text	and	image	data	that	an	individual	statement	can
retrieve.	Calling	SQLSetStmtAttr	with	fOption	set	to
SQL_ATTR_MAX_ROWS	also	limits	a	rowset	to	the	first	n	rows	if	that	is	all
the	application	requires.	Note	that	setting	SQL_ATTR_MAX_ROWS	causes	the
driver	to	issue	a	SET	ROWCOUNT	statement	to	the	server,	which	affects	all
Microsoft®	SQL	Server™	statements,	including	triggers	and	updates.

Use	caution	when	setting	these	options.	It	is	best	if	all	statement	handles	on	a
connection	handle	have	the	same	settings	for	SQL_ATTR_MAX_LENGTH	and
SQL_ATTR_MAX_ROWS.	If	the	driver	switches	from	a	statement	handle	to
another	with	different	values	for	these	options,	the	driver	must	generate	the



appropriate	SET	TEXTSIZE	and	SET	ROWCOUNT	statements	to	change	the
settings.	The	driver	cannot	put	these	statements	in	the	same	batch	as	the	user
SQL	statement	because	the	user	SQL	statement	can	contain	a	statement	that	must
be	the	first	statement	in	a	batch.	The	driver	must	send	the	SET	TEXTSIZE	and
SET	ROWCOUNT	statements	in	a	separate	batch,	which	automatically
generates	an	extra	roundtrip	to	the	server.

To	use	a	statement



ODBC	and	SQL	Server



Constructing	an	SQL	Statement
ODBC	applications	perform	almost	all	of	their	database	access	by	executing
Microsoft®	SQL	Server™	statements.	The	form	of	these	statements	depends	on
the	application	requirements.	SQL	statements	can	be	constructed	in	the
following	ways:

Hard-coded

Static	statements	performed	by	an	application	as	a	fixed	task.

Constructed	at	run	time

SQL	statements	constructed	at	run	time	that	enable	the	user	to	tailor	the
statement	by	using	common	clauses,	such	as	SELECT,	WHERE,	and
ORDER	BY.	This	includes	ad	hoc	queries	entered	by	users.

The	SQL	Server	ODBC	driver	parses	SQL	statements	only	for	ODBC	and	SQL-
92	syntax	not	directly	supported	by	the	database	engine,	which	the	driver
transforms	into	Transact-SQL.	All	other	SQL	syntax	is	passed	to	the	database
engine	unchanged,	where	SQL	Server	will	determine	if	it	is	valid	Transact-SQL.
This	approach	yields	two	benefits:

Reduced	overhead

Processing	overhead	for	the	driver	is	minimized	because	it	only	has	to
scan	for	a	small	set	of	ODBC	and	SQL-92	clauses.

Flexibility

Programmers	can	tailor	the	portability	of	their	applications.	To	enhance
portability	against	multiple	databases,	use	primarily	ODBC	and	SQL-92
syntax.	To	use	enhancements	specific	to	SQL	Server,	use	the
appropriate	Transact-SQL	syntax.	The	SQL	Server	ODBC	driver
supports	the	complete	Transact-SQL	syntax	so	ODBC-based
applications	can	take	advantage	of	all	the	features	in	SQL	Server.

The	column	list	in	a	SELECT	statement	should	contain	only	the	columns
required	to	perform	the	current	task.	Not	only	does	this	reduce	the	amount	of
data	sent	across	the	network,	but	also	it	reduces	the	effect	of	database	changes	on



the	application.	If	an	application	does	not	reference	a	column	from	a	table,	then
the	application	is	not	affected	by	any	changes	made	to	that	column.

To	use	statements



ODBC	and	SQL	Server



Constructing	SQL	Statements	for	Cursors
The	Microsoft®	SQL	Server™	ODBC	driver	uses	server	cursors	to	implement
the	cursor	functionality	defined	in	the	ODBC	specification.	An	ODBC
application	controls	the	cursor	behavior	by	using	SQLSetStmtAttr	to	set
different	statement	attributes.	These	are	the	attributes	and	their	defaults.

Attribute Default
SQL_ATTR_CONCURRENCY SQL_CONCUR_READ_ONLY
SQL_ATTR_CURSOR_TYPE SQL_CURSOR_FORWARD_ONLY
SQL_ATTR_CURSOR_SCROLLABLESQL_NONSCROLLABLE
SQL_ATTR_CURSOR_SENSITIVITY SQL_UNSPECIFIED
SQL_ATTR_ROW_ARRAY_SIZE 1

When	these	options	are	set	to	their	defaults	at	the	time	an	SQL	statement	is
executed,	the	SQL	Server	ODBC	driver	does	not	use	a	server	cursor	to
implement	the	result	set;	instead,	it	uses	a	default	result	set.	If	any	of	these
options	are	changed	from	their	defaults	at	the	time	an	SQL	statement	is	executed,
the	SQL	Server	ODBC	driver	attempts	to	use	a	server	cursor	to	implement	the
result	set.

Default	result	sets	support	all	of	the	Transact-SQL	statements.	There	are	no
restrictions	on	the	types	of	SQL	statements	that	can	be	executed	when	using	a
default	result	set.

Server	cursors	do	not	support	all	Transact-SQL	statements.	Server	cursors	do	not
support	any	SQL	statement	that	generates	multiple	result	sets.

The	following	types	of	statements	are	not	supported	by	server	cursors:

Batches

SQL	statements	built	from	two	or	more	individual	SQL	SELECT
statements,	for	example:

SELECT	*	FROM	authors;	SELECT	*	FROM	titles

Stored	procedures	with	multiple	SELECT	statements



SQL	statements	that	execute	a	stored	procedure	containing	more	than
one	SELECT	statement.	This	includes	SELECT	statements	that	fill
parameters	or	variables.

Keywords

SQL	statements	containing	the	keywords	COMPUTE,	COMPUTE	BY,
FOR	BROWSE,	or	INTO.

In	SQL	Server,	if	an	SQL	statement	that	matches	any	of	these	conditions	is
executed	with	a	server	cursor,	the	server	cursor	is	implicitly	converted	to	a
default	result	set.	After	SQLExecDirect	or	SQLExecute	returns
SQL_SUCCESS_WITH_INFO,	the	cursor	attributes	will	be	set	back	to	their
default	settings.

In	SQL	Server	version	6.5	or	earlier,	these	statements	cannot	be	executed	with
any	of	the	statement	attribute	settings	that	would	generate	a	server	cursor.
SQLExecDirect	or	SQLExecute	return	SQL_ERROR	unless	the	cursor
attributes	are	first	set	to	their	defaults	to	generate	a	default	result	set.

SQL	statements	that	do	not	fit	the	categories	above	can	be	executed	with	any
statement	attribute	settings;	they	work	equally	well	with	either	a	default	result
set	or	a	server	cursor.

Errors
In	SQL	Server	7.0,	an	attempt	to	execute	a	statement	that	produces	multiple
result	sets	generates	SQL_SUCCESS_WITH	INFO	and	the	following	message:

SqlState:	01S02"
pfNative:	0
szErrorMsgString:	"[Microsoft][ODBC	SQL	Server	Driver]
															Cursor	type	changed."

ODBC	applications	receiving	this	message	can	call	SQLGetStmtAttr	to
determine	the	current	cursor	settings.

Attempting	to	execute	statements	that	generate	multiple	results	in	SQL	Server
version	6.5	or	earlier	generates	SQL_ERROR	and	one	of	the	following	messages
depending	on	the	type	of	statement	executed.



An	attempt	to	execute	a	procedure	with	multiple	SELECT	statements	when
using	server	cursors	generates	the	following	error:

SqlState:	42000
pfNative:	16937
szErrorMsgString:	[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]
															A	server	cursor	is	not	allowed	on	a	stored	procedure
															with	more	than	one	SELECT	statement	in	it.	Use	a
															default	result	set	or	client	cursor.

An	attempt	to	execute	a	batch	with	multiple	SELECT	statements	when	using
server	cursors	generates	the	following	error:

SqlState:	42000
pfNative:	16938
szErrorMsgString:	[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]
															sp_cursoropen.	The	statement	parameter	can	only
															be	a	single	SELECT	statement	or	a	single	stored	
															procedure.

An	attempt	to	execute	a	SELECT	statement	containing	a	COMPUTE	clause
when	using	server	cursors	generates	the	following	error:

SqlState:	42000
pfNative:	16907
szErrorMsgString:	[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]
															'COMPUTE'	is	not	allowed	in	cursor	statements.

ODBC	applications	receiving	these	errors	must	reset	all	the	cursor	statement
attributes	to	their	defaults	before	attempting	to	execute	the	statement.

To	set	cursor	options



ODBC	and	SQL	Server



Using	Statement	Parameters
A	parameter	is	a	variable	in	an	SQL	statement	that	can	enable	an	ODBC
application	to:

Efficiently	provide	values	for	columns	in	a	table.

Enhance	user	interaction	in	constructing	query	criteria.

Manage	text,	ntext,	and	image	data	and	Microsoft®	SQL	Server™-
specific	C	data	types.

For	example,	a	parts	table	has	columns	named	partid,	description,	and	price.
To	add	a	part	without	parameters	requires	constructing	an	SQL	statement	such
as:

INSERT	INTO	Parts	(PartID,	Description,	Price)	VALUES	(2100,	'Drive	shaft',	50.00)

Although	this	statement	is	acceptable	for	inserting	one	row	with	a	known	set	of
values,	it	is	awkward	if	an	application	is	required	to	insert	several	rows.	ODBC
addresses	this	by	allowing	an	application	to	replace	any	data	value	in	an	SQL
statement	by	a	parameter	maker,	which	is	denoted	by	a	question	mark	(?).	In	the
following	example,	three	data	values	are	replaced	with	parameter	markers:

INSERT	INTO	Parts	(PartID,	Description,	Price)	VALUES	(?,	?,	?)

The	parameter	markers	are	then	bound	to	application	variables.	To	insert	a	new
row,	the	application	has	only	to	set	the	values	of	the	variables	and	execute	the
statement.	The	driver	then	retrieves	the	current	values	of	the	variables	and	sends
them	to	the	data	source.	If	the	statement	will	be	executed	multiple	times,	the
application	can	make	the	process	even	more	efficient	by	preparing	the	statement.

Each	parameter	marker	is	referenced	by	its	ordinal	number,	assigned	to	the
parameters	from	left	to	right.	The	leftmost	parameter	marker	in	an	SQL
statement	has	an	ordinal	value	of	1,	the	next	one	is	ordinal	2,	and	so	on.

To	execute	a	statement	directly



ODBC	and	SQL	Server

Binding	Parameters
Each	parameter	marker	in	an	SQL	statement	must	be	associated,	or	bound,	to	a
variable	in	the	application	before	the	statement	can	be	executed.	This	is	done	by
calling	the	SQLBindParameter	function.	SQLBindParameter	describes	the
program	variable	(address,	C	data	type,	and	so	on)	to	the	driver.	It	also	identifies
the	parameter	marker	by	indicating	its	ordinal	value	and	then	describes	the
characteristics	of	the	SQL	object	it	represents	(SQL	data	type,	precision,	and	so
on).

Parameter	markers	can	be	bound	or	rebound	at	any	time	before	a	statement	is
executed.	A	parameter	binding	remains	in	effect	until	one	of	the	following
occurs:

A	call	to	SQLFreeStmt	with	the	Option	parameter	set	to
SQL_RESET_PARAMS	frees	all	parameters	bound	to	the	statement
handle.

A	call	to	SQLBindParameter	with	ParameterNumber	set	to	the	ordinal
of	a	bound	parameter	marker	automatically	releases	the	previous
binding.

An	application	can	also	bind	parameters	to	arrays	of	program	variables	to
process	an	SQL	statement	in	batches.	There	are	two	types	of	array	binding:

Column-wise	binding	is	done	when	each	individual	parameter	is	bound
to	its	own	array	of	variables.

Column-wise	binding	is	specified	by	calling	SQLSetStmtAttr	with
Attribute	set	to	SQL_ATTR_PARAM_BIND_TYPE	and	ValuePtr	set	to
SQL_PARAM_BIND_BY_COLUMN.

Row-wise	binding	is	done	when	all	of	the	parameters	in	the	SQL
statement	are	bound	as	a	unit	to	an	array	of	structures	that	contain	the
individual	variables	for	the	parameters.

Row-wise	binding	is	specified	by	calling	SQLSetStmtAttr	with



Attribute	set	to	SQL_ATTR_PARAM_BIND_TYPE	and	ValuePtr	set	to
the	size	of	the	structure	holding	the	program	variables.

When	the	Microsoft®	SQL	Server™	ODBC	driver	sends	character	or	binary
string	parameters	to	the	server,	it	pads	the	values	to	the	length	specified	in
SQLBindParameter	ColumnSize	parameter.	If	an	ODBC	2.x	application
specifies	0	for	ColumnSize,	the	driver	pads	the	parameter	value	to	the	precision
of	the	data	type.	The	precision	is	8000	when	connected	to	SQL	Server	servers,
255	when	connected	to	earlier	versions	of	SQL	Server.	ColumnSize	is	in	bytes
for	variant	columns.

SQL	Server	supports	defining	names	for	stored	procedure	parameters.	ODBC	3.5
also	introduced	support	for	named	parameters	used	when	calling	SQL	Server
stored	procedures.	This	support	can	be	used	to:

Call	a	stored	procedure	and	provide	values	for	a	subset	of	the
parameters	defined	for	the	stored	procedure.

Specify	the	parameters	in	a	different	order	in	the	application	than	the
order	specified	when	the	stored	procedure	was	created.

Named	parameters	are	only	supported	when	using	the	Transact-SQL	EXECUTE
statement	or	the	ODBC	CALL	escape	sequence	to	execute	a	stored	procedure.

For	more	information	about	examples	of	using	named	parameters,	see	ODBC	3.0
Software	Developers	Kit	and	Programmer's	Reference.

See	Also

SQLBindParameter

SQLFreeStmt

SQLSetStmtAttr



ODBC	and	SQL	Server



Executing	Statements
The	ODBC	API	offers	two	ways	to	execute	a	Microsoft®	SQL	Server™
statement:

Direct	execution

Prepared	execution

These	two	methods	can	execute	a	single	SQL	statement,	a	call	of	a	stored
procedure,	or	a	batch	of	SQL	statements.



ODBC	and	SQL	Server

Direct	Execution
Direct	execution	is	the	most	basic	way	to	execute	a	statement.	An	application
builds	a	character	string	containing	a	Microsoft®	SQL	Server™	statement	and
submits	it	for	execution	using	the	SQLExecDirect	function.	When	the	statement
reaches	the	server,	SQL	Server	compiles	it	into	an	execution	plan	and	then
immediately	runs	the	execution	plan.

Direct	execution	is	commonly	used	by	applications	that	build	and	execute
statements	at	run	time	and	is	the	most	efficient	method	for	statements	that	will
be	executed	a	single	time.	Its	drawback	with	many	databases	is	that	the	SQL
statement	must	be	parsed	and	compiled	each	time	it	is	executed,	which	adds
overhead	if	the	statement	is	executed	multiple	times.

When	connected	to	versions	of	SQL	Server	earlier	than	7.0,	direct	execution
should	be	used:

When	a	statement	is	likely	to	be	executed	fewer	than	four	times.

To	call	stored	procedures.

SQL	Server	2000	significantly	improves	the	performance	of	direct	execution	of
commonly	executed	statements	in	multiuser	environments.	For	SQL	Server	7.0
applications,	using	SQLExecDirect	with	parameter	markers	for	commonly
executed	SQL	statements	can	approach	the	efficiency	of	prepared	execution.

When	connected	to	an	instance	of	SQL	Server	2000,	the	SQL	Server	ODBC
driver	uses	sp_executesql	to	transmit	the	SQL	statement	or	batch	specified	on
SQLExecDirect.	SQL	Server	2000	has	logic	to	quickly	determine	if	an	SQL
statement	or	batch	executed	with	sp_executesql	matches	the	statement	or	batch
that	generated	an	execution	plan	that	already	exists	in	memory.	If	a	match	is
made,	SQL	Server	simply	reuses	the	existing	plan	rather	than	compile	a	new
plan.	This	means	that	commonly	executed	SQL	statements	executed	with
SQLExecDirect	in	a	system	with	many	users	will	benefit	from	many	of	the
plan-reuse	benefits	that	were	only	available	to	stored	procedures	in	earlier
versions	of	SQL	Server.



This	benefit	of	reusing	execution	plans	only	works	when	several	users	are
executing	the	same	SQL	statement	or	batch.	Follow	these	coding	conventions	to
increase	the	probability	that	the	SQL	statements	executed	by	different	clients	are
similar	enough	to	be	able	to	reuse	execution	plans:

Do	not	include	data	constants	in	the	SQL	statements;	instead	use
parameter	markers	bound	to	program	variables.	For	more	information,
see	Using	Statement	Parameters.

Use	fully	qualified	object	names.	Execution	plans	are	not	reused	if
object	names	are	not	qualified.

Have	application	connections	as	possible	use	a	common	set	of
connection	and	statement	options.	Execution	plans	generated	for	a
connection	with	one	set	of	options	(such	as	ANSI_NULLS)	are	not
reused	for	a	connection	having	another	set	of	options.	The	SQL	Server
ODBC	driver	and	the	OLE	DB	Provider	for	SQL	Server	both	have	the
same	default	settings	for	these	options.

If	all	statements	executed	with	SQLExecDirect	are	coded	using	these
conventions,	SQL	Server	can	reuse	execution	plans	when	the	opportunity	arises.

To	use	a	statement



ODBC	and	SQL	Server

Prepared	Execution
The	ODBC	API	defines	prepared	execution	as	a	way	to	reduce	the	parsing	and
compiling	overhead	associated	with	repeatedly	executing	a	Microsoft®	SQL
Server™	statement.	The	application	builds	a	character	string	containing	an	SQL
statement	and	then	executes	it	in	two	stages.	It	calls	SQLPrepare	once	to	have
the	statement	parsed	and	compiled	into	an	execution	plan	by	the	database
engine.	It	then	calls	SQLExecute	for	each	execution	of	the	prepared	execution
plan.	This	saves	the	parsing	and	compiling	overhead	on	each	execution.
Prepared	execution	is	commonly	used	by	applications	to	repeatedly	execute	the
same,	parameterized	SQL	statement.

For	most	databases,	prepared	execution	is	faster	than	direct	execution	for
statements	executed	more	than	three	or	four	times	primarily	because	the
statement	is	compiled	only	once,	while	statements	executed	directly	are
compiled	each	time	they	are	executed.	Prepared	execution	can	also	provide	a
reduction	in	network	traffic	because	the	driver	can	send	an	execution	plan
identifier	and	the	parameter	values,	rather	than	an	entire	SQL	statement,	to	the
data	source	each	time	the	statement	is	executed.

SQL	Server	2000	reduces	the	performance	difference	between	direct	and
prepared	execution	through	improved	algorithms	for	detecting	and	reusing
execution	plans	from	SQLExecDirect.	This	makes	some	of	the	performance
benefits	of	prepared	execution	available	to	statements	executed	directly.	For
more	information,	see	Direct	Execution.

SQL	Server	2000	also	provides	native	support	for	prepared	execution.	An
execution	plan	is	built	on	SQLPrepare	and	later	executed	when	SQLExecute	is
called.	Because	SQL	Server	2000	is	not	required	to	build	temporary	stored
procedures	on	SQLPrepare,	there	is	no	extra	overhead	on	the	system	tables	in
tempdb.

For	performance	reasons,	the	statement	preparation	is	deferred	until
SQLExecute	is	called	or	a	metaproperty	operation	(such	as	SQLDescribeCol	or
SQLDescribeParam	in	ODBC)	is	performed.	This	is	the	default	behavior.	Any
errors	in	the	statement	being	prepared	are	not	known	until	the	statement	is
executed	or	a	metaproperty	operation	is	performed.	Setting	the	SQL	Server



ODBC	driver-specific	statement	attribute	SQL_SOPT_SS_DEFER_PREPARE
to	SQL_DP_OFF	can	turn	off	this	default	behavior.

In	case	of	deferred	prepare,	calling	either	SQLDescribeCol	or
SQLDescribeParam	before	calling	SQLExecute	generates	an	extra	roundtrip	to
the	server.	On	SQLDescribeCol,	the	driver	removes	the	WHERE	clause	from
the	query	and	sends	it	to	the	server	with	SET	FMTONLY	ON	to	get	the
description	of	the	columns	in	the	first	result	set	returned	by	the	query.	On
SQLDescribeParam,	the	driver	calls	the	server	to	get	a	description	of	the
expressions	or	columns	referenced	by	any	parameter	markers	in	the	query.	This
method	also	has	some	restrictions,	such	as	not	being	able	to	resolve	parameters
in	subqueries.

Excess	use	of	SQLPrepare	with	the	SQL	Server	ODBC	driver	degrades
performance,	especially	when	connected	to	earlier	versions	of	SQL	Server.
Prepared	execution	should	not	be	used	for	statements	executed	a	single	time.
Prepared	execution	is	slower	than	direct	execution	for	a	single	execution	of	a
statement	because	it	requires	an	extra	network	roundtrip	from	the	client	to	the
server.	On	earlier	versions	of	SQL	Server	it	also	generates	a	temporary	stored
procedure.

Prepared	statements	cannot	be	used	to	create	temporary	objects	on	SQL	Server
2000,	or	on	earlier	versions	of	SQL	Server	if	the	option	to	generate	stored
procedures	is	active.	With	this	option	turned	on,	the	prepared	statement	is	built
into	a	temporary	stored	procedure	that	is	executed	when	SQLExecute	is	called.
Any	temporary	object	created	during	the	execution	of	a	stored	procedure	is
automatically	dropped	when	the	procedure	finishes.	Either	of	the	following
examples	results	in	the	temporary	table	#sometable	not	being	created	if	the
option	to	generate	stored	procedures	for	prepare	is	active:

SQLPrepare(hstmt,
			"CREATE	TABLE	#sometable(cola	int,	colb	char(8))",
			SQL_NTS);
SQLExecute(hstmt);

or

SQLPrepare(hstmt,
			"SELECT	*	FROM	authors	INTO	#sometable",



			SQL_NTS);
SQLExecute(hstmt);

Some	early	ODBC	applications	used	SQLPrepare	anytime
SQLBindParameter	was	used.	SQLBindParameter	does	not	require	the	use	of
SQLPrepare,	it	can	be	used	with	SQLExecDirect.	For	example,	use
SQLExecDirect	with	SQLBindParameter	to	retrieve	the	return	code	or	output
parameters	from	a	stored	procedure	that	is	only	executed	one	time.	Do	not	use
SQLPrepare	with	SQLBindParameter	unless	the	same	statement	will	be
executed	multiple	times.

SQLPrepare	on	SQL	Server	version	6.5	or	earlier
Earlier	versions	of	SQL	Server	did	not	directly	support	prepared	execution.	To
get	the	benefits	of	prepared	execution	on	earlier	versions	of	SQL	Server,	the
SQL	Server	ODBC	driver	uses	temporary	stored	procedures.	On	SQLPrepare,
the	SQL	Server	ODBC	driver	builds	the	SQL	statement	from	the	application	into
a	CREATE	PROCEDURE	statement	that	it	then	sends	to	the	server.	This	creates
a	temporary	stored	procedure	and	is	essentially	the	same	as	having	SQL	Server
parse	the	SQL	statement	and	compile	it	into	an	execution	plan.	The	names	of	the
temporary	stored	procedures	generated	by	the	SQL	Server	ODBC	driver	start
with	#odbc#.	On	SQLExecute,	the	driver	calls	the	stored	procedure	created	on
SQLPrepare.	Administrators	of	SQL	Server	versions	6.0	or	6.5	must	estimate
the	peak	demand	for	SQLPrepare	and	make	tempdb	large	enough	to	hold	these
temporary	stored	procedures.

SQL	Server	version	4.21a	does	not	support	temporary	stored	procedures.	When
connected	to	SQL	Server	4.21a	the	SQL	Server	ODBC	driver	generates
permanent	stored	procedures	instead	of	temporary	stored	procedures.	These
permanent	stored	procedures	are	stored	in	the	user	databases,	so	administrators
must	ensure	the	user	databases	are	large	enough	to	hold	the	peak	number	of
SQLPrepare	functions.	Also,	the	permanent	stored	procedures	can	be	left	in	the
database	if	the	application	terminates	or	loses	its	connection	before	the	ODBC
driver	can	drop	the	procedures.	SQL	Server	4.21a	administrators	may	be
required	to	periodically	drop	these	stored	procedures.

If	an	application	will	be	run	by	many	concurrent	users	and	the	users	will	all	be
using	the	same	SQL	statement,	the	best	approach	is	to	create	the	SQL	statement



as	a	permanent,	parameterized	stored	procedure,	and	execute	it	with
SQLExecDirect.	Having	many	users	issue	concurrent	SQLPrepare	commands
on	earlier	versions	of	SQL	Server	can	create	a	concurrency	problem	on	the
system	tables	in	tempdb.	Even	if	each	user	is	executing	exactly	the	same
statement,	the	SQL	Server	ODBC	driver	on	each	client	is	creating	its	own	copy
of	a	temporary	stored	procedure	in	tempdb.	If	the	SQL	statement	is	created	as	a
parameterized	stored	procedure,	however,	the	procedure	is	created	only	once.
Each	ODBC	application	does	not	have	to	create	a	new	procedure	for	its
exclusive	use.	It	simply	uses	a	copy	of	the	execution	plan	of	the	permanent
procedure	from	the	procedure	cache.

To	avoid	holding	locks	on	tempdb	system	tables	for	the	length	of	a	user
transaction,	the	SQL	Server	ODBC	driver	does	not	generate	a	stored	procedure
for	SQLPrepare	if	it	is	called	within	a	transaction.	The	exception	to	this	is	when
the	SQLPrepare	is	the	first	statement	in	the	transaction.	In	this	case,	the	driver
generates	a	stored	procedure	but	then	immediately	commits	the	CREATE
PROCEDURE	statement.

The	driver	does	not	generate	a	stored	procedure	for	a	SQLPrepare	that	uses	the
ODBC	CALL	escape	clause	to	call	a	stored	procedure.	On	SQLExecute,	the
driver	executes	the	called	stored	procedure.	(Creating	a	temporary	stored
procedure	is	not	required.)

Whether	the	SQL	Server	ODBC	driver	generates	temporary	stored	procedures
when	connected	to	earlier	versions	of	SQL	Server,	and	how	long	the	procedures
are	retained,	is	controlled	by	data	source	parameters	or	connection	attributes.
The	connection	attributes	are	set	by	calling	SQLSetConnectAttr	with	fOption
set	to	SQL_COPT_SS_USE_PROC_FOR_PREPARE.	The	options	are:

SQL_UP_OFF

Temporary	stored	procedures	are	not	generated	for	SQLPrepare.

SQL_UP_ON

Temporary	stored	procedures	are	generated	for	SQLPrepare	and	are	not
dropped	until	the	connection	is	closed.	This	is	the	default	setting.

SQL_UP_ON_DROP

Temporary	stored	procedures	are	generated	for	SQLPrepare.	The
procedures	are	dropped	the	next	time	SQLPrepare	is	called	on	the	statement



handle,	when	SQLFreeHandle	is	called	to	drop	the	statement	handle,	or
when	the	connection	is	closed.

When	SQL_UP_ON	is	set,	most	applications	realize	a	performance	boost
because	the	SQL	Server	ODBC	driver	does	not	have	to	continually	drop	the
temporary	stored	procedures.	If	an	application	reprepares	an	SQL	statement
when	SQL_UP_ON_DROP	is	set,	the	driver	can	reuse	the	stored	procedure
created	the	first	time	the	SQL	statement	was	prepared.	Applications	that	never
disconnect	(such	as	a	24x7	application)	or	that	make	heavy	use	of	SQLPrepare
can	see	a	buildup	of	#odbc#	procedures	in	tempdb.	These	applications	should
set	SQL_UP_ON_DROP	to	alleviate	the	buildup.

Some	APIs	that	map	over	ODBC	(such	as	DAO)	and	the	OLE	DB	Provider	for
ODBC	do	not	expose	the	ability	to	set	driver-specific	connection	attributes.
Applications	using	these	APIs	cannot	dynamically	control	the
SQL_USE_PROC_FOR_PREPARE	settings.	If	these	applications	use	a	SQL
Server	data	source,	these	options	can	be	set	on	the	data	source.	This	is	done	with
the	driver-specific	UseProcForPrepare	keyword	on	SQLConfigDataSource,	or
with	the	procedure	options	displayed	in	the	SQL	Server	DSN	Configuration
Wizard.

To	use	a	statement



ODBC	and	SQL	Server

Procedures
A	stored	procedure	is	a	precompiled	executable	object	that	contains	one	or	more
Microsoft®	SQL	Server™	statements.	Stored	procedures	can	have	input	and
output	parameters	and	can	also	put	out	an	integer	return	code.	An	application	can
enumerate	available	stored	procedures	by	using	catalog	functions.

ODBC	applications	the	target	SQL	Server	should	only	use	direct	execution	to
call	a	stored	procedure.	When	connected	to	earlier	versions	of	SQL	Server,	the
SQL	Server	ODBC	driver	implements	SQLPrepare	by	creating	a	temporary
stored	procedure,	which	is	then	called	on	SQLExecute.	It	adds	overhead	to	have
SQLPrepare	create	a	temporary	stored	procedure	that	only	calls	the	target
stored	procedure	versus	directly	executing	the	target	stored	procedure.	Even
when	connected	to	an	instance	of	SQL	Server,	preparing	a	call	requires	an	extra
round	trip	across	the	network	and	the	building	of	an	execution	plan	that	just	calls
the	stored	procedure	execution	plan.

ODBC	applications	should	use	the	ODBC	CALL	syntax	when	executing	a	stored
procedure.	The	driver	is	optimized	to	use	a	remote	procedure	call	mechanism	to
call	the	procedure	when	the	ODBC	CALL	syntax	is	used.	This	is	more	efficient
than	the	mechanism	used	to	send	a	Transact-SQL	EXECUTE	statement	to	the
server.

For	more	information,	see	Running	Stored	Procedures.

To	call	remote	procedures



ODBC	and	SQL	Server

Batches	of	Statements
A	batch	of	Microsoft®	SQL	Server™	statements	contains	two	or	more	SQL
statements,	separated	by	a	semicolon	(;),	built	into	a	single	string	passed	to
SQLExecDirect	or	SQLPrepare.	For	example:

SQLExecDirect(hstmt,	
						"SELECT	*	FROM	authors;	SELECT	*	FROM	titles",
						SQL_NTS);

Batches	can	be	more	efficient	than	submitting	statements	separately	because
network	traffic	is	often	reduced.	Use	SQLMoreResults	to	get	positioned	on	the
next	result	set	when	finished	with	the	current	result	set.

Batches	can	always	be	used	when	the	ODBC	cursor	attributes	are	set	to	the
defaults	of	a	forward-only,	read-only	cursor	with	a	rowset	size	of	1.

If	a	batch	is	executed	when	using	server	cursors	against	SQL	Server,	the	server
cursor	is	implicitly	converted	to	a	default	result	set.	SQLExecDirect	or
SQLExecute	return	SQL_SUCCESS_WITH_INFO,	and	a	call	to
SQLGetDiagRec	returns:

szSqlState	=	"01S02",	pfNativeError	=	0
szErrorMsg	=	"[Microsoft][ODBC	SQL	Server	Driver]Cursor	type	changed."

Batches	are	not	supported	with	server	cursors	against	SQL	Server	version	6.5	or
earlier.	SQLExecDirect	or	SQLExecute	return	SQL_ERROR,	and	a	call	to
SQLGetDiagRec	returns	one	of	three	errors.	For	more	information,	see
Constructing	SQL	Statements	for	Cursors.

See	Also

SQLMoreResults

SQLPrepare



ODBC	and	SQL	Server

Effects	of	SQL-92	Options
The	ODBC	standard	is	closely	matched	to	the	SQL-92	standard,	and	ODBC
applications	expect	standard	behavior	from	an	ODBC	driver.	To	make	its
behavior	conform	more	closely	with	that	defined	in	the	ODBC	standard,	the
Microsoft®	SQL	Server™	ODBC	driver	always	uses	any	SQL-92	options
available	in	the	version	of	SQL	Server	with	which	it	connects.

When	the	SQL	Server	ODBC	driver	connects	to	an	instance	of	SQL	Server,	the
server	detects	that	the	client	is	using	the	ODBC	driver	and	sets	several	options
on.	The	options	set	on	by	SQL	Server	2000	are	the	same	as	those	turned	on	by
SET	statements	when	the	driver	connects	to	an	instance	of	SQL	Server	version
6.5,	except	that	SQL	Server	2000	also	sets	on	the
CONCAT_NULL_YIELDS_NULL	option.

The	options	set	by	the	driver	when	connecting	to	each	prior	version	of	SQL
Server	are:

Connect	to	an	instance	of	SQL	Server	6.5:

SET	QUOTED_IDENTIFIER	ON
SET	TEXTSIZE	2147483647
SET	ANSI_DEFAULTS	ON
SET	CURSOR_CLOSE_ON_COMMIT	OFF
SET	IMPLICIT_TRANSACTIONS	OFF

Connect	to	an	instance	of	SQL	Server	6.0:

SET	ANSI_NULL_DFLT_ON	ON
SET	TEXTSIZE	2147483647
SET	QUOTED_IDENTIFIER	ON
SET	ARITHABORT	ON

Connect	to	an	instance	of	SQL	Server	4.21a:

SET	TEXTSIZE	2147483647
SET	ARITHABORT	ON

The	driver	issues	these	statements	itself;	the	ODBC	application	does	nothing	to



request	them.	Setting	these	options	allows	ODBC	applications	using	the	driver	to
be	more	portable	because	the	server	behavior	then	matches	the	SQL-92	standard.

DB-Library-based	applications	generally	do	not	turn	these	options	on.	Sites
observing	different	behavior	between	ODBC	or	DB-Library	clients	when
running	the	same	SQL	statement	should	not	assume	this	points	to	a	problem	with
the	ODBC	driver.	They	should	first	rerun	the	statement	in	the	DB-Library
environment	with	the	same	SET	options	as	would	be	used	by	the	SQL	Server
ODBC	driver.

Because	SET	options	can	be	turned	on	and	off	at	any	time	by	users	and
applications,	developers	of	stored	procedures	and	triggers	should	also	take	care
to	test	their	procedures	and	triggers	with	the	SET	options	listed	above	turned
both	on	and	off.	This	ensures	that	the	procedures	and	triggers	work	correctly
regardless	of	which	options	a	particular	connection	may	have	set	on	when	they
invoke	the	procedure	or	trigger.	Triggers	or	stored	procedures	that	require	a
particular	setting	for	one	of	these	options	should	issue	a	SET	statement	at	the
start	of	the	trigger	or	stored	procedure.	This	SET	statement	remains	in	effect
only	for	the	execution	of	the	trigger	or	stored	procedure;	when	the	procedure	or
trigger	ends,	the	original	setting	is	restored.

The	SET	options	used	when	connected	to	SQL	Server	7.0	or	SQL	Server	6.5
have	the	net	effect	of	setting	on	three	more	SQL-92	options	than	those	set	in	the
6.0	environment:	ANSI_NULLS,	ANSI_PADDING,	and	ANSI_WARNINGS.
When	connected	to	an	instance	of	SQL	Server	2000,	a	fourth	option,
CONCAT_NULL_YIELDS_NULL,	is	also	set	on.	These	options	can	cause
problems	in	existing	stored	procedures	and	triggers	migrated	from	SQL	Server
6.0	to	either	SQL	Server	6.5	or	7.0.	The	SQL	Server	ODBC	driver	does	not	set
these	options	on	if	AnsiNPW=NO	is	specified	in	the	data	source	or	on	either
SQLDriverConnect	or	SQLBrowseConnect.

The	SQL	Server	ODBC	driver	also	sets	on	the	QUOTED_IDENTIFIER	option
when	connected	to	SQL	Server	6.0	or	later.	With	this	option	set	on,	SQL
statements	should	comply	with	the	SQL-92	rule	that	character	data	strings	be
enclosed	in	single	quotes	and	that	only	identifiers,	such	as	table	or	column
names,	be	enclosed	in	double	quotation	marks:

SELECT	"au_fname"
FROM	"authors"



WHERE	"au_lname"	=	'O''Brien'

Like	the	SQL-92	options	noted	earlier,	the	SQL	Server	ODBC	driver	does	not
turn	the	QUOTED_IDENTIFIER	option	on	if	QuotedID=NO	is	specified	in	the
data	source	or	on	either	SQLDriverConnect	or	SQLBrowseConnect.

To	allow	the	driver	to	know	the	current	state	of	SET	options,	ODBC	applications
should	not	use	the	Transact-SQL	SET	statement	to	set	these	options.	They
should	only	set	these	options	using	either	the	data	source	or	the	connection
options.	If	the	application	issues	SET	statements,	the	driver	can	generate
incorrect	SQL	statements.

See	Also

SQLBrowseConnect

SQLDriverConnect



ODBC	and	SQL	Server



Freeing	a	Statement	Handle
As	mentioned	earlier,	it	is	more	efficient	to	reuse	statement	handles	than	drop
them	and	allocate	new	ones.	Before	executing	a	new	Microsoft®	SQL	Server™
statement	on	a	statement	handle,	applications	should	check	that	the	current
statement	settings	are	appropriate.	These	include	statement	attributes,	parameter
bindings,	and	result	set	bindings.	Generally,	parameters	and	result	sets	for	the	old
SQL	statement	must	be	unbound	(by	calling	SQLFreeStmt	with	the
SQL_RESET_PARAMS	and	SQL_UNBIND	options)	and	rebound	for	the	new
SQL	statement.

When	the	application	has	finished	using	the	statement,	it	calls	SQLFreeHandle
to	free	the	statement.	Note	that	SQLDisconnect	automatically	frees	all
statements	on	a	connection.

To	use	a	statement



ODBC	and	SQL	Server



Processing	Results
After	an	application	submits	an	SQL	statement,	Microsoft®	SQL	Server™
returns	any	resulting	data	as	one	or	more	result	sets.	A	result	set	is	a	set	of	rows
and	columns	that	match	the	criteria	of	the	query.	SELECT	statements,	catalog
functions,	and	some	procedures	produce	a	result	set	made	available	to	an
application	in	tabular	form.	If	the	executed	SQL	statement	is	a	stored	procedure,
a	batch	containing	multiple	commands,	or	a	SELECT	statement	containing
keywords,	such	as	COMPUTE	or	COMPUTE	BY,	there	will	be	multiple	result
sets	to	process.

ODBC	catalog	functions	also	can	retrieve	data.	For	example,	SQLColumns
retrieves	data	about	columns	in	the	data	source.	These	result	sets	can	contain
zero	or	more	rows.

Note	that	other	SQL	statements,	such	as	GRANT	or	REVOKE,	do	not	return
result	sets.	For	these	statements,	the	return	code	from	SQLExecute	or
SQLExecDirect	is	usually	the	only	indication	the	statement	was	successful.

Each	INSERT,	UPDATE,	and	DELETE	statement	returns	a	result	set	containing
only	the	number	of	rows	affected	by	the	modification.	This	count	is	made
available	when	application	calls	SQLRowCount.	ODBC	3.x	applications	must
either	call	SQLRowCount	to	retrieve	the	result	set	or	SQLMoreResults	to
cancel	it.	When	an	application	executes	a	batch	or	stored	procedure	containing
multiple	INSERT,	UPDATE,	or	DELETE	statements,	the	result	set	from	each
modification	statement	must	be	processed	using	SQLRowCount	or	cancelled
using	SQLMoreResults.	These	counts	can	be	cancelled	by	including	a	SET
NOCOUNT	ON	statement	in	the	batch	or	stored	procedure.

Transact-SQL	includes	the	SET	NOCOUNT	statement.	When	the	NOCOUNT
option	is	set	on,	SQL	Server	does	not	return	the	counts	of	the	rows	affected	by	a
statement	and	SQLRowCount	returns	0.	The	SQL	Server	ODBC	driver	version
3.7	introduces	a	driver-specific	SQLGetStmtAttr	option,
SQL_SOPT_SS_NOCOUNT_STATUS,	to	report	on	whether	the	NOCOUNT
option	is	on	or	off.	Anytime	SQLRowCount	returns	0,	the	application	should
test	SQL_SOPT_SS_NOCOUNT_STATUS.	If	SQL_NC_ON	is	returned,	the
value	of	0	from	SQLRowCount	only	indicates	that	SQL	Server	has	not	returned
a	row	count.	If	SQL_NC_OFF	is	returned,	it	means	that	NOCOUNT	is	off	and



the	value	of	0	from	SQLRowCount	indicates	that	the	statement	did	not	affect
any	rows.	Applications	should	not	display	the	value	of	SQLRowCount	when
SQL_SOPT_SS_NOCOUNT_STATUS	is	SQL_NC_OFF.	Large	batches	or
stored	procedures	may	contain	multiple	SET	NOCOUNT	statements	so
programmers	cannot	assume	SQL_SOPT_SS_NOCOUNT_STATUS	remains
constant.	The	option	should	be	tested	each	time	SQLRowCount	returns	0.

Several	other	Transact-SQL	statements	return	their	data	in	messages	rather	than
result	sets.	When	the	SQL	Server	ODBC	driver	receives	these	messages,	it
returns	SQL_SUCCESS_WITH_INFO	to	let	the	application	know	that
informational	messages	are	available.	The	application	can	then	call
SQLGetDiagRec	to	retrieve	these	messages.	The	Transact-SQL	statements	that
work	this	way	are:

DBCC

SET	SHOWPLAN	(available	with	earlier	versions	of	SQL	Server)

SET	STATISTICS

PRINT

RAISERROR

The	SQL	Server	ODBC	driver	returns	SQL_ERROR	on	a	RAISERROR	with	a
severity	of	11	or	higher.	If	the	severity	of	the	RAISERROR	is	19	or	higher,	the
connection	is	also	dropped.

To	process	the	result	sets	from	an	SQL	statement,	the	application:

Determines	the	characteristics	of	the	result	set.

Binds	the	columns	to	program	variables.

Retrieves	a	single	value,	an	entire	row	of	values,	or	multiple	rows	of
values.



Tests	to	see	if	there	are	more	result	sets,	and	if	so,	loops	back	to
determining	the	characteristics	of	the	new	result	set.

The	process	of	retrieving	rows	from	the	data	source	and	returning	them	to	the
application	is	called	fetching.

Retrieving	COMPUTE	and	COMPUTE	BY	result	sets
The	COMPUTE	BY	clause	generates	subtotals	within	a	result	set;	the
COMPUTE	clause	generates	a	total	at	the	end	of	the	result	set.	The	SQL	Server
ODBC	driver	presents	these	totals	and	subtotals	to	the	calling	application	by
generating	multiple	result	sets	for	each	SELECT	statement.

The	following	example	uses	COMPUTE	BY	to	generate	subtotals	and
COMPUTE	to	generate	a	total:

SELECT	title	=	CONVERT(char(20),	title),	type,	price,	advance
FROM	titles
WHERE	ytd_sales	IS	NOT	NULL
		AND	type	LIKE	'%cook%'
ORDER	BY	type	DESC
COMPUTE	AVG(price),	SUM(advance)	BY	type
COMPUTE	SUM(price),	SUM(advance)

These	statements	cause	a	subtotal	calculation	for	the	average	price	and	sum	of
advances	for	each	book	type	and	then	cause	a	final	total	sum	of	both	the	price
and	advance	data.	The	driver	presents	the	first	result	set	for	the	rows	from	books
having	the	first	book	type.	It	then	produces	a	second	result	set	with	the	two
COMPUTE	BY	columns	for	the	AVG(price)	and	SUM(advance)	for	this	first	set
of	books.	Then	it	produces	a	third	result	set	for	the	next	group	of	books,	and	a
fourth	result	set	with	the	COMPUTE	BY	subtotals	for	that	group.	The	driver
interleaves	these	result	sets	until	it	produces	the	final	result	set	with	the	total	for
the	COMPUTE	SUM(price),	SUM(advance)	clause.

See	Also



SQLColumns

SQLRowCount



ODBC	and	SQL	Server



Determining	the	Characteristics	of	a	Result	Set
Meta	data	is	data	that	describes	other	data.	For	example,	result	set	meta	data
describes	the	characteristics	of	a	result	set,	such	as	the	number	of	columns	in	the
result	set,	the	data	types	of	those	columns,	their	names,	precision,	nullability,	and
so	on.

ODBC	supplies	meta	data	to	applications	through	its	catalog	API	functions.	The
Microsoft®	SQL	Server™	ODBC	driver	implements	many	of	the	ODBC	API
catalog	functions	as	calls	to	a	corresponding	SQL	Server	catalog	procedure.

Applications	require	meta	data	for	most	result	set	operations.	For	example,	the
application	uses	the	data	type	of	a	column	to	determine	what	kind	of	variable	to
bind	to	that	column.	It	uses	the	byte	length	of	a	character	column	to	determine
how	much	space	it	needs	to	display	data	from	that	column.	How	an	application
determines	the	meta	data	for	a	column	depends	on	the	type	of	the	application.

Vertical	applications	typically	work	with	predefined	tables	and	perform
predefined	operations	on	those	tables.	Because	the	result	set	meta	data	for	such
applications	is	defined	before	the	application	is	even	written	and	is	controlled	by
the	application	developer,	it	can	be	hard-coded	into	the	application.	For	example,
if	an	order	ID	column	is	defined	as	a	4-byte	integer	in	the	data	source,	the
application	can	always	bind	a	4-byte	integer	to	that	column.	When	meta	data	is
hard-coded	in	the	application,	a	change	to	the	tables	used	by	the	application
generally	implies	a	change	to	the	application	code.

Generic	applications,	especially	applications	that	support	ad	hoc	queries,	almost
never	know	the	meta	data	of	the	result	sets	they	create.	Therefore,	they	must
discover	the	meta	data	at	run	time.

To	determine	the	characteristics	of	a	result	set,	an	application	can	call:

SQLNumResultCols	to	determine	how	many	columns	a	request
returned.

SQLColAttribute	or	SQLDescribeCol	to	describe	a	column	in	the
result	set.



A	well-designed	application	is	written	with	the	assumption	that	the	result	set	is
unknown	and	uses	the	information	returned	by	these	functions	to	bind	the
columns	in	the	result	set.	An	application	can	call	these	functions	at	any	time
after	a	statement	is	prepared	or	executed.	However,	for	optimal	performance,	an
application	should	call	SQLColAttribute,	SQLDescribeCol,	and
SQLNumResultCols	after	a	statement	is	executed.

You	can	have	multiple	concurrent	calls	for	meta	data.	The	system	catalog
procedures	underlying	the	ODBC	catalog	API	implementations	can	be	called	by
the	ODBC	driver	while	it	is	using	static	server	cursors.	This	allows	applications
to	concurrently	process	multiple	calls	to	ODBC	catalog	functions.

If	an	application	uses	a	particular	set	of	meta	data	more	than	once,	it	will
probably	benefit	by	caching	the	information	in	private	variables	when	it	is	first
obtained.	This	eliminates	the	overhead	of	later	calls	to	the	ODBC	catalog
functions	for	the	same	information	(which	forces	the	driver	to	make	roundtrips
to	the	server).

To	retrieve	result	set	information



ODBC	and	SQL	Server



Assigning	Storage	(Binding)
An	application	can	assign	storage	for	results	before	or	after	it	executes	an	SQL
statement.	If	an	application	prepares	or	executes	the	SQL	statement	first,	it	can
inquire	about	the	result	set	before	it	assigns	storage	for	results.	For	example,	if
the	result	set	is	unknown,	the	application	must	retrieve	the	number	of	columns
before	it	can	assign	storage	for	them.

To	associate	storage	for	a	column	of	data,	an	application	calls	SQLBindCol	and
passes	it:

The	data	type	to	which	the	data	is	to	be	converted.

The	address	of	an	output	buffer	for	the	data.

The	application	must	allocate	this	buffer,	and	it	must	be	large	enough	to
hold	the	data	in	the	form	to	which	it	is	converted.

The	length	of	the	output	buffer.

This	value	is	ignored	if	the	returned	data	has	a	fixed	width	in	C,	such	as
an	integer,	real	number,	or	date	structure.

The	address	of	a	storage	buffer	in	which	to	return	the	number	of	bytes
of	available	data.

An	application	can	also	bind	result	set	columns	to	arrays	of	program	variables	to
support	fetching	result	set	rows	in	blocks.	There	are	two	different	types	of	array
binding:

Column-wise	binding	is	done	when	each	individual	column	is	bound	to
its	own	array	of	variables.

Column-wise	binding	is	specified	by	calling	SQLSetStmtAttr	with
Attribute	set	to	SQL_ATTR_ROW_BIND_TYPE	and	ValuePtr	set	to
SQL_BIND_BY_COLUMN.	All	of	the	arrays	must	have	the	same
number	of	elements.

Row-wise	binding	is	done	when	all	of	the	parameters	in	the	SQL



statement	are	bound	as	a	unit	to	an	array	of	structures	that	contain	the
individual	variables	for	the	parameters.

Row-wise	binding	is	specified	by	calling	SQLSetStmtAttr	with
Attribute	set	to	SQL_ATTR_ROW_BIND_TYPE	and	ValuePtr	set	to
the	size	of	the	structure	holding	the	variables	that	will	receive	the	result
set	columns.

The	application	also	sets	SQL_ATTR_ROW_ARRAY_SIZE	to	the	number	of
elements	in	the	column	or	row	arrays,	and	sets
SQL_ATTR_ROW_STATUS_PTR	and	SQL_ATTR_ROWS_FETCHED_PTR.

To	process	results



ODBC	and	SQL	Server



Fetching	Result	Data
An	ODBC	application	has	three	options	for	fetching	result	data.

The	first	option	is	based	on	SQLBindCol.	Before	fetching	the	result	set,	the
application	uses	SQLBindCol	to	bind	each	column	in	the	result	set	to	a	program
variable.	After	the	columns	have	been	bound,	the	driver	transfers	the	data	of	the
current	row	into	the	variables	bound	to	the	result	set	columns	each	time	the
application	calls	SQLFetch	or	SQLFetchScroll.	The	driver	handles	data
conversions	if	the	result	set	column	and	program	variable	have	different	data
types.	If	the	application	has	SQL_ATTR_ROW_ARRAY_SIZE	set	greater	than
1,	it	can	bind	result	columns	to	arrays	of	variables,	which	will	all	be	filled	on
each	call	to	SQLFetchScroll.

The	second	option	is	based	on	SQLGetData.	The	application	does	not	use
SQLBindCol	to	bind	result	set	columns	to	program	variables.	After	each	call	to
SQLFetch,	the	application	calls	SQLGetData	once	for	each	column	in	the
result	set.	SQLGetData	instructs	the	driver	to	transfer	data	from	a	specific	result
set	column	to	a	specific	program	variable	and	specifies	the	data	types	of	the
column	and	variable.	This	allows	the	driver	to	convert	data	if	the	result	column
and	program	variable	have	different	data	types.	Text,	ntext,	and	image	columns
are	typically	too	large	to	fit	into	a	program	variable	but	can	still	be	retrieved
using	SQLGetData.	If	the	text,	ntext,	or	image	data	in	the	result	column	is
larger	than	the	program	variable,	SQLGetData	returns
SQL_SUCCESS_WITH_INFO	and	SQLSTATE	01004	(string	data,	right
truncated).	Successive	calls	to	SQLGetData	return	successive	chunks	of	the
text	or	image	data.	When	the	end	of	the	data	is	reached,	SQLGetData	returns
SQL_SUCCESS.	Each	fetch	returns	a	set	of	rows,	or	rowset,	if
SQL_ATTR_ROW_ARRAY_SIZE	is	greater	than	1.	Before	using
SQLGetData,	you	must	first	use	SQLSetPos	to	specify	a	specific	row	within
the	rowset	as	the	current	row.

The	third	option	is	to	use	a	mix	of	SQLBindCol	and	SQLGetData.	An
application	could,	for	example,	bind	the	first	ten	columns	of	a	result	set	and	then,
on	each	fetch,	call	SQLGetData	three	times	to	retrieve	the	data	from	three
unbound	columns.	This	would	typically	be	used	when	a	result	set	contains	one	or
more	text	or	image	columns.



Depending	on	the	cursor	options	set	for	the	result	set,	an	application	can	also	use
the	scrolling	options	of	SQLFetchScroll	to	scroll	around	the	result	set.

Excess	use	of	SQLBindCol	to	bind	a	result	set	column	to	a	program	variable	is
expensive	because	SQLBindCol	causes	an	ODBC	driver	to	allocate	memory.
When	you	bind	a	result	column	to	a	variable,	that	binding	remains	in	effect	until
you	either	call	SQLFreeHandle	to	free	the	statement	handle	or	call
SQLFreeStmt	with	fOption	set	to	SQL_UNBIND.	The	bindings	are	not
automatically	undone	when	the	statement	completes.

This	logic	allows	you	to	effectively	deal	with	executing	the	same	SELECT
statement	several	times	with	different	parameters.	Because	the	result	set	keeps
the	same	structure,	you	can	bind	the	result	set	once,	process	all	the	SELECT
statements,	then	call	SQLFreeStmt	with	fOption	set	to	SQL_UNBIND	after	the
last	execution.	You	should	not	call	SQLBindCol	to	bind	the	columns	in	a	result
set	without	first	calling	SQLFreeStmt	with	fOption	set	to	SQL_UNBIND	to
free	any	previous	bindings.

When	using	SQLBindCol,	you	can	either	do	row-wise	or	column-wise	binding.
Row-wise	binding	is	somewhat	faster	than	column-wise	binding.

You	can	use	SQLGetData	to	retrieve	data	on	a	column-by-column	basis	instead
of	binding	result	set	columns	using	SQLBindCol.	If	a	result	set	contains	only	a
few	rows,	using	SQLGetData	instead	of	SQLBindCol	is	faster;	otherwise,
SQLBindCol	gives	the	best	performance.	If	you	do	not	always	put	the	data	in
the	same	set	of	variables,	you	should	use	SQLGetData	instead	of	constantly
rebinding.	You	can	only	use	SQLGetData	on	columns	that	are	in	the	select	list
after	all	columns	are	bound	with	SQLBindCol.	The	column	must	also	appear
after	any	columns	on	which	you	have	already	used	SQLGetData.

The	ODBC	functions	that	deal	with	moving	data	into	or	out	of	program
variables,	such	as	SQLGetData,	SQLBindCol,	and	SQLBindParameter,
support	implicit	data	type	conversion.	For	example,	if	an	application	binds	an
integer	column	to	a	character	string	program	variable,	the	driver	automatically
converts	the	data	from	integer	to	character	before	placing	it	into	the	program
variable.

Data	conversion	in	applications	should	be	minimized.	Unless	data	conversion	is
required	for	the	processing	done	by	the	application,	applications	should	bind
columns	and	parameters	to	program	variables	of	the	same	data	type.	If	the	data



must	be	converted	from	one	type	to	another,	however,	it	is	more	efficient	to	have
the	driver	do	the	conversion	than	doing	it	in	the	application.	The	Microsoft®
SQL	Server™	ODBC	driver	normally	just	transfers	data	directly	from	the
network	buffers	to	the	variables	of	the	application.	Requesting	the	driver	to	do
data	conversion	forces	the	driver	to	buffer	the	data	and	use	CPU	cycles	to
convert	the	data.

Program	variables	should	be	large	enough	to	hold	data	transferred	in	from	a
column,	except	for	text,	ntext,	and	image	data.	If	an	application	attempts	to
retrieve	result	set	data	and	place	it	into	a	variable	that	is	too	small	to	hold	it,	the
driver	generates	a	warning.	This	forces	the	driver	to	allocate	memory	for	the
message,	and	the	driver	and	application	both	have	to	spend	CPU	cycles
processing	the	message	and	doing	error	handling.	The	application	should	either
allocate	a	variable	large	enough	to	hold	the	data	being	retrieved	or	use	the
SUBSTRING	function	in	the	select	list	to	reduce	the	size	of	the	column	in	the
result	set.

Care	must	be	taken	when	using	SQL_C_DEFAULT	to	specify	the	type	of	the	C
variable.	SQL_C_DEFAULT	specifies	that	the	type	of	the	C	variable	matches
the	SQL	data	type	of	the	column	or	parameter.	If	SQL_C_DEFAULT	is	specified
for	an	ntext,	nchar,	or	nvarchar	column,	Unicode	data	is	returned	to	the
application.	This	can	cause	various	problems	if	the	application	has	not	been
coded	to	handle	Unicode	data.	The	same	types	of	problems	can	occur	with	the
uniqueidentifier	(SQL_GUID)	data	type.	In	these	cases,	use	the	odbccmpt
utility	to	set	the	6.5	ODBC	compatibility	option	until	the	application	can	be
changed.	With	the	6.5	ODBC	compatibility	option,	Unicode	data	is	converted	to
character	and	uniqueidentifier	is	converted	to	varbinary.

text,	ntext,	and	image	data	is	typically	too	large	to	fit	into	a	single	program
variable,	and	is	usually	processed	with	SQLGetData	instead	of	SQLBindCol.
When	using	server	cursors,	the	SQL	Server	ODBC	driver	is	optimized	to	not
transmit	the	data	for	unbound	text,	ntext,	or	image	columns	at	the	time	the	row
is	fetched.	The	text,	ntext,	or	image	data	is	not	actually	retrieved	from	the
server	until	the	application	issues	SQLGetData	for	the	column.

This	optimization	can	be	applied	to	applications	so	that	no	text,	ntext,	or	image
data	is	displayed	while	a	user	is	scrolling	up	and	down	a	cursor.	After	the	user
selects	a	row,	the	application	can	call	SQLGetData	to	retrieve	the	text,	ntext,	or
image	data.	This	saves	transmitting	the	text,	ntext,	or	image	data	for	any	of	the



rows	the	user	does	not	select	and	can	save	the	transmission	of	very	large
amounts	of	data.

To	process	results



ODBC	and	SQL	Server



Mapping	Data	Types
The	Microsoft®	SQL	Server™	ODBC	driver	maps	SQL	Server	SQL	data	types
to	ODBC	SQL	data	types.	The	illustration	below	shows	SQL	Server	SQL	data
types	and	the	ODBC	SQL	data	types	to	which	they	map.	It	also	shows	ODBC
SQL	data	types	and	their	corresponding	ODBC	C	data	types,	and	the	supported
and	default	conversions.

Note		The	SQL	Server	timestamp	data	type	maps	to	the	SQL_BINARY	or
SQL_VARBINARY	ODBC	data	type	because	the	values	in	timestamp	columns
are	not	datetime	values,	but	binary(8)	or	varbinary(8)	values	that	indicate	the
sequence	of	SQL	Server	activity	on	the	row.	If	the	SQL	Server	ODBC	driver
encounters	a	SQL_C_WCHAR	(Unicode)	value	that	is	an	odd	number	of	bytes,



the	trailing	odd	byte	is	truncated.

Dealing	with	sql_variant	data	type	in	ODBC
The	sql_variant	data	type	column	can	contain	any	of	the	data	types	in	SQL
Server	except	large	objects	(LOBs),	such	as	text,	ntext,	image.	For	example,	the
column	could	contain	smallint	values	for	some	rows,	float	values	for	other	rows,
and	char/nchar	values	in	the	remainder.

The	sql_variant	data	type	is	similar	to	the	variant	data	type	in	Microsoft	Visual
Basic®.

Retrieving	Data	from	the	Server
ODBC	does	not	have	a	notion	of	variant	types.	This	limits	the	use	of	the
sql_variant	data	type	with	an	ODBC	driver	in	SQL	Server	2000.	In	SQL	Server
2000,	if	binding	is	specified,	the	sql_variant	data	type	must	be	bound	to	one	of
the	documented	ODBC	data	types.	SQL_CA_SS_VARIANT_TYPE,	a	new
attribute	specific	to	the	SQL	Server	ODBC	driver,	returns	the	data	type	of	an
instance	in	the	sql_variant	column	to	the	user.

If	no	binding	is	specified,	the	SQLGetData	function	can	be	used	to	determine
the	data	type	of	an	instance	in	the	sql_variant	column.

To	retrieve	sql_variant	data	follow	these	steps.

1.	 Call	SQLFetch	to	position	to	the	row	retrieved.

2.	 Call	SQLGetData,	specifying	SQL_C_BINARY	for	the	type	and	0	for
the	data	length.	This	forces	the	driver	to	read	the	sql_variant	header.
The	header	provides	the	data	type	of	that	instance	in	the	sql_variant
column.	SQLGetData	returns	the	size	(in	bytes)	of	the	value.

3.	 Call	SQLColAttribute	by	specifying
SQL_CA_SS_VARIANT_TYPE	as	its	attribute	value.	This	function
will	return	the	C	data	type	of	the	instance	in	the	sql_variant	column	to
the	client.

Here	is	a	code	segment	showing	the	preceding	steps.



while	((retcode	=	SQLFetch	(hstmt))==SQL_SUCCESS)
{
			if	(retcode	!=	SQL_SUCCESS	&&	retcode	!=	SQL_SUCCESS_WITH_INFO)
			{
						SQLError	(NULL,	NULL,	hstmt,	NULL,	
															&lNativeError,szError,MAX_DATA,&sReturned);
						printf	("%s\n",szError);
						goto	Exit;
			}
			retcode	=	SQLGetData	(hstmt,	1,	SQL_C_BINARY,	
																								pBuff,0,&Indicator);//Figure	out	the	length
			if	(retcode	!=	SQL_SUCCESS_WITH_INFO	&&	retcode	!=	SQL_SUCCESS)
			{
						SQLError	(NULL,	NULL,	hstmt,	NULL,	&lNativeError,	
															szError,MAX_DATA,&sReturned);
						printf	("%s\n",szError);
						goto	Exit;
			}
			printf	("Byte	length	:	%d	",Indicator);	//Print	out	the	byte	length
						
			int	iValue	=	0;
			retcode	=	SQLColAttribute	(hstmt,	1,	SQL_CA_SS_VARIANT_TYPE,	NULL,	
																														NULL,NULL,&iValue);		//Figure	out	the	type
			printf	("Sub	type	=	%d	",iValue);//Print	the	type,	the	return	is	C_type	of	the	column]

//Set	up	a	new	binding	or	do	the	SQLGetData	on	that	column	with	
//the	appropriate	type
}

If	the	user	creates	the	binding	using	SQLBindCol,	the	driver	reads	the	meta	data
and	the	data.	The	driver	then	converts	the	data	to	the	appropriate	ODBC	type
specified	in	the	binding.



Sending	Data	to	the	Server
SQL_SS_VARIANT,	a	new	data	type	specific	to	the	SQL	Server	ODBC	driver,
is	used	for	data	sent	to	an	sql_variant	column.	When	sending	data	to	the	server
using	parameters	(for	example,	INSERT	INTO	TableName	VALUES	(?,?)),
SQLBindParameter	is	used	to	specify	the	parameter	information	including	the
C	type	and	the	corresponding	SQL	Server	type.	The	SQL	Server	ODBC	driver
will	convert	the	C	data	type	to	one	of	the	appropriate	sql_variant	subtypes.



ODBC	and	SQL	Server



Data	Type	Usage
The	Microsoft®	SQL	Server™	ODBC	driver	and	SQL	Server	impose	the
following	use	of	data	types.

Data	type Limitation
Date	literals Date	literals,	when	stored	in	a

SQL_TYPE_TIMESTAMP	column	(SQL
Server	data	types	of	datetime	or
smalldatetime),	have	a	time	value	of
12:00:00.000	A.M.

money	and	smallmoney Only	the	integer	parts	of	the	money	and
smallmoney	data	types	are	significant.	If	the
decimal	part	of	SQL	money	data	is	truncated
during	data	type	conversion,	the	SQL	Server
ODBC	driver	returns	a	warning,	not	an	error.

SQL_BINARY	(nullable) When	connected	to	an	instance	of	SQL	Server
version	6.0	and	earlier,	if	a	SQL_BINARY
column	is	nullable,	the	data	that	is	stored	in	the
data	source	is	not	padded	with	zeroes.	When
data	from	such	a	column	is	retrieved,	the	SQL
Server	ODBC	driver	pads	it	with	zeroes	on	the
right.	However,	data	that	is	created	in
operations	performed	by	SQL	Server,	such	as
concatenation,	does	not	have	such	padding.

Also,	when	data	is	placed	in	such	a	column	in
an	instance	of	SQL	Server	6.0	or	earlier,	SQL
Server	truncates	the	data	on	the	right	if	it	is	too
long	to	fit	into	the	column.

SQL_CHAR	(truncation) When	connected	to	an	instance	of	SQL	Server
6.0	and	earlier,	and	data	is	placed	into	a
SQL_CHAR	column,	SQL	Server	truncates	it
on	the	right	without	warning	if	the	data	is	too
long	to	fit	into	the	column.



SQL_CHAR	(nullable) When	connected	to	an	instance	of	SQL	Server
6.0	and	earlier,	if	a	SQL_CHAR	column	is
nullable,	the	data	that	is	stored	in	the	data
source	is	not	padded	with	blanks.	When	data
from	such	a	column	is	retrieved,	the	SQL
Server	ODBC	driver	pads	it	with	blanks	on	the
right.	However,	data	that	is	created	in
operations	performed	by	SQL	Server,	such	as
concatenation,	does	not	have	such	padding.

SQL_LONGVARBINARY,
SQL_LONGVARCHAR,
SQL_WLONGVARCHAR

Updates	of	columns	with
SQL_LONGVARBINARY,
SQL_LONGVARCHAR,	or
SQL_WLONGVARCHAR	data	types	(using	a
WHERE	clause)	that	affect	multiple	rows	are
fully	supported	when	connected	to	an	instance
of	SQL	Server	6.x	and	later.	When	connected	to
an	instance	of	SQL	Server	4.2x,	an	S1000	error
"Partial	insert/update.	The	insert/update	of	a
text	or	image	column(s)	did	not	succeed"	is
returned	if	the	update	affects	more	than	one
row.

String	function	parameters string_exp	parameters	to	the	string	functions
must	be	of	data	type	SQL_CHAR	or
SQL_VARCHAR.	SQL_LONG_VARCHAR
data	types	are	not	supported	in	the	string
functions.	The	count	parameter	must	be	less
than	or	equal	to	8,000	because	the	SQL_CHAR
and	SQL_VARCHAR	data	types	are	limited	to
a	maximum	length	of	8,000	characters.	When
connected	to	an	instance	of	SQL	Server	6.5	or
earlier,	the	limit	is	255	instead	of	8000.

Time	literals Time	literals,	when	stored	in	a
SQL_TIMESTAMP	column	(SQL	Server	data
types	of	datetime	or	smalldatetime),	have	a
date	value	of	January	1,	1900.

timestamp Only	a	NULL	value	can	be	manually	inserted



into	a	timestamp	column.	However,	because
timestamp	columns	are	automatically	updated
by	SQL	Server,	a	NULL	value	is	overwritten.

tinyint The	SQL	Server	tinyint	data	type	is	unsigned.
A	tinyint	column	is	bound	to	a	variable	of	data
type	SQL_C_UTINYINT	by	default.

User-defined	data	types When	connected	to	an	instance	of	SQL	Server
4.2x,	the	SQL	Server	ODBC	driver	adds	NULL
to	a	column	definition	that	does	not	explicitly
declare	a	column's	nullability.	Therefore,	the
nullability	that	is	stored	in	the	definition	of	a
user-defined	data	type	is	ignored.

When	connected	to	an	instance	of	SQL	Server
4.2x,	columns	with	a	user-defined	data	type
that	has	a	base	data	type	of	char	or	binary	and
for	which	no	nullability	is	declared	are	created
as	data	type	varchar	or	varbinary.
SQLColAttribute,	SQLColumns,	and
SQLDescribeCol	return	SQL_VARCHAR	or
SQL_VARBINARY	as	the	data	type	for	these
columns.	Data	that	is	retrieved	from	these
columns	is	not	padded.

LONG	data	types data-at-execution	parameters	are	restricted	for
both	the	SQL_LONGVARBINARY	and	the
SQL_LONGVARCHAR	data	types.



ODBC	and	SQL	Server



Autotranslation	of	Character	Data
Character	data,	such	as	ANSI	character	variables	declared	with	SQL_C_CHAR
or	data	stored	in	Microsoft®	SQL	Server™	using	the	char,	varchar,	or	text	data
types,	can	represent	only	a	limited	number	of	characters.	Character	data	stored
using	one	byte	per	character	can	only	represent	256	characters.	The	values	stored
in	SQL_C_CHAR	variables	are	interpreted	using	the	ANSI	code	page	(ACP)	of
the	client	computer.	The	values	stored	using	char,	varchar,	or	text	data	types	on
the	server	are	evaluated	using	the	ACP	of	the	server.

If	both	the	server	and	the	client	have	the	same	ACP,	then	they	have	no	problems
in	interpreting	the	values	stored	in	SQL_C_CHAR,	char,	varchar,	or	text
objects.	If	the	server	and	client	have	different	ACPs,	then	SQL_C_CHAR	data
from	the	client	may	be	interpreted	as	a	different	character	on	the	server	if	it	is
used	in	char,	varchar,	or	text	columns,	variables,	or	parameters.	For	example,	a
character	byte	containing	the	value	0xA5	is	interpreted	as	the	character	Ñ	on	a
computer	using	code	page	437	and	is	interpreted	as	the	yen	sign	(¥)	on	a
computer	running	code	page	1252.

Unicode	data	is	stored	using	two	bytes	per	character.	All	extended	characters	are
covered	by	the	Unicode	specification,	so	all	Unicode	characters	are	interpreted
the	same	by	all	computers.

The	AutoTranslate	feature	of	the	SQL	Server	ODBC	driver	attempts	to	minimize
the	problems	in	moving	character	data	between	a	client	and	a	server	that	have
different	code	pages.	AutoTranslate	can	be	set	in	the	connect	string	of
SQLDriverConnect,	in	the	configuration	string	of	SQLConfigDataSource,	or
when	configuring	data	sources	for	the	SQL	Server	ODBC	driver	using	ODBC
Administrator.

When	AutoTranslate	is	no,	no	conversions	are	done	on	data	moved	between
SQL_C_CHAR	variables	on	the	client	and	char,	varchar,	or	text	columns,
variables,	or	parameters	in	a	SQL	Server	database.	The	bit	patterns	may	be
interpreted	differently	on	the	client	and	server	computers	if	the	data	contains
extended	characters	and	the	two	computers	have	different	code	pages.	The	data
will	be	interpreted	the	same	if	both	computers	have	the	same	code	page.

When	AutoTranslate	is	yes,	the	ODBC	driver	uses	Unicode	to	convert	data



moved	between	SQL_C_CHAR	variables	on	the	client	and	char,	varchar,	or
text	columns,	variables,	or	parameters	in	a	SQL	Server	database:

When	data	is	sent	from	an	SQL_C_CHAR	variable	on	the	client	to	a
char,	varchar,	or	text	column,	variable,	or	parameter	in	an	SQL	Server
database,	the	ODBC	driver	first	converts	from	SQL_C_CHAR	to
Unicode	using	the	ACP	of	the	client,	then	from	Unicode	back	to
character	using	the	ACP	of	the	server.

When	data	is	sent	from	a	char,	varchar,	or	text	column,	variable,	or
parameter	in	a	SQL	Server	database	to	a	SQL_C_CHAR	variable	on	the
client,	the	ODBC	driver	first	converts	from	character	to	Unicode	using
the	ACP	of	the	server,	then	from	Unicode	back	to	SQL_C_CHAR	using
the	ACP	of	the	client.

Because	all	of	these	conversions	are	done	by	the	SQL	Server	ODBC	driver
executing	on	the	client,	the	server	ACP	must	be	one	of	the	code	pages	installed
on	the	client	computer.

Making	the	character	conversions	through	Unicode	ensures	the	proper
conversion	of	all	characters	that	exist	in	both	code	pages.	If	a	character	exists	in
one	code	page	but	not	another,	however,	then	the	character	cannot	be	represented
in	the	target	code	page.	For	example,	code	page	1252	has	the	registered
trademark	symbol	(®),	while	code	page	437	does	not.

The	AutoTranslate	setting	has	no	effect	on	these	conversions:

Moving	data	between	character	SQL_C_CHAR	client	variables	and
Unicode	nchar,	nvarchar,	or	ntext	columns,	variables,	or	parameters
in	SQL	Server	databases.

Moving	data	between	Unicode	SQL_C_WCHAR	client	variables	and
character	char,	varchar,	or	text	columns,	variables,	or	parameters	in
SQL	Server	databases.

Data	always	must	be	converted	when	moved	from	character	to	Unicode.

See	Also



Collations

SQLConfigDataSource

SQLDriverConnect

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



Using	Cursors
ODBC	supports	a	cursor	model	that	allows:

Several	types	of	cursors.

Scrolling	and	positioning	within	a	cursor.

Several	concurrency	options.

Positioned	updates.

ODBC	applications	rarely	declare	and	open	cursors	or	use	any	cursor-related
Transact-SQL	statements.	ODBC	automatically	opens	a	cursor	for	every	result
set	returned	from	an	SQL	statement.	The	characteristics	of	the	cursors	are
controlled	by	statement	attributes	set	with	SQLSetStmtAttr	before	the	SQL
statement	is	executed.	The	ODBC	API	functions	for	processing	result	sets
support	the	full	range	of	cursor	functionality,	including	fetching,	scrolling,	and
positioned	updates.

This	is	a	comparison	of	how	Transact-SQL	scripts	and	ODBC	applications	work
with	cursors.

Action Transact-SQL ODBC
Define	cursor	behavior Specify	through

DECLARE	CURSOR
parameters

Set	cursor	attributes	by
using	SQLSetStmtAttr

Open	a	cursor DECLARE	CURSOR
OPEN	cursor_name

SQLExecDirect	or
SQLExecute

Fetch	rows FETCH SQLFetch	or
SQLFetchScroll

Positioned	update WHERE	CURRENT	OF
clause	on	UPDATE	or
DELETE

SQLSetPos



Close	a	cursor CLOSE	cursor_name
DEALLOCATE

SQLCloseCursor

The	server	cursors	implemented	in	Microsoft®	SQL	Server™	support	the
functionality	of	the	ODBC	cursor	model.	The	SQL	Server	ODBC	driver	uses
server	cursors	to	support	the	cursor	functionality	of	the	ODBC	API.

See	Also

CLOSE

Cursors

DEALLOCATE

DECLARE	CURSOR

FETCH

OPEN

SQLCloseCursor

SQLFetchScroll

SQLSetStmtAttr

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()


ODBC	and	SQL	Server



How	Cursors	Are	Implemented
ODBC	applications	control	the	behavior	of	a	cursor	by	setting	one	or	more
statement	attributes	before	executing	an	SQL	statement.	ODBC	has	two	different
ways	to	specify	the	characteristics	of	a	cursor:

Cursor	type

Cursor	types	are	set	using	the	SQL_ATTR_CURSOR_TYPE	attribute
of	SQLSetStmtAttr.	The	ODBC	cursor	types	are	forward-only,	static,
keyset-driven,	mixed,	and	dynamic.	Setting	the	cursor	type	was	the
original	method	of	specifying	cursors	in	ODBC.

Cursor	behavior

Cursor	behavior	is	set	using	the
SQL_ATTR_CURSOR_SCROLLABLE	and
SQL_ATTR_CURSOR_SENSITIVITY	attributes	of	SQLSetStmtAttr.
These	attributes	are	modeled	on	the	SCROLL	and	SENSITIVE
keywords	defined	for	the	DECLARE	CURSOR	statement	in	SQL-92
and	ISO	SQL	standards.	These	two	SQL-92/ISO	options	were
introduced	in	ODBC	version	3.0.

The	characteristics	of	an	ODBC	cursor	should	be	specified	using	either	one	or
the	other	of	these	two	methods,	with	the	preference	being	to	use	the	ODBC
cursor	types.	While	you	can	set	all	three	options	for	the	same	cursor,	the
Microsoft	ODBC	3.0	Programmer's	Reference	warns	that	this	can	prevent	an
ODBC	driver	from	being	able	to	efficiently	implement	the	cursor.

In	addition	to	setting	the	type	of	a	cursor,	ODBC	applications	also	set	other
options,	such	as	the	number	of	rows	returned	on	each	fetch,	concurrency	options,
and	transaction	isolation	levels.	These	options	can	be	set	for	either	ODBC-style
cursors	(forward-only,	static,	keyset-driven,	mixed,	and	dynamic)	or	SQL-
92/ISO	style	cursors	(scrollability	and	sensitivity).

The	Microsoft®	SQL	Server™	ODBC	driver	supports	several	ways	to
physically	implement	the	various	types	of	cursors.	The	driver	implements	some
types	of	cursors	using	a	SQL	Server	default	result	set;	it	implements	others	as
server	cursors	or	by	using	the	ODBC	Cursor	Library.



To	use	cursors



ODBC	and	SQL	Server

Using	Default	Result	Sets
The	default	ODBC	cursor	attributes	are:

SQLSetStmtAttr(hstmt,	SQL_ATTR_CURSOR_TYPE,	SQL_CURSOR_FORWARD_ONLY);
SQLSetStmtAttr(hstmt,	SQL_ATTR_CONCURRENCY,	SQL_CONCUR_READ_ONLY);
SQLSetStmtAttr(hstmt,	SQL_ATTR_ROW_ARRAY_SIZE,	1);

Whenever	these	attributes	are	set	to	their	defaults,	the	Microsoft®	SQL	Server™
ODBC	driver	uses	a	SQL	Server	default	result	set.	Default	result	sets	can	be
used	for	any	SQL	statement	supported	by	SQL	Server,	and	are	the	most	efficient
method	of	transferring	an	entire	result	set	to	the	client.

Default	result	sets	do	not	support	multiple	active	statements	on	the	same
connection.	After	an	SQL	statement	is	executed	on	a	connection,	the	server	does
not	accept	commands	(except	a	request	to	cancel	the	rest	of	the	result	set)	from
the	client	on	that	connection	until	all	the	rows	in	the	result	set	have	been
processed.	To	cancel	the	remainder	of	a	partially	processed	result	set,	call
SQLCloseCursor	or	SQLFreeStmt	with	the	fOption	parameter	set	to
SQL_CLOSE.	To	finish	a	partially	processed	result	set	and	test	for	the	presence
of	another	result	set,	call	SQLMoreResults.	If	an	ODBC	application	attempts	a
command	on	a	connection	handle	before	a	default	result	set	has	been	completely
processed,	the	call	generates	SQL_ERROR	and	a	call	to	SQLGetDiagRec
returns:

szSqlState:	"HY000",	pfNativeError:	0
szErrorMsg:	"[Microsoft][SQL	Server	ODBC	Driver]
												Connection	is	busy	with	results	for	another	hstmt."

To	use	cursors



ODBC	and	SQL	Server

Using	Server	Cursors
If	an	ODBC	application	sets	any	of	the	ODBC	cursor	attributes	to	anything	other
than	the	defaults,	then	the	Microsoft®	SQL	Server™	ODBC	driver	requests	the
server	to	implement	an	API	server	cursor	of	the	same	type.	The	use	of	API
server	cursors	frees	memory	on	the	client	and	can	significantly	reduce	network
traffic	between	the	client	and	server.

A	potential	drawback	of	API	server	cursors	is	that	they	currently	do	not	support
all	SQL	statements.	API	server	cursors	cannot	be	used	to	execute:

Batches	or	stored	procedures	that	return	multiple	result	sets.

SELECT	statements	that	contain	COMPUTE,	COMPUTE	BY,	FOR
BROWSE,	or	INTO	clauses.

An	EXECUTE	statement	referencing	a	remote	stored	procedure.

When	connected	to	an	instance	of	SQL	Server	2000,	attempting	to	execute	a
statement	with	these	characteristics	using	a	server	cursor	results	in	the	cursor
being	converted	to	a	default	result	set.	When	connected	to	earlier	versions	of
SQL	Server,	the	attempt	results	in	an	error.

See	Also

Cursor	Implementations

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server

ODBC	Cursor	Library
Some	ODBC	drivers	only	support	the	default	cursor	settings;	these	drivers	also
do	not	support	positioned	cursor	operations,	such	as	SQLSetPos.	The	ODBC
cursor	library	is	a	component	of	the	ODBC	SDK	used	to	implement	block	or
static	cursors	on	a	driver	that	normally	does	not	support	them.	The	cursor	library
also	implements	positioned	UPDATE	and	DELETE	statements	and	SQLSetPos
for	the	cursors	it	creates.

The	ODBC	cursor	library	is	implemented	as	a	layer	between	the	ODBC	Driver
Manager	and	an	ODBC	driver.	If	the	ODBC	cursor	library	is	loaded,	the	ODBC
Driver	Manager	routes	all	cursor-related	commands	to	the	cursor	library	instead
of	the	driver.	The	cursor	library	implements	a	cursor	by	fetching	the	entire	result
set	from	the	underlying	driver	and	caching	the	result	set	on	the	client.	When
using	the	ODBC	cursor	library,	the	application	is	limited	to	the	cursor
functionality	of	the	cursor	library;	any	support	for	additional	cursor	functionality
in	the	underlying	driver	is	not	available	to	the	application.

There	is	little	need	to	use	the	ODBC	cursor	library	with	the	Microsoft®	SQL
Server™	ODBC	driver	because	the	driver	itself	supports	more	cursor
functionality	than	the	ODBC	cursor	library.	The	only	reason	to	use	the	ODBC
cursor	library	with	the	SQL	Server	ODBC	driver	is	because	the	driver
implements	its	cursor	support	through	server	cursors,	and	server	cursors	do	not
support	all	SQL	statements.	Anytime	there	is	a	need	to	have	a	static	cursor	with
stored	procedures,	batches,	or	SQL	statements	containing	COMPUTE,
COMPUTE	BY,	FOR	BROWSE,	or	INTO,	consider	using	the	ODBC	cursor
library.	However,	care	must	be	used	with	the	cursor	library	because	it	caches	the
entire	result	set	on	the	client,	which	can	use	large	amounts	of	memory	and	slow
performance.

An	application	invokes	the	cursor	library	on	a	connection-by-connection	basis
by	using	SQLSetConnectAttr	to	set	the	SQL_ATTR_ODBC_CURSORS
connection	attribute	before	connecting	to	a	data	source.
SQL_ATTR_ODBC_CURSORS	is	set	to	one	of	three	values:

SQL_CUR_USE_ODBC



When	this	option	is	set	with	the	SQL	Server	ODBC	driver,	the	ODBC	cursor
library	overrides	the	SQL	Server	ODBC	driver's	native	cursor	support.	Only
the	cursor	types	supported	by	the	cursor	library	can	be	used	for	the
connection;	server	cursors	cannot	be	used.

SQL_CUR_USE_DRIVER

When	this	option	is	set,	all	of	the	cursor	support	native	to	the	SQL	Server
ODBC	driver	can	be	used	for	the	connection.	The	ODBC	cursor	library
cannot	be	used.	All	cursors	are	implemented	as	server	cursors.

SQL_CUR_USE_IF_NEEDED

When	this	option	is	set,	the	effect	is	the	same	as	SQL_CUR_USE_DRIVER
when	used	with	the	SQL	Server	ODBC	driver.	At	connect	time,	the	ODBC
Driver	Manager	tests	to	see	if	the	ODBC	driver	being	connected	to	supports
the	SQL_FETCH_PRIOR	option	of	SQLFetchScroll.	If	the	driver	does	not
support	the	option,	the	ODBC	Driver	Manager	loads	the	ODBC	cursor
library.	If	the	driver	does	support	the	option,	the	ODBC	Driver	Manager	does
not	load	the	ODBC	cursor	library	and	the	application	uses	the	native	support
of	the	driver.	Because	the	SQL	Server	ODBC	driver	supports
SQL_FETCH_PRIOR,	the	ODBC	Driver	Manager	does	not	load	the	ODBC
cursor	library.

The	cursor	library	(shipped	with	the	SQL	Server	ODBC	driver)	allows
applications	to	use	multiple	active	statements	on	a	connection,	as	well	as
scrollable,	updatable	cursors.	The	cursor	library,	Odbccr32.dll	for	ANSI
applications	and	Odbccu32.dll	for	Unicode	applications,	must	be	loaded	to
support	this	functionality.	Use	SQLSetConnectAttr	to	specify	how	the	cursor
library	should	be	used	and	SQLSetStmtAttr	to	specify	the	cursor	type,
concurrency,	and	rowset	size.

See	Also

Client	Cursors

SQLFetchScroll

SQLSetConnectAttr

SQLSetStmtAttr

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



Cursor	Types
ODBC	defines	four	cursor	types	supported	by	Microsoft®	SQL	Server™	and	the
SQL	Server	ODBC	driver.	These	cursors	vary	in	their	ability	to	detect	changes	to
the	result	set	and	in	the	resources,	such	as	memory	and	space	in	tempdb,	they
consume.	A	cursor	can	detect	changes	to	rows	only	when	it	attempts	to	refetch
those	rows;	there	is	no	way	for	the	data	source	to	notify	the	cursor	of	changes	to
the	currently	fetched	rows.	A	cursor's	ability	to	detect	changes	not	made	through
the	cursor	is	also	influenced	by	the	transaction	isolation	level.

These	are	the	four	ODBC	cursor	types	supported	by	SQL	Server:

Forward-only	cursors	do	not	support	scrolling;	they	only	support
fetching	rows	serially	from	the	start	to	the	end	of	the	cursor.

Static	cursors	are	built	in	tempdb	when	the	cursor	is	opened.	They
always	display	the	result	set	as	it	was	when	the	cursor	was	opened.
They	never	reflect	changes	to	the	data.	SQL	Server	static	cursors	are
always	read-only.	Because	a	static	server	cursor	is	built	as	a	work	table
in	tempdb,	the	size	of	the	cursor	result	set	cannot	exceed	the	maximum
row	size	allowed	by	SQL	Server.

Keyset-driven	cursors	have	the	membership	and	order	of	rows	in	the
result	set	fixed	when	the	cursor	is	opened.	Changes	to	nonkey	columns
are	visible	through	the	cursor.

Dynamic	cursors	are	the	opposite	of	static	cursors.	Dynamic	cursors
reflect	all	changes	made	to	the	rows	in	their	result	set.	The	data	values,
order,	and	membership	of	the	rows	in	the	result	set	can	change	on	each
fetch.

See	Also

Cursor	Types

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



Cursor	Behaviors
ODBC	supports	the	SQL-92/ISO	options	for	specifying	the	behavior	of	cursors
by	specifying	their	scrollability	and	sensitivity.	These	behaviors	are	specified	by
setting	the	SQL_ATTR_CURSOR_SCROLLABLE	and
SQL_ATTR_CURSOR_SENSITIVITY	options	on	a	call	to	SQLSetStmtAttr.
The	Microsoft®	SQL	Server™	ODBC	driver	implements	these	options	by
requesting	server	cursors	with	the	following	characteristics:

Cursor	behavior	settings Server	cursor	characteristics	requested
SQL_SCROLLABLE	and
SQL_SENSITIVE

Keyset-driven	cursor	and	version-based
optimistic	concurrency

SQL_SCROLLABLE	and
SQL_INSENSITIVE

Static	cursor	and	read-only	concurrency

SQL_SCROLLABLE	and
SQL_UNSPECIFIED

Static	cursor	and	read-only	concurrency

SQL_NONSCROLLABLE	and
SQL_SENSITIVE

Forward-only	cursor	and	version-based
optimistic	concurrency

SQL_NONSCROLLABLE	and
SQL_INSENSITIVE

Default	result	set	(forward-only,	read-only)

SQL_NONSCROLLABLE	and
SQL_UNSPECIFIED

Default	result	set	(forward-only,	read-only)

Version-based	optimistic	concurrency	requires	a	timestamp	column	in	the
underlying	table.	If	version-based	optimistic	concurrency	control	is	requested	on
a	table	that	does	not	have	a	timestamp	column,	the	server	uses	values-based
optimistic	concurrency.

Scrollability
When	SQL_ATTR_CURSOR_SCROLLABLE	is	set	to	SQL_SCROLLABLE,
the	cursor	supports	all	of	the	different	values	for	the	FetchOrientation	parameter
of	SQLFetchScroll.	When	SQL_ATTR_CURSOR_SCROLLABLE	is	set	to
SQL_NONSCROLLABLE,	the	cursor	only	supports	a	FetchOrientation	value
of	SQL_FETCH_NEXT.



Sensitivity
When	SQL_ATTR_CURSOR_SENSITIVITY	is	set	to	SQL_SENSITIVE,	the
cursor	reflects	data	modifications	made	by	the	current	user	or	committed	by
other	users.	When	SQL_ATTR_CURSOR_SENSITIVITY	is	set	to
SQL_INSENSITIVE,	the	cursor	does	not	reflect	data	modifications.



ODBC	and	SQL	Server



Cursor	Properties
The	overall	characteristics	of	a	cursor	are	determined	by	setting	either	the
ODBC-style	cursor	type	or	the	SQL-92/ISO	cursor	behaviors.	Additional
statement	and	connection	attributes	also	affect	the	behavior	of	a	cursor:

Rowset	size	statement

Cursor	concurrency	statement

Transaction	isolation-level	connection



ODBC	and	SQL	Server

Cursor	Rowset	Size
ODBC	cursors	are	not	limited	to	fetching	one	row	at	a	time;	they	can	retrieve
multiple	rows	in	each	call	to	SQLFetch	or	SQLFetchScroll.	When	working
with	a	client/server	database	such	as	Microsoft®	SQL	Server™,	it	is	more
efficient	to	fetch	several	rows	at	a	time.	The	number	of	rows	returned	on	a	fetch
is	called	the	rowset	size	and	is	specified	using	the
SQL_ATTR_ROW_ARRAY_SIZE	of	SQLSetStmtAttr.	Cursors	whose	rowset
size	is	greater	than	1	are	called	block	cursors.

There	are	two	options	for	binding	result	set	columns	for	block	cursors:

Column-wise	binding

Each	column	is	bound	to	an	array	of	variables.	Each	array	has	the	same
number	of	elements	as	the	rowset	size.

Row-wise	binding

An	array	is	built	using	structures	that	hold	the	data	and	indicators	for	all
the	columns	in	a	row.	The	array	has	the	same	number	of	structures	as
the	rowset	size.

When	either	column-wise	or	row-wise	binding	is	used,	each	call	to	SQLFetch	or
SQLFetchScroll	fills	the	bound	arrays	with	data	from	the	rowset	retrieved.

SQLGetData	can	also	be	used	to	retrieve	column	data	from	a	block	cursor.
Because	SQLGetData	works	one	row	at	a	time,	SQLSetPos	must	be	called	to
set	a	specific	row	in	the	rowset	as	the	current	row	before	calling	SQLGetData.

The	SQL	Server	ODBC	driver	offers	an	optimization	using	rowsets	to	quickly
retrieve	an	entire	result	set.	To	use	this	optimization,	set	the	cursor	attributes	to
their	defaults	(forward-only,	read-only,	rowset	size	=	1)	at	the	time
SQLExecDirect	or	SQLExecute	is	called.	The	ODBC	driver	sets	up	a	default
result	set,	which	is	more	efficient	than	server	cursors	when	only	transferring
results	to	the	client	without	scrolling.	After	the	statement	has	been	executed,
increase	the	rowset	size	and	use	either	column-wise	or	row-wise	binding.	This
allows	SQL	Server	to	use	a	default	result	set	to	efficiently	send	result	rows	to	the



client,	while	the	ODBC	driver	continuously	pulls	rows	from	the	network	buffers
on	the	client.

See	Also

SQLFetchScroll

SQLGetData

SQLSetStmtAttr



ODBC	and	SQL	Server

Cursor	Concurrency
Cursor	operations,	like	cursor	types,	are	affected	by	the	concurrency	options	set
by	the	application.	Concurrency	options	are	set	using	the
SQL_ATTR_CONCURRENCY	option	of	SQLSetStmtAttr.	The	concurrency
types	are:

Read-only	(SQL_CONCUR_READONLY)

Values	(SQL_CONCUR_VALUES)

Row	version	(SQL_CONCUR_ROWVER)

Lock	(SQL_CONCUR_LOCK)

For	more	information	about	the	types	of	locks	generated	by	these	concurrency
options,	see	Cursor	Concurrency.

See	Also

SQLSetStmtAttr

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server

Cursor	Transaction	Isolation	Level
The	complete	locking	behavior	of	cursors	is	based	on	an	interaction	between
concurrency	attributes	and	the	transaction	isolation	level	set	by	the	client.	ODBC
clients	set	the	transaction	isolation	level	using	the	SQLSetConnectAttr
SQL_ATTR_TXN_ISOLATION	attribute.	The	locking	behavior	of	a	specific
cursor	environment	is	determined	by	combining	the	locking	behaviors	of	the
concurrency	and	transaction	isolation	level	options.

The	following	cursor	transaction	isolation	levels	are	supported	by	the
Microsoft®	SQL	Server™	ODBC	driver:

Read	committed	(SQL_TXN_READ_COMMITTED)

Read	uncommitted	(SQL_TXN_READ_UNCOMMITTED)

Repeatable	read	(SQL_TXN_REPEATABLE_READ)

Serializable	(SQL_TXN_SERIALIZABLE)

For	more	information	about	the	types	of	locks	generated	by	the	transaction
isolation	levels,	see	Cursor	Transaction	Isolation	Levels.

Note	that	the	ODBC	API	specifies	additional	transaction	isolation	levels,	but
these	are	not	supported	by	SQL	Server	or	the	SQL	Server	ODBC	driver.

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



Cursor	Programming	Details	(ODBC)
Choosing	the	correct	cursor	type	can	improve	application	performance.	Under
certain	conditions,	Microsoft®	SQL	Server™	may	implicitly	convert	a	cursor
type	if	you	execute	an	SQL	statement	not	supported	by	the	cursor	type	you
requested.

See	Also

Choosing	a	Cursor	Type

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server

Implicit	Cursor	Conversions	(ODBC)
Applications	can	request	a	cursor	type	through	SQLSetStmtAttr	and	then
execute	an	SQL	statement	that	is	not	supported	by	server	cursors	of	the	type
requested.	A	call	to	SQLExecute	or	SQLExecDirect	returns
SQL_SUCCESS_WITH_INFO	and	SQLGetDiagRec	returns:

szSqlState	=	"01S02",	*pfNativeError	=	0,
szErrorMsg="[Microsoft][ODBC	SQL	Server	Driver]Cursor	type	changed"

The	application	can	determine	what	type	of	cursor	is	now	being	used	by	calling
SQLGetStmtOption	with	fOption	set	to	SQL_CURSOR_TYPE.	The	cursor
type	conversion	applies	to	only	one	statement.	The	next	SQLExecDirect	or
SQLExecute	will	be	done	using	the	original	statement	cursor	settings.

See	Also

Implicit	Cursor	Conversions

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server

Using	Autofetch	with	ODBC	Cursors
When	connected	to	an	instance	of	Microsoft®	SQL	Server™	2000	,	the	SQL
Server	ODBC	driver	supports	an	autofetch	option	when	using	any	server	cursor
type.	With	autofetch,	the	SQLExecute	or	SQLExecDirect	function	that	opens
the	cursor	also	has	an	implicit	SQLFetchScroll(SQL_FIRST)	function.	The
rows	comprising	the	first	rowset	are	returned	to	the	bound	application	variables
as	part	of	the	statement	execution,	saving	another	roundtrip	across	the	network
to	the	server.	SQLGetData	is	not	supported	when	the	autofetch	option	is
enabled;	the	result	set	columns	must	be	bound	to	program	variables.

Applications	request	autofetch	by	setting	the	driver-specific
SQL_SOPT_SS_CURSOR_OPTIONS	statement	attribute	to	SQL_CO_AF.



ODBC	and	SQL	Server

Fast	Forward-Only	Cursors	(ODBC)
When	connected	to	an	instance	of	Microsoft®	SQL	Server™	2000,	the	SQL
Server	ODBC	driver	supports	performance	optimizations	for	forward-only,	read-
only	cursors.	Fast	forward-only	cursors	are	implemented	internally	by	the	driver
and	server	in	a	manner	very	similar	to	default	result	sets.	Besides	having	high
performance,	fast	forward-only	cursors	also	have	these	characteristics:

SQLGetData	is	not	supported.	The	result	set	columns	must	be	bound	to
program	variables.

The	server	automatically	closes	the	cursor	when	the	end	of	the	cursor	is
detected.	The	application	must	still	call	SQLCloseCursor	or
SQLFreeStmt(SQL_CLOSE),	but	the	driver	does	not	have	to	send	the
close	request	to	the	server.	This	saves	a	roundtrip	across	the	network	to
the	server.

If	a	result	set	contains	a	text,	ntext,	or	image	column,	a	fast	forward-only	cursor
is	implicitly	converted	to	a	dynamic	cursor	and	SQL_SUCCESS_WITH_INFO
is	returned	to	the	application.	SQLGetData	is	enabled	for	the	dynamic	cursor.

The	application	requests	fast	forward-only	cursors	using	the	driver-specific
statement	attribute	SQL_SOPT_SS_CURSOR_OPTIONS.	When	set	to
SQL_CO_FFO,	fast	forward-only	cursors	are	enabled	without	autofetch.	When
set	to	SQL_CO_FFO_AF,	the	autofetch	option	is	also	enabled.	For	more
information	about	autofetch,	see	Using	Autofetch	with	ODBC	Cursors.

Fast	forward-only	cursors	with	autofetch	can	be	used	to	retrieve	a	small	result
set	with	only	one	roundtrip	to	the	server.	In	these	steps,	n	is	the	number	of	rows
to	be	returned:

1.	 Set	SQL_SOPT_SS_CURSOR_OPTIONS	to	SQL_CO_FFO_AF.

2.	 Set	SQL_ATTR_ROW_ARRAY_SIZE	to	n	+	1.



3.	 Bind	the	result	columns	to	arrays	of	n	+	1	elements	(to	be	safe	if	n	+	1
rows	are	actually	fetched).

4.	 Open	the	cursor	with	either	SQLExecDirect	or	SQLExecute.

5.	 If	the	return	status	is	SQL_SUCCESS,	then	call	SQLFreeStmt	or
SQLCloseCursor	to	close	the	cursor.	All	data	for	the	rows	will	be	in
the	bound	program	variables.

With	these	steps,	the	SQLExecDirect	or	SQLExecute	sends	a	cursor	open
request	with	the	autofetch	option	enabled.	On	that	single	request	from	the	client,
the	server:

Opens	the	cursor.

Builds	the	result	set	and	sends	the	rows	to	the	client.

Because	the	rowset	size	was	set	to	1	more	than	the	number	of	rows	in
the	result	set,	the	server	detects	the	end	of	the	cursor	and	closes	the
cursor.

See	Also

SQLSetStmtAttr



ODBC	and	SQL	Server



Scrolling	and	Fetching	Rows
To	use	a	scrollable	cursor,	an	ODBC	application	must:

Set	the	cursor	capabilities	using	SQLSetStmtAttr.

Open	the	cursor	using	SQLExecute	or	SQLExecDirect.

Scroll	and	fetch	rows	using	SQLFetch	or	SQLFetchScroll.

Both	SQLFetch	and	SQLFetchSroll	can	fetch	blocks	of	rows	at	a	time.	The
number	of	rows	returned	is	specified	using	SQLSetStmtAttr	to	set	the
SQL_ATTR_ROW_ARRAY_SIZE	parameter.

ODBC	applications	can	use	SQLFetch	to	fetch	through	a	forward-only	cursor.

SQLFetchScroll	is	used	to	scroll	around	a	cursor.	SQLFetchScroll	supports
fetching	the	next,	prior,	first,	and	last	rowsets,	as	well	as	relative	fetching	(fetch
the	rowset	n	rows	from	the	start	of	the	current	rowset)	and	absolute	fetching
(fetch	the	rowset	starting	at	row	n).	If	n	is	negative	in	an	absolute	fetch,	rows	are
counted	from	the	end	of	the	result	set.	Thus,	an	absolute	fetch	of	row	-1	means	to
fetch	the	rowset	that	starts	with	the	last	row	in	the	result	set.

Applications	that	use	SQLFetchScroll	only	for	its	block	cursor	capabilities,
such	as	reports,	are	likely	to	pass	through	the	result	set	a	single	time,	using	only
the	option	to	fetch	the	next	rowset.	Screen-based	applications,	on	the	other	hand,
can	take	advantage	of	all	of	the	capabilities	of	SQLFetchScroll.	If	the
application	sets	the	rowset	size	to	the	number	of	rows	displayed	on	the	screen
and	binds	the	screen	buffers	to	the	result	set,	it	can	translate	scroll	bar	operations
directly	to	calls	to	SQLFetchScroll.

Scroll	bar	operation SQLFetchScroll	scrolling	option
Page	up SQL_FETCH_PRIOR
Page	down SQL_FETCH_NEXT
Line	up SQL_FETCH_RELATIVE	with	FetchOffset

equal	to	-1



Line	down SQL_FETCH_RELATIVE	with	FetchOffset
equal	to	1

Scroll	box	to	top SQL_FETCH_FIRST
Scroll	box	to	bottom SQL_FETCH_LAST
Random	scroll	box	position SQL_FETCH_ABSOLUTE

To	fetch	and	update	rowsets



ODBC	and	SQL	Server

Bookmarking	Rows
A	bookmark	is	a	value	used	to	identify	a	row	of	data.	The	meaning	of	the
bookmark	value	is	known	only	to	the	driver	or	data	source.	For	example,	it
might	be	as	simple	as	a	row	number	or	as	complex	as	a	disk	address.	In	ODBC,
the	application	requests	a	bookmark	for	a	particular	row,	stores	it,	and	passes	it
back	to	the	cursor	to	return	to	the	row.

When	fetching	rows	with	SQLFetchScroll,	an	application	can	use	a	bookmark
as	a	basis	for	selecting	the	starting	row.	This	is	a	form	of	absolute	addressing
because	it	does	not	depend	on	the	current	cursor	position.	To	scroll	to	a
bookmarked	row,	the	application	calls	SQLFetchScroll	with	a	FetchOrientation
of	SQL_FETCH_BOOKMARK.	This	operation	uses	the	bookmark	pointed	to
by	the	SQL_ATTR_FETCH_BOOKMARK_PTR	option	attribute.	It	returns	the
rowset	starting	with	the	row	identified	by	that	bookmark.	An	application	can
specify	an	offset	for	this	operation	in	the	FetchOffset	argument	of	the	call	to
SQLFetchScroll.	When	an	offset	is	specified,	the	first	row	of	the	returned
rowset	is	determined	by	adding	the	number	in	the	FetchOffset	argument	to	the
number	of	the	row	identified	by	the	bookmark.	The	Microsoft®	SQL	Server™
ODBC	driver	only	supports	bookmarks	on	static	and	keyset	cursors.	If	a
dynamic	cursor	is	requested	when	bookmarks	are	set	on,	a	keyset	cursor	is
opened	instead.

Bookmarks	can	also	be	used	with	SQLBulkOperations	to	perform	operations
on	a	set	of	rows	starting	at	the	bookmark.

To	fetch	and	update	rowsets



ODBC	and	SQL	Server



Positioned	Updates	(ODBC)
ODBC	supports	two	methods	for	performing	positioned	updates	in	a	cursor:

SQLSetPos

WHERE	CURRENT	OF	clause

The	most	common	approach	is	to	use	SQLSetPos,	which	has	the	following
options:

SQL_POSITION

Positions	the	cursor	on	a	specific	row	in	the	current	rowset.

SQL_REFRESH

Refreshes	program	variables	bound	to	the	result	set	columns	with	the	values
from	the	row	the	cursor	is	currently	positioned	on.

SQL_UPDATE

Updates	the	current	row	in	the	cursor	with	the	values	stored	in	the	program
variables	bound	to	the	result	set	columns.

SQL_DELETE

Deletes	the	current	row	in	the	cursor.

SQLSetPos	can	be	used	with	any	statement	result	set	when	the	statement	handle
cursor	attributes	are	set	to	use	server	cursors.	The	result	set	columns	must	be
bound	to	program	variables.	Once	the	application	has	fetched	a	row	it	calls
SQLSetPos(SQL_POSTION)	to	position	the	cursor	on	the	row.	The	application
could	then	call	SQLSetPos(SQL_DELETE)	to	delete	the	current	row,	or	it	can
move	new	data	values	into	the	bound	program	variables	and	call
SQLSetPos(SQL_UPDATE)	to	update	the	current	row.

Applications	can	update	or	delete	any	row	in	the	rowset	with	SQLSetPos.
Calling	SQLSetPos	is	a	convenient	alternative	to	constructing	and	executing	an
SQL	statement.	SQLSetPos	operates	on	the	current	rowset	and	can	be	used	only
after	a	call	to	SQLFetchScroll.



Rowset	size	is	set	by	a	call	to	SQLSetStmtAttr	with	an	attribute	argument	of
SQL_ATTR_ROW_ARRAY_SIZE.	SQLSetPos	uses	a	new	rowset	size,
however,	only	after	a	call	to	SQLFetch	or	SQLFetchScroll.	For	example,	if	the
rowset	size	is	changed,	then	SQLSetPos	is	called,	and	then	SQLFetch	or
SQLFetchScroll	is	called;	the	call	to	SQLSetPos	uses	the	old	rowset	size,	but
SQLFetch	or	SQLFetchScroll	uses	the	new	rowset	size.

The	first	row	in	the	rowset	is	row	number	1.	The	RowNumber	argument	in
SQLSetPos	must	identify	a	row	in	the	rowset;	that	is,	its	value	must	be	in	the
range	between	1	and	the	number	of	rows	that	were	most	recently	fetched	(which
may	be	less	than	the	rowset	size).	If	RowNumber	is	0,	the	operation	applies	to
every	row	in	the	rowset.

The	delete	operation	of	SQLSetPos	makes	the	data	source	delete	one	or	more
selected	rows	of	a	table.	To	delete	rows	with	SQLSetPos,	the	application	calls
SQLSetPos	with	Operation	set	to	SQL_DELETE	and	RowNumber	set	to	the
number	of	the	row	to	delete.	If	RowNumber	is	0,	all	rows	in	the	rowset	are
deleted.

After	SQLSetPos	returns,	the	deleted	row	is	the	current	row,	and	its	status	is
SQL_ROW_DELETED.	The	row	cannot	be	used	in	any	further	positioned
operations,	such	as	calls	to	SQLGetData	or	SQLSetPos.

When	deleting	all	rows	of	the	rowset	(RowNumber	is	equal	to	0),	the	application
can	prevent	the	driver	from	deleting	certain	rows	by	using	the	row	operation
array	in	the	same	way	as	for	the	update	operation	of	SQLSetPos.

Every	row	that	is	deleted	should	be	a	row	that	exists	in	the	result	set.	If	the
application	buffers	were	filled	by	fetching	and	if	a	row	status	array	has	been
maintained,	its	values	at	each	of	these	row	positions	should	not	be
SQL_ROW_DELETED,	SQL_ROW_ERROR,	or	SQL_ROW_NOROW.

Positioned	updates	can	also	be	done	using	the	WHERE	CURRENT	OF	clause
on	UPDATE,	DELETE,	and	INSERT	statements.	WHERE	CURRENT	OF
requires	a	cursor	name,	which	ODBC	will	generate	when	the
SQLGetCursorName	function	is	called,	or	which	you	can	specify	by	calling
SQLSetCursorName.	The	general	steps	to	perform	a	WHERE	CURRENT	OF
update	in	an	ODBC	application	are:

Call	SQLSetCursorName	to	establish	a	cursor	name	for	the	statement
handle.



Build	a	SELECT	statement	with	a	FOR	UPDATE	OF	clause	and
execute	it.

Call	SQLFetchScroll	to	retrieve	a	rowset	or	SQLFetch	to	retrieve	a
row.

Call	SQLSetPos	(SQL_POSITION)	to	position	the	cursor	on	the	row.

Build	and	execute	an	UPDATE	statement	with	a	WHERE	CURRENT
OF	clause	using	the	cursor	name	set	with	SQLSetCursorName.

As	an	alternative,	you	could	call	SQLGetCursorName	after	executing	the
SELECT	statement	instead	of	calling	SQLSetCursorName	before	executing	the
SELECT	statement.	SQLGetCursorName	returns	a	default	cursor	name
assigned	by	ODBC	if	you	do	not	set	a	cursor	name	using	SQLSetCursorName.

SQLSetPos	is	preferred	over	WHERE	CURRENT	OF	when	using	server
cursors.	If	you	are	using	a	static,	updatable	cursor	with	the	ODBC	cursor	library,
the	cursor	library	implements	WHERE	CURRENT	OF	updates	by	adding	a
WHERE	clause	with	the	key	values	for	the	underlying	table.	This	can	cause
unintended	updates	if	the	keys	in	the	table	are	not	unique.

To	fetch	and	update	rowsets



ODBC	and	SQL	Server



Performing	Transactions
Microsoft®	SQL	Server™	and	the	SQL	Server	ODBC	driver	support	the	ODBC
API	transaction	management	functions.	Microsoft	offers	full	support	for	local
transactions	on	an	individual	server.	The	SQL	Server	ODBC	driver	uses	these
features	to	support	the	ODBC	API	functions	that	manage	transactions.

Through	the	use	of	the	Microsoft	Distributed	Transaction	Coordinator	(MS
DTC),	the	SQL	Server	ODBC	driver	can	participate	in	distributed	transactions
spanning	multiple	servers.

See	Also

Transactions

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



Transactions	in	ODBC
Transactions	in	ODBC	are	managed	at	the	connection	level.	When	an	application
completes	a	transaction,	it	commits	or	rolls	back	all	work	done	through	all
statement	handles	on	that	connection.	To	commit	or	roll	back	a	transaction,
applications	should	call	SQLEndTran	rather	than	submitting	a	COMMIT	or
ROLLBACK	statement.

An	application	calls	SQLSetConnectAttr	to	switch	between	the	two	ODBC
modes	of	managing	transactions:

Autocommit	mode

Each	individual	statement	is	automatically	committed	when	it
completes	successfully.	When	running	in	autocommit	mode	no	other
transaction	management	functions	are	needed.

Manual-commit	mode

All	executed	statements	are	included	in	the	same	transaction	until	it	is
specifically	terminated	by	calling	SQLEndTran.

Autocommit	mode	is	the	default	transaction	mode	for	ODBC.	When	a
connection	is	made,	it	is	in	autocommit	mode	until	SQLSetConnectAttr	is
called	to	switch	to	manual-commit	mode	by	setting	autocommit	mode	off.	When
an	application	turns	autocommit	off,	the	next	statement	sent	to	the	database	starts
a	transaction.	The	transaction	then	remains	in	effect	until	the	application	calls
SQLEndTran	with	either	the	SQL_COMMIT	or	SQL_ROLLBACK	options.
The	command	sent	to	the	database	after	SQLEndTran	starts	the	next
transaction.

If	an	application	switches	from	manual-commit	to	autocommit	mode,	the	driver
commits	any	transactions	currently	open	on	the	connection.

ODBC	applications	should	not	use	Transact-SQL	transaction	statements	(such	as
BEGIN	TRANSACTION,	COMMIT	TRANSACTION,	ROLLBACK
TRANSACTION)	because	this	can	result	in	indeterminate	behavior	in	the	driver.
An	ODBC	application	should	either:

Run	in	autocommit	mode	and	not	use	any	transaction	management



functions	or	statements.

-or-

Run	in	manual-commit	mode	and	use	the	ODBC	SQLEndTran
function	to	either	commit	or	roll	back	transactions.

See	Also

SQLEndTran

SQLSetConnectAttr



ODBC	and	SQL	Server



Performing	Distributed	Transactions
The	Microsoft	Distributed	Transaction	Coordinator	(MS	DTC)	allows
applications	to	extend	transactions	across	two	or	more	instances	of	Microsoft®
SQL	Server™.	It	also	allows	applications	to	participate	in	transactions	managed
by	transaction	managers	that	comply	with	the	X/Open	DTP	XA	standard.	ODBC
applications	that	use	SQL	Server	version	6.5	or	later	can	participate	in	MS	DTC
transactions.

Normally,	all	transaction	management	commands	are	sent	through	the	ODBC
driver	to	the	server.	The	application	starts	a	transaction	by	calling
SQLSetConnectAttr	with	the	autocommit	mode	turned	off.	The	application
then	performs	the	updates	comprising	the	transaction	and	calls	SQLEndTran
with	either	the	SQL_COMMIT	or	SQL_ROLLBACK	option.

When	using	MS	DTC,	however,	MS	DTC	becomes	the	transaction	manager	and
the	application	no	longer	uses	SQLEndTran.

To	use	Microsoft	Distributed	Transaction	Coordinator



ODBC	and	SQL	Server



Handling	Errors	and	Messages
When	an	application	calls	an	ODBC	function,	the	driver	executes	the	function
and	returns	diagnostic	information	in	two	ways:	A	return	code	indicates	the
overall	success	or	failure	of	an	ODBC	function	and	diagnostic	records	provide
detailed	information	about	the	function.	Diagnostic	records	include	a	header
record	and	status	records.	At	least	one	diagnostic	record,	the	header	record,	is
returned	even	if	the	function	succeeds.

Diagnostic	information	is	used	at	development	time	to	catch	programming
errors,	such	as	invalid	handles	and	syntax	errors	in	hard-coded	SQL	statements.
It	is	also	used	at	run	time	to	catch	run-time	errors	and	warnings,	such	as	data
truncation,	rule	violations,	and	syntax	errors	in	SQL	statements	entered	by	the
user.	Program	logic	is	generally	based	on	return	codes.

For	example,	after	an	application	calls	SQLFetch	to	retrieve	the	rows	in	a	result
set,	the	return	code	indicates	if	the	end	of	the	result	set	was	reached
(SQL_NO_DATA),	if	any	informational	messages	were	returned
(SQL_SUCCESS_WITH_INFO),	or	if	an	error	occurred	(SQL_ERROR).

If	an	ODBC	driver	returns	anything	other	than	SQL_SUCCESS,	then	the
application	can	call	SQLGetDiagRec	to	retrieve	any	informational	or	error
messages	present.	Use	SQLGetDiagRec	to	scroll	up	and	down	the	message	set
if	there	is	more	than	one	message.

The	return	code	SQL_INVALID_HANDLE	always	indicates	a	programming
error	and	should	never	be	encountered	at	run	time.	All	other	return	codes	provide
run-time	information,	although	SQL_ERROR	may	indicate	a	programming
error.

The	original	Microsoft®	SQL	Server™	native	API,	DB-Library	for	C,	allows	an
application	to	install	callback	error-handling	and	message-handling	functions
that	return	errors	or	messages.	Some	Transact-SQL	statements,	such	as	PRINT,
RAISERROR,	DBCC,	and	SET,	return	their	results	to	the	DB-Library	message
handler	function	instead	of	to	a	result	set.	However,	the	ODBC	API	has	no	such
callback	capability,	so	when	the	SQL	Server	ODBC	driver	detects	messages
coming	back	from	SQL	Server,	it	sets	the	ODBC	return	code	to
SQL_SUCCESS_WITH_INFO	or	SQL_ERROR	and	returns	the	message	as	one



or	more	diagnostic	records.	Therefore,	an	ODBC	application	must	carefully	test
for	these	return	codes	and	call	SQLGetDiagRec	to	retrieve	message	data.

To	process	ODBC	errors



ODBC	and	SQL	Server



Processing	Statements	That	Generate	Messages

Using	SET	SHOWPLAN	and	SET	STATISTICS
The	Transact-SQL	SET	statement	options	STATISTICS	TIME	and	STATISTICS
IO	are	used	to	get	information	that	aids	in	diagnosing	long-running	queries.
Earlier	versions	of	Microsoft®	SQL	Server™	also	support	the	SHOWPLAN
option	for	analyzing	query	plans.	An	ODBC	application	can	set	these	options	by
executing	the	following	statements:

SQLExecDirect(hstmt,	"SET	SHOWPLAN	ON",	SQL_NTS);
SQLExecDirect(hstmt,	"SET	STATISTICS	TIME	ON",	SQL_NTS);
SQLExecDirect(hstmt,	"SET	STATISTICS	IO	ON",	SQL_NTS);

When	SET	STATISTICS	TIME	or	SET	SHOWPLAN	are	ON,	SQLExecute	and
SQLExecDirect	return	SQL_SUCCESS_WITH_INFO,	and,	at	that	point,	the
application	can	retrieve	the	SHOWPLAN	or	STATISTICS	TIME	output	by
calling	SQLGetDiagRec	until	it	returns	SQL_NO_DATA.	Each	line	of
SHOWPLAN	data	comes	back	in	the	format:

szSqlState="01000",	*pfNativeError=6223,
szErrorMsg="[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]	
														Table	Scan"

SQL	Server	version	7.0	replaces	the	SHOWPLAN	option	with
SHOWPLAN_ALL	and	SHOWPLAN_TEXT,	both	of	which	return	output	as	a
result	set,	not	a	set	of	messages.

Each	line	of	STATISTICS	TIME	comes	back	in	the	format:

szSqlState="01000",	*pfNativeError=	3613,
szErrorMsg="[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]
														SQL	Server	Parse	and	Compile	Time:	cpu	time	=	0	ms."

The	output	of	SET	STATISTICS	IO	is	not	available	until	the	end	of	a	result	set.	
To	get	STATISTICS	IO	output,	the	application	calls	SQLGetDiagRec	at	the



time	SQLFetch	or	SQLFetchScroll	returns	SQL_NO_DATA.	The	output	of
STATISTICS	IO	comes	back	in	the	format:

szSqlState="01000",	*pfNativeError=	3615,
szErrorMsg="[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]
														Table:	testshow		scan	count	1,		logical	reads:	1,
														physical	reads:	0."

Using	DBCC	Statements
DBCC	statements	return	their	data	as	messages,	not	result	sets.	SQLExecDirect
or	SQLExecute	return	SQL_SUCCESS_WITH_INFO,	and	the	application
retrieves	the	output	by	calling	SQLGetDiagRec	until	it	returns
SQL_NO_DATA.

For	example,	the	following	statement	returns	SQL_SUCCESS_WITH_INFO:

SQLExecDirect(hstmt,	"DBCC	CHECKTABLE(authors)",	SQL_NTS);

Calls	to	SQLGetDiagRec	return:

szSqlState	=	"01000",	*pfNativeError	=	2536,
szErrorMsg="[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]
								Checking	authors"
szSqlState	=	"01000",	*pfNativeError	=	2579,
szErrorMsg="[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]
								The	total	number	of	data	pages	in	this	table	is	1."
szSqlState	=	"01000",	*pfNativeError	=	7929,
szErrorMsg="[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]
								Table	has	23	data	rows."
szSqlState	=	"01000",	*pfNativeError	=	2528
szErrorMsg="[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]
								DBCC	execution	completed.	If	DBCC	printed	error	messages,
								see	your	System	Administrator."

Using	PRINT	and	RAISERROR	Statements



Transact-SQL	PRINT	and	RAISERROR	statements	also	return	data	by	calling
SQLGetDiagRec.	PRINT	statements	cause	the	SQL	statement	execution	to
return	SQL_SUCCESS_WITH_INFO,	and	a	subsequent	call	to
SQLGetDiagRec	returns	a	SQLState	of	01000.	A	RAISERROR	with	a	severity
of	ten	or	lower	behaves	the	same	as	PRINT.	A	RAISERROR	with	a	severity	of
11	or	higher	causes	the	execute	to	return	SQL_ERROR,	and	a	subsequent	call	to
SQLGetDiagRec	returns	SQLState	42000.	For	example,	the	following	statement
returns	SQL_SUCCESS_WITH_INFO:

SQLExecDirect	(hstmt,	"PRINT		'Some	message'	",	SQL_NTS);

Calling	SQLGetDiagRec	returns:

szSQLState	=	"01000",	*pfNative	Error	=	0,
szErrorMsg=	"[Microsoft]	[ODBC	SQL	Server	Driver][SQL	Server]
																Some	message"

The	following	statement	returns	SQL_SUCCESS_WITH_INFO:

SQLExecDirect	(hstmt,	"RAISERROR	('Sample	error	1.',	10,	-1)",
												SQL_NTS)

Calling	SQLGetDiagRec	returns:

szSQLState	=	"01000",	*pfNative	Error	=	50000,
szErrorMsg=	"[Microsoft]	[ODBC	SQL	Server	Driver][SQL	Server]
																Sample	error	1."

The	following	statement	returns	SQL_ERROR:

SQLExecDirect	(hstmt,	"RAISERROR	('Sample	error	2.',	11,	-1)",	SQL_NTS)

Calling	SQLGetDiagRec	returns:

szSQLState	=	"42000",	*pfNative	Error	=	50000,
szErrorMsg=	"[Microsoft]	[ODBC	SQL	Server	Driver][SQL	Server]
																Sample	error	2."



The	timing	of	calling	SQLGetDiagRec	is	critical	when	output	from	PRINT	or
RAISERROR	statements	is	included	in	a	result	set.	The	call	to	SQLGetDiagRec
to	retrieve	the	PRINT	or	RAISERROR	output	must	be	made	immediately	after
the	statement	that	receives	SQL_ERROR	or	SQL_SUCCESS_WITH_INFO.
This	is	straightforward	when	only	a	single	SQL	statement	is	executed,	as	in	the
examples	above.	In	these	cases,	the	call	to	SQLExecDirect	or	SQLExecute
returns	SQL_ERROR	or	SQL_SUCCESS_WITH_INFO	and	SQLGetDiagRec
can	then	be	called.	It	is	less	straightforward	when	coding	loops	to	handle	the
output	of	a	batch	of	SQL	statements	or	when	executing	SQL	Server	stored
procedures.

In	this	case,	SQL	Server	returns	a	result	set	for	every	SELECT	statement
executed	in	a	batch	or	stored	procedure.	If	the	batch	or	procedure	contains
PRINT	or	RAISERROR	statements,	the	output	for	these	is	interleaved	with	the
SELECT	statement	result	sets.	If	the	first	statement	in	the	batch	or	procedure	is	a
PRINT	or	RAISERROR,	the	SQLExecute	or	SQLExecDirect	returns
SQL_SUCCESS_WITH_INFO	or	SQL_ERROR,	and	the	application	needs	to
call	SQLGetDiagRec	until	it	returns	SQL_NO_DATA	to	retrieve	the	PRINT	or
RAISERROR	information.

If	the	PRINT	or	RAISERROR	statement	comes	after	an	SQL	statement	(such	as
a	SELECT	statement),	then	the	PRINT	or	RAISERROR	information	is	returned
when	SQLMoreResults	positions	on	the	result	set	containing	the	error.
SQLMoreResults	returns	SQL_SUCCESS_WITH_INFO	or	SQL_ERROR
depending	on	the	severity	of	the	message.	Messages	are	retrieved	by	calling
SQLGetDiagRec	until	it	returns	SQL_NO_DATA.

See	Also

SQLMoreResults



ODBC	and	SQL	Server



Diagnostic	Records	and	Fields
Diagnostic	records	are	associated	with	ODBC	environment,	connection,
statement,	or	descriptor	handles.	When	any	ODBC	function	raises	a	return	code
other	than	SQL_SUCCESS	or	SQL_INVALID_HANDLE,	the	handle	called	by
the	function	has	associated	diagnostic	records	that	contain	informational	or	error
messages.	These	records	are	retained	until	another	function	is	called	using	that
handle,	at	which	time	they	are	discarded.	There	is	no	limit	to	the	number	of
diagnostic	records	that	can	be	associated	with	a	handle	at	any	one	time.

There	are	two	types	of	diagnostic	records:	header	and	status.	The	header	record
is	record	0;	when	there	are	status	records,	they	are	records	1	and	later.	Diagnostic
records	contain	different	fields	for	the	header	record	and	the	status	records.
ODBC	components	can	also	define	their	own	diagnostic	record	fields.

Fields	in	the	header	record	contain	general	information	about	a	function's
execution,	including	the	return	code,	row	count,	number	of	status	records,	and
type	of	statement	executed.	The	header	record	is	always	created	unless	an
ODBC	function	returns	SQL_INVALID_HANDLE.	For	a	complete	list	of	fields
in	the	header	record,	see	SQLGetDiagField.

Fields	in	the	status	records	contain	information	about	specific	errors	or	warnings
returned	by	the	ODBC	Driver	Manager,	driver,	or	data	source,	including	the
SQLSTATE,	native	error	number,	diagnostic	message,	column	number,	and	row
number.	Status	records	are	created	only	if	the	function	returns	SQL_ERROR,
SQL_SUCCESS_WITH_INFO,	SQL_NO_DATA,	SQL_NEED_DATA,	or
SQL_STILL_EXECUTING.	For	a	complete	list	of	fields	in	the	status	records,
see	SQLGetDiagField.

SQLGetDiagRec	retrieves	a	single	diagnostic	record	along	with	its	ODBC
SQLSTATE,	native	error	number,	and	diagnostic-message	fields.	This
functionality	is	similar	to	the	ODBC	2.x	SQLError	function.	The	simplest	error-
handling	function	in	ODBC	3.x	is	to	repeatedly	call	SQLGetDiagRec	starting
with	the	RecNumber	parameter	set	to	1	and	incrementing	RecNumber	by	1	until
SQLGetDiagRec	returns	SQL_NO_DATA.	This	is	equivalent	to	an	ODBC	2.x
application	calling	SQLError	until	it	returns	SQL_NO_DATA_FOUND.

ODBC	3.x	supports	much	more	diagnostic	information	than	ODBC	2.x.	This



information	is	stored	in	additional	fields	in	diagnostic	records	retrieved	by	using
SQLGetDiagField.

The	Microsoft®	SQL	Server™	ODBC	driver	has	driver-specific	diagnostic
fields	that	can	be	retrieved	with	SQLGetDiagField.	Labels	for	these	driver-
specific	fields	are	defined	in	Odbcss.h.	Use	these	labels	to	retrieve	the	SQL
Server	state,	severity	level,	server	name,	procedure	name,	and	line	number
associated	with	each	diagnostic	record.	Also,	Odbcss.h	contains	definitions	of
the	codes	the	driver	uses	to	identify	Transact-SQL	statements	if	an	application
calls	SQLGetDiagField	with	DiagIdentifier	set	to
SQL_DIAG_DYNAMIC_FUNCTION_CODE.

SQLGetDiagField	is	processed	by	the	ODBC	Driver	Manager	using	error
information	it	caches	from	the	underlying	driver.	The	ODBC	Driver	Manager
does	not	cache	driver-specific	diagnostic	fields	until	after	a	successful
connection	has	been	made.	SQLGetDiagField	returns	SQL_ERROR	if	it	is
called	to	get	driver-specific	diagnostic	fields	before	a	successful	connection	has
been	completed.	If	an	ODBC	connect	function	returns
SQL_SUCCESS_WITH_INFO,	the	driver-specific	diagnostic	fields	for	the
connect	function	are	not	yet	available.	You	can	start	calling	SQLGetDiagField
for	driver-specific	diagnostic	fields	only	after	you	have	made	another	ODBC
function	call	after	the	connect	function.

Most	errors	reported	by	the	SQL	Server	ODBC	driver	can	be	effectively
diagnosed	using	only	the	information	returned	by	SQLGetDiagRec.	In	some
cases,	however,	the	information	returned	by	the	driver-specific	diagnostic	fields
is	important	in	diagnosing	an	error.	When	coding	an	ODBC	error	handler	for
applications	using	the	SQL	Server	ODBC	driver,	it	is	a	good	idea	to	also	use
SQLGetDiagField	to	retrieve	at	least	the	SQL_DIAG_SS_MSGSTATE	and
SQL_DIAG_SS_SEVERITY	driver-specific	fields.	If	a	particular	error	can	be
raised	at	several	locations	in	the	SQL	Server	code,	SQL_DIAG_SS_MSGSTATE
indicates	to	a	Microsoft	support	engineer	specifically	where	an	error	was	raised,
which	sometimes	aids	in	diagnosing	a	problem.

To	process	ODBC	errors



ODBC	and	SQL	Server



Native	Error	Numbers
For	errors	that	occur	in	the	data	source	(returned	by	Microsoft®	SQL	Server™),
the	SQL	Server	ODBC	driver	returns	the	native	error	number	returned	to	it	by
SQL	Server.	For	errors	detected	by	the	driver,	the	SQL	Server	driver	returns	a
native	error	number	of	0.	For	more	information	about	a	list	of	native	error
numbers,	see	the	error	column	of	the	sysmessages	system	table	in	the	master
database	in	SQL	Server.

For	errors	returned	by	the	Net-Library,	the	native	error	number	is	from	the
underlying	network	software.

For	errors	returned	by	Microsoft	Windows	NT®	4.0	or	Microsoft	Windows®	95,
the	SQL	Server	ODBC	driver	calls	the	Microsoft	Win32®	GetLastError
function	and	returns	that	error	as	the	native	error.

To	process	ODBC	errors



ODBC	and	SQL	Server



SQLSTATE	(ODBC	Error	Codes)
SQLSTATEs	provide	detailed	information	about	the	cause	of	a	warning	or	error.
For	errors	that	occur	in	the	data	source,	detected	and	returned	by	Microsoft®
SQL	Server™,	the	SQL	Server	ODBC	driver	maps	the	returned	native	error
number	to	the	appropriate	SQLSTATE.	If	a	native	error	number	does	not	have	an
ODBC	error	code	to	map	to,	the	SQL	Server	ODBC	driver	returns	SQLSTATE
42000	("syntax	error	or	access	violation").	For	errors	that	are	detected	by	the
driver,	the	SQL	Server	ODBC	driver	generates	the	appropriate	SQLSTATE.

To	process	ODBC	errors



ODBC	and	SQL	Server



Error	Messages
The	text	of	messages	returned	by	the	Microsoft®	SQL	Server™	ODBC	driver	is
placed	in	the	MessageText	parameter	of	SQLGetDiagRec.	The	source	of	an
error	is	indicated	by	the	header	of	the	message:

[Microsoft][ODBC	Driver	Manager]

These	errors	are	raised	by	the	ODBC	Driver	Manager.

[Microsoft][ODBC	Cursor	Library]

These	errors	are	raised	by	the	ODBC	cursor	library.

[Microsoft][ODBC	SQL	Server	Driver]

These	errors	are	raised	by	the	SQL	Server	ODBC	driver.	If	there	are	no	other
nodes	with	either	the	name	of	a	Net-Library	or	SQL	Server,	then	the	error
was	encountered	in	the	driver.

[Microsoft][ODBC	SQL	Server	Driver][Net-Libraryname]

These	errors	are	raised	by	the	SQL	Server	Net-Library,	where	Net-
Libraryname	is	the	display	name	of	a	SQL	Server	client	Net-Library	(for
example,	Named	Pipes,	Shared	Memory,	Multiprotocol,	TCP/IP	Sockets,
NWLink	IPX/SPX,	or	Banyan	VINES).	The	remainder	of	the	error	message
contains	the	Net-Library	function	called	and	the	function	called	in	the
underlying	network	API	by	the	TDS	function.	The	pfNative	error	code
returned	with	these	errors	is	the	error	code	from	the	underlying	network
protocol	stack.

[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]

These	errors	are	raised	by	SQL	Server.	The	remainder	of	the	error	message	is
the	text	of	the	error	message	from	SQL	Server.	The	pfNative	code	returned
with	these	errors	is	the	error	number	from	SQL	Server.	For	more	information
about	a	list	of	error	messages	(and	their	numbers)	that	can	be	returned	by
SQL	Server,	see	the	description	and	error	columns	of	the	sysmessages
system	table	in	the	master	database	in	SQL	Server.

To	process	ODBC	errors



ODBC	and	SQL	Server



Running	Stored	Procedures
A	stored	procedure	is	an	executable	object	stored	in	a	database.	Microsoft®	SQL
Server™	supports:

Stored	procedures

One	or	more	SQL	statements	precompiled	into	a	single	executable
procedure.

Extended	stored	procedures

C	or	C++	dynamic-link	libraries	(DLL)	written	to	the	SQL	Server	Open
Data	Services	API	for	extended	stored	procedures.	The	Open	Data
Services	API	extends	the	capabilities	of	stored	procedures	to	include	C
or	C++	code.

When	executing	statements,	calling	a	stored	procedure	on	the	data	source
(instead	of	directly	executing	or	preparing	a	statement	in	the	client	application)
can	provide:

Higher	performance

SQL	statements	are	parsed	and	compiled	when	procedures	are	created.
This	overhead	is	then	saved	when	the	procedures	are	executed.

Reduced	network	overhead

Executing	a	procedure	instead	of	sending	complex	queries	across	the
network	can	reduce	network	traffic.	If	an	ODBC	application	uses	the
ODBC	{	CALL	}	syntax	to	execute	a	stored	procedure,	the	ODBC
driver	makes	additional	optimizations	that	eliminate	the	need	to	convert
parameter	data.

Greater	consistency

If	an	organization's	rules	are	implemented	in	a	central	resource,	such	as
a	stored	procedure,	they	can	be	coded,	tested,	and	debugged	once.
Individual	programmers	can	then	use	the	tested	stored	procedures
instead	of	developing	their	own	implementations.



Greater	accuracy

Because	stored	procedures	are	usually	developed	by	experienced
programmers,	they	tend	to	be	more	efficient	and	have	fewer	errors	than
code	developed	multiple	times	by	programmers	of	varying	skill	levels.

Added	functionality

Extended	stored	procedures	can	use	C	and	C++	features	not	available	in
Transact-SQL	statements.

To	call	remote	procedures



ODBC	and	SQL	Server



Calling	a	Stored	Procedure
The	Microsoft®	SQL	Server™	ODBC	driver	supports	both	the	ODBC	CALL
escape	sequence	and	the	Transact-SQL	EXECUTE	statement	for	executing
stored	procedures;	the	ODBC	CALL	escape	sequence	is	the	preferred	method.
Using	ODBC	syntax	enables	an	application	to	retrieve	the	return	codes	of	stored
procedures	and	the	SQL	Server	ODBC	driver	is	also	optimized	to	use	a	protocol
originally	developed	for	sending	remote	procedure	(RPC)	calls	between	SQL
Servers.	This	RPC	protocol	increases	performance	by	eliminating	much	of	the
parameter	processing	and	statement	parsing	done	on	the	server.

The	ODBC	CALL	escape	sequence	for	calling	a	procedure	is:

{[?=]call	procedure_name[([parameter][,[parameter]]...)]}

where	procedure_name	specifies	the	name	of	a	procedure	and	parameter
specifies	a	procedure	parameter.

A	procedure	can	have	zero	or	more	parameters.	It	can	also	return	a	value	(as
indicated	by	the	optional	parameter	marker	?=	at	the	start	of	the	syntax).	If	a
parameter	is	an	input	or	an	input/output	parameter,	it	can	be	a	literal	or	a
parameter	marker.	If	the	parameter	is	an	output	parameter,	it	must	be	a	parameter
marker	because	the	output	is	unknown.	Parameter	markers	must	be	bound	with
SQLBindParameter	before	the	procedure	call	statement	is	executed.

Input	and	input/output	parameters	can	be	omitted	from	procedure	calls.	If	a
procedure	is	called	with	parentheses	but	without	any	parameters,	the	driver
instructs	the	data	source	to	use	the	default	value	for	the	first	parameter.	For
example:

{call	procedure_name(	)}

If	the	procedure	does	not	have	any	parameters,	the	procedure	can	fail.	If	a
procedure	is	called	without	parentheses,	the	driver	does	not	send	any	parameter
values.	For	example:

{call	procedure_name}

Literals	can	be	specified	for	input	and	input/output	parameters	in	procedure
calls.	For	example,	the	procedure	InsertOrder	has	five	input	parameters.	The



following	call	to	InsertOrder	omits	the	first	parameter,	provides	a	literal	for	the
second	parameter,	and	uses	a	parameter	marker	for	the	third,	fourth,	and	fifth
parameters.	(Parameters	are	numbered	ordinally,	beginning	with	a	value	of	1.)

{call	InsertOrder(,	10,	?,	?,	?)}

Note	that	if	a	parameter	is	omitted,	the	comma	delimiting	it	from	other
parameters	must	still	appear.	If	an	input	or	input/output	parameter	is	omitted,	the
procedure	uses	the	default	value	of	the	parameter.	Other	ways	to	specify	the
default	value	of	an	input	or	input/output	parameter	are	to	set	the	value	of	the
length/indicator	buffer	bound	to	the	parameter	to	SQL_DEFAULT_PARAM,	or
to	use	the	DEFAULT	keyword.

If	an	input/output	parameter	is	omitted,	or	if	a	literal	is	supplied	for	the
parameter,	the	driver	discards	the	output	value.	Similarly,	if	the	parameter
marker	for	the	return	value	of	a	procedure	is	omitted,	the	driver	discards	the
return	value.	Finally,	if	an	application	specifies	a	return	value	parameter	for	a
procedure	that	does	not	return	a	value,	the	driver	sets	the	value	of	the
length/indicator	buffer	bound	to	the	parameter	to	SQL_NULL_DATA.

Delimiters	in	CALL	statements
The	Microsoft	SQL	Server	ODBC	driver	by	default	also	supports	a	compatibility
option	specific	to	the	ODBC	{	CALL	}	escape	sequence.	The	driver	will	accept
CALL	statements	with	only	a	single	set	of	double	quotation	marks	delimiting	the
entire	stored	procedure	name:

{	CALL	"master.dbo.sp_who"	}

By	default	the	SQL	Server	ODBC	driver	also	accepts	CALL	statements	that
follow	the	SQL-92	rules	and	enclose	each	identifier	in	double	quotation	marks:

{	CALL	"master"."dbo"."sp_who"	}

When	running	with	the	default	settings,	however,	the	SQL	Server	ODBC	driver
does	not	support	using	either	form	of	quoted	identifier	with	identifiers	that
contain	characters	not	specified	as	legal	in	identifiers	by	the	SQL-92	standard.
For	example,	the	driver	cannot	access	a	stored	procedure	named	"My.Proc"
using	a	CALL	statement	with	quoted	identifiers:



{	CALL	"MyDB"."MyOwner"."My.Proc"	}

This	statement	is	interpreted	by	the	driver	as:

{	CALL	MyDB.MyOwner.My.Proc	}

The	server	will	raise	an	error	that	a	linked	server	named	MyDB	does	not	exist.

The	issue	does	not	exist	when	using	bracketed	identifiers,	this	statement	is
interpreted	correctly:

{	CALL	[MyDB].[MyOwner].[My.Table]	}

Users	needing	to	access	objects	with	periods	in	their	identifiers	can	also	use	the
odbccmpt	command	prompt	utility	to	allow	this.	The	odbccmpt	utility	supports
a	/Q	switch	to	enforce	ODBC	and	SQL-92	compliant	behaviors	of	quoted
identifiers	on	the	CALL	statement.	To	turn	the	standard	compliant	behavior	on
for	an	application,	use	the	following	code,	where	file_name	is	the	name	of	the
application	executable	file	without	the	path	or	.exe	extension.

odbccmpt	file_name	/Q

For	more	information,	see	odbccmpt	Utility.

To	turn	the	standard	compliance	off	for	an	application,	use	the	following	code.

odbccmpt	file_name	/Q	/d

Running	odbccmpt	with	only	the	/Q	switch	adds	this	key	to	the	Windows	NT
registry,	running	with	both	/Q	and	/d	deletes	the	key.

HKEY_LOCAL_MACHINE

				SOFTWARE

								Microsoft

												MSSQLServer

																Client

																				ODBCQIBehavior

JavaScript:hhobj_1.Click()


																								file_name:REG_SZ:NEW

When	the	standard	compliance	option	is	on	for	an	application,	CALL	statements
cannot	use	just	a	single	set	of	double	quotation	marks	around	the	complete,
qualified	procedure	name.	Only	individual	identifiers	can	be	quoted.	Some
examples	of	valid	statements	are:

{	CALL	"MyDB"."MyUserID"."My.Proc"	}
{	CALL	"MyDB".MyUserID."My.Proc"	}
{	CALL	MyDB.MyUserID."My.Proc"	}

When	the	standard	compliance	option	is	on,	the	SQL	Server	ODBC	driver
supports	using	quoted	identifiers	that	contain	characters	not	allowed	in	SQL-92
identifiers.

To	call	remote	procedures



ODBC	and	SQL	Server

Batching	Stored	Procedure	Calls
The	Microsoft®	SQL	Server™	ODBC	driver	automatically	batches	stored
procedure	calls	to	the	server	when	appropriate.	The	driver	only	does	this	when
the	ODBC	CALL	escape	sequence	is	used;	it	does	not	do	this	for	the	Transact-
SQL	EXECUTE	statement.	Batching	stored	procedure	calls	can	reduce	the
number	of	roundtrips	to	the	server	and	significantly	increase	performance.

The	driver	batches	procedure	calls	to	the	server	when	you	execute	a	batch
containing	multiple	ODBC	CALL	escape	sequences.	It	also	batches	procedure
calls	when	bound	parameter	arrays	are	used	with	an	ODBC	CALL	escape
sequence.	For	example,	if	you	use	either	row-wise	or	column-wise	parameter
binding	to	bind	an	array	with	five	elements	to	the	parameters	of	an	ODBC	CALL
SQL	statement,	then	when	SQLExecute	or	SQLExecDirect	is	called,	the	driver
sends	a	single	batch	with	five	procedure	calls	to	the	server.

To	call	remote	procedures



ODBC	and	SQL	Server



Processing	Stored	Procedure	Results
Microsoft®	SQL	Server™	stored	procedures	have	four	mechanisms	used	to
return	data:

Each	SELECT	statement	in	the	procedure	generates	a	result	set.

The	procedure	can	return	data	through	output	parameters.

A	cursor	output	parameter	can	pass	back	a	Transact-SQL	server	cursor.

The	procedure	can	have	an	integer	return	code.

Applications	must	be	able	to	handle	all	of	these	outputs	from	stored	procedures.
The	CALL	or	EXECUTE	statement	should	include	parameter	markers	for	the
return	code	and	output	parameters.	Use	SQLBindParameter	to	bind	them	all	as
output	parameters	and	the	ODBC	driver	will	transfer	the	output	values	to	the
bound	variables.	Output	parameters	and	return	codes	are	the	last	items	returned
to	the	client	by	SQL	Server;	they	are	not	returned	to	the	application	until
SQLMoreResults	returns	SQL_NO_DATA.

ODBC	does	not	support	binding	Transact-SQL	cursor	parameters.	Since	all
output	parameters	must	be	bound	before	executing	a	procedure,	any	Transact-
SQL	stored	procedure	that	contains	an	output	cursor	parameter	cannot	be	called
by	ODBC	applications.

To	call	remote	procedures



ODBC	and	SQL	Server



Using	Catalog	Functions
All	databases	have	a	structure	containing	the	data	stored	in	the	database.	A
definition	of	this	structure,	along	with	other	information	such	as	permissions,	is
stored	in	a	catalog	(implemented	as	a	set	of	system	tables),	also	known	as	a	data
dictionary.

The	Microsoft®	SQL	Server™	ODBC	driver	enables	an	application	to
determine	the	database	structure	through	calls	to	ODBC	catalog	functions.
Catalog	functions	return	information	in	result	sets	and	are	implemented	using
catalog	stored	procedures	to	query	the	system	tables	in	the	catalog.	For	example,
an	application	might	request	a	result	set	containing	information	about	all	the
tables	on	the	system	or	all	the	columns	in	a	particular	table.	The	standard	ODBC
catalog	functions	are	used	to	get	catalog	information	from	the	SQL	Server	to
which	the	application	connected.

SQL	Server	supports	distributed	queries	in	which	data	from	multiple,
heterogeneous	OLE	DB	data	sources	is	accessed	in	a	single	query.	One	of	the
methods	of	accessing	a	remote	OLE	DB	data	source	is	to	define	the	data	source
as	a	linked	server.	This	can	be	done	by	using	sp_addlinkserver.	After	the	linked
server	has	been	defined,	objects	in	that	server	can	be	referenced	in	Transact-SQL
statements	by	using	a	four	part	name:

linked_server_name.catalog.schema.object_name

The	SQL	Server	ODBC	driver	supports	two	driver-specific	functions	that	help
get	catalog	information	from	linked	servers:

SQLLinkedServers

Returns	a	list	of	the	linked	servers	defined	to	the	local	server.

SQLLinkedCatalogs

Returns	a	list	of	the	catalogs	contained	in	a	linked	server.

After	you	have	a	linked	server	name	and	a	catalog	name,	the	SQL	Server	ODBC
driver	supports	getting	information	from	the	catalog	by	using	a	two	part	name	of
linked_server_name.catalog	for	CatalogName	on	the	following	ODBC	catalog
functions:



SQLColumnPrivileges SQLColumns SQLPrimaryKeys
SQLStatistics SQLTablePrivileges SQLTables

The	two	part	linked_server_name.catalog	is	also	supported	for	FKCatalogName
and	PKCatalogName	on	SQLForeignKeys.

Using	SQLLinkedServers	and	SQLLinkedCatalogs	requires	the	following
files:

Odbcss.h

Includes	function	prototypes	and	constant	definitions	for	the	linked
server	catalog	functions.	Odbcss.h	must	be	included	in	the	ODBC
application	and	must	be	in	the	include	path	when	the	application	is
compiled.

Odbcbcp.lib

Must	be	in	the	library	path	of	the	linker	and	specified	as	a	file	to	be
linked.	Odbcbcp.lib	is	distributed	with	the	SQL	Server	ODBC	driver.

Odbcbcp.dll

Must	be	present	at	execution	time.	Odbcbcp.dll	is	distributed	with	the
SQL	Server	ODBC	driver.

See	Also

Distributed	Queries

sp_addlinkedserver

SQLColumnPrivileges

SQLColumns

SQLForeignKeys

SQLLinkedCatalogs

SQLLinkedServers

SQLPrimaryKeys

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


SQLTablePrivileges

SQLTables

SQLStatistics



ODBC	and	SQL	Server



Performing	Bulk	Copy	Operations
The	Microsoft®	SQL	Server™	bulk	copy	feature	supports	the	transfer	of	large
amounts	of	data	into	or	out	of	a	SQL	Server	table	or	view.	Data	can	also	be
transferred	out	by	specifying	a	SELECT	statement.	The	data	can	be	moved
between	SQL	Server	and	an	operating-system	data	file,	such	as	an	ASCII	file.
The	data	file	can	have	different	formats;	the	format	is	defined	to	bulk	copy	in	a
format	file.	Optionally,	data	can	be	loaded	into	program	variables	and	transferred
to	SQL	Server	using	bulk	copy	functions.	This	is	typically	much	faster	than
using	INSERT	statements	or	calling	SQLBulkOperations	with	SQL_ADD.

The	ODBC	standard	does	not	directly	support	SQL	Server	bulk	copy	operations.
When	connected	to	an	instance	of	SQL	Server	version	6.0	or	later,	the	SQL
Server	2000	ODBC	driver	supports	the	DB-Library	functions	that	perform	SQL
Server	bulk	copy	operations.	This	driver-specific	extension	provides	an	easy
upgrade	path	for	existing	DB-Library	applications	that	use	bulk	copy	functions.
The	specialized	bulk	copy	support	is	in	the	following	files:

Odbcss.h

Includes	function	prototypes	and	constant	definitions	for	bulk	copy
functions.	Odbcss.h	must	be	included	in	the	ODBC	application
performing	bulk	copy	operations	and	must	be	in	the	application's
include	path	when	it	is	compiled.

Odbcbcp.lib

Must	be	in	the	library	path	of	the	linker	and	specified	as	a	file	to	be
linked.	Odbcbcp.lib	is	distributed	with	the	SQL	Server	ODBC	driver.

Odbcbcp.dll

Must	be	present	at	execution	time.	Odbcbcp.dll	is	distributed	with	the
SQL	Server	ODBC	driver.

An	application	typically	uses	bulk	copy	in	one	of	the	following	ways:

Bulk	copy	from	a	table,	view,	or	the	result	set	of	a	Transact-SQL
statement	into	a	data	file	where	the	data	is	stored	in	the	same	format	as
the	table	or	view.



This	is	called	a	native-mode	data	file.

Bulk	copy	from	a	table,	view,	or	the	result	set	of	a	Transact-SQL
statement	into	a	data	file	where	the	data	is	stored	in	a	format	other	than
the	one	of	the	table	or	view.

In	this	case,	a	separate	format	file	is	created	that	defines	the
characteristics	(data	type,	position,	length,	terminator,	and	so	on)	of
each	column	as	it	is	stored	in	the	data	file.	If	all	columns	are	converted
to	character	format,	the	resulting	file	is	called	a	character-mode	data
file.

Bulk	copy	from	a	data	file	into	a	table	or	view.

If	needed,	a	format	file	is	used	to	determine	the	layout	of	the	data	file.

Load	data	into	program	variables,	then	import	the	data	into	a	table	or
view	using	the	bulk	copy	functions	for	bulk	copying	in	a	row	at	a	time.

Data	files	used	by	bulk	copy	functions	do	not	have	to	be	created	by	another	bulk
copy	program.	Any	other	system	can	generate	a	data	file	and	format	file
according	to	bulk	copy	definitions;	these	files	can	then	be	used	with	a	SQL
Server	bulk	copy	program	to	import	data	into	SQL	Server.	For	example,	you
could	export	data	from	a	spreadsheet	in	a	tab-delimited	file,	build	a	format	file
describing	the	tab-delimited	file,	and	then	use	a	bulk	copy	program	to	quickly
import	the	data	into	SQL	Server.	Data	files	generated	by	bulk	copy	can	also	be
imported	into	other	applications.	For	example,	you	could	use	bulk	copy
functions	to	export	data	from	a	table	or	view	into	a	tab-delimited	file	that	could
then	be	loaded	into	a	spreadsheet.

Programmers	coding	applications	to	use	the	bulk	copy	functions	should	follow
the	general	rules	for	good	bulk	copy	performance.	For	more	information,	see
Factors	Affecting	Bulk	Copy	Performance.

Note		The	ODBC	SQLBulkOperations	function	has	no	relationship	to	the	SQL
Server	bulk	copy	functions.	Applications	must	use	the	SQL	Server-specific	bulk-
copy	functions	to	perform	bulk	copy	operations.



ODBC	and	SQL	Server



Logged	and	Nonlogged	Bulk	Copies
Microsoft®	SQL	Server™	bulk	copies	that	import	data	into	an	instance	of	SQL
Server	are	run	in	either	logged	or	nonlogged	mode.	The	difference	between
logged	and	nonlogged	bulk	copy	operations	is	how	much	information	is	logged.
Both	logged	and	nonlogged	bulk	copy	operations	can	be	rolled	back,	but	only	a
logged	bulk	copy	operation	can	be	rolled	forward.

In	a	logged	bulk	copy	all	row	insertions	are	logged,	which	can	generate	many
log	records	in	a	large	bulk	copy	operation.	These	log	records	can	be	used	to	both
roll	forward	and	roll	back	the	logged	bulk	copy	operation.	In	a	nonlogged	bulk
copy,	only	the	allocations	of	new	pages	to	hold	the	bulk	copied	rows	are	logged.
This	significantly	reduces	the	amount	of	logging	that	is	needed	and	speeds	the
bulk	copy	operation.	If	a	nonlogged	bulk	copy	operation	encounters	an	error	and
has	to	be	rolled	back,	the	allocation	log	records	are	used	to	deallocate	the	pages
holding	the	bulk	copied	rows.	Since	the	individual	row	insertions	are	not	logged
in	a	nonlogged	bulk	copy,	however,	there	is	no	log	record	of	the	individual	rows
that	could	be	used	to	roll	forward	nonlogged	bulk	copy	operations.	This	is	why	a
nonlogged	bulk	copy	operation	invalidates	a	log	backup	sequence.

If	the	database	option	trunc.	log	on	chkpt.	is	set	on,	then	there	is	no	need	to
generate	log	records	that	would	support	rolling	forward	a	bulk	copy	operation.
Use	nonlogged	bulk	copy	operations	in	databases	where	trunc.	log	on	chkpt.	is
turned	on.

Whether	a	bulk	copy	is	logged	or	nonlogged	is	not	specified	as	part	of	the	bulk
copy	operation;	it	is	dependent	on	the	state	of	the	database	and	the	table	involved
in	the	bulk	copy.	A	nonlogged	bulk	copy	occurs	if	all	the	following	conditions
are	met:

The	database	option	select	into/bulkcopy	is	set	to	true.

The	target	table	has	no	indexes,	or	if	the	table	has	indexes,	it	is	empty
when	the	bulk	copy	starts.

The	target	table	is	not	being	replicated.



The	TABLOCK	hint	is	specified	using	bcp_control	with	eOption	set	to
BCPHINTS.

Any	bulk	copy	into	SQL	Server	that	does	not	meet	these	conditions	is	logged.

See	Also

Logged	and	Minimally	Logged	Bulk	Copy	Operations

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



Using	Data	Files	and	Format	Files
The	simplest	bulk	copy	program	does	the	following:

1.	 Calls	bcp_init	to	specify	bulk	copying	out	(set	BCP_OUT)	from	a
table	or	view	to	a	data	file.

2.	 Calls	bcp_exec	to	execute	the	bulk	copy	operation.

The	data	file	is	created	in	native	mode;	therefore,	data	from	all	columns	in	the
table	or	view	are	stored	in	the	data	file	in	the	same	format	as	in	the	database.	The
file	can	then	be	bulk	copied	into	a	server	by	using	these	same	steps	and	setting
DB_IN	instead	of	DB_OUT.	This	works	only	if	both	the	source	and	target	tables
have	exactly	the	same	structure.	The	resulting	data	file	can	also	be	input	to	the
bcp	utility	by	using	the	/n	(native	mode)	switch.

To	bulk	copy	out	the	result	set	of	a	Transact-SQL	statement	instead	of	directly
from	a	table	or	view:

1.	 Call	bcp_init	to	specify	bulk	copying	out,	but	specify	NULL	for	the
table	name.

2.	 Call	bcp_control	with	eOption	set	to	BCPHINTS	and	iValue	set	to	a
pointer	to	a	SQLTCHAR	string	containing	the	Transact-SQL
statement.

3.	 Call	bcp_exec	to	execute	the	bulk	copy	operation.

The	Transact-SQL	statement	can	be	any	statement	that	generates	a	result	set.	The
data	file	is	created	containing	the	first	result	set	of	the	Transact-SQL	statement.
Bulk	copy	ignores	any	result	set	after	the	first	if	the	Transact-SQL	statement
generates	multiple	result	sets	(for	example,	if	it	contains	COMPUTE	or
COMPUTE	BY).

To	create	a	data	file	in	which	column	data	is	stored	in	a	different	format	than	in
the	table,	call	bcp_columns	to	specify	how	many	columns	will	be	changed,	then



call	bcp_colfmt	for	each	column	whose	format	you	want	to	change.	This	is	done
after	calling	bcp_init	but	before	calling	bcp_exec.	bcp_colfmt	specifies	the
format	in	which	the	column's	data	is	stored	in	the	data	file.	It	can	be	used	when
bulk	copying	in	or	out.	You	can	also	use	bcp_colfmt	to	set	the	row	and	column
terminators.	For	example,	if	your	data	contains	no	tab	characters,	you	can	create
a	tab-delimited	file	by	using	bcp_colfmt	to	set	the	tab	character	as	the
terminator	for	each	column.

When	bulk	copying	out	and	using	bcp_colfmt,	you	can	easily	create	a	format
file	describing	the	data	file	you	have	created	by	calling	bcp_writefmt	after	the
last	call	to	bcp_colfmt.

When	bulk	copying	in	from	a	data	file	described	by	a	format	file,	read	the	format
file	by	calling	bcp_readfmt	after	bcp_init	but	before	bcp_exec.

The	bcp_control	function	controls	several	options	when	bulk	copying	into
Microsoft®	SQL	Server™	from	a	data	file.	bcp_control	sets	options,	such	as	the
maximum	number	of	errors	before	termination,	the	row	in	the	file	on	which	to
start	the	bulk	copy,	the	row	to	stop	on,	and	the	batch	size.

To	bulk	copy	by	using	a	format	file



ODBC	and	SQL	Server



Bulk	Copying	from	Program	Variables
You	can	bulk	copy	directly	from	program	variables.	After	allocating	variables	to
hold	the	data	for	a	row	and	calling	bcp_init	to	start	the	bulk	copy,	call	bcp_bind
for	each	column	to	specify	the	location	and	format	of	the	program	variable	to	be
associated	with	the	column.	Fill	each	variable	with	data,	then	call	bcp_sendrow
to	send	one	row	of	data	to	the	server.	Repeat	the	process	of	filling	the	variables
and	calling	bcp_sendrow	until	all	the	rows	have	been	sent	to	the	server,	then
call	bcp_done	to	specify	that	the	operation	is	complete.

The	bcp_bind	pData	parameter	contains	the	address	of	the	variable	being	bound
to	the	column.	The	data	for	each	column	can	be	stored	in	one	of	two	ways:

Allocate	one	variable	to	hold	the	data.

Allocate	an	indicator	variable	followed	immediately	by	the	data
variable.

The	indicator	variable	indicates	the	length	of	the	data	for	variable-length
columns,	and	also	indicates	NULL	values	if	the	column	allows	NULLs.	If	only	a
data	variable	is	used,	then	the	address	of	this	variable	is	stored	in	the	bcp_bind
pData	parameter.	If	an	indicator	variable	is	used,	the	address	of	the	indicator
variable	is	stored	in	the	bcp_bind	pData	parameter.	The	bulk	copy	functions
calculate	the	location	of	the	data	variable	by	adding	the	bcp_bind	cbIndicator
and	pData	parameters.

bcp_bind	supports	three	methods	for	dealing	with	variable-length	data:

Use	cbData	with	only	a	data	variable.	Place	the	length	of	the	data	in
cbData.	Each	time	the	length	of	the	data	to	be	bulk	copied	changes,	call
bcp_collen	to	reset	cbData.	If	one	of	the	other	two	methods	is	being
used,	specify	SQL_VARLEN_DATA	for	cbData.	If	all	the	data	values
being	supplied	for	a	column	are	NULL,	specify	SQL_NULL_DATA	for
cbData.

Use	indicator	variables.	As	each	new	data	value	is	moved	into	the	data
variable,	store	the	length	of	the	value	in	the	indicator	variable.	If	one	of



the	other	two	methods	is	being	used,	specify	0	for	cbIndicator.

Use	terminator	pointers.	Load	the	bcp_bind	pTerm	parameter	with	the
address	of	the	bit	pattern	that	terminates	the	data.	If	one	of	the	other	two
methods	is	being	used,	specify	NULL	for	pTerm.

All	three	of	these	methods	can	be	used	on	the	same	bcp_bind	call,	in	which	case
the	specification	that	results	in	the	smallest	amount	of	data	being	copied	is	used.

The	bcp_bind	type	parameter	uses	DB-Library	data	type	identifiers,	not	ODBC
data	type	identifiers.	DB-Library	data	type	identifiers	are	#defined	in	Odbcss.h
for	use	with	the	ODBC	bcp_bind	function.

Bulk	copy	functions	do	not	support	all	ODBC	C	data	types.	For	example,	the
bulk	copy	functions	do	not	support	the	ODBC	SQL_C_TYPE_TIMESTAMP
structure,	so	use	SQLBindCol	or	SQLGetData	to	convert	ODBC
SQL_TYPE_TIMESTAMP	data	to	a	SQL_C_CHAR	variable.	If	you	then	use
bcp_bind	with	a	type	parameter	of	SQLCHARACTER	to	bind	the	variable	to	a
Microsoft®	SQL	Server™	datetime	column,	the	bulk	copy	functions	convert	the
timestamp	escape	clause	in	the	character	variable	to	the	proper	datetime	format.

Here	are	the	recommended	data	types	to	use	in	mapping	from	an	ODBC	SQL
data	type	to	a	SQL	Server	data	type.

ODBC	SQLdata	type ODBC	C	data	type
bcp_bind	type
parameter

SQL	Server
data	type

SQL_CHAR SQL_C_CHAR SQLCHARACTER character

char

SQL_VARCHAR SQL_C_CHAR SQLCHARACTER varchar

character
varying

char	varying

sysname

SQL_LONGVARCHAR SQL_C_CHAR SQLCHARACTER text
SQL_WCHAR SQL_C_WCHAR SQLNCHAR nchar



SQL_WVARCHAR SQL_C_WCHAR SQLNVARCHAR nvarchar
SQL_WLONGVARCHAR SQL_C_WCHAR SQLNTEXT ntext
SQL_DECIMAL SQL_C_CHAR SQLCHARACTERdecimal

dec

money

smallmoney

SQL_NUMERIC SQL_C_NUMERIC SQLNUMERICN numeric
SQL_BIT SQL_C_BIT SQLBIT bit
SQL_TINYINT	(signed) SQL_C_SSHORT SQLINT2 smallint
SQL_TINYINT	(unsigned) SQL_C_UTINYINTSQLINT1 tinyint
SQL_SMALL_INT
(signed)

SQL_C_SSHORT SQLINT2 smallint

SQL_SMALL_INT
(unsigned)

SQL_C_SLONG SQLINT4 int

integer

SQL_INTEGER	(signed) SQL_C_SLONG SQLINT4 int

integer

SQL_INTEGER
(unsigned)

SQL_C_CHAR SQLCHARACTERdecimal

dec

SQL_BIGINT	(signed	and
unsigned)

SQL_C_CHAR SQLCHARACTERbigint

SQL_REAL SQL_C_FLOAT SQLFLT4 real
SQL_FLOAT SQL_C_DOUBLE SQLFLT8 float
SQL_DOUBLE SQL_C_DOUBLE SQLFLT8 float
SQL_BINARY SQL_C_BINARY SQLBINARY binary

timestamp

SQL_VARBINARY SQL_C_BINARY SQLBINARY varbinary

binary	varying

SQL_LONGVARBINARY SQL_C_BINARY SQLBINARY image



SQL_TYPE_DATE SQL_C_CHAR SQLCHARACTERdatetime

smalldatetime

SQL_TYPE_TIME SQL_C_CHAR SQLCHARACTERdatetime

smalldatetime

SQL_TYPE_TIMESTAMPSQL_C_CHAR SQLCHARACTERdatetime

smalldatetime

SQL_GUID SQL_C_GUID SQLUNIQUEID uniqueidentifier
SQL_INTERVAL_ SQL_C_CHAR SQLCHARACTER char

SQL	Server	does	not	have	signed	tinyint,	unsigned	smallint,	or	unsigned	int
data	types.	To	prevent	the	loss	of	data	values	when	migrating	these	data	types,
create	the	SQL	Server	table	with	the	next	largest	integer	data	type.	To	prevent
users	from	later	adding	values	outside	the	range	allowed	by	the	original	data
type,	apply	a	rule	to	the	SQL	Server	column	to	restrict	the	allowable	values	to
the	range	supported	by	the	data	type	in	the	original	source:

CREATE	TABLE	Sample_Ints(STinyIntCol			SMALLINT,
USmallIntCol	INT)
GO
CREATE	RULE	STinyInt_Rule
AS	
@range	>=	-128	AND	@range	<=	127
GO
CREATE	RULE	USmallInt_Rule
AS	
@range	>=	0	AND	@range	<=	65535
GO
sp_bindrule	STinyInt_Rule,	'Sample_Ints.STinyIntCol'
GO
sp_bindrule	USmallInt_Rule,	'Sample_Ints.USmallIntCol'
GO



SQL	Server	does	not	support	interval	data	types	directly.	An	application	can,
however,	store	interval	escape	sequences	as	character	strings	in	a	SQL	Server
character	column.	The	application	can	read	them	for	later	use,	but	they	cannot	be
used	in	Transact-SQL	statements.

The	bulk	copy	functions	can	be	used	to	quickly	load	data	into	SQL	Server	that
has	been	read	from	an	ODBC	data	source.	Use	SQLBindCol	to	bind	the
columns	of	a	result	set	to	program	variables,	then	use	bcp_bind	to	bind	the	same
program	variables	to	a	bulk	copy	operation.	Calling	SQLFetchScroll	or
SQLFetch	then	fetches	a	row	of	data	from	the	ODBC	data	source	into	the
program	variables,	and	calling	bcp_sendrow	bulk	copies	the	data	from	the
program	variables	to	SQL	Server.

An	application	can	use	the	bcp_colptr	function	anytime	it	needs	to	change	the
address	of	the	data	variable	originally	specified	in	the	bcp_bind	pData
parameter.	An	application	can	use	the	bcp_collen	function	anytime	it	needs	to
change	the	data	length	originally	specified	in	the	bcp_bind	cbData	parameter.

You	cannot	read	data	from	SQL	Server	into	program	variables	using	bulk	copy;
there	is	nothing	like	a	"bcp_readrow"	function.	You	can	only	send	data	from	the
application	to	the	server.

To	bulk	copy	data	from	program	variables



ODBC	and	SQL	Server



Managing	Bulk	Copy	Batch	Sizes
The	primary	purpose	of	a	batch	in	bulk	copy	operations	is	to	define	the	scope	of
a	transaction.	If	a	batch	size	is	not	set,	then	bulk	copy	functions	consider	an
entire	bulk	copy	to	be	one	transaction.	If	a	batch	size	is	set,	then	each	batch
constitutes	a	transaction	that	is	committed	when	the	batch	finishes.

If	a	bulk	copy	is	performed	with	no	batch	size	specified	and	an	error	is
encountered,	the	entire	bulk	copy	is	rolled	back.	The	recovery	of	a	long-running
bulk	copy	can	take	a	long	time.	When	a	batch	size	is	set,	bulk	copy	considers
each	batch	a	transaction	and	commits	each	batch.	If	an	error	is	encountered,	only
the	last	outstanding	batch	needs	to	be	rolled	back.

The	batch	size	can	also	affect	locking	overhead.	When	performing	a	bulk	copy
against	Microsoft®	SQL	Server™,	the	TABLOCK	hint	can	be	specified	using
bcp_control	to	acquire	a	table	lock	instead	of	row	locks.	The	single	table	lock
can	be	held	with	minimal	overhead	for	an	entire	bulk	copy	operation.	If
TABLOCK	is	not	specified	then	locks	are	held	on	individual	rows	and	the
overhead	of	maintaining	all	the	locks	for	the	duration	of	the	bulk	copy	can	slow
performance.	Because	locks	are	only	held	for	the	length	of	a	transaction,
specifying	a	batch	size	addresses	this	problem	by	periodically	generating	a
commit	that	frees	the	locks	currently	held.

The	number	of	rows	making	up	a	batch	can	have	significant	performance	effects
when	bulk	copying	a	large	number	of	rows.	The	recommendations	for	batch	size
depend	on	the	type	of	bulk	copy	being	performed.

When	bulk	copying	to	SQL	Server,	specify	the	TABLOCK	bulk	copy
hint	and	set	a	large	batch	size.

When	TABLOCK	is	not	specified,	limit	batch	sizes	to	less	than	1,000
rows.

When	bulk	copying	in	from	a	data	file,	the	batch	size	is	specified	by	calling
bcp_control	with	the	BCPBATCH	option	before	calling	bcp_exec.	When	bulk
copying	from	program	variables	using	bcp_bind	and	bcp_sendrow,	the	batch
size	is	controlled	by	calling	bcp_batch	after	calling	bcp_sendrow	x	times,



where	x	is	the	number	of	rows	in	a	batch.

In	addition	to	specifying	the	size	of	a	transaction,	batches	also	affect	when	rows
are	sent	across	the	network	to	the	server.	Bulk	copy	functions	normally	cache	the
rows	from	bcp_sendrow	until	a	network	packet	is	filled,	and	then	send	the	full
packet	to	the	server.	When	an	application	calls	bcp_batch,	however,	the	current
packet	is	sent	to	the	server	regardless	of	whether	it	has	been	filled.	Using	a	very
low	batch	size	can	slow	performance	if	it	results	in	sending	many	partially	filled
packets	to	the	server.	For	example,	calling	bcp_batch	after	every	bcp_sendrow
causes	each	row	to	be	sent	in	a	separate	packet	and,	unless	the	rows	are	very
large,	wastes	space	in	each	packet.	The	default	size	of	network	packets	for	SQL
Server	is	4	KB,	although	an	application	can	change	the	size	by	calling
SQLSetConnectAttr	specifying	the	SQL_ATTR_PACKET_SIZE	attribute.

Another	side	effect	of	batches	is	that	each	batch	is	considered	an	outstanding
result	set	until	it	is	completed	with	bcp_batch.	If	any	other	operations	are
attempted	on	a	connection	handle	while	a	batch	is	outstanding,	the	SQL	Server
ODBC	driver	issues	an	error	with	SQLState	=	"HY000"	and	an	error	message
string	of:

"[Microsoft][ODBC	SQL	Server	Driver]	Connection	is	busy	with
results	for	another	hstmt."

See	Also

bcp_batch

bcp_control

SQLSetConnectAttr

Batch	Switches

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



Bulk	Copying	text	and	image	Data
Large	text,	ntext,	and	image	values	are	bulk	copied	using	the	bcp_moretext
function.	You	code	bcp_bind	for	the	text,	ntext,	or	image	column	with	a	pData
pointer	set	to	NULL	indicating	the	data	will	be	provided	with	bcp_moretext.	It
is	important	to	specify	the	exact	length	of	data	supplied	for	each	text,	ntext,	or
image	column	in	each	bulk-copied	row.	If	the	length	of	the	data	for	a	column	is
different	from	the	column	length	specified	in	bcp_bind,	use	bcp_collen	to	set
the	length	to	the	proper	value.	A	bcp_sendrow	sends	all	the	non-text,	non-ntext,
and	non-image	data;	you	then	call	bcp_moretext	to	send	the	text,	ntext,	or
image	data	in	separate	units.	Bulk	copy	functions	determine	that	all	data	has
been	sent	for	the	current	text,	ntext,	or	image	column	when	the	sum	of	the
lengths	of	data	sent	through	bcp_moretext	equals	the	length	specified	in	the
latest	bcp_collen	or	bcp_bind.

bcp_moretext	has	no	parameter	to	identify	a	column.	When	there	are	multiple
text,	ntext,	or	image	columns	in	a	row,	bcp_moretext	operates	on	the	text,
ntext,	or	image	columns	starting	with	the	column	having	the	lowest	ordinal
number	and	proceeding	to	the	column	with	the	highest	ordinal	number.
bcp_moretext	goes	from	one	column	to	the	next	when	the	sum	of	the	lengths	of
data	sent	equals	the	length	specified	in	the	latest	bcp_collen	or	bcp_bind	for	the
current	column.

See	Also

bcp_bind

bcp_collen

bcp_moretext

bcp_sendrow



ODBC	and	SQL	Server



Converting	from	DB-Library	to	ODBC	Bulk	Copy
Converting	a	DB-Library	bulk	copy	program	to	ODBC	is	easy	because	the	bulk
copy	functions	supported	by	the	Microsoft®	SQL	Server™	ODBC	driver	are
similar	to	the	DB-Library	bulk	copy	functions,	with	the	following	exceptions:

DB-Library	applications	pass	a	pointer	to	a	DBPROCESS	structure	as
the	first	parameter	of	bulk	copy	functions.	In	ODBC	applications,	the
DBPROCESS	pointer	is	replaced	with	an	ODBC	connection	handle.

DB-Library	applications	call	BCP_SETL	before	connecting	to	enable
bulk	copy	operations	on	a	DBPROCESS.	ODBC	applications	instead
call	SQLSetConnectAttr	before	connecting	to	enable	bulk	operations
on	a	connection	handle:
SQLSetConnectAttr(hdbc,	SQL_COPT_SS_BCP,
				(void	*)SQL_BCP_ON,	SQL_IS_INTEGER);

The	SQL	Server	ODBC	driver	does	not	support	DB-Library	message
and	error	handlers;	you	must	call	SQLGetDiagRec	to	get	errors	and
messages	raised	by	the	ODBC	bulk	copy	functions.	The	ODBC
versions	of	bulk	copy	functions	return	the	standard	bulk	copy	return
codes	of	SUCCEED	or	FAILED,	not	ODBC-style	return	codes,	such	as
SQL_SUCCESS	or	SQL_ERROR.

The	values	specified	for	the	DB-Library	bcp_bind	varlen	parameter	are
interpreted	differently	than	the	ODBC	bcp_bind	cbData	parameter.

Condition
indicated

DB-Library	varlen
value ODBC	cbData	value

Null	values
supplied

0 -1	(SQL_NULL_DATA)

Variable	data
supplied

-1 -10
(SQL_VARLEN_DATA)

Zero	length NA 0



character	or	binary
string

In	DB-Library,	a	varlen	value	of	-1	indicates	that	variable	length	data	is
being	supplied,	which	in	the	ODBC	cbData	is	interpreted	to	mean	that
only	NULL	values	are	being	supplied.	Change	any	DB-Library	varlen
specifications	of	-1	to	SQL_VARLEN_DATA	and	any	varlen
specifications	of	0	to	SQL_NULL_DATA.

The	DB-Library	bcp_colfmt	file_collen	and	the	ODBC	bcp_colfmt
cbUserData	have	the	same	issue	as	the	bcp_bind	varlen	and	cbData
parameters	noted	above.	Change	any	DB-Library	file_collen
specifications	of	-1	to	SQL_VARLEN_DATA	and	any	file_collen
specifications	of	0	to	SQL_NULL_DATA.

The	iValue	parameter	of	the	ODBC	bcp_control	function	is	a	void
pointer.	In	DB-Library,	iValue	was	an	integer.	Cast	the	values	for	the
ODBC	iValue	to	void	*.

The	bcp_control	option	BCPMAXERRS	specifies	how	many
individual	rows	can	have	errors	before	a	bulk	copy	operation	fails.	The
default	for	BCPMAXERRS	is	0	(fail	on	first	error)	in	the	DB-Library
version	of	bcp_control	and	10	in	the	ODBC	version.	DB-Library
applications	that	depend	on	the	default	of	0	to	terminate	a	bulk	copy
operation	must	be	changed	to	call	the	ODBC	bcp_control	to	set
BCPMAXERRS	to	0.

The	ODBC	bcp_control	function	supports	the	following	options	not
supported	by	the	DB-Library	version	of	bcp_control:

BCPODBC

When	set	to	TRUE,	specifies	that	datetime	and	smalldatetime
values	saved	in	character	format	will	have	the	ODBC
timestamp	escape	sequence	prefix	and	suffix.	This	only	applies
to	BCP_OUT	operations.



With	BCPODBC	set	to	FALSE,	a	datetime	value	converted	to
a	character	string	is	output	as:

1997-01-01	00:00:00.000

With	BCPODBC	set	to	TRUE,	the	same	datetime	value	is
output	as:

{ts	'1997-01-01	00:00:00.000'	}

BCP6xFILEFMT

When	set	to	TRUE,	specifies	that	program	variables	bound	to
columns	in	native	format,	or	columns	stored	in	an	operating-
system	file	in	either	native	or	character	format	use	the	SQL
Server	version	6x	format	instead	of	the	SQL	Server	7.0	format.
Columns	bound	in	native	format	include	columns	for	which
bcp_bind	was	called	with	type	set	to	0	and	varlen	set	to
SQL_VARLEN_DATA.	Columns	stored	in	native	format	in	a
data	file	include	columns	for	which	bcp_colfmt	was	called
with	file_type	set	to	0	and	file_collen	set	to
SQL_VARLEN_DATA.

BCPKEEPIDENTITY

When	set	to	TRUE,	specifies	that	bulk	copy	functions	insert
data	values	supplied	for	columns	with	identity	constraints.	If
this	is	not	set,	new	identity	values	are	generated	for	the	inserted
rows.

BCPHINTS

Specifies	various	bulk	copy	optimizations.	This	option	cannot
be	used	on	6.5	or	earlier	versions	of	SQL	Server.

BCPFILECP

Specifies	the	code	page	of	the	bulk	copy	file.

BCPUNICODEFILE

Specifies	that	a	character	mode	bulk	copy	file	is	a	Unicode	file.



The	ODBC	bcp_colfmt	function	does	not	support	the	file_type
indicator	of	SQLCHAR	because	it	conflicts	with	the	ODBC	SQLCHAR
typedef.	Use	SQLCHARACTER	instead	for	bcp_colfmt.

In	the	ODBC	versions	of	bulk	copy	functions,	the	format	for	working
with	datetime	and	smalldatetime	values	in	character	strings	is	the
ODBC	format	of	yyyy-mm-dd	hh:mm:ss.sss;	smalldatetime	values	use
the	ODBC	format	of	yyyy-mm-dd	hh:mm:ss.

The	DB-Library	versions	of	the	bulk	copy	functions	accept	datetime
and	smalldatetime	values	in	character	strings	using	several	formats:

The	default	format	is	mmm	dd	yyyy	hh:mmxx	where	xx	is	either
AM	or	PM.

datetime	and	smalldatetime	character	strings	in	any	format
supported	by	the	DB-Library	dbconvert	function.

When	the	Use	international	settings	box	is	checked	on	the
DB-Library	Options	tab	of	the	SQL	Server	Client	Network
Utility,	the	DB-Library	bulk	copy	functions	also	accept	dates	in
the	regional	date	format	defined	for	the	locale	setting	of	the
client	computer	registry.

The	DB-Library	bulk	copy	functions	do	not	accept	the	ODBC	datetime
and	smalldatetime	formats.

The	ODBC	bulk	copy	functions	will	accept	the	same	datetime	formats
as	the	DB-Library	versions	of	the	bulk	copy	functions	when
BCP6xFILEFMT	is	specified.	If	the	SQL_SOPT_SS_REGIONALIZE
statement	attribute	is	set	to	SQL_RE_ON,	the	ODBC	bulk	copy
functions	will	accept	dates	in	the	regional	date	format	defined	for	the
locale	setting	of	the	client	computer	registry.

When	outputting	money	values	in	character	format,	ODBC	bulk	copy
functions	supply	4	digits	of	precision	and	no	comma	separators;	DB-
Library	versions	only	supply	2	digits	of	precision	and	include	the
comma	separators.



See	Also

bcp_colfmt

bcp_control

Bulk-Copy	Functions

SQLSetConnectAttr

Using	Format	Files

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



Managing	text	and	image	Columns
Microsoft®	SQL	Server™	text,	ntext,	and	image	data	(also	referred	to	as	long
data)	are	character	or	binary	string	data	types	that	can	hold	data	values	too	large
to	fit	into	char,	varchar,	binary,	or	varbinary	columns.	The	SQL	Server	text
data	type	maps	to	the	ODBC	SQL_LONGVARCHAR	data	type;	ntext	maps	to
SQL_WLONGVARCHAR;	and	image	maps	to	SQL_LONGVARBINARY.
Some	data	items,	such	as	long	documents	or	large	bitmaps,	may	be	too	large	to
store	reasonably	in	memory.	To	retrieve	long	data	from	SQL	Server	in	sequential
parts,	the	SQL	Server	ODBC	driver	enables	an	application	to	call	SQLGetData.
To	send	long	data	in	sequential	parts,	the	application	can	call	SQLPutData.
Parameters	for	which	data	is	sent	at	execution	time	are	known	as	data-at-
execution	parameters.

An	application	can	actually	write	or	retrieve	any	type	of	data	(not	just	long	data)
with	SQLPutData	or	SQLGetData,	although	only	character	and	binary	data
can	be	sent	or	retrieved	in	parts.	However,	if	the	data	is	small	enough	to	fit	in	a
single	buffer,	there	is	generally	no	reason	to	use	SQLPutData	or	SQLGetData.
It	is	much	easier	to	bind	the	single	buffer	to	the	parameter	or	column.

To	use	data-at-execution	parameters



ODBC	and	SQL	Server



Bound	vs.	Unbound	text	and	image	Columns
When	using	server	cursors,	the	Microsoft®	SQL	Server™	ODBC	driver	is
optimized	to	not	transmit	the	data	for	unbound	text,	ntext,	or	image	columns	at
the	time	SQLFetch	is	performed.	The	text,	ntext,	or	image	data	is	not	actually
retrieved	from	the	server	until	the	application	issues	SQLGetData	for	the
column.

Many	applications	can	be	written	so	that	no	text,	ntext,	or	image	data	is
displayed	while	a	user	is	simply	scrolling	up	and	down	in	a	cursor.	When	a	user
selects	a	row	to	get	more	detail,	the	application	can	then	call	SQLGetData	to
retrieve	the	text,	ntext,	or	image	data.	This	will	prevent	transmitting	the	text,
ntext,	or	image	data	for	any	of	the	rows	the	user	does	not	select,	and	can
therefore	prevent	the	transmission	of	very	large	amounts	of	data.

To	use	data-at-execution	parameters



ODBC	and	SQL	Server



Logged	vs.	Unlogged	Modifications
An	application	can	request	that	the	Microsoft®	SQL	Server™	ODBC	driver	not
log	text,	ntext,	and	image	modifications.	Care	should	be	used	with	this	option,
however.	It	should	be	used	only	for	those	situations	where	the	text,	ntext,	or
image	data	is	not	critical	and	data	owners	are	willing	to	trade	off	the	ability	to
recover	data	for	higher	performance.

The	logging	of	text,	ntext,	and	image	modifications	is	controlled	by	calling
SQLSetStmtAttr	with	the	Attribute	parameter	set	to	SQL_SOPT_SS_
TEXTPTR_LOGGING	and	ValuePtr	set	to	either	SQL_TL_ON	or
SQL_TL_OFF.

See	Also

SQLSetStmtAttr



ODBC	and	SQL	Server



Data-at-execution	and	text,	ntext,	or	image	Columns
ODBC	data-at-execution	is	a	feature	that	enables	applications	to	work	with
extremely	large	amounts	of	data	on	bound	columns	or	parameters.	When
retrieving	very	large	text,	ntext,	or	image	columns,	an	application	may	not	be
able	to	simply	allocate	a	huge	buffer,	bind	the	column	into	the	buffer,	and	fetch
the	row.	When	updating	very	large	text,	ntext,	or	image	columns,	the
application	may	not	be	able	to	simply	allocate	a	huge	buffer,	bind	it	to	a
parameter	marker	in	an	SQL	statement,	and	then	execute	the	statement.	In	these
cases,	the	application	must	use	SQLGetData	or	SQLPutData	with	its	data-at-
execution	options.

To	use	data-at-execution	parameters



ODBC	and	SQL	Server



Connecting	to	a	Failover	Server
The	Microsoft®	SQL	Server™	ODBC	driver	supports	a	failover	configuration
using	the	driver-specific	SQL_FALLBACK_CONNECT	connection	option	for
SQLSetConnectAttr	and	SQLGetConnectAttr.	If	the	server	you	are
connecting	to	has	a	failover	server,	the	driver	can	connect	to	the	failover	server	if
the	primary	server	is	unavailable.

ODBC	applications	can	take	advantage	of	SQL	Server's	failover	feature	by
calling	SQLSetConnectAttr	with	SQL_FALLBACK_CONNECT	enabled
before	connecting.	When	the	driver	connects	to	the	primary	server,	it	retrieves	all
the	information	it	needs	to	connect	to	the	failover	server	and	stores	the
information	in	the	client	registry.	If	the	application	then	loses	its	connection	to
the	primary	server,	it	completes	its	current	transaction	and	attempts	to	reconnect
to	the	primary	server.	If	unsuccessful,	it	uses	the	registry	information	to	attempt
to	connect	to	the	failover	server.

See	Also

SQLGetConnectAttr

SQLSetConnectAttr



ODBC	and	SQL	Server



Profiling	ODBC	Driver	Performance
The	Microsoft®	SQL	Server™	ODBC	driver	can	profile	two	types	of
performance	data:

Long-running	queries.

The	driver	can	write	to	a	log	file	any	query	that	does	not	get	a	response
from	the	server	within	a	specified	amount	of	time.	Application
programmers	or	database	administrators	can	then	research	each	logged
SQL	statement	to	determine	how	they	can	improve	its	performance.

Driver-performance	data.

The	driver	can	record	performance	statistics	and	either	write	them	to	a
file	or	make	them	available	to	an	application	through	a	driver-specific
data	structure	named	SQLPERF.	The	file	containing	the	performance
statistics	is	a	tab-delimited	file	that	can	be	easily	analyzed	with	any
spreadsheet	that	supports	tab-delimited	files,	such	as	Microsoft	Excel.

Either	type	of	profiling	can	be	turned	on	by:

Connecting	to	a	data	source	that	specifies	logging.

Calling	SQLSetConnectAttr	to	set	driver-specific	attributes	that
control	profiling.

Each	application	process	gets	its	own	copy	of	the	SQL	Server	ODBC	driver,	and
profiling	is	global	to	the	combination	of	a	driver	copy	and	an	application
process.	When	anything	in	the	application	turns	on	profiling,	profiling	records
information	for	all	connections	active	in	the	driver	from	that	application.	Even
connections	that	did	not	specifically	call	for	profiling	are	included.

After	the	driver	has	opened	a	profiling	log	(either	the	performance	data	or	long-
running	query	log),	it	does	not	close	the	log	until	the	driver	is	unloaded	by	the
ODBC	Driver	Manager,	when	an	application	frees	all	the	environment	handles	it
opened	in	the	driver.	If	the	application	opens	a	new	environment	handle,	a	new
copy	of	the	driver	is	loaded.	If	the	application	then	either	connects	to	a	data



source	that	specifies	the	same	log	file	or	sets	the	driver-specific	attributes	to	log
to	the	same	file,	the	driver	overwrites	the	old	log.

If	an	application	starts	profiling	to	a	log	file	and	a	second	application	attempts	to
start	profiling	to	the	same	log	file,	the	second	application	is	not	able	to	log	any
profiling	data.	If	the	second	application	starts	profiling	after	the	first	application
has	unloaded	its	driver,	the	second	application	overwrites	the	log	file	from	the
first	application.

If	an	application	connects	to	a	data	source	that	has	profiling	enabled,	the	driver
returns	SQL_ERROR	if	the	application	calls	SQLSetConnectOption	to	start
logging.	A	call	to	SQLGetDiagRec	then	returns:

SQLState:	01000,	pfNative	=	0
ErrorMsg:	[Microsoft][ODBC	SQL	Server	Driver]
								An	error	has	occurred	during	the	attempt	to	access
								the	log	file,	logging	disabled.

The	driver	stops	gathering	performance	data	when	an	environment	handle	is
closed.	If	an	ODBC	3.x	application	has	multiple	connections,	each	with	its	own
environment	handle,	then	the	driver	will	stop	gathering	performance	data	when
any	of	the	associated	environment	handles	are	closed.

The	driver's	performance	data	can	either	be	stored	in	the	SQLPERF	data
structure	or	logged	in	a	tab-delimited	file.	The	data	includes	the	following
categories	of	statistics:

Application	profile

Connection

Network

Time

In	the	following	table,	the	descriptions	of	the	fields	in	the	SQLPERF	data
structure	also	apply	to	the	statistics	recorded	in	the	performance	log	file.



SQLPERF	Field Description
Application	Profile	Statistics:
TimerResolution Minimum	resolution	of	the	server's	clock	time	in

milliseconds.	This	is	usually	reported	as	0	(zero)
and	should	only	be	considered	if	the	number
reported	is	large.	If	the	minimum	resolution	of
the	server	clock	is	larger	than	the	likely	interval
for	some	of	the	timer-based	statistics,	those
statistics	could	be	inflated.

SQLidu Number	of	INSERT,	DELETE,	or	UPDATE
statements	after	SQL_PERF_START.

SQLiduRows Number	of	INSERT,	DELETE,	or	UPDATE
statements	after	SQL_PERF_START.

SQLSelects Number	of	SELECT	statements	processed	after
SQL_PERF_START.

SQLSelectRows Number	of	rows	selected	after
SQL_PERF_START.

Transactions Number	of	user	transactions	after
SQL_PERF_START,	including	rollbacks.	When
an	ODBC	application	is	running	with
SQL_AUTOCOMMIT_ON,	each	command	is
considered	a	transaction.

SQLPrepares Number	of	SQLPrepare	calls	after
SQL_PERF_START.

ExecDirects Number	of	SQLExecDirect	calls	after
SQL_PERF_START.

SQLExecutes Number	of	SQLExecute	calls	after
SQL_PERF_START.

CursorOpens Number	of	times	the	driver	has	opened	a	server
cursor	after	SQL_PERF_START.

CursorSize Number	of	rows	in	the	result	sets	opened	by
cursors	after	SQL_PERF_START.

CursorUsed Number	of	rows	actually	retrieved	through	the
driver	from	cursors	after	SQL_PERF_START.

PercentCursorUsed Equals	CursorUsed/CursorSize.	For	example,	if



an	application	causes	the	driver	to	open	a	server
cursor	to	do	"SELECT	COUNT(*)	FROM
authors,"	23	rows	will	be	in	the	result	set	for	the
SELECT	statement.	If	the	application	then
fetches	only	three	of	these	rows,
CursorUsed/CursorSize	is	3/23,	so
PercentCursorUsed	is	13.043478.

AvgFetchTime Equals	SQLFetchTime/SQLFetchCount.
AvgCursorSize Equals	CursorSize/CursorOpens.
AvgCursorUsed Equals	CursorUsed/CursorOpens.
SQLFetchTime Cumulative	amount	of	time	it	took	fetches	against

server	cursors	to	complete.
SQLFetchCount Number	of	fetches	done	against	server	cursors

after	SQL_PERF_START.
CurrentStmtCount Number	of	statement	handles	currently	open	on

all	connections	open	in	the	driver.
MaxOpenStmt Maximum	number	of	concurrently	opened

statement	handles	after	SQL_PERF_START.
SumOpenStmt Number	of	statement	handles	that	have	been

opened	after	SQL_PERF_START.
Connection	Statistics:
CurrentConnectionCount Current	number	of	active	connection	handles	the

application	has	open	to	the	server.
MaxConnectionsOpened Maximum	number	of	concurrent	connection

handles	opened	after	SQL_PERF_START.
SumConnectionsOpened Sum	of	the	number	of	connection	handles	that

have	been	opened	after	SQL_PERF_START.
SumConnectionTime Sum	of	the	amount	of	time	that	all	of	the

connections	have	been	opened	after
SQL_PERF_START.	For	example,	if	an
application	opened	10	connections	and
maintained	each	connection	for	5	seconds,	then
SumConnectionTime	would	be	50	seconds.

AvgTimeOpened Equals	SumConnectionsOpened/
SumConnectionTime.



Network	Statistics:
ServerRndTrips The	number	of	times	the	driver	sent	commands	to

the	server	and	got	a	reply	back.

BuffersSent Number	of	Tabular	Data	Stream	(TDS)	packets
sent	to	SQL	Server	by	the	driver	after
SQL_PERF_START.	Large	commands	can	take
multiple	buffers,	so	if	a	large	command	is	sent	to
the	server	and	it	fills	six	packets,	ServerRndTrips
is	incremented	by	one	and	BuffersSent	is
incremented	by	six.

BuffersRec Number	of	TDS	packets	received	by	the	driver
from	SQL	Server	after	the	application	started
using	the	driver.

BytesSent Number	of	bytes	of	data	sent	to	SQL	Server	in
TDS	packets	after	the	application	started	using
the	driver.

BytesRec Number	of	bytes	of	data	in	TDS	packets	received
by	the	driver	from	SQL	Server	after	the
application	started	using	the	driver.

Time	Statistics:
msExecutionTime Cumulative	amount	of	time	the	driver	spent

processing	after	SQL_PERF_START,	including
the	time	spent	waiting	for	replies	from	the	server.

msNetworkServerTime Cumulative	amount	of	time	the	driver	spent
waiting	for	replies	from	the	server.

To	profile	driver	performance	data



ODBC	and	SQL	Server



SQL	Server	ODBC	Driver	Programmer's	Reference
Open	Database	Connectivity	(ODBC)	is	a	Microsoft®	Win32®	API	used	by
applications	to	access	data	in	ODBC	data	sources.

The	SQL	Server	ODBC	Driver	Programmer's	Reference	does	not	document	all
of	the	ODBC	function	calls.	Only	those	functions	that	have	driver-specific
parameters	or	behaviors	when	used	with	the	Microsoft®	SQL	Server™	ODBC
driver	are	discussed.	The	functions	documented	in	the	SQL	Server	ODBC	Driver
Programmer's	Reference	use	ODBC	3.5.

For	a	full	description	of	the	ODBC	API,	see	the	Microsoft	ODBC	Software
Development	Kit	(SDK).	The	ODBC	SDK	is	part	of	the	Microsoft	Developer
Network	(MSDN®).	The	ODBC	SDK	can	also	be	downloaded	from	the
Microsoft	Web	site,	and	is	available	in	the	Microsoft	ODBC	3.0	Software
Development	Kit	and	Programmer's	Reference	available	from	Microsoft	Press®.

http://www.Microsoft.com/isapi/redir.dll?Prd=uda&Ar=home


ODBC	and	SQL	Server



ODBC	API	Implementation	Details
This	section	documents	the	ODBC	functions	that	exhibit	SQL	Server-specific
behaviors	when	used	with	the	Microsoft®	SQL	Server™	ODBC	driver.	Not	all
ODBC	functions	are	documented	here.	The	individual	topics	only	discuss	the
SQL	Server-specific	issues	for	an	ODBC	function.	They	are	not	a	complete
reference	for	the	ODBC	function.

The	SQL	Server	2000	ODBC	driver	complies	with	the	ODBC	3.51	specification.
For	a	comprehensive	reference	of	ODBC	3.51,	download	the	Microsoft	Data
Access	SDK	from	the	Microsoft	Web	site.	The	ODBC	3.0	Software	Development
Kit	and	Programmer's	Reference	is	also	available	from	Microsoft	Press®.

http://www.Microsoft.com/isapi/redir.dll?Prd=uda&Ar=home


ODBC	and	SQL	Server



SQLBindCol
As	a	general	rule,	consider	the	implications	of	using	SQLBindCol	to	cause	data
conversion.	Binding	conversions	are	client	processes,	so,	for	example,	retrieving
a	floating-point	value	bound	to	a	character	column	causes	the	driver	to	perform
the	float-to-character	conversion	locally	when	a	row	is	fetched.	The	Transact-
SQL	CONVERT	function	can	be	used	to	place	the	cost	of	data	conversion	on	the
server.

An	instance	of	Microsoft®	SQL	Server™	can	return	multiple	sets	of	result	rows
on	a	single	statement	execution.	Each	result	set	must	be	bound	separately.	For
more	information	about	binding	for	multiple	result	sets,	see	SQLMoreResults.

The	developer	can	bind	columns	to	SQL	Server-specific	C	data	types	using	the
TargetType	value	SQL_C_BINARY.	Columns	bound	to	SQL	Server-specific
types	are	not	portable.	The	defined	SQL	Server-specific	ODBC	C	data	types
match	the	type	definitions	for	DB-Library,	and	DB-Library	developers	porting
applications	may	want	to	take	advantage	of	this	feature.

Reporting	data	truncation	is	an	expensive	process	for	the	SQL	Server	ODBC
driver.	You	can	avoid	truncation	by	ensuring	that	all	bound	data	buffers	are	wide
enough	to	return	data.	For	character	data,	the	width	should	include	space	for	a
string	terminator	when	the	default	driver	behavior	for	string	termination	is	used.
For	example,	binding	an	SQL	Server	char(5)	column	to	an	array	of	five
characters	results	in	truncation	for	every	value	fetched.	Binding	the	same	column
to	an	array	of	six	characters	avoids	the	truncation	by	providing	a	character
element	in	which	to	store	the	null	terminator.	SQLGetData	can	be	used	to
efficiently	retrieve	long	character	and	binary	data	without	truncation.

See	Also

SQLGetData



ODBC	and	SQL	Server



SQLBindParameter
SQLBindParameter	can	eliminate	the	burden	of	data	conversion	when	used	to
provide	data	for	the	Microsoft®	SQL	Server™	ODBC	driver,	resulting	in
significant	performance	gains	for	both	the	client	and	server	components	of
applications.	Other	benefits	include	reduced	loss	of	precision	when	inserting	or
updating	approximate	numeric	data	types.

If	the	SQL	Server	ODBC	driver	encounters	an	error	on	a	single	array	element	of
an	array	of	parameters,	the	driver	continues	to	execute	the	statement	for	the
remaining	array	elements.	If	the	application	has	bound	an	array	of	parameter
status	elements	for	the	statement,	the	row(s)	of	parameters	generating	errors	can
be	determined	from	the	array.

When	using	the	SQL	Server	ODBC	driver	version	3.7	or	later,	specify
SQL_PARAM_INPUT	when	binding	input	parameters.	Only	specify
SQL_PARAM_OUTPUT	or	SQL_PARAM_INPUT_OUTPUT	when	binding
stored	procedure	parameters	defined	with	the	OUTPUT	keyword.

SQLRowCount	is	unreliable	with	the	SQL	Server	ODBC	driver	if	an	array
element	of	a	bound-parameter	array	causes	an	error	in	statement	execution.	The
ODBC	statement	attribute	SQL_ATTR_PARAMS_PROCESSED_PTR	will
report	the	number	of	rows	processed	prior	to	the	error	occurring.	The	application
can	then	traverse	its	parameter	status	array	to	discover	the	number	of	statements
successfully	executed,	if	necessary.



ODBC	and	SQL	Server



SQLBrowseConnect
SQLBrowseConnect	uses	keywords	that	can	be	categorized	into	three	levels	of
connection	information.	For	each	keyword,	the	following	table	indicates	whether
a	list	of	valid	values	is	returned	and	whether	the	keyword	is	optional.

Level	1

Keyword
List
returned? Optional? Description

DSN N/A No Name	of	the	data	source	returned	by
SQLDataSources.	The	DSN	keyword
cannot	be	used	if	the	DRIVER
keyword	is	used.

DRIVER N/A No Microsoft®	SQL	Server™	ODBC
driver	name	is	{SQL	Server}	or	SQL
Server	(braces	are	required	when	using
driver	version	2.65	or	earlier).	The
DRIVER	keyword	cannot	be	used	if
the	DSN	keyword	is	used.

Level	2

Keyword
List
returned? Optional? Description

SERVER Yes No Name	of	the	server	on	the	network	on
which	the	data	source	resides.	When
running	on	Microsoft	Windows	NT®
4.0,	"(local)"	can	be	entered	as	the
server,	in	which	case	a	local	copy	of
SQL	Server	can	be	used,	even	when
this	is	a	nonnetworked	version.

UID No Yes User	login	ID.
PWD No Yes

(depends	on
User-specified	password.



the	user)
APP No Yes Name	of	the	application	calling

SQLBrowseConnect.
WSID No Yes Workstation	ID.	Typically,	this	is	the

network	name	of	the	computer	on
which	the	application	runs.

Level	3

Keyword
List
returned? Optional? Description

DATABASE Yes Yes Name	of	the	SQL	Server	database.
LANGUAGEYes Yes National	language	used	by	SQL

Server.

SQLBrowseConnect	ignores	the	values	of	the	DATABASE	and	LANGUAGE
keywords	stored	in	the	ODBC	data	source	definitions.	If	the	database	or
language	specified	in	the	connection	string	passed	to	SQLBrowseConnect	is
invalid,	SQLBrowseConnect	returns	SQL_NEED_DATA	and	the	level	3
connection	attributes.

SQLBrowseConnect	does	not	verify	user	access	to	all	the	databases	listed	with
the	DATABASE	keyword	when	connected	to	SQL	Server	version	6.5	or	earlier
servers.	If	the	user	does	not	have	access	to	the	chosen	database,
SQLBrowseConnect	returns	SQL_NEED_DATA	and	the	level	3	connection
attributes.

The	following	attributes,	set	by	calling	SQLSetConnectAttr,	determine	the
result	set	returned	by	SQLBrowseConnect.

SQL_COPT_SS_BROWSE_CONNECT:	If	it	is	set	to	SQL_MORE_INFO_NO,
in	SQL	Server	version	6.5	and	later,	SQLBrowseConnect	returns	a	list	of
servers.	If	it	is	set	to	SQL_MORE_INFO_YES,	in	SQL	Server	version	6.5	and
7.0,	SQLBrowseConnect	returns	a	list	of	servers.	In	SQL	Server	2000,
SQLBrowseConnect	returns	an	extended	string	of	server	properties.



This	is	an	example	of	an	extended	string	returned	by	SQLBrowseConnect	in
SQL	Server	2000:

ServerName\InstanceName;Clustered:No;Version:8.00.131

In	this	string,	semi-colons	separate	various	parts	of	information	about	the	server,
and	commas	separate	different	server	instances.

SQL_COPT_SS_BROWSE_SERVER:	If	a	server	name	is	specified,
SQLBrowseConnect	will	return	information	for	the	server	specified.	If
SQL_COPT_SS_BROWSE_SERVER	is	set	to	NULL,	SQLBrowseConnect
returns	information	for	all	servers	in	the	domain.



ODBC	and	SQL	Server



SQLCloseCursor
SQLCloseCursor	replaces	SQLFreeStmt	with	an	Option	value	of
SQL_CLOSE.	On	receipt	of	SQLCloseCursor,	the	Microsoft®	SQL	Server™
ODBC	driver	discards	pending	result	set	rows.	Note	that	the	statement's	column
and	parameter	bindings	(if	any	exist)	are	left	unaltered	by	SQLCloseCursor.



ODBC	and	SQL	Server



SQLColAttribute
You	can	use	SQLColAttribute	to	retrieve	an	attribute	of	a	result	set	column	for
either	prepared	or	executed	ODBC	statements.	Calling	SQLColAttribute	on
prepared	statements	causes	a	roundtrip	to	the	Microsoft®	SQL	Server™.	The
SQL	Server	ODBC	driver	receives	result	set	column	data	as	part	of	statement
execution,	so	calling	SQLColAttribute	after	the	completion	of	SQLExecute	or
SQLExecDirect	does	not	involve	a	server	roundtrip.

ODBC	column	identifier	attributes	are	not	available	on	all	SQL	Server	result
sets.

FieldIdentifier	value Description
SQL_COLUMN_TABLE_NAME Available	on	result	sets	retrieved

from	statements	that	generate
server	cursors	or	on	executed
SELECT	statements	containing	a
FOR	BROWSE	clause.

SQL_DESC_BASE_COLUMN_NAMEAvailable	on	result	sets	retrieved
from	statements	that	generate
server	cursors	or	on	executed
SELECT	statements	containing	a
FOR	BROWSE	clause.

SQL_DESC_BASE_TABLE_NAME Available	on	result	sets	retrieved
from	statements	that	generate
server	cursors	or	on	executed
SELECT	statements	containing	a
FOR	BROWSE	clause.

SQL_DESC_CATALOG_NAME Database	name.	Available	on
result	sets	retrieved	from
statements	that	generate	server
cursors	or	on	executed	SELECT
statements	containing	a	FOR
BROWSE	clause.

SQL_DESC_LABEL Available	on	all	result	sets.	The
value	is	identical	to	the	value	of



the	SQL_DESC_NAME	field.

The	field	is	zero	length	only	if	a
column	is	the	result	of	an
expression	and	the	expression
does	not	contain	a	label
assignment.

SQL_DESC_NAME Available	on	all	result	sets.	The
value	is	identical	to	the	value	of
the	SQL_DESC_LABEL	field.

The	field	is	zero	length	only	if	a
column	is	the	result	of	an
expression	and	the	expression
does	not	contain	a	label
assignment.

SQL_DESC_SCHEMA_NAME Owner	name.	Available	on	result
sets	retrieved	from	statements	that
generate	server	cursors	or	on
executed	SELECT	statements
containing	a	FOR	BROWSE
clause.

Available	only	if	the	owner	name
is	specified	for	the	column	in	the
SELECT	statement.

SQL_DESC_TABLE_NAME Available	on	result	sets	retrieved
from	statements	that	generate
server	cursors	or	on	executed
SELECT	statements	containing	a
FOR	BROWSE	clause.

SQL_DESC_UNNAMED SQL_NAMED	for	all	columns	in
a	result	set	unless	a	column	is	the
result	of	an	expression	that	does
not	contain	a	label	assignment	as
part	of	the	expression.	When



SQL_DESC_UNNAMED	returns
SQL_UNNAMED,	all	ODBC
column	identifier	attributes
contain	zero	length	strings	for	the
column.

Note		When	connected	to	an	instance	of	SQL	Server	4.2x,	SQLColAttribute
must	create	a	result	set	to	report	column	attributes.	The	SQL	Server	ODBC
driver	appends	the	clause	WHERE	1	=	2	to	prepared	SELECT	statements	prior
to	execution.	When	connected	to	SQL	Server	4.2x,	SQLColAttribute	cannot
return	information	about	a	result	set	that	is	generated	by	a	procedure	if	that
procedure	has	been	prepared	but	not	executed.

When	connected	to	any	later	version	of	SQL	Server,	the	SQL	Server	ODBC
driver	uses	the	SET	FMTONLY	statement	to	reduce	server	overhead	when
SQLColAttribute	is	called	for	prepared	but	unexecuted	statements.

For	all	versions,	column	attributes	are	reported	for	only	the	first	result	set	when
multiple	result	sets	are	generated	by	a	prepared	batch	of	SQL	statements.

The	following	column	attributes	are	extensions	exposed	by	the	SQL	Server
ODBC	driver.	The	SQL	Server	ODBC	driver	returns	all	values	in	the
NumericAttrPtr	parameter.	The	values	are	returned	as	SDWORD	(signed	long)
except	SQL_CA_SS_COMPUTE_BYLIST,	which	is	a	pointer	to	a	WORD
array.

FieldIdentifier	value Value	returned
SQL_CA_SS_COLUMN_HIDDEN* TRUE	if	the	column	referenced	is

part	of	a	hidden	primary	key	created
to	support	a	Transact-SQL	SELECT
statement	containing	FOR
BROWSE.

SQL_CA_SS_COLUMN_ID Ordinal	position	of	a	COMPUTE
clause	result	column	within	the
current	Transact-SQL	SELECT
statement.

SQL_CA_SS_COLUMN_KEY* TRUE	if	the	column	referenced	is
part	of	a	primary	key	for	the	row	and
the	Transact-SQL	SELECT



statement	contains	FOR	BROWSE.
SQL_CA_SS_COLUMN_OP Integer	specifying	the	aggregate

operator	responsible	for	the	value	in
a	COMPUTE	clause	column.
Definitions	of	the	integer	values	are
in	Odbcss.h.

SQL_CA_SS_COLUMN_ORDER Ordinal	position	of	the	column
within	an	ODBC	or	Transact-SQL
SELECT	statement's	ORDER	BY
clause.

SQL_CA_SS_COLUMN_SIZE Maximum	length,	in	bytes,	required
to	bind	a	data	value	retrieved	from
the	column	to	a	SQL_C_BINARY
variable.

SQL_CA_SS_COLUMN_SSTYPE Native	data	type	of	data	stored	in	the
SQL	Server	column.	Definitions	of
the	type	values	are	in	Odbcss.h.

SQL_CA_SS_COLUMN_UTYPE Base	data	type	of	the	SQL	Server
column's	user-defined	data	type.	
Definitions	of	the	type	values	are	in
Odbcss.h.

SQL_CA_SS_COLUMN_VARYLENTRUE	if	the	column's	data	can	vary
in	length,	FALSE	otherwise.

SQL_CA_SS_COMPUTE_BYLIST Pointer	to	an	array	of	WORD
(unsigned	short)	specifying	the
columns	used	in	the	BY	phrase	of	a
COMPUTE	clause.	If	the
COMPUTE	clause	does	not	specify
a	BY	phrase,	a	NULL	pointer	is
returned.

The	first	element	of	the	array
contains	the	count	of	BY	list
columns.	Additional	elements	are
the	column	ordinals.

SQL_CA_SS_COMPUTE_ID computeid	of	a	row	that	is	the	result



of	a	COMPUTE	clause	in	the
current	Transact-SQL	SELECT
statement.

SQL_CA_SS_NUM_COMPUTES Number	of	COMPUTE	clauses
specified	in	the	current	Transact-
SQL	SELECT	statement.

SQL_CA_SS_NUM_ORDERS Number	of	columns	specified	in	an
ODBC	or	Transact-SQL	SELECT
statement's	ORDER	BY	clause.

*				Available	if	statement	attribute	SQL_SOPT_SS_HIDDEN_COLUMNS
is	set	to	SQL_HC_ON.

See	Also

SQLSetStmtAttr



ODBC	and	SQL	Server



SQLColumnPrivileges
SQLColumnPrivileges	uses	the	catalog	stored	procedure
sp_column_privileges	to	report	user	permissions	for	columns	in	a	table.

The	following	table	shows	SQLColumnPrivileges	parameter	mapping	for
sp_column_privileges	stored	procedure	execution.

SQLColumnPrivileges	parameter
name

sp_column_privileges	parameter
name

CatalogName table_qualifier
SchemaName table_owner
TableName table_name
ColumnName column_name

SQLColumnPrivileges	returns	SQL_SUCCESS	whether	or	not	values	exist	for
the	CatalogName,	SchemaName,	TableName,	or	ColumnName	parameters.
SQLFetch	returns	SQL_NO_DATA	when	invalid	values	are	used	in	these
parameters.

SQLColumnPrivileges	can	be	executed	on	a	static	server	cursor.	An	attempt	to
execute	SQLColumnPrivileges	on	an	updatable	(dynamic	or	keyset)	cursor	will
return	SQL_SUCCESS_WITH_INFO	indicating	that	the	cursor	type	has	been
changed.

The	Microsoft®	SQL	Server™	ODBC	driver	supports	reporting	information	for
tables	on	linked	servers	by	accepting	a	two-part	name	for	the	CatalogName
parameter:	Linked_Server_Name.Catalog_Name.

See	Also

sp_column_privileges

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



SQLColumns
SQLColumns	executes	the	Transact-SQL	procedure	sp_columns	to	report
catalog	data	for	database	columns.

The	following	table	shows	SQLColumns	parameter	mapping	for	sp_columns
stored	procedure	execution.

SQLColumns	parameter	name sp_columns	parameter	name
CatalogName object_qualifier
SchemaName object_owner
TableName object_name
ColumnName column_name

SQLColumns	returns	SQL_SUCCESS	whether	or	not	values	exist	for	the
CatalogName,	TableName,	or	ColumnName	parameters.	SQLFetch	returns
SQL_NO_DATA	when	invalid	values	are	used	in	these	parameters.

SQLColumns	can	be	executed	on	a	static	server	cursor.	An	attempt	to	execute
SQLColumns	on	an	updatable	(dynamic	or	keyset)	cursor	will	return
SQL_SUCCESS_WITH_INFO	indicating	that	the	cursor	type	has	been	changed.

The	Microsoft®	SQL	Server™	ODBC	driver	supports	reporting	information	for
tables	on	linked	servers	by	accepting	a	two-part	name	for	the	CatalogName
parameter:	Linked_Server_Name.Catalog_Name.

For	ODBC	2.x	applications	not	using	wildcards	in	TableName,	SQLColumns
returns	information	about	any	tables	whose	names	match	TableName	and	are
owned	by	the	current	user.	If	the	current	user	owns	no	table	whose	name
matches	the	TableName	parameter,	SQLColumns	returns	information	about	any
tables	owned	by	other	users	where	the	table	name	matches	the	TableName
parameter.	For	ODBC	2.x	applications	using	wildcards,	SQLColumns	returns
all	tables	whose	names	match	TableName.	For	ODBC	3.x	applications
SQLColumns	returns	all	tables	whose	names	match	TableName	regardless	of
owner	or	whether	wildcards	are	used.

See	Also



sp_columns

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



SQLConfigDataSource
The	Microsoft®	SQL	Server™	ODBC	driver	supports	the	following	SQL
Server-specific	keyword/value	pairs	for	data	source	configuration	attribute
strings.

Keyword Values Description
Address 	 Network	address	of	the	SQL	Server.
AnsiNPW yes Default.	Specifies	that	ANSI_NULLS,

ANSI_WARNINGS,	ANSI_PADDING,
and	CONCAT_NULL_YIELDS_NULL
are	set	ON	for	each	connection.	This
allows	SQL	Server	to	treat	SQL
statements	as	per	SQL-92.	For	more
information	see	Effects	of	SQL-92
Options.

	 no Do	not	use	ANSI-defined	behaviors	for
NULL	comparisons,	padding,	warnings,
and	NULL	concatenation.

AttachDBFileName file_path Name	of	the	primary	file	of	an
attachable	database.	Include	the	full
path,	and	escape	any	\	characters	if	using
a	C	character	string	variable:

AttachDBFileName=c:\\AB\\MyDB.mdf

This	database	is	attached	and	becomes
the	default	database	for	the	connection.
To	use	AttachDBFileName	you	must
also	specify	the	database	name	in	either
the	SQLDriverConnnect	DATABASE
parameter	or	the
SQL_COPT_CURRENT_CATALOG
connection	attribute.	If	the	database	was
previously	attached,	SQL	Server	will	not
reattach	it;	it	will	use	the	attached



database	as	the	default	for	the
connection.

AutoTranslate yes Default.	ANSI	character	strings	sent
between	the	client	and	server	are
translated	by	converting	through
Unicode	to	minimize	problems	in
matching	extended	characters	between
the	code	pages	on	the	client	and	the
server:

Client	SQL_C_CHAR	data	sent	to	a
SQL	Server	char,	varchar,	or	text
variable,	parameter,	or	column	is
converted	from	character	to	Unicode
using	the	client	ANSI	code	page	(ACP),
then	converted	from	Unicode	to
character	using	the	ACP	of	the	server.

SQL	Server	char,	varchar,	or	text	data
sent	to	a	client	SQL_C_CHAR	variable
is	converted	from	character	to	Unicode
using	the	server	ACP,	then	converted
from	Unicode	to	character	using	the
client	ACP.

These	conversions	are	performed	on	the
client	by	the	SQL	Server	ODBC	driver.
This	requires	that	the	same	ANSI	code
page	(ACP)	used	on	the	server	be
available	on	the	client.

These	settings	have	no	effect	on	the
conversions	that	occur	for	these
transfers:

Unicode	SQL_C_WCHAR	client	data
sent	to	char,	varchar,	or	text	on	the
server.



char,	varchar,	or	text	server	data	sent
to	a	Unicode	SQL_C_WCHAR	variable
on	the	client.

ANSI	SQL_C_CHAR	client	data	sent	to
Unicode	nchar,	nvarchar,	or	ntext	on
the	server.

Unicode	char,	varchar,	or	text	server
data	sent	to	an	ANSI	SQL_C_CHAR
variable	on	the	client.

	 no Do	not	perform	character	translation.

The	SQL	Server	ODBC	driver	does	not
translate	client	ANSI	character	data	sent
to	char,	varchar,	or	text	variables,
parameters,	or	columns	on	the	server.	No
translation	is	performed	on	char,
varchar,	or	text	data	sent	from	the
server	to	character	variables	on	the
client.

If	the	client	and	SQL	Server	installation
are	using	different	ACPs,	then	extended
characters	can	be	misinterpreted.

Database 	 Name	of	the	default	database	for	the
connection.	If	Database	is	not	specified,
the	default	database	defined	for	the	login
is	used.	The	default	database	from	the
ODBC	data	source	overrides	the	default
database	defined	for	the	login.	If
AttachDBFileName	points	to	a	primary
database	file,	the	database	is	attached
and	given	the	name	specified	in
Database.

Description 	 Descriptive	text.	The	description	appears
with	the	data	source	in	the	ODBC
Management	utility.



Driver {SQL
Server}

Driver	name.	The	braces	are	required
when	using	version	2.65	or	earlier	of	the
SQL	Server	ODBC	driver.

Fallback
(SQL	Server	6.5
only)

yes Fallback	connection	attempts	are	made
if	a	connection	to	the	primary	server
fails.	Available	only	when	connecting	to
an	instance	of	SQL	Server	6.5.

	 no Default.	Fallback	connection	attempts
are	not	made.

Language 	 SQL	Server	language	name.	SQL	Server
can	store	messages	for	multiple
languages	in	sysmessages.	If	connecting
to	a	SQL	Server	with	multiple
languages,	Language	specifies	which	set
of	messages	are	used	for	the	connection.

Network 	 Name	of	a	Net-Library	dynamic-link
library.	The	name	need	not	include	the
path	and	must	not	include	the	.dll	file
name	extension,	for	example,
Network=dbnmpntw.

QueryLog_On yes Enables	logging	of	long-running	queries.
	 no Default.	Disables	logging	of	long-

running	queries.
QueryLogFile 	 Full	path	and	name	of	the	file	used	to

log	long-running	queries.
QueryLogTime 	 Digit	character	string	specifying	the

threshold	(in	milliseconds)	for	logging
long-running	queries.	Any	query	that
does	not	get	a	response	in	the	time
specified	is	written	to	the	long-running
query	log	file.

QuotedId yes Default.	Specifies	that
QUOTED_IDENTIFIERS	is	set	ON	for
each	connection,	SQL	Server	uses	the
SQL-92	rules	regarding	the	use	of



quotation	marks	in	SQL	statements.	For
more	information,	see	Effects	of	SQL-92
Options.

	 no Specifies	that	QUOTED_IDENTIFIERS
is	set	OFF	for	each	connection.	SQL
Server	then	follows	the	legacy	Transact-
SQL	rules	regarding	the	use	of	quotation
marks	in	SQL	statements.

Regional yes Respect	client	workstation	settings	for
region	when	converting	date,	time,	and
currency	values	to	character	strings.	This
setting	should	only	be	specified	for
applications	that	only	display	data,	not
for	applications	that	process	data.

	 no Default.	Use	ODBC-defined	character
formats	for	date,	time,	and	money
conversion.

Server 	 Name	of	a	server	running	SQL	Server	on
the	network.	The	value	must	be	either
the	name	of	a	server	on	the	network,	or
the	name	of	a	SQL	Server	Client
Network	Utility	advanced	server	entry.
You	can	enter	(local)	as	the	server	name
on	Windows	NT	4.0	to	connect	to	a	copy
of	SQL	Server	running	on	the	same
computer.	SQL	Server	2000	supports
multiple	instances	of	SQL	Server
running	on	the	same	computer.	To
specify	a	named	instance	of	SQL	Server,
the	server	name	is	specified	as
ServerName\InstanceName.	For	more
information	about	server	names,	see
Managing	Clients.

StatsLog_On yes Enables	driver	performance	logging.
	 no Default.	Disables	driver	performance

logging.

JavaScript:hhobj_1.Click()


StatsLogFile 	 Full	path	and	name	of	the	file	used	to
record	SQL	Server	ODBC	driver
performance	statistics.

Trusted_Connection yes Windows	Authentication	is	enabled	for
the	data	source.

	 no Default.	SQL	Server	Authentication	is
enabled	for	the	data	source.	A	SQL
Server	login	and	password	must	be
specified	for	each	connection.

UseProcForPrepare 0 Temporary	stored	procedures	are	not
created	on	statement	preparation.

(SQL	Server	6.5	or
earlier	only)

1 Default.	Temporary	stored	procedures
are	created	for	prepared	SQL	statements.
The	procedures	are	dropped	when	the
connection	is	closed	or	lost.

	 2 Temporary	stored	procedures	are	created
for	prepared	SQL	statements.	The
procedures	are	dropped	when	the	cursor
is	closed.

Note		Regional	conversion	settings	apply	to	currency,	numeric,	date,	and	time
data	types.	The	conversion	setting	is	only	applicable	to	output	conversion	and	is
only	visible	when	currency,	numeric,	date,	or	time	values	are	converted	to
character	strings.

The	driver	uses	the	locale	registry	settings	for	the	current	user.	The	driver	does
not	honor	the	current	thread's	locale	if	the	application	sets	it	after	connection	by,
for	example,	calling	SetThreadLocale.

Altering	the	regional	behavior	of	a	data	source	can	cause	application	failure.	An
application	that	parses	date	strings,	and	expects	date	strings	to	appear	as	defined
by	ODBC,	could	be	adversely	affected	by	altering	this	value.



ODBC	and	SQL	Server



SQLDescribeCol
For	executed	statements,	the	Microsoft®	SQL	Server™	ODBC	driver	does	not
need	to	query	the	server	to	describe	columns	in	a	result	set.	In	this	case,
SQLDescribeCol	does	not	cause	a	server	roundtrip.	Like	SQLColAttribute	and
SQLNumResultCols,	calling	SQLDescribeCol	on	prepared	but	not	executed
statements	generates	a	server	roundtrip.

When	a	Transact-SQL	statement	or	statement	batch	returns	multiple	result	row
sets,	it	is	possible	for	a	column,	referenced	by	ordinal,	to	originate	in	a	separate
table	or	to	refer	to	an	entirely	different	column	in	the	result	set.
SQLDescribeCol	should	be	called	for	each	set.	When	the	result	set	changes,	the
application	should	rebind	data	values	prior	to	fetching	row	results.	For	more
information	about	handling	multiple	result	set	returns,	see	SQLMoreResults.

Note		When	connected	to	an	instance	of	SQL	Server	version	4.2x,
SQLDescribeCol	must	create	a	result	set	to	report	column	attributes.	The	SQL
Server	ODBC	driver	will	append	the	clause	WHERE	1	=	2	to	prepared	SELECT
statements	prior	to	execution.	When	connected	to	SQL	Server	4.2x,
SQLDescribeCol	cannot	return	information	about	a	result	set	that	is	generated
by	a	procedure	if	that	procedure	has	been	prepared	but	not	executed.

When	connected	to	any	later	version	of	SQL	Server,	the	SQL	Server	ODBC
driver	uses	the	SET	FMTONLY	statement	to	reduce	server	overhead	when
SQLDescribeCol	is	called	for	prepared	but	not	executed	statements.

For	all	versions,	column	attributes	are	reported	for	only	the	first	result	set	when
multiple	result	sets	are	generated	by	a	prepared	batch	of	SQL	statements.



ODBC	and	SQL	Server



SQLDescribeParam
To	describe	the	parameters	of	any	SQL	statement,	the	Microsoft®	SQL	Server™
ODBC	driver	builds	and	executes	a	Transact-SQL	SELECT	statement	when
SQLDescribeParam	is	called	on	a	prepared	ODBC	statement	handle.	The
driver	uses	the	SET	FMTONLY	statement	when	executing	the	query.	The	meta
data	of	the	result	set	determines	the	characteristics	of	the	parameters	in	the
prepared	statement.

Consider	this	ODBC	SQL	statement:

INSERT	INTO	Shippers	(ShipperID,	CompanyName,	Phone)	VALUES	(?,	?,
?)

On	a	call	to	SQLDescribeParam,	this	ODBC	SQL	statement	causes	the	driver
to	execute	the	following	Transact-SQL	statement:

SET	FMTONLY	ON	SELECT	ShipperID,	CompanyName,	Phone	FROM
Shippers	SET	FMTONLY	OFF

SQLDescribeParam	can,	therefore,	return	any	error	code	that	SQLExecute	or
SQLExecDirect	might	return.

Further,	the	driver	does	not	support	calling	SQLDescribeParam	after
SQLExecDirect	for	any	Transact-SQL	UPDATE	or	DELETE	statements
containing	the	FROM	clause;	for	any	ODBC	or	Transact-SQL	statement
depending	on	a	subquery	containing	parameters;	for	ODBC	SQL	statements
containing	parameter	markers	in	both	expressions	of	a	comparison,	like,	or
quantified	predicate;	or	queries	where	one	of	the	parameters	is	a	parameter	to	a
function.

When	processing	a	batch	of	Transact-SQL	statements,	the	driver	also	does	not
support	calling	SQLDescribeParam	for	parameter	markers	in	statements	after
the	first	statement	in	the	batch.

When	describing	the	parameters	of	prepared	stored	procedures,
SQLDescribeParam	uses	the	system	stored	procedure	sp_sproc_columns	to
retrieve	parameter	characteristics.	sp_sproc_columns	can	report	data	for	stored
procedures	within	the	current	user	database.	Preparing	a	fully	qualified	stored
procedure	name	allows	SQLDescribeParam	to	execute	across	databases.	For



example,	the	system	stored	procedure	sp_who	can	be	prepared	and	executed	in
any	database	as:

SQLPrepare(hstmt,	"{call	sp_who(?)}",	SQL_NTS);

Executing	SQLDescribeParam	after	successful	preparation	returns	an	empty
row	set	when	connected	to	any	database	but	master.	The	same	call,	prepared	as
follows,	causes	SQLDescribeParam	to	succeed	regardless	of	the	current	user
database:

SQLPrepare(hstmt,	"{call	master..sp_who(?)}",	SQL_NTS);



ODBC	and	SQL	Server



SQLDriverConnect
The	Microsoft®	SQL	Server™	ODBC	driver	and	the	ODBC	driver	manager
recognize	the	following	SQLDriverConnect	connection	string	keywords.

Keyword Description
Address Network	address	of	the	server	running	an	instance	of

SQL	Server.	Address	is	usually	the	network	name	of
the	server,	but	can	be	other	names	such	as	a	pipe,	or	a
TCP/IP	port	and	socket	address.	For	more
information,	see	Managing	Clients.

AnsiNPW When	yes,	the	driver	uses	ANSI-defined	behaviors
for	handling	NULL	comparisons,	character	data
padding,	warnings,	and	NULL	concatenation.	When
no,	ANSI	defined	behaviors	are	not	exposed.	For
more	information	about	ANSI	NPW	behaviors,	see
Effects	of	SQL-92	Options.

APP Name	of	the	application	calling	SQLDriverConnect
(optional).	If	specified,	this	value	is	stored	in	the
master.dbo.sysprocesses	column	program_name
and	is	returned	by	sp_who	and	the	Transact-SQL
APP_NAME	function.

AttachDBFileName Name	of	the	primary	file	of	an	attachable	database.
Include	the	full	path	and	escape	any	\	characters	if
using	a	C	character	string	variable:

AttachDBFileName=c:\\MyFolder\\MyDB.mdf

This	database	is	attached	and	becomes	the	default
database	for	the	connection.	To	use
AttachDBFileName	you	must	also	specify	the
database	name	in	either	the	SQLDriverConnnect
DATABASE	parameter	or	the
SQL_COPT_CURRENT_CATALOG	connection
attribute.	If	the	database	was	previously	attached,
SQL	Server	will	not	reattach	it;	it	will	use	the

JavaScript:hhobj_1.Click()


attached	database	as	the	default	for	the	connection.

AutoTranslate When	yes,	ANSI	character	strings	sent	between	the
client	and	server	are	translated	by	converting	through
Unicode	to	minimize	problems	in	matching	extended
characters	between	the	code	pages	on	the	client	and
the	server:

Client	SQL_C_CHAR	data	sent	to	a	SQL	Server
char,	varchar,	or	text	variable,	parameter,	or
column	is	converted	from	character	to	Unicode	using
the	client	ANSI	code	page	(ACP),	then	converted
from	Unicode	to	character	using	the	ACP	of	the
server.

SQL	Server	char,	varchar,	or	text	data	sent	to	a
client	SQL_C_CHAR	variable	is	converted	from
character	to	Unicode	using	the	server	ACP,	then
converted	from	Unicode	to	character	using	the	client
ACP.

These	conversions	are	performed	on	the	client	by	the
SQL	Server	ODBC	driver.	This	requires	that	the
same	ANSI	code	page	(ACP)	used	on	the	server	be
available	on	the	client.

These	settings	have	no	effect	on	the	conversions	that
occur	for	these	transfers:

Unicode	SQL_C_WCHAR	client	data	sent	to	char,
varchar,	or	text	on	the	server.

char,	varchar,	or	text	server	data	sent	to	a	Unicode
SQL_C_WCHAR	variable	on	the	client.

ANSI	SQL_C_CHAR	client	data	sent	to	Unicode
nchar,	nvarchar,	or	ntext	on	the	server.

Unicode	char,	varchar,	or	text	server	data	sent	to	an
ANSI	SQL_C_CHAR	variable	on	the	client.

When	no,	character	translation	is	not	performed.



The	SQL	Server	ODBC	driver	does	not	translate
client	ANSI	character	SQL_C_CHAR	data	sent	to
char,	varchar,	or	text	variables,	parameters,	or
columns	on	the	server.	No	translation	is	performed
on	char,	varchar,	or	text	data	sent	from	the	server	to
SQL_C_CHAR	variables	on	the	client.

If	the	client	and	SQL	Server	are	using	different
ACPs,	then	extended	characters	can	be
misinterpreted.

DATABASE Name	of	the	default	SQL	Server	database	for	the
connection.	If	Database	is	not	specified,	the	default
database	defined	for	the	login	is	used.	The	default
database	from	the	ODBC	data	source	overrides	the
default	database	defined	for	the	login.	The	database
must	be	an	existing	database	unless
AttachDBFileName	is	also	specified.	If
AttachDBFileName	is	also	specified,	the	primary	file
it	points	to	is	attached	and	given	the	database	name
specified	by	DATABASE.

DRIVER Name	of	the	driver	as	returned	by	SQLDrivers.	The
keyword	value	for	the	SQL	Server	ODBC	driver	is	"
{SQL	Server}".	The	braces	are	required	when	using
version	2.65	or	earlier	of	the	SQL	Server	ODBC
driver.	The	SERVER	keyword	is	required	if	DRIVER
is	specified	and	DriverCompletion	is	set	to
SQL_DRIVER_NOPROMPT.

DSN Name	of	an	existing	ODBC	user	or	system	data
source.

Fallback
(SQL	Server	6.5
only)

When	yes,	instructs	the	driver	to	attempt	connection
to	a	fallback	server	if	connection	to	a	primary	server
fails.	The	login	time-out	(set	with	ODBC
SQLSetConnectAttr,	attribute
SQL_ATTR_LOGIN_TIMEOUT)	must	be	set	for
fallback	to	occur.	When	no,	no	attempt	at	a	fallback
connection	is	made.	This	option	applies	only	to



standby	servers.	It	does	not	apply	to	a	virtual	server
in	a	cluster/failover	configuration.	

FILEDSN Name	of	an	existing	ODBC	file	data	source.
LANGUAGE SQL	Server	language	name	(optional).	SQL	Server

can	store	messages	for	multiple	languages	in
sysmessages.	If	connecting	to	a	SQL	Server	with
multiple	languages,	Language	specifies	which	set	of
messages	are	used	for	the	connection.

Network Name	of	a	network	library	dynamic-link	library.	The
name	need	not	include	the	path	and	must	not	include
the	.dll	file	name	extension,	for	example,
Network=dbnmpntw.

PWD The	password	for	the	SQL	Server	login	account
specified	in	the	UID	parameter.	PWD	need	not	be
specified	if	the	login	has	a	NULL	password	or	when
using	Windows	Authentication	(Trusted_Connection
=	yes).

SAVEFILE Name	of	an	ODBC	data	source	file	into	which	the
attributes	of	the	current	connection	are	saved	if	the
connection	is	successful.

SERVER Name	of	a	server	running	SQL	Server	on	the
network.	The	value	must	be	either	the	name	of	a
server	on	the	network,	or	the	name	of	a	SQL	Server
Client	Network	Utility	advanced	server	entry.	You
can	enter	(local)	as	the	server	name	on	Microsoft
Windows®	NT	4.0	to	connect	to	a	copy	of	SQL
Server	running	on	the	same	computer.	SQL	Server
2000	supports	multiple	instances	of	SQL	Server
running	on	the	same	computer.	To	specify	a	named
instance	of	SQL	Server,	the	server	name	is	specified
as	ServerName\InstanceName.	For	more	information
about	server	names,	see	Managing	Clients.

QueryLogFile Full	path	and	file	name	of	a	file	to	use	to	log	data	on
long-running	queries.

QueryLog_On When	yes,	logging	long-running	query	data	is
enabled	on	the	connection.	When	no,	long-running

JavaScript:hhobj_2.Click()


query	data	is	not	logged.
QueryLogTime Digit	character	string	specifying	the	threshold	(in

milliseconds)	for	logging	long-running	queries.	Any
query	that	does	not	get	a	response	in	the	time
specified	is	written	to	the	long-running	query	log	file.

QuotedID When	yes,	QUOTED_IDENTIFIERS	is	set	ON	for
the	connection,	SQL	Server	uses	the	SQL-92	rules
regarding	the	use	of	quotation	marks	in	SQL
statements.	When	no,	QUOTED_IDENTIFIERS	is
set	OFF	for	the	connection.	SQL	Server	then	follows
the	legacy	Transact-SQL	rules	regarding	the	use	of
quotation	marks	in	SQL	statements.	For	more
information,	see	Effects	of	SQL-92	Options.

Regional When	yes,	the	SQL	Server	ODBC	driver	uses	client
settings	when	converting	currency,	date,	and	time
data	to	character	data.	The	conversion	is	one	way
only;	the	driver	does	not	recognize	non-ODBC
standard	formats	for	date	strings	or	currency	values
within;	for	example,	a	parameter	used	in	an	INSERT
or	UPDATE	statement.	When	no,	the	driver	uses
ODBC	standard	strings	to	represent	currency,	date,
and	time	data	that	is	converted	to	string	data.

StatsLogFile Full	path	and	file	name	of	a	file	used	to	record	SQL
Server	ODBC	driver	performance	statistics.

StatsLog_On When	yes,	enables	the	capture	of	SQL	Server	ODBC
driver	performance	data.	When	no,	SQL	Server
ODBC	driver	performance	data	is	not	available	on
the	connection.

Trusted_Connection When	yes,	instructs	the	SQL	Server	ODBC	driver	to
use	Windows	Authentication	Mode	for	login
validation.	The	UID	and	PWD	keywords	are
optional.	When	no,	instructs	the	SQL	Server	ODBC
driver	to	use	a	SQL	Server	username	and	password
for	login	validation.	The	UID	and	PWD	keywords
must	be	specified.



UID A	valid	SQL	Server	login	account.	UID	need	not	be
specified	when	using	Windows	Authentication.

UseProcForPrepare
(SQL	Server	6.5	and
earlier	only)

When	1,	instructs	the	SQL	Server	ODBC	driver	to
create	temporary	stored	procedures	when	statements
are	prepared	with	SQLPrepare.	The	temporary
stored	procedures	are	not	dropped	until	the
connection	is	broken.

When	2,	the	SQL	Server	ODBC	driver	creates
temporary	stored	procedures	for	SQLPrepare,	but
only	one	procedure	is	created	per	statement	handle
and	the	procedure	is	dropped	when	the	statement
handle	becomes	invalid	or	a	new	SQL	statement	is
prepared.	When	0,	the	SQL	Server	ODBC	driver
does	not	create	temporary	stored	procedures	for
SQLPrepare.

WSID Workstation	ID.	Typically,	this	is	the	network	name
of	the	computer	on	which	the	application	resides
(optional).	If	specified,	this	value	is	stored	in	the
master.dbo.sysprocesses	column	hostname	and	is
returned	by	sp_who	and	the	Transact-SQL
HOST_NAME	function.

Note		Regional	conversion	settings	apply	to	currency,	numeric,	date,	and	time
data	types.	The	conversion	setting	is	only	applicable	to	output	conversion	and	is
only	visible	when	currency,	numeric,	date,	or	time	values	are	converted	to
character	strings.

The	driver	uses	the	locale	registry	settings	for	the	current	user.	The	driver	does
not	honor	the	current	thread's	locale	if	the	application	sets	it	after	connection	by,
for	example,	calling	SetThreadLocale.

Altering	the	regional	behavior	of	a	data	source	can	cause	application	failure.	An
application	that	parses	date	strings,	and	expects	date	strings	to	appear	as	defined
by	ODBC,	could	be	adversely	affected	by	altering	this	value.

The	SQL	Server	ODBC	driver	defines	connection	attributes	that	either	replace	or



enhance	connection-string	keywords.	Several	connection-string	keywords	have
default	values	specified	by	the	SQL	Server	ODBC	driver.	For	more	information
about	SQL	Server	connection	attributes	and	driver	default	behaviors,	see
SQLSetConnectAttr.

When	the	SQLDriverConnect	DriverCompletion	parameter	value	is
SQL_DRIVER_PROMPT,	SQL_DRIVER_COMPLETE,	or
SQL_DRIVER_COMPLETE_REQUIRED,	the	SQL	Server	ODBC	driver
retrieves	keyword	values	from	the	displayed	dialog	box.	If	the	keyword	value	is
passed	in	the	connection	string	and	the	user	does	not	alter	the	value	for	the
keyword	in	the	dialog	box,	the	SQL	Server	ODBC	driver	uses	the	value	from	the
connection	string.	If	the	value	is	not	set	in	the	connection	string	and	the	user
makes	no	assignment	in	the	dialog	box,	the	driver	uses	the	default.

SQLDriverConnect	must	be	given	a	valid	WindowHandle	when	any
DriverCompletion	value	requires	(or	could	require)	the	display	of	the	driver's
connection	dialog	box.	An	invalid	handle	returns	SQL_ERROR.

Specify	either	the	DRIVER	or	DSN	keywords.	ODBC	states	that	a	driver	uses
the	leftmost	of	these	two	keywords	and	ignores	the	other	if	both	are	specified.	If
DRIVER	is	specified,	or	is	the	leftmost	of	the	two,	and	the	SQLDriverConnect
DriverCompletion	parameter	value	is	SQL_DRIVER_NOPROMPT,	the
SERVER	keyword	and	an	appropriate	value	are	required.

When	SQL_DRIVER_NOPROMPT	is	specified,	user	authentication	keywords
must	be	present	with	values.	The	driver	ensures	that	either	the	string
"Trusted_Connection=yes"	or	both	the	UID	and	PWD	keywords	are	present.

If	the	DriverCompletion	parameter	value	is	SQL_DRIVER_NOPROMPT	or
SQL_DRIVER_COMPLETE_REQUIRED	and	the	language	or	database	comes
from	the	connection	string	and	either	is	invalid,	SQLDriverConnect	returns
SQL_ERROR.

If	the	DriverCompletion	parameter	value	is	SQL_DRIVER_NOPROMPT	or
SQL_DRIVER_COMPLETE_REQUIRED	and	the	language	or	database	comes
from	the	ODBC	data	source	definitions	and	either	is	invalid,
SQLDriverConnect	uses	the	default	language	or	database	for	the	specified	user
ID	and	returns	SQL_SUCCESS_WITH_INFO.

If	the	DriverCompletion	parameter	value	is	SQL_DRIVER_COMPLETE	or
SQL_DRIVER_PROMPT	and	if	the	language	or	database	is	invalid,



SQLDriverConnect	redisplays	the	dialog	box.

Examples
The	following	call	illustrates	the	least	amount	of	data	required	for
SQLDriverConnect:

SQLDriverConnect(hdbc,	hwnd,
				(SQLTCHAR*)	"DRIVER={SQL	Server};"	SQL_NTS,	szOutConn,
				MAX_CONN_OUT,	cbOutConn,	SQL_DRIVER_COMPLETE);

The	following	connection	strings	illustrate	minimum	required	data	when	the
DriverCompletion	parameter	value	is	SQL_DRIVER_NOPROMPT:

"DSN=Human	Resources;UID=Smith;PWD=Sesame"

"DSN=Human	Resources;Trusted_Connection=yes"

"FILEDSN=HR_FDSN;UID=Smith;PWD=Sesame"

"FILEDSN=HR_FDSN;Trusted_Connection=yes"

"DRIVER={SQL	Server};SERVER=hrserver;UID=Smith;PWD=Sesame"

"DRIVER={SQL	Server};SERVER=hrserver;Trusted_Connection=yes"

See	Also

SET	ANSI_NULLS

SET	ANSI_PADDING

SET	ANSI_WARNINGS

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()


ODBC	and	SQL	Server



SQLDrivers
The	ODBC	Driver	Manager	returns	all	ODBC	3.0-defined	SQLDrivers	attribute
specification	strings.	For	more	information	about	attribute	string	and	value
definition,	see	the	ODBC	3.0	documentation.



ODBC	and	SQL	Server



SQLEndTran
By	default,	the	Microsoft®	SQL	Server™	ODBC	driver	closes	a	statement's
associated	cursor	when	SQLEndTran	commits	or	rolls	back	an	operation.
Server	cursors	are	closed	unless	they	are	static.



ODBC	and	SQL	Server



SQLFetchScroll
SQLFetchScroll	returns	one	row	set	of	data	to	the	application.	The	size	of	the
row	set	is	set	using	SQLSetStmtAttr.	The	Microsoft®	SQL	Server™	ODBC
driver	supports	all	defined	fetch	instructions	(for	example,
SQL_FETCH_RELATIVE)	with	the	following	limitations:

If	a	forward-only	cursor	is	defined	for	the	statement,
SQL_FETCH_NEXT	is	required	and	attempts	to	fetch	in	any	other
fashion	will	result	in	an	error	return.

SQL_FETCH_BOOKMARK	is	supported	for	static	and	keyset-driven
cursors	only.



ODBC	and	SQL	Server



SQLForeignKeys
SQLForeignKeys	uses	the	catalog	stored	procedure	sp_fkeys	to	report	foreign
keys	referencing	a	table's	primary	key	or	columns	in	a	table	that	reference	the
primary	key	columns	of	other	tables.

The	following	table	shows	the	SQLForeignKeys	parameter	mapping	for
sp_fkeys	stored	procedure	execution.

SQLForeignKeys	parameter	name sp_fkeys	parameter	name
PKTableCatalog pktable_qualifier
PKTableSchema pktable_owner
PKTableName pktable_name
FKTableCatalog fktable_qualifier
FKTableSchema fktable_owner
FKTableName fktable_name

Microsoft®	SQL	Server™	supports	cascading	updates	and	deletes	through	the
foreign	key	constraint	mechanism.	SQL	Server	returns	SQL_CASCADE	for
UPDATE_RULE	and/or	DELETE_RULE	columns	if	CASCADE	option	is
specified	on	the	ON	UPDATE	and/or	ON	DELETE	clause	of	the	FOREIGN
KEY	constraints.	SQL	Server	returns	SQL_NO_ACTION	for	UPDATE_RULE
and/or	DELETE_RULE	columns	if	NO	ACTION	option	is	specified	on	the	ON
UPDATE	and/or	ON	DELETE	clause	of	the	FOREIGN	KEY	constraints.

When	invalid	values	are	present	in	any	SQLForeignKeys	parameter,
SQLForeignKeys	returns	SQL_SUCCESS	on	execution.	SQLFetch	returns
SQL_NO_DATA	when	invalid	values	are	used	in	these	parameters.

SQLForeignKeys	can	be	executed	on	a	static	server	cursor.	An	attempt	to
execute	SQLForeignKeys	on	an	updatable	(dynamic	or	keyset)	cursor	will
return	SQL_SUCCESS_WITH_INFO	indicating	that	the	cursor	type	has	been
changed.

The	SQL	Server	ODBC	driver	supports	reporting	information	for	tables	on
linked	servers	by	accepting	a	two-part	name	for	the	FKCatalogName	and
PKCatalogName	parameters:	Linked_Server_Name.Catalog_Name.



See	Also

sp_fkeys

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



SQLFreeHandle
In	manual-commit	mode,	calling	SQLFreeHandle	on	a	statement	handle	with
an	open	transaction	causes	a	rollback	of	pending	changes	to	the	database.
SQLFreeHandle	of	a	statement	handle	always	closes	any	open	cursors	and
discards	pending	results,	freeing	all	resources	associated	with	the	statement
handle.



ODBC	and	SQL	Server



SQLFreeStmt
SQLFreeStmt	is	not	recommended	in	ODBC	3.0	and	later.	The	Microsoft®
SQL	Server™	ODBC	driver	supports	all	defined	Option	values	for
SQLFreeStmt.	However,	SQLCloseCursor,	SQLBindParameter,
SQLBindCol,	SQLSetDescField,	and	SQLFreeHandle	replace	or	duplicate	the
function	of	SQLFreeStmt	and	should	be	used	instead.

See	Also

SQLBindCol

SQLCloseCursor

SQLBindParameter



ODBC	and	SQL	Server



SQLGetConnectAttr
The	Microsoft®	SQL	Server™	ODBC	driver	defines	driver-specific	connection
attributes.	Some	of	the	attributes	are	available	to	SQLGetConnectAttr,	and	the
function	is	used	to	report	their	current	settings.	The	values	reported	for	these
attributes	are	not	guaranteed	until	after	a	connection	has	been	made	or	the
attribute	has	been	set	using	SQLSetConnectAttr.

SQL_COPT_SS_ANSI_NPW
SQL_COPT_SS_ANSI_NPW	enables	or	disables	the	use	of	ANSI	handling	of
NULL	comparisons,	character	data	type	padding,	warning	levels,	and	NULL
concatenation.	For	more	information,	see	SET	ANSI_NULLS,	SET
ANSI_PADDING,	SET	ANSI_WARNINGS,	and	SET
CONCAT_NULL_YIELDS_NULL.

Value Description
SQL_AD_ON Default.	The	connection	uses	ANSI	default	behavior

handling	NULL	comparisons,	padding,	warnings,	and
NULL	concatenations.

SQL_AD_OFF The	connection	uses	SQL	Server	defined	handling	of
NULL	comparisons,	character	data	type	padding,
warnings,	and	NULL	concatenations.

SQL_COPT_SS_CONNECTION_DEAD
SQL_COPT_SS_CONNECTION_DEAD	reports	the	alive	or	dead	state	of	a
connection	to	a	server.	The	driver	queries	the	Net-Library	for	the	current	state	of
the	connection.

Value Description
SQL_CD_TRUE The	connection	to	the	server	has	been	lost.
SQL_CD_FALSE The	connection	is	open	and	available	for	statement

processing.



SQL_COPT_SS_PERF_DATA
SQL_COPT_SS_PERF_DATA	returns	a	pointer	to	a	SQLPERF	structure
containing	the	current	driver	performance	statistics.	SQLGetConnectAttr	will
return	NULL	if	performance	logging	is	not	enabled.	The	statistics	in	the
SQLPERF	structure	are	not	dynamically	updated	by	the	driver.	Call
SQLGetConnectAttr	each	time	the	performance	statistics	need	to	be	refreshed.
For	more	information	about	performance	logging,	see	SQLSetConnectAttr.

Value Description
NULL Performance	logging	is	not	enabled.
Any	other	value A	pointer	to	a	SQLPERF	structure.

SQL_COPT_SS_PERF_QUERY
SQL_COPT_SS_PERF_QUERY	returns	TRUE	if	logging	of	long	running
queries	is	enabled.	The	request	returns	FALSE	if	query	logging	is	not	active.

SQL_COPT_SS_PRESERVE_CURSORS
SQL_COPT_SS_PRESERVE_CURSORS	defines	the	behavior	of	cursors	when
manual-commit	mode	is	used.	The	behavior	is	exposed	as	transactions	and	are
either	committed	or	rolled	back	using	SQLEndTran.

Value Description
SQL_PC_OFF Default.	Cursors	are	closed	on	SQLEndTran.
SQL_PC_ON Cursors	remain	open	after	the	call	to	SQLEndTran.

SQL_COPT_SS_QUOTED_IDENT
SQL_COPT_SS_QUOTED_IDENT	allows	quoted	identifiers	in	ODBC	and
Transact-SQL	statements	submitted	on	the	connection.	By	supplying	quoted
identifiers,	the	SQL	Server	ODBC	driver	allows	otherwise	invalid	object	names
such	as	"My	Table,"	which	contains	a	space	character	in	the	identifier.



Value Description
SQL_QI_OFF The	SQL	Server	connection	does	not	allow	quoted

identifiers	in	submitted	Transact-SQL.
SQL_QI_ON Default.	The	connection	allows	quoted	identifiers	in

Transact-SQL	submitted.

SQL_COPT_SS_TRANSLATE
SQL_COPT_SS_TRANSLATE	controls	character	translation	as	MBCS	data	is
exchanged.	The	attribute	affects	only	data	stored	in	SQL	Server	char,	varchar,
and	text	columns.

Value Description
SQL_XL_OFF The	SQL	Server	ODBC	driver	does	not	translate

characters	from	one	code	page	to	another	in	character
data	exchanged	between	the	client	and	the	server.

SQL_XL_ON Default.	The	SQL	Server	ODBC	driver	translates
characters	from	one	code	page	to	another	in	character
data	exchanged	between	the	client	and	the	server.	The
driver	automatically	configures	the	character
translation,	determining	the	code	page	installed	on	the
server	and	that	in	use	by	the	client.

SQL_COPT_SS_USE_PROC_FOR_PREP
This	option	is	valid	only	when	connected	to	SQL	Server	version	6.5	or	earlier.
SQL_COPT_SS_USE_PROC_FOR_PREP	defines	the	use	of	temporary	stored
procedures	when	ODBC	and	Transact-SQL	statements	are	prepared	for
execution.	For	more	information	about	prepared	statement	execution,	see
SQLPrepare.

Value Description
SQL_UP_OFF The	driver	does	not	generate	stored	procedures	when

the	application	prepares	statements.



SQL_UP_ON Default.	The	driver	generates	a	temporary	stored
procedure	when	a	statement	is	prepared.	The	stored
procedure	is	dropped	when	the	application
disconnects	from	the	server.

SQL_UP_ON_DROPThe	driver	generates	a	temporary	stored	procedure
when	a	statement	is	prepared.	The	stored	procedure
is	dropped	when	the	statement	handle	is	freed.

SQL_COPT_SS_USER_DATA
SQL_COPT_SS_USER_DATA	retrieves	the	user-data	pointer.	User	data	is
stored	in	client-owned	memory	and	recorded	per	connection.	If	the	user-data
pointer	has	not	been	set,	SQL_UD_NOTSET,	a	NULL	pointer,	is	returned.

Value Description
SQL_UD_NOTSETNo	user-data	pointer	is	set.
Any	other	value A	pointer	to	the	user	data.

See	Also

Delimited	Identifiers

SET	ANSI_NULLS

SET	ANSI_PADDING

SET	ANSI_WARNINGS

SQLEndTran

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


ODBC	and	SQL	Server



SQLGetCursorName
If	the	application	does	not	specify	a	cursor	name,	the	Microsoft®	SQL	Server™
ODBC	driver	generates	one	for	the	application	upon	cursor	generation.	The
application	can	use	SQLGetCursorName	to	retrieve	the	driver-defined	cursor
name	for	positioned	UPDATE	and	DELETE	statements.	The	application	does
not	need	to	call	SQLSetCursorName	to	take	advantage	of	positioned	data
manipulation	statements.



ODBC	and	SQL	Server



SQLGetData
SQLGetData	is	used	to	retrieve	result	set	data	without	binding	column	values.
SQLGetData	can	be	called	successively	on	the	same	column	to	retrieve	large
amounts	of	data	from	a	column	with	a	text,	ntext,	or	image	data	type.

There	is	no	requirement	that	an	application	bind	variables	to	fetch	result	set	data.
The	data	of	any	column	can	be	retrieved	from	the	Microsoft®	SQL	Server™
ODBC	driver	by	using	SQLGetData.

The	SQL	Server	ODBC	driver	does	not	support	using	SQLGetData	to	retrieve
data	in	random	column	order.	All	unbound	columns	processed	with
SQLGetData	must	have	higher	column	ordinals	than	the	bound	columns	in	the
result	set.	The	application	must	process	data	from	the	lowest	unbound	ordinal
column	value	to	the	highest.	Attempting	to	retrieve	data	from	a	lower	ordinally
numbered	column	results	in	an	error.	If	the	application	is	using	server	cursors	to
report	result	set	rows,	the	application	can	refetch	the	current	row	and	then	fetch
the	value	of	a	column.	If	a	statement	is	executed	on	the	default	read-only,
forward-only	cursor,	you	must	re-execute	the	statement	to	back	up
SQLGetData.

The	SQL	Server	ODBC	driver	accurately	reports	the	length	of	text,	ntext,	and
image	data	retrieved	using	SQLGetData.	The	application	can	make	good	use	of
the	StrLen_or_IndPtr	parameter	return	to	retrieve	long	data	rapidly.

Examples

SQLHDBC					hDbc	=	NULL;
SQLHSTMT				hStmt	=	NULL;
long								lEmpID;
PBYTE							pPicture;
SQLINTEGER		pIndicators[2];

//	Get	an	environment,	connection,	and	so	on.
...



//	Get	a	statement	handle	and	execute	a	command.
SQLAllocHandle(SQL_HANDLE_STMT,	hDbc,	&hStmt);

if	(SQLExecDirect(hStmt,
				(SQLCHAR*)	"SELECT	EmployeeID,	Photo	FROM	Employees",
				SQL_NTS)	==	SQL_ERROR)
				{
				//	Handle	error	and	return.
				}

//	Retrieve	data	from	row	set.
SQLBindCol(hStmt,	1,	SQL_C_LONG,	(SQLPOINTER)	&lEmpID,	sizeof(long),
				&pIndicators[0]);

while	(SQLFetch(hStmt)	==	SQL_SUCCESS)
				{
				printf("EmployeeID:	%d\n",	lEmpID);

				//	Call	SQLGetData	to	determine	the	amount	of	data	that's	waiting.
				if	(SQLGetData(hStmt,	2,	SQL_C_BINARY,	pPicture,	0,	&pIndicators[1])
								==	SQL_SUCCESS_WITH_INFO)
								{
								printf("Photo	size:	%ld\n\n",	pIndicators[1]);

								//	Get	all	the	data	at	once.
								pPicture	=	new	BYTE[pIndicators[1]];
								if	(SQLGetData(hStmt,	2,	SQL_C_DEFAULT,	pPicture,
												pIndicators[1],	&pIndicators[1])	!=	SQL_SUCCESS)
												{
												//	Handle	error	and	continue.
												}

								delete	[]	pPicture;



								}
				else
								{
								//	Handle	error	on	attempt	to	get	data	length.
								}
				}
	



ODBC	and	SQL	Server



SQLGetDescField
The	Microsoft®	SQL	Server™	ODBC	driver	exposes	driver-specific	descriptor
fields	for	the	implementation	row	descriptor	(IRD)	only.	Within	the	IRD,	SQL
Server	descriptor	fields	are	referenced	through	driver-specific	column	attributes.
For	information	about	a	complete	list	of	available	driver-specific	descriptor
fields,	see	SQLColAttribute.

Descriptor	fields	that	contain	column	identifier	strings	are	often	zero	length
strings.	For	a	description	of	the	behavior	of	ODBC	descriptor	fields	that	contain
column	identifier	strings,	see	SQLColAttribute.

All	SQL	Server-specific	descriptor	field	values	are	read-only.

Like	attributes	retrieved	with	SQLColAttribute,	descriptor	fields	that	report
row-level	attributes	(such	as	SQL_CA_SS_COMPUTE_ID)	are	reported	for	all
columns	in	the	result	set.

Example

...
typedef	struct	tagCOMPUTEBYLIST
				{
				SQLSMALLINT	nBys;
				SQLSMALLINT	aByList[1];
				}	COMPUTEBYLIST;
typedef	COMPUTEBYLIST*	PCOMPUTEBYLIST;	

SQLHDESC				hIRD;	
SQLINTEGER		cbIRD;	
SQLINTEGER		nSet	=	0;	

//	.	.	.
//	Execute	a	statement	that	contains	a	COMPUTE	clause,
//		then	get	the	descriptor	handle	of	the	IRD	and



//		get	some	IRD	values.

SQLGetStmtAttr(g_hStmt,	SQL_ATTR_IMP_ROW_DESC,
				(SQLPOINTER)	&hIRD,	sizeof(SQLHDESC),	&cbIRD);

//	For	statement-wide	column	attributes,	any
//		descriptor	record	will	do.	You	know	that	1	exists,
//		so	use	it.
SQLGetDescField(hIRD,	1,	SQL_CA_SS_NUM_COMPUTES,
				(SQLPOINTER)	&nComputes,	SQL_IS_INTEGER,	&cbIRD);

if	(nSet	==	0)
				{
				SQLINTEGER						nOrderID;

				printf("Normal	result	set.\n");

				for	(nCol	=	0;	nCol	<	nCols;	nCol++)
								{
								SQLGetDescField(hIRD,	nCol+1,
												SQL_CA_SS_COLUMN_ORDER,
												(SQLPOINTER)	&nOrderID,	SQL_IS_INTEGER,
												&cbIRD);

								if	(nOrderID	!=	0)
												{
												printf("Col	in	ORDER	BY,	pos:	%ld",
																nOrderID);
												}
												printf("\n");
								}

				printf("\n");



				}
else
				{
				PCOMPUTEBYLIST		pByList;
				SQLSMALLINT					nBy;
				SQLINTEGER						nColID;

				printf("Computed	result	set	number:	%lu\n",
								nSet);

				SQLGetDescField(hIRD,	1,	SQL_CA_SS_COMPUTE_BYLIST,
								(SQLPOINTER)	&pByList,	SQL_IS_INTEGER,
								&cbIRD);

				if	(pByList	!=	NULL)
								{
								printf("Clause	ordered	by	columns:	");
								for	(nBy	=	0;	nBy	<	pByList->nBys;	)
												{
												printf("%u",	pByList->aByList[nBy]);
												nBy++;

												if	(nBy	==	pByList->nBys)
																{
																printf("\n");
																}
												else
																{
																printf(",	");
																}
												}
								}
				else



								{
								printf("Compute	clause	set	not	ordered.\n");
								}

				for	(nCol	=	0;	nCol	<	nCols;	nCol++)
								{
								SQLGetDescField(hIRD,	nCol+1,
												SQL_CA_SS_COLUMN_ID,	(SQLPOINTER)	&nColID,
												SQL_IS_INTEGER,	&cbIRD);
								printf("ColumnID:	%lu,	nColID);
								}
				printf("\n");
				}

if	(SQLMoreResults(g_hStmt)	==	SQL_SUCCESS)
				{
				//	Determine	the	result	set	indicator.
				SQLGetDescField(hIRD,	1,	SQL_CA_SS_COMPUTE_ID,
								(SQLPOINTER)	&nSet,	SQL_IS_INTEGER,	&cbIRD);
				}

//	and	carry	on...



ODBC	and	SQL	Server



SQLGetDiagField
The	Microsoft®	SQL	Server™	ODBC	driver	specifies	the	following	additional
diagnostics	fields	for	SQLGetDiagField.	These	fields	support	rich	error
reporting	for	SQL	Server	applications	and	are	available	in	all	diagnostics	records
generated	on	connected	ODBC	connection	handles	and	ODBC	statement
handles.	The	fields	are	defined	in	Odbcss.h.

Diagnostics	record	field Description
SQL_DIAG_SS_LINE Reports	the	line	number	of	a	stored

procedure	generating	an	error.	The	value	of
SQL_DIAG_SS_LINE	is	meaningful	only
if	SQL_DIAG_SS_PROCNAME	returns	a
value.	The	value	is	returned	as	an	unsigned,
16-bit	integer.

SQL_DIAG_SS_MSGSTATE The	state	of	an	error	message.	For
information	about	the	error	message	state,
see	RAISERROR.	The	value	is	returned	as
a	signed,	32-bit	integer.

SQL_DIAG_SS_PROCNAMEName	of	the	stored	procedure	generating	an
error,	if	appropriate.	The	value	is	returned
as	a	character	string.	The	length	of	the
string	(in	characters)	depends	on	the
version	of	the	SQL	Server.	It	can	be
determined	by	calling	SQLGetInfo
requesting	the	value	for
SQL_MAX_PROCEDURE_NAME_LEN.

SQL_DIAG_SS_SEVERITY The	severity	level	of	the	associated	error
message.	The	value	is	returned	as	a	signed,
32-bit	integer.

SQL_DIAG_SS_SRVNAME The	name	of	the	server	on	which	the	error
occurred.	The	value	is	returned	as	a
character	string.	The	length	of	the	string	(in
characters)	is	defined	by	the
SQL_MAX_SQLSERVERNAME	macro	in

JavaScript:hhobj_1.Click()


Odbcss.h.

SQL	Server-specific	diagnostic	fields	that	contain	character	data,
SQL_DIAG_SS_PROCNAME	and	SQL_DIAG_SS_SRVNAME,	return	that
data	to	the	client	as	null	terminated,	ANSI,	or	Unicode	strings.	If	necessary,	the
count	of	characters	should	be	adjusted	by	the	character	width.	Alternately,	a
portable	C	data	type	such	as	TCHAR	or	SQLTCHAR	can	be	used	to	ensure
correct	program	variable	length.

The	SQL	Server	ODBC	driver	reports	the	following	additional	dynamic	function
codes	that	identify	the	last	attempted	SQL	Server	statement.	The	dynamic
function	code	is	returned	in	the	header	(record	0)	of	the	diagnostics	record	set
and	is	therefore	available	on	every	execution	(successful	or	not).

Dynamic	function	code Source
SQL_DIAG_DFC_SS_ALTER_DATABASE ALTER	DATABASE

statement
SQL_DIAG_DFC_SS_CHECKPOINT CHECKPOINT

statement
SQL_DIAG_DFC_SS_CONDITION Error	arose	in	the

WHERE	or	HAVING
clauses	of	a	statement.

SQL_DIAG_DFC_SS_CREATE_DATABASE CREATE	DATABASE
statement

SQL_DIAG_DFC_SS_CREATE_DEFAULT CREATE	DEFAULT
statement

SQL_DIAG_DFC_SS_CREATE_PROCEDURE CREATE
PROCEDURE
statement

SQL_DIAG_DFC_SS_CREATE_RULE CREATE	RULE
statement

SQL_DIAG_DFC_SS_CREATE_TRIGGER CREATE	TRIGGER
statement

SQL_DIAG_DFC_SS_CURSOR_DECLARE DECLARE	CURSOR
statement

SQL_DIAG_DFC_SS_CURSOR_OPEN OPEN	statement
SQL_DIAG_DFC_SS_CURSOR_FETCH FETCH	statement



SQL_DIAG_DFC_SS_CURSOR_CLOSE CLOSE	statement
SQL_DIAG_DFC_SS_DEALLOCATE_CURSORDEALLOCATE

statement
SQL_DIAG_DFC_SS_DBCC DBCC	statement
SQL_DIAG_DFC_SS_DENY DENY	statement
SQL_DIAG_DFC_SS_DISK DISK	INIT	statement
SQL_DIAG_DFC_SS_DROP_DATABASE DROP	DATABASE

statement
SQL_DIAG_DFC_SS_DROP_DEFAULT DROP	DEFAULT

statement
SQL_DIAG_DFC_SS_DROP_PROCEDURE DROP	PROCEDURE

statement
SQL_DIAG_DFC_SS_DROP_RULE DROP	RULE	statement
SQL_DIAG_DFC_SS_DROP_TRIGGER DROP	TRIGGER

statement
SQL_DIAG_DFC_SS_DUMP_DATABASE BACKUP	or	DUMP

DATABASE	statement
SQL_DIAG_DFC_SS_DUMP_TABLE DUMP	TABLE

statement
SQL_DIAG_DFC_SS_DUMP_TRANSACTION BACKUP	or	DUMP

TRANSACTION
statement.	Also
returned	for	a
CHECKPOINT
statement	if	the	trunc.
log	on	chkpt.	database
option	is	on.

SQL_DIAG_DFC_SS_GOTO GOTO	control-of-flow
statement

SQL_DIAG_DFC_SS_INSERT_BULK INSERT	BULK
statement

SQL_DIAG_DFC_SS_KILL KILL	statement
SQL_DIAG_DFC_SS_LOAD_DATABASE LOAD	or	RESTORE

DATABASE	statement



SQL_DIAG_DFC_SS_LOAD_HEADERONLY LOAD	or	RESTORE
HEADERONLY
statement

SQL_DIAG_DFC_SS_LOAD_TABLE LOAD	TABLE
statement

SQL_DIAG_DFC_SS_LOAD_TRANSACTION LOAD	or	RESTORE
TRANSACTION
statement

SQL_DIAG_DFC_SS_PRINT PRINT	statement
SQL_DIAG_DFC_SS_RAISERROR RAISERROR	statement
SQL_DIAG_DFC_SS_READTEXT READTEXT	statement
SQL_DIAG_DFC_SS_RECONFIGURE RECONFIGURE

statement
SQL_DIAG_DFC_SS_RETURN RETURN	control-of-

flow	statement
SQL_DIAG_DFC_SS_SELECT_INTO SELECT	INTO

statement
SQL_DIAG_DFC_SS_SET SET	statement	(generic,

all	options)
SQL_DIAG_DFC_SS_SET_IDENTITY_INSERT SET

IDENTITY_INSERT
statement

SQL_DIAG_DFC_SS_SET_ROW_COUNT SET	ROWCOUNT
statement

SQL_DIAG_DFC_SS_SET_STATISTICS SET	STATISTICS	IO
or	SET	STATISTICS
TIME	statements

SQL_DIAG_DFC_SS_SET_TEXTSIZE SET	TEXTSIZE
statement

SQL_DIAG_DFC_SS_SETUSER SETUSER	statement
SQL_DIAG_DFC_SS_SET_XCTLVL SET	TRANSACTION

ISOLATION	LEVEL
statement

SQL_DIAG_DFC_SS_SHUTDOWN SHUTDOWN



statement
SQL_DIAG_DFC_SS_TRANS_BEGIN BEGIN	TRAN

statement
SQL_DIAG_DFC_SS_TRANS_COMMIT COMMIT	TRAN

statement
SQL_DIAG_DFC_SS_TRANS_PREPARE Prepare	to	commit	a

distributed	transaction
SQL_DIAG_DFC_SS_TRANS_ROLLBACK ROLLBACK	TRAN

statement
SQL_DIAG_DFC_SS_TRANS_SAVE SAVE	TRAN	statement
SQL_DIAG_DFC_SS_TRUNCATE_TABLE TRUNCATE	TABLE

statement
SQL_DIAG_DFC_SS_UPDATE_STATISTICS UPDATE	STATISTICS

statement
SQL_DIAG_DFC_SS_UPDATETEXT UPDATETEXT

statement
SQL_DIAG_DFC_SS_USE USE	statement
SQL_DIAG_DFC_SS_WAITFOR WAITFOR	control-of-

flow	statement
SQL_DIAG_DFC_SS_WRITETEXT WRITETEXT

statement

See	Also

SQLGetInfo



ODBC	and	SQL	Server



SQLGetFunctions
The	Microsoft®	SQL	Server™	ODBC	driver	interface	complies	with	the	three
defined	compliance	levels	for	ODBC	(ISO,	X/Open,	and	ODBC	level	2).
SQLGetFunctions	reports	that	all	ODBC	functions	are	supported	for	the	SQL
Server	ODBC	driver.



ODBC	and	SQL	Server



SQLGetInfo
The	table	shows	the	values	returned	by	SQLGetInfo	(may	vary	based	on	the
version	number	of	the	connected	server).

fInfoType rgbInfoValue
SQL_ACCESSIBLE_PROCEDURES "Y"
SQL_ACCESSIBLE_TABLES "Y"
SQL_ACTIVE_CONNECTIONS The	number	of	connections	is	limited	by	

Microsoft®	SQL	Server™.	The	driver	returns	0
for	this	SQLGetInfo	request.

SQL_ACTIVE_ENVIRONMENTS The	number	of	environments	is	not	limited	by	the
driver.	The	driver	returns	0	for	this	
request.

SQL_ACTIVE_STATEMENTS The	driver	returns	1	for	this	
The	number	of	statement	handles	available	to	an
application	is	not	limited	by	the	driver,	but
default	execution	on	a	statement	handle	will
block	execution	on	any	other	handle.

SQL_ALTER_DOMAIN FALSE
SQL_ALTER_TABLE SQL_AT_ADD_COLUMN

SQL_AT_ADD_COLUMN_DEFAULT
SQL_AT_ADD_COLUMN_SINGLE
SQL_AT_ADD_CONSTRAINT
SQL_AT_ADD_TABLE_CONSTRAINT
SQL_AT_CONSTRAINT_NAME_DEFINITION
SQL_AT_DROP_COLUMN_RESTRICT

SQL_SQL_CONFORMANCE SQL_SC_SQL92_ENTRY
SQL_DATETIME_LITERALS FALSE
SQL_ASYNC_MODE SQL_AM_STATEMENT
SQL_BATCH_ROW_COUNT SQL_BRC_EXPLICIT
SQL_BATCH_SUPPORT SQL_BS_ROW_COUNT_EXPLICIT

SQL_BS_ROW_COUNT_PROC
SQL_BS_SELECT_EXPLICIT



SQL_BS_SELECT_PROC
SQL_BOOKMARK_PERSISTENCE SQL_BP_DELETE

SQL_BP_SCROLL
SQL_BP_UPDATE

SQL_CATALOG_LOCATION SQL_CL_START
SQL_CATALOG_NAME "Y"
SQL_CATALOG_NAME_SEPARATOR "."
SQL_CATALOG_TERM "database"
SQL_CATALOG_USAGE SQL_CU_DML_STATEMENTS

SQL_CU_PROCEDURE_INVOCATION
SQL_CU_TABLE_DEFINITION

SQL_COLLATION_SEQ The	currently	assigned	collation	sequence	for	the
connection	and	server.

SQL_COLUMN_ALIAS "Y"
SQL_CONCAT_NULL_BEHAVIOR SQL_CB_NULL

SQL_CB_NON_NULL	if	connected	to	a	version
6.5	or	earlier	server,	or	if	AnsiNPW	is	off	when
connected	to	an	instance	of	SQL	Server	2000.

SQL_CONVERT_BIGINT No	support	for	conversion	of	the	ODBC
SQL_BIGINT	data	type.	The	SQL	Server	ODBC
driver	supports	the	SQL	Server	
data	type	as	ODBC	type	SQL_DECIMAL.	See
SQL_CONVERT_DECIMAL	below.

SQL_CONVERT_BINARY SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_TINYINT
SQL_CVT_LONGVARBINARY
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_BIT SQL_CVT_CHAR



SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_CHAR SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_LONGVARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_TIMESTAMP
SQL_CVT_LONGVARBINARY
SQL_CVT_WCHAR
SQL_CVT_WLONGVARCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_DATE No	support	for	conversion	of	the	ODBC
SQL_TYPE_DATE	data	type.	The	SQL	Server
ODBC	driver	supports	the	SQL	Server	
data	type	as	ODBC	type
SQL_TYPE_TIMESTAMP.	See
SQL_CONVERT_TIMESTAMP	below.



SQL_CONVERT_DECIMAL SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_DOUBLE No	support	for	conversion	of	ODBC
SQL_DOUBLE	data	type.	The	SQL	Server
ODBC	driver	supports	the	ODBC
SQL_DOUBLE	data	type	as	SQL_FLOAT.	See
SQL_CONVERT_FLOAT	below.

SQL_CONVERT_FLOAT SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_FUNCTIONS SQL_FN_CVT_CONVERT
SQL_FN_CVT_CAST

SQL_CONVERT_INTEGER SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER



SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_INTERVAL_YEAR_MONTH No	support	for	conversion	of	interval	data	types.
SQL_CONVERT_INTERVAL_DAY_TIME No	support	for	conversion	of	interval	data	types.
SQL_CONVERT_LONGVARBINARY SQL_CVT_BINARY

SQL_CVT_LONGVARBINARY
SQL_CVT_VARBINARY

SQL_CONVERT_LONGVARCHAR SQL_CVT_CHAR
SQL_CVT_VARCHAR
SQL_CVT_LONGVARCHAR
SQL_CVT_WCHAR
SQL_CVT_WLONGVARCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_NUMERIC SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_REAL SQL_CVT_CHAR



SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_SMALLINT SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_TIME No	support	for	conversion	of	the	ODBC
SQL_TYPE_TIME	data	type.	The	SQL	Server
ODBC	driver	supports	the	SQL	Server	
data	type	as	ODBC	type
SQL_TYPE_TIMESTAMP.	See
SQL_CONVERT_TIMESTAMP	below.

SQL_CONVERT_TIMESTAMP SQL_CVT_CHAR
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_TIMESTAMP
SQL_CVT_WCHAR



SQL_CVT_WVARCHAR
SQL_CONVERT_TINYINT SQL_CVT_CHAR

SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_VARBINARY SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_VARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_TINYINT
SQL_CVT_LONGVARBINARY
SQL_CVT_WCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_VARCHAR SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_LONGVARCHAR
SQL_CVT_BINARY



SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_TIMESTAMP
SQL_CVT_LONGVARBINARY
SQL_CVT_WCHAR
SQL_CVT_WLONGVARCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_WCHAR SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT
SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_LONGVARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_TIMESTAMP
SQL_CVT_LONGVARBINARY
SQL_CVT_WCHAR
SQL_CVT_WLONGVARCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_WLONGVARCHAR SQL_CVT_CHAR
SQL_CVT_VARCHAR
SQL_CVT_LONGVARCHAR
SQL_CVT_WCHAR
SQL_CVT_WLONGVARCHAR
SQL_CVT_WVARCHAR

SQL_CONVERT_WVARCHAR SQL_CVT_CHAR
SQL_CVT_NUMERIC
SQL_CVT_DECIMAL
SQL_CVT_INTEGER
SQL_CVT_SMALLINT



SQL_CVT_FLOAT
SQL_CVT_REAL
SQL_CVT_VARCHAR
SQL_CVT_LONGVARCHAR
SQL_CVT_BINARY
SQL_CVT_VARBINARY
SQL_CVT_BIT
SQL_CVT_TINYINT
SQL_CVT_TIMESTAMP
SQL_CVT_LONGVARBINARY
SQL_CVT_WCHAR
SQL_CVT_WLONGVARCHAR
SQL_CVT_WVARCHAR

SQL_CORRELATION_NAME SQL_CN_ANY
SQL_CREATE_ASSERTION FALSE
SQL_CREATE_CHARACTER_SET FALSE
SQL_CREATE_COLLATION FALSE
SQL_CREATE_DOMAIN FALSE
SQL_CREATE_SCHEMA SQL_CS_AUTHORIZATION

SQL_CS_CREATE_SCHEMA
SQL_CREATE_TABLE SQL_CT_CREATE_TABLE
SQL_CREATE_TRANSLATION FALSE
SQL_CREATE_VIEW SQL_CV_CHECK_OPTION

SQL_CV_CREATE_VIEW
SQL_CURSOR_COMMIT_BEHAVIOR SQL_CB_CLOSE
SQL_CURSOR_ROLLBACK_BEHAVIOR SQL_CB_CLOSE
SQL_CURSOR_SENSITIVITY SQL_SENSITIVE
SQL_DATA_SOURCE_NAME Current	data	source	name.	Sets	value	pointed	to

by	StringLengthPtr	to	0	if	connection	did	not
specify	a	data	source	name.

SQL_DATA_SOURCE_READ_ONLY Depends	on	setting	of	connection	attribute
SQL_ATTR_ACCESS_MODE.

SQL_DATABASE_NAME The	connection's	current	database.
SQL_DBMS_NAME "Microsoft	SQL	Server"
SQL_DBMS_VER The	version	number	of	the	connected	instance	of



SQL	Server.
SQL_DEFAULT_TXN_ISOLATION SQL_TXN_READ_COMMITTED
SQL_DESCRIBE_PARAMETER "Y"
SQL_DRIVER_NAME "Sqlsrv32.dll"
SQL_DRIVER_ODBC_VER The	driver's	supported	ODBC	version.
SQL_DRIVER_VER The	version	number	of	the	driver.
SQL_DROP_ASSERTION FALSE
SQL_DROP_CHARACTER_SET FALSE
SQL_DROP_COLLATION FALSE
SQL_DROP_DOMAIN FALSE
SQL_DROP_SCHEMA DROP	SCHEMA	not	supported.
SQL_DROP_TABLE SQL_DT_DROP_TABLE
SQL_DROP_TRANSLATION FALSE
SQL_DROP_VIEW SQL_DV_DROP_VIEW
SQL_DYNAMIC_CURSOR_ATTRIBUTES1 SQL_CA1_ABSOLUTE

SQL_CA1_BULK_ADD
SQL_CA1_LOCK_NO_CHANGE
SQL_CA1_NEXT
SQL_CA1_POS_DELETE
SQL_CA1_POS_POSITION
SQL_CA1_POS_REFRESH
SQL_CA1_POS_UPDATE
SQL_CA1_POSITIONED_UPDATE
SQL_CA1_POSITIONED_DELETE
SQL_CA1_RELATIVE
SQL_CA1_SELECT_FOR_UPDATE

SQL_DYNAMIC_CURSOR_ATTRIBUTES2 SQL_CA2_LOCK_CONCURRENCY
SQL_CA2_MAX_ROWS_CATALOG
SQL_CA2_MAX_ROWS_DELETE
SQL_CA2_MAX_ROWS_INSERT
SQL_CA2_MAX_ROWS_SELECT
SQL_CA2_MAX_ROWS_UPDATE
SQL_CA2_OPT_ROWVER_CONCURRENCY
SQL_CA2_OPT_VALUES_CONCURRENCY
SQL_CA2_READ_ONLY_CONCURRENCY



SQL_CA2_SENSITIVITY_ADDITIONS
SQL_CA2_SENSITIVITY_UPDATES
SQL_CA2_SIMULATE_UNIQUE

SQL_EXPRESSIONS_IN_ORDERBY "Y"
SQL_FETCH_DIRECTION SQL_FD_FETCH_ABSOLUTE

SQL_FD_FETCH_BOOKMARK
SQL_FD_FETCH_FIRST
SQL_FD_FETCH_LAST
SQL_FD_FETCH_NEXT
SQL_FD_FETCH_PRIOR
SQL_FD_FETCH_RELATIVE

SQL_FILE_USAGE SQL_FILE_NOT_SUPPORTED
SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1 SQL_CA1_NEXT

SQL_CA1_POSITIONED_DELETE
SQL_CA1_POSITIONED_UPDATE
SQL_CA1_SELECT_FOR_UPDATE

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2 SQL_CA2_LOCK_CONCURRENCY
SQL_CA2_MAX_ROWS_CATALOG
SQL_CA2_MAX_ROWS_DELETE
SQL_CA2_MAX_ROWS_INSERT
SQL_CA2_MAX_ROWS_SELECT
SQL_CA2_MAX_ROWS_UPDATE
SQL_CA2_OPT_ROWVER_CONCURRENCY
SQL_CA2_OPT_VALUES_CONCURRENCY
SQL_CA2_READ_ONLY_CONCURRENCY

SQL_GETDATA_EXTENSIONS SQL_GD_BLOCK
SQL_GROUP_BY SQL_GB_GROUP_BY_CONTAINS_SELECT
SQL_IDENTIFIER_CASE SQL_IC_MIXED	if	connected	to	a	server

running	a	case-insenstive	sort	order.

SQL_IC_SENSITIVE	if	connected	to	a	server
running	case-sensitive	sort	order.

SQL_IDENTIFIER_QUOTE_CHAR "	(the	double	quote	character)
SQL_INDEX_KEYWORDS SQL_IK_ASC

SQL_IK_DESC
SQL_INFO_SCHEMA_VIEWS Request	not	supported	by	driver.



SQL_INFO_SS_NETLIB_NAME SQL	Server	ODBC	driver-specific	attribute.	The
name	of	the	network	library	in	use	by	the
connection.

SQL_INTEGRITY "Y"
SQL_KEYSET_CURSOR_ATTRIBUTES1 SQL_CA1_ABSOLUTE

SQL_CA1_BOOKMARK
SQL_CA1_BULK_ADD
SQL_CA1_BULK_DELETE_BY_BOOKMARK
SQL_CA1_BULK_FETCH_BY_BOOKMARK
SQL_CA1_BULK_UPDATE_BY_BOOKMARK
SQL_CA1_LOCK_NO_CHANGE
SQL_CA1_NEXT
SQL_CA1_POS_DELETE
SQL_CA1_POS_POSITION
SQL_CA1_POS_REFRESH
SQL_CA1_POS_UPDATE
SQL_CA1_POSITIONED_DELETE
SQL_CA1_POSITIONED_UPDATE
SQL_CA1_RELATIVE
SQL_CA1_SELECT_FOR_UPDATE

SQL_KEYSET_CURSOR_ATTRIBUTES2 SQL_CA2_CRC_EXACT
SQL_CA2_LOCK_CONCURRENCY
SQL_CA2_MAX_ROWS_CATALOG
SQL_CA2_MAX_ROWS_DELETE
SQL_CA2_MAX_ROWS_INSERT
SQL_CA2_MAX_ROWS_SELECT
SQL_CA2_MAX_ROWS_UPDATE
SQL_CA2_OPT_ROWVER_CONCURRENCY
SQL_CA2_OPT_VALUES_CONCURRENCY
SQL_CA2_READ_ONLY_CONCURRENCY
SQL_CA2_SENSITIVITY_ADDITIONS
SQL_CA2_SENSITIVITY_UPDATES
SQL_CA2_SIMULATE_UNIQUE

SQL_KEYWORDS BREAK
BROWSE
BULK
CHECKPOINT



CLUSTERED
COMMITTED
COMPUTE
CONFIRM
CONTROLROW
DATABASE
DBCC
DISK
DISTRIBUTED
DUMMY
DUMP
ERRLVL
ERROREXIT
EXIT
FILE
FILLFACTOR
FLOPPY
HOLDLOCK
IDENTITY_INSERT
IDENTITYCOL
IF
KILL
LINENO
LOAD
MIRROREXIT
NONCLUSTERED
OFF
OFFSETS
ONCE
OVER
PERCENT
PERM
PERMANENT
PLAN
PRINT
PROC
PROCESSEXIT



RAISERROR
READ
READTEXT
RECONFIGURE
REPEATABLE
RETURN
ROWCOUNT
RULE
SAVE
SERIALIZABLE
SETUSER
SHUTDOWN
STATISTICS
TAPE
TEMP
TEXTSIZE
TRAN
TRIGGER
TRUNCATE
TSEQUEL
UNCOMMITTED
UPDATETEXT
USE
WAITFOR
WHILE
WRITETEXT

SQL_LIKE_ESCAPE_CLAUSE "Y"
SQL_LOCK_TYPES SQL_LCK_NO_CHANGE
SQL_MAX_ASYNC_CONCURRENT_STATEMENTS1
SQL_MAX_BINARY_LITERAL_LEN 131072
SQL_MAX_CATALOG_NAME_LEN 128/30*
SQL_MAX_CHAR_LITERAL_LEN 131072
SQL_MAX_COLUMN_NAME_LEN 128/30*
SQL_MAX_COLUMNS_IN_GROUP_BY 16
SQL_MAX_COLUMNS_IN_INDEX 16
SQL_MAX_COLUMNS_IN_ORDER_BY 16



SQL_MAX_COLUMNS_IN_SELECT 4000
SQL_MAX_COLUMNS_IN_TABLE 250
SQL_MAX_CONCURRENT_ACTIVITIES 1
SQL_MAX_CURSOR_NAME_LEN 128/30*
SQL_MAX_DRIVER_CONNECTIONS 0
SQL_MAX_IDENTIFIER_LEN 128/30*
SQL_MAX_INDEX_SIZE 127
SQL_MAX_PROCEDURE_NAME_LEN 134/36*	(SQL	Server	procedure	names	consist	of

the	name	(128	bytes	in	SQL	Server	7.0	and	30
bytes	in	earlier	versions),	plus	an	optional	colon
and	a	5	digit	number.)

SQL_MAX_ROW_SIZE 8062/1962*
SQL_MAX_ROW_SIZE_INCLUDES_LONG "N"
SQL_MAX_SCHEMA_NAME_LEN 128/30*
SQL_MAX_STATEMENT_LEN 131072
SQL_MAX_TABLE_NAME_LEN 128/30*
SQL_MAX_TABLES_IN_SELECT 16
SQL_MAX_USER_NAME_LEN 128/30*
SQL_MAX_OWNER_NAME_LEN 128/30*
SQL_MAX_QUALIFIER_NAME_LEN 128/30*
SQL_MULT_RESULT_SETS "Y"
SQL_MULTIPLE_ACTIVE_TXN "Y"
SQL_NEED_LONG_DATA_LEN "Y"
SQL_NON_NULLABLE_COLUMNS SQL_NNC_NON_NULL
SQL_NULL_COLLATION SQL_NC_LOW
SQL_NUMERIC_FUNCTIONS SQL_FN_NUM_ABS

SQL_FN_NUM_ACOS
SQL_FN_NUM_ASIN
SQL_FN_NUM_ATAN
SQL_FN_NUM_ATAN2
SQL_FN_NUM_CEILING
SQL_FN_NUM_COS
SQL_FN_NUM_COT
SQL_FN_NUM_DEGREES



SQL_FN_NUM_EXP
SQL_FN_NUM_FLOOR
SQL_FN_NUM_LOG
SQL_FN_NUM_LOG10
SQL_FN_NUM_MOD
SQL_FN_NUM_PI
SQL_FN_NUM_POWER
SQL_FN_NUM_RADIANS
SQL_FN_NUM_RAND
SQL_FN_NUM_ROUND
SQL_FN_NUM_SIGN
SQL_FN_NUM_SIN
SQL_FN_NUM_SQRT
SQL_FN_NUM_TAN

SQL_ODBC_API_CONFORMANCE SQL_OAC_LEVEL2
SQL_ODBC_INTERFACE_CONFORMANCE SQL_OIC_LEVEL2	when	connected	to	an

instance	of	SQL	Server	2000.

SQL_OIC_CORE	when	connected	to	SQL	Server
version	6.5	or	earlier.

SQL_ODBC_SAG_CLI_CONFORMANCE SQL_OSCC_NOT_COMPLIANT
SQL_ODBC_SQL_CONFORMANCE SQL_OSC_CORE
SQL_ODBC_SQL_OPT_IEF "Y"
SQL_ODBC_VER Current	version	number	of	the	ODBC	Driver

Manager.
SQL_OJ_CAPABILITIES SQL_OJ_ALL_COMPARISON_OPS

SQL_OJ_FULL
SQL_OJ_INNER
SQL_OJ_LEFT
SQL_OJ_NESTED
SQL_OJ_NOT_ORDERED
SQL_OJ_RIGHT

SQL_OUTER_JOINS "Y"
SQL_ORDER_BY_COLUMNS_IN_SELECT "N"
SQL_OWNER_USAGE SQL_OU_DML_STATEMENTS

SQL_OU_INDEX_DEFINITION



SQL_OU_PRIVILEGE_DEFINITION
SQL_OU_PROCEDURE_INVOCATION
SQL_OU_TABLE_DEFINITION

SQL_PARAM_ARRAY_ROW_COUNTS SQL_PARC_BATCH
SQL_PARAM_ARRAY_SELECTS SQL_PAS_BATCH
SQL_POS_OPERATIONS SQL_POS_ADD

SQL_POS_DELETE
SQL_POS_POSITION
SQL_POS_REFRESH
SQL_POS_UPDATE

SQL_POSITIONED_STATEMENTS SQL_PS_POSITIONED_DELETE
SQL_PS_POSITIONED_UPDATE
SQL_PS_SELECT_FOR_UPDATE

SQL_PROCEDURE_TERM "stored	procedure"
SQL_PROCEDURES "Y"
SQL_QUALIFIER_USAGE SQL_CU_DML_STATEMENTS

SQL_CU_PROCEDURE_INVOCATION
SQL_CU_TABLE_DEFINITION

SQL_QUOTED_IDENTIFIER_CASE SQL_IC_MIXED	when	connected	to	a	server
running	a	case-insensitive	sort	order.

SQL_IC_SENSITIVE	when	connected	to	a
server	running	a	case-sensitive	sort	order.

SQL_ROW_UPDATES "N"
SQL_SCHEMA_TERM "owner"
SQL_SCHEMA_USAGE SQL_OU_DML_STATEMENTS

SQL_OU_INDEX_DEFINITION
SQL_OU_PRIVILEGE_DEFINITION
SQL_OU_PROCEDURE_INVOCATION
SQL_OU_TABLE_DEFINITION

SQL_SCROLL_OPTIONS SQL_SO_DYNAMIC
SQL_SO_FORWARD_ONLY
SQL_SO_KEYSET_DRIVEN
SQL_SO_STATIC

SQL_SCROLL_CONCURRENCY SQL_SCCO_LOCK



SQL_SCCO_OPT_ROWVER
SQL_SCCO_OPT_VALUES
SQL_SCCO_READ_ONLY

SQL_SEARCH_PATTERN_ESCAPE "\"
SQL_SERVER_NAME The	connection's	server	name.
SQL_SPECIAL_CHARACTERS Depends	on	SQL	Server-installed	character	set.
SQL_SQL92_DATETIME_FUNCTIONS FALSE
SQL_SQL92_FOREIGN_KEY_DELETE_RULE FALSE
SQL_SQL92_FOREIGN_KEY_UPDATE_RULE FALSE
SQL_SQL92_GRANT SQL_SG_WITH_GRANT_OPTION
SQL_SQL92_NUMERIC_VALUE_FUNCTIONS FALSE
SQL_SQL92_PREDICATES SQL_SP_EXISTS	SQL_SP_ISNOTNULL

SQL_SP_ISNULL
SQL_SQL92_RELATIONAL_JOIN_OPERATORS SQL_SRJO_CROSS_JOIN

SQL_SRJO_FULL_OUTER_JOIN
SQL_SRJO_INNER_JOIN
SQL_SRJO_LEFT_OUTER_JOIN
SQL_SRJO_RIGHT_OUTER_JOIN
SQL_SRJO_UNION_JOIN

SQL_SQL92_REVOKE SQL_SR_GRANT_OPTION_FOR
SQL_SQL92_ROW_VALUE_CONSTRUCTOR SQL_SRVC_DEFAULT

SQL_SRVC_NULL
SQL_SRVC_ROW_SUBQUERY
SQL_SRVC_VALUE_EXPRESSION

SQL_SQL92_STRING_FUNCTIONS SQL_SSF_LOWER
SQL_SSF_UPPER

SQL_SQL92_VALUE_EXPRESSIONS SQL_SVE_CASE
SQL_SVE_CAST
SQL_SVE_COALESCE
SQL_SVE_NULLIF

SQL_STANDARD_CLI_CONFORMANCE SQL_SCC_ISO92_CLI
SQL_STATIC_CURSOR_ATTRIBUTES1 SQL_CA1_ABSOLUTE

SQL_CA1_BOOKMARK
SQL_CA1_BULK_FETCH_BY_BOOKMARK
SQL_CA1_LOCK_NO_CHANGE



SQL_CA1_NEXT
SQL_CA1_POS_POSITION
SQL_CA1_POS_REFRESH
SQL_CA1_RELATIVE

SQL_STATIC_CURSOR_ATTRIBUTES2 SQL_CA2_CRC_EXACT
SQL_CA2_MAX_ROWS_CATALOG
SQL_CA2_MAX_ROWS_DELETE
SQL_CA2_MAX_ROWS_INSERT
SQL_CA2_MAX_ROWS_SELECT
SQL_CA2_MAX_ROWS_UPDATE
SQL_CA2_READ_ONLY_CONCURRENCY

SQL_STATIC_SENSITIVITY SQL_SS_ADDITIONS
SQL_SS_UPDATES

SQL_STRING_FUNCTIONS SQL_FN_STR_ASCII
SQL_FN_STR_BIT_LENGTH
SQL_FN_STR_CHAR
SQL_FN_STR_CONCAT
SQL_FN_STR_DIFFERENCE
SQL_FN_STR_INSERT
SQL_FN_STR_LCASE
SQL_FN_STR_LEFT
SQL_FN_STR_LENGTH
SQL_FN_STR_LOCATE_2
SQL_FN_STR_LTRIM
SQL_FN_STR_OCTET_LENGTH
SQL_FN_STR_REPEAT
SQL_FN_STR_RIGHT
SQL_FN_STR_RTRIM
SQL_FN_STR_SOUNDEX
SQL_FN_STR_SPACE
SQL_FN_STR_SUBSTRING
SQL_FN_STR_UCASE

SQL_SUBQUERIES SQL_SQ_COMPARISON
SQL_SQ_CORRELATED_SUBQUERIES
SQL_SQ_EXISTS
SQL_SQ_IN
SQL_SQ_QUANTIFIED



SQL_SYSTEM_FUNCTIONS SQL_FN_SYS_DBNAME
SQL_FN_SYS_IFNULL
SQL_FN_SYS_USERNAME

SQL_TABLE_TERM "table"
SQL_TIMEDATE_ADD_INTERVALS SQL_FN_TSI_DAY

SQL_FN_TSI_FRAC_SECOND
SQL_FN_TSI_HOUR
SQL_FN_TSI_MINUTE
SQL_FN_TSI_MONTH
SQL_FN_TSI_QUARTER
SQL_FN_TSI_SECOND
SQL_FN_TSI_WEEK
SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVALS SQL_FN_TSI_DAY
SQL_FN_TSI_FRAC_SECOND
SQL_FN_TSI_HOUR
SQL_FN_TSI_MINUTE
SQL_FN_TSI_MONTH
SQL_FN_TSI_QUARTER
SQL_FN_TSI_SECOND
SQL_FN_TSI_WEEK
SQL_FN_TSI_YEAR

SQL_TIMEDATE_FUNCTIONS SQL_FN_TD_CURDATE
SQL_FN_TD_CURRENT_DATE
SQL_FN_TD_CURRENT_TIME
SQL_FN_TD_CURRENT_TIMESTAMP
SQL_FN_TD_CURTIME
SQL_FN_TD_DAYNAME
SQL_FN_TD_DAYOFMONTH
SQL_FN_TD_DAYOFWEEK
SQL_FN_TD_DAYOFYEAR
SQL_FN_TD_EXTRACT
SQL_FN_TD_HOUR
SQL_FN_TD_MINUTE
SQL_FN_TD_MONTH
SQL_FN_TD_MONTHNAME



SQL_FN_TD_NOW
SQL_FN_TD_QUARTER
SQL_FN_TD_SECOND
SQL_FN_TD_TIMESTAMPADD
SQL_FN_TD_TIMESTAMPDIFF
SQL_FN_TD_WEEK
SQL_FN_TD_YEAR

SQL_TXN_CAPABLE SQL_TC_ALL
SQL_TXN_ISOLATION_OPTION SQL_TXN_READ_COMMITTED

SQL_TXN_READ_UNCOMMITTED
SQL_TXN_REPEATABLE_READ
SQL_TXN_SERIALIZABLE

SQL_UNION SQL_U_UNION
SQL_U_UNION_ALL

SQL_USER_NAME The	current	username.
*				Dependent	on	SQL	Server	version.	First	value	when	connected	to	SQL	Server	7.0	and	later;	second
value	for	all	earlier	versions.



ODBC	and	SQL	Server



SQLGetStmtAttr
The	Microsoft®	SQL	Server™	ODBC	driver	extends	SQLGetStmtAttr	to
expose	driver-specific	statement	attributes.	All	driver-specific	attributes	are
SQLINTEGER	values.

The	SQL	Server	ODBC	driver	SQL_TEXTPTR_LOGGING	attribute	exposes
logging	of	operations	on	columns	containing	text	or	image	data.

Value Description
SQL_TL_OFF Logging	operations	performed	on	text,	ntext,	and

image	data	is	disabled.
SQL_TL_ON Default.	Logging	of	operations	performed	on	text,

ntext,	and	image	data	is	enabled.

The	SQL_SOPT_SS_CURRENT_COMMAND	attribute	exposes	the	current
command	of	a	command	batch.	The	return	is	an	integer	specifying	the	location
of	the	command	in	the	batch.

SQL_SOPT_SS_HIDDEN_COLUMNS	exposes,	in	the	result	set,	columns
hidden	in	a	SQL	Server	SELECT	FOR	BROWSE	statement.	The	driver	does	not
expose	these	columns	by	default.

Value Description
SQL_HC_OFF Default.	FOR	BROWSE	columns	are	hidden	from	the

result	set.
SQL_HC_ON Exposes	FOR	BROWSE	columns.

SQL_SOPT_SS_NCOUNT_STATUS	indicates	the	current	setting	of	the
NOCOUNT	option,	which	controls	whether	SQL	Server	reports	the	numbers	of
rows	affected	by	a	statement	when	SQLRowCount	is	called.

Value Description
SQL_NC_OFF NOCOUNT	is	OFF.	SQLRowCount	returns	number	of

rows	affected.
SQL_NC_ON NOCOUNT	is	ON.	The	counts	of	rows	affected	is	not



returned	by	SQLRowCount.



ODBC	and	SQL	Server



SQLGetTypeInfo
The	Microsoft®	SQL	Server™	ODBC	driver	reports	the	additional	column
USERTYPE	in	the	result	set	of	SQLGetTypeInfo.	USERTYPE	reports	the	DB-
Library	data	type	definition	and	is	useful	to	developers	porting	existing	DB-
Library	applications	to	ODBC.

SQL	Server	treats	identity	as	an	attribute,	whereas	ODBC	treats	it	as	a	data	type.
To	resolve	this	mismatch,	SQLGetTypeInfo	returns	the	data	types:	int	identity,
smallint	identity,	tinyint	identity,	decimal	identity,	and	numeric	identity.
The	SQLGetTypeInfo	result	set	column	AUTO_UNIQUE_VALUE	reports	the
value	TRUE	for	these	data	types.



ODBC	and	SQL	Server



SQLMoreResults
SQLMoreResults	allows	the	application	to	retrieve	multiple	sets	of	result	rows.
A	Transact-SQL	SELECT	statement	containing	a	COMPUTE	clause,	or	a
submitted	batch	of	ODBC	or	Transact-SQL	statements,	causes	the	Microsoft®
SQL	Server™	ODBC	driver	to	generate	multiple	result	sets.	SQL	Server	does
not	allow	creation	of	a	server	cursor	to	process	the	results	in	either	case.
Therefore,	the	developer	must	ensure	that	the	ODBC	statement	is	blocking.	The
developer	must	exhaust	the	returned	data	or	cancel	the	ODBC	statement	before
he	or	she	can	process	data	from	other	active	statements	on	the	connection.

The	developer	can	determine	properties	of	the	result	sets	columns	and	rows	that
are	generated	by	the	COMPUTE	clause	of	a	SQL	Server	SELECT	statement.	For
more	detail,	see	SQLColAttribute.

When	SQLMoreResults	is	called	with	unfetched	data	rows	in	the	result	set,
those	rows	are	lost,	and	row	data	from	the	next	result	row	set	is	made	available.

Examples

void	GetComputedRows
				(
				SQLHSTMT	hStmt
				)	
				{
				SQLUSMALLINT				nCols;
				SQLUSMALLINT				nCol;
				PODBCSETINFO				pODBCSetInfo	=	NULL;
				SQLRETURN							sRet;
				UINT												nRow;
				SQLINTEGER						nComputes	=	0;
				SQLINTEGER						nSet;
				BYTE*											pValue;

				//	If	SQLNumResultCols	failed,	then	some	error	occurred	in



				//		statement	execution.	Exit.
				if	(!SQL_SUCCEEDED(SQLNumResultCols(hStmt,	(SQLSMALLINT*)	&nCols)))
								{
								goto	EXIT;
								}

				//	Determine	the	presence	of	COMPUTE	clause	result	sets.	The	SQL
				//		Server	ODBC	driver	uses	column	attributes	to	report	multiple
				//		sets.	The	column	number	must	be	less	than	or	equal	to	the	
				//		number	of	columns	returned.	You	are	guaranteed	to	have	at	least
				//		one,	so	use	'1'	for	the	SQLColAttribute	ColumnNumber
				//		parameter.
				SQLColAttribute(hStmt,	1,	SQL_CA_SS_NUM_COMPUTES,
								NULL,	0,	NULL,	(SQLPOINTER)	&nComputes);

				//	Create	a	result	info	structure	pointer	array,	one	element	for
				//		the	normal	result	rows	and	one	for	each	compute	result	set.
				//		Initialize	the	array	to	NULL	pointers.
				pODBCSetInfo	=	new	ODBCSETINFO[1	+	nComputes];

				//	Process	the	result	sets...
				nSet	=	0;
				while	(TRUE)
								{
								//	If	required,	get	the	column	information	for	the	result	set.
								if	(pODBCSetInfo[nSet].pODBCColInfo	==	NULL)
												{
												if	(pODBCSetInfo[nSet].nCols	==	0)
																{
																SQLNumResultCols(hStmt,	(SQLSMALLINT*)	&nCols);
																pODBCSetInfo[nSet].nCols	=	nCols;
																}



												if	(GetColumnsInfo(hStmt,	pODBCSetInfo[nSet].nCols,
																&(pODBCSetInfo[nSet].pODBCColInfo))	==	SQL_ERROR)
																{
																goto	EXIT;
																}
												}

								//	Get	memory	for	bound	return	values	if	required.
								if	(pODBCSetInfo[nSet].pRowValues	==	NULL)
												{
												CreateBindBuffer(&(pODBCSetInfo[nSet]));
												}

								//	Rebind	columns	each	time	the	result	set	changes.
								myBindCols(hStmt,	pODBCSetInfo[nSet].nCols,
												pODBCSetInfo[nSet].pODBCColInfo,
												pODBCSetInfo[nSet].pRowValues);

								//	Set	for	ODBC	row	array	retrieval.	Fast	retrieve	for	all
								//		sets.	COMPUTE	row	sets	have	only	a	single	row,	but
								//		normal	rows	can	be	retrieved	in	blocks	for	speed.
								SQLSetStmtAttr(hStmt,	SQL_ATTR_ROW_BIND_TYPE,
												(void*)	pODBCSetInfo[nSet].nResultWidth,	SQL_IS_UINTEGER);
								SQLSetStmtAttr(hStmt,	SQL_ATTR_ROW_ARRAY_SIZE,
												(void*)	pODBCSetInfo[nSet].nRows,	SQL_IS_UINTEGER);
								SQLSetStmtAttr(hStmt,	SQL_ATTR_ROWS_FETCHED_PTR,
												(void*)	&nRowsFetched,	sizeof(SQLINTEGER));

								while	(TRUE)
												{
												//	In	ODBC	3.x,	SQLFetch	supports	arrays	of	bound	rows	or
												//		columns.	SQLFetchScroll	(or	ODBC	2.x	SQLExtendedFetch)
												//		is	not	necessary	to	support	fastest	retrieval	of	



												//		data	rows.
												if	(!SQL_SUCCEEDED(sRet	=	SQLFetch(hStmt)))
																{
																break;
																}

												for	(nRow	=	0;	nRow	<	(UINT)	nRowsFetched;	nRow++)
																{
																for	(nCol	=	0;	nCol	<	pODBCSetInfo[nSet].nCols;
																								nCol++)
																				{
																				//	Processing	row	and	column	values...
																				}
																}
												}

								//	sRet	is	not	SQL_SUCCESS	and	is	not	SQL_SUCCESS_WITH_INFO.
								//		If	it's	SQL_NO_DATA,	then	continue.	If	it's	an
								//		error	state,	stop.
								if	(sRet	!=	SQL_NO_DATA)
												{
												break;
												}

								//	If	there's	another	set	waiting,	determine	the	result	set
								//		indicator.	The	indicator	is	0	for	regular	row	sets	or	an
								//		ordinal	indicating	the	COMPUTE	clause	responsible	for	the
								//		set.
								if	(SQLMoreResults(hStmt)	==	SQL_SUCCESS)
												{
												sRet	=	SQLColAttribute(hStmt,	1,	SQL_CA_SS_COMPUTE_ID,
																NULL,	0,	NULL,	(SQLPOINTER)	&nSet);
												}



								else
												{
												break;
												}
								}

EXIT:
				//	Clean-up	anything	dynamically	allocated	and	return.
				return;
				}

See	Also

SELECT

SQLColAttribute

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



SQLNativeSql
The	Microsoft®	SQL	Server™	ODBC	driver	satisfies	SQLNativeSql	requests
without	visiting	the	server.	The	function	will	efficiently	test	the	syntax	of	SQL
statements.	Syntax	checking	does	not	determine	if	identifiers	or	the	results	of
expressions	in	the	SQL	are	valid,	and	SQL	Server	native	SQL	returned	by
SQLNativeSql	can	fail	to	run.



ODBC	and	SQL	Server



SQLNumResultCols
For	executed	statements,	the	Microsoft®	SQL	Server™	ODBC	driver	does	not
visit	the	server	to	report	the	number	of	columns	in	a	result	set.	In	this	case,
SQLNumResultCols	does	not	cause	a	server	roundtrip.	Like	SQLDescribeCol
and	SQLColAttribute,	calling	SQLNumResultCols	on	prepared	but	not
executed	statements	generates	a	server	roundtrip.

When	a	Transact-SQL	statement	or	statement	batch	returns	multiple	result	row
sets,	it	is	possible	for	the	number	of	result	set	columns	to	change	from	one	set	to
another.	SQLNumResultCols	should	be	called	for	each	set.	When	the	number
of	columns	changes,	the	application	should	rebind	data	values	prior	to	fetching
row	results.	For	more	information	about	handling	multiple	result	set	returns,	see
SQLMoreResults.

See	Also

SQLMoreResults



ODBC	and	SQL	Server



SQLPrepare
Note		Microsoft®	SQL	Server™	2000	supports	the	prepare/execute	model	of
ODBC.	The	following	discussion	of	SQLPrepare/SQLExecute	behavior	is
applicable	only	to	versions	of	SQL	Server	earlier	than	7.0.

The	SQL	Server	ODBC	driver	creates	a	temporary	stored	procedure	from
prepared	SQL	statements.	Stored	procedures	are	an	efficient	way	to	execute	a
statement	multiple	times,	but	stored	procedure	creation	is	more	expensive	than
simple	statement	execution.	As	a	general	rule,	consider	using	SQLPrepare	and
SQLExecute	if	the	application	will	submit	an	SQL	statement	more	than	three
times.

A	temporary	stored	procedure	created	by	SQLPrepare	is	named
#odbc#useridentifier,	where	useridentifier	is	up	to	6	characters	of	the	user-name
concatenated	with	up	to	8	digits	that	identify	the	procedure.

SQLPrepare	creates	the	temporary	stored	procedure	if	all	parameter	values	have
been	bound	or	if	the	SQL	statement	does	not	contain	parameters.	SQLExecute
creates	the	procedure	if	all	parameters	were	not	bound	when	SQLPrepare	was
called.

SQLPrepare	can	create	stored	procedures	more	efficiently	than	SQLExecute,
and	it	is	suggested	that	SQLBindParameter	be	used	to	bind	parameter	variables
prior	to	calling	SQLPrepare.

If	the	CREATE	PROCEDURE	statement	used	to	generate	a	temporary	stored
procedure	returns	an	error,	SQLPrepare	or	SQLExecute	submits	the	statement
to	SQL	Server	with	the	SET	NOEXEC	or	SET	PARSEONLY	option	enabled
(depending	on	the	statement	type).	SQL	Server	checks	the	syntax	of	the
statement	and	returns	any	errors.

SQLExecute	can	return	any	ODBC	SQLSTATE	and	any	SQL	Server	error	that
can	be	returned	by	SQLPrepare.

The	SQL	Server	ODBC	driver	creates	a	new	temporary	stored	procedure	if	the
InputOutputType,	ParameterType,	ColumnSize,	or	DecimalDigits	values	are
altered	in	calls	to	SQLBindParameter	on	a	prepared	statement.	A	new
temporary	stored	procedure	will	not	be	created	when	bound	parameters	are



pointed	to	new	buffers	in	client	memory,	the	length	of	client	memory	is	changed,
or	the	pointer	to	the	length	or	indicator	value	for	the	parameter	is	altered.

If	a	connection	cannot	create	a	stored	procedure	for	any	reason	(such	as	lack	of
permission),	the	SQL	Server	ODBC	driver	does	not	use	a	stored	procedure	but,
instead,	submits	the	SQL	statement	each	time	SQLExecute	is	called.

By	default,	the	SQL	Server	ODBC	driver	drops	temporary	stored	procedures
when	the	connection	is	broken	(SQLDisconnect	is	called	for	the	connection).
This	may	present	problems	if	the	connection	is	expected	to	remain	open
indefinitely.	The	default	behavior	can	be	changed	using	the	driver-specific
connection	option	SQL_USE_PROCEDURE_FOR_PREPARE.

Note		If	SET	NOCOUNT	ON	has	been	executed,	multiple	statements	embedded
in	a	stored	procedure	do	not	create	multiple	result	sets	as	they	should.	Row
counts	generated	by	SQL	statements	inside	a	stored	procedure	are	ignored	by	the
driver.

See	Also

SQLBindParameter

SQLSetConnectAttr



ODBC	and	SQL	Server



SQLPrimaryKeys
SQLPrimaryKeys	uses	the	catalog	stored	procedure	sp_pkeys	to	report	primary
key	participants	from	a	table.	Though	a	table	may	have	a	column	or	columns	that
can	serve	as	unique	row	identifiers,	tables	created	without	a	PRIMARY	KEY
constraint	return	an	empty	result	set	to	SQLPrimaryKeys.	The	ODBC	function
SQLSpecialColumns	reports	row	identifier	candidates	for	tables	without
primary	keys.

The	following	table	shows	SQLPrimaryKeys	parameter	mapping	for	sp_pkeys
stored	procedure	execution.

SQLPrimaryKeys	parameter	name sp_pkeys	parameter	name
CatalogName table_qualifier
SchemaName table_owner
TableName table_name

SQLPrimaryKeys	returns	SQL_SUCCESS	whether	or	not	values	exist	for
CatalogName,	SchemaName,	or	TableName	parameters.	SQLFetch	returns
SQL_NO_DATA	when	invalid	values	are	used	in	these	parameters.

SQLPrimaryKeys	can	be	executed	on	a	static	server	cursor.	An	attempt	to
execute	SQLPrimaryKeys	on	an	updatable	(dynamic	or	keyset)	cursor	will
return	SQL_SUCCESS_WITH_INFO	indicating	that	the	cursor	type	has	been
changed.

The	Microsoft®	SQL	Server™	ODBC	driver	supports	reporting	information	for
tables	on	linked	servers	by	accepting	a	two-part	name	for	the	CatalogName
parameter:	Linked_Server_Name.Catalog_Name

See	Also

sp_pkeys

SQLSpecialColumns

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



SQLProcedureColumns
SQLProcedureColumns	uses	the	catalog	stored	procedure	sp_sproc_columns
to	report	the	attributes	of	stored	procedure	columns.

The	following	table	shows	SQLProcedureColumns	parameter	mapping	for
sp_sproc_columns	stored	procedure	execution.

SQLProcedureColumns	parameter
name

sp_sproc_columns	parameter
name

CatalogName procedure_qualifier
SchemaName procedure_owner
ProcName procedure_name
ColumnName column_name

SQLProcedureColumns	returns	one	row	reporting	the	return	value	attributes	of
all	Microsoft®	SQL	Server™	stored	procedures.

SQLProcedureColumns	returns	SQL_SUCCESS	whether	or	not	values	exist
for	CatalogName,	SchemaName,	ProcName,	or	ColumnName	parameters.
SQLFetch	returns	SQL_NO_DATA	when	invalid	values	are	used	in	these
parameters.

SQLProcedureColumns	can	be	executed	on	a	static	server	cursor.	An	attempt
to	execute	SQLProcedureColumns	on	an	updatable	(dynamic	or	keyset)	cursor
will	return	SQL_SUCCESS_WITH_INFO	indicating	that	the	cursor	type	has
been	changed.

See	Also

sp_sproc_columns

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



SQLProcedures
SQLProcedures	uses	the	catalog	stored	procedure	sp_stored_procedures	to
report	the	names	of	stored	procedures	in	a	Microsoft®	SQL	Server™	database.

The	following	table	shows	SQLProcedures	parameter	mapping	for
sp_stored_procedures	stored	procedure	execution.

SQLProcedures	parameter
name

sp_stored_procedures	parameter
name

CatalogName procedure_qualifier
SchemaName procedure_owner
ProcName procedure_name

All	SQL	Server	stored	procedures	return	a	value.	SQLProcedures	reports
SQL_PT_FUNCTION	for	the	result	set	column	PROCEDURE_TYPE.

SQLProcedures	returns	SQL_SUCCESS	whether	or	not	values	exist	for
CatalogName,	SchemaName,	or	ProcName	parameters.	SQLFetch	returns
SQL_NO_DATA	when	invalid	values	are	used	in	these	parameters.

SQLProcedures	can	be	executed	on	a	static	server	cursor.	An	attempt	to	execute
SQLProcedures	on	an	updatable	(dynamic	or	keyset)	cursor	will	return
SQL_SUCCESS_WITH_INFO,	indicating	that	the	cursor	type	has	been
changed.

SQLProcedures	returns	information	about	any	tables	whose	names	match
ProcName	and	are	owned	by	the	current	user.

See	Also

sp_stored_procedures

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



SQLPutData
Using	SQLPutData	to	send	more	than	65,535	bytes	of	data	(for	Microsoft®
SQL	Server™	version	4.21a)	or	400	KB	of	data	(for	SQL	Server	version	6.0	and
later)	for	a	SQL_LONGVARCHAR	(text),	SQL_WLONGVARCHAR	(ntext)	or
SQL_LONGVARBINARY	(image)	column,	imposes	the	following	restrictions:

The	referenced	parameter	can	be	an	insert_value	in	an	INSERT
statement.

The	referenced	parameter	can	be	an	expression	in	the	SET	clause	of	an
UPDATE	statement.

Canceling	a	sequence	of	SQLPutData	calls	that	provide	data	to	a	server	running
SQL	Server	in	blocks	causes	a	partial	update	of	the	column's	value	when	using
version	6.5	or	earlier.	The	text,	ntext,	or	image	column	referenced	when
SQLCancel	was	called	will	be	set	to	an	intermediate	"place	holder"	value.



ODBC	and	SQL	Server



SQLRowCount
When	arrays	of	parameter	values	are	bound	for	statement	execution,
SQLRowCount	returns	SQL_ERROR	if	any	row	of	parameter	values	generates
an	error	condition	in	statement	execution.	No	value	is	returned	through	the
RowCountPtr	argument	of	the	function.

The	application	can	take	advantage	of	the
SQL_ATTR_PARAMS_PROCESSED_PTR	statement	attribute	to	capture	the
number	of	parameters	processed	prior	to	the	error	occurring.

Further,	the	application	can	use	an	array	of	status	values,	bound	by	using	the
SQL_ATTR_PARAM_STATUS_PTR	statement	attribute,	to	capture	the	array
offsets	of	offending	parameter	rows.	The	application	can	traverse	the	status	array
to	determine	the	actual	number	of	rows	processed.



ODBC	and	SQL	Server



SQLSetConnectAttr
The	Microsoft®	SQL	Server™	ODBC	driver	ignores	the	setting	of
SQL_ATTR_CONNECTION_TIMEOUT.	The	SQL	Server	ODBC	driver	will
not	time	out	on	any	operations	other	than	login	and	query	processing.

The	SQL	Server	ODBC	driver	implements	repeatable	read	transaction	isolation
as	serializable.	Setting	SQL_ATTR_TXN_ISOLATION	to
SQL_TXN_REPEATABLE_READ	is	exactly	equivalent	to	setting	the
transaction	isolation	attribute	to	SQL_TXN_SERIALIZABLE.

Promoting	ODBC	statement	attributes	to	connection	attributes	can	have
unintended	consequences.	Statement	attributes	that	request	server	cursors	for
result	set	processing	can	be	promoted	to	the	connection.	For	example,	setting	the
ODBC	statement	attribute	SQL_ATTR_CONCURRENCY	to	a	value	more
restrictive	than	the	default	SQL_CONCUR_READ_ONLY	directs	the	driver	to
use	dynamic	cursors	for	all	statements	submitted	on	the	connection.	Executing
an	ODBC	catalog	function	on	a	statement	on	the	connection	returns
SQL_SUCCESS_WITH_INFO	and	a	diagnostic	record	indicating	that	the	cursor
behavior	has	been	changed	to	read-only.	Attempting	to	execute	a	Transact-SQL
SELECT	statement	containing	a	COMPUTE	clause	on	the	same	connection
fails.

The	SQL	Server	ODBC	driver	supports	a	number	of	driver-specific	extensions	to
ODBC	connection	attributes	defined	in	Odbcss.h.	The	SQL	Server	ODBC	driver
may	require	that	the	attribute	be	set	prior	to	connection,	or	it	may	ignore	the
attribute	if	it	is	already	set.	The	following	table	lists	restrictions.

SQL	Server	attribute
Set	before	or	after
connection	to	server

SQL_COPT_SS_ANSI_NPW Before
SQL_COPT_SS_ATTACHDBFILENAME Before
SQL_COPT_SS_BCP Before
SQL_COPT_SS_BROWSE_CONNECT Before
SQL_COPT_SS_BROWSE_SERVER Before
SQL_COPT_SS_CONCAT_NULL Before



SQL_COPT_SS_ENLIST_IN_DTC After
SQL_COPT_SS_ENLIST_IN_XA After
SQL_COPT_SS_FALLBACK_CONNECT Before
SQL_COPT_SS_INTEGRATED_SECURITY Before
SQL_COPT_SS_PERF_DATA After
SQL_COPT_SS_PERF_DATA_LOG After
SQL_COPT_SS_PERF_DATA_LOG_NOW After
SQL_COPT_SS_PERF_QUERY After
SQL_COPT_SS_PERF_QUERY_INTERVAL After
SQL_COPT_SS_PERF_QUERY_LOG After
SQL_COPT_SS_PRESERVE_CURSORS Before
SQL_COPT_SS_QUOTED_IDENT Either
SQL_COPT_SS_TRANSLATE Either
SQL_COPT_SS_USE_PROC_FOR_PREP Either
SQL_COPT_SS_USER_DATA Either
SQL_COPT_SS_WARN_ON_CP_ERROR Before

SQL_COPT_SS_ANSI_NPW
SQL_COPT_SS_ANSI_NPW	enables	or	disables	the	use	of	SQL-92	handling	of
NULL	in	comparisons	and	concatenation,	character	data	type	padding,	and
warnings.	For	more	information,	see	SET	ANSI_NULLS,	SET
ANSI_PADDING,	SET	ANSI_WARNINGS,	and	SET
CONCAT_NULL_YIELDS_NULL.

Value Description
SQL_AD_ON Default.	The	connection	uses	SQL-92	default	behavior

handling	NULL,	padding,	and	warnings.
SQL_AD_OFF The	connection	uses	SQL	Server-defined	handling	of

NULL,	character	data	type	padding,	and	warnings.

SQL_COPT_SS_ATTACHDBFILENAME
SQL_COPT_SS_ATTACHDBFILENAME	specifies	the	name	of	the	primary



file	of	an	attachable	database.	This	database	is	attached	and	becomes	the	default
database	for	the	connection.	To	use	SQL_COPT_SS_ATTACHDBFILENAME
you	must	specify	the	name	of	the	database	as	the	value	of	the	connection
attribute	SQL_ATTR_CURRENT_CATALOG	or	in	the	DATABASE	=
parameter	of	a	SQLDriverConnect.	If	the	database	was	previously	attached,
SQL	Server	will	not	reattach	it.	This	option	is	not	valid	when	connected	to	an
instance	of	SQL	Server	version	6.5	or	earlier.

Value Description
SQLPOINTER	to
a	character	string

The	string	contains	the	name	of	the	primary	file	for	the
database	to	attach.	Include	the	full	path	name	of	the
file.

SQL_COPT_SS_BCP
SQL_COPT_SS_BCP	enables	bulk	copy	functions	on	a	connection.	For	more
information,	see	Bulk-Copy	Functions.

Value Description
SQL_BCP_OFF Default.	Bulk	copy	functions	are	not	available	on	the

connection.
SQL_BCP_ON Bulk	copy	functions	are	available	on	the	connection.

SQL_COPT_SS_BROWSE_CONNECT
This	attribute	is	used	to	customize	the	result	set	returned	by
SQLBrowseConnect.	SQL_COPT_SS_BROWSE_CONNECT	enables	or
disables	the	return	of	additional	information	from	an	enumerated	instance	of
SQL	Server	2000.	This	can	include	information	such	as	whether	the	server	is	a
cluster,	names	of	different	instances,	and	the	version	number.

Value Description
SQL_MORE_INFO_NO Default.	In	SQL	Server	version	6.5	and	later,

SQL	BrowseConnect	returns	a	list	of	servers.



SQL_MORE_INFO_YES In	SQL	Server	versions	6.5	and	7.0,
SQLBrowseConnect	returns	a	list	of	servers.	In
SQL	Server	2000,	SQLBrowseConnect	returns
an	extended	string	of	server	properties.

SQL_COPT_SS_BROWSE_SERVER
This	attribute	is	used	to	customize	the	result	set	returned	by
SQLBrowseConnect.	SQL_COPT_SS_BROWSE_SERVER	specifies	the
server	name	for	which	SQLBrowseConnect	returns	the	information.

Value Description
computername SQLBrowseConnect	returns	a	list	of	SQL	servers	on

the	specified	computer.	Double	backslashes	(\\)	should
not	be	used	for	the	server	name	(for	example,	instead	of
\\MyServer,	MyServer	should	be	used).

NULL Default.	SQLBrowseConnect	returns	information	for
all	servers	in	the	domain.

SQL_COPT_SS_CONCAT_NULL
SQL_COPT_SS_CONCAT_NULL	enables	or	disables	the	use	of	SQL-92
handling	of	NULL	when	concatenating	strings.	For	more	information,	see	SET
CONCAT_NULL_YIELDS_NULL.

Value Description
SQL_CN_ON Default.	The	connection	uses	SQL-92	default

behavior	for	handling	NULL	values	when
concatenating	strings.

SQL_CN_OFF The	connection	uses	SQL	Server-defined	behavior	for
handling	NULL	values	when	concatenating	strings.



SQL_COPT_SS_ENLIST_IN_DTC
The	client	calls	the	Microsoft	Distributed	Transaction	Coordinator	(MS	DTC)
OLE	ITransactionDispenser::BeginTransaction	method	to	begin	an	MS	DTC
transaction	and	create	an	MS	DTC	transaction	object	that	represents	the
transaction.	The	application	then	calls	SQLSetConnectAttr	with	the
SQL_COPT_SS_ENLIST_IN_DTC	option	to	associate	the	transaction	object
with	the	ODBC	connection.	All	related	database	activity	will	be	performed
under	the	protection	of	the	MS	DTC	transaction.	The	application	calls
SQLSetConnectAttr	with	SQL_DTC_DONE	to	end	the	connection's	DTC
association.	For	more	information,	see	the	MS	DTC	documentation.

Value Description
DTC	object* The	MS	DTC	OLE	transaction	object	that	specifies	the

transaction	to	export	to	SQL	Server.
SQL_DTC_DONE Delimits	the	end	of	a	DTC	transaction.

SQL_COPT_SS_ENLIST_IN_XA
To	begin	an	XA	transaction	with	an	XA-compliant	Transaction	Processor	(TP),
the	client	calls	the	X/Open	tx_begin	function.	The	application	then	calls
SQLSetConnectAttr	with	a	SQL_COPT_SS_ENLIST_IN_XA	parameter	of
TRUE	to	associate	the	XA	transaction	with	the	ODBC	connection.	All	related
database	activity	will	be	performed	under	the	protection	of	the	XA	transaction.
To	end	an	XA	association	with	an	ODBC	connection,	the	client	must	call
SQLSetConnectAttr	with	a	SQL_COPT_SS_ENLIST_IN_XA	parameter	of
FALSE.	For	more	information,	see	the	Microsoft	Distributed	Transaction
Coordinator	documentation.

SQL_COPT_SS_FALLBACK_CONNECT
This	attribute	is	valid	only	when	connected	to	SQL	Server	6.5.	It	applies	only	to
standby	servers.	It	does	not	apply	to	a	virtual	server	in	a	cluster/failover
configuration.	SQL_COPT_SS_FALLBACK_CONNECT	enables	fallback
attempts	on	a	connection.	When	successfully	connected	to	the	primary	server,
the	SQL	Server	ODBC	driver	automatically	determines	the	current	fallback



server	and	verifies	that	fallback	information	is	stored	in	the	Registry.	If	an
attempt	to	connect	to	a	primary	server	fails	(the	connection	time-out	must	be
greater	than	0	for	this	to	occur),	the	SQL	Server	ODBC	driver	will	attempt	to
connect	to	the	fallback	server.

Value Description
SQL_FB_OFF Default.	Fallback	connection	processing	is	not

performed	on	connect.
SQL_FB_ON Fallback	connection	will	be	attempted	on	login	time-

out.

SQL_COPT_SS_INTEGRATED_SECURITY
SQL_COPT_SS_INTEGRATED_SECURITY	forces	use	of	Windows
Authentication	for	access	validation	on	server	login.	When	Windows
Authentication	is	used,	the	driver	ignores	user	identifier	and	password	values
provided	as	part	of	SQLConnect,	SQLDriverConnect,	or	SQLBrowseConnect
processing.

Value Description
SQL_IS_OFF Default.	SQL	Server	Authentication	is	used	to	validate

user	identifier	and	password	on	login.
SQL_IS_ON Windows	Authentication	Mode	is	used	to	validate	a

user's	access	rights	to	the	SQL	Server.

SQL_COPT_SS_PERF_DATA
SQL_COPT_SS_PERF_DATA	starts	or	stops	performance	data	logging.	The
data	log	file	name	must	be	set	prior	to	starting	data	logging.	See
SQL_COPT_SS_PERF_DATA_LOG	below.

Value Description
SQL_PERF_STARTStarts	the	driver	sampling	performance	data.
SQL_PERF_STOP Stops	the	counters	from	sampling	performance	data.



SQL_COPT_SS_PERF_DATA_LOG
SQL_COPT_SS_PERF_DATA_LOG	assigns	the	name	of	the	log	file	used	to
record	performance	data.	The	log	file	name	is	an	ANSI	or	Unicode,	null-
terminated	string	depending	upon	application	compilation.	The	StringLength
argument	should	be	SQL_NTS.

SQL_COPT_SS_PERF_DATA_LOG_NOW
SQL_COPT_SS_PERF_DATA_LOG_NOW	instructs	the	driver	to	write	a
statistics	log	entry	to	disk.

SQL_COPT_SS_PERF_QUERY
SQL_COPT_SS_PERF_QUERY	starts	or	stops	logging	for	long	running
queries.	The	query	log	file	name	must	be	supplied	prior	to	starting	logging.	The
application	can	define	"long	running"	by	setting	the	interval	for	logging.

Value Description
SQL_PERF_STARTStarts	long	running	query	logging.
SQL_PERF_STOP Stops	logging	of	long	running	queries.

SQL_COPT_SS_PERF_QUERY_INTERVAL
SQL_COPT_SS_PERF_QUERY_INTERVAL	sets	the	query	logging	threshold
in	milliseconds.	Queries	that	do	not	resolve	within	the	threshold	are	recorded	in
the	long	running	query	log	file.	There	is	no	upper	limit	on	the	query	threshold.	A
query	threshold	value	of	zero	causes	logging	of	all	queries.

SQL_COPT_SS_PERF_QUERY_LOG
SQL_COPT_SS_PERF_QUERY_LOG	assigns	the	name	of	a	log	file	for
recording	long	running	query	data.	The	log	file	name	is	an	ANSI	or	Unicode,
null-terminated	string	depending	upon	application	compilation.	The
StringLength	argument	should	be	SQL_NTS.



SQL_COPT_SS_PRESERVE_CURSORS
SQL_COPT_SS_PRESERVE_CURSORS	defines	the	behavior	of	cursors	when
manual-commit	mode	is	used.	The	behavior	is	exposed	as	transactions	are	either
committed	or	rolled	back	using	SQLEndTran.

Value Description
SQL_PC_OFF Default.	Cursors	are	closed	on	SQLEndTran.
SQL_PC_ON Cursors	remain	open	on	SQLEndTran.

SQL_COPT_SS_QUOTED_IDENT
SQL_COPT_SS_QUOTED_IDENT	allows	quoted	identifiers	in	ODBC	and
Transact-SQL	statements	submitted	on	the	connection.	By	supplying	quoted
identifiers,	the	SQL	Server	ODBC	driver	allows	otherwise	invalid	object	names
such	as	"My	Table,"	which	contains	a	space	character	in	the	identifier.	For	more
information,	see	SET	QUOTED_IDENTIFIER.

Value Description
SQL_QI_OFF The	SQL	Server	connection	does	not	allow	quoted

identifiers	in	submitted	Transact-SQL.
SQL_QI_ON Default.	The	connection	allows	quoted	identifiers	in

submitted	Transact-SQL.

SQL_COPT_SS_TRANSLATE
SQL_COPT_SS_TRANSLATE	causes	the	driver	to	translate	characters	between
the	client	and	server	code	pages	as	MBCS	data	is	exchanged.	The	attribute
affects	only	data	stored	in	SQL	Server	char,	varchar,	and	text	columns.

Value Description
SQL_XL_OFF The	driver	does	not	translate	characters	from	one	code

page	to	another	in	character	data	exchanged	between
the	client	and	the	server.



SQL_XL_ON Default.	The	driver	translates	characters	from	one	code
page	to	another	in	character	data	exchanged	between
the	client	and	the	server.	The	driver	automatically
configures	the	character	translation,	determining	the
code	page	installed	on	the	server	and	that	in	use	by	the
client.

SQL_COPT_SS_USE_PROC_FOR_PREP
This	attribute	is	only	valid	when	connected	to	an	instance	of	SQL	Server	6.5	or
earlier.	SQL_COPT_SS_USE_PROC_FOR_PREP	defines	the	use	of	temporary
stored	procedures	when	ODBC	and	Transact-SQL	statements	are	prepared	for
execution.	For	more	information	about	prepared	statement	execution,	see
SQLPrepare.

Value Description
SQL_UP_OFF The	driver	does	not	generate	stored	procedures	when

the	application	prepares	statements.
SQL_UP_ON Default.	The	driver	generates	a	temporary	stored

procedure	when	a	statement	is	prepared.	The	stored
procedure	is	dropped	when	the	application
disconnects	from	the	server.

SQL_UP_ON_DROPThe	driver	generates	a	temporary	stored	procedure
when	a	statement	is	prepared.	The	stored	procedure
is	dropped	when	the	statement	handle	is	freed.

SQL_COPT_SS_USER_DATA
SQL_COPT_SS_USER_DATA	sets	the	user	data	pointer.	User	data	is	client-
owned	memory	recorded	per	connection.

SQL_COPT_SS_WARN_ON_CP_ERROR
When	this	attribute	is	set	to	SQL_COPT_YES,	you	get	a	warning	if	there	is	a



loss	of	data	during	a	code	page	conversion.	This	applies	to	only	data	coming
from	the	server.

Example
This	example	logs	performance	data.

SQLPERF*					pSQLPERF;
SQLINTEGER			nValue;

//	See	if	you	are	already	logging.	SQLPERF*	will	be	NULL	if	not.
SQLGetConnectAttr(hDbc,	SQL_COPT_SS_PERF_DATA,	&pSQLPERF,
				sizeof(SQLPERF*),	&nValue);

if	(pSQLPERF	==	NULL)
				{
				//	Set	the	performance	log	file	name.
				SQLSetConnectAttr(hDbc,	SQL_COPT_SS_PERF_DATA_LOG,
								(SQLPOINTER)	"\\My	LogDirectory\\MyServerLog.txt",	SQL_NTS);

				//	Start	logging...
				SQLSetConnectAttr(hDbc,	SQL_COPT_SS_PERF_DATA,
								(SQLPOINTER)	SQL_PERF_START,	SQL_IS_INTEGER);
				}
else
				{
				//	Take	a	snapshot	now	so	that	your	performance	statistics	are	discernible.
				SQLSetConnectAttr(hDbc,	SQL_COPT_SS_PERF_DATA_LOG_NOW,	NULL,	0);
				}

				//	...perform	some	action...

//	...take	a	performance	data	snapshot...
SQLSetConnectAttr(hDbc,	SQL_COPT_SS_PERF_DATA_LOG_NOW,	NULL,	0);



				//	...perform	more	actions...

//	...take	another	snapshot...
SQLSetConnectAttr(hDbc,	SQL_COPT_SS_PERF_DATA_LOG_NOW,	NULL,	0);

//	...and	disable	logging.
SQLSetConnectAttr(hDbc,	SQL_COPT_SS_PERF_DATA,
				(SQLPOINTER)	SQL_PERF_STOP,	SQL_IS_INTEGER);

//	Continue	on...

See	Also

Bulk-Copy	Functions

SET	ANSI_NULLS

SET	ANSI_PADDING

SET	ANSI_WARNINGS

SET	CONCAT_NULL_YIELDS_NULL

SET	QUOTED_IDENTIFIER

SQLPrepare

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()


ODBC	and	SQL	Server



SQLSetEnvAttr
The	ODBC	Programmer's	Reference	for	ODBC	3	defines	how	ODBC	3.x
drivers	should	interpret	the	SQLSetEnvAttr	attribute	specifications	from
applications	written	to	either	the	ODBC	2.x	or	ODBC	3.x	API.	The	Microsoft®
SQL	Server™	ODBC	driver	complies	with	those	rules.

One	of	the	attributes	controlled	by	SQLSetEnvAttr	is	whether	connection
pooling	is	to	be	used.	If	connection	pooling	is	used	with	the	SQL	Server	ODBC
driver,	the	DriverCompletion	parameter	must	be	set	to
SQL_DRIVER_NOPROMPT	when	connecting	with	either	SQLDriverConnect
or	SQLConnect.



ODBC	and	SQL	Server



SQLSetStmtAttr
The	Microsoft®	SQL	Server™	ODBC	driver	does	not	support	the	mixed
(keyset/dynamic)	cursor	model.	Attempts	to	set	the	keyset	size	using
SQL_ATTR_KEYSET_SIZE	fail	if	the	value	set	is	not	equal	to	0.

The	application	sets	SQL_ATTR_ROW_ARRAY_SIZE	on	all	statements	to
declare	the	number	of	rows	returned	on	a	SQLFetch	or	SQLFetchScroll
function	call.	On	statements	indicating	a	server	cursor,	the	driver	uses
SQL_ATTR_ROW_ARRAY_SIZE	to	determine	the	size	of	the	block	of	rows
the	server	generates	to	satisfy	a	fetch	request	from	the	cursor.	Within	the	block
size	of	a	dynamic	cursor,	row	membership	and	ordering	are	fixed	if	the
transaction	isolation	level	is	sufficient	to	ensure	repeatable	reads	of	committed
transactions.	The	cursor	is	completely	dynamic	outside	of	the	block	indicated	by
this	value.	Server	cursor	block	size	is	completely	dynamic	and	can	be	changed	at
any	point	in	fetch	processing.

The	SQL	Server	ODBC	driver	also	supports	the	following	driver-specific
statement	attributes.

SQL_SOPT_SS_CURSOR_OPTIONS
Specifies	whether	the	driver	will	use	driver-specific	performance	options	on
cursors.	SQLGetData	is	not	allowed	when	these	options	are	set.	The	default
setting	is	SQL_CO_OFF.	These	options	are	valid	only	when	connected	to	an
instance	of	SQL	Server	version	7.0.

ValuePtr	value Description
SQL_CO_OFF Default.	Disables	fast	forward-only,	read-only	cursors

and	autofetch,	enables	SQLGetData	on	forward-only,
read-only	cursors.	When
SQL_SOPT_SS_CURSOR_OPTIONS	is	set	to
SQL_CO_OFF,	the	cursor	type	will	not	change.	That
is,	fast	forward-only	cursor	will	remain	a	fast	forward-
only	cursor.	To	change	the	cursor	type,	the	application
must	now	set	a	different	cursor	type	using
SQLSetStmtAttr/SQL_ATTR_CURSOR_TYPE.



SQL_CO_FFO Enables	fast	forward-only,	read-only	cursors,	disables
SQLGetData	on	forward-only,	read-only	cursors.

SQL_CO_AF Enables	the	autofetch	option	on	any	cursor	type.	When
this	option	is	set	for	a	statement	handle,	SQLExecute
or	SQLExecDirect	generate	an	implicit
SQLFetchScroll(SQL_FIRST).	The	cursor	is	opened
and	the	first	batch	of	rows	is	returned	in	a	single
roundtrip	to	the	server.

SQL_CO_FFO_AFEnables	fast	forward-only	cursors	with	the	autofetch
option.	It	is	the	same	as	if	both	SQL_CO_AF	and
SQL_CO_FFO	are	specified.

When	these	options	are	set,	the	server	closes	the	cursor	automatically	when	it
detects	that	the	last	row	has	been	fetched.	The	application	must	still	call
SQLFreeStmt(SQL_CLOSE)	or	SQLCloseCursor,	but	the	driver	does	not
have	to	send	the	close	notification	to	the	server.

If	the	select	list	contains	a	text,	ntext,	or	image	column,	the	fast	forward-only
cursor	is	converted	to	a	dynamic	cursor	and	SQLGetData	is	allowed.

SQL_SOPT_SS_DEFER_PREPARE
This	attribute	determines	whether	the	statement	is	prepared	immediately	or
deferred	until	SQLExecute,	SQLDescribeCol	or	SQLDescribeParam	is
executed.	In	SQL	Server	version	7.0	and	earlier,	this	property	is	ignored	(no
deferred	prepare).

ValuePtr	value Description
SQL_DP_ON Default.	After	calling	SQLPrepare,	the	statement

preparation	is	deferred	until	SQLExecute	is	called	or
metaproperty	operation	(SQLDescribeCol	or
SQLDescribeParam)	is	executed.

SQL_DP_OFF The	statement	is	prepared	as	soon	as	SQLPrepare	is
executed.

SQL_SOPT_SS_REGIONALIZE



The	driver	uses	this	attribute	to	determine	data	conversion	at	the	statement	level.
The	attribute	causes	the	driver	to	respect	the	client	locale	setting	when
converting	date,	time,	and	currency	values	to	character	strings.	The	conversion	is
from	SQL	Server	native	data	types	to	character	strings	only.

ValuePtr	value Description
SQL_RE_OFF Default.	The	driver	does	not	convert	date,	time,	and

currency	data	to	character	string	data	using	the	client
locale	setting.

SQL_RE_ON The	driver	uses	the	client	locale	setting	when
converting	date,	time,	and	currency	data	to	character
string	data.

Regional	conversion	settings	apply	to	currency,	numeric,	date,	and	time	data
types.	The	conversion	setting	is	only	applicable	to:

Output	conversions	when	currency,	numeric,	date,	or	time	values	are
converted	to	character	strings.

Bulk	copy	in	operations	containing	character	columns	when
BCP6xFILEFMT	is	also	set	on.

Note		When	the	statement	option	SQL_SOPT_SS_REGIONALIZE	is	on,	the
driver	uses	the	locale	registry	settings	for	the	current	user.	The	driver	does	not
honor	the	current	thread's	locale	if	the	application	sets	it	by,	for	example,	calling
SetThreadLocale.

Altering	the	regional	behavior	of	a	data	source	can	cause	application	failure.	An
application	that	parses	date	strings	and	expects	date	strings	to	appear	as	defined
by	ODBC,	could	be	adversely	affected	by	altering	this	value.

SQL_SOPT_SS_TEXTPTR_LOGGING
Attribute	toggles	logging	of	operations	on	columns	containing	text	or	image
data.	The	default	behavior	is	to	log	these	operations	(SQL_TL_ON).

ValuePtr	value Description



SQL_TL_OFF Disables	logging	of	operations	performed	on	text	and
image	data.

SQL_TL_ON Default.	Enables	logging	of	operations	performed	on
text	and	image	data.

SQL_SOPT_SS_HIDDEN_COLUMNS
Exposes,	in	the	result	set,	columns	hidden	in	a	SQL	Server	SELECT	FOR
BROWSE	statement.	The	driver	does	not	expose	these	columns	by	default.

ValuePtr	value Description
SQL_HC_OFF Default.	FOR	BROWSE	columns	are	hidden	from	the

result	set.
SQL_HC_ON Exposes	FOR	BROWSE	columns.



ODBC	and	SQL	Server



SQLSpecialColumns
The	Microsoft®	SQL	Server™	ODBC	driver	uses	the	catalog	stored	procedure
sp_special_columns	to	generate	the	result	set	for	SQLSpecialColumns.

When	requesting	row	identifiers	(IdentifierType	SQL_BEST_ROWID),
SQLSpecialColumns	returns	an	empty	result	set	(no	data	rows)	for	any
requested	scope	other	than	SQL_SCOPE_CURROW.	The	generated	result	set
indicates	that	the	columns	are	only	valid	within	this	scope.

SQL	Server	does	not	support	pseudo	columns	for	identifiers.	The
SQLSpecialColumns	result	set	will	identify	all	columns	as
SQL_PC_NOT_PSEUDO.

SQLSpecialColumns	can	be	executed	on	a	static	cursor.	An	attempt	to	execute
SQLSpecialColumns	on	an	updatable	(keyset-driven	or	dynamic)	returns
SQL_SUCCESS_WITH_INFO	indicating	the	cursor	type	has	been	changed.



ODBC	and	SQL	Server



SQLStatistics
The	Microsoft®	SQL	Server™	ODBC	driver	uses	the	catalog	stored	procedure
sp_statistics	to	provide	results	for	SQLStatistics.

SQLStatistics	can	be	executed	on	a	static	cursor.	An	attempt	to	execute
SQLStatistics	on	an	updatable	(keyset-driven	or	dynamic)	returns
SQL_SUCCESS_WITH_INFO	indicating	the	cursor	type	is	changed.

See	Also

sp_statistics

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



SQLTablePrivileges
The	Microsoft®	SQL	Server™	ODBC	driver	uses	the	sp_table_privileges
catalog	stored	procedure	to	satisfy	table	privilege	data	requests	using
SQLTablePrivileges.

SQLTablePrivileges	can	be	executed	on	a	static	cursor.	An	attempt	to	execute
SQLTablePrivileges	on	an	updatable	(keyset-driven	or	dynamic)	returns
SQL_SUCCESS_WITH_INFO	indicating	the	cursor	type	has	been	changed.

The	SQL	Server	ODBC	driver	supports	reporting	information	for	tables	on
linked	servers	by	accepting	a	two-part	name	for	the	CatalogName	parameter:
Linked_Server_Name.Catalog_Name.

See	Also

sp_table_privileges

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



SQLTables
When	restricted	to	the	current	database,	SQLTables	executes	the	Transact-SQL
procedure	sp_tables	to	report	table	catalog	data	for	Microsoft®	SQL	Server™.

The	following	table	shows	SQLTables	parameter	mapping	for	sp_tables	stored
procedure	execution.

SQLTables	parameter	name sp_tables	parameter	name
CatalogName table_qualifier
SchemaName table_owner
TableName table_name
TableType table_type

SQLTables	can	be	executed	on	a	static	server	cursor.	An	attempt	to	execute
SQLTables	on	an	updatable	(dynamic	or	keyset)	cursor	will	return
SQL_SUCCESS_WITH_INFO	indicating	that	the	cursor	type	has	been	changed.

SQLTables	reports	tables	from	all	databases	when	the	CatalogName	parameter
is	SQL_ALL_CATALOGS	and	all	other	parameters	contain	default	values
(NULL	pointers).	SQLTables	does	not	make	use	of	sp_tables	in	this	special
case.

To	report	available	catalogs,	schemas,	and	table	types,	SQLTables	makes	special
use	of	empty	strings	(zero-length	byte	pointers).	Empty	strings	are	not	default
values	(NULL	pointers).

The	SQL	Server	ODBC	driver	supports	reporting	information	for	tables	on
linked	servers	by	accepting	a	two-part	name	for	the	CatalogName	parameter:
Linked_Server_Name.Catalog_Name.

SQLTables	returns	information	about	any	tables	whose	names	match	TableName
and	are	owned	by	the	current	user.

Example

//	Get	a	list	of	all	tables	in	the	current	database.
SQLTables(hstmt,	NULL,	0,	NULL,	0,	NULL,	0,	NULL,0);



//	Get	a	list	of	all	tables	in	all	databases.
SQLTables(hstmt,	(SQLCHAR*)	"%",	SQL_NTS,	NULL,	0,	NULL,	0,	NULL,0);
//	Get	a	list	of	databases	on	the	current	connection's	server.
SQLTables(hstmt,	(SQLCHAR*)	"%",	SQL_NTS,	(SQLCHAR*)"",	0,	(SQLCHAR*)"",
				0,	NULL,	0);

See	Also

sp_tables

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



SQL	Server	Driver	Extensions
The	Microsoft®	SQL	Server™	ODBC	driver	implements	driver-specific
functions	to	allow	ODBC	applications	access	to	the	bulk	copy	feature	of	SQL
Server.	The	driver	also	has	two	driver-specific	functions	that	allow	ODBC
applications	to	list	the	linked	servers	defined	in	a	server,	and	then	query	the
catalog	of	the	linked	servers.



ODBC	and	SQL	Server



Bulk-Copy	Functions
The	Microsoft®	SQL	Server™-specific	bulk-copy	API	extension	allows	client
applications	to	rapidly	add	data	rows	to,	or	extract	data	rows	from,	a	SQL	Server
table.

See	Also

Performing	Bulk	Copy	Operations



ODBC	and	SQL	Server

bcp_batch
Commits	all	rows	previously	bulk	copied	from	program	variables	and	sent	to
Microsoft®	SQL	Server™	by	bcp_sendrow.

Syntax
DBINT	bcp_batch	(	HDBC	hdbc	);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

Returns
The	number	of	rows	saved	after	the	last	call	to	bcp_batch,	or	-1	in	case	of	error.

Remarks
Bulk	copy	batches	define	transactions.	When	an	application	uses	bcp_bind	and
bcp_sendrow	to	bulk	copy	rows	from	program	variables	to	SQL	Server	tables,
the	rows	are	committed	only	when	the	program	calls	bcp_batch	or	bcp_done.

You	can	call	bcp_batch	once	every	n	rows	or	when	there	is	a	lull	in	incoming
data	(as	in	a	telemetry	application).	If	an	application	does	not	call	bcp_batch	the
bulk	copied	rows	are	committed	only	when	bcp_done	is	called.

See	Also

bcp_bind

bcp_done

bcp_sendrow



ODBC	and	SQL	Server

bcp_bind
Binds	data	from	a	program	variable	to	a	table	column	for	bulk	copy	into
Microsoft®	SQL	Server™.

Syntax
RETCODE	bcp_bind	(	
HDBC	hdbc,	
LPCBYTE	pData,	
INT	cbIndicator,	
DBINT	cbData,	
LPCBYTE	pTerm,	
INT	cbTerm,
INT	eDataType,	
INT	idxServerCol	);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

pData

Is	a	pointer	to	the	data	copied.	If	eDataType	is	SQLTEXT,	SQLNTEXT,	or
SQLIMAGE,	pData	can	be	NULL.	A	NULL	pData	indicates	that	long	data
values	will	be	sent	to	SQL	Server	in	chunks	using	bcp_moretext.

If	indicators	are	present	in	the	data,	they	appear	in	memory	directly	before
the	data.	The	pData	parameter	points	to	the	indicator	variable	in	this	case,
and	the	width	of	the	indicator,	the	cbIndicator	parameter,	is	used	by	bulk
copy	to	address	user	data	correctly.

cbIndicator

Is	the	length,	in	bytes,	of	a	length	or	null	indicator	for	the	column's	data.
Valid	indicator	length	values	are	0	(when	using	no	indicator),	1,	2,	or	4.



Indicators	appear	in	memory	directly	before	any	data.	For	example,	the
following	structure	type	definition	could	be	used	to	insert	integer	values	into
an	SQL	Server	table	using	bulk	copy:

typedef	struct	tagBCPBOUNDINT
				{
				int								iIndicator;
				int								iValue;
				}	BCPBOUNDINT;

In	the	example	case,	the	pData	parameter	would	be	set	to	the	address	of	a
declared	instance	of	the	structure,	the	address	of	the	BCPBOUNDINT
iIndicator	structure	member.	The	cbIndicator	parameter	would	be	set	to	the
size	of	an	integer	(sizeof(int)),	and	the	cbData	parameter	would	again	be	set
to	the	size	of	an	integer	(sizeof(int)).	To	bulk	copy	a	row	to	the	server
containing	a	NULL	value	for	the	bound	column,	the	value	of	the	instance's
iIndicator	member	should	be	set	to	SQL_NULL_DATA.

cbData

Is	the	count	of	bytes	of	data	in	the	program	variable,	not	including	the	length
of	any	length	or	null	indicator	or	terminator.

Setting	cbData	to	SQL_NULL_DATA	signifies	that	all	rows	copied	to	the
server	contain	a	NULL	value	for	the	column.

Setting	cbData	to	SQL_VARLEN_DATA	indicates	that	the	system	will	use	a
string	terminator,	or	other	method,	to	determine	the	length	of	data	copied.

For	fixed-length	data	types,	such	as	integers,	the	data	type	indicates	the
length	of	the	data	to	the	system.	Therefore,	for	fixed-length	data	types,
cbData	can	safely	be	SQL_VARLEN_DATA	or	the	length	of	the	data.

For	SQL	Server	character	and	binary	data	types,	cbData	can	be
SQL_VARLEN_DATA,	SQL_NULL_DATA,	some	positive	value,	or	0.	If
cbData	is	SQL_VARLEN_DATA,	the	system	uses	either	a	length/null
indicator	(if	present)	or	a	terminator	sequence	to	determine	the	length	of	the
data.	If	both	are	supplied,	the	system	uses	the	one	that	results	in	the	least
amount	of	data	being	copied.	If	cbData	is	SQL_VARLEN_DATA,	the	data
type	of	the	column	is	an	SQL	Server	character	or	binary	type,	and	neither	a



length	indicator	nor	a	terminator	sequence	is	specified,	the	system	returns	an
error	message.

If	cbData	is	0	or	a	positive	value,	the	system	uses	cbData	as	the	data	length.
However,	if,	in	addition	to	a	positive	cbData	value,	a	length	indicator	or
terminator	sequence	is	provided,	the	system	determines	the	data	length	by
using	the	method	that	results	in	the	least	amount	of	data	being	copied.

The	cbData	parameter	value	represents	the	count	of	bytes	of	data.	If
character	data	is	represented	by	Unicode	wide	characters,	then	a	positive
cbData	parameter	value	represents	the	number	of	characters	multiplied	by
the	size	in	bytes	of	each	character.

pTerm

Is	a	pointer	to	the	byte	pattern,	if	any,	that	marks	the	end	of	this	program
variable.	For	example,	ANSI	and	MBCS	C	strings	usually	have	a	1-byte
terminator	(\0).

If	there	is	no	terminator	for	the	variable,	set	pTerm	to	NULL.

You	can	use	an	empty	string	("")	to	designate	the	C	null	terminator	as	the
program-variable	terminator.	Because	the	null-terminated	empty	string
constitutes	a	single	byte	(the	terminator	byte	itself),	set	cbTerm	to	1.	For
example,	to	indicate	that	the	string	in	szName	is	null-terminated	and	that	the
terminator	should	be	used	to	indicate	the	length:

				bcp_bind(hdbc,	szName,	0,	SQL_VARLEN_DATA,	"",	1,	SQLCHARACTER,	2)
				

A	nonterminated	form	of	this	example	could	indicate	that	15	characters	be
copied	from	the	szName	variable	to	the	second	column	of	the	bound	table:

				bcp_bind(hdbc,	szName,	0,	15,	NULL,	0,	SQLCHARACTER,	2)
				

The	bulk	copy	API	performs	Unicode-to-MBCS	character	conversion	as
required.	Make	sure	that	both	the	terminator	byte	string	and	the	length	of	the
byte	string	are	set	correctly.	For	example,	to	indicate	that	the	string	in
szName	is	a	Unicode	wide	character	string,	terminated	by	the	Unicode	null
terminator	value:



				bcp_bind(hdbc,	szName,	0,	SQL_VARLEN_DATA,	L"",
																sizeof(WCHAR),	SQLNCHAR,	2)
				

If	the	bound	SQL	Server	column	is	wide	character,	no	conversion	is
performed	on	bcp_sendrow.	If	the	SQL	Server	column	is	an	MBCS
character	type,	wide	character	to	multibyte	character	conversion	is	performed
as	the	data	is	sent	to	the	SQL	Server.

cbTerm

Is	the	count	of	bytes	present	in	the	terminator	for	the	program	variable,	if
any.	If	there	is	no	terminator	for	the	variable,	set	cbTerm	to	0.

eDataType

Is	the	C	data	type	of	the	program	variable.	The	data	in	the	program	variable
is	converted	to	the	type	of	the	database	column.	If	this	parameter	is	0,	no
conversion	is	performed.

For	more	information	about	a	list	of	supported	conversions,	see	the	ODBC
3.0	Programmer's	Reference.

The	eDataType	parameter	is	enumerated	by	the	SQL	Server	data	type	tokens
in	Odbcss.h,	not	the	ODBC	C	data	type	enumerators.	For	example,	you	can
specify	a	two-byte	integer,	ODBC	type	SQL_C_SHORT,	using	the	SQL
Server-specific	type	SQLINT2.

idxServerCol

Is	the	ordinal	position	of	the	column	in	the	database	table	to	which	the	data	is
copied.	The	first	column	in	a	table	is	column	1.	The	ordinal	position	of	a
column	is	reported	by	SQLColumns.

Returns
SUCCEED	or	FAIL.

Remarks
Use	bcp_bind	for	a	fast,	efficient	way	to	copy	data	from	a	program	variable	into



a	table	in	SQL	Server.

Call	bcp_init	before	calling	this	or	any	other	bulk-copy	function.	Calling
bcp_init	sets	the	SQL	Server	target	table	for	bulk	copy.	When	calling	bcp_init
for	use	with	bcp_bind	and	bcp_sendrow,	the	bcp_init	szDataFile	parameter,
indicating	the	data	file,	is	set	to	NULL;	the	bcp_init	eDirection	parameter	is	set
to	DB_IN.

Make	a	separate	bcp_bind	call	for	every	column	in	the	SQL	Server	table	into
which	you	want	to	copy.	After	the	necessary	bcp_bind	calls	have	been	made,
then	call	bcp_sendrow	to	send	a	row	of	data	from	your	program	variables	to
SQL	Server.

Whenever	you	want	SQL	Server	to	commit	the	rows	already	received,	call
bcp_batch.	For	example,	call	bcp_batch	once	for	every	1000	rows	inserted	or
at	any	other	interval.

When	there	are	no	more	rows	to	be	inserted,	call	bcp_done.	Failure	to	do	so
results	in	an	error.

Control	parameter	settings,	specified	with	bcp_control,	have	no	effect	on
bcp_bind	row	transfers.

Calling	bcp_columns	when	using	bcp_bind	results	in	an	error.

Example

...
//	Variables	like	henv	not	specified.
HDBC						hdbc;
char									szCompanyName[MAXNAME];
DBINT						idCompany;
DBINT						nRowsProcessed;
DBBOOL						bMoreData;
char*						pTerm	=	"\t\t";

//	Application	initiation,	get	an	ODBC	environment	handle,	allocate	the
//	hdbc,	and	so	on.
...	



//	Enable	bulk	copy	prior	to	connecting	on	allocated	hdbc.
SQLSetConnectAttr(hdbc,	SQL_COPT_SS_BCP,	(SQLPOINTER)	SQL_BCP_ON,
			SQL_IS_INTEGER);

//	Connect	to	the	data	source;	return	on	error.
if	(!SQL_SUCCEEDED(SQLConnect(hdbc,	_T("myDSN"),	SQL_NTS,
			_T("myUser"),	SQL_NTS,	_T("myPwd"),	SQL_NTS)))
			{
			//	Raise	error	and	return.
			return;
			}

//	Initialize	bcp.	
if	(bcp_init(hdbc,	"comdb..accounts_info",	NULL,	NULL
			DB_IN)	==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}

//	Bind	program	variables	to	table	columns.	
if	(bcp_bind(hdbc,	(LPCBYTE)	&idCompany,	0,	sizeof(DBINT),	NULL,	0,
			SQLINT4,	1)				==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}
if	(bcp_bind(hdbc,	(LPCBYTE)	szCompanyName,	0,	SQL_VARLEN_DATA,
			(LPCBYTE)	pTerm,	strlen(pTerm),	SQLCHARACTER,	2)	==	FAIL)
			{
			//	Raise	error	and	return.
			return;



			}

while	(TRUE)
			{
			//	Retrieve	and	process	program	data.	
			if	((bMoreData	=	getdata(&idCompany,	szCompanyName))	==	TRUE)
						{
						//	Send	the	data.	
						if	(bcp_sendrow(hdbc)	==	FAIL)
									{
									//	Raise	error	and	return.
									return;
									}
						}
			else
						{
						//	Break	out	of	loop	and	carry	on.
						break;
						}
			}

//	Terminate	the	bulk	copy	operation.
if	((nRowsProcessed	=	bcp_done(hdbc))	==	-1)
			{
			printf("Bulk-copy	unsuccessful.\n");
			return;
			}

printf("%ld	rows	copied.\n",	nRowsProcessed);

//	Carry	on.
...



See	Also

bcp_batch

bcp_colfmt

bcp_collen

bcp_colptr

bcp_columns

bcp_control

bcp_done

bcp_exec

bcp_init

bcp_moretext

bcp_sendrow

SQLColumns



ODBC	and	SQL	Server

bcp_colfmt
Specifies	the	source	or	target	format	of	the	data	in	a	user	file.	When	used	as	a
source	format,	bcp_colfmt	specifies	the	format	of	an	existing	data	file	used	as
the	source	of	data	in	a	bulk	copy	to	a	Microsoft®	SQL	Server™	table.	When
used	as	a	target	format,	the	data	file	is	created	using	the	column	formats
specified	with	bcp_colfmt.

Syntax
RETCODE	bcp_colfmt	(	
HDBC	hdbc,	
INT	idxUserDataCol,	
BYTE	eUserDataType,	
INT	cbIndicator,	
DBINT	cbUserData,	
LPCBYTE	pUserDataTerm,	
INT	cbUserDataTerm,	
INT	idxServerCol	);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

idxUserDataCol

Is	the	ordinal	column	number	in	the	user	data	file	for	which	the	format	is
being	specified.	The	first	column	is	1.

eUserDataType

Is	the	data	type	of	this	column	in	the	user	file.	If	different	from	the	data	type
of	the	corresponding	column	in	the	database	table	(idxServerColumn),	bulk
copy	converts	the	data	if	possible.	For	more	information	about	supported
data	conversions,	see	the	ODBC	3.0	Programmer's	Reference.



The	eUserDataType	parameter	is	enumerated	by	the	SQL	Server	data	type
tokens	in	Odbcss.h,	not	the	ODBC	C	data	type	enumerators.	For	example,
you	can	specify	a	character	string,	ODBC	type	SQL_C_CHAR,	using	the
SQL	Server-specific	type	SQLCHARACTER.

To	specify	the	default	data	representation	for	the	SQL	Server	data	type,	set
this	parameter	to	0.

For	a	bulk	copy	out	of	SQL	Server	into	a	file,	when	eUserDataType	is
SQLDECIMAL	or	SQLNUMERIC:

If	the	source	column	is	not	decimal	or	numeric,	the	default	precision
and	scale	are	used.

If	the	source	column	is	decimal	or	numeric,	the	precision	and	scale	of
the	source	column	are	used.

cbIndicator

Is	the	length,	in	bytes,	of	a	length/null	indicator	within	the	column	data.
Valid	indicator	length	values	are	0	(when	using	no	indicator),	1,	2,	or	4.

To	specify	default	bulk	copy	indicator	usage,	set	this	parameter	to
SQL_VARLEN_DATA.

Indicators	appear	in	memory	directly	before	any	data,	and	in	the	data	file
directly	before	the	data	to	which	they	apply.

If	more	than	one	means	of	specifying	a	data	file	column	length	is	used	(such
as	an	indicator	and	a	maximum	column	length,	or	an	indicator	and	a
terminator	sequence),	bulk	copy	chooses	the	one	that	results	in	the	least
amount	of	data	being	copied.

Data	files	generated	by	bulk	copy	when	no	user	intervention	adjusts	the
format	of	the	data	contain	indicators	when	the	column	data	can	vary	in
length	or	the	column	can	accept	NULL	as	a	value.

cbUserData

Is	the	maximum	length,	in	bytes,	of	this	column's	data	in	the	user	file,	not
including	the	length	of	any	length	indicator	or	terminator.



Setting	cbUserData	to	SQL_NULL_DATA	indicates	that	all	values	in	the
data	file	column	are,	or	should	be	set	to	NULL.

Setting	cbUserData	to	SQL_VARLEN_DATA	indicates	that	the	system
should	determine	the	length	of	data	in	each	column.	For	some	columns,	this
could	mean	that	a	length/null	indicator	is	generated	to	precede	data	on	a	copy
from	SQL	Server,	or	that	the	indicator	is	expected	in	data	copied	to	SQL
Server.

For	SQL	Server	character	and	binary	data	types,	cbUserData	can	be
SQL_VARLEN_DATA,	SQL_NULL_DATA,	0,	or	some	positive	value.	If
cbUserData	is	SQL_VARLEN_DATA,	the	system	uses	either	the	length
indicator,	if	present,	or	a	terminator	sequence	to	determine	the	length	of	the
data.	If	both	a	length	indicator	and	a	terminator	sequence	are	supplied,	bulk
copy	uses	the	one	that	results	in	the	least	amount	of	data	being	copied.	If
cbUserData	is	SQL_VARLEN_DATA,	the	data	type	is	an	SQL	Server
character	or	binary	type,	and	neither	a	length	indicator	nor	a	terminator
sequence	is	specified,	the	system	returns	an	error	message.

If	cbUserData	is	0	or	a	positive	value,	the	system	uses	cbUserData	as	the
maximum	data	length.	However,	if,	in	addition	to	a	positive	cbUserData,	a
length	indicator	or	terminator	sequence	is	provided,	the	system	determines
the	data	length	by	using	the	method	that	results	in	the	least	amount	of	data
being	copied.

The	cbUserData	value	represents	the	count	of	bytes	of	data.	If	character	data
is	represented	by	Unicode	wide	characters,	then	a	positive	cbUserData
parameter	value	represents	the	number	of	characters	multiplied	by	the	size,
in	bytes,	of	each	character.

pUserDataTerm

Is	the	terminator	sequence	to	be	used	for	this	column.	This	parameter	is
useful	mainly	for	character	data	types	because	all	other	types	are	of	fixed
length	or,	in	the	case	of	binary	data,	require	an	indicator	of	length	to
accurately	record	the	number	of	bytes	present.

To	avoid	terminating	extracted	data,	or	to	indicate	that	data	in	a	user	file	is
not	terminated,	set	this	parameter	to	NULL.

If	more	than	one	means	of	specifying	a	user-file	column	length	is	used	(such



as	a	terminator	and	a	length	indicator,	or	a	terminator	and	a	maximum
column	length),	bulk	copy	chooses	the	one	that	results	in	the	least	amount	of
data	being	copied.

The	bulk	copy	API	performs	Unicode-to-MBCS	character	conversion	as
required.	Care	must	be	taken	to	ensure	that	both	the	terminator	byte	string
and	the	length	of	the	byte	string	are	set	correctly.

cbUserDataTerm

Is	the	length,	in	bytes,	of	the	terminator	sequence	to	be	used	for	this	column.
If	no	terminator	is	present	or	desired	in	the	data,	set	this	value	to	0.

idxServerCol

Is	the	ordinal	position	of	the	column	in	the	database	table.	The	first	column
number	is	1.	The	ordinal	position	of	a	column	is	reported	by	SQLColumns.

If	this	value	is	0,	bulk	copy	ignores	the	column	in	the	data	file.

Returns
SUCCEED	or	FAIL.

Remarks
The	bcp_colfmt	function	allows	you	to	specify	the	user-file	format	for	bulk
copies.	For	bulk	copy,	a	format	contains	the	following	parts:

A	mapping	from	user-file	columns	to	database	columns.

The	data	type	of	each	user-file	column.

The	length	of	the	optional	indicator	for	each	column.

The	maximum	length	of	data	per	user-file	column.

The	optional	terminating	byte	sequence	for	each	column.



The	length	of	the	optional	terminating	byte	sequence.

Each	call	to	bcp_colfmt	specifies	the	format	for	one	user-file	column.	For
example,	to	change	the	default	settings	for	three	columns	in	a	five-column	user
data	file,	first	call	bcp_columns(5),	and	then	call	bcp_colfmt	five	times,	with
three	of	those	calls	setting	your	custom	format.	For	the	remaining	two	calls,	set
eUserDataType	to	0,	and	set	cbIndicator,	cbUserData,	and	cbUserDataTerm	to
0,	SQL_VARLEN_DATA,	and	0	respectively.	This	procedure	copies	all	five
columns,	three	with	your	customized	format	and	two	with	the	default	format.

The	bcp_columns	function	must	be	called	before	any	calls	to	bcp_colfmt.

You	must	call	bcp_colfmt	once	for	each	column	in	the	user	file.

Calling	bcp_colfmt	more	than	once	for	any	user-file	column	causes	an	error.

You	do	not	need	to	copy	all	data	in	a	user	file	to	the	SQL	Server	table.	To	skip	a
column,	specify	the	format	of	the	data	for	the	column,	setting	the	idxServerCol
parameter	to	0.	If	you	want	to	skip	a	column,	you	must	specify	its	type.

The	bcp_writefmt	function	can	be	used	to	persist	the	format	specification.

See	Also

bcp_batch

bcp_bind

bcp_collen

bcp_colptr

bcp_columns

bcp_control

bcp_done

bcp_exec

bcp_init

bcp_sendrow

bcp_writefmt



SQLColumns



ODBC	and	SQL	Server

bcp_collen
Sets	the	program	variable	data	length	for	the	current	bulk	copy	into	Microsoft®
SQL	Server™.

Syntax
RETCODE	bcp_collen	(	
HDBC	hdbc,	
DBINT	cbData,	
INT	idxServerCol	);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

cbData

Is	the	length	of	the	data	in	the	program	variable,	not	including	the	length	of
any	length	indicator	or	terminator.	Setting	cbData	to	SQL_NULL_DATA
indicates	all	rows	copied	to	the	server	contain	a	NULL	value	for	the	column.
Setting	it	to	SQL_VARLEN_DATA	indicates	a	string	terminator	or	other
method	is	used	to	determine	the	length	of	data	copied.	If	both	a	length
indicator	and	a	terminator	exist,	the	system	uses	the	one	that	results	in	the
least	amount	of	data	being	copied.

idxServerCol

Is	the	ordinal	position	of	the	column	in	the	table	to	which	the	data	is	copied.
The	first	column	is	1.	The	ordinal	position	of	a	column	is	reported	by
SQLColumns.

Returns
SUCCEED	or	FAIL.



Remarks
The	bcp_collen	function	allows	you	to	change	the	program	variable	data	length
for	a	particular	column	when	copying	data	to	SQL	Server	with	bcp_sendrow.

Initially,	the	program	variable	data	length	is	determined	when	bcp_bind	is
called.	If	the	program	variable	data	length	changes	between	calls	to
bcp_sendrow	and	no	length	prefix	or	terminator	is	being	used,	you	can	call
bcp_collen	to	reset	the	length.	The	next	call	to	bcp_sendrow	uses	the	length	set
by	the	call	to	bcp_collen.

You	must	call	bcp_collen	once	for	each	column	in	the	table	whose	data	length
you	want	to	modify.

See	Also

bcp_sendrow

SQLColumns



ODBC	and	SQL	Server

bcp_colptr
Sets	the	program	variable	data	address	for	the	current	copy	into	Microsoft®	SQL
Server™.

Syntax
RETCODE	bcp_colptr	(	
HDBC	hdbc,	
LPCBYTE	pData,	
INT	idxServerCol	);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

pData

Is	a	pointer	to	the	data	to	copy.	If	the	bound	data	type	is	SQLTEXT,
SQLNTEXT,	or	SQLIMAGE,	pData	can	be	NULL.	A	NULL	pData
indicates	long	data	values	will	be	sent	to	SQL	Server	in	chunks	using
bcp_moretext.

idxServerCol

Is	the	ordinal	position	of	the	column	in	the	database	table	to	which	the	data	is
copied.	The	first	column	in	a	table	is	column	1.	The	ordinal	position	of	a
column	is	reported	by	SQLColumns.

Returns
SUCCEED	or	FAIL.

Remarks
The	bcp_colptr	function	allows	you	to	change	the	address	of	source	data	for	a



particular	column	when	copying	data	to	SQL	Server	with	bcp_sendrow.

Initially,	the	pointer	to	user	data	is	set	by	a	call	to	bcp_bind.	If	the	program
variable	data	address	changes	between	calls	to	bcp_sendrow,	you	can	call
bcp_colptr	to	reset	the	pointer	to	the	data.	The	next	call	to	bcp_sendrow	sends
the	data	addressed	by	the	call	to	bcp_colptr.

There	must	be	a	separate	bcp_colptr	call	for	every	column	in	the	table	whose
data	address	you	want	to	modify.

See	Also

bcp_bind

bcp_collen

bcp_moretext

bcp_sendrow

SQLColumns



ODBC	and	SQL	Server

bcp_columns
Sets	the	total	number	of	columns	found	in	the	user	file	for	use	with	a	bulk	copy
into	or	out	of	Microsoft®	SQL	Server™.

Syntax
RETCODE	bcp_columns	(	
HDBC	hdbc,
INT	nColumns	);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

nColumns

Is	the	total	number	of	columns	in	the	user	file.	Even	if	you	are	preparing	to
bulk	copy	data	from	the	user	file	to	an	SQL	Server	table	and	do	not	intend	to
copy	all	columns	in	the	user	file,	you	must	still	set	nColumns	to	the	total
number	of	user-file	columns.

Returns
SUCCEED	or	FAIL.

Remarks
This	function	can	be	called	only	after	bcp_init	has	been	called	with	a	valid	file
name.

You	should	call	this	function	only	if	you	intend	to	use	a	user-file	format	that
differs	from	the	default.	For	more	information	about	a	description	of	the	default
user-file	format,	see	bcp_init.

After	calling	bcp_columns,	you	must	call	bcp_colfmt	for	each	column	in	the



user	file	to	completely	define	a	custom	file	format.

See	Also

bcp_colfmt



ODBC	and	SQL	Server

bcp_control
Changes	the	default	settings	for	various	control	parameters	for	a	bulk	copy
between	a	file	and	Microsoft®	SQL	Server™.

Syntax
RETCODE	bcp_control	(	
HDBC	hdbc,	
INT	eOption,	
void*	iValue	);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

eOption

Is	one	of	the	following:

BCP6xFILEFMT

When	iValue	is	TRUE,	specifies	that	columns	stored	in	a	data	file	use	the
SQL	Server	version	6.x	format	instead	of	the	SQL	Server	7.0	format.

Version	6.x	format	does	not	support	several	data	types	when	bulk	copying
out	from	an	SQL	Server	7.0	database.	Nullable	bit	values	are	converted	to	0.
char,	varchar,	binary,	and	varbinary	values	longer	than	255	bytes	are
trunctated.	uniqueidentifier,	nchar,	nvarchar,	and	ntext	columns	are	not
supported.	Zero	length	data	is	converted	to	NULL.

When	bulk	copying	in	from	a	character	data	file	column,	blank	input	values
are	converted	to	NULL	when	iValue	is	set	to	FALSE	and	as	follows	when
iValue	is	TRUE.

Target	column	data	type Resulting	value
Any	data	type	in	the	numeric	category 0



binary	or	varbinary 0x00
datetime	or	smalldatetime NULL
uniqueidentifier NULL

When	bulk	copying	in	from	a	character	data	file	column	containing	datetime
strings,	all	datetime	string	formats	supported	by	earlier	DB-Library	versions
of	bulk	copy	are	supported.

When	iValue	is	set	to	TRUE,	a	prefix	of	0x	is	allowed	for	binary	values
specified	in	character	mode	data	files.	The	prefix	is	not	allowed	if	iValue	is
FALSE.

When	iValue	is	set	to	FALSE,	zero	length	indicates	are	stored	as	0x00	in
character	mode	data	files	and	as	0x0000	in	BCPUNICODE	files.

BCPABORT

Stops	a	bulk-copy	operation	that	is	already	in	progress.	Call	bcp_control
with	an	eOption	of	BCPABORT	from	another	thread	to	stop	a	running	bulk-
copy	operation.	The	iValue	parameter	is	ignored.

BCPBATCH

Is	the	number	of	rows	per	batch.	The	default	is	0,	which	indicates	either	all
rows	in	a	table,	when	data	is	being	extracted,	or	all	rows	in	the	user	data	file,
when	data	is	being	copied	to	an	SQL	Server.	A	value	less	than	1	resets
BCPBATCH	to	the	default.

BCPFILECP

iValue	contains	the	number	of	the	code	page	for	the	data	file.	You	can	specify
the	number	of	the	code	page,	such	as	1252	or	850,	or	one	of	these	values:

BCPFILE_ACP:	data	in	the	file	is	in	the	Microsoft	Windows®	code	page	of	the
client.

BCPFILE_OEMCP:	data	in	the	file	is	in	the	OEM	code	page	of	the	client
(default).

BCPFILE_RAW:	data	in	the	file	is	in	the	code	page	of	the	SQL	Server.

BCPFIRST



Is	the	first	row	of	data	to	file	or	table	to	copy.	The	default	is	1;	a	value	less
than	1	resets	this	option	to	its	default.

BCPHINTS

iValue	contains	an	SQLTCHAR	character	string	pointer.	The	string	addressed
specifies	either	SQL	Server	bulk-copy	processing	hints	or	a	Transact-SQL
statement	that	returns	a	result	set.	If	a	Transact-SQL	statement	is	specified
that	returns	more	than	one	result	set,	all	result	sets	after	the	first	are	ignored.
For	more	information	about	bulk-copy	processing	hints,	see	bcp	Utility.

BCPKEEPIDENTITY

When	iValue	is	TRUE,	specifies	that	bulk	copy	functions	insert	data	values
supplied	for	SQL	Server	columns	defined	with	an	identity	constraint.	The
input	file	must	supply	values	for	the	identity	columns.	If	this	is	not	set,	new
identity	values	are	generated	for	the	inserted	rows.	Any	data	present	in	the
file	for	the	identity	columns	is	ignored.

BCPKEEPNULLS

Specifies	whether	empty	data	values	in	the	file	will	be	converted	to	NULL
values	in	the	SQL	Server	table.	When	iValue	is	TRUE,	empty	values	will	be
converted	to	NULL	in	the	SQL	Server	table.	The	default	is	for	empty	values
to	be	converted	to	a	default	value	for	the	column	in	the	SQL	Server	table	if	a
default	exists.

BCPLAST

Is	the	last	row	to	copy.	The	default	is	to	copy	all	rows;	a	value	less	than	1
resets	this	option	to	its	default.

BCPMAXERRS

Is	the	number	of	errors	allowed	before	the	bulk	copy	operation	fails.	The
default	is	10;	a	value	less	than	1	resets	this	option	to	its	default.	Bulk	copy
imposes	a	maximum	of	65,535	errors.	An	attempt	to	set	this	option	to	a	value
larger	than	65,535	results	in	the	option	being	set	to	65,535.

BCPODBC

When	TRUE,	specifies	that	datetime	and	smalldatetime	values	saved	in
character	format	will	use	the	ODBC	timestamp	escape	sequence	prefix	and

JavaScript:hhobj_1.Click()


suffix.	The	BCPODBC	option	only	applies	to	BCP_OUT.

When	FALSE,	a	datetime	value	representing	January	1,	1997	is	converted	to
the	character	string:	1997-01-01	00:00:00.000.	When	TRUE,	the	same
datetime	value	is	represented	as:	{ts	'1997-01-01	00:00:00.000'}.

BCPUNICODEFILE

When	TRUE,	specifies	the	input	file	is	a	Unicode	file.

FIRE_TRIGGERS

Specifies	that	INSERT	and	INSTEAD	OF	triggers	defined	on	the	destination
table	are	fired	once	for	each	bulk	copy	batch.	The	inserted	table	passed	to
each	trigger	contains	all	of	the	rows	inserted	by	the	batch.	Bulk	copy
operations	that	would	otherwise	be	logged	minimally	are	fully	logged	when
FIRE_TRIGGERS	is	specified.	No	result	sets	generated	by	the	triggers	are
returned	to	the	client	performing	the	bulk	copy	operation.	Specify
FIRE_TRIGGERS	only	when	all	of	the	INSERT	and	INSTEAD	OF	triggers
on	the	destination	table	support	multiple	row	inserts.	The	iValue	parameter	is
ignored.

iValue

Is	the	value	for	the	specified	eOption.	iValue	is	an	integer	value	cast	to	a	void
pointer	to	allow	for	future	expansion	to	64	bit	values.

Returns
SUCCEED	or	FAIL.

Remarks
This	function	sets	various	control	parameters	for	bulk-copy	operations,	including
the	number	of	errors	allowed	before	canceling	a	bulk	copy,	the	numbers	of	the
first	and	last	rows	to	copy	from	a	data	file,	and	the	batch	size.

This	function	is	also	used	to	specify	the	SELECT	statement	when	bulk	copying
out	from	SQL	Server	the	result	set	of	a	SELECT.	Set	eOption	to	BCPHINTS	and
set	iValue	to	have	a	pointer	to	an	SQLTCHAR	string	containing	the	SELECT
statement.



These	control	parameters	are	only	meaningful	when	copying	between	a	user	file
and	an	SQL	Server	table.	Control	parameter	settings	have	no	effect	on	rows
copied	to	SQL	Server	with	bcp_sendrow.

Example

...
//	Variables	like	henv	not	specified.
SQLHDBC						hdbc;
DBINT						nRowsProcessed;
	
//	Application	initiation,	get	an	ODBC	environment	handle,	allocate	the
//	hdbc,	and	so	on.
...	

//	Enable	bulk	copy	prior	to	connecting	on	allocated	hdbc.
SQLSetConnectAttr(hdbc,	SQL_COPT_SS_BCP,	(SQLPOINTER)	SQL_BCP_ON,
			SQL_IS_INTEGER);

//	Connect	to	the	data	source,	return	on	error.
if	(!SQL_SUCCEEDED(SQLConnect(hdbc,	_T("myDSN"),	SQL_NTS,
			_T("myUser"),	SQL_NTS,	_T("myPwd"),	SQL_NTS)))
			{
			//	Raise	error	and	return.
			return;
			}

//	Initialize	bulk	copy.	
if	(bcp_init(hdbc,	_T("address"),	_T("address.add"),	_T("addr.err"),
			DB_IN)	==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}



//	Set	the	number	of	rows	per	batch.	
if	(bcp_control(hdbc,	BCPBATCH,	(void*)	1000)	==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}

//	Set	file	column	count.	
if	(bcp_columns(hdbc,	1)	==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}

//	Set	the	file	format.	
if	(bcp_colfmt(hdbc,	1,	0,	0,	SQL_VARLEN_DATA,	'\n',	1,	1)
			==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}

//	Execute	the	bulk	copy.	
if	(bcp_exec(hdbc,	&nRowsProcessed)	==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}

printf("%ld	rows	processed	by	bulk	copy.",	nRowsProcessed);

See	Also



bcp_exec

bcp_sendrow



ODBC	and	SQL	Server

bcp_done
Ends	a	bulk	copy	from	program	variables	to	Microsoft®	SQL	Server™
performed	with	bcp_sendrow.

Syntax
DBINT	bcp_done	(	HDBC	hdbc	);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

Returns
The	number	of	rows	permanently	saved	after	the	last	call	to	bcp_batch	or	-1	in
case	of	error.

Remarks
Call	bcp_done	after	the	last	call	to	bcp_sendrow	or	bcp_moretext.	Failure	to
call	bcp_done	after	copying	all	data	results	in	errors.

See	Also

bcp_batch

bcp_moretext

bcp_sendrow



ODBC	and	SQL	Server

bcp_exec
Executes	a	complete	bulk	copy	of	data	between	a	database	table	and	a	user	file.

Syntax
RETCODE	bcp_exec	(	
HDBC	hdbc,	
LPDBINT	pnRowsProcessed	);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

pnRowsProcessed

Is	a	pointer	to	a	DBINT.	The	bcp_exec	function	fills	this	DBINT	with	the
number	of	rows	successfully	copied.	If	pnRowsProcessed	is	NULL,	it	is
ignored	by	bcp_exec.

Returns
SUCCEED,	SUCCEED_ASYNC,	or	FAIL.	The	bcp_exec	function	returns
SUCCEED	if	all	rows	are	copied.	bcp_exec	returns	SUCCEED_ASYNC	if	an
asynchronous	bulk	copy	operation	is	still	outstanding.	bcp_exec	returns	FAIL	if
a	complete	failure	occurs,	or	if	the	number	of	rows	generating	errors	reaches	the
value	specified	for	BCPMAXERRS	using	bcp_control.	BCPMAXERRS
defaults	to	10.	The	BCPMAXERRS	option	affects	only	the	syntax	errors
detected	by	the	provider	while	reading	the	rows	from	the	data	file	(and	not	the
rows	sent	to	the	server).	Server	aborts	the	batch	when	it	detects	an	error	with	a
row.	Check	the	pnRowsProcessed	parameter	for	the	number	of	rows	successfully
copied.

Remarks



This	function	copies	data	from	a	user	file	to	a	database	table	or	vice	versa,
depending	on	the	value	of	the	eDirection	parameter	in	bcp_init.

Before	calling	bcp_exec,	call	bcp_init	with	a	valid	user	file	name.	Failure	to	do
so	results	in	an	error.

bcp_exec	is	the	only	bulk	copy	function	that	is	likely	to	be	outstanding	for	any
length	of	time.	It	is	therefore	the	only	bulk	copy	function	that	supports
asynchronous	mode.	To	set	asynchronous	mode,	use	SQLSetConnectAttr	to	set
SQL_ATTR_ASYNC_ENABLE	to	SQL_ASYNC_ENABLE_ON	before	calling
bcp_exec.	To	test	for	completion,	call	bcp_exec	with	the	same	parameters.	If	the
bulk	copy	has	not	yet	completed,	bcp_exec	returns	SUCCEED_ASYNC.	It	also
returns	in	pnRowsProcessed	a	status	count	of	the	number	of	rows	that	have	been
sent	to	the	server.	Rows	sent	to	the	server	are	not	committed	until	the	end	of	a
batch	has	been	reached.

Example
The	following	example	shows	how	to	use	bcp_exec:

...
//	Variables	like	henv	not	specified.
HDBC						hdbc;
DBINT						nRowsProcessed;
	
//	Application	initiation,	get	an	ODBC	environment	handle,	allocate	the
//	hdbc,	and	so	on.
...	

//	Enable	bulk	copy	prior	to	connecting	on	allocated	hdbc.
SQLSetConnectAttr(hdbc,	SQL_COPT_SS_BCP,	(SQLPOINTER)	SQL_BCP_ON,
			SQL_IS_INTEGER);

//	Connect	to	the	data	source,	return	on	error.
if	(!SQL_SUCCEEDED(SQLConnect(hdbc,	_T("myDSN"),	SQL_NTS,
			_T("myUser"),	SQL_NTS,	_T("myPwd"),	SQL_NTS)))
			{



			//	Raise	error	and	return.
			return;
			}

//	Initialize	bulk	copy.	
if	(bcp_init(hdbc,	_T("pubs..authors"),	_T("authors.sav"),	NULL,	DB_OUT)
			==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}

//	Now,	execute	the	bulk	copy.	
if	(bcp_exec(dbproc,	&nRowsProcessed)	==	FAIL)
			{
			if	(nRowsProcessed	==	-1)
						{
						printf("No	rows	processed	on	bulk	copy	execution.\n");
						}
			else
						{
						printf("Incomplete	bulk	copy.			Only	%ld	row%s	copied.\n",
									nRowsProcessed,	(nRowsProcessed	==	1)	?	"":	"s");
						}
			return;
			}

printf("%ld	rows	processed.\n",	nRowsProcessed);

//	Carry	on.
...



See	Also

bcp_init



ODBC	and	SQL	Server

bcp_getcolfmt
Used	to	find	the	column	format	property	value.

Syntax
RETCODE	bcp_getcolfmt	(	
HDBC	hdbc,	
INT	field,	
INT	property,	
void*	pValue,	
INT	cbvalue,
INT*	pcbLen);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

field

Is	the	column	number	for	which	the	property	is	retrieved.

property

Is	one	of	the	property	constants.

pValue

Is	the	pointer	to	the	buffer	in	which	to	retrieve	the	property	value.

cbValue

Is	the	length	of	the	property	buffer	in	bytes.

pcbLen

Pointer	to	length	of	the	data	that	is	being	returned	in	the	property	buffer.



Returns
SUCCEED	or	FAIL.

Remarks
Column	format	property	values	are	listed	in	the	bcp_setcolfmt	topic.	The
column	format	property	values	are	set	by	calling	the	bcp_setcolfmt	function,
and	the	bcp_getcolfmt	function	is	used	to	find	the	column	format	property
value.

See	Also

bcp_setcolfmt



ODBC	and	SQL	Server

bcp_init
Initializes	bulk	copy	operation.

Syntax
RETCODE	bcp_init	(	
HDBC	hdbc,	
LPCTSTR	szTable,	
LPCTSTR	szDataFile,	
LPCTSTR	szErrorFile,	
INT	eDirection	);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

szTable

Is	the	name	of	the	database	table	to	be	copied	into	or	out	of.	This	name	can
also	include	the	database	name	or	the	owner	name.	For	example,
pubs.gracie.titles,	pubs..titles,	gracie.titles,	and	titles	are	all	legal	table
names.

If	eDirection	is	DB_OUT,	szTable	can	also	be	the	name	of	a	database	view.

If	eDirection	is	DB_OUT	and	a	SELECT	statement	is	specified	using
bcp_control	before	bcp_exec	is	called,	bcp_init	szTable	must	be	set	to
NULL.

szDataFile

Is	the	name	of	the	user	file	to	be	copied	into	or	out	of.	If	data	is	being	copied
directly	from	variables	by	using	bcp_sendrow,	set	szDataFile	to	NULL.

szErrorFile

Is	the	name	of	the	error	file	to	be	filled	with	progress	messages,	error



messages,	and	copies	of	any	rows	that,	for	any	reason,	could	not	be	copied
from	a	user	file	to	a	table.	If	NULL	is	passed	as	szErrorFile,	no	error	file	is
used.

eDirection

Is	the	direction	of	the	copy,	either	DB_IN	or	DB_OUT.	DB_IN	indicates	a
copy	from	program	variables	or	a	user	file	to	a	table.	DB_OUT	indicates	a
copy	from	a	database	table	to	a	user	file.	You	must	specify	a	user	file	name
with	DB_OUT.

Returns
SUCCEED	or	FAIL.

Remarks
Call	bcp_init	before	calling	any	other	bulk-copy	function.	bcp_init	performs	the
necessary	initializations	for	a	bulk	copy	of	data	between	the	workstation	and
Microsoft®	SQL	Server™.

The	bcp_init	function	must	be	provided	with	an	ODBC	connection	handle
enabled	for	use	with	bulk	copy	functions.	To	enable	the	handle,	use
SQLSetConnectAttr	with	SQL_COPT_SS_BCP	set	to	SQL_BCP_ON	on	an
allocated,	but	not	connected,	connection	handle.	Attempting	to	assign	the
attribute	on	a	connected	handle	results	in	an	error.

When	a	data	file	is	specified,	bcp_init	examines	the	structure	of	the	database
source	or	target	table,	not	the	data	file.	bcp_init	specifies	data	format	values	for
the	data	file	based	on	each	column	in	the	database	table,	view,	or	SELECT	result
set.	This	specification	includes	the	data	type	of	each	column,	the	presence	or
absence	of	a	length	or	null	indicator	and	terminator	byte	strings	in	the	data,	and
the	width	of	fixed-length	data	types.	bcp_init	sets	these	values	as	follows:

The	data	type	specified	is	the	data	type	of	the	column	in	the	database
table,	view,	or	SELECT	result	set.	The	data	type	is	enumerated	by	SQL
Server	native	data	types	specified	in	Odbcss.h.	Data	itself	is	represented
in	its	computer	form.	That	is,	data	from	a	column	of	integer	data	type	is
represented	by	a	four-byte	sequence	that	is	big-or	little-endian	based	on
the	computer	that	created	the	data	file.



If	a	database	data	type	is	fixed	in	length,	the	data	file	data	is	also	fixed
in	length.	Bulk-copy	functions	that	process	data	(for	example,
bcp_exec)	parse	data	rows	expecting	the	length	of	the	data	in	the	data
file	to	be	identical	to	the	length	of	the	data	specified	in	the	database
table,	view,	or	SELECT	column	list.	For	example,	data	for	a	database
column	defined	as	char(13)	must	be	represented	by	13	characters	for
each	row	of	data	in	the	file.	Fixed-length	data	can	be	prefixed	with	a
null	indicator	if	the	database	column	allows	null	values.

When	terminator-byte	sequence	is	defined,	the	length	of	the	terminator-
byte	sequence	is	set	to	0.

When	copying	to	SQL	Server,	the	data	file	must	have	data	for	each
column	in	the	database	table.	When	copying	from	SQL	Server,	data
from	all	columns	in	the	database	table,	view,	or	SELECT	result	set	are
copied	to	the	data	file.

When	copying	to	SQL	Server,	the	ordinal	position	of	a	column	in	the
data	file	must	be	identical	to	the	ordinal	position	of	the	column	in	the
database	table.	When	copying	from	SQL	Server,	bcp_exec	places	data
based	on	the	ordinal	position	of	the	column	in	the	database	table.

If	a	database	data	type	is	variable	in	length	(for	example,
varbinary(22))	or	if	a	database	column	can	contain	null	values,	data	in
the	data	file	is	prefixed	by	a	length/null	indicator.	The	width	of	the
indicator	varies	based	on	the	data	type	and	version	of	bulk	copy.	The
bcp_control	option	BCP6xFILEFMT	provides	compatibility	between
earlier	bulk	copy	data	files	and	servers	running	later	versions	of	SQL
Server	by	indicating	when	the	width	of	indicators	in	the	data	is	narrower
than	expected.

To	change	data	format	values	specified	for	a	data	file,	call	bcp_columns	and
bcp_colfmt.



Bulk	copies	to	SQL	Server	can	be	optimized	for	tables	that	do	not	contain
indexes	by	setting	the	database	option	select	into/bulkcopy	(see	the	example).
For	more	information,	see	Optimizing	Bulk	Copy	Performance.

If	no	data	file	is	used,	you	must	call	bcp_bind	to	specify	the	format	and	location
in	memory	of	the	data	for	each	column,	then	copy	data	rows	to	the	SQL	Server
using	bcp_sendrow.

Example
Setting	the	select	into/bulkcopy	option	allows	faster	bulk	copies	for	tables	that
do	not	contain	indexes.

...
//	Variables	like	henv	not	specified.
HDBC						hdbc;
SQLHSTMT						hstmt;
	
//	Application	initiation,	get	an	ODBC	environment	handle,	allocate	the
//	hdbc,	and	so	on.
...	

//	Enable	bulk	copy	prior	to	connecting	on	allocated	hdbc.
SQLSetConnectAttr(hdbc,	SQL_COPT_SS_BCP,	(SQLPOINTER)	SQL_BCP_ON,
			SQL_IS_INTEGER);

//	Connect	to	the	data	source,	return	on	error.
if	(!SQL_SUCCEEDED(SQLConnect(hdbc,	_T("myDSN"),	SQL_NTS,
			_T("myUser"),	SQL_NTS,	_T("myPwd"),	SQL_NTS)))
			{
			//	Raise	error	and	return.
			return;
			}

//	Get	a	statement	handle	and	set	the	select	into/bulkcopy	database

JavaScript:hhobj_1.Click()


//	option	to	TRUE.
SQLAllocHandle(SQL_HANDLE_STMT,	hdbc,	&hstmt);
if	(!SQL_SUCCEEDED(SQLExecDirect(hstmt,
			_T("sp_dboption	'mydb',	'select	into/bulkcopy',	'true'"),
			SQL_NTS)))
			{
			//	Raise	error	and	return.
			return;
			}

//	Flush	the	statement	handle.
while	(SQL_SUCCEEDED(SQLMoreResults(hstmt)))
			;

//	Initialize	bulk	copy,	perform	copies,	and	so	on.	
...

//	Turn	off	the	select	into/bulkcopy	database	option.
if	(!SQL_SUCCEEDED(SQLExecDirect(hstmt,
			_T("sp_dboption	'mydb',	'select	into/bulkcopy',	'false'"),
			SQL_NTS)))
			{
			//	Raise	error	and	return.
			return;
			}

//	Carry	on.
...

See	Also

bcp_bind



bcp_control

bcp_colfmt

bcp_columns

bcp_sendrow

Logged	and	Minimally	Logged	Bulk	Copy	Operations

SQLSetConnectAttr

JavaScript:hhobj_2.Click()


ODBC	and	SQL	Server

bcp_moretext
Sends	part	of	a	long,	variable-length	data	type	value	to	Microsoft®	SQL
Server™.

Syntax
RETCODE	bcp_moretext	(	
HDBC	hdbc,	
DBINT	cbData,	
LPCBYTE	pData	);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

cbData

Is	the	number	of	bytes	of	data	being	copied	to	SQL	Server	from	the	data
referenced	by	pData.

pData

Is	a	pointer	to	the	supported,	long,	variable-length	data	chunk	to	be	sent	to
SQL	Server.

Returns
SUCCEED	or	FAIL.

Remarks
This	function	can	be	used	in	conjunction	with	bcp_bind	and	bcp_sendrow	to
copy	long,	variable-length	data	values	to	SQL	Server	in	a	number	of	smaller
chunks.	bcp_moretext	can	be	used	with	columns	that	have	SQL	Server	data
types	enumerated	with	SQLTEXT,	SQLNTEXT,	and	SQLIMAGE	only.



bcp_moretext	does	not	support	data	conversions,	the	data	supplied	must	match
the	data	type	of	the	target	column.

If	bcp_bind	is	called	with	a	nonNULL	pData	parameter	for	data	types	that	are
supported	by	bcp_moretext,	bcp_sendrow	sends	the	entire	data	value,
regardless	of	length.	If,	however,	bcp_bind	has	a	NULL	pData	parameter	for
supported	data	types,	bcp_moretext	can	be	used	to	copy	data	immediately	after
a	successful	return	from	bcp_sendrow	indicating	that	any	bound	columns	with
data	present	have	been	processed.

If	you	use	bcp_moretext	to	send	one	supported	data	type	column	in	a	row,	you
must	also	use	it	to	send	all	other	supported	data	type	columns	in	the	row.

Calling	either	bcp_bind	or	bcp_collen	sets	the	total	length	of	all	data	parts	to	be
copied	to	the	SQL	Server	column.	An	attempt	to	send	SQL	Server	more	bytes
than	specified	in	the	call	to	bcp_bind	or	bcp_collen	generates	an	error.	This
error	would	arise,	for	example,	in	an	application	which	used	bcp_collen	to	set
the	length	of	available	data	for	an	SQL	Server	text	column	to	4500,	then	called
bcp_moretext	five	times	while	indicating	on	each	call	that	the	data	buffer	length
was	1000	bytes	long.

If	a	copied	row	contains	more	than	one	long,	variable-length	column,
bcp_moretext	first	sends	its	data	to	the	lowest	ordinally	numbered	column,
followed	by	the	next	lowest	ordinally	numbered	column,	and	so	on.	Correct
setting	of	the	total	length	of	expected	data	is	important.	There	is	no	way	to
signal,	outside	of	the	length	setting,	that	all	data	for	a	column	has	been	received
by	bulk	copy.

An	application	normally	calls	bcp_sendrow	and	bcp_moretext	within	loops	to
send	a	number	of	rows	of	data.	Here's	an	outline	of	how	to	do	this	for	a	table
containing	two	text	columns:

while	(there	are	still	rows	to	send)
{
bcp_collen(...,	total	length	of	data	for	first	text	column,	
			first	text	column's	ordinal	position);
bcp_collen(...,	total	length	of	data	for	second	text	column,	
			second	text	column's	ordinal	position);



bcp_sendrow(...);

for	(all	the	data	in	the	first	text	column)
bcp_moretext(...);

for	(all	the	data	in	the	second	text	column)
bcp_moretext(...);
}

Example
This	example	shows	how	to	use	bcp_moretext	with	bcp_bind	and
bcp_sendrow.

...
//	Variables	like	henv	not	specified.
HDBC						hdbc;
DBINT						idRow	=	5;
char*						pPart1	=	"This	text	value	isn't	very	long,";
char*						pPart2	=	"	but	it's	broken	into	three	parts";
char*						pPart3	=	"	anyhow.";
DBINT						cbAllParts;
DBINT						nRowsProcessed;
	
//	Application	initiation,	get	an	ODBC	environment	handle,	allocate	the
//	hdbc,	and	so	on.
...	

//	Enable	bulk	copy	prior	to	connecting	on	allocated	hdbc.
SQLSetConnectAttr(hdbc,	SQL_COPT_SS_BCP,	(SQLPOINTER)	SQL_BCP_ON,
			SQL_IS_INTEGER);

//	Connect	to	the	data	source,	return	on	error.
if	(!SQL_SUCCEEDED(SQLConnect(hdbc,	_T("myDSN"),	SQL_NTS,



			_T("myUser"),	SQL_NTS,	_T("myPwd"),	SQL_NTS)))
			{
			//	Raise	error	and	return.
			return;
			}

//	Initialize	bulk	copy.	
if	(bcp_init(hdbc,	"comdb..articles",	NULL,	NULL,	DB_IN)	==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}

//	Bind	program	variables	to	table	columns.	
if	(bcp_bind(hdbc,	(LPCBYTE)	&idRow,	0,	SQL_VARLEN_DATA,	NULL,	0,
			SQLINT4,	1)				==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}

cbAllParts	=	(DBINT)	(strlen(pPart1)	+	strlen(pPart2)	+	strlen(pPart3));
if	(bcp_bind(hdbc,	NULL,	0,	cbAllParts,	NULL,	0,	SQLTEXT,	2)	==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}

//	Send	this	row,	with	the	text	value	broken	into	three	chunks.	
if	(bcp_sendrow(hdbc)	==	FAIL)
			{
			//	Raise	error	and	return.
			return;



			}

if	(bcp_moretext(hdbc,	(DBINT)	strlen(pPart1),	pPart1)	==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}
if	(bcp_moretext(hdbc,	(DBINT)	strlen(pPart2),	pPart2)	==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}
if	(bcp_moretext(hdbc,	(DBINT)	strlen(pPart3),	pPart3)	==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}

//	All	done.	Get	the	number	of	rows	processed	(should	be	one).
nRowsProcessed	=	bcp_done(hdbc);

//	Carry	on.
...

See	Also

bcp_bind

bcp_collen

bcp_sendrow



ODBC	and	SQL	Server

bcp_readfmt
Reads	a	data	file	format	definition	from	the	specified	format	file.

Syntax
RETCODE	bcp_readfmt	(	
HDBC	hdbc,	
LPCTSTR	szFormatFile	);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

szFormatFile

Is	the	path	and	file	name	of	the	file	containing	the	format	values	for	the	data
file.

Returns
SUCCEED	or	FAIL.

Remarks
After	bcp_readfmt	reads	the	format	values,	it	makes	the	appropriate	calls	to
bcp_columns	and	bcp_colfmt.	There	is	no	need	for	you	to	parse	a	format	file
and	make	these	calls.

To	persist	a	format	file,	call	bcp_writefmt.	Calls	to	bcp_readfmt	can	reference
saved	formats.	For	more	information,	see	bcp_init.

Alternately,	the	bulk-copy	utility	(bcp)	can	save	user-defined	data	formats	in
files	that	can	be	referenced	by	bcp_readfmt.	For	more	information	about	the
bcp	utility	and	the	structure	of	bcp	data	format	files,	see	Using	Format	Files.

Note		The	format	file	must	have	been	produced	by	version	4.2	or	later	of	the	bcp

JavaScript:hhobj_1.Click()


utility.

Example

//	Variables	like	henv	not	specified.
HDBC						hdbc;
DBINT						nRowsProcessed;

//	Application	initiation,	get	an	ODBC	environment	handle,	allocate	the
//	hdbc,	and	so	on.
...	

//	Enable	bulk	copy	prior	to	connecting	on	allocated	hdbc.
SQLSetConnectAttr(hdbc,	SQL_COPT_SS_BCP,	(SQLPOINTER)	SQL_BCP_ON,
			SQL_IS_INTEGER);

//	Connect	to	the	data	source,	return	on	error.
if	(!SQL_SUCCEEDED(SQLConnect(hdbc,	_T("myDSN"),	SQL_NTS,
			_T("myUser"),	SQL_NTS,	_T("myPwd"),	SQL_NTS)))
			{
			//	Raise	error	and	return.
			return;
			}

//	Initialize	bulk	copy.	
if	(bcp_init(hdbc,	_T("myTable"),	_T("myData.csv"),
			_T("myErrors"),				DB_IN)	==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}

if	(bcp_readfmt(hdbc,	_T("myFmtFile.fmt"))	==	FAIL)
			{



			//	Raise	error	and	return.
			return;
			}

if	(bcp_exec(hdbc,	&nRowsProcessed)	==	SUCCEED)
			{
			printf("%ld	rows	copied	to	SQL	Server\n",	nRowsProcessed);
			}

//	Carry	on.
...

See	Also

bcp_colfmt

bcp_columns

bcp_writefmt



ODBC	and	SQL	Server

bcp_sendrow
Sends	a	row	of	data	from	program	variables	to	Microsoft®	SQL	Server™.

Syntax
RETCODE	bcp_sendrow	(	HDBC	hdbc	);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

Returns
SUCCEED	or	FAIL.

Remarks
The	bcp_sendrow	function	builds	a	row	from	program	variables	and	sends	it	to
SQL	Server.

Before	calling	bcp_sendrow,	you	must	make	calls	to	bcp_bind	to	specify	the
program	variables	containing	row	data.

If	bcp_bind	is	called	specifying	a	long,	variable-length	data	type,	for	example,
an	eDataType	parameter	of	SQLTEXT	and	a	nonNULL	pData	parameter,
bcp_sendrow	sends	the	entire	data	value,	just	as	it	does	for	any	other	data	type.
If,	however,	bcp_bind	has	a	NULL	pData	parameter,	bcp_sendrow	returns
control	to	the	application	immediately	after	all	columns	with	data	specified	are
sent	to	SQL	Server.	The	application	can	then	call	bcp_moretext	repeatedly	to
send	the	long,	variable-length	data	to	SQL	Server,	a	chunk	at	a	time.	For	more
information,	see	bcp_moretext.

When	bcp_sendrow	is	used	to	bulk	copy	rows	from	program	variables	into	SQL
Server	tables,	rows	are	committed	only	when	the	user	calls	bcp_batch	or
bcp_done.	The	user	can	choose	to	call	bcp_batch	once	every	n	rows	or	when



there	is	a	lull	between	periods	of	incoming	data.	If	bcp_batch	is	never	called,
the	rows	are	committed	when	bcp_done	is	called.

See	Also

bcp_batch

bcp_bind

bcp_done



ODBC	and	SQL	Server

bcp_setcolfmt
The	bcp_setcolfmt	function	supercedes	the	bcp_colfmt.	In	specifying	the
column	collation,	bcp_setcolfmt	function	must	be	used.

This	function	provides	a	flexible	approach	to	specifying	the	column	format	in	a
bulk	copy	operation.	It	is	used	to	set	individual	column	format	attributes.	Each
call	to	bcp_setcolfmt	will	set	one	column	format	attribute.

The	bcp_setcolfmt	function	specifies	the	source	or	target	format	of	the	data	in	a
user	file.	When	used	as	a	source	format,	bcp_setcolfmt	specifies	the	format	of
an	existing	data	file	used	as	a	data	source	of	data	in	a	bulk	copy	to	a	table	in
Microsoft®	SQL	Server™.	When	used	as	a	target	format,	the	data	file	is	created
using	the	column	formats	specified	with	bcp_setcolfmt.

Syntax
RETCODE	bcp_setcolfmt	(	
HDBC	hdbc,	
INT	field,	
INT	property,	
void*	pValue,	
INT	cbValue);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

field

Is	the	ordinal	column	number	for	which	the	property	is	being	set.

property

Is	one	of	the	property	constants.	Property	constants	are	defined	in	this	table.

Property Value Description



BCP_FMT_TYPE BYTE Is	the	data	type	of	this	column
in	the	user	file.	If	different	from
the	data	type	of	the
corresponding	column	in	the
database	table,	bulk	copy
converts	the	data	if	possible.
For	more	information,	see	the
ODBC	documentation.

The	BCP_FMT_TYPE
parameter	is	enumerated	by	the
SQL	Server	data	type	tokens	in
Odbcss.h,	rather	than	the
ODBC	C	data	type
enumerators.	For	example,	you
can	specify	a	character	string,
ODBC	type	SQL_C_CHAR,
using	the	SQLCHARACTER
type	specific	to	SQL	Server.

To	specify	the	default	data
representation	for	the	SQL
Server	data	type,	set	this
parameter	to	0.

For	a	bulk	copy	out	of	SQL
Server	into	a	file,	when
BCP_FMT_TYPE	is
SQLDECIMAL	or
SQLNUMERIC:

If	the	source	column	is
not	decimal	or
numeric,	the	default
precision	and	scale	are
used.

If	the	source	column	is



decimal	or	numeric,
the	precision	and	scale
of	the	source	column
are	used.

BCP_FMT_INDICATOR_LEN INT Is	the	length	in	bytes	of	the
indicator	(prefix).

It	is	the	length,	in	bytes,	of	a
length/null	indicator	within	the
column	data.	Valid	indicator
length	values	are	0	(when	using
no	indicator),	1,	2,	or	4.

To	specify	default	bulk	copy
indicator	usage,	set	this
parameter	to
SQL_VARLEN_DATA.

Indicators	appear	in	memory
directly	before	any	data,	and	in
the	data	file	directly	before	the
data	to	which	they	apply.

If	more	than	one	means	of
specifying	a	data	file	column
length	is	used	(such	as	an
indicator	and	a	maximum
column	length,	or	an	indicator
and	a	terminator	sequence),
bulk	copy	chooses	the	one	that
results	in	the	least	amount	of
data	being	copied.

Data	files	generated	by	bulk
copy	when	no	user	intervention
adjusts	the	format	of	the	data
contain	indicators	when	the
column	data	can	vary	in	length
or	the	column	can	accept



NULL	as	a	value.

BCP_FMT_DATA_LEN DBINT Is	the	length	in	bytes	of	the	data
(column	length)

It	is	the	maximum	length,	in
bytes,	of	this	column's	data	in
the	user	file,	not	including	the
length	of	any	length	indicator
or	terminator.

Setting
BCP_FMT_DATA_LEN	to
SQL_NULL_DATA	indicates
that	all	values	in	the	data	file
column	are,	or	should	be	set	to,
NULL.

Setting
BCP_FMT_DATA_LEN	to
SQL_VARLEN_DATA
indicates	that	the	system	should
determine	the	length	of	data	in
each	column.	For	some
columns,	this	could	mean	that	a
length/null	indicator	is
generated	to	precede	data	on	a
copy	from	SQL	Server,	or	that
the	indicator	is	expected	in	data
copied	to	SQL	Server.

For	SQL	Server	character	and
binary	data	types,
BCP_FMT_DATA_LEN	can
be	SQL_VARLEN_DATA,
SQL_NULL_DATA,	0,	or
some	positive	value.	If
BCP_FMT_DATA_LEN	is
SQL_VARLEN_DATA,	the



system	uses	either	the	length
indicator,	if	present,	or	a
terminator	sequence	to
determine	the	length	of	the
data.	If	both	a	length	indicator
and	a	terminator	sequence	are
supplied,	bulk	copy	uses	the
one	that	results	in	the	least
amount	of	data	being	copied.	If
BCP_FMT_DATA_LEN	is
SQL_VARLEN_DATA,	the
data	type	is	an	SQL	Server
character	or	binary	type,	and
neither	a	length	indicator	nor	a
terminator	sequence	is
specified,	the	system	returns	an
error	message.

If	BCP_FMT_DATA_LEN	is	0
or	a	positive	value,	the	system
uses	BCP_FMT_DATA_LEN
as	the	maximum	data	length.
However,	if,	in	addition	to	a
positive
BCP_FMT_DATA_LEN,	a
length	indicator	or	terminator
sequence	is	provided,	the
system	determines	the	data
length	by	using	the	method	that
results	in	the	least	amount	of
data	being	copied.

The	BCP_FMT_DATA_LEN
value	represents	the	count	of
bytes	of	data.	If	character	data
is	represented	by	Unicode	wide
characters,	then	a	positive
BCP_FMT_DATA_LEN



parameter	value	represents	the
number	of	characters	multiplied
by	the	size,	in	bytes,	of	each
character.

BCP_FMT_TERMINATOR LPCBYTEPointer	to	the	terminator
sequence	(either	ANSI	or
Unicode	as	appropriate)	to	be
used	for	this	column.	This
parameter	is	useful	mainly	for
character	data	types	because	all
other	types	are	of	fixed	length
or,	in	the	case	of	binary	data,
require	an	indicator	of	length	to
accurately	record	the	number	of
bytes	present.

To	avoid	terminating	extracted
data,	or	to	indicate	that	data	in
a	user	file	is	not	terminated,	set
this	parameter	to	NULL.

If	more	than	one	means	of
specifying	a	user-file	column
length	is	used	(such	as	a
terminator	and	a	length
indicator,	or	a	terminator	and	a
maximum	column	length),	bulk
copy	chooses	the	one	that
results	in	the	least	amount	of
data	being	copied.

The	bulk	copy	API	performs
Unicode-to-MBCS	character
conversion	as	required.	Care
must	be	taken	to	ensure	that
both	the	terminator	byte	string
and	the	length	of	the	byte	string
are	set	correctly.



BCP_FMT_SERVER_COL INT Ordinal	position	of	the	column
in	the	database

BCP_FMT_COLLATION LPCSTR Collation	name.

pValue

Is	the	pointer	to	the	value	to	associate	to	the	property.	It	allows	each	column
format	property	to	be	set	individually.

cbvalue

Is	the	length	of	the	property	buffer	in	bytes.

Returns
SUCCEED	or	FAIL.

Remarks
This	function	supercedes	the	bcp_colformat	function.	All	the	functionality	of
bcp_colformat	is	provided	in	bcp_setcolformat	function.	In	addition,	support
for	column	collation	is	also	provided.	It	is	recommended	that	the	following
column	format	attributes	be	set	in	the	order	given	below:

BCP_FMT_SERVER_COL

BCP_FMT_DATA_LEN

BCP_FMT_TYPE

The	bcp_setcolfmt	function	allows	you	to	specify	the	user-file	format	for	bulk
copies.	For	bulk	copy,	a	format	contains	the	following	parts:

A	mapping	from	user-file	columns	to	database	columns.

The	data	type	of	each	user-file	column.

The	length	of	the	optional	indicator	for	each	column.



The	maximum	length	of	data	per	user-file	column.

The	optional	terminating	byte	sequence	for	each	column.

The	length	of	the	optional	terminating	byte	sequence.

Each	call	to	bcp_setcolfmt	specifies	the	format	for	one	user-file	column.	For
example,	to	change	the	default	settings	for	three	columns	in	a	five-column	user
data	file,	first	call	bcp_columns(5),	and	then	call	bcp_setcolfmt	five	times,	with
three	of	those	calls	setting	your	custom	format.	For	the	remaining	two	calls,	set
BCP_FMT_TYPE	to	0,	and	set	BCP_FMT_INDICATOR_LENGTH,
BCP_FMT_DATA_LEN,	and	cbValue	to	0,	SQL_VARLEN_DATA,	and	0
respectively.	This	procedure	copies	all	five	columns,	three	with	your	customized
format	and	two	with	the	default	format.

The	bcp_columns	function	must	be	called	before	calling	bcp_setcolfmt.

You	must	call	bcp_setcolfmt	once	for	each	property	of	each	column	in	the	user
file.

You	do	not	need	to	copy	all	data	in	a	user	file	to	the	SQL	Server	table.	To	skip	a
column,	specify	the	format	of	the	data	for	the	column,	setting	the
BCP_FMT_SERVER_COL	parameter	to	0.	If	you	want	to	skip	a	column,	you
must	specify	its	type.

The	bcp_writefmt	function	can	be	used	to	persist	the	format	specification.

See	Also

bcp_getcolfmt



ODBC	and	SQL	Server

bcp_writefmt
Creates	a	format	file	containing	a	description	of	the	format	of	the	current	bulk
copy	data	file.

Syntax
RETCODE	bcp_writefmt	(	
HDBC	hdbc,	
LPCTSTR	szFormatFile	);

Arguments
hdbc

Is	the	bulk	copy-enabled	ODBC	connection	handle.

szFormatFile

Is	the	path	and	file	name	of	the	user	file	to	receive	format	values	for	the	data
file.

Returns
SUCCEED	or	FAIL.

Remarks
The	format	file	specifies	the	data	format	of	a	data	file	created	by	bulk	copy.	Calls
to	bcp_columns	and	bcp_colfmt	define	the	format	of	the	data	file.
bcp_writefmt	saves	this	definition	in	the	file	referenced	by	szFormatFile.	For
more	information,	see	bcp_init.

For	more	information	about	the	structure	of	bcp	data	format	files,	see	Using
Format	Files.

To	load	a	saved	format	file,	use	bcp_readfmt.

Note		The	format	file	produced	by	bcp_writefmt	is	supported	only	by	versions

JavaScript:hhobj_1.Click()


of	the	bcp	utility	distributed	with	Microsoft®	SQL	Server™	version	7.0.

Example

//	Variables	like	henv	not	specified.
HDBC						hdbc;
DBINT						nRowsProcessed;

//	Application	initiation,	get	an	ODBC	environment	handle,	allocate	the
//	hdbc,	and	so	on.
...	

//	Enable	bulk	copy	prior	to	connecting	on	allocated	hdbc.
SQLSetConnectAttr(hdbc,	SQL_COPT_SS_BCP,	(SQLPOINTER)	SQL_BCP_ON,
			SQL_IS_INTEGER);

//	Connect	to	the	data	source,	return	on	error.
if	(!SQL_SUCCEEDED(SQLConnect(hdbc,	_T("myDSN"),	SQL_NTS,
			_T("myUser"),	SQL_NTS,	_T("myPwd"),	SQL_NTS)))
			{
			//	Raise	error	and	return.
			return;
			}

//	Initialize	bulk	copy.	
if	(bcp_init(hdbc,	_T("myTable"),	_T("myData.csv"),
			_T("myErrors"),				DB_OUT)	==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}

if	(bcp_columns(hdbc,	3)	==	FAIL)
			{



			//	Raise	error	and	return.
			return;
			}

bcp_colfmt(hdbc,	1,	SQLCHARACTER,	0,	SQL_VARLEN_DATA,	'\t',	1,	1);
bcp_colfmt(hdbc,	2,	SQLCHARACTER,	0,	SQL_VARLEN_DATA,	'\t',	1,	2);
bcp_colfmt(hdbc,	3,	SQLCHARACTER,	0,	SQL_VARLEN_DATA,	'\t',	1,	3);

if	(bcp_writefmt(hdbc,	_T("myFmtFile.fmt"))	==	FAIL)
			{
			//	Raise	error	and	return.
			return;
			}

if	(bcp_exec(hdbc,	&nRowsProcessed)	==	SUCCEED)
			{
			printf("%ld	rows	copied	from	SQL	Server\n",	nRowsProcessed);
			}

//	Carry	on.
...

	

See	Also

bcp_colfmt

bcp_columns

bcp_readfmt



ODBC	and	SQL	Server



Schema	Functions	Supporting	Distributed	Queries
The	Microsoft®	SQL	Server™	ODBC	driver	provides	extended	catalog
functions	that	support	SQL	Server	distributed	queries.

The	catalog	functions	SQLLinkedCatalogs	and	SQLLinkedServers	list	data
sources	available	for	distributed	query.	A	linked	server	is	an	OLE	DB	data
source.	For	the	ODBC	application,	the	name	of	the	linked	server	can	qualify
tables	and	columns	in	a	query.	SQL	Server	distributes	the	query	as	required.

The	extended	functions	are	implemented	in	the	SQL	Server	ODBC	driver.	The
application	developer	links	with	Odbcbcp.lib	to	build	an	application	by	using
SQLLinkedCatalogs	or	SQLLinkedServers.

In	addition,	the	SQL	Server	ODBC	driver	supports	using	several	standard
ODBC	functions	to	get	catalog	information	for	tables	or	linked	servers.

See	Also

Distributed	Queries

Using	Catalog	Functions

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server

SQLLinkedCatalogs
SQLLinkedCatalogs	returns	a	list	of	catalogs	available	on	a	linked	server.

Syntax
SQLRETURN	SQLLinkedCatalogs(	SQLHSTMT	hstmt,
SQLTCHAR*	ServerName,
SQLSMALLINT	NameLength1)

Arguments
hstmt

Is	an	ODBC	statement	handle.

ServerName

Is	the	name	of	the	linked	server.	Linked	server	names	are	returned	in	the
SRV_NAME	column	of	the	result	set	defined	for	SQLLinkedServers.

NameLength1

Is	the	length	of	*ServerName,	in	characters.

Returns
SUCCEED	or	FAIL.

Comments
Microsoft®	SQL	Server™	linked	servers	are	OLE	DB	data	sources.	Some	OLE
DB	data	sources	expose	catalogs.	For	those	that	do,	SQLLinkedCatalogs
returns	the	list	of	data	source	exposed	catalogs.

SQLLinkedCatalogs	returns	a	result	set	defined	as	follows.

Column	name
Column
number Data	type Comments



CATALOG_NAME1 SQLWCHAR Name	of	the	catalog.
DESCRIPTION 2 SQLWCHAR Human-readable

description	of	the	catalog.



ODBC	and	SQL	Server

SQLLinkedServers
SQLLinkedServers	returns	a	list	of	data	sources	that	can	participate	in
distributed	queries.

Syntax
SQLRETURN	SQLLinkedServers(	SQLHSTMT	hstmt)

Arguments
hstmt

Is	an	ODBC	statement	handle.

Returns
SUCCEED	or	FAIL.

Comments
Microsoft®	SQL	Server™	linked	servers	are	OLE	DB	data	sources	that	can	be
referenced	using	four-part	names	in	distributed	queries.	SQLLinkedServers
returns	the	properties	defining	the	data	source	as	a	result	set.	Linked	servers	are
defined	to	SQL	Server	using	the	sp_addlinkedserver	system	stored	procedure.
The	columns	of	the	result	set	are	defined	as	follows.

Column	name
Column
number Data	type Comments

SRV_NAME 1 SQLWCHARName	of	the	linked
server.

SRV_PROVIDERNAME 2 SQLWCHARFriendly	name	of	the
OLE	DB	provider	for
this	linked	server.

SRV_PRODUCT 3 SQLWCHARProduct	name	for	this
linked	server.



SRV_DATASOURCE 4 SQLWCHARName	that	identifies	the
source	of	the	data	to
this	provider.

SRV_PROVIDERSTRING 5 SQLWCHARProvider-specific	string
that	identifies	the
source	of	the	data.

SRV_LOCATION 6 SQLWCHARLocation	argument	that
identifies	the	database
to	this	provider.

SRV_CAT 7 SQLWCHARName	of	the	catalog
containing	the	data	on
the	linked	server.

SRV_PROVIDERSTRING	is	NULL	when	the	SRV_DATASOURCE	and
SRV_CAT	information	is	sufficient	to	identify	the	source	of	the	data	to	the
provider.

When	the	linked	server	is	a	server	running	an	instance	of	SQL	Server,
SRV_DATASOURCE	is	the	name	of	the	server,	SRV_CATALOG	is	the	name	of
the	database,	and	SRV_LOCATION	is	NULL.

See	Also

Distributed	Queries

sp_addlinkedserver

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


ODBC	and	SQL	Server



ODBC	Samples
The	following	samples	have	been	developed	for	ODBC	version	3.0	and	later.
The	samples	have	all	been	developed	with	Microsoft®	Visual	C++®	version	6.0,
and	some	expose	properties	of	the	Microsoft	Foundation	Classes.

When	you	choose	to	install	sample	files,	the	ODBC	3.x	samples	are	installed	to
the	C:\Program	Files\Microsoft	SQL	Server\80\Tools\DevTools\Samples\Odbc
directory.

All	samples	include	a	project	file	(.dsw	extension)	created	by	Visual	C++	6.0.
The	project	file	can	be	opened	in	Visual	C++	6.0.

To	open	the	project	file	in	Visual	C++	6.0	and	compile	it:
1.	 On	the	File	menu,	click	Open	Workspace.

2.	 In	the	Files	of	type	box,	click	Workspaces	(*.dsw).

3.	 Click	the	project	file	name.

4.	 From	the	Tools	menu,	choose	Options,	and	then	click	the	Directories
tab.

5.	 From	the	Show	directories	for	box,	choose	Include	files	and	Library
files,	and	ensure	that	the	following	directories	are	included	and	appear
at	the	top	of	list:

Include	files:	C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Include

Library	files:	C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Lib

6.	 From	the	Build	menu,	choose	Rebuild	All	or	Build	*.exe.



When	the	project	file	is	opened,	Visual	C++	generates	appropriate	supporting
files.

The	default	build	configuration	for	all	samples	is	Win32®	Debug,	which	will
build	the	samples	as	32-bit	applications.

Note		To	compile	ODBC	version	3.0	samples,	you	must	obtain	the	ODBC	3.0
SDK	available	from	Microsoft	Press®,	or	the	Microsoft	Data	Access	SDK	on
the	Microsoft	Web	site.

All	versions	of	the	Microsoft	Foundation	Classes	database	classes	are	ODBC
version	2.x	compliant.	2.x	versions	of	the	ODBC	header	files	Sql.h,	Sqlext.h,	and
Sqltypes.h	ship	in	the	Include	directory	of	Microsoft	Visual	C++.	You	must
ensure	that	3.x	versions	of	the	header	files	are	included	in	the	build	process	and
that	3.x	versions	of	the	libraries	are	used	for	linking.

Sample	Data
Some	of	the	samples	rely	on	sample	data	provided	in	the	C:\Program
Files\Microsoft	SQL	Server\80\Tools\DevTools\Samples\Odbc\Data	directory.

Three	directories	contain	data	for	the	samples.	The	BCP	and	LoadData	samples
each	have	a	copy	of	the	Microsoft	Access-developed	Northwind	example	data.

Directory Description
\Data\Northbcp Contains	a	copy	of	the	Northwind	data
\Data\North Contains	a	copy	of	the	Northwind	data
\Data\Trans Contains	data	used	by	the	transaction	processing

and	concurrency	control	sample

The	sample	data	can	be	installed	into	any	database.	A	Transact-SQL	script,
Createtb.sql,	is	installed	into	each	sample	data	directory.	The	script	creates	the
sample	tables	and	stored	procedures.

The	scripts	drop	the	tables	they	create	so	that	they	can	be	run	multiple	times	as
an	example.	Running	the	scripts	in	a	database	that	contains	data	other	than	the
supplied	sample	data	can	cause	unintended	results.

The	sample	data	in	\Data\Trans	can	be	installed	in	any	database.	The	sample	data

http://www.Microsoft.com/isapi/redir.dll?Prd=uda&Ar=home


in	the	other	two	directories	can	be	installed	in	any	database	except	the
Northwind	sample	database	installed	with	SQL	Server.

To	load	the	sample	data

1.	 First	make	the	ODBC	samples	and	copy	these	files	to	a	directory	in
your	computer's	path:
C:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\ODBC\Loaddata\Release\Loaddata.exe
C:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\ODBC\Bcp\Release\Bcpsamp.exe

2.	 Open	Control	Panel/ODBC	and	define	an	ODBC	data	source	with	the
database	you	want	to	hold	the	sample	data	as	the	default	database.

3.	 Open	a	command	prompt	window:
cd	C:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\ODBC\data\transloaddata

When	loaddata.exe	starts,	connect	to	the	data	source	defined	in	step	2.
Open	the	command	file	lddist.cmd	using	the	CommandFile	window,
and	then	click	GO.	Click	Close	when	the	commands	complete.

4.	 In	the	command	prompt	window:
cd	C:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\ODBC\data\north	loaddata

When	loaddata.exe	starts,	connect	to	the	data	source	defined	in	step	2.
Open	the	command	file	ldnorthw.cmd	using	the	CommandFile
window,	and	then	click	GO.	Click	Close	when	the	commands
complete.

5.	 As	an	alternative	to	step	4	you	can:
cd	C:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\ODBC\data\northbcp	bcpsamp

When	BCPSamp.exe	starts,	connect	to	the	data	source	defined	in	step
2.	Open	the	command	file	bcpnorth.cmd	using	the	CommandFile
window,	and	then	click	GO.	Click	Close	when	the	commands
complete.

See	Also



Samples

JavaScript:hhobj_1.Click()


ODBC	and	SQL	Server



Cursors	and	Transactions,	Data	Entry	and
Concurrency
The	cursor	sample	illustrates	using	Microsoft®	SQL	Server™	cursors	to	allow
concurrent	access	to	data	on	a	server	running	an	instance	of	SQL	Server.	The
sample	shows	three	methods	of	concurrent	data	access:

Optimistic,	using	SQL	Server	timestamp	data	types.

Pessimistic,	using	extremely	isolated	transactions	and	row-level
locking.

Pessimistic,	using	the	Microsoft	Distributed	Transaction	Coordinator
(MS	DTC).

A	dialog	box,	available	when	no	document	windows	are	open,	allows	the	user	to
select	the	method	of	concurrency	control	to	be	used	by	the	application.

The	sample	relies	on	data	shipped	with	the	ODBC	3.x	samples.	The	data	can	be
installed	using	the	LoadData	sample	and	the	Lddist.cmd	file.	For	more
information	about	Lddist.cmd,	see	ODBC	Samples.

The	sample	is	a	Microsoft	Foundation	Class	MDI	application.	Each	MDI
window	contains	a	property	sheet	of	customer	data	from	a	fictitious	bank.	The
window	is	implemented	on	a	separate	connection	to	the	database	so	that	a	single
user	can	experiment	with	various	concurrency	handling	methods	from	a	single
instance	of	the	application.

Customers	at	the	bank	can	have	one	or	two	accounts	and	you	can	either	deposit
or	withdraw	funds	from	a	customer's	checking	or	savings	account.	Each
transaction	inserts	a	row	into	an	activity	file	and	then	attempts	a	positioned
update	of	a	balance	item	for	the	account.	If	the	balancing	transaction	fails,	the
activity	file	insert	is	rolled	back.

To	open	a	connection,	select	File\New	from	the	menu.



Functions	Illustrated

SQLAllocHandle SQLDriverConnect SQLGetDiagRec
SQLBindParameter SQLEndTran SQLNumResultCols
SQLCloseCursor SQLExecDirect SQLSetConnectAttr
SQLColAttribute SQLFetch SQLSetEnvAttr
SQLDataSources SQLFreeHandle SQLSetPos
SQLDescribeCol SQLGetCursorName SQLSetStmtAttr
SQLDisconnect SQLGetDiagField 	



ODBC	and	SQL	Server



LoadData
The	LoadData	sample	illustrates	using	SQLPrepare	and	SQLExecute	to	insert
large	amounts	of	data	into	Microsoft®	SQL	Server™	tables.

LoadData	is	a	general-purpose	utility	for	loading	data	not	bound	by	native	data
formats	or	character	restrictions	onto	a	server	running	an	instance	of	SQL	Server.

The	sample	illustrates:

Using	arrays	of	parameters	for	rapid	execution	of	RPC	batches.

Using	manual-commit	mode	to	break	batches	into	units	of	work.

Using	data-at-execution	parameters	to	insert	values	into	SQL	Server
text	and	image	columns.

To	build	the	application,	you	must	ensure	that	3.x	versions	of	the	ODBC	header
files	and	libraries	are	used,	and	that	the	SQL	Server	2000	version	of	Odbcss.h	is
used.

The	sample	is	a	Microsoft	Foundation	Class	dialog	application.	The	application
allows	you	to	connect	to	a	defined	ODBC	SQL	Server	data	source	and	requires
that	you	enter	the	name	of	a	command	file	to	process.

The	command	files	of	the	LoadData	sample	application	allow	the	user	to	tailor
command	processing	by	using	the	application.	The	application	recognizes	two
commands:

ScriptRun,	which	processes	Transact-SQL	statements.

LoadData,	which	executes	a	prepared	INSERT	statement	with
parameters	to	copy	data	to	a	server	running	SQL	Server.

The	application	treats	strings	enclosed	in	brackets	([])	as	progress	text	and
displays	them	in	its	progress	pane	as	the	application	processes	a	command	file.

Sample	data,	containing	a	command	file,	script	file,	and	ANSI	text	data	files	are



included.

Command	File	Syntax
[text]
ScriptRun	"file_name"
LoadData	"database..table",	"file_name"

Arguments
[text]

Is	progress	text.	Text	between	the	enclosing	brackets	is	displayed	in	the
dialog	box	within	its	progress	group.

ScriptRun	"file_name"

Attempts	to	open	and	read	the	text	file	indicated	in	the	file_name	parameter.
The	text	file	must	contain	ODBC	or	Transact-SQL.	The	application
processes	multiple	lines	of	text	as	a	single	batch,	using	SQLExecDirect	to
execute	the	SQL	batch	when	the	string	"go"	is	located	on	a	single	line	of	the
file.

LoadData	"database..table",	"file_name"

Copies	data	from	the	client	file,	specified	in	the	file_name	parameter,	to	the
SQL	Server	table	specified	in	the	database..table	parameter.

To	run	the	loaddata	sample

1.	 Build	a	.cmd	file	containing	ScriptRun	and	LoadData	commands.	For
an	example,	see	the	file	Ldnorthw.cmd	in	this	directory:
C:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\ODBC\Data\North

2.	 Run	the	sample	by	changing	to	the	directory	with	the	command	file
and	specifying	the	samples	name	on	the	command	prompt:
cd	C:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\ODBC\loaddata\Debug
Loaddata

When	Loaddata.exe	starts,	connect	to	an	ODBC	data	source,	specify
the	location	of	the	command	file	in	the	CommandFile	window,	and



then	click	GO.

Functions	Illustrated

SQLAllocHandle SQLDriverConnect SQLParamData
SQLBindParameter SQLExecDirect SQLPrepare
SQLCloseCursor SQLExecute SQLPutData
SQLColAttribute SQLFreeHandle SQLSetConnectAttr
SQLDataSources SQLGetDiagField SQLSetEnvAttr
SQLDescribeCol SQLGetDiagRec SQLSetStmtAttr
SQLDisconnect SQLNumResultCols 	



ODBC	and	SQL	Server



Performance
The	MFCPerf	sample	illustrates	two	things:	tuning	the	MFC	ODBC	database
classes	for	performance,	and	capturing	and	interpreting	Microsoft®	SQL
Server™	ODBC	driver	performance	data.

The	sample	uses	advanced	features	of	the	MFC	ODBC	database	classes	and
must	be	built	with	MFC	version	4.2	or	later.	Although	MFC	is	ODBC	2.x
compliant,	the	MFCPerf	sample	uses	features	of	the	SQL	Server	ODBC	driver
available	only	in	SQL	Server	2000.	The	application	must	be	built	with	ODBC
3.x	header	files	and	libraries.

The	sample	is	an	MFC	MDI	application	that	uses	the	Northwind	sample
database.

The	application	includes	three	documents.	Two	of	the	documents	share	a	single
view	that	displays	customer	order	history.	These	documents	are	selected	using
the	File\New	Fast	or	File\New	Slow	menu	items.	One	of	the	documents	is
identified	as	"slow."	It	uses	MFC	filter	strings	to	execute	SELECT	statements,
retrieving	data	from	the	Northwind	Orders	and	OrderDetails	tables.	The
second	document,	identified	as	"fast,"	uses	parameterized	execution	of	a	SQL
Server	stored	procedure	to	accomplish	the	same	task.

The	PerfTest	menu,	available	when	no	document	windows	are	open,	automates
creation	of	one	of	each	document	and	steps	through	20	client	records.	The
process	captures	the	SQL	Server	performance	statistics	for	each	document	and
displays	them.	The	"fast"	document	shows	a	dramatic	decrease	in	server
roundtrips	and	a	corresponding	drop	in	data	moved	across	the	network.

Functions	Illustrated

SQLAllocHandle SQLSetConnectAttr CRecordSet::Requery
SQLDataSources CDatabase::Open CRecordSet::MoveNext
SQLGetConnectAttrCRecordSet::Open CRecordSet::IsEOF



ODBC	and	SQL	Server



ODBC	Bulk	Copy	Sample
The	ODBC	bulk	copy	sample	illustrates	using	Microsoft®	SQL	Server™	bulk
copy	functions	with	the	SQL	Server	ODBC	driver.

To	build	the	application,	you	must	ensure	that	3.x	versions	of	the	ODBC	header
files	and	libraries	are	used,	that	the	SQL	Server	2000	version	of	Odbcss.h	is
used,	and	that	the	linker	can	find	Odbcbcp.lib.

The	sample	is	a	Microsoft	Foundation	Class	dialog	application.	The	application
allows	you	to	connect	to	a	defined	ODBC	SQL	Server	datasource	and	requires
that	you	enter	the	name	of	a	command	file	to	process.

Command	files	allow	you	to	tailor	command	processing	by	the	application.	The
application	recognizes	two	commands:	ScriptRun,	which	processes	Transact-
SQL	statements;	and	BCPData,	which	performs	a	bulk	copy	operation.	The
application	treats	strings	enclosed	in	brackets	([])	as	progress	text	and	displays
them	in	its	progress	panel	area	as	the	application	processes	a	command	file.

Sample	data,	containing	a	command	file,	script	file,	and	character	format	bcp
data	files	for	the	Northwind	sample	database	are	included.

Command	File	Syntax
[text]
ScriptRun	"file_name"
BCPData	"database..table",	"file_name",	"errorfile",	direction

Arguments
[text]

Is	progress	text.	Text	between	the	enclosing	brackets	is	displayed	in	the
dialog	box	within	its	progress	group.

ScriptRun	"file_name"

Attempts	to	open	and	read	the	text	file	indicated	in	the	file_name	parameter.
The	text	file	must	contain	ODBC	or	Transact-SQL.	The	application
processes	multiple	lines	of	text	as	a	single	batch,	using	SQLExecDirect	to



execute	the	SQL	batch	when	the	string	"go"	is	located	on	a	single	line	of	the
file.

BCPData	"database..table",	"file_name",	"errorfile",	direction

Performs	a	bcp	command	to	copy	data	to	or	from	a	SQL	Server	table.	The
database..table	and	file_name	parameters	are	required	and	specify	the	server
table	and	the	local	file	respectively.	The	errorfile	parameter	can	be	an	empty
string.	No	error	logging	is	performed	if	it	is.	The	direction	parameter	must	be
either	IN	or	OUT.

To	run	the	ODBC	bulk	copy	sample

1.	 Build	a	.cmd	file	containing	ScriptRun	and	DBCData	commands.	For
an	example,	see	the	file	Bcpnorth.cmd	in	this	directory:
C:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\ODBC\Data\Northbcp

2.	 Run	the	sample	by	changing	to	the	directory	with	the	command	file
and	specifying	the	samples	name	on	the	command	prompt:
cd	C:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\ODBC\bcp\Debug
Bcpsamp

3.	 When	Bcpsamp.exe	starts,	connect	to	an	ODBC	data	source,	specify
the	location	of	the	command	file	in	the	CommandFile	window,	and
then	click	GO.

Functions	Illustrated

Bcp_control SQLDisconnect SQLNumResultCols
Bcp_exec SQLDriverConnect SQLPrepare
Bcp_init SQLExecDirect SQLSetConnectAttr
SQLAllocHandle SQLFreeHandle SQLSetEnvAttr
SQLColAttribute SQLGetDiagField 	
SQLDataSources SQLGetDiagRec 	



ODBC	and	SQL	Server



COMPUTE	Clause	and	Multiple	Result	Sets
The	compute	sample	illustrates	handling	the	multiple	result	sets	that	occur	when
an	application	executes	a	Transact-SQL	SELECT	statement	containing	a
COMPUTE	clause.

The	sample	executes	a	statement,	and	then	uses	SQLMoreResults	and
SQLColAttribute	to	determine	the	shape	of	each	result	set	generated.

The	sample	shows	how	to	mix	array	and	single-row	binding	for	rapid	and	space-
efficient	handling	of	the	output.

Before	compiling	the	compute	sample,	open	the	project	and	locate	these	lines	in
compute.cpp:

PTSTR							szDataSource	=	_T("MyDatasource");
PTSTR							szUID	=	_T("MyUID");
PTSTR							szPWD	=	_T("MyPwd");

Replace	the	strings:

MyDatasource	with	the	name	of	an	ODBC	datasource	that	has	the
Northwind	sample	database	as	its	default	database.

MyUID	with	a	valid	login	ID.

MyPwd	with	the	password	for	the	login	specified	for	szUID.

After	compiling	and	linking	the	sample,	run	it	by	specifying	its	name	at	the
command	prompt:

cd	C:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\ODBC\Compute\Debug	
Compute

Functions	Illustrated

SQLAllocHandle SQLDisconnect SQLNumResultCols



SQLBindCol SQLExecDirect SQLSetEnvAttr
SQLColAttribute SQLFetch SQLSetStmtAttr
SQLConnect SQLFreeHandle 	
SQLDescribeCol SQLGetDiagRec 	


	Programming ODBC SQL Server Applications
	Getting Started with ODBC
	ODBC Syntax Conventions
	System Requirements for ODBC
	SQL Server ODBC Driver
	SQL Server
	Network Software

	Installing the SQL Server ODBC Driver
	Upgrading the Catalog Stored Procedures (ODBC)
	Adding a Data Source
	Deleting a Data Source
	Connecting to a SQL Server Data Source
	Using odbcping to Verify a Connection


	Creating an ODBC Application
	Asynchronous Mode and SQLCancel
	Multithreaded Applications

	Communicating with SQL Server
	Allocating an Environment Handle
	Allocating a Connection Handle
	SQL Server ODBC Data Sources
	Connecting to a Data Source
	Disconnecting from a Data Source

	Executing Queries
	Allocating a Statement Handle
	Constructing an SQL Statement
	Constructing SQL Statements for Cursors
	Using Statement Parameters
	Binding Parameters

	Executing Statements
	Direct Execution
	Prepared Execution
	Procedures
	Batches of Statements
	Effects of SQL-92 Options

	Freeing a Statement Handle

	Processing Results
	Determining the Characteristics of a Result Set
	Assigning Storage (Binding)
	Fetching Result Data
	Mapping Data Types
	Data Type Usage
	Autotranslation of Character Data

	Using Cursors
	How Cursors Are Implemented
	Using Default Result Sets
	Using Server Cursors
	ODBC Cursor Library

	Cursor Types
	Cursor Behaviors
	Cursor Properties
	Cursor Rowset Size
	Cursor Concurrency
	Cursor Transaction Isolation Level

	Cursor Programming Details (ODBC)
	Implicit Cursor Conversions (ODBC)
	Using Autofetch with ODBC Cursors
	Fast Forward-Only Cursors (ODBC)

	Scrolling and Fetching Rows
	Bookmarking Rows

	Positioned Updates (ODBC)

	Performing Transactions
	Transactions in ODBC
	Performing Distributed Transactions

	Handling Errors and Messages
	Processing Statements That Generate Messages
	Diagnostic Records and Fields
	Native Error Numbers
	SQLSTATE (ODBC Error Codes)
	Error Messages

	Running Stored Procedures
	Calling a Stored Procedure
	Batching Stored Procedure Calls

	Processing Stored Procedure Results

	Using Catalog Functions
	Performing Bulk Copy Operations
	Logged and Nonlogged Bulk Copies
	Using Data Files and Format Files
	Bulk Copying from Program Variables
	Managing Bulk Copy Batch Sizes
	Bulk Copying text and image Data
	Converting from DB-Library to ODBC Bulk Copy

	Managing text and image Columns
	Bound vs. Unbound text and image Columns
	Logged vs. Unlogged Modifications
	Data-at-execution and text, ntext, or image Columns

	Connecting to a Failover Server
	Profiling ODBC Driver Performance

	SQL Server ODBC Driver Programmer's Reference
	ODBC API Implementation Details
	SQLBindCol
	SQLBindParameter
	SQLBrowseConnect
	SQLCloseCursor
	SQLColAttribute
	SQLColumnPrivileges
	SQLColumns
	SQLConfigDataSource
	SQLDescribeCol
	SQLDescribeParam
	SQLDriverConnect
	SQLDrivers
	SQLEndTran
	SQLFetchScroll
	SQLForeignKeys
	SQLFreeHandle
	SQLFreeStmt
	SQLGetConnectAttr
	SQLGetCursorName
	SQLGetData
	SQLGetDescField
	SQLGetDiagField
	SQLGetFunctions
	SQLGetInfo
	SQLGetStmtAttr
	SQLGetTypeInfo
	SQLMoreResults
	SQLNativeSql
	SQLNumResultCols
	SQLPrepare
	SQLPrimaryKeys
	SQLProcedureColumns
	SQLProcedures
	SQLPutData
	SQLRowCount
	SQLSetConnectAttr
	SQLSetEnvAttr
	SQLSetStmtAttr
	SQLSpecialColumns
	SQLStatistics
	SQLTablePrivileges
	SQLTables

	SQL Server Driver Extensions
	Bulk-Copy Functions
	bcp_batch
	bcp_bind
	bcp_colfmt
	bcp_collen
	bcp_colptr
	bcp_columns
	bcp_control
	bcp_done
	bcp_exec
	bcp_getcolfmt
	bcp_init
	bcp_moretext
	bcp_readfmt
	bcp_sendrow
	bcp_setcolfmt
	bcp_writefmt

	Schema Functions Supporting Distributed Queries
	SQLLinkedCatalogs
	SQLLinkedServers



	ODBC Samples
	Cursors and Transactions, Data Entry and Concurrency
	LoadData
	Performance
	ODBC Bulk Copy Sample
	COMPUTE Clause and Multiple Result Sets


