
Embedded	SQL	for	C	and	SQL	Server

Programming	Embedded	SQL	for	C
Microsoft	Embedded	SQL	for	C	(ESQL/C)	offers	programmers	an	alternative	to
writing	Microsoft®	SQL	Server™	2000	client	applications	with	the	DB-Library
for	C	or	Open	Database	Connectivity	(ODBC)	application	programming
interfaces	(APIs).	ESQL/C	enables	you	to	incorporate	Transact-SQL	statements
into	your	C-language	programs.

ESQL/C	is	mainly	used	for	porting	your	existing	applications	from	other
databases	to	SQL	Server.

Embedded	SQL	for	C	and	SQL	Server

Getting	Started	with	Embedded	SQL	for	C
In	this	topic,	you	will	find	Embedded	SQL	for	C	(ESQL/C)	system	requirements,
syntax	conventions,	and	installation	information.

Embedded	SQL	for	C	and	SQL	Server

Embedded	SQL	for	C	Syntax	Conventions
ESQL/C	syntax	combines	SQL-92	standard	Embedded	SQL	syntax	and	most	of
the	Transact-SQL	syntax.	ESQL/C	statements	work	somewhat	differently	from,
or	are	in	addition	to,	standard	Transact-SQL	statements.

Naming	Conventions
ESQL/C	keywords	and	statements	in	your	programs	are	not	case-sensitive.	For
example,	the	following	ESQL/C	statement	fragments	are	equivalent:

EXEC	SQL	CONNECT	TO
exec	sql	connect	to

However,	ESQL/C	cursors,	prepared	statements,	and	connection	names	are	case-
sensitive.	The	same	case	must	be	used	to	declare	and	use	these	names.	For
example,	the	following	fragments	declare	two	different	cursors:

DECLARE	CUR_NAME	CURSOR
DECLARE	cur_name	CURSOR

The	sort	order	of	an	instance	of	Microsoft®	SQL	Server™	2000	to	which	you
are	connecting	determines	whether	other	words	are	case-sensitive.	Note	that	the
hyphen	(-)	is	not	permitted	in	Transact-SQL	identifiers,	such	as	table	and	column
names.

Note		The	Transact-SQL	keyword	null	should	not	be	uppercase	in	ESQL/C
programs	to	avoid	conflict	with	the	C	keyword	NULL.	Also,	the	ESQL/C
keyword	delete	and	the	Transact-SQL	keyword	in	should	not	be	uppercase	in
applications	for	32-bit	Microsoft	Windows®	to	avoid	conflict	with	32-bit
Windows-defined	constants	in	Windows.h.

Embedded	SQL	for	C	and	SQL	Server

System	Requirements	for	Embedded	SQL	for	C
Using	ESQL/C,	you	can	compile	and	run	applications	on	various	operating
systems.

Windows	NT
In	Microsoft®	SQL	Server™	2000,	ESQL/C	is	supported	on	the	Intel®	platform
under	Microsoft	Windows	NT®	4.0.	The	specific	system	requirements	are:

Microsoft	Windows	NT	4.0	Workstation	version	3.51	or	later

Or

Microsoft	Windows	NT	4.0	Server	version	3.51	or	later

Microsoft	Visual	C++®	development	system	(32-bit),	version	2.0	or
later	(version	5.0	is	recommended)

Or

A	100-percent	compatible	compiler	and	linker

Microsoft	SQL	Server	6.0,	or	later.	The	Ntwdblib.dll	file	must	be
version	6.0,	or	later.	This	library	is	installed	on	your	system	under
\Devtools\lib.

Windows	95	or	Windows	98
Microsoft	Windows®	95	or	Microsoft	Windows	98

Microsoft	Visual	C++	development	system	(32-bit),	version	2.0	or	later
(version	5.0	is	recommended).

Or

A	100-percent	compatible	compiler	and	linker

Microsoft	SQL	Server	6.0	or	later;	the	Ntwdblib.dll	file	must	be	version
6.0	or	later

Windows
The	16-bit	ESQL/C	compiler	and	libraries	are	available	for	use	with
SQL	Server	7.0	but	are	not	supported.	The	compiler	and	libraries	can	be
copied	from	the	SQL	Server	compact	disc.	The	system	requirements	for
running	ESQL/C	under	16-bit	Windows	are:

Microsoft	Windows	version	3.1	or	later

Or

Microsoft	Windows	for	Workgroups	version	3.11	or	later

Microsoft	Visual	C++	development	system	(32-bit),	version	5.0
(minimum	version	is	2.0)

Or

A	100-percent	compatible	compiler	and	linker

Microsoft	SQL	Server	6.0,	or	later.	The	Msdblib3.dll	file	must	be
version	6.0	or	later

MS-DOS

The	16-bit	ESQL/C	compiler	and	libraries	are	available	for	use	with	SQL	Server
7.0	but	are	not	supported.	The	compiler	and	libraries	can	be	copied	from	the
SQL	Server	compact	disc.	The	system	requirements	for	running	ESQL/C	under
16-bit	Microsoft	MS-DOS®	are:

Microsoft	MS-DOS	version	6.22	or	later

Microsoft	Visual	C++	development	system	(16-bit),	version	1.52	or
later

Or

A	100-percent	compatible	compiler	or	linker

Microsoft	SQL	Server	6.0	or	later

Embedded	SQL	for	C	and	SQL	Server

Installing	Embedded	SQL	for	C
SQL	Server	Setup	installs	these	groups	of	files.

Directory File Description
\Mssql7\Binn Nsqlprep.exe 32-bit	precompiler	for

Microsoft®	Windows
NT®	4.0,	Microsoft
Windows®	95,	and
Windows	98

Sqlaiw32.dll Precompiler	services	for
Windows	NT	4.0,
Windows	95,	and
Windows	98

Sqlakw32.dll Run-time	services	for
Windows	NT	4.0,	
Windows	95,	and
Windows	98

\Mssql7\DevTools\Include Sqlca.h SQLCA	header
	 Sqlda.h SQLDA	header
\Mssql7\DevTools\Lib Caw32.lib SQLCA	library	for

Windows	NT	4.0,
Windows	95,	and
Windows	98

Sqlakw32.lib Run-time	services	import
library	for	Windows	NT
4.0,	Windows	95,	and
Windows	98

\Mssql7\DevTools\Samples\Esqlc *.* C	samples
\Mssql7\DevTools\Lib Ntwdblib.lib DB-Library	used	for

communicating	with	SQL
Server.	This	is	part	of	DB-
Library	development	tools.

Embedded	SQL	for	C	and	SQL	Server

Call-level	Method
Microsoft®	SQL	Server™	2000	programs,	written	using	the	DB-Library	or
ODBC	API	methods,	communicate	directly	with	SQL	Server	through	C	function
calls.	DB-Library	or	ODBC	functions	pass	SQL	statements	to	SQL	Server	and
return	the	results	of	queries.	The	call-level	method	of	programming	requires	no
precompiler;	however,	you	cannot	include	Transact-SQL	statements	in	your	C
programs,	as	you	can	with	Embedded	SQL	for	C	(ESQL/C).

For	example,	to	use	DB-Library	to	connect	to	SQL	Server	and	execute	a	simple
query	against	the	pubs	sample	database	requires	source	code	similar	to	the
following:

#define	DBNTWIN32
#include	<sqlfront.h>
#include	<sqldb.h>

main()
{
			DBPROCESS	*dbproc;
			LOGINREC	*login;
			RETCODE	r;

			dbinit();
			login	=	dblogin();
			if	(login	==	NULL)
						return	(1);
			DBSETLUSER(login,	"my_login");
			DBSETLPWD(login,	"my_password");
			dbproc	=	dbopen(login,	"my_server");
			dbfreelogin(login);
			if	(dbproc	==	NULL)
						return	(1);
			dbuse(dbproc,	"pubs");

			dbcmd(dbproc,
						"select	au_fname	from	authors	where	au_lname	=	'White'");
			r	=	dbsqlexec(dbproc);
			if	(r	==	FAIL)
						return	(1);
			while	(1)
			{
						r	=	dbresults(dbproc);
						if	(r	==	SUCCEED)
						{
									/*	Process	the	rows	with	dbnextrow()	*/
						}
						if	((r	==	FAIL)	||	(r	==	NO_MORE_RESULTS))
									break;
			}
			return	(0);
}

The	DB-Library	approach,	using	C	function	calls,	is	more	verbose	and	more
flexible	than	the	ESQL/C	approach,	and	it	can	be	loosely	coupled	to	any
database	structure.	Because	a	great	deal	of	the	program's	behavior	can	be
changed	dynamically,	DB-Library	programs	are	often	general-purpose
applications.	DB-Library	is	well-suited	for	environments	where	the	database
structure	is	not	known	in	advance.

Embedded	SQL	for	C	and	SQL	Server

Embedded	SQL	Method
Embedded	SQL	for	C	(ESQL/C)	programs	require	preprocessing	by	a
precompiler.	The	ESQL/C	precompiler	converts	Embedded	SQL	statements	in
the	program	into	function	calls	that	can	be	accepted	by	a	C	compiler.	The	C
compiler	can	then	compile	the	resulting	source	code	into	an	executable	program.

For	example,	the	following	Embedded	SQL	code	does	the	same	task	as	the	DB-
Library	example	in	Call-level	Method:

main()
{
			EXEC	SQL	BEGIN	DECLARE	SECTION;
			char	first_name[50];
			char	last_name[]	=	"White";
			EXEC	SQL	END	DECLARE	SECTION;

			EXEC	SQL	CONNECT	TO	my_server.pubs
						USER	my_login.my_password;
			EXEC	SQL	SELECT	au_fname	INTO	:first_name
								from	authors	where	au_lname	=	:last_name;
			return	(0);
}

Note	that	each	Embedded	SQL	statement	starts	with	the	introductory	expression
EXEC	SQL.	This	expression	tells	the	precompiler	that	the	code	entered	between
EXEC	SQL	and	the	semicolon	(;)	contains	Embedded	SQL	statements.

The	ESQL/C	approach,	using	programming	statements	similar	to	Transact-SQL,
is	more	concise	than	the	call-level	method	approach	and	is	tightly	coupled	to	the
existing	database	structure.	Because	SQL	statements	are	directly	included	in	the
C	source	code,	ESQL/C	programs	are	usually	special-purpose	applications.
ESQL/C	is	well-suited	for	environments	where	the	C	programmer	is	also	in
control	of	the	database	structure.	However,	ESQL/C	is	less	flexible	in
environments	where	the	database	structure	is	changing	or	is	not	predictable.

Generally,	ESQL/C	is	used	for	porting	your	existing	Embedded	SQL	application
code	to	SQL	Server	with	minimum	modifications.

Embedded	SQL	for	C	and	SQL	Server

Embedded	SQL	Programming
Embedded	SQL	for	C	(ESQL/C)	programs	incorporate	Transact-SQL	statements
into	C	source	code.	But	because	you	cannot	directly	submit	ESQL/C	programs
to	a	C	compiler,	ESQL/C	source	programs	must	be	processed	by	a	precompiler
that	produces	source	code	acceptable	to	a	C	compiler.

ESQL/C	programming	is	a	multistep	development	process	that	converts	your
original	Embedded	SQL	source	code	into	a	Microsoft®	SQL	Server™	2000
application	that	is	an	executable	file	compiled	for	the	appropriate	operating
system.

Embedded	SQL	for	C	and	SQL	Server

Embedded	SQL	Steps
Embedded	SQL	for	C	(ESQL/C)	programming	operates	as	follows:

1.	 At	a	command	prompt,	the	name	of	the	ESQL/C	source	file	and	the
appropriate	build	parameters	are	submitted	to	nsqlprep,	which	is	the
ESQL/C	precompiler	for	Microsoft®	Windows	NT®	4.0,	and
Microsoft	Windows®	95/98	and	later	operating	systems.	The
precompiler	parses	the	submitted	file,	finds	the	Embedded	SQL
statements	included	in	the	code,	and	processes	the	statements.

2.	 The	precompiler	produces	a	C	source	code	file	with	the	Embedded
SQL	statements	removed	(commented	out)	and,	if	appropriate,	a	bind
file.	The	Embedded	SQL	statements	are	replaced	by	calls	to	the	run-
time	library	(Sqlakw32.dll).	The	run-time	library	calls	DB-Library
(Ntwdblib.dll)	to	access	servers	running	Microsoft	SQL	Server™	2000
across	a	network.

During	this	step,	you	can	specify	that	stored	procedures	be	created
automatically	and	stored	on	a	specific	instance	of	SQL	Server	or	saved
in	a	bind	file.	Bind	files	are	Transact-SQL	scripts	that	have	a	.bnd
extension.

3.	 The	C	source	code	file	is	compiled	with	a	supported	C	compiler	to
produce	an	object	code	file.

4.	 The	object	code	file	and	library	routines	are	linked	together	with	a
supported	linker	to	produce	an	executable	file.

For	more	information	about	building	an	ESQL/C	application,	see	Building
Applications.

Embedded	SQL	for	C	and	SQL	Server

Including	Embedded	SQL	Statements
You	can	include	Embedded	SQL	statements	in	the	portions	of	your	C	code	where
C	functions	or	routines	can	be	placed.	To	distinguish	Embedded	SQL	statements
from	C	source	code,	each	Embedded	SQL	statement	must	begin	with	the
introductory	keyword	EXEC	SQL	and	end	with	a	semicolon	(;).	An	Embedded
SQL	statement	that	does	not	end	with	a	semicolon	usually	results	in	nsqlprep
compiler	error	-19104	"Incorrect	SQL	statement	syntax."

You	can	use	a	backslash	(\)	to	continue	Embedded	SQL	strings	across	more	than
one	line	of	source	code.	A	single	quotation	mark	must	precede	the	first	character
of	the	Embedded	SQL	string	on	the	first	line	of	source	code,	and	a	single
quotation	mark	must	appear	after	the	last	character	of	the	string	on	the	last	line
of	source	code.	For	example:

EXEC	SQL	INSERT	INTO	TEXT132	VALUES	('TEST	192	IS	THE	TEST	FOR	THE	R\
ULE	OF	THE	CONTINUATION	OF	LINES	FROM	ONE	LINE	TO	THE	NEXT	LINE.');

You	can	also	insert	C	language	code	after	the	EXEC	SQL	keyword	on	the	same
line.	For	example:

EXEC	SQL	COMMIT	TRAN;	printf("\n");

Note		When	you	include	C	language	code	after	an	EXEC	SQL	keyword	on	the
same	line,	you	must	use	the	/NOLINES	precompiler	option.

You	can	also	include	Embedded	SQL	variable	declaration	sections	in	C	language
code	where	it	is	valid	to	declare	variables.	Use	the	BEGIN	DECLARE
SECTION	and	END	DECLARE	SECTION	statements.

Scope	and	Visibility
The	scope	of	Embedded	SQL	variable	names	(statements,	cursors,	and
connections)	follow	the	rules	that	apply	to	C	variables.

Embedded	SQL	for	C	and	SQL	Server

Connecting	to	a	Database
Use	a	CONNECT	TO	statement	in	your	application	to	specify	the	Microsoft®
SQL	Server™	name,	database	name,	login	ID,	and	password	for	the	connection.
You	can	connect	to	servers	and	databases	other	than	those	used	during
precompiling.

The	default	time-out	for	a	database	connection	is	10	seconds.	If	the	specified
server	does	not	respond	to	the	connection	request,	or	if	the	network	name	lookup
fails,	the	compilation	or	execution	suspends	for	approximately	10	seconds.	Use
the	SET	OPTION	statement	to	change	the	connection	time-out.

For	more	information	about	Embedded	SQL	statements,	see	Embedded	SQL
Statements.

Embedded	SQL	for	C	and	SQL	Server

Using	Static	and	Dynamic	Statements
Embedded	SQL	for	C	(ESQL/C)	supports	both	static	and	dynamic	SQL
statements.

A	static	SQL	statement	is	a	complete	Transact-SQL	statement	that	is	embedded
in	the	program	source	code.	Static	SQL	statements	can	be	placed	into	stored
procedures	and	can	contain	host	variables.

With	dynamic	SQL	statements,	knowing	the	complete	structure	of	an	SQL
statement	before	building	the	application	is	not	necessary.	Dynamic	SQL
statements	allow	run-time	input	to	provide	information	about	the	database
objects	to	query.

A	dynamic	SQL	statement	is	an	incomplete	Transact-SQL	statement,	some	or	all
of	which	is	supplied	at	run	time.

Dynamic	SQL	statements	created	by	using	the	PREPARE	and	EXECUTE
statements	can	contain	parameter	markers	and	host	variables.	Parameter	markers
are	question	marks	(?)	that	act	as	placeholders	for	information	supplied	at	run
time.	Dynamic	SQL	statements	executed	by	using	the	EXECUTE	IMMEDIATE
statement	must	conform	to	Transact-SQL	language	rules.	They	cannot	contain
parameter	markers,	host	variables,	or	keywords	that	pertain	exclusively	to
ESQL/C.

Embedded	SQL	for	C	and	SQL	Server

Static	SQL	Statements
An	entire	Transact-SQL	transaction,	including	variable	declarations,	control-of-
flow	language,	and	calls	to	stored	procedures,	can	be	coded	as	a	single	static
SQL	statement.

Static	SQL	statements	can	contain	C-program	host	variables	for	input	values	and
output	data.	Host	variables	are	defined	by	the	host	C	application	and	are
accessible	to	the	C	and	ESQL/C	sections	of	your	application.	For	more
information	about	declaring	and	using	host	variables,	see	Using	Host	Variables
and	Using	the	SQLDA	Data	Structure.

When	an	SQL	statement	uses	input	host	variables,	the	values	of	these	variables
are	inserted	in	the	statement	before	the	statement	runs.	Output	host	variables	are
filled	with	the	values	returned	after	the	statement	runs.

IMPORTANT		Because	Embedded	SQL	does	not	support	alternate	format	rows,
COMPUTE	and	COMPUTE	BY	clauses	are	ignored.	If	a	statement	returns
multiple	result	sets,	only	the	first	result	set	is	recognized;	subsequent	result	sets
are	discarded.	Also,	if	a	statement	returns	more	than	one	row,	only	the	first	row
is	recognized	unless	a	cursor	is	used;	subsequent	rows	are	discarded.

At	compile	time,	static	SQL	statements	can	be	compiled	as	stored	procedures
into	an	access	plan	or	executed	as	dynamic	SQL	statements.	For	more
information	about	access	plans	and	their	alternatives,	see	Access	Plans	and	Bind
Files	and	Building	Applications.	When	a	static	SQL	statement	contains	only	a
single	transaction-management	command,	such	as	BEGIN	TRANSACTION,
COMMIT	TRANSACTION,	ROLLBACK	TRANSACTION,	or	SAVE
TRANSACTION,	the	static	SQL	statement	is	not	compiled	into	an	access	plan
because	stored	procedures	cannot	contain	unbalanced	transaction-management
statements.	In	these	cases,	at	run	time,	the	application	issues	unmatched
transaction-management	statements	as	dynamic	SQL	statements.

The	rules	for	Transact-SQL	stored	procedures	apply	to	static	SQL	statements.

Embedded	SQL	for	C	and	SQL	Server

Dynamic	SQL	Statements
Dynamic	SQL	statements	are	not	completely	embedded	in	the	source	code;
instead,	portions	are	stored	in	program	variables	that	can	be	modified	at	run
time.	Dynamic	SQL	statements	consist	of	character	strings	that	can	contain
question	marks	(?)	as	parameter	markers,	which	act	as	place	holders	for	input
data.	For	example:

DELETE	FROM	AUTHORS	WHERE	au_fname	=	?	AND	au_lname	=	?

Within	an	application,	you	can	use	the	PREPARE,	EXECUTE,	and	EXECUTE
IMMEDIATE	Embedded	SQL	statements	to	process	a	dynamic	SQL	statement.
In	general,	dynamic	SQL	statements	are	prepared	by	using	the	PREPARE
statement	and	then	executed	by	using	the	EXECUTE	statement.	Optionally,
when	no	parameter	markers	are	used,	you	can	combine	the	two	statements	by
using	the	EXECUTE	IMMEDIATE	statement.

Using	dynamic	SQL	statements,	you	can	write	an	application	that	prompts	a	user
or	scans	a	file	for	information	(such	as	database	object	names)	that	is	unavailable
at	compile	time.	Use	dynamic	SQL	statements	when	you	must	build	an	ad	hoc
Embedded	SQL	statement.

Embedded	SQL	for	C	and	SQL	Server

Using	Host	Variables
You	can	manage	input	and	output	for	Embedded	SQL	statements	by	using	host
variables.	Host	variables	are	standard	C-program	variables	that	are	declared	in
an	Embedded	SQL	declare	section	by	using	the	BEGIN	DECLARE	SECTION
and	END	DECLARE	SECTION	statements.

Use	host	variables	when	the	number	of	items	and	their	data	types	are	known	at
compile	time.	You	can	use	host	variables	in	static	SQL	statements	to	specify
input	values	or	to	receive	output	values.	You	can	also	use	host	variables	together
with	parameter	markers	in	dynamic	SQL	statements	to	specify	input	values	or	to
receive	the	output	of	a	dynamically	prepared	cursor.

When	a	host	variable	name	is	used	in	an	Embedded	SQL	statement,	the	variable
name	begins	with	a	colon	(:).	This	colon	enables	the	compiler	to	distinguish
between	host	variables,	and	tables	or	columns	that	might	have	the	same	name.

The	following	example	is	of	a	C	program	that	uses	host	variables.	The	program
prompts	the	user	for	an	author's	last	name	and	stores	the	entered	value	in	the	host
variable	szLastName.	The	program	then	retrieves	the	author's	first	name	from	the
pubs	database	and	stores	the	result	in	the	host	variable	szFirstName.

#include	<stdio.h>

int	main	()
{
			EXEC	SQL	BEGIN	DECLARE	SECTION;
			char	szLastName[30];
			char	szFirstName[30];
			EXEC	SQL	END	DECLARE	SECTION;

			EXEC	SQL	CONNECT	TO	gizmo.pubs	USER	sa;

			printf("Type	author's	last	name:	");
			gets(szLastName);

			EXEC	SQL	SELECT	au_fname	INTO	:szFirstName
						FROM	authors	WHERE	au_lname	=	:szLastName;

			printf("Author's	first	name	is	%s.",	szFirstName);
			return	(0);
}

Embedded	SQL	for	C	and	SQL	Server

Declaring	Host	Variables
Before	you	use	a	host	variable	in	an	Embedded	SQL	statement,	you	must	declare
the	variable	by	using	normal	C-language	syntax	within	an	Embedded	SQL	host
declare	section.	Host	variable	declarations	start	with	the	Embedded	SQL
statement	BEGIN	DECLARE	SECTION	and	end	with	the	END	DECLARE
SECTION	statement,	for	example:

EXEC	SQL	BEGIN	DECLARE	SECTION;
int	nID;
unsigned	short	usNumber;
char	szName[30];
EXEC	SQL	END	DECLARE	SECTION;

Note		Embedded	SQL	limits	the	length	of	host	variable	names	to	30	characters.
In	general,	Embedded	SQL	does	not	provide	support	for	new	Microsoft®	SQL
Server™	features	such	as	128-bit	Unicode	character	support	for	identifiers.
Declaring	host	variables	with	names	longer	than	30	characters	causes	an	error	at
precompile	time	when	Embedded	SQL	processes	the	host	variable.

Host	variables	can	be	declared	wherever	C	variables	can	be	declared.	However,
you	can	use	a	structure	member	as	a	host	variable.	You	can	also	use	a	pointer	to
a	single	array	element	as	a	host	variable	and	index	that	pointer	as	appropriate
before	each	use.

Note		You	may	have	to	modify	the	generated	C	source	code	when	pointer
variables	are	used.	The	ESQL/C	precompiler	will	give	you	a	warning	message
when	it	cannot	determine	the	length	of	a	pointer	host	variable.	This	is	indicated
by	a	value	-1	in	the	fourth	parameter	to	the	sqlasetv	API	call.

Embedded	SQL	for	C	and	SQL	Server

Host	Variables	and	Null	Values
Unlike	SQL,	the	C	language	does	not	support	variables	with	null	(unknown	or
missing)	values.	Embedded	SQL	enables	you	to	store	and	retrieve	null	values
from	a	database	by	using	host	indicator	variables.	Together,	a	host	variable	and
its	companion	indicator	variable	specify	a	single	SQL	value.	Each	of	the
variables	must	be	preceded	by	a	colon	(:).	When	a	host	variable	is	NULL,	its
indicator	variable	has	the	value	-1.	When	a	host	variable	is	nonNULL,	the	value
of	the	indicator	variable	specifies	the	maximum	length	of	the	host	variable	data.

Place	indicator	variables	immediately	after	the	corresponding	host	variable
specified	in	the	Embedded	SQL	statement.	For	example,	the	following
embedded	UPDATE	statement	uses	a	saleprice	host	variable	with	a	companion
saleprice_null	indicator	variable:

EXEC	SQL	UPDATE	closeoutsale
			SET	temp_price	=	:saleprice	:saleprice_null,	listprice	=	:oldprice;

In	the	following	SELECT	statement,	price	nullflag	is	set	to	-1	because	the	price
of	this	book	is	NULL:

EXEC	SQL	
SELECT	price	INTO	:price:price	nullflag
FROM	titles
WHERE	au_id	=	"mc3026"

Optionally,	you	can	precede	an	indicator	variable	with	the	INDICATOR
keyword	when	using	a	host	variable	and	its	associated	indicator	variable.	For
example,	the	following	embedded	UPDATE	statement	uses	the	INDICATOR
keyword	to	more	easily	identify	the	indicator	variable	saleprice_null:

EXEC	SQL	UPDATE	closeoutsale
			SET	temp_price	=	:saleprice	INDICATOR	:saleprice_null;

If	saleprice_null	has	a	value	of	-1	when	the	UPDATE	statement	executes,
Embedded	SQL	will	change	the	statement	to:

EXEC	SQL	UPDATE	closeoutsale
			SET	temp_price	=	null,	listprice	=	:oldprice;

You	cannot	use	indicator	variables	in	a	search	condition.	For	example,	you
cannot	use	the	following	Embedded	SQL	statement:

EXEC	SQL	DELETE	FROM	closeoutsale
			WHERE	temp_price	=	:saleprice	:saleprice_null;

However,	you	can	use	the	following	technique	to	search	for	null	values:

if	(saleprice_null	==	-1)
{
			EXEC	SQL	DELETE	FROM	closeoutsale
						WHERE	temp_price	IS	null;
}
else
{
			EXEC	SQL	DELETE	FROM	closeoutsale
						WHERE	temp_price	=	:saleprice;
}

Embedded	SQL	for	C	and	SQL	Server

Host	Variables	and	Data	Types
Microsoft®	SQL	Server™	2000	uses	different	data	types	than	the	C
programming	language.	ESQL/C	must	map	C	data	types	to	the	appropriate	SQL
Server	data	types.	The	following	Embedded	SQL	code	fragment	shows	the
mapping	of	three	host	variables,	declared	as	C	data	types,	to	their	corresponding
SQL	Server	data	types:

EXEC	SQL	BEGIN	DECLARE	SECTION;
int	hostvar1	=	39;
char	*hostvar2	=	"telescope";
float	hostvar3	=	355.95;
EXEC	SQL	END	DECLARE	SECTION;

EXEC	SQL	UPDATE	inventory
			SET	department	=	:hostvar1
			WHERE	part_num	=	"4572-3";

EXEC	SQL	UPDATE	inventory
			SET	prod_descrip	=	:hostvar2
			WHERE	part_num	=	"4572-3";

EXEC	SQL	UPDATE	inventory
			SET	price	=	:hostvar3
			WHERE	part_num	=	"4572-3";

In	the	first	UPDATE	statement,	the	department	column	has	the	SQL	Server
smallint	(integer)	data	type	because	the	host	variable	hostvar1	is	declared	as	a	C
int	(integer)	data	type.	Consequently,	the	data	types	from	C	map	directly	to	SQL
Server.

In	the	second	UPDATE	statement,	the	prod_descrip	column	has	the	SQL	Server
varchar	(character)	data	type.	The	hostvar2	host	variable	is	declared	as	an	array
of	the	C	char	(character)	data	type,	which	maps	to	the	SQL	varchar	data	type.

In	the	third	UPDATE	statement,	the	price	column	has	previously	been	assigned
the	SQL	Server	money	data	type.	No	data	type	in	C	corresponds	to	the	SQL
Server	money	data	type.	Host	variables	to	be	used	with	SQL	Server	money	data
types	can	be	declared	as	C	floating-point	or	character	data	types.	Embedded	SQL
converts	those	host	variables	to	and	from	money	values.

Note		Output	host	variables	of	data	type	char	are	padded	with	blanks	to	their	full
declared	length,	which	is	an	SQL-92	requirement.

Input	host	variables	of	type	char	used	to	input	binary	values	must	have	an
explicitly	declared	length.	They	cannot	be	pointer	data	types.

The	following	example	is	correct:

char	vBinaryIn[100];

The	following	example	is	incorrect:

char	*vBinaryIn="ff00";

Be	sure	to	carefully	match	the	data	types	of	your	host	variables	to	their
corresponding	use	in	Embedded	SQL	statements.	For	more	information	about
mapping	data	types	from	the	C	environment	to	the	SQL	Server	environment,	see
Advanced	Programming.

Embedded	SQL	for	C	and	SQL	Server

Using	the	SQLDA	Data	Structure
When	the	number	or	data	types	of	host	variables	to	be	passed	are	unknown	at
compile	time,	use	dynamic	SQL	statements	and	the	SQL	descriptor	area
(SQLDA)	data	structure	instead	of	static	SQL	statements	and	host	variables.	You
can	use	the	SQLDA	data	structure	to	define	the	type	of	data	to	be	passed	from
the	database	to	the	host	variable,	or	vice	versa.	The	SQLDA	data	structure
generally	includes	question	marks	(?)	for	parameter	markers	to	specify	input
values	for	prepared	Embedded	SQL	statements.	You	can	also	use	the	SQLDA
data	structure	with	the	DESCRIBE	or	PREPARE	INTO	statements	to	receive
data	from	a	prepared	SELECT	statement.	Although	you	cannot	use	the	SQLDA
data	structure	with	static	SQL	statements,	you	can	use	it	with	a	cursor	FETCH
statement,	regardless	of	whether	the	cursor	is	dynamic	or	static.

Note		For	text	and	image	data,	the	maximum	length	of	the	data	column	is	the
size	of	sqllen,	which	is	32	KB.	Sqllen	is	of	the	data	type	short.

Embedded	SQL	for	C	and	SQL	Server

Data	Input	and	Output	Using	the	SQLDA	Data
Structure
The	SQLDA	data	structure	contains	descriptive	information	about	each	input
parameter	or	output	column.	The	structure	contains	the	column	name,	data	type,
length,	and	pointer	to	the	actual	data	buffer	for	each	input	or	output	variable.

For	output	data,	you	can	use	the	DESCRIBE	statement	(or	the	PREPARE
statement	with	the	INTO	option)	to	enter	column	name,	data	type,	and	other	data
into	the	appropriate	fields	of	the	SQLDA	data	structure.

Before	using	the	SQLDA	structure	in	a	PREPARE	INTO	or	DESCRIBE
statement,	your	application	must	set	the	length	of	SQLDA	and	the	maximum
number	of	entries.

To	use	the	SQLDA	structure	for	input	data,	your	application	must	supply	the
data	for	the	fields	of	the	entire	SQLDA	data	structure.	If	the	sqltype	field	has	an
odd	code	number	(value),	the	address	of	the	indicator	variable	must	also	be
supplied.	For	more	information	about	the	SQLDA	data	structure,	see	Advanced
Programming.

Embedded	SQL	for	C	and	SQL	Server

Using	Cursors
When	you	write	code	for	a	transaction	that	retrieves	a	single	row	of	results,	you
can	use	a	SELECT	INTO	statement.	This	is	called	a	singleton	SELECT
statement.

When	you	write	code	for	a	transaction	where	the	result	set	includes	several	rows
of	data,	you	must	declare	and	use	a	cursor.	A	cursor	is	a	mechanism	you	can	use
to	fetch	rows	one	at	a	time.	For	example,	if	you	write	code	that	includes	a
SELECT	statement	or	stored	procedure	that	returns	multiple	rows,	you	must
declare	a	cursor	and	associate	it	with	the	SELECT	statement.	Then,	by	using	the
FETCH	statement,	you	can	retrieve	one	row	at	a	time	from	the	result	set.

You	can	also	use	cursors	to	perform	operations	within	a	result	set.	These
operations	are	known	as	positioned	update	and	positioned	delete.	For	more
information,	see	Positioned	UPDATE	or	DELETE	Statements.

IMPORTANT		The	cursor	options	available	with	Embedded	SQL	for	C	(ESQL/C)
are	different	from	the	cursor	options	available	with	the	Transact-SQL
DECLARE	CURSOR	option,	and	the	two	should	not	be	intermixed.	If	a
Transact-SQL	cursor	is	not	available	as	an	ESQL/C	cursor	option,	it	cannot	be
used.

Do	not	use	ESQL/C	cursors	to	process	Transact-SQL	batches	or	other
operations	that	return	multiple	result	sets.	If	a	statement	returns	multiple
result	sets,	only	the	first	result	set	is	recognized	and	subsequent	result	sets
are	discarded.	If	COMPUTE	rows	are	returned,	the	rows	are	also	ignored.

ESQL/C	includes	standard	and	browse	cursor	types.	A	standard	cursor	is	used	to
retrieve	one	row	of	data	at	a	time	and	shares	the	same	connection	to	Microsoft®
SQL	Server™	as	the	main	program.	Standard	cursors	require	a	unique	index	in
SQL	Server	version	6.0	and	earlier.	To	set	standard	cursors,	use	the	SET
CURSORTYPE	CUR_STANDARD	statement	or	the	DECLARE	CURSOR
statement	with	the	FOR	UPDATE	option.	A	browse	cursor	is	used	to	retrieve	one
row	of	data	at	a	time	and	requires	a	separate	connection	to	SQL	Server.	To	set
browse	cursors,	use	the	SET	CURSORTYPE	CUR_BROWSE	statement.

Standard	and	browse	cursors	are	declared	and	used	(including	FETCH	and
positioned	update	or	delete	operations)	in	the	same	way.	Standard	cursors	are

based	on	the	DB-Library	cursor	model	and	allow	multiple	cursor	operations	to
share	the	same	connection	to	SQL	Server.	Each	browse	cursor	requires	a
separate	connection.	For	most	applications,	standard	cursors	are	recommended
and	are	the	default	because	a	shared	single	connection	avoids	potential	locking
conflicts	between	cursors.

Standard	DB-Library	cursors	provides	detailed	descriptions	of	standard	DB-
Library	cursors.	DB-Library	cursors	have	several	options	for	controlling	row
membership,	locking,	and	performance	characteristics.	These	options	are
available	to	ESQL/C	programs	through	the	SET	ANSI_DEFAULTS,	SET
CURSOR_CLOSE_ON_COMMIT,	SET	SCROLLOPTION,	SET
CONCURRENCY,	and	SET	FETCHBUFFER	statements.	A	SET	option	remains
in	effect	for	all	cursor	operations	within	an	ESQL/C	program	until	that	option	is
changed	by	another	SET	statement.

Browse	Cursors	provides	details	about	browse	cursors.	If	positioned	update	or
delete	statements	are	used	on	a	browse	cursor,	the	SELECT	statement	used	in	the
cursor	declaration	must	include	the	FOR	BROWSE	option.	However,	because
each	browse	cursor	uses	a	separate	database	connection,	SQL	Server	treats	each
cursor	as	a	separate	user.	This	can	result	in	locking	conflicts	between	different
cursors	in	the	same	program.	For	more	information,	see	Cursors	and	Lock
Conflicts.

See	Also

Standard	DB-Library	Cursors

Browse	Cursors

Embedded	SQL	for	C	and	SQL	Server

Declaring	Cursors
To	define	a	cursor	for	row-at-a-time	retrieval,	use	the	DECLARE	CURSOR
statement.	You	can	declare	a	cursor	in	one	of	two	ways:	as	a	static	cursor	or	as	a
dynamic	cursor.

Using	Static	Cursors
For	a	static	cursor,	the	complete	SELECT	statement	is	contained	in	the
DECLARE	CURSOR	statement.	The	SELECT	statement	can	contain	host
variables	for	input	parameters.	When	the	OPEN	statement	is	performed	on	a
cursor,	the	values	of	the	input	parameters	for	the	host	variable	are	read	into	the
SELECT	statement.	You	cannot	specify	host	variables	and	SQLDA	data
structures	in	the	OPEN	statement	for	a	static	cursor	because	the	input	host
variables	are	already	identified	in	the	DECLARE	CURSOR	statement.

This	is	an	example	of	a	static	cursor:

EXEC	SQL	BEGIN	DECLARE	SECTION;
char	szLastName[]	=	"White";
char	szFirstName[30];
EXEC	SQL	END	DECLARE	SECTION;

EXEC	SQL
			DECLARE	author_cursor	CURSOR	FOR
			SELECT	au_fname	FROM	authors	WHERE	au_lname	=	:szLastName;

EXEC	SQL	OPEN	author_cursor;
EXEC	SQL	FETCH	author_cursor	INTO	:szFirstName;

Using	Dynamic	Cursors
For	a	dynamic	cursor,	the	SELECT	statement	is	not	contained	in	the	DECLARE
CURSOR	statement.	Instead,	the	DECLARE	CURSOR	statement	references	the
name	of	a	prepared	SELECT	statement	that	can	contain	parameter	markers	(?)	to
indicate	that	data	must	be	supplied	when	a	cursor	is	opened.	You	must	declare	a

dynamic	cursor	by	using	the	DECLARE	CURSOR	statement	before	you	prepare
a	SELECT	statement.

When	a	prepared	SELECT	statement	contains	parameter	markers,	the
corresponding	OPEN	statement	must	specify	the	host	variables	or	the	name	of
the	SQLDA	data	structure	that	will	supply	the	values	for	the	parameter	markers.
The	data	type,	length,	and	address	fields	of	the	specified	SQLDA	data	structure
must	already	contain	valid	data.

This	is	an	example	of	a	dynamic	cursor:

EXEC	SQL	BEGIN	DECLARE	SECTION;
char	szCommand[]	=	"SELECT	au_fname	FROM	authors	WHERE	au_lname	=	?";
char	szLastName[]	=	"White";
char	szFirstName[30];
EXEC	SQL	END	DECLARE	SECTION;

EXEC	SQL
			DECLARE	author_cursor	CURSOR	FOR	select_statement;

EXEC	SQL
			PREPARE	select_statement	FROM	:szCommand;

EXEC	SQL	OPEN	author_cursor	USING	:szLastName;
EXEC	SQL	FETCH	author_cursor	INTO	:szFirstName;

Embedded	SQL	for	C	and	SQL	Server

Positioned	UPDATE	or	DELETE	Statements
Positioned	UPDATE	and	DELETE	statements	are	used	in	conjunction	with
cursors	and	include	WHERE	CURRENT	OF	clauses	instead	of	search	condition
clauses.	The	WHERE	CURRENT	OF	clause	specifies	the	location	of	the
corresponding	cursor.

You	can	perform	a	prepared	positioned	update	or	a	ROLLBACK
TRANSACTION	operation	only	on	dynamic	cursors.

On	a	cursor	declaration	that	contains	a	join,	you	can	perform	a	positioned	update
or	positioned	delete	only	on	the	first	table	in	the	join	list.

Embedded	SQL	for	C	and	SQL	Server

Managing	Transactions
With	Embedded	SQL	for	C	(ESQL/C),	you	can	use	the	full	transaction	control
facilities	of	Microsoft®	SQL	Server™	2000.

The	COMMIT	TRANSACTION	statement	marks	the	end	of	a	user-defined
transaction	initiated	by	a	BEGIN	TRANSACTION	statement.	The	COMMIT
statement	makes	changes	to	the	transaction's	database	permanent	and	visible	to
other	users.	It	also	removes	all	locks	from	the	affected	data	so	that	other	users
can	access	the	data.

As	with	other	SQL	Server	applications,	statements	not	bound	by	BEGIN
TRANSACTION	and	COMMIT	TRANSACTION	are	automatically	committed
when	the	statement	executes	without	an	error.

The	ROLLBACK	TRANSACTION	statement	reverses	the	effects	of	a	user-
specified	transaction	to	the	beginning	of	the	OPEN	TRANSACTION	or	to	the
last	save	point	(marked	by	a	Transact-SQL	SAVE	TRANSACTION	statement)
inside	the	open	transaction.	After	a	transaction	is	committed,	it	cannot	be	rolled
back.

Note	that	by	default,	a	COMMIT	TRANSACTION	or	ROLLBACK
TRANSACTION	statement	does	not	close	cursors	and	applies	only	to	the
current	connection	if	multiple	connections	are	active.	You	can	use	the	SET
CURSOR_CLOSE_ON_COMMIT	statement	to	close	all	cursors	on	a
connection	automatically	when	a	COMMIT	TRANSACTION	or	a	ROLLBACK
TRANSACTION	statement	is	issued.

Embedded	SQL	for	C	and	SQL	Server

Using	the	SQLCA	Data	Structure
Microsoft®	SQL	Server™	2000	uses	the	SQL	communications	area	(SQLCA)
data	structure	to	trap	and	report	run-time	errors	to	your	Embedded	SQL	for	C
(ESQL/C)	applications.	Your	application	can	check	the	error	fields	and	status
indicators	of	the	SQLCA	data	structure	to	determine	the	success	or	failure	of	an
Embedded	SQL	statement.	The	precompiler	automatically	includes	the	SQLCA
data	structure	in	ESQL/C	applications.

You	can	include	routines	in	your	application	to	test	the	SQLCODE,	SQLWARN,
SQLERRM,	SQLERRD,	and	SQLSTATE	fields	of	the	SQLCA	data	structure
and	to	provide	follow-up	procedures	according	to	the	status	returned.

The	SQLCODE	field	contains	the	negative	SQL	Server	error	code	(the
ESQL/C	standard	requires	that	error	codes	be	negative).	

The	SQLWARN	flags	are	set	if	certain	exceptions,	such	as	data
truncation,	occur.	

The	SQLERRM	field	contains	the	text	of	the	error	message.	

The	SQLERRD1	field	contains	the	error	number.	

The	SQLERRD3	array	indicates	the	number	of	rows	affected.

The	SQLSTATE	field	contains	run-time	errors	that	generate	SQL-92
standard	SQLSTATE	codes.

Because	the	character	fields	of	SQLCA	(such	as	SQLWARN	and	SQLERRMC)
are	FAR	pointers	in	Microsoft	Windows®,	you	must	use	the	%Fs	format
specifier	for	them	when	using	printf	and	similar	functions.

For	more	information	about	the	SQLCA	data	structure,	see	Advanced
Programming.

Embedded	SQL	for	C	and	SQL	Server

SQLCODE	Variable
The	most	important	and	widely	used	field	of	the	SQLCA	data	structure	is	the
SQLCODE	variable.	Each	time	Microsoft®	SQL	Server™	2000	runs	an
Embedded	SQL	statement,	it	sets	the	value	of	the	SQLCODE	variable	to	indicate
whether	the	last	Embedded	SQL	statement	completed	successfully.	A	value	of	0
indicates	that	the	last	Embedded	SQL	statement	was	successful.	Values	other
than	0	indicate	warnings	or	errors.

To	use	SQLCODE	in	your	program,	you	can	either	declare	it	explicitly	as	long
SQLCODE;	or	leave	it	undeclared	and	have	the	precompiler	generate	a
declaration.	However,	the	precompiler	only	generates	a	declaration	in	a	source
module	that	contains	a	main()	or	a	WinMain()	function.

The	preprocessor	automatically	inserts	the	following	definition	in	all	.sqc
modules,	so	the	actual	definition	of	SQLCODE	should	only	occur	in	one
module.

extern	long	SQLCODE;

If	your	project	does	not	include	a	.sqc	file	that	includes	a	main()	or	WinMain()
function,	you	must	explicitly	declare	SQLCODE	in	one	of	your	modules.
Explicit	SQLCODE	declarations	can	occur	either	inside	or	outside	of	a	host
variable	declaration	block.

See	Also

Advanced	Programming

Embedded	SQL	for	C	and	SQL	Server

SQLSTATE	Variable
ESQL/C	supports	SQLSTATE	codes,	which	return	errors	encountered	at	run
time.	SQLSTATE	codes	fall	into	two	categories:	those	that	must	be	generated
locally	by	DB-Library	or	ESQL/C,	and	those	that	are	generated	by	the	server.
SQLSTATE	codes	always	correspond	to	SQLCODE	values.

See	Also

SQLSTATE	Messages

Embedded	SQL	for	C	and	SQL	Server

Using	the	WHENEVER	Statement
Writing	code	to	check	the	value	of	the	SQLCODE	variable	after	each	Embedded
SQL	statement	becomes	burdensome,	especially	when	writing	large	programs.	
Another	method	for	checking	the	status	of	the	SQLCA	data	structure	fields	is	the
WHENEVER	statement.	The	WHENEVER	statement	is	not	an	executable
statement.	It	is	a	directive	to	the	ESQL/C	precompiler	to	generate	code
automatically	to	handle	errors	after	each	executable	Embedded	SQL	statement,
and	it	specifies	the	next	action	to	be	taken.	The	WHENEVER	statement	allows
one	of	three	actions	(CONTINUE,	GOTO,	or	CALL)	to	be	registered	for	each	of
the	three	possible	SQLCODE	conditions	(SQLWARNING,	SQLERROR,	or
NOT	FOUND).

A	WHENEVER	statement	in	the	program	code	supersedes	the	conditions	of	all
earlier	WHENEVER	statements.

This	is	an	example	of	a	WHENEVER	statement:

EXEC	SQL	WHENEVER	sqlerror	GOTO	errormessage1;

EXEC	SQL	DELETE	FROM	homesales
			WHERE	equity	<	10000;

EXEC	SQL	DELETE	FROM	customerlist
			WHERE	salary	<	40000;

EXEC	SQL	WHENEVER	sqlerror	CONTINUE;

EXEC	SQL	UPDATE	homesales
			SET	equity	=	equity	-	loanvalue;

EXEC	SQL	WHENEVER	sqlerror	GOTO	errormessage2;

EXEC	SQL	INSERT	INTO	homesales	(seller_name,	sale_price)
			real_estate('Jane	Doe',	180000.00);

						.
						.
						.
errormessage1:
			printf("SQL	DELETE	error:	%ld\n,	sqlcode);
exit();

errormessage2:
			printf("SQL	INSERT	error:	%ld\n,	sqlcode);
exit();

For	more	information,	see	WHENEVER	in	Embedded	SQL	Statements.

Embedded	SQL	for	C	and	SQL	Server

Embedded	SQL	for	C	Reference
The	maximum	size	of	a	single	Embedded	SQL	statement	is	8,191	characters	for
16-bit	Microsoft®	Windows®	2000	and	19,999	characters	for	Microsoft
Windows	NT®	4.0.

Embedded	SQL	for	C	and	SQL	Server

Embedded	SQL	Statements
For	the	Embedded	SQL	statements	listed,	an	asterisk	(*)	identifies	statements
that	have	names	identical	to	names	of	Transact-SQL	statements.	For	statements
with	asterisks,	the	syntax	included	augments	the	standard	Transact-SQL	syntax.

BEGIN	DECLARE	SECTION PREPARE
CLOSE* SELECT	INTO*
CONNECT	TO SET	ANSI_DEFAULTS
DECLARE	CURSOR* SET	CONCURRENCY
DELETE	(POSITIONED)* SET	CONNECTION
DELETE	(SEARCHED)* SET	CURSOR_CLOSE_ON_COMMIT
DESCRIBE SET	CURSORTYPE
DISCONNECT SET	FETCHBUFFER
END	DECLARE	SECTION SET	OPTION
EXECUTE* SET	SCROLLOPTION
EXECUTE	IMMEDIATE UPDATE	(POSITIONED)*
FETCH* UPDATE	(SEARCHED)*
GET	CONNECTION WHENEVER
OPEN* 	

Embedded	SQL	for	C	and	SQL	Server

BEGIN	DECLARE	SECTION
The	BEGIN	DECLARE	SECTION	statement	marks	the	beginning	of	a	C	host-
variable	declaration	section.

Syntax
BEGIN	DECLARE	SECTION

Remarks
The	BEGIN	DECLARE	SECTION	statement	can	be	included	anywhere	C
permits	declaring	variables,	and	where	declared	host	variables	follow	the	normal
rules	for	scoping	in	C.	Use	END	DECLARE	SECTION	to	identify	the	end	of	a
C	declaration	section.	The	embedded	BEGIN	DECLARE	SECTION	statement
must	follow	the	EXEC	SQL	introductory	keyword.

Declare	sections	cannot	be	nested.

Use	the	following	rules	for	declaring	host	variables:

Host	variables	must	be	declared	in	C,	not	in	Transact-SQL.

Host	variables	referenced	by	Embedded	SQL	statements	must	be
included	in	a	declaration	section	that	appears	before	the	statement.

Examples

EXEC	SQL	BEGIN	DECLARE	SECTION;
int	id;
char	name[30];
EXEC	SQL	END	DECLARE	SECTION;

See	Also

END	DECLARE	SECTION

Embedded	SQL	for	C	and	SQL	Server

CLOSE
The	CLOSE	statement	ends	row-at-a-time	data	retrieval	initiated	by	the	OPEN
statement	for	a	specified	cursor,	and	closes	the	cursor	connection.

Syntax
CLOSE	cursor_name

Arguments
cursor_name

Is	a	previously	declared	and	opened	cursor.	Cursor	names	can	have	as	many
as	30	characters,	and	can	include	alphanumeric	characters	and	any	symbols
that	are	legal	in	file	names.	Hyphens	(-)	are	not	permitted.	The	first	character
of	a	cursor	name	must	be	a	letter.

Remarks
The	CLOSE	statement	discards	unprocessed	rows	and	frees	any	locks	held	by
the	cursor.	The	cursor	must	be	declared	and	opened	before	it	can	be	closed.	All
open	cursors	are	closed	automatically	at	the	end	of	the	program.

Examples

EXEC	SQL	DECLARE	C1	CURSOR	FOR
			SELECT	id,	name,	dept,	job,	years,	salary,	comm	FROM	staff;
EXEC	SQL	OPEN	c1;
while	(SQLCODE	==	0)
{
			/*	SQLCODE	will	be	zero	if	data	is	successfully	fetched	*/
			EXEC	SQL
						FETCH	c1	INTO	:id,	:name,	:dept,	:job,	:years,	:salary,	:comm;
			if	(SQLCODE	==	0)
						printf("%4d	%12s	%10d	%10s	%2d	%8d	%8d",

									id,	name,	dept,	job,	years,	salary,	comm);
}
EXEC	SQL	CLOSE	c1;

See	Also

DECLARE	CURSOR

OPEN

FETCH

SET	CURSOR_CLOSE_ON_COMMIT

Embedded	SQL	for	C	and	SQL	Server

CONNECT	TO
The	CONNECT	TO	statement	connects	to	a	specific	database	with	the	supplied
username	and	password.

Syntax
CONNECT	TO	{[server_name.]database_name}	[AS	connection_name]	USER
[login[.password]	|	$integrated]

Arguments
server_name

Is	the	server	running	Microsoft®	SQL	Server™	2000.	If	you	omit	the
server_name,	the	local	server	is	assumed.

database_name

Is	the	database.

connection_name

Is	a	name	for	the	connection.	Connection	names	can	have	as	many	as	30
characters,	and	can	include	alphanumeric	characters	and	any	symbols	that
are	legal	in	file	names.	Hyphens	(-)	are	not	permitted.	The	first	character
must	be	a	letter.	Do	not	use	current	or	all	for	the	connection	name;	they	are
not	supported.

login

Is	the	user's	login	ID.

password

Is	the	user's	password.

$integrated

Specifies	that	forced	integrated	security	is	used	for	run-time	or	compile-time
applications	instead	of	the	login	and	password.

Remarks
The	options	can	include	character	literals	or	host	variables.	If	you	use	only	one
connection,	you	do	not	need	to	supply	a	name	for	the	connection.	When	you	use
more	than	one	connection,	you	must	specify	a	name	for	each	connection.

Connection	names	are	global	within	a	process.	Named	connections	are	shared	by
separately	compiled	programs	linked	into	a	single	executable	module.	Named
connections	are	also	shared	by	a	program	and	dynamic-link	libraries	that	execute
in	a	single	process.

All	database	transactions	after	a	CONNECT	TO	statement	that	do	not	involve	a
browse	cursor	work	through	the	most	recently	declared,	current	connection.	To
use	a	different	connection,	you	must	use	the	SET	CONNECTION	statement.

Examples

EXEC	SQL	CONNECT	TO	:svr	USER	:usr;

Or

EXEC	SQL	CONNECT	TO	"gizmo.pubs"	USER	"sa";

Or

EXEC	SQL	CONNECT	TO	gizmo.pubs	USER	sa;

See	Also

DISCONNECT

Embedded	SQL	for	C	and	SQL	Server

DECLARE	CURSOR
Defines	a	cursor	for	row-at-a-time	data	retrieval.

Syntax
DECLARE	cursor_name	[INSENSITIVE]	[SCROLL]	CURSOR	FOR
{select_stmt	|	prepared_stmt_name}	[FOR	{	READ	ONLY	|	UPDATE	[OF
column_list]	}]

Arguments
cursor_name

Is	the	cursor	name	in	subsequent	statements.	Cursor	names	can	have	as	many
as	30	characters,	and	can	include	alphanumeric	characters	and	any	symbols
that	are	legal	in	file	names.	Hyphens	(-)	are	not	permitted.	The	first	character
must	be	a	letter.	Optionally,	the	cursor_name	parameter	can	be	enclosed	in
quotation	marks	('	').

INSENSITIVE

Specifies	creating	a	standard,	read-only	cursor	that	is	a	snapshot	of	the	cursor
result	set	at	open	time.	It	is	equivalent	to	the	INSENSITIVE	option	of	the
Transact-SQL	DECLARE	CURSOR	statement.

SCROLL

Specifies	allowing	first,	last,	and	backward	fetch	operations.	It	is	equivalent
to	issuing	the	SET	CURSORTYPE	CUR_STANDARD	and	SET
SCROLLOPTION	KEYSET	statements.

select_stmt

Is	any	valid	Transact-SQL	SELECT	statement.	Browse	cursors	can	also	use	a
stored	procedure	that	contains	a	SELECT	statement.	This	SELECT	statement
must	not	contain	any	aggregates.

prepared_stmt_name

Is	the	name	of	a	prepared	SQL	SELECT	statement.

FOR	READ	ONLY

Specifies	the	use	of	standard	DB-Library	read-only	cursors.	This	is
equivalent	to	issuing	both	the	SET	CONCURRENCY	READONLY	and	the
SET	CURSORTYPE	CUR_STANDARD	statements.	Using	the	FOR	READ
ONLY	option	overrides	the	SET	CONCURRENCY	statement.

FOR	UPDATE

Specifies	that	cursors	are	updatable	by	default;	therefore,	the	DECLARE
statement	does	not	require	a	FOR	UPDATE	option.	However,	if	the
DECLARE	statement	contains	the	FOR	UPDATE	option,	the	effect	is
equivalent	to	issuing	both	the	SET	CONCURRENCY	LOCKCC	and	the
SET	CURSORTYPE	CUR_STANDARD	statements.	Using	the	FOR
UPDATE	option	overrides	the	SET	CONCURRENCY	statement.

Remarks
The	DECLARE	CURSOR	statement	associates	the	cursor	name	with	the
specified	SELECT	statement	and	enables	you	to	retrieve	rows	of	data	by	using
the	FETCH	statement.

Cursor	names	are	global	within	a	program	module	(source	code	file).	Cursors
cannot	be	shared	by	separately	compiled	programs	that	are	linked	into	a	single
executable	module,	or	by	a	program	and	dynamic-link	libraries	that	run	in	a
single	process.

The	DECLARE	CURSOR	statement	must	appear	before	the	first	reference	of
the	cursor.	The	SELECT	statement	runs	when	the	cursor	is	opened.

The	following	rules	apply	to	the	SELECT	statement:

It	cannot	contain	an	INTO	clause	or	parameter	markers	(?).

It	can	contain	input	host	variables	that	were	previously	identified	in	a
host	variable	declaration	section.

It	must	include	a	HOLDLOCK	option	to	enable	repeatable	reads.
Additionally,	standard	cursors	require	that	an	explicit	user-defined
transaction	is	open	(opened	by	using	BEGIN	TRANSACTION).

For	a	standard	cursor,	use	the	SET	CURSORTYPE	CUR_STANDARD
if	you	do	not	use	the	FOR	UPDATE	option.

For	a	browse	cursor,	include	the	FOR	BROWSE	option	and	use	the
SET	CURSORTYPE	CUR_BROWSE	statement	if	positioned	updates
or	deletes	will	be	performed	on	a	browse	cursor.	If	the	SET
CURSORTYPE	statement	is	not	used,	the	FOR	BROWSE	option	makes
the	cursor	read-only.	Do	not	use	the	FOR	UPDATE	option.

You	must	declare	a	dynamic	cursor	by	using	the	DECLARE	CURSOR	statement
before	you	prepare	a	SELECT	statement.

Examples

EXEC	SQL	DECLARE	c1	CURSOR	FOR
			SELECT	au_fname,	au_lname	FROM	authors	FOR	BROWSE;

See	Also

BEGIN	DECLARE	SECTION

PREPARE

CLOSE

SELECT	INTO

FETCH

SET	CURSOR_CLOSE_ON_COMMIT

OPEN

Embedded	SQL	for	C	and	SQL	Server

DELETE	(POSITIONED)
The	DELETE	(POSITIONED)	statement	removes	the	row	where	the	cursor	is
currently	positioned.

Syntax
DELETE	[FROM]	{table_name	|	view_name}	WHERE	CURRENT	OF
cursor_name

Arguments
FROM

Is	an	optional	keyword	included	for	compatibility	with	other	versions	of
ESQL/C.

table_name

Is	the	same	table	used	in	the	SELECT	statement	portion	of	the	DECLARE
CURSOR	STATEMENT.

view_name

Is	the	same	view	used	in	the	SELECT	statement	portion	of	the	DECLARE
CURSOR	statement.

cursor_name

Is	a	previously	declared,	opened,	and	fetched	cursor.	Cursor	names	can	have
as	many	as	30	characters,	and	can	include	alphanumeric	characters	and	any
symbols	that	are	legal	in	file	names.	Hyphens	(-)	are	not	permitted.	The	first
character	must	be	a	letter.

Remarks
In	addition	to	having	the	functionality	of	the	Transact-SQL	DELETE	statement,
the	Embedded	SQL	DELETE	statement	includes	functionality	known	as
positioned	delete,	which	deletes	the	row	most	recently	fetched	by	a	cursor.	The
DELETE	statement	used	in	standard	Transact-SQL	statements	is	known	as	a

searched	delete.

Note	that	a	positioned	delete	has	no	search	condition.	The	WHERE	CURRENT
OF	option	is	used	in	place	of	a	search	condition	clause.	The	WHERE
CURRENT	OF	option	cannot	be	used	in	a	PREPARE	statement.

In	a	positioned	delete	that	uses	a	browse	cursor,	the	SELECT	statement	used	to
open	the	cursor	must	include	a	FOR	BROWSE	clause.	The	base	table(s)	must
include	a	timestamp	column.	If	an	error	prevents	any	row	found	by	the	search
condition	from	being	deleted,	no	changes	are	made	to	the	database.

When	using	a	browse	cursor,	or	a	standard	cursor	with	optimistic	concurrency
control	(SET	CONCURRENCY	with	the	OPTCC	or	OPTCCVAL	option),	if	the
row	has	been	changed	after	the	last	FETCH	statement,	no	changes	are	made	to
the	database	and	the	value	of	SQLCODE	is	set	to	-532.	Also,	the	SQLERRD3
field	in	the	SQLCA	data	structure	shows	that	no	rows	were	processed.

Examples

EXEC	SQL	DECLARE	c1	CURSOR	FOR
			SELECT	au_fname,	au_lname	FROM	authors	FOR	BROWSE;
EXEC	SQL	OPEN	c1;
while	(SQLCODE	==	0)
{
			EXEC	SQL	FETCH	c1	INTO	:fname,	:lname;
			if	(SQLCODE	==	0)
			{
						printf("%12s	%12s\n",	fname,	lname);
						printf("Delete?	");
						scanf("%c",	&reply);
						if	(reply	==	'y')
						{
									EXEC	SQL	DELETE	FROM	authors	WHERE	CURRENT	OF	c1;
									printf("delete	sqlcode=	%d\n",	SQLCODE(ca));
						}
			}
}

See	Also

DECLARE	CURSOR

FETCH

Embedded	SQL	for	C	and	SQL	Server

DELETE	(SEARCHED)
The	DELETE	(SEARCHED)	statement	removes	table	rows	that	meet	the	search
criteria.	DELETE	is	a	standard	Transact-SQL	statement.

Syntax
DELETE	[FROM]	{table_name	|	view_name}	[WHERE	search_conditions]

Arguments
FROM

Is	an	optional	keyword	included	for	compatibility	with	other	versions	of
ESQL/C.

table_name

Is	the	table	to	remove	rows	from.

view_name

Is	the	view	to	remove	rows	from.

search_conditions

Is	any	expression	that	can	legally	follow	the	standard	Transact-SQL	WHERE
clause.

Remarks
If	you	do	not	use	a	WHERE	clause,	all	rows	in	the	table	specified	in	the
DELETE	statement	are	removed.	The	table,	although	it	no	longer	contains	data,
exists	until	you	use	a	DROP	TABLE	statement.

You	cannot	use	DELETE	on	a	view	with	a	FROM	clause	that	specifies	more
than	one	table.	This	would	change	several	tables	and	is	not	supported.	However,
UPDATE	and	INSERT	statements	that	affect	only	one	base	table	of	the	view	are
supported.

Examples

EXEC	SQL	DELETE	FROM	authors	WHERE	au_lname	=	'White'

Embedded	SQL	for	C	and	SQL	Server

DESCRIBE
The	DESCRIBE	statement	populates	the	SQLDA	data	structure.

Syntax
DESCRIBE	prepared_stmt_name	INTO	:sqlda_struct

Arguments
prepared_stmt_name

Is	a	prepared	SQL	statement.	For	more	information,	see	PREPARE.

sqlda_struct

Is	the	output	SQLDA	data	structure	to	be	populated.

Remarks
The	DESCRIBE	statement	processes	prepared,	dynamic	SQL	statements.	This
statement	populates	the	specified	SQLDA	data	structure	with	the	data	type,	the
length,	and	the	column	name	of	each	column	returned	by	the	specified	prepared
statement.	(Prepared	statements	are	created	by	using	the	PREPARE	statement.
Note	that	the	DESCRIBE	statement	cannot	be	used	in	the	FROM	clause	of	a
PREPARE	statement.)	The	DESCRIBE	statement	works	like	a	PREPARE
statement	with	an	INTO	clause.

Before	using	DESCRIBE,	the	sqln	and	sqlabc	fields	of	the	SQLDA	data
structure	that	are	allocated	by	the	application	should	be	set	to	appropriate	values.
The	sqln	field	must	be	set	to	the	maximum	number	of	column	descriptor	entries
that	can	be	held.	The	sqlabc	field	must	be	set	to	the	length,	in	bytes,	of	the
SQLDA	data	structure.	The	length	is	computed	by	using	the	SQLDASIZE	macro
as	follows:

SQLDASIZE(mysqlda->sqln)

When	the	DESCRIBE	statement	is	executed,	it	sets	the	sqld	field	of	the	SQLDA
data	structure	to	the	number	of	column	descriptors	used	by	the	prepared

statement.	If	a	nonSELECT	statement	was	prepared,	sqld	is	set	to	0.

If	the	application	does	not	know	the	maximum	number	of	column	descriptors
required	for	the	prepared	statement,	it	can	set	sqln	to	0	before	using	the
DESCRIBE	statement.	Then	DESCRIBE	will	set	sqld	to	the	maximum	number
of	column	descriptors	required	without	actually	constructing	any	column
descriptors.

After	the	DESCRIBE	statement	has	populated	the	SQLDA	data	structure,	and
before	it	has	used	the	FETCH	statement,	the	application	must	insert	the	address
of	each	output	variable	into	the	sqldata	field	(part	of	the	sqlvar	field)	of	the
SQLDA	data	structure.

Examples

#define	NUM_RETURN_COLS	2
struct	sqlda	*mysqlda;
EXEC	SQL	BEGIN	DECLARE	SECTION;
char	statement[]	=	"SELECT	au_fname,	au_lname	FROM	authors";
EXEC	SQL	END	DECLARE	SECTION;

mysqlda	=	malloc(SQLDASIZE(NUM_RETURN_COLS));
if	(mysqlda	==	NULL)
{
			return;
}
mysqlda->sqln	=	NUM_RETURN_COLS;
mysqlda->sqldabc	=	SQLDASIZE(NUM_RETURN_COLS);

EXEC	SQL	DECLARE	c1	CURSOR	FOR	stmt1;
EXEC	SQL	PREPARE	stmt1	FROM	:statement;
EXEC	SQL	DESCRIBE	stmt1	INTO	:mysqlda;
//	SQLDA	now	contains	a	description	of	the	dynamic	SQL	statement	//
EXEC	SQL	OPEN	c1;
EXEC	SQL	FETCH	c1	USING	DESCRIPTOR	:mysqlda;

See	Also

PREPARE

Advanced	Programming

Embedded	SQL	for	C	and	SQL	Server

DISCONNECT
The	DISCONNECT	statement	disconnects	one	or	all	database	connections.

Syntax
DISCONNECT	[connection_name	|	ALL	|	CURRENT]

Arguments
connection_name

Is	the	connection	to	be	disconnected.

ALL

Specifies	disconnecting	all	connections.	This	option	must	be	used	before	you
can	exit	the	program.

CURRENT

Specifies	disconnecting	the	current	connection.	The	current	connection	is
either	the	most	recent	connection	established	by	a	CONNECT	TO	statement
or	a	subsequent	connection	set	by	a	SET	CONNECTION	statement.

Remarks
When	a	connection	is	disconnected,	all	cursors	opened	for	that	connection	are
automatically	closed.

To	ensure	a	clean	exit,	an	Embedded	SQL	program	must	issue	a	DISCONNECT
ALL	statement	before	it	exits	the	main	application.

Examples

EXEC	SQL	CONNECT	TO	caffe.pubs	AS	caffe1	USER	sa;
EXEC	SQL	CONNECT	TO	latte.pubs	AS	latte1	USER	sa;
EXEC	SQL	SET	CONNECTION	caffe1;
EXEC	SQL	SELECT	name	FROM	sysobjects	INTO	:name;

EXEC	SQL	SET	CONNECTION	latte1;
EXEC	SQL	SELECT	name	FROM	sysobjects	INTO	:name;
EXEC	SQL	DISCONNECT	caffe1;
EXEC	SQL	DISCONNECT	latte1;
//	The	first	select	takes	place	against	the	pubs	//
//	database	on	server	"caffe."	The	second	SELECT	will	//
//	take	place	against	the	pubs	database	on	server	"latte."	//
//	In	place	of	the	two	"disconnect"	statements	at	the	end,	//
//	you	can	also	write:	//
//	EXEC	SQL	DISCONNECT	ALL;	//

See	Also

CONNECT	TO

SET	CONNECTION

Embedded	SQL	for	C	and	SQL	Server

END	DECLARE	SECTION
The	END	DECLARE	SECTION	statement	marks	the	end	of	a	declaration
section	for	host	variables.

Syntax
END	DECLARE	SECTION

Remarks
The	END	DECLARE	SECTION	statement	must	be	preceded	by	a	BEGIN
DECLARE	SECTION	statement.

Examples

EXEC	SQL	BEGIN	DECLARE	SECTION;
int	id;
char	name[30];
EXEC	SQL	END	DECLARE	SECTION;

See	Also

BEGIN	DECLARE	SECTION

Embedded	SQL	for	C	and	SQL	Server

EXECUTE
The	EXECUTE	statement	runs	a	prepared	embedded	SQL	statement.

Syntax
EXECUTE	prepared_stmt_name	[USING	DESCRIPTOR	:sqlda_struct	|	USING
:hvar	[,...]]

Arguments
prepared_stmt_name

Is	an	SQL	statement	that	was	previously	prepared.

sqlda_struct

Is	an	SQLDA	data	structure	that	was	previously	declared	and	that	contains	a
description	of	the	input	values.

hvar

Is	one	or	more	input	host	variables.

Remarks
The	EXECUTE	statement	processes	dynamic	SQL	statements.	It	runs	the
specified	prepared	SQL	statement	after	it	substitutes	values	for	any	parameter
markers	(?)	present.	(Prepared	statements	are	created	by	using	the	PREPARE
statement.)	Only	statements	that	do	not	return	results	are	supported.

With	the	USING	DESCRIPTOR	:sqlda_struct	option,	the	values	of	the	program
variables	are	substituted	for	parameter	markers	in	the	prepared	statement.	The
program	variables	are	addressed	by	corresponding	sqldata	entries	in	the	SQLDA
data	structure.	(The	sqldata	field	is	part	of	the	sqlvar	field.)

If	the	prepared	statement	contains	parameter	markers,	the	EXECUTE	statement
must	include	either	the	USING	:hvar	option	with	the	same	number	of	host
variables	in	the	same	order	as	in	the	prepared	statement,	or	the	USING
DESCRIPTOR	:sqlda_struct	option	that	identifies	the	SQLDA	data	structure

already	populated	by	the	application.

Also,	the	number	of	parameter	markers	in	the	prepared	statement	must	match	the
number	of	sqldata	entries	(USING	DESCRIPTOR	:sqlda_struct)	or	host
variables	(USING	:hvar).

Examples

EXEC	SQL	BEGIN	DECLARE	SECTION;
char			stmtbuf[]	=	"INSERT	INTO	publishers	VALUES	(?,	?,	?,	?)";
int				pubid;
char			pubname[30];
char			city[30];
char			state[3];
EXEC	SQL	END	DECLARE	SECTION;

//	Prompt	the	user	for	publication	data	//
printf("Enter	publication	ID	number:	");
scanf("%d",	pubid);
printf("Enter	publication	name:	");
scanf("%s",	pubname);
printf("Enter	city:	");
scanf("%s",	city);
printf("Enter	state:	");
scanf("%s",	state);

EXEC	SQL	PREPARE	stmt	FROM	:stmtbuf;

EXEC	SQL	EXECUTE	stmt	USING	:pubid,	:pubname,	:city,	:state;

See	Also

EXECUTE	IMMEDIATE

PREPARE

Embedded	SQL	for	C	and	SQL	Server

EXECUTE	IMMEDIATE
The	EXECUTE	IMMEDIATE	statement	runs	the	embedded	SQL	statement
contained	in	the	specified	host	variable.

Syntax
EXECUTE	IMMEDIATE	:stmt_hvar

Arguments
stmt_hvar

Is	a	character	string	host	variable	that	contains	a	Transact-SQL	statement.

Remarks
The	EXECUTE	IMMEDIATE	statement	must	conform	to	Transact-SQL
statement	rules.	It	cannot	contain	input	parameter	markers	or	host	variables.	It
cannot	return	results.	Results	returned	from	this	statement	are	discarded.
Additionally,	the	statement	cannot	contain	keywords	that	pertain	exclusively	to
ESQL/C.

If	any	rows	are	returned,	SQLCODE	is	set	to	+1,	which	indicates	an	exception.

Examples

strcpy(prep,	"DELETE	FROM	mf_table	WHERE	name='elaine'");

EXEC	SQL	EXECUTE	IMMEDIATE	:prep;

See	Also

EXECUTE

Embedded	SQL	for	C	and	SQL	Server

FETCH
The	FETCH	statement	retrieves	a	specific	row	from	the	cursor.

Syntax
FETCH	[[NEXT	|	PRIOR	|	FIRST	|	LAST]	FROM]	cursor_name	[USING
DESCRIPTOR	:sqlda_struct	|	INTO	:hvar	[,...]]

Arguments
NEXT

Specifies	returning	the	first	row	of	the	result	set	if	this	FETCH	statement	is
the	first	FETCH	against	the	cursor;	otherwise,	specifies	moving	the	cursor
one	row	in	the	result	set.	NEXT	is	the	default	method	used	to	move	through
a	result	set.

PRIOR

Specifies	returning	the	previous	row	in	the	result	set.

FIRST

Specifies	moving	the	cursor	to	the	first	row	in	the	result	set	and	returning	the
first	row.

LAST

Specifies	moving	the	cursor	to	the	last	row	in	the	result	set	and	returning	the
last	row.

cursor_name

Is	a	previously	declared	and	opened	cursor.

sqlda_struct

Is	an	output	SQLDA	data	structure	that	was	previously	populated	by	the
DESCRIBE	statement	and	that	contains	output	value	addresses.	This	option
is	used	only	with	a	cursor	declared	by	prepared	SELECT	statements.
(SELECT	statements	are	prepared	by	using	the	PREPARE	statement.)

hvar

Is	one	or	more	host	variables	to	receive	the	data.

Remarks
If	the	NEXT,	PRIOR,	FIRST,	or	LAST	options	are	not	specified,	the	FETCH
statement	retrieves	the	next	n	rows	from	the	result	set	produced	by	the	OPEN
statement	for	this	cursor	and	writes	the	values	of	the	columns	in	those	rows	to
the	corresponding	host	variables	or	to	addresses	specified	in	the	SQLDA	data
structure.

An	OPEN	cursor_name	statement	must	precede	a	FETCH	statement,	and	the
cursor	must	be	open	while	FETCH	runs.	Also,	the	data	type	of	the	host	variable
must	be	compatible	with	the	data	type	of	the	corresponding	database	column.

If	the	number	of	columns	is	less	than	the	number	of	host	variables,	the	value	of
SQLWARN3	is	set	to	W.	If	an	error	occurs,	no	further	columns	are	processed.
Processed	columns	are	not	undone.	The	SQLCODE	value	of	100	indicates	that
no	more	rows	exist	in	the	result	set.

The	USING	DESCRIPTOR	:sqlda_struct	option	can	be	used	only	with	a
dynamically	defined	cursor.	The	INTO	:hvar	option	can	be	used	with	either	a
dynamic	or	static	cursor.

Examples

EXEC	SQL	DECLARE	C1	CURSOR	FOR
			SELECT	au_fname,	au_lname	FROM	authors	FOR	BROWSE;
EXEC	SQL	OPEN	C1;
while	(SQLCODE	==	0)
{
			EXEC	SQL	FETCH	C1	INTO	:fname,	:lname;
}

See	Also

DECLARE	CURSOR

PREPARE

DESCRIBE

Advanced	Programming

OPEN

Embedded	SQL	for	C	and	SQL	Server

GET	CONNECTION
The	GET	CONNECTION	statement	retrieves	the	DBPROCESS	pointer	for	the
specified	connection	and	stores	the	pointer	in	a	host	variable	for	use	with	DB-
Library	function	calls.

Syntax
GET	CONNECTION	connection_name	INTO	:hvar

Arguments
connection_name

Is	a	previously	opened	connection.

hvar

Is	the	host	variable,	declared	as	data	type	DBPROCESS	*.	The	hvar	option
is	used	to	store	the	DB-Library	connection	pointer.	The	pointer	can	then	be
used	with	DB-Library	function	calls.

Remarks
The	GET	CONNECTION	statement	stores	the	DB-Library	DBPROCESS
pointer	for	an	ESQL/C	connection	in	a	host	variable.	This	is	useful	if	you	want
to	use	features	or	functions	that	are	specific	to	DB-Library	(such	as	text	and
image	handling	functions)	in	your	ESQL/C	program.

As	with	all	DB-Library	programs,	you	must	first	use	#define	to	define	the
appropriate	platform	before	you	include	the	DB-Library	header	files	Sqlfront.h
and	Sqldb.h	and	link	to	the	appropriate	DB-Library	.lib	file.

Programs	for	Microsoft®	Windows	NT®	4.0,	Microsoft	Windows®	95,
and	Microsoft	Windows	98	must	first	use	#define	DBNTWIN32	and
then	link	to	Ntwdblib.lib.

Programs	for	16-bit	Windows	and	QuickWin	must	first	use	#define

DBMSWIN	and	then	link	to	Msdblib3.lib.	

Programs	for	Microsoft	MS-DOS®	must	first	use	#define	DBMSDOS
and	then	link	to	Msdblib3.lib.

If	you	are	using	a	WHENEVER	statement	in	your	program,	the	Embedded	SQL
keyword	sqlerror	must	not	be	uppercase	to	avoid	conflict	with	the	DB	Library-
defined	constant	SQLERROR.

Examples

#define	DBNTWIN32
#include	<windows.h>
#include	<sqlfront.h>
#include	<sqldb.h>

			.
			.
			.

EXEC	SQL	BEGIN	DECLARE	SECTION;
DBPROCESS*	dbproc;
EXEC	SQL	END	DECLARE	SECTION;

EXEC	SQL	CONNECT	TO	gizmo.pubs
			AS	my_connection
			USER	sa
EXEC	SQL	GET	CONNECTION	my_connection
			INTO	dbproc;
if	(dbproc	!=	NULL)
{
			printf("Got	DBPROCESS	connection,	current	database	is	'%Fs'\n",
						dbname(dbproc));
}

else
{
			printf("ERROR:	Getting	DBPROCESS	connection\n");
}

See	Also

CONNECT	TO

Embedded	SQL	for	C	and	SQL	Server

OPEN
The	OPEN	statement	begins	row-at-a-time	data	retrieval	for	a	specified	cursor.

Syntax
OPEN	cursor_name	[USING	DESCRIPTOR	:sqlda	|	USING	:hvar	[,...]]

Arguments
cursor_name

Is	a	previously	declared,	opened,	and	fetched	cursor.

sqlda

Is	an	input	SQLDA	data	structure	that	was	previously	constructed	by	the
application.	The	SQLDA	data	structure	contains	the	address,	data	type,	and
length	of	each	input	parameter.	This	option	is	used	only	with	cursors	that	are
declared	by	dynamical	SQL	statements.

hvar

Is	one	or	more	input	host	variables	that	correspond	to	parameter	markers	in
the	SELECT	statement.	This	option	is	used	only	with	cursors	that	are
declared	by	dynamical	SQL	statements.

Remarks
The	OPEN	statement	runs	the	SELECT	statement	specified	in	the	corresponding
DECLARE	CURSOR	statement	to	produce	a	result	set,	which	is	accessed	one
row	at	a	time	by	the	FETCH	statement.

If	the	cursor	is	declared	with	a	static	SELECT	statement,	the	SELECT	statement
can	contain	host	variables	(hvar)	but	not	parameter	markers	(?).	Host	variables
can	only	be	used	in	place	of	constants.	They	cannot	be	used	in	place	of	the
names	of	tables,	columns,	other	database	objects,	or	keywords.	The	current
values	of	the	host	variables	are	substituted	when	the	OPEN	statement	runs.
Because	the	OPEN	statement	is	for	a	statically	declared	cursor,	it	cannot	contain

the	USING	:hvar	and	USING	DESCRIPTOR	:sqlda	options.

If	the	cursor	is	declared	by	using	a	dynamic	SELECT	statement,	the	SELECT
statement	can	contain	parameter	markers	but	not	host	variables.	Parameter
markers	can	be	used	in	place	of	column	names	in	the	SELECT	statement.	If	the
SELECT	statement	has	parameter	markers,	the	OPEN	statement	must	include
either	the	USING	:hvar	option	with	the	same	number	of	host	variables,	as	in	the
SELECT	statement,	or	the	USING	DESCRIPTOR	:sqlda	option	that	identifies
the	SQLDA	data	structure	already	populated	by	the	application.

With	the	USING	DESCRIPTOR	:sqlda	option,	the	values	of	the	program
variables	are	substituted	for	parameter	markers	in	the	SELECT	statement.	The
program	variables	are	addressed	by	corresponding	sqldata	entries	in	the	SQLDA
data	structure.	For	information	about	SQLDA,	see	Using	the	SQLDA	Data
Structure.

A	separate	database	connection	is	used	for	each	open	browse	cursor.	Each
connection	counts	toward	the	total	number	of	user	connections	configured	on	an
instance	of	Microsoft®	SQL	Server™	2000.	If	an	attempt	to	make	a	new
connection	fails	when	opening	a	browse	cursor,	or	if	a	valid	current	connection
is	not	made	when	opening	a	standard	cursor,	then	run-time	error	-19521	"Open
cursor	failure"	-	usually	occurs.

Examples

EXEC	SQL	DECLARE	c1	CURSOR	FOR
			SELECT	au_fname,au_lname	FROM	authors	FOR	BROWSE;
EXEC	SQL	OPEN	c1;

while	(SQLCODE	==	0)
{
			EXEC	SQL	FETCH	c1	INTO	:fname,:lname;
}

See	Also

CLOSE

SET	CURSOR_CLOSE_ON_COMMIT

DECLARE	CURSOR

Advanced	Programming

FETCH

Embedded	SQL	for	C	and	SQL	Server

PREPARE
The	PREPARE	statement	prepares	SQL	statement	from	a	character	string	in	the
host	variable	for	later	execution.	It	also	associates	the	statement	with	a	symbolic
SQL	name.

Syntax
PREPARE	stmt_name	[INTO	:sqlda]	FROM	:hvar

Arguments
stmt_name

Is	the	statement	to	a	subsequent	EXECUTE	or	OPEN	statement,	or	a
previous	DECLARE	CURSOR	statement.

sqlda

Is	the	output	SQLDA	data	structure	to	be	populated.

hvar

Is	the	host	variable	that	contains	the	SQL	statement.

Remarks
The	PREPARE	statement	processes	dynamic	SQL	statements.	Because	singleton
SELECT	statements	(SELECT	INTO)	are	not	supported	in	dynamic	SQL
statements,	they	are	not	supported	in	PREPARE	statements.

The	statement	name	cannot	be	reused	in	multiple	PREPARE	statements	within
the	same	program	module	(source	code	file).	Statement	names	are	global	within
a	program	module.	PREPARE	statements	cannot	be	shared	by	separately
compiled	programs	linked	into	a	single	executable	module,	or	by	a	program	and
dynamic-link	libraries	(DLLs)	that	execute	in	a	single	process.

You	can	use	a	PREPARE	statement	in	one	of	two	ways:

You	can	open	a	prepared	dynamic	cursor.	(You	must	declare	a	dynamic

cursor	by	using	the	DECLARE	CURSOR	statement	before	you	prepare
a	SELECT	statement.)

You	can	execute	a	prepared	statement.

Prepared	statement	names	are	limited	to	use	in	a	single	cursor	definition.	The
following	statements	used	together	are	not	valid:

EXEC	SQL	DECLARE	cursor1	CURSOR	FOR	prep_select_statement;
EXEC	SQL	DECLARE	cursor2	CURSOR	FOR	prep_select_statement;		//	invalid

If	the	PREPARE	statement	is	used	by	an	EXECUTE	statement,	hvar	cannot
contain	an	SQL	statement	that	returns	results.

When	you	use	PREPARE,	the	SQL	statement	in	:hvar	cannot	contain	host
variables	or	comments,	but	it	can	contain	parameter	markers	(?).	Additionally,
the	SQL	statement	cannot	contain	SQL	keywords	that	pertain	exclusively	to
Embedded	SQL	keywords.

The	following	keywords	cannot	be	used	in	a	PREPARE	statement:

CLOSE FETCH
COMMIT INCLUDE
DESCRIBE OPEN
END-EXEC PREPARE
EXEC	SQL ROLLBACK
EXECUTE WHENEVER

The	INTO	:sqlda	option	merges	the	functionality	of	the	DESCRIBE	statement
with	the	functionality	of	the	PREPARE	statement.	Therefore,	the	following
sample	statements	are	functionally	identical:

EXEC	SQL	PREPARE	gumbo	INTO	:mysqlda	FROM	:hamhock;

Or

EXEC	SQL	PREPARE	gumbo	FROM	:hamhock;

EXEC	SQL	DESCRIBE	gumbo	INTO	:mysqlda;

Note	that	the	SQLDA	data	structure	is	populated	only	for	output	data.	Even	then,
the	application	must	set	the	value	of	each	sqldata	entry	in	the	SQLDA	data
structure	to	the	address	of	the	corresponding	program	variable.	(The	sqldata
field	is	part	of	sqlvar.)	The	SQLDA	data	structure	used	for	input	parameters
must	be	constructed	entirely	by	the	application.	For	more	information,	see	Using
the	SQLDA	Data	Structure.

Examples

EXEC	SQL	BEGIN	DECLARE	SECTION;
char						prep[]	=	"INSERT	INTO	mf_table	VALUES(?,?,?)";
char						name[30];
char						car[30];
double							num;
EXEC	SQL	END	DECLARE	SECTION;

EXEC	SQL	PREPARE	prep_stat	FROM	:prep;

while	(SQLCODE	==	0)
{
			strcpy(name,	"Elaine");
			strcpy(car,	"Lamborghini");
			num	=	4.9;
			EXEC	SQL	EXECUTE	prep_stat	USING	:name,	:car,	:num;
}

See	Also

DECLARE	CURSOR

EXECUTE

DESCRIBE

Advanced	Programming

Embedded	SQL	for	C	and	SQL	Server

SELECT	INTO
The	SELECT	INTO	statement	retrieves	one	row	of	results.	The	SELECT	INTO
statement	is	also	known	as	a	singleton	SELECT	statement.

Syntax
SELECT	[select_list]	INTO	{:hvar	[,...]}	select_options

Arguments
select_list

Is	the	list	of	items	(table	columns	or	expressions)	to	retrieve	data	from.

hvar

Is	one	or	more	host	variables	to	receive	the	select_list	items.

select_options

Is	one	or	more	statements	or	other	options	that	can	be	used	with	the	Transact-
SQL	SELECT	statement	(for	example,	a	FROM	or	WHERE	clause).	The
GROUP	BY,	HAVING,	COMPUTE,	CUBE,	and	ROLLUP	clauses	are	not
supported.

Remarks
The	SELECT	INTO	statement	retrieves	one	row	of	results	and	assigns	the	values
of	the	items	in	select_list	to	the	host	variables	specified	in	the	INTO	list.	If	more
columns	are	selected	than	the	number	of	receiving	host	variables,	then	the	value
of	SQLWARN3	is	set	to	W.	The	data	type	and	length	of	the	host	variable	must	be
compatible	with	the	value	assigned	to	it.	If	data	is	truncated,	the	value	of
SQLWARN3	is	set	to	W.

The	Embedded	SQL	SELECT	INTO	statement	is	compatible	with	the	Transact-
SQL	SELECT	INTO	statement.	The	Embedded	SQL	SELECT	INTO	statement
is	used	only	when	results	are	retrieved	for	substitution	in	the	application.	The
Transact-SQL	SELECT	INTO	statement	does	not	return	results	to	the	application

and	must	be	issued	by	using	the	Embedded	SQL	EXECUTE	statement.

If	more	than	one	row	is	returned,	SQLCODE	is	set	to	+1,	which	indicates	an
exception.

Examples

EXEC	SQL	SELECT	au_lname	INTO	:name	FROM	authors	WHERE	stor_id=:id;

See	Also

BEGIN	DECLARE	SECTION

END	DECLARE	SECTION

Embedded	SQL	for	C	and	SQL	Server

SET	ANSI_DEFAULTS
The	SET	ANSI_DEFAULTS	statement	sets	ANSI	defaults	ON	for	the	duration
of	the	Microsoft®	SQL	Server™	2000	query-processing	session	or	for	the
duration	of	a	running	trigger	or	a	stored	procedure.	This	statement	is	supported
only	for	connections	to	SQL	Server	version	6.5	or	later.

Syntax
SET	ANSI_DEFAULTS	ON;

Arguments
ON

Specifies	SQL-92	compatibility.

Remarks
The	ON	option	sends	the	Transact-SQL	statement	SET	ANSI_DEFAULTS	ON
to	SQL	Server	and	sets	the	following	statements	as	shown:

SET	CONCURRENCY	LOCKCC

SET	CURSORTYPE	CUR_STANDARD

SET	CURSOR_CLOSE_ON_COMMIT	ON

SET	FETCHBUFFER	1

SET	SCROLLOPTION	FORWARD

Note		Setting	the	SET	ANSI_DEFAULTS	statement	to	OFF	is	not	supported.	To
reverse	the	effects	of	the	SET	ANSI_DEFAULTS	statement,	turn	off	each	option
listed	earlier.

See	Also

SET	CONCURRENCY

SET	FETCHBUFFER

SET	CURSOR_CLOSE_ON_COMMIT

SET	SCROLLOPTION

SET	CURSORTYPE

Embedded	SQL	for	C	and	SQL	Server

SET	CONCURRENCY
The	SET	CONCURRENCY	statement	sets	the	concurrency	option	for	standard
cursors.

Syntax
SET	CONCURRENCY	{LOCKCC	|	OPTCC	|	OPTCCVAL	|	READONLY}

Arguments
LOCKCC	(default	if	SET	ANSI_DEFAULTS	is	ON)

Specifies	intent	to	update	locking.	If	a	FETCH	statement	is	issued	within	a
user-defined	transaction,	an	exclusive	lock	is	placed	on	the	data	before	it	is
fetched.	The	exclusive	lock	prevents	others	from	viewing	or	changing	the
data	until	the	lock	is	released	when	the	transaction	closes.

OPTCC	(default	if	SET	ANSI_DEFAULTS	is	not	ON)

Specifies	optimistic	concurrency	control	based	on	a	timestamp	column	(if
available)	or	all	nontext,	nonimage	columns.

OPTCCVAL

Specifies	optimistic	concurrency	control	based	on	all	nontext,	nonimage
columns.

READONLY

Specifies	read-only	cursors.	Data	retrieved	by	a	FETCH	statement	cannot	be
modified.

Remarks
After	the	SET	CONCURRENCY	statement	is	issued,	it	affects	all	subsequent
OPEN	statements.	Using	the	DECLARE	CURSOR	FOR	UPDATE	statement	has
the	same	effect	as	SET	CONCURRENCY	LOCKCC,	and	any	reference	to	the
SET	CONCURRENCY	statement	is	ignored.	The	SET	CONCURRENCY
statement	is	also	ignored	if	you	are	using	browse	cursors.

If	the	LOCKCC	option	is	used,	you	can	choose	to	hold	open	the	user-defined
transaction	only	around	each	fetch.	This	requires	that	a	SET	FETCHBUFFER
statement	be	issued	before	opening	the	cursor.	Or	you	can	choose	to	hold	open
the	user-defined	transaction	for	the	life	of	the	cursor.	Note	that	holding	open	a
transaction	during	LOCKCC	cursor	operations	can	significantly	reduce
concurrency	and	degrade	performance.

If	the	OPTCC	or	OPTCCVAL	option	is	used,	an	UPDATE	WHERE	CURRENT
OF	statement	can	fail	if	the	row	has	been	changed	since	the	last	FETCH
statement.	The	application	must	be	able	to	handle	this	situation.

Examples

EXEC	SQL	SET	CONCURRENCY	READONLY;

See	Also

DECLARE	CURSOR

SET	FETCHBUFFER

SET	ANSI_DEFAULTS

SET	SCROLLOPTION

SET	CURSORTYPE

Standard	DB-Library	Cursors

Embedded	SQL	for	C	and	SQL	Server

SET	CONNECTION
The	SET	CONNECTION	statement	specifies	which	database	connection	to	use
for	subsequent	SQL	statements.

Syntax
SET	CONNECTION	connection_name

Arguments
connection_name

Is	the	name	of	an	existing	database	connection.

Remarks
The	value	for	connection_name	must	match	the	connection	name	specified	in	a
previous	CONNECT	TO	statement.	The	connection_name	can	be	either	the
connection's	literal	name	or	a	host	variable	that	contains	character	values.	SET
CONNECTION	can	be	used	only	with	a	named	connection.

If	you	are	using	connections	across	compilation	modules,	you	must	use	named
connections.

Examples

EXEC	SQL	CONNECT	TO	caffe.pubs	AS	caffe1	USER	sa;
EXEC	SQL	CONNECT	TO	latte.pubs	AS	latte1	USER	sa;
EXEC	SQL	SET	CONNECTION	caffe1;
EXEC	SQL	SELECT	name	FROM	sysobjects	INTO	:name;
EXEC	SQL	SET	CONNECTION	latte1;
EXEC	SQL	SELECT	name	FROM	sysobjects	INTO	:name;
EXEC	SQL	DISCONNECT	caffe1;
EXEC	SQL	DISCONNECT	latte1;
//	The	first	select	will	take	place	against	the	pubs	//

//	database	on	server	"caffe."	The	second	SELECT	will	//
//	take	place	against	the	pubs	database	on	server	"latte."	//
//	In	place	of	the	two	"disconnect"	statements	at	the	end,	//
//	you	can	also	write:	//
//	EXEC	SQL	DISCONNECT	ALL;	//

See	Also

CONNECT	TO

Embedded	SQL	for	C	and	SQL	Server

SET	CURSOR_CLOSE_ON_COMMIT
The	SET	CURSOR_CLOSE_ON_COMMIT	statement	sets	all	cursors	on	a
connection	to	automatically	close	when	a	COMMIT	TRANSACTION	or	a
ROLLBACK	TRANSACTION	statement	is	issued.

Syntax
SET	CURSOR_CLOSE_ON_COMMIT	{	ON	|	OFF	};

Arguments
ON

Specifies	closing	all	cursors	on	a	connection	when	a	COMMIT
TRANSACTION	or	a	ROLLBACK	TRANSACTION	statement	is	issued.

OFF	(default)

Specifies	that	the	calling	application	is	required	to	close	each	cursor	on	a
connection	when	a	COMMIT	TRANSACTION	or	a	ROLLBACK
TRANSACTION	statement	is	issued.

Remarks
You	can	use	the	SET	CURSOR_CLOSE_ON_COMMIT	command	for	standard
and	browse	cursors.

See	Also

CLOSE

SET	ANSI_DEFAULTS

OPEN

Embedded	SQL	for	C	and	SQL	Server

SET	CURSORTYPE
The	SET	CUSORTYPE	statement	sets	the	use	of	standard	(DB-Library)	or
browse	(one	connection	per	cursor)	cursors.

Syntax
SET	CURSORTYPE	{CUR_BROWSE	|	CUR_STANDARD}

Arguments
CUR_BROWSE

Specifies	using	browse	cursors.	Each	browse	cursor	requires	a	separate
connection	to	Microsoft®	SQL	Server™	2000.

CUR_STANDARD	(default)

Specifies	using	standard	DB-Library	cursors.	A	unique	index	must	exist	on
the	source	table.	Each	standard	cursor	shares	the	same	(single)	connection	to
the	instance	of	SQL	Server	used	by	the	application.	This	is	recommended	for
cursors	because	it	does	not	require	a	separate	connection	to	SQL	Server.

Remarks
After	this	statement	is	issued,	it	affects	all	subsequent	cursor	OPEN	statements.
Using	the	DECLARE	CURSOR	FOR	UPDATE	statement	has	the	same	effect	as
SET	CURSORTYPE	CUR_STANDARD.

To	initiate	positioned	update	or	delete	operations	on	a	browse	cursor,	the
SELECT	statement	used	to	open	the	browse	cursor	must	include	a	FOR
BROWSE	clause,	and	the	table	must	include	a	timestamp	column.

The	SELECT	statement	used	to	open	a	standard	cursor	cannot	contain	any	of	the
following	Transact-SQL	clauses:

FOR	BROWSE COMPUTE
SELECT	INTO UNION

For	more	information	about	restrictions	on	standard	cursors	with	a
SCROLLOPTION	of	DYNAMIC,	see	SET	SCROLLOPTION.

If	a	cursor	definition	violates	any	of	the	conditions	noted	earlier,	an	SQLCODE
of	-19521	is	generated.

SQL	Server	treats	each	browse	cursor	connection	as	a	different	user.	Locks	held
by	one	browse	cursor	can	block	operations	attempted	by	other	browse	cursors.
Because	standard	cursors	share	the	same	connection	to	SQL	Server	used	by	the
application,	using	standard	cursors	eliminates	potential	browse	cursor	locking
problems.

Examples

EXEC	SQL	SET	CURSORTYPE	CUR_STANDARD;

See	Also

DECLARE	CURSOR

Standard	DB-Library	Cursors

SET	CONCURRENCY

Browse	Cursors

SET	FETCHBUFFER

Embedded	SQL	for	C	and	SQL	Server

SET	FETCHBUFFER
The	SET	FETCHBUFFER	statement	sets	internally	the	number	of	rows	to	be
retrieved	at	one	time	for	standard	cursors.

Syntax
SET	FETCHBUFFER	num_rows

Arguments
num_rows

Is	the	number	of	rows	to	be	retrieved	at	one	time	from	Microsoft®	SQL
Server™	2000.	Embedded	SQL	for	C	buffers	num_rows	internally,	and	it
returns	one	row	to	the	application	for	each	FETCH	statement	issued.

Remarks
The	default	is	1	if	SET	ANSI_DEFAULTS	is	ON.	Otherwise,	the	default	is	10.
After	this	statement	is	issued,	it	affects	all	subsequent	cursor	OPEN	statements.
Because	a	FETCH	statement	returns	only	a	single	row,	the	SET
FETCHBUFFER	statement	is	for	performance	tuning	only.

The	number	of	fetch	operations	required	to	retrieve	all	data	from	a	cursor	can	be
reduced	by	setting	the	num_rows	parameter	higher	than	the	default	setting	of	10.
You	should	ensure	that	the	client	has	enough	available	memory	for	you	to
increase	this	setting.	You	might	need	to	reduce	the	default	setting	of	the
num_rows	parameter	if	client	memory	is	constrained,	or	if	the	cursors	have	many
columns	or	wide	columns.

Examples

EXEC	SQL	SET	FETCHBUFFER	5;

See	Also

SET	CONCURRENCY

SET	SCROLLOPTION

SET	CURSORTYPE

Standard	DB-Library	Cursors

Embedded	SQL	for	C	and	SQL	Server

SET	OPTION
The	SET	OPTION	statement	sets	values	for	query-processing	options	for
Microsoft®	SQL	Server™	2000.

Syntax
SET	OPTION	{QUERYTIME	|	LOGINTIME	|	APPLICATION	|	HOST}	value

Arguments
QUERYTIME

Specifies	the	number	of	seconds	that	DB-Library	waits	for	SQL	Server	to
respond	to	a	Transact-SQL	statement.	The	default	value	is	0	seconds,
meaning	forever.	This	option	is	functionally	the	same	as	the	DB-Library
dbsettime	function.

LOGINTIME

Specifies	the	number	of	seconds	that	DB-Library	waits	for	SQL	Server	to
respond	to	a	request	for	a	DBPROCESS	connection.	The	default	value	is	10
seconds.	This	option	is	functionally	the	same	as	the	DB-Library
dbsetlogintime	function.

APPLICATION

Specifies	the	application	name	in	the	LOGINREQ	structure.	This	option
supports	a	character	value	only	(not	numerical).	This	option	is	functionally
the	same	as	the	DB-Library	DBSETLAPP	function.

HOST

Specifies	the	workstation	name	in	the	LOGINREQ	structure.	This	option
supports	a	character	value	only	(not	numerical).	This	option	is	functionally
the	same	as	the	DB-Library	DBSETLHOST	function.

value

Is	the	valid	numerical	time-out	value,	in	seconds,	for	the	QUERYTIME	or
LOGINTIME	DB-Library	option.	It	is	also	the	valid	character	value	for	the

APPLICATION	or	HOST	DB-Library	option.	value	can	be	a	character	literal
or	a	host	variable.

Remarks
The	remaining	DB-Library	options	either	do	not	apply	to	Embedded	SQL	(for
example,	row	buffering)	or	can	be	set	by	using	Transact-SQL	statements.

Examples

EXEC	SQL	SET	OPTION	LOGINTIME	5;
EXEC	SQL	CONNECT	TO	caffe.pubs	USER	sa;
//	If	login	to	the	server	"caffe"	does	not	occur	within	five	//
//	seconds,	the	"connect"	attempt	times	out	and	SQL	Server	returns	to	the	program.	//
EXEC	SQL	SET	OPTION	QUERYTIME	2;
EXEC	SQL	SELECT	name	FROM	sysobjects	INTO	:name;
//	If	the	query	response	does	not	occur	within	two	seconds,	//
//	the	query	attempt	times	out	and	returns	to	the	program.	//

See	Also

Using	Host	Variables

Embedded	SQL	for	C	and	SQL	Server

SET	SCROLLOPTION
The	SET	SCROLLOPTION	statement	sets	the	scrolling	functionality	and	row
membership	for	standard	cursors.

Syntax
SET	SCROLLOPTION	{DYNAMIC	|	FORWARD	|	KEYSET}

Arguments
DYNAMIC

Specifies	that	row	membership	in	the	cursor	is	updated	for	every	FETCH
statement,	and	that	the	cursor	scrolls	forward	and	backward.

FORWARD	(default)

Specifies	that	row	membership	in	the	cursor	is	updated	for	every	FETCH
statement,	and	that	the	cursor	scrolls	only	forward.

KEYSET

Specifies	fixing	row	membership	in	the	cursor	at	OPEN	time.

Remarks
After	this	statement	is	issued,	it	affects	all	subsequent	cursor	OPEN	statements.
This	statement	is	ignored	if	you	are	using	browse	cursors.

Row	membership	is	determined	by	the	subset	of	rows	defined	by	the	SELECT
statement	criteria	and	available	for	retrieval	by	using	FETCH	statements.	This
includes	the	specific	data	rows	available	and	what	(if	any)	order	those	rows	are
in.

For	KEYSET	cursors,	row	membership	is	fixed	when	the	OPEN	statement	is
issued.	After	a	KEYSET	cursor	has	been	opened,	if	additional	rows	that	meet	the
SELECT	statement	criteria	are	added	by	another	user,	they	are	not	visible	within
the	opened	cursor.	You	must	close	and	reopen	a	KEYSET	cursor	to	see	the
added	rows.

For	DYNAMIC	and	FORWARD	cursors,	row	membership	is	dynamic.	Each
FETCH	statement	retrieves	the	most	current	data	available.	After	a	DYNAMIC
or	FORWARD	cursor	has	been	opened,	if	rows	that	meet	the	SELECT	statement
criteria	are	added	by	another	user,	they	are	potentially	visible	within	the	opened
cursor.

When	using	the	DYNAMIC	or	FORWARD	scroll	options,	the	SELECT
statement	used	to	open	the	cursor	cannot	contain	a	GROUP	BY	or	HAVING
clause	or	an	ORDER	BY	clause	without	a	unique	index.

Examples

EXEC	SQL	SET	SCROLLOPTION	DYNAMIC;

See	Also

SET	CONCURRENCY

SET	FETCHBUFFER

SET	CURSORTYPE

Standard	DB-Library	Cursors

Embedded	SQL	for	C	and	SQL	Server

UPDATE
The	UPDATE	statement	changes	data	in	the	row	where	the	cursor	is	currently
positioned.

Syntax
UPDATE	{table_name	|	view_name}	SET	{column=expression[,...]}	WHERE
CURRENT	OF	cursor_name

Arguments
table_name

Is	the	table	to	be	updated.

view_name

Is	the	view	to	be	updated.

column

Is	the	column	to	be	updated.

expression

Is	the	value	of	a	particular	column	name.	This	value	can	be	an	expression	or
a	null	value.

cursor_name

Is	a	previously	declared,	opened,	and	fetched	cursor.

Remarks
In	addition	to	having	the	searched	update	functionality	of	the	Transact-SQL
UPDATE	statement,	the	Embedded	SQL	UPDATE	statement	includes
functionality	that	is	known	as	positioned	update.	Positioned	update	changes	the
row	most	recently	fetched	by	a	cursor.

Note		In	a	positioned	update,	the	WHERE	CURRENT	OF	option	is	used	in	place

of	a	search	condition	clause.	The	WHERE	CURRENT	OF	option	cannot	be	used
in	a	PREPARE	statement.

In	a	positioned	update	that	uses	a	browse	cursor,	the	SELECT	statement	used	to
open	the	cursor	must	include	a	FOR	BROWSE	clause,	and	the	base	table(s)	must
include	a	timestamp	column.	If	an	error	prevents	any	row	found	by	the	search
condition	WHERE	CURRENT	OF	from	being	deleted,	no	changes	are	made	to
the	database.

When	using	a	browse	cursor,	or	a	standard	cursor	with	optimistic	concurrency
control	(SET	CONCURRENCY	with	the	OPTCC	or	OPTCCVAL	option),	and
the	row	has	been	changed	after	the	last	FETCH	statement,	no	changes	are	made
to	the	database.	The	value	of	SQLCODE	is	set	to	-532,	which	means	that	a
positioned	UPDATE	or	DELETE	statement	failed	because	of	a	conflict	with
another	user.	Also,	the	SQLERRD3	field	in	the	SQLCA	data	structure	shows	no
rows	processed.

Examples

while	(SQLCODE	==	0)
{
			EXEC	SQL	FETCH	c1	INTO	:fname,:lname;
			if	(SQLCODE	==	0)
			{
						printf("%s	%s",	fname,	lname);
						printf("Update?	");
						scanf("%c",	&reply);
						if	(reply	==	'y')
						{
									printf("New	last	name?	");
									scanf("%s",	&lname);
									EXEC	SQL
												UPDATE	authors	SET	au_lname=:lname
												WHERE	CURRENT	OF	c1;
									printf("update	sqlcode=	%s",	SQLCODE);
						}

			}
	}

See	Also

DECLARE	CURSOR

FETCH

Embedded	SQL	for	C	and	SQL	Server

UPDATE	(Searched)
The	UPDATE	(Searched)	statement	changes	data	in	existing	rows	of	a	table.
UPDATE	(Searched)	is	a	standard	Transact-SQL	statement.

Syntax
UPDATE	{table_name	|	view_name}	SET	[table_name.	|	view_name.]
{column_name={expression	|	NULL	|	(select_statement)}[,...]}	[FROM
{table_name	|	view_name}[,...]]	[WHERE	search_condition]

Arguments
table_name

Is	the	table	to	be	updated.

view_name

Is	the	view	to	be	updated.

column_name

Is	the	column	to	be	updated.

expression

Is	the	value	of	a	particular	column.	This	value	must	be	an	expression.

select_statement

Is	a	valid	SELECT	statement	that	returns	a	single	row	with	a	single	column
of	data.

search_condition

Is	any	expression	that	can	legally	follow	the	standard	Transact-SQL	WHERE
clause.

Remarks
Use	UPDATE	to	change	values.	Use	INSERT	to	add	new	rows.

Updating	a	varchar	or	text	column	with	the	empty	string	('	')	inserts	a	single
space.	All	char	columns	are	padded	to	the	defined	length.

All	trailing	spaces	are	removed	from	varchar	column	data.	Strings	that	contain
only	spaces	are	truncated	to	a	single	space.

The	SQL	batch	size	of	128	KB	limits	the	maximum	amount	of	data	that	you	can
alter	with	UPDATE.	Because	some	memory	is	required	for	the	query's	execution
plan,	the	actual	amount	of	data	you	can	include	in	an	UPDATE	statement	is
somewhat	less	than	128	KB.	For	example,	you	can	update	one	column	of	about
125	KB,	or	two	columns	of	about	60	KB	each.

Examples

UPDATE	authors	SET	au_fname	=	'Fred'	WHERE	au_lname	=	'White'

See	Also

INSERT

JavaScript:hhobj_1.Click()

Embedded	SQL	for	C	and	SQL	Server

WHENEVER
The	WHENEVER	statement	specifies	the	action	(CONTINUE,	GOTO,	or
CALL)	to	be	taken	when	one	of	three	possible	SQLCODE	conditions	is	met
following	the	execution	of	an	Embedded	SQL	statement.

Syntax
WHENEVER	{SQLWARNING	|	SQLERROR	|	NOT	FOUND}	{CONTINUE	|
GOTO	stmt_label	|	CALL	function()}

Arguments
SQLWARNING

Specifies	that	an	Embedded	SQL	warning	occurred	and	was	stored	in	the
SQLCA	data	structure.

SQLERROR

Specifies	that	a	Microsoft®	SQL	Server™	2000	message	was	received	and
stored	in	the	SQLCA	data	structure.

NOT	FOUND

Specifies	that	no	rows	were	returned	from	a	valid	and	properly	executed
SELECT	statement,	or	that	a	FETCH	statement	returned	no	more	rows,	and
that	SQLCODE	was	set	to	100	in	the	SQLCA	data	structure.

CONTINUE	(default)

Specifies	running	the	next	physically	sequential	statement	in	the	source
program.

stmt_label

Is	the	place	in	the	program	where	control	is	assumed.

function()

Is	a	function	in	your	application.	Parentheses	()	are	required	following	the
function	name	(function()).	If	parentheses	are	omitted,	the	function	is	not

called.	The	function	can	include	parameters.

Remarks
SQLCODE	conditions	have	the	following	values.

Condition Value Example
No	error 0 	
NOT	FOUND 100 Fetch	past	end	of	results
SQLWARNING +1 Data	truncation	on	output
SQLERROR <	0	(negative) Constraint	violation

For	more	information	about	how	to	handle	specific	error	conditions
programmatically,	using	SQLSTATE	values,	see	SQLSTATE	Messages.

The	following	SQLCODE	values	are	revised	in	ESQL/C	version	6.5	and	are
carried	to	version	7.0.

Condition New	value Previous	value
Singleton	SELECT	statement	returns
more	than	1	row

-1 1

NULL	value	returns,	but	no	indicator
variable	declared

-1 0

Second	attempt	to	open	cursor	without
corresponding	close	while
CLOSE_ON_COMMIT	is	in	force

-1 0

Server	error	encountered	on	cursor	open -nnn...,	where
nnn	is	a	server
message
number

-19521

WHENEVER	statement	actions	are	related	to	the	position	of	statements	in	the
source	code,	not	in	the	run	sequence.	The	default	is	CONTINUE	for	all
conditions.

Examples

EXEC	SQL	WHENEVER	sqlerror	GOTO	displayca;
			.
			.
			.
EXEC	SQL	WHENEVER	sqlerror	CALL	error_funct(param);

See	Also

Using	the	WHENEVER	Statement

Advanced	Programming

Embedded	SQL	for	C	and	SQL	Server

Building	Applications
To	build	an	Embedded	SQL	for	C	(ESQL/C)	application	for	the	Microsoft®
Windows	NT®	4.0,	Microsoft	Windows®	95,	or	Microsoft	Windows	98
operating	systems,	you	must	compile	the	application	on	a	computer	running
Windows	NT	4.0,	Windows	95,	or	Windows	98	on	the	Intel®	platform.

If	you	need	to	build	an	ESQL/C	application	for	either	16-bit	Windows	or
Microsoft	MS-DOS®,	you	must	use	the	ESQL/C	compilation	environment	in
Microsoft	SQL	Server™	6.0	or	6.5.	SQL	Server	7.0	does	not	supply	the	16-bit
binaries	needed	to	compile	ESQL/C	clients	in	these	environments:

To	build	an	ESQL/C	application	for	the	16-bit	Windows	operating
system,	you	must	compile	the	application	on	a	computer	running	MS-
DOS	or	16-bit	Windows.	

To	build	an	ESQL/C	application	for	the	MS-DOS	operating	system,	you
must	compile	the	application	on	a	computer	running	MS-DOS	version
6.22	or	later.

The	following	illustration	shows	how	application	code	that	contains	Embedded
SQL	statements	is	precompiled,	compiled,	and	linked,	and	how	the	application
operates	at	run	time.

When	you	compile	an	ESQL/C	application,	the	general	process	of	creating	an
executable	program	is	the	same	regardless	of	the	operating	system	you	compile
for.	The	specific	procedures	for	precompiling,	compiling,	and	linking	ESQL/C
applications	for	Windows	NT	4.0,	Windows	95,	or	Windows	98,	16-bit
Windows,	and	MS-DOS	are	described	in	other	topics.

Embedded	SQL	for	C	and	SQL	Server

Steps	for	Building	an	Application
The	following	steps	apply	to	building	all	Embedded	SQL	for	C	(ESQL/C)
applications:

1.	 Run	the	appropriate	nsqlprep	precompiler	to	prepare	the	ESQL/C
program	for	compiling	with	a	C	compiler.

For	more	information	about	nsqlprep,	see	Running	the	nsqlprep
Precompiler.

2.	 Compile	the	C	program	created	by	the	precompiler	by	using	an
appropriate	C	compiler.	The	compiler	creates	object	file(s).

3.	 Link	the	object	file(s),	ESQL/C	library	files,	and	any	other	needed
library	files	to	create	an	executable	file	for	the	desired	environment.

For	more	information	about	compiling	and	linking	ESQL/C	applications,	see	the
ESQL/C	samples	in	the	C:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Samples\Esqlc	subdirectory.

Embedded	SQL	for	C	and	SQL	Server

Embedded	SQL	Applications	at	Run	Time
When	you	run	an	Embedded	SQL	for	C	(ESQL/C)	application,	SQL	statements
are	executed	as	follows:

1.	 For	every	SQL	statement,	the	application	calls	the	appropriate	ESQL/C
run-time	services.

2.	 If	the	SQL	statement	is	static,	the	run-time	services	execute	the	SQL
statement	or	a	previously	compiled	stored	procedure	with	the
appropriate	input	parameters.	Executing	a	stored	procedure	at	run-time
depends	on	your	pre-compile	options	to	nsqlprep	(that	is,
/SQLACCESS	which	creates	stored	procedures	for	static	SQL
statements).	If	the	statement	is	dynamic,	the	run-time	services	issue	the
SQL	statements	directly.		

3.	 The	run-time	services	use	DB-Library	calls	to	send	and	retrieve	data	to
and	from	Microsoft®	SQL	Server™	2000.

4.	 The	run-time	services	insert	data	into	C	program	host	variables	(or
SQLDA	data	structures).	Status	and	error	information	is	inserted	into
the	SQLCA	data	structure.

Embedded	SQL	for	C	and	SQL	Server

Processing	Embedded	SQL	Statements
Embedded	SQL	for	C	(ESQL/C)	fully	supports	all	Transact-SQL	extensions,
including	stored	procedures,	local	variables,	and	control-of-flow	language.	Due
to	syntax	conflicts	with	Embedded	SQL	reserved	keywords,	and	because	static
SQL	statements	are	compiled	into	stored	procedures	by	the	precompiler,	minor
restrictions	apply	to	how	Transact-SQL	extensions	are	implemented.	The
restrictions	are	as	follows:

The	Transact-SQL	EXECUTE	statement	should	be	abbreviated	to
EXEC	to	avoid	conflict	with	the	Embedded	SQL	EXECUTE	statement.	

Transact-SQL	statement	labels	should	not	be	used	in	static	SQL
statements	because	they	conflict	with	the	syntax	for	host	variables.
However,	you	can	use	Transact-SQL	labels	in	dynamic	SQL	statements.

If	Microsoft®	SQL	Server™	2000	returns	an	error	during	compilation,
the	SQL	Server	error	code	appears	in	the	precompiler	error	message	as	a
negative	number,	for	example:

SQL	Syntax	Error	-SQLCODE	=	-207

For	more	information	about	a	list	of	messages	returned	by	ESQL,	see
Embedded	SQL	for	C	Messages.

Because	nsqlprep	converts	all	static	SQL	statements	into	stored
procedures,	all	limitations	for	Transact-SQL	stored	procedures	apply	to
static	SQL	statements.	A	static	SQL	statement	that	contains	a	single
transaction-management	statement	(such	as	COMMIT
TRANSACTION	or	SAVEPOINT)	is	not	compiled	into	a	stored
procedure.	Instead,	the	statement	is	issued	dynamically	at	run	time.

For	more	information	about	restrictions	that	relate	to	other	Embedded	SQL
statements,	see	Embedded	SQL	Statements.

Embedded	SQL	for	C	and	SQL	Server

Access	Plans	and	Bind	Files
The	static	SQL	statements	of	an	application	can	be	issued	at	run	time	(as	are
dynamic	SQL	statements),	or	they	can	be	placed	into	an	access	plan.	An	access
plan	is	a	set	of	stored	procedures.	It	includes	a	separate	stored	procedure	for	each
static	SQL	statement.

Using	the	nsqlprep	precompiler,	you	can	connect	to	a	specified	server	and
database	and	create	an	access	plan.	Each	time	an	application	is	recompiled,	old
stored	procedures	with	the	same	program	module	name	are	dropped.

If	the	database	you	need	to	connect	to	is	unavailable	when	you	are	ready	to
compile,	you	can	use	the	nsqlprep	precompiler	to	create	a	bind	file.	A	bind	file
is	a	Transact-SQL	script	used	to	create	stored	procedures	for	the	access	plan.
You	can	later	use	the	Microsoft®	SQL	Server™	2000	isql	utility	to	apply	the
bind	file	to	the	database	before	you	run	the	application.

Embedded	SQL	for	C	and	SQL	Server

Running	the	nsqlprep	Precompiler
You	must	run	the	appropriate	nsqlprep	precompiler	to	prepare	your	Embedded
SQL	for	C	(ESQL/C)	program	for	compiling	with	a	C	compiler.

Operating	system Precompiler
Microsoft®	Windows	NT®	4.0	(Intel®	platform) Nsqlprep.exe
Microsoft	Windows®	95	or	Windows	98 Nsqlprep.exe
16-bit	Windows Sqlprep.exe
Microsoft	MS-DOS® Sqlprep.exe

The	nsqlprep	precompiler	finds	SQL	statements,	parses	the	SQL	statements,	and
if	applicable,	creates	an	access	plan	or	bind	file.	The	precompiler	creates	a	C
program	that	can	be	compiled	with	an	appropriate	C	compiler.	For	more
information	about	compiling	and	linking,	see	Compiling	and	Linking	Embedded
SQL	Applications.

Embedded	SQL	for	C	and	SQL	Server

Setting	Up	the	nsqlprep	Precompiler
Before	you	run	the	nsqlprep	precompiler,	do	the	following:

The	nsqlprep	precompiler	uses	your	compiler	to	process	header	files

Set	the	INCLUDE	environment	variable	to	include	the	full	path	where
the	Sqlca.h	and	Sqlda.h	ESQL/C	header	files	are	located	and	set	the	LIB
environment	variable	to	include	the	full	path	where	the	library	files	are
located.	There	are	several	ways	to	accomplish	this,	including	either:

Issuing	a	SET	statement	at	the	command	prompt,	such	as

SET	INCLUDE	=	C\Mssql17\DevTools\INCLUSE;
%include%

SET	LIB	=	C\Mssql17\DevTools\LIB;	%LIB%

At	the	command	prompt,	first	running	Vcvar32.bat	(in	the
\Program	Files\Microsoft	Visual	Studio\VC98\Bin	directory)
and	then	running	setenv.bat	(in
\Mssql17\DevTools\Samples\Esqlc	directory).

The	nsqlprep	precompiler	automatically	includes	these	header	files	in
the	C	programs	it	creates.	Do	not	explicitly	include	them	(by	using
#include)	in	an	Embedded	SQL	program.

To	enable	communication	with	Microsoft®	SQL	Server™	2000,	ensure
that	an	appropriate	Net-Library	is	loaded	or	available	on	the	path	when
precompiling	with	the	/DB	and	/PASS	options.	For	example,	the	Named
Pipes	Net-Library	for	the	Microsoft	Windows	NT®	operating	system
(Intel®	platform)	is	Dbnmpntw.dll,	and	the	Named	Pipes	Net-Library
for	the	Microsoft	MS-DOS®	operating	system	is	the	Dbnmpipe.exe
TSR.

Embedded	SQL	for	C	and	SQL	Server

Precompiler	Syntax
You	can	use	either	a	slash	(/)	or	a	hyphen	(-)	to	designate	an	nsqlprep
precompiler	option.	For	example,	/DB	server_name.database_name	and	-DB
server_name.database_name	are	equivalent.

Syntax
nsqlprep	program_file_name	[/SQLACCESS	|	/NOSQLACCESS]
[/FLAGGER	{ENTRY	|	NONE}]	[/DB	[server_name.]database_name	
/PASS	{login[.password]	|	$INTEGRATED}]	[/BIND	file_name]	
[/MSG	file_name]	[/NOLOGO]	[/PLAN	name]	[/NOLINES]	
[/user_defined_option]

Arguments
program_file_name

Is	the	file	name	(without	the	extension)	of	the	Embedded	SQL	program	to
precompile.	The	precompiler	searches	for	the	file	name	and	the	file	extension
.sqc.	For	example,	if	you	run	nsqlprep	myprogrm,	nsqlprep	searches	for
Myprogrm.sqc	and	precompiles	it	if	it	is	found.

/SQLACCESS

Specifies	that	nsqlprep	will	create	stored	procedures	automatically	for	the
static	SQL	statements	in	the	program.	You	must	also	include	/DB	and	/PASS
to	specify	a	direct	connection	to	Microsoft®	SQL	Server™	2000	for	creating
the	stored	procedures,	or	/BIND	to	create	a	bind	file	for	later	loading	of	the
stored	procedures.	Note	that	for	standard	cursors,	the	original	SELECT
statement	is	used	directly,	and	the	stored	procedures	created	by	the
/SQLACCESS	option	are	not	used.

/NOSQLACCESS

Specifies	that	nsqlprep	will	not	automatically	create	stored	procedures	for
static	SQL	statements	in	the	program.	If	you	also	include	/DB	and	/PASS	to
specify	a	direct	connection	to	SQL	Server,	nsqlprep:

Issues	a	message.

Connects	to	SQL	Server.

Drops	stored	procedures	created	by	a	previous	precompile	of	the	same
program.

Completes	the	precompile	without	creating	new	stored	procedures.

/FLAGGER

Specifies	sending	static	SQL	statements	to	the	server	at	compile	time	for
syntax	checking.	Syntax	or	compilation	error	messages	generated	from	the
server	are	displayed	on	the	screen.	If	you	specify	the	/FLAGGER	option,
you	must	also	specify	the	/DB	and	/PASS	options.	You	cannot	use	the
/PLAN	or	/SQLACCESS	options	with	the	/FLAGGER	option.

ENTRY

Specifies	that	static	SQL	statements	are	also	checked	for	FIPS	127-2	SQL
compliance.	If	the	precompiler	encounters	SQL	statements	that	do	not
conform	to	the	specified	FIPS	level	of	support,	an	error	message	is	displayed
on	the	screen	or	stored	in	the	file	specified	by	the	/MSG	option.	Program
output	is	generated	the	same	way	as	when	you	use	the	/NOSQLACCESS
option	(that	is,	stored	procedures	are	not	created).

NONE

Specifies	that	static	SQL	statements	are	not	checked	for	FIPS	127-2	SQL
compliance	but	are	checked	for	correct	syntax.	The	existence	of	database
objects	that	the	statements	refer	to	is	also	verified.

/DB	[server_name.]database_name

Specifies	a	database,	and	optionally	a	server	running	SQL	Server,	in	which	to
put	stored	procedures	for	the	access	plan.	If	SQL	Server	is	running	on	your
local	computer,	you	need	to	supply	only	the	database_name.	Whenever	you
use	the	/DB	option,	you	must	also	use	the	/PASS	option.	server_name	or
database_name	is	the	same	server	or	database	name	in	the	Embedded	SQL

CONNECT	TO	statement	in	the	program..	For	more	information	about	using
/DB,	see	Access	Plan	and	Bind	File	Options.

/PASS	login[.password]

Specifies	the	user	identifier	and	password	for	SQL	Server	access	and	stored
procedure	creation.	Whenever	you	use	the	/PASS	option,	you	must	also	use
the	/DB	option.	login	and	password	are	a	user's	login	ID	and	password,	or	a
user's	login	ID	only.	For	more	information	about	using	/PASS,	see	Access
Plan	and	Bind	File	Options.

$INTEGRATED

Forces	use	of	Windows	Authentication	support	for	the	login[.password]
parameter.	If	Windows	Authentication	support	is	forced,	any	implicit	run-
time	connection	also	uses	Windows	Authentication.

/BIND	file_name

Causes	creation	of	a	bind	file	on	precompiler	execution.	The	extension	.bnd
is	appended	to	the	required	file_name	supplied.	file_name	is	an	MS-DOS
path	and	file	name	specification.	The	file	name	should	not	include	an
extension.

The	bind	file	is	an	isql	script	that	can	be	used	to	create	the	desired	stored
procedures	(it	includes	CREATE	PROCEDURE	statements).	For	more
information	about	using	/BIND,	see	Access	Plan	and	Bind	File	Options.

When	you	create	a	bind	file,	you	must	use	the	Embedded	SQL	CONNECT
TO	statement	to	connect	to	the	server.	If	you	use	this	option	and	no	stored
procedure	is	created,	the	bind	file	is	deleted.

/MSG	file_name

Causes	creation	of	a	text	file	containing	warning	and	error	messages
generated	by	nsqlprep	processing.	The	.msg	extension	is	appended	to	the
specified	file	name.	If	nsqlprep	processing	does	not	generate	any	warning	or
error	messages,	the	file	is	not	generated.	file_name	is	a	Microsoft	MS-DOS®
path	and	file	name	specification.	The	file	name	should	not	include	an
extension.

/NOLOGO

Specifies	suppression	of	the	nsqlprep	banner	and	the	compiler	banner
(nsqlprep	invokes	the	compiler).

/PLAN	name

Specifies	a	nondefault	name	for	an	access	plan.	(The	default	name	is	the
program_file_name	without	an	.sql	extension.)

/NOLINES

Specifies	that	the	generated	.c	file	be	displayed	for	debugging,	instead	of	the
.sqc	file.	You	must	use	the	/NOLINES	option	if	the	.sqc	source	code
contains	C	language	code	that	appears	on	the	same	line	after	an	EXEC	SQL
statement.

/user_defined_option

Is	a	user-defined	option	to	be	passed	to	the	C	compiler.

Embedded	SQL	for	C	and	SQL	Server

Access	Plan	and	Bind	File	Options
By	using	the	/DB	and	/PASS	options	with	the	nsqlprep	precompiler,	you	can
connect	to	a	specified	server	and	database	and	create	an	access	plan	(set	of
stored	procedures)	for	each	separately	compiled	program	module	(compilation
unit).	With	the	/DB	and	/PASS	options,	nsqlprep	makes	a	connection	using	the
specified	server	name,	database	name,	login	ID,	and	password.	The	access	plan
consists	of	a	separate	stored	procedure	for	each	static	SQL	statement	in	each
compiled	program	module.

By	default,	the	stored	procedure	names	consist	of	the	following:

Name	of	the	program	module	

A	date/timestamp	converted	to	eight	printable	ASCII	characters

A	dollar	sign	($)

The	access	plan	section	number

The	date/timestamp	provides	for	re-creating	stored	procedures	for	the	access
plan	with	identical	program	module	names	each	time	the	program	is	compiled.
However,	if	you	use	the	/PLAN	option	and	specify	a	nondefault	plan	name	that
ends	with	an	underscore	(_),	nsqlprep	does	not	include	the	date/timestamp	in	the
stored	procedure	names.	In	that	case,	you	can	reuse	stored	procedures	created
from	a	previous	precompile.

If	the	database	you	need	to	connect	to	is	unavailable	or	you	do	not	want	to	use	it
when	you	are	ready	to	compile,	you	can	use	the	/BIND	option	in	the	nsqlprep
precompiler	command	line	to	create	a	bind	file.	The	bind	file	is	a	Transact-SQL
script	used	to	create	stored	procedures	for	access	plans.	You	can	later	use	the
Microsoft®	SQL	Server™	2000	isql	utility	to	apply	the	bind	file	to	the	database.
However,	to	run	a	bind	file	as	an	SQL	script,	each	line	must	contain	no	more
than	1,000	characters	if	you	want	to	use	the	isql	utility.	If	one	or	more	lines
contain	more	than	1,000	characters,	use	the	isqlw	utility	(SQL	Query	Analyzer).
You	must	apply	the	bind	file	to	the	database	before	you	can	run	the

corresponding	C	application.

If	you	do	not	specify	the	/DB	and	/PASS	options	or	the	/BIND	option,	both
static	and	dynamic	SQL	statements	are	issued	at	run	time.

Embedded	SQL	for	C	and	SQL	Server

Compiling	and	Linking	Embedded	SQL	Applications
The	nsqlprep	precompiler	creates	a	C	program	with	the	file	extension	.c	from	an
Embedded	SQL	for	C	(ESQL/C)	program.	For	example,	from	the	ESQL/C
program	Myprogrm.sqc,	nsqlprep	creates	a	C	program	named	Myprogrm.c.	You
can	compile	the	C	program	for	the	Intel®	platform	by	using	the	appropriate	C
compiler.

The	ESQL/C	precompiler	does	not	support	preprocessing	of	C++	modules.	To
use	Embedded	SQL	in	a	C++	application,	you	must	create	separate	C-language
modules	for	data	access	functions	and	preprocess	only	those	modules.	ESQL/C
also	does	not	support	the	use	of	precompiled	headers	because	the	first	step	in
preprocessing	is	to	expand	all	#include	files.	You	can	improve	compilation	time
by	segregating	data	access	code	into	.sqc	modules	that	have	a	minimum	number
of	#include	files.

If	your	program	contains	a	#include	windows.h	statement,	you	must	precede	it
with	the	following	two	statements:

#define	_OLE2_H_
#define	NOIME

In	this	example,	the	Ole2.h	and	Imm.h	header	files	are	excluded.	The	Ole2.h	and
Imm.h	header	files	are	not	compatible	with	version	6.5	of	ESQL/C.

The	Transact-SQL	keyword	null	should	not	be	uppercase	in	Embedded	SQL
programs	to	avoid	conflict	with	the	C	keyword	NULL.	Also,	the	Embedded	SQL
keyword	delete	and	the	Transact-SQL	keyword	in	should	not	be	uppercase	in
applications	for	32-bit	Windows	to	avoid	conflict	with	32-bit	Microsoft
Windows®-defined	constants	in	Windows.h.

Embedded	SQL	for	C	and	SQL	Server

Compiling	and	Linking	for	Windows	NT	and
Windows	95	or	Windows	98
You	can	compile	and	link	precompiled	ESQL/C	programs	for	Microsoft®
Windows	NT®	and	Microsoft	Windows®	95	or	Microsoft	Windows	98	on	a
computer	running	the	Windows	NT	4.0,	Windows	95,	or	Windows	98	operating
system	by	using	Microsoft	Visual	C++®	version	4.5	or	later.

You	can	set	the	LIB	environment	variable	to	avoid	specifying	library	paths	for
the	Embedded	SQL	libraries,	for	example:

SET	LIB=	C:\Program	Files\Microsoft	SQL	Server\80\Tools\DevTools\Lib;C:\MSDEV\LIB

The	following	libraries	are	supplied	and	used	by	ESQL/C	programs	when	built
for	Windows	NT	4.0	and	Windows	95	or	Windows	98:

Caw32.lib

Sqlakw32.lib

To	compile	and	link	a	program	for	Windows	NT	4.0,	Windows	95	or
Windows	98

1.	 Run	the	compiler	Cl.exe	as	you	would	for	Windows	NT	4.0	or
Windows	95	or	Windows	98	to	create	an	object	file,	for	example:
CL	/c	/W3	/D"_X86_"	MYPROGRM.C

In	this	example,	the	compiler	creates	the	object	file	Myprogrm.obj.
The	/D"_X86_"	compiler	option	defines	the	symbol	necessary	for
Windows	NT	4.0,	Windows	95,	or	Windows	98	operating	systems	that
run	on	Intel®-based	computers.

You	can	use	any	additional	compiler	options	allowed	by	the	compiler.

2.	 Run	the	linker	(Link.exe)	as	you	would	for	Windows	NT	4.0,
Windows	95	or	Windows	98	to	link	the	compiled	ESQL/C	object	file
and	system	libraries,	which	creates	an	executable	file	for	Windows	NT

4.0,	Windows	95,	or	Windows	98.	When	linking	files	for	Windows	NT
4.0,	Windows	95,	or	Windows	98	programs,	you	must	explicitly	link
with	the	Sqlakw32.lib	and	Caw32.lib	libraries;	for	example:
LINK	/NOD	/subsystem:windows	MYPROGRM.OBJ	MYPROGRM.RES	KERNEL32.LIB
GDI32.LIB	USER32.LIB	LIBCMT.LIB	SQLAKW32.LIB	CAW32.LIB

In	the	example,	the	compiled	object	file	Myprogrm.obj,	system
libraries,	and	the	ESQL/C	libraries	Sqlakw32.lib	and	Caw32.lib	are
linked	together	to	create	the	executable	file	Myprogrm.exe	for
Windows	NT	4.0,	Windows	95,	or	Windows	98.

To	run	a	Windows	NT	4.0,	Windows	95,	or	Windows	98	ESQL/C	application,
the	dynamic-link	libraries	Sqlakw32.dll,	Ntwdblib.dll,	and	Dbnmpntw.dll	(or
other	appropriate	Net-Library)	must	be	available	in	the	path.

Embedded	SQL	for	C	and	SQL	Server

Project	Settings	for	Visual	C++
The	following	project	settings	enable	application	development	in	Microsoft®
Visual	C++®.	The	techniques	discussed	apply	to	any	integrated	development
environment.	For	more	information	about	a	specific	manufacturer's	compiler	and
integrated	development	environment,	see	the	compiler	documentation.

You	set	up	ESQL/C	projects	in	the	same	way	you	set	up	projects	that	include	any
additional	component	libraries.

To	add	the	needed	directory	names	to	Visual	C++	environment	settings

1.	 On	the	Tools	menu,	click	Options.

2.	 Click	the	Directories	tab.

3.	 In	the	Show	directories	for	box,	click	Include	files.

4.	 Enter	the	path	for	Microsoft®	SQL	Server™	2000	development
include	files,	typically	x:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Include.

5.	 In	the	Show	directories	for	box,	click	Library	files.

6.	 Enter	the	path	for	SQL	Server	development	library	files,	typically
x:\Program	Files\Microsoft	SQL	Server\80\Tools\DevTools\Include.

7.	 In	the	Show	directories	for	box,	click	Executable	files.

8.	 Enter	the	path	for	SQL	Server	development	binary	executable	files,
typically	C:\Program	Files\Microsoft	SQL	Server\80\Tools\Binn.

You	must	change	the	executable	directories	list	so	Visual	C++	will	correctly

locate	the	nsqlprep	executable	file.

The	following	illustration	shows	adding	the	path	for	header	files	to	the	Visual
C++	include	file	path	list.

As	you	create	each	ESQL/C	source	file,	you	must	indicate	the	preprocessor	steps
necessary	to	generate	the	appropriate	C	source	for	compilation.	Depending	on
the	version	of	Visual	C++,	use	the	Build	menu	or	the	Project	menu	to	locate	the
compilation	settings	for	the	project.

Compilation	settings	can	be	set	at	the	source-file	level,	and	the	custom	build
steps	for	your	ESQL/C	source	files	are	set	at	this	level	as	well.

To	add	custom	build	steps	for	an	ESQL/C	source	file

1.	 On	either	the	Project	menu	(Visual	C++	5.0)	or	the	Build	menu
(Visual	C++	4.x),	click	Settings.	

2.	 Click	the	ESQL/C	source	file	in	the	project's	file	list.	In	Visual	C++
5.0	a	single	instance	of	the	file	appears	in	the	project's	list.	You	can
click	All	configurations	in	the	Settings	for	box	to	set	custom	build
commands	for	both	debug	and	release	versions	of	your	project.	In
Visual	C++	4.x,	you	can	expand	the	file	list	and	select	each	occurrence
of	the	ESQL/C	source	file	to	set	the	custom	build	commands	for	all
project	configurations.

3.	 Click	the	Custom	Build	tab.

4.	 In	the	Build	commands	box,	enter	the	nsqlprep	command.	You	can
use	the	$(InputName)	macro	to	specify	the	file.

5.	 In	the	Output	file(s)	box,	specify	the	name	of	the	output	file.	The
output	file	is	a	C	source	file.	You	can	use	the	$(InputName)	macro	to
specify	the	file.

The	illustration	below	shows	custom	build	settings	for	an	ESQL/C	source	file.

After	you've	successfully	preprocessed	the	ESQL/C	source	files,	you	can	add	the
generated	C	source	to	your	project.

Embedded	SQL	for	C	and	SQL	Server

Compiling	and	Linking	for	16-bit	Windows
Microsoft®	SQL	Server™	2000	does	not	supply	the	environment	for	compiling
ESQL/C	16-bit	Microsoft	Windows®	clients	(the	16-bit	binaries	for	Windows
are	not	included).	However,	these	clients	will	run	under	SQL	Server	2000.	To
compile	an	ESQL/C	16-bit	Windows	client,	you	need	to	use	the	ESQL/C
compilation	environment	in	SQL	Server	6.0	or	6.5,	which	includes	the	16-bit
Windows	binaries.

You	can	compile	and	link	precompiled	ESQL/C	programs	for	16-bit	Windows
on	a	computer	running	the	Microsoft	MS-DOS®	or	16-bit	Windows	operating
system	by	using	the	Microsoft	Visual	C++®	development	system	(16-bit),
version	1.52	or	later.

ESQL/C	source	files	can	be	built	as	either	large	or	medium	memory	model	16-
bit	Windows	executable	files.

You	can	set	the	LIB	environment	variable	to	avoid	specifying	library	paths	for
the	ESQL/C	libraries,	for	example:

SET	LIB=	C:\Program	Files\Microsoft	SQL	Server\80\Tools\DevTools\Lib;C:\MSVC\LIB

The	following	libraries	are	supplied	and	used	by	ESQL/C	programs	when	built
for	16-bit	Windows:

Caw.lib

Sqlakw.lib

To	compile	and	link	a	program	for	16-bit	Windows

1.	 Run	the	compiler	Cl.exe	as	you	would	for	16-bit	Windows	to	create	an
object	file,	for	example:
CL	/c	/W3	/AL	MYPROGRM.C

In	the	example,	the	compiler	creates	the	object	file	Myprogrm.obj.	The
/AL	compiler	option	sets	the	memory	model	of	the	program	to	large.
You	can	use	any	additional	compiler	options	allowed	by	the	compiler.

2.	 Run	the	linker	Link.exe	as	you	would	for	16-bit	Windows	to	link	the
compiled	ESQL/C	object	file	and	system	libraries,	which	creates	an
executable	file	for	Windows.	When	linking	files	for	Windows-based
programs,	you	must	explicitly	link	with	the	Sqlakw.lib	and	Caw.lib
libraries,	for	example:
LINK	/NOD	MYPROGRM.OBJ,,,	LIBW.LIB	LLIBCEW.LIB	SQLAKW.LIB	CAW.LIB,
MYPROGRM.DEF;

In	the	example,	the	compiled	object	file	Myprogrm.obj,	system
libraries	Libw.lib	and	Mlibcew.lib,	and	ESQL/C	libraries	Sqlakw.lib
and	Caw.lib	are	linked	together	to	create	the	large	model,	executable
file	Myprogrm.exe	for	Windows.

To	run	a	16-bit	Windows-based	ESQL/C	application,	the	dynamic-link	libraries
Sqlakw.dll,	Msdblib3.dll,	and	Dbnmp3.dll	(or	other	appropriate	Net-Library)
must	be	available	in	your	path.

Embedded	SQL	for	C	and	SQL	Server

Compiling	and	Linking	for	MS-DOS
Microsoft®	SQL	Server™	2000	does	not	supply	the	environment	for	compiling
ESQL/C	16-bit	Microsoft	MS-DOS®	clients	(the	16-bit	binaries	for	MS-DOS
are	not	included).	However,	these	clients	will	run	under	SQL	Server	2000.	To
compile	an	ESQL/C	16-bit	MS-DOS	client,	you	need	to	use	the	ESQL/C
compilation	environment	in	SQL	Server	6.0	or	6.5,	which	includes	the	16-bit
MS-DOS	binaries.

You	can	compile	and	link	precompiled	ESQL/C	programs	for	MS-DOS	on	a
computer	running	the	MS-DOS	version	6.22	or	later	operating	system	by	using
the	Microsoft	Visual	C++®	development	system	(16-bit),	version	1.52	or	later.

ESQL/C	sources	can	be	built	as	large	memory	model	MS-DOS	executable	files.

You	can	set	the	LIB	environment	variable	to	avoid	specifying	library	paths	for
the	ESQL/C	libraries,	for	example:

SET	LIB=	C:\Program	Files\Microsoft	SQL	Server\80\Tools\DevTools\Lib;C:\MSVC\LIB

The	following	libraries	are	supplied	and	used	by	ESQL/C	programs	when	built
for	MS-DOS:

Car.lib

Rldblib.lib

Sqlakd.lib

To	compile	and	link	a	program	for	MS-DOS

1.	 Run	the	compiler	Cl.exe	as	you	would	for	MS-DOS	to	create	an	object
file,	for	example:
CL	/c	/W3	/AL	MYPROGRM.C

In	the	example,	the	compiler	creates	the	object	file	Myprogrm.obj.	The
/AL	compiler	option	sets	the	memory	model	of	the	program	to	large.

You	can	use	any	additional	compiler	options	allowed	by	the	compiler.

2.	 Run	the	linker	Link.exe	as	you	would	for	MS-DOS	to	link	the
compiled	ESQL/C	object	file	and	system	libraries,	which	creates	an
executable	file	for	MS-DOS.	When	linking	files	for	MS-DOS-based
programs,	you	must	explicitly	link	with	the	Sqlakd.lib,	Rldblib.lib,
Oldnames.lib	and	Car.lib	libraries,	for	example:
LINK	/NOD	MYPROGRM.OBJ,,,	LLIBCE.LIB	SQLAKD.LIB	CAR.LIB	OLDNAMES.LIB
RLDBLIB.LIB,	MYPROGRM.DEF;

In	the	example,	the	compiled	object	file	Myprogrm.obj,	system	library
Llibce.lib,	ESQL/C	libraries	Sqlakd.lib,	Car.lib,	and	Oldnames.lib	and
the	DB-Library	library	Rldblib.lib	are	linked	together	to	create	the
executable	file	Myprogrm.exe	for	MS-DOS.

To	run	an	MS-DOS-based	ESQL/C	application,	load	the	appropriate	Net-Library
TSR.

Embedded	SQL	for	C	and	SQL	Server

Compiling	and	Linking	for	QuickWin
QuickWin	is	a	set	of	libraries	that	helps	convert	source	code	for	Microsoft®	
MS-DOS®	into	16-bit	Microsoft	Windows®-based	applications.	You	can
compile	and	link	precompiled	ESQL/C	programs	for	QuickWin	on	a	computer
that	is	running	the	MS-DOS	or	16-bit	Windows	operating	system	by	using	the
Microsoft	Visual	C++®	development	system	(16-bit),	version	1.52.

Microsoft®	SQL	Server™	version	7.0	does	not	supply	the	environment	for
compiling	ESQL/C	16-bit	MS-DOS	or	16-bit	Windows	clients	(the	16-bit
binaries	for	Windows	and	MS-DOS	are	not	included).	However,	these	clients
will	run	under	SQL	Server	7.0.	To	compile	an	ESQL/C	16-bit	MS-DOS	or	16-bit
Windows	client,	you	need	to	use	the	ESQL/C	compilation	environment	in	SQL
Server	6.0	or	6.5,	which	includes	the	16-bit	binaries.

ESQL/C	sources	can	be	built	as	either	large	or	medium	memory	model	16-bit
Windows,	QuickWin	executables.

You	can	set	the	LIB	environment	variable	to	avoid	specifying	library	paths	for
the	ESQL/C	libraries,	for	example:

SET	LIB=	C:\Program	Files\Microsoft	SQL	Server\80\Tools\DevTools\Lib;C:\MSVC\LIB

The	following	libraries	are	supplied	and	used	by	ESQL/C	for	C	programs	when
built	as	16-bit	Windows,	QuickWin	executable	files:

Caw.lib

Sqlakw.lib

To	compile	and	link	a	program	for	QuickWin

1.	 Run	the	compiler	Cl.exe	as	you	would	for	16-bit	Windows	to	create	an
object	file,	for	example:
CL	/c	/W3	/AM	MYPROGRM.C

In	the	example,	the	compiler	creates	the	object	file	Myprogrm.obj.	The
/AM	compiler	option	sets	the	memory	model	of	the	program	to

medium.	You	can	use	any	additional	compiler	options	allowed	by	the
compiler.

2.	 Run	the	linker	Link.exe	as	you	would	for	16-bit	Windows	to	link	the
compiled	ESQL/C	object	file	and	system	libraries,	which	creates	an
executable	file	for	Windows.	When	linking	files	for	Windows-based
programs,	you	must	explicitly	link	with	the	Sqlakw.lib	and	Caw.lib
libraries,	for	example:
LINK	/NOD	MYPROGRM.OBJ,,,	LIBW.LIB	MLIBCEWQ.LIB	SQLAKW.LIB	CAW.LIB,
	MYPROGRM.DEF;

In	the	example,	the	compiled	object	file	Myprogrm.obj,	system
libraries	Libw.lib	and	Mlibcewq.lib,	and	ESQL/C	libraries	Sqlakw.lib
and	Caw.lib	are	linked	together	to	create	the	executable	file
Myprogrm.exe	for	Windows.

To	run	a	16-bit	Windows-based	ESQL/C	application,	the	dynamic-link	libraries
Sqlakw.dll,	Msdblib3.dll,	and	Dbnmp3.dll	(or	other	appropriate	Net-Library)
must	be	available	in	your	path.

Embedded	SQL	for	C	and	SQL	Server

Debugging	Embedded	SQL	Programs
You	can	use	the	Microsoft	debuggers	(including	the	integrated	debugger	in	16-
bit	Microsoft®	Visual	C++®	and	32-bit	Visual	C++),	Microsoft	CodeView®
window-oriented	debugger	for	Microsoft	Windows®,	and	WinDebug	for
Microsoft	Windows	NT®	4.0,	Windows	95,	and	Windows	98	to	examine	your
Embedded	SQL	for	C	(ESQL/C)	program	while	it	is	executing.	A	Microsoft
debugger	displays	ESQL/C	source	statements	as	lines	of	executable	code.	While
debugging,	you	can	set	breakpoints	on	Embedded	SQL	statements	to	test	host
variables.	To	monitor	SQLCA	and	SQLDA	fields,	you	must	monitor	the	SQLCA
and	SQLDA	data	structures	and	member	variables.	For	example,	you	must
monitor	sqlca->sqlcode	instead	of	the	SQLCODE	macro,	and	you	must	monitor
sqlca->sqlerrd[0]	instead	of	the	SQLERRD1	macro.

When	you	use	the	integrated	debugger	in	16-bit	Visual	C++	or	32-bit	Visual
C++,	you	can	set	breakpoints	on	lines	of	source	code	in	your	.sqc	file.	However,
to	begin	a	debugging	session,	you	must	first	open	the	.c	file	generated	by
nsqlprep	and	make	that	window	active.	Then	on	the	Debug	menu,	click	Go.

If	you	are	using	Visual	C++	5.0	for	example,	you	can	open	the	.exe	file,	and
choose	from	the	menu	BUILD,	START	DEBUG,	STEP	INTO.	For	this	to	work,
you	need	to	compile	and	link	with	a	debug	information	switches.	For	example:

Precompile:

nsqlprep	myprogram	/NOLINES	/NOLOGO	/NOSQLACCESS

Compile:

cl	-c	-G4d	-W3	-Zi	-Od	myprogram.c

Link:

Link	/MAP	/DEBUG.full	/DEBUGTYPE:both	/SUBSYSTEM:console	myprogram.obj	kernel32.lib	libc.lib	sqlakw32.lib	caw32.lib	ntwdblib.lib

For	debugging	the	.c	source	code,	you	need	to	supply	the	/NOLINES
precompiler	option	to	nsqlprep.	This	allows	debugging	directly	into	the	.c	file
instead	of	the	.sqc	file.

When	you	use	CodeView	for	16-bit	Windows	and	step	through	the	code,	the
cursor	disappears	until	it	reaches	the	next	C	statement.

See	Also

Precompiler	Syntax

Embedded	SQL	for	C	and	SQL	Server

Advanced	Programming
Most	of	the	features	used	in	writing	Embedded	SQL	code	are	discussed	in
Embedded	SQL	Programming.

Advanced	programming	topics	include:

Data	type	mappings	from	Transact-SQL	to	C,	and	vice	versa

The	SQLDA	data	structure	for	data	input	and	output

The	contents	of	the	SQLCA	data	structure

The	EXEC	statement	and	how	to	use	it	to	selectively	bypass	the
creation	of	an	access	plan

Embedded	SQL	for	C	is	not	thread-safe.	If	you	are	using	ESQL/C	in	a	threaded
application,	use	only	ESQL/C	calls	from	a	single	thread	of	execution.	It	is	best	if
you	use	the	main	thread.

If	you	place	the	ESQL/C	calls	in	a	thread	other	than	the	main	thread,	the	thread
can	be	started	only	one	time.	The	thread	must	then	remain	available	for	all
subsequent	ESQL/C	needs.	Therefore,	if	you	place	the	ESQL/C	calls	in	a	thread,
and	then	start	and	stop	that	thread	multiple	times	to	accomplish	database	tasks,
you	may	experience	unexpected	behavior.	To	implement	a	thread	that	handles	all
ESQL/C	activity,	set	up	the	thread	with	an	event-triggering	mechanism.

In	ESQL/C,	statements	that	return	only	one	result	set	can	be	executed.	For
example:

CREATE	PROCEDURE	spTest
AS
			SELECT	au_lname
			FROM			authors
			SELECT	au_fname
			FROM			authors

GO

Execution	of	spTest	stored	procedure	produces	two	result	sets	from	Microsoft®
SQL	Server™	2000,	but	ESQL/C	application	will	see	only	the	first	result	set.

See	Also

Embedded	SQL	Programming

Embedded	SQL	for	C	and	SQL	Server

Data	Type	Mapping	for	Embedded	SQL
Embedded	SQL	for	C	(ESQL/C)	maps	C	data	types	to	Microsoft®	SQL
Server™	2000	data	types,	and	vice	versa.	No	Unicode	data	types	are	supported
in	ESQL/C	(for	example,	the	data	types	nvarchar,	nchar,	and	ntext	are	not
supported).	Conversions	are	supported	for	all	non-Unicode	data	types	except
datetime	or	smalldatetime,	money	or	smallmoney,	and,	in	some	instances,
decimal	or	numeric.	Data	types	that	can	be	converted	to	datetime	or
smalldatetime,	money	or	smallmoney,	and	decimal	or	numeric	are	indicated
by	T.

C	data	type
Assigned	SQL
Server	data	type

datetime	or
smalldatetime

money	or
smallmoney

decimal	or
numeric

short smallint F F F
int smallint F F F
long int F F F
float real F F F
double float F F F
char varchar[x]	(1) T T T
void	*p binary	(2) T T T
char	byte tinyint F F F
1				For	more	information,	see	Mapping	Character	Data	Types.	
2				For	more	information,	see	Pointers	as	Host	Variables.

The	above	table	is	valid	for	SQL	Server	version	6.5.	In	SQL	Server	7.0,	mapping
from	one	type	to	another	is	done	by	the	database	server.	So	all	the	above
conversions	are	true	in	SQL	Server	7.0.

Output	data	is	truncated	if	the	receiving	data	type	is	too	short.	This	causes	an
exception	(warning),	and	the	SQLCODE	field	of	the	SQLCA	data	structure	is	set
to	+1.	Input	data	can	be	truncated	if	the	receiving	SQL	Server	column	is	too
short.	However,	in	this	case,	no	exception	is	generated.

Because	text	data	types	are	not	allowed	in	stored	procedures,	you	cannot	use	C
fields	that	are	more	than	255	bytes	long	in	static	SQL	statements	compiled	into
access	plans.

Embedded	SQL	for	C	and	SQL	Server

Mapping	Character	Data	Types
You	can	declare	character	data	types	as	host	variables	with	a	fixed	maximum
length	by	explicitly	supplying	the	length	of	the	character	array,	or	by	declaring
the	host	variable	with	an	initial	value,	for	example:

EXEC	SQL	BEGIN	DECLARE	SECTION;
char	var1[18];
char	var2[]	=	"Initialized	string";
EXEC	SQL	END	DECLARE	SECTION;

In	the	example,	two	host	variables	are	declared,	each	with	a	maximum	length	of
18	bytes.

Host	variables	declared	as	single-byte	characters	with	no	explicit	length	or	initial
values	(for	example,	char	var[3])	are	treated	as	1-byte	integer	data	types.

Here	is	how	C	character	data	types	are	mapped	to	or	from	the	Microsoft®	SQL
Server™	2000	char,	varchar,	or	text	data	types.

Mapped	data	types When	converted
From	C	character	to	SQL
Server	char,	varchar,	or	text

Data	is	copied	and	truncated	or	padded
with	blanks	if	the	SQL	Server	table
receiving	the	columns	is	set	to	a	fixed
length.

To	C	character	from	SQL
Server	char,	varchar,	or	text

Data	is	copied	and,	if	necessary,	truncated
to	the	length	of	the	receiving	field	and	is
terminated	with	a	NULL.	If	data	is
truncated,	the	SQLWARN1	field	of	the
SQLCA	data	structure	is	set.

Embedded	SQL	for	C	and	SQL	Server

Pointers	as	Host	Variables
A	C	host	variable,	declared	as	a	pointer	to	a	void	(void	*p),	is	treated	as	a	data
buffer	of	unknown	length.	Your	program	must	verify	that	enough	memory	is
allocated	to	hold	any	output	data	received.	You	may	also	need	to	modify	the
generated	.c	code	manually	to	specify	the	length	of	the	variable.	For	example,	if
you	declare	the	void	*pChar	variable,	the	precompiler	generates	a	statement	like
the	following.

Sqlasetv(2,	0,	462,	(short)-1,	(void	far	*)pChar,	(void	far	*)0,	(void	far	*)0L);

The	third	parameter	of	-1	indicates	that	this	is	a	pointer.	You	may	have	to	modify
this	length	to	indicate	proper	size	of	data	contained	in	pChar.	The	.c	source	can
then	be	compiled	and	linked	as	usual.

Embedded	SQL	for	C	and	SQL	Server

Mapping	date	or	time	Data
Because	C	does	not	have	a	date	or	time	data	type,	Microsoft®	SQL	Server™
2000	date	or	time	columns	are	converted	to	characters	by	using	the	SQL	Server
default	date	format,	for	example:

mm	dd	yyyy	hh:mm:ss[am	|	pm]

You	can	send	dates	to	SQL	Server	from	C	character	fields	by	using	any	of	the
character	date	formats	accepted	by	SQL	Server.	For	a	date	without	a	time,	use	an
11-byte	receiving	field.	If	data	is	truncated,	the	SQLWARN3	field	of	the	SQLCA
data	structure	is	set.	For	other	formats,	use	the	Transact-SQL	CONVERT
statement.	For	example,	to	convert	a	time	without	a	date,	use	a	statement	similar
to	this:

SELECT	CONVERT(char,	date,	8)	FROM	sales

When	you	attempt	to	put	a	fixed-length	data	type	into	a	buffer	that	is	too	small
for	it,	an	error	occurs	and	no	data	is	copied.

Embedded	SQL	for	C	and	SQL	Server

Mapping	Binary	Data
On	singleton	SELECT	statements	and	cursor	fetches,	Microsoft®	SQL	Server™
2000	binary,	varbinary,	and	image	columns	are	mapped	to	C	host	variables
declared	as	character	arrays	without	any	data	conversion.	The	host	variable	is
treated	as	a	byte	array.	To	retrieve	the	hexadecimal	character	representation	of	a
binary,	varbinary,	or	image	column,	use	the	Transact-SQL	CONVERT
function	on	the	column.

When	input,	a	C	character	array	data	type	can	be	mapped	to	a	SQL	Server
binary,	varbinary,	or	image	column	by	using	dynamic	SQL	statements.	To	do
this,	use	two	question	marks	(??)	as	parameter	markers.	The	data	format	on	input
is	the	raw	binary	data	(not	its	hexadecimal	character	representation.)	If	you
include	at	least	one	space	between	the	parameter	marker	and	its	indicator,	you
can	use	indicator	variables.	You	cannot	use	static	SQL	statements	to	map	binary
data	on	input	parameters.

You	can	use	static	SQL	statements	to	map	binary	data	on	input	parameters.
However,	you	will	need	to	manually	modify	the	generated	.c	code	to	specify	the
length	of	the	variable.	For	example,	if	you	declare	the	void	*pChar	variable,	the
precompiler	will	generate	a	sqlasetv	to	set	the	parameter	length	to	unknown	by
putting	-1	as	the	parameter	length.	The	third	parameter	of	-1	indicates	that	this	is
a	pointer.	You	may	have	to	modify	this	length	to	indicate	proper	size	of	data
contained	in	pChar.	The	.c	source	can	then	be	compiled	and	linked	as	usual.

Embedded	SQL	for	C	and	SQL	Server

Preparing	SQLDA	for	Data	Input	and	Output
The	SQLDA	data	structure	contains	descriptive	information	about	each	input
parameter	or	output	column.	The	structure	contains	the	column	name,	data	type,
length,	and	a	pointer	to	the	actual	data	buffer	for	each	input	or	output	parameter.

For	output	data	that	uses	the	SQLDA	data	structure,	you	can	use	the	DESCRIBE
statement	(or	the	PREPARE	statement	with	the	INTO	option)	to	enter	the
column	name,	data	type,	and	other	data	into	the	appropriate	fields	of	the	SQLDA
data	structure.	DESCRIBE	also	sets	sqld	to	the	number	of	dynamic	host
variables	used	in	the	SQL	statement	being	described.

Before	using	the	SQLDA	data	structure	in	a	PREPARE	INTO	or	DESCRIBE
statement,	your	application	must	set	the	size	of	the	SQLDA	data	structure	in
bytes	and	the	maximum	number	of	entries.	These	numbers	are	reflected	in	the
sqldabc	and	sqln	fields,	respectively.

Before	performing	a	FETCH	statement,	the	application	must	insert	into	the
sqldata	field	the	address	of	each	program	variable	that	will	receive	the	data	from
the	corresponding	column.	(The	sqldata	field	is	part	of	sqlvar	within	the	SQLDA
data	structure.)	If	indicator	variables	are	used,	sqlind	must	also	be	set	to	the
corresponding	address.	The	data	type	field	(sqltype)	and	length	field	(sqllen)	are
filled	with	information	in	the	Microsoft®	SQL	Server™	2000	column	from	a
PREPARE	INTO	or	a	DESCRIBE	statement.	The	value	in	the	data	type	and
length	fields	can	be	overridden	by	the	application	before	a	FETCH	statement	is
executed.	The	sqltype	code	and	the	sqld	address	that	are	assigned	must	be	one	of
the	valid	data	types	listed	in	Valid	Values	for	sqltype.	For	more	information,	see
Valid	Values	for	sqltype.

Before	the	DESCRIBE	or	PREPARE	statement	is	issued,	the	value	of	sqln	must
be	set	higher	than	the	anticipated	number	of	output	columns.	If	the	number	of
columns	is	unknown,	you	can	set	sqln	to	0,	and	then	issue	a	DESCRIBE
statement.	No	column	detail	information	is	moved	into	the	SQLDA	data
structure,	but	the	number	of	columns	in	the	result	set	is	inserted	into	sqld.

To	use	the	SQLDA	data	structure	for	input	data,	your	application	must	supply
data	for	the	fields	of	the	entire	SQLDA	data	structure,	including	the	sqln,	sqld,
sqldabc,	sqltype,	sqllen,	and	sqldata	fields	for	each	variable.	If	the	sqltype	field

has	an	odd	code	number	(value),	the	address	of	the	indicator	variable	must	also
be	supplied.

Embedded	SQL	for	C	and	SQL	Server

SQLDA	Data	Structure
The	SQLDA	data	structure	definition	(from	Sqlda.h)	looks	like	this:

//	SQL	Descriptor	Area	-	SQLDA

struct	sqlda

{ 	 	

	 unsigned	char	sqldaid[8]; //	Eye	catcher	=	'SQLDA		'

	 long	sqldabc; //	SQLDA	size	in	bytes	=	16+44*SQLN

	 short	sqln; //	Number	of	SQLVAR	elements

	 short	sqld; //	Num	of	used	SQLVAR	elements

	 struct	sqlvar 	

	 { 	

	 			short	sqltype; //	Variable	data	type

	 			short	sqllen; //	Variable	data	length

//	Maximum	amount	of	data	<	32K

	 			unsigned	char	FAR 	

	 						*sqldata; //	Pointer	to	variable	data	value

	 			short	FAR	*sqlind; //	Pointer	to	null	indicator

	 			struct	sqlname //	Variable	name

	 			{ 	

	 						short	length; //	Name	length	[1..30]

	 						unsigned	char 	

	 									data[30]; //	Variable	or	column	name

	 			}	sqlname; 	

	 }	sqlvar[1]; 	

}; 	 	

Embedded	SQL	for	C	and	SQL	Server

SQLDA
Here	are	fields	and	data	types	for	the	SQLDA	data	structure.

Field Data	type Contains
sqldaid unsigned	char* Text	string	SQLDA.	This	field	is	not	used

for	FETCH,	OPEN,	or	EXECUTE
statements.

sqldabc long Length	of	the	SQLDA	data	structure	(sqln*
44	+	16).

sqln short Total	number	of	sqlvar	entries	allocated.
Equal	to	the	number	of	input	parameters	or
output	columns.

sqld short Number	of	sqlvar	entries	used.
sqlvar struct Values	listed	in	the	sqlvar	table.	The	values

can	occur	several	times,	listed	once	per
column	in	the	result	set	or	input	parameter.

sqltype short Number	that	represents	the	data	type	of
columns	or	host	variables,	and	that	indicates
whether	null	values	are	allowed.	For
information	about	valid	values,	see	Valid
Values	for	sqltype.

sqllen short External	length	of	a	value	from	a	column.
sqldata unsigned	char

far*
Address	of	the	host	variable	(which	must	be
inserted	by	the	application)	for	FETCH,
OPEN,	and	EXECUTE	statements.	For
DESCRIBE	and	PREPARE	statements,
sqldata	is	not	used.

sqlind short	far* Address	of	an	indicator	variable	for	FETCH,
OPEN,	and	EXECUTE	statements,	if	one
exists.

If	the	column	does	not	permit	a	null	value,
the	field	is	undefined.	If	the	column	permits

a	null	value,	sqlind	is	set	to	-1	if	the	data
value	is	null,	or	to	0	if	the	data	value	is	not
null.	For	DESCRIBE	and	PREPARE
statements,	sqlind	is	not	used.

sqlname struct Name	and	length	of	the	column	(not	used	for
FETCH,	OPEN,	and	EXECUTE	statements).

length short Length	of	the	name	column.
name unsigned	char* Name	of	the	column.	For	a	derived	column,

this	field	contains	the	ASCII	numeric	literal
value	that	represents	the	derived	column's
original	position	within	the	select	list.

Embedded	SQL	for	C	and	SQL	Server

Valid	Values	for	sqltype
Here	are	the	values	for	the	sqltype	field	in	the	SQLDA	data	structure	and
corresponding	Microsoft®	SQL	Server™	2000	data	types	for	which	they	can
serve	as	host	variables	in	a	FETCH	statement	or	an	EXECUTE	statement.	For
each	pair	of	sqltype	codes,	the	odd	number	type	signifies	a	host	variable	with	a
corresponding	null	indicator	variable	needed	for	setting	or	retrieving	null	values.

sqltype
code Description

SQL	Server	data
type

Sample
declaration

392/393 26-byte	date	and	time
char	format	corresponds
to	the	formats	supported
by	dbconvert	for
datetime	to/from	char1.

datetime,
smalldatetime

char	date1[27]	=	
Mar	7	1988	
7:12PM;

444/445 Binary binary,
varbinary,
image,
timestamp

Note		sqltype
444/445	is
automatically
used	for	these
SQL	Server
column	types	on
output.

char
binary1[4097];

452/453 Char	string	<=254	bytes.
Not	automatically	null-
terminated.

Note		Make	sure	you
initialize	the	full	array
with	nulls	when	using	this
type	for	output.

char,	varchar,	or
text

char	mychar[255];

456/457 Length-prefixed	long
character	field.	Not
automatically	null-
terminated.

char,	varchar,	or
text

struct	TEXTVAR

{
				short	len;
				char
data[4097];
}	textvar;

462/463 Null-terminated	string.

Note		Declarations	of
known	length	(mychar1)
are	padded	with	blanks
and	a	terminating	null.
Declarations	of	char
pointers	(mychar2)	are	not
padded	with	blanks	and
the	application	must
ensure	sufficient	space	is
allocated.

char,	varchar,	or
text

char	mychar1[41];

char	*	mychar2;

480/481 8-byte	floating	point. float,	real,	int,
smallint,	tinyint,
decimal,
numeric,	money,
smallmoney

double
mydouble1;

482/483 4-byte	floating	point. float,	real,	int,
smallint,	tinyint,
decimal,
numeric,	money,
smallmoney

float	myfloat1;

496/497 4-byte	integer. int,	smallint,
tinyint,	bit

long		myint1;

500/501 2-byte	integer. smallint,	tinyint,
bit

short	myshort1;

1	For	more	information	about	datetime	conversion,	see	dbconvert.

Here	are	the	data	type	codes	returned	when	using	SQLDA	structures	in

JavaScript:hhobj_1.Click()

DESCRIBE	or	PREPARE	INTO	statements.

SQL	Server	column

sqltype	returned
by	DESCRIBE
or	
PREPARE
INTO Comments

char,	varchar 452/453 452/453	is	a	COBOL	char
data	type.	Not	null-terminated.
It	is	easier	to	use	462/463
from	C.

text 456/457 sqllen	set	to	maximum	of
32767	for	text.

binary,	varbinary,
image,	timestamp

444/445 sqllen	set	to	maximum	of
32767	for	image.

smallint,	tinyint,	bit 500/501
int 496/497
float 480/481
real 482/483
datetime,	smalldatetime 392/393
decimal,	numeric,
money,	smallmoney

484/485 COBOL	decimal	format.	Not
supported	for	FETCH	or
EXECUTE	in	ESQL/C	(use
480	or	482	instead).	Sqllen
encoded	with	scale	and
precision.	Use	sqllen	&=	0xFF
to	get	just	precision.

DESCRIBE	and	PREPARE	INTO	statements	are	only	supported	for	output
columns	of	SELECT	statements.	They	are	not	supported	for	INSERT,	UPDATE,
or	DELETE	statements,	or	for	any	statement	requiring	an	input	host	variable.

Embedded	SQL	for	C	and	SQL	Server

SQLCA	Data	Structure
The	SQLCA	data	structure	contains	status	information	about	the	Embedded	SQL
statement	last	executed.	The	structure	definition	for	SQLCA	(from	Sqlca.h)
looks	like	this:

//	SQL	Communication	Area	-	SQLCA

typedef	struct	sqlca

{

	 unsigned	char 	

	 sqlcaid[EYECATCH_LEN]; //	Eyecatcher	=	'SQLCA			'

	 long	sqlcabc; //	SQLCA	size	in	bytes	=	136

	 long	sqlcode; //	SQL	return	code

	 short	sqlerrml; //	Length	for	SQLERRMC

	 unsigned	char 	

	 		sqlerrmc[SQLERRMC_SIZ]; //	Error	message	tokens

	 unsigned	char	sqlerrp[8]; //	Diagnostic	information

	 long	sqlerrd[6]; //	Diagnostic	information

	 unsigned	char	sqlwarn[8]; //	Warning	flags

	 unsigned	char	sqlext[3]; //	Reserved

	 unsigned	char	sqlstate[5]; //	new	member

}	SQLCA; 	 	

Embedded	SQL	for	C	and	SQL	Server

SQLCA
Here	are	fields	and	data	types	for	the	SQLCA	data	structure.

Field C	data	type Contains
sqlcaid unsigned	char Text	string	SQLCA.
sqlabc long Length	of	the	SQLCA	data	structure.
sqlcode long Status	code	for	the	last-run	SQL	statement:

0				The	statement	ran	without	error.
1				The	statement	ran,	but	an	exception	was
generated.
100				A	FETCH	statement	was	issued,	but	no
more	rows	satisfy	the	SELECT	statement
criteria	used	to	define	the	cursor.	No	rows	were
processed.	
<	0	(negative)				The	statement	did	not	run	due
to	an	application,	database,	system,	or	network
error.

sqlerrm 	 Error	messages	that	consist	of	two	parts.
sqlerrml Length	of	the	error	message	in	sqlerrmc	(0	to

70).
short
sqlerrmc Text	of	the	error	message.	Error	messages

longer	than	70	bytes	are	truncated.
unsigned	char Reserved	(diagnostic	information).

sqlerrp unsigned	char
sqlerrd long Array	of	six	integer	status	codes	(codes	not	in

the	fields	listed	later	are	reserved).
sqlerrd[1] Microsoft®	SQL	Server™	2000	error	number.
sqlerrd[2] SQL	Server	severity	level.
sqlerrd[3] Number	of	rows	affected.
sqlwarn Eight	warning	flags,	each	containing	a	blank	or

W	(flags	not	in	the	fields	listed	later	are
reserved).

sqlwarn[0] unsigned	char Summary	of	all	warning	fields.	Blank	indicates
no	warnings.

sqlwarn[1] unsigned	char W	indicates	a	character	string	was	truncated
during	output	binding

sqlwarn[2] unsigned	char Not	used.
sqlwarn[3] unsigned	char W	indicates	that	the	number	of	columns	does

not	match	the	number	of	host	variables.
sqlext unsigned	char Reserved.
sqlstate unsigned	char SQLSTATE	run-time	error	codes.

WARNING		If	the	number	of	host	variables	and	parameter	markers	does	not
match,	SQLWARN3	is	set	to	W.	This	condition	is	considered	an	exception
(SQLCODE	is	set	to	+1).	Exceeding	the	number	of	host	variables	or	SQLDA
data	structure	entries	is	fatal	(SQLCODE	=	-19313).	During	a	FETCH	statement
or	a	singleton	SELECT	statement,	SQLWARN3	is	set	if	the	number	of	columns
is	not	equal	to	the	number	of	host	variables	(or	SQLDA	data	structure	entries).
The	lower	of	the	two	is	the	number	of	items	actually	processed.	For	more
information	about	SQLCA,	see	Using	the	SQLCA	Data	Structure.

Embedded	SQL	for	C	and	SQL	Server

Selectively	Bypassing	the	Creation	of	Access	Plans
To	run	a	stored	procedure	by	using	a	static	SQL	statement,	include	an	EXEC
statement	before	the	stored	procedure	call	to	bypass	the	creation	of	an	access
plan.	If	you	do	not	include	an	EXECUTE	statement	before	the	stored	procedure
call,	a	stored	procedure	is	created	to	run	the	stored	procedure	that	was	called.
Using	EXECUTE	eliminates	this	extra	step;	for	example:

EXEC	SQL	EXEC	sp-addlogin	:loginame,	:password;

You	can	also	use	the	selective	bypass	method	to	issue	an	SQL	statement
dynamically	from	a	static	SQL	statement	without	using	the	PREPARE	and
EXECUTE	statements,	for	example:

EXEC	SQL	EXEC	CREATE	TABLE	t1	(c1	int,	...);

The	current	values	of	any	host	variables	are	substituted	into	the	statement.

Embedded	SQL	for	C	and	SQL	Server

Defining	Cursors
Standard	cursors	can	be	used	to	scroll	through	and	update	a	result	set.	Standard
cursors	do	not	require	a	unique	index	for	Microsoft®	SQL	Server™	version	6.5
and	later,	do	not	require	a	timestamp	or	a	second	connection	to	a	database	for
updates,	and	do	not	create	a	copy	of	the	entire	result	set.

Note		Standard	cursors	will	be	enhanced	in	later	versions;	however,	browse
cursors	will	not.

These	are	the	cursor	types	and	their	behavior:

Behavior Standard Browse
Connections	to	the
server

All	share	the	same
connection.

One	per	cursor,	plus	one
base	connection	for	all
updates.

timestamp	column Not	required. Required	for	positioned
update	or	delete	operations.

Transaction
behavior

All	cursors	share	the	same
transaction	space.
Standard	cursors	cannot
block	each	other.

Read-only	cursors	can
block	updates	made	by	the
same	program.

Unique	index Not	required	for	SQL
Server	version	6.5	and
later.

Required	for	update	only.

Data	currency Data	values	are	always
current.	Row	membership
depends	on	the
SCROLLOPTION
setting:

If	keyset-driven,
membership	is
fixed	at	cursor-
open	time.	

For	read-only	cursors,	all
data	is	current.

For	updatable	cursors,	the
server	takes	a	snapshot	of
the	data	and	stores	it	in	the
tempdb	database	when	the
cursor	is	opened.

If	dynamic,
membership
changes.

Restrictions	on	use
of	SQL	language

Cannot	be	used	on	stored
procedures.

Cannot	contain	UNION,
GROUP	BY,	and
HAVING	clauses.	In	SQL
Server	version	6.5	and
later,	dynamic	cursors	can
contain	an	ORDER	BY
clause	if	the	table	has	a
unique	index.

Updatable	cursors	require
the	FOR	BROWSE	clause.

Embedded	SQL	for	C	and	SQL	Server

Standard	DB-Library	Cursors
Embedded	SQL	for	C	(ESQL/C)	programs	use	the	SET	SCROLLOPTION,	SET
CONCURRENCY,	SET	FETCHBUFFER,	and	SET
CURSOR_CLOSE_ON_COMMIT	statements	to	control	cursor	options.	All
other	standard	cursor	behavior	is	handled	automatically	by	the	ESQL/C	library.

Standard	cursors	use	the	current	database	connection.	Because	standard	cursors
do	not	use	separate	database	connections	(as	browse	cursors	do),	many	of	the
locking	problems	experienced	with	the	use	of	browse	cursors	are	avoided.
Standard	cursors	also	use	the	cursor	functions	of	DB-Library	and	will	take
advantage	automatically	of	any	future	performance	enhancements	made	to	DB-
Library	cursors.

Cursors	and	Stored	Procedures
Microsoft	cursors	use	catalog	stored	procedures,	which	include:

sp_databases sp_indexes
sp_tables sp_fkeys
sp_columns sp_table_privileges
sp_stored_procedures sp_column_privileges
sp_sproc_columns sp_server_info
sp_pkeys 	

Embedded	SQL	for	C	and	SQL	Server

Cursor	Sensitivity	to	Change
In	ESQL/C,	standard	cursors	fall	into	one	of	two	categories,	depending	on	their
sensitivity	to	change:

Keyset-Driven

Values	can	change,	but	order	and	membership	in	the	result	set	remain	fixed
at	cursor-open	time.

Dynamic

Values,	order,	and	membership	in	the	result	set	can	change.

Embedded	SQL	for	C	and	SQL	Server

Keyset-driven	Standard	Cursors
In	a	keyset-driven	cursor,	the	membership	and	order	of	rows	in	the	result	set	are
fixed	at	cursor-open	time,	but	value	changes	made	by	the	cursor	owner	and
committed	changes	made	by	other	users	are	visible.	If	a	change	disqualifies	a
row	for	membership,	or	affects	the	order	of	a	row,	the	row	does	not	disappear	or
move	unless	the	cursor	is	closed	and	reopened.	Inserted	phantom	rows	data	does
not	appear,	but	changes	to	existing	data	do	appear	as	the	rows	are	fetched.

Specify	keyset-driven	cursors	by	issuing	the	SET	SCROLLOPTION	KEYSET
statement.	Dynamic	standard	cursors	are	the	default	if	no	SET
SCROLLOPTION	statement	is	issued.

In	a	keyset-driven	cursor,	all	keys	for	the	result	set	are	kept	locally	(which	is	one
reason	a	unique	index	is	required).	Given	the	results	of	n	rows,	the	keyset
contains	the	same	n	rows	in	the	result	set.	The	fetch	buffer	contains	10	rows	by
default,	and	moves	forward	through	the	keysets	as	each	FETCH	statement	is
executed.	If	the	SET	ANSI_DEFAULTS	ON	statement	is	issued,	the	fetch	buffer
contains	1	row.	You	can	modify	the	size	of	the	fetch	buffer	by	using	the	SET
FETCH_BUFFER	statement.

Although	values	can	change	between	fetches,	rows	do	not	move	around	if	the
changes	affect	ORDER	BY	columns,	and	they	do	not	disappear	if	they	no	longer
satisfy	the	WHERE	clause.

Embedded	SQL	for	C	and	SQL	Server

Dynamic	Standard	Cursors
In	a	dynamic	standard	cursor,	committed	changes	made	by	anyone	and
uncommitted	changes	made	by	the	cursor	owner	become	visible	the	next	time
the	user	fetches	data.	Changes	include	insertions	and	deletions,	as	well	as
changes	in	order	and	membership.	(Deleted	rows	do	not	leave	holes.)	Dynamic
standard	cursors	cannot	use	a	GROUP	BY	or	HAVING	clause.	Dynamic
standard	cursors	can	use	an	ORDER	BY	clause	in	Microsoft®	SQL	Server™
version	6.5	and	later,	but	only	if	the	table	has	a	unique	index.

Specify	dynamic	standard	cursors	by	issuing	the	SET	SCROLLOPTION
DYNAMIC	statement.	This	statement	sets	the	keyset	equal	to	the	size	of	the
fetch	buffer,	which	is	one	row	in	Embedded	SQL.	Given	a	result	set	of	n	rows,
the	keyset	and	the	fetch	buffer	are	identical.	They	both	contain	a	single	row,
which	moves	forward	through	the	result	set	as	each	FETCH	statement	is
executed.

Embedded	SQL	for	C	and	SQL	Server

Concurrency	Control
Standard	cursors	control,	through	several	options,	concurrent	access.	With
concurrent	access,	data	soon	becomes	unreliable	without	some	type	of	control.
To	activate	the	particular	concurrency	control	desired,	specify	one	of	these
options	in	a	SET	CONCURRENCY	statement.

Option Result
READONLY Updates	are	not	permitted.
LOCKCC Rows	are	locked	when	they	are	fetched	inside	a	user-

initiated	transaction.	No	other	user	can	update	these
rows.	Updates	issued	by	the	cursor	owner	are
guaranteed	to	succeed.

	 With	Microsoft®	SQL	Server™	2000,	locks	placed
by	LOCKCC	prevent	other	users	from	reading	and
updating	the	locked	data.	Use	the	BEGIN
TRANSACTION	and	COMMIT	TRANSACTION
statements	to	hold	the	locks.	For	more	information
about	locking,	see	Holding	Locks.	

OPTCC	and
OPTCCVAL

Fetched	rows	are	not	locked.	Other	users	can	update
or	read	them.

To	detect	collisions	between	updates	issued	by	the	cursor	owner	and	those	issued
by	other	users,	standard	cursors	save	and	compare	timestamps	or	column	values.
Therefore,	if	you	specify	either	of	the	optimistic	concurrency	control	options
(OPTCC	or	OPTCCVAL),	you	may	want	to	design	the	application	to	retry
updates	that	fail	because	of	collisions	with	other	updates.

The	two	optimistic	concurrency	control	options	differ	in	the	way	they	detect
collisions.

Option Method	of	detection
OPTCC Compares	timestamps	if	available;	otherwise,	saves

and	then	compares	the	value	of	all	nontext,	nonimage
columns	in	the	tables	with	their	previous	values.

OPTCCVAL Compares	all	nontext,	nonimage	values	whether	a
timestamp	is	available.

Embedded	SQL	for	C	and	SQL	Server

Holding	Locks
When	using	standard	cursors	with	Microsoft®	SQL	Server™	2000,	the	duration
of	locks	acquired	during	cursor	operations	is	controlled	by	the	application.	In
other	words,	an	application	that	uses	SET	CONCURRENCY	LOCKCC	must
also	issue	a	BEGIN	TRANSACTION	statement	for	the	locking	to	have	any
effect.	To	hold	the	lock	on	the	currently	fetched	row	when	LOCKCC	is	used,	the
application	must	issue	a	BEGIN	TRANSACTION	statement	before	each
FETCH	statement	and	a	COMMIT	TRANSACTION	statement	after	all
operations	on	that	row	are	complete.

For	repeatable-read	consistency,	specify	HOLDLOCK	in	the	SELECT	statement
when	opening	the	standard	cursor,	and	issue	a	BEGIN	TRANSACTION
statement	before	the	first	FETCH	statement.	Locks	are	obtained	as	the	data	is
fetched	and	are	retained	until	the	application	issues	a	COMMIT
TRANSACTION	or	ROLLBACK	TRANSACTION	statement.

Embedded	SQL	for	C	and	SQL	Server

Browse	Cursors
Browse	cursors	are	implemented	as	separate	database	connections	and	are
treated	as	separate	users,	which	can	cause	locking	conflicts	between	cursors	and
UPDATE	statements.

Embedded	SQL	for	C	and	SQL	Server

UPDATE	and	DELETE	Statements
Positioned	UPDATE	and	DELETE	statements	are	used	in	conjunction	with
browse	cursors	and	include	WHERE	CURRENT	OF	clauses	instead	of	search
condition	clauses.	The	WHERE	CURRENT	OF	clause	specifies	the	location	of
the	corresponding	cursor.

Before	a	cursor	can	be	used	by	a	positioned	UPDATE	or	DELETE	statement,	the
SELECT	statement	in	the	cursor	declaration	must	contain	the	FOR	BROWSE
option.	(The	Microsoft®	SQL	Server™	2000	FOR	BROWSE	option	is	similar	to
the	FOR	UPDATE	option	in	other	SQL	databases,	but	you	must	use	SQL	Server
syntax.)	To	use	the	FOR	BROWSE	option,	the	table	must	have	both	a	unique
index	and	a	timestamp	column.

When	performing	a	positioned	UPDATE	or	DELETE	statement,	a	method	called
optimistic	concurrency	control	helps	prevent	conflicts	with	other	users.
Optimistic	concurrency	control	allows	users	to	share	data	with	less	interference
than	they	would	experience	with	locking,	which	is	the	alternative	concurrency
control	method.

Although	optimistic	concurrency	control	minimizes	the	likelihood	of	conflicts
with	other	users,	write	your	application	so	that	it	can	handle	updates	to	tables
that	are	rejected	due	to	locking	conflicts	or	other	problems.	Use	the	SQLCODE
field	in	the	SQL	communications	area	(SQLCA)	data	structure	to	detect	conflicts
with	other	users.	(A	SQLCODE	value	of	-532	means	the	positioned	UPDATE	or
DELETE	statement	failed	because	of	a	conflict	with	another	user.)	For	more
information	about	the	SQLCODE	field,	see	Using	the	SQLCA	Data	Structure.
For	more	information	about	browse-mode	processing,	see	Advanced
Programming.

A	positioned	update	can	be	performed	twice	on	the	same	row.	To	do	this,	use	the
FETCH	statement	to	obtain	the	row,	begin	a	transaction	by	using	BEGIN
TRANSACTION,	and	update	a	nonkey	column	to	itself.	This	locks	the	row	and
prevents	other	users	from	reading	or	updating	it	until	a	COMMIT
TRANSACTION	statement	is	issued.

Embedded	SQL	for	C	and	SQL	Server

Isolation	Levels
An	isolation	level	determines	the	degree	to	which	data	is	isolated	for	use	by	one
process	and	guarded	against	interference	from	other	processes.	With	browse
cursors,	isolation	level	is	controlled	on	a	per-cursor	basis	in	Microsoft®	SQL
Server™	2000.

If	you	do	not	specify	the	HOLDLOCK	option	in	the	DECLARE	CURSOR
statement,	the	isolation	level	is	similar	to	cursor	stability.	SQL	Server	maintains
only	a	share	lock	on	a	single	row	of	the	database	as	you	retrieve	rows	with	the
FETCH	statement	by	using	a	browse	cursor.	As	long	as	the	cursor	is	located	on	a
given	row,	no	other	process	can	update	that	data	page.

When	you	use	the	HOLDLOCK	option,	the	isolation	level	is	set	to	repeatable
read.	With	the	FETCH	statement,	and	by	using	a	browse	cursor,	SQL	Server
maintains	a	share	lock	on	each	fetched	page	of	the	database.	No	updates	are
permitted	to	the	fetched	data	of	the	result	set	as	long	as	the	cursor	is	open,	no
matter	what	its	position	in	the	table.	The	repeatable	read	isolation	level	is	useful
when	you	want	to	scan	a	result	set	and	produce	a	self-consistent	summary	report
without	locking	the	entire	result	set.	Other	users	can	update	rows	of	the	result	set
that	have	not	been	fetched,	but	fetched	rows	cannot	be	updated	until	the	cursor	is
closed.	When	a	cursor	is	declared	with	HOLDLOCK,	the	lock	is	freed	when	the
cursor	closes.	To	reread	a	result	set	without	freeing	the	lock,	reopen	the	cursor
without	closing	it.

When	you	use	a	DECLARE	CURSOR	statement	with	the	FOR	BROWSE
option	(which	is	required	for	UPDATE	or	DELETE	WHERE	CURRENT	OF
statements),	SQL	Server	makes	a	snapshot	of	the	result	set	when	the	cursor	is
opened.	No	locks	are	placed	on	the	original	data;	the	cursor	cannot	detect	any
changes	that	are	made	to	the	data	as	it	fetches	rows.	If	the	cursor	is	reopened,
SQL	Server	makes	a	new	snapshot	of	the	data,	so	the	results	may	not	be	the
same.

You	can	use	a	SELECT	with	HOLDLOCK	to	place	share	locks	on	a	set	of	rows
that	prevents	other	connections	from	updating	the	rows,	and	then	open	a	FOR
BROWSE	cursor	to	repeatedly	read	the	rows.	If	any	modifications	are	needed,
an	UPDATE	with	a	WHERE	CURRENT	OF	clause	can	be	used	to	update	the
row	at	the	cursor	position.	Because	the	SELECT	with	HOLDLOCK	was	issued

by	the	same	connection,	the	share	locks	acquired	by	the	HOLDLOCK	do	not
block	the	UPDATE	statements.	All	the	locks	are	freed	when	the	transaction	is
committed	or	rolled	back.

The	following	example	shows	the	use	of	the	HOLDLOCK	option	with	a	browse
cursor:

/*	Declare	a	cursor	for	browse.	*/
EXEC	SQL	DECLARE	CURSOR	c1	FOR	SELECT	*	FROM	orders	FOR	BROWSE;

/*	Begin	a	transaction	using	dynamic	SQL.	*/
strcpy(prep,	"begin	transaction");
EXEC	SQL	EXECUTE	IMMEDIATE	:prep;

/*	Issue	a	singleton	SELECT	statement	that	checks	all	rows	but	
return	one	row	of	output	only.	*/
EXEC	SQL	SELECT	COUNT(*)	INTO	:count	FROM	orders	HOLDLOCK;

/*	The	result	set	is	now	locked	until	the	transaction	is	complete.
Open	the	cursor	previously	declared	for	browse,	do	some	fetches	
and	updates,	close	it,	reopen	it,	and	so	on.	*/
EXEC	SQL	OPEN	c1;

while	(SQLCODE	==0)
{
			EXEC	SQL	FETCH	c1	INTO	:order_struct;
												.
												.
												.
			EXEC	SQL	UPDATE	orders	SET	trancode	=	:new_code
WHERE	CURRENT	OF	c1;
}

EXEC	SQL	CLOSE	c1;
EXEC	SQL	OPEN	c1;

/*	Some	fetch	and	update	operations	can	be	done	here,	
and	the	tables	will	not	be	changed.	*/

EXEC	SQL	CLOSE	c2;
strcpy(prep,	"commit	transaction");
EXEC	SQL	EXECUTE	IMMEDIATE	:prep;
/*	Now	all	locks	are	free.	*/

Embedded	SQL	for	C	and	SQL	Server

Cursors	and	Lock	Conflicts
Updates	are	issued	through	a	single	database	connection,	including	updates	that
reference	a	cursor	(for	example,	in	an	UPDATE	WHERE	CURRENT	OF
cursor_name	statement).	Because	of	this,	locking	conflicts	do	not	occur	between
updates	issued	under	the	same	CONNECT	TO,	SET	CONNECT,	or	default
connection.

Each	cursor's	retrieval	operations	are	performed	through	a	separate	database
connection.

These	situations	block	cursors:

Cursors	declared	without	FOR	BROWSE	place	a	read	lock	on	the
current	row	as	they	move	through	the	result	set.	No	changes	can	be
made	to	that	row	by	anyone,	not	even	the	cursor	owner,	until	the	cursor
moves	on.

When	the	cursor	attempts	to	read	a	row	that	contains	an	uncommitted
change	(made	by	anyone,	including	the	cursor	owner),	the	cursor	waits
until	the	change	is	committed.

Cursors	declared	with	FOR	BROWSE	must	wait	for	uncommitted
changes	(made	by	anyone,	including	the	cursor	owner)	only	during	the
OPEN	CURSOR	operation.	After	the	cursor	is	open,	subsequent
changes	do	not	cause	the	cursor	to	wait.	When	a	cursor	is	reopened,	it
can	be	blocked	by	uncommitted	changes.

Note		Microsoft®	SQL	Server™	version	6.5	performs	locking	internally	at	the
page	level	rather	than	at	the	row	level.	Therefore,	a	second	operation	can	be
locked	out	by	the	first	cursor	operation	even	though	the	operations	are	accessing
different	rows.

For	information	about	SQL	Server	cursor	locking	mechanisms,	see	Cursor
Transaction	Isolation	Levels.

JavaScript:hhobj_1.Click()

Embedded	SQL	for	C	and	SQL	Server

Reserved	Keywords
Here	are	the	reserved	keywords	for	Embedded	SQL	for	C	(ESQL/C).	Keywords
reserved	for	Transact-SQL	are	also	reserved	for	ESQL/C.	The	application	can
use	these	keywords	in	string	literals	in	SQL	statements	if	the	literal	is	enclosed	in
single	quotes.

APPLICATION FETCH OPTCCVAL
CALL FETCHBUFFER OPTION
CLOSE FOUND QUERYTIME
CONCURRENCY GET READONLY
CONNECT HOST SCROLLOPTION
CONNECTION IMMEDIATE SECTION
CUR_BROWSE INCLUDE SQLCA
CUR_STANDARD INDICATOR SQLDA
CURRENT KEYSET SQLERROR
CURSOR LOCKCC SQLWARNING
CURSORTYPE LOGINTIME USER
DESCRIBE MIXED USING
DESCRIPTOR NOT WHENEVER
DISCONNECT OF WORK
DYNAMIC OPEN
FORWARD OPTCC

Embedded	SQL	for	C	and	SQL	Server

Embedded	SQL	for	C	Messages
Because	Embedded	SQL	for	C	(ESQL/C)	messages	are	not	generated	by
Microsoft®	SQL	Server™	2000,	they	do	not	appear	in	the	sysmessages	table.

Message
number

Run	time/
compile	time Description

-4998 C Attempt	to	connect	to	the	specified	database	server
failed.

-19031 C Unable	to	open	bindfile.
-19051 C Too	many	sections.
-19101 R Statement	too	long.
-19103 R Illegal	%s	value	%s.

Nonnumeric	%s	value	%s.
(Invalid	number	for	the	time-out	value.)

-19104 R/C Incorrect	SQL	statement	syntax.
-19199 C ESQL	keyword(s)	detected	in	PREPARE

statement.
-19306 C Host	variable	used	but	not	declared.
-19313 R Too	few	host	variables.
-19324 C Host	variable	may	not	be	used	in	this	context.
-19408 R Invalid	SQL	data	type	for	SQL_TYP_DECIMAL.
-19413 R Data	overflow	occurred	during	decimal	data

conversion.
-19422 R Unknown	SQL	Server	data	type.
-19423 R Invalid	destination	data	type.
-19501 R No	cursor	declared.
-19505 C Duplicate	cursor	name:	%s.
-19508 R Cursor	not	positioned	on	a	row.
-19514 R Cursor	not	prepared.
-19517 R Cursor	open	attempted	for	non-SELECT	prepared

statement.
-19521 R Open	cursor	failure	for	section	%d	of	plans.

-19523 R Failure	to	locate/close	cursor.	Section	%d,	plan	%s.
-19524 R Table	for	this	cursor	not	updatable.
-19525 R Attempt	to	fetch	on	unopened	cursor.
-19526 R No	access	plan	for	this	cursor.
-19527 R Could	not	get	section	for	this	cursor.
-19528 R Connection	for	section	%d	of	plan	%s	has	NULL

DBPROCESS.
-19701 R NULL	connection	name.
	 	 Connection	%s	not	found.
-19702 R Connection	name	not	found.
	 	 Attempt	to	close	nonexistent	connection.
-19703 R Failed	to	get	DBPROCESS.	

Autoconnect	failure.
-19706 R Login	failure	in	section	%d.
-19707 R Duplicate	connection	name.
-19822 R Improperly	initialized	user	SQLDA.
-19911 C The	SQL	data	type	specified	for	a	host	variable	is

invalid.
-19913 C The	token	identifier	has	already	been	used.
-19917 C Invalid	or	incorrect	option	to	sqlainit().
-19946 C Cursor	%s	not	declared.
-19953 C Invalid	call	type.
-19955 R Text	not	found	in	%s	section	%u.
-19956 R Access	plan	section	or	statement	text	not	found.
-19957 R Access	plan	or	statement	text	not	found.
-19994 R Cannot	run	next	BEGIN	DECLARE	sections.

Statement	ignored.
-19995 R END	DECLARE	encountered	without	preceding

BEGIN	DECLARE	statement.	Statement	ignored.
-19999 C An	internal	error	occurred.

See	Also

Error	Message	Severity	Levels

Embedded	SQL	for	C	Error	Message	Format

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Embedded	SQL	for	C	and	SQL	Server

SQLSTATE	Messages
SQLSTATE	codes	return	values	that	are	error,	warning,	or	"no	data	found"
messages.	Here's	how	SQLSTATE	and	SQLCODE	messages	correspond	to	each
other.

SQLSTATE	code SQLCODE	code
First	digit	greater	than	0 Negative	number
First	digit	equal	to	1 1
First	digit	equal	to	2 100

If	a	WHENEVER	SQLERROR	CALL	myproc()	statement	is	in	effect,	myproc()
is	called	when	SQLSTATE	returns	a	value	with	a	nonzero	first	digit.

Use	SQLSTATE	to	check	for	exceptions	and	warnings.	To	use	SQLSTATE	in	a
program,	you	must	explicitly	declare	SQLSTATE	within	a	host	variable
declaration	block,	for	example:

EXEC	SQL	BEGIN	DECLARE	SECTION	;
char	SQLSTATE	[6]	;		//	5	characters	for	code	and	one	character	for
																//	null	terminator
EXEC	SQL	END	DECLARE	SECTION;

Errors	caught	at	compile	time	by	using	the	/SQLACCESS	option	will	not	be
mapped	to	SQLSTATE	values	at	run	time.

Microsoft®	SQL	Server™	2000	errors	map	to	these	SQLSTATE	codes.

SQLSTATE
code

SQL	Server	message
or	
DB-Library	error
numbers Description

01001 532,10095	(DB-
Library)

Cursor	update	or	delete	failure	due	to
optimistic	concurrency	check	failure.	

01003 8153 Elimination	of	null	values	by	set
operator	(warning).

01004 n/a Select	or	fetch	into	host	variable	that
is	too	short.

02000 n/a No	data	found.	Equivalent	to
SQLCODE	=	100.	Occurs	when:

Cursor	fetch	at	end	of	result
set.

Cursor	fetch	on	empty	result
set.

Singleton	select	returns	no
data.

Searched	delete	affects	no
rows.*

Insert/select	affects	no
rows.*

Searched	update	affects	no
rows.*	

*	These	conditions	are	only	detected
when	the	program	is	compiled	with
the	NOSQLACCESS	option	to
NSQLPREP.

07002 n/a Number	of	columns	does	not	match
number	of	host	variables.

21000 512 Singleton	select	returns	more	than
one	row,	or	subquery	preceded	by	=
returns	more	than	one	value.

22001 8152 String	data	truncated	(on	right)	on
insert	or	update.

22002 n/a Null	value	returned	with	no	indicator
variable	provided.

22003 168,220,232,234,
236-238,244,246,248,
519-524,535,8115,
10015	(DB-Library)

Arithmetic	overflow	error.

22005 206,235,245,247,249,
256,257,305,409,518,
529

Data	type	conversion	error.

22008 210,211,241,242,295,
296,517

Data	type	conversion	error.

22012 8134 Divide	by	zero	error.
22019 1010,	506 Invalid	escape	character.
22022 n/a Indicator	variable	overflow.	
22024 n/a Unterminated	C	string	passed	as	input

host	variable.
22025 310 Invalid	escape	sequence,	for	example,

escape	char	not	followed	by	%,	_,	or
escape	char.

23000 233,272,273,515,530,
547,1505,1508,2601,
2615,2626,2627,3604,
3605

Constraint	violation.

24000 n/a Invalid	cursor	state.	
25000 266,277,611,628,3902,

3903,3906,3908,6401
Transaction	state	error.

40001 1205,1211,2625,
3309,7112

Transaction	rollback	due	to	deadlock.

42000 207,208,213,229,
230,260

Syntax	error,	permission	violation,	or
other	nonspecific	error.

44000 550 View	with	check	option	violation.

Embedded	SQL	for	C	and	SQL	Server

Embedded	SQL	for	C	Samples
By	default,	Microsoft®	SQL	Server™	2000	Setup	installs	the	Embedded	SQL
for	C	(ESQL/C)	sample	source	code	in	x:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Samples\Esqlc.

Before	you	build	any	of	the	sample	programs,	use	the	Setenv.bat	batch	file	to
add	the	SQL	Server	development	file	header	and	library	directories	to	the
INCLUDE	and	LIB	environment	variables.	Edit	the	Setenv.bat	file	to	set	the
variables	as	appropriate.

You	can	build	any	of	the	sample	programs	using	the	supplied,	general	purpose
makefile.	The	single	makefile,	Makefile,	contains	everything	required	to	build
an	Embedded	SQL	program.

The	default	values	for	Makefile	arguments	support	building	the	samples	as
Microsoft	Win32®	console	applications.	Makefile	arguments	can	be	supplied	in
the	command	prompt,	or	they	can	be	set	as	environment	variables	for	rapid
processing	of	several	example	source	files.	For	example,	SET
SERVER=MyServer	could	be	used	to	cause	nsqlprep	to	use	MyServer	as	the
build	target	for	ESQL/C	stored	procedure	creation.

Makefile
argument

Default
value Description

APP Name	of	the	sample	source	file	to	build.	Do	not
include	a	file	extension.

UTIL Name	of	the	utility	source	file.	Do	not	include
a	file	extension.	The	default	value	for	the
utility	file	is	based	on	the	value	of	the
SUBSYS	argument.

ENV dos Build	sample	for	execution	in	Microsoft	MS-
DOS®.

win16 Build	sample	as	a	16-bit	Microsoft	Windows®
application.

qwin Build	console	applications	as	16-bit	Windows,
QuickWin	applications.

win32i Default.	Build	applications	for	32-bit	Windows
operating	systems.

MODEL medium When	building	a	sample	for	MS-DOS	or	16-bit
Windows,	build	the	sample	for	the	medium
memory	model.

large Default.	When	building	the	sample	for	MS-
DOS	or	16-bit	Windows,	build	the	sample	for
large	memory	model.

SUBSYS console Default.	Build	sample	as	a	console	(command
window)	application.	Specifying	console
causes	the	UTIL	argument	to	default	to	gcutil.

windows Build	the	sample	as	a	Windows	application.
Specifying	windows	causes	the	UTIL	argument
to	default	to	gwutil.

DEBUG 0 Default.	Build	a	release	version	of	the	sample.
The	executable	does	not	contain	debugger
support.

1 Build	a	debug	version	of	the	sample.
SQLACCESS 0 Do	not	attempt	to	connect	to	a	server	running

SQL	Server	and	do	not	create	stored
procedures	to	support	SQL	statements
embedded	in	C	source	code.
Attempt	to	connect	to	an	instance	of	SQL
Server	and	create	stored	procedures.

1 The	default	value	of	SQLACCESS	is	based	on
the	presence	or	absence	of	a	LOGIN	argument
value.	Specify	SQLACCESS	to	override	the
default	assignment.

BIND 0 Default.	Do	not	create	a	bind	file.
1 Create	a	bind	file.

SERVER Name	of	an	instance	of	SQL	Server	to	use	for
stored	procedure	creation.

LOGIN SQL	Server	login	account.	The	identifier	is
used	by	nsqlprep	to	connect	to	the	server	for
stored	procedure	creation.

PASSWORD SQL	Server	password.	Used	by	nsqlprep	to
connect	to	the	server.

DATABASE SQL	Server	database	nsqlprep	will	use	when
creating	stored	procedures.	The	default	is
pubs.

For	information	about	nmake	command	prompts	that	build	a	particular	example,
see	the	documentation	for	that	example.

When	started,	each	sample	application	accepts	the	following	arguments	for
specifying	an	instance	of	SQL	Server:	the	login	ID,	password,	and	database	to
use.	Each	sample	application	generates	a	prompt	for	unspecified	options.

Syntax
program	[{/s	|	/S}	[server_name]]	
[{/u	|	/U}	login_id]	
[{/p	|	/P}	[password]]
[{/d	|	/D}	database]

Arguments
program

Is	the	sample	program	started.

server_name

Is	the	name	of	an	instance	of	SQL	Server	to	connect	to.	If	server_name	is
omitted,	the	local	SQL	Server	instance	is	used.

login_id

Is	the	login	ID	of	an	instance	of	SQL	Server	to	connect	to.

password

Is	the	password	of	an	instance	of	SQL	Server	to	connect	to.	If	password	is
omitted,	a	NULL	password	is	assumed.

database

Is	the	database	to	use.

Embedded	SQL	for	C	and	SQL	Server

GENCHAR	(Generic	for	C)
Genchar	is	a	generic	Embedded	SQL	for	C	(ESQL/C)	character-mode	program
written	using	plain	C,	standard	C	libraries,	and	Embedded	SQL	statements.
Genchar	connects	to	a	specified	instance	of	Microsoft®	SQL	Server™	2000	and
issues	a	SELECT	statement	query	from	the	authors	table	in	the	pubs	database.

Default	Location
x:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\Esqlc

Running	the	Sample
You	can	build	Genchar	for	the	following	environments	using	the	associated
commands.

Environment Command
Microsoft	Windows®	2000,	
Microsoft	Windows	NT®	4.0
and
Microsoft	Windows	95/98

nmake	-f	"makefile."	APP="genchar"

Microsoft	MS-DOS® nmake	-f	"makefile."	APP="genchar"
ENV="dos"

QuickWin nmake	-f	"makefile."	APP="genchar"
ENV="qwin"

Remarks
Genchar	uses	these	files.

Gcutil.c Genchar.h
Gcutil.h Quickwin.def
Genchar.sqc 	

See	Also

Samples

JavaScript:hhobj_1.Click()

Embedded	SQL	for	C	and	SQL	Server

Genwin	(Generic	for	Windows	NT,	Windows	95,
Windows	98,	and	16-bit	Windows)
Genwin	is	a	generic	Embedded	SQL	for	C	(ESQL/C)	program	for	Microsoft®
Windows®	2000,	Microsoft	Windows	NT®	4.0,	Microsoft	Windows	95,	and
Microsoft	Windows	98,	and	16-bit	Windows	written	using	the	Win16/Microsoft
Win32®	API,	C	language,	standard	libraries	for	16-bit	Windows	and	C,	and
Embedded	SQL	statements.	Genchar	connects	to	a	specified	instance	of
Microsoft	SQL	Server™	2000	and	issues	a	SELECT	statement	query	from	the
authors	table	in	the	pubs	database.

Default	Location
x:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\Esqlc

Running	the	Sample
You	can	build	Genwin	for	the	following	environments	using	the	associated
commands.

Environment Command
Microsoft	Windows	2000,	
Microsoft	Windows	NT	4.0,
Microsoft	Windows	95,	and
Microsoft	Windows	98

nmake	-f	"makefile."	APP="genwin"
SUBSYS="windows"

16-bit	Windows nmake	-f	"makefile."	APP="genwin"
SUBSYS="windows"	ENV="win16"

Remarks
Genwin	uses	these	files.

Genwin.def Genwin.sqc
Genwin.h Gwutil.c

Genwin.ico Gwutil.h
Genwin.rc 	

See	Also

Samples

JavaScript:hhobj_1.Click()

Embedded	SQL	for	C	and	SQL	Server

Edblib	(Embedded	SQL	and	DB-Library	for
Windows	NT,	Windows	95,	Windows	98,	and	16-bit
Windows)
Edblib	is	an	Embedded	SQL	for	C	(ESQL/C)	and	DB-Library	program	for
Microsoft®	Windows®	2000,	Microsoft	Windows	NT®	4.0,	Microsoft
Windows	95,	and	Microsoft	Windows	98,	and	16-bit	Windows	written	using	the
Win16/Microsoft	Win32®	API,	C	language,	standard	libraries	for	16-bit
Windows	and	C,	Embedded	SQL	statements,	and	DB-Library	functions.	Edblib
connects	to	a	specified	instance	of	Microsoft	SQL	Server™	2000	and	issues	a
SELECT	statement	query	from	the	authors	table	in	the	pubs	database	using
ESQL/C	and	DB-Library.	It	uses	the	GET	CONNECTION	statement	to	obtain
the	DB-Library	DBPROCESS	connection	pointer.

Default	Location
x:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\Esqlc

Running	the	Sample
You	can	build	Edblib	for	the	following	environments	by	using	the	associated
commands.

Environment Command
Microsoft	Windows	2000,	
Microsoft	Windows	NT	4.0
and
Microsoft	Windows	95/98

nmake	-f	"makefile."	APP="edblib"
SUBSYS="windows"

16-bit	Windows nmake	-f	"makefile."	APP="edblib"
SUBSYS="windows"	ENV="win16"

Remarks
Edblib	uses	these	files.

Edblib.def Edblib.sqc
Edblib.h Gwutil.c
Edblib.ico Gwutil.h
Edblib.rc 	

See	Also

Samples

JavaScript:hhobj_1.Click()

Embedded	SQL	for	C	and	SQL	Server

Embedded	SQL	for	C	Examples
The	examples,	from	1	through	8,	describe	Embedded	SQL	for	C	(ESQL/C)
character-mode	programs	written	using	plain	C,	standard	C	libraries,	and
Embedded	SQL	statements.	Each	program	connects	to	a	specified	instance	of
Microsoft®	SQL	Server™	2000	and	executes	a	series	of	Embedded	SQL
statements.

Default	Location
x:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\Esqlc

Running	the	Sample
You	can	build	an	example	program	for	the	following	environments	using	the
associated	commands.	N	is	the	number	of	the	example	program.

Environment Command
Microsoft	Windows®	2000,	
Microsoft	Windows	NT®	4.0,
Microsoft	Windows	95,
Microsoft	Windows	98

nmake	-f	"makefile."	APP="examplen"

MS-DOS nmake	-f	"makefile."	APP="examplen"
ENV="dos"

QuickWin nmake	-f	"makefile."	APP="examplen"
ENV="qwin"

Remarks
Each	program	described	in	the	following	examples	uses	the	appropriate
Examplen.sqc,	Gcutil.c,	Gcutil.h,	and	Quickwin.def	files.	Some	of	these
programs	use	the	author2	table,	which	you	can	create	by	using	the	Author2.sql
file.

Example	1
Declares	and	opens	a	standard	cursor	using	a	prepared	SQL	statement.

Fetches	rows	from	the	sysobjects	table	in	the	specified	database.

Example	2
Declares	and	opens	a	browse	cursor.

Fetches	rows	from	the	sales	table	in	the	pubs	database	into	a	C
structure.

Example	3
Illustrates	error	handling.

Attempts	to	insert	a	row	into	the	authors	table	that	violates	the
constraint	on	the	au_id	column.

Reports	the	CHECK	constraint	violation.

Example	4
Connects	to	two	instances	of	Microsoft®	SQL	Server™	2000,	and
declares	and	opens	two	standard	cursors	using	a	prepared	SQL
statement.

Fetches	rows	from	the	author2	table	in	the	pubs	database	of	each	SQL
Server.

Allows	you	to	issue	positioned	updates	of	each	author's	last	name	as	the
rows	are	fetched.

Example	5
Issues	a	single	SELECT	statement	to	retrieve	a	row	from	the	titles	table
in	the	pubs	database	into	a	C	structure,	or	into	the	individual	fields	of	a
C	structure.

Uses	browse	cursors	with	a	SELECT	statement	and	the	sp_who	stored
procedure.

Issues	static	and	dynamic	INSERT	statements.

Issues	a	SELECT	statement	of	various	date	and	time	values.

Example	6
Issues	multiple	static	SQL	statements	within	a	transaction	in	a	Transact-
SQL	batch.

Executes	the	sp_addtype	and	sp_droptype	stored	procedures.

Uses	a	browse	cursor	with	the	sp_who	stored	procedure.

Issues	a	SELECT	statement	into	a	temporary	table	and	retrieves	a	row
from	that	temporary	table	by	using	the	EXECUTE	IMMEDIATE
statement.

Executes	a	static	Transact-SQL	batch	that	uses	control-of-flow
language.

Example	7
Opens	a	standard	cursor	by	using	HOLDLOCK	within	a	transaction;
inserts	the	cursor.

Updates	and	deletes	rows	from	the	authors	table	in	the	pubs	database.

Inserts	rows	into	the	authors	table	within	a	transaction	and	then	rolls
back	that	transaction.

Demonstrates	that	triggers	are	enforced	by	attempting	to	delete	a	row
from	the	titles	table	that	fires	the	deltitle	trigger.

Uses	a	browse	cursor	with	the	sp_who	stored	procedure.

Executes	the	sp_addtype	and	sp_droptype	stored	procedures.

Example	8
Demonstrates	behavior	similar	to	that	of	isql.

See	Also

Samples

JavaScript:hhobj_1.Click()

	Programming Embedded SQL for C
	Getting Started with Embedded SQL for C
	Embedded SQL for C Syntax Conventions
	System Requirements for Embedded SQL for C
	Installing Embedded SQL for C

	Call-level Method
	Embedded SQL Method
	Embedded SQL Programming
	Embedded SQL Steps
	Including Embedded SQL Statements
	Connecting to a Database
	Using Static and Dynamic Statements
	Static SQL Statements
	Dynamic SQL Statements

	Using Host Variables
	Declaring Host Variables
	Host Variables and Null Values
	Host Variables and Data Types
	Using the SQLDA Data Structure
	Data Input and Output Using the SQLDA Data Structure

	Using Cursors
	Declaring Cursors
	Positioned UPDATE or DELETE Statements

	Managing Transactions
	Using the SQLCA Data Structure
	SQLCODE Variable
	SQLSTATE Variable
	Using the WHENEVER Statement

	Embedded SQL for C Reference
	Embedded SQL Statements
	BEGIN DECLARE SECTION
	CLOSE
	CONNECT TO
	DECLARE CURSOR
	DELETE (POSITIONED)
	DELETE (SEARCHED)
	DESCRIBE
	DISCONNECT
	END DECLARE SECTION
	EXECUTE
	EXECUTE IMMEDIATE
	FETCH
	GET CONNECTION
	OPEN
	PREPARE
	SELECT INTO
	SET ANSI_DEFAULTS
	SET CONCURRENCY
	SET CONNECTION
	SET CURSOR_CLOSE_ON_COMMIT
	SET CURSORTYPE
	SET FETCHBUFFER
	SET OPTION
	SET SCROLLOPTION
	UPDATE
	UPDATE (Searched)
	WHENEVER

	Building Applications
	Steps for Building an Application
	Embedded SQL Applications at Run Time
	Processing Embedded SQL Statements
	Access Plans and Bind Files
	Running the nsqlprep Precompiler
	Setting Up the nsqlprep Precompiler
	Precompiler Syntax
	Access Plan and Bind File Options

	Compiling and Linking Embedded SQL Applications
	Compiling and Linking for Windows NT and Windows 95 or Windows 98
	Project Settings for Visual C++
	Compiling and Linking for 16-bit Windows
	Compiling and Linking for MS-DOS
	Compiling and Linking for QuickWin

	Debugging Embedded SQL Programs
	Advanced Programming
	Data Type Mapping for Embedded SQL
	Mapping Character Data Types
	Pointers as Host Variables
	Mapping date or time Data
	Mapping Binary Data
	Preparing SQLDA for Data Input and Output
	SQLDA Data Structure
	SQLDA
	Valid Values for sqltype

	SQLCA Data Structure
	SQLCA

	Selectively Bypassing the Creation of Access Plans

	Defining Cursors
	Standard DB-Library Cursors
	Cursor Sensitivity to Change
	Keyset-driven Standard Cursors
	Dynamic Standard Cursors
	Concurrency Control

	Holding Locks

	Browse Cursors
	UPDATE and DELETE Statements
	Isolation Levels
	Cursors and Lock Conflicts

	Reserved Keywords
	Embedded SQL for C Messages
	SQLSTATE Messages

	Embedded SQL for C Samples
	GENCHAR (Generic for C)
	Genwin (Generic for Windows NT, Windows 95, Windows 98, and 16-bit Windows)
	Edblib (Embedded SQL and DB-Library for Windows NT, Windows 95, Windows 98, and 16-bit Windows)
	Embedded SQL for C Examples

