
Visual	LANSA	Tutorials
Visual	LANSA	Fundamentals	Windows	Tutorials
The	exercises	in	these	tutorials	are	designed	to	provide	you	with	an	overview	of
the	basic	skills	for	working	with	the	LANSA	Editor	and	the	LANSA	Repository,
as	well	as	providing	some	practical	examples	of	using	the	tools	LANSA
provides	to	help	you	code	your	applications	faster	using	Forms.
The	tutorials	are	intended	to	be	done	in	this	sequence:

User	Interface	Tutorials
Repository	Development	Tutorials
LANSA	Editor	Tutorials
RDML	Programming	using	Visual	LANSA	Forms
An	introduction	to	the	VISUAL	LANSA	Framework

Supporting	material:
Appendix		A.	Personnel	Demonstration	System

	
Edition	Date	January	6,	2014
©	LANSA

its:lansa095.chm::/lansa/VUIEng01_begin.htm
its:lansa095.CHM::/lansa/reptut01_begin.htm
its:LANSA095.CHM::/lansa/vedeng01_0010.htm
its:lansa095.chm::/lansa/frmeng01_0010.htm
its:lansa095.chm::/lansa/lvfeng01_0010.htm
its:lansa095.CHM::/lansa/apxtut01_appA.htm

About	the	Tutorials
Following	is	information	for	you	to	prepare	for	completing	the	exercises	in
these	LANSA	Fundamentals	Tutorials:
Tips	for	using	the	Exercises
How	many	Developers	can	use	the	Exercises?
What	Partition	should	I	use?
Using	Long	Names
Tutorial	Installation
and	finally,	a	link	to	our	support	department,	should	you	have	any	suggestions
for	improving	these	exercises:	Your	Feedback

Tips	for	using	the	Exercises
You	need	to	complete	these	tutorials	in	sequence	because	fields	and	files	created
in	early	exercises	are	required	to	complete	the	later	exercises.
Exercises	are	designed	to	be	completed	in	sequence	as	later	exercises	are
designed	to	use	skills	from	the	earlier	exercises.

Check	off	each	step	in	an	exercise	as	you	complete	it.
Follow	the	instructions	very	carefully.
The	first	steps	in	an	exercise	will	provide	very	precise	descriptions	of	the
tasks	to	be	performed.	As	the	steps	and	course	progresses,	the	instructions
will	become	much	more	general.

Before	you	start,	ensure	that	the	environment	that	you	will	be	using	is	set	up	as
described	in	What	Partition	should	I	use?

How	many	Developers	can	use	the	Exercises?
There	is	no	limit	to	the	number	of	developers	who	may	use	the	training	at	the
same	time.	However,	it	is	important	that	each	developer	has	a	unique	identifier
for	their	own	work.
In	the	exercises,	each	developer	will	use	an	object	prefix	iii	which	can	be	based
on	their	initials	or	could	be	assigned	by	a	system	coordinator.
To	allow	for	more	than	one	developer	to	use	the	exercises,	prefix	any	objects
you	create	with	a	unique	identifier	such	as	your	initials	(iii).
Note	that	if	you	are	using	a	trial	version	of	Visual	LANSA	without	a	license,
you	cannot	use	the	iii	prefix	but	must	use	DEM	instead.	Following	are	the
identifiers	you	may	use:

File:	DEMFIL01	to	10
Form	/	Reusable	Part	/	WAM:	DEMCOM01	to	10
Process:	DEMPRO01	to	10
Function:	DEMFN01	to	10

If	you	are	using	a	shared	server	Repository,	only	one	student	may	complete	the
course	at	a	time	as	names	must	be	unique.	See	also	Using	Long	Names.

What	Partition	should	I	use?
The	partition	you	use	has	to	be	enabled	for	Full	RDMLX	with	the
Demonstration	Material	installed.
To	verify	that	the	partition	has	been	set	up	for	the	exercises:
1.		In	the	Visual	LANSA	editor,	open	your	partition	definition	and	display	the
RDMLX	settings.
a.		Ensure	the	option	Enable	Partition	for	full	RDMLX	has	been	selected.
b.		Ensure	the	option	Enabled	for	Long	Names	has	been	selected.

To	verify	that	the	Demonstration	Material	has	been	included:
1.		Expand	the	Files	node	in	the	Repository	tab,	locate	files	starting	with	letter	P.
2.		Make	sure	that	the	files	PSLEVENT,	PSLMST,	PSLSKIL	and	PSLTIMES
are	present.

If	these	files	are	not	present,	and	you	are	working	with	an	independent	LANSA
System:
1.		Close	down	LANSA	Development	Environment
2.		Restart	LANSA	Development	Environment
3.		Reinitialize	the	partition	using	the	Partition	Init…	button	in	the	Visual
LANSA	Logon	screen.

4.		In	the	Partition	Initialization	dialog	select	the	Personnel	System
Demonstration	material	option.

3.		Press	OK	and	wait	for	the	import	to	finish.
For	details,	refer	to	the	Partition	Initialization	options	in	the	Visual	LANSA
Administration	Guide.
If	you	are	working	with	a	slave	LANSA	system	and	the	partition	is	not	set	up	as
required,	contact	your	LANSA	server	administrator.

its:lansa011.chm::/Lansa/l4wADM02_0025.htm

Using	Long	Names
These	tutorials	assume	that	you	are	using	Long	Names.	This	means	that	Long
Names	are	enabled	in	the	partition	you	will	be	using.

With	Long	Names	enabled	objects	have	two	names,	a	Long	Name	and	an
Identifier	(also	referred	to	as	the	Short	Name).
With	Long	Names	enabled,	when	objects	such	as	fields,	files,	forms	and
reusable	parts	are	created,	the	Long	Name	must	be	unique	within	the
partition	and	may	not	be	the	same	as	an	existing	Identifier.
A	Long	Name	may	be	up	to	256	characters	long	and	may	be	letters	and
numbers	with	no	embedded	blanks.	Long	Names	are	not	case	sensitive,	so
EMPNO,	EmpNo	and	Empno	are	all	the	same.
An	Identifier	may	be	up	to	10	characters	long	and	may	contain	letters	and
numbers	and	some	special	characters	for	some	objects,	but	these	are	not
recommended.	Field	Identifiers	are	limited	to	9	characters.
When	an	object	is	created	using	a	Long	Name,	LANSA	will	assign	an
Identifier.	As	you	create	objects,	you	may	assign	an	Identifier	(as	long	as	it	is
unique	within	the	partition).	Identifier	cannot	be	changed	once	a	new	object
has	been	saved.

If	you	are	using	a	Trial	Copy
If	you	are	using	a	trial	copy	of	Visual	LANSA	(that	is,	no	licence)	you	can
create	files	and	forms	using	a	long	name,	but	as	you	create	the	object	you
must	assign	the	restricted	object	Name	as	the	Indentifier.	For	example:

For	more	details	refer	to	LANSA	Object	Names	in	the	Technical	Reference
Guide.

its:lansa015.chm::/Lansa/tgub5_0050.htm

Tutorial	Installation
You	may	wish	to	install	a	separate	Visual	LANSA	System	for	training.	You	can
install	an	Independent	Visual	LANSA	Workstation	on	a	PC	to	complete	your
training,	and	then	uninstall	this	system	once	training	is	complete.	If	you	are
using	a	Visual	LANSA	trial	license,	this	is	the	recommended	approach.

Your	Feedback
Your	feedback	regarding	these	exercises	will	help	us	improve	the	overall	quality
of	the	LANSA	documentation	and	training.	Please	email	your	comments	to
LANSA	Training	support.

mailto:lansatraining@lansa.com.au

User	Interface	Tutorials
What	is	the	User	Interface	Tutorial?
This	tutorial	contains	exercises	that	are	designed	to	introduce	and	reinforce	the
fundamental	user	interface	skills	required	to	use	the	Visual	LANSA
Development	Environment.	They	focus	on	the	user	interface,	navigation,	and
search	techniques	as	opposed	to	teaching	programming	skills	to	build
applications.	(Refer	to	the	Repository	Development	and	Programming	using
Visual	LANSA	Forms	Tutorials	to	learn	LANSA	development	skills.)
While	all	the	essential	areas	are	covered	to	enable	a	new	LANSA	developer	to
get	started.	They	are	not	comprehensive.	The	User	Interface	tutorials	include:
VUI001	–	Starting	LANSA
VUI002	–	LANSA	Editor	Parts
VUI003	–	Repository	Tab
VUI004	-	Details,	Outline,	Favorites	Tab

Before	you	Begin
You	must	have	LANSA	Demonstration	Personnel	System	installed	in	the
partition	that	you	will	use	with	the	set	up	options	as	described	in	What	Partition
Should	I	Use?.
The	LANSA	Demonstration	Personnel	System	contains	all	the	objects	used	by
these	exercises.

Tips	for	using	the	exercises
Check	off	each	step	in	the	exercise	as	you	complete	it.
Follow	the	instructions	very	carefully.
Remember	to	replace	iii	with	your	unique	3	characters.	You	will	not	always
be	reminded	to	make	this	substitution.

					For	further	information	refer	to	How	many	developers	can	use	the	exercises?

These	exercises	assume	that	you	have	not	previously	customized	the	editor
interface.	If	you	have	already	customized	your	environment,	the	example
screens	and	instructions	may	not	exactly	match	your	customized
development	environment.

The	following	are	important	notes	regarding	the	structure	of	the	exercises:
The	first	steps	in	an	exercise	will	provide	very	precise	descriptions	of	the

its:lansa095.chm::/Lansa/reptut01_begin.htm
its:lansa095.chm::/Lansa/FRMEng01_0010.htm
its:lansa095.CHM::/LANSA/lansa095_0020.HTM
its:lansa095.chm::/LANSA/lansa095_0040.htm

tasks	to	be	performed.	As	the	steps	and	course	progresses,	the	instructions
will	become	much	more	general.
Later	exercises	are	designed	to	use	skills	from	the	earlier	exercises.	These
exercises	are	designed	to	be	completed	in	sequence.

VUI001	–	Starting	LANSA
Objective:

To	learn	how	to	start	Visual	LANSA.
To	learn	how	to	logon	using	a	specific	partition,	language	and	task	ID.
To	learn	how	to	use	the	LANSA	documentation	and	toolbar.
To	learn	how	to	use	context	sensitive	help	in	the	user	interface.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Starting	the	LANSA	Development	Environment
Step	2.	Online	Documentation
Step	3.		F1	Context	Sensitive	Help
Summary

Before	You	Begin:

You	may	wish	to	review	the	following	topics:

Visual	LANSA	Logon	in	the	Visual	LANSA	Administrator's	Guide

its:lansa011.chm::/Lansa/l4wADM02_0240.htm

Step	1.	Starting	the	LANSA	Development	Environment
In	this	step	you	will	locate	the	LANSA	folder	and	start	LANSA.
1.		The	Visual	LANSA	Installation	creates	a	LANSA	desktop	folder	a	shown:

					If	you	open	the	Documentation	folder,	you	can	directly	access	the	LANSA
online	documentation.	Help	(also	referred	to	as	the	online	guide)	can	also	be
accessed	from	within	the	Visual	LANSA	IDE.	The	IDE	includes	extensive
context	sensitive	help	links.

					If	you	open	the	Setting	and	Administration	folder,	you	will	see	a	group	of
program	icons	used	by	LANSA	Administrators	to	configure	the	LANSA
environment:

2.		Start	LANSA	using	the	Development	Environment	icon	 	in	the	LANSA
folder

or
via	the	Development	Environment	icon	in	the	Windows	Start	Menu.

3.		Double-click	on	the		 	icon	to	start	LANSA.	The	Visual	LANSA
Logon	dialog	will	open:

					Logon	using	the	User	ID,	Password,	Partition	and	Task	ID	provided	by	your
course	instructor.

					If	you	are	using	a	trial,	stand	alone	installation,	logon	using:
					Userid:	PCXUSER,	Password:	PCXUSER,	Partition:	DEM	and	Task	ID:
PCXTASK.

					The	LANSA	Editor	will	open.	The	appearance	of	the	editor	will	depend	upon
the	type	of	installation	as	well	as	the	editor	settings

					Note:	Visual	LANSA	is	shipped	configured	with	a	grey	color	scheme.	You
will	find	most	of	the	images	included	in	this	tutorial	use	a	blue	color	scheme.
You	will	learn	about	changing	the	appearance	of	the	IDE	and	editors	in	this
tutorial.

Step	2.	Online	Documentation
In	this	step,	you	will	learn	about	the	LANSA	online	help	and	documentation
search	facilities.
1.In	the	LANSA	Editor	click	on	the	Help	icon	at	the	right	hand	side	of	the	ribbon
area..

					The	LANSA	User	Assistance	contents	page	will	be	shown.	You	can	use	the
Search	tab	from	here	to	search	for	a	topic	in	all	LANSA	guides.

					Follow	the	numbered	steps	shown	below	on	the	left	hand	side.	This	is	just
one	way	to	navigate	through	the	online	guide.	Once	you	are	experienced,	you
will	find	there	are	many	ways	to	rapidly	find	the	information	you	need.

1.	Select	the
Documentation

Roadmap	link
at	the	top	of
the	right	hand
side.

2.	Note	that	this
takes	you	to
links	to
sections	of	the
guide	for
different	types
of	user.

				Select	the
Developer	link

	

3.	This	provides
more	links	to
sections	of	the
guide	suitable
for	a
developer.

Select	Product
List.

4.	From	here
select	Visual
LANSA	Global

	

Guide	link.

The	Contents	tab
shows	the	guides
grouped	under
the	Visual	LANSA
Global	Guide.
This	opens	the
Visual	LANSA
Guides	as	a
separate
document.

	

5.	Switch	to	the
Search	tab,
type	in	the
word	compile
and	select	the
List	Topics
button.

				Note	that	there
are	around	300
topics
containing	the
word	compile.
This	is	because
you	have
searched	all

	

its:tips.chm::/lansa/searching.htm

the	guides
grouped	under
Visual	LANSA
Global	Guide.

				As	you	can
see,	this	list	is
long	and
unwieldy.	To
make	it	more
manageable,
you	can:

*	sort	the	listed
items	by	topic	title
by	clicking	the	Title
column	heading
*	sort	the	items	by

Location,	to	split	the
list	by	guide.
*	narrow	your

search	using	the
search	features
described	in
Searching	in	the	Tips
Guide.

	

6.	Select	one	of
the	topics	and
select	the
Display	button.

				Then	select	the
Contents
toolbar	button
at	the	top	of
the	displayed
page.

	

This	will	open
the	guide	in
which	this	topic
was	found.
7.	Switch	to	the
Search	tab	and
again	list
topics	for	the
word	compile.
Note	that	there
are	around	19
topics	found.
This	is	because
you	are	now
searching	for
topics	in	one
guide	only.
This	is	often
the	most
efficient	way
to	search	for
information.

	

	

	
8.Close	the	individual	guide	you	have	just	opened	-	Visual	LANSA
Administrator	Guide	in	the	example	shown	to	return	to	Visual	LANSA	Guides.
Close	this	guide,	leaving	the	LANSA	User	Assistant	guide	open

9.		Click	the	Back	button	(highlighted	above)	until	you	return	to	the	LANSA
User	Assistance	initial	view.

10.Select	the	Technical	Reference	Guide	and	note	the	toolbar	is	shown	for	the
selected	guide	–	indicating	that	it	may	be	opened	as	a	separate	guide	using	the
Contents	button.	Most	of	the	guides	may	be	opened	in	this	way.

Documentation	Toolbar
11.	The	individual	sections	in	the	LANSA	Guides	display	a	common	toolbar

				To	open	a	window	displaying	all	the	LANSA	guides,	press	the	Browse
button	in	this	toolbar.	The	LANSA	User	Assistance	window	will	be	displayed.
You	can	use	this	window	to	search	all	LANSA	guides

12.	Note	that	you	can	also	open	the	LANSA	Guides	from	the	 	folder	in
the	LANSA	folder.

13.	Of	course	the	editor	also	has	a	menu	button	at	the	top	right.
					Contents	open	the	full	Online	Guide	reviewed	above.
					Using	the	Editor	and	ShortCuts	are	more	specialized	help	files.
					LANSA	Home	Page	and	LANSA	Technical	Resources	are	links	to	the	LANSA
web	site.

					About	provides	detailed	information	for	your	Visual	LANSA	software.

					If	you	are	making	a	support	call	you	may	be	asked	to	use	the	About	dialog	to
save	information	about	your	installed	software	and	configuration.

14.The	button	highlighted	below,	hides	or	shows	the	ribbon	area.

Step	3.		F1	Context	Sensitive	Help
In	this	step,	you	will	learn	about	the	context	sensitive	help	available	throughout
the	LANSA	interface.
If	you	are	not	logged	on	to	the	Visual	LANSA	Development	Environment,	log
on	now	as	described	in	Step	2.	Logon	and	Partition	Initialization.
1.		Select	the	Repository	tab.	If	you	can't	see	the	Repository	tab,	on	the	Home
ribbon,	select	the	View	menu,	then	select	Repository.

					Note	that	the	Repository	tab	can	also	be	displayed	using	the	F8	key.
2.		With	your	cursor	either	on	the	tab	or	somewhere	within	the	Repository	tab,
press	F1.

					The	context	help	for	the	Repository	tab	is	displayed	in	the	Help	tab.
					You	can	view	all	the	text	using	the	scroll	bars.

3.		Scroll	to	the	bottom	of	the	Repository	Tab's	text	where	you	will	see	a	topic
with	an	up	arrow 	Standard	Editor	Tabs.	If	you	click	this	topic,	you	will	be
taken	to	the	documentation's	next	highest	level	for	the	current	topic.	From
this	higher	level	topic	you	can	select	any	link	to	drill	down	into	other	related
topics.

					In	this	case,	you	can	view	all	the	Standard	Editor	tabs.

4.		Click	on	one	of	the	links.	The	page	for	that	link	will	be	displayed.	Return	to
your	original	page	by	clicking	on	the	 icon.

					If	these	links	provides	insufficient	information,	you	can	open	the	guide
containing	the	topic	which	you	are	viewing.	In	this	example	it	is	the	Visual
LANSA	User	Guide.

5.		Click	the	blue	book	 	Contents	button	to	open	the	Visual	LANSA	User
Guide.	It	will	open	at	the	help	text	topic	you	are	looking	at.	In	this	example	it
will	be	the	Standard	Editor	Tabs.

5.		Close	the	Visual	LANSA	User	Guide	using	the	Windows	Close	 	button.
6.		From	the	File	menu,	select	the	New	option,	and	select	Field.	Note	that	in	this
exercise	you	will	NOT	complete	the	create	a	new	field	process.

7.		The	New	Field	dialog	will	be	displayed.

8.		Notice	that	the	cursor	is	positioned	on	the	Name.	Press	the	F1	key	to	display
the	online	help	for	Field	Name.

						Help	for	Field	name	will	be	displayed	in	the	Help	tab.

					Note:	If	the	help	text	is	larger	than	the	Help	tab's	current	size,	you	will	not	be
able	to	enlarge	the	tab	or	use	the	scroll	bars	while	the	New	Field	dialog	is
open.

					The	New	dialog	is	modal.	You	must	either	close	the	New	field	dialog	and
then	enlarge	the	Help	tabs	area	or	enlarge	the	Help	tab	before	using	the	New
dialog..

					You	can	also	float	any	of	the	editor	tabs	as	a	separate	window.

8.		Close	the	New	field	dialog.

Summary
Important	Observations

When	you	logon	to	LANSA,	you	select	the	partition,	language	and	task	ID	to
be	used.	The	LANSA	Administrator	will	create	profiles	and	authorities	to
control	access	to	LANSA.
LANSA	can	be	started	from	the	LANSA	desktop	folder	or	by	using	the
Window's	Start	menu.
The	LANSA	documentation	contains	a	standard	toolbar	to	access	all	the
documents,	or	as	single	guides,	SET	and	the	Tutorials	guides.
The	Search	tab	in	a	document	is	used	to	search	the	currently	open	guide	or
group	of	guides.
You	can	find	the	location	of	a	searched	item	in	the	Contents	tab.
The	Browse	 	button	on	the	documentation	toolbar	opens	the	User
Assistance	window	that	allows	you	to	search	all	LANSA	guides.

Tips	&	Techniques
Remember	to	use	the	F1	online	help	while	using	LANSA	and	these	tutorials.
There	is	online	help	throughout	the	user	interface.
LANSA	provides	a	wide	range	of	user,	developer,	administrator	and
technical	documentation,	as	well	as	documentation	by	product.
Use	the	Tips	Guide	to	learn	about	the	specific	search	techniques	available
with	Visual	LANSA.
Use	the	Contents	 	toolbar	button	to	open	the	specific	guide	whose	topic
you	are	reading.	You	can	quickly	review	other	topics	in	the	guide	or	you	can
search	within	just	one	guide.
Always	open	the	contents	list	in	the	Contents	tab	before	you	do	a	search,	if
you	want	to	find	the	location,	in	the	documentation,	of	an	item	that	has	been
found	in	a	Search.
If	you	want	to	narrow	your	help	topics	search	to	a	single	guide,	simply	use
the	Contents	toolbar	button	to	open	that	guide	in	its	own	window.	Once	the
guide	has	opened,	use	the	Search	tab	to	search	within	the	guide	that	is
opened.

What	I	Should	Know
How	to	start	Visual	LANSA.

How	to	logon	using	a	specific	partition,	language	and	task	ID.
How	to	open	the	LANSA	documentation	and	use	the	documentation	toolbar.
How	to	use	F1	context	sensitive	help.	(F2	context	help	will	be	tried	later	in
this	fundamentals	tutorial.)
How	to	search	all	LANSA	guides	or	how	to	search	a	single	guide.
That	you	need	to	open	the	contents	list	before	doing	a	Search,	in	case	you
want	to	find	the	topic	in	the	content	list.
The	initial	set	of	personnel	system	demonstration	objects	in	the	Active
Partition	were	loaded	using	the	partition	initialization.

VUI002	–	LANSA	Editor	Parts
Objectives:

To	introduce	the	basic	parts	of	the	Visual	LANSA	Editor.
To	learn	how	flexible	are	the	basic	editor	parts.
To	learn	how	to	use	autohide	for	the	tab	folders	of	the	editor.
You	will	not	open	any	objects	in	LANSA.	The	focus	of	the	exercise	is	how

the	parts	of	the	interface	can	be	changed.	The	purpose	and	features	of	each	part
are	described	in	later	exercises.
To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Editor	Parts	Overview
Step	2.	Repository,	Favorite,	Outline,	Details	Tabs
Step	3.	Docking/Undocking	a	Tab	Sheet
Step	4.	Reset	Editor	Settings
Summary

Before	You	Begin:
You	may	wish	to	review	the	following	topics:

Using	the	Editor	in	the	User	Guide
Host	Monitor	in	the	Administrator	Guide
It	is	recommended	that	you	complete	the	preceding	tutorials	before	you	start
this	tutorial.

its:lansa012.CHM::/LANSA/L4wUsr01_0015.htm
its:Lansa011.chm::/lansa/l4wadm03_0010.htm

Step	1.	Editor	Parts	Overview
1.		If	you	haven't	already	done	so,	start	Visual	LANSA	as	described	in	Step	2.
Starting	the	LANSA	Development	Environment.

					The	initial	appearance	of	the	Visual	LANSA	Editor	will	depend	upon	your
type	of	system	installation.	If	you	are	using	a	Slave	Workstation	Visual
LANSA	System,	the	editor	will	initially	appear	something	like	the	following:

There	are	three	main	areas	in	the	Editor:
A.		The	Repository,	Favorite,	Outline,	and	Details	tabs.	The	Repository	and
Favorite	tabs	are	used	for	selecting	objects	in	LANSA.	The	Details	tab	is
used	to	edit	object	details	and	the	Outline	tab	lists	the	names	of	the	objects
open	in	the	editor	and	shows	the	structure	of	these	objects.	These	four	tabs
are	initially	situated	on	the	left	side	of	the	editor	but	can	be	moved	as
required.

B.		This	area	displays	the	details	of	the	selected	object.	The	tabs	shown	will

depend	on	the	object	selected.	For	example,	if	a	Function	is	displayed,	the
tabs	most	likely	displayed	will	be	the	Source,	Design,	Repository	Help
and	Cross	References	tabs.	If	a	file	is	displayed,	then	you	will	see	these
tabs:	Fields	in	File,	Logical	Views,	Rules	and	Triggers,	Access	Routes,
Batch	Control,	File	Attributes,	Relationships,	Cross	References,	Virtual
Derivation.

C.		The	Assistant,	Help	Text,	Compile	(and	optionally	the	Check	in,	Check
Out	and	Propagation)	tabs	provide	status	information	and	assist	in
performing	specific	actions.	They	initially	appear	at	the	bottom	right	side
of	the	editor.

					The	sample	screens	in	this	tutorial	are	from	a	Slave	Workstation	Visual
LANSA	system.	Your	screens	will	be	slightly	different	if	you	are	using	an
Independent	Visual	LANSA	System.

Your	editor's	setup	and	system	settings	will	impact	the	information
that	is	displayed.	Your	screens	may	not	be	an	exact	match	to	the
examples	shown	in	these	exercises.

2.		You	can	resize	these	three	main	areas	by	dragging	the	horizontal	or	vertical
splitters	or	dividers	between	the	panes.	Simply	click	on	the	divider	(arrows
will	appear)	and	with	the	left	mouse	button	pressed	down,	drag	the	divider	to
change	the	size	of	the	pane.

Step	2.	Repository,	Favorite,	Outline,	Details	Tabs
In	this	step,	you	will	learn	how	to	reposition	the	four	basic	editor	tabs	used	with
LANSA	objects:	Outline,	Details,	Repository	and	Favorites.
1.		On	the	Home	ribbon	expand	the	Views	menu	to	display	all	possible	tabs.
Note	that	a	number	of	these	tabs	can	also	be	opened	using	a	function	key.

					By	default,	the	tabs	are	shown	using	the	Tab	View	Style,		Navigator.

					The	Navigator	style,	shows	tabs	as	buttons.	These	buttons	may	be	hidden	by
using	the	Show	Fewer	Buttons	option:

					For	example:

					You	would	then	click	on	an	icon	to	open	a	tab.
2.		Right	click	on	the	tab	title,	and	use	the	Tab	View	Style	option	to	select
Standard:

					The	Standard	tabs	will	be	displayed	at	the	bottom:

3.		Right-click	on	any	tab	to	open	the	context	menu.	Select	Top	to	move	the	tab
names	to	the	top.

					All	four	tabs	will	switch	to	the	requested	location.	In	the	example	below,	the
Standard	tabs	are	now	located	at	the	top	of	the	window:

4.		Click	on	the	Repository	tab,	to	display	it.
5.		Click	on	the	autohide		 	button	in	the	corner	of	the	tab	to	hide	the
Repository,	Details,	Favorites	and	Outline	tabs.

					When	you	use	autohide,	you	have	more	room	to	work	with	the	objects	open
in	the	editor.

6.		Press	F8	to	see	the	Repository	tab	again.	This	will	display	the	tab	briefly	and
it	will	hide	again	when	your	cursor	moves	off	it.

7.		Click	on	another	area	of	the	editor	and	the	tab	folder	is	automatically	hidden.
8.		Click	on	any	tab	and	then	click	on	the	Attach	button	 	to	lock	the	tabs	back
into	place.

					All	tab	folders	are	attached	back	to	their	original	position	and	will	now	stay
visible	regardless	of	where	the	focus	is	in	the	editor.

Assistant,	Help,	Compile	Tabs
These	tabs	appear	at	the	bottom	of	the	editor	and	you	can	maneuver	them	in	the
same	way	as	for	the	Repository	tab,	except	that	you	cannot	dock	them	into
another	location.

Host	Monitor	Tabs
If	you	are	using	Slave	Workstation	Visual	LANSA	with	a	Master	LANSA	for
iSeries	System,	the	editor	will	include	Check	in,	Check	Out	and	Propagation
tabs.	You	can	undock	them,	adjust	their	size	and	hide	them,	as	described	for	the
Repository	tab.

Step	3.	Docking/Undocking	a	Tab	Sheet
In	this	step,	you	will	undock	the	Repository	tab	and	move	it	to	another	position.
Undocking	is	useful	because	it	allows	you	to	resize	a	dialog	box	to	display	more
information	without	having	to	resize	the	panes	of	the	window,	which	you	have
to	do	when	a	tab	is	docked.
Note	that	all	tabs	can	be	docked	and	undocked	as	described	here.
1.		With	the	Repository	tab	displayed,	left	mouse	click	on	the	docking	bar	and
drag	it	to	the	center	of	the	Editor's	window.	

2.		Release	the	left	mouse	key	when	a	title	bar	is	added	to	the	tab,	or	when	it	is
the	position	where	you	want	it	to	be.

					The	Repository	tab	is	now	undocked.	It	is	now	an	independent	window	and
you	can	position	it	anywhere	on	the	screen,	or	on	a	second	screen..

3.		Resize	the	Repository	tab	so	see	all	the	columns.

4.		Close	the	Repository	tab	to	hide	it.	By	pressing	F8,	the	Repository	tab	will
reappear	in	the	same	location	with	the	same	size.

5.		Double	click	on	the	title	bar	of	the	Repository	tab	and	it	will	be	returned	to
where	it	came	from.

6.		To	re-attach	the	tab	on	the	left,	drag	the	Repository	tab	left,	position	your
cursor	on	the	Left	button,	and	release	the	mouse	button:

7.		To	have	two	tabs	open	side	by	side	on	the	left,	release	the	cursor	over	the
Right	button:

					Your	editor	should	then	look	like	the	following:

Step	4.	Reset	Editor	Settings
1.		On	the	File	menu	and	click	on	Options:

2.		Click	the	Reset	Editor	button	to	reset	the	Editor	to	its	default	settings.	Later
tutorials	will	illustrate	how	these	settings	can	be	set	to	your	own	preferences.

Summary
Important	Observations

If	you	need	more	room	to	work	with	objects	open	in	the	editor,	you	can	use
Autohide	to	hide	the	tab	folders	when	they	are	not	required.
You	can	move	undock	individual	tabs	by	dragging	them	from	the	docking
bar.
You	can	dock	folders	to	either	the	left	or	right	side	of	the	editor.
Folders	can	also	be	docked	side	by	side.

Tips	&	Techniques
Undocking	tabs	allows	you	to	resize	a	window	to	display	more	information
and	it	allows	you	to	reposition	the	windows.
Learn	to	use	the	function	keys	to	quick	redisplay	tabs	once	they	are	closed.
You	may	also	dock/undock	a	tab	by	double-clicking	on	the	docking	bar.
Using	Autohide	leaves	you	with	more	room	to	work	with	the	objects	open	in
the	editor.	This	feature	is	extremely	valuable	when	you	are	editing	source
code	and	want	the	maximum	screen	area	for	editing.

What	I	Should	Know
How	to	control	the	presentation	of	the	basic	editor	parts.
How	to	size	the	areas	in	the	editor.
How	to	turn	Autohide	on/off.
How	to	dock/undock	tabs.

VUI003	–	Repository	Tab
Objectives:

To	learn	about	the	Repository	tab.
To	learn	about	the	types	of	objects	listed	in	the	Repository	tab.
To	learn	how	you	can	customize	the	way	the	contents	of	the	Repository	tab
are	displayed.
To	learn	how	to	open	field	definitions.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Repository	Tab	Contents
Step	2.	Turn	Alphabetical	Grouping	Off/On
Step	3.	Arranging	Columns	in	Repository
Step	4.	Object	Properties
Step	5.	Accessing	a	Field
Summary

Before	You	Begin:
You	may	wish	to	review	the	following	topics:

Using	the	Repository	Tab	in	the	User	Guide
Alphabetical	Grouping	in	the	User	Guide
Information	about	Objects	in	the	User	Guide
It	is	recommended	that	you	complete	the	preceding	tutorials	before	you	start
this	tutorial.

its:lansa012.CHM::/LANSA/L4wUsr01_0100.htm
its:lansa012.CHM::/LANSA/L4wUsr01_0290.htm
its:lansa012.CHM::/LANSA/L4wUsr01_0285.htm

Step	1.	Repository	Tab	Contents
The	Repository	tab	is	the	focal	point	for	all	development.	It	shows	all	objects	in
the	active	partition	and	provides	access	to	objects	in	the	LANSA	system.	You
use	the	Repository	Tab	to	open	and	work	with	objects,	such	as	your	application
fields,	files,	forms	and	reusable	parts.	
1.		Resize	the	Repository	tab	to	see	more	of	the	columns	of	information
available.	Reminder:	The	columns	that	appear	in	the	Repository	tab	will
depend	upon	the	type	of	Visual	LANSA	System	that	you	have	installed.	The
sample	screens	in	this	tutorial	are	from	a	Slave	Workstation	LANSA
installation.
The	Repository	tab	might	appear	something	like	the	following:

					In	this	lesson,	when	you	are	asked	to	open	an	object,	you	will	use	the
Repository	tab	to	locate	them.

2.		Notice	that	there	are	three	main	groups	of	objects	listed:

Active
Partition

The	Active	Partition	stores	all	objects	that	a	developer	creates
when	building	applications	with	LANSA.

Organizers Organizers	are	objects	that	are	used	to	group	objects	in	the
LANSA	Repository.

System System	Information	stores	details	about	the	Visual	LANSA

Information installation.

3.		Expand	the	Organizers.	You	will	see	a	list	of	objects	that	you	can	use	to
group	objects	in	the	repository.	For	example,	user	defined	lists	and	database
diagrams	are	stored	in	Organizers	along	with	Frameworks	and	Groups.

4.		Expand	System	Information.	LANSA	Administrators	will	use	this
information	to	configure	the	development	environment.	Many	of	the	settings
here	(for	example	Partitions)	reflect	setting	established	on	the	System	i
LANSA	system.

5.		Expand	the	Active	Partition(DEM).	You	will	see	a	list	of	object	type	groups
that	you	will	use	to	create	and	build	LANSA	applications.	A	set	of	objects
were	imported	into	the	repository	when	the	partition	was	initialized.

Step	2.	Turn	Alphabetical	Grouping	Off/On
In	this	step,	you	will	learn	how	to	group	repository	objects	alphabetically.
1.		On	the	Repository	tab,	expand	the	Fields	node.	By	default	the	fields	are
grouped	alphabetically.

					Expand	the	letter	A	to	see	all	fields	starting	with	the	letter	A.
					The	list	may	appear	something	like	the	following:

					The	fields	shown	are	used	in	the	Personnel	System	demonstration.
2.		Right-click	on	the	Fields	node	and	deselect	the	Alphabetical	Grouping
option	from	the	context	menu.

					The	grouping	will	be	turned	off.

3.		All	fields	are	now	displayed	in	alphabetical	order	but	without	alphabetical
grouping.

					Alphabetic	groupings	can	be	used	with	most	objects	listed	in	the	Active
Partition.

Step	3.	Arranging	Columns	in	Repository
In	this	step,	you	will	change	the	order	of	the	columns	on	the	Repository	tab,
resize	and	hide	a	column.
1.		Click	on	the	Details	column	heading	and	drag-and-drop	it	the	left	of	the
Modified	column.

2.		Right-click	the	column	header	area	and	deselect	the	Modified	column	in	the
context	menu.

					The	Modified	column	is	now	hidden.
3		Right-click	the	column	header	area	and	select	the	Modified	column	again	to
make	it	appear.	Drag	the	Modified	column	to	the	right	of	the	Description
column.

4.		You	can	sort	the	repository	objects	by	clicking	on	the	column	heading.	Click
on	the	Details	column	heading	to	sort	the	list	by	the	field	type.

5		Click	on	the	Item	column	heading	to	sort	the	fields	alphabetically	again.
6.		Reset	Fields	to	Alphabetic	Grouping	again.
7.		Close	the	Fields	node.

Step	4.	Object	Properties
In	this	step,	you	will	view	the	properties	of	an	existing	field,	ADDRESS1	using
the	Repository	tab.
1.		Open	the	Fields	node	and	select	the	ADDRESS1	field	from	the	A	field	group
list.			Right	click	on	the	ADDRESS1	field.	Notice	the	list	of	options	available
in	the	context	menu.

2.		Select	the	Properties	option.	A	brief	summary	of	field	properties	will	be
displayed.

3.		Close	the	properties	dialog.
					In	the	next	step,	you	will	open	an	object	in	the	editor.
4.		Before	you	open	the	object,	select	the	Outline	and	Details	tabs.	(If	these	tabs
are	not	open,	select	them	from	Views	in	the	View	menu	or	by	pressing
function	keys	F6	and	F7.)

					Notice	that	these	tabs	are	blank	because	no	objects	are	currently	open.

	If	necessary,	shrink	the	width	of	this	tab	so	that	you	can	see	the	Edit	view	in	the
right	hand	pane	in	the	following	steps.				

Leave	these	tabs	open	for	the	next	step,	Step	5.	Accessing	a	Field.

Step	5.	Accessing	a	Field
In	this	step,	you	will	open	and	view	an	existing	field,	ADDRESS1	using	the
Repository	tab.

1.		In	the	Field	group	in	the	Repository	tab,	right-click	the	field	ADDRESS1
and	choose	the	Open	option	from	the	context	menu.	Alternatively	double
click	on	an	object	to	open	it	in	the	editor.

2.		When	you	attempt	to	open	an	object	in	LANSA,	a	number	of	checks	will	be
performed.	If	you	are	not	authorized	to	an	object	or	if	another	developer	has
already	opened	an	object,	the	following	message	will	be	displayed.	As	noted,
you	can	then	open	the	object	in	read-only	mode.

3.		If	you	are	using	an	Independent	Visual	LANSA,	with	user	id	PCXTASK,
you	will	be	able	to	open	the	field	for	editing.

					If	you	are	using	a	Slave	Workstation	Visual	LANSA,	together	with	a	normal
developer	user	profile,	you	may	need	to	check	out	the	field	definition	from
the	iSeries	master.

		

					If	you	are	authorized	to	the	field,	it	will	be	opened	for	editing	in	the	LANSA
Editor.

4.		Display	the	Details	tab.	The	contents	of	this	tab	will	change	as	you	move
from	one	part	of	the	field	to	another.

					You	may	wish	to	close	the	Repository	tab,	(you	can	use	F8	to	redisplay).
Using	the	skill	learned	in	the	VUI002	-	Editor	Parts	exercise,	you	should	be
able	to	resize	the	different	area	of	the	editor	to	layout	your	workspace	to	meet
your	personal	preferences.	You	may	wish	to	turn	on	Autohide	for	the	bottom
tabs.

5.		Click	on	the	Input	attributes	and	then	the	Output	attributes	to	see	the	changes
in	the	Details	tab.

6.		Select	the	different	tabs,	Definition,	Rules	and	Triggers,	Visualization,
Repository	Help	and	Cross	Reference	to	view	the	details	of	the	field
definition.

					Do	not	make	any	changes	to	this	field.

7.		Close	the	field	 	in	the	editor.

Summary
Important	Observations

The	Repository	tab	is	the	starting	point	for	most	of	your	work	in	the	editor.
You	can	access	all	objects	in	LANSA	from	the	Repository	tab.
Once	you	have	opened	an	object	it	will	be	added	to	the	Last	Opened	list	on
your	Favorites	tab.
You	can	turn	on	or	off	the	alphabetical	grouping	of	objects	in	the	Active
Partition.
The	columns	in	the	Repository	tab	can	be	reordered	and	hidden.
You	can	sort	object	lists	using	the	column	headings.
You	initially	open	objects	for	editing	using	the	Repository	tab.
The	initial	set	of	personnel	system	demonstration	objects	in	the	Active
Partition	were	loaded	using	the	Partition	Initialization,	available	from	the
Visual	LANSA	Logon	form.

Tips	&	Techniques
You	can	undock	the	Repository	tab	to	maximize	the	size	of	the	window.	It
can	be	closed	and	easily	redisplayed	using	F8.

What	I	Should	Know
What	information	can	be	accessed	from	the	Repository	tab.
How	to	dock	and	undock	tabs.
How	to	turn	alphabetical	grouping	off.
How	to	change	the	order	of	columns	in	the	Repository	tab.
How	to	hide	columns	in	the	Repository	tab.
How	to	open	fields	using	the	Repository	tab.

VUI004	-	Details,	Outline,	Favorites	Tab
Objectives:

To	understand	the	purpose	of	the	Details	tab.
To	understand	the	purpose	of	the	Outline	tab.
To	understand	the	purpose	of	the	Favorites	tab.
To	learn	about	feature	help	(F2)	for	objects.
To	learn	to	use	the	Go	To	tab	to	view	the	errors	in	the	object	currently	open.
To	learn	to	view	the	error	message	of	a	field	in	error.

The	focus	of	this	exercise	is	how	you	use	editor	features	to	work	with	repository
fields	and	files.	The	focus	is	not	on	the	definitions	of	these	objects.	The	LANSA
Repository	and	Form	Development	Tutorials	provide	detailed	training	about
these	objects.
To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Copy	the	ADDRESS1	Field
Step	2.	Details	Tab
Step	3.	View	Errors
Step	4.	Open	Another	Object	in	Editor
Step	5.	Outline	Tab
Step	6.	Favorites	Tab

Before	You	Begin:
You	may	wish	to	review	the	following	topics:

Using	the	Outline	Tab	in	the	User	Guide
Using	the	Details	Tab	in	the	User	Guide
It	is	recommended	that	you	complete	the	preceding	tutorials	before	you	start
this	tutorial.

its:lansa012.CHM::/LANSA/L4wUsr01_0110.htm
its:lansa012.CHM::/LANSA/L4wUsr01_0115.htm

Step	1.	Copy	the	ADDRESS1	Field
In	this	step,	you	will	create	a	new	field,	iiiAddressLine1	by	copying	the
ADDRESS1	field	so	that	you	can	open	the	new	field	for	editing.	You	will	also
copy	the	rules,	visualization	and	help	text	from	the	ADDRESS1	field.
1.		Using	the	Repository	tab,	right	click	on	the	ADDRESS1	field	and	select	the
Copy	option	from	the	context	menu.

2.		The	Create	as	a	copy	of	ADDRESS1	dialog	will	appear.

a.		Enter	a	Name	of	iiiAddressLine1	(where	iii=your	initials).	
b.		Note	that	the	field	has	been	given	an	Identifier	of	IIIADDRES
b.		Select	the	Copy	rules	and	triggers	option.
c.		Select	the	Copy	visualization	option.
d.		Select	the	Copy	help	text	option.
e.		Select	the	Open	in	editor	option.

f.		Press	the	Create	button.
					The	iiiAddressLine1	field	will	be	opened	in	the	editor.

Step	2.	Details	Tab
In	this	step,	you	will	review	the	repository	field	definition	for	the
iiiAddressLine1	field	to	see	how	the	different	tabs	are	used	to	edit	objects.	The
Details	tab	is	used	to	display	and	edit	selected	properties	of	objects.
1.		Select	the	Definition	tab.	You	can	edit	most	of	the	basic	field	characteristics
using	this	tab.

					To	change	the	list	of	Input	and	Output	attributes,	you	must	use	the	Details
tab.

					Click	on	the	Input	attributes	list.	The	Details	tab	will	be	displayed	as	shown:

2.		Select	some	of	the	Input	attributes	and	you	will	see	that	they	are	immediately
included	in	the	list	of	attributes	in	the	Definition	tab.

3.		Deselect	the	extra	Input	Attributes	that	you	selected.
4.		Select	the	Rules	and	Triggers	tab.
					This	tab	simply	displays	the	rule	or	triggers	details.	You	cannot	edit	any	of
the	information	from	this	tab.	Information	must	be	selected	and	edited	from
the	Details	tab.

					Expand	the	list	entry	Address	line	1	cannot	be	blank.	Notice	that	the	Details
tab	is	now	shown	on	the	left:

5.		Change	the	Description	of	the	rule	in	the	Details	tab	to	say	No	blanks
allowed.	Notice	that	the	rule	Description	in	the	Rules	and	Triggers	tab	is
updated	as	you	type.

6.		On	the	Home	ribbon,	expand	the	Add	menu,	and	select	Add	List	Check.

					Notice	that	the	details	for	the	new	rule	are	entered	using	the	Details	tab.	Do
not	enter	any	values.

					A	number	of	red	triangles	have	appeared	in	the	interface.	If	you	click	on
these	triangles,	an	error	message	will	be	displayed:

					Leave	this	field	definition	open,and	the	errors	will	be	discussed	Step	3.	View
Errors.

Step	3.	View	Errors
In	this	step,	you	will	use	the	Go	To	tab	to	quickly	locate	errors	and	view	the
messages	associated	with	an	error.
An	object	cannot	be	saved	if	it	has	errors.
In	Step	2.	Details	Tab	,	you	added	an	incomplete	rule	to	the	iiiAddressLine1
field.
1.		With	the	iiiAddressLine1	field	still	displayed	in	the	editor,	select	the
Definition	tab.

2.		Double	click	on	the	Default	value	in	the	Definition	tab.
3.		In	the	Details	tab,	change	the	Default	value	of	the	field	to	xxx.	This	will
cause	an	error.	Red	triangles	will	appear.

4.		Press	the	Save	button	on	the	editor	toolbar.

					An	error	message	will	be	displayed.

5.		Click	OK.
6.		The	Go	To	tab	will	automatically	display	showing	all	error	messages	related
to	the	object.	(The	Go	To	tab	can	also	be	displayed	by	pressing	Ctrl	+	G.)

7.		Double-click	on	the	red	triangle	of	the	error	message	text	"At	least	one	value
must	be	defined	for	a	rule	check."

					Notice	that	the	Rules	and	Triggers	tab	is	automatically	displayed	and	the	rule
in	error	is	selected.

8.		Select	the	Rules	and	Triggers	tab.	Click	on	the	 	line
to	display	the	error	details.

9.		Press	the	delete	rule	 	on	the	Home	Ribbon	to	remove	the	incomplete
validation	rule.

10.	Select	the	Go	To	tab	(or	press	Ctrl+G).
					Notice	that,	once	the	rule	is	deleted,	the	error	is	no	longer	listed.

12.	Select	the	Definition	tab.		Click	on	the	Default	Value.	The	Detail	tab	will	be
displayed.

13.	Enter	a	value	of		'xxx'	(with	single	quotes	because	this	is	an	alphanumeric
field).	The	error	message	will	disappear.

14.	Close	the	field	definition	using	the	Close	option	from	the	File	menu.	When
prompted	to	save	the	field	changes,	select	Cancel.

15.	The	field	definition	of	iiiAddressLine1	should	remain	open	for	the	next	step,
Step	4.	Open	Another	Object	in	Editor.

Step	4.	Open	Another	Object	in	Editor
In	this	step,	you	will	open	and	view	an	existing	File,	the	Employee	Master	file
PSLMST,	from	the	Repository	tab.	This	means	opening	a	second	object	(the
first	is	the	field	iiiAddressLine1	which	you	used	in	Step	2	and	Step	3.	By
opening	this	second	object,	you	will	learn	how	to	switch	between	objects	open
in	the	editor.
1.		On	the	Repository	tab,	expand	the	Files	list.

a.		Expand	the	P	list.	(If	you	have	turned	off	Alphabetical	Grouping,	skip	this
step.	Refer	to	Step	2.	Turn	Alphabetical	Grouping	Off/On.)

b.		Right-click	file	PSLMST	and	choose	the	Open	option	from	the	context
menu,	to	open	the	file	for	editing.	(You	can	also	open	the	file	by	double
clicking	on	the	file's	name	in	the	Repository	tab.)

					Note:	You	will	not	be	changing	this	file	in	this	tutorial,	so	it	can	be
opened	as	read-only	if	it	is	checked	out	read-only,	or	if	you	are	not
authorized	to	use	the	file.

2.		Click	on	the	different	tabs	to	view	the	details	of	the	file	definition.
					Do	not	change	any	file	details.	Leave	the	PSLMST	field	open	in	the	editor.
3.		Notice	that	the	Previous	and	Next	buttons	are	enabled	on	the	editor	toolbar.

					These	button	switch	between	the	objects	that	are	currently	open	in	the	editor.

Step	5.	Outline	Tab
In	this	step	you	will	learn	about	the	Outline	tab.	The	Outline	tab	is	used	to	view
and	switch	between	objects	that	have	been	opened	for	editing.	The	Outline	tab
is	also	used	to	navigate	within	an	object.	It	displays	information	about	the
structure	of	an	object	and	will	display	feature	help	for	object	properties.
1.		Select	the	Outline	tab.	The	fields	iiiAddress1	and	the	file	PSLMST	are
shown:

2.		Click	on	iiiAddressLine1.	Notice	that	the	field	definition	is	now	shown	in
the	editor.

3.		Click	on	PSLMST.	Notice	that	the	file	definition	is	now	shown	in	the	editor.
4.		Click	on	iiiAddressLine1	again.
5.	While	iiiAddressLine1	is	highlighted,	press	F2.
					Features	of	iiiAddressLine1	are	displayed	in	the	Features	tab.
					Default	help	text	is	displayed	in	the	Help	tab.

6.		Expand	the	Methods	of	iiiAddressLine1	in	the	Features	tab.
7.		One	by	one,	double	click	on	some	of	the	Methods	of	the	iiiAddressLine1
field.	Help	information	relating	to	each	Method	(context	help)	will	be
displayed	in	Help	tab	at	the	bottom	of	the	editor.

					You	may	resize	the	Help	pane,	or	float	it	as	a	separate	window	if	you	wish.

Step	6.	Favorites	Tab
In	this	step,	you	will	view	the	Favorites	tab		By	default	the	Favorites	tab
contains	the	Last	Opened	tab	and	the	Weblet	Templates	tab	if	your	partition	is
web	enabled.	The	Favorites	tab	can	contain	any	other	tab	which	you	add	to
Favorites.

1.		To	remove	objects	from	the	Last	Opened	list,	select	them	and	use	the	right
mouse	menu:

2.		In	this	step	you	will	add	a	list	to	your	Favorites	tab.	Switch	to	the	Repository

tab.	Select	the	Fields	list	and	use	the	right	mouse	menu	option	Is	Favorite:

3.		Switch	to	the	Favorites	tab.	The	Fields	list	is	now	shown	on	the	Favorites
tab.

4.		Use	the	right	mouse	menu	to	remove	the	Fields	list	from	your	Favorites	tab:

					Often	you	will	create	of	Editor	Lists	of	objects	you	want	to	work	with	and
make	these	lists	favorites.	

Summary
Important	Observations

The	properties	of	objects	are	edited	in	the	Details	tab.	
You	move	between	open	objects	using	the	Outline	tab.
Feature	help	is	used	to	display	detailed	information	about	objects.
Errors	are	marked	with	a	red	triangle.	(Warnings	are	marked	with	a	brown
triangle)
You	can	view	the	message	for	an	error	or	warning	by	clicking	on	the	triangle
marking	the	error.
Use	the	Go	To	tab	to	view	all	errors	in	the	open	object.	To	locate	the	context
of	the	error,	double-click	on	the	error	message.
The	Favorites	tab	may	contain	many	different	lists	of	objects.	It	provides	a
fast	way	to	access	commonly	used	objects.
The	Is	Favorite	context	menu	option	is	used	to	add	a	list	to	the	Favorites
Tab.	Whenever	you	see	this	option	in	a	context	menu,	then	the	related	list
can	be	added	to	the	Favorites	tab.

Tips	&	Techniques
The	keyboard	shortcut	for	displaying	the	Go	To	tab	is	Ctrl	+	G.
The	keyboard	shortcut	for	displaying	the	Feature	help	is	F2.

What	I	Should	Know
How	to	use	the	Details	tab	to	edit	objects.
How	to	use	the	Favorites	tab.
How	to	use	the	Outline	tab	to	switch	between	objects.
How	to	display	feature	help	for	objects.
How	to	use	the	Go	To	tab	to	view	the	errors	in	the	object	currently	open.
How	to	view	the	message	for	an	error	or	warning.

LANSA	Editor	Tutorials
What	are	the	LANSA	Editor	Tutorials?
This	tutorial	is	for	new	LANSA	developers	and	is	designed	to	teach	basic	source
code	editing	skills.	It	focuses	on	the	editor	features	and	techniques	for	using	the
Visual	LANSA	source	code	editor	as	opposed	to	teaching	programming	skills	to
build	applications.	No	experience	with	the	LANSA	Repository	or	RDML
programming	language	is	required.
This	brief	set	of	exercises	covers	the	essential	areas	of	the	LANSA	editor:
VED010	-	Format	Source	Code
VED020	-	Edit	Source	Code
VED030	-	Auto	Complete	and	Command	Assistant
VED040	-	Execute	Applications

Before	you	Begin
You	must	have	LANSA	Demonstration	Personnel	System	installed	in	the
partition	that	you	will	use	with	the	set	up	options	as	described	in	What	Partition
Should	I	Use?
The	LANSA	Demonstration	Personnel	System	contains	all	the	objects	used	by
these	exercises.

Tips	for	using	the	exercises
Check	off	each	step	in	the	exercise	as	you	complete	it.
Follow	the	instructions	very	carefully.
Remember	to	replace	iii	with	your	unique	3	characters.	You	will	not	always
be	reminded	to	make	this	substitution.
These	exercises	assume	that	you	have	not	previously	customized	the	editor
interface.	If	you	have	already	customized	your	environment,	the	example
screens	and	instructions	may	not	exactly	match	your	customized
development	environment.

The	first	steps	in	an	exercise	will	provide	very	precise	descriptions	of	the	tasks
to	be	performed.	As	the	steps	and	course	progresses,	the	instructions	will
become	much	more	general.
Later	exercises	are	designed	to	use	skills	from	the	earlier	exercises.	These
exercises	are	designed	to	be	completed	in	sequence.

its:lansa095.CHM::/LANSA/lansa095_0020.HTM

VED010	-	Format	Source	Code
Objectives:

To	learn	how	to	copy	a	form	and	open	it	in	the	editor.
To	learn	how	to	create	a	process	and	function	and	open	them	in	the	editor.
To	learn	how	to	show	and	hide	line	numbers	and	indentation	of	the	source
code.
To	learn	how	to	change	the	way	statements	are	formatted.
To	learn	how	to	hide	DEFINE_COM	statements	in	component	source	code.
To	learn	how	to	use	F2	Features	help.
To	learn	how	to	compile	an	object	and	display	the	compile	message	details.

The	focus	of	this	exercise	is	to	control	the	appearance	of	code	in	the	editor.	The
purpose	of	the	programs	and	the	actual	meaning	of	the	RDML	commands	is	not
important.	The	RDML	Programming	tutorials	teach	the	basic	coding	practices.
To	achieve	these	objectives	you	will	complete	the	following:

Step	1.	Create	a	Copy	of	Form	XDXSettingsDialog
Step	2.	Create	a	Process	and	a	Function
Step	3.	Turn	on	Autohide
Step	4.	Change	Formatting	Options
Step	5.	Editor	Source	Settings
Step	6.	Word	Wrap
				Step	7.	Submit	a	Compile
Step	8.	Display	Error	Log
Step	9.	Display	Feature	Help	Text
4.Expand	Methods	and	double	click	on	any	of	the	component's	methods.
Help	text	is	displayed	explaining	how	the	selected	method	can	be	used.

Before	You	Begin:
You	may	wish	to	review	the	following	topics:

Repository	Tab	in	the	Visual	LANSA	User	Guide
Favorites	Tab	in	the	Visual	LANSA	User	Guide

In	order	to	complete	this	tutorial,	you	must	have	completed	all	the	previous
exercises	in	this	workshop.

its:lansa012.CHM::/lansa/L4wUsr01_0100.htm
its:lansa012.CHM::/lansa/L4wUsr01_0105.htm

Step	1.	Create	a	Copy	of	Form	XDXSettingsDialog
In	this	step	you	will	create	a	copy	of	the	XDXSettingsDialog	form	for	editing.
Forms	are	used	to	create	graphical	Windows	applications.	Forms	have	a	design
layout	(a	sample	of	the	form	design),	as	well	as	RDMLX	code	that	is	used	to
control	the	behavior	of	the	form.	You	will	use	this	sample	form	to	learn	the
basics	of	controlling	the	display	of	LANSA	code	in	the	editor.	The	actual
meaning	of	the	code	is	not	important	at	this	stage.
Creating	a	copy	of	form	XDXSettingsDialog	will	enable	you	to	edit	the	form.
1.		On	the	Repository	tab,	expand	the	Forms	node.
2.		Expand	the	X	node	to	see	a	list	of	all	forms	starting	with	the	letter	X.
3.		Right-click	form	XDXSettingsDialog	and	choose	the	Copy	option	from	the
context	menu.

4.		The	Create	as	copy	of	XDXSettingDialog	dialog	will	appear.
					Enter	a	Name	of	iiiSettingsDialog	(where	iii=your	initials)	or	DEMCOM01

if	you	are	using	a	trial	version	of	Visual	LANSA.
					Note	that	a	Framework	of	Personnel	&	Payroll	has	also	been	selected.
Components	are	organized	into	Frameworks.	You	can	change	a	component's
Framework	setting	at	any	time.

5.		Press	the	Create	button.
6.		The	form	is	opened	for	editing.	The	Design	tab	is	selected	by	default	and	the
design	layout	of	form	is	shown.

7.		Display	the	Source	by	clicking	on	the	tab.

					The	Source	tab	shows	the	source	code	of	the	form.
					Note:		Do	not	compile	this	form.	We	will	simply	use	this	code	as	an	example
to	demonstrate	editor	features.	Leave	form	iiiSettingsDialog	open	in	the
editor.

Step	2.	Create	a	Process	and	a	Function
In	this	step	you	will	create	a	new	Process	iiiPRO01.	Processes	are	containers
used	to	group	together	a	set	of	functions.	When	executed,	processes	appear	as	a
menu.	Processes	are	also	used	to	control	characteristics	of	the	functions	that
they	contain.
After	creating	the	process,	you	will	create	a	function	belonging	to	the	process.
Functions	are	programs	that	contain	RDML	code.	You	will	use	this	sample
function,	along	with	the	sample	form,	to	learn	the	basics	of	controlling	the
display	of	LANSA	code	in	the	editor.	The	actual	meaning	of	the	code	is	not
important.
1.		First,	create	a	new	process	from	New	in	the	File	menu,	and	selecting
Process:

a.		Enter	a	Process	name	of	iiiEditorTesting	(where	iii=your	initials)	or
DEMPRO01	if	you	are	using	a	trial	version	of	Visual	LANSA.

b.		Enter	a	Description	of	Demo	Process.
c.		Uncheck	the	Open	in	editor	option.

d.		Press	the	Create	button.

2.		Use	File	menu	/	New	to	create	a	new	function:
a.		Enter	a	Process	name	of	iiieditortesting	(where	iii=your	initials)	or
DEMPRO01	if	you	are	using	a	trial	version	of	Visual	LANSA	.	Note	that
this	name	will	be	completed	as	you	type,	if	a	match	is	found	in	the
Repository.

b.		Enter	a	Name	of	iiiDeptQuery	(where	iii=your	initials).
c.		Enter	a	Description	of	Query	Departments.
d.		Select	Template	FRENQ01	–	Flat	Screen	Enquiry.
e.		Do	not	select	Enabled	for	RDMLX.
f..		Open	in	editor	will	be	automatically	selected.

g.		Click	the	Create	button.
h.		Complete	each	Wizard/Template	Prompt	as	shown	and	click	Next.

Prompt Enter

Enter	the	name	of	the	base	file	to	be	used	by	this
template

DEPTAB

Do	you	want	this	function	to	be	part	of	an	ACTION-
BAR	style	process

N

Fields	to	appear	on	Display DEPTMENT

	 DEPTDESC

Design	fields	on	the	enquiry	panel	DOWN	or	ACROSS
the	screen

DOWN

	

i.		Click	Finish	to	create	the	RDML	code.
5.		The	Source	tab	showing	the	RDML	code	for	this	function	will	be	shown.

Step	3.	Turn	on	Autohide
1.		Use	the	context	menu	on	the	Repository	title	bar	(or	whichever	tab	is
showing	on	the	left)	to	Autohide	the	left	hand	panels.

					The	left	tab	folders	are	now	hidden,	leaving	you	more	space	to	work	with	the
source	code	in	the	editor.

					Remember,	the	tabs	can	be	displayed	by	clicking	on	them.	When	the	focus
leaves	the	tabs,	they	automatically	hide	again.

					To	pin	the	tabs	open	again,	click	on	the	Attach	 	button	while	the	tab	is
being	displayed.

Step	4.	Change	Formatting	Options
In	this	step	you	will	change	how	source	code	is	formatted.	You	can	control	what
lines	of	code	are	displayed	and	how	they	are	displayed.
Separate	settings	are	used	to	control	statements	in	functions	and	components
(forms,	reusable	parts,	WAMs,	etc.).
1.		On	the	File	menu,	click	on	Options.	The	LANSA	Settings	dialog	is	displayed.
This	dialog	will	be	different	for	Slave	and	Independent	systems.

2.		Select	the	Source	icon	to	view	the	code	formatting	options.
a.		Expand	the	Function	Formatting	options.
b.		Select	Upper	case	so	that	commands	and	keywords	are	in	shown	in
uppercase.

3.		Press	the	Apply	button	to	make	the	changes	to	the	source	code.	Click	Yes	in
the	dialog	warning	that	undo	and	redo	buffers	will	be	lost:

4.		The	formatting	changes	for	your	function	are	now	visible	in	the	Source	tab.

5.		Use	the	Options	/	Source	options	to	change	the	formatting	of	functions	back
so	that	the	commands	and	keywords	are	in	Proper	Case..

6.		Press	the	Apply	button	to	make	the	changes	to	the	source	code.

Step	5.	Editor	Source	Settings
In	this	step	you	will	change	the	line	numbering	and	indentation	options	in	the
Source	view.	You	will	view	the	form's	source	code	and	see	how	to	control	the
component	definitions.
1.		Switch	to	the	iiiSettingsDialog	form	in	the	editor	by	using	the	Previous	or
Next		buttons	on	the	toolbar.

					You	can	also	do	this	'switch'	using	the	Open	Objects	menu	or	the	Outline	tab.
					Notice	that	the	source	code	is	showing	the	details	for	all	component
definitions:

2.		Using	the	File	menu,	select	Options	to	open	the	LANSA	Settings	dialog.
3.		Select	the	Source	icon	to	view	the	source	code	options.

a.		Select	the	Indentation	and	Line	Numbers	options.

b.		Deselect	the	Component	Definitions	option.
b.		Press	Apply.

4.		You	will	see	that	the	source	code	is	now	showing	indent	lines	and	line
numbers.

					Note	that	the	component	definitions	(Define_Com)	are	now	compressed	so
that	only	the	first	definition	of	each	set	is	shown.

5.		Reset	the	Editor	Source	Settings	to	remove	the	Line	numbers	and	Indentation
Lines	and	to	show	all	Component	Definition	lines.

Step	6.	Word	Wrap
In	this	step	you	will	change	the	word	wrapping	options	in	the	Source	view.	
Word	wrapping	is	used	to	control	how	single	lines	of	code	are	displayed	in	the
editor.	Wrapping	will	ensure	that	the	complete	line	of	code	is	viewable	in	the
current	width	of	the	Source	tab.
1.		On	the	File	menu	select	Options,	to	open	the	LANSA	Settings	dialog.

a.		Select	the	Source	icon	to	view	the	source	code	options.
b.		Expand	the	Word	Wrap	options.
c.		Select	the	None	option.	The	default	(shipped)	setting	is	Smart	word	wrap.
d.		Click	Apply	and	then	OK.

2.			Each	line	of	source	code	is	now	shown	as	a	single	line.

	
					Optional:	You	can	try	the	other	Word	Wrap	settings	to	see	how	they	impact
the	code	display.

4.Open	the	Settings	dialog	again	and	reset	the	Word	Wrap	setting	to	Smart.
5.		Close	the	iiiSettingsDialog	form	in	the	editor.

					Close	the	form	using	the	blue	cross	at	the	top	right	of	the	editor.
					No	changes	should	have	been	made	to	the	code.	(If	you	have	made	a	change
by	mistake,	simply	press	No	when	asked	to	save	changes.)

6.		The	editor	will	display	the	iiiDeptQuery	function.

				Step	7.	Submit	a	Compile
In	this	step	you	will	compile	the	iiiDeptQuery	function	and	view	the	compile
messages.
1.		One	the	Home	ribbon,	click	on	the	highlighted	button	in	the	corner	of	the
Compile	options	area.

					The	Compile	Options	dialog	will	be	shown.
2.		You	do	not	need	to	Generate	HTML	or	XML.	Remove	these	options.
Removing	the	three	compile	options	as	shown,	means	"compile	just	this
function",	regardless	of	whether	VL	is	aware	it	has	changed.	Visual	LANSA
will	now	always	compile	selected	functions	and	the	process.

					Your	settings	should	appear	as	follows:

3.		Press	the	OK	button	to	submit	the	compile.
4.		Resize	the	bottom	area	of	the	editor	and	display	the	Compile	tab.
					The	status	of	the	compile	will	be	displayed	in	the	Compile	tab.	You	will	see
the	messages	change	as	the	compile	is	in	progress	and	then	completes.

5.		Expand	the	"Completed,	Compiled	2	Objects"	message:

					Select	the	iiiDeptQuery	object	and	click	the	 	joblog	icon	to	see	the
compile	messages.

					The	Compile	Output	dialog	will	be	displayed.	You	can	view	the	source	code
build	messages	as	well	as	the	compile	messages.

Notes:
a.The	logs	contain	two	tabs,	with	details	of	the	build	and	the	compile.
b.The	log	can	be	opened	in	Notepad,	in	case	you	need	to	save	the	compile
logs	to	send	to	LANSA	Support.

				6.		Close	the	Compile	Output	dialog.
7.		Close	the	iiiDeptQuery	function.

Step	8.	Display	Error	Log
In	this	step	you	will	cause	a	fatal	error	to	occur	and	the	view	the	error	log.		The
error	log	is	associated	with	run-time	errors.
1.		On	the	Favorites	/	Last	Opened	tab,	select	iiiSettingsDialog	and	use	the
context	menu	to	Execute	the	form.	In	the	Execute	dialog,	select	Form	as
Windows	Application.

2.				A	fatal	error	is	displayed.

3.		Close	the	Fatal	Error	message	box	(Click	OK)	and	Cancel	the	Message
window.

4.		On	the	Home	ribbon,	open	the	Error	Logs	menu	to	select	Local.

					to	view	the	Visual	LANSA	Error	Log:

					The	toolbar	buttons	enable	the	error	log	to	be	refreshed,	opened	in	Notepad
or	cleared.

					This	error	occurs	simply	because	the	iiiSettingsDialog	form	is	not	compiled.
5.		Close	the	Error	log	window.

Step	9.	Display	Feature	Help	Text
In	this	step	you	will	use	the	help	text	tab	to	view	feature	help	for	components.
Feature	help	is	used	to	display	detailed	information	about	components.	Feature
help	is	particularly	important	as	you	edit	forms	and	reusable	parts.
1.		On	the	Repository	tab,	under	Organizers,	expand	Groups	and	then	expand
Basic	Controls.

2.		Select	the	Combo	box	control.

3.		Press	F2.
					The	Features	tab	will	be	displayed,	showing	the	combo	box	control's
Properties,	Events	and	Methods.

					Note	that	this	tab	shows	the	Feature	help	(F2).	As	you	learned	in	the	Visual
LANSA	User	Interface	Tutorials,	there	is	other	context-sensitive	help
available	when	you	press	F1.	F1	will	always	link	you	to	a	suitable	reference
in	the	online	guides.

4.Expand	Methods	and	double	click	on	any	of	the	component's	methods.	Help
text	is	displayed	explaining	how	the	selected	method	can	be	used.

Summary
Important	Observations

You	can	customize	the	way	source	code	is	displayed	in	the	editor.
You	can	toggle	the	display	of	line	numbers	and	indentation	on	or	off.
You	can	hide	DEFINE_COM	statements.
The	Help	Text	tab	shows	Feature	help	for	selected	components.
The	Compile	tab	shows	the	compile	status	of	objects.

What	I	Should	Know
How	to	open	process,	functions	and	components	in	the	editor.
How	to	customize	the	display	of	source	code	in	the	editor.
How	to	show	and	hide	line	numbers	and	indentation	of	the	source	code.
How	to	change	the	way	statements	are	formatted.
How	to	hide	DEFINE_COM	statements	in	the	source	code.
How	to	use	feature	help	for	components.
How	to	view	compile	status	messages.

VED020	-	Edit	Source	Code
Objectives:

To	learn	how	to	use	keyboard	shortcuts	to	navigate	within	the	code	in	the
Source	tab.
To	learn	how	to	use	keyboard	shortcuts	to	comment	and	uncomment	code.
To	learn	how	to	use	copy,	paste,	and	undo	features.
To	learn	how	to	find	and	replace	text	in	the	Source	tab	when	editing	a
function	or	a	component.

The	focus	of	this	exercise	is	learning	how	to	navigate	within	the	editor	and	use
some	basic	editor	features.	The	purpose	of	the	programs	and	the	actual	meaning
of	the	RDML	commands	is	not	important.	The	RDML	Programming	tutorials
teach	the	basic	coding	practices.
To	achieve	these	objectives	you	will	complete	the	following:

Step	1.	Cursor	Position
Step	2.	Position	the	Current	Line
Step	3.	Comment	Lines
Step	4.	Copy	and	Paste
Step	5.	Find	Text
Step	6.	Use	the	Toolbar	Find	Button
Step	7.	Use	the	Find	Dialog
Step	8.	Find	and	Replace
Step	9.	Search	Text	in	Several	Objects
Summary

Before	You	Begin:
You	may	wish	to	review	the	following	topics	in	the	Visual	LANSA	User	Guide:

Keyboard	Shortcuts
Source	Tab

You	should	complete	all	previous	tutorials.

its:lansa012.CHM::/lansa/L4wUsr01_0390.htm
its:lansa012.CHM::/lansa/L4wUsr01_0395.htm

Step	1.	Cursor	Position
In	this	step	you	will	use	keyboard	shortcuts	to	move	the	cursor	to	different
positions	in	the	code	displayed	in	the	Source	view.
1.		From	the	Help	menu	button	at	the	top	right	of	the	editor,	select	Shortcuts:

2.		The	Help	tab	will	initially	be	displayed	docked	at	the	bottom	of	the	editor.
Float	and	resize	the	Help	tab.	Use	the	links	to	review	some	of	the	many	editor
shortcut	options:

3.		Close	the	Help	tab.	Its	size	and	position	will	be	remembered.
4.		Use	the	Favorites	/	Last	Opened	tab,	to	open	form	iiiSettingsDialog	in	the
editor.

5.		Display	the	Source	tab.
					Remember,	your	source	code	appearance	is	determined	by	the	editor	display
settings.	(Refer	to	exercise	VED010	-	Format	Source	Code).

6.		If	you	have	not	already	done	so,	turn	on	Autohide	to	maximize	the	display
area	for	your	source	code.

7.		Move	the	cursor	to	the	end	of	the	window	by	pressing	the	End	key	twice.
					Note:	This	moves	to	the	end	of	the	window,	not	the	end	of	the	source.
8.		Move	the	cursor	to	the	top	of	the	window	by	pressing	the	Home	key	twice.
9.		Move	the	cursor	to	the	end	of	the	source	by	pressing	the	End	key	three
times.

10.	Move	the	cursor	back	to	the	top	of	the	source	by	pressing	Ctrl	+	Home.
11.	Use	the	down	arrow	key	to	move	to	the	BEGIN_COM	statement	in	the
Source	tab,	and	then	use	the	Ctrl	+	right	arrow	key	to	move	to	next	part	of
this	BEGIN_COM	statement.

Step	2.	Position	the	Current	Line
In	this	step	you	will	position	the	current	line	in	the	editor	using	shortcut	keys
and	the	Go	To	tab.
1.		Position	the	cursor	on	any	DEFINE_COM	statement	towards	the	bottom	of
the	window..

2.		Press	Ctrl	+	T	to	move	the	DEFINE_COM	statement	to	the	top	of	the	editor
window.

3.		Press	Ctrl	+	M	to	move	the	DEFINE_COM	statement	to	the	middle	of	the
editor	window.

					Hint:	Clicking	to	the	left	of	any	statement	will	select	the	whole	line,	making
the	above	moves	easier	to	see.

4.		Display	the	Go	To	tab	and	pin	it	place.	Expand	the	Routine	node:

5.		Double-click	on	the	Evtroutine	-	#Apply.click.
					The	editor	will	position	at	first	line	of	this	routine	in	the	source	code.
6.		Press	Ctrl	+	B	to	move	the	event	routine	line	to	the	bottom	of	the	editor
window.

7.		Press	Ctrl	+	T	to	move	it	to	the	top	of	the	editor	window.

Step	3.	Comment	Lines
In	this	step	you	will	learn	how	to	comment	and	uncomment	lines	with	a
keyboard	shortcut.
1.		Using	the	cursor,	select	the	highlighted	lines	of	code	in	the	event	routine.

2.		Press	Ctrl	+	W	to	change	these	lines	of	code	to	comment	lines.

			Notice	the	editor	has	immediately	highlighted	errors	due	to	the	missing	code.
3.Use	Ctrl+Shft+W	to	change	these	lines	back	to	RDMLX	language	commands.

Step	4.	Copy	and	Paste
The	editor	uses	standard	Windows	shortcut	keys	for	copy,	cut	and	paste
operations.
Use	Ctrl+Home	to	move	to	the	top	of	the	source	code.
In	this	step	you	will	learn	how	to	copy	and	paste	text.
1.		Position	the	cursor	in	front	of	the	BEGIN_COM	statement.
2.		Press	Ctrl	+	Shift	+	right	arrow	to	select	the	text	BEGIN_COM.
3.		Press	Ctrl	+	C	to	copy	the	text.
4.		Position	the	cursor	before	the	BEGIN_COM	and	press	Enter	to	add	a	blank
line	above	the	BEGIN_COM	statement.

5.		With	the	cursor	on	the	blank	line	press	Ctrl	+	V	to	paste	in	the	copied	text.
6.		Select	the	newly	pasted	text.
7.		Press	Ctrl	+	Z	to	undo	the	paste	operation.

Step	5.	Find	Text
In	this	step	you	will	search	text	in	the	Source	tab.
1.		Press	Ctrl	+	F	to	display	the	Find	dialog.
					You	may	also	use	Find	or	Replace	from	the	Find	button	on	the	Home	ribbon.

2.		Type	EVTROUTINE	into	the	Find	what:	field.

3.		Press	the	Find	Next	button.
					You	will	be	positioned	to	the	first	EVTROUTINE.
4.		Press	Esc	to	close	the	Find	dialog.
5.		Press	F3	to	find	the	next	occurrence	of	EVTROUTINE.

Step	6.	Use	the	Toolbar	Find	Button
In	this	step	you	will	find	text	using	the	Find	button	on	the	Home	ribbon.
1.		Move	the	cursor	back	to	the	top	of	the	form	by	pressing	Ctrl	+	Home.
2.		Click	on	the	Find	button	on	the	Home	ribbon,	position	the	cursor	in	the	input
box	and	type	currentitem.

3.		Press	Enter	on	the	keyboard.
					The	first	occurrence	of	the	string	is	located	in	the	code.

4.		Use	the	Next	in	the	Find	button	dialog	to	find	the	next	occurrence	of
currentitem.

5.		Press	F3	to	find	where	the	next	occurrence	of	the	string	Currentitem	is
located	in	the	source	code.

6.		Press	Shift	+	F3.	The	previous	occurrence	of	the	string	currentitem	is
located	in	the	source	code.

					Note:	The	Find	dialog	stores	a	list	of	your	search	values	for	your	current	VL
session.

					The	appearance	of	the	Find	dialog	in	the	Home	ribbon,	varies	depending	on
how	your	Editor	has	been	resized,	for	example:

Step	7.	Use	the	Find	Dialog
In	this	step	you	will	use	the	Find	dialog	to	mark	all	occurrences	of	the	string
currentitem.
1.		Place	the	cursor	on	the	BEGIN_COM	statement	at	the	top	of	the	source
code.

2.		Press	Ctrl	+	F	or	use	the	Find	button		on	the	Home	ribbon	to	display	the
Find	dialog.

					The	Find	dialog	is	displayed	with	BEGIN_COM	set	as	the	search	string.

3.		In	the	Find	what	drop-down	list	select	currentitem.

4.		Click	the	Tag	All	button	to	mark	all	occurrences	of	the	string	currentitem	in
the	source.

5.		Scroll	down	the	code.	Notice	how	every	occurrence	of	currentitem,	is
marked	with	a	small	blue	rectangle.

					Tags	are	temporary	and	are	not	saved	with	the	source.
					Tags	are	shown	on	the	Go	To	tab:

6.		Click	Cancel	to	close	the	Find	dialog	box.

Step	8.	Find	and	Replace
In	this	step	you	will	replace	the	string	application	with	system.
1.		Press	Ctrl	+	H	to	bring	up	the	Replace	dialog.
2.		Enter	application	in	the	Find	what	field.
3.		Type	system	in	the	Replace	with	field.
					Select	the	Match	whole	word	only	check	box.

4.		Click	the	Replace	All	button.
					All	occurrences	of	the	string	application	are	replaced	with	system.

5.		Close	the	iiiSettingsDialog	form.	Be	sure	to	answer	No	when	asked	if	you
want	to	save	the	changes.

Step	9.	Search	Text	in	Several	Objects
In	this	step	you	will	search	for	text	in	all	Repository	objects	that	contain	source
code.
1.		Click	on	the	Text	Search	button	on	the	Home	ribbon.

2.		In	the	Text	Search	dialog	specify	to	search	all	forms,	reusable	parts	and
functions	for	the	text	SELECT.	Limit	the	search	to	objects	starting	with
XDX*.	Note	the	wildcard	'*'.

3.		Click	the	Search	button.
					The	Text	Search	tab	now	shows	all	the	forms,	reusable	parts	and	functions
starting	with	XDX	that	contain	the	text	SELECT.

Summary
Important	Observations

There	are	various	keyboard	shortcuts	which	make	working	in	the	Source	tab
more	efficient.
The	quickest	way	to	search	through	source	code	is	to	use	the	Find	feature	in
the	toolbar.
You	can	mark	all	the	occurrences	of	a	string	using	the	Find	dialog

What	I	Should	Know
How	to	use	keyboard	shortcuts	to	navigate	within	the	source	code.
How	to	comment	and	uncomment	code.
How	to	go	to	different	positions	in	the	source	code	using	the	go	to	feature	of
the	Outline	tab.
How	to	use	copy	and	paste	code.
How	to	undo	changes.
How	to	find	strings	in	the	source	code	of	a	component	or	function.
How	to	find	and	replace	strings	in	the	source	code.

VED030	-	Auto	Complete	and	Command	Assistant
Objectives:

To	learn	how	to	use	Auto	Complete.
To	learn	how	to	use	the	Command	Assistant.
To	display	the	online	help	for	RDML	commands	in	the	LANSA	Editor.

The	focus	of	this	exercise	is	to	learn	how	to	use	the	Auto	Complete	and
Command	Assistant	in	the	editor.	The	purpose	of	the	programs	and	the	actual
meaning	of	the	RDML	commands	is	not	important.	The	RDML	Programming
tutorials	teach	the	basic	coding	practices.
To	achieve	these	objectives	you	will	complete	the	following:

Step	1.	Display	the	Command	Assistant
Step	2.	Use	the	Command	Assistant
Step	3.	Use	Auto	Complete	Prompter
Step	4.	Use	the	Online	Help	Command
Summary

Before	You	Begin:
You	may	wish	to	review	the	following	topics	in	the	Visual	Guide	User	Guide:

Auto	Complete
Command	Assistant

In	order	to	complete	this	tutorial,	you	must	have	completed	the	previous	steps	in
this	tutorial.

its:lansa012.CHM::/lansa/L4wUsr01_0830.htm
its:lansa012.CHM::/lansa/L4wUsr01_1805.htm

Step	1.	Display	the	Command	Assistant
In	this	step	you	will	learn	how	to	use	the	Command	Assistant	when	editing
code.	The	Command	Assistant	is	a	prompting	facility	that	helps	you	to	build
RDML	commands.
1.		Use	Favorites	tab	to	open	the	iiiDeptQuery	function	in	the	editor's	Source
tab.

2.		Position	the	cursor	on	the	FUNCTION	command.	Press	F4	to	open	the
Command	Assistant	tab.	It	will	initially	be	shown	docked,	at	the	bottom	of	the
editor.

3.		Float	the	Command	Assistant	tab	and	resize	it.	It	is	usually	a	good	idea	to	use
the	Command	Assistant	in	this	way.	When	you	close	it,	the	settings	will	be
remembered	and	used	the	next	time	it	is	opened.

4.		Expand	the	OPTIONS	parameter	of	the	FUNCTION	command.
5.		Select	the	Special	Values	tab.	You	will	see	a	list	of	all	options	than	can	be
selected	and	values	can	be	added	or	changed.

6.		Close	the	Command	Assistant.

Step	2.	Use	the	Command	Assistant
In	this	step	you	will	learn	how	to	use	the	Command	Assistant	to	create	SELECT
database	command	to	retrieve	all	fields	from	the	PSLMST	file.	The	finished
command	will	appear	as	follows:

Note:	Experienced	developers	could	quickly	type	this	command	into	the	editor,
and	the	Autocomplete	assistant	would	complete	code	and	variables	as	they	are
typed	(see	later).	The	Command	Assistant	is	intended	to	help	new	developers
build	this	command.
1.		Insert	a	blank	line	after	the	BEGIN_LOOP	command	by	positioning	the
cursor	at	the	end	of	the	line	and	pressing	Enter.

2.		Press	F4	to	re-display	the	Command	Assistant	as	a	floating	window.	Note
that	it	has	the	size	and	position	which	you	gave	it	earlier.

3.		Select	the	Commands	tab.
a.		Locate	the	SELECT	command.	(You	can	simply	set	focus	on	an	item	in
the	list	of	commands	and	type	the	letter	S	to	position	to	commands
starting	with	S.)

b.		Press	Enter	to	select	the	SELECT	command	in	the	list	of	commands.
c.		The	SELECT	command	is	displayed	in	the	Command	Assistant.

4.		Use	the	down	cursor	key	to	move	to	the	FROM_FILE	parameter.
a.		Select	the	Files	tab.
b.		Use	the	Tab	key	to	move	to	the	File	name	field.	Type	PS	in	the	File	name

field	to	display	files	starting	with	PS.

c.		Select	the	PSLMST	file	and	press	Enter.
d.		The	From_File	parameter	in	the	SELECT	command	will	be	updated.

5.		Click	in	the	FIELDS	parameter	in	the	Assistant
					Click	on	the	Fields	by	File	tab	and	expand	the	file	PSLMST	to	display	all
fields	in	the	PSLMST	file.

					You	can	now	choose	the	fields	that	you	want	to	include	in	the	SELECT
statement.	For	this	example,	simply	select	the	EMPNO,	ADDRESS1,
ADDRESS2,	ADDRESS3	and	DEPTMENT	fields.	Use	the	Ctrl+left	mouse
button	to	select	the	fields	required.

6.		Press	Enter.	The	Fields	parameter	in	the	SELECT	command	will	now	be
updated:

7.		Close	the	Command	Assistant.	Your	code	now	looks	like	the	following:

Step	3.	Use	Auto	Complete	Prompter
In	this	step	you	will	learn	how	to	use	the	Auto	Complete	prompter	when
entering	a	SELECT	command	to	retrieve	all	fields	from	the	PSLMST	file.	You
will	see	how	Auto	Complete	will	show	you	all	parameters	for	commands.	You
will	begin	by	deleting	the	SELECT	statement	created	with	the	Command
Assistant	and	you	will	code	the	following	commands:

1.		From	the	File	menu	select	Options.	Select	the	Source	options.	Make	sure	that
Auto	Complete	has	been	set	to	Prompter.

2.		Click	the	OK	button	to	close	the	LANSA	Settings	dialog.
3.		Select	the	SELECT	and	ENDSELECT	statements	and	press	the	Delete	key.
					You	should	have	a	blank	line	in	the	editor.
4.		Type	S	on	the	blank	line.	Auto	Complete	shows	a	list	of	commands	starting
with	S:

5.		Press	enter	to	select	the	SELECT	command.
					The	Auto	Complete	Prompter	adds	the	SELECT	command	with	its
mandatory	parameters	to	the	line.	The	ENDSELECT	command	is	also	added.

				6.		Type	P	in	the	From_File	parameter.
					Auto	Complete	displays	a	list	of	files	starting	with	P.

7.		Select	the	PSLMST	file	and	press	Enter.	The	FROM_FILE	parameter	will
be	completed.

8.		Use	the	left	arrow	key	to	move	to	the	Fields	parameter.	Press	the	spacebar.
The	Auto	Complete	drop-down	will	show	the	fields	from	the	PSLMST	file.

9.		Use	the	Tab	key	to	select	the	Special	Values	tab.

10.		Select	*ALL	and	press	Enter.
					The	SELECT	command	definition	is	complete.
					You	may	want	to	try	to	use	the	AutoComplete	setting	Inline	which	completes
your	code	on	the	same	line	as	you	type.	When	you	are	learning	RDML,	the
recommended	setting	for	AutoComplete	is	Prompter.	You	may	find	the	Inline
option	faster	once	you	develop	some	RDML	programming	skills.

					You	can	turn	off	AutoComplete	and	then	access	it	when	required	by	using	the
Ctrl+Space	keys	anywhere	on	a	command	line.

Step	4.	Use	the	Online	Help	Command
In	this	step	you	will	review	the	online	help	available	for	RDML	commands	in
the	LANSA	Editor's	Source	tab.
1.		Set	focus	anywhere	on	the	FUNCTION	command	and	press	F1	to	display	the
online	help.

2.		The	help	for	the	FUNCTION	command	from	the	Technical	Reference	Guide
will	be	displayed.

					Note:	Help	will	be	displayed	in	a	floating	window,	because	this	was	your	last
setting	when	using	the	F4	Command	Assistant.	The	size	and	position	was
remembered	when	you	closed	it.

3.		Try	setting	focus	to	other	commands	in	the	function	and	press	F1	to	review
the	online	help.

4.		Close	the	function.		Do	not	save	any	changes.	You	can	close	any	open	object
from	the	Open	Objects	button:

Summary
Important	Observations

You	can	use	Auto	Complete	to	quickly	enter	commands	as	you	type	them	in
the	editor.
You	can	use	Command	Assistant	to	help	you	structure,	review	and	enter
commands.

Tips	&	Techniques
The	Command	Assistant	is	a	very	efficient	means	of	building	code.	As	a
new	developer	it	is	very	helpful	as	it	lists	all	parameters	that	apply	to	a
command.
You	can	press	F4	to	display	the	command	assistant	for	an	existing	statement
in	order	to	prompt	the	command	and	change	its	values.
The	Auto	Complete	feature	is	sensitive	to	the	cursor	position	in	the
command	as	well	as	the	text	that	has	been	entered	in	the	command	line.	As
you	move	the	cursor	over	the	command,	you	will	see	the	options	listed	by
Auto	Complete	change.

What	I	Should	Know
How	to	use	Command	Assistant.
How	to	use	Auto	Complete.
How	to	display	online	help	for	RDML	commands	in	the	LANSA	Editor.

VED040	-	Execute	Applications
Objectives:

To	show	how	applications	can	be	executed	from	within	Visual	LANSA	or
from	the	desktop.
To	learn	how	to	execute	processes.	These	applications	are	designed	for	the
Universal	Interface	which	means	they	will	execute	on	the	IBM	i,	or	under
Windows	or	with	a	very	simple	Web	interface.
To	learn	how	to	execute	forms.

To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Determine	Compile	Status
Step	2.	Execute	a	Form
Step	3.	Review	the	XDXExamples	Application
Step	4.	Execute	the	Application	from	the	Execution	History	List
Step	5.	Execute	the	Form	from	the	Windows	Start	Menu
Summary

Before	You	Begin:
You	may	wish	to	review	Executing	Applications	in	the	Visual	LANSA	User
Guide:
In	order	to	complete	this	tutorial,	you	must	have	completed	the	previous
tutorials.

Step	1.	Determine	Compile	Status
In	this	step	you	will	confirm	the	compile	status	of	form	XDXStart.
1.		Using	the	Repository	tab,	locate	form	XDXStart.	Notice	that	the	Repository
tab	has	several	columns.

2.		Right-click	on	any	column	heading	to	display	a	menu	showing	which
columns	are	shown	in	the	tab.

3.		Make	sure	that	the	Local	Compile	State	column	is	displayed.

					If	a	column	only	has	an	icon	as	a	heading,	place	the	cursor	over	the	column
heading	to	see	its	tool	tip.	Remember	that	you	can	also	rearrange	and	hide
columns	in	the	Repository	tab.	(Refer	to	Information	about	Objects	in	the
Visual	LANSA	User	Guide	for	how	to	rearrange	columns.)

4.		Check	that	the	form	XDXStart	is	compiled.	A	green	tick	in	the	Local
Compile	State	column	indicates	the	component	is	compiled.	If	necessary,
select	the	form,	right-click	and	choose	the	Compile	option	from	the	context
menu	to	submit	a	compile	of	the	form.

Step	2.	Execute	a	Form
In	this	step	you	will	execute	the	form	XDXStart	form	from	the	development
environment.
1.		On	the	Repository	tab,	right-click	on	XDXStart	to	display	the	associated
context	menu.

2.		Select	the	Execute	option.	(You	can	also	use	Ctrl+Shift+E.)	
					The	Execute...	dialog	is	displayed:

3.		Select	the	Form	using	DirectX	option.
					Make	sure	the	Prompt	for	additional	execution	parameters	option	is	not
selected.

4.		Click	the	OK	button.
5.		When	Form	XDXStart	is	executed,	an	animation	component	is	used	to
display	a	splash	screen,	while	the	main	form	XDXExamples	is	loading:

Step	3.	Review	the	XDXExamples	Application
In	this	step,	you	will	review	a	very	small	part	of	the	DirectX	Examples
application.	At	a	later	stage	you	should	review	the	techniques	demonstrated,
which	you	may	want	to	include	in	your	own	company's	modern	Windows
applications.
1.		A	set	of	panels	appear	in	a	list	on	the	left	side	of	the	form,	and	serve	as	a
menu	into	the	different	parts	of	the	DirectX	application.	The	application	is	all
about	demonstrating	various	interface	designs	and	techniques	which	can	be
used	in	the	DirectX	interface.

					Click	on	the	Book	panel:

					Employee	images	are	displayed	in	the	form	of	a	book.

					Click	on	the	first	image	to	activate	the	control	buttons.	Click	on	the	right
button	to	move	through	employees	one	at	a	time.

					Note	that	only	the	right	and	end	buttons	are	enabled,	as	you	are	currently	at
the	beginning	of	the	employee	file.

2.		Continue	clicking	on	the	right	button	to	move	through	the	employees	book.

					Note	that	the	application	displays	a	"dummy"	picture	when	no	employee
image	is	held	in	the	file	PSLIMG.

3.		Close	the	DirectX	Examples	form.

Step	4.	Execute	the	Application	from	the	Execution	History	List
In	this	step	you	will	use	the	Execution	History	list	to	execute	the	XDXStart
form	again.	This	list	shows	forms	and	processes	you	have	recently	executed.
1.		Click	on	the	History	button	on	the	Home	ribbon	to	open	the	Execution
History	list:

2.		Select	XDXStart	from	the	drop-down	list	to	select	it	to	run	again:
3.		Close	the	form.
4.		Note	that	Execution	History	can	be	cleared	when	required.

Step	5.	Execute	the	Form	from	the	Windows	Start	Menu
In	this	step	you	will	execute	the	application	from	the	Windows	start	menu.
When	you	run	the	form	in	this	way,	you	are	starting	it	as	a	normal	Windows
application,	outside	of	the	development	environment.
Icons	are	provided	in	the	LANSA	folder,	which	enable	a	form	or	a	process	to	be
run	locally	or	in	client	server	mode	against	the	iSeries	server.
When	you	connect	in	RDMLX	mode,	you	can	read	and	write	data	types	such	as
String,	Datetime	and	BLOB	to	and	from	the	iSeries	server.
				1.		Find	the	form	XDXStart	on	the	Repository	tab.	Right	click	on	a	column
heading	and	ensure	that	the	Identifier	column	is	shown.

2.		Note	the	Indentifier	for	the	form	XDXStart	is	XDX00068:

					If	Long	Names	are	enabled	at	partition	level,	all	Repository	objects	have
both	a	Name	and	an	Indentifier.	If	you	opened	XDXStart	in	the	editor	and
selected	the	Repository	tab,	you	would	find	the	following	information:

					Name	provides	a	long	name	which	can	be	used	to	reference	the	object	in
your	RDMLX	code.

					Identifier	is	assigned	automatically	when	you	create	an	object,	must	be
unique	within	the	partition	and	may	be	up	to	9	characters	long.	The	Identifier
may	be	manually	set,	but	only	at	create	time.

3.		From	the	Windows	Start	menu,	expand	LANSA	and	select	Exec	Form.

4.		To	execute	the	form	XDXStart	using	the	Execute	Form	dialog,	you	must	use
its	Identifier,	XDX00068.	You	must	also	execute	it	as	a	DirectX	application
(Render	Type	=	X)

Form	Name XDX00068

Language ENG

Partition	Identifier TRN**.

LANSA	User PCXUSER**
X

Render		Type

**	Use	the	values	relevant	to	your	situation.
	
	

5.		If	you	have	questions	about	any	of	these	parameters,	click	Parameter	Help
button.

6.		Press	OK	to	execute	the	form.
7.		Execute	part	of	the	DirectX	Examples	application	and	then	close	it.

Summary
Important	Observations

Both	forms	and	processes	are	executed	using	the	Execute...	context	menu
option.
Applications	can	be	executed	from	within	the	Visual	LANSA	editor	or	from
the	desktop.
A	live	application	would	start	from	a	shortcut	on	the	desktop

Tips	&	Techniques
You	can	also	execute	applications	by	pressing	Ctrl	+	Shift	+	E	or	by	using
the	toolbar	icons.
When	run	locally	on	your	desktop,	forms	and	processes	are	Windows	DLL
components	which	are	loaded	by	the	LANSA	x_run.exe.	X_RUN.EXE	is
part	of	the	LANSA	run-time	system.
Visual	LANSA	application	can	execute	in	client/server	mode	to	access	data
on	the	IBM	i.
Icons	in	the	LANSA	folder	enable	applications	to	be	started	in	client	server
mode	against	an	iSeries	server.	A	change	to	these	settings	would	also	enable
an	application	to	run	against	a	Windows	server.

What	I	Should	Know
How	to	execute	a	LANSA	application	from	within	LANSA.
How	to	execute	a	LANSA	application	from	the	Execution	History	list.
How	to	execute	a	LANSA	application	from	the	desktop.

				

Repository	Development	Tutorials
What	Are	the	Repository	Development	Tutorials?
The	exercises	in	this	tutorial	have	been	written	for	new	LANSA	developers,	so
no	experience	with	the	LANSA	Repository	or	RDML	programming	language	is
required.	They	are	designed	to	introduce	the	fundamental	repository	skills
required	to	build	fields	and	files	that	will	create	your	application	database.	Read
REP000	-	What	is	the	LANSA	Repository?
In	order	to	do	the	exercises,	you	should	be	familiar	with	the	Microsoft	Windows
user	interface	and	it	is	recommended	that	you	complete	the	Visual	LANSA	User
Interface	Tutorial	before	you	start	these	exercises.
The	following	exercises	are	included:
REP001	-	Create	Fields
REP002	-	Field	Visualizations
REP003	-	Validation	Rules
REP004	-	System	and	Multilingual	Variables
REP005	-	Creating	Files
REP006	-	Logical	Views
REP007	-	File	Validation	Rules/Triggers
REP008	-	Virtual	Fields
REP009	-	Access	Routes	and	Predetermined	Join	Fields
REP011	-	Repository	Summary
REP012	-	Check	In	Objects	(Optional)

Before	you	Begin
You	must	have	LANSA	Demonstration	Personnel	System	installed	in	the
partition	that	you	will	use	with	the	set	up	options	as	described	in	What	Partition
Should	I	Use?.
The	LANSA	Demonstration	Personnel	System	contains	all	the	objects	used	by
these	exercises.

its:lansa095.chm::/Lansa/VUIEng01_begin.htm
its:lansa095.CHM::/LANSA/lansa095_0020.HTM

REP000	-	What	is	the	LANSA	Repository?
The	Repository	Concept
The	LANSA	Repository	stores	a	vast	range	of	information	about	applications	in
a	central	location.
LANSA's	Repository	architecture	significantly	reduces	application	coding
because	information	is	defined	just	once	in	a	central	location	instead	of	being
repeated	wherever	it	is	used	in	application	programs.	For	example,	a	business
rule	for	a	field	is	defined	once	instead	of	in	every	program	which	uses	that	field.
In	addition	to	bringing	discipline	to	the	development	process,	the	repository	also
simplifies	application	maintenance	because	the	centrally	stored	information	is
easy	to	find	and	change.	Testing	can	be	much	faster	and	easier.	Changes	can
often	be	made	to	the	repository	without	impacting	existing	coded	application
logic.

	

The	Repository	stores	information	about	fields	(or	elements)	in	an	application
such	as	descriptions,	column	headings,	edit	codes,	visualizations,	default	values,
help	text,	prompt	programs,	etc.	It	acts	like	a	data	dictionary	for	your
application.	It	also	stores	components	which	can	be	shared	by	applications.

In	addition,	the	Repository	stores	information	about	the	files	(or	application
database)	such	as	physical	files,	logical	views,	file	relationships,	file	definition
attributes,	file	validation	rules,	trigger	programs,	etc.
Further,	procedural	information	or	business	rules	about	the	application	in	the
form	of	validation	rules,	system	variables,	trigger	and	functions	is	stored	in	the
repository.
Finally,	LANSA	offers	some	special	Repository	features	such	as	multilingual
definitions,	virtual	fields	and	predetermined	join	fields	which	simplify	and
accelerate	development.
All	information	is	stored	in	a	non-platform	specific	format,	which	enables
LANSA	to	build	applications	for	iSeries,	Windows	and	Linux	deployment
		
	

REP001	-	Create	Fields

The	Repository	field	definitions	are	the	foundation	of	your	business
applications.	Other	objects	in	the	Repository	such	as	files,	components
and	functions	are	built	from	the	basic	field	definitions.	The
centralization	of	a	single	definition	and	its	reuse	provide	huge
productivity	benefits.

Objectives
To	highlight	how	the	LANSA	Repository	increases	developer	productivity.
To	create	the	following	fields	in	the	repository	(where	iii=your	initials):

Field	Name Description Type	/	Length

iiiDeptCode Department	Code Alpha(3)

iiiDeptDescription Department	Description Alpha(20)

iiiEmployNumber Employee	ID Alpha(2)

iiiSurname Employee	Surname Alpha(25)

iiiGivenName Employee	Given	Name Alpha(25)

iiiSalary Employee	Salary Packed(11,2)

iiiStartDate Employee	Start	Date DateTime(26)

iiiEmployNotes Employee	Notes String(512)

These	fields	will	be	used	to	create	the	Department	and	Personnel	files	in
later	repository	exercises.

To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Prepare	Your	System
Step	2.	Copy	Fields
Step	3.	Manually	Create	Fields
Step	4.	Reference	Fields
Step	5.	Delete	a	field
Step	6.	Create	a	Dynamic	List	for	Your	Fields
Step	7.	Create	and	Execute	Test	Form

Step	8.	Change	your	field	definitions
Summary

Before	You	Begin
In	order	to	complete	this	tutorial,	the	demonstration	Personnel	System	files	must
have	been	installed	in	this	partition.	You	should	also	have	completed	the	Visual
LANSA	User	Interface	Tutorials.

Step	1.	Prepare	Your	System
1.		Start	the	Visual	LANSA	Development	Environment	using	the	icon	in	your
Program	folder	or	on	your	desktop.	(For	details,	refer	to	the	LANSA	User
Interface	Tutorials.)

2.		Logon	to	the	partition	with	a	valid	userid,	password,	partition,	language	and
Task	ID.

					If	you	are	using	a	Standalone	Visual	LANSA	installation,	you	can	log	in	with
PCXUSER	/	PCXUSER.
3.		If	a	warning	message	appears,	select	Yes.	The	message	is	simply	a	warning
that	you	have	the	authority	to	change	all	the	objects	in	the	repository.

4.		The	Visual	LANSA	Editor	will	open.	This	is	what	it	may	look	like:

					You	can	configure	the	Editor	for	your	own	preferences.	There	are	many
different	settings	and	options.		For	more	details,	refer	to	the	Visual	LANSA
User	Interface	(which	you	should	have	completed	before	starting	these

tutorials).

Step	2.	Copy	Fields
In	this	step	you	will	create	fields	called	iiiDeptCode,	iiiDeptDescription	and
iiiEmployNumber	by	copying	the	DEPTMENT,	DEPTDESC	and	EMPNO
fields	that	are	already	defined	in	the	repository.
1.		On	the	Repository	tab,	locate	the	field	to	be	copied:

a.		Expand	the	Fields	node	(if	Alphabetic	Groupings	is	on,	open	the	list	of
fields	for	the	letter	D).

b.		Locate	the	DEPTMENT	field.	It	is	the	code	field	used	to	identify
departments.

c.		Right	click	on	the	DEPTMENT	field	to	display	the	context	menu.	Select
the	Copy	option.

					A	Create	as	copy	of	DEPTMENT	dialog	will	appear.

2.			Enter	the	basic	details	for	the	field	in	this	dialog:
a.		Enter	a	Field	name	of	iiiDeptCode	(where	iii	are	your	initials).
b.		Leave	the	Description	of	Department	Code.
c.		Select	(ü)	the	option	to	Copy	rules	and	triggers.
d.		Select	(ü)	the	option	to	Open	in	editor.
e.		Press	the	Create	button.

					Do	not	enter	an	Identifier.	This	will	be	generated.

You	can	press	F1	to	access	the	online	help	for	details	about	any	of	the
field	parameters.

	A	red	triangle	in	an	input	field	indicates	an	error.	Usually	this
happens	when	the	value	in	the	field	is	blank	or	incomplete.	To	see	the
error	message	click	on	the	red	triangle.

3.		The	iiiDeptCode	field	is	opened	in	the	LANSA	Editor	to	allow	you	to	edit
other	field	characteristics.
a.		Double-click	Length.	In	the	Details	tab,	change	Field	Length	to	3.

b.		Select	the	Rules	and	Triggers	tab.	Notice	that	there	is	one	validation	rule
copied	from	the	DEPTMENT	field.

c.		Press	the	Save	button	on	the	Editor	toolbar	to	save	the	field.

d.		Close	the	field.

4.		Create	the	iiiEmployNumber	field	by	copying	the	EMPNO	field.
a.		Locate	the	EMPNO	field	using	the	Find	dialog	by	pressing	the	Repository
Find	button	on	the	toolbar.

b.		Check	that	Field	is	selected	in	the	Object	Type	list.	In	the	Find	Text	field
enter	empno	and	press	the	Find	button.

c		Close	the	Repository	Find	dialog.
d.		In	the	Find	Results	1	tab	right	click	on	the	EMPNO	field	to	display	the
context	menu.	Select	the	Copy	option.

e.		The	Create	as	copy	of	EMPNO	dialog	will	appear.
f.		Enter	a	Field	name	of	iiiEmployNumber	(where	iii	are	your	initials).
g.		Do	not	copy	the	rules	and	triggers,	visualization	or	help	text.
h.		Do	not	select	(ü)	the	option	to	Open	in	editor.
i.		Press	the	Create	button.
					The	field	is	created	in	the	Repository	but	is	not	opened	in	the	Editor.

5.		Create	the	iiiDeptDescription	field	by	copying	the	DEPTDESC	field.
a.Locate	the	field	DEPTDESC	on	the	Repository	tab.
b.		Copy	the	rules	and	triggers.
c.		Select	Open	in	editor	so	that	you	can	edit	it	once	it	has	been	created.

6.		Specify	that	the	department	description	can	be	entered	in	lower	case.
a.		Double-click	on	the	Input	attributes	heading	in	the	field	definition	to	open
the	Details	tab.

b.Select	LC	–	Lowercase	Entry	Allowed

c.		Save	and	close	the	field	definition.
7.		On	the	Favorites	tab,	select	the	Last	Opened	tab.	Notice	that	the	iiiDeptCode
and	iiiDeptDescription	fields	are	listed	but	the	iiiEmployNumber	field	is	not.
When	you	open	any	object	in	the	Editor,	it	will	be	added	to	the	Last	Opened
list.

Step	3.	Manually	Create	Fields

Field	Types:	Character	fields	in	LANSA	are	usually	Alpha	(up	to	256
characters)	or	if	longer,	String	fields.	Numeric	fields	are	most
commonly	defined	as	Packed.	It	is	recommended	that	dates	and	times
are	defined	as	DateTime	fields.

In	this	step	you	will	manually	create	three	fields	called	iiiSalary,iiiStartDate	and
iiiEmployNotes.
1.		The	first	field	you	will	create	is	the	iiiSalary	packed	field.

a.		Use	the	New	button	on	the	File	menu	and	select	Field.
					The	New	field	dialog	will	appear.
b.		Enter	the	following	characteristics	for	the	field:

Field	name iiiSalary

Description Salary

Field	type Packed

Field	length 11

Decimals 2

	

c.		Select	(ü)	the	option	to	Open	in	editor.

d.		Select	(ü)	the	Close	option	to	close	the	New	Field	dialog.	(When	you	are
creating	many	fields	in	one	go,	it	is	convenient	to	keep	the	dialog	open.)

e.		Press	the	Create	button	to	open	the	field	definition	in	the	Editor.
2.		Now	that	the	field	is	open,	you	can	edit	all	its	characteristics.

a.		In	the	Definition	tab	double-click	Default	value.	In	the	Details	tab	enter	a
default	value	of	10000.

b.		Click	on	Edit	Mask.	Set	its	value	to	2.

c.		The	Edit	Mask	controls	how	the	field	is	formatted	when	displayed.	The
drop-down	for	the	Edit	Mask	shows	samples	of	the	edit	masks.	You	can
also	press	F1	to	review	the	help	text.

d.		Leave	all	other	field	characteristics	as	their	defaults.
e.		Save	the	iiiSalary	field	definition.

f.		Close	the	field	definition.
3.		Next,	you	will	create	a	DateTime	field	which	will	be	used	to	store	the	date	an
employee	joined	the	department.
					Select	the	New	option	on	the	File	menu	and	select	Field	from	the	menu
options.

					The	New	field	dialog	will	be	displayed.
4.		Enter	the	following	characteristics	for	the	field:

Field	name iiiStartDate

Description Start	Date

Field	type DateTime

Field	length 26

Enabled	for	RDMLX Yes

	

a.		Deselect	the	option	to	Open	in	editor.
b.		Uncheck	the	Close	option	so	that	the	New	field	dialog	will	appear	again.
c.		Press	the	Create	button.

					The	field	has	been	created	in	the	Repository	but	has	not	been	opened	in
the	Editor.

5.		Next	you	will	create	a	string	field	to	store	employee	notes.
a.		The	New	field	dialog	will	appear	again.
b.		Enter	the	following	characteristics	for	the	field:

Field	name iiiEmployNotes

Description Notes

Field	type String

Field	length 512

Enabled	for	RDMLX Yes

Close Yes

	

c.		Press	the	Create	button.
					You	have	now	manually	created	fields	Salary,	Start	Date	and	Notes.

Step	4.	Reference	Fields

Reference	Fields:	A	field	inherits	these	characteristics	from	its
reference	field:

•		Type	
•		Length	and	decimal	positions	
•		Edit	mask	and	word	
•		Input	and	output	attributes	
•		RDMLX	enabled	flag	
•		Default	value	
•		Keyboard	shift	

When	the	definition	of	a	reference	field	is	changed,	the	characteristics
of	all	fields	that	are	based	on	it,	are	changed	immediately.

In	this	step	you	will	create	two	fields	called	iiiSurname	and	iiiGivenName.
These	fields	will	use	the	reference	field	feature	of	the	LANSA	Repository	so
that	their	characteristics	are	inherited	from	the	shipped	STD_NAME	field.
1.On	the	Repository	tab,	find	the	field	STD_NAME	and	Copy	it	to	create	a	new
field	iii_Name.
a.Copy	the	Rules	and	Triggers
b.Do	not	open	the	field	in	the	editor.

2.		Create	the	iiiSurname	field	using	the	New	button	on	the	File	menu.	Choose
Field	from	the	graphical	menu.

a.		In	the	New	field	dialog,	enter:

Field	name iiiSurname

Description Surname

Reference	Field III_NAME

Close Yes

Open	in	Editor Do	not	select.

	

b.		Press	the	Create	button.
					Notice	that	the	field	type	and	length	are	derived	from	the	reference	field.
3.		Select	the	New	button	from	the	File	menu	and	choose	Field	from	the	grahical
menu	to	create	the	Given	Name	field	(iiiGivenName).	Alternatively	you
could	use	the	Alt	+	F	+	N	keys.
a.		In	the	New	Field	dialog	enter	the	following	characteristics:

Field	name iiiGivenName

Description Given	Name

Field	type Packed

Field	length 15

	

b.		Do	not	specify	a	Reference	Field	yet.
c.		Select	the	option	to	Open	in	editor.
d.		Select	the	option	to	Close	so	that	the	dialog	will	be	closed.
e.		Press	the	Create	button.

4.		The	iiiGivenName	field	is	opened	in	the	Editor.
a.		Click	on	Reference	Field	in	the	Definition	tab	to	open	the	Details	tab.
b.		In	the	Details	tab	type	in	iii_NAME	as	the	Reference	Field.

			The	iiiGivenName	field	is	now	based	on	the	definition	of	the	III_NAME
field.	Notice,	for	example,	that	its	field	type	is	now	Alpha	and	its	length	is
set	to	25.	These	characteristics	are	inherited	from	the	reference	field	and
cannot	be	changed.

c.		Review	the	Rules	and	Triggers	tab.
					Notice	that	there	are	no	rules.	However,	if	you	click	on	the	Add	button	on
the	Home	ribbon,	you	will	see	the	Adopt	from	reference	field	option.

					Do	not	adopt	any	rules	at	this	stage.
d.		Save	and	close	the	field.

5.		Open	the	III_NAME	field.

6.		Change	the	Field	length	to	20.
7.		Save	the	III_NAME	field	definition.
8.		Locate	the	iiiSurname	field	on	the	Repository	tab.	Right-click	on	the	field
and	choose	the	Features	option	from	the	context	menu.

					The	Details	tab	will	be	displayed,	showing	the	field's	definition:

9.		Change	the	Field	length	of	III_NAME	back	to	25.
10.	Save	and	close	the	III_NAME	field.

Step	5.	Delete	a	field
1.		In	the	Repository	tab,	locate	the	III_NAME	field.
2.		Right	click	on	the	III_NAME	and	select	Delete	from	Repository	from	the
context	menu.

		Note:	You	will	not	be	actually	deleting	this	field.
					You	will	be	asked	to	confirm	the	deletion.	

3.		Press	Delete	so	that	you	will	see	an	Integrity	Check	Failure	dialog	will
appear	to	warn	you	that	this	field	is	required.		(The	field	has	not	been	deleted
yet.)

					There	are	two	reasons	why	the	Integrity	Check	Failure	occurs:	firstly
because	III_NAME	is	a	system	field	and	secondly	because	it	is	used	as	a
reference	field.

Note:	System	fields	cannot	be	deleted	from	the	repository	unless	they	are
specifically	changed	to	non-system	fields.	For	further	details	about	system
fields	refer	to	the	F1	Help	from	the	Field's	Details	tab.

4.		Press	No.	Do	NOT	delete	the	field.

Step	6.	Create	a	Dynamic	List	for	Your	Fields

Dynamic	Lists:	A	dynamic	list	will	include	any	items	that	satisfy	the
inclusion	criteria.

In	this	step	you	create	a	dynamic	list	for	the	fields	and	other	objects	you	create
in	this	tutorial.	The	list	will	include	all	objects	starting	with	your	initials,	so	as
you	create	objects	they	are	automatically	added	to	the	list.
1.		From	the	File	menu,	select	the	New	option	and	choose	List	from	the
graphical	menu.

2.		In	the	New	List	dialog	specify:

a.		Enter	iiiLIST	as	the	name	(where	iii	corresponds	to	your	initials).
b.		Select	Dynamic	as	the	list	Type.
c.		Store	the	list	as	a	User	list.
d.		Select	the	Is	Favorite	option	to	add	the	list	to	the	Favorites	tab.
f.		Press	Create	to	continue.

3.		On	the	Definition	tab,	double	click	on	Search	for	to	expand	it.	The	Find	Text
dialog	will	open	on	the	left	tab.	Enter	III*	in	Find	Text.

					Find	text	will	convert	text	to	upper	case	and	the	search	ignores	case.

4.Click	on	Object	Types	and	select	Field,	File	and	Form	in	the	Object	Types	list
shown	on	the	left	hand	panel.

					Notice	that	your	selection	is	reflected	in	the	dynamic	list	Definition	in	the
right	panel.

5.		Save	and	close	the	list.
6.		Notice	that	the	iiiLIST	is	now	included	on	the	Favorites	tab.
					Notice	that	all	the	fields	starting	with	your	initials	are	included	in	the	list.	As
you	have	created	no	forms	or	files	yet,	none	have	been	selected.

Step	7.	Create	and	Execute	Test	Form
In	this	step	you	create	a	simple	test	form	which	will	show	the	fields	you	have
created	on	a	form.	No	coding	is	required	to	create	this	application.
1.		From	the	File	menu,	select	the	New	option	and	select	Form	from	the
graphical	menu.	Then	select	Basic	Form,	to	display	the	New	form	dialog.

2.		Enter	the	following	characteristics	for	the	form:

Name iiiiTestFields

Description Test	Fields

	
Framework

	
Select	any	suitable	Framework	such	as
Personnel	&	Payroll.

Enabled	for
RDMLX

Yes	(the	default	for	this	option	is	determined	by	the
partition	settings).

	2.		Press	the	Create	button.	A	blank	form	will	open	in	the	Editor.

a.		Drag	all	the	fields.	Except	III_NAME	from	iiiLIST	to	the	form.	You	can
either	drag	them	individually	or	as	a	group.

					If	you	select	them	as	a	group	using	the	Shift	+	Left	Mouse	button,	the
fields	will	be	lined	up	neatly	on	the	form.

b.		Your	form	might	appear	like	the	following:

					Do	not	add	any	code	to	your	form.	You	are	simply	testing	the	interface.

4.		Press	the	 		button	on	the	Home	ribbon	to	compile	your	form.	The
Compile	tab	will	show	you	the	progress	of	the	compile.

5.		Check	that	the	form	compiled	successfully.

6.		Press	the		Execute	button	from	the	Runtime	group	on	the	Home	ribbon,	to
execute	the	form.

	Note:	The	appearance	of	ribbons	depends	on	the	size	of	the	Visual	LANSA
form.	Groups	such	as	Runtime	are	displayed	as	a	single	button	when	space	is
limited.

					The	execute	Form	as	Windows	Application	dialog	may	appear	depending	on
your	option	settings.

7.		Press	the	OK	button	to	execute	the	form.
					Your	window	should	appear	something	like	following:

8.		Test	the	following:
a.		Enter	the	number	2000	in	the	Salary	field.	Notice	how	the	number	is
formatted	once	focus	leaves	this	field	(this	is	controlled	by	the	Edit	Mask
in	the	field	definition).

b.		Drop	down	the	calendar	in	the	Start	Date	field	to	specify	a	date.	The	way
the	Start	Date	field	is	displayed	is	the	default	visualization	for	a	DateTime
field	(this	will	be	described	in	more	detail	in	REP002	-	Field
Visualizations).

9.		Close	the	Test	Fields	form.

Step	8.	Change	your	field	definitions
In	this	step	you	will	make	minor	changes	to	the	field	definitions	based	on	the
results	of	your	test.	

Note:	An	application	must	always	be	recompiled	after	you	have
changed	field	attributes	that	impact	their	display	within	the
application.

1.		Using	the	iiiLIST	tab,	open	the	iiiSalary	field.
a.		Set	the	Default	value	to	*ZERO.
b.		Change	the	Description	to	'Monthly	Salary'.
c		Save	and	close	the	field.

2.			Using	the	iiiLIST	tab,	open	the	iiiEmployNumber	field.
a.		Set	the	Field	Length	to	2.
b.		Save	and	close	the	field.

3.		Recompile	your	Field	Test	application	(iiiTestFields	form).
a.		Switch	to	the	open	iiiTestFields	form	in	the	editor.
b.		On	the	Home	ribbon	in	the	compile	group	click	on	the	button	shown	to
open	the	Compile	Options	dialog,

c.		Deselect	the	Compile	only	if	necessary	option.

d.		Press	the	OK	button	to	submit	the	compile.
4.		Execute	your	Field	Test	application	and	notice	the	change	you	have	made	to
the	Monthly	Salary	label	has	been	actioned.

a.		Enter	an	employee	number.	Notice	it	can	only	be	two	characters	long.
b.		Notice	the	Monthly	Salary	field	is	blank	when	form	is	first	executed.

5.		Exit	the	form.
6.		Close	all	objects	in	the	Editor.
					Note:	You	can	Close	All	from	the	File	menu.

Summary
Important	Observations

There	are	many	different	ways	to	create	a	field.
Basic	field	definitions	can	be	quickly	created	directly	from	the	New	field
dialog.	Fields	can	be	opened	in	the	Editor	to	specify	detailed	field
characteristics.
If	a	field	is	created	but	not	opened	in	the	Editor,	it	will	not	appear	in	your
Last	Opened	list.
The	Create	as	copy	of	field	dialog	allows	a	one-time	copy	operation	to	create
a	field.
Reference	fields	create	a	permanent	link	between	two	fields.	Changes	to
field	types,	lengths,	etc.	are	inherited.	Not	all	field	characteristics,	such	as
descriptions	and	labels,	are	inherited.
The	LANSA	Repository	performs	referential	integrity	checks	whenever	you
attempt	to	delete	an	object.	For	example,	you	will	be	informed	if	a	field	is
used	in	a	file	or	function	before	you	proceed	with	deletion.
For	your	test	application	notice	that:
The	form/dialog	was	designed	using	the	information	from	the	repository.
Default	values	are	displayed	based	on	the	information	from	the	repository.
Input	and	output	characteristics	are	based	on	the	information	from	the
repository.
When	changes	were	made	to	your	field	definitions,	the	application	was
recompiled	to	update	it	with	the	definitions.

Tips	and	Techniques
Use	reference	fields	when	you	need	a	permanent	relationship	between	fields
instead	of	a	one	time	copy.

What	I	Should	Know
How	to	define	a	field	by	copying	an	existing	repository	field.
How	to	manually	define	a	field.
How	to	change	attributes	that	affect	the	display	on	dialogs	and	forms.
How	default	values	can	be	used	by	your	applications.

		

REP002	-	Field	Visualizations

You	can	choose	how	a	field	is	shown	in	an	application.	For	example	a
numeric	field	can	be	visualized	as	a	simple	entry	field,	as	an	entry
field	with	spin	buttons,	as	a	progress	bar	or	a	track	bar.

Objectives
To	introduce	the	basics	of	field	visualization.	(You	will	do	more	advanced
examples	of	coding	Field	Visualizations	when	you	do	the	FRM	tutorial.)
To	show	how	field	visualizations	can	be	defined.

To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Review	iiiStartDate	Field	Visualization
Step	2.	Review	iiiEmployNotes	Field	Visualization
Step	3.	Review	iiiSalary	Field	Visualization
Step	4.	View	the	Test	Form
Step	5.	Execute	the	Form
Step	6.	Adjust	the	Form
Summary

Before	you	Begin
In	order	to	complete	this	exercise,	you	should	have	completed	the	previous
exercise.

Step	1.	Review	iiiStartDate	Field	Visualization
In	this	step	you	will	review	the	standard	field	visualization	created	for	DateTime
field	type	and	you	will	add	another	visualization	to	the	iiiStartDate	field.

A	field	can	have	several	visualizations	defined	for	it.	The	default
visualization	which	is	used	is	determined	by	its	DefaultVisualization
property.

1.		Open	the	iiiStartDate	field	in	the	Editor.
2.		Select	the	Visualization	tab.
					You	will	notice	that	there	is	a	visualization	VisualDateTime	already	defined
which	shows	a	Datetime	Entry	Field.	This	is	the	way	the	Start	Date	field	was
displayed	(edit	box	with	a	drop-down	calendar)	in	the	Test	Fields	application
you	created	in	the	previous	exercise.

					(If	your	partition	is	web-enabled,	the	field	may	also	have	a	default	weblet
visualization.)

3.		Press	the	Calendar	 	toolbar	button	to	add	a	calendar	visualization	to	the
Start	Date	field.

					Notice	that	the	field	now	has	two	visualizations:	VisualDateTime	and
VisualCalendar.

4.		Double-click	the	VisualCalendar	in	the	Field	Parts	list	to	display	its
properties	in	the	Details	tab.

5.		Locate	the	DefaultVisual	property	and	notice	it	is	set	to	False.

6.		Double-click	the	VisualDateTime	visualization	to	display	its	properties.	Its
DefaultVisual	property	is	True	which	means	this	is	the	default	way	the	field
will	be	displayed	on	a	form.

7.		Do	not	change	the	DefaultVisual	property.	You	want	to	keep	the	Date	Entry
Field	drop-down	visualization	because	it	takes	up	less	room	than	the	calendar
on	the	form.

8.		Notice	that	the	VisualDateTime	shows	both	the	date	and	time.	You	will	not
need	to	see	the	time	in	the	Start	Date	field.	To	hide	it	set	the	ShowTime
property	to	False.

					Although	LANSA	also	has	a	field	type	Date,	the	use	of	the	DateTime	type	is
recommended	because	LANSA	manages	DateTime	fields	if	you	move	the
data	from	one	time	zone	to	another.	Typically,	data	can	be	represented	in	the
local	time	zone	but	saved	in	the	database	as	UTC	(Universal	Time).

9.		Save	and	close	the	field.

Step	2.	Review	iiiEmployNotes	Field	Visualization
In	this	step	you	will	review	the	field	visualizations	created	for	the
iiiEmployNotes	field.	You	will	add	a	multi-line	edit	box	and	make	this	the
default	visualization.

Multi-line	edit	box	is	often	the	best	visualization	to	use	for	long
character	fields.

1.		Open	the	iiiEmployNotes	field	in	the	Editor.
2.		Select	the	Visualization	tab.
					You	will	notice	that	the	standard	visualization	for	a	String	field	is	simply	an
entry	field.

3.		Press	the	Multi-line	Entry	Field	 	toolbar	button	to	add	a	multiple	line	edit
box	visualization	for	the	Notes	field.

4.		Double-click	the	VisualMultilineEdit	visualization	to	display	the	Details	tab.
Change	its	DefaultVisual	property	to	True.

					By	changing	the	DefaultVisual	property	to	True	for	the	multiline	edit	box,
the	DefaultVisual	property	of	VisualEdit	will	be	set	to	False	because	only	one
visualization	can	be	the	default.

5.		Make	the	Width	property	of	the	VisualMultiLineEdit	to	400.

					The	default	visualization	for	the	Notes	field	is	now	a	multi-line	edit	box.
6.		Save	and	close	the	field.
					Note:	You	can	close	any	open		object	from	the	Open	Objects	view.

Step	3.	Review	iiiSalary	Field	Visualization
In	this	step	you	will	review	the	field	visualization	created	for	the	iiiSalary	field
and	you	will	add	a	spin	edit	box	and	make	this	the	default	visualization	for
the	field.

Numeric	fields	can	be	visualized	as	simple	entry	fields,	spin	edit
boxes,	progress	bars	or	track	bars.

1.		Open	the	iiiSalary	field	in	the	Editor.
2.		Select	the	Visualization	tab.
					You	will	notice	that	the	standard	visualization	for	a	numeric	field	is	simply
an	entry	field.

3.		Press	the	SpinEdit 	toolbar	button	to	add	a	spin	edit	visualization.	The	spin
edit	box	allows	the	end-user	to	adjust	the	numbers	using	the	spin	buttons	or
by	using	the	Up	and	Down	keys.

4.		Change	the	DefaultVisual	property	of	the	VisualSpinEdit	to	True:

5.		Save	and	close	the	field.

Step	4.	View	the	Test	Form
In	this	step	you	will	review	the	test	form	and	make	sure	the	iiiNotes	field	fits	on
the	form.

1.		Open	the	iiiTestFields	form.	
2.		Display	the	Design	tab.
3.		Resize	and	rearrange	the	form	so	that	the	Notes	field	fits	properly.

					Note:
a.		A	selected	field	can	be	moved	using	the	Ctrl	+	Cursor	keys.
b.		Fields	can	be	moved	as	a	group	by	selecting	them	with	the	Shft	+	Left
Mouse	or	Ctrl	+	Left	Mouse	button.

4.		Compile	the	form.

Step	5.	Execute	the	Form
In	this	step	you	will	test	your	field	definitions	by	executing	the	iiiTestFields
form.
1.		Press	the		Execute	toolbar	button	in	the	Editor	to	execute	form	iiiTestFields.
					The	execute	Form	as	Windows	Application	dialog	may	appear	depending	on
your	options.

					This	dialog	will	appear	if	the	Prompt	for	additional	information	option	was
selected	when	executing	from	the	Verify	menu.	The	last	options	used	in	Verify
/	Execute	are	remembered,	until	you	change	them.

					Press	the	OK	button	to	execute	the	form.
2.		Your	form	should	appear	something	like	this:

3.		Test	your	new	fields:
a.		Enter	a	large	amount	of	text	into	the	Notes	multi-line	entry	field.	Notice
the	scroll	bar	appears.

b.		Adjust	the	salary	using	the	spin	buttons	or	the	Up	and	Down	buttons.
Notice	how	the	value	is	formatted	when	you	move	the	focus	away	from
the	field.

c.		Change	the	Start	Date	using	the	calendar.
4.		Close	the	form.

Step	6.	Adjust	the	Form
In	this	step	you	will	make	some	adjustments	to	the	iiiTestFields	form	to	place
the	fields	in	a	logical	order.
1.		By	dragging	and	dropping	your	entries,	adjust	the	layout	of	the	form	to	look
something	like	this:

					Note	that	you	can	select	several	fields	at	a	time	and	drag	them	together	by
selecting	fields	while	holding	down	the	Shift	key.

					Fields	can	also	be	moved	using	the	Ctrl	+	Cursor	keys.
2.		Compile	and	execute	your	form.

3.		Close	the	Test	Fields	application.

Summary
Important	Observations

Field	visualizations	can	be	used	in	LANSA	components	such	as	forms,
reusable	parts,	WAMs,	etc.
Fields	types	such	as	Alpha,	String,	Packed	and	Signed	have	a	simple	entry
field	as	the	default	visualization,	but	many	other	types	of	visualizations,	such
as	Radio	buttons,	drop	downs,	spin	buttons,	and	other	visualizations	can	be
added.
Field	types	such	as	DateTime	have	specialized	visualizations	that	include
features	like	calendar	prompts.
You	can	control	which	visualization	is	used	by	default.	In	the	example	of	the
iiiEmployNotes	field,	you	would	want	a	multi-line	entry	field	to	be	used
instead	of	a	single	entry	field.	Hence,	the	multi-line	field	was	defined	as	the
default	visualization.

Tips	and	Techniques
Field	visualizations	ensure	a	consistent	presentation	of	your	fields.
Field	visualizations	can	be	extremely	powerful	in	the	case	of	simple	list
selections.	For	example,	a	field	GENDER	can	be	visualized	as	Male	and
Female	radio	buttons.	By	defining	this	visualization	once,	it	is	automatically
available	to	all	components.
For	detailed	examples	of	coding	Field	Visualizations,	refer	to	the	Visual
LANSA	Windows	Application	Tutorials.

What	I	Should	Know
How	to	create	a	field	visualization.
How	to	perform	simple	changes	to	the	field	visualization	definitions.
How	to	set	the	default	visualization.

REP003	-	Validation	Rules

Validation	rules	are	enforced	by	business	rules	defined	in	the
Repository.	Rules	which	are	defined	in	the	field	definition	become
global	rules,	meaning	that	they	will	be	enforced	in	any	file	where	the
field	is	used.	Most	rules	are	defined	in	the	file	definition	in	which	case
they	are	enforced	only	in	the	context	of	that	file.	You	will	learn	more
about	this	feature	in	the	exercise	REP007	-	File	Validation
Rules/Triggers.

Objectives
To	show	field	level	validation	rules	in	the	repository.
To	show	how	rules	are	adopted	from	reference	fields.
To	add	the	following	business	rules	to	the	repository:

iiiSurname Cannot	be	blank	(copied	from	reference	field)

iiiSalary Must	be	greater	than	0

	

To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Review	Existing	Rule	for	iiiDeptCode	Field
Step	2.	Adopt	Rule	from	Reference	Field
Step	3.	Create	a	Rule	for	the	iiiSalary	Field
Summary

Before	you	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	previous
tutorials.

Step	1.	Review	Existing	Rule	for	iiiDeptCode	Field
In	this	step	you	will	review	the	validation	rule	defined	on	the	iiiDeptCode	field
that	you	created	in	exercise	REP001	-	Create	Fields.	When	you	created	the
iiiDeptCode	field,	you	copied	the	validation	rules	from	the	DEPTMENT	field.
1.		Open	the	iiiDeptCode	field	in	the	Editor.
2.		Select	the	Rules	and	Triggers	tab.
					All	validation	rules	defined	on	the	field	are	displayed.		Note:		If	the	rule	does
not	appear,	then	you	did	not	copy	it	when	you	created	the	field.	To	correct
this	problem,	delete	the	iiiDeptCode	field	and	recreate	it	as	described	in	Step
2.	Copy	Fields	in	REP001	-	Create	Fields.

3.		Select	and	expand	the	existing	rule	Department	cannot	be	blank	by	clicking
the	plus	(+)	to	display	the	Details	tab.	This	rule	is	a	simple	logic	rule	that
ensures	that	the	field	is	not	blank.

					There	are	different	types	of	validation	rule	which	each	have	their	own	set	of
parameters.	A	simple	logic	rule	allows	a	simple	expression	to	be	evaluated
when	the	value	of	a	field	has	been	received.

4.		Review	the	Details	to	see	the	actions	defined	for	this	rule.

					5.		Do	NOT	close	the	field.

Step	2.	Adopt	Rule	from	Reference	Field
In	this	step	you	will	add	a	rule	to	the	iiiSurname	field	by	adding	the	rule	from	its
III_NAME	reference	field.
1.		Open	the	iiiSurname	field	in	the	Editor.
2.		Select	the	Rules	and	Triggers	tab.	
3.		Click	the	Add	button	on	the	Home	ribbon	to	open	the	Add	menu	and	select
the	Adopt	from	Reference	Field	option.

					The	Adopt	rules	and	triggers	dialog	displays	the	rules	that	iiiSurname	can
adopt	from	the	III_NAME	field.	In	this	case	there	is	only	one.

4.		Select	the	Must	not	be	Blank	rule	and	press	the	Adopt	button.

					Note:	If	you	press	the	Adopt	button	again,	the	rule	will	be	adopted	again.
5.		Press	the	Close	button.

6.		Expand	the	Validation	Rules	on	the	Rules	and	Triggers	tab	to	display	the
details.

					This	is	a	List	of	Values	rule.	Notice	that	this	is	a	similar	rule	as	the	Simple
Logic	Check	rule	specified	for	the	Department	field	but	expressed	in	a
different	way.

7.		Display	the	Details	tab.	Compare	the	Rule	Definition	and	the	Actions	with
iiiDeptCode.

8.		Save	and	close	the	iiiSurname	field.
9.		Close	the	iiiDeptCode	field.

Step	3.	Create	a	Rule	for	the	iiiSalary	Field
In	this	step	you	will	create	a	simple	logic	rule	to	ensure	that	the	value	of	the
iiiSalary	field	is	always	greater	than	0.
1.		Open	the	iiiSalary	field	in	the	Editor.
2.		Select	the	Rules	and	Triggers	tab.	
					There	are	no	rules	defined	for	this	field.
3.		Click	the	Add	button	on	the	Home	ribbon	and	select	the	Add	Simple	Logic
Check	option.

					A	new	simple	logic	validation	rule	is	displayed.
4.		In	the	Details	tab	and	the	Rule	Definitions,	create	the	list	check	rule	as
follows:

					Rule	Definitions:

Description Salary	must	be	greater	than	0

Sequence 1

When	inserting Always	apply	rule	(ADD)

When	updating Always	apply	rule	(CHG)

When	deleting Never	apply	rule

Value #iiiSalary	*gt	0

	

					Your	Details	tab	should	now	look	like	this:

5.		Review	the	Actions	settings,	ensure	the	rule	is	created	as	follows:

If	the	condition	is	found	to	be	true Evaluate	next	rule	(NEXT)

If	the	condition	is	found	to	be	false Set	field	in	error	(ERROR)

	

					The	Error	message	file	and	message	number	have	been	created
automatically.	Note	that	the	error	message	text	for	this	message	is	not	very
helpful:

6.		To	find	a	more	specific	error	message,	on	the	Home	ribbon,	select	the
Message	Files…	option.

7.		In	the	Message	File	Maintenance	dialog	type	greater	in	the	1st	level	text
contains	field	and	click	Find.

					Note	that	message	DEM0011	is	appropriate	for	the	rule.

8.		Close	the	dialog	and	specify	DEM0011	as	the	Message	number.	Notice	the

new	message	text	for	the	field.

					For	your	own	application,	we	recommend	that	you	use	a	message	from	your
own	message	file	instead	of	manually	entering	the	message	text	for	the	field.

					Do	not	add	your	messages	to	the	shipped	LANSA	message	file,	DC@M01.
9.		Save	and	close	the	field.

Summary
Important	Observations

Field	validation	rules	are	applied	when	file	operations	are	performed.
Because	you	have	not	yet	created	any	files,	you	cannot	test	the	field
validation	rules	in	this	exercise.
There	may	be	many	ways	of	performing	the	same	check.

Tips	and	Techniques
Remember	that	most	business	rules	should	be	defined	for	a	file,	not	a	field.
If	you	us	messages	with	the	variables	(e.g.	&1),validation	error	handling	will
substitute	the	field	label	for	this	variable.

What	I	Should	Know
How	to	define	rules	for	a	field	in	the	LANSA	Repository.
How	to	control	the	action	performed	when	a	rule	is	checked.
How	to	define	error	messages	for	rules.
How	to	adopt	rules	from	a	reference	field.

REP004	-	System	and	Multilingual	Variables

System	variables	are	used	to	store	commonly	used	and	often	variable
pieces	of	information.	They	are	global	variables	that	are	used	across
all	LANSA	partitions.

Multilingual	variables	are	specific	to	a	partition	and	are	used	to	store
commonly	used	text	in	several	languages.	These	variables	can	be	used
as	field	values,	in	validation	rules	or	as	command	parameters.
Multilingual	variables	are	a	part	of	LANSA's	multilingual	application
support.

Objectives
To	highlight	some	of	the	system	variables	in	LANSA	and	how	they	are	used.
To	create	a	system	variable	which	will	automatically	generate	the	next
available	number	for	determining	Employee	codes.	
Optional:	To	review	how	multilingual	variables	are	used	in	LANSA.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Review	an	Existing	System	Variable
Step	2.	Create	a	System	Variable
Step	3.	Assign	the	System	Variable	as	a	Default	Value
Step	4.	Test	System	Variable	using	form	iiiTestFields
Step	5.	Review	the	System	Variable	(Optional)
Step	6.	Review	an	Existing	Multilingual	Variable	(Optional)
Summary

Before	you	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	previous
tutorials.	

Step	1.	Review	an	Existing	System	Variable
In	this	step	you	will	review	an	existing	system	variable.
1.		In	the	Repository	tab,	expand	the	Resources	group.
2.		Expand	System	Variables.	
3.		Expand	the	M	group	(if	the	system	variables	are	grouped	alphabetically)	to
show	all	system	variables	starting	with	M.

4.		Locate	and	open	the	*MONTH	system	variable	in	the	Editor.	You	will	see	a
"Read	Only"	dialog	as	you	open	it.

					Note	that,	alternatively,	you	can	open	the	*MONTH	system	variable	by
typing	Ctrl	+	O,	and	specifying	*MONTH:

5.		Review	the	system	variable	definition.
					This	system	variable	returns	the	current	month.	It	uses	the	LANSA	supplied
program	M@SYSVAR	to	set	the	value.		Do	NOT	change	the	system	variable.

6.		Close	the	system	variable.

Step	2.	Create	a	System	Variable
In	this	step	you	will	create	a	system	variable	which	increments	a	number	nn	(2
digits)	by	one	and	returns	it	as	an	alphanumeric	value.
To	create	this	system	variable	you	use	a	LANSA	shipped	evaluation	program
M@SYSNUM.	The	names	of	system	variables	using	this	program	must	start
with	*AUTOALP.
1.		Press	the	New	button	on	the	toolbar	and	select	System	Variable	from	the	drop
down	list.	The	New	system	variable	dialog	is	displayed.

2.		Enter	the	following	characteristics	for	the	system	variable:

Name *AUTOALP02iiiNUM	(where	iii	are	your	initials).

Description Next	Available	Number

Method	of	derivationDynamic

Data	type Alphanumeric

Length 2

Program	Type 3GL	program

Program	name M@SYSNUM

	

3.		Press	the	Create	button.

4.		The	system	variable	has	been	created.
					The	value	of	the	system	variable	will	be	set	automatically	when	it	is	accessed
in	the	next	step.

Step	3.	Assign	the	System	Variable	as	a	Default	Value
In	this	step	you	will	assign	the	system	variable	you	created	as	the	default	value
of	the	iiiEmployNumber	field.	By	using	this	system	variable,	the	value	of	the
field	will	be	incremented	by	1	each	time	the	field	is	used.
1.		Open	the	iiiEmployNumber	field	in	the	Editor.
2.		Change	the	Default	value	to	use	the	new	system	variable	you	created,
*AUTOALP02iiiNUM.	You	can	do	this	by	entering	*AUTO	and	using	the
prompt	button.

					The	find	dialog	will	display	objects	with	names	like	*AUTO.

3.		Select	your	*AUTOALP02iiiNUM	system	variable	and	press	OK.
4.		Save	and	close	the	field.
5.		This	type	of	system	variable	stores	the	"next	number"	in	a	data	area	(in	this
case	a	data	area	named	IIINUM,	which	is	defined	as	the	last	part	of	the
system	variable	name).

					The	data	area	is	read	with	a	lock,	incremented,	returns	the	value	to	your	form
and	then	updates	the	data	area	(and	releases	the	lock).

					If	the	data	area	does	not	already	exist,	it	is	created	when	first	referenced.	It	is
stored	in	the	partition	module	library.

Step	4.	Test	System	Variable	using	form	iiiTestFields
In	this	step	you	will	test	the	changes	made	to	the	iiiEmployNumber	field	using
your	iiiTestFields	form.
1.		To	test	your	change	to	the	default	value	of	the	iiiEmployNumber	field,	you
need	to	force	the	recompile	of	the	test	form.
a.		On	the	Favorites	/	Last	Opened	tab,	locate	your	iiiTestFields	form.
b.		Right	click	on	iiiTestFields	and	select	the	Compile	option	from	the
context	menu.

c.		When	the	Compile	options	window	appears,	deselect	the	Compile	only	if
necessary	option.

d.		Press	OK	to	submit	the	compile.
					Notice	that	the	status	of	the	submitted	compile	appears	in	the	Compile
window	at	the	bottom	of	the	Editor.

2.		Once	your	form	has	compiled,	execute	it.
					Notice	the	default	value	for	the	Employee	Number	which	appears	when	the
form	first	displays.	This	value	was	assigned	by	accessing	the	system	variable
and	determining	the	next	available	number.

3.		Close	the	form.
4.		Execute	the	form	again.
					Note	the	value	in	the	Employee	Number	field	has	been	incremented	by	one.

The	system	variable	automatically	updates	to	the	next	available	number	each
time	it	is	accessed	(by	your	application	or	any	other	application	in	any
partition	in	the	system).	

					If	50	people	were	executing	your	test	form,	each	person	would	see	a	different
default	value.

					When	the	Employee	code	reaches	99,	it	will	reset	to	1.
					Note:	You	normally	use	this	type	of	system	variable	to	generate	unique
numbers,	such	as	the	next	available	order	number.

Step	5.	Review	the	System	Variable	(Optional)
To	do	this	step,	you	will	need	more	than	one	partition	in	your	LANSA	system	as
you	will	be	looking	at	how	the	system	variable	you	just	created	is	available
across	partitions.

1.		If	you	have	more	than	one	partition	in	your	Visual	LANSA	system,	logon	to
Visual	LANSA	in	another	partition.

2.		Review	the	list	of	fields	in	the	partition.	You	will	not	see	any	of	the	fields
you	have	created	in	these	tutorials.

3.		Review	the	list	of	system	variables.	You	will	see	the	new	system	variable
you	created	because	these	variables	are	accessible	by	all	partitions	in	the
system.

4.		Close	Visual	LANSA.

Step	6.	Review	an	Existing	Multilingual	Variable	(Optional)
To	do	this	step,	your	partition	must	be	set	up	to	support	development	of
multilingual	applications.
1.		In	this	step	you	will	create	three	multilingual	variables	with	English	and
French	values.
a.		From	the	New	button	on	the	toolbar	select	Multilingual	Variable

b.		Ensure	the	Close	option	is	not	selected	initially,	but	do	open	each
multilingual	variable	in	the	editor.

c.		Create	the	following	three	variables:

Name Description

*MTXTiiiDETAILS Details

*MTXTiiiAddress Address

*MTXTiiiSave Save

	

					Ensure	you	close	the	dialog	when	creating	the	third	variable.
2.		In	the	Editor,	switch	to	the	Details	multilingual	variable.

a.		Double	click	on	the	Multilingual	Details	to	open	the	Details	tab	on	the
left.

b.		Change	the	French	value	to	Détails.	You	can	copy	this	value	from	the
tutorial	in	the	online	guide.

c.		Save	and	close	*MTXTiiiDETAILS
d.		Switch	to	the	Address	variable,	and	change	the	French	value	to	Adresse.
e.		Save	and	close	*MTXTiiiADDRESS

f.		Switch	to	the	Find	variable	and	change	the	French	value	to	Trouver
g.		Close	and	save	*MTXTiiiFIND.

3.		Create	a	new	form,	iiiMultilingual	Test.
					Replace	all	from	code	with	the	following:
FUNCTION	OPTIONS(*DIRECT)
BEGIN_COM	ROLE(*EXTENDS	#PRIM_FORM)	CLIENTHEIGHT(322)
CLIENTWIDTH(391)	HEIGHT(360)	LEFT(571)	TOP(200)	WIDTH(407)
DEFINE_COM	CLASS(#PRIM_TAB)	NAME(#TAB_1)
BOTTOMLAYOUTPRIORITY(4)	COMPONENTVERSION(1)
DISPLAYPOSITION(1)	HEIGHT(241)	LEFT(8)
LEFTLAYOUTPRIORITY(1)	PARENT(#COM_OWNER)
RIGHTLAYOUTPRIORITY(2)	TABPOSITION(1)	TOP(8)
TOPLAYOUTPRIORITY(3)	WIDTH(369)
DEFINE_COM	CLASS(#PRIM_STBR)	NAME(#STBR_1)
DISPLAYPOSITION(2)	HEIGHT(24)	LEFT(0)	MESSAGEPOSITION(1)
PARENT(#COM_OWNER)	TABPOSITION(2)	TABSTOP(False)	TOP(298)
WIDTH(391)	
DEFINE_COM	CLASS(#PRIM_PHBN)	NAME(#FIND)
DISPLAYPOSITION(3)	LEFT(18)	PARENT(#COM_OWNER)
TABPOSITION(3)	TOP(264)
DEFINE_COM	CLASS(#PRIM_TBSH)	NAME(#TBSH_1)
DISPLAYPOSITION(1)	HEIGHT(213)	DISPLAYPOSITION(1)
HEIGHT(21)	LEFT(14)	PARENT(#TAB_1)	TABPOSITION(1)	TOP(16)
USEPICKLIST(False)	WIDTH(237)
DEFINE_COM	CLASS(#PRIM_TBSH)	NAME(#TBSH_2)
DISPLAYPOSITION(2)	HEIGHT(213)	DISPLAYPOSITION(1)
HEIGHT(21)	LEFT(14)	PARENT(#TAB_1)	TABPOSITION(1)	TOP(16)
USEPICKLIST(False)	WIDTH(237)
DEFINE_COM	CLASS(#SURNAME.Visual)	NAME(#SURNAME)
DISPLAYPOSITION(2)	LEFT(16)	PARENT(#TBSH_1)	TABPOSITION(2)
TOP(51)	WIDTH(321)	
DEFINE_COM	CLASS(#GIVENAME.Visual)	NAME(#GIVENAME)
CAPTION(*MTXTIIIDETAILS)	DISPLAYPOSITION(3)	LEFT(19)
PARENT(#TBSH_1)	TABPOSITION(3)	TOP(86)	WIDTH(326)
DEFINE_COM	CLASS(#ADDRESS1.Visual)	NAME(#ADDRESS1)
COMPONENTVERSION(1)	DISPLAYPOSITION(1)	HEIGHT(21)
PARENT(#TBSH_2)	TABPOSITION(1)	TOP(21)	USEPICKLIST(False)

WIDTH(350)
DEFINE_COM	CLASS(#ADDRESS2.Visual)	NAME(#ADDRESS2)
COMPONENTVERSION(1)	DISPLAYPOSITION(2)	HEIGHT(21)
PARENT(#TBSH_2)	TABPOSITION(2)	TOP(43)	USEPICKLIST(False)
WIDTH(350)
DEFINE_COM	CLASS(#ADDRESS3.Visual)	NAME(#ADDRESS3)
COMPONENTVERSION(1)	DISPLAYPOSITION(3)	HEIGHT(21)
PARENT(#TBSH_2)	TABPOSITION(3)	TOP(65)	USEPICKLIST(False)
WIDTH(350)
DEFINE_COM	CLASS(#POSTCODE.Visual)	NAME(#POSTCODE)
COMPONENTVERSION(1)	DISPLAYPOSITION(4)	HEIGHT(21)
PARENT(#TBSH_2)	TABPOSITION(4)	TOP(87)	USEPICKLIST(False)
WIDTH(249)

EVTROUTINE	handling(#com_owner.Initialize)
SET	#com_owner	caption(*component_desc)
ENDROUTINE

EVTROUTINE	HANDLING(#FIND.Click)
fetch	*all	FROM_FILE(PSLMST)	with_key(#empno)
ENDROUTINE

END_COM
	

4.		Save	your	form.
5.		Switch	to	the	Design	tab.

a.		Select	the	push	button.	On	the	Details	tab	changes	its	Caption	to
*MTXTiiiFIND,	by	selecting	it	using	the	ellipsis	button	and	Repository
Find	dialog.

b.		Select	the	first	Tab	Sheet	(contains	Employee	Number).	Click	first	on	the
tab,	and	then	in	the	middle	of	the	sheet	to	select	it.

c.		Select	the	second	Tab	Sheet	(contains	Address	Line	1)	and	set	its	Caption
to	*MTXTiiiADDRESS.

5.		Compile	the	form.
6.		Execute	form	iiiMultiLingualTest	from	the	development	environment.	This
is	running	the	form	using	the	English	language	and	it	should	look	like	the
following:

7.		From	the	Windows	start	menu,	select	LANSA	/	Exec	Form:

a.		Change	Language	to	FRA.
b.		Ensure	Render	Type	=	W

					Note:	The	Form	Name	will	be	pre-filled	with	the	Identifier	for	your	form,
iiiMultiLingualTest,	which	was	the	last	form	run	in	the	development
environment.
c.		Click	OK	to	run	the	form,	using	French.
					Enter	an	employee	number	such	as	A0090,	A1004	or	A1005,	and	click
Trouver.

					Your	form	should	look	like	the	following:

					Note:
The	field	descriptions	in	French	are	defined	in	the	Repository	for	each
field
The	Caption	on	the	Find	button	and	the	Tab	Sheets	are	defined	by	the
multilingual	variables.

Summary
Important	Observations

System	variables	can	be	used	throughout	the	repository	as	default	values,	in
validation	rules,	etc.
LANSA	ships	many	default	system	variables.	You	can	also	define	your	own
system	variables.
System	variables	are	NOT	partition	specific	and	changing	or	deleting	a
system	variable	affects	all	partitions	in	that	installation	of	LANSA.
Dynamic	system	variables	can	have	different	values	each	time	the	variable	is
accessed.
Static	variables	are	assigned	once	when	the	application	is	started.
System	variables	call	a	program	which	returns	a	single	value.
Multilingual	data	is	stored	as	keyed	data	and	is	not	translated.
All	multilingual	variables	must	begin	with	*MTXT.

Tips	and	Techniques
When	defining	a	new	partition	(or	modifying	an	existing	partition)	to	support
multilingual	applications,	a	"default"	language	and	one	other	language	must
be	defined.	A	multilingual	partition	must	have	two	or	more	languages
defined.

What	I	Should	Know
How	to	create	a	system	variable	in	Visual	LANSA.
Some	of	the	special	system	variables	supported	by	LANSA.
Where	a	LANSA	system	variable	can	be	used.
How	multilingual	variables	are	used	in	Visual	LANSA.

REP005	-	Creating	Files

A	LANSA	file	may	also	be	referred	to	as	a	database	table.	Fields	are
added	to	the	file	to	define	the	record	format	(key	columns	and
columns).	A	LANSA	field	can	also	be	described	as	a	database
column.		Once	a	file	is	compiled,	the	records	in	it	can	be	retrieved,
added,	updated	and	deleted.

Objectives
To	create	two	file	definitions.	You	will	create	a	Department	Table	and	an
Employee	Table.	These	tables	are	similar	to	the	ones	used	in	the	DirectX
Examples	application.
To	review	the	database	file	attributes	which	can	be	defined	in	the	LANSA
Repository.
The	file	definitions	will	be	as	follows:

Department	File	iiiDepartments Employee	File	iiiEmployees

iiiDeptCode* iiiEmployNumber*

iiiDeptDescription iiiDeptCode

iiiSurname

iiiGivenName

iiiSalary

iiiStartDate

	 iiiEmployNotes

					*	indicates	the	fields	used	as	the	file	key

Note:	Files	can	be	created	manually	or	by	copying	an	existing	file
definition	in	the	LANSA	Repository.	In	this	lesson,	you	will	manually
create	the	file	definitions	so	that	you	can	see	all	the	steps	involved.	If
you	copy	an	existing	LANSA	file	definition,	the	fields,	rules,	and	all
other	related	database	information	about	the	file	can	be	copied.

To	achieve	these	objectives	you	will	complete	the	following:

Step	1.	Create	File	Definition
Step	2.	Compile	the	File
Step	3.	Create	Department	Maintenance	Form
Step	4.	Execute	Department	Maintenance	Form
Step	5.	Create	the	Employee	File
Step	6.	Create	Employee	Maintenance	Form
Step	7.	Execute	Employee	Maintenance	Form
Step	8.	Database	Attributes
Summary

Before	you	Begin
In	order	to	complete	this	tutorial,	you	should	have	completed	the	previous
tutorials.

Step	1.	Create	File	Definition
In	this	step	you	will	create	iiiDepartments	Department	file.
1.		Select	the	New	button	in	the	File	menu	and	select	LANSA	File.

a.		Enter	the	following	characteristics	for	the	file:

File	name iiiDepartments	(where	iii=your	initials)

Description Departments	Table

Enabled	for	RDMLXYes

	

b.		Select	the	option	to	Open	in	editor.
c.		Press	the	Create	button.

2.		You	will	now	start	adding	fields	to	the	file.
a.		Make	sure	the	Fields	in	File	tab	is	displayed.

b.		Display	the	iiiLIST	tab	which	you	created	in	exercise	REP001-	Step	6.
Create	a	Dynamic	List	for	Your	Fields	.

c.		Drag	the	iiiDeptCode	field	to	the	file	under	Real	Fields.

d.		With	the	iiiDeptCode	field	selected	in	the	file,	click	on	the	Key	Field
button	on	the	Home	ribbon,	to	make	it	the	key	field	of	the	file.

					(You	can	also	drag	the	field	directly	under	Primary	keys	to	make	it	a	key

field.)
e.		Double-click	iiiDeptCode	to	display	the	Details	tab.
f.		Notice	the	Key	position	is	1	to	indicate	that	iiiDeptCode	is	the	first	key
field	in	the	file.

g.		Add	the	iiiDeptDescription	field	to	the	file	using	drag-and-drop.
					Your	file	will	appear	as	follows:

Step	2.	Compile	the	File
Now	that	the	definition	is	complete,	the	file	must	be	compiled	to	be	operational.
1.		Display	the	Compile	options	dialog	to	submit	your	file	for	compile.

		In	this	way	you	can	view	the	compile	settings	before	submitting	the	job.
					The	File	Compile	Options	dialog	is	displayed.

2.		Press	the	OK	button	to	submit	the	compile	using	the	defaults	shown.
					Note:	As	a	new	file	definition,	the	option	Compile	only	if	necessary,	will
build	the	table	and	any	indexes	or	views,	and	create	and	compile	an	OAM.

3.		A	compilation	status	will	be	displayed	in	the	Compile	tab.
					Make	sure	that	the	compile	completed	successfully.

4.		Close	the	file.

Step	3.	Create	Department	Maintenance	Form
In	this	step	you	will	create	a	test	form	which	will	allow	you	to	add,	change,
delete	and	display	the	data	in	the	department	file	you	have	just	created.
1.		Create	the	Department	Maintenance	form.

a.		Create	a	new	form	with	the	following	characteristics:

Name iiiMaintDepartment				(where	iii=your	initials)

Description Department	Maintenance

	

					Your	New	Form	dialog	should	look	like	this:

					The	form	will	open	in	the	Editor.
b.		In	order	to	use	a	template,	you	need	to	know	the	Identifier	for	the	file
iiiDepartments.	Templates	do	not	recognize	long	names.

					On	the	Favorites	tab,	expand	the	width	of	the	Last	Opened	tab.	If
necessary,	use	the	right	mouse	menu	on	a	column	heading	to	show	the
Identifier	column.

					Make	a	note	of	the	file	iiiDepartment's	Identifier.	For	example
iiiDEPARTM.

c.		With	your	new	form	selected	in	the	editor,	click	the	Templates	button	on

the	Design	ribbon

					Press	the	Template	button	 	in	the	Design	ribbon	to	display	the	Choose
Template	dialog.

d.		Select	the	VL_BASEMNT	Visual	LANSA	flat	file	maintenance	template
and	press	the	Execute	button.

e.		Answer	the	template	questions	as	shown	in	the	table	below.	(Remember
to	replace	iii	with	your	3	character	identifier.)

Template/Wizard	Question ANSWER

Supply	a	word	that	describes	WHAT	this	data	entry
program	works	with

Department

Enter	the	name	of	the	PHYSICAL	file	to	be	used	by	this
template

iiiDEPARTM

How	do	you	want	to	display	the	fields? FF

Fields	to	appear	on	display Select	both
fields

	

					The	template	will	display	Identifiers	for	your	fields.
f.		Press	the	Finish	button	once	you	have	answered	all	questions.
					The	template	replaces	the	default	code	in	your	new	form.	The	form	is
complete	and	ready	for	compilation.	It	is	not	necessary	to	change	the
source	RDMLX.

g.		Select	the	Design	view.	Reposition	the	buttons	(select	as	a	group	and	use
Ctrl+Cursor	keys.)	and	resize	the	form.

	

2.		Next,	compile	your	form.
a.		Select	the	Home	ribbon	if	necessary.

b.		Press	the	Compile	 button.	Compile	will	automatically	save	the
form.

c.		Review	the	Compile	tab	to	ensure	that	the	compile	completed
successfully.

Step	4.	Execute	Department	Maintenance	Form
In	this	step	you	will	execute	the	Department	Maintenance	form	and	add	some
data	to	the	Department	file.
1.		Execute	form	iiiMaintDepartment	by	clicking	Runtime	/	Execute	on	the
Home	ribbon.

2.		Insert	the	following	data	to	the	file:

Department Description
ADM Administration

LGL Legal

MRK Marketing

TRN Company	Training

TRV Business	Travel

	

					Note	that	if	you	try	to	insert	a	blank	Department	and	Description,	you	will
see	that	the	messages	caused	by	the	field	level	validation	rules	created	in
REP003	-	Validation	Rules.

3.		Close	the	form.
4.		Close	the	form	in	the	Editor.

Step	5.	Create	the	Employee	File
In	this	step	you	will	create	an	Employee	file	using	the	skills	you	have	just
learned	in	the	previous	steps.		You	will	use	the	multi-add	fields	feature	to	add
multiple	fields	to	the	newly	created	file.
1.		Create	the	Employee	file.

a.		Use	New	/	File	/	LANSA	File.	Enter	the	following	characteristics	for	the
file:

File	name iiiEmployees	(where	iii=your	initials)

Description Employee	File

Enabled	for	RDMLXYes

	

	

b.		Select	the	option	to	Open	in	editor.
c.		Press	the	Create	button.

2.		On	the	Home	ribbon,	select	Add	/	Multi-add	Fields.

					The	Add	Fields	to	the	File	window	is	displayed.

					Note:	When	typing	a	field	name,	the	autocomplete	feature	will	attempt	to
identify	an	existing	repository	field	name	as	you	type	in	the	characters.

3.		Add	the	fields	iiiEmployNumber,	iiiDeptCode,	iiiSurname,	iiiGivenName,
iiiSalary,iiiStartDate	and	iiiEmployNotes	to	the	file.

					You	should	only	need	to	type	4	or	5	characters	and	autocomplete	will	match
with	the	right	field.

					Specify	that	iiiEmployNumber	is	the	key	field	in	the	file	by	entering	the
value	1	in	the	Key	column.

4.		Once	you	have	added	all	the	fields	to	the	file,	click	OK.	Your	definition
should	appear	like	this:

5.		Compile	the	file.
6.		Close	the	file	definition.

Step	6.	Create	Employee	Maintenance	Form
In	this	step	you	will	create	a	test	form	which	you	can	use	to	add,	change,	delete
and	display	the	data	in	the	employee	file	you	have	just	created.
1.		Create	the	Employee	Maintenance	form.

a.		The	template	requires	the	file's	Identifier.	Look	up	the	Identifier	for	the
file	on	the	Favorites	/	Last	Opened	tab.	For	example	IIIEMPLOYE.

b.		Create	a	form	with	the	following	characteristics:

Name iiiMaintEmployee			(where	iii=your	initials)

Description Employee	Maintenance

RDMLX	Enabled Yes

	

c.		Once	the	Editor	has	opened,	press	the	Template	button	 	on	the	Design
ribbon.

d.		In	the	Choose	Template	dialog,	select	the	VL_BASEMNT	-	Visual	LANSA
flat	file	maintenance	template.	Press	the	Execute	button.

e.		Answer	the	template	questions	as	shown	in	the	table	below.	(Remember
to	replace	iii	with	your	3	character	identifier.)

Template/Wizard	Question ANSWER

Supply	a	word	that	describes	WHAT	this	data	entry
program	works	with

Employee

Enter	the	name	of	the	PHYSICAL	file	to	be	used	by	this
template

IIIEMPLOYE

How	do	you	want	to	display	the	fields? FF

Fields	to	appear	on	display Select	ALL
fields.

	

					Your	form	is	now	created	and	ready	for	compilation.	It	is	NOT	necessary
to	edit	the	source.

f.		Adjust	the	width	of	the	fields	on	the	form.
					You	may	find	this	quickest	if	you	select	a	field	and	adjust	its	Width
property	by	guessing	a	smaller	value.	Then	drag	the	field	making	it	wider
if	necessary.

2.		Compile	your	form.

Step	7.	Execute	Employee	Maintenance	Form
In	this	step	you	will	execute	the	form	and	enter	some	data	into	the	Employee
file.

1.		Execute	your	application.

2.		Insert	the	following	data	to	your	file.	(You	can	use	the	data	in	the	table	below
or	create	your	own.)

Employee
Number

Department Surname First
Name

Monthly
Salary

Start	Date Notes

01 ADM Brown Veronica 5000.00 01/01/1989 Et	harumd
dereud
facilis	est
er	expedit
distinct.
Nam	liber
a	tempor
cum	soluta
nobis
eligend
optio

comque
nihil	quod
a	impedit
anim	id
quod
maxim
placeat
facer
possim
omnis	es
voluptas
assumenda
est,	omnis
dolor
repellend.

02 ADM Smith Ben 3000.00 23/04/2001 same	as
employee
01

03 LGL Jones Dan 2900.00 10/12/2000 same	as
employee
01

04 TRV Turner Jennifer 6500.00 05/02/1990 same	as
employee
01

	

3.		When	you	have	entered	all	the	employee	details,	exit	the	form.
4.		Close	the	form	in	the	Editor.

Step	8.	Database	Attributes
In	this	step	you	will	simply	review	the	file	database	attributes	to	highlight	what
information	is	accessible.	You	will	not	make	any	changes.
1.		Open	the	iiiEmployees	Employee	file	(if	it	is	not	already	open).
2.		Select	the	File	Attributes	tab.	Double	click	a	setting	such	as	I/O	Module
Library	so	that	the	Details	tab	is	shown..

3.		If	you	select	a	setting	in	the	Details	tab,	you	can	use	the	F1	help	to	review
the	detailed	information	about	file	settings	in	the	online	guide.

					Notice	that	you	are	also	able	to	specify	the	multilingual	descriptions	for	the
file	name	if	the	partition	is	multilingual.

					Do	not	make	any	changes	to	the	file	attributes.
4.		Close	the	file.

Summary
Important	Observations

Notice	that	the	field	level	validation	rules	you	created	in	exercise	REP003	-
Validation	Rules	are	enforced	when	you	maintain	the	files.		Field	level
validations	are	enforced	in	every	file	in	which	the	field	is	used.	However,
remember	most	validation	rules	should	be	defined	at	file	level.
Key	sequence	is	used	to	define	the	order	of	the	keys	in	the	file.	The	physical
sequence	of	fields	and	the	key	sequence	are	independent.
Access	to	files	is	handled	by	the	Object	Access	Modules	(OAM).	Every	file
used	by	LANSA	has	an	OAM	which	contains	the	repository	features	of	the
file	and	its	fields.	The	OAM	is	executed	whenever	the	file	is	accessed	by	a
program.
When	you	make	a	change	to	a	field	used	in	a	file	or	to	the	file	definition
itself,	you	need	to	recompile	the	file.	You	do	not	need	to	recompile	your
programs	unless	the	change	affects	the	visual	display.

Tips	and	Techniques
Use	the	multi-add	fields	feature	as	a	faster	way	to	add	fields	to	a	file.	You
can	include	fields	that	do	not	exist	in	the	repository	and	these	fields	will	be
created	when	you	exit	the	multi-add	window.
Database	attributes	become	more	important	if	you	are	deploying	databases	to
other	platforms.	Refer	the	online	help	for	each	database	attribute	before
using	it.

What	I	Should	Know
How	to	define	a	file	in	the	LANSA	repository.
How	to	add	fields	to	a	file	definition.
How	to	specify	file	keys.
How	to	compile	a	file	to	make	it	operational.
Some	of	the	attributes	that	can	be	specified	for	database	files.

REP006	-	Logical	Views
	

Logical	views	are	used	to	create	alternate	ways	of	organizing	or
accessing	the	data	in	your	LANSA	files.	You	can	create	file	sorting
sequences	that	differ	from	the	keys	used	in	the	physical	file.

Objectives
To	show	how	logical	views	are	created	over	existing	files	to	sequence	the
file	data.
To	add	a	logical	view	over	the	iiiDepartments	Department	file	which	sorts
the	file	by	iiiDeptDescription.
To	add	a	logical	view	to	the	iiiEmployees	file	to	sort	the	file	by	iiiDept
Code.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Add	a	Logical	View	to	Department	File
Step	2.	Create	Department	Test	Form
Step	3.	Execute	Search	by	Description	Form
Step	4.	Add	a	Logical	View	to	Employee	File
Summary

Before	you	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	previous
tutorials.

Step	1.	Add	a	Logical	View	to	Department	File
In	this	step	you	will	create	a	very	simple	logical	view	over	the	file
iiiDepartments	created	in	the	last	exercise.	This	logical	view	will	sort	all	records
in	the	file	by	the	iiiDeptDescription	field.
1.		Use	your	dynamic	list,	iiiLIST	to	open	the	iiiDepartments	file	in	the	Editor.	
2.		Select	the	Logical	Views	tab.		It	will	list	all	of	the	defined	views	for	the	file
(there	are	none	yet).

3.		Select	the	Add	button	on	the	Home	ribbon	and	select	Add	Logical	View	from
the	list.

					A	new	logical	definition	is	added	for	the	file.	You	need	to	specify	the	logical
view	details	and	key	fields.

4.		The	Details	tab	should	already	be	displayed.	Enter	the	following	details:

Logical	view	name iiiDeptsByDesc	(where	iii=your	initials)

Description Departments	by	Description

	

					Your	Details	tab	should	now	look	like	this:

5.		Click	on	<New>		under	the	Keys	group	so	that	you	can	specify	the	key	for
the	logical	view.
a.		Place	the	cursor	in	the	Field	name	field	in	the	Details	tab.

					Note:	A	simple	way	to	add	key	fields	is	to	use	the	prompt.	The	prompt	will
show	the	Find	dialog	with	all	valid	fields	that	can	be	used	as	key	fields
shown:

b.		Select	the	iiiDeptDescription	field,	and	click	OK
					Your	completed	logical	view	will	appear	like	this:

6.		Compile	the	file	to	make	it	operational.	Remember	that	you	have	already
compiled	the	file	to	build	the	table	and	OAM	and	have	added	data.	Display
the	Compile	options	dialog.	Check	that	your	compile	options	are	set	as
shown:

					Note:
Because	you	added	a	Logical	View	to	the	file,	you	have	selected	to
Rebuild	indexes	and	views	and	Rebuild	OAM.
In	other	situations,	such	as	when	a	new	validation	rule	is	added	at	field
level,	you	will	need	to	select	the	required	File	Compile	options	(Rebuild
OAMs	in	that	particular	case).
If	you	have	changed	the	fields	in	the	file	and	need	to	rebuild	the	table,	the
compile	is	capable	of	saving	and	restoring	the	data	to	the	new	file.

7.		Check	that	the	compile	completed	successfully.
8.		Close	the	file.

Step	2.	Create	Department	Test	Form
In	this	step	you	will	create	a	form	that	searches	the	Department	file	by	the
department	description.	You	can	do	this	because	the	logical	view	you	just
created	is	keyed	by	the	department	description.
1.		Create	a		form	with	the	following	characteristics:

Name iiiSearchDeptByDesc			(where	iii=your	initials)

Description Search	by	Department	Description

RDMLX	Enabled Select

	

2.		Next	add	the	fields	iiiDeptCode	and	the	iiiDeptDescription	to	your	form:
a.		Once	the	new	form	has	opened	in	the	Editor,,	display	the	iiiLIST	tab.
b.			Drag	and	drop	the	iiiDeptCode	and	iiiDeptDescription	fields	onto	the
form:

3.		Next	add	a	button	to	the	form:
a.		Locate	the	Controls	tab.	If	this	tab	is	not	open,	open	it	from	the	Home
ribbon,	Views	menu.

b.		On	the	Controls	tab	select	the	Push	button	control	and	drag	and	drop	it
onto	the	form:

c.		Double-click	the	button	on	the	form	to	display	the	Details	tab.	The
Details	tab	is	showing	the	Properties,	Events	and	Methods	for	the	Push
Button.

d.		In	the	Caption	property	enter	Find	Department	Code.
e.		Adjust	the	width	of	the	push	button	to	display	the	Caption.
f.		Adjust	the	height	and	width	of	the	form.

4.		Next	add	some	code	that	will	search	the	logical	view	and	return	the
department	code	based	on	the	department	description:
a.		Select	the	Events	tab	on	the	Details	tab.	Double	click	on	the	Click	event
to	create	a	Click	event	routine	for	the	push	button.	Your	code	will	look
like	the	following:

b.		Select	the	Source	tab.	Your	code	will	look	like	the	following:
EVTROUTINE	HANDLING(#PHBN_1.Click)
ENDROUTINE.
	
c.		Complete	the	push	button	click	event	routine,	by	adding	a	Fetch
statement.	Your	new	code	should	look	like	the	following:

Fetch	FIELDS(#iiiDeptcode)	from_file(iiiDeptsByDesc)
with_key(#iiiDeptDescription)
	

					Your	complete	source	code	should	now	look	like	this:

5.		To	compile	your	form:
a.		Press	the	Compile	 	button	on	the	Editor	toolbar.
b.		Check	that	the	compile	completed	successfully.

Step	3.	Execute	Search	by	Description	Form
In	this	step	you	will	execute	the	Search	by	Department	Description
application.	One	of	the	typical	uses	of	logical	views	is	to	make	a	file	searchable
by	a	field	such	as	a	name.
1.		Execute	form	iiiSearchDeptByDesc	by	clicking	the	Execute	button	on	the
Editor	toolbar.

2.		Type	in	one	of	your	department	descriptions	such	as	Administration	and
click	on	the	Find	Department	Code	button	to	retrieve	the	department	code.

					The	departments	descriptions	are	Administration,	Legal,	Marketing,
Company	Training,	Business	Travel.	Remember	that	the	descriptions	are	case
sensitive.

					If	necessary,	execute	the	iiiMaintDepartment	form	to	see	how	you	entered
the	descriptions.

					Note:	This	is	very	crude	form	which	simply	demonstrates	your	logical	file	is
working.	A	logical	file	of	this	type	(based	on	a	name	or	description)	would
usually	be	used	to	select	a	list	of	departments	generically,	using	a	partial	key.
For	example,	"show	all	departments	with	a	description	beginning	with	Ad".

3.		Exit	the	form.

Step	4.	Add	a	Logical	View	to	Employee	File
In	this	step	you	will	add	a	logical	view	to	the	Employee	file	to	key	it	by	the
Department	field.
1.		Open	the	iiiEmployees	file	and	display	the	Logical	Views	tab.
2.		Select	the	Designer	button	on	the	ribbon	and	expand	the	Add	menu	to	select
Add	logical	view.	Create	a	logical	file:

					Name:	iiiEmpByDeptView
					Description:	Employee	by	Department	Code.

3.		Select	the	Keys/New	entry	and	make	the	iiiDeptCode	field	the	key.

4.		Compile	the	file	and	then	close	it.	Use	the	Verify	/	Compile	menu	option	to
ensure	that	you	Rebuild	indexes	and	views	and	Rebuild	OAMs.

5.		Display	the	iiiLIST	and	select	the	iiiEmployees	file.
6.		Right-click	and	select	Properties	from	the	context	menu.	Notice	that	the	file
properties	shows	brief	details	of	the	file	such	as	Date	Modified,	Task	ID	and
Local	Compile	State:

					You	will	be	using	this	logical	view	in	a	later	exercise.

Summary
Important	Observations

Logical	views	may	have	one	or	more	key	fields.
Keys	can	be	assigned	as	ascending	or	descending	sequence.
Numeric	sequence	can	be	signed,	unsigned	or	an	absolute	value.
Refer	to	the	online	help	for	more	details	about	these	options.

Tips	and	Techniques
Logical	views	provide	an	efficient	means	to	create	sorted	indexes	to	quickly
access	a	file.

What	I	Should	Know
How	to	create	a	logical	view.
How	to	define	the	keys	to	the	logical	view.
How	to	rebuild	the	file	when	test	data	is	present.

REP007	-	File	Validation	Rules/Triggers

Application	business	rules	are	centrally	defined	in	the	LANSA
repository	as	validation	rules	either	in	the	field	or	the	file	definition.
Centralized	field	validations	remove	the	need	for	developers	to	code
the	same	validation	into	each	program	that	uses	the	same	file.		A	rule
is	checked	when	a	database	file	operation	(such	as	an	insert,	update	or
delete)	is	performed	using	the	specified	field(s).

Objectives:
To	highlight	the	difference	between	field	and	file	level	validation	rules	and
the	hierarchy	which	exists	between	these	rules.
To	show	how	multiple	rules	can	be	defined	for	a	field.
To	add	the	following	business	rules	to	file	iiiDepartments:

iDeptCode Must	be	in	range	A	to	ZZZ

To	add	the	following	business	rules	to	file	iiiEmployees:

iiiDeptCode iiiDeptCode	must	exist	in	file	iiiDepartments

iiiSalary Must	be	less	than	10000.00

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Add	a	Rule	to	file	iiiDepartments
Step	2.	Recompile	the	File	and	Test	Department	Rules
Step	3.	Referential	Integrity	Rule	in	iiiEmployees	File
Step	4.	Add	Rules	to	iiiSalary	Field
Step	5.	Recompile	the	File	and	Test	Employee	Rules
Step	6.	Complete	Referential	Integrity
Step	7.	Know	about	File	Level	Triggers
Summary

Before	you	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	previous
tutorials.

Step	1.	Add	a	Rule	to	file	iiiDepartments
In	this	step	you	will	review	the	field	level	validation	rule	defined	on	the
iiiDeptCode	field	that	you	created	in	exercise	REP001	-	Create	Fields.		(When
you	created	the	iiiDeptCode	field,	you	copied	the	validation	rules	from	the
DEPTMENT	field.)	You	will	also	add	a	rule	at	file	level	to	demonstrate	how
these	rules	interact.
1.		Open	file	iiiDepartments	in	the	Editor.
2.		Select	the	Rules	and	triggers	tab.
3.		Expand	the	two	existing	rules	to	see	their	complete	details.	Notice	both	rules
are	at	field	level	and	cannot	be	changed	using	the	Details	tab.	(You	need	to
open	the	field	to	edit	field	level	rules.)

					These	rules	state	that	the	Department	Code	and	the	Department	Description
codes	cannot	be	blank.

4.		Select	the	iiiDeptCode	field	in	the	list	of	rules	to	add	a	file	level	rule	to	it.
5.		Select	Add	button	on	the	Home	ribbon,	and	select	an	Add	Range	Check	rule
to	the	iiiDeptCode	field.

6.		In	the	Details	tab,	create	the	rule	as	follows	to	ensure	that	the	Department
Code	value	has	to	be	between	A	and	ZZZ:

Description Dept	must	be	A	to	ZZZ

Sequence 1

When	Inserting Always	apply	rule	(ADD)

When	Updating Apply	when	field	is	used	(CHGUSE)

When	Deleting Never	apply	rule

From	Value 'A'

To	value 'ZZZ'

	

					Your	Details	tab	should	now	look	like	this:

7.		In	the	Validation	Usage	section,	create	the	rule	actions	to	set	the	field	in	error
if	it	is	not	in	the	allowed	range:

If	field	is	in	the	range	of	values Evaluate	next	rule	(NEXT)

If	field	is	NOT	in	range	of	values Set	field	in	error	(ERROR)

Message	Number (delete	the	entry	in	this	field)

Message	File (delete	the	entry	in	this	field)

Message	Text Dept	must	be	in	range	A	to	ZZZ

	

					Your	Details	tab	should	now	look	like	this:

					The	recommended	way	to	specify	the	message	text	is	to	use	a	message
defined	in	a	Message	file	as	shown	in	Step	3.	Create	a	Rule	for	the	iiiSalary
Field.	However,	for	simplicity	in	the	rest	of	this	tutorial,	you	will	enter	the
message	text	in	the	rule	definition.

8.		Save	the	file.

Step	2.	Recompile	the	File	and	Test	Department	Rules
Because	you	have	changed	a	rule	(field	or	file	level)	in	the	repository,	the	OAM
of	the	file	must	be	recompiled.
1.		Before	submitting	the	compile,	check	that	you	do	not	have	any	functions	or
forms	active	which	are	accessing	the	Department	file,	otherwise	you	may
encounter	locking	problems.

2.		Compile	the	file	iiiDepartments.	Use	the	Verify	menu	and	select	the	Compile
option.	Check	that	your	compile	options	are	set	as	follows:

					Note	that	you	have	data	in	the	files	and	you	have	not	changed	the	table
definition	(that	is,	added	or	removed	fields).	Also,	you	have	not	added	or
removed	any	indexes/views.	Therefore	you	only	need	to	rebuild	the	OAM.

3.		Check	that	the	file	compile	completed	successfully.
4.		Execute	your	Department	Maintenance	form	iiiMaintDepartment.

a.		Try	to	add	a	blank	department	code.	Notice	the	validation	messages
which	appear	and	their	order	(use	the	up	and	down	buttons	in	the	status
bar).	You	will	see	both	the	field	and	file	level	messages.

b.		Try	to	add	a	department	code	of	111.	Notice	the	error	messages.
c.		Exit	the	application.

5.		Execute	your	Employee	Maintenance	form	iiiMaintEmployee.
a.		Try	to	add	a	new	employee	with	a	department	code	of	111.	Notice	there	is
no	error	because	the	rule	was	only	added	to	the	iiiDeptCode	field	in	file
iiiDepartments.

					The	rule	does	not	apply	to	the	file	iiiEmployees.
b.		Close	the	form.

6.		Close	the	file.

Step	3.	Referential	Integrity	Rule	in	iiiEmployees	File
In	this	step	you	will	add	a	Lookup	rule	to	the	Employee	file.	This	rule	specifies
that	the	Department	field	which	is	being	inserted	into	the	Employee	file	must
exist	in	the	Department	file.
1.		Open	file	iiiEmployees	in	the	Editor.	
2.		On	the	Home	ribbon,	expand	the	Views	menu,	to	select	the	Simple	rules	list.

The	simple	rules	list	gives	you	an	overview	of	all	the	rules	in	the	file	and
indicates	their	type	and	whether	a	rule	is	defined	in	the	field	or	file	definition.

3.		Select	the	iiiDeptCode	field	in	the	list	of	rules.
4.		Select	the	Designer	button	on	the	ribbon	and	expand	the	Add	menu	to	select
Add	Lookup	Check	to	add	the	rule	to	the	iiiDeptCode	field.

5.		In	the	Details	tab,	create	the	rule	as	follows:

Description Dept	must	exist	in	iiiDepartments

Sequence 1

File	name iiiDepartments

When	Inserting Always	apply	rule	(ADD)

When	Updating Apply	when	field	is	used	(CHGUSE)

When	Deleting Never	apply	rule

	

					Your	Details	tab	should	now	look	like	this:

6.		Complete	the	Actions	section,	to	define	the	actions	to	set	the	field	in	error	if
the	value	is	not	found:

If	a	"key	match"	is	found	in	target
file

Evaluate	next	rule	(NEXT)

If	a	"key	match"	is	NOT	found	in
target	file

Set	field	in	error	(ERROR)

Message	file (delete	the	entry	in	this	field)

Message	Number (delete	the	entry	in	this	field)

Message	text Department	must	exist	in
Department	File

	

					Your	Details	tab	should	now	look	like	this:

7.		Save	the	file.

Step	4.	Add	Rules	to	iiiSalary	Field
In	this	step	you	will	create	a	validation	check	on	the	iiiSalary	field	to	ensure	that
its	value	is	less	than	10000.	(The	field	already	has	a	rule	stating	that	it	cannot	be
0).	The	rule	will	be	a	range	check.
1.		The	iiiEmployees	file	should	be	open	in	the	Editor.		The	Rules	and	trigger
tab	and	Details	tab	should	be	visible.

2.		Select	the	iiiSalary	field	in	the	list	of	rules.
3.		Select	the	Designer	button	on	the	ribbon	and	expand	the	Add	menu	to	select
Add	Range	Check.

4.		In	the	Details	tab,	create	the	rule	as	follows:

Description Amount	must	be	less	than	10000

Sequence 1

When	Inserting Always	apply	rule	(ADD)

When	Updating Apply	when	field	is	used	(CHGUSE)

When	Feleting Never	apply	rule

From	Value 0.01

To	Value 10000

	

5.		Complete	the	Actions	section,	to	define	the	list	check	rule	as	follows:

If	field	is	in	the	range	of	values Evaluate	next	rule	(NEXT)

If	field	is	NOT	in	range	of	values Set	field	in	error	(ERROR)

Message	File (delete	the	entry	in	this	field)

Message	Number (delete	the	entry	in	this	field)

Message	Text Amount	must	be	less	than	10000

	

6.		Save	your	file	definition.

Step	5.	Recompile	the	File	and	Test	Employee	Rules
In	this	step	you	will	recompile	the	Employee	file	so	that	the	new	rules	will	be
applied.
1.		Before	submitting	the	compile,	check	that	you	do	not	have	any	forms	active
which	are	accessing	the	Employee	file,	otherwise	you	may	encounter	locking
problems.

2.		View	the	rules	for	the	Employee	file.	Notice	it	now	has	both	Field	and	File
Level	rules.

3.		Recompile	the	iiiEmployees	Employee	file.
					Note:	Once	again	that	the	changes	made	to	the	Employee	file	concern	file
level	validation	rules.	Therefore	you	need	to	recompile	the	OAM.	The	last
compile	action	used	this	option.	If	you	click	on	the	Compile	button,	the	same
option	will	be	used	again.

					Remember	to	check	the	correct	compile	options	are	used	by	using	the
Verify	/	Compile	option.

4.		Check		that	the	file	compile	completed	successfully.
5.		Execute	your	Employee	Maintenance	form	iiiMaintEmployee.

a.		Fetch	an	employee	and	try	to	update	the	details	with	a	Department	(such
as	XXX)	that	does	not	exist.

b.		Fetch	an	existing	record	and	try	to	change	the	Salary	to	10001.
					If	these	entries	weren't	rejected,	check	the	rules	that	you	created	during
the	previous	steps.

6.		Exit	the	application.
7.		Close	the	file	in	the	Editor.

Step	6.	Complete	Referential	Integrity
In	this	step	you	will	complete	the	referential	integrity	checks.	You	will	add	a
rule	that	checks	if	any	employees	exist	for	a	specific	department	before
allowing	the	department	to	be	deleted	from	the	Department	File.	This	rule	will
prevent	an	employee	from	losing	its	parent	department.
1.		Open	file	iiiDepartments	in	the	Editor.	
2.		Select	the	Rules	and	Triggers	tab.
3.		Select	the	key	field	iiiDeptCode	field	in	the	list	of	rules.
4.		Select	the	Designer	button	on	the	ribbon,	and	expand	the	Add	menu	to	select
Add	Lookup	Check	to	add	the	rule	to	the	iiiDeptCode	field.

5.		In	the	Details	tab,	create	the	rule	as	follows:

Description Cannot	delete	if	Employee	exists

Sequence 2

File	Name iiiEmpByDeptView

When	Inserting Never	apply	rule

When	Updating Never	apply	rule

When	Deleting Always	apply	rule	(DLT)

	

			Use	the	ellipsis	button	for	File	Name	to	use	the	Find	dialog		:

	

					Note	that	the	rule	is	only	enforced	when	deleting	a	record.	Your	Details	tab
should	now	look	like	this:

6.		In	the	Actions	section,	define	the	File	Lookup	Rule	to	set	the	field	in	error	if
the	department	exists	in	the	Employee	file:

If	a	"key	match"	is	found	in	target	file Set	field	in	error	(ERROR)

If	a	"key	match"	is	NOT	found	in
target	file

Evaluate	next	rule	(NEXT)

Message	file (delete	the	entry	in	this	field)

Message	Number (delete	the	entry	in	this	field)

Message	text Cannot	delete	if	used	in
Employee	file

	

					Your	Details	tab	should	now	look	like	this:

7.		Recompile	the	file	iiiDepartments.
					Check	the	file	compile	completed	successfully.
8.		Execute	your	Department	Maintenance	form	iiiMaintDepartment.

a.		Try	to	delete	department	ADM.	You	will	not	be	able	to	delete	this	record.

b.		Add	a	new	department	XYZ.	Delete	this	department.	The	delete	will	be

allowed	because	no	employees	have	been	defined	for	this	department.
9.		Exit	the	application.
10.	Close	the	file.

Step	7.	Know	about	File	Level	Triggers

A	database	trigger	is	a	condition	that	is	defined	for	a	field	or	file	in	the
repository.	Typically	triggers	are	used	to	move	complex	logic	to	the
file	definition.		The	trigger	definition	links	a	trigger	function	to	a
specific	database	operation	and	condition.	This	function	is	invoked
automatically	when	a	specific	type	of	I/O	operation	occurs	to	a	file
and	when	a	specific	set	of	conditions	are	met.

Similar	to	validation	checks,	LANSA	triggers	centralize	the	business	logic	of
your	application.	
A	LANSA	trigger	function	is	a	special	type	of	LANSA	function,	which	is
invoked	automatically	when	a	specific	type	of	I/O	operation	occurs	on	a	file
(Open,	Close,	Read,	Insert,	Update	and	Delete)	and	when	a	specific	set	of
conditions	are	met.
For	example,	as	an	audit	trail,	you	might	create	a	trigger	to	print	before	and	after
recording	specific	values.
Triggers	are	not	covered	in	this	tutorial	because	you	need	to	write	code	in	order
to	create	a	trigger	function.

Summary
Important	Observations

Field	level	validation	rules	are	applied	before	file	level	validation	rules.
The	sequence	of	rules,	combined	with	the	validation	actions,	is	very
important	in	controlling	when	multiple	rules	are	applied.
Referential	file	integrity	can	be	added	by	using	file	lookup	checks.
Remember	that	referential	integrity	is	usually	defined	in	both	files	within	a
relationship.	In	our	example,	Department	cannot	be	deleted	if	Employees
exist,	and	Employees	cannot	be	added	unless	the	Department	exists.
Notice	that	the	trigger	function	is	called	after	the	validation	rules	are
performed.	This	order	of	operations	prevents	invalid	data	from	being	passed
into	the	trigger.
Whenever	a	validation	rule	or	trigger	is	changed	(at	field	or	file	level),	the
file	OAM	needs	to	be	recompiled.

Tips	and	Techniques
Most	business	rules	should	be	defined	at	the	file	level.	Only	in	special
circumstances	should	you	use	a	field	level	rule.		For	example,	when	you
define	the	rule	for	iiiSalary	at	the	field	level,	then	every	file	using	the
iiiSalary	field	has	the	same	rules.	Quite	often,	the	iiiSalary	will	have	a
different	meaning	and	different	rules	when	used	in	a	different	file.
You	can	create	Complex	logic	rules	when	you	need	to	perform	more
complex	checking	than	supported		by	standard	value	types.
The	use	of	NEXT,	ERROR	and	ACCEPT	processing	with	multiple	rules	for
a	field	is	very	important.	ACCEPT	processing	means	that	no	more	rules	are
evaluated.
It	is	very	important	that	you	check	the	Actions	tab	to	ensure	that	you	have
properly	defined	the	validation	usage,	that	is,		when	should	an	error	occur.
For	example,	a	simple	logic	check	rule	can	be	defined	as	(#DEPT	*NE
*BLANKS).	If	true,	is	this	an	error?
The	ADDUSE	and	CHGUSE	options	control	if	validation	rules	are
performed.	If	the	field	is	not	included	in	insert,	update	or	delete,	the	rule
check	will	not	be	performed.	Typically	CHGUSE	is	applied	on	file	rules	(not
ADDUSE	or	DLTUSE).	For	some	additional	explanation	of	ADDUSE	and
CHGUSE,	refer	to	the	Important	Observations	in	the	Summary	of	the

REP008	-	Virtual	Fields	exercise.	This	exercise	gives	an	example	of	how
these	options	can	be	used.
Trigger	functions	are	very	useful	if	you	want	to	perform	server-side
procedures	when	building	client/server	or	web-based	applications.
Trigger	functions	can	be	used	to	define	virtual	fields	and	can	be	used	to
perform	complex	validation	rules	in	a	file.

What	I	Should	Know
Where	validation	rules	are	performed	in	the	LANSA	architecture.
What	rules	are	supported	at	the	file	level.
At	what	level	you	should	specify	most	of	your	rules.
In	what	order	are	the	field	and	file	validation	rules	performed.
How	to	use	a	code	file/table	lookup	rule	to	create	referential	integrity.
That	you	need	to	recompile	your	file	after	you	have	changed	it.

REP008	-	Virtual	Fields

A	virtual	field	is	a	field	which	appears	as	part	of	a	file	but	does	not
actually	exist	in	the	physical	database	file.	Its	value	is	dynamically
derived	based	on	the	fields	in	the	file.	Virtual	fields	provide	flexibility,
since	you	can	combine	or	extract	data	from	fields	in	a	file	and	extend
the	information	already	contained	in	the	file.

Objectives:
To	explain	virtual	fields.
To	highlight	the	different	types	of	virtual	fields	that	can	be	defined	using	the
LANSA	Repository.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Add	Virtual	Fields	to	Employee	File
Step	2.	Calculation	Virtual	Field
Step	3.	Concatenation	Virtual	Field
Step	4.	Code	Fragment	Virtual	Fields
Step	5.	Create	Test	Form
Summary

Before	you	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	previous
tutorials.

Step	1.	Add	Virtual	Fields	to	Employee	File
In	this	exercise,	you	will	see	how	the	multi-add	field	feature	can	be	used	to
create	fields	in	the	repository	as	they	are	added	to	the	file.		You	will	use	these
new	fields	as	virtual	fields	in	the	Employee	file.
1.		Open	file	iiiEmployees	in	the	Editor.	
2.		In	the	Fields	in	File	tab,	Select	the	Designer	button	on	the	ribbon	and	expand
the	Add	menu	to	select	Multi-add	fields.	The	Add	Fields	to	the	File	window	is
displayed.

3.		Add	the	following	fields	(where	iii=your	initials).	Remember	to	tick	the
Virtual	check	box.

Field	Name Description Type Length Dec Virtual

iiiTaxAmount Income	Tax	to	Deduct Packed 6 2 ü	yes

iiiFullEmployNumber Full	Employee
Number

Alpha 9 	 ü	yes

iiiEmployYears Years	with	Company Packed 2 	 ü	yes

iiiNoteLength Length	of	Notes	as
Characters

Packed 5 	 ü	yes

	

					The	autocomplete	feature	will	attempt	to	match	existing	fields	in	the
repository	and	will	leave	default	values	that	need	to	be	changed.	Be	sure	to
enter	the	correct	descriptions,	type,	length,	decimals	and	set	the	virtual	flag.

4.		Press	OK.

5.		When	prompted	to	create	the	fields,	click	the	Create	All	button.
6.		Your	new	fields	in	the	file	will	appear	like	this:

7.		You	need	to	make	some	modifications	to	your	new	fields	in	the	Repository:
a.		Right-click	iiiTaxAmount	field	and	choose	the	Open	option	from	the
context	menu:

b.		Make	the	Edit	Mask	A.
8.		Save	and	close	the	field.
9.		Open	the	iiiNoteLength	field	in	the	Editor.

a.		Change	the	Edit	Mask	to	be	2.
10.	Close	and	save	the	field.
						Note	that	there	are	warning	messages	for	the	new	virtual	fields	indicating
they	do	not	have	a	derivation	logic.

Step	2.	Calculation	Virtual	Field
In	this	step	you	will	define	the	iiiTaxAmount	virtual	field	to	be	calculated	as
25%	of	the	iiiSalary	field:
1.		Select	the	iiiTaxAmount	field	in	the	list	of	Undefined	virtuals.
2.		In	the	Details	tab,	enter	the	following:

Virtual	field	type Calculation

Derive	value	when	record	is	read ü	Select	option	for	yes

	

Factor Operation Factor Result

iiiSalary / 100 *WORKFLD

*WORKFLD * 25 iiiTaxAmount

	

					Your	Details	tab	should	now	look	like	this:

	Note:
Calculation	Virtual	Fields	can	only	be	calculated	when	a	record	is	read.

They	are	Display-only	Virtual	fields.
3.		Now	that	its	derivation	has	been	defined,	the	iiiTaxAmount	field	will	be
listed	under	Read	virtuals.	

Step	3.	Concatenation	Virtual	Field
In	this	step	you	will	concatenate	the	Department	field	iiiDeptCode	with	the
Employee	Number	field	iiiEmployNumber	to	set	the	value	of	the	Full	Employee
Number	field	iiiFullEmployNumber.
1.		Select	the	iiiFullEmployNumber	field	in	the	list	of	Undefined	virtuals.
2.		In	the	Details	tab,	enter	the	following:

Virtual	field	type Concatenation

Derive	value	when	record	is	read Select	box	for	yes

Populate	real	field	when	writing	to	the	fileNo

Field	name iiiDeptCode		iiiEmployNumber

	

					Your	Details	tab	should	now	look	like	this:

3.		The	iiiFullEmployNumber	field	will	now	be	listed	under	Read	virtuals.

Step	4.	Code	Fragment	Virtual	Fields
In	this	step	you	will	use	a	Code	Fragment	derivation	to:

Assign	the	length	of	the	Notes	field	to	the	iiiNoteLength	virtual	field	and
To	set	the	value	of	the	iiiEmployYears	fields	to	be	the	number	of	years	the
employee	has	been	with	the	company.

1.		Select	the	iiiNoteLength	field	in	the	list	of	Undefined	virtuals.
2.		In	the	Details	tab,	enter	the	following:

Virtual	field	type Code	Fragment
Derive	value	when	record	is
read

Select	for	Yes

Virtual	Field	Derivation #iiiNoteLength	:=
#iiiEmployNotes.CurChars
Replace	iii	with	your	initials.

					Your	Details	tab	should	now	look	like	this:

					The	code	fragment	uses	an	RDMLX	intrinsic	method	CurChars	to	determine
the	number	of	characters	in	the	iiiEmployNotes	field	and	assigns	the	result	to
the	iiiNoteLength	field.

3.		The	iiiNoteLength	field	will	now	be	listed	under	the	Read	virtuals.
					Next	you	will	set	the	iiiEmployYears	field	to	show	how	many	years	an
employee	has	worked	for	the	company	based	on	the	Start	Date	field.

4.		Select	the	iiiEmployYears	field	in	the	list	of	Undefined	virtuals.
5.		In	the	Details	tab,	enter	the	following:

Virtual	field	type Code	Fragment

Derive	value
when	record	is
read

ü	Select	this	option

Virtual	Field
Derivation

#iiiEmployYears	:=
#iiiStartDate.Date.Now.Difference(#iiiStartDate)	/
365
(you	can	copy	and	paste	this	code	from	the	online
guide	Tutorials,	substituting	your	initials	for	iii)

	

					Your	Details	tab	should	now	look	like	this:

					The	code	fragment	uses	RDMLX	intrinsic	methods	Date	and	Difference	to
compare	the	date	portion	of	the	iiiStartDate	field	with	today's	date	and
divides	the	result	by	365.

					All	your	virtual	fields	are	now	listed	under	Read	Virtuals.

6.		Compile	the	file	and	ensure	the	compilation	ends	without	errors.

Step	5.	Create	Test	Form
In	this	step	you	will	create	a	form	that	will	show	the	real	fields	and	the	virtual
fields	in	the	Employee	file.
1.		Create	a	form.

a.		Enter	the	following	characteristics	for	the	form:

Name iiiMaintEmployVirtuals				(where	iii=your	initials)

Description Real	and	Virtual	Fields	in	Employee	File

RDMLX	Enabled ü	Yes

	

2.		Once	the	Editor	has	opened,	make	your	form	wider.
3.		Display	the	iiiLIST	tab	and	expand	the	iiiEmployees	file	to	display	the	fields
it	contains.	Notice	that	the	real	fields	and	the	virtual	fields	have	different
icons:

4.		Drag	and	drop	all	the	real	fields	to	your	form.	Select	them	as	a	group	using
the	Shift	+	Left	Mouse	button.

5.		Drag	all	the	virtual	fields	next	to	the	real	fields.

6.		Display	the	Controls	tab	and	drag	and	drop	a	push	button	to	the	form.

7.		With	the	push	button	select,	on	the	Details	tab,	make	the	Caption	of	the
button	Fetch.

8.		Display	the	Events	tab	and	double	click	on	the	Click	event	to	create	an	Click
event	routine	for	the	button.

9.		Display	the	Source	tab	of	your	form	and	add	this	code	inside	the	event
routine	for	#PHBN_1.Click	replacing	III	with	your	initials:
EVTROUTINE	HANDLING(#PHBN_1.Click)
Fetch	FIELDS(*all)	from_file(iiiEmployees)	with_key(#iiiEmploynumber)
ENDROUTINE

					Your	form	is	now	ready	to	compile.
10.	Compile	and	execute	your	form.

a.		Enter	an	Employee	number	and	click	Fetch.
b.		Note	how	the	virtual	field	values	are	based	on	the	real	field	values.

11.	Exit	the	form.
12.	Close	the	form	in	the	Editor.

Summary
Important	Observations

Virtual	fields	must	be	first	be	defined	in	the	Repository.	The	virtual	fields
can	then	be	added	to	the	file	definition.
Calculation	virtuals	can	only	be	defined	as	Derive	value	when	record	is	read.
The	other	virtuals	can	use	be	defined	as	Derive	value	when	record	is	read
and	Populate	real	field	when	writing	to	the	file.
Virtual	fields	can	have	validation	rules	just	like	real	fields.

Tips	and	Techniques
The	Multi-add	fields	feature	can	add	both	real	and	virtual	fields.
Virtual	fields	cannot	be	used	as	key	fields.
Triggers	provide	another	option	for	defining	virtual	fields	in	a	file	when
more	complex	coding	is	required.

What	I	Should	Know
What	are	the	different	types	of	virtual	fields.
How	to	add	virtual	fields	to	a	file.

REP009	-	Access	Routes	and	Predetermined	Join	Fields

LANSA	uses	access	routes	to	describe	relationships	between	files	in	a
database.	Access	routes	are	simply	descriptions	which	answer
questions	such	as	"How	do	I	access	the	associated	records	in	file	B,
given	that	I	have	a	record	from	file	A?"	They	have	no	physical	impact
on	the	database.

A	predetermined	join	field	(PJF)	is	a	special	kind	of	virtual	field
based	on	access	routes	whose	value	is	determined	by	a	field	in	another
file.	(Ordinary	virtual	fields	are	always	based	on	fields	within	its	own
file	definition.)

Objectives:
To	create	an	access	route	to	define	the	relationships	between	the	Department
and	Employee	files
To	show	how	to	create	and	maintain	predetermined	join	fields	(PJFs).
To	add	a	calculated	predetermined	join	field	to	the	Department	File	based	on
the	fields	in	the	Employee	file.
To	add	a	file	lookup	Predetermined	Join	Field	to	the	Employee	File	based	on
the	fields	in	the	Department	file.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Understand	the	Database	Relationship
Step	2.	Create	Access	Route	from	Department	File
Step	3.	Create	Access	Route	from	Employee	File
Step	4.	Create	Fields	in	the	LANSA	Repository
Step	5.	Add	File	Lookup	PJF	to	Employee	File
Step	6.	Test	New	PJF	in	Employee	File
Step	7.	Add	PJFs	to	Department	File
Step	8.	Modify	Test	Form
Summary

Before	you	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	previous
tutorials.

Step	1.	Understand	the	Database	Relationship
Before	creating	an	access	route,	you	need	to	understand	the	relationship
between	the	Department	(iiiDepartments)	and	the	Employee	(iiiEmployees)
files	that	you	have	already	created.	The	company	structure	is	a	hierarchy	of
departments	and	employees:

Departments ADM LGL TRN TRV

	

Employees 01,02 03 04

	

Departments	have	employees.	An	employee	cannot	exist	without	the
department.	Stated	another	way,	the	department	is	the	parent	or	owner	of	its
employees.
Relationships	work	in	both	directions.	From	the	perspective	of	the	Employee
file,	it	is	the	child	of	the	Department.	An	employee	belongs	to	just	one
Department.

Step	2.	Create	Access	Route	from	Department	File
In	this	step	you	will	create	an	access	route	from	the	Department	file	to	the
Employee	file	to	describe	the	file	relationship.
1.		Open	file	iiiDepartments	in	the	Editor.
2.		Select	the	Access	Routes	tab.
3.		Click		the	Add	button	on	the	Home	ribbon	and	select	Add	Access	Route	from
the	menu.

					Note:	The	ribbon	is	context	sensitive.	Add	Access	Route	is	the	only	valid
option	at	this	point.

4.		In	the	Details	tab,	enter	the	following	characteristics:

Access	route	name iiiTOEMP			(where	iii=your	initials)

Description To	Employee	File

Accessed	file iiiEmpByDeptView	***

Maximum	records More	than	one

Keep	last 	

Default	action Ignore	and	continue	processing	(IGNORE)

Derivation: After	virtual	fields

	

	***	Use	the	ellipsis	button	and	Find	dialog	to	select	the	logical	file.
					Your	Details	tab	will	look	like	this:

5.		Use	the	Add	button	on	the	Home	ribbon,	to	select	Add	Key.	Use	the	ellipsis
button	and	then	the	Find	dialog	to	select	the	key	field	from	the	Department
File,	iiiDeptCode

					Note:	The	Target	Key	has	been	recognized	and	selected	in	the	Department
file.

6.		Your	Access	Route	definition	should	now	look	like	the	following.

7.		Save	and	close	the	file.

Step	3.	Create	Access	Route	from	Employee	File
In	this	step	you	will	create	an	access	route	from	the	Employee	file	to	the
Department	file	to	describe	the	file	relationship.
1.		Open	file	iiiEmployees	in	the	Editor.	
2.		Select	the	Access	Routes	tab.	Ensure	that	the	Details	tab	is	visible.
3.		Use	the	Add	button	on	the	Home	ribbon,	to	select	Add	Access	Route	from	the
menu.

4.		In	the	Details	tab,	enter	the	following	characteristics:

Access	route	name iiiTODEPT

Description To	Department	File

Accessed	file iiiDepartments

Maximum	records One

Keep	last 	

Default	action Abort	and	issue	an	error	message	(ABORT)

Derivation: After	virtual	fields

	

5.		Click	on	Keys	/	New	and	use	the	ellipsis	button	and	Find	dialog	to	select	the
Key	Field/Value	to	lookup	a	Department	as,iiiDeptCode.

6.		Your	Access	Route	definition	should	look	like	the	following:.

7.		Save	and	close	the	file.

Step	4.	Create	Fields	in	the	LANSA	Repository
In	order	to	add	a	Predetermined	Join	Field	to	a	file	definition,	the	field	has	to
first	be	defined	in	the	Repository.	In	this	step	you	will	create	two	field
definitions	which	you	will	use	when	creating	your	Predetermined	Join	Fields.
1.		Create	two	fields	called	iiiTotalSalaryPJF	and	iiiDeptDescPJF.	The
iiiTotalSalaryPJF	field	will	contain	the	total	value	based	on	the	iiiSalary	field.
The	iiiDeptDescPJF	field	will	hold	the	Department	Description	based	on	the
iiiDeptDescription	field.

2.		In	the	most	efficient	means	possible,	create	the	following	fields	with	the
basic	characteristics	listed	below.	(Reminder:	iii=your	initials.)

Field	name: iiiDeptDescPJF

Description: Department	Description

Type: Alpha

Length: 20

	

Field	name: iiiTotalSalaryPJF

Description: Total	Salaries

Type: Packed

Length: 11

Decimals: 2

Edit	mask: A

	

Step	5.	Add	File	Lookup	PJF	to	Employee	File
In	this	step	you	will	add	a	PJF	for	the	Department	Description	field	from	the
iiiDepartments	Department	file	to	the	iiiEmployees	Employee	file.	By	defining
a	PJF	(Predetermined	Join	Field)	in	the	file,	you	can	access	the	Department
Description	each	time	the	Employee	file	is	accessed	without	writing	extra	code
to	access	the	Department	file.	This	field	will	appear	as	if	it	is	simply	part	of	the
Employee	file,	and	will	be	retrieved	by	the	OAM.
1.		Open	file	iiiEmployees	in	the	Editor.
2.		Ensure	that	the	Fields	in	File	tab	is	visible.	Notice	that	no	PJFs	have	been
defined.

3.		Select	the	Access	Routes	tab	to	add	your	new	predetermined	join	fields.
4.		Select	the	IIITODEPT	access	route.	Use	the	Add	button	on	the	Home
ribbon,	and	select	Add	PJF	from	the	menu.

5.		Complete	the	Details	tab,	by	enter	the	following	characteristics:

PJF	field iiiDeptDescPJF

PJF	Type Lookup

Source	field iiiDeptDescription	

	

	Use	the	ellipsis	button	and	Find	dialog	to	select	each	field.					
					Your	Details	tab	will	now	look	like	this:

					The	value	of	the	iiiDeptDescription	from	the	Department	file	will	now	be
retrieved	and	returned	to	a	LANSA	program	as	the	field	iiiDeptDescPJF	in
the	Employee	file.

					Note:	Predetermined	Join	Fields	are	display	only	fields.
					Your	access	route	should	now	appear	like	this:

6.		Select	the	Fields	in	File	tab.	Your	field	list	should	now	appear	like	this:

7.		Select	the	Select	View	Style	button	and	change	the	display	to	Fields	List
View	to	get	a	different	overview	of	your	file:

					Your	Fields	in	File	tab	will	now	look	like	this:

8.		Click	the	iiiDeptDescPJF	field.	Notice	that	it	is	possible	to	edit	the	PJF
definition	from	the	Fields	in	File	tab.

9.		Compile	the	file	and	close	it.

Step	6.	Test	New	PJF	in	Employee	File
In	this	step	you	will	add	the	predetermined	join	field	Department	description	to
iiiMaintEmployVirtuals	(Real	and	Virtual	Fields	in	Employee	File).
1.		Using	the	iiiLIST	tab,	locate	and	open	the	form	iiiMaintEmployVirtuals.

a.		Display	the	Design	tab.
b.		In	the	iiiLIST	tab	locate	the	iiiDeptDescPJF	(Department	Description)
field.

c.		Drag	the	iiiDEPPJF	field	onto	the	form	above	the	virtual	fields.	You	may
need	to	move	the	existing	virtual	fields	lower.

					Hint:	Select	the	four	virtual	fields	using	the	Shft+Left	mouse	button,	and
drag	them	lower	with	the	Ctrl+Cursor	key.

					Note:	You	will	not	need	to	change	the	source	code,	because	the	FETCH
statement	uses	the	Fields(*all)	parameter.

2.Compile	the	form.

3.Execute	the	form.

a.		Fetch	the	details	for	an	employee.
b.		You	will	see	the	Department	description	such	as	Administration	retrieved
into	the	Department	PJF	field	from	the	Department	file.

4.		Exit	the	form.
5.		Close	the	form	in	the	Editor.

Step	7.	Add	PJFs	to	Department	File
In	this	step	you	will	add	a	calculation	type	virtual	field	to	the	Department	file
based	on	the	salary	data	in	the	Employee	file.
1.		Open	the	Department	file	iiiDepartments	in	the	Editor.	
2.		Ensure	that	the	Fields	in	File	tab	and	the	Details	tab	are	visible.	Notice	that
no	PJFs	have	been	defined.

3.		Select	the	Access	Routes	tab	to	add	your	new	predetermined	join	fields.
4.		Select	the	iiiTOEMP	access	route.	Click	the	Add	button	on	the	Home	ribbon
and	select	Add	PJF	from	the	drop	down	list.

5.		In	the	Details	tab,	enter	the	following	characteristics:

PJF	field iiiTotalSalaryPJF

PJF	Type Total

Source	field iiiSalary

	

	Use	the	ellipsis	and	Find	dialog	to	select	the	fields.				
					Your	Details	tab	will	now	look	like	this:

6.		Compile	the	file.
7.		Close	the	file	in	the	editor.

Step	8.	Modify	Test	Form
In	this	step	you	will	modify	your	existing	Search	by	Department	Description
form	to	include	the	predetermined	join	field	Total	Salaries.	This	field	will	show
the	total	salaries	per	department.
1.		Using	iiiLIST	tab,	locate	and	open	form	iiiSearchDeptByDesc.
2.		Drag	the	field	iiiTotalSalaryPJF	to	the	form.

3.		Switch	to	the	Source	tab	and	modify	the	FETCH	command	to	either	include
iiiTotalSalaryPJF	or	change	the	Fields()	parameter	to	*ALL.
Fetch	Fields(*ALL)	From_File(IIIDEPARTMENTS)	With_Key(#IIIDEPT)

4.		Compile	your	form.	Check	that	the	compile	completed	successfully.
5.		Execute	your	form.

a.		Fetch	the	Administration	department	(depending	on	what	changes	you
made	to	the	form	in	the	tutorial	REP006	-	Logical	Views,	you	may	need	to
fetch	the	department	either	by	the	description	or	the	code).

					Notice	the	value	for	the	predetermined	joined	field	Total	Salaries.	It
shows	the	combined	monthly	salaries	of	all	employees	in	the	Employee
file	for	the	department	you	retrieved.

6.		Exit	the	form.
7.		Close	the	form	in	the	Editor.

Summary
Important	Observations

Your	file	OAM	needs	to	be	recompiled	once	access	routes	are	added.
The	type	of	PJF	that	can	be	created	is	based	on	the	definition	of	the	access
route.	If	the	relationship	is	one	to	one,	only	a	lookup	can	be	created.	If	the
relationship	is	one	to	many,	calculation	type	PJFs	can	be	added.
PJFs	are	listed	in	the	Field	in	File	tab	and	can	be	edited	from	this	tab	but
they	cannot	be	added.	You	need	to	add	a	PJF	by	first	selecting	an	access
route	on	which	the	PJF	will	be	based.
In	addition	to	defining	PJFs,	access	routes	are	used	in	LANSA	templates	to
show	related	files	and	in	LANSA	Client	to	show	linked	or	joined	files.

Tips	and	Techniques
The	Keep	last	parameter	is	used	to	improve	performance.	It	specifies	the
number	of	retrieved	PJF	values	to	be	kept	in	memory.		This	value	applies	to
PJFs	defined	on	the	access	route	when	the	relationship	is	one	to	one.
Be	very	careful	with	excessive	use	of	PJFs.	There	are	performance
implications	of	overusing	PJFs.
You	can	also	use	trigger	functions	to	perform	the	same	type	of	calculations
or	lookup	operations	that	are	performed	by	a	PJF.

What	I	Should	Know
What	an	access	route	is.
How	an	access	route	is	defined.
Where	access	routes	are	used.
Where	else	in	LANSA	access	routes	are	used.
What	a	Predetermined	Join	Field	is.
What	operations	can	be	performed	by	a	PJF.
How	to	add	and	maintain	PJF	definitions.
What	the	relationship	between	PJF	and	access	routes	is.

REP011	-	Repository	Summary
Objectives

To	use	the	knowledge	you	have	acquired	in	the	previous	tutorials	to	create
LANSA	fields	and	a	file	with	validation	rules,	virtual	fields,	PJFs	and	a
logical	view.

					The	file	you	will	create	will	be	called	Employee	Holidays	iiiEmpHolidays
(where	iii=your	initials)	with	the	following	fields:

iiiEmployNumber Existing	employee	number	field 	

iiiHolCode Holiday	Code 	

iiiHolStartDate Holiday	Start	Date Showtime	=
False

iiiHolEndDate Holiday	End	Date Showtime	=
False

iiiHolComments Holiday	Comments Allow	lower
case

	 	 	

iiiHolDuration Holiday	Duration	(virtual	field) Edit	Mask	=	2

iiiSurnamePJF Employee	Surname	(PJF	from	the
employee	file)

	

To	create	an	application	to	maintain	the	file	and	another	application	to	use
the	logical	view	to	search	the	file.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Create	the	File	Definition
Step	2.	Modify	Field	Definitions
Step	3.	Add	Rules	to	the	File
Step	4.	Create	and	Execute	a	Test	Form
Step	5.	Add	a	Virtual	Field	to	Your	File
Step	6.	Create	an	Access	Route	and	a	Predetermined	Join	Field	(PJF)
Step	7.	Recreate	Employee	Holidays	Application

Step	8.	Create	a	Logical	View	and	Test
Summary

Some	Helpful	Tips
If	you	need	additional	help	completing	any	of	the	steps,	refer	back	to	the
exercises	in	the	appropriate	lessons.
Remember	to	use	the	online	Help	and	the	LANSA	documentation.

Step	1.	Create	the	File	Definition
In	this	step	you	will	create	an	employee	holiday	file	which	will	contain	the
details	of	the	employees'	holidays.

1.		Create	a	file	called	iiiEmpHolidays,	Employee	Holidays.	Make	it	RDMLX
enabled.

2.		Using	the	Multi-Add	Fields	option	in	the	file,	add	these	real	fields	to	the	file:
					Don't	forget	to	define	the	key	fields.

iiiEmpHolidays Employee	Holiday	File Type Length Key

iiiEmployNumber Employee	number Alpha 2 1

iiiHolCode Holiday	Code Alpha 3 2

iiiHolStartDate Holiday	Start	Date DateTime 26 	

iiiHolEndDate Holiday	End	Date DateTime 26 	

iiiHolComments Holiday	Comments String 512 	

	

Step	2.	Modify	Field	Definitions
In	this	step:
1.		Change	the	Holiday	Start	Date	and	Holiday	End	Date	fields	to	only	show	the
date,	not	the	time.

2.		Change	the	Holiday	Comments	to	be	visualized	by	default	as	a	multiline	edit
box,	and	to	allow	lower	case

Step	3.	Add	Rules	to	the	File
In	this	step	add	rules	to	the	Holidays	file:
1.		To	ensure	that	the	employee	number	in	the	Holidays	file	exists	in	the
Employee	file.

2.		To	ensure	the	holiday	code	can	be	either	'ANL'	(Annual	Leave)	or	'OWN'
(Leave	without	Pay).

					Check	your	validation	rules	using	the	Simple	Rules	List	in	the	Rules	and
Triggers	tab.

					Remember	to	compile	your	file	and	check	your	compile	settings

Step	4.	Create	and	Execute	a	Test	Form
In	this	step	create	a	form	to	maintain	the	holiday	file.
1.Switch	to	your	Employee	Holiday	file	in	the	editor	and	select	the	File
Attributes	tab.	Note	the	Identifier	for	the	file,	for	example	IIIEMPHOLI.	This
must	be	used	as	the	file	name	in	the	template.

2.		Create	a	form	iiiMaintEmpHols	Employee	Holidays.
3.		Use	the	VL_BASEMNT	template	to	create	a	maintenance	application	for	the
iiiEmpHolidays	file.

4.		When	running	the	template:
a.Choose	FF	layout.
b.Response	to	"Supply	a	word	….."	must	be	a	single	word,	with	no	spaces.
c.Include	all	the	fields	in	the	file.

5.		Compile	and	execute	the	form.	Make	sure	you	are	executing	it	locally.
6.		Enter	holiday	information	for	employees	01,	02	and	03.
7.		Test	what	happens	when	you	try	to	insert	information	for	employees	that	do
not	exist	in	the	Employee	file.

8.		Try	to	use	a	holiday	code	other	than	ANL	or	OWN.

Step	5.	Add	a	Virtual	Field	to	Your	File
In	this	step	create	a	field	Holiday	Duration	iiiHolDuration	which	will	be	used	as
a	virtual	field	in	the	Holiday	file.

Field	Name Field	Description Type Length Virtual

iiiHolDuration Holiday	Duration	(virtual	field) Alpha 40 Yes

	

1.		Create	the	virtual	field	derivation	in	your	file.	It	will	show	the	holiday	dates
like	this:

2.		Make	it	a	Code	Fragment	derivation.	It	needs	to	be	derived	when	the	record
is	read.

					Copy	this	code	from	the	online	guide	Tutorials	to	create	the	field	derivation:
#iiiHolDuration	:=	#iiiHolStartDate.AsDisplayString(
DDXXbMMMMMMMMMbCCYY)	+	'		-		'	+
#iiiHolEndDate.AsDisplayString(DDXXbMMMMMMMMMbCCYY)
	

					Note:	Changing	your	font	to	a	small	size	such	as	8pt	(see	Options	/	Font)
will	make	editing	the	above	code	much	easier.

Step	6.	Create	an	Access	Route	and	a	Predetermined	Join	Field
(PJF)
In	this	step	create	an	access	route	from	the	Employee	Holidays	file	to	the
Employee	File.	The	number	of	records	is	1.
1.		Create	a	field	for	the	employee	surname	to	be	used	as	a	PJF	as	follows.

Field	Name Field	Description Type Length 	

iiiSurnamePJF Employee	Surname Alpha 25 Allow	LC

	

2.Define	an	Access	Route	to	the	Employee	file,	with	a	key	of	iiiEmployNumber.
3.		Define	the	Predetermined	Join	Field	to	retrieve	iiiSurnamePJF	from	the
employee	surname	(iiiSurname)	in	the	Employee	file.	This	is	a	lookup	PJF.

					Remember	to	compile	your	file.

Step	7.	Recreate	Employee	Holidays	Application
In	this	step	recreate	the	Employee	Holidays	application	again	to	include	the
virtual	field	and	the	predetermined	join	field.
1.		Open	iiiMaintEmpHols	and	display	the	Source	tab.
2.		Delete	all	the	code	in	the	Source	tab.
3.		Run	the	template	VL_BASEMNT	and	include	all	the	fields.
4.		Make	sure	the	Holiday	Duration	and	the	Employee	Surname	fields	are	not
hidden	behind	the	Holiday	Comments	field	on	the	form.

5.		Compile	and	execute	your	form.
6.		Fetch	holiday	details	for	an	employee	and	holiday	code.

					Note	the	Holiday	Duration	and	Employee	Surname	fields.

Step	8.	Create	a	Logical	View	and	Test
In	this	step	first	create	a	logical	view	of	the	Employee	Holidays	file	keyed	by
the	Holiday	Code:

1.		Create	a	logical	view	called	iiiEmpHolByCode	and	key	it	by	the	iiiHolCode
field.

2.		Compile	the	file.	Use	Verify	/	Compile	to	check	you	are	using	the	required
compile	options.

					Create	a	form	to	test	the	logical	view:
3.		Create	form	iiiEnqEmpHols	with	the	description	Holidays	by	Holiday	Code:

a.		Display	the	Common	Controls	tab	and	drag	a	Push	button	and	a	List
view	to	your	form.

b.		Change	the	button	Caption	to	Fetch.
c.		Select	the	Events	tab	and	double	click	on	the	Click	event	to	create	an
event	routine	for	the	push	button.

d.		Display	the	iiiLIST	tab,	expand	the	file	iiiEmpHolidays	and	drag	the
iiiHolCode	(Holiday	Code)	to	the	top	of	the	form.

e.		Drag	the	Employee	Number	(iiiEmployNumber),	Surname
(iiiSurnamePJF)	and	the	Holiday	Duration	(iiiHolDuration)	into	the	list
view.	You	will	probably	need	to	widen	the	list	view	and	the	columns
which	will	have	been	created	for	the	fields.

f.		Display	the	Source	tab	and	complete	the	push	button	Click	event	routine.
Clear	the	list	view.
Select	entries	from	the	logical	file	in	holiday	code	order.
Retrieve	each	entry	with	the	key	Holiday	Code.
Add	an	entry	to	the	list	view.
End	the	Select	loop.

					New	code	is	shown	in	red.
Evtroutine	Handling(#PHBN_1.Click)
Clr_list	#LTVW_1Select	Fields(*ALL)	From_File(iiiEmpHolByCode)
With_Key(#iiiHolCode)
Add_Entry	To_List(#LTVW_1)
Endselect
Endroutine
	
					Replace	the	file	and	field	name	with	your	own	holiday	file	name	and
holiday	code	name.

g.		Compile	and	execute	the	form.
h.		Enter	a	holiday	code	and	press	the	button	to	fetch	the	records	with
matching	code:

i.		Replace	the	Holiday	Code	field	on	the	form	with	the	Employee	Number
field.

j.		Switch	to	the	Source	tab	and	change	the	Select	statement	to:
Select	Fields(*ALL)	From_file(iiiEmpHolidays)
With_key(#iiiEmployNumber)
	
						The	application	will	now	retrieve	records	from	the	Holiday	file	based	on
the	employee	number:

k.		Close	the	form.

Summary
Tips	and	Techniques

LANSA	provides	a	logical	modeling	tool	that	can	help	you	to	quickly	build
new	databases	or	extend	existing	databases.

What	I	Should	Know
How	to	use	the	features	in	the	LANSA	Repository	to	create	an	application
database.

REP012	-	Check	In	Objects	(Optional)
Objective:

To	learn	how	to	check	in	objects	to	the	LANSA	Master	Repository.
In	order	to	complete	this	exercise:

You	must	have	completed	the	previous	exercises.
You	must	have	a	properly	installed	and	configured	Visual	LANSA	Slave
System	with	a	working	connection	to	the	LANSA	Master	System	(a	System	i
is	assumed	in	this	exercise).	If	you	are	working	on	an	Independent	LANSA
system	you	cannot	do	this	exercise.
You	need	to	be	a	licensed	Visual	LANSA	developer	and	you	need	the	proper
LANSA	licenses	installed	that	allow	both	server	and	Visual	LANSA
development.	You	cannot	complete	this	exercise	if	you	are	using	a	trial
(unlicensed)	version	of	Visual	LANSA.

In	this	tutorial	you	will	check	into	the	master	system	the	Department
Maintenance	application	you	created	in	the	previous	tutorials.
To	achieve	these	objectives	you	will	complete	the	following:
Step	1.	Confirm	Connection	to	LANSA	Master	System	(Optional)
Step	2.	Check	in	the	Department	File	and	Fields
Step	3.	Verify	Objects	Exist	on	the	Server
Step	4.	Execute	Your	Application	Client	Server
Summary

Before	You	Begin
You	may	wish	to	review	the	following	topics:
In	the	Visual	LANSA	User	Guide:

Check	In	Tab
Check	Out	Tab
Propagation	Tab
In	the	Visual	LANSA	Administrator	Guide
Host	Monitor.

its:lansa012.CHM::/LANSA/l4wusr01_1815.HTM
its:lansa012.CHM::/LANSA/l4wusr01_1820.HTM
its:lansa012.CHM::/LANSA/l4wusr01_1825.HTM
its:lansa011.chm::/Lansa/l4wADM03_0135.htm

Step	1.	Confirm	Connection	to	LANSA	Master	System	(Optional)
You	can	only	perform	this	step	if	you	can	access	your	LANSA	master	system	on
the	iSeries.
In	this	step	you	will	check	the	contents	of	your	LANSA	master	system	and
confirm	that	your	master	system	profile	and	task	ID	are	valid	by	connecting	to
the	master.
1.		Logon	to	your	LANSA	master	system	using	Client	Access	or	any	available
5250	emulator.	Use	your	developer	profile	and	task	ID	to	confirm	that	the
profile	and	task	ID	are	valid	for	development	on	the	master.	Logon	to	the
LANSA	partition	where	you	will	check	in	your	changes.	For	example:

					Note:	Use	the	partition	name	assigned	for	training.
2.		From	the	LANSA	Main	System	Menu,	select	the	option	to	Work	with	Files.
					Use	the	Position	to	field,	to	list	files	beginning	with	your	initials.	At	this
point	your	files	are	not	defined	in	LANSA	for	iSeries.	Your	list	of	files	will
look	something	like	the	following:

3.		Exit	the	LANSA	master	system.

Step	2.	Check	in	the	Department	File	and	Fields
In	this	step	you	will	check	in	your	Department	File	(iiiDepartments)	and	its
fields.	When	you	check	in	a	file	you	should	always	consider	whether	there	are
any	fields	or	system	variables	which	it	depends	on,	which	need	to	be	checked	in
at	the	same	time.
1.		Display	your	dynamic	list	iiiList	on	the	Favorites	tab.	It	contains	all	fields,
files	and	forms	beginning	with	your	initials	iii.

2.		Select	the	file	iiiDepartments	and	right	click	to	display	the	context	menu.
3.		Choose	the	check	In	option

4.		In	the	Check	In	dialog,	expand	the	Files	node	and	select	the	file
iiiDepartments.

5.		Click	on	the	Cross	References	button	 	on	the	toolbar	to	include	the	fields
used	by	this	file.

					The	Local	Cross	References	dialog	is	displayed.	This	shows	all	objects
referenced	by	file	iiiDepartments	and	its	dependents.

					The	file	must	be	compiled	locally	to	generate	the	Local	Cross	Reference
information.

					You	do	not	need	to	check	in	system	variables	and	standard	fields	which	will
already	be	defined	in	the	master	repository.

					Notice	that	the	Allow	Check-in	column	highlights	the	objects	which	could	be
checked	in.

6.		Select	the	fields	iiiDeptDescription,	iiiDeptCode	and	iiiTotalSalaryPJF.

7.		Click	on	the	Add	for	check	in	button	 	to	add	these	fields	to	the	check	in.
					The	Check	In	Options	dialog	now	shows	all	the	selected	objects.	Note	that
the	check	in	options	available	depend	on	the	type	of	objects	being	checked	in.

					In	this	case	you	are	checking	a	new	file	to	the	master	repository.	The
Compile	File	option	shown,	will	build	table,	indexes	and	OAM	for	the	new
file.

					When	checking	in	a	changed	file	you	should	select	the	appropriate	rebuild
options.

					Delete	$$	file	is	required	when	rebuilding	a	file,	so	that	LANSA	can	rename
the	existing	file	and	map	data	from	old	file	to	new.

Depending	on	the	user	id	and	task	tracking	settings	in	your	system,	a	Keep
Locks	option	may	appear	on	the	bottom	left	of	this	dialog.	Selecting	this	option
ensures	that	any	new	or	modified	objects	checked	into	the	master	will	remain
locked	to	the	Task	ID	you	are	using.	For	further	information,	refer	to	Unlock
Objects	in	Task	Tracking	in	the	Administrator's	Guide.
8.		Press	OK	to	start	the	check-in.
					The	Check	In	tab	shows	the	progress	of	the	check	in.

9.		Wait	for	the	check	in	to	complete	and	verify	no	errors	occurred.

10.Notice	that	with	your	check	in	selected	in	the	Check	In	tab,	you	can	click	the
View	Detailed	Messages	for	this	job	icon	 	to	see	a	more	detailed	log.

11.Notice	that	with	any	of	the	log	detail	lines	beginning	 	you	can	click
the	Show	IBM	i		joblog	icon	 	to	show	the	joblog	from	the	server.

Step	3.	Verify	Objects	Exist	on	the	Server
In	this	step	you	will	review	how	Visual	LANSA	shows	objects	that	exist	in	the
master	repository	on	the	server.
1.		Display	the	iiiList	tab	on	the	Favorites	tab.
2.		Right	click	on	any	column	header	and	ensure	that	the	Local	Repository	State
and	Master	Repository	State	are	shown..

3.		Widen	the	iiiList	tab	and	/	or	drag	the	Local	and	Master	Repository	State
columns	into	view	if	necessary.

					Notice	that	the	check	in	of	file	iiiDepartments	and	its	fields	has	refreshed	this
column.	The	server	icon	shows	that	the	objects	now	exist	in	the	server
repository.

					The	Master	Repository	State	column	will	be	blank	if	the	object	is	not	yet
defined	in	the	master	repository.

Step	4.	Execute	Your	Application	Client	Server
In	this	step	you	will	execute	your	Department	Maintenance	application	in	client
server	mode,	to	access	the	new	Department	Table	which	you	have	just	created
on	the	server.
1.		In	the	iiiLIST	tab	select	the	form	iiiMaintDepartment	and	click	on	the
Execute	 button.

2.		In	the	Execute	dialog	select	the	appropriate	server	type,	for	example	Form	as
Client	to	RDMLX	iSeries	Server.

3.		Press	OK.	Your	application	starts	executing	connected	to	the	server.

					In	this	case	your	form	is	accessing	the	Department	Table	on	the	server	via	its
OAM	which	was	also	created	when	you	checked	the	file	in.

4.		Try	to	fetch	the	details	of	the	department	ADM.
					The	Department	will	not	be	found	because	no	data	was	checked	in	when	the
file	definition	was	moved	to	the	server.	(Note	that	you	can	create	simple
functions	to	transfer	data	between	LANSA	master	system	and	Visual	LANSA
files.)

5.		Insert	the	details	for	the	Administration	department	and	then	Insert	them.
6.		Try	to	insert	another	department	with	the	code	and	description	blank.	Note
that	you	see	the	same	validation	error	messages	as	when	you	tested	the	form
locally.	The	OAM	on	the	server,	has	the	same	business	rules	compiled	into	it.

7.		Exit	your	form.

Summary
Important	Observations

Check	in	options	allow	compilable	objects	to	be	compiled	when	checked	in
to	the	server.
To	ensure	that	all	required	objects	are	checked	into	the	server,	use	the	cross
references	facility	in	the	Check	In	Options	dialog.
If	you	are	using	task	tracking,	refer	to	Using	Task	Tracking	in	LANSA	in	the
Visual	LANSA	Administrator	Guide.
Display	the	Master	Repository	State	column	for	objects	to	see	if	they	exist
on	the	server.

Tips	and	Techniques
Review	Rules	for	Repository	Synchronization		in	the	Visual	LANSA
Administrator	Guide.	It	is	an	efficient	means	of	keeping	your	Visual	LANSA
systems	current.

What	I	Should	Know
How	to	check	in	objects	to	the	LANSA	Master	Repository.

Programming	RDML	with	Visual	LANSA	Forms
What	is	the	Programming	Tutorial?
This	tutorial	is	a	series	of	exercises	that	are	designed	to	introduce	the
fundamental	skills	required	to	begin	programming	with	RDMLX	using	Visual
LANSA	Editor	with	graphical	form-based	development.
The	following	exercises	are	included:
FRM015	-	Getting	Started	with	Forms	Programming
FRM025	-	Insert	a	Database	Record
FRM035	-	Maintain	a	Simple	Database	Table
FRM035	–	Appendix
FRM055	-	List	Component	Basics
FRM065	-	Using	List	Components
FRM075	-	Using	a	Working	List
FRM085	-	Update	from	a	Grid
FRM095	-	Calling	a	Function
FRM105	-	Define	a	Trigger	Function
FRM115	-	Writing	Reports
FRM125	-	Check	Out	/	In	to	IBM	i

Who	Should	Use	the	Tutorials?
These	tutorials	have	been	written	for	new	LANSA	developers.	They	introduce
basic	skills	required	when	creating	graphical	form-based	applications	or	WAM,
Web	Function	and	Integrator	applications.

Before	you	Begin
You	must	have	LANSA	Demonstration	Personnel	System	installed	in	the
partition	that	you	will	use	with	the	set	up	options	as	described	in	What	Partition
Should	I	Use?.
The	LANSA	Demonstration	Personnel	System	contains	all	the	objects	used	by
these	exercises.
You	should	have	completed	the

Visual	LANSA	User	Interface	Tutorials
LANSA	Editor	Tutorials

its:lansa095.CHM::/LANSA/lansa095_0020.HTM
its:lansa095.chm::/lansa/VUIEng01_begin.htm
its:LANSA095.CHM::/lansa/vedeng01_0010.htm

Visual	LANSA	Repository	Development	Tutorials.

Tips	for	using	the	exercises:
Check	off	each	step	in	the	exercise	as	you	complete	it.

Follow	the	instructions	very	carefully.
Remember	to	replace	iii	with	your	unique	3	characters.	You	will	not	always
be	reminded	to	make	this	substitution.	For	further	information	refer	to	How
many	developers	can	use	the	exercises?
These	exercises	assume	that	you	have	not	previously	customized	the	editor
interface.	If	you	have	already	customized	your	environment,	the	example
screens	and	instructions	may	not	exactly	match	your	customized
development	environment.

The	following	are	important	notes	regarding	the	structure	of	the	exercises:
The	first	steps	in	an	exercise	will	provide	very	precise	descriptions	of	the
tasks	to	be	performed.	As	the	steps	and	course	progresses,	the	instructions
will	become	much	more	general.
Later	exercises	are	designed	to	use	skills	from	the	earlier	exercises.	These
exercises	are	designed	to	be	completed	in	sequence.

its:LANSA095.CHM::/lansa/reptut01_begin.htm
its:lansa095.chm::/LANSA/lansa095_0040.htm

FRM015	-	Getting	Started	with	Forms	Programming
Introduction
The	Hello	World	exercise	is	an	introduction	to	the	Visual	LANSA	editor.	You
will	develop	a	simple	form-based	application	and	then	you	will	add	further
components	and	functionality	and	explore	programming	using	events,	properties
and	methods.

Objectives:
To	introduce	the	basic	concepts	of	components,	properties,	events	and
RDML	commands.
To	learn	how	to	add	events	to	a	form.
To	learn	how	to	edit	properties	of	components.
To	learn	how	to	use	methods.
To	learn	how	to	compile	and	execute	your	form.

To	achieve	these	objectives,	you	will	complete	the	following:
Step	1.	Editor	Settings
Step	2.	Create	a	Component
Step	3.	Add	Components	to	the	Form
Step	4.	Change	the	Properties	of	a	Component
Step	5.	Add	Remaining	Push	Buttons	and	Set	their	Properties
Step	6.	Add	a	Field	to	the	Form	and	Set	its	Properties
Step	7.	Create	Event	Routines	for	the	Push	Buttons

Step	8.	Add	Logic	to	the	Hello	Button	Click	Event
Step	9.	Add	Logic	to	the	Other	Click	Events
Step	10.	Compile	the	Form
Step	11.	Execute	the	Form
Step	12.	Align	and	Size	Components
Step	13.	Component	Definitions
Step	14.	Understanding	Events
Step	15.	Using	Component	Properties
Step	16.	Understanding	Component	Methods
Summary

Before	You	Begin
You	may	wish	to	review	the	following	topics:

Editor	Features	in	the	Visual	LANSA	User	Guide.
Component	Concepts	in	the	Technical	Reference	Guide.
The	Component	Model	in	the	Visual	LANSA	Developer	Guide.

its:lansa012.chm::/Lansa/l4wusr02_0110.htm
its:lansa015.chm::/Lansa/l4wtgu04_0015.htm
its:lansa013.chm::/Lansa/L4wDev06_0155.htm

Step	1.	Editor	Settings
In	this	step	you	will	logon	to	Visual	LANSA	and	set	the	editor	options
1.		Logon	to	Visual	LANSA.	If	you	cannot	remember	how	to	do	this,	refer	to	the
LANSA	User	Interface	Tutorials.	Once	started,	the	Visual	LANSA	Editor	is
displayed.	The	appearance	of	the	editor	will	depend	upon	the	type	of
installation	as	well	as	the	editor	settings.

2.		To	change	the	editor	settings,	choose	Editor	Options	from	the	File	tab.

					It	is	recommended	that	you	set	the	Source	settings	to	include	Component
Definitions.	These	settings	are	included	in	the	exercise	Format	Source	Code
in	the	LANSA	Editor	Tutorials.

					Remember	that	you	can	also	turn	on	the	Auto	Hide	tab	feature	to	make	more
space	to	view	source	code	in	the	editor.	For	more	details,	refer	to	exercise
VUI002	Editor	Parts	in	the	User	Interface	Tutorials.

3.		Make	sure	you	can	view	the	Controls	tab.	This	tab	contains	all	the	controls
frequently	used	on	a	component.	In	V13	SP1,	this	is	now	a	separate	tab	which

its:lansa095.chm::/Lansa/VUIEng01_0015.htm

looks	like	this:
				

					If	the	Controls	tab	is	not	open,	open	it	from	the	Home	ribbon,	Views	menu:

Step	2.	Create	a	Component
In	this	step	you	will	create	a	Form	and	open	it	in	the	LANSA	editor.
1.		On	the	File	menu,	use	the	New	button	and	select	Form	/	Basic	Form.
					The	Create	form	dialog	is	displayed.
					Enter	the	following	for	the	form:

a.		Long	Name:	iiiCOM10	(where	iii=your	initials)	*
b.		Description:	Hello	World
c.		Enable	for	RDMLX	(Yes)

					*	If	you	are	using	a	trial	version	of	LANSA,	use	iii=DEM	(DEMCOM01).	If
the	form	already	exists,	it	needs	to	be	deleted	first.
d.		Press	the	Create	button.

					When	you	create	a	component	you	should	select	a	suitable	Framework,	such
as	Personnel	&	Payroll	(HUMAN	RESOURCES).	One	way	to	find	a
components	on	the	Repository	tab,	is	to	look	under	Organizers	/	Frameworks
/	HUMAN	RESOURCES.	You	can	change	a	component's	Framework	at	a	later
stage.

2.		The	form	will	be	opened	in	the	editor.

Step	3.	Add	Components	to	the	Form
In	this	step	you	will	insert	a	standard	push	button	control	to	the	form.
1.		The	Design	tab,	showing	the	form	layout,	is	selected	by	default.	This	layout
shows	how	the	form	will	appear	at	execution	time.	It	is	used	to	design	and
build	your	application.

					Size	the	form	by	clicking	on	the	corner	of	it,	keeping	the	mouse	button	down
and	dragging	the	corner	to	make	it	about	this	size:

2.		Add	a	push	button	to	the	form:
a.		Display	the	Controls	tab.
b.		Locate	the	Push	button	control.
c.		Drag	and	drop	the	Push	Button	control	onto	your	form.

					To	drag	and	drop,	left	click	on	the	push	button	control	in	the	list	and	hold	the
left	mouse	button	down.	Move	the	cursor	over	to	the	form	layout	and	release
the	mouse	button	to	drop	the	control	at	the	cursor	position.

					Alternatively	double-click	the	push	button	control	in	the	list	to	add	it	to	the
form	and	then	drag	it	to	the	right.

					Your	form	layout	should	now	appear	something	like	this:

					Note:	You	can	also	use	Ctrl	+	Cursor	Key	to	move	any	component	around
on	the	form.

Step	4.	Change	the	Properties	of	a	Component
In	this	step	you	will	change	the	Caption	and	the	Name	properties	of	the	push
button.

1.		Double-click	the	push	button	to	display	the	Details	tab.
					The	Details	tab	is	used	to	change	the	Properties	of	a	control,	or	create	an
Event	handling	routine	or	a	Method	routine	for	it.
a.		Change	the	Name	property	of	PHBN_1	to	Hello.
b.		Change	the	Caption	property	to	Hello.

					Now	you	can	see	the	caption	Hello	added	to	the	push	button	on	the	form.

Step	5.	Add	Remaining	Push	Buttons	and	Set	their	Properties
In	this	step	you	will	add	the	World	and	Clear	push	buttons	to	the	form.
1.		Using	the	Common	Controls	tab,	double-click	the	Push	button	control	twice
to	add	two	more	buttons	to	the	form.

					Position	the	push	buttons	under	the	first	button.	Do	not	worry	about	aligning
the	push	buttons	accurately	at	this	stage.	You	will	learn	how	to	do	this	in	a
later	step.

2.		Using	the	Details	tab,	name	the	push	buttons	World	and	Clear	and	apply
appropriate	captions	to	them	just	as	you	did	in	the	previous	step.

3.		Your	form	should	appear	something	like	this:

Step	6.	Add	a	Field	to	the	Form	and	Set	its	Properties
In	this	step	you	will	add	a	field	from	the	LANSA	Repository	to	your	form	to
display	the	Hello	World	text.	You	will	change	the	field	margins	so	that	you	don't
display	the	field	label.
1.		On	the	Repository	tab,	select	the	Fields	node.
2.		If	Alphabetical	Groupings	is	on,	expand	the	letter	S	to	see	the	list	of	fields
starting	with	the	letter	S.

3.		Locate	the	field	STD_TEXT.
4.		Drag	and	drop	the	STD_TEXT	field	onto	your	form.
5.		Double-click	the	field	to	display	the	Details	tab	and	change	the	MarginLeft
property	of	the	field	to	0	so	that	the	label	is	not	visible.

					You	may	wish	to	reposition	the	field	on	the	form	once	the	label	is	no	longer
displayed.	You	may	also	adjust	the	Width	of	the	field	using	the	Details	tab,	or
by	using	the	Design	tab	to	resize	the	field	with	the	mouse.

					Note:	with	the	field	selected,	you	can	move	the	field	using	the	cursor	keys
while	holding	down		the	Control	key.	This	is	often	the	easiest	way	to	position
a	component	accurately.

					Your	form	should	appear	something	like	this:

Step	7.	Create	Event	Routines	for	the	Push	Buttons
In	this	step	you	will	add	event	routines	for	each	push	button.	An	event	routine	is
a	routine	that	is	invoked	when	the	user	or	the	program	triggers	a	specific	action.
You	will	add	a	event	handling	routine	to	be	called	when	the	user	Clicks	on	each
push	button.
1.		Select	the	Source	view	in	the	Editor.	You	should	see	code	similar	to	the
following:

					For	the	moment	just	ignore	the	existing	code.
2.		Next	create	an	event	routine	(EVTROUTINE/ENDROUTINE	command
pair)	for	the	Clear	button	to	handle	the	'Click'	event:
a.		Select	the	Design	tab	and	select	the	Clear	button.
b.		Right-click,	select	the	Events:Push	Button	option	and	then	the	Click
Event.

c.		A	new	event	routine	is	added	for	the	Clear	push	button	in	the	Source	tab
as	shown	below:

					Notice	the	format	of	the	event	routine	names.	Event	routine	names	are
always	formatted	as
COMPONENT.EventName	(#Clear.Click).
	

3.		Next	add	a	Click	event	to	the	Hello	and	World	buttons.
					Your	event	routines	should	now	look	like	this:

Evtroutine	Handling(#HELLO.Click)
Endroutine
Evtroutine	Handling(#WORLD.Click)
Endroutine
Evtroutine	Handling(#CLEAR.Click)
Endroutine
	

Step	8.	Add	Logic	to	the	Hello	Button	Click	Event
1.		Add	the	line	of	code	shown,	highlighted	inred,	italic	to	the	Click	event	for
the	Hello	button	(it	adds	the	word	'Hello	'	to	the	#STD_TEXT	field):
EVTROUTINE	HANDLING(#HELLO.Click)
#STD_TEXT:=	#STD_TEXT	+	'Hello	'
ENDROUTINE
	

					The	AutoComplete	prompter	shows	up	as	you	start	to	type.	You	can	use	it	to
select	the	command	and	the	parameter	values.

					Note	that	there	is	a	space	between	the	word	Hello	and	the	closing	quote.

Some	Things	to	Note	About	Editing	Code
The	editor	is	completely	free	format.	The	syntax	will	be	checked	as	you
enter	the	command.	A	red	triangle	beside	a	command	indicates	that	a
warning	or	error	message	can	be	displayed.	To	display	the	message,	click	on
the	red	triangle.
You	can	only	enter	one	command	per	line.
Your	commands	and	their	parameters	can	be	in	uppercase	or	lowercase.
The	definitions	of	the	components	(that	is,	buttons,	fields	and	so	on)	on	your
form	are	stored	at	the	start	of	your	program	as	a	series	of	DEFINE_COM
(Define	Component)	commands.	These	commands	can	be	hidden	or
displayed	using	the	plus	sign	in	front	of	them	or	using	the	editor	settings.
Normally,	you	will	change	the	DEFINE_COM	commands	only	by	using	the
form	layout	or	by	altering	the	component's	property	sheet	even	though	you
can	edit	the	DEFINE_COM	statements.

Step	9.	Add	Logic	to	the	Other	Click	Events
In	this	step	you	will	add	the	required	code	for	each	of	the	Push	Button	event
routines.

When	you	are	finished	with	this	step,	you	will	have	entered	the	three	lines	of
RDML	code	implement		the	action	required	by	each	the	push	button:
*When	the	user	clicks	the	Clear	push	button,	the	contents	of	the	STD_TEXT	field	is
changed	to	blanks.
EVTROUTINE	HANDLING(#CLEAR.Click)
Change	Field(#STD_TEXT)	TO(*BLANKS)
ENDROUTINE
*When	the	user	clicks	the	Hello	push	button,	the	word	Hello	is	concatenated	to	the
contents	of	the	STD_TEXT	field.
EVTROUTINE	HANDLING(#HELLO.Click)
#STD_TEXT	:=	#STD_TEXT	+	'Hello	'
ENDROUTINE
*When	the	user	clicks	the	World	push	button,	the	word	World	is	concatenated	to	the
contents	of	the	STD_TEXT	field.
EVTROUTINE	HANDLING(#WORLD.Click)
#STD_TEXT	:=	#STD_TEXT	+	'World	'
ENDROUTINE
	

1.		Type	the	CHANGE	command	for	the	Clear	button	Click	event:
Change	Field(#STD_TEXT)	To(*BLANKS)
	

2.		Put	the	cursor	on	the	CHANGE	command	in	the	editor	and	press	the	F1	key
to	display	the	online	help	to	review	specific	technical	details	about	using	this
command:

3.		Complete	the	World.Click	event	routine	by	entering	the	following	statement:
#STD_TEXT	:=	#STD_TEXT	+	'World	'

4.		Put	the	cursor	anywhere	on	the	STD_TEXT	statement	in	the	editor	and	press
the	F1	key	to	display	the	online	help	to	review	specific	technical	details	about
using	the	ASSIGN	command:

					Your	finished	code	should	look	like	this:

					There	should	be	no	red	triangles	in	the	source	code	which	indicate	an	error.
If	any	errors	exist,	they	must	be	corrected.

					Note	that	in	the	event-driven	program	model,	the	order	of	the	event	routines
in	the	code	is	not	important	to	the	execution	of	the	form.

5.		Click	on	the	save	toolbar	icon	to	save	the	form.

Step	10.	Compile	the	Form
In	this	step	you	will	compile	your	new	form.
Your	components	are	compiled	from	within	the	LANSA	editor	by	using	the
Compile	button	on	the	Home	ribbon.	Objects	can	also	be	compiled	using	context
menus	from	various	tabs	in	which	case	the	compile	options	will	simply	default
to	the	last	values	set	in	the	Compile	options	dialog.	Note	that	for	this	last
compile	method	you	must	save	your	RDMLX	source	first.
1.		Click	the	dialog	box	launcher	in	the	Compile	group	in	the	ribbon	to	display
the	Compile	options	dialog.

2.		Press	OK	to	submit	the	compile.
3.		Using	the	Compile	tab	at	the	bottom	of	the	editor,	you	can	review	the
compile	status.

4.		Once	the	compile	has	completed,	double-click	on	the	status	message	to
display	the	compile	message	window.	If	errors	have	occurred,	you	can	review
the	messages	in	this	window.

5.		Close	the	Compile	messages	window.

Step	11.	Execute	the	Form
In	this	step	you	will	execute	the	form.
Your	components	can	be	executed	from	within	the	LANSA	editor	by	using	the
Execute	button	on	the	Home	ribbon.	Objects	can	also	be	executed	using	context
menus	from	various	tabs	or	by	pressing	Ctrl	+	Shift	+	E.
1.		Click	the	dialog	box	launcher	in	the	Execute	group	in	the	ribbon.
					The	Execute…	dialog	will	be	displayed.
2.		Press	the	OK	button	to	execute	the	form.
3.		Check	that	your	form	functions	correctly:

a.		Click	the	Hello	button.	The	word	'Hello	'	should	be	added	to	the	field.
b.		Click	on	the	World	button.	The	word	'World	'	should	be	added	to	the	field.
c.		Click	the	Clear	button.	The	field	should	be	cleared.

Step	12.	Align	and	Size	Components
1.		With	the	Design	view	open	for	form	iiiHelloWorld,	select	the	top	push
button,	hold	down	the	shift	key	and	select	the	other	push	buttons.

						Note	the	'handles'	for	the	first	button	are	black.	The	handles	for	the	other
two	buttons	are	white.	You	are	going	to	align	the	second	and	third	button
relative	to	the	first.

2.		Display	the	Design	tab	on	the	ribbon	and	select	the	Align	command.

3.		Select	the	Horizontal	/	Left	and	Vertical	/	Space	Equal	options:

					Note:	The	Remember	checkbox	will	retain	these	settings	for	this	session	of

Visual	LANSA
					Your	form	should	now	look	like	this:

4.		Select	the	Hello	button	and	reduce	its	height	and	width.
					Tip:	First	unselect	the	group	of		buttons	by	clicking	anywhere	on	the	form.
5.		Resize	the	Hello	button	by	holding	down	the	left	mouse	button	on	one	of	the
handles	and	dragging.	Alternatively,	select	the	button	and	hold	down	the	Shift
key	and	using	the	cursor	control	keys.

6.		Again,	holding	down	the	Shift	key,	select	the	Hello	button	and	then	the	other
two	buttons.

7.		Use	the	Edit	/	Size	dialog	to	resize	the	second	and	third	button,	based	on	the
first.

8.		Select	the	buttons	to	be	the	same	width	and	same	height.
					Your	form	should	look	like	the	following:

Step	13.	Component	Definitions
1.		Click	on	the	form	title	bar,	and	select	the	Details	tab	on	the	left	(or	press	F7).
The	Details	tab	is	displaying	the	form	properties:

					For	example,	note	the	Height	property	is	highlighted.
2.		Resize	the	form	and	note	the	change	in	this	property.
3.		Select	the	Source	tab.

					The	component	source	is	defined	within	the	Begin_Com	/	End_Com
statements.

					The	Begin_Com	includes	the	form	properties.	Note	that	Height	is
highlighted.	As	usual,	RDML	/	RDMLX	does	not	display	properties	or
command	parameters,	which	have	default	values.

4.		Examine	the	Define_Com	component	definitions.

					Most	components	are	defined	at	the	top	of	the	source	code.
5.		Select	the	Design	view.	Select	the	field	STD_TEXT.	Note	that	the	Details
tab	shows	the	field	component	properties.	Once	again	the	Define_Com	code
shows	only	properties	which	have	non-default	values.

6.		With	your	component	definitions	currently	shown	as	follows:

7.		Click	on	the	 	icon	next	to	the	first	Define_Com.	Your	code	should	now
look	like	the	following:

					The	Define_Com	statements	have	been	compressed,	saving	space.	The

Options	/	Settings	dialog	for	Source	can	make	this	appearance	the	default.

Step	14.	Understanding	Events
1.		Drag	and	drop	field	STD_DESCL	on	to	the	form.	Set	up	its	properties	as
follows:

Property Value

LabelPosition Top

Caption Display	the	results

LabelHorAlignment Left

LabelType Caption

Width 374

	

2.		Change	the	properties	of	the	first	field	STD_TEXT	as	follows

Property Value

LabelPosition Top

Caption Enter	some	text

LabHorAlignment Left

LabelType Caption

	

					Your	form	should	now	look	like	the	following:

3.		Select	the	first	field	STD_TEXT	and	create	a	Changed	event	for	it.
Remember	you	can	do	this	either	using	the	Events	tab	on	the	Details	tab,	or
using	the	right	mouse	menu	/	Events	:	STD_TEXT.

4.		With	the	STD_TEXT	selected,	press	F2.	Alternatively	use	the	right	mouse
menu	and	select	Field	:	STD_TEXT	/	Features.

					The	Features	tab	shows	the	events,	properties	and	methods	for	the	selected
component,	in	this	case	field	STD_TEXT.

5.		Click	on	the	Views	button	in	the	tab	toolbar	and	choose	Category	View:

6.		Expand	the	Intrinsics	for	this	type	of	field.	Scroll	down	and	note	that	there	is
an	UpperCase	method.

7.		Double	click	on	the	UpperCase	method	to	see	the	Feature	Help	for	it.

	

8.		Add	the	following	code	to	the	STD_TEXT.Changed	event	routine.	New	code
is	shown	in	bold.
Evtroutine	Handling(#STD_TEXT.Changed)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#STD_DESCL	:=	#STD_TEXT.upperCase
Endroutine
	

9.		Change	the	CHANGE	statement	in	the	CLEAR.Click	event	to	include
STD_TEXT.
Change	Field(#STD_TEXT	#STD_DESCL)	To(*blanks)
	

10.	Recompile	and	test	your	form.	Type	into	the	first	field	and	observe	the
output	in	results	field.	Your	form	should	look	like	the	following:

					Observe	that	for	every	change	event	(character	typed)	the
STD_TEXT.Changed	event	routine	is	executed	and	replaces	STD_DESCL
with	the	new	value	of	STD_TEXT.

11.	Change	the	STD_TEXT.Changed	event	routine	logic	to	the	following:
#STD_DESCL	:=	#STD_TEXT.upperCase.Reverse
	

12.	Recompile	your	form.	Make	sure	the	form	was	closed	before	recompiling.

13.	Test	your	form.	Type	into	the	first	field.	The	results	should	look	like	the
following:

14.	Clear	the	fields	using	the	Clear	button.	Click	on	the	Hello	button.	Your	form
should	look	like	the	following:

					The	Changed	event	for	field	STD_TEXT	has	not	been	triggered.
Programmatic	changes	to	a	component	(in	this	case	a	field)	do	not	trigger	its
events.

Step	15.	Using	Component	Properties
1.		Drag	and	drop	a	Check	box	to	the	top	of	your	form.	Note	it	is	automatically
named	CKBX_1.

2.		Set	up	the	Check	box	properties	as	follows:

Property Value

Caption Allow	Uppercase	and	Reverse

ButtonState Checked

	

					Your	form	should	look	like	the	following:

3.		Change	the	STD_TEXT	Changed	event	to	execute	the	assign	command,	if
the	check	box	is	Checked.	Your	code	should	look	like	the	following:
Evtroutine	Handling(#STD_TEXT.Changed)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
If	(#CKBX_1.ButtonState	=	Checked)
#STD_DESCL	:=	#STD_TEXT.Uppercase.Reverse
Endif
Endroutine
	

					Your	IF	expression	is	a	Boolean	expression	which	"GETs"	the	property
ButtonState	for	component	CKBX_1.

4.		Compile	and	test	your	form.	The	results	field	will	not	be	populated,	if	the
Check	box	is	unchecked.

5.		In	the	Design	view	select	the	Clear	button	and	change	its	Enabled	property
to	False.

6.		Make	the	following	changes	to	your	form	logic:
a.		Change	the	Hello	click	event	to	SET	the	Clear	button	to	Enabled=True
b.		Change	the	World	click	event	to	SET	the	Clear	button	to	Enabled=True
c.		Change	the	STD_TEXT	field	Changed	event	to	SET	the	Clear	button	to
Enabled=True

d.		Change	the	Clear	button	click	event	to	SET	the	Clear	button	to
enabled=False

For	example,	the	Hello	Click	event	should	look	like	the	following:
Evtroutine	Handling(#HELLO.Click)
#STD_TEXT	:=	#STD_TEXT	+	'Hello	'
#CLEAR.enabled	:=	true
Endroutine
	

					This	uses	the	ASSIGN	statement	to	SET	a	property.
					A	longer	form	of	this	code	could	be	used	to	set	a	component's	property:
Set	Com(#CLEAR)	Enabled(true)
	

7.		Compile	and	test	your	form.	The	Clear	button	should	initially	be	disabled.
The	Clear	button	should	be	enabled	whenever	the	Hello	or	World	buttons	are
used,	or	when	text	is	typed	into	the	"Enter	some	text"	field.

Step	16.	Understanding	Component	Methods
1.		In	the	Design	view,	click	anywhere	on	the	form	and	select	the	Methods	tab
on	the	Details	tab.

					Note	that	your	form	has	a	CloseForm	method.
2.		Your	form	iiiHelloWorld,	inherits	events,	properties	and	methods	from	its
Ancestor	PRIM_FORM.	In	the	Source	tab,	note	the	Begin_Com
statement's	Role(*EXTEND	#PRIM_FORM)

3.		In	the	Design	view,	drag	and	drop	a	push	button	onto	form.
4.		Change	the	Push	Button	Name	to	CLOSE,	change	its	Caption	to	Close	and
create	a	CLOSE.Click	event.	Add	the	following	code	to	this	Click	event:
#com_owner.CloseForm
	

					The	generic	name	COM_OWNER	can	be	used	to	refer	to	the	current
component.

					Your	form	should	look	like	the	following:

5.		Compile	and	test	your	form.	Click	on	the	Close	button	to	close	it.

Summary
Important	Observations

As	you	set	component	properties	(names,	captions,	and	so	on,	in	the	Details
tab)	the	DEFINE_COM	statements	are	updated	in	the	RDML	code.
Alternatively,	you	can	directly	edit	the	DEFINE_COM	statements.
There	are	many	different	ways	to	perform	the	same	operation,	such	as	using
commands	in	a	ribbon	or	context	menu	options.
There	are	many	ways	of	coding	RDML	statements	to	achieve	the	same
results.	For	example,	the	following	two	statements	will	produce	the	same
result:

CHANGE	FIELD(#STD_TEXT)	TO(*BLANKS)
#STD_TEXT	:=	*BLANKS
	
The	DEFINE_COM	commands	may	be	hidden	using	the	editor	settings.
The	F2	Feature	help	provides	information	about	component	properties,
events	and	methods
If	you	know	LANSA	functions,	you	need	to	understand	there	is	a
fundamental	difference	between	forms	and	functions	in	the	programming
paradigm.	Functions	are	procedural	programs	that	execute	in	a	"top	to
bottom"	fashion.	Forms	use	an	event-driven	paradigm	based	on	graphical
user	interfaces.	The	form	waits	for	a	specific	event	to	occur	and	then
executes	the	event.	Once	the	event	has	completed,	control	is	passed	back	to
the	interface.	Hence,	the	location	of	the	event	routines	in	a	form's	code	is	not
important	to	the	execution	of	the	program.

Tips	&	Techniques
Review	all	of	the	editor	settings	to	determine	the	options	that	you	want	to
use	when	working	in	Visual	LANSA.
When	editing	source	code,	using	the	Auto	Hide	tab	feature	will	enable	the
maximum	amount	of	space	for	viewing	your	source	code.
F2	feature	help	provides	details	about	components.	The	F1	online	help	will
provide	details	about	the	user	interface,	commands,	and	options.
Use	the	dialog	box	launcher	in	the	Compile	group	in	the	ribbon	if	you	need
to	specify	the	compile	settings.	If	you	submit	compiles	using	Compile
command,	the	compile	options	will	simply	default	to	the	last	values	set	in

the	Compile	options	dialog.
The	basic	rules	you	need	to	remember	when	writing	code:

Only	one	command	is	allowed	per	line	in	the	editor.
You	cannot	have	any	leading	blanks	before	a	command.
A	command	may	have	no	parameters	(as	in	END_COM)	or	may	have	many
parameters	(as	in	BEGIN_COM).
Many	command	parameters	are	optional.
Parameters	may	have	one	or	more	values	(as	in	ROLE(*EXTENDS
#PRIMFORM)).	A	blank	space	is	used	to	separate	values	in	a	list.
When	coding	parameters,	do	not	leave	a	space	between	the	parameter
keyword	and	the	opening	bracket.	For	example,	OPTIONS(*DIRECT)	or
OPTIONS(*DIRECT)	are	correct,	but	OPTIONS	(*DIRECT)	is	not
correct.
When	parameters	use	their	default	values,	the	parameters	are	not	explicitly
shown	in	the	command,	but	they	can	be	viewed	in	the	Command	Assistant
tab.	Select	the	line	of	code	and	use	F4	to	display	the	Command	Assistant	tab.
It	is	often	convenient	to	float	and	resize	this	tab	so	that	the	command
parameters	can	be	seen	more	easily.
An	asterisk	*	in	the	first	position	of	a	line	is	used	for	a	comment.	You	can
use	the	short	cut	keys	CTRL+W	and	CTRL+Shift+W	to	comment	or
uncomment	a	single	line	or	selected	block	of	lines.

What	You	Should	Know
The	basic	structure	of	the	code	in	a	form
FUNCTION
BEGIN_COM
DEFINE_COM
EVTROUTINE
ENDROUTINE
END_COM

How	the	form	and	components	are	related	to	the	source.
How	to	create	a	form.
How	to	add	components	to	a	form.
How	to	change	the	properties	of	a	component	on	a	form	using	the	Details

tab.
How	to	define	events	for	a	component.
How	to	compile	and	execute	a	form.
The	basic	structure	of	LANSA	commands.
How	to	display	feature	help.
How	to	find	intrinsic	methods.
How	to	use	intrinsic	methods.
How	to	use	the	RDML/RDMLX	commands.
CHANGE
ASSIGN

How	to	write	a	Boolean	expression.

FRM025	-	Insert	a	Database	Record
Objectives:

To	create	an	Add	Employee	form.

To	introduce	the	INSERT,	GROUP_BY	and	MESSAGE	commands
To	introduce	the	loop	commands
BEGIN_LOOP/END_LOOP
DOWHILE/ENDWHILE
DOUNTIL/ENDUNTIL

To	understand	how	field	and	file	level	validation	is	handled	in	a	form
To	use	the	Status	Bar	component	to	display	messages
To	use	RDMLX	style	string	handling.
To	implement	"busy	cursor"
To	review	other	"delay"	feedback	techniques

To	achieve	these	objectives	you	must	complete	the	following:
Step	1.	Create	form	iiiAddEmploy	–	Add	Employee
Step	2.	Add	Fields	to	the	Form
Step	3.	Add	Push	Buttons	and	Click	Event	Logic
Step	4.	Using	a	Busy	Cursor

Summary

Before	You	Begin
You	must	have	completed:
FRM015	-	Getting	Started	with	Forms	Programming

Step	1.	Create	form	iiiAddEmploy	–	Add	Employee
1.		On	the	File	menu,	use	the	New	button	to	create	a	Basic	Form	defined	as
follows:

	Name iiiAddEmploy

Description Add	Employee

Enabled	for	RDMLX? 		Yes

	

					Note:	When	creating	a	form	you	should	select	a	specific	Framework,	such	as
Personnel	&	Payroll.	Frameworks	allow	you	to	organize	components	(forms,
reusable	parts	and	WAMs)	into	logical	groups.	Your	own	Visual	LANSA
development	work	should	use	Frameworks	which	you	define	at	the	LANSA
partition	level	on	the	IBM	i	server.	All	components	have	a	property
ComponentFramework	which	may	be	changed	if	required.

2.		In	the	Design	view,	select	the	Controls	tab	and	select	All	Controls:

3.		Drag	and	drop	a	Status	Bar	component	onto	the	form.	It	will	be	attached	to
the	bottom	of	the	form.

Step	2.	Add	Fields	to	the	Form
1.		Select	the	Repository	tab.	Expand	the	Files	group.	If	necessary	change	the
Files	group	to	Alphabetic	Grouping	by	using	the	right	mouse	menu	on	the
Files	group.

2.		Expand	the	P	group	and	expand	the	file	PSLMST.	Your	Repository	tab
should	look	like	the	following:

3.		Enlarge	the	form	by	dragging	its	lower	edge.
4.		On	the	Repository	tab,	hold	down	the	Shift	key	and	use	the	left	mouse	button
to	select	EMPNO	and	then	PHONEBUS.	All	fields	between	these	will	be
selected.	This	is	a	standard	Windows	select	a	group	of	objects	technique.

5.		Drag	these	fields	onto	the	form,	towards	the	top.

	

6.		Select	the	group	of	fields	from	DEPTMENT	to	STARTDTE	and	drag	these
onto	the	form	just	below	the	others.

					Note:	STARTDTE	is	a	virtual	field	which	updates	the	real	field
STARTDTER.

7.		Click	on	the	form	to	unselect	the	last	group	of	fields.	With	the	Shift	key	held
down,	select	EMPNO	and	then	select	each	of	the	other	fields.	Then	use	the
Align	dialog	from	the	Design	tab,	to	align	the	fields	on	the	left,	spaced
equally.

					Your	form	should	look	like	the	following:

8.		Save	your	form.

Step	3.	Add	Push	Buttons	and	Click	Event	Logic
1.		On	the	Controls	tab,	select	the	Common	group	of	controls.	Drag	and	drop
two	Push	Buttons	onto	the	bottom	right	hand	side	of	the	form.

2.		Use	the	Details	/	Properties	tab	to	set	up	the	two	push	buttons	as	follows:

Property Value
Caption Save

Name SAVE

	

Property Value

Caption Close

Name CLOSE

	

					Your	form	should	look	like	the	following:

3.		Use	the	Details	/	Events	tab	to	create	a	Click	event	for	each	button.

4.		Add	code	to	the	CLOSE	Click	event	to	close	the	form.	Your	code	should
look	like	the	following:
Evtroutine	Handling(#CLOSE.Click)
#com_owner.closeForm
Endroutine
	

5.		Define	a	GROUP_BY	to	include	all	fields	on	the	form.	Your	code	should
look	like	the	following
Group_By	Name(#empdata)	Fields(#EMPNO	#SURNAME	#GIVENAME	#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#PHONEHME	#PHONEBUS	#DEPTMENT	#SECTION	#SALARY	#STARTDTE	#TERMDATE)
	

					Notes:
Group_by	statements	are	usually	defined	at	the	top	of	the	program,
following	the	component	definition.	This	makes	these	declarations	easy	to
find,	when	maintaining	a	program.
You	should	always	use	the	Command	Assistant	(F4)	to	complete	this	type
of	statement,	where	a	set	of	field	names	is	required.
Use	the	Editor	Options	and	use	the	General	settings	to	set	Assistant	to
Auto	Expand	Parameters.

6.		Type	GROUP_BY	and	press	F4.
a.		In	the	Command	Assistant,	enter	the	name	of	the	Group_by	#EMPDATA.
b.		Position	the	cursor	in	the	Fields	parameter.

					Note:	You	may	prefer	to	float	and	resize	the	Command	Assistant	tab	so	that
it	easily	shows	more	information.

7.		Select	the	Fields	by	File	tab	and	enter	PSL	in	the	Filter	/	File	Name:

8.		Expand	the	file	PSLMST	and	hold	down	the	Shift	key,	select	EMPNO	and
then	PHONEBUS	and	press	Enter.	Your	Assistant	dialog	should	now	look
like	the	following:

9.		Position	the	cursor	in	the	empty	Fields	and	Attributes	entry	below
PHONEBUS.

10.	Select	Fields	by	File	again	and	select	the	group	of	field	from	DEPTMENT
to	STARTDTE	and	press	enter.	Your	Command	Assistant	dialog	should	now
look	like	the	following:

11.	Click	on	the	tick	highlighted	above	and	close	the	Command	Assistant.	Your
Group_by	should	look	like	the	following:

Group_By	Name(#EMPDATA)	Fields(#EMPNO	#SURNAME	#GIVENAME	#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#PHONEHME	#PHONEBUS	#DEPTMENT	#SECTION	#SALARY	#STARTDTE)
	

12.		Add	an	INSERT	command	to	the	SAVE.Click	event	routine.	This	should
insert	the	Group_by	EMPDATA	to	the	file	PSLMST.	Your	event	routines
code	should	look	like	the	following:
Evtroutine	Handling(#SAVE.Click)
Insert	Fields(#EMPDATA)	To_File(PSLMST)
Endroutine
	

13.	Compile	your	form	and	execute	it.
14.	Without	entering	any	data,	click	the	Save	button;	Your	form	should	look	like
the	following:

15.	Click	on	the	 	down	icon	on	the	Status	Bar	to	see	all	the	validation	error
messages.

					Having	completed	the	Fundamentals	Repository	module	you	should	know
that	the	error	messages	have	been	generated	by	the	file	OAM.

					Error	messages	are	automatically	routed	to	the	Status	Bar.	Fields	with
validation	errors	are	automatically	highlighted.

16.	The	INSERT	command	has	a	default	parameter
VAL_ERROR(*LASTDISPLAY).	In	a	form	this	will	branch	to	the
ENDROUTINE	for	the	event	or	method	routine.	To	demonstrate	this	point,

add	the	following	MESSAGE	command	after	the	INSERT	command	in	the
SAVE.Click	event	routine.
Message	Msgtxt('This	message	only	displayed	on	successful	INSERT')
	

					Recompile	your	form	and	retest	"add	a	blank	record".	Scroll	to	the	end	of	the
status	bar	messages.	The	above	message	will	not	be	shown.

					In	your	applications,	you	will	often	change	the	validation	error	parameter	on
I/O	commands	to	VAL_ERROR(*Next),	so	that	your	own	logic	can	handle
error	conditions.

17.	Insert	valid	data	to	add	a	new	employee.	Employee	numbers	in	the	series
starting	A2000	should	be	available.

					Note:	Post/Zip	code	must	be	in	the	range	2000	to	7999	(Australian).
Department	codes	ADM,	FLT,	GRP,	MKT	and	SLS	should	exist	with
Sections	codes	of	01,	02	and	03.

					Observe	that	your	"This	message	displayed	on	successful	INSERT"	is	now
displayed.

					Note	also	that	at	this	stage	the	fields	have	not	been	re-initialized.
18.	Change	the	message	following	the	INSERT	command	as	follows:
Message	Msgtxt('Employee	number	'	+	#EMPNO	+	'	has	been	added')
	

					Note	that	RDMLX	enables	this	style	of	code	to	be	written.
					In	your	own	applications	you	will	usually	use	a	message	file	message	for	this
type	of	feedback.

19.	After	the	INSERT,	add	code	to	reset	the	employee	fields	to	their	default
values,	using	the	Group_by:
#EMPDATA	:=	*default
	

20.	Recompile	your	form	and	retest	it	by	adding	another	employee	record.	All
field	values	should	be	reset	to	their	default	values	as	defined	in	their
Repository	field	definitions,	in	this	case	they	are	all	blank	or	zeroes.

					Note	that	your	new	message	Employee	number	A9999	has	been	added	is
displayed	in	the	status	bar.

21.	With	your	form	still	running	after	the	successful	insert,	try	to	insert	another
blank	record.	Review	the	status	bar	messages	and	note	that	the	"Employee

number	A9999	has	been	added"	has	been	cleared.
					An	event	routine	has	an	OPTIONS	setting	with	default	values	as	follows:
Evtroutine	Handling(#SAVE.Click)	options(*CLEARERRORS	*CLEARMESSAGES)
	

					Each	time	an	event	routine	is	executed,	by	default,	it	clears	field	errors	and
messages.

Step	4.	Using	a	Busy	Cursor
Your	applications	should	provide	good	feedback	to	the	user,	for	example	when
routine	will	take	more	than	a	few	seconds	to	complete.	This	step	illustrates	how
to	implement	a	Busy	Cursor.	Of	course,	in	reality	you	wouldn't	need	this	for	a
routine	which	performs	a	single	record	add.
1.		Event	handling	routines	have	a	Com_Cursor()	parameter	which	may	have
values	of:
DEFAULT,	*DELAY_01,	*DELAY_02,	*DELAY_04,	*IMMEDIATE	or
*NEVER

					The	DELAY	values	are	seconds.
2.		Change	the	SAVE.Click		routine	to	have	Com_Cursor(*IMMEDIATE).
3.		Use	a	Begin_Loop/End_Loop	to	add	a	delay	at	the	start	of	the	SAVE.Click
routine.	For	example,	your	routine	could	look	like	the	following:
Evtroutine	Handling(#SAVE.Click)	Com_Cursor(*IMMEDIATE)

#std_num	:=	0

Begin_Loop	Using(#std_num)	To(5000000)

#std_num	+=	1

End_Loop

Insert	Fields(#empdata)	To_File(pslmst)

Message	Msgtxt('Employee	number	'	+	#EMPNO	+	'	has	been	added')
#empdata	:=	*default
Endroutine	

					Note:	You	may	need	to	use	To(10,000,000)	for	the	Begin_Loop	if	you	have	a
fast	PC,	in	order	to	produce	an	noticeable	delay.

					Alternatively,	you	could	have	added	a	loop	structure	using
DOWHILE/ENDWHILE	or	DOUNTIL/ENDUNTIL.

4.		Recompile	your	form	and	test	it,	for	example	by	trying	to	add	a	blank	record.
You	should	see	the	busy	cursor	displayed	for	a	few	seconds	every	time:

					Other	"delay"	feedback	techniques	available	include	a	Progress	Bar
component	and	showing	"stop"	and	"go"	images.

Summary
Important	Observations

GROUP_BY's	define	a	set	of	fields	and	simplify	your	code	and	reduce
future	maintenance	effort
The	MESSAGE	command	can	display	text	messages	or	display	a	message
from	a	message	file
Database	command	have	a	VAL_ERROR()	parameter,	with	a	default	value
of	*LASTDISPLAY.	On	error,	this	setting	will	branch	to	the	routines
EndRoutine	statement.
Event	handling	routines	have	a	Com_Cursor	parameter,	which	enables	"busy
cursor"	to	be	implemented.

Tips	&	Techniques
Always	use	the	Command	Assistant	with	commands	such	as	GROUP_BY
which	require	a	list	of	field	names
Always	consider	whether	to	provide	the	user	with	additional	feedback	such
as	"busy	cursor".

What	I	Should	Know
How	to	define	a	GROUP_BY	command
How	to	define	a	MESSAGE	command
How	to	use	the	INSERT	command
How	to	define	a	BEGIN_LOOP/END_LOOP	command
How	to	use	the	Status	Bar	component	to	display	application	messages
How	to	implement	"busy	cursor"
Be	aware	of	other	forms	of	"delay"	feedback	are	available.

FRM035	-	Maintain	a	Simple	Database	Table
Objectives:

To	introduce	the	most	common	forms	of	database	access	including	the
following	commands:
FETCH
INSERT
UPDATE
DELETE.

To	learn	about	error	handling	using	the	IF_STATUS	command	when	using
file	operations.
To	learn	how	to	use	some	of	the	program	level	validations	commands:
BEGINCHECK	/	ENDCHECK
CALLCHECK
CONDCHECK
DATECHECK
FILECHECK
RANGECHECK
VALUECHECK
IF_ERROR,	SET_ERROR.

To	understand	how	program	validations	relate	to	the	repository	validation
performed	by	the	Object	Access	Modules.
To	understand	how	to	use	a	Built-In	Function	(BIF)	to	display	a	message	box
with	user	confirmation.
To	create	a	simple	application	to	maintain	the	DEPTAB	file.

To	achieve	these	objectives,	you	need	to	complete	the	following:
Step	1.	Create	a	Department	Maintenance	Form
Step	2.	Fetch	Existing	Data	from	a	File
Step	3.	Insert	Data	to	a	File
Step	4.	Add	Program	Level	Validations
Step	5.	Update	Data	in	a	File
Step	6.	Delete	Data	from	the	File
Step	7.	Update	and	Delete	Last	Record	Read
Summary

Before	You	Begin:
In	order	to	complete	this	exercise,	you	should	have	completed	the	previous
exercise.
You	may	wish	to	review	the	following	topics	in	the	Technical	Reference	Guide:

RDML	Commands
					and

RDMLX	Commands	and	RDMLX	Features.

its:lansa015.CHM::/lansa/tgub2_begin.HTM
its:lansa015.chm::/Lansa/TGUB3_BEGIN.htm

Step	1.	Create	a	Department	Maintenance	Form
In	this	step	you	will	create	a	simple	form	to	fetch	a	record	from	the	Department
file.
In	the	later	steps,	you	will	add	insert,	update	and	delete	operations	to	this	form
to	build	a	complete	maintenance	application.
1.		Create	a	new,	basic	form	named	iiiMntDept	Database	Access	(where	iii	are
your	course	assigned	initials).	If	you	are	using	iii=DEM,	your	component
must	be	named	DEMCOM03.

2.		Using	the	Repository	tab,	locate	the	DEPTAB	file.	Notice	that	the	file	has
two	fields	DEPTMENT	and	DEPTDESC.	The	file	is	keyed	on	DEPTMENT.

3.		Drag	and	drop	the	DEPTMENT	and	DEPTDESC	fields	on	to	the	form.
4.		Add	a	Status	Bar	to	the	form	so	that	validation	error	messages	can	be
displayed.

5.		Add	a	Push	Button	to	the	form.
a.	Set	the	button	Name	and	Caption	to	Fetch.
b.	Create	a	Click	event	routine	for	the	Fetch	button.

6.		Your	form	should	appear	like	this:

Step	2.	Fetch	Existing	Data	from	a	File
In	this	step	you	will	use	the	FETCH	command	to	retrieve	a	single	record	from
the	database.	You	should	notice	that	there	are	no	OPEN	or	CLOSE	statements
required	for	the	file.	File	opening	and	closing	is	handled	automatically	by
LANSA.
1.		In	the	FETCH.Click	event	routine,	add	a	FETCH	command	to	retrieve	the
DEPTMENT	and	DEPTDESC	fields	from	the	DEPTAB	file.	For	this	first
example,	you	want	to	FETCH	the	record	where	DEPTMENT='ADM'.

					Your	code	should	appear	as	follows:
EVTROUTINE	HANDLING(#FETCH.Click)
FETCH	FIELDS(#DEPTMENT	#DEPTDESC)	FROM_FILE(DEPTAB)	WITH_KEY(
ENDROUTINE
	

					Reminder:	You	can	use	F1	to	display	the	online	help	for	more	details	about
commands.

2.		Compile	and	execute	the	form.
a.		Press	the	Fetch	button.
					The	record	for	department	ADM	is	read	from	the	database	and	the	result
displayed	on	the	form.	If	for	some	reason	this	record	does	not	exist,	a
message	is	automatically	issued	due	to	the	ISSUE_MSG(*YES)	parameter
on	the	FETCH	command	.	In	your	own	applications	you	will	usually	want
to	remove	this	option	and	add	your	own	error	handling.

3.		Typically,	you	want	to	allow	the	user	to	enter	a	Department	Code	for	the
record	to	be	read.	The	value	that	the	user	has	entered	for	the	DEPTMENT
field	on	the	form	will	be	used	to	fetch	the	record.

					If	the	record	is	not	found,	appropriate	error	messages	must	be	displayed	to

the	user.	Review	the	use	of	the	IF_STATUS	command	to	check	that	the
FETCH	was	successful.

					I/O	Command	Return	Codes	Table

Command I/O
Error

Dictionary
Validation

Not
Found

Found	Or
Completed

INSERT ER VE* - OK

UPDATE ER VE NR OK

FETCH ER 	 NR OK

SELECT ER 	 EF# OK

WHERE 	 	 	 OK

FILECHECK - 	 NE EQ

CHECK_FOR - 	 NE EQ

DELETE ER VE NR OK

	

*	An	attempted	INSERT	with	a	duplicate	key	will	return	VE.
#	A	SELECT	command	using	a	WHERE	parameter	will	select	each	record	and
test	for	the	condition.	When	the	last	record	is	selected,	the	processing	will	leave
the	SELECT	loop	with	the	data	from	the	last	record	selected.	This	record	may
not	have	met	the	WHERE	condition.
					Your	finished	code	should	appear	as	follows:

EVTROUTINE	HANDLING(#FETCH.Click)
FETCH	FIELDS(#DEPTMENT	#DEPTDESC)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)
IF_STATUS	IS_NOT(*OKAY)
MESSAGE	MSGTXT('Error	retrieving	Department')
ENDIF
ENDROUTINE

	
4.		Compile	and	execute	the	form.

a.		Leave	the	Department	Code	blank	and	press	the	Fetch	button.

					The	error	message	will	be	displayed.

b.		Enter	a	Department	Code	of	ADM	and	press	the	Fetch	button.
					The	ADM	record	is	read	from	the	database	and	the	result	displayed	on	the
form.

5.		Close	the	form.

Step	3.	Insert	Data	to	a	File
In	this	step	you	will	let	the	user	insert	new	data	into	the	DEPTAB	file.
You	will	add	an	Insert	push	button	to	the	form	along	with	the	STD_NUM	field.
The	STD_NUM	field	is	not	used	in	the		DEPTAB	file	but	will	used	to	help
demonstrate	program	level	validation	rules.	You	will	also	use	a	GROUP_BY	
statement	to	simplify	the	code	in	your	form.
1.		Drag	and	drop	the	STD_NUM	field	to	the	form.
2.		Drag	and	drop	a	push	button	to	the	form.

a.		Set	the	button	Name	and	Caption	to	INSERT.
b.		Create	a	Click	event	routine	for	the	INSERT	button.

					Note:	The	controls	on	a	form	(fields,	push	buttons	etc)	have	a	TabPosition
property.	You	as	you	add	controls	to	the	form	you	should	ensure	their
TabPosition	is	set	to	an	appropriate	value.	For	example	the	three	fields	should
be	TabPosition	=	1,2	and	3

3.		Your	form	should	appear	like	this:

4.		For	each	of	the	database	commands,	you	will	be	including	a	list	of	fields	to
fetch,	insert,	update	and	delete.	To	simplify	your	I/O	statements,	add	a
GROUP_BY	command	after	your	DEFINE_COM	statements	so	that	you
can	refer	to	all	the	fields	by	the	group	name:
GROUP_BY	NAME(#FORMDATA)	FIELDS(#DEPTMENT	#DEPTDESC
#STD_NUM)
	

					Once	added,	you	change	the	FETCH	command	as	follows:
FETCH	FIELDS(#FORMDATA)	FROM_FILE(DEPTAB)

WITH_KEY(#DEPTMENT)
	

					Notice	that	the	STD_NUM	field	can	be	included	in	the	GROUP_BY
used	by	the	FETCH	even	though	it	is	not	a	field	in	the	DEPTAB	file.	In
database	operations	the	STD_NUM	field	will	be	ignored,	but	used	in	other
operations	where	the	group	is	used.

5.		In	the	INSERT.Click	event	routine,	add	an	INSERT	command	to	add	a
new	record	to	the	file.

					Remember	to	add	the	appropriate	error	checking.	Once	the	INSERT
completes	successfully,	all	fields	on	the	form	should	be	reset	to	their
repository	defaults.

					Your	finished	code	should	appear	as	follows:
EVTROUTINE	HANDLING(#INSERT.Click)
INSERT	FIELDS(#FORMDATA)	TO_FILE(DEPTAB)
IF_STATUS	IS(*OKAY)
MESSAGE	MSGTXT('Department	inserted	successfully')
#FORMDATA	:=	*DEFAULT
ELSE
IF_STATUS	IS(*ERROR)
MESSAGE	MSGTXT('Error	inserting	Department')
ENDIF
ENDIF
ENDROUTINE
	

					Note	that	the	INSERT	command	has	many	parameters	which	are	not	shown
in	the	editor	when	their	default	values	are	used.	The	INSERT	command	you
have	created	looks	like	this	with	default	values	shown:
INSERT	FIELDS(#FORMDATA)	TO_FILE(DEPTAB)	IO_STATUS(*STATUS)	IO_ERROR(*ABORT)
VAL_ERROR(*LASTDIS)	ISSUE_MSG(*NO)	RETURN_RRN(*NONE)	CHECK_ONLY(*NO)
AUTOCOMMIT(*FILEDEF)

6.		Compile	and	execute	the	form.
a.		Leave	the	Department	Code	and	Description	blank	and	press	the	Insert
button.

					Notice	that	fields	in	error	are	highlighted	and	error	messages	are

displayed.

b.		Review	the	error	messages.	They	are	caused	by	the	validation	rules	in	the
Repository.	When	the	INSERT	fails	due	to	these	repository	errors,	the
program	automatically	returns	to	the	last	display.	This	is	controlled	by	the
default	VAL_ERROR(*LASTDIS)	parameter	on	the	INSERT	command.

c.		Enter	a	Department	Code	of	ADM	and	press	the	Fetch	button	to	retrieve
an	existing	record.

d.		Press	the	Insert	button	to	try	to	duplicate	this	data	in	the	database.
					Notice	that	no	fields	are	highlighted	in	error	as	the	repository	validation
rules	have	been	satisfied.	The	error	message	is	automatically	generated	by
LANSA.

e.		Enter	a	Department	Code	of	III	(where	iii	=	your	initials)	and	enter	your
name	for	the	Department	Description.	Enter	the	number	999	into	Standard
Number.	Press	the	Insert	button.

					(Remember	STD_NUM	is	not	used	in	the	DEPTAB	file.)
					The	new	record	should	be	inserted	into	the	database,	a	message	displayed,
and	all	fields	reset	to	their	default.

7.		Close	the	form.

Step	4.	Add	Program	Level	Validations
In	this	step	you	will	learn	how	to	create	program	level	validations	using	code
within	a	BEGINCHECK/ENDCHECK	block.
Note	that	this	exercise	is	just	an	example	created	to	explain	validation
commands.	Most	of	your	validation	rules	will	be	placed	in	the	Repository	as
part	of	the	file	definitions.	You	may	also	design	your	forms	to	reduce	the
number	and	types	of	program	validations	required.	For	instance,	a	drop	down
list	box	provides	a	list	of	values	so	that	VALUECHECK	is	not	required.
1.		Add	a	validation	check	that	ensures	the	Department	Code	does	not	contain
any	embedded	blanks.

					For	example,	'A	A'	should	not	be	allowed	as	a	valid	code.	Use	a
CONDCHECK	statement	within	a	BEGINCHECK	/	ENDCHECK	block	and
the	CONTAINS	intrinsic	field	method	to	search	for	blank	characters.

					Add	the	following	code	immediately	before	the	INSERT	command	in	the
INSERT.Click	event	routine:
BEGINCHECK
CONDCHECK	FIELD(#DEPTMENT)	COND(#DEPTMENT.Contains('	'))	IF_TRUE(*ERROR)
IF_FALSE(*NEXT)	MSGTXT('Code	cannot	contain	embedded	blanks.')
ENDCHECK
	

					Note:	CONDCHECK.	IF_FALSE(.	is	a	single	command,	on	a
single	line.	It	is	shown	here	on	two	lines	due	to	space	limitations.	You	should
type	CONDCHECK	and	then	use	the	Command	Assistant	(F4)	to	complete
this	code.

2.		Compile	and	execute	the	form.
a.		Enter	a	Department	Code	that	includes	a	blank	space	and	press	the	Insert
button.

					Notice	the	field	in	error	and	the	error	message.

					The	repository	validation	rules	(checking	that	Department	Description	is
not	blank)	have	not	been	invoked	because	the	INSERT	command	has	not
yet	been	executed	because	of	the	error	detected	in
BEGINCHECK/ENDCHECK.

3.		Close	the	form.
4.		Another	option	to	using	the	CONDCHECK	is	to	use	a	simple	IF	statement
combined	with	the	SET_ERROR	command.	Using	SET_ERROR	allows
more	than	one	field	to	be	set	in	error.
a.		Add	a	rule	that	checks	that	the	user	has	not	entered	the	same	values	for
the	DEPTMENT	and	DEPTDESC	fields.	If	they	are	the	same,	set	both
fields	in	error.

BEGINCHECK
CONDCHECK	FIELD(#DEPTMENT)	COND(#DEPTMENT.Contains('	'))	IF_TRUE(*ERROR)
IF_FALSE(*NEXT)	MSGTXT('Code	cannot	contain	embedded	blanks.')

IF	COND(#DEPTMENT	*EQ	#DEPTDESC)
SET_ERROR	FOR_FIELD(#DEPTMENT	#DEPTDESC)	MSGTXT('Department	Code	cannot	be	the	same
as	Department	Description.')
ENDIF

ENDCHECK
	

5.		Add	a	RANGECHECK	validation	to	check	if	STD_NUM	is	between	1	and
10.

					Remember	this	field	is	not	used	in	the	DEPTAB	file.	You	are	simply	using
program	level	validations	to	check	the	values	of	the	fields	on	the	screen.
RANGECHECK	FIELD(#STD_NUM)	RANGE((1	10))	MSGTXT('Must	be
in	range	1	to	10.')
	

6.		Add	a	VALUECHECK	validation	to	check	if	the	DEPTDESC	field	is	in	a	list
of	reserved	values	NONE,	END	or	LAST.
VALUECHECK	FIELD(#DEPTDESC)	WITH_LIST(NONE	END	LAST)	IN_LIST(*ERROR)
NOT_INLIST(*NEXT)	MSGTXT('This	description	is	reserved.')

7.		Finally,	check	that	the	Department	Code	does	not	already	exist	in	the	file
DEPTAB.	Note	that	this	check	is	not	necessary	as	duplicate	key	fields	are
automatically	checked	based	on	the	file	attributes.	This	is	just	an	example.
Typically,	you	might	check	that	the	field	is	present	in	a	different	file.
FILECHECK	FIELD(#DEPTMENT)	USING_FILE(DEPTAB)	USING_KEY(#DEPTMENT)	FOUND(*ERROR)
NOT_FOUND(*NEXT)	MSGTXT('Department	Code	already	exists.')
	

					Your	finished	validation	code	should	appear	as	follows:
BEGINCHECK
FILECHECK	FIELD(#DEPTMENT)	USING_FILE(DEPTAB)	USING_KEY(#DEPTMENT)	FOUND(*ERROR)
NOT_FOUND(*NEXT)	MSGTXT('Department	Code	already	exists.')
VALUECHECK	FIELD(#DEPTDESC)	WITH_LIST(NONE	END	LAST)	IN_LIST(*ERROR)
NOT_INLIST(*NEXT)	MSGTXT('This	description	is	reserved.')
RANGECHECK	FIELD(#STD_NUM)	RANGE((1	10))	MSGTXT('Must	be	in	range	1	to	10.')
CONDCHECK	FIELD(#DEPTMENT)	COND(#DEPTMENT.Contains('	'))	IF_TRUE(*ERROR)
IF_FALSE(*NEXT)	MSGTXT('Code	cannot	contain	embedded	blanks.')
IF	COND(#DEPTMENT	*EQ	#DEPTDESC)
SET_ERROR	FOR_FIELD(#DEPTMENT	#DEPTDESC)	MSGTXT('Department	Code	cannot	be	the	same	as	Department	Description.')
ENDIF
ENDCHECK
	

8.		Compile	and	execute	the	form.
a.		Enter	a	Department	Code	of	ADM	and	a	Description	of	XYZ.	Leave	the
STD_NUM	as	0	and	press	the	Insert	button.

b.		Notice	the	fields	in	error	and	scroll	through	the	error	messages	displayed.

c.		Try	entering	identical	values	for	the	Department	Code	and	Description.
9.		Close	the	form.
					It	is	recommended	that	you	review	information	about	other	validation
commands.	Using	the	LANSA	Technical	Reference,	you	should	review	the
CALLCHECK	and	DATECHECK	commands.

its:lansa015.chm::/Lansa/CALLCHECK.htm
its:lansa015.chm::/Lansa/DATECHECK.htm

Step	5.	Update	Data	in	a	File
In	this	step	you	will	add	an	Update	button	to	your	form	in	order	to	update	an
existing	record	in	the	file.
In	this	first	example,	you	will	update	using	the	key	to	the	file.	In	Step	7.	Update
and	Delete	Last
Record,	you	will	modify	the	form	to	update	the	record	that	was	fetched.
1.		Drag	and	drop	a	push	button	to	the	form.

a.		Set	the	button	Name	and	Caption	to	UPDATE.
b.		Create	a	Click	event	routine	for	the	UPDATE	button.

2.		Your	form	should	appear	like	this:

3.		In	the	UPDATE.Click	event	routine,	add	an	UPDATE	command	to	update	an
existing	record	in	the	DEPTAB	file.	Remember	to	add	the	appropriate	status
error	checking.	Once	the	UPDATE	completes	successfully,	all	fields	on	the
form	should	be	reset	to	their	repository	defaults.

					Your	finished	code	should	appear	as	follows:
EVTROUTINE	HANDLING(#UPDATE.Click)
UPDATE	FIELDS(#FORMDATA)	IN_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)	VAL_ERROR(*NEXT)
IF_STATUS	IS(*OKAY)
MESSAGE	MSGTXT('Department	updated	successfully')
#FORMDATA	:=	*DEFAULT
ELSE
IF_STATUS	IS(*NORECORD)
MESSAGE	MSGTXT('Department	not	found')
ELSE
IF_STATUS	IS(*ERROR)
MESSAGE	MSGTXT('Error	updating	Department')

ENDIF
ENDIF
ENDIF
ENDROUTINE
	

4.		Compile	and	execute	the	form.
a.		Fetch	your	III	test	record	that	you	inserted	in	Step	3.	Insert	Data	to	a	File.
b.		Change	the	Description	to	XYZ	and	press	the	Update	button.

					Notice	that	the	program	validations	you	added	on	the	DEPTDESC	field	in
the	previous	step	are	only	applied	when	a	new	record	is	inserted	with	the
INSERT	command,	but	not	when	the	record	is	changed	with	the	UPDATE
command.	If	you	wanted	the	rules	to	be	applied	to	both	INSERT	and
UPDATE,	the	best	solution	would	be	to	place	this	rule	in	the	Repository.

5.		Close	the	form.
6.		Using	the	IF_STATUS	command	is	the	recommended	technique	for	checking
the	status	of	file	operations.	An	alternative	technique	is	to	use	the	IO$STS
field	or	another	field	to	store	the	status	code.	For	example:
DEFINE	FIELD(#RETCODE)	TYPE(*CHAR)	LENGTH(2)
UPDATE	FIELDS(#FORMDATA)	IN_FILE(DEPTAB)	IO_STATUS(#RETCODE)
	

					You	can	now	check	the	value	of	RETCODE	to	determine	the	status	returned
by	the	update.	You	could	use	a	CASE	statement	as	follows:
CASE	OF_FIELD(#RETCODE)
WHEN	VALUE_IS(=	OK)
MESSAGE	MSGTXT('Department	updated	successfully')
WHEN	VALUE_IS(=	NR)

MESSAGE	MSGTXT('Department	not	found')
WHEN	VALUE_IS(=	ER)
MESSAGE	MSGTXT('Error	updating	Department')
WHEN	VALUE_IS(=	EF)
MESSAGE	MSGTXT('End	of	file.')
WHEN	VALUE_IS(=	BF)
MESSAGE	MSGTXT('Beginning	of	file.')
WHEN	VALUE_IS(=	EQ)
MESSAGE	MSGTXT('Equal	key	found.')
WHEN	VALUE_IS(=	NE)
MESSAGE	MSGTXT('No	equal	key	found.')
OTHERWISE
MESSAGE	MSGTXT('Unidentified	file	operation	return	code.')
ENDCASE
	

					Note	that	if	you	do	not	explicitly	specify	the	IO_STATUS	option,	the	return
code	is	automatically	stored	in	the	IO$STS	field.	You	can	use	a	CASE
statement	with	this	field	instead:
CASE	OF_FIELD(#IO$STS)
WHEN	VALUE_IS(=	OK)
...
ENDCASE
	

Step	6.	Delete	Data	from	the	File
In	this	step	you	will	add	a	Delete	button	to	your	form	in	order	to	delete	an
existing	record	in	the	file.
1.		Drag	and	drop	a	push	button	to	the	form.

a.		Set	the	button	Name	and	Caption	to	DELETE.
b.		Create	a	Click	event	routine	for	the	Delete	button.

2.		Your	form	should	appear	like	this:

3.		In	the	Delete.Click	event	routine,	add	a	DELETE	command	to	delete	a
record	from	the	file.	Remember	to	add	the	appropriate	status	error	checking.
Once	the	DELETE	completes,	all	fields	on	the	form	should	be	reset	to	their
repository	defaults.

					Your	finished	code	should	appear	as	follows:
EVTROUTINE	HANDLING(#DELETE.Click)
DELETE	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)
IF_STATUS	IS(*OKAY)
MESSAGE	MSGTXT('Department	deleted	successfully')
#FORMDATA	:=	*DEFAULT
ELSE
IF_STATUS	IS(*NORECORD)
MESSAGE	MSGTXT('Department	not	found')
ELSE
IF_STATUS	IS(*ERROR)
MESSAGE	MSGTXT('Error	deleting	Department')
ENDIF
ENDIF

ENDIF
ENDROUTINE
	

4.		Compile	and	execute	the	form.
a.		Enter	a	Department	Code	of	III	(your	test	record)	and	press	the	Delete
button.

5.		In	many	applications,	users	are	prompted	to	confirm	that	the	record	is	to	be
deleted.	You	can	add	this	message	using	the	LANSA	Built-In	Function
MESSAGE_BOX_SHOW.
a.		To	accept	the	user	response,	you	need	to	define	a	new	field	as	follows:
DEFINE	FIELD(#ANSWER)	TYPE(*CHAR)	LENGTH(6)
	
b.		In	the	DELETE.Click	event	routine,	invoke	the
MESSAGE_BOX_SHOW	Built-In	Function	by	adding	the	following	USE
command	to	the	very	start	of	the	routine:

USE	BUILTIN(MESSAGE_BOX_SHOW)	WITH_ARGS(YESNOCANCEL	NO	QUESTION	'Confirm	Delete'
'Are	you	sure	you	want	to	delete?')	TO_GET(#ANSWER)
	
c.		Immediately	after	the	USE	command,	check	the	value	of	#ANSWER.	If
the	answer	is	YES,	proceed	to	delete	the	record.

					Your	finished	code	should	appear	as	follows:
EVTROUTINE	HANDLING(#DELETE.Click)
USE	BUILTIN(MESSAGE_BOX_SHOW)	WITH_ARGS(YESNOCANCEL	NO	QUESTION	
'Are	your	sure	you	want	to	delete?')	TO_GET(#ANSWER)
IF	COND(#ANSWER	=	YES)

DELETE	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)	IF_STATUS	IS(*OKAY)
MESSAGE	MSGTXT('Department	deleted	successfully')
#FORMDATA	:=	*DEFAULT
ELSE
IF_STATUS	IS(*NORECORD)
MESSAGE	MSGTXT('Department	not	found')
ELSE
IF_STATUS	IS(*ERROR)
MESSAGE	MSGTXT('Error	deleting	Department')
ENDIF
ENDIF
ENDIF
ENDIF
ENDROUTINE
	

					You	should	review	the	documentation	for	the	MESSAGE_BOX_SHOW
Built	in	Function	in	the	Technical	Reference	Guide.	It	can	also	be	used	with
MESSAGE_BOX_ADD	and	MESSAGE_BOX_APPEND	Built	in	Functions
to	output	a	message	box	containing	more	text.

6.		Compile	and	execute	the	form.
a.		Insert	some	new	test	data.
b.		Fetch	your	test	record	and	press	the	Delete	button.
					A	confirmation	message	is	displayed.

7.		Close	the	form.

its:lansa015.CHM::/LANSA/MESSAGE_BOX_SHOW.HTM

Step	7.	Update	and	Delete	Last	Record	Read
In	this	step	you	will	learn	about	updating	and	deleting	based	on	the	last	record
fetched	instead	of	using	the	WITH_KEY	parameter.
In	order	to	use	the	last	record	read,	it	is	important	that	users	cannot	change	the
key	once	a	record	has	been	fetched.	It	is	equally	important	that	a	FETCH	has
been	performed	before	the	update	or	delete	is	requested.	In	order	to	ensure	this,
you	need	to	enable	and	disabled	fields	and	buttons	at	the	appropriate	times.
A	new	Clear	button	must	also	be	added	to	allow	the	user	to	reset	the	form	after
a	record	has	been	fetched.
1.		Drop	a	push	button	onto	the	form.

a.		Set	the	button	Name	and	Caption	to	CLEAR.
b.		Create	a	Click	event	routine	for	the	CLEAR	button.

2.		Your	form	should	appear	like	this:

3.		To	centralize	your	code,	you	will	create	a	SUBROUTINE	that	can	be	called
whenever	the	form	needs	to	be	reset.	This	subroutine	needs	to	reset	all	fields
to	their	default	values	and	enable	the	Fetch	and	Insert	buttons,	as	well	as	the
DEPTMENT	field.	The	Update	and	Delete	buttons	are	disabled	until	a	record
has	been	fetched.

Your	code	should	appear	as	follows:
SUBROUTINE	NAME(INITFORM)
#FORMDATA	:=	*DEFAULT
#UPDATE.Enabled	#DELETE.Enabled	:=	False
#DEPTMENT.Enabled	#FETCH.Enabled	#INSERT.Enabled	:=	True
ENDROUTINE
	

4.		In	the	CLEAR.Click	event	routine,	execute	your	INITFORM	subroutine.
					Your	finished	code	should	appear	as	follows:
EVTROUTINE	HANDLING(#CLEAR.Click)
EXECUTE	SUBROUTINE(INITFORM)
ENDROUTINE
	

5.		In	the	form's	Initialize	event	routine,	execute	your	INITFORM	subroutine.
EVTROUTINE	HANDLING(#com_owner.Initialize)
SET	COM(#com_owner)	CAPTION(*component_desc)
EXECUTE	SUBROUTINE(INITFORM)
ENDROUTINE
	

6.		Change	the	FETCH.Click	event	routine	code	so	that	the	Department
Description	field,	Fetch	and	Insert	button	are	disabled,	and	the	Update	and
Delete	buttons	are	enabled	if	a	record	has	been	successfully	retrieved.

					Your	finished	code	should	appear	something	like	the	following:
EVTROUTINE	HANDLING(#FETCH.Click)
FETCH	FIELDS(#DEPTMENT	#DEPTDESC)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)
IF_STATUS	IS_NOT(*OKAY)
MESSAGE	MSGTXT('Error	retrieving	Department')
ELSE
#DEPTMENT.Enabled	#FETCH.Enabled	#INSERT.Enabled	:=	False
#UPDATE.Enabled	#DELETE.Enabled	:=	True
ENDIF
ENDROUTINE
	

7.		Remove	the	WITH_KEY	parameter	on	the	UPDATE	and	DELETE
commands.	The	commands	should	appear	simply	as	follows:
UPDATE	FIELDS(#FORMDATA)	IN_FILE(DEPTAB)

DELETE	FROM_FILE(DEPTAB)
	

					Also,	after	the	update	or	delete	has	completed	successfully,	be	sure	to
execute	your	INITFORMS	subroutine.

					FRM035	–	Appendix	contains	a	complete	sample	solution	for	form
iiiMntDept.

8.		Compile	and	execute	the	form.
					When	the	form	first	appears,	only	Fetch,	Insert	and	Clear	are	allowed.

a.		Add	some	new	test	data.
b.		Fetch	one	of	your	newly	inserted	records.

					The	Update	and	Delete	buttons	are	now	enabled	while	the	Fetch	and	Insert
buttons	are	disabled.

					The	Department	Code	is	disabled	to	prevent	the	user	from	changing	this
code.	You	can	now	Update	the	record	or	Delete	it.	The	Clear	button	will	reset
the	form	so	that	a	different	record	can	be	fetched	or	more	records	inserted.

9.		Close	your	form	and	close	the	form	in	the	editor.

Summary
Important	Observations

GROUP_BY	commands	help	you	simplify	your	code.
You	should	always	check	the	I/O	status	after	performing	database
operations.	The	IF_STATUS	command	supports	*OKAY,	*ERROR,
*VALERROR,	*NORECORD,	*ENDFILE,	*BEGINFILE,	*EQUALKEY,
*NOTEQUALKEY.
Program	level	validation	rules	can	be	added	using	a	BEGINCHECK	/
ENDCHECK	and	related	validation	commands	CALLCHECK,
CONDCHECK,	DATECHECK,	FILECHECK,	RANGECHECK,
VALUECHECK,	IF_ERROR,	SET_ERROR.
A	record	should	be	fetched	from	the	database	prior	to	updating	or	deleting
the	record	if	you	are	not	using	a	key	to	identify	the	record.	For	more	details
about	cross-update	and	delete,	please	search	for	Cross	Update	notes	in	the
Technical	Reference	Guide.	For	example	see	UPDATE	Comments	/	Warnings
/	Understand	UPDATE	Command.
LANSA	provides	many	Built-In	Functions	that	can	be	used	to	perform
specialized	tasks	in	LANSA.	Intrinsic	field	methods	can	be	used	in	place	of
many	of	these	Built	in	Functions.

Tips	&	Techniques
The	CHECK_ONLY	parameter	on	file	commands	allows	you	to	check	what
would	happen	if	the	file	operation	is	performed	but	the	operation	is	not
actually	performed.	For	example,	you	can	use	CHECK_ONLY(*YES)	on
the	delete	command	to	check	if	a	record	can	be	deleted	from	a	file	without
actually	performing	the	delete.
The	ISSUE_MSG	parameter	on	the	FETCH	commands	will	only	display	a
message	if	a	record	is	not	found.	It	is	generally	better	to	check	the	IO$STS
or	use	the	IF_STATUS	and	then	display	messages	to	the	user.
Typically,	you	do	not	need	to	open	or	close	files	in	LANSA	applications.	In
special	circumstances,	such	as	large	application	with	hundreds	of	files	being
accessed,	you	may	wish	to	use	the	OPEN	and	CLOSE	statements.
Special	values	can	be	used	with	the	database	commands	such	as	FETCH,
INSERT	and	UPDATE.	For	example,	the	following	values	can	be	used	with
the	FETCH	command:

*ALL	specifies	that	all	fields	from	the	currently	active	file	be	fetched.
*ALL_REAL	specifies	that	all	real	fields	from	the	currently	active	file	be
fetched.
*ALL_VIRT	specifies	that	all	virtual	fields	from	the	currently	active	file
be	fetched.
*EXCLUDING	specifies	that	fields	following	this	special	value	must	be
excluded	from	the	field	list.
*INCLUDING	specifies	that	fields	following	this	special	value	must	be
included	in	the	field	list.	This	special	value	is	only	required	after	an
*EXCLUDING	entry	has	caused	the	field	list	to	be	in	exclusion	mode.

It	is	strongly	recommended	that	the	special	values	*ALL,	*ALL_REAL	or
*ALL_VIRT	be	used	sparingly	and	only	when	really	required.	Fetching
fields	which	are	not	needed	causes	the	function	to	retrieve	and	map	fields
unnecessarily,	invalidates	cross-reference	details	(shows	fields	which	are	not
used	in	the	function)	and	increases	the	Crude	Entity	Complexity	Rating	of
the	function.
Most	of	your	validation	checks	should	be	performed	using	file	level
validation	rules	in	the	Repository.	Your	program	level	validations	support
*ERROR,	*NEXT	and	*ACCEPT	processing	similar	to	the	repository
checks.

What	You	Should	Know
How	to	use	the	FETCH,	INSERT,	UPDATE	and	DELETE	database
commands.
How	to	handle	errors	using	the	IF_STATUS	command	when	performing	file
operations.
How	to	code	program	level	validations	using	BEGINCHECK	/
ENDCHECK,	CONDCHECK,	FILECHECK,	RANGECHECK,
VALUECHECK,	IF_ERROR,	and	SET_ERROR.
How	program	validations	relate	to	the	repository	validation	performed	by	the
Object	Access	Modules.
How	to	use	a	Built-In	Function	to	display	a	message	box	with	user
confirmation.

FRM035	–	Appendix
Your	finished	code	for	form	iiiMntDept	should	appear	something	like	the
following:
FUNCTION	OPTIONS(*DIRECT)
BEGIN_COM	ROLE(*EXTENDS	#PRIM_FORM)	CLIENTHEIGHT(174)
CLIENTWIDTH(500)	HEIGHT(212)	LEFT(416)	TOP(250)	WIDTH(516)
DEFINE_COM	CLASS(#DEPTMENT.Visual)	NAME(#DEPTMENT)
DISPLAYPOSITION(1)	HEIGHT(19)	LEFT(16)	PARENT(#COM_OWNER)
TABPOSITION(1)	TOP(8)	USEPICKLIST(False)	WIDTH(201)
DEFINE_COM	CLASS(#DEPTDESC.Visual)	NAME(#DEPTDESC)
DISPLAYPOSITION(2)	HEIGHT(19)	LEFT(16)	PARENT(#COM_OWNER)
TABPOSITION(2)	TOP(32)	WIDTH(324)
DEFINE_COM	CLASS(#PRIM_STBR)	NAME(#STBR_1)
DISPLAYPOSITION(3)	HEIGHT(24)	LEFT(0)	MESSAGEPOSITION(1)
PARENT(#COM_OWNER)	TABPOSITION(3)	TABSTOP(False)	TOP(150)
WIDTH(500)
DEFINE_COM	CLASS(#STD_NUM.Visual)	NAME(#STD_NUM)
CAPTION('Insert')	DISPLAYPOSITION(4)	LEFT(16)
PARENT(#COM_OWNER)	TABPOSITION(4)	TOP(64)
DEFINE_COM	CLASS(#PRIM_PHBN)	NAME(#UPDATE)
CAPTION('Update')	DISPLAYPOSITION(5)	LEFT(389)
PARENT(#COM_OWNER)	TABPOSITION(5)	TOP(78)
DEFINE_COM	CLASS(#PRIM_PHBN)	NAME(#DELETE)
CAPTION('Delete')	DISPLAYPOSITION(6)	LEFT(389)
PARENT(#COM_OWNER)	TABPOSITION(6)	TOP(112)
DEFINE_COM	CLASS(#PRIM_PHBN)	NAME(#CLEAR)
CAPTION('Clear')	DISPLAYPOSITION(7)	LEFT(168)
PARENT(#COM_OWNER)	TABPOSITION(7)	TOP(96)
DEFINE_COM	CLASS(#PRIM_PHBN)	NAME(#insert)	CAPTION('Insert')
DISPLAYPOSITION(8)	HEIGHT(26)	LEFT(389)
PARENT(#COM_OWNER)	TABPOSITION(8)	TOP(40)
DEFINE_COM	CLASS(#PRIM_PHBN)	NAME(#Fetch)	CAPTION('Fetch')
DISPLAYPOSITION(9)	HEIGHT(26)	LEFT(389)
PARENT(#COM_OWNER)	TABPOSITION(9)	TOP(8)
GROUP_BY	NAME(#FORMDATA)	FIELDS(#DEPTMENT	#DEPTDESC
#STD_NUM)	
DEFINE	FIELD(#ANSWER)	TYPE(*CHAR)	LENGTH(6)

EVTROUTINE	HANDLING(#COM_OWNER.Initialize)
SET	COM(#COM_OWNER)	CAPTION(*COMPONENT_DESC)
EXECUTE	SUBROUTINE(INITFORM)
ENDROUTINE
EVTROUTINE	HANDLING(#FETCH.Click)
FETCH	FIELDS(#DEPTMENT	#DEPTDESC)	FROM_FILE(DEPTAB)
WITH_KEY(#DEPTMENT)
IF_STATUS	IS_NOT(*OKAY)
MESSAGE	MSGTXT('Error	retrieving	Department')
ELSE
#DEPTMENT.Enabled	#FETCH.Enabled	#INSERT.Enabled	:=	False
#UPDATE.Enabled	#DELETE.Enabled	:=	True
ENDIF
ENDROUTINE
EVTROUTINE	HANDLING(#INSERT.Click)
BEGINCHECK
FILECHECK	FIELD(#DEPTMENT)	USING_FILE(DEPTAB)
USING_KEY(#DEPTMENT)	FOUND(*ERROR)	NOT_FOUND(*NEXT)
MSGTXT('Department	Code	already	exists.')
VALUECHECK	FIELD(#DEPTDESC)	WITH_LIST(NONE	END	LAST)
IN_LIST(*ERROR)	NOT_INLIST(*NEXT)	MSGTXT('This	description	is
reserved.')
RANGECHECK	FIELD(#STD_NUM)	RANGE((1	10))	MSGTXT('Must	be
in	range	1	to	10.')
CONDCHECK	FIELD(#DEPTMENT)	COND(#DEPTMENT.Contains('	'))
IF_TRUE(*ERROR)	IF_FALSE(*NEXT)	MSGTXT('Code	cannot	contain
embedded	blanks.')
IF	COND(#DEPTMENT	*EQ	#DEPTDESC)
SET_ERROR	FOR_FIELD(#DEPTMENT	#DEPTDESC)
MSGTXT('Department	Code	cannot	be	the	same	as	Department	Description.')
ENDIF
ENDCHECK
INSERT	FIELDS(#FORMDATA)	TO_FILE(DEPTAB)
IF_STATUS	IS(*OKAY)
MESSAGE	MSGTXT('Department	inserted	successfully')
#FORMDATA	:=	*DEFAULT
ELSE
IF_STATUS	IS(*ERROR)
MESSAGE	MSGTXT('Error	inserting	Department')

ENDIF
ENDIF
ENDROUTINE
EVTROUTINE	HANDLING(#UPDATE.Click)
UPDATE	FIELDS(#FORMDATA)	IN_FILE(DEPTAB)
IF_STATUS	IS(*OKAY)
MESSAGE	MSGTXT('Department	updated	successfully')
EXECUTE	SUBROUTINE(INITFORM)
ELSE
IF_STATUS	IS(*NORECORD)
MESSAGE	MSGTXT('Department	not	found')
ELSE
IF_STATUS	IS(*ERROR)
MESSAGE	MSGTXT('Error	updating	Department')
ENDIF
ENDIF
ENDIF
ENDROUTINE
EVTROUTINE	HANDLING(#DELETE.Click)
USE	BUILTIN(MESSAGE_BOX_SHOW)	WITH_ARGS(YESNOCANCEL
NO	QUESTION	*COMPONENT	'Are	your	sure	you	want	to	delete?')
TO_GET(#ANSWER)
IF	COND(#ANSWER	=	YES)
DELETE	FROM_FILE(DEPTAB)
IF_STATUS	IS(*OKAY)
MESSAGE	MSGTXT('Department	deleted	successfully')
EXECUTE	SUBROUTINE(INITFORM)
ELSE
IF_STATUS	IS(*NORECORD)
MESSAGE	MSGTXT('Department	not	found')
ELSE
IF_STATUS	IS(*ERROR)
MESSAGE	MSGTXT('Error	deleting	Department')
ENDIF
ENDIF
ENDIF
ENDIF
ENDROUTINE
EVTROUTINE	HANDLING(#CLEAR.Click)

EXECUTE	SUBROUTINE(INITFORM)
ENDROUTINE
SUBROUTINE	NAME(INITFORM)
#FORMDATA	:=	*DEFAULT
#UPDATE.Enabled	#DELETE.Enabled	:=	False
#DEPTMENT.Enabled	#FETCH.Enabled	#INSERT.Enabled	:=	True
ENDROUTINE
END_COM
	

FRM045	-	Using	LANSA	Debug
Objectives:

To	introduce	the	Visual	LANSA	debugger.
To	learn	how	to	set	breakpoints	in	a	form.
To	learn	how	to	display	and	change	variables	in	a	program.

The	focus	of	this	exercise	is	how	to	use	the	features	of	the	debugger.	A	detailed
understanding	of	the	RDML	commands	is	not	important	at	this	time.	The
Programming	exercises	teach	the	basic	coding	practices.
To	achieve	these	objectives	you	must	complete	the	following:
Step	1.	Execute	Applications	with	Debug
Step	2.	Debug	Features
Step	3.	Set	Breakpoints
Step	4.	Display/Change	Variables
Step	5.	Set	Breakpoint	Properties
Step	6.	Set	a	Break	on	Value
Summary

Before	You	Begin
You	may	wish	to	review	the	following	topic	in	the	Visual	LANSA	User	Guide:
Debugging	Applications.
In	order	to	complete	this	exercise,	you	must	have	completed	the	previous
exercises.

its:lansa012.CHM::/LANSA/l4wusr01_0415.HTM

Step	1.	Execute	Applications	with	Debug
In	this	step	you	will	execute	your	Department	Maintenance	form	(iiiMntDept)
which	you	created	in	the	previous	exercise,	using	the	debugger.	The	form	must
have	been	compiled	with	debug	enabled.
1.		If	your	form	iiiMntDept	is	open	in	the	editor,	close	it.
2.		Using	the	Repository	tab,	locate	your	form	iiiMntDept.
3.		Right-click	the	iiiMntDept	form	to	display	the	context	menu,	and	select	the
Debug	/	Start	option.

4.		As	soon	as	the	form	is	executed,	it	is	opened	in	the	editor:

5.		The	first	executable	line	is	displayed	and	the	debugger	is	waiting	for	your
commands.	As	you	can	see	from	the	above	image,	the	form	is	about	to
execute	the	Initialize	event	handling	routine.	Notice	this	line	is	highlighted	in
yellow.	This	is	the	line	which	is	about	to	be	executed.

6.		Notice	that	the	Debug	tab	of	the	ribbon	is	displayed	with	a	set	of	debug
commands.	You	can	position	the	cursor	over	these	commands	to	display	the
tool	tips.

7.		Also,	you	should	notice	that	a	new	Variables	tab	has	appeared.	This	tab	lists
the	variables	used	in	the	form.

Step	2.	Debug	Features
In	this	step	you	will	simply	review	some	of	the	basic	debug	features.
1.		Select	the	Breakpoints	tab	on	the	bottom	of	the	editor.	If	necessary	open	the
Breakpoints	tab	from	the	Home	ribbon,	Views	menu.

					You	have	no	break	points	set	at	this	time	so	no	items	are	listed:

2.		Use	the	Views	menu	to	open	the	Call	Stack	tab	at	the	bottom	of	the	editor:

					The	Call	Stack	lists	all	programs	(processes,	functions,	components	and
reusable	parts)	in	the	order	that	they	have	been	invoked.

3.		Press	the	F8	(Step	Into)	key	once,	and	you	will	see	that	the	highlighted	line
in	the	editor	advances	to	the	next	line	to	be	executed	(SET	command).	This
command	has	not	been	executed	yet.

Step	3.	Set	Breakpoints
In	this	step	you	will	learn	how	to	set	breakpoints	in	a	form.	A	breakpoint	is	a
location	where	the	form	will	stop	execution	so	that	you	can	review	the	code	or
variables.	You	will	add	a	breakpoint	at	the	beginning	of	the	UPDATE	button
click	event,	before	any	data	is	written	to	the	file.
1.		Scroll	down	to	the	event	handling	routine	to	UPDATE.Click
					Note:	You	can	rapidly	move	to	any	routine	in	your	code,	by	using	the	Go	To
tab.	Expand	routines	and	click	on	any	one	to	move	to	that	line	in	the	editor.

2.		Press	the	F9	key	to	set	a	breakpoint	on	this	line.	The	line	is	highlighted	in
red.

					Note:	You	can	set	break	points	both	before	executing	Debug	and	while
running	in	Debug.	Breakpoints	are	remembered	in	both	cases	(they	are	saved
when	you	close	the	form	in	the	editor).

3.		Press	F5	to	execute	the	form.	Enter	ADM	as	the	department	code	and	click
the	Fetch	button.	The	form	will	display	the	Administration	department.	Leave
the	value	of	the	Department	Description	as	it	is	and	click	the	Update	button.
When	the	form	reaches	the	breakpoint,	source	code	will	be	redisplayed.

4.		Display	the	Breakpoints	tab.	The	new	breakpoint	will	be	listed	as	follows:

					The	program	will	now	stop	before	executing	this	line	of	code.	This	will
allow	you	to	view	and	change	the	variables	or	make	other	changes	to	debug

settings.
5.		Scroll	to	the	top	of	the	code	and	set	the	focus	on	the	GROUP_BY	command
and	press	F9.	Notice	that	this	command	is	not	highlighted.	You	can	only	set
breakpoints	on	executed	lines	of	code.	The	GROUP_BY	is	a	definition	used
for	compilation	and	is	not	used	at	execution	time.

6.		Press	the	F5	key	to	execute	the	application	until	the	next	breakpoint.	Since
there	are	currently	no	more	breakpoints,	the	UPDATE	will	be	processed	and
the	form	redisplayed.

Step	4.	Display/Change	Variables
In	this	step	you	will	learn	how	to	display	and	change	the	variables	in	a	program
as	it	is	executing.
1.		Enter	a	department	code	of	ADM	and	click	the	Fetch	button.	When	the
Administration	department	is	displayed,	leave	the	values	unchanged	and	click
the	Update	button.	Once	again	the	form	will	stop	at	the	start	of	the
UPDATE.Click	event	and	display	the	source	in	the	editor.

2.		Display	the	Variables	tab	to	see	a	list	of	the	variables	in	the	function.	It	will
appear	something	like	the	following:

3.		When	debugging	components	(forms,	reusable	parts	and	WAMs)	you	need	to
be	aware	that	many	fields	are	components.	Note	that	DEPTDESC	and
DEPTMENT	are	shown	as	type	Component.	If	you	open	the	context	menu
(right	mouse	click)	on	one	of	these,	you	will	not	be	able	to	change	the	value:

					Note	that	on	the	image	above,	the	Set	Value	option	is	not	available	(grayed
out).

					Try	right	clicking	on	the	ANSWER	variable	(which	is	a	work	field	value	in
the	form)	and	note	that	you	could	change	this	value.

4.		To	change	the	value	of	DEPTDESC	you	need	to	expand	the	form	component
iiiMntDept	and	then	expand	the	component	DEPTDESC	and	select	Value	as
shown:

					Note	that	the	Set	Value	option	is	available.
					Notice	that	the	Variables	tab	uses	the	form's	Identifier	to	name	the
component,	in	this	case	IIIMNTDE.	The	form	compiled	object	is	a	Windows
DLL	named	iiimntde.dll,	as	shown:

					In	a	later	exercise,	this	topic	will	be	covered	in	more	detail.	In	most
situations	your	own	code	can	refer	to	the	form	using	its	Long	Name	and
LANSA	accesses	the	object	using	it's	Identifier.

5.		Select	Set	Value	and	the	Set	Value	dialog	appears,	enter	a	value	of	NEW
ADMINISTRATION.

					Click	OK	and	note	that	the	new	value	is	shown	in	the	Variables	tab.
6.		Press	F5	to	run	the	application.	The	form	will	be	redisplayed.	Enter	ADM	in
the	department	code	and	click	the	Fetch	button.

					The	department	record	has	been	updated	with	the	changed	value.

Step	5.	Set	Breakpoint	Properties
1.		Close	your	Department	Maintenance	form	and	switch	to	the	VL	editor.	Add	a
BEGIN_LOOP/END_LOOP	at	the	beginning	of	the	UPDATE.Click	event
handling	routine.

					Loop	10	times	using	STD_COUNT	as	the	loop	count	and	display	a	message
'Message	number	is	nn'	containing	STD_COUNT.	Your	code	should	look	like
the	following:
Evtroutine	Handling(#UPDATE.Click)

Begin_Loop	Using(#STD_COUNT)	To(10)

Message	Msgtxt('Message	number	is	'	+	#std_count.asstring)

End_Loop

Update	Fields(#FORMDATA)	In_File(DEPTAB)	Val_Error(*NEXT)
.

This	provides	a	line	of	code	which	executes	a	number	of	times,	each	time	the
UPDATE.Click	event	routine	runs.

2.		Compile	your	form.
3.		Run	the	form	in	debug.	When	the	program	stops	at	the	Initialize	routine,
scroll	down	to	the	UPDATE.Click	event	handling	routine	and	clear	the
breakpoint	on	the	UPDATE	statement.	
There	are	a	number	of	ways	you	can	do	this.	For	example:
a.		select	this	line	of	code	and	press	F9	or	use	the	Toggle	Breakpoint	button
on	the	Debug	ribbon.

b.		select	this	line	of	code	and	use	the	right	mouse	menu	option,	Remove
Breakpoint.

c.		display	the	Breakpoints	tab,	select	this	breakpoint	and	use	the	Remove
Breakpoint	toolbar	button.

4.		Select	the	MESSAGE	command	inside	the	loop	and	press	F9	to	set	this	as	a
breakpoint.

5.		Use	the	right	mouse	menu	option	while	selecting	the	MESSAGE	command
to	show	the	Breakpoint	Properties	dialog.

6.		Set	a	Pass	count	of	3.	During	an	update,	the	loop	will	now	execute	twice	and
break	on	the	third	execution	of	the	MESSAGE	command.

7.		Press	F5	to	execute	the	form,	Fetch	a	department	and	press	the	Update
button.	Debug	should	break	when	the	MESSAGE	command	executes	the	3rd,
6th	and	9th	time.

8.		Close	your	form.
9.		Remove	the	breakpoint	from	the	MESSAGE	command.

Step	6.	Set	a	Break	on	Value
In	this	step	you	are	going	to	again	use	the	UPDATE.Click	event	routine	and	set
a	breakpoint	on	the	first	IF_STATUS	command,	with	a	break	on	value	setting
for	variable	IO$STS.	This	is	a	2	character	I/O	status,	returned	by	the	UPDATE
command.	When	a	validation	error	occurs	it	will	contain	'VE'.
1.		Switch	to	the	editor	and	review	the	definition	of	the	UPDATE	command	in
the	UPDATE.Click	event	routine.	If	it	looks	like	the	following:
Update	Fields(#FORMDATA)	In_File(DEPTAB)
	

					Then	because	the	VAL_ERROR	parameter	for	the	FETCH	command,	has	a
default	value	of	*LASTDIS,	which	in	a	form	means	branch	to	the	end	of	the
routine,	the	IF_STATUS	which	follows	it	is	never	executed	when	a	validation
error	occurs.	Ensure	your	update	command	looks	like	the	following:
Update	Fields(#FORMDATA)	In_File(DEPTAB)	Val_Error(*NEXT)

					Recompile	your	form	if	you	needed	to	make	a	change.
2.		Set	a	breakpoint	on	the	first	IF_STATUS	command.
3.		Run	the	form	in	debug.	When	the	editor	is	displayed	at	the	Initialize	routine,
scroll	down	to	the	UPDATE.Click	event	routine	and	set	a	break	point	on	the
first	IF_STATUS	command.

4.		In	the	variables	tab,	select	the	IO$STS	variable	and	use	the	right	mouse
menu	to	Break	on	Value	Condition

5.		In	the	Breakpoint	Properties	dialog,	select	the	Value	tab	and	set	the
breakpoint	to	break	when	IO$STS	is	equal	to	'VE'

6.		Select	OK	and	press	F5	to	run	the	form.
7.		Fetch	a	department	and	press	Update.	Debug	should	not	break	because
IO$STS	is	not	equal	'VE'

8.		Fetch	a	department	and	clear	the	department	description	field	and	press
Update.	Debug	should	now	break	on	the	IF_STATUS	command.

9.		Close	your	form	and	close	it	in	the	editor.	You	have	completed	this	exercise.

Summary
Important	Observations

Using	the	Visual	LANSA	editor,	you	can	interactively	debug	functions,
forms,	reusable	parts,	WAMs	and	web	event	functions	locally.
You	can	also	remotely	debug	RDMLX	functions	when	they	are	running	on
the	server,	including	web	events	and	WAMs	using	the	VL	Editor
Programs	must	be	compiled	'debug	enabled'	in	order	to	use	debug.

Tips	&	Techniques
By	default,	debug	stops	at	the	first	executable	line	of	code,	controlled	by
Debug	settings	in	the	Editor	Options	dialog.
Breakpoints	are	saved	with	the	source	code
Breakpoint	features	include	variables,	breakpoint	and	call	stack	tabs
Variables	and	component	values	can	be	viewed	and	edited
Breakpoint	properties	support	break	on	condition	and	pass	count.

What	You	Should	Know
How	to	use	debug	for	local	debugging.

FRM055	-	List	Component	Basics
Objectives:

To	learn	how	to	use	a	combo	box	and	list	view	to	show	data
To	learn	how	to	use	the	SELECT	command	to	read	multiple	records	from	a
file
To	learn	how	to	add	entries	using	the	ADD_ENTRY	command
To	learn	about	list	properties	and	how	lists	can	be	made	to	interact	with	on
another
To	learn	how	to	define	and	execute	a	subroutine	using	the
SUBROUTINE/ENDROUTINE	and	EXECUTE	commands
To	create	form	which	shows	displays	department	and	section	tables	in
combo	boxes	and	employee	data	in	a	list	view.
To	show	how	to	use	Visual	Styles	and	Themes	to	change	the	appearance	of
forms	and	their	components.

The	completed	form	loads	departments	and	related	sections	into	combo
boxes	and	populates	a	list	view	with	employees	for	the	current	section.
Initially	the	first	department	and	first	section	in	a	department	are	selected.
When	a	new	department	is	selected,	the	section	combo	box	and	list	view	are

repopulated
When	a	new	section	is	selected,	the	employee	list	view	is	cleared	and
repopulated.

To	achieve	these	objectives	you	must	complete	the	following:
Step	1.	Create	a	Simple	List
Step	2.	Select	Data	to	Fill	the	List
Step	3.	Create	Multiple	Lists
Step	4.	Fill	the	Lists
Step	5.	Make	List	View	Columns	Sortable
Step	6.	Change	Appearance	of	the	Form
Step	7.	Read	Sorted	List	Items	(optional)
Step	8.	Sort	Department	and	Sections	Combo	Boxes	(optional)
Summary

Before	You	Begin
You	must	have	completed	the	previous	exercises.

Step	1.	Create	a	Simple	List
In	this	step	you	will	begin	by	creating	a	simple	form	containing	a	combo	box
containing	a	list	of	all	departments.	A	combo	box	(or	drop	down),	is	a	simple
list	component	which	displays	one	column	with	one	entry	visible.	The	list	may
be	expanded	by	clicking	the	drop	down	button	 .
When	you	select	a	department	its	details	(DEPTMENT	and	DEPTDESC)	will
be	displayed	on	the	form.
1.		Create	a	New	Form	/	Basic	Form	iiiListBasics	–	List	Basics	(where	iii	are
your	course	assigned	initials).

2.		Drag	a	Group	Box	onto	the	top	of	the	form	from	the	Controls	tab,	resize	it
and	set	its	Caption	to	Location.	Your	form	should	look	like	the	following:

3.		Drop	a	Combo	Box	onto	the	Group	Box.	Extend	its	length	to	approximately
half	the	form	width.	Change	its	Name	to	DEPTS.	Move	the	Combo	Box
towards	the	bottom	edge	of	the	Group	Box.	Remember	as	well	as	dragging
with	the	mouse,	you	can	move	components	by	holding	down	the	Control	key
and	using	the	cursor	keys.

4.		Drop	a	Label	component	above	the	Combo	Box,	resize	it	and	change	its
Caption	to	Department.	Your	form	should	look	like	the	following:

	

5.		Display	the	Source	tab.You	will	see	DEFINE_COM	like	the	following:
Define_Com	Class(#PRIM_GPBX)	Name(#GPBX_1)	Caption('Location')	Displayposition(1)	Height(78)	Left(3)	Parent(#COM_OWNER)	Tabposition(1)	Tabstop(False)	Top(3)	Width(454)
Define_Com	Class(#PRIM_CMBX)	Name(#DEPTS)	Componentversion(1)	Displayposition(1)	Height(18)	Left(20)	Parent(#GPBX_1)	Showselection(False)	Showselectionhilight(False)	Tabposition(1)	Top(43)	Width(165)
	

					Note	the	combo	box	DEPTS	has	a	parent	of	GPBX_1.	The	group	box	is	a
"container".	The	combo	box	DEPTS	belongs	to	this	container.

6.		Add	columns	to	the	DEPTS	Combo	Box.	A	combo	box	displays	one	column,
but	may	contain	other	hidden	columns.
a.		Drop	field	DEPTMENT	into	the	combo	box	and	use	the	Details	tab	to	set
its	Visible	property	to	False.	To	do	this,	select	the	component	CBCL_1
from	the	drop	down	at	the	top	of	the	Details	tab.	You	are	then	working
with	the	first	column	component	for	the	combo	box	DEPTS.

b.		Drop	the	field	DEPTDESC	into	the	DEPTS	combo	box.
					Your	form	should	now	look	like	the	following:

7.		Display	the	Source	tab.	You	will	see	new	DEFINE_COM	statements	for	the
columns,	like	the	following:
Define_Com	Class(#PRIM_CBCL)	Name(#CBCL_1)	Parent(#DEPTS)	Source(#DEPTMENT)	Visible(False)
Define_Com	Class(#PRIM_CBCL)	Name(#CBCL_2)	Displayposition(1)	Parent(#DEPTS)	Source(#DEPTDESC)
	

					The	Combo	Box	columns	are	automatically	named.	They	have	a	parent	of
DEPTS.	The	columns	belong	to	the	combo	box	DEPTS.

					They	have	a	Source	property,	DEPTMENT,	for	example,	meaning	the
column	is	based	on	field	DEPTMENT.

8.		Drop	fields	DEPTMENT	and	DEPTDESC	onto	the	form	below	the	Group
Box.	Lengthen	the	form	first	if	necessary.	Your	form	should	look	like	the
following:

Step	2.	Select	Data	to	Fill	the	List
In	this	step	you	will	add	code	in	the	form	Initialize	event	to	populate	the	DEPTS
combo	box.
1.		Your	code	to	add	entries	from	the	file	DEPTAB	to	the	DEPTS	combo	box
should	use	the	CLR_LIST,	SELECT,	ADD_ENTRY	and	ENDSELECT
commands.

					SELECT	/	ENDSELECT	is	a	database	I/O	command	which		reads	records
based	entry	sequence,	by	full	key,	by	partial	key	or	generically	for	example.
Refer	to	the	Technical	Guide	for	further	details	and	examples.	Remember	you
can	press	F1	on	any	command	in	the	editor	to	jump	straight	to	its	online
guide	entry.

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#com_owner.Initialize)
Set	Com(#com_owner)	Caption(*component_desc)
Clr_List	Named(#DEPTS)
Select	Fields(#DEPTS)	From_File(deptab)
Add_Entry	To_List(#DEPTS)
Endselect
Endroutine
	

					Note:	the	combo	box	definition	DEPTS	can	be	used	in	the	SELECT	Fields()
parameter,	to	retrieve	the	fields	defined	as	columns	in	DEPTS.

2.		Compile	and	test	your	form.

					Note:	The	first	entry	in	the	combo	box	has	focus	and	the	fields	on	the	form
are	populated.	When	a	row	in	a	list	component	has	focus	or	is	selected,	the

form	fields	for	the	list	columns	are	populated.
3.		Click	on	the	drop	down	button	to	see	all	list	entries:

					The	list	is	displayed	in	the	sequence	that	entries	were	loaded.	In	this	case	it	is
loaded	in	department	code	sequence	(DEPTMENT).	We	will	look	later	at
how	entries	in	a	list	can	be	sorted.	In	this	example	one	solution	could	be	to
add	a	logical	file	to	the	file	DEPTAB	in	DEPTDESC	sequence	and	use	this
logical	file	to	load	the	combo	box.

					Note:	the	dropped	down	view	has	a	scroll	bar.	The	DropDownCount
property	of	the	combo	box	can	be	changed	to	display	more	entries	if	required.
The	default	value	is	8.

4.		Select	a	different	department.	Once	again	note	that	the	form	fields	are
populated	from	the	selected	list	row.

Step	3.	Create	Multiple	Lists
In	this	step	you	will	add	a	second	combo	box	which	will	contain	the	Sections
for	the	current	department	and	a	List	View	component,	which	will	contain
employee	data	for	the	selected	section.
1.		Drop	a	second	Combo	Box	onto	the	Group	Box,	alongside	the	department
combo	box.	Position	and	resize	it.	Change	its	Name	to	SECTS.

2.		Drop	a	Label	component	above	the	new	Combo	Box.	Position	and	resize	it.
Change	its	Caption	to	Sections.	Remember	you	can	use	the	Align	dialog	on
the	Design	tab	to	align	components.	Your	form	should	now	look	like	the
following:

3.		On	the	Repository	tab,	find	the	file	SECTAB	and	expand	it.	Drag	and	drop
field	SECTION	into	combo	box	SECTS.	Select	the	Details	tab.	Note	that	you
are	working	with	CBCL_3,	the	first	column	added	to	SECTS,	based	on	field
SECTION.	Change	its	Visible	property	to	False.

					Drag	and	drop	field	SECDESC	into	combo	box	SECTS.	Section	description
will	be	the	visible	column	in	SECTS.

4.		Delete	the	fields	DEPTMENT	and	DEPTDESC	from	the	form.
5.		Lengthen	the	form	and	drag	and	drop	a	List	View	onto	the	lower	form	area.
Change	its	Name	to	EMPLOYS.	Resize	it	to	occupy	all	the	space.	Your	form
should	look	like	the	following:

6.		Locate	the	file	PSLMST	on	the	Repository	tab	and	expand	it.	Drag	and	drop
fields,	EMPNO,	SURNAME,	GIVENAME,	POSTCODE	and	SALARY	into
the	list	view	EMPLOYS.	Your	form	should	look	like	the	following:

Step	4.	Fill	the	Lists
Important	Concept

Sections	belong	to	a	department.	If	a	new	department	is	selected,	the	SECTS
combo	box	needs	to	be	rebuilt.
Employees	belong	to	a	section.	If	a	new	section	is	selected,	the	EMPLOYS
list	view	needs	to	be	rebuilt.

1.		Create	a	subroutine	(SUBROUTINE	/	ENDROUTINE)	to	build,	rebuild	the
SECTS	combo	box.	Give	the	subroutine	a	Name	of	SECTS.	Once	again	your
logic	should	use	the	CLR_LIST,	SELECT,	ADD_ENTRY,	ENDSELECT
commands.	This	time	your	SELECT	needs	to	read	the	file	SECTAB	with	a
key	of	DEPTMENT.

					A	subroutine	can	be	defined	anywhere	in	your	form	code,	but	not	inside	an
event	or	method	routine.

					Note:
File	SECTAB	is	keyed	on	DEPTMENT	and	SECTION.	You	need	to	select
records	using	the	high	level	key	DEPTMENT	only.
You	should	now	be	aware	that	a	selected	entry	in	combo	box	DEPTS	will
automatically	populate	the	variable	DEPTMENT	in	the	form	code.

					Your	code	should	look	like	the	following:
Subroutine	Name(SECTS)
Clr_List	Named(#SECTS)
Select	Fields(#SECTS)	From_File(sectab)	With_Key(#deptment)
Add_Entry	To_List(#SECTS)
Endselect
Endroutine
	

2.		A	subroutine	is	executed	using	the	EXECUTE	command.	Add	code	at	the
end	of	the	form	Initialize	event	routine	to	execute	SECTS.	Your	code	should
now	look	like	the	following:
Evtroutine	Handling(#com_owner.Initialize)
Set	Com(#com_owner)	Caption(*component_desc)
Clr_List	Named(#DEPTS)
Select	Fields(#DEPTS)	From_File(deptab)
Add_Entry	To_List(#DEPTS)

Endselect
Execute	Subroutine(SECTS)
Endroutine
	

3.		The	SECTS	combo	box	will	need	to	be	rebuilt	if	a	new	department	is
selected	in	DEPTS.	Create	an	ItemGotSelection	event	routine	for	DEPTS.
Select	the	DEPTS	combo	box	and	do	this	from	the	Details	/	Events	tab	or	use
the	context	menu	on	the	DEPTS	combo	box.

Execute	subroutine	SECTS	in	this	event	routine.	Your	code	should	look	like	the
following:
Evtroutine	Handling(#DEPTS.ItemGotSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Execute	Subroutine(SECTS)
Endroutine
	

4.		Compile	and	test	your	form.	Notice	that	when	the	form	initially	loads,	the
first	section	is	not	displayed	although	the	SECTS	combo	box	contains	the
correct	entries.

					Notice	also	that	if	you	select	a	different	department,	the	SECTS	combo	box
contains	the	correct	entries	but	continues	to	display	the	last	selected	entry,
until	a	valid	entry	is	selected	in	SECTS.

5.		Correct	this	behavior	by	adding	the	following	code	to	the	end	of	the	SECTS
subroutine:

Get_Entry	Number(1)	From_List(#SECTS)
#SECTS.currentItem.focus	:=	true
	

					The	GET_ENTRY	will	retrieve	a	specific	entry	number	from	a	list.	Usually
it	is	executed	after	logic	which	locates	an	entry,	for	example	LOC_ENTRY.
See	a	later	exercise	for	an	example	of	this.	In	this	particular	case	you	are
positioning	to	the	top	of	the	SECTS	list.

					CurrentItem	is	the	current	row	in	the	list	component.	CurrentItem.focus	is
the	focus	property	of	the	current	list	item.

					To	discover	these	properties	for	any	component	use	F2	Feature	help	for	that
component,	in	this	case	combo	box	SECTS

					Expand	the	CurrentItem	by	double	clicking	on	the	list	item,	PRIM_CBIT.

					Expand	the	list	item	properties	to	find	the	Focus	property.
6.		Compile	and	retest	your	form.	When	it	initially	loads	it	should	now	look	like
the	following:

					Try	selecting	a	new	department.	The	first	section	in	the	list	will	always	be
displayed.

7.		When	it	initially	loads,	the	form	should	load	all	three	lists

					Create	subroutine	EMPLOYS.	Add	logic	to	this	subroutine	to	clear	the	list
EMPLOYS,	select	from	logical	file	PSLMST1	with	a	key	of	DEPTMENT
and	SECTION	and	add	entries	to	the	EMPLOYS	list	view.	Your	code	should
look	like	the	following:
Subroutine	Name(EMPLOYS)
Clr_List	Named(#EMPLOYS)
Select	Fields(#EMPLOYS)	From_File(pslmst1)	With_Key(#deptment	#section)
Add_Entry	To_List(#EMPLOYS)
Endselect
Endroutine
	

8.		Add	an	execute	subroutine	EMPLOYS	to	the	end	of	subroutine	SECTS.	The
EMPLOYS	list	will	be	rebuilt	every	time	the	SECTS	combo	box	is	rebuilt.
Your	code	should	look	like	the	following:
.
Get_Entry	Number(1)	From_List(#SECTS)
#SECTS.currentItem.focus	:=	true

Execute	Subroutine(emPLOYS)

Endroutine
	

9.		Create	an	ItemGotSelection	event	routine	for	combo	box	SECTS.	Add	code
to	execute	subroutine	EMPLOYS.	Your	code	should	look	like	the	following:
Evtroutine	Handling(#SECTS.ItemGotSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Execute	Subroutine(EMPLOYS)
Endroutine
	

10.	Compile	and	test	your	form.
When	the	form	initially	loads,	all	three	lists	should	be	populated.
When	a	new	department	is	selected,	the	SECTS	list	and	EMPLOYS	list
should	be	rebuilt
When	a	new	section	is	selected,	the	EMPLOYS	list	should	be	rebuilt.
Note	that	there	may	be	some	sections	for	which	no	employees	exist.

Step	5.	Make	List	View	Columns	Sortable
In	this	step	you	will	change	the	SortOnClick	property	for	the	surname,	postcode
and	employee	number	columns	in	the	EMPLOYS	list	view	to	allow	sorting
using	these	columns.
1.		In	the	Design	view,	select	the	list	view	EMPLOYS	and	click	on	the	Surname
column	heading.	Select	the	Details	tab,	which	will	show	the	properties	for
this	columns	(LVCL_2).	Change	the	SortOnClick	property	to	true.

2.		Click	on	the	column	heading	for	Postcode	and	change	its	SortOnClick
property	to	true.

3.		Click	on	the	Employee	Number	column	heading	and	change	its	SortOnClick
property	to	true.

4.		Compile	your	and	retest	your	form.		You	should	be	able	to	sort	the	list	of
employees	by	surname,	post	code	or	employee	number	by	clicking	on	the
column.	Note	that	by	default	the	column	heading	shows	sort	direction

Step	6.	Change	Appearance	of	the	Form
In	this	step	you	will	change	the	appearance	of	the	form.
1.		Add	the	following	code	to	the	Initialize	event	on	your	form.	It	will	change
the	form's	appearance	using	the	Office2007Blue	theme.
#sys_appln.theme	:=	2007Blue
#sys_appln.ThemedForms	:=	true

2.		Compile	and	execute	your	form.	Notice	the	blue	theme.

3.		Close	your	form.

Step	7.	Read	Sorted	List	Items	(optional)
In	this	step	you	will	add	push	buttons	with	Click	events	which	demonstrate	how
the	List	View	EMPLOYS	can	be	processed	to	retrieve	the	sorted	list,	or	the	list
in	its	original	order.	That	is,	in	the	order	in	which	it	was	loaded.
1.		Lengthen	the	form	and	drop	a	Status	bar	at	the	bottom	of	the	form.	This	will
be	used	to	display	messages	output	by	the	list	processing

2.		Add	a	push	button	below	the	list	view.
a.		Change	its	Caption	to	Read	Sorted	List.
b.Change	it's	Name	to	SORTED.
c.		Create	a	Click	event	routine	for	the	SORTED	push	button.
d.		Add	the	following	code	to	the	SORTED.Click	event	handling	routine:
For	Each(#item)	In(#EMPLOYS.items)
Change	Field(#STD_NUM)	To(#item.entry)
Get_Entry	Number(#STD_NUM)	From_List(#EMPLOYS)
Message	Msgtxt('Employee	'	+	#EMPNO	+	'	'	+	#Surname	+	'	'	+	#givename)
Endfor
	

					The	FOR	loop	will	read	all	items	in	the	list	EMPLOYS.	That	is,	all	rows,	in
sorted	order.

					You	can	use	F2	Feature	help	on	the	List	View	component	to	discover	all	its
Properties,	Events	and	Methods:

					The	Item	object	defined	by	the	For	Each(#Item)	in	the	above	code,
has	the	same	Properties,	Events	and	Methods	as	CurrentItem.

					You	can	use	F2	Feature	help	on	the	List	View	component.	Expand	the
CurrentItem	property		and	double	click	on	the	PRIM_LVIT	object	to	show
the	Properties,	Events	and	Methods	for	CurrentItem:

					Note	also	that	you	can	use	the	Auto	Complete	prompter	(Ctrl	+	Space	if	the
prompter	is	currently	turned	off	in	Editor	Settings)	in	the	editor	to	discover
the	properties	for	Item:

3.		Add	a	second	push	button	below	the	EMPLOYS	list	view.
a.		Change	its	Caption	to	Read	Unsorted	List.
b.	Change	its	Name	to	UNSORTED.
c.		Create	a	Click	event	for	UNSORTED
d.		Add	the	following	code	to	the	UNSORTED.Click	event	handling	routine:

Selectlist	Named(#EMPLOYS)
Message	Msgtxt('Employee	'	+	#EMPNO	+	'	'	+	#Surname	+	'	'	+	#givename)
Endselect
	

					The	SELECTLIST	reads	the	List	View	EMPLOYS	in	its	unsorted	sequence.
That	is,	in	the	order	in	which	the	list	was	loaded.

					Your	form	should	look	like	the	following:

4.		Compile	and	test	your	form.	Sort	the	list	by	clicking	on	the	column	heading
for	Surname,	Given	Name	or	Post	Code.
a.		Messages	output	by	the	Read	Sorted	List	push	button,	will	be	in	the	order
currently	displayed.	Compare	employee	numbers	with	the	list	view.

b.		Messages	output	by	the	Read	Unsorted	List	push	button,	will	always	be	in
the	loaded	order.	In	this	case	in	Employee	Number	sequence.

Step	8.	Sort	Department	and	Sections	Combo	Boxes	(optional)
This	step	demonstrates	how	to	use	the	SortPosition	property	of	a	combo	box
column	to	display	departments	and	sections	in	description	sequence.	The
column	also	has	a	a	SortDirection	property	with	a	default	value	of	Ascending.
1.		Combo	box	columns	are	automatically	named	CBCL_1.	CBCL_2	and	so	on.
Select	the	column	for	Department	Description	(field	DEPTDESC)	in	the
DEPTS	combo	box	using	either	of	the	following	methods
a.		In	the	Design	view,	select	the	Details	tab.
Select	a	combo	box	column	(CBCL_1,	CBCL_2	etc)	from	the	drop	down
at	the	top	of	the	Details	tab.
Ensure	that	you	have	selected	the	column	for	field	DEPTDESC	(Source
property)

b.		Alternatively,	in	the	Design	view	select	the	Outline	tab.

Expand	the	combo	box	DEPTS
Hover	the	cursor	over	each	column	(CBCL_1	and	CBCL_2	in	this	case)
and	use	the	Tooltip	to	discover	which	column	is	required

Click	on	the	column	to	select	it.

2.		With	the	column	in	the	combo	box	DEPTS	selected	which	contains
department	description	(field	DEPTDESC).	Use	the	Details	tab	to	change	its
SortPosition	property	to	1.

3.		Find	the	column	for	combo	box	SECTS	containing	section	description
(SECDESC)	and	change	its	SortPosition	property	to	1.

4.		Save	your	changes.

5.		Now	that	the	combo	box	entries	are	sorted	by	their	description	field,	you	will
need	to	change	the	method	used	to	position	the	top	entry.
a.		Add	the	code	shown	in	highlited	(red,	italic)	to	the	form	Initialize	routine.
This	gives	the	first	entry	in	combo	box	DEPTS	focus	and	retrieves	the
first	entry.	Remember	the	FOR	loop	processes	the	sorted	list.

Evtroutine	Handling(#com_owner.Initialize)
Set	Com(#com_owner)	Caption(*component_desc)
Clr_List	Named(#DEPTS)
Select	Fields(#DEPTS)	From_File(deptab)
Add_Entry	To_List(#DEPTS)
Endselect
For	Each(#item)	In(#DEPTS.items)
#item.focus	:=	true
#std_num	:=	#item.entry
Get_Entry	Number(#std_num)	From_List(#DEPTS)
Leave
Endfor
Execute	Subroutine(SECTS)
Endroutine
	
b.		In	the	subroutine	SECTS,	comment	out	the	two	lines	shown	as
commented	(beginning	with	*)	below(Hint:	Use	Ctrl	+	W).

c.		Add	the	FOR	logic	also	shown	in	bold.	This	will	give	focus	to	the	first
displayed	entry	and	retrieve	this	entry	in	order	to	have	the	correct	section
code	(field	SECTION)	to	build	the	list	of	employees.

Subroutine	Name(SECTS)
Clr_List	Named(#SECTS)
Select	Fields(#SECTS)	From_File(sectab)	With_Key(#deptment)
Add_Entry	To_List(#SECTS)
Endselect
*	Get_Entry	Number(1)	From_List(#SECTS)
*	#SECTS.currentItem.focus	:=	true
For	Each(#item)	In(#SECTS.items)
#item.focus	:=	true
#std_num	:=	#item.entry
Get_Entry	Number(#std_num)	From_List(#SECTS)
Leave

Endfor

Execute	Subroutine(EMPLOYS)
Endroutine
	

6.		Compile	and	test	your	new	version	of	form	iiiListBasics.
Note:	Remember	you	may	have	at	least	one	department	which	you	added,
which	has	no	sections	and	no	employees.

Summary
Important	Observations

List	components	such	as	combo	box	and	list	view	are	defined	visually	by
creating	the	list	and	adding	the	fields	(columns)	to	the	list	using	drag	and
drop.	Lists	have	many	properties	which	are	used	to	control	the	sorting	and
display	of	the	list.
The	SELECT	command	is	used	to	create	a	loop	structure	to	read	and	process
multiple	records	from	a	file	based	on	a	specified	selection	criteria.	The
SELECT	command	can	be	used	with	physical	and	logical	files.
You	will	usually	need	to	clear	the	list	(CLR_LIST)	before	populating	it.
ADD_ENTRY	adds	an	entry	to	a	list	component.	It	creates	a	new	row,	with
the	current	values	for	all	fields	which	make	up	the	list's	columns.
GET_ENTRY	positions	to	a	specific	row	number	in	a	list	component.	Form
variables	will	be	populated.
#SECTS.CurrentItem.focus	:=	true	sets	the	focus	on	the	current	item	in
the	list	SECTS.	Discover	the	details	of	such	properties	using	the	F2	Feature
help.
There	are	many	events	and	properties	for	list	components.	This	exercise
provides	a	simple	introduction	to	using	list	components
The	sorting	of	list	can	be	controlled	at	runtime
The	SUBROUTINE	/	ENDROUTINE	defines	a	routine	which	you	can
EXECUTE	from	any	other	routine	in	your	form.	Subroutines	cannot	be
defined	within	an	event,	method	or	property	routine.
You	can	change	the	appearance	of	your	application	using	Visual	Styles	and
Themes.
The	FOR	loop	may	be	used	to	read	a	list	in	its	sorted	sequence.
The	SELECTLIST	will	always	read	a	list	in	its	original	loaded	order.

Tips	&	Techniques
The	logic	for	combo	boxes	DEPTS	and	SECTS	in	this	form,	could	be
extended	to	build	a	reusable	part,	which	could	be	used	instead	of	input	fields
for	department	and	section	code,	in	a	form	such	as	iiiCOM11	–	Add
Employee:

Using	reusable	parts	is	covered	in	the	Windows	Applications	Workshop
The	ability	to	put	invisible	(or	hidden)	columns	into	any	list	is	an	important
concept.	In	this	exercise	you	want	the	user	to	see	department	description	in
the	combo	box,	but	in	the	program	you	need	to	use	the	department	code
(DEPTMENT)	as	the	key	field.	The	need	to	show	the	user	a	description	but
programmatically	interpret	their	selection	from	the	list	as	a	key	is	a	very
common	technique.
List	performance	is	directly	related	to	the	number	of	entries.	Ensure	you	give
users	sufficient	filtering	capabilities,	so	they	do	not	have	to	create	large	lists.
When	testing	lists,	ensure	you	include	using	volumes	of	entries	which	reflect
your	production	database.

What	You	Should	Know
How	to	define	a	list	component	and	its	columns
How	to	fill	a	list
How	to	use	events	such	as	ItemGotSelection
How	data	is	mapped	into	and	out	of	list	column	source	fields.
How	to	use	the	RDML	commands
CLR_LIST
ADD_ENTRY
SELECT	/	ENDSELECT
SUBROUTINE	/	ENDROUTINE
EXECUTE
FRM120	–	Trigger	Function

FRM065	-	Using	List	Components
Objectives:

To	create	a	small	application,	which	searches	the	employee	file	by	name,	by
start	date	or	by	department	code.
To	learn	how	to	use	the	tab	folder	to	display	employee	details	and	holidays.
To	show	more	examples	using	the	SELECT	command.

To	achieve	these	objectives	you	must	complete	the	following:
Step	1.	Create	Form	–	Using	Lists
Step	2.	Make	Radio	Buttons	Show	and	Hide	Fields
Step	3.	Add	Search	Logic
Step	4.	Add	Tab	Folder	and	Tab	Sheets	to	the	Form
Step	5.	Populate	the	Tab	Sheets
Summary

Before	You	Begin

You	should	complete	all	preceding	exercises.
You	must	also	have	completed	the	Repository	exercise,	REP005	and	REP010.
Important	Note:
This	exercise	uses	the	files	iiiEmployees,	iiiDepartments	and	iiiEmpHolidays
which	you	created	in	repository	exercise	REP005	and	REP010.

Step	1.	Create	Form	–	Using	Lists
The	form	will	contain	at	the	top,	a	"Search"	group	box,	with	radio	buttons	to
select	"search	type".	The	required	search	field	(e.g.	SURNAME)	will	be
displayed	based	on	the	radio	button	selected.	A	Search	button	will	populate	a
list	view	with	employees.
1.		Start	by	creating	fields	in	the	Repository	which	will	be	used	for	search
values.

Field	iiiSRCDTE,	Start	Date	reference	field	iiiStartDate
Field	iiiSRCDEP,	Department	Code,	reference	field	iiiDeptCode
Field	iiiSRCNME,	Employee	Surname,	reference	field	STD_NAME

					Note:	Field	iiiSurname	has	a	reference	field	of	STD_NAME.	Field
iiiSurname	can	therefore	not	be	used	as	a	reference	field	itself.

2.		Create	a	New	Form	/	Basic	Form:	iiiUsingLists	–	Using	Lists.	Make	the	form
RDMLX	enabled.

3.		In	the	Design	tab,	from	Common	Controls,	drop	a	Group	Box	at	the	top	of
the	form.	Change	its	Caption	to	Search	and	resize	it	to	occupy	the	full	width
of	the	form.	Your	form	should	look	like	the	following:

4.		Drop	another	Group	Box	into	the	Search	group	box.	Change	its	Caption	to
Search	by	and	resize	it	and	place	it	on	the	left	hand	side.	Your	form	should
look	like	the	following:

		 	

5.		Drop	three	Radio	Buttons	into	the	Search	by	group	box.
a.		Set	up	their	properties	as	shown:

Button Property Value

RDBN_1 ButtonChecked
True

	 Caption
By	Name

RDBN_2 Caption
By	Start	Date

RDBN_3 Caption
By	Location

	

b.		Align	your	radio	buttons	using	the	Align	dialog	on	the	Design	ribbon..
					Your	form	should	look	like	the	following:

					Note:	Radio	Buttons	are	grouped	according	to	the	"container"	which	they
belong	to,	in	this	case	a	Group	Box.	Only	one	radio	button	can	be	selected.

Other	containers	such	as	Panel	or	the	Form	itself	can	be	used.	A	Group	Box
is	usually	used	because	the	interface	makes	it	clear	to	the	user,	that	the	radio
buttons	are	a	set.

6.		Save	your	form.
7.		In	this	step	you	will	place	three	fields	into	the	Search	group	box	and	position
them	on	top	of	each	other.	The	form	will	make	one	visible	at	any	time.
a.		Drop	field	iiiSRCNME	onto	the	form.	Position	the	field	as	shown.
Reduce	the	width	of	the	field.	The	quickest	way	to	do	this	is	to	change	the
Width	property	to	a	smaller	value	and	then	lengthen	the	field	again	if
necessary.	Try	320.	Resize	the	form	and	Search	group	box	if	necessary.

b.		Drop	the	field	iiiSRCDTE	on	to	the	Search	group	box.	Change	its
ShowTime	property	to	false.		Change	its	Visible	property	to	False.

c.		Hold	down	the	Control	key	and	use	the	cursor	keys	to	position	the	file
iiiSRCDTE	on	top	of	the	field	iiiSRCNME.	Your	form	should	look	like
the	following:

					Hint:	You	can	use	the	Outline	tab	to	select	components.

d.		Drop	the	field	iiiSRCDEP	on	to	the	Search	group	box,	and	change	its
Visible	property	to	False.	Use	the	Control	+	cursor	keys	to	move	it	on
top	of	field	iiiSRCNAME.

8.		Drop	a	Push	Button	on	to	the	Search	group	box.	Change	its	Caption	to
Search,	change	its	Name	to	SEARCH	and	position	it	as	shown.

9.		Save	your	form.
10.	Make	the	form	longer	and	drag	a	List	View	onto	the	form	and	resize	it	as
shown.	Change	the	list	view	Name	property	to	EMPLOYS.

					Hint:	To	position	and	size	the	list	view:

a.		Drag	its	handles	to	resize	it	to	approximately	the	required	size
b.		Hold	down	the	Control	key	and	use	the	left	cursor	key	to	slide	it	to	the
left	hand	side	of	the	form

c.		Hold	down	the	Shift	key	and	use	the	right	cursor	key	to	stretch	the	list
view	to	the	required	position	at	the	right	hand	side	of	the	form.

11.	From	your	Last	Opened	tab,	expand	the	file	iiiEmployees	and	add	the	fields
iiiEmployNumber,	iiiDeptCode,	iiiDeptDescPJF	and	iiiStartDate	to	the	list
view.	From	Repository	/	Fields	add	field	FULLNAME	to	the	list	view.

12.	On	the	Details	tab	change	the	Display	Position	of	the	FULLNAME	column
to	2.

					Your	form	should	look	like	the	following:

					Tip:	In	a	real	application	you	would	probably	change	the	column	heading
Caption	property	for	each	column	and	change	its	CaptionType	to	Caption.
You	could	also	change	the	column	properties	to	size	and	space	them	as
required.

13.	Lengthen	the	form	slightly	and	drop	a	Status	Bar	onto	the	form,	from	the
Controls	tab	/	All	Controls	view.	It	will	attach	to	the	bottom	of	the	form.

Step	2.	Make	Radio	Buttons	Show	and	Hide	Fields
In	this	step	you	will	create	Click	events	for	the	radio	buttons	to	make	the
required	search	by	field	visible.
1.		Create	a	Click	event	for	RDBN_1.
2.		Add	logic	to	make	iiiSRCNME	visible	and	hide	fields	iiiSRCDEP	and
iiiSRCDTE.	Your	code	should	look	like	the	following:
*	Surname	search
Evtroutine	Handling(#RDBN_1.Click)
#iiiSRCNME.visible	:=	true
#iiiSRCDEP.visible	:=	false
#iiiSRCDTE.visible	:=	false
Endroutine
	

3.		Create	Click	events	for	RDBN_2	and	RDBN_3.	Copy	and	paste	the	code
from	the	RDBN_1.Click	event	into	each	routine	and	carefully	modify	the
code	as	required.

					Tip:	As	you	have	not	renamed	the	radio	buttons,	it	is	a	good	idea	to	add	a
comment	above	each	click	event	defining	which	search	this	is.

4.		Compile	and	test	your	form.	Clicking	on	each	radio	button	should	show	one
field	only.

Step	3.	Add	Search	Logic
In	this	step	you	will	program	the	SEARCH.Click	event	to	select	from	the	file
iiiEmployees	based	on	the	Search	by	radio	button	settings.	The	select	logic	will
populate	the	list	view	EMPLOYS	for	each	search.
1.		Create	a	Click	Event	for	the	SEARCH	button
2.		Use	the	Command	Assistant	to	create	a	Group_By,	EMPDATA,	containing
the	fields	required	to	populate	list	view	EMPLOYS.	Your	code	should	look
like	the	following:
Group_By	Name(#empdata)	Fields(#IIIEMPLOYNUMBER	#IIIDEPTCODE	#IIISURNAME	#IIIGIVENNAME	#IIISTARTDATE	#IIIDEPPJF)
	

					Define	the	Group_by	at	the	form	level,	below	the	component	definitions.	It
will	later	be	used	in	another	routine.

					Note:	You	could	have	defined	the	Group_by	in	the	SEARCH.Click	event	an
itt	could	still	be	used	in	other	routines.

3.		In	the	SEARCH.Click	event	routine,	complete	the	SELECT	logic	to	perform
if	the	RDBN_1	is	checked.	This	should	search	file	iiiEmployees	on	surname,
using	a	logical	file,	allowing	a	generic	search.
a.		Add	a	logical	file	iiiVEMP02	By	Surname	to	your	employee	file
iiiEmployees.

b.		Give	the	logical	file	a	key	of	SURNAME.
c.		Compile	your	file.	Review	your	compile	options	carefully.	You	need	to
rebuild	Logical	Views	and	OAM.

					Complete	your	search	logic	based	on	the	following	pseudo	code:

										Clear	list	EMPLOYS

										If	RDBN_1	is	checked

					Select	fields	EMPDATA	from	file	iiiVEMP02,	with	key	iiiSRCNME	with
generic	=	yesbul

										Set	up	field	FULLNAME

										Add	entry	to	list	EMPLOYS

					End	select

										Endif

					Change	fields	in	the	Group_by	EMPDATA	to	*default	values	
	

					Your	code	should	now	look	like	the	following:
Evtroutine	Handling(#SEARCH.Click)
Clr_List	Named(#EMPLOYS)
*	Surname	search
If	(#RDBN_1.buttonChecked	=	true)
Select	Fields(#empdata)	From_File(iiivemp02)	With_Key(#iiiSRCNME)	Generic(*YES)
#fullname	:=	#iiiSurname	+	',	'	+	#iiiGivenName
Add_Entry	To_List(#EMPLOYS)
Endselect
#EMPDATA	:=	*default
Endif
Endroutine
	

4.		Compile	and	test	your	form.	Review	exercise	REP005	if	necessary	to	check
what	records	were	added	to	file	iiiEmployees.	In	REP005	exercise	you
created	a	maintenance	form	for	iiiEmployees.	Use	this	to	add	more	records	if
required.

The	SELECT	which	is	using	GENERIC(*YES)	will	retrieve	all	records	if	the
search	key	is	blank.

The	list	view	should	now	be	populated	using	the	Surname	search	option.
5.		Create	another	logical	for	the	employee	file	iiiEmployees:

a.		Add	a	logical	file	iiiVEMP03	–	By	Start	Date.
b.		Add	a	key	of	iiiStartDate.
c.		Compile	the	file	and	rebuild	logical	files	and	OAM.

6.		Extend	the	SEARCH.Click	event	to	handle	the	start	date	search	(RDBN_2
checked).	The	SELECT	command	has	an	OPTIONS()	parameter	which
provides	additional	read	options	such	as	read	using	start	key	and	read
backwards.	Review	the	SELECT	command	in	the	Technical	Reference	Guide
for	further	details.

its:lansa015.CHM::/lansa/SELECT.HTM

					Extend	your	SEARCH.Click	logic	based	on	the	following

If	RDBN_2	is	checked

								Select	fields	EMPDATA	from	file	iiiVEMP03,	with	key	iiiSRCDTE	using
Options,	*STARTDATE	and	*BACKWARDS

								Set	up	field	FULLNAME

								Add	entry	to	list	EMPLOYS

								End	select

Endif

					Your	additional	code	should	look	like	the	following:
If	(#RDBN_2.buttonChecked	=	true)
Select	Fields(#empdata)	From_File(iiivemp03)	With_Key(#iiiSRCDTE)	Options(*STARTKEY	*BACKWARDS)
#fullname	:=	#iiiSurname	+	',	'	+	#iiiGivenName
Add_Entry	To_List(#EMPLOYS)
Endselect
Begincheck
If	(#EMPLOYS.items.itemcount	=	*zeroes)
Message	Msgtxt('No	Employees	from	this	Start	Date')
Set_Error	For_Field(#iiiSRCDTE)
Endif
Endcheck
Endif
	

7.		Compile	and	test	your	form.	If	you	added	employees	with	start	dates	earlier
than	the	current	date,	enter	todays	date	as	your	search	value.	When	searching
by	Start	Date,	the	latest	date	should	be	at	the	top	of	the	list	view.

8.		Extend	your	SEARCH.Click	event	to	handle	the	Location	search	(search	by
department	code	-	iiiSRCDEP).	The	SELECT	command	on	this	occasion
should	read	the	logical	file	iiiEmpByDeptView,	with	a	key	of	iiiSRCDEP.

					Since	iiiSRCDEP	must	exist	on	the	file	iiiDepartments	(see	validation	rule	at
file	level,	in	file	iiiEmployees	for	field	iiiDeptCode)	your	program	could
check	for	valid	department	before	continuing	the	search.

					Extend	your	SEARCH.Click	logic	based	on:

				If	RDBN_3	is	checked

								Begin	check

																Filecheck	field	iiiSRCDEP	in	file	iiiFILDEPT.	Issue	a	message	if	not
found.

								End	check

								Select	fields	EMPDATA	from	file	iiiVEMP01,	with	key	iiiSRCDEP.

																Set	up	field	FULLNAME

																Add	entry	to	list	EMPLOYS

								End	select

				Endif

					Your	additional	code	should	look	like	the	following:
*	Location	Search
If	(#RDBN_3.buttonChecked	=	true)
Begincheck
Filecheck	Field(#iiiSRCDEP)	Using_File(iiiDepartments)	Msgtxt('Department	Not	Found')
Endcheck
Select	Fields(#empdata)	From_File(iiiEmpByDeptView)	With_Key(#iiiSRCDEP)
#fullname	:=	#iiiSurname	+	',	'	+	#iiiGivenName
Add_Entry	To_List(#EMPLOYS)
Endselect
Endif
	

9.	Compile	your	form	and	test	it.	Select	Search	by	Location,	enter	an	invalid
department	code	and	click	the	Search	button.

					Based	on	exercise	FRM035	you	should	be	aware	that	the	FILECHECK	will
highlight	the	field	iiiSRCDEP	and	issue	a	message,	if	the	field	does	not	exist
in	file	iiiDepartments.	The	ENDCHECK	will	branch	to	the	ENDROUTINE
on	error.

					Ensure	that	the	list	view	is	populated	when	a	valid	department	is	entered	for
which	employees	exist.

Sample	Solution	for	SEARCH.Click	Event	Handling	Routine
Evtroutine	Handling(#SEARCH.Click)
Clr_List	Named(#EMPLOYS)
*	Surname	search
If	(#RDBN_1.buttonChecked	=	true)
Select	Fields(#empdata)	From_File(iiivemp02)	With_Key(#iiiSRCNME)	Generic(*YES)
#fullname	:=	#iiiSurname	+	',	'	+	#iiiGivenName
Add_Entry	To_List(#EMPLOYS)
Endselect
Endif
*	Start	Date	Search
If	(#RDBN_2.buttonChecked	=	true)
Select	Fields(#empdata)	From_File(iiivemp03)	With_Key(#iiiSRCDTE)	Options(*STARTKEY	*BACKWARDS)
#fullname	:=	#iiiSurname	+	',	'	+	#iiiGivenName
Add_Entry	To_List(#EMPLOYS)
Endselect
Begincheck
If	(#EMPLOYS.items.itemcount	=	*zeroes)
Message	Msgtxt('No	Employees	from	this	Start	Date')
Set_Error	For_Field(#iiiSRCDTE)
Endif
Endcheck
Endif
*	Location	Search
If	(#RDBN_3.buttonChecked	=	true)
Begincheck
Filecheck	Field(#iiiSRCDEP)	Using_File(iiiDepartments)	Msgtxt('Department	Not	Found')
Endcheck
Select	Fields(#empdata)	From_File(iiiEmpByDeptView)	With_Key(#iiiSRCDEP)
#fullname	:=	#iiiSurname	+	',	'	+	#iiiGivenName
Add_Entry	To_List(#EMPLOYS)
Endselect
Endif
Endroutine
	

Step	4.	Add	Tab	Folder	and	Tab	Sheets	to	the	Form
In	this	step,	you	will	extend	the	form's	functionality	by	adding	a	Tab	Folder,
with	Tab	Sheets	containing	Details	and	Holidays.
1.		Extend	the	length	of	the	form.	Drop	a	Tab	Folder	onto	the	form	below	the
EMPLOYS	list	view.	Size	it	to	use	all	the	space	available.

Hint:	The	Tab	Folder	automatically	contains	two	Tab	Sheets	and	a	Tab	Sheet
initially	has	focus.	To	enlarge	the	Tab	Folder	you	must	select	that	component.
In	the	Design	view	do	this	by	clicking	on	the	background	next	to	the	tabs:

The	Design	view	will	then	look	like	this:

2.		Using	the	Details	tab,	change	tab	sheet's		(Sheet_1)	Caption	to	Details	and
(Sheet_2)	Caption	to	Holidays.	Once	again	ensure	you	have	selected	the
correct	component.	Select	a	Tab	Sheet	by	clicking	on	its	tab	and	then	click	in
the	middle	of	the	tab	sheet	area.

Alternatively,	you	could	use	the	Outline	tab	to	select	the	correct	component.
Or,	on	the	Details	tab,	select	the	component	you	need	from	the	dropdown	list	of
all	comonents	in	the	form:

3.		Select	the	application	Details	tab	sheet,	by	clicking	on	its	tab,	and	then	click
in	the	centre	of	the	tab	sheet	area.

6.		On	your	Last	Opened	tab,	expand	the	file	iiiEmployees	and	select	field
iiiEmployNumber,	iiiDeptCode	iiiSurname,	iiiGivenName,	iiiSALARY,
iiiStartDate	and	iiiEmployNotes.	Select	the	fields	by	holding	down	the	Shift
key,	click	on	the	first	field	and	then	click	on	the	last.	Drag	these	fields	onto
the	top	end	of	the	Details	tab	sheet.	Your	form	should	look	like	the	following:

6.		Select	the	Holidays	Tab	Sheet.
7.		Drop	a	Grid	component	onto	the	Holidays	Tab	Sheet	and	resize	it	to	occupy
all	of	the	space.	Change	the	Grid's	Name	to	HOLIDAYS.

8.		On	the	Last	Opened	tab,	expand	the	file	iiiEmpHolidays.	Drag	and	drop	the
fields	iiiHOLCDE,	iiiHOLSTA,	iiiHOLEND,	iiiHOLCOM	into	the
HOLIDAYS	grid.

9.		With	the	Holiday	Comments	column	selected,	change	its	WidthType	to
Remainder.

10.	Save	your	form

Step	5.	Populate	the	Tab	Sheets
In	this	step	you	will	create	an	ItemGotFocus	event	routine	for	the	List	View
EMPLOYS,	and	fetch	employee	data	and	select	holiday	data.
1.		Add	fields	iiiSALARY	to	the	Group_by	EMPDATA.
2.		Complete	the	EMPLOYS.ItemGotFocus	event	routine	based	on	the
following:

				Fetch	fields	EMPDATA	from	the	file	iiiEmployees	with	the	key
iiiEmployNumber

				Clear	the	list	HOLIDAYS

				Select	HOLIDAYS	from	the	file	iiiEmpHolidays	with	the	key
iiiEmployNumber

								Add	entry	to	HOLIDAYS

				End	select

					Your	code	should	look	like	the	following:
Evtroutine	Handling(#EMPLOYS.ItemGotFocus)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Fetch	Fields(#empdata)	From_File(iiiEmployees)	With_Key(#IIIEMPLOYNUMBER
Clr_List	Named(#HOLIDAYS)
Select	Fields(#HOLIDAYS)	From_File(iiiEmpHolidays)	With_Key(#IIIEMPLOYNUMBER
Add_Entry	To_List(#HOLIDAYS)
Endselect
Endroutine
	

3.		Add	code	to	the	end	of	the	SEARCH.Click	event	to	clear	the	employee	fields
using	the	Group_By	and	clearing	the	HOLIDAYS	Grid.	Your	code	should
look	like:
.

#EMPDATA	:=	*default

Clr_List	#HOLIDAYS

Endroutine
4.		Test	your	completed	application.	You	should	be	able	to	search	by	one	of
three	methods.	Changing	focus	to	an	entry	in	list	view	EMPLOYS	should
display	employee	details	and	populate	the	HOLIDAYS	grid.

Summary
Important	Observations

The	SELECT/ENDSELECT	command	is	a	powerful	I/O	command	which
reads	multiple	records.
Radio	buttons	behave	as	a	"set".	Only	one	can	be	checked	at	a	time.
The	Tab	Folder	and	Tab	Sheets	enabled	a	lot	of	information	to	be	shown	on
one	form

Tips	&	Techniques
Review	the	SELECT	command	in	the	Technical	Reference	guide	for	more
information	and	examples.

What	You	Should	Know
How	to	use	the	SELECT	command
How	to	use	a	simple	Tab	Folder	component
How	to	use	radio	buttons
How	top	show	and	hide	fields

its:lansa015.CHM::/lansa/SELECT.HTM

FRM075	-	Using	a	Working	List
Objectives:

To	learn	how	to	locate,	update	and	delete	entries	from	a	list.
To	introduce	the	SELECTLIST	/	ENDSELECT	commands	for	processing
lists.
To	show	how	working	lists	can	be	used	with	the	list	view.
To	create	an	application	that	allows	the	user	to	select	multiple	records	from	a
list	to	calculate	total	salaries.

When	the	user	selects	items	in	the	list,	the	total	salary	number	will	be
updated.
To	show	how	'selected	items'	in	a	list	component	can	be	selected.
A	working	list	in	the	program	will	also	be	updated	with	the	selected	items.
When	the	Calc.	Total	Salary	button	is	pressed,	the	salary	is	calculated	using
the	working	list.	This	value	matches	the	total	salary.	Also,	the	total	items	in
the	working	list	is	displayed.
To	use	the	TRANSFORM_FILE	Built	in	Function	to	create	a	CSV	file	from
the	working	list.

To	achieve	these	objectives	you	must	complete	the	following:
Step	1.	Select	Multiple	Entries
Step	2.	Use	a	SELECTLIST	Command

Step	3.	Build	a	Working	List
Step	4.	Create	a	CSV	File
Summary

Before	You	Begin
Complete	all	preceding	exercises.

Step	1.	Select	Multiple	Entries
1.		Create	a	New	Form	/Basic	FormiiiUseWrkList	–	Using	a	Working	List	and
make	the	form	RDMLX	enabled.

2.		From	the	Controls	tab,	drop	a	List	View	onto	the	form	and	resize	it.	Change
the	List	View's	Name	property	to	EMPLOYS.

3.		Drop	a	Status	Bar	onto	the	form.	It	will	attach	to	the	bottom	of	the	form.
Your	form	should	look	like	the	following:

4.		On	the	Repository	tab,	locate	the	file	PSLMST	and	expand	its	definition.
Drag	and	drop	the	fields	EMPNO,	SURNAME,	GIVENAME	and	SALARY
into	the	list.

					Change	the	column	headings	as	follows:

Field	/	column Property Value

EMPNO Caption Code

CaptionTypeCaption

SURNAME Caption Surname

CaptionTypeCaption

GIVENAME Caption Given	Name

CaptionTypeCaption

SALARY Caption Salary

	 CaptionTypeCaption

	

					Resize	the	fields	to	display	their	content.	Your	List	View	should	look	like	the
following:

5.		Create	an	Initialize	event	for	the	list	view	EMPLOYS.
					Hint:	You	can	create	a	click	event	by	selecting	EMPLOYS.	On	the	Details
tab,	select	the	Events	tab	and	double	click	on	Initialize	event.	Alternatively,
use	the	right	mouse	menu	on	the	list	view	EMPLOYS	and	use	the	Events
option	to	create	an	Initialize	event	routine.

6.		Add	code	to	the	EMPLOYS.Initialize	event	routine,	to	clear	the	list
EMPLOYS	and	read	all	employee	records,	adding	entries	to	EMPLOYS.
Your	code	should	look	like	the	following:
Evtroutine	Handling(#EMPLOYS.Initialize)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Clr_List	Named(#EMPLOYS)
Select	Fields(#EMPLOYS)	From_File(pslmst)
Add_Entry	To_List(#EMPLOYS)
Endselect
Endroutine
	

7.		Create	a	field	in	the	Repository	called	iiiTOTSAL.	Define	it	as	Packed
(15,2)	field	and	give	it	an	edit	mask	of	J	(a	format	of	1,234,567.89-).

8.		Drop	the	field	iiiTOTSAL	onto	the	bottom	right	hand	side	of	your	form.
Change	its	LabelPosition	to	Top.

9.		Select	the	EMPLOYS	list	view.	On	the	Details	tab,	notice	that	the	List	View
has	a	default	SelectionStyle	of	Multiple.

10.	Create	an	ItemGotSelection	event	routine	for	list	view	EMPLOYS.		Add
code	to	add	SALARY	to	iiiTOTSAL.

11.	Create	an	ItemLostSelection	event	routine	for	list	view	EMPLOYS.	Add
code	to	subtract	SALARY	from	iiiTOTSAL.	Your	code	should	look	like	the
following:
Evtroutine	Handling(#EMPLOYS.ItemGotSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#IIITOTSAL	+=	#salary
Endroutine
Evtroutine	Handling(#EMPLOYS.ItemLostSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#IIITOTSAL	-=	#salary
Endroutine
	

					In	an	RDML	form	you	could	have	used:
Change	Field(#IIITOTSAL)	To('#iiitotsal	+	#salary')
	

12.	Compile	and	test	your	form.	Select	multiple	entries	in	the	List	View	(hold
down	the	Control	key).	Total	Salary	should	show	the	correct	total	for	selected
employees.

Step	2.	Use	a	SELECTLIST	Command
In	this	step	you	will	add	another	copy	of	the	iiiTOTSAL	field	to	the	form	and	a
push	button.	Clicking	the	push	button	will	read	through	the	List	View
EMPLOYS	using	a	SELECTLIST/ENDSELECT	command	and	total	the
currently	selected	entries	into	the	new	total	field.
1.		Drop	a	Group	Box	onto	the	right	hand	side	of	your	form.	Resize	it	and
change	its	Caption	property	to	Compute	Selected.

2.		Drag	and	drop	field	iiiTOTSAL	into	the	group	box.	Note	that	it	will	be
renamed	to	iiiTOTSAL_1.	Changes	its	LabelPosition	to	Top.

3.		Drag	and	drop	a	push	button	into	the	group	box.
					Change	its	Name	to	COMPUTE	and	Caption	to	Calc.	Total	Salary.
					Create	a	COMPUTE.Click	event	routine.
					Your	form	should	look	like	the	following:

4.		In	this	step	you	will	complete	the	COMPUTE	click	event	logic.
a.		SELECTLIST/ENDSELECT	will	read	all	entries	in	a	list	component.
b.		The	selected	entries	can	be	identified	by	using	their	CurrentItem	property.
Entries	in	a	list	are	themselves	a	component.	CurrentItem	has	a	Selected
property	(true	or	false).

c.		Use	F2	Feature	help	on	a	component	to	discover	all	its	events,	properties
and	methods	and	the	help	associated	with	each	of	these.

d.		Double-click	PRIM_LVIT	to	see	the	events,	properties	and	methods	of	a
list	item:

e.		Expand	the	list	item	properties	and	choose	the	Selected	property	to	see	its
description:

					The	following	code	will	accumulate	SALARY	into	iiiTOTSAL	for	selected
items:
Evtroutine	Handling(#COMPUTE.Click)
#iiitotsal_1	:=	*zeroes
Selectlist
If	(#EMPLOYS.currentItem.selected	=	true)
#IIITOTSAL_1	+=	#salary
Endif
Endselect
Endroutine
	

5.		Compile	and	test	your	form:

Step	3.	Build	a	Working	List
The	DEF_LIST	command	can	be	used	to	define	two	types	of		list:

A	browselist	(Type(*browselist)),	used	to	define	an	output	list	in	a	5250
RDML	function	(a	subfile	in	RPG	terminology).	In	web	event	functions	a
browselist	is	used	to	define	output	of	a	list	to	the	web	page
A	working	list	(Type(*working)),	used	to	define	a	list	or	table	in	memory.
In	RPG	terminology,	a	working	list	would	be	described	as	a	"multi-
occurrence	data	structure".	In	WAMs,	a	working	list	may	also	be	used	to
define	a	list	to	be	output	the	page.

The	following	defines	a	working	list	containing	an	unlimited	number	of	entries,
within	platform	limits.
Def_List	Name(#emplist)	Fields(#empno	#surname	#givename)	Type(*Working)	Entrys(*max)
	

This	is	the	recommended	way	to	define	maximum	list	entries	in	an	RDMLX
enabled	partition.

The	list	will	expand	as	required,	and	only	occupy	the	space	actually
required.
With	a	fixed	number	of	entries	defined,	the	list	will	occupy	that	space	in
memory,	irrespective	of	the	actual	number	of	entries	added.

Note:	By	default	a	working	list	has	an	Entrys	parameter	of	50.
See	the	Technical	Reference	guide	for	further	details	on	the	DEF_LIST
command.
In	this	step	you	will	define	a	working	list	and	use	it	to	contain	currently	selected
entries	in	the	list	view	EMPLOYS.
1.		Define	a	work	field	EMPNOKEY	in	your	form	based	on	field	EMPNO.	You
will	use	this	field	to	store	the	employee	number	in	the	working	list.	Your	code
should	look	like	the	following:
Define	Field(#empnokey)	Reffld(#empno)
	

2.		Define	a	work	field	LISTCNT	based	on	field	STD_NUM.	You	will	use	this
field	to	keep	a	count	of	the	number	of	entries	in	the	working	list.

3.		Define	a	working	list	named	EMPLIST,	containing	fields	EMPNOKEY,
SURNAME,	GIVENAME	and	SALARY.	Set	its	maximum	entries	to	*max,
and	use	field	LISTCNT	as	a	counter.	Your	code	should	look	like	the

following:
Def_List	Name(#emplist)	Fields(#empnokey	#surname	#givename	#salary)	Counter(#LISTCNT)	Type(*Working)	Entrys(*max)
	

4.		Drag	and	drop	the	field	STD_NUM	onto	your	form,	above	the	'Compute
Selected'	Group	Box..	Change	the	following	properties:
LabelPosition	to	Top
LabelHorAlignment	to	Left.
Caption	to	Working	List	Entries
LabelType	to	Caption.

5.		The	LOC_ENTRY	locates	an	entry	in	a	list,	based	on	a	Where	clause,	for
example:
Loc_Entry	In_List(#emplist)	Where(#empno	=	#empnokey)
	

					Extend	the	EMPLOYS	ItemGotSelection	logic	to	locate	an	entry	in	working
list	EMPLIST.	If	not	found	add	an	entry	to	working	list	EMPLIST.	Your	code
should	look	like	the	following:
Evtroutine	Handling(#EMPLOYS.ItemGotSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#IIITOTSAL	+=	#salary
Loc_Entry	In_List(#emplist)	Where(#empnokey	=	#empno)
If_Status	Is_Not(*OKAY)
#empnokey	:=	#empno
Add_Entry	To_List(#emplist)
Endif
Endroutine
	

6.		Extend	the	EMPLOYS	ItemLostSelection	event	routine,	to	delete	an	entry
from	EMPLIST	if	an	entry	was	located.	Your	code	should	like	the	following:
Evtroutine	Handling(#EMPLOYS.ItemLostSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#IIITOTSAL	-=	#salary
Loc_Entry	In_List(#emplist)	Where(#empnokey	=	#empno)
If_Status	Is(*okay)
Dlt_Entry	From_List(#emplist)
Endif
Endroutine
	

7.		Add	code	to	the	COMPUTE	button	click	event	to	set	the	form	field
STD_NUM	to	the	working	list	count,	from	LISTCNT.	Your	code	should	now
look	like	the	following:
Evtroutine	Handling(#COMPUTE.Click)
#iiitotsal	:=	*zeroes
Selectlist
If	(#EMPLOYS.currentItem.selected	=	true)
#IIITOTSAL_1	+=	#salary
Endif
Endselect
#STD_NUM	:=	#LISTCNT
Endroutine
	

8.		Compile	and	test	your	form:

	

Step	4.	Create	a	CSV	File
In	this	step	you	will	use	the	TRANSFORM_LIST	BIF	to	create	a	CSV	file	from
the	working	list.
1.		Drag	and	drop	a	push	button	onto	the	form,	above	the	Working	List	entries
field.	Change	its	Caption	to	Create	CSV	File	and	Name	to	CREATE.	Create
a	Click	event	for	it.

2.		The	TRANSFORM_LIST	BIF	can	be	used	to	transform	a	working	list	into	a
text	file,	with	a	number	of	file	format	options.	The	output	file	name	will
usually	be	defined	including	a	full	path	to	control	where	it	is	written.

					LANSA	has	a	number	of	system	variables	which	may	be	used	to	provide	a
path	name	which	will	be	valid	in	both	a	development	and	production
partition.	For	example	this	assignment	would	place	the	file	named
EMPLIST.csv	into	the	Visual	LANSA	partition	\object	folder.
#STD_QSEL	:=	*part_dir_object	+	'EMPLIST.CSV'
	

					Note:	The	system	variable	*part_dir_object	provides	a	path	ending	in	"\".				
					Built-In	functions	(BIFs)	are	executed	using	the	USE	command.	The	USE
command	has	the	format:
USE	Builtin()	With_args()	To_get()

					A	BIF	is	a	called	program,	and	the	arguments	it	receives	and	returns	are
defined	in	the	Repository.	The	Command	Assistant	fully	supports	BIFs,	just
like	any	RDML	command.	Your	CREATE	Click	event	logic	should	look	like
the	following:
Evtroutine	Handling(#CREATE.Click)
#STD_QSEL	:=	*part_dir_object	+	'EMPLIST.CSV'
Use	Builtin(transform_list)	With_Args(#emplist	#STD_QSel)	To_Get(#io$sts)
If	(#io$sts	=	OK)
Message	Msgtxt('File	EMPLIST.CSV	created	in	..\x_'	+	*partition	+	'\object	folder
Endif
Endroutine
	

					Note:	The	message	text	uses	a	system	variable	*partition	which	contains	the
3	character	partition	name.

3.		Compile	and	test	your	form.	Select	entries	in	the	list	view.	The	Create	CSV

File	button	will	write	a	CSV	file	containing	the	working	list's	entries:

4.		Use	Windows	Explorer	to	locate	the	output	file.	For	example,	in	a	standard
Visual	LANSA	installation:
C:\Program	Files\LANSA\x_win95\x_lansa\x_dem\object\EMPLIST.CSV
	

					Where	DEM	is	the	partition	being	used	for	training.
					If	your	PC	has	MS	Office	installed,	this	file	is	opened	in	Excel.

					The	next	step	will	use	the	System_Command	Built	in	Function	to
automatically	display	the	CSV	file	in	Notepad.

5.		Add	the	highlighted	code	to	your	CREATE.Click	event	handling	routine
Evtroutine	Handling(#CREATE.Click)

Define	#retcode	type(*dec)	length(3)	decimals(0)	
#STD_QSEL	:=	*part_dir_object	+	'EMPLIST.CSV'
Use	Builtin(transform_list)	With_Args(#emplist	#STD_QSel)	To_Get(#io$sts)
If	(#io$sts	=	OK)
Message	Msgtxt('File	EMPLIST.CSV	created	in	..\x_'	+	*partition	+	'\object	folder')
#std_qsel	:=	('notepad	'	+	#std_qsel)
Use	Builtin(system_command)	With_Args(X	#STD_QSEL)	To_Get(#retcode)
Endif
Endroutine
	

					This	will	display	the	CSV	file	in	Notepad	once	the	TRANSFORM_LIST	BIF
has	successfully	completed:

Omitting	'Notepad'	from	the	execute	string	would	load	the	CSV	file	in	Excel	if
you	have	MS	Office	installed.

Summary
Important	Observations

In	the	event-driven	program	model,	when	the	user	selects	multiple	items	in	a
list,	each	item	is	processed	individually	by	a	call	to	the	event	that	is
triggered.
The	SELECTLIST	command	is	very	similar	to	the	SELECT	command.	It
creates	a	looping	structure	to	process	multiple	records	from	a	list.
The	list	operations	also	support	the	use	of	IF_STATUS	commands.
Working	lists	are	created	using	a	DEF_LIST	command	within	the	program
code.	The	list	definition	includes	the	fields	in	the	list	and	the	size	(maximum
number	of	entries)	of	the	list.
The	working	list	counter	is	updated	automatically.
The	TRANSFORM_LIST	BIF	will	produce	a	text	file,	with	a	number	of
formats	options	available,	from	a	working	list.
Windows	applications	can	be	called	using	the	SYSTEM_COMMAND	BIF.

Tips	&	Techniques
Allowing	users	to	select	multiple	items	from	a	list	and	then	performing	some
action	against	the	resulting	selected	list	of	items	is	a	very	common
requirement	in	Windows	applications.
Most	lists	have	a	property	that	indicates	whether	multiple	item	selection	is	to
be	allowed	or	not.	By	default,	multiple	item	selection	is	supported.	You
should	always	think	about	whether	or	not	you	want	to	support	multiple	item
selection	and	set	this	property	accordingly.

What	You	Should	Know
How	to	use	lists	with	list	views.
How	to	locate,	update	and	delete	entries	from	a	list.
How	to	select	items	from	a	list	using	the	SELECTLIST	command.
How	to	use	the	following	list	commands:
ADD_ENTRY
CLR_LIST
DEF_LIST
DLT_ENTRY

LOC_ENTRY
DEFINE

How	to	use	the	TRANSFORM_LIST	Built-in	function.

FRM085	-	Update	from	a	Grid
Objective:

To	create	a	small	application	with	search	and	update	for	employee	details
and	employee	skills.

To	demonstrate	reading	a	file	using	SELECT_SQL
To	demonstrate	updating	a	file	based	on	changed	entries	in	a	grid

To	achieve	these	objectives	you	must	complete	the	following:
Step	1.	Create	Field	iiiMONTH	and	Visual	Picklist
Step	2.	Create	Form	–	Update	from	List
Step	3.	Add	Search	Logic
Step	4.	Display	Employee	Details	and	Skills
Step	5.	Update	Employee	Details
Step	6.	Update	Employee	Skills
Step	7.	Add	Drop	Down	for	Skill	Code	(optional)
Summary

Before	You	Begin
Complete	all	earlier	FRM	exercises	before	starting	this	exercise.

Step	1.	Create	Field	iiiMONTH	and	Visual	Picklist
The	application	will	search	the	employee	file	(PSLMST)	using	SELECT_SQL,
using	a	search	on	Start	Date	(STARTDTER)	comparing	the	month	value	only.	In
this	step	you	will	create	a	month	field	and	define	a	static	picklist	visualization
for	it.	This	will	be	visualized	as	a	combo	box	which	returns	a	numeric	month
number.
1.		Create	a	new	field,	iiiMONTH	based	on	the	following:

Field	Name iiiMONTH

Description Month

Type Signed

Length 2

Decimals 0

RDMLX	Enabled
No

Open	in	the	Editor
Yes

	

2.		With	the	new	field	open	in	the	editor,	select	the	Visualization	tab.
					Use	the	toolbar	button	to	insert	a	Static	Picklist

3.		In	the	Field	Parts	panel,	select	the	picklist	item	and	create	entries	for	each
month.

The	default	appearance	of	a	picklist	is	a	DropDownList.	Do	not	change	this
setting:

4.		Set	the	properties	of	the	VisualizationPicklist	element	in	the	Details	tab:
Change	its	MarginLeft	to	0,	to	hide	the	label.
Change	its	DefaultVisual	property	to	true.
Resize	the	DropDownList	visualization	as	shown:

5.		Save	the	field	definition	and	close	it.

Step	2.	Create	Form	–	Update	from	List
1.		Create	a	New	Form	/	Basic	Form	iiiUpdFromGrid	–	Update	from	List.
The	form	should	be	RDMLX	enabled.

2.		Enlarge	the	form.	Drop	a	Group	box	to	the	top	of	the	form.	Resize	it	and
change	its	Caption	to	Search.	Your	form	should	look	like	the	following:

3.		Drop	another	Group	Box	into	the	left	side	of	the	Search	Group	Box	and
resize	it.	Change	its	Caption	to	Start	Month.	Your	form	should	look	like	the
following:

4.		From	your	Last	Opened	tab,	drop	field	iiiMONTH	into	the	Start	Month
Group	Box.

5.		From	the	Controls	tab,	drop	a	Push	Button	into	the	Start	Month	Group	Box.
Resize	the	Group	Box	as	needed	and	position	the	Push	Button	as	shown.

6.		Change	the	Push	Button	Name	to	SEARCH_MONTH	and	change	its
Caption	to	Search.

7.		Save	your	form.
8.		From	the	Controls	tab,	drop	a	Group	Box	into	the	Search	Group	Box,	on	the
right	hand	side.	Change	its	Caption	property	to	Surname:

		

9.		From	the	Repository	tab,	Fields,	drop	field	iiiSRCNME	into	the	Surname
Group	Box.	Change	its	MarginLeft	property	to	0,	and	resize	and	position	it	as
required.

					Hint:	Temporarily	extend	both	the	Search	and	Surname	Group	Boxes	to	the
right,	in	order	to	reduce	the	width	of	the	field	iiiSRCNME.	Alternatively,
select	the	field	iiiSRCNME	and	reduce	its	Width	property.

10.	From	the	Controls	tab,	drop	a	Push	Button	into	the	Surname	Group	Box.
Change	its	Name	property	to	SEARCH_NAME	and	change	its	Caption	to
Search.	Resize	and	position	it.

					Hint:	from	the	Design	ribbon,	the	/	Align	dialog	has	been	used	to	align	the
Start	Month	and	First	Name	group	boxes	at	their	top	edge.

11.	Save	your	form.
12.	Drop	a	Status	Bar	onto	the	bottom	of	the	form.
13.	Drop	a	List	View	component	onto	the	left	side	of	the	form.	Resize	it.	Change
its	Name	property	to	EMPLOYS.

14.	Drop	fields	EMPNO	and	FULLNAME	into	the	list	view.
15.	Select	the	EMPNO	column.	Change	its	Caption	to	ID.	Change	its
CaptionType	to	Caption.	Make	the	column	wide	enough	to	display	the	field
EMPNO.

16.	Select	the	Full	Name	column.
					Change	its	Caption	to	Full	Name	and	its	CaptionType	to	Caption.
					Change	its	WidthType	to	Remainder.

					Your	form	should	look	like	the	following:

17.	Save	your	form.

Step	3.	Add	Search	Logic
In	this	step	you	will	create	Click	events	for	both	search	buttons	and	complete
the	search	logic	using	SELECT_SQL	to	populate	the	EMPLOYS	List	View.
1.		Select	the	SEARCH_MONTH	push	button.	Change	its	Enabled	property	to
False	and	create	a	Click	event.

2.		The	SQL	will	have	a	WHERE	clause,	which	compares	STARTDTER	with	a
work	field	containing	a	mask	'__nn__',	where	nn	is	the	character	value	for	the
month	selector	field	iiiMONTH.

					Define	a	work	field	(inside	the	SEARCH_MONTH.Click	event)	as	follows:
	Define	Field(#iiiDATE6)	Type(*char)	Length(6)
	

					STARTDTER	is	a	signed,	length	6	field,
3.		The	date	mask	value	can	be	created	in	field	iiiDATE6	using	the	asString	and
RightAdjust	intrinsic	functions.

					Hint:	Use	the	F2	Feature	help	on	field	#iiiMONTH	to	discover	the	intrinsic
functions	(methods)	available.

					Note:	On	this	occasion	you	are	first	using	the	function	asString	from	the
numeric	field	iiiMONTH	and	then	using	a	RightAdjust	function	which	is
available	once	it	is	a	string.	You	can	use	F2	Feature	help	on	any	Alpha	or
String	field	to	discover	the	RightAdjust	function.	Then	use	F1	help	on	an
intrinsic	function	(method)	to	display	help	text	and	examples.

					
					The	code	required	is:
#iiiDATE6	:=	'__'	+	#iiiMONTH.asDisplayString.RightAdjust(2,	"0")	+	'__'
	

					The	RightAdjust	pads	the	result	to	length	2,	with	a	pad	character	of	0.
Note:
					In	the	next	step	you	will	add	the	SELECT_SQL	logic	to	add	rows	to	list	view
EMPLOYS.

					The	SELECT_SQL	command	is	read	only	and	uses	SQL	instead	of	calling
the	LANSA	OAM.	The	OAM	uses	native	I/O	on	the	IBM	i	server	and	ODBC
on	other	platforms.	SELECT_SQL	reads	the	file	directly	and	is	not	subject	to

LANSA	validation,	virtual	field	or	triggers.
					The	best	way	to	check	your	SELECT_SQL	logic	is	to	use	interactive	SQL
for	the	required	deployment	platform,	to	ensure	that	your	logic	will	work	as
expected	with	that	database	(DB/2,	MS	SQL	Server,	Oracle?).

					There	are	two	forms	of		SELECT_SQL	available.
In	the	basic	SELECT_SQL	command,	the	SQL	logic	is	defined	in	the
SELECT_SQL	WHERE()	parameter.	This	means	that	there	are	some
restrictions	on	the	type	of	SQL	code	which	you	can	implement.
In	the	SELECT_SQL	Free	Format	command,	the	SQL	statement	is	written
in	the	SELECT_SQL	USING()	parameter.	This	means	that	any	SQL	code
which	is	supported	by	the	database	can	be	implemented	in	this	form	of
SELECT_SQL.	This	form	of	SELECT_SQL	can	only	be	used	in	RDMLX
enabled	functions	and	components.

					For	full	information	about	SELECT_SQL,	refer	to	the	Technical	Reference
Guide.	You	should	do	a	detailed	study	of	this	Technical	Reference
information	before	attempting	to	use	SELECT_SQL.

4.		The	SQL	statement	to	retrieve	employees	with	a	start	date	in	the	required
month	is	as	follows:
SELECT	EMPNO,	SURNAME,	GIVENAME,	STARTDTER	FROM	XDEMOLIB.PSLMST	WHERE	("STARDTER	LIKE	'__mm__')
	
			Where	mm	=	the	month	number	required.
			Complete	the	SEARCH_MONTH	Click	event	routine	as	shown	below:
Evtroutine	Handling(#SEARCH_MONTH.Click)
#iiiDATE6	:=	'__'	+	#iiiMONTH.asDisplayString.rightAdjust(2,	"0")	+	'__'
Clr_List	Named(#EMPLOYS)
#std_strng	:=	'WHERE	('	+	'"STARTDTER"'	+	'	LIKE	'	+	#quote	+	#iiiDATE6	+	#quote	+	
#std_strng	:=	'SELECT	EMPNO,	SURNAME,	GIVENAME,	STARTDTER	FROM	XDEMOLIB.PSLMST	
Select_Sql	Fields(#EMPNO	#SURNAME	#GIVENAME	#startdter)	Using(#std_strng)
#fullname	:=	#SURNAME	+	',	'	+	#GIVENAME
Add_Entry	To_List(#EMPLOYS)
Endselect
#EMPNO	#SURNAME	#GIVENAME	:=	*default
Endroutine
	

Note:	The	schema	name	used	for	file	PSLMST	in	the	SELECT_SQL	will

its:lansa015.CHM::/lansa/SELECT_SQL.HTM

depend	on	your	partition	file	library	name.	Visual	LANSA	creates	the	SQL
table	by	shortening	the	library	name.	For	example	DCXDEMOLIB,	becomes
XDEMOLIB	as	used	in	the	supplied	RDML	above.	Use	SQL	Management
Tools	to	access	the	DB	and	check	the	schema	name	being	used.

5.		Create	a	Changed	event	for	field	iiiMONTH.	Add	code	to	this	event	to
enable	the	SEARCH_MONTH	button.	Your	code	should	look	like	the
following:
Evtroutine	Handling(#IIIMONTH.Changed)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#SEARCH_MONTH.enabled	:=	true
Endroutine
	

6.		Compile	your	form	and	test	it.	You	should	be	able	to	select	a	month.	The
search	button	should	populate	the	list	view.	Hint:	Try	a	number	of	different
months.

7.		Select	the	SEARCH_NAME	button,	change	its	Enabled	property	to	false
and	create	a	Click	event	for	it.

8.		The	SQL	statement	required	to	retrieve	employees	selecting	by	SURNAME
based	on	in	input	search	value	such	as	'S%'	or	%smi%'	is	as	follows:
SELECT	EMPNO,	SURNAME,	GIVENAME	FROM	XDEMOLIB.PSLMST	WHERE	(#SURNAME"	LIKE	'XX')
Where	XX	=	the	search	criteria.
	

	Note:	Once	again	you	need	to	know	the	schema	name	for	table	PSLMST	in
your	local	SQL	Server	database.				

Your	completed	code	should	look	like	the	following:
Evtroutine	Handling(#SEARCH_NAME.Click)
Clr_List	Named(#EMPLOYS)
#std_strng	:=	#quote	+	#IIISRCNME	+	#quote
#std_strng	:=	'SELECT	EMPNO,	SURNAME,	GIVENAME	FROM	XDEMOLIB.PSLMST	where	(
Change	Field(#EMPNO)	To(*blank)
Select_Sql	Fields(#EMPNO	#SURNAME	#GIVENAME)	Using(#std_strng)
#fullname	:=	#SURNAME	+	',	'	+	#GIVENAME
Add_Entry	To_List(#EMPLOYS)
Endselect
#EMPNO	#SURNAME	#GIVENAME	:=	*blanks
Endroutine
	

9.		Create	a	Changed	event	for	the	field	iiiSRCNME.	Complete	this	event
routine	to	enabled	the	SEARCH_NAME	button.	Your	code	should	look	like
the	following:
Evtroutine	Handling(#IIISRCNME.Changed)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
#SEARCH_NAME.enabled	:=	true
Endroutine
	

10.	Compile	your	form	and	test	it.	Check	the	SEARCH_NAME	logic	using
values	such	as	SM%	and	%Y%.

Step	4.	Display	Employee	Details	and	Skills
In	this	step	you	will	extend	the	form	design	and	add	logic	to	retrieve	employee
details	and	skills	when	selected	in	the	employees	list	view.
1.		Enlarge	the	form	and	drag	and	drop	a	Group	Box	onto	the	right	hand	side.
Resize	the	Group	Box	and	change	its	Caption	to	Details.	Your	form	should
look	like	the	following:

2.		Expand	the	file	definition	on	the	Repository	tab	for	file	PSLMST.	Select	all
the	fields	from	EMPNO	to	PHONEBUS	while	holding	down	the	Shift	key
and	drag	them	to	the	top	right	side	of	the	Details	Group	Box.

	

3.		Reduce	the	field	widths	and	if	necessary	widen	the	Form	and	Group	Box,
and	then	select	fields	from	DEPTMENT	to	TERMDATE	and	drag	and	drop
them	to	the	right	of	the	first	set	of	fields:

4.		Save	your	form.
5.		Make	adjustments	to	field	width	and	reduce	the	width	of	the	Group	Box	and
form	if	necessary.

					Do	not	spend	time	on	this	step.	If	you	follow	the	Windows	development
training	path,	you	will	learn	how	to	use	Layout	Managers	to	control	your
form	design	in	an	intelligent	way.

6.		Drop	a	Grid	control	onto	the	lower	area	of	the	Details	group	box	and	resize
it.	Change	its	Name	to	SKILLS.

	

7.		In	the	Repository	tab,	find	the	file	PSLSKL	and	expand	its	definition.	Drag
and	drop	field	EMPNO	into	the	SKILLS	grid.	Change	its	Visible	property	to
false.

8.		Drag	fields	SKILCODE,	GRADE,	COMMENT	and	DATEACQ	into	grid
SKILLS.		Adjust	the	Caption,	CaptionAlign	and	CaptionType	so	that	your
Grid	columns	look	like	the	following:

9.		On	the	Repository	tab,	expand	the	file	SKLTAB	and	drop	the	field
SKILDESC	into	the	SKILLS	grid.	
Change	its	DisplayPosition	to	2.
Your	grid	should	look	like	the	following:

10.	Add	field	DATEACQR	from	the	file	PSLSKL	to	the	Grid.	Make	the	column
Visible	false.

					The	field	DATEACQR	will	be	used	to	recognize	entries	which	were	loaded
from	the	file	PSLSKL.

11.	Save	your	form	definition.
12.	Create	an	ItemGotSelection	event	for	the	list	view	EMPLOYS.

a.		Define	a	GROUP_BY	for	all	employee	fields	on	the	form.	Your	code
should	look	like	the	following:

Group_By	Name(#empdata)	Fields(#EMPNO	#SURNAME	#GIVENAME
#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#PHONEHME
#PHONEBUS	#DEPTMENT	#SECTION	#SALARY	#STARTDTE
#TERMDATE)
b.		This	event	should:

Fetch	all	fields	for	current	employee	number	using	GROUP_BY	EMPDATA

Retrieve	all	skills	(file	PSLSKL)	for	this	employee	number

Fetch	the	skill	description	from	file	SKLTAB	for	this	skill	code

Add	entry	to	grid	SKILLS.					

Your	code	should	look	like	the	following:
Evtroutine	Handling(#EMPLOYS.ItemGotSelection)	Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Group_By	Name(#empdata)	Fields(#EMPNO	#SURNAME
#GIVENAME	#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE
#PHONEHME	#PHONEBUS	#DEPTMENT	#SECTION	#SALARY
#STARTDTE	#TERMDATE)
Fetch	Fields(#EMPDATA)	From_File(pslmst)	With_Key(#EMPNO)
Clr_List	Named(#SKILLS)
Select	Fields(#SKILLS)	From_File(pslskl)	With_Key(#EMPNO)
Fetch	Fields(#skildesc)	From_File(SKLTAB)	With_Key(#skilcode)
Add_Entry	To_List(#SKILLS)
Endselect
Endroutine
	

13.	Compile	and	test	your	form.	Complete	a	search	and	select	an	employee	in
the	list	view.	Your	form	should	look	like	the	following:

	

Step	5.	Update	Employee	Details
In	this	step	you	will	add	Save	and	Close	push	buttons.	You	will	code	the	Save
button	Click	event	to	update	the	employee	record	(PSLMST)	and	update,	delete
and	add	skills	to	file	PSLSKL	from	changes	made	to	the	SKILLS	grid.
1.		Add	two	push	buttons,	inside	the	Details	group	box,	below	the	SKILLS	grid.
Set	up	the	buttons	as	follows:

Push	Button Property Value

Save Caption Save

Name SAVE

Close Caption Close

Name CLOSE

	

					Your	form	should	look	like	the	following:

2.		Create	a	click	event	for	the	CLOSE	button	and	add	code	to	close	the	form.
Your	code	should	look	like	the	following:
Evtroutine	Handling(#CLOSE.Click)
#com_owner.closeForm
Endroutine
	

3.		In	the	Details	Group	Box,	select	the	field	EMPNO	and	change	its	ReadOnly

property	to	true.
4.		Create	a	click	event	for	the	SAVE	push	button.	Add	code	to	update	all	fields
in	the	file	PSLMST.	Check	the	I/O	status	and	issue	a	message	the	status	is	not
OK.	Your	code	could	look	like	the	following
Evtroutine	Handling(#SAVE.Click)
Update	Fields(*all)	In_File(pslmst)	Val_Error(*next)
If_Status	Is(*OKAY)
Else
Message	Msgtxt('Error	occured	on	Employee	update')
Endif
Endroutine
	

					Note:	The	UPDATE	statement	has	no	With_Key()	parameter.	It	is	updating
the	'last	record	read'.	The	LANSA	cross	update	check	will	be	applied,	to
prevent	an	update	if	the	record	changed	since	it	was	read.

5.		Compile	and	test	your	form.	You	should	be	able	to	update	an	employee.
Validation	errors	will	highlight	fields	and	display	messages	in	the	Status	Bar.

Step	6.	Update	Employee	Skills
In	this	step	you	will	extend	the	SAVE	Click	event	routine:

To	process	all	entries	in	the	SKILLS	grid	(SELECTLIST/ENDSELECT)	and
update,	delete	or	insert	a	new	skill.
The	SKILLS	grid	will	now	be	loaded	with	5	blanks	entries,	which	may	be
used	to	add	a	new	skill.
The	field	DATEACQR	column	will	be	used	to	identify	"existing"	skills
entries.
If	the	Date	Acquired	(DATEACQ)	is	zero,	the	skill	will	be	deleted.
All	other	skill	entries	will	be	updated.
The	SKILLS	grid	will	be	rebuilt	after	a	successful	update	to	show	current
entries.

1.		In	the	SKILLS	grid,	select	the	column	Skill	Code	by	clicking	on	its	column
heading.		Change	its	ReadOnly	property	to	false.	Repeat	this	change	for
columns	Grade,	Comment	and	Date	Acquired.	

2.		Create	a	"SKILLS"	subroutine:

Move	the	clear	and	populate	SKILLS	logic	from	the	EMPLOYS
ItemGotSelection	routine	into	the	SKILLS	subroutine.

Add	an	EXECUTE	SKILLS	command	to	the	EMPLOYS	ItemGotSelection
routine

Define	a	group_by		SKLLIST	for	all	the	SKILLS	grid	fields,	excluding	EMPNO

Set	the	SKLLIST	group_by	fields	to	default	values	after	populating	the	SKILLS
grid

Extend	the	SKILL	subroutine	logic	to	add	5	blank	entries	to	the	end	of	the
SKILLS	grid

	

					Your	SKILLS	subroutine	should	look	like	the	following:
Subroutine	Name(SKILLS)Group_By	Name(#skllist)	Fields(#SKILCODE	#GRADE	#COMMENT	#DATEACQ	#SKILDESC	#DATEACQR)
Clr_List	Named(#SKILLS)

Select	Fields(*all)	From_File(pslskl)	With_Key(#EMPNO)
Fetch	Fields(#skildesc)	From_File(skltab)	With_Key(#skilcode)
Add_Entry	To_List(#SKILLS)
Endselect
#skllist	:=	*default
Begin_Loop	To(5)
Add_Entry	To_List(#SKILLS)
End_Loop
Endroutine
	

3.		Compile	your	form	and	test	it.	The	SKILLS	grid	columns	should	be	input
capable	(except	Skill	Description)	and	there	should	be	5	"blank"	entries	at	the
end	of	the	grid.	The	Save	button	will	not	yet	update	employee	skills.

4.		In	this	step	you	will	extend	the	SAVE	logic	to	update	or	delete	employee
skills	(file	PSLSKL).

				If	the	employee	update	is	OK

				Read	all	entries	in	the	SKILLS	grid	using	SELECTLIST

				If	field	DATEACQR	is	not	zero

								If	field	DATEACQ	is	not	zero

								UPDATE	skill	with	a	key	of	employee	number	and	skill	code

								Otherwise,	delete	skill	with	a	key	of	employee	number	and	skill	code

								If	I/O	status	is	not	OK

												Update	current	entry	in	SKILLS	grid

												Leave	SELECTLIST

					Your	SAVE	logic	should	now	look	like	the	following:
Evtroutine	Handling(#SAVE.Click)
Update	Fields(*all)	In_File(pslmst)	Val_Error(*next)
If_Status	Is(*okay)
Selectlist	Named(#SKILLS)

If	(#dateacqr	*NE	*zero)
If	(#dateacq	*NE	*zeroes)
Update	Fields(#SKILLS)	In_File(pslskl)	With_Key(#EMPNO	#skilcode)	Val_Error(*next)
Else
Delete	From_File(pslskl)	with_Key(#empno	#skilcode)	Val_Error(*next)
Endif
If_Status	Is_Not(*okay)
Upd_Entry	In_List(#SKILLS)
leave
Endif
Endif
Endselect
If_Status	Is(*okay)
Execute	Subroutine(SKILLS)
Endif
Else
Message	Msgtxt('Error	occurred	on	Employee	update')
Endif
Endroutine
	

5.		Compile	and	test	your	form.	You	should	now	be	able	to	update	existing	skills
(e.g.	change	grade,	comment	or	data	acquired)	or	delete	a	skill	by	setting
Date	Acquired	to	zero.

					Notice	that,	when	a	validation	error	occurs	(e.g.	invalid	Grade),	the	error	is
highlighted	and	processing	of	the	SKILLS	grid	stops.

6.		In	this	step,	you	will	extend	the	SELECTLIST	logic:

Insert	an	employee	skill	record,	if	DATEACQR	is	zero	and	skill	code
(SKILCODE)	is	not	blank.

				If	the	insert	is	not	OK,	issue	a	message,	update	the	current	SKILL	entry	and
stop	processing	SKILLS	entries	(using	a	LEAVE	command).

				If	no	errors	occurred,	execute	the	SKILLS	subroutine	to	rebuild	the	SKILLS
grid.

	Define	a	Group_By,	which	contains	only	the	fields	needed	to	insert	an
employee	skill	record:

Group_By	Name(#skilladd)	Fields(#empno	#skilcode	#dateacq	#comment
#grade)				

Extend	your	save	logic	as	outlined	above.	Use	the	SKILLADD	Group_by	when
inserting	an	employee	skills	record.

					Your	SAVE	logic	should	now	look	like	the	following.	Changes	are	shown	in
red.
Evtroutine	Handling(#SAVE.Click)
Update	Fields(*all)	In_File(pslmst)	Val_Error(*next)
If_Status	Is(*okay)
Selectlist	Named(#SKILLS)
If	(#dateacqr	*NE	*zero)
If	(#dateacq	*NE	*zeroes)
Update	Fields(#SKILLS)	In_File(pslskl)	With_Key(#EMPNO	#skilcode)	Val_Error(*next)
Else
Delete	From_File(pslskl)	With_Key(#empno	#skilcode)	Val_Error(*next)
Endif
If_Status	Is_Not(*okay)
Upd_Entry	In_List(#SKILLS)
Leave
Endif

Else
If	(#skilcode	*NE	*blank)
Insert	Fields(#SKILLADD)	To_File(pslskl)	Val_Error(*next)
If_Status	Is_Not(*OKAY)
Message	Msgtxt('New	Skill	not	inserted')
Upd_Entry	In_List(#SKILLS)
Leave
Endif
Endif

Endif
Endselect
If_Status	Is(*okay)
Execute	Subroutine(SKILLS)
Endif
Else

Message	Msgtxt('Error	occurred	on	Employee	update')
Endif
Endroutine
	

7.		Compile	and	test	your	form.	You	should	be	able	to	add	new	skill	entries	and
also	handle	a	validation	error	when	inserting	a	skill.

					Hint:	At	this	stage,	you	must	know	valid	skill	codes.	Delete	a	skill	(Date
Acquired	=	zero)	noting	the	skill	code	and	then	re-add	the	same	skill.

					Notice	that	if	a	validation	error	occurs	on	an	insert,	the	error	is	highlighted
and	processing	of	the	SKILLS	grid	stops.

8.		In	this	step	you	will	refine	the	error	handling.	Test	your	form	as	follows:
a.		Select	an	employee	to	display	employee	details	and	skills
b.		Save	with	invalid	data	(e.g.	surname=blank,	salary=zero)
c.		Select	a	different	employee	in	the	EMPLOYS	list	view
d.		Notice	that	the	error	fields	are	still	highlighted.

					Notice	that	the	EMPLOYS	ItemGotSelection	routine	definition	has	an
OPTIONS()	setting	which	does	not	clear	errors	and	messages:
Evtroutine	Handling(#EMPLOYS.ItemGotSelection)	Options(*noclearerrors	*noclearmessages)

	
9.		Remove	the	Options()	parameter	from	the	EMPLOYS	ItemGotSelection
event	routine	statement.

10.	Compile	and	test	your	form	and	repeat	the	test	in	8	above.	Note	that	field
highlighting	is	now	cleared	when	a	new	employee	is	selected	in	the
EMPLOYS	list	view.

Step	7.	Add	Drop	Down	for	Skill	Code	(optional)
From	LANSA	V12	is	a	new	field	visualization	option:	Dynamic	Picklist.	This
enables	a	simple	Reusable	Part	component	to	be	created	that	populates	a	picklist
from	a	table	file	such	the	skills	table	(SKLTAB).	This	reusable	part	can	then	be
attached	to	the	dynamic	picklist	visualization	for	the	skill	code,	such	as	a	combo
box.
This	step	simply	illustrates	a	Dynamic	Picklist	as	a	solution.	See	the	Visual
LANSA	Developer	Guide	for	full	details	and	examples.

What	is	a	Reusable	Part?
A	reusable	part	is	a	component	which	either	extends	PRIM_PANL,	meaning	it	is
a	visual	panel	or	extends	PRIM_OBJT,	meaning	it	is	a	hidden	component	which
is	invoked	to	'do	something'.
1.		Create	a	New	/	Reusable	Part	/	Object	called	iiiVIS01	–	Skills	Picklist.	Paste
the	following	code	into	it	and	compile	it:
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_OBJT	*implements	#Prim_dc.iDynamicPicklist)
Mthroutine	Name(Load)	Options(*redefine)
#Picklist.RemoveAll
Select	Fields(*all)	From_File(skltab)
#Picklist.Add(#skilcode	#skildesc)
Endselect
Endroutine
End_Com
	

Note:
*implements	Prim_DC.iDynamicPicklist
iDynamicPicklist	allows	a	visualization	reusable	to	load	the	picklist	at
runtime.
Load	method	is	executed	during	initialization	and	any	time	a	monitored
value	or	context	changes.	This	picklist	instance	is	received	via	the	Picklist
map.	Your	method	routine	Load	Options(*Redefine)	will	contain:

				Define_Map	For(*input)	Class(#PRIM_PKLT)	Name(#Picklist)	Pass(*BY_REFERENCE)
	

The	instance	of	the	picklist	is	maintained	at	runtime	meaning	that	you

must	clear	the	list	if	new	data	is	required.
2.		Copy	the	field	SKILCODE	to	create	a	new	field	iiiSKILCODE.

a.Copy	rules	and	triggers	and	Help	text.
b.Open	the	new	field	in	the	editor.
c.Select	the	Visualization	tab.
d.Insert	a	New	Dynamic	Picklist

3.		Select	your	reusable	part	(iiiVIS001)	in	the	Repository	Find	dialog	and	click
OK.

4.		Select	the	VisualPicklist	in	the	FieldParts	list.	Lengthen	the	combo	box
(which	will	display	Skill	Description)	and	change	its	DefaultVisual	property
to	true.

5.		Save	and	close	your	field	definition.
6.		You	will	now	change	the	SKILLS	grid	second	column	to	use	iiiSKILCODE,
and	add	code	to	set	up	its	value	and	use	the	correct	value	when	updating	the
Personnel	Skills	file	from	the	SKILLS	grid.
a.		If	necessary	open	form	iiiUpdFromGrid	in	the	editor.
b.		Change	the	SKILLS	grid	column	2	to	use	iiiSKILCODE.
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_2)	Displayposition(1)
Parent(#SKILLS)	Readonly(False)	Source(#iiiSKILCODE)
c.		In	the	SKILLS	subroutine,	set	up	field	iiiSKILCODE	before	adding	an
entry	to	grid	SKILLS.

.	.	.	.

#iiiskilcode	:=	#skilcode

Add_Entry	To_List(#SKILLS)
.	.	.	.
d.		In	the	SAVE.Click	routine,	set	up	field	SKILCODE	after	each	entry	in	the
SKILLS	list	is	read:

.	.	.
Selectlist	Named(#SKILLS)

#skilcode	:=	#iiiskilcode

.	.	.
7.		Select	the	Design	tab.	Select	the	column	heading	for	the	Skill	Code	column
in	the	SKILLS	grid	and	change	its	UsePicklist	property	to	true.

					Right	click	on	the	Skill	Description	column	heading	and	use	the	context
menu	to	Delete	Component.	This	column		is	no	longer	necessary.

8.		Compile	and	test	your	form.	The	Skill	Code	column	(which	is	ReadOnly
false)	displays	the	current	skill	description	for	each	row.

9.		Click	on	any	cell	in	the	Skill	Code	column	to	display	a	combo	box
containing	all	entries	from	the	Skills	Table	(SKLTAB):

					You	can	select	a	new	value	to	change	the	employee	skill.	However,	your	save
logic	expects	skill	code	cannot	be	changed	(employee	skill	file	is	keyed	on
employee	number	and	skill	code).

10.	In	this	step	you	will	control	whether	the	skill	code	column	is	read	only.	For
existing	skill	entries	it	should	be	ReadOnly	=	True.	For	the	five	blank	entries,
skill	code	column	should	be	ReadOnly	=	False
a.		Change	the	SKILLS	subroutine,	To	set	column	2	ReadOnly=	True,	using
the	following	code,	after	each	entry	is	added:

.	.	.
Add_Entry	To_List(#SKILLS)

#skills.cell<#skills.currentitem.entry	2>.readonly	:=	true

.	.	.	.
					As	always,	F2	Features	help	will	enable	you	to	find	the	information	you
need	about	the	Grid	component.

					The	cell	property	is	used	like	this:
#skills.cell<row	column>
b.		Change	iiiSKILCODE	to	*blanks,	before	five	blank	entries	are	added.
The	skills	combo	box	will	now	show	blanks	initially.

.	.	.
#skllist	:=	*default

#iiiskilcode	:=	*blanks

Begin_Loop	To(5)
.	.	.

11.	Compile	and	test	your	form.	For	an	employee	with	existing	skills	you
change	grade,	comment	and	date	acquired	only.	Use	one	of	the	five	blank
rows	to	add	a	new	skill.	The	skill	code	combo	box	visualization	allows	a
valid	skill	to	be	selected.

Summary
Important	Observations

This	application	is	a	simple	form	which	is	designed	to	extend	your
RDML/RDMLX	knowledge.	It	is	not	intended	to	represent	the	best	user
interface	for	this	type	of	"header	and	detail"	update.
SELECT_SQL	can	be	used	to	create	powerful	and	flexible	search	logic	for
reading	files.
Field	visualizations	can	be	defined	easily	and	rapidly	and	are	then	available
in	all	Windows	applications.
Group	boxes	enable	related	data	and	objects	to	be	visually	grouped	on	the
form
A	grid	component	can	have	input	capable	columns	and	may	be	processed	to
handle	update,	delete	and	insert	to	the	related	file.

Tips	&	Techniques
Always	use	interactive	SQL	to	test	your	proposed	logic	over	your	database
platform.
To	use	SELECT_SQL	effectively	you	need	a	good	knowledge	of	SQL.
To	highlight	validation	errors	in	a	grid,	use	the	UPD_ENTRY	command.

What	You	Should	Know
How	to	use	SELECT_SQL
How	to	write	a	simple	"header/detail"	update	form.
How	to	manipulate	a	cell	in	a	grid	(specific	row	and	column).

FRM095	-	Calling	a	Function
In	this	exercise	you	will	create	a	simple	form	(Salary	Review)	which	calls	a
function	passing	department	code	and	a	number	which	represents	"percentage
salary	increase".	The	called	function	creates	a	list	of	employees	for	the
requested	department,	containing	both	current	and	new	salaries	based	on	the
percentage	increase.	This	results	list	is	returned	to	the	calling	form.	The	Salary
Review	form	displays	the	results	in	a	list	view	and	calculates	the	total	cost	of
the	increase.
The	called	function	will	be	compiled	for	Windows	and	will	also	be	checked	in
and	compiled	on	the	IBM	i	server.
The	"Salary	Review"	form	will	be	tested	in	two	different	modes:

As	a	Windows	Application	running	on	the	desktop,	with	a	local	database.
As	a	client	to	an	RDMLX	IBM	i	Server

The	form	will	use	a	system	variable	*SSERVER_CONNECTED	(value	Y	or	N)
to	determine	whether	to	CALL	the	local	function,	or	USE
CALL_SERVER_FUNCTION	to	call	the	function	running	on	the	IBM	i	server.

Objective:
To	demonstrate	the	EXCHANGE	and	CALL	commands	and	the
CALL_SERVER	FUNCTION	BIF.

In	order	to	achieve	these	objectives	you	must	complete	the	following:
Step	1.	Create	the	Called	Function

Step	2.	Create	Salary	Review	Form
Step	3.	Test	Salary	Review	Application
Summary

Before	You	Begin
Complete	all	earlier	FRM	exercises.
This	exercise	requires	access	to	an	IBM	i	server.

Step	1.	Create	the	Called	Function
1.		Create	the	following	new	fields:

a.iiiNEWSAL,	New	Salary,	Packed,	11,	2	Edit	Mask	N
b.iiiPERCNT	–	Percent	Increase,	Packed,	3,	2,	Edit	Mask	N
c.iiiTOTSAL,	should	already	exist.	It	was	created	in	exercise	FRM075.

2.		Check	the	new	fields	into	the	IBM	i	server.
3.		Create	a	new	process	iiiPRO01	-	FRM	Training.	You	do	not	need	to	open	it
in	the	editor.

4.		Create	a	new	function	iiiFN21	–	Salary	Review,	belonging	to	process
iiiPRO01.	Create	the	function	RDMLX	enabled.

5.		Functions	which	receive	and	return	a	working	list	require	a	FUNCTION
statement	with	a	RCV_LIST()	parameter.	Define	your	FUNCTION	statement
as	follows:
Function	Rcv_List(#Employs)
	

6.		Define	a	working	list	EMPLOYS	containing	fields	EMPNO,	FULLNAME,
DEPTMENT,	SALARY	and	iiiNEWSAL.	Entrys=*max

7.		Define	a	GROUP_BY,	EMPDATA,	containing	fields	EMPNO,	SURNAME,
GIVENAME,	DEPTMENT,	SALARY.

8.		Your	function	logic	should	be	based	on	the	following:

Clear	list	EMPLOYS
SELECT	from	file	PSLMST1,	using	group_by	EMPDATA,
with	a	key	of	DEPTMENT
Assign	Fullname	to	Surname	+	Givename.
Calculate	iiiNEWSAL	as	(SALARY	+	(SALARY	*
(iiiPERCNT	/	100))
Add	entry	to	EMPLOYS
End	selection
Return

9.		Write	your	RDMLX	based	on	the	above.	If	necessary	refer	to	Appendix	A.

FRM095	for	a	solution.
10.	Compile	your	function
11.	Check	in	and	compile	the	function	to	the	IBM	i	Server.
					Select	your	function	IIIFN21	on	the	Repository	tab,	or	Last	Opened	tab	and
use	the	right	mouse	menu	to	Check	In.

					The	process	iiiPRO02	will	be	automatically	checked	in	and	compiled	as
well.

					Note:	Always	save	your	source	or	compile	it	locally	(this	automatically
saves	the	current	source)	when	using	check	in	from	tabs	such	as	Repository	or
Last	Opened.

					Alternatively,	check	in	the	object	currently	open	in	the	Editor	using	the
Check	In	command	in	the	ribbon:

					You	will	learn	more	about	Check	In	in	exercise	FRM125	-	Check	Out	/	In	to
IBM	i.

Step	2.	Create	Salary	Review	Form
1.		Create	a	new	form	iiiCOM17	–	Salary	Review	Request.	Switch	to	the
Design	tab.

2.		Create	the	form	as	follows:
Drop	a	Group	Box	towards	the	top	of	the	form	and	resize	it.	Give	it	a
Caption	of	Change	Request.
Drop	fields	DEPTMENT	and	iiiPERCNT	onto	the	Group	Box	and
position	them	as	required.	Remember	you	can	use	the	Edit	/	Align	dialog
to	align	a	group	of	components.
Drop	a	Push	Button	into	the	Change	Request	group	box,	to	the	right	of	the
fields.	Change	Name	to	SUBMIT.	Give	it	a	Caption	of	Submit	and	create
a	Click	event	routine	for	it.
Drop	a	List	View	onto	the	form	and	resize	and	position	it.	Add	fields
EMPNO,	FULLNAME,	DEPTMENT,	SALARY	and	iiiNEWSAL.
Add	a	Status	Bar	to	the	form.
Add	field	iiiTOTSAL	to	the	form	below	the	List	View.

					Your	form	should	look	like	the	following:

3.		Switch	to	your	program	Source.	Define	four	work	fields:
NEWTOT,	reference	field	iiiTOTSAL
CURTOT,	reference	field	iiiTOTSAL
SRVCON,	*CHAR,	1,	default	=	*SSERVER_CONNECTED
SSTATUS,	reference	field	IO$STS

4.		Define	the	EMPLOYS	working	list.	This	must	be		identical	to	the	DEF_LIST
definition	in	function	iiiFN21.
Def_List	Name(#employs)	Fields(#empno	#fullname	#DEPTMENT	#salary	#iiinewsal)	Counter(#listcount)	Type(*working)	Entrys(*max)
	

					It	is	a	good	idea	to	copy	the	DEF_LIST	definition	from	function	iiiFN21	as	it
is	essential	that	your	working	lists	are	identically	defined	in	the	calling	form
and	the	called	function.	If	not	identical,	run	time	errors	will	occur.	Each	list
must	contain	the	same	fields	in	the	same	sequence.

5.		Review	the	following	pseudo	code.	You	will	create	this	in	the	following
steps.

						Use	BEGINCHECK/FILECHECK/ENDCHECK	to	validate	DEPTMENT
using	file	DEPTAB

						Clear	list	EMPLOYS

						EXCHANGE	fields	DEPTMENT	and	iiiPERCNT

						If	SVRCON	=	N

										Call,	process	*direct,	function	iiiFN21,	Pass	list	EMPLOYS

										else

										USE	CALL_SERVER_FUNCTION,	with	arguments	(*sserver_ssn
iiiFN21	Y	*default	EMPLOYS)	To	Get(#sstatus)

						EndIf

						If	(#sstatus	*ne	OK)

						Message	'Call	server	function	failed'

						End	if

						Clear		list	LTVW_1

						CURTOT	and	NEWTOT	=	zero

						Selectlist	EMPLOYS

										Accumulate	SALARY	in	CURTOT

										Accumulate	NEWSAL	in	NEWTOT

										Add	entry	LTVW_1

						End	selectlist

						iiiTOTSAL	=	NEWTOT	–	CURTOT

6.		Begin	the	SUBMIT.Click	event	routine	by	using	Begincheck/Endcheck	and
Filecheck	to	ensure	the	department	code	exists.	Your	code	should	look	like
the	following:
Begincheck
Filecheck	Field(#DEPTMENT)	Using_File(deptab)	Msgtxt('Department	not	found')
Endcheck
	

					Recall	that	the	the	Endcheck	error	handling	will	branch	to	the	Endroutine	if
the	Filecheck	raises	an	error.

7.		Clear	the	working	list	EMPLOYS
Clr_List	Name(#EMPLOYS)
	

8.		Add	an	Exchange	command	to	pass	DEPTMENT	and	IIIPERCNT	to	the
called	function
Exchange	Fields(#deptment	#iiiprccnt)
	

This	will	add	these	fields	to	the	Exchange	List	which	is	passed	to	the
called	function.
The	called	function	will	map	these	values	into	its	variables	and	clear	the

exchange	list
9.		The	SRVCON	field	contains	the	value	of	the	system	variable
*sserver_connected.	The	system	variable	is	Y	when	connected	to	a	server,
and	N	when	not	connected	to	a	server.

					Add	an	If	loop	to	call	the	function	IIIFN21	locally	when	not	connected.
If	(#srvcon	=	N)
Call	Process(*DIRECT)	Function(iiifn21)	Pass_Lst(#employs)
Endif
	

					Note:	The	CALL	command	is	passing	the	working	list	EMPLOYS	to	the
called	function,	which	will	return	it.

10.	Add	an	Else	to	the	If	loop,	which	calls	the	function	IIIFN21	on	the	server.
					Your	code	should	now	look	like	the	following:
If	(#srvcon	=	N)
Call	Process(*DIRECT)	Function(iiifn21)	Pass_Lst(#employs)
Else
Use	Builtin(call_server_function)	With_Args(*sserver_ssn	'iiifn21'	Y	*Default	#employs)	To_Get(#sstatus)
If	(#sstatus	*NE	OK)
Message	Msgtxt('Call	server	function	failed')
Endif
Endif
	

					The	CALL_SERVER_FUNCTION	uses	the	following	parameters:

WITH_ARGS 	

Server	Symbolic	Name *sserver_ssn

Name	of	RDML	function	to	be	called IIIFN21

Pass	Current	Exchange	List Y

Receive	Exchange	List	back *default

Working	List	1 #EMPLOYS
TO_GET 	

Return	Code #SSTATUS

	

*sserver_ssn	is	a	system	variable	which	returns	the	server	symbolic	name
of	the	server.	The	server	symbolic	name	is	defined	by	the
CONNECT_SERVER	BIF	or	by	the	automatic	server	connection	to	be
used	in	this	example.
The	called	function	IIIFN21	is	called	directly
The	(field)	Exchange	List	is	passed	to	IIIFN21.	The	Exchange	List	was	set
up	by	the	Exchange	command
A	returned	Exchange	List	is	not	required	in	this	case	(Receive	Exchange
List	back	=	*default)
Only	the	first	working	list	is	passed	to	function	IIFN21	and	will	be
returned	by	IIIFN21.
The	Return	Code	will	be	work	field	SSTATUS

11.	Complete	the	SUBMIT.Click	event	routine,	with:
Clear	the	list	view
Initialize	fields	CURTOT	and	NEWTOT
Read	(SELECTLIST)	the	returned	working	list	EMPLOYS

Accumulate	CURTOT
Accumulate	NEWTOT
Add	and	entry	to	list	view

End	read
Set	IIITOTSAL	to	(NEWTOT	–	CURTOT)

					Your	additional	code	should	look	like	the	following:
.
Endif
Clr_List	Named(#LTVW_1)
#curtot	#newtot	:=	*zeroes
Selectlist	Named(#employs)
#curtot	+=	#salary
#newtot	+=	#iiinewsal
Add_Entry	To_List(#LTVW_1)
Endselect

#IIITOTSAL	:=	(#newtot	-	#curtot)
Endroutine
	

12.	Compile	your	new	form.
					If	required,	see	Appendix	B.	FRM095	for	a	complete	solution.

Step	3.	Test	Salary	Review	Application
1.		Select	form		iiiCOM17	on	the	Last	Opened	tab.	Use	the	right	mouse	menu	to
Execute	it.	Run	it	as	a	Windows	Application.	You	are	running	the	form
locally	on	the	desktop,	with	no	connection	to	the	IBM	i	server.

2.		Enter	a	department	code	such	as	ADM.	Enter	a	percentage	figure,	such	as
5.50	and	click	the	Submit	button.

3.		After	a	slight	delay,	the	List	View	should	be	filled	and	the	Cost	of	Increase
field	should	contain	a	value.	Your	form	has	called	function	iiiFN21	locally.

4.		Close	the	form.
5.		Execute	the	form	again,	using	the	right	mouse	menu.	Execute	the	form	as	a
Client	to	a	RDMLX	System	i	Server.

					Your	form	attachs	to	a	job	on	the	server,	via	the	LANSA	Listener.
6.		Enter	a	department	and	percentage	value	and	click	the	Submit	button.
					After	a	short	delay	the	list	view	and	Cost	of	Increase	field	should	be
populated.

					Your	form	has	called	function	iiiFN21on	the	server,	using	the
CALL_SERVER_FUNCTION	BIF.	Function	iiiFN21	has	returned	a	working
list	of	employees	to	the	calling	form.

7.		Close	your	form.

Summary
Important	Observations

Functions	are	called	locally	using	the	CALL	command.	The	CALL	can	pass
a	working	list	into	the	called	function.
The	called	function	must	have	a	RCV_LIST()	defined	on	its	FUNCTION
statement
Passed	working	lists	must	be	identically	defined,	in	caller	and	called
function.
The	EXCHANGE	command	enables	an	"exchange	list"	of	fields	to	be
passed	into	the	called	function.
A	called	function	uses	EXCHANGE	to	return	fields	to	the	caller.
Remote	functions	running	on	the	server	are	called	using
CALL_SERVER_FUNCTION
The	CALL_SERVER_FUNCTION	can	handle	passing	and	returning
working	lists	and	the	fields	exchange	list.

Tips	&	Techniques
In	a	real	application,	the	client/server	connection	would	normally	be
established	by	a	"connect"	form	at	the	start	of	the	application.
In	this	example	we	depended	on	the	Visual	LANSA	IDE	to	start	the	connect
to	server.

What	You	Should	Know
How	to	CALL	a	function
How	to	use	the	EXCHANGE	command	to	pass	field	values	into	a	called
function
How	to	use	CALL_SERVER_FUNCTION

Appendix	A.	FRM095
Source	code	for	function	iiiFN21	–	Calculate	Salary	Increase
Function	Options(*DIRECT)	Rcv_List(#employs)
Def_List	Name(#employs)	Fields(#empno	#fullname	#deptment	#salary	#iiinewsal)	Counter(#listcount)	Type(*working)	Entrys(*max)
Group_By	Name(#empdata)	Fields(#empno	#surname	#givename	#deptment	#salary)
Clr_List	Named(#employs)
Select	Fields(#empdata)	From_File(pslmst1)	With_Key(#deptment)	Nbr_Keys(*compute)
#iiinewsal	:=	(#salary	+	(#salary	*	(#iiipercnt	/	100)))
#fullname	:=	#surname	+	',	'	+	#givename
Add_Entry	To_List(#employs)
Endselect
Return
	

Appendix	B.	FRM095
Source	Code	for	Form	iiiCOM17	–	Salary	Review
Note:	component	definitions	(Define_Com	.	.	.)	have	been	omitted	from	this
source	to	save	space.
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Clientheight(463)	Clientwidth(457)	Height(497)	Left(496)	Top(163)	Width(465)
Define_Com	Class(#PRIM_GPBX)	Name(#GPBX_1)	Caption('Request')	Displayposition(1)	Height(86)	Left(6)	Parent(#COM_OWNER)	Tabposition(1)	Tabstop(False)	Top(3)	Width(443)
.	.	.	.	
Def_List	Name(#employs)	Fields(#empno	#fullname	#DEPTMENT	#salary	#iiinewsal)	Counter(#listcount)	Type(*working)	Entrys(*max)
Define	Field(#newtot)	Reffld(#iiitotsal)
Define	Field(#srvcon)	Type(*char)	Length(1)	Default(*sserver_connected)
Define	Field(#sstatus)	Reffld(#io$sts)
Define	Field(#curtot)	Reffld(#iiitotsal)
*
Evtroutine	Handling(#com_owner.Initialize)
Set	Com(#com_owner)	Caption(*component_desc)
Endroutine
Evtroutine	Handling(#SUBMIT.Click)
Begincheck
Filecheck	Field(#DEPTMENT)	Using_File(deptab)	Msgdta('Department	not	found')
Endcheck
Clr_List	Named(#employs)
Exchange	Fields(#DEPTMENT	#IIIPERCNT)
If	(#srvcon	=	N)
Call	Process(*DIRECT)	Function(iiifn21)	Pass_Lst(#employs)
Else
Use	Builtin(call_server_function)	With_Args(*sserver_ssn	'iiifn21'	Y	*Default	#employs)	To_Get(#sstatus)
If	(#sstatus	*NE	OK)
Message	Msgtxt('Call	server	function	failed')
Endif
Endif
Clr_List	Named(#LTVW_1)
#curtot	#newtot	:=	*zeroes
Selectlist	Named(#employs)
#curtot	+=	#salary
#newtot	+=	#iiinewsal
Add_Entry	To_List(#LTVW_1)

Endselect
#IIITOTSAL	:=	(#newtot	-	#curtot)
Endroutine
End_Com
	

FRM105	-	Define	a	Trigger	Function
Exercise	Concept

There	is	a	business	requirement	that	any	salary	increase	which	exceeds	1,000
must	be	approved	by	the	HR	Manager.
A	salary	change	could	be	made	via	more	than	one	application.
The	solution	is	a	file	level	trigger	function,	which	runs	before	update,	if	the
new	salary	exceeds	current	salary	by	more	than	1,000.
The	trigger	function,	resets	salary	to	its	previous	value,	and	sends	a	change
request	email	to	the	HR	Manager.
The	HR	Manager	makes	a	salary	increase	of	more	than	1,000	by	changing
Business	Phone	Number	to	A100	while	changing	salary.	We	are	treating
Business	Phone	as	a	'spare	field'	for	this	exercise.
The	trigger	function	allows	an	increase	of	1,000+	if	Business	Phone	is	A100.
It	also	resets	Business	Phone	to	N/A	in	this	case.
In	a	real	application	the	email	message	could	contain	the	URL	of	a	web
application	(a	WAM)	which	the	HR	Manager	simply	clicks	on	to	run	and
make	the	authorized	change.	To	simplify	this	exercise	you	will	make	the
change	via	a	simple	form.

Objectives:
To	define	a	trigger	for	field	salary	on	the	file	PSLMST
The	trigger	event	will	be	Before	Update
The	trigger	condition	will	be	Salary	greater	than	previous	Salary
The	trigger	function	will	send	an	email	requesting	change	approval,	if	the
increase	in	salary	is	greater	than	1,000	and	the	business	phone	number	is	not
equal	to	A100
On	receiving	the	email	message,	the	salary	increase	will	be	made	by	the	'HR
Manager'	using	a	form.	In	a	real	application	a	WAM	could	be	provided
which	may	be	executed	using	a	URL	in	the	email	message,	to	confirm	the
salary	change.	A	salary	change	greater	than	1,000	is	made	by	making
Business	phone	number	equal	to	A100	to	indicate	that	the	salary	change	is
confirmed.

To	achieve	these	objectives	you	must	complete	the	following:
Step	1.	Create	a	Trigger	Function

Step	2.	Define	a	Salary	Trigger	for	Employee	File	(PSLMST)
Step	3.	Create	an	Employee	Salary	Change	Form
Step	4.	Test	your	Employee	Salary	Trigger
Summary

Step	1.	Create	a	Trigger	Function
In	this	step	you	will	create	a	file	level	trigger	function	for	file	PSLMST	using	a
template.	You	will	complete	the	trigger	function	based	on	the	code	supplied	in
Appendix	A.	FRM105.	Note	that	you	must	change	the	email	recipient	to	an
email	address	to	which	you	have	access.
1.		Create	a	Process	iiiPRO02	–	iii	Trigger	Functions
2.		Create	a	new	function	iiiFN03	–	Employee	Salary	Trigger,	using	template
BBFILTRIG	for	file	PSLMST

3.		Remove	all	CASE,	WHEN	clauses	except	BEFUPD.	Your	code	should	look
like	the	following:
Function	Options(*DIRECT	*NOMESSAGES	*LIGHTUSAGE	*MLOPTIMISE)	Rcv_List(#TRIG_LIST)	Trigger(*FILE	PSLMST)
Def_List	Name(#TRIG_LIST)	Type(*WORKING)	Entrys(2)
*	Assume	a	"good"	return	initially
Change	Field(#TRIG_RETC)	To('OK')
Case	Of_Field(#TRIG_OPER)
*	Handle	a	before	update	event
When	Value_Is('=	BEFUPD')
*	Handle	an	event	not	catered	for
Otherwise
Abort	Msgtxt('File	PSLMST	trigger	function	invalidly	invoked/	used.')
Endcase
*	Return	control	to	the	invoker
Return
	

					Note:	Comment	lines	have	been	removed.
4.		Complete	most	of	the	trigger	logic	by	copying	the	code	provided	in
Appendix	A.	FRM105.	This	should	be	pasted	after	the	Return	command.

5.		Review	the	supplied	code.
Subroutine	SEND_EMAIL	generates	and	send	and	email	message,	using
the	LANSA	Email	BIFs
Subroutine	ADD_TEXT	is	executed	from	SEND_EMAIL	to	create	the
email	body	text
In	a	real	application,	the	URL	inserted	into	the	text	body	would	be	for	web
application	(a	WAM),	which	would	will	enable	the	salary	change	to	be

confirmed	simply	by	clicking	on	the	URL	to	run	it	in	the	browser.	To
simplify	this	exercise,	you	will	create	a	form	to	confirm	the	salary	change.

6.		Change	the	email	recipient	address	to	be	any	email	address	to	which	you
have	access.

7.		Your	email	client	may	also	require	that	the	email	originator	address	is	a
recognized	address.	Change	this	if	necessary.

8.		Complete	the	BEFUPD	logic:
If	the	salary	increase	is	greater	than	1,000	and	business	phone	is	not	equal
A100.	This	value	indicates	the	update	needs	to	be	approved.

Send	an	email	message
Reset	salary	to	previous	value

else
Set	business	phone	to	N/A

Notes:
Trigger	functions	receive	a	trigger	list	(working	list	TRIG_LIST)	containing
0,	1	or	2	entries.	TRIG_LIST	contains	the	file	data	structure.	That	is,	all	file
fields.
For	a	file	update,	TRIG_LIST	entry	1	contains	the	new	record	while	entry	2
contains	the	old	record.
The	TRIG_LIST	is	returned	to	the	file	OAM.	This	enables	the	trigger	to
modify	field	values,	in	a	before-update	trigger.	This	feature	can	be	used	to
calculate	virtual	fields	which	cannot	be	produced	using	the	standard	virtual
field	derivation	logic.

					Your	completed	code	should	look	like	the	following:
Case	Of_Field(#TRIG_OPER)
*	Handle	an	before	update	event
When	Value_Is('=	BEFUPD')
Define	Field(#increase)	Reffld(#salary)
Define	Field(#newsal)	Reffld(#salary)
Get_Entry	Number(1)	From_List(#TRIG_LIST)
#phonebusw	:=	#phonebus
#newsal	:=	#salary
Get_Entry	Number(2)	From_List(#TRIG_LIST)
#increase	:=	#newsal	-	#salary

If	((#increase	*GT	1000)	*And	(#phonebusw	*NE	'A100'))
Execute	Subroutine(send_EMAIL)
*	reset	salary	to	previous	value
Get_Entry	Number(1)	From_List(#TRIG_LIST)
#salary	:=	#newsal	-	#increase
Upd_Entry	In_List(#trig_list)
Endif
*	reset	business	phone	if	contains	A100
Get_Entry	Number(1)	From_List(#TRIG_LIST)
If	(#phonebus	=	'A100')
#phonebus	:=	N/A
Upd_Entry	In_List(#trig_list)
Endif
*	Handle	an	event	not	catered	for
Otherwise
Abort	Msgtxt('File	PSLMST	trigger	function	invalidly	invoked/	used.')
Endcase
*	Return	control	to	the	invoker
Return
	

9.		Compile	your	trigger	function.

Step	2.	Define	a	Salary	Trigger	for	Employee	File	(PSLMST)
In	this	step	you	will	define	a	Before	Update	trigger	for	field	Salary,	with	a
condition:	salary	greater	than	previous	salary.
Note:	You	are	defining	a	file	level	trigger	which	applies	whenever	this	file	is
maintained.	The	field	against	which	the	condition	is	defined	is	not	relevant,
except	that	since	it	applies	to	Salary	it	makes	sense	to	define	the	trigger	on	this
field.
1.		Open	the	file	PSLMST	in	the	editor.
2.		Select	the	Rules	and	Triggers	tab	and	add	a	new	trigger,	Description=Salary
Change	Trigger,	for	Event=Before	Update

3.		Set	Trigger	Function	to	iiiFN03

4.		Add	a	trigger	condition	"Salary	greater	than	previous	Salary"

5.		Save	your	changes.
6.		Recompile	the	file,	creating	the	OAM	only

Step	3.	Create	an	Employee	Salary	Change	Form
In	this	step	you	will	create	a	simple	employee	maintenance	form	for	file
PSLMST	based	on	a	template.
As	noted	earlier,	an	ideal	solution	for	this	application	would	be	a	'Salary
Change'	WAM.	The	email	message	could	be	generated	including	the	employee
number	(EMPNO)	in	the	URL	to	be	passed	into	the	WAM	when	it	runs	from	a
link	in	the	email	message.
1.		Create	a	new	form	iiiCOM18	–	Employee	Maintenance.	The	form	should	be
RDMLX	enabled.

2.		In	the	Source	editor,	delete	the	default	code	and	run	a	template	from	the	
Template	button	on	the	Design	ribbon.	Select	the	template	VL_BASEMNT
and	complete	the	template	based	on	the	following:

Supply	a	word	which	that	describes
WHAT	this	data	entry	program	works
with

Employee

Enter	the	name	of	the	PHYSICAL	file	to
be	used	by	this	template

PSLMST

How	do	you	want	to	display	the	fields?
Select	from	the	types	listed	below

FF

Select	fields EMPNO,	SURNAME,
GIVENAME,	PHONEBUS,
SALARY

	

					Adjust	the	size	of	the	form.	Your	form	should	look	like	the	following:

3.		Compile	your	form.

Step	4.	Test	your	Employee	Salary	Trigger
To	fully	test	your	trigger,	you	require	an	email	client	such	as	Microsoft	Outlook.

In	this	step	you	will	change	an	employee	salary	by	more	than	1,000.	Your
email	client	will	warn	you	that	a	'third	party'	is	sending	an	email.
Access	your	email	account	to	which	the	message	was	sent.	The	Inbox	should
contain	a	message	generated	by	the	trigger	function.
Access	the	employee	record	and	note	that	the	trigger	has	prevented	the
change	being	made.	Salary	has	not	been	changed.
Make	the	required	salary	change	by	changing	the	business	phone	number	to
A100	at	the	same	time	as	changing	the	salary.	This	time	no	email	message
will	be	generated
Access	the	employee	record	again	to	confirm	the	salary	has	changed.	Note
that	the	trigger	has	set	business	phone	number	to	N/A.

1.		Ensure	that	your	email	client	is	started.
2.		Execute	form	iiiCOM18.	Fetch	an	employee	such	as	A0090.	Change	salary
by	more	than	1,000.	The	trigger	function	will	be	called,	which	will	try	to	send
an	email.	Your	email	client	will	display	a	warning	dialog,	which	you	should
allow	to	continue.

3.		Retrieve	the	email,	which	should	look	like	the	following:

					The	URL	include	illustrates	how	a	WAM	could	be	called	to	make	the
required	salary	change,	passing	in	the	required	employee	number	(EMPNO).

4.		Run	form	iiiCOM18	and	make	the	required	salary	change,	changing	business
phone	number	to	A100	at	the	same	time.

					Note	that	this	time	an	email	message	is	not	sent.
5.		Retrieve	this	employee	again,	using	form	iiiCOM18.	Note	that	the	business
phone	number	has	been	changed	by	the	trigger	function	to	N/A.	This	allows	a
further	salary	change	to	be	correctly	handled	by	the	trigger	function.

Summary
Important	Observations

File	triggers	are	a	powerful	technique	for	implementing	common	application
logic.
Like	all	the	other	Repository	techniques,	using	triggers	will	significantly
simplify	future	system	maintenance.
All	LANSA	application	programs	maintaining	the	file	will	run	the	trigger	if
required.
From	V12,	LANSA's	Database	Triggers	enable	non-LANSA	programs	to
implement	validation	rules	and	triggers	on	LANSA-defined	files

Tips	&	Techniques
Triggers	are	most	efficient	if	they	have	an	associated	condition,	meaning
they	are	called	only	if	required.
A	triggers	function	returns	the	trigger	list	to	the	OAM.	This	means	that	'After
Read'	triggers	can	be	used	to	calculate	an	'undefined'	virtual	field.

What	You	Should	Know
As	well	as	running	common	logic,	such	as	this	"send	Email"	example,
triggers	can	calculate	virtual	fields	or	modify	real	fields,	as	used	in	this
trigger	example.	Of	course	these	require	the	trigger	to	be	defined	on	the
correct	event,	such	as	Before	Update.
How	to	define	a	file	level	trigger	and	create	and	implement	a	file	trigger
function.
How	to	use	the	CASE	/	WHEN	/	ENDCASE	and	USE	commands.

Appendix	A.	FRM105
Code	to	complete	trigger	function	iiiFN02
Subroutine	Name(SEND_EMAIL)
*	COMMENT()
Use	Builtin(MAIL_START)
*	COMMENT(Set	Mail	Orginator	Address)
Change	Field(#STD_TEXT)	To('training@lansa.co.uk')
Use	Builtin(MAIL_ADD_ORIGINATOR)	With_Args('Salary	Trigger'	#std_text)	To_Get(#io
£sts)
Execute	Subroutine(checksts)
*	COMMENT(Set	mail	recipient	address)
#std_textl	:=	'SMTP:anyone@acme.com'
Use	Builtin(MAIL_ADD_RECIPIENT)	With_Args(TO	'JM	Ivory'	#std_textl)	To_Get(#io
£sts)
Execute	Subroutine(checksts)
*	COMMENT()
#std_descl	:=	(#surname	+	'('	+	#EMPNO	+	')	Exceeded	allowed	salary	change')
Use	Builtin(MAIL_SET_SUBJECT)	With_Args(#Std_descl)	To_Get(#io£sts)
Execute	Subroutine(checksts)
*	COMMENT()
Execute	Subroutine(ADD_TEXT)
*	COMMENT()
Use	Builtin(MAIL_SEND)	To_Get(#io£sts)
Execute	Subroutine(checksts)
Endroutine
Subroutine	Name(checksts)
If	(#io£sts	*NE	OK)
Message	Msgtxt('Email	service	response	was	:'	+	#io£sts)
Endif
Endroutine
*	COMMENT()
Subroutine	Name(ADD_TEXT)
*	COMMENT()
*	COMMENT()
Use	Builtin(MAIL_ADD_TEXT)	With_Args('HI,')
Use	Builtin(MAIL_ADD_TEXT)	With_Args(*BLANK)
#fullname	:=	#Surname	+	','	+	#givename

#std_instr	:=	(#Fullname	+	'has	received	a	salary	increase	of	'	+	#increase.asstring)
Use	Builtin(MAIL_ADD_TEXT)	With_Args(#std_instr)
#std_instr	:=	'This	exceeds	allowable	limits.	Please	confirm'
Use	Builtin(MAIL_ADD_TEXT)	With_Args(*BLANK)
Use	Builtin(MAIL_ADD_TEXT)	With_Args(*BLANK)
#std_instr	:=	'Click	on	the	following	link	to	confirm	salary	change'
Use	Builtin(MAIL_ADD_TEXT)	With_Args(#std_instr)
Use	Builtin(MAIL_ADD_TEXT)	With_Args(*BLANK)
Use	Builtin(MAIL_ADD_TEXT)	With_Args(*BLANK)
*	COMMENT(URL	for	WAM	to	confirm	salary	change)
*	COMMENT(Change	service	name	using	your	initials)
#std_qsel	:=	('http://localhost/CGI-BIN/lansaweb?
srve=iiiEMPSAL+ml=LANSA:XHTML+part=DEM+lang=ENG+f(EMPNO)='	+	#EMPNO)
Use	Builtin(MAIL_ADD_TEXT)	With_Args(#std_qsel)
Use	Builtin(MAIL_ADD_TEXT)	With_Args(*BLANK)
#std_instr	:=	'Set	Business	Phone	to	A100	to	confirm'
Use	Builtin(MAIL_ADD_TEXT)	With_Args(#std_instr)
Use	Builtin(MAIL_ADD_TEXT)	With_Args(*BLANK)
#std_instr	:=	'Message	sent	automatically	by	Employee	Trigger'
Use	Builtin(MAIL_ADD_TEXT)	With_Args(#std_instr)
Endroutine
	

FRM115	-	Writing	Reports
Objective:

To	show	how	Forms	and	Functions	can	interoperate.
To	use	the	CALL	and	EXCHANGE	commands.
To	introduce	the	SUBMIT	command.
To	explain	how	to	enable	functions	for	Full	RDMLX.
To	introduce	the	LANSA	reporting	templates.
To	highlight	the	commands	used	to	create	a	reporting	function	in	LANSA.
To	create	a	very	simple	report	listing	the	sections	in	a	department	by
executing	a	template.
To	manually	create	an	employee	report	listing	the	salary	details	for	each
department.
To	introduce	the	following	reporting	commands:
DEF_LINE
DEF_HEAD
DEF_FOOT
DEF_BREAK
DEF_REPORT
PRINT
SKIP
SPACE
ENDPRINT
KEEP_xxxxx	(KEEP_AVG,	KEEP_COUNT,	KEEP_MAX,	KEEP_MIN,
KEEP_TOTAL).

To	achieve	these	objectives	you	must	complete	the	following	steps:
Step	1.	Create	a	Simple	List	Style	Report	Using	a	Template
Step	2.	Call	a	Function
Step	3.	Enable	For	Full	RDMLX
Step	4.	Manually	Create	a	Reporting	Function
Step	5.	Add	a	Header	and	Footer

Step	6.	Keep	Statistics	and	Print
Step	7.	Add	a	Grand	Total	Line
Summary

Before	You	Begin
You	may	wish	to	refer	to	the	following	topics:

In	the	Visual	LANSA	Developer	Guide:	Creating	Applications	using
Functions	and	Producing	Reports	using	LANSA.
In	the	Technical	Reference	Guide	RDMLX	Commands	and	RDMLX
Features.

In	order	to	complete	this	exercise,	you	should	have	completed	the	previous
exercises.

its:lansa013.chm::/Lansa/L4wDev05_0010.htm
its:lansa013.chm::/Lansa/L4wDev05_0030.htm
its:lansa015.chm::/Lansa/TGUB3_BEGIN.htm

Step	1.	Create	a	Simple	List	Style	Report	Using	a	Template
In	this	step,	you	will	create	a	simple	list	style	report	on	the	Section	file.	A
simple	function	will	be	created	by	executing	a	LANSA	template.	In	later	steps
in	this	exercise,	you	will	code	a	similar	reporting	function.	Reporting	commands
are	not	supported	from	LANSA	forms.	You	need	to	code	reports	using	LANSA
functions.
1.		Create	a	process	iiiPRO03	Reporting	Process	(where	iii	are	your	course
assigned	initials).	If	you	are	using	iii=DEM,	then	your	component	must	be
named	DEMPRO01.	Do	not	open	the	process	in	the	editor.

2.		Create	a	function	iiiFN02	Section	Report	belonging	to	your	process
iiiPRO03.	Select	the	template	FRPRT01	List	Style	Report	with	Generic
Selection.	The	function	should	NOT	be	Enabled	for	RDMLX	since	it	creates
an	entry	panel,	using	a	REQUEST	command,	which	cannot	be	used	in	an
RDMLX	Enabled	function.

					Open	the	function	in	the	editor	in	order	to	allow	the	template	to	execute.

3.		Answer	the	template	questions	as	shown	in	the	table	below.	Use	the	online
help	if	you	need	additional	information	about	the	answer	to	each	template
question.

TEMPLATE	QUESTION ANSWER

Do	you	want	this	function	to	be	part	of	an
action-bar	style	process?

N

Enter	the	name	of	the	primary	file	to	be	used
by	this	template

SECTAB

Select	related	files Select	DEPTAB

Fields	to	appear	in	header	line Select	DEPTMENT	and
DEPTDESC

Fields	to	appear	in	detail	line Select	SECTION,	SECDESC,
SECADDRR1

Fields	to	trigger	new	page Select	DEPTMENT

Please	specify	a	title	for	this	report Section	Listing	by	Department

Do	you	want	this	report	to	run	in	batch Y

	

4.		The	template	generated	code	should	appear	something	like	the	following:
FUNCTION	OPTIONS(*DEFERWRITE	*DIRECT)
OPEN	USE_OPTION(*ONDEMAND)
GROUP_BY	NAME(#FETCHDATA)	FIELDS(#SECTION	#SECDESC	#SECADDR1	#DEPTMENT	#DEPTDESC)
DEF_HEAD	NAME(#HDR01)	FIELDS(#REP1PAGE	#DATE	#TIME	#FUNCTION	#STD_TITLE	#DEPTMENT
#DEPTDESC)	TRIGGER_BY(*OVERFLOW	#DEPTMENT)	DESIGN(*DOWN)
DEF_LINE	NAME(#DET01)	FIELDS(#SECTION	#SECDESC	#SECADDR1)
CHANGE	FIELD(#STD_TITLE)	TO('''Section	Listing	By	Department''')
*	If	this	program	is	running	online
IF	COND('*JOBMODE	=	I')
*	Request	report	print	criteria
REQUEST	FIELDS(#DEPTMENT	#SECTION)	DESIGN(*DOWN)	IDENTIFY(*DESC)
*	Submit	batch	run	of	this	program
SUBMIT	PROCESS(#PROCESS)	FUNCTION(#FUNCTION)	EXCHANGE(#DEPTMENT	#SECTION)
JOB(#FUNCTION)
*	Else,	if	this	program	is	running	in	batch
ELSE

*	Select	required	SECTAB	details
SELECT	FIELDS(#FETCHDATA)	FROM_FILE(SECTAB)	WITH_KEY(#DEPTMENT	#SECTION)
NBR_KEYS(*COMPUTE)	GENERIC(*YES)
*	Fetch	file	DEPTAB	details
FETCH	FIELDS(#FETCHDATA)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)	KEEP_LAST(1)
*	Print	the	detail	line
PRINT	LINE(#DET01)
ENDSELECT
*	Finish	all	printing	and	end	program
ENDPRINT
ENDIF
	

5.		Compile	the	process	and	function.
6.		Execute	the	process	that	contains	your	reporting	function.

a.		When	you	execute	your	function,	notice	the	Default	Printer	setting.	The
value	*PATH	will	output	the	report	as	a	file	in	the	partition	directory.	For
example	C:\Program	Files\LANSA\X_WIN95\X_LANSA\X_PPP	where
PPP	is	your	partition.	The	file	will	have		the	same	name	as	the	function
with	a	sequentially	numbered	file	extension.	e.g.	demfn02.001.	Refer	to
the	Technical	Reference	Guide	for	more	information	on	this	topic.

b.		When	the	process	menu	appears,	select	the	Section	Report	by	double-
clicking.	Your	function	should	appear	something	like	the	following:

c.		Enter	a	department	of	ADM	to	list	all	Sections	in	the	Administration
department.	(If	you	do	not	enter	a	department	or	section,	a	list	of	all
records	in	the	Section	file	will	be	created.)

d.		Run	the	report	by	clicking	on	the	OK	button.
e.		Open	your	report	file	in	Notepad	to	view	it.	It	should	look	like	the
following:

f.		Execute	your	reporting	function	again.	Enter	a	department	of	ADM	and	a
section	of	01.

g.		Execute	your	reporting	function	again.	Enter	a	department	of	A.	You
should	see	listings	for	both	the	ADM	and	AUD	departments.

Step	2.	Call	a	Function
In	this	step,	you	will	create	a	form	that	will	be	used	to	call	the	reporting
function.	The	purpose	of	this	step	is	to	show	how	forms	and	functions	can	work
together.	In	your	first	version,	the	form	will	simply	call	the	function	directly.
(You	can	also	invoke	the	process	menu.)
1.		Create	a	form	named	iiiCOM19	Submit	Report	(where	iii	are	your	course
assigned	initials).	If	you	are	using	iii=DEM,	then	your	component	must	be
named	DEMCOM19.

2.		Drag	and	drop	a	push	button	onto	the	form.
a.		Set	the	button	Name	to	REPORT.
b.		Set	the	button	Caption	to	Generate	Report.
c.		Create	a	Click	event	routine	for	the	REPORT	button.

3.		Drag	and	drop	the	DEPTMENT	and	SECTION	fields	onto	the	form.
4.		Drag	and	drop	a	status	bar	onto	the	form.
5.		Your	finished	form	might	appear	something	like	the	following.

6.		In	the	REPORT.Click	event	routine,	simply	call	the	iiiFN02	reporting
function.	Review	the	parameters	for	the	CALL	command.

					Your	finished	code	should	appear	as	follows:
EVTROUTINE	HANDLING(#REPORT.Click)
CALL	PROCESS(*DIRECT)	FUNCTION(iiiFN02)
ENDROUTINE
	

7.	Compile	and	execute	the	form.
a.		Press	the	Generate	Report	button	on	the	form.

b.		The	iiiFN02	Section	Report	will	be	executed.	Notice	that	you	cannot	set
focus	back	to	the	calling	form.	Press	the	EXIT	button.	Notice	that	the
Form	is	also	closed	when	the	Function	is	exited.	The	EXIT_USED
parameter	on	the	CALL	command	can	be	used	to	control	how	the	form
responds	when	the	function	ends.

c.		Execute	the	form	again.	Enter	a	Department	Code	of	ADM	and	press	the
Generate	Report	button	on	the	form.	Notice	that	the	DEPTMENT	value	is
not	passed	to	the	function.	(The	function	fields	are	both	blank.)

d.		Enter	a	Department	Code	of	ADM	and	press	OK	to	submit	the	report.
Notice	that	the	form	is	not	closed	once	the	report	is	submitted.	Notice	that
a	message	appears	indicating	that	the	report	was	submitted.

e.		Close	the	form.
8.		In	the	REPORT.Click	event	routine,	use	the	EXCHANGE	command	to	pass
the	values	of	the	DEPTMENT	and	SECTION	fields	to	the	function.

					Your	finished	code	should	appear	as	follows:
EVTROUTINE	HANDLING(#REPORT.Click)
EXCHANGE	FIELDS(#DEPTMENT	#SECTION)
CALL	PROCESS(*DIRECT)	FUNCTION(iiiFN02)
ENDROUTINE
	

9.		Compile	and	execute	the	form.
a.		Enter	a	Department	Code	of	ADM	and	a	Section	Code	of	01.	Press	the
Generate	Report	button.

b.		The	iiiFN02	Section	Report	will	be	executed.	Notice	that	the	function
now	shows	the	values	that	were	passed	from	the	form.

c.		Exit	the	function	without	submitting	the	report.
d.		By	using	the	EXCHANGE	command,	the	DEPTMENT	and	SECTION
fields	are	passed	to	the	reporting	function.	The	reporting	function	no
longer	requires	a	screen	to	request	the	DEPTMENT	and	SECTION	fields.
In	the	next	step,	you	will	modify	the	iiiFN02	function	and	remove	the
REQUEST.

10.	In	the	REPORT.Click	event	routine,	use	the	SUBMIT	command	instead	of
the	CALL	to	invoke	the	report	function	and	pass	the	values	of	the
DEPTMENT	and	SECTION	fields.

					Your	finished	code	should	appear	as	follows:
EVTROUTINE	HANDLING(#REPORT.Click)
SUBMIT	PROCESS(iiiPRO01)	FUNCTION(iiiFN02)	EXCHANGE(#DEPTMENT	#SECTION)
ENDROUTINE
	

11.	Compile	and	execute	the	form.
a.		Enter	a	Department	Code	of	ADM.	Press	the	Generate	Report	button.
b.		Notice	that	the	REQUEST	is	not	displayed	and	the	report	function	is
submitted	to	batch	for	execution.	Also	notice	that	the	form	can	be	used
immediately	after	the	function	is	submitted.	The	form	does	not	have	to
wait	for	the	function	to	return	control	because	the	function	has	been
submitted	and	is	executing	in	batch.

Step	3.	Enable	For	Full	RDMLX
In	this	step,	you	will	modify	the	iiiFN02	Section	Report	so	that	it	does	not
request	the	DEPTMENT	and	SECTION	fields.	You	will	also	enable	the	iiiFN02
Reporting	function	for	Full	RDMLX	so	that	you	can	use	the	full	set	of	RDMLX
objects	and	features.
1.		Make	sure	that	the	iiiFN02	Section	Report	function	is	opened	in	the	editor.
2.		Choose	the	RDMLX	command	in	the	Home	tab	of	the	ribbon	to	set	the
function	as	RDMLX	enabled.

Note:	You	cannot	undo	this	change.	Once	set	as	Full	RDMLX,	the
function	cannot	be	changed	back.

3.		Perform	a	function	check	of	the	code.	An	error	will	appear	because	the
REQUEST	command	cannot	be	used	in	an	RDMLX	enabled	Function.

4.		Delete	the	unneeded	code	in	the	iiFN02	function.
						You	can	delete	all	of	the	highlighted	lines:
FUNCTION	OPTIONS(*DEFERWRITE	*DIRECT)
OPEN	USE_OPTION(*ONDEMAND)

GROUP_BY	NAME(#FETCHDATA)	FIELDS(#SECTION	#SECDESC	#SECADDR1	#DEPTMENT	#DEPTDESC)
DEF_HEAD	NAME(#HDR01)	FIELDS(#REP1PAGE	#DATE	#TIME	#FUNCTION	#STD_TITLE	#DEPTMENT
#DEPTDESC)	TRIGGER_BY(*OVERFLOW	#DEPTMENT)	DESIGN(*DOWN)
DEF_LINE	NAME(#DET01)	FIELDS(#SECTION	#SECDESC	#SECADDR1)
CHANGE	FIELD(#STD_TITLE)	TO('''Section	Listing	By	Department''')
*	If	this	program	is	running	online
IF	COND('*JOBMODE	=	I')
*	Request	report	print	criteria
REQUEST	FIELDS(#DEPTMENT	#SECTION)	DESIGN(*DOWN)	IDENTIFY(*DESC)
*	Submit	batch	run	of	this	program
SUBMIT	PROCESS(#PROCESS)	FUNCTION(#FUNCTION)	EXCHANGE(#DEPTMENT	#SECTION)
JOB(#FUNCTION)
*	Else,	if	this	program	is	running	in	batch
ELSE
*	Select	required	SECTAB	details
SELECT	FIELDS(#FETCHDATA)	FROM_FILE(SECTAB)	WITH_KEY(#DEPTMENT	#SECTION)
NBR_KEYS(*COMPUTE)	GENERIC(*YES)
*	Fetch	file	DEPTAB	details
FETCH	FIELDS(#FETCHDATA)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)	KEEP_LAST(1)
*	Print	the	detail	line
PRINT	LINE(#DET01)
ENDSELECT
*	Finish	all	printing	and	end	program
ENDPRINT
ENDIF
	

					You	may	now	use	assign	statements	and	expressions	in	your	code
FUNCTION	OPTIONS(*DEFERWRITE	*DIRECT)
OPEN	USE_OPTION(*ONDEMAND)
GROUP_BY	NAME(#FETCHDATA)	FIELDS(#SECTION	#SECDESC	#SECADDR1	#DEPTMENT	#DEPTDESC)
DEF_HEAD	NAME(#HDR01)	FIELDS(#REP1PAGE	#DATE	#TIME	#FUNCTION	#STD_TITLE	#DEPTMENT
#DEPTDESC)	TRIGGER_BY(*OVERFLOW	#DEPTMENT)	DESIGN(*DOWN)
DEF_LINE	NAME(#DET01)	FIELDS(#SECTION	#SECDESC	#SECADDR1)
#STD_TITLE	:=	'Section	Listing	By	Department'
*	Select	required	SECTAB	details
SELECT	FIELDS(#FETCHDATA)	FROM_FILE(SECTAB)	WITH_KEY(#DEPTMENT	#SECTION)
NBR_KEYS(*COMPUTE)	GENERIC(*YES)
*	Fetch	file	DEPTAB	details

FETCH	FIELDS(#FETCHDATA)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)	KEEP_LAST(1)
*	Print	the	detail	line
PRINT	LINE(#DET01)
ENDSELECT
*	Finish	all	printing	and	end	program
ENDPRINT
	

					Notice	that	the	STD_TITLE	has	been	changed	to	use	the	Full	RDMLX
syntax	and	can	now	use	an	assignment		command.

5.		Compile	the	iiiFN02	function.
6.		Close	the	function	in	the	editor.
7.		Execute	your	iiiCOM19	form	and	generate	a	test	report.

Step	4.	Manually	Create	a	Reporting	Function
In	this	step,	you	will	manually	create	the	report	in	order	to	learn	how	to	use	the
reporting	commands.
The	report	will	simply	list	all	employees	in	a	department	and	total	the	salary
information.
The	finished	report	will	appear	something	like	the	following:

					A	new	page	will	be	printed	for	each	Department.	A	count	of	the	employee
and	the	total	of	the	SALARY	field	will	be	printed	for	each	department.	A
grand	total	of	all	departments	will	be	printed	on	the	last	page	of	the	report.
The	report	will	be	80	characters	wide	and	66	lines	long.

					Before	you	start,	it	is	recommended	that	you	review	Producing	Reports	in
the	Developer	Guide.

1.		You	will	build	the	reporting	function	in	small	steps.	In	this	step,	you	will
start	coding	a	reporting	function:

its:lansa013.chm::/Lansa/L4wDev05_0030.htm

Define	the	report	to	be	66	lines	long	and	80	characters	wide

Define	a	report	line	(#DET01)	containing	SECTION,	EMPNO,	SALARY	and
STARTDTE

					Select	all	records	which	generically	match	the	Department	Code	and	Section
Code	based	on	the	number	of	keys	entered

Print	the	report	line	(#DET01)

End	the	select	loop

End	the	print.

	

2.		Create	a	new	function	iiiFN04	Manual	Report	belonging	to	process
iiiPRO01.	Create	the	function	without	using	a	template.	It	should	be	an
RDMLX	enabled	function.

3.		Try	to	add	the	necessary	code	based	on	the	function	description	above.
4.		Your	code	should	appear	as	follows:
FUNCTION	OPTIONS(*DIRECT)
DEF_REPORT	FORMSIZE(66	80)
GROUP_BY	NAME(#REPDATA)	FIELDS(#DEPTMENT	#DEPTDESC	#SECTION	#EMPNO	#SALARY
#STARTDTE)
DEF_LINE	NAME(#DET01)	FIELDS(#SECTION	#EMPNO	#SALARY	#STARTDTE)
SELECT	FIELDS(#REPDATA)	FROM_FILE(PSLMST1)	WITH_KEY(#DEPTMENT	#SECTION)
NBR_KEYS(*COMPUTE)	GENERIC(*YES)
PRINT	LINE(#DET01)
ENDSELECT
ENDPRINT
	

5.		Save	the	code	and	then	full	function	check	or	build	the	RDML.	Make	any
corrections,	if	required,	and	then	resave	and	check	the	function.

6.		Compile	the	process	and	function.	Be	sure	that	the	function	is	debug	enabled.
7.		Change	your	Submit	Report	form	iiiDEM19	to	submit	function	iiiFN04	and
compile	it.

8.		Submit	your	new	report	function	using	form	iiiCOM19.
a.		Enter	a	department	of	ADM	to	list	all	Sections	in	the	Administration
department.

b.		Submit	the	report	function	again.	Enter	a	department	of	A	and	leave	the
section	blank.	Notice	that	there	is	no	break	in	the	report	pages	when	the
department	code	changes.	You	will	correct	this	in	the	next	step.

Step	5.	Add	a	Header	and	Footer
In	this	step,	you	modify	the	function	to	include	a	header	and	footer.	You	will
need	to	make	the	following	changes:

Add	a	header	to	the	report.	Include	the	report	page	number	(REP1PAGE),
function	name	(FUNCTION),	a	title	(STD_TITLE),	DEPTMENT	and	the
DEPTDESC	fields.	List	the	fields	down	the	page.	Specify	that	a	new	page
should	be	printed	whenever	a	page	is	full	(each	new	page	always	has	a
header)	and	when	the	department	code	changes.
Change	the	STD_TITLE	field	to	be	Employee	Report.
Add	a	footer	to	the	report	which	lists	the	date	(DATE),	time	(TIME),	and
report	page	number	(REP1PAGE)	across	the	bottom	of	the	page.
In	the	SELECT	loop,	FETCH	the	DEPTDESC	field	from	DEPTAB	using	the
department	code.

					Remember	to	include	KEEP_LAST	logic.
1.		Review	the	repository	field	definitions	for	the	REP1PAGE,	DATE,	TIME
and	FUNCTION	fields.

2.		Try	to	make	the	necessary	code	changes	based	on	the	function	description
above.

3.		Your	code	should	appear	as	follows:
FUNCTION	OPTIONS(*DIRECT)
DEF_REPORT	FORMSIZE(66	80)
GROUP_BY	NAME(#REPDATA)	FIELDS(#DEPTMENT	#DEPTDESC	#SECTION	#EMPNO	#SALARY
#STARTDTE)
DEF_HEAD	NAME(#HDR01)	FIELDS(#REP1PAGE	#FUNCTION	#STD_TITLE	#DEPTMENT	#DEPTDESC)
TRIGGER_BY(*OVERFLOW	#DEPTMENT)	DESIGN(*DOWN)
DEF_FOOT	NAME(#FTR01)	FIELDS(#DATE	#TIME	#REP1PAGE)
DEF_LINE	NAME(#DET01)	FIELDS(#SECTION	#EMPNO	#SALARY	#STARTDTE)
#STD_TITLE	:=	'Employee	Report'
SELECT	FIELDS(#REPDATA)	FROM_FILE(PSLMST1)	WITH_KEY(#DEPTMENT	#SECTION)
NBR_KEYS(*COMPUTE)	GENERIC(*YES)
FETCH	FIELDS(#DEPTDESC)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)	KEEP_LAST(1)
PRINT	LINE(#DET01)
ENDSELECT
ENDPRINT
	

4.		Save	the	code	and	then	full	function	check	or	build	the	RDML
Make	any	corrections	as	required.

					Exit	the	editor.
5.		Compile	the	function.	Be	sure	that	the	function	is	debug	enabled.
6.		Submit	your	new	function	using	form	iiiDEM19.

a.		Enter	a	department	of	A	and	leave	the	section	blank.
b.		Check	that	the	report	headers	and	footers	properly	appear.

Step	6.	Keep	Statistics	and	Print
In	this	step,	you	will	keep	some	statistics	based	on	each	department	and	define
some	report	breaks.

Define	a	working	field	for	the	report	called	TOTAL.	The	field	should	be
P(14,2)	with	an	edit	code	of	A.	Enter	a	label,	column	heading	and
description	of	Total	Amount.
Define	a	working	field	for	the	report	called	EMPCOUNT.	The	field	should
be	P(3,0)	with	an	edit	code	of	A.	Enter	a	label,	column	heading	and
description	of	Employee	Count.
Define	a	report	break	which	prints	the	EMPCOUNT	and	TOTAL	as	a
trailing	break	when	the	DEPTMENT	code	changes.
Keep	track	of	the	total	of	the	salary	amounts	for	each	department	in	the
TOTAL	field.
Keep	a	count	of	the	number	of	employees	in	each	department	in	the
EMPCOUNT	field.

1.		Try	to	make	the	necessary	code	changes	based	on	the	function	description
above.

2.		Your	code	should	appear	as	follows:
FUNCTION	OPTIONS(*DIRECT)
DEFINE	FIELD(#TOTAL)	TYPE(*DEC)	LENGTH(14)	DECIMALS(2)	LABEL('Total	Amount')
DESC('Total	Amount')	COLHDG('Total	Amount')	EDIT_CODE(A)
DEFINE	FIELD(#EMPCOUNT)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	LABEL('Employee	Count')
DESC('Employee	Count')	COLHDG('Employee	Count')	EDIT_CODE(A)
DEF_REPORT	FORMSIZE(66	80)
GROUP_BY	NAME(#REPDATA)	FIELDS(#DEPTMENT	#DEPTDESC	#SECTION	#EMPNO	#SALARY
#STARTDTE)
DEF_HEAD	NAME(#HDR01)	FIELDS(#REP1PAGE	#FUNCTION	#STD_TITLE	#DEPTMENT	#DEPTDESC)
TRIGGER_BY(*OVERFLOW	#DEPTMENT)	DESIGN(*DOWN)
DEF_FOOT	NAME(#FTR01)	FIELDS(#DATE	#TIME	#REP1PAGE)
DEF_LINE	NAME(#DET01)	FIELDS(#SECTION	#EMPNO	#SALARY	#STARTDTE)
DEF_BREAK	NAME(#BRK01)	FIELDS(#EMPCOUNT	#TOTAL)	TRIGGER_BY(#DEPTMENT)
#STD_TITLE	:=	'Employee	Report'
SELECT	FIELDS(#REPDATA)	FROM_FILE(PSLMST1)	WITH_KEY(#DEPTMENT	#SECTION)
NBR_KEYS(*COMPUTE)	GENERIC(*YES)
KEEP_TOTAL	OF_FIELD(#SALARY)	IN_FIELD(#TOTAL)	BY_FIELD(#DEPTMENT)

KEEP_COUNT	OF_FIELD(#EMPNO)	IN_FIELD(#EMPCOUNT)	BY_FIELD(#DEPTMENT)
FETCH	FIELDS(#DEPTDESC)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)	KEEP_LAST(1)
PRINT	LINE(#DET01)
ENDSELECT
ENDPRINT
	

3.		Save	the	code	and	then	full	function	check	or	build	the	RDML.	Make	any
corrections	as	required.

4.		Exit	the	editor.
5.		Compile	the	function.
6.		Submit	your	new	function	using	form	iiiCOM19.

a.		Enter	a	department	of	A	and	leave	the	section	blank.
b.		Check	that	the	break	totals	are	properly	printed	and	check	that	they	are
correct.	Each	department	should	have	its	own	totals	and	employee	count.

Step	7.	Add	a	Grand	Total	Line
1.		In	this	step,	you	will	add	the	grand	total	of	all	departments	displayed	in	the
report	and	you	will	add	a	blank	line	between	printed	lines:
a.		Define	a	working	field	for	the	report	called	GRANDTOT.	The	field
should	be	P(17,2)	with	an	edit	code	of	A.	Enter	a	label,	column	heading
and	description	of	Grand	Total.

b.		Define	another	report	break	which	prints	the	GRANDTOT	field	at	the	end
of	the	report.

c.		Add	another	KEEP_TOTAL	command	to	accumulate	SALARY	into	the
GRANDTOT	field.

d.		Add	a	blank	line	(SPACE)	between	each	printed	line.
2.		Try	to	make	the	necessary	code	changes	based	on	the	function	description
above.

					Your	code	should	appear	as	follows:
FUNCTION	OPTIONS(*DIRECT)
DEFINE	FIELD(#TOTAL)	TYPE(*DEC)	LENGTH(11)	DECIMALS(2)	LABEL('Total	Amount')
DESC('Total	Amount')	COLHDG('Total	Amount')	EDIT_CODE(A)
DEFINE	FIELD(#EMPCOUNT)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	LABEL('Employee	Count')
DESC('Employee	Count')	COLHDG('Employee	Count')	EDIT_CODE(A)
DEFINE	FIELD(#GRANDTOT)	TYPE(*DEC)	LENGTH(17)	DECIMALS(2)	LABEL('Grand	Total')
DESC('Grand	Total')	COLHDG('Grand	Total')	EDIT_CODE(A)
DEF_REPORT	FORMSIZE(66	80)
GROUP_BY	NAME(#REPDATA)	FIELDS(#DEPTMENT	#DEPTDESC	#SECTION	#EMPNO	#SALARY
#STARTDTE)
DEF_HEAD	NAME(#HDR01)	FIELDS(#REP1PAGE	#FUNCTION	#STD_TITLE	#DEPTMENT	#DEPTDESC)
TRIGGER_BY(*OVERFLOW	#DEPTMENT)	DESIGN(*DOWN)
DEF_FOOT	NAME(#FTR01)	FIELDS(#DATE	#TIME	#REP1PAGE)
DEF_LINE	NAME(#DET01)	FIELDS(#SECTION	#EMPNO	#SALARY	#STARTDTE)
DEF_BREAK	NAME(#BRK01)	FIELDS(#EMPCOUNT	#TOTAL)	TRIGGER_BY(#DEPTMENT)
DEF_BREAK	NAME(#BRK02)	FIELDS(#GRANDTOT)
#STD_TITLE	:=	'Employee	Report'
SELECT	FIELDS(#REPDATA)	FROM_FILE(PSLMST1)	WITH_KEY(#DEPTMENT	#SECTION)
NBR_KEYS(*COMPUTE)	GENERIC(*YES)
KEEP_TOTAL	OF_FIELD(#SALARY)	IN_FIELD(#GRANDTOT)
KEEP_TOTAL	OF_FIELD(#SALARY)	IN_FIELD(#TOTAL)	BY_FIELD(#DEPTMENT)

KEEP_COUNT	OF_FIELD(#EMPNO)	IN_FIELD(#EMPCOUNT)	BY_FIELD(#DEPTMENT)
FETCH	FIELDS(#DEPTDESC)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT)	KEEP_LAST(1)
PRINT	LINE(#DET01)
SPACE
ENDSELECT
ENDPRINT
	

3.		Save	the	code	and	then	full	function	check	or	build	the	RDML.	Make	any
corrections	as	required.

4.		Compile	the	function.
5.		Submit	your	new	function.

a.		Enter	a	department	of	A	and	leave	the	section	blank.
b.		Check	that	the	report	grand	total	is	correct	and	check	that	it	appears	in	the
proper	location.

6.		Your	report	should	look	like	the	following:

7.		OPTIONAL:	Paint	the	Report
					If	you	wish,	you	may	paint	the	report	using	the	Report	Painter.	The	Report
Painter	is	very	similar	to	the	LANSA	Screen	Painter	and	is	accessed	from	the
function	editor.

					The	report	painter	displays	all	screen	elements,	and	enables	one	of	these	to
be	edited	at	one	time.	For	example	report	header	(HDR01)	or	report	detail
line	(DET01).	Changes	made	in	the	painter	will	be	reflected	in	the	RDML
source.

Summary
Important	Observations

The	CALL	and	SUBMIT	commands	will	execute	a	function.	When	a
function	is	called,	the	calling	program	is	not	accessible	until	after	the	called
program	ends.
EXCHANGE	can	only	be	used	to	pass	information	to	a	function.	It	can	be
passed	from	a	form	or	from	a	function	to	another	function.
Once	a	function	has	been	enabled	for	Full	RDMLX,	it	cannot	be	changed
back	to	an	RDML	Function.
Reporting	commands	can	only	be	used	in	LANSA	Functions.	They	cannot
be	used	in	Forms.
LANSA	provides	a	very	simple	set	of	reporting	commands	that	can	be
combined	to	create	very	powerful	reports.

Tips	&	Techniques
In	order	for	the	report	to	print,	LPT1	needs	to	be	mapped	to	a	particular
printer	for	all	NT-based	systems.	Therefore	the	following	command	needs	to
be	issued	from	the	command	line:

					NET	USE	LPT1:	<PATH>\<printer	name>
					For	example:

					NET	USE	LPT1:	\\NT1\HP

What	You	Should	Know
How	to	CALL	a	function	from	a	form.
How	to	SUBMIT	a	function	to	batch.
How	to	EXCHANGE	information	between	LANSA	programs.
How	to	enable	a	function	for	RDMLX.
What	some	of	the	differences	are	between	RDML	and	RDMLX	functions.
You	should	be	familiar	with	the	following	reporting	commands:
DEF_LINE
DEF_HEAD
DEF_FOOT
DEF_BREAK

DEF_REPORT
PRINT
SKIP
SPACE
ENDPRINT
KEEP_xxxxx	(KEEP_AVG,	KEEP_COUNT,	KEEP_MAX,	KEEP_MIN,
KEEP_TOTAL)

FRM125	-	Check	Out	/	In	to	IBM	i
Objectives:

To	introduce	the	concepts	of	Master	and	Slave	development	in	a	distributed
development	environment.
To	learn	how	to	refresh	object	lists	from	the	LANSA	for	iSeries	Master
Repository.
To	learn	how	to	check	out	objects	from	the	LANSA	for	iSeries	Master
Repository.
To	learn	how	to	check	in	objects	to	the	LANSA	for	iSeries	Master
Repository.
To	learn	how	to	delete	objects	locally	and	in	the	LANSA	for	iSeries	Master
Repository.

In	order	to	complete	this	exercise,	you	must	meet	the	following	requirements:
You	must	have	task	tracking	properly	configured	on	LANSA	for	iSeries	in
order	to	work	with	the	Visual	LANSA	environment.
You	must	have	a	valid	user	profile	to	access	the	IBM	i	and	the	LANSA	for
iSeries	development	environment.
You	must	have	a	valid	task	ID	to	use	for	development	on	LANSA	for
iSeries.
You	must	have	a	properly	installed	and	configured	Visual	Slave	System	with
a	working	connection	to	the	LANSA	for	iSeries	Master	System.
You	must	be	a	licensed	Visual	LANSA	developer	and	you	must	have	the
proper	LANSA	for	iSeries	licenses	installed	that	allow	both	IBM	i	and
Visual	LANSA	development.	You	cannot	complete	this	exercise	if	you	are
using	a	trial	(unlicensed)	version	of	Visual	LANSA.

Note:	This	exercise	cannot	be	completed	if	you	are	using	an	Independent	Visual
LANSA	System.
To	achieve	these	objectives	you	must	complete	the	following:
Step	1.	Create	a	LANSA	for	iSeries	Object
Step	2.	Refresh	Objects	in	Visual	LANSA
Step	3.	Check	Out	Object
Step	4.	Check	In	Changes
Step	5.	Delete	from	Repository

Summary

Before	You	Begin
In	order	to	complete	this	exercise,	it	is	recommended	that	you	complete	the
preceding	exercises	or	are	at	least	familiar	with	the	Visual	LANSA	user
interface.
You	may	wish	to	review	the	following	topics:
In	the	User	Guide,	review	the	Check	In	Tab	and	Check	Out	Tab	and	the
Propagation	Tab.
In	the	Administrator	Guide,	review	Host	Monitor.

its:lansa012.chm::/LANSA/l4wusr01_1815.HTM
its:lansa012.chm::/LANSA/l4wusr01_1820.HTM
its:lansa012.chm::/LANSA/l4wusr01_1825.HTM
its:lansa011.chm::/Lansa/l4wADM03_0135.htm

Step	1.	Create	a	LANSA	for	iSeries	Object
In	this	step,	you	will	logon	to	LANSA	for	iSeries	using	any	partition,	where	you
will	create	a	new	system	variable	that	you	will	amend	using	Visual	LANSA.	A
System	Variable	may	be	created	using	LANSA	for	iSeries,	in	either	an	RDML
or	RDMLX	enabled	partition
1.		Logon	to	LANSA	for	iSeries	using	your	IBM	i	developer	profile	and	task	ID.
2.		From	the	LANSA	Main	System	Menu,	select	the	option	to	Work	with	System
Variables.	The	list	displayed	is	NOT	partition	dependent.	It	is	a	system-level
list;	that	is,	it	will	be	the	same	in	each	partition.

3.		Press	F6	to	create	a	new	system	variable	as	follows:

System	Variable	Name: *AUTOALP09iiiNUM	where	iii=your	initials

Description: Next	Available	Number

Method	of	Derivation: DYNAMIC

Data	Type: ALPHA

Length: 7

Program	Name: M@SYSNUM

Program	Type: 3GL

	

					Use	the	online	help	text	search	facilities	(extended	help)	and	review	System
Variables.	Scroll	to	the	end	of	the	help	to	review	the	information	on	the
*AUTOALPnnxxxxxxxxx	system	variable.	This	is	a	special	'data	area'
system	variable	layout	which	is	used	in	conjunction	with	a	LANSA	shipped
evaluation	program	M@SYSNUM.	The	system	variable	retrieves	a	number
nn	(in	this	case	it	should	be	9	but	you	have	entered	7	-	it	will	be	changed	to	9
using	Visual	LANSA)	long	from	data	area	xxxxxxxxxx,	increments	it,
updates	the	data	area	and	returns	it	as	an	alphanumeric	value.

4.		Press	Enter	to	save	the	system	variable	definition.
5.		Press	F12	to	exit	the	Add	System	Variable	Definition	panel.
					Note:	The	data	area	and	the	value	of	the	system	variable	will	automatically

be	defined	when	the	system	variable	is	first	accessed.
6.		Exit	the	LANSA	for	iSeries	System.

Step	2.	Refresh	Objects	in	Visual	LANSA
In	this	step,	you	will	use	Refresh	repository	objects	from	the	master	system.	In
Step	1.	Create	a	LANSA	for	iSeries	Object,	you	created	a	new	System	Variable
that	exists	on	the	IBM	i	but	is	not	yet	known	in	Visual	LANSA.
Note:	If	you	are	using	Propagation,	then	your	changes	will	be	automatically
synchronized	in	your	Visual	LANSA	System.
1.	Start	Visual	LANSA	and	logon.
					You	must	logon	using	the	same	developer	profile	and	task	ID	as	used	on
LANSA	for	iSeries	in	order	to	ensure	that	you	have	authority	to	access	the
system	variable	created	on	the	IBM	i.

2.		Using	the	Repository	Brower,	display	a	list	of	the	current	system	variables.
Your	list	will	depend	on	how	you	have	arranged	the	items	on	your	Repository
tab	and	may	appear	something	like	the	following	(shown	undocked	with
Alphabetic	listing	off):

					Your	*AUTOALP09iiiNUM	system	variable	will	not	be	shown	in	this	list.
3.		Select	the	Maste	Objects	command	in	the	ribbon.

					The	Refresh	Master	Object	List	dialog	is	displayed:

4.		Select	the	System	Variables	to	be	refreshed.
5.		Press	the	Refresh	button.
6.		The	Check	Out	tab	at	the	bottom	of	the	editor	will	be	displayed.	Notice	the
status	messages.

					Wait	for	the	refresh	to	be	completed.	The	time	required	to	complete	the
refresh	will	depend	upon	the	number	of	system	variables	that	are	defined	in
the	LANSA	for	iSeries	Master	System.	You	can	speed	up	the	repository
refresh	function	by	pressing	F5.	By	default	the	repository	refresh	process	runs
more	slowly	as	a	background	task,	so	you	can	continue	development.

7.		Display	the	list	of	system	variables.	The	*AUTOALP09iiiNUM	should	now
appear.

	

					Note	that	the	*AUTOALP09iiiNUM	system	variable	has	an	icon	in	its
Master	Repository	Status	column.	Its	Local	Repository	Status	column	is
blank.	This	tells	you	that	the	definition	of	this	system	variable	is	currently	not
held	in	your	Visual	LANSA	local	repository.	Objects	which	are	not	checked
out	to	Visual	LANSA	are	also	shown	in	gray	font.

					Note:	If	you	are	using	Repository	Synchronization,	then	changes	made	in	the
Repository	on	the	IBM	i	or	by	any	Visual	LANSA	developer	in	your	PC
Group	will	be	automatically	synchronized	by	checking	out	a	read-only	copy

of	new	and	changed	objects.	Such	changes	will	be	reported	in	your
Propagation	tab.	Refer	to	the	Visual	LANSA	Administrator's	Guide	for	further
details	of	this	feature.

Step	3.	Check	Out	Object
In	this	step,	you	will	check	out	the	system	variable	from	LANSA	for	iSeries	so
that	you	can	update	the	definition	from	Visual	LANSA.
1.		Using	the	Repository	tab,	select	the	*AUTOALP09iiiNUM	system	variable
and	right	click	to	display	the	context		menu.

2.		Select	the	Check	out	option.
					The	Check	Out	Options	dialog	will	be	displayed.

3.		Select	the	*AUTOALP09iiiNUM	system	variable.	Notice	that	you	can	make
the	check	out	Read	Only	using	the	option	buttons.

4.		Press	the	OK		button.
5.		Display	the	Check	Out	tab	at	the	bottom	of	the	editor.	Notice	the	status
messages	that	are	displayed.

6.		Once	the	check	out	has	been	completed,	use	the	Repository	tab	to	open	the
*AUTOALP09iiiNUM	system	variable	in	the	editor.

7.		Change	the	system	variable	length	from	7	to	9.
8.		Save	and	close	the	system	variable.

Step	4.	Check	In	Changes
In	this	step,	you	will	check	in	the	changed	system	variable	back	to	LANSA	for
iSeries.	Once	you	have	completed	this	step,	you	will	delete	the	system	variable
from	the	IBM	i.
1.		Using	the	Repository	tab,	select	the	*AUTOALP09iiiNUM	system	variable
and	right	click	to	display	the	context	menu.

2.		Select	the	Check	in	option.
					The	Check	in	Options	dialog	will	be	displayed.

	

					No	check	in	options	are	required	for	system	variables.	If	you	were	checking
in	an	object,	such	as	a	form	or	function	that	can	be	compiled,	a	set	of	compile
options	would	be	displayed.

					Note:	If	your	task	uses	a	"Release	Locks"	setting	when	checking	in	to	the
server,	you	will	need	to	select	the	Keep	Locks	checkbox	on	this	dialog,	so	that
you	can	delete	it	from	the	repository	in	a	later	step.

3.		Press	the	OK	button	to	check	in	the	changed	system	variable.

4.		Display	the	Check	In	tab	at	the	bottom	of	the	editor.	Notice	the	status
messages	that	are	displayed.

5.		Once	the	check	in	has	been	completed,	you	may	logon	to	LANSA	for	iSeries
and	view	the	*AUTOALP09iiiNUM	system	variable.	The	new	definition
should	be	displayed.

Step	5.	Delete	from	Repository
In	this	step,	you	will	delete	the	*AUTOALP09iiiNUM	system	variable	from	the
repository	and	specify	that	the	system	variable	should	also	be	deleted	from	the
host.
1.		Locate	the	*AUTOALP09iiiNUM	system	variable	in	the	Repository	tab	and
right	click	to	display	the	context	menu.	Select	the	Cross	References	option	to
check	if	there	are	any	dependencies	before	you	delete	the	object.

2.		As	there	are	no	dependencies	(in	this	case)	close	the	dialog	and	select	the
*AUTOALP09iiiNUM	system	variable	in	the	Repository	tab	and	press	the	

	Delete	icon	in	the	Repository	tab's	toolbar.
3.		The	Confirm	delete	component	dialog	will	be	displayed.	Select	the	Delete
from	host	option	so	that	the	system	variable	is	also	deleted	from	the	LANSA
for	iSeries	Master	Repository.

4.		Display	the	Propagation	tab	at	the	bottom	of	the	editor.

					Notice	the	status	messages	are	displayed.

Things	to	Note
You	have	just	completed	a	simple	exercise	which	demonstrates:
Refresh	repository	object	from	the	Master
Check	Out
Check	In
Delete	Object	from	Repository.

Refer	to	Change	Management	in	the	Visual	LANSA	Administration	Guide	for
more	information	on	these	topics:

Task	Tracking	Set	up
Using	Task	Tracking
Repository	Synchronization
What	are	Repository	Groups?
What	are	Work	Groups?

its:lansa011.chm::/Lansa/l4wADM04_0065.htm
its:lansa011.chm::/Lansa/l4wADM04_0020.htm
its:lansa011.chm::/Lansa/l4wADM04_0025.htm
its:lansa011.chm::/Lansa/l4wADM04_0085.htm
its:lansa011.chm::/Lansa/l4wADM04_0090.htm

Summary
Important	Observations

The	Host	Monitor	will	automatically	be	started	when	you	perform	a	Check
In	or	Check	Out	operation.
When	you	Check	Out	objects,	you	can	specify	if	the	objects	will	be	checked
out	as	read	only	or	for	update.	If	checked	out	for	update,	you	must	have
authority	to	the	object.

Tips	&	Techniques
Review	the	use	of	Repository	Synchronization	(Propagation)	is	an	efficient
means	of	keeping	your	Visual	LANSA	systems	current.

What	You	Should	Know
How	to	refresh	object	lists	from	the	LANSA	for	iSeries	Master	Repository.
How	to	check	out	objects	from	the	LANSA	for	iSeries	Master	Repository.
How	to	check	in	objects	to	the	LANSA	for	iSeries	Master	Repository.
How	to	delete	objects	locally	and	in	the	LANSA	for	iSeries	Master
Repository.

Visual	LANSA	Framework	(VLF)	Introduction
These	exercises	are	to	introduce	you	to	the	VISUAL	LANSA	Framework.	The
first	two	exercises	are	common	to	all	Visual	LANSA	Framework	users,	and	with
the	final	three	exercises,	you	will	branch	into	either	Web	or	Windows
development.
With	the	WAM	and	Windows	specific	development	you	will	start	implementing
real	filters	and	command	handlers,	so	you	need	to	know	how	the	data	you	will
be	using	is	stored.
The	WAM	and	Windows	specific	exercises	are	based	on	the	PSLMST	Personnel
demonstration	file.	Locate	this	file	in	the	repository	and	view	its	properties.	You
can	also	see	the	layout	of	these	files	in	the	Appendix	of	the	course	notes.
An	example	of	the	Personnel	System	File:

Common	Exercises
When	prototyping	your	application,	(as	in	exercise	LVF060)	you	decide	on	your
business	objects	based	on	an	analysis	of	the	tasks	of	the	users	of	your
application.	At	that	point	the	database	structure	and	the	required	output	is	not
important.
Following	the	first	two	exercises:

LVF040	-	Execute	Framework	Application	and
LVF060	-	Create	a	Prototype

you	will	branch	to	follow	either	the	Web	path	using	LANSA's	Web	Application
Modules	(commonly	called	WAMs)	for	application	development	or	the
Windows	path.
With	the	WAM	and	Windows	specific	development	you	will	start	implementing
real	filters	and	command	handlers,	so	you	need	to	know	how	the	data	you	will
be	using	is	stored.
The	WAM	and	Windows	specific	exercises	are	based	on	the	PSLMST	Personnel
demonstration	file.	Locate	this	file	in	the	repository	and	view	its	properties.	You
can	also	see	the	layout	of	these	files	in	the	Appendix.

LVF040	-	Execute	Framework	Application
Objectives

To	execute	a	finished	application	in	the	Framework.
To	become	familiar	with	the	look	and	feel	of	Framework-based	applications.
To	introduce	some	key	concepts	used	by	the	Visual	LANSA	Framework
when	building	applications.

To	achieve	this	objective,	you	will	complete	the	following:
Step	1.	Execute	the	Visual	LANSA	Framework
Step	2.	Execute	an	Application
Step	3.	Using	Filters	to	Find	an	Employee
Step	4.	Using	Commands	and	Command	Handlers
Summary

Before	You	Begin
In	order	to	complete	this	exercise,	you	must	have	completed	the	following:

Check	that	you	have	met	the	prerequisites	for	the	Visual	LANSA
Framework.

Step	1.	Execute	the	Visual	LANSA	Framework
1.		Start	Visual	LANSA.
					Log	on	to	the	DEM	partition	as	follows:
					User	ID:	PCXUSER
					Password:	PCXUSER
					Task	ID:	PCXTASK
					Partition:	DEM
2.		On	the	Tools	ribbon,	from	the	VL	Framework	menu	,	select	the	User	option.

3.		In	the	Select	Framework	File	dialog	select	the	option	Open	Latest
Demonstration	Version.

The	Framework	uses	XML	files	to	store	the	definition	of	your	systems.	The	file

vf_sy001_system_lastshipped.xml	always	contains	the	latest	demonstration
system.
Note	that	if	you	only	have	one	Framework	file,	this	dialog	is	not	displayed.
The	Framework	window	will	appear.

Step	2.	Execute	an	Application
In	this	step,	you	will	execute	a	shipped	sample	application.	You	will	be
introduced	to	Business	Objects,	Filters,	Instance	Lists,	Commands	and
Command	Handlers.
1.		The	navigation	panel	on	the	left	hand	side	displays	applications	in	a	tree
view.

					As	you	click	the	different	applications	to	expand	them,	you	can	see	the
business	objects	associated	with	them.

2.		Select	the	Programming	Techniques	application.	Then	select	the	Basic
application	view.

3.		Select	The	Essential	business	object.
					Two	new	panels	will	appear.	The	left	panel	is	the	filter	which	is	used	to
search	through	the	employee	data.

					The	right	panel	will	show	an	instance	list	with	the	results	of	an	employee
search.

Step	3.	Using	Filters	to	Find	an	Employee
In	this	step,	you	will	use	a	Filter	to	find	employees.	Filters	allow	you	to	search
and	sort	the	items	in	a	business	object.	After	an	end-user	has	selected	the
employee	business	object,	they	typically	want	to	locate	a	specific	employee	or
list	of	employees.
1.		Enter	the	letter	B	in	the	Employee	Surname	field	and	click	the	Search	button.
The	instance	list	displays	all	employees	whose	surname	starts	with	B.

Step	4.	Using	Commands	and	Command	Handlers
In	this	step,	you	will	select	an	employee	and	review	the	Commands	or	actions
which	can	be	performed	for	the	employee.
1.		In	the	instance	list,	select	the	employee	Veronica	Brown.	When	an	employee
has	been	selected,	the	Basic	details	of	the	employee	will	appear	in	the	bottom
panel.

					By	default,	the	Details	command	has	been	executed.	The	Details	command
handler	displays	the	employee	details.

2.		Select	the	File	menu	and	choose	the	Exit	option	to	close	the	Visual	LANSA
Framework	application.

Summary
Important	Observations

The	Visual	LANSA	Framework	can	be	executed	as	a	Visual	LANSA	form.
Refer	to	VLF005	-	Validating	the	Prototype.
The	Visual	LANSA	Framework	provides	a	consistent	application	interface.
It	is	very	easy	to	use,	flexible	and	can	be	customized	by	the	end-user.

Tips	&	Techniques
The	end-user	has	the	ability	to	fully	customize	the	appearance	of	the
application	within	the	Framework.	For	example,	the	end-user	can	position
the	panels	in	the	Framework	or	can	float	the	panels	as	separate	windows.
These	capabilities	are	part	of	the	Framework	and	are	not	coded	by	the
developer.
The	Visual	LANSA	Framework	allows	the	end-user	to	perform	actions	in
many	different	ways.
Commands	can	be	executed	using	menus,	toolbar	icons	and	pop-up	menus.

What	I	Should	Know
How	to	execute	the	Visual	LANSA	Framework	as	an	end-user.
How	to	execute	an	application	created	in	the	Visual	LANSA	Framework.
What	are	some	of	the	features	supported	by	the	Framework.
What	are	applications,	business	objects,	filters,	instance	lists,	commands	and
command	handlers.

LVF060	-	Create	a	Prototype
Objectives

To	learn	how	to	create	a	prototype	using	the	Instant	Prototyping	Assistant
To	learn	how	to	refine	your	prototype

In	order	to	meet	these	objectives	you	will	complete	the	following:
Step	1.	Understand	the	Requirements
Step	2.	Create	a	Prototype	Application	–	iii	HR
Step	3.	Define	Filters	and	Command	Handlers
Summary

Before	You	Begin
Complete	exercise	LVF040	–	Execute	a	Framework	Application

Step	1.	Understand	the	Requirements
You	will	define	a	prototype	for	a	simple	Human	Resource	application,	which
will	consist	of:

Two	business	objects,	Employees	and	Statistical	Reports.
Employees	will	be	listed	in	the	instance	list	based	on	searches	By	Name,
By	Start	Date	or	By	Location.
Employees	will	have	actions,	Details,	Skills,	Address	and	New.

Statistical	Reports	will	have	actions	Weekly	Reports	and	Monthly	Reports.

Step	2.	Create	a	Prototype	Application	–	iii	HR
1.		From	the	Tools	ribbon,	VL	Framework	menu,	start	Visual	Frameworks	using
the	Designer	option.

2.		If	the	Select	Framework	File	dialog	is	shown,	select	the	Open	Latest
Demonstration	Version	checkbox	and	click	OK.

					Alternatively,	your	trainer	may	inform	you	which	framework	name	to	use.

					The	Select	Framework	File	dialog	is	shown	once	you	have	opened	any
frameworks,	other	than	the	default	vf_sy001_system.xml	framework.

3.		Once	your	framework	has	loaded,	start	the	Instant	Prototyping	Assistant
from	the	Framework	menu.

4.		Enter	your	new	Business	Objects	names,	_Employees	and	Statistical
Reports	separated	by	a	comma.	Notice	the	underscore	character	at	the
beginning	of	_Employees.	This	will	avoid	a	conflict	with	the	shipped
framework	Personnel	Demonstration	business	objects.

					Click	the	Next>>	button.
5.		Actions	will	contain	the	default,	Details,	New	and	Notes	actions.	Define	the
additional	actions	required	for	_Employees	and	Statistical	Reports.	These	are
Skills,	Address,	Weekly	Reports	and	Monthly	Reports.	Each	should	be
separated	by	a	comma.

6.		Hold	down	the	Control	key	and	select	Detail,	New,	Skills	and	Address.
Select	the	highlighted	actions	and	hold	down	the	left	mouse	to	drag	and	drop
them	onto	the	_Employees	business	object.

7.		Repeat	these	steps	to	drag	and	drop	actions	Weekly	Reports	and	Monthly
Reports	onto	the	Statistical	Reports	business	object.

					Your	business	object	should	now	look	like	the	following:

					Click	the	Next>>	button.
8.		Using	your	initials	instead	of	iii,	define	the	iii	HR	application.
					Drag	and	drop	the	_Employees	and	Statistical	Reports	business	objects	onto
the	iii	HR	application.

					Your	iii	HR	application	should	now	look	like	the	following:

					Click	the	Next>>	button.
9.		On	the	final	dialog,	click	the	Finish	button	to	generate	your	iii	HR
application.

10.		From	the	Framework	menu,	Save	and	Restart	your	framework.

					Note:	Your	framework	is	an	XML	file.	It	is	good	practice	to	regularly	save
your	work.	You	will	also	find	that	the	Framework	design	tools	will
automatically	prompt	you	to	save	your	framework	at	regular	intervals.	By
default	this	is	every	10	minutes.

Step	3.	Define	Filters	and	Command	Handlers
In	this	step	you	will	define	three	filters	for	_Employees	and	make	a	few	basic
enhancements	to	the	prototype	application.	To	enable	you	to	quickly	progress
with	these	exercises,	the	enhancements	steps	have	been	kept	to	a	minimum	and
the	Statistical	Reporting	business	object	is	not	prototyped.
1.		Open	the	Business	Object	Properties	dialog	for	_Employees.
					To	do	this	select	the	_Employees	business	object	on	the	Navigation	panel
and	use	the	right	mouse	menu	to	select	the	Properties	dialog.

2.		Select	the	Icons	tab:

					Select	an	icon	for	the	_Employees	business	object.
3.		Select	the	Filters	tab.	Change	the	Filter	Name	to	By	Name.

4.		On	the	Filters	tab,	select	the	Icons	tab	and	select	any	suitable	icon.
5.		Add	a	new	filter	by	clicking	on	the	New	button.

a.		Change	the	new	filter's	name	to	By	Start	Date	and	select	any	suitable
icon.

b.		Click	the	New	button	and	name	the	third	filter	By	Location	and	select	any
suitable	icon.

6.		Select	the	Commands	Enabled	tab.
a.		Select	the	New	command	in	the	Enabled	column.	Notice	that	it	is	a
Business	Object	Command.	This	is	because	the	command	applies	to	the
entire	_Employees	business	object	(instance	list	commands	apply	to	the
selected	item	in	the	instance	list).

Next	you	specify	how	business	object	commands	are	displayed.
7.		Select	the	Command	Display	tab.

a.		For	Object	Command	Presentation,	select	Separate	stay	on	top	window.
b.		Click	the	Save	and	Restart	button	on	the	prompt	that	will	appear.
					When	your	framework	has	restarted,	it	should	look	like	this:

8.		With	the	_Employees	business	object	selected,	click	on	one	of	the	 		New
buttons.	Notice	that	there	is	a	New	button	in	the	main	toolbar	and	in	the

toolbar	above	the	instance	list.	All	these	features	may	be	configured
differently.

					The	New	dialog	is	displayed	as	a	stay	on	top	window.	Notice	that	you	can
resize	this	window	and	use	the	Record	Size	button	to	remember	the	window
size	for	the	next	execution.	Note	that	the	text	can	be	edited.

9.		Close	the	New	dialog.
10.		Click	in	one	of	your	_Employees	filter	panels.	Notice	that	these	can	also	be
edited.	The	panel	provides	a	simple	line	editor.	When	adding	text	or	images,
type	Enter	to	move	to	a	new	line	as	required.

11.		Delete	the	existing	text,	add	suitable	text	and	drag	and	drop	images	from	the
images	palette.	Your	objective	is	to	make	each	panel	"realistic"	so	that	your
users	will	understand	the	intended	design	when	you	review	the	prototype	with
them.

					Restrict	your	changes	to	one	filter	panel.	In	your	own	projects,	you	would
continue	to	enhance	the	appearance	of	every	filter	and	command	handler
panel	with	suitable	text	and	images.

12.		Save	and	Restart	your	framework.
13.		Display	the	properties	of	the	_Employees	business	object	and	select	the
Instance	List	/	Relations	tab.	Change	the	first	two	Column	Captions	to
Number	and	Full	Name.	Note	that	there	only	two	enabled	columns,	which
have	a	column	sequence	number.

					In	your	own	applications	you	would	probably	enable	additional	columns	and
ensure	that	your	filter	components	populate	these	extra	columns.

14.		Close	the	Business	Object	Properties	dialog.

	

15.		Save	and	close	your	framework	and	re-open	it	as	a	User.	Execute	your
prototype	and	ensure	it	meets	the	requirements.	

					Notice	that	the	Emulate	Search	button	will	populate	the	instance	list.
16.		Select	an	instance	list	entry	to	display	the	_Employee	command	handler

tabs.

Important	note:		In	order	to	limit	the	time	taken,	the	prototyping	section	of	the
tutorials	is	brief.	However,	when	you	are	creating	a	real	Framework	application,
prototyping	is	the	crucial	step	that	will	determine	whether	your	project	will
succeed	or	fail.
A	well	thought	out	prototype	will	clearly	communicate	what	the	finished
application	will	be	like.	You	need	to	have	it	reviewed	and	signed	off	by	both
end-user	representatives	and	developers.	Users	will	know	what	they	are	getting
and	developers	will	know	what	they	need	to	deliver.

	

Summary
Important	Observations

To	create	new	applications	with	the	Visual	LANSA	Framework,	you	simply
set	the	application	properties.	You	do	not	have	to	write	any	code.
You	can	create	application	objects	manually.	You	can	also	create	or	extend
an	existing	application	using	the	Instant	Prototyping	Assistant.
Applications	can	contain	many	business	objects.	Business	objects	are	the
objects	that	end-users	work	within	the	application.
Filters	enable	end-users	to	search	for	business	objects.	A	business	object
may	have	a	number	of	filters.
Command	handlers	enable	end-users	to	carry	out	actions	on	business	objects.
Business	objects	may	have	many	command	handlers.

Tips	&	Techniques
Enhance	the	appearance	of	your	prototype	filters	and	command	handlers
using	the	images	palette.
The	business	objects	properties	dialog	enables	the	developer	to	refine	the
definition	of	the	business	object,	its	filters	and	command	handlers.

What	You	Should	Know
How	to	create	an	application	prototype	using	the	Instant	Prototyping
Assistant.
How	to	refine	the	application	design	with	icons	and	additional	filters.
How	to	tune	the	behavior	of	command	handlers.
How	to	refine	the	appearance	of	the	application	filters	and	command
handlers	using	text	and	the	image	palette.

VLF	for	Web	Application	Module	(WAM)	Applications
Applies	to	Web	only	using	WAMs.
After	you	have	created	and	validated	your	prototype,	you	can	develop	it	into	a
functional	application.
The	basic	structure	and	presentation	of	the	application	will	remain	unchanged	as
you	continue	to	use	the	Framework.	To	complete	the	application,	you	simply
replace	the	prototype	filters	and	command	handlers	with	real	ones	using	WAMs.
In	the	following	exercises,	you	will	replace	the	employee	filters	with	real	filters
and	the	Details	prototype	command	handler	with	a	real	command	handler:

LVF070WAM	-	Snap	in	a	Real	WAM	Web	Filter
LVF075WAM	-	Snap	in	a	Real	WAM	Web	Command	Handler
LVF080WAM	-	Add	Instance	List	Columns	in	WAM	Applications

LVF070WAM	-	Snap	in	a	Real	WAM	Web	Filter
Objective

Learn	how	to	replace	prototype	filters	with	real	WAM	filters.	These	will
perform	the	actual	selection	of	the	items	for	the	Instance	List	when	the
Framework	is	running	in	web	mode.

To	achieve	this	objective,	you	will	complete	the	following:
Step	1.	Create	Your	Real	WAM	Filter
Step	2.	Snap	In	the	WAM	By	Name	Filter
Step	3.	Create	a	WAM	By	Location	Filter
Step	4.	Snap	in	the	WAM	By	Location	Filter

Before	You	Begin
You	must	have	completed	the	preceding	exercises.
You	may	wish	to	review	the	Visual	LANSA	Frameworks	guide:

Filters	in	the	Key	Concepts	section.

Step	1.	Create	Your	Real	WAM	Filter
In	this	step,	you	will	create	your	own	filter	by	creating	a	WAM	which	will	be
snapped	into	the	Visual	LANSA	Framework.
1.		Make	sure	that	the	Enable	Framework	for	WAMs	option	in	the	Framework
Details	tab	is	selected.	In	the	Visual	LANSA	editor	check	that	you	can	create
new	WAMs	(the	option	is	available	if	your	system	is	enabled	for	Web).

2.		Start	the	Program	Coding	Assistant	in	the	Framework	using	the	Framework
menu.	The	Program	Coding	Assistant	window	is	displayed.

					The	Program	Coding	Assistant	window	allows	you	to	create	different	types
of	components	that	can	be	plugged	into	your	filters,	instance	lists	and
command	handlers.	It	is	strongly	recommended	that	you	use	the	Program
Coding	Assistant	when	you	first	start	using	the	Framework.	Initially	you	will
most	likely	use	filters	that	generate	a	component	that	can	be	executed	e.g.
CRUD	Filter	(Create/Read/Update/Delete),	Filter	that	searches	a	file	or	view.
As	you	progress	you	might	only	use	a	skeleton	filter	or	simply	copy	from	one
that	is	similar	to	one	that	you	want	to	create.

3.	If	you	are	using	a	non-English	system,	click	on	Framework	then	Your
Framework	in	the	top-left	tree	view.	The	Set	LANSA	code	generation
preferences	option	appears	at	the	bottom.	Select	this	option	and	set	your
preferences.

4.	Select	the	iii	HR	application	and	then	the	By	Name	filter.
5.		Choose	Web	–	using	WAM	components	as	the	platform	and	Filter	that
searches	using	a	file	or	a	view.

6.		Click	the	Next>>	button.
7.	Specify	PSLMST	as	the	Physical	File	that	most	closely	resembles	this
business	object

					The	Program	Coding	Assistant	detects	the	Visual	and	Programmatic
Identifiers	required.

8.		Click	the	Next>>	button.
9.		On	the	next	page	specify	PSLMST2	as	the	view	to	be	used	for
searching/filtering	operations.

10.		Specify	SURNAME	as	the	Key	of	the	selected	view	to	be	used	for	search
operations.

11.		Click	the	Generate	Code	button.
					The	next	page,	Generated	Code,	displays	the	source	code	for	your	filter.	You
now	need	to	create	the	component	that	will	contain	this	code:

12.		Specify	iiiWAM100	as	the	name	of	your	real	filter	and	By	Name	Filter	as
the	description.	(iii	are	your	initials	If	you	are	using	an	unlicensed	or	trial
version	of	Visual	LANSA,	you	must	always	use	the	3	characters	DEM	to
replace	iii).

13.		Click	the	Create	button	to	create	the	WAM.

					After	a	brief	delay	a	message	is	shown	indicating	the	WAM	has	been	created.
14.		Switch	to	the	Visual	LANSA	editor.	Your	filter	is	displayed	in	the	Visual
LANSA	editor.

15.		Use	the	GoTo	tab	to	find	the	event	routine
#avFrameworkManager.uWAMEvent_1

					Examine	the	code:
					This	statement	tells	the	Framework	that	new	entries	are	about	to	be	added	to
the	instance	list:
Invoke	Method(#avListManager.BeginListUpdate)
	

					This	statement	clears	the	instance	list:

Invoke	Method(#avListManager.ClearList)
	

					This	statement	reads	the	records	that	match	the	surname	entered	by	the	user:
Select	Fields(#XG_Ident)	From_File(PSLMST2)	With_key(#XG_Keys)
Generic(*yes)
Nbr_Keys(*Compute)
	

					This	statement	sets	up	the	visual	Identifier(s)
#UF_VisID1	:=	#EMPNO
#UF_VisID2	:=	#SURNAME
Use	BConcat	(#UF_VisID2	#GIVENAME)	(#UF_VisID2)
	

					This	statement	adds	the	data	to	the	instance	list
Invoke	#avListManager.AddtoList	Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)
AKey1(#EMPNO)
	

					VisualId1	will	be	shown	in	column	one	of	the	instance	list	and	VisualId2
will	be	shown	in	column	two	of	the	instance	list.	Akey1	is	the	key	that
uniquely	identifies	an	employee	(in	this	case	the	field	is	alphanumeric,	so	it's
Akey1,	not	Nkey1).

					This	statement	tells	the	Framework	that	you	have	finished	adding	entries	to
the	instance	list:
Invoke	Method(#avListManager.EndListUpdate)

					You	may	want	to	read	WAM	Filter	and	Command	Handler	Anatomy	in	the
Visual	LANSA	Framework	Guide	to	learn	more	about	how	WAMs	are
structured.

16.		Select	the	Compile	option	on	the	Home	ribbon.
17.		Ensure	the	compilation	was	successful.
18.		Close	your	WAM	in	the	editor.
19.Select	your	WAM	on	the	Favorites	/	Last	Opened	tab.	Right	click	and	use
the	context	menu	to	select	Check	in.

20.On	the	Check	in	Options	dialog,	expand	the	list	of	objects.	Note	that	the
WAM	layout	as	well	as	the	WAM	has	been	selected	for	Check	in.
a.Ensure	that	the	Compile	WAM	option	is	selected.
b.The	Generate	XSL	and	LANSA:XHTML	checkboxes	should	also	be
selected.

c.In	the	example	shown	below,	Task	Tracking	is	set	up	to	release	the	lock
against	PC	Name	when	checking	in.	If	the	Keep	Locks	option	is	selected,
this	PC	will	retain	a	lock,	which	would	allow	subsequent	changes	to	be
made.

d.		Click	OK	to	check	the	changes	in.
e.		Wait	until	the	compiles	have	finished.
Note	that	VLF	WAMs	use	a	common	VLF	layout,	which	already	exists	on
the	server.

Step	2.	Snap	In	the	WAM	By	Name	Filter
Now	that	you	have	compiled	your	new	filter	and	are	ready	to	test	it,	you	need	to
snap	it	into	the	Framework.
1.		In	the	Framework,	close	the	Program	Coding	Assistant.
2.		Select	the	iii	HR	application	and	double-click	the	Employee	business	object.
3.		On	the	resulting	Business	Object	Properties	dialog,	click	the	Filters	tab.
4.		Select	the	By	Name	filter.	You	will	replace	the	web	mock	up	filter	with	your
real	filter

5.		Click	the	Filter	Snap-in	Settings	Tab.
6.		Click	the	WAM	property	radio	button	in	the	Web	Browser	group	box.

7.		Use	the	search	button	 	to	open	the	Find	dialog.	Enter	a	Like	Name	value
to	find	your	WAM	and	click	the	Find	button.

8.Select	your	By	Name	filter	and	click	OK.

					Important:	Note	that	the	Description	includes	the	Identifier	name	in

brackets.	The	identifier	must	always	be	used	for	the	component	name	in	VLF.

9.		Click	the	Instance	List	tab.
a.		Set	the	heading	of	the	first	column	in	the	instance	list	to	Number	(it	will
display	employee	numbers)	and	the	heading	of	the	second	column	to
Name	(it	will	display	employee	names).

b.		Deselect	the	Save	and	Restore	Instance	Lists	option.

					Note	that	the	Enable	Clear	List	Button	is	selected.
10.		Use	the	(Framework)	menu	and	select	the	option	to	save	the	Framework.
					Accept	the	prompt	to	upload	the	Framework	and	wait	while	the	upload
completes.

11.		Use	the	(Framework)	menu	and	select	the	option	to	Execute	as	Web
Application...

12.		Accept	the	default	options	and	press	OK.
13.		Select	the	iii	HR	application	in	the	web	Framework	and	then	the	Employees
business	object.	Bring	the	By	Name	filter	topmost.	Type	in	a	partial	surname
and	click	Search.

14.		Your	filter	is	now	snapped	into	the	Framework	and	is	usable.

Step	3.	Create	a	WAM	By	Location	Filter
In	this	step,	you	will	create	a	real	By	Location	filter	that	will	locate	Employees
by	the	department	and	section	in	which	they	work.
1.		Start	the	Program	Coding	Assistant.
2.		Select	the	Framework	object	navigation	tree	in	the	upper	left	of	the	Program
Coding	Assistant	form.

3.		Drill	down	through	the	tree	to	find	your	By	Location	filter	and	select	it.
4.		Choose	Web	-	using	WAM	components	option	as	the	platform.
5.		Select	the	type	Filter	that	searches	using	a	file	or	view.
6.		Click	Next>>.
					The	Program	Coding	Assistant	shows	the	PSLMST	file	as	the	physical	file
and	detects	the	Visual	and	Programmatic	Identifiers	required.	You	do	not
need	to	change	any	of	these	values.

7.		Click	the	Next>>	button.
					On	the	screen:

a.		Select	the	file	view	named	PSLMST1	(Personnel	by	Department,	Section,
Employee	Number).

b.		Select	the	search	keys	DEPTMENT	and	SECTION.
c.		Deselect	User	must	specify	all	Chosen	Keys.
d.		Deselect	Allow	Generic	Searching.
e.		Select	Remember	key	values	between	filter	executions.

8.	Click	the	Generate	Code	button.	The	right	hand	side	of	the	Program	Coding
Assistant	now	shows	the	code	that	it	has	generated	for	your	filter.

9.		In	the	Generated	Code	window	specify	iiiWAM110	(where	iii	are	your
initials)	as	the	name	of	your	filter	and	give	it	a	description.	If	you	are	using	an
unlicensed	or	trial	version	of	Visual	LANSA,	you	must	always	use	the	3
characters	DEM	to	replace	iii.

10.		Then	click	the	Create	button	to	create	your	filter.
	11.		Switch	to	the	Visual	LANSA	editor.	Compile	the	By	Location	WAM	and
choose	to	generate	XSL	for	all	web	routines.

12.		Check	in	and	compile	the	WAM	to	the	server.

Step	4.	Snap	in	the	WAM	By	Location	Filter
In	this	step,	you	will	snap	in	your	By	Location	filter.
1.		In	the	Framework,	close	the	Program	Coding	Assistant.
2.		Select	the	iii	HR	application	and	double-click	the	Employees	business
object.

3.		On	the	resulting	Business	Object	Properties	dialog,	select	the	Filters	tab.
4.		Select	the	By	Location	filter.	You	will	replace	the	web	mock	up	filter	with
your	real	filter.

5.		Click	the	Filter	Snap-in	Settings	tab.
6.		Click	the	WAM	property	radio	button	in	the	Web	Browser	group	box.
7.		As	before	use	the	Search	button	and	the	Find	dialog	to	find	your	By	Location
WAM	filter	and	return	the	Identifier	as	the	component	name..

8.		Use	the	(Framework)	menu	and	select	the	option	to	save	the	Framework.
a.		Accept	the	prompt	to	upload	the	Framework	and	wait	while	the	upload
completes.

b.		Use	the	(Framework)	menu	and	select	the	option	to	Execute	as	Web
Application...

c.		Take	the	default	options	and	press	OK.

9.		Your	filter	is	now	snapped	into	the	Framework	and	is	usable.

10.Test	your	By	Location	filter:
a.Enter	a	department	code	(e.g.	ADM)	and	search	to	populate	the	instance
list	with	employees	for	all	sections	in	the	department.

b.Enter	a	department	code	and	section	code	(e.g.	ADM	and	01)	to	populate
the	instance	list	with	employees	for	section	01	only.

Summary
Important	Observations

With	snap-in	real	filters,	you	have	now	created	real	functionality	in	your
application.

Tips	&	Techniques
The	source	code	for	the	filters	used	in	the	demonstration	application	can	be
found	in	the	repository	in	components	named	DM_FILT*.

What	I	Should	Know
What	you	need	to	do	to	create	your	own	WAM	filters.
How	you	snap	them	in	the	Framework.
How	to	use	the	Program	Coding	Assistant.
How	to	customize	the	way	that	instance	lists	are	displayed.

LVF075WAM	-	Snap	in	a	Real	WAM	Web	Command	Handler
Objective

Learn	how	to	replace	prototype	command	handlers	with	real	web	handlers
that	will	perform	actual	processing	when	the	Framework	runs	in	web	mode.
To	replace	the	Details	prototype	command	handler	with	a	real	WAM
command	handler.

To	achieve	this	objective,	you	will	complete	the	following:
Step	1.	Create	Your	Real	WAM	Command	Handler
Step	2.	Snap	in	Your	WAM	Command	Handler
10.	Test	your	By	Location	filter:

Before	You	Begin
You	must	have	completed	the	preceding	exercises.
You	may	wish	to	review:

Command	Handler

Framework	Programming

Step	1.	Create	Your	Real	WAM	Command	Handler
In	this	step,	you	will	create	a	real	WAM	command	handler	for	the	Details
command.
1.		Start	the	Program	Coding	Assistant.
2.		Select	the	iii	HR	application,	then	the	Details	command	handler.
3.		Select	Web	–	using	WAM	components	as	the	platform.
4.		Select	Basic	Command	Handler	as	the	type	of	code	you	want	create.

5.		Click	the	Next>>	button.
6.		On	the	next	page	specify	PSLMST	as	The	physical	file	that	most	closely
resembles	this	business	object.

					The	Program	Coding	Assistant	detects	the	Visual	and	Programmatic
Identifiers	required.

7.		Click	the	Next>>	button.
8.		On	the	next	page	specify	PSLMST	in	the	field	Add	fields	from	this	physical
file	in	the	section	Fields	that	you	want	to	appear	at	the	top	of	your	command
handler.

9.		Click	the	Add	All	button.

10.		On	the	next	page	select	the	Include	Default	Save	Button	and	Logic	and
click	the	Generate	Code	button.

					The	next	page,	Generated	Code,	displays	the	source	code	for	your	command
handler.

					You	now	need	to	create	the	component	that	will	contain	the	code:
a.		Specify	iiiWAM120	(where	iii	are	your	initials).	Make	the	description	of
the	component	Details	command	handler.

b.		Click	the	Create	button	and	wait	until	you	see	a	message	saying	the
component	has	been	created	in	the	development	environment.

11.		Switch	to	the	Visual	LANSA	editor.	The	iiiWAM120	WAM	is	open	in	the
editor.

12.		Locate	the	#avFrameworkManager.uWAMEvent_1	handler	and	add	a
statement	to	save	any	changes	made	to	the	employee	details.	For	example:
UPDATE	FIELDS(#WAM_HEAD)	IN_FILE(PSLMST)
WITH_KEY(#EMPNO)
	

13.		Locate	the	uInitialize	event	routine.	This	routine	is	always	called	when	the
command	handler	is	invoked.	Notice	that	it	uses
#avListManager.GetCurrentInstance	method	to	get	the	key	value	of	the
currently	selected	item.

14.		The	uExecute	event	routine	is	only	ever	executed	when	the	WAM	is
executed	(that	is,	when	a	filter	is	started	or	a	command	handler	is	executed).
When	events	occur	inside	an	active	WAM	(for	example	a	button	click)
uExecute	is	not	signalled,	just	the	registered	uWAMEvent_N	event.

15.		Save	the	WAM.
16.		Check	in	your	changes	to	the	server:

a.	Compile	your	WAM	locally.
b.		If	it	compiles	ok,	select	it	in	the	Repository	tab.

c.		Right-click	the	WAM	to	open	the	associated	pop-up	menu	and	choose	the
Check	in	option.

d.		In	the	Check	in	Options	dialog	select	the	option	to	generate	XSL	for	all
webroutines.

e.		Click	OK	to	check	the	changes	in.
f.		Wait	until	the	compiles	have	finished.

Step	2.	Snap	in	Your	WAM	Command	Handler
Once	you	have	compiled	your	command	handler	and	are	ready	to	test	it	you
need	to	snap	it	into	the	Framework.	To	snap	in	your	own	command	handler:
1.		Display	the	Framework.
2.		Select	the	iii	HR	application	and	display	the	properties	of	the	Employees
object	by	double-clicking	it.

3.		On	the	resulting	Properties	dialog,	click	the	Commands	Enabled	tab.
4.		Select	the	Details	command.
5.		Click	the	WAM	radio	button	in	the	Web	Browser	group	box.	Use	the	Search
button	to	open	the	Find	dialog.	Locate	your	Details	command	handler	WAM.
Select	it	and	click	OK	to	return	the	Identifier	name	to	the	framework.

6.		Use	the	(Framework)	menu	and	select	the	option	Save	the	Framework.
Accept	the	prompt	to	upload	the	Framework	and	wait	while	the	upload
completes.

7.		Use	the	(Framework)	menu	and	use	the	option	to	Execute	as	Web
Application...	Select	the	default	options	and	press	OK.

8.		Select	the	iii	HR	application	in	the	web	Framework	and	then	the	Employees
business	object.	Bring	the	By	Name	filter	topmost.	Type	in	a	partial	surname

and	click	Search.	Now	click	on	an	employee.
9.		Your	command	handler	for	Details	is	now	snapped	in	the	web	Framework
and	is	usable.

10.	Test	your	By	Location	filter:
a.Enter	a	department	code	(e.g.	ADM)	and	search	to	populate	the	instance
list	with	employees	for	all	sections	in	the	department.

b.Enter	a	department	code	and	section	code	(e.g.	ADM	and	01)	to	populate
the	instance	list	with	employees	for	section	01	only.

Summary
What	I	Should	Know

What	you	need	to	do	to	create	your	own	WAM	command	handlers.
How	you	snap	them	in	the	web	Framework.

LVF080WAM	-	Add	Instance	List	Columns	in	WAM	Applications
Objective

Learn	how	to	add	columns	to	an	Instance	List	in	a	WAM	Framework
application.	In	WAM	browser	applications,	you	can	add	columns	to	the
shipped	instance	list.	Specify	the	additional	columns	in	the	Instance	List
Settings	tab	sheet	in	the	properties	of	the	business	object	you	are	working
with.

Note:	in	this	exercise,	you	will	modify	the	By	location	filter.	Normally,	you
should	do	the	same	modifications	to	the	By	name	filter.
To	achieve	this	objective,	you	will	complete	the	following:

Step	1.	Add	Columns	to	the	Instance	List
Step	2.	Change	your	filter
Summary

Before	You	Begin

You	must	have	completed	the	preceding	exercises.
You	may	wish	to	review,	in	the	Visual	LANSA	Framework	User	Guide:

List	Manager
Adding	Additional	Columns	to	Instance	Lists.

Step	1.	Add	Columns	to	the	Instance	List
In	this	step,	you	will	configure	your	Employee	business	object	to	make	the	extra
columns	visible	in	the	instance	list.
1.		Start	the	Framework	as	a	designer.
2.		Open	the	properties	of	the	Employees	business	object.
3.		Display	the	Instance	List	/	Relations	tab	sheet.
4.		Two	visual	identifiers	are	already	defined.
		Add	two	additional	columns:

Column	Sequence Column	Type Column	Caption Decimals

30 ACOLUMN1 Department 	

40 NCOLUMN1 Salary 2

	

Note:
Column	widths	may	be	set	as	a	percentage.
	Enable	Clear	List	Button	option	has	no	effect	in	your	own	filters.
Numeric	columns	may	have	an	edit	code	if	needed.
Date	columns	may	have	an	output	format	and	UTC	setting.

Step	2.	Change	your	filter
Next,	you	need	to	make	changes	to	your	filter	to	fill	the	extra	fields	in	the
instance	list	with	data.
1.		Open	the	By	Location	filter	iiiWAM110	which	you	created	in	LVF070WAM	-
Snapping	in	a	Real	WAM	Web	Filter.

2.		Make	these	changes	to	the	code:
a.		Change	the	GROUP_BY	command	to	include	the	#DEPMENT	and	
#SALARY	field:

Group_By	Name(#XG_Ident)	Fields(#EMPNO	#SURNAME	#GIVENAME
#DEPTMENT	#SALARY)
	
b.		Locate	Select	Fields(#XG_Ident)	command	and	change	the	AddtoList
statement	to	set	alpha	column	1	and	numeric	column	1:

*	Add	instance	details	to	the	instance	list
Invoke	#avListManager.AddtoList	Visualid1(#EMPNO)	AKey1(#EMPNO)
Visualid2(#Surname)	AColumn1(#Deptment)	NColumn1(#Salary)
	

3.		Compile	your	changed	WAM.
4.		If	your	Web	server	is	on	an	IBM	i,	check	in	and	compile	your	changed	filter
to	the	IBM	i	.

5.		Restart	the	Framework	and	test	the	result.

Summary
What	You	Should	Know

How	to	add	columns	to	an	instance	list	in	a	browser	WAM	Framework
application.

VLF	for	Windows	Applications
Applies	to	Windows	only.
After	you	have	created	and	validated	your	prototype,	you	can	develop	it	into	a
functional	Windows	application	in	the	following	exercises:

LVF070WIN	-	Snap	in	Real	Windows	Filters
LVF075WIN	-	Snap	in	A	Real	Windows	Command	Handler
LVF080WIN	-	Add	Instance	List	Columns	in	Windows	Applications

The	basic	structure	and	presentation	of	the	application	will	remain	unchanged	as
you	continue	to	use	the	Framework.	To	complete	the	application,	you	simply
replace	the	prototype	filters	and	command	handlers	with	real	Windows	ones.
In	these	exercises,	you	will	replace	the	employee	filters	with	real	filters	and	the
Details	prototype	command	handler	with	a	real	command	handler:

LVF070WIN	-	Snap	in	Real	Windows	Filters
Objective

Learn	how	to	replace	prototype	filters	with	real	filters	which	will	perform
the	actual	selection	of	the	items	for	the	Instance	List.

To	achieve	this	objective,	you	will	complete	the	following:
Step	1.	Create	your	Real	By	Name	Filter
Step	2.	Snap	in	the	By	Name	Filter
Step	3.	Filter	Code
Step	4.	Create	a	Real	By	Location	Filter
Step	5.	Snap	in	the	By	Location	Filter
Summary

Before	You	Begin
You	must	have	completed	all	the	preceding	exercises.
You	may	wish	to	review	in	the	Visual	LANSA	Frameworks	Guide:
Filters	in	Key	Concepts
Framework	Programming

Step	1.	Create	your	Real	By	Name	Filter
In	this	step,	you	will	create	a	real	filter	which	searches	the	PSLMST	file	by
employee	surname.	You	will	also	learn	how	to	use	the	Program	Coding
Assistant.
1.		Click	the	Program	Coding	Assistant	button	in	the	By	Name	filter.

The	Program	Coding	Assistant	window	is	displayed.	It	allows	you	to	create
different	types	of	components	that	can	be	plugged	into	your	filters,	instance	lists
and	command	handlers.	It	is	strongly	recommended	that	you	use	the	Program
Coding	Assistant	when	you	first	start	using	the	Framework.
Initially	you	will	most	likely	use	filters	that	generate	a	component	that	can	be
executed	(e.g.	Filter	that	searches	by	all	logical	views	of	a	file,	Filter	that
searches	a	file	or	view).	As	you	progress	you	might	only	use	a	skeleton	filter	or
simply	copy	from	one	that	is	similar	to	one	that	you	want	to	create.
2.		If	you	are	using	a	non-English	system,	click	on	Framework	/	Your
Framework	in	the	top-left	tree	view.	The	Set	LANSA	code	generation
preferences	option	appears	at	the	bottom.	Select	this	option	and	set	your
preferences.

3.		In	the	list	on	the	top	left,	select	the	iii	HR	application	and	then	the	By	Name
filter.

4.		Underneath	it,	select	Windows	as	the	platform.	Entries	in	this	list	will	depend
on	which	platforms	are	enabled	in	your	framework.

5.		As	the	type	of	code	you	want	to	generate,	select	Filter	that	searches	using	a
file	or	a	view.

6.		Click	the	Next>>	button.
7.		On	the	next	page	specify	PSLMST	as	The	physical	file	that	most	closely
resembles	this	business	object.

The	Program	Coding	Assistant	guesses	the	Visual	and	Programmatic	Identifiers
required:

A	Visual	Identifier	is	the	field	or	fields	that	a	user	would	use	to	identify	a
unique	instance	of	the	business	object.
A	Programmatic	Identifier	is	the	field(s)	that	the	program	would	use	to
identify	a	unique	instance	of	the	business	object.	Typically	these	would	be
the	primary	keys	of	the	file	or	files	that	make	up	the	data	in	the	instance
list.
The	additional	columns	represent	the	additional	columns	in	your	instance
list	that	you	may	have	added	during	the	prototyping	phase.

8.		Click	the	Next>>	button.
9.		On	the	next	page	specify	PSLMST2	as	the	view	to	be	used	for
filtering/searching	operations.	It	is	logical	view	of	the	PSLMST	file	keyed	by
the	SURNAME	and	GIVENAME	fields.

Note	that	you	need	an	appropriate	logical	file	for	each	filter	that	you	want	to
create.	Before	implementing	all	your	filters,	review	your	data	model	to
confirm	that	all	the	logical	files	exist.	Doing	so	will	speed	up	the	process	of
implementing	your	prototype.

10.Select	the	SURNAME	field	as	the	key	of	the	view	to	be	used	for	search
operations.

11.Click	the	Next>>	button.	Ignore	the	options	on	this	page.
12.Click	the	Next>>	button.
13.On	the	next	page	click	the	Generate	Code	button.
					The	Generated	Code	page	displays	the	source	code	for	your	filter.	You	now
need	to	create	the	component	that	will	contain	this	code:

14.Specify	iiiCOM21	as	the	name	of	your	real	filter	and	By	Name	Filter	as	the
description.	(iii	are	your	initials	If	you	are	using	an	unlicensed	or	trial	version
of	Visual	LANSA,	you	must	always	use	the	3	characters	DEM	to	replace	iii).

15.Click	the	Create	button	to	create	the	component	in	Visual	LANSA.

					After	a	brief	delay	the	message	Created	in	the	development	environment	is
displayed.

16.Switch	to	the	Visual	LANSA	editor	and	compile	the	component.

Step	2.	Snap	in	the	By	Name	Filter
Now	that	you	have	compiled	your	new	reusable	component	(filter)	and	are
ready	to	test	it,	you	need	to	snap	it	into	the	Framework.
1.		In	the	Framework,	close	the	Program	Coding	Assistant.
2.		Double-click	the	Employees	business	object	to	display	its	properties.
3.		Display	the	Filter	Snap-in	Settings	tab.

4.		Click	the	Search	 	button	to	display	the	Find	dialog.

Enter	a	Like	Name	value	to	find	your	filter	and	click	Find.
Select	your	By	Name	filter	and	click	OK	to	return	the	Identifier	to	the
framework.	Component	names	in	the	framework	must	always	use	an
Identifier.

In	this	case,	the	Identifier	generated	is	the	same	as	the	short	Name	given	to	this
filter.

5.		Close	the	Employees	business	object	properties	and	display	the	By	Name
filter.	You	can	now	see	your	real	filter.

6.		Type	in	a	letter	in	the	Surname	field	and	click	the	Search	button	to	verify	that
your	real	filter	has	been	snapped	in	the	Framework	and	is	usable.

Step	3.	Filter	Code
Although	you	can	create	most	filters	simply	by	using	the	Program	Coding
Assistant,	you	should	understand	how	they	are	coded.
1.		Switch	to	the	Visual	LANSA	editor	where	the	iiiCOM21	component	is	open.
2.		Use	the	GoTo	tab	to	select	the	uSelectData	method	routine.

					Review	the	generated	source	code	in	the	Source	tab	to	see	how	the	filter	is
coded	to	add	data	to	the	instance	list:

					The	Framework	is	notified	that	an	update	is	about	to	occur.
Invoke	#avListManager.BeginListUpdate
	

					Next,	the	list	is	cleared	of	any	existing	items.
Invoke	#avListManager.ClearList
	

					Next,	data	is	selected.	You	can	use	one	of	the	techniques	you	learnt	in	the
Visual	LANSA	Fundamentals	exercises	to	do	this.	For	example:
Select	Fields(#XG_Ident)	From_File(PSLMST2)	With_key(#XG_Keys)
Generic(*yes)	Nbr_Keys(*Compute)

					Next,	the	visual	identifiers	are	set	up:
Change	#UF_VisID1	#EMPNO
Change	#UF_VisID2	#SURNAME
	

					Then	the	data	is	added	to	the	list.
Invoke	#avListManager.AddtoList	Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)
AKey1(#EMPNO)
	

					VisualId1	will	be	shown	in	column	one	of	the	instance	list	and	VisualId2	will
be	shown	in	column	two	of	the	instance	list.	Akey1	is	the	key	that	uniquely
identifies	an	employee	(in	this	case	the	key	field	is	alphanumeric).

					Finally,	the	Framework	is	notified	that	the	instance	list	update	is	complete.
Invoke	#avListManager.EndListUpdate)
	

3.		Click	on	Details	tab	in	the	editor	to	display	the	properties	of	your
component.

					You	need	to	ensure	that	all	properties	are	displayed:
4.		From	the	File	menu,	select	Options.
5.		In	the	LANSA	Settings	dialog,	select	the	General	group,	click	on	Details	and

make	sure	the	Show	Advanced	Features	option	is	selected.

Click	OK	to	close	the	LANSA	Settings	dialog.
6.		Notice	that	the	Ancestor	property	of	the	component	is	#VF_AC007.	All
filters	inherit	from	this	base	class	which	provides	a	set	of	predefined
behavior.

7.		Click	the	Outline	tab	in	the	editor	to	see	what	components	you	inherit	from
the	VF_AC007	ancestor	component.

8.		Right-click	the	avLISTMANAGER	component	and	select	the	Features
option.

9.		Expand	the	methods	of	the	component	and	examine	them.

If	you	double	click	on	any	of	the	methods,	help	text	is	displayed	in	the	Help	tab.
10.		Close	the	iiiCOM21	component.
					You	may	want	to	read	Windows	Filter	and	Command	Handler	Anatomy	in
the	in	the	Visual	LANSA	Framework	Guide	to	see	how	these	components	are
structured.

Step	4.	Create	a	Real	By	Location	Filter
In	this	step	you	create	a	real	By	Location	filter.
1.		In	the	Framework	start	the	Program	Coding	Assistant.
2.		Drill	down	through	the	tree	to	find	your	By	Location	filter	and	select	it.
3.		Select	Native	MS	Windows	as	the	platform	to	generate	for	and	the	type	as
Filter	that	searches	using	a	file	or	view.

4.		Press	the	Next>>	button.
a.		For	your	VISUAL	IDENTIFIERS	specify	fields	EMPNO,	GIVENAME
and	SURNAME

b.		For	your	PROGRAMATIC	IDENTIFIERS	specify	field	EMPNO	only.
c.		No	ADDITIONAL	COLUMNS	should	be	specified.

5.		Click	the	Next>>	button	to	move	the	Program	Coding	Assistant	forward	to
the	next	prompt.	This	prompt	is	asking	you	to	select	the	file	or	view	that	the
filter	should	use	for	searching.
a.		PSLMST	should	already	be	specified	as	the	Underlying	Physical	File.
b.			Select	the	view	named	PSLMST1	(Personnel	by	Department,	Section,
Employee	Number).

c.		Select	the	search	keys	DEPTMENT	and	SECTION.
d.		Deselect	User	must	specify	all	Chosen	Keys.
e.		Deselect	Allow	Generic	Searching.
f.		Select	Remember	key	values	between	filter	executions.
g.		Select	Allow	user	to	clear	instance	list.

6.		A	screen	with	additional	options	is	displayed.	Do	not	select	any.	
Click	the	Generate	Code	button.	The	right	hand	side	of	the	Program	Coding
Assistant	now	shows	the	code	that	it	has	generated	for	your	filter.

7.		In	the	Generated	Code	window,	specify	iiiCOM22	as	the	name	of	your	new
filter	and	give	it	a	description.
Click	the	Create	button	to	create	your	filter.

8.		Switch	to	Visual	LANSA	and	your	filter	should	be	open	in	the	editor.
					Compile	the	new	component.

Step	5.	Snap	in	the	By	Location	Filter
In	this	step,	you	will	snap	in	your	By	Location	filter.
1.		In	the	Framework	close	the	Program	Coding	Assistant.
2.		Select	the	iii	HR	application	and	double	click	the	Employee	business	object.
3.		On	the	resulting	Business	Object	Properties	dialog,	select	the	Filters	tab.
4.		Select	the	By	Location	filter.
5.		Select	the	Filter	Snap-in	Settings	tab.
6.		Use	the	Search	button	to	display	the	Find	dialog.	Find	and	select	your	By
Location	filter	and	click	OK	to	return	the	Identifier	to	the	framework.

7.		Your	filter	is	now	snapped	into	the	Framework	and	is	usable.
8.Close	the	business	properties	dialog	and	test	the	By	Location	filter.

a.Enter	a	full	department	code	(e.g	ADM)	to	populate	the	instance	list	with
employees	for	all	sections	in	this	department.

b.Enter	a	department	code	and	section	code	(e.g	ADM	and	01)	to	populate
the	instance	list	with	employees	for	one	section	only.

Summary
Important	Observations

With	snap-in	real	filters	you	have	now	created	real	functionality	in	your
application.

Tips	&	Techniques
The	source	code	for	the	filters	used	in	the	demonstration	application	can	be
found	in	the	repository	in	components	named	DF_*.

What	I	Should	Know
What	you	need	to	do	to	create	your	own	filters.
How	you	snap	them	in	the	Framework.
How	to	use	the	Program	Coding	Assistant.

LVF075WIN	-	Snap	in	A	Real	Windows	Command	Handler
Objective

Learn	how	to	replace	prototype	command	handlers	with	real	handlers	which
will	perform	actual	processing.
To	replace	the	Details	prototype	command	handler	with	a	real	command
handler.

To	achieve	this	objective,	you	will	complete	the	following:
Step	1.	Create	your	Real	Command	Handler
Step	2.	Snap	in	your	Command	Handler
Summary

Before	You	Begin
You	must	have	completed	all	the	preceding	exercises.
You	may	wish	to	review:
Command	in	Key	Concepts	in	the	Visual	LANSA	Framework	Guide.

Step	1.	Create	your	Real	Command	Handler
In	this	step,	you	will	create	a	real	command	handler	for	the	Details	command.
1.		Start	the	Program	Coding	Assistant.
2.		In	the	list	on	the	top	left	of	the	Program	Coding	Assistant	window,	select	the
iii	HR	application	and	then	the	Details	command	handler.

3.		Select	Native	MS	Windows	as	the	platform	and	Basic	Command	Handler	as
the	type	of	code.

					The	Basic	Command	Handler	is	the	most	commonly	used	assistant,	as	you
typically	want	to	create	a	command	handler	that	displays	your	data.	You	then
customize	the	page	to	meet	your	specifications.

					The	CRUD	Command	Handler	is	used	in	conjunction	with	the	CRUD	filter
and	only	if	the	commands	defined	for	the	business	object	are	New,	Details,
Copy,	Delete.

					The	Command	Handler	that	maintains	a	list	allows	you	to	generate	code	so
that	you	can	use	just	one	command	handler	to	view	the	details	of	the	instance
and	a	list	of	information	about	related	data.

4.		Click	the	Next>>	button.

5.		On	the	next	page	specify	PSLMST	as	The	physical	file	that	most	closely
resembles	this	business	object.

					The	Program	Coding	Assistant	guesses	the	Visual	and	Programmatic
Identifiers	required.

6.		Click	the	Next>>	button.
7.		On	the	next	page	specify	PSLMST	in	the	field	Add	fields	from	this	physical
file	in	the	section	Fields	that	you	want	to	appear	at	the	top	of	your	command
handler.

8.		Click	the	Add	All	button.

9.		Click	Next>>.
10.On	the	next	page	click	the	Generate	Code	button.
					The	next	page,	Generated	Code,	displays	the	source	code	for	your	command
handler.	You	now	need	to	create	the	component	that	will	contain	the	code:

11.Specify	iiiCOM23	as	the	name	of	your	component	(where	iii	are	your
initials)	and	Details	Command	Handler	as	the	description.

12.Click	the	Create	button	to	create	the	component.

13.After	a	few	moments	the	Created	in	development	environment	message	will
be	displayed.

14.Switch	to	the	Visual	LANSA	editor.
15.Display	the	Source	code	of	your	component.
16.Locate	the	SAVE_BUTTON.Click	event	and	add	a	statement	to	save	any
changes	you	make	to	the	fields	on	the	Details	command	handler.

17.Locate	the	uExecute	method.	Notice	that	it	calls	the
#avListManager.GetCurrentInstance	method	to	get	the	key	value	of	the
currently	selected	item	in	the	instance	list	and	then	uses	this	key	value	to
fetch	the	details.

18.Compile	your	component.

Step	2.	Snap	in	your	Command	Handler
Now	that	you	have	compiled	your	new	reusable	component	(that	is,	your
Command	Handler)	and	are	ready	to	test	it	you	need	to	snap	it	into	the
Framework.
1.		Switch	to	the	Framework.
2.		Select	the	iii	HR	application	and	display	the	properties	of	the	Employees
object	by	double-clicking	it.

3.		On	the	resulting	properties	dialog,	click	the	Commands	Enabled	tab.
4.		Select	the	Details	command.
5.		Select	the	Component	option	in	the	Windows	group	box.
					Click	the	Search	button	and	use	the	Find	dialog	to	locate	your	command
handler.	Select	the	component	and	click	OK	to	select	it	and	return	the
Identifier	to	the	framework.	Components	must	be	snapped	into	the	framework
using	Identifier	not	Long	Name.

6.		Close	Employee	properties	dialog.
a.		Select	the	iii	HR	application	and	the	Employees	business	object.
b.		Click	the	Search	button	to	populate	the	instance	list.

c.		Select	one	item	in	the	instance	list	to	display	the	instance	commands.
7.		Your	command	handler	for	Details	is	now	snapped	into	the	Framework	and
is	usable.

8.		Try	making	a	change	to	the	details	of	an	employee	and	saving	it.

Summary
Tips	&	Techniques

To	understand	how	the	command	handler	interacts	with	the	instance	list,
read	Filter	and	Command	Handler	Programming.
The	source	code	for	the	command	handlers	used	in	the	demonstration
application	can	be	found	in	the	repository	in	components	named	DF_*.

What	I	Should	Know
What	you	need	to	do	to	create	your	own	command	handlers.
How	you	snap	them	in	the	Framework.
Filters	and	Command	Handlers	are	just	Reusable	Parts	which	you	can
customize.	However,	you	can	see	that	up	to	this	point	you	can	get	a
functional	application	simply	using	the	Program	Coding	Assistant	without
very	much	coding
To	use	the	Framework	you	need	to	understand	VL.	However,	the	level	of
detail	that	you	must	understand	is	greatly	reduced.	Creating	your	own
framework	to	deliver	this	style	of	application	requires	detailed	OO
knowledge	and	can	take	a	long	time	to	produce.	The	VLF	allows	you	to
rapidly	prototype	and	deploy	an	application	with	no	OO	knowledge	required.

LVF080WIN	-	Add	Instance	List	Columns	in	Windows
Applications
Objective

Learn	how	to	add	columns	to	an	Instance	List	in	a	Windows	application.

Note:	In	this	exercise,	you	will	modify	the	By	Location	filter.	Normally,	you
would	do	the	same	modifications	to	the	By	Name	filter	and	any	other	filters	for
_Employees.
To	achieve	this	objective,	you	will	complete	the	following:

Step	1.	Add	Columns	to	the	Instance	List
Step	2.	Change	your	filter
Summary

Before	You	Begin
You	must	have	completed	all	the	preceding	exercises.

You	may	wish	to	review:
Adding	Additional	Columns	to	Instance	Lists	.

Step	1.	Add	Columns	to	the	Instance	List
In	this	step,	you	will	configure	your	Employee	business	object	to	make	the	extra
columns	visible	in	the	instance	list.
1.		Start	the	Framework	as	a	designer.
2.		Open	the	properties	of	the	Employees	business	object.
3.		Display	the	Instance	List	Settings	tab.
4.		Two	visual	identifiers	are	already	defined.	Add	two	additional	columns:

Column	Sequence Column	Type Column	Caption Decimals

30 ACOLUMN1 Department 	

40 NCOLUMN1 Salary 2

	

	Note:				
You	may	set	the	initial	width	of	each	column	as	a	percentage.

Numeric	columns	may	be	given	an	edit	code.
Date	columns	may	have	a	Date/Time	format	and	UTC	setting	specified.

Step	2.	Change	your	filter
You	need	to	make	some	changes	to	your	filter	to	fill	the	new	instance	list
columns	with	data.
1.		Close	the	Framework
2.		Open	the	source	of	the	By	Location	filter	(reusable	part	iiiCOM22)	that	you
created	in	LVF070WIN	-	Snap	in	Real	Windows	Filters.

3.		Make	these	changes	to	the	code:
a.			Change	the	GROUP_BY	command	to	include	the	#DEPTMENT	and
#SALARY	fields:

Group_By	Name(#XG_Ident)	Fields(#EMPNO	#GIVENAME	#SURNAME
#DEPTMENT	#SALARY)
	
b.		Locate	Select	Fields(#XG_Ident)	command	and	change	the
AddtoList	statement	to	set	alpha	column	1	and	numeric	column	1:

*	Add	instance	details	to	the	instance	list
Invoke	#avListManager.AddtoList	Visualid1(#EMPNO)	AKey1(#EMPNO)
Visualid2(#Surname)	AColumn1(#Deptment)	NColumn1(#Salary)
	

4.		Compile	the	reusable	part.
5.		Start	the	Framework	and	test	the	result.

Summary
What	You	Should	Know

How	to	add	columns	to	an	instance	list.
How	to	modify	a	filter	to	maintain	additional	instance	list	columns.
You	would	normally	change	all	filters	for	the	instance	list.

Appendix	A.	Personnel	Demonstration	System
Personnel	System
Physical	Database	Map	of	Personnel	System
Sample	Data	in	the	Personnel	Files

Personnel	System
A	business	has	a	very	simple	Personnel	System.	The	Personnel	System	allows
the	company	to	identify	the	employees	in	the	company	based	on	the	part	of	the
company	where	the	employee	works.	The	Personnel	System	lists	details	about
the	employees	and	details	about	their	specific	skills.
The	company	has	a	simple	organizational	structure.	It	is	divided	into
departments	such	as	Administration,	Audit,	Information	Services,	Legal,	Travel,
etc.	Each	of	these	departments	may	have	one	or	more	sections	such	as
Accounting,	Purchasing,	Sales,	etc.	The	Department	table	(DEPTAB)	stores	the
list	of	departments.	The	Section	table	(SECTAB)	is	used	to	store	the	sections
within	each	department.
The	Personnel	Master	file	(PSLMST)	stores	details	about	each	employee.	For
example,	the	employee's	name,	address,	and	telephone	number	are	stored	in	this
master	file.	As	each	employee	works	in	a	section	of	a	department,	this
information	is	also	stored	in	the	Personnel	Master	file.
Each	employee	also	has	a	list	of	skills.	For	example,	an	employee	might	have
Cobol,	C	and	C++	programming	skills	or	management	and	administration	skills.
A	Skills	table	(SKLTAB)	is	used	to	store	the	skill	codes.	A	Personnel	Skills	file
(PSLSKL)	stores	the	specific	skills	of	each	employee.
The	Personal	Event	Log	file	(PSLEVENT)	allows	significant	events	and	notes
to	be	recorded	against	an	employee.	It	logically	extends	the	PSLMST	file.	It	is
an	RDMLX	file	and	therefore	will	only	be	available	in	an	RDMLX	partition.
The	Personnel	Time	Sheet	file	(PSLTIMES)	records	employee	time	sheet
details.	Details	are	recorded	by	week	number	(1	to	52)	within	a	year	for	each
employee.	It	is	designed	mostly	for	use	with	L/Client	and	to	show	extensive
trigger	power	by	performing	relatively	complex	calculations	and	storing	them	in
the	DBMS	without	the	application	needing	to	know	what	is	happening.		Note
that	all	the	data	is	created	and	stored	in	the	DBMS	when	information	is	created
or	updated,	which	means	that	L/Client	applications	have	read	access	to	it
without	needing	to	use	the	triggers.		It	is	an	RDMLX	file	and	therefore	will	only
be	available	in	an	RDMLX	partition.	It	contains	examples	of	a	number	of
RDMLX	field	types	including	BLOB.
The	Personnel	System	is	a	very	simple	system.	It	has	7	files	as	described	above.
The	physical	database	layout	follows.
Historical	Note:	This	system	was	created	in	1987	as	one	of	the	very	first
LANSA	demonstration	and	training	systems.	The	LANSA	repository	and

RDML	functions	created	for	this	original	system	have	been	used	on	a	System
38,	AS/400,	iSeries,	System	i	i5/OS,	IBM	i	Windows,	Linux	and	other
platforms.	This	original	system	has	been	left	virtually	unchanged	to	show	how
LANSA	has	been	able	to	protect	your	investment	in	your	application	systems.
(PSLTIMES	and	PSLEVENT	have	been	added)

Physical	Database	Map	of	Personnel	System
(Including	Virtual	and	Predetermined	Join	Fields)
Sample	Data	in	the	Personnel	Files

Sample	Data	in	the	Personnel	Files
Following	is	a	list	of	some	of	the	sample	data	in	the	Personnel	File	which	may
be	contained	in	the	files.	As	developers	can	edit	these	files,	the	data	may	not	be
the	same	on	your	system.	When	the	Personnel	System	is	installed	the	files	are
populated	with	the	sample	data.	This	can	be	re-run	at	any	time	by	executing	the
Function	PSLINI	in	Process	PSLUTL:

DEPTAB:
DEPTMENT

SECTAB:
DEPTMENT/SECTION

PSLMST:
EMPNO

ADM ADM	01 17	employees

	 ADM	02 A1002

	 	 A1005

	 	 A1014

	 	 A8888

	 ADM	03 	

	 ADM	04 	

	 ADM	05 	

AUD AUD	01 	

	 AUD	02 	

	 AUD	03 	

FLT FLT	01 	

	 FLT	02 	

	 FLT	03 	

INF INF	01 	

	 INF	02 	

	 INF	03 	

	

	Visual LANSA Tutorials
	About the Tutorials
	Tips for using the Exercises
	How many Developers can use the Exercises?
	What Partition should I use?
	Using Long Names
	Tutorial Installation
	Your Feedback

	User Interface Tutorials
	VUI001 � Starting LANSA
	Step 1. Starting the LANSA Development Environment
	Step 2. Online Documentation
	Step 3. F1 Context Sensitive Help
	Summary

	VUI002 � LANSA Editor Parts
	Step 1. Editor Parts Overview
	Step 2. Repository, Favorite, Outline, Details Tabs
	Step 3. Docking/Undocking a Tab Sheet
	Step 4. Reset Editor Settings
	Summary

	VUI003 � Repository Tab
	Step 1. Repository Tab Contents
	Step 2. Turn Alphabetical Grouping Off/On
	Step 3. Arranging Columns in Repository
	Step 4. Object Properties
	Step 5. Accessing a Field
	Summary

	VUI004 - Details, Outline, Favorites Tab
	Step 1. Copy the ADDRESS1 Field
	Step 2. Details Tab
	Step 3. View Errors
	Step 4. Open Another Object in Editor
	Step 5. Outline Tab
	Step 6. Favorites Tab
	Summary

	LANSA Editor Tutorials
	VED010 - Format Source Code
	Step 1. Create a Copy of Form XDXSettingsDialog
	Step 2. Create a Process and a Function
	Step 3. Turn on Autohide
	Step 4. Change Formatting Options
	Step 5. Editor Source Settings
	Step 6. Word Wrap
	Step 7. Submit a Compile
	Step 8. Display Error Log
	Step 9. Display Feature Help Text
	Summary

	VED020 - Edit Source Code
	Step 1. Cursor Position
	Step 2. Position the Current Line
	Step 3. Comment Lines
	Step 4. Copy and Paste
	Step 5. Find Text
	Step 6. Use the Toolbar Find Button
	Step 7. Use the Find Dialog
	Step 8. Find and Replace
	Step 9. Search Text in Several Objects
	Summary

	VED030 - Auto Complete and Command Assistant
	Step 1. Display the Command Assistant
	Step 2. Use the Command Assistant
	Step 3. Use Auto Complete Prompter
	Step 4. Use the Online Help Command
	Summary

	VED040 - Execute Applications
	Step 1. Determine Compile Status
	Step 2. Execute a Form
	Step 3. Review the XDXExamples Application
	Step 4. Execute the Application from the Execution History List
	Step 5. Execute the Form from the Windows Start Menu
	Summary

	Repository Development Tutorials
	REP000 - What is the LANSA Repository?
	REP001 - Create Fields
	Step 1. Prepare Your System
	Step 2. Copy Fields
	Step 3. Manually Create Fields
	Step 4. Reference Fields
	Step 5. Delete a field
	Step 6. Create a Dynamic List for Your Fields
	Step 7. Create and Execute Test Form
	Step 8. Change your field definitions
	Summary

	REP002 - Field Visualizations
	Step 1. Review iiiStartDate Field Visualization
	Step 2. Review iiiEmployNotes Field Visualization
	Step 3. Review iiiSalary Field Visualization
	Step 4. View the Test Form
	Step 5. Execute the Form
	Step 6. Adjust the Form
	Summary

	REP003 - Validation Rules
	Step 1. Review Existing Rule for iiiDeptCode Field
	Step 2. Adopt Rule from Reference Field
	Step 3. Create a Rule for the iiiSalary Field
	Summary

	REP004 - System and Multilingual Variables
	Step 1. Review an Existing System Variable
	Step 2. Create a System Variable
	Step 3. Assign the System Variable as a Default Value
	Step 4. Test System Variable using form iiiTestFields
	Step 5. Review the System Variable (Optional)
	Step 6. Review an Existing Multilingual Variable (Optional)
	Summary

	REP005 - Creating Files
	Step 1. Create File Definition
	Step 2. Compile the File
	Step 3. Create Department Maintenance Form
	Step 4. Execute Department Maintenance Form
	Step 5. Create the Employee File
	Step 6. Create Employee Maintenance Form
	Step 7. Execute Employee Maintenance Form
	Step 8. Database Attributes
	Summary

	REP006 - Logical Views
	Step 1. Add a Logical View to Department File
	Step 2. Create Department Test Form
	Step 3. Execute Search by Description Form
	Step 4. Add a Logical View to Employee File
	Summary

	REP007 - File Validation Rules/Triggers
	Step 1. Add a Rule to file iiiDepartments
	Step 2. Recompile the File and Test Department Rules
	Step 3. Referential Integrity Rule in iiiEmployees File
	Step 4. Add Rules to iiiSalary Field
	Step 5. Recompile the File and Test Employee Rules
	Step 6. Complete Referential Integrity
	Step 7. Know about File Level Triggers
	Summary

	REP008 - Virtual Fields
	Step 1. Add Virtual Fields to Employee File
	Step 2. Calculation Virtual Field
	Step 3. Concatenation Virtual Field
	Step 4. Code Fragment Virtual Fields
	Step 5. Create Test Form
	Summary

	REP009 - Access Routes and Predetermined Join Fields
	Step 1. Understand the Database Relationship
	Step 2. Create Access Route from Department File
	Step 3. Create Access Route from Employee File
	Step 4. Create Fields in the LANSA Repository
	Step 5. Add File Lookup PJF to Employee File
	Step 6. Test New PJF in Employee File
	Step 7. Add PJFs to Department File
	Step 8. Modify Test Form
	Summary

	REP011 - Repository Summary
	Step 1. Create the File Definition
	Step 2. Modify Field Definitions
	Step 3. Add Rules to the File
	Step 4. Create and Execute a Test Form
	Step 5. Add a Virtual Field to Your File
	Step 6. Create an Access Route and a Predetermined Join Field (PJF)
	Step 7. Recreate Employee Holidays Application
	Step 8. Create a Logical View and Test
	Summary

	REP012 - Check In Objects (Optional)
	Step 1. Confirm Connection to LANSA Master System (Optional)
	Step 2. Check in the Department File and Fields
	Step 3. Verify Objects Exist on the Server
	Step 4. Execute Your Application Client Server
	Summary

	Programming RDML with Visual LANSA Forms
	FRM015 - Getting Started with Forms Programming
	Step 1. Editor Settings
	Step 2. Create a Component
	Step 3. Add Components to the Form
	Step 4. Change the Properties of a Component
	Step 5. Add Remaining Push Buttons and Set their Properties
	Step 6. Add a Field to the Form and Set its Properties
	Step 7. Create Event Routines for the Push Buttons
	Step 8. Add Logic to the Hello Button Click Event
	Step 9. Add Logic to the Other Click Events
	Step 10. Compile the Form
	Step 11. Execute the Form
	Step 12. Align and Size Components
	Step 13. Component Definitions
	Step 14. Understanding Events
	Step 15. Using Component Properties
	Step 16. Understanding Component Methods
	Summary

	FRM025 - Insert a Database Record
	Step 1. Create form iiiAddEmploy � Add Employee
	Step 2. Add Fields to the Form
	Step 3. Add Push Buttons and Click Event Logic
	Step 4. Using a Busy Cursor
	Summary

	FRM035 - Maintain a Simple Database Table
	Step 1. Create a Department Maintenance Form
	Step 2. Fetch Existing Data from a File
	Step 3. Insert Data to a File
	Step 4. Add Program Level Validations
	Step 5. Update Data in a File
	Step 6. Delete Data from the File
	Step 7. Update and Delete Last Record Read
	Summary
	FRM035 � Appendix

	FRM045 - Using LANSA Debug
	Step 1. Execute Applications with Debug
	Step 2. Debug Features
	Step 3. Set Breakpoints
	Step 4. Display/Change Variables
	Step 5. Set Breakpoint Properties
	Step 6. Set a Break on Value
	Summary

	FRM055 - List Component Basics
	Step 1. Create a Simple List
	Step 2. Select Data to Fill the List
	Step 3. Create Multiple Lists
	Step 4. Fill the Lists
	Step 5. Make List View Columns Sortable
	Step 6. Change Appearance of the Form
	Step 7. Read Sorted List Items (optional)
	Step 8. Sort Department and Sections Combo Boxes (optional)
	Summary

	FRM065 - Using List Components
	Step 1. Create Form � Using Lists
	Step 2. Make Radio Buttons Show and Hide Fields
	Step 3. Add Search Logic
	Step 4. Add Tab Folder and Tab Sheets to the Form
	Step 5. Populate the Tab Sheets
	Summary

	FRM075 - Using a Working List
	Step 1. Select Multiple Entries
	Step 2. Use a SELECTLIST Command
	Step 3. Build a Working List
	Step 4. Create a CSV File
	Summary

	FRM085 - Update from a Grid
	Step 1. Create Field iiiMONTH and Visual Picklist
	Step 2. Create Form � Update from List
	Step 3. Add Search Logic
	Step 4. Display Employee Details and Skills
	Step 5. Update Employee Details
	Step 6. Update Employee Skills
	Step 7. Add Drop Down for Skill Code (optional)
	Summary

	FRM095 - Calling a Function
	Step 1. Create the Called Function
	Step 2. Create Salary Review Form
	Step 3. Test Salary Review Application
	Summary
	Appendix A. FRM095
	Appendix B. FRM095

	FRM105 - Define a Trigger Function
	Step 1. Create a Trigger Function
	Step 2. Define a Salary Trigger for Employee File (PSLMST)
	Step 3. Create an Employee Salary Change Form
	Step 4. Test your Employee Salary Trigger
	Summary
	Appendix A. FRM105

	FRM115 - Writing Reports
	Step 1. Create a Simple List Style Report Using a Template
	Step 2. Call a Function
	Step 3. Enable For Full RDMLX
	Step 4. Manually Create a Reporting Function
	Step 5. Add a Header and Footer
	Step 6. Keep Statistics and Print
	Step 7. Add a Grand Total Line
	Summary

	FRM125 - Check Out / In to IBM i
	Step 1. Create a LANSA for iSeries Object
	Step 2. Refresh Objects in Visual LANSA
	Step 3. Check Out Object
	Step 4. Check In Changes
	Step 5. Delete from Repository
	Summary

	Visual LANSA Framework (VLF) Introduction
	Common Exercises
	LVF040 - Execute Framework Application
	Step 1. Execute the Visual LANSA Framework
	Step 2. Execute an Application
	Step 3. Using Filters to Find an Employee
	Step 4. Using Commands and Command Handlers
	Summary

	LVF060 - Create a Prototype
	Step 1. Understand the Requirements
	Step 2. Create a Prototype Application � iii HR
	Step 3. Define Filters and Command Handlers
	Summary

	VLF for Web Application Module (WAM) Applications
	LVF070WAM - Snap in a Real WAM Web Filter
	Step 1. Create Your Real WAM Filter
	Step 2. Snap In the WAM By Name Filter
	Step 3. Create a WAM By Location Filter
	Step 4. Snap in the WAM By Location Filter
	Summary

	LVF075WAM - Snap in a Real WAM Web Command Handler
	Step 1. Create Your Real WAM Command Handler
	Step 2. Snap in Your WAM Command Handler
	Summary

	LVF080WAM - Add Instance List Columns in WAM Applications
	Step 1. Add Columns to the Instance List
	Step 2. Change your filter
	Summary

	VLF for Windows Applications
	LVF070WIN - Snap in Real Windows Filters
	Step 1. Create your Real By Name Filter
	Step 2. Snap in the By Name Filter
	Step 3. Filter Code
	Step 4. Create a Real By Location Filter
	Step 5. Snap in the By Location Filter
	Summary

	LVF075WIN - Snap in A Real Windows Command Handler
	Step 1. Create your Real Command Handler
	Step 2. Snap in your Command Handler
	Summary

	LVF080WIN - Add Instance List Columns in Windows Applications
	Step 1. Add Columns to the Instance List
	Step 2. Change your filter
	Summary

	Appendix A. Personnel Demonstration System
	Personnel System
	Physical Database Map of Personnel System
	Sample Data in the Personnel Files

