- Wireshark User's Guide

for Wireshark 1.10
Ulf Lamping

Richard Sharpe

NS Computer Software and Services P/L

Ed Warnicke

Copyright © 2004-2013 Ulf Lamping , Richard Sharpe , Ed Warnicke

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU General Public License, Version 2 or any later version
published by the Free Software Foundation.

All logos and trademarks in this document are property of their respective
owner.

Table of Contents

Preface
1. Foreword
2. Who should read this document?
3. Acknowledgements
4. About this document

5. Where to get the latest copy of this document?
6. Providing feedback about this document

1. Introduction

1.1. What is Wireshark?
1.1.1. Some intended purposes
1.1.2. Features
1.1.3. Live capture from many different network media
1.1.4. Import files from many other capture programs
1.1.5. Export files for many other capture programs
1.1.6. Many protocol decoders
1.1.7. Open Source Software
1.1.8. What Wireshark is not

1.2. System Requirements
1.2.1. General Remarks
1.2.2. Microsoft Windows
1.2.3. Unix / Linux

1.3. Where to get Wireshark?

1.4. A brief history of Wireshark

1.5. Development and maintenance of Wireshark

1.6. Reporting problems and getting help
1.6.1. Website
1.6.2. Wiki
1.6.3. Q&A Forum

1.6.4. FAQ

1.6.5. Mailing Lists
1.6.6. Reporting Problems

1.6.7. Reporting Crashes on UNIX/Linux platforms
1.6.8. Reporting Crashes on Windows platforms

2. Building and Installing Wireshark
2.1. Introduction

2.2. Obtaining the source and binary distributions
2.3. Before you build Wireshark under UNIX
2.4. Building Wireshark from source under UNIX
2.5. Installing the binaries under UNIX
2.5.1. Installing from rpm's under Red Hat and alike
2.5.2. Installing from deb's under Debian, Ubuntu and other Debian
derivatives
2.5.3. Installing from portage under Gentoo Linux
2.5.4. Installing from packages under FreeBSD
2.6. Troubleshooting during the install on Unix
2.7. Building from source under Windows
2.8. Installing Wireshark under Windows
2.8.1. Install Wireshark
2.8.2. Manual WinPcap Installation
2.8.3. Update Wireshark
2.8.4. Update WinPcap
2.8.5. Uninstall Wireshark

2.8.6. Uninstall WinPcap

3. User Interface
3.1. Introduction
3.2. Start Wireshark
3.3. The Main window

3.3.1. Main Window Navigation

3.4. The Menu
3.5. The "File" menu
3.6. The "Edit" menu
3.7. The "View" menu
3.8. The "Go" menu
3.9. The "Capture" menu
3.10. The "Analyze" menu
3.11. The "Statistics" menu
3.12. The "Telephony" menu
3.13. The "Tools" menu
3.14. The "Internals" menu
3.15. The "Help" menu
3.16. The "Main" toolbar
3.17. The "Filter" toolbar
3.18. The "Packet List" pane
3.19. The "Packet Details" pane
3.20. The "Packet Bytes" pane
3.21. The Statusbar

4. Capturing Live Network Data
4.1. Introduction
4.2. Prerequisites
4.3. Start Capturing
4.4. The "Capture Interfaces" dialog box
4.5. The "Capture Options" dialog box
4.5.1. Capture frame
4.5.2. Capture File(s) frame
4.5.3. Stop Capture... frame
4.5.4. Display Options frame
4.5.5. Name Resolution frame
4.5.6. Buttons
4.6. The "Edit Interface Settings" dialog box
4.7. The "Compile Results" dialog box
4.8. The "Add New Interfaces" dialog box
4.8.1. Add or remove pipes
4.8.2. Add or hide local interfaces
4.8.3. Add or hide remote interfaces
4.9. The "Remote Capture Interfaces" dialog box
4.9.1. Remote Capture Interfaces
4.9.2. Remote Capture Settings
4.10. The "Interface Details" dialog box
4.11. Capture files and file modes
4.12. Link-layer header type

4.13. Filtering while capturing

4.13.1. Automatic Remote Traffic Filtering
4.14. While a Capture is running ...

4.14.1. Stop the running capture

4.14.2. Restart a running capture

5. File Input / Output and Printing

5.1. Introduction

5.2. Open capture files
5.2.1. The "Open Capture File" dialog box
5.2.2. Input File Formats

5.3. Saving captured packets
5.3.1. The "Save Capture File As" dialog box
5.3.2. Output File Formats

5.4. Merging capture files
5.4.1. The "Merge with Capture File" dialog box

5.5. Import hex dump
5.5.1. The "Import from Hex Dump" dialog box
5.6. File Sets
5.6.1. The "List Files" dialog box
5.7. Exporting data
5.7.1. The "Export as Plain Text File" dialog box
5.7.2. The "Export as PostScript File" dialog box
5.7.3. The "Export as CSV (Comma Separated Values) File" dialog
box
5.7.4. The "Export as C Arrays (packet bytes) file" dialog box
5.7.5. The "Export as PSML File" dialog box
5.7.6. The "Export as PDML File" dialog box
5.7.7. The "Export selected packet bytes" dialog box
5.7.8. The "Export Objects" dialog box
5.8. Printing packets
5.8.1. The "Print" dialog box
5.9. The Packet Range frame
5.10. The Packet Format frame

6. Working with captured packets
6.1. Viewing packets you have captured
6.2. Pop-up menus

6.2.1. Pop-up menu of the "Packet List" column header
6.2.2. Pop-up menu of the "Packet List" pane

6.2.3. Pop-up menu of the "Packet Details" pane
6.3. Filtering packets while viewing
6.4. Building display filter expressions
6.4.1. Display filter fields
6.4.2. Comparing values
6.4.3. Combining expressions
6.4.4. A common mistake
6.5. The "Filter Expression" dialog box
6.6. Defining and saving filters
6.7. Defining and saving filter macros
6.8. Finding packets

6.8.1. The "Find Packet" dialog box
6.8.2. The "Find Next" command

6.8.3. The "Find Previous" command
6.9. Go to a specific packet
6.9.1. The "Go Back" command
6.9.2. The "Go Forward" command
6.9.3. The "Go to Packet" dialog box
6.9.4. The "Go to Corresponding Packet" command
6.9.5. The "Go to First Packet" command
6.9.6. The "Go to L.ast Packet" command
6.10. Marking packets
6.11. Ignoring packets
6.12. Time display formats and time references
6.12.1. Packet time referencing

7. Advanced Topics
7.1. Introduction
7.2. Following TCP streams
7.2.1. The "Follow TCP Stream" dialog box
7.3. Expert Infos
7.3.1. Expert Info Entries
7.3.2. "Expert Info" dialog
7.3.3. "Colorized" Protocol Details Tree

7.3.4. "Expert" Packet List Column (optional)

7.4. Time Stamps
7.4.1. Wireshark internals

7.4.2. Capture file formats
7.4.3. Accuracy
7.5. Time Zones
7.5.1. Set your computer's time correctly!
7.5.2. Wireshark and Time Zones
7.6. Packet Reassembling
7.6.1. What is it?
7.6.2. How Wireshark handles it
7.7. Name Resolution
7.7.1. Name Resolution drawbacks
7.7.2. Ethernet name resolution (MAC layer)
7.7.3. IP name resolution (network layer)
7.7.4. IPX name resolution (network layer)
7.7.5. TCP/UDP port name resolution (transport layer)
7.8. Checksums
7.8.1. Wireshark checksum validation
7.8.2. Checksum offloading

8. Statistics
8.1. Introduction
8.2. The "Summary" window
8.3. The "Protocol Hierarchy" window
8.4. Conversations
8.4.1. What is a Conversation?
8.4.2. The "Conversations" window
8.4.3. The protocol specific "Conversation List" windows
8.5. Endpoints
8.5.1. What is an Endpoint?
8.5.2. The "Endpoints" window
8.5.3. The protocol specific "Endpoint List" windows
8.6. The "IO Graphs" window
8.7. Service Response Time
8.7.1. The "Service Response Time DCE-RPC" window
8.8. Compare two capture files
8.9. WLAN Traffic Statistics
8.10. The protocol specific statistics windows

9. Telephony
9.1. Introduction

9.2. RTP Analysis

9.3. VoIP Calls

9.4. LTE MAC Traffic Statistics

9.5. LTE RLC Traffic Statistics

9.6. The protocol specific statistics windows

10. Customizing Wireshark
10.1. Introduction

10.2. Start Wireshark from the command line
10.3. Packet colorization
10.4. Control Protocol dissection
10.4.1. The "Enabled Protocols" dialog box
10.4.2. User Specified Decodes
10.4.3. Show User Specified Decodes
10.5. Preferences
10.5.1. Interface Options
10.6. Configuration Profiles
10.7. User Table
10.8. Display Filter Macros
10.9. ESS Category Attributes
10.10. GeoIP Database Paths
10.11. IKEv2 decryption table
10.12. Object Identifiers
10.13. PRES Users Context List
10.14. SCCP users Table
10.15. SMI (MIB and PIB) Modules
10.16. SMI (MIB and PIB) Paths
10.17. SNMP Enterprise Specific Trap Types
10.18. SNMP users Table
10.19. Tektronix K12xx/15 RF5 protocols Table
10.20. User DLTs protocol table

11. Lua Support in Wireshark
11.1. Introduction

11.2. Example of Dissector written in Lua
11.3. Example of Listener written in Lua
11.4. Wireshark's I.ua API Reference Manual
11.5. Saving capture files

11.5.1. Dumper
11.5.2. PseudoHeader

11.6. Obtaining dissection data
11.6.1. Field
11.6.2. FieldInfo
11.6.3. Non Method Functions
11.7. GUI support
11.7.1. ProgDlg
11.7.2. TextWindow
11.7.3. Non Method Functions
11.8. Post-dissection packet analysis
11.8.1. Listener
11.9. Obtaining packet information
11.9.1. Address
11.9.2. Column
11.9.3. Columns
11.9.4. NSTime
11.9.5. Pinfo
11.9.6. PrivateTable
11.10. Functions for writing dissectors
11.10.1. Dissector
11.10.2. DissectorTable
11.10.3. Pref
11.10.4. Prefs
11.10.5. Proto
11.10.6. ProtoField
11.10.7. Non Method Functions
11.11. Adding information to the dissection tree
11.11.1. Treeltem
11.12. Functions for handling packet data
11.12.1. ByteArray
11.12.2. Int

11.12.3. Tvb
11.12.4. TvbRange
11.12.5. Ulnt
11.13. Utility Functions
11.13.1. Dir
11.13.2. Non Method Functions
A. Files and Folders
A.1. Capture Files
A.1.1. Libpcap File Contents
A.1.2. Not Saved in the Capture File
A.2. Configuration Files and Folders
A.2.1. Protocol help configuration
A.3. Windows folders
A.3.1. Windows profiles
A.3.2. Windows 7, Vista, XP, 2000, and NT roaming profiles
A.3.3. Windows temporary folder
B. Protocols and Protocol Fields
C. Wireshark Messages
C.1. Packet List Messages
C.1.1. [Malformed Packet]

C.1.2. [Packet size limited during capture]

C.2. Packet Details Messages
C.2.1. [Response in frame: 123]

C.2.2. [Request in frame: 123]
C.2.3. [Time from request: 0.123 seconds]
C.2.4. [Stream setup by PROTOCOL (frame 123)]
D. Related command line tools
D.1. Introduction
D.2. tshark: Terminal-based Wireshark
D.3. tcpdump: Capturing with tcpdump for viewing with Wireshark
D.4. dumpcap: Capturing with dumpcap for viewing with Wireshark
D.5. capinfos: Print information about capture files

D.6. rawshark: Dump and analyze network traffic.
D.7. editcap: Edit capture files

D.8. mergecap: Merging multiple capture files into one
D.9. text2pcap: Converting ASCII hexdumps to network captures

D.10. idl2wrs: Creating dissectors from CORBA IDL files
D.10.1. What is it?

D.10.2. Why do this?

D.10.3. How to use idl2wrs
D.10.4. TODO
D.10.5. Limitations
D.10.6. Notes
D.11. reordercap: Reorder a capture file
E. This Document's License (GPI.)

List of Figures

1.1. Wireshark captures packets and allows you to examine their content.
3.1. The Main window

3.2. The Menu

3.3. The "File" Menu

3.4. The "Edit" Menu

3.5. The "View" Menu

3.6. The "Go" Menu

3.7. The "Capture" Menu

3.8. The "Analyze" Menu

3.9. The "Statistics" Menu

3.10. The "Telephony" Menu

3.11. The "Tools" Menu

3.12. The "Internals" Menu

3.13. The "Help" Menu

3.14. The "Main" toolbar

3.15. The "Filter" toolbar

3.16. The "Packet List" pane

3.17. The "Packet Details" pane

3.18. The "Packet Bytes" pane

3.19. The "Packet Bytes" pane with tabs

3.20. The initial Statusbar

3.21. The Statusbar with a loaded capture file

3.22. The Statusbar with a configuration profile menu
3.23. The Statusbar with a selected protocol field
3.24. The Statusbar with a display filter message

4.1. The "Capture Interfaces" dialog box on Microsoft Windows
4.2. The "Capture Interfaces" dialog box on Unix/Linux
4.3. The "Capture Options" dialog box

4.4. The "Edit Interface Settings" dialog box

4.5. The "Compile Results" dialog box

4.6. The "Add New Interfaces" dialog box

4.7. The "Add New Interfaces - Pipes" dialog box

4.8. The "Add New Interfaces - L.ocal Interfaces" dialog box
4.9. The "Add New Interfaces - Remote Interfaces" dialog box
4.10. The "Remote Capture Interfaces" dialog box

4.11. The "Remote Capture Settings" dialog box

4.12. The "Interface Details" dialog box

4.13. The "Capture Info" dialog box
5.1. "Open" on native Windows

5.2. "Open" - new GTK version

5.3. "Open" - old GTK version

5.4. "Save" on native Windows

5.5."Save" - new GTK version

5.6. "Save" - old GTK version

5.7. "Merge" on native Windows

5.8. "Merge" - new GTK version

5.9. "Merge" - old GTK version

5.10. The "Import from Hex Dump" dialog

5.11. The "List Files" dialog box

5.12. The "Export as Plain Text File" dialog box
5.13. The "Export as PostScript File" dialog box
5.14. The "Export as PSML File" dialog box

5.15. The "Export as PDML File" dialog box

5.16. The "Export Selected Packet Bytes" dialog box
5.17. The "Export Objects" dialog box

5.18. The "Print" dialog box

5.19. The "Packet Range" frame

5.20. The "Packet Format" frame

6.1. Wireshark with a TCP packet selected for viewing
6.2. Viewing a packet in a separate window

6.3. Pop-up menu of the "Packet List" column header
6.4. Pop-up menu of the "Packet List" pane

6.5. Pop-up menu of the "Packet Details" pane

6.6. Filtering on the TCP protocol

6.7. The "Filter Expression" dialog box

6.8. The "Capture Filters" and "Display Filters" dialog boxes
6.9. The "Find Packet" dialog box

6.10. The "Go To Packet" dialog box

6.11. Wireshark showing a time referenced packet

7.1.
7.2.

The "Follow TCP Stream" dialog box

The "Packet Bytes" pane with a reassembled tab

8.1. The "Summary" window

8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.
9.1.
9.2.
9.3.

The "Protocol Hierarchy"” window

The "Conversations" window

The "Endpoints" window

The "IO Graphs" window

The "Compute DCE-RPC statistics" window
The "DCE-RPC Statistic for ..." window

The "Compare" window

The "WLAN Traffic Statistics" window

The "RTP Stream Analysis" window

The "LTE MAC Traffic Statistics" window
The "LTE RLC Traffic Statistics" window

10.1. The "Coloring Rules" dialog box
10.2. The "Edit Color Filter" dialog box
10.3. The "Choose color" dialog box
10.4. Using color filters with Wireshark
10.5. The "Enabled Protocols" dialog box
10.6. The "Decode As" dialog box

10.7. The "Decode As: Show" dialog box
10.8. The preferences dialog box

10.9. The interface options dialog box

10.10. The configuration profiles dialog box

List of Tables

3.1.
3.2.
3.3.
3.4.
3.5.

Keyboard Navigation

File menu items

Edit menu items

View menu items

Go menu items

3.6. Capture menu items

3.7.
3.8.

Analyze menu items

Statistics menu items

3.9. Telephony menu items
3.10. Tools menu items
3.11. Help menu items
3.12. Help menu items

3.13. Main toolbar items

3.14. Filter toolbar items

4.1. Capture file mode selected by capture options

5.1. The system specific "Open Capture File" dialog box

5.2. The system specific "Save Capture File As" dialog box
5.3. The system specific "Merge Capture File As" dialog box
6.1. The menu items of the "Packet List" column header pop-up menu
6.2. The menu items of the "Packet List" pop-up menu

6.3. The menu items of the "Packet Details" pop-up menu

6.4. Display Filter comparison operators

6.5. Display Filter Field Types

6.6. Display Filter Logical Operations

7.1. Some example expert infos

7.2. Time zone examples for UTC arrival times (without DST)

A.1. Configuration files and folders overview

List of Examples

2.1. Building GTK+ from source

2.2. Building and installing libpcap

2.3. Installing required RPMs under Red Hat Linux 6.2 and beyond
2.4. Installing debs under Debian, Ubuntu and other Debian derivatives

4.1. A capture filter for telnet that captures traffic to and from a particular host

4.2. Capturing all telnet traffic not from 10.0.0.5
10.1. Help information available from Wireshark

D.1. Help information available from tshark
D.2. Help information available from dumpcap
D.3. Help information available from capinfos
D.4. Help information available from rawshark
D.5. Help information available from editcap

D.6. Capture file types available from editcap
D.7. Encapsulation types available from editcap
D.8. Help information available from mergecap
D.9. Simple example of using mergecap

D.10. Help information available from text2pcap
D.11. Help information available from reordercap

Preface

Table of Contents

1. Foreword

2. Who should read this document?
3. Acknowledgements

4. About this document

5. Where to get the latest copy of this document?
6. Providing feedback about this document

1. Foreword

Wireshark is one of those programs that many network managers would love to
be able to use, but they are often prevented from getting what they would like
from Wireshark because of the lack of documentation.

This document is part of an effort by the Wireshark team to improve the usability
of Wireshark.

We hope that you find it useful, and look forward to your comments.

2. Who should read this document?

The intended audience of this book is anyone using Wireshark.

This book will explain all the basics and also some of the advanced features that
Wireshark provides. As Wireshark has become a very complex program since
the early days, not every feature of Wireshark may be explained in this book.

This book is not intended to explain network sniffing in general and it will not
provide details about specific network protocols. A lot of useful information
regarding these topics can be found at the Wireshark Wiki at

http://wiki.wireshark.org

By reading this book, you will learn how to install Wireshark, how to use the
basic elements of the graphical user interface (such as the menu) and what's
behind some of the advanced features that are not always obvious at first sight. It
will hopefully guide you around some common problems that frequently appear
for new (and sometimes even advanced) users of Wireshark.

http://wiki.wireshark.org

3. Acknowledgements

The authors would like to thank the whole Wireshark team for their assistance.
In particular, the authors would like to thank:

e Gerald Combs, for initiating the Wireshark project and funding to do this
documentation.

e Guy Harris, for many helpful hints and a great deal of patience in reviewing
this document.

e Gilbert Ramirez, for general encouragement and helpful hints along the
way.

The authors would also like to thank the following people for their helpful
feedback on this document:

e Pat Eyler, for his suggestions on improving the example on generating a
backtrace.

e Martin Regner, for his various suggestions and corrections.
e Graeme Hewson, for a lot of grammatical corrections.

The authors would like to acknowledge those man page and README authors
for the Wireshark project from who sections of this document borrow heavily:

¢ Scott Renfro from whose mergecap man page Section D.8, “mergecap:
Merging multiple capture files into one ” is derived.

e Ashok Narayanan from whose text2pcap man page Section D.9
“text2pcap: Converting ASCII hexdumps to network captures ” is derived.

¢ Frank Singleton from whose README . id12wrs Section D.10, “idl2wrs:
Creating dissectors from CORBA IDL files ” is derived.

4. About this document

This book was originally developed by Richard Sharpe with funds provided
from the Wireshark Fund. It was updated by Ed Warnicke and more recently
redesigned and updated by Ulf Lamping.

It is written in DocBook/XML.

You will find some specially marked parts in this book:
This is a warning!

&\ You should pay attention to a warning, as otherwise data loss
might occur.

This is a note!

not be obvious.

This is a tip!

L

Tips will be helpful for your everyday work using Wireshark.

mailto:rsharpe%5BAT%5Dns.aus.com
mailto:hagbard%5BAT%5Dphysics.rutgers.edu
mailto:ulf.lamping%5BAT%5Dweb.de

5. Where to get the latest copy of this document?

The latest copy of this documentation can always be found at:
http://www.wireshark.org/docs/.

http://www.wireshark.org/docs/

6. Providing feedback about this document

Should you have any feedback about this document, please send it to the authors
through wireshark-dev[AT]wireshark.org.

mailto:wireshark-dev%5BAT%5Dwireshark.org

Chapter 1. Introduction

Table of Contents

1.1. What is Wireshark?
1.1.1. Some intended purposes
1.1.2. Features
1.1.3. Live capture from many different network media
1.1.4. Import files from many other capture programs
1.1.5. Export files for many other capture programs
1.1.6. Many protocol decoders
1.1.7. Open Source Software
1.1.8. What Wireshark is not
1.2. System Requirements
1.2.1. General Remarks
1.2.2. Microsoft Windows
1.2.3. Unix / Linux
1.3. Where to get Wireshark?
1.4. A brief history of Wireshark
1.5. Development and maintenance of Wireshark
1.6. Reporting problems and getting help
1.6.1. Website
1.6.3. Q&A Forum

1.6.4. FAQ

1.6.5. Mailing Lists
1.6.6. Reporting Problems

1.6.7. Reporting Crashes on UNIX/Linux platforms
1.6.8. Reporting Crashes on Windows platforms

1.1. What is Wireshark?

Wireshark is a network packet analyzer. A network packet analyzer will try to
capture network packets and tries to display that packet data as detailed as
possible.

You could think of a network packet analyzer as a measuring device used to
examine what's going on inside a network cable, just like a voltmeter is used by
an electrician to examine what's going on inside an electric cable (but at a higher
level, of course).

In the past, such tools were either very expensive, proprietary, or both. However,
with the advent of Wireshark, all that has changed.

Wireshark is perhaps one of the best open source packet analyzers available
today.

1.1.1. Some intended purposes

Here are some examples people use Wireshark for:
e network administrators use it to troubleshoot network problems
¢ network security engineers use it to examine security problems
e developers use it to debug protocol implementations
e people use it to learn network protocol internals

Beside these examples, Wireshark can be helpful in many other situations too.

1.1.2. Features

The following are some of the many features Wireshark provides:
e Available for UNIX and Windows.

e Capture live packet data from a network interface.

¢ Open files containing packet data captured with tcpdump/WinDump,
Wireshark, and a number of other packet capture programs.

e Import packets from text files containing hex dumps of packet data.
e Display packets with very detailed protocol information.

e Save packet data captured.

e Export some or all packets in a number of capture file formats.

¢ Filter packets on many criteria.

¢ Search for packets on many criteria.

e Colorize packet display based on filters.

e Create various statistics.

e ...and a lot more!

However, to really appreciate its power, you have to start using it.

Figure 1.1, “ Wireshark captures packets and allows you to examine their
content. ” shows Wireshark having captured some packets and waiting for you to

examine them.

Figure 1.1. Wireshark captures packets and allows you to examine their
content.

ﬂtest.cap E]@

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

- | EEXZE QAesaTIR|EE | QAQAQB | @dMEMBE B
Filter: + | Expression. ..
Mo, Time Source Destination Protocal [Length [Info
1 0.000000 192.168.0.2 Broadecast ARP 47 Gratuitous arp for 192.168.0.2 (F
2 0.299139 192 .1a65.0.1 152.1688.0.2 MEMNS 92 Mame query NESTAT *<00><00><005><C
2 0. E 0.2 70 pestination unreachable (Port unr
4 1.025659 192.168.0.2 224.0.0.22 IGMP 54 v3 Membership rReport / Join group
51.044366 192.168.0.2 192.168.0.1 DHS 110 standard guery sy _ldap. _tcp.nbc
6 1.048652 1592.168.0.2 230,255,255, 250 SSDP 175 M-SEARCH * HTTP/1.1
71.050784 152.168.0.2 152.168.0.1 DMNS 86 standard guery soa nbl0061d. wwiod
8 1.055053 152.168.0.1 152.168.0.2 SSDP 337 HTTP/1.1 200 oK
9 1.082038 152.168.0.2 1%2.168.0.255 NEMNS 110 Registration NE NELOOG1D<00:>
10 1.1215845 1592.168.0.2 192.168.0.1 DHS 87 standard guery a proxycont.ww004.
11 1./26156 192.168.0.2 1%2.168.0.1 TCP 62 ncu-2 > http [S¥N] Seq=0 win=6424
12 1.227282 192.168.0.1 1%2.168.0.2 TCP 60 http = ncu-2 [S¥N, ACK] Seqg=0 Ackw
¥

Frame 11: 62 bytes on wire (496 hits), 62 bytes captured (496 bits)
Ethernet II, Src: 192.168.0.2 (00:0b:5d:20:cd:02), Dst: Metgear_2d:75:%9a (00:09:5b:2d:75:9a)
+# Internet Protocol, src: 192.1658.0.2 (192.165.0.20, Dst: 192.165.0.1 (192.165.0.1)
- Transmission Control Protocol, Src Port: ncu-2 (31960, Dst Port: http (80), Seg: O, Len: O
SOUrCe port: ncu-2 (3196)
pestination port: http (80)
[stream dndex: 5]
sequence number: 0O (relative seqguence number)
Header Tength: 28 hytes
+ Flags: Ox02 (SYND)

window size walue: 64240 v
QOO0 00 09 S5ho2d F5 9a 00 Ok 5d 20 <d 02 08 00 45 00 PO == Y - N
Q010 00 320 18 48 40 00 80 08 61 Z2c¢ <D a8 00 02 <0 aB SR HEB R
Qo200 00 01 O Fo 00 50 3c 26 95 £8 00 00 00 00 FO 02 Erar - n.

0030 fa fO 27 =20 00 00 02 04 05 b4 01 01 C4 O2 T

6 File: "C:/test,cap” 14 KB 00;00;02 Packets: 120 Displayed: 120 Marked: 0 Load time: 0;00,000 Profile; Defaulk

1.1.3. Live capture from many different network media

Wireshark can capture traffic from many different network media types - and
despite its name - including wireless LAN as well. Which media types are
supported, depends on many things like the operating system you are using. An
overview of the supported media types can be found at:
http://wiki.wireshark.org/CaptureSetup/NetworkMedia.

1.1.4. Import files from many other capture programs

Wireshark can open packets captured from a large number of other capture
programs. For a list of input formats see Section 5.2.2, “Input File Formats”.

1.1.5. Export files for many other capture programs

Wireshark can save packets captured in a large number of formats of other

http://wiki.wireshark.org/CaptureSetup/NetworkMedia

capture programs. For a list of output formats see Section 5.3.2, “Output File
Formats”.

1.1.6. Many protocol decoders

There are protocol decoders (or dissectors, as they are known in Wireshark) for a
great many protocols: see Appendix B, Protocols and Protocol Fields.

1.1.7. Open Source Software

Wireshark is an open source software project, and is released under the GNU
General Public License (GPL). You can freely use Wireshark on any number of
computers you like, without worrying about license keys or fees or such. In
addition, all source code is freely available under the GPL. Because of that, it is
very easy for people to add new protocols to Wireshark, either as plugins, or
built into the source, and they often do!

1.1.8. What Wireshark is not

Here are some things Wireshark does not provide:

e Wireshark isn't an intrusion detection system. It will not warn you when
someone does strange things on your network that he/she isn't allowed to
do. However, if strange things happen, Wireshark might help you figure out
what is really going on.

e Wireshark will not manipulate things on the network, it will only "measure"
things from it. Wireshark doesn't send packets on the network or do other
active things (except for name resolutions, but even that can be disabled).

http://www.gnu.org/copyleft/gpl.html

1.2. System Requirements
What you'll need to get Wireshark up and running ...

1.2.1. General Remarks

e The values below are the minimum requirements and only "rules of thumb"
for use on a moderately used network

e Working with a busy network can easily produce huge memory and disk
space usage! For example: Capturing on a fully saturated 100MBit/s
Ethernet will produce ~ 750MBytes/min! Having a fast processor, lots of
memory and disk space is a good idea in that case.

e If Wireshark is running out of memory it crashes, see:
http://wiki.wireshark.org/KnownBugs/OutOfMemory for details and
workarounds

e Wireshark won't benefit much from Multiprocessor/Hyperthread systems as
time consuming tasks like filtering packets are single threaded. No rule is
without exception: during an "Update list of packets in real time" capture,
capturing traffic runs in one process and dissecting and displaying packets
runs in another process - which should benefit from two processors.

1.2.2. Microsoft Windows

e Windows XP Home, XP Pro, XP Tablet PC, XP Media Center, Server 2003,
Vista, 2008, 7, or 2008 R2

¢ Any modern 32-bit x86 or 64-bit AMD64/x86-64 processor.
e 128MB available RAM. Larger capture files require more RAM.
e 75MB available disk space. Capture files require additional disk space.

e 800*600 (1280*1024 or higher recommended) resolution with at least
65536 (16bit) colors (256 colors should work if Wireshark is installed with
the "legacy GTK1" selection of the Wireshark 1.0.x releases)

http://wiki.wireshark.org/KnownBugs/OutOfMemory

¢ A supported network card for capturing;:

o Ethernet: Any card supported by Windows should work. See the wiki
pages on Ethernet capture and offloading for issues that may affect
your environment.

o 802.11: See the Wireshark wiki page. Capturing raw 802.11
information may be difficult without special equipment.

o Other media: See
http://wiki.wireshark.org/CaptureSetup/NetworkMedia

Remarks:

e Many older Windows versions are no longer supported for three reasons:
None of the developers use those systems which makes support difficult.
The libraries Wireshark depends on (GTK, WinPcap, ...) have dropped
support for older releases. Microsoft has also dropped support for these

systems.

e Windows 95, 98 and ME are no longer supported. The "old technology"
releases of Windows lack memory protection (specifically VirtualProtect)
which we use to improve program safety and security. The last known
version to work was Ethereal 0.10.14 (which includes WinPcap 3.1). You
can get it from http://ethereal.com/download.html. According to this bug
report, you may need to install Ethereal 0.10.0 on some systems.

Microsoft retired support for Windows 98 and ME in 2006.

e Windows NT 4.0 no longer works with Wireshark. The last known version
to work was Wireshark 0.99.4 (which includes WinPcap 3.1). You still can
get it from http://www.wireshark.org/download/win32/all-
versions/wireshark-setup-0.99.4.exe.

Microsoft retired support for Windows NT 4.0 in 2004.

e Windows 2000 no longer works with Wireshark. The last known version to
work was Wireshark 1.2.x (which includes WinPcap 4.1.2). You still can
get it from http://www.wireshark.org/download/win32/all-versions/.

http://wiki.wireshark.org/CaptureSetup/Ethernet
http://wiki.wireshark.org/CaptureSetup/Offloading
http://wiki.wireshark.org/CaptureSetup/WLAN#head-02456742c655394c9e948a4c9a59d3441c92782f
http://wiki.wireshark.org/CaptureSetup/NetworkMedia
http://support.microsoft.com/gp/lifeselect
http://msdn.microsoft.com/en-us/library/aa366898.aspx
http://ethereal.com/download.html
https://bugs.wireshark.org/bugzilla/show_bug.cgi?id=1130
http://www.wireshark.org/download/win32/all-versions/wireshark-setup-0.99.4.exe
http://www.wireshark.org/download/win32/all-versions/

Microsoft retired support for Windows 2000 in 2010.

e Windows CE and the embedded versions of Windows are not currently
supported.

e Multiple monitor setups are supported but may behave a bit strangely.

1.2.3. Unix / Linux

Wireshark currently runs on most UNIX platforms. The system requirements
should be comparable to the Windows values listed above.

Binary packages are available for at least the following platforms:
e Apple Mac OS X
e Debian GNU/Linux
e FreeBSD
e (Gentoo Linux
e HP-UX
e Mandriva Linux
e NetBSD
e OpenPKG
e Red Hat Enterprise/Fedora Linux
e rPath Linux
e Sun Solaris/i386
¢ Sun Solaris/Sparc
e Canonical Ubuntu

If a binary package is not available for your platform, you should download the

source and try to build it. Please report your experiences to wireshark-
dev[AT]wireshark.org .

mailto:wireshark-dev%5BAT%5Dwireshark.org

1.3. Where to get Wireshark?

You can get the latest copy of the program from the Wireshark website:
http://www.wireshark.org/download.html. The website allows you to choose
from among several mirrors for downloading.

A new Wireshark version will typically become available every 4-8 months.

If you want to be notified about new Wireshark releases, you should subscribe to
the wireshark-announce mailing list. You will find more details in Section 1.6.5,

“Mailing Lists”.

http://www.wireshark.org/download.html

1.4. A brief history of Wireshark

In late 1997, Gerald Combs needed a tool for tracking down networking
problems and wanted to learn more about networking, so he started writing
Ethereal (the former name of the Wireshark project) as a way to solve both
problems.

Ethereal was initially released, after several pauses in development, in July 1998
as version 0.2.0. Within days, patches, bug reports, and words of encouragement
started arriving, so Ethereal was on its way to success.

Not long after that, Gilbert Ramirez saw its potential and contributed a low-level
dissector to it.

In October, 1998, Guy Harris of Network Appliance was looking for something
better than tcpview, so he started applying patches and contributing dissectors to
Ethereal.

In late 1998, Richard Sharpe, who was giving TCP/IP courses, saw its potential
on such courses, and started looking at it to see if it supported the protocols he
needed. While it didn't at that point, new protocols could be easily added. So he
started contributing dissectors and contributing patches.

The list of people who have contributed to the project has become very long
since then, and almost all of them started with a protocol that they needed that
Wireshark or Ethereal did not already handle. So they copied an existing
dissector and contributed the code back to the team.

In 2006 the project moved house and re-emerged under a new name: Wireshark.

In 2008, after ten years of development, Wireshark finally arrived at version 1.0.
This release was the first deemed complete, with the minimum features
implemented. Its release coincided with the first Wireshark Developer and User
Conference, called SharkFest.

1.5. Development and maintenance of Wireshark

Wireshark was initially developed by Gerald Combs. Ongoing development and
maintenance of Wireshark is handled by the Wireshark team, a loose group of
individuals who fix bugs and provide new functionality.

There have also been a large number of people who have contributed protocol
dissectors to Wireshark, and it is expected that this will continue. You can find a
list of the people who have contributed code to Wireshark by checking the about
dialog box of Wireshark, or at the authors page on the Wireshark web site.

Wireshark is an open source software project, and is released under the GNU
General Public License (GPL). All source code is freely available under the
GPL. You are welcome to modify Wireshark to suit your own needs, and it
would be appreciated if you contribute your improvements back to the
Wireshark team.

You gain three benefits by contributing your improvements back to the
community:

e Other people who find your contributions useful will appreciate them, and
you will know that you have helped people in the same way that the
developers of Wireshark have helped people.

e The developers of Wireshark might improve your changes even more, as
there's always room for improvement. Or they may implement some
advanced things on top of your code, which can be useful for yourself too.

e The maintainers and developers of Wireshark will maintain your code as
well, fixing it when API changes or other changes are made, and generally
keeping it in tune with what is happening with Wireshark. So if Wireshark
is updated (which is done often), you can get a new Wireshark version from
the website and your changes will already be included without any effort
for you.

The Wireshark source code and binary kits for some platforms are all available
on the download page of the Wireshark website:
http://www.wireshark.org/download.html.

http://www.wireshark.org/about.html
http://www.gnu.org/copyleft/gpl.html
http://www.wireshark.org/download.html

1.6. Reporting problems and getting help

If you have problems, or need help with Wireshark, there are several places that
may be of interest to you (well, besides this guide of course).

1.6.1. Website

You will find lots of useful information on the Wireshark homepage at
http://www.wireshark.org.

1.6.2. Wiki

The Wireshark Wiki at http://wiki.wireshark.org provides a wide range of
information related to Wireshark and packet capturing in general. You will find a
lot of information not part of this user's guide. For example, there is an
explanation how to capture on a switched network, an ongoing effort to build a
protocol reference and a lot more.

And best of all, if you would like to contribute your knowledge on a specific
topic (maybe a network protocol you know well), you can edit the wiki pages by
simply using your web browser.

1.6.3. Q&A Forum

The Wireshark Q and A forum at http://ask.wireshark.org offers a resource where
questions and answers come together. You have the option to search what
questions were asked before and what answers were given by people who knew
about the issue. Answers are graded, so you can pick out the best ones easily. If
your issue isn't discussed before you can post one yourself.

1.6.4. FAQ

The "Frequently Asked Questions" will list often asked questions and the
corresponding answers.

Read the FAQ!

http://www.wireshark.org
http://wiki.wireshark.org
http://ask.wireshark.org

_Before sending any mail to the mailing lists below, be sure to

have. This will save yourself and others a lot of time (keep in
mind that a lot of people are subscribed to the mailing lists).

You will find the FAQ inside Wireshark by clicking the menu item
Help/Contents and selecting the FAQ page in the dialog shown.

An online version is available at the Wireshark website:
http://www.wireshark.org/fag.html. You might prefer this online version, as it's
typically more up to date and the HTML format is easier to use.

1.6.5. Mailing Lists

There are several mailing lists of specific Wireshark topics available:
wireshark-announce

This mailing list will inform you about new program releases, which
usually appear about every 4-8 weeks.

wireshark-users

This list is for users of Wireshark. People post questions about building and
using Wireshark, others (hopefully) provide answers.

wireshark-dev

This list is for Wireshark developers. If you want to start developing a
protocol dissector, join this list.

You can subscribe to each of these lists from the Wireshark web site:
http://www.wireshark.org. Simply select the mailing lists link on the left hand
side of the site. The lists are archived at the Wireshark web site as well.

Tip!

You can search in the list archives to see if someone asked the
. same question some time before and maybe already got an

http://www.wireshark.org/faq.html
http://www.wireshark.org

answer. That way you don't have to wait until someone answers
your question.

1.6.6. Reporting Problems

Note!

| Before reporting any problems, please make sure you have
installed the latest version of Wireshark.

When reporting problems with Wireshark, it is helpful if you supply the
following information:

1. The version number of Wireshark and the dependent libraries linked with it,
e.g. GTK+, etc. You can obtain this from the about dialog box of
Wireshark, or with the command wireshark -v.

2. Information about the platform you run Wireshark on.
3. A detailed description of your problem.

4. If you get an error/warning message, copy the text of that message (and also
a few lines before and after it, if there are some), so others may find the
place where things go wrong. Please don't give something like: "I get a
warning while doing x" as this won't give a good idea where to look at.

Don't send large files!

Do not send large files (>100KB) to the mailing lists, just place

Ek note that further data is available on request. Large files will
only annoy a lot of people on the list who are not interested in
your specific problem. If required, you will be asked for further
data by the persons who really can help you.

Don't send confidential information!

I\ If you send captured data to the mailing lists, be sure they don't
contain any sensitive or confidential information like passwords
or such.

1.6.7. Reporting Crashes on UNIX/Linux platforms

When reporting crashes with Wireshark, it is helpful if you supply the traceback
information (besides the information mentioned in "Reporting Problems").

You can obtain this traceback information with the following commands:

$ gdb “whereis wireshark | cut -f2 -d: | cut -d' ' -f2° core >& bt.t
backtrace
AD
$
Note

E4| Type the characters in the first line verbatim! Those are back-
tics there!

Note

backtrace is a gdb command. You should enter it verbatim after
_the first line shown above, but it will not be echoed. The AD
E4l (Control-D, that is, press the Control key and the D key
together) will cause gdb to exit. This will leave you with a file
called bt. txt in the current directory. Include the file with your
bug report.

Note

//" If you do not have gdb available, you will have to check out
your operating system's debugger.

You should mail the traceback to the wireshark-dev[AT Jwireshark.org mailing
list.

1.6.8. Reporting Crashes on Windows platforms

The Windows distributions don't contain the symbol files (.pdb), because they
are very large. For this reason it's not possible to create a meaningful backtrace
file from it. You should report your crash just like other problems, using the
mechanism described above.

mailto:wireshark-dev%5BAT%5Dwireshark.org

Chapter 2. Building and Installing
Wireshark

Table of Contents

2.1. Introduction

2.2. Obtaining the source and binary distributions

2.3. Before you build Wireshark under UNIX

2.4. Building Wireshark from source under UNIX

2.5. Installing the binaries under UNIX
2.5.1. Installing from rpm's under Red Hat and alike
2.5.2. Installing from deb's under Debian, Ubuntu and other Debian
derivatives

2.5.3. Installing from portage under Gentoo Linux

2.5.4. Installing from packages under FreeBSD
2.6. Troubleshooting during the install on Unix

2.7. Building from source under Windows
2.8. Installing Wireshark under Windows
2.8.1. Install Wireshark
2.8.2. Manual WinPcap Installation
2.8.3. Update Wireshark
2.8.4. Update WinPcap
2.8.5. Uninstall Wireshark

2.8.6. Uninstall WinPcap

2.1. Introduction

As with all things, there must be a beginning, and so it is with Wireshark. To use
Wireshark, you must:

e Obtain a binary package for your operating system, or
¢ Obtain the source and build Wireshark for your operating system.

Currently, several Linux distributions ship Wireshark, but they are commonly
shipping an out-of-date version. No other versions of UNIX ship Wireshark so
far, and Microsoft does not ship it with any version of Windows. For that reason,
you will need to know where to get the latest version of Wireshark and how to
install it.

This chapter shows you how to obtain source and binary packages, and how to
build Wireshark from source, should you choose to do so.

The following are the general steps you would use:

1. Download the relevant package for your needs, e.g. source or binary
distribution.

2. Build the source into a binary, if you have downloaded the source.
This may involve building and/or installing other necessary packages.

3. Install the binaries into their final destinations.

2.2. Obtaining the source and binary distributions

You can obtain both source and binary distributions from the Wireshark web
site: http://www.wireshark.org. Simply select the download link, and then select
either the source package or binary package of your choice from the mirror site
closest to you.

Download all required files!

_In general, unless you have already downloaded Wireshark

//" before, you will most likely need to download several source
packages if you are building Wireshark from source. This is
covered in more detail below.

Once you have downloaded the relevant files, you can go on to the next step.
Note!

While you will find a number of binary packages available on
the Wireshark web site, you might not find one for your
_platform, and they often tend to be several versions behind the
' current released version, as they are contributed by people who
have the platforms they are built for.

For this reason, you might want to pull down the source
distribution and build it, as the process is relatively simple.

http://www.wireshark.org

2.3. Before you build Wireshark under UNIX

Before you build Wireshark from sources, or install a binary package, you must
ensure that you have the following other packages installed:

e GTK+, The GIMP Tool Kit.
You will also need Glib. Both can be obtained from www.gtk.org
e libpcap, the packet capture software that Wireshark uses.

You can obtain libpcap from www.tcpdump.org

Depending on your system, you may be able to install these from binaries, e.g.
RPMs, or you may need to obtain them in source code form and build them.

If you have downloaded the source for GTK+, the instructions shown in
Example 2.1, “Building GTK+ from source” may provide some help in building
it:

Example 2.1. Building GTK+ from source

gzip -dc gtk+-2.21.1.tar.gz | tar xvf -
<much output removed>

cd gtk+-2.21.1

./configure

<much output removed>

make

<much output removed>

make install

<much output removed>

Note!

You may need to change the version number of GTK+ in
Example 2.1, “Building GTK+ from source” to match the

it version of GTK+ you have downloaded. The directory you

""" “change to will change if the version of GTK+ changes, and in all
cases, tar xvf - will show you the name of the directory you

http://www.gtk.org
http://www.tcpdump.org

should change to.

Note!

B If you use Linux, or have GNU tar installed, you can use tar
— zxvf gtk+-2.21.1.tar.gz. It is also possible to use gunzip -c or
gzcat rather than gzip -dc on many UNIX systems.

Note!

you may find your file called gtk+-2_21_1_tar.gz.

You should consult the GTK+ web site if any errors occur in carrying out the
instructions in Example 2.1, “Building GTK+ from source”.

If you have downloaded the source to libpcap, the general instructions shown in
Example 2.2, “Building and installing libpcap” will assist in building it. Also, if
your operating system does not support tcpdump, you might also want to
download it from the tcpdump web site and install it.

Example 2.2. Building and installing libpcap

gzip -dc libpcap-1.0.0.tar.Z | tar xvf -
<much output removed>

cd libpcap-1.0.0

./configure

<much output removed>

make

<much output removed>

make install

<much output removed>

Note!

http://www.tcpdump.org

of libpcap you have downloaded. In all cases, tar xvf - will
show you the name of the directory that has been unpacked.

Under Red Hat 6.x and beyond (and distributions based on it, like Mandrake)
you can simply install each of the packages you need from RPMs. Most Linux
systems will install GTK+ and GLib in any case, however you will probably
need to install the devel versions of each of these packages. The commands

shown in Example 2.3, “ Installing required RPMs under Red Hat Linux 6.2 and
beyond ” will install all the needed RPMs if they are not already installed.

Example 2.3. Installing required RPMs under Red Hat Linux 6.2 and
beyond

cd /mnt/cdrom/RedHat/RPMS

rpm -ivh glib-1.2.6-3.1386.rpm

rpm -ivh glib-devel-1.2.6-3.1386.rpm
rpm -ivh gtk+-1.2.6-7.1386.rpm

rpm -ivh gtk+-devel-1.2.6-7.1386.rpm
rpm -ivh libpcap-0.4-19.1i386.rpm

Note

—» If you are using a version of Red Hat later than 6.2, the required
— RPMs have most likely changed. Simply use the correct RPMs
from your distribution.

Under Debian you can install Wireshark using aptitude. aptitude will handle any

dependency issues for you. Example 2.4, “Installing debs under Debian, Ubuntu
and other Debian derivatives” shows how to do this.

Example 2.4. Installing debs under Debian, Ubuntu and other Debian
derivatives

aptitude install wireshark-dev

2.4. Building Wireshark from source under UNIX

Use the following general steps if you are building Wireshark from source under
a UNIX operating system:

1. Unpack the source from its gzip'd tar file. If you are using Linux, or your
version of UNIX uses GNU tar, you can use the following command:

tar zxvf wireshark-1.10-tar.gz

For other versions of UNIX, you will want to use the following commands:

gzip -d wireshark-1.10-tar.gz
tar xvf wireshark-1.10-tar

Note!

'/ The pipeline gzip -dc wireshark-1.10-tar.gz | tar xvf - will
work here as well.

Note!

Ei If you have downloaded the Wireshark tarball under
Windows, you may find that your browser has created a file
with underscores rather than periods in its file name.

2. Change directory to the Wireshark source directory.

3. Configure your source so it will build correctly for your version of UNIX.
You can do this with the following command:

./configure

If this step fails, you will have to rectify the problems and rerun configure.
Troubleshooting hints are provided in Section 2.6, “Troubleshooting during

the install on Unix”.

4. Build the sources into a binary, with the make command. For example:

make

5. Install the software in its final destination, using the command:

make install

Once you have installed Wireshark with make install above, you should be able
to run it by entering wireshark.

2.5. Installing the binaries under UNIX

In general, installing the binary under your version of UNIX will be specific to
the installation methods used with your version of UNIX. For example, under
AIX, you would use smit to install the Wireshark binary package, while under
Tru64 UNIX (formerly Digital UNIX) you would use setld.

2.5.1. Installing from rpm's under Red Hat and alike

Use the following command to install the Wireshark RPM that you have
downloaded from the Wireshark web site:

rpm -ivh wireshark-1.10.1i386.rpm

If the above step fails because of missing dependencies, install the dependencies
first, and then retry the step above. See Example 2.3, “ Installing required RPMs
under Red Hat Linux 6.2 and beyond ” for information on what RPMs you will
need to have installed.

2.5.2. Installing from deb's under Debian, Ubuntu and other
Debian derivatives

If you can just install from the repository then use:

aptitude install wireshark

aptitude should take care of all of the dependency issues for you.

Use the following command to install downloaded Wireshark deb's under
Debian:

dpkg -i wireshark-common_1.10.0-1_i386.deb wireshark 1.10.0-1_1i386.d

dpkg doesn't take care of all dependencies, but reports what's missing.

Note!

By installing Wireshark packages non-root users won't gain
___rights automatically to capture packets. To allow non-root users
I to capture packets follow the procedure described in

/usr/share/doc/wireshark-common/README.Debian

2.5.3. Installing from portage under Gentoo Linux

Use the following command to install Wireshark under Gentoo Linux with all of
the extra features:

USE="adns gtk ipv6 portaudio snmp ssl kerberos threads selinux" emer

2.5.4. Installing from packages under FreeBSD

Use the following command to install Wireshark under FreeBSD:

pkg_add -r wireshark

pkg add should take care of all of the dependency issues for you.

2.6. Troubleshooting during the install on Unix

A number of errors can occur during the installation process. Some hints on
solving these are provided here.

If the configure stage fails, you will need to find out why. You can check the file
config.log in the source directory to find out what failed. The last few lines of
this file should help in determining the problem.

The standard problems are that you do not have GTK+ on your system, or you
do not have a recent enough version of GTK+. The configure will also fail if
you do not have libpcap (at least the required include files) on your system.

Another common problem is for the final compile and link stage to terminate
with a complaint of: Output too long. This is likely to be caused by an antiquated
sed (such as the one shipped with Solaris). Since sed is used by the libtool script
to construct the final link command, this leads to mysterious problems. This can
be resolved by downloading a recent version of sed from
http://directory.fsf.org/project/sed/.

If you cannot determine what the problems are, send an email to the wireshark-
dev mailing list explaining your problem, and including the output from
config.log and anything else you think is relevant, like a trace of the make
stage.

http://directory.fsf.org/project/sed/

2.7. Building from source under Windows

It is recommended to use the binary installer for Windows, until you want to
start developing Wireshark on the Windows platform.

For further information how to build Wireshark for Windows from the sources,
have a look at the Developer's Guide on the Documentation Page.

You may also want to have a look at the Development Wiki:
http://wiki.wireshark.org/Development for the latest available development
documentation.

http://www.wireshark.org/docs/
http://wiki.wireshark.org/Development

2.8. Installing Wireshark under Windows

In this section we explore installing Wireshark under Windows from the binary
packages.

2.8.1. Install Wireshark

You may acquire a binary installer of Wireshark named something like:
wireshark-winxx-1.10.x.exe. The Wireshark installer includes WinPcap, so
you don't need to download and install two separate packages.

Simply download the Wireshark installer from:
http://www.wireshark.org/download.html and execute it. Beside the usual
installer options like where to install the program, there are several optional
components.

Tip: Just keep the defaults!

L

If you are unsure which settings to select, just keep the defaults.

2.8.1.1. "Choose Components" page

Wireshark

e Wireshark GTK - Wireshark is a GUI network protocol analyzer.
TShark - TShark is a command-line based network protocol analyzer.
Plugins / Extensions (for the Wireshark and TShark dissection engines):

¢ Dissector Plugins - Plugins with some extended dissections.

¢ Tree Statistics Plugins - Plugins with some extended statistics.

e Mate - Meta Analysis and Tracing Engine (experimental) - user
configurable extension(s) of the display filter engine, see
http://wiki.wireshark.org/Mate for details.

http://www.wireshark.org/download.html
http://wiki.wireshark.org/Mate

SNMP MIBs - SNMP MIBs for a more detailed SNMP dissection.

Tools (additional command line tools to work with capture files):

Editcap - Editcap is a program that reads a capture file and writes some or
all of the packets into another capture file.

Text2Pcap - Text2pcap is a program that reads in an ASCII hex dump and
writes the data into a libpcap-style capture file.

Mergecap - Mergecap is a program that combines multiple saved capture
files into a single output file.

Capinfos - Capinfos is a program that provides information on capture
files.

Rawshark - Rawshark is a raw packet filter.

User's Guide - Local installation of the User's Guide. The Help buttons on most
dialogs will require an internet connection to show help pages if the User's
Guide is not installed locally.

2.8.1.2. "Additional Tasks" page

Start Menu Shortcuts - add some start menu shortcuts.
Desktop Icon - add a Wireshark icon to the desktop.

Quick Launch Icon - add a Wireshark icon to the Explorer quick launch
toolbar.

Associate file extensions to Wireshark - Associate standard network trace
files to Wireshark.

2.8.1.3. "Install WinPcap?" page

The Wireshark installer contains the latest released WinPcap installer.

If you don't have WinPcap installed, you won't be able to capture live network

traffic, but you will still be able to open saved capture files.

Currently installed WinPcap version - the Wireshark installer detects the
currently installed WinPcap version.

Install WinPcap x.x - if the currently installed version is older than the one
which comes with the Wireshark installer (or WinPcap is not installed at
all), this will be selected by default.

Start WinPcap service "NPF" at startup - so users without
administrative privileges can capture.

More WinPcap info:

Wireshark related: http://wiki.wireshark.org/WinPcap

General WinPcap info: http://www.winpcap.org

2.8.1.4. Command line options

You can simply start the Wireshark installer without any command line
parameters, it will show you the usual interactive installer.

For special cases, there are some command line parameters available:

/NCRC disables the CRC check

/S runs the installer or uninstaller silently with default values. Please note:
The silent installer won't install WinPCap!

/desktopicon installation of the desktop icon, =yes - force installation, =no
- don't install, otherwise use defaults / user settings. This option can be
useful for a silent installer.

/quicklaunchicon installation of the quick launch icon, =yes - force
installation, =no - don't install, otherwise use defaults / user settings.

/D sets the default installation directory ($INSTDIR), overriding InstallDir
and InstallDirRegKey. It must be the last parameter used in the command
line and must not contain any quotes, even if the path contains spaces.

http://wiki.wireshark.org/WinPcap
http://www.winpcap.org

Example:

wireshark-win32-1.10.0.exe /NCRC /S /desktopicon=yes
/quicklaunchicon=no /D=C:\Program Files\Foo

2.8.2. Manual WinPcap Installation

Note!

—» As mentioned above, the Wireshark installer takes care of
""" “the installation of WinPcap, so usually you don't have to
worry about WinPcap at all!

The following is only necessary if you want to try a different version than the
one included in the Wireshark installer, e.g. because a new WinPcap (beta)
version was released.

Additional WinPcap versions (including newer alpha or beta releases) can be
downloaded from the following locations:

e The main WinPcap site: http://www.winpcap.org

e The Wiretapped.net mirror:
http://www.mirrors.wiretapped.net/security/packet-capture/winpcap

At the download page you will find a single installer exe called something like
"auto-installer", which can be installed under various Windows systems,
including NT4.0/2000/XP/2003/Vista/7/2008.

2.8.3. Update Wireshark

From time to time you may want to update your installed Wireshark to a more
recent version. If you join Wireshark's announce mailing list, you will be
informed about new Wireshark versions, see Section 1.6.5, “Mailing Lists” for
details how to subscribe to this list.

New versions of Wireshark usually become available every 4 to 8 months.
Updating Wireshark is done the same way as installing it, you simply download

http://www.winpcap.org
http://www.mirrors.wiretapped.net/security/packet-capture/winpcap

and start the installer exe. A reboot is usually not required and all your personal
settings remain unchanged.

2.8.4. Update WinPcap

New versions of WinPcap are less frequently available, maybe only once in a
year. You will find WinPcap update instructions where you can download new
WinPcap versions. Usually you have to reboot the machine after installing a new
WinPcap version.

Warning!

If you have an older version of WinPcap installed, you must
uninstall it before installing the current version. Recent versions
of the WinPcap installer will take care of this.

2.8.5. Uninstall Wireshark

You can uninstall Wireshark the usual way, using the "Add or Remove
Programs" option inside the Control Panel. Select the "Wireshark" entry to start
the uninstallation procedure.

The Wireshark uninstaller will provide several options as to which things are to
be uninstalled; the default is to remove the core components but keep the
personal settings, WinPcap and alike.

WinPcap won't be uninstalled by default, as other programs than Wireshark may
use it as well.

2.8.6. Uninstall WinPcap

You can uninstall WinPcap independently of Wireshark, using the "WinPcap"
entry in the "Add or Remove Programs" of the Control Panel.

Note!

- After uninstallation of WinPcap you can't capture anything with

Wireshark.

It might be a good idea to reboot Windows afterwards.

Chapter 3. User Interface

Table of Contents

3.1. Introduction
3.2. Start Wireshark
3.3. The Main window

3.3.1. Main Window Navigation
3.4. The Menu
3.5. The "File" menu
3.6. The "Edit" menu
3.7. The "View" menu
3.8. The "Go" menu
3.9. The "Capture" menu
3.10. The "Analyze" menu
3.11. The "Statistics" menu
3.12. The "Telephony" menu
3.13. The "Tools" menu
3.14. The "Internals" menu
3.15. The "Help" menu
3.16. The "Main" toolbar
3.17. The "Filter" toolbar
3.18. The "Packet List" pane
3.19. The "Packet Details" pane
3.20. The "Packet Bytes" pane
3.21. The Statusbar

3.1. Introduction

By now you have installed Wireshark and are most likely keen to get started
capturing your first packets. In the next chapters we will explore:

e How the Wireshark user interface works

How to capture packets in Wireshark

How to view packets in Wireshark

How to filter packets in Wireshark

e ... and many other things!

3.2. Start Wireshark
You can start Wireshark from your shell or window manager.
Tip!
When starting Wireshark it's possible to specify optional settings

using the command line. See Section 10.2, “Start Wireshark
from the command line” for details.

L

Note!

In the following chapters, a lot of screenshots from Wireshark
will be shown. As Wireshark runs on many different platforms
—» with many different window managers, different styles applied
""" “and there are different versions of the underlying GUI toolkit
used, your screen might look different from the provided
screenshots. But as there are no real differences in functionality,
these screenshots should still be well understandable.

3.3. The Main window

Let's look at Wireshark's user interface. Figure 3.1, “The Main window” shows
Wireshark as you would usually see it after some packets are captured or loaded
(how to do this will be described later).

Figure 3.1. The Main window

ﬂtest.cap E]@

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

=" EEXZE QAesaTIR|EE | QAQAQB | @dMEMBE B
Filter: + | Expression. ..
Mo, Time Source Destination Protocal [Length [Info
1 0.000000 192.168.0.2 Broadecast ARP 47 Gratuitous arp for 192.168.0.2 (F
2 0.299139 192 .1a65.0.1 152.1688.0.2 MEMNS 92 Mame query NESTAT *<00><00><005><C
2 0.299214 E 0.2 70 pestination unreachabhle (Port un
4 1.025659 192.168.0.2 224.0.0.22 IGMP 54 v3 Membership rReport / Join group
51.044366 192.168.0.2 192.168.0.1 DHS 110 standard guery sy _ldap. _tcp.nbc
6 1.048652 1592.168.0.2 230,255,255, 250 SSDP 175 M-SEARCH * HTTP/1.1
71.050784 152.168.0.2 152.168.0.1 DMNS 86 standard guery soa nbl0061d. wwiod
8 1.055053 152.168.0.1 152.168.0.2 SSDP 337 HTTP/1.1 200 oK
9 1.082038 152.168.0.2 1%2.168.0.255 NEMNS 110 Registration NE NELOOG1D<00:>
10 1.1215845 1592.168.0.2 192.168.0.1 DHS 87 standard guery a proxycont.ww004.
11 1./26156 192.168.0.2 1%2.168.0.1 TCP 62 ncu-2 > http [S¥N] Seq=0 win=6424
12 1.227282 192.168.0.1 1%2.168.0.2 TCP 60 http = ncu-2 [S¥N, ACK] Seqg=0 Ackw
¥

Frame 11: 62 bytes on wire (496 bhits), 62 bytes captured (496 bits)
Ethernet II, Src: 162.168.0.2 (00:0b:5d:20:cd:02), Dst: Metgear_2d:75:9a (00:09:5b:2d:75:9a)
Internet Protocol, src: 192.168.0.2 (192.168.0.270, Dst: 192.165.0.1 (192.1658.0.10
Transmission Control Protocol, Src Port: ncu-2 (31963, Dst Port: http (80), Seqg: 0, Len: O
SOUrCe port: ncu-2 (3196)
pestination port: http (80)
[stream dndex: 5]
sequence number: 0O (relative seqguence number)
Header Tength: 28 hytes
+ Flags: Ox02 (SYND)

T B E

window size walue: 64240 v
QOO0 00 09 S5ho2d F5 9a 00 Ok 5d 20 <d 02 08 00 45 00 PO == Y - N
Q010 00 320 18 48 40 00 80 08 61 Z2c¢ <D a8 00 02 <0 aB SR HEB R
Qo200 00 01 O Fo 00 50 3c 26 95 £8 00 00 00 00 FO 02 Erar - n.

0030 fa fO 27 =20 00 00 02 04 05 b4 01 01 C4 O2 T

6 File: "C:/test,cap” 14 KB 00;00;02 Packets: 120 Displayed: 120 Marked: 0 Load time: 0;00,000 Profile; Defaulk

Wireshark's main window consists of parts that are commonly known from many
other GUI programs.

1. The menu (see Section 3.4, “The Menu”) is used to start actions.

2. The main toolbar (see Section 3.16, “The "Main" toolbar”) provides quick
access to frequently used items from the menu.

. The filter toolbar (see Section 3.17, “The "Filter" toolbar”) provides a way
to directly manipulate the currently used display filter (see Section 6.3,
“Filtering packets while viewing”).

. The packet list pane (see Section 3.18, “The "Packet List" pane”) displays a
summary of each packet captured. By clicking on packets in this pane you
control what is displayed in the other two panes.

. The packet details pane (see Section 3.19, “The "Packet Details" pane”)
displays the packet selected in the packet list pane in more detail.

. The packet bytes pane (see Section 3.20, “The "Packet Bytes" pane”)
displays the data from the packet selected in the packet list pane, and
highlights the field selected in the packet details pane.

. The statusbar (see Section 3.21, “The Statusbar”) shows some detailed
information about the current program state and the captured data.

Tip!

. The layout of the main window can be customized by changing
preference settings. See Section 10.5, “Preferences” for details!

3.3.1. Main Window Navigation

Packet list and detail navigation can be done entirely from the keyboard.

Table 3.1, “Keyboard Navigation” shows a list of keystrokes that will let you
quickly move around a capture file. See Table 3.5, “Go menu items” for
additional navigation keystrokes.

Table 3.1. Keyboard Navigation

Accelerator Description

Move between screen elements, e.g. from the toolbars to the packet

Shift+Tab list to the packet detail.

Down Move to the next packet or detail item.

Up Move to the previous packet or detail item.
Ctrl+Down, . o
8 Move to the next packet, even if the packet list isn't focused.

Ctrl+Up, F7 Move to the previous packet, even if the packet list isn't focused.

Ctrl+. Move to the next packet of the conversation (TCP, UDP or IP)

Ctrl+, Move to the previous packet of the conversation (TCP, UDP or IP)

In the packet detail, closes the selected tree item. If it's already

Left closed, jumps to the parent node.
Right In the packet detail, opens the selected tree item.
Shift+Right In the packet detail, opens the selected tree item and all of its

subtrees.

Ctrl+Right In the packet detail, opens all tree items.

Ctrl+Left In the packet detail, closes all tree items.

Backspace 1In the packet detail, jumps to the parent node.

Return,

Enter In the packet detail, toggles the selected tree item.

Additionally, typing anywhere in the main window will start filling in a display
filter.

3.4. The Menu

The Wireshark menu sits on top of the Wireshark window. An example is shown
in Figure 3.2, “The Menu”.

Note!

—» Menu items will be greyed out if the corresponding feature isn't
“available. For example, you cannot save a capture file if you
didn't capture or load any data before.

Figure 3.2. The Menu

File Edit View Go Capture Analyze Statistics Telephony Tools |nternals Help

It contains the following items:
File

This menu contains items to open and merge capture files, save / print /
export capture files in whole or in part, and to quit from Wireshark. See
Section 3.5, “The "File" menu”.

Edit

This menu contains items to find a packet, time reference or mark one or
more packets, handle configuration profiles, and set your preferences; (cut,
copy, and paste are not presently implemented). See Section 3.6, “The
"Edit" menu”.

View

This menu controls the display of the captured data, including colorization
of packets, zooming the font, showing a packet in a separate window,
expanding and collapsing trees in packet details, See Section 3.7, “The
"View" menu”.

Go

This menu contains items to go to a specific packet. See Section 3.8, “The
"Go" menu”.

Capture

This menu allows you to start and stop captures and to edit capture filters.
See Section 3.9, “The "Capture” menu”.

Analyze

This menu contains items to manipulate display filters, enable or disable the
dissection of protocols, configure user specified decodes and follow a TCP
stream. See Section 3.10, “The "Analyze" menu”.

Statistics

This menu contains items to display various statistic windows, including a
summary of the packets that have been captured, display protocol hierarchy
statistics and much more. See Section 3.11, “The "Statistics" menu”.

Telephony

This menu contains items to display various telephony related statistic
windows, including a media analysis, flow diagrams, display protocol
hierarchy statistics and much more. See Section 3.12, “The "Telephony"
menu”.

Tools

This menu contains various tools available in Wireshark, such as creating
Firewall ACL Rules. See Section 3.13, “The "Tools" menu”.

Internals

This menu contains items that show information about the internals of
Wireshark. See Section 3.14, “The "Internals" menu”.

Help

This menu contains items to help the user, e.g. access to some basic help,
manual pages of the various command line tools, online access to some of
the webpages, and the usual about dialog. See Section 3.15, “The "Help"
menu”.

Each of these menu items is described in more detail in the sections that follow.
Tip!

You can access menu items directly or by pressing the

. corresponding accelerator keys which are shown at the right side
of the menu. For example, you can press the Control (or Strg in
German) and the K keys together to open the capture dialog.

3.5. The "File" menu

The Wireshark file menu contains the fields shown in Table 3.2, “File menu

items”.

Figure 3.3. The "File" Menu

ﬂtest.cap E]@
File | Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
nen;.. w2 E R es DT EIBEI QAR EERRE B
Open Recent 4
Merge... * | Expression. ..
Irpart... Destination Protocal [Length [Info
#H dose Chrl+iy), 2 Broadcast ARP 42 Gratuitous AppP for 192.168.0.2 (F
s [168.0.2 NENS 92 Name guery NBSTAT “<00><00%<00><(
L id 168, 0.1 TCMP 70 pestination unreachable (Port unr
& save as... Shift+kr+5 1. 2 22 IGMP 54 v3 Membership rReport / Join group
> .2 (01 AL DHS 110 standard guery sy _ldap. _tcp.nbc
File: Set ' 2 L255.250 SsDP 175 M-SEARCH * HTTP/1.1
Expart » Filans DNS 86 standard query S0a nbl0061d. wwi0d
SSDP 337 HTTRAL.1 200 oK
= Print... Chr+P Chiects » HTTR 110 registration NE WELOOS1D<00:
] e T Gicom 87 standard guery a proxycont.ww004.
@l Quit Cirl+Q 192.168.0.1 T 62 ncu-2 » http [5¥N] Seq=0 win=g424
12 1.227282 152.168.0.1 192.168.0.2 = 60 http = ncu-2 [S¥N, ACK] Seqg=0 Ackw
¥
Frame 11: 62 bytes on wire (496 hits), 62 bytes captured (496 bits)
Ethernet II, Src: 192.168.0.2 (00:0b:5d:20:cd:02), Dst: Metgear_2d:75:%9a (00:09:5b:2d:75:9a)
+# Internet Protocol, src: 192.1658.0.2 (192.165.0.20, Dst: 192.165.0.1 (192.165.0.1)
- Transmission Control Protocol, Src Port: ncu-2 (31960, Dst Port: http (80), Seg: O, Len: O
SOUrCe port: ncu-2 (3196)
pestination port: http (80)
[stream dndex: 5]
sequence number: 0O (relative seqguence number)
Header Tength: 28 hytes
+ Flags: Ox02 (SYND)
window size walue: 64240 v
QOO0 00 09 S5ho2d F5 9a 00 Ok 5d 20 <d 02 08 00 45 00 [-u...] .E.
Q010 00 320 18 48 40 00 80 08 61 Z2c¢ <D a8 00 02 <0 aB Qi HE R
Qo200 00 01 O Fo 00 50 3c 26 95 £8 00 00 00 00 FO 02 Pl SEEE n.
Qo200 fa fO 27 20 00 00 02 04 05 b4 01 01 04 02 e i m
6 File: "C:/test,cap” 14 KB 00;00;02 Packets: 120 Displayed: 120 Marked: 0 Load time: 0;00,000 Profile; Defaulk
Table 3.2. File menu items
Menu
Item Accelerator Description

This menu item brings up the file open dialog box that
allows you to load a capture file for viewing. It is

Open... Ctrl+O discussed in more detail in Section 5.2.1, “The "Open
Capture File" dialog box™.

This menu item shows a submenu containing the

Open recently opened capture files. Clicking on one of the
Recent submenu items will open the corresponding capture file
directly.

This menu item brings up the merge file dialog box that
allows you to merge a capture file into the currently

Merge... loaded one. It is discussed in more detail in Section 5.4,
“Merging capture files”.

Import This menu item brings up the import file dialog box that

from allows you to import a text file containing a hex dump

Hex into a new temporary capture. It is discussed in more

Dump... detail in Section 5.5, “Import hex dump”.

This menu item closes the current capture. If you haven't
Close Ctrl+W saved the capture, you will be asked to do so first (this
can be disabled by a preference setting).

This menu item saves the current capture. If you have
not set a default capture file name (perhaps with the -w
<capfile> option), Wireshark pops up the Save Capture
File As dialog box (which is discussed further in
Section 5.3.1, “The "Save Capture File As" dialog
box”).

Note!

Save Ctrl+S 1 If you have already saved the current

Save
As...

File Set
> List
Files

File Set
> Next
File

File Set
>

Previous
File

Export
> File...

capture, this menu item will be greyed
out.

Note!
—» You cannot save a live capture while the

""" ~capture is in progress. You must stop the
capture in order to save.

This menu item allows you to save the current capture
file to whatever file you would like. It pops up the Save

Shift+Ctrl+S Capture File As dialog box (which is discussed further in

Section 5.3.1, “The "Save Capture File As" dialog
box™).

This menu item allows you to show a list of files in a file
set. It pops up the Wireshark List File Set dialog box
(which is discussed further in Section 5.6, “File Sets”).

If the currently loaded file is part of a file set, jump to
the next file in the set. If it isn't part of a file set or just
the last file in that set, this item is greyed out.

If the currently loaded file is part of a file set, jump to
the previous file in the set. If it isn't part of a file set or
just the first file in that set, this item is greyed out.

This menu item allows you to export all (or some) of the
packets in the capture file to file. It pops up the
Wireshark Export dialog box (which is discussed further
in Section 5.7, “Exporting data”).

Export
>

Selected Ctrl+H
Packet
Bytes...

Export
>

Objects
>HTTP

Export
>

Objects
>

DICOM

Export
>

Objects
> SMB

Print... Ctrl+P

Quit Ctrl+Q

This menu item allows you to export the currently
selected bytes in the packet bytes pane to a binary file. It
pops up the Wireshark Export dialog box (which is
discussed further in Section 5.7.7, “The "Export selected
packet bytes" dialog box”)

This menu item allows you to export all or some of the
captured HTTP objects into local files. It pops up the
Wireshark HTTP object list (which is discussed further
in Section 5.7.8, “The "Export Objects" dialog box™)

This menu item allows you to export all or some of the
captured DICOM objects into local files. It pops up the
Wireshark DICOM object list (which is discussed
further in Section 5.7.8, “The "Export Objects" dialog
box”)

This menu item allows you to export all or some of the
captured SMB objects into local files. It pops up the
Wireshark SMB object list (which is discussed further in
Section 5.7.8, “The "Export Objects" dialog box”)

This menu item allows you to print all (or some) of the
packets in the capture file. It pops up the Wireshark Print
dialog box (which is discussed further in Section 5.8
“Printing packets”).

This menu item allows you to quit from Wireshark.
Wireshark will ask to save your capture file if you
haven't previously saved it (this can be disabled by a
preference setting).

3.6. The "Edit" menu

The Wireshark Edit menu contains the fields shown in Table 3.3, “Edit menu
items”.

Figure 3.4. The "Edit" Menu

ﬂtest.cap E]@
File [Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
B e '‘pTFLIEE Qe @EM % B
> & Find Packet... Chrl+F 5
Filter + | Expression. ..
Find Mext Chrl+M
Mo, Find Previous Ctrl+B Protocol [Length |Info
- ARP 42 Gratuitous arRP for 192.168.0.2 (F
Mark Packst (toagle) Cerdn | 5 MENS 92 Name guery MBSTAT “<00><00><00><C
Bl oud=Marking OF &ll Displayed Packets Shift+Chrl-+AI-+M - I TCMP 70 Destination unreachahle (Port un
Mark All Displayed Packets Shift+Chr+M - 2 IGMP 54 v3 Membership report / Join groug
Unmark All Displayed Packsts Chri+al+mM |1 DHS 110 standard guery sy _ldap. _tcp.nbc
55.250 S5DP 175 M-SEARCH * HTTF'/l.l
HaL DHS 86 standard guery soa nbl0061d. wwiod
. 2 SSDP 337 HTTRAL.1 200 oK
Ignore Packet (toggle) QD 555 NBNS 110 Registration NE WBLO0S1D<003
Bk DHS 87 standard guery a proxycont.ww004.
el TCP 62 ncu-2 > http [S¥N] Seq=0 win=6424
(D set Time Reference (togals) Crl+T 2 sk e R R S Aikv
+ Fl tes captured (496 bits)
+ E d:02), Dst: NWetgear_2d:75:9a (00:0%:5h:2d:75:9a)
5 I .0.2), Dst: 192.168.0.1 (192.168.0.1)
= Configuration Profiles. .. Shift+Chrl+a 23 €3196), Dst Part: http (80), Seq: O, Len: O
#= Preferences.., Shift+Ctrl+P
DESTTRATTON port: NTTE (B0
[stream dndex: 5]
sequence number: 0O (relative seqguence number)
Header Tength: 28 hytes
+ Flags: Ox02 (SYND)
window size walue: a4240 hd
0000 00 0% Shb 2d 75 9a 00 Ob 5d 20 <d 02 OB 00 45 00 [T L =
0010 00 30 18 48 40 00 80 08 61 2c <0 aB 00 02 <0 aB LOUHB. .. 3,000
0020 00 01 0Oc 7c QO 50 3c 356 95 f8 00 00 00 00 7O 02 SRl BEEEE n.
0030 fa f0 27 0 00 00 02 04 05 b4 01 01 04 02 O -
6 File: "C:/test,cap” 14 KB 00;00;02 Packets: 120 Displayed: 120 Marked: 0 Load time: 0;00,000 Profile; Defaulk

Table 3.3. Edit menu items

Menu Item Accelerator Description

This menu item will copy the description of
Shift+Ctrl+D the selected item in the detail view to the
clipboard.

Copy >
Description

Copy >

Fieldname Shift+Ctrl+F

Copy > Value Shift+Ctrl+V

Copy > As

Filter Shift+Ctrl+C

Find Packet... Ctrl+F

Find Next Ctrl+N

Find Previous Ctrl+B

Mark Packet Ctrl+M
(toggle)

Toggle

This menu item will copy the fieldname of
the selected item in the detail view to the
clipboard.

This menu item will copy the value of the
selected item in the detail view to the
clipboard.

This menu item will use the selected item in
the detail view to create a display filter. This
display filter is then copied to the clipboard.

This menu item brings up a dialog box that
allows you to find a packet by many criteria.
There is further information on finding
packets in Section 6.8, “Finding packets”.

This menu item tries to find the next packet
matching the settings from "Find Packet...".

This menu item tries to find the previous
packet matching the settings from "Find
Packet...".

This menu item "marks" the currently
selected packet. See Section 6.10, “Marking
packets” for details.

Marking Of
All Displayed
Packets

Mark All
Displayed
Packets

Shift+Ctrl+M

Unmark All
Displayed
Packets

Ctrl+Alt+M

Find Next

Mark Shift+Ctrl+N

Find Previous _, .
Mark Shift+Ctrl+B

Ignore Packet

(toggle) Ctrl+D

Ignore All
Displayed
Packets
(toggle)

Un-Ignore All
Packets

Shift+Ctrl+D

Ctrl+Alt+D

Set Time
Reference

(toggle)

Ctrl+T

Shift+Ctrl+Alt+M This menu item toggles the mark on all

displayed packets.

This menu item "marks" all displayed
packets.

This menu item "unmarks" all displayed
packets.

Find the next marked packet.

Find the previous marked packet.

This menu item marks the currently selected
packet as ignored. See Section 6.11,

“Ignoring packets” for details.

This menu item marks all displayed packets
as ignored.

This menu item unmarks all ignored packets.

This menu item set a time reference on the
currently selected packet. See Section 6.12.1,

“Packet time referencing” for more
information about the time referenced
packets.

Un-Time
Reference All Ctrl+Alt+T
Packets

Find Next
Time Ctrl+Alt+N
Reference

Find Previous

Time Ctrl+Alt+B
Reference

Configuration g\ . 14 A
Profiles...

Preferences... Shift+Ctrl+P

This menu item removes all time references
on the packets.

This menu item tries to find the next time
referenced packet.

This menu item tries to find the previous
time referenced packet.

This menu item brings up a dialog box for
handling configuration profiles. More detail
is provided in Section 10.6, “Configuration
Profiles”.

This menu item brings up a dialog box that
allows you to set preferences for many
parameters that control Wireshark. You can
also save your preferences so Wireshark will
use them the next time you start it. More
detail is provided in Section 10.5,
“Preferences”.

3.7. The "View" menu

The Wireshark View menu contains the fields shown in Table 3.4, “View menu

items”.

Figure 3.5. The "View" Menu

ﬂ test.cap E]@
File Edit | Miew Go Capture Analyze Statistics Telephony Tools Internals Help
Bl il § v ton Tookr »oTFLIEE QAR #BB % B
v Filter Toolbar
Filter: s E ion...
i ‘Wireless Toolbar SRl
Mo, 1w Statushar skion Frotocol [Length |Info
iR - dcast ARP 47 Gratuitous arp for 192.168.0.2 (F
2 | v Packet List 1568.0.2 MBS 592 Name query NESTAT *<00><00><00><(
[35 : ICMP 70 Destination unreachable (Port une
v Packet Details . .
4 1 = 0 0 22 IGMP 54 v3 Membership rReport / Join group
Gy ¥ PacketBytes 168.0.1 DS 110 standard guery srv _Tdap. _tcp.nhbc
6] T ;
Time Display Farmat 4 i . 01 - 0z
7 H RP ;"t. \ Date and Time of Day: 1970-01-01 01:02:03,123456 Chrlalt+1 LOnELd, wwiind
3 e nEsen Time of Day: 01:02:03,123456 Chr-alb+2
L ow i i -
g] ¥ Colorize Packet List Seconds Since Epoch (1970-01-01) 1234567800.123456 Ctrleales H10<00>
B i : :
13 : Auto Scroll in Live Capture ® Seconds Since Beginning of Capture: 123.123456 Chrl+alk+4 ;zgn:_l :\:2234
12 1 &, ZoomIn Chrl++ Seconds Since Previous Captured Packet: 1,123456 CHHAS] Sag=0 Ack|w
©), Zoom Out Chrl+- Seconds Since Previous Displaved Packet: 1.123456 Chrl4+alk+6 ¥
& [EhamS ‘ tlormal Size il * Automatic (File Format Precision) L
Etheri 1 Resize Al Calumns Shift+Cerl+R H=EY]
3 Ihteri ; Seconds: 0
Displayed Colurins L4
- Transt Deciseconds: 0.1 0
ol Centiseconds: 0,12
Des Expand Al Chrl+Right " :
[5t1 Caollapse Al Chrl+Left Miliseconds: 0.123
Seql Microseconds: 0,123456
Haal Colarize Conversation 4
Manoseconds: 0.123456739
+ [Flar
wirn ™ Coloring Rules. .. Display Seconds with hours and minokes Chrl+Al+D e
Qooo 0d Shaow Packet in Mew Window 2 08 00 45 00 O TP T =i
oolo od o, 5 00 02 cO as PR B
0020 0f & Reload R g g0 00 7O 02 ... |.P<6 L..... p.
Qo200 fa TO 47 el U0 00 O 04 U5 b 01 0l 04 02 e i m
6 File: "C:/test,cap” 14 KB 00;00;02 Packets: 120 Displayed: 120 Marked: 0 Load time: 0;00,000 Profile; Defaulk

Table 3.4. View menu items

Menu Item

Main Toolbar

Accelerator

Description

This menu item hides or shows the main
toolbar, see Section 3.16, “The "Main"
toolbar”.

Filter Toolbar

Wireless Toolbar
(Windows only)

Statusbar

Packet List

Packet Details

Packet Bytes

Time Display
Format > Date and

This menu item hides or shows the filter
toolbar, see Section 3.17, “The "Filter"
toolbar”.

This menu item hides or shows the wireless
toolbar. See the AirPcap documentation for
more information.

This menu item hides or shows the statusbar,
see Section 3.21, “The Statusbar”.

This menu item hides or shows the packet
list pane, see Section 3.18, “The "Packet

)

List" pane”.

This menu item hides or shows the packet
details pane, see Section 3.19, “The "Packet

3

Details" pane”.

This menu item hides or shows the packet
bytes pane, see Section 3.20, “The "Packet
Bytes" pane”.

Selecting this tells Wireshark to display the

time stamps in date and time of day format,

see Section 6.12, “Time display formats and
time references”.

Note!

Time of Day: 1970-
01-01
01:02:03.123456

Time Display
Format > Time of
Day:
01:02:03.123456

Time Display
Format > Seconds
Since Epoch (1970-
01-01):
1234567890.123456

Time Display
Format > Seconds
Since Beginning of
Capture:
123.123456

Time Display
Format > Seconds
Since Previous
Captured Packet:
1.123456

Time Display
Format > Seconds
Since Previous
Displayed Packet:
1.123456

The fields "Time of Day",
"Date and Time of Day",

[~ "Seconds Since Beginning

""" “of Capture", "Seconds Since
Previous Captured Packet"
and "Seconds Since Previous
Displayed Packet" are

mutually exclusive.

Selecting this tells Wireshark to display time
stamps in time of day format, see

Section 6.12, “Time display formats and time
references”.

Selecting this tells Wireshark to display time
stamps in seconds since 1970-01-01
00:00:00, see Section 6.12, “Time display
formats and time references”.

Selecting this tells Wireshark to display time
stamps in seconds since beginning of capture
format, see Section 6.12, “Time display
formats and time references”.

Selecting this tells Wireshark to display time
stamps in seconds since previous captured
packet format, see Section 6.12, “Time
display formats and time references”.

Selecting this tells Wireshark to display time
stamps in seconds since previous displayed
packet format, see Section 6.12, “Time
display formats and time references”.

Time Display
Format > ------

Time Display
Format >
Automatic (File
Format Precision)

Time Display
Format > Seconds:
0

Time Display
Format >
...seconds: 0....

Time Display
Format > Display
Seconds with
hours and minutes

Name Resolution >
Resolve Name

Selecting this tells Wireshark to display time
stamps with the precision given by the
capture file format used, see Section 6.12,
“Time display formats and time references”.

Note!

St The fields "Automatic",
"Seconds" and "...seconds"
are mutually exclusive.

Selecting this tells Wireshark to display time
stamps with a precision of one second, see
Section 6.12, “Time display formats and time
references”.

Selecting this tells Wireshark to display time
stamps with a precision of one second,
decisecond, centisecond, millisecond,
microsecond or nanosecond, see

Section 6.12, “Time display formats and time
references”.

Selecting this tells Wireshark to display time
stamps in seconds, with hours and minutes.

This item allows you to trigger a name
resolve of the current packet only, see

Name Resolution >
Enable for MAC
Layer

Name Resolution >
Enable for
Network Layer

Name Resolution >
Enable for
‘Transport Layer

Colorize Packet
List

Auto Scroll in Live
Capture

Section 7.7, “Name Resolution”.

This item allows you to control whether or
not Wireshark translates MAC addresses into
names, see Section 7.7, “Name Resolution”.

This item allows you to control whether or
not Wireshark translates network addresses
into names, see Section 7.7, “Name
Resolution”.

This item allows you to control whether or
not Wireshark translates transport addresses
into names, see Section 7.7, “Name
Resolution”.

This item allows you to control whether or
not Wireshark should colorize the packet list.

Note!

_Enabling colorization will
/1 slow down the display of

new packets while capturing
/ loading capture files.

This item allows you to specify that
Wireshark should scroll the packet list pane
as new packets come in, so you are always
looking at the last packet. If you do not
specify this, Wireshark simply adds new
packets onto the end of the list, but does not
scroll the packet list pane.

Zoom In Ctrl++
Zoom Out Ctrl+-
Normal Size Ctrl+=
Resize All Shift+Ctrl+R
Columns

Displayed

Columns

Expand Subtrees Shift+Right

Zoom into the packet data (increase the font
size).

Zoom out of the packet data (decrease the
font size).

Set zoom level back to 100% (set font size
back to normal).

Resize all column widths so the content will
fit into it.

Note!

_ Resizing may take a

/T significant amount of time,
especially if a large capture
file is loaded.

This menu items folds out with a list of all
configured columns. These columns can now
be shown or hidden in the packet list.

This menu item expands the currently
selected subtree in the packet details tree.

Wireshark keeps a list of all the protocol
subtrees that are expanded, and uses it to

Expand All Ctrl+Right

Collapse All Ctrl+Left

Colorize
Conversation

Colorize
Conversation >
Color 1-10

Colorize
Conversation >
Reset coloring

Colorize
Conversation >
New Coloring
Rule...

Coloring Rules...

ensure that the correct subtrees are expanded
when you display a packet. This menu item
expands all subtrees in all packets in the
capture.

This menu item collapses the tree view of all
packets in the capture list.

This menu item brings up a submenu that
allows you to color packets in the packet list
pane based on the addresses of the currently
selected packet. This makes it easy to
distinguish packets belonging to different
conversations. Section 10.3, “Packet
colorization”.

These menu items enable one of the ten
temporary color filters based on the currently
selected conversation.

This menu item clears all temporary coloring
rules.

This menu item opens a dialog window in
which a new permanent coloring rule can be
created based on the currently selected
conversation.

This menu item brings up a dialog box that
allows you to color packets in the packet list
pane according to filter expressions you
choose. It can be very useful for spotting

Show Packet in
New Window

Reload

Ctrl+R

certain types of packets, see Section 10.3,
“Packet colorization”.

This menu item brings up the selected packet
in a separate window. The separate window
shows only the tree view and byte view
panes.

This menu item allows you to reload the
current capture file.

3.8. The "Go" menu

The Wireshark Go menu contains the fields shown in Table 3.5, “Go menu
items”.

Figure 3.6. The "Go" Menu

ﬂtest.cap E]@
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
B e el o w pF 2 ([EE QQQEH $EM%|E
Filter: @ 5oto Packet... Hoi + | Expression. ..
Mo, Time Protocal [Length [Info
1 0.00d ARP 42 gratuitous ARP for 192.168.0.2 (F
2 0.299 1 Previous Packet Chel+lp | MBS o2
IERTEE & i packet Ctrl+Down 8 ICMP
4 1.029 o P IGMP 54
51.049 Firs Racket ko 11 DHS 110 standard guery sy _ldap. _tcp.nbc
6 1.048 2L Lost Packet Ctr+End 55,250 SSDP 175 M-SEARCH * HTTR/1.1
7 1.05C Prewvious Packet In Conwersation Chrl+, |1 DHS 86 standard guery soa nbl0061d. wwiod
& 1.055 Mext Packet In Conwversation Chrl+, L2 SSDP 337 HTTRAL.1 200 oK
91, 08058 Tud . 1hs,. 0.4 19,188, 0. 255 MENS 110 Reg"lstr‘at"lun NE WBLOQE1D<00>
10 1.1215845 1592.168.0.2 192.168.0.1 DHS 87 standard guery a proxycont.ww004.
11 1./26156 192.168.0.2 1%2.168.0.1 TCP 62 ncu-2 > http [S¥N] Seq=0 win=6424
12 1.227282 192.168.0.1 1%2.168.0.2 TCP 60 http = ncu-2 [S¥N, ACK] Seqg=0 Ackw
¥
Frame 11: 62 bytes on wire (496 hits), 62 bytes captured (496 bits)
Ethernet II, Src: 192.168.0.2 (00:0b:5d:20:cd:02), Dst: Metgear_2d:75:%9a (00:09:5b:2d:75:9a)
+# Internet Protocol, src: 192.1658.0.2 (192.165.0.20, Dst: 192.165.0.1 (192.165.0.1)

Transmission Control Protocol, Src Port: ncu-2 (31963, Dst Port: http (80), Seqg: 0, Len: O

SOUrCe port: ncu-2 (3196)

pestination port: http (80)

[stream dndex: 5]

sequence number: 0O (relative seqguence number)
Header Tength: 28 hytes

Flags: Ox02 (SvM)

window size walue: a4240 hd
0000 00 0% Shb 2d 75 9a 00 Ob 5d 20 <d 02 OB 00 45 00 [T L =
0010 00 30 18 48 40 00 80 08 6l 2c cO aB 00 02 <0 al PR B
0020 00 01 0Oc 7c QO 50 3c 356 95 f8 00 00 00 00 7O 02 SRl BEEEE P.
0030 fa f0 27 0 00 00 02 04 05 b4 01 01 04 02 O -
6 File: "C:/test,cap” 14 KB 00;00;02 Packets: 120 Displayed: 120 Marked: 0 Load time: 0;00,000 Profile; Defaulk

Table 3.5. Go menu items

Menu Item Accelerator Description

Back

Jump to the recently visited packet in the packet
Alt+Left history, much like the page history in a web
browser.

Forward

Go to Packet...

Go to
Corresponding
Packet

Previous
Packet

Next Packet

First Packet

Last Packet

Previous
Packet In
Conversation

Alt+Right

Ctrl+G

Ctrl+Up

Ctrl+Down

Ctrl+Home

Ctrl+End

Ctrl+,

Jump to the next visited packet in the packet
history, much like the page history in a web
browser.

Bring up a dialog box that allows you to specify a
packet number, and then goes to that packet. See
Section 6.9, “Go to a specific packet” for details.

Go to the corresponding packet of the currently
selected protocol field. If the selected field doesn't
correspond to a packet, this item is greyed out.

Move to the previous packet in the list. This can
be used to move to the previous packet even if the
packet list doesn't have keyboard focus.

Move to the next packet in the list. This can be
used to move to the previous packet even if the
packet list doesn't have keyboard focus.

Jump to the first packet of the capture file.

Jump to the last packet of the capture file.

Move to the previous packet in the current
conversation. This can be used to move to the
previous packet even if the packet list doesn't have
keyboard focus.

Move to the next packet in the current
conversation. This can be used to move to the

rl+. previous packet even if the packet list doesn't have
keyboard focus.

Next Packet In
. Ct
Conversation

3.9. The "Capture" menu

The Wireshark Capture menu contains the fields shown in Table 3.6, “Capture
menu items”.

Figure 3.7. The "Capture” Menu

ﬂtest.cap E]@
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
@_ a_ lﬁ. { B Interfaces... T+ | @ & 2D ? Q ElE G)\ Q Q & “_ Be) E,.IL 3% J::ﬁ
@ options... Chrl+k
Filter: B Start ClrlE * | Expression. ..
Mo, Time i estination Protocal [Length [Info
1 0. 000000 roadecast ARP 47 Gratuitous arp for 192.168.0.2 (F
2 0.299139 i 92.1a58.0.2 MEMNS 92 Mame query NESTAT *<00><00><005><C
20 ERE] &6 Capture Fileers... 32,168, 0.1 TCMP 0 pestination unreachabhle (Port unr
4 1.025659 I192.1le8.0.2 224.0.0.22 IGMP 54 v3 Membership rReport / Join group
51.044366 192.168.0.2 192.168.0.1 DHS 110 standard guery sy _ldap. _tcp.nbc
6 1.048652 192 168.0.2 230, 255255, 250 SSDP 175 M-SEARCH * HTTR/1.1
T 1.050784 192 168.0.2 192.168.0.1 DMS 86 standard guery soa nbl0061d. wwiod
8 1.055053 192 168.0.1 192.168.0.2 SSDP 337 HTTRAL.1 200 oK
O 1,082038 192.168.0.2 192,168, 0.255 NENS 110 Registration NE NELOOG1D<00:>
10 1.1215845 1592.168.0.2 192.168.0.1 DHS 87 standard guery a proxycont.ww004.
11 1.226156 152.168.0.2 192.168.0.1 TCP 62 ncu-2 > http [S¥N] Seq=0 win=6424
12 1.227282 152.168.0.1 192.168.0.2 TCP 60 http = ncu-2 [S¥N, ACK] Seqg=0 Ackw
¥
Frame 11: 62 bytes on wire (496 hits), 62 bytes captured (496 bits)
Ethernet II, Src: 192.168.0.2 (00:0b:5d:20:cd:02), Dst: Metgear_2d:75:%9a (00:09:5b:2d:75:9a)
+# Internet Protocol, src: 192.1658.0.2 (192.165.0.20, Dst: 192.165.0.1 (192.165.0.1)
- Transmission Control Protocol, Src Port: ncu-2 (31960, Dst Port: http (80), Seg: O, Len: O
SOUrCe port: ncu-2 (3196)
pestination port: http (80)
[stream dndex: 5]
sequence number: 0O (relative seqguence number)
Header Tength: 28 hytes
+ Flags: Ox02 (SYND)
window size walue: 64240 v
QOO0 00 09 S5ho2d F5 9a 00 Ok 5d 20 <d 02 08 00 45 00 [-u...] .E.
Q010 00 320 18 48 40 00 80 08 61 Z2c¢ <D a8 00 02 <0 aB Qi HE R
0020 00 01 0c 7 00 50 3c 36 95 F8 00 00 00 00 70 02 dlPea BElE p.
Qo200 fa fO 27 20 00 00 02 04 05 b4 01 01 04 02 B i
6 File: "C:/test,cap” 14 KB 00;00;02 Packets: 120 Displayed: 120 Marked: 0 Load time: 0;00,000 Profile; Defaulk
Table 3.6. Capture menu items
Menu Item Accelerator Description

Interfaces... Ctrl+I

This menu item brings up a dialog box that shows
what's going on at the network interfaces Wireshark
knows of, see Section 4.4, “The "Capture Interfaces"

dialog box”) .

Options...

Start

Stop

Restart

Capture
Filters...

Ctrl+K

Ctrl+E

Ctrl+E

Ctrl+R

This menu item brings up the Capture Options dialog
box (discussed further in Section 4.5, “The "Capture
Options" dialog box”) and allows you to start
capturing packets.

Immediately start capturing packets with the same
settings than the last time.

This menu item stops the currently running capture,
see Section 4.14.1, “Stop the running capture™) .

This menu item stops the currently running capture
and starts again with the same options, this is just for
convenience.

This menu item brings up a dialog box that allows
you to create and edit capture filters. You can name
filters, and you can save them for future use. More
detail on this subject is provided in Section 6.6
“Defining and saving filters”

3.10. The "Analyze" menu

The Wireshark Analyze menu contains the fields shown in Table 3.7, “Analyze
menu items”.

Figure 3.8. The "Analyze" Menu

ﬂtest.cap E]@

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

oW e B {0 ospley Fitrs.. B eaaan #EM % B
Display Filker Macros...
Filker: r | Expression. ..
apply as Colurmn
Mo, Tirne Source &pply as Filter 4 Selecked
1 0.000000 192 .1 Prepare a Filker » Mok Selected Litous arp for 192.168.0.2 CF
2 0.2359139 192.] i salectedl gUery NBSTAT *<00><00><00><C
30 214 ¥ Enabled Protacals... Shift-+Ctrl+E ety ination unreachable (Port un
4 1.025659 192.5;5 Decode As... hndeE embership Report Join groug
51.044366 192.] ., Fied 4 P dard guery srv _ldap. _tcp.nbc
6 1.048652 102, = Hser Speciied Decodes... - CLnotaslecled e
7 1.050784 192.] Follow TP Stream DNS 86 standard query S0a nbl0061d. wwi0d
8 1.055053 162.] SSDP 337 HTTP/1.1 200 oK
o 1.082038 192.] NENS 110 Registration NE NELOOG1D<00:>
10 1.121845 182.! Fupéet Tt DHS 87 standard guery a proxycont.ww004.
11 1.226156 192, ; TCP 62 ncu-2 > http [S¥N] Seq=0 win=6424
12 1.227282 10oz.] ¢ ExpertInfoComposite TCP 60 http » ncu-2 [SYH, AcKk] Seq=0 Ack[v
Conversation Filker 4 >

Frame 11: 62 bytes on wire (496 bhits), 62 bytes captured (496 bits)
Ethernet II, Src: 162.168.0.2 (00:0b:5d:20:cd:02), Dst: Metgear_2d:75:9a (00:09:5b:2d:75:9a)
Internet Protocol, src: 192.168.0.2 (192.168.0.270, Dst: 192.1658.0.1 (192.1658.0.10
Transmission Control Protocol, Src Port: ncu-2 (31963, Dst Port: http (80), Seq: 0, Len: O
SOUrCe port: ncu-2 (3196)
pestination port: http (80)
[stream dndex: 5]
sequence number: 0O (relative seqguence number)
Header Tength: 28 hytes
+ Flags: Ox02 (SYND)

+

window size walue: 64240 v
QOO0 00 09 S5ho2d F5 9a 00 Ok 5d 20 <d 02 08 00 45 00 PO == Y - N
Q010 00 320 18 48 40 00 80 08 61 Z2¢ <D a8 00 02 <0 aB o0 I e e e
Qo200 00 01 O Fo 00 50 3c 26 95 £8 00 00 00 00 FO 02 . . i n.

0030 fa O 27 =0 00 00 02 04 05 b4 01 01 C4 02 0B D00 00D

6 Transmission Control Protocol {bepd, 28 bykes Packets: 120 Displayed: 120 Marked: 0 Load time: 0;00,000 Profile; Defaulk

Table 3.7. Analyze menu items

Menu Item Accelerator Description

This menu item brings up a dialog box that allows

you to create and edit display filters. You can name
filters, and you can save them for future use. More
detail on this subject is provided in Section 6.6

Display
Filters...

Display
Filter
Macros...

Apply as
Column

Apply as
Filter > ...

Prepare a
Filter > ...

Enabled

Protocols...

Shift+Ctrl+

“Defining and saving filters”

This menu item brings up a dialog box that allows
you to create and edit display filter macros. You
can name filter macros, and you can save them for
future use. More detail on this subject is provided

in Section 6.7, “Defining and saving filter macros”

This menu item adds the selected protocol item in
the packet details pane as a column to the packet
list.

These menu items will change the current display
filter and apply the changed filter immediately.
Depending on the chosen menu item, the current
display filter string will be replaced or appended to
by the selected protocol field in the packet details
pane.

These menu items will change the current display
filter but won't apply the changed filter. Depending
on the chosen menu item, the current display filter
string will be replaced or appended to by the
selected protocol field in the packet details pane.

This menu item allows the user to enable/disable

B protocol dissectors, see Section 10.4.1, “The

"Enabled Protocols" dialog box”

Decode As...

User
Specified
Decodes...

Follow TCP
Stream

Follow UDP
Stream

Follow SSL
Stream

Expert Info

Conversation

Filter > ...

This menu item allows the user to force Wireshark
to decode certain packets as a particular protocol,
see Section 10.4.2, “User Specified Decodes”

This menu item allows the user to force Wireshark
to decode certain packets as a particular protocol,
see Section 10.4.3, “Show User Specified Decodes”

This menu item brings up a separate window and
displays all the TCP segments captured that are on
the same TCP connection as a selected packet, see

Section 7.2, “Following TCP streams”

Same functionality as "Follow TCP Stream" but for
UDP streams.

Same functionality as "Follow TCP Stream" but for
SSL streams. XXX - how to provide the SSL keys?

Open a dialog showing some expert information
about the captured packets. The amount of
information will depend on the protocol and varies
from very detailed to non-existent. XXX - add a
new section about this and link from here

In this menu you will find conversation filter for
various protocols.

3.11. The "Statistics" menu

The Wireshark Statistics menu contains the fields shown in Table 3.8, “Statistics

menu items”.

Figure 3.9. The "Statistics" Menu

ﬂtest.cap E]@
File Edit View Go Capture Analyze | Skatistics Telephony Tools Internals Help
= =@ X T wmay ([EE eacaam @aBm % B
Protocol Hierarchy
Filter: B Conversations * | Expression. ..
Mo, Time Source & Endpoints Protocal [Length [Info
10.000000 192.168.0.2 pagket Lengths.., ARP 42 Gratuitous ARP for 192.168.0.2 (F
2 0.299139 192.1a658.0.1 {0 Graphs MEMNS 92 Mame query NESTAT *<00><00><005><C
E] 14 192.1 i - R TCMP 70 pestination unreachakle (Port unr
4 1.025659 192.168.0.4 Conversation List 3 TGMP 54 V3 Membership rReport / Join group
51.044366 192.168.0.: Endpoint Lisk Pl B Ethernet idard guery SRV _Tdap. _tcp.nbc
610048652 IO20TBBI0NE ervice Response Time b o SARCH * HTTR/L.1
71.050784 192.168.0.2 - 8 Fool ward guery soa nblO0GLd. wwood
8 1.055053 152.168.0.1 AMNCP... & Fibre Channel A1 200 oK
9 1.082038 1592.168.0.4 BOOTP-DHCP... g ey istration NB NBLOOG1D<00>
10 1.111%45 152.168.0.2 Collectd. .. idard guery A proxycont. ww0od .
111226156 109.168.0,- Compare... 8 v 2 s hgtp)Esvm? Se§=0 Wi n=6424
12 1.227282 152.168.0.1 [4 Flow Graph... & 1Pve 1ox ncu-2 [S¥YN, ACK] Seq=0 Ackw
HTTP [= >
Frame 11: 62 bytes on wire IP Addresses. .. B ncp
4 Ethernet II, src: 192.168.1 IP Destinations. .. g RS va [o0:0%9:5kh:2d:Fe:9a)
Internet Protocol, sSrc: 18] IP Protocol Types... e 1I2.168.0.1)
- Transmission Control Protoe OMC-RPC Programs 8 scme B0), seqg: 0, Len: O
Source port: ncu-2 (319§ Sametime » | B TCP(IPv4 & IPvE)
[EESt"natWD; purt::l http ¢ TCP Stream Graph b | B Token Ring
Stream index: 5 §
UDP Multicast Streams
sequence number: 0O (ri WLAR Traffic Bl UDP {IPwd & IPve)
Header length: 28 bytes 8 usE
+ Flags: Ox02 (SYND) B WLAN
window size walue: 64240 v
0000 00 0% Shb 2d 75 9a 00 Ob 5d 20 <d 02 OB 00 45 00 [-u...] .E.
0010 00 30 18 48 40 00 80 08 61 2c <0 aB 00 02 <0 aB O.HE... 3,......
0020 00 01 0Oc 7c QO 50 3c 356 95 f8 00 00 00 00 7O 02 EFER<h BEESE n.
0030 fa f0 27 0 00 00 02 04 05 b4 01 01 04 02 e e
6 File: "C:/test,cap” 14 KB 00;00;02 Packets: 120 Displayed: 120 Marked: 0 Load time: 0:00.015 Profile; Defaulk

All menu items will bring up a new window showing specific statistical

information.

Table 3.8. Statistics menu items

Menu Item Accelerator

Summary

Description

Show information about the data captured, see
Section 8.2, “The "Summary" window”.

Protocol
Hierarchy

Conversations

Endpoints

Packet
Lengths...

10 Graphs

Conversation
List

Endpoint List

Service

Display a hierarchical tree of protocol statistics, see
Section 8.3, “The "Protocol Hierarchy" window”.

Display a list of conversations (traffic between two
endpoints), see Section 8.4.2, “The
"Conversations" window”.

Display a list of endpoints (traffic to/from an
address), see Section 8.5.2, “The "Endpoints"
window”.

See Section 8.10, “The protocol specific statistics
windows”

Display user specified graphs (e.g. the number of
packets in the course of time), see Section 8.6,
“The "IO Graphs" window”.

Display a list of conversations, obsoleted by the
combined window of Conversations above, see
Section 8.4.3, “The protocol specific
"Conversation List" windows”.

Display a list of endpoints, obsoleted by the
combined window of Endpoints above, see
Section 8.5.3, “The protocol specific "Endpoint
List" windows”.

Display the time between a request and the

Response
Time

BOOTP-
DHCP...

Colledtd...

Compare...

Flow Graph...

HTTP

P
Addresses...

IP

Destinations...

IP Protocol
Types...

corresponding response, see Section 8.7, “Service
Response Time”.

See Section 8.10, “The protocol specific statistics
windows”

See Section 8.10, “The protocol specific statistics
windows”

See Section 8.10, “The protocol specific statistics
windows”

See Section 8.10, “The protocol specific statistics
windows”

See Section 8.10, “The protocol specific statistics
windows”

HTTP request/response statistics, see Section 8.10,

“The protocol specific statistics windows”

See Section 8.10, “The protocol specific statistics
windows”

See Section 8.10, “The protocol specific statistics
windows”

See Section 8.10, “The protocol specific statistics
windows”

ONC-RPC
Programs

Sametime

TCP Stream
Graph

UDP
Multicast
Streams

WLAN
Traffic

See Section 8.10, “The protocol specific statistics
windows”

See Section 8.10, “The protocol specific statistics
windows”

See Section 8.10, “The protocol specific statistics
windows”

See Section 8.10, “The protocol specific statistics
windows”

See Section 8.9, “WLAN Traffic Statistics”

3.12. The "Telephony" menu

The Wireshark Telephony menu contains the fields shown in Table 3.9
« . ”
Telephony menu items”.
Fi 3.10. The "Teleph "M
igure 5.10. e elepnony enu
ﬂtest.cap E]@
File Edit View Go Capture Analyze Statistics | Telephomy | Tools Internals Help
IS 1842 4 =3 [I
= & 2 e |
- | EEX2E BEE Q| W kERE s
SMPP Operations. ..
Filter: SICTP ¥ |epression. ..
AMST 4
Mo, Time Source ESM y |Protocal [length [Info
1 0.000000 192.168.0.2 ;225 ARP 42 Gratuitous ARP for 192.168.0.2 (F
2 0.299139 192 .1a65.0.1 hrieed MEMNS 92 Mame query NESTAT *<00><00><005><C
30 214 : i 2 L5UP Messages... ICMP 70 Destination unreachable (Port unr
4 1.025659 192.168.0.2 LTE Y [1GmP 54 v3 Membership Report 4 Join groug
51.044366 192.168.0.2 MTP3 ¥ lrms 110 =tandard guery SRV _Tdap. _tcp.nhbc
61.048652 102.168.0.2 RTP ’ Show &ll Streams CH * HTTR/L.1
71.050784 192.168.0.2 aIF... Stream Analysis. .. rd guery soa nblo061d. wwiod
query
8 1.055053 192 168.0.1 UCP Messages... SSDP 337 HTTRAL.1 200 oK
O 1,082038 192.168.0.2 . volIP Calls NENS 110 Registration NE NELOOG1D<00:>
10 1.1215845 1592.168.0.2 WAP-WSE. . DHS 87 standard guery a proxycont.ww004.
11 1.226156 152.168.0.2 Le . Lue v TCP 62 ncu-2 > http [S¥N] Seq=0 win=6424
12 1.227282 152.168.0.1 192.168.0.2 TCP 60 http = ncu-2 [S¥N, ACK] Seqg=0 Ackw
¥
Frame 11: 62 bytes on wire (496 hits), 62 bytes captured (496 bits)
Ethernet II, Src: 192.168.0.2 (00:0b:5d:20:cd:02), Dst: Metgear_2d:75:%9a (00:09:5b:2d:75:9a)
+# Internet Protocol, src: 192.1658.0.2 (192.165.0.20, Dst: 192.165.0.1 (192.165.0.1)
- Transmission Control Protocol, Src Port: ncu-2 (31960, Dst Port: http (80), Seg: O, Len: O
SOUrCe port: ncu-2 (3196)
pestination port: http (80)
[stream dndex: 5]
sequence number: 0O (relative seqguence number)
Header Tength: 28 hytes
+ Flags: Ox02 (SYND)
window size walue: 64240 v
QOO0 00 09 S5ho2d F5 9a 00 Ok 5d 20 <d 02 08 00 45 00 [-u...] .E.
Q010 00 320 18 48 40 00 80 08 61 Z2c¢ <D a8 00 02 <0 aB Qi HE R
Qo200 00 01 O Fo 00 50 3c 26 95 £8 00 00 00 00 FO 02 Pl SEEE n.

0030 fa f0 27 =0 00 00 2 04

6 File: "C:/test,cap” 14 KB 00;00;02

05 b4 01 01 04 02

Packets: 120 Displayed: 120 Marked: 0 Load time: 0:00.015

Profile: Default

All menu items will bring up a new window showing specific telephony related
statistical information.

Table 3.9. Telephony menu items

Menu Item Accelerator

TAX2

See Section 9.6,

Description

“The protocol specific statistics

windows”

SMPP See Section 9.6, “The protocol specific statistics
Operations... windows”

See Section 9.6, “The protocol specific statistics

SCTP . "
windows
ANSI Sge Sectl’?n 9.6, “The protocol specific statistics
windows
See Section 9.6, “The protocol specific statistics
GSM : - [[
windows
See Section 9.6, “The protocol specific statistics
H.225... : » .)
windows
ISUP See Section 9.6, “The protocol specific statistics
Messages... windows”
LTE See Section 9.4, “LTE MAC Traffic Statistics”
MTP3 Sge Sectl’?n 9.6, “The protocol specific statistics
windows
RTP See Section 9.2, “RTP Analysis”
SIP... See Section 9.6, “The protocol specific statistics

windows”

See Section 9.6, “The protocol specific statistics

UCP s »
windows
Messages...
VoIP Calls... See Section 9.3, “VoIP Calls”
WAP-WSP... See Section 9.6, “The protocol specific statistics

windows”

3.13. The "Tools" menu

The Wireshark Tools menu contains the fields shown in Table 3.10, “Tools menu
items”.

Figure 3.11. The "Tools" Menu

ﬂtest.cap E]@

File Edit View Go Capture Analyze Statistics Telephony | Tools Internals Help

a [= b 4 E—E & o, @ 4 Firewall &CL Rules i = O 55 it | E,]L % | B
Lua [Cansale
Filter: + | Expression.. Evaluate
Wikl
Mo, Time Source Drestination Protocal heorgo—oo

Broadecast ARP 47 Gratuitous arp for 192.168.0.2 (F
152.1688.0.2 MEMNS
i ICMP

1 0.000000 192.168.
2

025659

41 1672.168.0.2 224.0.0.22 IGMP
51.044366 192.168.0.2 192.168.0.1 DHS 110 standard guery sy _ldap. _tcp.nbc
6 1.048652 192 168.0.2 230, 255255, 250 SSDP 175 M-SEARCH * HTTR/1.1
T 1.050784 192 168.0.2 192.168.0.1 DMS 86 standard guery soa nbl0061d. wwiod
8 1.055053 192 168.0.1 192.168.0.2 SSDP 337 HTTRAL.1 200 oK
O 1,082038 192.168.0.2 192,168, 0.255 NENS 110 Registration NE NELOOG1D<00:>
10 1.1215845 1592.168.0.2 192.168.0.1 DHS 87 standard guery a proxycont.ww004.
11 1.226156 152.168.0.2 192.168.0.1 TCP 62 ncu-2 > http [S¥N] Seq=0 win=6424
12 1.227282 152.168.0.1 192.168.0.2 TCP 60 http = ncu-2 [S¥N, ACK] Seqg=0 Ackw
¥
Frame 11: 62 bytes on wire (496 hits), 62 bytes captured (496 bits)
Ethernet II, Src: 192.168.0.2 (00:0b:5d:20:cd:02), Dst: Metgear_2d:75:%9a (00:09:5b:2d:75:9a)
+# Internet Protocol, src: 192.1658.0.2 (192.165.0.20, Dst: 192.165.0.1 (192.165.0.1)
- Transmission Control Protocol, Src Port: ncu-2 (31960, Dst Port: http (80), Seg: O, Len: O
SOUrCe port: ncu-2 (3196)
pestination port: http (80)
[stream dndex: 5]
sequence number: 0O (relative seqguence number)
Header Tength: 28 hytes
+ Flags: Ox02 (SYND)
window size walue: 64240 v
QOO0 00 09 S5ho2d F5 9a 00 Ok 5d 20 <d 02 08 00 45 00 PO == Y - N
Q010 00 320 18 48 40 00 80 08 61 Z2c¢ <D a8 00 02 <0 aB SR HEB R
Qo200 00 01 O Fo 00 50 3c 26 95 £8 00 00 00 00 FO 02 Erar - n.

0030 fa fO 27 =20 00 00 02 04 05 b4 01 01 C4 O2 T

6 File: "C:/test,cap” 14 KB 00;00;02 Packets: 120 Displayed: 120 Marked: 0 Load time: 0:00.015 Profile; Defaulk

Table 3.10. Tools menu items

Menu
Item Accelerator Description

This allows you to create command-line ACL rules for
many different firewall products, including Cisco IOS,

Firewall
ACL
Rules

Lua

Linux Netfilter (iptables), OpenBSD pf and Windows
Firewall (via netsh). Rules for MAC addresses, IPv4
addresses, TCP and UDP ports, and IPv4+port
combinations are supported.

It is assumed that the rules will be applied to an outside
interface.

These options allow you to work with the Lua interpreter
optionally build into Wireshark, see Section 11.1,
“Introduction”.

3.14. The "Internals" menu

The Wireshark Internals menu contains the fields shown in Table 3.11, “Help
menu items”.

Figure 3.12. The "Internals" Menu

ﬂtest.cap E]@

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

a ﬁ- g = b4 E—E & r'Q & & D Disseckor tables & ﬁ_ | E;L % @
Supported Protocols (slow!)
Filter: + | Expression. ..
Mo, Time Source Destination Protocal [Length [Info
Broadecast ARP 47 Gratuitous arp for 192.168.0.2 (F

1 0.000000 192.168.
2

192.168.0.2 MEMNS 92
1 ICMP

025659

41 192.168.0.2 224.0.0.22 IGMP 54
51.044366 192.168.0.2 192.168.0.1 DHS 110 standard guery sy _ldap. _tcp.nbc
6 1.048552 182.168.0.2 R BT e] SSDF 175 M-SEARCH ® HTTP/1.1
7 1.050784 198Z2.168.0.2 1%2.168.0.1 DMS 86 standard guery soa nbl0061d. wwiod
81.055053 18Z2.168.0.1 15%92.168.0.2 SSDF 337 HTTR/1.1 200 oK
S 1.082038 192.168.0.2 152,168, 0.255 MNENS 110 Registration NE NELOOG1D<00:>

10 1.1215845 1592.168.0.2 192.168.0.1 DHS 87 standard guery a proxycont.ww004.
11 1.:226156 192.168.0.2 1%2.1688.0.1 TCR 62 ncu-2 > http [S¥N] Seq=0 win=6424

oS I - e T e e 192,168, 0.2 TCR 60 http = ncu-2 [S¥N, ACK] Seqg=0 Ackw
>

Frame 11: 62 bytes on wire (496 bhits), 62 bytes captured (496 bits)
Ethernet II, Src: 162.168.0.2 (00:0b:5d:20:cd:02), Dst: Metgear_2d:75:9a (00:09:5b:2d:75:9a)
Internet Protocol, src: 192.168.0.2 (192.168.0.270, Dst: 192.165.0.1 (192.1658.0.10
Transmission Control Protocol, Src Port: ncu-2 (31963, Dst Port: http (80), Seqg: 0, Len: O
SOUrCe port: ncu-2 (3196)
pestination port: http (80)
[stream dndex: 5]
sequence number: 0O (relative seqguence number)
Header Tength: 28 hytes
+ Flags: Ox02 (SYND)
window size walue: 64240

+

0000 00 09 Sh 2d 73 9a 00 Ob S5d 20 od 02 08 00 45 €0 T B -
0010 00 30 18 48 40 00 B0 00 61 2c <O a8 00 02 cO a8 JOUHE. L a, e
0020 00 01 Oc 7c Q0 50 3c 3@ 595 f8 00 00 00 00 70 €2 cen | PE Ll P

0030 fa fO 27 =20 00 00 02 04 05 b4 01 01 C4 O2 T

6 File: "C:/test,cap” 14 KB 00;00;02 Packets: 120 Displayed: 120 Marked: 0 Load time: 0:00.015 Profile; Defaulk

Table 3.11. Help menu items

Menu
Item Accelerator Description
Dissector This menu item brings up a dialog box showing the

tables tables with subdissector relationships.

Supported
Protocols
(slow!)

This menu item brings up a dialog box showing the
supported protocols and protocol fields.

3.15. The "Help" menu

The Wireshark Help menu contains the fields shown in Table 3.12, “Help menu

items”.

Figure 3.13. The "Help" Menu

ﬂ test.cap

File Edit View Go Capture Analyze Statistics Telephony Tools Internals — Help

B il & = 28| 4 @ % 29 F & |H ontents F1 [
Manual Pages 4 ‘Wireshark
Filker: | g 2) Wireshark, Filer
T Website
Mo, Time Source Drestination FAG's TShark,
1 0.000000 192.168. Broadcast FawShark 8.0.2 (F
2 192.168 152.168. 0.2 @ ki D 05<005<C
3 : 1 Downloads Mergecap ":'rt LIy
4 1.025658 192.168.0.2 224.0.0.22 Sample Captures Editcap N groug
51.044366 192.168.0.2 1592.168.0.1 Textzpcap Ltcp. nbe
6 1.048652 192 168.0.2 230, 255255, 250 B about Wireshark : ittt W)
71.050784 192.168.0.2 192.168.0.1 LS so scanudard guery Soa nbl0061d. wwiod
8 1.055053 192 168.0.1 192.168.0.2 SSDP 337 HTTRAL.1 200 oK
O 1,082038 192.168.0.2 192,168, 0.255 NENS 110 Registration NE NELOOG1D<00:>
10 1.1215845 1592.168.0.2 192.168.0.1 DHS 87 standard guery a proxycont.ww004.
11 1.226156 152.168.0.2 192.168.0.1 TCP 62 ncu-2 > http [S¥N] Seq=0 win=6424
12 1.227282 152.168.0.1 192.168.0.2 TCP 60 http = ncu-2 [S¥N, ACK] Seqg=0 Ackw
¥
Frame 11: 62 bytes on wire (496 hits), 62 bytes captured (496 bits)
Ethernet II, Src: 192.168.0.2 (00:0b:5d:20:cd:02), Dst: Metgear_2d:75:%9a (00:09:5b:2d:75:9a)
+# Internet Protocol, src: 192.1658.0.2 (192.165.0.20, Dst: 192.165.0.1 (192.165.0.1)
- Transmission Control Protocol, Src Port: ncu-2 (31960, Dst Port: http (80), Seg: O, Len: O
SOUrCe port: ncu-2 (3196)
pestination port: http (80)
[stream dndex: 5]
sequence number: 0O (relative seqguence number)
Header Tength: 28 hytes
+ Flags: Ox02 (SYND)
window size walue: 64240 v
QOO0 00 09 S5ho2d F5 9a 00 Ok 5d 20 <d 02 08 00 45 00 PO == Y - N
Q010 00 320 18 48 40 00 80 08 61 Z2c¢ <D a8 00 02 <0 aB SR HEB R
Qo200 00 01 O Fo 00 50 3c 26 95 £8 00 00 00 00 FO 02 Erar - n.
Qo200 fa fO 27 20 00 00 02 04 05 b4 01 01 04 02 e i m
6 File: "C:/test,cap” 14 KB 00;00;02 Packets: 120 Displayed: 120 Marked: 0 Load time: 0:00.015 Profile; Defaulk
Table 3.12. Help menu items
Menu Item Accelerator Description
Contents F1 This menu item brings up a basic help system.

Manual This menu item starts a Web browser showing one of

Website

FAQ's

Downloads

Sample
Captures

About
Wireshark

Note!

the locally installed html manual pages.

This menu item starts a Web browser showing the
webpage from: http://www.wireshark.org.

This menu item starts a Web browser showing various
FAQ's.

This menu item starts a Web browser showing the
downloads from: http://www.wireshark.org.

This menu item starts a Web browser showing the
front page from: http://wiki.wireshark.org.

This menu item starts a Web browser showing the
sample captures from: http://wiki.wireshark.org.

This menu item brings up an information window that
provides various detailed information items on
Wireshark, such as how it's build, the plugins loaded,
the used folders, ...

-t Calling a Web browser might be unsupported in your version of
~ Wireshark. If this is the case, the corresponding menu items will

be hidden.

http://www.wireshark.org
http://www.wireshark.org
http://wiki.wireshark.org
http://wiki.wireshark.org

Note!

_If calling a Web browser fails on your machine, maybe because

E4l just nothing happens or the browser is started but no page is
shown, have a look at the web browser setting in the preferences
dialog.

3.16. The "Main" toolbar

The main toolbar provides quick access to frequently used items from the menu.
This toolbar cannot be customized by the user, but it can be hidden using the
View menu, if the space on the screen is needed to show even more packet data.

As in the menu, only the items useful in the current program state will be
available. The others will be greyed out (e.g. you cannot save a capture file if
you haven't loaded one).

Figure 3.14. The "Main" toolbar

H@ﬁﬂ =

EEX2E A¢csnTLEE QAR FEBX B H
Table 3.13. Main toolbar items

Toolbar Toolbar Item Corresponding

Description
Icon Menu Item p

This item brings up the Capture
Interfaces List dialog box
(discussed further in Section 4.3
“Start Capturing”).

Interfaces... Capture/Interfaces...

This item brings up the Capture
Options dialog box (discussed

m Options... Capture/Options... further in Section 4.3, “Start
Capturing™) and allows you to start
capturing packets.

This item starts capturing packets

1 Start Capture/Start) : .
& P with the options form the last time.

This item stops the currently

N

Stop

Restart

Open...

Save As...

Close

Capture/Stop

Capture/Restart

File/Open...

File/Save As...

File/Close

running live capture process
Section 4.3, “Start Capturing”).

This item stops the currently
running live capture process and
restarts it again, for convenience.

This item brings up the file open
dialog box that allows you to load a
capture file for viewing. It is
discussed in more detail in

Section 5.2.1, “The "Open Capture
File" dialog box™.

This item allows you to save the
current capture file to whatever file
you would like. It pops up the Save
Capture File As dialog box (which
is discussed further in

Section 5.3.1, “The "Save Capture
File As" dialog box”).

Note!

If you currently
E have a temporary
— capture file, the

Save icon & will

be shown instead.

This item closes the current
capture. If you have not saved the
capture, you will be asked to save it

Reload View/Reload
Print... File/Print...

Find o

Packet... Edit/Find Packet...

Go Back Go/Go Back

Go Forward Go/Go Forward

Go to

Packet... Go/Go to Packet...
Go To First Go/First Packet
Packet

first.

This item allows you to reload the
current capture file.

This item allows you to print all (or
some of) the packets in the capture
file. It pops up the Wireshark Print
dialog box (which is discussed
further in Section 5.8, “Printing

packets™).

This item brings up a dialog box
that allows you to find a packet.
There is further information on
finding packets in Section 6.8,

“Finding packets”.

This item jumps back in the packet
history.

This item jumps forward in the
packet history.

This item brings up a dialog box
that allows you to specify a packet
number to go to that packet.

This item jumps to the first packet
of the capture file.

Go To Last

Go/Last Packet
Packet

Colorize View/Colorize

Auto Scroll View/Auto Scroll in

in Live i

Capture Live Capture
Zoom In View/Zoom In
Zoom Out View/Zoom Out

Normal Size View/Normal Size

Resize View/Resize
Columns Columns
Capture Capture/Capture
Filters... Filters...

This item jumps to the last packet
of the capture file.

Colorize the packet list (or not).

Auto scroll packet list while doing
a live capture (or not).

Zoom into the packet data (increase
the font size).

Zoom out of the packet data
(decrease the font size).

Set zoom level back to 100%.

Resize columns, so the content fits
into them.

This item brings up a dialog box
that allows you to create and edit
capture filters. You can name
filters, and you can save them for
future use. More detail on this
subject is provided in Section 6.6,

“Defining and saving filters”.

LT
TE3
=1

Display Analyze/Display
Filters... Filters...
Coloring View/Coloring
Rules... Rules...

Preferences... Edit/Preferences

Help Help/Contents

This item brings up a dialog box
that allows you to create and edit
display filters. You can name
filters, and you can save them for
future use. More detail on this
subject is provided in Section 6.6,
“Defining and saving filters”.

This item brings up a dialog box
that allows you color packets in the
packet list pane according to filter
expressions you choose. It can be
very useful for spotting certain
types of packets. More detail on
this subject is provided in

Section 10.3, “Packet colorization”.

This item brings up a dialog box
that allows you to set preferences
for many parameters that control
Wireshark. You can also save your
preferences so Wireshark will use
them the next time you start it.
More detail is provided in

Section 10.5, “Preferences”

This item brings up help dialog
box.

3.17. The "Filter" toolbar

The filter toolbar lets you quickly edit and apply display filters. More
information on display filters is available in Section 6.3, “Filtering packets while

3

viewing”.

Figure 3.15. The "Filter" toolbar

Eﬁilter: | - ‘#‘ Expression,.. l%,.gear o apply
Table 3.14. Filter toolbar items

Toolbar Toolbar .
Description
Icon Item
Brings up the filter construction dialog, described in
] Filter: Figure 6.8, “The "Capture Filters" and "Display Filters"
dialog boxes”.

The area to enter or edit a display filter string, see
Section 6.4, “Building display filter expressions” . A
syntax check of your filter string is done while you are
typing. The background will turn red if you enter an
incomplete or invalid string, and will become green
when you enter a valid string. You can click on the pull
down arrow to select a previously-entered filter string
from a list. The entries in the pull down list will remain
available even after a program restart.

Filter input Note!

__After you've changed something in this

' field, don't forget to press the Apply
button (or the Enter/Return key), to
apply this filter string to the display.

+*

W

W

Expression...

Clear

Apply

Note!

E_}a

— This field is also where the current filter
in effect is displayed.

The middle button labeled "Add Expression..." opens a
dialog box that lets you edit a display filter from a list of
protocol fields, described in Section 6.5, “The "Filter
Expression" dialog box”

Reset the current display filter and clears the edit area.
Apply the current value in the edit area as the new
display filter.

Note!

1 Applying a display filter on large
— capture files might take quite a long
time!

3.18. The "Packet List" pane

The packet list pane displays all the packets in the current capture file.

Figure 3.16. The "Packet List" pane

Mo, - Time

2 0

4 0.

& 0.

o

=
L}
ooooo

7

.299133

F2E44t

004286

0.00426%9

-02E38E5

114211
S001llz2e
000042
000126
001553

015334
L00003e

nna Ten

Source

192,168,
1658,

132.

122

132

132
132

132

132
132
132

A6
ALk

1az

168,

168,

168,
-1leaE.
-16E.

168,
L1E8.0,

10w

0.
0.

.168.0,

=]

oo oo

200

al

.168.0.1
.165.

(S I SO Y] ra

A

Destination

Eroadcast
165.0.2

132.

224.

233,

132.
132.

122,
132,
1322,
132.
132.

122,
ALEle

19>

0.0.
255,

163,
1le3.

168,
les.
163,
163,

168,

22

255.250

0.
a.

oo oo

200

2
255

L™

rJ

lez.0.1

1eT

]

Protocal

AP
NENS

IGMF
SSDF

S50OP
NENS

TCFR
TCP
TCP
HTTF
TCP

TER
TCFP

uTTD

Info
who has 192.165.0.27 Gratuitous
Mame query MESTAT #<00x<00x<00> <1

W3 Membership Report
M-SEfRCH * HTTFAL.1

HTTF/ 1.1 z00 OK
Registration ME MWElO00&1D<00=

2136 = http [S¥YN] Seq=0 Ack=0 Wil
http = 219& [S7N, ACK] Seg=0 Ack:
2196 = http [ACK] Seg=1 Ack=l Wil
SUBSCRIEBE Jupnp/service/Layer3Fol
http = 3196 [ACK] Seq=1 Ack=z25& %

1025 = 5000 [SYN] Seq=0 Ack=0 Wi
5000 = 1025 [SYN, ACK] Seq=0 Ack:

uTTE f1 A AN o

I »

Each line in the packet list corresponds to one packet in the capture file. If you
select a line in this pane, more details will be displayed in the "Packet Details"

and "Packet Bytes" panes.

While dissecting a packet, Wireshark will place information from the protocol
dissectors into the columns. As higher level protocols might overwrite
information from lower levels, you will typically see the information from the

highest possible level only.

For example, let's look at a packet containing TCP inside IP inside an Ethernet
packet. The Ethernet dissector will write its data (such as the Ethernet
addresses), the IP dissector will overwrite this by its own (such as the IP
addresses), the TCP dissector will overwrite the IP information, and so on.

-

b

There are a lot of different columns available. Which columns are displayed can
be selected by preference settings, see Section 10.5, “Preferences”.

The default columns will show:

e No. The number of the packet in the capture file. This number won't

change, even if a display filter is used.

e Time The timestamp of the packet. The presentation format of this
timestamp can be changed, see Section 6.12, “Time display formats and
time references”.

e Source The address where this packet is coming from.

¢ Destination The address where this packet is going to.

e Protocol The protocol name in a short (perhaps abbreviated) version.
¢ Info Additional information about the packet content.

There is a context menu (right mouse click) available, see details in Figure 6.4,
“Pop-up menu of the "Packet List" pane”.

3.19. The "Packet Details" pane

The packet details pane shows the current packet (selected in the "Packet List"
pane) in a more detailed form.

Figure 3.17. The "Packet Details" pane

+ Frame 1 (42 bytes on wire, 42 bytes captured)
+| Ethernet II, Srci: 1%2.16%.0.2 (00:0b:icd:zo:cdioz]), Dst: Broadcast (ff:ff:ff:ffiffiTr)
+ aAddress Resolution Protocol ([request/gratuitous ARFP)

This pane shows the protocols and protocol fields of the packet selected in the
"Packet List" pane. The protocols and fields of the packet are displayed using a
tree, which can be expanded and collapsed.

There is a context menu (right mouse click) available, see details in Figure 6.5,

[3 3

‘Pop-up menu of the "Packet Details" pane”.

Some protocol fields are specially displayed.

¢ Generated fields Wireshark itself will generate additional protocol fields
which are surrounded by brackets. The information in these fields is derived
from the known context to other packets in the capture file. For example,
Wireshark is doing a sequence/acknowledge analysis of each TCP stream,
which is displayed in the [SEQ/ACK analysis] fields of the TCP protocol.

e Links If Wireshark detected a relationship to another packet in the capture
file, it will generate a link to that packet. Links are underlined and
displayed in blue. If double-clicked, Wireshark jumps to the corresponding
packet.

3.20. The "Packet Bytes" pane

The packet bytes pane shows the data of the current packet (selected in the
"Packet List" pane) in a hexdump style.

Figure 3.18. The "Packet Bytes" pane

oooo T ff ff £fF fF ff 00 0b 5d 20 cd 0z 0% 06 00 01 i - AR i
o010 O0f 00 06 04 00 01 00 Ob 5d 20 cd 02 cO a8 00 02] smnman
oozo 00 00 00 Q0 00 00 c0 o as o002 Laaeeees as

As usual for a hexdump, the left side shows the offset in the packet data, in the
middle the packet data is shown in a hexadecimal representation and on the right
the corresponding ASCII characters (or . if not appropriate) are displayed.

Depending on the packet data, sometimes more than one page is available, e.g.
when Wireshark has reassembled some packets into a single chunk of data, see
Section 7.6, “Packet Reassembling”. In this case there are some additional tabs
shown at the bottom of the pane to let you select the page you want to see.

Figure 3.19. The "Packet Bytes" pane with tabs

0000 08 00 O ab 04 53 0% 00 06 b 7T bd 0% 00 45 00 B B A R
0010 01 48 33 SF 00 00 le 11 dd 51 bc ag 0% 0a bc as CH2.000 [
oo0z0 0% 22 41 af oF 04 01 34 00 b4 04 00 2e 00 10 00 L
0030 00 00 00 00 a0 de 27 &c dl 11 s2 71 00 57 s0 fo I A w

Frame (342 bytes) | Reassembled DCEJRPC (1604 bytes)

Note!

f The additional pages might contain data picked from multiple
packets.

The context menu (right mouse click) of the tab labels will show a list of all
available pages. This can be helpful if the size in the pane is too small for all the
tab labels.

3.21. The Statusbar

The statusbar displays informational messages.

In general, the left side will show context related information, the middle part
will show the current number of packets, and the right side will show the
selected configuration profile. Drag the handles between the text areas to change
the size.

Figure 3.20. The initial Statusbar

LO Ready to load or capture Mo Packets Profile: Default J

This statusbar is shown while no capture file is loaded, e.g. when Wireshark is
started.

Figure 3.21. The Statusbar with a loaded capture file

@ File: "thome/stig/http.pcap" 1673 KB 00:00:32 Packets: 2239 Displayed: 2239 Marked: 0 Profile: Default
g/hitp.pcap play

e The colorized bullet on the left shows the highest expert info level found
in the currently loaded capture file. Hovering the mouse over this icon will
show a textual description of the expert info level, and clicking the icon will
bring up the Expert Infos dialog box. For a detailed description of expert
info, see Section 7.3, “Expert Infos™.

e The left side shows information about the capture file, its name, its size and
the elapsed time while it was being captured.

e The middle part shows the current number of packets in the capture file.
The following values are displayed:

e Packets: the number of captured packets
e Displayed: the number of packets currently being displayed

e Marked: the number of marked packets

e Dropped: the number of dropped packets (only displayed if Wireshark
was unable to capture all packets)

e Ignored: the number of ignored packets (only displayed if packets are
ignored)

e The right side shows the selected configuration profile. Clicking in this
part of the statusbar will bring up a menu with all available configuration
profiles, and selecting from this list will change the configuration profile.

Figure 3.22. The Statusbar with a configuration profile menu

() Default
) only IP and TCP

0 Wireless
@ File: "thome/stig/http.pcap" 1673 KB 00:00:32 Packets: 2239 Displayed: 367 Marked: 0 ProfileToeraur
g p.pcap play

For a detailed description of configuration profiles, see Section 10.6,
“Configuration Profiles”.

Figure 3.23. The Statusbar with a selected protocol field

LO Opcode (arp.opcode), 2 bytes Packets: 2239 Displayed: 2239 Marked: 0 Profile: Default J

This is displayed if you have selected a protocol field from the "Packet Details"
pane.

Tip!

The value between the brackets (in this example arp.opcode)
can be used as a display filter string, representing the selected
protocol field.

L

Figure 3.24. The Statusbar with a display filter message

LO "I=" may have unexpected results (see the User's Guide) Packets: 2239 Displayed: 2237 Marked: 0 = Profile: Default J

This is displayed if you are trying to use a display filter which may have
unexpected results. For a detailed description, see Section 6.4.4, “A common
mistake”.

Chapter 4. Capturing Live Network
Data

Table of Contents

4.1. Introduction
4.2. Prerequisites
4.3. Start Capturing
4.4. The "Capture Interfaces" dialog box
4.5. The "Capture Options" dialog box
4.5.1. Capture frame
4.5.2. Capture File(s) frame
4.5.3. Stop Capture... frame
4.5.4. Display Options frame
4.5.5. Name Resolution frame
4.5.6. Buttons
4.6. The "Edit Interface Settings" dialog box
4.7. The "Compile Results" dialog box
4.8. The "Add New Interfaces" dialog box
4.8.1. Add or remove pipes
4.8.2. Add or hide local interfaces
4.8.3. Add or hide remote interfaces
4.9. The "Remote Capture Interfaces" dialog box
4.9.1. Remote Capture Interfaces
4.9.2. Remote Capture Settings
4.10. The "Interface Details" dialog box
4.11. Capture files and file modes
4.12. Link-layer header type

4.13. Filtering while capturing

4.13.1. Automatic Remote Traffic Filtering
4.14. While a Capture is running ...

4.14.1. Stop the running capture

4.14.2. Restart a running capture

4.1. Introduction

Capturing live network data is one of the major features of Wireshark.
The Wireshark capture engine provides the following features:

e Capture from different kinds of network hardware (Ethernet, Token Ring,
ATM, ...).

e Stop the capture on different triggers like: amount of captured data,
captured time, captured number of packets.

e Simultaneously show decoded packets while Wireshark keeps on capturing.

e Filter packets, reducing the amount of data to be captured, see Section 4.13,

4

‘Filtering while capturing”.

e Capturing into multiple files while doing a long term capture, and in
addition the option to form a ringbuffer of these files, keeping only the last
x files, useful for a "very long term" capture, see Section 4.11, “Capture
files and file modes™.

e Simultaneous capturing from multiple network interfaces.
The capture engine still lacks the following features:

e Stop capturing (or doing some other action), depending on the captured
data.

4.2. Prerequisites
Setting up Wireshark to capture packets for the first time can be tricky.
Tip!

. A comprehensive guide "How To setup a Capture" is available
at: http://wiki.wireshark.org/CaptureSetup.

Here are some common pitfalls:
¢ You need to have root / Administrator privileges to start a live capture.
¢ You need to choose the right network interface to capture packet data from.

¢ You need to capture at the right place in the network to see the traffic you
want to see.

e .. and a lot more!.

If you have any problems setting up your capture environment, you should have
a look at the guide mentioned above.

http://wiki.wireshark.org/CaptureSetup

4.3. Start Capturing

One of the following methods can be used to start capturing packets with
Wireshark:

¢ You can get an overview of the available local interfaces using the "
Capture Interfaces" dialog box, see Figure 4.1, “The "Capture Interfaces"
dialog box on Microsoft Windows” or Figure 4.2, “The "Capture
Interfaces" dialog box on Unix/Linux”. You can start a capture from this
dialog box, using (one of) the "Capture" button(s).

¢ You can start capturing using the W Capture Options" dialog box, see
Figure 4.3, “The "Capture Options" dialog box”.

e If you have selected the right capture options before, you can immediately

start a capture using the & Capture Start" menu / toolbar item. The
capture process will start immediately.

¢ If you already know the name of the capture interface, you can start
Wireshark from the command line and use the following:

wireshark -i eth0® -k

This will start Wireshark capturing on interface ethO, more details can be
found at: Section 10.2, “Start Wireshark from the command line”.

4.4. The "Capture Interfaces” dialog box

When you select "Interfaces..." from the Capture menu, Wireshark pops up the
"Capture Interfaces" dialog box as shown in Figure 4.1, “The "Capture
Interfaces" dialog box on Microsoft Windows” or Figure 4.2, “The "Capture
Interfaces" dialog box on Unix/Linux”.

This dialog consumes lots of system resources!

As the "Capture Interfaces" dialog is showing live captured data,
it is consuming a lot of system resources. Close this dialog as
soon as possible to prevent excessive system load.

Not all available interfaces may be displayed!

This dialog box will only show the local interfaces Wireshark

~ knows of. It will not show interfaces marked as hidden in

| #1 Section 10.5.1, “Interface Options”. As Wireshark might not be
able to detect all local interfaces, and it cannot detect the remote
interfaces available, there could be more capture interfaces
available than listed.

As it is possible to simultaneously capture packets from multiple interfaces, the
toggle buttons can be used to select one or more interfaces.

Figure 4.1. The "Capture Interfaces" dialog box on Microsoft Windows

=
__________ Description P Packets Packets/s
[""" pirPcap USB wireless capture adapter nr. 03 flelg[= 20] Details
[E Intel(R) PRO/1000 MT Metwork Connection fed0::fd49:7295:3158:27b8 &] Details
[E‘ Microsoft fe80:c446:529idaa2iabfc O] Details
Help | Start Stop Options Close

Figure 4.2. The "Capture Interfaces" dialog box on Unix/Linux

Wireshark: Capture Interfaces

Device Description IP Packets Packets/s
Eeth(} 192.168.42.133

@ usbmon1 USB bus number 1

@ usbmon2 USB bus number 2

Elany Pseudo-device that captures on allinterfaces
2llo 127.0.0.1
Help options || Close |

Device (Unix/Linux only)
The interface device name.
Description

The interface description provided by the operating system, or the user
defined comment added in Section 10.5.1, “Interface Options”.

IP

The first IP address Wireshark could find for this interface. You can click
on the address to cycle through other addresses assigned to it, if available.
If no address could be found "none" will be displayed.

Packets

The number of packets captured from this interface, since this dialog was
opened. Will be greyed out, if no packet was captured in the last second.

Packets/s

Number of packets captured in the last second. Will be greyed out, if no
packet was captured in the last second.

Stop
Stop a currently running capture.
Start

Start a capture on all selected interfaces immediately, using the settings
from the last capture or the default settings, if no options have been set.

Options

Open the Capture Options dialog with the marked interfaces selected, see
Section 4.5, “The "Capture Options" dialog box”.

Details (Microsoft Windows only)

Open a dialog with detailed information about the interface, see
Section 4.10, “The "Interface Details" dialog box™.

Help
Show this help page.
Close

Close this dialog box.

4.5. The "Capture Options" dialog box

When you select Options... from the Capture menu (or use the corresponding
item in the "Main" toolbar), Wireshark pops up the "Capture Options" dialog box
as shown in Figure 4.3, “The "Capture Options" dialog box”.

Figure 4.3. The "Capture Options" dialog box

Wireshark: Capture Options

Capture
Capture Interface Link-layer header Prom. Mode Snaplen[B] Bu
etho
B 10.0.1.109 Ethernet disabled default
fe80:20c:29ff:Fe3a:3340
USB bus number 1: usbm... USBwith padded Linux header disabled default
USBE bus number 2: usbm... USBwith padded Linux header disabled default
Pseudo-device that capt... Linux cooked disabled default
lo (loopback)
licabhlad AaFanlk
| Capture onallinterfaces | Manage Interfaces |
| |Capture allin promiscuous mode
| Capture Filter: | | Compile selected BPFs |
Capture File(s) Display Options
File: |Browse...| @ update list of packets in real time
| Use multiple Files [Use pcap-ng format
B Automaticscrollingin live capture
B Hide capture info dialog
Mame Resolution
Enable MAC name resolution
Stop Capture ...
=t & Enable transport name resolution
... after
- _| Enable network name resolution
... after
| .. after [Use external network name resolver

| Help | Start J| Close., |

Tip!

If you are unsure which options to choose in this dialog box, just
* try keeping the defaults as this should work well in many cases.

4.5.1. Capture frame

The table shows the settings for all available interfaces:

e The name of the interface and its IP addresses. If no address could be
resolved from the system, "none" will be shown.

Note

platforms.

e The link-layer header type.
e The information whether promicuous mode is enabled or disabled.

e The maximum amount of data that will be captured for each packet. The
default value is set to the 65535 bytes.

o The size of the kernel buffer that is reserved to keep the captured packets.

e The information whether packets will be captured in monitor mode
(Unix/Linux only).

e The chosen capture filter.

By marking the checkboxes in the first column the interfaces are selected to be
captured from. By double-clicking on an interface the "Edit Interface Settings"
dialog box as shown in Figure 4.4, “The "Edit Interface Settings" dialog box”
will be opened.

Capture on all interfaces

As Wireshark can capture on multiple interfaces, it is possible to choose to

capture on all available interfaces.
Capture all packets in promiscuous mode

This checkbox allows you to specify that Wireshark should put all
interfaces in promiscuous mode when capturing.

Capture Filter

This field allows you to specify a capture filter for all interfaces that are
currently selected. Once a filter has been entered in this field, the newly
selected interfaces will inherit the filter. Capture filters are discussed in
more details in Section 4.13, “Filtering while capturing”. It defaults to
empty, or no filter.

You can also click on the button labeled "Capture Filter", and Wireshark
will bring up the Capture Filters dialog box and allow you to create and/or
select a filter. Please see Section 6.6, “Defining and saving filters”

Compile selected BPFs

This button allows you to compile the capture filter into BPF code and pop
up a window showing you the resulting pseudo code. This can help in
understanding the working of the capture filter you created. The "Compile
selected BPFs" button leads you to Figure 4.5, “The "Compile Results"

dialog box”.

Manage Interfaces

The "Manage Interfaces" button leads you to Figure 4.6, “The "Add New
Interfaces" dialog box” where pipes can be defined, local interfaces scanned
or hidden, or remote interfaces added (Windows only).

4.5.2. Capture File(s) frame

An explanation about capture file usage can be found in Section 4.11, “Capture
files and file modes™.

File

This field allows you to specify the file name that will be used for the
capture file. This field is left blank by default. If the field is left blank, the
capture data will be stored in a temporary file, see Section 4.11, “Capture
files and file modes” for details.

You can also click on the button to the right of this field to browse through
the filesystem.

Use multiple files

Instead of using a single file, Wireshark will automatically switch to a new
one, if a specific trigger condition is reached.

Use pcap-ng format

This checkbox allows you to specify that Wireshark saves the captured
packets in pcap-ng format. This next generation capture file format is
currently in development. If more than one interface is chosen for
capturing, this checkbox is set by default. See
http://wiki.wireshark.org/Development/PcapNg for more details on pcap-

ng.

Next file every n megabyte(s)

Multiple files only: Switch to the next file after the given number of
byte(s)/kilobyte(s)/megabyte(s)/gigabyte(s) have been captured.

Next file every n minute(s)

Multiple files only: Switch to the next file after the given number of
second(s)/minutes(s)/hours(s)/days(s) have elapsed.

Ring buffer with n files

Multiple files only: Form a ring buffer of the capture files, with the given
number of files.

Stop capture after n file(s)

Multiple files only: Stop capturing after switching to the next file the given

http://wiki.wireshark.org/Development/PcapNg

number of times.

4.5.3. Stop Capture... frame

... after n packet(s)
Stop capturing after the given number of packets have been captured.

... after n megabytes(s)
Stop capturing after the given number of
byte(s)/kilobyte(s)/megabyte(s)/gigabyte(s) have been captured. This option
is greyed out, if "Use multiple files" is selected.

... after n minute(s)

Stop capturing after the given number of
second(s)/minutes(s)/hours(s)/days(s) have elapsed.

4.5.4. Display Options frame

Update list of packets in real time

This option allows you to specify that Wireshark should update the packet
list pane in real time. If you do not specify this, Wireshark does not display
any packets until you stop the capture. When you check this, Wireshark
captures in a separate process and feeds the captures to the display process.

Automatic scrolling in live capture

This option allows you to specify that Wireshark should scroll the packet
list pane as new packets come in, so you are always looking at the last
packet. If you do not specify this, Wireshark simply adds new packets onto
the end of the list, but does not scroll the packet list pane. This option is
greyed out if "Update list of packets in real time" is disabled.

Hide capture info dialog

If this option is checked, the capture info dialog described in Section 4.14,

4

‘While a Capture is running ...” will be hidden.

4.5.5. Name Resolution frame

Enable MAC name resolution

This option allows you to control whether or not Wireshark translates MAC
addresses into names, see Section 7.7, “Name Resolution”.

Enable network name resolution

This option allows you to control whether or not Wireshark translates
network addresses into names, see Section 7.7, “Name Resolution”.

Enable transport name resolution

This option allows you to control whether or not Wireshark translates
transport addresses into protocols, see Section 7.7, “Name Resolution”.

4.5.6. Buttons

Once you have set the values you desire and have selected the options you need,
simply click on Start to commence the capture, or Cancel to cancel the capture.

If you start a capture, Wireshark allows you to stop capturing when you have
enough packets captured, for details see Section 4.14, “While a Capture is

running ...”.

4.6. The "Edit Interface Settings" dialog box

If you double-click on an interface in Figure 4.3, “The "Capture Options" dialog
box” the following dialog box pops up.

Figure 4.4. The "Edit Interface Settings" dialog box

-ii x|

Capture

Interface: Intel(R) PRO/1000 MT Metwark Connection: \Device\MPF_{5A064795-6A61-4599-9DEB-ECBE48DASEATY
IF address:

1‘!-"\|| 6c22:d696: 3

2002:d4c9:795e:0:7584:eb62:4211:67d5

Linkayer header type: IEﬁ'uernet = | Remote Setfings

[Capture packets in promiscuous mode
[Limit each packet to |55535 j bytes

Buffer size: |1 = megabyte(s)
Capture Filter: | I hed Compile BPF

Help | oK Cancel

You can set the following fields in this dialog box:

IP address

The IP address(es) of the selected interface. If no address could be resolved
from the system, "none" will be shown.

Link-layer header type

Unless you are in the rare situation that you need this, just keep the default.
For a detailed description, see Section 4.12, “Link-layer header type”

Wireless settings (Windows only)

Here you can set the settings for wireless capture using the AirPCap
adapter. For a detailed description, see the AirPCap Users Guide.

Remote settings (Windows only)

Here you can set the settings for remote capture. For a detailed description,
see Section 4.9, “The "Remote Capture Interfaces" dialog box”

Capture packets in promiscuous mode

This checkbox allows you to specify that Wireshark should put the interface
in promiscuous mode when capturing. If you do not specify this, Wireshark
will only capture the packets going to or from your computer (not all
packets on your LAN segment).

Note

—» If some other process has put the interface in promiscuous
— mode you may be capturing in promiscuous mode even if
you turn off this option.

Note

_Even in promiscuous mode you still won't necessarily see

A all packets on your LAN segment, see
http://www.wireshark.org/fag.html#promiscsniff for some
more explanations.

Limit each packet to n bytes

This field allows you to specify the maximum amount of data that will be
captured for each packet, and is sometimes referred to as the snaplen. If
disabled, the value is set to the maximum 65535, which will be sufficient
for most protocols. Some rules of thumb:

e If you are unsure, just keep the default value.

e If you don't need all of the data in a packet - for example, if you only
need the link-layer, IP, and TCP headers - you might want to choose a
small snapshot length, as less CPU time is required for copying
packets, less buffer space is required for packets, and thus perhaps
fewer packets will be dropped if traffic is very heavy.

http://www.wireshark.org/faq.html#promiscsniff

e If you don't capture all of the data in a packet, you might find that the
packet data you want is in the part that's dropped, or that reassembly
isn't possible as the data required for reassembly is missing.

Buffer size: n megabyte(s)

Enter the buffer size to be used while capturing. This is the size of the
kernel buffer which will keep the captured packets, until they are written to
disk. If you encounter packet drops, try increasing this value.

Capture packets in monitor mode (Unix/Linux only)

This checkbox allows you to setup the Wireless interface to capture all
traffic it can receive, not just the traffic on the BSS to which it is associated,
which can happen even when you set promiscuous mode. Also it might be
necessary to turn this option on in order to see IEEE 802.11 headers and/or
radio information from the captured frames.

Note

the network it was associated to.

Capture Filter

This field allows you to specify a capture filter. Capture filters are discussed
in more details in Section 4.13, “Filtering while capturing”. It defaults to
empty, or no filter.

You can also click on the button labeled "Capture Filter", and Wireshark
will bring up the Capture Filters dialog box and allow you to create and/or
select a filter. Please see Section 6.6, “Defining and saving filters”

Compile BPF

This button allows you to compile the capture filter into BPF code and pop
up a window showing you the resulting pseudo code. This can help in
understanding the working of the capture filter you created.

4.7. The "Compile Results” dialog box

This figure shows the compile results of the selected interfaces.

Figure 4.5. The "Compile Results" dialog box

800 |%| Compile selected BPFs
0 (0o0) 1d [2] [=]
(001} jeq #0x1 jita JEad :
© en2 (002) ldh [0]
@ loo (003) jeq #0x0 jt 4 Ji2r
(0o4) ldh [12]
(0o3) jeq #0xB6dd jt 6 if 14
(oos) Lldb [20]
(007) jeq #0xB84 118 jfB
(Do8) jeq #Ox6 jt 1@ jf 9
(0o9) jeq #0x11 1t 1@ 3 f 27
(010) Lldh [54]
(011) jeq #0x4d2 jt 26 jf 12
(012) Lldh [56]
(013) jeq #0x4d2 jt 26 | 27
(014) jeq #DxB800 1t 15 3 f 27
(015) ldb [23] _
(018) jeq #0xB84 jt 18 §f 17 '
(017) jeq #0Ox6 1t 18 jf 18
(018) jeq #0x11 1t 18 f 27
(019) Lldh [20]
(020) jset #Ox1fTf jEEE jf Rl g
(021) ldxb a*([14] a0xf) hd
ok

In the left window the interface names are listed. A green bullet indicates a
successful compilation, a red bullet a failure. The results of an individual
interface are shown in the right window, when it is selected.

4.8. The "Add New Interfaces" dialog box

As a central point to manage interfaces this dialog box consists of three tabs to
add or remove interfaces.

Figure 4.6. The "Add New Interfaces" dialog box

! Add new interfaces o] [
F‘Ipesl Local Interfaces | Remote Interfaces |
Pipes
Mew
Delete
Pipe: Browse...
Save Close

4.8.1. Add or remove pipes

Figure 4.7. The "Add New Interfaces - Pipes" dialog box

=

Fipes |Lm3| Interfaces |Remute Interfaces |

Pipes
ftmppipe1
New ||| | tmp/pipe2
Mew pipe
Delete
Pipe: Browse... |

Save | Close

To successfully add a pipe, this pipe must have already been created. Click the
"New" button and type the name of the pipe including its path. Alternatively, the
"Browse" button can be used to locate the pipe. With the "Save" button the pipe
is added to the list of available interfaces. Afterwards, other pipes can be added.

To remove a pipe from the list of interfaces it first has to be selected. Then click
the "Delete" button.

4.8.2. Add or hide local interfaces

Figure 4.8. The "Add New Interfaces - Local Interfaces" dialog box

=Er

Pipes Local Interfaces |F‘.emute Interfaces |
-Local Interfaces

W 'n,alrpu:apm

. \airpcapd5
\Device\MPF_{5A064798-6A61-4559-9DEE-ECES4EDASEAT}
\Device \WPF_{15B25C38-C230-4ED6-33F0-350ABEODE44A}
\Device\MPF_{E55BE96C-FEEC-43E4-8225-E991F 1592250}

MimuimslRNE M 7708 hA FSTT ASrD O TS SCCNTCCACT 7Y

i |

100X ® R A

Refresh | Apply |

I
=]
L
i

The tab "Local Interfaces" contains a list of available local interfaces, including
the hidden ones, which are not shown in the other lists.

If a new local interface is added, for example, a wireless interface has been
activated, it is not automatically added to the list to prevent the constant
scanning for a change in the list of available interfaces. To renew the list a rescan
can be done.

One way to hide an interface is to change the preferences. If the "Hide"
checkbox is activated and the "Apply" button clicked, the interface will not be
seen in the lists of the "Capture Options" or "Capture Interfaces" dialog box any
more. The changes are also saved in the "Preferences" file.

4.8.3. Add or hide remote interfaces

Figure 4.9. The "Add New Interfaces - Remote Interfaces" dialog box

=

Fipes |Lm3| Interfaces Remote Interfaces |
-Remaote Interfaces

Host 1 |Name 1 |Hide|
B 10.0.1.207

rpcap: ff[10.0. 1. 207] A\ \airpcap00 -
rpcap://[10.0.1.207]/\Device \NPF_{0E75EBE 1-9CA3-4872-3C48-DODAC187T0E40 [
rpcap://[10.0.1.207]/\Device \NPF_{20056791-752F-4AB5-8000-4A84EC 266108 [
rpcap://[10.0.1.207]/\Device \NPF_{9515C 1AB-9151-4CFC-8D45-A17E981AB4058 [

Delete | Apply Close

In this tab interfaces on remote hosts can be added. One or more of these
interfaces can be hidden. In contrast to the local interfaces they are not saved in
the "Preferences" file.

To remove a host including all its interfaces from the list, it has to be selected.
Then click the "Delete" button.

For a detailed description, see Section 4.9, “The "Remote Capture Interfaces"
dialog box”

4.9. The "Remote Capture Interfaces” dialog box

Besides doing capture on local interfaces Wireshark is capable of reaching out
across the network to a so called capture daemon or service processes to receive
captured data from.

Microsoft Windows only

Ei This dialog and capability is only available on Microsoft
Windows. On Linux/Unix you can achieve the same effect
(securely) through an SSH tunnel.

The Remote Packet Capture Protocol service must first be running on the target
platform before Wireshark can connect to it. The easiest way is to install
WinPcap from http://www.winpcap.org/install/default.htm on the target. Once
installation is completed go to the Services control panel, find the Remote
Packet Capture Protocol service and start it.

Note

//e Make sure you have outside access to port 2002 on the target
platform. This is the port where the Remote Packet Capture
Protocol service can be reached, by default.

To access the Remote Capture Interfaces dialog use the "Add New Interfaces -
Remote" dialog, see Figure 4.9, “The "Add New Interfaces - Remote Interfaces"
dialog box”, and select "Add".

4.9.1. Remote Capture Interfaces

Figure 4.10. The "Remote Capture Interfaces" dialog box

http://www.winpcap.org/install/default.htm

=T R =T

Pipes |Lm3| Interfaces Remote Interfacesl s I E
-Remaote Interfaces Port: I
Hosk q |Name -Authentication q
= 10.0,1.207 (* Null authentication
rpcap:({[10.0.1.207]/\\\airP | ™ password authentication
rpcap:(f[10.0. 1. 207] f\Device K
Username: I
rpcap:/f[10.0. 1. 207] \Device at
Passywaord:
rpcap: ff[10.0.1.207] /\Device | eSS I ER
oK Cancel
Add Delete | Apply | Close

You have to set the following parameter in this dialog:

Host

Enter the IP address or host name of the target platform where the Remote
Packet Capture Protocol service is listening. The drop down list contains
the hosts that have previously been successfully contacted. The list can be
emptied by choosing "Clear list" from the drop down list.

Port

Set the port number where the Remote Packet Capture Protocol service is
listening on. Leave open to use the default port (2002).

Null authentication

Select this if you don't need authentication to take place for a remote
capture to be started. This depends on the target platform. Configuring the
target platform like this makes it insecure.

Password authentication

This is the normal way of connecting to a target platform. Set the
credentials needed to connect to the Remote Packet Capture Protocol
service.

4.9.2. Remote Capture Settings

The remote capture can be further fine tuned to match your situation. The
Remote Settings button in Figure 4.4, “The "Edit Interface Settings" dialog
box” gives you this option. It pops up the dialog shown in Figure 4.11, “The
"Remote Capture Settings" dialog box™.

Figure 4.11. The "Remote Capture Settings" dialog box

o x|
Capture
Interface: Network adapter 'Intel(R) Gigabit ET Dual Port Server Adapter' |0 x| [1/\Device\PF_{2DD56791-752F -4AB5-80DD-4AB4EC 266 108}
IP address: [40.0.1.207 Capture Options

[V iDo not capture own RPCAP traffici

[~ Use UDP for data transfer
Remote Settings |
Wireless Settings

Sampling Options

[~ Capture packets in promiscuous mode
[Limit each packet to |55535 ﬂbynes

* None

Buffer size: ll—j megabyte(s) L I - :I Emas
" 1every I 1 ﬂ milliseconds
Capture Filter: | I ;I Compile BPF |
oK I Cancel |
Help | oK | Cancel |

You can set the following parameters in this dialog:
Do not capture own RPCAP traffic

This option sets a capture filter so that the traffic flowing back from the
Remote Packet Capture Protocol service to Wireshark isn't captured as well
and also send back. The recursion in this saturates the link with duplicate
traffic.

You only should switch this off when capturing on an interface other then
the interface connecting back to Wireshark.

Use UDP for data transfer

Remote capture control and data flows over a TCP connection. This option
allows you to choose an UDP stream for data transfer.

Sampling option None

This option instructs the Remote Packet Capture Protocol service to send

back all captured packets which have passed the capture filter. This is

usually not a problem on a remote capture session with sufficient
bandwidth.

Sampling option 1 of x packets

This option limits the Remote Packet Capture Protocol service to send only
a sub sampling of the captured data, in terms of number of packets. This

allows capture over a narrow band remote capture session of a higher
bandwidth interface.

Sampling option 1 every x milliseconds
This option limits the Remote Packet Capture Protocol service to send only

a sub sampling of the captured data, in terms of time. This allows capture
over a narrow band capture session of a higher bandwidth interface.

4.10. The "Interface Details" dialog box

When you select Details from the Capture Interface menu, Wireshark pops up
the "Interface Details" dialog box as shown in Figure 4.12, “The "Interface
Details" dialog box”. This dialog shows various characteristics and statistics for
the selected interface.

Microsoft Windows only

7
This dialog is only available on Microsoft Windows

Figure 4.12. The "Interface Details" dialog box

y -] x]

Characteristics l Skatistics l 80z2.3 (Ethernet) l

Characteristics
Wendor description Parallels OEM Adapter, (Microsoft's Packet Scheduler)
Interface \Device\MPF_{SD34CEE1-5DZ1-4A423-4146-941 2CaA313EE}:
Link status Connected
Link speed 1000 MEits)s
Media supported 80z.3 (Ethernet)
Medium in use 80z.3 (Ethernet)

Pheysical medium -
MDIS Driver Version 5.0
Wendaor Driver Yersion -

Wendaor ID 00:1C:42 (Parallely NIC: 00
MAC Options 80z, 1P Priority: Unsupported, 802,10 ¥LAN: Unsupported
WLAN IO =

Transmit Buffer Space S24235
Receive Buffer Space Sz24235
Transmit Block Size 1514
Receive Block Size 1514
Maximumn Packet Size 1514

Mote: accuracy of all of these values are only relving on the network card driver!

Help

4.11. Capture files and file modes

While capturing, the underlying libpcap capturing engine will grab the packets
from the network card and keep the packet data in a (relatively) small kernel
buffer. This data is read by Wireshark and saved into the capture file(s) the user
specified.

Different modes of operation are available when saving this packet data to the
capture file(s).

Tip!

Working with large files (several 100 MB's) can be quite slow. If
you plan to do a long term capture or capturing from a high
traffic network, think about using one of the "Multiple files"
options. This will spread the captured packets over several
smaller files which can be much more pleasant to work with.

Note!

Using Multiple files may cut context related information.
Wireshark keeps context information of the loaded packet data,
so it can report context related problems (like a stream error)
and keeps information about context related protocols (e.g.

//" where data is exchanged at the establishing phase and only
referred to in later packets). As it keeps this information only for
the loaded file, using one of the multiple file modes may cut
these contexts. If the establishing phase is saved in one file and
the things you would like to see is in another, you might not see
some of the valuable context related information.

Tip!

. Information about the folders used for the capture file(s), can be
found in Appendix A, Files and Folders.

Table 4.1. Capture file mode selected by capture options

"Use "Ring
"File" [[multiple buffer
. o w || withn Mode Resulting filename(s) used
option || files files”
option .
option
tSlngle wireshark XXX XXX (where
i i i f:lr;lporary XXXXXX is a unique number)
Single
foo.cap |- “— “name d file foo.cap
. ?.’{““‘ple foo_00001_20100205110102.cap,
0o-cap X ; res, foo_00002_20100205110318.cap, ...
continuous
. ?.’{““‘Ple foo_00001_20100205110102.cap,
00-cap X x b‘u"fi; :‘“g foo_00002_20100205110318.cap, ...

Single temporary file

A temporary file will be created and used (this is the default). After the
capturing is stopped, this file can be saved later under a user specified
name.

Single named file

A single capture file will be used. If you want to place the new capture file
to a specific folder, choose this mode.

Multiple files, continuous

Like the "Single named file" mode, but a new file is created and used, after
reaching one of the multiple file switch conditions (one of the "Next file
every ..." values).

Multiple files, ring buffer

Much like "Multiple files continuous", reaching one of the multiple files
switch conditions (one of the "Next file every ..." values) will switch to the
next file. This will be a newly created file if value of "Ring buffer with n
files" is not reached, otherwise it will replace the oldest of the formerly
used files (thus forming a "ring").

This mode will limit the maximum disk usage, even for an unlimited
amount of capture input data, keeping the latest captured data.

4.12. Link-layer header type

In the usual case, you won't have to choose this link-layer header type. The
following paragraphs describe the exceptional cases, where selecting this type is
possible, so you will have a guide of what to do:

If you are capturing on an 802.11 device on some versions of BSD, this might
offer a choice of "Ethernet" or "802.11". "Ethernet" will cause the captured
packets to have fake Ethernet headers; "802.11" will cause them to have IEEE
802.11 headers. Unless the capture needs to be read by an application that
doesn't support 802.11 headers, you should select "802.11".

If you are capturing on an Endace DAG card connected to a synchronous serial
line, this might offer a choice of "PPP over serial" or "Cisco HDLC"; if the
protocol on the serial line is PPP, select "PPP over serial", and if the protocol on
the serial line is Cisco HDLC, select "Cisco HDLC".

If you are capturing on an Endace DAG card connected to an ATM network, this
might offer a choice of "RFC 1483 IP-over-ATM" or "Sun raw ATM". If the only
traffic being captured is RFC 1483 LLC-encapsulated IP, or if the capture needs
to be read by an application that doesn't support SUunATM headers, select "RFC
1483 IP-over-ATM", otherwise select "Sun raw ATM".

If you are capturing on an Ethernet device, this might offer a choice of
"Ethernet" or "DOCSIS". If you are capturing traffic from a Cisco Cable Modem
Termination System that is putting DOCSIS traffic onto the Ethernet to be
captured, select "DOCSIS", otherwise select "Ethernet".

4.13. Filtering while capturing

Wireshark uses the libpcap filter language for capture filters. This is explained in
the tcpdump man page, which can be hard to understand, so it's explained here to
some extent.

Tip!

. You will find a lot of Capture Filter examples at
http://wiki.wireshark.org/CaptureFilters.

You enter the capture filter into the Filter field of the Wireshark Capture Options
dialog box, as shown in Figure 4.3, “The "Capture Options" dialog box”. The
following is an outline of the syntax of the tcpdump capture filter language. See
the expression option at the tcpdump manual page for details:
http://www.tcpdump.org/tcpdump_man.html.

A capture filter takes the form of a series of primitive expressions connected by
conjunctions (and/or) and optionally preceded by not:

[not] primitive [and]|or [not] primitive ...]

An example is shown in Example 4.1, “ A capture filter for telnet that captures
traffic to and from a particular host .

Example 4.1. A capture filter for telnet that captures traffic to and from a
particular host

tcp port 23 and host 10.0.0.5

This example captures telnet traffic to and from the host 10.0.0.5, and shows
how to use two primitives and the and conjunction. Another example is shown

in Example 4.2, “ Capturing all telnet traffic not from 10.0.0.5”, and shows how
to capture all telnet traffic except that from 10.0.0.5.

Example 4.2. Capturing all telnet traffic not from 10.0.0.5

http://wiki.wireshark.org/CaptureFilters
http://www.tcpdump.org/tcpdump_man.html

tcp port 23 and not src host 10.0.0.5

XXX - add examples to the following list.
A primitive is simply one of the following:
[src|dst] host <host>

This primitive allows you to filter on a host IP address or name. You can
optionally precede the primitive with the keyword src|dst to specify that
you are only interested in source or destination addresses. If these are not
present, packets where the specified address appears as either the source or
the destination address will be selected.

ether [src|dst] host <ehost>

This primitive allows you to filter on Ethernet host addresses. You can
optionally include the keyword src|dst between the keywords ether and
host to specify that you are only interested in source or destination
addresses. If these are not present, packets where the specified address
appears in either the source or destination address will be selected.

gateway host <host>

This primitive allows you to filter on packets that used host as a gateway.
That is, where the Ethernet source or destination was host but neither the
source nor destination IP address was host.

[src|dst] net <net> [{mask <mask>}|{len <len>}]

This primitive allows you to filter on network numbers. You can optionally
precede this primitive with the keyword src|dst to specify that you are only
interested in a source or destination network. If neither of these are present,
packets will be selected that have the specified network in either the source
or destination address. In addition, you can specify either the netmask or the
CIDR prefix for the network if they are different from your own.

[tcp|udp] [src|dst] port <port>

This primitive allows you to filter on TCP and UDP port numbers. You can
optionally precede this primitive with the keywords src|dst and tcpludp
which allow you to specify that you are only interested in source or
destination ports and TCP or UDP packets respectively. The keywords
tcp|ludp must appear before src|dst.

If these are not specified, packets will be selected for both the TCP and
UDP protocols and when the specified address appears in either the source
or destination port field.

less|greater <length>

This primitive allows you to filter on packets whose length was less than or
equal to the specified length, or greater than or equal to the specified length,
respectively.

ip|ether proto <protocol>

This primitive allows you to filter on the specified protocol at either the
Ethernet layer or the IP layer.

ether|ip broadcast|multicast

This primitive allows you to filter on either Ethernet or IP broadcasts or
multicasts.

<expr> relop <expr>

This primitive allows you to create complex filter expressions that select
bytes or ranges of bytes in packets. Please see the tcpdump man page at

http://www.tcpdump.org/tcpdump_man.html for more details.
4.13.1. Automatic Remote Traffic Filtering

If Wireshark is running remotely (using e.g. SSH, an exported X11 window, a
terminal server, ...), the remote content has to be transported over the network,
adding a lot of (usually unimportant) packets to the actually interesting traffic.

To avoid this, Wireshark tries to figure out if it's remotely connected (by looking
at some specific environment variables) and automatically creates a capture filter

http://www.tcpdump.org/tcpdump_man.html

that matches aspects of the connection.
The following environment variables are analyzed:
SSH_CONNECTION (ssh)

<remote IP> <remote port> <local IP> <local port>
SSH_CLIENT (ssh)

<remote IP> <remote port> <local port>
REMOTEHOST (tcsh, others?)

<remote name>
DISPLAY (x11)

[remote name]:<display num>
SESSIONNAME (terminal server)

<remote name>

On Windows it asks the operating system if it's running in a Remote Desktop
Services environment.

4.14. While a Capture is running ...

While a capture is running, the following dialog box is shown:

Figure 4.13. The "Capture Info" dialog box

® Wireshark: Capture from Broadco... g@]g|

Zaptured Packets

Tokal 148 % of tokal

SECTR 0 0, 0%
TP 4 2,7%
LDP 102 &5, 9%
ICMP 0 0, 0%
ARP 24 16,2%
O5SPF 0 0, 0%
GRE 0 0, 0%
MetBI0S 0 0, 0%
IP= = 3,4%
VIMES 0 0, 0%
Other 13 8,8%

Running o0:00:11
e

This dialog box will inform you about the number of captured packets and the
time since the capture was started. The selection of which protocols are counted
cannot be changed.
Tip!
. This Capture Info dialog box can be hidden, using the "Hide
capture info dialog" option in the Capture Options dialog box.

4.14.1. Stop the running capture

A running capture session will be stopped in one of the following ways:

1. Using the @ Stop" button from the Capture Info dialog box .
Note!

:_ZT The Capture Info dialog box might be hidden, if the option
"Hide capture info dialog" is used.

2. Using the menu item "Capture/m Stop".

3. Using the toolbar item @ Stop".
4. Pressing the accelerator keys: Ctrl+E.

5. The capture will be automatically stopped, if one of the Stop Conditions is
exceeded, e.g. the maximum amount of data was captured.

4.14.2. Restart a running capture

A running capture session can be restarted with the same capture options as the
last time, this will remove all packets previously captured. This can be useful, if
some uninteresting packets are captured and there's no need to keep them.

Restart is a convenience function and equivalent to a capture stop following by
an immediate capture start. A restart can be triggered in one of the following
ways:

1. Using the menu item "Capture/ﬁ% Restart".

2. Using the toolbar item ﬁ% Restart".

Chapter 5. File Input / Output and
Printing

Table of Contents

5.1. Introduction

5.2. Open capture files
5.2.1. The "Open Capture File" dialog box
5.2.2. Input File Formats

5.3. Saving captured packets
5.3.1. The "Save Capture File As" dialog box
5.3.2. Output File Formats

5.4. Merging capture files
5.4.1. The "Merge with Capture File" dialog box

5.5. Import hex dump
5.5.1. The "Import from Hex Dump" dialog box
5.6. File Sets
5.6.1. The "List Files" dialog box
5.7. Exporting data
5.7.1. The "Export as Plain Text File" dialog box
5.7.2. The "Export as PostScript File" dialog box
5.7.3. The "Export as CSV (Comma Separated Values) File" dialog box
5.7.4. The "Export as C Arrays (packet bytes) file" dialog box
5.7.5. The "Export as PSML File" dialog box
5.7.6. The "Export as PDML File" dialog box
5.7.7. The "Export selected packet bytes" dialog box
5.7.8. The "Export Objects" dialog box
5.8. Printing packets
5.8.1. The "Print" dialog box
5.9. The Packet Range frame
5.10. The Packet Format frame

5.1. Introduction

This chapter will describe input and output of capture data.

e Open capture files in various capture file formats

Save/Export capture files in various capture file formats

Merge capture files together

Import text files containing hex dumps of packets

Print packets

5.2. Open capture files

Wireshark can read in previously saved capture files. To read them, simply select

the menu or toolbar item: "File/ & Open". Wireshark will then pop up the File
Open dialog box, which is discussed in more detail in Section 5.2.1, “The "Open
Capture File" dialog box™.

It's convenient to use drag-and-drop!

... to open a file, by simply dragging the desired file from your

. file manager and dropping it onto Wireshark's main window.
However, drag-and-drop is not available/won't work in all
desktop environments.

If you haven't previously saved the current capture file, you will be asked to do
so, to prevent data loss (this behaviour can be disabled in the preferences).

In addition to its native file format (libpcap format, also used by
tcpdump/WinDump and other libpcap/WinPcap-based programs), Wireshark can
read capture files from a large number of other packet capture programs as well.
See Section 5.2.2, “Input File Formats” for the list of capture formats Wireshark
understands.

5.2.1. The "Open Capture File" dialog box

The "Open Capture File" dialog box allows you to search for a capture file
containing previously captured packets for display in Wireshark. Table 5.1, “The
system specific "Open Capture File" dialog box” shows some examples of the
Wireshark Open File Dialog box.

The dialog appearance depends on your system!

Ei The appearance of this dialog depends on the system and/or
' GTK+ toolkit version used. However, the functionality remains
basically the same on any particular system.

Common dialog behaviour on all systems:

e Select files and directories.

¢ Click the Open/Ok button to accept your selected file and open it.

e Click the Cancel button to go back to Wireshark and not load a capture file.
Wireshark extensions to the standard behaviour of these dialogs:

e View file preview information (like the filesize, the number of packets, ...),
if you've selected a capture file.

e Specify a display filter with the "Filter:" button and filter field. This filter
will be used when opening the new file. The text field background becomes
green for a valid filter string and red for an invalid one. Clicking on the
Filter button causes Wireshark to pop up the Filters dialog box (which is
discussed further in Section 6.3, “Filtering packets while viewing”).

XXX - we need a better description of these read filters

e Specify which type of name resolution is to be performed for all packets by
clicking on one of the "... name resolution" check buttons. Details about
name resolution can be found in Section 7.7, “Name Resolution”.

Save a lot of time loading huge capture files!

You can change the display filter and name resolution settings
later while viewing the packets. However, loading huge capture
files can take a significant amount of extra time if these settings
are changed later, so in such situations it can be a good idea to
set at least the filter in advance here.

Table 5.1. The system specific "Open Capture File" dialog box

Microsoft Windows

Figure 5.1. "Open” on native Windows i1 i 1o common Windows file

2]

) lilesat

« O T

-'?m-

Blltest1 ool 0050819181503 pean BBkest]_00007_20050819181508 poap
Blltest1_noooz_zoosos19181505 pean BBltestl_0000S8_2005081918150%9 poap
Blltest1_nooos_zoosos19181505 . oean [ltest1_00009_20050819181510,pcap
Blltest1_oooo4_zoososi9ie1506.pcan [ltest1_00010_z0050819181512,pc0p
[ltest_oooos_zoosoe191e1507.peap [ltests_oo011_zoosna19181513.pesp
Bltest1_ooooe_zoosoaioieiso7 pese Elltest1_oo012_20050819181514 pesp

Loak, in:

< >

Fie name: | est1_DD004_20050819151506 peap

Filez of type: All Files [] I

Help
Eiler |' Filename: tezt]_DOD04_200508

Foimat: ‘Wireshark.tcpdump/.

MAL name rezolstion Gz 1031 bytes

[+] Netwotk name resclution Packats: 9

Trareport name resoltion First Packet: 2005-08-1918:15.06
Elapzed 00:00; D0

open dialog - plus some Wireshark
extensions.

Specific for this dialog:

e If available, the "Help" button
will lead you to this section of
this "User's Guide".

Note

The "Filter:"
—» button
— currently
doesn't work
on Windows!

Figure 5.2. "Open" - new GTK version Specific for this dialog:

& Edharaal: (ipan Capters File

1|
il
-

B Ha - pedied | ®
) soutnn | [=Y - ELE]
g o9 [R [LELE.)
i = 1AL 000
iy & Mordeg
& | < B T 7
By = i - = [T T
By § = — a1 08200
By e B 2
By # == e = H1p0
- e e = —
a L |E——— Todss
B e findss
+ - A Py w
= Fissara: ‘TS0 g
D Format: M o, B, ok)
(=] Erasis P rims e S 13800 b
(=] v it b rg vz Packals bk
5 Pt Packat FEELE TSR
] Erssbie rarspert e vt P2 e
B oy N el

Unix/Linux: GTK version >= 2.4

This is the common
Gimp/GNOME file open dialog -
plus some Wireshark extensions.

e The "+ Add" button allows
you to add a directory,
selected in the right-hand
pane, to the favorites list on
the left. Those changes are
persistent.

e The "- Remove" button allows
you to remove a selected
directory from that list again
(the items like: "Home",

"Desktop", and "Filesystem"
cannot be removed).

e If Wireshark doesn't
recognize the selected file as a
capture file, it will grey out
the "Open" button.

CminDi | DuinFin | FoseraFi |

Figure 5.3. "Open" - old GTK version

)

i Eriabis WAL rass imasiuton
1 Erube petrest, e etahion

_i Eriabls bt resma rasckiion

Selncian I o' bk won

[

Unix/Linux: GTK version < 2.4

This is the file open dialog of
former Gimp/GNOME versions -
plus some Wireshark extensions.

Specific for this dialog:

o If Wireshark doesn't
recognize the selected file as a
capture file, it will grey out
the "Ok" button.

5.2.2. Input File Formats

The following file formats from other capture tools can be opened by Wireshark:

e libpcap - captures from Wireshark/TShark/dumpcap, tcpdump, and various
other tools using libpcap's/tcpdump's capture format

e pcap-ng - '"next-generation" successor to libpcap format
pcap-ng g pcap

¢ Sun snoop and atmsnoop

e Shomiti/Finisar Surveyor captures

Novell LANalyzer captures

Microsoft Network Monitor captures

AIX's iptrace captures

Cinco Networks NetXray captures

Network Associates Windows-based Sniffer and Sniffer Pro captures

Network General/Network Associates DOS-based Sniffer (compressed or
uncompressed) captures

AG Group/WildPackets
EtherPeek/TokenPeek/AiroPeek/EtherHelp/PacketGrabber captures

RADCOM's WAN/LAN Analyzer captures

Network Instruments Observer version 9 captures
Lucent/Ascend router debug output

HP-UX's nettl

Toshiba's ISDN routers dump output

ISDN4BSD i4btrace utility

traces from the EyeSDN USB S0

IPLog format from the Cisco Secure Intrusion Detection System
pppd logs (pppdump format)

the output from VMS's TCPIPtrace/TCPtrace/UCX$TRACE utilities
the text output from the DBS Etherwatch VMS utility

Visual Networks' Visual UpTime traffic capture

the output from CoSine L2 debug

the output from Accellent's 5Views LAN agents
Endace Measurement Systems' ERF format captures
Linux Bluez Bluetooth stack hcidump -w traces
Catapult DCT2000 .out files

Gammu generated text output from Nokia DCT3 phones in Netmonitor
mode

IBM Series (0S/400) Comm traces (ASCII & UNICODE)
Juniper Netscreen snoop captures

Symbian OS btsnoop captures

Tamosoft CommView captures

Textronix K12xx 32bit .rf5 format captures

Textronix K12 text file format captures

Apple PacketL.ogger captures

Captures from Aethra Telecommunications' PC108 software for their test
instruments

... new file formats are added from time to time
Opening a file may fail due to invalid packet types!

It may not be possible to read some formats dependent on the

E4l packet types captured. Ethernet captures are usually supported
for most file formats but it may not be possible to read other
packet types (e.g. token ring packets) from all file formats.

5.3. Saving captured packets

You can save captured packets simply by using the Save As... menu item from
the File menu under Wireshark. You can choose which packets to save and
which file format to be used.

Saving may reduce the available information!
A Saving the captured packets will slightly reduce the amount of

information, e.g. the number of dropped packets will be lost; see
Section A.1, “Capture Files” for details.

5.3.1. The "Save Capture File As" dialog box

The "Save Capture File As" dialog box allows you to save the current capture to
a file. Table 5.2, “The system specific "Save Capture File As" dialog box” shows
some examples of this dialog box.

The dialog appearance depends on your system!
—» The appearance of this dialog depends on the system and GTK+

~ toolkit version used. However, the functionality remains
basically the same on any particular system.

Table 5.2. The system specific "Save Capture File As" dialog box

Figure 5.4. "Save" on native Windows

Microsoft Windows

This is the common Windows file
save dialog - plus some Wireshark
extensions.

Specific for this dialog:

Save o | 1 flesel O ¥ M-

B oo b Bt oo @2 Il @ If available, the "Help" button
lﬁiiﬁifﬂﬂfﬂﬁﬁﬁﬁﬁii I:Z‘i_‘ﬁﬂﬂ?ﬂﬁfﬁiﬁii? s I:Zi:fﬂii:fﬁ will lead you to this section of
o] g | ey this "User's Guide".
L4 *
Fie peme: [jasr_00005_2006E151 51507 peap Sae e If you don't provide a file
Uy R St fee e . @ extension to the filename -

Heilp

e.g. .pcap, Wireshark will
append the standard file

Packet Range

@ Cepuaed O Displaped extension for that file format.
{*) All packets 120
) Sebeched packat 1
) Range 0

Figure 5.5. "Save" - new GTK version

@ FEthereal: Save Capture File As E|@|E|

Mame: |

_] Unix/Linux: GTK version >= 2.4

Save in Folder: [ED:'I,

Packet Range This is the common

Cetured ||_oswleved | WIGimp/GNOME file save dialog -
20 B perics = plus some Wireshark extensions.
() Sebected packet anly 1

Specific for this dialog:

() Specify a packet range: 1]
¢ Clicking on the + at "Browse
| perem———— 3 for other foldersf will allow
you to browse files and
e ENEW/RELEN e tolder s folders in your file system.

[e save]| X Concel |

Figure 5.6. "Save" - old GTK version

Wireshark: Save Capture File As

Create Di | Delete Fil | FIenuneFdel

[i—— bversion |

Divectoiies IE [Fes iy
\ acnciude.md
5 aclocal-flags
achocal-falback aipeap h
aznlh aipcap_loades.c
debian', arpcap_loades.h
Diebugh arpeap_losdes akby
Debug_GTEIY aler_bow.c . . .
Debug.GTK2\ el Unix/Linux: GTK version < 2.4
ismeshert, alerf_bax.o
i i R /
This is the file save dialog of
Packel Aange . .
[Eapred Dispeyed former Gimp/GNOME versions -
~ Allpackets iz plus some Wireshark extensions.
w Selacied packet only 1 |
s Marced peckets omly
we 10 el 1o et matked packe!
~ Specily a packet range: o

Fleype ‘WreshakAcpdump/ -lbpeap I |

Saleclion; I i subyersion

With this dialog box, you can perform the following actions:

1. Type in the name of the file you wish to save the captured packets in, as a
standard file name in your file system.

2. Select the directory to save the file into.

3. Select the range of the packets to be saved, see Section 5.9, “The Packet
Range frame”

4. Specify the format of the saved capture file by clicking on the File type
drop down box. You can choose from the types, described in Section 5.3.2,
“Output File Formats”.

The selection of capture formats may be reduced!

the packet types captured.
File formats can be converted!

You can convert capture files from one format to another
* by reading in a capture file and writing it out using a
different format.

5. Click on the Save/Ok button to accept your selected file and save to it. If
Wireshark has a problem saving the captured packets to the file you
specified, it will display an error dialog box. After clicking OK on that error
dialog box, you can try again.

6. Click on the Cancel button to go back to Wireshark and not save the
captured packets.

5.3.2. Output File Formats

Wireshark can save the packet data in its "native" file format (libpcap) and in the
file formats of some other protocol analyzers, so other tools can read the capture
data.

File formats have different time stamp accuracies!
Saving from the currently used file format to a different format

may reduce the time stamp accuracy; see the Section 7.4, “Time
Stamps” for details.

The following file formats can be saved by Wireshark (with the known file
extensions):

e libpcap, tcpdump and various other tools using tcpdump's capture format
(*.pcap,*.cap,*.dmp)

e Accellent 5Views (*.5vw)

e HP-UX's nettl (*. TRCO0,*.TRC1)

e Microsoft Network Monitor - NetMon (*.cap)

e Network Associates Sniffer - DOS (*.cap,*.enc,*.trc,*fdc,*.syc)
e Network Associates Sniffer - Windows (*.cap)

e Network Instruments Observer version 9 (*.bfr)

e Novell LANalyzer (*.trl)

e Sun snoop (*.snoop,*.cap)

e Visual Networks Visual UpTime traffic (*.*)

e ... new file formats are added from time to time

If the above tools will be more helpful than Wireshark is a different question ;-)

Third party protocol analyzers may require specific file
extensions!

__ Other protocol analyzers than Wireshark may require that the
7 file has a certain file extension in order to read the files you
generate with Wireshark, e.g.:

".cap" for Network Associates Sniffer - Windows

5.4. Merging capture files

Sometimes you need to merge several capture files into one. For example this
can be useful, if you have captured simultaneously from multiple interfaces at
once (e.g. using multiple instances of Wireshark).

Merging capture files can be done in three ways:

e Use the menu item "Merge" from the "File" menu, to open the merge
dialog, see Section 5.4.1, “The "Merge with Capture File" dialog box”. This
menu item will be disabled, until you have loaded a capture file.

e Use drag-and-drop to drop multiple files on the main window. Wireshark
will try to merge the packets in chronological order from the dropped files
into a newly created temporary file. If you drop only a single file, it will
simply replace a (maybe) existing one.

e Use the mergecap tool, which is a command line tool to merge capture
files. This tool provides the most options to merge capture files, see
Section D.8, “mergecap: Merging multiple capture files into one ”.

5.4.1. The "Merge with Capture File" dialog box
This dialog box let you select a file to be merged into the currently loaded file.

You will be prompted for an unsaved file first!

save it first, before this dialog box is shown.

Most controls of this dialog will work the same way as described in the "Open
Capture File" dialog box, see Section 5.2.1, “The "Open Capture File" dialog
box”.

Specific controls of this merge dialog are:

Prepend packets to existing file

Prepend the packets from the selected file before the currently loaded

packets.

Merge packets chronologically

Merge both the packets from the selected and currently loaded file in
chronological order.

Append packets to existing file

Append the packets from the selected file after the currently loaded packets.

Table 5.3. The system specific "Merge Capture File As" dialog box

Figure 5.7. "Merge" on native Windows

Lok jrr | 0 flesel

testl_ 00000 _20050819181505, peap
baestl 0000 _20050819181505. poap:
bactl _DOD03_20050819181505. poap

tl_ 00006 _20050819181507 peap

bestl 0O00F_20050819181508. peap

B
beest | _00005_2005081 2131507 .poap
e
L]

ket _00010_200503191E1512 poap

t_O0004_70050319131506, peap [ElRest|_00011 2005051918151 3.pcap
teskl_00012_20050319151514.pap tastl_00019_20

Eeakl_00013_20050812151516.peap

kestl 00014_2005031918151F poap

Filename:

Fike: pearme; tesl1_D0DO7_20050E 21 &1 508 poap
Files of yp= Al Pl 7]
(o] |

(5} Pespenid packebs bo esting file
(¥ Meige packets chionologecaly
[Mppend packets o essting fle

Format

Siza
Packets:
Finst Packet
Elspeesd

<o F i E-

restl_00006_20050819151509.peap testl_00015_20
ket 00009 2005081918151 0upcap kest] 000146 _20

testl_00017 20
best1_00013_30

testl_00020_20
kest] 00021 20

tegt]_ 000072005081 9181508 poap
WieshatkAcpdumpy’.. - lbpoap
TOT bubes

11

2005-08-19 181508

000001

Microsoft Windows

This is the common Windows file
open dialog - plus some Wireshark
extensions.

Figure 5.8. "Merge" - new GTK version

@ Fihereal: Merge wilh Capture File

e % (o]] o]] o] (o) [s |
= Ciesking -~
Hame
Ble oL et
B |
Bou
335 1 ‘j‘..:...:n
&t”:'. & | @] e—————
=1 e o
+ - - "
[Flaname: [X
imi] Format! Bbpcap {bpdung, Ecteneal, et}
) Prapand packets b sasting fle Sk 537 brphis
Packsty: 120

%) Margs packsts chronologealy
) Append packets bo mxisting Fils

First Packet; J004-06-22 200240

Elspead tres: 0000502
| Bogen || X gwen

S Unix/Linux: GTK version >= 2.4

This is the common
Gimp/GNOME file open dialog -
plus some Wireshark extensions.

Figure 5.9. "Merge" - old GTK version

Wirmbark: Merge with Capture Fila

CsinDs | DuiinFin | Fomara Fin |
[] Fiax]
A wrchai rd
i Fiocalieg
ekt Lalbach g b
Bl . b ¢
b, Sl _Wodes by
Desbasgh g boades ok
Db GTETS b 3
Dby GTET Ml _ba
anastar ey
' AUTHORS
ko’ ALTHORS SOAT
[Fl ALUTHO RS SHORT FOReAT)
Fimgrw
b cuipad e hpw ‘Wirmchak Acpckrpy._ o
Frarost
o
B[—
P ok
wgera] [k b i B Pk
* iheage paohat ohioratagosh FartFchet
wr B v s) e e

Selecion T ek, ke wmon

[|

Unix/Linux: GTK version < 2.4

This is the file open dialog of
former Gimp/GNOME versions -
plus some Wireshark extensions.

5.5. Import hex dump

Wireshark can read in an ASCII hex dump and write the data described into a
temporary libpcap capture file. It can read hex dumps with multiple packets in
them, and build a capture file of multiple packets. It is also capable of generating
dummy Ethernet, IP and UDP, TCP, or SCTP headers, in order to build fully
processable packet dumps from hexdumps of application-level data only.

Wireshark understands a hexdump of the form generated by od -Ax -tx1 -v. In
other words, each byte is individually displayed and surrounded with a space.
Each line begins with an offset describing the position in the file. The offset is a
hex number (can also be octal or decimal), of more than two hex digits. Here is a
sample dump that can be imported:

000000 00 eO le a7 05 6f 00 10
000008 5a a0 b9 12 08 00 46 00
000010 O3 68 OO OO OO OO Ga 28
000018 ee 33 Of 19 08 7f Of 19
000020 03 80 94 04 00 00 10 61
000028 16 a2 Oa 0O 03 50 00 OCc
000030 01 01 6f 19 63 80 11 01

There is no limit on the width or number of bytes per line. Also the text dump at
the end of the line is ignored. Bytes/hex numbers can be uppercase or lowercase.
Any text before the offset is ignored, including email forwarding characters ">'.
Any lines of text between the bytestring lines is ignored. The offsets are used to
track the bytes, so offsets must be correct. Any line which has only bytes without
a leading offset is ignored. An offset is recognized as being a hex number longer
than two characters. Any text after the bytes is ignored (e.g. the character dump).
Any hex numbers in this text are also ignored. An offset of zero is indicative of
starting a new packet, so a single text file with a series of hexdumps can be
converted into a packet capture with multiple packets. Packets may be preceded
by a timestamp. These are interpreted according to the format given. If not the
first packet is timestamped with the current time the import takes place. Multiple
packets are read in with timestamps differing by one microsecond each. In
general, short of these restrictions, Wireshark is pretty liberal about reading in
hexdumps and has been tested with a variety of mangled outputs (including
being forwarded through email multiple times, with limited line wrap etc.)

There are a couple of other special features to note. Any line where the first non-
whitespace character is '#' will be ignored as a comment. Any line beginning
with #TEXT2PCAP is a directive and options can be inserted after this command
to be processed by Wireshark. Currently there are no directives implemented; in
the future, these may be used to give more fine grained control on the dump and
the way it should be processed e.g. timestamps, encapsulation type etc.
Wireshark also allows the user to read in dumps of application-level data, by
inserting dummy L2, L.3 and L4 headers before each packet. The user can elect
to insert Ethernet headers, Ethernet and IP, or Ethernet, IP and UDP/TCP/SCTP
headers before each packet. This allows Wireshark or any other full-packet
decoder to handle these dumps.

5.5.1. The "Import from Hex Dump" dialog box

This dialog box lets you select a text file, containing a hex dump of packet data,
to be imported and set import parameters.

Figure 5.10. The "Import from Hex Dump" dialog

2 Wireshark: Import from Text

-Input

Filename: E.Eruwse...l

(*) Hexadecimal
Offsets: () Octal
() Decimal

[] Date/Time

Slmport

Encapsulation type: Ethernet -

-] Dummy header

() Ethernet
O IPva

Source port:

O TCP Destination port:

() SCTP (DaTA)

Max. frame Iength:l

ﬁﬂelp | xgancel

Specific controls of this import dialog are split in two sections:

¢Jok

Input

Determine which input file has to be imported and how it is to be
interpreted.

Import

Determine how the data is to be imported.
The input parameters are as follows:
Filename / Browse

Enter the name of the text file to import. You can use Browse to browse for

a file.
Offsets

Select the radix of the offsets given in the text file to import. This is usually
hexadecimal, but decimal and octal are also supported.

Date/Time

Tick this checkbox if there are timestamps associated with the frames in the
text file to import you would like to use. Otherwise the current time is used
for timestamping the frames.

Format

This is the format specifier used to parse the timestamps in the text file to
import. It uses a simple syntax to describe the format of the timestamps,
using %H for hours, %M for minutes, %S for seconds, etc. The
straightforward HH:MM:SS format is covered by %T. For a full definition
of the syntax look for strftime(3).

The import parameters are as follows:
Encapsulation type

Here you can select which type of frames you are importing. This all
depends on from what type of medium the dump to import was taken. It
lists all types that Wireshark understands, so as to pass the capture file
contents to the right dissector.

Dummy header

When Ethernet encapsulation is selected you have to option to prepend
dummy headers to the frames to import. These headers can provide
artificial Ethernet, IP, UDP or TCP or SCTP headers and SCTP data chunks.
When selecting a type of dummy header the applicable entries are enabled,
others are grayed out and default values are used.

Max. frame length

You may not be interested in the full frames from the text file, just the first
part. Here you can define how much data from the start of the frame you
want to import. If you leave this open the maximum is set to 64000 bytes.

Once all input and import parameters are setup click OK to start the import.
You will be prompted for an unsaved file first!

E4pi; your current data wasn't saved before, you will be asked to
save it first, before this dialog box is shown.

When completed there will be a new capture file loaded with the frames
imported from the text file.

5.6. File Sets

When using the "Multiple Files" option while doing a capture (see: Section 4.11,
“Capture files and file modes™), the capture data is spread over several capture
files, called a file set.

As it can become tedious to work with a file set by hand, Wireshark provides
some features to handle these file sets in a convenient way.

How does Wireshark detect the files of a file set?

A filename in a file set uses the format Prefix Number DateTimeSuffix which

might look like this: "test_00001_20060420183910.pcap". All files of a file set
share the same prefix (e.g. "test") and suffix (e.g. ".pcap") and a varying middle
part.

To find the files of a file set, Wireshark scans the directory where the currently
loaded file resides and checks for files matching the filename pattern (prefix and
suffix) of the currently loaded file.

This simple mechanism usually works well, but has its drawbacks. If several file
sets were captured with the same prefix and suffix, Wireshark will detect them as
a single file set. If files were renamed or spread over several directories the
mechanism will fail to find all files of a set.

The following features in the "File Set" submenu of the "File" menu are
available to work with file sets in a convenient way:

e The List Files dialog box will list the files Wireshark has recognized as
being part of the current file set.

¢ Next File closes the current and opens the next file in the file set.

e Previous File closes the current and opens the previous file in the file set.

5.6.1. The "List Files" dialog box

Figure 5.11. The "List Files" dialog box

‘" Wireshark: 17 Files in Set

Filename Created Last Modified Size
(%) kestl 00001 200S0819181503.peapt 2005.08,19 18:15:03 2005.08.19 18:15:05 1067 Byvtes

() testl_00002_20050819181505, pcap
() testl_00003_20050819181505, pcap
() testl_00004_20050819181506, peap
() testl_00005_20050819181507 . peap
() testl_00006_20050819181507 . peap
() testl_00007_20050819181508, pcap
() testl_0000&_20050819181509, pcap
() testl_00009_20050819181510,pcap
() testl_00010_20050819181512, peap
() testl_00011_20050819181513, peap
() testl_00012_20050819181514, peap
() testl_00013_20050819181516, pcap
() testl_00014_20050819181517 . peap
() testl_00015_20050819181518, pcap
() testl_00016_20050819181518, peap
() testl_00017_20050819181518, peap

... in directory: D ffileset

Each line contains information about a file of the file set:

¢ Filename the name of the file. If you click on the filename (or the radio
button left to it), the current file will be closed and the corresponding
capture file will be opened.

e Created the creation time of the file
e I.ast Modified the last time the file was modified
e Size the size of the file

The last line will contain info about the currently used directory where all of the
files in the file set can be found.

The content of this dialog box is updated each time a capture file is
opened/closed.

The Close button will, well, close the dialog box.

5.7. Exporting data

Wireshark provides several ways and formats to export packet data. This section
describes general ways to export data from Wireshark.

Note!

/} There are more specialized functions to export specific data,
which will be described at the appropriate places.

XXX - add detailed descriptions of the output formats and some sample output,
too.

5.7.1. The "Export as Plain Text File" dialog box

Export packet data into a plain ASCII text file, much like the format used to
print packets.

Figure 5.12. The "Export as Plain Text File" dialog box

[l Wireshark: Export File (23w

Savein: | Packet Analysis Data j | 5 B~
L= Mame - Date moedified Type
-
e Mo items match your search,
Recent Places
Desktop
=
Libraries
Computer
e
Metwork 3 il 5
File name: |SI|:uw MFS| j Save |
Save as bype: |F‘Iain tead (" b} ﬂ Cancel
Help
Packet Range Packet Format
* Captured (Displayed v Packet summary line
f+' Al packets 11753 Iv Packet details:
" Selected packet 1 |;.~.5 displayed ﬂ
~
~ [Packet Bytes
" Range: 0 [Each packet on a new page
-

o Export to file: frame chooses the file to export the packet data to.

e The Packet Range frame is described in Section 5.9, “The Packet Range
frame”.

e The Packet Details frame is described in Section 5.10, “The Packet Format
frame”.

5.7.2. The "Export as PostScript File" dialog box

Export packet data into PostScript, much like the format used to print packets.

Tip!

« You can easily convert PostScript files to PDF files using
ghostscript. For example: export to a file named foo.ps and then
call: ps2pdf foo.ps

Figure 5.13. The "Export as PostScript File" dialog box

[l Wireshark: Export File

Save in: | Packet Analysis Data j L] £ Elv

= Marme Date modified Type
4

Recent Places

Desktop

Mo items match your search,

w=n}!

Libraries
Computer
1 ¥

Metwaork ! il

File name: |SI|:uw MFS| j Save

Save as type: |C5‘.,.f (Comma Separated Values summary) I_‘.CS\ﬂ Cancel

Flt].

Help

Packet Range

* Captured 1 Displayed "
f* Al packets 11759 [
" Selected packet 1 T

Az displayed

: B
~ [
" Range: 1] =
-

e Export to file: frame chooses the file to export the packet data to.

e The Packet Range frame is described in Section 5.9, “The Packet Range
frame”.

e The Packet Details frame is described in Section 5.10, “The Packet Format
frame”.

5.7.3. The "Export as CSV (Comma Separated Values) File"
dialog box

XXX - add screenshot

Export packet summary into CSV, used e.g. by spreadsheet programs to im-
/export data.

e Export to file: frame chooses the file to export the packet data to.

e The Packet Range frame is described in Section 5.9, “The Packet Range
frame”.

5.7.4. The "Export as C Arrays (packet bytes) file" dialog box

XXX - add screenshot

Export packet bytes into C arrays so you can import the stream data into your
own C program.

e Export to file: frame chooses the file to export the packet data to.

e The Packet Range frame is described in Section 5.9, “The Packet Range
frame”.

5.7.5. The "Export as PSML File" dialog box

Export packet data into PSML. This is an XML based format including only the
packet summary. The PSML file specification is available at:
http://www.nbee.org/doku.php?id=netpdl:psml_specification.

Figure 5.14. The "Export as PSML File" dialog box

http://www.nbee.org/doku.php?id=netpdl:psml_specification

[l Wireshark: Export File

Savein: |

== Mame
4

Recent Places

Desktop

w=n}!

Libraries

A

=

Computer

@

Metwaork !

File name:

Packet Range

* Al packets

" Selected packet
~

~

" Range:

—-

Save as type:

Packet Analysis Data

~

~| « &k E

Date modified

Mo items match your search,

I

Type

I
|Slow NF| -] Save |
|F‘SI"-'1L XML packet summary} {*.psml) ﬂ Cancel

Help
* Captured 1 Displayed "
11759 ™
1 Az displayed J
r
0 []

e Export to file: frame chooses the file to export the packet data to.

e The Packet Range frame is described in Section 5.9, “The Packet Range

frame”.

There's no such thing as a packet details frame for PSML export, as the packet

format is defined by the PSML specification.

5.7.6. The "Export as PDML File" dialog box

Export packet data into PDML. This is an XML based format including the
packet details. The PDML file specification is available at:

http://www.nbee.org/doku.php?id=netpdl:pdml_specification.

~ The PDML specification is not officially released and
| #1 Wireshark's implementation of it is still in an early beta state, so
please expect changes in future Wireshark versions.

Figure 5.15. The "Export as PDML File" dialog box

[l Wireshark: Export File

Savein: | Packet Analysis Data j] 5 B~
L= Mame - Date moedified Type
-
Hece‘:thﬁaces Mo items match your search,
Desktop
Libraries
Computer
L
NE‘twﬂrk L] i F
File name: |SI|:uw MFS| j Save |
Save as type: |F‘DI"-"|L ML packet detail) (* pdml) ﬂ Cancel
Help

Packet Range

* Captured 1 Displayed "
f* Al packets 11759 [
" Selected packet 1 e
Az displayed
: B
~ [
" Range: 1] |

—-

http://www.nbee.org/doku.php?id=netpdl:pdml_specification

e Export to file: frame chooses the file to export the packet data to.

e The Packet Range frame is described in Section 5.9, “The Packet Range
frame”.

There's no such thing as a packet details frame for PDML export, as the packet
format is defined by the PDML specification.

5.7.7. The "Export selected packet bytes" dialog box

Export the bytes selected in the "Packet Bytes" pane into a raw binary file.

Figure 5.16. The "Export Selected Packet Bytes" dialog box

“ Wireshark: Export Raw Data

Savein: | | Packet Analysis Data j = £ B

= MName Date modified Type
e _
Mo items match your search,
Recent Places

Desktop
Libraries

A

-

Computer

@

Metworl

4 T

Size

File name: |NFS bytes.dat| j
=]

Save as type: |Haw data (" bin, *.dat, *raw)

20 bytes of raw binary data will be written

Save

Cancel

'l

Help

e Name: the filename to export the packet data to.

e The Save in folder: field lets you select the folder to save to (from some

predefined folders).

e Browse for other folders provides a flexible way to choose a folder.

5.7.8. The "Export Objects" dialog box

This feature scans through HTTP streams in the currently open capture file or

running capture and takes reassembled objects such as HTML documents, image
files, executables and anything else that can be transferred over HTTP and lets
you save them to disk. If you have a capture running, this list is automatically
updated every few seconds with any new objects seen. The saved objects can
then be opened with the proper viewer or executed in the case of executables (if
it is for the same platform you are running Wireshark on) without any further
work on your part. This feature is not available when using GTK2 versions
below 2.4.

Figure 5.17. The "Export Objects" dialog box

Packet nurm | Hostnarme Content Type | Eytes | Filenarne
1546 www. wireshark org tesxtihtrml 8837 www.wireshark org
1593 www.wireshark org textjcss 4243 ws-l.css
1845 www. wireshark. org application/x-javascript 1185 commoen.js
2488 www. wireshark org imagel/prg 26763 front_screen.png
2592 wwww. wireshark org imagelpng 2782 wslogomedblusll2 png
2978 www. wireshark org imagelpng 6325 wsiconinst80.png
2987 www.wireshark org imagelprg 158 cg_fade_bg.png
2071 wwww. wireshark. org imagelpng 296 top_navbar_bg.prg
3441 ads.wireshark.erg imagelgif 43 adlog. php?hannerid=12& clientid= 2& zoneid= 0& source= front&block= 0& cap
3525 www. google-analytics.com imagelgif 35 Sutrnac=UA-605389-28& utrmcc=__utma% 3D 87653150.5544352587. 1170449
K1) [0]

Save Al

| h
@ Help M Close Save As

Columns:

¢ Packet num: The packet number in which this object was found. In some
cases, there can be multiple objects in the same packet.

e Hostname: The hostname of the server that sent the object as a response to

an HTTP request.
e Content Type: The HTTP content type of this object.
e Bytes: The size of this object in bytes.

¢ Filename: The final part of the URI (after the last slash). This is typically a
filename, but may be a long complex looking string, which typically
indicates that the file was received in response to a HTTP POST request.

Buttons:
e Help: Opens this section in the user's guide.
e Close: Closes this dialog.

e Save As: Saves the currently selected object as a filename you specify. The
default filename to save as is taken from the filename column of the objects
list.

e Save All: Saves all objects in the list using the filename from the filename
column. You will be asked what directory / folder to save them in. If the
filename is invalid for the operating system / file system you are running
Wireshark on, then an error will appear and that object will not be saved
(but all of the others will be).

5.8. Printing packets

To print packets, select the "Print..." menu item from the File menu. When you
do this, Wireshark pops up the Print dialog box as shown in Figure 5.18, “The
"Print" dialog box™.

5.8.1. The "Print" dialog box

Figure 5.18. The "Print" dialog box

Wireshark: Print E] @| g|

Prinkter

{} PostScripk

[output ba File:

Packet Range Packet Format

Igaptured"DiSvaEd] Packet summary line

#) all packets 11 Packet details:

() gelected packet only 1 O all collapsed
(*) As displayed

(3 all expanded
() Specify a packet range: 1] [] Packet bytes

[] Each packet on & new page

EE””': | M Cancel |

The following fields are available in the Print dialog box:

Printer
This field contains a pair of mutually exclusive radio buttons:
e Plain Text specifies that the packet print should be in plain text.

e PostScript specifies that the packet print process should use

PostScript to generate a better print output on PostScript aware
printers.

¢ Output to file: specifies that printing be done to a file, using the
filename entered in the field or selected with the browse button.

This field is where you enter the file to print to if you have selected
Print to a file, or you can click the button to browse the filesystem. It is
greyed out if Print to a file is not selected.

¢ Print command specifies that a command be used for printing.
Note!

_//" These Print command fields are not available on
windows platforms.

This field specifies the command to use for printing. It is typically Ipr.
You would change it to specify a particular queue if you need to print
to a queue other than the default. An example might be:

1pr -Pmypostscript

This field is greyed out if Output to file: is checked above.
Packet Range

Select the packets to be printed, see Section 5.9, “The Packet Range frame”

Packet Format

Select the output format of the packets to be printed. You can choose, how
each packet is printed, see Figure 5.20, “The "Packet Format" frame”

5.9. The Packet Range frame

The packet range frame is a part of various output related dialog boxes. It
provides options to select which packets should be processed by the output
function.

Figure 5.19. The "Packet Range" frame

Packet Range

[Captured][Displayed]
(%) all packets 120
() gelected packet only 1

() Specify a packet range:]

If the Captured button is set (default), all packets from the selected rule will be
processed. If the Displayed button is set, only the currently displayed packets
are taken into account to the selected rule.

e All packets will process all packets.
e Selected packet only process only the selected packet.
e Marked packets only process only the marked packets.

¢ From first to last marked packet process the packets from the first to the
last marked one.

¢ Specify a packet range process a user specified range of packets, e.g.
specifying 5,10-15,20- will process the packet number five, the packets
from packet number ten to fifteen (inclusive) and every packet from
number twenty to the end of the capture.

5.10. The Packet Format frame

The packet format frame is a part of various output related dialog boxes. It

provides options to select which parts of a packet should be used for the output
function.

Figure 5.20. The "Packet Format" frame

Packet Formak
Packet summary line

Packet details:
(3 all collapsed
(¥ As displayed
) &l expanded

[] Packet bytes

[] Each packet on & new page

¢ Packet summary line enable the output of the summary line, just as in the
"Packet List" pane.

e Packet details enable the output of the packet details tree.

o All collapsed the info from the "Packet Details" pane in "all
collapsed" state.

o As displayed the info from the "Packet Details" pane in the current
state.

o All expanded the info from the "Packet Details" pane in "all
expanded" state.

e Packet bytes enable the output of the packet bytes, just as in the "Packet
Bytes" pane.

o Each packet on a new page put each packet on a separate page (e.g. when
saving/printing to a text file, this will put a form feed character between the
packets).

Chapter 6. Working with captured
packets

Table of Contents

6.1. Viewing packets you have captured
6.2. Pop-up menus

6.2.1. Pop-up menu of the "Packet List" column header
6.2.2. Pop-up menu of the "Packet List" pane
6.2.3. Pop-up menu of the "Packet Details" pane
6.3. Filtering packets while viewing
6.4. Building display filter expressions
6.4.1. Display filter fields
6.4.2. Comparing values
6.4.3. Combining expressions
6.4.4. A common mistake
6.5. The "Filter Expression" dialog box

6.6. Defining and saving filters
6.7. Defining and saving filter macros

6.8. Finding packets
6.8.1. The "Find Packet" dialog box
6.8.2. The "Find Next" command
6.8.3. The "Find Previous" command
6.9. Go to a specific packet
6.9.1. The "Go Back" command
6.9.2. The "Go Forward" command
6.9.3. The "Go to Packet" dialog box
6.9.4. The "Go to Corresponding Packet" command
6.9.5. The "Go to First Packet" command
6.9.6. The "Go to L.ast Packet" command
6.10. Marking packets
6.11. Ignoring packets
6.12. Time display formats and time references
6.12.1. Packet time referencing

6.1. Viewing packets you have captured

Once you have captured some packets, or you have opened a previously saved
capture file, you can view the packets that are displayed in the packet list pane
by simply clicking on a packet in the packet list pane, which will bring up the
selected packet in the tree view and byte view panes.

You can then expand any part of the tree view by clicking on the plus sign (the
symbol itself may vary) to the left of that part of the payload, and you can select
individual fields by clicking on them in the tree view pane. An example with a
TCP packet selected is shown in Figure 6.1, “Wireshark with a TCP packet
selected for viewing”. It also has the Acknowledgment number in the TCP
header selected, which shows up in the byte view as the selected bytes.

Figure 6.1. Wireshark with a TCP packet selected for viewing

test.pcap - Wireshark

File Edit Yiew Go Capture Analyze Stakistics Help
B oW e @ x % &5 @ « »» 7 & ||BEEBE & a
E}Eilter:] - *Expressiun... t‘@,glear of apply

Mo, - Tirne: Source Destination Pratocol | Info A
L3 LeidUdLL [- B A LS I R LIl e LU e & 1-r LW 2 oy M=k | 22—l HLPRE—-LI2W W
1.266628 E 0.1 0.2) ACE] Segq=1 Ack=
32 1.266319 192.168.0. 2 192.168.0.1 TCP 8000 » 1025 [PsH, ACK] Seq=1 Ack= T
33 1.267850 192.188.0.1 192.168.0. 2 TCP 10258 = 5000 [ACK] Seq=510 Ack=20
34 1.274381 192.168.0.1 192.168.0.2 TCP http = 3197 [PSH, ACK] Seq=1 fck=
1.274447 ol 2! ol@l il) ACK] Seq=180 Ac
36 1. 2. 168.0.1 92 [:] 2 (ttp = 319 , ACE] Seq=20 Ack
37 1.2F75018 192.168.0.2 192.168.0.1 EEE 3197 o http [ACK] Seq=191 Ack=21
1.276010 Sl 002 ATK] Seq=28845
. 282181 ACKE] Seq=510 AcC -
< >
Frame 36 (&0 bytes on wire, &0 bytes captured) L
Ethernet II, Src: Wetgear_zd:75:%9a [00:09:5b:2d:75:%a), Dst: 192.168.0.2 (00:0b:5d:20:cd:02)
Internet Protocal, Src: 192.168.0.1 (192.168.0.1), Dst: 192.168.0.2 (192.168.0.23
= Transmission Control Protocol, Sec Port: http {800, Dst Port: 3197 (31977, Seq: 20, Ack: 190, Len: O
Source port: http (200
Destination port: 3197 {31973
Sequence number: 20 (relative sequence number)
Acknowledgement number: 190 (relative ack number)
Header Tenath: 20 bytes b
< >
oo 00 Ob 5d 20 od G2 00 09 5h 2d F5 9a OF OO0 45 OO ik sas Lolkes s Ea

010 00 28 00 84 00 OO0 40 06 8 f8
020 00 02 00 50 Oc 7d 0D OO &8 14 f
030 Oc 00 93 ca 00 02 0D OO0 OO0 OO0

F\cknuwledgement number (tcp.ack), 4 bytes |P: 120D 120M: 0

You can also select and view packets the same way, while Wireshark is
capturing, if you selected "Update list of packets in real time" in the Wireshark
Capture Preferences dialog box.

In addition, you can view individual packets in a separate window as shown in
Figure 6.2, “Viewing a packet in a separate window”. Do this by selecting the
packet in which you are interested in the packet list pane, and then select "Show
Packet in New Windows" from the Display menu. This allows you to easily
compare two or even more packets.

Figure 6.2. Viewing a packet in a separate window

g Frame hytes on wire, &0 byt aptured)
¥ Ethernet II, Src: Netgear_2d:75:9a (00:09:5b:2d:75:9a), Dst: 192.168.0.2 (00:0b:5d:20:cd:02)
Internet Protocol, Src: 192.168.0.1 (192.168.0.1), Dst: 192.168.0.2 (192.168.0.2)

= Transmission Control Protocol, Src Port: bttp (800, Dst Port: 3197 (3197), Seq: 20, Ack: 190,

T, e O EE ST =T Y

6.2. Pop-up menus
You can bring up a pop-up menu over either the "Packet List", its column header,
or "Packet Details" pane by clicking your right mouse button at the

corresponding pane.

6.2.1. Pop-up menu of the "Packet List" column header

Figure 6.3. Pop-up menu of the "Packet List" column header

ntest.cap - Wireshark g@

File Edit Wiew Go Capbure Analyze Shatistics Telsphony Tools Help
& o 8l EEXSE A+e++ T LIEE QQARA E$EM*E| B
Filker: ¥ Expression... Clear Apply
Ma. Tirne Source Drestination ’
1 0.000000 Fujitsu_20:cd:02 Broadcad »= SortAscendng uitous ARP for 182.168.0.2 (F
2 0.299139 192.168.0.1 192,168 & Sort Descending Boguery MBSTAT *<00x-<00x<00:=<1
3 0.295214 W2 68 No Sarting ination unreachable (Port un
41.025659 192.168.0.2 224.0.0 nembership Report / Join grou
51.044366 192.168.0.2 192.168 Align Left (default) wdard guery sk _ldap._tcp.nh
6 1.048652 192.168.0.2 239.255)] plign Center SARCH % HTTR/1.1
71.050784 162.168.0.2 192,168 Align Right ndard query Soa nblo061d. wwdo:
B 1.035053 152.168.0.1 192.1a8 PAl.1 200 oK
5 1.082038 152.168.0.2 102.168| 9¢ cojumn praferences. .. istration NE NELDOELD<00>
101.111%45 192.168.0.2 e ndard query A proxycont.ww00d,
i e = Y T i =< Y o T3 g [Resize Column TR TR AR TR EG=G W n=ga
12 1.227282 1%92.168.0.1 152.168 |A| Rename Column Tite... 1> ncu-2 [S¥H, ACK] Seq=0 Achs
Displayed Calumns 4 %
+# Frame 11: 62 bytes on wire (495 bits), &2 Hide Column =]
+# Ethernet II, Src: Fujitsu_20:cd:02 (00:ob: @ Remove Column jear_2d:75:%a (00:0%:5kb:2d:75
+# Internet Protocol, sSrc: 192.168.0.2 (192.1bcvercsy woerwwevree=rd. L (192.168.0.1)
- Transmission Control Protocol, Src Port: ncu-2 (3196), Dst Port: http £80), sSeq: 0, Len: O
Source port: ncu-2 (3196)
pestination port: http (800
[stream index: §]
Seqguence number: O (relative sequence number)
Header length: 28 bytes
+ Flags: 0x02 (S¥mH)
window size: 64240 i
>
o000 00 0% 5b 2d 75 S9a 00 0b 5d 20 cd 02 08 00 45 Q0 P T T el =18
0010 00 30 18 48 40 00 B0 08 61 2c cO a8 00 02 <0 as LOUHEBL L A,
0020 00 01 0c Fc 00 50 3¢ 36 95 £8 00 00 Q0 00 7O Q2 ivavir| #PRE Siiinirana B
0030 fa O 27 20 00 Q0 02 04 05 b4 0L 01 04 02 indns Snindndn ihndndnsng
6 File: "C:ftest.cap” 14 KB 00:00:02 Packets: 120 Displayed: 120 Marked: 0 Load time: 0:00.... | Profile: Default

The following table gives an overview of which functions are available in this
header, where to find the corresponding function in the main menu, and a short
description of each item.

Table 6.1. The menu items of the "Packet List" column header pop-up
menu

Identical
Item to malvn Description
menu's
item:
Sort Sort the packet list in ascending order based on this
Ascending column.
Sort Sort the packet list in descending order based on this
Descending column.
No Sort “ Remove sorting order based on this column.
Align Left Set left alignment of the values in this column.
Align Center Set center alignment of the values in this column.
Align Right Set right alignment of the values in this column.
Column Open the Preferences dialog box on the column tab.
Preferences...
Resize
Column Resize the column to fit the values.
Rename .
Column Title Allows you to change the title of the column header.

i

Displaved This menu items folds out with a list of all configured

pray View columns. These columns can now be shown or hidden
Column . :

in the packet list.

Hide Column Allows you to hide the column from the packet list.
Remove Allows you to remove the column from the packet
Column list.

6.2.2. Pop-up menu of the "Packet List" pane

Figure 6.4. Pop-up menu of the "Packet List" pane

7] test.cap - Wireshark

=0

+# Frame 11: 62 bytes on wire (496 bits),
+# Ethernet II, Src: Fujitsu_20:cd:02 (00
+# Internet Protocol, Src: 192.168.0.2 (1
Transmission Control Protocol, Src Por
Source port: ncu-2 (3196)
pestination port: http (800
[stream index: §]
Seqguence number: O (relative sequ
Header length: 28 bytes
+ Flags: 0x02 (S¥mH)

window size: 64240
0000 00 09 Sh 2d 75 9a 00 Ob S5d 20 cd q
Q010 00 30 18 48 40 00 80 06 61 2c cO
0020 00 01 0c Fc 00 50 3¢ 36 95 5 00
0030 fa fo 27 ed 00 00 02 04 05 b4 01 o

e File: "C:ftest.cap” 14 KB 00:00:02

e

14
1

File Edit Wiew Go Capbure Analyze Shatistics Telsphony Tools Help
& o 8l EdEXZE
Filber: ~ Expression...
Ma. Tirne Source Drestination Protocol
1 0.000000 Fujitsu_20:cd:02 Broadcast ARF
2 0.295135 192.168.0.1 L0.2 MENS
30 4 192, 2 i ICMP
4 1.025659 192,168.0.2 6B
51.044366 152.168.0.2 0.1 DNE
6 1.048652 192.168.0.2 o 25 5y 2) SSDP
71.050784 192.168.0.2 L0.1 DhS
8 1.0550535 192.168.0.1 152.168.0.2 SSDP
G 1.082038 192.168.0.2 152.168.0.255 MENS
10 1.111%45 192.168.0.2 1%92.168.0.1 DNS
11 1.226156 192.168.0.2 O p——— e
A QRN MerkPacket (toogle)

Ignore Packet (toggle)

) Set Time Reference (toggle)

Manually Resolve address

apply as Filker
Prepare a Filter
Conversation Filker
Colorize Conversation

Follow TCP Skream

Copy

Decode As...

Print...
Shiow Packet in Mew Window

Packets: 120 Displayed: 120 Marked: 0 Load time: 0:00. ..

Ae»HTLI|IEBBE QAR #BEMB X B

Clear Apply

Info

Gratuitous ARP for 192.168.0.2 (F
Mame guery NBSTAT *<00x<00><00x<(
pestination unreachable (Port un
v3 Membership Report / Join grou;
standard guery SRV _Tdap._tecp.nb
M-SEARCH * HTTP/1.1
standard guery sS04 nblo061d. wwiie
HTTR/1.1 200 Ok
Registration NE NELOO61D<00:
standard query A proxycont.wwiod,
==i=2 > http [SvN] Seq=0 win=642:
P> ncu-2 [S¥H, ACK] Seq=0 Acls
>

ts])
igear_2d:75:9a (00:09:5kh:2d:75

L4 Selected LEmS)
4 Mok Selected

L4 .. and Selected

L4 .. of Selected

.. and not Selected

.. of not Selected

Profile: Def aulk

The following table gives an overview of which functions are available in this
pane, where to find the corresponding function in the main menu, and a short
description of each item.

Table 6.2. The menu items of the "Packet List" pop-up menu

Identical
to main o
Item menu's Description
item:
Mark Packet | ..
Edit Mark/unmark a packet.

o ||

SCTP association.

Ignore . . T .

Packet Edit Ignore or inspect this packet while dissecting the
capture file.

(toggle)

Set Time

Reference Edit Set/reset a time reference.

(toggle)

Manually Allows you to enter a name to resolve for the selected

Resolve address

Address '

Apply as Prepare and apply a display filter based on the

h Analyze .

Filter currently selected item.

P}‘epare a Analyze Prepare a display filter based on the currently selected

Filter item.
This menu item applies a display filter with the

. address information from the selected packet. E.g. the

Conversation : : .

Filter - IP menu entry will set a filter to show the traffic
between the two IP addresses of the current packet.
XXX - add a new section describing this better.

. This menu item uses a display filter with the address
Colorize : . :
. |- information from the selected packet to build a new

Conversation ..
colorizing rule.
Allows you to analyze and prepare a filter for this

SCTP -

Allows you to view all the data on a TCP stream

Text Only)

excluding non-printable characters.

Follow TCP Analyze [[petween a pair of nodes.
Stream
Follow UDP Allows you to view all the data on a UDP datagram
Analyze .
Stream stream between a pair of nodes.
Follow SSL Same as "Follow TCP Stream" but for SSL. XXX -
Analyze . o .
Stream add a new section describing this better.
Copy/ . .
S Copy the summary fields as displayed to the
ummary i clipboard, as tab-separated text
(Text) P ’ P '
Copy/ . .
S Copy the summary fields as displayed to the
ummary i clipboard, as comma-separated text
(CSV) ppoare, P '
Copy/ As Prepare a display filter based on the currently selected
Filter item and copy that filter to the clipboard.
Copy/ Bytes Copy the packet bytes to the clipboard in hexdump-
|(Offset Hex |- .
like format.
Text)
Copy/ Bytes | Copy the packet bytes to the clipboard in hexdump-
|(Offset Hex) like format, but without the text portion.
Copy/ Bytes .
(Printable || ||C0py the packet bytes to the clipboard as ASCII text,

Copy/ Bytes
(Hex Stream)

Copy the packet bytes to the clipboard as an
unpunctuated list of hex digits.

Copy/ Bytes Copy the packet bytes to the clipboard as raw binary.
|(Binary - The data is stored in the clipboard as MIME-type
Stream) "application/octet-stream".

Decode As... [[Analyze Change or apply a new relation between two

dissectors.
Print... File Print packets.
Show Packet
in New View Display the selected packet in a new window.
Window

6.2.3. Pop-up menu of the "Packet Details" pane

Figure 6.5. Pop-up menu of the "Packet Details" pane

7] test.cap - Wireshark

=0

+# Frame 11: 62 bytes on wire (496 bits),
+# Ethernet II, Src: Fujitsu_20:cd:02 (00:r
+# Internet Protocol, Src: 192.1638.0.2 (19
Transmisszion Control Protocol, Src Port
Source port: ncu-2 (3196)
pestination port: http (800
[stream index: §]
Seqguence number: O (relative seque
Header length: 28 bytes
+ Flags: 0x02 (S¥mH)

u

4 gf

Export Selected Packet Bytes...
‘wiki Protocol Page

Filter Figld Reference

Protocol Preferences

Decode &s...
Disable Prokocal,..

Resolve Mame

File Edit Wiew Go Capbure Analyze Shatistics Telsphony Tools Help
5w e BEEX2e Aaes»aTLIEE QAR §EB X% B
Filber: ¥ Ewcesccion Claze Apply
Expand Subtrees
Mo, Tirne: SDLII’.tl.B Destina Expand Al
1 0.000000 Fujitsu_20:cd:02 Broal Callapse Al tous ARP for 1592.168.0.2 (F
20,2991 192.168.0.1 iLE 3 uery MNBSTAT *<00x<00><00<(
3 0.299214] i Apply as Colurnn ation unreachakble (Port un
4 1.025659 192.168.0.2 224.1 : ' e N grou
5 1.044366 192.168.0.2 7oz, Ik | 3elected tep. nb
6 1.048652 192.168.0.2 33g,] PrepareaFilter b| ok Selected
71.050784 102.16%.0.2 1Gz2,1 Colorize with Filter k -+ and Selected ol wwi0
§1.055053 192.168.0.1 152.7 Follow TCP Stream o Selected
G 1.082038 192.168.0.2 SEC] .. and nat Selected 0>
101.111%45 192.168.0.2 152 ... or ok Selected L ww004
11 1.226156 192.168.0.2 s , = http [Svn] Seq=0 win=642:
12 1.227282 192.168.0.1 e, 2 - ncu-2 [5vN, ACK] Seg=0 Ackw

*

r_2d:75:9a (00:09:5b:2d:75
{192.168.0.1)
» Tp £BO), sSeq: 0, Len: O

window size: 64240 et
>
o000 00 0% 5b 2d 75 S9a 00 0b 5d 20 cd 02 08 00 45 Q0 B E
0010 00 30 18 48 40 00 80 06 61 2¢ <0 a8 00 02 <0 as COVHBL .. Ay
0020 00 01 0c Fc 00 50 3¢ 36 95 £8 00 00 Q0 00 FO 02 ivavin| #PRE Siivininana a.
0030 fa O 27 20 00 Q0 02 04 05 b4 0L 01 04 02 indns Snindndn ihindndnsng
6 Flags (tcp.flags), 2 bytes Packets: 120 Displayed: 120 Marked: 0 Load time: 0:00.... | Profile: Default

The following table gives an overview of which functions are available in this
pane, where to find the corresponding function in the main menu, and a short
description of each item.

Table 6.3. The menu items of the "Packet Details" pop-up menu

Identical
to main o
Item menu's Description
item:
Expand ,
P View Expand the currently selected subtree.

Subtrees "

Expand All View

Wireshark keeps a list of all the protocol subtrees
that are expanded, and uses it to ensure that the
correct subtrees are expanded when you display a
packet. This menu item collapses the tree view of all
packets in the capture list.

Collapse All [[View

Expand all subtrees in all packets in the capture.

Apply as
Column

Use the selected protocol item to create a new
column in the packet list.

Prepare and apply a display filter based on the

Apply as Filter|Analyze currently selected item.

Prepare a Prepare a display filter based on the currently

Filter Analyze selected item.

. . This menu item uses a display filter with the
Colorize with : . : .
Filter - information from the selected protocol item to build

a new colorizing rule.
Follow TCP Allows you to view all the data on a TCP stream
Analyze)
Stream between a pair of nodes.
Follow UDP Allows you to view all the data on a UDP datagram
Analyze :
Stream stream between a pair of nodes.

bytes relevant to the selected part of the tree (the
bytes selected in the Packet Bytes Pane).

Copy/ Bytes

Copy the packet bytes to the clipboard as ASCII
text, excluding non-printable characters; similar to

Follow SSL Analvze Same as "Follow TCP Stream" but for SSL. XXX -
Stream YZ€ ladd a new section describing this better.
Copy/ Edi Copy the displayed text of the selected field to the
. . 1t .
Description system clipboard.
Copy/ Edi Copy the name of the selected field to the system
. 1t .
Fieldname clipboard.
Copy/ Value [Edit Cppy the value of the selected field to the system
clipboard.
Copy/ As . Prepare a display filter based on the currently
. Edit : : .
Filter selected item and copy it to the clipboard.
Copy the packet bytes to the clipboard in hexdump-
Copy/ Bytes like format; similar to the Packet List Pane
[(Offset Hex - command, but copies only the bytes relevant to the
Text) selected part of the tree (the bytes selected in the
Packet Bytes Pane).
Copy the packet bytes to the clipboard in hexdump-
Copy/ Bytes like format, but without the text portion; similar to
l(Offset Hex) | the Packet List Pane command, but copies only the

|(Printable Text]-
Only)

the Packet List Pane command, but copies only the
bytes relevant to the selected part of the tree (the
bytes selected in the Packet Bytes Pane).

Copy/ Bytes
|(Hex Stream)

Copy the packet bytes to the clipboard as an
unpunctuated list of hex digits; similar to the Packet
List Pane command, but copies only the bytes
relevant to the selected part of the tree (the bytes
selected in the Packet Bytes Pane).

Copy the packet bytes to the clipboard as raw
binary; similar to the Packet List Pane command,

Preferences...

there are properties associated with the highlighted

quy/ Bytes but copies only the bytes relevant to the selected

|(Binary - .

Stream) part of the tree (the bytes selected in the Packet
Bytes Pane). The data is stored in the clipboard as
MIME-type "application/octet-stream".

Export This menu item is the same as the File menu item of

Selected File the same name. It allows you to export raw packet

Packet Bytes... bytes to a binary file.

Wiki Protocol || Show the wiki page corresponding to the currently

Page selected protocol in your web browser.

Filter Field Show the filter field reference web page

Reference - corresponding to the currently selected protocol in
your web browser.
The menu item takes you to the properties dialog
and selects the page corresponding to the protocol if

Protocol

in Figure 10.8, “The preferences dialog box”.

| field. More information on preferences can be found

Change or apply a new relation between two

Decode As... [Analyze dissectors.

Allows you to temporarily disable a protocol
dissector, which may be blocking the legitimate
dissector.

Disable
Protocol

Causes a name resolution to be performed for the
selected packet, but NOT every packet in the
capture.

Resolve Name [[View

Go to If the selected field has a corresponding packet, go
Corresponding||Go to it. Corresponding packets will usually be a
Packet request/response packet pair or such.

6.3. Filtering packets while viewing

Wireshark has two filtering languages: One used when capturing packets, and
one used when displaying packets. In this section we explore that second type of
filter: Display filters. The first one has already been dealt with in Section 4.13,

“Filtering while capturing”.

Display filters allow you to concentrate on the packets you are interested in
while hiding the currently uninteresting ones. They allow you to select packets
by:

Protocol

The presence of a field

The values of fields

e A comparison between fields
¢ ... and a lot more!

To select packets based on protocol type, simply type the protocol in which you
are interested in the Filter: field in the filter toolbar of the Wireshark window
and press enter to initiate the filter. Figure 6.6, “Filtering on the TCP protocol”
shows an example of what happens when you type tcp in the filter field.

Note!

don't forget to press enter after entering the filter expression.

Figure 6.6. Filtering on the TCP protocol

‘! test. pcap - Wireshark

File Edit Yiew Go Capture Analyze Stakistics Help

= EEx % & [« »» 7 & BEEH &« 4

Filket: |tcp ¥ Expression... Clear Apply

Mo, - Time: Source Destination Pratocol | Info 2

S EERE 92, 1RG0, = 319 > http [5WM]| Ser e S5

12 1.227282 192.168.0.1 192.168.0.2 TCP http = 3196 [5¥N, ACK] Seq=0 Ack=
13 1.227325 192.168.0.2 192.168.0.1 TCP 3196 = http [ACK] Seq=1 Ack=1 Win
14 1.227451 192.168.0.2 192.168.0.1 HTTP SUBSCRIEE Supnp/serwvicesLayer3For
15 1.229309 192.168.0.1 192.168.0.2 TCFP http = 3196 [ACK] Seq=1 Ack=255 W
Al s e 192.168.0.1 aHs Al o TCP 10258 = 5000 [5¥N] Seq=0 Len=0 M53
18 1.248391 192.1p8.0.2 ALl el ak TCP 8000 » 1025 [5¥N, ACK] Seq=0 Ack=
19 1.250171 192.168.0.1 192.168.0.2 HTTP HTTP 1.0 200 QK
20 1.250285 192.168.0.2 192.168.0.1 TCP 3196 » http [FIN, ACK] Seq=256 Ac
21 1.250810 192.168.0.1 192.168.0.2 TCP http = 3196 [FIW, ACK] Seq=114 Ac
22 1.250842 192.168.0.2 192.168.0.1 HEE 3196 » http [ACK] Seq=257 Ack=115
23 1.251868 102.168.0.1 192.168.0.2 TCP 1028 = 5000 [ACK] Seq=1 Ack=1 Win
24 1.252826 102.168.0.1 192.168.0.2 TCP http = 3196 [FIW, AZK] Seg=2&&ll
25 1.253323 192.168.0.2 192.168.0.1 TCP 3197 » http [5¥N] Seq=0 Len=0 M:53
28 1.254502 192.168.0.1 192.168.0. 2 TCP http = 3197 [5¥N, ACK] Seq=0 Ack=
27 1.254532 192.168.0.2 192.168.0.1 TCP 3197 » http [ACK] Seq=1 Ack=1 Win

< >

[+ Frame 11 (62 bytes on wire, 62 bytes captured)

Ethernet II, Src: 192.168.0.2 (00:0b:5d:20:cd:02), Dst: Netgear_2d:F5:9a (D0:09:5h:2d:F5:9a)

F Internet Protocal, Src: 192.168.0.2 (192.168.0.2), Dst: 192.168.0.1 (192.168.0.1)

Transmission Control Protocol, Sec Port: 3198 (319673, Dst Port: http (307, Seq: O, Len: O

QoD 00 09 5h 2d 75 52 00 Ob 5d 20 cd 02 O 00 45 Q0 [TR N

010 00 30 18 48 40 00 20 08 6l 2c o a8 00 02 cO al O.HE. .. 3a,.0u.u.

020 00 01 Oc Fc OO 50 3c 3¢ 95 f8 Q0 OO0 OO0 OO FO O2 [4]

030 fa fO 27 0 00 G0 02 04 05 b4 01 01 04 02 L. Lee...

|Fi|e: "Dnkest.pcap” 14 KB 00:00:02 |P: 120 Dy 103 M: 0 [Expert: Error]

As you might have noticed, only packets of the TCP protocol are displayed now
(e.g. packets 1-10 are hidden). The packet numbering will remain as before, so
the first packet shown is now packet number 11.

Note!

Ei When using a display filter, all packets remain in the capture
— file. The display filter only changes the display of the capture
file but not its content!

You can filter on any protocol that Wireshark understands. You can also filter on
any field that a dissector adds to the tree view, but only if the dissector has added
an abbreviation for the field. A list of such fields is available in Wireshark in the
Add Expression... dialog box. You can find more information on the Add
Expression... dialog box in Section 6.5, “The "Filter Expression" dialog box”.

For example, to narrow the packet list pane down to only those packets to or
from the IP address 192.168.0.1, use ip.addr==192.168.0.1.

Note!

' To remove the filter, click on the Clear button to the right of the
filter field.

6.4. Building display filter expressions

Wireshark provides a simple but powerful display filter language that allows you
to build quite complex filter expressions. You can compare values in packets as
well as combine expressions into more specific expressions. The following
sections provide more information on doing this.

Tip!
You will find a lot of Display Filter examples at the Wireshark

" Wiki Display Filter page at
http://wiki.wireshark.org/DisplayFilters.

6.4.1. Display filter fields

Every field in the packet details pane can be used as a filter string, this will result
in showing only the packets where this field exists. For example: the filter string:
tcp will show all packets containing the tcp protocol.

There is a complete list of all filter fields available through the menu item
"Help/Supported Protocols" in the page "Display Filter Fields" of the Supported
Protocols dialog.

XXX - add some more info here and a link to the statusbar info.

6.4.2. Comparing values

You can build display filters that compare values using a number of different
comparison operators. They are shown in Table 6.4, “Display Filter comparison

operators”.

Tip!

» You can use English and C-like terms in the same way, they can
even be mixed in a filter string!

http://wiki.wireshark.org/DisplayFilters

Table 6.4. Display Filter comparison operators

English lg(_e Description and example
Equal
eq ==
ip.src==10.0.0.5
Not equal
ne =
ip.src!=10.0.0.5
Greater than
gt >
frame.len > 10
Less than
1t <
frame.len < 128
Greater than or equal to
ge >=
frame.len ge 0x100
Less than or equal to
le <=
frame.len <= 0x20

In addition, all protocol fields are typed. Table 6.5, “Display Filter Field Types”
provides a list of the types and example of how to express them.

Table 6.5. Display Filter Field Types

[Type | Example

You can express integers in decimal, octal, or hexadecimal. The

display filter will find all packets in the 129.111 Class-B network:

ip.addr == 129.111.0.0/16

Unsigned . : . :]

integer (8- following display filters are equivalent:

bit, 16-bit, lip.1en le 1500

24-bit, 32- ||ip.len le 02734

bit) ip.len le 0x436

Signed

integer (8-

bit, 16-bit,

24-bit, 32-

bit)

A boolean field is present in the protocol decode only if its value is
true. For example, tcp.flags.syn is present, and thus true, only if
the SYN flag is present in a TCP segment header.

Boolean Thus the filter expression tcp.flags.syn will select only those
packets for which this flag exists, that is, TCP segments where the
segment header contains the SYN flag. Similarly, to find source-
routed token ring packets, use a filter expression of tr.sr.
Separators can be a colon (:), dot (.) or dash (-) and can have one

Ethernet [or two bytes between separators:

address (6

bytes) eth.dst == ff:ff:ff:ff.ff:ff

y eth.dst == ff-ff-ff-ff-ff-ff
eth.dst == ffff.ffff.ffff
ip.addr == 192.168.0.1
Classless InterDomain Routing (CIDR) notation can be used to

IPv4 : . . .

address test if an IPv4 address is in a certain subnet. For example, this

IPv6) o
address ipv6.addr == ::1
IPX) L

ipx.addr == 00000000.fffffffffff
address
String . . . -
I(text) http.request.uri == "http://www.wireshark.org/

6.4.3. Combining expressions

You can combine filter expressions in Wireshark using the logical operators
shown in Table 6.6, “Display Filter L.ogical Operations”

Table 6.6. Display Filter Logical Operations

English li(l:(_e “ Description and example
Logical AND

and &&
ip.src==10.0.0.5 and tcp.flags.fin
Logical OR

[or |
ip.scr==10.0.0.5 or ip.src==192.1.1.1
Logical XOR

xXor AA
tr.dst[0:3] == 0.6.29 xor tr.src[0:3] == 0.6.29
Logical NOT

not !
not 1llc

[...]

Substring Operator

Wireshark allows you to select subsequences of a sequence in
rather elaborate ways. After a label you can place a pair of
brackets [] containing a comma separated list of range
specifiers.

eth.src[0:3] == 00:00:83

The example above uses the n:m format to specify a single
range. In this case n is the beginning offset and m is the length
of the range being specified.

eth.src[1-2] == 00:83

The example above uses the n-m format to specify a single
range. In this case n is the beginning offset and m is the ending
offset.

eth.src[:4] == 00:00:83:00

The example above uses the :m format, which takes everything
from the beginning of a sequence to offset m. It is equivalent to
0:m

eth.src[4:] == 20:20

The example above uses the n: format, which takes everything
from offset n to the end of the sequence.

eth.src[2] == 83

The example above uses the n format to specify a single range.
In this case the element in the sequence at offset n is selected.
This is equivalent to n:1.

eth.src[0:3,1-2,:4,4:,2] ==
00:00:83:00:83:00:00:83:00:20:20:83

Wireshark allows you to string together single ranges in a
comma separated list to form compound ranges as shown above.

6.4.4. A common mistake
Warning!

Using the != operator on combined expressions like: eth.addr,
ip.addr, tcp.port, udp.port and alike will probably not work as
expected!

Often people use a filter string to display something like ip.addr == 1.2.3.4
which will display all packets containing the IP address 1.2.3.4.

Then they use ip.addr != 1.2.3.4 to see all packets not containing the IP address
1.2.3.4 in it. Unfortunately, this does not do the expected.

Instead, that expression will even be true for packets where either source or
destination IP address equals 1.2.3.4. The reason for this, is that the expression
ip.addr != 1.2.3.4 must be read as "the packet contains a field named ip.addr
with a value different from 1.2.3.4". As an IP datagram contains both a source
and a destination address, the expression will evaluate to true whenever at least
one of the two addresses differs from 1.2.3.4.

If you want to filter out all packets containing IP datagrams to or from IP address
1.2.3.4, then the correct filter is !(ip.addr == 1.2.3.4) as it reads "show me all
the packets for which it is not true that a field named ip.addr exists with a value
of 1.2.3.4", or in other words, "filter out all packets for which there are no
occurrences of a field named ip.addr with the value 1.2.3.4".

6.5. The "Filter Expression" dialog box

When you are accustomed to Wireshark's filtering system and know what labels
you wish to use in your filters it can be very quick to simply type a filter string.
However if you are new to Wireshark or are working with a slightly unfamiliar
protocol it can be very confusing to try to figure out what to type. The Filter
Expression dialog box helps with this.

Tip!

. The "Filter Expression" dialog box is an excellent way to learn
how to write Wireshark display filter strings.

Figure 6.7. The "Filter Expression" dialog box

Wireshark: Filter Expression

Field name Felation

2dparityfec is present
FCOMENS ==
JaGPP2 A1l 1=
802,11 MaT
802,11 Radiokap
80z.3 Slow protocols ==

el =
ALl conkains
AALIM matches
BARP
BCAP
ACP133
AC5E
ACkrace
anp : .
AFP v : |

[

B EHBBBE

B BHBHBE

B B

[

{:QQK H xgancel ‘

When you first bring up the Filter Expression dialog box you are shown a tree
list of field names, organized by protocol, and a box for selecting a relation.

Field Name

Select a protocol field from the protocol field tree. Every protocol with
filterable fields is listed at the top level. (You can search for a particular
protocol entry by entering the first few letters of the protocol name). By
clicking on the "+" next to a protocol name you can get a list of the field
names available for filtering for that protocol.

Relation

Select a relation from the list of available relation. The is present is a unary
relation which is true if the selected field is present in a packet. All other
listed relations are binary relations which require additional data (e.g. a
Value to match) to complete.

When you select a field from the field name list and select a binary relation
(such as the equality relation ==) you will be given the opportunity to enter a
value, and possibly some range information.

Value

You may enter an appropriate value in the Value text box. The Value will
also indicate the type of value for the field name you have selected (like
character string).

Predefined values

Some of the protocol fields have predefined values available, much like
enum's in C. If the selected protocol field has such values defined, you can
choose one of them here.

Range
XXX - add an explanation here!
OK

When you have built a satisfactory expression click OK and a filter string
will be built for you.

Cancel

You can leave the Add Expression... dialog box without any effect by
clicking the Cancel button.

6.6. Defining and saving filters

You can define filters with Wireshark and give them labels for later use. This can
save time in remembering and retyping some of the more complex filters you
use.

To define a new filter or edit an existing one, select the Capture Filters... menu
item from the Capture menu or the Display Filters... menu item from the
Analyze menu. Wireshark will then pop up the Filters dialog as shown in
Figure 6.8, “The "Capture Filters" and "Display Filters" dialog boxes”.

Note!
—» The mechanisms for defining and saving capture filters and

— display filters are almost identical. So both will be described
here, differences between these two will be marked as such.

Warning!

A You must use Save to save your filters permanently. Ok or
Apply will not save the filters, so they will be lost when you
close Wireshark.

Figure 6.8. The "Capture Filters" and "Display Filters" dialog boxes

Wireshark: Display Filter

Edit Filker

kpkk_long

kpkk_only

ethernet broadcast
ip broadcast

dcerpc
DCERPC Fault

Propetties

Filker name: |i|:| broadcast |

Filter string: |i|:l.al:||:|r == F55, 255,255,255 |
‘ @ﬂelp ‘ @QK I ‘ %" Apply ‘ ‘ Eﬁave ‘ ‘ XK Close ‘

New

This button adds a new filter to the list of filters. The currently entered
values from Filter name and Filter string will be used. If any of these fields
are empty, it will be set to "new".

Delete

This button deletes the selected filter. It will be greyed out, if no filter is
selected.

Filter

You can select a filter from this list (which will fill in the filter name and
filter string in the fields down at the bottom of the dialog box).

Filter name:

You can change the name of the currently selected filter here.

Note!

—, The filter name will only be used in this dialog to identify

1 the filter for your convenience, it will not be used
elsewhere. You can add multiple filters with the same
name, but this is not very useful.

Filter string:

You can change the filter string of the currently selected filter here. Display
Filter only: the string will be syntax checked while you are typing.

Add Expression...

Display Filter only: This button brings up the Add Expression dialog box
which assists in building filter strings. You can find more information about
the Add Expression dialog in Section 6.5, “The "Filter Expression" dialog
box”

OK

Display Filter only: This button applies the selected filter to the current
display and closes the dialog.

Apply

Display Filter only: This button applies the selected filter to the current
display, and keeps the dialog open.

Save

Save the current settings in this dialog. The file location and format is
explained in Appendix A, Files and Folders.

Close

Close this dialog. This will discard unsaved settings.

6.7. Defining and saving filter macros

You can define filter macros with Wireshark and give them labels for later use.
This can save time in remembering and retyping some of the more complex
filters you use.

XXX - add an explanation of this.

6.8. Finding packets

You can easily find packets once you have captured some packets or have read in
a previously saved capture file. Simply select the Find Packet... menu item from
the Edit menu. Wireshark will pop up the dialog box shown in Figure 6.9, “The
"Find Packet" dialog box™.

6.8.1. The "Find Packet" dialog box

Figure 6.9. The "Find Packet" dialog box

Wireshark: Find Packet
Find
By: (*) Display filker () Hex walue () String

]|

Search In Skring Cptions Direction
Q Up
@' Do

@Eind H xgancel ‘

You might first select the kind of thing to search for:

e Display filter

Simply enter a display filter string into the Filter: field, select a direction,
and click on OK.

For example, to find the three way handshake for a connection from host
192.168.0.1, use the following filter string:

ip.src==192.168.0.1 and tcp.flags.syn==1

For more details on display filters, see Section 6.3, “Filtering packets while
viewing”

e Hex Value

Search for a specific byte sequence in the packet data.

For example, use "00:00" to find the next packet including two null bytes in
the packet data.

e String
Find a string in the packet data, with various options.

The value to be found will be syntax checked while you type it in. If the syntax
check of your value succeeds, the background of the entry field will turn green,
if it fails, it will turn red.

You can choose the search direction:
e Up
Search upwards in the packet list (decreasing packet numbers).
e Down

Search downwards in the packet list (increasing packet numbers).

6.8.2. The "Find Next" command

"Find Next" will continue searching with the same options used in the last "Find
Packet".

6.8.3. The "Find Previous" command

"Find Previous" will do the same thing as "Find Next", but with reverse search
direction.

6.9. Go to a specific packet

You can easily jump to specific packets with one of the menu items in the Go
menu.

6.9.1. The "Go Back" command

Go back in the packet history, works much like the page history in current web
browsers.

6.9.2. The "Go Forward" command

Go forward in the packet history, works much like the page history in current
web browsers.

6.9.3. The "Go to Packet" dialog box

Figure 6.10. The "Go To Packet" dialog box

" Wireshark: Go To Packet E][EJ@I

Packet number: | 123

‘ @'ﬂelp | I;E‘J'Jump ko

| x Zancel

This dialog box will let you enter a packet number. When you press OK,
Wireshark will jump to that packet.

6.9.4. The "Go to Corresponding Packet" command

If a protocol field is selected which points to another packet in the capture file,
this command will jump to that packet.

Note!

_As these protocol fields now work like links (just as in your
#T Web browser), it's easier to simply double-click on the field to

jump to the corresponding field.

6.9.5. The "Go to First Packet" command

This command will simply jump to the first packet displayed.

6.9.6. The "Go to Last Packet" command

This command will simply jump to the last packet displayed.

6.10. Marking packets

You can mark packets in the "Packet List" pane. A marked packet will be shown
with black background, regardless of the coloring rules set. Marking a packet
can be useful to find it later while analyzing in a large capture file.

Warning!

&\ The packet marks are not stored in the capture file or anywhere
else, so all packet marks will be lost if you close the capture file.

You can use packet marking to control the output of packets when
saving/exporting/printing. To do so, an option in the packet range is available,
see Section 5.9, “The Packet Range frame”.

There are three functions to manipulate the marked state of a packet:
e Mark packet (toggle) toggles the marked state of a single packet.
e Mark all displayed packets set the mark state of all displayed packets.
e Unmark all packets reset the mark state of all packets.

These mark functions are available from the "Edit" menu, and the "Mark packet
(toggle)" function is also available from the pop-up menu of the "Packet List"
pane.

6.11. Ignoring packets

You can ignore packets in the "Packet List" pane. Wireshark will then pretend
that this packets does not exist in the capture file. An ignored packet will be
shown with white background and gray foreground, regardless of the coloring
rules set.

Warning!

The packet ignored marks are not stored in the capture file or
anywhere else, so all packet ignored marks will be lost if you
close the capture file.

There are three functions to manipulate the ignored state of a packet:
¢ Ignore packet (toggle) toggles the ignored state of a single packet.
e Ignore all displayed packets set the ignored state of all displayed packets.
e Un-Ignore all packets reset the ignored state of all packets.

These ignore functions are available from the "Edit" menu, and the "Ignore
packet (toggle)" function is also available from the pop-up menu of the "Packet
List" pane.

6.12. Time display formats and time references

While packets are captured, each packet is timestamped. These timestamps will
be saved to the capture file, so they will be available for later analysis.

A detailed description of timestamps, timezones and alike can be found at:
Section 7.4, “Time Stamps”.

The timestamp presentation format and the precision in the packet list can be
chosen using the View menu, see Figure 3.5, “The "View" Menu”.

The available presentation formats are:

¢ Date and Time of Day: 1970-01-01 01:02:03.123456 The absolute date
and time of the day when the packet was captured.

e Time of Day: 01:02:03.123456 The absolute time of the day when the
packet was captured.

¢ Seconds Since Beginning of Capture: 123.123456 The time relative to the
start of the capture file or the first "Time Reference" before this packet (see
Section 6.12.1, “Packet time referencing”).

e Seconds Since Previous Captured Packet: 1.123456 The time relative to
the previous captured packet.

e Seconds Since Previous Displayed Packet: 1.123456 The time relative to
the previous displayed packet.

e Seconds Since Epoch (1970-01-01): 1234567890.123456 The time relative
to epoch (midnight UTC of January 1, 1970).

The available precisions (aka. the number of displayed decimal places) are:

e Automatic The timestamp precision of the loaded capture file format will
be used (the default).

e Seconds, Deciseconds, Centiseconds, Milliseconds, Microseconds or
Nanoseconds The timestamp precision will be forced to the given setting.

If the actually available precision is smaller, zeros will be appended. If the
precision is larger, the remaining decimal places will be cut off.

Precision example: If you have a timestamp and it's displayed using, "Seconds
Since Previous Packet", : the value might be 1.123456. This will be displayed
using the "Automatic" setting for libpcap files (which is microseconds). If you
use Seconds it would show simply 1 and if you use Nanoseconds it shows
1.123456000.

6.12.1. Packet time referencing

The user can set time references to packets. A time reference is the starting point
for all subsequent packet time calculations. It will be useful, if you want to see
the time values relative to a special packet, e.g. the start of a new request. It's
possible to set multiple time references in the capture file.

Warning!

&\ The time references will not be saved permanently and will be
lost when you close the capture file.

Note!

_ Time referencing will only be useful, if the time display format

' #1is set to "Seconds Since Beginning of Capture". If one of the
other time display formats are used, time referencing will have
no effect (and will make no sense either).

To work with time references, choose one of the "Time Reference" items in the
"Edit" menu , see Section 3.6, “The "Edit" menu”, or from the pop-up menu of
the "Packet List" pane.

¢ Set Time Reference (toggle) Toggles the time reference state of the
currently selected packet to on or off.

¢ Find Next Find the next time referenced packet in the "Packet List" pane.

¢ Find Previous Find the previous time referenced packet in the "Packet

List" pane.

Figure 6.11. Wireshark showing a time referenced packet

test.pcap - Wireshark

File Edit Yiew Go Capture Analyze Stakistics Help
3w > @ x % &8 R« oF 2 |EE «a
E]Eilter: I - + Expressian. .. k@eglear of apply
Mo, - Tirne: Source Destination Pratocol | Info w
4 1.025659 192.168.0.2 1amp.mcast. net IGMP W3 Membership Report =5
5 1.048852 152.168.0.2 239,255.255.250 uor Source port: 3193 Destination po
& 1.0G5053 192.168.0.1 UoP Source port: 1900 Destination po
9 1.0820382 102.168.0.2 NENS Fegistration ME WBL100610 <00x
el sl E 154, Z s 0. DN ~tandard query A p ONT . a0
11 0.114211 192.188.0.2 192.168.0.1 TCP 3196 » http [5¥N] Seq=0 Len=0 M55
12 0.115337 192.168.0.1 192.168.0.2 TCP http = 3196 [5¥N, ACK] Seq=0 Ack=
13 O.115380 192.168.0.2 192.168.0.1 TCP 3196 » http [ACK] Seq=1 Ack=1 Win
14 0.115506 152.168.0.2 192.168.0.1 TCFR 3196 = http [PSH, ACZK] Seg=1 Ack=
15 0.117364 192.168.0.1 192.168.0.2 TCFR http = 3196 [ACK] Seq=1 Ack=256 W
17 0.136410 102.168.0.1 e e EE 1028 = 5000 [S¥N] Seq=0 Len=0 M:S: -
< | >
Tdentitication: O<154, (&215) A
Flags: Ox00 L
Fragment offset: O
Time to Tiwe: 128
Protocol @ UDP (Ox11)
Header checksum: Oxall? [correct]
Source: 192,168.0.2 (192.168.0.2) B
Destination: 192.168.0.1 {192.168.0.1) bl
o0 00 09 S5h 2d 75 9a 00 Ob 5d 20 cd 02 0% OO0 4% 00 P TP L) A
010 00 49 18 47 00 00 20 11 al 09 cO ag 00 02 cO as P e e s o =3
020 00 01 Ob dz2 00 35 00 35 46 62 00 21 01 00 OO0 01 LT = B R e
030 00 00 00 0D 00 Q0 09 70 F2 6f FE 79 &3 AT Ae AE L...... p roxycont
040 05 FF FF 30 30 34 OF 73 69 65 6d 65 Be 73 03 Ge 004 5 Jemens. n i
050 k5 A4 00 00 01 00 01 oA TR er A b
[File: "D:ftest.pcap” 14 KB 00:00:02 [P 120D: 120mM: 0

A time referenced packet will be marked with the string *REF* in the Time
column (see packet number 10). All subsequent packets will show the time since
the last time reference.

Chapter 7. Advanced Topics

Table of Contents

7.1. Introduction
7.2. Following TCP streams

7.2.1. The "Follow TCP Stream" dialog box
7.3. Expert Infos

7.3.1. Expert Info Entries

7.3.2. "Expert Info" dialog

7.3.3. "Colorized" Protocol Details Tree

7.3.4. "Expert" Packet List Column (optional)

7.4. Time Stamps
7.4.1. Wireshark internals

7.4.2. Capture file formats
7.4.3. Accuracy
7.5. Time Zones
7.5.1. Set your computer's time correctly!
7.5.2. Wireshark and Time Zones
7.6. Packet Reassembling
7.6.1. What is it?
7.6.2. How Wireshark handles it
7.7. Name Resolution
7.7.1. Name Resolution drawbacks
7.7.2. Ethernet name resolution (MAC layer)
7.7.3. IP name resolution (network layer)
7.7.4. IPX name resolution (network layer)
7.7.5. TCP/UDP port name resolution (transport layer)
7.8. Checksums
7.8.1. Wireshark checksum validation
7.8.2. Checksum offloading

7.1. Introduction

In this chapter some of the advanced features of Wireshark will be described.

7.2. Following TCP streams

If you are working with TCP based protocols it can be very helpful to see the
data from a TCP stream in the way that the application layer sees it. Perhaps you
are looking for passwords in a Telnet stream, or you are trying to make sense of
a data stream. Maybe you just need a display filter to show only the packets of
that TCP stream. If so, Wireshark's ability to follow a TCP stream will be useful
to you.

Simply select a TCP packet in the packet list of the stream/connection you are
interested in and then select the Follow TCP Stream menu item from the
Wireshark Tools menu (or use the context menu in the packet list). Wireshark
will set an appropriate display filter and pop up a dialog box with all the data
from the TCP stream laid out in order, as shown in Figure 7.1, “The "Follow
TCP Stream" dialog box”.

Note!

—» It is worthwhile noting that Follow TCP Stream installs a

— display filter to select all the packets in the TCP stream you have
selected.

7.2.1. The "Follow TCP Stream" dialog box

Figure 7.1. The "Follow TCP Stream" dialog box

Follow TCP Stream

Skream Content

SUBZC_RIBE fupnp/service/Layer3Forwarding HTIP/ 1.1

NT: upnp:ewvent

Callback: <http://192.168.0.2:5000/notifys

Timeout: Second-1800

User-fAgent: Mozilla/4.0 (compatible; UPAP/1.0; WHindows NT/5.1)
Host: 192.168.0.1

ontent-Length: O

Pragma: no-cache

HTTP/1.0 200 OK

Connection: close

server: UPnP/1.0 UPnP-Dewvice-Host/ 1.0
Mimeout: Second-1800

SID: uuid:ct

| Entire conversation (365 bytes) v (3 asci () EBCDIC () Hex Dump () C Arrays () Raw

[Sawve As EErint

l X Close l l E] Filter Cut This Stream

The stream content is displayed in the same sequence as it appeared on the
network. Traffic from A to B is marked in red, while traffic from B to A is
marked in blue. If you like, you can change these colors in the Edit/Preferences
"Colors" page.

Non-printable characters will be replaced by dots. XXX - What about line
wrapping (maximum line length) and CRNL conversions?

The stream content won't be updated while doing a live capture. To get the latest
content you'll have to reopen the dialog.

You can choose from the following actions:
1. Save As: Save the stream data in the currently selected format.

2. Print: Print the stream data in the currently selected format.

3. Direction: Choose the stream direction to be displayed ("Entire
conversation", "data from A to B only" or "data from B to A only").

4. Filter out this stream: Apply a display filter removing the current TCP
stream data from the display.

5. Close: Close this dialog box, leaving the current display filter in effect.
You can choose to view the data in one of the following formats:

1. ASCII: In this view you see the data from each direction in ASCII.
Obviously best for ASCII based protocols, e.g. HTTP.

N

. EBCDIC: For the big-iron freaks out there.

3. HEX Dump: This allows you to see all the data. This will require a lot of
screen space and is best used with binary protocols.

4. C Arrays: This allows you to import the stream data into your own C
program.

5. Raw: This allows you to load the unaltered stream data into a different
program for further examination. The display will look the same as the
ASCII setting, but "Save As" will result in a binary file.

7.3. Expert Infos

The expert infos is a kind of log of the anomalies found by Wireshark in a
capture file.

The general idea behind the following "Expert Info" is to have a better display of
"uncommon" or just notable network behaviour. This way, both novice and
expert users will hopefully find probable network problems a lot faster,
compared to scanning the packet list "manually” .

Expert infos are only a hint!

A Take expert infos as a hint what's worth looking at, but not
more. For example: The absence of expert infos doesn't
necessarily mean everything is ok!

The amount of expert infos largely depends on the protocol
being used!

//" While some common protocols like TCP/IP will show detailed
expert infos, most other protocols currently won't show any
expert infos at all.

The following will first describe the components of a single expert info, then the
User Interface.

7.3.1. Expert Info Entries

Each expert info will contain the following things which will be described in
detail below:

Table 7.1. Some example expert infos

Packet # Severity Group Protocol Summary

1 Note Sequence TCP Duplicate ACK (#1)
2 Chat Sequence TCP Connection reset (RST)

Note Sequence TCP Keep-Alive
Warn Sequence TCP Fast retransmission (suspected)

7.3.1.1. Severity

Every expert info has a specific severity level. The following severity levels are
used, in parentheses are the colors in which the items will be marked in the GUI:

Chat (grey): information about usual workflow, e.g. a TCP packet with the
SYN flag set

Note (cyan): notable things, e.g. an application returned an "usual" error
code like HTTP 404

Warn (yellow): warning, e.g. application returned an "unusual” error code
like a connection problem

Error (red): serious problem, e.g. [Malformed Packet]

7.3.1.2. Group

There are some common groups of expert infos. The following are currently
implemented:

Checksum: a checksum was invalid

Sequence: protocol sequence suspicious, e.g. sequence wasn't continuous
or a retransmission was detected or ...

Response Code: problem with application response code, e.g. HTTP 404
page not found

Request Code: an application request (e.g. File Handle == x), usually Chat
level

Undecoded: dissector incomplete or data can't be decoded for other reasons

Reassemble: problems while reassembling, e.g. not all fragments were
available or an exception happened while reassembling

¢ Protocol: violation of protocol specs (e.g. invalid field values or illegal
lengths), dissection of this packet is probably continued

¢ Malformed: malformed packet or dissector has a bug, dissection of this
packet aborted

e Debug: debugging (should not occur in release versions)

It's possible that more such group values will be added in the future ...
7.3.1.3. Protocol

The protocol in which the expert info was caused.

7.3.1.4. Summary

Each expert info will also have a short additional text with some further
explanation.

7.3.2. "Expert Info" dialog

From the main menu you can open the expert info dialog, using:
"Analyze/Expert Info"

XXX - add explanation of the dialogs context menu.

@ Wireshark: 92 Expert Infos

Errors: O |

Group ™ Protocol 4| Summary 1 Count A
| Sequence TCP Previous segment lost {common at capture skark) 11
| @ Sequence TCP Fast retransmission {suspected) 5

Close

7.3.2.1. Errors / Warnings / Notes / Chats tabs

An easy and quick way to find the most interesting infos (rather than using the
Details tab), is to have a look at the separate tabs for each severity level. As the
tab label also contains the number of existing entries, it's easy to find the tab
with the most important entries.

There are usually a lot of identical expert infos only differing in the packet
number. These identical infos will be combined into a single line - with a count
column showing how often they appeared in the capture file. Clicking on the
plus sign shows the individual packet numbers in a tree view.

7.3.2.2. Details tab

The Details tab provides the expert infos in a "log like" view, each entry on its
own line (much like the packet list). As the amount of expert infos for a capture
file can easily become very large, getting an idea of the interesting infos with
this view can take quite a while. The advantage of this tab is to have all entries in
the sequence as they appeared, this is sometimes a help to pinpoint problems.

7.3.3. "Colorized" Protocol Details Tree

r ame r’.'l wire, - !','-- ApT wr ed
& ET P - 1 Eicha

= Internet Protocol, Src:

ba =1

152.168.2.6 (1592.168.2.6), Dst: 224.0.0.107 (224.0.0,

s I ‘
Time to Tive: 1

The protocol field causing an expert info is colorized, e.g. uses a cyan
background for a note severity level. This color is propagated to the toplevel
protocol item in the tree, so it's easy to find the field that caused the expert info.

For the example screenshot above, the IP "Time to live" value is very low (only
1), so the corresponding protocol field is marked with a cyan background. To
easier find that item in the packet tree, the IP protocol toplevel item is marked
cyan as well.

7.3.4. "Expert" Packet List Column (optional)

Tt] [ty Expert Protocol Iné

205.196.219. 244 192.168.0.2 TCP [TCP segment of 4 reasse
209.196,.219. 244 192.168.0.2 TCP [TCP segment of 4 reasse
192.168.0.2 20%9.196.219. 244 TCP at=Imd > http [ACKk) Sag
203.196. 219. 244 192.168.0.2 TCP ?‘rn:n segment of a reasse
20%.196. 219. 244 192.168.0.2 TCP [TCP segment of 4 reasse
192.168.0.2 20%9.196.219. 244 TCP at=Imd > Mtp [ACx] Seq
20%.196,. 219. 244 192.168.0.2 TCP T‘rr:n s t of a4 reasse

» Mttp [ACK] Saq
t of a4 reasse

4 reasse

a4 reasse

« 0 d <059.196.219. 244 TCP Leqg
92.168.0.2 20%.196.219. 244 Chat HTTP GET /avicon.ico MTTP/ 1.,
205,194, 219. 244 192.168.0.2 Chat HTTP HTTP/1.1 200 O (Ymage/x
192.188.0.2 209.196.219. 244 TCP cantra > Mtp [ACk] Ssa=

An optional "Expert Info Severity" packet list column is available (since SVIN
22387 — 0.99.7), that displays the most significant severity of a packet, or stays
empty if everything seems ok. This column is not displayed by default, but can
be easily added using the Preferences Columns page described in Section 10.5,
“Preferences”.

7.4. Time Stamps

Time stamps, their precisions and all that can be quite confusing. This section
will provide you with information about what's going on while Wireshark
processes time stamps.

While packets are captured, each packet is time stamped as it comes in. These
time stamps will be saved to the capture file, so they also will be available for
(later) analysis.

So where do these time stamps come from? While capturing, Wireshark gets the
time stamps from the libpcap (WinPcap) library, which in turn gets them from
the operating system kernel. If the capture data is loaded from a capture file,
Wireshark obviously gets the data from that file.

7.4.1. Wireshark internals

The internal format that Wireshark uses to keep a packet time stamp consists of
the date (in days since 1.1.1970) and the time of day (in nanoseconds since
midnight). You can adjust the way Wireshark displays the time stamp data in the
packet list, see the "Time Display Format" item in the Section 3.7, “The "View"
menu” for details.

While reading or writing capture files, Wireshark converts the time stamp data
between the capture file format and the internal format as required.

While capturing, Wireshark uses the libpcap (WinPcap) capture library which
supports microsecond resolution. Unless you are working with specialized
capturing hardware, this resolution should be adequate.

7.4.2. Capture file formats

Every capture file format that Wireshark knows supports time stamps. The time
stamp precision supported by a specific capture file format differs widely and
varies from one second "0" to one nanosecond "0.123456789". Most file formats
store the time stamps with a fixed precision (e.g. microseconds), while some file
formats are even capable of storing the time stamp precision itself (whatever the

benefit may be).

The common libpcap capture file format that is used by Wireshark (and a lot of
other tools) supports a fixed microsecond resolution "0.123456" only.

Note!

Writing data into a capture file format that doesn't provide the
__capability to store the actual precision will lead to loss of
! information. Example: If you load a capture file with
nanosecond resolution and store the capture data to a libpcap file
(with microsecond resolution) Wireshark obviously must reduce
the precision from nanosecond to microsecond.

7.4.3. Accuracy

It's often asked: "Which time stamp accuracy is provided by Wireshark?". Well,
Wireshark doesn't create any time stamps itself but simply gets them from
"somewhere else" and displays them. So accuracy will depend on the capture
system (operating system, performance, ...) that you use. Because of this, the
above question is difficult to answer in a general way.

Note!

USB connected network adapters often provide a very bad time
stamp accuracy. The incoming packets have to take "a long and
winding road" to travel through the USB cable until they
_actually reach the kernel. As the incoming packets are time
stamped when they are processed by the kernel, this time
stamping mechanism becomes very inaccurate.

Conclusion: don't use USB connected NIC's when you need
precise time stamp accuracy! (XXX - are there any such NIC's
that generate time stamps on the USB hardware?)

7.5. Time Zones

If you travel across the planet, time zones can be confusing. If you get a capture
file from somewhere around the world time zones can even be a lot more
confusing ;-)

First of all, there are two reasons why you may not need to think about time
zones at all:

¢ You are only interested in the time differences between the packet time
stamps and don't need to know the exact date and time of the captured
packets (which is often the case).

¢ You don't get capture files from different time zones than your own, so
there are simply no time zone problems. For example: everyone in your
team is working in the same time zone as yourself.

What are time zones?

People expect that the time reflects the sunset. Dawn should be in the morning
maybe around 06:00 and dusk in the evening maybe at 20:00. These times will
obviously vary depending on the season. It would be very confusing if everyone
on earth would use the same global time as this would correspond to the sunset
only at a small part of the world.

For that reason, the earth is split into several different time zones, each zone with
a local time that corresponds to the local sunset.

The time zone's base time is UTC (Coordinated Universal Time) or Zulu Time
(military and aviation). The older term GMT (Greenwich Mean Time) shouldn't
be used as it is slightly incorrect (up to 0.9 seconds difference to UTC). The
UTC base time equals to 0 (based at Greenwich, England) and all time zones
have an offset to UTC between -12 to +14 hours!

For example: If you live in Berlin you are in a time zone one hour earlier than
UTGC, so you are in time zone "+1" (time difference in hours compared to UTC).
If it's 3 o'clock in Berlin it's 2 o'clock in UTC "at the same moment".

Be aware that at a few places on earth don't use time zones with even hour
offsets (e.g. New Delhi uses UTC+05:30)!

Further information can be found at: http://en.wikipedia.org/wiki/Time_zone and
http://en.wikipedia.org/wiki/Coordinated Universal Time.

What is daylight saving time (DST)?

Daylight Saving Time (DST), also known as Summer Time, is intended to
"save" some daylight during the summer months. To do this, a lot of countries
(but not all!) add a DST hour to the already existing UTC offset. So you may
need to take another hour (or in very rare cases even two hours!) difference into
your "time zone calculations".

Unfortunately, the date at which DST actually takes effect is different throughout
the world. You may also note, that the northern and southern hemispheres have
opposite DST's (e.g. while it's summer in Europe it's winter in Australia).

Keep in mind: UTC remains the same all year around, regardless of DST!

Further information can be found at:
http://en.wikipedia.org/wiki/Daylight_saving.

Further time zone and DST information can be found at:

http://wwp.greenwichmeantime.com/ and
http://www.timeanddate.com/worldclock/.

7.5.1. Set your computer's time correctly!

If you work with people around the world, it's very helpful to set your
computer's time and time zone right.

You should set your computers time and time zone in the correct sequence:
1. Set your time zone to your current location
2. Set your computer's clock to the local time

This way you will tell your computer both the local time and also the time offset
to UTC.

http://en.wikipedia.org/wiki/Time_zone
http://en.wikipedia.org/wiki/Coordinated_Universal_Time
http://en.wikipedia.org/wiki/Daylight_saving
http://wwp.greenwichmeantime.com/
http://www.timeanddate.com/worldclock/

Tip!

If you travel around the world, it's an often made mistake to
adjust the hours of your computer clock to the local time. Don't
adjust the hours but your time zone setting instead! For your
computer, the time is essentially the same as before, you are
simply in a different time zone with a different local time!

Tip!

You can use the Network Time Protocol (NTP) to automatically
adjust your computer to the correct time, by synchronizing it to
Internet NTP clock servers. NTP clients are available for all
operating systems that Wireshark supports (and for a lot more),
for examples see: http://www.ntp.org/.

7.5.2. Wireshark and Time Zones

So what's the relationship between Wireshark and time zones anyway?

Wireshark's native capture file format (libpcap format), and some other capture
file formats, such as the Windows Sniffer, EtherPeek, AiroPeek, and Sun snoop
formats, save the arrival time of packets as UTC values. UN*X systems, and
"Windows NT based" systems (Windows NT 4.0, 2000, XP, Server 2003, Vista,
Server 2008, 7) represent time internally as UTC. When Wireshark is capturing,
no conversion is necessary. However, if the system time zone is not set correctly,
the system's UTC time might not be correctly set even if the system clock
appears to display correct local time. "Windows 9x based" systems (Windows
95, Windows 98, Windows Me) represent time internally as local time. When
capturing, WinPcap has to convert the time to UTC before supplying it to
Wireshark. If the system's time zone is not set correctly, that conversion will not
be done correctly.

Other capture file formats, such as the Microsoft Network Monitor, DOS-based
Sniffer, and Network Instruments Observer formats, save the arrival time of
packets as local time values.

http://www.ntp.org/

Internally to Wireshark, time stamps are represented in UTC; this means that,
when reading capture files that save the arrival time of packets as local time
values, Wireshark must convert those local time values to UTC values.

Wireshark in turn will display the time stamps always in local time. The
displaying computer will convert them from UTC to local time and displays this
(local) time. For capture files saving the arrival time of packets as UTC values,
this means that the arrival time will be displayed as the local time in your time
zone, which might not be the same as the arrival time in the time zone in which
the packet was captured. For capture files saving the arrival time of packets as
local time values, the conversion to UTC will be done using your time zone's
offset from UTC and DST rules, which means the conversion will not be done
correctly; the conversion back to local time for display might undo this correctly,
in which case the arrival time will be displayed as the arrival time in which the
packet was captured.

Table 7.2. Time zone examples for UTC arrival times (without DST)

Los New
Angeles York

Capture File (UTC) 10:00 10:00 10:00 10:00 10:00 10:00
Local Offset to UTC -8 -5 -1 0 +1 +9

Displayed Time (Local , 05:00 09:00 10:00 11:00 19:00
Time)

Madrid London Berlin Tokyo

An example: Let's assume that someone in Los Angeles captured a packet with
Wireshark at exactly 2 o'clock local time and sends you this capture file. The
capture file's time stamp will be represented in UTC as 10 o'clock. You are
located in Berlin and will see 11 o'clock on your Wireshark display.

Now you have a phone call, video conference or Internet meeting with that one
to talk about that capture file. As you are both looking at the displayed time on
your local computers, the one in Los Angeles still sees 2 o'clock but you in
Berlin will see 11 o'clock. The time displays are different as both Wireshark
displays will show the (different) local times at the same point in time.

Conclusion: You may not bother about the date/time of the time stamp you
currently look at, unless you must make sure that the date/time is as expected.
So, if you get a capture file from a different time zone and/or DST, you'll have to

find out the time zone/DST difference between the two local times and "mentally
adjust" the time stamps accordingly. In any case, make sure that every computer
in question has the correct time and time zone setting.

7.6. Packet Reassembling

7.6.1. What is it?

Network protocols often need to transport large chunks of data, which are
complete in themselves, e.g. when transferring a file. The underlying protocol
might not be able to handle that chunk size (e.g. limitation of the network packet
size), or is stream-based like TCP, which doesn't know data chunks at all.

In that case the network protocol has to handle the chunk boundaries itself and
(if required) spread the data over multiple packets. It obviously also needs a
mechanism to determine the chunk boundaries on the receiving side.

Tip!
Wireshark calls this mechanism reassembling, although a

specific protocol specification might use a different term for this
(e.g. desegmentation, defragmentation, ...).

L

7.6.2. How Wireshark handles it

For some of the network protocols Wireshark knows of, a mechanism is
implemented to find, decode and display these chunks of data. Wireshark will try
to find the corresponding packets of this chunk, and will show the combined data
as additional pages in the "Packet Bytes" pane (for information about this pane,
see Section 3.20, “The "Packet Bytes" pane”).

Figure 7.2. The "Packet Bytes" pane with a reassembled tab

0000 0% 00 06 ab 04 53 08 00 06 &b 7T bd 08 00 45 00 e e e KOS ERES EY
0010 01 48 33 ©F 00 00 1e 11 dd 51 b as 0% 0a bc as SHE o [
0o0z0 09 3z 41 at 0oF 04 01 324 00 b4 04 00 2e 00 10 00 S2ALL a4 Ll
0030 00 00 00 00 a0 de 97 ec dl 11 82 71 00 57 80 O T ...g.i.. b d

Frame (342 bytes) | Reassembled DCE/RPC (1604 bytes)

Note!

f Reassembling might take place at several protocol layers, so it's

possible that multiple tabs in the "Packet Bytes" pane appear.
Note!

7! You will find the reassembled data in the last packet of the
chunk.

An example: In a HTTP GET response, the requested data (e.g. an HTML page)
is returned. Wireshark will show the hex dump of the data in a new tab
"Uncompressed entity body" in the "Packet Bytes" pane.

Reassembling is enabled in the preferences by default. The defaults were
changed from disabled to enabled in September 2005. If you created your
preference settings before this date, you might look if reassembling is actually
enabled, as it can be extremely helpful while analyzing network packets.

The enabling or disabling of the reassemble settings of a protocol typically
requires two things:

1. the lower level protocol (e.g., TCP) must support reassembly. Often this
reassembly can be enabled or disabled via the protocol preferences.

2. the higher level protocol (e.g., HT'TP) must use the reassembly mechanism
to reassemble fragmented protocol data. This too can often be enabled or
disabled via the protocol preferences.

The tooltip of the higher level protocol setting will notify you if and which lower
level protocol setting also has to be considered.

7.7. Name Resolution

Name resolution tries to convert some of the numerical address values into a
human readable format. There are two possible ways to do these conversions,
depending on the resolution to be done: calling system/network services (like the
gethostname () function) and/or resolve from Wireshark specific configuration
files. For details about the configuration files Wireshark uses for name resolution
and alike, see Appendix A, Files and Folders.

The name resolution feature can be enabled individually for the protocol layers
listed in the following sections.

7.7.1. Name Resolution drawbacks

Name resolution can be invaluable while working with Wireshark and may even
save you hours of work. Unfortunately, it also has its drawbacks.

e Name resolution will often fail. The name to be resolved might simply be
unknown by the name servers asked, or the servers are just not available
and the name is also not found in Wireshark's configuration files.

e The resolved names are not stored in the capture file or somewhere
else. So the resolved names might not be available if you open the capture
file later or on a different machine. Each time you open a capture file it may
look "slightly different", simply because you can't connect to the name
server (which you could connect to before).

e DNS may add additional packets to your capture file. You may see
packets to/from your machine in your capture file, which are caused by
name resolution network services of the machine Wireshark captures from.
XXX - are there any other such packets than DNS ones?

¢ Resolved DNS names are cached by Wireshark. This is required for
acceptable performance. However, if the name resolution information
should change while Wireshark is running, Wireshark won't notice a change
in the name resolution information once it gets cached. If this information
changes while Wireshark is running, e.g. a new DHCP lease takes effect,
Wireshark won't notice it. XXX - is this true for all or only for DNS info?

Tip!

The name resolution in the packet list is done while the list is
filled. If a name could be resolved after a packet was added to
the list, that former entry won't be changed. As the name
resolution results are cached, you can use "View/Reload" to
rebuild the packet list, this time with the correctly resolved
names. However, this isn't possible while a capture is in
progress.

7.7.2. Ethernet name resolution (MAC layer)

Try to resolve an Ethernet MAC address (e.g. 00:09:5b:01:02:03) to something
more "human readable".

ARP name resolution (system service): Wireshark will ask the operating
system to convert an Ethernet address to the corresponding IP address (e.g.
00:09:5b:01:02:03 - 192.168.0.1).

Ethernet codes (ethers file): If the ARP name resolution failed, Wireshark tries
to convert the Ethernet address to a known device name, which has been
assigned by the user using an ethers file (e.g. 00:09:5b:01:02:03 —
homerouter).

Ethernet manufacturer codes (manuf file): If neither ARP or ethers returns a
result, Wireshark tries to convert the first 3 bytes of an ethernet address to an
abbreviated manufacturer name, which has been assigned by the IEEE (e.g.
00:09:5b:01:02:03 — Netgear_01:02:03).

7.7.3. IP name resolution (network layer)

Try to resolve an IP address (e.g. 216.239.37.99) to something more "human
readable".

DNS/concurrent DNS name resolution (system/library service): Wireshark
will ask the operating system (or the concurrent DNS library), to convert an IP
address to the hostname associated with it (e.g. 216.239.37.99 -
www.1.google.com). The DNS service is using synchronous calls to the DNS

server. So Wireshark will stop responding until a response to a DNS request is
returned. If possible, you might consider using the concurrent DNS library
(which won't wait for a name server response).

Warning!

Enabling network name resolution when your name server is

A unavailable may significantly slow down Wireshark while it
waits for all of the name server requests to time out. Use
concurrent DNS in that case.

DNS vs. concurrent DNS: here's a short comparison: Both mechanisms are used
to convert an IP address to some human readable (domain) name. The usual
DNS call gethostname () will try to convert the address to a name. To do this, it
will first ask the systems hosts file (e.g. /etc/hosts) if it finds a matching entry.
If that fails, it will ask the configured DNS server(s) about the name.

So the real difference between DNS and concurrent DNS comes when the
system has to wait for the DNS server about a name resolution. The system call
gethostname() will wait until a name is resolved or an error occurs. If the DNS
server is unavailable, this might take quite a while (several seconds).

The concurrent DNS service works a bit differently. It will also ask the DNS
server, but it won't wait for the answer. It will just return to Wireshark in a very
short amount of time. The actual (and the following) address fields won't show
the resolved name until the DNS server returns an answer. As mentioned above,
the values get cached, so you can use View/Reload to "update" these fields to
show the resolved values.

hosts name resolution (hosts file): If DNS name resolution failed, Wireshark
will try to convert an IP address to the hostname associated with it, using a hosts
file provided by the user (e.g. 216.239.37.99 - www.google.com).

7.7.4. IPX name resolution (network layer)

ipxnet name resolution (ipxnets file): XXX - add ipxnets name resolution
explanation.

7.7.5. TCP/UDP port name resolution (transport layer)

Try to resolve a TCP/UDP port (e.g. 80) to something more "human readable".

TCP/UDP port conversion (system service): Wireshark will ask the operating
system to convert a TCP or UDP port to its well known name (e.g. 80 — http).

XXX - mention the role of the /etc/services file (but don't forget the files and
folders section)!

7.8. Checksums

Several network protocols use checksums to ensure data integrity.
Tip!

. Applying checksums as described here is also known as
redundancy checking.

What are checksums for?

Checksums are used to ensure the integrity of data portions for data transmission
or storage. A checksum is basically a calculated summary of such a data portion.

Network data transmissions often produce errors, such as toggled, missing or
duplicated bits. As a result, the data received might not be identical to the data
transmitted, which is obviously a bad thing.

Because of these transmission errors, network protocols very often use
checksums to detect such errors. The transmitter will calculate a checksum of the
data and transmits the data together with the checksum. The receiver will
calculate the checksum of the received data with the same algorithm as the
transmitter. If the received and calculated checksums don't match a transmission
error has occurred.

Some checksum algorithms are able to recover (simple) errors by calculating
where the expected error must be and repairing it.

If there are errors that cannot be recovered, the receiving side throws away the

packet. Depending on the network protocol, this data loss is simply ignored or

the sending side needs to detect this loss somehow and retransmits the required
packet(s).

Using a checksum drastically reduces the number of undetected transmission
errors. However, the usual checksum algorithms cannot guarantee an error
detection of 100%, so a very small number of transmission errors may remain
undetected.

There are several different kinds of checksum algorithms; an example of an
often used checksum algorithm is CRC32. The checksum algorithm actually
chosen for a specific network protocol will depend on the expected error rate of
the network medium, the importance of error detection, the processor load to
perform the calculation, the performance needed and many other things.

Further information about checksums can be found at:
http://en.wikipedia.org/wiki/Checksum.

7.8.1. Wireshark checksum validation

Wireshark will validate the checksums of several protocols, e.g.: IP, TCP, UDP,

It will do the same calculation as a "normal receiver" would do, and shows the
checksum fields in the packet details with a comment, e.g.: [correct], [invalid,
must be 0x12345678] or alike.

Checksum validation can be switched off for various protocols in the Wireshark
protocol preferences, e.g. to (very slightly) increase performance.

If the checksum validation is enabled and it detected an invalid checksum,
features like packet reassembling won't be processed. This is avoided as
incorrect connection data could "confuse" the internal database.

7.8.2. Checksum offloading

The checksum calculation might be done by the network driver, protocol driver
or even in hardware.

For example: The Ethernet transmitting hardware calculates the Ethernet CRC32
checksum and the receiving hardware validates this checksum. If the received
checksum is wrong Wireshark won't even see the packet, as the Ethernet
hardware internally throws away the packet.

Higher level checksums are "traditionally" calculated by the protocol
implementation and the completed packet is then handed over to the hardware.

Recent network hardware can perform advanced features such as IP checksum

http://en.wikipedia.org/wiki/Checksum

calculation, also known as checksum offloading. The network driver won't
calculate the checksum itself but will simply hand over an empty (zero or
garbage filled) checksum field to the hardware.

Note!

Checksum offloading often causes confusion as the network
__packets to be transmitted are handed over to Wireshark before
'] the checksums are actually calculated. Wireshark gets these

"empty" checksums and displays them as invalid, even though
the packets will contain valid checksums when they leave the
network hardware later.

Checksum offloading can be confusing and having a lot of [invalid] messages on
the screen can be quite annoying. As mentioned above, invalid checksums may
lead to unreassembled packets, making the analysis of the packet data much
harder.

You can do two things to avoid this checksum offloading problem:

e Turn off the checksum offloading in the network driver, if this option is
available.

e Turn off checksum validation of the specific protocol in the Wireshark
preferences.

Chapter 8. Statistics

Table of Contents

8.1. Introduction
8.2. The "Summary" window
8.3. The "Protocol Hierarchy" window
8.4. Conversations
8.4.1. What is a Conversation?
8.4.2. The "Conversations" window
8.4.3. The protocol specific "Conversation List" windows
8.5. Endpoints
8.5.1. What is an Endpoint?
8.5.2. The "Endpoints" window
8.5.3. The protocol specific "Endpoint List" windows
8.6. The "IO Graphs" window
8.7. Service Response Time
8.7.1. The "Service Response Time DCE-RPC" window
8.8. Compare two capture files
8.9. WLAN Traffic Statistics
8.10. The protocol specific statistics windows

8.1. Introduction

Wireshark provides a wide range of network statistics which can be accessed via
the Statistics menu.

These statistics range from general information about the loaded capture file
(like the number of captured packets), to statistics about specific protocols (e.g.
statistics about the number of HTTP requests and responses captured).

e General statistics:

o Summary about the capture file.

o Protocol Hierarchy of the captured packets.

o Conversations e.g. traffic between specific IP addresses.

o Endpoints e.g. traffic to and from an IP addresses.

o 10 Graphs visualizing the number of packets (or similar) in time.
¢ Protocol specific statistics:

o Service Response Time between request and response of some
protocols.

o Various other protocol specific statistics.
Note!
—» The protocol specific statistics requires detailed knowledge

~— about the specific protocol. Unless you are familiar with that
protocol, statistics about it will be pretty hard to understand.

8.2. The "Summary" window

General statistics about the current capture file.

Figure 8.1. The "Summary" window

File
MName:
Length:
Format:
Packet size limit:

Time
First packet:
Last packet:
Elapsed:

Capture
Interface:
Dropped packets:
Capture filter:

Display
Display filter:
Traffic
Packets
Between first and last packet
Avg. packets/sec
Avg. packet size
Bytes
Avg, bytes/sec
Avg. MBitfsec

2239

(home/stig/http.pcap

1713904 bytes
Wiresharkftcpdurmp/... - libpcap
65535 bytes

2007-11-30 20:45:42
2007-11-30 20:50:14
00:00:32

etho
unknown
none

http or dns

Captured Displayed Marked

367 0
32.374 sec 19.684 sec
69,160 18.645

749.467 bytes 575.507 bytes

1678056 211211
S1B33.067 10730.261
0.415 0.088

o File: general information about the capture file.

Time: the timestamps when the first and the last packet were captured (and
the time between them).

Capture: information from the time when the capture was done (only
available if the packet data was captured from the network and not loaded
from a file).

Display: some display related information.

Traffic: some statistics of the network traffic seen. If a display filter is set,
you will see values in the Captured column, and if any packages are
marked, you will see values in the Marked column. The values in the
Captured column will remain the same as before, while the values in the
Displayed column will reflect the values corresponding to the packets
shown in the display. The values in the Marked column will reflect the
values corresponding to the marked packages.

8.3. The "Protocol Hierarchy" window

The protocol hierarchy of the captured packets.

Figure 8.2. The "Protocol Hierarchy" window

Mbit/s End Packets End Bytes |End Mbit/s

7| Wireshark:Protocol Hierarchy statisticss \;\
Display filter: http or dns
Protocol % Packets Packets Bytes

=~ Frame 100.00% 367 211211 0.088 0 0 0.000
~ Ethernet 100.00% 367 211211 0.086 4] 0 0.000
= Internet Protocol 100.00% 367 211211 0.086 0 0 0.000
= Transmission Control Protocol 93.46% 343 207029 0.084 Il 82553 0.024
~ Hypertext Transfer Protocal G62.67% 230 124476 0.051 189 933983 0.038
Compuserve GIF 7.36% 27 17114 0.007 27 17114 0.007
Line-based text data 3.27% 12 12265 0.005 12 12265 0.005
JPEG File Interchange Format 0.27% 1 990 0.000 i 990 0.000
extensible Markup Language 0.27% 1 714 0.000 1 714 0.000
~ User Datagram Protocol 5.54% 24 4182 0.002 0 0 0.000
Comain Name Service 6.54% 24 4182 0.002 24 4182 0.002

This is a tree of all the protocols in the capture. You can collapse or expand
subtrees, by clicking on the plus / minus icons. By default, all trees are

expanded.

Each row contains the statistical values of one protocol. The Display filter will

show the current display filter.

The following columns containing the statistical values are available:

e Protocol: this protocol's name

e % Packets: the percentage of protocol packets, relative to all packets in the

capture

Packets: the absolute number of packets of this protocol

Bytes: the absolute number of bytes of this protocol

MBit/s: the bandwidth of this protocol, relative to the capture time

End Packets: the absolute number of packets of this protocol (where this
protocol was the highest protocol to decode)

End Bytes: the absolute number of bytes of this protocol (where this
protocol was the highest protocol to decode)

End MBit/s: the bandwidth of this protocol, relative to the capture time
(where this protocol was the highest protocol to decode)

Note!

_Packets will usually contain multiple protocols, so more than

T one protocol will be counted for each packet. Example: In the
screenshot IP has 99,17% and TCP 85,83% (which is together
much more than 100%).

Note!

Protocol layers can consist of packets that won't contain any
higher layer protocol, so the sum of all higher layer packets may
(4 hot sum up to the protocols packet count. Example: In the
~ screenshot TCP has 85,83% but the sum of the subprotocols
(HTTP, ...) is much less. This may be caused by TCP protocol
overhead, e.g. TCP ACK packets won't be counted as packets of
the higher layer).

Note!

A single packet can contain the same protocol more than once.
[In this case, the protocol is counted more than once. For
~ example: in some tunneling configurations the IP layer can

appear twice.

8.4. Conversations
Statistics of the captured conversations.

8.4.1. What is a Conversation?

A network conversation is the traffic between two specific endpoints. For
example, an IP conversation is all the traffic between two IP addresses. The
description of the known endpoint types can be found in Section 8.5.1, “What is
an Endpoint?”.

8.4.2. The "Conversations" window

The conversations window is similar to the endpoint Window; see Section 8.5.2,

“The "Endpoints" window” for a description of their common features. Along
with addresses, packet counters, and byte counters the conversation window
adds four columns: the time in seconds between the start of the capture and the
start of the conversation ("Rel Start"), the duration of the conversation in
seconds, and the average bits (not bytes) per second in each direction.

Figure 8.3. The "Conversations" window

_ﬂl‘"ﬂﬁ"'“"'“ﬂé&am;—@

Ethernet: 1] \]lpv4: 15 \ \ \ |TCP: 38 | \LJDP: 1\]
TCP Conversations - Filter: http or dns

Address A | Port A | Address B Port B | Packets Bytes ° Packets A->=B | Bytes A->B | Packets A<-B
10.211.55.3 60790 193.69.165.21 http 126 72615 B3 28028 63
10.211.55.3 60789 193.69.165.21 http 104 64791 52 23330 52
10.211.55.3 41144 128.121.50.122 http 18 89991 g 6794 a
10.211.55.3 41145 128.121.50.122 http 18 8994 9 G885 a
10.211.55.3 45168 193.69.165.57 http 4 3336 2 avo 2]
10.211.55.3 51236 81.83.163.17¢ s == =aad =2 R o
10.211.55.3 45169 193.69.165.5 Apply as Filter » Selected P A<-=B
10.211.55.3 50948 B81.7.166.249| Prepare a Filter » | Mot Selected P A--=B

10.211.55.3 41632 184.237.107. Find packet * | .. and Selected | A=-B
10.211.55.3 51305 193.68.165.2

i i 2|0 2 -
O ————— Colorlzle Conversation or Selected A ANY
10.211.55.3 41623 208.85.141.98 http 4 1967 - and not Selected Rl AR
10.211.55.3 43305 62.70.11.43 http 2 1955 ... or not Selected A< ANY
10.211.55.3 51291 193.659.165.29 http 2 1876 2 541 1 aNY <> B -]
| ANY <-- B :II]
M Mame resolution [Limit to display filter ANY --> B

guelp | %Qopy H Eglose

Each row in the list shows the statistical values for exactly one conversation.

Name resolution will be done if selected in the window and if it is active for the
specific protocol layer (MAC layer for the selected Ethernet endpoints page).

Limit to display filter will only show conversations matching the current
display filter.

The copy button will copy the list values to the clipboard in CSV (Comma
Separated Values) format.

Tip!
This window will be updated frequently, so it will be useful,

even if you open it before (or while) you are doing a live
capture.

L

8.4.3. The protocol specific "Conversation List" windows

Before the combined window described above was available, each of its pages
was shown as a separate window. Even though the combined window is much
more convenient to use, these separate windows are still available. The main
reason is that they might process faster for very large capture files. However, as
the functionality is exactly the same as in the combined window, they won't be
discussed in detail here.

8.5. Endpoints

Statistics of the endpoints captured.

Tip!

If you are looking for a feature other network tools call a
* hostlist, here is the right place to look. The list of Ethernet or IP
endpoints is usually what you're looking for.

8.5.1. What is an Endpoint?

A network endpoint is the logical endpoint of separate protocol traffic of a
specific protocol layer. The endpoint statistics of Wireshark will take the
following endpoints into account:

Ethernet: an Ethernet endpoint is identical to the Ethernet's MAC address.
Fibre Channel: XXX - insert info here.

FDDI: a FDDI endpoint is identical to the FDDI MAC address.

IPv4: an IP endpoint is identical to its IP address.

IPX: an IPX endpoint is concatenation of a 32 bit network number and 48
bit node address, be default the Ethernets' MAC address.

JXTA: a JXTA endpoint is a 160 bit SHA-1 URN.
NCP: XXX - insert info here.
RSVP: XXX - insert info here.

SCTP: a SCTP endpoint is a combination of the host IP addresses (plural)
and the SCTP port used. So different SCTP ports on the same IP address are
different SCTP endpoints, but the same SCTP port on different IP addresses
of the same host are still the same endpoint.

e TCP: a TCP endpoint is a combination of the IP address and the TCP port
used, so different TCP ports on the same IP address are different TCP
endpoints.

e Token Ring: a Token Ring endpoint is identical to the Token Ring MAC
address.

e UDP: a UDP endpoint is a combination of the IP address and the UDP port
used, so different UDP ports on the same IP address are different UDP
endpoints.

e USB: XXX - insert info here.

e WLAN: XXX - insert info here.
Broadcast / multicast endpoints
_ Broadcast / multicast traffic will be shown separately as
| #T additional endpoints. Of course, as these endpoints are virtual
endpoints, the real traffic will be received by all (multicast:
some) of the listed unicast endpoints.

8.5.2. The "Endpoints" window

This window shows statistics about the endpoints captured.

Figure 8.4. The "Endpoints” window

I Enielpulniss L sz =1 e =T

Ethernet: 2 \ ‘ IPvd: 16 \ \ \ ‘TCP: 51] \L.IDP: 2‘ I
IPv4 Endpoints - Filter: http or dns

Address Packets Bytes @ Tx Packets ° Tx Bytes FRx Packets Rx Bytes

10.211.55.3 367 211211 184 91005 183 120208

193.69.165.21 230 137406 115 86048 115 51358

128.121.50.122 36 18885 18 5306 18 13679

193.69.165.29 28 18580 14 10235 14 8345

10.211.55.1 24 4182 12 3275 12 any

193 .69.165.57 8 S824 4 38" | = i "":" | q

£2.70.11.43 B 3506 3 20 MRBRNERERIiL Sl

81.7.166.249 5 5165 3 181 Prepare a Filter ¥ | Mot Selected

81.83.163.170 7 3581 3 140 Find Frame ¥ .. and Selected

209.85.141.99 4 1967 2 il Colorize Host Traffic ... or Selected

81.53.172.130 4 1610 2 S2¢ - S

194.237.107.53 4 3817 2 1830 2 108 - @nd not Selected

193.88.71.150 4 2193 2 1037 2 115 ... or not Selected

66.102.9.99 2 1060 1 425 1 635 W

184 .237.107.154 2 1252 1 277 1 a75 Z
M Mame resolution [Limit to display filter

euelp | %Qopy H Qlose

For each supported protocol, a tab is shown in this window. Each tab label shows
the number of endpoints captured (e.g. the tab label "Ethernet: 5" tells you that
five ethernet endpoints have been captured). If no endpoints of a specific
protocol were captured, the tab label will be greyed out (although the related
page can still be selected).

Each row in the list shows the statistical values for exactly one endpoint.

Name resolution will be done if selected in the window and if it is active for the
specific protocol layer (MAC layer for the selected Ethernet endpoints page). As
you might have noticed, the first row has a name resolution of the first three
bytes "Netgear", the second row's address was resolved to an IP address (using
ARP) and the third was resolved to a broadcast (unresolved this would still be:
ff.ff.ff.ff.ff:ff); the last two Ethernet addresses remain unresolved.

Limit to display filter will only show conversations matching the current
display filter.

The copy button will copy the list values to the clipboard in CSV (Comma
Separated Values) format.

Tip!

This window will be updated frequently, so it will be useful,
* even if you open it before (or while) you are doing a live
capture.

8.5.3. The protocol specific "Endpoint List" windows

Before the combined window described above was available, each of its pages
was shown as a separate window. Even though the combined window is much
more convenient to use, these separate windows are still available. The main
reason is that they might process faster for very large capture files. However, as
the functionality is exactly the same as in the combined window, they won't be
discussed in detail here.

8.6. The "10 Graphs" window

User configurable graph of the captured network packets.

You can define up to five differently colored graphs.

Figure 8.5. The "I10 Graphs" window

— 250
e . 0
||||||||||||||||||||||||||||||||||
0s 10s 20s 30s
Graphs ¥ AXS
Graph 1| Color | Filter: l l Style:| Line Tickinterval:
Graphz Color |] Filter lhttp l Style:| Line Pixels per tick: 10| %
............................ . . o e
Graph 2 | Color E]Ellter: l l Style: | Line :
Y AxIS
Graph 4 | Color |] Filter: l l Style:| Line Lrit: lPacketszick :l
Graph 5| Color | B8] Eilter: l l Style:| Line Scale: [Autu :l

‘ Eh copy H []save

‘ gglcse

The user can configure the following things:

e Graphs

o Graph 1-5: enable the specific graph 1-5 (only graph 1 is enabled by
default)

o Color: the color of the graph (cannot be changed)

o Filter: a display filter for this graph (only the packets that pass this
filter will be taken into account for this graph)

o Style: the style of the graph (Line/Impulse/FBar/Dot)
o X Axis

o Tick interval: an interval in x direction lasts (10/1 minutes or
10/1/0.1/0.01/0.001 seconds)

o Pixels per tick: use 10/5/2/1 pixels per tick interval

o View as time of day: option to view x direction labels as time of day
instead of seconds or minutes since beginning of capture

e Y Axis

o Unit: the unit for the y direction (Packets/Tick, Bytes/Tick, Bits/Tick,
Advanced...) [XXX - describe the Advanced feature.]

o Scale: the scale for the y unit
(Logarithmic,Auto,10,20,50,100,200,500,...)

The save button will save the currently displayed portion of the graph as one of
various file formats.

The copy button will copy values from selected graphs to the clipboard in CSV
(Comma Separated Values) format.

Tip!

. Click in the graph to select the first package in the selected
interval.

8.7. Service Response Time

The service response time is the time between a request and the corresponding
response. This information is available for many protocols.

Service response time statistics are currently available for the following
protocols:

DCE-RPC
Fibre Channel
H.225 RAS
LDAP

LTE MAC
MGCP
ONC-RPC

SMB

As an example, the DCE-RPC service response time is described in more detail.

Note!

—» The other Service Response Time windows will work the same
— way (or only slightly different) compared to the following
description.

8.7.1. The "Service Response Time DCE-RPC" window

The service response time of DCE-RPC is the time between the request and the
corresponding response.

First of all, you have to select the DCE-RPC interface:

Figure 8.6. The "Compute DCE-RPC statistics" window

Wireshark: Compute DCE-RPC SRT statistics |Z||E|[z|

Program: ATSVC - EFM |Version: | 1 4

E Filker:

|
‘ x Zancel ‘

@ Zreate Skat

You can optionally set a display filter, to reduce the amount of packets.

Figure 8.7. The "DCE-RPC Statistic for ..." window

DCE-RPC Service Response Time statistics for EPM major version 3: test... |Z||E|rz|

DCE-RPC Service Response Time skatistics For EPM major version 3 test.pcap
Filter:

ndex Procedure Zalls | MinSRT Max SRT Avg SRT

XK Close I

Each row corresponds to a method of the interface selected (so the EPM
interface in version 3 has 7 methods). For each method the number of calls, and

the statistics of the SRT time is calculated.

8.8. Compare two capture files

Compare two capture files.

This feature works best when you have merged two capture files
chronologically, one from each side of a client/server connection.

The merged capture data is checked for missing packets. If a matching
connection is found it is checked for:

e [P header checksums
e Excessive delay (defined by the "Time variance" setting)
e Packet order

Figure 8.8. The "Compare" window

o =

i Compare two capture files: wsweb compare 2010-04-22.pcap El@

Compare two capture files: wsweb compare 2010-04-22.pcap

Filter: tcp.port eq 80

Compare Statistics:

Mumber of packets total:208 1st file98, 2nd file:110

Scopes startl stopd

and: start:5 stop:8

Equal packets: 88

Allowed variation: 3.000000

Average time difference: 107566295

IPId Problem Count Delta &
15638 Mot arrived in time 2 225062000
15824 Mot arrived in time 2 128999000
16413 Mot arrived in time 2 326.914000
16644 Packet lost 1 0.000000
16645 Packet lost 1 0.000000

16647 Packet lost
16648 Packet lost
16649 Packet lost
17073 Mot arrived in time 78.630000
17755 Mot arrived in time 14971000

1 0.000000

1

1

2

i
17756 Mot arrived in time 2 14.499000

2

2

i

2

2

0.000000
0.000000

m

17757 Mot arrived in time 9.909000
20804 Mot arrived in time 154.061000

20818 Mot arrived in time 277.575000
20819 Mot arrived in time 274044000

21321 Mot arrived in time 97.442000

-

You can configure the following:

e Start compare: Start comparing when this many IP IDs are matched. A
zero value starts comparing immediately.

e Stop compare: Stop comparing when we can no longer match this many IP
IDs. Zero always compares.

¢ Endpoint distinction: Use MAC addresses or IP time-to-live values to
determine connection endpoints.

e Check order: Check for the same IP ID in the previous packet at each end.

e Time variance: Trigger an error if the packet arrives this many
milliseconds after the average delay.

¢ Filter: Limit comparison to packets that match this display filter.
The info column contains new numbering so the same packets are parallel.

The color filtering differentiate the two files from each other. A “zebra” effect is
create if the Info column is sorted.

Tip!

. If you click on an item in the error list its corresponding packet
will be selected in the main window.

8.9. WL AN Traffic Statistics

Statistics of the captured WLAN traffic. This window will summarize the
wireless network traffic found in the capture. Probe requests will be merged into
an existing network if the SSID matches.

Figure 8.9. The "WLAN Traffic Statistics" window

a Wiresharlc WIEAN I ratfic statisticssw I poap) IEI
WLAN Traffic Statistics
BSSID Channel SsID . Beacons Data Packets Probe Req Probe Resp Auth Deauth Other Percent Protection
00:13:1a:a0:12:c0 0 58 0 4] 4] 4] 4] 0.04%
00:02:e3:456:99:f8 11 AMX 744 4] 0 14 4] 0 4] 0.46% WEP
00:0e:2e:c2:15:07 1 Fortress GB 13 0 0 0 0 0 0 0.01%
|00:13:la:59:91:90 1 Telenor Mobil WLAN 130030 9683 1= 15441 3 0 2 94.43%
] Mame resolution M Only show existing networks
9 Help l %Qopy l [Qlose J

Each row in the list shows the statistical values for exactly one wireless network.

Name resolution will be done if selected in the window and if it is active for the
MAC layer.

Only show existing networks will exclude probe requests with a SSID not
matching any network from the list.

The copy button will copy the list values to the clipboard in CSV (Comma
Separated Values) format.

Tip!
This window will be updated frequently, so it will be useful,

« even if you open it before (or while) you are doing a live
capture.

8.10. The protocol specific statistics windows

The protocol specific statistics windows display detailed information of specific
protocols and might be described in a later version of this document.

Some of these statistics are described at the http://wiki.wireshark.org/Statistics
pages.

http://wiki.wireshark.org/Statistics

Chapter 9. Telephony

Table of Contents

9.1. Introduction

9.2. RTP Analysis

9.3. VoIP Calls

9.4. LTE MAC Traffic Statistics

9.5. LTE RLC Traffic Statistics

9.6. The protocol specific statistics windows

9.1. Introduction

Wireshark provides a wide range of telephony related network statistics which
can be accessed via the Telephony menu.

These statistics range from specific signaling protocols, to analysis of signaling
and media flows. If encoded in a compatible encoding the media flow can even
be played.

9.2. RTP Analysis

The RTP analysis function takes the selected RTP stream (and the reverse
stream, if possible) and generates a list of statistics on it.

Figure 9.1. The "RTP Stream Analysis" window

O Wireshark: RTP Stream Analysis

Forward Direction | Rewversed Direction |

Analysing stream from 10.1.3.143 port 5000 to 10.1.6.18B port 2006 SSRC = OxDEEOEESF

Deltalr Filtered Jitte Skew(ms) IP BW (k Status
35 58134 29.97 0.00 0.03 4.48 [Ok]
36 59135 30.13 0.01 -0.10 677 [Ok]
37 59136 30.11 0.02 -0.21 8.96 [Ok]
38 58137 30.11 0.02 -0.32 11.20 [Ok]
39 58138 30.18 0.03 -0.51 13.44 [Ok]
41 58139 28.73 [0 i 0.76 15.68 [Ok]
43 58140 29.99 0.10 0.77 17.92 [Ok]
45 59141 29.99 0.10 0.78 20.16 [Ok] =

Max delta = 34.83 ms at packet no. 274

Max jitter = 0.83 ms. Mean jitter = 0.37 ms.

Max skew = -4.14 ms.

Total RTP packets = 236 (expected 236) Lost RTP packets = 0 (0.00%) Sequence errors = 0
Duration 7.05 s (-60 ms clock drift, corresponding to 7932 Hz (-0.85%)

Save payload...l Save as CSV... | £ Refresh | S Jump to | Graph | MNext non-Ok | xglose |

Starting with basic data as packet number and sequence number, further statistics
are created based on arrival time, delay, jitter, packet size, etc.

Besides the per packet statistics, the lower pane shows the overall statistics, with
minimums and maximums for delta, jitter and clock skew. Also an indication of
lost packets is included.

The RTP Stream Analysis window further provides the option to save the RTP
payload (as raw data or, if in a PCM encoding, in an Audio file). Other options a
to export and plot various statistics on the RTP streams.

9.3. VoIP Calls

The VoIP Calls window shows a list of all detected VoIP calls in the captured
traffic. It finds calls by their signaling.

More details are described at the http://wiki.wireshark.org/VoIP_calls page.

http://wiki.wireshark.org/VoIP_calls

9.4. LTE MAC Traffic Statistics

Statistics of the captured LTE MAC traffic. This window will summarize the
LTE MAC traffic found in the capture.

Figure 9.2. The "LTE MAC Traffic Statistics" window

"«"“Wireshark: LTE MAC Traffic Statistics: testDLZws.out__;_Q_"—i’;—}

Commeon Channel Data

BCH Frames: 0 BCH Bytes: 0 PCH Frames: 0 PCH Bytes: 0
“UL/DL-SCH data (20 UEs)
RNTI | UL Frames | UL Bytes | UL CRC Errors | UL ReTX Frames | DL Frames | DL Bytes | DL CRC Errors | DL ReTX Frames | E
87 0 0 0 0 138 41538 0 0
86 0 0 0 0 140 42140 0 0
B4 0 0 0 0 140 42140 0 all
83 0 0 0 0 139 41839 0 0 E

-Selected UE details
CCCH LCID 1 LCID 2 LCID 3 LCID 4 LCID 5 LCID & LCID 7 LCID B LCID 9 LCID 10 Predefined

UL sDUs 0 0 0 0 0 0 0 0 0 0 0 0
UL Bytes 0 0 0 0 0 0 0 0 0 0 0 0
DL 5DUs 140 140 0 140 0 0 0 0 0 0 0 0
DL Bytes 1540 22400 0 18200 0 0 0 0 0 0 0 0

The top pane shows statistics for common channels. Each row in the middle
pane shows statistical highlights for exactly one UE/C-RNTI. In the lower pane,
you can see the for the currently selected UE/C-RNTT the traffic broken down by
individual channel.

9.5. LTE RLC Traffic Statistics

Statistics of the captured LTE RLC traffic. This window will summarize the LTE
RLC traffic found in the capture.

Figure 9.3. The "LTE RLC Traffic Statistics" window

""Wireshark: LTE RLC Traffic Statistics: testo4_multi_ue.out(2'UEs, 22 frames)

[] show RLC PDUs found inside logged MAC frames

-2 UEs
UEId UL Frames | UL Bytes DL Frames DL Bytes |
1 12 213 0 0
2 10 202 0 0

-Channels of selected UE

| Mode | UL Frames | UL Bytes | UL ACKs | UL NACKs | DL Frames | DL Bytes | DL ACKs | DL NACKS |
CCCH ™ 1 6 0 0 1 24 0 0
SRB-1 AM 4 41 2 0 4 4 2 0

[Filter on selected channel

Set UL display filter for this channel

At the top, the check-box allows this window to include RLC PDUs found
withing MAC PDUs or not. This will affect both the PDUs counted as well as
the display filters generated (see below).

Set DL display filter for this channel | | Set UL 7 DL display filter for this channel

The upper list shows summaries of each active UE. Each row in the lower list
shows statistical highlights for individual channels within the selected UE.

The lower part of the windows allows display filters to be generated and set for
the selected channel. Note that in the case of Acknowledged Mode channels, if a

single direction is chosen, the generated filter will show data in that direction
and control PDUs in the opposite direction.

9.6. The protocol specific statistics windows

The protocol specific statistics windows display detailed information of specific
protocols and might be described in a later version of this document.

Some of these statistics are described at the http://wiki.wireshark.org/Statistics
pages.

http://wiki.wireshark.org/Statistics

Chapter 10. Customizing Wireshark

Table of Contents

10.1. Introduction
10.2. Start Wireshark from the command line
10.3. Packet colorization
10.4. Control Protocol dissection
10.4.1. The "Enabled Protocols" dialog box
10.4.2. User Specified Decodes
10.4.3. Show User Specified Decodes
10.5. Preferences
10.5.1. Interface Options
10.6. Configuration Profiles
10.7. User Table
10.8. Display Filter Macros
10.9. ESS Category Attributes
10.10. GeoIP Database Paths
10.11. IKEv2 decryption table
10.12. Object Identifiers
10.13. PRES Users Context List
10.14. SCCP users Table
10.15. SMI (MIB and PIB) Modules
10.16. SMI (MIB and PIB) Paths
10.17. SNMP Enterprise Specific Trap Types
10.18. SNMP users Table
10.19. Tektronix K12xx/15 RF5 protocols Table
10.20. User DLTs protocol table

10.1. Introduction

Wireshark's default behaviour will usually suit your needs pretty well. However,
as you become more familiar with Wireshark, it can be customized in various
ways to suit your needs even better. In this chapter we explore:

e How to start Wireshark with command line parameters
e How to colorize the packet list
e How to control protocol dissection

e How to use the various preference settings

10.2. Start Wireshark from the command line

You can start Wireshark from the command line, but it can also be started from
most Window managers as well. In this section we will look at starting it from
the command line.

Wireshark supports a large number of command line parameters. To see what
they are, simply enter the command wireshark -h and the help information
shown in Example 10.1, “Help information available from Wireshark™ (or
something similar) should be printed.

Example 10.1. Help information available from Wireshark
Wireshark 1.9.0 (SVN Rev 47047 from /trunk)
Interactively dump and analyze network traffic.

See http://www.wireshark.org for more information.
Copyright 1998-2013 Gerald Combs <gerald@wireshark.org> and contribu
This is free software; see the source for copying conditions. There
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR F
Usage: wireshark [options] ... [<infile>]

Capture interface:

-1 <interface> name or idx of interface (def: first non-

-f <capture filter> packet filter in libpcap filter syntax

-s <snaplen> packet snapshot length (def: 65535)

-p don't capture in promiscuous mode

-k start capturing immediately (def: do noth

-S update packet display when new packets ar

-1 turn on automatic scrolling while -S is i

-1 capture in monitor mode, if available

-B <buffer size> size of kernel buffer (def: 1MB)

-y <link type> link layer type (def: first appropriate)

-D print list of interfaces and exit

-L print list of link-layer types of iface a
Capture stop conditions:

-Cc <packet count> stop after n packets (def: infinite)

-a <autostop cond.> ... duration:NUM - stop after NUM seconds

filesize:NUM - stop this file after NUM K
files:NUM - stop after NUM files
Capture output:
-b <ringbuffer opt.> ... duration:NUM - switch to next file after

Input file:
-r <infile>

Processing:
-R <read filter>
-n
-N <name resolve flags>

User interface:
-C <config profile>
-d <display filter>
-g <packet number>
-J <jump filter>

-]

-m

-t ad|a|r|d|dd]|e
-u s|hms

-X <key>:<value>
-z <statistics>

Output:
-w <outfile]|->

Miscellaneous:
-h
-V
-P <key>:<path>

-0 <name>:<value> ...
-K <keytab>
--display=DISPLAY

filesize:NUM - switch to next file after
files:NUM - ringbuffer: replace after

set the filename to read from (no pipes ¢

packet filter in Wireshark display filter
disable all name resolutions (def: all en
enable specific name resolution(s): "mntC

start with specified configuration profil
start with the given display filter

go to specified packet number after "-r"
jump to the first packet matching the (di
filter

search backwards for a matching packet af
set the font name used for most text
output format of time stamps (def: r: rel
output format of seconds (def: s: seconds
eXtension options, see man page for detai
show various statistics, see man page for

set the output filename (or '-' for stdou

display this help and exit

display version info and exit
persconf:path - personal configuration fi
persdata:path - personal data files
override preference or recent setting
keytab file to use for kerberos decryptic
X display to use

We will examine each of the command line options in turn.

The first thing to notice is that issuing the command wireshark by itself will
bring up Wireshark. However, you can include as many of the command line
parameters as you like. Their meanings are as follows (in alphabetical order):
XXX - is the alphabetical order a good choice? Maybe better task based?

-a <capture autostop condition>

Specify a criterion that specifies when Wireshark is to stop writing to a
capture file. The criterion is of the form test:value, where test is one of:

duration:value
Stop writing to a capture file after value of seconds have elapsed.
filesize:value

Stop writing to a capture file after it reaches a size of value kilobytes
(where a kilobyte is 1000 bytes, not 1024 bytes). If this option is used
together with the -b option, Wireshark will stop writing to the current
capture file and switch to the next one if filesize is reached.

files:value
Stop writing to capture files after value number of files were written.
-b <capture ring buffer option>

If a maximum capture file size was specified, this option causes Wireshark
to run in "ring buffer" mode, with the specified number of files. In "ring
buffer" mode, Wireshark will write to several capture files. Their name is
based on the number of the file and on the creation date and time.

When the first capture file fills up Wireshark will switch to writing to the
next file, and so on. With the files option it's also possible to form a "ring
buffer." This will fill up new files until the number of files specified, at
which point the data in the first file will be discarded so a new file can be
written.

If the optional duration is specified, Wireshark will also switch to the next
file when the specified number of seconds has elapsed even if the current
file is not completely fills up.

duration:value

Switch to the next file after value seconds have elapsed, even if the
current file is not completely filled up.

filesize:value

Switch to the next file after it reaches a size of value kilobytes (where

a kilobyte is 1000 bytes, not 1024 bytes).
files:value

Begin again with the first file after value number of files were written
(form a ring buffer).

-B <capture buffer size (Win32 only)>

Win32 only: set capture buffer size (in MB, default is 1MB). This is used
by the capture driver to buffer packet data until that data can be written to
disk. If you encounter packet drops while capturing, try to increase this
size.

-c <capture packet count>

This option specifies the maximum number of packets to capture when
capturing live data. It would be used in conjunction with the -k option.

Print a list of the interfaces on which Wireshark can capture, and exit. For
each network interface, a number and an interface name, possibly followed
by a text description of the interface, is printed. The interface name or the
number can be supplied to the -i flag to specify an interface on which to
capture.

This can be useful on systems that don't have a command to list them (e.g.,
Windows systems, or UNIX systems lacking ifconfig -a); the number can
be useful on Windows 2000 and later systems, where the interface name is a
somewhat complex string.

Note that "can capture" means that Wireshark was able to open that device
to do a live capture; if, on your system, a program doing a network capture
must be run from an account with special privileges (for example, as root),
then, if Wireshark is run with the -D flag and is not run from such an
account, it will not list any interfaces.

-f <capture filter>

This option sets the initial capture filter expression to be used when
capturing packets.

-g <packet number>

After reading in a capture file using the -r flag, go to the given packet
number.

The -h option requests Wireshark to print its version and usage instructions
(as shown above) and exit.

-i <capture interface>
Set the name of the network interface or pipe to use for live packet capture.

Network interface names should match one of the names listed in
wireshark -D (described above); a number, as reported by wireshark -D,
can also be used. If you're using UNIX, netstat -i or ifconfig -a might also
work to list interface names, although not all versions of UNIX support the
-a flag to ifconfig.

If no interface is specified, Wireshark searches the list of interfaces,
choosing the first non-loopback interface if there are any non-loopback
interfaces, and choosing the first loopback interface if there are no non-
loopback interfaces; if there are no interfaces, Wireshark reports an error
and doesn't start the capture.

Pipe names should be either the name of a FIFO (named pipe) or ""-" to
read data from the standard input. Data read from pipes must be in standard
libpcap format.

-J <jump filter>

After reading in a capture file using the -r flag, jump to the first packet
which matches the filter expression. The filter expression is in display filter
format. If an exact match cannot be found the first packet afterwards is
selected.

Use this option after the -J option to search backwards for a first packet to
go to.

-k
The -k option specifies that Wireshark should start capturing packets
immediately. This option requires the use of the -i parameter to specify the
interface that packet capture will occur from.

-1
This option turns on automatic scrolling if the packet list pane is being
updated automatically as packets arrive during a capture (as specified by
the -S flag).

-L
List the data link types supported by the interface and exit.

-m
This option sets the name of the font used for most text displayed by
Wireshark. XXX - add an example!

-n

Disable network object name resolution (such as hostname, TCP and UDP
port names).

-N <name resolving flags>

Turns on name resolving for particular types of addresses and port numbers;
the argument is a string that may contain the letters m to enable MAC
address resolution, n to enable network address resolution, and t to enable
transport-layer port number resolution. This overrides -n if both -N and -n
are present. The letter C enables concurrent (asynchronous) DNS lookups.

-0 <preference/recent settings>

Sets a preference or recent value, overriding the default value and any value
read from a preference/recent file. The argument to the flag is a string of the
form prefname:value, where prefname is the name of the preference (which
is the same name that would appear in the preference/recent file), and value
is the value to which it should be set. Multiple instances of -0 <preference
settings> can be given on a single command line.

An example of setting a single preference would be:
wireshark -o mgcp.display_dissect_tree:TRUE
An example of setting multiple preferences would be:

wireshark -o mgcp.display_dissect_tree:TRUE -0
mgcp.udp.callagent_port:2627

Tip!

« You can get a list of all available preference strings from
the preferences file, see Appendix A, Files and Folders.

User access tables can be overridden using "uat," followed by the UAT file
name and a valid record for the file:

wireshark -o "uat:user_dlIts:\" User 0
(DLT: 147)\'1,\" http\",\" 0\",\"\",\" 0\'1,\'l\ll "

The example above would dissect packets with a libpcap data link type 147
as HTTP, just as if you had configured it in the DLT_USER protocol
preferences.

Don't put the interface into promiscuous mode. Note that the interface
might be in promiscuous mode for some other reason; hence, -p cannot be
used to ensure that the only traffic that is captured is traffic sent to or from
the machine on which Wireshark is running, broadcast traffic, and multicast
traffic to addresses received by that machine.

-P <path setting>

Special path settings usually detected automatically. This is used for special
cases, e.g. starting Wireshark from a known location on an USB stick.

The criterion is of the form key:path, where key is one of:
persconf:path

path of personal configuration files, like the preferences files.
persdata:path

path of personal data files, it's the folder initially opened. After the
initialization, the recent file will keep the folder last used.

-Q
This option forces Wireshark to exit when capturing is complete. It can be
used with the -c option. It must be used in conjunction with the -i and -w
options.

-r <infile>

This option provides the name of a capture file for Wireshark to read and
display. This capture file can be in one of the formats Wireshark
understands.

-R <read (display) filter>

This option specifies a display filter to be applied when reading packets
from a capture file. The syntax of this filter is that of the display filters
discussed in Section 6.3, “Filtering packets while viewing”. Packets not
matching the filter are discarded.

-s <capture snaplen>

This option specifies the snapshot length to use when capturing packets.
Wireshark will only capture <snaplen> bytes of data for each packet.

This option specifies that Wireshark will display packets as it captures
them. This is done by capturing in one process and displaying them in a
separate process. This is the same as "Update list of packets in real time" in
the Capture Options dialog box.

-t <time stamp format>

This option sets the format of packet timestamps that are displayed in the
packet list window. The format can be one of:

¢ r relative, which specifies timestamps are displayed relative to the first
packet captured.

¢ a absolute, which specifies that actual times be displayed for all
packets.

¢ ad absolute with date, which specifies that actual dates and times be
displayed for all packets.

¢ d delta, which specifies that timestamps are relative to the previous
packet.

e e epoch, which specifies that timestamps are seconds since epoch (Jan
1, 1970 00:00:00)

The -v option requests Wireshark to print out its version information and
exit.

-w <savefile>

This option sets the name of the savefile to be used when saving a capture
file.

-y <capture link type>

If a capture is started from the command line with -k, set the data link type
to use while capturing packets. The values reported by -L are the values that
can be used.

-X <eXtension option>

Specify an option to be passed to a TShark module. The eXtension option is
in the form extension_key:value, where extension_key can be:

lua_script:lua_script_filename; Tells Wireshark to load the given script in
addition to the default Lua scripts.

-z <statistics-string>

Get Wireshark to collect various types of statistics and display the result in
a window that updates in semi-real time. XXX - add more details here!

10.3. Packet colorization

A very useful mechanism available in Wireshark is packet colorization. You can
set-up Wireshark so that it will colorize packets according to a filter. This allows
you to emphasize the packets you are (usually) interested in.

Tip!

You will find a lot of Coloring Rule examples at the Wireshark
* Wiki Coloring Rules page at

http://wiki.wireshark.org/ColoringRules.

There are two types of coloring rules in Wireshark; temporary ones that are only
used until you quit the program, and permanent ones that will be saved to a
preference file so that they are available on a next session.

Temporary coloring rules can be added by selecting a packet and pressing the
<ctrl> key together with one of the number keys. This will create a coloring rule
based on the currently selected conversation. It will try to create a conversation
filter based on TCP first, then UDP, then IP and at last Ethernet. Temporary
filters can also be created by selecting the "Colorize with Filter > Color X" menu
items when rightclicking in the packet-detail pane.

To permanently colorize packets, select the Coloring Rules... menu item from
the View menu; Wireshark will pop up the "Coloring Rules" dialog box as
shown in Figure 10.1, “The "Coloring Rules" dialog box™.

Figure 10.1. The "Coloring Rules" dialog box

http://wiki.wireshark.org/ColoringRules

Wireshark: Coloring Rules |Z||§| |g|

Edit Filker Order
[List is processed in order until match is Found]
WECY
Mame Skring
bep.analysis.flag: tep.analysis flass @
cokp cokp
tpkk_long tpkk length =519
arp arp
smb smb || nbss || nbns || nbipx || ipxsap || netbios Move]
http http || tcp.port == 80 selected Filber
Manage uninterested ipx || stp || hsrp || eigrp || cdp up ar dawn
deerpc drerpc
ngport... kep syn tep.Flags syn == 1 || kcp.flags.fin == 1 || tcp.Flags.reset == 1
kcp kcp
@lmpurt... udp udp % y
nbss nbss
s s
@Help @QK l [Nr Apply] l Eﬁave [R Close

Once the Coloring Rules dialog box is up, there are a number of buttons you can
use, depending on whether or not you have any color filters installed already.

Note!

You will need to carefully select the order the coloring rules are
_listed as they are applied in order from top to bottom. So, more
| #1 specific rules need to be listed before more general rules. For
example, if you have a color rule for UDP before the one for
DNS, the color rule for DNS will never be applied (as DNS uses
UDP, so the UDP rule will match first).

If this is the first time you have used Coloring Rules, click on the New button
which will bring up the Edit color filter dialog box as shown in Figure 10.2,
“The "Edit Color Filter" dialog box”.

Figure 10.2. The "Edit Color Filter" dialog box

Witeehake Edit Golonbilier M=
Filter

Mame: 1 arp

Display Colors

[Fu:uregru:uund Colar, .. [Backgru:uund Colar, .,]

‘ @ (] 4 ‘ x Zancel

In the Edit Color dialog box, simply enter a name for the color filter, and enter a
filter string in the Filter text field. Figure 10.2, “The "Edit Color Filter" dialog
box” shows the values arp and arp which means that the name of the color filter
is arp and the filter will select protocols of type arp. Once you have entered
these values, you can choose a foreground and background color for packets that
match the filter expression. Click on Foreground color... or Background
color... to achieve this and Wireshark will pop up the Choose
foreground/background color for protocol dialog box as shown in Figure 10.3,

“The "Choose color" dialog box”.

Figure 10.3. The "Choose color" dialog box

Wireshark: Choose background color for “arp™

Hue: 214 | Red: 214 |3
Saturation: Green: 231 :
Yalue: v Blue: |25 o

Color Mame: | #D6ETFF

e
w
e
w

Fz] [xom

Select the color you desire for the selected packets and click on OK.

Note!

—» You must select a color in the colorbar next to the colorwheel to
— load values into the RGB values. Alternatively, you can set the
values to select the color you want.

Figure 10.4, “Using color filters with Wireshark” shows an example of several
color filters being used in Wireshark. You may not like the color choices,
however, feel free to choose your own.

If you are uncertain which coloring rule actually took place for a specific packet,
have a look at the [Coloring Rule Name: ...] and [Coloring Rule String: ...]
fields.

Figure 10.4. Using color filters with Wireshark

test.pcap - Wireshark

File Edit Yiew Go Capture Analyze Stakistics Help

E] Filker: I

B W e ee B x % 3R @3 o F g[||%[@.e.
4 +Expressi0n... %glear o apply

Ma, - Time Source Destination
15 z Broadc

o]
- 299139 192.168.0.2

025659) 2z24.0.0.22

048652 . 239.255.255.250

[i

Name query NESTAT *<00> 00> <002 <0(

w3 Membership Report

Source port: 3193 Destination pot

055053 5 .168.0.2
082038 L168.0.255

= captured)
Arrival Time: Jun 22, 2004 20: B. 863056000
[Tyme delta from previous packet: 0.000000000 seconds]
[Time since reference or first frame: 0.000000000 seconds]
Frame Number: 1
Packet Length: 42 bytes
Capture Length: 42 bytes
[Frame 15 marked: False]
[Protocols 1m frame: ethiarp)
[Coloring Rule Mame: arp]
[Coloring Rule String: arp]

Source port: 1900 Destination por
Registration ME NBLO0&1D<CO:x

i Evharmst TT Ceee 167 188 A 2 AN AR Sd-Wierd-A3Y Nat s Brosdesct FEF FF FF FF FF FFY

|<

i:rame {Fframe), 42 bytes

[P 12000 120mM: 0

10.4. Control Protocol dissection

The user can control how protocols are dissected.

Each protocol has its own dissector, so dissecting a complete packet will
typically involve several dissectors. As Wireshark tries to find the right dissector
for each packet (using static "routes" and heuristics "guessing"), it might choose
the wrong dissector in your specific case. For example, Wireshark won't know if
you use a common protocol on an uncommon TCP port, e.g. using HTTP on
TCP port 800 instead of the standard port 80.

There are two ways to control the relations between protocol dissectors: disable
a protocol dissector completely or temporarily divert the way Wireshark calls the
dissectors.

10.4.1. The "Enabled Protocols" dialog box

The Enabled Protocols dialog box lets you enable or disable specific protocols;
all protocols are enabled by default. When a protocol is disabled, Wireshark
stops processing a packet whenever that protocol is encountered.

Note!

Disabling a protocol will prevent information about higher-layer
protocols from being displayed. For example, suppose you

//e disabled the IP protocol and selected a packet containing
Ethernet, IP, TCP, and HTTP information. The Ethernet
information would be displayed, but the IP, TCP and HTTP
information would not - disabling IP would prevent it and the
other protocols from being displayed.

To enable/disable protocols select the Enabled Protocols... item from the
Analyze menu; Wireshark will pop up the "Enabled Protocols" dialog box as
shown in Figure 10.5, “The "Enabled Protocols" dialog box”.

Figure 10.5. The "Enabled Protocols" dialog box

" Wireshark: Enabled Protocols

Enabled Protocols

Status Prokocol * Description
[Zdparityfec Pro-MPEG Code of Practice #3 release 2 FEC
[« ICOMENS 3Com ¥M3S Encapsulation
[+ JEPP2 All 3EPP2 Al
[s0z.11 MGT IEEE 802,11 wireless LAMN management Frame
[soz.11 R adiotap IEEE 802,11 Radiotap Capture header
5023 Slow protocaols Slow Prokocols
M g Plan 9 9P
M asLt ATM AAL1
[¥ YT ATH AL
[aarp Appletalk Address Resolution Protocol
[acap Application Configuration Access Protocol
[« ACP133 ACP133 Attribute Svntaxes
[BCSE 150 8650-1 OS5I Association Control Service
4 actrace AudioCodes Trunk Trace
[aop Aruba - Aruba Discovery Probocol
[aFp Apple Filing Protocol
[aFs (Rx) Andrew File System (AF3)
1 aH Authentication Header
[« AIM A0L Instant Messenger
4] AIM Administration AIM Administr akive

£ >

Disabling a protocol prevents higher laver protocols From being displaved

To disable or enable a protocol, simply click on it using the mouse or press the
space bar when the protocol is highlighted. Note that typing the first few letters
of the protocol name when the Enabled Protocols dialog box is active will
temporarily open a search text box and automatically select the first matching
protocol name (if it exists).

’ Enable all ” Disable Al ” Invvert]

‘ o H o apply H el ave H & cancel ‘

Warning!

You have to use the Save button to save your settings. The OK
or Apply buttons will not save your changes permanently, so
they will be lost when Wireshark is closed.

You can choose from the following actions:

1.

2.

7.

Enable All: Enable all protocols in the list.

Disable All: Disable all protocols in the list.

Invert: Toggle the state of all protocols in the list.

OK: Apply the changes and close the dialog box.
Apply: Apply the changes and keep the dialog box open.

Save: Save the settings to the disabled_protos, see Appendix A, Files and
Folders for details.

Cancel: Cancel the changes and close the dialog box.

10.4.2. User Specified Decodes

The "Decode As" functionality let you temporarily divert specific protocol
dissections. This might be useful for example, if you do some uncommon
experiments on your network.

Decode As is accessed by selecting the Decode As... item from the Analyze
menu; Wireshark will pop up the "Decode As" dialog box as shown in
Figure 10.6, “The "Decode As" dialog box”.

Figure 10.6. The "Decode As" dialog box

Wireshark: Decode As E] E| f@

Link. | Metwork, | Transport

(default) -
el

ACAP

) p— AJP13

[TCP | source (31968) W portis) as | ax4000

-) BEEFP

BisP

CAST

Il

Clear CIMD v

(& Heir o I ‘ o apply ‘ ‘ X Close ‘

{(*) Decode

(") Do not decode

Show Current

The content of this dialog box depends on the selected packet when it was
opened.

Warning!

These settings will be lost if you quit Wireshark or change

I\ profile, unless you save the entries in the Show User Specified
Decodes... windows (Section 10.4.3, “Show User Specified
Decodes”).

1. Decode: Decode packets the selected way.
2. Do not decode: Do not decode packets the selected way.

3. Link/Network/Transport: Specify the network layer at which "Decode
As" should take place. Which of these pages are available depends on the
content of the selected packet when this dialog box is opened.

4. Show Current: Open a dialog box showing the current list of user specified
decodes.

5. OK: Apply the currently selected decode and close the dialog box.

6. Apply: Apply the currently selected decode and keep the dialog box open.

7. Cancel: Cancel the changes and close the dialog box.

10.4.3. Show User Specified Decodes

This dialog box shows the currently active user specified decodes. These entries
can be saved into current profile for later session.

Figure 10.7. The "Decode As: Show" dialog box

I Wireshark: DecodelAs: Show =)))]

Table Value | Initial | Current
TCP port 8081 (none) HTTP
TCP port 3196 (none) AlM

Help || oK | | Save | | Clear

1. OK: Close this dialog box.
2. Save: Save the entries in the table into current profile.

3. Clear: Removes all user specified decodes without updating the profile.

10.5. Preferences

There are a number of preferences you can set. Simply select the Preferences...
menu item from the Edit menu; and Wireshark will pop up the Preferences
dialog box as shown in Figure 10.8, “The preferences dialog box”, with the
"User Interface" page as default. On the left side is a tree where you can select
the page to be shown.

Note!

_ Preference settings are added frequently. For a recent
E4l explanation of the preference pages and their settings have a

look at the Wireshark Wiki Preferences page at
http://wiki.wireshark.org/Preferences.

Warning!

£\ The OK or Apply button will not save the preference settings,
you'll have to save the settings by clicking the Save button.

e The OK button will apply the preferences settings and close the dialog.

e The Apply button will apply the preferences settings and keep the dialog
open.

e The Save button will apply the preferences settings, save the settings on the
hard disk and keep the dialog open.

e The Cancel button will restore all preferences settings to the last saved
state.

Figure 10.8. The preferences dialog box

http://wiki.wireshark.org/Preferences

Wireshark: Preferences

User Interface

Layouk Packet list selection mode: [Selects ﬂ
Colurins = R
Font Protocol kree selection mode: [_SElects l_-
e Save window position:

Capture

Prinking Save window size;

Marme Resolution

Save maximized state: v
Protocols

Dpen a console window | Automatic (advanced user) W |

"File Open" dialag behaviar: (%) Remember last directary () Always start in:

Directory: !- |
I

"File Open" preview timeout: |3 |

—

"Open Recent" max, list entries: |20]
Ask For unsaved capture Files:
w'rap ko end/beginning of file during a find:

l x Cancel

[QK H o apply H Eﬁave

10.5.1. Interface Options

In the Capture preferences it is possible to configure several options for the
interfaces available on your computer. Select the Capture pane and press the
Interfaces: Edit button. In this window it is possible to change the default link-
layer header type for the interface, add a comment or choose to hide a interface
from other parts of the program.

Figure 10.9. The interface options dialog box

N s AT P T ETeT e ce s INTEr Fa e U P DS = Profi [e Tatl s

Interfaces

Device Description Default link-layer Comment Hide?
[etho Ethernet Internet Mo
any Pseudo-device that captures on all interfaces Linux cooked-mode capture Mo
lo Ethernet Local Mo
Properties
Device: etho
Description:

Default link-layer header type: [Ethernet

4k

Comment: |Intemet]

Hide interface?: [

=

(&=

Each row contains options for each interface available on your computer.
¢ Device: the device name provided by the operating system.
e Description: provided by the operating system.

e Default link-layer: each interface may provide several link-layer header
types. The default link-layer chosen here is the one used when you first start
Wireshark. It is also possible to change this value in Section 4.5, “The
"Capture Options" dialog box” when you start a capture. For a detailed
description, see Section 4.12, “Link-layer header type”.

e Comment: a user provided description of the interface. This comment will
be used as a description instead of the operating system description.

e Hide?: enable this option to hide the interface from other parts of the
program.

10.6. Configuration Profiles

Configuration Profiles can be used to configure and use more than one set of
preferences and configurations. Select the Configuration Profiles... menu item
from the Edit menu, or simply press Shift-Ctrl-A; and Wireshark will pop up the
Configuration Profiles dialog box as shown in Figure 10.10, “The configuration
profiles dialog box”. It is also possible to click in the "Profile" part of the

statusbar to popup a menu with available Configuration Profiles (Figure 3.22,
“The Statusbar with a configuration profile menu”).

Configuration files stored in the Profiles:

Preferences (preferences) (Section 10.5, “Preferences”)

Capture Filters (cfilters) (Section 6.6, “Defining and saving filters”)

Display Filters (dfilters) (Section 6.6, “Defining and saving filters”)

Coloring Rules (colorfilters) (Section 10.3, “Packet colorization™)

Disabled Protocols (disabled_protos) (Section 10.4.1, “The "Enabled
Protocols" dialog box”)

User Accessible Tables:
o Custom HTTP headers (custom_http_header_fields)
o Custom IMF headers (imf_header_fields)
o Custom LDAP AttributeValue types (custom_ldap_attribute_types)

o Display Filter Macros (dfilter_macros) (Section 10.8, “Display Filter
Macros”)

o ESS Category Attributes (ess_category_attributes) (Section 10.9, “ESS
Category Attributes”)

o GeolP Database Paths (geoip_db_paths) (Section 10.10, “GeolP
Database Paths™)

o K12 Protocols (k12_protos) (Section 10.19, “Tektronix K12xx/15 RF5
protocols Table™)

o Object Identifier Names and Associated Syntaxes (Section 10.12,
“Object Identifiers”)

o PRES Users Context List (pres_context_list) (Section 10.13, “PRES
Users Context List”)

o SCCP Users Table (sccp_users) (Section 10.14, “SCCP users Table”)

o SNMP Enterprise Specific Trap Types (snmp_specific_traps)
(Section 10.17, “SNMP Enterprise Specific Trap Types”)

o SNMP Users (snmp_users) (Section 10.18, “SNMP users Table)

o User DLTs Table (user_dlts) (Section 10.20, “User DLTs protocol
table”)

o IKEv2 decryption table (ikev2_decryption_table) (Section 10.11,
“IKEv2 decryption table™)

e Changed dissector assignments (decode_as_entries), which can be set in
Decode As... dialog box (Section 10.4.2, “User Specified Decodes”), and
further saved in the User Specified Decodes... window (Section 10.4.3,
“Show User Specified Decodes”).

e Some recent settings (recent), such as pane sizes in the Main window
(Section 3.3, “The Main window”), column widths in the packet list
(Section 3.18, “The "Packet List" pane”), all selections in the "View" menu
(Section 3.7, “The "View" menu”) and the last directory navigated to in the
File Open dialog.

Other configurations

' #1 All other configurations are stored in the personal configuration
folder, and are common to all profiles.

Figure 10.10. The configuration profiles dialog box

Edit Configuration Profiles
| Default
Tactical analysis

| Compare traffic
Only IP and TCP
|| Wireless
| t{ | Copy | 'No reassembly

| (O Delete |

Properties

Profile name: |Wireless

| @ Help | 4 Apply ||®§ancel | o OK

New

This button adds a new profile to the profiles list. The name of the created
profile is "New profile" and can be changed in the Properties field.

Copy

This button adds a new profile to the profiles list, copying all configuration
from the profile currently selected in the list. The name of the created
profile is the same as the copied profile, with the text "(copy)" applied. The
name can be changed in the Properties field.

Delete

This button deletes the selected profile, including all configuration files
used in this profile. It is not possible to delete the "Default" profile.

Configuration Profiles

You can select a configuration profile from this list (which will fill in the

profile name in the fields down at the bottom of the dialog box).
Profile name:

You can change the name of the currently selected profile here.
Used as a folder name

__ The profile name will be used as a folder name in the
1 configured "Personal configurations" folder. If adding

multiple profiles with the same name, only one profile will
be created.

Illegal characters

On Windows the profile name cannot start or end with a
_» period (.), and cannot contain any of the following
~ characters: \/: *? " <> |

On Unix the profile name cannot contain the '/' character.
OK

This button saves all changes, applies the selected profile and closes the
dialog.

Apply

This button saves all changes, applies the selected profile and keeps the
dialog open.

Cancel

Close this dialog. This will discard unsaved settings, new profiles will not
be added and deleted profiles will not be deleted.

Help

Show this help page.

10.7. User Table

The User Table editor is used for managing various tables in wireshark. Its main
dialog works very similarly to that of Section 10.3, “Packet colorization™.

10.8. Display Filter Macros

Display Filter Macros are a mechanism to create shortcuts for complex filters.
For example defining a display filter macro named tcp_conv whose text is (
(ip.src == $1 and ip.dst == $2 and tcp.srcport == $3 and tcp.dstport == $4)
or (ip.src == $2 and ip.dst == $1 and tcp.srcport == $4 and tcp.dstport ==
$3)) would allow to use a display filter like
${tcp_conv:10.1.1.2;10.1.1.3;1200;1400} instead of typing the whole filter.

Display Filter Macros can be managed with a Section 10.7, “User Table” by
selecting Analyze — Display Filter Macros from the menu. The User Table has
the following fields

Name
The name of the macro.
Text

The replacement text for the macro it uses $1, $2, $3, ... as the input
arguments.

10.9. ESS Category Attributes

Wireshark uses this table to map ESS Security Category attributes to textual
representations. The values to put in this table are usually found in a XML SPIF,
which is used for defining security labels.

This table is handled by an Section 10.7, “User Table” with the following fields.

Tag Set

An Object Identifier representing the Category Tag Set.
Value

The value (Label And Cert Value) representing the Category.
Name

The textual representation for the value.

http://www.xmlspif.org/

10.10. GeolIP Database Paths

If your copy of Wireshark supports MaxMind's GeolP library, you can use their
databases to match IP addresses to countries, cites, autonomous system numbers,
ISPs, and other bits of information. Some databases are available at no cost,
while others require a licensing fee. See the MaxMind web site for more
information.

This table is handled by an Section 10.7, “User Table” with the following fields.

Database pathname

This specifies a directory containing GeolP data files. Any files beginning
with Geo and ending with .dat will be automatically loaded. A total of 8
files can be loaded.

The locations for your data files are up to you, but /usr/share/GeoIP
(Linux), c:\GeoIP (Windows), C:\Program Files\Wireshark\GeoIP
(Windows) might be good choices.

http://www.maxmind.com/
http://www.maxmind.com/download/geoip/database/
http://www.maxmind.com/app/ip-location

10.11. IKEv2 decryption table

Wireshark can decrypt Encrypted Payloads of IKEv2 (Internet Key Exchange
version 2) packets if necessary information is provided. Note that you can
decrypt only IKEv2 packets with this feature. If you want to decrypt IKEv1
packets or ESP packets, use Log Filename setting under ISAKMP protocol
preference or settings under ESP protocol preference respectively.

This table is handled by an Section 10.7, “User Table” with the following fields.
Initiator's SPI

Initiator's SPI of the IKE_SA. This field takes hexadecimal string without
"0x" prefix and the length must be 16 hex chars (represents 8 octets).

Responder's SPI

Responder's SPI of the IKE_SA. This field takes hexadecimal string
without "0x" prefix and the length must be 16 hex chars (represents 8
octets).

SK_ei

Key used to encrypt/decrypt IKEv2 packets from initiator to responder.
This field takes hexadecimal string without "0x" prefix and its length must
meet the requirement of the encryption algorithm selected.

SK_er

Key used to encrypt/decrypt IKEv2 packets from responder to initiator.
This field takes hexadecimal string without "0x" prefix and its length must
meet the requirement of the encryption algorithm selected.

Encryption Algorithm
Encryption algorithm of the IKE_SA.

SK_ai

Key used to calculate Integrity Checksum Data for IKEv2 packets from
responder to initiator. This field takes hexadecimal string without "0x"
prefix and its length must meet the requirement of the integrity algorithm
selected.

SK_ar

Key used to calculate Integrity Checksum Data for IKEv2 packets from
initiator to responder. This field takes hexadecimal string without "0x"
prefix and its length must meet the requirement of the integrity algorithm
selected.

Integrity Algorithm

Integrity algorithm of the IKE_SA.

10.12. Object Identifiers

Many protocols that use ASN.1 use Object Identifiers (OIDs) to uniquely
identify certain pieces of information. In many cases, they are used in an
extension mechanism so that new object identifiers (and associated values) may
be defined without needing to change the base standard.

Whilst Wireshark has knowledge about many of the OIDs and the syntax of their
associated values, the extensibility means that other values may be encountered.

Wireshark uses this table to allow the user to define the name and syntax of
Object Identifiers that Wireshark does not know about (for example, a privately
defined X.400 extension). It also allows the user to override the name and syntax
of Object Identifiers that Wireshark does know about (e.g. changing the name
"id-at-countryName" to just "c").

This table is handled by an Section 10.7, “User Table” with the following fields.

OID
The string representation of the Object Identifier e.g. "2.5.4.6".
Name

The name that should be displayed by Wireshark when the Object Identifier
is dissected e.g. ("c");

Syntax

The syntax of the value associated with the Object Identifier. This must be
one of the syntaxes that Wireshark already knows about (e.g.
"PrintableString").

10.13. PRES Users Context List

Wireshark uses this table to map a presentation context identifier to a given
object identifier when the capture does not contain a PRES package with a
presentation context definition list for the conversation.

This table is handled by an Section 10.7, “User Table” with the following fields.

Context Id

An Integer representing the presentation context identifier for which this
association is valid.

Syntax Name OID

The object identifier representing the abstract syntax name, which defines
the protocol that is carried over this association.

10.14. SCCP users Table

Wireshark uses this table to map specific protocols to a certain DPC/SSN
combination for SCCP.

This table is handled by an Section 10.7, “User Table” with the following fields.
Network Indicator

An Integer representing the network indicator for which this association is
valid.

Called DPCs

An range of integers representing the dpcs for which this association is
valid.

Called SSNs

An range of integers representing the ssns for which this association is
valid.

User protocol

The protocol that is carried over this association

10.15. SMI (MIB and PIB) Modules

If your copy of Wireshark supports libSMI, you can specify a list of MIB and
PIB modules here. The COPS and SNMP dissectors can use them to resolve

OIDs.
Module name

The name of the module, e.g. IF-MIB.

10.16. SMI (MIB and PIB) Paths

If your copy of Wireshark supports libSMI, you can specify one or more paths to
MIB and PIB modules here.

Directory name

A module directory, e.g. /usr/local/snmp/mibs. Wireshark automatically
uses the standard SMI path for your system, so you usually don't have to
add anything here.

10.17. SNMP Enterprise Specific Trap Types

Wireshark uses this table to map specific-trap values to user defined descriptions
in a Trap PDU. The description is shown in the packet details specific-trap
element.

This table is handled by an Section 10.7, “User Table” with the following fields.

Enterprise OID

The object identifier representing the object generating the trap.
Trap Id

An Integer representing the specific-trap code.
Description

The description to show in the packet details.

10.18. SNMP users Table

Wireshark uses this table to verify authentication and to decrypt encrypted
SNMPv3 packets.

This table is handled by an Section 10.7, “User Table” with the following fields.
Engine ID

If given this entry will be used only for packets whose engine id is this.
This field takes an hexadecimal string in the form 0102030405.

Username

This is the userName. When a single user has more than one password for
different SNMP-engines the first entry to match both is taken, if you need a
catch all engine-id (empty) that entry should be the last one.

Authentication model
Which auth model to use (either "MD5" or "SHA1").
Password

The authentication password. Use \xDD' for unprintable characters. An
hexadecimal password must be entered as a sequence of \xDD' characters.
For example the hex password 010203040506 must be entered as
"x01\x02\x03\x04\x05\x06'.

Privacy protocol
Which encryption algorithm to use (either "DES" or "AES").
Privacy password

The privacy password. Use \xDD' for unprintable characters. An
hexadecimal password must be entered as a sequence of \xDD' characters.
For example the hex password 010203040506 must be entered as
"x01\x02\x03\x04\x05\x06'.

10.19. Tektronix K12xx/15 RF5 protocols Table

The Tektronix K12xx/15 rf5 file format uses helper files (*.stk) to identify the
various protocols that are used by a certain interface. Wireshark doesn't read
these stk files, it uses a table that helps it identify which lowest layer protocol to
use.

Stk file to protocol matching is handled by an Section 10.7, “User Table” with
the following fields.

Match string

A partial match for an stk filename, the first match wins, so if you have a
specific case and a general one the specific one must appear first in the list.

Protocol

This is the name of the encapsulating protocol (the lowest layer in the
packet data) it can be either just the name of the protocol (e.g. mtp2,
eth_witoutfcs, sscf-nni) or the name of the encapsulation protocol and the
"application" protocol over it separated by a colon (e.g sscop:sscf-nni,
sscop:alcap, sscop:nbap, ...)

10.20. User DLTs protocol table

When a pcap file uses one of the user DLTs (147 to 162) wireshark uses this
table to know which protocol(s) to use for each user DLT.

This table is handled by an Section 10.7, “User Table” with the following fields.
DLT

One of the user dlts.
Payload protocol

This is the name of the payload protocol (the lowest layer in the packet
data). (e.g. "eth" for ethernet, "ip" for IPv4)

Header size

If there is a header protocol (before the payload protocol) this tells which
size this header is. A value of 0 disables the header protocol.

Header protocol
The name of the header protocol to be used (uses "data" as default).
Trailer size

If there is a trailer protocol (after the payload protocol) this tells which size
this trailer is. A value of 0 disables the trailer protocol.

Trailer protocol

The name of the trailer protocol to be used (uses "data" as default).

Chapter 11. Lua Support in
Wireshark

Table of Contents

11.1. Introduction

11.2. Example of Dissector written in Lua
11.3. Example of Listener written in Lua
11.4. Wireshark's I.ua API Reference Manual
11.5. Saving capture files

11.5.1. Dumper

11.5.2. PseudoHeader
11.6. Obtaining dissection data

11.6.1. Field

11.6.2. FieldInfo

11.6.3. Non Method Functions
11.7. GUI support

11.7.1. ProgDlg

11.7.2. TextWindow

11.7.3. Non Method Functions
11.8. Post-dissection packet analysis

11.8.1. Listener
11.9. Obtaining packet information

11.9.1. Address

11.9.2. Column

11.9.3. Columns

11.9.4. NSTime

11.9.5. Pinfo

11.9.6. PrivateTable
11.10. Functions for writing dissectors

11.10.1. Dissector

11.10.2. DissectorTable

11.10.3. Pref

11.10.4. Prefs

11.10.5. Proto

11.10.6. ProtoField
11.10.7. Non Method Functions
11.11. Adding information to the dissection tree
11.11.1. Treeltem
11.12. Functions for handling packet data
11.12.1. ByteArray
11.12.2. Int
11.12.3. Tvb
11.12.4. TvbRange
11.12.5. Ulnt
11.13. Utility Functions
11.13.1. Dir
11.13.2. Non Method Functions

11.1. Introduction

Wireshark has an embedded Lua interpreter. Lua is a powerful light-weight
programming language designed for extending applications. Lua is designed and
implemented by a team at PUC-Rio, the Pontifical Catholic University of Rio de
Janeiro in Brazil. Lua was born and raised at Tecgraf, the Computer Graphics
Technology Group of PUC-Rio, and is now housed at Lua.org. Both Tecgraf and
Lua.org are laboratories of the Department of Computer Science.

In Wireshark Lua can be used to write dissectors and taps.

Wireshark's Lua interpreter starts by loading init.lua that is located in the global
configuration directory of Wireshark. Lua is enabled by default. To disable Lua
the line variable disable_lua should be set to true in init.lua.

After loading init.lua from the data directory if Lua is enabled Wireshark will
try to load a file named init.lua in the user's directory.

Wireshark will also load all files with .lua suffix from both the global and the
personal plugins directory.

The command line option -X lua_script:<file.lua> can be used to load Lua
scripts as well.

The Lua code will be executed once after all the protocol dissectors have being
initialized and before reading any file.

http://www.lua.org

11.2. Example of Dissector written in Lua

do
local p_multi = Proto("multi", "MultiProto");

local vs_protos = {

[2] = "mtp2",
[3] = "mtp3",
[4] = "alcap",
[5] = "h248",
[6] = "ranap",
[7] = "rnsap",
[8] = "nbap"

}

local f_proto ProtoField.uint8("multi.protocol", "Protocol"
local f_dir = ProtoField.uint8("multi.direction","Direction"
local f_text = ProtoField.string("multi.text","Text")

p_multi.fields { f_proto, f_dir, f_text }

local data_dis Dissector.get("data")

local protos = {

[2] = Dissector.get("mtp2"),

[3] = Dissector.get("mtp3"),

[4] = Dissector.get("alcap"),

[5] = Dissector.get("h248"),

[6] = Dissector.get("ranap"),

[7] = Dissector.get("rnsap"),

[8] = Dissector.get("nbap"),

[9] = Dissector.get("rrc"),

[10] = DissectorTable.get("sctp.ppi"):get_dissector(
[11] = DissectorTable.get("ip.proto"):get_dissector(

}

function p_multi.dissector (buf, pkt, root)
local t = root:add(p_multi,buf(0,2))
t:add(f_proto, buf(0,1))
tradd(f_dir,buf(1,1))
local proto_id = buf(0,1):uint()

local dissector = protos[proto_id]

if dissector ~= nil then

dissector:call(buf(2):tvb(),pkt, root)
elseif proto_id < 2 then

t:add(f_text,buf(2))

-- pkt.cols.info:set(buf(2,buf:len() - 3):st
else

data_dis:call(buf(2):tvb(), pkt, root)
end

end

local wtap_encap_table = DissectorTable.get("wtap_encap")
local udp_encap_table = DissectorTable.get("udp.port")

wtap_encap_table:add(wtap.USER15, p_multi)
wtap_encap_table:add(wtap.USER12, p_multi)
udp_encap_table:add(7555, p_multi)

end

11.3. Example of Listener written in Lua

-- This program will register a menu that will open a window with a
-- of every address in the capture

do

local function menuable_tap()

-- Declare the window we will use
local tw = TextWindow.new("Address Counter")

-- This will contain a hash of counters of appearanc
local ips = {}

-- this is our tap
local tap = Listener.new();

function remove()
-- this way we remove the listener that othe
tap:remove();

end

-- we tell the window to call the remove() function
tw:set_atclose(remove)

-- this function will be called once for each packet
function tap.packet(pinfo, tvb)
local src ips[tostring(pinfo.src)] or O
local dst ips[tostring(pinfo.dst)] or O

ips[tostring(pinfo.src)]
ips[tostring(pinfo.dst)]

src
dst

+ 1
+ 1
end

-- this function will be called once every few secon
function tap.draw(t)

tw:clear()
for ip,num in pairs(ips) do

tw:append(ip .. "\t" .. num .. "\n")
end

end

-- this function will be called whenever a reset is
-- e.g. when reloading the capture file
function tap.reset()
tw:clear()
ips = {}
end

end

-- using this function we register our function

-- to be called when the user selects the Tools->Test->Packe

register_menu("Test/Packets'", menuable_tap, MENU_TOOLS_UNSOR
end

11.4. Wireshark's LLua API Reference Manual

This Part of the User Guide describes the Wireshark specific functions in the
embedded Lua.

11.5. Saving capture files

11.5.1. Dumper

11.5.1.1. Dumper.new(filename, [filetype], [encap])

Creates a file to write packets. Dumper:new_for_current() will probably be a
better choice.

11.5.1.1.1. Arguments
filename
The name of the capture file to be created
filetype (optional)
The type of the file to be created
encap (optional)
The encapsulation to be used in the file to be created

11.5.1.1.2. Returns

The newly created Dumper object
11.5.1.2. dumper:close()

Closes a dumper

11.5.1.2.1. Errors
e Cannot operate on a closed dumper

11.5.1.3. dumper:flush()

Writes all unsaved data of a dumper to the disk.
11.5.1.4. dumper:dump(timestamp, pseudoheader, bytearray)

Dumps an arbitrary packet. Note: Dumper:dump_current() will fit best in most
cases.

11.5.1.4.1. Arguments

timestamp

The absolute timestamp the packet will have
pseudoheader

The Pseudoheader to use.
bytearray

the data to be saved
11.5.1.5. dumper:new_for_current([filetype])

Creates a capture file using the same encapsulation as the one of the cuurrent
packet

11.5.1.5.1. Arguments
filetype (optional)
The file type. Defaults to pcap.
11.5.1.5.2. Returns
The newly created Dumper Object

11.5.1.5.3. Errors

e Cannot be used outside a tap or a dissector

11.5.1.6. dumper:dump_current()
Dumps the current packet as it is.
11.5.1.6.1. Errors
e Cannot be used outside a tap or a dissector
11.5.2. PseudoHeader
A pseudoheader to be used to save captured frames.
11.5.2.1. PseudoHeader.none()
Creates a "no" pseudoheader.
11.5.2.1.1. Returns

A null pseudoheader
11.5.2.2. PseudoHeader.eth([fcslen])

Creates an ethernet pseudoheader

11.5.2.2.1. Arguments

fcslen (optional)
The fcs length

11.5.2.2.2. Returns

The ethernet pseudoheader

11.5.2.3. PseudoHeader.atm([aal], [vpil, [vci], [channel], [cells], [aal5u2ul],
[aal5len])

Creates an ATM pseudoheader

11.5.2.3.1. Arguments
aal (optional)
AAL number
vpi (optional)
VPI
vci (optional)
VCI
channel (optional)
Channel
cells (optional)
Number of cells in the PDU
aal5u2u (optional)
AALS5 User to User indicator
aal5len (optional)
AALS Len

11.5.2.3.2. Returns
The ATM pseudoheader
11.5.2.4. PseudoHeader.mtp2()

Creates an MTP2 PseudoHeader

11.5.2.4.1. Returns

The MTP2 pseudoheader

11.6. Obtaining dissection data

11.6.1. Field

A Field extractor to to obtain field values.
11.6.1.1. Field.new(fieldname)

Create a Field extractor

11.6.1.1.1. Arguments

fieldname
The filter name of the field (e.g. ip.addr)

11.6.1.1.2. Returns

The field extractor

11.6.1.1.3. Errors

e A Field extractor must be defined before Taps or Dissectors get called
11.6.1.2. field:__call()

Obtain all values (see FieldInfo) for this field.

11.6.1.2.1. Returns

All the values of this field

11.6.1.2.2. Errors

e Fields cannot be used outside dissectors or taps

11.6.1.3. field:__tostring()

Obtain a string with the field name

11.6.2. FieldInfo

An extracted Field

11.6.2.1. fieldinfo:__len()

Obtain the Length of the field
11.6.2.2. fieldinfo:__unm()

Obtain the Offset of the field
11.6.2.3. fieldinfo:__call()

Obtain the Value of the field
11.6.2.4. fieldinfo:__tostring()

The string representation of the field
11.6.2.5. fieldinfo:__eq()

Checks whether lhs is within rhs

11.6.2.5.1. Errors

e Data source must be the same for both fields
11.6.2.6. fieldinfo:__le()
Checks whether the end byte of lhs is before the end of rhs

11.6.2.7. fieldinfo:__It()

Checks whether the end byte of rhs is before the beginning of rhs

11.6.2.7.1. Errors

e Data source must be the same for both fields
11.6.2.8. fieldinfo.name
The name of this field
11.6.2.9. fieldinfo.label
The string representing this field
11.6.2.10. fieldinfo.value
The value of this field
11.6.2.11. fieldinfo.len
The length of this field
11.6.2.12. fieldinfo.offset
The offset of this field
11.6.2.13. fieldinfo.display
The string display of this field as seen in GUI
11.6.3. Non Method Functions
11.6.3.1. all_field_infos()

Obtain all fields from the current tree. Note this only gets whatever fields the
underlying * dissectors have filled in for this packet at this time - there may be

fields applicable to * the packet that simply aren't being filled in because at this
time they're not needed for anything. * So this function only gets what the C-side
code has currently populated, not the full list.

11.6.3.1.1. Errors

e (Cannot be called outside a listener or dissector

11.7. GUI support

11.7.1. ProgDIg

Manages a progress bar dialog.
11.7.1.1. ProgDIg.new([title], [task])

Creates a new TextWindow.

11.7.1.1.1. Arguments

title (optional)
Title of the new window, defaults to "Progress".
task (optional)

Current task, defaults to "".

11.7.1.1.2. Returns

The newly created TextWindow object.
11.7.1.2. progdlg:update(progress, [task])

Appends text

11.7.1.2.1. Arguments

progress
Part done (e.g. 0.75).

task (optional)

mn

Current task, defaults to

11.7.1.2.2. Errors
e GUI not available
e Cannot be called for something not a ProgDlg
e Progress value out of range (must be between 0.0 and 1.0)

11.7.1.3. progdlg:stopped()

Checks wheher the user has pressed the stop button.

11.7.1.3.1. Returns

true if the user has asked to stop the progress.

11.7.1.3.2. Errors
e Cannot be called for something not a ProgDlg
11.7.1.4. progdig:close()
Appends text
11.7.1.4.1. Errors

e GUI not available

e Cannot be called for something not a ProgDlg
11.7.2. TextWindow
Manages a text window.

11.7.2.1. TextWindow.new([title])

Creates a new TextWindow.

11.7.2.1.1. Arguments

title (optional)
Title of the new window.

11.7.2.1.2. Returns

The newly created TextWindow object.

11.7.2.1.3. Errors

e GUI not available
11.7.2.2. textwindow:set_atclose(action)

Set the function that will be called when the window closes

11.7.2.2.1. Arguments

action
A function to be executed when the user closes the window

11.7.2.2.2. Returns

The TextWindow object.

11.7.2.2.3. Errors

e GUI not available

e Cannot be called for something not a TextWindow
11.7.2.3. textwindow:set(text)

Sets the text.

11.7.2.3.1. Arguments

text

The text to be used.

11.7.2.3.2. Returns
The TextWindow object.

11.7.2.3.3. Errors

e GUI not available
e Cannot be called for something not a TextWindow

e Expired TextWindow
11.7.2.4. textwindow:append(text)
Appends text
11.7.2.4.1. Arguments

text

The text to be appended
11.7.2.4.2. Returns
The TextWindow object.

11.7.2.4.3. Errors

e GUI not available
e Cannot be called for something not a TextWindow

e Expired TextWindow
11.7.2.5. textwindow:prepend(text)

Prepends text

11.7.2.5.1. Arguments

text
The text to be appended

11.7.2.5.2. Returns
The TextWindow object.

11.7.2.5.3. Errors

e GUI not available
e Cannot be called for something not a TextWindow

¢ Expired TextWindow
11.7.2.6. textwindow:clear()
Erases all text in the window.
11.7.2.6.1. Returns

The TextWindow object.

11.7.2.6.2. Errors

e GUI not available
e Cannot be called for something not a TextWindow

o Expired TextWindow
11.7.2.7. textwindow:get_text()

Get the text of the window

11.7.2.7.1. Returns

The TextWindow's text.

11.7.2.7.2. Errors

e GUI not available
e Cannot be called for something not a TextWindow

e Expired TextWindow
11.7.2.8. textwindow:set_editable([editable])
Make this window editable
11.7.2.8.1. Arguments

editable (optional)
A boolean flag, defaults to true
11.7.2.8.2. Returns
The TextWindow object.
11.7.2.8.3. Errors
e GUI not available
e Cannot be called for something not a TextWindow
e Expired TextWindow
11.7.2.9. textwindow:add_button(label, function)
11.7.2.9.1. Arguments
label

The label of the button

function
The function to be called when clicked

11.7.2.9.2. Returns
The TextWindow object.

11.7.2.9.3. Errors

e GUI not available
e Cannot be called for something not a TextWindow

e Expired TextWindow

11.7.3. Non Method Functions

11.7.3.1. gui_enabled()

Checks whether the GUI facility is enabled.
11.7.3.1.1. Returns

A boolean: true if it is enabled, false if it isn't.
11.7.3.2. register_menu(name, action, [group])
Register a menu item in one of the main menus.
11.7.3.2.1. Arguments

name

The name of the menu item. The submenus are to be separated by '/'s.
(string)

action

The function to be called when the menu item is invoked. (function taking
no arguments and returning nothing)

group (optional)

The menu group into which the menu item is to be inserted. If omitted,
defaults to MENU_STAT_GENERIC. One of: MENU_STAT_UNSORTED
(Statistics), MENU_STAT_GENERIC (Statistics, first section),
MENU_STAT_CONVERSATION (Statistics/Conversation List),
MENU_STAT_ENDPOINT (Statistics/Endpoint List),
MENU_STAT_RESPONSE (Statistics/Service Response Time),
MENU_STAT_TELEPHONY (Telephony), MENU_ANALYZE (Analyze),
MENU_ANALYZE_CONVERSATION (Analyze/Conversation Filter),
MENU_TOOLS_UNSORTED (Tools). (number)

11.7.3.3. new_dialog(title, action, ...)

Pops up a new dialog
11.7.3.3.1. Arguments
title
Title of the dialog's window.
action

Action to be performed when OKd.

A series of strings to be used as labels of the dialog's fields
11.7.3.3.2. Errors
e GUI not available
e At least one field required

e All fields must be strings

11.7.3.4. retap_packets()

Rescan all packets and just run taps - don't reconstruct the display.
11.7.3.5. copy_to_clipboard(text)

Copy a string into the clipboard

11.7.3.5.1. Arguments

text

The string to be copied into the clipboard.
11.7.3.6. open_capture_file(filename, filter)
Open and display a capture file
11.7.3.6.1. Arguments

filename
The name of the file to be opened.
filter

A filter to be applied as the file gets opened.
11.7.3.7. get_filter()
Get the main filter text
11.7.3.8. set_filter(text)

Set the main filter text

11.7.3.8.1. Arguments

text

The filter's text.
11.7.3.9. set_color_filter_slot(row, text)

Set packet-coloring rule for the current session

11.7.3.9.1. Arguments

row
The index of the desired color in the temporary coloring rules list
text

Display filter for selecting packets to be colorized
11.7.3.10. apply_filter()
Apply the filter in the main filter box
11.7.3.11. reload()
Reload the current capture file
11.7.3.12. browser_open_url(url)

Open an url in a browser
11.7.3.12.1. Arguments
url

The url.

11.7.3.13. browser_open_data_file(filename)

Open an file in a browser
11.7.3.13.1. Arguments

filename

The url.

11.8. Post-dissection packet analysis

11.8.1. Listener
A Listener, is called once for every packet that matches a certain filter or has a

certain tap. It can read the tree, the packet's Tvb eventually the tapped data but it
cannot add elements to the tree.

11.8.1.1. Listener.new([tap], [filter])
Creates a new Listener listener
11.8.1.1.1. Arguments
tap (optional)

The name of this tap
filter (optional)

A filter that when matches the tap.packet function gets called (use nil to be
called for every packet)

11.8.1.1.2. Returns

The newly created Listener listener object

11.8.1.1.3. Errors

e tap registration error
11.8.1.2. listener:remove()
Removes a tap listener

11.8.1.3. listener:__tostring()

Generates a string of debug info for the tap listener
11.8.1.4. listener.packet

A function that will be called once every packet matches the Listener listener
filter. function tap.packet(pinfo,tvb,tapinfo) ... end Note: tapinfo is a table of info
based on the Listener's type, or nil.

11.8.1.5. listener.draw

A function that will be called once every few seconds to redraw the gui objects;
in tshark this funtion is called only at the very end of the capture file. function
tap.draw() ... end

11.8.1.6. listener.reset

A function that will be called at the end of the capture run. function tap.reset() ...
end

11.9. Obtaining packet information

11.9.1. Address

Represents an address

11.9.1.1. Address.ip(hostname)

Creates an Address Object representing an IP address.
11.9.1.1.1. Arguments

hostname
The address or name of the IP host.

11.9.1.1.2. Returns

The Address object

11.9.1.2. address:__tostring()

11.9.1.2.1. Returns

The string representing the address.
11.9.1.3. address:__eq()
Compares two Addresses

11.9.1.4. address:__le()

Compares two Addresses

11.9.1.5. address:__1t()

Compares two Addresses

11.9.2. Column

A Column in the packet list

11.9.2.1. column:__tostring()

11.9.2.1.1. Returns

The column's string text (in parenthesis if not available)
11.9.2.2. column:clear()

Clears a Column

11.9.2.3. column:set(text)

Sets the text of a Column

11.9.2.3.1. Arguments

text

The text to which to set the Column
11.9.2.4. column:append(text)

Appends text to a Column
11.9.2.4.1. Arguments
text

The text to append to the Column

11.9.2.5. column:prepend(text)

Prepends text to a Column

11.9.2.5.1. Arguments

text

The text to prepend to the Column
11.9.2.6. column:fence()

Sets Column text fence, to prevent overwriting

11.9.3. Columns

The Columns of the packet list.

11.9.3.1. columns:__tostring()

11.9.3.1.1. Returns

The string "Columns", no real use, just for debugging purposes.

11.9.3.2. columns:__newindex(column, text)

Sets the text of a specific column

11.9.3.2.1. Arguments

column
The name of the column to set
text

The text for the column

11.9.4. NSTime

NSTime represents a nstime_t. This is an object with seconds and nano seconds.
11.9.4.1. NSTime.new([seconds], [nseconds])

Creates a new NSTime object

11.9.4.1.1. Arguments

seconds (optional)
Seconds

nseconds (optional)
Nano seconds

11.9.4.1.2. Returns

The new NSTime object.

11.9.4.2. nstime:__tostring()

11.9.4.2.1. Returns

The string representing the nstime.
11.9.4.3. nstime:__add()
Calculates the sum of two NSTimes
11.9.4.4. nstime:__sub()
Calculates the diff of two NSTimes
11.9.4.5. nstime:__unm()

Calculates the negative NSTime

11.9.4.6. nstime:__eq()

Compares two NSTimes

11.9.4.6.1. Errors
e Data source must be the same for both fields

11.9.4.7. nstime:__le()

Compares two NSTimes

11.9.4.7.1. Errors

e Data source must be the same for both fields
11.9.4.8. nstime:__It()

Compares two NSTimes

11.9.4.8.1. Errors

e Data source must be the same for both fields
11.9.4.9. nstime.secs
The NSTime seconds
11.9.4.10. nstime.nsecs

The NSTime nano seconds
11.9.5. Pinfo

Packet information

11.9.5.1. pinfo.number

The number of this packet in the current file

11.9.5.2. pinfo.len

The length of the frame

11.9.5.3. pinfo.caplen

The captured length of the frame

11.9.5.4. pinfo.abs_ts

When the packet was captured

11.9.5.5. pinfo.rel_ts

Number of seconds passed since beginning of capture
11.9.5.6. pinfo.delta_ts

Number of seconds passed since the last captured packet
11.9.5.7. pinfo.delta_dis_ts

Number of seconds passed since the last displayed packet
11.9.5.8. pinfo.visited

Whether this packet hass been already visited

11.9.5.9. pinfo.src

Source Address of this Packet

11.9.5.10. pinfo.dst

Destination Address of this Packet

11.9.5.11. pinfo.lo

lower Address of this Packet

11.9.5.12. pinfo.hi

higher Address of this Packet

11.9.5.13. pinfo.dl_src

Data Link Source Address of this Packet
11.9.5.14. pinfo.dl_dst

Data Link Destination Address of this Packet
11.9.5.15. pinfo.net_src

Network Layer Source Address of this Packet
11.9.5.16. pinfo.net_dst

Network Layer Destination Address of this Packet
11.9.5.17. pinfo.ptype

Type of Port of .src_port and .dst_port
11.9.5.18. pinfo.src_port

Source Port of this Packet

11.9.5.19. pinfo.dst_port

Source Address of this Packet

11.9.5.20. pinfo.ipproto

IP Protocol id

11.9.5.21. pinfo.circuit_id

For circuit based protocols

11.9.5.22. pinfo.match

Port/Data we are matching

11.9.5.23. pinfo.curr_proto

Which Protocol are we dissecting

11.9.5.24. pinfo.columns

Accesss to the packet list columns

11.9.5.25. pinfo.cols

Accesss to the packet list columns (equivalent to pinfo.columns)
11.9.5.26. pinfo.desegment_len

Estimated number of additional bytes required for completing the PDU
11.9.5.27. pinfo.desegment_offset

Offset in the tvbuff at which the dissector will continue processing when next
called

11.9.5.28. pinfo.private_data

Access to private data

11.9.5.29. pinfo.private

Access to the private table entries

11.9.5.30. pinfo.ethertype

Ethernet Type Code, if this is an Ethernet packet
11.9.5.31. pinfo.fragmented

If the protocol is only a fragment

11.9.5.32. pinfo.in_error_pkt

If we're inside an error packet

11.9.5.33. pinfo.match_uint

Matched uint for calling subdissector from table
11.9.5.34. pinfo.match_string

Matched string for calling subdissector from table

11.9.6. PrivateTable

PrivateTable represents the pinfo->private_table.

11.9.6.1. privatetable:__tostring()

11.9.6.1.1. Returns

A string with all keys in the table, mostly for debugging.

11.10. Functions for writing dissectors

11.10.1. Dissector

A refererence to a dissector, used to call a dissector against a packet or a part of
it.

11.10.1.1. Dissector.get(name)
Obtains a dissector reference by name
11.10.1.1.1. Arguments

name
The name of the dissector

11.10.1.1.2. Returns

The Dissector reference
11.10.1.2. dissector:call(tvb, pinfo, tree)

Calls a dissector against a given packet (or part of it)

11.10.1.2.1. Arguments

tvb

The buffer to dissect
pinfo

The packet info

tree

The tree on which to add the protocol items
11.10.1.3. dissector:__tostring()

Gets the Dissector's protocol short name

11.10.1.3.1. Returns
A string of the protocol's short name

11.10.2. DissectorTable

A table of subdissectors of a particular protocol (e.g. TCP subdissectors like http,
smtp, sip are added to table "tcp.port"). Useful to add more dissectors to a table
so that they appear in the Decode As... dialog.

11.10.2.1. DissectorTable.new(tablename, [uiname], [type], [base])

Creates a new DissectorTable for your dissector's use.

11.10.2.1.1. Arguments

tablename

The short name of the table.
uiname (optional)

The name of the table in the User Interface (defaults to the name given).
type (optional)

Either ftypes.UINT{8,16,24,32} or ftypes.STRING (defaults to
ftypes.UINT32)

base (optional)

Either base.NONE, base.DEC, base.HEX, base.OCT, base. DEC_HEX or
base. HEX_DEC (defaults to base.DEC)

11.10.2.1.2. Returns

The newly created DissectorTable

11.10.2.2. DissectorTable.get(tablename)
Obtain a reference to an existing dissector table.
11.10.2.2.1. Arguments

tablename
The short name of the table.

11.10.2.2.2. Returns

The DissectorTable

11.10.2.3. dissectortable:add(pattern, dissector)
Add a dissector to a table.

11.10.2.3.1. Arguments

pattern

The pattern to match (either an integer or a string depending on the table's
type).

dissector

The dissector to add (either an Proto or a Dissector).
11.10.2.4. dissectortable:remove(pattern, dissector)

Remove a dissector from a table

11.10.2.4.1. Arguments

pattern

The pattern to match (either an integer or a string depending on the table's
type).

dissector

The dissector to add (either an Proto or a Dissector).
11.10.2.5. dissectortable:try(pattern, tvb, pinfo, tree)

Try to call a dissector from a table

11.10.2.5.1. Arguments

pattern

The pattern to be matched (either an integer or a string depending on the
table's type).

tvb

The buffer to dissect
pinfo

The packet info
tree

The tree on which to add the protocol items
11.10.2.6. dissectortable:get_dissector(pattern)

Try to obtain a dissector from a table.

11.10.2.6.1. Arguments

pattern

The pattern to be matched (either an integer or a string depending on the
table's type).

11.10.2.6.2. Returns

The dissector handle if found

nil if not found

11.10.2.7. dissectortable:__tostring()

Gets some debug information about the DissectorTable
11.10.2.7.1. Returns

A string of debug information about the DissectorTable

11.10.3. Pref

A preference of a Protocol.
11.10.3.1. Pref.bool(label, default, descr)

Creates a boolean preference to be added to a Protocol's prefs table.

11.10.3.1.1. Arguments

label

The Label (text in the right side of the preference input) for this preference
default

The default value for this preference
descr

A description of what this preference is

11.10.3.2. Pref.uint(label, default, descr)

Creates an (unsigned) integer preference to be added to a Protocol's prefs table.

11.10.3.2.1. Arguments

label

The Label (text in the right side of the preference input) for this preference
default

The default value for this preference
descr

A description of what this preference is
11.10.3.3. Pref.string(label, default, descr)

Creates a string preference to be added to a Protocol's prefs table.
11.10.3.3.1. Arguments
label
The Label (text in the right side of the preference input) for this preference
default
The default value for this preference
descr

A description of what this preference is
11.10.3.4. Pref.enum(label, default, descr, enum, radio)

Creates an enum preference to be added to a Protocol's prefs table.

11.10.3.4.1. Arguments

label
The Label (text in the right side of the preference input) for this preference
default
The default value for this preference
descr
A description of what this preference is
enum
A enum table
radio

Radio button (true) or Combobox (false)
11.10.3.5. Pref.range(label, default, descr, max)

Creates a range preference to be added to a Protocol's prefs table.

11.10.3.5.1. Arguments

label
The Label (text in the right side of the preference input) for this preference
default

The default value for this preference, e.g., "53", "10-30", or "10-
30,53,55,100-120"

descr

A description of what this preference is

max

The maximum value
11.10.3.6. Pref.statictext(label, descr)
Creates a static text preference to be added to a Protocol's prefs table.
11.10.3.6.1. Arguments

label
The static text
descr

The static text description

11.10.4. Prefs

The table of preferences of a protocol
11.10.4.1. prefs:__newindex(name, pref)
Creates a new preference
11.10.4.1.1. Arguments
name

The abbreviation of this preference
pref

A valid but still unassigned Pref object

11.10.4.1.2. Errors

e Unknow Pref type

11.10.4.2. prefs:__index(name)

Get the value of a preference setting

11.10.4.2.1. Arguments
name

The abbreviation of this preference
11.10.4.2.2. Returns

The current value of the preference

11.10.4.2.3. Errors
e Unknow Pref type

11.10.5. Proto

A new protocol in wireshark. Protocols have more uses, the main one is to
dissect a protocol. But they can be just dummies used to register preferences for
other purposes.

11.10.5.1. Proto.new(name, desc)
11.10.5.1.1. Arguments
name
The name of the protocol
desc
A Long Text description of the protocol (usually lowercase)

11.10.5.1.2. Returns

The newly created protocol

11.10.5.2. proto.dissector

The protocol's dissector, a function you define. The called dissector function will
be given three arguments of (1) a Tvb object, (2) a Pinfo object, and (3) a
Treeltem object.

11.10.5.3. proto.fields

The Fields Table of this dissector
11.10.5.4. proto.prefs

The preferences of this dissector
11.10.5.5. proto.init

The init routine of this dissector, a function you define. The called init function
is passed no arguments.

11.10.5.6. proto.name
The name given to this dissector
11.10.5.7. proto.description

The description given to this dissector
11.10.6. ProtoField
A Protocol field (to be used when adding items to the dissection tree)

11.10.6.1. ProtoField.new(name, abbr, type, [voidstring], [base], [mask],
[descr])

Creates a new field to be used in a protocol.

11.10.6.1.1. Arguments

name

Actual name of the field (the string that appears in the tree).
abbr

Filter name of the field (the string that is used in filters).
type

Field Type: one of ftypes.NONE, ftypes.PROTOCOL, ftypes.BOOLEAN,
ftypes.UINTS, ftypes.UINT16, ftypes.UINT24, ftypes.UINT32,
ftypes.UINT64, ftypes.INT8, ftypes.INT16 ftypes.INT24, ftypes.INT32,
ftypes.INT64, ftypes.FLOAT, ftypes. DOUBLE, ftypes. ABSOLUTE_TIME
ftypes. RELATIVE_TIME, ftypes.STRING, ftypes.STRINGZ,
ftypes.UINT_STRING, ftypes.ETHER, ftypes.BYTES
ftypes.UINT_BYTES, ftypes.IPv4, ftypes.IPv6, ftypes.IPXNET,

ftypes. FRAMENUM, ftypes.PCRE, ftypes.GUID ftypes.OID, ftypes.EUI64

voidstring (optional)
A VoidString object.
base (optional)

The representation: one of base.NONE, base.DEC, base.HEX, base.OCT,
base. DEC_HEX, base.HEX_ DEC

mask (optional)

The bitmask to be used.
descr (optional)

The description of the field.

11.10.6.1.2. Returns

The newly created ProtoField object

11.10.6.2. ProtoField.uint8(abbr, [name], [base], [valuestring], [mask],
[desc])

11.10.6.2.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
base (optional)

One of base.DEC, base.HEX or base.OCT
valuestring (optional)

A table containing the text that corresponds to the values
mask (optional)

Integer mask of this field
desc (optional)

Description of the field

11.10.6.2.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.3. ProtoField.uint16(abbr, [name], [base], [valuestring], [mask],
[desc])

11.10.6.3.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
base (optional)

One of base.DEC, base.HEX or base.OCT
valuestring (optional)

A table containing the text that corresponds to the values
mask (optional)

Integer mask of this field
desc (optional)

Description of the field

11.10.6.3.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.4. ProtoField.uint24(abbr, [name], [base], [valuestring], [mask],
[desc])

11.10.6.4.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)

base (optional)

One of base.DEC, base.HEX or base.OCT
valuestring (optional)

A table containing the text that corresponds to the values
mask (optional)

Integer mask of this field
desc (optional)

Description of the field

11.10.6.4.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.5. ProtoField.uint32(abbr, [name], [base], [valuestring], [mask],
[desc])

11.10.6.5.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
base (optional)

One of base.DEC, base.HEX or base.OCT
valuestring (optional)

A table containing the text that corresponds to the values

mask (optional)

Integer mask of this field
desc (optional)
Description of the field

11.10.6.5.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.6. ProtoField.uint64(abbr, [name], [base], [valuestring], [mask],
[desc])

11.10.6.6.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
base (optional)

One of base.DEC, base.HEX or base.OCT
valuestring (optional)

A table containing the text that corresponds to the values
mask (optional)

Integer mask of this field
desc (optional)

Description of the field

11.10.6.6.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.7. ProtoField.int8(abbr, [name], [base], [valuestring], [mask], [desc])

11.10.6.7.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
base (optional)

One of base.DEC, base.HEX or base.OCT
valuestring (optional)

A table containing the text that corresponds to the values
mask (optional)

Integer mask of this field
desc (optional)

Description of the field

11.10.6.7.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.8. ProtoField.int16(abbr, [name], [base], [valuestring], [mask],
[desc])

11.10.6.8.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
base (optional)

One of base.DEC, base.HEX or base.OCT
valuestring (optional)

A table containing the text that corresponds to the values
mask (optional)

Integer mask of this field
desc (optional)

Description of the field

11.10.6.8.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.9. ProtoField.int24(abbr, [name], [base], [valuestring], [mask],
[desc])

11.10.6.9.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)

base (optional)

One of base.DEC, base.HEX or base.OCT
valuestring (optional)

A table containing the text that corresponds to the values
mask (optional)

Integer mask of this field
desc (optional)

Description of the field

11.10.6.9.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.10. ProtoField.int32(abbr, [name], [base], [valuestring], [mask],
[desc])

11.10.6.10.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
base (optional)

One of base.DEC, base.HEX or base.OCT
valuestring (optional)

A table containing the text that corresponds to the values

mask (optional)

Integer mask of this field
desc (optional)
Description of the field

11.10.6.10.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.11. ProtoField.int64(abbr, [name], [base], [valuestring], [mask],
[desc])

11.10.6.11.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
base (optional)

One of base.DEC, base.HEX or base.OCT
valuestring (optional)

A table containing the text that corresponds to the values
mask (optional)

Integer mask of this field
desc (optional)

Description of the field

11.10.6.11.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.12. ProtoField.framenum(abbr, [name], [base], [valuestring], [mask],
[desc])

A frame number (for hyperlinks between frames)

11.10.6.12.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
base (optional)

One of base.DEC, base.HEX or base.OCT
valuestring (optional)

A table containing the text that corresponds to the values
mask (optional)

Integer mask of this field
desc (optional)

Description of the field

11.10.6.12.2. Returns
A protofield item to be added to a ProtoFieldArray

11.10.6.13. ProtoField.bool(abbr, [name], [display], [string], [mask], [desc])

11.10.6.13.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
display (optional)

how wide the parent bitfield is (base. NONE is used for NULL-value)
string (optional)

A table containing the text that corresponds to the values
mask (optional)

Integer mask of this field
desc (optional)

Description of the field

11.10.6.13.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.14. ProtoField.absolute_time(abbr, [name], [base], [desc])
11.10.6.14.1. Arguments
abbr
Abbreviated name of the field (the string used in filters)
name (optional)
Actual name of the field (the string that appears in the tree)

base (optional)

One of base. LOCAL, base.UTC or base. DOY_UTC
desc (optional)
Description of the field

11.10.6.14.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.15. ProtoField.relative_time(abbr, [name], [desc])

11.10.6.15.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
desc (optional)

Description of the field

11.10.6.15.2. Returns

A protofield item to be added to a ProtoFieldArray
11.10.6.16. ProtoField.ipv4(abbr, [name], [desc])
11.10.6.16.1. Arguments

abbr
Abbreviated name of the field (the string used in filters)

name (optional)

Actual name of the field (the string that appears in the tree)
desc (optional)
Description of the field

11.10.6.16.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.17. ProtoField.ipv6(abbr, [name], [desc])

11.10.6.17.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
desc (optional)

Description of the field

11.10.6.17.2. Returns

A protofield item to be added to a ProtoFieldArray
11.10.6.18. ProtoField.ether(abbr, [name], [desc])
11.10.6.18.1. Arguments

abbr
Abbreviated name of the field (the string used in filters)

name (optional)

Actual name of the field (the string that appears in the tree)
desc (optional)
Description of the field

11.10.6.18.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.19. ProtoField.float(abbr, [name], [desc])

11.10.6.19.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
desc (optional)

Description of the field

11.10.6.19.2. Returns

A protofield item to be added to a ProtoFieldArray
11.10.6.20. ProtoField.double(abbr, [name], [desc])
11.10.6.20.1. Arguments

abbr
Abbreviated name of the field (the string used in filters)

name (optional)

Actual name of the field (the string that appears in the tree)
desc (optional)
Description of the field

11.10.6.20.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.21. ProtoField.string(abbr, [name], [desc])

11.10.6.21.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
desc (optional)

Description of the field

11.10.6.21.2. Returns

A protofield item to be added to a ProtoFieldArray
11.10.6.22. ProtoField.stringz(abbr, [name], [desc])
11.10.6.22.1. Arguments

abbr
Abbreviated name of the field (the string used in filters)

name (optional)

Actual name of the field (the string that appears in the tree)
desc (optional)
Description of the field

11.10.6.22.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.23. ProtoField.bytes(abbr, [name], [desc])

11.10.6.23.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
desc (optional)

Description of the field

11.10.6.23.2. Returns

A protofield item to be added to a ProtoFieldArray
11.10.6.24. ProtoField.ubytes(abbr, [name], [desc])
11.10.6.24.1. Arguments

abbr
Abbreviated name of the field (the string used in filters)

name (optional)

Actual name of the field (the string that appears in the tree)
desc (optional)
Description of the field

11.10.6.24.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.25. ProtoField.guid(abbr, [name], [desc])

11.10.6.25.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
desc (optional)

Description of the field

11.10.6.25.2. Returns

A protofield item to be added to a ProtoFieldArray
11.10.6.26. ProtoField.oid(abbr, [name], [desc])
11.10.6.26.1. Arguments

abbr
Abbreviated name of the field (the string used in filters)

name (optional)

Actual name of the field (the string that appears in the tree)
desc (optional)
Description of the field

11.10.6.26.2. Returns

A protofield item to be added to a ProtoFieldArray
11.10.6.27. ProtoField.bool(abbr, [name], [desc])
11.10.6.27.1. Arguments

abbr

Abbreviated name of the field (the string used in filters)
name (optional)

Actual name of the field (the string that appears in the tree)
desc (optional)

Description of the field

11.10.6.27.2. Returns

A protofield item to be added to a ProtoFieldArray

11.10.6.28. protofield:__tostring()

Returns a string with info about a protofield (for debugging purposes)
11.10.7. Non Method Functions

11.10.7.1. register_postdissector(proto)

Make a protocol (with a dissector) a postdissector. It will be called for every

frame after dissection

11.10.7.1.1. Arguments

proto

the protocol to be used as postdissector

11.11. Adding information to the dissection tree

11.11.1. Treeltem

Treeltems represent information in the packet-details pane. A root Treeltem is
passed to dissectors as the third argument.

11.11.1.1. treeitem:add_packet_field()

Adds an child item to a given item, returning the child.
tree_item:add_packet_field([proto_field], [tvbrange], [encoding], ...)

11.11.1.2. treeitem:add()

Adds an child item to a given item, returning the child.
tree_item:add([proto_field | proto], [tvbrange], [label], ...) if the proto_field
represents a numeric value (int, uint or float) is to be treated as a Big Endian
(network order) Value.

11.11.1.2.1. Returns

The child item
11.11.1.3. treeitem:add_le()

Adds (and returns) an child item to a given item, returning the child.
tree_item:add([proto_field | proto], [tvbrange], [label], ...) if the proto_field
represents a numeric value (int, uint or float) is to be treated as a Little Endian
Value.

11.11.1.3.1. Returns

The child item

11.11.1.4. treeitem:set_text(text)

Sets the text of the label
11.11.1.4.1. Arguments
text
The text to be used.
11.11.1.5. treeitem:append_text(text)
Appends text to the label
11.11.1.5.1. Arguments
text
The text to be appended.
11.11.1.6. treeitem:set_expert_flags([group], [severity])
Sets the expert flags of the item.
11.11.1.6.1. Arguments
group (optional)
One of PI_CHECKSUM, PI_SEQUENCE, PI_RESPONSE_CODE,

PI_REQUEST_CODE, PI_UNDECODED, PI_REASSEMBLE,
PI_MALFORMED or PI_DEBUG

severity (optional)

One of PI_CHAT, PI_NOTE, PI_WARN, PI_ERROR
11.11.1.7. treeitem:add_expert_info([group], [severity], [text])

Sets the expert flags of the item and adds expert info to the packet.

11.11.1.7.1. Arguments

group (optional)
One of PI_CHECKSUM, PI_SEQUENCE, PI_RESPONSE_CODE,
PI_REQUEST_CODE, PI_UNDECODED, PI_REASSEMBLE,
PI_MALFORMED or PI_ DEBUG

severity (optional)
One of PI_CHAT, PI_NOTE, PI_WARN, PI_ERROR

text (optional)
The text for the expert info

11.11.1.8. treeitem:set_generated()

Marks the Treeltem as a generated field (with data infered but not contained in
the packet).

11.11.1.9. treeitem:set_hidden()
Should not be used
11.11.1.10. treeitem:set_len(len)

Set Treeltem's length inside tvb, after it has already been created.
11.11.1.10.1. Arguments
len

The length to be used.

11.12. Functions for handling packet data
11.12.1. ByteArray

11.12.1.1. ByteArray.new([hexbytes])

Creates a ByteArray Object

11.12.1.1.1. Arguments

hexbytes (optional)
A string consisting of hexadecimal bytes like "00 B1 A2" or "1a2b3c4d"

11.12.1.1.2. Returns

The new ByteArray object.
11.12.1.2. bytearray:__concat(first, second)

Concatenate two ByteArrays

11.12.1.2.1. Arguments

first

First array
second

Second array

11.12.1.2.2. Returns

The new composite ByteArray.

11.12.1.2.3. Errors

¢ Both arguments must be ByteArrays
11.12.1.3. bytearray:prepend(prepended)

Prepend a ByteArray to this ByteArray

11.12.1.3.1. Arguments

prepended
Array to be prepended

11.12.1.3.2. Errors

¢ Both arguments must be ByteArrays
11.12.1.4. bytearray:append(appended)

Append a ByteArray to this ByteArray

11.12.1.4.1. Arguments

appended
Array to be appended

11.12.1.4.2. Exrors
¢ Both arguments must be ByteArrays
11.12.1.5. bytearray:set_size(size)

Sets the size of a ByteArray, either truncating it or filling it with zeros.

11.12.1.5.1. Arguments

size

New size of the array

11.12.1.5.2. Errors

e ByteArray size must be non-negative
11.12.1.6. bytearray:set_index(index, value)
Sets the value of an index of a ByteArray.
11.12.1.6.1. Arguments

index
The position of the byte to be set
value

The char value to set [0-255]
11.12.1.7. bytearray:get_index(index)
Get the value of a byte in a ByteArray
11.12.1.7.1. Arguments

index
The position of the byte to get

11.12.1.7.2. Returns
The value [0-255] of the byte.

11.12.1.8. bytearray:len()

Obtain the length of a ByteArray

11.12.1.8.1. Returns

The length of the ByteArray.
11.12.1.9. bytearray:subset(offset, length)

Obtain a segment of a ByteArray

11.12.1.9.1. Arguments

offset

The position of the first byte
length

The length of the segment

11.12.1.9.2. Returns

A ByteArray contaning the requested segment.

A string contaning a representaion of the ByteArray.

11.12.2. Int

Int64 represents a 64 bit integer. L.ua uses one single number representation
which can be chosen at compile time and since it is often set to IEEE 754 double
precision floating point, we cannot store a 64 bit integer with full precision. For
details, see: http://lua-users.org/wiki/FloatingPoint

11.12.3. Tvb

A Tvb represents the packet's buffer. It is passed as an argument to listeners and
dissectors, and can be used to extract information (via TvbRange) from the
packet's data. Beware that Tvbs are usable only by the current listener or
dissector call and are destroyed as soon as the listener/dissector returns, so
references to them are unusable once the function has returned. To create a
tvbrange the tvb must be called with offset and length as optional arguments (
the offset defaults to 0 and the length to tvb:len())

11.12.3.1. ByteArray.tvb(name)
Creates a new Tvb from a bytearray (it gets added to the current frame too)
11.12.3.1.1. Arguments

name
The name to be given to the new data-source.

11.12.3.1.2. Returns
The created Tvb.
11.12.3.2. TvbRange.tvb(range)
Creates a (sub)Tvb from using a TvbRange
11.12.3.2.1. Arguments
range
The TvbRange from which to create the new Tvb.

11.12.3.3. tvb:__tostring()

Convert the bytes of a Tvb into a string, to be used for debugging purposes as '...'
will be appended in case the string is too long.

11.12.3.3.1. Returns
The string.
11.12.3.4. tvb:reported_len()

Obtain the reported length of a TVB

11.12.3.4.1. Returns

The length of the Tvb.
11.12.3.5. tvb:len()

Obtain the length of a TVB

11.12.3.5.1. Returns
The length of the Tvb.
11.12.3.6. tvb:reported_length_remaining()

Obtain the reported length of packet data to end of a TVB or -1 if the offset is
beyond the end of the TVB

11.12.3.6.1. Returns
The length of the Tvb.

11.12.3.7. tvb:offset()

Returns the raw offset (from the beginning of the source Tvb) of a sub Tvb.

11.12.3.7.1. Returns

The raw offset of the Tvb.
11.12.3.8. tvb:__call()
Equivalent to tvb:range(...)
11.12.3.9. wslua:__concat()

Concatenate two objects to a string

11.12.4. TvbRange

A TvbRange represents a usable range of a Tvb and is used to extract data from
the Tvb that generated it TvbRanges are created by calling a tvb (e.g.
tvb(offset,length)). If the TvbRange span is outside the Tvb's range the creation
will cause a runtime error.

11.12.4.1. tvb:range([offset], [length])

Creates a tvbr from this Tvb. This is used also as the Tvb:__call() metamethod.
11.12.4.1.1. Arguments
offset (optional)
The offset (in octets) from the beginning of the Tvb. Defaults to 0.
length (optional)
The length (in octets) of the range. Defaults to until the end of the Tvb.

11.12.4.1.2. Returns

The TvbRange
11.12.4.2. tvbrange:uint()

Get a Big Endian (network order) unsigned integer from a TvbRange. The range
must be 1, 2, 3 or 4 octets long.

11.12.4.2.1. Returns
The unsigned integer value

11.12.4.3. tvbrange:le_uint()

Get a Little Endian unsigned integer from a TvbRange. The range must be 1, 2, 3
or 4 octets long.

11.12.4.3.1. Returns

The unsigned integer value
11.12.4.4. tvbrange:uint64()

Get a Big Endian (network order) unsigned 64 bit integer from a TvbRange. The
range must be 1-8 octets long.

11.12.4.5. tvbrange:le_uint64()

Get a Little Endian unsigned 64 bit integer from a TvbRange. The range must be
1-8 octets long.

11.12.4.6. tvbrange:int()

Get a Big Endian (network order) signed integer from a TvbRange. The range
must be 1, 2 or 4 octets long.

11.12.4.6.1. Returns
The signed integer value

11.12.4.7. tvbrange:le_int()

Get a Little Endian signed integer from a TvbRange. The range must be 1, 2 or 4
octets long.

11.12.4.7.1. Returns
The signed integer value
11.12.4.8. tvbrange:int64()

Get a Big Endian (network order) signed 64 bit integer from a TvbRange. The
range must be 1-8 octets long.

11.12.4.9. tvbrange:le_int64()

Get a Little Endian signed 64 bit integer from a TvbRange. The range must be 1-
8 octets long.

11.12.4.10. tvbrange:float()

Get a Big Endian (network order) floating point number from a TvbRange. The
range must be 4 or 8 octets long.

11.12.4.10.1. Returns

The floating point value
11.12.4.11. tvbrange:le_float()

Get a Little Endian floating point number from a TvbRange. The range must be
4 or 8 octets long.

11.12.4.11.1. Returns
The floating point value
11.12.4.12. tvbrange:ipv4()

Get an IPv4 Address from a TvbRange.

11.12.4.12.1. Returns
The IPv4 Address
11.12.4.13. tvbrange:le_ipv4()

Get an Little Endian IPv4 Address from a TvbRange.

11.12.4.13.1. Returns

The IPv4 Address

11.12.4.14. tvbrange:ether()

Get an Ethernet Address from a TvbRange.

11.12.4.14.1. Returns

The Ethernet Address

11.12.4.14.2. Errors

e The range must be 6 bytes long
11.12.4.15. tvbrange:nstime()

Obtain a nstime from a TvbRange

11.12.4.15.1. Returns

The NSTime

11.12.4.15.2. Errors

e The range must be 4 or 8 bytes long
11.12.4.16. tvbrange:le_nstime()

Obtain a nstime from a TvbRange

11.12.4.16.1. Returns

The NSTime

11.12.4.16.2. Errors

e The range must be 4 or 8 bytes long
11.12.4.17. tvbrange:string()

Obtain a string from a TvbRange

11.12.4.17.1. Returns
The string
11.12.4.18. tvbrange:ustring()

Obtain a Big Endian (network order) UTF-16 encoded string from a TvbRange

11.12.4.18.1. Returns

The string
11.12.4.19. tvbrange:le_ustring()

Obtain a Little Endian UTF-16 encoded string from a TvbRange

11.12.4.19.1. Returns

The string
11.12.4.20. tvbrange:stringz()

Obtain a zero terminated string from a TvbRange

11.12.4.20.1. Returns

The zero terminated string
11.12.4.21. tvbrange:ustringz()

Obtain a Big Endian (network order) UTF-16 encoded zero terminated string
from a TvbRange

11.12.4.21.1. Returns

The zero terminated string, the length found in tvbr

11.12.4.22. tvbrange:le_ustringz()

Obtain a Little Endian UTF-16 encoded zero terminated string from a TvbRange

11.12.4.22.1. Returns

The zero terminated string, the length found in tvbr
11.12.4.23. tvbrange:bytes()

Obtain a ByteArray

11.12.4.23.1. Returns

The ByteArray
11.12.4.24. tvbrange:bitfield([position], [length])

Get a bitfield from a TvbRange.
11.12.4.24.1. Arguments
position (optional)
The bit offset from the beginning of the TvbRange. Defaults to 0.
length (optional)
The length (in bits) of the field. Defaults to 1.

11.12.4.24.2. Returns

The bitfield value
11.12.4.25. tvbrange:range([offset], [length], name)

Creates a sub-TvbRange from this TvbRange. This is used also as the
TvbRange:__call() metamethod.

11.12.4.25.1. Arguments

offset (optional)
The offset (in octets) from the beginning of the TvbRange. Defaults to O.
length (optional)

The length (in octets) of the range. Defaults to until the end of the
TvbRange.

name
The name to be given to the new data-source.

11.12.4.25.2. Returns

The TvbRange

The TvbRange

11.12.4.26. tvbrange:len()

Obtain the length of a TvbRange
11.12.4.27. tvbrange:offset()
Obtain the offset in a TvbRange
11.12.4.28. tvbrange:__tostring()

Converts the TvbRange into a string. As the string gets truncated you should use
this only for debugging purposes or if what you want is to have a truncated
string in the format 67:89:AB....

11.12.5. Ulnt

UlInt64 represents a 64 bit unsigned integer.

11.13. Utility Functions

11.13.1. Dir
A Directory
11.13.1.1. Dir.open(pathname, [extension])

Usage: for filename in Dir.open(path) do ... end

11.13.1.1.1. Arguments

pathname
The pathname of the directory
extension (optional)
If given, only file with this extension will be returned

11.13.1.1.2. Returns

the Dir object

11.13.1.2. dir:__call()

At every invocation will return one file (nil when done)
11.13.1.3. dir:close()

Closes the directory

11.13.2. Non Method Functions

11.13.2.1. get_version()

Get Wireshark version

11.13.2.1.1. Returns

version string
11.13.2.2. format_date(timestamp)

Formats an absolute timestamp into a human readable date

11.13.2.2.1. Arguments

timestamp
A timestamp value to convert.

11.13.2.2.2. Returns

A string with the formated date

11.13.2.3. format_time(timestamp)

Formats a relative timestamp in a human readable form
11.13.2.3.1. Arguments

timestamp
A timestamp value to convert

11.13.2.3.2. Returns
A string with the formated time
11.13.2.4. report_failure(text)

Reports a failure to the user

11.13.2.4.1. Arguments

text

Message
11.13.2.5. critical(...)

Will add a log entry with critical severity

11.13.2.5.1. Arguments

objects to be printed
11.13.2.6. warn(...)

Will add a log entry with warn severity

11.13.2.6.1. Arguments

objects to be printed
11.13.2.7. message(...)

Will add a log entry with message severity

11.13.2.7.1. Arguments

objects to be printed
11.13.2.8. info(...)

Will add a log entry with info severity

11.13.2.8.1. Arguments

objects to be printed
11.13.2.9. debug(...)

Will add a log entry with debug severity

11.13.2.9.1. Arguments

objects to be printed
11.13.2.10. loadfile(filename)

Lua's loadfile() has been modified so that if a file does not exist in the current
directory it will look for it in wireshark's user and system directories

11.13.2.10.1. Arguments
filename

Name of the file to be loaded

11.13.2.11. dofile(filename)

Lua's dofile() has been modified so that if a file does not exist in the current
directory it will look for it in wireshark's user and system directories

11.13.2.11.1. Arguments

filename

Name of the file to be run

11.13.2.12. persconffile_path([filename])

11.13.2.12.1. Arguments

filename (optional)
A filename

11.13.2.12.2. Returns

The full pathname for a file in the personal configuration directory
11.13.2.13. datafile_path([filename])

11.13.2.13.1. Arguments

filename (optional)
A filename

11.13.2.13.2. Returns

The full pathname for a file in wireshark's configuration directory
11.13.2.14. register_stat_cmd_arg(argument, [action])

Register a function to handle a -z option

11.13.2.14.1. Arguments

argument
Argument
action (optional)

Action

Appendix A. Files and Folders

Table of Contents

A.1. Capture Files

A.1.1. Libpcap File Contents

A.1.2. Not Saved in the Capture File
A.2. Configuration Files and Folders

A.2.1. Protocol help configuration
A.3. Windows folders

A.3.1. Windows profiles

A.3.2. Windows 7, Vista, XP, 2000, and NT roaming profiles
A.3.3. Windows temporary folder

A.1. Capture Files

To understand which information will remain available after the captured
packets are saved to a capture file, it's helpful to know a bit about the capture file
contents.

Wireshark uses the libpcap file format as the default format to save captured
packets; this format has existed for a long time and it's pretty simple. However, it
has some drawbacks: it's not extensible and lacks some information that would
be really helpful (e.g. being able to add a comment to a packet such as "the
problems start here" would be really nice).

In addition to the libpcap format, Wireshark supports several different capture
file formats. However, the problems described above also applies for these
formats.

A new capture file format "PCAP Next Generation Dump File Format" is
currently under development, which will fix these drawbacks. However, it still
might take a while until the new file format is ready and Wireshark can use it.

A.1.1. Libpcap File Contents

At the start of each libpcap capture file some basic information is stored like a
magic number to identify the libpcap file format. The most interesting
information of this file start is the link layer type (Ethernet, Token Ring, ...).

The following data is saved for each packet:
¢ the timestamp with millisecond resolution
¢ the packet length as it was "on the wire"
e the packet length as it's saved in the file
¢ the packet's raw bytes

A detailed description of the libpcap file format can be found at:
http://wiki.wireshark.org/Development/LibpcapFileFormat

http://wiki.wireshark.org/Development/LibpcapFileFormat

A.1.2. Not Saved in the Capture File

Probably even more interesting for everyday Wireshark usage is to know the
things that are not saved in the capture file:

e current selections (selected packet, ...)

e name resolution information, see Section 7.7, “Name Resolution” for
details

Warning!

The name resolution information is rebuilt each time

&\ Wireshark is restarted so this information might even
change when the capture file is reopened on the same
machine later!

the number of packets dropped while capturing

packet marks set with "Edit/Mark Packet"

time references set with "Edit/Time Reference"

the current display filter

A.2. Configuration Files and Folders

Wireshark uses a number of files and folders while it is running. Some of these
reside in the personal configuration folder and are used to maintain information
between runs of Wireshark, while some of them are maintained in system areas.

Tip

A list of the folders Wireshark actually uses can be found under

L

Wireshark from the Help menu.

the Folders tab in the dialog box shown when you select About

The content format of the configuration files is the same on all platforms.
However, to match the different policies for Unix and Windows platforms,
different folders are used for these files.

Table A.1. Configuration files and folders overview

File/Folder Description Unix/Linux folders V
Settings
references from the /etc/wireshark.conf, %WIRESHA
P Preferences $HOME/.wireshark/preferences %APPDATA
dialog box.
Recent GUI
recent ist;lnrgeient $HOME/.wireshark/recent %APPDATA
files lists).
. Capture . : %WIRESHA
cfilters filters. $HOME/.wireshark/cfilters 96 APPDATAC
. Display . . %WIRESHA
dfilters filters. $HOME/.wireshark/dfilters 96 APPDATAC
. Coloring . . %WIRESHA
colorfilters rules. $HOME/.wireshark/colorfilters 94 APPDATAC
. Disabled . . %WIRESHA
disabled_protos protocols. $HOME/.wireshark/disabled_protos 94 APPDATAC

ethers

manuf

hosts

services

subnets

ipxnets

plugins

temp

Ethernet
name
resolution.
Ethernet
name
resolution.

IPv4 and

IPv6 name /etc/hosts, SHOME/.wireshark/hosts

resolution.
Network
services.

IPv4 subnet
name
resolution.
IPX name
resolution.

Plugin
directories.

Temporary Environment: TMPDIR

files.
Windows folders

/etc/ethers,

$HOME/.wireshark/ethers

/etc/manuf,

$HOME/.wireshark/manuf

/etc/services,

$HOME/.wireshark/services

/etc/subnets,

$HOME/.wireshark/subnets

/etc/ipxnets,

$HOME/.wireshark/ipxnets

/usr/share/wireshark/plugins,
/usr/local/share/wireshark/plugins,
$HOME/.wireshark/plugins

%WIRESHA
%APPDATAS

%WIRESHA
%APPDATAS

%WIRESHA
%APPDATAS

%WIRESHA
%APPDATAS

%WIRESHA
%APPDATAS

%WIRESHA
%APPDATAS

%WIRESHA
%APPDATAS

Environment:

%APPDATA% points to the personal configuration folder, e.g.:
_ C:\Documents and Settings\<username>\Application Data

2 (details can be found at: Section A.3.1, “Windows profiles”),

%WIRESHARK% points to the Wireshark program folder, e.g.:
C:\Program Files\Wireshark

Unix/Linux folders

The /etc folder is the global Wireshark configuration folder.
_# The folder actually used on your system may vary, maybe
~ something like: /usr/local/etc.

$HOME is usually something like: /home/<username>

preferences/wireshark.conf

This file contains your Wireshark preferences, including defaults for
capturing and displaying packets. It is a simple text file containing
statements of the form:

variable: value
The settings from this file are read in at program start and written to disk
when you press the Save button in the "Preferences" dialog box.

recent

This file contains various GUI related settings like the main window
position and size, the recent files list and such. It is a simple text file
containing statements of the form:

variable: value

It is read at program start and written at program exit.
cfilters

This file contains all the capture filters that you have defined and saved. It
consists of one or more lines, where each line has the following format:

"<filter name>" <filter string>

The settings from this file are read in at program start and written to disk

when you press the Save button in the "Capture Filters" dialog box.
dfilters

This file contains all the display filters that you have defined and saved. It
consists of one or more lines, where each line has the following format:

"<filter name>" <filter string>

The settings from this file are read in at program start and written to disk
when you press the Save button in the "Display Filters" dialog box.

colorfilters

This file contains all the color filters that you have defined and saved. It
consists of one or more lines, where each line has the following format:

@<filter name>@<filter string>@[<bg RGB(16-bit)>][<fg RGB(16-bit

The settings from this file are read in at program start and written to disk
when you press the Save button in the "Coloring Rules" dialog box.

disabled_protos

Each line in this file specifies a disabled protocol name. The following are
some examples:

tcp
udp

The settings from this file are read in at program start and written to disk
when you press the Save button in the "Enabled Protocols" dialog box.

ethers

When Wireshark is trying to translate Ethernet hardware addresses to
names, it consults the files listed in Table A.1, “Configuration files and
folders overview”. If an address is not found in /etc/ethers, Wireshark looks
in SHOME/.wireshark/ethers

Each line in these files consists of one hardware address and name
separated by whitespace. The digits of hardware addresses are separated by
colons (:), dashes (-) or periods(.). The following are some examples:

ff-ff-ff-ff-ff-ff Broadcast
cO-00-ff-ff-ff-ff TR_broadcast
00.2b.08.93.4b.a1l1 Freds_machine

The settings from this file are read in at program start and never written by
Wireshark.

manuf

Wireshark uses the files listed in Table A.1, “Configuration files and folders
overview” to translate the first three bytes of an Ethernet address into a
manufacturers name. This file has the same format as the ethers file, except
addresses are three bytes long.

An example is:

00:00:01 Xerox # XEROX CORPORATION

The settings from this file are read in at program start and never written by
Wireshark.

hosts

Wireshark uses the files listed in Table A.1, “Configuration files and folders
overview” to translate IPv4 and IPv6 addresses into names.

This file has the same format as the usual /etc/hosts file on Unix systems.

An example is:

Comments must be prepended by the # sign!
192.168.0.1 homeserver

The settings from this file are read in at program start and never written by
Wireshark.

services

Wireshark uses the files listed in Table A.1, “Configuration files and folders
overview” to translate port numbers into names.

An example is:

mydns 5045/udp # My own Domain Name Server

mydns 5045/tcp # My own Domain Name Server

The settings from this file are read in at program start and never written by
Wireshark.

subnets

Wireshark uses the files listed in Table A.1, “Configuration files and folders
overview” to translate an IPv4 address into a subnet name. If no exact
match from the hosts file or from DNS is found, Wireshark will attempt a
partial match for the subnet of the address.

Each line of this file consists of an IPv4 address, a subnet mask length
separated only by a '/ and a name separated by whitespace. While the
address must be a full IPv4 address, any values beyond the mask length are
subsequently ignored.

An example is:

Comments must be prepended by the # sign!
192.168.0.0/24 ws_test_network

A partially matched name will be printed as "subnet-name.remaining-
address". For example, "192.168.0.1" under the subnet above would be
printed as "ws_test_network.1"; if the mask length above had been 16
rather than 24, the printed address would be "ws_test_network.0.1".

The settings from this file are read in at program start and never written by
Wireshark.

ipxnets

Wireshark uses the files listed in Table A.1, “Configuration files and folders
overview” to translate IPX network numbers into names.

An example is:

CO.A8.2C.00 HR
cO-a8-1c-00 CEO
00:00:BE:EF IT_Serverl

110f FileServer3

The settings from this file are read in at program start and never written by
Wireshark.

plugins folder

Wireshark searches for plugins in the directories listed in Table A.1
“Configuration files and folders overview”. They are searched in the order
listed.

temp folder

If you start a new capture and don't specify a filename for it, Wireshark uses
this directory to store that file; see Section 4.11, “Capture files and file
modes”.

A.2.1. Protocol help configuration

Wireshark can use configuration files to create context-sensitive menu items for
protocol detail items which will load help URLSs in your web browser.

To create a protocol help file, create a folder named "protocol_help" in either the
personal or global configuration folders. Then create a text file with the
extension ".ini" in the "protocol_help" folder. The file must contain key-value
pairs with the following sections:

[database]

Mandatory. This contains initialization information for the help file. The
following keys must be defined:

source
Source name, e.g. "HyperGlobalMegaMart".
version

Must be "1".

location

General URL for help items. Variables can be substituted using the
[location data] section below.

[location data]

Optional. Contains keys that will be used for variable substitution in the
"location” value. For example, if the database section contains

location = http://www.example.com/proto?cookie=${cookie}&path=${

then setting

cookie = anonymous-user-1138

will result in the URL "http://www.example.com/proto?
cookie=anonymous-user-1138&path=${PATH}". PATH is used for help
path substitution, and shouldn't be defined in this section.

[map]

Maps Wireshark protocol names to section names below. Each key MUST
match a valid protocol name such as "ip". Each value MUST have a
matching section defined in the configuration file.

Each protocol section must contain an "_OVERVIEW" key which will be used
as the first menu item for the help source. Subsequent keys must match
descriptions in the protocol detail. Values will be used as the ${PATH} variable
in the location template. If ${PATH} isn't present in the location template the
value will be appended to the location.

Suppose the file
C:\Users\sam.clemens\AppData\Roaming\Wireshark\protocol_help\wikiped

contains the following:
Wikipedia (en) protocol help file.

Help file initialization
source: The source of the help information, e.g. "Inacon" or "Wiki

version: Currently unused. Must be "1".

url_template: Template for generated URLs. See "URL Data" below.
[database]

source=Wikipedia

version=1

url template=http://${language}.wikipedia.org/wiki/${PATH}

Substitution data for the location template.

Each occurence of the keys below in the location template will be
substituted with their corresponding values. For example, "${licen
in the URL template above will be replaced with the value of "lice
below.

H o HHHHH

PATH is reserved for the help paths below; do not specify it here.
[location data]
language = en

Maps Wireshark protocol names to section names below. Each key MUS
a valid protocol name. Each value MUST have a matching section bel

[map]
tcp=TCP

Mapped protocol sections.

Keys must match protocol detail items descriptions.
[TCP]

_OVERVIEW=Transmission_Control_Protocol

Destination port=Transmission_Control Protocol#TCP_ports
Source port=Transmission_Control_Protocol#TCP_ports

Right-clicking on a TCP protocol detail item will display a help menu item that
displays the Wikipedia page for TCP. Right-clicking on the TCP destination or
source ports will display additional help menu items that take you to the "TCP

ports" section of the page.

The [location data] and ${PATH} can be omitted if they are not needed. For
example, the following configuration is functionally equivalent to the previous
configuration:

[database]

source=Wikipedia

version=1
location=http://en.wikipedia.org/wiki/

[map]
tcp=TCP

[TCP]

_OVERVIEW=Transmission_Control_Protocol

Destination port=Transmission_Control Protocol#TCP_ports
Source port=Transmission_Control_Protocol#TCP_ports

A.3. Windows folders

Here you will find some details about the folders used in Wireshark on different
Windows versions.

As already mentioned, you can find the currently used folders in the About
Wireshark dialog.

A.3.1. Windows profiles

Windows uses some special directories to store user configuration files which
define the "user profile". This can be confusing, as the default directory location
changed from Windows version to version and might also be different for
English and internationalized versions of Windows.

Note!

Ei If you've upgraded to a new Windows version, your profile
— might be kept in the former location, so the defaults mentioned
here might not apply.

The following guides you to the right place where to look for Wireshark's profile
data.

Windows 7, Windows Vista

C:\Users\<username>\AppData\Roaming\Wireshark
Windows XP

C:\Documents and Settings\<username>\Application Data,
"Documents and Settings" and "Application Data" might be
internationalized.

Windows 2000 (no longer supported by Wireshark, for historical reference only)

C:\Documents and Settings\<username>\Application Data,

"Documents and Settings" and "Application Data" might be
internationalized.

Windows NT 4 (no longer supported, for historical reference only)

C:\WINNT\Profiles\<username>\Application Data\Wireshark

Windows ME, Windows 98 with user profiles (no longer supported, for
historical reference only)

In Windows ME and 98 you can enable separate user profiles. In that case,
something like C:\windows\Profiles\<username>\Application
Data\Wireshark is used.

Windows ME, Windows 98 without user profiles (no longer supported, for
historical reference only)

Without user profiles enabled the default location for all users is
C:\windows\Application Data\Wireshark

A.3.2. Windows 7, Vista, XP, 2000, and NT roaming profiles

The following will only be applicable if you are using roaming profiles. This
might be the case, if you work in a Windows domain environment (used in
company networks). The configurations of all programs you use won't be saved
on the local hard drive of the computer you are currently working on, but on the
domain server.

As Wireshark is using the correct places to store its profile data, your settings
will travel with you, if you logon to a different computer the next time.

There is an exception to this: The "Local Settings" folder in your profile data
(typically something like: C:\Documents and Settings\<username>\Local
Settings) will not be transferred to the domain server. This is the default for
temporary capture files.

A.3.3. Windows temporary folder

Wireshark uses the folder which is set by the TMPDIR or TEMP environment
variable. This variable will be set by the Windows installer.

Windows 7, Windows Vista

C:\Users\<username>\AppData\Local\Temp

Windows XP, Windows 2000

C:\Documents and Settings\<username>\Local Settings\Temp

Windows NT

C:\TEMP

Appendix B. Protocols and Protocol
Fields

Wireshark distinguishes between protocols (e.g. tcp) and protocol fields (e.g.
tcp.port).

A comprehensive list of all protocols and protocol fields can be found at:
http://www.wireshark.org/docs/dfref/

http://www.wireshark.org/docs/dfref/

Appendix C. Wireshark Messages

Table of Contents

C.1. Packet List Messages
C.1.1. [Malformed Packet]

C.1.2. [Packet size limited during capture]

C.2. Packet Details Messages
C.2.1. [Response in frame: 123]

C.2.2. [Request in frame: 123]
C.2.3. [Time from request: 0.123 seconds]
C.2.4. [Stream setup by PROTOCOL (frame 123)]

Wireshark provides you with additional information generated out of the plain
packet data or it may need to indicate dissection problems. Messages generated
by Wireshark are usually placed in [] parentheses.

C.1. Packet List Messages
These messages might appear in the packet list.

C.1.1. [Malformed Packet]

Malformed packet means that the protocol dissector can't dissect the contents of
the packet any further. There can be various reasons:

e Wrong dissector: Wireshark erroneously has chosen the wrong protocol
dissector for this packet. This will happen e.g. if you are using a protocol
not on its well known TCP or UDP port. You may try Analyze|Decode As
to circumvent this problem.

e Packet not reassembled: The packet is longer than a single frame and it is
not reassembled, see Section 7.6, “Packet Reassembling” for further details.

e Packet is malformed: The packet is actually wrong (malformed), meaning
that a part of the packet is just not as expected (not following the protocol
specifications).

¢ Dissector is buggy: The corresponding protocol dissector is simply buggy
or still incomplete.

Any of the above is possible. You'll have to look into the specific situation to
determine the reason. You could disable the dissector by disabling the protocol
on the Analyze menu and check how Wireshark displays the packet then. You
could (if it's TCP) enable reassembly for TCP and the specific dissector (if
possible) in the Edit|Preferences menu. You could check the packet contents
yourself by reading the packet bytes and comparing it to the protocol
specification. This could reveal a dissector bug. Or you could find out that the
packet is indeed wrong.

C.1.2. [Packet size limited during capture]

The packet size was limited during capture, see "Limit each packet to n bytes" at
the Section 4.5, “The "Capture Options" dialog box”. While dissecting, the
current protocol dissector was simply running out of packet bytes and had to

give up. There's nothing else you can do now, except to repeat the whole capture
process again with a higher (or no) packet size limitation.

C.2. Packet Details Messages

These messages might appear in the packet details.

C.2.1. [Response in frame: 123]
The current packet is the request of a detected request/response pair. You can

directly jump to the corresponding response packet just by double clicking on
this message.

C.2.2. [Request in frame: 123]

Same as "Response in frame: 123" above, but the other way round.
C.2.3. [Time from request: 0.123 seconds]

The time between the request and the response packets.

C.2.4. [Stream setup by PROTOCOL (frame 123)]

The session control protocol (SDP, H225, etc) message which signaled the

creation of this session. You can directly jump to the corresponding packet just
by double clicking on this message.

Appendix D. Related command line
tools

Table of Contents

D.1. Introduction

D.2. tshark: Terminal-based Wireshark

D.3. tcpdump: Capturing with tcpdump for viewing with Wireshark
D.4. dumpcap: Capturing with dumpcap for viewing with Wireshark
D.5. capinfos: Print information about capture files

D.6. rawshark: Dump and analyze network traffic.
D.7. editcap: Edit capture files

D.8. mergecap: Merging multiple capture files into one
D.9. text2pcap: Converting ASCII hexdumps to network captures

D.10. idl2wrs: Creating dissectors from CORBA IDL files
D.10.1. What is it?
D.10.2. Why do this?
D.10.3. How to use idI2wrs
D.10.4. TODO
D.10.5. Limitations
D.10.6. Notes
D.11. reordercap: Reorder a capture file

D.1. Introduction

Besides the Wireshark GUI application, there are some command line tools
which can be helpful for doing some more specialized things. These tools will be
described in this chapter.

D.2. tshark: Terminal-based Wireshark

TShark is a terminal oriented version of Wireshark designed for capturing and
displaying packets when an interactive user interface isn't necessary or available.
It supports the same options as wireshark. For more information on tshark, see

the manual pages (man tshark).

Example D.1. Help information available from tshark

TShark 1.10.0 (SVN Rev 48974 from /trunk-1.10)
Dump and analyze network traffic.
See http://www.wireshark.org for more information.

Copyright 1998-2013 Gerald Combs <gerald@wireshark.org> and contribu
This is free software; see the source for copying conditions. There
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR F

Usage: tshark [options]

Capture interface:
-1 <interface>
-f <capture filter>
-s <shaplen>
-p
-I
-B <buffer size>
-y <link type>
-D
-L

Capture stop conditions:
-c <packet count>

-a <autostop cond.> ...

Capture output:
-b <ringbuffer opt.>

RPCAP options:

-A <user>:<password>
Input file:

-r <infile>

Processing:

name or idx of interface (def: first non-
packet filter in libpcap filter syntax
packet snapshot length (def: 65535)

don't capture in promiscuous mode

capture in monitor mode, if available
size of kernel buffer (def: 1MB)

link layer type (def: first appropriate)
print list of interfaces and exit

print list of link-layer types of iface a

stop after n

duration:
filesize:
files:

. duration:
filesize:
files:

NUM
NUM
NUM

NUM
NUM
NUM

packets (def: infinite)

- stop after NUM seconds
stop this file after NUM K
stop after NUM files

switch to next file after
switch to next file after

ringbuffer:

replace after

use RPCAP password authentication

set the filename to read from (no pipes c

perform a two-pass analysis
<read filter> packet Read filter in Wireshark display f
<display filter> packet displaY filter in Wireshark displa
disable all name resolutions (def: all en
<name resolve flags> enable specific name resolution(s): "mntC

<layer_type>==<selector>,<decode_as_protocol>
"Decode As'", see the man page for details
Example: tcp.port==8888,http

-H <hosts file> read a list of entries from a hosts file,

then be written to a capture file. (Impli
Output:

-w <outfile]|-> write packets to a pcap-format file named
(or to the standard output for "-")

-C <config profile> start with specified configuration profil

-F <output file type> set the output file type, default is libg
an empty "-F" option will list the file t

-V add output of packet tree (Packet

-0 <protocols> Only show packet details of these protocc
separated

-P print packet summary even when writing tc

-S <separator> the line separator to print between packe

-X add output of hex and ASCII dump (Packet

-T

-e

pdml|ps|psml|text|fields
format of text output (def: text)

<field> field to print if -Tfields selected (e.g.
this option can be repeated to print mult

-E<fieldsoption>=<value> set options for output when -Tfields sele

header=y|n switch headers on and off
separator=/t|/s|<char> select tab, space, printable character a
occurrence=f|1l|a print first, last or all occurrences of €
aggregator=, |/s|<char> select comma, space, printable character
aggregator
gquote=d|s|n select double, single, no quotes for valu
-t ad|al|r|d|dd]|e output format of time stamps (def: r: rel
-u s|hms output format of seconds (def: s: seconds
-1 flush standard output after each packet
-q be more quiet on stdout (e.g. when using
-Q only log true errors to stderr (quieter t
-g enable group read access on the output fi
-W n Save extra information in the file, if su
n = write network address resolution infc
-X <key>:<value> eXtension options, see the man page for d
-z <statistics> various statistics, see the man page for
Miscellaneous:
-h display this help and exit
-V display version info and exit
-0 <name>:<value> ... override preference setting
-K <keytab> keytab file to use for kerberos decryptic
-G [report] dump one of several available reports and

default report="fields"
use "-G ?" for more help

D.3. tcpdump: Capturing with tcpdump for viewing
with Wireshark

There are occasions when you want to capture packets using tcpdump rather
than wireshark, especially when you want to do a remote capture and do not
want the network load associated with running Wireshark remotely (not to
mention all the X traffic polluting your capture).

However, the default tcpdump parameters result in a capture file where each
packet is truncated, because most versions of tcpdump, will, by default, only
capture the first 68 or 96 bytes of each packet.

To ensure that you capture complete packets, use the following command:

tcpdump -i <interface> -s 65535 -w <some-file>

You will have to specify the correct interface and the name of a file to save into.
In addition, you will have to terminate the capture with AC when you believe you
have captured enough packets.

Note!

//" tcpdump is not part of the Wireshark distribution. You can get it
from: http://www.tcpdump.org for various platforms.

http://www.tcpdump.org

D.4. dumpcap: Capturing with dumpcap for viewing

with Wireshark

Dumpcap is a network traffic dump tool. It captures packet data from a live
network and writes the packets to a file. Dumpcap's native capture file format is
libpcap format, which is also the format used by Wireshark, tcpdump and

various other tools.

Without any options set it will use the pcap library to capture traffic from the
first available network interface and write the received raw packet data, along
with the packets' time stamps into a libpcap file.

Packet capturing is performed with the pcap library. The capture filter syntax
follows the rules of the pcap library.

Example D.2. Help information available from dumpcap

Dumpcap 1.10.0 (SVN Rev 48974 from /trunk-1.10)
Capture network packets and dump them into a pcapng file.
See http://www.wireshark.org for more information.

Usage: dumpcap [options]

Capture interface:
-1 <interface>

-f <capture filter>
-s <snaplen>

-B <buffer size>
-y <link type>

RPCAP options:
-r

name or idx of interface (def: first non-

or for remote capturing, use one of these
rpcap://<host>/<interface>
TCP@<host>:<port>

packet filter in libpcap filter syntax

packet snapshot length (def: 65535)

don't capture in promiscuous mode

capture in monitor mode, if available

size of kernel buffer in MB (def: 2MB)

link layer type (def: first appropriate)

print list of interfaces and exit

print list of link-layer types of iface a

print generated BPF code for capture filt

set channel on wifi interface <freq>, [<ty

print statistics for each interface once

for -D, -L, and -S, produce machine-reada

don't ignore own RPCAP traffic in capture

-u use UDP for RPCAP data transfer
-A <user>:<password> use RPCAP password authentication
-m <sampling type> use packet sampling
count:NUM - capture one packet of every N
timer:NUM - capture no more than 1 packet
Stop conditions:
-Cc <packet count> stop after n packets (def: infinite)
-a <autostop cond.> ... duration:NUM - stop after NUM seconds
filesize:NUM - stop this file after NUM K
files:NUM - stop after NUM files
Output (files):

-w <filename> name of file to save (def: tempfile)
-g enable group read access on the output fi
-b <ringbuffer opt.> ... duration:NUM - switch to next file after

filesize:NUM - switch to next file after
files:NUM - ringbuffer: replace after

-n use pcapng format instead of pcap (defaul

-P use libpcap format instead of pcapng
Miscellaneous:

-N <packet_limit> maximum number of packets buffered within

-C <byte_limit> maximum number of bytes used for bufferin

-t use a separate thread per interface

-q don't report packet capture counts

-V print version information and exit

-h display this help and exit

Example: dumpcap -i eth® -a duration:60 -w output.pcapng
"Capture packets from interface eth® until 60s passed into output.pc

Use Ctrl-C to stop capturing at any time.

D.5. capinfos: Print information about capture files

Included with Wireshark is a small utility called capinfos, which is a command-
line utility to print information about binary capture files.

Example D.3. Help information available from capinfos

Capinfos 1.10.0 (SVN Rev 48974 from /trunk-1.10)
Prints various information (infos) about capture files.
See http://www.wireshark.org for more information.

Usage: capinfos [options] <infile> ...

General infos:
-t display the capture file type
-E display the capture file encapsulation
-H display the SHA1, RMD160, and MD5 hashes of the file
-k display the capture comment

Size infos:
-c display the number of packets
-s display the size of the file (in bytes)
-d display the total length of all packets (in bytes)
-1 display the packet size limit (snapshot length)

Time infos:
-u display the capture duration (in seconds)
-a display the capture start time
-e display the capture end time
-0 display the capture file chronological status (True/False)
-S display start and end times as seconds

Statistic infos:
-y display average data rate (in bytes/sec)
-i display average data rate (in bits/sec)
-z display average packet size (in bytes)
-X display average packet rate (in packets/sec)

Output format:
-L generate long report (default)
-T generate table report
-M display machine-readable values in long reports

Table report options:
-R generate header record (default)
-r do not generate header record

-B separate infos with TAB character (default)
-m separate infos with comma (,) character
-b separate infos with SPACE character

-N do not quote infos (default)
-g quote infos with single quotes (')
-Q quote infos with double quotes (")

Miscellaneous:
-h display this help and exit
-C cancel processing if file open fails (default is to continue)
-A generate all infos (default)

Options are processed from left to right order with later options su
or adding to earlier options.

If no options are given the default is to display all infos in long
output format.

D.6. rawshark: Dump and analyze network traffic.

Rawshark reads a stream of packets from a file or pipe, and prints a line
describing its output, followed by a set of matching fields for each packet on
stdout.

Example D.4. Help information available from rawshark

Rawshark 1.10.0 (SVN Rev 48974 from /trunk-1.10)
Dump and analyze network traffic.
See http://www.wireshark.org for more information.

Copyright 1998-2013 Gerald Combs <gerald@wireshark.org> and contribu
This is free software; see the source for copying conditions. There
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR F

Usage: rawshark [options]

Input file:
-r <infile> set the pipe or file name to read from

Processing:
-d <encap:dlt>|<proto:protoname>
packet encapsulation or protocol

-F <field> field to display
-n disable all name resolution (def: all ena
-N <name resolve flags> enable specific name resolution(s): "mntC
-p use the system's packet header format
(which may have 64-bit timestamps)
-R <read filter> packet filter in Wireshark display filter
-S skip PCAP header on input
Output:
-1 flush output after each packet
-S format string for fields
(%D - name, %S - stringval, %N numval)
-t ad|a|r|d|dd]|e output format of time stamps (def: r: rel
Miscellaneous:
-h display this help and exit
-0 <name>:<value> ... override preference setting

-V display version info and exit

D.7. editcap: Edit capture files

Included with Wireshark is a small utility called editcap, which is a command-
line utility for working with capture files. Its main function is to remove packets
from capture files, but it can also be used to convert capture files from one
format to another, as well as to print information about capture files.

Example D.5. Help information available from editcap
Editcap 1.10.0 (SVN Rev 48974 from /trunk-1.10)
Edit and/or translate the format of capture files.
See http://www.wireshark.org for more information.

Usage: editcap [options] ... <infile> <outfile> [<packet#>[-<packet

<infile> and <outfile> must both be present.
A single packet or a range of packets can be selected.

Packet selection:

-r keep the selected packets; default is to de
-A <start time> only output packets whose timestamp is afte

to) the given time (format as YYYY-MM-DD hh
-B <stop time> only output packets whose timestamp is befc

given time (format as YYYY-MM-DD hh:mm:ss).

Duplicate packet removal:

-d remove packet if duplicate (window == 5).

-D <dup window> remove packet if duplicate; configurable <d
Valid <dup window> values are 0 to 1000000.
NOTE: A <dup window> of 0 with -v (verbose
useful to print MD5 hashes.

-w <dup time window> remove packet if duplicate packet is found
LESS THAN <dup time window> prior to curren
A <dup time window> is specified in relativ
(e.g. 0.000001).

NOTE: The use of the 'Duplicate packet removal' options w
other editcap options except -v may not always work as ex
Specifically the -r, -t or -S options will very likely NC
desired effect if combined with the -d, -D or -w.

Packet manipulation:
-s <snaplen> truncate each packet to max. <snaplen> byte
-C <choplen> chop each packet by <choplen> bytes. Positi
chop at the packet beginning, negative valu

-t <time adjustment>

-S <strict adjustment>

-E <error probability>

Output File(s):
-Cc <packets per file>

-1 <seconds per file>

-F <capture type>

-T <encap type>

Miscellaneous:
-h
-V

packet end.

adjust the timestamp of each packet;

<time adjustment> is in relative seconds (e
adjust timestamp of packets if necessary tc
strict chronological increasing order. The
adjustment> is specified in relative second
values of O or 0.000001 being the most reas
A negative adjustment value will modify tin
that each packet's delta time is the absolu
of the adjustment specified. A value of -0
all packets to the timestamp of the first p
set the probability (between 0.0 and 1.0 in
that a particular packet byte will be randc

split the packet output to different files
based on uniform packet counts

with a maximum of <packets per file> each.
split the packet output to different files
based on uniform time intervals

with a maximum of <seconds per file> each.
set the output file type; default is pcapng
an empty "-F" option will list the file typ
set the output file encapsulation type;
default is the same as the input file.

an empty "-T" option will list the encapsul

display this help and exit.

verbose output.

If -v is used with any of the 'Duplicate Pa
Removal' options (-d, -D or -w) then Packet
and MD5 hashes are printed to standard-out.

Example D.6. Capture file types available from editcap

$ editcap -F
editcap: option requires

an argument -- 'F'

editcap: The available capture file types for the "-F" flag are:
5views - InfoVista 5View capture

btsnoop - Symbian 0S

btsnoop

commview - TamoSoft CommView

dct2000 - Catapult DCT2000 trace (.out format)
erf - Endace ERF capture

eyesdn - EyeSDN USB SO/E1 ISDN trace format
ki2text - K12 text file

lanalyzer - Novell LANalyzer

libpcap - Wireshark/tcpdump/... - libpcap

modlibpcap - Modified tcpdump - libpcap
netmonl - Microsoft NetMon 1.x

netmon2 - Microsoft NetMon 2.x

nettl - HP-UX nettl trace

ngsniffer - NA Sniffer (DOS)

ngwsniffer_1 1 - NA Sniffer (Windows) 1.1
ngwsniffer_2_0 - NA Sniffer (Windows) 2.00x
niobserver - Network Instruments Observer
nokialibpcap - Nokia tcpdump - libpcap
nseclibpcap - Wireshark - nanosecond libpcap
nstracel® - NetScaler Trace (Version 1.0)
nstrace20 - NetScaler Trace (Version 2.0)
pcapng - Wireshark - pcapng

rf5 - Tektronix Ki12xx 32-bit .rf5 format
rhé_1libpcap - RedHat 6.1 tcpdump - libpcap
snoop - Sun snoop

suse6_3libpcap - SuSE 6.3 tcpdump - libpcap
visual - Visual Networks traffic capture

Example D.7. Encapsulation types available from editcap

$ editcap -T

editcap: option requires an argument -- 'T'

editcap: The available encapsulation types for the "-T" flag are:
ap1394 - Apple IP-over-IEEE 1394
arcnet - ARCNET
arcnet_linux - Linux ARCNET
ascend - Lucent/Ascend access equipment
atm-pdus - ATM PDUs
atm-pdus-untruncated - ATM PDUs - untruncated
atm-rfcl1483 - RFC 1483 ATM
ax25 - Amateur Radio AX.25
ax25-kiss - AX.25 with KISS header
bacnet-ms-tp - BACnet MS/TP
bacnet-ms-tp-with-direction - BACnet MS/TP with Directional Infc
ber - ASN.1 Basic Encoding Rules
bluetooth-h4 - Bluetooth H4
bluetooth-h4-1inux - Bluetooth H4 with linux header
bluetooth-hci - Bluetooth without transport layer
can20b - Controller Area Network 2.0B
chdlc - Cisco HDLC
chdlc-with-direction - Cisco HDLC with Directional Info
cosine - CoSine L2 debug log

dbus - D-Bus

dct2000 - Catapult DCT2000

docsis - Data Over Cable Service Interface Specification
dpnss_link - Digital Private Signalling System No 1 Link Layer
dvbci - DVB-CI (Common Interface)

enc - OpenBSD enc(4) encapsulating interface

erf - Extensible Record Format

ether - Ethernet

ether-nettl - Ethernet with nettl headers

fc2 - Fibre Channel FC-2

fc2sof - Fibre Channel FC-2 With Frame Delimiter

fddi - FDDI

fddi-nettl - FDDI with nettl headers

fddi-swapped - FDDI with bit-swapped MAC addresses

flexray - FlexRay

frelay - Frame Relay

frelay-with-direction - Frame Relay with Directional Info
gcom-serial - GCOM Serial

gcom-tiel - GCOM TIE1

gprs-1lc - GPRS LLC

gsm_um - GSM Um Interface

hhdlc - HiPath HDLC

i2c - I2C

ieee-802-11 - IEEE 802.11 Wireless LAN

ieee-802-11-airopeek - IEEE 802.11 plus AiroPeek radio header
ieee-802-11-avs - IEEE 802.11 plus AVS radio header
ieee-802-11-netmon - IEEE 802.11 plus Network Monitor radio head
ieee-802-11-prism - IEEE 802.11 plus Prism II monitor mode radic
ieee-802-11-radio - IEEE 802.11 Wireless LAN with radio informat
ieee-802-11-radiotap - IEEE 802.11 plus radiotap radio header
ieee-802-16-mac-cps - IEEE 802.16 MAC Common Part Sublayer
infiniband - InfiniBand

ios - Cisco IOS internal

ip-over-fc - RFC 2625 IP-over-Fibre Channel

ip-over-ib - IP over Infiniband

ipfix - IPFIX

ipmb - Intelligent Platform Management Bus

ipnet - Solaris IPNET

irda - IrDA

isdn - ISDN

ixveriwave - IxVeriWave header and stats block

jfif - JPEG/JFIF

juniper-atml - Juniper ATM1

juniper-atm2 - Juniper ATM2

juniper-chdlc - Juniper C-HDLC

juniper-ether - Juniper Ethernet

juniper-frelay - Juniper Frame-Relay

juniper-ggsn - Juniper GGSN

juniper-mlfr - Juniper MLFR

juniper-mlppp - Juniper MLPPP

juniper-ppp - Juniper PPP

juniper-pppoe - Juniper PPPOE

juniper-svcs - Juniper Services

juniper-vp - Juniper Voice PIC

k12 - K12 protocol analyzer

lapb - LAPB

lapd - LAPD

layerl-event - EyeSDN Layer 1 event

lin - Local Interconnect Network

linux-atm-clip - Linux ATM CLIP

linux-lapd - LAPD with Linux pseudo-header
linux-sll - Linux cooked-mode capture

ltalk - Localtalk

mime - MIME

most - Media Oriented Systems Transport

mp2ts - ISO/IEC 13818-1 MPEG2-TS

mpeg - MPEG

mtp2 - SS7 MTP2

mtp2-with-phdr - MTP2 with pseudoheader

mtp3 - SS7 MTP3

mux27010 - MUX27010

netanalyzer - netANALYZER
netanalyzer-transparent - netANALYZER-Transparent
nfc-1llcp - NFC LLCP

nflog - NFLOG

nstracel® - NetScaler Encapsulation 1.0 of Ethernet
nstrace20 - NetScaler Encapsulation 2.0 of Ethernet
null - NULL

packetlogger - PacketLogger

pflog - OpenBSD PF Firewall logs

pflog-old - OpenBSD PF Firewall logs, pre-3.4
ppi - Per-Packet Information header

ppp - PPP

ppp-with-direction - PPP with Directional Info
pppoes - PPP-over-Ethernet session
raw-icmp-nettl - Raw ICMP with nettl headers
raw-icmpvé-nettl - Raw ICMPv6 with nettl headers
raw-telnet-nettl - Raw telnet with nettl headers
rawip - Raw IP

rawip-nettl - Raw IP with nettl headers

rawip4 - Raw IPv4

rawip6é - Raw IPv6

redback - Redback SmartEdge

sccp - SS7 SCCP

sctp - SCTP

sdh - SDH

sdlc - SDLC

sita-wan - SITA WAN packets

slip - SLIP

socketcan - SocketCAN

symantec - Symantec Enterprise Firewall

tnef - Transport-Neutral Encapsulation Format

tr - Token Ring

tr-nettl - Token Ring with nettl headers

tzsp - Tazmen sniffer protocol

unknown - Unknown

unknown-nettl - Unknown link-layer type with nettl headers
usb - Raw USB packets

usb-linux - USB packets with Linux header

usb-linux-mmap - USB packets with Linux header and padding
usb-usbpcap - USB packets with USBPcap header

user® - USER 0

userl - USER 1

userl® - USER 10

userll - USER 11

userl2 - USER 12

userl3 - USER 13

userl4 - USER 14

userl5 - USER 15

user2 - USER
user3 - USER
user4 - USER
user5 - USER
user6 - USER
user7 - USER
user8 - USER
user9 - USER
v5-ef - V5 Envelope Function

whdlc - Wellfleet HDLC

wpan - IEEE 802.15.4 Wireless PAN

wpan-nofcs - IEEE 802.15.4 Wireless PAN with FCS not present
wpan-nonask-phy - IEEE 802.15.4 Wireless PAN non-ASK PHY
x25-nettl - X.25 with nettl headers

x2e-serial - X2E serial line capture

X2e-xoraya - X2E Xoraya

CoO~NOUPA~,WN

D.8. mergecap: Merging multiple capture files into
one

Mergecap is a program that combines multiple saved capture files into a single
output file specified by the -w argument. Mergecap knows how to read libpcap
capture files, including those of tcpdump. In addition, Mergecap can read
capture files from snoop (including Shomiti) and atmsnoop, LanAlyzer, Sniffer
(compressed or uncompressed), Microsoft Network Monitor, AIX's iptrace,
NetXray, Sniffer Pro, RADCOM's WAN/LAN analyzer, Lucent/Ascend router
debug output, HP-UX's nettl, and the dump output from Toshiba's ISDN routers.
There is no need to tell Mergecap what type of file you are reading; it will
determine the file type by itself. Mergecap is also capable of reading any of these
file formats if they are compressed using gzip. Mergecap recognizes this directly
from the file; the '.gz' extension is not required for this purpose.

By default, it writes the capture file in libpcap format, and writes all of the
packets in the input capture files to the output file. The -F flag can be used to
specify the format in which to write the capture file; it can write the file in
libpcap format (standard libpcap format, a modified format used by some
patched versions of libpcap, the format used by Red Hat Linux 6.1, or the format
used by SuSE Linux 6.3), snoop format, uncompressed Sniffer format, Microsoft
Network Monitor 1.x format, and the format used by Windows-based versions of
the Sniffer software.

Packets from the input files are merged in chronological order based on each
frame's timestamp, unless the -a flag is specified. Mergecap assumes that frames
within a single capture file are already stored in chronological order. When the -a
flag is specified, packets are copied directly from each input file to the output
file, independent of each frame's timestamp.

If the -s flag is used to specify a snapshot length, frames in the input file with
more captured data than the specified snapshot length will have only the amount
of data specified by the snapshot length written to the output file. This may be
useful if the program that is to read the output file cannot handle packets larger
than a certain size (for example, the versions of snoop in Solaris 2.5.1 and
Solaris 2.6 appear to reject Ethernet frames larger than the standard Ethernet
MTU, making them incapable of handling gigabit Ethernet captures if jumbo

frames were used).

If the -T flag is used to specify an encapsulation type, the encapsulation type of
the output capture file will be forced to the specified type, rather than being the
type appropriate to the encapsulation type of the input capture file. Note that this
merely forces the encapsulation type of the output file to be the specified type;
the packet headers of the packets will not be translated from the encapsulation
type of the input capture file to the specified encapsulation type (for example, it
will not translate an Ethernet capture to an FDDI capture if an Ethernet capture
is read and '-T fddi' is specified).

Example D.8. Help information available from mergecap

Mergecap 1.10.0 (SVN Rev 48974 from /trunk-1.10)
Merge two or more capture files into one.
See http://www.wireshark.org for more information.

Usage: mergecap [options] -w <outfile>|- <infile> [<infile> ...]
Output:
-a concatenate rather than merge files.
default is to merge based on frame timestamps.
-s <snaplen> truncate packets to <snaplen> bytes of data.
-w <outfile>|- set the output filename to <outfile> or '-' for

-F <capture type> set the output file type; default is pcapng.

an empty "-F" option will list the file types.
-T <encap type> set the output file encapsulation type;

default is the same as the first input file.

an empty "-T" option will 1list the encapsulation

Miscellaneous:
-h display this help and exit.
-V verbose output.

A simple example merging dhcp-capture.libpcap and imap-1.1libpcap into
outfile.libpcap is shown below.

Example D.9. Simple example of using mergecap

$ mergecap -w outfile.libpcap dhcp-capture.libpcap imap-1.libpcap

D.9. text2pcap: Converting ASCII hexdumps to
network captures

There may be some occasions when you wish to convert a hex dump of some
network traffic into a libpcap file.

Text2pcap is a program that reads in an ASCII hex dump and writes the data
described into a libpcap-style capture file. text2pcap can read hexdumps with
multiple packets in them, and build a capture file of multiple packets. text2pcap
is also capable of generating dummy Ethernet, IP and UDP headers, in order to
build fully processable packet dumps from hexdumps of application-level data
only.

Text2pcap understands a hexdump of the form generated by od -A x -t x1. In
other words, each byte is individually displayed and surrounded with a space.
Each line begins with an offset describing the position in the file. The offset is a
hex number (can also be octal - see -0), of more than two hex digits. Here is a
sample dump that text2pcap can recognize:

000000 00 €O le a7 05 6f 00 10
000008 5a ad b9 12 08 00 46 00
000010 03 68 OO OO 0O 0O Ga 28
000018 ee 33 Of 19 08 7f O0f 19
000020 03 80 94 04 00 600 10 1
000028 16 a2 Oa 0O 603 50 GO0 OC
000030 01 01 6f 19 03 80 11 01

There is no limit on the width or number of bytes per line. Also the text dump at
the end of the line is ignored. Bytes/hex numbers can be uppercase or lowercase.
Any text before the offset is ignored, including email forwarding characters >'.
Any lines of text between the bytestring lines is ignored. The offsets are used to
track the bytes, so offsets must be correct. Any line which has only bytes without
a leading offset is ignored. An offset is recognized as being a hex number longer
than two characters. Any text after the bytes is ignored (e.g. the character dump).
Any hex numbers in this text are also ignored. An offset of zero is indicative of
starting a new packet, so a single text file with a series of hexdumps can be
converted into a packet capture with multiple packets. Multiple packets are read
in with timestamps differing by one second each. In general, short of these

restrictions, text2pcap is pretty liberal about reading in hexdumps and has been
tested with a variety of mangled outputs (including being forwarded through
email multiple times, with limited line wrap etc.)

There are a couple of other special features to note. Any line where the first non-
whitespace character is '#' will be ignored as a comment. Any line beginning
with #TEXT2PCAP is a directive and options can be inserted after this command
to be processed by text2pcap. Currently there are no directives implemented; in
the future, these may be used to give more fine grained control on the dump and
the way it should be processed e.g. timestamps, encapsulation type etc.

Text2pcap also allows the user to read in dumps of application-level data, by
inserting dummy L2, L.3 and L4 headers before each packet. Possibilities include
inserting headers such as Ethernet, Ethernet + IP, Ethernet + IP + UDP, or
Ethernet + Ip + TCP before each packet. This allows Wireshark or any other full-
packet decoder to handle these dumps.

Example D.10. Help information available from text2pcap
Text2pcap 1.10.0 (SVN Rev 48974 from /trunk-1.10)
Generate a capture file from an ASCII hexdump of packets.
See http://www.wireshark.org for more information.

Usage: text2pcap [options] <infile> <outfile>

where <infile> specifies input filename (use - for standard input)
<outfile> specifies output filename (use - for standard output

Input:
-0 hex|oct|dec parse offsets as (h)ex, (o)ctal or (d)ecima
default is hex.
-t <timefmt> treat the text before the packet as a date/

the specified argument is a format string ¢
supported by strptime.
Example: The time "10:15:14.5476" has the f
"%H:%M:%S."
NOTE: The subsecond component delimiter, '.
given, but no pattern is required; the rema
number is assumed to be fractions of a secc
NOTE: Date/time fields from the current dat
used as the default for unspecified fields.
-D the text before the packet starts with an I
indicating that the packet is inbound or ou
This is only stored if the output format is
-a enable ASCII text dump identification.

Output:

-1

-

<typenum>

<max-packet>

Prepend dummy header:

-e

<13pid>

<proto>

<srcp>,<destp>

<srcp>,<destp>

<srcp>,<dstp>, <tag>

<srcp>,<dstp>, <ppi>

Miscellaneous:

The start of the ASCII text dump can be ide
and excluded from the packet data, even if
like a HEX dump.

NOTE: Do not enable it if the input file dc
contain the ASCII text dump.

link-layer type number; default is 1 (Ether
http://www.tcpdump.org/linktypes.html for a
numbers. Use this option if your dump is a
hex dump of an encapsulated packet and you
specify the exact type of encapsulation.
Example: -1 7 for ARCNet packets.

max packet length in output; default is 65E

prepend dummy Ethernet II header with speci
(in HEX).

Example: -e 0x806 to specify an ARP packet.
prepend dummy IP header with specified IP p
(in DECIMAL).

Automatically prepends Ethernet header as w
Example: -i 46

prepend dummy UDP header with specified
source and destination ports (in DECIMAL).
Automatically prepends Ethernet & IP header
Example: -u 1000,69 to make the packets loc
TFTP/UDP packets.

prepend dummy TCP header with specified
source and destination ports (in DECIMAL).
Automatically prepends Ethernet & IP header
Example: -T 50,60

prepend dummy SCTP header with specified
source/dest ports and verification tag (in
Automatically prepends Ethernet & IP header
Example: -s 30,40,34

prepend dummy SCTP header with specified
source/dest ports and verification tag O.
Automatically prepends a dummy SCTP DATA
chunk header with payload protocol identifi
Example: -S 30,40,34

display this help and exit.

show detailed debug of parser states.
generate no output at all (automatically di
use PCAP-NG instead of PCAP as output forma

D.10. idl2wrs: Creating dissectors from CORBA IDL
files

In an ideal world idI2wrs would be mentioned in the users guide in passing and
documented in the developers guide. As the developers guide has not yet been
completed it will be documented here.

D.10.1. What is it?

As you have probably guessed from the name, idl2wrs takes a user specified

IDL file and attempts to build a dissector that can decode the IDL traffic over
GIOP. The resulting file is "C" code, that should compile okay as a Wireshark
dissector.

idl2wrs basically parses the data struct given to it by the omniidl compiler, and
using the GIOP API available in packet-giop.[ch], generates get_ CDR_xxx calls
to decode the CORBA traffic on the wire.

It consists of 4 main files.

README . idl12wrs

This document

wireshark_be.py

The main compiler backend

wireshark_gen.py

A helper class, that generates the C code.

idl2wrs

A simple shell script wrapper that the end user should use to generate the
dissector from the IDL file(s).

D.10.2. Why do this?

It is important to understand what CORBA traffic looks like over GIOP/IIOP,
and to help build a tool that can assist in troubleshooting CORBA interworking.
This was especially the case after seeing a lot of discussions about how
particular IDL types are represented inside an octet stream.

I have also had comments/feedback that this tool would be good for say a
CORBA class when teaching students what CORBA traffic looks like "on the
wire".

It is also COOL to work on a great Open Source project such as the case with
"Wireshark" (http://www.wireshark.org)

D.10.3. How to use idI2wrs

To use the idI2wrs to generate Wireshark dissectors, you need the following:
Prerequisites to using idlI2wrs
1. Python must be installed. See http://python.org/

2. omniidl from the omniORB package must be available. See
http://omniorb.sourceforge.net/

3. Of course you need Wireshark installed to compile the code and tweak it if
required. idl2wrs is part of the standard Wireshark distribution

To use idl2wrs to generate an Wireshark dissector from an idl file use the
following procedure:

Procedure for converting a CORBA idl file into a Wireshark dissector
1. To write the C code to stdout.
idl2wrs <your_file.idl>
e.g.:
idl2wrs echo.idl

2. To write to a file, just redirect the output.

http://www.wireshark.org
http://python.org/
http://omniorb.sourceforge.net/

idl2wrs echo.idl > packet-test-idl.c

You may wish to comment out the register_giop_user_module() code and
that will leave you with heuristic dissection.

If you don't want to use the shell script wrapper, then try steps 3 or 4 instead.

3. To write the C code to stdout.
Usage: omniidl -p ./ -b wireshark_be <your file.idl>
e.g..
omniidl -p ./ -b wireshark_be echo.idl

4. To write to a file, just redirect the output.

omniidl -p ./ -b wireshark_be echo.idl > packet-test-idl.c

You may wish to comment out the register_giop_user_module() code and
that will leave you with heuristic dissection.

5. Copy the resulting C code to subdirectory epan/dissectors/ inside your
Wireshark source directory.

cp packet-test-idl.c /dir/where/wireshark/lives/epan/dissectors/

The new dissector has to be added to Makefile.common in the same
directory. Look for the declaration CLEAN_DISSECTOR_SRC and add the
new dissector there. For example,

CLEAN_DISSECTOR_SRC = \
packet-2dparityfec.c
packet-3com-njack.c

v

becomes

CLEAN_DISSECTOR_SRC = \
packet-test-idl.c
packet-2dparityfec.c
packet-3com-njack.c

s s

For the next steps, go up to the top of your Wireshark source directory.

6. Run configure

./configure (or ./autogen.sh)

7. Compile the code

make

8. Good Luck !

D.10.4. TODO

—_

. Exception code not generated (yet), but can be added manually.
2. Enums not converted to symbolic values (yet), but can be added manually.
3. Add command line options etc

4. More I am sure :-)

D.10.5. Limitations

See the TODO list inside packet-giop.c

D.10.6. Notes

1. The "-p ./" option passed to omniidl indicates that the wireshark_be.py and
wireshark_gen.py are residing in the current directory. This may need
tweaking if you place these files somewhere else.

2. If it complains about being unable to find some modules (e.g. tempfile.py),
you may want to check if PYTHONPATH is set correctly. On my Linux
box, it is PYTHONPATH=/usr/lib/python2.4/

D.11. reordercap: Reorder a capture file

Reordercap allows to reorder a capture file according to the packets timestamp.

Example D.11. Help information available from reordercap

Reordercap 1.10.0
Reorder timestamps of input file frames into output file.
See http://www.wireshark.org for more information.

Usage: reordercap [options] <infile> <outfile>

Options:
-n don't write to output file if the input file is ordered.

Appendix E. This Document's License
(GPL)

As with the original license and documentation distributed with Wireshark, this
document is covered by the GNU General Public License (GNU GPL).

If you haven't read the GPL before, please do so. It explains all the things that
you are allowed to do with this code and documentation.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change fr
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit
using it. (Some other Free Software Foundation software is covered
the GNU Library General Public License instead.) You can apply it t
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that vy
have the freedom to distribute copies of free software (and charge f
this service if you wish), that you receive source code or can get i
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the right
These restrictions translate to certain responsibilities for you if
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights tha
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software,
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certa
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on
want its recipients to know that what they have is not the original,
that any problems introduced by others will not reflect on the origi
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making t
program proprietary. To prevent this, we have made it clear that an
patent must be licensed for everyone's free use or not licensed at a

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contain
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", belc
refers to any such program or work, and a "work based on the Program
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of 1it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Progr
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warrant

and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, an
you may at your option offer warranty protection in exchange for a f

2. You may modify your copy or copies of the Program or any portic
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all thir
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provi
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of thi
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work base
on the Program, the distribution of the whole must be on the terms c¢
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrot

Thus, it is not the intent of this section to claim rights or contes
your rights to work written entirely by you; rather, the intent is t
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Progr
with the Program (or with a work based on the Program) on a volume c
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms ¢
Sections 1 and 2 above provided that you also do one of the followin

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sectic
1 and 2 above on a medium customarily used for software intercha

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a mediu
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offe
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Progran
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this Licens
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on th
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herei
You are not responsible for enforcing compliance by third parties tc
this License.

7. If, as a consequence of a court judgment or allegation of paten
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do n
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under th
License and any other pertinent obligations, then as a consequence y
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program
all those who receive copies directly or indirectly through you, the
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable unde
any particular circumstance, the balance of the section is intended
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willi
to distribute software through any other system and a licensee cannc
impose that choice.

This section is intended to make thoroughly clear what is believed t
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, th
original copyright holder who places the Program under this License

may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporate
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new ver
of the General Public License from time to time. Such new versions
be similar in spirit to the present version, but may differ in detai
address new problems or concerns.

Each version is given a distinguishing version number. If the Progr
specifies a version number of this License which applies to it and "
later version", you have the option of following the terms and condi
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version numk
this License, you may choose any version ever published by the Free
Foundation.

10. If you wish to incorporate parts of the Program into other fre
programs whose distribution conditions are different, write to the a
to ask for permission. For software which is copyrighted by the Fre
Software Foundation, write to the Free Software Foundation; we somet
make exceptions for this. Our decision will be guided by the two gc
of preserving the free status of all derivatives of our free softwar
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WA
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTI
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXF
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RI
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD T
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVIC
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DA
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LI
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINE
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF TH
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greates
possible use to the public, the best way to achieve this is to make
free software which everyone can redistribute and change under these

To do so, attach the following notices to the program. It is safe
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found

<one line to give the program's name and a brief idea of what it
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or mc
it under the terms of the GNU General Public License as publishe
the Free Software Foundation; either version 2 of the License, ¢
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public Licens
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02

Also add information on how to contact you by electronic and paper n

If the program is interactive, make it output a short notice like th
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
This is free software, and you are welcome to redistribute it
under certain conditions; type “show c' for details.

The hypothetical commands “show w' and “show c¢' should show the appr
parts of the General Public License. Of course, the commands you us
be called something other than “show w' and “show c'; they could eve
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or vy
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the prc

“Gnomovision' (which makes passes at compilers) written by James H

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your progr
proprietary programs. If your program is a subroutine library, you
consider it more useful to permit linking proprietary applications w
library. If this is what you want to do, use the GNU Library Genera
Public License instead of this License.

	Wireshark User's Guide
	Preface
	Who should read this document?
	Acknowledgements
	About this document
	Where to get the latest copy of this document?
	Providing feedback about this document
	Introduction
	System Requirements
	Where to get Wireshark?
	A brief history of Wireshark
	Development and maintenance of Wireshark
	Reporting problems and getting help
	Building and Installing Wireshark
	Obtaining the source and binary distributions
	Before you build Wireshark under UNIX
	Building Wireshark from source under UNIX
	Installing the binaries under UNIX
	Troubleshooting during the install on Unix
	Building from source under Windows
	Installing Wireshark under Windows
	User Interface
	Start Wireshark
	The Main window
	The Menu
	The "File" menu
	The "Edit" menu
	The "View" menu
	The "Go" menu
	The "Capture" menu
	The "Analyze" menu
	The "Statistics" menu
	The "Telephony" menu
	The "Tools" menu
	The "Internals" menu
	The "Help" menu
	The "Main" toolbar
	The "Filter" toolbar
	The "Packet List" pane
	The "Packet Details" pane
	The "Packet Bytes" pane
	The Statusbar
	Capturing Live Network Data
	Prerequisites
	Start Capturing
	The "Capture Interfaces" dialog box
	The "Capture Options" dialog box
	The "Edit Interface Settings" dialog box
	The "Compile Results" dialog box
	The "Add New Interfaces" dialog box
	The "Remote Capture Interfaces" dialog box
	The "Interface Details" dialog box
	Capture files and file modes
	Link-layer header type
	Filtering while capturing
	While a Capture is running ...
	File Input / Output and Printing
	Open capture files
	Saving captured packets
	Merging capture files
	Import hex dump
	File Sets
	Exporting data
	Printing packets
	The Packet Range frame
	The Packet Format frame
	Working with captured packets
	Pop-up menus
	Filtering packets while viewing
	Building display filter expressions
	The "Filter Expression" dialog box
	Defining and saving filters
	Defining and saving filter macros
	Finding packets
	Go to a specific packet
	Marking packets
	Ignoring packets
	Time display formats and time references
	Advanced Topics
	Following TCP streams
	Expert Infos
	Time Stamps
	Time Zones
	Packet Reassembling
	Name Resolution
	Checksums
	Statistics
	The "Summary" window
	The "Protocol Hierarchy" window
	Conversations
	Endpoints
	The "IO Graphs" window
	Service Response Time
	Compare two capture files
	WLAN Traffic Statistics
	The protocol specific statistics windows
	Telephony
	RTP Analysis
	VoIP Calls
	LTE MAC Traffic Statistics
	LTE RLC Traffic Statistics
	The protocol specific statistics windows
	Customizing Wireshark
	Start Wireshark from the command line
	Packet colorization
	Control Protocol dissection
	Preferences
	Configuration Profiles
	User Table
	Display Filter Macros
	ESS Category Attributes
	GeoIP Database Paths
	IKEv2 decryption table
	Object Identifiers
	PRES Users Context List
	SCCP users Table
	SMI (MIB and PIB) Modules
	SMI (MIB and PIB) Paths
	SNMP Enterprise Specific Trap Types
	SNMP users Table
	Tektronix K12xx/15 RF5 protocols Table
	User DLTs protocol table
	Lua Support in Wireshark
	Example of Dissector written in Lua
	Example of Listener written in Lua
	Wireshark's Lua API Reference Manual
	Saving capture files
	Obtaining dissection data
	GUI support
	Post-dissection packet analysis
	Obtaining packet information
	Functions for writing dissectors
	Adding information to the dissection tree
	Functions for handling packet data
	Utility Functions
	Files and Folders
	Configuration Files and Folders
	Windows folders
	Protocols and Protocol Fields
	Wireshark Messages
	Packet Details Messages
	Related command line tools
	tshark: Terminal-based Wireshark
	tcpdump: Capturing with tcpdump for viewing with Wireshark
	dumpcap: Capturing with dumpcap for viewing with Wireshark
	capinfos: Print information about capture files
	rawshark: Dump and analyze network traffic.
	editcap: Edit capture files
	mergecap: Merging multiple capture files into one
	text2pcap: Converting ASCII hexdumps to network captures
	idl2wrs: Creating dissectors from CORBA IDL files
	reordercap: Reorder a capture file
	This Document's License (GPL)

