Deploying LANSA Applications
on Linux

About this Guide

Deploy LANSA Applications to a Linux Server
Execute Applications with a Linux Server
Troubleshooting

Edition Date March 19, 2014
© LANSA

its:LANSA023.CHM::/lansa/unixins0_000.htm
its:LANSA023.CHM::/lansa/unixins4_000.htm
its:LANSA023.CHM::/lansa/unixins5_000.htm
its:LANSA023.CHM::/lansa/unixins7_000.htm

About this Guide

e This guide provides instructions for planning and deploying LANSA
applications on a Linux Server. It does not include instructions or guidance
in designing or creating applications with LANSA.

e The contents are written for technical support staff and LANSA developers.

e We recommend the use of the Korn shell (ksh) or Bourne shell (sh). All
examples of Linux commands in this guide use the Korn shell.

It is assumed:

e Readers have a solid understanding of both the Linux operating system and
LANSA.

e The application to be ported to Linux already works with a Windows Server.

e An experienced System Administrator (root user) of the Linux system is
available to carry out system administration tasks and advise the reader on
Linux issues.

e An ORACLE Database Administrator (DBA) is available to create and
configure databases, create user ids and advise the reader on ORACLE
issues.

Also see
Additional Information

Additional Information

For more details about LANSA on Linux, refer to these guides:
e [nstalling LANSA on Linux

e [ANSA Communications Setup

e LANSA Technical Reference

For the latest product information, refer to the LANSA product web site at
www.lansa.com/support

http://www.lansa.com/support

1. Deploy LANSA Applications to a Linux Server

Review What is LANSA on Linux? in the Installing LANSA on Linux Guide.
Review the 1.1 Directory Structure for LANSA under Linux.

As a starting point go through the steps in the 1.2 Before You Begin
Checklist.

It is strongly recommended that you get the DEM partition working in your
Linux environment before you go ahead with deploying your own
application to Linux. 1.3 Test with the Verification and Sample Applications
describes what this involves. RDML code has been provided that can be
used with your own application or the DEM partition to ensure that you have
everything set up properly. Refer to 1.5 Verification Application Code
(LAWEX functions).

Finally, 1.4 Deliver the Server Portion of an Application to Linux describes
how to export your application using the Deliver To feature in the LANSA
Editor.

Further Information

1.1 Directory Structure for LANSA under Linux

1.2 Before You Begin Checklist

1.3 Test with the Verification and Sample Applications

1.4 Deliver the Server Portion of an Application to Linux
1.5 Verification Application Code (LAWEX functions)

T 1. Deploy LANSA Applications to a Linux Server

its:lansa046.chm::/lansa/insunix1_005.htm

1.1 Directory Structure for LANSA under Linux

The installation of LANSA will create a set of directories under
$LANSAXROOT.

For each partition imported into LANSA, a new directory called x_ppp (where
ppp is the 3 character partition identifier) will also be created.

The main directory structure is shown below:

LaMSA Root Directory SLAMNSAZROOT

¥_lansza

—® SOUrce
— hin
— |0g
— tmp
o — OUMCE

— hin
— SOLMCE

e I[N

— hin

The following directories are used to store information common to all partitions:

$LANSAXROOT/x_lansa
$LANSAXROOT/x_lansa/source
$LANSAXROOT/x_lansa/bin

For example, libx_bif.so (the BIF shared library) resides in x_lansa/bin because
it is composed of common routines shared by all LANSA generated
applications.

Some of the types of objects stored in the source and bin sub-directories are:

Directory File Description
Type
source .C C Code

.h C Code header

stg

unx
Xqi
.xqd
xqf
.ctd
.dat
Axt
utx
log

bin .SO

None

.sh

log x_err.log
Iroute.*

tmp X_trace*

.tmp

C Code header - storage definitions
Compiler/linker make file

DBID=*NONE useable read only index file
DBID=*NONE useable read only data file
DBID=*NONE useable read only flat file
Common table definitions

Saved data for reload after table creation
UTF-8 user-defined text strings

C header for user-defined text strings

Log from Deliver To processing

Executable shared library (equivalent to a Windows
DLL)

Executable object (equivalent to a Windows .EXE)

Shell script (equivalent to a Windows .CMD or .BAT
file)

Fatal error log
Comms log and trace files.

Trace files for LANSA runtime, when ITRO=Y is
specified.

Temporary files

T 1. Deploy LANSA Applications to a Linux Server

1.2 Before You Begin Checklist

u Step Comments / Further Actions

1. Create a Minimum Supported A formal Minimum Supported
Configuration document (MSC) Configuration (MSC) Document
defining the minimum configuration will:

your solution will viably support. This e [nform decisions about the
includes what servers, client platforms gyerall solution cost

and web browsers your application
will need. Consider:

e Hardware requirements

e Software requirements

e Supported screen resolutions
¢ Networking capabilities

e Maximum Data volumes.

2. Install and configure the latest
version of LANSA on the Linux
Server.

3. Request and install the
appropriate licenses on the Linux
Server.

4. Follow the instructions in the

LANSA Communications Setup Guide
to configure communications for the

client and server machines

5. Verify the clients can
communicate with the Server via
TCP/IP.

e Establish the environment
required to test the deployment
of the solution or any
patch/hotfix made to it.

¢ Raise management's awareness
of the risk of implementing a
"sub-MSC" solution.

Note - Any other application
running on this "end-user"
environment must also be
considered when sizing your
machine.

SuperServer clients must not have
a newer version of LANSA
installed than the version of
LANSA on the Linux Server.

Refer to the LANSA website for
information.

The Client and Server can only
communicate via TCP/IP.

On the client, use the PING
command specifying the name or
IP address of the server system.

http://www.lansa.com.au/support/tips/t0578.htm#GenLicUnix

Wait until the PING command
gives a good return code indicating
it could successfully communicate
with the server system.

6. Before you deploy your own Refer to 1.3 Test with the
application, test your configuration of Verification and Sample
the clients and LANSA on Linux with Applications for details.
the DEM partition and sample code.

T 1. Deploy LANSA Applications to a Linux Server

1.3 Test with the Verification and Sample Applications

We strongly recommend that you import the sample DEM partition and get it
working with the L4AWEX functions (SuperServer) before attempting to use
your own application. This will achieve 2 objectives:

1. It will allow any application connection or translation problems that you
encounter to be assessed within an environment that both you and LANSA
support staff have available.

2. It will provide you with a basic example of deploying the server portion of
an application to Linux, again in an environment that both you and LANSA
support staff have available.

Create the sample L4AWEX functions, provided in 1.5 Verification Application
Code (L4AWEX functions) on the process menu L4AWEXAMI.

Follow the instructions in 1.4 Deliver the Server Portion of an Application to
Linux to deploy DEM to Linux.

Once you have everything ready, you should attempt to execute the verification
process LAWEXAMI.

Follow the instructions in Executing Applications with a Linux Server to test
with the verification process LAWEXAMI1. The function L4AWEXO01 should be
used as the starting point.

Once you have successfully tested the DEM partition, go ahead and deploy and
test your own application.

If you plan to support non-English languages, you should also do
some basic testing in an additional language, to ensure there are no
codepage / locale issues. As the demo only ships with English, French,
and Japanese text, you may need to enter some language-specific text,
or use your own simple application code to test.

T 1. Deploy LANSA Applications to a Linux Server

its:Lansa023.chm::/lansa/unixins5_000.htm

1.4 Deliver the Server Portion of an Application to Linux

These instructions assume that the tasks listed in 1.2 Before You Begin
Checklist have been carried out.

Determine which system and application objects need to exist on the server.
This means all files (and optionally, their data), and any reusable parts, Web
objects, functions and their processes that will execute on the Server. These
include trigger functions, system variable evaluation functions, RPCs (functions
that will be called by CALL_SERVER_FUNCTION or LceLANSACall or
LceSubmit), batch jobs that will be called directly from the command-line, and
so on. Client-only objects, such as components and functions containing
REQUEST, DISPLAY, or POP-UP commands do not need to be deployed to the
Server.

Follow the instructions in Other Remote System Monitors in the Visual LANSA
Administrator's Guide to define the Linux deployment system, initialize the
partition, and deliver your objects to the server.

its:lansa011.chm::/lansa/l4wadm03_0010.htm

1.5 Verification Application Code (L4WEX functions)

Refer to 1.3 Test with the Verification and Sample Applications for details on
using the following code examples.

Client functions contain POP_UP and REQUEST commands so must
be created as RDML, not RDMLX.

1.5.1 LAWEXO01 Example of On Top Connect/Disconnect
1.5.2 LAWEXO02 Exchange Example: Client Portion

1.5.3 LAWEXS52 Exchange Example: Server Portion
1.5.4 LAWEXO03 List Example: Client Portion

1.5.5 LAWEXG53 List Example: Server Portion

T 1. Deploy LANSA Applications to a Linux Server

1.5.1 L4AWEX01 Example of On Top Connect/Disconnect

Refer to 1.3 Test with the Verification and Sample Applications for details on

using the following example.
FUNCTION OPTIONS(*DIRECT);
DEFINE FIELD(#L4W_AS400) TYPE(*CHAR) LENGTH(1) LABEL('AS/4(
DEFINE FIELD(#L4W_OTHER) TYPE(*CHAR) LENGTH(1) LABEL('Othe
DEFINE FIELD(#L4W_ANAM) TYPE(*CHAR) LENGTH(20) LABEL('Ser
DEFINE FIELD(#L4W_ONAM) TYPE(*CHAR) LENGTH(20) LABEL('Ser
DEFINE FIELD(#L4W_LOCK) TYPE(*CHAR) LENGTH(1) LABEL('Diver
DEFINE FIELD(#L4W_SHOWM) TYPE(*CHAR) LENGTH(1) LABEL('Sta
DEFINE FIELD(#L4W_COMC) TYPE(*CHAR) LENGTH(1) LABEL('Comu
DEFINE FIELD(#L4W_DBCS) TYPE(*CHAR) LENGTH(1) LABEL('DBCS
DEFINE FIELD#L4W_CTST) TYPE(*CHAR) LENGTH(10) DESC('C-
>S Table') DEFAULT(ANSEBC1140);
DEFINE FIELD(#L4W_STCT) TYPE(*CHAR) LENGTH(10) DESC('S-
>C Table') DEFAULT(EBC1140ANS);
DEFINE FIELD(#L4W_EXEP) TYPE(*CHAR) LENGTH(2) LABEL('Exec |
DEFINE FIELD(#L4W_RETC) TYPE(*CHAR) LENGTH(2) LABEL('Returr
DEFINE FIELD(#L4W_EARG) TYPE(*CHAR) LENGTH(255) LABEL('X_
DEFINE FIELD(#L4W_EAR1) TYPE(*CHAR) LENGTH(60) LABEL('Over
DEFINE FIELD(#L4W_EAR2) TYPE(*CHAR) LENGTH(60) LABEL('Over
DEFINE FIELD(#L4W_EAR3) TYPE(*CHAR) LENGTH(60) LABEL('Over
DEFINE FIELD(#L4W_EAR4) TYPE(*CHAR) LENGTH(60) LABEL('Over
DEFINE FIELD(#L4W_USER) TYPE(*CHAR) LENGTH(10) LABEL('Serve
DEFINE FIELD(#L4W_PSWD) TYPE(*CHAR) LENGTH(10) LABEL('Serv
DEFINE FIELD(#L4W_PROC) TYPE(*CHAR) LENGTH(10) LABEL('Call
DEFINE FIELD(#L4W_FUNC) TYPE(*CHAR) LENGTH(7) LABEL('Call F
DEFINE FIELD(#L4W_BLKS) TYPE(*DEC) LENGTH(7) DECIMALS(0) L
DEFINE FIELD(#L4W_TRC2) TYPE(*CHAR) LENGTH(1) LABEL('Trace |
DEFINE FIELD(#L4W_TRC4) TYPE(*CHAR) LENGTH(1) LABEL('Trace |
DEFINE FIELD(#L4W_TST1) TYPE(*CHAR) LENGTH(1) LABEL('Perforr
DEFINE FIELD(#L4W_TST2) TYPE(*CHAR) LENGTH(1) LABEL('Perforr
DEFINE FIELD(#L4W_APND) TYPE(*CHAR) LENGTH(1) DEFAULT(A);
DEF_LIST NAME(#SAVE1L) FIELDS(#L4W_AS400 #L4AW_OTHER #L4W_
DEF_LIST NAME(#SAVE20UT) FIELDS(#L4AW_APND #L4W_EARG) TY

DEF_LIST NAME(#SAVE2IN) FIELDS(#L4W_EARG) TYPE(*WORKING
DEF_COND NAME(*L4W_OTHER) COND(‘#L4W_OTHER = "1");
DEF_COND NAME(*L4W_AS400) COND(‘#L4W_AS400 ="1");
DEF_COND NAME(*OKAY) COND(‘#L4W_RETC = OK');

DEF_COND NAME(*NOTOKAY) COND('#L4W_RETC *NE OK');
DEF_COND NAME(*TRACEL2) COND('#L4W_TRC2 ="1"");
DEF_COND NAME(*TRACEL4) COND('#L4W_TRC4 ="1");
DEF_COND NAME(*TEST1) COND(‘#L4W_TST1 = "1"");

DEF_COND NAME(*TEST2) COND(‘#L4W_TST2 ="1");

DEF_COND NAME(*NOTEST) COND('(#L4W_TST1 *NE "1") *AND (#L4
EXECUTE SUBROUTINE(LOAD_DFT);

POP_UP FIELDS((#L4W_AS400 *IN) (#L4W_OTHER *IN)) IDENTIFY (*L
EXECUTE SUBROUTINE(SAVE_DFT);

BEGIN_LOOP;

IF COND(*L4W_OTHER);

REQUEST FIELDS(#L4W_ONAM #L4W_LOCK #L4W_SHOWM #L4W_T1
AS400 Server Details ");

EXECUTE SUBROUTINE(BLD_ARGS);

USE BUILTIN(DEFINE_ANY_SERVER) WITH_ARGS(SERVER #L4W_OI
#LAW_ARG #L4W_LOCK #L4W_SHOWM) TO_GET(#L4W_RETC);
ELSE;

REQUEST FIELDS(#L4W_ANAM #L4W_LOCK #L4W_SHOWM #L4W_C
USE BUILTIN(DEFINE_OS_400_SERVER) WITH_ARGS(SERVER #L4W_
ENDIF;

EXECUTE SUBROUTINE(SAVE_DFT);

IF COND(*OKAY);

USE BUILTIN(CONNECT_SERVER) WITH_ARGS(SERVER #L4W_PSWI
IF COND(*OKAY);

USE BUILTIN(CONNECT_FILE) WITH_ARGS("*' SERVER #L4W_BLKS)
IF COND(*TEST1);

CALL PROCESS(*DIRECT) FUNCTION(L4AWEXO02) EXIT_USED(*NEXT
ENDIF;

IF COND(*TEST2);

CALL PROCESS(*DIRECT) FUNCTION(L4AWEXO03) EXIT_USED(*NEXT
ENDIF;

IF COND(*NOTEST);

CALL PROCESS(#L4W_PROC) FUNCTION(#L4W_FUNC) EXIT_USED(*
ENDIF;

USE BUILTIN(DISCONNECT_FILE) WITH_ARGS("*' SERVER);

USE BUILTIN(DISCONNECT_SERVER) WITH_ARGS(SERVER) TO_GFE1
IF COND(*OKAY);

MESSAGE MSGTXT('Disconnection from server completed normally");
ELSE;

MESSAGE MSGTXT('Error detected when disconnecting from server');
ENDIF;

MENU;

ENDIF;

ENDIF;

END_LOOP;

SUBROUTINE NAME(BLD_ARGSYS);

DEFINE FIELD(#L4W_ARG) TYPE(*CHAR) LENGTH(256);

CHANGE FIELD(#L4W_ARG) TO(#L4W_EARG);

IF COND(*TRACEL4);

USE BUILTIN(BCONCAT) WITH_ARGS(#L4W_ARG 'ITRO=Y") TO_GET
USE BUILTIN(BCONCAT) WITH_ARGS(#L4W_ARG 'ITRL=4") TO_GET(
ELSE;

IF COND(*TRACEL?2);

USE BUILTIN(BCONCAT) WITH_ARGS(#L4W_ARG 'ITRO=Y") TO_GET
USE BUILTIN(BCONCAT) WITH_ARGS(#L4W_ARG 'ITRL=2") TO_GET(
ENDIF;

ENDIF;

ENDROUTINE;

SUBROUTINE NAME(LOAD_DFT);

CLR_LIST NAMED#SAVE1);

CLR_LIST NAMED#SAVEZ2IN);

USE BUILTIN(TRANSFORM_FILE) WITH_ARGS(#SAVE1 *FUNCTION "
GET_ENTRY NUMBER(1) FROM_LIST(#SAVE1);

GET_ENTRY NUMBER(1) FROM_LIST(#SAVE2IN);

ENDROUTINE;

FddAckkkk* COMMENT(Routine);

SUBROUTINE NAME(SAVE_DFT);

CLR_LIST NAMED(#SAVE1);

CLR_LIST NAMED#SAVE20UT);

ADD_ENTRY TO_LIST(#SAVE1);

ADD_ENTRY TO_LIST(#SAVE20UT);

USE BUILTIN(TRANSFORM_LIST) WITH_ARGS(#SAVE1 *FUNCTION "
ENDROUTINE;

T 1.5 Verification Application Code (LAWEX functions)

1.5.2 LAWEX02 Exchange Example: Client Portion

Refer to 1.3 Test with the Verification and Sample Applications for details on
using the following code example.
FUNCTION OPTIONS(*DIRECT);
DEFINE FIELD(#L4W_TEST) TYPE(*DEC) LENGTH(7) DECIMALS(0) L
DEFINE FIELD(#L4W_COUNT) TYPE(*DEC) LENGTH(7) DECIMALS(0]
DEFINE FIELD(#L4W_FC1) TYPE(*DEC) LENGTH(15) DECIMALS(0);
DEFINE FIELD(#L4W_FC2) TYPE(*DEC) LENGTH(15) DECIMALS(0);
DEFINE FIELD(#L4W_RSL1) TYPE(*DEC) LENGTH(15) DECIMALS(5);
DEFINE FIELD(#L4W_RSL2) TYPE(*DEC) LENGTH(15) DECIMALS(5);
DEFINE FIELD(#L4W_CMP1) TYPE(*DEC) LENGTH(15) DECIMALS(5);
DEFINE FIELD(#L4W_CMP2) TYPE(*DEC) LENGTH(15) DECIMALS(5);
DEFINE FIELD(#L4W_RETC) TYPE(*CHAR) LENGTH(2);
BEGIN_LOOP;
POP_UP FIELDS((#L4W_TEST *IN)) DESIGN(*DOWN) PANEL_TITL('Pe
BEGINCHECK;
RANGECHECK FIELD(#L4W_TEST) RANGE((1 100000)) MSGTXT('Nurr
ENDCHECK;
CHANGE FIELD(#L4W_FC1) TO(1);
CHANGE FIELD(#L4W_FC2) TO(#L4W_TEST);
BEGIN_LOOP USING(#L4W_COUNT) TO#L4W_TEST);
CHANGE FIELD(#L4W_RSL1 #L4W_RSL2) TO(*NULL);
EXCHANGE FIELDS(#L4W_FC1 #L4W_FC2);
USE BUILTIN(CALL_SERVER_FUNCTION) WITH_ARGS(SERVER L4W
CHANGE FIELD(#L4W_CMP1) TO(‘#L4W_FC1 * #L4W_FC2");
CHANGE FIELD(#L4W_CMP2) TO(‘#L4W_FC1 / #L4W_FC2");
LEAVE IF('#L4W_RETC *NE OK');
LEAVE IF('#L4W_CMP1 *NE #L4W_RSL1");
LEAVE IF('#L4W_CMP2 *NE #L4W_RSL2");
CHANGE FIELD(#L4W_FC1) TO(‘#L4W_FC1 + 1');
CHANGE FIELD#L4W_FC2) TO('#L4W_FC2 - 1");
END_LOOP;
IF COND('#L4W_COUNT *LT #L4AW_TEST");
MESSAGE MSGTXT('Test ***FAILED**");

ELSE;

MESSAGE MSGTXT("Test completed normally");
ENDIF;

END_LOOQOP;

Sk e sk e sk e sk ke sk ok .
’

T 1. Deploy LANSA Applications to a Linux Server

1.5.3 LAWEXS52 Exchange Example: Server Portion

Refer to 1.3 Test with the Verification and Sample Applications for details on
using the following code example.
FUNCTION OPTIONS(*HEAVYUSAGE *DIRECT);
DEFINE FIELD#L4W_FC1) TYPE(*DEC) LENGTH(15) DECIMALS(0);
DEFINE FIELD#L4W_FC2) TYPE(*DEC) LENGTH(15) DECIMALS(0);
DEFINE FIELD(#L4W_RSL1) TYPE(*DEC) LENGTH(15) DECIMALS(5);
DEFINE FIELD(#L4W_RSL2) TYPE(*DEC) LENGTH(15) DECIMALS(5);
CHANGE FIELD(#L4W_RSL1) TO('#L4AW_FC1 * #L4AW_FC2");
CHANGE FIELD(#L4W_RSL2) TO('#LAW_FC1 / #LAW_FC2');
EXCHANGE FIELDS(#L4W_RSL1 #L4W_RSL2);
RETURN;

Sk e sk e sk e sk ke sk ok .
’

T 1. Deploy LANSA Applications to a Linux Server

1.5.4 LAWEXO03 List Example: Client Portion

Refer to 1.3 Test with the Verification and Sample Applications for details on
using the following code example.
FUNCTION OPTIONS(*DIRECT);
DEFINE FIELD(#L4W_TEST) TYPE(*DEC) LENGTH(7) DECIMALS(0) L
DEFINE FIELD(#L4W_LIST) TYPE(*DEC) LENGTH(7) DECIMALS(0) L/
DEFINE FIELD(#L4W_COUNT) TYPE(*DEC) LENGTH(7) DECIMALS(0]
DEFINE FIELD#L4W_LISTC) TYPE(*DEC) LENGTH(7) DECIMALS(0);
DEFINE FIELD(#L4W_FC1) TYPE(*DEC) LENGTH(15) DECIMALS(0);
DEFINE FIELD#L4W_FC2) TYPE(*DEC) LENGTH(15) DECIMALS(0);
DEFINE FIELD(#L4W_RSL1) TYPE(*DEC) LENGTH(15) DECIMALS(5);
DEFINE FIELD(#L4W_RSL2) TYPE(*DEC) LENGTH(15) DECIMALS(5);
DEFINE FIELD(#L4W_CMP1) TYPE(*DEC) LENGTH(15) DECIMALS(5);
DEFINE FIELD(#L4W_CMP2) TYPE(*DEC) LENGTH(15) DECIMALS(5);
DEFINE FIELD(#L4W_RETC) TYPE(*CHAR) LENGTH(2);
DEF_LIST NAME#L4W_LIST1) FIELDS(#L4W_FC1 #L4W_FC2 #L4W_F
DEF_LIST NAME#L4W_LIST2) FIELDS(#L4W_FC2 #L4AW_FC1 #L4W_F
DEF_LIST NAME#L4W_LIST3) FIELDS(#L4W_RSL1 #L4W_FC2 #L4W_
DEF_LIST NAME#L4W_LIST4) FIELDS(#L4W_FC1 #L4W_RSL2 #L4W_
DEF_LIST NAME#L4W_LISTS) FIELDS(#L4W_RSL1 #L4W_RSL2 #L4W
BEGIN_LOOP;
POP_UP FIELDS((#L4W_TEST *IN) (4L4W_LIST *IN)) DESIGN(*DOWN
BEGINCHECK;
RANGECHECK FIELD(#L4W_TEST) RANGE((1 100000)) MSGTXT('Nurr
RANGECHECK FIELD(#L4W_LIST) RANGE((1 100)) MSGTXT(Entrys in
ENDCHECK;

Sk e sk e sk e sk ke sk ok .
’

Sk e sk e sk e sk ke sk ok o
’

BEGIN_LOOP USING(#L4W_COUNT) TO(#L4W_TEST);
CLR_LIST NAMED(#L4W_LIST1);
CLR_LIST NAMED(#L4W_LIST?2);
CLR_LIST NAMED(#L4W_LIST3);
CLR_LIST NAMED(#L4W_LIST4);
CLR_LIST NAMED(#L4W_LIST5);

Sk e sk e sk e sk ke sk ok o
’

CHANGE FIELD(#L4W_RSL1 #L4W_RSL2) TO(0);

CHANGE FIELD(#L4W_FC1) TO(1);

CHANGE FIELD(#L4W_FC2) TO#L4W_LIST);

BEGIN_LOOP TO(#L4W_LIST);

ADD_ENTRY TO_LIST(#L4W_LIST1);

ADD_ENTRY TO_LIST(#L4W_LIST?);

ADD_ENTRY TO_LIST(#L4W_LIST3);

ADD_ENTRY TO_LIST(#L4W_LIST4);

ADD_ENTRY TO_LIST(#L4W_LIST5);

CHANGE FIELD(#L4W_FC1) TO(‘#L4W_FC1 + 1");

CHANGE FIELD(#L4W_FC2) TO(‘#L4W_FC2 - 1");

END_LOOP;

USE BUILTIN(CALL_SERVER_FUNCTION) WITH_ARGS(SERVER L4W
LEAVE IF(‘#L4W_RETC *NE OK');

CHANGE FIELD(#L4W_LISTC) TO(0);

SELECTLIST NAMED#L4W_LIST1);

CHANGE FIELD(#L4W_CMP1) TO(#L4W_FC1 * #L4W_FC2");

CHANGE FIELD(#L4W_CMP2) TO(#L4W_FC1 / #L4W_FC2');

LEAVE IF((#L4W_CMP1 *NE #L4W_RSL1) *OR (#L4W_CMP2 *NE #L4\
CHANGE FIELD(#L4W_LISTC) TO(‘#L4W_LISTC + 17);

ENDSELECT;

LEAVE IF(‘#L4W_LISTC *NE #L4W_LIST");

CHANGE FIELD(#L4W_LISTC) TO(0);

SELECTLIST NAMED#L4W_LIST2);

CHANGE FIELD(#L4W_CMP1) TO(#L4W_FC1 * #L4W_FC2");

CHANGE FIELD(#L4W_CMP2) TO(#L4W_FC1 / #L4W_FC2');

LEAVE IF((#L4W_CMP1 *NE #L4W_RSL1) *OR (#L4W_CMP2 *NE #L4\
CHANGE FIELD(#L4W_LISTC) TO(‘#L4W_LISTC + 17);

ENDSELECT;

LEAVE IF(‘#L4W_LISTC *NE #L4W_LIST");

CHANGE FIELD(#L4W_LISTC) TO(0);

SELECTLIST NAMED(#L4W_LIST3);

CHANGE FIELD(#L4W_CMP1) TO(#L4W_FC1 * #L4W_FC2");

CHANGE FIELD(#L4W_CMP2) TO(#L4W_FC1 / #L4W_FC2');

LEAVE IF((#L4W_CMP1 *NE #L4W_RSL1) *OR (#L4W_CMP2 *NE #L4\
CHANGE FIELD(#L4W_LISTC) TO(‘#L4W_LISTC + 17);

ENDSELECT;

LEAVE IF(‘#L4W_LISTC *NE #L4W_LIST");

CHANGE FIELD(#L4W_LISTC) TO(0);

SELECTLIST NAMED#L4W_LIST4);

CHANGE FIELD(#L4W_CMP1) TO(‘#L4W_FC1 * #L4W_FC2");
CHANGE FIELD(#L4W_CMP2) TO(‘#L4W_FC1 / #L4W_FC2");
LEAVE IF('(#L4W_CMP1 *NE #L4W_RSL1) *OR (#L4W_CMP2 *NE #L4\
CHANGE FIELD(#L4W_LISTC) TO(‘#L4W_LISTC + 1");
ENDSELECT;

LEAVE IF('#L4W_LISTC *NE #L4W_LIST");

CHANGE FIELD(#L4W_LISTC) TO(0);

SELECTLIST NAMED#L4W_LIST5);

CHANGE FIELD(#L4W_CMP1) TO(‘#L4W_FC1 * #L4W_FC2");
CHANGE FIELD(#L4W_CMP2) TO(‘#L4W_FC1 / #L4W_FC2");
LEAVE IF('(#L4W_CMP1 *NE #L4W_RSL1) *OR (#L4W_CMP2 *NE #L4\
CHANGE FIELD(#L4W_LISTC) TO(‘#L4W_LISTC + 1");
ENDSELECT;

LEAVE IF('#L4W_LISTC *NE #L4W_LIST");

END_LOOP;

IF COND('#L4AW_COUNT *LT #L4W_TEST");

MESSAGE MSGTXT('Test ***FAILED**");

ELSE;

MESSAGE MSGTXT("Test completed normally");

ENDIF;

END_LOOQOP;

Sk e sk e sk e sk ke sk ok e
’

T 1. Deploy LANSA Applications to a Linux Server

1.5.5 LAWEXS53 List Example: Server Portion

Refer to 1.3 Test with the Verification and Sample Applications for details on
using the following code example.
FUNCTION OPTIONS(*HEAVYUSAGE *DIRECT) RCV_LIST(#L4W_LIS
DEFINE FIELD(#L4W_FC1) TYPE(*DEC) LENGTH(15) DECIMALS(0);
DEFINE FIELD(#L4W_FC2) TYPE(*DEC) LENGTH(15) DECIMALS(0);
DEFINE FIELD(#L4W_RSL1) TYPE(*DEC) LENGTH(15) DECIMALS(5);
DEFINE FIELD(#L4W_RSL2) TYPE(*DEC) LENGTH(15) DECIMALS(5);
DEF_LIST NAME#L4W_LIST1) FIELDS(#L4W_FC1 #L4W_FC2 #L4W_F
DEF_LIST NAME#L4W_LIST2) FIELDS(#L4W_FC2 #L4W_FC1 #L4W_F
DEF_LIST NAME#L4W_LIST3) FIELDS(#L4W_RSL1 #L4W_FC2 #L4W_
DEF_LIST NAME#L4W_LIST4) FIELDS(#L4W_FC1 #L4W_RSL2 #L4W_
DEF_LIST NAME#L4W_LISTS) FIELDS(#L4W_RSL1 #L4W_RSL2 #L4W
SELECTLIST NAMED#L4W_LIST1);
CHANGE FIELD(#L4W_RSL1) TO(#L4W_FC1 * #L4W_FC2";
CHANGE FIELD(#L4W_RSL2) TO(#L4W_FC1 / #L4W_FC2";
UPD_ENTRY IN_LIST(#L4W_LIST1);
ENDSELECT;
SELECTLIST NAMED#L4W_LIST?2);
CHANGE FIELD(#L4W_RSL1) TO(#L4W_FC1 * #L4W_FC2";
CHANGE FIELD(#L4W_RSL2) TO(#L4W_FC1 / #L4W_FC2";
UPD_ENTRY IN_LIST(#L4W_LIST2);
ENDSELECT;
SELECTLIST NAMED#L4W_LIST3);
CHANGE FIELD(#L4W_RSL1) TO(#L4W_FC1 * #L4W_FC2";
CHANGE FIELD(#L4W_RSL2) TO(#L4W_FC1 / #L4W_FC2)";
UPD_ENTRY IN_LIST(#L4W_LIST3);
ENDSELECT;
SELECTLIST NAMED#L4W_LIST4);
CHANGE FIELD(#L4W_RSL1) TO(#L4W_FC1 * #L4W_FC2";
CHANGE FIELD(#L4W_RSL2) TO(#L4W_FC1 / #L4W_FC2";
UPD_ENTRY IN_LIST(#L4W_LIST4);

ENDSELECT;

SELECTLIST NAMED(#L4W_LIST5);

CHANGE FIELD(#L4W_RSL1) TO(‘#L4W_FC1 * #L4W_FC2";
CHANGE FIELD(#L4W_RSL2) TO(‘#L4W_FC1 / #L4W_FC2";
UPD_ENTRY IN_LIST(#L4W_LIST5);

ENDSELECT;

Sk e sk e sk e sk ke sk ok e

RETURN;

T 1. Deploy LANSA Applications to a Linux Server

2. Execute Applications with a Linux Server

Once your client and server are communicating, you have verified that Icolist is
running on your server, and the required objects have been successfully
deployed to the Server, you are ready to test execution.

When you are first experimenting with using a Linux Server, we recommend
using the sample L4AWEXO01 function to connect to the server to begin with.
(Please refer to Testing with the Verification and Sample Applications for
further information.) Later you can write your own connection function, and
perhaps automatically call it via the INIT= argument. (See the INIT= and
TERM-= Parameters in the Technical Reference Guide for more information.)

When you start executing applications, you will probably use the LANSA
owner as your login for testing. However, you will eventually need to allow
test or production users access to your application. Users must be able to
read, execute, create, or update certain files and directories for successful
application execution. Please carefully read Allow Users Access to LANSA
in the Installing LANSA on Linux guide.

You may need to setup some X_RUN arguments as standard. You may use
the $X_RUN environment variable, or an x_lansa.pro profile to set these up.
Please refer to Set up default X_RUN parameters in the Installing LANSA on
Linux Guide for more details.

Client sessions may need to set specific X_RUN arguments for connection to
a Linux server. Refer to 2.1 Override X_RUN arguments inherited from the
Client for details.

You will need to execute X_RUN from the command line to check your
license status, and possibly to execute batch jobs. Refer to 2.2 Start X_RUN
from the command line for details.

Full details of all the X_RUN arguments can be found in The X_RUN
Parameters in the Technical Reference Guide.

You can refer to Troubleshooting for further assistance.

Further Information
2.1 Override X_RUN arguments inherited from the Client
2.2 Start X_RUN from the command line

T 2. Execute Applications with a Linux Server

its:lansa023.chm::/lansa/unixins4_015.htm
its:lansa015.chm::/lansa/DEPB3_0075.htm
its:lansa046.CHM::/lansa/insunix3_0055.htm
its:lansa046.CHM::/lansa/insunix3_0060.htm
its:lansa015.chm::/lansa/DEPB3_0005.htm
its:Lansa023.chm::/lansa/unixins7_000.htm

2.1 Override X_RUN arguments inherited from the Client

Several standard X_RUN arguments are automatically inherited by the Server.
(See DEFINE_OTHER_SERVER and The PSXX= Parameter in the Technical
Reference Guide for details.) In most cases, these arguments are not appropriate
for a Linux connection. Some recommendations for overrides are:

Override the printer name with PRTR= (and optionally PPTH=) if any RPCs
will print.

Override DBID= and DBII=. For example, if DBID=*NONE is passed over
by default, the Linux Server will not be able to access the database.

Override DBUS= and PSWD-= if they do not match your local database.

Use the special override value *SERVER to use server defaults rather than
client settings. Refer to 2.1.1 Override value *SERVER.

If you wish to use separate temporary files (or printer files when
PRTR=*PATH) into different directories for different users (for example),
override TPTH= (or PPTH=) to a specific full path that is generated at
connection time. You could use the system variables *USER and
*PATHDELIM to generate TPTH=/home/userl/. (Keep in mind that the
Linux file system is case-sensitive.)

For further details on the X_RUN parameters, please refer to The X_RUN
Parameter Summary in the Technical Reference Guide.

its:lansa015.CHM::/lansa/DEFINE_OTHER_SERVER.HTM
its:lansa015.CHM::/lansa/DEPB3_0060.htm
its:lansa015.CHM::/lansa/DEPB3_0005.HTM

2.1.1 Override value *SERVER

You may specify the special value *SERVER when you want to override the PC
default with the Linux Server's default. This will allow you to utilize the
standard Linux defaults or specific defaults that you have set up. Please refer to
Set up default X_RUN parameters in the Installing LANSA on Linux Guide for
more details.

For example, instead of overriding with
DBID=tst1 DBII=tst1 INIT=Inxinitf
you could replace this with
DBID=*SERVER DBII=*SERVER INIT=*SERVER

(DBID=tst1 and INIT=Inxinitf would have to be set in x_lansa.pro or
$X_RUN.)

T 2.1 Override X_RUN arguments inherited from the Client

its:lansa046.CHM::/lansa/insunix3_0060.htm

2.2 Start X_RUN from the command line

As LANSA does not support an interactive user interface on Linux, only batch
jobs can be started from the command line. The X_RUN argument MODE
defaults to B (batch) and cannot be changed.

Any user that will be executing X_RUN from the command line will need to
have their environment configured correctly. Refer to Allow Users Access to
LANSA in the Installing LANSA on Linux Guide for details.

Please refer to Batch Jobs in the Technical Reference Guide for further details of
the differences between batch jobs on Windows and Linux.

T 2. Execute Applications with a Linux Server

its:lansa046.CHM::/lansa/insunix3_0055.htm
its:lansa015.chm::/lansa/L4WDEPB2_0070.htm

3. Troubleshooting

Please refer to the appropriate section:

e 3.1 Install or Upgrade

e 3.2 Deliver To

e 3.3 Character translation/conversion issues
e 3.4 X_RUN or submitted jobs

e 3.5 Connecting to a Linux Server

e 3.5.1 Database

Need more help?

If you cannot resolve a problem using the advice in this section, please complete
the following:

1. As the LANSA owner, execute the script support.sh (located in
$LANSAXROOT/x_lansa/bin, which should be in the PATH) to create the
file support.txt in the current directory.

2. Contact your LANSA supplier for support and attach the support.txt file.

3.1 Install or Upgrade
Any error messages or warnings during execution of vlinstall.py will be logged
to stdout.
The most common install problems are usually database issues.
Oracle SQL errors usually appear as:
ORA-99999: message

Note: The following messages are expected (and can be ignored) for upgrades
or reinstalls:

ORA-01921: role name XXXX conflicts with another user or role name
ORA-01920: user name XXXXX conflicts with another user or role name

RUNSQL (table creation errors) appear as:
RUNSQL ended in error. Return code is -1652.
If you have database issues, please refer to 3.5.1 Database.

It is safe to re-run the install after you have resolved the issues that caused
problems.

T 3. Troubleshooting

3.2 Deliver To

Any error messages or warnings during server-side execution of Deliver To will

be logged to a job log, which can be retrieved by clicking on the magnifying
glass against the message.

e If you have issues connecting to the server, please refer to 3.5 Connecting to
a Linux Server.

e [f you have database issues, please refer to 3.5.1 Database.
e If you have other issues, please refer to 3.4 X_RUN or submitted jobs.

Note that default X_RUN parameters will also be used by Deliver To.
Please refer to Set up default X_RUN parameters in the Installing

LANSA on Linux Guide to determine where default parameters may be
set up.

T 3. Troubleshooting

its:lansa046.CHM::/lansa/insunix3_0060.htm

3.3 Character translation/conversion issues

A locale includes location-specific information such as date and time format,
currency symbol, range of characters supported, and so on.

LANSA uses the setlocale() and nl_langinfo() APIs to retrieve information
about your site's locale. LANSA assumes that the locale environment variables
are set correctly for your location. For example, when you install Red Hat
Enterprise Linux, and choose an Australian timezone, none of the LC_*
variables are set, and LANG is set to en_AU.UTF-8. Refer to your operating
system manuals on the setlocale() and nl_langinfo APIs for further information.

T 3. Troubleshooting

3.4 X_RUN or submitted jobs

Where can I find logs of messages and errors?

e LANSA Fatal errors are logged to a LANSA file called x_err.log and also to
the system log. The x_err.log file contains the exact X_RUN parameter list
used (including defaults from x_lansa.pro and the $X_RUN environment
variable). The x_err.log is located in the SLANSAXROOT/x_lansa/log by
default.

e LANSA messages are logged to standard error (in the case of X_RUN
executed from the command line) and the system log.

Refer to Batch Jobs in the Deploying Visual LANSA Applications Guide for
details on capturing standard error output and accessing the system log.

e LANSA Communications errors are logged to
$LANSAXROOT/log/Iroute.trc by default. Refer to Linux Configuration in
the LANSA Communications Setup Guide for other possible locations.

e If no log files are being created, and you are not logged in to the Linux
Server as the LANSA owner, file and directory permissions may be causing
you problems. Try again, using the LANSA owner as the login, and refer to
Allow Users Access to LANSA in the Installing LANSA on Linux Guide.

Where can I find out what SQL error -1017 means?

SQL error -1017 means invalid user id or password when connecting to an
ORACLE database.

Refer to 3.5.1 Database for help on resolving other SQL errors.

Where can I find out how my default X_RUN parameters are being set?

Refer to Setting up default X_RUN parameters in the Installing LANSA on
Linux Guide.

T 3. Troubleshooting

its:lansa046.CHM::/lansa/insunix3_0055.htm

3.5 Connecting to a Linux Server

Refer to this checklist for help with problems connecting to the Linux Server.

Also see
3.5.1 3.5.2 3.5.3 Diagnosing ORACLE / SQL run-time
Database Connection errors

Server Problem Check List

Check to be Comments / Further Actions

Performed

Process Icolist You can use ps -ef | grep lco to list all LANSA
shows as two processes on the Server. Refer to the LANSA

active processes Communications Setup Guide.

when the active If you cannot see these processes, the LANSA listener

processes are is not running.
displayed (normal

operation).

O/S user profile
and password
coming from the
client are valid on
the server system
and in the correct
case (if
applicable).

DBMS user
profile and
password coming
from the client
are valid on the
server system.

Process Icotp If this is not true, you have an initial connection
shows up as an problem or an application start up problem. If there is
active process no entry in the x_err.log file, try turning on tracing of

after connection
is made. Each
connection has its
own Icotp
running.

You can use ps -
ef | grep lcotp to
check.

Communications on both the Client and the Server.
See the LANSA Communications Setup Guide for
details. If you still cannot find any logs, refer to Where
can I find logs of messages and errors?

Process Icotp
starts when a
connection is
made but it
quickly fails (or
disappears) and
the client gets a
communications
erTor.

You have an initial X_RUN environment problem
such as DBMS connection problem or a failure in your
own application. Look in the x_err.log file on the
server system. Refer to Where can I find logs of
messages and errors? for the file location.

Process Icotp
fails (or
disappears) while
your application
is running and the
client gets a
communications
erTor.

Look in the x_err.log file on the server system. Refer
to Where can I find logs of messages and errors? for
the file location.

x_err.log shows
an SQL error

Refer to Database following for help.

3.5.1 Database

For problems connecting to an ORACLE database, refer to 3.5.2 Connection.

For help diagnosing other ORACLE problems, refer to Diagnosing ORACLE /
SQL run-time errors following.

Note: If you have ORACLE database issues that you cannot resolve, please

contact ORACLE support for assistance before contacting your LANSA
supplier.

3.5.2 Connection

The most common cause of connection problems are:

m The database user id or password is wrong. This can usually be diagnosed
by looking in the x_err.log where the X_RUN parameters are listed.

m The ORACLE listener or database is not started. To check whether the
listener is started use the following command on the database server
Isnrctl status

To see whether the database is started use the following command on the
database server

ps -ef | grep SORACLE_SID

e The ORACLE listener is not configured correctly. Refer to Oracle support
and manuals for possible causes.

3.5.3 Diagnosing ORACLE / SQL run-time errors

You can diagnose run-time SQL errors by looking up the ORACLE message for
a given number. For example, if you get SQL error code 942, you can look up
ORA-00942 to see that the table does not exist (or the user does not have any
privileges to see the table).

A standard ORACLE server nstallation includes the utility oerr. To look up
SQL error -942, use the following command:

oerr ORA 942
The ORACLE guides may provide more information than the oerr utility.
T 3. Troubleshooting

	Deploying LANSA Applications on Linux
	About this Guide
	Additional Information

	1. Deploy LANSA Applications to a Linux Server
	1.1 Directory Structure for LANSA under Linux
	1.2 Before You Begin Checklist
	1.3 Test with the Verification and Sample Applications
	1.4 Deliver the Server Portion of an Application to Linux
	1.5 Verification Application Code (L4WEX functions)
	1.5.1 L4WEX01 Example of On Top Connect/Disconnect
	1.5.2 L4WEX02 Exchange Example: Client Portion
	1.5.3 L4WEX52 Exchange Example: Server Portion
	1.5.4 L4WEX03 List Example: Client Portion
	1.5.5 L4WEX53 List Example: Server Portion

	2. Execute Applications with a Linux Server
	2.1 Override X_RUN arguments inherited from the Client
	2.1.1 Override value *SERVER

	2.2 Start X_RUN from the command line

	3. Troubleshooting
	3.1 Install or Upgrade
	3.2 Deliver To
	3.3 Character translation/conversion issues
	3.4 X_RUN or submitted jobs
	3.5 Connecting to a Linux Server
	3.5.1 Database
	3.5.2 Connection
	3.5.3 Diagnosing ORACLE / SQL run-time errors

