Visual LANSA Fundamentals Windows Tutorials

The exercises in these tutorials are designed to provide you with an overview of
the basic skills for working with the LANSA Editor and the LANSA Repository,
as well as providing some practical examples of using the tools LANSA
provides to help you code your applications faster using Forms.

The tutorials are intended to be done in this sequence:

e User Interface Tutorials

e Repository Development Tutorials

e LANSA Editor Tutorials

e RDML Programming using Visual LANSA Forms

e An introduction to the VISUAL LANSA Framework
Supporting material:

e Appendix A. Personnel Demonstration System

Edition Date January 6, 2014
© LANSA

its:lansa095.chm::/lansa/VUIEng01_begin.htm
its:lansa095.CHM::/lansa/reptut01_begin.htm
its:LANSA095.CHM::/lansa/vedeng01_0010.htm
its:lansa095.chm::/lansa/frmeng01_0010.htm
its:lansa095.chm::/lansa/lvfeng01_0010.htm
its:lansa095.CHM::/lansa/apxtut01_appA.htm

About the Tutorials

Following is information for you to prepare for completing the exercises in
these LANSA Fundamentals Tutorials:

Tips for using the Exercises

How many Developers can use the Exercises?

What Partition should I use?

Using Long Names

Tutorial Installation

and finally, a link to our support department, should you have any suggestions
for improving these exercises: Your Feedback

Tips for using the Exercises
You need to complete these tutorials in sequence because fields and files created
in early exercises are required to complete the later exercises.

Exercises are designed to be completed in sequence as later exercises are
designed to use skills from the earlier exercises.

e Check off each step in an exercise as you complete it.
e Follow the instructions very carefully.

e The first steps in an exercise will provide very precise descriptions of the
tasks to be performed. As the steps and course progresses, the instructions
will become much more general.

Before you start, ensure that the environment that you will be using is set up as
described in What Partition should I use?

How many Developers can use the Exercises?

There is no limit to the number of developers who may use the training at the
same time. However, it is important that each developer has a unique identifier
for their own work.

In the exercises, each developer will use an object prefix iii which can be based
on their initials or could be assigned by a system coordinator.

To allow for more than one developer to use the exercises, prefix any objects
you create with a unique identifier such as your initials (iii).

Note that if you are using a trial version of Visual LANSA without a license,
you cannot use the iii prefix but must use DEM instead. Following are the
identifiers you may use:

File: DEMFILO1 to 10

Form / Reusable Part / WAM: DEMCOMO01 to 10
Process: DEMPROO1 to 10

Function: DEMFNO1 to 10

If you are using a shared server Repository, only one student may complete the
course at a time as names must be unique. See also Using Long Names.

What Partition should I use?

The partition you use has to be enabled for Full RDMLX with the
Demonstration Material installed.

To verify that the partition has been set up for the exercises:

1. In the Visual LANSA editor, open your partition definition and display the
RDMLX settings.

a. Ensure the option Enable Partition for full RDMLX has been selected.

b. Ensure the option Enabled for Long Names has been selected.

4 @ RDMLX Settings

Enable Partition For Full RDBALX g
Enabled For Long Mames g
Create Field As RDMLX '
Create File As RDMLX g
Create Component As Full RDMLX &
Create Function &s Full RDMLX g
Enable Short Char Disable

To verify that the Demonstration Material has been included:
1. Expand the Files node in the Repository tab, locate files starting with letter P.

2. Make sure that the files PSLEVENT, PSLMST, PSLSKIL and PSLTIMES
are present.

4 P
PSLEVEMT Personnel Event Log
PSLIMG Personnel Images
PSLMST Personnel
PSLSKL Personnel skills
PSLTIMES Personnel time sheets

If these files are not present, and you are working with an independent LANSA
System:

1. Close down LANSA Development Environment
2. Restart LANSA Development Environment

3. Reinitialize the partition using the Partition Init... button in the Visual
LANSA Logon screen.

=] Visual LANSA Logon | x |

User 1D: rorim s ey

Password: m

[Use Windows credentials

Partition Current Language Task 1D

5Y5 English |
EETH | French TSYS0001

| oK || systemmnit... (Partition Init...) Messages | | Cancel | | Help

4. In the Partition Initialization dialog select the Personnel System
Demonstration material option.

=] Partition Initialization

[] Mandatory Partition Initialization
[=] visual LANSA Framework
[=] Enable for the Weh

LANSA Client field and file definiions
[»] Demonstration material

[Run Demonstration

Show Last Log... Messages Cancel Help

3. Press OK and wait for the import to finish.

For details, refer to the Partition Initialization options in the Visual LANSA
Administration Guide.

If you are working with a slave LANSA system and the partition is not set up as
required, contact your LANSA server administrator.

its:lansa011.chm::/Lansa/l4wADM02_0025.htm

Using Long Names

These tutorials assume that you are using Long Names. This means that Long
Names are enabled in the partition you will be using.

With Long Names enabled objects have two names, a Long Name and an
Identifier (also referred to as the Short Name).

With Long Names enabled, when objects such as fields, files, forms and
reusable parts are created, the Long Name must be unique within the
partition and may not be the same as an existing Identifier.

A Long Name may be up to 256 characters long and may be letters and
numbers with no embedded blanks. Long Names are not case sensitive, so
EMPNO, EmpNo and Empno are all the same.

An Identifier may be up to 10 characters long and may contain letters and
numbers and some special characters for some objects, but these are not
recommended. Field Identifiers are limited to 9 characters.

When an object is created using a Long Name, LANSA will assign an
Identifier. As you create objects, you may assign an Identifier (as long as it is
unique within the partition). Identifier cannot be changed once a new object
has been saved.

If you are using a Trial Copy

If you are using a trial copy of Visual LANSA (that is, no licence) you can
create files and forms using a long name, but as you create the object you
must assign the restricted object Name as the Indentifier. For example:

25|

Mew File
: Long Name

Mame iiEmployeesFile —— Create
Description Emnployees file c I
ance
Library DC@DEMOLIE
o —(’_ ldentifier pen in editor
Identifier DEMFILOZ
T DEMFILO1 to 10

Enabled For RDMLX]

e For more details refer to LANSA Object Names in the Technical Reference
Guide.

its:lansa015.chm::/Lansa/tgub5_0050.htm

Tutorial Installation

You may wish to install a separate Visual LANSA System for training. You can
install an Independent Visual LANSA Workstation on a PC to complete your
training, and then uninstall this system once training is complete. If you are
using a Visual LANSA trial license, this is the recommended approach.

Your Feedback

Your feedback regarding these exercises will help us improve the overall quality

of the LANSA documentation and training. Please email your comments to
LANSA Training support.

mailto:lansatraining@lansa.com.au

User Interface Tutorials

What is the User Interface Tutorial?

This tutorial contains exercises that are designed to introduce and reinforce the
fundamental user interface skills required to use the Visual LANSA
Development Environment. They focus on the user interface, navigation, and
search techniques as opposed to teaching programming skills to build
applications. (Refer to the Repository Development and Programming using
Visual LANSA Forms Tutorials to learn LANSA development skills.)

While all the essential areas are covered to enable a new LANSA developer to
get started. They are not comprehensive. The User Interface tutorials include:

VUIO01 — Starting LANSA

VUI002 — LANSA Editor Parts

VUIO03 — Repository Tab

VUIO004 - Details, Outline, Favorites Tab

Before you Begin

You must have LANSA Demonstration Personnel System installed in the
partition that you will use with the set up options as described in What Partition
Should I Use?.

The LANSA Demonstration Personnel System contains all the objects used by
these exercises.
Tips for using the exercises

e Check off each step in the exercise as you complete it.

e Follow the instructions very carefully.

e Remember to replace iii with your unique 3 characters. You will not always
be reminded to make this substitution.

For further information refer to How many developers can use the exercises?
e These exercises assume that you have not previously customized the editor
interface. If you have already customized your environment, the example

screens and instructions may not exactly match your customized
development environment.

The following are important notes regarding the structure of the exercises:
e The first steps in an exercise will provide very precise descriptions of the

its:lansa095.chm::/Lansa/reptut01_begin.htm
its:lansa095.chm::/Lansa/FRMEng01_0010.htm
its:lansa095.CHM::/LANSA/lansa095_0020.HTM
its:lansa095.chm::/LANSA/lansa095_0040.htm

tasks to be performed. As the steps and course progresses, the instructions
will become much more general.

o Later exercises are designed to use skills from the earlier exercises. These
exercises are designed to be completed in sequence.

VUI001 — Starting LANSA
Objective:
To learn how to start Visual LANSA.

To learn how to logon using a specific partition, language and task ID.
To learn how to use the LANSA documentation and toolbar.

e To learn how to use context sensitive help in the user interface.
To achieve these objectives, you will complete the following:

Step 1. Starting the LANSA Development Environment

Step 2. Online Documentation

Step 3. F1 Context Sensitive Help

Summary

Before You Begin:

You may wish to review the following topics:

e Visual LANSA Logon in the Visual LANSA Administrator's Guide

its:lansa011.chm::/Lansa/l4wADM02_0240.htm

Step 1. Starting the LANSA Development Environment

In this step you will locate the LANSA folder and start LANSA.
1. The Visual LANSA Installation creates a LANSA desktop folder a shown:

Home Share Wi

T ke = Start Menu » Programs ¢ LANSA Search LANSA

L)

S Libracies {J‘a

? Decuments
'ﬂh Music

b Pictures
B videos

) Homegroup

H John lvery

% Computer
& 05(C)

Documenta
tion and

Developme Exec Formn Exec Form
nt {to RDML (to RDMLX

Emvironme IBM i) IBM i)
nt

Administrat

ion
-
Exec Form Exec

Process (to

RDML IEM
i

Exec Exec Integrater
Process (to Process Studio

£ DVD RW Drive (H:) Audia CD ,?

& T
£=' DVD RW Drive (1) Audio CD e iy
e i Function
™ jehniveryBlansa.co.uk (jehni_wind Editar

ih Metwork
1 JOHNI_WINS

13 itemns

If you open the Documentation folder, you can directly access the LANSA
online documentation. Help (also referred to as the online guide) can also be

accessed from within the Visual LANSA IDE. The IDE includes extensive
context sensitive help links.

If you open the Setting and Administration folder, you will see a group of

program icons used by LANSA Administrators to configure the LANSA
environment:

—~
2. Start LANSA using the Development Environment icon in the LANSA
folder

or

via the Development Environment icon in the Windows Start Menu.

. LANSA13 |
: _._D.?@.ErnsFF..E.!!?!L?!JWEU_F_. I
5 Exebdorm (to RDMLIBM i)

L~
=

Development

3. Double-click on the Enviranment jcon to start LANSA. The Visual LANSA
Logon dialog will open:

=] Visual LANSA Logon | x |

User ID: jivoryb13
Password:]

[Use Windows credentials

_F'artstiun Current Language _Tash; I
5YS lEnglish WITRAINNG |
[EET| | French TSYS0001

_ DK Systemn Init.... Partition Init... Messages Cance Help

Logon using the User ID, Password, Partition and Task ID provided by your
course instructor.

If you are using a trial, stand alone installation, logon using;:

Userid: PCXUSER, Password: PCXUSER, Partition: DEM and Task ID:
PCXTASK.

The LANSA Editor will open. The appearance of the editor will depend upon
the type of installation as well as the editor settings

B P+ b v LANSA Editor - o IEN|

—Hm-r Took BN N
— = "

& B Fuelds
& [Files
& ™= Forms
BT Functions
[4 Processes
@ Resources
I & Reussble Parts
i+ &* Business Objects
4 g Web

* g Wb Apphcation Modules

B Wek Comporents

= g Weblets

] Active Technology Senvce (KHTML]
P Organizers.
i M Syptem Infermation

Note: Visual LANSA is shipped configured with a grey color scheme. You
will find most of the images included in this tutorial use a blue color scheme.
You will learn about changing the appearance of the IDE and editors in this
tutorial.

Step 2. Online Documentation
In this step, you will learn about the LANSA online help and documentation
search facilities.

1.In the LANSA Editor click on the Help icon at the right hand side of the ribbon
area..

o

=T

§ Master Objects
.i Check In

am%m

The LANSA User Assistance contents page will be shown. You can use the
Search tab from here to search for a topic in all LANSA guides.

e R =Y)
o = = B fa) & [#) L)

= @ Web Appication Modules (WAMs) |

‘Visual LANSA Tutorials
|#] Visusl LANSA Windows Appkcatior

E

Hide Back Forward Rafrash Home Pert; Later version? Doc’h Help
-
Contents | Search]
| Sooch| LANSA User Assistance

[

W F sk Tigg and the Documantalion Bosdmap If you're naw to this documantation
rr: o 3:g:|—“ 5 Gusda for labe breaking new's
B : Technical Aslersncs Guide This window gives you acoess o all of LAKSA's Online Documentation
& 4 Visusl LANSA Adminisirabor's Guide This means thal whan you wse the Search Tacility, your search resuls wil
. LANSA show whene your word or phrase & fosnd i every document lisbed in the

Vizurd Developer Guide Caontents -
= @ Visual LANSA Logical Modeler gl =

To s=arch in only one document, select the document and press the bise book

t o The seleciad dacument wil be opened in a8 few window.

[+ Web Adminstration Guide Visual LANSA Syatem i
[% RAMP-TS Guds
Wisual LANZA Framework Guide 5
7 @ Fiducton to LANSA for iSeves e R
B @ iSenies User Guide Tachnical Referencs Guidg Inlrodsction 1o LANSA for Seris L
= @ LANSAforiSenes Tubodals | £ Admin isiradnr Series User Guide
= @ LANSA Dpen System Lkities Guide Wisual LANSA Developer Guide] -
@ staling LANSA on Windows Wisual LANZA | ogical Wedeler Guide Srsa Tyl
B @ Instaling LANSA.on IEM i - ntals T LANSA Open System Utities
= nstaling LANSA an Linux ‘isual LANSS Windows Applicabion
[+ ‘ Communications Sebup Tutorisls
i3 WLF Deployment Chescle Lists
[LANSA Applcation Deployment To- LANSA for the el Installing LANSA
= @ Deplaving LANSA Apphcations on | Web Apghcation Modyies (ViaM) Quick Instal Plansor
B @ Deplaying LANSA Aopheations on | Wigh Adminisirstion Guide Ingtaing LANSA gn Windows
£ @ Application Design - Instaling LANSA on M |

Instaling LANSA on Linux

Follow the numbered steps shown below on the left hand side. This is just
one way to navigate through the online guide. Once you are experienced, you
will find there are many ways to rapidly find the information you need.

1. Select the
Documentation

Roadmap link LANSA User Assistance
at the top of

. Vizit Tips and tr@ucumntatiun Roadmag f vou're new to thiz documentation.
the right hand

d Thiz window gives you access to all of LANSA’s Online Documentation.
siae. Thiz means that when you use the Search facility, yvour 2earch rezultz will =hov
found in every document lizted in the Contents.

To =earch in only one document, =elect the document and prezs=s the blue book

2. Note that this
takes you to

links to S oowse W contents ® s B rutoria
sections of the

guide for LANSA Documentation Roadmap

different tYPES This is a documentation navigation tool. It will guide you through the various

LANSA resources based on your role.

of user.
E Adrmamstrator
Select the

Developer link

Project Manager

Conventions used in this document
What = LANSAT LANSA Product Summary

LANSA Glassary

Edition Date Jubw 23, 2012 =
3. This provides S *
. Browse Contents

more links to

sections of the 2. Developer

%lﬂde su1table Quick Reference List

ora
developer.
Product List

Select Product

List. Checklist

4. From here
select Visual
LANSA Global

Guide link.

The Contents tab
shows the guides
grouped under
the Visual LANSA
Global Guide.

This opens the
Visual LANSA
Guides as a
separate
document.

5. Switch to the
Search tab,
type in the
word compile
and select the
List Topics
button.

Note that there
are around 300
topics
containing the
word compile.
This is because
you have
searched all

g Brawse W Contents

2.2 Developer Product List

W sET Bl Tutorial

Following is a list of the LANSA product guides and key sactions for

developears:

Product Complete Guide Key Sections

Guides,

Wigual = Wisual LANSA Global Y Thes is a global puide
LAMSA Guide containing all Visual LAMNSA

Administrator Guide

¥ Visual LANSA Haost Monitor

Systermn [nforrmaton
Maintenance

Environment Settings

Guide

B Wisual LANSA User Usang the Editar
Editing Objects

i}
g & <

Hide Back Forward

Corterts | Search | Favortes |

[ERVR] Visual LANSA Guides
= @ Vesual LANSA Admirestrator's Guide

[t ‘esual LANSA Developer Guide

E Visual LANSA User Guide

= Wiesual LANSA Logical Maodeber

= LAMSA Applcation Deployment To
* Technical Refersnce Guide
@ Visual LANSA Framework Guide
EH WLF Deployment Check Lists

£ RAMP-TS Guide

Conterts Search | Favores |

Type in the wondis) to search for:

[compite | ﬂ
(TS| _owe

Select topic: Found: 327

Title | Location | Rar &
205 Set DLL Versio... LANSAMAp.. 1
Prerequiste Skils AAMP-ML ... 2
S13COMPILE_PR.. LANSATe.. 3
RAMP TSADODZ Ste.. RAMPTS.. 4
147 Compiing™ A... Wisusl LAN.. §
5. Compiler Settings Visual LAN.. &
Step 3Create a Hid... Visua LAN.. 7
WEB1, Step 2 Pac... VLF Deplo.. 3
Compile Tab Visual LAM.. 9
Step 1Creating Your.,. Visual LAN 10
TN T E—— Ve yul | BB 44

I

its:tips.chm::/lansa/searching.htm

the guides

grouped under
Visual LANSA
Global Guide.

As you can
see, this list is
long and
unwieldy. To
make it more
manageable,
you can:

* sort the listed
tems by topic title
1y clicking the Title
'olumn heading

* sort the items by
,ocation, to split the
ist by guide.

* narrow your
earch using the
earch features
lescribed in
searching in the Tips
suide.

6. Select one of
the topics and
select the
Display button.

Then select the
Contents
toolbar button
at the top of
the displayed

page.

Corterts Search]
Type in the word(s) to search for:
Icnmpile j)J
List Topics I Display I
Select topic: Found: 327
Title | Location | Ral =
RAMP TSADDS Ste... RAMP-TS .. 72
RAMP TSADDS Ste... RAMP-TS .. 76
5. Compiler Settings ~ Visual LAN... 7

714 Compile and E... Visual LAN... 12
1.3.2 Local Client or ... Visual LAN... 24
541 Detailed Mess... Visual LAN... 38

% Browse

7.1.4 (ZITHE and Edit Options

P LANSA Editor - System Informatic
File Edit “iew Options Werify Debug

RBrew v | A S| X E

Swstem Information

Process and Function compile defaults
[whimh walidata momerice

This will open
the guide in

. . . Visual LANSA Administrator's Guide
which this topic Eﬂ.ﬁ T l::- R & |
was found. Hde FPrevios Mext Back Foward Refresh Home
7. SWltCh to the Contents |i¢ﬂ‘ﬂ'l| % Browse ¥ Contents '- SET
Search tab and B et afie 7.1.4 Compile and Edit Options

again list _I
topics for the

word compile.
Note that there

2. (Gefting Started with Administratic
[3. Visual LANSA Logon

@ 4 Visual LANSA Indialization

M 5. Remote Systems

H g EB. Change Management] E €2
& 1) 7. System information

B [y 7.1 System Definitions = 2

P LAMSA Editor - System Infarmation
Fla Edit “iew Options Werfy Debug Took

O B

—
£ New =

are around 19
topics found.
This is because
you are Now
searching for
topics in one
guide only.
This is often
the most
efficient way
to search for
information.

[£] 7.1.1 Eqott and Impodt
|E] 7.1.2 Task tracking

5] 7.1.2 Reld and File defaults
_=] 7.1.4 Compile and Edi Opti
(] 7.1.5 Exmcution and Securi
[£] 7.1.6 Disolaw and Peick con

Swsbem Information

Process and function comple defaults
Web validabe numerics

Pracess, function and file compiles

T mareila i QI =epia

8.Close the individual guide you have just opened - Visual LANSA
Administrator Guide in the example shown to return to Visual LANSA Guides.
Close this guide, leaving the LANSA User Assistant guide open

ﬁ@ LANSA User Assistance V13~ - - "

& = AT B
Hide Back Forward Refresh Home Prirt Later ven
Contents |§earch I @ Browse ®: contents
=) LANSA Documentation - g
= ([LANSA Documentation Roadm| 2.2 Developer Product List
| s
@ 1. Administrator Following is a list of the LANSA produc
= E@ 2. Developer developers:
[7] 2.1 Developers Quick f
[7] 2.2 Developer Product Product Complete Guide
2] 2.3 Bevelnper Checkls i Visual > Visual LANSA G
@ 3. Project Manager = LANSA Guide

9. Click the Back button (highlighted above) until you return to the LANSA
User Assistance initial view.

B v e N B o
& = A (]

Hide Back Forward Refresh Home Prirt Later version? Doc’n Help

Corterts | Search | LANSA User I

=) LANSA Documentation

»

- -
= ([J] LANSA Documertation Roadm| Assistance
@ 1. Administrator Wisit Tips and the Documentation Roadmag if vou're
= ({3 2 Developer new to this documentation.
@ 2.1 Developers CGuick | See Mersion 13 Release and Installation MWotices for £
@ 2.2 Developer Product late breaking news.

[7] 2.3 Developer Checklis

. This window gives you access to all of LANSA's
@ 3 Project Manager =

COnline Documentation.

[7] 4. Convertions Used in this This means that when you use the Search facility,

@ Overview of LANSA Guide: your search results will show where your word or

@ What is LANSA? phrase is found in every document listed in the i
M s i amia: Meambamds

10.Select the Technical Reference Guide and note the toolbar is shown for the
selected guide — indicating that it may be opened as a separate guide using the
Contents button. Most of the guides may be opened in this way.

EX LANSA User Assistance V13

i8 ¢ i () 5 B

Hide Back Forward Refresh Home Print Later versic
Conterts lﬁean::h] % Browse ® Contents
=] LANSA Documentation P

@ |ANSA Documentation Roadm
@ Tips for Speedy use of the Onlir 3 .
@ What's New in LANSA Version Technical Reference Guide

@ Visual LANSA Framework Guid:
A= ser Huide

» Quick Reference
« RDML Commands

o VisUal LA SdminiStrator 5 13

@ Visual LANSA Developer Guide i s ot e
il |G L ming] Mar=ln, a_ Built-Ip-Fynctione o=

Documentation Toolbar
11. The individual sections in the LANSA Guides display a common toolbar

Browse Contents Tfm SET Tutorial

Opens all 0 : 0 list
_ pen a single Opens the SET pens alis
LANSA documentation of all

Documentation Tutorials

or

* RDMLY Commands

To open a window displaying all the LANSA guides, press the Browse
button in this toolbar. The LANSA User Assistance window will be displayed.
You can use this window to search all LANSA guides

12. Note that you can also open the LANSA Guides from the "**™"#: folder in
the LANSA folder.

13. Of course the editor also has a menu button at the top right.
Contents open the full Online Guide reviewed above.
Using the Editor and ShortCuts are more specialized help files.

LANSA Home Page and LANSA Technical Resources are links to the LANSA
web site.

About provides detailed information for your Visual LANSA software.

If you are making a support call you may be asked to use the About dialog to
save information about your installed software and configuration.

& o =
a Contents

£ Master Objects Using the Editor
I‘ § Checkln ShortCuts

LAMSA Home Page

iote Syster LAMSA Technical Resources

About

14.The button highlighted below, hides or shows the ribbon area.

(=[@] & J]

Hide / Show

| B Master Objects Ribbon

Start .;E Check In

Step 3. F1 Context Sensitive Help
In this step, you will learn about the context sensitive help available throughout
the LANSA interface.

If you are not logged on to the Visual LANSA Development Environment, log
on now as described in Step 2. Logon and Partition Initialization.

1. Select the Repository tab. If you can't see the Repository tab, on the Home
ribbon, select the View menu, then select Repository.

Design ~ Tools
JR— - J » Full Check = g (1T
82 | = | & ™ D . % . P ¢
Repostory Text Search Views Open Compile == e History Error Logs Execute De
Obyects
Views
Favarites @ﬁ.ﬂ.mtant (F4) == Detsils (FT) E5F Loyout Helper
reakpoints avontes * utlime

X LG - ki Favarites [Shifts F2) wl,\":‘ fine (FE)

[Last Opened * Wl

[r— | I Ca sk w Features (F2) “)J Prapagation
® ADDRESS1
[DEPTAB i Check In Go Ta (Gt G) imnm (F&)
= wDepthnt -
= WCOMIS ithukﬂm Helg = Tt Search
& ImCOM2 : a ﬁ

INCOM22 U Compile = Impact Ana Hy| variabl

“ COM23 = = l—l
[[] imDepartrnents A Cantrols E Impart e_ Web Designs
® mDeptCode

o mEmpEndquin:

Note that the Repository tab can also be displayed using the F8 key.

2. With your cursor either on the tab or somewhere within the Repository tab,
press F1.

| 4 @ Web }
| Web Application Modules = = & s -
P - £ . = Repository Tab ="
- ; . .
> - Repository Tab Informabion about View Obgect 5
[Outline : Y Objects Ohbjects Properties k
! ; Details Alphabetical Object Cross-]
" Groupings References
-
I Repository
q . . " i i
: ﬁ The Repository tab is used to maintain objects in the current
Favorites - repasitory and all the objects within the achive development
¥ @R partition. -
Y| (1 Assistant | . Compile igg Help
R.em:l:.r LANSALZ*S SYS jworyld WM ENG Audit Courier Colors LANSA XHTML
—

The context help for the Repository tab is displayed in the Help tab.

You can view all the text using the scroll bars.

3. Scroll to the bottom of the Repository Tab's text where you will see a topic
with an up arrow 1t Standard Editor Tabs. If you click this topic, you will be
taken to the documentation's next highest level for the current topic. From
this higher level topic you can select any link to drill down into other related
topics.

In this case, you can view all the Standard Editor tabs.

« Standard Editor Tabs

L;\ Repository Tab Details Tab Debug Tabs Fropagation Tab
e Fawvorites Tab Source Tab Compile Tab Cross References Tab
- Cutline Tab Assistant Tab Check In Tab Editor Features
= Go To Tab De=ign Tab Check Out Tab Web Design Tab
a Features Tab Repository Help Tab Editor Basics
L

L3
i) Assistant | .. Compile g Help
LAMSAIS*S 5¥S jiveryl3 *UIlL ENG Audit Courier Colors LAMSA XHTML

4. Click on one of the links. The page for that link will be displayed. Return to
your original page by clicking on the <= icon.

If these links provides insufficient information, you can open the guide
containing the topic which you are viewing. In this example it is the Visual
LANSA User Guide.

5. Click the blue book " Contents button to open the Visual LANSA User
Guide. It will open at the help text topic you are looking at. In this example it
will be the Standard Editor Tabs.

B o+ L oe 2 [@ 4 5

Hide Frevious Mext Back Forward Refresh Home Print

Corterts |§earch I % Browse ‘ Contents ‘5 SET —|_| Tutorial
—{[]] Visual LANSA User Guide . 5
@ Getting Started with Visual LAN! Standard Editor Tabs
i@ Editing Objects g ! .
_____ Qll Ctandard Editor Tabs Repository Tab Details Tab Debug Tabs Propagation Tab
""" 2] Editor Features Favorites Tab Source Tab Compile Tab Cross References
- Repository Tab Tab
----- [2] Favorites Tab : 4 :
_____ Outline Tab Outline Tab Assistant Tab Check In Tab Editor Features
""" @ Go To Tab Go To Tab Deszign Tab Check Out Tab Web Design Tab
----- Features Tab
@ Details Tab Features Tab Repository Help Editor Basics
@ Source Tab = T
. o
< |] 3

5. Close the Visual LANSA User Guide using the Windows Close || button.

6. From the File menu, select the New option, and select Field. Note that in this
exercise you will NOT complete the create a new field process.

Last Opened B
= @
Application
) Save All Module

7. The New Field dialog will be displayed.

Mame Create

Description

Field Type
Field Length | Open in editor

Cancel

Cloze

Decimals

Reference Field

Identifier
Enabled For RDMLX

8. Notice that the cursor is positioned on the Name. Press the F1 key to display
the online help for Field Name.

Help for Field name will be displayed in the Help tab.

x5 4.21Field Name

'-:} Mandatory.
Specify the name of the field to be created in the LANSA Repository,
‘ Refer to LANSA object name.

Rules
» Refer to LANSA object name.

[Warnings
: » Refer to LANSA object name.
- &
L} o Tips & Technigues

| (1) Assistant | . Compile g Help
LANSALZ*S 5Y5 jvorgld UM ENG Audit Couwrier Colors LANSA XHTML
Note: If the help text is larger than the Help tab's current size, you will not be
able to enlarge the tab or use the scroll bars while the New Field dialog is
open.

The New dialog is modal. You must either close the New field dialog and
then enlarge the Help tabs area or enlarge the Help tab before using the New
dialog..

You can also float any of the editor tabs as a separate window.

1.2.1 Field Name
Mandatory.

Specify the name of the field to be created in the LANSA Repository.
Refer to LANSA object name.

Rules

» Refer to LANSA object name.
Warnings

» Refer to LANSA object name.
Tips & Techniques

« Refer to LANSA object name..
Platform Considerations

« Refer to LANSA object name..

Also See
1.2.2 Field Identifier

1.2 Field Definitions

Close the New field dialog.

Summary

Important Observations

When you logon to LANSA, you select the partition, language and task ID to
be used. The LANSA Administrator will create profiles and authorities to
control access to LANSA.

LANSA can be started from the LANSA desktop folder or by using the
Window's Start menu.

The LANSA documentation contains a standard toolbar to access all the
documents, or as single guides, SET and the Tutorials guides.

The Search tab in a document is used to search the currently open guide or
group of guides.

You can find the location of a searched item in the Contents tab.

The Browse & button on the documentation toolbar opens the User
Assistance window that allows you to search all LANSA guides.

Tips & Techniques

Remember to use the F1 online help while using LANSA and these tutorials.
There is online help throughout the user interface.

LANSA provides a wide range of user, developer, administrator and
technical documentation, as well as documentation by product.

Use the Tips Guide to learn about the specific search techniques available
with Visual LANSA.

Use the Contents & toolbar button to open the specific guide whose topic
you are reading. You can quickly review other topics in the guide or you can
search within just one guide.

Always open the contents list in the Contents tab before you do a search, if
you want to find the location, in the documentation, of an item that has been
found in a Search.

If you want to narrow your help topics search to a single guide, simply use
the Contents toolbar button to open that guide in its own window. Once the
guide has opened, use the Search tab to search within the guide that is
opened.

What I Should Know

How to start Visual LANSA.

How to logon using a specific partition, language and task ID.
How to open the LANSA documentation and use the documentation toolbar.

How to use F1 context sensitive help. (F2 context help will be tried later in
this fundamentals tutorial.)

How to search all LANSA guides or how to search a single guide.

That you need to open the contents list before doing a Search, in case you
want to find the topic in the content list.

The initial set of personnel system demonstration objects in the Active
Partition were loaded using the partition initialization.

VUI002 — LANSA Editor Parts

Objectives:
e To introduce the basic parts of the Visual LANSA Editor.
e To learn how flexible are the basic editor parts.
e To learn how to use autohide for the tab folders of the editor.

¢ You will not open any objects in LANSA. The focus of the exercise is how
the parts of the interface can be changed. The purpose and features of each part
are described in later exercises.

To achieve these objectives you will complete the following:
Step 1. Editor Parts Overview

Step 2. Repository, Favorite, Outline, Details Tabs

Step 3. Docking/Undocking a Tab Sheet

Step 4. Reset Editor Settings

e Summary

Before You Begin:

You may wish to review the following topics:
e Using the Editor in the User Guide
e Host Monitor in the Administrator Guide

e [t is recommended that you complete the preceding tutorials before you start
this tutorial.

its:lansa012.CHM::/LANSA/L4wUsr01_0015.htm
its:Lansa011.chm::/lansa/l4wadm03_0010.htm

Step 1. Editor Parts Overview

1. If you haven't already done so, start Visual LANSA as described in Step 2.
Starting the LANSA Development Environment.

The initial appearance of the Visual LANSA Editor will depend upon your
type of system installation. If you are using a Slave Workstation Visual
LANSA System, the editor will initially appear something like the following:

B --@miEn LANSA | [E=REERT
Home Tools o @ r
= -._. e @ = £ Master Objects
Repository Text Search Views T Open N History N Error Logs T History Start ‘i ChecklIn
Find Ohbjects
Repository Ta Runtime Remote Systems
Favorites
LNew - | 2| & | QBB B s
=
E Last Opened _Igl Common Contrals | sl
Itern : | Description
« = Outline
= Details
I Repository x|
L
. Favorites :
=
® | -
- @Aﬂsstant

Ready LAMSALZ 5YS jwvoryl3 *UNL ENG Audit Courier Colors LAMSA XHTML

e There are three main areas in the Editor:

A. The Repository, Favorite, Outline, and Details tabs. The Repository and
Favorite tabs are used for selecting objects in LANSA. The Details tab is
used to edit object details and the Outline tab lists the names of the objects
open in the editor and shows the structure of these objects. These four tabs
are initially situated on the left side of the editor but can be moved as
required.

B. This area displays the details of the selected object. The tabs shown will

depend on the object selected. For example, if a Function is displayed, the
tabs most likely displayed will be the Source, Design, Repository Help
and Cross References tabs. If a file is displayed, then you will see these
tabs: Fields in File, Logical Views, Rules and Triggers, Access Routes,
Batch Control, File Attributes, Relationships, Cross References, Virtual
Derivation.

C. The Assistant, Help Text, Compile (and optionally the Check in, Check
Out and Propagation) tabs provide status information and assist in
performing specific actions. They initially appear at the bottom right side
of the editor.

The sample screens in this tutorial are from a Slave Workstation Visual
LANSA system. Your screens will be slightly different if you are using an
Independent Visual LANSA System.

Your editor's setup and system settings will impact the information

that is displayed. Your screens may not be an exact match to the
examples shown in these exercises.

2. You can resize these three main areas by dragging the horizontal or vertical
splitters or dividers between the panes. Simply click on the divider (arrows
will appear) and with the left mouse button pressed down, drag the divider to
change the size of the pane.

7

22 £ Master Objects

Repository Text Search Views History " Error Logs v History Start -i CheckIn
Find
Repository Runtime Remote Systemns

Favorites

v X 2]abE

Ei Last Opened EI Common Contrals |
Item - | Description

*UM ENG Audit Courier Colors LAMSA XHTML

Step 2. Repository, Favorite, Outline, Details Tabs

In this step, you will learn how to reposition the four basic editor tabs used with
LANSA objects: Outline, Details, Repository and Favorites.

1. On the Home ribbon expand the Views menu to display all possible tabs.
Note that a number of these tabs can also be opened using a function key.

ﬁlﬁme Dessgn Tools
E — :: ! + Full Check = G) s > ¢

B0 =5 - - W Build ; v B -
Repostory Text Search Views Open Compile == History Error Logs Execute De
Fand Obyects
Views
IFWIH O.—'umtant F4) = Details (FT) S i
d 7= s
X & Q- Favarites (Shift«Fg) s Otine F5)
\F| Last Opened | . Wel
Itern I I . w Features (F2) i‘ﬂ Prapagation
= ADDRESS
(] DEPTAB i Check In Ga Ta (Ctils G) smmnm (F8)
= wDepthnt o
= WCOMIE ithukﬂm Helg = Text Search
IHCOM21 a @b
INCOM22 U Compile = Impact Ana Hy| variabl
INCOM23 - = |—|
imiDlepantrents A Cantrols E Impart ﬁ ‘Web Designs
B wDeptCode

o mEmpEndquin:

By default, the tabs are shown using the Tab View Style, Navigator.

_u Qutline
mE Details

i Repository = }J}
o ¥
. =1
Favorites . E
»
- |_i/|}
Ready 1

P

The Navigator style, shows tabs as buttons. These buttons may be hidden by
using the Show Fewer Buttons option:

Show More Buttons

Show Fewer Buttons

Add or Remove Favorite

You would then click on an icon to open a tab.

2. Right click on the tab title, and use the Tab View Style option to select
Standard:

T T e ey N - ._q.,_lf—’—WM/}

Favorites

Max Layout }

Mew = | B Autohide L

- o

e e Close H

I| £ LastOpened = ‘}
Itern \:h Tab View Style M| Standard |

E| . Mavigator

R e

The Standard tabs will be displayed at the bottom:
WW"‘\”

_n-'pa Outline = = Details | g Repository Favorites [

Ready

3. Right-click on any tab to open the context menu. Select Top to move the tab
names to the top.

All four tabs will switch to the requested location. In the example below, the
Standard tabs are now located at the top of the window:

Outline | = Details | gl Repository Favorites
B R TR PP T TR P TR |
Mew - 4 et &)
S Last Opened £ Common Controls
Itemn Description Ma
R it W N o

4. Click on the Repository tab, to display it.

5. Click on the autohide =/ button in the corner of the tab to hide the
Repository, Details, Favorites and Outline tabs.

When you use autohide, you have more room to work with the objects open
in the editor.

6. Press F8 to see the Repository tab again. This will display the tab briefly and
it will hide again when your cursor moves off it.

7. Click on another area of the editor and the tab folder is automatically hidden.

8. Click on any tab and then click on the Attach button =/ to lock the tabs back
into place.

All tab folders are attached back to their original position and will now stay
visible regardless of where the focus is in the editor.

Assistant, Help, Compile Tabs

These tabs appear at the bottom of the editor and you can maneuver them in the
same way as for the Repository tab, except that you cannot dock them into
another location.

Host Monitor Tabs

If you are using Slave Workstation Visual LANSA with a Master LANSA for
iSeries System, the editor will include Check in, Check Out and Propagation
tabs. You can undock them, adjust their size and hide them, as described for the
Repository tab.

Step 3. Docking/Undocking a Tab Sheet

In this step, you will undock the Repository tab and move it to another position.
Undocking is useful because it allows you to resize a dialog box to display more
information without having to resize the panes of the window, which you have
to do when a tab is docked.

Note that all tabs can be docked and undocked as described here.

1. With the Repository tab displayed, left mouse click on the docking bar and
drag it to the center of the Editor's window.

B - | . U ILANSA Editor

. | Home Tools

— s .

o = . ==
Repository Text Search Views Open
Find Objects

2
)

— :
4 Functions
¢+ 4% Processes

y Fepository
8l liNew ~ | 2| & | @ Pl B
== Item | Description h
= ® Fields a
] Files
= —
; Forms
b
=
=
WL

Resources e

2. Release the left mouse key when a title bar is added to the tab, or when it is
the position where you want it to be.

B! -~ ™ .. & < » |LANSAEditor

a - - - = - z - % -
Repository Text Search Views Open History Error Logs Histo
Find Objects

Repository P Runtirme

*
{
&

i W'W‘LUNHW*UHJ“\@;’N‘MNH?\J#

- Details W] Outline < |
L
3

- Functions
R e LT

Evoritﬁ :

The Repository tab is now undocked. It is now an independent window and
you can position it anywhere on the screen, or on a second screen..

3. Resize the Repository tab so see all the columns.

(e S i W

B8 Repository
it - 2 X| 2] QD l
Frem | Description | Modified | Build Status| Details | Task |
b @ Fields N
B L_ Files
"= Forms

4. Close the Repository tab to hide it. By pressing F8, the Repository tab will
reappear in the same location with the same size.

5. Double click on the title bar of the Repository tab and it will be returned to
where it came from.

6. To re-attach the tab on the left, drag the Repository tab left, position your
cursor on the Left button, and release the mouse button:

Favorites | Details || | Outline ©

i
5

HE

vavvvvvv.':

fRosdil DS

a
;
;

%
:
F

b =3 Active Te.,

Ef

7. To have two tabs open side by side on the left, release the cursor over the
Right button:

Favorites | Details || | Outline ©

& Active Partiti
I £® Fields
¢ [H Files
I+ = Forms
i "= Functions
I # Processes
I i Resources
b G
& -
A 4.‘
4 'l
Y o iy S

Your editor should then look like the following:

gl Active Partition [...
b 8 Fields
¥ [Files

|

Step 4. Reset Editor Settings

1. On the File menu and click on Options:

™ save Co

* Close

B Open

Last Opened

@) Save All

e Print
% Close All
!o Systemn Information Sys.
% Options
€9 Exit

-

2. Click the Reset Editor button to reset the Editor to its default settings. Later
tutorials will illustrate how these settings can be set to your own preferences.

o

Show Details

V| Show Hint

o Show In Key Sequence

¥ Show Internal Files

¥ Show ReadOnly Message
Show Short Names

¥| Save Master Information

Assistant

" Auto Expand Parameters
Details

I Show Advanced Festures
Outline

| Layout ltems

Summary

Important Observations

If you need more room to work with objects open in the editor, you can use
Autohide to hide the tab folders when they are not required.

You can move undock individual tabs by dragging them from the docking
bar.

You can dock folders to either the left or right side of the editor.
Folders can also be docked side by side.

Tips & Techniques

Undocking tabs allows you to resize a window to display more information
and it allows you to reposition the windows.

Learn to use the function keys to quick redisplay tabs once they are closed.
You may also dock/undock a tab by double-clicking on the docking bar.

Using Autohide leaves you with more room to work with the objects open in
the editor. This feature is extremely valuable when you are editing source
code and want the maximum screen area for editing.

What I Should Know

How to control the presentation of the basic editor parts.
How to size the areas in the editor.

How to turn Autohide on/off.

How to dock/undock tabs.

VUI003 — Repository Tab

Objectives:
e To learn about the Repository tab.
e To learn about the types of objects listed in the Repository tab.

e To learn how you can customize the way the contents of the Repository tab
are displayed.

e To learn how to open field definitions.

To achieve these objectives, you will complete the following:
Step 1. Repository Tab Contents

Step 2. Turn Alphabetical Grouping Off/On

Step 3. Arranging Columns in Repository

Step 4. Object Properties

Step 5. Accessing a Field

Summary

Before You Begin:

You may wish to review the following topics:
e Using the Repository Tab in the User Guide
e Alphabetical Grouping in the User Guide

e Information about Objects in the User Guide

e [t is recommended that you complete the preceding tutorials before you start
this tutorial.

its:lansa012.CHM::/LANSA/L4wUsr01_0100.htm
its:lansa012.CHM::/LANSA/L4wUsr01_0290.htm
its:lansa012.CHM::/LANSA/L4wUsr01_0285.htm

Step 1. Repository Tab Contents

The Repository tab is the focal point for all development. It shows all objects in
the active partition and provides access to objects in the LANSA system. You
use the Repository Tab to open and work with objects, such as your application
fields, files, forms and reusable parts.

1. Resize the Repository tab to see more of the columns of information
available. Reminder: The columns that appear in the Repository tab will
depend upon the type of Visual LANSA System that you have installed. The
sample screens in this tutorial are from a Slave Workstation LANSA
installation.

The Repository tab might appear something like the following:

F : ;
= | - [* LAMSA Editor ﬁ
L
m Hame Tools 5
AT = (0.%. B B
g0 = : : : . . :
Repository Test Search Views I i Errer Livgs Hestory — Start i]
Find
. -
= | g Repository
-3
] TR
g ko SN
= | Ttern Deseription Madified | Busld Status| Details Task
gl | Active Partition ...
= ® Fields
E Files
(=] f—
Forms
= T Functions
& & Processes
-}
g @ Resources
Reusable Parts
;" Business Obj..
H] i Web
§ } Organizers
=
w

B System Informati...

In this lesson, when you are asked to open an object, you will use the
Repository tab to locate them.

2. Notice that there are three main groups of objects listed:

Active The Active Partition stores all objects that a developer creates
Partition when building applications with LANSA.

Organizers Organizers are objects that are used to group objects in the
LANSA Repository.

System System Information stores details about the Visual LANSA

Information installation.

3. Expand the Organizers. You will see a list of objects that you can use to
group objects in the repository. For example, user defined lists and database
diagrams are stored in Organizers along with Frameworks and Groups.

E N A L e T e L R L e R T O e e T e Pl e T e o A e L T S T e S B T A G LA e S AT o x
= B Repository r
=]

% Mew - ¥ & | & =)

“ | Item | Description Modified | Build Status| Details
Tu i Active Partition (5Y5)
£ 4 .1 Organizers
5 * b Database Diagrams
o —

» o Frameworks

= * O Groups
= g Lists
o
&

+ B System Information

s il VT S ¥ e W

f

4. Expand System Information. LANSA Administrators will use this
information to configure the development environment. Many of the settings
here (for example Partitions) reflect setting established on the System i
LANSA system.

il e S P 2 x
& Repository -

New - Nl < QK

Iremn Description Modified | Build Status| Details

[B Active Partition (SYS)
!} Organizers

Repository ﬂ

Outline

4 B Systemn Information
% Message Files
& Partitions
o Primitrves
D Technelegy Services

Details)

B Remote Systems
& Temnplates
a Users
[Tasks

Cavorites

5. Expand the Active Partition(DEM). You will see a list of object type groups
that you will use to create and build LANSA applications. A set of objects
were imported into the repository when the partition was initialized.

iNew - | 2R 2 QB

Item - | Desesiption Modified | Build Status| Details

| Detaite W] | Outine < | Repository]

4 [| Active Partition (5Y5)
b §B Fieds

I [Files

b ™= Forms

I = Functions

I & Processes

I g Resources

I £ Reusable Parts

b @® Business Objects
b @ Web

b Organizers

MWWHMW”W%

Step 2. Turn Alphabetical Grouping Off/On

In this step, you will learn how to group repository objects alphabetically.

1. On the Repository tab, expand the Fields node. By default the fields are
grouped alphabetically.

Expand the letter A to see all fields starting with the letter A.
The list may appear something like the following:

| -
E k H""‘W
"ite #

Home Tools
= —— -
2 E = 0. %
- - - -
Repository Text Search Views Open History Error Logs History Start
Find Objects
&
A |
B8 Repository
Mew = M | & B
| ftem Descrigtion Madified !Build Status| Details |Ta:
4 | W Figlds -
| e
® ABSOPT Action Bar Option Alphanu...
® ADDRE3SL Street Mo and Mame 28/11/18.., Alphanu..,
B ADDRESS2 Suburb or Town 28/1119... Alphanu...
* ™ ADDRESS3 State and Country 28/11/19... Alphanu...
vl

The fields shown are used in the Personnel System demonstration.

2. Right-click on the Fields node and deselect the Alphabetical Grouping
option from the context menu.

]
Repository 1.}
B Repository 5
o exlsjare ¢
| Description {l
4 [®Fie : z
4 BB Find I L
> _ botion 1
Iz Favorite ption }
: | w| Alphabetical Grouping |"E| Nameg
R e ey BT i
.

The grouping will be turned off.

3. All fields are now displayed in alphabetical order but without alphabetical
grouping.

I Repository

&8 Repository
Mew = X & & B
ltem ' Description | Modified | Build Status| Details | T4

4 | ® Fields -

® @@RRMNO Relative record number Packed(l...

" D@UPID Field update / access i... Packed(7...

® ABSOPT Action Bar Option Alghanu...

B ADDRESS1 Street Mo and Mame 28/1119.., &lphanu..,

® ADDRESS2 Suburb or Town 28/11/19... Alphanu...

® ADDRESSZ State and Country 28/1119.., Alphanu...
e e e T S -

Alphabetic groupings can be used with most objects listed in the Active
Partition.

Step 3. Arranging Columns in Repository
In this step, you will change the order of the columns on the Repository tab,
resize and hide a column.

1. Click on the Details column heading and drag-and-drop it the left of the
Modified column.

Repository
B Repository b

LNew - | 22X & QP B
Item | DetBidscription Modified | Build Statuf| Details Ta
4 [® Fields) -
o @@RRMNO elative record n Packed(l...

B @@UPID Field update / access i... Packed(7...

Repository ;
B Repository ij
New - | 2| & | @ B0 ;
Ttem | Details | Description | Modified
4 | ® |Fields I
o @@RRMNO Packed(l.. Relative record number]3,

B @@UPID Packed(7.. Field update / accessi.. %

P R ABSOPT Alphanu.. Action Bar Option i

o m ADDRESS1 Alphanu.. Street Mo and Mame 28/11/19..5

i e R e SR

2. Right-click the column header area and deselect the Modified column in the
context menu.

Repository
I8 Repository
Mew = P & 6 B
tem - Details | Descriptinn | Modified | Ruild Status| Task
4 | ® [Fields)| Item -

i ® @ORRNO Packed(l.. Relative |*| Description

» 2@UPID Packed(7.. Fieldup ified

™ ABSOPT Alphanu.. Action | - ;ﬁ;g-mu;

* | ® ADDRESS1 Alphanu... Street N 15 Dietails

® ADDRESS2 Alphanu... Suburb Cokimn Mame

® ADDRESS3 Alphanu.,. State an Tvoe
e T BLANK e mbanu Blank | T e o]

The Modified column is now hidden.

3 Right-click the column header area and select the Modified column again to
make it appear. Drag the Modified column to the right of the Description
column.

4. You can sort the repository objects by clicking on the column heading. Click
on the Details column heading to sort the list by the field type.

Repository 3
3

B Repositary j,
3

New ~ X & & B g
Itemn Madified Details Description | B‘::,
|

4 . ® Fields ¢

= BLAMEK Alphanu.. |Blank/ blanks variable :

" BLAMKS Alphanu.. |Blank/ blanks variable 3

* ™ DF_ELHLP1 Alphanu.. |Help for function DW.., F

* ™ DF_ELOPER Alphanu.. |Operation (+ -x/) ‘!

: MWM M

5 Click on the Item column heading to sort the fields alphabetically again.
6. Reset Fields to Alphabetic Grouping again.
7. Close the Fields node.

Step 4. Object Properties

In this step, you will view the properties of an existing field, ADDRESS1 using
the Repository tab.

1. Open the Fields node and select the ADDRESS]1 field from the A field group
list. Right click on the ADDRESS]1 field. Notice the list of options available
in the context menu.

ftem | Modified | Dretails Description s
4 BF Fields L
a W g 2
® ABSOPT Alphanu,., Action Earﬂptin%
* ADDRESS RO Ad=b-—y... Street Mo and Mag
® ADDResS I Open .. Suburb or Town ;
B ADDRES: ¥ Delete from Repository ... State and Euuntrlt
= B E
. C Find H
L) }
. & Quick Export i
" F i Check Qut _}
LS Check Out Readenly ?
" H ‘]
. Copy
" Copy Mame i
» K = Print 1
. . :
;
"
"N &t Cross References g
»0 &y Security Settings é
P) Features ;
L) 3
Rt e g o md. o safe gl

2. Select the Properties option. A brief summary of field properties will be
displayed.

' =
| ® Properties of field ADDRESS e

® |Description |
Type Field
Mame ADDRESSL
Identifier ADDRESSL
Description Street Mo and Mame
Date modified 28/11,/1997 10:03:49
TaskID

[| Repository
Enabled for full RDOMLX 3§
Local Repository State "
Master Repository State)4

Close

L

3. Close the properties dialog.
In the next step, you will open an object in the editor.

4. Before you open the object, select the Outline and Details tabs. (If these tabs
are not open, select them from Views in the View menu or by pressing
function keys F6 and F7.)

Notice that these tabs are blank because no objects are currently open.

a - - m_ e

File Home Tools

8T .=. ©

Repository Text Search Views Open Histor
Find Objects

B i e Vo PP |

If necessary, shrink the width of this tab so that you can see the Edit view in the
right hand pane in the following steps.

Leave these tabs open for the next step, Step 5. Accessing a Field.

Step 5. Accessing a Field

In this step, you will open and view an existing field, ADDRESS1 using the
Repository tab.

1. In the Field group in the Repository tab, right-click the field ADDRESS1
and choose the Open option from the context menu. Alternatively double
click on an object to open it in the editor.

2. When you attempt to open an object in LANSA, a number of checks will be
performed. If you are not authorized to an object or if another developer has
already opened an object, the following message will be displayed. As noted,
you can then open the object in read-only mode.

Read Only waming on ADDRESS1 (Fie I&J

" You may cpen this object only in read-only mode,

Continue?

3. If you are using an Independent Visual LANSA, with user id PCXTASK,
you will be able to open the field for editing.

If you are using a Slave Workstation Visual LANSA, together with a normal

developer user profile, you may need to check out the field definition from
the iSeries master.

i
8
%

|aﬂepusitur}r *.|
New - | B X & QBB
Ttem | Modified | Details

4 [® Fields -
amp

Repository m

¢

i Alp
F! !ADD RESS:" : B T T I I e T e O | Al
BB ADDRESSH B | Open

® ADDRESS: x Delete from Repository

v

Details il = Outline
T

Find

g Quick Export

[Check Out [
Check Qut Readonly

| e B e T FIYRP

T T F
f @ E o0 .~ - B - B -
L B e e e

L
[

Favorites
oy M om 33 ™y m

=

L
[

If you are authorized to the field, it will be opened for editing in the LANSA
Editor.

4. Display the Details tab. The contents of this tab will change as you move
from one part of the field to another.

Bl - B .. v |ADDRESSI- StreetNoandMame-LAMSAEddor [) i
BN o | oo x
=" —— o= fron) .- W Cut f
AE = 1 O %. @~ (60 @
Repository Test Search Views Open Histary Error Liogs . Paste
Find Qljects Irapagate Find Remaote
- Systermns =
g s x| Definition | Rules and Triggers | Visualization | Repositary Help - Cross References a
I = Mame ADDRESEL
E Identifies ADDRESS 4 | B Details -
.:\?:'L Field Type Alpha MName ADDRESS
[dentifier ADDRESE]
. Field Length 5
8| Becimake Type Alphanumenc
] Length =
S Default Value *BLAMKS Dechriak
m— Reference Fiekd Default Value *BLAMES
™y Reference Field
O Descript Sireet Mo and Name Description Street Mo and Name
) Lakel Address 1....
Field Label Address L..... Heading 1 Address line 1
4= Column Headings Address line 1 Heading 2
Heading 3
Edit Mask
Keyboard Shift
Ensbled For ROMLE No
Systern Fiekd Ho
Keyboard Shaft Prompt Process
Enabled For ROMLY Prompt Function
= Alias Name
Systern Field
Promipt Function 4 Ly Input Attributes
FE Freld exit key required Functi
Srp Fhceee: LC Lowercase entry allowed Functi
Alias Name L =
= J | lobStatus Results Desci
2 Completed 0 fatal exrors - 0 warnangs ADDE
X
i Assistart o Check Out [Propagation
Ready LANSAL] SYS jivondd WD ENG Audit Courier Colors LAMSA XMTML

You may wish to close the Repository tab, (you can use F8 to redisplay).

Using the skill learned in the VUI002 - Editor Parts exercise, you should be
able to resize the different area of the editor to layout your workspace to meet
your personal preferences. You may wish to turn on Autohide for the bottom
tabs.

. Click on the Input attributes and then the Output attributes to see the changes
in the Details tab.

Select the different tabs, Definition, Rules and Triggers, Visualization,
Repository Help and Cross Reference to view the details of the field
definition.

Do not make any changes to this field.

7. Close the field ¥ in the editor.

Summary

Important Observations

The Repository tab is the starting point for most of your work in the editor.
You can access all objects in LANSA from the Repository tab.

Once you have opened an object it will be added to the Last Opened list on
your Favorites tab.

You can turn on or off the alphabetical grouping of objects in the Active
Partition.

The columns in the Repository tab can be reordered and hidden.
You can sort object lists using the column headings.
You initially open objects for editing using the Repository tab.

The initial set of personnel system demonstration objects in the Active
Partition were loaded using the Partition Initialization, available from the
Visual LANSA Logon form.

Tips & Techniques

You can undock the Repository tab to maximize the size of the window. It
can be closed and easily redisplayed using F8.

What I Should Know

What information can be accessed from the Repository tab.
How to dock and undock tabs.

How to turn alphabetical grouping off.

How to change the order of columns in the Repository tab.
How to hide columns in the Repository tab.

How to open fields using the Repository tab.

VUI004 - Details, Outline, Favorites Tab
Objectives:

To understand the purpose of the Details tab.

To understand the purpose of the Outline tab.

To understand the purpose of the Favorites tab.

To learn about feature help (F2) for objects.

To learn to use the Go To tab to view the errors in the object currently open.
To learn to view the error message of a field in error.

The focus of this exercise is how you use editor features to work with repository
fields and files. The focus is not on the definitions of these objects. The LANSA
Repository and Form Development Tutorials provide detailed training about
these objects.

To achieve these objectives, you will complete the following:

Step 1. Copy the ADDRESS]1 Field
Step 2. Details Tab

Step 3. View Errors

Step 4. Open Another Object in Editor
Step 5. Outline Tab

Step 6. Favorites Tab

Before You Begin:
You may wish to review the following topics:

Using the Outline Tab in the User Guide
Using the Details Tab in the User Guide

It is recommended that you complete the preceding tutorials before you start
this tutorial.

its:lansa012.CHM::/LANSA/L4wUsr01_0110.htm
its:lansa012.CHM::/LANSA/L4wUsr01_0115.htm

Step 1. Copy the ADDRESSI1 Field

In this step, you will create a new field, iiiAddressLinel by copying the
ADDRESS1 field so that you can open the new field for editing. You will also
copy the rules, visualization and help text from the ADDRESSI1 field.

1. Using the Repository tab, right click on the ADDRESS] field and select the
Copy option from the context menu.

E 1.-. .. o = }
= B Repository b)
g

8 o New v | k33| & | Q| |
i - g
Itern M 3
7 4 | ® Fields - 3
.E 4 ®p :?
E > @ ABSOPT 3
> 8 |ADDRESS — 0 E’
= > |® ADDRESS A :
= * | ADDRES 3¢ Delete from Repository Jg
gl s ¢
" e Find b

> W _
i > BB £ i Quick Export]
'E > EB F & Checkln ‘i
L > Bl G E Unlock §
Tl i
g H Copy 1
> B8] l
> Bl | Copy Mame 3
S AR ’
I e e T

2. The Create as a copy of ADDRESS]1 dialog will appear.

-
| ® Create as copy of ADDRESS g

Mame iiiAddressLinel Create
Descripti Street M dM

escription reet Mo an amé Cancel
Initial Public Access | Mormal >
Identifier 'MADDRES [Open in editor

Copy rules and triggers [|
Copy visualization [l

Copy help text]

e G = A

Select the Copy help text option.

e. Select the Open in editor option.

f. Press the Create button.

Select the Copy visualization option.

Enter a Name of iiiAddressLinel (where iii=your initials).
Note that the field has been given an Identifier of IIADDRES
Select the Copy rules and triggers option.

The iiiAddressLinel field will be opened in the editor.

"""""""""""""""""""""" # = Definition Rules and Triggers Visualization | Repository Help Cross References f:?'
E 8 Repository
= e X 4 [® Details
E Mame inAddressLinel
L] My Identifies IDADDRES
1= | # g Active Partition [5Y5))
v 4 (B Figlde Type Alphanumeric
% 4 TR A Length it
L=} ® ABSOPT Decimals
= ® ADDRESS1 Default Value *BLANKS
%. " ADDRESS2 Reference Field
E 8 ADDRESS3 Description Street Mo and Mame
BB Label Address 1.....
: = C Heading 1 Address line 1
£ B D Heading 2
2 RE Heading 2
[T " F
] Edit Mask
" H Keyboard Shift
»] Enabled For RDMLE Me
3| System Field Ma
' Prompt Process
L] Frurnpr Function
" Alias Name
BN
"0 4 Ly Input Attributes
" p FE Field exit key required Functic
" Q LE Lowercase entry allowed Functic
R + Dutput Attributes
R 5
. T A Multilingual Details
] 4
2 1) Assistant | fff Check Out | e Propagation | gy Help
IREady LANSALZ S¥S jiveryl3 *ULL ENG Audit Courier Colors LANSA XHTRL

Step 2. Details Tab

In this step, you will review the repository field definition for the
iiiAddressLinel field to see how the different tabs are used to edit objects. The
Details tab is used to display and edit selected properties of objects.

1. Select the Definition tab. You can edit most of the basic field characteristics

using this tab.

To change the list of Input and Output attributes, you must use the Details

tab.

Click on the Input attributes list. The Details tab will be displayed as shown:

1 i B L L EE T EEE e LEEEE 2 Definition Rules and Triggers Visualization = Repository Help Cross References B
12 FELC
Ig- Common attributes ; beme e il
[dentifier MADDRES
Attribute Code Description
u AB Allow to b... Type Alphanumeric
E Bl Display bii. E‘”'_;*“ %
CBOX Present fie... Erinas
— Default Value *BLANKS
‘f = Rty i Reference Field
= |JFE Field exit k...
g Hi Display in... Description Street Mo and Name
v LC Lowercase,., Label Address 1.....
- ME Mandator... Heading 1 Address line 1
E MF Mandator... Heading 2
E ND Mon-displ... Heading 3
Ry Buto recor. Edit Mask
RB F'.ig kit ad_| U, ch ard Shift
AL Move curs. Enabled For RDMLY Mo
RLTE Tab cursor., System Field Ma
RZ Right adju... Prompt Process
SBIM Store valu... Prompt Function
SREV Store valu.,. Alias Mame
VM Valid nam..,
4 "y Input Attributes
FE Field exit key required Functia
LC Lowercase entry allowed Functig
¢ Output Attributes
A Multifingual Details
1 [
i) Assistant | o Check Out | e Propagation | igj Help
'!aad:,' LAMSALZ 5¥S jivoryld *UL ENG Audit Courier Colors LANSA XHTML

2. Select some of the Input attributes and you will see that they are immediately
included in the list of attributes in the Definition tab.

. LA AR LA AR AR A AR R A # x Definition Rules and Triggers Visualization | Repository Help |~ Cross References [x]
E FE LC MND RA
Mame iidddressLinel
& Common attributes ¥ Identifier MADDRES
. Attribute Code Description |
2|7 a8 Allow te b... | Type Alphanumeric
CBOX Present fie...
- Drefault Value *BLAMKS
A= cs Display wi...
. Fiddl cait .. Reference Field
g HI Display in... Description Street Mo and Name
¥ LC Lowercace.,. Label Address 1......
ME Mandataor... Heading 1 Address line L
£ MF Mandateor, Heading 2
7/ND Mon-displ... Heading 3
< RA Auto recor.. Edlit Mask
[31:] nght deu... Kt‘)’budl’d Shift
RL Mave curs... Enabled For ROMLE Mo
RLTE Tab cursor... Systern Field Mo
RZ Prompt Process
SEIN Promnpt Function
SREV Alias Name
VN
Input Attributes
FE Field exit key required Fun
L Lowrercase entry allowed Fun
MO Men-display (hidden field) Fun
RA Aute record advance field Fun

3. Deselect the extra Input Attributes that you selected.
4. Select the Rules and Triggers tab.

This tab simply displays the rule or triggers details. You cannot edit any of
the information from this tab. Information must be selected and edited from
the Details tab.

Expand the list entry Address line 1 cannot be blank. Notice that the Details
tab is now shown on the left:

g Torrreereeeeereeneeeneseneseerene e @ x| Definition | Rules and Triggers | Visualization | Repository Help | Cross References (]
> | Beccrits [Address line 1 cannot be biad e e | ottt R

§ Sequence 1 + | || 4 @ Validation Rules
EN Rule Definition 4w Address linel cannot be blank
= Condition = #iniAddres *ne "blanks
- FiiiAddres "ne "blanks I condition is found to be true NEXT else ERROR
g Apply when inserting (ADD)
g Apply when updating (CHG)
Do not apply when deleting
? Message - DCEMOL - DEMOD44 - Address line 1.
=
£

Favorites

Validation Usage

When Inserting | Ahways apply rule (ADD) - |
‘When Updating | Always apply rule (CHG) ~ |
When Deleting | Never Apply Rule

Cenditien Is True | Evaluate nest rule (NEXT) * |
Condition Is False | Set field in emor (ERROR) |
IMessage Number | DEMO044 - |

Meszage File | RC@MaL

Message Teat

%Wwwf\ﬂ_n_ﬂ—uu

5. Change the Description of the rule in the Details tab to say No blanks
allowed. Notice that the rule Description in the Rules and Triggers tab is
updated as you type.

= 4 0 Validation Rules
s Mo blanks allowed

Condition - FiAddres "ne "blanks

¥ condition is found to be true NEXT else ERROR
Apply when inserting (ADD)

Apply when updating (CHG)

Do not apply when deleting

Message - DCEMOL - DEMOOAL - Address linel...

6. On the Home ribbon, expand the Add menu, and select Add List Check.

(G

- E:E - Add - x
Error Logs
C Add List Check }

Definition | Rules an{ “ | #dd Range Check X
B Add Date Check

4 (@ [Validation Rul "™ | Add Lookup Check
4 g Address li| ™ Add Simple Logic Check
Condition| ®® Add Complex Logic Check
If conditic] — Add Trigger
Apply whe Add Trigger Condition
Apply whe (8 | Adopt from Reference Field
Do not anpWHER M=EtRg

Notice that the details for the new rule are entered using the Details tab. Do
not enter any values.

A number of red triangles have appeared in the interface. If you click on
these triangles, an error message will be displayed:

Definition | Rules and Triggers Visualization | Repository Help | Cross References (X

4V Walidatinn Rules
JAt least one value must be defined for a value check rule, I

Condition - FiiAddres *ne *blanks

If condition is found to be true NEXT else ERROR
Apply when inserting (ADD)

Apply when updating (CHG)

Do not apply when deleting

Message - DC@MOL - DEMO044 - Address linel..,

2) Mlew list check
At least one value must be defined for a value check rule. I

Rl | ey e e e T e, B L S

Leave this field definition open,and the errors will be discussed Step 3. View
Errors.

Step 3. View Errors

In this step, you will use the Go To tab to quickly locate errors and view the
messages associated with an error.

An object cannot be saved if it has errors.

In Step 2. Details Tab , you added an incomplete rule to the iiiAddressLinel
field.

1. With the iiiAddressLinel field still displayed in the editor, select the
Definition tab.

2. Double click on the Default value in the Definition tab.

3. In the Details tab, change the Default value of the field to xxx. This will
cause an error. Red triangles will appear.

4. Press the Save button on the editor toolbar.

-

~ » liiiaddressLin

3o T

Repository Text Search Views Open

&
>
)
?
J

Find Ohbjects ?
s Nﬂwmwmhﬂnﬂ_ﬂ"‘ﬁ”

An error message will be displayed.

-)
Errors exist @

I L Field cannot be saved

I]
L5

5. Click OK.

6. The Go To tab will automatically display showing all error messages related
to the object. (The Go To tab can also be displayed by pressing Ctrl + G.)

; 7}
1= . [¥ iiitddresslingl - Street Mo and Name - LANSA Editor” %
P 3

File Home Tools k1
L — . = e
- e i [[™
B s =.-—-.0 . % L Ge @:
RIF;?;::UU I 0?;,‘::;5 Froiusal A Designer Clhipboard Find | Remote E
o - - - Systems = il
i I T 8 x Dﬂ‘flﬂ“in“ RUIE‘:- lﬁd Tl'iggeri Tﬁuﬂlilmiﬂn H’E‘pﬁltﬂr_'f HEIP E%
[y -
£ ; = 4 ¥ |® Details 3
2 Categon
‘E_ ! r.funu Mame idddressLinel {
[Error Identifier MADDRES &
+ At least one value must be defined for & valu,.
] + Value oo is empty, invalid or not allowed. Type Alphanumeric
i- Length 25 3
k= Decimals M
i e e S N PP TR i Y i aRAT G

7. Double-click on the red triangle of the error message text "At least one value
must be defined for a rule check."

Notice that the Rules and Triggers tab is automatically displayed and the rule
in error is selected.

8. Select the Rules and Triggers tab. Click on the & ¥ = pEEETE: line

to display the error details.

Definition | Rules and Triggers Visualization | Repository Help | Cross References
| 4 W [Validation Rules

* w Address linel cannot be blank

4W MNewlistcheck —
|t least one value must be defined for a value check rule.]

If field is in the specified list NEXT else ERROR

Apply when inserting (ADD)

Apply when updating (CHG)

Do not apply when deleting

Message - DC@MOL - DCUOO0Z - - not an allowed value (list of values)

TR P o T L P e s ST T T T

?
1
?
|

9. Press the delete rule ${ on the Home Ribbon to remove the incomplete
validation rule.

10. Select the Go To tab (or press Ctrl+G).

Notice that, once the rule is deleted, the error is no longer listed.

y

E e e I i T R o = DEfII"IItIDI"I RU'ESEﬂd Triggers ViSUEliZEtiDﬂ REPDSit;
£ - {
E e = 4 Validation Rules :JE
5 T 4 g |Addresz line 1 cannot be blank b
G, Hrror Condition - #iiisddres *ne *blanks ;

¥ Value soocis empty, invalid or not allowed. If condition is found to be true MEXT else ER%J
Ml—' -W‘%MWL&W&%MM

12. Select the Definition tab. Click on the Default Value. The Detail tab will be
displayed.

13. Enter a value of 'xxx' (with single quotes because this is an alphanumeric
field). The error message will disappear.

14. Close the field definition using the Close option from the File menu. When
prompted to save the field changes, select Cancel.

Save Changes @

Save Changes to iiiAddressLinegl 7

es Mo | Cancel |

W = — — A

15. The field definition of iiiAddressLinel should remain open for the next step,
Step 4. Open Another Object in Editor.

Step 4. Open Another Object in Editor

In this step, you will open and view an existing File, the Employee Master file
PSLMST, from the Repository tab. This means opening a second object (the

first is the field iliAddressLinel which you used in Step 2 and Step 3. By
opening this second object, you will learn how to switch between objects open

in the editor.

1. On the Repository tab, expand the Files list.

a. Expand the P list. (If you have turned off Alphabetical Grouping, skip this

step. Refer to Step 2. Turn Alphabetical Grouping Off/On.)

b. Right-click file PSLMST and choose the Open option from the context
menu, to open the file for editing. (You can also open the file by double
clicking on the file's name in the Repository tab.)

Note: You will not be changing this file in this tutorial, so it can be
opened as read-only if it is checked out read-only, or if you are not
authorized to use the file.

~ LR M .. o+ | PSLMST - Personnel - LANSA Editor (Read-Only) [l S
BN tome | Tock s
= s - o s -
e = o= | & e .-
Reposdory Text Search Views Open Compile Errer Legs
Find Olbjects Designer Rernote
= Systems =
| B et @ = Figlds in File Logical Views Rules and Triggers = Access Routes Batch Control | File Attributes Relationships | Crot - ik
& | Il Repasitary Fiedd Narne Dieseriptian Ref. Field Type
"E S o o = 4 Primary Keys
] ll PP ¥ EMPMNO Ernployes Number Alpha
Em OeTind 1
a Files 4 ¥ Real Fields
E A v EMPMO Ernployes Mumber Alpha
? B B SURMAME Employes Sumame Alpha
= c 5 GIVEMAME Erripleyes Given Narne(s) Alpha
= o B ADDRESS] Street Mo and Narne Alpha
2 E B ADDRESS2 Suburb or Tawn Alpha
£ E B ADDRESS3 State and Country Algha
E & ® POSTCODE Post / Zip Code Signed
H ® PHOMEHME Harre Phane Murmber Alpha
ol 1 ® PHOMEBUS Business Phone Mumber Algha
g 1 B STARTDTER Start date (YYMBADD) Signed
= K ® TERMDATER Terrinaticn Date (YYMWMDD) Sigred
L ® DEPTMENT Department Code Alpha
Tl ® SECTION Secton Code Alpha
.)
'; M ® SALARY Ernployes Salary Packed
& o
PJFs Before
“gr . . * Read Virtuals
PSLEVENT 29/03/2005 8 STARTDTE Start Date [DDMMYY) RETDAT Signed
PSLIMG 10/09/24013 & TERMDATE Terminstion Date (DDMMYY) RETOAT Signed
ESLM] ALY B MNTHSAL Monthly Salary SALARY Packed
PSLSKL i‘.]-'ll-ugg? PIFs After
PSLTIMES 28/03/2005 Write Virtuals
Q Inactive Virtuals
R Undefined Virtuals
5
T
2 i) Assestarit | offf Check Ot [Propagation o Help
Rﬂdy LANSA13 5¥S jvondd UL ENG Awdit Courier Colors LAMSA XHTML

2. Click on the different tabs to view the details of the file definition.
Do not change any file details. Leave the PSLMST field open in the editor.
3. Notice that the Previous and Next buttons are enabled on the editor toolbar.

H .- -.H_;,r | PSLMST

File | Home Tools

L S LT

o =
Repository Text Search,, Views Open
LA

These button switch between the objects that are currently open in the editor.

Step 5. Outline Tab

In this step you will learn about the Outline tab. The Outline tab is used to view

and switch between objects that have been opened for editing. The Outline tab

is also used to navigate within an object. It displays information about the

structure of an object and will display feature help for object properties.

1. Select the Outline tab. The fields iiiAddress1 and the file PSLMST are
shown:

B! - - [.. - < » [|PSLMST- Personnel - LANSA Ed
-

WV
e

Repository Text Search Views Open M Cormpile =
Find Objects

T

g
l
a4
I
I
L4
e P e e

E e o x FieldsinT}
2 ® iiAddressLinel Field Nay
2 PSLMST 4 Primd
a Pr!l‘l‘l%

g

2. Click on iiiAddressLinel. Notice that the field definition is now shown in
the editor.

3. Click on PSLMST. Notice that the file definition is now shown in the editor.
4. Click on iiiAddressLinel again.
5. While iiiAddressLinel is highlighted, press F2.

Features of iiiAddressLinel are displayed in the Features tab.

Default help text is displayed in the Help tab.

- -
History Errer Logs

Runtime

-- # = Definiticn Rules and Triggers Visualization | Repesitory Help | Cross References |

4 | B Details
- | Mame liteddressLinel
Tdentifier MADDRES

Type Alphanumenc
Length 25
Decimals
Drefault Value
Default Valus Reference Field
Input Attributes
FE
LC
Label
Calumn heading
Validation rubes
Address line 1 cannat be blank Edit Mask
Emabled for RDMLE Keyboard Shift
4 Class Enabled For RDMLY
d | ® jiifddresslingl q
4 [§ Extends .
& PRIFLD . ' IIIADDRES
4 0f Irmplernerits &
+ -« PRIM_LIELIFieldFvedCh

[%" Properbes

|
4
3
i

Description Street Mo and Mame
labed Addressl...
Heading 1

Heading 2

Heading 3

E:V" Street No and Name

| Features £ | GoTo! | Favarites

 W#Help| (1 Amistant off Check Out B Propagation
LANSAIZ 5Y5 jivonydd UL ENG Audit Courier Colars LAMSA XHTML

6. Expand the Methods of iiiAddressLinel in the Features tab.

7. One by one, double click on some of the Methods of the iiiAddressLinel
field. Help information relating to each Method (context help) will be
displayed in Help tab at the bottom of the editor.

]

Pﬁ 'a&' E_

Runtime

e

ﬂ”.l Definition Rules and Triggers Visualization | Repesitory Help | Cross References |

iii&ddressLinel -|

4 |2 Methods .
&l ApplyMonitoredValue
& g AsBoolean
b g AsDate
| asDateTime

+ Result
T Format
& g AsDbcsFivedChar
& g AsDbesString
& g AsFioedChar
& g AsFloat
I Adnteger
g Ashumber
b g AsSbesSring
& g AsTime
b AsValue

é*?-,u’-&luwt,?éli .

| B Details
Mame liteddressLinel
Tdentifier TMADDRES

Type Alphanusmenc
Length

Decirmals

Drefault Value
Reference Field
Description

Label

Heading 1
Heading 2
Heading 3

Edit Mask
Keyboard Shift
Enabled For RDMLY

» I BlankConcat
> b ByteTypert
& g Canter
& b Centre
i g CharTypedt

& g Compare

'E
i
3
!
i

10.6.3 AsDateTime i

AsDateTime will return & datetime based on the valee of the string and the specfied

format.

1f the supphed value does not conform to the required format, the application will end

with & run-time error. Use the [sDatetime intrinsic to test the value before attempting
ﬂm to convert o & datstime. il

g#Help| (i Assistant of Check Out B Propagation |

LAMSALY 5¥S jivoryld UL ENG Audit Courer Colors LANSA XHTML

You may resize the Help pane, or float it as a separate window if you wish.

Step 6. Favorites Tab

In this step, you will view the Favorites tab By default the Favorites tab
contains the Last Opened tab and the Weblet Templates tab if your partition is
web enabled. The Favorites tab can contain any other tab which you add to
Favorites.

Favorites
P X | & @ B
£ Last Opened Weblet Templates
[tem |¢| Description Moc
» @ ADDRESST Street Mo and Mame 2871
. DEPTAE « Department codetable 16/
= iiDeptMnt " Department Maintena.. 10/
© ™ iiAddress Street Mo and Mame 111
= iicoms # Employee Maintenance 11/1
NCom21 % Employee By Name Fil... 05/
Nncom2z2 « By Location Filter 061
o INCOME3 « Details Command Ha... 051
) iiiDepartments « Departments Table 1041

1. To remove objects from the Last Opened list, select them and use the right
mouse menu:

?
E LI TN 4 b3 DE’FIFIItI[E‘
E Mew - ot &y [
& 4w
§ £ Last Opened £ Common Controls
“ | Item | Description
» ™ |ADDRESS1 Street Mo and Mame
* ™ liiiAddressLinel Street Mo and Mame

4

{

;

i

p PSLRAST Percannel L}
Open [5
:

)

Ef

[

B

B

Compile

Details W] | Outline -
::.

3 Delete from Repository

Remove from Last Opened

Find

Favorites

B
L LBk Bt S

2. In this step you will add a list to your Favorites tab. Switch to the Repository

tab. Select the Fields list and use the right mouse menu option Is Favorite:

i
b GG U U 4 x D‘E‘FE
= |E Repository b | j
=]
=, di
B ahew o2) & | & B
w
= | Item | Modif ;
“iv| 4 @ Active Partition (SYS) =
u B @ |Figld= .E
E] = Fil Find :L
S il H
[Is Favorite | :;
— [- i
F_; b ::: |+ Alphabetical Grouping é
E P D 2

3. Switch to the Favorites tab. The Fields list is now shown on the Favorites
tab.

Favorites

X & Qb B
Last Opened | - Weblet Templates | ® Fields

[

[tem | Description Madified | Bu
<@l

o m ABRSOPT Action Bar Option

b ® ADDRESST Street Mo and Mame 28/11/14..

o m ADDRESS2 Suburk or Town 28/11149..,

I ™ ADDRESS3 State and Country 28/11/149..

™ AudDate Audit Date 15/10/20...

L ® AudDateX Audit Date 15/10/20...

4. Use the right mouse menu to remove the Fields list from your Favorites tab:

E‘- -------------------- A _#'ux_,
Bl itew - | 2| & | & P
E_ £ Last Opened | £ Common Controls

® | ™ Felds |

Show on Application Level

-\.l:!_-'l

el

= Last Opened

=

o Common Controls
— Fields |
oL

Often you will create of Editor Lists of objects you want to work with and
make these lists favorites.

Summary

Important Observations

The properties of objects are edited in the Details tab.

You move between open objects using the Outline tab.

Feature help is used to display detailed information about objects.

Errors are marked with a red triangle. (Warnings are marked with a brown
triangle)

You can view the message for an error or warning by clicking on the triangle
marking the error.

Use the Go To tab to view all errors in the open object. To locate the context
of the error, double-click on the error message.

The Favorites tab may contain many different lists of objects. It provides a
fast way to access commonly used objects.

The Is Favorite context menu option is used to add a list to the Favorites
Tab. Whenever you see this option in a context menu, then the related list
can be added to the Favorites tab.

Tips & Techniques

The keyboard shortcut for displaying the Go To tab is Ctrl + G.
The keyboard shortcut for displaying the Feature help is F2.

What I Should Know

How to use the Details tab to edit objects.

How to use the Favorites tab.

How to use the Outline tab to switch between objects.

How to display feature help for objects.

How to use the Go To tab to view the errors in the object currently open.
How to view the message for an error or warning.

LANSA Editor Tutorials
What are the LANSA Editor Tutorials?

This tutorial is for new LANSA developers and is designed to teach basic source
code editing skills. It focuses on the editor features and techniques for using the
Visual LANSA source code editor as opposed to teaching programming skills to
build applications. No experience with the LANSA Repository or RDML
programming language is required.

This brief set of exercises covers the essential areas of the LANSA editor:
VEDO10 - Format Source Code

VEDO020 - Edit Source Code

VEDO30 - Auto Complete and Command Assistant

VEDO040 - Execute Applications

Before you Begin

You must have LANSA Demonstration Personnel System installed in the
partition that you will use with the set up options as described in What Partition
Should I Use?

The LANSA Demonstration Personnel System contains all the objects used by
these exercises.
Tips for using the exercises

e Check off each step in the exercise as you complete it.

e Follow the instructions very carefully.

e Remember to replace iii with your unique 3 characters. You will not always
be reminded to make this substitution.

e These exercises assume that you have not previously customized the editor
interface. If you have already customized your environment, the example
screens and instructions may not exactly match your customized
development environment.

The first steps in an exercise will provide very precise descriptions of the tasks
to be performed. As the steps and course progresses, the instructions will
become much more general.

Later exercises are designed to use skills from the earlier exercises. These
exercises are designed to be completed in sequence.

its:lansa095.CHM::/LANSA/lansa095_0020.HTM

VEDO010 - Format Source Code
Objectives:

To learn how to copy a form and open it in the editor.
To learn how to create a process and function and open them in the editor.

To learn how to show and hide line numbers and indentation of the source
code.

To learn how to change the way statements are formatted.

To learn how to hide DEFINE_COM statements in component source code.
To learn how to use F2 Features help.

To learn how to compile an object and display the compile message details.

The focus of this exercise is to control the appearance of code in the editor. The
purpose of the programs and the actual meaning of the RDML commands is not
important. The RDML Programming tutorials teach the basic coding practices.

To achieve these objectives you will complete the following:

Step 1. Create a Copy of Form XDXSettingsDialog
Step 2. Create a Process and a Function
Step 3. Turn on Autohide
Step 4. Change Formatting Options
Step 5. Editor Source Settings
Step 6. Word Wrap
Step 7. Submit a Compile
Step 8. Display Error Log
Step 9. Display Feature Help Text

4.Expand Methods and double click on any of the component's methods.
Help text is displayed explaining how the selected method can be used.

Before You Begin:
You may wish to review the following topics:

Repository Tab in the Visual LANSA User Guide
Favorites Tab in the Visual LANSA User Guide

In order to complete this tutorial, you must have completed all the previous
exercises in this workshop.

its:lansa012.CHM::/lansa/L4wUsr01_0100.htm
its:lansa012.CHM::/lansa/L4wUsr01_0105.htm

Step 1. Create a Copy of Form XDXSettingsDialog

In this step you will create a copy of the XDXSettingsDialog form for editing.

Forms are used to create graphical Windows applications. Forms have a design
layout (a sample of the form design), as well as RDMLX code that is used to
control the behavior of the form. You will use this sample form to learn the
basics of controlling the display of LANSA code in the editor. The actual
meaning of the code is not important at this stage.

Creating a copy of form XDXSettingsDialog will enable you to edit the form.
1. On the Repository tab, expand the Forms node.
2. Expand the X node to see a list of all forms starting with the letter X.

3. Right-click form XDXSettingsDialog and choose the Copy option from the
context menu.

Repository {!esignj
& Repository - ::fg
Mew = X L |4 5
Item Description {
0 3
— ;.
P

= J
o ki
-_— &
- 3
-— 3
=0 ';
— I||' H
W %
- {
== X¥DXBaseForm Basze Farm {
== XDXExamples Directx Exarmples 4
= KDXSettingsDialog Settin =]

= . Open
XDXStart Direc i 1}
o | s Compile ;
= z Execute 5
kher Debug r |3
= Functions 3
¥ Processes ¥ Delete from Repository f)
@ Fesources : -!
Reusable Parts Find 3
&' Business Objects i Guick Export i
4 3 Web /
& Web Application M... 2
8§ Web Components Copy Mame i

4. The Create as copy of XDXSettingDialog dialog will appear.
Enter a Name of iiiSettingsDialog (where iii=your initials) or DEMCOMO01

if you are using a trial version of Visual LANSA.

Note that a Framework of Personnel & Payroll has also been selected.
Components are organized into Frameworks. You can change a component's
Framework setting at any time.

™ Create as copy of XDXSettingsDialo:

Marme |iiiSEttingsDiang Create

Description |5ettings Dialog

Cancel
Framework

Group |

Identifier SETTI

5. Press the Create button.

6. The form is opened for editing. The Design tab is selected by default and the
design layout of form is shown.

7. Display the Source by clicking on the tab.

|® L. @ .%. 0 Q B, #e

Compile == History Error Logs Execute Debug Paste

Repository Find = Remote
- Systems =
R Runtim & Clip
Repasitory Design | Source Repository Details | Repository Help | Cross References 6
. Function Options(=DIRECT) =
R - F:
8 Repository FBegin_Com Role (*EXTENDS #PRIM_FORM) Bordericons(Systembenu) -
| Bl 5 x & &) Caption('Settings') Clientheight(201) Clientwidth [346) |
' -4 Formstyle (StayOnTopChild) Height(239) Left(422) b
Ttem | Descri] Style(#{DXStvles<Background>) Top(179) Width(362) A
-0 5
-5 * Dialog providing options for the application appsarance
- ®Define_Com Class(#PRIM_LABL) Mame(#LABL_1) Caption (*MTXTXDX043)
— Displayposition(l) Ellipses(Word) Height(20) Left(8)
_R Parent (#COM_OWHER) Tabposition(1l) Tabstop(False) Top(B8)
5 Verticalalignment (Center) Width (105)
g
Fu #HDefine_Com Class (#PRIM_LABL) Mame (#LABL_Z2) Caption {*MTXTXDX045)
™ Displayposition(5) Ellipses(Word) Height(17) Left(8)
—_— Parent (#COM_OWHER) Tabposition(5) Tabstop (False) Top(72)
a—y Verticalalignment (Center) Width (109)
_XDXE“EFMM B'.“ Define_Com Class(#prim_vs.Style) Name (#TextColorStyle)
= ADXExamples Dir Hormbackcalor (Black)
XDXSettingsDialog Set
== XDxStart Dir Dafine_Com Class(#prim_appl.ICommonDialogColor) Name (#ColorPicker)
Y Reference (*dynamic)
|
- Other @hefine_Com Class (#FPRIM_FHEN) Name (#Apply) Caption (=MIXTXDX047)
= ¢ nctions Displayposition (10) Left(256) Parent (#COM_OWNER) Tabposition(10)
Top(168)
& Processes
* W Resources Define fom. (lass (#orim alnh) Name!#hetizeTransition)

The Source tab shows the source code of the form.

Note: Do not compile this form. We will simply use this code as an example
to demonstrate editor features. Leave form iiiSettingsDialog open in the
editor.

Step 2. Create a Process and a Function

In this step you will create a new Process iiiPROO1. Processes are containers
used to group together a set of functions. When executed, processes appear as a
menu. Processes are also used to control characteristics of the functions that
they contain.

After creating the process, you will create a function belonging to the process.
Functions are programs that contain RDML code. You will use this sample
function, along with the sample form, to learn the basics of controlling the
display of LANSA code in the editor. The actual meaning of the code is not
important.

1. First, create a new process from New in the File menu, and selecting
Process:

= [, 52 = |jiiSettingsDialog - Settings Dialog - LANSA Editor*
BMsove Comman
—
* Close i - N
Field File Form Reusable Part Eusin: bject Process
Open
Last Opened
—
s il L
& A
Fumction Web Weblet Multilingual
Application Variable
ﬂﬁav: Al odule
e Resources
A — M e

a. Enter a Process name of iiiEditorTesting (where iii=your initials) or
DEMPROO01 if you are using a trial version of Visual LANSA.

b. Enter a Description of Demo Process.

c. Uncheck the Open in editor option.

T —S8 . S—
4% New Process

MName iiEditorTesting t Create]‘

Description Demo Process

Cancel
Identifier MEDITORT

["] Open in editor

d. Press the Create button.

. Use File menu / New to create a new function:

a. Enter a Process name of iiieditortesting (where iii=your initials) or
DEMPROO01 if you are using a trial version of Visual LANSA . Note that
this name will be completed as you type, if a match is found in the
Repository.

b. Enter a Name of iiiDeptQuery (where iii=your initials).
c. Enter a Description of Query Departments.

d. Select Template FRENQO1 — Flat Screen Enquiry.

e. Do not select Enabled for RDMLX.

f.. Open in editor will be automatically selected.

[=] New Function
Procesz Mame liieditortesting Create
Description Demo Process

Cancel
Mame iiDeptCuery
Description Query Departments +| Open in Editor
Template FRENQO1 - Flat Screen Enquiry -
Identifier NIDEPT

Enabled For RDMLX []

g. Click the Create button.
h. Complete each Wizard/Template Prompt as shown and click Next.

Prompt Enter
Enter the name of the base file to be used by this DEPTAB
template
Do you want this function to be part of an ACTION- N
BAR style process
Fields to appear on Display DEPTMENT
DEPTDESC

Design fields on the enquiry panel DOWN or ACROSS DOWN
the screen

i. Click Finish to create the RDML code.
5. The Source tab showing the RDML code for this function will be shown.

B M2+ % » liiDeptQuery - Query Departments - LANSA Editor® - o IEH|

Home Design Tools CX -

= i - { L # Full Check = P m “ E
Beposi Tu&m iy Open X) Comgie B Buid

| o iews 2
F Objects Enable Rurtime Chphomd Find Femote
= Z * Syslems -

Repusiory F) ROMILE Conpsile e
|w |i“5uun:= Design | Repository Help | Cross References |
I Fepositary - |f Copyright .. [C) = LAMSA DEHMONSTRATION SYSTEM =, 19

Frocess: IIIEDITORT

Function IIIDEFT

Craated by JIVORYELZ

Created an 13-06-20 at 11:51:32

Descripticn (u=ry Depariments

Function control opbions
Functics Options!*RONESSAGES =DEFERWRITE =DIRECT)
= Group ard field definitiloos
! Group_By Hawe(SPAMELDATA) Fislds(fODEFTHENT SDEFTOESC)
TN ® Loop until us=r EI{IT= or CANCELs
b= F Begin_Loop

g = PBaquest user iopubts keve 1o locats base file details
B P F10: Reguest Fields(#0E ENT)} Desige(«DOWH) Identify({eDESC)
PG # Fatch file DEPTAR detsails
b - Fetch Fislds(#fPANELDATA) Frow Fils{DEPTAE)
; Vith_Key (#¥DEFTHENT) Not_Found(E10) Issus_M=g{*TES)
P = Digplay results Lo the user
p o= Dnsplay Fields{#PANELDATA)] Design{=DOWN) Identify(eDESC)
h D02: Change Field(#FPAHELDATA) To(#DEFAULT)

| #em | Description | hcedified |
] 1

v o x
el Nuuig §
£ < = F] {"'

£

-

i
S > | |y

Step 3. Turn on Autohide

1. Use the context menu on the Repository title bar (or whichever tab is
showing on the left) to Autohide the left hand panels.

The left tab folders are now hidden, leaving you more space to work with the
source code in the editor.

H eoRleess- iliDeptQuery - Query Departments - LANSA Editor®

Haome Design Tools

- — - : Full Check
- —_—— F v .
a = - - tx'] sl BT
Repository Tesxt Search Views Open Enable Compile ==
Find Objects

]

Source Design | Repository Help | Cross References

Copyright: (C) = LaANSA DENONSTRATION SYSTEM =, 19
Process IIIEDITORT

Function : IT1IDEPT

Created by .. JIVORYE13

Created on 13-06-20 at 11:51:32

Description ...: (uery Departments

LB A

o

® Function control option=s

Function Options(*HOHESSAGES #DEFERVRITE #DIRECT)

= Group and field definitions

Group_ By Hane(#FANELDATA) Fields({fDEPTHENT #DEPTDESC)

= Loop until user E{ITs or CANCEL=s

-] Bagin_Loop

Hequest user inputs keys to locate base file details
El10: Request Fields(fDEFTHENT) Design{=DOUN) Identifvy({«DESC)
Fetch file DEFTAE details
Fetch Field=(2PANELDATA) From_File(DEPTAE) Vith_Key(2DEFTHENT
Display results to the user
Display Fields(#FPANELDATA) Design(#*DOVN) Identify(=DESC)
D02: Change Field{#PANELDATA) To{=DEFAULT})

End_Loop

Dietails 'M Controls P> Clutline

{.I Featuxﬁg Go To

Remember, the tabs can be displayed by clicking on them. When the focus
leaves the tabs, they automatically hide again.

To pin the tabs open again, click on the Attach = button while the tab is
being displayed.

Step 4. Change Formatting Options

In this step you will change how source code is formatted. You can control what
lines of code are displayed and how they are displayed.

Separate settings are used to control statements in functions and components
(forms, reusable parts, WAMs, etc.).

1. On the File menu, click on Options. The LANSA Settings dialog is displayed.
This dialog will be different for Slave and Independent systems.

B ™2 ¢ 9 = liiiDeptQuen

1)

H Save Common
L i
Close [F
Open Field
Last Opened
—
@) Save All
i Print Resources
% Close All
B Systemn Information System Variab
(e Options }
€9 Exit net

MET

Gemeral
| A
Source

O

Design

=g

WAM

Q

Debug
.2
e
Campile
.1-

-
&

Style

LAMSA Settings

Show Details

¥ Show Hint

¥ Show In Key Sequence
Show Intemal Files

¥ Show ReadOnly Message
Show Short Mames

¥ Ukse Interactive Verification

¥ Save Master Information

4 Assistant
Auto Expand Pararmeters
4 Detalls

Show Advanced Features
& Dutline
Layout [terms
4 Target Runtime
Windl
= Directx
4 Ohbject Locking
=
eadCinly
4 Development Language
*! English

French
lapanese

General
Cancel

-"-|.-|.--.
Reset
Reset All

Reset Editor

2. Select the Source icon to view the code formatting options.

a. Expand the Function Formatting options.

b. Select Upper case so that commands and keywords are in shown in

uppercase.

= LANSA Settings | x |

Sowce | mca.

Cancel

Gt—ﬂ:r“ ¥ [Indentation

|ﬂ Indentation Lines Apply
Source Line Numbers Regat
p— ¥| Component Definttions

u ¥ Auto Display Messages Reset All
Design Word Wrap

E‘E J Auto Complete Reset Editor

- AuditStamps

WAM 4 == Function Formatting

k_" 4 Commands
Debug *) Uppercase

Lowercase
i Propes case
Compile 4 Keywords

) * Uppercase

o Lowercase

Style Proper case

4 . Component Formatting
IR e

3. Press the Apply button to make the changes to the source code. Click Yes in
the dialog warning that undo and redo buffers will be lost:

LANSA Editor

The new formatting options will cause the loss of all unde and redo
buffers for function IDEPT. Do you wish to continue?

es Mo

4. The formatting changes for your function are now visible in the Source tab.

Source | Design | Repository Help | Cross References

Copyright: {C) = LANSA DEMONSTEATIOHN SYSTEM =, 19
FProces=: IIIEDITORT

Funetasen .00 IIIDEET

Created by JIVORYE13

Created on: 1370620 at 11:51:3%2

Dezcription ...: Query Departments

LI B B A

*

*® Function control options

FUHCTION OQPFTICHS{*HOMESSAGES #*DEFERWEITE *DIRECT)

#® Group and field definitions

GREOUP_BY HAME({#PANELDATA) FIELDS({#DEFTHENT #DEFTDESC)

#® Loop until user EXITs or CANCEL=

= BEGIHN_LOOP

#® Fegquest user inputs keys to locate baze file details
R10: REQUEST FIELDS(#DEPTHMENT) DESIGH(*DOWH) IDEHNTIFEY(*DESC)
Fetch file DEFTAE detail=s
FETCH FIELDS{#PANELDATA) FROM FILE(DEPTAE) WITH_KEY(#DEFTMEHT) H:
#® Di=zplay results to the user
DISFLAY FIELDS(#PANELDATA) DESIGH(=*DOWH) IDENTIFY(*DESC)
DO02: CHANGE FIELD(#PANELDATA) TO{*DEFAULT)

EHD LoOCoP

Detailsmll Cu:lntrcnlsh Outline .

GoTo|

Featuresp_

5. Use the Options / Source options to change the formatting of functions back
so that the commands and keywords are in Proper Case..

6. Press the Apply button to make the changes to the source code.

Step 5. Editor Source Settings

In this step you will change the line numbering and indentation options in the
Source view. You will view the form's source code and see how to control the
component definitions.

1. Switch to the iiiSettingsDialog form in the editor by using the Previous or
Next buttons on the toolbar.

3
B - *’Hr |iiiDi
[———

Home Design Tools

Fl
p——eY L e

You can also do this 'switch' using the Open Objects menu or the Outline tab.

Notice that the
definitions:

source code is showing the details for all component

Design | Source Repository Details | Repository Help ' Cross References '9

Repository. ﬂ Details 'ﬂll Outline

» Dialog
- Def ins_Com
Def in=_Com
Define_Com
Def ins_Com
Define Com
Defins_Com

= Def ine_Com
Def ina_Com
Def ine_Cam
Defins_Com
Defins Com

Defins_Com

Favorites

Define_Com

-1 Def ine_Com
Def ina_Com
Def ine_Com
Def ine_Com
Defins Com

Function Options(#*DIRECT)
=Begin_Com Role(»EXTENDS #PRIM_FORM) Bordericons(SystemMenu) Caption('Settings') Clientheight({201} CL:cntw:d =

providing options for the application appearance

Class{#FPRIM_LAEL) Hame(#LAEL_1) Caption(*MTETXDX043) Displayposition(l) Ellipses(Word) Height(Z
Class(#PRIM_CMEX) Mame(#Fonts) Comboboxstyle(DropDownlist) Componentversion(l) Displayposition(
Class{#PRIM_CBCL) Name{#CBCL 1) Displayposition{l) Parent(#Fonts) Source(#NDNCapticn) UsepickliE
Class(#PRIM_CBCL) Name(#CBCL_2) Parent(#Fonts) Source(#XDXilpha) Usspicklist(False) Visible(Fal
Clas=(#PRIM_LABL) Hame(#1TextColor) Caption{=NTEXTEDE044) Displayposition(3) Ellipses(Uord) Heic
Clas=(#PRIM_TABL) Mame(#TextColor) Displayposition(4) Ellipses{Word) Height(20) Left{120) Parer

Class(#PRIM_LAEL) Hame(#LABL_2) Caption(»MTHTXDED45) Displayposition(5) Ellipses{Word) Height(1
Class(#PRIM SPIT) Hame(#Topleit) Displayposition(6) Height(20) Left(120) Parent(#CONM_OWNER) Shc
Class(#PRINM_SFDT) Hame(#TopRight) Displayposition(7?) Height(20) Left(176) Parent (#COH_OWNER) Sk
Class(#PRIM_SPLT) Hame(#Bottomleft) Displayposition{(8) Height{20) Left(120) Parent(#COM_OWNER)
Class(#PRIM SPDT) Hame(#BottomRight) Displayposition(9) Height(20) Left({176) Parent (#COM_OVNER)

Class(¥prim_vs.Style) Name(#TextColorStyle) Normbackcolor(Black)
Class{#prim_appl. IConmonDialogColor) Name{#ColorPicker) Reference(*dynamic)

Class(#PRIN_FHEN) Hame(#Apply) Caption(=NTXTEDK047) Displayposition(l0) Left(256) Parent (#C0H_C
Class(#PRIM_CMBX) Name(#Transition) Comboboxstyle(DropDownlist) Componsntversion(l) Displayposi
Clas=(#PRIM_CBCL) Hame(#CBCI_3) Displayposition(1l) Parent(#Transition) Source({fiDHCaption) Ussg
Cla=s(#PRIM CBCL) Name(#CBCL_4) Parent({#Tranzition) Source(#¥DXilpha) Usepicklist{False) Wisibl
Class(#PRIM_LABL) Mans(#LABL 3) Caption(#MTHTXDIO046) Displayposition(12) Ellipses(Vord) Height(

2. Using the File menu, select Options to open the LANSA Settings dialog.

3. Select the Source icon to view the source code options.

=] LAMSA Settings ﬂ

B | ETCE—

General Cancel
s ¥ Indentation

|,_’] Indentation Lines Apply
Source Line Numbers Reget
== ¥ Component Definttions

u ¥ Auto Display Messages Reset All
Design Word Wrap

E‘E J Auto Complete Reset Editar

Aupadit Stames

a. Select the Indentation and Line Numbers options.

b. Deselect the Component Definitions option.

b. Press Apply.

4. You will see that the source code is now showing indent lines and line

numbers.

Note that the component definitions (Define_Com) are now compressed so

that only the first definition of each set is shown.

Design

ooonl
ooonz

0oon3
ooon4
0oans

0oo1ll
ooolz

|||[Contrals P> Outline

L

Detail

oool?
0ools
oools
oooza
oonzl

GoTo|

5. Reset the Editor Source Settings to remove the Line numbers and Indentation

Source | Repository Details | Repository Help | Cross References

Function Option=(*DIRECT)
“FBegin_iCom Role(*EXTEHDS #FPEIM _FOEM) Bordericow
Clientwidth({346) Formstvle(StayonTopChild)
Topi244) Width{362)

#® Dialog providing options for the applicat:

¥l Define_Com Clasz={#FFINM_LABL) Hame(#LABL_ 1)

Height{20) Left({8) Parent (#COH_OWHER) T=
Verticalalignment (Center) Width{1l05)

¥l Define_Com Clasz=(#FPREIM_LABL) Hame(#LABL_ 23 «

Height{17?) Left{8) Parent (#COH_OWHER) Ts
Verticalalignment (Center) Width{1l09)

Define Com Class(#prim_vs. Stvle) Hame(#TextC

Define Com Class(#¥primn_appl . ICommonDialogCok

T = 1 -

Lines and to show all Component Definition lines.

Step 6. Word Wrap

In this step you will change the word wrapping options in the Source view.
Word wrapping is used to control how single lines of code are displayed in the
editor. Wrapping will ensure that the complete line of code is viewable in the
current width of the Source tab.

1. On the File menu select Options, to open the LANSA Settings dialog.

= LANSA Settings
General : = Cancel
Y| |Indentation
& ¥ Indentation Lines Apply
Source ¥ Line Mumbers ——
[_II—-- Component Definitions
v Auto Display Messages Reset All
Design Word Wrap
E[E S e Reset Editor
| Simple
WAM *| Smart
| ‘ ¢ Auto Complete
= ? Audit Stamrs

. Select the Source icon to view the source code options.

. Select the None option. The default (shipped) setting is Smart word wrap.
. Click Apply and then OK.

2. Each line of source code is now shown as a single line.

a
b. Expand the Word Wrap options.
C
d

Design | Scource Repository De' (]
£ |Doon1 Function ¥ =
E ooon2 —-Begin Con F mu) Caption{'Settings') Clienthe ™
& | 00003

oooo4 # Dialog =
A D000S 7l Define | KTEXDED43) Displaypofition(l) Ell
& oool11
£ ||looo1z H Def inel TETEDED45) Displaypoition(5) Ell
S ||[00017
‘4 |Doo1a Dafine C: -ornbackocolor(Black)
| (00019
#= 00020 Daf ine) .alorPicker) Refershoe(#dynamic)
= |[00021
"E onoz2 t Daf ine_Co LADKD47) Displayposgtion(l0) Lef
S |llogo27?

oooze Defin=_L.
o ||[00029
= {00030 Define s
3 ||[00031

onon32 Dief 3 anil

Optional: You can try the other Word Wrap settings to see how they impact
the code display.

4.0pen the Settings dialog again and reset the Word Wrap setting to Smart.
5. Close the iiiSettingsDialog form in the editor.

4

u) CAPTION{ 'Setting=')
pChild) HEIGHT(Z239)
Hize2)

S e

Close the form using the blue cross at the top right of the editor.

No changes should have been made to the code. (If you have made a change
by mistake, simply press No when asked to save changes.)

6. The editor will display the iiiDeptQuery function.

Step 7. Submit a Compile
In this step you will compile the iiiDeptQuery function and view the compile
messages.

1. One the Home ribbon, click on the highlighted button in the corner of the
Compile options area.

Home Deesign Toals
] = r— . » Full Check = W

Text Search \n. = 0 x tx', “-“_.I & Buald

4 E
S B o Obf:,__"“ Enable ek Runtime Clipboard Fina
2 Design Repository Help | Cross References
f S EEEEESEEEEEESESSESSESSSSSSENESSENSSSSNESSSSSESEEEEEEE
= Copyraght (C) = LANSA DEMOMSTRATION SYSTEM = 19
® Procesz= TTREOTTORT
® Function
& Craatad: i i Compile options ﬂ
i r:::::,”nn | | Process/Function Compile Options |
= pti
§ EEEEaEEEEaEEEEEON = | Processes and Functians (1) o Ecmpile Process cnl:, if MECEsary
E F"":l""" ""E '[""I'“E';h. ¥ Compile all process functions
unction Dptions

® Croup and fisld B ¥ Campile functions anly f necessary
Group E :
= Logpd:':1_t{?]'=|:_':£fﬂi Keep generated source
Begin_Loaop ¥ Debug enabled

Elh:-"“"n;'“'-' aner ¥ Generste HTML

SUES 16

& Fatcl TI-'-, la TEAT ¥ Walidate nurmerics

Fetch Fields(#PiH 7 Generste XML ALl

= Diszplay resultlE

Dizplay Fislds=s(fp

Do2: Changs FislH
End_Loop

Use Default Settings : O Cancel

The Compile Options dialog will be shown.

2. You do not need to Generate HTML or XML. Remove these options.
Removing the three compile options as shown, means "compile just this
function", regardless of whether VL is aware it has changed. Visual LANSA
will now always compile selected functions and the process.

Your settings should appear as follows:

S Compile options

Process/Function Compile Options |

"= Processes and Functions (1) Compile process only if necessary
Compile all process functions
Compile functions enly if necessary

Keep generated source
¥| Debug enabled
Generate HTML
Validate nurmerics

Generate XML

Use Default Settings Ok Cancel

3. Press the OK button to submit the compile.
4. Resize the bottom area of the editor and display the Compile tab.

The status of the compile will be displayed in the Compile tab. You will see
the messages change as the compile is in progress and then completes.

fEvon-Slelds (FEANDLOsL 4 Prom rrleioii v B e sl BET | O0RE T e T o

(L]
#® Di=zplay results to the user
i Di=zplay Field=s(#PANELDATA) Deszign{=*DOWH) Identifvy{=DESC)
0 D02: Change Field(#PANELDATA) Tol*DEFAULT)
S ([T End_Loop
E FECOO10-FFC Completed : +0 warning messzages i=zsusd for process 111
L FECOO11-FFC Completed : +0 fatal messzages izszued for process IIIED]
=i
E
E x| 44 | lob Status Description Results
E‘ X * |Completed Compile 2 objects Compiled 2 of 2
g e XK
= » 1
2 : : 3
= (i Assistant | .. Compile | ¢ Help

|Ln22, Col1| LANSA13SP1 | TRN | JIVORVE13 | TRAINING |

5. Expand the "Completed, Compiled 2 Objects" message:

H

Select the iiiDeptQuery object and click the joblog icon to see the

compile messages.

The Compile Output dialog will be displayed. You can view the source code
build messages as well as the compile messages.

= Compile Qutput iiiDeptCuery - Query Departments ﬂ

&

Build utput | Cormpile output

LANSA C/C++ Code Translator Imvoked

[C) Copynght The LAMSA Grouwp - 1993,2001,
Started : 14:34:07 Thursday 20 June 2013
Process : IIEDITORT Functson : NIDEPT

Loading all Data Structure Defimitions
Loading all Data Structure Companents

LAMNSA Full Function Checlker (FFC) Invoked
[C) Copynght The LAMSA Group, 1993-2001
Started : 14:32:07 Thursday 20 June 2013
Process : IIEDITORT Function : IIDEPT

Pass 1 Vabdation Stamed

Pass: 1 Total commands checked: 1
Pass: 1 Total comrmands checked: 23
Pass 2 Vahdation Started

Pass: 2 Tatal commands checked: 1
Designing Dialogue -> REQUEST
Designing Dialogue -» DISPLAY
Pags: 1 Total commands checked: 23
Startima Final Freld Checkina

= Compile Qutput iiiDeptCuery - Query Departments ﬂ

&

Build output Cormpile output

LAMSA Process and Function Generater -
Version: 13.1.0 Date : Jun 13 2013

Mate : Generator is (C) COPYRIGHT LANSA

1953-2013. All rights are reserved.

Generated code (C) Copyright is subject to the

discretion of the licensed user of this product.

Campile Options used were :

Debug Enabled i

Systemn Message File 1 DE@MN
Hash/Pound 5ign wused 1 F

AR Sagn used @

Keep Source M

Campile Process only if necessany < N
Compile Function only if necessary : N
Campile Functions

Campilation and Linkage of Function IIDEPT started,

Generaticn of link/build objects for BIDEPT started.

Perfarming BuildMake activities for ervironment M5 Windeows / MSVC 32 bt Compaler / ODBC DEMS.

I:qn'.mun:ling (for M5 Windows / MSVC 32 bit Compiler / ODBC DEMS) : r:".prggraa?\lanﬂh Mar_win83x_lansato_trn
‘sourceimdeptink

Canstructing ifor M5 Windows / MSVC 32 bit Cornpiler / ODBC DEMS) : ci\progra-2dansal=Ta_win3a_lansalo_trm
source mdectmak

Notes:
a.The logs contain two tabs, with details of the build and the compile.

b.The log can be opened in Notepad, in case you need to save the compile
logs to send to LANSA Support.

6. Close the Compile Output dialog.
7. Close the iiiDeptQuery function.

Step 8. Display Error Log

In this step you will cause a fatal error to occur and the view the error log. The

error log is associated with run-time errors.

1. On the Favorites / Last Opened tab, select iiiSettingsDialog and use the
context menu to Execute the form. In the Execute dialog, select Form as
Windows Application.

Favorites

Y Weblet Templates £ Last Opened

' ltem | Description | Modified | Build|
» ™ ADDRESS2 Suburk or Town 28/11149.., '
» ™ iiAddressLinel Street Mo and Mame 20/06/20..,
= iiiDeptQuery Cuery Departrments 20/06/20... Comg
> 4% jiiEditorTesting Demo Process 20/06/20... Comj
e v o i A e i s Y
SeitingsDial— s " Execute...
»] PSLMST P
| == Compile Form as Client to any Server (manual connecton)
[Execute Form as Client to Linux Server
Debu Form as Client to RDML IBM i Server
3 Form as Client to RDMLX IBM i Server

Form as Client to Windows Server

"¢ Delete frol | | T

Form using Direct

] Prompt for additional execution parameters

cance

2. A fatal error is displayed.

Fatal Error

. Message : Unable to load/locate module IISETTI or the module is not a
LAMSA component,
Routine : File LpCrwindowsRuntimeManager at line 219,

3. Close the Fatal Error message box (Click OK) and Cancel the Message
window.

4. On the Home ribbon, open the Error Logs menu to select Local.

History

dified
1114,
06,/20...

Error Logs

Eud Local

Eud Web

Eug Master

[OG] - = g Master Obj:
s. & D

Error Logs History Start @ “heckln

’-‘E Show the Visual LAMNSA runtime error Log
'f'ﬁ Show the Web runtime error Log

“& Show the master runtime error log

to view the Visual LANSA Error Log:

Details
4 Thursday 20 June 2013

[

[

3

14:50:22

14:49:28

08:49:39

08:47:37

08:45:56
Thursday 13 June 2013
Tuesday 04 June 2013
Thursday 30 May 2013
Tuesdaw 21 Maw 2013

C:\Users\Johnm\AppData\Loca\Temp\X_ERR.LOG - o

Thu Jun 20 14:50:22 2013

Releaze 13.1.0 Build 40735 Windows & Pro (6.2.0,0.9200)

Message : Unable to load/locate module ISETTI or the module is not a LANSA
component.

Reoutine : File LpCrwindowsRuntimeManager at line 315,

Job Mumber: 011292 OS5 User: John

DBUT=MS50LS FORM=IIISETTI PART=TREN LANG=EMNG USER=JIVORYB13
DBUS=USERID DBII=LX5JOHNI DBIT=MS5CLS GUSR=CQPGMR HLPC=1509852
LOCK=YES TASK=TRAINING DEVE=Y DATF=DMY
DRIV=CAPROGRA~ZNLAMNSAT -1 _WINGS PRTR=LPT1 DEUG=M ITRO=MN
ITRM=20000 ITRL=4 ITRC=ALL ITHP=X RMDR=W RMNDM=H

Close

The toolbar buttons enable the error log to be refreshed, opened in Notepad
or cleared.

0]
=

3

Refresh [Open in Notepad }

Clear the log file

This error occurs simply because the iiiSettingsDialog form is not compiled.

5. Close the Error log window.

Step 9. Display Feature Help Text

In this step you will use the help text tab to view feature help for components.
Feature help is used to display detailed information about components. Feature
help is particularly important as you edit forms and reusable parts.

1. On the Repository tab, under Organizers, expand Groups and then expand

Basic Controls.

2. Select the Combo box control.

Repository

B Repository
X <

-

[tem
4 & Web

W Web Application M...

+ E® Web Components
Weblets

» Ly

» 73 Active Technology...

4 1 Organizers
* b Database Diagrams
—
» 4y Frameworks

4 () Groups

» () ACTIVEX COMTROL...
* {O) BARS - Progress, St...
4 (T) BASIC CONTROLS -...

Calendar

Description Madified

.

ActiveX Controls
Progress, Status and T...
Basic Controls
Calendar lets the yser

-@ Combo Box

List with an edit box

“(5 Datelime Picker
o, Explorer

il Gragh

3. Press F2.

The Features tab will be displayed,
Properties, Events and Methods.

Date and time picker ...
Shows files and folders
Nata in a graph

showing the combo box control's

Features

@~ B~ Z Qb B ®

4 Primitive

Ef PRIM_CMBX List with an edit box
4 Definition

4 Class
4 =i PRIM_CMEX List with an edit box
4 [& Extends
* @58 PRIM_CTRL Base Visual Control
| : f Events
| J F‘f; Methods
" Properties

Note that this tab shows the Feature help (F2). As you learned in the Visual
LANSA User Interface Tutorials, there is other context-sensitive help
available when you press F1. F1 will always link you to a suitable reference
in the online guides.

4.Expand Methods and double click on any of the component's methods. Help
text is displayed explaining how the selected method can be used.

|l_u
@-rp- 2Ll Abe B-%
1

4 Primitive
B PRIM_CMEBX List with an edit box
4 Definiticn
4 Class
4 @ PRIM_CMBX List with an edit bax
[E Extends
& & PRIM_CTRL Base Visual Contrel
L & Evens
|y Methods
4 |* CloseDropDown
* Result Boelean of (False, True)
& 1 Fadein
) E FadeChut
& g MoveFrom
B E MoveTo
b OpenDropDown
b Realize
b g Scale
b g SelectText
I SetFocus
bl Setvaluent : .
1 Showhessages { B The CloseDropDown method forces the list box partion of @ GropDawn ar
I* Unrealize DropOownList style combo box to be closed.
| o Urenumt e T s el K b

-
,,,,,,,,, - a

TARE @@) =
|m1w|m|ma|m|m|mm|mm|m-

CleseDropDown method

Summary

Important Observations
e You can customize the way source code is displayed in the editor.
¢ You can toggle the display of line numbers and indentation on or off.
e You can hide DEFINE_COM statements.
e The Help Text tab shows Feature help for selected components.
e The Compile tab shows the compile status of objects.

What I Should Know
e How to open process, functions and components in the editor.
e How to customize the display of source code in the editor.
e How to show and hide line numbers and indentation of the source code.
e How to change the way statements are formatted.
e How to hide DEFINE_COM statements in the source code.
e How to use feature help for components.
e How to view compile status messages.

VEDO020 - Edit Source Code
Objectives:

To learn how to use keyboard shortcuts to navigate within the code in the
Source tab.

To learn how to use keyboard shortcuts to comment and uncomment code.
To learn how to use copy, paste, and undo features.

To learn how to find and replace text in the Source tab when editing a
function or a component.

The focus of this exercise is learning how to navigate within the editor and use
some basic editor features. The purpose of the programs and the actual meaning
of the RDML commands is not important. The RDML Programming tutorials
teach the basic coding practices.

To achieve these objectives you will complete the following:

Step 1. Cursor Position

Step 2. Position the Current Line

Step 3. Comment Lines

Step 4. Copy and Paste

Step 5. Find Text

Step 6. Use the Toolbar Find Button
Step 7. Use the Find Dialog

Step 8. Find and Replace

Step 9. Search Text in Several Objects
Summary

Before You Begin:
You may wish to review the following topics in the Visual LANSA User Guide:

Keyboard Shortcuts
Source Tab

You should complete all previous tutorials.

its:lansa012.CHM::/lansa/L4wUsr01_0390.htm
its:lansa012.CHM::/lansa/L4wUsr01_0395.htm

Step 1. Cursor Position

In this step you will use keyboard shortcuts to move the cursor to different
positions in the code displayed in the Source view.

1. From the Help menu button at the top right of the editor, select Shortcuts:

Contents
Using the Editor
ShortCuts

LAMSA Home Page
LaM5A Technical Resources

About

2. The Help tab will initially be displayed docked at the bottom of the editor.
Float and resize the Help tab. Use the links to review some of the many editor
shortcut options:

Help
- Keyboard Shortcuts

For maost features, you can use Visual LANSA with or without a mouse. The
keyboard can also be used to select items and actions within a window. The
Screen and Report Designing faclities in Visual LANSA do need a mouse.

Keyboard
& Move the cursor in the Source tab
Position the current line
l_:_j Tag and comment lines
Collapse and expand code
Format text
Deletions
Copy, cut and paste
Help
Selection
Undo/Redo
Find and replace
Command Assistant Keystrokes
Menu editor
Select with the mouse
1 Editor Basics

3. Close the Help tab. Its size and position will be remembered.

4. Use the Favorites / Last Opened tab, to open form iiiSettingsDialog in the
editor.

5. Display the Source tab.

Remember, your source code appearance is determined by the editor display
settings. (Refer to exercise VED010 - Format Source Code).

Design | Source Repository Details | Repository Help | Cross References

goool Function Options{*DIRECT)

ooooz —FBEGIN_COM ROLE({=*EXTENDS #PRIM FORM) BORDERICONS(SystemMenu) CAPTION('Settings')
CLIENTHEIGHT(201) CLIENTWIDTH({346; FORMSTYLE(StavOnTopChild) HEIGHT(239)
LEFT{666) STYLE{#XDEStyvles<Background:) TOP{366) WIDTH(362)

ooo03

ooond * Dialog providing options= for the application appearance

oooaos -] DEFINE COM CLASS(#PRIM LAEL) NAME(#LABL 1) CAPTION(=MTETEDX043)

DISPLAYPOSITION(1) ELLIPSES(Word) HEIGHT(20) LEFT(8) PARENT{#COM_OWHER)
TAEPOSITION(1) TABSTOF(False) TOP(8) VERTICALALIGNMENT(Center) WIDTH(105)
aoo0e DEFINE_COM CLASS{#FPRIM_CHMEX) NAME(#Fonts) COMBOBOXSTYLE(DropDownList)
COMPONENTVERSION(1) DISFLAVPOSITION(Z) FIXEDHEIGHT(False) LEFT({120)
PARENT (#COM_OWNER) SHOWSELECTION(False) SHOWSELECTIONHILIGHT(False)
TAEPOSITION(2) TOP(2) WIDTH(217)

e e e T S e

oooo? DEFINE COM CLASS{#FPRIM CBCL) HAME(#CBCL_1) DISPLAYPOSITION(1) PARENT(#Fonts)
SOURCE(#¥DECaption) USEPICKLIST(False)
gooos DEFINE COM CLASS{#FPRIM CBCL) HAME(#CBCL_2) PARENT(#Fonts) SOURCE(#XDEAlpha)
TSEPICKLIST (Fal=se) VISIELE({False)
009, |~ DEEINE COB~SLARS(FERTH LAEL) NAME(#)TextColor) CAPTION(%MIXTEDEO44) e)

6. If you have not already done so, turn on Autohide to maximize the display
area for your source code.

7. Move the cursor to the end of the window by pressing the End key twice.
Note: This moves to the end of the window, not the end of the source.
8. Move the cursor to the top of the window by pressing the Home key twice.

9. Move the cursor to the end of the source by pressing the End key three
times.

10. Move the cursor back to the top of the source by pressing Ctrl + Home.

11. Use the down arrow key to move to the BEGIN_COM statement in the
Source tab, and then use the Ctrl + right arrow key to move to next part of
this BEGIN_COM statement.

Design Source Repository Details | Repository Help | Cross

Function Option=(*DIRECT)
=l Begin_Comn Role(*EXTENDS #PRIM FOEM) E

#® Dialog prows
-l Define_Com C1
_Parent{#CO

I:rcllsh, Cutline

NERE Tahpns?tiun{

Th— 4 RN

The cursor should be
here

Step 2. Position the Current Line

In this step you will position the current line in the editor using shortcut keys
and the Go To tab.

1. Position the cursor on any DEFINE_COM statement towards the bottom of
the window..

2. Press Ctrl + T to move the DEFINE_COM statement to the top of the editor
window.

3. Press Ctrl + M to move the DEFINE_COM statement to the middle of the
editor window.

Hint: Clicking to the left of any statement will select the whole line, making
the above moves easier to see.

E Define Com Class(#FPRIM_LAEL) Hame(#LABL 2) Caption(=*MT
FParent (#C0OM_OWHER) Tabposition(5) Tabstopi{Fal=e) T
Define Com Clags{#PRIH_SPDT} Hame(#Topleft) Dis=plavpos

ShowselectioniEales . Showselecticnhilight{E

Define Com Clas=(#PREIM SPDT) Hame(#TopRight) Di=plawvp
howzelection(False) Showselectionhilight{Fal=e)

o Cla==|RFPRIH_SFPLT) Hame!| #Bottomlel t) Display

ction(Fal=e) Showselectionhilight(False) T
o AODTH SPETT Y- YMeme A# Dt s = T ght) Tii=pls

Detailsmll &

T
n
=
[u}
=

Nefine Com

Thig line is selected }

4. Display the Go To tab and pin it place. Expand the Routine node:

T 2 x
E Enter line number:]
i
§ Categories |
| b [¥ Definitions
(| I |4 List Operations
E i F ‘f: Routine
g “ Evtroutine - #Apply.Click

=+ Evtroutine - #Com_owner.Closing

;IT_-E __? Evtroutine - #Com_owner.Createlns...
% = Evtroutine - #Fonts.ternGotFocus
o “ Evtroutine - #TextColor.Click

= Evtroutine - #Topleft.Changed £#To..,
5 E‘z-: Mthroutine - AddFont
_% E‘f: Mthroutine - AddTransition
E F‘f: Mthroutine - GetActiveTransition
i E_.f: Mthroutine - GetFont
E‘z-: Mthroutine - Show

E ™ Ptyroutine - GetTransitionType
(=]

Ll ™o, o I o, S

5. Double-click on the Evtroutine - #Apply.click.
The editor will position at first line of this routine in the source code.

6. Press Ctrl + B to move the event routine line to the bottom of the editor
window.

7. Press Ctrl + T to move it to the top of the editor window.

Step 3. Comment Lines

In this step you will learn how to comment and uncomment lines with a
keyboard shortcut.

1. Using the cursor, select the highlighted lines of code in the event routine.

2
Design Source Repository Details | Repository Help | Cross References gJ'
oo1s3 —FEvtroutine Handling{#ipply.Cliclk) }
onia4d
00185 Define Com Class(#prim ws Style) Hame(#PanslStyle) 1
onlse Define Com Class(¥prim_vs.Stvle) Hamei{#ipplicationStyle) i
on1az i
on1ss fhctiveTransition = ¥Com_owner GethActiveTransition ;
oni1as
001490 F+If (#¥StyleChanged)

R0

2. Press Ctrl + W to change these lines of code to comment lines.

Design = Source Repository Details | Repository Help | Cross References i
o018z EFEvtroutine Handling{#ipplv . Click) 5
on1ls4
00185 #* Define Com Class(#¥prim_ws.Style) Hame(#PanelStyle) g
nolee * Define Com Class{#prim_w= Style) Hame{fipplicationStwle) T
00187 }
nolgs fhctiveTranzition = #Com_owner.GetictiveTransition 2
oo1s9 g
aol1so It {(#StyleChanged) j
00191 g
noi1sz2 * Apply =etting= to the application i
nol193 fipplicationStyle . FaceNane = #Con_owner. GetFont t
Hame APPLICATIONSTYLE could not be found. H
00194 ¥ #ipplicationStyle TextColor = #TextColorStyle. HormBackColor Ed
L | I WM found. HJ?

Notice the editor has immediately highlighted errors due to the missing code.
3.Use Ctrl+Shft+W to change these lines back to RDMLX language commands.

Step 4. Copy and Paste

The editor uses standard Windows shortcut keys for copy, cut and paste
operations.

Use Ctrl+Home to move to the top of the source code.
In this step you will learn how to copy and paste text.
1. Position the cursor in front of the BEGIN COM statement.

2. Press Ctrl + Shift + right arrow to select the text BEGIN_COM.
3. Press Ctrl + C to copy the text.

4. Position the cursor before the BEGIN_COM and press Enter to add a blank
line above the BEGIN_COM statement.

5. With the cursor on the blank line press Ctrl + V to paste in the copied text.
6. Select the newly pasted text.

7. Press Ctrl + Z to undo the paste operation.

Step 5. Find Text

In this step you will search text in the Source tab.
1. Press Ctrl + F to display the Find dialog.

You may also use Find or Replace from the Find button on the Home ribbon.

= 1

? W ocut P E t./ £ Master Objects |
& e i History Start g Checkln ?
{ Find g
J . }
3)
4 EVTROUTINE - 4
r

} @ Find @5 Replace & }
% 1
N = o Ve o v L

2. Type EVTROUTINE into the Find what: field.
=] Find
Find what: evtroutine x | Eind Mext

atch whole word on irection

] Match whol d only]l i Tag Al
] Match case Up

Wrap « Down Cancel

3. Press the Find Next button.
You will be positioned to the first EVTROUTINE.
4. Press Esc to close the Find dialog.
5. Press F3 to find the next occurrence of EVTROUTINE.

Step 6. Use the Toolbar Find Button

In this step you will find text using the Find button on the Home ribbon.
1. Move the cursor back to the top of the form by pressing Ctrl + Home.

2. Click on the Find button on the Home ribbon, position the cursor in the input
box and type currentitem.

k % &, L E Master Objects ‘E
f: " 4§ Checkin

I Find History Start i Jj

- b

g

currentiterm - l 2

¥ 3

n &8 Replace & o P

CAPTION('S IEH'}

3. Press Enter on the keyboard.

The first occurrence of the string is located in the code.

u-mj-e_rw.—-f“ WAW—NW;
ooos? FFRPtyroutine Hame(GetTransitionType) }
gooss Define Map For({=output) Clas=(#Prim_alph) Hame(#Froperty) ,;
ooo3s ™
ooo4n FProperty = #ActiveTransition f
ooo41
ooodz2 —Endroutine :;
ooo43 }
oop44 FFMthroutine Hame(GetActiveTransition) 3
oop4s Define Map For(#Fesult) Clas=(#Prim_alph) Hame(#Fesult) %
ooo4e
ooo4a7 Selectlist Named(#Transition))
ooo4a {
oop49 Continuse If {*Not #Transitiocus) }
qooso ,
| « 3

4. Use the Next in the Find button dialog to find the next occurrence of
currentitem.

—]
3% E t/ § Master Object
1
: <& Checkln 2
Find History Start i 1
i 1
4
E]
7
T
currentitem = k
1 @@ Find &5 Replace ity @
]

IO e i

""L_...,_n_z—-—-wmj

5. Press F3 to find where the next occurrence of the string Currentitem is
located in the source code.

6. Press Shift + F3. The previous occurrence of the string currentitem is
located in the source code.

Note: The Find dialog stores a list of your search values for your current VL
session.

The appearance of the Find dialog in the Home ribbon, varies depending on
how your Editor has been resized, for example:

["‘ \ @ Cut -
Copy]

Paste ; @b Find @5 Replace

Step 7. Use the Find Dialog

In this step you will use the Find dialog to mark all occurrences of the string
currentitem.

1. Place the cursor on the BEGIN_COM statement at the top of the source
code.

2. Press Ctrl + F or use the Find button on the Home ribbon to display the
Find dialog.

The Find dialog is displayed with BEGIN_COM set as the search string.
=] Find
Find what: Begin_Com x | Eind Mext

[] Match whole word only —Direction
[] Match case Up

Wrap « Down Cancel

Tag All

3. In the Find what drop-down list select currentitem.
=] Find
Find what: currentitern El | Find Mext

Begin_Com
[] Matchwholewal = o | Tag All
[] Match case e

Wrap « Down Cancel

4. Click the Tag All button to mark all occurrences of the string currentitem in
the source.

5. Scroll down the code. Notice how every occurrence of currentitem, is
marked with a small blue rectangle.

EFHthroutine Hame(GetdictiveTransition)
Define Map For(sResult) Class(#Frim_alph) Han={#Result)

=FSelectlist Hamed(#Transition)
ontinue If {®Hot #Transition.CurrentItem. Focus)
#Result = ¥XDEalpha
Leave
Endse=lect
—Endroutine

EFMthroutine Hamne{GetFont)
Define Hap For(#Rssult) Class(#Frim_alph) Hams{#fResult)

SSelectlist Named(#Focnts)
ontinue L[f(=Hot #Fonts. CurrentItem Focus)
#Result = ¥TDEalphs
Leave

Endsalect

—Endroutine

Tags are temporary and are not saved with the source.
Tags are shown on the Go To tab:

GoTo |

Enter line number: [i] g | B -

Categories |
+ Definitions
4| List Operations
4 I Routine
& Evtroutine - ®Apphy.Click
= Ewvtroutine - #Com_owner.Closing
& Evtroutine - #Com_owner.Createlnstance
< Evtroutine - ZFonts.temGotFocus
& Evtroutine - #TetColor.Click
- Evtroutine - #Topleft.Changed #TopRight...
[Mthroutine - AddFont
[Mthroutine - AddTransition
[* Mithroutine - GetActiveTransition
| Mthroutine - GetFont
[* Mithroutine - Show
A" Ptyroutine - GetTransitionType
4[4 Tag
=Fonts.Currentitem Focus := True
¥ #Transition.Currentitem Focus := True
+ Continue [f{*Mot #Fonts.Currentitermn.Focus)
4 Continue If(*Mot 2Transition, Currentitem,..,

6. Click Cancel to close the Find dialog box.

Step 8. Find and Replace

In this step you will replace the string application with system.
1. Press Ctrl + H to bring up the Replace dialog.

2. Enter application in the Find what field.
3. Type system in the Replace with field.
Select the Match whole word only check box.

= Replace
Find what: application % |m
Replace with: system - Replace
Match whole word only
[] Match case Replace All
[Cancel

4. Click the Replace All button.

All occurrences of the string application are replaced with system.

noog4 “Endif

gooas

onoge —Endroutine

nooay

nooaze FEFEvtroutine Handling(#Com_owner . Createlnstance)
gooas

00o9n * Allowed fonts for t

ooo9l * Could alos be loaded =t RAtys font list
ooosz #Com_owner AddFont{ "Segoe UI")

oooaz ¥Com_owner AddFont{ "Tahoma")

nnnad ¥Com_owner AddFont{ "Courier Hew")

onoas #Com_owner AddFont{ "Arial” 3

ono9e #Con_owner AddFont{ "Verdana")

noosy

aoosg Get_Entry Humber{l) From_List({#Fonts)

nnnas ¥Font= CurrentItem. Focu=z = Trus

nninn

5. Close the iiiSettingsDialog form. Be sure to answer No when asked if you
want to save the changes.

= Save Changes

Save Changes to iiisettingsDialog?

Yes C| """" |

Step 9. Search Text in Several Objects

In this step you will search for text in all Repository objects that contain source
code.

1. Click on the Text Search button on the Home ribbon.

Find Objects

H' ~-2@8L€s ILANSAEditorf
bl

File Home Tools L

T

= o e 3

® | == . == |

Repository | Text Search | Views Open §

¥

?

2. In the Text Search dialog specify to search all forms, reusable parts and
functions for the text SELECT. Limit the search to objects starting with
XDX*. Note the wildcard "*'.

Y Text Search ﬂ

Object Types | Search for ted SELECT Search

Like name bk

= Forms
Reusable parts
= Functions
& WaMg
‘& Weblets
® Fields

Cancel

3. Click the Search button.

The Text Search tab now shows all the forms, reusable parts and functions
starting with XDX that contain the text SELECT.

L] Qualified Object Deescription Line Number Line of Code

el

4 Completed 30 matches found Search for SELECT in XDX*
== XDxD0002 DirectX Examples 52 * Transition animaticn betwesn the}
o == XDXD0002 DirectX Examples 144 Mthroutine Name(ActivatePanel) He
== XDXD0002 DirectX Bamples 159 * Hook up the animation to the sel
H = XDXD00SE Settings Dialeg (] Define_Com Class(#PRIM_CMBX) Y
== XDXD0056 Settings Dialog 13 Define_Com Class{#PRIM_SPDT) Na
== XDXDDOSE Settings Dialog 14 Define_Com Class(2PRIM_SPDT) N3

= XDXD00S6 Settings Dialog 15 Define_Com Class(#PRIM_SPDT) N)
o
W‘WW

Summary

Important Observations

There are various keyboard shortcuts which make working in the Source tab
more efficient.

The quickest way to search through source code is to use the Find feature in
the toolbar.

You can mark all the occurrences of a string using the Find dialog

What I Should Know

How to use keyboard shortcuts to navigate within the source code.
How to comment and uncomment code.

How to go to different positions in the source code using the go to feature of
the Outline tab.

How to use copy and paste code.

How to undo changes.

How to find strings in the source code of a component or function.
How to find and replace strings in the source code.

VEDO030 - Auto Complete and Command Assistant

Objectives:
e To learn how to use Auto Complete.
e To learn how to use the Command Assistant.
e To display the online help for RDML commands in the LANSA Editor.

The focus of this exercise is to learn how to use the Auto Complete and
Command Assistant in the editor. The purpose of the programs and the actual
meaning of the RDML commands is not important. The RDML Programming
tutorials teach the basic coding practices.

To achieve these objectives you will complete the following:
e Step 1. Display the Command Assistant

e Step 2. Use the Command Assistant

e Step 3. Use Auto Complete Prompter

e Step 4. Use the Online Help Command

e Summary

Before You Begin:

You may wish to review the following topics in the Visual Guide User Guide:
e Auto Complete
e Command Assistant

In order to complete this tutorial, you must have completed the previous steps in
this tutorial.

its:lansa012.CHM::/lansa/L4wUsr01_0830.htm
its:lansa012.CHM::/lansa/L4wUsr01_1805.htm

Step 1. Display the Command Assistant

In this step you will learn how to use the Command Assistant when editing

code. The Command Assistant is a prompting facility that helps you to build
RDML commands.

1. Use Favorites tab to open the iiiDeptQuery function in the editor's Source
tab.

2. Position the cursor on the FUNCTION command. Press F4 to open the

Command Assistant tab. It will initially be shown docked, at the bottom of the
editor.

3. Float the Command Assistant tab and resize it. It is usually a good idea to use
the Command Assistant in this way. When you close it, the settings will be
remembered and used the next time it is opened.

Source Dﬁlgn Repositery Help | Cross References LX)

at 11:5 I 32 i

Spar l| =1k E Assistant “
SR =7 3K+ Function Options{"MOMESSAGES "DEFERWRITE "DIRECT)

E'unm mn GpunnainGILESSAGES =LEFERVRITE =] . OPTIONS “NOMESSAG

W
Group and fisld defs « RCY DS
Group_By Hans(Q'Jh}-LJhIEn:I I:-:L—ld.-l:.ﬂ.l FTHENT = Commands | Special Values
Loop until user EXIT=s or CANCEL= + ROV LIST
+ TRIGGER MName Description

user inputs keys to locate bass “ALP_FIELD_VALIDATE
2 BT =i iznitallin
Fields(#DEFTHENT) Des “ALP_SYSTEM_VARIABLE

(DEFTAI “BUILTIN

splay resul *CLOSE_MSPLAY
Dizplay Fis ld*;'l_#l:'a‘:HELDa‘.Th.l J'.II:--_J.-_u.I.'; W *COMMERCE_EDNTIOM
Di2: Change Field{#PANELDATA) To=DEFANL: “DBOPTIMEE
End_Loop

*DBOPTIMISE_BATCH
*DEOPTIMIZE
“DBOPTIMIZE_BATCH
*DEFERWRITE
"DIRECT
“HEANYUSAGE
*LIGHTUSAGE
“MINI_SCREEN
*MLOPTIMISE

| w00

| v
4. Expand the OPTIONS parameter of the FUNCTION command.

5. Select the Special Values tab. You will see a list of all options than can be
selected and values can be added or changed.

| @ Assistant

K Function Gptinn;(*NGMESSAGES *DEFERWRITE *DIRECT)

" - OPTIONS FNOMESSAGES g

Special functic| *NOMESSAGES

Special functic *DEFERWRITE | Commands | Special Values
Special functic *DIRECT Mame | Description
Special functic *ALP_FIELD_VALIDATE
+ RCV_D5 *ALP_SYSTEM_VARIABLE
1 |+ RCW_LIST *BUILTIM
+ TRIGGER *CLOSE_DISPLAY
*COMMERCE_EDITION
* D yr

6. Close the Command Assistant.

Step 2. Use the Command Assistant

In this step you will learn how to use the Command Assistant to create SELECT
database command to retrieve all fields from the PSLMST file. The finished
command will appear as follows:

SGELECT FIELDS(#ADDRESS1 #ADDRESSZ #ADDRESSS #DERPTMENT #EMPNO)
FROM_FILE(PSLMST)
ENDSELECT
Note: Experienced developers could quickly type this command into the editor,
and the Autocomplete assistant would complete code and variables as they are
typed (see later). The Command Assistant is intended to help new developers
build this command.

1. Insert a blank line after the BEGIN_LOOP command by positioning the
cursor at the end of the line and pressing Enter.

2. Press F4 to re-display the Command Assistant as a floating window. Note
that it has the size and position which you gave it earlier.

3. Select the Commands tab.

a. Locate the SELECT command. (You can simply set focus on an item in
the list of commands and type the letter S to position to commands
starting with S.)

(s Assistant
HKv

W

Commands Built-In Functions

[tem Description
I * [B ROLLBACK Rollback Changes
+ B |SELECT Select
» [B SELECT_SQL Select (via 50L)
- B SELECTLIST Select Entries from

!

b. Press Enter to select the SELECT command in the list of commands.
c. The SELECT command is displayed in the Command Assistant.
4. Use the down cursor key to move to the FROM_FILE parameter.
a. Select the Files tab.
b. Use the Tab key to move to the File name field. Type PS in the File name

field to display files starting with PS.

@ Assistant
3¢ < Select Fields() From_File()
+ FIELDS g
+ FROM_FILE
WHERE Commands | Files
+WITH KEY —Result value filters
MER IEEYS “WITHKEY File name File description |
GEMERIC *MNO B=
I0_STATUS :ST":"TUS [tem Description | O
!.fﬂ,afpéiﬂﬁgﬂ *JITEE?TPI‘]TS * L PSLEVEMTA PSLEVEMNT by event da... =
END_ FILE NEXT * Lz PSLEVENTE PSLEVENT by type, dat...
ISSUE MSG *NO : PSLIMG Personnel Images
LOCK *NO ’ PSLMST Personnel
RETURM REM | *MOME . = PSLMST Personnel b}" Deptme...
+ OPTIONS * o PSLMST2 Personnel by Surname..,

e L SR [|

c. Select the PSLMST file and press Enter.
d. The From_File parameter in the SELECT command will be updated.
5. Click in the FIELDS parameter in the Assistant

Click on the Fields by File tab and expand the file PSLMST to display all
fields in the PSLMST file.

i)

$C o Sedect Fieldsf) From_File(PSLMST)

+ FIELDS

+FROM_FILE | PSLMST
WHERE

+ WITH_KEY
NER_KEYS “WITHKEY
GEMERIC "NO
IO_STATUS [*STATUS
10_ERROR *ABORT
ViaL_ERROR *LASTIMS
EMD_FILE *MEXT
ISSUE_M5G MO
LOCK MO
RETURN_RRM |*MOMNE

+ OPTIONS

Assistant
'
Commands | Variables Fields by File| Reposito, "
Result value filters
File narme File description
ps)
tterm Description L
[] PSLMET Personnel -
L PSLMST Personne by Deptme...
L PSLMST2 Personnel by Surname..,
EMPMNO Employes Mumber
® SURMAME Ermployes Sumame
® GIVENAME Ernployes Given Marm..,
B ADDRESSY Strest Mo and Namie
[® ADDRESS? Suburb or Town
B ADDRESS3 State and Country
® POSTCODE Post / Zip Code
® PHOMEHME Horme Phone Mumber
® PHOMEEUS Busmess Phone Numb...
® STARTODTER Start date (fYMBDD)
B TERMDATER Termination Date [YY...
B DEPTMEMT Department Code
® SECTION Section Code
R SALARY Employes Salary
ke STARTDTE Start Date (DDMMYY)
kb TERMDATE Terrminaticn Date (DD...
e MNTHSAL Menthly Salary
© L PELMETY

Personnel by Deptme... =

b

You can now choose the fields that you want to include in the SELECT
statement. For this example, simply select the EMPNO, ADDRESS]1,

ADDRESS2, ADDRESS3 and DEPTMENT fields. Use the Ctrl+left mouse
button to select the fields required.

()

Assistant

7 [Select Fields() Frorn_File{PSLMST)

+ FIELDS

+ FROM_FILE PSLMST
WHERE

+ WITH_KEY
MEBR_KEYS “WITHKEY
GEMERIC *NO
I0_STATUS *STATUS
I10_ERROR *ABORT
VAL_ERROR “LASTDIS
EMD_FILE “MEXT
ISSUE_MSG “WNO
LOCK *NO
RETURM_RRM “NOME

+ OPTIONS

b

® SECTION

Commands Vanables | Fields by File Repossta ' "
~Result value filters
File name File descripticn
ps d
| ttem | Description [g
4 o PSLMST Personnel —
L PSLMET Persannel by Deptrme..
Lo PELMET2 Personnel by Sumame...
EMPMNO Employee Mumber
® SURMNAME Ermployes Sumame
® GIVEMAME Employee Given Mam...
® ADDRESS1 Street No and Mame
® ADDRESS2 Suburb or Town
® ADDRESS3 State and Cowntry
® POSTCODE Post / Tip Code
® PHOMEHME Home Phone Mumber
® PHOMEBUS Business Phone Mumb..,
® STARTDTER Start date (YYRMDD)
® TERMDATER Termmnaton Date (YY...
® DEPTMENT Departrment Code

Section Code

6. Press Enter. The Fields parameter in the SELECT command will now be
updated:

) Assistant

$€ I Select Fields(#EMPNO #ADDRESS1 #ADDRESS2 #ADDRESS3 #DEPTMENT) From_File(PSLMST)

+ FIELDS |BEMPMNO 2ADDRE |+

+ FROM_FILE PSLMST - : : : :
WHERE Commands | Variables Fields by File | Repository Fields

+ WITH_KEY Mew qualification £ADDRESST

7. Close the Command Assistant. Your code now looks like the following:

HZelect Fields (#EMPHO #ADDRESS1 #ADDRESSZ #ADDRESS3 #DEPTMENT)
From_File (PSLHIT)
Endeselect

Step 3. Use Auto Complete Prompter

In this step you will learn how to use the Auto Complete prompter when
entering a SELECT command to retrieve all fields from the PSLMST file. You
will see how Auto Complete will show you all parameters for commands. You
will begin by deleting the SELECT statement created with the Command
Assistant and you will code the following commands:

=FSELECT FIELDS(*ALL) FROM_FILE{PSLMST)
LEnDSELECT

1. From the File menu select Options. Select the Source options. Make sure that
Auto Complete has been set to Prompter.

=] LANSA Settings [x |

E Source | ok |

General Cancel

¥ |Indentation
| # Indentation Lines

e Line Mumbers Reset
= ¥ Component Definitions
_] ¥ Auto Display Messages Reset All
Design Waord Wrap
EE 4 Auto Complete Reset Editas
Off
WAM *! Promnpter
Inline
\h‘ Shortout

2. Click the OK button to close the LANSA Settings dialog.
3. Select the SELECT and ENDSELECT statements and press the Delete key.
You should have a blank line in the editor.

4. Type S on the blank line. Auto Complete shows a list of commands starting
with S:

——ox T T T T I T g

SR —
EBEGIN_LOOFP

>

2 %
S [SELECT |pd. ;
SELECT_SQL 3
.. B} SELECTLIST B 1[}
p B SET T) [%
= [E SET_ERROR)
F SET_MODE t F I}"
* [SET_REF 3
DB SIGNAL Esll
D SKIP Al TG}%
Vg sorT_usT B g
T s e 1
Commands 3h_?‘

I

5
&

5. Press enter to select the SELECT command.

The Auto Complete Prompter adds the SELECT command with its
mandatory parameters to the line. The ENDSELECT command is also added.

6. Type P in the From_File parameter.
Auto Complete displays a list of files starting with P.

HSelect Fields() From File(p)

Value is required for param|gsg PSLEVENT o
File P not found
: 55 PSLEVENTA
Parameter FIELDS has expand PSLEVENTE
Endselect o
e PSLIMG
* Reguest user inputs kevs PSLMST
FE10: Eeguest Fields (#DEFPTME B3 P5LMSTI)
* Fotch file DEPTAB details | PSLMST2
Fetch Fields (#PANELDATA) Fr B psLskL EF
Not_Found (R10) Issus_Msg PSLTIMES
* Display results to the UsS|= oo mmEsa
Display Fields (#PANELDATA) R ~ | o
DOZ: Change Field (#PANELDAT| Fes
Frel T e

7. Select the PSLMST file and press Enter. The FROM_FILE parameter will
be completed.

8. Use the left arrow key to move to the Fields parameter. Press the spacebar.
The Auto Complete drop-down will show the fields from the PSLMST file.

ZSelect Fields(|) From_File (PSLMST)
Value 1s requir (s BODRES)

Parameter FIELD|= ADDRESS? Fi
Endselect ke
* FHegquest user * DEPTMENT £i
R10: Reguest Fi|'® EMPNO b
% Fetch file DE ¥ GIVENAME
Fetch Fields(#P | 8 MNTHSAL '

Mot _Found (Rl pHOMEBUS
*# Display resul i pHONEHME

Display Fields(= postcope e
[iD2: Change Fiela hd
End_Loop Fields in File | Groups and Lists | Fieli ¢ 3

9. Use the Tab key to select the Special Values tab.

*ALL
*ALL_REAL
*ALL_VIRT
*EXCLUDIMG
*INCLUDIMNG

]_F@ds-! Special Values i ¢
10. Select *ALL and press Enter.
The SELECT command definition is complete.

You may want to try to use the AutoComplete setting Inline which completes
your code on the same line as you type. When you are learning RDML, the
recommended setting for AutoComplete is Prompter. You may find the Inline
option faster once you develop some RDML programming skills.

You can turn off AutoComplete and then access it when required by using the
Ctrl+Space keys anywhere on a command line.

Step 4. Use the Online Help Command

In this step you will review the online help available for RDML commands in
the LANSA Editor's Source tab.

1. Set focus anywhere on the FUNCTION command and press F1 to display the
online help.

2. The help for the FUNCTION command from the Technical Reference Guide
will be displayed.

* Function control options

Function Dpt:nna[*NDf-'LESShGES ®DEFERWRITE =DIRECT)

Oroup and field definitions
Group_Byv Hame (#PANELDATA) Fields (#DEFTHENT #DEFTDESC)
Loop until user EXITs or CANCEI

Help H

7.49 FUNCTION

The FUMCTION command is used to specify certain compilation options tha
affect the way an RDML program is generated and thus the way it behave:

k]

@ whaen it is actually being executed. =OESC)
"~ By specifying certain values with thes command, the behaviar of an RDML
function can often be altered to produce better perfformance characterstic EFTHENT
- in a specific operating envircnment.
G Portability Mote Visual LANSA considerations in this)
Considerations CINTTIAT | s Fl
L
Also See

7.49,1 FUNCTION Parameters
7.45.2 FUNCTION Examplas
opti

FONCTION ---—- CFTIONS

.;, ERNRITE
*HEAVIUSAGE
*LIGRIUSAGE
*DROPTIMISE (%]
“DROPTIMIZE

|

Note: Help will be displayed in a floating window, because this was your last
setting when using the F4 Command Assistant. The size and position was
remembered when you closed it.

3. Try setting focus to other commands in the function and press F1 to review
the online help.

4. Close the function. Do not save any changes. You can close any open object
from the Open Objects button:

=] r

— w -
R T.-. W L
ry TextSearch Views Open ‘ Compile B Bui i
Objects | || FOY| !
s Repository Open objects <~ o> Iﬁ_'. g
};] Design = Repository Help | g iiDeptQuery o L

Sl Ten e e | || =" QI.IEI)I' DEpEI‘lI‘I\'EIﬂS

Summary

Important Observations

e You can use Auto Complete to quickly enter commands as you type them in
the editor.

¢ You can use Command Assistant to help you structure, review and enter
commands.
Tips & Techniques

e The Command Assistant is a very efficient means of building code. As a
new developer it is very helpful as it lists all parameters that apply to a
command.

e You can press F4 to display the command assistant for an existing statement
in order to prompt the command and change its values.

e The Auto Complete feature is sensitive to the cursor position in the
command as well as the text that has been entered in the command line. As
you move the cursor over the command, you will see the options listed by
Auto Complete change.

What I Should Know
e How to use Command Assistant.
e How to use Auto Complete.
e How to display online help for RDML commands in the LANSA Editor.

VEDO040 - Execute Applications

Objectives:

e To show how applications can be executed from within Visual LANSA or
from the desktop.

e To learn how to execute processes. These applications are designed for the
Universal Interface which means they will execute on the IBM i, or under
Windows or with a very simple Web interface.

e To learn how to execute forms.
To achieve these objectives you will complete the following:

Step 1. Determine Compile Status

Step 2. Execute a Form

Step 3. Review the XDXExamples Application

Step 4. Execute the Application from the Execution History List
Step 5. Execute the Form from the Windows Start Menu
e Summary

Before You Begin:

You may wish to review Executing Applications in the Visual LANSA User
Guide:

In order to complete this tutorial, you must have completed the previous
tutorials.

Step 1. Determine Compile Status

In this step you will confirm the compile status of form XDXStart.

1. Using the Repository tab, locate form XDXStart. Notice that the Repository
tab has several columns.

L L e s 2 x
= | Repesitory
2
g New » | 1% 3| & Q £
= | item B @ Modified Details Description Build &
I o u =
£)
5 =w
L%} a -
- == ¥DXBaseForm @ 210/2020.. Base Form Cor
'E = JDXExamples i:l 241072012 1., Direct® Examples Cor
g = ¥DxSettingsDialog & 210/2020.. Settings Dialog Cor
= |NDXStart & 210/20120.. DirectX Examples Start... Cor
. |
[Tz
Mu%fmwm

2. Right-click on any column heading to display a menu showing which
columns are shown in the tab.

.. :
& Repository }
New - X L Q] H

i m iu | (XN - Phenknile o i

- __ u w ter [
- || Description }

- v| Modified 1

4= ¥ | Build Status 3

== XDXEaseForm @ 2210 [v] Details E?

= XDXBxamples F 2 Column Mame i i

== XDXSettingsDialog & 2 Type y

= xxstart @ 20= . s Start..3
. -— ; PC Marmne E

y = ther Identifier F,

= Functions :—M"‘J Zaliad %

o Processes Lecal Compile State)
@ Fesources Local DLL State ,l

3. Make sure that the Local Compile State column is displayed.

]
- ¢
= | Repository
7]
=
B Mew - ® L s, =)L
2 Iem @1 | Medified D%
] u
£ = {
e %
a Yy 2‘
= = XDXBaseform w & 22a02m20.. }
- = ND¥Examples o & 2910/20121... k
g == XDXSettingsDialog v 22n0/2020.
= XDXStart o & 22n10/20020.. P
ia [,

If a column only has an icon as a heading, place the cursor over the column
heading to see its tool tip. Remember that you can also rearrange and hide
columns in the Repository tab. (Refer to Information about Objects in the
Visual LANSA User Guide for how to rearrange columns.)

4. Check that the form XDXStart is compiled. A green tick in the Local
Compile State column indicates the component is compiled. If necessary,
select the form, right-click and choose the Compile option from the context
menu to submit a compile of the form.

Step 2. Execute a Form

In this step you will execute the form XDXStart form from the development
environment.

1. On the Repository tab, right-click on XDXStart to display the associated
context menu.

2. Select the Execute option. (You can also use Ctrl+Shift+E.)
The Execute... dialog is displayed:

=] Execute... | x |

Form as Client to any Server {(manual connection)
Form as Client to Linux Server

Form as Client t RDML IBM i Server

Farm as Client to RDMLX IBM i Server

Form as Client to Windows Server

Form as Windows Application

Form using Directx

| Prompt for additional execution parameters

0K | Cancel Help

3. Select the Form using DirectX option.

Make sure the Prompt for additional execution parameters option is not
selected.

4. Click the OK button.

5. When Form XDXStart is executed, an animation component is used to
display a splash screen, while the main form XDXExamples is loading:

isual LANSA

Brushes [

Gradiert celers braar '-
=Pire
Carnusel g
User Designed Control with panels crganized in an

Tile
@Twmmmmww
Tree and Dwag & Dvop

Liser Designed Control with panels in a tree struchae

Bauk
mwwmw-pgum

'I.ih-lq-t

Girid style layeut allowing cempersnts be scdugy
i

Popup Pancls

User desigreed hinks, conbest menus and drag and
drop

Bl

Step 3. Review the XDXFExamples Application

In this step, you will review a very small part of the DirectX Examples
application. At a later stage you should review the techniques demonstrated,
which you may want to include in your own company's modern Windows
applications.

1. A set of panels appear in a list on the left side of the form, and serve as a
menu into the different parts of the DirectX application. The application is all
about demonstrating various interface designs and techniques which can be
used in the DirectX interface.

Click on the Book panel:
L] Direct Exmrnplet 3
i
| 3
E
¢
I
Dhymamic Styles = j’
Adding, changing and removing styles at nantime ')
b
Brushes f
I Gradiert color lmear or eachial, imeges and other 7
controls E
H Caroused]
1 User Designed Control with panels coganized in an =
1 elptical pattemn }
i 3
L i
Tikis e
User Designed Control with panels im a horizontsl or
wertical gnd
Tree and Drag & Dvop S
User Dasignad Contrel with panali in a tree ibnschars ?
1
ook ?
User Designed Control with paneks as pagesin a
Beak

o

T

|

Employee images are displayed in the form of a book.

Dymamic Styles
Adding, changng and removing styles st nartime

Erushes
Gradient coloes brear of radial, images and other
contraly

Carousel

User Designed Control with panels crganized in sn
diptecal patiem

Tile

Uger Designed Cantrol with paneks in a korizontal er
wertical grid

Trew and Dwag & Drep
User Designed Cantrol with paneks in & tree structure

Eook
Usir Dasigned Contral with paneks ai pages in &
bock

Table Layout

Grid style lyout allowing compenents to ocoupy
ek E SPACE

Popup Panets
Usar clesigreed hinks, conbeat menuy and drag and
drep

Veronica Brown

Scaling
Resing Controk. Think Document or [mage:
Viewses

Taskbar Integration

Click on the first image to activate the control buttons. Click on the right
button to move through employees one at a time.

@+

Note that only the right and end buttons are enabled, as you are currently at
the beginning of the employee file.

2. Continue clicking on the right button to move through the employees book.

R - & . - B

Cymarmic Style -
akding, changing ired remodneg siykss o nariime

Hrushem

Gradent coloss linear orradis, images s othe
coaids

Carousai

User Designed Contind with pareds onganizsd in an
ehptical paitem

Tl

Vs Dedgned Controd with pansds in 3 barzonial of
weribcal grid

Tews and Deag & Orap

User Designed Contod with pareds in o tree sinschire

Boak
User Designed Comirod with pareds as pages in 3
ek

jrr—
Grid sighe Lypout alowing Com pnemis 10 coopy
‘ihee same space

Papup Panels
User hesigrsd hinls, conbsd merwss and drag and Anne Simpson Shirley Jones
drap

Scaling

Fasiing Controds . Think Dacument of Image
Vigsairs

Tankbar Iteqration

Note that the application displays a "dummy" picture when no employee
image is held in the file PSLIMG.

3. Close the DirectX Examples form.

Step 4. Execute the Application from the Execution History List

In this step you will use the Execution History list to execute the XD XStart
form again. This list shows forms and processes you have recently executed.

1. Click on the History button on the Home ribbon to open the Execution

History list:
¢ « Full Check = |"‘-
=== B Build ﬁ &'
I =
Lemc Runtime Clipboard Find Remote
- - - Systems -
[P}
Repository Help - Cress References) g
e i ey e
€%: IIIEDITOR
ion: IIIDEPT Execute History 3
T 1 A JIVORYB13
bd on: 13-06-20 of it
iption ...: Query Deps DirectX Examples Start Form
---------------------- — s ettingsDialog
ion control options Settings Dialog

1 Options(*HOMESSAGES
and field definitions
AT TS

Q|

Debug

e ThAmlrds (HENEPTME ™

DR DTRTS

Select XDXStart from the drop-down list to select it to run again:

3. Close the form.

4. Note that Execution History can be cleared when required.

-5 + Full Check ~

-
Compile B Build

F]

Repository Help - Cress References

ight: (C) = LAN
: ITIEDITOR

ipt| execution |pgp-

=
1 Options (=HOM AGES

and field definitions
L ielde LADEDTME ™

L P T L K

Runtime Clipboard Find

(e)
History

b:ecut Hisd

L & B

[P

DirectX Examples Start Form

T =i ettingsDialog

Settings Dialog

- - - >
Error Logs Execute

Debug

DR DTRTS

Step 5. Execute the Form from the Windows Start Menu

In this step you will execute the application from the Windows start menu.
When you run the form in this way, you are starting it as a normal Windows
application, outside of the development environment.

Icons are provided in the LANSA folder, which enable a form or a process to be
run locally or in client server mode against the iSeries server.

When you connect in RDMLX mode, you can read and write data types such as
String, Datetime and BLOB to and from the iSeries server.

1. Find the form XDXStart on the Repository tab. Right click on a column
heading and ensure that the Identifier column is shown.

IE - 2 = }r
| & i Repesitary ;
| E New = x & \j
3 =] 3
I s
“ | Tem & M [R }
4 g Active Partition (TRH) = 5
E ® Fields w| Description 4
= Files | Modified ;
S # = Foams | Build Status -
= —A «| [Dhetails 4
% g Colurmn Name j
X £c Ty
pe
= ¥ ,‘_}
| Task =
™E
-— P Mame t-.
£ F 3
] - 3
L H Debug Enabled
o «| Local Compile State

2. Note the Indentifier for the form XDXStart is XDX00068:

l‘f_‘—Hmh\m'H_rr\p_ﬂm'\%hM

. —

F —

= = c

== XDXExarnples XDX00002
== XDXSettingsDialog XDX00056

== |XDxStart XDX00068 "

If Long Names are enabled at partition level, all Repository objects have
both a Name and an Indentifier. If you opened XDXStart in the editor and
selected the Repository tab, you would find the following information:

Design | Socurce Repository Details Repository Help | Cross References

4 ¥ == Definition

T
E:

i

1

2

%

4

¥ Name XDXStart l
Identifier XDX0D00BS 1
Description DirectX Examples Start Form)J'
Framework Administration b
Group(s) ;"

4 A Multilingual Details E;
English DirectX Exarnples Start Form ;
French Formulaire de démarrage exemples DirectX %

e e e W s et e S g SN g PEN

|

Name provides a long name which can be used to reference the object in
your RDMLX code.

Identifier is assigned automatically when you create an object, must be
unique within the partition and may be up to 9 characters long. The Identifier
may be manually set, but only at create time.

3. From the Windows Start menu, expand LANSA and select Exec Form.
L L g
| LANSA13
Developrment Environment
B Exec Form (to ROMLIBM i)
| Exec Form (to RDMLX IBM i)

@7 Exec Process (to RDML IBM i)
&) Exec Process (to RDMLX IBM i)
&Y Exec Process

E] Web Function Editor
Documentation

J Settings and Administration

4. To execute the form XDXStart using the Execute Form dialog, you must use
its Identifier, XDX00068. You must also execute it as a DirectX application
(Render Type = X)

Form Name XDX00068

Language ENG

Partition Identifier| TRN*%*,

LANSA User PCXUSER**
X

Render Type [Execute Form on workstation ot~ e |

— Form Name XDX00068 Y
*% Use the values relevant to your situation. | angusge [EnG

Partition Identifier % TRN

LANSA User [1vory13
Database Liser | UsSERID

Database Password | |

Database Name | LX2JOHNI
Database Type | M55QLS

Default Printer [LrT1

Debug]

Debug Host | johnivory-pc:51237
Trace IN

Max Trace Lines [20000

Trace level [4

Trace Categories | ALL

Heap Validation

Render Type X
Graphics Processing 'S

DKI Cancel | Help i Parameter Help |

5. If you have questions about any of these parameters, click Parameter Help
button.

6. Press OK to execute the form.

7. Execute part of the DirectX Examples application and then close it.

Summary

Important Observations

Both forms and processes are executed using the Execute... context menu
option.

Applications can be executed from within the Visual LANSA editor or from
the desktop.

A live application would start from a shortcut on the desktop

Tips & Techniques

You can also execute applications by pressing Ctrl + Shift + E or by using
the toolbar icons.

When run locally on your desktop, forms and processes are Windows DLL
components which are loaded by the LANSA x_run.exe. X_RUN.EXE is
part of the LANSA run-time system.

Visual LANSA application can execute in client/server mode to access data
on the IBM i.

Icons in the LANSA folder enable applications to be started in client server
mode against an iSeries server. A change to these settings would also enable
an application to run against a Windows server.

What I Should Know

How to execute a LANSA application from within LANSA.
How to execute a LANSA application from the Execution History list.
How to execute a LANSA application from the desktop.

Repository Development Tutorials

What Are the Repository Development Tutorials?

The exercises in this tutorial have been written for new LANSA developers, so
no experience with the LANSA Repository or RDML programming language is
required. They are designed to introduce the fundamental repository skills
required to build fields and files that will create your application database. Read
REPOO0O - What is the LANSA Repository?

In order to do the exercises, you should be familiar with the Microsoft Windows
user interface and it is recommended that you complete the Visual LANSA User
Interface Tutorial before you start these exercises.

The following exercises are included:
REPOQO1 - Create Fields

REPO002 - Field Visualizations

REPO003 - Validation Rules

REPO004 - System and Multilingual Variables
REPOO5 - Creating Files

REPO06 - Logical Views

REPOO07 - File Validation Rules/Triggers
REPO008 - Virtual Fields

REPO09 - Access Routes and Predetermined Join Fields
REPO11 - Repository Summary

REPO012 - Check In Objects (Optional)

Before you Begin

You must have LANSA Demonstration Personnel System installed in the
partition that you will use with the set up options as described in What Partition
Should I Use?.

The LANSA Demonstration Personnel System contains all the objects used by
these exercises.

its:lansa095.chm::/Lansa/VUIEng01_begin.htm
its:lansa095.CHM::/LANSA/lansa095_0020.HTM

REP000 - What is the LANSA Repository?

The Repository Concept

The LANSA Repository stores a vast range of information about applications in
a central location.

LANSA's Repository architecture significantly reduces application coding
because information is defined just once in a central location instead of being
repeated wherever it is used in application programs. For example, a business
rule for a field is defined once instead of in every program which uses that field.

In addition to bringing discipline to the development process, the repository also
simplifies application maintenance because the centrally stored information is
easy to find and change. Testing can be much faster and easier. Changes can
often be made to the repository without impacting existing coded application
logic.

LAMNSA Repository stores centrally all application
informnation:

Fields

Files
Components
Functions fForms

+ descriptions

+ default values

+ visualizations

+ business rules

+ data validations

+ file relationships

* [ogical views

+ grror handling

+ referential integrity

+ derived fields {virtual and PIF)
+ database triggers

+ system variables

+ multilingual and DBCS support

The active Repository is used both at developrent
tirne and during application execution,

The Repository stores information about fields (or elements) in an application
such as descriptions, column headings, edit codes, visualizations, default values,
help text, prompt programs, etc. It acts like a data dictionary for your
application. It also stores components which can be shared by applications.

In addition, the Repository stores information about the files (or application
database) such as physical files, logical views, file relationships, file definition
attributes, file validation rules, trigger programs, etc.

Further, procedural information or business rules about the application in the
form of validation rules, system variables, trigger and functions is stored in the
repository.

Finally, LANSA offers some special Repository features such as multilingual
definitions, virtual fields and predetermined join fields which simplify and
accelerate development.

All information is stored in a non-platform specific format, which enables
LANSA to build applications for iSeries, Windows and Linux deployment

REPO001 - Create Fields

The Repository field definitions are the foundation of your business
applications. Other objects in the Repository such as files, components

and functions are built from the basic field definitions. The
centralization of a single definition and its reuse provide huge
productivity benefits.

Objectives
m To highlight how the LANSA Repository increases developer productivity.
e To create the following fields in the repository (where iii=your initials):

Field Name Description Type / Length
iiiDeptCode Department Code Alpha(3)
iiiDeptDescription Department Description Alpha(20)
iiiEmployNumber Employee ID Alpha(2)
iiliSurname Employee Surname Alpha(25)

iiliGivenName Employee Given Name Alpha(25)

iiiSalary Employee Salary Packed(11,2)
iiiStartDate Employee Start Date DateTime(26)
iiiEmployNotes =~ Employee Notes String(512)

e These fields will be used to create the Department and Personnel files in
later repository exercises.

To achieve these objectives you will complete the following:
Step 1. Prepare Your System

Step 2. Copy Fields

Step 3. Manually Create Fields

Step 4. Reference Fields

Step 5. Delete a field

Step 6. Create a Dynamic List for Your Fields

Step 7. Create and Execute Test Form

Step 8. Change your field definitions
Summary

Before You Begin

In order to complete this tutorial, the demonstration Personnel System files must
have been installed in this partition. You should also have completed the Visual
LANSA User Interface Tutorials.

Step 1. Prepare Your System

1. Start the Visual LANSA Development Environment using the icon in your
Program folder or on your desktop. (For details, refer to the LANSA User
Interface Tutorials.)

2. Logon to the partition with a valid userid, password, partition, language and
Task ID.

If you are using a Standalone Visual LANSA installation, you can log in with
PCXUSER / PCXUSER.

3. If a warning message appears, select Yes. The message is simply a warning
that you have the authority to change all the objects in the repository.

4. The Visual LANSA Editor will open. This is what it may look like:

— ' Master Objects
= .9 .%. BB

Repository TextSearch Views Histo Error Logs History Stat @ CPeckIn
Find

Repository Runtime Remote Systemns

:I -------------------------------------- ﬂ !I
) Repository -
LNew - | g2 3¢ & | @ i
Item . | Deser
4 [l Active Partition (TRM)
& [® Fields
> [Files
™ Forms
& "= Fumctions
© M Processes
b ' Resources
“ . Reusable Parts
> @ Business Objects
4 @ Web
* W Web Application M...
B ' Web Components
* Ul Weblets
» "3 Active Technology S...
P g Organizers
I+ W System Information

j
]
|

Compile| «F Check Out B4 Propagation | g Help |
LANSALZ TRM jiverddd "WIL ENG Audit Courier Colors LANSA XHTML

You can configure the Editor for your own preferences. There are many
different settings and options. For more details, refer to the Visual LANSA
User Interface (which you should have completed before starting these

tutorials).

Step 2. Copy Fields

In this step you will create fields called iiiDeptCode, iiiDeptDescription and
iiiEmployNumber by copying the DEPTMENT, DEPTDESC and EMPNO
fields that are already defined in the repository.

1. On the Repository tab, locate the field to be copied:
a. Expand the Fields node (if Alphabetic Groupings is on, open the list of

fields for the letter D).
y B Repository ™
a Mew - 4 s —
== Item Description
B= I
tn 4 mp a
E + @ DATE Murneric date in installat
I ® DATES & digit DATE in installatic
'E ® DATERC & Character date in instal
DE ® DATEACO Date Skill Acquired (DD
'E: ® DATEACQR Date Skill Acquired (VM
l E‘ B DATEC Character date in installa
® DATETIME Current date and time (n
® DATETIMEC Current date and time (c
E ® DATETIMEX Current date and time (R

b. Locate the DEPTMENT field. It is the code field used to identify
departments.

c. Right click on the DEPTMENT field to display the context menu. Select
the Copy option.

u | I Repositary 3
3 New = x| & q ;
= lem Description }
% ® DOMBYYYYC Character date in format = I;-
] ® DEPTDESC Departrent Description 1
® DEPTMENT D 0 |
pen
sl ® DF_ELACCT E
s ® DF_ELELOB D| ¥ Delete from Reposttory L
ki ® DF_ELCRDT s {
Find
& ® DF_ELCRUS S 1
® [F_ELDATX UG QuickExport 1
® DF_ELDEPT D "i Check Out
E i OF PO S Check Qut Readonl
g ® DF_ELDSTS o ¥
£ ® DF_ELEXPD e r—r—
® OFELFNAM O T CorTiome
® DF_ELFSIZ 0 F‘rln;
® DF_ELFUNC C ¥
® DF_ELHLP1 H & Properties |
DF_ELHREF 0 & Cross References 3
S L | I
A Create as copy of DEPTMENT dialog will appear.
F -
[® Create as copy of DEPTDESC [
Mame liiDeptCode Create
Description Department Code
P P Cancel

Initial Public Access | Mormal -

Identifier

Copy rules and triggers
Copy visualization [l

Copy help text]

Open in editor

L.

2. Enter the basic details for the field in this dialog:

. Enter a Field name of iiiDeptCode (where iii are your initials).

. Leave the Description of Department Code.

Select (i) the option to Open in editor.

a

b

c. Select (i) the option to Copy rules and triggers.
d

e

. Press the Create button.

Do not enter an Identifier. This will be generated.

You can press F1 to access the online help for details about any of the
field parameters.

¥ Ared triangle in an input field indicates an error. Usually this
happens when the value in the field is blank or incomplete. To see the
error message click on the red triangle.

3. The iiiDeptCode field is opened in the LANSA Editor to allow you to edit
other field characteristics.

a. Double-click Length. In the Details tab, change Field Length to 3.

A V2l Definition Rules and Triggers Visualization | Repository Help | Cross References [X
u | [Repository -
E Mew = x .. oL 4 ¥ | B Details
- Mame nileptCode
= [ltem Descrigtion Tdentifier MDERTCO
% B DAYC Current day (character) = g
it & DDMMYY MNumeric date in format | Type Alphanumeric
® DDMKYYC Character date in format Length 4
i B DDRRY Y Murmeric date in farmat | Decimals
£ ® DOMMVYYYC Character date in format Deiud el AN
E ® DEPTDESC Department Description Reference Field
E‘ ® DEPTMENT Department Code Description Department Code
® DF_ELACCT Account Label Department.....
® DF_ELBLOB Decument Heading 1 Dept
E ® DF_ELCRDT Stamp - Create Date/Tirr Heading 2 Code
g ® DF_ELCRUS Stamp - Create User Headine 3

b. Select the Rules and Triggers tab. Notice that there is one validation rule
copied from the DEPTMENT field.

Definition | Rules and Triggers = Visualization | Repository Help CrDssF‘.eFL!
1
|

B Validation Rules

4 g Department cannot be blank
Condition - #iiDeptCo *ne *blanks
If condition is found to be true MEXT else ERROR
Apply when inserting (ADD)
Apply when updating (CHG)
Do not apply when deleting
Message - DC@MOL - DEMO0DE - Department cod...

S, PN i A e, iy

WM\MM‘MMWJ

c. Press the Save button on the Editor toolbar to save the field.

=N ' & oo * = |jjiEmployees - Employee File - LAF
[R———
Home Tools
s = &
B 3 = = <
Repository Text Search Views Open Cormpil
Find Ohbjects

d. Close the field.
Visualization = Repository Help | Cross References '@')

e blank

Pl g b P

£

*ne *blanks
%’irue MEXT else ERROR
(ADD)
B Y Ny VN R WS e W |
4. Create the iiiEmployNumber field by copying the EMPNO field.

a. Locate the EMPNO field using the Find dialog by pressing the Repository
Find button on the toolbar.

R T e T LT

b. Check that Field is selected in the Object Type list. In the Find Text field
enter empno and press the Find button.

Object Types | | Find Tet

N ActiveX ‘

g [amene

" Business Object [#Inname []In description

Filters
Task ID:

|

User: |
Referring to: |
Status: |
|

|

A Multilingual Variable Framewori:

% Primitive Group:

& Process Modified after: |17
£ Reusable Part - —
W Spctem Variable e
1= Ternplate

§ Visual Style

W Web Application Med...
 Weblet

&8 Web Component —Results
B2 Web Service Proxy Show resultsin: | New Tab Sheet
am MET Component

c Close the Repository Find dialog.

d. In the Find Results 1 tab right click on the EMPNO field to display the
context menu. Select the Copy option.

Al » AN

Item . Description | Task
® EMPMNO e = e ST E s
© Open
K Delete from Repository
Delete from List

Find

Repasitarfl] Details]’,hl Qutline

Quick Export
Check Out
Check Qut Readonly

D

Copy Name
Print

el)

Properties

=% N /_\1

Cross References
Security Settings

Find Results 1 m Favorites
Ee

Features

e. The Create as copy of EMPNO dialog will appear.
f. Enter a Field name of iiiEmployNumber (where iii are your initials).
g. Do not copy the rules and triggers, visualization or help text.
h. Do not select (ii) the option to Open in editor.
i. Press the Create button.

The field is created in the Repository but is not opened in the Editor.
. Create the iiiDeptDescription field by copying the DEPTDESC field.
a.Locate the field DEPTDESC on the Repository tab.
b. Copy the rules and triggers.
c. Select Open in editor so that you can edit it once it has been created.
. Specify that the department description can be entered in lower case.

a. Double-click on the Input attributes heading in the field definition to open
the Details tab.

b.Select LC — Lowercase Entry Allowed

c. Save and close the field definition.

7. On the Favorites tab, select the Last Opened tab. Notice that the iiiDeptCode
and iiiDeptDescription fields are listed but the iiiEmployNumber field is not.
When you open any object in the Editor, it will be added to the Last Opened
list.

Step 3. Manually Create Fields

Field Types: Character fields in LANSA are usually Alpha (up to 256
characters) or if longer, String fields. Numeric fields are most

commonly defined as Packed. It is recommended that dates and times
are defined as DateTime fields.

In this step you will manually create three fields called iiiSalary,iiiStartDate and
iiiEmployNotes.
1. The first field you will create is the iiiSalary packed field.
a. Use the New button on the File menu and select Field.
The New field dialog will appear.

b. Enter the following characteristics for the field:

Field name | iiiSalary
Description Salary

Field type |Packed
Field length | 11

Decimals 2

(™ New Field ‘ - - =)
Marme lisalary Create
Description Salary Cancel
Field Type Packed 5
Field Length 11 - | Open in editor
Decimals 2 = 7| Close
Reference Field
Identifier MSALARY

Enabled For RDMLX

c. Select (ii) the option to Open in editor.

d. Select (ii) the Close option to close the New Field dialog. (When you are
creating many fields in one go, it is convenient to keep the dialog open.)

e. Press the Create button to open the field definition in the Editor.
2. Now that the field is open, you can edit all its characteristics.

a. In the Definition tab double-click Default value. In the Details tab enter a
default value of 10000.

Details Definition Rules and Triggers | Visualization Repository Help
Marne jjjsal
ey 4 | ® Details

Identifier JISALARY Mame jjiSalary
Field Type Packed - Identifier JIISALARY
Field Length 11 5 Type Packed
Decimals 2 & Length 1
@ R P) Decimals 2

it CDefault Value 10000)
Reference Field Reference Field

Description Ernployee Salary

L T F—alareaSalane label Salans

b. Click on Edit Mask. Set its value to 2.

METETENTCE TTETD

¢ et I
& Description Salary Description Salary !
: Label Salary %
. Field Label Salary Heading 1 Salary 3
£ Column Headings Salary Heading 2 3
E Heading 3 }).’
[N a
e Edit Mask E
= A §
a8) Enabled For RDMLX Mo 7
ﬁ eliiel El Systemn Field Mo]
o
o Keyboard Shift - = Prompt Process ?
= Enabled For ROMLXC 2 1,234/567.12300 (Blank when zero) Prompt Function 3
! TS5 7 12300 Alias Name {
SpsicmiFeld 4 1234567.12300 (Blank when zero) .
Prompt Function A 1,234,567.12300CR 4 4 Input Attributes ?

B 1,234 56712300CR (Blank when z..,

g o FE Field exit key;’
rompt Process C_ 1234567.12300C just ¢
e Aﬂ_—’-—v

i Bkt st 3

c. The Edit Mask controls how the field is formatted when displayed. The
drop-down for the Edit Mask shows samples of the edit masks. You can
also press F1 to review the help text.

d. Leave all other field characteristics as their defaults.

e. Save the iiiSalary field definition.

f. Close the field definition.

3. Next, you will create a DateTime field which will be used to store the date an
employee joined the department.

Select the New option on the File menu and select Field from the menu
options.

File

™ save

*Close

“ Open
Last Opened _
: ©

Application
@) Save All Module

e Print

% Close All

The New field dialog will be displayed.

4. Enter the following characteristics for the field:

Field name iiiStartDate
Description Start Date
Field type DateTime
Field length 26

Enabled for RDMLX | Yes

a. Deselect the option to Open in editor.
b. Uncheck the Close option so that the New field dialog will appear again.

c. Press the Create button.

The field has been created in the Repository but has not been opened in
the Editor.

5. Next you will create a string field to store employee notes.
a. The New field dialog will appear again.

b. Enter the following characteristics for the field:

Field name iiiEmployNotes
Description Notes

Field type String

Field length 512

Enabled for RDMLX | Yes

Close Yes

c. Press the Create button.

You have now manually created fields Salary, Start Date and Notes.

Step 4. Reference Fields

Reference Fields: A field inherits these characteristics from its
reference field:

Type

Length and decimal positions
Edit mask and word

Input and output attributes
RDMLX enabled flag
Default value

Keyboard shift

When the definition of a reference field is changed, the characteristics
of all fields that are based on it, are changed immediately.

In this step you will create two fields called iiiSurname and iiiGivenName.
These fields will use the reference field feature of the LANSA Repository so
that their characteristics are inherited from the shipped STD_NAME field.

1.0n the Repository tab, find the field STD_NAME and Copy it to create a new
field iii_Name.

a.Copy the Rules and Triggers
b.Do not open the field in the editor.

2. Create the iiiSurname field using the New button on the File menu. Choose
Field from the graphical menu.

| ® New Field -— i S
i—

Mame insurname Create

Description Surname
Cancel

Field Type Alnha -
Field Length 75 Open in editor

| Close

1k

Decimals
|| Reference Field ii_MAME = | Standard NAME
Identifier MSURMAM

Enabled For ROMLX

= e e — ——l

a. In the New field dialog, enter:

Field name iliSurname
Description Surname
Reference Field | II_NAME
Close Yes

Open in Editor | Do not select.

b. Press the Create button.
Notice that the field type and length are derived from the reference field.

3. Select the New button from the File menu and choose Field from the grahical
menu to create the Given Name field (iiiGivenName). Alternatively you
could use the Alt + F + N keys.

a. In the New Field dialog enter the following characteristics:

Field name |iiiGivenName

Description | Given Name

Field type |Packed
Field length | 15

b. Do not specify a Reference Field yet.
c. Select the option to Open in editor.
d. Select the option to Close so that the dialog will be closed.
e. Press the Create button.
4. The iiiGivenName field is opened in the Editor.
a. Click on Reference Field in the Definition tab to open the Details tab.
b. In the Details tab type in iii_NAME as the Reference Field.

]

Details Definition | Rules and Triggers | Visualization | Repository Help | Cross References ?,

| 1

Name [iiiGivenMame | 4
4 | F Details T

Identifier [MGIVENN | Karme o Crren Mame :
Field Type |-'1|pha - | Identifier MGIVENM 4)
Field Length |35 | Type Alphanumeric g
Decimals | - | Length 25 i
Default Val [*BLANKS | SRl]
Lol —— Default Value *BLANKS 3
(Reference Field L NAME - |Standard NAME) 88 (Reference Field I NAME :
1

B I oo G S

The iiiGivenName field is now based on the definition of the III NAME
field. Notice, for example, that its field type is now Alpha and its length is
set to 25. These characteristics are inherited from the reference field and
cannot be changed.

c. Review the Rules and Triggers tab.

Notice that there are no rules. However, if you click on the Add button on
the Home ribbon, you will see the Adopt from reference field option.

l*‘"_ ¥, Cut
Copy

Paste & Find

Clipboard

=
&

Repositon.rm Details m.l Outline

—

Add List Check
Add Range Check
Add Date Check
Add Lookup Check
Add Simple Logic Check
Add Complex Logic Check
Add Trigger
Add Trigger Condition
J{F Adopt from Reference Field

i\rv-u.,wmwudhnum.!vW\auw“y-u.‘ruuu‘!--J“Lwa\.HW‘Fh

B e Ny

Do not adopt any rules at this stage.
d. Save and close the field.
5. Open the III_NAME field.

6. Change the Field length to 20.
7. Save the III_ NAME field definition.

8. Locate the iiiSurname field on the Repository tab. Right-click on the field
and choose the Features option from the context menu.

. e e R e R R R E K T A R A F AT e b B ox D&Iﬂl‘hq:)
2 8 Repository r "
3 7
=} Mew = By x [b = s
1

E Itern Description 4
_éa" ® iiiDeptCode Departrment Code = [
x ® iiiDeptDescription Departrment Description 3
5 inEmployMumber Employee Mumber {

[® jiiGivenMarne Given Mame §
= ® iisalary Salary |
§ ® liiiSurmame 2| o :]
£ » JOSKEY P ¢
10SMDE K Delete from Repository g

® IOSMSGTXT :

1 ® J035TS Find g
iE ») {
ug —xd & Quick Bxpont g
: B § Checkin :
L Y & Unlock
% BN Co
Y LN} Py [
: » P Copy Mame]
E . q = Print i
: 1: # Properties "
4 &5 Cross References i
U a Secunty Settings ";
B v) Eeatures r‘.

-]

P el L o e e et

The Details tab will be displayed, showing the field's definition:

Features
<::| - ED - I_"‘:_" i | _',t ? s | =] - ?
Classes: |iii5urname
4 Field
e liiiSurname Surname
4 Definition
Type Alphanumeric(20)
4 Reference field
-® IM_MAME Standard MAME
Default Value *BLAMES
4 Input Attributes
LC Lowercase entry allowed
Label Surname
Column heading Surname
Enabled for RDMLX Mo
4 (lass
4 B jiiSurname Surname
PR o A TR

9. Change the Field length of III_INAME back to 25.
10. Save and close the III_ NAME field.

Step 5. Delete a field
1. In the Repository tab, locate the III_NAME field.

2. Right click on the III_NAME and select Delete from Repository from the
context menu.

Note: You will not be actually deleting this field.

You will be asked to confirm the deletion.

[Confirm delete object

Mame | Description
<@ T MAME Standard MAME

["] Delete from host repository

3. Press Delete so that you will see an Integrity Check Failure dialog will
appear to warn you that this field is required. (The field has not been deleted

yet.)

1 Integrity Check Failure .IElﬂlg

LID309E The field, II_MNAME, should not be
deleted as it is a reference field for other fields.

Do you still want to delete it?

There are two reasons why the Integrity Check Failure occurs: firstly
because III_NAME is a system field and secondly because it is used as a
reference field.

Note: System fields cannot be deleted from the repository unless they are
specifically changed to non-system fields. For further details about system
fields refer to the F1 Help from the Field's Details tab.

4. Press No. Do NOT delete the field.

Step 6. Create a Dynamic List for Your Fields

Dynamic Lists: A dynamic list will include any items that satisfy the

inclusion criteria.

In this step you create a dynamic list for the fields and other objects you create
in this tutorial. The list will include all objects starting with your initials, so as
you create objects they are automatically added to the list.

1. From the File menu, select the New option and choose List from the
graphical menu.

H

M save Common
Close — F
Open Field
Last Opened
—
A
@) Save All I
e Print Resources
% Close All
B Systemn Information System Variable ;
& Options
€29 Exit net
MET We
Component
System

2. In the New List dialog specify:

. Enter iiiLIST as the name (where iii corresponds to your initials).

. Select Dynamic as the list Type.

a
b

c. Store the list as a User list.

d. Select the Is Favorite option to add the list to the Favorites tab.
f

. Press Create to continue.

Mame iiList Create

e :DF”?!”?iF - Cancel

Stored As User List %
I= Favorite

Identifier oLo

3. On the Definition tab, double click on Search for to expand it. The Find Text
dialog will open on the left tab. Enter IIT* in Find Text.

Find text will convert text to upper case and the search ignores case.

Details Definition
Find Text m)
. - 4 5| Definition
In Marne Identifier
In Description [MName
Stored in
4 £ Content

4 @8 Search for IT*
> [] Object Types
> Filters

4.Click on Object Types and select Field, File and Form in the Object Types list
shown on the left hand panel.

Notice that your selection is reflected in the dynamic list Definition in the
right panel.

e oo o]
E Object Types 3
B y Telentifier oLa-
&" Business Object Mame inList:
[Cursor Stered in F"D"{

al flesource

w

=

E 4 | Content

D In0

= 4 [Object Types i

i ® Field {i

B leon [File i

=1 —_ H
A Multilingual Vanable arm %1

& Primitive v Filters

L]

5. Save and close the list.
6. Notice that the iiiLIST is now included on the Favorites tab.

Notice that all the fields starting with your initials are included in the list. As
you have created no forms or files yet, none have been selected.

Favorites

x| & Qb

R——
Last Dpene(£ iiilist)

L Weblet Templates

[

Itemn | 551 | = | Description
== jiiBasicWinContr... L4 [} Basic windows Contr =
== mBvAL0] [Manage Vehicle Recc
B iiiDepartments & [} Departments Tahle
oL EmpByDeptView Y
oL iiiEmpHolByCode Ermnployee Holidays B
B iiiEmpHelidays] [} Employee Holidays
I B 1 iiiEmplmages @ [Employee Images

Step 7. Create and Execute Test Form

In this step you create a simple test form which will show the fields you have
created on a form. No coding is required to create this application.

1. From the File menu, select the New option and select Form from the
graphical menu. Then select Basic Form, to display the New form dialog.

M seve Common Farm

Cp— b= |
#Close r P | f i:i'l‘ " ; -

r ¥
Freld File Ferm Feusable Part Process

-— ¥ L
= @ = B |
_ Functicn Webi Weblet Mubtilingual Basic Form with Layout
Application Vansble

B seve il Module

e P B v

2. Enter the following characteristics for the form:

Name iiiiTestFields
Framework Select any suitable Framework such as
Personnel & Payroll.
Enabled for Yes (the default for this option is determined by the
RDMLX partition settings).

oo . ==
Mame iiTestFields | Create
Description Test Fields .

= = Cancel
Framewark ‘Training Development (TRAINING) ~
Group . - |
Identifier MTESTF
Enabled For RDMLX

2. Press the Create button. A blank form will open in the Editor.

a. Drag all the fields. Except III_NAME from iiiLIST to the form. You can
either drag them individually or as a group.

If you select them as a group using the Shift + Left Mouse button, the
fields will be lined up neatly on the form.

b. Your form might appear like the following:

ED!pﬂtmcﬂtCud!
. . .Department Description sAbBcCADeEFgGhHIL) e R
. . [Employee Notes aAbBcCdDeEfFgGhHIPKKILmMnMNoOpPqQrisSt Tull/WwiNiy'Yz7a s

- ‘Employee D AB
ol albBeCdDeEfFgGhHITkKILm
123,456,789.12
01,01./1900 00:00:00
afbBcCdDeEfFgGhHIlkKILm

Do not add any code to your form. You are simply testing the interface.

&
4. Pressthe “°™P' button on the Home ribbon to compile your form. The

Compile tab will show you the progress of the compile.

5. Check that the form compiled successfully.

% J&@ | Job Status Descnption Results | Currently Processing Started Ended | ;
: Completed iniTestFields - Test Frelds Compiled1 of 1 0512/0012.. 0512/2012... ,"::
L x

e

o X E
L1 Assistent . Compile i Check Out | [Propagation | [Text Search | iy Help E
LANSAI3 TRN jiveryl? *UIL ENG Audit Ccuriﬂj

6. Press the Execute button from the Runtime group on the Home ribbon, to
execute the form.

1

s W AT Y

> &- o Find i‘aﬁf

Runtime ; 8 fin ’ }I

'

=

D . & Q k
History Errer Logs Debug

A

Note: The appearance of ribbons depends on the size of the Visual LANSA
form. Groups such as Runtime are displayed as a single button when space is
limited.

The execute Form as Windows Application dialog may appear depending on
your option settings.

’Fﬂfmasmndﬂ'ﬁsﬂ,ppliﬁﬁm =]

Default Printer [LPT1

Debug [N

Debug Host | johnivory-pc:51237
| Trace IO

Max Trace Lines [zonoo

Trace level [4

Trace Categories | ALL

Heap Valdation [N

Show Command Line [N

Render Type [x

Graphics Processing | H

DKI Cancel l Help |

7. Press the OK button to execute the form.

Your window should appear something like following:

B ' Test Fields =1l=

Department Code
Department Description
Employee Motes
Employee ID

Given Name

Salary

Start Date

Sumame

8. Test the following:

a. Enter the number 2000 in the Salary field. Notice how the number is
formatted once focus leaves this field (this is controlled by the Edit Mask
in the field definition).

b. Drop down the calendar in the Start Date field to specify a date. The way
the Start Date field is displayed is the default visualization for a DateTime

field (this will be described in more detail in REP002 - Field
Visualizations).

9. Close the Test Fields form.

Step 8. Change your field definitions

In this step you will make minor changes to the field definitions based on the
results of your test.

Note: An application must always be recompiled after you have

changed field attributes that impact their display within the
application.

1. Using the iiiLIST tab, open the iiiSalary field.
a. Set the Default value to *ZERO.
b. Change the Description to 'Monthly Salary'.
c Save and close the field.
2. Using the iiiLIST tab, open the iiiEmployNumber field.
a. Set the Field Length to 2.
b. Save and close the field.
3. Recompile your Field Test application (iiiTestFields form).
a. Switch to the open iiiTestFields form in the editor.
b. On the Home ribbon in the compile group click on the button shown to

open the Compile Options dialog,

v Full Check -

" Build

c. Deselect the Compile only if necessary option.

b
Compile *

== Components (1)

Component Compile Options
Compile only if necessary
| Debug enabled
Keep generated source

d. Press the OK button to submit the compile.

4. Execute your Field Test application and notice the change you have made to
the Monthly Salary label has been actioned.

Tevee 0 sk

Department Code
Department Description
Employee Motes
Employee ID

Given Name

Maonthly Salary

Start Date

Sumame

a. Enter an employee number. Notice it can only be two characters long.

b. Notice the Monthly Salary field is blank when form is first executed.

5. Exit the form.

6. Close all objects in the Editor.

Note: You can Close All from the File menu.

™ save Last Opened
= 1. || jjjDepartments
Close Departrent Table
B2 Open 2. | " jiiSalary

Manthly Salary

W
_® jiiName
Last Opened Employee Mame

. =TiilpdFromGrid

Mew Update From a Grid
5. |§ iiiList
) Save All = liiList
_— 6. | ® II_NAME
i Print Standard NAME
% Cloge All 1. jjjSalary
Oﬁ Ernployee Salary

!o Systermn Information g m jiiDeptDescription
" Department Description
& Options 9

- L jiiEmployees
9 Eit Ermnployee File

Summary

Important Observations

There are many different ways to create a field.

Basic field definitions can be quickly created directly from the New field
dialog. Fields can be opened in the Editor to specify detailed field
characteristics.

If a field is created but not opened in the Editor, it will not appear in your
Last Opened list.

The Create as copy of field dialog allows a one-time copy operation to create
a field.

Reference fields create a permanent link between two fields. Changes to
field types, lengths, etc. are inherited. Not all field characteristics, such as
descriptions and labels, are inherited.

The LANSA Repository performs referential integrity checks whenever you
attempt to delete an object. For example, you will be informed if a field is
used in a file or function before you proceed with deletion.

For your test application notice that:
e The form/dialog was designed using the information from the repository.
e Default values are displayed based on the information from the repository.

¢ Input and output characteristics are based on the information from the
repository.

e When changes were made to your field definitions, the application was
recompiled to update it with the definitions.

Tips and Techniques

Use reference fields when you need a permanent relationship between fields
instead of a one time copy.

What I Should Know

How to define a field by copying an existing repository field.

How to manually define a field.

How to change attributes that affect the display on dialogs and forms.
How default values can be used by your applications.

REPO002 - Field Visualizations

You can choose how a field is shown in an application. For example a

numeric field can be visualized as a simple entry field, as an entry
field with spin buttons, as a progress bar or a track bar.

Objectives

e To introduce the basics of field visualization. (You will do more advanced
examples of coding Field Visualizations when you do the FRM tutorial.)

e To show how field visualizations can be defined.

To achieve these objectives you will complete the following:
Step 1. Review iiiStartDate Field Visualization

Step 2. Review iiiEmployNotes Field Visualization

Step 3. Review iiiSalary Field Visualization

Step 4. View the Test Form

Step 5. Execute the Form

Step 6. Adjust the Form

Summary

Before you Begin

In order to complete this exercise, you should have completed the previous
exercise.

Step 1. Review iiiStartDate Field Visualization

In this step you will review the standard field visualization created for DateTime
field type and you will add another visualization to the iiiStartDate field.

A field can have several visualizations defined for it. The default

visualization which is used is determined by its DefaultVisualization
property.

1. Open the iiiStartDate field in the Editor.
2. Select the Visualization tab.

You will notice that there is a visualization VisualDateTime already defined
which shows a Datetime Entry Field. This is the way the Start Date field was
displayed (edit box with a drop-down calendar) in the Test Fields application
you created in the previous exercise.

(If your partition is web-enabled, the field may also have a default weblet
visualization.)

3. Press the Calendar [toolbar button to add a calendar visualization to the
Start Date field.

Definition | Rules and Triggers | Visualization Repository Help | Cross References

x —: - B i —(:I —

ooy Ew v e : : e |

4 [® Visualizations . © .Start Date 01,/01,/1900 00:00:00
VisualDateTime et by S Ao Lo ey T

VisualCalendar R
H o4 January 1900 LR

W 3 4 5 6 7
. . . Start Date 8 9 10 11 12 13 14
i 15 16 17 18 19 20 A
2B NS5 KT N
2 30 3
|:| Today: 05/12/2012

-y..awvuﬂwhik'ﬂvau"‘\-hﬂ;uvuwhh

Notice that the field now has two visualizations:; VisualDateTime and
VisualCalendar.

4. Double-click the VisualCalendar in the Field Parts list to display its
properties in the Details tab.

5. Locate the DefaultVisual property and notice it is set to False.

il Repository Outline == Details Favorites
T e e L L e Ry a
VisualCalendar x
B-%
Properties | Events = Methods
* Caption -
® Clreng AN
(* DefaultVisual False
* DragStyle Hone
4 £5 MHone
S o

6. Double-click the VisualDateTime visualization to display its properties. Its
DefaultVisual property is True which means this is the default way the field
will be displayed on a form.

7. Do not change the DefaultVisual property. You want to keep the Date Entry
Field drop-down visualization because it takes up less room than the calendar
on the form.

8. Notice that the VisualDateTime shows both the date and time. You will not
need to see the time in the Start Date field. To hide it set the ShowTime
property to False.

VisualDateTime
o - ?

Properties Events | Methods

" PrornpterTabStop
* ReadOnly

" Rotation

" Rotatio nriginLeft
* RotationOriginTop
" ScaleHeight

* ScaleOriginLeft

" ScaleOriginTop

" SealeWidth

* ShowDate

* ShowDateButton

* ShowDateButtonlmage
" ShowEmor

* ShowProm pler

True
False
a

50
50
100
50
50
100
True
True
"NULL
False

False

owoelecton
" ShowTime
) - 2

False
False

alea
o

=
-

* SizingScheme

"NULL

W;&meh

Although LANSA also has a field type Date, the use of the DateTime type is
recommended because LANSA manages DateTime fields if you move the
data from one time zone to another. Typically, data can be represented in the
local time zone but saved in the database as UTC (Universal Time).

9. Save and close the field.

Step 2. Review iiiEmployNotes Field Visualization

In this step you will review the field visualizations created for the
iiiEmployNotes field. You will add a multi-line edit box and make this the
default visualization.

Multi-line edit box is often the best visualization to use for long

character fields.

1. Open the iiiEmployNotes field in the Editor.
2. Select the Visualization tab.

You will notice that the standard visualization for a String field is simply an
entry field.

3. Press the Multi-line Entry Field @ toolbar button to add a multiple line edit
box visualization for the Notes field.

4. Double-click the VisualMultilineEdit visualization to display the Details tab.
Change its DefaultVisual property to True.

il Repository Qutline | == Details Favorites Definition Rules and Triggers Visualization | Repository Help Cross References t
A A S e 3 x - 1
VisualMultiLineEdit & X R A = . o ;
e -1 Fed par R
: 4 | ® \icualizations a5 'Empluyee Motes aJ’\bBcEdDeEquGthqJHK
Properties Events Methods B ‘-

5 =1 VisualEdit f
* Caption L [VisualMultiLineEdit S hAbAcCoDe |« T [L
£ ——e —:; o EMFgGhHIk) 1530015
DefaultVisual True - s KILmMnNo G
DisableMaScrall Falze + “Employee Notes OpPgQrRsst e
* DragStyle None o TulbwWuihii e Zz
» . - bk yY2ZalbBeC i,

4 Ed!tMnuseCﬁ-erWIe MULL ADeEFFaGh FOCEED
EditStyle *MNULL R L T N A S
* Ellipses Mone acEcy

R A% Epablase N T, e ey L] R o e e T et

By changing the DefaultVisual property to True for the multiline edit box,
the DefaultVisual property of VisualEdit will be set to False because only one
visualization can be the default.

5. Make the Width property of the VisualMultiLineEdit to 400.
e et W i i

* Visible True
* VisualStyle *MNULL
? VisualStyleEdit *NULL
. Y.

" Width 1400 i

The default visualization for the Notes field is now a multi-line edit box.
6. Save and close the field.

Note: You can close any open object from the Open Objects view.

—_——

L—* ¥, Cut
- L Copy
0 Past ; 50
Gh_?:;‘.s Runtime = .
Open objects : o
| @ iiiEmployNotes G

© L Employee Notes

Step 3. Review iiiSalary Field Visualization

In this step you will review the field visualization created for the iiiSalary field
and you will add a spin edit box and make this the default visualization for
the field.

Numeric fields can be visualized as simple entry fields, spin edit

boxes, progress bars or track bars.

1. Open the iiiSalary field in the Editor.
2. Select the Visualization tab.

You will notice that the standard visualization for a numeric field is simply
an entry field.

3. Press the SpinEdit = toolbar button to add a spin edit visualization. The spin
edit box allows the end-user to adjust the numbers using the spin buttons or
by using the Up and Down keys.

Definition | Rules and Triggers | Visualization Repository Help | Cross References 3}
X| it Dro=Egdb|— ¢ = {
r

Field Parts P e e D T ZZL
4 | B Vigualizations i .Mi:ll’lth:l‘y' Salary 123 456,789.12 e (
& VisualEdit i TR o ::"::i

(5 VisualspinEdit © - Monthly Salary 123456,789.12 S

4. Change the DefaultVisual property of the VisualSpinEdit to True:

VisualSpinEdit
=

Properties Ewents | Methods

* ButoSelect True
* AutoTab False

* Caption

5. Save and close the field.

Step 4. View the Test Form

In this step you will review the test form and make sure the iiiNotes field fits on
the form.

1. Open the iiiTestFields form.
2. Display the Design tab.
3. Resize and rearrange the form so that the Notes field fits properly.

., [Employee ID AB
sAbBcCdDeEfFgGhHIUKKILmMnMNoOpPql | - il
rReSET ULV WeyY2ZaAbBe CdDeEfFgGhH |
IKILmMANoOpPqQrRSETUUWWWidlyYz| = | -
ZaAbBeCdDeEFFgGhHITIKKILmMnMeOpPg H:]
QrRsS TulhvVwWiyY:ZabbBeCdDeEfFgGh
HIljIkKILmMnNoOpPqQIRsSTulbWwWity [-
¥zZaAbBcCdDeEfFgGhHIkKILmMnMNaOp LTI ¢

- “Monthly Salary 123,456,780.12

albBcCdDeEfFgGhHITKILm

01/01/1900 il
aAbBcCdDeEfFgGhHIlINKILm : L

Note:
a. A selected field can be moved using the Ctrl + Cursor keys.

b. Fields can be moved as a group by selecting them with the Shft + Left
Mouse or Ctrl + Left Mouse button.

4. Compile the form.

Step 5. Execute the Form

In this step you will test your field definitions by executing the iiiTestFields
form.

1. Press the Execute toolbar button in the Editor to execute form iiiTestFields.

The execute Form as Windows Application dialog may appear depending on
your options.

This dialog will appear if the Prompt for additional information option was
selected when executing from the Verify menu. The last options used in Verify
/ Execute are remembered, until you change them.

(Form az Windows Application l =] &'ﬁ
Default Printer [LPT1
Debug [N
Debug Host | iohnivory-pc:51237
Trace I
Max Trace Lines [20000
Trace level [4
Trace Categories | ALL
Heap Validation I
Show Commend Line [N
Render Typa [x
Graphics Processing | H
m Cancel | Help |

Press the OK button to execute the form.

2. Your form should appear something like this:

B ° Test Fields =

Department Code

Departrent Description

Employes ID

Employee Motes

Maonthly Salary

Given Mame
Srart Date

Sumame

3. Test your new fields:

a. Enter a large amount of text into the Notes multi-line entry field. Notice
the scroll bar appears.

b. Adjust the salary using the spin buttons or the Up and Down buttons.

Notice how the value is formatted when you move the focus away from
the field.

c. Change the Start Date using the calendar.
4. Close the form.

Step 6. Adjust the Form

In this step you will make some adjustments to the iiiTestFields form to place
the fields in a logical order.

1. By dragging and dropping your entries, adjust the layout of the form to look
something like this:

ED:pam'nm Code

- “Department Description

123,456,789.12
01,/01,/1900

afbBcCdDeEfFgGhHIKILmMnNoOpPgQ |
st TulhVwWaklyYzZaAbBecC dDeEfFgGhH |
EKILmMnMoOpPgQrRsStTulbWwiiclyvz - - -
ZaAbBcCdDeEfFgGhHIYKKILmMnNoOpPg l -
QrRsStTulhWwihilyYzZaAbBcCdDeEfFgGh — .
HilKILmMnNoOpPgQrRsStTulheihdly & -
¥zZaAbBcC dDeEfF gGhHIlkKILmMnhNoOp ™

Note that you can select several fields at a time and drag them together by
selecting fields while holding down the Shift key.

Fields can also be moved using the Ctrl + Cursor keys.
2. Compile and execute your form.

Treree . o

Department Code

Department Description
Employee ID

Sumame

Given Name

Menthly Salary

Start Date

Employee Motes

3. Close the Test Fields application.

Summary

Important Observations

e Field visualizations can be used in LANSA components such as forms,
reusable parts, WAMs, etc.

e Fields types such as Alpha, String, Packed and Signed have a simple entry
field as the default visualization, but many other types of visualizations, such
as Radio buttons, drop downs, spin buttons, and other visualizations can be
added.

e Field types such as DateTime have specialized visualizations that include
features like calendar prompts.

e You can control which visualization is used by default. In the example of the
iiiEmployNotes field, you would want a multi-line entry field to be used
instead of a single entry field. Hence, the multi-line field was defined as the
default visualization.

Tips and Techniques

e Field visualizations ensure a consistent presentation of your fields.

e Field visualizations can be extremely powerful in the case of simple list
selections. For example, a field GENDER can be visualized as Male and
Female radio buttons. By defining this visualization once, it is automatically
available to all components.

e For detailed examples of coding Field Visualizations, refer to the Visual
LANSA Windows Application Tutorials.

What I Should Know
e How to create a field visualization.
e How to perform simple changes to the field visualization definitions.
e How to set the default visualization.

REPO003 - Validation Rules

Validation rules are enforced by business rules defined in the
Repository. Rules which are defined in the field definition become
global rules, meaning that they will be enforced in any file where the

field is used. Most rules are defined in the file definition in which case
they are enforced only in the context of that file. You will learn more
about this feature in the exercise REP007 - File Validation
Rules/Triggers.

Objectives
e To show field level validation rules in the repository.
e To show how rules are adopted from reference fields.
e To add the following business rules to the repository:

iiiSurname Cannot be blank (copied from reference field)

iiiSalary =~ Must be greater than 0

To achieve these objectives you will complete the following:
Step 1. Review Existing Rule for iiiDeptCode Field

Step 2. Adopt Rule from Reference Field

Step 3. Create a Rule for the iiiSalary Field

Summary

Before you Begin

In order to complete this tutorial, you must have completed the previous
tutorials.

Step 1. Review Existing Rule for iiiDeptCode Field

In this step you will review the validation rule defined on the iiiDeptCode field
that you created in exercise REP0OO1 - Create Fields. When you created the
iiiDeptCode field, you copied the validation rules from the DEPTMENT field.

1. Open the iiiDeptCode field in the Editor.
2. Select the Rules and Triggers tab.

All validation rules defined on the field are displayed. Note: If the rule does
not appear, then you did not copy it when you created the field. To correct
this problem, delete the iiiDeptCode field and recreate it as described in Step
2. Copy Fields in REP0O1 - Create Fields.

3. Select and expand the existing rule Department cannot be blank by clicking
the plus (+) to display the Details tab. This rule is a simple logic rule that
ensures that the field is not blank.

T
| epository utline | == Details svorites inition Rules and Triggers Visualization ositery Help Cross Referen
Repaosit Outline | 7= Detail Favorit Definition | Rules and T Visualizat itory Help Cross Referend
I e T e L o A O O - = 3
Description Department cannot be blank 4 Validation Bules
Sequence 1 = 4 gm Department cannot be blank
Rule Definition Condition - FiileptCo "ne *blanks

If condition is found to be true NEXT else ERROR

'E‘PFI:I" when ir'n.rrlinr_.| (ADD)

Apply when updating (CHG)

Do not apply when deleting

F'.ﬂruagr el Ufa‘hﬂj - DF '\G“:H:'M - DPFdrtfﬂEﬂ‘ fﬂdl‘ i'— rerputrrd

FilDeptCo *ne “blanks

LI L TP T L T

L T e S e ¥ e T B T i L S

There are different types of validation rule which each have their own set of

parameters. A simple logic rule allows a simple expression to be evaluated
when the value of a field has been received.

4. Review the Details to see the actions defined for this rule.

Sequence 1 3

Rule Definition

FinDeptCo "ne *blanks

Yahdation I_.'5._1£|-:

When Inserting | Always apply rule (ADD) - |
When Updating | Always apply rule (CHG) - |
When Deleting | Mever Apply Rule * |
Cendition Iz True | Evaluate mext rule (MEXT) - |
Condition Is False [Set field in errer (ERROR) -
L ——
Message Number | DERADG04 - |
Message File |DC@mMoL |
Message Text { |

5. Do NOT close the field.

Step 2. Adopt Rule from Reference Field

In this step you will add a rule to the iiiSurname field by adding the rule from its
III_ NAME reference field.

1. Open the iiiSurname field in the Editor.
2. Select the Rules and Triggers tab.

3. Click the Add button on the Home ribbon to open the Add menu and select
the Adopt from Reference Field option.

| ™
Add -

e P

] 3

1 Add List Check d

b : i

; AddRange Check bn ¥

« BB Add Date Check }

Add Lookup Check &}

5 & Add Simple Logic Check ;

& Add Complex Logic Check E

E | "= Add Trigger g

® Adopt fromn Reference Field }

w‘\'_.;

The Adopt rules and triggers dialog displays the rules that iiiSurname can
adopt from the III_NAME field. In this case there is only one.

4. Select the Must not be Blank rule and press the Adopt button.
(& Adopt rules and triggers ﬂ&ﬁ

@ Must mot be Blank
valies - *BLANK

If field is in the spedfied kst BRROR. else NEXT
Apply when inserting (ADD)

Apply when updating (CHG)

Do not apply when deleting

Message - DC@MAOL - DEMLOTT - must be spedfied

Note: If you press the Adopt button again, the rule will be adopted again.
5. Press the Close button.

6. Expand the Validation Rules on the Rules and Triggers tab to display the
details.

E

Definition | Rules and Triggers = Visualization | Repository Help | Cr

4 Validation Rules
B Must not be Blank

Values - *BLAME
If field is in the specified list ERROR else NEXT
Apply when inserting (ADD)
Apply when updating (CHG)
Do not apply when deleting
Message - DC@MOL - DCMLO0TT - must be specified

W%hﬂw

This is a List of Values rule. Notice that this is a similar rule as the Simple
Logic Check rule specified for the Department field but expressed in a
different way.

7. Display the Details tab. Compare the Rule Definition and the Actions with
iiiDeptCode.

s PP N T ol S LR A TRITNT L B

E
Il Repository | <]« Outline 2= Details Favorites | o ' "

T o
Description |Must not be Blank |
Sequence [1 = |

Value
BLAME

When Inserting | Aways apply rule (ADD) - |
When Updating | Ahways apply rule (CHG) ll
When Deleting | Mever &pply Rule - |
Actions

Tn The List | Set field in error (ERROR) - |
Mot In The List | Evaluate next rule (NEXT) - |
Error Message

Message Number |DCchaoTT

Message File (DC@mMOL

Message Text |

Bl i

8. Save and close the iiiSurname field.
9. Close the iiiDeptCode field.

Step 3. Create a Rule for the iiiSalary Field

In this step you will create a simple logic rule to ensure that the value of the
iiiSalary field is always greater than O.

1. Open the iiiSalary field in the Editor.
2. Select the Rules and Triggers tab.
There are no rules defined for this field.

3. Click the Add button on the Home ribbon and select the Add Simple Logic
Check option.

Add » x

Add List Check
Add Range Check

Add Date Check

Add Lookup Check

Add Simple Logic Check
Add Complex Logic Check
E Add Trigger

=l
=1}

X
i

ity iy, GO, o b e,

o "
V‘Vﬁvﬂhuf"ﬂf\auiw_'““‘“\hwwﬂfq'v—‘w

A new simple logic validation rule is displayed.

4. In the Details tab and the Rule Definitions, create the list check rule as
follows:

Rule Definitions:

Description Salary must be greater than 0

Sequence 1
When inserting | Always apply rule (ADD)
When updating | Always apply rule (CHG)

When deleting | Never apply rule
Value #iiiSalary *gt 0

Your Details tab should now look like this:

... 3 x
Description MNew simple logic check

Sequence 1 —
Zsalary *gt 0|

Validation Usage

When Inserting Always apphy rule (ADD)

When Updating Always apphy rule (CHG)

When Deleting Mever Apply Rule -
Condition ks True Evaluate next rule (NEXT) ¥
Cendition ks False Set field in errar (ERROR) y
Message Number D004

Message File DC@mi

Message Text

WW

5. Review the Actions settings, ensure the rule is created as follows:

If the condition is found to be true | Evaluate next rule (NEXT)

If the condition is found to be false | Set field in error (ERROR)

The Error message file and message number have been created

automatically. Note that the error message text for this message is not very
helpful:

Definition Rules and Triggers Visualization = Repository Help | Cross Referen

4 ¥ [Validation Rules

4V g New simple logic check

Condition - #salary *gt 0

If condition is found to be true MEXT else ERROR
Apply when inserting (ADD)

Apply when updating (CHG)

Do hen deleting
Message - DC@MOL - DCUOO04 - - fails validation test (simple))

6. To find a more specific error message, on the Home ribbon, select the
Message Files... option.

et At ety it

1
|
é

-
Message | Wizards Publish Translate Import Upgrade
Files Translations

Utilities

7. In the Message File Maintenance dialog type greater in the 1st level text
contains field and click Find.

Note that message DEMO0011 is appropriate for the rule.

r‘l' hﬂageﬁemh_ 31

Message Search Criteria

1st level text contains: greater Message fia:
DC@M0l
2nd level text contains:
Language:
D from: to: English

Message D) Text HNo. of Messages: 18

ADWD147 First value for keyword &1 must not be greater than
CMPO292 If greater than go to kbel ..

DCMOS10 Effective Start date cannot be Greater than Effectw
DCM1082 &1 requires value greater than zero.

DCM1099 Overflow number cannot be greater than document length

DCM1213 File &1 cannot be a "H5T" - Aggregate record length
DCM1273 ** Push button and Drop down fields cannot be greate........
Salary must be greater than zero

Option greater than 1 not valid on the create model ine,
m

scice | [Messages | [_Heb |

8. Close the dialog and specify DEMO0011 as the Message number. Notice the

new message text for the field.

Definition | Rules and Triggers Visualization | Repository Help | Cross References

4 W [Validation Rules
4 ¥ g Mew simple logic check
Condition - #salary *gt 0
If condition is found to be true MEXT else ERROR
Apply when inserting (ADD)
Apply when updating (CHG)

W“;
Message - DC@MOL - DEMO0L] - Salary must be greater than zeD

B T WL e P P

For your own application, we recommend that you use a message from your
own message file instead of manually entering the message text for the field.

Do not add your messages to the shipped LANSA message file, DC@MO1.
9. Save and close the field.

Summary

Important Observations

e Field validation rules are applied when file operations are performed.
Because you have not yet created any files, you cannot test the field
validation rules in this exercise.

e There may be many ways of performing the same check.

Tips and Techniques
e Remember that most business rules should be defined for a file, not a field.

e If you us messages with the variables (e.g. &1),validation error handling will
substitute the field label for this variable.

What I Should Know
e How to define rules for a field in the LANSA Repository.
e How to control the action performed when a rule is checked.
e How to define error messages for rules.
e How to adopt rules from a reference field.

REP004 - System and Multilingual Variables

System variables are used to store commonly used and often variable
pieces of information. They are global variables that are used across
all LANSA partitions.

Multilingual variables are specific to a partition and are used to store
commonly used text in several languages. These variables can be used
as field values, in validation rules or as command parameters.
Multilingual variables are a part of LANSA's multilingual application
support.

Objectives
e To highlight some of the system variables in LANSA and how they are used.

e To create a system variable which will automatically generate the next
available number for determining Employee codes.

e Optional: To review how multilingual variables are used in LANSA.
To achieve these objectives, you will complete the following:

Step 1. Review an Existing System Variable

Step 2. Create a System Variable

Step 3. Assign the System Variable as a Default Value

Step 4. Test System Variable using form iiiTestFields

Step 5. Review the System Variable (Optional)

Step 6. Review an Existing Multilingual Variable (Optional)

Summary

Before you Begin

In order to complete this tutorial, you must have completed the previous
tutorials.

Step 1. Review an Existing System Variable

In this step you will review an existing system variable.
1. In the Repository tab, expand the Resources group.
2. Expand System Variables.

3. Expand the M group (if the system variables are grouped alphabetically) to
show all system variables starting with M.

< {
= MESSAGE_FILE Message File %

-,, *MMDDYY Murneric date in format MMDDYY 3

-,, *MMDDYYC Character date in format MMDDYY §

-,, L Murneric date in format MMDDYYYY }

-,, *MMDDYYYY T Character date in format MMDDYYY\?

-,, *MOMNTH Current month (numeric) 3

-,, *MOMNTHC Current month (character) 1

= “MSGQLIB Current message queue library 1‘?

o MSGOMAME Current rmessage queus 3
WWWMWJ

4. Locate and open the *MONTH system variable in the Editor. You will see a
"Read Only" dialog as you open it.

Definition = Cross References E
| S

4 B Details i
Mame *MONTH t;
Description Current month (numeric) !
Derivation Static 1

Data type Murneric E
Length 2 i
Decirmals 0 3

3GL program M@EDSYSVAR ‘;I
e

T T it

Note that, alternatively, you can open the *MONTH system variable by
typing Ctrl + O, and specifying *MONTH:

| Description
q *MOMNTH Current month (numeric)
q *MOMNTHC Current month (character)

5. Review the system variable definition.

This system variable returns the current month. It uses the LANSA supplied
program M@SYSVAR to set the value. Do NOT change the system variable.

6. Close the system variable.

Step 2. Create a System Variable

In this step you will create a system variable which increments a number nn (2
digits) by one and returns it as an alphanumeric value.

To create this system variable you use a LANSA shipped evaluation program
M@SYSNUM. The names of system variables using this program must start
with *AUTOALP.

1. Press the New button on the toolbar and select System Variable from the drop
down list. The New system variable dialog is displayed.

2. Enter the following characteristics for the system variable:

Name *AUTOALPO02iiiNUM (where iii are your initials).

Description Next Available Number

Method of derivation Dynamic

Data type Alphanumeric
Length 2

Program Type 3GL program
Program name M@SYSNUM

e ——— ™y

Marme *AUTCALPOZIMMUM

Description Mext Available Mumber

Derivation Dynamic i

Data type Mumeric %
Length 2

Decirnals 0

Program Type 3G6L program

Program Mame |M@5YSNUM

3. Press the Create button.

4. The system variable has been created.

The value of the system variable will be set automatically when it is accessed
in the next step.

Step 3. Assign the System Variable as a Default Value

In this step you will assign the system variable you created as the default value
of the iiiEmployNumber field. By using this system variable, the value of the
field will be incremented by 1 each time the field is used.

1. Open the iiiEmployNumber field in the Editor.

2. Change the Default value to use the new system variable you created,
*AUTOALPO02iiiNUM. You can do this by entering *AUTO and using the

prompt button.
4
Outline == Details Favorites Go To Definition | Rules and Triggers | Visualization Repository Help Cm;;}
3| %
Mame EmployMumber 4 | B Details]
Identifier MEMPLOY Name liEmpleyMumber %
Identifier MEMPLOY
Field Type Alpha -
Field Length 2 . Type Alphanumeric 8
’ Length 2 _}
Decimals : Decimals ?—
@auh Value “AUTOALPOZIMNUM) Default Value "AUTOALPOZMNUM ;"
Reference Field Reference Field
TR GO | cciics .- frpissD j

The find dialog will display objects with names like *AUTO.

& Find]
B Systen Vanables A& Multilingual Variables
Like name AUTO
Like description
9 Find
! 1
|| Mame Description |
N W - AUTOALPOZIMNUM Mext Available Mumber
N A UTONUNMLSEVEMTHURM Event number
I
Cancel

.

3. Select your *AUTOALPO02iiiNUM system variable and press OK.
4. Save and close the field.
5. This type of system variable stores the "next number" in a data area (in this

case a data area named IIINUM, which is defined as the last part of the
system variable name).

The data area is read with a lock, incremented, returns the value to your form
and then updates the data area (and releases the lock).

If the data area does not already exist, it is created when first referenced. It is
stored in the partition module library.

Step 4. Test System Variable using form iiiTestFields

In this step you will test the changes made to the iiiEmployNumber field using
your iiiTestFields form.

1. To test your change to the default value of the iiiEmployNumber field, you
need to force the recompile of the test form.

a. On the Favorites / Last Opened tab, locate your iiiTestFields form.

b. Right click on iiiTestFields and select the Compile option from the
context menu.

c. When the Compile options window appears, deselect the Compile only if
necessary option.

g _. Ny
i Compile options t‘ ﬁ
Component Compile Options |

Compile only if necessary
¥| Debug enabled

Keep generated source

Use Default Settings Ok Cancel i

d. Press OK to submit the compile.

e Components (1)

Notice that the status of the submitted compile appears in the Compile
window at the bottom of the Editor.

2. Once your form has compiled, execute it.

Notice the default value for the Employee Number which appears when the

form first displays. This value was assigned by accessing the system variable
and determining the next available number.

Employee ID nm

3. Close the form.

4. Execute the form again.

Note the value in the Employee Number field has been incremented by one.

The system variable automatically updates to the next available number each
time it is accessed (by your application or any other application in any
partition in the system).

Employee ID 02
If 50 people were executing your test form, each person would see a different
default value.

When the Employee code reaches 99, it will reset to 1.

Note: You normally use this type of system variable to generate unique
numbers, such as the next available order number.

Step 5. Review the System Variable (Optional)

To do this step, you will need more than one partition in your LANSA system as
you will be looking at how the system variable you just created is available
across partitions.

1. If you have more than one partition in your Visual LANSA system, logon to
Visual LANSA in another partition.

2. Review the list of fields in the partition. You will not see any of the fields
you have created in these tutorials.

3. Review the list of system variables. You will see the new system variable

you created because these variables are accessible by all partitions in the
system.

Il Repository <)« Outline == Details Favorites GoTo | [Features

& Repository
MNew w X & ol

Item Description
4 gl |Active Partition (5Y5)
® Fields
Filles
= Forms
T Functions
¥ Processes
4 @ Resources
ActiveX
& Bitmaps
[Cursors
External Resources
Icons
A Multilingual Variables
4 W Systemn Varisbles

« W 5
A HAR 2 Cha
*ALUTORUM H X vent number

4. Close Visual LANSA.

Step 6. Review an Existing Multilingual Variable (Optional)

To do this step, your partition must be set up to support development of
multilingual applications.

1. In this step you will create three multilingual variables with English and
French values.

a. From the New button on the toolbar select Multilingual Variable

A& New Multilingual Variable - m ﬁ
¥ Creat

MName *MTT]|
Maximum Length 78
ot Cancel

Description L)

¥| Open in editor

| Close 'J

b. Ensure the Close option is not selected initially, but do open each
multilingual variable in the editor.

c. Create the following three variables:

Name Description
*MTXTIiiiDETAILS Details
*MTXTiiiAddress Address
*MTXTiiiSave Save

Ensure you close the dialog when creating the third variable.

2. In the Editor, switch to the Details multilingual variable.

a. Double click on the Multilingual Details to open the Details tab on the
left.

b. Change the French value to Détails. You can copy this value from the
tutorial in the online guide.

c. Save and close *MTXTiiiDETAILS

d. Switch to the Address variable, and change the French value to Adresse.
e. Save and close *MTXTiiiADDRESS

f. Switch to the Find variable and change the French value to Trouver
g. Close and save *MTXTiiiFIND.

3. Create a new form, iiiMultilingual Test.
Replace all from code with the following:

FUNCTION OPTIONS(*DIRECT)

BEGIN_COM ROLE(*EXTENDS #PRIM_FORM) CLIENTHEIGHT(322)
CLIENTWIDTH(391) HEIGHT(360) LEFT(571) TOP(200) WIDTH(407)
DEFINE_COM CLASS(#PRIM_TAB) NAME(#TAB_1)
BOTTOMLAYOUTPRIORITY(4) COMPONENTVERSION(1)
DISPLAYPOSITION(1) HEIGHT(241) LEFT(8)
LEFTLAYOUTPRIORITY(1) PARENT(#COM_OWNER)
RIGHTLAYOUTPRIORITY(2) TABPOSITION(1) TOP(8)
TOPLAYOUTPRIORITY (3) WIDTH(369)

DEFINE_COM CLASS(#PRIM_STBR) NAME(#STBR_1)
DISPLAYPOSITION(2) HEIGHT(24) LEFT(0) MESSAGEPOSITION(1)
PARENT(#COM_OWNER) TABPOSITION(2) TABSTOP(False) TOP(298)
WIDTH(391)

DEFINE_COM CLASS(#PRIM_PHBN) NAME(#FIND)
DISPLAYPOSITION(3) LEFT(18) PARENT(#COM_OWNER)
TABPOSITION(3) TOP(264)

DEFINE_COM CLASS(#PRIM_TBSH) NAME(#TBSH._1)
DISPLAYPOSITION(1) HEIGHT(213) DISPLAYPOSITION(1)
HEIGHT(21) LEFT(14) PARENT(#TAB_1) TABPOSITION(1) TOP(16)
USEPICKLIST(False) WIDTH(237)

DEFINE_COM CLASS(#PRIM_TBSH) NAME(#TBSH._2)
DISPLAYPOSITION(2) HEIGHT(213) DISPLAYPOSITION(1)
HEIGHT(21) LEFT(14) PARENT(#TAB_1) TABPOSITION(1) TOP(16)
USEPICKLIST(False) WIDTH(237)

DEFINE_COM CLASS(#SURNAME.Visual) NAME(#SURNAME)
DISPLAYPOSITION(2) LEFT(16) PARENT(#TBSH_1) TABPOSITION(2)
TOP(51) WIDTH(321)

DEFINE_COM CLASS(#GIVENAME.Visual) NAME(#GIVENAME)
CAPTION(*MTXTIIIDETAILS) DISPLAYPOSITION(3) LEFT(19)
PARENT(#TBSH_1) TABPOSITION(3) TOP(86) WIDTH(326)
DEFINE_COM CLASS(#ADDRESS1.Visual) NAME#ADDRESS1)
COMPONENTVERSION(1) DISPLAYPOSITION(1) HEIGHT(21)
PARENT(#TBSH_2) TABPOSITION(1) TOP(21) USEPICKLIST(False)

WIDTH(350)

DEFINE_COM CLASS(#ADDRESS?2.Visual) NAME#ADDRESS2)
COMPONENTVERSION(1) DISPLAYPOSITION(2) HEIGHT(21)
PARENT(#TBSH_2) TABPOSITION(2) TOP(43) USEPICKLIST(False)
WIDTH(350)

DEFINE_COM CLASS(#ADDRESS3.Visual) NAME#ADDRESS3)
COMPONENTVERSION(1) DISPLAYPOSITION(3) HEIGHT(21)
PARENT(#TBSH_2) TABPOSITION(3) TOP(65) USEPICKLIST(False)
WIDTH(350)

DEFINE_COM CLASS(#POSTCODE. Visual) NAME#POSTCODE)
COMPONENTVERSION(1) DISPLAYPOSITION(4) HEIGHT(21)
PARENT(#TBSH_2) TABPOSITION(4) TOP(87) USEPICKLIST(False)
WIDTH(249)

EVTROUTINE handling(#com_owner.Initialize)
SET #com_owner caption(*component_desc)
ENDROUTINE

EVTROUTINE HANDLING(#FIND.Click)
fetch *all FROM_FILE(PSLMST) with_key(#empno)
ENDROUTINE

END_COM

4. Save your form.
5. Switch to the Design tab.

a. Select the push button. On the Details tab changes its Caption to
*MTXTiiiFIND, by selecting it using the ellipsis button and Repository
Find dialog.

b. Select the first Tab Sheet (contains Employee Number). Click first on the
tab, and then in the middle of the sheet to select it.

it

il Repository |+ Qutline ‘MH © Favorites t 4 Dﬂgﬂ Source | Repasitory Details Fepository Help - Cross References |

-—I 111 9’ _x-l
TBSH 1 - |
B-% |
1 P . N 5
| { | "MTTmDETALLS =l | ABCDE
| | il =Ryl g |
|| ®DisplayPosition 1 || Employee Sumame 2AbBeCADEEFgGhHI
| DragStyle None |
|| [# EnableChildren False ||, Employee Given Name(s) sAbBcCdDeEfFgGhHIL
[#* Enabled True |
|| ¥ Height a3
| [Hint
|| HimPopup “NULL
| [HintShow True
|| [®HintShowOfParent | True
|| [HintTitle
| [®Image “NULL
i: ,-?Laynuﬂ."lanager *MULL
| ¥ Left 4
| [®Mo “NULL i

c. Select the second Tab Sheet (contains Address Line 1) and set its Caption
to *MTXTiiiADDRESS.

5. Compile the form.

6. Execute form iiiMultiLingualTest from the development environment. This
is running the form using the English language and it should look like the
following:

Detall: | Address

Employee Number

Emplopes Sumame

Employee Given Hame|s|

7. From the Windows start menu, select LANSA / Exec Form:

- ™
Execute Form on workstation u_lﬂw

For me | IIMULTI
e
{\I:anguage | FRA| _)
Partition Identifier | TRM
LAMSA User | IIVORY13
Database User | USERID

Database Password |
Database Mame | LX2IOHMI
Database Type | MS50LS

Default Printer |LPT1 n
Debug |

Debug Host | johnivory-pc:51237

Trace [1

Max Trace Lines | 20000

Trace level | 4

Trace Categories | ALL

H

Render Type |W_)

Graphics Processing | H

oK Cancel | Help | Parameter Help

L A

a. Change Language to FRA.

b. Ensure Render Type = W

Note: The Form Name will be pre-filled with the Identifier for your form,
iiiMultiLingualTest, which was the last form run in the development
environment.

c. Click OK to run the form, using French.

Enter an employee number such as A0090, A1004 or A1005, and click
Trouver.

Your form should look like the following:

= Dero murtiogus
Dt e |
Adresza higne 1 70 King Strast
Adresse ligne 2 Newtown

Adrezre ligne 3 NSW
Code postal 2220

Note:

e The field descriptions in French are defined in the Repository for each
field

e The Caption on the Find button and the Tab Sheets are defined by the
multilingual variables.

Summary

Important Observations

System variables can be used throughout the repository as default values, in
validation rules, etc.

LANSA ships many default system variables. You can also define your own
system variables.

System variables are NOT partition specific and changing or deleting a
system variable affects all partitions in that installation of LANSA.

Dynamic system variables can have different values each time the variable is
accessed.

Static variables are assigned once when the application is started.
System variables call a program which returns a single value.
Multilingual data is stored as keyed data and is not translated.
All multilingual variables must begin with *MTXT.

Tips and Techniques

When defining a new partition (or modifying an existing partition) to support
multilingual applications, a "default" language and one other language must
be defined. A multilingual partition must have two or more languages
defined.

What I Should Know

How to create a system variable in Visual LANSA.

Some of the special system variables supported by LANSA.
Where a LANSA system variable can be used.

How multilingual variables are used in Visual LANSA.

REPO005 - Creating Files

A LANSA file may also be referred to as a database table. Fields are
added to the file to define the record format (key columns and

columns). A LANSA field can also be described as a database
column. Once a file is compiled, the records in it can be retrieved,
added, updated and deleted.

Objectives

e To create two file definitions. You will create a Department Table and an
Employee Table. These tables are similar to the ones used in the DirectX
Examples application.

e To review the database file attributes which can be defined in the LANSA
Repository.
e The file definitions will be as follows:

Department File iiiDepartments Employee File iiiEmployees
iiiDeptCode* iiiEmployNumber*
iiiDeptDescription iiiDeptCode

iiiSurname

iiiGivenName

iiiSalary

iiiStartDate

iiiEmployNotes

* indicates the fields used as the file key

Note: Files can be created manually or by copying an existing file
definition in the LANSA Repository. In this lesson, you will manually

create the file definitions so that you can see all the steps involved. If
you copy an existing LANSA file definition, the fields, rules, and all
other related database information about the file can be copied.

To achieve these objectives you will complete the following:

Step 1. Create File Definition

Step 2. Compile the File

Step 3. Create Department Maintenance Form
Step 4. Execute Department Maintenance Form
Step 5. Create the Employee File

Step 6. Create Employee Maintenance Form
Step 7. Execute Employee Maintenance Form
Step 8. Database Attributes

Summary

Before you Begin

In order to complete this tutorial, you should have completed the previous
tutorials.

Step 1. Create File Definition

In this step you will create iiiDepartments Department file.
1. Select the New button in the File menu and select LANSA File.

Bl M. = . *e [Departments- Department Table - LANSA Edfitor" ——
=]
™ save Commen Fille
—_—
Close IE'P i~ t:!l
-
% Opan Freld Form Reusable Part Business Object Process
Last Opened |
—
= 8 " v A
_ Function Web Weblet Multshingual
Applicatian Vanakle
B Save All Madule
g Print Resources

——

a. Enter the following characteristics for the file:

File name iiiDepartments (where iii=your initials)
Description Departments Table
Enabled for RDMLX Yes

[] New File

Marme | iiilepartments -. Create

Description | Departments Table

Cancel

Library \D13TRNLIB |
Identifier \MDEPARTM |
Enabled For RDMLX

Open in editor

b. Select the option to Open in editor.
c. Press the Create button.
2. You will now start adding fields to the file.
a. Make sure the Fields in File tab is displayed.

Fields in File | Logical Views = Rules and Triggers | Access Routes

Field Mame Description

¥ Primary Keys
¥ Real Fields

PJFs Before

Read Virtuals

PJFs After

Write Virtuals
Inactive Virtuals
Undefined Virtuals

B L L L P A L

{
|

b. Display the iiiLIST tab which you created in exercise REP001- Step 6.
Create a Dynamic List for Your Fields .

c. Drag the iiiDeptCode field to the file under Real Fields.

]
B Repository <]« Outline | 2= Details Favorites | ' "| | Fieldsin File | Logical Views | Rules and Triggers

R e e e e e #5365 1| Ficid Name nm,iptg
New ~ | 52 | & | Q = ¥ Primary Keys
£ Common Controls | |5 Last Opened | |3 iiilist 4 Real Fields
Itern | Description Modified ® jiiDeptCode Depart

M AUTOALPOZOM.. Mext Available Mumber 05/12/20.) 5 Before

L A Current month [nume... Read Virtuals

A "MTXTDEMTRIG... Training 03/02/20., PIFs After

A “MTXTDEMTRIG... Company termination.. 03/02/20. Write Virtuals

A "MTETIIADDRESS Address 05/12/20, Inactive Virtuals
|A "MTATIDETAILS Details Undefined Virtuals

A “MTXTIOFIND Fimd
A *MTXTIISAVE Save
= Barratts_lssue_1 Barratts Shows Issue
== Barratts_lssue 2 Barratts Works Some T.., 11,20,
& [_NAME Standard MAME 0512720,
——sHE PR Bepar

B fliiDeptCode Department Code

® GiEmployMNotes Employee Motes 05/12/20.
B jilEmpl mber E /0.4

LEN— r"‘--""“"“-—--1_,._/'Hu-"*-'U“uv‘ﬁrﬂvwv"uvv"\w“’qw*“‘"yuy

E

d. With the iiiDeptCode field selected in the file, click on the Key Field
button on the Home ribbon, to make it the key field of the file.

Addvx O ‘?7

(You can also drag the field directly under Primary keys to make it a key

field.)
e. Double-click iiiDeptCode to display the Details tab.

f. Notice the Key position is 1 to indicate that iiiDeptCode is the first key
field in the file.

Details 1%
IIIFILDEPT -
rFielu:l narne HIIDEPT]
Descripkion Departrment Code

Type Alphanumeric

Length 3

Drecimals

Sequence 1 =
key position 1 =
Defaulk walue *ELAMKS

&llocated length =
Input attribukes FE - Field exit key required

I Repository « - Outline E Details Favorites |1 3
e o) x| |
Field Mame |iiiDeptCDdE +
Sequence 1 =N |
q |)
Key Position | = |
 Allocated Length | = |
il Field Definition
' Description |DEpartment Code |

g. Add the iiiDeptDescription field to the file using drag-and-drop.

Your file will appear as follows:

Fields in F|I:| Logical Views Rules and Triggers Access Routes | Batch Control | File Attributes | Relationships = Cross References Virtual Derivation
_ Field Name | Description | Ref. Field | Type | Length | Decimals
¥ Primary Keys
4 Real Fields
™ iiiDeptCode Department Code Alpha 4
™ hiDeptDescniption Department Descnption Alpha il

PIFs Before
Read Virtuals
PIFs After

Step 2. Compile the File

Now that the definition is complete, the file must be compiled to be operational.
1. Display the Compile options dialog to submit your file for compile.

v Full Check -

&

In this way you can view the compile settings before submitting the job.

= :
Compile * il

The File Compile Options dialog is displayed.
r'«'w:u Compile options 3 -

File Compile Opticns

Files (1) ¥||Compile only if necessary

Rebuild table
Rebuild indexes and views
Rebuild OAMs

| Strip debug information
Keep generated source
Keep saved data (DAT file)
Drop existing tables/indexes

Save table data

Use Default Settings Ok Cancel

LS &

2. Press the OK button to submit the compile using the defaults shown.

Note: As a new file definition, the option Compile only if necessary, will
build the table and any indexes or views, and create and compile an OAM.

3. A compilation status will be displayed in the Compile tab.

Make sure that the compile completed successfully.

L | Becitc 5,
:!1 iiilepartments - Departrents Table Compiled 1 of 1 3
: {
» Completed niMultiLingualTest - Demo Multillingual Compiled 1 of 1 }
: Completed iiiMultiLingualTest - Derno Multillingual Compiled] of 1
s P g ng P
s ;
i) Assistant . Compile o Check Out | @ Propagation & Text Search igg Help i
LANSA1Z TRN jiveryl3 {‘L

4. Close the file.

Step 3. Create Department Maintenance Form

In this step you will create a test form which will allow you to add, change,
delete and display the data in the department file you have just created.

1. Create the Department Maintenance form.

a. Create a new form with the following characteristics:

Name iiiMaintDepartment (where iii=your initials)

Description | Department Maintenance

Your New Form dialog should look like this:

™ MNew Form &J
Marme iiiMaintDepartment Create
Description Department Maintenance

Cancel
Framework Personnel & Payroll (HUMAN RESOURCES) e
Group T
Identifier MMAINT
\fﬂabled For RDMLX [«

The form will open in the Editor.

b. In order to use a template, you need to know the Identifier for the file
iiiDepartments. Templates do not recognize long names.

On the Favorites tab, expand the width of the Last Opened tab. If
necessary, use the right mouse menu on a column heading to show the
Identifier column.

Make a note of the file iiiDepartment's Identifier. For example

1iiIDEPARTM.
COTroTC T T TR T TR T T oo e 3
® T MAME Standard MARE I MAME f
iiiDepartments Departments Table MDEPARTM Compiled
B jiiDeptCode Department Code MDEPTCO &

c. With your new form selected in the editor, click the Templates button on

the Design ribbon

-
B - = Rl m ||%mmepartmen!— Eep&!men! Mm!
r—er—

RN Home Layouts Styles Design Tools
| = e = 5 -
— i 2d L] 2
4 . - — ' ' . ActiveX
Designer Design Align Size Lock Design —* s
Language

Press the Template button ¥ in the Design ribbon to display the Choose
Template dialog.

d. Select the VL_BASEMNT Visual LANSA flat file maintenance template
and press the Execute button.

S|

Choose Template S e
VL_BASEBOB Visual LAMSA Business Object Browser
VL_BASEBOD Visual LAMNSA Business Object Detailer
VL_BASEBOF Visual LAMSA Business Object Filter
VL_BASEER1 Visual LAMSA advanced parent browser
YL_BASEBRZ Yizual LAMSA advanced tabbed detail
VL _BASEMMNT Yisual LAMSA flat file maintenance
YL_BASETAB Yizual LAMSA tab folder with four sheets
WVL_BASETRE Visual LAMSA simple tree list
VL_BASEWRK Visual LANSA work with chject
VL_BEMMUBR Visual LANSA: Menu bar building block

i| VL_BBSTSBR Visual LAMSA: Status bar building block
VL_BBWEERT Visual LAMSA: Webroutine Building Block
VL_FBASBOB Visual LAMSA Business Object Browser
VL_FBASBOD Visual LAMNSA Business Object Detailer
VL_FBASBOF Visual LAMSA Business Object Filter
VL_FBASER1 Visual LAMSA advanced parent browser
YL_FBASBRZ Yizual LAMSA advanced tabbed detail

| YL_FBASPMNT Yizual LAMSA flat file maintenance
| Execute Cancel Display All

h

e. Answer the template questions as shown in the table below. (Remember

to replace iii with your 3 character identifier.)

Template/Wizard Question ANSWER
Supply a word that describes WHAT this data entry Department
program works with

iiiDEPARTM

Enter the name of the PHYSICAL file to be used by this
template

FF

Select both
fields

How do you want to display the fields?

Fields to appear on display

The template will display Identifiers for your fields.
f. Press the Finish button once you have answered all questions.

The template replaces the default code in your new form. The form is
complete and ready for compilation. It is not necessary to change the
source RDMLX.

g. Select the Design view. Reposition the buttons (select as a group and use
Ctrl+Cursor keys.) and resize the form.

atbBcCdDeE (FgGhHilKkEILmb nM o0 pPglR e SET bl iswiddyy'zs

2. Next, compile your form.
a. Select the Home ribbon if necessary.

7
il

b. Press the Compile C:ri;le button. Compile will automatically save the

form.
c. Review the Compile tab to ensure that the compile completed

successfully.

Step 4. Execute Department Maintenance Form

In this step you will execute the Department Maintenance form and add some
data to the Department file.

1. Execute form iiiMaintDepartment by clicking Runtime / Execute on the
Home ribbon.

s it

| Department Maintenance | S

Department Code A0k

Department Dezcription

Fetch l |

LS

2. Insert the following data to the file:

Department Description

ADM Administration
LGL Legal

MRK Marketing

TRN Company Training
TRV Business Travel

Note that if you try to insert a blank Department and Description, you will
see that the messages caused by the field level validation rules created in
REPOQ03 - Validation Rules.

3. Close the form.
4. Close the form in the Editor.

Step 5. Create the Employee File

In this step you will create an Employee file using the skills you have just

learned in the previous steps. You will use the multi-add fields feature to add
multiple fields to the newly created file.

1. Create the Employee file.
a. Use New / File / LANSA File. Enter the following characteristics for the

file:
File name iiiEmployees (where iii=your initials)
Description Employee File
Enabled for RDMLX Yes

e

Mame ;iiiEmpID}rees

Create
Description ;Er‘ﬂph:l}fEE File

Library \DI13TRNLIE
: 7 . :
Identifier |MEMPLOYE Open in editor

Cancel

Enabled For RDMLX

b. Select the option to Open in editor.
c. Press the Create button.

2. On the Home ribbon, select Add / Multi-add Fields.

Addrx

£
I
i
[
E Add Real Field
g
4

3
!
7
2
d

Add Virtual Field
Multi-add Fields

The Add Fields to the File window is displayed.

Reference Field

Note: When typing a field name, the autocomplete feature will attempt to
identify an existing repository field name as you type in the characters.

3. Add the fields iiiEmployNumber, iiiDeptCode, iiiSurname, iiiGivenName,
iiiSalary,iiiStartDate and iiiEmployNotes to the file.

You should only need to type 4 or 5 characters and autocomplete will match
with the right field.

Specify that iiiEmployNumber is the key field in the file by entering the
value 1 in the Key column.

F i v e
Field Mame Description
I | Employe=ID
niDeptCode Department Code Alpha
iiiSurname Surname Alpha
Alpha
Packed
DateTime
String

i Reference Field | Type

iiGivenMame Given Mame

| iiiSalary Manthly Salary
niStartDate Start Date

niEmployMNotes Employes Motes

4. Once you have added all the fields to the file, click OK. Your definition
should appear like this:

5. Compile the file.
6. Close the file definition.

Fields in File | Logical Views | Rules and Triggers Access Routes | Batch Control | File Attributes | Relationships | Cross References Virtual Derivation {
Field Name Description Ref. Field | Type | Length | Decimals fj;
4 Primary Keys i
mEmployflumber Employes ID Alpha 2 E
4 Real Fields {
nEmploylumber Employee ID Alpha 2 5

R iiideptcode Department Code Alpha 4 "J;

@ fiisurname Surname T_MNAME Alpha 25 A
I ® liigivenname Given Mame _MAME Alpha 25 ;’r

® jiizalary Manthly Salary Packed 11 2

¥ ® jistartdate Start Date DateTime 26 %

- ® iiiemploynotes Employee Notes String 512 ;
7

PlFs Before 2

e T e e e e e e

Step 6. Create Employee Maintenance Form

In this step you will create a test form which you can use to add, change, delete
and display the data in the employee file you have just created.

1. Create the Employee Maintenance form.

a. The template requires the file's Identifier. Look up the Identifier for the
file on the Favorites / Last Opened tab. For example IIIEMPLOYE.

b. Create a form with the following characteristics:

Name iiiMaintEmployee (where iii=your initials)

Description Employee Maintenance

RDMLX Enabled | Yes

c. Once the Editor has opened, press the Template button ¥# on the Design
ribbon.

d. In the Choose Template dialog, select the VL_BASEMNT - Visual LANSA
flat file maintenance template. Press the Execute button.

e. Answer the template questions as shown in the table below. (Remember
to replace iii with your 3 character identifier.)

Template/Wizard Question ANSWER

Supply a word that describes WHAT this data entry Employee
program works with

Enter the name of the PHYSICAL file to be used by this |IIIEMPLOYE
template

How do you want to display the fields? FF

Fields to appear on display Select ALL
fields.

Your form is now created and ready for compilation. It is NOT necessary
to edit the source.

f. Adjust the width of the fields on the form.

You may find this quickest if you select a field and adjust its Width
property by guessing a smaller value. Then drag the field making it wider
if necessary.

AbBCCADeE FgGhHikKLm Sis

sAbBcCdDef FglhHipkKLm

123 45678912

abbB cCaDeE IFgGhHIKILmMnNoDgPaDRSTY - 0
LI wid syt 22 s b C D e FF gl K ILmi i

o0pP oA ST ULl w7 22 s bB Ol e ol
hHIlVKEILmnNo0pP gQiR s SITullvWivialddtaZats © 000 0L
bBcCdDeE fFoGhHikE LmMrdo0pPadiRsStTull

Wil 22 ad b8 o CdD eE FaGhHIkEILmnM o

OpP gl ST ullvwiviii s

lngant 0o Update
atbBeCdDeEfFgGhHIkE L mbro0pPgliR ST ullvviw b 22

2. Compile your form.

Step 7. Execute Employee Maintenance Form

In this step you will execute the form and enter some data into the Employee
file.

1. Execute your application.

° Maintain Employees

Emplopes 1D 03

Department Code ADM

Sumanms Birowen

Givan Mame Veranica

Monthly Salary 2450000

Start Date wnzaz [+

Lotem ipzum doloe it amel, cu vel noziio impeius,
wiz cham placesat mvidunt =1, Modo sudee placerat
ezl in. Cum omittantur neglegentur an, usd in
nastum signifeumaue, Dbique neglegeniur nec

Emplopes Males
meloy au, munere dessantiet nam n. In alia erant akera
eurn, ul dict admodum pordenm mea, quo e solum
grascs,
| Eeteh | lnen Update Delste |

2. Insert the following data to your file. (You can use the data in the table below
or create your own.)

Employee Department Surname First Monthly Start Date Notes
Number Name Salary

01 ADM Brown Veronica 5000.00 01/01/1989 Et harur
dereud
facilis e
er expec
distinct.
Nam lib
a tempo
cum sol
nobis
eligend
optio

02 ADM Smith Ben 3000.00 23/04/2001
03 LGL Jones Dan 2900.00 10/12/2000
04 TRV Turner Jennifer 6500.00 05/02/1990

3. When you have entered all the employee details, exit the form.
4. Close the form in the Editor.

comque
nihil qu
a imped
anim id
quod
maxim
placeat
facer
possim
omnis e
voluptas
assumet
est, omr
dolor
repellen

same as
employt
01

same as
employt
01

same as
employt
01

Step 8. Database Attributes
In this step you will simply review the file database attributes to highlight what

information is accessible. You will not make any changes.

1. Open the iiiEmployees Employee file (if it is not already open).

2. Select the File Attributes tab. Double click a setting such as I/O Module

Library so that the Details tab is shown..

I8 Repository Outling 5 Details Fevorites GoTo * '/ FieldsinFile Logical Weews Rules and Triggers | Access Routes | Batch Control - File Attributes. Relationships C}
Hame iiiEmployess 4 File Settings g
Idengifies i Mamie iiiEmployess t;
Libraey v Identifier MEMPLOYE {
Fie Type LANSA File
Record Format Mame |TIEMPLOYE Fii Library D13TRNLIE _?
170 Ml b Lisrary Samne library & file (F) Record Fomnat Mame MERPLOYE :l',,
L I'0 Module Library Same library as file (F)
e, Colleting Table Fie Uses 5L G EM | Mo :r
AR, Cotating Tabie !
' Enabled For RDMILE Enalbbed For ROKILE s E
Enabled For Long Mames Wes
sl S Shere Data Path Mo g
| Bhare Secure From File Oyemides Wes J‘
7 Semie Strip Debug On Compile s i
7! Stip Dubug Suppress IOMO034 Message Mo 3
lgnere Decimal Data Bmor Mo i’
Suppress JOKM0034 Creste [/ Module When Comipiing Wes j
Ignore Decimal Data Ermoe Creete Batch Control Hesder Records Mo 5
208 At 1BM i High Speed Table Ma §
Aute Felathve Record Murnber Gereratesn s E
Creste Batch Control Create Relative Record Number Column es 3
181 High Speed Table Convert Speciel Characters I Field Mames Mo F
P STt e Enelile Commitment Control Mo ‘?
Auta Cermml 1] I
Create REMO column CRTFF And CHGPF Paramitirs SIEE{ 10000 2000 3 LNMLCHE™YES)
| Convert Special Chasctars In Fatld Narmes Readanly Access Ho
Commitment Control Opbons Ensbile Dutsbase Triggers Mg
[Cletpiase Trigger Program %
Comenitrent Control
4 Deeriptions 2
Aarta ‘:"i Englizh Employee File }
Database Trigger Program French Employee File 1
Enable Database Triggers iv g ed D Products 3
¥ Adaptive Server Aryrwhere (For all Inbel Platforms) 7
CETPF fired CHERF Parameeters .é
SZE(IDO0 2000 3) LNLCHIVES) : # lob Stetus Description Resulis J'r
MMMJWMM in Employes Compiled 1 of — P

3. If you select a setting in the Details tab, you can use the F1 help to review
the detailed information about file settings in the online guide.

Notice that you are also able to specify the multilingual descriptions for the
file name if the partition is multilingual.

Do not make any changes to the file attributes.
4. Close the file.

Summary

Important Observations

Notice that the field level validation rules you created in exercise REP003 -
Validation Rules are enforced when you maintain the files. Field level
validations are enforced in every file in which the field is used. However,
remember most validation rules should be defined at file level.

Key sequence is used to define the order of the keys in the file. The physical
sequence of fields and the key sequence are independent.

Access to files is handled by the Object Access Modules (OAM). Every file
used by LANSA has an OAM which contains the repository features of the
file and its fields. The OAM is executed whenever the file is accessed by a
program.

When you make a change to a field used in a file or to the file definition
itself, you need to recompile the file. You do not need to recompile your
programs unless the change affects the visual display.

Tips and Techniques

Use the multi-add fields feature as a faster way to add fields to a file. You
can include fields that do not exist in the repository and these fields will be
created when you exit the multi-add window.

Database attributes become more important if you are deploying databases to
other platforms. Refer the online help for each database attribute before
using it.

What I Should Know

How to define a file in the LANSA repository.

How to add fields to a file definition.

How to specify file keys.

How to compile a file to make it operational.

Some of the attributes that can be specified for database files.

REPO006 - Logical Views

Logical views are used to create alternate ways of organizing or

accessing the data in your LANSA files. You can create file sorting
sequences that differ from the keys used in the physical file.

Objectives

e To show how logical views are created over existing files to sequence the
file data.

e To add a logical view over the iiiDepartments Department file which sorts
the file by iiiDeptDescription.

e To add a logical view to the iiiEmployees file to sort the file by iiiDept
Code.

To achieve these objectives, you will complete the following:
Step 1. Add a Logical View to Department File

Step 2. Create Department Test Form

Step 3. Execute Search by Description Form

Step 4. Add a Logical View to Employee File

Summary

Before you Begin

In order to complete this tutorial, you must have completed the previous
tutorials.

Step 1. Add a Logical View to Department File

In this step you will create a very simple logical view over the file
iiiDepartments created in the last exercise. This logical view will sort all records
in the file by the iiiDeptDescription field.

1. Use your dynamic list, iiiLIST to open the iiiDepartments file in the Editor.

2. Select the Logical Views tab. It will list all of the defined views for the file
(there are none yet).

3. Select the Add button on the Home ribbon and select Add Logical View from
the list.

Add - x ¥

Add Logicﬁfiew

on References | Vir

A new logical definition is added for the file. You need to specify the logical
view details and key fields.

4. The Details tab should already be displayed. Enter the following details:
Logical view name iiiDeptsByDesc (where iii=your initials)

Description Departments by Description

Your Details tab should now look like this:

i Repository |+« Outline | 2= Details Favorites | . Go T|:|n-f " | Fieldsin File Logical Views Rules and Triggers Access

]
— Re
... B x | 3
| ¥
Name iiiDeptsByDesc 4 ¥ || WiDeptsByDesc - Depoartments by Desc... 3
Identifier MDEPTSEY Identifier - MDEPTSBY i
MNon-unigue key }J
Maintain Access Path - Immediate ;
English Depoartments by Description Alt. Seq. Table Mame -
French <Mew Logical> Record Format Mame - ‘}
st ?
- - CRTLF/CHGLF Parameters - LVLCHK(*YES)
Unigue Key 4 4" Keys]
AccessPath Immediate - ¥ <New> Field
Dynamic Select Y Select/Omit criteria ¢

b

5. Click on <New> under the Keys group so that you can specify the key for
the logical view.

a. Place the cursor in the Field name field in the Details tab.

7
I Repository | |« Outline == Details Favorites | GoTe ' ' Fieldsin File | Logical Views Rules and Triggers Accssﬂcg

N— K'-':!' | Deseription 4 ¥ | iiiDeptsByDesc - Departments by Descri...
| < M = | Field not found in LANSA Identifier - MDEPTSEY
Mon-unigue key
Maintain Access Path - Immediate
Alt. Seq. Table Mame -
Record Format Mame -
Dymamic Select - Mo
CRTLF/CHGLF Pararmeters - LVLCHK[*YES)
4 & |Keys
¥ <Mew> Field

W Select/Omit criteria

e I Y e

Wu_l_"‘

?

Note: A simple way to add key fields is to use the prompt. The prompt will
show the Find dialog with all valid fields that can be used as key fields
shown:

Marme Description Type | Length Decimals

B iiDeptCode Department Code Alphanumeric 4
B jiiDeptDescription Departrnent Description Alphanumeric 20

& Fields in File
[t

b. Select the iiiDeptDescription field, and click OK

Your completed logical view will appear like this:

Fields in File | Logical Views Rules and Triggers Access Rowtes | Batch Control | File Attributes | Relationships = Cro

4 | iiDeptsByDesc - Departments by Descripti...
Identifier - MIDEPTSBY
Men-unigque key
Maintain Access Path - Immediste
Alt. 5eq, Table Name -
Record Format Marme -
Dymamic Select - No
CRTLF/CHGLF Parameters - LVLCHE[*YES)
4 £ Keys
B jiiDeptDescription Department Description Ascending (Unsigned)

¥ Select/Omit critenia

B T IO WL Y ST P P -

?
z
|

6. Compile the file to make it operational. Remember that you have already
compiled the file to build the table and OAM and have added data. Display
the Compile options dialog. Check that your compile options are set as
shown:

. il % - —
s Compile options ﬂ
! File Compile Options
Files (1} Compile only if necessary | =
Rebuild table

¥| Rebuild indexes and views
+| Rebuild O&Ms

-«

Strip debug information
Keep generated source
Keep saved data (DAT file)
Drop existing tables/indeses

Use Default Settings oK Cancel

Note:

e Because you added a Logical View to the file, you have selected to
Rebuild indexes and views and Rebuild OAM.

¢ In other situations, such as when a new validation rule is added at field
level, you will need to select the required File Compile options (Rebuild
OAMs in that particular case).

e If you have changed the fields in the file and need to rebuild the table, the
compile is capable of saving and restoring the data to the new file.

7. Check that the compile completed successfully.
8. Close the file.

Step 2. Create Department Test Form

In this step you will create a form that searches the Department file by the
department description. You can do this because the logical view you just
created is keyed by the department description.

1. Create a form with the following characteristics:
Name iiiSearchDeptByDesc (where iii=your initials)

Description Search by Department Description

RDMLX Enabled Select

2. Next add the fields iiiDeptCode and the iiiDeptDescription to your form:
a. Once the new form has opened in the Editor,, display the iiiLIST tab.
b. Drag and drop the iiiDeptCode and iiiDeptDescription fields onto the

form:
ﬁﬂepnshuly DOutline EDetails Favomtes GoTol ' ' Design Source Repository Details Reposttory Help Cross References
T A ox
New = ¥ x| & B
E| Common Controls |5 Last Opened | 5| wilist
SET Description Podific
= M _MAME Standard MAME 05122
inDepartments Departmenl{ Tahble 07125
I ® iDeptCode Department Code 05/12/4
® iiiDeptDescription Department Description 05/12/3
L iiiDeptsByDesc Departments by Description
mnEmployees Employee File 0771274
P P, N

3. Next add a button to the form:
a. Locate the Controls tab. If this tab is not open, open it from the Home
ribbon, Views menu.

.Juvn..,,--.luu-"'_..w“vb.,

Controls

Commaon User Designed All Controls
Calendar =
38 Calendar lets the user select a date
Check Box
¥ Check Bexis used to present Yes Mo choice
= Combo Box
B List with an edit box
DateTime Picker
Date and tirme picker lets the user select & date and a time
Kot . .
Edit Bex it used for entering and displaying information
Grid

ik

b. On the Controls tab select the Push button control and drag and drop it
onto the form:

Controls Design | Source | Repository Details | R

Commen User Designed All Controls "
I Data in table format -
|' | Group Boa 3 Department Code ABCD
Groups other controls F e
- - Departrnent Description aAbBey
g Image
Shows a picture file
Label
Text description
st View
SRR List View

[aaa] Multi-line Edit Box

E220 Multi-line Edit Box has more than one line of text f"
Panel ’,’-
—J Container for other components -
Progress Bar »* -

Progress Bar shows how an Optrﬂtigﬂ:ﬁ'ﬂgrﬁiti

Push Button -
W Performs an action

Radio Button
Radic Button shows mutually exclusive choices

c. Double-click the button on the form to display the Details tab. The
Details tab is showing the Properties, Events and Methods for the Push
Button.

d. In the Caption property enter Find Department Code.
e. Adjust the width of the push button to display the Caption.
f. Adjust the height and width of the form.

iﬂ!pﬂsl‘tﬂr}" Outline 5= Details Favorites o GoTo * _ Design Source | Repository Details Repository Help | Cross References

PHEM_L
B~ §
Properties Events Methods

p .’-‘c|i5nm!nl enter
* ButtonCancel Ealse e e -

® ButtonDefault False D:pultmcnt Dw:np-tmn aﬁbBchDcEngGhH I}.l DO
| ﬁCup‘tion Find Department Code:..............:....:..:.:

¥ Corsor ~TT B :::: HI e e e S R

" DisplayPosition 3 -' Find D"”'"““”“c“d’

® DragStyle HNone

* Bllipses None

4. Next add some code that will search the loglcal view and return the
department code based on the department description:

a. Select the Events tab on the Details tab. Double click on the Click event
to create a Click event routine for the push button. Your code will look
like the following:

b. Select the Source tab. Your code will look like the following:

EVTROUTINE HANDLING(#PHBN_1.Click)
ENDROUTINE.

c. Complete the push button click event routine, by adding a Fetch
statement. Your new code should look like the following:

Fetch FIELDS(#iiiDeptcode) from_file(iiiDeptsByDesc)
with_key(#iiiDeptDescription)

Your complete source code should now look like this:

Design | Source | Repository Details | Repository Help | Cross References
W ek ke ke e e e ke e e ke ke e e e e e e e e e o o e e ke e e e ke e e e e e e o o e o o e e o ok ol e ok ke e
L
* COMPCNENT: STD FORM

*
B ek e e e e e e e e e e e e e o e ok ek o e o o o e o o o e o e e e

FUNCTICH OPTICHNS (*DIRECT)
EFBEEIN COM ROLE (*EXTENDS $PRIM FORM) CLIENTHEIGHT(302) CLIENIWIDTH(363) LEFT(45&) TOF(l98)
WIDTH{385)
FJDEFINE COM CLASS (fiiiDeptCode.Visual) NAME (§iiiDeptCode) DISPLAYDOSITION (1) LEFT(2Z)
PRRENT {#C0M OWNER) TREBPOSITICN (1) TOP({25)
DEFINE COM CLASS(§iiiDeptDescription.Wisual) NAME (§iiiDeptDescription)
LEFT({22) PARENT (#COM_ COWMER) TABPOSITICN{Z) TOP{&e) WIDTH(31l5)
DEFINE COM CLRSS(§PRIM PHEN) HAME (§PHEN 1) CRPTION('Find Department Code') DISPLAYPOSITICN(Z)
LEFT({30) PARENT (#CCM CWNER) TABPOSITICN(3) TOP{l2Z) WIDITH(1l33)

DISPLRYDOSITION(Z)

SET #com owner caption(*component desc)

TE‘J‘IRDUIINZ handling{#com owner.Initialize)
ENDROUTINE

Fetch FIELDS (§iiiDeptcode) from file(iiiDeptsByDesc) with key(#iiiDeptDescription)

h, ENDROUTINE

(/%E'JTRDUIINE HANDLING {§PHEN_ 1.Click)

5. To compile your form:
a. Press the Compile & button on the Editor toolbar.

b. Check that the compile completed successfully.

Step 3. Execute Search by Description Form

In this step you will execute the Search by Department Description

application. One of the typical uses of logical views is to make a file searchable
by a field such as a name.

1. Execute form iiiSearchDeptByDesc by clicking the Execute button on the
Editor toolbar.

2. Type in one of your department descriptions such as Administration and
click on the Find Department Code button to retrieve the department code.

' Search by Department Description [=IE= &]

Department Code A0k

Department Dezcription Adminiztration

[Find Department Code!]

LS &

The departments descriptions are Administration, Legal, Marketing,

Company Training, Business Travel. Remember that the descriptions are case
sensitive.

If necessary, execute the iiiMaintDepartment form to see how you entered
the descriptions.

Note: This is very crude form which simply demonstrates your logical file is
working. A logical file of this type (based on a name or description) would
usually be used to select a list of departments generically, using a partial key.
For example, "show all departments with a description beginning with Ad".

3. Exit the form.

Step 4. Add a Logical View to Employee File

In this step you will add a logical view to the Employee file to key it by the
Department field.

1. Open the iiiEmployees file and display the Logical Views tab.

2. Select the Designer button on the ribbon and expand the Add menu to select
Add logical view. Create a logical file:

Name: iiiEmpByDeptView
Description: Employee by Department Code.

Details
Mame iEmpByDeptView
Identifier MEMPEYDE

[=]
i3
=
2
=]
=
5
@

English Employess by Department Code

French <Mew Logical=

Unigjue Key
Access Path Immediate
Dynamic Select

Alt Seq.

Record Format

CRTLF/CHGLF Parameters

LVLCHK(*YES)

3. Select the Keys/New entry and make the iiiDeptCode field the key.

Details
Field Name iiiDeptCode

Key Order Ascending i
Mumeric Ordering Unsigned i
Key Position 1

4. Compile the file and then close it. Use the Verify / Compile menu option to
ensure that you Rebuild indexes and views and Rebuild OAMs.

= S

File Compile Opticns

[~ Files (1) |Compl|e only if necessary |

| Rebuild table
' Rebuild indexes and views
| Rebuild OAMs

| Strip debug information
I Keep generated source
| Keep saved data (DAT file)
I Drop existing tables/indexes
Save table data
Reload table data

Use Default Settings | OK | Cancel
5. Display the iiiLIST and select the iiiEmployees file.

6. Right-click and select Properties from the context menu. Notice that the file
properties shows brief details of the file such as Date Modified, Task ID and
Local Compile State:

D- Properties of ﬁIE iEmployees . u
1 = |De5cgp_t‘ ion | |
Type LAMSA file
Mame liEmployees
Qualifier D13TRMLIB
Identifier MEMPLOYE
Description Ermployee File
Date modified 10/12/2012 16:00:15
TaskID *un

*. Compile
Local Compile State 4
Repository
Enabled for full ROMLY "
Local Repository State "

Master Repository State ¥«

You will be using this logical view in a later exercise.

Summary

Important Observations
e Logical views may have one or more key fields.
e Keys can be assigned as ascending or descending sequence.
e Numeric sequence can be signed, unsigned or an absolute value.
e Refer to the online help for more details about these options.

Tips and Techniques

e Logical views provide an efficient means to create sorted indexes to quickly
access a file.

What I Should Know
e How to create a logical view.
e How to define the keys to the logical view.
e How to rebuild the file when test data is present.

REPO007 - File Validation Rules/Triggers

Application business rules are centrally defined in the LANSA
repository as validation rules either in the field or the file definition.
Centralized field validations remove the need for developers to code

the same validation into each program that uses the same file. A rule
is checked when a database file operation (such as an insert, update or
delete) is performed using the specified field(s).

Objectives:

e To highlight the difference between field and file level validation rules and
the hierarchy which exists between these rules.

e To show how multiple rules can be defined for a field.
e To add the following business rules to file iiiDepartments:

iDeptCode Must be in range A to ZZZ

e To add the following business rules to file iiiEmployees:
iiiDeptCode iiiDeptCode must exist in file iiiDepartments
iiiSalary Must be less than 10000.00

To achieve these objectives, you will complete the following:
Step 1. Add a Rule to file iiiDepartments

Step 2. Recompile the File and Test Department Rules

Step 3. Referential Integrity Rule in iiiEmployees File

Step 4. Add Rules to iiiSalary Field

Step 5. Recompile the File and Test Employee Rules

Step 6. Complete Referential Integrity

Step 7. Know about File Level Triggers

Summary

Before you Begin

In order to complete this tutorial, you must have completed the previous
tutorials.

Step 1. Add a Rule to file iiiDepartments

In this step you will review the field level validation rule defined on the
iiiDeptCode field that you created in exercise REP0OO1 - Create Fields. (When
you created the iiiDeptCode field, you copied the validation rules from the
DEPTMENT field.) You will also add a rule at file level to demonstrate how
these rules interact.

1. Open file iiiDepartments in the Editor.

2. Select the Rules and triggers tab.

3. Expand the two existing rules to see their complete details. Notice both rules
are at field level and cannot be changed using the Details tab. (You need to
open the field to edit field level rules.)

Fields in File | Logical Views Rules and Triggers Access Routes | Batch Control | File Attributes | Relationships | Cross F

4 iiiDeptCode - Department Code 1 Ruleis) 0 Trigger(s)
4 Walidation Rules
4 g Departrment cannot be blank Field

Condition - #FnileptCode "ne *blanks

If condition is found to be true MEXT else ERROR

Apply when inserting (400

Apply when updating (CHG)

Do not apply when deleting

Message - DC@MOL - DEMO004 - Department code is required

4 W jiiDeptDescription - Departrment Description 1 Rule(s) 0 Trigger(s)
B Validation Rules
4 g Description cannot be blank Field

Condition - #iiiDeptDe *ne *blanks

If condition is found to be true MEXT else ERROR

Apply when inserting (40D

Apply when updating (CHG)

Do not apply when deleting

Message - DC@MOL - DEMO003 - A description is required for department

These rules state that the Department Code and the Department Description
codes cannot be blank.

4. Select the iiiDeptCode field in the list of rules to add a file level rule to it.

5. Select Add button on the Home ribbon, and select an Add Range Check rule
to the iiiDeptCode field.

. Con

Addv* Nmm -
-

Add List Check

Add Range f[/geck

Add Date Check

Add Lookup Check

Add Simple Logic Check
Add Complex Logic Check
Add Trigger

ieferences | Vi

=r(s)

6. In the Details tab, create the rule as follows to ensure that the Department
Code value has to be between A and ZZZ:

Description Dept must be Ato ZZZ
Sequence 1
When Inserting | Always apply rule (ADD)

When Updating

Apply when field is used (CHGUSE)

When Deleting

Never apply rule

From Value

IAI

To value

‘2127’

Your Details tab should now look like this:

Details

Description

Sequence 1

Dept must be A to Z77

-
-

Rule Definition

From Value
[A

| To Value |
.z.

Validation Usage

When Inserting
When Updating
When Deleting

Always apply rule (ADD) &
Apply when field is used (CHGLUSE) =)
Mever Apply Rule %)

7. In the Validation Usage section, create the rule actions to set the field in error

if it is not in the allowed range:

If field is in the range of values

Evaluate next rule (NEXT)

If field is NOT in range of values

Set field in error (ERROR)

Message Number

(delete the entry in this field)

Message File

(delete the entry in this field)

Message Text

Dept must be in range A to ZZZ

Your Details tab should now look like this:

Yalidation Usage

When Inserting |Alwa}rs apply rule (ADD) = |
When Updating |App|}r when field is used (CHGUSE) e |
When Deleting |Ne-.rer Apply Rule = |
In The Range |E1.raluate next rule (MEXT) b |
Not In The Range ' Set field in error (ERROR) +i)

Error Meszage

Message Mumber |

Message File |

Message Text |Dept must be in range A to 77 |

The recommended way to specify the message text is to use a message
defined in a Message file as shown in Step 3. Create a Rule for the iiiSalary
Field. However, for simplicity in the rest of this tutorial, you will enter the
message text in the rule definition.

8. Save the file.

Step 2. Recompile the File and Test Department Rules

Because you have changed a rule (field or file level) in the repository, the OAM
of the file must be recompiled.

1. Before submitting the compile, check that you do not have any functions or
forms active which are accessing the Department file, otherwise you may
encounter locking problems.

2. Compile the file iiiDepartments. Use the Verify menu and select the Compile
option. Check that your compile options are set as follows:

i~ Compile options ' — [_ﬁ;hj

File Compile Opticns

Files (1) Compile only if necessary

Rebuild table
Rebuild indexes and views
I 7| Rebuild OAMs

| Strip debug information
Keep generated source
Keep saved data (DAT file)
Drop existing tables/indexes

eload table data

Use Default Settings Ok Cancel

—

Note that you have data in the files and you have not changed the table
definition (that is, added or removed fields). Also, you have not added or
removed any indexes/views. Therefore you only need to rebuild the OAM.

3. Check that the file compile completed successfully.
4. Execute your Department Maintenance form iiiMaintDepartment.

a. Try to add a blank department code. Notice the validation messages
which appear and their order (use the up and down buttons in the status
bar). You will see both the field and file level messages.

L et
Department Code -

Fetch Insert i Update Delete

Department code is required

b. Try to add a department code of 111. Notice the error messages.
c. Exit the application.
5. Execute your Employee Maintenance form iiiMaintEmployee.

a. Try to add a new employee with a department code of 111. Notice there is
no error because the rule was only added to the iiiDeptCode field in file
liiDepartments.

The rule does not apply to the file iiiEmployees.
b. Close the form.
6. Close the file.

Step 3. Referential Integrity Rule in iiiEmployees File

In this step you will add a Lookup rule to the Employee file. This rule specifies
that the Department field which is being inserted into the Employee file must
exist in the Department file.

1. Open file iiiEmployees in the Editor.

2. On the Home ribbon, expand the Views menu, to select the Simple rules list.

= =] g M

—_— B ®

- History Stop & C

o Slmpl%.llesllst e
Triggers list

The simple rules list gives you an overview of all the rules in the file and
indicates their type and whether a rule is defined in the field or file definition.

Fields in File = Logical Views Rules and Triggers Access Routes Batch Control File Attributes Relationships | Cross References Virtual Derivation &3
Field Name Level Seq. Rule type Description Insert Update Delete
®iiiDeptCode Field 1 Simplecheck Department canmot be blank Yes s N
®iiisalary Field 1 Simplecheck New simple logic check Yes Yes No
®iiiSurname Field 1 Valuelist Must not be Blank fes s Na

3. Select the iiiDeptCode field in the list of rules.

4. Select the Designer button on the ribbon and expand the Add menu to select
Add Lookup Check to add the rule to the iiiDeptCode field.

5. In the Details tab, create the rule as follows:

Description Dept must exist in iiiDepartments
Sequence 1
File name iiliDepartments

When Inserting | Always apply rule (ADD)
When Updating | APPly when field is used (CHGUSE)

When Deleting | Never apply rule

Your Details tab should now look like this:

Details

Description Diept must exist in Departments

Sequence 1 =
File Mame inDepartments

niilEmployees Field or literal

iiiDepartments Key field

iliDeptCode MDEPTCO - Department Code
Validation Usage

When Inserting Always apply rule (ADD) .
When Updating Apply when field is used (CHGLUSE)

When Deleting Mever Apply Rule

6. Complete the Actions section, to define the actions to set the field in error if

the value is not found:

If a "key match" is found in target
file

Evaluate next rule (NEXT)

If a "key match" is NOT found in
target file

Set field in error (ERROR)

Message file

(delete the entry in this field)

Message Number

(delete the entry in this field)

Message text

Department must exist in
Department File

Your Details tab should now look like this:

Actions

Key Match Is Found |E1.raluate next rule (MEXT) i |

Key Match Is Mot Found | Set field in error (ERROR) = |

Error Meszage

Message Mumber | |

Message File | |

Message Text |Departmer1t must exist in Departments Table |

7. Save the file.

Step 4. Add Rules to iiiSalary Field

In this step you will create a validation check on the iiiSalary field to ensure that
its value is less than 10000. (The field already has a rule stating that it cannot be
0). The rule will be a range check.

1. The iiiEmployees file should be open in the Editor. The Rules and trigger
tab and Details tab should be visible.

2. Select the iiiSalary field in the list of rules.

3. Select the Designer button on the ribbon and expand the Add menu to select
Add Range Check.

4. In the Details tab, create the rule as follows:

Description Amount must be less than 10000

Sequence 1

When Inserting | Always apply rule (ADD)
When Updating | APPly when field is used (CHGUSE)

When Feleting | Never apply rule
From Value 0.01
To Value 10000

5. Complete the Actions section, to define the list check rule as follows:

If field is in the range of values | Evaluate next rule (NEXT)

If field is NOT in range of values | Set field in error (ERROR)

Message File (delete the entry in this field)

Message Number (delete the entry in this field)

Message Text Amount must be less than 10000

6. Save your file definition.

Step 5. Recompile the File and Test Employee Rules

In this step you will recompile the Employee file so that the new rules will be
applied.

1. Before submitting the compile, check that you do not have any forms active

which are accessing the Employee file, otherwise you may encounter locking
problems.

2. View the rules for the Employee file. Notice it now has both Field and File
Level rules.

Fields in File | Logical Views Rules and Triggers Access Routes | Batch Control | File Attributes | Relationships = Cross References Virtual Derivation | £

Field Mame Level Seq. Rule type Description Insert Update Delete
®iiDeptCode Field 1 Simplecheck Department canneot be blank Vg Yeg M
B iiDeptCode File 1 Lockup Dept must exist in Departments Yes Whenused Mo
® niSalary Field 1 Simplecheck MNew simple logic check Yes Yes Mo
® iiiSalary File 1 Rangecheck Amount must be less than 10000 Yes ‘When used Mo
® jiiSurname Field 1 Valuelist Must not be Blank Yes Yes Me

3. Recompile the iiiEmployees Employee file.

Note: Once again that the changes made to the Employee file concern file
level validation rules. Therefore you need to recompile the OAM. The last
compile action used this option. If you click on the Compile button, the same
option will be used again.

Remember to check the correct compile options are used by using the
Verify / Compile option.

4. Check that the file compile completed successfully.
5. Execute your Employee Maintenance form iiiMaintEmployee.

a. Fetch an employee and try to update the details with a Department (such
as XXX) that does not exist.

(57 Maintain E_ﬁgﬂn

Employee Number

Surname Browm

Given Name Veronica

Department Code _

Salary 0000500000

Start Date 0112/2n2 hd

Larem ipsum dolor sit amet, consectetur

adipiscing elit. Aenean guam lorem,

aliquam in ggestas a, luctus id elit. Nulla

quis justo leo, a convallis dui. In ac dui
ERBRIEEHat ante, venenatis aliquet purus. Mulla mattis

porta accumsan, Vivamus enim ipsum,

ullamcorper at aliqguam ut, consectetur a

diam. Suspendisse ormare mattis massa witae

e =

Department must exist in Departments Table

b. Fetch an existing record and try to change the Salary to 10001.

If these entries weren't rejected, check the rules that you created during
the previous steps.

6. Exit the application.
7. Close the file in the Editor.

Step 6. Complete Referential Integrity

In this step you will complete the referential integrity checks. You will add a
rule that checks if any employees exist for a specific department before
allowing the department to be deleted from the Department File. This rule will
prevent an employee from losing its parent department.

1. Open file iiiDepartments in the Editor.
2. Select the Rules and Triggers tab.
3. Select the key field iiiDeptCode field in the list of rules.

4. Select the Designer button on the ribbon, and expand the Add menu to select
Add Lookup Check to add the rule to the iiiDeptCode field.

5. In the Details tab, create the rule as follows:

Description Cannot delete if Employee exists
Sequence 2
File Name iliEmpByDeptView

When Inserting | Never apply rule
When Updating | Never apply rule
When Deleting | Always apply rule (DLT)

Use the ellipsis button for File Name to use the Find dialog :

File Mame liEmployees @

o
Like name MEMP
Like description | |
B4 Find
hlame | Description ! Liban
| L iiiEmpByDeptView Employees by Department Code DlBTF‘.NLID
B iiiEmployees Ernployee File D13TRMLIB

QK Cancel

Note that the rule is only enforced when deleting a record. Your Details tab
should now look like this:

Details

Deseription Cannot delet if Emp exists |
Sequence 2 : |
Rule Definition

File Mame iiEmpByDeptView r-|
iiilepartments Field or literal .iiiEmpB‘gDeme Key field
iiDeptCode MDEPTCO - Department Code

Validation Usage

When Insesting MNever Apply Rule - |
When Updating Mever Apply Rule .|
When Deleting Always apply rule (DLT) - |

Actions

Key Match Is Found Evaluate nest rule (NEXT) N |
Key Match Is Mot Found Set field in error (ERROR) " |

6. In the Actions section, define the File Lookup Rule to set the field in error if
the department exists in the Employee file:

If a "key match" is found in target file | Set field in error (ERROR)

If a "key match" is NOT found in Evaluate next rule (NEXT)

target file

Message file (delete the entry in this field)

Message Number (delete the entry in this field)

Message text Cannot delete if used in
Employee file

Your Details tab should now look like this:

Key Match Is Found Set field in error (ERROR) b
Key Match Is Mot Found Evaluate next rule (MEXT) he

Message Mumber

Message File

Message Text Cannot delete if used in Employee file

7. Recompile the file iiiDepartments.

Check the file compile completed successfully.

8. Execute your Department Maintenance form iiiMaintDepartment.

a. Try to delete department ADM. You will not be able to delete this record.

-
]

Maintain Departments E@&J

Department Code A0k

Department Dezcription

Fetch] [Ingert] [pdate] [il;fl“elete?

_—

.

(Cannot delete if uged in Emploves file)
. =F

b. Add a new department XYZ. Delete this department. The delete will be

allowed because no employees have been defined for this department.
9. Exit the application.
10. Close the file.

Step 7. Know about File Level Triggers

A database trigger is a condition that is defined for a field or file in the
repository. Typically triggers are used to move complex logic to the
file definition. The trigger definition links a trigger function to a

specific database operation and condition. This function is invoked
automatically when a specific type of I/O operation occurs to a file
and when a specific set of conditions are met.

Similar to validation checks, LANSA triggers centralize the business logic of
your application.

A LANSA trigger function is a special type of LANSA function, which is
invoked automatically when a specific type of I/O operation occurs on a file
(Open, Close, Read, Insert, Update and Delete) and when a specific set of
conditions are met.

For example, as an audit trail, you might create a trigger to print before and after
recording specific values.

Triggers are not covered in this tutorial because you need to write code in order
to create a trigger function.

Summary

Important Observations

Field level validation rules are applied before file level validation rules.

The sequence of rules, combined with the validation actions, is very
important in controlling when multiple rules are applied.

Referential file integrity can be added by using file lookup checks.
Remember that referential integrity is usually defined in both files within a
relationship. In our example, Department cannot be deleted if Employees
exist, and Employees cannot be added unless the Department exists.

Notice that the trigger function is called after the validation rules are
performed. This order of operations prevents invalid data from being passed
into the trigger.

Whenever a validation rule or trigger is changed (at field or file level), the
file OAM needs to be recompiled.

Tips and Techniques

Most business rules should be defined at the file level. Only in special
circumstances should you use a field level rule. For example, when you
define the rule for iiiSalary at the field level, then every file using the
iiiSalary field has the same rules. Quite often, the iiiSalary will have a
different meaning and different rules when used in a different file.

You can create Complex logic rules when you need to perform more
complex checking than supported by standard value types.

The use of NEXT, ERROR and ACCEPT processing with multiple rules for
a field is very important. ACCEPT processing means that no more rules are
evaluated.

It is very important that you check the Actions tab to ensure that you have
properly defined the validation usage, that is, when should an error occur.
For example, a simple logic check rule can be defined as (#DEPT *NE
*BLANKS). If true, is this an error?

The ADDUSE and CHGUSE options control if validation rules are
performed. If the field is not included in insert, update or delete, the rule
check will not be performed. Typically CHGUSE is applied on file rules (not
ADDUSE or DLTUSE). For some additional explanation of ADDUSE and
CHGUSE, refer to the Important Observations in the Summary of the

REPOQO08 - Virtual Fields exercise. This exercise gives an example of how
these options can be used.

e Trigger functions are very useful if you want to perform server-side

procedures when building client/server or web-based applications.

Trigger functions can be used to define virtual fields and can be used to
perform complex validation rules in a file.

What I Should Know

Where validation rules are performed in the LANSA architecture.
What rules are supported at the file level.

At what level you should specify most of your rules.

In what order are the field and file validation rules performed.

How to use a code file/table lookup rule to create referential integrity.
That you need to recompile your file after you have changed it.

REPO008 - Virtual Fields

A virtual field is a field which appears as part of a file but does not
actually exist in the physical database file. Its value is dynamically

derived based on the fields in the file. Virtual fields provide flexibility,
since you can combine or extract data from fields in a file and extend
the information already contained in the file.

Objectives:
e To explain virtual fields.

e To highlight the different types of virtual fields that can be defined using the
LANSA Repository.

To achieve these objectives, you will complete the following:
Step 1. Add Virtual Fields to Employee File

Step 2. Calculation Virtual Field

Step 3. Concatenation Virtual Field

Step 4. Code Fragment Virtual Fields

Step 5. Create Test Form

Summary

Before you Begin

In order to complete this tutorial, you must have completed the previous
tutorials.

Step 1. Add Virtual Fields to Employee File

In this exercise, you will see how the multi-add field feature can be used to
create fields in the repository as they are added to the file. You will use these
new fields as virtual fields in the Employee file.

1. Open file iiiEmployees in the Editor.
2. In the Fields in File tab, Select the Designer button on the ribbon and expand

the Add menu to select Multi-add fields. The Add Fields to the File window is
displayed.

3. Add the following fields (where iii=your initials). Remember to tick the
Virtual check box.

Field Name Description Type Length Dec Virtual

iiliTaxAmount Income Tax to Deduct Packed 6 2 uyes

iiiFullEmployNumber Full Employee Alpha 9 i yes
Number

iiiEmploy Years Years with Company Packed 2 i yes

iiiNoteLength Length of Notes as Packed 5 i yes
Characters

The autocomplete feature will attempt to match existing fields in the
repository and will leave default values that need to be changed. Be sure to
enter the correct descriptions, type, length, decimals and set the virtual flag.

Field Mame Description Reference Field Type Length| Decs

iiiTaxAmount Income Tax to Deduct Packed
iiiFullEmployMumber | Full Employee Mumber Alpha

iiEmployYears Years with the Company Packed
iiilNotel ength Length of Motes as Charac... Packed

4. Press OK.

™ Field Not Found in LAMSl S |

Marne ||||Tax-—'xm|:unt
Description |In|:|3mE Tax to Deduct
I Type |F'a|:k:Ed I

Create All Ignore

5. When prompted to create the fields, click the Create All button.
6. Your new fields in the file will appear like this:

4 Undefined Virtuals

¥ & iiiTaxAmeunt Income Tax to Deduct Packed 6 2
¥ b iiiFullEmployNumber Full Employee Number Alpha 5
¥ o iiiEmployYears Years with the Company Packed 2
¥ o iiiMoteLength Length of Notes as Characters Packed 5

7. You need to make some modifications to your new fields in the Repository:

a. Right-click iiiTaxAmount field and choose the Open option from the
context menu:

/4 Undefined Virtuals ?
¥ & iiTaxAmount Income Tax to Deduct Packe
¥ & GiFullEmg Expand all F';Ipha,.‘i1
¥ b GiEmploy] |E| Collapse all Packe;‘:
¥ b iiiNoteler Packe,

H Add » ;

g Move Up :f

E Mowe Down }

T
!
x Remove field :E*

{ ~® iiTaxAmount - Incomne Tax to Deduct k| ES - Open ;:\',

% x Delete from Repository g

2 8 o ;

Quick Export £

% ~ CheckIn Mﬂ“""_.;

b. Make the Edit Mask A.

8. Save and close the field.

9. Open the iiiNoteLength field in the Editor.
a. Change the Edit Mask to be 2.

10. Close and save the field.

Note that there are warning messages for the new virtual fields indicating
they do not have a derivation logic.

Step 2. Calculation Virtual Field

In this step you will define the iiiTaxAmount virtual field to be calculated as
25% of the iiiSalary field:

1. Select the iiiTaxAmount field in the list of Undefined virtuals.
2. In the Details tab, enter the following:

Virtual field type Calculation

Derive value when record is read | ii Select option for yes

Factor Operation| Factor| Result
iiiSalary / 100 *WORKFLD
*WORKFLD | * 25 iiiTaxAmount

Your Details tab should now look like this:

Details
Field Mame liTaxAmount
Sequence 1 =
Virtual Field Type |Calculation -
Derive value when record is read

Factor | Op. | Factor | Result |
iiisalary ! +100 *WORKFLD
*WORKFLD * +25 OTAXAMOUNT

Note:

e (Calculation Virtual Fields can only be calculated when a record is read.

e They are Display-only Virtual fields.

3. Now that its derivation has been defined, the iiiTaxAmount field will be
listed under Read virtuals.

FJFs Before
4 ¥ Read Virtuals
kb diiTaxf&mount Income Tax to Deduct Packed] 2

Step 3. Concatenation Virtual Field

In this step you will concatenate the Department field iiiDeptCode with the
Employee Number field iiiEmployNumber to set the value of the Full Employee
Number field iiiFullEmployNumber.

1. Select the iiiFullEmployNumber field in the list of Undefined virtuals.
2. In the Details tab, enter the following:

Virtual field type Concatenation

Derive value when record is read Select box for yes
Populate real field when writing to the file NO

Field name iiiDeptCode iiiEmployNumber

Your Details tab should now look like this:

Details

Field Marne iiFullEmployMumber

Sequence 2 N
Virtual Field Type | Concatenation =

Derive When

Derive value when record is read

|| Populate real field when writing to the file

Derivation

Field Mame | Length | Description |
iiiDeptCode 4 Department Code
liEmployMumber - |5 Ernployee Mumber

3. The iiiFullEmployNumber field will now be listed under Read virtuals.

Step 4. Code Fragment Virtual Fields

In this step you will use a Code Fragment derivation to:
e Assign the length of the Notes field to the iiiNoteLength virtual field and

e To set the value of the iiiEmployYears fields to be the number of years the
employee has been with the company.

1. Select the iiiNoteLength field in the list of Undefined virtuals.
2. In the Details tab, enter the following:

Virtual field type Code Fragment

Derive value when record is Select for Yes
read

Virtual Field Derivation #iiiNoteLength :=

#iiiEmployNotes.CurChars
Replace iii with your initials.

Your Details tab should now look like this:

Details

(%]
IIIFILEMP -
Field name IIINOTLEM
Sequence 3 =
Wirtual Figld tvpe Zode Fragment -

| Derive value when record is read

Populate real figld when writing to the File

Wirtual Field Derivation

ooool #IIIHOTLEN: = #iiinotes. CuriChars ~
ooooz

Details

Field Mame iiitoteLength
Sequence 3 =

Virtual Field Type | Code fragment

Derive value when record is read

|| Populate real field when writing to the file

Yirtual Field Derivation
#iiiNotelLength := #iiiEmployNotes.curchars

The code fragment uses an RDMLX intrinsic method CurChars to determine
the number of characters in the iiiEmployNotes field and assigns the result to
the iiiNoteLength field.

3. The iiiNoteLength field will now be listed under the Read virtuals.

Next you will set the iiiEmployYears field to show how many years an
employee has worked for the company based on the Start Date field.

4. Select the iiiEmployYears field in the list of Undefined virtuals.
5. In the Details tab, enter the following:

Virtual field type | Code Fragment

Derive value Ui Select this option

when record is

read

Virtual Field #iiiEmployYears :=

Derivation #iiiStartDate.Date.Now.Difference(#iiiStartDate) /
365

(you can copy and paste this code from the online
guide Tutorials, substituting your initials for iii)

Your Details tab should now look like this:

Details

Field Mame WEmployYears

Sequence E)

Virtual Field Type | Code fragment o
7| Derive value when record is read

| Populate real field when writing ta the file

Dernvation

Virtual Field Derivation
$#iiiFmployYears := #iiistartdate.date.now.difference(#iiisStartdate.date} / |365

The code fragment uses RDMLX intrinsic methods Date and Difference to
compare the date portion of the iiiStartDate field with today's date and
divides the result by 365.

All your virtual fields are now listed under Read Virtuals.

FJFs Before
4 ¥ Read Virtuals
e diiTaxAmount Income Tax to Deduct Packed] 2

6. Compile the file and ensure the compilation ends without errors.

Step 5. Create Test Form

In this step you will create a form that will show the real fields and the virtual
fields in the Employee file.

1. Create a form.

a. Enter the following characteristics for the form:

Name iiiMaintEmployVirtuals (where iii=your initials)

Description Real and Virtual Fields in Employee File

RDMLX Enabled i Yes

2. Once the Editor has opened, make your form wider.

3. Display the iiiLIST tab and expand the iiiEmployees file to display the fields
it contains. Notice that the real fields and the virtual fields have different

icons:
I e I e
4 liEmployees Ernployee File

L iiiEmpByDept... Employees by Depart
iiEmployMu. Employee Number
iiisurnarme Surnarme
iiGivenMame Given Mame
iiiDeptCode Department Code
iiisalary Salary
iiistartDate Start Date
liiEmployMotes Employee Motes

tf diTaxAmount Income Taxto Deduc
. diFullEmploy.. Full Employee Numb
tr liEmployYears Years with the Compi
tt iiiMotelength Length of Motes as Cl

o, _ _
L. CR hmolastiotes ~-FloyeeMotes |]

4. Drag and drop all the real fields to your form. Select them as a group using
the Shift + Left Mouse button.

5. Drag all the virtual fields next to the real fields.

Income Tax to Deduct 123412
Full Employee Mumber ABCDEFGHI

Employee Number

Surname aAbBecCdDeEfFgGhHIlkKILm
Given Mame aAbBecCdDeEfFgGhHIlkKILm
. Department Code ABCD

Salary 12345678912

- Start Date 01/01/1900

aAbBcCdDeEfFgGhHIJKKILmMnMNoOpPgQ - .
rRsStTulhVwWidlyYzZaAbBcCdDeEfFgGhH [

: IJEKILmMnNoOpPqQrRsStTulhVwWukyVz| -

- Employee Notes ZahbBcCdDeEfFgGhHITIKKILmMnNoQpPy |~

: QrRsSETulhWwWikyYzZaAbBcCdDeEfFgGh
HiljJkKILmMnMNoQpPqQrRsStTulhVw Wiy
Y¥zZaAbBcCdDeEfFqGhHITkKILmMnNoOp

Years with the Company 12
Length of Notes as Characters

6. Display the Controls tab and drag and drop a push button to the form.

Controls

Common User Designed All Controls
Lanel
Text description
S |jst View
L1 1
SRR List View
|aa Multi-line Edit Box
2210 Multi-line Edit Box has more than one line of text

=

Fanel
‘e Container for other components

Progress Bar shows how an operation progresses

[Push Button
Performs an action
Radio Button

Radio Button shows mutually exclusive choices

. % Shortcut Key
L. Shortcut Key

Progress Bar

7. With the push button select, on the Details tab, make the Caption of the
button Fetch.

Details

PHEM_1 -
* %
Properties | Events | Methods
* Alignment Center -
? ButtonCancel False
S BUToRDerault Talse
(“'Captiu:un |Fetch |>
Lursor “NULL
* DisplayPaositio 12 3
* DragStyle Mone
" Ellipses Mone

8. Display the Events tab and double click on the Click event to create an Click
event routine for the button.

Details

PHEM_1 -
:-:: - ?
Properties Events Methods
| Click
ragorop
% DragOver
% EndDrag

% GotFocus
% Initialize

9. Display the Source tab of your form and add this code inside the event
routine for #PHBN_1.Click replacing III with your initials:

EVTROUTINE HANDLING(#PHBN_1.Click)
Fetch FIELDS(*all) from_file(iiiEmployees) with_key(#iiiEmploynumber)
ENDROUTINE

Your form is now ready to compile.

10. Compile and execute your form.

° Real and Virtual Fields in Employee File

Errolopes Nomber 0 Income Tax to Deduct 1.250.00
G B Full Emplayee Murmber abm 01
Pl [Y— 'ears with the Comparny 02
BonyeimenkGed ADM Length of Maotes as Characters 38
Salary a000.00
Start Date onzzomn |

Lorem ipzum dolor zit amet, consectetur -

adipizcing elit. Aenean quam lorem, aliguam in
eqestas a, luctus id elit. Mulla quis justa lea, a
Emplayes Motes carwvallis dui. In ac dui ante, venenatis aliquet
puruz. Mulla mattiz porta accumsan, Wivaniug
enim ipzum, ullamcorper at aliquam ut,
consectetur a diam. Suzpendisze omare mattis
mazsa vitae adipizcing. Sed sed neque enim,

m

a. Enter an Employee number and click Fetch.

b. Note how the virtual field values are based on the real field values.
11. Exit the form.
12. Close the form in the Editor.

Summary

Important Observations

e Virtual fields must be first be defined in the Repository. The virtual fields
can then be added to the file definition.

e (Calculation virtuals can only be defined as Derive value when record is read.
The other virtuals can use be defined as Derive value when record is read
and Populate real field when writing to the file.

e Virtual fields can have validation rules just like real fields.

Tips and Techniques
e The Multi-add fields feature can add both real and virtual fields.
e Virtual fields cannot be used as key fields.

e Triggers provide another option for defining virtual fields in a file when
more complex coding is required.

What I Should Know
e What are the different types of virtual fields.
e How to add virtual fields to a file.

REPO009 - Access Routes and Predetermined Join Fields

LANSA uses access routes to describe relationships between files in a
database. Access routes are simply descriptions which answer
questions such as "How do I access the associated records in file B,
given that I have a record from file A?" They have no physical impact
on the database.

A predetermined join field (PJF) is a special kind of virtual field
based on access routes whose value is determined by a field in another
file. (Ordinary virtual fields are always based on fields within its own
file definition.)

Objectives:

To create an access route to define the relationships between the Department
and Employee files

To show how to create and maintain predetermined join fields (PJFs).

To add a calculated predetermined join field to the Department File based on
the fields in the Employee file.

To add a file lookup Predetermined Join Field to the Employee File based on
the fields in the Department file.

To achieve these objectives, you will complete the following:
Step 1. Understand the Database Relationship
Step 2. Create Access Route from Department File

Step 3. Create Access Route from Employee File
Step 4. Create Fields in the LANSA Repository
Step 5. Add File Lookup PJF to Employee File
Step 6. Test New PJF in Employee File

Step 7. Add PJFs to Department File

Step 8. Modify Test Form

Summary

Before you Begin

In order to complete this tutorial, you must have completed the previous
tutorials.

Step 1. Understand the Database Relationship

Before creating an access route, you need to understand the relationship
between the Department (iiiDepartments) and the Employee (iiiEmployees)
files that you have already created. The company structure is a hierarchy of
departments and employees:

Departments| ADM| LGL| TRN| TRV

Employees| 01,02 03| 04

Departments have employees. An employee cannot exist without the
department. Stated another way, the department is the parent or owner of its
employees.

Relationships work in both directions. From the perspective of the Employee
file, it is the child of the Department. An employee belongs to just one
Department.

Step 2. Create Access Route from Department File

In this step you will create an access route from the Department file to the
Employee file to describe the file relationship.

1. Open file iiiDepartments in the Editor.
2. Select the Access Routes tab.

3. Click the Add button on the Home ribbon and select Add Access Route from
the menu.

Note: The ribbon is context sensitive. Add Access Route is the only valid
option at this point.

4. In the Details tab, enter the following characteristics:
Access route name iiiTOEMP (where iii=your initials)
Description To Employee File
Accessed file iiiEmpByDeptView ***

Maximum records More than one

Keep last
Default action Ignore and continue processing (IGNORE)

Derivation: After virtual fields

*** Use the ellipsis button and Find dialog to select the logical file.
Your Details tab will look like this:

Details

Access Route Mame |]]1TOEMP

|
Description |To Employees File |
Accessed File liiEmpByDeptView |
Association Type Derive from Maximum Records and Default Action = |
Association Rule |Deri1.re From Default Action T |

Documentation Only [

Maximum Records |M|:|re than one b |
Default Action IIgnu:ure and continue processing (IGNORE) T |
Keep Last | = |
Derivation |A1"ter virtual fields b4 |

5. Use the Add button on the Home ribbon, to select Add Key. Use the ellipsis
button and then the Find dialog to select the key field from the Department
File, iiiDeptCode

il Repository + - Outline | == Details Favorites | g Ge* *
T PP PP PP PP TT x|
@ FieldValue inDeptCode)
Description Department Code 1l
Type Alphanumeric
Length 3
Decimals
Key Position 1 -
Name MDEPTCO
Description Departrment Code
Type Alphanurneri
Length 3
Decimals
e e o e

Note: The Target Key has been recognized and selected in the Department
file.

6. Your Access Route definition should now look like the following.

]
Fields in File | Logical Views | Rules and Triggers | Access Routes Batch Control | File Attributes | Relati;

4 = ITOEMP - To Employees File
File accessed - iiiEmpByDeptView - Employees by Department Code
Aszzociation Type - Derive from Maximum Records and Default Action
Association Rule - Derive From Default Action
Access Route is Actionable
More than 1
Default action - Ignore and continue processing (IGMNORE)
Keep last 0 records
4 5 Keys
B MDEPTCODE Department Code
it PIFs derived after virtual fields

e e Wi Vo WL LN L N

|
g
|

"

7. Save and close the file.

Step 3. Create Access Route from Employee File

In this step you will create an access route from the Employee file to the
Department file to describe the file relationship.

1. Open file iiiEmployees in the Editor.
2. Select the Access Routes tab. Ensure that the Details tab is visible.

3. Use the Add button on the Home ribbon, to select Add Access Route from the
menu.

4. In the Details tab, enter the following characteristics:

Access route name HiTODEPT

Description To Department File

Accessed file iiiDepartments

Maximum records One

Keep last
Default action Abort and issue an error message (ABORT)
Derivation: After virtual fields

5. Click on Keys / New and use the ellipsis button and Find dialog to select the
Key Field/Value to lookup a Department as,iiiDeptCode.

6. Your Access Route definition should look like the following:.

Details Fields in File | Logical Views Rules and Triggers Access Routes Batch Control | File Attributes Rtlutionshlp£
Key Field/Value iiDeptCode 1
i 4 & MTODEPT - To department File {
[Description Ermet File accessed - iiiDepartments - Department Table C
Type T Association Type - Derive from Maximum Records and Default Action 2
Length Association Rule - Derive From Default Action g
5 Access Route is Actionable i
Pecimals Mummber of records - 1
Key Position 1 = Default action - Ignore and continue processing (IGNORE)
-yl ¢
- 4 £ Keys ¥
Mame ® iiDeptCode Department Code IP
Description Departr t e PIFs derived after virtual fields 3
ype H
3
Length }
IDecimals)
>

3

7. Save and close the file.

Step 4. Create Fields in the LANSA Repository

In order to add a Predetermined Join Field to a file definition, the field has to
first be defined in the Repository. In this step you will create two field
definitions which you will use when creating your Predetermined Join Fields.

1. Create two fields called iiiTotalSalaryPJF and iiiDeptDescPJF. The
iiiTotalSalaryPJF field will contain the total value based on the iiiSalary field.
The iiiDeptDescPJF field will hold the Department Description based on the
iiiDeptDescription field.

2. In the most efficient means possible, create the following fields with the
basic characteristics listed below. (Reminder: iii=your initials.)

Field name: |1iiDeptDescPJF

Description: | Department Description

Type: Alpha
Length: 20

Field name: |1iiTotalSalaryPJF

Description: | Total Salaries

Type: Packed

Length: 1

Decimals: |2

Edit mask: |A

Step 5. Add File Lookup PJF to Employee File

In this step you will add a PJF for the Department Description field from the
iiiDepartments Department file to the iiiEmployees Employee file. By defining
a PJF (Predetermined Join Field) in the file, you can access the Department
Description each time the Employee file is accessed without writing extra code
to access the Department file. This field will appear as if it is simply part of the
Employee file, and will be retrieved by the OAM.

1. Open file iiiEmployees in the Editor.

2. Ensure that the Fields in File tab is visible. Notice that no PJFs have been
defined.

3. Select the Access Routes tab to add your new predetermined join fields.

4. Select the IITODEPT access route. Use the Add button on the Home
ribbon, and select Add PJF from the menu.

% 3
.

- &P |J

_ PR

i

i

Add Access Route Er’

ﬁgs Eili ey File Attril::lute{
Add PIF ;
'_"\.—..--—.r'_r

5. Complete the Details tab, by enter the following characteristics:

PJF field iiiDeptDescPJF
PJF Type Lookup

Source field iiiDeptDescription

Use the ellipsis button and Find dialog to select each field.

Your Details tab will now look like this:

|« Outline | = Details Fovorites | g GoTo | g Featurc ® _*

e T S S A Bl x
PJF Type Loakup -
PJF Field inDeptDescPIF =
Description Departrnent Description

Type Alphanurneric

Length 20

Decimal Places

Target Field

Source Field iiiDeptDescription -
Description Departrnent Description

Type Alphanurmeric

Length 4]

Decimal Places

g T et i e e

The value of the iiiDeptDescription from the Department file will now be
retrieved and returned to a LANSA program as the field iiiDeptDescPJF in
the Employee file.

Note: Predetermined Join Fields are display only fields.

Your access route should now appear like this:

Fields in File = Logical Views | Rules and Triggers = Access Routes | Batch Control = File Attributes = Relationships | Cross References | Virtual Derivatio ;

' IITODEFT - To Department File
File accessed - iiiDepartments - Department Table
Associstion Type - Derive from Maxnmum Records and Default Action
Association Rule - Derive From Default Action
Access Route is Actionable
MNumber of records - 1
Default action - Abort and issue an emror message (ABORT)
Keep last 0 records

4 & Keys
® MDEPTCODE Department Code
4 b PIFs derrved after virtual fields
ke iiiDeptDescPIF Department Description LOOKUP fiel

6. Select the Fields in File tab. Your field list should now appear like this:

Fields in File Logical Views | Rules and Triggers | Access Routes Batch Control | File Attributes | Relationships | Cross References 1|".F
|| Field Name Description Ref. Field Type Length | Decimals | 3
|+ proaey e |

mEmployMumber Employee ID Alpha 2 5‘

4 Real Fields H

EmpleyMumber Employee 1D Alpha 2 ‘}

® jiSurname Sumame I_MNAME Alpha 25 j

W iiGivenMame Given Mame m MAME Alpha 25 T}

™ iiiDeptCode Department Code Alpha 3 F

+® iiisalary Menthly Salary Packed 11 2 i

¥ [® iiiStartDate Start Date DateTime 26);

I ® imEmployMotes Employee Motes String 512 ‘15

PIFs Before 3

4 Read Virtuals €
© e inTaxdmount Income Tax to Deduct Packed 11 2 I}

e iFullEmployMumber Full Employes Number Alpha 9 P

* & EmployYears Years with the Company Packed 2]

' bk iiiNoteLength Length of Motes as Characters Packed 5 I

4 PJFs After i
* &b iiiDeptDescPIF Departrnent Description Alpha 20 i
Write Virtuals 5
Inactive Virtuals j
Undefined Virtuals .

7. Select the Select View Style button and change the display to Fields List
View to get a different overview of your file:

“-XeWsaall b M%’

UEsic Fields Tree
ds in File Logical Views Rules and Triggers = Access Routes BI"IJ Feelds List Yiew 1]
Bl S . e L ————

Your Fields in File tab will now look like this:

Fields in File Logical Views = Rules and Triggers | Access Routes Batch Contral File Attributes | Relationships = Cross References W * "bﬁl
Feal fields

Field Mame Seq, Key Description Ref. field Type Length Decs |
nEmployMu... 1 1 Employee ID Alpha 2

R iiisurname 2 Surname I_MAME Alpha 25

B jiiGivenMName 3 Given Name _MAME Alpha 25

IR jiiDeptCode 4 Department Code Alpha 3

R jiisalary 5 Monthly Salary Packed 11 2

¥ [® uiStartDate 6 Start Date DateTime 26

R GiiEmployNo.. 7 Employee Notes String 512

il

Field Name | Se.. - | Description |Ref.field | Type | Length Decs Derive When
| ke niTaxAmount 1 Income Tax to Deduct Packed 6 2 Read

ke iiFullEmploy.. 2 Full Employee Number Alpha 9 Read

k& iEmployYears 3 Years with the Company Packed 2 Read

ik niNotelength 4 Length of Motes as Characters Packed 5 Read

| Predetermined Join Fields

|| Field Mame | Description Ref. field . Type Length Decs | Source Field
bk iiDeptDescPIF Department Description Alpha 20 iiDeptDe

8. Click the iiiDeptDescPJF field. Notice that it is possible to edit the PJF
definition from the Fields in File tab.

9. Compile the file and close it.

Step 6. Test New PJF in Employee File

In this step you will add the predetermined join field Department description to
iiiMaintEmploy Virtuals (Real and Virtual Fields in Employee File).

1. Using the iiiLIST tab, locate and open the form iiiMaintEmploy Virtuals.

a. Display the Design tab.

b. In the iiiLIST tab locate the iiiDeptDescPJF (Department Description)

field.
|Z| Common Controls = Last Opened || iiList
Item Description |
® I _MAME Standard MAME =

= iiBasicWinContr... Basic windows Centrols
inDepartments Departrnent Table

B ilidepdsc Departrment Description PJF
L2 iniDeptByDesc Departments by Description
® iiDeptCode Department Code

B liiiDeptDescPIF Departrment Description

B iiiDeptDescription Department Description
Lol ilEmpByDeptView Employees by Department Code
L4 iEmpHolByCode Empleyee Holidays By Code
e e i o . i

c. Drag the iiiDEPPJF field onto the form above the virtual fields. You may
need to move the existing virtual fields lower.

Hint: Select the four virtual fields using the Shft+Left mouse button, and
drag them lower with the Ctrl+Cursor key.

- Employee D 4B s
Deskails T
- Given Narme albBeCdDeEIFgGhHIEILm &0t ii i Full Emploses Musnber ABCDEFGH Teiiia
EEIJ:p:utmentEnde ABC Z'Z.EZZZ i '\"m-mlhl:heCmpmylZ
; - Morthly Satary 123,456, 798.12 A Fesbis -+ Length of Motes as Characters 12,345 s
- Start Date CLAOLAD 'misiesne i e e e e s PR e T

ahbBcCdDeEFqGhHIKEILMMANOOpPgE «] 00

rRs'SJlTuUfb\thly’\‘:ZmihEchDeFngEhH B

IEEILmPMnNoOpPOrRsS TulhWwWaiyYz =1))

TaAbEcCdDeEfFgGhHITKKILmMnNoOpPg

QrRsSt TulhWwWallyYzZ sAbBoCdDeEfFgiGh

HiSiRKIL miMinMoOpP qRsSt TulhWwiWily e R

. NzZaAbBeCADeEFGhHIKKLMMnNoOD LTl & va e et stz

110U Department Description. - ABCDEFGHUKLMNOPQRST i

Note: You will not need to change the source code, because the FETCH
statement uses the Fields(*all) parameter.

2.Compile the form.

3.Execute the form.

M Real and Virtual Fields in Employee File

Employes Mumber
Department Code
Surname

Given Mame

td onthly S alany
Start Date

Mates

Et harumd dereud faciliz est er expedit distinct, Mam
liber a ternpor cum soluta nobiz eligend optio
comaue hihil quod a impedit anim id quod maxim
placeat facer pozsim omnis es voluptas assumenda
est, amnis dolor repellend.

“r'ears with Compary

ADM Department Description Adrniniztration | |
Browin | Income tax to deduct 1.250.00
Weronica | Full Employes Mumber ADMO
5.000.00 3 Mote Length 223
1/03/1989 v/

e

Employes 10
Sumame

Giver Mame
Depatment Code
Moarithls 5alay
Stat Date

Employes Nobes

Department Descnption

o1

Admmistrabon

D

Green
Ji

A
230000

anzemz [«

idshakjzdhakjhakjhdeapdkajshdkjdhkadhkdhakdh
akjsdhkajshdak hdakidha

a. Fetch the details for an employee.

b. You will see the Department description such as Administration retrieved

Income Taxlo Deduct
Full Employee Number
‘Fears with the Camparny oo
Length of Motes az Characters

into the Department PJF field from the Department file.

4. Exit the form.

5. Close the form in the Editor.

575.00
ADMOT

il

Step 7. Add PJFs to Department File

In this step you will add a calculation type virtual field to the Department file
based on the salary data in the Employee file.

1. Open the Department file iiiDepartments in the Editor.

2. Ensure that the Fields in File tab and the Details tab are visible. Notice that
no PJFs have been defined.

3. Select the Access Routes tab to add your new predetermined join fields.

4. Select the iiiTOEMP access route. Click the Add button on the Home ribbon
and select Add PJF from the drop down list.

5. In the Details tab, enter the following characteristics:
PJF field iiiTotalSalaryPJF
PJF Type Total

Source field iliSalary

Use the ellipsis and Find dialog to select the fields.

Your Details tab will now look like this:

| il Repository Cutline 2= Details Favor
- : 2 x

==,

PJF Type Lookup o
PJF Field niDeptDescPIF

| Description

Type Iphanusmer

Length

Decimal Places

Source Field niDeptDescription

Description

Type Iphanurmer

Length

Decimal Places

mmnn\w

6. Compile the file.
7. Close the file in the editor.

Step 8. Modify Test Form

In this step you will modify your existing Search by Department Description

form to include the predetermined join field Total Salaries. This field will show
the total salaries per department.

1. Using iiiLIST tab, locate and open form iiiSearchDeptByDesc.
2. Drag the field iiiTotalSalaryPJF to the form.

3. Switch to the Source tab and modify the FETCH command to either include
iiiTotalSalaryPJF or change the Fields() parameter to *ALL.

Fetch Fields(*ALL) From_File(IIIDEPARTMENTS) With_Key(#IIIDEPT)
4. Compile your form. Check that the compile completed successfully.
5. Execute your form.

a. Fetch the Administration department (depending on what changes you
made to the form in the tutorial REP0O06 - Logical Views, you may need to
fetch the department either by the description or the code).

' Search by Department Description =NEN X

Department Code A0k

Department Dezcription Adminiztration

@al Salariez 6.203.00)

[Find Department Code!]

LS &

Notice the value for the predetermined joined field Total Salaries. It
shows the combined monthly salaries of all employees in the Employee
file for the department you retrieved.

6. Exit the form.
7. Close the form in the Editor.

Summary

Important Observations

Your file OAM needs to be recompiled once access routes are added.

The type of PJF that can be created is based on the definition of the access
route. If the relationship is one to one, only a lookup can be created. If the
relationship is one to many, calculation type PJFs can be added.

PJFs are listed in the Field in File tab and can be edited from this tab but
they cannot be added. You need to add a PJF by first selecting an access
route on which the PJF will be based.

In addition to defining PJFs, access routes are used in LANSA templates to
show related files and in LANSA Client to show linked or joined files.

Tips and Techniques

The Keep last parameter is used to improve performance. It specifies the
number of retrieved PJF values to be kept in memory. This value applies to
PJFs defined on the access route when the relationship is one to one.

Be very careful with excessive use of PJFs. There are performance
implications of overusing PJFs.

You can also use trigger functions to perform the same type of calculations
or lookup operations that are performed by a PJF.

What I Should Know

What an access route is.

How an access route is defined.

Where access routes are used.

Where else in LANSA access routes are used.

What a Predetermined Join Field is.

What operations can be performed by a PJF.

How to add and maintain PJF definitions.

What the relationship between PJF and access routes is.

REPO011 - Repository Summary

Objectives

e To use the knowledge you have acquired in the previous tutorials to create
LANSA fields and a file with validation rules, virtual fields, PJFs and a
logical view.

The file you will create will be called Employee Holidays iiiEmpHolidays
(where iii=your initials) with the following fields:

iiiEmployNumber Existing employee number field

iiiHolCode Holiday Code

iiiHolStartDate ~ Holiday Start Date Showtime =
False

iiiHolEndDate Holiday End Date Showtime =
False

iiiHolComments Holiday Comments Allow lower
case

iliHolDuration Holiday Duration (virtual field) Edit Mask = 2

iiliSurnamePJF Employee Surname (PJF from the

employee file)

e To create an application to maintain the file and another application to use
the logical view to search the file.

To achieve these objectives, you will complete the following:

Step 1. Create the File Definition

Step 2. Modify Field Definitions

Step 3. Add Rules to the File

Step 4. Create and Execute a Test Form

Step 5. Add a Virtual Field to Your File

Step 6. Create an Access Route and a Predetermined Join Field (PJF)
Step 7. Recreate Employee Holidays Application

Step 8. Create a Logical View and Test
Summary

Some Helpful Tips

¢ If you need additional help completing any of the steps, refer back to the
exercises in the appropriate lessons.

e Remember to use the online Help and the LANSA documentation.

Step 1. Create the File Definition

In this step you will create an employee holiday file which will contain the
details of the employees' holidays.

1. Create a file called iiiEmpHolidays, Employee Holidays. Make it RDMLX
enabled.

2. Using the Multi-Add Fields option in the file, add these real fields to the file:
Don't forget to define the key fields.
iiiEmpHolidays =~ Employee Holiday File Type Length Key
iiiEmployNumber Employee number Alpha 2 1
iiiHolCode Holiday Code Alpha 3 2
iiiHolStartDate ~ Holiday Start Date DateTime 26
iiiHolEndDate Holiday End Date DateTime 26

iiiHolComments Holiday Comments String 512

Step 2. Modify Field Definitions
In this step:

1. Change the Holiday Start Date and Holiday End Date fields to only show the
date, not the time.

2. Change the Holiday Comments to be visualized by default as a multiline edit
box, and to allow lower case

Step 3. Add Rules to the File
In this step add rules to the Holidays file:

1. To ensure that the employee number in the Holidays file exists in the
Employee file.

2. To ensure the holiday code can be either '"ANL' (Annual Leave) or ' OWN'
(Leave without Pay).

Check your validation rules using the Simple Rules List in the Rules and
Triggers tab.

Remember to compile your file and check your compile settings

Step 4. Create and Execute a Test Form

In this step create a form to maintain the holiday file.

1.Switch to your Employee Holiday file in the editor and select the File
Attributes tab. Note the Identifier for the file, for example IIEMPHOLI. This
must be used as the file name in the template.

Fields in File = Logical Views | Rules and Triggers = Access Routes | Batch Control | File Attri

4 File Settings ?

Mame iiEmpHolidays E

Cidentifier MEMPHOLI]

File Type LAMSA file [

File Library D13TRMLIE E
Record Format Mame MEMPHOLI

I/0 Module Library Same library as file (F) F

File Uses 5L On IBM i Ma E

Alt. Collating Table 3

Enabled For ROMLX Yes ?

MM&W“WWM)

2. Create a form iiiMaintEmpHols Employee Holidays.

3. Use the VL_BASEMNT template to create a maintenance application for the
iiiEmpHolidays file.

4. When running the template:
a.Choose FF layout.
b.Response to "Supply a word" must be a single word, with no spaces.
c.Include all the fields in the file.

5. Compile and execute the form. Make sure you are executing it locally.

6. Enter holiday information for employees 01, 02 and 03.

7. Test what happens when you try to insert information for employees that do
not exist in the Employee file.

8. Try to use a holiday code other than ANL or OWN.

B Maintain employee Holidays IEI@M
Emploves Mumber m

Haoliday Code AML

Holiday Start Date 01/09/2012 I+

Holiday End date 15/09/2012 =

Mam trigtique libero quiz justo accumzan eget mollis
feliz dapibus. Morbi ultrices zemper molliz. Cum
zociiz natoque penatibuz et magnis dis parturient
Hilidag Camments mantes, nascetur ridi_u:ulus MLz, .ﬁ.n_anean dapibuz
feliz vel turpiz molestie nec molestie nibk sodales.
Diomec: tortor nisl, pulvinar it amet tncidunt ormare)

Step 5. Add a Virtual Field to Your File

In this step create a field Holiday Duration iiiHolDuration which will be used as
a virtual field in the Holiday file.

Field Name Field Description Type Length Virtual
iiiHolDuration Holiday Duration (virtual field) Alpha 40 Yes

1. Create the virtual field derivation in your file. It will show the holiday dates
like this:

Huoliday Cruration 19th MARCH 2008 - 17th JAMUARY 13

2. Make it a Code Fragment derivation. It needs to be derived when the record
is read.
Copy this code from the online guide Tutorials to create the field derivation:

#iiiHolDuration := #iiiHolStartDate. AsDisplayString(
DDXXbMMMMMMMMMbLCCYY) +' - '+

#iiiHolEndDate.AsDisplayString(DDXXbMMMMMMMMMbCCYY)

Note: Changing your font to a small size such as 8pt (see Options / Font)
will make editing the above code much easier.

Step 6. Create an Access Route and a Predetermined Join Field
(PJF)

In this step create an access route from the Employee Holidays file to the
Employee File. The number of records is 1.

1. Create a field for the employee surname to be used as a PJF as follows.

Field Name Field Description Type Length
iiiSurnamePJF Employee Surname Alpha 25 Allow LC

2.Define an Access Route to the Employee file, with a key of iiiEmployNumber.

3. Define the Predetermined Join Field to retrieve iiiSurnamePJF from the
employee surname (iiiSurname) in the Employee file. This is a lookup PJF.

Remember to compile your file.

Step 7. Recreate Employee Holidays Application

In this step recreate the Employee Holidays application again to include the
virtual field and the predetermined join field.

1. Open iiiMaintEmpHols and display the Source tab.
2. Delete all the code in the Source tab.
3. Run the template VL_BASEMNT and include all the fields.

4. Make sure the Holiday Duration and the Employee Surname fields are not
hidden behind the Holiday Comments field on the form.

5. Compile and execute your form.

6. Fetch holiday details for an employee and holiday code.

= O

B ° Maintain employee Holidays

Hobday Comments

Haoliday Duration

Surmiames

[Eetch

Employes 1D o

Holday Code AML

Hobday Start Date nzfz2szma |:
Holday End date 2BM2/20m2 j

Chnstmas Hobday

Zid Decembes 2012 - 28th Decembes 2092

Gresn

Inserl | Update | Delete

Note the Holiday Duration and Employee Surname fields.

Step 8. Create a Logical View and Test

In this step first create a logical view of the Employee Holidays file keyed by
the Holiday Code:

1. Create a logical view called iiiEmpHolByCode and key it by the iiiHolCode
field.

2. Compile the file. Use Verify / Compile to check you are using the required
compile options.

Create a form to test the logical view:
3. Create form iiiIEngEmpHols with the description Holidays by Holiday Code:

a. Display the Common Controls tab and drag a Push button and a List
view to your form.

b. Change the button Caption to Fetch.

c. Select the Events tab and double click on the Click event to create an
event routine for the push button.

d. Display the iiiLIST tab, expand the file iiiEmpHolidays and drag the
iiiHolCode (Holiday Code) to the top of the form.

e. Drag the Employee Number (iiiEmployNumber), Surname
(iiiSurnamePJF) and the Holiday Duration (iiiHolDuration) into the list
view. You will probably need to widen the list view and the columns
which will have been created for the fields.

f. Display the Source tab and complete the push button Click event routine.
e Clear the list view.
e Select entries from the logical file in holiday code order.
e Retrieve each entry with the key Holiday Code.
¢ Add an entry to the list view.
e End the Select loop.
New code is shown in red.

Evtroutine Handling(#PHBN_1.Click)

Clr_list #LTVW_1Select Fields(*ALL) From_File(iiiEmpHolByCode)
With_Key(#iiiHolCode)

Add_Entry To_List(#LTVW_1)

Endselect

Endroutine

Replace the file and field name with your own holiday file name and
holiday code name.

g. Compile and execute the form.

h. Enter a holiday code and press the button to fetch the records with
matching code:

i ° Employee Holidays By Code IR X
Haoliday Code AML
Emploves Mu... Surmame Haliday Duration
m Brown Tzt September 2012 - 15th September 2.
0z Brown Ath August 20012 - 19tk August 2012

i. Replace the Holiday Code field on the form with the Employee Number
field.

j. Switch to the Source tab and change the Select statement to:
Select Fields(*ALL) From_file(iiiEmpHolidays)
With_key(#iiiEmployNumber)

The application will now retrieve records from the Holiday file based on
the employee number:

B ' Employee Holidays By Employee

Emploves Mumber m

Emploves Mu... Surmame Haliday Duration

m Brown 1zt September 2012 - 15th September 2012
m Brown Vthbay 2012 - 14th May 2012

k. Close the form.

Summary

Tips and Techniques

e LANSA provides a logical modeling tool that can help you to quickly build
new databases or extend existing databases.

What I Should Know

e How to use the features in the LANSA Repository to create an application
database.

REP012 - Check In Objects (Optional)

Objective:
e To learn how to check in objects to the LANSA Master Repository.

In order to complete this exercise:

e You must have completed the previous exercises.

¢ You must have a properly installed and configured Visual LANSA Slave

System with a working connection to the LANSA Master System (a System i
is assumed in this exercise). If you are working on an Independent LANSA
system you cannot do this exercise.

You need to be a licensed Visual LANSA developer and you need the proper
LANSA licenses installed that allow both server and Visual LANSA
development. You cannot complete this exercise if you are using a trial
(unlicensed) version of Visual LANSA.

In this tutorial you will check into the master system the Department
Maintenance application you created in the previous tutorials.

To achieve these objectives you will complete the following:

Step 1. Confirm Connection to LANSA Master System (Optional)
Step 2. Check in the Department File and Fields

Step 3. Verify Objects Exist on the Server

Step 4. Execute Your Application Client Server

Summary

Before You Begin

You may wish to review the following topics:
In the Visual LANSA User Guide:

Check In Tab

Check Out Tab

Propagation Tab

In the Visual LANSA Administrator Guide
Host Monitor.

its:lansa012.CHM::/LANSA/l4wusr01_1815.HTM
its:lansa012.CHM::/LANSA/l4wusr01_1820.HTM
its:lansa012.CHM::/LANSA/l4wusr01_1825.HTM
its:lansa011.chm::/Lansa/l4wADM03_0135.htm

Step 1. Confirm Connection to LANSA Master System (Optional)

You can only perform this step if you can access your LANSA master system on
the iSeries.

In this step you will check the contents of your LANSA master system and
confirm that your master system profile and task ID are valid by connecting to
the master.

1. Logon to your LANSA master system using Client Access or any available
5250 emulator. Use your developer profile and task ID to confirm that the
profile and task ID are valid for development on the master. Logon to the
LANSA partition where you will check in your changes. For example:

90. Sign off

Selection or command
> EHNSH PARTITION (TRN) Dewveloper (R)

Note: Use the partition name assigned for training.
2. From the LANSA Main System Menu, select the option to Work with Files.

Use the Position to field, to list files beginning with your initials. At this
point your files are not defined in LANSA for iSeries. Your list of files will
look something like the following:

File Library Description
LWUZFRMOS D1i3TRNLIB L4Web Frameworks - Proc/Func X-Ref
PSLEVENT D13TRNLIB ersonnel Event Log
PSLIMG D13TRNLIB el Images
D13TRHNLIB ne

o -

D1I3TRNLIB |

D1IZTRNLIB sonnel time sheets
D13TRHNLIB Se ion code table
D13TRNLIB Skill code table

R T R
M 3O AN ON

N A

o
- o

Command :

3. Exit the LANSA master system.

Step 2. Check in the Department File and Fields

In this step you will check in your Department File (iiiDepartments) and its
fields. When you check in a file you should always consider whether there are
any fields or system variables which it depends on, which need to be checked in
at the same time.

1. Display your dynamic list iiiList on the Favorites tab. It contains all fields,
files and forms beginning with your initials iii.

2. Select the file iiiDepartments and right click to display the context menu.

3. Choose the check In option

Itemn ! Description i h E
" IM_MAME Standard NAME = i
iiiDepartment al : — {.

* L) iiiDeptByDese Bjpen {
© L™ iiDeptCode L. Compile E
© ™ iiDeptDescPl 8
© ™ jiiDeptDescri K Delete from Repository L
* L) iiEmpByDepd] }
> B iiEmpHoleyd | P I
: iiEmpHelida; @ Quick Export g
liEmployees F Checkln 1

B iEmployMet - T g

© U diiEmployMur £
wﬂ%ﬁ—“”\%n WME

4. In the Check In dialog, expand the Files node and select the file
liiDepartments.

X (&)

4 "4 Files (1)

| iiiDep... Department Ta...

File check in options

¥/|Compile file |

W
)
)

Cormpile only if necessary

Rebuild table
Rebuild indexes and views
Rebuild CAMs

Strip debug information

/| Delete 55 file

Produce source listing
Ignore Decirmal Data Error

["| Keep Locks

5. Click on the Cross References button

used by this file.

=

on the toolbar to include the fields

The Local Cross References dialog is displayed. This shows all objects

referenced by file iiiDepartments and its dependents.

The file must be compiled locally to generate the Local Cross Reference

information.

3 Local Cross References

Mame | Allow check-in| Qualifier |
= |ﬂi_[;f_epartments Department Table e D13TRMLUEB |
i B BLANKS Blank / blanks variable
[! *ZERC Zero (07 variable
o @@UPID Field update / access identifier
B iiDeptCode Department Code &
o @ iiDeptDescription Department Description &
B iiiEmployees Ermployee File & D13TRMLIE
Close

You do not need to check in system variables and standard fields which will

already be defined in the master repository.

Notice that the Allow Check-in column highlights the objects which could be
checked in.

6. Select the fields iiiDeptDescription, iiiDeptCode and iiiTotalSalaryPJF.

7. Click on the Add for check in button ' to add these fields to the check in.

The Check In Options dialog now shows all the selected objects. Note that
the check in options available depend on the type of objects being checked in.

§ CheckinOptions S TR RS e
| | File check in options |
4 Files (1) V| Compile file
iiilep.. Department Ta... Compile only if necessary
e ehest LG 7| Rebuild table
® iiiDept... Department Co.. ¥| Rebuild indexes and views

® jiiDept... Departrment De.. 7 Rebuild OAMs

Strip debug information
¥ Delete 55 file

Produce source listing

Ignore Decirmal Data Error

["| Keep Locks

In this case you are checking a new file to the master repository. The
Compile File option shown, will build table, indexes and OAM for the new
file.

When checking in a changed file you should select the appropriate rebuild
options.

Delete $$ file is required when rebuilding a file, so that LANSA can rename
the existing file and map data from old file to new.

Depending on the user id and task tracking settings in your system, a Keep
Locks option may appear on the bottom left of this dialog. Selecting this option
ensures that any new or modified objects checked into the master will remain
locked to the Task ID you are using. For further information, refer to Unlock
Objects in Task Tracking in the Administrator's Guide.

8. Press OK to start the check-in.
The Check In tab shows the progress of the check in.

L

| H Job Status | Description | Results Currently Processing Started Ended P
:ﬂ [|Completed Check in 3 objects 0 fatal errors - 0 warnings EARTHI3GA - RDML Com... 11/12/2012... 11/12/2012... i

- R
L™ E,
2. Compile | “§ CheckIn !Ti Check Out | § Propagation | i Help | & Web Designs | %1
Ready LANSA13 TRN jf

9. Wait for the check in to complete and verify no errors occurred.

k3 jﬂ' lob Status | Description | Results | Curren?
= ‘ |Completed Check in 3 ohjects 0 fatal errors - 0 warnings EART
x 4 (Objects
74 ~® iDeptCode Department Code

- ® iiDeptDescription Department Description
| iiiDepartments Department Table

n.-f‘\.r"uu_.—-u"\,..u...m.u“;r\ﬂ i

i T e T i N e R L NP

10.Notice that with your check in selected in the Check In tab, you can click the
View Detailed Messages for this job icon # to see a more detailed log.

Tirne

Completed

Completed

Completed
2012-12-11 16:18:06 Copying Package to /LANSA_dl3pgmlib/x_lansa’s_hmingst
2012-12-11 16:1806 Request to install Application Package 'ATS00111 00000003 sent to the Hos...
2012-12-11 16:18:06 Request to compile File 'D13TRMNLIETIDEPARTM' sent to the Host Repasit...
12-12-11 16:19:403 Job TEI05T/INVORYL3U0000003 submitted to job queue JBATCH in library...
2012-12-11 16:19:03 Unit of work LOOCO003/ATS00111 has started processing object ATBOOLLLY ...
2012-12-11 1619403 The jab attributes changed to JOTHPRIKWHN
2002-12-11 16:15:03 Error detected when attempting to Open or Write to or Read from file /LA...
2012-12-11 16:19:03 Installation of Package - DOOD0003 - Started
2012-12-11 16:19403 Copy of file IIDEPARTM. chd was swccessful
2012-12-11 16:19:03 Copy of file iiidepartm.ctd was successful
212-12-11 161903 Installation of Package - DOOOD003 - ended successfully
2012-12-11 16:19:03 Library st changed,
2012-12-11 16:19:03 The job attributes changed to JINORY13
2012-12-11 16:19403 Unit of work UO0CO003/ATB00111 has started processing object HIDEPART..,
2012-12-11 16:19:05 Object MIDEPARTM in library DEITRMLIE not found.
012-12-11 16:19405 File SQOLTMP created n library QTEMP,
2012-12-11 16:19:05 Mernber SQLTMP added to file SQLTMP in QTEMP.
212-12-11 16:19:405 Obpect SQLTMP in QTEMP type "FILE deleted.
2012-12-11 16:19:405 FILE definiticn MDEPARTM frorm DLITRMLIB has now been unlocked
2012-12-11 16:19:05 Create or re-creste of file IDEPARTM from
2012-12-11 Compile transactions fior rerncte systern monitor job 000000003 have com..

11.Notice that with any of the log detail lines beginning “* #%. you can click

the Show IBM i joblog icon “L to show the joblog from the server.

®, QPJOBLOG - 184412/JIVORY 1200000253

E Find [| i 84 A ol Page
5761551 WVeR1HO 080215 Job Log
Job name o 0000253 T=er JIVORY12
Job description QBATCH Librarv QGFL
MSGID TYFPE SEV DATE TIHE FROM PGH LIERA
CPF1124 Information an 01-06-11 16:51:25.418629 QWTPIIFF QsYS
Mes=zage Job 184412-JIVORY12-00000253
16:51:25 in =subsy=stem QBATCH in Q5YS. Job ente
16:51:25.
CPIll12% Information an 01-06-11 16:51:25.418954 OQWTPCRJA Q5¥S
Mesz=zage . : Job 184412-JIVORY1Z2-00000253
Cau=e Job 184412-JIVORY12-00000253
in QGFL from job 184134-JIVORY12-MON_A78002. J
was started using the Submit Job (SEMJOB) comm
attributes: JOBFTY(L) OQUTPTY(5) PETTHT{) RTGDT
QEYS2 QHLPSYS QUSESYS) CURLIB(*CETDET)
D12DTALIE D12DEMOLIE QTEMP D12JSHLIB QG
*#*SECLVL)Y LOGCLPCM(#NO) LOGOUTPUT(«JOBEND) OUTQ
INQMSGRPY (*ROD)Y HOLD(*NO) DATE(*SYSVAL)Y SUS(00
MSGQ{QUSREYS-JIVOREY12) CCSID(RS535)Y SRTSEQ(*=H.~
JOEMSGOME({32) JOEMSGOFL{*WRAP) ALWMITTHD(®HO)
*HOHE Request 01-06-11 16:51:25.419952 QWTSCSET
Meszage . —CALL PGH(D12PGHLIB~LAHNSA) FA

'DEM' 'EHG

Step 3. Verify Objects Exist on the Server

In this step you will review how Visual LANSA shows objects that exist in the
master repository on the server.

1. Display the iiiList tab on the Favorites tab.

2. Right click on any column header and ensure that the Local Repository State
and Master Repository State are shown..

3. Widen the iiiList tab and / or drag the Local and Master Repository State
columns into view if necessary.

?

Mew - b4 o &y "}

"y

Y Weblet Templates | = Common Controls | £ Last Opened £ iiiList fi
Itemn | 551 ! [| Description Modified | Build Statusij

3

Standard MNAME 04/12/20...
partrment Table 11/12/20... Build an...

iiiDepartments] 2
* L) iiiDeptByDesc

]

[

]

iiiDeptCode B 2
iiiDeptDescPIF A
iiiDeptDescription @ ()

partment Code 10/12/20..,
partrment Description 11/12/20..
partrment Description 03/12/20...
mployees by Depart...

L T CL T T PP

* | iiEmpHeolByCode Ernployee Holidays By...
iiiEmpHolidays [} Employee Holidays 11712720, Compiled
liEmployees [Employee File 11/12/20... Build an...

|

i o N P e et S i i & 7. M

Notice that the check in of file iiiDepartments and its fields has refreshed this
column. The server icon shows that the objects now exist in the server
repository.

The Master Repository State column will be blank if the object is not yet
defined in the master repository.

Step 4. Execute Your Application Client Server

In this step you will execute your Department Maintenance application in client

server mode, to access the new Department Table which you have just created
on the server.

1. In the iiiLIST tab select the form iiiMaintDepartment and click on the
Execute ™ button.

2. In the Execute dialog select the appropriate server type, for example Form as
Client to RDMLX iSeries Server.

(B ' Execute... ﬁ]

Form as Client to any Server (manual connection)
Form as Client to Linux Server

Form as Client to RDML IBM i Server

Form as Client to Windows Server
Form as Windows Application
Form using DirectX

[C] Prompt for additional execution parameters

[oK] [Cancel] [Help]

>,

3. Press OK. Your application starts executing connected to the server.

B ° Maintain Departments E@g

Department Code

Department Dezcription

Fetch] [Ingert] [pdate] [Delete

o

In this case your form is accessing the Department Table on the server via its
OAM which was also created when you checked the file in.

4. Try to fetch the details of the department ADM.

The Department will not be found because no data was checked in when the
file definition was moved to the server. (Note that you can create simple
functions to transfer data between LANSA master system and Visual LANSA
files.)

5. Insert the details for the Administration department and then Insert them.

6. Try to insert another department with the code and description blank. Note
that you see the same validation error messages as when you tested the form
locally. The OAM on the server, has the same business rules compiled into it.

7. Exit your form.

Summary

Important Observations

e Check in options allow compilable objects to be compiled when checked in
to the server.

e To ensure that all required objects are checked into the server, use the cross
references facility in the Check In Options dialog.

e If you are using task tracking, refer to Using Task Tracking in LANSA in the
Visual LANSA Administrator Guide.

e Display the Master Repository State column for objects to see if they exist
on the server.

Tips and Techniques

e Review Rules for Repository Synchronization in the Visual LANSA
Administrator Guide. It is an efficient means of keeping your Visual LANSA
systems current.

What I Should Know
e How to check in objects to the LANSA Master Repository.

Programming RDML with Visual LANSA Forms

What is the Programming Tutorial?

This tutorial is a series of exercises that are designed to introduce the
fundamental skills required to begin programming with RDMLX using Visual
LANSA Editor with graphical form-based development.

The following exercises are included:
FRMO15 - Getting Started with Forms Programming
FRMO025 - Insert a Database Record
FRMO035 - Maintain a Simple Database Table
FRMO035 — Appendix

FRMO55 - List Component Basics

FRMO65 - Using List Components

FRMO75 - Using a Working List

FRMO85 - Update from a Grid

FRMO095 - Calling a Function

FRM105 - Define a Trigger Function
FRM115 - Writing Reports

FRM125 - Check Out / In to IBM i

Who Should Use the Tutorials?

These tutorials have been written for new LANSA developers. They introduce
basic skills required when creating graphical form-based applications or WAM,
Web Function and Integrator applications.

Before you Begin

You must have LANSA Demonstration Personnel System installed in the
partition that you will use with the set up options as described in What Partition
Should I Use?.

The LANSA Demonstration Personnel System contains all the objects used by
these exercises.

You should have completed the
e Visual LANSA User Interface Tutorials
e LANSA Editor Tutorials

its:lansa095.CHM::/LANSA/lansa095_0020.HTM
its:lansa095.chm::/lansa/VUIEng01_begin.htm
its:LANSA095.CHM::/lansa/vedeng01_0010.htm

e Visual LANSA Repository Development Tutorials.

Tips for using the exercises:
Check off each step in the exercise as you complete it.
Follow the instructions very carefully.

Remember to replace iii with your unique 3 characters. You will not always
be reminded to make this substitution. For further information refer to How
many developers can use the exercises?

These exercises assume that you have not previously customized the editor
interface. If you have already customized your environment, the example
screens and instructions may not exactly match your customized
development environment.

The following are important notes regarding the structure of the exercises:

The first steps in an exercise will provide very precise descriptions of the
tasks to be performed. As the steps and course progresses, the instructions
will become much more general.

Later exercises are designed to use skills from the earlier exercises. These
exercises are designed to be completed in sequence.

its:LANSA095.CHM::/lansa/reptut01_begin.htm
its:lansa095.chm::/LANSA/lansa095_0040.htm

FRMO015 - Getting Started with Forms Programming

Introduction

The Hello World exercise is an introduction to the Visual LANSA editor. You
will develop a simple form-based application and then you will add further
components and functionality and explore programming using events, properties
and methods.

7 Hello World = | B

Enter some text

Hello Hello
Display the results World
Clear
Close

L

Objectives:

e To introduce the basic concepts of components, properties, events and
RDML commands.

e To learn how to add events to a form.

e To learn how to edit properties of components.

e To learn how to use methods.

e To learn how to compile and execute your form.

To achieve these objectives, you will complete the following:

Step 1. Editor Settings

Step 2. Create a Component

Step 3. Add Components to the Form

Step 4. Change the Properties of a Component

Step 5. Add Remaining Push Buttons and Set their Properties
Step 6. Add a Field to the Form and Set its Properties

Step 7. Create Event Routines for the Push Buttons

Step 8. Add Logic to the Hello Button Click Event
Step 9. Add Logic to the Other Click Events

Step 10. Compile the Form

Step 11. Execute the Form

Step 12. Align and Size Components

Step 13. Component Definitions

Step 14. Understanding Events

Step 15. Using Component Properties

Step 16. Understanding Component Methods
Summary

Before You Begin
You may wish to review the following topics:

e Editor Features in the Visual LANSA User Guide.
e Component Concepts in the Technical Reference Guide.
e The Component Model in the Visual LANSA Developer Guide.

its:lansa012.chm::/Lansa/l4wusr02_0110.htm
its:lansa015.chm::/Lansa/l4wtgu04_0015.htm
its:lansa013.chm::/Lansa/L4wDev06_0155.htm

Step 1. Editor Settings
In this step you will logon to Visual LANSA and set the editor options

1. Logon to Visual LANSA. If you cannot remember how to do this, refer to the
LANSA User Interface Tutorials. Once started, the Visual LANSA Editor is
displayed. The appearance of the editor will depend upon the type of
installation as well as the editor settings.

2. To change the editor settings, choose Editor Options from the File tab.

B¢ M & o s |LANSAEditor

P sae Last Opened

* Close

“ Open

Last Opened

Mew

) cave Al

i Print

% Close All

B Systemn Information

& Options

.4 Exit

It is recommended that you set the Source settings to include Component
Definitions. These settings are included in the exercise Format Source Code
in the LANSA Editor Tutorials.

Remember that you can also turn on the Auto Hide tab feature to make more
space to view source code in the editor. For more details, refer to exercise
VUI002 Editor Parts in the User Interface Tutorials.

3. Make sure you can view the Controls tab. This tab contains all the controls
frequently used on a component. In V13 SP1, this is now a separate tab which

its:lansa095.chm::/Lansa/VUIEng01_0015.htm

looks like this:

Controls
Common User Designed All Controls
Calendar et
Calendar lets the user select a date
Check Box
“" Check Box is used to present Ves/Mo choice

Eu Combo Box
5 List with an edit box

DateTime Picker
Date and time picker lets the user select a date and a ti...

Edit Box
Edit Box is used for entering and displaying information

Grid
00 Data in table format
I IGmupBox

Groups other controls

- Image

3

<l

Shows a picture file
A Label
S

If the Controls tab is not open, open it from the Home ribbon, Views menu:

= s -

® (= ==

ary Text Search Views Open
Object:

_ Compile

e

History

" Error Logs T His'
== Details (F7)
Favorites (Shift+F8)

Features (F2)

Go To (Ctrl+G)

9 Help

®

il

Imnpact Analysis

e

Controls

&
&
‘ﬁ Check Out
<
A

o

Import

Step 2. Create a Component
In this step you will create a Form and open it in the LANSA editor.
1. On the File menu, use the New button and select Form / Basic Form.
The Create form dialog is displayed.
Enter the following for the form:
a. Long Name: iiiCOM10 (where iii=your initials) *
b. Description: Hello World
c. Enable for RDMLX (Yes)

* If you are using a trial version of LANSA, use iii=DEM (DEMCOMO01). If
the form already exists, it needs to be deleted first.

d. Press the Create button.

o I =
Mame iiiHelloWoarld Create
Description Hello World

- Cancel
Framework Personnel & Payroll (HUMAN RESOURCES) b
Group -
Identifier MHELLO
Enabled For RDMLX

When you create a component you should select a suitable Framework, such
as Personnel & Payroll (HUMAN RESOURCES). One way to find a
components on the Repository tab, is to look under Organizers / Frameworks
/ HUMAN RESOURCES. You can change a component's Framework at a later
stage.

2. The form will be opened in the editor.

Step 3. Add Components to the Form

In this step you will insert a standard push button control to the form.

1. The Design tab, showing the form layout, is selected by default. This layout

shows how the form will appear at execution time. It is used to design and
build your application.

Size the form by clicking on the corner of it, keeping the mouse button down
and dragging the corner to make it about this size:

2. Add a push button to the form:
a. Display the Controls tab.
b. Locate the Push button control.
c. Drag and drop the Push Button control onto your form.

To drag and drop, left click on the push button control in the list and hold the
left mouse button down. Move the cursor over to the form layout and release
the mouse button to drop the control at the cursor position.

Alternatively double-click the push button control in the list to add it to the
form and then drag it to the right.

Your form layout should now appear something like this:

Note: You can also use Ctrl + Cursor Key to move any component around
on the form.

Step 4. Change the Properties of a Component

In this step you will change the Caption and the Name properties of the push
button.

1. Double-click the push button to display the Details tab.

The Details tab is used to change the Properties of a control, or create an
Event handling routine or a Method routine for it.

a. Change the Name property of PHBN_1 to Hello.
b. Change the Caption property to Hello.

Now you can see the caption Hello added to the push button on the form.

Step 5. Add Remaining Push Buttons and Set their Properties
In this step you will add the World and Clear push buttons to the form.

1. Using the Common Controls tab, double-click the Push button control twice
to add two more buttons to the form.

Position the push buttons under the first button. Do not worry about aligning

the push buttons accurately at this stage. You will learn how to do this in a
later step.

2. Using the Details tab, name the push buttons World and Clear and apply
appropriate captions to them just as you did in the previous step.

3. Your form should appear something like this:

Step 6. Add a Field to the Form and Set its Properties

In this step you will add a field from the LANSA Repository to your form to
display the Hello World text. You will change the field margins so that you don't
display the field label.

1. On the Repository tab, select the Fields node.

2. If Alphabetical Groupings is on, expand the letter S to see the list of fields
starting with the letter S.

3. Locate the field STD_TEXT.
4. Drag and drop the STD_TEXT field onto your form.

5. Double-click the field to display the Details tab and change the MarginLeft
property of the field to O so that the label is not visible.

You may wish to reposition the field on the form once the label is no longer
displayed. You may also adjust the Width of the field using the Details tab, or
by using the Design tab to resize the field with the mouse.

Note: with the field selected, you can move the field using the cursor keys
while holding down the Control key. This is often the easiest way to position
a component accurately.

Your form should appear something like this:

Step 7. Create Event Routines for the Push Buttons

In this step you will add event routines for each push button. An event routine is
a routine that is invoked when the user or the program triggers a specific action.
You will add a event handling routine to be called when the user Clicks on each
push button.

1. Select the Source view in the Editor. You should see code similar to the
following:

Design Source | Repository Details Repository Help Cross References [

A R T E R R R P RS R R RS RSP RS R R P RS RS R RS R R R R R R RS EEEEE TS
: -
» COMPONEWT STD_FORM
-
OSERENENENSENENNEEEONEEONEEEONEEENEENENEE N NER
Function Cptions(#*DIRECT)
—~Begin_Com Role(#EXTENDS #PRIM_FORH) Clientheight({141) Clientwidth({478) Height{179)
Left{383) Top{183) Vidth(494)
Defins Comn Class(fPRIM_PHBN) WNans(#HELLO) Caption('Hello') Displaypositionil)
L=ft{368) Parent (#COH_OVHER) Tabposition(l) Topl(20)
Define_Com Cla=ss(#PRIH_PHBN) Hame(#WORLD) Caption{ 'World') Displaypo=ition(?)
L=ft(370) Parent (#COH_OVHER) Tabposition(2) Top(&0)
Define Com Class{#FPRIM_PHEN) Hame{#CLEAR) Caption('Clear’) Displavposition(3)
Laft(374) Parent (#COH_OWHER) Tabposition(3) Top(9B)
Defins Com Class(#STD_TEET. Visual) Hane(#STD_TEKT) Componsntversion(l)
Displayposition(4d) Height({Zl) Left(15) Marginleft({0) Parent (#COMN_OWHER)
Tabposition(d) Top(23) Usepicklist({False) Width(338)

=Evtroutine Handling(#fcom_owner . Initialize)

Set Com(focom_owner) Caption(®componsnt_desc)
Endroutine
“~End_Con

For the moment just ignore the existing code.

2. Next create an event routine (EVITROUTINE/ENDROUTINE command
pair) for the Clear button to handle the 'Click’ event:

a. Select the Design tab and select the Clear button.

b. Right-click, select the Events:Push Button option and then the Click
Event.

c. A new event routine is added for the Clear push button in the Source tab
as shown below:

Notice the format of the event routine names. Event routine names are
always formatted as

COMPONENT.EventName (#Clear.Click).

3. Next add a Click event to the Hello and World buttons.

Your event routines should now look like this:

Evtroutine Handling(#HELLO.Click)
Endroutine

Evtroutine Handling(#WORLD.Click)
Endroutine

Evtroutine Handling(#CLEAR.Click)
Endroutine

Step 8. Add Logic to the Hello Button Click Event

1.

Add the line of code shown, highlighted inred, italic to the Click event for

the Hello button (it adds the word 'Hello ' to the #STD_TEXT field):

EVTROUTINE HANDLING(#HELLO.Click)
#STD_TEXT:=#STD_TEXT + 'Hello '
ENDROUTINE

The AutoComplete prompter shows up as you start to type. You can use it to

select the command and the parameter values.

Note that there is a space between the word Hello and the closing quote.

Some Things to Note About Editing Code

The editor is completely free format. The syntax will be checked as you
enter the command. A red triangle beside a command indicates that a
warning or error message can be displayed. To display the message, click on
the red triangle.

You can only enter one command per line.
Your commands and their parameters can be in uppercase or lowercase.

The definitions of the components (that is, buttons, fields and so on) on your
form are stored at the start of your program as a series of DEFINE_COM
(Define Component) commands. These commands can be hidden or
displayed using the plus sign in front of them or using the editor settings.

Normally, you will change the DEFINE_COM commands only by using the
form layout or by altering the component's property sheet even though you
can edit the DEFINE_COM statements.

Step 9. Add Logic to the Other Click Events

In this step you will add the required code for each of the Push Button event
routines.

When you are finished with this step, you will have entered the three lines of
RDML code implement the action required by each the push button:

*When the user clicks the Clear push button, the contents of the STD_TEXT f
changed to blanks.

EVTROUTINE HANDLING(#CLEAR.Click)

Change Field(#STD_TEXT) TO(*BLANKS)

ENDROUTINE

*When the user clicks the Hello push button, the word Hello is concatenated tc
contents of the STD _TEXT field.

EVTROUTINE HANDLING(#HELLO.Click)

#STD_TEXT := #STD_TEXT + 'Hello '

ENDROUTINE

*When the user clicks the World push button, the word World is concatenated t
contents of the STD _TEXT field.

EVTROUTINE HANDLING(#WORLD.Click)

#STD_TEXT := #STD_TEXT + "World '

ENDROUTINE

1. Type the CHANGE command for the Clear button Click event:
Change Field(#STD_TEXT) To(*BLANKS)

2. Put the cursor on the CHANGE command in the editor and press the F1 key
to display the online help to review specific technical details about using this
command:

3. Complete the World.Click event routine by entering the following statement:

#STD_TEXT := #STD_TEXT + "World '

4. Put the cursor anywhere on the STD_TEXT statement in the editor and press
the F1 key to display the online help to review specific technical details about
using the ASSIGN command:

Your finished code should look like this:

EFEvtroutine Handling (#HELLO.Click)

#5TD TEXT := #5ID TEXT + 'Hello °*
—Endroutine
EFEvtroutine Handling (#WORLD.Click)
#5TD TEXT := #5ID TEXT + 'World °*
—Endroutine
EFEvtroutine Handling (#CLEAR.Click)
Change Fie;d(#STD_TEXT] To (*blanks)
—Endroutine
—End Com

There should be no red triangles in the source code which indicate an error.
If any errors exist, they must be corrected.

Note that in the event-driven program model, the order of the event routines
in the code is not important to the execution of the form.

5. Click on the save toolbar icon to save the form.

al = liiiHelloWorle
[R—

Step 10. Compile the Form

In this step you will compile your new form.

Your components are compiled from within the LANSA editor by using the
Compile button on the Home ribbon. Objects can also be compiled using context
menus from various tabs in which case the compile options will simply default
to the last values set in the Compile options dialog. Note that for this last
compile method you must save your RDMLX source first.

1. Click the dialog box launcher in the Compile group in the ribbon to display
the Compile options dialog.

v Full Check =

! Build

Compile *

Ta

Ve

| Design | Source “Fep

2. Press OK to submit the compile.

3. Using the Compile tab at the bottom of the editor, you can review the
compile status.

%/ 44 | lob Status Description Results

2 Completed iiiHelloWoarld - Hello World Compiled 1 of 1
X

i Assistant | . Compile

| LANSABI3 | TRN | JIVC

4. Once the compile has completed, double-click on the status message to

display the compile message window. If errors have occurred, you can review
the messages in this window.

5. Close the Compile messages window.

Step 11. Execute the Form
In this step you will execute the form.

Your components can be executed from within the LANSA editor by using the
Execute button on the Home ribbon. Objects can also be executed using context
menus from various tabs or by pressing Ctrl + Shift + E.

1. Click the dialog box launcher in the Execute group in the ribbon.
The Execute... dialog will be displayed.
2. Press the OK button to execute the form.
3. Check that your form functions correctly:
a. Click the Hello button. The word 'Hello ' should be added to the field.
b. Click on the World button. The word 'World ' should be added to the field.
c. Click the Clear button. The field should be cleared.

Step 12. Align and Size Components

1. With the Design view open for form iiiHelloWorld, select the top push
button, hold down the shift key and select the other push buttons.

Note the 'handles' for the first button are black. The handles for the other
two buttons are white. You are going to align the second and third button

relative to the first.

2. Display the Design tab on the ribbon and select the Align command.

B M. o o s liiHelloWorld -
P————
File Horme Design | Tools
— | e W
Désign T Désign =l s
Theme Language

3. Select the Horizontal / Left and Vertical / Space Equal options:

r Align Components Iﬁw

Horizontal: Vertical:
Mo Change Mo Change

e Left Top
Center Center
Right Bottom
Space Equal
Left Margin Top Margin
Right Margin Bottom Margin

| QK [Cancel [Rernember

Note: The Remember checkbox will retain these settings for this session of

Visual LANSA

Your form should now look like this:

4. Select the Hello button and reduce its height and width.
Tip: First unselect the group of buttons by clicking anywhere on the form.

5. Resize the Hello button by holding down the left mouse button on one of the
handles and dragging. Alternatively, select the button and hold down the Shift
key and using the cursor control keys.

6. Again, holding down the Shift key, select the Hello button and then the other
two buttons.

7. Use the Edit / Size dialog to resize the second and third button, based on the
first.

i = =3 8 |
aAbBcCdDeEfFgGhHIKKILMMnNoOpPqQIRsSITUlWwWWiyY - = Q;n. _—
... ello =
... & i
o B B Ao ol
... O |
Size Components I& | o O

- ear y
S (ml !
Horizontal: Verficak ———— | -7 -
Mo Change Mo Change
-~ Same Feght

Ok E Cancel [Rernember

8. Select the buttons to be the same width and same height.

Your form should look like the following:

Step 13. Component Definitions

1. Click on the form title bar, and select the Details tab on the left (or press F7).
The Details tab is displaying the form properties:

Details

iiHelloWorld v | L
Properties | Events | Methods

=
* Borderlcons Maximize+Minimize+SysternMer »
* Caption
* ClientHeight 141
” ClientWidth 478
* Cursor *MULL
* DragStyle Mone
* EnableChildren False
* Enabled True
* EnsureVisible Application
* FormPosition Designed
* FormStyle Marmal
* FrameStyle Sizable
> Glass ‘ -
" Height 179
T
* HintPopup *MULL
* HintShow True =
“ HintTitle
"Icon "NULL
* Image *MULL
* ImageAlignment Center

P Layo tht wangr Sy

For example, note the Height property is highlighted.
2. Resize the form and note the change in this property.

3. Select the Source tab.

Design Source Repository Details - Repository Help | Cross References

00001 *

0ooo2 *

00003 = COMPONENT: STD_FCRH

00004 *

00005 *

00006 FUNCTION CPTIONS(=DIRECT)

00007 = BEGIN_COM ROLE(=*EXTENDS #PRIM_FORM) CLIENTHEIGHT(146) CLIENTWIDTH(519)
HEIGHT(184) LEFT(403) TOP{210) WIDTH(535)

0oooe = DEFINE_COM CLASS(#PRIM PHEN} NaME(#Hello) CAPTION('Hsllo'l

DISPLAYPOSITION(1) HETGHT(34) LEFT(416) PARENT(#COM_OWNER)

The component source is defined within the Begin_Com / End_Com
statements.

The Begin_Com includes the form properties. Note that Height is
highlighted. As usual, RDML / RDMLX does not display properties or
command parameters, which have default values.

4. Examine the Define_Com component definitions.

Function Options (¥*DIRECT)
Begin Com Role (¥*EXTENDS #PRIM FORM) Clientheight(1%3) Clientwidth(598)
Height(231) Left(345) Top (172} Width(614)
Define Com Class (#PRIM PHBN)} Name (#HELLO) Caption('Hello') Displayposition (1)
Height (23) Left (387) Parent (#COM OWN Tabposition(l) Top(8) Width(69)

Define Com Class (#PRIM PHBN) Name (#WORLD) Caption(
387) Parent (#COM_OWNER) Tabposition (2

Push button component
definition

Field compaonent
Definition M PHBN) Name (#CLEAR) Caption('Clear')
87) Parent (#COM OWNER) Tabposition(3) Top(82) width(€9)

)
=
Define Com Class (#STD_TEXT.Visual) Name (#STD_TEXT) Displayposition (4)
Height (19) Left (28) Marginleft (0) Parent (#COM_OWNER) Tabposition(4) Top(37)
Usepicklist (False) Width({325)

Most components are defined at the top of the source code.

5. Select the Design view. Select the field STD_TEXT. Note that the Details
tab shows the field component properties. Once again the Define_Com code
shows only properties which have non-default values.

6. With your component definitions currently shown as follows:

Function Options (*DIRECT)
F-Begin_Com Role (*EXTENDS #PRIM_FORM) Clientheight (193) Clientwidth (598)
Height (231) Left (345) Top(l72) Width(614)
= Define Com Class (#PRIM_PHBN) Name (#HELLO) Caption('Hello') Displayposition (1)
Height (23) Left (387) Parent (#COM_OWNER) Tabposition(l) Top(8) Width (69)
Define Com Class (#PRIM_PHBN) Name (#WORLD) Caption('World') Displayposition (2)
Height (23) Left (387) Parent (#COM_OWNER) Tabposition(2) Top(45) Width(69)
Define Com Class (#PRIM_PHBN) Name (#CLEAR) Caption('Clear') Displayposition (3)
Height (23) Left (387) Parent (#COM OWNER) Tabposition(3) Top(82) Width(69)
Define Com Class (#STD TEXT.Visual) Name (#STD TEXT) Displayposition(4)
Height (19) Left (28) Marginleft (0) Parent (#COM OWNER) Tabposition(4) Top(37)
Usepicklist (False) Width (325)

7. Click on the = icon next to the first Define_ Com. Your code should now
look like the following:

Function Options (*DIRECT)
Begin Com Role (*EXTENDS #PRIM FORM) Clientheight (1%3) Clientwidth (598)
Height (231} Left(345) Top(l72) wWidth(614)
® Define Com Class(#PRIM PHBEN) Name (#HELLO) Caption('Helleo') Displayposition(l)
Height (23) Left (387) Parent (#COM OWNER) Tabposition(l) Top(8) Width(e69)

The Define_Com statements have been compressed, saving space. The

Options / Settings dialog for Source can make this appearance the default.

Step 14. Understanding Events

1. Drag and drop field STD_DESCL on to the form. Set up its properties as
follows:

Property Value
LabelPosition Top
Caption Display the results

LabelHorAlignment | Left

LabelType Caption
Width 374

2. Change the properties of the first field STD_TEXT as follows

Property Value
LabelPosition Top
Caption Enter some text

LabHorAlignment| Left

LabelType Caption

Your form should now look like the following:

Enter some text

| aAbBcCdDeEfFgGhHITIKKILmMnMNoOpP qQrRsStTulhWwWaddyy

Display the results

| aAbBcCdDeEfFgGhHIIJKKILmMnMNoOpP qQrRsStT

3. Select the first field STD_TEXT and create a Changed event for it.

Remember you can do this either using the Events tab on the Details tab, or
using the right mouse menu / Events : STD_TEXT.

4. With the STD_TEXT selected, press F2. Alternatively use the right mouse
menu and select Field : STD_TEXT / Features.

Design | Source = Repository Details | Repository Help - Cross References |

Delete Component
Copy Component...
Cut Component

: macédm"'gﬁ'_' 2 Open

¥ Delete from Repasitory S

Add Popup Menu

B Quick Export
of Check Out
Check Out Readenky

Goto Definition
Save Definition

3

Save PRIM_EVEF Definttion

i3 Copy
Copy Name
i, Print

[Events: STD_TEXT

3

J& Properties
&hy Cross References

o

The Features tab shows the events, properties and methods for the selected

component, in this case field STD_TEXT.

| Features

-5 - 2L Qe B~
Classes: | STD_TEXT -

4 Field
B STD_TEXT Standard
4 Definition
Type Alphanu
Default Value *BLANKS
4 Input Attributes
LC Lowerca:
Label Text
4 Column headings
Temt

4 WYalidation rules

Must not be Blank
Enabled for RDMLX Mo
4 Class
4 B STD_TEXT Standard
4 [} Extends
& PRIM_FLD Data Clas

4 24 Implements
=« PRIM_LIELIFieldFixedCharlntrinsics Fixed ché
* % Events
* b Methods
A Properties
4 Usage in iiHelloWaorld
4 Definition
Line 11 Define_C
4 References
Line 19 Change |

5. Click on the Views button in the tab toolbar and choose Category View:

AT Y - T
Classes: | STD_TEXT Group View
||E Category View I} |
Sorted View
4 _Field

6. Expand the Intrinsics for this type of field. Scroll down and note that there is
an UpperCase method.

7. Double click on the UpperCase method to see the Feature Help for it.

> | TrimBlankConcat
> [TrimConcat

’ EillumsmnH s —
4 L.: UpperCase - ~ 10.6.64 UpperCase

4 Usage in EOMCOM10 > Uppercase returns the supplied string with all characters converted to uppercase.
4 Definition Input Parameters
Line11 None
4 References e Example
Line 20 In this example, if #5tring contained 'abcde’, the result would be "ABCDE":
Line 24 =] #5tring := #String.Uppercase
Line 28 :
Line 32 - 110.6 Alphanumeric/String Intrinsic Functicns

8. Add the following code to the STD_TEXT.Changed event routine. New code
is shown in bold.

Evtroutine Handling(#STD_TEXT.Changed) Options(*NOCLEARMESSAGE
#STD_DESCL := #STD_TEXT.upperCase
Endroutine

9. Change the CHANGE statement in the CLEAR.Click event to include
STD_TEXT.

Change Field#STD_TEXT #STD_DESCL) To(*blanks)

10. Recompile and test your form. Type into the first field and observe the
output in results field. Your form should look like the following:

i1 Hello World BET
Enter some text
Hello
abc
Display the results Mol
ABLC
Clear

L.

Observe that for every change event (character typed) the
STD_TEXT.Changed event routine is executed and replaces STD_DESCL
with the new value of STD_TEXT.

11. Change the STD_TEXT.Changed event routine logic to the following:
#STD_DESCL := #STD_TEXT.upperCase.Reverse

12. Recompile your form. Make sure the form was closed before recompiling.

13. Test your form. Type into the first field. The results should look like the
following:

F T -

B Hello World = | B |l
Enter some text
Hello
ahcl
Display the results World
CBA
Clear

L.

14. Clear the fields using the Clear button. Click on the Hello button. Your form
should look like the following:

F T -

B Hello World = | B |l
Enter some text
Hello Hello
Display the results World
Clear

L.

The Changed event for field STD_TEXT has not been triggered.
Programmatic changes to a component (in this case a field) do not trigger its
events.

Step 15. Using Component Properties

1. Drag and drop a Check box to the top of your form. Note it is automatically
named CKBX_1.

2. Set up the Check box properties as follows:

Property Value

Caption Allow Uppercase and Reverse

ButtonState Checked

Your form should look like the following:

-

i =nnEn X

¥ Allow Uppercase and Reverse A S

Enter some text

aAbBcCdDeEfFgGhHIJKKILmMnNoOpPqQrRsStTuLwMKyY Helig
Display the results sl
aAbBcCADeEfFGhHIKKILMMnNOOpPQQIRSSET [ioes iy
... Clear

3. Change the STD_TEXT Changed event to execute the assign command, if
the check box is Checked. Your code should look like the following:

Evtroutine Handling(#STD_TEXT.Changed) Options(*NOCLEARMESSAGE
If (#CKBX_1.ButtonState = Checked)

#STD_DESCL := #STD_TEXT.Uppercase.Reverse

Endif

Endroutine

Your IF expression is a Boolean expression which "GETs" the property
ButtonState for component CKBX_1.

4. Compile and test your form. The results field will not be populated, if the
Check box is unchecked.

5. In the Design view select the Clear button and change its Enabled property
to False.

6. Make the following changes to your form logic:
a. Change the Hello click event to SET the Clear button to Enabled=True
b. Change the World click event to SET the Clear button to Enabled=True

c. Change the STD_TEXT field Changed event to SET the Clear button to
Enabled=True

d. Change the Clear button click event to SET the Clear button to
enabled=False

For example, the Hello Click event should look like the following;:

Evtroutine Handling(#HELLO.Click)
#STD TEXT :=#STD _TEXT + 'Hello"'
#CLEAR.enabled := true

Endroutine

This uses the ASSIGN statement to SET a property.

A longer form of this code could be used to set a component's property:
Set Com(#CLEAR) Enabled(true)

7. Compile and test your form. The Clear button should initially be disabled.
The Clear button should be enabled whenever the Hello or World buttons are
used, or when text is typed into the "Enter some text" field.

Step 16. Understanding Component Methods

1. In the Design view, click anywhere on the form and select the Methods tab
on the Details tab.

Dretails Design Source Repository
ijHellcWorld g
Properties | Events | Methods S
. R e
I ActivateForm ! [Allpiw Uppietcase d

| |
. Enfer Somné ted - | 0 D!
ki CloseFormQuery nter some

b HideForm .a#‘.’b.EEIFdE.}?EFl:_gG.h.HI]{
b MaximizeForm Display-the Results - - -
___.;: MinimizeForm . |abbBeCdDeEfFgGhHIL
| RestoreForm W
.y L

b SetFocus

E: ShowFarm

I E_.: ShowModalForm

Note that your form has a CloseForm method.

2. Your form iiiHelloWorld, inherits events, properties and methods from its
Ancestor PRIM_FORM. In the Source tab, note the Begin_Com
statement's Role(*EXTEND #PRIM_FORM)

Function Options (*DIRECT)
F-Begin_Com |Role (*EXTENDS #PRIM _FORM) |clientheight (123) Clientwidth (467)
Height (161) Left (345) Top(17Z2)] Width (483)
E Define Com Class (#PRIM PHEN) Name (#HELLO) Caption('Hello') Displaypositi

vl e AL o e RO T e m e Mo raaTsaTa b e e sl e B g L P

3. In the Design view, drag and drop a push button onto form.

4. Change the Push Button Name to CLOSE, change its Caption to Close and
create a CLOSE.Click event. Add the following code to this Click event:

#com_owner.CloseForm

The generic name COM_OWNER can be used to refer to the current
component.

Your form should look like the following:

¥ Allow Uppercase and Reverse e S R e
e .
aAbBcCdDeEfFgGhHIlkKILmMnNoOpPqQrRsStTulhWn Wiy o el
Display the results World
aAbBcCdDeEfFgGhHIIKKILmMnNoOpPqQmRsStT ...
... Clear
S e Close

5. Compile and test your form. Click on the Close button to close it.

Summary

Important Observations

e As you set component properties (names, captions, and so on, in the Details
tab) the DEFINE_COM statements are updated in the RDML code.
Alternatively, you can directly edit the DEFINE_COM statements.

e There are many different ways to perform the same operation, such as using
commands in a ribbon or context menu options.

e There are many ways of coding RDML statements to achieve the same
results. For example, the following two statements will produce the same
result:

CHANGE FIELD#STD_TEXT) TO(*BLANKS)
#STD_TEXT := *BLANKS

e The DEFINE_COM commands may be hidden using the editor settings.

e The F2 Feature help provides information about component properties,
events and methods

e If you know LANSA functions, you need to understand there is a
fundamental difference between forms and functions in the programming
paradigm. Functions are procedural programs that execute in a "top to
bottom" fashion. Forms use an event-driven paradigm based on graphical
user interfaces. The form waits for a specific event to occur and then
executes the event. Once the event has completed, control is passed back to
the interface. Hence, the location of the event routines in a form's code is not
important to the execution of the program.

Tips & Techniques

e Review all of the editor settings to determine the options that you want to
use when working in Visual LANSA.

e When editing source code, using the Auto Hide tab feature will enable the
maximum amount of space for viewing your source code.

e F2 feature help provides details about components. The F1 online help will
provide details about the user interface, commands, and options.

e Use the dialog box launcher in the Compile group in the ribbon if you need
to specify the compile settings. If you submit compiles using Compile
command, the compile options will simply default to the last values set in

the Compile options dialog.

The basic rules you need to remember when writing code:

Only one command is allowed per line in the editor.
You cannot have any leading blanks before a command.

A command may have no parameters (as in END_COM) or may have many
parameters (as in BEGIN_COM).

Many command parameters are optional.

Parameters may have one or more values (as in ROLE(*EXTENDS
#PRIMFORM)). A blank space is used to separate values in a list.

When coding parameters, do not leave a space between the parameter
keyword and the opening bracket. For example, OPTIONS(*DIRECT) or
OPTIONS(*DIRECT) are correct, but OPTIONS (*DIRECT) is not
correct.

When parameters use their default values, the parameters are not explicitly
shown in the command, but they can be viewed in the Command Assistant
tab. Select the line of code and use F4 to display the Command Assistant tab.
It is often convenient to float and resize this tab so that the command
parameters can be seen more easily.

An asterisk * in the first position of a line is used for a comment. You can
use the short cut keys CTRL+W and CTRL+Shift+W to comment or
uncomment a single line or selected block of lines.

What You Should Know

The basic structure of the code in a form
e FUNCTION

e BEGIN_COM

e DEFINE_COM

e EVTROUTINE

e ENDROUTINE

e END_COM

How the form and components are related to the source.

How to create a form.

How to add components to a form.

How to change the properties of a component on a form using the Details

tab.

How to define events for a component.

How to compile and execute a form.

The basic structure of LANSA commands.
How to display feature help.

How to find intrinsic methods.

How to use intrinsic methods.

How to use the RDML/RDMLX commands.
e CHANGE

e ASSIGN

How to write a Boolean expression.

FRMO025 - Insert a Database Record

Objectives:

e To create an Add Employee form.

i | Add Employee

=)

Section Code
Employee Salary
Start Date (DDMMYY)

Employee Mumber A2000
Employee Surname Franklin
Employee Given Mame(s) |Mary
Street Mo and Name 58 Surrey 5t
Suburb or Town Sydney
State and Country MNSW
Post / Zip Code 2010
Horme Phone Number 956800045
Business Phone Mumber 099485494
Department Code ADM

o
80,000.00
111111

4k

Start date is not valid - press Help function key

e To introduce the INSERT, GROUP_BY and MESSAGE commands

e To introduce the loop commands
e BEGIN_LOOP/END_LOOP

e DOWHILE/ENDWHILE
e DOUNTIL/ENDUNTIL

e To understand how field and file level validation is handled in a form

e To use the Status Bar component to display messages

e To use RDMLX style string handling.
e To implement "busy cursor"

e To review other "delay" feedback techniques

To achieve these objectives you must complete the following:

Step 1. Create form iiiAddEmploy — Add Employee

Step 2. Add Fields to the Form

Step 3. Add Push Buttons and Click Event Logic

Step 4. Using a Busy Cursor

Summary

Before You Begin
You must have completed:
FRMO15 - Getting Started with Forms Programming

Step 1. Create form iiiAddEmploy — Add Employee

1. On the File menu, use the New button to create a Basic Form defined as
follows:

Description Add Employee

Enabled for RDMLX? Yes

Note: When creating a form you should select a specific Framework, such as
Personnel & Payroll. Frameworks allow you to organize components (forms,
reusable parts and WAMs) into logical groups. Your own Visual LANSA
development work should use Frameworks which you define at the LANSA
partition level on the IBM i server. All components have a property
ComponentFramework which may be changed if required.

2. In the Design view, select the Controls tab and select All Controls:

Common User Designed

T| Book

Book with user designed content

rﬁ‘q’}l‘ Calendar
135 Calendar lets the vser select a date

Controls

3. Drag and drop a Status Bar component onto the form. It will be attached to
the bottom of the form.

Step 2. Add Fields to the Form

1. Select the Repository tab. Expand the Files group. If necessary change the
Files group to Alphabetic Grouping by using the right mouse menu on the
Files group.

2. Expand the P group and expand the file PSLMST. Your Repository tab
should look like the following:

Repository
H Repository
x| &la
Ttem Description
Q
a P
PSLEVENT Personnel Ev
PSLIMG Personnel I
4 PSLMST Personnel
L PSLMAT Personnel by
L P5LMATZ Personnel by
EMPNO Employee M
B SURMAME Employee Su
® GIVEMAME Employee Gr
B ADDRESS] Street Ma am
B ADDRESS2 Suburb or Tc
® ADDRESS3 State and Co
B POSTCODE Post / Zip Cc
® PHOMEHME Home Phong
®» PHOMEBUS Business Phe
B STARTDTER Start date (¥
® TERMDATER Termination
B DEPTMENT Department
® SECTIOM Section Cods
B CALARY Employee Sa
&k STARTDTE Start Date (D
& TERMDATE Termination
e MHNTHSAL Monthly Sal:
PSLSEL Personnel sk
PELTIMES Persannel tir

3. Enlarge the form by dragging its lower edge.

4. On the Repository tab, hold down the Shift key and use the left mouse button
to select EMPNO and then PHONEBUS. All fields between these will be
selected. This is a standard Windows select a group of objects technique.

5. Drag these fields onto the form, towards the top.

PSLEVENT

PSLIMG

PSLMST
L PSLMSTL
* L PSLMST2
EMPMNO
SURMAME
GIVEMAME
ADDRESSL
ADDRESS2
ADDRESS3
POSTCODE
PHOMEHME
PHOMEEUS

-

: Description

Personnel Event Log
Personnel Images

Personnel

Personnel by Deptment, Sect
Personnel by Surname, Giver
Ermnployee Mumber
Ermnployee Surname
Ermployee Given Marme(s)
Street Mo and Mame

Suburb or Town

State and Country

Post / Zip Code

Home Phone Mumber
Business Phone Mumber

6. Select the group of fields from DEPTMENT to STARTDTE and drag these
onto the form just below the others.

Note: STARTDTE is a virtual field which updates the real field

STARTDTER.

7. Click on the form to unselect the last group of fields. With the Shift key held
down, select EMPNO and then select each of the other fields. Then use the
Align dialog from the Design tab, to align the fields on the left, spaced

equally.

Your form should look like the following:

" Eiriplyiee Givien Naiie() * aAbBeCADeEFgGhHI) B = o

 Street Mo anid Name | aAbBcCdDeEfFgGhHIlkKILm

' Subyrbor Town:® - - ;'_agbﬂ;C:I_D_e_E'FFgGhI-IIE.Ill_:_I@I_!.m

. State and Country: - © - aAbBcCdDeEfFgGhHIKILm E:
Eabiamcols oo o [e e
- Home Phine Number - - -| ABCDEFGHUKLMNO et
| Buiinéss Phoné Nubes | | ABCDEFGHUKLMNO Ca e

8. Save your form.

Step 3. Add Push Buttons and Click Event Logic

1. On the Controls tab, select the Common group of controls. Drag and drop
two Push Buttons onto the bottom right hand side of the form.

2. Use the Details / Properties tab to set up the two push buttons as follows:

Property | Value

Caption | Save

Name SAVE

Property | Value

Caption | Close
Name CLOSE

Your form should look like the following:

= ol
Emplmmumw S
R INTRTETEITIAA 0
 Emipldyee Given Mamiels): - albBcCdDeEfFgGhHT) |-

: Street No gnd Marme - - - aAbBcCdDeEfFgGhHIKILm

- Suburbor Town- - - - - - - - | aAbBcCdDeEfFgGhHIKKILm

" State and Country - - - - - | aAbBeCdDeEfFgGhHITKILm

 Post/Zip Code - - - -+ [123456 s
 Home Phone Number - - - | ABCDEFGHUKLMNO
. Business Phone Mumber . . | ABCDEFGHLUKLMMNO
 DesliCake o tIARCD | it :
 SectionCade; - 7: 1 |AB | :

- Emiployes Salary - - - - | 123,456,789.12 i .
R T e oo e
AABBECADEETFGGRHIIKILMANGORPRQURSSITUUMAWWINNEZ: - - oo o[= [|

3. Use the Details / Events tab to create a Click event for each button.

4. Add code to the CLOSE Click event to close the form. Your code should
look like the following:

Evtroutine Handling(#CLOSE.Click)
#com_owner.closeForm
Endroutine

5. Define a GROUP_BY to include all fields on the form. Your code should
look like the following

Group_By Name(#empdata) Fields(#EMPNO #SURNAME #GIVENAME #A

Notes:

e Group_by statements are usually defined at the top of the program,
following the component definition. This makes these declarations easy to
find, when maintaining a program.

¢ You should always use the Command Assistant (F4) to complete this type
of statement, where a set of field names is required.

e Use the Editor Options and use the General settings to set Assistant to
Auto Expand Parameters.

6. Type GROUP_BY and press F4.
a. In the Command Assistant, enter the name of the Group_by #EMPDATA.
b. Position the cursor in the Fields parameter.
Note: You may prefer to float and resize the Command Assistant tab so that
it easily shows more information.

$¢ « |GROUP_BY NAME(ZEMPDATA) FIELDS()
o

NAME | 2EMPDATA | «
- FIELDS
S e T— Commands Variables Fields by File
Mew qualification ZADDRESS]
Mame
" ADDRESS1
® ADDRE
" ADDRESS3
® DEPTMENT
" EMPMO

7. Select the Fields by File tab and enter PSL in the Filter / File Name:

= $¢ ~/ [GROUP_BY NAME(2EMPDATA) FIELDS()
MNAME FEMPDATA

© |- FIELDS

: Fields and Attributes

4

Commands | Variables | Fields by File Repository Fields | Groups and Lists
—Result value filters

File name File description Library name
psl *first
Item Description Details
PSLEVENT Personnel Event Log DC@DE...
*) PSLEVENTA PSLEVENT by event da... DC@DE..
> | PSLEVENTE PSLEVENT by type, dat.. DC@DE..

8. Expand the file PSLMST and hold down the Shift key, select EMPNO and
then PHONEBUS and press Enter. Your Assistant dialog should now look
like the following:

% 3¢ «/ |GROUP_BY NAME(¥EMPDATA) FIELDS(ZEMPNO #SURNAME #GIVENAME #ADDRESSL #ADDRESS2 #ADDRESS3 #POSTCODE #PHOMEHME)

B NAME SEMBDATR l
: |- FIELDS | -‘fSURNAME#GNEN_i
= Fields and Attributes —— Commands Variables Fields by File ' Repository Fields = Groups and Lists | Special Values
Fields and Attributes #SURNAME Mew qualification #ADDRESS]
Fields and Attributes FGIVENAME Marne Description
EiEkE: and Attnbirtes FADDRESSE ® ADDRESS Street No and Name
Ef*::s E": f\:’fs“:ﬂ iiggg:; ® ADDRESS2 Suburb or Town
ields an ributes
Fi = ¥ ® ADDRESS3 State and Country
ields and Attributes #POSTCODE ® DEPTMENT Depart t Cod
Fields and Attributes #PHONEHME - Spofimer, Loce
Fields and Attributes . Emplayee Number
® GIVENAME Employee Given Name(s)
® PHOMEBUS Business Phone Mumber
® PHONEHME Home Phone Number

9. Position the cursor in the empty Fields and Attributes entry below
PHONEBUS.

10. Select Fields by File again and select the group of field from DEPTMENT
to STARTDTE and press enter. Your Command Assistant dialog should now
look like the following:

= W GROUP_BY NAMEFEMPDATA) FIELDS(FEMPMO #5URNAME #GIVENAME #ADDRESS1 #ADDRESSZ #ADD

MNAME ZEMPDATA I 4
- FIELDS ZEMPMNO #5URNAME #GIVEI -) i |
Fields and Attibuies 2EMPNO Commands | Variables | Fields by File ' Reposi
Fields and Attributes #SURNAME New gualification #DEPTMENT
Fields and Attributes #GIVEMAME Marme
F?elds and Attr?butes I:ADDRESSI ® ADDRESS]
F!elds and Attr!butes -’:IADDRESSE = ® ADDRESS2
F?elds and Attr?butes Jl_'ADDRESS3 ® ADDRESS3
Fields and Attributes #POSTCODE ® DEPTMENT
Fields and Attributes FPHOMEHME
Fields and Attributes #PHOMEBUS B EMPNO
Fields and Attributes | EDEPTMENT |+ E GIVENAME
Fields and Attributes ;SECT'I_ON — # PHOMEBUS
: Fields and Attributes FSALARY = 1

11. Click on the tick highlighted above and close the Command Assistant. Your
Group_by should look like the following:

Group_By Name(#EMPDATA) Fields(#EMPNO #SURNAME #GIVENAME

12. Add an INSERT command to the SAVE.Click event routine. This should
insert the Group_by EMPDATA to the file PSLMST. Your event routines
code should look like the following:

Evtroutine Handling(#SAVE.Click)
Insert Fields(#EMPDATA) To_File(PSLMST)
Endroutine

13. Compile your form and execute it.

14. Without entering any data, click the Save button; Your form should look like
the following:

W Add Employee =NACE X

Employee Mumber
Employee Surname
Employee Given Mame(s)
Street Mo and Name
Suburb or Town

State and Country
Post / Zip Code

Horme Phone Number
Business Phone Mumber
Department Code
Section Code

Employee Salary
Start Date (DDMMYY) | 000000

Close

Employee number not in range "A0000" to "A9999" | v |-

15. Click on the ~ down icon on the Status Bar to see all the validation error
messages.

Having completed the Fundamentals Repository module you should know
that the error messages have been generated by the file OAM.

Error messages are automatically routed to the Status Bar. Fields with
validation errors are automatically highlighted.

16. The INSERT command has a default parameter
VAL_ERROR(*LASTDISPLAY). In a form this will branch to the
ENDROUTINE for the event or method routine. To demonstrate this point,

add the following MESSAGE command after the INSERT command in the
SAVE.Click event routine.

Message Msgtxt("This message only displayed on successful INSERT")

Recompile your form and retest "add a blank record". Scroll to the end of the
status bar messages. The above message will not be shown.

In your applications, you will often change the validation error parameter on
I/O commands to VAL_ERROR(*Next), so that your own logic can handle
error conditions.

17. Insert valid data to add a new employee. Employee numbers in the series
starting A2000 should be available.

Note: Post/Zip code must be in the range 2000 to 7999 (Australian).
Department codes ADM, FLT, GRP, MKT and SLS should exist with
Sections codes of 01, 02 and 03.

Observe that your "This message displayed on successful INSERT" is now
displayed.

Note also that at this stage the fields have not been re-initialized.
18. Change the message following the INSERT command as follows:
Message Msgtxt('Employee number ' + #EMPNO + ' has been added")

Note that RDMLX enables this style of code to be written.

In your own applications you will usually use a message file message for this
type of feedback.

19. After the INSERT, add code to reset the employee fields to their default
values, using the Group_by:

#EMPDATA := *default

20. Recompile your form and retest it by adding another employee record. All
field values should be reset to their default values as defined in their
Repository field definitions, in this case they are all blank or zeroes.

Note that your new message Employee number A9999 has been added is
displayed in the status bar.

21. With your form still running after the successful insert, try to insert another
blank record. Review the status bar messages and note that the "Employee

number A9999 has been added" has been cleared.
An event routine has an OPTIONS setting with default values as follows:
Evtroutine Handling(#SAVE.Click) options(*CLEARERRORS *CLEARMES

Each time an event routine is executed, by default, it clears field errors and
messages.

Step 4. Using a Busy Cursor

Your applications should provide good feedback to the user, for example when
routine will take more than a few seconds to complete. This step illustrates how
to implement a Busy Cursor. Of course, in reality you wouldn't need this for a
routine which performs a single record add.

1. Event handling routines have a Com_Cursor() parameter which may have
values of:

DEFAULT, *DELAY_01, *DELAY_02, *DELAY_04, *IMMEDIATE or
*NEVER

The DELAY values are seconds.
2. Change the SAVE.Click routine to have Com_Cursor(*IMMEDIATE).

3. Use a Begin_Loop/End_Loop to add a delay at the start of the SAVE.Click
routine. For example, your routine could look like the following:

Evtroutine Handling(#SAVE.Click) Com_Cursor(*IMMEDIATE)
#std num :=0
Begin_Loop Using(#std_num) To(5000000)
#std num +=1
End_Loop
Insert Fields(#empdata) To_File(pslmst)

Message Msgtxt('Employee number ' + #EMPNO + ' has been added")
#empdata := *default
Endroutine

Note: You may need to use To(10,000,000) for the Begin_Loop if you have a
fast PC, in order to produce an noticeable delay.

Alternatively, you could have added a loop structure using
DOWHILE/ENDWHILE or DOUNTIL/ENDUNTIL.

4. Recompile your form and test it, for example by trying to add a blank record.
You should see the busy cursor displayed for a few seconds every time:

(1 ° Add Employee (Fid Hesquadingg) w

Emploges Mumbes
Employes Sumame
Employes Gren Namelz)
Street No and Mame
Suburd oo Town

State and Countiy

Post / Zip Code i}
Home Frone Number
Busness Phone Mumbes
Departmeant Code
Section Code

s C)
Start Dste DDMMTY) 00000 [—
Clozs

Other "delay" feedback techniques available include a Progress Bar
component and showing "stop" and "go" images.

Summary

Important Observations

GROUP_BY's define a set of fields and simplify your code and reduce
future maintenance effort

The MESSAGE command can display text messages or display a message
from a message file

Database command have a VAL_ERROR() parameter, with a default value
of *LASTDISPLAY. On error, this setting will branch to the routines
EndRoutine statement.

Event handling routines have a Com_Cursor parameter, which enables "busy
cursor" to be implemented.

Tips & Techniques

Always use the Command Assistant with commands such as GROUP_BY
which require a list of field names

Always consider whether to provide the user with additional feedback such
as "busy cursor".

What I Should Know

How to define a GROUP_BY command

How to define a MESSAGE command

How to use the INSERT command

How to define a BEGIN_LOOP/END_LOOP command

How to use the Status Bar component to display application messages
How to implement "busy cursor"

Be aware of other forms of "delay" feedback are available.

FRMO035 - Maintain a Simple Database Table

Objectives:

e To introduce the most common forms of database access including the
following commands:

e FETCH
e INSERT
e UPDATE
e DELETE.

e To learn about error handling using the [IF_STATUS command when using
file operations.

e To learn how to use some of the program level validations commands:
e BEGINCHECK / ENDCHECK

e CALLCHECK

e CONDCHECK

e DATECHECK

e FILECHECK

e RANGECHECK

e VALUECHECK

e [F_ERROR, SET_ERROR.

e To understand how program validations relate to the repository validation
performed by the Object Access Modules.

¢ To understand how to use a Built-In Function (BIF) to display a message box
with user confirmation.

e To create a simple application to maintain the DEPTAB file.

s)
i Department Maintenance Elﬂlﬂ

A0M

Department Dezcription A0RINISTRATOR DEPT

Standard Mumber]

. — = A

To achieve these objectives, you need to complete the following:
Step 1. Create a Department Maintenance Form

Step 2. Fetch Existing Data from a File

Step 3. Insert Data to a File

Step 4. Add Program Level Validations

Step 5. Update Data in a File

Step 6. Delete Data from the File

Step 7. Update and Delete Last Record Read

Summary

Before You Begin:

In order to complete this exercise, you should have completed the previous
exercise.

You may wish to review the following topics in the Technical Reference Guide:
e RDML Commands

and
e RDMLX Commands and RDMLX Features.

its:lansa015.CHM::/lansa/tgub2_begin.HTM
its:lansa015.chm::/Lansa/TGUB3_BEGIN.htm

Step 1. Create a Department Maintenance Form

In this step you will create a simple form to fetch a record from the Department
file.

In the later steps, you will add insert, update and delete operations to this form
to build a complete maintenance application.

1. Create a new, basic form named iiiMntDept Database Access (where iii are
your course assigned initials). If you are using iii=DEM, your component
must be named DEMCOMO3.

2. Using the Repository tab, locate the DEPTAB file. Notice that the file has
two fields DEPTMENT and DEPTDESC. The file is keyed on DEPTMENT.

Repository
B Repository =
New Al = | Y
Itemn Description
= DC@wll L4W3 - Banner Details
= DC@wl2 L4WS - LAMSA system table
= DC@Wld Web Event Links
= DC@xil #ML Page Header
= DC@X02 XML Page Detail
= DC@x03 AML Component Registry
= DC@KAA XML Application
= DC@XAP AML Application Property
= DC@AXPR XML Property
= DC@XPY AML Property Value
4 DEPTAE Department code table

DEPTMEMNT Department Code
= DEPTDESC Department Description

3. Drag and drop the DEPTMENT and DEPTDESC fields on to the form.

4. Add a Status Bar to the form so that validation error messages can be
displayed.

5. Add a Push Button to the form.
a. Set the button Name and Caption to Fetch.
b. Create a Click event routine for the Fetch button.

6. Your form should appear like this:

atbBcCdDeE fFgGhHilKkEILmb nM o0 pPolR e SET ull v iawiddyy'ze

Step 2. Fetch Existing Data from a File

In this step you will use the FETCH command to retrieve a single record from
the database. You should notice that there are no OPEN or CLOSE statements

required for the file. File opening and closing is handled automatically by
LANSA.

1. In the FETCH.Click event routine, add a FETCH command to retrieve the
DEPTMENT and DEPTDESC fields from the DEPTAB file. For this first
example, you want to FETCH the record where DEPTMENT="ADM'.

Your code should appear as follows:

EVTROUTINE HANDLING(#FETCH.Click)

FETCH FIELDS(#DEPTMENT #DEPTDESC) FROM_FILE(DEPTAB) \
ENDROUTINE

Reminder: You can use F1 to display the online help for more details about
commands.

2. Compile and execute the form.

a. Press the Fetch button.

The record for department ADM is read from the database and the result
displayed on the form. If for some reason this record does not exist, a
message is automatically issued due to the ISSUE_MSG(*YES) parameter
on the FETCH command . In your own applications you will usually want
to remove this option and add your own error handling.

-

| Department Maintenance =NRTN X
Department Code A0k
Department Dezcription ADMIMISTRATOR DEPT

&

3. Typically, you want to allow the user to enter a Department Code for the
record to be read. The value that the user has entered for the DEPTMENT
field on the form will be used to fetch the record.

If the record is not found, appropriate error messages must be displayed to

the user. Review the use of the IF_ STATUS command to check that the

FETCH was successful.

I/0 Command Return Codes Table

Command

INSERT
UPDATE
FETCH
SELECT
WHERE
FILECHECK
CHECK_FOR
DELETE

1/0
Error

ER
ER
ER
ER

ER

Dictionary
Validation

VE*
VE

VE

Not
Found

NR
NR
EF#

NE
NE
NR

Found Or
Completed

OK
OK
OK
OK
OK
EQ
EQ
OK

* An attempted INSERT with a duplicate key will return VE.

A SELECT command using a WHERE parameter will select each record and
test for the condition. When the last record is selected, the processing will leave
the SELECT loop with the data from the last record selected. This record may
not have met the WHERE condition.

Your finished code should appear as follows:

EVTROUTINE HANDLING(#FETCH.Click)
FETCH FIELDS(#DEPTMENT #DEPTDESC) FROM_FILE(DEPTAB) \
IF_STATUS IS_NOT(*OKAY)

MESSAGE MSGTXT('Error retrieving Department')

ENDIF

ENDROUTINE

4. Compile and execute the form.

a. Leave the Department Code blank and press the Fetch button.

The error message will be displayed.

Department Code I:I

Department Dezcription |

Error retrieving department

b. Enter a Department Code of ADM and press the Fetch button.

The ADM record is read from the database and the result displayed on the
form.

Department Code A0k

Department Dezcription | ADMIMISTRATOR DEPT

5. Close the form.

Step 3. Insert Data to a File

In this step you will let the user insert new data into the DEPTAB file.

You will add an Insert push button to the form along with the STD_NUM field.
The STD_NUM field is not used in the DEPTAB file but will used to help
demonstrate program level validation rules. You will also use a GROUP_BY
statement to simplify the code in your form.

1. Drag and drop the STD_NUM field to the form.
2. Drag and drop a push button to the form.
a. Set the button Name and Caption to INSERT.
b. Create a Click event routine for the INSERT button.

Note: The controls on a form (fields, push buttons etc) have a TabPosition
property. You as you add controls to the form you should ensure their

TabPosition is set to an appropriate value. For example the three fields should
be TabPosition = 1,2 and 3

3. Your form should appear like this:

atbBcCdDeE (FgGhHilkEILmbnM o0 pPolR e SET ull v iawiddyy'ze

4. For each of the database commands, you will be including a list of fields to
fetch, insert, update and delete. To simplify your I/O statements, add a

GROUP_BY command after your DEFINE_COM statements so that you
can refer to all the fields by the group name:

GROUP_BY NAME#FORMDATA) FIELDS(#DEPTMENT #DEPTDESC
#STD_NUM)

Once added, you change the FETCH command as follows:
FETCH FIELDS(#fORMDATA) FROM_FILE(DEPTAB)

WITH_KEY (#DEPTMENT)

Notice that the STD_NUM field can be included in the GROUP_BY
used by the FETCH even though it is not a field in the DEPTAB file. In

database operations the STD_NUM field will be ignored, but used in other
operations where the group is used.

5. In the INSERT.Click event routine, add an INSERT command to add a
new record to the file.

Remember to add the appropriate error checking. Once the INSERT
completes successfully, all fields on the form should be reset to their
repository defaults.

Your finished code should appear as follows:

EVTROUTINE HANDLING(#INSERT.Click)

INSERT FIELDS(#f ORMDATA) TO_FILE(DEPTAB)
IF_STATUS IS(*OKAY)

MESSAGE MSGTXT('Department inserted successfully")
#FORMDATA := *DEFAULT

ELSE

IF_STATUS IS(*ERROR)

MESSAGE MSGTXT('Error inserting Department')
ENDIF

ENDIF

ENDROUTINE

Note that the INSERT command has many parameters which are not shown
in the editor when their default values are used. The INSERT command you
have created looks like this with default values shown:

INSERT FIELDS(#FORMDATA) TO_FILE(DEPTAB) I0_STATUS(*STATU
VAL_ERROR(*LASTDIS) ISSUE_MSG(*NO) RETURN_RRN(*NONE) CE
AUTOCOMMIT(*FILEDEF)

6. Compile and execute the form.

a. Leave the Department Code and Description blank and press the Insert
button.

Notice that fields in error are highlighted and error messages are

displayed.

L] Database Maintenance — =
Department Code _ Fetch
Department Dezcription _

Standard Mumber 1]
|Department code iz required -

b. Review the error messages. They are caused by the validation rules in the
Repository. When the INSERT fails due to these repository errors, the
program automatically returns to the last display. This is controlled by the
default VAL_ERROR(*LASTDIS) parameter on the INSERT command.

c. Enter a Department Code of ADM and press the Fetch button to retrieve
an existing record.

d. Press the Insert button to try to duplicate this data in the database.

Notice that no fields are highlighted in error as the repository validation
rules have been satisfied. The error message is automatically generated by

LANSA.
] Database Maintenance - =]
Department Code A0k Fetch
Department Dezcription Adminiztration
Standard Mumber]

Record with thiz "key" already exists in file DEFTAB from DEVDE=LIE

e. Enter a Department Code of III (where iii = your initials) and enter your
name for the Department Description. Enter the number 999 into Standard
Number. Press the Insert button.

(Remember STD_NUM is not used in the DEPTAB file.)

The new record should be inserted into the database, a message displayed,
and all fields reset to their default.

7. Close the form.

Step 4. Add Program Level Validations

In this step you will learn how to create program level validations using code
within a BEGINCHECK/ENDCHECK block.

Note that this exercise is just an example created to explain validation
commands. Most of your validation rules will be placed in the Repository as
part of the file definitions. You may also design your forms to reduce the
number and types of program validations required. For instance, a drop down
list box provides a list of values so that VALUECHECK is not required.

1. Add a validation check that ensures the Department Code does not contain
any embedded blanks.

For example, 'A A' should not be allowed as a valid code. Use a
CONDCHECK statement within a BEGINCHECK / ENDCHECK block and
the CONTALINS intrinsic field method to search for blank characters.

Add the following code immediately before the INSERT command in the
INSERT.Click event routine:

BEGINCHECK
CONDCHECK FIELD#DEPTMENT) COND(#DEPTMENT.Contains('')) I

IF_FALSE(*NEXT) MSGTXT('Code cannot contain embedded blanks.")
ENDCHECK

Note: CONDCHECK. IF_FALSE(..... is a single command, on a
single line. It is shown here on two lines due to space limitations. You should
type CONDCHECK and then use the Command Assistant (F4) to complete
this code.

2. Compile and execute the form.

a. Enter a Department Code that includes a blank space and press the Insert
button.

Notice the field in error and the error message.

u Database Maintenance = &

Department Code _ Fetch

Department Dezcription Department A

Standard Mumber]

Code cannot contain embedded blanks.

The repository validation rules (checking that Department Description is
not blank) have not been invoked because the INSERT command has not
yet been executed because of the error detected in
BEGINCHECK/ENDCHECK.

3. Close the form.

4. Another option to using the CONDCHECK is to use a simple IF statement
combined with the SET_ERROR command. Using SET_ERROR allows
more than one field to be set in error.

a. Add a rule that checks that the user has not entered the same values for
the DEPTMENT and DEPTDESC fields. If they are the same, set both
fields in error.

BEGINCHECK
CONDCHECK FIELD#DEPTMENT) COND#DEPTMENT.Contains("'")) I
IF_FALSE(*NEXT) MSGTXT('Code cannot contain embedded blanks.")

I[F COND#DEPTMENT *EQ #DEPTDESC)

SET_ERROR FOR_FIELD#DEPTMENT #DEPTDESC) MSGTXT('Departmer
as Department Description.')

ENDIF

ENDCHECK

5. Add a RANGECHECK validation to check if STD _NUM is between 1 and
10.

Remember this field is not used in the DEPTAB file. You are simply using
program level validations to check the values of the fields on the screen.

RANGECHECK FIELD#STD_NUM) RANGE((1 10)) MSGTXT('Must be
in range 1 to 10.")

6. Add a VALUECHECK validation to check if the DEPTDESC field is in a list
of reserved values NONE, END or LAST.

VALUECHECK FIELD#DEPTDESC) WITH_LIST(NONE END LAST) IN_
NOT_INLIST(*NEXT) MSGTXT('This description is reserved.")

7. Finally, check that the Department Code does not already exist in the file
DEPTAB. Note that this check is not necessary as duplicate key fields are
automatically checked based on the file attributes. This is just an example.
Typically, you might check that the field is present in a different file.

FILECHECK FIELD(#DEPTMENT) USING_FILE(DEPTAB) USING_KEY(
NOT_FOUND(*NEXT) MSGTXT('Department Code already exists.")

Your finished validation code should appear as follows:

BEGINCHECK

FILECHECK FIELD(#DEPTMENT) USING_FILE(DEPTAB) USING_KEY(
NOT_FOUND(*NEXT) MSGTXT('Department Code already exists.")
VALUECHECK FIELD#DEPTDESC) WITH_LIST(NONE END LAST) IN_
NOT_INLIST(*NEXT) MSGTXT('This description is reserved.")
RANGECHECK FIELD(#STD_NUM) RANGE((1 10)) MSGTXT('Must be ir
CONDCHECK FIELD#DEPTMENT) COND#DEPTMENT.Contains("'")) I
IF_FALSE(*NEXT) MSGTXT('Code cannot contain embedded blanks.")

IF COND#DEPTMENT *EQ #DEPTDESC)

SET_ERROR FOR_FIELD#DEPTMENT #DEPTDESC) MSGTXT('Departn
ENDIF

ENDCHECK

8. Compile and execute the form.

a. Enter a Department Code of ADM and a Description of XYZ. Leave the
STD_NUM as 0 and press the Insert button.

b. Notice the fields in error and scroll through the error messages displayed.

u Database Maintenance — =

Department Dezcription

Standard Mumber

Department Code _
MYz

Department Code already exists. -

c. Try entering identical values for the Department Code and Description.
9. Close the form.

It is recommended that you review information about other validation
commands. Using the LANSA Technical Reference, you should review the
CALLCHECK and DATECHECK commands.

its:lansa015.chm::/Lansa/CALLCHECK.htm
its:lansa015.chm::/Lansa/DATECHECK.htm

Step 5. Update Data in a File

In this step you will add an Update button to your form in order to update an
existing record in the file.

In this first example, you will update using the key to the file. In Step 7. Update
and Delete Last

Record, you will modify the form to update the record that was fetched.
1. Drag and drop a push button to the form.

a. Set the button Name and Caption to UPDATE.
b. Create a Click event routine for the UPDATE button.
2. Your form should appear like this:

& - =
. Departrnent Cade [1 | |ABCD o]
- Department Description” - - |aAbBcCdDeEfFgGhHIl) |~ -- 7 -
Lo e 1 ipdate
e o se7 [e
..................................] ™ m .
St et A,
... (e ——— %
aAbBCLADEERFgGRHIIKILmMnNoOpPaORsS Ty Yaz: - 1|~ [4 |

3. In the UPDATE.Click event routine, add an UPDATE command to update an
existing record in the DEPTAB file. Remember to add the appropriate status
error checking. Once the UPDATE completes successfully, all fields on the
form should be reset to their repository defaults.

Your finished code should appear as follows:

EVTROUTINE HANDLING(#UPDATE.Click)

UPDATE FIELDS(#f ORMDATA) IN_FILE(DEPTAB) WITH_KEY (#DE
IF_STATUS IS(*OKAY)

MESSAGE MSGTXT('Department updated successfully’)
#FORMDATA := *DEFAULT

ELSE

IF_STATUS IS(*NORECORD)

MESSAGE MSGTXT('Department not found')

ELSE

IF_STATUS IS(*ERROR)

MESSAGE MSGTXT('Error updating Department')

ENDIF
ENDIF
ENDIF
ENDROUTINE

4. Compile and execute the form.
a. Fetch your III test record that you inserted in Step 3. Insert Data to a File.
b. Change the Description to XYZ and press the Update button.

P
| Department Maintenance

Department Code

Department Dezcription

Standard Mumber]

i |

Department updated succeszsfully

LS &

Notice that the program validations you added on the DEPTDESC field in
the previous step are only applied when a new record is inserted with the
INSERT command, but not when the record is changed with the UPDATE
command. If you wanted the rules to be applied to both INSERT and
UPDATE, the best solution would be to place this rule in the Repository.

5. Close the form.

6. Using the [F_STATUS command is the recommended technique for checking
the status of file operations. An alternative technique is to use the IO$STS
field or another field to store the status code. For example:

DEFINE FIELD(#RETCODE) TYPE(*CHAR) LENGTH(2)
UPDATE FIELDS(#FORMDATA) IN_FILE(DEPTAB) I0_STATUS(#RETC(

You can now check the value of RETCODE to determine the status returned
by the update. You could use a CASE statement as follows:

CASE OF_FIELD#RETCODE)

WHEN VALUE_IS(= OK)

MESSAGE MSGTXT('Department updated successfully")
WHEN VALUE_IS(= NR)

MESSAGE MSGTXT('Department not found")
WHEN VALUE_IS(= ER)

MESSAGE MSGTXT('Error updating Department')
WHEN VALUE_IS(= EF)

MESSAGE MSGTXT('End of file.")

WHEN VALUE_IS(= BF)

MESSAGE MSGTXT('Beginning of file.")

WHEN VALUE_IS(= EQ)

MESSAGE MSGTXT('Equal key found.")

WHEN VALUE_IS(= NE)

MESSAGE MSGTXT('No equal key found.")
OTHERWISE

MESSAGE MSGTXT('"Unidentified file operation return code.")
ENDCASE

Note that if you do not explicitly specify the IO_STATUS option, the return
code is automatically stored in the IO$STS field. You can use a CASE
statement with this field instead:

CASE OF_FIELD(#I0$STS)
WHEN VALUE_IS(= OK)

ENDCASE

Step 6. Delete Data from the File

In this step you will add a Delete button to your form in order to delete an
existing record in the file.

1. Drag and drop a push button to the form.
a. Set the button Name and Caption to DELETE.
b. Create a Click event routine for the Delete button.

2. Your form should appear like this:

atbBcCdDeE (FgGhHilKkEILmb nM o0 pPgliR e SET ull W iawiddyy'ze

3. In the Delete.Click event routine, add a DELETE command to delete a
record from the file. Remember to add the appropriate status error checking.
Once the DELETE completes, all fields on the form should be reset to their
repository defaults.

Your finished code should appear as follows:

EVTROUTINE HANDLING(#DELETE.Click)

DELETE FROM_FILE(DEPTAB) WITH_KEY(#DEPTMENT)
IF_STATUS IS(*OKAY)

MESSAGE MSGTXT('Department deleted successfully’)
#FORMDATA := *DEFAULT

ELSE

IF_STATUS IS(*NORECORD)

MESSAGE MSGTXT('Department not found')

ELSE

IF_STATUS IS(*ERROR)

MESSAGE MSGTXT('Error deleting Department')
ENDIF

ENDIF

ENDIF
ENDROUTINE

4. Compile and execute the form.
a. Enter a Department Code of III (your test record) and press the Delete
button.

u Database Maintenance — =

Department Code

Department Dezcription

Standard Mumber]

Department deleted successfully

5. In many applications, users are prompted to confirm that the record is to be
deleted. You can add this message using the LANSA Built-In Function
MESSAGE_BOX_SHOW.

a. To accept the user response, you need to define a new field as follows:
DEFINE FIELD(#ANSWER) TYPE(*CHAR) LENGTH(6)

b. In the DELETE.Click event routine, invoke the
MESSAGE_BOX_SHOW Built-In Function by adding the following USE
command to the very start of the routine:

USE BUILTIN(MESSAGE_BOX_SHOW) WITH_ARGS(YESNOCANCEL]
'Are you sure you want to delete?") TO_GET(#ANSWER)

c. Immediately after the USE command, check the value of #ANSWER. If
the answer is YES, proceed to delete the record.

Your finished code should appear as follows:

EVTROUTINE HANDLING((#DELETE.Click)

USE BUILTIN(MESSAGE_BOX_SHOW) WITH_ARGS(YESNOCANCI
'Are your sure you want to delete?') TO_GET(#ANSWER)

IF COND(#ANSWER = YES)

DELETE FROM_FILE(DEPTAB) WITH_KEY(#DEPTMENT) IF_STATUS 1]
MESSAGE MSGTXT('Department deleted successfully")
#FORMDATA := *DEFAULT

ELSE

IF_STATUS IS(*NORECORD)

MESSAGE MSGTXT('Department not found")

ELSE

IF_STATUS IS(*ERROR)

MESSAGE MSGTXT('Error deleting Department')
ENDIF

ENDIF

ENDIF

ENDIF

ENDROUTINE

You should review the documentation for the MESSAGE_BOX_ SHOW
Built in Function in the Technical Reference Guide. It can also be used with
MESSAGE_BOX_ADD and MESSAGE_BOX_APPEND Built in Functions
to output a message box containing more text.

6. Compile and execute the form.
a. Insert some new test data.
b. Fetch your test record and press the Delete button.

A confirmation message is displayed.

Confirm Delete

9 Are you sure you want to delete?

7. Close the form.

its:lansa015.CHM::/LANSA/MESSAGE_BOX_SHOW.HTM

Step 7. Update and Delete Last Record Read
In this step you will learn about updating and deleting based on the last record
fetched instead of using the WITH_KEY parameter.

In order to use the last record read, it is important that users cannot change the
key once a record has been fetched. It is equally important that a FETCH has
been performed before the update or delete is requested. In order to ensure this,
you need to enable and disabled fields and buttons at the appropriate times.

A new Clear button must also be added to allow the user to reset the form after
a record has been fetched.

1. Drop a push button onto the form.

a. Set the button Name and Caption to CLEAR.

b. Create a Click event routine for the CLEAR button.
2. Your form should appear like this:

3. To centralize your code, you will create a SUBROUTINE that can be called
whenever the form needs to be reset. This subroutine needs to reset all fields
to their default values and enable the Fetch and Insert buttons, as well as the
DEPTMENT field. The Update and Delete buttons are disabled until a record
has been fetched.

Your code should appear as follows:

SUBROUTINE NAME(INITFORM)

#FORMDATA := *DEFAULT

#UPDATE.Enabled #DELETE.Enabled := False
#DEPTMENT.Enabled #FETCH.Enabled #INSERT.Enabled := True
ENDROUTINE

4. In the CLEAR.Click event routine, execute your INITFORM subroutine.
Your finished code should appear as follows:

EVTROUTINE HANDLING(#CLEAR.Click)
EXECUTE SUBROUTINE(INITFORM)
ENDROUTINE

5. In the form's Initialize event routine, execute your INITFORM subroutine.

EVTROUTINE HANDLING (#com_owner.Initialize)
SET COM(#com_owner) CAPTION(*component_desc)
EXECUTE SUBROUTINE(INITFORM)
ENDROUTINE

6. Change the FETCH.Click event routine code so that the Department
Description field, Fetch and Insert button are disabled, and the Update and
Delete buttons are enabled if a record has been successfully retrieved.

Your finished code should appear something like the following:

EVTROUTINE HANDLING(#FETCH.Click)

FETCH FIELDS(#DEPTMENT #DEPTDESC) FROM_FILE(DEPTAB) WIT
[F_STATUS IS_NOT(*OKAY)

MESSAGE MSGTXT('Error retrieving Department')

ELSE

#DEPTMENT.Enabled #FETCH.Enabled #INSERT.Enabled := False
#UPDATE.Enabled #DELETE.Enabled := True

ENDIF

ENDROUTINE

7. Remove the WITH_KEY parameter on the UPDATE and DELETE
commands. The commands should appear simply as follows:

UPDATE FIELDS(#FORMDATA) IN_FILE(DEPTAB)

DELETE FROM_FILE(DEPTAB)

Also, after the update or delete has completed successfully, be sure to
execute your INITFORMS subroutine.

FRMO035 — Appendix contains a complete sample solution for form
iiiMntDept.

8. Compile and execute the form.

When the form first appears, only Fetch, Insert and Clear are allowed.

] Database Maintenance — =
Department Code | Fetch
Department Dezcription —
Standard Mumber]
Clear
a. Add some new test data.
b. Fetch one of your newly inserted records.
] Database Maintenance — =
M
Department Dezcription
Standard Mumber]
|lpdate
Clear
Delete

The Update and Delete buttons are now enabled while the Fetch and Insert
buttons are disabled.

The Department Code is disabled to prevent the user from changing this
code. You can now Update the record or Delete it. The Clear button will reset
the form so that a different record can be fetched or more records inserted.

9. Close your form and close the form in the editor.

Summary

Important Observations

GROUP_BY commands help you simplify your code.

You should always check the I/O status after performing database
operations. The IF_STATUS command supports *OKAY, *ERROR,
*VALERROR, *NORECORD, *ENDFILE, *BEGINFILE, *EQUALKEY,
*NOTEQUALKEY.

Program level validation rules can be added using a BEGINCHECK /
ENDCHECK and related validation commands CALLCHECK,
CONDCHECK, DATECHECK, FILECHECK, RANGECHECK,
VALUECHECK, IF_ERROR, SET_ERROR.

A record should be fetched from the database prior to updating or deleting
the record if you are not using a key to identify the record. For more details
about cross-update and delete, please search for Cross Update notes in the
Technical Reference Guide. For example see UPDATE Comments / Warnings
/ Understand UPDATE Command.

LANSA provides many Built-In Functions that can be used to perform
specialized tasks in LANSA. Intrinsic field methods can be used in place of
many of these Built in Functions.

Tips & Techniques

The CHECK_ONLY parameter on file commands allows you to check what
would happen if the file operation is performed but the operation is not
actually performed. For example, you can use CHECK_ONLY (*YES) on
the delete command to check if a record can be deleted from a file without
actually performing the delete.

The ISSUE_MSG parameter on the FETCH commands will only display a
message if a record is not found. It is generally better to check the IO$STS
or use the IF_STATUS and then display messages to the user.

Typically, you do not need to open or close files in LANSA applications. In
special circumstances, such as large application with hundreds of files being
accessed, you may wish to use the OPEN and CLOSE statements.

Special values can be used with the database commands such as FETCH,
INSERT and UPDATE. For example, the following values can be used with
the FETCH command:

e *ALL specifies that all fields from the currently active file be fetched.

e *ALL_REAL specifies that all real fields from the currently active file be
fetched.

e *ALL_VIRT specifies that all virtual fields from the currently active file
be fetched.

e *EXCLUDING specifies that fields following this special value must be
excluded from the field list.

e *INCLUDING specifies that fields following this special value must be
included in the field list. This special value is only required after an
*EXCLUDING entry has caused the field list to be in exclusion mode.

It is strongly recommended that the special values *ALL, *ALL_REAL or
*ALL_VIRT be used sparingly and only when really required. Fetching
fields which are not needed causes the function to retrieve and map fields
unnecessarily, invalidates cross-reference details (shows fields which are not
used in the function) and increases the Crude Entity Complexity Rating of
the function.

Most of your validation checks should be performed using file level
validation rules in the Repository. Your program level validations support
*ERROR, *NEXT and *ACCEPT processing similar to the repository
checks.

What You Should Know

How to use the FETCH, INSERT, UPDATE and DELETE database
commands.

How to handle errors using the IF_STATUS command when performing file
operations.

How to code program level validations using BEGINCHECK /

ENDCHECK, CONDCHECK, FILECHECK, RANGECHECK,
VALUECHECK, IF_ERROR, and SET_ERROR.

How program validations relate to the repository validation performed by the
Object Access Modules.

How to use a Built-In Function to display a message box with user
confirmation.

FRMO035 — Appendix

Your finished code for form iiiMntDept should appear something like the
following:

FUNCTION OPTIONS(*DIRECT)

BEGIN_COM ROLE(*EXTENDS #PRIM_FORM) CLIENTHEIGHT(174)
CLIENTWIDTH(500) HEIGHT(212) LEFT(416) TOP(250) WIDTH(516)
DEFINE_COM CLASS#DEPTMENT. Visual) NAME#DEPTMENT)
DISPLAYPOSITION(1) HEIGHT(19) LEFT(16) PARENT(#COM_OWNER)
TABPOSITION(1) TOP(8) USEPICKLIST(False) WIDTH(201)
DEFINE_COM CLASS#DEPTDESC.Visual) NAME(#DEPTDESC)
DISPLAYPOSITION(2) HEIGHT(19) LEFT(16) PARENT(#COM_OWNER)
TABPOSITION(2) TOP(32) WIDTH(324)

DEFINE_COM CLASS(#PRIM_STBR) NAME(#STBR_1)
DISPLAYPOSITION(3) HEIGHT(24) LEFT(0) MESSAGEPOSITION(1)
PARENT(#COM_OWNER) TABPOSITION(3) TABSTOP(False) TOP(150)
WIDTH(500)

DEFINE_COM CLASS(#STD_NUM.Visual) NAME(#STD_NUM)
CAPTION(Insert') DISPLAYPOSITION(4) LEFT(16)
PARENT(#COM_OWNER) TABPOSITION(4) TOP(64)

DEFINE_COM CLASS(#PRIM_PHBN) NAME(#UPDATE)
CAPTION('Update’) DISPLAYPOSITION(5) LEFT(389)
PARENT(#COM_OWNER) TABPOSITION(5) TOP(78)

DEFINE_COM CLASS(#PRIM_PHBN) NAME#DELETE)
CAPTION('Delete') DISPLAYPOSITION(6) LEFT(389)
PARENT(#COM_OWNER) TABPOSITION(6) TOP(112)

DEFINE_COM CLASS(#PRIM_PHBN) NAME(#CLEAR)
CAPTION('Clear') DISPLAYPOSITION(7) LEFT(168)
PARENT(#COM_OWNER) TABPOSITION(7) TOP(96)

DEFINE_COM CLASS(#PRIM_PHBN) NAME (#insert) CAPTION('Insert")
DISPLAYPOSITION(8) HEIGHT(26) LEFT(389)
PARENT(#COM_OWNER) TABPOSITION(8) TOP(40)

DEFINE_COM CLASS(#PRIM_PHBN) NAME (#Fetch) CAPTION('Fetch')
DISPLAYPOSITION(9) HEIGHT(26) LEFT(389)
PARENT(#COM_OWNER) TABPOSITION(9) TOP(8)

GROUP_BY NAME#FORMDATA) FIELDS(#DEPTMENT #DEPTDESC
#STD_NUM)

DEFINE FIELD(#ANSWER) TYPE(*CHAR) LENGTH(6)

EVTROUTINE HANDLING(#COM_OWNER .Initialize)

SET COM(#COM_OWNER) CAPTION(*COMPONENT_DESC)
EXECUTE SUBROUTINE(INITFORM)

ENDROUTINE

EVTROUTINE HANDLING(#FETCH.Click)

FETCH FIELDS(#DEPTMENT #DEPTDESC) FROM_FILE(DEPTAB)
WITH_KEY(#DEPTMENT)

[F_STATUS IS_NOT(*OKAY)

MESSAGE MSGTXT('Error retrieving Department')

ELSE

#DEPTMENT.Enabled #FETCH.Enabled #INSERT.Enabled := False
#UPDATE.Enabled #DELETE.Enabled := True

ENDIF

ENDROUTINE

EVTROUTINE HANDLING(#INSERT.Click)

BEGINCHECK

FILECHECK FIELD(#DEPTMENT) USING_FILE(DEPTAB)
USING_KEY(#DEPTMENT) FOUND(*ERROR) NOT_FOUND(*NEXT)
MSGTXT('Department Code already exists.")

VALUECHECK FIELD#DEPTDESC) WITH_LIST(NONE END LAST)
IN_LIST(*ERROR) NOT_INLIST(*NEXT) MSGTXT('This description is
reserved.')

RANGECHECK FIELD(#STD_NUM) RANGE((1 10)) MSGTXT('Must be
in range 1 to 10.")

CONDCHECK FIELD#DEPTMENT) COND#DEPTMENT.Contains(' "))
I[F_TRUE(*ERROR) IF_FALSE(*NEXT) MSGTXT('Code cannot contain
embedded blanks.")

IF COND#DEPTMENT *EQ #DEPTDESC)

SET_ERROR FOR_FIELD#DEPTMENT #DEPTDESC)
MSGTXT('Department Code cannot be the same as Department Description.")
ENDIF

ENDCHECK

INSERT FIELDS(#FORMDATA) TO_FILE(DEPTAB)

IF_STATUS IS(*OKAY)

MESSAGE MSGTXT('Department inserted successfully")

#FORMDATA := *DEFAULT

ELSE

IF_STATUS IS(*ERROR)

MESSAGE MSGTXT('Error inserting Department')

ENDIF

ENDIF

ENDROUTINE

EVTROUTINE HANDLING(#UPDATE.Click)
UPDATE FIELDS(#¥ORMDATA) IN_FILE(DEPTAB)
IF_STATUS IS(*OKAY)

MESSAGE MSGTXT('Department updated successfully")
EXECUTE SUBROUTINE(INITFORM)

ELSE

IF_STATUS IS(*NORECORD)

MESSAGE MSGTXT('Department not found")

ELSE

IF_STATUS IS(*ERROR)

MESSAGE MSGTXT('Error updating Department")
ENDIF

ENDIF

ENDIF

ENDROUTINE

EVTROUTINE HANDLING(#DELETE.Click)

USE BUILTIN(MESSAGE_BOX_SHOW) WITH_ARGS(YESNOCANCEL
NO QUESTION *COMPONENT 'Are your sure you want to delete?")
TO_GET(#ANSWER)

IF COND(#ANSWER = YES)

DELETE FROM_FILE(DEPTAB)

IF_STATUS IS(*OKAY)

MESSAGE MSGTXT('Department deleted successfully")
EXECUTE SUBROUTINE(INITFORM)

ELSE

IF_STATUS IS(*NORECORD)

MESSAGE MSGTXT('Department not found")

ELSE

IF_STATUS IS(*ERROR)

MESSAGE MSGTXT('Error deleting Department')
ENDIF

ENDIF

ENDIF

ENDIF

ENDROUTINE

EVTROUTINE HANDLING(#CLEAR.Click)

EXECUTE SUBROUTINE(INITFORM)

ENDROUTINE

SUBROUTINE NAME(INITFORM)

#FORMDATA := *DEFAULT

#UPDATE.Enabled #DELETE.Enabled := False
#DEPTMENT.Enabled #FETCH.Enabled #INSERT.Enabled := True
ENDROUTINE

END COM

FRMO045 - Using LANSA Debug

Objectives:
e To introduce the Visual LANSA debugger.
e To learn how to set breakpoints in a form.
e To learn how to display and change variables in a program.

The focus of this exercise is how to use the features of the debugger. A detailed
understanding of the RDML commands is not important at this time. The
Programming exercises teach the basic coding practices.

To achieve these objectives you must complete the following:
Step 1. Execute Applications with Debug

Step 2. Debug Features

Step 3. Set Breakpoints

Step 4. Display/Change Variables

Step 5. Set Breakpoint Properties

Step 6. Set a Break on Value

Summary

Before You Begin

You may wish to review the following topic in the Visual LANSA User Guide:
Debugging Applications.

In order to complete this exercise, you must have completed the previous
exercises.

its:lansa012.CHM::/LANSA/l4wusr01_0415.HTM

Step 1. Execute Applications with Debug

In this step you will execute your Department Maintenance form (iiiMntDept)
which you created in the previous exercise, using the debugger. The form must
have been compiled with debug enabled.

1. If your form iiiMntDept is open in the editor, close it.
2. Using the Repository tab, locate your form iiiMntDept.

3. Right-click the iiiMntDept form to display the context menu, and select the
Debug / Start option.

iiiMntDept D S

== iiSettingsDialog Sel Open
: ! e Compile
= f Execute
-y Debug (%, Start
N ¥ Delete from Repository Debug Disable
0 ; Debug Disable Al
I Find
— E - uick Export

4. As soon as the form is executed, it is opened in the editor:
H' -~ M T T v EOMCOMIZ - Databate Access MLANSA Eor [TunT R ——

I
LN Home Layouts Styles Design Tools Debug

EOMCOM12 - *COMP - PID 9100 i W

: : N ; -
-, T EC Bao Clear All Disable Al Toggle Animate
\& Stop Debugging Breakpoint
Variables Design Source Repository Details | Repository Help | Cross References
goo1z GROUP_BY HAME({#FORMDATA) FIELDS{#DEPTHENT #DEFT
EOMCOMI12 - 2EOMCOMI12.Initialize T | 00013 DEFINE FIELD(#ANSUER) TYPE(*CHAR) LENGTH{&)
ooo14 = EVTROUTINE HANDLING{#COM OWNER.Initialize)
Narne Value ooo1s SET COM{#COM_OWHER) CAPTION{*COMPONENT_DESC)
> = EOMCOMI12 o00le EXECUTE SUBROUTINE(INITFORM)
» ANSWER ooo1? ENDROUTINE
00018 = EVTROUTINE HANDLING{#FETCH.Click}

5. The first executable line is displayed and the debugger is waiting for your
commands. As you can see from the above image, the form is about to
execute the Initialize event handling routine. Notice this line is highlighted in
yellow. This is the line which is about to be executed.

6. Notice that the Debug tab of the ribbon is displayed with a set of debug
commands. You can position the cursor over these commands to display the
tool tips.

[P——
Home Layouts Styles Design Tools Debug

[EOMCOMI2 - *COMP - PID 9100 | Bt X, il {]
1 1 1 ™ Rt ® (/] ‘ﬂ" -
. ahnue Bcaution {jﬂ&ﬂ {F- 1 Clear All Disable Al Toggle Animate
& Stop Debugging Breakpoint
Debug Debugger
Variables Step Into Design éﬁurce-; Repository Details | Repository H
Step Into (F8) oooiz ~ GROUP_EY WAME(#FORMD.

| EOMCONMILZ - #EOMCOML2 Initialize - | noo1z DEFINE FIELD(#ANSUER
= = o014 = EVTROUTINE HANDLING(:
| == | =l 00015 SET COM{#COH_OWHER

7. Also, you should notice that a new Variables tab has appeared. This tab lists
the variables used in the form.

Variables

|EOMZOMI2 - 2EOMCOMI2 Initialize b

Mame Value
== EOMCOMI12
™ AMNSWER
™ DEPTDESC
DEPTMEMNT
I05MDE DIs
IOSMSGTXT
I085TS
STD_MUM]

% 5 &

1

Step 2. Debug Features
In this step you will simply review some of the basic debug features.

1. Select the Breakpoints tab on the bottom of the editor. If necessary open the

Breakpoints tab from the Home ribbon, Views menu.
You have no break points set at this time so no items are listed:

11

A
i) Assistant | || Call Stack _Breakpu:ui[g.s <= Compile | g Help

2. Use the Views menu to open the Call Stack tab at the bottom of the editor:

= FCOMPOMEMNT
2 *COMPONENT - *COMP
NIMMTDE - ZIMMTDE. Initialize

55 Text Search

Ak

*
"~ Breakpoints | .. Compile
|Ln 20, Col 1] *

|| Call Stack

The Call Stack lists all programs (processes, functions, components and

reusable parts) in the order that they have been invoked.

3. Press the F8 (Step Into) key once, and you will see that the highlighted line
in the editor advances to the next line to be executed (SET command). This

command has not been executed yet.

Step 3. Set Breakpoints

In this step you will learn how to set breakpoints in a form. A breakpoint is a
location where the form will stop execution so that you can review the code or
variables. You will add a breakpoint at the beginning of the UPDATE button
click event, before any data is written to the file.

1. Scroll down to the event handling routine to UPDATE.Click

Note: You can rapidly move to any routine in your code, by using the Go To
tab. Expand routines and click on any one to move to that line in the editor.

2. Press the F9 key to set a breakpoint on this line. The line is highlighted in
red.

Design | Source Repository Details | Repository Help | Cross References

oooz9a HESSAGE MSGTET('Department inserted successfully')
ooo4o #FOEMDATA = =DEFAULT

0oo41 ELSE

ooo4z2 =l IF_STATUS IS(=ERROR)

ono43 MESSAGE MSGTET('Error inserting Department')
oono44 ENDIF

ooo4s ENDIF

oon4e EHDROUTINE

00047 EVTROUTINE HAHDLING(#UFDATE Click)

ooo4s OTFDATE FIELDS(#FORMDATAY IN_FILE{DEFTAE)

ooo49 = IF_STATUS IS(=0KAY)

oooso HESSAGE MSGTET('Department updated successfully')
oons1 EXECUTE SUBROUTINE{ INITFOEM)

ponsz ELSE

Note: You can set break points both before executing Debug and while
running in Debug. Breakpoints are remembered in both cases (they are saved
when you close the form in the editor).

3. Press F5 to execute the form. Enter ADM as the department code and click
the Fetch button. The form will display the Administration department. Leave
the value of the Department Description as it is and click the Update button.
When the form reaches the breakpoint, source code will be redisplayed.

4. Display the Breakpoints tab. The new breakpoint will be listed as follows:

® -—
2 x X e —_~

- Breakpoints Pass Count Hit Count Line Mumber Statement Text
7 IMMTDE ' 0 1 53 Evtroutine Handling(#UPDATE.Click)

The program will now stop before executing this line of code. This will
allow you to view and change the variables or make other changes to debug

settings.

5. Scroll to the top of the code and set the focus on the GROUP_BY command
and press F9. Notice that this command is not highlighted. You can only set
breakpoints on executed lines of code. The GROUP_BY is a definition used
for compilation and is not used at execution time.

6. Press the F5 key to execute the application until the next breakpoint. Since
there are currently no more breakpoints, the UPDATE will be processed and
the form redisplayed.

Step 4. Display/Change Variables

In this step you will learn how to display and change the variables in a program
as it is executing.

1. Enter a department code of ADM and click the Fetch button. When the
Administration department is displayed, leave the values unchanged and click
the Update button. Once again the form will stop at the start of the
UPDATE.Click event and display the source in the editor.

2. Display the Variables tab to see a list of the variables in the function. It will
appear something like the following:

| Variables

MMTDE - #UPDATE. Click -
Mame Value
- T NMMTDE

= AMSWER

® DEPTDESC Adrministration

® DEPTMEMT ADM

® |0OSMDE DIs

® OSMSGTHT

® |055TS QK

= STD_MUM 1]

3. When debugging components (forms, reusable parts and WAMSs) you need to
be aware that many fields are components. Note that DEPTDESC and
DEPTMENT are shown as type Component. If you open the context menu
(right mouse click) on one of these, you will not be able to change the value:

Varisbles Design

INMMNTOE - #UPDATE.Click

Mame Value
= IIMNTDE
® ANSWER
® DEPTDESC Administration
® DEPTMENT Al
® JOSMDE :
B IOSMSGTXT
® JOS5TS
B STD_WNUM

Note that on the image above, the Set Value option is not available (grayed
out).

Try right clicking on the ANSWER variable (which is a work field value in
the form) and note that you could change this value.

4. To change the value of DEPTDESC you need to expand the form component
iiliMntDept and then expand the component DEPTDESC and select Value as
shown:

Variables Desig

NIMMTDE - #UPDATE.Click

Mame Value
4 == IMNTDE
[T] PRIM_FORM
® DEPTMENT ADM
4 | ® DEPTDESC Administration
™ PRIM_EVEF Administration
= Walu= L e
¥ Datz Set Value...

ke aALl
ke aALl
b aALl

Al

Note that the Set Value option is available.

Notice that the Variables tab uses the form's Identifier to name the
component, in this case IIMNTDE. The form compiled object is a Windows
DLL named iiimntde.dll, as shown:

:(-:. - T , « Program Files (x86) » LAMSATISPT » X WINGS » X LANT

-~

i Favorites Mame
B Desktop %) ieditort.dll
%) iiidept.dll

4. Downloads

5| Recent places %] ilimntde.dll

A A & JPM_vf_um0352_Coding Pr

In a later exercise, this topic will be covered in more detail. In most
situations your own code can refer to the form using its Long Name and
LANSA accesses the object using it's Identifier.

5. Select Set Value and the Set Value dialog appears, enter a value of NEW
ADMINISTRATION.

Set Value

— | oK
Mew Administration

Cancel

Click OK and note that the new value is shown in the Variables tab.

6. Press F5 to run the application. The form will be redisplayed. Enter ADM in
the department code and click the Fetch button.

B " Database Access | = | B ﬁ]
Department Code ADM Eetch
Department Description Mew Administration

Insert
Standard Mumber] =
Update
Clear
Delete

The department record has been updated with the changed value.

Step 5. Set Breakpoint Properties

1. Close your Department Maintenance form and switch to the VL editor. Add a
BEGIN_LOOP/END_LOQOP at the beginning of the UPDATE.Click event
handling routine.

Loop 10 times using STD_COUNT as the loop count and display a message
'Message number is nn' containing STD_COUNT. Your code should look like
the following:

Evtroutine Handling(#UPDATE.Click)
Begin_Loop Using(#STD_COUNT) To(10)
Message Msgtxt('Message number is ' + #std_count.asstring)
End_Loop

Update Fields(#FORMDATA) In_File(DEPTAB) Val_Error(*NEXT)

This provides a line of code which executes a number of times, each time the
UPDATE.Click event routine runs.

2. Compile your form.

3. Run the form in debug. When the program stops at the Initialize routine,
scroll down to the UPDATE.Click event handling routine and clear the
breakpoint on the UPDATE statement.

There are a number of ways you can do this. For example:

a. select this line of code and press F9 or use the Toggle Breakpoint button
on the Debug ribbon.

b. select this line of code and use the right mouse menu option, Remove
Breakpoint.

c. display the Breakpoints tab, select this breakpoint and use the Remove
Breakpoint toolbar button.

4. Select the MESSAGE command inside the loop and press F9 to set this as a
breakpoint.

5. Use the right mouse menu option while selecting the MESSAGE command
to show the Breakpoint Properties dialog.

S kvtroutine HandIing (¥FUPUATE.Cli€k)

Begin Loop Using (#STD COUNT) To(l10)
Routine: =UPDATE.Click 3 -
End Loop Farm: iiMntDeet)
y *] i B M e m
Update Fields{(#formdata) P for
3 If Status Is (*ORAY) Add Pepup Meny
Message Msgtxt ('Depart: Lv'
Execute Subroutine {(inijd&| Cut e+
Else Cof Ctrl+C
=3 If Status Is(*NORECORD|[G | Paste Ctrl+V
Massage Msgtxt ('Depal
Flsa Command Assistant F4

g If Status Is(*ERROR)

I | Remove Breakpoint Fg
Message Msgtxt ('Er) : :

Endif _ :
Endif Breakpoint Properties...
Endif 4| | Expand All
= Breakpoint Properties
Pass count: Cancel

M

|4k

[] Break for current instance only

6. Set a Pass count of 3. During an update, the loop will now execute twice and
break on the third execution of the MESSAGE command.

7. Press F5 to execute the form, Fetch a department and press the Update

button. Debug should break when the MESSAGE command executes the 3rd,
6th and 9th time.

8. Close your form.

9. Remove the breakpoint from the MESSAGE command.

Step 6. Set a Break on Value

In this step you are going to again use the UPDATE.Click event routine and set
a breakpoint on the first IF_STATUS command, with a break on value setting
for variable IO$STS. This is a 2 character I/O status, returned by the UPDATE
command. When a validation error occurs it will contain 'VE'.

1. Switch to the editor and review the definition of the UPDATE command in
the UPDATE.Click event routine. If it looks like the following:

Update Fields(#FORMDATA) In_File(DEPTAB)

Then because the VAL_ERROR parameter for the FETCH command, has a
default value of *LASTDIS, which in a form means branch to the end of the
routine, the IF_STATUS which follows it is never executed when a validation
error occurs. Ensure your update command looks like the following:

Update Fields(#FORMDATA) In_File(DEPTAB) Val_Error(*NEXT)
Recompile your form if you needed to make a change.
2. Set a breakpoint on the first [F_STATUS command.

3. Run the form in debug. When the editor is displayed at the Initialize routine,

scroll down to the UPDATE.Click event routine and set a break point on the
first IF_ STATUS command.

4. In the variables tab, select the IO$STS variable and use the right mouse
menu to Break on Value Condition

“Variables Design

NIMMTDE - ZIIIMMTDE. Initialize M

Mame Value
= NIMMTDE

B AMNSWER
DEPTDESC
DEPTMEMNT
[O5MDE oS
IOSMSGTHT
IO85TS
STD_COUNT Set Value...
STD_MUM

Break On Value Condition

Yiew Breakpoint

Hexadecimal Display

Ancestor Features

5. In the Breakpoint Properties dialog, select the Value tab and set the
breakpoint to break when IO$STS is equal to 'VE'

=] Breakpoint Properties
General | Value | oK
Break
Cancel

« Is equal to
Is not equal to
s less than
Is greater than

VE

6. Select OK and press F5 to run the form.

7. Fetch a department and press Update. Debug should not break because
IO$STS is not equal 'VE!

8. Fetch a department and clear the department description field and press
Update. Debug should now break on the IF_STATUS command.

9. Close your form and close it in the editor. You have completed this exercise.

Summary

Important Observations

e Using the Visual LANSA editor, you can interactively debug functions,
forms, reusable parts, WAMs and web event functions locally.

e You can also remotely debug RDMLX functions when they are running on
the server, including web events and WAMs using the VL Editor

e Programs must be compiled 'debug enabled' in order to use debug.

Tips & Techniques

e By default, debug stops at the first executable line of code, controlled by
Debug settings in the Editor Options dialog.

e Breakpoints are saved with the source code

e Breakpoint features include variables, breakpoint and call stack tabs
e Variables and component values can be viewed and edited

e Breakpoint properties support break on condition and pass count.

What You Should Know
e How to use debug for local debugging.

FRMO055 - List Component Basics
Objectives:

To learn how to use a combo box and list view to show data

To learn how to use the SELECT command to read multiple records from a
file

To learn how to add entries using the ADD_ENTRY command

To learn about list properties and how lists can be made to interact with on
another

To learn how to define and execute a subroutine using the
SUBROUTINE/ENDROUTINE and EXECUTE commands

To create form which shows displays department and section tables in
combo boxes and employee data in a list view.

To show how to use Visual Styles and Themes to change the appearance of
forms and their components.

f B | List Basics | == -Ehw
—lLocation
Department Section
Administrator Dept > Internal Adrmin b

Employee M... I Employee Su...; Employee Gi.., | Post / Zip CD...E Employee Sal...!

A1001 lones Shirley 2001 234582 -

Al012 Paul Patrick 2147 26,456.04

A1013 Pattinson George 2016 T8,977.04

A1015 Woods Bradley 2030 313,000.04

A1020 Douglas Adam 2147 121,500.04

Al021 MecCully Lisa 2153 87,000.04

A1025 Robinson Mary 2005 44,455.04

A1027 Morrison Alan 2007 1.878,773.04

Al111 Verey Warren 2345 45,678.04 -

Read Sorted List Read Unsorted List

Employee 21001 Jones Shirley : = i =

The completed form loads departments and related sections into combo
boxes and populates a list view with employees for the current section.
Initially the first department and first section in a department are selected.

When a new department is selected, the section combo box and list view are

repopulated

e When a new section is selected, the employee list view is cleared and
repopulated.

To achieve these objectives you must complete the following:
Step 1. Create a Simple List

Step 2. Select Data to Fill the List

Step 3. Create Multiple Lists

Step 4. Fill the Lists

Step 5. Make List View Columns Sortable

Step 6. Change Appearance of the Form

Step 7. Read Sorted List Items (optional)

Step 8. Sort Department and Sections Combo Boxes (optional)
Summary

Before You Begin
¢ You must have completed the previous exercises.

Step 1. Create a Simple List

In this step you will begin by creating a simple form containing a combo box
containing a list of all departments. A combo box (or drop down), is a simple
list component which displays one column with one entry visible. The list may
be expanded by clicking the drop down button *I.

When you select a department its details (DEPTMENT and DEPTDESC) will
be displayed on the form.

1. Create a New Form / Basic Form iiiListBasics — List Basics (where iii are
your course assigned initials).

2. Drag a Group Box onto the top of the form from the Controls tab, resize it
and set its Caption to Location. Your form should look like the following:

- =

. I I I AR AR éeaiacosancosanassandssandsas .
O S A S S S S S S S S S S A S AU o

3. Drop a Combo Box onto the Group Box. Extend its length to approximately
half the form width. Change its Name to DEPTS. Move the Combo Box
towards the bottom edge of the Group Box. Remember as well as dragging

with the mouse, you can move components by holding down the Control key
and using the cursor keys.

4. Drop a Label component above the Combo Box, resize it and change its
Caption to Department. Your form should look like the following:

5. Display the Source tab.You will see DEFINE,_COM like the following:

Define_Com Class(#PRIM_GPBX) Name(#GPBX_1) Caption('Location') Dis
Define_Com Class(#PRIM_CMBX) Name(#DEPTS) Componentversion(1) D

Note the combo box DEPTS has a parent of GPBX_1. The group box is a
"container". The combo box DEPTS belongs to this container.

6. Add columns to the DEPTS Combo Box. A combo box displays one column,
but may contain other hidden columns.

a. Drop field DEPTMENT into the combo box and use the Details tab to set
its Visible property to False. To do this, select the component CBCL_1
from the drop down at the top of the Details tab. You are then working
with the first column component for the combo box DEPTS.

| Details

CBCL 1
SR

Properties | Events | Methods

' ComponentClasshame
* ComponentPatternName
* ComponentTag
* ComponentTypeMName
* DisplayPosition
* Mame
* Owner
* Parent
* SortDirection
* SortPosition
* SortType
* Source
" UsePicklist
" Visible
" Width
* WidthType

|False

PRIM_CBCL
PRIM_CBCL

PRIM_CBCL

0

CBCLA
FEOMCOMIL3
#Depts
Azcending

0

Word
#DEPTMENT
False

)

20
Scaleable

b. Drop the field DEPTDESC into the DEPTS combo box.

Your form should now look like the following:

7. Display the Source tab. You will see new DEFINE_COM statements for the
columns, like the following:

Define_Com Class(#PRIM_CBCL) Name(#CBCL_1) Parent(#DEPTS) Source
Define_Com Class(#PRIM_CBCL) Name(#CBCL_2) Displayposition(1) Pare

The Combo Box columns are automatically named. They have a parent of
DEPTS. The columns belong to the combo box DEPTS.

They have a Source property, DEPTMENT, for example, meaning the
column is based on field DEPTMENT.

8. Drop fields DEPTMENT and DEPTDESC onto the form below the Group
Box. Lengthen the form first if necessary. Your form should look like the
following:

Step 2. Select Data to Fill the List

In this step you will add code in the form Initialize event to populate the DEPTS
combo box.

1. Your code to add entries from the file DEPTAB to the DEPTS combo box
should use the CLR_LIST, SELECT, ADD_ENTRY and ENDSELECT
commands.

SELECT / ENDSELECT is a database I/O command which reads records
based entry sequence, by full key, by partial key or generically for example.
Refer to the Technical Guide for further details and examples. Remember you
can press F1 on any command in the editor to jump straight to its online
guide entry.

Your code should look like the following:

Evtroutine Handling(#com_owner.Initialize)

Set Com(#com_owner) Caption(*component_desc)
Clr_List Named(#DEPTYS)

Select Fields(#DEPTS) From_File(deptab)
Add_Entry To_List(#DEPTYS)

Endselect

Endroutine

Note: the combo box definition DEPTS can be used in the SELECT Fields()
parameter, to retrieve the fields defined as columns in DEPTS.

2. Compile and test your form.

0 List Basics — =

Location

Department

b e Adminigtratior W

Department Code Al

Department Dezcription Meww adminiztration

Note: The first entry in the combo box has focus and the fields on the form
are populated. When a row in a list component has focus or is selected, the

form fields for the list columns are populated.

3. Click on the drop down button to see all list entries:

0 List Basics — =

Location
Department

I e &dminiztratior

M ew Administration
|nternal Auditing
Fleet Adminiztration
Group Accounts
Department [
O Information Services
Legal
kdamt. Information e

The list is displayed in the sequence that entries were loaded. In this case it is
loaded in department code sequence (DEPTMENT). We will look later at
how entries in a list can be sorted. In this example one solution could be to
add a logical file to the file DEPTAB in DEPTDESC sequence and use this
logical file to load the combo box.

Note: the dropped down view has a scroll bar. The DropDownCount
property of the combo box can be changed to display more entries if required.
The default value is 8.

4. Select a different department. Once again note that the form fields are
populated from the selected list row.

Step 3. Create Multiple Lists

In this step you will add a second combo box which will contain the Sections
for the current department and a List View component, which will contain
employee data for the selected section.

1. Drop a second Combo Box onto the Group Box, alongside the department
combo box. Position and resize it. Change its Name to SECTS.

2. Drop a Label component above the new Combo Box. Position and resize it.
Change its Caption to Sections. Remember you can use the Align dialog on

the Design tab to align components. Your form should now look like the
following:

M = =

Sdhaanon
| Depardiedt - e e Kaane s s s
o e e

#aAbBcCdDeEfFgGhHilJ -m -

e e
Depaimentiode - ABCD [i niannan
. Dépaitivient Desciiption | |aAbBcCdDeEfFgGhHiljl Lt

3. On the Repository tab, find the file SECTAB and expand it. Drag and drop
field SECTION into combo box SECTS. Select the Details tab. Note that you
are working with CBCL._3, the first column added to SECTS, based on field
SECTION. Change its Visible property to False.

Drag and drop field SECDESC into combo box SECTS. Section description
will be the visible column in SECTS.

4. Delete the fields DEPTMENT and DEPTDESC from the form.

5. Lengthen the form and drag and drop a List View onto the lower form area.
Change its Name to EMPLOYS. Resize it to occupy all the space. Your form
should look like the following:

6. Locate the file PSLMST on the Repository tab and expand it. Drag and drop
fields, EMPNO, SURNAME, GIVENAME, POSTCODE and SALARY into
the list view EMPLOYS. Your form should look like the following:

ElnEB et e e e
emment con o e
| - aAbBcCdDeEfFgGhHilj) - | - {aAbBcCdDeEfFgGhHIlj) -

| Employee Mu... | Employee Sur.. | Employee Giv... | Post / Zip Code | Employee 5al...
:\/E'ABCDE aAbBcCdDeE.. aAbBcCdDeE.. 123436 123,456,789.12

Step 4. Fill the Lists

Important Concept

2.

Sections belong to a department. If a new department is selected, the SECTS
combo box needs to be rebuilt.

Employees belong to a section. If a new section is selected, the EMPLOYS
list view needs to be rebuilt.

Create a subroutine (SUBROUTINE / ENDROUTINE) to build, rebuild the
SECTS combo box. Give the subroutine a Name of SECTS. Once again your
logic should use the CLR_LIST, SELECT, ADD_ENTRY, ENDSELECT
commands. This time your SELECT needs to read the file SECTAB with a
key of DEPTMENT.

A subroutine can be defined anywhere in your form code, but not inside an
event or method routine.

Note:

e File SECTAB is keyed on DEPTMENT and SECTION. You need to select
records using the high level key DEPTMENT only.

¢ You should now be aware that a selected entry in combo box DEPTS will
automatically populate the variable DEPTMENT in the form code.

Your code should look like the following:

Subroutine Name(SECTYS)

Clr_List Named(#SECTS)

Select Fields(#SECTS) From_File(sectab) With_Key(#deptment)
Add_Entry To_List(#SECTYS)

Endselect

Endroutine

A subroutine is executed using the EXECUTE command. Add code at the
end of the form Initialize event routine to execute SECTS. Your code should
now look like the following:

Evtroutine Handling(#com_owner.Initialize)

Set Com(#com_owner) Caption(*component_desc)
Clr_List Named(#DEPTS)

Select Fields(#DEPTS) From_File(deptab)
Add_Entry To_List(#DEPTS)

Endselect
Execute Subroutine(SECTS)
Endroutine

3. The SECTS combo box will need to be rebuilt if a new department is
selected in DEPTS. Create an ItemGotSelection event routine for DEPTS.
Select the DEPTS combo box and do this from the Details / Events tab or use
the context menu on the DEPTS combo box.

Execute subroutine SECTS in this event routine. Your code should look like the
following:

Evtroutine Handling(#DEPTS.ItemGotSelection) Options(*NOCLEARMESS.
Execute Subroutine(SECTYS)
Endroutine

4. Compile and test your form. Notice that when the form initially loads, the
first section is not displayed although the SECTS combo box contains the
correct entries.

0 List Basics — =

Location

Department Sections

Emploves Mum... Employee Sum... Emplovee Give... Post/ Zip Code Emploves Salary

Notice also that if you select a different department, the SECTS combo box
contains the correct entries but continues to display the last selected entry,
until a valid entry is selected in SECTS.

5. Correct this behavior by adding the following code to the end of the SECTS
subroutine:

Get_Entry Number(1) From_List(#SECTS)
#SECTS.currentltem.focus := true

The GET_ENTRY will retrieve a specific entry number from a list. Usually
it is executed after logic which locates an entry, for example LOC_ENTRY.
See a later exercise for an example of this. In this particular case you are
positioning to the top of the SECTS list.

Currentltem is the current row in the list component. CurrentItem.focus is
the focus property of the current list item.

To discover these properties for any component use F2 Feature help for that
component, in this case combo box SECTS

Features
e W - B %
4 Primitive
SECTS
4 Definition
4 (Class
4 =0 PRIM_CMBX List with an edit box
4[5 Extends
© §8h PRIM_CTRL Base Visual Control
4 '7’ Events
4 |...: Methods
4 [Properties
™ AutoSelect Boolean of (False True)
™ AutoSelectltem Boolean of (False True)
e BusyUpdates Enumeration of (Wait, I
e BusyUpdatesOfParent Boolean of (False True)
7 CanFocus Boolean of (False True)
P Cell Reference(PRIM_CBCE)
> Columns Reference(PRIM_PCOL<PRII
e ComboBoxStyle Enumeration of (Simple, Dro
e CompeonentClassMame String
4 @" ComponentMembers Reference(PRIM_PCOL<PRII
e ComponentPatternMarne String
P ComponentTag String
7 ComponentType Reference{PRIM_RTYP)
7 ComponentTypeMName String
™ ComponentVersion Integer(d)
a [Currentltem Reference(PRIM_CEIT)
+ m PRIM_CEBIT List item is an entry in a list,
™ Cursor Reference(PRIM_CRSR)
™ NataClazs ReferencelPRIM NI

Expand the Currentltem by double clicking on the list item, PRIM_CBIT.

@ wa | CL ¢ B~ %

4 Primitive

= PRIM_CEIT List itern is an entry in a list,
4 Definition
4 (Class

4 m PRIM_CBIT List itern is an entry in a list,

4 [& Extends
. PRIM_OBIT Base object, use it as the an

g f Events
2 f‘f: Methods

4 @ Properties
.‘CompnnentCIassName String

v]

* @ ComponenthMembers Reference(PRIM_PCOL<PRII

7 ComponentPatternMame String

P CormponentTag String

P ComponentType Reference(PRIM_RTYP)

P ComponentTypeMame String

™ EnsureVisible Boolean of (False True)

o Entry Integer(4)

? [Focus Boolean of (False True)

7 Image Reference(PRIM_ICON)

r MessageSet Reference(PRIM_PMSGS)

Expand the list item properties to find the Focus property.

6. Compile and retest your form. When it initially loads it should now look like
the following:

0 List Basics — =

Location
Department Sections

I e &dminiztratior] |nternal Admin]

Emploves Mum... Employee Sum... Emplovee Give... Post/ Zip Code Emploves Salary

Try selecting a new department. The first section in the list will always be
displayed.

7. When it initially loads, the form should load all three lists

0 List Basics — =

Location
Department Sections

] |nternal Admin]

Emploves Mum... Emploves Surn... Emplovee Give... Post/Zip Code Employee Salay

A100 Jones Shirley 20m 224582

Almz Paul Patrick. 2147 2645604

A1M3 Pattinzon Feorge 26 V8.977.04

A1015 Wionds Bradley 2030 313.000.04

A10z0 Douglaz Adam 2147 121.500.04

A1021 b cCully Liza 2153 av.000.04

A1025 Robinzon b ary 2005 4445504

A1027 b orizon Alan 2007 1.878.773.04

AT Werey Wi arren 2345 45,678.04

A1404 Black, Gillian 2090 12,345.04 v

Create subroutine EMPLOYS. Add logic to this subroutine to clear the list
EMPLOYS, select from logical file PSLMST1 with a key of DEPTMENT
and SECTION and add entries to the EMPLOYS list view. Your code should
look like the following:

Subroutine Name(EMPLOYYS)

Clr_List Named(#EMPLOYS)

Select Fields(#EMPLOYS) From_File(pslmst1) With_Key(#deptment #sectior
Add_Entry To_List(#EMPLOYYS)

Endselect

Endroutine

8. Add an execute subroutine EMPLOYS to the end of subroutine SECTS. The
EMPLOYS list will be rebuilt every time the SECTS combo box is rebuilt.
Your code should look like the following:

Get_Entry Number(1) From_List(#SECTS)
#SECTS.currentltem.focus := true

Execute Subroutine(emPLOYYS)

Endroutine

9. Create an ItemGotSelection event routine for combo box SECTS. Add code
to execute subroutine EMPLOYS. Your code should look like the following:

Evtroutine Handling(#SECTS.ItemGotSelection) Options(*NOCLEARMESS!
Execute Subroutine(EMPLOYYS)
Endroutine

10. Compile and test your form.
e When the form initially loads, all three lists should be populated.
e When a new department is selected, the SECTS list and EMPLOYS list
should be rebuilt

e When a new section is selected, the EMPLOYS list should be rebuilt.
Note that there may be some sections for which no employees exist.

Step 5. Make List View Columns Sortable

In this step you will change the SortOnClick property for the surname, postcode
and employee number columns in the EMPLOYS list view to allow sorting

using these columns.

1. In the Design view, select the list view EMPLOYS and click on the Surname
column heading. Select the Details tab, which will show the properties for
this columns (LVCL_2). Change the SortOnClick property to true.

Details
LWCL_2
B~ 7

Properties | Events | Methods

* ReadOnly

* SortAsColumn
® SortDirection
" SortOnClick
* SortPosition
* SortType

* Source

7 UsePicklist

" isible

* VisualStyle

T Width

* WidthType

True -
*MULL
Ascending

i'l'rue

5 R
Word

#5URMAME

Falze

True

*MULL

20

Scaleable

m

2. Click on the column heading for Postcode and change its SortOnClick

property to true.

3. Click on the Employee Number column heading and change its SortOnClick

property to true.

4. Compile your and retest your form. You should be able to sort the list of
employees by surname, post code or employee number by clicking on the
column. Note that by default the column heading shows sort direction

List Basics

Location

Departrnent Sections

Meww ddminiztration] |nternal Admin
Emploves Mum... Emploves Surn... Emploves Give.| Post .-"Z'jp i ErIu:qu:u_l,lee Salary
w1001 Jones Shirley 2007 lag e LN]
A1025 Robinzon b ary 2005 44 45504
A1027 b orizon Alan 2007 1.878.773.04
A1M3 Pattinzon Feorge 26 Fe.977.04
A1015 Wionds Bradley 2030 A|3.000.04
A1509 Redford Fobert 2060 1000
A1404 Black, Gillian 2090 14.345.04
Almz Paul Patrick. 2147 28.45E.04
A10z0 Douglaz Adam 2147 131.500.04
A1021 b cCully Liza 2153 aA.000.04

Step 6. Change Appearance of the Form

In this step you will change the appearance of the form.

1. Add the following code to the Initialize event on your form. It will change
the form's appearance using the Office2007Blue theme.

#sys_appln.theme := 2007Blue
#sys_appln.ThemedForms := true

2. Compile and execute your form. Notice the blue theme.

0 List Basics — =

Location
Department Sections
Mew Administratior - |nternal Admin -

Emploves Mum...| Emploves Surn...| Emploves Give...| Post / Zip Code | Employee Salary |

A100 Jones Shirley 20m 224582

Almz Paul Patrick. 2147 2645604

A1M3 Pattinzon Feorge 26 V8.977.04

A1015 Wionds Bradley 2030 313.000.04

A10z0 Douglaz Adam 2147 121.500.04

A1021 b cCully Liza 2153 av.000.04

A1025 Robinzon b ary 2005 4445504

A1027 b orizon Alan 2007 1.878.773.04

AT Werey Wi arren 2345 45,678.04

A1404 Black, Gillian 2090 12,345.04 v

3. Close your form.

Step 7. Read Sorted List Items (optional)

In this step you will add push buttons with Click events which demonstrate how
the List View EMPLOYS can be processed to retrieve the sorted list, or the list
in its original order. That is, in the order in which it was loaded.

1. Lengthen the form and drop a Status bar at the bottom of the form. This will
be used to display messages output by the list processing

2. Add a push button below the list view.
a. Change its Caption to Read Sorted List.
b.Change it's Name to SORTED.
c. Create a Click event routine for the SORTED push button.
d. Add the following code to the SORTED.Click event handling routine:

For Each(#item) In(#EMPLOY S.items)
Change Field(#STD_NUM) To(#item.entry)
Get_Entry Number(#STD_NUM) From_List(#EMPLOYYS)

Message Msgtxt('Employee ' + #EMPNO + ' ' + #Surname + ' ' + #givename)
Endfor

The FOR loop will read all items in the list EMPLOYS. That is, all rows, in
sorted order.

You can use F2 Feature help on the List View component to discover all its
Properties, Events and Methods:

i Features

@-o-|pslabe o8
4 [/ Properties -
r AutoArrange Boolean of (False Trug)

P Busylpdates Enumeration of (Wait, Imrm
; BusyUpdatesOfParent Boolean of (False Trug)
™ CanFocus Boolean of (False Trug)
™ CheckBoxes Boolean of (False True)
™ ColumnButtonHeight Integer(d)
r ColumnEllipses Enurmeration of (Mone, End;
7 ColumnHeaderPress Boolean of (False Trug)
™ ColumnHeaders Boolean of (False Trug)
™ ColumnResize Boolean of (False Trug)
™ Columns Reference(PRIM_PCOL<PRII
™ ComponentClasshame String
4 @ﬁ ComponentMembers Reference(PRIM_PCOL<PRII
™ ComponentPatternMame String
P CormponentTag String
il ComponentType Reference(PRIM_RTYP)
r ComponentTypeMame String
™ ComponentVersion Integer(d)
4 [Currentltem Reference(PRIM_LVIT)
© m PRIM_LVIT List item is an entry in a Iis&
* Cursor Reference(PRIM_CRSE)

The Item object defined by the For Each(#Item) in the above code,
has the same Properties, Events and Methods as CurrentItem.

You can use F2 Feature help on the List View component. Expand the
Currentltem property and double click on the PRIM_LVIT object to show
the Properties, Events and Methods for Currentltem:

Features

@ = | Y L B~ %
|
4 (Class -
4 m PRIM_LVIT List itern is an entry in a list,
4 [E Extends
* o PRIM_QBIT Base object, use it as the am
4 f Ewvents

» [Methods
a & Properties

™ Checked Enurmeration of (False, True
™ CheckEnabled Boolean of (False True)
7 ComponentClassMame String
4 @ﬁ ComponentMembers Reference(PRIM_PCOL< PRIl
7 ComponentPatternMame String
P ComponentTag String
P ComponentType Reference(PRIM_RTYP)
T ComponentTypeMame String
™ EnsureVisible Boolean of (False True)
- Entry Integer(d)
? Focus Boolean of (False True)
r FocusedStyle Reference(PRIM_V5.5tyle)
" FocusedStyles Reference(PRIM_VCOL< PRI

Note also that you can use the Auto Complete prompter (Ctrl + Space if the
prompter is currently turned off in Editor Settings) in the editor to discover
the properties for Item:

S EVTROUTINE HAWNDLING{#FHBN_1 Click)

—For Eachi#item) In{#EMPLOYS items)
Change Field(#STD HUM) Toid#item.entry)

Get_Entry Humber {(#5STD_HUM) From List([= Ent EI
Hesz=zage H=gtxt('Emploves ' + ¥EMPHO + X i
Endfor Focus
7 FocusedStyle
ENDROUTINE 5 E St
END _COM ocusedstyles
FRCI0G3-FCC Completed : +2 Warning Hessage|[& Image E
FRC1054-FCC Completed : +0 Fatal Meszages [ImageCverlay
7 ImageState
7 MessageSet
7 MessagesOfComponent
? MessagesOfFeature =

[Featuves [}

3. Add a second push button below the EMPLOYS list view.
a. Change its Caption to Read Unsorted List.
b. Change its Name to UNSORTED.
c. Create a Click event for UNSORTED
d. Add the following code to the UNSORTED.Click event handling routine:

Selectlist Named(#EMPLOYYS)
Message Msgtxt('Employee ' + #EMPNO + ' ' + #Surname + ' ' + #givename)
Endselect

The SELECTLIST reads the List View EMPLOYS in its unsorted sequence.
That is, in the order in which the list was loaded.

Your form should look like the following:

ElnEB et e e e
R
| - aAbBcCdDeEfFgGhHilj) - | - {aAbBcCdDeEfFgGhHIlj) -

| Employee Mu... | Employee Sur.. | Employee Giv... | Post / Zip Code | Employee 5al...

| =™ ABCDE aAbBcCdDeE.. aAbBcCdDeE.. 123456 123,456,789.12
e Read Sorted List Read Unsorted List
aAbBcCdDeEfFgGhHIlkKILmMnNeOpPglrRsSTullhiwiNakyzZ . . - - . .. 3| b4 | j

4. Compile and test your form. Sort the list by clicking on the column heading
for Surname, Given Name or Post Code.

a. Messages output by the Read Sorted List push button, will be in the order
currently displayed. Compare employee numbers with the list view.

b. Messages output by the Read Unsorted List push button, will always be in
the loaded order. In this case in Employee Number sequence.

Step 8. Sort Department and Sections Combo Boxes (optional)

This step demonstrates how to use the SortPosition property of a combo box
column to display departments and sections in description sequence. The
column also has a a SortDirection property with a default value of Ascending.

1. Combo box columns are automatically named CBCL_1. CBCL_2 and so on.
Select the column for Department Description (field DEPTDESC) in the
DEPTS combo box using either of the following methods

a. In the Design view, select the Details tab.
e Select a combo box column (CBCL_1, CBCL_2 etc) from the drop down

at the top of the Details tab.

e Ensure that you have selected the column for field DEPTDESC (Source

property)

Details

CBCL_2
CBCL
CBCL 2
CBCL_3
CBCL 4
Depts
Ernploys
EOMCOMIL3

GPEX_1
S e T v -

* DisplayPosition
* Name

? Owner
 Parent

? SortDirection
? SortPosition
* SortType

? Source

? UsePicklist

? Visible

” Width

* WidthType

uuuuuuuu

CBCL 2
FEOMCOMLS
#Depts
Ascending

]

Word

Falze

True

20

Scaleable

b. Alternatively, in the Design view select the Outline tab.

e Expand the combo box DEPTS

e Hover the cursor over each column (CBCL_1 and CBCL_2 in this case)
and use the Tooltip to discover which column is required

e (lick on the column to select it.

Dutline

4 == FoMCOMI3
» %= Employs
4 || GPBX 1
4 B Depts
+ CBCLA
+C 2

A LaBL

A LARL JCBCL 2 - DEPTDESC, Department Description, Alphanurmeric(20) |

: B SECTS
_ PHBM_1
D STBR_1

SortPosition property to 1.

2. With the column in the combo box DEPTS selected which contains
department description (field DEPTDESC). Use the Details tab to change its

Details

CBCL_2
- g

Properties | Events | Methods

* ComponentClassMame
* ComponentPatternName
* ComponentTag

* ComponentTypeName
* DisplayPosition

* Mame

® Owner

* Parent

* SortDirection

” SortPosition

* SortType

* Source

" UsePicklist

" Visible

" Width

* WidthType

PRIM_CBCL
PRIM_CBCL

PRIM_CBCL

1

CBCL_ 2
FEOMCOMIL3
#Depts
Azcending
T
Word
#DEPTDESC
False

True
20
Scaleable

3. Find the column for combo box SECTS containing section description
(SECDESC) and change its SortPosition property to 1.

4. Save your changes.

5. Now that the combo box entries are sorted by their description field, you will
need to change the method used to position the top entry.

a. Add the code shown in highlited (red, italic) to the form Initialize routine.
This gives the first entry in combo box DEPTS focus and retrieves the
first entry. Remember the FOR loop processes the sorted list.

Evtroutine Handling(#com_owner.Initialize)

Set Com(#com_owner) Caption(*component_desc)
Clr_List Named(#DEPTS)

Select Fields(#DEPTS) From_File(deptab)
Add_Entry To_List(#DEPTS)

Endselect

For Each(#item) In(#DEPTS.items)

#item.focus := true

#std_num := #item.entry

Get_Entry Number(#std_num) From_List(#DEPTS)
Leave

Endfor

Execute Subroutine(SECTYS)

Endroutine

b. In the subroutine SECTS, comment out the two lines shown as
commented (beginning with *) below(Hint: Use Ctrl + W).

c. Add the FOR logic also shown in bold. This will give focus to the first
displayed entry and retrieve this entry in order to have the correct section
code (field SECTION) to build the list of employees.

Subroutine Name(SECTS)

Clr_List Named(#SECTS)

Select Fields(#SECTS) From_File(sectab) With_Key(#deptment)
Add_Entry To_List(#SECTYS)

Endselect

* Get_Entry Number(1) From_List(#SECTYS)

* #SECTS.currentItem.focus := true

For Each(#item) In(#SECTS.items)

#item.focus := true

#std_num := #item.entry

Get_Entry Number(#std_num) From_List(#SECTS)
Leave

Endfor

Execute Subroutine(EMPLOYYS)
Endroutine

6. Compile and test your new version of form iiiListBasics.

Note: Remember you may have at least one department which you added,
which has no sections and no employees.

Summary

Important Observations

List components such as combo box and list view are defined visually by
creating the list and adding the fields (columns) to the list using drag and
drop. Lists have many properties which are used to control the sorting and
display of the list.

The SELECT command is used to create a loop structure to read and process
multiple records from a file based on a specified selection criteria. The
SELECT command can be used with physical and logical files.

You will usually need to clear the list (CLR_LIST) before populating it.
ADD_ENTRY adds an entry to a list component. It creates a new row, with
the current values for all fields which make up the list's columns.

GET_ENTRY positions to a specific row number in a list component. Form
variables will be populated.

#SECTS.Currentltem.focus := true sets the focus on the current item in
the list SECTS. Discover the details of such properties using the F2 Feature
help.

There are many events and properties for list components. This exercise
provides a simple introduction to using list components
The sorting of list can be controlled at runtime

The SUBROUTINE / ENDROUTINE defines a routine which you can
EXECUTE from any other routine in your form. Subroutines cannot be
defined within an event, method or property routine.

You can change the appearance of your application using Visual Styles and
Themes.

The FOR loop may be used to read a list in its sorted sequence.
The SELECTLIST will always read a list in its original loaded order.

Tips & Techniques

The logic for combo boxes DEPTS and SECTS in this form, could be
extended to build a reusable part, which could be used instead of input fields
for department and section code, in a form such as iiiCOM11 — Add
Employee:

Using reusable parts is covered in the Windows Applications Workshop

The ability to put invisible (or hidden) columns into any list is an important
concept. In this exercise you want the user to see department description in
the combo box, but in the program you need to use the department code
(DEPTMENT) as the key field. The need to show the user a description but
programmatically interpret their selection from the list as a key is a very
common technique.

List performance is directly related to the number of entries. Ensure you give
users sufficient filtering capabilities, so they do not have to create large lists.

When testing lists, ensure you include using volumes of entries which reflect
your production database.

What You Should Know

How to define a list component and its columns

How to fill a list

How to use events such as I[temGotSelection

How data is mapped into and out of list column source fields.

How to use the RDML commands
e CLR LIST

e ADD_ENTRY

e SELECT/ENDSELECT

e SUBROUTINE / ENDROUTINE
e EXECUTE

e FRM120 — Trigger Function

FRMO065 - Using List Components

Objectives:

e To create a small application, which searches the employee file by name, by
start date or by department code.

e To learn how to use the tab folder to display employee details and holidays.
e To show more examples using the SELECT command.

r T -

17 Using Lists o
Search
Search By
« By MName Employee Surname 5
By Start Date
By Lecation —

Employee Mumber| Employee full na... | Department Code | Department Desc...| Start date (YYM..,

A1003 Smithe, Robert FLT 85/12/21 -
A1006 Smithers, Jack TRVL 81/06/01
A1005 Smiths, Peter ADM 71/02/01
AD193 Smithson, Fred ADM 89/07/03
A1004 Smithson, Ruth ADM 80/05/01
A1002 Smythe, John ADM 7770101
A1009 Snashall, Damian AUD 837/12/01
A1008 Sneddon. Alison AUD 86/12/01 -

Details Holidays

Employee Number A0193
Employee Surname Smithson

Employee Given Name(s) |Ruth

Start date (YYMMDD) 89/07/03

Department Code ADM

Employee 5alary 25,900.04 -
Motes

b

To achieve these objectives you must complete the following:
Step 1. Create Form — Using Lists

Step 2. Make Radio Buttons Show and Hide Fields

Step 3. Add Search Logic

Step 4. Add Tab Folder and Tab Sheets to the Form

Step 5. Populate the Tab Sheets

Summary

Before You Begin

You should complete all preceding exercises.
You must also have completed the Repository exercise, REP005 and REP010.
Important Note:

This exercise uses the files iiiEmployees, iiiDepartments and iiiEmpHolidays
which you created in repository exercise REP005 and REP010.

Step 1. Create Form — Using Lists

The form will contain at the top, a "Search" group box, with radio buttons to
select "search type". The required search field (e.g. SURNAME) will be

displayed based on the radio button selected. A Search button will populate a
list view with employees.

1. Start by creating fields in the Repository which will be used for search
values.

e Field iiiSRCDTE, Start Date reference field iiiStartDate
¢ Field iiiSRCDEP, Department Code, reference field iiiDeptCode
e Field iiiSRCNME, Employee Surname, reference field STD_NAME

Note: Field iiiSurname has a reference field of STD_NAME. Field
iiiSurname can therefore not be used as a reference field itself.

2. Create a New Form / Basic Form: iiiUsingLists — Using Lists. Make the form
RDMLX enabled.

3. In the Design tab, from Common Controls, drop a Group Box at the top of
the form. Change its Caption to Search and resize it to occupy the full width
of the form. Your form should look like the following:

- o IEN

e T

4. Drop another Group Box into the Search group box. Change its Caption to

Search by and resize it and place it on the left hand side. Your form should
look like the following:

e
"-'Sﬁid{E;' iR 1
" i .
- - -

5. Drop three Radio Buttons into the Search by group box.

a. Set up their properties as shown:

Button Property Value
RDBN_1 ButtonChecked
True
Caption
By Name
RDBN_2 Caption
By Start Date
RDBN_3 Caption .
By Location

b. Align your radio buttons using the Align dialog on the Design ribbon..
Your form should look like the following:

B =
IR ot e e T e
| Seargh By DIl
T e e s e s e e e e
e |l

el e R O |

Note: Radio Buttons are grouped according to the "container" which they
belong to, in this case a Group Box. Only one radio button can be selected.

Other containers such as Panel or the Form itself can be used. A Group Box
is usually used because the interface makes it clear to the user, that the radio

buttons are a set.

6. Save your form.

7. In this step you will place three fields into the Search group box and position
them on top of each other. The form will make one visible at any time.

a. Drop field iiiSRCNME onto the form. Position the field as shown.
Reduce the width of the field. The quickest way to do this is to change the
Width property to a smaller value and then lengthen the field again if
necessary. Try 320. Resize the form and Search group box if necessary.

: - o IEN
e - e e ey
. ~Seaich By | —————— Employee Sumame - . - . . [aAbBcCdDeEfFgGhHIlIkKILm |- |
Bt e s e e
iOmstane e e e]
Ol P e e e s]

b. Drop the field iiiSRCDTE on to the Search group box. Change its
ShowTime property to false. Change its Visible property to False.

c. Hold down the Control key and use the cursor keys to position the file
iiiSRCDTE on top of the field iiiSRCNME. Your form should look like

the following:

; —y
pflenarhe kel b e e
. , . L = L o
- --SearchBy. - - - StngiBpbe Sumame - - - - - -| 3AbBcCdDeEfFgEhHIlJkKILm
YRR L e e e R R e T
 medDa -] iTIITIIIIIIIIII i
B

Hint: You can use the Outline tab to select components.

Dutline

4 == jiiUsingLists
4 (] GPBX_1
> (3 GPBX_2
7 IISRCDTE
@D |IISRCNAME

d. Drop the field iiiSRCDEP on to the Search group box, and change its
Visible property to False. Use the Control + cursor keys to move it on
top of field iiiSRCNAME.

8. Drop a Push Button on to the Search group box. Change its Caption to
Search, change its Name to SEARCH and position it as shown.

¥ 2=
Search By © o DmgBee SuRatee - aAbBeCdDeEfFgGhHilPkKILm
1 myame e]
I miiniaes i e s b e
et i = e R e e oy]

9. Save your form.

10. Make the form longer and drag a List View onto the form and resize it as
shown. Change the list view Name property to EMPLOYS.

N e)
S P P e T T T T T T PSP
. oeacchBy. - GpiBmeStiiatee - . - . aAbBcCdDeEfFgGhHilkKILm |-
B}-Namq o e R i e e e
Cer o SRS L o
Ayl DRI L L

Hint: To position and size the list view:

a. Drag its handles to resize it to approximately the required size

b. Hold down the Control key and use the left cursor key to slide it to the
left hand side of the form

c. Hold down the Shift key and use the right cursor key to stretch the list
view to the required position at the right hand side of the form.

11. From your Last Opened tab, expand the file iiiEmployees and add the fields
iiiEmployNumber, iiiDeptCode, iiiDeptDescPJF and iiiStartDate to the list
view. From Repository / Fields add field FULLNAME to the list view.

12. On the Details tab change the Display Position of the FULLNAME column
to 2.

Your form should look like the following:

M = | = P
—5earch
—Search By
Employee Surname aAbBeCdDeEfFgGhHITIKKILmM
#| By Mame
By Start Date
By Location

Search

Employee Number | Employee full na... | Department Code . D_gpart_r‘ne_nt_Dgsc...: Start date (YYMM...|
=" ABCDE ABCDEFGHLUKL... ABCD afbBcCdDeEfFg.. 12/34/56

Tip: In a real application you would probably change the column heading
Caption property for each column and change its CaptionType to Caption.
You could also change the column properties to size and space them as
required.

13. Lengthen the form slightly and drop a Status Bar onto the form, from the
Controls tab / All Controls view. It will attach to the bottom of the form.

Step 2. Make Radio Buttons Show and Hide Fields

In this step you will create Click events for the radio buttons to make the
required search by field visible.

1. Create a Click event for RDBN 1.

2. Add logic to make iiiSRCNME visible and hide fields iiiSRCDEP and
iiiSRCDTE. Your code should look like the following:

* Surname search

Evtroutine Handling(#RDBN_1.Click)
#iiiSRCNME.visible := true
#iiiSRCDEP.visible := false
#iiiSRCDTE.visible := false
Endroutine

3. Create Click events for RDBN_2 and RDBN_3. Copy and paste the code

from the RDBN_1.Click event into each routine and carefully modify the
code as required.

Tip: As you have not renamed the radio buttons, it is a good idea to add a
comment above each click event defining which search this is.

4. Compile and test your form. Clicking on each radio button should show one
field only.

Step 3. Add Search Logic

In this step you will program the SEARCH.Click event to select from the file

iiiEmployees based on the Search by radio button settings. The select logic will
populate the list view EMPLOYS for each search.

1. Create a Click Event for the SEARCH button

2. Use the Command Assistant to create a Group_By, EMPDATA, containing

the fields required to populate list view EMPLOYS. Your code should look
like the following:

Group_By Name(#empdata) Fields(#LIIEMPLOYNUMBER #IIIDEPTCODE

Define the Group_by at the form level, below the component definitions. It
will later be used in another routine.

Note: You could have defined the Group_by in the SEARCH.Click event an
itt could still be used in other routines.

3. In the SEARCH.Click event routine, complete the SELECT logic to perform
if the RDBN_1 is checked. This should search file iiiEmployees on surname,
using a logical file, allowing a generic search.

a. Add a logical file iiiVEMPO02 By Surname to your employee file
iiiEmployees.

b. Give the logical file a key of SURNAME.

c. Compile your file. Review your compile options carefully. You need to
rebuild Logical Views and OAM.

Complete your search logic based on the following pseudo code:
Clear list EMPLOY'S

If RDBN 1 is checked

Select fields EMPDATA from file iiiVEMPO02, with key iiiSRCNME with
generic = yesbul

Set up field FULLNAME

Add entry to list EMPLOYS

End select
Endif

Change fields in the Group_by EMPDATA to *default values

Your code should now look like the following:

Evtroutine Handling(#SEARCH.Click)

Clr_List Named(#EMPLOYYS)

* Surname search

If (#RDBN_1.buttonChecked = true)

Select Fields(#empdata) From_File(iiivemp02) With_Key(#iiiSRCNME) Gene
#fullname := #iiiSurname + ', ' + #iiiGivenName
Add_Entry To_List(#EMPLOYYS)

Endselect

#EMPDATA := *default

Endif

Endroutine

4. Compile and test your form. Review exercise REP005 if necessary to check
what records were added to file iiiEmployees. In REP005 exercise you
created a maintenance form for iiiEmployees. Use this to add more records if
required.

The SELECT which is using GENERIC(*YES) will retrieve all records if the
search key is blank.

The list view should now be populated using the Surname search option.
5. Create another logical for the employee file iiiEmployees:

a. Add a logical file iiiVEMPO03 — By Start Date.

b. Add a key of iiiStartDate.

c. Compile the file and rebuild logical files and OAM.

6. Extend the SEARCH.Click event to handle the start date search (RDBN_2
checked). The SELECT command has an OPTIONS() parameter which
provides additional read options such as read using start key and read
backwards. Review the SELECT command in the Technical Reference Guide
for further details.

its:lansa015.CHM::/lansa/SELECT.HTM

Extend your SEARCH.Click logic based on the following

If RDBN_2 is checked

Select fields EMPDATA from file iiiVEMPO03, with key iiiSRCDTE using
Options, *STARTDATE and *BACKWARDS

Set up field FULLNAME
Add entry to list EMPLOYS
End select

Endif

Your additional code should look like the following:

If #RDBN_2.buttonChecked = true)

Select Fields(#empdata) From_File(iiivemp03) With_Key(#iiiSRCDTE) Optic
#fullname := #iiiSurname + ', ' + #iiiGivenName
Add_Entry To_List(#EMPLOYYS)

Endselect

Begincheck

If #EMPLQYS.items.itemcount = *zeroes)

Message Msgtxt('No Employees from this Start Date")
Set_Error For_Field(#iiiSRCDTE)

Endif

Endcheck

Endif

7. Compile and test your form. If you added employees with start dates earlier
than the current date, enter todays date as your search value. When searching
by Start Date, the latest date should be at the top of the list view.

8. Extend your SEARCH.Click event to handle the Location search (search by
department code - iiiSRCDEP). The SELECT command on this occasion
should read the logical file iiiEmpByDeptView, with a key of iiiSRCDEP.

Since iiiSRCDEP must exist on the file iiiDepartments (see validation rule at
file level, in file iiiIEmployees for field iiiDeptCode) your program could
check for valid department before continuing the search.

Extend your SEARCH.Click logic based on:

If RDBN_3 is checked
Begin check

Filecheck field iiiSRCDEP in file iiiFILDEPT. Issue a message if not
found.

End check
Select fields EMPDATA from file iiiVEMPO1, with key iiiSRCDEP.
Set up field FULLNAME
Add entry to list EMPLOYS
End select
Endif

Your additional code should look like the following:

* Location Search

If #RDBN_3.buttonChecked = true)

Begincheck

Filecheck Field(#iiiSRCDEP) Using_File(iiiDepartments) Msgtxt('Department
Endcheck

Select Fields(#empdata) From_File(iiiEmpByDeptView) With_Key(#iiiSRCD.
#fullname := #iiiSurname + ', ' + #iiiGivenName

Add_Entry To_List(#EMPLOYYS)

Endselect

Endif

9. Compile your form and test it. Select Search by Location, enter an invalid
department code and click the Search button.

Based on exercise FRM035 you should be aware that the FILECHECK will
highlight the field iiiSRCDEP and issue a message, if the field does not exist
in file iiiDepartments. The ENDCHECK will branch to the ENDROUTINE
on error.

Ensure that the list view is populated when a valid department is entered for
which employees exist.

Sample Solution for SEARCH.Click Event Handling Routine
Evtroutine Handling(#SEARCH.Click)
Clr_List Named(#EMPLOYS)
* Surname search
If (#RDBN_1.buttonChecked = true)
Select Fields(#empdata) From_File(iiivemp02) With_Key(#iiiSRCNME) Gene
#fullname := #iiiSurname + ', ' + #iiiGivenName
Add_Entry To_List(#EMPLOYYS)
Endselect
Endif
* Start Date Search
If #RDBN_2.buttonChecked = true)
Select Fields(#empdata) From_File(iiivemp03) With_Key(#iiiSRCDTE) Optic
#fullname := #iiiSurname + ', ' + #iiiGivenName
Add_Entry To_List(#EMPLOYYS)
Endselect
Begincheck
If #EMPLQOYS.items.itemcount = *zeroes)
Message Msgtxt('No Employees from this Start Date")
Set_Error For_Field(#iiiSRCDTE)
Endif
Endcheck
Endif
* Location Search
If #RDBN_3.buttonChecked = true)
Begincheck
Filecheck Field(#iiiSRCDEP) Using_File(iiiDepartments) Msgtxt('Department
Endcheck
Select Fields(#empdata) From_File(iiiEmpByDeptView) With_Key(#iiiSRCD.
#fullname := #iiiSurname + ', ' + #iiiGivenName
Add_Entry To_List(#EMPLOYYS)
Endselect
Endif
Endroutine

Step 4. Add Tab Folder and Tab Sheets to the Form

In this step, you will extend the form's functionality by adding a Tab Folder,
with Tab Sheets containing Details and Holidays.

1. Extend the length of the form. Drop a Tab Folder onto the form below the
EMPLOYS list view. Size it to use all the space available.

Hint: The Tab Folder automatically contains two Tab Sheets and a Tab Sheet
initially has focus. To enlarge the Tab Folder you must select that component.
In the Design view do this by clicking on the background next to the tabs:

Click here to select the Tab }

Folder

2. Using the Details tab, change tab sheet's (Sheet_1) Caption to Details and
(Sheet_2) Caption to Holidays. Once again ensure you have selected the

correct component. Select a Tab Sheet by clicking on its tab and then click in
the middle of the tab sheet area.

Alternatively, you could use the Outline tab to select the correct component.

Or, on the Details tab, select the component you need from the dropdown list of
all comonents in the form:

Details

Sheet 7 (=] -

ROBM_1
RDEM_2
ROEBM_3
SEARCH
Sheet_1
Sheet_2
STBR_1
Tab_1

f DragDrop
% DragQOver
& FrdMran

3. Select the application Details tab sheet, by clicking on its tab, and then click
in the centre of the tab sheet area.

6. On your Last Opened tab, expand the file iiiEmployees and select field
iiiEmployNumber, iiiDeptCode iiiSurname, iiiGivenName, iiiSALARY,
iiiStartDate and iiiEmployNotes. Select the fields by holding down the Shift
key, click on the first field and then click on the last. Drag these fields onto
the top end of the Details tab sheet. Your form should look like the following:

: —
RERTE N e e e e TR e e i e e s T]
ey ey Bl S aAbBCCADeERFgGHHEAKILM []
SR R e e e e e e e e s
o I I - e e e
i T E S e e ey [1
..::B?::: B Search G
Employee Nu... | Employeefull.. | DepartmentC.. Department De..| Start Date
= ABCDE aAbBcCdDeEf.. ABCD aAbBcCdDeEf... 01/01/190001:... -

R e e b

- Exnieloled Biisindvad . 2 [ABCDE |l e e

.. Depantment Code -« - - |ABCD A e e]

© - Sumame: - - - - - aAbBeCdADeEfFgGhHlkKILm

- - Given Name: - - - - - - . - | aAbBcCdDeEfFgGhHilIkKILm

L CSalarngs Dol l000 10 01]1,234,5967,890.12 ;

- StartDate - - - - 01/0171900 D1:00:00 T b
Ciiiiiaiiiiiiaatoe s [aAbBcCdDeEfFgGhHIlkKILMMnMNoOpPgQR < | C i C D]
DL LIILITIILITII I s TulvWiwiay Yz aAbBeC dDeEfFgGhHiljlk CE
coMetes: il KILmMnNoOpPqQrRsStTullWwWWallyYzZ aAb

: : : L1l BeCdDeRfFgGhHIliIKILmMnNoOpPqOrRsSET |10 1101]!

oL ke YR Za AR B C dOeEfFaGhHIKELm_ |11
albBeCdDeEfFgGhHIlkKILmMnMNoOpPgOrRsSt TullWwithadyVzZ . -0 20011000] |

6. Select the Holidays Tab Sheet.

7. Drop a Grid component onto the Holidays Tab Sheet and resize it to occupy
all of the space. Change the Grid's Name to HOLIDAYS.

8. On the Last Opened tab, expand the file iiiEmpHolidays. Drag and drop the
fields iiiHOLCDE, iiiHOLSTA, iiiHOLEND, iiiHOLCOM into the
HOLIDAYS grid.

9. With the Holiday Comments column selected, change its WidthType to
Remainder.

10. Save your form

Step 5. Populate the Tab Sheets

In this step you will create an ItemGotFocus event routine for the List View
EMPLOYS, and fetch employee data and select holiday data.

1. Add fields iiiSALARY to the Group_by EMPDATA.

2. Complete the EMPLOY S.ItemGotFocus event routine based on the
following:

Fetch fields EMPDATA from the file iiiEmployees with the key
iiiEmployNumber

Clear the list HOLIDAYS

Select HOLIDAYS from the file iiiEmpHolidays with the key
iiiEmployNumber

Add entry to HOLIDAYS
End select

Your code should look like the following:

Evtroutine Handling(#EMPLOY S.ItemGotFocus) Options(*NOCLEARMESS
Fetch Fields(#empdata) From_File(iiiEmployees) With_Key(#IIIEMPLOY
Clr_List Named(#HOLIDAYYS)

Select Fields(#HOLIDAYS) From_File(iiiEmpHolidays) With_Key(#I1IEN
Add_Entry To_List(#HOLIDAYS)

Endselect

Endroutine

3. Add code to the end of the SEARCH.Click event to clear the employee fields

using the Group_By and clearing the HOLIDAYS Grid. Your code should
look like:

#EMPDATA := *default

Clr_List #HOLIDAYS

Endroutine

4. Test your completed application. You should be able to search by one of
three methods. Changing focus to an entry in list view EMPLOY'S should
display employee details and populate the HOLIDAYS grid.

Summary

Important Observations

e The SELECT/ENDSELECT command is a powerful I/O command which
reads multiple records.

e Radio buttons behave as a "set". Only one can be checked at a time.

e The Tab Folder and Tab Sheets enabled a lot of information to be shown on
one form

Tips & Techniques

e Review the SELECT command in the Technical Reference guide for more
information and examples.

What You Should Know
e How to use the SELECT command
e How to use a simple Tab Folder component
e How to use radio buttons

How top show and hide fields

its:lansa015.CHM::/lansa/SELECT.HTM

FRMO075 - Using a Working List

Objectives:
e To learn how to locate, update and delete entries from a list.
e To introduce the SELECTLIST / ENDSELECT commands for processing
lists.
e To show how working lists can be used with the list view.
e To create an application that allows the user to select multiple records from a
list to calculate total salaries.
[Using a working List =@
Code Sumame Given Name Salay
A00T0 Ercwn Weronica 5012500
A0050 Bloggs Fred 20,0459
A9l Smithson Fred 35.000004
A0907 Simpzon Anng 34,213.04
A1001 Jomes Shiley 234582
Al002 Smythe John 25,000 04
A1003 Smithe Robest 3.000004
A1004 Smiwon Ruth 21.000.04 ek oot
A1005 Smithz Paber 4B, 70004 4
A100E Smithers Jack 25,000 04
A1007 Snel Geoige 26.780.04 Comgute Selected
A1008 Sneddon Alizon 450,000.04 — -
41009 Snashall Damian 1.000.04 |_[Cale. Tolal Salany
A1010 Pamy Kabe EO0.000.04d
&1011 Perran Chinztopher 25.000.04 Total Salary
A2 Paul Patrick 26456 04
AN Paimon Geoge 78.977.04 S
A1014 Mooe John BE.000.04
A0S Wioods Bradey 313.000,04 i Total 5alay
?1 e Tt .II.T-l: 2 nnnnd ; 100091 81
e When the user selects items in the list, the total salary number will be
updated.
e To show how 'selected items' in a list component can be selected.
e A working list in the program will also be updated with the selected items.
e When the Calc. Total Salary button is pressed, the salary is calculated using
the working list. This value matches the total salary. Also, the total items in
the working list is displayed.
e To use the TRANSFORM _FILE Built in Function to create a CSV file from

the working list.

To achieve these objectives you must complete the following:
Step 1. Select Multiple Entries
Step 2. Use a SELECTLIST Command

Step 3. Build a Working List
Step 4. Create a CSV File
Summary

Before You Begin
Complete all preceding exercises.

Step 1. Select Multiple Entries

1. Create a New Form /Basic FormiiiUseWrkList — Using a Working List and
make the form RDMLX enabled.

2. From the Controls tab, drop a List View onto the form and resize it. Change
the List View's Name property to EMPLOYS.

3. Drop a Status Bar onto the form. It will attach to the bottom of the form.
Your form should look like the following:

o 0 |

aAbBcC ADEESFgGhHIIKKILMMANGORPQRSSITUUWWARGYSZ. 1 1 o[% | =

4. On the Repository tab, locate the file PSLMST and expand its definition.
Drag and drop the fields EMPNO, SURNAME, GIVENAME and SALARY
into the list.

Change the column headings as follows:
Field / column Property Value
EMPNO Caption Code

CaptionType Caption
SURNAME Caption Surname

CaptionType Caption
GIVENAME Caption Given Name

CaptionType Caption

SALARY Caption Salary
CaptionType Caption

Resize the fields to display their content. Your List View should look like the
following:

= = |E| =

1 Code Surname Given Mame Salary

{,a"ABCDE aAbBoCdD.. aAbBcCdDeEfFg.. 12345678912

5. Create an Initialize event for the list view EMPLOYS.

Hint: You can create a click event by selecting EMPLOYS. On the Details
tab, select the Events tab and double click on Initialize event. Alternatively,
use the right mouse menu on the list view EMPLOY'S and use the Events
option to create an Initialize event routine.

6. Add code to the EMPLOYS.Initialize event routine, to clear the list
EMPLOYS and read all employee records, adding entries to EMPLOYS.
Your code should look like the following:

Evtroutine Handling(#EMPLOY S.Initialize) Options(*NOCLEARMESSAGE
Clr_List Named(#EMPLOYS)

Select Fields(#¥EMPLOYS) From_File(pslmst)

Add_Entry To_List(#EMPLOYYS)

Endselect

Endroutine

7. Create a field in the Repository called iiiTOTSAL. Define it as Packed
(15,2) field and give it an edit mask of J (a format of 1,234,567.89-).

8. Drop the field iiiTOTSAL onto the bottom right hand side of your form.
Change its LabelPosition to Top.

9. Select the EMPLOYS list view. On the Details tab, notice that the List View
has a default SelectionStyle of Multiple.

10. Create an ItemGotSelection event routine for list view EMPLOYS. Add
code to add SALARY to iiiTOTSAL.

11. Create an ItemLostSelection event routine for list view EMPLOYS. Add
code to subtract SALARY from iiiTOTSAL. Your code should look like the

following:

Evtroutine Handling(#EMPLOY S.ItemGotSelection) Options(*NOCLEARME
#IIITOTSAL += #salary

Endroutine

Evtroutine Handling(#EMPLOY S.ItemLostSelection) Options(*NOCLEARM
#IIITOTSAL -= #salary

Endroutine

In an RDML form you could have used:
Change Field(#IIITOTSAL) To('#iiitotsal + #salary")

12. Compile and test your form. Select multiple entries in the List View (hold
down the Control key). Total Salary should show the correct total for selected
employees.

L1015 VWoods Bradley T13.000.04 Total Salary

i <] ~] i1 247 457.20

Step 2. Use a SELECTLIST Command

In this step you will add another copy of the iiiTOTSAL field to the form and a
push button. Clicking the push button will read through the List View
EMPLOYS using a SELECTLIST/ENDSELECT command and total the
currently selected entries into the new total field.

1. Drop a Group Box onto the right hand side of your form. Resize it and
change its Caption property to Compute Selected.

2. Drag and drop field iiiTOTSAL into the group box. Note that it will be
renamed to iiiTOTSAL_1. Changes its LabelPosition to Top.

3. Drag and drop a push button into the group box.
Change its Name to COMPUTE and Caption to Calc. Total Salary.
Create a COMPUTE.Click event routine.

Your form should look like the following:

4. In this step you will complete the COMPUTE click event logic.
a. SELECTLIST/ENDSELECT will read all entries in a list component.

b. The selected entries can be identified by using their Currentltem property.
Entries in a list are themselves a component. Currentltem has a Selected
property (true or false).

c. Use F2 Feature help on a component to discover all its events, properties
and methods and the help associated with each of these.

Featurel)

4 If:’ Properties

-

-

|,-? AutoArrange

Iﬂ? BusyUpdates

ii? BusyUpdatesOfParent
|;"? CanFocus

|F? CheckBoxes

|h? ColumnButtonHeight
|,-? ColumnEllipses

|F? ColumnHeaderPress
|r|? ColumnHeaders

|ﬁ? ColurmnResize

|,-? Columns

if’ ComponentClassMame
s? ComponentMembers

If? ComponentPatternMame

if ComponentTag

ii:’ ComponentType

if? ComponentTypeMame
Iﬁ? ComponentVersion

- BelabelB-[7
|

Boolean of (False”
Enumeration of (W
Boolean of (False,”
Boolean of (False”
Boolean of (False,”
Integer(4)
Enumeration of (M
Boolean of (False,”
Boolean of (False,”
Boolean of (False,”
Reference(PRIM_P
String
Reference(PRIM_P
String

String
Reference(PRIM_R.
String

Integer(d)

|F? Currentltem
> w PRIM_LVIT

Reference(PRIM_L'
List itemn is an entr

|,-? Cursor

|!-? DisplayPosition
|r|? DragColumns
|;"? DragStyle

[Enabled

|!-? Entries

|n? Focus

|;"? Focusltemn

Reference(PRIM_C
Integer(d)

Boolean of (False,”
Enumeration of (M
Boolean of (False”
Integer(d)

Boolean of (False,”

Reference(PRIM_L

b

D!srgn| Source Repository Details | Repository

x <

2

: »
e
-

Code
o ABCDE

Surname G
aAbBcCdDeEf... af

3AbBcCdDeEfFgGhHIIKILmMnNoOp

Currentltem property

CurrentItem is the item being world
It is only walid at run-time.

The CurrentItem is the item in a lig]
by the user by moving the focus or

The value of the current item is usg
Double-click on CurrentItemn in the

list item:

d. Double-click PRIM_LVIT to see the events, properties and methods of a

Features

4 Primitive

@-H-| B Apbé| B2
|

w |PRIM_LVIT

List iterm is an entry in a list, tree viel

4 Definiti
4 (lass

4 m PRIM_LVIT
4 [& Extends
o PRIM_OBIT Base object, use it as the ancestor o
b % Events
P B Methods
'3 E? Properties

List itern is an entry in a list, tree vie

e. Expand the list item properties and choose the Selected property to see its
description:

> i7" RelatedReference
x

7 Selected — @ Currentltem Selected Property

.‘ v
& _‘ SelectedStyle z [{) U=ze the Selected property to find outifa li
’ _‘ SelectedStyles ¥ou can use the SELECTLIST command to
» & Style % and tests whether its Selected property is
> [Styles SELECTLIST NAMED (#LTVW 1)
> [Valuedt - by IF "#ltvw_l.CurrentItem.Selected

b do scmething
[FHLTE

The following code will accumulate SALARY into iiiTOTSAL for selected
items:

Evtroutine Handling(#COMPUTE.Click)
#iiitotsal 1 := *zeroes

Selectlist

If #EMPLOYS.currentltem.selected = true)
#IIITOTSAL_1 += #salary

Endif

Endselect

Endroutine

5. Compile and test your form:

F B

m 1] Using Working Lists =RNC X
Code Surnarne Given Mame | Salary

ADOTO Brown Veronica 50125.00 =«

A0090 Bloggs Fred 20,04591

AD193 Smithson Fred 35,000.04

AD907 Simpson Anne 34,213.04

A1001 Jones Shirley 234582

A1002 Smythe lohn 25,000.04 Compute Selected

A1003 Smithe Robert 31,000.04

A1004 Smithson Ruth 21,000.04 Cale
A1005 Smiths Peter 45,700.04 :

A1006 Smithers Jack 25,000.04 Total Salary
A1007 Snell George 26,780.04 50 000.08

AL1008 Sneddon Alizon 450,000... :

A1009 Snashall Damian 31,000.04

A1010 Perry Kate 60,000.04 Total Salary
A1011 Perron Christopher 25,000.04 50 000,08

Al012 Paul Patrick 26,456.04 :

Step 3. Build a Working List

The DEF_LIST command can be used to define two types of list:

e A browselist (Type(*browselist)), used to define an output list in a 5250
RDML function (a subfile in RPG terminology). In web event functions a
browselist is used to define output of a list to the web page

e A working list (Type(*working)), used to define a list or table in memory.
In RPG terminology, a working list would be described as a "multi-
occurrence data structure”. In WAMs, a working list may also be used to
define a list to be output the page.

The following defines a working list containing an unlimited number of entries,
within platform limits.

Def_List Name(#emplist) Fields(#empno #surname #givename) Type(*Workir

This is the recommended way to define maximum list entries in an RDMLX
enabled partition.

e The list will expand as required, and only occupy the space actually
required.

e With a fixed number of entries defined, the list will occupy that space in
memory, irrespective of the actual number of entries added.

Note: By default a working list has an Entrys parameter of 50.

See the Technical Reference guide for further details on the DEF_LIST

command.

In this step you will define a working list and use it to contain currently selected
entries in the list view EMPLOYS.

1. Define a work field EMPNOKEY in your form based on field EMPNO. You
will use this field to store the employee number in the working list. Your code
should look like the following:

Define Field(#empnokey) Reffld(#empno)

2. Define a work field LISTCNT based on field STD_NUM. You will use this
field to keep a count of the number of entries in the working list.

3. Define a working list named EMPLIST, containing fields EMPNOKEY,
SURNAME, GIVENAME and SALARY. Set its maximum entries to *max,
and use field LISTCNT as a counter. Your code should look like the

following:
Def_List Name(#emplist) Fields(#empnokey #surname #givename #salary) Cc

4. Drag and drop the field STD_NUM onto your form, above the 'Compute
Selected' Group Box.. Change the following properties:

LabelPosition to Top
LabelHorAlignment to Left.
Caption to Working List Entries
LabelType to Caption.

5. The LOC_ENTRY locates an entry in a list, based on a Where clause, for
example:

Loc_Entry In_List(#emplist) Where(#empno = #empnokey)

Extend the EMPLOYS ItemGotSelection logic to locate an entry in working
list EMPLIST. If not found add an entry to working list EMPLIST. Your code
should look like the following:

Evtroutine Handling(#EMPLOY S.ItemGotSelection) Options(*NOCLEARME
#IIITOTSAL += #salary

Loc_Entry In_List(#emplist) Where(#empnokey = #empno)

If_Status Is_Not(*OKAY)

#empnokey := #empno

Add_Entry To_List(#emplist)

Endif

Endroutine

6. Extend the EMPLOYS ItemLostSelection event routine, to delete an entry
from EMPLIST if an entry was located. Your code should like the following:

Evtroutine Handling(#EMPLOY S.ItemLostSelection) Options(*NOCLEARM
#IIITOTSAL -= #salary

Loc_Entry In_List(#emplist) Where(#empnokey = #empno)

If_Status Is(*okay)

DIt_Entry From_List(#emplist)

Endif

Endroutine

7. Add code to the COMPUTE button click event to set the form field
STD_NUM to the working list count, from LISTCNT. Your code should now
look like the following:

Evtroutine Handling(# COMPUTE.Click)
#iiitotsal := *zeroes

Selectlist

If #EMPLOYS.currentltem.selected = true)
#IIITOTSAL_1 += #salary

Endif

Endselect

#STD_NUM := #LISTCNT

Endroutine

8. Compile and test your form:

s "

® ' Using a working List NN X
Code Surname Given Mame Salary -
A0070 Brown Weranica A0,125.00
A0090 Bloagz Fred 20,045.91
AD193 Srithzon Fred 35,000.04
A0907 Simpson Anne 34.213.04 !
4100 Jones Shirley 234582 5
A1002 Smythe Jahn 25,000.04
A1003 Sithe Fobert 1.000.04 . .
41004 Smithson ~ Ruth 21.000.04 Wl LSt Bl
A1005 Srithz Peter 46,700.04 4
A1006 Srithers Jack, 25,000.04
A1007 Shel Gearge 26.780.04 Caompute Selected
A1008 Sheddon Alizon 450,000.04
A1009 Snashall [ramian 31.000.04
Al01o Perry k.ate B0,000.04
A1011 Perran Chrigtopher 25.000.04 Total Salary
A1z Paul Patrick 2645604
A1Mm3 Pattinzon Feorge V8.977.04 JOE]
A1i4 b oare Johin 63.000.04
A1mha Woods Bradley A3.000.04 Total Salary
&1M1R Tiurner darl: 22000 Nna T

] T b 100,091.81

Step 4. Create a CSV File

In this step you will use the TRANSFORM_LIST BIF to create a CSV file from
the working list.

1. Drag and drop a push button onto the form, above the Working List entries
field. Change its Caption to Create CSV File and Name to CREATE. Create
a Click event for it.

2. The TRANSFORM_LIST BIF can be used to transform a working list into a
text file, with a number of file format options. The output file name will
usually be defined including a full path to control where it is written.

LANSA has a number of system variables which may be used to provide a
path name which will be valid in both a development and production
partition. For example this assignment would place the file named
EMPLIST.csv into the Visual LANSA partition \object folder.

#STD_QSEL := *part_dir_object + 'EMPLIST.CSV'

Note: The system variable *part_dir_object provides a path ending in "\".

Built-In functions (BIFs) are executed using the USE command. The USE
command has the format:

USE Builtin() With_args() To_get()
A BIF is a called program, and the arguments it receives and returns are
defined in the Repository. The Command Assistant fully supports BIFs, just

like any RDML command. Your CREATE Click event logic should look like
the following:

Evtroutine Handling(#CREATE.Click)

#STD_QSEL := *part_dir_object + 'EMPLIST.CSV'

Use Builtin(transform_list) With_Args(#emplist #STD_QSel) To_Get(#i0$
If (#io$sts = OK)

Message Msgtxt('File EMPLIST.CSV created in ..\x_' + *partition + "obje
Endif

Endroutine

Note: The message text uses a system variable *partition which contains the
3 character partition name.

3. Compile and test your form. Select entries in the list view. The Create CSV

File button will write a CSV file containing the working list's entries:

B Using a working List = B [
Code Suirames Given Name Salary * l Creabte C5V File |
A0O7D Erown WVaronica 50,125.00
A0090 Elogg: Fred 20,045,351 i el
AN Srithson Fred 000,04 “working List Entries:
Anao? Simpzon Anne 3M.304 1 5
A1001 Jonasz Shirlay 24582 2
Al002 Smythe John 25,000.04 Compute Selected
A1003 Sl Robeit 3100004 T Y
A1004 Smithson Ruth Z1,000,04 iCalc: Total Salay
A1005 St Peter 4670004 -

41008 Smithers Jack 26,000.04 Total Salary
Al007 Snel Geoge 26,780.04 130,171.85
A1008 Sneddon Alizon A450,000.04

A1009 Snashall Drammian 31000, 04

A0 Peiry Eale £0,000.04 Tatal Salary
AT0M Paimon Chnstophes 25,000.04 1017165
Amz Paul Palnck 26.,456.04 -

Az Paltnzon Geoige 78.5977.04

A1014 Moore John £, 000,04

A1NS Wwiaods Bradley 1300004

A1ME T et sk 2 0 nd

']] ¥

4. Use Windows Explorer to locate the output file. For example, in a standard
Visual LANSA installation:

C:\Program Files\LANSA\x_win95\x_lansa\x_dem\objec\EMPLIST.CSV

Where DEM is the partition being used for training.
If your PC has MS Office installed, this file is opened in Excel.

.
& - =
Home Insert Page Layout Fnr!
3 * Calibri 11 A A
ER
F‘avste) B I U~ |~ &~ év
Clipboard & Font
Al - JE'- Amoz;
A B C D |
1 [a1002 Ismythe John 25000.04 |
2 A1004 Smithson Ruth 21000.04 [
3 |A1008 Sneddon Alison 450000 |
4 |A1010 Perry Kate 50000.04 [
5 |A1012 Paul Patrick 26456.04 I[
=

The next step will use the System_Command Built in Function to
automatically display the CSV file in Notepad.

5. Add the highlighted code to your CREATE.Click event handling routine
Evtroutine Handling(#CREATE.Click)

Define #retcode type(*dec) length(3) decimals(0)

#STD_QSEL := *part_dir_object + 'EMPLIST.CSV'

Use Builtin(transform_list) With_Args(#emplist #STD_QSel) To_Get(#io$sts)
If (#io$sts = OK)

Message Msgtxt('File EMPLIST.CSV created in ..\x_' + *partition + "object fo
#std_qgsel := ('notepad ' + #std_gsel)

Use Builtin(system_command) With_Args(X #STD_QSEL) To_Get(#retco
Endif

Endroutine

This will display the CSV file in Notepad once the TRANSFORM_LIST BIF
has successfully completed:

Mj EMPLST.CSV - Notepad

File Edit Format View Help

[‘a0193","smithson","Fred", 35000. 04
"a1002", "smythe"”, " 1ohn",25000. 04
"A1005","smiths", "Peter”,46700. 04
"A1009","snashall”, "Damian”,31000. 04
"a1010","Perry”,"Kate",60000. 04

Omitting 'Notepad' from the execute string would load the CSV file in Excel if
you have MS Office installed.

Summary

Important Observations

In the event-driven program model, when the user selects multiple items in a
list, each item is processed individually by a call to the event that is
triggered.

The SELECTLIST command is very similar to the SELECT command. It
creates a looping structure to process multiple records from a list.

The list operations also support the use of IF_STATUS commands.

Working lists are created using a DEF_LIST command within the program
code. The list definition includes the fields in the list and the size (maximum
number of entries) of the list.

The working list counter is updated automatically.

The TRANSFORM_LIST BIF will produce a text file, with a number of
formats options available, from a working list.

Windows applications can be called using the SYSTEM_COMMAND BIF.

Tips & Techniques

Allowing users to select multiple items from a list and then performing some
action against the resulting selected list of items is a very common
requirement in Windows applications.

Most lists have a property that indicates whether multiple item selection is to
be allowed or not. By default, multiple item selection is supported. You
should always think about whether or not you want to support multiple item
selection and set this property accordingly.

What You Should Know

How to use lists with list views.

How to locate, update and delete entries from a list.

How to select items from a list using the SELECTLIST command.
How to use the following list commands:

e ADD_ENTRY

e CLR_LIST

e DEF_LIST

e DLT_ENTRY

e LOC_ENTRY
e DEFINE
e How to use the TRANSFORM_LIST Built-in function.

FRMO085 - Update from a Grid

Objective:

e To create a small application with search and update for employee details

and employee skills.

hiet regquanement

i Update From a Grid [ESET=
[~Search — E— = |
Start Month Sumame
January Leaich Search

o Full Name fir=s

ADOT0 BROWM, VEROMICA Ermpleyes Number ADOTO Department Code INF

A1002 SMYTHE, JOHN Employes Sumame BROWN Section Code oV

a1019 DICKENS, CHARLES S

AL022 THOMPSOM, KELLY Il EROhacA R (202500
Street No and Mame 12 Railway Street Seart Date (DDMMYY) 260190
Suburk or Town Bauliharm Hills Termination Date (DOMMYY) 000000
State and Country MW Australia
Post / Zip Code 2153
Horne Phone Murnber (02) 9609 4627
Business Phone Number | (02) 9647 2783

Skalll Code Grade Comment Date Acquired

4AGL Programming | |M 50393 -
Administratn Patl P Met requarement | 30,06,96
Administratn Part 2 P 1,/03/58
Advanced Progra., P 101295
Communications—. D 4,05/98
Computer Scoence.., D Very good result 506,90
Company Induction P 20,0290
Cempany Imrodu.., P 50298 -

Close

e To demonstrate reading a file using SELECT_SQL
e To demonstrate updating a file based on changed entries in a grid
To achieve these objectives you must complete the following:

Step 1. Create Field iiiMONTH and Visual Picklist

Step 2. Create Form — Update from List

Step 3. Add Search Logic

Step 4. Display Employee Details and Skills
Step 5. Update Employee Details
Step 6. Update Employee Skills

Step 7. Add Drop Down for Skill Code (optional)

Summary

Before You Begin
Complete all earlier FRM exercises before starting this exercise.

Step 1. Create Field iiiMONTH and Visual Picklist

The application will search the employee file (PSLMST) using SELECT_SQL,
using a search on Start Date (STARTDTER) comparing the month value only. In
this step you will create a month field and define a static picklist visualization
for it. This will be visualized as a combo box which returns a numeric month
number.

1. Create a new field, iiiMONTH based on the following:

Field Name iiiMONTH
Description Month
Type Signed
Length 2
Decimals 0
RDMLX Enabled

No
Open in the Editor

Yes

2. With the new field open in the editor, select the Visualization tab.

Use the toolbar button to insert a Static Picklist

Definition | Rules and Triggers | Visualization Repository Help

x@lﬁli;_'ﬂr_lz'_ﬁ] __
Beld Parte Ei] Neﬁtatic Picklist | .

4 Gl vizua“za@i Mew Dynamic Picklist | - ...

G WMisualEdit] 0000 | R

3. In the Field Parts panel, select the picklist item and create entries for each
month.

Definition | Rules and Triggers Wisualization Repository Help | Cross References

X a3 BH-m=gHE = - @ P
Field Parts | Image | Caption i Value
4 | 8 Visualizations ‘January ‘1
D VisualEdit February 2
B VisualPicklist March E]
4 =@ Picklists April 3
4 =m Picklist
— PHITL May i
— PKIT2 June 6
— pKIT 3 July 7
— PKIT_4 August 8
— PKIT_S September 9
— PKITG October 10
— PMT 7 Movember u
— PKIT8 December 12
— PKIT 9
— PKIT_10
— PKIT_11
— PKIT_12

The default appearance of a picklist is a DropDownList. Do not change this
setting:

Details Definition | Rules and Triggers | Visu
VisualPicklist -] M| el D v ==
e Field Parts
Properties | Events | Methods 4 | ® Visualizations

"'Appearance DropDownList > |- cn U!sualEF‘ht .

7 Busylpdates ButtonSet En V-ISLIE|PIC|(|ISt

7 BusylpdatesQfParent CheckBox S Rickiists

® Canti DropDownlList

aption %

= Image

- Colurnns ImagefndText

'ComponentClassName ||jstBox

A'Cu:umpu:unentPatternName EOMMONTH =

* ComponentTag

4. Set the properties of the VisualizationPicklist element in the Details tab:
e Change its MarginLeft to 0, to hide the label.

e Change its DefaultVisual property to true.

e Resize the DropDownlList visualization as shown:

¥ | a3

Field Parts
4 . ® Vizualizations
ED VisualEdit

=l VisualPicklist

* =3 Picklists

5. Save the field definition and close it.

Step 2. Create Form — Update from List

1. Create a New Form / Basic Form iiiUpdFromGrid — Update from List.
The form should be RDMLX enabled.

2. Enlarge the form. Drop a Group box to the top of the form. Resize it and
change its Caption to Search. Your form should look like the following:

| = = |ﬁw

PSS o 5 ST T 0, e, T U . B PO s T B L |

3. Drop another Group Box into the left side of the Search Group Box and
resize it. Change its Caption to Start Month. Your form should look like the
following:

&

SRR R R
B e R R e B
S| e T I 5
g e G E LGl L e G

4. From your Last Opened tab, drop field iiiMONTH into the Start Month
Group Box.

e e T
o —S5tart Month | —————— | [:
.'ZZZZZZZ.ZZZZZZZ'.EEEEE.

[] - H

W W e e

5. From the Controls tab, drop a Push Button into the Start Month Group Box.
Resize the Group Box as needed and position the Push Button as shown.

K

S
S gy T e e
| R S e BF SO
Sl il g o

6. Change the Push Button Name to SEARCH_MONTH and change its
Caption to Search.

7. Save your form.

8. From the Controls tab, drop a Group Box into the Search Group Box, on the
right hand side. Change its Caption property to Surname:

3 =

e
R T e e T
L i ik s e ey |

9. From the Repository tab, Fields, drop field iiiSRCNME into the Surname
Group Box. Change its MarginLeft property to 0, and resize and position it as
required.

Hint: Temporarily extend both the Search and Surname Group Boxes to the
right, in order to reduce the width of the field iiiSRCNME. Alternatively,
select the field iiiSRCNME and reduce its Width property.

10. From the Controls tab, drop a Push Button into the Surname Group Box.
Change its Name property to SEARCH_NAME and change its Caption to
Search. Resize and position it.

X ll_l = H'
__Sg;rgh_________________ e
[= e

R —— - 1= |- - {aAbBeCADeEfFgGhHT) z Sk EaE it

Hint: from the Design ribbon, the / Align dialog has been used to align the
Start Month and First Name group boxes at their top edge.

11. Save your form.
12. Drop a Status Bar onto the bottom of the form.

13. Drop a List View component onto the left side of the form. Resize it. Change
its Name property to EMPLOYS.

14. Drop fields EMPNO and FULLNAME into the list view.

15. Select the EMPNO column. Change its Caption to ID. Change its
CaptionType to Caption. Make the column wide enough to display the field
EMPNO.

16. Select the Full Name column.
Change its Caption to Full Name and its CaptionType to Caption.
Change its WidthType to Remainder.

Your form should look like the following:

‘D | Full Name
I a%A. aAbBcCADEEFFgGHHIKILmMnNo..

17. Save your form.

Step 3. Add Search Logic

In this step you will create Click events for both search buttons and complete
the search logic using SELECT_SQL to populate the EMPLOYS List View.

1. Select the SEARCH_MONTH push button. Change its Enabled property to
False and create a Click event.

2. The SQL will have a WHERE clause, which compares STARTDTER with a
work field containing a mask '__nn__', where nn is the character value for the
month selector field iiiMONTH.

Define a work field (inside the SEARCH_MONTH.Click event) as follows:
Define Field(#iiiDATEG6) Type(*char) Length(6)

STARTDTER is a signed, length 6 field,

3. The date mask value can be created in field iiiDATEG6 using the asString and
RightAdjust intrinsic functions.

Hint: Use the F2 Feature help on field #iiiMONTH to discover the intrinsic
functions (methods) available.

Note: On this occasion you are first using the function asString from the

numeric field iiiMONTH and then using a RightAdjust function which is
available once it is a string. You can use F2 Feature help on any Alpha or
String field to discover the RightAdjust function. Then use F1 help on an
intrinsic function (method) to display help text and examples.

The code required is:
#iiiDATEG :='__ " + #iiiMONTH.asDisplayString.RightAdjust(2, "0") +'__'

The RightAdjust pads the result to length 2, with a pad character of 0.
Note:

In the next step you will add the SELECT_SQL logic to add rows to list view
EMPLOYS.

The SELECT_SQL command is read only and uses SQL instead of calling
the LANSA OAM. The OAM uses native I/O on the IBM i server and ODBC
on other platforms. SELECT_SQL reads the file directly and is not subject to

LANSA validation, virtual field or triggers.

The best way to check your SELECT_SQL logic is to use interactive SQL
for the required deployment platform, to ensure that your logic will work as
expected with that database (DB/2, MS SQL Server, Oracle?).

There are two forms of SELECT_SQL available.

¢ In the basic SELECT_SQL command, the SQL logic is defined in the
SELECT_SQL WHERE() parameter. This means that there are some
restrictions on the type of SQL code which you can implement.

e Inthe SELECT_SQL Free Format command, the SQL statement is written
in the SELECT_SQL USING() parameter. This means that any SQL code
which is supported by the database can be implemented in this form of
SELECT_SQL. This form of SELECT_SQL can only be used in RDMLX
enabled functions and components.

For full information about SELECT_SQL, refer to the Technical Reference
Guide. You should do a detailed study of this Technical Reference
information before attempting to use SELECT_SQL.

4. The SQL statement to retrieve employees with a start date in the required
month is as follows:

SELECT EMPNO, SURNAME, GIVENAME, STARTDTER FROM XDEMC

Where mm = the month number required.
Complete the SEARCH_MONTH Click event routine as shown below:

Evtroutine Handling(#SEARCH_MONTH.Click)

#iiiDATEG :="'__' + #iiiMONTH.asDisplayString.rightAdjust(2, "0") +"__'
Clr_List Named(#EMPLOYS)

#std_strng := "WHERE (' + ""STARTDTER"' + ' LIKE ' + #quote + #iiiD:
#std_strng := 'SELECT EMPNO, SURNAME, GIVENAME, STARTDTE
Select_Sql Fields(#(EMPNO #SURNAME #GIVENAME #startdter) Using
#fullname := #SURNAME + ', ' + #GIVENAME

Add_Entry To_List(#EMPLOYYS)

Endselect

#EMPNO #SURNAME #GIVENAME := *default

Endroutine

Note: The schema name used for file PSLMST in the SELECT_SQL will

its:lansa015.CHM::/lansa/SELECT_SQL.HTM

depend on your partition file library name. Visual LANSA creates the SQL
table by shortening the library name. For example DCXDEMOLIB, becomes
XDEMOLIB as used in the supplied RDML above. Use SQL Management
Tools to access the DB and check the schema name being used.

5. Create a Changed event for field iiiMONTH. Add code to this event to
enable the SEARCH_MONTH button. Your code should look like the
following:

Evtroutine Handling(#IIIMONTH.Changed) Options(*NOCLEARMESSAGE
#SEARCH_MONTH.enabled := true
Endroutine

6. Compile your form and test it. You should be able to select a month. The
search button should populate the list view. Hint: Try a number of different
months.

7. Select the SEARCH_NAME button, change its Enabled property to false
and create a Click event for it.

8. The SQL statement required to retrieve employees selecting by SURNAME
based on in input search value such as 'S%' or %smi%' is as follows:

SELECT EMPNO, SURNAME, GIVENAME FROM XDEMOLIB.PSLMST
Where XX = the search criteria.

Note: Once again you need to know the schema name for table PSLMST in
your local SQL Server database.

Your completed code should look like the following:

Evtroutine Handling(#SEARCH_NAME.Click)

Clr_List Named(#EMPLOYS)

#std_strng := #quote + #IIISRCNME + #quote

#std_strng := 'SELECT EMPNO, SURNAME, GIVENAME FROM XDE
Change Field #HEMPNO) To(*blank)

Select_Sql Fields#EMPNO #SURNAME #GIVENAME) Using(#std_strng
#fullname := #SURNAME + ', ' + #GIVENAME

Add_Entry To_List(#EMPLOYYS)

Endselect

#EMPNO #SURNAME #GIVENAME := *blanks

Endroutine

9. Create a Changed event for the field iiiSRCNME. Complete this event
routine to enabled the SEARCH_NAME button. Your code should look like
the following:

Evtroutine Handling(#IIISRCNME.Changed) Options(*NOCLEARMESSAGI
#SEARCH_NAME.enabled := true
Endroutine

10. Compile your form and test it. Check the SEARCH_NAME logic using
values such as SM% and %Y %.

Step 4. Display Employee Details and Skills

In this step you will extend the form design and add logic to retrieve employee
details and skills when selected in the employees list view.

1. Enlarge the form and drag and drop a Group Box onto the right hand side.

Resize the Group Box and change its Caption to Details. Your form should
look like the following:

_—
Faeanch | -
| Hms 0 L A D

< -« |- aAbBeCdDeEFgGhHIlLkKIL) -
I Full Name e e e e e
:Ja' A.. aAbBcCdDeEfFgGhHIlKKILmMnNG... “f
. ! .
aAbBrCADeEFFgGhHIEKILrnMnNcO PP RsSITull W WOiy=Z) 0 D DD Dl Dl il T | -

2. Expand the file definition on the Repository tab for file PSLMST. Select all
the fields from EMPNO to PHONEBUS while holding down the Shift key
and drag them to the top right side of the Details Group Box.

3. Reduce the field widths and if necessary widen the Form and Group Box,

and then select fields from DEPTMENT to TERMDATE and drag and drop
them to the right of the first set of fields:

':qu”_s” T et R B o R, O v e ST o TS e B R i

Enployed Miinbis ©© | ©C [ABCDE |i1::0000011 OvghekbuerkiCone: D011 [aBCD friiiiifh]
- Employes Surhdme - - | aAbBcCADeEfFgGhHIl | - - SectionCode -~ |AB [-iiiioiif
- Employee Given Mame{s) : - aAbBcCdDeEfFgGhHily [- - Employee Salary - - - - - - 12345678902 | - |
- treet No-and hame - - - - - aAbBcCADeEfFgGhHiljkKILm | StaitDate (DDMMYY).|123436] 1.
. Sk of Town © ;000 0 albBcCdDeEfFgGhHiljkkILm | Términgtion;Date DOMMYY]Y ; | (123456 0]
Stat€and Cay| - oAbBCCADeHFGGHIL | 11
Poalfmbnde s - 120456 fuseiena i e e e e
e k. lecomoaso] .

- Bosiriest Phdeie Brnbes” | JABCDEFGHIKIMMNG [0022 2t il
I L e e e Z':'|‘|

4. Save your form.

5. Make adjustments to field width and reduce the width of the Group Box and
form if necessary.

Do not spend time on this step. If you follow the Windows development
training path, you will learn how to use Layout Managers to control your
form design in an intelligent way.

6. Drop a Grid control onto the lower area of the Details group box and resize
it. Change its Name to SKILLS.

7. In the Repository tab, find the file PSLSKL and expand its definition. Drag
and drop field EMPNO into the SKILLS grid. Change its Visible property to
false.

8. Drag fields SKILCODE, GRADE, COMMENT and DATEACAQ into grid
SKILLS. Adjust the Caption, CaptionAlign and CaptionType so that your
Grid columns look like the following:

P e el e S aBLDeFGHUEL . v B Aot i . = s e
Boginess Phore Worhber. | |ABCDEFGHUKLMMO [- 0. o o i,

5kill Code Grade Comment Date Acquired
ABCDEFGHL A aAbBcCdDeEfFgGh... 12/34/56
R :,i‘

9. On the Repository tab, expand the file SKLTAB and drop the field
SKILDESC into the SKILLS grid.
Change its DisplayPosition to 2.
Your grid should look like the following:

Skill Code Skill Full Description Grade Comment Date Acquired
. | ABCDEFGHU afbBcCdDeEfFgGh... A aAbBcCdDeEfFgGh... 12/34/56

10. Add field DATEACQR from the file PSLSKL to the Grid. Make the column
Visible false.

The field DATEACQR will be used to recognize entries which were loaded
from the file PSLSKL.

11. Save your form definition.
12. Create an ItemGotSelection event for the list view EMPLOYS.

a. Define a GROUP_BY for all employee fields on the form. Your code
should look like the following:

Group_By Name(#empdata) Fields(#EMPNO #SURNAME #GIVENAME
#ADDRESS1 #ADDRESS2 #ADDRESS3 #POSTCODE #PHONEHME
#PHONEBUS #DEPTMENT #SECTION #SALARY #STARTDTE
#TERMDATE)

b. This event should:

Fetch all fields for current employee number using GROUP_BY EMPDATA

Retrieve all skills (file PSLSKL) for this employee number

Fetch the skill description from file SKLTAB for this skill code
Add entry to grid SKILLS.

Your code should look like the following:

Evtroutine Handling(#EMPLOY S.ItemGotSelection) Options(*NOCLEARME
Group_By Name(#empdata) Fields(#EMPNO #SURNAME
#GIVENAME #ADDRESS1 #ADDRESS2 #ADDRESS3 #POSTCODE
#PHONEHME #PHONEBUS #DEPTMENT #SECTION #SALARY
#STARTDTE #TERMDATE)

Fetch Fields(#EMPDATA) From_File(pslmst) With_Key(#EMPNO)
Clr_List Named(#SKILLS)

Select Fields(#SKILLS) From_File(pslskl) With_Key(#EMPNO)

Fetch Fields(#skildesc) From_File(SKLTAB) With_Key(#skilcode)
Add_Entry To_List(#SKILLS)

Endselect

Endroutine

13. Compile and test your form. Complete a search and select an employee in
the list view. Your form should look like the following:

5 Update From a Grid

= @] ®]

Seach
Start Manth Sumame
[E seanch
T
D Ful Hams R o
|ADOTD Browe, Verorica Employee Number |A1me Deepartmer: Code I_.EE
| A1002 Smathe, Jobn = & action Cods n
AMNS Dickerw, Chades EiTVA bl |
|A1022 Thomeson, Kely Employee Givan Nameds] | Chatles Emplyes 5 slary 45,000.04
Siieet Mo and Name |17 Giertham Fiosd, Sttt Date [DDMMYY) mag
Susburh or Towrn | Sven Hils Temination Date [DOMMYY| 000000 |
Elale and Countly MW
Post / Zip Code | 2147
Huarme Phore: Mumber :.'-‘181891
Biussirescss: Phone Mumber | GBS 2341
Skl Cinda Skl Full Deserintion Girads Commert Daba Scovsed
ADMINT Adminstain Fart 1 1] Met requirement 25,0338
COM Communications Degre | D 4/05/38
INTRO Cimpary Irtinducion | P Wit raquinarianl B0238
EEY Eeypbosd Skils P el raguirsmmant 502098
MANAGET Management Course 1 |D Med reguiremeni 15/03/38
MAMAGES Management Course 3 |F 2/05/38
MARFET] Marketing Cowse 1|0 et raquiamant /0358
MARKET3 atketing Cope 3 |P 140598
REL Fielation Theoy P 50598
SHORT Take Shorthand F 3/05/98

Step 5. Update Employee Details

In this step you will add Save and Close push buttons. You will code the Save
button Click event to update the employee record (PSLMST) and update, delete
and add skills to file PSLSKL from changes made to the SKILLS grid.

1. Add two push buttons, inside the Details group box, below the SKILLS grid.
Set up the buttons as follows:

Push Button Property Value
Save Caption Save

Name SAVE
Close Caption Close

Name CLOSE

Your form should look like the following:

ade Comment Date Acquired
aAbBcCdDeEfFgGh... 12/34/56

2. Create a click event for the CLOSE button and add code to close the form.
Your code should look like the following:

Evtroutine Handling(#CLOSE.Click)
#com_owner.closeForm
Endroutine

3. In the Details Group Box, select the field EMPNO and change its ReadOnly

property to true.

4. Create a click event for the SAVE push button. Add code to update all fields
in the file PSLMST. Check the I/O status and issue a message the status is not
OK. Your code could look like the following

Evtroutine Handling(#SAVE.Click)

Update Fields(*all) In_File(pslmst) Val_Error(*next)
If_Status Is(*OKAY)

Else

Message Msgtxt('Error occured on Employee update’)
Endif

Endroutine

Note: The UPDATE statement has no With_Key() parameter. It is updating
the 'last record read'. The LANSA cross update check will be applied, to
prevent an update if the record changed since it was read.

5. Compile and test your form. You should be able to update an employee.
Validation errors will highlight fields and display messages in the Status Bar.

Step 6. Update Employee Skills

In this step you will extend the SAVE Click event routine:

e To process all entries in the SKILLS grid (SELECTLIST/ENDSELECT) and
update, delete or insert a new skill.

e The SKILLS grid will now be loaded with 5 blanks entries, which may be
used to add a new skill.

e The field DATEACQR column will be used to identify "existing" skills
entries.

e [f the Date Acquired (DATEACQ) is zero, the skill will be deleted.
e All other skill entries will be updated.

e The SKILLS grid will be rebuilt after a successful update to show current
entries.

1. In the SKILLS grid, select the column Skill Code by clicking on its column
heading. Change its ReadOnly property to false. Repeat this change for
columns Grade, Comment and Date Acquired.

2. Create a "SKILLS" subroutine:

Move the clear and populate SKILLS logic from the EMPLOYS
ItemGotSelection routine into the SKILLS subroutine.

Add an EXECUTE SKILLS command to the EMPLOYS ItemGotSelection
routine

Define a group_by SKLLIST for all the SKILLS grid fields, excluding EMPNO

Set the SKLLIST group_by fields to default values after populating the SKILLS
grid

Extend the SKILL subroutine logic to add 5 blank entries to the end of the
SKILLS grid

Your SKILLS subroutine should look like the following:

Subroutine Name(SKILLS)Group_By Name(#skllist) Fields(#SKILCODE
Clr_List Named(#SKILLYS)

Select Fields(*all) From_File(pslskl) With_Key(#EMPNO)
Fetch Fields(#skildesc) From_File(skltab) With_Key(#skilcode)
Add_Entry To_List(#SKILLS)

Endselect

#skllist := *default

Begin_IL.oop To(5)

Add_Entry To_List(#SKILLS)

End_Loop

Endroutine

3. Compile your form and test it. The SKILLS grid columns should be input
capable (except Skill Description) and there should be 5 "blank" entries at the
end of the grid. The Save button will not yet update employee skills.

4. In this step you will extend the SAVE logic to update or delete employee
skills (file PSLSKL).

If the employee update is OK
Read all entries in the SKILLS grid using SELECTLIST
If field DATEACQR is not zero
If field DATEACAQ is not zero
UPDATE skill with a key of employee number and skill code
Otherwise, delete skill with a key of employee number and skill code
If I/O status is not OK
Update current entry in SKILLS grid
Leave SELECTLIST

Your SAVE logic should now look like the following:

Evtroutine Handling(#SAVE.Click)

Update Fields(*all) In_File(pslmst) Val_Error(*next)
If_Status Is(*okay)

Selectlist Named(#SKILLS)

If (#dateacqr *NE *zero)

If (#dateacq *NE *zeroes)

Update Fields(#SKILLS) In_File(pslskl) With_Key(#EMPNO #skilcode)
Else

Delete From_File(pslskl) with_Key(#empno #skilcode) Val_Error(*next)
Endif

If_Status Is_Not(*okay)

Upd_Entry In_List(#SKILLS)

leave

Endif

Endif

Endselect

If_Status Is(*okay)

Execute Subroutine(SKILLS)

Endif

Else

Message Msgtxt('Error occurred on Employee update’)

Endif

Endroutine

5. Compile and test your form. You should now be able to update existing skills
(e.g. change grade, comment or data acquired) or delete a skill by setting
Date Acquired to zero.

Notice that, when a validation error occurs (e.g. invalid Grade), the error is
highlighted and processing of the SKILLS grid stops.

6. In this step, you will extend the SELECTLIST logic:

Insert an employee skill record, if DATEACQR is zero and skill code
(SKILCODE) is not blank.

If the insert is not OK, issue a message, update the current SKILL entry and
stop processing SKILLS entries (using a LEAVE command).

If no errors occurred, execute the SKILLS subroutine to rebuild the SKILLS
grid.

Define a Group_By, which contains only the fields needed to insert an
employee skill record:

Group_By Name(#skilladd) Fields(#empno #skilcode #dateacq #comment
#grade)

Extend your save logic as outlined above. Use the SKILLADD Group_by when
inserting an employee skills record.

Your SAVE logic should now look like the following. Changes are shown in
red.

Evtroutine Handling(#SAVE.Click)

Update Fields(*all) In_File(pslmst) Val_Error(*next)
If_Status Is(*okay)

Selectlist Named(#SKILLS)

If (#dateacqr *NE *zero)

If (#dateacq *NE *zeroes)

Update Fields(#SKILLS) In_File(pslskl) With_Key(#EMPNO #skilcode) Val_
Else

Delete From_File(pslskl) With_Key(#empno #skilcode) Val_Error(*next)
Endif

If_Status Is_Not(*okay)

Upd_Entry In_List(#SKILLS)

Leave

Endif

Else

If (#skilcode *NE *blank)

Insert Fields(#SKILLADD) To_File(pslskl) Val_Error(*next)
If_Status Is_Not(*OKAY)

Message Msgtxt('New Skill not inserted")

Upd_Entry In_List(#SKILLS)

Leave

Endif

Endif

Endif

Endselect

If_Status Is(*okay)

Execute Subroutine(SKILLS)
Endif

Else

Message Msgtxt('Error occurred on Employee update’)
Endif

Endroutine

7. Compile and test your form. You should be able to add new skill entries and
also handle a validation error when inserting a skill.

Hint: At this stage, you must know valid skill codes. Delete a skill (Date
Acquired = zero) noting the skill code and then re-add the same skill.

Notice that if a validation error occurs on an insert, the error is highlighted
and processing of the SKILLS grid stops.

8. In this step you will refine the error handling. Test your form as follows:
a. Select an employee to display employee details and skills
b. Save with invalid data (e.g. surname=blank, salary=zero)
c. Select a different employee in the EMPLOYS list view
d. Notice that the error fields are still highlighted.

Notice that the EMPLOYS ItemGotSelection routine definition has an
OPTIONS() setting which does not clear errors and messages:

Evtroutine Handling(#EMPLOY S.ItemGotSelection) Options(*noclearerrors

9. Remove the Options() parameter from the EMPLOYS ItemGotSelection
event routine statement.

10. Compile and test your form and repeat the test in 8 above. Note that field

highlighting is now cleared when a new employee is selected in the
EMPLOYS list view.

Step 7. Add Drop Down for Skill Code (optional)

From LANSA V12 is a new field visualization option: Dynamic Picklist. This
enables a simple Reusable Part component to be created that populates a picklist
from a table file such the skills table (SKLTAB). This reusable part can then be
attached to the dynamic picklist visualization for the skill code, such as a combo
box.

This step simply illustrates a Dynamic Picklist as a solution. See the Visual
LANSA Developer Guide for full details and examples.

What is a Reusable Part?

A reusable part is a component which either extends PRIM_PANL, meaning it is

a visual panel or extends PRIM_OBJT, meaning it is a hidden component which

is invoked to 'do something'.

1. Create a New / Reusable Part / Object called iiiVISO1 — Skills Picklist. Paste
the following code into it and compile it:

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #PRIM_OBJT *implements #Prim_dc.iDynam
Mthroutine Name(Load) Options(*redefine)

#Picklist. RemoveAll

Select Fields(*all) From_File(skltab)

#Picklist. Add(#skilcode #skildesc)

Endselect

Endroutine

End_Com

Note:
e *implements Prim_DC.iDynamicPicklist

¢ iDynamicPicklist allows a visualization reusable to load the picklist at
runtime.

¢ Load method is executed during initialization and any time a monitored
value or context changes. This picklist instance is received via the Picklist

map. Your method routine L.oad Options(*Redefine) will contain:
Define_Map For(*input) Class(#PRIM_PKLT) Name(#Picklist) Pass(*BY_

e The instance of the picklist is maintained at runtime meaning that you

must clear the list if new data is required.
2. Copy the field SKILCODE to create a new field iiiSKILCODE.
a.Copy rules and triggers and Help text.
b.Open the new field in the editor.
c.Select the Visualization tab.

d.Insert a New Dynamic Picklist

Definition | Rules and Triggers | Visualization | Repository Help | Cross

x@@@"'ﬁd - & .
=l MNew Static Picklist

Field Parts Bl
4 ® Visualizal =) New Dynamic Picklist e

GO [WisualEdit | W0 [[N

3. Select your reusable part (iiiVIS001) in the Repository Find dialog and click
OK.

& Repository Find =HECH X
_ Reusable Part
Name Description
3 § A -
% B
> G C
g D
4 E
EQEXAMOS Sample RP
EOEXAMD4 Sample RP
EOQEXAM21 Button B
ECQMVISOL Skills list
EQEXAM20 Button RP
s F
G
y H
I
»)
K
L
M -
Bl
| 0K Cancel

4. Select the VisualPicklist in the FieldParts list. Lengthen the combo box
(which will display Skill Description) and change its DefaultVisual property
to true.

Definition | Rules and Triggers Visualization Repository Help | Cross References

x . B¥ t} - A == [§ @ i —_— : - U 4P @

Field Pars -

4 | ® VYisyalizations Lkl Code ABCDEFGHL]
G VisualEdit
=)l visualPicklist Sl 000000 il

4 =@ Picklists ZZi'iZZiZZZiZZZiZZZiZZTiZiDs“ZZiZZZiZZZiZZ'.iZZZ

B DynamicPicklist e

5. Save and close your field definition.

6. You will now change the SKILLS grid second column to use iiiSKILCODE,
and add code to set up its value and use the correct value when updating the
Personnel Skills file from the SKILLS grid.

a. If necessary open form iiiUpdFromGrid in the editor.
b. Change the SKILLS grid column 2 to use iiiSKILCODE.

Define_Com Class(#PRIM_GDCL) Name(#GDCL_2) Displayposition(1)
Parent(#SKILLS) Readonly(False) Source(#iiiSKILCODE)

c. In the SKILLS subroutine, set up field iiiSKILCODE before adding an
entry to grid SKILLS.

#iiiskilcode := #skilcode

Add_Entry To_List(#SKILLS)

d. In the SAVE.Click routine, set up field SKILCODE after each entry in the
SKILLS list is read:

Selectlist Named(#SKILLS)

#skilcode := #iiiskilcode

7. Select the Design tab. Select the column heading for the Skill Code column
in the SKILLS grid and change its UsePicklist property to true.

Right click on the Skill Description column heading and use the context
menu to Delete Component. This column is no longer necessary.

; Skill Code Grade Comment Date Acquired
. |ABCDEFGHL A afbBcCdDeEfFgGh... 12/34/56

8. Compile and test your form. The Skill Code column (which is ReadOnly
false) displays the current skill description for each row.

Skill Code Grade Comment Date Acquired
Administratn Part 1 D Met requirement 25/03/98
Communications Degre D 4/05,/98
Company Intreduction | P % Met requirermnent 5/02,/98
Keyboard Skills P Met requirement 5/02/98
Management Coursel D Met requirement 15/03/98
Management Course3 | F 2/05/98
Marketing Course 1 D Met requirement 25/03/98
Marketing Course 3 P 1/05/98

9. Click on any cell in the Skill Code column to display a combo box
containing all entries from the Skills Table (SKLTAB):

Skill Code Grade Comment
Adminiztratn Pat 1 | D Met requirement
cationz Degre %]
4GL Programming - Fl
Accountancy Degn
Adrinistratn Part 1
Administratn Part 2
Advanced Program
CL Programming
Cormmunications De
Computer Science

ket requirement
et requirement

et requirement

oD ==

-

You can select a new value to change the employee skill. However, your save
logic expects skill code cannot be changed (employee skill file is keyed on
employee number and skill code).

10. In this step you will control whether the skill code column is read only. For
existing skill entries it should be ReadOnly = True. For the five blank entries,
skill code column should be ReadOnly = False

a. Change the SKILLS subroutine, To set column 2 ReadOnly= True, using
the following code, after each entry is added:

Add_Entry To_List(#SKILLS)

#skills.cell<#skills.currentitem.entry 2>.readonly := true

As always, F2 Features help will enable you to find the information you
need about the Grid component.

The cell property is used like this:

#skills.cell<row column>

b. Change iiiSKILCODE to *blanks, before five blank entries are added.
The skills combo box will now show blanks initially.

#skllist := *default
#iiiskilcode := *blanks

Begin_Loop To(5)

11. Compile and test your form. For an employee with existing skills you
change grade, comment and date acquired only. Use one of the five blank
rows to add a new skill. The skill code combo box visualization allows a
valid skill to be selected.

Summary

Important Observations

This application is a simple form which is designed to extend your
RDML/RDMLX knowledge. It is not intended to represent the best user
interface for this type of "header and detail" update.

SELECT_SQL can be used to create powerful and flexible search logic for
reading files.

Field visualizations can be defined easily and rapidly and are then available
in all Windows applications.

Group boxes enable related data and objects to be visually grouped on the
form

A grid component can have input capable columns and may be processed to
handle update, delete and insert to the related file.

Tips & Techniques

Always use interactive SQL to test your proposed logic over your database
platform.

To use SELECT_SQL effectively you need a good knowledge of SQL.
To highlight validation errors in a grid, use the UPD_ENTRY command.

What You Should Know

How to use SELECT_SQL
How to write a simple "header/detail" update form.
How to manipulate a cell in a grid (specific row and column).

FRMO095 - Calling a Function

In this exercise you will create a simple form (Salary Review) which calls a
function passing department code and a number which represents "percentage
salary increase". The called function creates a list of employees for the
requested department, containing both current and new salaries based on the
percentage increase. This results list is returned to the calling form. The Salary
Review form displays the results in a list view and calculates the total cost of
the increase.

The called function will be compiled for Windows and will also be checked in
and compiled on the IBM i server.

The "Salary Review" form will be tested in two different modes:
e As a Windows Application running on the desktop, with a local database.
e Asaclient to an RDMLX IBM i Server

The form will use a system variable *SSERVER_CONNECTED (value Y or N)
to determine whether to CALL the local function, or USE
CALL_SERVER_FUNCTION to call the function running on the IBM i server.

" Salary Review Request [=JLCL -s:hJ

Request
Department Code A0 Subl‘nll l
Percent Increase 4.00

Ermployee Mum... Emploves full ... Department Co... Employee Salany Mew Salary -

A1001 JOMES, BEN ADM 234582 243965

Al012 FaUL, PATRL.. ADM 2F.456.04 2701428

A1013 FATTISON.G... ADM 78.977.04 8213612 E

A1015 WwWO0ODS, BR... ADM 313,000.04 325,520.04

A1020 DOUGLAS, & ADM 121,500.04 126,360.04

A1021 MCCULLY. D... &ADM 47 ,000.04 90,480.04

A1025 ROBINSON, ... ADM 44 45504 46,233.24

A1027 MORRISON, ... ADM 1.878,773.04 1.953,923.96

A1111 YEREY.waR... ADM 45 678.04 47 505,16

A1404 MAS BRICK, ... ADM 12,345.04 1283884 -

Tatal Salary 11344359

Objective:

e To demonstrate the EXCHANGE and CALL commands and the
CALL_SERVER FUNCTION BIF.

In order to achieve these objectives you must complete the following:
Step 1. Create the Called Function

Step 2. Create Salary Review Form
Step 3. Test Salary Review Application
Summary

Before You Begin
Complete all earlier FRM exercises.
This exercise requires access to an IBM i server.

Step 1. Create the Called Function
1. Create the following new fields:
a.iiiNEWSAL, New Salary, Packed, 11, 2 Edit Mask N
b.iiiPERCNT - Percent Increase, Packed, 3, 2, Edit Mask N
c.iiiTOTSAL, should already exist. It was created in exercise FRMO075.
2. Check the new fields into the IBM i server.

3. Create a new process iiiPRO01 - FRM Training. You do not need to open it
in the editor.

4. Create a new function iiiFN21 — Salary Review, belonging to process
iiiPROO01. Create the function RDMLX enabled.

5. Functions which receive and return a working list require a FUNCTION
statement with a RCV_LIST() parameter. Define your FUNCTION statement
as follows:

Function Rcv_List(#Employs)

6. Define a working list EMPLOYS containing fields EMPNO, FULLNAME,
DEPTMENT, SALARY and iiiNEWSAL. Entrys=*max

7. Define a GROUP_BY, EMPDATA, containing fields EMPNO, SURNAME,
GIVENAME, DEPTMENT, SALARY.

8. Your function logic should be based on the following:
Clear list EMPLOYS

SELECT from file PSLMST1, using group_by EMPDATA,
with a key of DEPTMENT

Assign Fullname to Surname + Givename.

Calculate iiiNEWSAL as (SALARY + (SALARY *
(iiiPERCNT / 100))

Add entry to EMPLOYS
End selection

Return
9. Write your RDMLX based on the above. If necessary refer to Appendix A.

FRMO095 for a solution.
10. Compile your function
11. Check in and compile the function to the IBM i Server.

Select your function IIIFN21 on the Repository tab, or Last Opened tab and
use the right mouse menu to Check In.

Itemn i@ | Description | Ma
4 & Processes =
A

VNN
m o mm

4
& EQIPRON] [) FRM Training
= EOMFMZ1 K - tebeae Ol b
* 4% eotest Open
"k s | Compile
"
; Execute
> M H
.] Debug 3
> &) 3 Delete from Repository
-~ K
. A Find
B gl M)
. N B Quick Export
& 0 g Checkln I},
P ¢8 Check Out
.)] Check Qut Readonly
R E Unlock

The process iiiPRO02 will be automatically checked in and compiled as
well.

Note: Always save your source or compile it locally (this automatically
saves the current source) when using check in from tabs such as Repository or
Last Opened.

Alternatively, check in the object currently open in the Editor using the
Check In command in the ribbon:

o g

heck ~ @ o0 j i-",, € Cut - & [§ Master Objects
- - = ., | ~ Copy T 2 @ & § Checkln
History Erorlogs Execute Debug Paste 3 Find B Replace 5 History ~ Start i

M m

Source | Design | Repository Help | Cross Refarences [x]

Function Options({*DIRECT) Rocw_List(#employs) =
v Def_list Name(femploys) Fislds(#empno #fullname #deptment #salary #iiinewssl) Counter(#listcount) Type(*working) &
Entrvs(*mnax)

You will learn more about Check In in exercise FRM125 - Check Out / In to
IBM i.

Step 2. Create Salary Review Form

1. Create a new form iiiCOM17 — Salary Review Request. Switch to the
Design tab.

2. Create the form as follows:

¢ Drop a Group Box towards the top of the form and resize it. Give it a
Caption of Change Request.

¢ Drop fields DEPTMENT and iiiPERCNT onto the Group Box and
position them as required. Remember you can use the Edit / Align dialog
to align a group of components.

¢ Drop a Push Button into the Change Request group box, to the right of the
fields. Change Name to SUBMIT. Give it a Caption of Submit and create
a Click event routine for it.

e Drop a List View onto the form and resize and position it. Add fields
EMPNO, FULLNAME, DEPTMENT, SALARY and iiiNEWSAL.

e Add a Status Bar to the form.
e Add field iiiTOTSAL to the form below the List View.

Your form should look like the following:

-

" o | B |l
—Request =
Department Code ABCD Submit
Percent Increase 1312

Employee Mu... | Employee full ... DepartmentC...l Ermployee 5al... Nw.rS_a_I_a_g_____.E

=" ABCDE ABCDEFGHL... ABCD 123,456,789.12 123 ,455,789.12
- ey (1231567801532
afbBcCdDeEfFgGhHILJKKILmMnMNoOpPqQrRsStTulhVwiWeddyYzZ [+]a]

3. Switch to your program Source. Define four work fields:
NEWTOT, reference field iiiTOTSAL

CURTOT, reference field iiiTOTSAL

SRVCON, *CHAR, 1, default = *SSERVER_CONNECTED
SSTATUS, reference field IO$STS

4. Define the EMPLOYS working list. This must be identical to the DEF_LIST
definition in function iiiFN21.

Def_List Name(#employs) Fields(#empno #fullname #DEPTMENT #salary #i

It is a good idea to copy the DEF_LIST definition from function iiiFN21 as it
is essential that your working lists are identically defined in the calling form
and the called function. If not identical, run time errors will occur. Each list
must contain the same fields in the same sequence.

5. Review the following pseudo code. You will create this in the following
steps.

Use BEGINCHECK/FILECHECK/ENDCHECK to validate DEPTMENT
using file DEPTAB

Clear list EMPLOY'S

EXCHANGE fields DEPTMENT and iiiPERCNT

If SVRCON =N
Call, process *direct, function iiiFN21, Pass list EMPLOYS
else

USE CALL_SERVER_FUNCTION, with arguments (*sserver_ssn
iiiFN21 Y *default EMPLOYYS) To Get(#sstatus)

EndIf
If (#sstatus *ne OK)

Message 'Call server function failed'

End if

Clear list LTVW_1

CURTOT and NEWTOT = zero

Selectlist EMPLOY'S
Accumulate SALARY in CURTOT
Accumulate NEWSAL in NEWTOT
Add entry LTVW_1

End selectlist

1TOTSAL = NEWTOT — CURTOT

6. Begin the SUBMIT.Click event routine by using Begincheck/Endcheck and
Filecheck to ensure the department code exists. Your code should look like
the following:

Begincheck
Filecheck Field #DEPTMENT) Using_File(deptab) Msgtxt('Department not fc
Endcheck

Recall that the the Endcheck error handling will branch to the Endroutine if
the Filecheck raises an error.

7. Clear the working list EMPLOY'S
Clr_List Name(#EMPLOYYS)

8. Add an Exchange command to pass DEPTMENT and I[IIPERCNT to the
called function

Exchange Fields(#deptment #iiiprccnt)

e This will add these fields to the Exchange List which is passed to the
called function.

e The called function will map these values into its variables and clear the

exchange list

9. The SRVCON field contains the value of the system variable
*sserver_connected. The system variable is Y when connected to a server,
and N when not connected to a server.

Add an If loop to call the function IITFN21 locally when not connected.

If (#srvcon = N)
Call Process(*DIRECT) Function(iiifn21) Pass_Lst(#employs)
Endif

Note: The CALL command is passing the working list EMPLOYS to the
called function, which will return it.

10. Add an Else to the If loop, which calls the function IIIFN21 on the server.
Your code should now look like the following:

If (#srvcon = N)

Call Process(*DIRECT) Function(iiifn21) Pass_Lst(#employs)

Else

Use Builtin(call_server_function) With_Args(*sserver_ssn 'iiifn21' Y *Default
If (#sstatus *NE OK)

Message Msgtxt('Call server function failed")

Endif

Endif

The CALL_SERVER_FUNCTION uses the following parameters:
WITH_ARGS

Server Symbolic Name *sserver_ssn

Name of RDML function to be called ITIFN21

Pass Current Exchange List Y

Receive Exchange List back *default

Working List 1 #EMPLOYS
TO_GET

Return Code #SSTATUS

*sserver_ssn is a system variable which returns the server symbolic name
of the server. The server symbolic name is defined by the
CONNECT_SERVER BIF or by the automatic server connection to be
used in this example.

The called function ITIFN21 is called directly

The (field) Exchange List is passed to IIIFN21. The Exchange List was set
up by the Exchange command

A returned Exchange List is not required in this case (Receive Exchange
List back = *default)

Only the first working list is passed to function IIFN21 and will be
returned by IIIFN21.

The Return Code will be work field SSTATUS

11. Complete the SUBMIT.Click event routine, with:

Clear the list view

Initialize fields CURTOT and NEWTOT

Read (SELECTLIST) the returned working list EMPLOY'S
o Accumulate CURTOT

o Accumulate NEWTOT

o Add and entry to list view

End read

Set IINITOTSAL to (NEWTOT — CURTQOT)

Your additional code should look like the following:

Endif

Clr_List Named(#LTVW_1)
#curtot #newtot := *zeroes
Selectlist Named(#employs)
#curtot += #salary

#newtot += #iiinewsal
Add_Entry To_List(#LTVW_1)
Endselect

#IIITOTSAL := (#newtot - #curtot)
Endroutine

12. Compile your new form.

If required, see Appendix B. FRMO095 for a complete solution.

Step 3. Test Salary Review Application

1. Select form iiiCOM17 on the Last Opened tab. Use the right mouse menu to
Execute it. Run it as a Windows Application. You are running the form
locally on the desktop, with no connection to the IBM i server.

2. Enter a department code such as ADM. Enter a percentage figure, such as
5.50 and click the Submit button.

3. After a slight delay, the List View should be filled and the Cost of Increase
field should contain a value. Your form has called function iiiFN21 locally.

4. Close the form.

5. Execute the form again, using the right mouse menu. Execute the form as a
Client to a RDMLX System i Server.

Your form attachs to a job on the server, via the LANSA Listener.
6. Enter a department and percentage value and click the Submit button.

After a short delay the list view and Cost of Increase field should be
populated.

Your form has called function iiiFN21on the server, using the
CALL_SERVER_FUNCTION BIF. Function iiiFN21 has returned a working
list of employees to the calling form.

7. Close your form.

Summary

Important Observations

Functions are called locally using the CALL command. The CALL can pass
a working list into the called function.

The called function must have a RCV_LIST() defined on its FUNCTION
statement

Passed working lists must be identically defined, in caller and called
function.

The EXCHANGE command enables an "exchange list" of fields to be
passed into the called function.

A called function uses EXCHANGE to return fields to the caller.

Remote functions running on the server are called using
CALL_SERVER_FUNCTION

The CALL_SERVER_FUNCTION can handle passing and returning
working lists and the fields exchange list.

Tips & Techniques

In a real application, the client/server connection would normally be
established by a "connect" form at the start of the application.

In this example we depended on the Visual LANSA IDE to start the connect
to server.

What You Should Know

How to CALL a function

How to use the EXCHANGE command to pass field values into a called
function

How to use CALL_SERVER_FUNCTION

Appendix A. FRM095

Source code for function iiiFN21 — Calculate Salary Increase
Function Options(*DIRECT) Rcv_List(#employs)
Def_List Name(#employs) Fields(#empno #fullname #deptment #salary #iiine
Group_By Name(#empdata) Fields(#empno #surname #givename #deptment #
Clr_List Named(#employs)
Select Fields(#empdata) From_File(pslmst1) With_Key(#deptment) Nbr_Keys
#ilinewsal := (#salary + (#salary * (#iiipercnt / 100)))
#fullname := #surname + ', ' + #givename
Add_Entry To_List(#employs)
Endselect
Return

Appendix B. FRM095

Source Code for Form iiiCOM17 — Salary Review

Note: component definitions (Define_Com . . .) have been omitted from this
source to save space.

Function Options(*DIRECT)
Begin_Com Role(*EXTENDS #PRIM_FORM) Clientheight(463) Clientwidth
Define_Com Class(#PRIM_GPBX) Name(#GPBX_1) Caption('Request’) Disp

Def_List Name(#employs) Fields(#empno #fullname #DEPTMENT #salary #i
Define Field(#newtot) Reffld(#iiitotsal)

Define Field(#srvcon) Type(*char) Length(1) Default(*sserver_connected)
Define Field(#sstatus) Reffld(#io$sts)

Define Field(#curtot) Reffld(#iiitotsal)

sk

Evtroutine Handling(#com_owner.Initialize)

Set Com(#com_owner) Caption(*component_desc)

Endroutine

Evtroutine Handling(#SUBMIT.Click)

Begincheck

Filecheck Field #DEPTMENT) Using_File(deptab) Msgdta('Department not fc
Endcheck

Clr_List Named(#employs)

Exchange Fields(#DEPTMENT #IIIPERCNT)

If (#srvcon = N)

Call Process(*DIRECT) Function(iiifn21) Pass_Lst(#employs)

Else

Use Builtin(call_server_function) With_Args(*sserver_ssn 'iiifn21' Y *Default
If (#sstatus *NE OK)

Message Msgtxt('Call server function failed")

Endif

Endif

Clr_List Named(#LTVW_1)

#curtot #newtot := *zeroes

Selectlist Named(#employs)

#curtot += #salary

#newtot += #iiinewsal

Add_Entry To_List(#LTVW_1)

Endselect

#IIITOTSAL := (#newtot - #curtot)
Endroutine

End_Com

FRM105 - Define a Trigger Function

Exercise Concept

There is a business requirement that any salary increase which exceeds 1,000
must be approved by the HR Manager.

A salary change could be made via more than one application.

The solution is a file level trigger function, which runs before update, if the
new salary exceeds current salary by more than 1,000.

The trigger function, resets salary to its previous value, and sends a change
request email to the HR Manager.

The HR Manager makes a salary increase of more than 1,000 by changing
Business Phone Number to A100 while changing salary. We are treating
Business Phone as a 'spare field' for this exercise.

The trigger function allows an increase of 1,000+ if Business Phone is A100.
It also resets Business Phone to N/A in this case.

In a real application the email message could contain the URL of a web
application (a WAM) which the HR Manager simply clicks on to run and
make the authorized change. To simplify this exercise you will make the
change via a simple form.

Objectives:

To define a trigger for field salary on the file PSLMST
The trigger event will be Before Update
The trigger condition will be Salary greater than previous Salary

The trigger function will send an email requesting change approval, if the
increase in salary is greater than 1,000 and the business phone number is not
equal to A100

On receiving the email message, the salary increase will be made by the 'HR
Manager' using a form. In a real application a WAM could be provided
which may be executed using a URL in the email message, to confirm the
salary change. A salary change greater than 1,000 is made by making
Business phone number equal to A100 to indicate that the salary change is
confirmed.

To achieve these objectives you must complete the following:

Step 1. Create a Trigger Function

Step 2. Define a Salary Trigger for Employee File (PSLMST)
Step 3. Create an Employee Salary Change Form

Step 4. Test your Employee Salary Trigger

Summary

Step 1. Create a Trigger Function

In this step you will create a file level trigger function for file PSLMST using a
template. You will complete the trigger function based on the code supplied in
Appendix A. FRM105. Note that you must change the email recipient to an
email address to which you have access.

1. Create a Process iiiPRO02 — iii Trigger Functions

2. Create a new function iiiFNO3 — Employee Salary Trigger, using template
BBFILTRIG for file PSLMST

3. Remove all CASE, WHEN clauses except BEFUPD. Your code should look
like the following:

Function Options(*DIRECT *NOMESSAGES *LIGHTUSAGE *MLOPTIMI
Def_List Name(#TRIG_LIST) Type(*WORKING) Entrys(2)

* Assume a "good" return initially

Change Field(#TRIG_RETC) To('OK")

Case Of_Field(#TRIG_OPER)

* Handle a before update event

When Value_Is('= BEFUPD')

* Handle an event not catered for

Otherwise

Abort Msgtxt('File PSLMST trigger function invalidly invoked/ used.")
Endcase

* Return control to the invoker

Return

Note: Comment lines have been removed.

4. Complete most of the trigger logic by copying the code provided in
Appendix A. FRM105. This should be pasted after the Return command.

5. Review the supplied code.

e Subroutine SEND_EMAIL generates and send and email message, using
the LANSA Email BIFs

e Subroutine ADD TEXT is executed from SEND EMAIL to create the
email body text

e In areal application, the URL inserted into the text body would be for web
application (a WAM), which would will enable the salary change to be

confirmed simply by clicking on the URL to run it in the browser. To
simplify this exercise, you will create a form to confirm the salary change.

6. Change the email recipient address to be any email address to which you
have access.

7. Your email client may also require that the email originator address is a
recognized address. Change this if necessary.

8. Complete the BEFUPD logic:

o If the salary increase is greater than 1,000 and business phone is not equal
A100. This value indicates the update needs to be approved.

o Send an email message
o Reset salary to previous value
e else
o Set business phone to N/A
Notes:

e Trigger functions receive a trigger list (working list TRIG_LIST) containing
0, 1 or 2 entries. TRIG_LIST contains the file data structure. That is, all file
fields.

e For a file update, TRIG_LIST entry 1 contains the new record while entry 2
contains the old record.

e The TRIG_LIST is returned to the file OAM. This enables the trigger to
modify field values, in a before-update trigger. This feature can be used to
calculate virtual fields which cannot be produced using the standard virtual
field derivation logic.

Your completed code should look like the following:

Case Of_Field(#TRIG_OPER)

* Handle an before update event

When Value_Is('= BEFUPD')

Define Field(#increase) Reffld(#salary)

Define Field(#newsal) Reffld(#salary)
Get_Entry Number(1) From_List(#TRIG_LIST)
#phonebusw := #phonebus

#newsal := #salary

Get_Entry Number(2) From_List(#TRIG_LIST)
#increase := #newsal - #salary

If ((#increase *GT 1000) *And (#phonebusw *NE 'A100"))
Execute Subroutine(send_EMAIL)

* reset salary to previous value

Get_Entry Number(1) From_List(#TRIG_LIST)

#salary := #newsal - #increase

Upd_Entry In_List(#trig_list)

Endif

* reset business phone if contains A100

Get_Entry Number(1) From_List(#TRIG_LIST)

If (#phonebus = 'A100")

#phonebus := N/A

Upd_Entry In_List(#trig_list)

Endif

* Handle an event not catered for

Otherwise

Abort Msgtxt('File PSLMST trigger function invalidly invoked/ used.")
Endcase

* Return control to the invoker

Return

9. Compile your trigger function.

Step 2. Define a Salary Trigger for Employee File (PSLMST)
In this step you will define a Before Update trigger for field Salary, with a
condition: salary greater than previous salary.

Note: You are defining a file level trigger which applies whenever this file is
maintained. The field against which the condition is defined is not relevant,
except that since it applies to Salary it makes sense to define the trigger on this
field.

1. Open the file PSLMST in the editor.

2. Select the Rules and Triggers tab and add a new trigger, Description=Salary
Change Trigger, for Event=Before Update

3. Set Trigger Function to iiiFN03

Details

Description Salary Change Trigger

Function iiifn03

Sequence 1 -

Trigger points

Befare After

Open []
Close]]
Read]]
Insert]]
Update [#]]
Delete]]

4. Add a trigger condition "Salary greater than previous Salary"

And far =
Field name SALARY
Operator Greater than previous hd
Compare to value SALARY

Sequence 1 -

5. Save your changes.

6. Recompile the file, creating the OAM only

Step 3. Create an Employee Salary Change Form

In this step you will create a simple employee maintenance form for file
PSLMST based on a template.

As noted earlier, an ideal solution for this application would be a 'Salary
Change' WAM. The email message could be generated including the employee
number (EMPNO) in the URL to be passed into the WAM when it runs from a
link in the email message.

1. Create a new form iiiCOM18 — Employee Maintenance. The form should be
RDMLX enabled.

2. In the Source editor, delete the default code and run a template from the i
Template button on the Design ribbon. Select the template VL_BASEMNT
and complete the template based on the following:

Supply a word which that describes Employee
WHAT this data entry program works
with

Enter the name of the PHYSICAL file to PSLMST
be used by this template

How do you want to display the fields? ~ FF
Select from the types listed below

Select fields EMPNO, SURNAME,
GIVENAME, PHONEBUS,
SALARY

Adjust the size of the form. Your form should look like the following:

atbBcCdDeE (FgGhHilKkEILmb nM o0 pPglR e SET bl wianiddyy'zs

3. Compile your form.

Step 4. Test your Employee Salary Trigger

To fully test your trigger, you require an email client such as Microsoft Outlook.

In this step you will change an employee salary by more than 1,000. Your
email client will warn you that a 'third party' is sending an email.

Access your email account to which the message was sent. The Inbox should
contain a message generated by the trigger function.

Access the employee record and note that the trigger has prevented the
change being made. Salary has not been changed.

Make the required salary change by changing the business phone number to
A100 at the same time as changing the salary. This time no email message
will be generated

Access the employee record again to confirm the salary has changed. Note
that the trigger has set business phone number to N/A.

1. Ensure that your email client is started.

3.

Execute form iiiCOM18. Fetch an employee such as A0090. Change salary
by more than 1,000. The trigger function will be called, which will try to send
an email. Your email client will display a warning dialog, which you should
allow to continue.

Microsoft Outlook (S

r?‘ A program is trying to send an e-mail message on your
\:) behalf, If this is unexpected, dick Deny and verify your
antivirus software is up-to-date.

For more information about e-mail safety and how you
might be able to avoid getting this warning, didk Help.

— -

Allo [Deny] | Help]

Retrieve the email, which should look like the following:

HI,
BLOGGS, FRED JOHN ALANhas received a salary increase of 20834.09
This exceeds allowable limits. Please confirm by entering

the new salary and set business phone to 2100,

Click on the following link to confirm salary change

http://10.4.10.238/CGI-BIN/lansaweb?3rve=JMIEMPSAL+m] =LANSA : XHTML+part=DEM+] ang=ENG+f (EMPNO) =A0090

Buziness Phone must be set to A100 to confirm this change.

Message sent automatically by Employee Trigger

The URL include illustrates how a WAM could be called to make the
required salary change, passing in the required employee number (EMPNO).

4. Run form iiiCOM18 and make the required salary change, changing business
phone number to A100 at the same time.

Note that this time an email message is not sent.

5. Retrieve this employee again, using form iiiCOM18. Note that the business
phone number has been changed by the trigger function to N/A. This allows a
further salary change to be correctly handled by the trigger function.

Summary

Important Observations

File triggers are a powerful technique for implementing common application
logic.

Like all the other Repository techniques, using triggers will significantly
simplify future system maintenance.

All LANSA application programs maintaining the file will run the trigger if
required.

From V12, LANSA's Database Triggers enable non-LANSA programs to
implement validation rules and triggers on LANSA-defined files

Tips & Techniques

Triggers are most efficient if they have an associated condition, meaning
they are called only if required.

A triggers function returns the trigger list to the OAM. This means that 'After
Read' triggers can be used to calculate an 'undefined' virtual field.

What You Should Know

As well as running common logic, such as this "send Email" example,
triggers can calculate virtual fields or modify real fields, as used in this
trigger example. Of course these require the trigger to be defined on the
correct event, such as Before Update.

How to define a file level trigger and create and implement a file trigger
function.

How to use the CASE / WHEN / ENDCASE and USE commands.

Appendix A. FRM105

Code to complete trigger function iiiFN02
Subroutine Name(SEND_EMAIL)
* COMMENT()
Use Builtin(MAIL_START)
* COMMENT(Set Mail Orginator Address)
Change Field#STD_TEXT) To('training@lansa.co.uk")
Use Builtin(MAIL_ADD_ORIGINATOR) With_Args('Salary Trigger' #std_te:
£sts)
Execute Subroutine(checksts)
* COMMENT(Set mail recipient address)
#std_textl := 'SMTP:anyone@acme.com'
Use Builtin(MAIL_ADD_RECIPIENT) With_Args(TO 'JM Ivory' #std_textl) "
£sts)
Execute Subroutine(checksts)
* COMMENT()
#std_descl := (#surname + '(" + #EMPNO + ") Exceeded allowed salary change
Use Builtin(MAIL_SET_SUBJECT) With_Args(#Std_descl) To_Get(#io£sts)
Execute Subroutine(checksts)
* COMMENT()
Execute Subroutine(ADD_TEXT)
* COMMENT()
Use Builtin(MAIL_SEND) To_Get(#io£sts)
Execute Subroutine(checksts)
Endroutine
Subroutine Name(checksts)
If (#ioEsts *NE OK)
Message Msgtxt('Email service response was :' + #io£sts)
Endif
Endroutine
* COMMENT()
Subroutine Name(ADD_TEXT)
* COMMENT()
* COMMENT()
Use Builtin(MAIL_ADD_TEXT) With_Args('HL)
Use Builtin(MAIL_ADD_TEXT) With_Args(*BLANK)
#fullname := #Surname + ',' + #givename

#std_instr := (#Fullname + 'has received a salary increase of ' + #increase.asstr
Use Builtin(MAIL_ADD_TEXT) With_Args(#std_instr)
#std_instr := "This exceeds allowable limits. Please confirm'

Use Builtin(MAIL_ADD_TEXT) With_Args(*BLANK)

Use Builtin(MAIL_ADD_TEXT) With_Args(*BLANK)
#std_instr := 'Click on the following link to confirm salary change'
Use Builtin(MAIL_ADD_TEXT) With_Args(#std_instr)

Use Builtin(MAIL_ADD_TEXT) With_Args(*BLANK)

Use Builtin(MAIL_ADD_TEXT) With_Args(*BLANK)

* COMMENT(URL for WAM to confirm salary change)

* COMMENT(Change service name using your initials)

#std_gsel := ('http://localhost/CGI-BIN/lansaweb?
srve=iiiEMPSAL+ml=LANSA:XHTML+part=DEM+lang=ENG+{(EMPNO)-
Use Builtin(MAIL_ADD_TEXT) With_Args(#std_gsel)

Use Builtin(MAIL_ADD_TEXT) With_Args(*BLANK)
#std_instr := 'Set Business Phone to A100 to confirm'

Use Builtin(MAIL_ADD_TEXT) With_Args(#std_instr)

Use Builtin(MAIL_ADD_TEXT) With_Args(*BLANK)
#std_instr := '"Message sent automatically by Employee Trigger'
Use Builtin(MAIL_ADD_TEXT) With_Args(#std_instr)
Endroutine

FRM115 - Writing Reports
Objective:

To show how Forms and Functions can interoperate.

To use the CALL and EXCHANGE commands.

To introduce the SUBMIT command.

To explain how to enable functions for Full RDMLX.

To introduce the LANSA reporting templates.

To highlight the commands used to create a reporting function in LANSA.

To create a very simple report listing the sections in a department by
executing a template.

To manually create an employee report listing the salary details for each
department.

To introduce the following reporting commands:
e DEF_LINE

e DEF_HEAD
e DEF_FOOT

e DEF_BREAK
e DEF_REPORT
e PRINT

e SKIP

e SPACE

e ENDPRINT

e KEEP_xxxxx (KEEP_AVG, KEEP_COUNT, KEEP_MAX, KEEP_MIN,

KEEP_TOTAL).

To achieve these objectives you must complete the following steps:

Step 1. Create a Simple List Style Report Using a Template

Step 2. Call a Function

Step 3. Enable For Full RDMLX

Step 4. Manually Create a Reporting Function
Step 5. Add a Header and Footer

Step 6. Keep Statistics and Print
Step 7. Add a Grand Total Line
Summary

Before You Begin
You may wish to refer to the following topics:

e In the Visual LANSA Developer Guide: Creating Applications using
Functions and Producing Reports using LANSA.

¢ In the Technical Reference Guide RDMLX Commands and RDMLX
Features.

In order to complete this exercise, you should have completed the previous
exercises.

its:lansa013.chm::/Lansa/L4wDev05_0010.htm
its:lansa013.chm::/Lansa/L4wDev05_0030.htm
its:lansa015.chm::/Lansa/TGUB3_BEGIN.htm

Step 1. Create a Simple List Style Report Using a Template

In this step, you will create a simple list style report on the Section file. A
simple function will be created by executing a LANSA template. In later steps
in this exercise, you will code a similar reporting function. Reporting commands
are not supported from LANSA forms. You need to code reports using LANSA
functions.

1. Create a process iiiPRO03 Reporting Process (where iii are your course
assigned initials). If you are using iii=DEM, then your component must be
named DEMPROO1. Do not open the process in the editor.

Name iiPRO03 || Create

Description |Trair1ir1g Reports |
|dentifier IPROD3

Cancel

[] Open in Editor

2. Create a function iiiFN02 Section Report belonging to your process
iiiPROO03. Select the template FRPRT01 List Style Report with Generic
Selection. The function should NOT be Enabled for RDMLX since it creates
an entry panel, using a REQUEST command, which cannot be used in an
RDMLX Enabled function.

Open the function in the editor in order to allow the template to execute.

Process Mame |iiiF‘F‘.G'D3 | | Create

Description ':i'raining Reports

: Cancel
Name (iFND2 |

Description |5ection Report | +/| Open in Editor

Template | FRPRTO1 - List Style Report with Generic Selection s |
Identifier [IFMO2
Enabled For RDMLX []

3. Answer the template questions as shown in the table below. Use the online
help if you need additional information about the answer to each template
question.

TEMPLATE QUESTION ANSWER

Do you want this function to be part of an N
action-bar style process?

Enter the name of the primary file to be used SECTAB
by this template

Select related files Select DEPTAB

Fields to appear in header line Select DEPTMENT and
DEPTDESC

Fields to appear in detail line Select SECTION, SECDESC,
SECADDRRI1

Fields to trigger new page Select DEPTMENT

Please specify a title for this report Section Listing by Department

Do you want this report to run in batch Y

4. The template generated code should appear something like the following:

FUNCTION OPTIONS(*DEFERWRITE *DIRECT)

OPEN USE_OPTION(*ONDEMAND)

GROUP_BY NAMEM#FETCHDATA) FIELDS(#SECTION #SECDESC #SEC
DEF_HEAD NAME#HDRO01) FIELDS(#REP1PAGE #DATE #TIME #FUN(
#DEPTDESC) TRIGGER_BY(*OVERFLOW #DEPTMENT) DESIGN(*DO'
DEF_LINE NAME#DETO01) FIELDS(#SECTION #SECDESC #SECADDRI
CHANGE FIELD#STD_TITLE) TO("'Section Listing By Department™)

* If this program is running online

IF COND('*JOBMODE =1

* Request report print criteria

REQUEST FIELDS(#DEPTMENT #SECTION) DESIGN(*DOWN) IDENTI]
* Submit batch run of this program

SUBMIT PROCESS(#PROCESS) FUNCTION(#FUNCTION) EXCHANGE(
JOB(#FUNCTION)

* Else, if this program is running in batch

ELSE

* Select required SECTAB details

SELECT FIELDS(#FETCHDATA) FROM_FILE(SECTAB) WITH_KEY (#DI
NBR_KEYS(*COMPUTE) GENERIC(*YES)

* Fetch file DEPTAB details

FETCH FIELDS(#FETCHDATA) FROM_FILE(DEPTAB) WITH_KEY (#DE
* Print the detail line

PRINT LINE(#DETO01)

ENDSELECT

* Finish all printing and end program

ENDPRINT

ENDIF

5. Compile the process and function.
6. Execute the process that contains your reporting function.

a. When you execute your function, notice the Default Printer setting. The
value *PATH will output the report as a file in the partition directory. For
example C:\Program Files\LANSA\X_WIN95\X_LANSA\X_PPP where
PPP is your partition. The file will have the same name as the function
with a sequentially numbered file extension. e.g. demfn02.001. Refer to
the Technical Reference Guide for more information on this topic.

Process as Windows Ap.. — ©

Default Printer | *PATH

Debug | 1

Debug Host | johni_win8:51237
Trace |

Max Trace Lines | 20000

Trace level | 4

Trace Categories | ALL

Heap Validation | %

Show Command Line | M

oK | Cancel | Help | Parameter Help |

b. When the process menu appears, select the Section Report by double-
clicking. Your function should appear something like the following:

= Section Report (=] E [
Department Code.....cccveueeee
Saction Coda....cccivemeiiemanes
‘ oK ‘ ‘Pmmpt‘ ‘ Msgs ‘ ‘ Exit ‘ ‘ Cancel ‘ Help ‘

c. Enter a department of ADM to list all Sections in the Administration
department. (If you do not enter a department or section, a list of all
records in the Section file will be created.)

d. Run the report by clicking on the OK button.

e. Open your report file in Notepad to view it. It should look like the
following:

r

Mj Untitled - Notepad

File Edit Format View Help

Pageoeess 1

DAtEccuuas 9/11/10

Tiwe e iaiias 14:52:06

Function ITIFNO4

B i B Section Listing Report
Department..... ADM

Description.... ADMINISTRATOR DEPT

Section Jection

Code Descriprtion Address line 1

01 INTERNAL ADMIN SRV 125 Main St,

02 PURCHASING SECTION 123 Pacific Highway,
03 ACCOUNTING SECTION 252 Canterbury Road,
04 SALES & MARKETING 121 Pitt Towm Road
05 MAINTENANCE 121 Railway Parade
06 PERSONNEL SECTION 121 Smith 5t

f. Execute your reporting function again. Enter a department of ADM and a
section of 01.

g. Execute your reporting function again. Enter a department of A. You
should see listings for both the ADM and AUD departments.

Step 2. Call a Function

In this step, you will create a form that will be used to call the reporting
function. The purpose of this step is to show how forms and functions can work
together. In your first version, the form will simply call the function directly.
(You can also invoke the process menu.)

1. Create a form named iiiCOM19 Submit Report (where iii are your course
assigned initials). If you are using iii=DEM, then your component must be
named DEMCOMI109.

2. Drag and drop a push button onto the form.

a. Set the button Name to REPORT.

b. Set the button Caption to Generate Report.

c. Create a Click event routine for the REPORT button.
3. Drag and drop the DEPTMENT and SECTION fields onto the form.
4. Drag and drop a status bar onto the form.

5. Your finished form might appear something like the following.

i B — [[=] &
Department Code ABCD |
* Section Code AB e et Generate Report

afbBcCdDeEfFgGhHIJKKILmMnMNoOpPqQrRsStTulhVwiWeddyYzZ |- A [

6. In the REPORT.Click event routine, simply call the iiiFN02 reporting
function. Review the parameters for the CALL command.

Your finished code should appear as follows:

EVTROUTINE HANDLING(#REPORT.Click)
CALL PROCESS(*DIRECT) FUNCTION(iiiFN02)
ENDROUTINE

7. Compile and execute the form.

a. Press the Generate Report button on the form.

b. The iiiFNO02 Section Report will be executed. Notice that you cannot set
focus back to the calling form. Press the EXIT button. Notice that the
Form is also closed when the Function is exited. The EXIT USED
parameter on the CALL command can be used to control how the form
responds when the function ends.

c. Execute the form again. Enter a Department Code of ADM and press the
Generate Report button on the form. Notice that the DEPTMENT value is
not passed to the function. (The function fields are both blank.)

d. Enter a Department Code of ADM and press OK to submit the report.
Notice that the form is not closed once the report is submitted. Notice that
a message appears indicating that the report was submitted.

e. Close the form.

8. In the REPORT.Click event routine, use the EXCHANGE command to pass
the values of the DEPTMENT and SECTION fields to the function.

Your finished code should appear as follows:

EVTROUTINE HANDLING(#REPORT.Click)
EXCHANGE FIELDS#DEPTMENT #SECTION)
CALL PROCESS(*DIRECT) FUNCTION(iiiFN02)
ENDROUTINE

9. Compile and execute the form.

a. Enter a Department Code of ADM and a Section Code of 01. Press the
Generate Report button.

b. The iiiFN02 Section Report will be executed. Notice that the function
now shows the values that were passed from the form.

c. Exit the function without submitting the report.

d. By using the EXCHANGE command, the DEPTMENT and SECTION
fields are passed to the reporting function. The reporting function no
longer requires a screen to request the DEPTMENT and SECTION fields.
In the next step, you will modify the iiiFN02 function and remove the
REQUEST.

10. In the REPORT.Click event routine, use the SUBMIT command instead of
the CALL to invoke the report function and pass the values of the
DEPTMENT and SECTION fields.

Your finished code should appear as follows:
EVTROUTINE HANDLING(#REPORT.Click)
SUBMIT PROCESS(iiiPRO01) FUNCTION(iiiFN02) EXCHANGE(#DEPTM
ENDROUTINE

11. Compile and execute the form.
a. Enter a Department Code of ADM. Press the Generate Report button.

b. Notice that the REQUEST is not displayed and the report function is
submitted to batch for execution. Also notice that the form can be used
immediately after the function is submitted. The form does not have to
wait for the function to return control because the function has been

submitted and is executing in batch.

Step 3. Enable For Full RDMLX

In this step, you will modify the iiiFNO2 Section Report so that it does not
request the DEPTMENT and SECTION fields. You will also enable the iiiFN02
Reporting function for Full RDMLX so that you can use the full set of RDMLX
objects and features.

1. Make sure that the iiiFN02 Section Report function is opened in the editor.

2. Choose the RDMLX command in the Home tab of the ribbon to set the
function as RDMLX enabled.

Note: You cannot undo this change. Once set as Full RDMLX, the
function cannot be changed back.

'E Home Design Tools
= s
B 3 - - x <
Repository Text Search Views Open Enable Compile
Find Objects
Ta

3. Perform a function check of the code. An error will appear because the
REQUEST command cannot be used in an RDMLX enabled Function.

Go To
Enter line number:] B=E -

Categories

4 ™ Error
+| PRCO047/LIOE64W DISPLAY, REQUEST and POP_UP...
+ PRCO010/FFC Completed : +0 warning messages iss...
+ PRCO011/FFC Completed : +1 fatal messages issued...

+ Definitions
+ Function Design
- ¥ I/O Operations
+ Report Operations

4. Delete the unneeded code in the iiFNO02 function.
You can delete all of the highlighted lines:

FUNCTION OPTIONS(*DEFERWRITE *DIRECT)
OPEN USE_OPTION(*ONDEMAND)

GROUP_BY NAMEM#FETCHDATA) FIELDS(#SECTION #SECDESC #SEC(
DEF_HEAD NAME#HDRO01) FIELDS(#REP1PAGE #DATE #TIME #FUN(
#DEPTDESC) TRIGGER_BY(*OVERFLOW #DEPTMENT) DESIGN(*DO'
DEF_LINE NAME(#DETO01) FIELDS(#SECTION #SECDESC #SECADDRI1
CHANGE FIELD#STD_TITLE) TO("'Section Listing By Department™)

* If this program is running online

IF COND(*JOBMODE =1")

* Request report print criteria

REQUEST FIELDS(#DEPTMENT #SECTION) DESIGN(*DOWN) IDENTT
* Submit batch run of this program

SUBMIT PROCESS(#PROCESS) FUNCTION(#FUNCTION) EXCHANGE(
JOB(#FUNCTION)

* Else, if this program is running in batch

ELSE

* Select required SECTAB details

SELECT FIELDS(#FETCHDATA) FROM_FILE(SECTAB) WITH_KEY (#DI
NBR_KEYS(*COMPUTE) GENERIC(*YES)

* Fetch file DEPTAB details

FETCH FIELDS(#FETCHDATA) FROM_FILE(DEPTAB) WITH_KEY (#DE
* Print the detail line

PRINT LINE(#DETO01)

ENDSELECT

* Finish all printing and end program

ENDPRINT

ENDIF

You may now use assign statements and expressions in your code

FUNCTION OPTIONS(*DEFERWRITE *DIRECT)

OPEN USE_OPTION(*ONDEMAND)

GROUP_BY NAME#FETCHDATA) FIELDS(#SECTION #SECDESC #SEC(
DEF_HEAD NAME(#HDRO1) FIELDS(#REP1PAGE #DATE #TIME #FUN(
#DEPTDESC) TRIGGER_BY(*OVERFLOW #DEPTMENT) DESIGN(*DO"
DEF_LINE NAME#DETO01) FIELDS(#SECTION #SECDESC #SECADDRI1
#STD_TITLE := 'Section Listing By Department’

* Select required SECTAB details

SELECT FIELDS(#FETCHDATA) FROM_FILE(SECTAB) WITH_KEY (#DI
NBR_KEYS(*COMPUTE) GENERIC(*YES)

* Fetch file DEPTAB details

FETCH FIELDS(#FETCHDATA) FROM_FILE(DEPTAB) WITH_KEY (#DE
* Print the detail line

PRINT LINE(#DETO01)

ENDSELECT

* Finish all printing and end program

ENDPRINT

Notice that the STD_TITLE has been changed to use the Full RDMLX
syntax and can now use an assignment command.

5. Compile the iiiFN02 function.
6. Close the function in the editor.

7. Execute your iiiCOM19 form and generate a test report.

Step 4. Manually Create a Reporting Function

In this step, you will manually create the report in order to learn how to use the
reporting commands.

The report will simply list all employees in a department and total the salary
information.

The finished report will appear something like the following:

Mj eomfn05.002.txt - Notepad

Eile Edit Format View Help

Page cicicasiss 1
Function IIIFNOS
Title.cvweceens Employess Report
Department. ADM
Description.... ADMINISTRATOR DEPT
Section Employ Start
Code Humber Salary Date
oL AlOOL 2,345.82 9/08/92
o1 AlDLZ 26,456.04 L/05/86
F o S ST e e S B S

L

Employee Count 20 Total Amount 2,916,027.38

DAate ...cvannanas 9711710 Time .ceecunans 16:02: 21 Page 100 Pageoneas F:4
Funccion IIIFNOS
Title...cuvunans Employee Report
Department..... AUD
Desceiption.... INTERNAL AUDITING

Section Employ Start

Code Humber Salary Date
oL Aloo? 26,780.04 L1/03/85
o1 Aloos 450,000.04 L/12/86

¥ f r 19@ fﬂ""‘.&“’ m_M - “-MW‘& el i, m.ﬁ‘“-m.«m-—n"k-

L

A new page will be printed for each Department. A count of the employee
and the total of the SALARY field will be printed for each department. A
grand total of all departments will be printed on the last page of the report.
The report will be 80 characters wide and 66 lines long.

Before you start, it is recommended that you review Producing Reports in
the Developer Guide.

1. You will build the reporting function in small steps. In this step, you will
start coding a reporting function:

its:lansa013.chm::/Lansa/L4wDev05_0030.htm

Define the report to be 66 lines long and 80 characters wide

Define a report line (#DETO01) containing SECTION, EMPNO, SALARY and
STARTDTE

Select all records which generically match the Department Code and Section
Code based on the number of keys entered

Print the report line (#DETO01)
End the select loop

End the print.

2. Create a new function iiiFN0O4 Manual Report belonging to process
iiiPROO01. Create the function without using a template. It should be an
RDMLX enabled function.

3. Try to add the necessary code based on the function description above.

4. Your code should appear as follows:

FUNCTION OPTIONS(*DIRECT)

DEF_REPORT FORMSIZE(66 80)

GROUP_BY NAME#REPDATA) FIELDS(#DEPTMENT #DEPTDESC #SE
#STARTDTE)

DEF_LINE NAME#DETO01) FIELDS(#SECTION #EMPNO #SALARY #ST
SELECT FIELDS(#REPDATA) FROM_FILE(PSLMST1) WITH_KEY (#DEF
NBR_KEYS(*COMPUTE) GENERIC(*YES)

PRINT LINE(#DETO01)

ENDSELECT

ENDPRINT

5. Save the code and then full function check or build the RDML. Make any
corrections, if required, and then resave and check the function.

6. Compile the process and function. Be sure that the function is debug enabled.

7. Change your Submit Report form iiiDEM19 to submit function iiiFN04 and
compile it.

8. Submit your new report function using form iiiCOM19.

a. Enter a department of ADM to list all Sections in the Administration
department.

b. Submit the report function again. Enter a department of A and leave the
section blank. Notice that there is no break in the report pages when the
department code changes. You will correct this in the next step.

Step 5. Add a Header and Footer

In this step, you modify the function to include a header and footer. You will
need to make the following changes:

1.

2.

3.

Add a header to the report. Include the report page number (REP1PAGE),
function name (FUNCTION), a title (STD_TITLE), DEPTMENT and the
DEPTDESC fields. List the fields down the page. Specify that a new page
should be printed whenever a page is full (each new page always has a
header) and when the department code changes.

Change the STD_TITLE field to be Employee Report.

Add a footer to the report which lists the date (DATE), time (TIME), and
report page number (REP1PAGE) across the bottom of the page.

In the SELECT loop, FETCH the DEPTDESC field from DEPTAB using the
department code.

Remember to include KEEP_LAST logic.

Review the repository field definitions for the REP1PAGE, DATE, TIME
and FUNCTION fields.

Try to make the necessary code changes based on the function description
above.

Your code should appear as follows:

FUNCTION OPTIONS(*DIRECT)

DEF_REPORT FORMSIZE(66 80)

GROUP_BY NAME(#REPDATA) FIELDS(#DEPTMENT #DEPTDESC #SE
#STARTDTE)

DEF_HEAD NAME#HDRO01) FIELDS(#REP1PAGE #FUNCTION #STD_T
TRIGGER_BY(*OVERFLOW #DEPTMENT) DESIGN(*DOWN)
DEF_FOOT NAME(#FTRO01) FIELDS(#DATE #TIME #REP1PAGE)
DEF_LINE NAME#DETO01) FIELDS(#SECTION #EMPNO #SALARY #ST
#STD_TITLE := 'Employee Report'

SELECT FIELDS(#REPDATA) FROM_FILE(PSLMST1) WITH_KEY (#DEF
NBR_KEYS(*COMPUTE) GENERIC(*YES)

FETCH FIELDS(#DEPTDESC) FROM_FILE(DEPTAB) WITH_KEY (#DEP”
PRINT LINE(#DETO01)

ENDSELECT

ENDPRINT

4. Save the code and then full function check or build the RDML
Make any corrections as required.

Exit the editor.
5. Compile the function. Be sure that the function is debug enabled.
6. Submit your new function using form iiiDEM19.

a. Enter a department of A and leave the section blank.

b. Check that the report headers and footers properly appear.

Step 6. Keep Statistics and Print

In this step, you will keep some statistics based on each department and define
some report breaks.

2.

Define a working field for the report called TOTAL. The field should be
P(14,2) with an edit code of A. Enter a label, column heading and
description of Total Amount.

Define a working field for the report called EMPCOUNT. The field should
be P(3,0) with an edit code of A. Enter a label, column heading and
description of Employee Count.

Define a report break which prints the EMPCOUNT and TOTAL as a
trailing break when the DEPTMENT code changes.

Keep track of the total of the salary amounts for each department in the
TOTAL field.

Keep a count of the number of employees in each department in the
EMPCOUNT field.

Try to make the necessary code changes based on the function description
above.

Your code should appear as follows:

FUNCTION OPTIONS(*DIRECT)

DEFINE FIELD(#TOTAL) TYPE(*DEC) LENGTH(14) DECIMALS(2) LAB
DESC("Total Amount') COLHDG('Total Amount') EDIT_CODE(A)

DEFINE FIELD(#EMPCOUNT) TYPE(*DEC) LENGTH(3) DECIMALS(0)
DESC('Employee Count’) COLHDG('Employee Count’) EDIT_CODE(A)
DEF_REPORT FORMSIZE(66 80)

GROUP_BY NAME(#REPDATA) FIELDS(#DEPTMENT #DEPTDESC #SE
#STARTDTE)

DEF_HEAD NAME#HDRO1) FIELDS(#REP1PAGE #FUNCTION #STD_T
TRIGGER_BY(*OVERFLOW #DEPTMENT) DESIGN(*DOWN)
DEF_FOOT NAME#FTRO01) FIELDS(#DATE #TIME #REP1PAGE)
DEF_LINE NAME(#DETO01) FIELDS(#SECTION #EMPNO #SALARY #ST
DEF_BREAK NAME#BRKO01) FIELDS(#EMPCOUNT #TOTAL) TRIGGE]
#STD_TITLE := 'Employee Report'

SELECT FIELDS(#REPDATA) FROM_FILE(PSLMST1) WITH_KEY (#DEF
NBR_KEYS(*COMPUTE) GENERIC(*YES)

KEEP_TOTAL OF_FIELD(#SALARY) IN_FIELD(#TOTAL) BY_FIELD(#LC

KEEP_COUNT OF_FIELD(#EMPNO) IN_FIELD(#EMPCOUNT) BY_FIEL
FETCH FIELDS(#DEPTDESC) FROM_FILE(DEPTAB) WITH_KEY (#DEP"
PRINT LINE(#DETO01)

ENDSELECT

ENDPRINT

3. Save the code and then full function check or build the RDML. Make any
corrections as required.

4. Exit the editor.
5. Compile the function.
6. Submit your new function using form iiiCOM19.
a. Enter a department of A and leave the section blank.

b. Check that the break totals are properly printed and check that they are
correct. Each department should have its own totals and employee count.

Step 7. Add a Grand Total Line

1. In this step, you will add the grand total of all departments displayed in the
report and you will add a blank line between printed lines:

a. Define a working field for the report called GRANDTOT. The field
should be P(17,2) with an edit code of A. Enter a label, column heading
and description of Grand Total.

b. Define another report break which prints the GRANDTOT field at the end
of the report.

c. Add another KEEP_TOTAL command to accumulate SALARY into the
GRANDTOT field.

d. Add a blank line (SPACE) between each printed line.

2. Try to make the necessary code changes based on the function description
above.

Your code should appear as follows:

FUNCTION OPTIONS(*DIRECT)

DEFINE FIELD(#TOTAL) TYPE(*DEC) LENGTH(11) DECIMALS(2) LAB
DESC("Total Amount') COLHDG('Total Amount') EDIT_CODE(A)

DEFINE FIELD(#EMPCOUNT) TYPE(*DEC) LENGTH(3) DECIMALS(0) -
DESC('Employee Count') COLHDG('Employee Count’) EDIT_CODE(A)
DEFINE FIELD(#GRANDTOT) TYPE(*DEC) LENGTH(17) DECIMALS(2)
DESC('Grand Total') COLHDG('Grand Total') EDIT_CODE(A)
DEF_REPORT FORMSIZE(66 80)

GROUP_BY NAME(#REPDATA) FIELDS(#DEPTMENT #DEPTDESC #SE
#STARTDTE)

DEF_HEAD NAME(#HDRO1) FIELDS(#REP1PAGE #FUNCTION #STD_T
TRIGGER_BY(*OVERFLOW #DEPTMENT) DESIGN(*DOWN)
DEF_FOOT NAME#FTRO1) FIELDS(#DATE #TIME #REP1PAGE)
DEF_LINE NAME(#DETO01) FIELDS(#SECTION #EMPNO #SALARY #ST
DEF_BREAK NAME#BRKO01) FIELDS(#EMPCOUNT #TOTAL) TRIGGE]
DEF_BREAK NAME(#BRKO02) FIELDS(#GRANDTOT)

#STD_TITLE := 'Employee Report'

SELECT FIELDS(#REPDATA) FROM_FILE(PSLMST1) WITH_KEY (#DEF
NBR_KEYS(*COMPUTE) GENERIC(*YES)

KEEP_TOTAL OF_FIELD(#SALARY) IN_FIELD(#GRANDTOT)
KEEP_TOTAL OF_FIELD(#SALARY) IN_FIELD(#TOTAL) BY_FIELD(#LC

KEEP_COUNT OF_FIELD#EMPNO) IN_FIELD#EMPCOUNT) BY_FIEL
FETCH FIELDS(#DEPTDESC) FROM_FILE(DEPTAB) WITH_KEY (#DEP"
PRINT LINE(#DETO01)

SPACE

ENDSELECT

ENDPRINT

3. Save the code and then full function check or build the RDML. Make any
corrections as required.

4. Compile the function.
5. Submit your new function.
a. Enter a department of A and leave the section blank.

b. Check that the report grand total is correct and check that it appears in the
proper location.

6. Your report should look like the following:

_ | eomfn05.002.txt - Notepad
File Edit Format View Help
Page: S5y s 1
Function ITTFNOEL
Title ey v s Employee Report
Department ADM
Description.... ADMINISTRATOR DEPT
Section Emp 1oy Start
Code Muamber Salary Date
ol Alool 2,345 82 9708792
ol AlOlz Z6,456.04 1705786
ol Alolz 78,977.04 1712785
ol AlOlE 313,000,004 1EF1z2/84
ol AlOzn 1Z1,.500.04 1l70z/88
. AlOF] B7, 000,04 1 02 80
0z Alol4 &3,000.04 1702,
0z AFOOL 28,9952 00 1705710
o3 Aloog zl,000.04 1705720
o3 AFOOZ Z6,888.00 1704710
04 A3EEd 30,000.00 31705705
og A0laz 3E,000.04 3S07789

Employes Count 20 Total Amount 2,916, 02738
7. OPTIONAL: Paint the Report

If you wish, you may paint the report using the Report Painter. The Report
Painter is very similar to the LANSA Screen Painter and is accessed from the
function editor.

Source | Desian || Repositary Help | Cross References

Report

{:} Add - % k=l | Current Report 1 ¥ Cyes |2 * Repeat 2 v Options

Command Texk
Def_Line Mame{#0DETO1) Fields{#SECTION #EMPHNO #5SALARY #STARTDTE)

=] 10 15 20 25 30 35 40 45
Fage 1234
Function ABCDEFG
HDEO1 Title cenoomns e ahbBcCdDeEfFgGhHiIjJkELlLnMnNaOpPgQrEsStT
Department. ABCD
Description. ... ABCDEFGHIJELHNOFQEST
Lt Section Enplow Start
Code Humnber Salarvy Date
DETO1 AB ABCDE 123,458,789 .12 12-34-58
DETO1 AB ABCDE 123,456,789 .12 12-34-58
Employee Count 123CE Total Amount 123,456,789 12CR
BREDO1
BRED? Grand Total 123.456.789.012,345 12CE
Lt Section Enplow Start
Code Humnber Salarvy Date
DETO1 AB ABCDE 123,456,789 .12 12-34-58
DETO1 AB ABCDE 123,456,789 .12 12-34-58

LEL o S o T T T Sy OO T R L i 1 m e N ST L ST L PSSP L B

o T, SUN R G eV o T R o W S SR S

|

The report painter displays all screen elements, and enables one of these to
be edited at one time. For example report header (HDRO1) or report detail
line (DETO01). Changes made in the painter will be reflected in the RDML

source.

Summary

Important Observations

The CALL and SUBMIT commands will execute a function. When a
function is called, the calling program is not accessible until after the called
program ends.

EXCHANGE can only be used to pass information to a function. It can be
passed from a form or from a function to another function.

Once a function has been enabled for Full RDMLX, it cannot be changed
back to an RDML Function.

Reporting commands can only be used in LANSA Functions. They cannot
be used in Forms.

LANSA provides a very simple set of reporting commands that can be
combined to create very powerful reports.

Tips & Techniques

In order for the report to print, LPT1 needs to be mapped to a particular
printer for all NT-based systems. Therefore the following command needs to
be issued from the command line:

NET USE LPT1: <PATH>\<printer name>

For example:

NET USE LPT1: \NT1\HP

What You Should Know

How to CALL a function from a form.

How to SUBMIT a function to batch.

How to EXCHANGE information between LANSA programs.

How to enable a function for RDMLX.

What some of the differences are between RDML and RDMLX functions.
You should be familiar with the following reporting commands:

e DEF_LINE

e DEF_HEAD

e DEF_FOOT

e DEF_BREAK

DEF_REPORT
PRINT

SKIP

SPACE
ENDPRINT

KEEP_xxxxx (KEEP_AVG, KEEP_COUNT, KEEP_MAX, KEEP_MIN,
KEEP_TOTAL)

FRM125 - Check Out / In to IBM i
Objectives:

To introduce the concepts of Master and Slave development in a distributed
development environment.

To learn how to refresh object lists from the LANSA for iSeries Master
Repository.

To learn how to check out objects from the LANSA for iSeries Master
Repository.

To learn how to check in objects to the LANSA for iSeries Master
Repository.

To learn how to delete objects locally and in the LANSA for iSeries Master
Repository.

In order to complete this exercise, you must meet the following requirements:

You must have task tracking properly configured on LANSA for iSeries in
order to work with the Visual LANSA environment.

You must have a valid user profile to access the IBM i and the LANSA for
iSeries development environment.

You must have a valid task ID to use for development on LANSA for
iSeries.

You must have a properly installed and configured Visual Slave System with
a working connection to the LANSA for iSeries Master System.

You must be a licensed Visual LANSA developer and you must have the
proper LANSA for iSeries licenses installed that allow both IBM i and
Visual LANSA development. You cannot complete this exercise if you are
using a trial (unlicensed) version of Visual LANSA.

Note: This exercise cannot be completed if you are using an Independent Visual
LANSA System.

To achieve these objectives you must complete the following:
Step 1. Create a LANSA for iSeries Object

Step 2. Refresh Objects in Visual LANSA

Step 3. Check Out Object

Step 4. Check In Changes

Step 5. Delete from Repository

Summary

Before You Begin

In order to complete this exercise, it is recommended that you complete the
preceding exercises or are at least familiar with the Visual LANSA user
interface.

You may wish to review the following topics:

In the User Guide, review the Check In Tab and Check Out Tab and the
Propagation Tab.

In the Administrator Guide, review Host Monitor.

its:lansa012.chm::/LANSA/l4wusr01_1815.HTM
its:lansa012.chm::/LANSA/l4wusr01_1820.HTM
its:lansa012.chm::/LANSA/l4wusr01_1825.HTM
its:lansa011.chm::/Lansa/l4wADM03_0135.htm

Step 1. Create a LANSA for iSeries Object

In this step, you will logon to LANSA for iSeries using any partition, where you
will create a new system variable that you will amend using Visual LANSA. A
System Variable may be created using LANSA for iSeries, in either an RDML
or RDMLX enabled partition

1. Logon to LANSA for iSeries using your IBM i developer profile and task ID.

2. From the LANSA Main System Menu, select the option to Work with System
Variables. The list displayed is NOT partition dependent. It is a system-level
list; that is, it will be the same in each partition.

3. Press F6 to create a new system variable as follows:

System Variable Name: *AUTOALPO09iiiNUM where iii=your initials

Description: Next Available Number

Method of Derivation: DYNAMIC

Data Type: ALPHA
Length: 7

Program Name: M@SYSNUM
Program Type: 3GL

Use the online help text search facilities (extended help) and review System
Variables. Scroll to the end of the help to review the information on the

* AUTOALPnnxxxxxxxxx system variable. This is a special 'data area’
system variable layout which is used in conjunction with a LANSA shipped
evaluation program M@SYSNUM. The system variable retrieves a number
nn (in this case it should be 9 but you have entered 7 - it will be changed to 9
using Visual LANSA) long from data area xxxxxxxxxx, increments it,
updates the data area and returns it as an alphanumeric value.

4. Press Enter to save the system variable definition.
5. Press F12 to exit the Add System Variable Definition panel.

Note: The data area and the value of the system variable will automatically

be defined when the system variable is first accessed.
6. Exit the LANSA for iSeries System.

Step 2. Refresh Objects in Visual LANSA

In this step, you will use Refresh repository objects from the master system. In
Step 1. Create a LANSA for iSeries Object, you created a new System Variable
that exists on the IBM i but is not yet known in Visual LANSA.

Note: If you are using Propagation, then your changes will be automatically
synchronized in your Visual LANSA System.

1. Start Visual LANSA and logon.

You must logon using the same developer profile and task ID as used on
LANSA for iSeries in order to ensure that you have authority to access the
system variable created on the IBM i.

2. Using the Repository Brower, display a list of the current system variables.
Your list will depend on how you have arranged the items on your Repository
tab and may appear something like the following (shown undocked with
Alphabetic listing off):

| Repository
B Repository -
Mew X = | Q@

Item @ | Description Mo
4 Active Partition (5Y5) -
™ Fields
Files
- "= Forms t
* = Functions
% Proceszes
4 (& Resources
ActivelX
‘@ Bitrmaps
d [} Cursors
External Resources
Icons
A Multilingual Wariables
4 B8 |Systern Variables

W AT CHAR [@ Char

-,F *AUTOMNUMLSEVENT... EJ Event number

-, *BIF_ARGCOUNT CJ BIF Function - Mumbe...
B “BIF_RETCOUNT E@ BIF Function - Mumbe...
B “BIF_SHUTDOWN [BIF Function - Shutdo..,
-* *BLAMK EJ Blank / blanks variable

Your *AUTOALPO09iiiNUM system variable will not be shown in this list.
3. Select the Maste Objects command in the ribbon.

g

::.—.- @ TOG] & % § Master Object
ey = - - T.E - =
Error Logs History Stop i

Repository Text Search Views Open History
Find Objects

S

The Refresh Master Object List dialog is displayed:

$ Refresh Master Object List EI_‘-E—hJ
4 [Tl All object types =
® Fields
Files
= Forms

¥ Processes and Functions
4 [T/ Resources
JU ActiveX
B Bitmaps
[,} Cursors
External Resources
. lcons
A Multilingual Variables
B System Variables
2 Visual Styles
B Web Services
met MET Components
- Reusable parts
" Business Objects
=1 Templates
4 [C]igh Web
"2 Technology Services
Wi Web Application Modules -

Refresh! Cancel

4. Select the System Variables to be refreshed.

5. Press the Refresh button.

6. The Check Out tab at the bottom of the editor will be displayed. Notice the
status messages.

Wait for the refresh to be completed. The time required to complete the
refresh will depend upon the number of system variables that are defined in
the LANSA for iSeries Master System. You can speed up the repository
refresh function by pressing F5. By default the repository refresh process runs
more slowly as a background task, so you can continue development.

— 00—

=]) | Job Status Results Description Currently F‘g
i_l ‘Completed 11415 found on masker Refresh system wariables From master repository A
:)

: 4

: 3

2l & 3
[£] Web Ancestor Elements | [Breakpoints | 54 Check out || Q) Wih Designs 3

efreshing repository, 11055 objects pending { FS to refresh repository) 1:’

7. Display the list of system variables. The *AUTOALP09iiiNUM should now
appear.

Repository
B Repository -
Mew = X o () |
Item | 5 !@ | Description
4 Active Partition (5Y5) -
® Fields
Files

-
4 Forms
> "= Functions

» 4% Processes
4 [Resources
. ActiveX
Bitrnaps
Cursors

Ed

External Resources
Icons

A Multilingual Variables

4 B system Variables
W AT CHAR @ @ @chr
= @
" @
- @ s
-1 *AUTONUMLSEVEMT... G l;@ Ewvent number
-1 *BIF_ARGCQOUNT G EJ BIF Function - Mumbe
-,, *BIF_RETCOUNT Ej l;.? BIF Function - Numbe
B +BIF_SHUTDOWN G l;? BIF Function - Shutdo
B “BLANK G [Blank/ blanks variable
-1 *BLAMEKS G EJ Blank / blanks variable _
— ~ (-] L | 2 .

1 L

Note that the *AUTOALPO09iiiNUM system variable has an icon in its
Master Repository Status column. Its Local Repository Status column is
blank. This tells you that the definition of this system variable is currently not
held in your Visual LANSA local repository. Objects which are not checked
out to Visual LANSA are also shown in gray font.

Note: If you are using Repository Synchronization, then changes made in the
Repository on the IBM i or by any Visual LANSA developer in your PC
Group will be automatically synchronized by checking out a read-only copy

of new and changed objects. Such changes will be reported in your
Propagation tab. Refer to the Visual LANSA Administrator's Guide for further
details of this feature.

Step 3. Check Out Object
In this step, you will check out the system variable from LANSA for iSeries so
that you can update the definition from Visual LANSA.

1. Using the Repository tab, select the *AUTOALPO09iiiNUM system variable
and right click to display the context menu.

Repository
B Repository hi
Mew = x S L= =]
Itemn | 351 | [| Description
» o ActiveX &
* @ Bitmaps
p [,} Cursors

External Resources
_ Icons
* A Multilingual Variables
4 B System Variables

AT CHAR @ & @cha
- B

: Find

W AUTONUMISEVENT.. & ¢\ o0

B -BIF ARGCOUNT
B “BIF_RETCOUNT
B -EIF SHUTDOWN Copy Mame

-,' *BLAME o =

Check Cut Readonly

2. Select the Check out option.
The Check Out Options dialog will be displayed.

J Check Out Options | |
X &£ a8 &

MName | Description | Read-only |
B “AUTOALPO9E.. Next Available Number

oK Cancel

3. Select the *AUTOALPO9iiiNUM system variable. Notice that you can make
the check out Read Only using the option buttons.

4. Press the OK button.

5. Display the Check Out tab at the bottom of the editor. Notice the status
messages that are displayed.

x| g | Job Status i Results i Description Currently Processing st
2 » |Completed 0 fatal errors - 0 warnings FAUTOALPOSEOMNUM - Mext Available Number pal
X Completed 223 found on master Refresh system variables from master repository 21
Completed 620 found on master Refresh multilingual variables from master reposit... 21

-
r]

(i) Assistant | .. Compile | -§ ChecklIn Check Out | §v Propagation | flmport | |2 Impact Analysis | ig# Help
LAMSAL4Slave™s S¥S VLXPGMLIB SET_EE ENG Audit Courier Colors LAMSA XHTML

6. Once the check out has been completed, use the Repository tab to open the
*AUTOALPO9iiiNUM system variable in the editor.

7. Change the system variable length from 7 to 9.

8. Save and close the system variable.

Step 4. Check In Changes

In this step, you will check in the changed system variable back to LANSA for

iSeries. Once you have completed this step, you will delete the system variable
from the IBM i.

1. Using the Repository tab, select the *AUTOALPO09iiiNUM system variable
and right click to display the context menu.

2. Select the Check in option.
The Check in Options dialog will be displayed.

&£d Check in Options | == ﬁ]
X &
. Other LANSA...

Mo check in options available

V| Keep Locks oK Cancel

No check in options are required for system variables. If you were checking

in an object, such as a form or function that can be compiled, a set of compile
options would be displayed.

Note: If your task uses a "Release Locks" setting when checking in to the
server, you will need to select the Keep Locks checkbox on this dialog, so that
you can delete it from the repository in a later step.

3. Press the OK button to check in the changed system variable.

4. Display the Check In tab at the bottom of the editor. Notice the status
messages that are displayed.

*| g | Job Status | Description | Results Currently Processing
= * * (Completed Check in *AUTOALPOIEQOMMNUM - Nex... 0 fatal errors - 0 warnings VLXPGMLIB - Definitions

4 3

i) Assistant | .. Compile ChecklIn | § Check Out | §4 Propagation | BgImport | || Impact Analysis | igd Help

LAMSA145lave™s SYS VIXPGMLIE SET_E8 ENG Audit Courier Colors LANSA XHTML

5. Once the check in has been completed, you may logon to LANSA for iSeries
and view the *AUTOALPO09iiiNUM system variable. The new definition
should be displayed.

Step 5. Delete from Repository

In this step, you will delete the *AUTOALPQ9iiiNUM system variable from the
repository and specify that the system variable should also be deleted from the

host.

1. Locate the *AUTOALPOQ9iiiNUM system variable in the Repository tab and
right click to display the context menu. Select the Cross References option to

check if there are any dependencies before you delete the object.

-

Be. Cross references - *AUTOALPOSECMMNUM

- -

Cross References | Description

4 B “AUTOALPOIECMMNUM Mext Available Murnber
Used by *AUTOALPOSEOMN...
Uses *AUTOALPOSEOMNUM

| Qualifier | Reasa

Close

2. As there are no dependencies (in this case) close the dialog and select the
*AUTOALPO09iiiNUM system variable in the Repository tab and press the

Delete icon in the Repository tab's toolbar.

w

. The Confirm delete component dialog will be displayed. Select the Delete

from host option so that the system variable is also deleted from the LANSA

for iSeries Master Repository.

Confirm delete object @

Mame Description Delete
v -,' *AUTOALPOSED.., Mext Available Mumber

Cancel

Delete from host repository

4. Display the Propagation tab at the bottom of the editor.

B x Sequen... | Message | Date | Time

2 7 SYSTEM VARIABLE named "AUTOALPOIEOMMUM has been deleted successfully. 21/12/2012 2:56:11 PM -
7 <==== (please note time) Host Repository Monitor STARTED in partition SYS, language ENG, 21/12/20012 9:23:55 AM
6 Request to delete Variable "AUTOALPOEOMMNUM' sent to the Host Repository. 21/12/20012 2:56:11 PM
6 <==== (please note time) Host Repository Monitor ENDED MORMALLY in partition 5YS. 1471272012 3:25:19 AM

- 5 End session request received by host monitor. 14/12/20012 3:25:19 AM

3 4 bt

Tnhaund connectinn with swstern V[XPGRLIR gssfulhy started. 21A2/2012 9:23:54 Ak
(i) Assistant | . Compile - CheckIn | +f Check Out| §4 Propagation | FgImport | || Impact Analysis | i Help

LANSA14Slave*s SYS VIXPGMLIE SET_EE ENG Audit Courier Colors LAMSAXHTML

Notice the status messages are displayed.

Things to Note
e You have just completed a simple exercise which demonstrates:
¢ Refresh repository object from the Master
e Check Out
e Check In
e Delete Object from Repository.

Refer to Change Management in the Visual LANSA Administration Guide for
more information on these topics:

e Task Tracking Set up

e Using Task Tracking

e Repository Synchronization

e What are Repository Groups?

e What are Work Groups?

its:lansa011.chm::/Lansa/l4wADM04_0065.htm
its:lansa011.chm::/Lansa/l4wADM04_0020.htm
its:lansa011.chm::/Lansa/l4wADM04_0025.htm
its:lansa011.chm::/Lansa/l4wADM04_0085.htm
its:lansa011.chm::/Lansa/l4wADM04_0090.htm

Summary

Important Observations

The Host Monitor will automatically be started when you perform a Check
In or Check Out operation.

When you Check Out objects, you can specify if the objects will be checked
out as read only or for update. If checked out for update, you must have
authority to the object.

Tips & Techniques

Review the use of Repository Synchronization (Propagation) is an efficient
means of keeping your Visual LANSA systems current.

What You Should Know

How to refresh object lists from the LANSA for iSeries Master Repository.
How to check out objects from the LANSA for iSeries Master Repository.
How to check in objects to the LANSA for iSeries Master Repository.

How to delete objects locally and in the LANSA for iSeries Master
Repository.

Visual LANSA Framework (VLF) Introduction

These exercises are to introduce you to the VISUAL LANSA Framework. The
first two exercises are common to all Visual LANSA Framework users, and with
the final three exercises, you will branch into either Web or Windows
development.

With the WAM and Windows specific development you will start implementing
real filters and command handlers, so you need to know how the data you will
be using is stored.

The WAM and Windows specific exercises are based on the PSLMST Personnel
demonstration file. Locate this file in the repository and view its properties. You
can also see the layout of these files in the Appendix of the course notes.

An example of the Personnel System File:

Repository Fields in File Logical Views Rules and Triggers Access Routes | Batch Control File Attributes | Relationship ' 52
H‘kepni.l.léry 7 || Field Name Description Ref. Field Type Length | Dec
4 Primary Keys
X L& = ¥ . EMPNO Employee Number Alpha 5
Itern &, | Description 4 ¥ Real Fields
J - v EMPNO Employee Number Alpha 3
K ® SURMAME Employee Surmame Alghs 20
L ® GIVENAME Employee Given Mame(s) Alpha 20
M ® ADDRESS1 Street Mo and Name Alpha 25
N ® ADDRESSZ Suburb or Town Alpha 25
4] ® ADDRESS3 State and Country Alpha 25
L P ® POSTCODE Post / Zip Code Signed]
PSLEVENT w Personnel Even ® PHOMEHME Heme Phone Number Alpha 15
PELIMG ¥ Personnel Imag ® PHOMEBUS Business Phone Mumber Algha 15
PSLMST ' Personnel ® STARTDTER Start date (YYMMDD) Signed [
PSLSKL " Persennel skills ® TERMDATER Tesmination Date (YYMMDD) Signed]
PSLTIMES ' Personnel time ® DEPTMENT Department Code Alghs 4
Q ® SECTION Secticn Code Alpha 2
R & SALARY Employee Salary Packed n 2
: Fifs Before
v 4 Read Virtuals
v ke STARTDTE Start Date (DDMMYY) RETDAT Signed 6
W &k TERMDATE Termination Date (DOMMYY) RETDAT Signed 6
X ke MNTHSAL Monithly Salary SALARY Packed n 2
= DIf- A%

Common Exercises

When prototyping your application, (as in exercise LVF060) you decide on your
business objects based on an analysis of the tasks of the users of your
application. At that point the database structure and the required output is not
important.

Following the first two exercises:
e LVFO040 - Execute Framework Application and
e LVFO060 - Create a Prototype

you will branch to follow either the Web path using LANSA's Web Application
Modules (commonly called WAM:s) for application development or the
Windows path.

With the WAM and Windows specific development you will start implementing
real filters and command handlers, so you need to know how the data you will
be using is stored.

The WAM and Windows specific exercises are based on the PSLMST Personnel
demonstration file. Locate this file in the repository and view its properties. You
can also see the layout of these files in the Appendix.

LVF040 - Execute Framework Application

Objectives

e To execute a finished application in the Framework.

e To become familiar with the look and feel of Framework-based applications.
e To introduce some key concepts used by the Visual LANSA Framework

when building applications.

file Edit View Help Windows (Framework) (Administration)

OB EL BOBRA & A
New WebSite About Address Resources Organization Bockings Charges Spool Fles Mew Window Queues
Organlzahon;
E | . B
EE LY Favorites [1|| Name Code [Id | Address 1 | Address 2 Address 3 | Phone Nu...| Zip Code | St
/= & HR Demo Application + 5 Resources N
%, Organizations E] Jones,Shil... A1001 144 Frog Lane Pymble NSW 7930543 2001 |
8 Resources i Paul Patrick A1012 & Camilo Avenue Seven Hils NSW 2202922 2147
@ Programming Techniques Pattinson,... A1013 12 Augusta Averne, Punchbowl NSW 212359 2016
'* “s Administration m Woods,Bra... A101S 59 Derley Road, Beley NSW 7394562 2030
0 Douglas A A1020 & Reading Avenue, Kings Langley NEW 6395188 2147
Mctully Lisa A1021 15 Baker Place, Penshurst NSW 1506845 2153 -
. ol
[IDetais | [pocuments | 1 Events | [0l images | . Motes | [T Tmesheets
Basic Detais ~ ["
S Desaription | Grade | Comment ... | |
LARiE: 4GL Programming P Passed
Employee Sumame Paul Administratn Part 1] Met requi...
Administratn Part 2 M Good marks
Employee Given Name(s) Patrick Coenputer Ssence Deg P Bestin dass
- Hstory Degree L Coudbe ...
S 0uu3/1388 Company Introduction P Couddo...
Employee Salary 26,456.04 Keyboard Skils 14 Met requi...
Management Course 1 D Metrequ...
Addrass Course3 F Poor marks
Marketing Course 1 [Met requi...
Street No and Name & Camilo Avenue Other Degree Cowrse D Excelent ..
b o T Hills Programmer Productv =~ P HOODO000C .
State and Country NEW Mew Save Delete
Pk | T P AT e
Save:
ﬂﬁlﬂhql Messages Ready Local ENG JIVORY1Z 5/12/13 13:56 Q)

To achieve this objective, you will complete the following:
Step 1. Execute the Visual LANSA Framework

Step 2. Execute an Application

Step 3. Using Filters to Find an Employee

Step 4. Using Commands and Command Handlers

Summary

Before You Begin

In order to complete this exercise, you must have completed the following:

e Check that you have met the prerequisites for the Visual LANSA
Framework.

Step 1. Execute the Visual LANSA Framework
1. Start Visual LANSA.

Log on to the DEM partition as follows:

User ID: PCXUSER

Password: PCXUSER

Task ID: PCXTASK

Partition: DEM

2. On the Tools ribbon, from the VL. Framework menu , select the User option.

Deploy Import Quick Export WL LAMSA Integrator Logical
Framework Client Studio Modeler
! VL Framewark
Repository — Designer
9 Repository @ Designer oriented WYSIWYG view almeost

identical to what the end wser will see

d | | & B2 E—— Developer
#% Developer oriented view allowing you to werk
with the framewark components

. Administrator

_. oK s Execute your framework as though youw were an

g 1 administrative end user

: :I —ser

— T Execute your framework as though you were a
— E normal end user

a

3. In the Select Framework File dialog select the option Open Latest
Demonstration Version.

-
T I ==
JI_RAMP_TS sl '
| JMI_Frarnewwork. «ml
|MWL_Sv001_SvSTEM. <ML

: wf_ g0 _systenm. sml
|WF_Sv001_SYSTEM_LASTSHIFPED <ML

W i0pen Latest Demonztration Yersion: Browsze. ..

The Framework uses XML files to store the definition of your systems. The file

vf_sy001_system_lastshipped.xml always contains the latest demonstration
system.
Note that if you only have one Framework file, this dialog is not displayed.

The Framework window will appear.

(] Your Framework
File Edit Yiew Help Windows

O L GO8R & A

New Reports WebSte About Address Resources Organization Bookings Charges Spocl Fles Mew Window Queues

Your Framework

| @ 77 Favorites

s e RPG Developers can no

Your Application

LI write quality Windows a
" NoWin32 AP| or .NET skills re

4"? Now you can get the people who really understand the
kgt and are familiar with the back-end system to develop)
’ It no longer matters if they are COBOL, RPG, or .NET de

I Getingtrtt (9 1 v Application I

the first time Prototyping

| < *N ¢ >
[=N=l RN~ R Messages Local ENG JVORY13 5/12/13 14:10

Step 2. Execute an Application

In this step, you will execute a shipped sample application. You will be

introduced to Business Objects, Filters, Instance Lists, Commands and

Command Handlers.

1. The navigation panel on the left hand side displays applications in a tree
view.

As you click the different applications to expand them, you can see the
business objects associated with them.

2. Select the Programming Techniques application. Then select the Basic
application view.

3. Select The Essential business object.

Two new panels will appear. The left panel is the filter which is used to
search through the employee data.

The right panel will show an instance list with the results of an employee
search.

File Edit View Help Windows

Qe ML & oS & A e

Reports WebSite About Address Resources Organizalion Bockings Charges SpoolFiles New Window Queues

| The essential business object

[x] x| |

£ '_ Favorites | Spedfy a full or partial employee name. | Naumber Name
44, HR Demo Application | < s ALDDZ John Smythe
- {3} Programming Technique: Employee Sumame §] AL005 Peter Smiths
= [Basic | A1004 Ruth Smitfesgn
e} The essential busines AD1S3
o The CRLID business o Filter A1007 Instance
4 Auto filing the instany A1008 =
Uising the whole page AL1009 LISt
@ Showing web page AD907
Ta Selected, Currentor { ALDDZ Robert Smithe
@ Snap in Instance Listg AL006 Jack Smithers
98 Handing Delate
5} Remembering values | Clear the current kst of employees Search Clear |
. Passing infarmation
¥ g Advanced

g Prompting

Step 3. Using Filters to Find an Employee

In this step, you will use a Filter to find employees. Filters allow you to search
and sort the items in a business object. After an end-user has selected the
employee business object, they typically want to locate a specific employee or
list of employees.

1. Enter the letter B in the Employee Surname field and click the Search button.
The instance list displays all employees whose surname starts with B.

file Edit View Help Windows

OEQEH B8 BOSRE & A

leb Site About Address Resources Organization Bockings Charges Spool Fles MNew Window

The essential business object

] Ixl
] 1.”.' Favorites | Specfy a ful or partisl employes name, Number | Hame
@ & HRDemo Application | Alal4 Gillian Bladk
=] @ Programming Technique: Employee Sumame B A3564 Fraddy Brown
[Basic | ADO90 Fred Bloggs
0] The essential busines) ADDTO Veeranica Brown
K| The CRUD business of A1031 John Blake
Using the whole page
@ showng a webpage |
%] Selected, Cumentor ||) Claar the aurrent st of emplayees Search|
4 Snap in Instance Lists —
9€ Handing Delete
E Passing nfom;::ﬁ & The essential business object : Details [AD193-Fred Smithson]
= H nd\.'mr:ed Employes Number A0193

) ol B

Step 4. Using Commands and Command Handlers

In this step, you will select an employee and review the Commands or actions
which can be performed for the employee.

1. In the instance list, select the employee Veronica Brown. When an employee

has been selected, the Basic details of the employee will appear in the bottom
panel.

Eite Edit View Help Windows

© QP B & 08 A R

New Aeports Web Site About Address Resources Organization Bookings Charges Spocl Fles

[x]

@ “_ Favorites Specify a ful or partial employes name.
[¥ MR Demo Application
Employes Sumame 8

¥ (Clear the current kst of employees

IE Snap in Instance UEG’ 'j The ezzential butinezz object : Details [ADDT0-Veronica Brown)
9 Handing Delete
5§ Remembering values A0070
‘&, Passing information
3] g] Advanced
¥ g Frompting Veronica
12 Ralway Street

Baulkham Hills
HNSW

Brown

By default, the Details command has been executed. The Details command
handler displays the employee details.

2. Select the File menu and choose the Exit option to close the Visual LANSA
Framework application.

Summary

Important Observations

The Visual LANSA Framework can be executed as a Visual LANSA form.
Refer to VLFO0O05 - Validating the Prototype.

The Visual LANSA Framework provides a consistent application interface.
It is very easy to use, flexible and can be customized by the end-user.

Tips & Techniques

The end-user has the ability to fully customize the appearance of the
application within the Framework. For example, the end-user can position
the panels in the Framework or can float the panels as separate windows.
These capabilities are part of the Framework and are not coded by the
developer.

The Visual LANSA Framework allows the end-user to perform actions in
many different ways.

Commands can be executed using menus, toolbar icons and pop-up menus.

What I Should Know

How to execute the Visual LANSA Framework as an end-user.
How to execute an application created in the Visual LANSA Framework.
What are some of the features supported by the Framework.

What are applications, business objects, filters, instance lists, commands and
command handlers.

LVF060 - Create a Prototype
Objectives

e To learn how to create a prototype using the Instant Prototyping Assistant
e To learn how to refine your prototype

File Edit Miew Help Windows (Framework) (Administration)

e Reports WebSite About Address Resources Organizabion Boolings Charges Spnth

_Employees
‘ E g
[# 17 Favorites Filter for _Employees. 1 & !
5. HR Demo Application ~ E D ,G =
= ﬁ iii HR Application This is a prototype of a filter program used to gat Emplo... | Description
& _Employees the _Employees to be displayed. _EMPLO... _Employee number 1
& Stabistical Reporting EMPLO.. _Employee number 2
@ @ Prog g Technig The user would normally enter search values here. EMPLO... _Employee number 3
¥ 7, Administration EMPLO.. _Employee rumber 4
To see what a filter does, click on the "Emulate _EMPLO.., _Employes rumber 5
Search” button. W | EMPLO.. _Employes number 6
EMPLO.. _Employee number 7
Program Codng Assistant Images Palette Emulate Search | | EMPLO... _Employee number 8

* _Employee : Details [EMPLOYEEDDDS-_Emplopes numbers 5]

[IDetals | [-] address . - Sidls

This panel will handle the action {or command) named Details for the business obhject na
_Employees.

I T T PP e T P e T

In order to meet these objectives you will complete the following:
Step 1. Understand the Requirements

Step 2. Create a Prototype Application — iii HR

Step 3. Define Filters and Command Handlers

Summary

Before You Begin

e Complete exercise LVF040 — Execute a Framework Application

Step 1. Understand the Requirements

You will define a prototype for a simple Human Resource application, which
will consist of:

e Two business objects, Employees and Statistical Reports.

e Employees will be listed in the instance list based on searches By Name,
By Start Date or By Location.

¢ Employees will have actions, Details, Skills, Address and New.

e Statistical Reports will have actions Weekly Reports and Monthly Reports.

Step 2. Create a Prototype Application — iii HR

1. From the Tools ribbon, VL. Framework menu, start Visual Frameworks using
the Designer option.

Tools
R ; :
1 ;.
1 g . 8B &8 5
it CQuick Export VL LAMSA Integrator Logical
Framewark Client Studio Modeler
/ ¥L Framework
@ Designer al View.

7~ Designer oriented WYSIWYG view almost
identical to what the end user will see

- @SS Developer

2% Developer oriented view allowing you to work
with the framework components

2. If the Select Framework File dialog is shown, select the Open Latest
Demonstration Version checkbox and click OK.

Alternatively, your trainer may inform you which framework name to use.

i B’
JI_RAkP_TS =l
J1_Framework. =ml
ML_Sv001_SYSTEM. =ML
wf_ g0 _systenm. sml
WE_SY001_SYSTEM_LASTSHIPPED =ML

Prototppe kMode Only G Open Latest Demonstration "v"ersicunD_ Open Cancel

The Select Framework File dialog is shown once you have opened any
frameworks, other than the default vf_sy001_system.xml framework.

3. Once your framework has loaded, start the Instant Prototyping Assistant
from the Framework menu.

{ Framework) | (Administration)

File

. @ [MNew) +
@ t'] @ { Properties...)

MNew Reports Web Site About i
a (Applications) b

LVF Workshop { Commands...]

Edit View Help Windows

[x] { Menus...)
E Favorites (Design Code Tables...)
HR Demo Application ;
@ Programming Technigues (Program Coding Assistant...) more
@% Administration
| (lnstant Prototyping Assistant...) |
{RAMP Tools ...) D m
{Virtual Clipboard) F

4. Enter your new Business Objects names, _Employees and Statistical
Reports separated by a comma. Notice the underscore character at the
beginning of _Employees. This will avoid a conflict with the shipped
framework Personnel Demonstration business objects.

ra ™

S W Y ==
J— _ p—

&)) - G

This assistant will help you design a prototype in just a few minutes.

»

Please remember that this is just an assistant to help you get started faster.
Anything that vou do with this assistant can be added to, changed or deleted later.
You don't have to do the whale system in one go. You can do a subsystem first, and then come back later, to do more.

| The first step is to make a list of the names of "business objects™ that the end users will work with.

We just mean the everyday words that end users of the application use to describe the main "things" that they work with.
For example:

- Users dealing with an order processing application would use the words Orders, Customers and Products.

- In working with e-mail people talk about Inboxes, Outd:
- A Human Resources application would use Employees
- In many applications, users talk about the Daify Rs
- A banking application would use Banks, Branches, Tre

We are not talking about database tables here or any other form of IT or OO "object" here. I

Define Business Objects,
separated by a comma.

Step 1. Enter the names of the main "business o

Main Business Objects: Employees, Statistical Reporting|

Restore previous values

a _Employees
a Statistical Reporting

Mext = Cancel

Click the Next>> button.

5. Actions will contain the default, Details, New and Notes actions. Define the
additional actions required for _Employees and Statistical Reports. These are
Skills, Address, Weekly Reports and Monthly Reports. Each should be
separated by a comma.

i ™

S W Y ==
J— :

N B PN

What actions can users do with "business objects" ?

»

Step 2. Enter the names of all the actions below: (separated by commas)

Windows designs use the Object-=Action approach.
- (i.e. select the object you want to work with, and then choose what you want to do with it.)
The actions should be described in end user terms, not in IT terms.

ery concise words are used to describe "actions", because the object being worked with iz already known.

If you =elect an object in MS-Powerpoint and use the right mouse there iz a concise menu optic

- It does not say "Copy this text box to the Clipboard".

Short werbs tend to be used to describe actions.

- (e.q. Copy, New, Edit, Print, Approve, Transfer, Reply, Renew)

Short nouns are also used to refer to things that directly relate to the business object.

- (e.g. Details, History, Charges, Claims, Attachments, Schedule, Contacts, Documents, Expe,

For example: If there is a "business object” called Customers, you could do these things
Edit, Print, Delete, Accounts, Recent Transactions, Correspondence, Verify .

Define Actions for all
new Business Objects,
separated by a comma

Actions: Details , Mew , Motes , Skils, Address, Weekly Reports, Monthly Reports|

Step 3. Drag and drop the actions from the list below, onto all the appropriate business objects in the list on the right

The same action can be used with many business objects.

™ Details a _Employees
@ New a Statizstical Reporting
127 Notes

T skills
" address
™ weekly Reports

"l Monthly Reports

<< Back Mext = Cancel

6. Hold down the Control key and select Detail, New, Skills and Address.
Select the highlighted actions and hold down the left mouse to drag and drop
them onto the _Employees business object.

Actions: Details , Mew , Mates , Skills, Address, Weekly Reports, Manthly Reports

Drag and drop Actions onto Business

Step 3. Drag and drop Ob J ect ropriate business objects in the list on the right

The same action can be

_Employees
a Statistical Reporting

" Weeky Reports
s Monthly Reparts

<< Back Mext == Cancel

7. Repeat these steps to drag and drop actions Weekly Reports and Monthly
Reports onto the Statistical Reports business object.

Your business object should now look like the following:

o Details

T Mew

T Motes

s skills

" address

" iWeekly Reports
" Monthly Reports

2

= a _Employees

. Details Action
 New Action:
T Skills Action:
. Address Action

£ il Statistical Reporting
. Weekly Reports
. Monthly Reports

<< Back

Action:
Action:

: Details _Employee

MNew _Emplayee
Skills _Emplayee

: Address _Employes

Weekly Reports Statistical Re...
Monthly Reports Statistical Re. ..

MNext == Cancel

Click the Next>> button.

8. Using your initials instead of iii, define the iii HR application.

Drag and drop the _Employees and Statistical Reports business objects onto

the iii HR application.

,

Il W 9

S5

Grouping business objects

- Human Resources, Ordering, Dispatch, Accounts, Inventory, Productio,
a Banking system might have its businesz objects logically grouped to
- Custemer Accounts, Lending, Marketing .

Don't organise business objects by user role - this can be done later.

Applications:

Drag and drop
Business Objects onto
Application

Use drag and drop to put your bu
Every business object must be put in

a _Employees
a Statistical Reporting

For an example, an ERP system might hawve its business objects logically,

Programming Techniques , Favorites , HR Demo Application ,

Step 4. Enter some application (/group) names below (separated by commas):

e ke ok I

Define Application

Administration , i HR

Step 5. Now decide which application each business object belongs to.

— & — GEE — &

Business objects are grouped together to make security easier to manage and end user access simpler and more manageable.
I These types of business object groupings are named many different things (eg: Applications, Systems, Subsystems, etc).

ations or subsystems named :

ems named :

the appropriate applications on the right.

ﬂ Programming Techniques
ﬂ Favorites
i} HR Demo Application

<< Back

Your iii HR application should now look like the following:

Application (exists already)
Application (exists already)
Application (exists already)
Application (exists already)
Application

Mext == Cancel

ﬁ Programming Techniques Application (exists already)
ﬁ Favorites Application (exists already)
n HR Demo Application Application (exists already)
n Administration Application (exists already)
= i@ iHRr Application
4 _Employees Business Object
i Statistical Reparting Business Object
<< Back Mext == Cancel

Click the Next>> button.

9. On the final dialog, click the Finish button to generate your iii HR
application.

,
R

The following will be generated when you press finish

A user of this framework sees 5 icons when they start the framewaork.
ese icons represent 5 groups of business objects,

e firsticon represents application ' Programming Technigues ' which contains business objects:

e second icon represents application ' Favorites ' which contains business objects:

e third icon represents application ' HR Demo Application ' which contains business objects:

e 4th icon represents application ' Administration ' which contains business objects:

Creates the prototype
framework application

e 5th icon represents application ' i HR. " which contains business objects: _Employees |, Statistical Reporting
- When working with the _Employees business object, the user can do these things with a _Employee : Details , New , Skill

- When working with the Statistical Reporting business object, the user can do these things with a Statistical Reporting : Weekly Reports , Monthly Rey

10. From the Framework menu, Save and Restart your framework.

| — —

File Edit View Help Windows | {Framework] | (Administration)

m (New) »
@ @ @ [Properties...)

Me: R ts Web Site About
= S i [Applications) . _
_Employees (Commands...)
[x] [Menus...
1.7 Favorites (Design Code Tables...]
l&, HR Demo Application =
= ﬁ iii HR Application [Program Coding Assistant...) get
_Employees :
Statistical Reporting (Instant Prototyping Assistant...)
@ Programming Technigues here
@-, Administration (RAMP Tools ...]
-L
[Virtual Clipboard) ¥
- :
{ Merge Tool ...] | s
[Save)
([Save As...)
[Save and Restart) J
(Save and Exit)
[Web Configuration Assistant...)

Note: Your framework is an XML file. It is good practice to regularly save
your work. You will also find that the Framework design tools will
automatically prompt you to save your framework at regular intervals. By
default this is every 10 minutes.

Step 3. Define Filters and Command Handlers

In this step you will define three filters for _Employees and make a few basic
enhancements to the prototype application. To enable you to quickly progress
with these exercises, the enhancements steps have been kept to a minimum and
the Statistical Reporting business object is not prototyped.

1. Open the Business Object Properties dialog for _Employees.

To do this select the _Employees business object on the Navigation panel
and use the right mouse menu to select the Properties dialog.

Edit View Help Windows {Framework] (Administ

Eile

©O Qe M8 {

Mew Reports Web Site About Address Resources Orgar

]

1.7 Favorites | Filter for _Employees.
£, HR Demo Application
= ﬂ' iii HR Application | This is a prototype of a fi
Employe” —— -tz dis
g Stotstea| @ | New
@ Programmi ally

\;@ Administra [Mew Application...)
[Mew Business Object...) nes,

| [Properties...) [
' (Delete) pnt

Position L |

Windows

2. Select the Icons tab:

H
“# Business Object Properties- _Employe =] E et
Identification(Tcons | Visuzl Styles | Filters | Filter Settings | Commands Enabled | Command Display | Custom Properties | SubTypes | Instance List / Relations |
~ - VF_IC498~——"

g™
§

ElEh
POdMRENDIDOOS
s ol wimmhvsli=]ialre s slad

LE4<EORIDPrTICOE@

=]

oy
L

Select anicon for
Employees business
object

!
>
@
=]
=
@
@
=
@
i
7
=
&
%@

THRECRrOrREELEC-QRI®DXXA0
PEBE IOV uPEENVNEOPEETOREmO

FEPLOOBRPCIROEESNO

WPOTUID R4 EP
OPOLOBLONFE

,_
=

Select an icon for the _Employees business object.
3. Select the Filters tab. Change the Filter Name to By Name.

Identification | [cons | Visual Styles | F“Eh Filter Settings = Commands Enabled | Command Display = Custom Properties SubTypes | Ins

a

B.|By Mame ! Identification || Icons | Filter Snap-n Settings |
Caption By Mame]

Name the default
filter

Sequence: 2

Internal Identifier: FSBO0G11E2F1474CE211653216099501

User Object Mame [Type F8B00611E2F 1474C621165321609950 1 Verify

W

4. On the Filters tab, select the Icons tab and select any suitable icon.

5. Add a new filter by clicking on the New button.

(¢ Business Object Properties- _Employee ..

Identification | Icons | Visual Styles | Filters | Filter Settings | Commands Enabled = Command Display | Custom Properties | SubTypes = Instance List / Relations f
- |
i# | By Name Identification | [cons | Filter Snap-n Settings
i By Start Date .
! Caption By Start Datel)
Hint: Define eachfilter name
and
B 3 assign an ican
l Internal Identifier: S0AS0275TAEDATEAS1166E88AG4224A
User Object Name / Type 50A80276 TAED4TBAS1166EB88A84224A5 Verify Name
¥ Allow on Web
v Allow in Windows
Last Changed 20110316-142543-JIVORY 12
RAD-PAD File MName C:\PROGRA~2ILANSAX_WINISYX_LANSA\x_dem\execute) RADPAD_ S0A

Define new filter

a. Change the new filter's name to By Start Date and select any suitable
icon.

b. Click the New button and name the third filter By Location and select any
suitable icon.

6. Select the Commands Enabled tab.

a. Select the New command in the Enabled column. Notice that it is a
Business Object Command. This is because the command applies to the
entire _Employees business object (instance list commands apply to the
selected item in the instance list).

Identification | Icons | Visual Styles | Filters | Filter Settings | Commands Enabled | Command Di 7
To enable and disable commands drag them between these

| lists ... @ Mew (MEW)

Mot Enabled [+] | Enabled | hoose Command Type :

l@ About Framework | | | Address | #| Business Object Command }
El [5] About... i

Baces |1

(1, All Details _

) All Entries _ —_—3
-MEQ“W\-Q | —— il o e,

Next you specify how business object commands are displayed.
7. Select the Command Display tab.

-*7_:._ Business Object Properties- _Employee:
Identification | Icons | Visual Styles | Filters | Filter Settings = Commands Enabled | Command Display | Custom Properties | SubTypes |
Command Tab Style: Tabs s
| Command Tab Show All: Automatic =
Command Tab Location: Top -
l@bject Command Presentation Separate stay on top window =)
Instance Command Presentation Use part of the window -

' Multiline Tab Sheet Captions

i The dezigh change you have just made may Cloge

require your framewark to be zaved, shut
down and then restarted before it becomes Save and Hestart
fully effective.

V| M arm me whenever | make this type of change.

a. For Object Command Presentation, select Separate stay on top window.
b. Click the Save and Restart button on the prompt that will appear.

When your framework has restarted, it should look like this:

File Edit View Help Windows (Framewerk] (Administration)

OB & 08 N ==

Hew -u::-orts Web Site Address Resources Organization Bookings Charges Spool Fles
_Employees
[«] | Ix]
+ 17 Faveorites 4 By Name | () By Start Date | . By Location B [!
@ . HR Demo Application I fo I 20 e
a8 n il HR Application Filter for _Employees. | | _Employes| Desaiption
E ting This is a prototype of a filker program used to get
_ Ao the _Employees to be displayed.
& @ Pro ing Techni
& % Administralion The user would normally enter search values W
here.

Program Coding Assistant Images Palette Emulate Search

8. With the _Employees business object selected, click on one of the © New
buttons. Notice that there is a New button in the main toolbar and in the

toolbar above the instance list. All these features may be configured
differently.

The New dialog is displayed as a stay on top window. Notice that you can
resize this window and use the Record Size button to remember the window
size for the next execution. Note that the text can be edited.

9. Close the New dialog.

10. Click in one of your _Employees filter panels. Notice that these can also be
edited. The panel provides a simple line editor. When adding text or images,
type Enter to move to a new line as required.

File Edit View Help

O Qe B o0 8 A

MNew Reports Web Site About — Address Resources Organization Bookings Charges Spool Files

_Employees

Windows (Framework) (Administration)

I = 5 1 [—— = s =

17 Favorites | 4p By Name | (| By Start Date | | By Location | =

!;E;. HR Demo Application = —
= 5 Filter for Employees. [

=] ﬂ iii HR Application Al lLE
% _Employees

his iz a prototype of a filter program used to get
he Employees to be displayed.

a Statistical Reporting
-]E:} Programming Techniques

% Administration
E %% he user would normally enter search values L¥
here.

Program Coding Assistant Images Palette Emulate Search

11. Delete the existing text, add suitable text and drag and drop images from the
images palette. Your objective is to make each panel "realistic" so that your
users will understand the intended design when you review the prototype with
them.

[x] =]

17 Favorites s ByMName | @ ByStartDate | ByLocation =200
B A R A o FaDl Start Date : =
-ﬂiﬂﬁﬂppﬁcﬂhn ployee Sta ate : AL ;

2 Employees |

gl Statistcal Reporting | | [28TH Ay 2003 E
{3} Programming Techi
2, Administration

Drag & drop
1 images onto

Restrict your changes to one filter panel. In your own projects, you would
continue to enhance the appearance of every filter and command handler
panel with suitable text and images.

12. Save and Restart your framework.

13. Display the properties of the _Employees business object and select the
Instance List / Relations tab. Change the first two Column Captions to
Number and Full Name. Note that there only two enabled columns, which
have a column sequence number.

In your own applications you would probably enable additional columns and
ensure that your filter components populate these extra columns.

Dicauble chek for defilt command Sarve b Restore Inatarce Lists

o Alow multiple selections Erahle Cear List Bution

ll‘f Al Trtance st b b et 3 M5 Excel File: Precfix to be uted for MS-Excel Soreadsheet -]

[Iﬂn.ppl‘ll“ Enadie Pop Ui Panelt

Instance List Tool Bar Locabon Top =

Irstarice Lint Tool Bar Text Locaton T -

Instance List Tool Bar Hesght or Width 4

Sruap in Irstance List Browser

ot Tyoe Caotan dth % (Total 100° Decmal Bt Conle Curte Time Quitput Fr,

[T VESLALID Y [Humber E=] Diefai SYSFMTE

n VESLIALIDZY [Full aene _)rs Dt SYSFMT
ACOLLIMNL T, Defdt SYSFMTE
ACOLLMIZ Default SYSMTE
ACOLLMN Die i SYSEMTE
ACCLLMEH [STSFMTE
ACOLLUMNG Dty STSFMTE
ACOLLMTE Default SYSFMTE

This kst contars instances of _Employeed , and it may slso contsin instances of ...,

Business Object | User Clbgect Mame [Type: | Relaborahin Type |~

+ rpanbt by AR ATERS M SR

14. Close the Business Object Properties dialog.

15. Save and close your framework and re-open it as a User. Execute your
prototype and ensure it meets the requirements.

r
Teols

— -
1B 7 8 & B
ot Quick Export L) LANSA Integrator Logical
Framework Client Studio Modeler

' VL Framework
NS Designer

i Designer oriented WYSIWYG view almost
identical to what the end user will see

e

Lo §

< | B SN Developer
e f@ Developer oriented view allowing you to work
with the framework components

=S Administrator
a Execute your framework as though you were an
administrative end user

P

S User

T Execute your framework as though you were a
normal end user

La &3

41

F i

Notice that the Emulate Search button will populate the instance list.

16. Select an instance list entry to display the _Employee command handler

tabs.

_Employees
x| x|
Favorites 4p By Mame |) By Start Date - By Location E] €
L < [] &
i 4, HR Dema Application % -
- il HR Application Enter Employee Start Date : A | rumber | Fullame
& _Employees _EMPLOY . _Employee number 1
@ statistical Reporting e iy 2003 m _EMPLOY.., _Employee number 2
i {5} Programming Technique: _EMPLOY.., _Employes number 3
v _EMPLOY . _Employes number 4
Newt >3 | | EMPLOY... _Employee number 5

N _EMPLOY.. Employes number &
Emudate Search Jf) evpLoy,, _Emploves number 7

&« _Employee : Details [_EMPLOYEEDD02-_Employee number 2]

[Detads | [Address Sidls

Important note: In order to limit the time taken, the prototyping section of the
tutorials is brief. However, when you are creating a real Framework application,
prototyping is the crucial step that will determine whether your project will
succeed or fail.

A well thought out prototype will clearly communicate what the finished
application will be like. You need to have it reviewed and signed off by both
end-user representatives and developers. Users will know what they are getting
and developers will know what they need to deliver.

Summary

Important Observations

To create new applications with the Visual LANSA Framework, you simply
set the application properties. You do not have to write any code.

You can create application objects manually. You can also create or extend
an existing application using the Instant Prototyping Assistant.

Applications can contain many business objects. Business objects are the
objects that end-users work within the application.

Filters enable end-users to search for business objects. A business object
may have a number of filters.

Command handlers enable end-users to carry out actions on business objects.
Business objects may have many command handlers.

Tips & Techniques

Enhance the appearance of your prototype filters and command handlers
using the images palette.

The business objects properties dialog enables the developer to refine the
definition of the business object, its filters and command handlers.

What You Should Know

How to create an application prototype using the Instant Prototyping
Assistant.

How to refine the application design with icons and additional filters.
How to tune the behavior of command handlers.

How to refine the appearance of the application filters and command
handlers using text and the image palette.

VLF for Web Application Module (WAM) Applications
Applies to Web only using WAMs.

After you have created and validated your prototype, you can develop it into a
functional application.

The basic structure and presentation of the application will remain unchanged as
you continue to use the Framework. To complete the application, you simply
replace the prototype filters and command handlers with real ones using WAMs.

In the following exercises, you will replace the employee filters with real filters
and the Details prototype command handler with a real command handler:

e LVF070WAM - Snap in a Real WAM Web Filter
e LVF075WAM - Snap in a Real WAM Web Command Handler
e LVFO80WAM - Add Instance List Columns in WAM Applications

(— Sl & hitp://earthd13.lansa.co.uk/vif_private/Jivory13/WEB_MK2_system ENG_BASE O » B & Il & WEB version of Your Fra.. %

File Edit View Favorites Tools Help

» »

5% ¥ Capital One Credit Cards ... % The Independent News ... !} - ~ [@b ~ Page~ Safety~ Tools~ i~

Fle Edit View Actions Took Help

Qi) L@ Aot (3 FDC)R L) Bt
The essential business object
On Tool Bar [Number | Hame |
. 1R Demo Apphcaton | SPecify full or partial employee A [ao31 JOHN BLAXE ~
5 © hropamnng T name
= [Basic A3564 FREDDY BROWN
e]] A0070 VERONICA BROWN
I The CRUD busd| Emplayee 0] -
b Auto fling the Surname [Clear List]
Using the whold
@ showing a web —
4. Selected, Currg Search | o
3% Handing Delete] |
el el The essential business object (AD090 - FRED JOHN ALAN BLOGGS)

= bl WAM DM_T0016 (Command handler)
= ~N
[Prompting : : i
@ & Adninistration This b object de ates the simplest example of a command handler.

This command handler allows the user te update the details of the employes chosen from the instance list

The START_HAND subroutine is whaere the function determines what the identifying key valus [#EMBNO) is for the
“current” employee

Tha UEXECUTE subrouting is whera the function gets the datails for the amployea.

When the save button is pressed
The function again determines what the identifying key value (#EMPNO) is for the curent employes
The UB_SAVE subroutine does the update to the database.

Employee Number A0S0
Eplyee Smae
Employee Given Name{s)
Street No and Nome [70 MAIN STREET |
Suburb or Town NEWTOWN NSW]
State and Country [ausTRALIA |
Post / Zip Code
Home Phane Number
Business Phone Number [esa6amsaz |
| Messages Ready 6th December 2013 1&«1]
H100% -
JEin

LVF070WAM - Snap in a Real WAM Web Filter

Objective

e Learn how to replace prototype filters with real WAM filters. These will
perform the actual selection of the items for the Instance List when the
Framework is running in web mode.

X Q[secure search] Omcatee OB

{‘?Favorites I-SE]—'_|@Ivory,]ohn-(}utlook... |@YourFramework x |_| & w7 * [@ ~ Page~ Safety~v Tools~ @v 2 *
File Edit View Actions Tools Help I
ONew B (4 B 8§ B O | @ 8@ @ M & B |Qmpi

_Employees

’ On Tool Bar] © By Location |5 By Name |4 By Start Date| DrimbeiggRae =
& HR Demo Applicatio] | A1003 SMITHE Robert)

= Bii HR A1006 SMITHERS JACK 1

= Statistical Reports

A0193 SMITHSON FRED
£ Employee:
@ 8 Programming Techn A1004 SMITHSON PAUL

® % Administration A1005 SMITHSXX PETER

b A e e
< 1] —— » <]

m

1
4

BLLLDEIRRELY | this tutorial you will create two functional

WAM filters and snap them in web
Framework

| Details| B4 Add

MH

To achieve this objective, you will complete the following:
Step 1. Create Your Real WAM Filter

Step 2. Snap In the WAM By Name Filter

Step 3. Create a WAM By Location Filter

Step 4. Snap in the WAM By Location Filter

Before You Begin

You must have completed the preceding exercises.

You may wish to review the Visual LANSA Frameworks guide:
e Filters in the Key Concepts section.

Step 1. Create Your Real WAM Filter

In this step, you will create your own filter by creating a WAM which will be
snapped into the Visual LANSA Framework.

1. Make sure that the Enable Framework for WAMs option in the Framework
Details tab is selected. In the Visual LANSA editor check that you can create
new WAMs (the option is available if your system is enabled for Web).

2. Start the Program Coding Assistant in the Framework using the Framework
menu. The Program Coding Assistant window is displayed.

The Program Coding Assistant window allows you to create different types
of components that can be plugged into your filters, instance lists and
command handlers. It is strongly recommended that you use the Program
Coding Assistant when you first start using the Framework. Initially you will
most likely use filters that generate a component that can be executed e.g.
CRUD Filter (Create/Read/Update/Delete), Filter that searches a file or view.
As you progress you might only use a skeleton filter or simply copy from one
that is similar to one that you want to create.

3. If you are using a non-English system, click on Framework then Your
Framework in the top-left tree view. The Set LANSA code generation
preferences option appears at the bottom. Select this option and set your
preferences.

4. Select the iii HR application and then the By Name filter.

5. Choose Web — using WAM components as the platform and Filter that
searches using a file or a view.

=] & Business Object->=_Employees
[command Handler-=Details
(&) Command Handler-=HNew
4 Command Handler-=Address
U, _rommand Hand er-=Skills

(@] Fiter->By Location)
& | Filter->By Mame

| 4+ Filter->By Start Date

Refresh

the platform you want to generate for
() Native MS Windows

() Web - using *WEBEVENT functions

) \Web - using WAM components)
(| Web - using AJAX style components

Select the type of code you want to generate

ing a file or view)

Search button event handling routine {code fragment)
Invoke #avLlistManager. AddtoList (code fragment)

6. Click the Next>> button.
7. Specify PSLMST as the Physical File that most closely resembles this

business object

Filter that searches using a file or view

What? This assistant produces the code for a filter that

searches for information using a specified physical file or

logical view.

Filters are used to dynamically create business object
instance lists (e.g. lists of Customers, lists of Products,

lists of Orders, lists of Employees, etc).

Typically Visual LANSA Framework filters are presented

like this example (in the area circled in red):

50050 FRED JIHN ALSN BLOGES
a1 e LD
ETEL FREDIYBROWH

?In-.m
LaNEa
Mhorcaol
W Daai List
Ciriw Tepente i
Mol Rasody -
AevessiFlagats = idea | K3 Tramisc| 4 Sustch | (5 S | £ Uvadee 21 Gt |, A attannges mchigans |
i (] Hiws Aplicabon,) |
S R i 2
5 1 Hie £z [— [orowm
Erngicpen G, Marvaiz| VEFOIMICA
Eneet Ho arcdMare: 12 Rahasgy Shast
Sty o4 Towwnt Boudbhar Hii
‘Ehgle gt Cramkiy [y
ol Tp Tt 215
i s e o —

Cancel

,

| Gelect the object you want to generate code for Filter that searches using a file or view
|| . . Specify the identification protocel you have dedded to use for this business object. If a physical file
=] % Business Object->_Employees - resembles this business object specify its name and the assistant will attempt to automatically deduce a
[] command Handler-:>Details basic identification protocol for you.

»

@ Command Handler-=New

[Command Handler - >Address Personnel

=||| The physical file that most closely
|—| resembles this business object is: PSLMST

. Command Handler -Skils ~VISUAL IDENTIFIERS (for building VisualIDT and VisuallDZ values)

i.?_ Filter- =By Location -

B Filter->By Name / Field Name Type Description | Drop Selected

4p Filter-=By Start Date = 1 |EMPMO ALPHA Employes Mumber i
— 2 [SURNAME ALPHA Employee Surname Ko
3 |GIVENAME ALPHA Employes Given Mame(s) jr_
~5elect the platform you want to generate for 4
@) Mative M5 Windows c E
|| Web - using *WEBEVENT functions E
Add fields from this Physical File Add Keys Add all

[#) Web - using WAM components
|| Web - using AJAX style components

/FPROGRAMMATIC IDENTIFIERS (for building AKey1,2,3,4,5 and NKey 13, 3,4,5 values)

Select the type of code you want to generate = T —

-

RIS ield Name ype escription Drop Selected

Filter that searches using a file or view N 1 |[EMPNO ALPHA Employee Number A= Dran Al

A skeleton filter [- A P

Search button event handling routine (code fragment) 3

Invoke #avListManager.AddtoList {code fragment) X

Add fields from this Physical File Add Keys Add all

~ADDITIONAL COLUMNS (for building AColumn< = and MColumn <= values)

| Field Mame | Type Description Drop Selected
4| | | |

< m | 3

<< Back

The Program Coding Assistant detects the Visual and Programmatic
Identifiers required.

8. Click the Next>> button.

9. On the next page specify PSLMST2 as the view to be used for
searching/filtering operations.

10. Specify SURNAME as the Key of the selected view to be used for search
operations.

- — —— ™
' Program Coding Assistan_ E@ﬁ

Gelect the object you want to generate code for Filter that searches using a file or view

Spedfy the physical file that will underpin the search made by this web based filter. Then select the
required view, keys and search options as they appear.

»

= '% Business Object-=_Employees

[] command Handler->Details

&) command Handler-»New
[Command Handler-=Address

; B Spedify the underlying physical file that

Command Handler -=Skills will be searched by this filter ST el
| Filter-=By Location

B | Filter-=By Name
B Filter->By Start Cate B Select the view to be used for filtering / searching Select the key(z) of the selected view to be used for

Refresh operations: search operations:

~5elect the platform you want to generate for - _—
View Name | Description |

Mative M5 Windows ;
PSLMST Personnel W SSURNAME ALPHA Employee Surname

Web - using *WEBEVENT funct .
i i e el GIVENAME ALPHA Employee Given ...
) Web - using WAM components PSLMST2 Personnel by Surname, Given Name

Web - using AJAX style components

Select the type of code you want to generate
|
CRUD Filter

Filter that searches using a file or view
A skeleton filter User must spedfy all chosen keys
Search button event handling routine (code fragment) 7 Al e et

Invoke #avListManager.AddtoList {code fragment)
/ Remember key values between filter executions

L << Back (Generate Code) Cancel |

11. Click the Generate Code button.

The next page, Generated Code, displays the source code for your filter. You
now need to create the component that will contain this code:

12. Specify iiiWAM100 as the name of your real filter and By Name Filter as
the description. (iii are your initials If you are using an unlicensed or trial
version of Visual LANSA, you must always use the 3 characters DEM to
replace iii).

13. Click the Create button to create the WAM.

,

Belect the object you want to generate code for

Generated Code

&) command Handler-»New
[Command Handler-=Address
Command Handler-=Skills

| Filter-=By Location

|

Application H T |
Business Object :
Filter

HR.

: BUSINESS OBJECT FILTER
I MS-WINDOWS (web Access module)

= % Business Object-=_Emplayees «|l= Hggform
[] command Handler-:>Details = Written By : JIVORY1Z

i 21st MARCH 2011
(C) Copyright
I Your Framework.

_Employees
: By Location

at 11:38:19

m

B | Filter-=By Name
4p Filter-=By Start Date

Refresh

Define_Com CLASS(#vi_swl00)
Define_Com Class(#vi_awoo7)
Define_Com Class(#vi_Tw0o02)
Define_Com Class(#fp_inoo1)

~5elect the platform you want to generate for
| Native MS Windows

BEGIN_COM ROLE(*EXTENDS #PRIM_WAM) Layoutweblet{'vif_layout') Sessionstatus

Standard declares for a Tilter

NAME (#avFrameworkManager)
Name(#ThisFilter) Reference(*Dynamic)
Name(#avListManager) Reference(=*Dynamic)
Name(#FastPart) Reference(*Dynamic)

| Web - using *WEBEVENT functions
| Web - using WAM components

VL Framework map Tields. DO NOT CHANGE.

web_Map For(=both) Fields((#VF_FRAMEI =priwvate) (#VF_FRAMEW =priwvate) (#vF_l
Web - using AJAX style components

| Select the type of code you want to generate = Simple Field, Group and Condition Definitions

CRUD Filter Group_By Name(#XG_Keys) Fields(#SURNAME)

Filter that searches using a file or view Group_By Name (#xXG_Ident) Fields(#EMPND #SURNAME #GIVENAME)

2 skeleton filter Def_List Name(#Save_keys) Fields(#XG_Keys) Type(=working) Entrys(l)
Def_Cond Name(*SearchOK) Cond(' (#SURNAME =*ne *Blanks) ")

Search button event handling routine (code fragment)
Invoke #avListManager.AddtoList {code fragment)

map fields used in this form.
4| |
~To creat-e a WAM
Specify Name/Description GIIWAM 100 | Employes Fiter by Namel

C D

1L

)

Create

Copy Code to Clipboard

After a brief delay a message is shown indicating the WAM has been created.

14. Switch to the Visual LANSA editor. Your filter is displayed in the Visual
LANSA editor.

15. Use the GoTo tab to find the event routine
#avFrameworkManager.uWAMEvent_1

Design | Source | Multiingual Details | Cross References

EFEvtroutine Z-landling(*avFIa.rr.ewar]d{anager.'AWA]-IEvent,_l) Cptions (*noclearmessages
*noclearerrors)

Go To

B

Enter line number: |0

Categories ‘ * If the search key(s) are wvalid

|+ Built In Functions

7‘ Definitions If (*SearchOK)

[¥] 1/0 Operations * Save key values for later executions
|+ List Operations

= [* Routine

Invoke Method (#avFrameworkManager.avSaveValue) Withidl (*Component) Withid2 ('
Fromavalue (#SURNAME)

_} Evtroutine - #avFrameworkManager . uExecute
_? Evtroutine - #avFrameworkManager.uWWAMEvent_1
| Webroutine - UHandleEvent

S R SR e

WP I SR VW e

Save the current key values from overwrites

et e e T T e B e St

.

Examine the code:

This statement tells the Framework that new entries are about to be added to
the instance list:

Invoke Method(#avListManager.BeginListUpdate)

This statement clears the instance list:

Invoke Method(#avListManager.ClearList)

This statement reads the records that match the surname entered by the user:
Select Fields(#XG_Ident) From_File(PSLMST?2) With_key(#XG_Keys)
Generic(*yes)

Nbr_Keys(*Compute)

This statement sets up the visual Identifier(s)

#UF_VisID1 := #EMPNO
#UF_VisID2 := #SURNAME
Use BConcat (#UF_VisID2 #GIVENAME) (#UF_VisID2)

This statement adds the data to the instance list

Invoke #avListManager.AddtoList Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)
AKey1(#EMPNO)

Visualld1 will be shown in column one of the instance list and Visualld2
will be shown in column two of the instance list. Akey1 is the key that
uniquely identifies an employee (in this case the field is alphanumeric, so it's
Akey1, not Nkey1).

This statement tells the Framework that you have finished adding entries to
the instance list:

Invoke Method(#avListManager.EndListUpdate)

You may want to read WAM Filter and Command Handler Anatomy in the
Visual LANSA Framework Guide to learn more about how WAMSs are
structured.

16. Select the Compile option on the Home ribbon.
17. Ensure the compilation was successful.
18. Close your WAM in the editor.

19.Select your WAM on the Favorites / Last Opened tab. Right click and use
the context menu to select Check in.

W iEmpEnquiry % Employee Enquiry

= iiiMaintEmployee # Maintain Employes
o WA — == = !
= JLMAIN Dpe
== JIFORM_A| . Compile

> Lo PSLMST Debug '
== UF_DESGN

x Delete from Repository
Remove from Last Opened
Find
Refresh Inlined Weblets...

Cuick Export
Check In
Unlock

B el

20.0n the Check in Options dialog, expand the list of objects. Note that the
WAM layout as well as the WAM has been selected for Check in.

a.Ensure that the Compile WAM option is selected.

b.The Generate XSL and LANSA:XHTML checkboxes should also be
selected.

c.In the example shown below, Task Tracking is set up to release the lock
against PC Name when checking in. If the Keep Locks option is selected,
this PC will retain a lock, which would allow subsequent changes to be

made.
- Check in Options - 0
X &
WAM check in options

4 Other LANSA objects (1) ¥ Compile WAM

W iiwam 10 layout IWAMIDD layout Compile enly if necessary
4 WAMs (1) Keep generated source

& IWANTOD by Marne Filter Debug enabled

| Generate X5L
All webroutines
*| New Webroutines

Technology services

LANSAGMOBILE

LANSAPPC_XHTML
¥ LANSA:XHTML

[w] Keep Locks 0K Cancel

d. Click OK to check the changes in.
e. Wait until the compiles have finished.

Note that VLF WAMSs use a common VLF layout, which already exists on
the server.

Step 2. Snap In the WAM By Name Filter

Now that you have compiled your new filter and are ready to test it, you need to
snap it into the Framework.

1. In the Framework, close the Program Coding Assistant.
2. Select the iii HR application and double-click the Employee business object.
3. On the resulting Business Object Properties dialog, click the Filters tab.

4. Select the By Name filter. You will replace the web mock up filter with your
real filter

5. Click the Filter Snap-in Settings Tab.
6. Click the WAM property radio button in the Web Browser group box.

7. Use the search button ‘™ to open the Find dialog. Enter a Like Name value
to find your WAM and click the Find button.

Like Name i

Like Description

| Drezcription

8.Select your By Name filter and click OK.

lifeaM110 Emplopes By Location Filtes [IINWAM11]
lIfefaM11 Emplopes By Location Filter

IMefaM120 Employe= Detals command handier [II0wiAM12)
IIMefaM12 Employes Detals command handler

Important: Note that the Description includes the Identifier name in

brackets. The identifier must always be used for the component name in VLF.

Identification | Icons | Visual Styles | Fiters | Flter Settings Commands Enabled | Command Display | Custom Properties | SubTy

4 By Name: Identification | Icons | Fifter Snap-n Settings
[*] By Start Date Stay Active Default =
. By Location
. ~Filber Handler -
~Windows -
« Component IICOM21 2
Mok Lip - RAD-PAD __ RADPAD BDD972I10EEDCAAREAESEFDT2259 16002 HTM
WEBEVENT Hidden Function | vFLI0201 QP‘I‘{ESE:'UFMH
Location for Buttons Right v
Type of Layout Style to be Used | Header Panel and Browse List Pane -
(o wam IIVAM 10)W
Mok Lip - RRAD-PAD __RADPAD __BODI7210E6DCAAFEAE SEFD T 2259 160D 2. HTE

9. Click the Instance List tab.

a. Set the heading of the first column in the instance list to Number (it will
display employee numbers) and the heading of the second column to
Name (it will display employee names).

b. Deselect the Save and Restore Instance Lists option.

Enable Clear List Button
Double dick for default command

Save and Restore Instance Lists

[;,.r Allow Instance List to be sent to M5-Excel File Prefix to be used for M5-Excel Spreadsheet_ (ENG)]

Instance List Tool Bar Location Top -
Instance List Tool Bar Height or Width 24

Snap in Instance List Browser

=

Column Sequence Column Type Column Caption Width %-ﬂ'.oiﬁl ?0‘5’1;} Decimals
VISUALID 1 Mumber 10
VISUALIDZ MName al
ACOCLLInARL 1

ACOLUMNZ
ACOLUMNS
ACOLUMN4
ACOLUMNS
ACOLUMNS

s T == —

[

Note that the Enable Clear List Button is selected.
10. Use the (Framework) menu and select the option to save the Framework.

Accept the prompt to upload the Framework and wait while the upload
completes.

11. Use the (Framework) menu and select the option to Execute as Web
Application...

__._‘A M&xwﬂﬂﬁ—l\
(Framm;rkj [Administration) %}
[Mew) r [spooled Files €3 Em‘{
[Properties...) :
[Applications) L
[Commands...] |w0rk
[Menus...]
[Design Code Tables...)
(Program Coding Assistant...) Soﬁware
[Instant Prototyping Assistant...)
[RAMP Tools ...]
[Virtual Clipboard) r

[Merge Tool ..)

[Save)

[Save As...)

(Save and Restart)
(Save and Exit)

is of today's discerning end-user

[Execute as Web Application...) [EARTH
[Web Consoles) ¥ Web Server 2

} (Assistance) p (ten miss the mark with their first
{ Tracing) by develu:upers u:uf many dlf'FEFE
2—"\-__,-'-1—'\.«-_.9_.-1..”&_,_‘__“,‘____",__, ...r'—"h'

12. Accept the default options and press OK.

i R L it e T L T Tl T e Y (WP

LV o e S e Y L, ¥ L ST W o SR o T PV A = WP P o WV Yo S

13. Select the iii HR application in the web Framework and then the Employees
business object. Bring the By Name filter topmost. Type in a partial surname
and click Search.

14. Your filter is now snapped into the Framework and is usable.

| £ http://10.4410.238/if_private/jivory/VF_SY001_SYSTEM_LASTSHIPPED |

_ x @ISecureSearch p] K=

s/ Favorites [88 - [@Ivory, lohn - Qutlook ... |@Vom Frarmework x |_| & v =3 @ ~ Page~ Safetyr Tools~ @' £ ”
File Edit View Actions Tools Help
ONew B A4 B &8 B O 8 8 @ M 8 | @i
[_Employees
’ On Tool Bar] ©| By Location | ® By Mame |4 By Start Date| Number Name -
& HR Demo Applicatio s G | AL1003 SMITHE Robert
= Bii HR Al1006 SMITHERS JACK
L LtGER PO AD193 SMITHSON FRED
E*) Employees
® 18 Programming Techn GO0 SMIHSONPALIE
® % Administration A1005 SMITHSXX PETER
. - B niia== S e - -
_Employee : Details (A1006 - SMITHERS JACK] 1]
[Details | p4 Address| 2 Skills|
M" i, o - P e, e, [4

Step 3. Create a WAM By Location Filter

In this step, you will create a real By Location filter that will locate Employees
by the department and section in which they work.

1. Start the Program Coding Assistant.

2. Select the Framework object navigation tree in the upper left of the Program
Coding Assistant form.

Drill down through the tree to find your By Location filter and select it.

Select the type Filter that searches using a file or view.
Click Next>>.

The Program Coding Assistant shows the PSLMST file as the physical file
and detects the Visual and Programmatic Identifiers required. You do not
need to change any of these values.

7. Click the Next>> button.

3.
4. Choose Web - using WAM components option as the platform.
5.
6.

On the screen:

a. Select the file view named PSLMST1 (Personnel by Department, Section,
Employee Number).

b. Select the search keys DEPTMENT and SECTION.

c. Deselect User must specify all Chosen Keys.

d. Deselect Allow Generic Searching.

e. Select Remember key values between filter executions.

8. Click the Generate Code button. The right hand side of the Program Coding
Assistant now shows the code that it has generated for your filter.

9. In the Generated Code window specify iiiWAM110 (where iii are your
initials) as the name of your filter and give it a description. If you are using an
unlicensed or trial version of Visual LANSA, you must always use the 3
characters DEM to replace iii.

10. Then click the Create button to create your filter.

11. Switch to the Visual LANSA editor. Compile the By Location WAM and
choose to generate XSL for all web routines.

12. Check in and compile the WAM to the server.

Step 4. Snap in the WAM By Location Filter
In this step, you will snap in your By Location filter.
1. In the Framework, close the Program Coding Assistant.

2. Select the iii HR application and double-click the Employees business
object.

3. On the resulting Business Object Properties dialog, select the Filters tab.

4. Select the By Location filter. You will replace the web mock up filter with
your real filter.

5. Click the Filter Snap-in Settings tab.
6. Click the WAM property radio button in the Web Browser group box.

7. As before use the Search button and the Find dialog to find your By Location
WAM filter and return the Identifier as the component name..

8. Use the (Framework) menu and select the option to save the Framework.

a. Accept the prompt to upload the Framework and wait while the upload
completes.

b. Use the (Framework) menu and select the option to Execute as Web
Application...

c. Take the default options and press OK.

(& Your Framework. - Windows Internet Explore

)] Tncatee 0 B

n o - 5 22
|| ¢ Favorites |55 - | @ Ivory, John - Outlook .. | @& Your Framework. X i~ v [dm v Pagev Safety~ Tools~ @~ &

File Edit “iew Actions Tools Help

& New. | A B & B O @ B @ p B O Eit

[Fim Tanl Bar J -
— 5| By B By -
% 12, HR Demo Application ®| By Locatlon” By Name " @ By Start Date

= i iii HR Dapsremmse Cala[AOM | | Al001 JONES BEN
W) Section Code || A1012 PAUL PATRICK

A1013 PATTISON GEORGE
A1015 WOODS BRADLEY
A1020 DOUGLAS ADAM PETER
A1021 MCCULLY DAVID

Number Mame

P

m

7 A1NALC DADTAIC A A AADWY
1 i " | 11 | »

9. Your filter is now snapped into the Framework and is usable.

10.Test your By Location filter:

a.Enter a department code (e.g. ADM) and search to populate the instance
list with employees for all sections in the department.

b.Enter a department code and section code (e.g. ADM and 01) to populate
the instance list with employees for section 01 only.

Summary

Important Observations
e With snap-in real filters, you have now created real functionality in your
application.
Tips & Techniques

e The source code for the filters used in the demonstration application can be
found in the repository in components named DM_FILT*.

What I Should Know
e What you need to do to create your own WAM filters.
e How you snap them in the Framework.
e How to use the Program Coding Assistant.

How to customize the way that instance lists are displayed.

LVF075WAM - Snap in a Real WAM Web Command Handler

Objective

e Learn how to replace prototype command handlers with real web handlers
that will perform actual processing when the Framework runs in web mode.

e To replace the Details prototype command handler with a real WAM
command handler.

p
/& Your Framework - Windows Internet Explorer

x @I Secure Search |p| L_':_G}-‘Hcﬂfeef 0_‘ -

{QFavorites |88 '|@Ivory,]ohn—0utlook... |@Vour Framewark b4 |_| & ¥ > 3 @J v Page~ Safety~ Tools~ @' &8

3

File Edit ‘fiew Actions Tools Help
ONew (& 4 B & T O @ A Q@ pd o1 B Ok

_Employees

[Nin Tanl Bar : T Number MName Department Salary S
T Do i w| By Locatlon” §i By Name" |% By Start Date| r

il | A1001 JONES BEN ADM 2,345.822

%5‘*’““"2”“] L Al012 PAUL PATRICK ADM 26,456.04
] »

g %m:chniques A1013 PATTISON GEORGE ADM 78,.977.04
A1015 WOODS BRADLEY ADM 313,000.04
A1020 DOUGLAS ADAM PETER ADM 121,500.04

A1021 MCCULLY DAVID ADM 87.000.?:} @

I

_Employee : Details (A1001 - JONES BEN]

[Details ”M Address| Skills

Employes Number
Employee Surname ONES
Employee Given Name(s}
Street Mo and Name 144 Frog
Suburb or dept
State and Country SW.

Post/ Zip Code 200
Home Phone Number 99 5268

i

(Messages | Ready 21st March 2011 15:15
17| [€ Internet | Protected Mode: Off a4 v E{Es% v

To achieve this objective, you will complete the following:
e Step 1. Create Your Real WAM Command Handler
e Step 2. Snap in Your WAM Command Handler

e 10. Test your By Location filter:

Before You Begin
You must have completed the preceding exercises.
You may wish to review:

e Command Handler

e Framework Programming

Step 1. Create Your Real WAM Command Handler

In this step, you will create a real WAM command handler for the Details

command.

1. Start the Program Coding Assistant.

. Select the iii HR application, then the Details command handler.

2
3. Select Web — using WAM components as the platform.
4

. Select Basic Command Handler as the type of code you want create.

| Gelect the object you want to generate code for

= % Business Object->_Employees -
Command Handler->Details
&3 Command Handler->New L4
[Command Handler-=Address
> Command Handler-:=5Skills
i Filter->By Location =

Refresh

~5elect the platform you want to generate for
[Native MS Windows
|| Web - using *WEBEVENT functions
[# Web - using WAM components
[Web -using AJAX style components

Select the type of code you want to generate

‘skeleton Command Handler

@ - ™

Basic Command Handler

What? This assistant produces the code for a basic
business object command handler. Depending upon
the options you use it may or may not require you
to manually add code to it later.

Business object command handlers execute a
command against one or more selected business
object instances (e.g. Display an Employee, show
the History of a Product, Print all selected Orders).

In a many Visual LANSA framework command
handlers are presented to the user like this (in the
area circled in red):

s byl dentiestion |08 byLscuben | 5 beSh |
Sppantyther ephmes e - eites fal o pksly
1 B Deranirain dophcson | Enplopes Sunare |1t

£ S

) Daputwarss

G Sactons

W00 FRED JORN ALSN BLOBES

AR A LR
4TEL FREDDVBATWH

»

m

5. Click the Next>> button.

6. On the next page specify PSLMST as The physical file that most closely

resembles this business object.

| Gelect the object you want to generate code for

= % Business Object->_Employees
[] Command Handler-=Details
(&) Command Handler-»New
[Command Handler-=Address

-
' Program Coding _

W

mu@hg‘

i

Basic Command Handler

Spedfy the identification protocol you have decided to use for this business object. If a physical file
resembles this business object specify its name and the assistant will attempt to automatically deduce a

basic identification protocol for you.

The physical file that most dosely
resembles this business object is:

(PSLMST Personnel)

Select the type of code you want to generate

CRUD Command Handler
Basic Command Handler
Skeleton Command Handler

. Command Handler-5kils SUAL IDENTIFIERS (for building VisualD 1 and VisualID2 values) 2=

€| Filter->By Location -

= Field Mame Type Description - Drop Selected

Refresh
1 |EMPNO ALPHA Employee Mumber e
~5elect the platform you want to generate for 2 |SURNAME ALPHA Employee Surname L

(| Native MS Windows \| 3 [GIVENAME ALPHA Employee Given Mame(s) |
(") Web - using *WEBEVENT functions T~
[# Web - using WAM components 5 2
|| Web -using AJAX style components Add fields from this Physical File Add Keys Add Al

Field Name

Type

Description

i .
/" PROGRAMMATIC IDENTIFIERS (for buiding AKey1,2,3,4,5 and NKey1,2,3,¥, 5 values)

B

\| 1 |EMPNO

ALPHA

Employee Mumber

Drop Selected

Drop All

The Program Coding Assistant detects the Visual and Programmatic

Identifiers required.

7. Click the Next>> button.

»

m

8. On the next page specify PSLMST in the field Add fields from this physical
file in the section Fields that you want to appear at the top of your command

handler.

9. Click the Add All button.

Gelect the object you want to generate code for

= % Business Object->_Employees
[] Command Handler-=Details
(&) Command Handler-»New
[Command Handler-=Address

,

Basic Command Handler

Spedfy fields that you want onto the top (header) area and/or bottom (list) area of your command
handler panel. Your choice to put fields onto the header and/or list areas will affect the way that code

assistant structures your command execution logic.

»

gelds that you want to appear on the top of your command |'1ar'|t:lle|'\\l

| Web - using AJAX style components

Select the type of code you want to generate

CRUD Command Handler
Basic Command Handler
Skeleton Command Handler

Command Handler-=5kills Ficld Name Type Description = Drop Selected
| Filter-=By Location =
= . 1 [EMPNO ALPHA Employes MNumber |= =7
Refresh 2 |SURNAME [ALPHA Employee Surname B i
—Select the platform you want to generate for 3 |GIVEMAME ALPHA Employee Given Name(s)
Native MS Windows 4 |ADDRESS1 ALPHA Street No and Name
\Web - using *WEBEVENT functions 5 |ADDRESS2 ALPHA Suburb or dept
W b ® WAM ts _ﬁ ADNDDESCT AlLDHA Ctata znd Cronbrs E
(=] Web - using companen

Add fields from this Physical Fle PSLMST

Add Keys

~Fields that you want to appear in a list at the bottom of your handler

Field Name Type Description Drop Selected
1
Drop All |
3
<< Back Mext = Cancel

10. On the next page select the Include Default Save Button and Logic and
click the Generate Code button.

The next page, Generated Code, displays the source code for your command

handler.

You now need to create the component that will contain the code:

a. Specify iiiWAM120 (where iii are your initials). Make the description of
the component Details command handler.

b. Click the Create button and wait until you see a message saying the
component has been created in the development environment.

Gelect the object you want to generate code for

= .!;‘3 Business Object->_Employees -
] Command Handler-=Details
&) Command Handler-»New
[Command Handler-=Address
Command Handler-=5kills

Refresh

i

| Filter-=By Location -

~5elect the platform you want to generate for
Native MS Windows
Web - using ®WEBEVENT functions
+| Web - using WAM components

Web - using AJAX style components

Select the type of code you want to generate
CRUD Command Handler

Generated Code

rdii R
Business Object :
= Command Handler

= Type : COMMAND HANDLER

= Platform : MS-WINDOWS (Web Access Module)
= Written By 1 JIVORY12

* Written On : 2Z1st MARCH 2011 at 14:43:59
= Ccopyright : (C) Copyright

* Framework I Your Framework.

Application
_Employees
1 Details

.

BEEGIN_COM ROLE(*EXTENDS #PRIM_WAM) Sessionstatus(None) Layoutweblet('vif_lay

Define_Com Class(#vi_swl00) NAME (#avFrameworkManager)

Define_Com Class(#vi_aw010) Name(#ThisHandler) Reference(*Dynamic)
Define_Com Class({#vf_1w002) Name(#avListManager) Reference(*Dynamic)
Define_Com Class(#Tp_in001) Name(#FastPart) Reference(*Dynamic)

* VL Framework map Tields. DO NOT CHANGE.

web_Map For (*both) Fields(({#VF_FRAMEI =priwvate) (#VF_FRAMEW =private) (#VF_F
= Map Tields used in this form.

Group_by Name(#WAM_HEAD) Fields(#EMPNO #SURNAME #GIVENAME #ADDRESS1 #ADDRES
web_Map For (*both) Fields((#UB_SAVE *noid) #EMPNO #SURNAME #GIVENAME #ADDRES

Basic Command Handler webroutine Name(UHandleEvent)

Skeleton Command Handler i = =

o aeate a WAM
Specify Name/Description

~
IMWAM120 | Employes Details Command Handler u ‘

¢ D,

Create

Copy Code to Clipboard

11. Switch to the Visual LANSA editor. The iiiWAM120 WAM is open in the
editor.

12. Locate the #avFrameworkManager.uWAMEvent_1 handler and add a
statement to save any changes made to the employee details. For example:

UPDATE FIELDS(#WAM_HEAD) IN_FILE(PSLMST)
WITH_KEY#EMPNO)

13. Locate the ulnitialize event routine. This routine is always called when the
command handler is invoked. Notice that it uses
#avListManager.GetCurrentInstance method to get the key value of the
currently selected item.

14. The uExecute event routine is only ever executed when the WAM is
executed (that is, when a filter is started or a command handler is executed).
When events occur inside an active WAM (for example a button click)
uExecute is not signalled, just the registered uWAMEvent_N event.

15. Save the WAM.
16. Check in your changes to the server:
a. Compile your WAM locally.
b. If it compiles ok, select it in the Repository tab.

c. Right-click the WAM to open the associated pop-up menu and choose the
Check in option.

d. In the Check in Options dialog select the option to generate XSL for all
webroutines.

e. Click OK to check the changes in.
f. Wait until the compiles have finished.

Step 2. Snap in Your WAM Command Handler

Once you have compiled your command handler and are ready to test it you
need to snap it into the Framework. To snap in your own command handler:

1. Display the Framework.

2. Select the iii HR application and display the properties of the Employees
object by double-clicking it.

3. On the resulting Properties dialog, click the Commands Enabled tab.

4. Select the Details command.

5. Click the WAM radio button in the Web Browser group box. Use the Search
button to open the Find dialog. Locate your Details command handler WAM.
Select it and click OK to return the Identifier name to the framework.

=]

fe]

> Business Object Properties - _Employees =
Idertification [cors | Visusl Styles | Fiters Flnssewﬂsnur Custom Properties SubTypes | Instance List f Relations

To enable and dsable commands drag them between these ksts
(] Detads (DETAILS)

ot Enabled | | Enabled Choose Command Type

¥ About Bl Address Business Object Command | Instance Command
@ Hocut Framemrk
Accounts T Sequenoe:

&l Detals Sidlls
COwn Window Size

VP B ot DL it B R 8 i

[

[calaularor Command Handier

£ calendar Windows

G cancel <1 Component MooMz3 =y

= Card o

S Mack U - RADPAD

4 Charges Wb Browssr

”Em"d“ WEBEVENT Mdden Euncton 3, Process: VF_PRO03

i Clains.

o Closs =
i Comemand Pane) WAM IIWAM12 A
o Cormect
O * A AL " .

B Contacts
4, Cortents
-

N Usiete
5 Delete profie

A Nebopr . Ackdrees o Menus Command Definitions

Close

6. Use the (Framework) menu and select the option Save the Framework.
Accept the prompt to upload the Framework and wait while the upload
completes.

7. Use the (Framework) menu and use the option to Execute as Web
Application... Select the default options and press OK.

8. Select the iii HR application in the web Framework and then the Employees
business object. Bring the By Name filter topmost. Type in a partial surname

and click Search. Now click on an employee.

9. Your command handler for Details is now snapped in the web Framework
and is usable.

' ™
/& Your Framework - Windows Internet Explorer Eléu

X Qe 0 [0 -

5 Favorites |88 '|@Ivory,]ohn—0utlook... |@Vour Framewark X| | & A > 3 @ > Page~v Safety > Tools» @' & ”
| File Edit ‘iew Actions Tools Help
G New (5] 4 &) B @ kA 51 B @Ext

_Employees

[TS i 0 Number Name
B & HR Demo Application @ By Locatlon” 5 By Name" |4 By Start Date|

B | | A1001 JONES BEN
S H A1012 PAUL PATRICK

LY Ernployees
& {8 Programming Techriques A1013 PATTISON GEORGE

® 5, Administration

-| Al015 WOODS BRADLEY v
LI < [»
_Employee : Details (A1012 - PAUL PATRICK)

[Details || Address

 Skills
Save

Employee Number
Employee Surname PAUL
Employee Given Name(s)
Street Mo and Name

Suburb or dept

wn

EUEE Z| [l [2 b
HHENEEEEEE
| N ERIE: -
1= 2|25 1
Ms Zlz||=
r||®
o] r|l=
i

2
m

State and Country
Post/ Zip Code

Home Phone Number

Business Phone Number

Department Code
-

1]]
[Messages Ready |Z21st March 2011/14:59
iFi| [€ Internet | Protected Mode: Off 45 v HES% v ;

10. Test your By Location filter:

a.Enter a department code (e.g. ADM) and search to populate the instance
list with employees for all sections in the department.

b.Enter a department code and section code (e.g. ADM and 01) to populate
the instance list with employees for section 01 only.

Summary
What I Should Know

e What you need to do to create your own WAM command handlers.
e How you snap them in the web Framework.

LVF080WAM - Add Instance List Columns in WAM Applications

Objective

e Learn how to add columns to an Instance List in a WAM Framework
application. In WAM browser applications, you can add columns to the
shipped instance list. Specify the additional columns in the Instance List
Settings tab sheet in the properties of the business object you are working
with.

p
/& Your Framework - Windows Internet Explorer
PR =

% dell p -

x @I Secure Search |p -

¢ Favorites |@|V:|@Ivory,]ohn—Outlook... |@Vour Framework X |_| - v [Z] d® v Pagev Safety~ Tools~ @~ &

3

File Edit ‘fiew Actions Tools Help
O New Bl o d B & Fy 1 @ & @ M S =B @ it

_Employees

[in Tanl Bar . :
T Do i w| By Locatlon” §i By Name" (4 By Start Date

= i Hr Department Code

| Number MName Department Salary -
il A1001 JONES BEN ADM 2,345.82 (=

Ernpl:

L rployeas)
1] @ Programming Techniques

® 5, Administration

Al1013 PATTISON GEORGE ADM 78,977.04
Al1015 WOODS BRADLEY ADM 313,000.04
A1020 DOUGLAS ADAM PETER ~ ADM 121,500.04
15.1!.021 MCCULLY DAVID ADM S?.ODO.F:} i

%5‘*’““"2”“] L Al012 PAUL PATRICK ADM 26,456.04
] »

I

_Employee : Details (A1001 - JONES BEN]

(] Details”M Address| " Skills

Employes Number
Employee Surname ONES
Employee Given Name(s}
Street Mo and Name 144 Frog

Suburb or dept

2 o|1E
-
= o
m | e
= | [l
m H

=

State and Country SW.

Post/ Zip Code 200

1
=1

Home Phone Number 99 5268

4]

(Messages | Ready 21st March 2011 15:15
[[€ Internet | Protected Mode: Off #y -~ HEs% v :

Note: in this exercise, you will modify the By location filter. Normally, you
should do the same modifications to the By name filter.

To achieve this objective, you will complete the following:
e Step 1. Add Columns to the Instance List

e Step 2. Change your filter

e Summary

Before You Begin

You must have completed the preceding exercises.

You may wish to review, in the Visual LANSA Framework User Guide:
e List Manager

¢ Adding Additional Columns to Instance Lists.

Step 1. Add Columns to the Instance List

In this step, you will configure your Employee business object to make the extra
columns visible in the instance list.

1. Start the Framework as a designer.

2. Open the properties of the Employees business object.
3. Display the Instance List / Relations tab sheet.

4. Two visual identifiers are already defined.

Add two additional columns:

Column Sequence Column Type Column Caption Decimals

30 ACOLUMNI1 Department
40 NCOLUMNI1 Salary 2
-} Business Object Properties - _Employees =
Identificaion Icons = Visual Styles Fitbers Filter Settings Commands Enabled = Command Display = Custom Properties = SubTypes
Double chick for default command Save and Restore Instance Lists
7 Allow multiple selections Enable Clear List Button
7 Allow Instance List to be sent to MS-Excel Fie Prefix to be used for MS-Excel Spreadsheet_ (EnG)
Eop im pored nane Enable Pop Up Panels
Instance List Tool Bar Location Top
Instance List Tool Bar Text Locaton <MNOnE >
Instance List Tool Bar Height or Width 24

Snap in Instance List Browser

Sequence Type Caption Width % (Total 100%) Decimals Edit Code Date/Time Output Format | UTC C
10 VISUALID] | Mumber 10 Defauilt SYSFMTE Local &

i R s e g s — Local

(33 ACOLUMN1 | Department 10 Default SYSFMTE A EE
40 NCOLUMN1 | Salary F] F! Default SYSFMTE J [local:

T i —

i Local -

o ACOLUMNG T E Derdy _Isyseums Lecal -

e Note:

e Column widths may be set as a percentage.
e FEnable Clear List Button option has no effect in your own filters.
e Numeric columns may have an edit code if needed.

e Date columns may have an output format and UTC setting.

Step 2. Change your filter

Next, you need to make changes to your filter to fill the extra fields in the
instance list with data.

1. Open the By Location filter iiiWAM110 which you created in LVF070WAM -
Snapping in a Real WAM Web Filter.

2. Make these changes to the code:

a. Change the GROUP_BY command to include the #DEPMENT and
#SALARY field:

Group_By Name(#XG_Ident) Fields(#EMPNO #SURNAME #GIVENAME
#DEPTMENT #SALARY)

b. Locate Select Fields(#XG_Ident) command and change the AddtoList
statement to set alpha column 1 and numeric column 1:

* Add instance details to the instance list

Invoke #avListManager.AddtoList Visualid1(#EMPNO) AKey1(#EMPNO)
Visualid2(#Surname) AColumn1(#Deptment) NColumn1(#Salary)

3. Compile your changed WAM.

4. If your Web server is on an IBM i, check in and compile your changed filter
to the IBM i .

5. Restart the Framework and test the result.

[E=REC™>)

p
@ Your Framework - Windows Internet Explorer

[@ GHR(;:m:(;:LIi?:i;n A& By Location” 5 By Name" [4 By Start Date| e Nme b ariiiEni Sala _ -
(=1 Statistical Reports Deparment Coce
2 Section Code || Al012 PAUL PATRICK ADM 26,456.04
Qo T = A1013 PATTISON GEORGE ADM 78.977.04
s A1015 WOODS BRADLEY ADM 313,000.04
A1020 DOUGLAS ADAM PETER ADM 121.500.04
7| Al021 MCCULLY DAVID ADM 87.000.04 ~
< (1]] » <] | ¢
ployee : Deta AT00 O B a|
(] Details”M Address || Skills
-
Employee Number
Employee Surname
Employee Given Name(s)
Street Mo and Name
Suburb o det
State and Country
Post/ Zip Cade
Home Phone Number o
A m L
Messages Ready | 21st March 2011 1515
Done [€D Internet | Protected Made: OFf 45 v HES% v

Summary
What You Should Know

e How to add columns to an instance list in a browser WAM Framework
application.

VLF for Windows Applications
Applies to Windows only.

After you have created and validated your prototype, you can develop it into a

functional Windows application in the following exercises:

e LVF070WIN - Snap in Real Windows Filters

e LVF075WIN - Snap in A Real Windows Command Handler
e LVFO80WIN - Add Instance List Columns in Windows Applications

The basic structure and presentation of the application will remain unchanged as
you continue to use the Framework. To complete the application, you simply
replace the prototype filters and command handlers with real Windows ones.

In these exercises, you will replace the employee filters with real filters and the

Details prototype command handler with a real command handler:

LS

file Edit View Help Windows (Framework) (Administration)

New Reports Web Site About Address Resources Organization Bockings Charges Spool Files New Window

& 1 Favorites ByName OBy StartDate | By Location

| ¥ . HR Demo Application

(=) i HR Application Employee Sumame Search
Employees B

| & Statistical Reporting
i {3 Programming Techniques
| @ 5, Administration

#x _Employee - Details [(ADD70-Brown Veronica)
[Detais | [Address Shalls

Employee humber ADOT)
Employes Surname Brown

Employee Given Name(s) VEronca
Street No and Name 12 Radweay Strest
Suburb or Town Baukham Hils
State and Country NSW

Post [2ip Code 2153

Home Phone Number {02) 9609 4627

Business Phone Number (03) 9647 2788

_Employees

[x]

=0 !

| Number | Full Name |
| ADDTD Brown Veronica

A00%0 Eloggs Fred

A1031 slake John

A1404 Slack Gikan

Start dat Save

Start Dab

DOEk@!? Messages Ready
ez

Local

ENG JIVORY 13 6/12/13 10:33 (g
_||

LVF070WIN - Snap in Real Windows Filters

Objective

e Learn how to replace prototype filters with real filters which will perform
the actual selection of the items for the Instance List.

43 -4

Eile Edit View Help Windows (Framework) (Administration)

O-HQBMEB &6 .

e Reports Web Site About Address Resources Organization Sookngs Charges Spool Fles

|| _Employees

. [x] [x] x|
7 Favorites | | |4rByName O ByStartDate . Bylocation =08
¥ & HRDemoApplication || ~~ —
= i W HR Application Employee Surname | Bearch| | | | Mumber | Fulliame
p- _Employees 5 AD193 Smithson Fred
Statmtcal Reporting - AOSDT Simpson Anne
@ {3 Programming Techniques | | * Clear List \\ AIDDZ Smythe John
) Administration ALDD3 Smithe Robert
AlDD4 Smithson Ruth
In this tutorial you will create two] AID0S Smiths Peter
functional filters and snap them e e

into the Framework x|

To achieve this objective, you will complete the following:
e Step 1. Create your Real By Name Filter

e Step 2. Snap in the By Name Filter

e Step 3. Filter Code

e Step 4. Create a Real By Location Filter

e Step 5. Snap in the By Location Filter

e Summary

Before You Begin
¢ You must have completed all the preceding exercises.

e You may wish to review in the Visual LANSA Frameworks Guide:
e Filters in Key Concepts

¢ Framework Programming

Step 1. Create your Real By Name Filter

In this step, you will create a real filter which searches the PSLMST file by
employee surname. You will also learn how to use the Program Coding
Assistant.

1. Click the Program Coding Assistant button in the By Name filter.

File Edit View Help Windows (Framework) (Adrministration)

©O QB & 08 A

Mew Feports Web Site About Address Resources Organization Bookings Charges Spool Files
_Employees
[x] [«]
A = =
‘.._;.’ Favorites 4p By Mame | ()| By StartDate | | By Location =
&, HR Demo Application | s I"') SI: e t" T i]
o ﬁ iii HR Application nter Employee Sta ate : . P
i Statistical Reporting [28TH uty 2003 5

@} Programming Technigues
%%, Administration

v
Mext 53 |

| (Frogram Coding Assistant " Images Palette Emulate Search '

The Program Coding Assistant window is displayed. It allows you to create
different types of components that can be plugged into your filters, instance lists
and command handlers. It is strongly recommended that you use the Program
Coding Assistant when you first start using the Framework.

Initially you will most likely use filters that generate a component that can be
executed (e.g. Filter that searches by all logical views of a file, Filter that
searches a file or view). As you progress you might only use a skeleton filter or
simply copy from one that is similar to one that you want to create.

2. If you are using a non-English system, click on Framework / Your
Framework in the top-left tree view. The Set LANSA code generation
preferences option appears at the bottom. Select this option and set your
preferences.

3. In the list on the top left, select the iii HR application and then the By Name
filter.

4. Underneath it, select Windows as the platform. Entries in this list will depend
on which platforms are enabled in your framework.

5. As the type of code you want to generate, select Filter that searches using a

file or a view.

FF Program Coding Assistan

i the object you want to generate code for
i

ication - =i HR.

= & Business Object->_Employees
[] Command Handler-=Details
@ Command Handler-=MNew
[Command Handler-=Address
T, Command Handler-=Skills
'&] Filter-»By Location

| Filter-=By Name

m

Select the type of code you want to generate

Filter that searches by all logical views of a file
RLID Filte

Search button event handling routine (code fragment)
Invoke #avlistManager. Addtolist (code fragment)

6. Click the Next>> button.

Filter that searches using a file or view

What? This assistant produces the code for a filter that

searches for information using a specified physical
file or logical view.

Filters are used to dynamically create business
object instance lists (e.g. lists of Customers, lists
of Products, lists of Orders, lists of Employees,
etc).

Typically Visual LANSA Framework filters are
presented like this example (in the area circled in
red):

........

Rlatn e DLARE
Enplopasy &TE4 FREDDVEATWH
ED Doparere:
D1
LENEA
Mool "
= s L i
irdres Plpponts il
Moy Ranody
ey = Vicka| 1 Tromi] 4 S| (5 ke | €1 rmaer 1 Do | O, A isblonnge s |
B[] Howwa Ao, Fre)
A= Bspess b =1
53 Homkons Emciopsa Sunams T R,
Emgiopen Grees Namajs| VEFOHICA
Enoet Ho wrel Mare 12 Rahany Stiast
PRI T e —
Next > Cancel

7. On the next page specify PSLMST as The physical file that most closely

resembles this business object.

(=] o]

i P Coding Assistant . o S
rogram ing Assistan - 4

Gelect the object you want to generate code for Filter that searches using a file or view
- — Spedify the identification protocol you have dedded to use for this business object. If a physical file
=l ﬂ Application->ii HR - resembles this business object specify its name and the assistant will attempt to automatically deduce a

= ‘:‘}, Business Object->_Employees basic identification protocal for you.

[] Command Handler-=Details =) o
— = The physical file that most dosely —
& Command Handler->New resembles this business object is: T Prsris

[} _
Command Handler--Address VISUAL IDENTIFIERS (for building VisualID 1 and VisualID2 values)
Command Handler->5kills

| Filter->By Location Field Name Type Description 5 Drop Selected
B | Filter-=By Mame = 1 |EMPNO ALPHA Employee Mumber
—— 2 [SURNAME ALPHA Employee Surname E Biorel
3 |GIVEMAME ALPHA Employee Given Name(s)
~Select the platform you want to generate for- -, 4
| MNative MS Windows c -

m

Web - using *WEBEVENT functions

Web - using WAM components Add fields from this Physical File Add Keys Add All

Web - using AJAX style components

~PROGRAMMATIC IDENTIFIERS (for buiding AKey1,2,3,4,5 and NKey1,2,3,4,5 values)

Select the type of code you want to generate

Filter that searches by all logical views of a file fiekibians e fesniog = Drop Selected
CRUD Filter 1 |[EMPNO ALPHA Employee Mumber L
Filter that searches using a file or view 2 T Drop Al
A skeleton filter
Search button event handling routine (code fragment) ¥
Invoke #avlistManager. Addtolist (code fragment)
Add fields from this Physical File Add Keys Add Al

~ADDITIOMAL COLUMNS (for building AColumn< > and MColumn <> values)

Field Mame | Type | Description Drop Selected
4| | | | i

4 (11 b
I <« Back] Cancel
J

The Program Coding Assistant guesses the Visual and Programmatic Identifiers
required:

e A Visual Identifier is the field or fields that a user would use to identify a
unique instance of the business object.

e A Programmatic Identifier is the field(s) that the program would use to
identify a unique instance of the business object. Typically these would be
the primary keys of the file or files that make up the data in the instance
list.

¢ The additional columns represent the additional columns in your instance
list that you may have added during the prototyping phase.

8. Click the Next>> button.

9. On the next page specify PSLMST2 as the view to be used for
filtering/searching operations. It is logical view of the PSLMST file keyed by
the SURNAME and GIVENAME fields.

e Note that you need an appropriate logical file for each filter that you want to
create. Before implementing all your filters, review your data model to
confirm that all the logical files exist. Doing so will speed up the process of
implementing your prototype.

10.Select the SURNAME field as the key of the view to be used for search

operations.

-

§ ' Program Coding Assistant -

of x|

. =

e

Gelect the object you want to generate code for

= 3 Application->iii HR

= .“Z‘_}, Business Object-»_Employees
[] Command Handler-=Details
&3} Command Handler-=MNew
Command Handler->Address

Command Handler- =Skills

| Filter-=By Location
B | Filter-=By Mame

Refresh

~Select the platform you want to generate for-
* | MNative MS Windows
Web - using *WEBEVENT functions
Web - using WAM components
Web - using AJAX style components

Select the type of code you want to generate

Filter that searches by all logical views of a file

CRUD Filter

Filter that searches using a file or view

A skeleton filter

Search button event handling routine (code fragment)
Invoke #avlistManager. Addtolist (code fragment)

Filter that searches using a file or view

Spedfy the physical file that will underpin the search made by this filter. Then select the required view,
keys and search options as they appear.

Spedfy the underlying physical file that

will be searched by this filter PSLMST

Personnel

Select the view to be used for filtering / searching
operations:

Select the key(s) of the selected view to be used for
search operations:

| Diaccrinti |
Employee Surnamg_)
Employee Given N...

| Ty
ALPHA
ALPHA

K blame

(¥ sUrnamE
GLVENAME

View Name i Description i
PSLMST Personnel
Pl:l BT Iu} L h,; L 5y

&=

b Cost

E
T

Personnel by Surname, Given Name)

User must specify all chosen keys
v Allow generic searching
Remember key values between filter executions

o Allow user to dear instance list

n 3

<< Back Cancel

-

L

11.Click the Next>> button.
12.Click the Next>> button.

Ignore the options on this page.

13.0n the next page click the Generate Code button.

The Generated Code page displays the source code for your filter. You now

need to create the component that will contain this code:

14.Specify iiiCOMZ21 as the

name of your real filter and By Name Filter as the

description. (iii are your initials If you are using an unlicensed or trial version
of Visual LANSA, you must always use the 3 characters DEM to replace iii).

15.Click the Create button to create the component in Visual LANSA.

[

.
i -
| Belect the object you want to generate code for
||

Program Coding Assistan

Generated Code

Eoae: = Type : BUSINESS QOBJECT FILTER —
= f Application->i HR “ ||+ P1atform . MS—WINDOWS (Visual LANSA) El
= ‘% Business Object-»_Employees |:| = Ancestor : VF_ACOO7
4 = Written By 1 JIVORY1Z2
[] Command Handler->Details = written on : 18th MARCH 2011 at 10:43:15
@ Command Handler-=New = Copyright ({C) Copyright
i = Framework : Your Framework
= Command Handler->Address | M g
= Business Object : _Employees
Refresh = Filter : By Name
ect the platform you want to generate for Function Options(*DIRECT)
[Native M5 Windows Eegin_Com Role(*EXTENDS #VF_AC007) Height(182) width({326) LayoutManager (#MA
_ | Web - using *WEBEVENT functions = simple Field, Group and Condition Definitions
(") Web -using WAM components lGroup_By Name(#XG_Keys) Fields(#SURNAME)
= B Group_By Name(#XG_Ident) Fields(#EMPNO #SURNAME #GIVENAME)
|_) Web -using AJAX style components [Def_List Name(#Save_Keys) Fields(#xXG_Keys) Type(=working) Entrys{i)
IDaf_cond Name(*Searchok) Cond(' (#SURNAME =ne *Blanks) ')

Select the type of code you want to generate
Filter that searches by all logical views of a file
CRUD Filter
Filter that searches using a file or view
A& skeleton filter
Search button event handling routine (code fragment)
Invoke #avlistManager.Addtolist (code fragment)

= Component definitions

< 1 | 3
To create a Reusable Part—
Specify Name/Description

=

)

111comz21

Q

Employee Filter by Namel

)

Create

Copy Code to Clipboard

After a brief delay the message Created in the development environment is

displayed.

Created in the development environmen

Employee Filter by Mame

Create

Copy Code to Clipboard

16.Switch to the Visual LANSA editor and compile the component.

Step 2. Snap in the By Name Filter

Now that you have compiled your new reusable component (filter) and are
ready to test it, you need to snap it into the Framework.

1. In the Framework, close the Program Coding Assistant.
2. Double-click the Employees business object to display its properties.
3. Display the Filter Snap-in Settings tab.

4. Click the Search > button to display the Find dialog.

Enter a Like Name value to find your filter and click Find.

Select your By Name filter and click OK to return the Identifier to the

framework. Component names in the framework must always use an
Identifier.

In this case, the Identifier generated is the same as the short Name given to this
filter.

Identification | Icons | Visual Stylef Filters } Filter Settings|| Commands Enabled | Command Display = Custom Properties | ©

| 44 By Name Identification | Icons { Filter Snap-in Settings I

@]y Start Date Stay Active Defadlt |~
| By Location

[ter Handler

(] Companent ICoM21)

[Mack Up - RAD-PAD __RADPAD__80D97210E6DC4AFEAESBFDT22591B0D%

VLT J— oo At e .

5. Close the Employees business object properties and display the By Name
filter. You can now see your real filter.

6. Type in a letter in the Surname field and click the Search button to verify that
your real filter has been snapped in the Framework and is usable.

5 _Employess
File Edit VNiew Help Windows (Framework) (Administration)

ONew | =W B0 AS OO |85 2 25| B soddries € ext | QuickFind .

_Employees

[«] - xl F
i Favorites | By Location | B ByMName | [iBy StartDate | = -"
+&. HR Demo Application ~ N
= n iii HR ¢ Employee Surname ' Mumber | Full Mame | Depar... |
& _Employees {\'_5 AO0193 SMITHSOM FRED
Al1002 SMYTHE JOHN

(=) Statistical Reports
Programming Technigues
% Administration

| Clear List A1003 SMITHE Robert
A1004 SMITHSON PAUL
A1005 SMITHS PETER
A1006 SMITHERS JACK
A1007 SNELL GEORGE
A1008 SNEDDON ALLAN
N\ALODZ SNASHALL DAMIAN

A — ' [T] 1

Step 3. Filter Code

Although you can create most filters simply by using the Program Coding
Assistant, you should understand how they are coded.

1. Switch to the Visual LANSA editor where the iiiCOM21 component is open.
2. Use the GoTo tab to select the uSelectData method routine.

Go To

Enter line number: 0 =R

Categories
© ¥ Warning
- |+ Definitions
- ¥ 1O Operations
4 |4 List Operations
+ Def_List Mame(#5ave_Keys) Fields(#XG_Keys) T...
+ Get_Entry Mumber(1) From_List(#5ave_Keys)
¥ Inz_List Named(#5ave_Keys)
4 | .;.: Routine
 Evtroutine - #5earch_Button.Click
- Evtroutine - #5URMNAME.Changed
|.;f: Mthroutine - ulnitialize
|.;f: Mthroutine - uSelectData

Review the generated source code in the Source tab to see how the filter is
coded to add data to the instance list:

The Framework is notified that an update is about to occur.

Invoke #avListManager.BeginListUpdate

Next, the list is cleared of any existing items.
Invoke #avListManager.ClearList

Next, data is selected. You can use one of the techniques you learnt in the
Visual LANSA Fundamentals exercises to do this. For example:

Select Fields(#XG_Ident) From_File(PSLMST?2) With_key(#XG_Keys)
Generic(*yes) Nbr_Keys(*Compute)

Next, the visual identifiers are set up:
Change #UF_VisID1 #EMPNO
Change #UF_VisID2 #SURNAME

Then the data is added to the list.

Invoke #avListManager.AddtoList Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)
AKey1(#EMPNO)

Visualld1 will be shown in column one of the instance list and Visualld2? will
be shown in column two of the instance list. Akeyl1 is the key that uniquely
identifies an employee (in this case the key field is alphanumeric).

Finally, the Framework is notified that the instance list update is complete.
Invoke #avListManager.EndListUpdate)

3. Click on Details tab in the editor to display the properties of your
component.

Details

NCOM21 - Employee By Mame Filter - _4-.
Properties | Events | Methods
B~ ?
” Ancestor #VF_ACODT ~
* BusyUpdates Wait

* BusyUpdatesOfParent False
* ComponentClassMame ICOM21
* ComponentPatternNarr ICOM21

* ComponentTag

* ComponentTypeMame IICOM21
* Cursor *MULL

* DefaultProperty

* DisableMoScroll False

* DisplayPosition 1

* DragStyle MNone

" EnableChildren False

You need to ensure that all properties are displayed:
4. From the File menu, select Options.

5. In the LANSA Settings dialog, select the General group, click on Details and

make sure the Show Advanced Features option is selected.

LANSA Settings
Cancel
V| Show Details
¥ Show Hint Apply
¥ Show In Key Sequence —
Show Internal Files
¥ Show ReadOnly Message Reset All
Show Short Mames
Y| Use Interactive Verification T

¥ Save Master Information

4 Assistant
¥| Auto Expand Parameters

4 Details
) ¥ Show Advanced Features

4 QOutline

C il
D?FI . V| Layout ltems
I"j:lf__z,' 4 Target Runtime
Style) Win32

Click OK to close the LANSA Settings dialog.

6. Notice that the Ancestor property of the component is #VF_AC007. All
filters inherit from this base class which provides a set of predefined
behavior.

Details
INCOM21 - Employee By Name Filter v || L
Properties | Events | Methods
- ?
C Ancestor #‘u‘F_ACﬂD?) ~ .
= Busylpdates Wait

* BusyUpdatesOfParent False
= ComponentClassMame ICOM21
* ComponentPatternMNarr 11COM21

5
Croaner=ntTae

7. Click the Outline tab in the editor to see what components you inherit from
the VF_ACO007 ancestor component.

Dutline

4 . NCOm21 - Employee By Name Filter | =
- ® avFilterisActive - Indicates this filter is activate
avFrarmeworkManager - V0L Framework Servic
avLISTMAMAGER - VL Business Obyj Instance L
|| avMiniFilterPanel - Container for other comm
' avSystemn - VL Framewaork Services Manager
= BODY_FLOW - Flow Layout Manager
|| BODY_PAMEL - Container for other compone
= BUTTOM_FLOW - Flow Layout Manager
|| BUTTOM_PAMEL - Container for other compc
&] FilterTabsheet - A sheet in a tab folder
FIM - ** Do not reference this ohject =
- ® FIM_AssignedObjectld - ** Do not reference tl
™ ipForcelnactive - ** Do not reference this ohje
LISTMAMAGER - YL Rusiness Obi Instance List

Vv WV 7

e

8. Right-click the avLISTMANAGER component and select the Features
option.

Qutline | Design Source Repository Details | Repository Help | Cross References
| -
4 NCOM21 - Employee By Name Filter = M—————————
@ avFilterisActive - Indicates this filter is activate i et
. avFrameworkManager - \I'I.L Framt\.flur_k Servic + Type _: BUSINESS OBJECT FILT:
< avLISTMANAGER - VL Business ObjIn] g ble Part: AVUSTMANAGER »| | Instance of VF_LMO02 »
avMiniFilterPanel - Container for cthe
+ aviystem = VL Framework Services Mg Delete Component ‘ [Features ’ |‘
+ = BODY_FLOW - Flow Layout Manager Copy Companent... SN DECENEER ZULZ At
BODY_PAMEL - Container for other ca Cut Combonent (C) Cepyright
» = BUTTOM_FLOW - Flow Layout Manag : : LVF Workshop
BUTTOM_PAMEL - Container for athes Goto Definition : 1ii HR Application
[FilterTabsheet - & sheet in a tab folder save Definition v | = _Employees
. FIM - ** Do not reference this object * : By Name
[® FIM_AssignedDbjectld - = Do not ref & | Events: VF_LM0DZ g
i . .thn—-ﬂ-“-tp,.. e OU not [!ferenc i nhi- " i S . S e e

9. Expand the methods of the component and examine them.

Features

A L Qb B~ ?
|
4 Reusable Part e
AVLISTMAMNAGER
4 Definition
4 (Class
4 0 VE_LMO02 YL Busine:
4 [& Extends
* g PRIM_DBIT Base obje
> f Events
4 F Z Methods

p E AddtoList

[AlterColumnHeadings
BeginListUpdate
CheckSaveError
ClearList
DisplaySorted
EndListUpdate

W Wl o e 1R

>

»

K

k3

5

RRK

If you double click on any of the methods, help text is displayed in the Help tab.
10. Close the iiiCOM21 component.

You may want to read Windows Filter and Command Handler Anatomy in
the in the Visual LANSA Framework Guide to see how these components are
structured.

Step 4. Create a Real By Location Filter

In this step you create a real By Location filter.

1. In the Framework start the Program Coding Assistant.

2. Drill down through the tree to find your By Location filter and select it.

3. Select Native MS Windows as the platform to generate for and the type as
Filter that searches using a file or view.

4. Press the Next>> button.

a. For your VISUAL IDENTIFIERS specify fields EMPNO, GIVENAME
and SURNAME

b. For your PROGRAMATIC IDENTIFIERS specify field EMPNO only.
c. No ADDITIONAL COLUMNS should be specified.

5. Click the Next>> button to move the Program Coding Assistant forward to
the next prompt. This prompt is asking you to select the file or view that the
filter should use for searching.

a. PSLMST should already be specified as the Underlying Physical File.

b. Select the view named PSLMST1 (Personnel by Department, Section,
Employee Number).

c. Select the search keys DEPTMENT and SECTION.
d. Deselect User must specify all Chosen Keys.
e. Deselect Allow Generic Searching.

f. Select Remember key values between filter executions.

. Select Allow user to clear instance list.

aa

6. A screen with additional options is displayed. Do not select any.
Click the Generate Code button. The right hand side of the Program Coding
Assistant now shows the code that it has generated for your filter.

7. In the Generated Code window, specify iiiCOM?22 as the name of your new
filter and give it a description.

Click the Create button to create your filter.
8. Switch to Visual LANSA and your filter should be open in the editor.

Compile the new component.

Step 5. Snap in the By Location Filter

In this step, you will snap in your By Location filter.

In the Framework close the Program Coding Assistant.

Select the iii HR application and double click the Employee business object.
On the resulting Business Object Properties dialog, select the Filters tab.
Select the By Location filter.

Select the Filter Snap-in Settings tab.

SR T o

Use the Search button to display the Find dialog. Find and select your By
Location filter and click OK to return the Identifier to the framework.

7. Your filter is now snapped into the Framework and is usable.
8.Close the business properties dialog and test the By Location filter.

a.Enter a full department code (e.g ADM) to populate the instance list with
employees for all sections in this department.

b.Enter a department code and section code (e.g ADM and 01) to populate
the instance list with employees for one section only.

Summary

Important Observations
e With snap-in real filters you have now created real functionality in your
application.
Tips & Techniques

e The source code for the filters used in the demonstration application can be
found in the repository in components named DF_*.

What I Should Know
e What you need to do to create your own filters.
e How you snap them in the Framework.
e How to use the Program Coding Assistant.

LVF075WIN - Snap in A Real Windows Command Handler

Objective

e Learn how to replace prototype command handlers with real handlers which
will perform actual processing.

e To replace the Details prototype command handler with a real command
handler.

e
&+ _Employee ; Details [(ADI07-Simpzon Anne)

[Detais | 5] Address | - Shills

Employes Number ADS07 Save
Employes Surname Smpson .
Employee Ghven Name(s) A

Street No and Name 33 A strest

Suburb or Town Anneville

State and Country NESW

Post | Zip Code 2145

Home Phone Mumber Qalrsda

Business Phome Number 090904

Start date (YYMMDD! F4/03/03

Termination Date (YYMMDD

Department Code

e In this tutorial you will create a real

command handler for the Details

Employes Salary 34,213.04
Start Date (DOMMYY) 030394 command and snap it into the
Termination Date (DOMMYY) 000000 framework

Monthly Salary 2,351.09

Messages Ready Local ENG JIVORYIS 5/12/13 16:40 .J|

To achieve this objective, you will complete the following:
e Step 1. Create your Real Command Handler
e Step 2. Snap in your Command Handler

e Summary

Before You Begin
¢ You must have completed all the preceding exercises.
e You may wish to review:
e Command in Key Concepts in the Visual LANSA Framework Guide.

Step 1. Create your Real Command Handler

In this step, you will create a real command handler for the Details command.

1. Start the Program Coding Assistant.

2. In the list on the top left of the Program Coding Assistant window, select the
iii HR application and then the Details command handler.

3. Select Native MS Windows as the platform and Basic Command Handler as

the type of code.

Gelect the object you want to generate code for

7 Application->Favorites
\% Application->HR Demo Application
% Application-=Administration
= i Apnlication-xii HR
= 52 Business Ohject-> Fmployee
Command Handler->New
[Command Handler->Address

Refresh

,

—Select the platform vou want to generate for
Web - using *WEBEVENT functions
Web - using WAM components

Web - using AJAX style components

Select the type of code you want to generate
CRUD Command Handler

EGatd Handler tatmaintains a list
(Jommett bl

s a CSV file
Single Instance uExecute Routine (code fragment)
Multiple Instance uExecute Routine {(code fragment)

Basic Command Handler

e B

e -

What? This assistant produces the code for a basic business

object command handler. Depending upon the options
you use it may or may not require you to manually add

code to it later.

Business object command handlers execute a command
against one or more selected business object instances
(e.qg. Display an Employee, show the History of a

Product, Print all selected Orders).

In a many Visual LANSA framework command handlers
are presented to the user like this (in the area circled in

red):

Be Eat W Actine Todks Hep {Woand) [Adenetrsien)
£ Mo | [Emad f0 Eo Dutelr % Tramie | 8 Cakoustn

Ermpiass,

T byl derniaton: |28 byLscaion | £ tresia|
Spaciythe nphoves wmans: - etes fully of il
Eniopss Sunare |1

[
o BADWH
clpen Cram Hamelz| [VERONICA

| v | [S | €] e) D | O, i tbanaciTioniy

=]

{ MNext == I Cancel

m

— —

The Basic Command Handler is the most commonly used assistant, as you
typically want to create a command handler that displays your data. You then
customize the page to meet your specifications.

The CRUD Command Handler is used in conjunction with the CRUD filter

and only if the commands defined for the business object are New, Details,

Copy, Delete.

The Command Handler that maintains a list allows you to generate code so
that you can use just one command handler to view the details of the instance
and a list of information about related data.

4. Click the Next>> button.

5. On the next page specify PSLMST as The physical file that most closely
resembles this business object.

| Gelect the object you want to generate code for

1.7 Application-»Favorites

Application->HR Demo Application

=% Application-=Administration

= i Apnlication-xii HR

= % Business Object->_Employees

[command Handler->Details
@ Command Handler-=New
[Command Handler->Address =

Refresh

lam,| »

,

~Select the platform you want to generate for
(®) Native MS Windows
() Web - using *WEBEVENT functions
() Web - using WAM components

| Web - using AJAX style components

Select the type of code you want to generate
CRUD Command Handler
Command Handler that maintains a list
Basic Command Handler
Send data to MS-Excel as a CSV file
Single Instance uExecute Routine (code fragment)
Multiple Instance uExecute Routine {(code fragment)

= [) |

Basic Command Handler

Spedify the identification protecol you have dedided to use for this business object. If a physical file
resembles this business object spedfy its name and the assistant will attempt to automatically deduce a
basic identification protocol for you.

The physical file that most dosely
resembles this business objectis:

PSLMST Personnel

Field Name Type Description Drop Selected
1 |EMPNO ALPHA Employee Mumber
Drop All
2 [SURMAME ALPHA Employee Surname
3 |GIVENAME ALPHA Employee Given Name(s)
\ 4
=

Add fields from this Physical File Add Keys Add All

~PROGRAMMATIC IDENTIFIERS (for building AKey1,2,3,4,5 and NKey1,2,3,4,5 values)

/" Field Name Type Description = Drop Selected
l 1 |EMPNO ALPHA Employee Mumber 2
\l = Drop All
3 =
Add fields from this Physical File Add Keys Add Al
~ADDITIONAL COLUMNS (for building AColumn < > and NCalumn< > values)
| Field Mame | Type | Description | Drop Selected

P | |

»

m

1| 111

<< Back

e —

The Program Coding Assistant guesses the Visual and Programmatic

Identifiers required.

6. Click the Next>> button.

7. On the next page specify PSLMST in the field Add fields from this physical
file in the section Fields that you want to appear at the top of your command

handler.

8. Click the Add All button.

Belect the object you want to generate code for
"7 application->Favorites [
\g‘_\ Application->HR Demo Application i
Application-=Administration EI

8 Application-»ii HR.
= % Business Object->_Employees

[command Handler->Details

Q Command Handler-=New

2]

Refresh

[Command Handler->Address E

~Select the platform you want to generate for

(®) Native MS Windows

() Web - using *WEBEVENT functions
Web - using WAM components

| Web - using AJAX style components

Select the type of code you want to generate
CRUD Command Handler
Command Handler that maintains a list
Basic Command Handler
Send data to MS-Excel as a CSV file
Single Instance uExecute Routine (code fragment)
Multiple Instance uExecute Routine {(code fragment)

,

Basic Command Handler

=T g“

Spedify fields that you want onto the top (header) area and/or bottom ({list or grid) area of your

command handler panel. Your choice to put fields onto the header and/or list areas will affect the way

that code assistant structures your command execution

~Fields that you want to appear on the top of your command handler

Tl

Field Name Type Description
1 |EMPNO ALPHA Employee Number
2 [SURMAME ALPHA Employee Surname
3 |GIVENAME ALPHA Employee Given Mame(s)
4 |ADDRESS1 ALPHA Street Mo and Name
5 |ADDRESS2 ALPHA Suburb or dept
A ANNDDESCT AlLDHA Chata and Cauntri

Add fields from this Physical FiI Add Keys Add Al

Drop Selected

Drop All

~Fields that you want to appear in a list at the bottom of your handler

S —

9. Click Next>>.

10.0On the next page click the Generate Code button.

The next page, Generated Code, displays the source code for your command
handler. You now need to create the component that will contain the code:

11.Specify iiiCOM?23 as the name of your component (where iii are your
initials) and Details Command Handler as the description.

12.Click the Create button to create the component.

Cancel

Field Name Type Description Drop Selected
L Drop Al
= rop
3
Add fields from this Physical File Add Keys Add Al
<< Back
_— = —

@ ™y

Gelect the object you want to generate code for Generated Code

1.7 Application->Favorites
[}

Type : COMMAND HANDLER i
Platform : MS-WINDOWS (Visual LANSA)
Ancestor : VF_ACO10

Application->HR Demo Application = c
i i = written By : JIVORY1Z
N Application->Administration [] = written on : 18th MARCH 2011 at 13:24:43 E
= i Apnlication-xii HR = Copyright i (c7 copyrignt
. e * Framework I Your Framework
= % Business Object: >_Emp|0yeeTs + Application e
D Command Handler->Details * Business Object : _Employees =

@ Command Handler-=Mew Command Handler : Details

B4 Command Handler-=Address [<]||Function options(=pIRECT)
py— = Eegin_Com RoTe(*EXTENDS #VF_ACOL0) Layoutmanager (#MAIN_LAYOUT) width(e00) Height(z:
efre =

B

* Simple Field and Group Definitions

~Select the platform you want to generate for
(®) Native MS Windows
Web - using =WEBEVENT functions * Component definitions

Web - using WAM components

Group_kyy Name(#XG_HEAD) FIELDS{#EMPND #SURNAME #GIVENAME #ADDRESS1 #ADDRESSZ #ADDRE

* Body and Button arrangement panels
| Web - using AJAX style components

Define_Com Class(#PRIM_PANL) Name(#EUTTON_PANEL) Displayposition{2) Height(182]) L&

Select the type of code you want to generate Define_Com Class(#PRIM_PANL) Name(#BODY_HEAD) Verticalscroll(True) Displaypositiom
CRUD Command Handler
Command Handler that maintains a list = Attachment and flow layout managers

Eaﬂg Sotr‘ralmb:nhilsl—_!;nler cav fil Define_Com Cl1ass(#PRIM_ATLM) Name(#MAIN_LAYQUT)

hina A Define_Com Class(#PRIM_ATLI) Name(#BUTTON_ATTACH) Attachment(Right) Manage(#BUTTO!
Single Instance uExecute Routine (code fragment) Define_Com Class(#PRIM_FWLM) Name(#EUTTON_FLOW) = Direction(TopToBottom) Flowopera
Multiple Instance uExecute Routine {(code fragment)

nafine ram FlassF400TU ATI TV Wamar40any ATTACLY AtFachmant fCantard Mananal 4000 L

Ll 1 | 3

~To create a Reusable Part:
Spedfy Name Description 111COM23 Details Command Handler

Created in the development environment

Create

Copy Code to Clipboard

13.After a few moments the Created in development environment message will
be displayed.

14.Switch to the Visual LANSA editor.
15.Display the Source code of your component.

16.Locate the SAVE_BUTTON.Click event and add a statement to save any
changes you make to the fields on the Details command handler.

Evtroutine Handling (#SAVE BUITCN.Click) Options(*NOCLEARMESSAGES *NOCLEARERRCRS)

* ¢your save logic goes here>
Update Field=z(*all) In File(pslmst)

Endroutine

—End_ Com

17.Locate the uExecute method. Notice that it calls the
#avListManager.GetCurrentInstance method to get the key value of the
currently selected item in the instance list and then uses this key value to
fetch the details.

ErMthroutine Name (uExecute) Options (*REDEFINE)
* The return code field and testing condition

Define Field(#Ret Code) Reffld (#5TD BOCOL)
Def Cond Name (¥RetOkay) Cond('(#Ret_CDde = 0K} *OR (#Ret_Code = TRUE} '}

*¥ Do any execution logic defined in the ancestor

Invoke Hethod(#Com_nncestor.uExecute]

* Get detail=s of the current instance

Invoke Method (#avListManager.GetCurrentInstance) Found (#Ret Code) Akevl (#EMPNO)

¥ Fetch information from the main file to £ill in the header field=s on the form
Fetch Fieldsi#KG_HEED] From File (PSLMST) With_Key[#EHPNO]

¥ P77 Addition logic may be required here 7?77

—Endroutine

18.Compile your component.

Step 2. Snap in your Command Handler

Now that you have compiled your new reusable component (that is, your
Command Handler) and are ready to test it you need to snap it into the

Framework.

1. Switch to the Framework.

2. Select the iii HR application and display the properties of the Employees
object by double-clicking it.

3. On the resulting properties dialog, click the Commands Enabled tab.
4. Select the Details command.

5. Select the Component option in the Windows group box.

Click the Search button and use the Find dialog to locate your command
handler. Select the component and click OK to select it and return the

Identifier to the framework. Components must be snapped into the framework
using Identifier not Long Name.

% Business Object Properties -

mﬁléj

6. Close Employee properties dialog.

Identification | Icons | Visual Styles | Filters | Filter Settings | Commands Enabled | Command Display | Custom Properties | SubTypes | Instance List / Relations
To enable and disable commands drag them between these
lists 1.0 [] Details (DETAILS)
|

Not Enabled [« [Enabled | (Choose Command Type

g} about Framework Address Business Object Command #| Instance Command

[l About... [Cpetais

||| = Accounts S New [Sequence: i

1 All Details Skills = s =

EI A = ~Command Options——————— —Own Window Siz - :
= Stay Active Default + Width Height
=) Amount e ; Windows

efault Comman Yes >

QQ Seproe Web Browser

£ Mssess ¥ Allow on Web

0 Assistant

A v Allow in Windows :

7.7 Assistant Exampl. .. ~Optional Arguments

7 Assistant Exampl... ' Show on Popup Menus Alpha Argument 1:

.7 Assistant Exampl... +/ Show on Instance List Tool Bar Alpha Argument 2:

&7 attach :
B Attachments Hide All Other Command Tabs Mumeric Argument 1:

I authorities Restricted Access Mumeric Argument 2:

Backup Execute as Hidden Command
Basic details

:' | Bookings ~Comi dler

[—ﬂ Calculator Bt
D Calendar «| Component |]]ICDM2H | Cg
@ Cancel
Ecard Mock Up - RAD-FAD __RADPAD__1DE87C477BD04DACIABDE4R9F 29 1F647.HTM
| Category

a. Select the iii HR application and the Employees business object.

b. Click the Search button to populate the instance list.

c. Select one item in the instance list to display the instance commands.

7. Your command handler for Details is now snapped into the Framework and
is usable.

File Edit View Help Windows

©O QML G088 EH #

Mew Reports WebSite About Address Resources Or 1 Bockings Charges Spool Files New Window

[(= . ; . .
& 17 Favorites |4 By Name | Q| By Start Date | | By Location |
@ HR Demo Application .
a il HR. Emplay Search
& Employees s
& Statistical Reporting
i {3} Programming Technique:

8. Try making a change to the details of an employee and saving it.

Summary

Tips & Techniques

To understand how the command handler interacts with the instance list,
read Filter and Command Handler Programming.

The source code for the command handlers used in the demonstration
application can be found in the repository in components named DF_*.

What I Should Know

What you need to do to create your own command handlers.
How you snap them in the Framework.

Filters and Command Handlers are just Reusable Parts which you can
customize. However, you can see that up to this point you can get a
functional application simply using the Program Coding Assistant without
very much coding

To use the Framework you need to understand VL. However, the level of
detail that you must understand is greatly reduced. Creating your own
framework to deliver this style of application requires detailed OO
knowledge and can take a long time to produce. The VLF allows you to
rapidly prototype and deploy an application with no OO knowledge required.

LVF080WIN - Add Instance List Columns in Windows
Applications

Objective
e Learn how to add columns to an Instance List in a Windows application.

Eile Edit Yiew Help Windows (Framework] (Administration)

n Quick Find ...

OLQBHE 8 BOSRA & A

Address Bookings Charges SpoolFles New Window

MNew Reports WebSite About
_Employees
I [x] []

Ix]

| @ A Favorites 4pByName (| By StartDate | .« By Location e
| # & HR Demo Application o

| =) i HR Application | ¥ Clear List | Bearch|

| B _Endoyees f :

| 4 Statistical Reporting |
| ® @ Programming Techniques
| & %, Administration | Section Code

In this tutorial you will learn
how to add columns to the
instance list of a Windows
Framework business object

Note: In this exercise, you will modify the By Location filter. Normally, you
would do the same modifications to the By Name filter and any other filters for

_Employees.
To achieve this objective, you will complete the following:

e Step 1. Add Columns to the Instance List
e Step 2. Change your filter
e Summary
Before You Begin
¢ You must have completed all the preceding exercises.

You may wish to review:
¢ Adding Additional Columns to Instance Lists .

Step 1. Add Columns to the Instance List

In this step, you will configure your Employee business object to make the extra
columns visible in the instance list.

1. Start the Framework as a designer.

2. Open the properties of the Employees business object.

3. Display the Instance List Settings tab.

4. Two visual identifiers are already defined. Add two additional columns:
Column Sequence Column Type Column Caption Decimals

30 ACOLUMNI1 Department
40 NCOLUMNI1 Salary 2

Identification | Icons | Visual Styles | Fiters | Filter Settings Commands Ensbled = Command Display = Custom Properties | SubTypes | Insta

Double dhck for default command Save and Restore Instance Lists
v Allow multiple selections Enable Clear List Button
| Alow Instance List o be sent to MS-Excel File Prefix to be used for MS-Excel Spreadsheet_
Pop up pandl name Enable Pop Up Panels
Instance List Tool Bar Location Top -
Instance List Tool Bar Text Location <HNone> -
Instance List Tool Bar Height or Width 24

Width % (Total 100% | Decmals | Eﬁ:a | Date/Time Outi

10 Default SYSFMTB

&0 Default SYSFMTE

10 Default SYSFMTE

20 2 Defavit SYSFMTE
Defavit SYSFMTS
Default SYSFMTS
Default SYSFMTE
Default SYSFMTE

This list contains instances of _Employees , and it may also contain instances of ...

Business Object | User Cbject Name [Type | Relatonship Type | &
B The essentialbusi... SA475843B30545209A4. .
IOl The CRUD busine... 34C924SFBACT462LAB9. .
% Selected, Cumrent.., BOSD IDS46E9F 46EETFA,..

—
s M- Ry W - =

Note:

You may set the initial width of each column as a percentage.

Numeric columns may be given an edit code.

Date columns may have a Date/Time format and UTC setting specified.

Step 2. Change your filter

You need to make some changes to your filter to fill the new instance list
columns with data.

1. Close the Framework

2. Open the source of the By Location filter (reusable part iiiCOM22) that you
created in LVFO70WIN - Snap in Real Windows Filters.

3. Make these changes to the code:

a. Change the GROUP_BY command to include the #DEPTMENT and
#SALARY fields:

Group_By Name(#XG_Ident) Fields(#EMPNO #GIVENAME #SURNAME
#DEPTMENT #SALARY)

b. Locate Select Fields(#XG_Ident) command and change the
AddtoList statement to set alpha column 1 and numeric column 1:

* Add instance details to the instance list
Invoke #avListManager.AddtoList Visualid1(#¥EMPNO) AKey1(#EMPNO)
Visualid2(#Surname) AColumn1(#Deptment) NColumn1(#Salary)

4. Compile the reusable part.

5. Start the Framework and test the result.

| [x] [«]
<k By Mame &3 By Start Date = | R‘_'_‘;]
A By Location
Numberl Full Name | Depart... | Salary |
V| Clear List | Search! | || A1001 Jones Shirley ADM 2345.82 -
: - | la1012 Paul Patrick ADM 26456.04
Department Code A1013 Pattinson George ADM 78977.04
ADM A1015 Woods Bradiey ADM 313000,04
Section Code A1020 Douglas Adam ADM 121500.04
o A1021 McCully Lisa ADM &7000.04 -
L]]

Summary
What You Should Know

e How to add columns to an instance list.
e How to modify a filter to maintain additional instance list columns.
e You would normally change all filters for the instance list.

Appendix A. Personnel Demonstration System
Personnel System

Physical Database Map of Personnel System

Sample Data in the Personnel Files

Personnel System

A business has a very simple Personnel System. The Personnel System allows

the company to identify the employees in the company based on the part of the
company where the employee works. The Personnel System lists details about
the employees and details about their specific skills.

The company has a simple organizational structure. It is divided into
departments such as Administration, Audit, Information Services, Legal, Travel,
etc. Each of these departments may have one or more sections such as
Accounting, Purchasing, Sales, etc. The Department table (DEPTAB) stores the
list of departments. The Section table (SECTAB) is used to store the sections
within each department.

The Personnel Master file (PSLMST) stores details about each employee. For
example, the employee's name, address, and telephone number are stored in this
master file. As each employee works in a section of a department, this
information is also stored in the Personnel Master file.

Each employee also has a list of skills. For example, an employee might have
Cobol, C and C++ programming skills or management and administration skills.
A Skills table (SKLTAB) is used to store the skill codes. A Personnel Skills file
(PSLSKL) stores the specific skills of each employee.

The Personal Event Log file (PSLEVENT) allows significant events and notes
to be recorded against an employee. It logically extends the PSLMST file. It is
an RDMLX file and therefore will only be available in an RDMLX partition.

The Personnel Time Sheet file (PSLTIMES) records employee time sheet
details. Details are recorded by week number (1 to 52) within a year for each
employee. It is designed mostly for use with L/Client and to show extensive
trigger power by performing relatively complex calculations and storing them in
the DBMS without the application needing to know what is happening. Note
that all the data is created and stored in the DBMS when information is created
or updated, which means that L/Client applications have read access to it
without needing to use the triggers. It is an RDMLX file and therefore will only
be available in an RDMLX partition. It contains examples of a number of
RDMLX field types including BLOB.

The Personnel System is a very simple system. It has 7 files as described above.
The physical database layout follows.

Historical Note: This system was created in 1987 as one of the very first
LANSA demonstration and training systems. The LANSA repository and

RDML functions created for this original system have been used on a System
38, AS/400, iSeries, System i i5/0S, IBM i Windows, Linux and other
platforms. This original system has been left virtually unchanged to show how
LANSA has been able to protect your investment in your application systems.
(PSLTIMES and PSLEVENT have been added)

Physical Database Map of Personnel System

(Including Virtual and Predetermined Join Fields)
Sample Data in the Personnel Files

PSLSEL PSIMST PSLTIMES
SELTAH EMPHO* <-—-- [EMPHO* ----> | EMPNO*
SKILCODE* —-——=Z SKILCODE* SURNAME EMPTSYELR*
SKILDESC DATEAC QR GIVENAME EMPTSWEEE*
GRADE ADDRESS L EMPTSTASE*
COMMENT ADDRESSZ EMPTSWATE
ADDRESS 3 EMPTSWEND
datedcy POSTCODE EMPTSTSAT
gradedes PHONEHME EMPTST SN
PHONEET S EMPTSTMON
STARTDTER EMPTSTTUE
DEPTAB SECTAB TEEMDATER EMPTSTUWED
DEPTMENT* ----» | DEPTMENT* --—-> | DEPTMENT EMPTSTTHI
DEPTDESC SECTION* ----» | 3ECTION EMPTSTFRI
SECDESC SALARY EMPTSVIAT
SECADDEL EMPTSV AN
SECADDEZ mnthsal EMPTSVMON
SECADDES startdte EMPTSVTUIE
SECPCODE termdate EMPTSVIED
SECPHEUS EMPTSVTHI
EMPTSVFRI
PSLEVEHT EMPTSTOTH
EMPHNO* EMPTSTOTV
EMPEVTNTIM* EMPTSMAXH
EMPEVTLAT EMPTSMARD
EMPEVITIM EMPTSMINH
EMPEVTTYP EMPTSMIND
EMPEVTNTE
EMPEVTURD
EMPEVTUDT
EMPEVTDOC
pifriven
pifsurnam
expertdsc
*file kevya expertaug

Sample Data in the Personnel Files

Following is a list of some of the sample data in the Personnel File which may
be contained in the files. As developers can edit these files, the data may not be
the same on your system. When the Personnel System is installed the files are
populated with the sample data. This can be re-run at any time by executing the
Function PSLINI in Process PSLUTL.:

DEPTAB: SECTAB: PSLMST:
DEPTMENT DEPTMENT/SECTION EMPNO

ADM ADM 01 17 employees
ADM 02 A1002
A1005
A1014
A8888
ADM 03
ADM 04
ADM 05
AUD AUD 01
AUD 02
AUD 03
FLT FLT 01
FLT 02
FLT 03
INF INF 01
INF 02
INF 03

	Visual LANSA Tutorials
	About the Tutorials
	Tips for using the Exercises
	How many Developers can use the Exercises?
	What Partition should I use?
	Using Long Names
	Tutorial Installation
	Your Feedback

	User Interface Tutorials
	VUI001 � Starting LANSA
	Step 1. Starting the LANSA Development Environment
	Step 2. Online Documentation
	Step 3. F1 Context Sensitive Help
	Summary

	VUI002 � LANSA Editor Parts
	Step 1. Editor Parts Overview
	Step 2. Repository, Favorite, Outline, Details Tabs
	Step 3. Docking/Undocking a Tab Sheet
	Step 4. Reset Editor Settings
	Summary

	VUI003 � Repository Tab
	Step 1. Repository Tab Contents
	Step 2. Turn Alphabetical Grouping Off/On
	Step 3. Arranging Columns in Repository
	Step 4. Object Properties
	Step 5. Accessing a Field
	Summary

	VUI004 - Details, Outline, Favorites Tab
	Step 1. Copy the ADDRESS1 Field
	Step 2. Details Tab
	Step 3. View Errors
	Step 4. Open Another Object in Editor
	Step 5. Outline Tab
	Step 6. Favorites Tab
	Summary

	LANSA Editor Tutorials
	VED010 - Format Source Code
	Step 1. Create a Copy of Form XDXSettingsDialog
	Step 2. Create a Process and a Function
	Step 3. Turn on Autohide
	Step 4. Change Formatting Options
	Step 5. Editor Source Settings
	Step 6. Word Wrap
	Step 7. Submit a Compile
	Step 8. Display Error Log
	Step 9. Display Feature Help Text
	Summary

	VED020 - Edit Source Code
	Step 1. Cursor Position
	Step 2. Position the Current Line
	Step 3. Comment Lines
	Step 4. Copy and Paste
	Step 5. Find Text
	Step 6. Use the Toolbar Find Button
	Step 7. Use the Find Dialog
	Step 8. Find and Replace
	Step 9. Search Text in Several Objects
	Summary

	VED030 - Auto Complete and Command Assistant
	Step 1. Display the Command Assistant
	Step 2. Use the Command Assistant
	Step 3. Use Auto Complete Prompter
	Step 4. Use the Online Help Command
	Summary

	VED040 - Execute Applications
	Step 1. Determine Compile Status
	Step 2. Execute a Form
	Step 3. Review the XDXExamples Application
	Step 4. Execute the Application from the Execution History List
	Step 5. Execute the Form from the Windows Start Menu
	Summary

	Repository Development Tutorials
	REP000 - What is the LANSA Repository?
	REP001 - Create Fields
	Step 1. Prepare Your System
	Step 2. Copy Fields
	Step 3. Manually Create Fields
	Step 4. Reference Fields
	Step 5. Delete a field
	Step 6. Create a Dynamic List for Your Fields
	Step 7. Create and Execute Test Form
	Step 8. Change your field definitions
	Summary

	REP002 - Field Visualizations
	Step 1. Review iiiStartDate Field Visualization
	Step 2. Review iiiEmployNotes Field Visualization
	Step 3. Review iiiSalary Field Visualization
	Step 4. View the Test Form
	Step 5. Execute the Form
	Step 6. Adjust the Form
	Summary

	REP003 - Validation Rules
	Step 1. Review Existing Rule for iiiDeptCode Field
	Step 2. Adopt Rule from Reference Field
	Step 3. Create a Rule for the iiiSalary Field
	Summary

	REP004 - System and Multilingual Variables
	Step 1. Review an Existing System Variable
	Step 2. Create a System Variable
	Step 3. Assign the System Variable as a Default Value
	Step 4. Test System Variable using form iiiTestFields
	Step 5. Review the System Variable (Optional)
	Step 6. Review an Existing Multilingual Variable (Optional)
	Summary

	REP005 - Creating Files
	Step 1. Create File Definition
	Step 2. Compile the File
	Step 3. Create Department Maintenance Form
	Step 4. Execute Department Maintenance Form
	Step 5. Create the Employee File
	Step 6. Create Employee Maintenance Form
	Step 7. Execute Employee Maintenance Form
	Step 8. Database Attributes
	Summary

	REP006 - Logical Views
	Step 1. Add a Logical View to Department File
	Step 2. Create Department Test Form
	Step 3. Execute Search by Description Form
	Step 4. Add a Logical View to Employee File
	Summary

	REP007 - File Validation Rules/Triggers
	Step 1. Add a Rule to file iiiDepartments
	Step 2. Recompile the File and Test Department Rules
	Step 3. Referential Integrity Rule in iiiEmployees File
	Step 4. Add Rules to iiiSalary Field
	Step 5. Recompile the File and Test Employee Rules
	Step 6. Complete Referential Integrity
	Step 7. Know about File Level Triggers
	Summary

	REP008 - Virtual Fields
	Step 1. Add Virtual Fields to Employee File
	Step 2. Calculation Virtual Field
	Step 3. Concatenation Virtual Field
	Step 4. Code Fragment Virtual Fields
	Step 5. Create Test Form
	Summary

	REP009 - Access Routes and Predetermined Join Fields
	Step 1. Understand the Database Relationship
	Step 2. Create Access Route from Department File
	Step 3. Create Access Route from Employee File
	Step 4. Create Fields in the LANSA Repository
	Step 5. Add File Lookup PJF to Employee File
	Step 6. Test New PJF in Employee File
	Step 7. Add PJFs to Department File
	Step 8. Modify Test Form
	Summary

	REP011 - Repository Summary
	Step 1. Create the File Definition
	Step 2. Modify Field Definitions
	Step 3. Add Rules to the File
	Step 4. Create and Execute a Test Form
	Step 5. Add a Virtual Field to Your File
	Step 6. Create an Access Route and a Predetermined Join Field (PJF)
	Step 7. Recreate Employee Holidays Application
	Step 8. Create a Logical View and Test
	Summary

	REP012 - Check In Objects (Optional)
	Step 1. Confirm Connection to LANSA Master System (Optional)
	Step 2. Check in the Department File and Fields
	Step 3. Verify Objects Exist on the Server
	Step 4. Execute Your Application Client Server
	Summary

	Programming RDML with Visual LANSA Forms
	FRM015 - Getting Started with Forms Programming
	Step 1. Editor Settings
	Step 2. Create a Component
	Step 3. Add Components to the Form
	Step 4. Change the Properties of a Component
	Step 5. Add Remaining Push Buttons and Set their Properties
	Step 6. Add a Field to the Form and Set its Properties
	Step 7. Create Event Routines for the Push Buttons
	Step 8. Add Logic to the Hello Button Click Event
	Step 9. Add Logic to the Other Click Events
	Step 10. Compile the Form
	Step 11. Execute the Form
	Step 12. Align and Size Components
	Step 13. Component Definitions
	Step 14. Understanding Events
	Step 15. Using Component Properties
	Step 16. Understanding Component Methods
	Summary

	FRM025 - Insert a Database Record
	Step 1. Create form iiiAddEmploy � Add Employee
	Step 2. Add Fields to the Form
	Step 3. Add Push Buttons and Click Event Logic
	Step 4. Using a Busy Cursor
	Summary

	FRM035 - Maintain a Simple Database Table
	Step 1. Create a Department Maintenance Form
	Step 2. Fetch Existing Data from a File
	Step 3. Insert Data to a File
	Step 4. Add Program Level Validations
	Step 5. Update Data in a File
	Step 6. Delete Data from the File
	Step 7. Update and Delete Last Record Read
	Summary
	FRM035 � Appendix

	FRM045 - Using LANSA Debug
	Step 1. Execute Applications with Debug
	Step 2. Debug Features
	Step 3. Set Breakpoints
	Step 4. Display/Change Variables
	Step 5. Set Breakpoint Properties
	Step 6. Set a Break on Value
	Summary

	FRM055 - List Component Basics
	Step 1. Create a Simple List
	Step 2. Select Data to Fill the List
	Step 3. Create Multiple Lists
	Step 4. Fill the Lists
	Step 5. Make List View Columns Sortable
	Step 6. Change Appearance of the Form
	Step 7. Read Sorted List Items (optional)
	Step 8. Sort Department and Sections Combo Boxes (optional)
	Summary

	FRM065 - Using List Components
	Step 1. Create Form � Using Lists
	Step 2. Make Radio Buttons Show and Hide Fields
	Step 3. Add Search Logic
	Step 4. Add Tab Folder and Tab Sheets to the Form
	Step 5. Populate the Tab Sheets
	Summary

	FRM075 - Using a Working List
	Step 1. Select Multiple Entries
	Step 2. Use a SELECTLIST Command
	Step 3. Build a Working List
	Step 4. Create a CSV File
	Summary

	FRM085 - Update from a Grid
	Step 1. Create Field iiiMONTH and Visual Picklist
	Step 2. Create Form � Update from List
	Step 3. Add Search Logic
	Step 4. Display Employee Details and Skills
	Step 5. Update Employee Details
	Step 6. Update Employee Skills
	Step 7. Add Drop Down for Skill Code (optional)
	Summary

	FRM095 - Calling a Function
	Step 1. Create the Called Function
	Step 2. Create Salary Review Form
	Step 3. Test Salary Review Application
	Summary
	Appendix A. FRM095
	Appendix B. FRM095

	FRM105 - Define a Trigger Function
	Step 1. Create a Trigger Function
	Step 2. Define a Salary Trigger for Employee File (PSLMST)
	Step 3. Create an Employee Salary Change Form
	Step 4. Test your Employee Salary Trigger
	Summary
	Appendix A. FRM105

	FRM115 - Writing Reports
	Step 1. Create a Simple List Style Report Using a Template
	Step 2. Call a Function
	Step 3. Enable For Full RDMLX
	Step 4. Manually Create a Reporting Function
	Step 5. Add a Header and Footer
	Step 6. Keep Statistics and Print
	Step 7. Add a Grand Total Line
	Summary

	FRM125 - Check Out / In to IBM i
	Step 1. Create a LANSA for iSeries Object
	Step 2. Refresh Objects in Visual LANSA
	Step 3. Check Out Object
	Step 4. Check In Changes
	Step 5. Delete from Repository
	Summary

	Visual LANSA Framework (VLF) Introduction
	Common Exercises
	LVF040 - Execute Framework Application
	Step 1. Execute the Visual LANSA Framework
	Step 2. Execute an Application
	Step 3. Using Filters to Find an Employee
	Step 4. Using Commands and Command Handlers
	Summary

	LVF060 - Create a Prototype
	Step 1. Understand the Requirements
	Step 2. Create a Prototype Application � iii HR
	Step 3. Define Filters and Command Handlers
	Summary

	VLF for Web Application Module (WAM) Applications
	LVF070WAM - Snap in a Real WAM Web Filter
	Step 1. Create Your Real WAM Filter
	Step 2. Snap In the WAM By Name Filter
	Step 3. Create a WAM By Location Filter
	Step 4. Snap in the WAM By Location Filter
	Summary

	LVF075WAM - Snap in a Real WAM Web Command Handler
	Step 1. Create Your Real WAM Command Handler
	Step 2. Snap in Your WAM Command Handler
	Summary

	LVF080WAM - Add Instance List Columns in WAM Applications
	Step 1. Add Columns to the Instance List
	Step 2. Change your filter
	Summary

	VLF for Windows Applications
	LVF070WIN - Snap in Real Windows Filters
	Step 1. Create your Real By Name Filter
	Step 2. Snap in the By Name Filter
	Step 3. Filter Code
	Step 4. Create a Real By Location Filter
	Step 5. Snap in the By Location Filter
	Summary

	LVF075WIN - Snap in A Real Windows Command Handler
	Step 1. Create your Real Command Handler
	Step 2. Snap in your Command Handler
	Summary

	LVF080WIN - Add Instance List Columns in Windows Applications
	Step 1. Add Columns to the Instance List
	Step 2. Change your filter
	Summary

	Appendix A. Personnel Demonstration System
	Personnel System
	Physical Database Map of Personnel System
	Sample Data in the Personnel Files

