Wireshark User's Guide

For Wireshark 2.1

Ulf Lamping

<ulf.lamping[AT]web.de>

Richard Sharpe

Director

NS Computer Software and Services P/L
<rsharpe[AT]ns.aus.com>

Ed Warnicke

<hagbard[AT]physics.rutgers.edu>

Copyright © 2004-2014 UIf Lamping, Richard Sharpe, Ed Warnicke

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU General Public License, Version 2 or any
later version published by the Free Software Foundation.

All logos and trademarks in this document are property of their respective
owner.

Revision History

Revision 3.2 9 Nov 2014 gcc
Converted from DocBook to AsciiDoc.

Revision 3.1 2 Nov 2014 gcc
Moved Lua reference from User's Guide to Developer's Guide.
Revision 3.0.2 31 May 2006 JK
Further cleanup of Wireshark User Guide

Revision 2.0.2 29 Jan 2005 ul
Add links to wiki example pages

Revision 2.0 6 Aug 2004 ul
Review updates

Revision 1.90 19 Jul 2004 ul
Updated for Ethereal 0.10.5.

mailto:ulf.lamping%5BAT%5Dweb.de
mailto:rsharpe%5BAT%5Dns.aus.com
mailto:hagbard%5BAT%5Dphysics.rutgers.edu

Table of Contents

Preface
1. Foreword
2. Who should read this document?
3. Acknowledgements
4. About this document
5. Where to get the latest copy of this document?
6. Providing feedback about this document

1. Introduction

1.1.

What is Wireshark?

1.2.

1.1.1. Some intended purposes
1.1.2. Features

1.1.3. Live capture from many different network media

1.1.4. Import files from many other capture programs

1.1.5. Export files for many other capture programs
1.1.6. Many protocol dissectors

1.1.7. Open Source Software

1.1.8. What Wireshark is not

System Requirements

1.3.

1.2.1. Microsoft Windows
1.2.2. UNIX / Linux
Where to get Wireshark

1.4.

A brief history of Wireshark

1.5.

Development and maintenance of Wireshark

1.6.

Reporting problems and getting help

1.6.1. Website

1.6.2. Wiki

1.6.3. Q&A Site

1.6.4. FAQ

1.6.5. Mailing Lists

1.6.6. Reporting Problems

1.6.7. Reporting Crashes on UNIX/Linux platforms
1.6.8. Reporting Crashes on Windows platforms

2. Building and Installing Wireshark

2.1.

Introduction

2.2.

Obtaining the source and binary distributions

2.3.

Installing Wireshark under Windows

2.4.

2.3.1. Installation Components
2.3.2. Additional Tasks

2.3.3. Install Location

2.3.4. Installing WinPcap

2.3.5. Windows installer command line options
2.3.6. Manual WinPcap Installation
2.3.7. Update Wireshark

2.3.8. Update WinPcap

2.3.9. Uninstall Wireshark

2.3.10. Uninstall WinPcap
Installing Wireshark under macOS

2.5.

Building Wireshark from source under UNIX

2.6.

Installing the binaries under UNIX

2.7.

2.6.1. Installing from RPM’s under Red Hat and alike

2.6.2. Installing from deb’s under Debian, Ubuntu and other
Debian derivatives

2.6.3. Installing from portage under Gentoo Linux

2.6.4. Installing from packages under FreeBSD
Troubleshooting during the install on Unix

2.8.

Building from source under Windows

3. User Interface

3.1.

Introduction

3.2.

Start Wireshark

3.3.

The Main window

3.4.

3.3.1. Main Window Navigation
The Menu

3.5.

The “File” menu

3.6.

The “Edit” menu

3.7.

The “View” menu

3.8.

The “Go” menu

3.9.

3.10.

The “Capture” menu
The “Analyze” menu

3.11.

The “Statistics” menu

3.12.

3.13.

The “Telephony” menu
The “Tools” menu

3.14.

The “Internals” menu

3.15.

The “Help” menu

3.16.

The “Main” toolbar

3.17.

The “Filter” toolbar

3.18.

The “Packet List” pane

3.19.

The “Packet Details” pane

3.20.

The “Packet Bytes” pane

3.21.

The Statusbar

4. Capturing Live Network Data

4.1.

Introduction

4.2.

Prerequisites

4.3.

Start Capturing

4.4,

4.5.

The “Capture Interfaces” dialog box
The “Capture Options” dialog box

4.6.

4.5.1. Capture frame

4.5.2. Capture File(s) frame

4.5.3. Stop Capture... frame

4.5.4. Display Options frame

4.5.5. Name Resolution frame

4.5.6. Buttons

The “Edit Interface Settings” dialog box

4.7.

The “Compile Results” dialog box

4.8.

The "Add New Interfaces” dialog box

4.9.

4.8.1. Add or remove pipes

4.8.2. Add or hide local interfaces

4.8.3. Add or hide remote interfaces

The “Remote Capture Interfaces” dialog box

4.9.1. Remote Capture Interfaces
4.9.2. Remote Capture Settings

4.10. The “Interface Details” dialog box

4.11. Capture files and file modes

4.12. Link-layer header type

4.13. Filtering while capturing

4.13.1. Automatic Remote Traffic Filtering
4.13.2. Stop the running capture
4.13.3. Restart a running capture

5. File Input, Output, and Printing

5.1.

Introduction

5.2.

Open capture files

5.3.

5.2.1. The “Open Capture File” dialog box
5.2.2. Input File Formats
Saving captured packets

5.4.

5.3.1. The “Save Capture File As” dialog box
5.3.2. Output File Formats
Merging capture files

5.5.

5.4.1. The "Merge with Capture File” dialog box

5.6.

Import hex dump
5.5.1. The “Import from Hex Dump” dialog box
File Sets

S.7.

5.6.1. The “List Files” dialog box
Exporting data

5.7.1. The “Export as Plain Text File” dialog box

5.7.2. The "Export as PostScript File” dialog box

5.7.3. The "Export as CSV (Comma Separated Values) File"
dialog box

5.7.4. The "Export as C Arrays (packet bytes) file" dialog box
5.7.5. The "Export as PSML File" dialog box

5.7.6. The "Export as PDML File" dialog box

5.7.7. The "Export selected packet bytes" dialog box

5.7.8. The "Export Objects" dialog box

5.8. Printing packets

5.8.1. The “Print” dialog box

5.9. The “Packet Range” frame

5.10. The Packet Format frame

6. Working with captured packets
6.1. Viewing packets you have captured
6.2. Pop-up menus
6.2.1. Pop-up menu of the “Packet List” column header
6.2.2. Pop-up menu of the “Packet List” pane
6.2.3. Pop-up menu of the “Packet Details” pane
6.3. Filtering packets while viewing
6.4. Building display filter expressions
6.4.1. Display filter fields
6.4.2. Comparing values
6.4.3. Combining expressions
6.4.4. Substring Operator
6.4.5. Membership Operator.
6.4.6. A Common Mistake
6.5. The “Filter Expression” dialog box
6.6. Defining and saving filters
6.7. Defining and saving filter macros
6.8. Finding packets
6.8.1. The “Find Packet” dialog box
6.8.2. The “Find Next” command
6.8.3. The “Find Previous” command
6.9. Go to a specific packet
6.9.1. The “Go Back” command
6.9.2. The “Go Forward” command
6.9.3. The “Go to Packet” dialog box
6.9.4. The “Go to Corresponding Packet” command
6.9.5. The “Go to First Packet” command
6.9.6. The “Go to Last Packet” command
6.10. Marking packets
6.11. Ignoring packets
6.12. Time display formats and time references
6.12.1. Packet time referencing

7. Advanced Topics

/.1.

Introduction

[.2.

Following TCP streams

7.3.

7.2.1. The “Follow TCP Stream” dialog box

1.4.

Show Packet Bytes
7.3.1. Decode as
7.3.2. Show as

7.5.

Expert Information

7.4.1. Expert Info Entries

7.4.2. “Expert Info” dialog

7.4.3. “Colorized” Protocol Details Tree
7.4.4. "Expert” Packet List Column (optional)
TCP Analysis

7.6.

Time Stamps

[{.17.

7.6.1. Wireshark internals
7.6.2. Capture file formats
7.6.3. Accuracy

Time Zones

7.8.

7.7.1. Set your computer’s time correctly!
7.7.2. Wireshark and Time Zones
Packet Reassembly

7.9.

7.8.1. What is it?
7.8.2. How Wireshark handles it
Name Resolution

7.9.1. Name Resolution drawbacks

7.9.2. Ethernet name resolution (MAC layer)

7.9.3. IP_name resolution (network layer)

7.9.4. TCP/UDP port name resolution (transport layer)
7.9.5. VLAN ID resolution

7.10. Checksums

7.10.1. Wireshark checksum validation
7.10.2. Checksum offloading

8. Statistics
8.1. Introduction
8.2. The “Summary” window
8.3. The “Protocol Hierarchy” window
8.4. Conversations
8.4.1. The “Conversations” window
8.5. Endpoints
8.5.1. The “Endpoints” window
8.6. The IO Graphs” window
8.7. Service Response Time
8.7.1. The "Service Response Time DCE-RPC" window
8.8. Compare two capture files
8.9. WLAN Traffic Statistics
8.10. The protocol specific statistics windows

9. Telephony

9.1.

Introduction

9.2.

RTP Analysis

9.3.

IAX2 Analysis

9.4.

VolIP Calls

9.5.

LTE MAC Traffic Statistics

9.6.

LTE RLC Traffic Statistics

9.7.

The protocal specific statistics windows

10. Customizing Wireshark
10.1. Introduction
10.2. Start Wireshark from the command line
10.3. Packet colorization
10.4. Control Protocol dissection
10.4.1. The “Enabled Protocols” dialog box
10.4.2. User Specified Decodes
10.4.3. Show User Specified Decodes
10.5. Preferences
10.5.1. Interface Options
10.6. Configuration Profiles
10.7. User Table
10.8. Display Filter Macros
10.9. ESS Category Attributes
10.10. GeolP Database Paths
10.11. IKEv2 decryption table
10.12. Object Identifiers
10.13. PRES Users Context List
10.14. SCCP users Table
10.15. SMI (MIB and PIB) Modules
10.16. SMI (MIB and PIB) Paths
10.17. SNMP Enterprise Specific Trap Types
10.18. SNMP users Table
10.19. Tektronix K12xx/15 RF5 protocols Table
10.20. User DLTs protocol table
A. Wireshark Messages
A.l. Packet List Messages
A.1.1. [Malformed Packet]
A.1.2. [Packet size limited during capture]
A.2. Packet Details Messages
A.2.1. [Response in frame: 123]
A.2.2. [Request in frame: 123]
A.2.3. [Time from request: 0.123 seconds]
A.2.4. [Stream setup by PROTOCOL (frame 123)]
B. Files and Folders
B.1. Capture Files
B.1.1. Libpcap File Contents
B.1.2. Not Saved in the Capture File

B.2.

Configuration File and Plugin Folders

B.3.

B.2.1. Folders on Windows

B.2.2. Folders on Unix-like systems

Configuration Files

B.4.

B.3.1. Protocol help configuration

Plugin folders

B.5.

Windows folders

B.5.1. Windows profiles

B.5.2. Windows roaming profiles

B.5.3. Windows temporary folder

C. Protocols and Protocol Fields

D. Related command line tools

D.1.

Introduction

D.2.

tshark: Terminal-based Wireshark

D.3.

tcpdump: Capturing with tcpdump_for viewing with Wireshark

D.4.

dumpcap: Capturing with dumpcap for viewing with Wireshark

D.5.

capinfos: Print information about capture files

D.6.

rawshark: Dump and analyze network traffic.

D.7.

editcap: Edit capture files

D.8.

mergecap: Merging multiple capture files into one

D.9.

text2pcap: Converting ASCII hexdumps to network captures

D.10. reordercap: Reorder a capture file

11. This Document’s License (GPL)

List of Figures

1.1. Wireshark captures packets and lets you examine their contents.
3.1. The Main window

3.2. The Menu

3.3. The “File” Menu

3.4. The “Edit” Menu

3.5. The “View” Menu

3.6. The “Go” Menu

3.7. The "Capture” Menu

3.8. The "Analyze” Menu

3.9. The “Statistics” Menu

3.10. The “Telephony” Menu

3.11. The “Tools” Menu

3.12. The “Internals” Menu

3.13. The “Help” Menu

3.14. The “Main” toolbar

3.15. The “Filter” toolbar

3.16. The “Packet List” pane

3.17. The “Packet Details” pane

3.18. The “Packet Bytes” pane

3.19. The “Packet Bytes” pane with tabs

3.20. The initial Statusbar

3.21. The Statusbar with a loaded capture file

3.22. The Statusbar with a configuration profile menu

3.23. The Statusbar with a selected protocol field

3.24. The Statusbar with a display filter message

4.1. The “Capture Interfaces” dialog box on Microsoft Windows
4.2. The “Capture Interfaces” dialog box on Unix/Linux

4.3. The “Capture Options” dialog box

4.4. The “Edit Interface Settings” dialog box

4.5. The “Compile Results” dialog box

4.6. The "Add New Interfaces” dialog box

4.7. The “Add New Interfaces - Pipes” dialog box

4.8. The "Add New Interfaces - Local Interfaces” dialog box
4.9. The "Add New Interfaces - Remote Interfaces” dialog box

4.10. The “Remote Capture Interfaces” dialog box

411
4.12
4.13
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.

5.10.
5.11.
5.12.
5.13.
5.14.
5.15.
5.16.
5.17.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

. The "Remote Capture Settings” dialog box

. The “Interface Details” dialog box

. Capture output options

“Open” on Microsoft Windows

“Open” - Linux and UNIX

“Save” on Microsoft Windows

“Save” on Linux and UNIX

“Merge” on Microsoft Windows

“Merge” on Linux and UNIX

The “Import from Hex Dump” dialog

The "List Files" dialog box

The “Export as Plain Text File” dialog box

The "Export as PostScript File" dialog box

The "Export as PSML File" dialog box

The "Export as PDML File" dialog box

The "Export Selected Packet Bytes" dialog box
The "Export Objects" dialog box

The “Print” dialog box

The "Packet Range” frame

The “Packet Format” frame

Wireshark with a TCP packet selected for viewing
Viewing a packet in a separate window

Pop-up menu of the “Packet List” column header
Pop-up menu of the “Packet List” pane

Pop-up menu of the “Packet Details” pane
Filtering on the TCP protocol

The “Filter Expression” dialog box

The “Capture Filters” and “Display Filters” dialog boxes

6.10
6.11
7.1.

The "Find Packet” dialog box
. The “Go To Packet” dialog box
. Wireshark showing a time referenced packet

7.2

The “Follow TCP Stream” dialog box
The “Expert Info” dialog box

7.3.

The “Colorized” protocol details tree

7.4.

The “Expert” packet list column

7.5.

“TCP _Analysis” packet detail items

7.6.

The “Packet Bytes” pane with a reassembled tab

8.1.

The “Summary” window

8.2. The “Protocol Hierarchy” window

8.3. The “Conversations” window

8.4. The “Endpoints” window

8.5. The “IO Graphs” window

8.6. The "Compute DCE-RPC statistics" window
8.7. The "DCE-RPC Statistic for ..." window
8.8. The "Compare"” window

8.9. The "WLAN Traffic Statistics" window
9.1. The "RTP Stream Analysis” window

9.2. The “LTE MAC Traffic Statistics” window
9.3. The “LTE RLC Traffic Statistics” window
10.1. The “Coloring Rules” dialog box

10.2. A color chooser

10.3. Using color filters with Wireshark

10.4. The “Enabled Protocols” dialog box
10.5. The “Decode As” dialog box

10.6. The “Decode As: Show” dialog box
10.7. The preferences dialog box

10.8. The interface options dialog box

10.9. The configuration profiles dialog box

List of Tables

3.1. Keyboard Navigation
3.2. File menu items

3.3. Edit menu items

3.4. View menu items

3.5. Go menu items

3.6. Capture menu items

3.7. Analyze menu items

3.8. Statistics menu items
3.9. Telephony menu items
3.10. Tools menu items

3.11. Internals menu items
3.12. Help menu items

3.13. Main toolbar items
3.14. FEilter toolbar items
3.15. Related packet symbols
4.1. Capture file mode selected by capture options

6.1. The menu items of the “Packet List” column header pop-up menu
6.2. The menu items of the “Packet List” pop-up menu

6.3. The menu items of the “Packet Details” pop-up menu

6.4. Display Filter comparison operators

6.5. Display Filter Logical Operations

7.1. Some example expert infos

7.2. Time zone examples for UTC arrival times (without DST)

B.1. Configuration files overview

List of Examples

4.1. A capture filter for telnet that captures traffic to and from a particular
host

4.2. Capturing all telnet traffic not from 10.0.0.5

10.1. Help information available from Wireshark

Preface
Table of Contents

1. Foreword

2. Who should read this document?

3. Acknowledgements

4. About this document

5. Where to get the latest copy of this document?
6. Providing feedback about this document

1. Foreword

Wireshark is one of those programs that many network managers would
love to be able to use, but they are often prevented from getting what
they would like from Wireshark because of the lack of documentation.

This document is part of an effort by the Wireshark team to improve the
usability of Wireshark.

We hope that you find it useful and look forward to your comments.

2. Who should read this document?
The intended audience of this book is anyone using Wireshark.

This book will explain all the basics and also some of the advanced
features that Wireshark provides. As Wireshark has become a very
complex program since the early days, not every feature of Wireshark
may be explained in this book.

This book is not intended to explain network sniffing in general and it will
not provide details about specific network protocols. A lot of useful
information regarding these topics can be found at the Wireshark Wiki at
https://wiki.wireshark.org/.

By reading this book, you will learn how to install Wireshark, how to use
the basic elements of the graphical user interface (such as the menu)
and what’s behind some of the advanced features that are not always
obvious at first sight. It will hopefully guide you around some common
problems that frequently appear for new (and sometimes even advanced)
users of Wireshark.

https://wiki.wireshark.org/

3. Acknowledgements

The authors would like to thank the whole Wireshark team for their
assistance. In particular, the authors would like to thank:

e Gerald Combs, for initiating the Wireshark project and funding to do
this documentation.

e Guy Harris, for many helpful hints and a great deal of patience in
reviewing this document.

¢ Gilbert Ramirez, for general encouragement and helpful hints along
the way.

The authors would also like to thank the following people for their helpful
feedback on this document:

e Pat Eyler, for his suggestions on improving the example on
generating a backtrace.

e Martin Regner, for his various suggestions and corrections.

e Graeme Hewson, for a lot of grammatical corrections.

The authors would like to acknowledge those man page and README
authors for the Wireshark project from who sections of this document
borrow heavily:

e Scott Renfro from whose mergecap man page Section D.8,
“‘mergecap: Merging multiple capture files into one” is derived.

e Ashok Narayanan from whose text2pcap man page Section D.9,
“text2pcap: Converting ASCII hexdumps to network captures” is
derived.

4. About this document

This book was originally developed by Richard Sharpe with funds
provided from the Wireshark Fund. It was updated by Ed Warnicke and
more recently redesigned and updated by Ulf Lamping.

It was originally written in DocBook/XML and converted to AsciiDoc by
Gerald Combs.

You will find some specially marked parts in this book:

This is a warning

You should pay attention to a warning, otherwise data
loss might occur.

This is a note

@ A note will point you to common mistakes and things that
might not be obvious.

This is a tip

@ Tips are helpful for your everyday work using Wireshark.

mailto:rsharpe%5BAT%5Dns.aus.com
mailto:hagbard%5BAT%5Dphysics.rutgers.edu
mailto:ulf.lamping%5BAT%5Dweb.de

5. Where to get the latest copy of this document?

The latest copy of this documentation can always be found at
https://www.wireshark.org/docs/.

https://www.wireshark.org/docs/

6. Providing feedback about this document

Should you have any feedback about this document, please send it to the
authors through wireshark-dev[AT]wireshark.org.

mailto:wireshark-dev%5BAT%5Dwireshark.org

Chapter 1. Introduction

Table of Contents

1.1.

What is Wireshark?

1.2.

1.1.1. Some intended purposes
1.1.2. Features

1.1.3. Live capture from many different network media

1.1.4. Import files from many other capture programs

1.1.5. Export files for many other capture programs
1.1.6. Many protocol dissectors

1.1.7. Open Source Software

1.1.8. What Wireshark is not

System Requirements

1.3.

1.2.1. Microsoft Windows
1.2.2. UNIX / Linux
Where to get Wireshark

1.4.

A brief history of Wireshark

1.5.

Development and maintenance of Wireshark

1.6.

Reporting problems and getting help

1.6.1. Website

1.6.2. Wiki

1.6.3. Q&A Site

1.6.4. FAQ

1.6.5. Mailing Lists

1.6.6. Reporting Problems

1.6.7. Reporting Crashes on UNIX/Linux platforms
1.6.8. Reporting Crashes on Windows platforms

1.1. What is Wireshark?

Wireshark is a network packet analyzer. A network packet analyzer will
try to capture network packets and tries to display that packet data as
detailed as possible.

You could think of a network packet analyzer as a measuring device used
to examine what's going on inside a network cable, just like a voltmeter is
used by an electrician to examine what's going on inside an electric cable
(but at a higher level, of course).

In the past, such tools were either very expensive, proprietary, or both.
However, with the advent of Wireshark, all that has changed.

Wireshark is perhaps one of the best open source packet analyzers
available today.

1.1.1. Some intended purposes
Here are some examples people use Wireshark for:

Network administrators use it to troubleshoot network problems
Network security engineers use it to examine security problems
Developers use it to debug protocol implementations

People use it to learn network protocol internals

Beside these examples Wireshark can be helpful in many other situations
too.

1.1.2. Features
The following are some of the many features Wireshark provides:

¢ Available for UNIX and Windows.

e Capture live packet data from a network interface.

e Open files containing packet data captured with tcpdump/WinDump,
Wireshark, and a number of other packet capture programs.

e Import packets from text files containing hex dumps of packet data.

o Display packets with very detailed protocol information.

Save packet data captured.

Export some or all packets in a number of capture file formats.
Filter packets on many criteria.

Search for packets on many criteria.

Colorize packet display based on filters.

Create various statistics.

...and a lot more!

However, to really appreciate its power you have to start using it.

Figure 1.1, “Wireshark captures packets and lets you examine their
contents.” shows Wireshark having captured some packets and waiting
for you to examine them.

Figure 1.1. Wireshark captures packets and lets you examine their
contents.

M t-netflix-problems-20° ap - m} x

File Edit View Go Capture Analyze Statistics Telephony Wireless Toels Help

d B3 RE Qe==Fl5Eaqaaf
(W] Apply a display fiiter ... <Ctrl |] Expression... | +
No. Time Source Destination Protocol Length Info
E 343 £5.142415 192.168.8.21 174.129.249.228 TCP 66 48555 - 8@ [ACK] Seq=1 Ack=1 Win=5888 Len=@ TSval=491519346 TSecr=551811827
: 344 65.142715 192.168.8.21 174.129.249.228 HTTP 253 GET /clients/netflix/flash/application.swf?flash_version=flash_lite_2.1&v=1.58n
: 345 65.230738 174.129.249.228 192.168.8.21 TCP 66 88 -+ 48555 [ACK] Seq=1 183 Win=6864 Len=8 TSval=55181185@ TSecr=491519347
346 £5.240742 174.129.249.228 192.168.0.21 HTTP 828 HTTP/1.1 302 Moved Temporarily
347 £5.241592 192.168.0.21 174.129.249.228 TCP 66 48555 - 88 [ACK] Seq=188 Ack=763 Win=7424 Len=8 TSval=491519446 TSecr=551811852
1> 348 65.242532 192.168.8.21 192.168.0.1 DNS 77 Standard query 8x2188 A cdn-@.nflximg.com
«- 349 65.27687@ 192.168.0.1 192.168.0.21 DNS 489 Standard query response @x2188 A cdn-@.nflximg.com CNAME images.netflix.com.edge_|
: 358 65.277992 192.168.8.21 63.8@.242.48 TCP 74 37063 » 88 [SYN] Seq=8 Win=5848 Len=@ MSS=1468 SACK_PERM=1 TSval=491519482 TSecr
E 351 65.297757 63.80.242.48 192.168.8.21 TCP 74 88 + 37063 [SYN, ACK] Seq=@ Ack=1 Win=5792 Len=@ MS55=1460 SACK_| =1 TSval=329%
: 352 65.298396 192.168.8.21 63.80@.242.48 TCP 66 37863 - 88 [ACK] Seq=1 Ack=1 Win=5888 Len=8 TSval=491519562 TSecr=329553413@ =
! 353 £5.298687 192.168.0.21 63.80.242.48 HTTP 153 GET /fus/nrd/clients/flash/814548.bun HTTP/1.1
354 £5.31873@ £63.80.242.438 192.168.9.21 TCP 66 88 + 37063 [ACK] Seq=1 Ack=88 Win=5792 Len=0 TSval=3205534151 TSecr=491519503
355 B5.321733 63.80.242.48 192.168.0.21 TCcP 1514 [TCP segment of a reassembled PDU] 17
< >
Frame 349: 489 bytes on wire (3912 bits), 489 bytes captured (3912 bits) ~

Ethernet II, Src: Globalsc_B@:3b:8a (fB:ad:4e:8@:3b:8a), Dst: Vizio 14:8a:el (98:19:9d:14:8a:el)
Internet Protocel Version 4, Src: 192.168.8.1, Dst: 192.168.8.21
User Datagram Protocel, Src Port: 53 (53), Dst Port: 34036 (34036)

v Domain Name System (respense)

[Reguest In: 348

[Time: @.834338000 seconds)

Transaction ID: @x2188

Flags: @x8188 Standard query response, Ne error

Questions: 1

Answer RRs: 4

Authority RRs: 9

Additicnal RRs: 9

Queries
cdn-@.nflximg.com: type A, class IN

Answers

<

Authoritative nameservers)

8226 B 15 B8 35 84 4 81 7 83 37 [BUEE 81 50 @0 81
20 @4 26 @9 0@ 09 @5 63 64 Ge 2d 3@ B7 Ge 56 6C
78 69 6d 67 83 63 6f 60 BA 6B @1 8@ Bl B Ac 88 .
85 @ B1 BB 0B 05 29 B 22 06 69 6d 61 67 65 73). ".images
B7 6e 65 74 66 6c 69 78 B3 63 6f 6d B9 65 64 67 .netflix .com.edg
65 73 75 69 74 65 B3 6e 65 74 @@ c@ 2f OB @5 B8 esuite.n et../... %

@ ? Identification of transaction (dns.id), 2bytes Packets: 10299 - Displayed: 10299 (100.0%) - Load time: 0:0.182 || Profile: Default

1.1.3. Live capture from many different network media

Wireshark can capture traffic from many different network media types -
and despite its name - including wireless LAN as well. Which media types

are supported, depends on many things like the operating system you
are using. An overview of the supported media types can be found at
https://wiki.wireshark.org/CaptureSetup/NetworkMedia.

1.1.4. Import files from many other capture programs

Wireshark can open packets captured from a large number of other
capture programs. For a list of input formats see Section 5.2.2, “Input File
Formats”.

1.1.5. Export files for many other capture programs

Wireshark can save packets captured in a large number of formats of
other capture programs. For a list of output formats see Section 5.3.2,
“Qutput File Formats”.

1.1.6. Many protocol dissectors

There are protocol dissectors (or decoders, as they are known in other
products) for a great many protocols: see Appendix C, Protocols and
Protocol Fields.

1.1.7. Open Source Software

Wireshark is an open source software project, and is released under the
GNU General Public License (GPL). You can freely use Wireshark on
any number of computers you like, without worrying about license keys or
fees or such. In addition, all source code is freely available under the
GPL. Because of that, it is very easy for people to add new protocols to
Wireshark, either as plugins, or built into the source, and they often do!

1.1.8. What Wireshark is not
Here are some things Wireshark does not provide:

o Wireshark isn’t an intrusion detection system. It will not warn you
when someone does strange things on your network that he/she isn’t
allowed to do. However, if strange things happen, Wireshark might
help you figure out what is really going on.

e Wireshark will not manipulate things on the network, it will only

https://wiki.wireshark.org/CaptureSetup/NetworkMedia
https://www.gnu.org/licenses/gpl-2.0.html

"measure” things from it. Wireshark doesn’t send packets on the
network or do other active things (except for name resolutions, but
even that can be disabled).

1.2. System Requirements

The amount of resources Wireshark needs depends on your environment
and on the size of the capture file you are analyzing. The values below
should be fine for small to medium-sized capture files no more than a few
hundred MB. Larger capture files will require more memory and disk
space.

Busy networks mean large captures

Working with a busy network can easily produce huge

@ capture files. Capturing on a gigabit or even 100 megabit
network can produce hundreds of megabytes of capture
data in a short time. A fast processor, lots of memory and
disk space is always a good idea.

If Wireshark runs out of memory it will crash. See
https://wiki.wireshark.org/KnownBugs/OutOfMemory for details and
workarounds.

Although Wireshark captures packets using a separate process the main
interface is single-threaded and won’t benefit much from multi-core
systems.

1.2.1. Microsoft Windows

e The current version of Wireshark should support any version of
Windows that is still within its extended support lifetime. At the time
of writing this includes Windows 10, 8, 7, Vista, Server 2016, Server
2012 R2, Server 2012, Server 2008 R2, and Server 2008.

e Any modern 64-bit AMD64/x86-64 or 32-bit x86 processor.

e 400 MB available RAM. Larger capture files require more RAM.

e 300 MB available disk space. Capture files require additional disk
space.

e 1024x768 (1280%x1024 or higher recommended) resolution with at
least 16 bit color. 8 bit color should work but user experience will be
degraded. Power users will find multiple monitors useful.

https://wiki.wireshark.org/KnownBugs/OutOfMemory
http://windows.microsoft.com/en-us/windows/lifecycle

¢ A supported network card for capturing

o Ethernet. Any card supported by Windows should work. See the
wiki pages on Ethernet capture and offloading for issues that
may affect your environment.

o 802.11. See the Wireshark wiki page. Capturing raw 802.11
information may be difficult without special equipment.

o Other media. See
https://wiki.wireshark.org/CaptureSetup/NetworkMedia.

Older versions of Windows which are outside Microsoft's extended
lifecycle support window are no longer supported. It is often difficult or
impossible to support these systems due to circumstances beyond our
control, such as third party libraries on which we depend or due to
necessary features that are only present in newer versions of Windows
(such as hardened security or memory management).

Wireshark 1.12 was the last release branch to support Windows Server
2003. Wireshark 1.10 was the last branch to officially support Windows
XP. See the Wireshark release lifecycle page for more details.

1.2.2. UNIX |/ Linux

Wireshark runs on most UNIX and UNIX-like platforms including macOS
and Linux. The system requirements should be comparable to the
Windows values listed above.

Binary packages are available for most Unices and Linux distributions
including the following platforms:

Apple macOS

Debian GNU/Linux

FreeBSD

Gentoo Linux

HP-UX

Mandriva Linux

NetBSD

OpenPKG

Red Hat Enterprise/Fedora Linux
Sun Solaris/i386

https://wiki.wireshark.org/CaptureSetup/Ethernet
https://wiki.wireshark.org/CaptureSetup/Offloading
https://wiki.wireshark.org/CaptureSetup/WLAN#Windows
https://wiki.wireshark.org/CaptureSetup/NetworkMedia
https://wiki.wireshark.org/Development/LifeCycle

e Sun Solaris/SPARC
e Canonical Ubuntu

If a binary package is not available for your platform you can download
the source and try to build it. Please report your experiences to
wireshark-dev[AT]wireshark.org.

mailto:wireshark-dev%5BAT%5Dwireshark.org

1.3. Where to get Wireshark

You can get the latest copy of the program from the Wireshark website at
https://www.wireshark.org/download.html. The download page should
automatically highlight the appropriate download for your platform and
direct you to the nearest mirror. Official Windows and macOS installers
are signed by the Wireshark Foundation.

A new Wireshark version typically becomes available each month or two.

If you want to be notified about new Wireshark releases you should
subscribe to the wireshark-announce mailing list. You will find more
details in Section 1.6.5, “Mailing Lists”.

https://www.wireshark.org/download.html

1.4. A brief history of Wireshark

In late 1997 Gerald Combs needed a tool for tracking down network
problems and wanted to learn more about networking so he started
writing Ethereal (the original name of the Wireshark project) as a way to
solve both problems.

Ethereal was initially released after several pauses in development in
July 1998 as version 0.2.0. Within days patches, bug reports, and words
of encouragement started arriving and Ethereal was on its way to
success.

Not long after that Gilbert Ramirez saw its potential and contributed a
low-level dissector to it.

In October, 1998 Guy Harris was looking for something better than
tcpview so he started applying patches and contributing dissectors to
Ethereal.

In late 1998 Richard Sharpe, who was giving TCP/IP courses, saw its
potential on such courses and started looking at it to see if it supported
the protocols he needed. While it didn’t at that point new protocols could
be easily added. So he started contributing dissectors and contributing
patches.

The list of people who have contributed to the project has become very
long since then, and almost all of them started with a protocol that they
needed that Wireshark or did not already handle. So they copied an
existing dissector and contributed the code back to the team.

In 2006 the project moved house and re-emerged under a new name:
Wireshark.

In 2008, after ten years of development, Wireshark finally arrived at
version 1.0. This release was the first deemed complete, with the
minimum features implemented. Its release coincided with the first
Wireshark Developer and User Conference, called Sharkfest.

In 2015 Wireshark 2.0 was released, which featured a new user

interface.

1.5. Development and maintenance of Wireshark

Wireshark was initially developed by Gerald Combs. Ongoing
development and maintenance of Wireshark is handled by the Wireshark
team, a loose group of individuals who fix bugs and provide new
functionality.

There have also been a large number of people who have contributed
protocol dissectors to Wireshark, and it is expected that this will continue.
You can find a list of the people who have contributed code to Wireshark
by checking the about dialog box of Wireshark, or at the authors page on
the Wireshark web site.

Wireshark is an open source software project, and is released under the
GNU General Public License (GPL) version 2. All source code is freely
available under the GPL. You are welcome to modify Wireshark to suit
your own needs, and it would be appreciated if you contribute your
improvements back to the Wireshark team.

You gain three benefits by contributing your improvements back to the
community:

1. Other people who find your contributions useful will appreciate them,
and you will know that you have helped people in the same way that
the developers of Wireshark have helped people.

2. The developers of Wireshark might improve your changes even
more, as there’s always room for improvement. Or they may
implement some advanced things on top of your code, which can be
useful for yourself too.

3. The maintainers and developers of Wireshark will maintain your
code as well, fixing it when API changes or other changes are made,
and generally keeping it in tune with what is happening with
Wireshark. So if Wireshark is updated (which is done often), you can
get a new Wireshark version from the website and your changes will
already be included without any effort for you.

The Wireshark source code and binary kits for some platforms are all
available on the download page of the Wireshark website:
https://www.wireshark.org/download.html.

https://www.wireshark.org/about.html#authors
https://www.gnu.org/licenses/gpl-2.0.html
https://www.wireshark.org/download.html

1.6. Reporting problems and getting help

If you have problems or need help with Wireshark there are several
places that may be of interest to you (well, besides this guide of course).

1.6.1. Website

You will find lots of useful information on the Wireshark homepage at
https://www.wireshark.org/.

1.6.2. Wiki

The Wireshark Wiki at https://wiki.wireshark.org/ provides a wide range of
information related to Wireshark and packet capture in general. You will
find a lot of information not part of this user’s guide. For example, there is
an explanation how to capture on a switched network, an ongoing effort
to build a protocol reference and a lot more.

And best of all, if you would like to contribute your knowledge on a
specific topic (maybe a network protocol you know well) you can edit the
wiki pages by simply using your web browser.

1.6.3. Q&A Site

The Wireshark Q&A site at https://ask.wireshark.org/ offers a resource
where questions and answers come together. You have the option to
search what questions were asked before and what answers were given
by people who knew about the issue. Answers are graded, so you can
pick out the best ones easily. If your question hasn’t been discussed
before you can post one yourself.

1.6.4. FAQ

The Frequently Asked Questions lists often asked questions and their
corresponding answers.

Read the FAQ

Before sending any mail to the mailing lists below, be

https://www.wireshark.org/
https://wiki.wireshark.org/
https://ask.wireshark.org/

@ sure to read the FAQ. It will often answer any questions
you might have. This will save yourself and others a lot of
time. Keep in mind that a lot of people are subscribed to
the mailing lists.

You will find the FAQ inside Wireshark by clicking the menu item
Help/Contents and selecting the FAQ page in the dialog shown.

An online version is available at the Wireshark website at
https://www.wireshark.org/fag.html. You might prefer this online version,
as it's typically more up to date and the HTML format is easier to use.

1.6.5. Mailing Lists
There are several mailing lists of specific Wireshark topics available:

wireshark-announce
This mailing list will inform you about new program releases, which
usually appear about every 4-8 weeks.
wireshark-users
This list is for users of Wireshark. People post questions about
building and using Wireshark, others (hopefully) provide answers.
wireshark-dev
This list is for Wireshark developers. If you want to start developing a
protocol dissector, join this list.

You can subscribe to each of these lists from the Wireshark web site:
https://www.wireshark.org/lists/. From there, you can choose which
mailing list you want to subscribe to by clicking on the
Subscribe/Unsubscribe/Options button under the title of the relevant list.
The links to the archives are included on that page as well.

The lists are archived

You can search in the list archives to see if someone
asked the same question some time before and maybe
already got an answer. That way you don’t have to wait
until someone answers your question.

https://www.wireshark.org/faq.html
https://www.wireshark.org/lists/

1.6.6. Reporting Problems
Note

@ Before reporting any problems, please make sure you
have installed the latest version of Wireshark.

When reporting problems with Wireshark please supply the following
information:

1. The version number of Wireshark and the dependent libraries linked
with it, such as Qt or GLib. You can obtain this from Wireshark’s
about box or the command wireshark -v.

Information about the platform you run Wireshark on.

A detailed description of your problem.

If you get an error/warning message, copy the text of that message
(and also a few lines before and after it, if there are some) so others
may find the place where things go wrong. Please don'’t give
something like: "I get a warning while doing X" as this won't give a
good idea where to look.

Hwn

Don’t send large files

Do not send large files (> 1 MB) to the mailing lists. Just
place a note that further data is available on request.

@ Large files will only annoy a lot of people on the list who
are not interested in your specific problem. If required you
will be asked for further data by the persons who really
can help you.

Don’t send confidential information!
A If you send capture files to the mailing lists be sure they

don’t contain any sensitive or confidential information like
passwords or personally identifiable information (PII).

1.6.7. Reporting Crashes on UNIX/Linux platforms

When reporting crashes with Wireshark it is helpful if you supply the
traceback information along with the information mentioned in "Reporting
Problems".

You can obtain this traceback information with the following commands
on UNIX or Linux (note the backticks):

$ gdb “whereis wireshark | cut -f2 -d: | cut -d' ' -f2° core >& back
backtrace
AD

If you do not have gdb available, you will have to check out your operating
system’s debugger.

Mail backtrace. txt to wireshark-dev[AT]wireshark.org.

1.6.8. Reporting Crashes on Windows platforms

The Windows distributions don’t contain the symbol files (.pdb) because
they are very large. You can download them separately at
https://www.wireshark.org/download/win32/all-versions/ and
https://www.wireshark.org/download/win64/all-versions/ .

mailto:wireshark-dev%5BAT%5Dwireshark.org
https://www.wireshark.org/download/win32/all-versions/
https://www.wireshark.org/download/win64/all-versions/

Chapter 2. Building and Installing Wireshark
Table of Contents

2.1. Introduction
2.2. Obtaining the source and binary distributions
2.3. Installing Wireshark under Windows
2.3.1. Installation Components
2.3.2. Additional Tasks
2.3.3. Install Location
2.3.4. Installing WinPcap
2.3.5. Windows installer command line options
2.3.6. Manual WinPcap Installation
2.3.7. Update Wireshark
2.3.8. Update WinPcap
2.3.9. Uninstall Wireshark
2.3.10. Uninstall WinPcap
2.4. Installing Wireshark under macOS
2.5. Building Wireshark from source under UNIX
2.6. Installing the binaries under UNIX
2.6.1. Installing from RPM’s under Red Hat and alike
2.6.2. Installing from deb’s under Debian, Ubuntu and other Debian
derivatives
2.6.3. Installing from portage under Gentoo Linux
2.6.4. Installing from packages under FreeBSD
2.7. Troubleshooting during the install on Unix
2.8. Building from source under Windows

2.1. Introduction

As with all things there must be a beginning and so it is with Wireshark.
To use Wireshark you must first install it. If you are running Windows or
macOS you can download an official release at
https://www.wireshark.org/download.html, install it, and skip the rest of
this chapter.

If you are running another operating system such as Linux or FreeBSD
you might want to install from source. Several Linux distributions offer
Wireshark packages but they commonly ship out-of-date versions. No
other versions of UNIX ship Wireshark so far. For that reason, you will
need to know where to get the latest version of Wireshark and how to
install it.

This chapter shows you how to obtain source and binary packages and
how to build Wireshark from source should you choose to do so.

The following are the general steps you would use:

1. Download the relevant package for your needs, e.g. source or binary
distribution.

2. Compile the source into a binary if needed. This may involve building
and/or installing other necessary packages.

3. Install the binaries into their final destinations.

https://www.wireshark.org/download.html

2.2. Obtaining the source and binary distributions

You can obtain both source and binary distributions from the Wireshark
web site: https://www.wireshark.org/download.html. Select the download
link and then select the desired binary or source package.

Download all required files

If you are building Wireshark from source you will In

@ general, unless you have already downloaded Wireshark
before, you will most likely need to download several
source packages if you are building Wireshark from
source. This is covered in more detail below.

Once you have downloaded the relevant files, you can go on to the next
step.

https://www.wireshark.org/download.html

2.3. Installing Wireshark under Windows

Windows installer names contain the platform and version. For example,
Wireshark-win64-2.4.1.exe installs Wireshark 2.4.1 for 64-bit Windows.
The Wireshark installer includes WinPcap which is required for packet
capture.

Simply download the Wireshark installer from
https://www.wireshark.org/download.html and execute it. Official
packages are signed by the Wireshark Foundation. You can choose to
install several optional components and select the location of the installed
package. The default settings are recommended for most users.

2.3.1. Installation Components

On the Choose Components page of the installer you can select from the
following:

o Wireshark - The network protocol analyzer that we all know and
mostly love.

e TShark - A command-line network protocol analyzer. If you haven't
tried it you should.

e Wireshark 1 Legacy - The old (GTK+) user interface in case you
need it.

e Plugins & Extensions - Extras for the Wireshark and TShark
dissection engines

o Dissector Plugins - Plugins with some extended dissections.

o Tree Statistics Plugins - Extended statistics.

o Mate - Meta Analysis and Tracing Engine - User configurable
extension(s) of the display filter engine, see
https://wiki.wireshark.org/Mate for details.

o SNMP MIBs - SNMP MIBs for a more detailed SNMP
dissection.

e Tools - Additional command line tools to work with capture files

o Editcap - Reads a capture file and writes some or all of the

https://www.wireshark.org/download.html
https://wiki.wireshark.org/Mate

packets into another capture file.
o Text2Pcap - Reads in an ASCII hex dump and writes the data
into a pcap capture file.
o Reordercap - Reorders a capture file by timestamp.
o Mergecap - Combines multiple saved capture files into a single
output file.
o Capinfos - Provides information on capture files.
o Rawshark - Raw packet filter.
e User’s Guide - Local installation of the User’s Guide. The Help
buttons on most dialogs will require an internet connection to show
help pages if the User’s Guide is not installed locally.

2.3.2. Additional Tasks

e Start Menu Shortcuts - Add some start menu shortcuts.

o Desktop Icon - Add a Wireshark icon to the desktop.

e Quick Launch Icon - add a Wireshark icon to the Explorer quick
launch toolbar.

e Associate file extensions to Wireshark - Associate standard
network trace files to Wireshark.

2.3.3. Install Location

By default Wireshark installs into ¥ProgramFiles%\Wireshark on 32-bit
Windows and %ProgramFiles64%\Wireshark on 64-bit Windows. This
expands to c:\Program Files\Wireshark on most systems.

2.3.4. Installing WinPcap
The Wireshark installer contains the latest WinPcap installer.

If you don’t have WinPcap installed you won't be able to capture live
network traffic but you will still be able to open saved capture files. By
default the latest version of WinPcap will be installed. If you don’t wish to
do this or if you wish to reinstall WinPcap you can check the Install
WinPcap box as needed.

For more information about WinPcap see https://www.winpcap.org/ and
https://wiki.wireshark.org/WinPcap.

https://www.winpcap.org/
https://wiki.wireshark.org/WinPcap

2.3.5. Windows installer command line options
For special cases, there are some command line parameters available:

e /s runs the installer or uninstaller silently with default values. The
silent installer will not install WinPCap.

e /desktopicon installation of the desktop icon, =yes - force installation,
=no - don’t install, otherwise use default settings. This option can be
useful for a silent installer.

e /quicklaunchicon installation of the quick launch icon, =yes - force
installation, =no - don’t install, otherwise use default settings.

¢ /D sets the default installation directory ($INSTDIR), overriding
InstallDir and InstallDirRegKey. It must be the last parameter used in
the command line and must not contain any quotes even if the path
contains spaces.

e /Ncrc disables the CRC check. We recommend against using this
flag.

Example:

> Wireshark-win64-wireshark-2.0.5.exe /NCRC /S /desktopicon=yes /qui

Running the installer without any parameters shows the normal
interactive installer.

2.3.6. Manual WinPcap Installation

As mentioned above, the Wireshark installer takes care of installing
WinPcap. The following is only necessary if you want to use a different
version than the one included in the Wireshark installer, e.g. because a
new WinPcap version was released.

Additional WinPcap versions (including newer alpha or beta releases)
can be downloaded from the main WinPcap site at
https://www.winpcap.org/. The Installer for Windows supports modern
Windows operating systems.

2.3.7. Update Wireshark

By default the offical Windows package will check for new versions and

https://www.winpcap.org/

notify you when they are available. If you have the Check for updates
preference disabled or if you run Wireshark in an isolated environment
you should subcribe to the wireshark-announce mailing list. See
Section 1.6.5, "Mailing Lists” for details on subscribing to this list.

New versions of Wireshark are usually released every four to six weeks.
Updating Wireshark is done the same way as installing it. Simply
download and start the installer exe. A reboot is usually not required and
all your personal settings remain unchanged.

2.3.8. Update WinPcap

New versions of WinPcap are less frequently available. You will find
WinPcap update instructions the WinPcap web site at
https://www.winpcap.org/. You may have to reboot your machine after
installing a new WinPcap version.

2.3.9. Uninstall Wireshark

You can uninstall Wireshark using the Programs and Features control
panel. Select the "Wireshark" entry to start the uninstallation procedure.

The Wireshark uninstaller provides several options for removal. The
default is to remove the core components but keep your personal settings
and WinPcap. WinPcap is left installed by default in case other programs
need it.

2.3.10. Uninstall WinPcap

You can uninstall WinPcap independently of Wireshark using the
WinPcap entry in the Programs and Features control panel. Remember
that if you uninstall WinPcap you won't be able to capture anything with
Wireshark.

https://www.winpcap.org/

2.4. Installing Wireshark under macOS

The official macOS packages are distributed as disk images (.dmg)
containing the application installer. To install Wireshark simply open the
disk image and run the enclosed installer.

The installer package includes Wireshark, its related command line
utilities, and a launch daemon that adjusts capture permissions at system
startup. See the included Read me first file for more details.

2.5. Building Wireshark from source under UNIX

Building Wireshark requires the proper build environment including a
compiler and many supporting libraries. See the Developer’s Guide at
https://www.wireshark.org/docs/ for more information.

Use the following general steps to build Wireshark from source under
UNIX or Linux:

1.

Unpack the source from its compressed tar file. If you are using
Linux or your version of UNIX uses GNU tar you can use the
following command:

$ tar xaf wireshark-2.4.5.tar.xz

In other cases you will have to use the following commands:

$ xz -d wireshark-2.4.5.tar.xz
$ tar xf wireshark-2.4.5.tar

Change directory to the Wireshark source directory.

$ cd wireshark-2.4.5

Configure your source so it will build correctly for your version of
UNIX. You can do this with the following command:

$./configure

If this step fails you will have to rectify the problems and rerun
configure. Troubleshooting hints are provided in Section 2.7,
“Troubleshooting during the install on Unix”.

Build the sources.

$ make

Install the software in its final destination.

$ make install

Once you have installed Wireshark with make install above, you should

https://www.wireshark.org/docs/

be able to run it by entering wireshark.

2.6. Installing the binaries under UNIX

In general installing the binary under your version of UNIX will be specific
to the installation methods used with your version of UNIX. For example,
under AlX, you would use smit to install the Wireshark binary package,
while under Tru64 UNIX (formerly Digital UNIX) you would use set/d.

2.6.1. Installing from RPM’s under Red Hat and alike

Building RPMs from Wireshark’s source code results in several packages
(most distributions follow the same system):

e The wireshark package contains the core Wireshark libraries and
command-line tools.

e The wireshark-qt package contains the Qt-based GUI.

e The wireshark-gtk (formerly wireshark-gnome) package contains the
legacy Gtk+ based GUI.

Many distributions use yum or a similar package management tool to
make installation of software (including its dependencies) easier. If your
distribution uses yum, use the following command to install Wireshark
together with the Qt GUI:

yum install wireshark wireshark-qt

If you’ve built your own RPMs from the Wireshark sources you can install
them by running, for example:

rpm -ivh wireshark-2.0.0-1.x86_64.rpm wireshark-qt-2.0.0-1.x86_64.rp

If the above command fails because of missing dependencies, install the
dependencies first, and then retry the step above.

2.6.2. Installing from deb’s under Debian, Ubuntu and other Debian
derivatives

If you can just install from the repository then use

$ aptitude install wireshark

Aptitude should take care of all of the dependency issues for you.

Use the following command to install downloaded Wireshark deb’s under
Debian:

$ dpkg -i wireshark-common_2.0.5.0-1_i386.deb wireshark_wireshark-2.

dpkg doesn’t take care of all dependencies, but reports what's missing.
Capturing requires privileges

By installing Wireshark packages non-root users won't

@ gain rights automatically to capture packets. To allow non-
root users to capture packets follow the procedure
described in /usr/share/doc/wireshark-
common/README.Debian

2.6.3. Installing from portage under Gentoo Linux

Use the following command to install Wireshark under Gentoo Linux with
all of the extra features:

$ USE="c-ares gtk ipv6 portaudio snmp ssl kerberos threads selinux"
2.6.4. Installing from packages under FreeBSD

Use the following command to install Wireshark under FreeBSD:

$ pkg_add -r wireshark

pkg_add should take care of all of the dependency issues for you.

2.7. Troubleshooting during the install on Unix

A number of errors can occur during the installation process. Some hints
on solving these are provided here.

If the configure stage fails you will need to find out why. You can check
the file config.log in the source directory to find out what failed. The last
few lines of this file should help in determining the problem.

The standard problems are that you do not have a required development
package on your system or that the development package isn’'t new
enough. Note that installing a library package isn’t enough. You need to
install its development package as well. configure will also fail if you do
not have libpcap (at least the required include files) on your system.

If you cannot determine what the problems are, send an email to the
wireshark-dev mailing list explaining your problem. Include the output
from config.log and anything else you think is relevant such as a trace of
the make stage.

2.8. Building from source under Windows

We strongly recommended that you use the binary installer for Windows
unless you want to start developing Wireshark on the Windows platform.

For further information how to build Wireshark for Windows from the
sources see the Developer’s Guide at https://www.wireshark.org/docs/.

You may also want to have a look at the Development Wiki
(https://wiki.wireshark.org/Development) for the latest available
development documentation.

https://www.wireshark.org/docs/
https://wiki.wireshark.org/Development

Chapter 3. User Interface
Table of Contents

3.1. Introduction
3.2. Start Wireshark
3.3. The Main window

3.3.1. Main Window Navigation
3.4. The Menu
3.5. The “File” menu
3.6. The “Edit” menu
3.7. The “View” menu
3.8. The “Go” menu
3.9. The "Capture” menu
3.10. The “Analyze” menu
3.11. The “Statistics” menu
3.12. The “Telephony” menu
3.13. The “Tools” menu
3.14. The “Internals” menu
3.15. The “Help” menu
3.16. The “Main” toolbar
3.17. The “Filter” toolbar
3.18. The “Packet List” pane
3.19. The “Packet Details” pane
3.20. The “Packet Bytes” pane
3.21. The Statusbar

3.1. Introduction

By now you have installed Wireshark and are most likely keen to get
started capturing your first packets. In the next chapters we will explore:

How the Wireshark user interface works
How to capture packets in Wireshark
How to view packets in Wireshark

How to filter packets in Wireshark

... and many other things!

3.2. Start Wireshark
You can start Wireshark from your shell or window manager.
Power user tip
@ When starting Wireshark it's possible to specify optional

settings using the command line. See Section 10.2, “Start
Wireshark from the command line” for details.

In the following chapters a lot of screenshots from Wireshark will be
shown. As Wireshark runs on many different platforms with many
different window managers, different styles applied and there are different
versions of the underlying GUI toolkit used, your screen might look
different from the provided screenshots. But as there are no real
differences in functionality these screenshots should still be well

understandable.

3.3. The Main window

Let’s look at Wireshark’s user interface. Figure 3.1, “The Main window”
shows Wireshark as you would usually see it after some packets are
captured or loaded (how to do this will be described later).

Figure 3.1. The Main window

M t-netflix-problems-2011-07-06.pcap - m} x
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
dm:@ RE Res=ZF s SEaQaf
(W] Apply a display fiiter ... <Ctrl |] Expression... | +
No. Time. Source Destination Protocol Length Info
i 343 £5.142415 192.168.8.21 174.129.249.228 TCP 66 48555 - 8@ [ACK] Seq=1 Ack=1 Win=5888 Len=@ TSval=491519346 TSecr=551811827
i 344 65.142715 192.168.0.21 174.129.249.228 HTTP 253 GET /clients/netflix/flash/application.swf?flash_version=flash_lite_2.18&v=1.5&nr
i 345 65.230738 174.129.249.228 192.168.8.21 TCP 66 88 -+ 48555 [ACK] Seq=1 Ack=188 Win=6864 Len=8 TSval=55181185@ TSecr=491519347
l 346 £5.240742 174.129.249.228 192.168.0.21 HTTP 828 HTTP/1.1 302 Moved Temporarily
l 347 £5.241592 192.168.0.21 174.129.249.228 TCP 66 48555 - 88 [ACK] Seq=188 Ack=763 Win=7424 Len=8 TSval=491519446 TSecr=551811852
+ 348 £5.242532 192.168.0.21 192.168.0.1 DNS 77 Standard query 8x2188 A cdn-@.nflximg.com
<~ 349 65.276578 192.168.0.1 192.168.0.21 DNS 489 Standard query response @x2188 A cdn-@.nflximg.com CNAME images.netflix.com.edge_|
! 358 65.277992 192.168.8.21 63.8@.242.48 TCP 74 37063 » 88 [SYN] Seq=8 Win=5848 Len=@ MSS=1468 SACK_PERM=1 TSval=491519482 TSecr
i 351 65.297757 63.8@.242.48 192.168.8.21 TCP 74 88 + 37063 [SYN, ACK] Seq=8 Ack=1 Win=5792 Len=@ MS55=1460 SACK_PERM=1 TSval=329%
: 352 65.298396 192.168.8.21 63.8@.242.48 TCP 66 37863 - 88 [ACK] Seq=1 Ack=1 Win=5888 Len=8 TSval=491519562 TSecr=329553413@ =1
i 353 £5.298687 192.168.0.21 63.80.242.48 HTTP 153 GET /fus/nrd/clients/flash/814548.bun HTTP/1.1
l 354 £5.31873@ £63.80.242.438 192.168.9.21 TCP 66 88 + 37063 [ACK] Seq=1 Ack=88 Win=5792 Len=0 TSval=3205534151 TSecr=491519503
l 355 B5.321733 £3.80.242.48 192.168.0.21 TCP 1514 [TCP segment of a reassembled PDU] w
< >
Frame 349: 489 bytes on wire (3912 bits), 489 bytes captured (3912 bits) ~
Ethernet II, Src: Globalsc_B@:3b:8a (fB:ad:4e:8@:3b:8a), Dst: Vizio 14:8a:el (98:19:9d:14:8a:el)
Internet Protocol Version 4, Src: 192.168.0.1, Dst: 192.168.8.21
User Datagram Protocel, Src Port: 53 (53), Dst Port: 34036 (34036)
v Domain Name System (respense)
[Request In: 348
[Time: @.834338000 seconds)
Transaction ID: 8x2188
Flags: @x8188 Standard query response, Ne error
Questions: 1
Ans: RRs: 4
Aut ity RRs: 9
Additicnal RRs: 9
¥ Queries
cdn-@.nflximg.com: type A, class IN
Answers
Authoritative nameservers v
B82¢ B 15 B9 35 84 4 81 7/ 33 37 [BUEE 61 86 @0 @1 ...5.... .IH.. ~
B0 @4 @ B89 @8 @9 85 63 64 6e 2d 3@ B7 6e 66 6C c dn-@.nfl
78 69 6d 67 83 63 67 6d 98 88 @1 8@ Bl c8 8c 88 ximg.com
B85 @0 @1 88 @8 65 29 @@ 22 86 69 6d 61 67 65 73 cesean). ".images
B7 6e 65 74 66 6c 69 78 @3 63 6f 6d B9 65 64 67 .netflix .com.edg
65 73 75 69 74 65 B3 6e 65 74 80 c@ 2f @8 @5 88 esuite.n et../... ¥
@ 7 Identification of transaction {dns.id), 2 bytes Packets: 10299 - Displayed: 10299 {100.0%) - Load time: 0:0.182|| Profile: Default

Wireshark’s main window consists of parts that are commonly known
from many other GUI programs.

1.
2.

The menu (see Section 3.4, “The Menu”) is used to start actions.

The main toolbar (see Section 3.16, “The “Main” toolbar”) provides

quick access to frequently used items from the menu.

The filter toolbar (see Section 3.17, “The “Filter” toolbar”) provides a

way to directly manipulate the currently used display filter (see
Section 6.3, “Filtering packets while viewing”).

The packet list pane (see Section 3.18, “The “Packet List” pane”)

displays a summary of each packet captured. By clicking on packets
in this pane you control what is displayed in the other two panes.

5. The packet details pane (see Section 3.19, “The “Packet Details”
pane”) displays the packet selected in the packet list pane in more
detail.

6. The packet bytes pane (see Section 3.20, “The “Packet Bytes”
pane”) displays the data from the packet selected in the packet list
pane, and highlights the field selected in the packet details pane.

7. The statusbar (see Section 3.21, “The Statusbar”) shows some
detailed information about the current program state and the
captured data.

Tip

@ The layout of the main window can be customized by
changing preference settings. See Section 10.5,
“Preferences” for details!

3.3.1. Main Window Navigation

Packet list and detail navigation can be done entirely from the keyboard.
Table 3.1, “Keyboard Navigation” shows a list of keystrokes that will let
you quickly move around a capture file. See Table 3.5, “Go menu items”
for additional navigation keystrokes.

Table 3.1. Keyboard Navigation

Accelerator ||Description

Move between screen elements, e.g. from the

Tab, Shift+Tab toolbars to the packet list to the packet detail.

Down Move to the next packet or detail item.

Up Move to the previous packet or detail item.

Move to the next packet, even if the packet list isn’t

Ctrl+Down, F8 focused.

Move to the previous packet, even if the packet list

Ctrl+Up, F7 isn’t focused.
Ctrl+ Move to the next packet of the conversation (TCP,
] UDP or IP).
Ctrl+ Move to the previous packet of the conversation
: (TCP, UDP or IP).
Alt+Right or
Option+Right Move to the next packet in the selection history.
(macOS)
Alt+Left or
Option+Right Move to the previous packet in the selection history.
(macOS)
In the packet detail, closes the selected tree item. If
Left i .
it's already closed, jumps to the parent node.
Right In the packet detail, opens the selected tree item.
Shift+Right In the pac_ket detail, opens the selected tree item
and all of its subtrees.
Ctrl+Right In the packet detail, opens all tree items.

[Ctrl+Left In the packet detail, closes all tree items.

Backspace In the packet detail, jumps to the parent node.

Return, Enter In the packet detail, toggles the selected tree item.

Help — About Wireshark - Keyboard Shortcuts will show a list of all
shortcuts in the main window. Additionally, typing anywhere in the main
window will start filling in a display filter.

3.4. The Menu

Wireshark’s main menu is located either at the top of the main window
(Windows, Linux) or at the top of your main screen (macOS). An example
is shown in Figure 3.2, “The Menu”.

Note

Some menu items will be disabled (greyed out) if the
@ corresponding feature isn’t available. For example, you
cannot save a capture file if you haven't captured or

loaded any packets.

Figure 3.2. The Menu

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

The main menu contains the following items:

File
This menu contains items to open and merge capture files, save,
print, or export capture files in whole or in part, and to quit the
Wireshark application. See Section 3.5, “The “File” menu”.

Edit
This menu contains items to find a packet, time reference or mark
one or more packets, handle configuration profiles, and set your
preferences; (cut, copy, and paste are not presently implemented).
See Section 3.6, “The “Edit” menu”.

View
This menu controls the display of the captured data, including
colorization of packets, zooming the font, showing a packetin a
separate window, expanding and collapsing trees in packet details,
.... See Section 3.7, “The “View” menu”.

Go
This menu contains items to go to a specific packet. See Section 3.8,
“The “Go” menu”.

Capture

This menu allows you to start and stop captures and to edit capture
filters. See Section 3.9, “The “Capture” menu”.
Analyze
This menu contains items to manipulate display filters, enable or
disable the dissection of protocols, configure user specified decodes
and follow a TCP stream. See Section 3.10, “The “Analyze” menu”.
Statistics
This menu contains items to display various statistic windows,
including a summary of the packets that have been captured, display
protocol hierarchy statistics and much more. See Section 3.11, “The
“Statistics” menu”.
Telephony
This menu contains items to display various telephony related
statistic windows, including a media analysis, flow diagrams, display
protocol hierarchy statistics and much more. See Section 3.12, “The
“Telephony” menu’”.
Wireless
The items in this menu show Bluetooth and IEEE 802.11 wireless
statistics.
Tools
This menu contains various tools available in Wireshark, such as
creating Firewall ACL Rules. See Section 3.13, “The “Tools” menu”.
Help
This menu contains items to help the user, e.g. access to some basic
help, manual pages of the various command line tools, online access
to some of the webpages, and the usual about dialog. See
Section 3.15, “The “Help” menu”.

Each of these menu items is described in more detail in the sections that
follow.

Shortcuts make life easier

Most common menu items have keyboard shortcuts. For

@ example, you can press the Control (or Strg in German)
and the K keys together to open the “Capture Options”
dialog.

3.5. The “File” menu

The Wireshark file menu contains the fields shown

menu items”.

Figure 3.3. The “File” Menu

in Table 3.2, “File

M cdd-http.peap

File | Edit View Go Capture Analyze Statistics Telephony Wireless Toels Help

Export Specified Packets...
Export Packet Dissecticns r
Export Packet Bytes... Ctrl+H
Export PDUs to File...

Export 550 Session Keys...

Open Ctrl+0 = Qg
Open Recent 3 -3~ Expression... | +
Merge... hation Protocol Length Info]
Import frem Hex Dump... .8. 1454 [TCP segment of a reassembled PDU] |
Close Chrls W : - € = [ICE Bk

1454 [TCP segment of a reassembled PDU]
Save Ctrl+S I ¥ 54 [TCP Update] [TCP ACKed unseen
Save As... Ctrl+Shift=5 SR 10
File Set »

Export Objects ¥ lts), 1454 bytes captured (11632 bits)

:5@:56:c0:08:81), Dst: Vmware_42:12:13 (88:8c:29:42:12:13)
-121.1.131, Dst: 172.16.8.122

rt: 18554 (18554), Dst Port: 8@ (8@), Seq: 1, Ack: 1, Len: 1480

Print... Ctrl+P

Quit Ctrl+Q

88 8c 20 42 12 13 @@ 58 56 cB@ @2 el 83 . 45 Be
B85 ab @1 41 @@ @@ 6a @6 d3 98 c8 79 Bl 83 ac 18
B8 7a 29 3a @8 5@ a7 Sc @4 48 e2 e2 ee bf 5@ 18 i
ff ff 77 67 @8 8@ 38 54 73 57 77 51 74 45 79 4de ..Wg..08T sk /!
45 61 33 78 7@ 74 44 63 51 4f 2f 6b 75 31 41 52 Ea3xptDc QO/kulAR
52 66 47 59 67 53 32 41 34 47 59 35 31 56 33 32 RFGYgS2A 4GY51V32

v

0 t Packets: 3083 - Displayed: 3083 (100.0%) * Load time: 0:0.100 || Profile: Default

Table 3.2. File menu items

Menu Item ||Acce|erator ||Description

This shows the file open dialog box that
allows you to load a capture file for viewing.

Section 5.2.1, “The “Open Capture File”

dialog box”.

Open... Ctrl+O It is discussed in more detail in
This lets you open recently opened capture

Open Recent

files. Clicking on one of the submenu items
will open the corresponding capture file
directly.

Merge...

This menu item lets you merge a capture
file into the currently loaded one. It is
discussed in more detail in Section 5.4,
“‘Merging capture files”.

Import from
Hex Dump...

This menu item brings up the import file
dialog box that allows you to import a text
file containing a hex dump into a new
temporary capture. It is discussed in more
detail in Section 5.5, “Import hex dump”.

Close

This menu item closes the current capture.
If you haven't saved the capture, you will be
asked to do so first (this can be disabled by
a preference setting).

Save

This menu item saves the current capture.
If you have not set a default capture file
name (perhaps with the -w <capfile>
option), Wireshark pops up the Save
Capture File As dialog box (which is
discussed further in Section 5.3.1, “The

Ctrl+S

“Save Capture File As” dialog box”).

If you have already saved the current
capture, this menu item will be greyed out.

You cannot save a live capture while the
capture is in progress. You must stop the
capture in order to save.

Ctrl+w “
I

This menu item allows you to save the
current capture file to whatever file you
would like. It pops up the Save Capture File
As dialog box (which is discussed further in
Section 5.3.1, “The “Save Capture File As”

dialog box”).

Save As... Shift+Ctrl+S

This menu item allows you to show a list of

File Set - files in a file set. It pops up the Wireshark
List Files List File Set dialog box (which is discussed

further in Section 5.6, “File Sets”).

If the currently loaded file is part of a file
File Set - set, jump to the next file in the set. If it isn’t
Next File part of a file set or just the last file in that

set, this item is greyed out.

If the currently loaded file is part of a file
File Set - set, jump to the previous file in the set. If it
Previous File isn’t part of a file set or just the first file in

that set, this item is greyed out.

This menu item allows you to export all (or
Export some) of the packets in the capture file to
Specified file. It pops up the Wireshark Export dialog
Packets... box (which is discussed further in

Section 5.7, “Exporting data”).

These menu items allow you to export the

currently selected bytes in the packet bytes
Export pane to a text file file in a number of formats
Packet Ctrl+H including plain, CSV, and XML. It is

Dissections...

discussed further in Section 5.7.7, “The
"Export selected packet bytes" dialog box”.

Export
Objects

These menu items allow you to export
captured DICOM, HTTP, SMB, or TFTP
objects into local files. It pops up a
corresponding object list (which is
discussed further in Section 5.7.8, “The
"Export Objects" dialog box”)

Print...

Ctrl+P

some) of the packets in the capture file. It
pops up the Wireshark Print dialog box
(which is discussed further in Section 5.8,
“Printing packets”).

Quit

Ctrl+Q

This menu item allows you to quit from
Wireshark. Wireshark will ask to save your
capture file if you haven’t previously saved
it (this can be disabled by a preference

This menu item allows you to print all (or
setting)

3.6. The “Edit” menu

The Wireshark Edit menu contains the fields shown in Table 3.3, “Edit
menu items”

Figure 3.4. The “Edit” Menu

M cdd-http.pcap

-] X
File | Edit | View Go Capture Analyze Statistics Telephony Wireless Tools Help
o0y r EEaaans
(W[a R Find Packet.. Ctrl+F | ~| Expresson.. +
; Find Next Cerl+M Frotocol Length Info [}
Find Previous Ctrl+B 1454 [1CP segrent of 2 reassenbled POU] J
Mark/Unmark Packet Ctrl+M 1454 [TCP segment of a EEaecenbed PDU]
Mark All Displayed Ctrl+Shift+ M 54 [TCP dow Update] [TCP Ked unseen s. [ACK] Seq=1 Ack=112081
Unmark All Displayed Meta+Alt+h ;
Next Mark Meta+Shift+N
Previous Mark Meta+Shift+B
Ignere/Unignere Packet Ctrl+D
Ignore All Displayed Ctrl+Shift+ D
Unignore All Dis Ctrl+Alt+D
Set/Uncet Time Reference Ctrl+T
Fr Unset All Time References Ctrl+Alt+T 4 bytes captured (11632 bits)
£ Bk mERe e Ctrl+Alts N 9:00:01), Dst: Vmware_42:12:13 (88:8c:29:42:12:13)
I 31, Dst: 172.16.8.122
! Previous Time Reference Ctrl+Alt+B :
T 4 (18554), Dst Port: 80 (80), Seq: 1, Ack: 1, Len: 1400
Time Shift... Ctrl+Shift+T
Packet Comment...
Configuration Profiles... Ctrl+Shift+ A
Preferences... Ctrl+Shift+P
8@ @c 29 42 12 13 @@ 5@ 56 cB @2 °l B3 @8 45 ve -~
©5 ab @1 41 @@ @@ G6a @6 d3 98 c8 79 el 83 ac 1@
@8 7a 29 3a 8@ 5@ a7 S5C B4 43 e2 e2 ee bf 58 18
ff ff 77 67 @@ 06 3@ 54 73 57 77 51 74 45 79 4de ¥
45 61 33 78 78 74 44 63 51 4f 2f 6b 75 31 41 52 ainp"[ﬁ(Q"’kulwﬂ
52 66 47 59 67 53 32 41 34 47 59 35 31 56 33 32 RFGYgS2A 4GY51V32 w
7 Packets: 3083 - Displayed: 3083 (100.0%) - Load time: 0:0.100 || Profile: Default

Table 3.3. Edit menu items

Menu Item

|Acce|erator |Descr|pt|on

currently selected packet to the
clipboard.

This menu item brings up a toolbar that
allows you to find a packet by many

These menu items will copy the packet
Copy list, packet detail, or properties of the

Find Packet... [Ctrl+F criteria. There is further information on
finding packets in Section 6.8, “Finding
packets”.

This menu item tries to find the next

Find Next Ctrl+N packet matching the settings from “Find
Packet...”.

This menu item tries to find the previous

Find Previous [Ctrl+B packet matching the settings from “Find
Packet...”.

This menu item marks the currently

Mark/Unmark Ctrl+M selected packet. See Section 6.10,

Packet « : ” :

Marking packets” for details.

Mark All : . .

Displayed Shift+Ctrl+M This menu item marks all displayed
packets.

Packets

Unmark All : . :

Displayed Ctrl+Alt+M This menu item unmarks all displayed
packets.

Packets

Next Mark Shift+Alt+N [|[Find the next marked packet.

Previous Mark [IShift+Alt+B [[Find the previous marked packet.

Ignore/Unignore

Ctrl+D

This menu item marks the currently
selected packet as ignored. See

save packet comments depends on your

Packet Section 6.11, “Ignoring packets” for
detalils.
Ignore All Shift+Ctrl+D This menu item marks all displayed
Displayed packets as ignored.
Unlgnore All Ctri+Alt+D This menu item unmarks all ignored
Displayed packets.
This menu item set a time reference on
. the currently selected packet. See
Set/Unset Time Ctrl+T Section 6.12.1, “Packet time referencing”
Reference : , ,
for more information about the time
referenced packets.
Unset All Time Ctri+Alt+T This menu item removes all time
References references on the packets.
Next Time Ctri+Alt+N This menu item tries to find the next time
Reference referenced packet.
Previous Time Ctri+Alt+B Thls menu item tries to find the previous
Reference time referenced packet.
This will show the Time Shift dialog,
Time Shift Ctrl+Shift+T |lwhich allows you to adjust the
timestamps of some or all packets.
This will let you add a comment to a
Packet single packet. Note that the ability to

Comment...

file format. E.g. pcapng supports
comments, pcap does not.

Capture
Comment...

This will let you add a capture comment.
Note that the ability to save capture
comments depends on your file format.
E.g. pcapng supports comments, pcap
does not.

Configuration
Profiles...

This menu item brings up a dialog box
for handling configuration profiles. More
detail is provided in Section 10.6,
“Configuration Profiles”.

Preferences...

Shift+Ctrl+P
or Cmd+
(macOS)

“Shift+0trl+A

This menu item brings up a dialog box
that allows you to set preferences for
many parameters that control Wireshark.
You can also save your preferences so
Wireshark will use them the next time
you start it. More detail is provided in
Section 10.5, “Preferences”.

3.7. The “View” menu

The Wireshark View menu contains the fields shown in Table 3.4, “View

menu items”.

Figure 3.5. The “View” Menu

M cdd-http.peap

4 = ~ Main Toolbar
d ™~ Filter Toolbar
Wireless Toslbar

~ Status Bar

~ Packet List
~ Packet Details
v

Packet Bytes

File Edit View Go Capture Analyze Statistics

Telepheny Wireless Toels Help

=aq8ap

.3~ Expression...

Protocol Length Info
1454 [TCP segment of a reassembled PDU]

54 [TCP

1454 [TCP segment of a reassembled PDU]

54 [TCP

Update

+
~
‘r—|

] [TCP ACKed unseen
11

Time Display Format »
Mame Resclution 4
Zoom L4
Expand Subtrees Shift=Right
Expand Al Ctrl+Right
Collapse All Ctrl+Left
Frame 1 __ ytes captured (11632 bits)
Etherne = Colorize Packet List f8:81), Dst: Vmware_42:12:13 (88:8c:29:42:12:13)
Interne Coloring Rules... Dst: 172.16.0.122
Transmi 18554), Dst Port: 8@ (8@), Seq: 1, Ack: 1, Len: 1489
Colorize Conversation > L2 (86).55e0: L SAck: KL
BE Resize Columns Ctrl= Shift+R
Internals L4
Show Packet in New Window
Reload Ctrl+R
88 8c 20 42 12 13 @@ 58 56 cB@ @2 el 83 . 45 Be ~
B85 ab @1 41 @@ @@ 6a @6 d3 98 c8 79 Bl 83 ac 18
B8 7a 29 3a @8 5@ a7 Sc @4 48 e2 e2 ee bf 5@ 18 i
ff ff 77 67 @8 8@ 38 54 73 57 77 51 74 45 79 4de ..Wg..08T sk /!
45 61 33 78 7@ 74 44 63 51 4f 2f 6b 75 31 41 52 Ea3xptDc QO/kulAR
52 66 47 59 67 53 32 41 34 47 59 35 31 56 33 32 RFGYgS2A 4GY51V32 w

Packets: 3083 - Displayed: 3083 {100.0%) - Load time: 0:0.100 || Profile: Default

Table 3.4. View menu items

Menu Item

||Acce|erator ||Description

Main Toolbar ||

This menu item hides or shows the
main toolbar, see Section 3.16, “The
“Main” toolbar”.

Filter Toolbar ||

This menu item hides or shows the
filter toolbar, see Section 3.17, “The
“Filter” toolbar”.

\Wireless Toolbar

This menu item hides or shows the
wireless toolbar. May not be present
on some platforms.

This menu item hides or shows the

Statusbar statusbar, see Section 3.21, “The
Statusbar”.
This menu item hides or shows the
Packet List packet list pane, see Section 3.18,

“The “Packet List” pane”.

Packet Details

packet details pane, see
Section 3.19, “The “Packet Details”

ane .

Packet Bytes

This menu item hides or shows the
packet bytes pane, see
Section 3.20, “The “Packet Bytes”

ane .

Time Display Format
- Date and Time of
Day: 1970-01-01
01:02:03.123456

This menu item hides or shows the

Selecting this tells Wireshark to
display the time stamps in date and
time of day format, see Section 6.12,

“Time display formats and time
references”.

The fields "Time of Day", "Date and

Time of Day", "Seconds Since

Beginning of Capture”, "Seconds
Since Previous Captured Packet"

and "Seconds Since Previous
Displayed Packet" are mutually
exclusive.

Time Display Format
- Time of Day:
01:02:03.123456

Selecting this tells Wireshark to
display time stamps in time of day
format, see Section 6.12, “Time
display formats and time

references’”.

Time Display Format
- Seconds Since
Epoch (1970-01-01):

Selecting this tells Wireshark to
display time stamps in seconds
since 1970-01-01 00:00:00, see
Section 6.12, “Time display formats

1234567890.123456

and time references”.

Time Display Format
— Seconds Since
Beginning of
Capture:
123.123456

Selecting this tells Wireshark to
display time stamps in seconds
since beginning of capture format,
see Section 6.12, “Time display
formats and time references”.

Time Display Format
- Seconds Since
Previous Captured
Packet: 1.123456

Selecting this tells Wireshark to
display time stamps in seconds
since previous captured packet
format, see Section 6.12, “Time
display formats and time

references’”.

Time Display Format
- Seconds Since
Previous Displayed
Packet: 1.123456

Selecting this tells Wireshark to
display time stamps in seconds
since previous displayed packet
format, see Section 6.12, “Time
display formats and time

references”.

Time Display Format
— Automatic (File
Format Precision)

Selecting this tells Wireshark to
display time stamps with the
precision given by the capture file
format used, see Section 6.12, “Time
display formats and time

references’”.

The fields "Automatic”, "Seconds"
and "...seconds" are mutually
exclusive.

Time Display Format
— Seconds: 0

Selecting this tells Wireshark to
display time stamps with a precision
of one second, see Section 6.12,
“Time display formats and time

references’”.

Time Display Format
- ...seconds: O....

Selecting this tells Wireshark to
display time stamps with a precision
of one second, decisecond,
centisecond, millisecond,
microsecond or nanosecond, see
Section 6.12, “Time display formats

and time references”.

Time Display Format
- Display Seconds
with hours and
minutes

Selecting this tells Wireshark to
display time stamps in seconds, with
hours and minutes.

Name Resolution -

This item allows you to trigger a
name resolve of the current packet

Resolve Name only, see Section 7.9, “Name

Resolution”.

This item allows you to control
whether or not Wireshark translates
MAC addresses into names, see
Section 7.9, “Name Resolution”.

Name Resolution -
Enable for MAC
Layer

This item allows you to control
whether or not Wireshark translates
network addresses into names, see
Section 7.9, “Name Resolution”.

Name Resolution —
Enable for Network
Layer

This item allows you to control
whether or not Wireshark translates
transport addresses into names, see
Section 7.9, “Name Resolution”.

Enable for Transport
Layer

This item allows you to control
whether or not Wireshark should

colorize the packet list.
Colorize Packet List

Enabling colorization will slow down
the display of new packets while
capturing / loading capture files.

This item allows you to specify that
Wireshark should scroll the packet
list pane as new packets come in, so
you are always looking at the last
packet. If you do not specify this,
Wireshark simply adds new packets
onto the end of the list, but does not

Auto Scroll in Live
Capture

Name Resolution - “

scroll the packet list pane.

Zoom into the packet data (increase

zoomn Ctrl++ the font size).
Zoom Out Ctrl+- Zoom out of the pac_ket data
(decrease the font size).
V)
Normal Size Ctrl+= Set zoom level back to 100% (set

font size back to normal).

Resize all column widths so the
content will fit into it.

Resize All Columns [Shift+Ctrl+R Resizing may take a significant

amount of time, especially if a large
capture file is loaded.

This menu items folds out with a list
of all configured columns. These
columns can now be shown or
hidden in the packet list.

Displayed Columns

Expand Subtrees [Shift+ - currently selected subtree in the

packet details tree.

This menu item collapses the
currently selected subtree in the
packet details tree.

Collapse Subtrees [Shift+ —

||This menu item expands the

Expand All Ctrl+ -

\Wireshark keeps a list of all the
protocol subtrees that are expanded,
and uses it to ensure that the correct
subtrees are expanded when you
display a packet. This menu item
expands all subtrees in all packets in
the capture.

Collapse All

This menu item collapses the tree
view of all packets in the capture list.

Colorize
Conversation

submenu that allows you to color
packets in the packet list pane
based on the addresses of the
currently selected packet. This
makes it easy to distinguish packets
belonging to different conversations.
Section 10.3, “Packet colorization”.

Color 1-10

These menu items enable one of the
ten temporary color filters based on
the currently selected conversation.

Colorize
Conversation -
Reset coloring

This menu item clears all temporary
coloring rules.

Colorize
Conversation -
New Coloring
Rule...

Colorize
Conversation -

This menu item opens a dialog
window in which a new permanent
coloring rule can be created based
on the currently selected
conversation.

This menu item brings up a

Coloring Rules...

This menu item brings up a dialog
box that allows you to color packets
in the packet list pane according to
filter expressions you choose. It can
be very useful for spotting certain
types of packets, see Section 10.3,
“Packet colorization”.

Show Packet in New

This menu item brings up the
selected packet in a separate
window. The separate window

indow shows only the tree view and byte
view panes.
Reload This menu item allows you to reload

the current capture file.

3.8. The “Go” menu

The Wireshark Go menu contains the fields shown in Table 3.5, “Go

menu items”.

Figure 3.6. The “Go” Menu

M cdd-http.peap

Time

1 0.80000 _

3 8.82573

File Edit View | Go
dmae| =

4 9.82574

Auto Scroll in Live Capture

Capture Analyze Statistics

Go te Packet...

Go to Linked Packet

= Next Packet

Previous Packet

First Packet
Last Packet

Ctrl+G

Ctrl+Down
Ctrl+Up
Ctrl+Home
Ctrl+End

Telepheny

- O X
Wireless Tools Help
aqeaH
| ~] Expresson... | +
fotocal Length Info [}
|

1454 [TCP segment of a reassembled PDU]
5 L 80 »
1454 [TCP segment of a reassembled PDU]
54 [TCP dow Update] [TCP ACKed unseen s. [ACK] Seq=1 Ack=112081
7 =

7 ©.182939

9 @8.128285

11 ©.154162

13 @.179986

200 T2TTTTI5T

200.121.1.131

208.121.1.131

200.121.1.131

77T IZY

172.16.8.122

172.16.8.122

172.16.0.122

1454 [TCP segment
1454 [TCP segment
1454 [TCP segment of a reassembled PDU]

1454 [TCP t of a reassembled PDU]

Frame 1: 1454 by

tes on wire (11632 bits), 1454 bytes captured (11632 bits)

Ethernet II, Src: Vmware_c@:88:01 (80:58:56:c0:00:01), Dst: Vmware_42:12:13 (00:8c:29:42:12:13)
Internet Protocel Version 4, Src: 268.121.1.131, Dst: 172.16.8.122

Transmission Control Protocol, Src Port: 18554 (18554), Dst Port: 8@ (88), Seq: 1, Ack: 1, Len: 1480

88 8c 20 42 12 13 @@ 58 56 cB@ @2 el 83 . 45 Be ~
B85 ab @1 41 @@ @@ 6a @6 d3 98 c8 79 Bl 83 ac 18

B8 7a 29 3a @8 5@ a7 Sc @4 48 e2 e2 ee bf 5@ 18 i -

ff ff 77 67 @8 8@ 38 54 73 57 77 51 74 45 79 4de ..wg..8T EyN

45 61 33 78 7@ 74 44 63 51 4f 2f 6b 75 31 41 52 Ea3xptDc QO/kulAR

52 66 47 59 67 53 32 41 34 47 59 35 31 56 33 32 RFGYgS2A 4GY51V32 w

Packets: 3083 - Displayed: 3083 {100.0%) - Load time: 0:0.100

Profile: Default

Table 3.5. Go menu items

Menu Item

||Acce|erator||Description

Back Alt+ — ||

in a web browser.

Jump to the recently visited packet in the
packet history, much like the page history

Forward Alt+ - ||

in a web browser.

Jump to the next visited packet in the
packet history, much like the page history

Goto

Bring up a window frame that allows you to

Ctrl+G specify a packet number, and then goes to

Packet... that packet. See Section 6.9, “Go to a

specific packet” for details.
Goto : currently selected protocol field. If the
Corresponding : ,

selected field doesn’t correspond to a
Packet L :

packet, this item is greyed out.

Move to the previous packet in the list. This
Previous Ctrl+1 can be used to move to the previous
Packet packet even if the packet list doesn’t have

keyboard focus.

Next Packet |[Ctrl+!

Move to the next packet in the list. This can
be used to move to the previous packet
even if the packet list doesn’t have
keyboard focus.

I
Go to the corresponding packet of the

First Packet [[Ctrl+Home [[Jump to the first packet of the capture file.

Last Packet [ICtrl+End [[Jump to the last packet of the capture file.
Previ Move to the previous packet in the current
revious . .
conversation. This can be used to move to
Packet In Curl+, the previous packet even if the packet list
Conversation X b P

doesn’t have keyboard focus.

Move to the next packet in the current

Next Packet In||Ctrl+.
Conversation

conversation. This can be used to move to
the previous packet even if the packet list
doesn’t have keyboard focus.

3.9. The “Capture” menu

The Wireshark Capture menu contains the fields shown in Table 3.6
“Capture menu items”.

Figure 3.7. The “Capture” Menu

M cdd-http.peap - m} x
File Edit View Ge Capture Analyze Statistics Telephony Wircless Toels Help

4 = @ @ Options... Ctri+K = QqQuE
— e Ctrl+E 3 -] Crpressin..

Stop Cerl+E Protocal Length Info
1 @.e60008 Restart Ctrl+R 1454 [T(P segment of a reassembled PDU]

i Capture Filters...
3 8.825738 Es 1454 [TCP
4 0.825749 7 2 54 [TCP

7 ©.182939 200.121.1.131 172.16.0.122 1454 [TCP

9 ©.128285 200.121.1.131 = 1454 [TCP

Frame 1: 1454 bytes on wire (11632 bits), 1454 bytes captured (11632 bits)

Ethernet II, Src: Vmware_c@:88:01 (80:58:56:c0:00:01), Dst: Vmware_42:12:13 (00:8c:29:42:12:13)
Internet Protocel Version 4, Src: 268.121.1.131, Dst: 172.16.8.122

Transmission Control Protocol, Src Port: 18554 (18554), Dst Port: 8@ (88), Seq: 1, Ack: 1, Len: 1480

88 8c 20 42 12 13 @@ 58 56 cB@ @2 el 83 . 45 Be ~
B85 ab @1 41 @@ @@ 6a @6 d3 98 c8 79 Bl 83 ac 18

B8 7a 29 3a @8 5@ a7 Sc @4 48 e2 e2 ee bf 5@ 18 i

ff ff 77 67 @8 8@ 38 54 73 57 77 51 74 45 79 4de ..Wg..08T sk /!

45 61 33 78 7@ 74 44 63 51 4f 2f 6b 75 31 41 52 Ea3xptDc QO/kulAR

52 66 47 59 67 53 32 41 34 47 59 35 31 56 33 32 RFGYgS2A 4GY51V32 w

0 t Packets: 3083 - Displayed: 3083 (100.0%) * Load time: 0:0.100 || Profile: Default

Table 3.6. Capture menu items

Menu Item ||Acce|erator||Description

This menu item brings up a dialog box that
shows what's going on at the network

Section 4.4, “The “Capture Interfaces” dialog
box”) .

This menu item brings up the Capture Options

Interfaces...[[Ctrl+I nterfaces Wireshark knows of, see

Options...

Ctrl+K

dialog box (discussed further in Section 4.5
“The “Capture Options” dialog box”) and
allows you to start capturing packets.

Start

Ctrl+E

Immediately start capturing packets with the
same settings than the last time.

Stop

Ctrl+E

This menu item stops the currently running
capture, see Section 4.13.2, “Stop the running

capture”) .

Restart

This menu item stops the currently running
capture and starts again with the same
options, this is just for convenience.

Capture

Filters...

Ctrl+R ||

This menu item brings up a dialog box that
allows you to create and edit capture filters.
You can name filters, and you can save them
for future use. More detail on this subject is
provided in Section 6.6, “Defining and saving
filters”

3.10. The “Analyze” menu

The Wireshark Analyze menu contains the fields shown in Table 3.7
“‘Analyze menu items”.

Figure 3.8. The “Analyze” Menu

M cdd-http.peap

d = @

File Edit View Ge

(W] Apo flter

= &

<Cirl-/

No. Time
1 @.e60008

3 8.825738

4 ©.825749

7 ©.182939

9 @8.128285

11 ©.154162

13 @.179986

Source
268.121.1.

260.121.1.

172.16.8.1

200.121.1.

200.121.1.

208.121.1.

200.121.1.

Capture | Analyze Statistics

Display Filters...

Display Filter Macros...

Apply as Column

Apply as Filter

Prepare a Filter

Conversation Filter

Enabled Protacals...

Decode As...

Reload Lua Plugins

SCTP

Follow

Expert Information

Telepheny

Ctrl+Shift+E

Ctrl+Shift+L

Wireless Tools Help

hE

.3~ Expression...

+
ngth Info ~
—1
1454 [TCP segment of a reassembled PDU] |

54 [TCP 80 >

¥ |1454 [TCP segment of a reassembled PDU]

3 54 [TCP Update] [TCP ACKed unseen
10

Frame 1: 1454 bytes on wire (11632 bits), 1454 bytes captured (11632 bits)

Ethernet II, Src: Vmware_c@:88:01 (80:58:56:c0:00:01), Dst: Vmware_42:12:13 (00:8c:29:42:12:13)
Internet Protocel Version 4, Src: 268.121.1.131, Dst: 172.16.8.122

Transmission Control Protocol, Src Port: 18554 (18554), Dst Port: 8@ (88), Seq: 1, Ack: 1, Len: 1480

B8 ©c 29 42 12 13 @@ 50 56 cB @0 Bl B3 0O 45 60 ~
®5 aB 81 41 @8 @@ 63 @6 d3 98 c8 79 Bl 83 ac 1@
B8 72 29 3a @8 50 a7 5C B4 48 e2 e2 ee bf 58 18 .
ff ff 77 67 @8 @@ 38 54 73 57 77 51 74 45 79 4e ..wg..BT sk y
45 61 33 78 78 74 44 63 51 4f 2f 6b 75 31 41 52 Ea3xptDc QO/kulAR
52 66 47 59 67 53 32 41 34 47 59 35 31 56 33 32 RfGYgS2A 4GYS1V32 o
@ Packets: 3083 - Displayed: 3083 (100.0%) - Load time: 0:0.100 || Profile: Defait

Table 3.7. Analyze menu items

Menu Item ||Acce|erator I]Description

Display
Filters..

This menu item brings up a dialog box that
allows you to create and edit display filters.
You can name filters, and you can save
them for future use. More detail on this
subject is provided in Section 6.6, “Defining

and saving filters”

Display Filter
Macros...

This menu item brings up a dialog box that
allows you to create and edit display filter
macros. You can name filter macros, and
you can save them for future use. More
detail on this subject is provided in

Section 6.7, “Defining and saving filter
macros”

Apply as
Column

This menu item adds the selected protocol
item in the packet details pane as a column
to the packet list.

Apply as
Filter - ...

display filter and apply the changed filter
immediately. Depending on the chosen
menu item, the current display filter string
will be replaced or appended to by the
selected protocol field in the packet details
pane.

Prepare a
Filter — ...

These menu items will change the current

These menu items will change the current
display filter but won’t apply the changed
filter. Depending on the chosen menu item,
the current display filter string will be
replaced or appended to by the selected
protocol field in the packet details pane.

Enabled
Protocols...

Shift+Ctrl+E

This menu item allows the user to
enable/disable protocol dissectors, see
Section 10.4.1, “The “Enabled Protocols”

dialog box”

This menu item allows the user to force
Wireshark to decode certain packets as a

Decode As...

particular protocol, see Section 10.4.2
“User Specified Decodes”

This menu item allows the user to force

User_ : Wireshark to decode certain packets as a
Specified : :
Decodes particular protocol','see Section 10.4.3,
“Show User Specified Decodes”
This menu item brings up a separate
Eollow TCP window and displays all the TCP segments
St captured that are on the same TCP
ream :
connection as a selected packet, see
Section 7.2, “Following TCP streams”
Follow UDP Same functionality as “Follow TCP Stream”
Stream but for UDP streams.
Eollow SSL Same functionality as “Follow T‘C_P Stream
Stream but for SSL streams. See thg ywkl page on
SSL for instructions on providing SSL keys.
Open a dialog showing some expert
information about the captured packets. The
Expert Info amount of mformaﬂon will depend on the
protocol and varies from very detailed to
non-existent. XXX - add a new section
about this and link from here
Conversation In this menu you will find conversation filter
Filter - ... for various protocols.

https://wiki.wireshark.org/SSL

3.11. The “Statistics” menu

The Wireshark Statistics menu contains the fields shown in Table 3.8

“Statistics menu items”.

Figure 3.9. The “Statistics” Menu

M cdd-http.peap

d = @

File Edit View Ge

(W] 2oo!

RE]

<Cirl-/

No. Time
1 @.e60008

3 8.825738

4 ©.825749

7 ©.182939

9 @8.128285

11 ©.154162

13 @.179986

Source
200.121.1.131

200.121.1.131

172.16.8.122

200.121.1.131

200.121.1.131

208.121.1.131

200.121.1.131

Frame 1: 1454 bytes on wire (1163
Ethernet II, Src: Vmware_c@:88:81
Internet Protocel Version 4, Src:
Transmission Control Protocol, Sri

Capture Analyze | Statistics

Capture File Properties
Resolved Addresses

Protocol Hierarchy

Conversations
Endpeints
Packet Lengths
1/0 Graph

Service Response Time

DHCP (BOOTP) Statistics
QNC-RPC Programs

29West
ANCP
BACnet
Collectd
DNS

Flow Graph
HART-IP
HPFEEDS
HTTP
HTTP2

Sametime

TCP Stream Graphs
UDP Multicast Streams

IPv4 Statistics
IPv Statistics

Telepheny

Wireless Tools Help

hE

.3~ Expression...

ngth Info
1454 [TCP segment of a reassembled PDU]

BE

54 [TCP 80 »
1454 [TCP segment of a reassembled PDU]
54 [TCP Update] [TCP ACKed unseen
11

(11632 bits)

frware_42:12:13 (9@:8c:29:42:12:13)
9.122

ort: 80 (80), Seq: 1, Ack: 1, Len: 1400

B8 ©c 29 42 12 13 @@ 50 56 cB @0 Bl B3 0O 45 60 ~

®5 aB 81 41 @8 @@ 63 @6 d3 98 c8 79 Bl 83 ac 1@

B8 72 29 3a @8 50 a7 5C B4 48 e2 e2 ee bf 58 18 .

ff ff 77 67 @8 @@ 38 54 73 57 77 51 74 45 79 4e ..wg..BT sk y

45 61 33 78 78 74 44 63 51 4f 2f 6b 75 31 41 52 Ea3xptDc QO/kulAR

52 66 47 59 67 53 32 41 34 47 59 35 31 56 33 32 RfGYgS2A 4GYS1V32 o
@ Packets: 3083 - Displayed: 3083 (100.0%) - Load time: 0:0.100 || Profile: Defait

All menu

information.

items will bring up a new window showing specific statistical

Table 3.8. Statistics menu items

Menu Item

||Acce|erator||Description

Summary ||

Show information about the data captured,
see Section 8.2, “The “Summary” window”.

Protocol “

Display a hierarchical tree of protocol

Hierarchy

statistics, see Section 8.3, “The “Protocol
Hierarchy” window”.

Display a list of conversations (traffic

statistics windows”

Compare...

See Section 8.10, “The protocol specific
statistics windows”

Conversations between two endpoints), see Section 8.4.1,
“The “Conversations” window”.
Display a list of endpoints (traffic to/from an
Endpoints address), see Section 8.5.1, “The
“Endpoints” window”.
Packet See Section 8.10, “The protocol specific
Lengths... statistics windows”
Display user specified graphs (e.g. the
IO Graphs number of packets in the course of time),
see Section 8.6, “The “IO Graphs” window”.
Service Display the time between a request and the
Response corresponding response, see Section 8.7,
Time “Service Response Time”.
ANCP See_ S_ectlo_n 8.10.” The protocol specific
statistics windows
Colledtd.. See Section 8.10, “The protocol specific

See Section 8.10, “The protocol specific

Flow Graph... statistics windows”
HTTP request/response statistics, see
HTTP Section 8.10, “The protocol specific
statistics windows”
IP See Section 8.10, “The protocol specific
Addresses... statistics windows”
IP See Section 8.10, “The protocol specific

Destinations...

statistics windows”

IP Protocol
Types... statistics windows”
ONC-RPC See Section 8.10, “The protocol specific
Programs statistics windows”

: See Section 8.10, “The protocol specific
Sametime = , " ' '

statistics windows

TCP Stream See Section 8.10, “The protocol specific
Graph statistics windows”

UDP Multicast

Streams

See Section 8.10, “The protocol specific
statistics windows”

|See Section 8.10, “The protocol specific

\WLAN Traffic

See Section 8.9, “WLAN Traffic Statistics”

BOOTP-
DHCP

See Section 8.10, “The protocol specific
statistics windows”

3.12. The “Telephony” menu

The Wireshark Telephony menu contains the fields shown in Table 3.9
“Telephony menu items”.

Figure 3.10. The “Telephony” Menu

M cdd-http.peap

File Edit View Go Capture Analyze Statistics | Telephony | Wircless Tools
F @® ® R &= Vol Calls
(W [2ot Ctrl/ ANSI
No. Time source Destination GSM
10.900008 200.121.1.131 172.16.8. 1AX2 Stream Analysis
1SUP Messages
3 0.025738 200.121.1.131 172.16.8. -
4 0.025749 172.16.0.122 200.121.1
MTP3
RTP
7 0.102939 200.121.1.131 172.16.0 .
9 @.128285 200.121.1.131 172.16.8. scTe
SMPP Operations
11 0.154162 200.121.1.131 172.16.0 UCP Messages
13 0.179986 20@.121.1.131 172.16.8 L2
SIP Flows

SIP Statistics

Frame 1: 1454 bytes on wire (11632 bits),

Ethernet II, Src: Vmware_c@:8@:81 (88:58:5 W
Internet Protocel Version 4, Src: 288.121.1.7T31, Dst: 172.16.0.127
Transmission Control Protocol, Src Port: 18554 (18554), Dst Port: 8@ (88), Seq: 1, Ack: 1, Len: 1480

3

3

/SP Packet Counter

Help

.3~ Expression...

+
~
‘r—|

segment of a reassembled PDU]

gment of a reassembled PDU]
Update] [TCP ACKed unseen
11

2:13 (@@:8c:29:42:12:13)

B8 ©c 29 42 12 13 @@ 50 56 cB @0 Bl B3 0O 45 60 ~

®5 aB 81 41 @8 @@ 63 @6 d3 98 c8 79 Bl 83 ac 1@ L

B8 72 29 3a @8 50 a7 5C B4 48 e2 e2 ee bf 58 18 . -

ff ff 77 67 @8 @@ 38 54 73 57 77 51 74 45 79 de ..wg..BT SKWWQEEYN

45 61 33 78 78 74 44 63 51 4f 2f 6b 75 31 41 52 Ea3xptDc QO/kulAR

52 66 47 59 67 53 32 41 34 47 59 35 31 56 33 32 RfGYgS2A 4GYS1V32 o
@ Packets: 3083 - Displayed: 3083 (100.0%) - Load time: 0:0.100 || Profile: Defait

All menu

related statistical information.

items will bring up a new window showing specific telephony

Table 3.9. Telephony menu items

Menu Item

“Accelerator"Description

IAX2

See Section 9.7, “The protocol specific
statistics windows”

SMPP

See Section 9.7, “The protocol specific

Operations... “ statistics windows”
SCTP See_ S_ectlo_n 9.7, “Ihe protocol specific
statistics windows
See Section 9.7, “The protocol specific
ANSI L : » ' '
statistics windows
See Section 9.7, “The protocol specific
GSM = . . ' '
statistics windows
See Section 9.7, “The protocol specific
H.225... = : - - -
statistics windows
ISUP See Section 9.7, “The protocol specific
Messages... statistics windows”
See Section 9.5, “LTE MAC Traffic
LTE o
Statistics
See Section 9.7, “The protocol specific
MTP3 L . n ' '
statistics windows
RTP “ See Section 9.2, “RTP Analysis”
See Section 9.7, “The protocol specific
SIP... . : » y y
statistics windows
UCP See Section 9.7, “The protocol specific

statistics windows”

Messages... “ statistics windows”
\VoIP Calls... “ See Section 9.4, “VoIP Calls”
WAP-WSP . || See Section 9.7, “The protocol specific

3.13. The “Tools” menu

The Wireshark Tools menu contains the fields shown in Table 3.10, “Tools
menu items”.

Figure 3.11. The “Tools” Menu

M cdd-http.peap - m} x
File Edit View Go Capture Analyze Statistics Telephony Wireless | Tools | Help
AE:® RE Qe=2=F 355 Q4Q (1w Console
(W] 2oply a display filter ... <Ctrl-/ Evaluate 3 -] Expression... | +
Ho. Time Source Destination Protocol Length Info Manual]
1 .080000 260.121.1.131 172.16.8.122 TCP 1454 [TCP s Wiki Esembled PDU] |
3 ©.825738 200.121.1.131 172.16.0.122 TCP 1454 [TCP segment of a reassembled PDU]
4 9.025749 172.16.8.122 206.121.1.131 TCP 54 [TCP Window Update] [TCP ACKed unseen s.4 [ACK] Seq=1 Ack=11201 Win=63888 Len=0
7 ©.102939 200.121.1.131 172.16.0.122 TCP 1454 [TCP segment of a reassembled PDU] —
9 ©.128285 200.121.1.131 172.16.0.122 TCP 1454 [TCP segment of a reassembled PDU]
11 ©.154162 200.121.1.131 172.16.8.122 TCP 1454 [TCP segment of a reassembled PDU]
13 ©.179986 200.121.1.131 172.16.0.122 TCP 1454 [TCP segment of a reassembled PDU]
v
Frame 1: 1454 bytes on wire (11632 bits), 1454 bytes captured (11632 bits)
Ethernet II, Src: Vmware_c@:88:01 (80:58:56:c0:00:01), Dst: Vmware_42:12:13 (00:8c:29:42:12:13)
Internet Protocel Version 4, Src: 268.121.1.131, Dst: 172.16.8.122
Transmission Control Protocol, Src Port: 18554 (18554), Dst Port: 8@ (88), Seq: 1, Ack: 1, Len: 1480
8@ @c 29 42 12 13 @@ 5@ 56 cB @2 °l B3 @8 45 ve --}B...PM.....E. -~
©5 ab @1 41 @@ @@ G6a @6 d3 98 c8 79 el 83 ac 1@ <a A can
@8 7a 29 3a 8@ 5@ a7 S5C B4 43 e2 e2 ee bf 58 18 .e.Pu
ff ff 77 67 @@ 06 3@ 54 73 57 77 51 74 45 79 4de EyN
45 61 33 78 78 74 44 63 51 4f 2f 6b 75 31 41 52 Ea3xptDc QO/kulAR
52 66 47 59 67 53 32 41 34 47 59 35 31 56 33 32 RFGYgS2A 4GY51V32 w
7 Packets: 3083 - Displayed: 3083 (100.0%) - Load time: 0:0.100 || Profile: Default

Table 3.10. Tools menu items

Menu

Accelerator||Description
Item

for many different firewall products, including
Cisco 10S, Linux Netfilter (iptables), OpenBSD pf
and Windows Firewall (via netsh). Rules for MAC
addresses, IPv4 addresses, TCP and UDP ports,
and IPv4+port combinations are supported.

Firewall
ACL
Rules

This allows you to create command-line ACL rules

It is assumed that the rules will be applied to an
outside interface.

These options allow you to work with the Lua
interpreter optionally build into Wireshark. See the
“Lua Support in Wireshark” in the Wireshark
Developer’s Guide.

Lua

3.14. The “Internals” menu

The Wireshark Internals menu contains the fields shown in Table 3.11

“Internals menu items”.

Figure 3.12. The “Internals” Menu

ﬂtest.cap E]@

File Edit Yiew Go Capture Analyze Statistics Telephony Tocls | Internals Help

a ﬁ ﬂ- E‘ % @ (2] r'5 & & =5} Dissector tables L ﬁ E] ';"—ll‘ 3% Q
Supported Prokocals {slow!)
Filker: w | Expression...
Mo, Time Saurce Destination Protacal [Length |Info
1 0.000000 162.168.0.2 Broadcast ARP 42 Gratuitous ARP Tor 192.168.0.2 (F
20 152.168.0.1 5 MNENS 92 Name guery NESTAT ¥<00><00><00x<C
30 14 168.0.2 s,] 70 Destination unreachable (Part unr
4 1.025659% 192.168.0.2 50 @ IGMP 54 v3 membership Report Join group
51.044366 1592.168.0.2 i e DNS 110 standard guery SRV _Tdap. _tcp. nbc
61.048652 152.168.0.2 2 5 SSDP 175 M-SEARCH % HTTR/1.1
71.050784 192.168.0.2 ? e DNS 86 standard guery soa nbl0061d. ww0d
81.055053 152.168.0.1 9 o1l SSDP 337 HTTR/1.1 200 OK
G 1.082038 192.168.0.2 o ol MENS 110 Registration NE NELOOGEL1D<00>
10 1.1115845 192.168.0.2 R e DNS 87 standard guery A proxycont. ww00od .
11 1.226156 192.168.0.2 152.168.0.1 TP 62 ncu-2 > http [SyYN] Seq=0 win=6424
12 1.227282 192.168.0.1 1582.168.0.2 TP 60 http > nou-2 [SYN, ACK] Seq=0 Ack/w
¥

Frame 11: 62 hytes on wire (496 bits), 62 bytes captured (496 bits)

Ethernet II, Src: 192.168.0.2 (00:0b:5d:20:cd:02), Dst: Metgear_2d:75:9a (00:00:5b:2d:75:9a)
¥ Internet Protocol, src: 192.168.0.2 (192.168.0.2), Dst: 182.168.0.1 (192.168.0.1)

= Transmission Control Protocol, Src Port: ncu-2 (31967, Dst Port: http (800, Seqg: 0, Len: O
Source port: ncu-2 (3196)

pestination port: http (800

[stream index: 5]

Seguence number: 0 {relative sequence number)

Header Tlength: 28 hytes

Flags: 0x02 (SYM)

F

window size value: 64240 R
0000 00 09 Sh 2d 75 9a 00 Obh S5d 20 cd 02 08 00 45 0O PR TP T =)
0010 00 30 18 48 40 00 80 06 61 2c <0 aB8 00 02 <0 ag LOVHEL L. 3, ..
Q020 00 01 OC F¢ 00 50 3¢ 36 95 f8 00 00 00 Q0 70 02 ces [iR<l; HEiias n.

0030 fa f0 27 20 00 00 02 04 05 b4 01 01 04 02 Lo'ale. o

0 File: "C:[test.cap” 14 K& 00:00:02 Packets: 120 Displayed: 120 Marked: 0 Load time: 0:00.015 Profile: Default

Table 3.11. Internals menu items

Menu Item ||Accelerator||Description

Dissector

tables showing the tables with subdissector

relationships.

This menu item brings up a dialog box
showing the supported protocols and
protocol fields.

Supported
Protocols
(slow!)

This menu item brings up a dialog box

3.15. The “Help” menu

The Wireshark Help menu contains the fields shown in Table 3.12, “Help
menu items”.

Figure 3.13. The “Help” Menu

M cdd-http.peap - m} x
File Edit View Go Capture Analyze Statistics Telephony \Wireless Tools | Help
4 m @® E Re® =aQq&qms Contents F1
Moot T <caly Manual pages 4 -3~ Expression... | +
Ho. Time Source Destination Protocol Length T o \epsite]
1 9.880080 208.121.1.131 172.16.8.122 TCP 1454 | — d PDU] |
AQ's
3 0.025738 200.121.1.131 172.16.8.122 TCP 1454 [M Ask(Q&A) d PDU]
4 0.825749 172.16.8.122 200.121.1.131 TCP 54 [Downloads ed unseen s.4 [ACK] Seq=1 Ack=11201 Win=6388@ Len=0
A Wik
7 9.182939 208.121.1.131 172.16.8.122 TCP 1454 | Sample Captures d PDU] —
9 9.128285 200.121.1.131 172.16.9.122 TCP 1454 | Check for Updates... d PDU]
11 ©.154162 200.121.1.131 172.16.8.122 TCP 1454 | About Wireshark d PDU]
13 9.179986 208.121.1.131 172.16.8.122 TCP 1454 [TCP segment of a reassembled PDU]
v
Frame 1: 1454 bytes on wire (11632 bits), 1454 bytes captured (11632 bits)
Ethernet II, Src: Vmware_c@:8@:91 (BB:58:56:cB:08:01), Dst: Vmware_42:12:13 (B8:8c:29:42:12:13)
Internet Protocol Version 4, Src: 208.121.1.131, Dst: 172.16.8.122
Transmission Control Protocol, Src Port: 18554 (18554), Dst Port: 8@ (88), Seq: 1, Ack: 1, Len: 1480
B8 ©c 29 42 12 13 @@ 50 56 cB @0 Bl B3 0O 45 60 ~
®5 aB 81 41 @8 @@ 63 @6 d3 98 c8 79 Bl 83 ac 1@ L
B8 72 29 3a @8 50 a7 5C B4 48 e2 e2 ee bf 58 18 . -
ff ff 77 67 @8 @@ 38 54 73 57 77 51 74 45 79 de ..wg..BT SKWWQEEYN
45 61 33 78 78 74 44 63 51 4f 2f 6b 75 31 41 52 Ea3xptDc QO/kulAR
52 66 47 59 67 53 32 41 34 47 59 35 31 56 33 32 RfGYgS2A 4GYS1V32 o
@ Packets: 3083 - Displayed: 3083 (100.0%) - Load time: 0:0.100 || Profile: Defait

Table 3.12. Help menu items

Menu ItemI]AcceIeratorl]Description

Contents |F1 This menu item brings up a basic help system.

Manual

This menu item starts a Web browser showing
Pages -

one of the locally installed html manual pages.

Website This menu item starts a Web browser showing
the webpage from: https://www.wireshark.org/.
: This menu item starts a Web browser showing
FAQ’s - ;
various FAQ’s.
This menu item starts a Web browser showing
Downloads the downloads from:
https://www.wireshark.org/download.html.
Wiki This menu item starts a Web browser showing
the front page from: https://wiki.wireshark.org/.
This menu item starts a Web browser showing
Sample _
Captures the samplg captures from:
https://wiki.wireshark.org/SampleCaptures.
This menu item brings up an information
window that provides various detailed
About . S :
\Wireshark !nformatlon items on Wireshark, such as how
it's build, the plugins loaded, the used folders,
Note

Opening a Web browser might be unsupported in your
version of Wireshark. If this is the case the corresponding
menu items will be hidden.

If calling a Web browser fails on your machine, nothing
happens, or the browser starts but no page is shown,
have a look at the web browser setting in the preferences

https://www.wireshark.org/
https://www.wireshark.org/download.html
https://wiki.wireshark.org/
https://wiki.wireshark.org/SampleCaptures

dialog.

3.16. The “Main” toolbar

The main toolbar provides quick access to frequently used items from the
menu. This toolbar cannot be customized by the user, but it can be
hidden using the View menu, if the space on the screen is needed to
show even more packet data.

As in the menu, only the items useful in the current program state will be
available. The others will be greyed out (e.g. you cannot save a capture
file if you haven't loaded one).

Figure 3.14. The “Main” toolbar

EXy

EEXZ2a AacsaTLEE QaaRN DM % .;tH

Table 3.13. Main toolbar items

Start with the options from the last time.

;I(':ooor:bar Toolbar Item [[Menu Item [Description
This item brings up the Capture
Interfaces Capture - [interfaces List dialog box
. """ |Interfaces...[|(discussed further in Section 4.3,
“Start Capturing”).
This item brings up the Capture
) _ Capture — Optlon§ dlalog_ box (dlfcussed
. Options... Ootions further in Section 4.3, “Start
P " [ICapturing”) and allows you to start
capturing packets.
By Start ||Capture - |[This item starts capturing packets

Capture — [This item stops the currently

Stop Stop running live capture process

Section 4.3, “Start Capturing”).

This item stops the currently
running live capture process and
restarts it again, for convenience.

Capture -

Restart Restart

This item brings up the file open

dialog box that allows you to load a
File - capture file for viewing. It is
Open... discussed in more detail in

Section 5.2.1, “The “"Open Capture

File” dialog box”.

Open...

you would like. It pops up the Save
Capture File As dialog box (which
is discussed further in

Section 5.3.1, “The “Save Capture
File As” dialog box”).

File -

Save As Save As...

If you currently have a temporary
capture file, the Save icon will be
shown instead.

This item closes the current
File - capture. If you have not saved the
Close capture, you will be asked to save
it first.

Close

View - This item allows you to reload the

Reload Reload current capture file.

This item allows you to save the
current capture file to whatever file

This item allows you to print all (or
some of) the packets in the capture
file. It pops up the Wireshark Print

Print... Elrlien; dialog box (which is discussed
- further in Section 5.8, “Printing
packets”).
This item brings up a dialog box
Edit - Find that allows you to find a packet.
Find Packet... - There is further information on
Packet... o . :
finding packets in Section 6.8,
“Finding packets”.
This item jumps back in the packet
Go - Go [fhistory. Hold down the Alt key
@ Go Back Back (Option on macOS) to go back in
the selection history.
This item jumps forward in the
Go - Go [[packet history. Hold down the Alt
> Go Forward Forward key (Option on macOS) to go
forward in the selection history.
This item brings up a dialog box
5D Go to Go ~ GO Mo+ allows you to specify a packet
Packet... Packet...
number to go to that packet.
iy Go To First ||Go - First [[This item jumps to the first packet
Packet Packet of the capture file.
Go To Last ||Go - Last [[This item jumps to the last packet
4 Packet Packet of the capture file.

View -

Filters... future use. More detail on this
subject is provided in Section 6.6,
“Defining and saving filters”.

Colorize : Colorize the packet list (or not).
Colorize
View —
Auto Scroll in [Auto Scroll [[Auto scroll packet list while doing a
Live Capture [in Live live capture (or not).
Capture
View — Zoom into the packet data
Zoom In : .
Zoom In (increase the font size).
Z00om Out View — Zoom out of the packet data
Zoom Out [(decrease the font size).
View —
Normal Size [[Normal Set zoom level back to 100%.
Size
Resize V'eV.V - Resize columns, so the content fits
Resize :
Columns into them.
Columns
This item brings up a dialog box
that allows you to create and edit
C Capture - [[capture filters. You can name
apture :
Filters. Capture filters, and you can save them for

Display
Filters...

Analyze -

Display
Filters...

This item brings up a dialog box
that allows you to create and edit
display filters. You can name filters,
and you can save them for future
use. More detail on this subject is
provided in Section 6.6, “Defining
and saving filters”.

Coloring
Rules...

Rules...

This item brings up a dialog box
that allows you to color packets in
the packet list pane according to
filter expressions you choose. It
can be very useful for spotting
certain types of packets. More
detail on this subject is provided in
Section 10.3, “Packet colorization”.

Preferences...

Edit -

This item brings up a dialog box
that allows you to set preferences
for many parameters that control

Wireshark. You can also save your

Preferences|preferences so Wireshark will use

them the next time you start it.
More detail is provided in
Section 10.5, “Preferences”

Help

View -
Coloring

Help -

Contents

This item brings up help dialog

box.

3.17. The “Filter” toolbar

The filter toolbar lets you quickly edit and apply display filters. More
information on display filters is available in Section 6.3, “Filtering packets
while viewing”.

Figure 3.15. The “Filter” toolbar

Eilker: ¥ ‘#'Expression... i Clear Vapply
(%) eer:

Table 3.14. Filter toolbar items

Toolbar

Toolbar Iltem
Ilcon

Description

Brings up the filter construction dialog, described
7] Filter: in Figure 6.8, “The “Capture Filters” and “Display
Filters” dialog boxes”.

The area to enter or edit a display filter string,
see Section 6.4, “Building display filter
expressions”. A syntax check of your filter string
is done while you are typing. The background will
turn red if you enter an incomplete or invalid
string, and will become green when you enter a
valid string. You can click on the pull down arrow
to select a previously-entered filter string from a
list. The entries in the pull down list will remain
available even after a program restart.

Filter input

After you've changed something in this field,
don’t forget to press the Apply button (or the
Enter/Return key), to apply this filter string to the
display.

This field is also where the current filter in effect
is displayed.

+*

Expression...

The middle button labeled "Add Expression..."
opens a dialog box that lets you edit a display
filter from a list of protocol fields, described in
Section 6.5, “The “Filter Expression” dialog box”

Clear

Reset the current display filter and clears the edit
area.

W

Apply

Apply the current value in the edit area as the
new display filter.

Applying a display filter on large capture files
might take quite a long time.

3.18. The “Packet List” pane
The packet list pane displays all the packets in the current capture file.

Figure 3.16. The “Packet List” pane

Ti
1 0.0 192.168.0.21 192.168.0.1 84 Standard query 0x403d A moviecontrol.netflix.com
2 0.055880 192.168.0.1 192.168.0.21 DNS 479 Standard query response 0x403d A moviecontrol.netflix.com CNAME nccp-moviecontrol-fror
3 0.057690 192.168.0.21 50.17.249.22 TCP 74 37314-443 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM=1 TSval=491454310 TSecr=0 WS=t
4 0.154716 50.17.249.22 192.168.0.21 TCP 74 443437314 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 SACK_PERM=1 TSval=2102931926
5 0.155962 192.168.0.21 50.17.249.22 TCP 66 37314-443 [ACK] Seg=1 Ack=1 Win=5888 Len=0 TSval=491454408 TSecr=2102931926
6 0.163169 192.168.0.21 50.17.249.22 TLSv1 187 Client Hello =
7 0.250734 50.17.249.22 192.168.0.21 TCP 66 443-37314 [ACK] Seq=1 Ack=122 Win=5792 Len=0 TSval=2102931950 TSecr=491454416
8 0.252716 50.17.249.22 192.168.0.21 TLSV1 1514 Server Hello
9 0.253826 192.168.0.21 50.17.249.22 TCP 66 37314-443 [ACK] Seq=122 Ack=1449 Win=8768 Len=0 TSval=491454507 TSecr=2102931950
10 0.254730 50.17.249.22 192.168.0.21 TCP 1514 [TCP segment of a reassembled PDU]
11 0.254778 50.17.249.22 192.168.0.21 TLSv1 349 Certificate
12 0.255853 192.168.0.21 50.17.249.22 TCP 66 37314-443 [ACK] Seq=122 Ack=2897 Win=11648 Len=0 TSval=491454509 TSecr=2102931950
13 0.256102 192.168.0.21 50.17.249.22 TCP 66 37314-443 [ACK] Seq=122 Ack=3180 Win=14528 Len=0@ TSval=491454509 TSecr=2102931950 |
14 0.319870 192.168.0.21 50.17.249.22 TLSv1 264 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message |
15_0,411795 50,17 ?ﬁ 22 192,168.0.21 TLSv1 125 Change Cipher Spec, Encrypted Handshake Message

Each line in the packet list corresponds to one packet in the capture file.
If you select a line in this pane, more details will be displayed in the
“Packet Details” and “Packet Bytes” panes.

While dissecting a packet, Wireshark will place information from the
protocol dissectors into the columns. As higher level protocols might
overwrite information from lower levels, you will typically see the
information from the highest possible level only.

For example, let's look at a packet containing TCP inside IP inside an
Ethernet packet. The Ethernet dissector will write its data (such as the
Ethernet addresses), the IP dissector will overwrite this by its own (such
as the IP addresses), the TCP dissector will overwrite the IP information,
and so on.

There are a lot of different columns available. Which columns are
displayed can be selected by preference settings, see Section 10.5,
“Preferences”.

The default columns will show:

e No. The number of the packet in the capture file. This number won’t
change, even if a display filter is used.

e Time The timestamp of the packet. The presentation format of this
timestamp can be changed, see Section 6.12, “Time display formats
and time references”.

e Source The address where this packet is coming from.

Destination The address where this packet is going to.

Protocol The protocol name in a short (perhaps abbreviated) version.
Length The length of each packet.

Info Additional information about the packet content.

The first column shows how each packet is related to the selected
packet. For example, in the image above the first packet is selected,
which is a DNS request. Wireshark shows a rightward arrow for the
request itself, followed by a leftward arrow for the response in packet 2.
Why is there a dashed line? There are more DNS packets further down
that use the same port numbers. Wireshark treats them as belonging to
the same conversation and draws a line connecting them.
Table 3.15. Related packet symbols

First packet in a conversation.

Part of the selected conversation.

Not part of the selected conversation.

Last packet in a conversation.

Request.
- Response.

The selected packet acknowledges this packet.

The selected packet is a duplicate acknowledgement of this packet.

The selected packet is related to this packet in some other way, e.g.
as part of reassembly.

The packet list has an Intelligent Scrollbar which shows a miniature map
of nearby packets. Each raster line of the scrollbar corresponds to a
single packet, so the number of packets shown in the map depends on
your physical display and the height of the packet list. A tall packet list on
a high-resolution (“Retina”) display will show you quite a few packets. In
the image above the scrollbar shows the status of more than 500 packets
along with the 15 shown in the packet list itself.

Right clicking will show a context menu, described in Figure 6.4, “Pop-up
menu of the “Packet List” pane”.

https://en.wikipedia.org/wiki/Raster_graphics

3.19. The “Packet Details” pane

The packet details pane shows the current packet (selected in the

“Packet List” pane) in a more detailed form.

Figure 3.17. The “Packet Details” pane

Ethernet II, Src: Globalsc_@@:3b:@a (f@:ad:4e:@@:3b:@a), Dst: Vizio 14:8a:el (8@:19:9d:14:8a:el)
Internet Protocol Version 4, Src: 192.168.8.1, Dst: 192.168.8.21
User Datagram Protocol, Src Port: 53 (53), Dst Port: 34636 (34836)
“ Domain Name System (response)
Request In: 1
[Time: ©.8558380888 seconds]
Transaction ID: @x4@3d
Flags: ®x8188 Standard query response, No error
Questions: 1
Answer RRs: 2
Authority RRs: 8
Additional RRs: 8
Queries
Answers

Authoritative nameservers

Additional records

This pane shows the protocols and protocol fields of the packet selected
in the “Packet List” pane. The protocols and fields of the packet shown in

a tree which can be expanded and collapsed.

There is a context menu (right mouse click) available. See details in

Figure 6.5, “Pop-up menu of the “Packet Details” pane”.

Some protocol fields have special meanings.

¢ Generated fields. Wireshark itself will generate additional protocol
information which isn’'t present in the captured data. This information
Is enclosed in square brackets (‘[' and ‘]). Generated information
includes response times, TCP analysis, GeolP information, and

checksum validation.

e Links. If Wireshark detects a relationship to another packet in the
capture file it will generate a link to that packet. Links are underlined
and displayed in blue. If you double-clicked on a link Wireshark will

jump to the corresponding packet.

3.20. The “Packet Bytes” pane

The packet bytes pane shows the data of the current packet (selected in
the “Packet List” pane) in a hexdump style.

Figure 3.18. The “Packet Bytes” pane

B 19 9d 14 8a el f@ ad
Bl dl @@ Be 4@ @B 48 11
g@ 15 @@ 35 84 4 81 bd
e 82 69 B8 @8 @3 8c 6d
72 6T 6c B7 6e 65 74 66
22 2L Be @l ce Bc ee es
25 6e 63 63 7@ 2d 6d 6f
6f 6c 2d 66 72 6f 6e 74
31 38 38 39 32 31 @9 75
B3 65 6c 62 B89 61 6d 61

4e 80 3b Ga B3 8@ 45 00
b7 b5 c@ a8 88 81 c@ a8
83 35 48 3d 81 8@ &P 01
6T 76 69 65 63 6T 6e 74
6c B9 78 B3 63 6T &d B8
68 91 0 60 060 2d &P 48
76 69 65 63 6T 6e 74 72
65 6e 64 2d 31 37 31 32
73 2d 65 61 73 74 2d 31
7a 6T 6e 61 77 73 @ 21

eSuren JSf=....
....... m oviecont
rol.netf lix.com.
............. -.@
¥nccp-mo viecontr
ol-front end-1712
1538921.u s-east-1
.elb.ama zonaws.! w

The “Packet Bytes” pane shows a canonical hex dump of the packet
data. Each line contains the data offset, sixteen hexadecimal bytes, and
sixteen ASCII bytes. Non-printalbe bytes are replaced with a period (*.’).

Depending on the packet data, sometimes more than one page is
available, e.g. when Wireshark has reassembled some packets into a
single chunk of data. (See Section 7.8, "Packet Reassembly” for details).
In this case you can see each data source by clicking its corresponding
tab at the bottom of the pane.

Figure 3.19. The “Packet Bytes” pane with tabs

28 19 9d 14 8a el @ ad
Bl 4T Bb 84 48 BO 2e 86
@3 15 81 bb 91 c4 14 dd
B2 d4 Be 37 88 BE Gl A1
3b @a 86 89 2a 36 48 86
82 B1 81 B8 71 49 a8 ed4
5c 37 7e 99 5a 70 cb db

4e 80 3b Ga B3 8@ 45 00
54 ¢B 32 11 f9 16 B a8
57 8b a4 @3 62 21 80 18
88 Ba 7d 58 48 bc 1d 4b
f7 @d 81 @1 65 65 & e3
9e 26 d@ d8 88 4b al b9
ab b7 c7 88 6¢c 8b 75 <l

84 77 3c 47 29 f9 e fo
c6 5e 64 82 81 65 4d ae

dé 4e 61 16 34 1b 4f 75
21 8f 7f 8b fd dc 53 85

Frame (349 bytes) Reassembled TCP (3091 bytes)

Additional pages typically contain data reassembled from multiple
packets or decrypted data.

The context menu (right mouse click) of the tab labels will show a list of
all available pages. This can be helpful if the size in the pane is too small
for all the tab labels.

https://en.wikipedia.org/wiki/Hex_dump

3.21. The Statusbar
The statusbar displays informational messages.

In general, the left side will show context related information, the middle
part will show information about the current capture file, and the right side
will show the selected configuration profile. Drag the handles between
the text areas to change the size.

Figure 3.20. The initial Statusbar

Ready to load or capture No Packets Profile: Default

This statusbar is shown while no capture file is loaded, e.g. when
Wireshark is started.

Figure 3.21. The Statusbar with a loaded capture file

O Ed 6tod-regs Packets: 500 - Displayed: 500 (100.0%) - Load time: 0:0.21 Profile: Default

e The colorized bullet on the left shows the highest expert info level
found in the currently loaded capture file. Hovering the mouse over
this icon will show a textual description of the expert info level, and
clicking the icon will bring up the Expert Infos dialog box. For a
detailed description of expert info, see Section 7.4, “Expert
Information”.

¢ The left side shows information about the capture file, its name, its
size and the elapsed time while it was being captured. Hovering over
a file name will show its full path and size.

e The middle part shows the current number of packets in the capture
file. The following values are displayed:

o

Packets: The number of captured packets.

o Displayed: The number of packets currently being displayed.
Marked: The number of marked packets (only displayed if
packets are marked).

Dropped: The number of dropped packets (only displayed if

o

o

Wireshark was unable to capture all packets).
o Ignored: The number of ignored packets (only displayed if
packets are ignored).
o Load time: The time it took to load the capture (wall clock time).
e The right side shows the selected configuration profile. Clicking in
this part of the statusbar will bring up a menu with all available
configuration profiles, and selecting from this list will change the
configuration profile.

Figure 3.22. The Statusbar with a configuration profile menu

Ready to load or capture No Packets Profile; ™ ~

v Default

W Small Main Window
Syscalls

WiFi

Bluetooth
Classic

For a detailed description of configuration profiles, see Section 10.6,
“Configuration Profiles”.

Figure 3.23. The Statusbar with a selected protocol field

O 7 Source IPv6 Address (ipv6.src), 16 bytes Packets: 500 - Displayed: 500 (100.0%) - Load time: 0:0.28 Profile: Default
This is displayed if you have selected a protocol field from the “Packet
Details” pane.

Tip
@ The value between the parentheses (in this example

‘ipv6.src’) can be used as a display filter, representing the
selected protocol field.

Figure 3.24. The Statusbar with a display filter message

O 7 e may have unexpected results (see the User's Guide) Packets: 500 - Displayed: 500 (100.0%) - Load time: 0:0.28 Profile: Default

This is displayed if you are trying to use a display filter which may have
unexpected results. For a detailed description, see Section 6.4.6, “A
Common Mistake”.

Chapter 4. Capturing Live Network Data
Table of Contents

4.1. Introduction
4.2. Prerequisites
4.3. Start Capturing
4.4. The “Capture Interfaces” dialog box
4.5. The “Capture Options” dialog box
4.5.1. Capture frame
4.5.2. Capture File(s) frame
4.5.3. Stop Capture... frame
4.5.4. Display Options frame
4.5.5. Name Resolution frame
4.5.6. Buttons
4.6. The “Edit Interface Settings” dialog box
4.7. The “Compile Results” dialog box
4.8. The "Add New Interfaces” dialog box
4.8.1. Add or remove pipes
4.8.2. Add or hide local interfaces
4.8.3. Add or hide remote interfaces
4.9. The “Remote Capture Interfaces” dialog box
4.9.1. Remote Capture Interfaces
4.9.2. Remote Capture Settings
4.10. The “Interface Details” dialog box
4.11. Capture files and file modes
4.12. Link-layer header type
4.13. Filtering while capturing
4.13.1. Automatic Remote Traffic Filtering
4.13.2. Stop the running capture
4.13.3. Restart a running capture

4.1.

Introduction

Capturing live network data is one of the major features of Wireshark.

The Wireshark capture engine provides the following features:

Capture from different kinds of network hardware such as Ethernet
or 802.11.

Stop the capture on different triggers such as the amount of captured
data, elapsed time, or the number of packets.

Simultaneously show decoded packets while Wireshark is capturing.
Filter packets, reducing the amount of data to be captured. See
Section 4.13, “Filtering while capturing”.

Save packets in multiple files while doing a long term capture,
optionally rotating through a fixed number of files (a “ringbuffer”).
See Section 4.11, “Capture files and file modes”.
Simultaneously capture from multiple network interfaces.

The capture engine still lacks the following features:

Stop capturing (or perform some other action) depending on the
captured data.

4.2. Prerequisites

Setting up Wireshark to capture packets for the first time can be tricky. A
comprehensive guide “How To setup a Capture” is available at
https://wiki.wireshark.org/CaptureSetup.

Here are some common pitfalls:

e You may need special privileges to start a live capture.

¢ You need to choose the right network interface to capture packet
data from.

¢ You need to capture at the right place in the network to see the traffic
you want to see.

If you have any problems setting up your capture environment you should
have a look at the guide mentioned above.

https://wiki.wireshark.org/CaptureSetup

4.3. Start Capturing

The following methods can be used to start capturing packets with
Wireshark:

e You can double-click on an interface in the main window.

e You can get an overview of the available interfaces using the
“Capture Interfaces” dialog box (Capture — Options...). See
Figure 4.1, “The “Capture Interfaces” dialog box on Microsoft
Windows” or Figure 4.2, “The “Capture Interfaces” dialog box on
Unix/Linux” for more information. You can start a capture from this
dialog box using the Start button.

e You can immediately start a capture using your current settings by
selecting Capture — Start or by cliking the first toolbar button.

e |If you already know the name of the capture interface you can start
Wireshark from the command line:

$ wireshark -i ethe -k

This will start Wireshark capturing on interface ethO. More details can be
found at Section 10.2, “Start Wireshark from the command line”.

4.4. The “Capture Interfaces” dialog box

When you select Capture — Options... from the main menu Wireshark
pops up the “Capture Interfaces” dialog box as shown in Figure 4.1, “The
“‘Capture Interfaces” dialog box on Microsoft Windows” or Figure 4.2,
“The “Capture Interfaces” dialog box on Unix/Linux”.

Both you and your OS can hide interfaces

This dialog box will only show the local interfaces
Wireshark can access. It will also hide interfaces marked
as hidden in Section 10.5.1, “Interface Options”. As
Wireshark might not be able to detect all local interfaces
and it cannot detect the remote interfaces available there
could be more capture interfaces available than listed.

It is possible to select more than one interface and capture from them
simultaneously.

Figure 4.1. The “Capture Interfaces” dialog box on Microsoft
Windows

_ioix]
__________ Description P Packets Packets/s
| | 191" AjrPcap USB wireless capture adapter nr. 03 Aone 20] Details |
| | EI Intel(R) PRO/1000 MT Network Connection fed0::fd49:7295:3153:27b2 8 i} Details |
[E| Microsoft feB0:ic446:5291:daa2:iabfc 0] Details |
Help | Start | Stop | Options | Close

Figure 4.2. The “Capture Interfaces” dialog box on Unix/Linux

") Wireshark: Capture Interfaces

Device Description IP Packets Packets/s
Eleth(} 192.168.42.133

@ usbmon1 USB bus number 1

@ usbmonz USB bus number 2

tlany Pseudo-device that captures on all interfaces

trllo 127.0.0.1

Help Options | Close |

Device (Unix/Linux only)
The interface device name.
Description
The interface description provided by the operating system, or the
user defined comment added in Section 10.5.1, “Interface Options”.
IP
The first IP address Wireshark could find for this interface. You can
click on the address to cycle through other addresses assigned to it,
if available. If no address could be found “none” will be displayed.
Packets
The number of packets captured from this interface, since this dialog
was opened. Will be greyed out, if no packet was captured in the last
second.
Packets/s
Number of packets captured in the last second. Will be greyed out, if
no packet was captured in the last second.
Stop
Stop a currently running capture.
Start
Start a capture on all selected interfaces immediately, using the
settings from the last capture or the default settings, if no options
have been set.
Options
Open the Capture Options dialog with the marked interfaces
selected. See Section 4.5, “The “Capture Options” dialog box”.
Details (Microsoft Windows only)
Open a dialog with detailed information about the interface. See

Section 4.10, “The “Interface Details” dialog box”.
Help

Show this help page.
Close
Close this dialog box.

4.5. The “Capture Options” dialog box

When you select Capture - Options... (or use the corresponding item in
the main toolbar), Wireshark pops up the “Capture Options” dialog box as

shown in Figure 4.3, “The “Capture Options” dialog box”.

Figure 4.3. The “Capture Options” dialog box

Wireshark: Capture Options

Capture
Capture Interface Link-layer header Prom. Mode Snaplen[B] Bu
etho
& 10.0.1.109 Ethernet disabled default
fe80:20c:29fFfe3a:3a40
USBE bus number 1: usbm... USBwith padded Linux header disabled default
USB bus number 2;: usbm... USBwith padded Linux header disabled default
Pseudo-device that capt... Linux cooked disabled default
lo (loopback)
lir=blad AaFaulk

Capture on all interfaces
Capture all in promiscuous mode

| Capture Filter: |

Capture File(s)
File:

Use multiple files & Use pcap-ng Format

Stop Capture ...

...after

... after

... after

Help |

Tip

| Browse... |

| Manage Interfaces |

| Compile selected BPFs |

Display Options

& update list of packets in real time
& Automatic scrolling in live capture

[Hide capture info dialog

Name Resolution

& Enable MAC name resolution
& Enable transport name resolution
Enable network name resolution

® Use external network name resolver

l Start J, Gloseiy

@ If you are unsure which options to choose in this dialog
box just try keeping the defaults as this should work well

in many cases.

4.5.1. Capture frame
The table shows the settings for all available interfaces:

e The name of the interface and its IP addresses. If no address could
be resolved from the system, “none” will be shown.

Note

@ Loopback interfaces are not available on Windows
platforms.

e The link-layer header type.

e The information whether promicuous mode is enabled or disabled.

e The maximum amount of data that will be captured for each packet.
The default value is set to the 262144 bytes.

e The size of the kernel buffer that is reserved to keep the captured
packets.

e The information whether packets will be captured in monitor mode
(Unix/Linux only).

e The chosen capture filter.

By marking the checkboxes in the first column the interfaces are selected
to be captured from. By double-clicking on an interface the “Edit Interface
Settings” dialog box as shown in Figure 4.4, “The “Edit Interface Settings”
dialog box” will be opened.

Capture on all interfaces
As Wireshark can capture on multiple interfaces it is possible to
choose to capture on all available interfaces.

Capture all packets in promiscuous mode
This checkbox allows you to specify that Wireshark should put all
interfaces in promiscuous mode when capturing.

Capture Filter

This field allows you to specify a capture filter for all interfaces that
are currently selected. Once a filter has been entered in this field, the
newly selected interfaces will inherit the filter. Capture filters are

discussed in more details in Section 4.13, “Filtering while capturing”.
It defaults to empty, or no filter.

You can also click on the Capture Filter button and Wireshark will
bring up the Capture Filters dialog box and allow you to create
and/or select a filter. Please see Section 6.6, “Defining and saving
filters”

Compile selected BPFs
This button allows you to compile the capture filter into BPF code
and pop up a window showing you the resulting pseudo code. This
can help in understanding the working of the capture filter you
created. The Compile Selected BPFs button leads you to Figure 4.5,
“The “Compile Results” dialog box”.

Tip

@ Linux power user tip

The execution of BPFs can be sped up on Linux by turning on BPF JIT
by executing

$ echo 1 >/proc/sys/net/core/bpf_jit_enable

if it is not enabled already. To make the change persistent you can use
sysfsutils.

Manage Interfaces
The Manage Interfaces button opens the Figure 4.6, “The “Add New
Interfaces” dialog box” where pipes can be defined, local interfaces
scanned or hidden, or remote interfaces added (Windows only).

4.5.2. Capture File(s) frame

An explanation about capture file usage can be found in Section 4.11,
“Capture files and file modes”.

File

http://linux-diag.sourceforge.net/Sysfsutils.html

This field allows you to specify the file name that will be used for the
capture file. This field is left blank by default. If the field is left blank,
the capture data will be stored in a temporary file. See Section 4.11,
“Capture files and file modes” for details.

You can also click on the button to the right of this field to browse
through the filesystem.

Use multiple files
Instead of using a single file Wireshark will automatically switch to a
new one if a specific trigger condition is reached.

Use pcap-ng format
This checkbox allows you to specify that Wireshark saves the
captured packets in pcap-ng format. This next generation capture file
format is currently in development. If more than one interface is
chosen for capturing, this checkbox is set by default. See
https://wiki.wireshark.org/Development/PcapNg for more details on
pcap-ng.

Next file every n megabyte(s)
Multiple files only. Switch to the next file after the given number of
byte(s)/kilobyte(s)/megabyte(s)/gigabyte(s) have been captured.

Next file every n minute(s)
Multiple files only: Switch to the next file after the given number of
second(s)/minutes(s)/hours(s)/days(s) have elapsed.

Ring buffer with n files
Multiple files only: Form a ring buffer of the capture files with the
given number of files.

Stop capture after n file(s)
Multiple files only: Stop capturing after switching to the next file the
given number of times.

4.5.3. Stop Capture... frame

... after n packet(s)
Stop capturing after the given number of packets have been
captured.

... after n megabytes(s)
Stop capturing after the given number of
byte(s)/kilobyte(s)/megabyte(s)/gigabyte(s) have been captured. This

https://wiki.wireshark.org/Development/PcapNg

option is greyed out if “Use multiple files” is selected.
... after n minute(s)

Stop capturing after the given number of

second(s)/minutes(s)/hours(s)/days(s) have elapsed.

4.5.4. Display Options frame

Update list of packets in real time
This option allows you to specify that Wireshark should update the
packet list pane in real time. If you do not specify this, Wireshark
does not display any packets until you stop the capture. When you
check this, Wireshark captures in a separate process and feeds the
captures to the display process.

Automatic scrolling in live capture
This option allows you to specify that Wireshark should scroll the
packet list pane as new packets come in, so you are always looking
at the last packet. If you do not specify this Wireshark simply adds
new packets onto the end of the list but does not scroll the packet list
pane. This option is greyed out if “Update list of packets in real time”
is disabled.

4.5.5. Name Resolution frame

Enable MAC name resolution
This option allows you to control whether or not Wireshark translates
MAC addresses into names. See Section 7.9, “Name Resolution”.
Enable network name resolution
This option allows you to control whether or not Wireshark translates
network addresses into names. See Section 7.9, “Name Resolution”.
Enable transport name resolution
This option allows you to control whether or not Wireshark translates
transport addresses into protocols. See Section 7.9, “Name
Resolution”.

4.5.6. Buttons

Once you have set the values you desire and have selected the options
you need, simply click on Start to commence the capture or Cancel to
cancel the capture.

4.6. The “Edit Interface Settings” dialog box

If you double-click on an interface in Figure 4.3, “The “Capture Options”
dialog box” the following dialog box pops up.

Figure 4.4. The “Edit Interface Settings” dialog box

=
Capture

Interface: Intel(R) PRO/1000 MT Metwork Connection: \Device \WPF_{5A064798-6A61-4599-9DEB-ECBo48DASEA T}

1P adiress: [P

2002:d4c9: 795e:0: 7584:eb62:4211:67d5

Linkdayer header type: IEmernet he? l

[T Capture packets in promiscuous mode

[Limit each packet to |55535 ﬂ bytes
Buffer size: I 1 j megabyte(s)
Capture Filter: | I d Compile BPF |
Help | oK I Cancel |

You can set the following fields in this dialog box:

IP address
The IP address(es) of the selected interface. If no address could be
resolved from the system “none” will be shown.

Link-layer header type
Unless you are in the rare situation that requires this keep the default
setting. For a detailed description. See Section 4.12, “Link-layer
header type”

Wireless settings (Windows only)
Here you can set the settings for wireless capture using the AirPCap
adapter. For a detailed description see the AirPCap Users Guide.

Remote settings (Windows only)
Here you can set the settings for remote capture. For a detailed
description see Section 4.9, “The “Remote Capture Interfaces” dialog
box”

Capture packets in promiscuous mode
This checkbox allows you to specify that Wireshark should put the

interface in promiscuous mode when capturing. If you do not specify
this Wireshark will only capture the packets going to or from your
computer (not all packets on your LAN segment).

Note

If some other process has put the interface in
promiscuous mode you may be capturing in promiscuous
@ mode even if you turn off this option.

Even in promiscuous mode you still won’t necessarily see
all packets on your LAN segment. See the Wireshark
FAQ for more information.

Limit each packet to n bytes

This field allows you to specify the maximum amount of data that will
be captured for each packet, and is sometimes referred to as the
snaplen. If disabled the value is set to the maximum 65535 which will
be sufficient for most protocols. Some rules of thumb:

e |f you are unsure just keep the default value.

e |f you don’t need or don’t want all of the data in a packet - for
example, if you only need the link-layer, IP, and TCP headers -
you might want to choose a small snapshot length, as less CPU
time is required for copying packets, less buffer space is
required for packets, and thus perhaps fewer packets will be
dropped if traffic is very heavy.

¢ |f you don’t capture all of the data in a packet you might find that
the packet data you want is in the part that's dropped or that
reassembly isn’t possible as the data required for reassembly is
missing.

Buffer size: n megabyte(s)
Enter the buffer size to be used while capturing. This is the size of
the kernel buffer which will keep the captured packets, until they are
written to disk. If you encounter packet drops, try increasing this
value.

Capture packets in monitor mode (Unix/Linux only)

https://www.wireshark.org/faq.html#promiscsniff

This checkbox allows you to setup the Wireless interface to capture
all traffic it can receive, not just the traffic on the BSS to which it is
associated, which can happen even when you set promiscuous
mode. Also it might be necessary to turn this option on in order to
see IEEE 802.11 headers and/or radio information from the captured
frames.

Note

In monitor mode the adapter might disassociate itself
from the network it was associated to.

Capture Filter
This field allows you to specify a capture filter. Capture filters are

discussed in more details in Section 4.13, “Filtering while capturing”.
It defaults to empty, or no filter.

You can also click on the Capture Filter button and Wireshark will
bring up the “Capture Filters” dialog box and allow you to create
and/or select a filter. Please see Section 6.6, “Defining and saving
filters”

Compile BPF
This button allows you to compile the capture filter into BPF code
and pop up a window showing you the resulting pseudo code. This
can help in understanding the working of the capture filter you
created.

4.7. The “Compile Results” dialog box
This figure shows the compile results of the selected interfaces.

Figure 4.5. The “Compile Results” dialog box

800D |%| Compile selected BPFs
0O (oo0) Ud [=] =]
(0o1) jeq #0x1 it 2 if 27 '
© en2 (@02) 1dh (0]
@ loo (0e3) jeq #0Ox0O it 4 it 27
(004) ldh [12]
(0O5) jeq #0x86dd it B if 14
(pes) ldb [z0]
(007) jeq #0x84 jt 1@ jf 8
(0o8) jeq #OxE 1t 1@ jf 8
(009) jeq #0x11 1t 10 3 f 27
(010) Ldh [54]
(011) jeq #0x4dz2 it 26 jf 12
(012) Lldh [56]
(013) jeq #0x4dz2 it 28 jf 27
(014) jeq #0x800 1t 15 1f 27
(015) Lldb [23] |
(018) jeq #0x84 jt 19 jf 17 '
(017) jeq #0OXE 7t 18 jf 18
(018) jeq #0x11 1t 18 f 27
(18] Lldh [z0]
(020) jset #ox1fff it 27 jf 21 ;
(021) ldxb a*([14] a0xf) =

In the left window the interface names are listed. The results of an
individual interface are shown in the right window when it is selected.

4.8. The “Add New Interfaces” dialog box

As a central point to manage interfaces this dialog box consists of three
tabs to add or remove interfaces.

Figure 4.6. The “Add New Interfaces” dialog box

=R

Pipes

Delete |
Fipe: I B_rnwse...l

Save | Close

4.8.1. Add or remove pipes

Figure 4.7. The “Add New Interfaces - Pipes” dialog box

_loix

Pipes | Local Interfaces | Remote Interfaces |
Pipes

ftmp/pipe1

New ||| ftmp/pipe2

Mew pipe
Delete |

Browse... |

Save | Close

To successfully add a pipe, this pipe must have already been created.
Click the New button and type the name of the pipe including its path.
Alternatively, the Browse button can be used to locate the pipe. With the
Save button the pipe is added to the list of available interfaces.
Afterwards, other pipes can be added.

To remove a pipe from the list of interfaces it first has to be selected.
Then click the Delete button.

4.8.2. Add or hide local interfaces

Figure 4.8. The “Add New Interfaces - Local Interfaces” dialog box

-loix

Pipes Local Interfaces | Remote Interfaces |
Local Interfaces

|\ [
W\ \airpcap05s ~
\Device\NPF_{5AD64798-6A61-4599-0DFB-ECE648DATEAT} v
[v
-
—

\Device\MPF_{15B26C38-C230-4ED6-83F0-350ABEODE4SA}
\Device \MPF_{E5SBESGC-FBEC-43E4-3225-E991F 1592250}

Lhmsies WINE MFTC0A MA CST T ASCD 8T TE SCONTCETACE T

Refresh | Apply | Close

L |

The tab “Local Interfaces” contains a list of available local interfaces,
including the hidden ones, which are not shown in the other lists.

If a new local interface is added, for example, a wireless interface has
been activated, it is not automatically added to the list to prevent the
constant scanning for a change in the list of available interfaces. To
renew the list a rescan can be done.

One way to hide an interface is to change the preferences. If the “Hide”
checkbox is activated and the Apply button clicked, the interface will not
be seen in the lists of the “Capture Interfaces” dialog box any more. The
changes are also saved in the preferences file.

4.8.3. Add or hide remote interfaces

Figure 4.9. The “Add New Interfaces - Remote Interfaces” dialog box

_ioix

Pipes I Local Interfaces Remote Interfaces |

-Remote Interfaces
Host 1 IName 1 |Hide|
= 10.0.1.207
rpcap:/f[10.0. 1. 207 M\, \girpcap00 -

rpcap:/f[10.0, 1. 207] f\Device\NPF_{0E7SEBE1-9CA3-9872-9C48-DODACISTDE4D: [
rpcap:/f[10.0.1.207] f\Device\NPF_{2DD56791-752F-4AB5-8000-4A84EC 266108} [
rpcap:/f[10.0, 1. 207] f\Device\WNPF_{9518C 1AB-9151-4CFC-8D45-A17E98 148409 [

Add Delets Apply Close

In this tab interfaces on remote hosts can be added. One or more of
these interfaces can be hidden. In contrast to the local interfaces they are
not saved in the preferences file.

To remove a host including all its interfaces from the list, it has to be
selected. Then click the Delete button.

For a detailed description see Section 4.9, “The “Remote Capture
Interfaces” dialog box”

4.9. The “Remote Capture Interfaces” dialog box

Besides doing capture on local interfaces Wireshark is capable of
reaching out across the network to a so called capture daemon or service
processes to receive captured data from.

Microsoft Windows only

@ This dialog and capability is only available on Microsoft
Windows. On Linux/Unix you can achieve the same effect
(securely) through an SSH tunnel.

The Remote Packet Capture Protocol service must first be running on the
target platform before Wireshark can connect to it. The easiest way is to
install WinPcap from https://www.winpcap.org/install/ on the target. Once
installation is completed go to the Services control panel, find the Remote
Packet Capture Protocol service and start it.

Note

@ Make sure you have outside access to port 2002 on the
target platform. This is the port where the Remote Packet
Capture Protocol service can be reached by default.

To access the Remote Capture Interfaces dialog use the “Add New
Interfaces - Remote” dialog. See Figure 4.9, “The “Add New Interfaces -
Remote Interfaces” dialog box” and select Add.

4.9.1. Remote Capture Interfaces

Figure 4.10. The “Remote Capture Interfaces” dialog box

https://www.winpcap.org/install/

71! Wireshark: Remote o] o]
Pipes | Local Interfaces Remote Interﬁ:lcesl iz I lZI
Remote Interfaces Port: I
Host q |Nan‘|e Authentication q
= 10.0.1.207 {® MNull authentication
rpcap:/{[10.0. 12071\ \airp | ¢ password authentication [
rpcap:/f[10.0. 1. 207] NDevice - I joy [
rpcap: /10,0, 1. 207] N\Device B B [
rpcap:/f[10.0. 1. 2071/ \Device 'E'S"“"':"'::I oy [T
[8]4 | Cancel |
dd | ==t | Apply | Close

You have to set the following parameters in this dialog:

Host
Enter the IP address or host name of the target platform where the
Remote Packet Capture Protocol service is listening. The drop down
list contains the hosts that have previously been successfully
contacted. The list can be emptied by choosing “Clear list” from the
drop down list.

Port
Set the port number where the Remote Packet Capture Protocol
service is listening on. Leave open to use the default port (2002).

Null authentication
Select this if you don’t need authentication to take place for a remote
capture to be started. This depends on the target platform.
Configuring the target platform like this makes it insecure.

Password authentication
This is the normal way of connecting to a target platform. Set the
credentials needed to connect to the Remote Packet Capture
Protocol service.

4.9.2. Remote Capture Settings

The remote capture can be further fine tuned to match your situation. The
Remote Settings button in Figure 4.4, “The “Edit Interface Settings”
dialog box” gives you this option. It pops up the dialog shown in

Figure 4.11, “The “Remote Capture Settings” dialog box”.

Figure 4.11. The “Remote Capture Settings” dialog box

[T Capture packets in

I | =[o3

Capture
Interface: Network adapter 'Intel(R) Gigabit ET Dual Port Server Adapter’ i o] Capture £ = ||:| 5' | \Device \WPF_{2DD56791-752F -4AB5-8DDD-4A84EC 266 108}
Bl e Caplure Options

I¥ Do not capture oun RPCAP rafic

[™ Use UDP for data transfer

Remote Settings
Sampling Options

{* None

[Limit each packet to ﬂ bytes
£)

Buffer size: ll— = megabyte(: £ Fiaf = j IR
 tlevery |1 ﬂ miliseconds
Capture Filter: | I ;I Compile BFF
oK I Cancel |
Help | oK | Cancel |

You can set the following parameters in this dialog:

Do not capture own RPCAP traffic

This option sets a capture filter so that the traffic flowing back from
the Remote Packet Capture Protocol service to Wireshark isn’t
captured as well and also send back. The recursion in this saturates
the link with duplicate traffic.

You only should switch this off when capturing on an interface other
than the interface connecting back to Wireshark.

Use UDP for data transfer
Remote capture control and data flows over a TCP connection. This
option allows you to choose an UDP stream for data transfer.

Sampling option None
This option instructs the Remote Packet Capture Protocol service to
send back all captured packets which have passed the capture filter.
This is usually not a problem on a remote capture session with
sufficient bandwidth.

Sampling option 1 of x packets
This option limits the Remote Packet Capture Protocol service to
send only a sub sampling of the captured data, in terms of number of
packets. This allows capture over a narrow band remote capture
session of a higher bandwidth interface.

Sampling option 1 every x milliseconds

This option limits the Remote Packet Capture Protocol service to
send only a sub sampling of the captured data in terms of time. This

allows capture over a narrow band capture session of a higher
bandwidth interface.

4.10. The “Interface Details” dialog box

When you select Details from the Capture Interface menu, Wireshark
pops up the “Interface Details” dialog box as shown in Figure 4.12, “The
“Interface Details” dialog box”. This dialog shows various characteristics
and statistics for the selected interface.

Microsoft Windows only

@ This dialog is only available on Microsoft Windows

Figure 4.12. The “Interface Details” dialog box

I B[]
haracteristics l Stakiskics l 80z2.3 (Ethernet) l

Characteristics
YWendor descripkion Parallels QEM Adapter, (Microsoft's Packet Scheduler)

Interface \Device\MPF_{SD34CEE1-S021-4823-4148-9412CaA313EB}T
Link, skakus Connected

Link, speed 1000 MEits)s

Media supported g0z, 3 (Ethernet)

Medium in use 80z2.3 (Ethernet)

Physical medium -
MDIS Driver Mersion 5.0
Yendor Driver Mersion -

Wendor ID 00;1C:42 (Parallel) MIC: 00
MaZ Cplions 802, 1P Priority: Unsupported, 802,10 YLAN: Unsupporked
WLAMN I =

Transmit Buffer Space 524253
Receive Buffer Space S24253
Transmit Block Size 1514
Receive Block Size 1514
Maximum Packet Size 1514

Mote: accuracy of all of these values are anly relving on the network card driver!

Help . Cose

4.11. Capture files and file modes

While capturing the underlying libpcap capturing engine will grab the
packets from the network card and keep the packet data in a (relatively)
small kernel buffer. This data is read by Wireshark and saved into a
capture file.

By default Wireshark saves packets to a temporary file. You can also tell
Wireshark to save to a specific (“permanent”) file and switch to a different
file after a given time has elapsed or a given number of packets have
been captured. These options are controlled in the “Output” tab in the
“Capture Options” dialog.

Figure 4.13. Capture output options

M Wireshark - Capture Interfaces

Input elliiellley Options
Capture to a permanent file

File: |Leave blank to use a temporary file Browse...

Output format:) pcap-ng pcap
Create a new file automatically after...
q kilobytes
1 seconds
Use a ring buffer with 2 ; files
Help Close il
Tip

Working with large files (several hundred MB) can be
quite slow. If you plan to do a long term capture or

@ capturing from a high traffic network, think about using
one of the “Multiple files” options. This will spread the
captured packets over several smaller files which can be
much more pleasant to work with.

Using Multiple files may cut context related information. Wireshark keeps
context information of the loaded packet data, so it can report context
related problems (like a stream error) and keeps information about
context related protocols (e.g. where data is exchanged at the
establishing phase and only referred to in later packets). As it keeps this
information only for the loaded file, using one of the multiple file modes
may cut these contexts. If the establishing phase is saved in one file and
the things you would like to see is in another, you might not see some of
the valuable context related information.

Information about the folders used for capture files can be found in
Appendix B, Files and Folders.

Table 4.1. Capture file mode selected by capture options

Eile “Create(“Use a
N anew [ring Mode Resulting filename(s) used
ame |..
file...” [buffer...”

]]] glljng/grar wiresharkXXXXXX (where
file POrArY I x xxxx is a unique number)
Single

foo.capfl- || ||name d file foo.cap
Multiple |ffoo_00001 20100205110102.cap

foo.cap|x - files, foo_00002_20100205110318.cap
continuousy...
Multiple |ffoo_00001 20100205110102.cap

foo.caplx X files, ring |ffoo_00002_20100205110318.cap
buffer

Single temporary file
A temporary file will be created and used (this is the default). After
capturing is stopped this file can be saved later under a user
specified name.

Single named file
A single capture file will be used. If you want to place the new
capture file in a specific folder choose this mode.

Muiltiple files, continuous
Like the “Single named file” mode, but a new file is created and used
after reaching one of the multiple file switch conditions (one of the
“Next file every ...” values).

Muiltiple files, ring buffer
Much like “Multiple files continuous”, reaching one of the multiple
files switch conditions (one of the “Next file every ...” values) will
switch to the next file. This will be a newly created file if value of
“Ring buffer with n files” is not reached, otherwise it will replace the
oldest of the formerly used files (thus forming a “ring”). This mode
will limit the maximum disk usage, even for an unlimited amount of
capture input data, only keeping the latest captured data.

4.12. Link-layer header type

In most cases you won’t have to modify link-layer header type. Some
exceaptions are as follows:

If you are capturing on an Ethernet device you might be offered a choice
of “Ethernet” or “DOCSIS”. If you are capturing traffic from a Cisco Cable
Modem Termination System that is putting DOCSIS traffic onto the
Ethernet to be captured, select “DOCSIS”, otherwise select “Ethernet”.

If you are capturing on an 802.11 device on some versions of BSD you
might be offered a choice of “Ethernet” or “802.11". “Ethernet” will cause
the captured packets to have fake (“cooked”) Ethernet headers. “802.11"
will cause them to have full IEEE 802.11 headers. Unless the capture
needs to be read by an application that doesn’t support 802.11 headers
you should select “802.11".

If you are capturing on an Endace DAG card connected to a synchronous
serial line you might be offered a choice of “PPP over serial” or “Cisco
HDLC". If the protocol on the serial line is PPP, select “PPP over serial”
and if the protocol on the serial line is Cisco HDLC, select “Cisco HDLC".

If you are capturing on an Endace DAG card connected to an ATM
network you might be offered a choice of “RFC 1483 IP-over-ATM” or
“Sun raw ATM". If the only traffic being captured is RFC 1483 LLC-
encapsulated IP, or if the capture needs to be read by an application that
doesn’t support SUnATM headers, select “RFC 1483 IP-over-ATM”,
otherwise select “Sun raw ATM”,

4.13. Filtering while capturing

Wireshark uses the libpcap filter language for capture filters. A brief
overview of the syntax follows. Complete documentation can be found in
the pcap-filter man page. You can find a lot of Capture Filter examples at
https://wiki.wireshark.org/CaptureFilters.

You enter the capture filter into the “Filter” field of the Wireshark “Capture
Options” dialog box, as shown in Figure 4.3, “The “"Capture Options”

dialog box”.

A capture filter takes the form of a series of primitive expressions
connected by conjunctions (and/or) and optionally preceded by not:

[not] primitive [and]|or [not] primitive ...]

An example is shown in Example 4.1, “A capture filter for telnet that
captures traffic to and from a particular host”.

Example 4.1. A capture filter for telnet that captures traffic to and
from a particular host

A capture filter for telnet that captures traffic to and from a particular host

tcp port 23 and host 10.0.0.5

This example captures telnet traffic to and from the host 10.0.0.5, and
shows how to use two primitives and the and conjunction. Another
example is shown in Example 4.2, “Capturing all telnet traffic not from
10.0.0.5”, and shows how to capture all telnet traffic except that from
10.0.0.5.

Example 4.2. Capturing all telnet traffic not from 10.0.0.5

Capturing all telnet traffic not from 10.0.0.5

tcp port 23 and not src host 10.0.0.5

A primitive is simply one of the following: [src|dst] host <host>

http://www.tcpdump.org/manpages/pcap-filter.7.html
https://wiki.wireshark.org/CaptureFilters

This primitive allows you to filter on a host IP address or name. You
can optionally precede the primitive with the keyword src|dst to
specify that you are only interested in source or destination
addresses. If these are not present, packets where the specified
address appears as either the source or the destination address will
be selected.

ether [src|dst] host <ehost>
This primitive allows you to filter on Ethernet host addresses. You
can optionally include the keyword src|dst between the keywords
ether and host to specify that you are only interested in source or
destination addresses. If these are not present, packets where the
specified address appears in either the source or destination
address will be selected.

gateway host <host>
This primitive allows you to filter on packets that used host as a
gateway. That is, where the Ethernet source or destination was host
but neither the source nor destination IP address was host.

[src|dst] net <net> [{mask <mask>}|{len <len>}]
This primitive allows you to filter on network numbers. You can
optionally precede this primitive with the keyword src|dst to specify
that you are only interested in a source or destination network. If
neither of these are present, packets will be selected that have the
specified network in either the source or destination address. In
addition, you can specify either the netmask or the CIDR prefix for
the network if they are different from your own.

[tcp|udp] [src|dst] port <port>

This primitive allows you to filter on TCP and UDP port numbers. You
can optionally precede this primitive with the keywords src|dst and
tcp|udp which allow you to specify that you are only interested in
source or destination ports and TCP or UDP packets respectively.
The keywords tcp|udp must appear before src|dst.

If these are not specified, packets will be selected for both the TCP
and UDP protocols and when the specified address appears in either
the source or destination port field.

less|greater <length>
This primitive allows you to filter on packets whose length was less

than or equal to the specified length, or greater than or equal to the
specified length, respectively.

iplether proto <protocol>
This primitive allows you to filter on the specified protocol at either
the Ethernet layer or the IP layer.

ether|ip broadcast|multicast
This primitive allows you to filter on either Ethernet or IP broadcasts
or multicasts.

<expr> relop <expr>
This primitive allows you to create complex filter expressions that
select bytes or ranges of bytes in packets. Please see the pcap-filter
man page at http://www.tcpdump.org/manpages/pcap-filter.7.html for
more details.

4.13.1. Automatic Remote Traffic Filtering

If Wireshark is running remotely (using e.g. SSH, an exported X11
window, a terminal server, ...), the remote content has to be transported
over the network, adding a lot of (usually unimportant) packets to the
actually interesting traffic.

To avoid this, Wireshark tries to figure out if it's remotely connected (by
looking at some specific environment variables) and automatically
creates a capture filter that matches aspects of the connection.

The following environment variables are analyzed:

SSH_CONNECTION (ssh)

<remote IP> <remote port> <local IP> <local port>
SSH_CLIENT (ssh)

<remote IP> <remote port> <local port>
REMOTEHOST (tcsh, others?)

<remote name>
DISPLAY (x11)

[remote name]:<display num>
SESSIONNAME (terminal server)

<remote name>

On Windows it asks the operating system if it's running in a Remote

http://www.tcpdump.org/manpages/pcap-filter.7.html

Desktop Services environment.
4.13.2. Stop the running capture
A running capture session will be stopped in one of the following ways:

1. Using the Stop button from the “Capture Info” dialog box.
Note

@ The “Capture Info” dialog box might be hidden if the “Hide
capture info dialog” option is used.

Using the Capture - Stop menu item.

Using the Stop toolbar button.

Pressing Ctrl+E.

The capture will be automatically stopped if one of the Stop
Conditions is met, e.g. the maximum amount of data was captured.

roONPE

4.13.3. Restart a running capture

A running capture session can be restarted with the same capture
options as the last time, this will remove all packets previously captured.
This can be useful, if some uninteresting packets are captured and
there’s no need to keep them.

Restart is a convenience function and equivalent to a capture stop
following by an immediate capture start. A restart can be triggered in one
of the following ways:

1. Using the Capture - Restart menu item.
2. Using the Restart toolbar button.

Chapter 5. File Input, Output, and Printing
Table of Contents

5.1. Introduction
5.2. Open capture files
5.2.1. The “Open Capture File” dialog box
5.2.2. Input File Formats
5.3. Saving captured packets
5.3.1. The “Save Capture File As” dialog box
5.3.2. Output File Formats
5.4. Merging capture files
5.4.1. The "Merge with Capture File” dialog box
5.5. Import hex dump
5.5.1. The “Import from Hex Dump” dialog box
5.6. File Sets
5.6.1. The “List Files” dialog box
5.7. Exporting data
5.7.1. The “Export as Plain Text File” dialog box
5.7.2. The "Export as PostScript File” dialog box
5.7.3. The "Export as CSV (Comma Separated Values) File" dialog
box
5.7.4. The "Export as C Arrays (packet bytes) file" dialog box
5.7.5. The "Export as PSML File" dialog box
5.7.6. The "Export as PDML File" dialog box
5.7.7. The "Export selected packet bytes" dialog box
5.7.8. The "Export Objects" dialog box
5.8. Printing packets
5.8.1. The “Print” dialog box
5.9. The “Packet Range” frame
5.10. The Packet Format frame

5.1. Introduction
This chapter will describe input and output of capture data.

Open capture files in various capture file formats
Save/Export capture files in various capture file formats
Merge capture files together

Import text files containing hex dumps of packets

Print packets

5.2. Open capture files

Wireshark can read in previously saved capture files. To read them,
simply select the File -~ Open menu or toolbar item. Wireshark will then
pop up the “File Open” dialog box, which is discussed in more detail in
Section 5.2.1, “The “Open Capture File” dialog box”.

It's convenient to use drag-and-drop

You can open a file by simply dragging it in your file

@ manager and dropping it onto Wireshark’s main window.
However, drag-and-drop may not be available in all
desktop environments.

If you haven't previously saved the current capture file you will be asked
to do so to prevent data loss. This warning can be disabled in the
preferences.

In addition to its native file format (pcapng), Wireshark can read and write
capture files from a large number of other packet capture programs as
well. See Section 5.2.2, “Input File Formats” for the list of capture formats
Wireshark understands.

5.2.1. The “Open Capture File” dialog box

The “Open Capture File” dialog box allows you to search for a capture file
containing previously captured packets for display in Wireshark. The
following sections show some examples of the Wireshark “Open File”
dialog box. The appearance of this dialog depends on the system.
However, the functionality should be the same across systems.

Common dialog behaviour on all systems:

e Select files and directories.

e Click the Open or OK button to accept your selected file and open it.

e Click the Cancel button to go back to Wireshark and not load a
capture file.

Wireshark extensions to the standard behaviour of these dialogs:

o View file preview information such as the filesize and the number of
packets in a selected a capture file.

e Specify a display filter with the Filter button and filter field. This filter
will be used when opening the new file. The text field background
becomes green for a valid filter string and red for an invalid one.
Clicking on the Filter button causes Wireshark to pop up the “Filters”
dialog box (which is discussed further in Section 6.3, “Filtering
packets while viewing”).

e Specify which type of name resolution is to be performed for all
packets by clicking on one of the “... name resolution” check buttons.
Details about name resolution can be found in Section 7.9, “Name
Resolution”.

Save a lot of time loading huge capture files

You can change the display filter and name resolution
settings later while viewing the packets. However, loading

@ huge capture files can take a significant amount of extra
time if these settings are changed later, so in such
situations it can be a good idea to set at least the filter in
advance here.

Figure 5.1. “Open” on Microsoft Windows

Wireshark: Open Capture File
Look in: .E}libﬂt v O i,‘ i* M-

Itasn_unnm _20050819181503.pcap butl_nmﬁmuammm:ﬂ.pcapi
testl_0000Z_20050819181505.peap [ljtest1_00008_200508191 61509, prap |
Bltest1_o0003_z0050819181505.pcan [ltest1_00009_20050819181510.peap |
Bltest1_noo04_z0050819181506.pcap [Eltest1_00010_20050819181512,pcap |
Bl:est1_oooos_zoososioie1s07.peap [test1_00011_20050819181513.pcsp
Bl te:t1_ooooe_zoososi91e1507.pcan ([ltesti _oooiz_z00s0819181514.0020 |

|
Fiename: | test1_00004_200508191 81506 peap | open |

Files of type All Files [v| | Cancel |

| Eiltar | | Flename: test1_DDD0G._ 200508
Foamat: WiesharkAcpdump/.

[#] MAL name resohuticn Size: 1031 bytes

[+] Metwonk name resohution Packats q

[#] Transport name resclution First Packet 2005-08-13 181506

Elapzed 00:00; 00

This is the common Windows file open dialog - plus some Wireshark
extensions.

Specific for this dialog:
e The Help button will lead you to this section of this “User’s Guide”.

Figure 5.2. “Open” - Linux and UNIX

3 Eihmreal; (ipan Capters File

e - Ill_'._l
Ibt'.'l-l'p A
o L3
g Thiam |
[;r:.'.
--\.'jr I,
iy
3
'.!]. -
By s
% -
8 "
+ - ’
- i = H ST N g
Dees - Mo am Toprhre, Dhaeal i
(| Erle e s otk e S 1 et
Er_ e etk i el Puackats ™
5 Fck Pahat SO0-1 34 [0 12 R
e g T e Flipind troec 0o 22
oy X coed

This is the common Gimp/GNOME file open dialog plus some Wireshark
extensions.

Specific for this dialog:

e The + button allows you to add a directory selected in the right-hand
pane to the favorites list on the left. These changes are persistent.

e The - button allows you to remove a selected directory from the list.
Some items (such as “Desktop”) cannot be removed from the
favorites list.

o If Wireshark doesn’t recognize the selected file as a capture file it will
grey out the Open button.

5.2.2. Input File Formats

The following file formats from other capture tools can be opened by
Wireshark:

e pcapng. A flexible, etensible successor to the libpcap format.

Wireshark 1.8 and later save files as pcapng by default. Versions
prior to 1.8 used libpcap.

libpcap. The default format used by the libpcap packet capture
library. Used by tcodump, _Snort, Nmap, Ntop, and many other
tools.

Oracle (previously Sun) snoop and atmsnoop

Finisar (previously Shomiti) Surveyor captures

Microsoft Network Monitor captures

Novell LANalyzer captures

AlX iptrace captures

Cinco Networks NetXray captures

Network Associates Windows-based Sniffer and Sniffer Pro captures
Network General/Network Associates DOS-based Sniffer
(compressed or uncompressed) captures

AG Group/WildPackets/Savvius
EtherPeek/TokenPeek/AiroPeek/EtherHelp/PacketGrabber captures
RADCOM'’s WAN/LAN Analyzer captures

Network Instruments Observer version 9 captures
Lucent/Ascend router debug output

HP-UX’s nettl

Toshiba’s ISDN routers dump output

ISDN4BSD i4btrace utility

traces from the EyeSDN USB SO

IPLog format from the Cisco Secure Intrusion Detection System
pppd logs (pppdump format)

the output from VMS’s TCPIPtrace/TCPtrace/lUCX$TRACE utilities
the text output from the DBS Etherwatch VMS utility

Visual Networks' Visual UpTime traffic capture

the output from CoSine L2 debug

the output from Accellent’'s 5Views LAN agents

Endace Measurement Systems' ERF format captures

Linux Bluez Bluetooth stack hcidump -w traces

Catapult DCT2000 .out files

Gammu generated text output from Nokia DCT3 phones in
Netmonitor mode

IBM Series (0S/400) Comm traces (ASCIl & UNICODE)

Juniper Netscreen snoop captures

Symbian OS btsnoop captures

Tamosoft CommView captures

Textronix K12xx 32bit .rf5 format captures

Textronix K12 text file format captures

Apple PacketLogger captures

Captures from Aethra Telecommunications' PC108 software for their
test instruments

New file formats are added from time to time.

It may not be possible to read some formats dependent on the packet
types captured. Ethernet captures are usually supported for most file

formats but it may not be possible to read other packet types such as
PPP or IEEE 802.11 from all file formats.

5.3. Saving captured packets

You can save captured packets simply by using the File - Save As...
menu item. You can choose which packets to save and which file format
to be used.

Not all information will be saved in a capture file. For example, most file
formats don’t record the number of dropped packets. See Section B.1,
“Capture Files” for details.

5.3.1. The “Save Capture File As” dialog box

The “Save Capture File As” dialog box allows you to save the current
capture to a file. The following sections show some examples of this
dialog box. The appearance of this dialog depends on the system.
However, the functionality should be the same across systems.

Figure 5.3. “Save” on Microsoft Windows

Wireshark: Save file as
Save e | 3 sl Yoo

bestl OO0 _Z0050819151505. poap bast | 00007 _200S0E 19 S1508. poap tesb] D013 _0
bt L 00002 _200508 191815065, poap ek | 00008 _20050E519 151 509.peap testl 0001+ _20
betl _D00000CH_20050819151505. peap beak] 000049 _200505191515 1 lupoap beekl 00015 _20
beestl_CO004_20050819181506. poap meskl _00010_200S081918181 2 prap testl 00016 _20
I_DO00S_20050819181507 .peap [lest1 _DD011_200s0Enalgisiipoap ([test] _D0O1T_20

bestl_OOO0G_200508 19131507, poap bast| 00012 _s00R0SISELSE4 poap et]_D0013_z0

< »
& _'-fa:ﬁ_" T -
Save a3 P | Wiesharkcpdump. - ibpean | poap” canl v
Facke! Fange
(=) Capuaed () Displagesd

= Al packsts 120

) Sbected packet 1

) Rrange: | 1]

This is the common Windows file save dialog with some additional
Wireshark extensions.

Specific behavior for this dialog:

¢ If available, the “Help” button will lead you to this section of this
"User’s Guide".

¢ |f you don’t provide a file extension to the filename (e.g. .pcap)
Wireshark will append the standard file extension for that file format.

Figure 5.4. “Save” on Linux and UNIX

@ Ethereal: Save Capture File As

Mame: |

Save in folder: | m D:

Packet Range

Captured || Displayed |
(%) all packsts 120
(") Sedected packet only 1

() Specify a packet range:

Fils type: lbpcap (tcpdump, Ethereal, etc.)

+* Browse For other Folders

{ & save H X Concel |

This is the common Gimp/GNOME file save dialog with additional
Wireshark extensions.

Specific for this dialog:

e Clicking on the + at "Browse for other folders" will allow you to
browse files and folders in your file system.

With this dialog box, you can perform the following actions:

1. Type in the name of the file you wish to save the captured packets

in, as a standard file name in your file system.

Select the directory to save the file into.

Select the range of the packets to be saved. See Section 5.9, “The

‘Packet Range” frame”.

4. Specify the format of the saved capture file by clicking on the File
type drop down box. You can choose from the types described in
Section 5.3.2, “Output File Formats”.

w N

Some capture formats may not be available depending on the packet
types captured.

Wireshark can convert file formats

@ You can convert capture files from one format to another
by reading in a capture file and writing it out using a
different format.

1. Click the Save or OK button to accept your selected file and save to
it. If Wireshark has a problem saving the captured packets to the file
you specified it will display an error dialog box. After clicking OK on
that error dialog box you can try again.

2. Click on the Cancel button to go back to Wireshark without saving
any packets.

5.3.2. Output File Formats

Wireshark can save the packet data in its native file format (pcapng) and
in the file formats of other protocol analyzers so other tools can read the
capture data.

Different file formats have different time stamp
accuracies

A Saving from the currently used file format to a different
format may reduce the time stamp accuracy; see the
Section 7.6, “Time Stamps” for details.

The following file formats can be saved by Wireshark (with the known file
extensions):

e pcapng (*.pcapng). A flexible, etensible successor to the libpcap
format. Wireshark 1.8 and later save files as pcapng by default.
Versions prior to 1.8 used libpcap.

e libpcap, tcpdump and various other tools using tcpdump’s capture

format (*.pcap,*.cap,*.dmp)

Accellent 5Views (*.5vw)

HP-UX'’s nettl (*. TRCO,*.TRC1)

Microsoft Network Monitor - NetMon (*.cap)

Network Associates Sniffer - DOS (*.cap,*.enc,*.trc,*fdc,*.syc)

Network Associates Sniffer - Windows (*.cap)

Network Instruments Observer version 9 (*.bfr)

Novell LANalyzer (*.trl)

Oracle (previously Sun) snoop (*.snoop,*.cap)

Visual Networks Visual UpTime traffic (*.*)

New file formats are added from time to time.

Whether or not the above tools will be more helpful than Wireshark is a
different question ;-)

Third party protocol analyzers may require specific
file extensions

Wireshark examines a file’'s contents to determine its
type. Some other protocol analyzers only look at a
filename extensions. For example, you might need to use
the .cap extension in order to open a file using Sniffer.

5.4. Merging capture files

Sometimes you need to merge several capture files into one. For
example, this can be useful if you have captured simultaneously from
multiple interfaces at once (e.g. using multiple instances of Wireshark).

There are three ways to merge capture files using Wireshark:

e Use the File -~ Merge menu to open the “Merge” dialog. See
Section 5.4.1, “The “Merge with Capture File” dialog box”. This menu
item will be disabled unless you have loaded a capture file.

e Use drag-and-drop to drop multiple files on the main window.
Wireshark will try to merge the packets in chronological order from
the dropped files into a newly created temporary file. If you drop only
a single file it will simply replace the existing capture.

e Use the mergecap tool, a command line tool to merge capture files.
This tool provides the most options to merge capture files. See
Section D.8, “mergecap: Merging multiple capture files into one” for
details.

5.4.1. The “Merge with Capture File” dialog box

This dialog box let you select a file to be merged into the currently loaded
file. If your current data has not been saved you will be asked to save it
first.

Most controls of this dialog will work the same way as described in the
“Open Capture File” dialog box, see Section 5.2.1, “The “Open Capture
File” dialog box”.

Specific controls of this merge dialog are:

Prepend packets to existing file
Prepend the packets from the selected file before the currently
loaded packets.

Merge packets chronologically
Merge both the packets from the selected and currently loaded file in
chronological order.

Append packets to existing file

Append the packets from the selected file after the currently loaded
packets.

Figure 5.5. “Merge” on Microsoft Windows

Wireshark: Merge with capiure file

Losk jr- | 5 feset 40 iF @

best L D000 _ 0050819151505, posp Beak] 00008 _20050E 191 SLS0posp beakl 00015 _20
bestl 0002 0050819181905 poap besk] 00009_200%0H8191 8051 0uposp beckl 00014 X0
bestl_DOOD3_20050819181505 peap [lftestl_00010_20050819181512 prap [ltestl 00017 _20
bosstl OO0« 2005081913 1506, poap Eoshl_0001] _20050319ESLS L2 poap tesh] _DOO1E_20
bt _0000S_200508 19181507, prap ek | _00012_200s0Es19iS1514.poap Lestl 00012 _20
et o000 _~O0S0619151507 . poap beak] _00013_20050519150516.peap beak] 00020 _A0

I _00003_20050819181508. peap keskl _00014_2005081918L%1 ¥.poep keskl 00021 20

< ¥

Filepame: [sest]_DDDO7_NF0E1 311 508 peap

Files of ype: | Al Fies] b

[- | [Filename: best]_ODOOT_20050819181508 prap
Fiormat: Wineshaktcpdumpy’... - bbpocap

(%) Pespend packets b essting file Size 1074 butes

() Merge packets chionologcaly Packetz: 11

() Bppend packets to existing file Fust Packet Z200508-19 181508

Elspsad (kO 0

This is the common Windows file open dialog with additional Wireshark
extensions.

Figure 5.6. “Merge” on Linux and UNIX

& Flhereal: Merpe wilh Caplure File

g :- |h—|.:]

o

(e

ByHn a

+ b £ ¥

Fleriaree: 4= Hw ol

Format: B ap epdiangs, Ethasaal, ebc)

) Pragpesnd gackebs by sccuiting Fle Sinw: 15317 brptu
Packati: 120

‘2] Margs packsbs chronologe

1) e e Frst Packek; I009-08-23 2000248

) bppend packsts bo meisting Fils Elagesnd tire; 00:00:02

|E;~mm |[#-;M|

This is the common Gimp/GNOME file open dialog with additional
Wireshark extensions.

5.5. Import hex dump

Wireshark can read in an ASCII hex dump and write the data described
into a temporary libpcap capture file. It can read hex dumps with multiple
packets in them, and build a capture file of multiple packets. It is also
capable of generating dummy Ethernet, IP and UDP, TCP, or SCTP
headers, in order to build fully processable packet dumps from hexdumps
of application-level data only.

Wireshark understands a hexdump of the form generated by od -Ax -tx1
-v. In other words, each byte is individually displayed and surrounded
with a space. Each line begins with an offset describing the position in
the file. The offset is a hex number (can also be octal or decimal), of
more than two hex digits. Here is a sample dump that can be imported:

000000 00 €O le a7 05 6f 60 10
000008 5a a0 b9 12 08 00 46 00
000010 O3 68 OO OO 0O 0O Ga 28
000018 ee 33 Of 19 08 7f 0f 19
000020 03 80 94 04 00 60 10 1
000028 16 a2 Oa 0O 603 50 GO0 OC
000030 01 01 6f 19 03 80 11 01

There is no limit on the width or number of bytes per line. Also the text
dump at the end of the line is ignored. Byte and hex numbers can be
uppercase or lowercase. Any text before the offset is ignored, including
email forwarding characters >. Any lines of text between the bytestring
lines are ignored. The offsets are used to track the bytes, so offsets must
be correct. Any line which has only bytes without a leading offset is
ignored. An offset is recognized as being a hex number longer than two
characters. Any text after the bytes is ignored (e.g. the character dump).
Any hex numbers in this text are also ignored. An offset of zero is
indicative of starting a new packet, so a single text file with a series of
hexdumps can be converted into a packet capture with multiple packets.
Packets may be preceded by a timestamp. These are interpreted
according to the format given. If not the first packet is timestamped with
the current time the import takes place. Multiple packets are read in with
timestamps differing by one microsecond each. In general, short of these
restrictions, Wireshark is pretty liberal about reading in hexdumps and
has been tested with a variety of mangled outputs (including being

forwarded through email multiple times, with limited line wrap etc.)

There are a couple of other special features to note. Any line where the
first non-whitespace character is # will be ignored as a comment. Any line
beginning with #TEXT2PCAP is a directive and options can be inserted after
this command to be processed by Wireshark. Currently there are no
directives implemented. In the future these may be used to give more fine
grained control on the dump and the way it should be processed e.g.
timestamps, encapsulation type etc. Wireshark also allows the user to
read in dumps of application-level data, by inserting dummy L2, L3 and
L4 headers before each packet. The user can elect to insert Ethernet
headers, Ethernet and IP, or Ethernet, IP and UDP/TCP/SCTP headers
before each packet. This allows Wireshark or any other full-packet
decoder to handle these dumps.

5.5.1. The “Import from Hex Dump” dialog box

This dialog box lets you select a text file, containing a hex dump of
packet data, to be imported and set import parameters.

Figure 5.7. The “Import from Hex Dump” dialog

" Ml Wireshark: Import from

Input

Filename:

@ Hexadecimal
Offsets: () Octal
() Decimal

Date/Time Format:

|| [| Direction indication

Import

Encapsulation type: | Ethernet

- [¥| Dummy header

) Ethernet Ethertype (hex):

Protocol (dec):

Source port:

Destination port:

Tag:

i7) SCTP (DATA)

Max. frame length:

Help

Specific controls of this import dialog are split in two sections:

Input
Determine which input file has to be imported and how it is to be
interpreted.

Import
Determine how the data is to be imported.

The input parameters are as follows:

Filename / Browse
Enter the name of the text file to import. You can use Browse to
browse for a file.

Offsets
Select the radix of the offsets given in the text file to import. This is
usually hexadecimal, but decimal and octal are also supported.

Date/Time
Tick this checkbox if there are timestamps associated with the
frames in the text file to import you would like to use. Otherwise the
current time is used for timestamping the frames.

Format
This is the format specifier used to parse the timestamps in the text
file to import. It uses a simple syntax to describe the format of the
timestamps, using %H for hours, %M for minutes, %S for seconds,
etc. The straightforward HH:MM:SS format is covered by %T. For a
full definition of the syntax look for strptime(3).

The import parameters are as follows:

Encapsulation type
Here you can select which type of frames you are importing. This all
depends on from what type of medium the dump to import was
taken. It lists all types that Wireshark understands, so as to pass the
capture file contents to the right dissector.

Dummy header
When Ethernet encapsulation is selected you have to option to
prepend dummy headers to the frames to import. These headers can
provide artificial Ethernet, IP, UDP or TCP or SCTP headers and
SCTP data chunks. When selecting a type of dummy header the
applicable entries are enabled, others are grayed out and default
values are used.

Maximum frame length
You may not be interested in the full frames from the text file, just the
first part. Here you can define how much data from the start of the
frame you want to import. If you leave this open the maximum is set
to 65535 bytes.

Once all input and import parameters are setup click OK to start the
import. If your current data wasn’t saved before you will be asked to save

it first.

When completed there will be a new capture file loaded with the frames
imported from the text file.

5.6. File Sets

When using the "Multiple Files" option while doing a capture (see:
Section 4.11, “Capture files and file modes”), the capture data is spread
over several capture files, called a file set.

As it can become tedious to work with a file set by hand, Wireshark
provides some features to handle these file sets in a convenient way.

How does Wireshark detect the files of a file set?

A filename in a file set uses the format Prefix_Number_DateTimeSuffix
which might look something like test_00001_20060420183910.pcap. All files
of a file set share the same prefix (e.g. “test”) and suffix (e.g. “.pcap”) and
a varying middle part.

To find the files of a file set, Wireshark scans the directory where the
currently loaded file resides and checks for files matching the filename
pattern (prefix and suffix) of the currently loaded file.

This simple mechanism usually works well but has its drawbacks. If
several file sets were captured with the same prefix and suffix, Wireshark
will detect them as a single file set. If files were renamed or spread over
several directories the mechanism will fail to find all files of a set.

The following features in the File - File Set submenu are available to
work with file sets in a convenient way:

e The “List Files” dialog box will list the files Wireshark has recognized
as being part of the current file set.

e Next File closes the current and opens the next file in the file set.

¢ Previous File closes the current and opens the previous file in the file
set.

5.6.1. The “List Files” dialog box

Figure 5.8. The "List Files" dialog box

" Wireshark: 17 Files in Set

Filename Created Lask Modified Size
'@' beskl 00001 20050819181503.pcap! 2005.08,19 18:15:03 2005.08,19 15:15:05 1067 Bytes

() testl_00002_20050812181505, prap
() testl_00003_20050812181505, prap
() testl_00004_20050812181506, prap
() testl_00005_20050812181507. prap
() testl_00006_20050812181507. prap
() testl_00007_20050812181508, prap
() testl_00008_20050812181509, prap
() testl_00009_20050812181510,poap
() testl_00010_20050812181512, prap
() testl_00011_20050812181513. prap
() testl_00012_20050812181514,poap
() testl_00013_20050812181516,poap
() testl_00014_20050812181517.poap
() testl_00015_20050812181518, prap
() testl_00016_20050819181518. peap

() kestl 00017 _20050819181518.peap

... in directory: D ffileset

Each line contains information about a file of the file set:

e Filename the name of the file. If you click on the filename (or the
radio button left to it), the current file will be closed and the
corresponding capture file will be opened.

e Created the creation time of the file

e [ast Modified the last time the file was modified

e Size the size of the file

The last line will contain info about the currently used directory where all
of the files in the file set can be found.

The content of this dialog box is updated each time a capture file is
opened/closed.

The Close button will, well, close the dialog box.

5.7. Exporting data

Wireshark provides several ways and formats to export packet data. This
section describes general ways to export data from the main Wireshark
application. There are more specialized functions to export specific data
which are described elsewhere.

5.7.1. The “Export as Plain Text File” dialog box

Export packet data into a plain ASCII text file, much like the format used
to print packets.

Tip

If you would like to be able to import any previously
exported packets from a plain text file it is recommended
that you:

e Add the “Absolute date and time” column.

e Temporarily hide all other columns.
@ e Disable the Edit - Preferences - Protocols — Data
“Show not dissected data on new Packet Bytes
pane” preference. More details are provided in
Section 10.5, “Preferences”
Include the packet summary line.
Exclude column headings.
Exclude packet details.
Include the packet bytes.

Figure 5.9. The “Export as Plain Text File” dialog box

F ™
A e L e

Savein: || Packet Analysis Data ~ @2 E
T Name ’ Date modified Type Size
""‘-5‘ Mo items match your search.

Recent Places

Desktop

Libraries

Ay

Computer

N,
QE File name: Slow NFS -
Metwork

Save as type: ’F‘Iain tend (") v] [Cancel] :
Help
Packet Range Packet Fomat
. B Cophrc S = ved Packet summary line
6 Mpackets vE 9 [T Include column headings
& Sdedeipada 1 1 [Packet details:
Marked packets i i}
As displayed
First to last marked i} i]
() Range: l 0 0 Packet Bytes
Femove lgnored packets i} [T Each packet on a new pags
= 2|

e The “Export to file:” frame chooses the file to export the packet data
to.

e The “Packet Range” frame is described in Section 5.9, “The “Packet
Range” frame”.

e The “Packet Details” frame is described in Section 5.10, “The Packet
Format frame”.

5.7.2. The “Export as PostScript File” dialog box

Figure 5.10. The "Export as PostScript File" dialog box

u Wireshark: Export File
Savein: | | Packet Analysis Data x| * &k E
= MNarme ® Date moedified Type
Py .
. Mo items match your search.,
Recent Places

Desktop

Libraries

Computer

.

MNetwark d il k

File name: |S|0w NFS| j Save |
Save as type: |CSV (Comma Separated Values summary) I_“'.cs'ﬂ Cancel
Help
Packet Range
{* Captured { Displayed i

{* Al packets 11789 [
" Selected packet 1
~
~ [
" Range: 0 []
r

e Export to file: frame chooses the file to export the packet data to.

e The Packet Range frame is described in Section 5.9, “The “Packet
Range” frame”.

e The Packet Details frame is described in Section 5.10, “The Packet
Format frame”.

5.7.3. The "Export as CSV (Comma Separated Values) File" dialog
box

Export packet summary into CSV, used e.g. by spreadsheet programs to
im-/export data.

e Export to file: frame chooses the file to export the packet data to.
e The Packet Range frame is described in Section 5.9, “The “Packet
Range” frame”.

5.7.4. The "Export as C Arrays (packet bytes) file" dialog box

Export packet bytes into C arrays so you can import the stream data into
your own C program.

e Export to file: frame chooses the file to export the packet data to.
e The Packet Range frame is described in Section 5.9, “The “Packet
Range” frame”.

5.7.5. The "Export as PSML File" dialog box

Export packet data into PSML. This is an XML based format including
only the packet summary. The PSML file specification is available at:
http://www.nbee.org/doku.php?id=netpdl:psml_specification.

Figure 5.11. The "Export as PSML File" dialog box

u Wireshark: Export File @
Savein: | | Packet Analysis Data x| * &k E
= MNarme ® Date moedified Type
v Bt .
. Mo items match your search.,
Recent Places

Desktop

Libraries

Computer

w

MNetwark d k

File name: |S|0w NFS| j Save |
Save as type: |PSML (XML packet summary) {*psml) ﬂ Cancel
Help
Packet Range
{* Captured { Displayed i

{* Al packets 11789 [
" Selected packet 1
~
~ [
" Range: 0 []

-

http://www.nbee.org/doku.php?id=netpdl:psml_specification

e Export to file: frame chooses the file to export the packet data to.
e The Packet Range frame is described in Section 5.9, “The “Packet
Range” frame”.

There’s no such thing as a packet details frame for PSML export, as the
packet format is defined by the PSML specification.

5.7.6. The "Export as PDML File" dialog box

Export packet data into PDML. This is an XML based format including the
packet details. The PDML file specification is available at:
http://www.nbee.org/doku.php?id=netpdl:pdml_specification.

Note

The PDML specification is not officially released and

@ Wireshark’s implementation of it is still in an early beta
state, so please expect changes in future Wireshark
versions.

Figure 5.12. The "Export as PDML File" dialog box

http://www.nbee.org/doku.php?id=netpdl:pdml_specification

u Wireshark: Export File @

Savein: | | Packet Analysis Data x| * &k E

= MNarme ® Date moedified Type
e e

Recent Places

Desktop

Mo items match your search.,

Libraries

A

-

Computer

@

MNetwaork

4 T

File name: |S|0w NFS| j Save
=l

Save as type: | POML (¥ML packet detail) {*pdml) Cancel

Pl

Help

Packet Range
{* Captured { Displayed i
{* Al packets 11789 [
" Selected packet 1

-
= B

" Range: 0 []

-

e Export to file: frame chooses the file to export the packet data to.
e The Packet Range frame is described in Section 5.9, “The “Packet
Range” frame”.

There’s no such thing as a packet details frame for PDML export, as the
packet format is defined by the PDML specification.

5.7.7. The "Export selected packet bytes" dialog box

Export the bytes selected in the "Packet Bytes" pane into a raw binary
file.

Figure 5.13. The "Export Selected Packet Bytes" dialog box

“ Wireshark: Export Raw Data @
Savein: [| Packet Analysis Data ~| & @&k E
= MNarme . Date moedified Type Size
e Bt :
- Mo itemns match your search,
Recenrt Places
Desktop
m | |8
Libraries
Computer
w
Network
4 T 2
File: pame: |NFS bytes.dat| j Save
Saveastype: |Raw data (“bin. “.dat, “raw) | Cancel
Help
20 bytes of raw binary data will be written

e Name: the filename to export the packet data to.

e The Save in folder: field lets you select the folder to save to (from
some predefined folders).

e Browse for other folders provides a flexible way to choose a folder.

5.7.8. The "Export Objects" dialog box

This feature scans through HTTP streams in the currently open capture
file or running capture and takes reassembled objects such as HTML
documents, image files, executables and anything else that can be
transferred over HTTP and lets you save them to disk. If you have a
capture running, this list is automatically updated every few seconds with
any new objects seen. The saved objects can then be opened with the
proper viewer or executed in the case of executables (if it is for the same
platform you are running Wireshark on) without any further work on your

part. This feature is not available when using GTK2 versions below 2.4.

Figure 5.14. The "Export Objects" dialog box

Packet num | Hostname Contert Type |By’tes Filename

1545 www. wireshark.org tesdtyhtrml 8837 www.wireshark.org

1593 www. wireshark. org textjcss 4243 ws-lcss

1845 v, wireshark. org application/x-javascript 1185 commen.js

2488 www. wireshark.org imageipng 26763 front_screen.png

2582 www. wireshark. org imageipng 8783 wslogomedblusllz prg

2978 www. wireshark org imageipng 6525 wsiconinst20.png

2987 www. wireshark. org imageipng 158 cg_fade_bg.png

3071 wwww. wireshark. org imageipng 296 top_navbar_bg.png

2441 ads.wireshark.org imageigif 42 adlog. php?hannerid=128clientid= 2& zoneid= 0& source= front&block=0& cap

3525 www. google-analytics.com imagefgif 35 Sutrnac=UA-505389-2&utmice=__utrna% 3D87653150.554435287.1170449

[0

@ﬂelp X Qlose| Save As| Saveal

e Packet num: The packet number in which this object was found. In
some cases, there can be multiple objects in the same packet.

e Hostname: The hosthame of the server that sent the object as a
response to an HTTP request.

e Content Type: The HTTP content type of this object.

e Bytes: The size of this object in bytes.

e Filename: The final part of the URI (after the last slash). This is
typically a filename, but may be a long complex looking string, which
typically indicates that the file was received in response to a HTTP
POST request.

e Help: Opens this section in the user’s guide.

e Close: Closes this dialog.

e Save As: Saves the currently selected object as a filename you
specify. The default filename to save as is taken from the filename
column of the objects list.

e Save All: Saves all objects in the list using the filename from the
filename column. You will be asked what directory / folder to save
them in. If the filename is invalid for the operating system / file
system you are running Wireshark on, then an error will appear and
that object will not be saved (but all of the others will be).

5.8. Printing packets

To print packets, select the File - Print... menu item. When you do this
Wireshark pops up the “Print” dialog box as shown in Figure 5.15, “The
“Print” dialog box”.

5.8.1. The “Print” dialog box

Figure 5.15. The “Print” dialog box

Wireshark: Print

Prinker

{:} PostScripk

(] output ko file:

Packet Range Packet Format

|§aptured”§isplaved| Packet surmmary line
(=) all packets 11 Packet details:

() selected packet only 1 O all collapsed
(%) As displayed

() all expanded

") Specify a packet range: 0 [] Packet bytes

[] Each packet on a new page

aErint || xgancel |

The following fields are available in the Print dialog box: Printer

This field contains a pair of mutually exclusive radio buttons:

e Plain Text specifies that the packet print should be in plain text.

e PostScript specifies that the packet print process should use
PostScript to generate a better print output on PostScript aware
printers.

e QOutput to file: specifies that printing be done to a file, using the
flename entered in the field or selected with the browse button.

This field is where you enter the file to print to if you have
selected Print to a file, or you can click the button to browse the
filesystem. It is greyed out if Print to a file is not selected.

e Print command specifies that a command be used for printing.
Note!

These Print command fields are not available on
windows platforms.

This field specifies the command to use for printing. It is typically
1pr. You would change it to specify a particular queue if you
need to print to a queue other than the default. An example
might be:

$ 1lpr -Pmypostscript
This field is greyed out if Output to file: is checked above.

Packet Range
Select the packets to be printed, see Section 5.9, “The “Packet
Range” frame”

Packet Format
Select the output format of the packets to be printed. You can
choose, how each packet is printed, see Figure 5.17, “The “Packet
Format” frame”

5.9. The “Packet Range” frame

The packet range frame is a part of various output related dialog boxes. It
provides options to select which packets should be processed by the
output function.

Figure 5.16. The “Packet Range” frame

Packet Range

iZaptured || Displayed

(%) Al packets 120
() Selected packet only 1
() Specify a packet range: 0

If the Captured button is set (default), all packets from the selected rule
will be processed. If the Displayed button is set, only the currently
displayed packets are taken into account to the selected rule.

All packets will process all packets.

Selected packet only process only the selected packet.

Marked packets only process only the marked packets.

From first to last marked packet process the packets from the first to
the last marked one.

e Specify a packet range process a user specified range of packets,
e.g. specifying 5,10-15,20- will process the packet number five, the
packets from packet number ten to fifteen (inclusive) and every
packet from number twenty to the end of the capture.

5.10. The Packet Format frame

The packet format frame is a part of various output related dialog boxes.
It provides options to select which parts of a packet should be used for
the output function.

Figure 5.17. The “Packet Format” frame

Fackek Format

v | Packet summary line

v | Packet dekails:

) Al collapsed
() As displayed

0 Al expanded

Packet byvtbes

Each packet on a new page

Packet summary line enable the output of the summary line, just as
in the “Packet List” pane.

Packet details enable the output of the packet details tree.

All collapsed the info from the “Packet Details” pane in “all collapsed”
state.

As displayed the info from the “Packet Details” pane in the current
state.

All expanded the info from the “Packet Details” pane in “all
expanded” state.

Packet bytes enable the output of the packet bytes, just as in the
“Packet Bytes” pane.

Each packet on a new page put each packet on a separate page
(e.g. when saving/printing to a text file, this will put a form feed
character between the packets).

Chapter 6. Working with captured packets
Table of Contents

6.1. Viewing packets you have captured
6.2. Pop-up menus
6.2.1. Pop-up menu of the “Packet List” column header
6.2.2. Pop-up menu of the “Packet List” pane
6.2.3. Pop-up menu of the “Packet Details” pane
6.3. Filtering packets while viewing
6.4. Building display filter expressions
6.4.1. Display filter fields
6.4.2. Comparing values
6.4.3. Combining expressions
6.4.4. Substring Operator
6.4.5. Membership Operator.
6.4.6. A Common Mistake
6.5. The “Filter Expression” dialog box
6.6. Defining and saving filters
6.7. Defining and saving filter macros
6.8. Finding packets
6.8.1. The “Find Packet” dialog box
6.8.2. The “Find Next” command
6.8.3. The “Find Previous” command
6.9. Go to a specific packet
6.9.1. The “Go Back” command
6.9.2. The “Go Forward” command
6.9.3. The “Go to Packet” dialog box
6.9.4. The “Go to Corresponding Packet” command
6.9.5. The “Go to First Packet” command
6.9.6. The “Go to Last Packet” command
6.10. Marking packets
6.11. Ignoring packets
6.12. Time display formats and time references
6.12.1. Packet time referencing

6.1. Viewing packets you have captured

Once you have captured some packets or you have opened a previously
saved capture file, you can view the packets that are displayed in the
packet list pane by simply clicking on a packet in the packet list pane,
which will bring up the selected packet in the tree view and byte view
panes.

You can then expand any part of the tree to view detailed information
about each protocol in each packet. Clicking on an item in the tree will
highlight the corresponding bytes in the byte view. An example with a
TCP packet selected is shown in Figure 6.1, “Wireshark with a TCP
packet selected for viewing”. It also has the Acknowledgment number in
the TCP header selected, which shows up in the byte view as the
selected bytes.

Figure 6.1. Wireshark with a TCP packet selected for viewing

test. pcap - Wireshark EI@IE| .

File Edit View Go <Capture Analvze Statistics Help

E @ x%&8/8«»»F L BE &a
E]Eilter:l v o Expression... %.glear o apply

Mo, - Time Source Destination Protocal | Info

LF Lecdudun LFes LUl LFoadUUaWe e

i UL & JAZ¢ M| SEY—4 RLR- LW W

31 1.2668828 192.168.0.1 192.168.0.2 5000 [PSH, ACK] Seg=1 Ack=
32 1.266819 192.168.0.2 192.168.0.1 TCP 5000 » 1025 [PSH, ACK] Seg=1 Ack=
33 1.267850 192.168.0.1 192.168.0.2 TCP 1025 = 5000 [ACK] Seq=510 Ack=20
34 1.274361 192.168.0.1 192.168.0.2 TCP http = 3197 [PSH, ACK] Seg=1 Ack=
35 1.274447 192.168.0.2 192.168.0.1 http

1.275018 102.168.0.2 102.168.0.1 187 » http
38 1.276019 192.168.0.1 152.168.0. 2 3157 [FIN, ACK] Seq=26645

40 1.282181 192.168.0.1 192.168.0.2 5000 [FIN, ACK] 2eq=510 Ac

>

Frame 36 (60 bytes on wire, 60 hytes captured) .
Ethernet II, Src: Metgear_2d:75:%a (00:09:5b:2d:75:9a), Dst: 192.168.0.2 (00:0b:5d:20:cd:02)
Internet Protocol, Src: 192.168.0.1 {192.168.0.1), Dst: 192.168.0.2 (192.168.0.2)
| Transmission Control Protocol, Src Port: http (800, Dst Port: 3197 (3197), Seq: 20, Ack: 190, Len: O
Source port: http (80)
Destination port: 3197 (3197)
Sequence number: 20 (relative seguence number)
Acknowl edgement number: 190 ({relative ack number)
Header Tenagth: 20 bytes b
£ >

Qo0 00 Ob 5d 20 cd 02 00 0% Sh 2d 75 %a 08 00 45 0D e T T
010 OO 28 00 84 00 00 40 06 T8 8 b aS 00 01 ol af F e e T e
020 00 02 00 50 Oc 7d 00 OO0 68 14 f= dd 9b

030 Oc 00 93 ca 00 O0 OO0 OO OO0 OO0 OO0 00

DEEE|S

lﬂ.cknowledgement number (kcp.ack), 4 bytes [Fit200: 120m:0

You can also select and view packets the same way while Wireshark is

capturing if you selected “Update list of packets in real time” in the
“Capture Preferences” dialog box.

In addition you can view individual packets in a separate window as
shown in Figure 6.2, “Viewing a packet in a separate window”. You can
do this by double-clicking on an item in the packet list or by selecting the
packet in which you are interested in the packet list pane and selecting
View - Show Packet in New Window. This allows you to easily compare
two or more packets, even across multiple files.

Figure 6.2. Viewing a packet in a separate window

A Wireshark - Packet 2 - demo = =

> Frame 2: 68 bytes on wire (488 bits), 60 bytes captured (480 bits) "
4 Ethernet II, Src: Standard_68:8b:fb (8@:e0:29:68:8b:fb), Dst: 3com 1b:87:fa (80:20:af:1b:087:fa)
4 Destination: 3com_lb:@7:fa (@8:28:af:1b:87:fa)
Address: 3com_lb:87:fa (@@:28:af:1b:07:fa)
sans aaBe waas ssss ssas s.a. = LG bit: Globally unique address (factory default)
....... @ vune wuen w... = IG bit: Individual address (unicast)
4 Spurce: Standard_68:8b:fh (80:20:29:68:8b:7h)
Address: Standard_68:8b:fb (88:e08:29:68:8b:Tb)
veas 2aBe wiun sen. wew. = LG bit: Globally unique address (factory default)
....... B wuss sass wass sae. = IG bit: Individual address (unicast)
Type: ARP (@x8386)
Padding: £10181618181016161818101610181616161
4 Address Resolution Protocol (reply)
Hardware type: Ethernet (1)
Protocol type: IP (@x@see)
Hardware size: 6

Protocol size: 4 W
©8 28 af 1b 87 fa @@ e@ 29 68 8b Th 88 @6 @0 61 BV i i Yoo
B3 99 96 B4 99 92 00 e@ 29 68 8b fb cP a3 @@ BL e

88 28 af 1b 87 fa c@ a8 @@ 82 @1 @1 &1 @l &1 &l i i o e
91 01 91 V1 91 V1 81 V1 V1 81 V1 V1 2 = 000 09|00 .eeeins e

No.: 2 = Time: 0000330 - Source: Standard 68:8b:4D + Destination: 3rom_1b:07:/3 « Protocol: ARP « Length: &0 « Infor 192.168.0.1 i ar (hall:29:68:8b:(b

Along with double-clicking the packet list and using the main menu there
are a number of other ways to open a new packet window:

e Hold down the shift key and double-click on a frame link in the
packet details.

e From Table 6.2, “The menu items of the “Packet List” pop-up menu”.

e From Table 6.3, “The menu items of the “Packet Details” pop-up
menu”.

6.2. Pop-up menus

You can bring up a pop-up menu over either the “Packet List”, its column
header, or “Packet Details” pane by clicking your right mouse button at
the corresponding pane.

6.2.1. Pop-up menu of the “Packet List” column header

Figure 6.3. Pop-up menu of the “Packet List” column header

74| test.cap - Wireshark E]@

File Edit Yew Go Capture Analyze Statistics Telephony Tools Help

B BEERXSE Ge»aF I (EEI QAQQB @EBX B
Filter: ¥ Expression... Clear Apply
Mo, Tirmne Source Destination ’
1 0.000000 Fujitsu_20:cd:02 Broadca; = SortAscendng ruitous ARP for 192.168.0.2 (F
2 0,299139% 192.168.0.1 152,168 &, SortDescending Boguery NESTAT *<00-<00-<005<
3 0.299214 92.168.0.2 16 68 Mo Sarting fnation unreachable (Port un
4 1.025659 192.168.0.2 nembership Report / Join group
5 1.044366 192.168.0.2 Align Left {default) ndard gquery SRV _Tdap. _tcp. nb
61.048652 152.168.0.2 #lign Center EARCH * HTTR/1.1
71.050784 192.168.0.2 align Right ndard guery S0A nblO061d. wwi0:
81.055053 1092.168.0.1 51,1 200 OK
G 1.082038 1092.168.0.2 42 Column Preferences. . istration ME NELOOS1D<00>
AL AL Al Al kG) : : ndard guery A proxycont. wwiod,
i I =R = P N 1= S O =] Resize Column SUYUREER U TSYNT SEGSE WARSEE 5
12 1.227282 192.168.0.1 192.168 |A| Rename Colurnn Title. .. 1> ncu-2 [SYM, ACK] Seq=0 Achs
Displayed Columns 4 Y
Frame 11: &2 hytes on wire (496 bits), &2 Hide: Calumn =]
Ethernet II, src: Fujitsu_20:cd:02 (OO:Ob:ﬁg Famaie i jear_2d:75:9a (00:09:5b:2d:75
+ Internet Protocol, src: 192.168.0.2 (192.1bcvave oy oo coevm oo J.1 (192.168.0.1)

Transmission Control Protocol, Src Port: ncu-2 (3196), Dst Port: http (80), Seq: O, Len: O
Source port: ncu-2 (3196)

pestination port: http (80)

[stream dndex: 5]

seguence number: © (relative sequence number)

Header length: 28 bytes

Flags: 0x02 (SYN)

m

window size: 64240 v
>
0000 00 0% 5h 2d 75 9a 00 Ob 5d 20 <d 02 O3 00 45 00 PR BT) E e =8
0010 00 30 18 45 40 00 80 06 61 2c cO aB 00 02 cO a8 LOUHBL L a, ...
0020 00 01 O¢ Fc 00 50 3¢ 36 95 f8 00 00 00 00 70 02 ivivi | CPEO i P

0030 fa f0 27 e0 00 00 02 04 05 b4 01 01 04 02 . .o ...

9 File: "C:ftest.cap” 14 KB 00:00:02 Packets: 120 Displayed: 120 Marked: 0 Load time: 0:00.... | Profile: Default

The following table gives an overview of which functions are available in
this header, where to find the corresponding function in the main menu,
and a short description of each item.

Table 6.1. The menu items of the “Packet List” column header pop-
up menu

“ "Identical || H

Column Title

header.

Item to main Description
menu’s
item:
Sort Sort the packet list in ascending order based
Ascending on this column.
Sort Sort the packet list in descending order
Descending based on this column.
No Sort Remove sorting order based on this column.
Align Left || ||Set left alignment of the values in this
column.
Align Center || ||Set center alignment of the values in this
column.
Align Right Set right alignment of the values in this
column.
Column Open the Preferences dialog box on the
Preferences... column tab.
Resize Resize the column to fit the values.
Column
Rename || ||Allows you to change the title of the column
| |

Displayed

Column .
\View

This menu items folds out with a list of all
configured columns. These columns can
now be shown or hidden in the packet list.

Hide Column

packet list.

Remove
Column

Allows you to remove the column from the
packet list.

|AIIOWS you to hide the column from the

6.2.2. Pop-up menu of the “Packet List” pane

Figure 6.4. Pop-up menu of the “Packet List” pane

“ test.cap - Wireshark

/okd

Frame 11: &2 bytes on wire (456 bits),
Ethernet II, src: Fujitsu_20:cd:02 (00
+# Internet Protocol, sr¢: 192.168.0.2 (1

O File: "C:ftest.cap” 14 KB 00:00:02

File Edit Yew Go Capture Analyze Statistics Telephony Tools Help

B BEEXEE Qe+ TLIEE QAQQD @XM X B

Filker: ¥ Expression... Clear Apply

Ma. Tirne Source Destination Protocal | Info
1 0.000000 Fujitsu_20:cd:02 Broadcast ARP Gratuitous arP for 192.168.0.2 (F
2 G A 1 1 a MNENS Mame guery MNBSTAT *<00x<00x<00x<(
E i 2 1 p] Destination unreachable (Port un
4 1.025659 192.168.0.2 224.0.0.22 IGMP V3 Membership Report Join groug
51.044366 192.168.0.2 152.168.0.1 DMS Standard gquery SRV _ldap. _tcp. nbe
6 1.048652 1092.168.0.2 2358.255.255.250 SSDRP M-SEARCH * HTTP/1.1
F1.050784 1092.168.0.2 152.168.0.1 DMNS Standard guery S0A nbl0O061d. wwi0:
81.055053 1092.168.0.1 192.168.0.2 SSDFP HTTR/1.1 200 OK
G 1.082038 1092.168.0.2 1592.168.0.255 MNENS Registration NE NELOOGLD<0O0>
T TR R e s 192.168.0.1 DNS standard guery A proxycont.wwiod,
AL AL ZziEal e ALER SLEE S) 2 1 p— - ==u-2 > http [S¥N] Seq=0 win=642:
17 1.227282 162.168.0.1 19| MarkPacket (togle) tp > ncu-2 [SYN, ACK] Seq=0 Aclw

- i 3
= Transmission control Protocol, Sre Por Applyas':'lt_er . Len: @
Source port: ncu-2 (3196 Prepare a Filter 4 Mot Selected
pestination port: http (80) Conversation Filber 4 ... and Selecked
[stream index: 5] Colorize Conversation 4 +oo0r Selected
sequence number: 0 (relative sequ -+ and not Selected
Header length: 28 bytes Follow TCP Strearm ... of ot Selecked
+# Flags: O0x02 (SYN)
window size: 64240 v
>
Copy 13
0000 00 09 5h 2d 75 Ga 00 Ob 5d 20 cd (1 FE;
0010 00 30 18 48 40 00 80 06 61 2c cO { G} Decode As... TR,
0020 00 01 Oc FC 00 50 3¢ 36 95 8 00 20 I s P
0030 fa fo 27 e0 00 00 02 04 05 b4 o1 (= Prinke L

Packets: 120 Displayed: 120 Marked: 0 Load time: 0:00, ...

Ignore Packet (toggle) 5

Set Time Reference {toggle)
5]

fgear_2d:75:9a (00:09:5h:2d:75

Manually Resolve Address

Show Packet in New Window

Profile: Default

The following table gives an overview of which functions are available in
this pane, where to find the corresponding function in the main menu,
and a short description of each item.

Table 6.2. The menu items of the “Packet List” pop-up menu

Identical
Item to ma!n Description
menu’s
item:
Mark Packet Edit Mark/unmark a packet.
(toggle)
:gg&rgt Edit Ignore or inspect this packet while dissecting
the capture file.
(toggle)
Set Time
Reference [Edit Set/reset a time reference.
(toggle)
'\R/I:;';?/gy Allows you to enter a name to resolve for the
selected address.
Address
Apply as Prepare and apply a display filter based on the
. Analyze :
Filter currently selected item.
P_repare a Analyze Prepare a display filter based on the currently
Filter selected item.

This menu item applies a display filter with the
address information from the selected packet.
E.g. the IP menu entry will set a filter to show

I(Zlicl?[g\r/ersatlon the traffic between the two IP addresses of the
current packet. XXX - add a new section
describing this better.

: This menu item uses a display filter with the

Colorize) :

C : address information from the selected packet to

onversation : .
build a new colorizing rule.
SCTP Allows you to analyze and prepare a filter for
this SCTP association.
Follow TCP Allows you to view all the data on a TCP stream
Analyze :

Stream between a pair of nodes.

Follow UDP Allows you to view all the data on a UDP
Analyze :

Stream datagram stream between a pair of nodes.

Follow SSL Analvze Same as “Follow TCP Stream” but for SSL. XXX

Stream y - add a new section describing this better.

ggr%yr;ar Copy the summary fields as displayed to the

y clipboard, as tab-separated text.

(Text)

Copy/ Copy the summary fields as displayed to the

Summary

(CSV) clipboard, as comma-separated text.

Copy/ As
Filter

Prepare a display filter based on the currently
selected item and copy that filter to the
clipboard.

Copy/ Bytes
(Offset Hex
Text)

Copy the packet bytes to the clipboard in
hexdump-like format.

Copy/ Bytes
(Offset Hex)

hexdump-like format, but without the text
portion.

(Printable
Text Only)

Copy the packet bytes to the clipboard as ASCII
text, excluding non-printable characters.

Copy/ Bytes
(Hex
Stream)

Copy the packet bytes to the clipboard as an
unpunctuated list of hex digits.

Copy/ Bytes
(Binary

Copy/ Bytes |
Stream) |

Copy the packet bytes to the clipboard as raw
binary. The data is stored in the clipboard as

||Copy the packet bytes to the clipboard in
||MIMEtype “application/octet-stream”.

Decode As...||Analyze

Change or apply a new relation between two
dissectors.

Print...

Print packets.

Show Packet
in New

Window \View Display the selected packet in a new window.

6.2.3. Pop-up menu of the “Packet Details” pane

Figure 6.5. Pop-up menu of the “Packet Details” pane

“ test.cap - Wireshark E]@
File Edit Yew Go Capture Analyze Statistics Telephony Tools Help
BEe BEEXEE Qe+ TLIEE QAQQD @XM X B
Filker: ¥ Fuwrraccion Claze Anply
Expand Subtrees
Ma, Time Saurce Desting Expand Al
1 0.000000 Fujitsu_20:cd:02 Broal Collapse Al tous arP for 192.168.0.2 (F
2 0.299139 L168.0.1 192.1 juery MESTAT *<00zx<00:<00x<(
ER 4 192.1 2 192,] Apply as Column ation unreachable (Port un
4 1.025659 dL@E @ 2 224 .4 . ! e N groug
5 1.044366 .168.0.2 e Pl el | Selected tcp. nbi
6 1.048652 16%.0.2 230,] Prepare a Filter 4 Mot Selected 1
7 1.0507584 R 167 Colorize with Filker 4 ... and Selected A wwr0e
51.055053 A AL 1627 Follow TCP Stream o or Selected
31.082038 .168.0.2 152. -+ and nat Selected 0>
10 1.131945 b [y 2 152.1 +. 0r not Selected w04
11 1.226156 SALEE G [2 1592.2 Copy y 2 http [S¥N] Seq=0 win=642:
i e Ot | A i R R) i 1592.1 Export Selected Packet Bytes... - ncu-2 [SYM, ACK] Seqg=0 A;Iv
Frame 11: 62 hytes on wire (496 hits), | @ Wik Protocol Page
Ethernet II, Src: Fujitsu_20:cd:02 (00:1 @ Fiter Field Reference r_2d:75:9a (00:09:5h:2d:75
+# Internet Protocol, sr¢: 192.168.0.2 (19] (1%92.168.0.1)
- Transmission Control Protocol, Src Port Prakacal Preferences v Tp (BO), Seq: O, Len: O
Source port: ncu-2 (3196)
pestination port: http (80) %8 Decode As...
[stream index: 5] . + Disahle Prokocal...
seguence number: © (relative sequel Resolve Name
Header Tlength: 28 bytes
+ Flags: 0x02 (SYN)
window size: 64240 v
>
Qo000 00 09 5b 2d 75 9a 00 0b S5d 20 <d 02 08 00 45 00 =t el spriEs
0010 00 30 18 48 40 00 80 06 61 2c cO a8 00 02 cO a8 LOUHE. .. A, ...
0020 00 01 O¢ Fc 00 50 3¢ 36 95 f8 00 00 00 00 FO 02 i | CPEO i B.
0030 fa fo 27 e0 00 00 02 04 05 hd 01 01 04 02 ioge Bhenenenen Snenenenene
O Flags (tcp.flags), 2 bytes Packets: 120 Displayed: 120 Marked: 0 Load time: 0:00.... | Profile: Default

The following table gives an overview of which functions are available in
this pane, where to find the corresponding function in the main menu,
and a short description of each item.

Table 6.3. The menu items of the “Packet Details” pop-up menu

|| "Identical" ||

Item to main |[[pescription
menu’s
item:
Expand View Expand the currently selected subtree.
Subtrees
Collapse View Collapse the currently selected subtree.
Subtrees
Expand Al View Expand all subtrees in all packets in the
capture.
Wireshark keeps a list of all the protocol
subtrees that are expanded, and uses it to
Collapse Al IView ensure that the correct subtrees are expanded
P when you display a packet. This menu item
collapses the tree view of all packets in the
capture list.
Apply as Use the selected protocol item to create a new
Column column in the packet list.

Prepare and apply a display filter based on the

Apply as Filter fAnalyze currently selected item.

Prepare a
Filter

Prepare a display filter based on the currently

Analyze selected item.

This menu item uses a display filter with the

Colorize with information from the selected protocol item to

Filter

build a new colorizing rule.

Follow TCP Allows you to view all the data on a TCP

Stream Analyze (stream between a pair of nodes.

Follow UDP A Allows you to view all the data on a UDP
nalyze :

Stream datagram stream between a pair of nodes.

Follow SSL Analvze Same as “Follow TCP Stream” but for SSL.

Stream y XXX - add a new section describing this better.

Copy/ , Copy the displayed text of the selected field to

_ Edit -
Description the system clipboard.
Copy/ , Copy the name of the selected field to the
: Edit ,
Fieldname system clipboard.
Copy/ Value ||Edit Copy the value of the selected field to the

system clipboard.

Copy/ As Filter||Edit

Prepare a display filter based on the currently
selected item and copy it to the clipboard.

Copy/ Bytes
(Offset Hex
Text)

Copy the packet bytes to the clipboard in
hexdump-like format; similar to the Packet List
Pane command, but copies only the bytes
relevant to the selected part of the tree (the
bytes selected in the Packet Bytes Pane).

Copy/ Bytes
(Offset Hex)

Copy the packet bytes to the clipboard in
hexdump-like format, but without the text
portion; similar to the Packet List Pane
command, but copies only the bytes relevant
to the selected part of the tree (the bytes
selected in the Packet Bytes Pane).

Copy/ Bytes
(Printable Text
Only)

Copy the packet bytes to the clipboard as
ASCII text, excluding non-printable characters;
similar to the Packet List Pane command, but
copies only the bytes relevant to the selected
part of the tree (the bytes selected in the
Packet Bytes Pane).

Copy/ Bytes
(Hex Stream)

unpunctuated list of hex digits; similar to the
Packet List Pane command, but copies only
the bytes relevant to the selected part of the
tree (the bytes selected in the Packet Bytes
Pane).

Copy/ Bytes

Copy the packet bytes to the clipboard as raw
binary; similar to the Packet List Pane
command, but copies only the bytes relevant

(Binary to the selected part of the tree (the bytes

Stream) selected in the Packet Bytes Pane). The data
Is stored in the clipboard as MIME-type
“application/octet-stream”.

g)e(li)eoc:rtted _ This menu item is the same as the File menu

Packet File item of the same name. It allows you to export

Bytes...

Copy the packet bytes to the clipboard as an
“raw packet bytes to a binary file.

preferences can be found in Figure 10.7, “The
preferences dialog box”.

\Wiki Protocol Show the wiki page corresponding to the
Page currently selected protocol in your web
browser.
Filter Eield Show the fl[ter field reference web page
corresponding to the currently selected
Reference :
protocol in your web browser.
The menu item takes you to the properties
dialog and selects the page corresponding to
Protocol the protocol if there are properties associated
Preferences... with the highlighted field. More information on

Change or apply a new relation between two

Decode As... [fAnalyze dissectors.

Allows you to temporarily disable a protocol
dissector, which may be blocking the
legitimate dissector.

Disable
Protocol

Resolve NamelfView the selected packet, but NOT every packet in

the capture.

If the selected field has a corresponding

Goto acket, go to it. Corresponding packets will
Corresponding[Go P » g : p gp -
Packet usually be a request/response packet pair or

such.

|Causes a name resolution to be performed for

6.3. Filtering packets while viewing

Wireshark has two filtering languages: One used when capturing
packets, and one used when displaying packets. In this section we
explore that second type of filter: Display filters. The first one has already
been dealt with in Section 4.13, “Filtering while capturing”.

Display filters allow you to concentrate on the packets you are interested
in while hiding the currently uninteresting ones. They allow you to select
packets by:

Protocol

The presence of a field

The values of fields

A comparison between fields
... and a lot more!

To select packets based on protocol type, simply type the protocol in
which you are interested in the Filter: field in the filter toolbar of the
Wireshark window and press enter to initiate the filter. Figure 6.6,
“Filtering on the TCP protocol” shows an example of what happens when
you type tcp in the filter field.

Note

@AII protocol and field names are entered in lowercase.
Also, don't forget to press enter after entering the filter
expression.

Figure 6.6. Filtering on the TCP protocol

°! test.pcap - Wireshark

File Edit View Go <Capture Analvze Statistics Help

B W @ pP@E x % a8 R« o7 8 |BE &Aa
Filter: |tcp ¥ Expression... Clear gpply
A

Ma. - Time Source Diestination Protocal | Info
13
192,168,

J2.16
192,18
192.168.0.
192.168.0.
192.168.0.

0.l tp |>
95 [5
TCP 3196 5 http [ACK] Seq=1 Ack=1 Win
HTTP SUBSCRIBE fupnp/service/Layer3For
TCP http » 3196 [ACK] Seq=1 Ack=256 W

e dk.

13 1.227325

14 1.227451 192,168,
15 1.225309 192,168,

1025 » 5000 [5YN] Seq=0 Len=0 M35
TCP 5000 » 1025 [S¥N, ACK] Seq=0 Ack=
HTTP HTTP/1.0 200 OK

192.168.0.
192.168.0.

(ol Ak
0.2
0l 2
(03l
17 1.248355 192.168.0.1
18 1.2458391 192.168.0.2
19 1.250171 192.168.0.1 192.168.0.
20 1.2580285 192.168.0.2 192.168.0.
{0 1L
[
0.1
{0k
0.2
(0 3,
[0l &

(ERNETN RN] L

TCP 3196 » http [FIN, ACK] Seq=256 Ac
71 1.250810 192.166.0. 192.166.0. TCP http » 3196 [FIN, ACK] Seq=114 Ac
22 1.250842 192.168.0. 192.166.0. TCP 3196 » http [ACK] Seq=257 Ack=115
23 1.251868 102, 168.0. 192.168.0. TCP 1025 » 5000 [ACK] Segq=1 Ack=1 Win
24 1.252826 192, 168.0. 102, 168.0. TCP http » 3196 [FIN, ACK] Seq=2&611
25 1.253323 192.168.0. 192.168.0. TCP 3197 » http [SYN] Seq=0 Len=0 M55
26 1.254502 192.168.0. 192, 166.0. TCP http » 3197 [S¥N, ACK] Seq=0 Ack=
27 1.254532 192.166.0. 192.166.0. TCP 3197 » http [ACK] Seq=1 Ack=1 Win +

b4

) Frame 11 (62 bytes on wire, 62 bytes captured)

Ethernet II, Src: 192.168.0.2 (00:0b:5d:20:cd:02), Dst: Metgear_2d:75:9a (00:09:5b:2d:75:9a)
Internet Protocol, Src: 192.168.0.2 (192.168.0.2), Dst: 192.1628.0.1 {192.168.0.1)

| Transmission Control Protocol, Src Port: 3196 (31963, Dst Port: http (80), Seq: O, Len: O

FEREE G

000 0D 09 5b 2d 75 Sa 00 Ob 5d 20 cd 02 08 00 45 OO) T N =
010 00 30 18 48 40 00 80 06 61 2c cO al 00 02 cO af L P
020 00 01 Oc 7c 00 50 3c 36 95 8 00 OO0 00 00 70 O2 cen|PeB Ll p.
030 fa fO 27 o0 00 0D 02 04 0S5 b4 0L O1 04 02 S s v iR tete

|File: "Du\test.pcap” 14 KB 00:00:02 P: 120 v 103 M; 0 [Expert: Error]

As you might have noticed, only packets of the TCP protocol are
displayed now (e.g. packets 1-10 are hidden). The packet numbering will
remain as before, so the first packet shown is now packet number 11.

Note

@When using a display filter, all packets remain in the
capture file. The display filter only changes the display of
the capture file but not its content!

You can filter on any protocol that Wireshark understands. You can also
filter on any field that a dissector adds to the tree view, but only if the
dissector has added an abbreviation for the field. A list of such fields is
available in Wireshark in the Add Expression... dialog box. You can find
more information on the Add Expression... dialog box in Section 6.5,
“The “Filter Expression” dialog box”.

For example, to narrow the packet list pane down to only those packets

to or from the IP address 192.168.0.1, use ip.addr==192.168.0.1.
Note

To remove the filter, click on the Clear button to the right
of the filter field.

6.4. Building display filter expressions

Wireshark provides a simple but powerful display filter language that
allows you to build quite complex filter expressions. You can compare
values in packets as well as combine expressions into more specific
expressions. The following sections provide more information on doing
this.

Tip
@ You will find a lot of Display Filter examples at the

Wireshark Wiki Display Filter page at:
https://wiki.wireshark.org/DisplayFilters.

6.4.1. Display filter fields

Every field in the packet details pane can be used as a filter string, this
will result in showing only the packets where this field exists. For
example: the filter string: tcp will show all packets containing the tcp
protocol.

There is a complete list of all filter fields available through the menu item
Help - Supported Protocols in the page “Display Filter Fields” of the
“Supported Protocols” dialog.

6.4.2. Comparing values

You can build display filters that compare values using a number of
different comparison operators. They are shown in Table 6.4, “Display
Filter comparison operators”.

Tip

@ You can use English and C-like terms in the same way,
they can even be mixed in a filter string.

Table 6.4. Display Filter comparison operators

https://wiki.wireshark.org/DisplayFilters

English Description and example

eq Equal. ip.src==10.0.0.5

ne Not equal. ip.src!=10.0.0.5

gt Greater than. frame.len > 10

Less than. frame.len < 128

ge
le <= [[lLess than or equal to. frame.len <= 0x20

- Protocol, field or slice contains a value. sip.To
contains contains "al1762"
matches [~ [[Protocol or text field match Perl regualar expression.

|Greater than or equal to. frame.len ge 0x100
|http.host matches "acme\. (org|com|net)"

bitwise_andf& [[Compare bit field value. tcp.flags & 0x062

In addition, all protocol fields have a type. Display Filter Field Types
provides a list of the types and example of how to express them.

Display Filter Field Types

Unsigned integer

Can be 8, 16, 24, 32, or 64 bits. You can express integers in
decimal, octal, or hexadecimal. The following display filters are
equivalent:

ip.len le 1500
ip.len le 02734

ip.len le 0x436

Signed integer
Can be 8, 16, 24, 32, or 64 bits. As with unsigned integers you can
use decimal, octal, or hexadecimal.

Boolean

A boolean field is present in the protocol decode only if its value is
true. For example, tcp.flags.syn is present, and thus true, only if the
SYN flag is present in a TCP segment header.

The filter expression +tcp.flags.syn+ will select only those ¢
this flag exists, that is, TCP segments where the segment heade
SYN flag. Similarly, to find source-routed token ring packets,
expression of +tr.sr+.

Ethernet address

6 bytes separated by a colon (:), dot (.) or dash (-) with one or two
bytes between separators:

eth.dst == ff:ff:ff:ff:ff:ff
eth.dst == ff-ff-ff-ff-ff-ff
eth.dst == ffff.ffff.ffff

IPv4 address

ip.addr == 192.168.0.1

Classless InterDomain Routing (CIDR) notation can be used to tec
an IPv4 address is in a certain subnet. For example, this disple
filter will find all packets in the 129.111 Class-B network:

ip.addr == 129.111.0.0/16

IPv6 address
ipv6.addr == ::1
As with IPv4 addresses, IPv6 addresses can match a subnet.

Text string
http.request.uri == "https://www.wireshark.org/"

udp contains 81:60:03

The example above match packets that contains the 3-byte sequence
0x81, 0x60, 0x03 anywhere in the UDP header or payload.

sip.To contains "al1762"

Above example match packets where SIP To-header contains the string
"al762" anywhere in the header.

http.host matches "acme\.(org|com|net)"

The example above match HTTP packets where the HOST header
contains acme.org or acme.com or acme.net. Note: Wireshark needs to
be built with libpcre in order to be able to use the matches resp. ~
operator.

tcp.flags & 0x02

That expression will match all packets that contain a "tcp.flags" field with
the 0x02 bit, i.e. the SYN bit, set.

6.4.3. Combining expressions

You can combine filter expressions in Wireshark using the logical
operators shown in Table 6.5, “Display Filter Logical Operations”

Table 6.5. Display Filter Logical Operations

English like

Description and example

and “&& Logical AND. ip.src==10.0.0.5 and tcp.flags.fin

Il I
or “ll Logical OR. ip.scr==10.0.0.5 or ip.src==192.1.1.1
or AA ||Logica| XOR. tr.dst[0:3] == 0.6.29 xor tr.src[0:3]
== 0.6.29
not “' “Logical NOT. not 1llc
[...] “ “See “Substring Operator” below.
in “ “See “Membership Operator” below.

6.4.4. Substring Operator

Wireshark allows you to select subsequences of a sequence in rather
elaborate ways. After a label you can place a pair of brackets []
containing a comma separated list of range specifiers.

eth.src[0:3] == 00:00:83

The example above uses the n:m format to specify a single range. In this
case n is the beginning offset and m is the length of the range being
specified.

eth.src[1-2] == 00:83

The example above uses the n-m format to specify a single range. In this
case n is the beginning offset and m is the ending offset.

eth.src[:4] == 00:00:83:00

The example above uses the :m format, which takes everything from the
beginning of a sequence to offset m. It is equivalent to 0:m

eth.src[4:] == 20:20

The example above uses the n: format, which takes everything from
offset n to the end of the sequence.

eth.src[2] == 83

The example above uses the n format to specify a single range. In this
case the element in the sequence at offset n is selected. This is
equivalent to n:1.

eth.src[0:3,1-2,:4,4:,2] ==
00:00:83:00:83:00:00:83:00:20:20:83

Wireshark allows you to string together single ranges in a comma
separated list to form compound ranges as shown above.

6.4.5. Membership Operator.

Wireshark allows you to test a field for membership in a set of values or
fields. After the field name, use the in operator followed by the set items
surrounded by braces {}.

tcp.port in {80 443 8080}

This can be considered a shortcut operator, as the previous expression
could have been expressed as:

tcp.port == 80 || tcp.port == 443 || tcp.port == 8080
6.4.6. A Common Mistake

Using the != operator on combined expressions like eth.addr, ip.addr,
tcp.port, and udp.port will probably not work as expected.

Often people use a filter string to display something like ip.addr ==
1.2.3.4 which will display all packets containing the IP address 1.2.3.4.

Then they use ip.addr !'= 1.2.3.4 to see all packets not containing the
IP address 1.2.3.4 in it. Unfortunately, this does not do the expected.

Instead, that expression will even be true for packets where either source

or destination IP address equals 1.2.3.4. The reason for this, is that the
expression ip.addr != 1.2.3.4 must be read as “the packet contains a
field named ip.addr with a value different from 1.2.3.4”. As an IP
datagram contains both a source and a destination address, the
expression will evaluate to true whenever at least one of the two
addresses differs from 1.2.3.4.

If you want to filter out all packets containing IP datagrams to or from IP
address 1.2.3.4, then the correct filter is 1 (ip.addr == 1.2.3.4) as it
reads “show me all the packets for which it is not true that a field named
ip.addr exists with a value of 1.2.3.4”, or in other words, “filter out all
packets for which there are no occurrences of a field named ip.addr with
the value 1.2.3.4".

6.5. The “Filter Expression” dialog box

When you are accustomed to Wireshark’s filtering system and know what
labels you wish to use in your filters it can be very quick to simply type a
filter string. However if you are new to Wireshark or are working with a
slightly unfamiliar protocol it can be very confusing to try to figure out

what to type. The “Filter Expression” dialog box helps with this.

Tip

The “Filter Expression” dialog box is an excellent way to

learn how to write Wireshark display filter strings.

Figure 6.7. The “Filter Expression” dialog box

Wireshark: Filter Expression

Field name

FCOMENS
tSGPPE AL
802,11 MGT
802.11 Radiotap
802,73 Slow protocaols
el

aALL

AALT

SARP

ACAP

ACP133

ACSE

aCkrace

ADP

[+ AFF

BHEHBBEB

=

BB BB

=
53]

3

i)

Relation

is present

|=
=

Z

=

=
conkains
matches

gQK I l x Cancel

When you first bring up the Filter Expression dialog box you are shown a
tree of field names, organized by protocol, and a box for selecting a

relation.

Field Name

Select a protocol field from the protocol field tree. Every protocol with
filterable fields is listed at the top level. (You can search for a
particular protocol entry by entering the first few letters of the
protocol name). By expanding a protocol name you can get a list of
the field names available for filtering for that protocol.

Relation
Select a relation from the list of available relation. The is present is a
unary relation which is true if the selected field is present in a packet.
All other listed relations are binary relations which require additional
data (e.g. a Value to match) to complete.

When you select a field from the field name list and select a binary
relation (such as the equality relation ==) you will be given the
opportunity to enter a value, and possibly some range information.

Value
You may enter an appropriate value in the Value text box. The Value
will also indicate the type of value for the field name you have
selected (like character string).

Predefined values
Some of the protocol fields have predefined values available, much
like enum’s in C. If the selected protocol field has such values
defined, you can choose one of them here.

Range
A range of integers or a group of ranges, such as 1-12 or 39-42, 98-
2000.

OK
When you have built a satisfactory expression click OK and a filter
string will be built for you.

Cancel
You can leave the “Add Expression...” dialog box without any effect
by clicking the Cancel button.

6.6. Defining and saving filters

You can define filters with Wireshark and give them labels for later use.
This can save time in remembering and retyping some of the more
complex filters you use.

To define a new filter or edit an existing one, select Capture - Capture
Filters... or Analyze — Display Filters.... Wireshark will then pop up the
Filters dialog as shown in Figure 6.8, “The “Capture Filters” and “Display
Filters” dialog boxes”.

The mechanisms for defining and saving capture filters and display filters
are almost identical. Both will be described here but the differences
between these two will be marked as such.

Warning
A You must use Save to save your filters permanently. OK

or Apply will not save the filters and they will be lost when
you close Wireshark.

Figure 6.8. The “Capture Filters” and “Display Filters” dialog boxes

Wireshark: Display Filter

Edit Filker

kpkk_long

kpkk_only

ethernet broadcast
ip broadcast

deerpc
CZERPC Faulk

Properties

Filter name: |ip broadcast

Filter string: |ip.addr == 255.255,255.255 | P Expression...

‘ @ﬂelp | «@QK H o apply H Eﬁave H X Close ‘

New
This button adds a new filter to the list of filters. The currently
entered values from Filter name and Filter string will be used. If any
of these fields are empty, it will be set to “new”.

Delete
This button deletes the selected filter. It will be greyed out, if no filter
Is selected.

Filter
You can select a filter from this list (which will fill in the filter name
and filter string in the fields down at the bottom of the dialog box).

Filter name:

You can change the name of the currently selected filter here.

The filter name will only be used in this dialog to identify the filter for

your convenience, it will not be used elsewhere. You can add
multiple filters with the same name, but this is not very useful.

Filter string:
You can change the filter string of the currently selected filter here.
Display Filter only: the string will be syntax checked while you are
typing.

Add Expression...
Display Filter only: This button brings up the Add Expression dialog
box which assists in building filter strings. You can find more
information about the Add Expression dialog in Section 6.5, “The
“Filter Expression” dialog box”

OK
Display Filter only: This button applies the selected filter to the
current display and closes the dialog.

Apply
Display Filter only: This button applies the selected filter to the
current display, and keeps the dialog open.

Save
Save the current settings in this dialog. The file location and format is
explained in Appendix B, Files and Folders.

Close
Close this dialog. This will discard unsaved settings.

6.7. Defining and saving filter macros

You can define filter macros with Wireshark and give them labels for later
use. This can save time in remembering and retyping some of the more
complex filters you use.

6.8. Finding packets

You can easily find packets once you have captured some packets or
have read in a previously saved capture file. Simply select the Find
Packet... menu item from the Edit menu. Wireshark will pop up the dialog
box shown in Figure 6.9, “The “Find Packet” dialog box”.

6.8.1. The “Find Packet” dialog box

Figure 6.9. The “Find Packet” dialog box

Wireshark: Find Packet
Find
By: (*) Display filker () Hex walue) Skring

@)

Search In Skring Options Direction
) Up
E:' Dowin

‘ @ﬂelp ‘ @Eind H xgancel ‘

You might first select the kind of thing to search for:
e Display filter

Simply enter a display filter string into the Filter: field, select a
direction, and click on OK.

For example, to find the three way handshake for a connection from
host 192.168.0.1, use the following filter string:

ip.src==192.168.0.1 and tcp.flags.syn==1

For more details on display filters, see Section 6.3, “Filtering packets
while viewing”

e Hex Value
Search for a specific byte sequence in the packet data.

For example, use “00:00” to find the next packet including two null
bytes in the packet data.

e String
Find a string in the packet data, with various options.

The value to be found will be syntax checked while you type it in. If
the syntax check of your value succeeds, the background of the
entry field will turn green, if it fails, it will turn red.

You can choose the search direction:
e Up
Search upwards in the packet list (decreasing packet numbers).
e Down
Search downwards in the packet list (increasing packet numbers).
6.8.2. The “Find Next” command

“Find Next” will continue searching with the same options used in the last
“Find Packet”.

6.8.3. The “Find Previous” command

“Find Previous” will do the same thing as “Find Next”, but in the reverse
direction.

6.9. Go to a specific packet

You can easily jump to specific packets with one of the menu items in the
Go menu.

6.9.1. The “Go Back” command

Go back in the packet history, works much like the page history in current
web browsers.

6.9.2. The “Go Forward” command

Go forward in the packet history, works much like the page history in
current web browsers.

6.9.3. The “Go to Packet” dialog box

Figure 6.10. The “Go To Packet” dialog box

Wireshark: Go To Packet [Z|[E|E|

[@'UENJ l E}Jump ko [X Eann;l

This dialog box will let you enter a packet number. When you press OK,
Wireshark will jump to that packet.

6.9.4. The “Go to Corresponding Packet” command

If a protocol field is selected which points to another packet in the capture
file, this command will jump to that packet.

As these protocol fields now work like links (just as in your Web browser),
it's easier to simply double-click on the field to jump to the corresponding
field.

6.9.5. The “Go to First Packet” command
This command will simply jump to the first packet displayed.
6.9.6. The “Go to Last Packet” command

This command will simply jump to the last packet displayed.

6.10. Marking packets

You can mark packets in the “Packet List” pane. A marked packet will be
shown with black background, regardless of the coloring rules set.
Marking a packet can be useful to find it later while analyzing in a large
capture file.

The packet marks are not stored in the capture file or anywhere else. All
packet marks will be lost when you close the capture file.

You can use packet marking to control the output of packets when
saving, exporting, or printing. To do so, an option in the packet range is
available, see Section 5.9, “The “Packet Range” frame”.

There are three functions to manipulate the marked state of a packet:

e Mark packet (toggle) toggles the marked state of a single packet.

o Mark all displayed packets set the mark state of all displayed
packets.

e Unmark all packets reset the mark state of all packets.

These mark functions are available from the “Edit” menu, and the “Mark
packet (toggle)” function is also available from the pop-up menu of the
“Packet List” pane.

6.11. Ignoring packets

You can ignore packets in the “Packet List” pane. Wireshark will then
pretend that this packets does not exist in the capture file. An ignored
packet will be shown with white background and gray foreground,
regardless of the coloring rules set.

The packet ignored marks are not stored in the capture file or anywhere
else. All “packet ignored” marks will be lost when you close the capture
file.

There are three functions to manipulate the ignored state of a packet:

e Ignore packet (toggle) toggles the ignored state of a single packet.

e Ignore all displayed packets set the ignored state of all displayed
packets.

e Un-Ignore all packets reset the ignored state of all packets.

These ignore functions are available from the “Edit” menu, and the
“Ignore packet (toggle)” function is also available from the pop-up menu
of the “Packet List” pane.

6.12. Time display formats and time references

While packets are captured, each packet is timestamped. These
timestamps will be saved to the capture file, so they will be available for
later analysis.

A detailed description of timestamps, timezones and alike can be found
at: Section 7.6, “Time Stamps”.

The timestamp presentation format and the precision in the packet list
can be chosen using the View menu, see Figure 3.5, “The “View” Menu”.

The available presentation formats are:

e Date and Time of Day: 1970-01-01 01:02:03.123456 The absolute
date and time of the day when the packet was captured.

e Time of Day: 01:02:03.123456 The absolute time of the day when
the packet was captured.

e Seconds Since Beginning of Capture: 123.123456 The time relative
to the start of the capture file or the first “Time Reference” before this
packet (see Section 6.12.1, “Packet time referencing”).

e Seconds Since Previous Captured Packet: 1.123456 The time
relative to the previous captured packet.

e Seconds Since Previous Displayed Packet: 1.123456 The time
relative to the previous displayed packet.

e Seconds Since Epoch (1970-01-01): 1234567890.123456 The time
relative to epoch (midnight UTC of January 1, 1970).

The available precisions (aka. the number of displayed decimal places)
are:

e Automatic The timestamp precision of the loaded capture file format
will be used (the default).

e Seconds, Deciseconds, Centiseconds, Milliseconds, Microseconds
or Nanoseconds The timestamp precision will be forced to the given
setting. If the actually available precision is smaller, zeros will be
appended. If the precision is larger, the remaining decimal places will
be cut off.

Precision example: If you have a timestamp and it's displayed using,
“Seconds Since Previous Packet”, : the value might be 1.123456. This
will be displayed using the “Automatic” setting for libpcap files (which is
microseconds). If you use Seconds it would show simply 1 and if you use
Nanoseconds it shows 1.123456000.

6.12.1. Packet time referencing

The user can set time references to packets. A time reference is the
starting point for all subsequent packet time calculations. It will be useful,
if you want to see the time values relative to a special packet, e.g. the
start of a new request. It's possible to set multiple time references in the
capture file.

The time references will not be saved permanently and will be lost when
you close the capture file.

Time referencing will only be useful if the time display format is set to
“Seconds Since Beginning of Capture”. If one of the other time display
formats are used, time referencing will have no effect (and will make no
sense either).

To work with time references, choose one of the Time Reference items in
the Edit menu or from the pop-up menu of the “Packet List” pane. See
Section 3.6, “The “Edit” menu”.

e Set Time Reference (toggle) Toggles the time reference state of the
currently selected packet to on or off.

e Find Next Find the next time referenced packet in the “Packet List”
pane.

e Find Previous Find the previous time referenced packet in the
“Packet List” pane.

Figure 6.11. Wireshark showing a time referenced packet

test. pcap - Wireshark

File Edit View Go <Capture Analvze Statistics Help

B o e Dx%@é@%?&‘l%‘@l@s
E]Eilter:l v o Expression... %glear o apply

Ma, -

Time Source Destination Protocal | Info

=
1.025659 3 08 1gmp.mcast. net IGMP V3 Membership Report

1.048652 3 0 7 .255.250 Source port: 3193 Destination po

& 1.055053 3 25 5 B0 Source port: 1900 Destination po
9 1.082038 Registration ME NE100610<00:

.114211

(4] (85 &2 4] Seq=0 Len=

BRI 0.1 0. ACK] Seq=0 Ack=
13 0.115380 192.168.0.2 192.168.0. TCR Seq=1 Ack=1 Win
14 0.115506 192.168.0.2 192.168.0 TCP ACK] Seq=1 Ack=
15 0.117364 192.168.0.1 192.168.0 TCR Seq=1 Ack=256 W

136410

Seq=0 Len=0 M55
>

|~

BX

|2

Tdentitication: OxI847 [e215) A
Flags: Ox00 M
Fragment offset: O
Time to Tive: 128
Protocol: UDP (0x11)
Header checksum: 0xald%9 [correct]
Source: 192.168.0.2 (192.168.0.2) N
Destination: 192.168.0.1 (192.168.0.1) b
QD0 00 09 5b 2d 75 9a 00 Ob S5d 20 cod 02 08 00 45 00 B e
010 00 49 18 47 00 00 80 11 a1 09 oD al 00 02 ol at e e =
020 00 01 Ob d2 00 35 00 35 46 69 00 21 01 00 00 01 LT = T Ry
030 00 0D 00 00 Q0 00 09 7O 72 &6f 78 73 63 6f e 66 p r_‘nycon'F L4
040 0% 77 OF7 30 30 34 OF 73 69 65 6d 65 ée 73 03 ée D04, s 1emens.n
050 65 F4 00 00 01 00 01 et..... b
|File: "D ftest.pcap” 14 KB 00:00:02 [Fit200: 120m:0

A time referenced packet will be marked with the string *REF* in the Time
show the

column (see packet number 10). All subsequent packets will
time since the last time reference.

Chapter 7. Advanced Topics

Table of Contents

/.1.

Introduction

1.2.

Following TCP streams

7.3.

7.2.1. The “Follow TCP Stream” dialog box
Show Packet Bytes

1.4.

7.3.1. Decode as
7.3.2. Show as
Expert Information

7.5.

7.4.1. Expert Info Entries

7.4.2. “Expert Info” dialog

7.4.3. “Colorized” Protocol Details Tree
7.4.4. "Expert” Packet List Column (optional)
TCP Analysis

7.6.

Time Stamps

{.17.

7.6.1. Wireshark internals
7.6.2. Capture file formats
7.6.3. Accuracy

Time Zones

7.8.

7.7.1. Set your computer’s time correctly!
7.7.2. Wireshark and Time Zones
Packet Reassembly

7.9.

7.8.1. What is it?
7.8.2. How Wireshark handles it
Name Resolution

7.9.1. Name Resolution drawbacks

7.9.2. Ethernet name resolution (MAC layer)

7.9.3. IP name resolution (network layer)

7.9.4. TCP/UDP port name resolution (transport layer)
7.9.5. VLAN ID resolution

7.10. Checksums

7.10.1. Wireshark checksum validation
7.10.2. Checksum offloading

7.1. Introduction

This chapter some of Wireshark’s advanced features.

7.2. Following TCP streams

If you are working with TCP based protocols it can be very helpful to see
the data from a TCP stream in the way that the application layer sees it.
Perhaps you are looking for passwords in a Telnet stream, or you are
trying to make sense of a data stream. Maybe you just need a display
filter to show only the packets of that TCP stream. If so, Wireshark’s
ability to follow a TCP stream will be useful to you.

Simply select a TCP packet in the packet list of the stream/connection
you are interested in and then select the Follow TCP Stream menu item
from the Wireshark Tools menu (or use the context menu in the packet
list). Wireshark will set an appropriate display filter and pop up a dialog
box with all the data from the TCP stream laid out in order, as shown in
Figure 7.1, “The “Follow TCP Stream” dialog box”.

Tip

Opening the “Follow TCP Stream” applies a display filter
@ which selects all the packets in the TCP stream you have
selected. Some people open the “Follow TCP Stream”
dialog and immediately close it as a quick way to isolate a

particular stream.

7.2.1. The “Follow TCP Stream” dialog box

Figure 7.1. The “Follow TCP Stream” dialog box

1! Follow TCP Stream E@gl

Skream Conkent

SUESCRIBE fupnp/service/Layer3Forwarding HTTR/1.1

NT: upnp:ewvent

ICallback: chttp://192.168.0.2:5000 notity>

Timeouwt: Second-1800

Uszer-Agent: Mozi1la/4.0 (compatible; UPHP/1.0; Windows NT/5.1)
Host: 192.168.0.1

ILontent-Length: O

Fragma: no-cache

HTTP 1.0 200 OK

Connection: close

Serwer: UPnP/1.0 UPnP-Dewice-Host,/1.0
Timeout: Second-1800

SID: wuid:ct

Save fs . Entire corversation (368 bvtes) w [(3) 85CI () EBCDIC () Hex Dump () C Arrays () Raw
@ Help l X Close] l El Filter Qut This Stream

The stream content is displayed in the same sequence as it appeared on
the network. Traffic from Ato B is marked in red, while traffic from B to A
is marked in blue. If you like, you can change these colors in the “Colors”
page if the “Preferences” dialog.

Non-printable characters will be replaced by dots.

The stream content won’'t be updated while doing a live capture. To get
the latest content you’'ll have to reopen the dialog.

You can choose from the following actions:

1. Save As: Save the stream data in the currently selected format.

2. Print. Print the stream data in the currently selected format.

3. Direction: Choose the stream direction to be displayed (“Entire
conversation”, “data from A to B only” or “data from B to A only”).

4. Filter out this stream: Apply a display filter removing the current TCP
stream data from the display.

5. Close: Close this dialog box, leaving the current display filter in
effect.

You can choose to view the data in one of the following formats:

1.

ASCII: In this view you see the data from each direction in ASCII.
Obviously best for ASCII based protocols, e.g. HTTP.

2. EBCDIC: For the big-iron freaks out there.
3.

HEX Dump: This allows you to see all the data. This will require a lot
of screen space and is best used with binary protocols.

C Arrays: This allows you to import the stream data into your own C
program.

Raw: This allows you to load the unaltered stream data into a
different program for further examination. The display will look the
same as the ASCII setting, but “Save As” will result in a binary file.

7.3. Show Packet Bytes

If a selected packet field does not show all the bytes (i.e. they are
truncated when displayed) or if they are shown as bytes rather than string
or if they require more formatting because they contain an image or
HTML then this dialog can be used.

This dialog can also be used to decode field bytes from base64, zlib
compressed or quoted-printable and show the decoded bytes as
configurable output. It's also possible to select a subset of bytes setting
the start byte and end byte.

You can choose from the following actions:

1. Find: Search for the given text. Matching text will be highlighted, and
the “Find Next” will search for more. In the context menu for the find
text it's possible to configure to use regular expression find.

2. Print. Print the bytes in the currently selected format.

3. Copy: Copy the bytes to the clipboard in the currently selected
format.

4. Save As: Save the bytes in the currently selected format.

5. Close: Close this dialog box.

7.3.1. Decode as
You can choose to decode the data from one of the following formats:

1. None: This is the default which does not decode anything.

2. Base64: This will decode from Base64.

3. Compressed: This will decompress the buffer using zlib.

4. Quoted-Printable: This will decode from a Quoted-Printable string.

7.3.2. Show as

You can choose to view the data in one of the following formats:

In this view you see the bytes as ASCII. All control characters

ASCIl and non-ASCII bytes are replaced by dot.

ASCII & In this view all control characters are shown using a UTF-8
Control symbol and all non-ASCII bytes are replaced by dot.

C Array

This allows you to import the field data into your own C
program.

EBCDIC For the big-iron freaks out there.

HEX
Dump

HTML

Image

ISO
8859-1

Raw

UTF8

YAML

This allows you to see all the data. This will require a lot of
screen space and is best used with binary protocols.

This allows you to see all the data formatted as a HTML
document. The HTML supported is what's supported by the Qt
QTextEdit class.

This will try to convert the bytes into an image. Images
supported are what's supported by the Qt QImage class.

In this view you see the bytes as ISO 8859-1.

This allows you to load the unaltered stream data into a
different program for further examination. The display will show
HEX data, but “Save As” will result in a binary file.

In this view you see the bytes as UTF-8.

This will show the bytes as a YAML binary dump.

7.4. Expert Information

The expert infos is a kind of log of the anomalies found by Wireshark in a
capture file.

The general idea behind the following “Expert Info” is to have a better
display of “uncommon” or just notable network behaviour. This way, both
novice and expert users will hopefully find probable network problems a
lot faster, compared to scanning the packet list “manually” .

Expert infos are only a hint

A Take expert infos as a hint what'’s worth looking at, but not
more. For example, the absence of expert infos doesn’t
necessarily mean everything is OK.

The amount of expert infos largely depends on the protocol being used.
While some common protocols like TCP/IP will show detailed expert
infos, most other protocols currently won’'t show any expert infos at all.

The following will first describe the components of a single expert info,
then the User Interface.

7.4.1. Expert Info Entries

Each expert info will contain the following things which will be described
in detail below.

Table 7.1. Some example expert infos

:acket Severity|Group Protocolj[Summary
1 Note SequenceTCP Duplicate ACK (#1)

2 Chat SequenceTCP Connection reset (RST)

Note SequencelTCP Keep-Alive

Warn SequencelTCP Fast retransmission (suspected)

7.4.1.1. Severity

Every expert info has a specific severity level. The following severity
levels are used, in parentheses are the colors in which the items will be
marked in the GUI:

Chat (grey): information about usual workflow, e.g. a TCP packet
with the SYN flag set

Note (cyan): notable things, e.g. an application returned an “usual”
error code like HTTP 404

Warn (yellow). warning, e.g. application returned an “unusual” error
code like a connection problem

Error (red): serious problem, e.g. [Malformed Packet]

7.4.1.2. Group

There are some common groups of expert infos. The following are
currently implemented:

Checksum: a checksum was invalid

Sequence: protocol sequence suspicious, e.g. sequence wasn't
continuous or a retransmission was detected or ...

Response Code: problem with application response code, e.g. HTTP
404 page not found

Request Code: an application request (e.g. File Handle == x),
usually Chat level

Undecoded: dissector incomplete or data can’t be decoded for other
reasons

Reassemble: problems while reassembling, e.g. not all fragments
were available or an exception happened while reassembling
Protocol: violation of protocol specs (e.g. invalid field values or illegal

lengths), dissection of this packet is probably continued

e Malformed: malformed packet or dissector has a bug, dissection of
this packet aborted

e Debug: debugging (should not occur in release versions)

It's possible that more groups will be added in the future.
7.4.1.3. Protocol

The protocol in which the expert info was caused.
7.4.1.4. Summary

Each expert info will also have a short additional text with some further
explanation.

7.4.2. “Expert Info” dialog
You can open the expert info dialog by selecting Analyze — Expert Info.

Figure 7.2. The “Expert Info” dialog box

i Wireshark: 92 Expert Infos

Group ™ Protocal 4 Summary 1 Count A
Sequence TCP Previous segment lost (common at capture start) 11
[+ Sequence TCP Fast retransmission (suspected) 5

Close

7.4.2.1. Errors | Warnings | Notes |/ Chats tabs

An easy and quick way to find the most interesting infos (rather than
using the Details tab), is to have a look at the separate tabs for each

severity level. As the tab label also contains the number of existing
entries, it's easy to find the tab with the most important entries.

There are usually a lot of identical expert infos only differing in the packet
number. These identical infos will be combined into a single line - with a
count column showing how often they appeared in the capture file.
Clicking on the plus sign shows the individual packet numbers in a tree
view.

7.4.2.2. Details tab

The Details tab provides the expert infos in a “log like” view, each entry
on its own line (much like the packet list). As the amount of expert infos
for a capture file can easily become very large, getting an idea of the
interesting infos with this view can take quite a while. The advantage of
this tab is to have all entries in the sequence as they appeared, this is
sometimes a help to pinpoint problems.

7.4.3. “Colorized” Protocol Details Tree

Figure 7.3. The “Colorized” protocol details tree

¥ - ' 3 Bt r 1 . i T T L
® ame 1 yT - 8. yT i e
¥ q ¥ 1 ¥
i i L

- Internet Protocol, sSrc: 192.168.2.6 (192.168.2.6), Dst: 224.0.0.107 (224.0.0

L .l ki
Time to Tiwe: 1

The protocol field causing an expert info is colorized, e.g. uses a cyan
background for a note severity level. This color is propagated to the
toplevel protocol item in the tree, so it's easy to find the field that caused

the expert info.

For the example screenshot above, the IP “Time to live” value is very low
(only 1), so the corresponding protocol field is marked with a cyan
background. To easier find that item in the packet tree, the IP protocol
toplevel item is marked cyan as well.

7.4.4. “Expert” Packet List Column (optional)

Figure 7.4. The “Expert” packet list column

R [estrator Expert Protox Ind

209.196.219. 244 192.168.0.2 TCP [vcPp segment of a reasse
205.196, 219. 244 192.168.0.2 TCP [TYCP segment of a reasse
192.168.0.2 20%.198,. 219. 244 TCP at=Imd > htep [ACKk] Seq
205.196, 219. 244 192.168.0.2 TCP ?T-IP segment of a reasse
20%.196.219. 244 192.168.0.2 TCP [TCP segment of &4 reassa
192.168.0.2 20%5.198, 219. 244 TCP at=Imd > htep [ACKk] sSeq
205.196, 219.2 192.168.0.2 TCP t of

192.168.0.2 209.196. 219. 244 Chat WTTP GET /favicon.1co WTTRA..
205.196, 219. 244 192.168.0.2 Chat WTTP HTTP/1.1 200 Ox (image/x
192.168.0.2 20%.198,.219. 144 TCP centra > http [ACK] Seas.

An optional “Expert Info Severity” packet list column is available that
displays the most significant severity of a packet or stays empty if
everything seems OK. This column is not displayed by default but can be
easily added using the Preferences Columns page described in

Section 10.5, “Preferences”.

7.5. TCP Analysis

By default, Wireshark’s TCP dissector tracks the state of each TCP
session and provides additional information when problems or potential
problems are detected. Analysis is done once for each TCP packet when
a capture file is first opened. Packets are processed in the order in which
they appear in the packet list. You can enable or disable this feature via
the “Analyze TCP sequence numbers” TCP dissector preference.

Figure 7.5. “TCP Analysis” packet detail items

Checksum: ©0x262f [unverified]
[Checksum Status: Unverified]
Urgent pointer: @
v Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
» TCP Option — No-Operation (NOP)
» TCP Option — No-Operation (NOP)
» TCP Option — Timestamps: TSval 824635422, TSecr 3249934137
v [SEQ/ACK analysis]

This is an ACK to the segment in frame: 15

[The RTT to ACK the segment was: ©.002592000 seconds]
v [TCP Analysis Flagsl
v [Expert Info (Warning/Sequence): Previous segment not captured (common at capture start)]
[Previous segment not captured (common at capture start)]
[Severity level: Warning]
[Group: Sequencel

TCP Analysis flags are added to the TCP protocol tree under “SEQ/ACK
analysis”. Each flag is described below. Terms such as “next expected
sequence number” and “next expected acknowledgement number” refer
to the following":

Next expected sequence number
The last-seen sequence number plus segment length. Set when
there are no analysis flags and and for zero window probes.

Next expected acknowledgement number
The last-seen sequence number for segments. Set when there are
no analysis flags and for zero window probes.

Last-seen acknowledgment number
Always set. Note that this is not the same as the next expected
acknowledgment number.

Last-seen acknowledgment number

Always updated for each packet. Note that this is not the same as
the next expected acknowledgment number.

TCP ACKed unseen segment

Set when the expected next acknowledgement number is set for the
reverse direction and it’s less than the current acknowledgement number.

TCP Dup ACK <frame>#<acknowledgement number>

Set when all of the following are true:

The segment size is zero.

The window size is nhon-zero and hasn’'t changed.

The next expected sequence number and last-seen
acknowledgment number are non-zero (i.e. the connection has been
established).

SYN, FIN, and RST are not set.

TCP Fast Retransmission

Set when all of the following are true:

This is not a keepalive packet.

In the forward direction, the segment size is greater than zero or the
SYN or FIN is set.

The next expected sequence number is greater than the current
sequence number.

We have more than two duplicate ACKSs in the reverse direction.
The current sequence number equals the next expected
acknowledgement number.

We saw the last acknowledgement less than 20ms ago.

Supersedes “Out-Of-Order”, “Spurious Retransmission”, and
“Retransmission”.

TCP Keep-Alive

Set when the segment size is zero or one, the current sequence number
is one byte less than the next expected sequence number, and any of
SYN, FIN, or RST are set.

Supersedes “Fast Retransmission”, “Out-Of-Order”, “Spurious
Retransmission”, and “Retransmission”.

TCP Keep-Alive ACK

Set when all of the following are true:

e The segment size is zero.

¢ The window size is non-zero and hasn’t changed.

e The current sequence number is the same as the next expected
sequence number.

e The current acknowledgement number is the same as the last-seen
acknowledgement number.

e The most recently seen packet in the reverse direction was a
keepalive.

e The packet is not a SYN, FIN, or RST.

Supersedes “Dup ACK” and “ZeroWindowProbeAck”.
TCP Out-Of-Order

Set when all of the following are true:

e This is not a keepalive packet.

¢ In the forward direction, the segment length is greater than zero or
the SYN or FIN is set.

o The next expected sequence number is greater than the current
sequence number.

e The next expected sequence number and the next sequence
number differ.

e The last segment arrived within the calculated RTT (3ms by default).

Supersedes “Spurious Retransmission” and “Retransmission”.

TCP Port numbers reused

Set when the SYN flag is set (not SYN+ACK), we have an existing
conversation using the same addresses and ports, and the sequencue
number is different than the existing conversation’s initial sequence
number.

TCP Previous segment not captured

Set when the current sequence number is greater than the next expected
sequence number.

TCP Spurious Retransmission

Set when all of the following are true:

¢ In the forward direction, the segment length is greater than zero or
the SYN or FIN is set.

e This is not a keepalive packet.

¢ The segment length is greater than zero.

e Data for this flow has been acknowledged. That is, the last-seen
acknowledgement number has been set.

e The next sequence number is less than or equal to the last-seen
acknowledgement number.

Supersedes “Retransmission”.
TCP Retransmission

Set when all of the following are true:

e This is not a keepalive packet.

¢ In the forward direction, the segment length is greater than zero or
the SYN or FIN is set.

e The next expected sequence number is greater than the current
sequence number.

TCP Window Full

Set when the segment size is non-zero, we know the window size in the

reverse direction, and our segment size exceeds the window size in the
reverse direction.

TCP Window Update

Set when the all of the following are true:

e The segment size is zero.

e The window size is non-zero and not equal to the last-seen window
size.

e The sequence number is equal to the next expected sequence
number.

e The acknowledgement number is equal to the last-seen
acknowledgement number.

e None of SYN, FIN, or RST are set.

TCP ZeroWindow
Set when the window size is zero and non of SYN, FIN, or RST are set.

TCP ZeroWindowProbe

Set when the sequence number is equal to the next expected sequence
number, the segment size is one, and last-seen window size in the
reverse direction was zero.

TCP ZeroWindowProbeAck

Set when the all of the following are true:

e The segment size is zero.

e The window size is zero.

e The sequence number is equal to the next expected sequence
number.

e The acknowledgement number is equal to the last-seen
acknowledgement number.

e The last-seen packet in the reverse direction was a zero window
probe.

Supersedes “TCP Dup ACK”.

7.6. Time Stamps

Time stamps, their precisions and all that can be quite confusing. This
section will provide you with information about what's going on while
Wireshark processes time stamps.

While packets are captured, each packet is time stamped as it comes in.
These time stamps will be saved to the capture file, so they also will be
available for (later) analysis.

So where do these time stamps come from? While capturing, Wireshark
gets the time stamps from the libpcap (WinPcap) library, which in turn
gets them from the operating system kernel. If the capture data is loaded
from a capture file, Wireshark obviously gets the data from that file.

7.6.1. Wireshark internals

The internal format that Wireshark uses to keep a packet time stamp
consists of the date (in days since 1.1.1970) and the time of day (in
nanoseconds since midnight). You can adjust the way Wireshark displays
the time stamp data in the packet list, see the “Time Display Format” item
in the Section 3.7, “The “View” menu” for details.

While reading or writing capture files, Wireshark converts the time stamp
data between the capture file format and the internal format as required.

While capturing, Wireshark uses the libpcap (WinPcap) capture library
which supports microsecond resolution. Unless you are working with
specialized capturing hardware, this resolution should be adequate.

7.6.2. Capture file formats

Every capture file format that Wireshark knows supports time stamps.
The time stamp precision supported by a specific capture file format
differs widely and varies from one second “0” to one nanosecond
“0.123456789". Most file formats store the time stamps with a fixed
precision (e.g. microseconds), while some file formats are even capable
of storing the time stamp precision itself (whatever the benefit may be).

The common libpcap capture file format that is used by Wireshark (and a
lot of other tools) supports a fixed microsecond resolution “0.123456”
only.

Writing data into a capture file format that doesn’t provide the capability
to store the actual precision will lead to loss of information. For example,
if you load a capture file with nanosecond resolution and store the
capture data in a libpcap file (with microsecond resolution) Wireshark
obviously must reduce the precision from nanosecond to microsecond.

7.6.3. Accuracy

People often ask “Which time stamp accuracy is provided by
Wireshark?”. Well, Wireshark doesn’t create any time stamps itself but
simply gets them from “somewhere else” and displays them. So accuracy
will depend on the capture system (operating system, performance, etc)
that you use. Because of this, the above question is difficult to answer in
a general way.

Note

USB connected network adapters often provide a very
bad time stamp accuracy. The incoming packets have to
take “a long and winding road” to travel through the USB
cable until they actually reach the kernel. As the incoming

@ packets are time stamped when they are processed by
the kernel, this time stamping mechanism becomes very
inaccurate.

Don’t use USB connected NICs when you need precise
time stamp accuracy.

7.7. Time Zones

If you travel across the planet, time zones can be confusing. If you get a
capture file from somewhere around the world time zones can even be a
lot more confusing ;-)

First of all, there are two reasons why you may not need to think about
time zones at all:

e You are only interested in the time differences between the packet
time stamps and don’t need to know the exact date and time of the
captured packets (which is often the case).

e You don't get capture files from different time zones than your own,
so there are simply no time zone problems. For example, everyone
in your team is working in the same time zone as yourself.

What are time zones?

People expect that the time reflects the sunset. Dawn should be in the
morning maybe around 06:00 and dusk in the evening maybe at 20:00.
These times will obviously vary depending on the season. It would be
very confusing if everyone on earth would use the same global time as
this would correspond to the sunset only at a small part of the world.

For that reason, the earth is split into several different time zones, each
zone with a local time that corresponds to the local sunset.

The time zone’s base time is UTC (Coordinated Universal Time) or Zulu
Time (military and aviation). The older term GMT (Greenwich Mean Time)
shouldn’t be used as it is slightly incorrect (up to 0.9 seconds difference
to UTC). The UTC base time equals to 0 (based at Greenwich, England)
and all time zones have an offset to UTC between -12 to +14 hours!

For example: If you live in Berlin you are in a time zone one hour earlier
than UTC, so you are in time zone “+1” (time difference in hours
compared to UTC). If it's 3 o’clock in Berlin it's 2 o’clock in UTC “at the
same moment”.

Be aware that at a few places on earth don’t use time zones with even

hour offsets (e.g. New Delhi uses UTC+05:30)!

Further information can be found at:
https://en.wikipedia.org/wiki/Time_zone and
https://en.wikipedia.org/wiki/Coordinated Universal _Time.

What is daylight saving time (DST)?

Daylight Saving Time (DST), also known as Summer Time is intended to
“save” some daylight during the summer months. To do this, a lot of
countries (but not all!) add a DST hour to the already existing UTC offset.
So you may need to take another hour (or in very rare cases even two
hours!) difference into your “time zone calculations”.

Unfortunately, the date at which DST actually takes effect is different
throughout the world. You may also note, that the northern and southern
hemispheres have opposite DST's (e.g. while it's summer in Europe it's
winter in Australia).

Keep in mind: UTC remains the same all year around, regardless of DST!

Further information can be found at
https://en.wikipedia.org/wiki/Daylight saving.

Further time zone and DST information can be found at
http://wwp.greenwichmeantime.com/ and
http://www.timeanddate.com/waorldclock/.

7.7.1. Set your computer’s time correctly!

If you work with people around the world it's very helpful to set your
computer’s time and time zone right.

You should set your computers time and time zone in the correct
sequence:

1. Set your time zone to your current location
2. Set your computer’s clock to the local time

This way you will tell your computer both the local time and also the time

https://en.wikipedia.org/wiki/Time_zone
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Daylight_saving
http://wwp.greenwichmeantime.com/
http://www.timeanddate.com/worldclock/

offset to UTC. Many organizations simply set the time zone on their
servers and networking gear to UTC in order to make coordination and
troubleshooting easier.

Tip

If you travel around the world, it's an often made mistake
to adjust the hours of your computer clock to the local
time. Don’'t adjust the hours but your time zone setting
instead! For your computer, the time is essentially the
same as before, you are simply in a different time zone
with a different local time.

You can use the Network Time Protocol (NTP) to automatically adjust
your computer to the correct time, by synchronizing it to Internet NTP
clock servers. NTP clients are available for all operating systems that
Wireshark supports (and for a lot more), for examples see
http://www.ntp.org/.

7.7.2. Wireshark and Time Zones
So what's the relationship between Wireshark and time zones anyway?

Wireshark’s native capture file format (libpcap format), and some other
capture file formats, such as the Windows Sniffer, EtherPeek, AiroPeek,
and Sun snoop formats, save the arrival time of packets as UTC values.
UN*X systems, and “Windows NT based” systems represent time
internally as UTC. When Wireshark is capturing, no conversion is
necessary. However, if the system time zone is not set correctly, the
system’s UTC time might not be correctly set even if the system clock
appears to display correct local time. When capturing, WinPcap has to
convert the time to UTC before supplying it to Wireshark. If the system’s
time zone is not set correctly, that conversion will not be done correctly.

Other capture file formats, such as the Microsoft Network Monitor, DOS-
based Sniffer, and Network Instruments Observer formats, save the
arrival time of packets as local time values.

http://www.ntp.org/

Internally to Wireshark, time stamps are represented in UTC. This means
that when reading capture files that save the arrival time of packets as
local time values, Wireshark must convert those local time values to UTC
values.

Wireshark in turn will display the time stamps always in local time. The
displaying computer will convert them from UTC to local time and
displays this (local) time. For capture files saving the arrival time of
packets as UTC values, this means that the arrival time will be displayed
as the local time in your time zone, which might not be the same as the
arrival time in the time zone in which the packet was captured. For
capture files saving the arrival time of packets as local time values, the
conversion to UTC will be done using your time zone’s offset from UTC
and DST rules, which means the conversion will not be done correctly;
the conversion back to local time for display might undo this correctly, in
which case the arrival time will be displayed as the arrival time in which
the packet was captured.

Table 7.2. Time zone examples for UTC arrival times (without DST)

Los New .)

Angeles [York MadridflLondon|Berlin[Tokyo
Capture File (UTC) [{10:00 10:00 [10:00 [(10:00 |[|10:00 {j10:00
Local Offset to UTC ||-8 -5 -1 0 +1 +9
Displayed Time i55.00 |5:00 [09:00 [10:00 [11:00 [19:00

|(Loca/ Time)

For example let's assume that someone in Los Angeles captured a
packet with Wireshark at exactly 2 o’clock local time and sends you this
capture file. The capture file’s time stamp will be represented in UTC as
10 o’clock. You are located in Berlin and will see 11 o’clock on your
Wireshark display.

Now you have a phone call, video conference or Internet meeting with
that one to talk about that capture file. As you are both looking at the
displayed time on your local computers, the one in Los Angeles still sees
2 o’clock but you in Berlin will see 11 o’clock. The time displays are
different as both Wireshark displays will show the (different) local times at
the same point in time.

Conclusion: You may not bother about the date/time of the time stamp
you currently look at unless you must make sure that the date/time is as
expected. So, if you get a capture file from a different time zone and/or
DST, you'll have to find out the time zone/DST difference between the
two local times and “mentally adjust” the time stamps accordingly. In any
case, make sure that every computer in question has the correct time
and time zone setting.

7.8. Packet Reassembly
7.8.1. What is it?

Network protocols often need to transport large chunks of data which are
complete in themselves, e.g. when transferring a file. The underlying
protocol might not be able to handle that chunk size (e.g. limitation of the
network packet size), or is stream-based like TCP, which doesn’'t know
data chunks at all.

In that case the network protocol has to handle the chunk boundaries
itself and (if required) spread the data over multiple packets. It obviously
also needs a mechanism to determine the chunk boundaries on the
receiving side.

Wireshark calls this mechanism reassembly, although a specific protocol
specification might use a different term for this (e.g. desegmentation,
defragmentation, etc).

7.8.2. How Wireshark handles it

For some of the network protocols Wireshark knows of, a mechanism is
implemented to find, decode and display these chunks of data. Wireshark
will try to find the corresponding packets of this chunk, and will show the
combined data as additional pages in the “Packet Bytes” pane (for
information about this pane. See Section 3.20, “The “Packet Bytes”

pane”).

Figure 7.6. The “Packet Bytes” pane with a reassembled tab

28 19 9d 14 8a el @ ad
Bl 4T Bb 84 48 BO 2e 86
@3 15 81 bb 91 c4 14 dd
B2 d4 Be 37 88 BE Gl A1
3b @a 86 89 2a 36 48 86
82 B1 81 B8 71 49 a8 ed4
5c 37 7e 99 5a 70 cb db
84 77 3c 47 29 T9 =6 TO
c6 S5e 64 B2 @1 65 4d a@

4e 80 3b Ga B3 8@ 45 00
54 ¢B 32 11 f9 16 B a8
57 8b a4 @3 62 21 80 18
88 Ba 7d 58 48 bc 1d 4b
f7 @d 81 @1 65 65 & e3
9e 26 d@ d8 88 4b al b9
ab b7 c7 88 6¢c 8b 75 <l
dé d4e 61 16 34 1b 4f 75
21 8f 7T 8b fd dc 53 85

e M sadEs -~

Frame (349 bytes)

Reassembled TCP (3091 byies)

Reassembly might take place at several protocol layers, so it's possible
that multiple tabs in the “Packet Bytes” pane appear.

Note

@ You will find the reassembled data in the last packet of
the chunk.

For example, in a HTTP GET response, the requested data (e.g. an
HTML page) is returned. Wireshark will show the hex dump of the data in
a new tab “Uncompressed entity body” in the “Packet Bytes” pane.

Reassembly is enabled in the preferences by default but can be disabled
in the preferences for the protocol in question. Enabling or disabling
reassembly settings for a protocol typically requires two things:

1. The lower level protocol (e.g., TCP) must support reassembly. Often
this reassembly can be enabled or disabled via the protocol
preferences.

2. The higher level protocol (e.g., HTTP) must use the reassembly
mechanism to reassemble fragmented protocol data. This too can
often be enabled or disabled via the protocol preferences.

The tooltip of the higher level protocol setting will notify you if and which
lower level protocol setting also has to be considered.

7.9. Name Resolution

Name resolution tries to convert some of the numerical address values
into a human readable format. There are two possible ways to do these
conversions, depending on the resolution to be done: calling
system/network services (like the gethostname() function) and/or resolve
from Wireshark specific configuration files. For details about the
configuration files Wireshark uses for name resolution and alike, see
Appendix B, Files and Folders.

The name resolution feature can be enabled individually for the protocol
layers listed in the following sections.

7.9.1. Name Resolution drawbacks

Name resolution can be invaluable while working with Wireshark and
may even save you hours of work. Unfortunately, it also has its
drawbacks.

e Name resolution will often fail. The name to be resolved might simply
be unknown by the name servers asked, or the servers are just not
available and the name is also not found in Wireshark’s configuration
files.

e The resolved names are not stored in the capture file or somewhere
else. So the resolved names might not be available if you open the
capture file later or on a different machine. Each time you open a
capture file it may look “slightly different” simply because you can't
connect to the name server (which you could connect to before).

e DNS may add additional packets to your capture file. You may see
packets to/from your machine in your capture file, which are caused
by name resolution network services of the machine Wireshark
captures from.

e Resolved DNS names are cached by Wireshark. This is required for
acceptable performance. However, if the name resolution information
should change while Wireshark is running, Wireshark won't notice a
change in the name resolution information once it gets cached. If this
information changes while Wireshark is running, e.g. a new DHCP
lease takes effect, Wireshark won’t notice it.

Name resolution in the packet list is done while the list is filled. If a name
can be resolved after a packet is added to the list, its former entry won't
be changed. As the name resolution results are cached, you can use
View - Reload to rebuild the packet list with the correctly resolved
names. However, this isn’t possible while a capture is in progress.

7.9.2. Ethernet name resolution (MAC layer)

Try to resolve an Ethernet MAC address (e.g. 00:09:5b:01:02:03) to
something more “human readable”.

ARP name resolution (system service). Wireshark will ask the operating
system to convert an Ethernet address to the corresponding IP address
(e.g. 00:09:5b:01:02:03 - 192.168.0.1).

Ethernet codes (ethers file): If the ARP name resolution failed, Wireshark
tries to convert the Ethernet address to a known device nhame, which has
been assigned by the user using an ethers file (e.g. 00:09:5b:01:02:03 -
homerouter).

Ethernet manufacturer codes (manuf file): If neither ARP or ethers
returns a result, Wireshark tries to convert the first 3 bytes of an ethernet
address to an abbreviated manufacturer name, which has been assigned
by the IEEE (e.g. 00:09:5b:01:02:03 - Netgear 01:02:03).

7.9.3. IP name resolution (network layer)

Try to resolve an IP address (e.g. 216.239.37.99) to something more
“human readable”.

DNS name resolution (system/library service). Wireshark will use a name
resolver to convert an IP address to the hostname associated with it (e.g.
216.239.37.99 - www.1.google.com).

DNS name resolution can generally be performed synchronously or
asynchronously. Both mechanisms can be used to convert an IP address
to some human readable (domain) name. A system call like
gethostname() will try to convert the address to a name. To do this, it will
first ask the systems hosts file (e.g. /etc/hosts) if it finds a matching entry.
If that fails, it will ask the configured DNS server(s) about the name.

So the real difference between synchronous DNS and asynchronous
DNS comes when the system has to wait for the DNS server about a
name resolution. The system call gethostname() will wait until a name is
resolved or an error occurs. If the DNS server is unavailable, this might
take quite a while (several seconds).

Warning

To provide acceptable performance Wireshark depends

A on an asynchronous DNS library to do name resolution. If
one isn’t available during compilation the feature will be
unavailable.

The asynchronous DNS service works a bit differently. It will also ask the
DNS server, but it won’t wait for the answer. It will just return to Wireshark
in a very short amount of time. The actual (and the following) address
fields won't show the resolved name until the DNS server returns an
answer. As mentioned above, the values get cached, so you can use
View - Reload to “update” these fields to show the resolved values.

hosts name resolution (hosts file): If DNS name resolution failed,
Wireshark will try to convert an IP address to the hostname associated
with it, using a hosts file provided by the user (e.g. 216.239.37.99 -
www.google.com).

7.9.4. TCPIUDP port nhame resolution (transport layer)

Try to resolve a TCP/UDP port (e.g. 80) to something more “human
readable”.

TCP/UDP port conversion (system service). Wireshark will ask the
operating system to convert a TCP or UDP port to its well known name
(e.g. 80 - http).

7.9.5. VLAN ID resolution

To get a descriptive name for a VLAN tag ID a vlans file can be used.

7.10. Checksums

Several network protocols use checksums to ensure data integrity.
Applying checksums as described here is also known as redundancy
checking.

What are checksums for?

Checksums are used to ensure the integrity of data portions for data
transmission or storage. A checksum is basically a calculated summary
of such a data portion.

Network data transmissions often produce errors, such as toggled,
missing or duplicated bits. As a result, the data received might not be
identical to the data transmitted, which is obviously a bad thing.

Because of these transmission errors, network protocols very often use
checksums to detect such errors. The transmitter will calculate a
checksum of the data and transmits the data together with the checksum.
The receiver will calculate the checksum of the received data with the
same algorithm as the transmitter. If the received and calculated
checksums don’t match a transmission error has occurred.

Some checksum algorithms are able to recover (simple) errors by
calculating where the expected error must be and repairing it.

If there are errors that cannot be recovered, the receiving side throws
away the packet. Depending on the network protocol, this data loss is
simply ignored or the sending side needs to detect this loss somehow
and retransmits the required packet(s).

Using a checksum drastically reduces the number of undetected
transmission errors. However, the usual checksum algorithms cannot
guarantee an error detection of 100%, so a very small number of
transmission errors may remain undetected.

There are several different kinds of checksum algorithms; an example of
an often used checksum algorithm is CRC32. The checksum algorithm
actually chosen for a specific network protocol will depend on the

expected error rate of the network medium, the importance of error
detection, the processor load to perform the calculation, the performance
needed and many other things.

Further information about checksums can be found at:
https://en.wikipedia.org/wiki/Checksum.

7.10.1. Wireshark checksum validation

Wireshark will validate the checksums of many protocols, e.g. IP, TCP,
UDP, etc.

It will do the same calculation as a “normal receiver” would do, and
shows the checksum fields in the packet details with a comment, e.g.
[correct] or [invalid, must be 0x12345678].

Checksum validation can be switched off for various protocols in the
Wireshark protocol preferences, e.g. to (very slightly) increase
performance.

If the checksum validation is enabled and it detected an invalid
checksum, features like packet reassembly won't be processed. This is
avoided as incorrect connection data could “confuse” the internal
database.

7.10.2. Checksum offloading

The checksum calculation might be done by the network driver, protocol
driver or even in hardware.

For example: The Ethernet transmitting hardware calculates the Ethernet
CRC32 checksum and the receiving hardware validates this checksum. If
the received checksum is wrong Wireshark won’t even see the packet, as
the Ethernet hardware internally throws away the packet.

Higher level checksums are “traditionally” calculated by the protocol
implementation and the completed packet is then handed over to the
hardware.

Recent network hardware can perform advanced features such as IP

https://en.wikipedia.org/wiki/Checksum

checksum calculation, also known as checksum offloading. The network
driver won'’t calculate the checksum itself but will simply hand over an
empty (zero or garbage filled) checksum field to the hardware.

Note

Checksum offloading often causes confusion as the
network packets to be transmitted are handed over to
Wireshark before the checksums are actually calculated.
Wireshark gets these “empty” checksums and displays
them as invalid, even though the packets will contain valid
checksums when they leave the network hardware later.

Checksum offloading can be confusing and having a lot of [invalid]
messages on the screen can be quite annoying. As mentioned above,
invalid checksums may lead to unreassembled packets, making the
analysis of the packet data much harder.

You can do two things to avoid this checksum offloading problem:

o Turn off the checksum offloading in the network driver, if this option
is available.

e Turn off checksum validation of the specific protocol in the Wireshark
preferences. Recent releases of Wireshark disable checksum
validation by default due to the prevalance of offloading in modern
hardware and operating systems.

Chapter 8. Statistics
Table of Contents

8.1. Introduction
8.2. The “"Summary” window
8.3. The “Protocol Hierarchy” window
8.4. Conversations
8.4.1. The “Conversations” window
8.5. Endpoints
8.5.1. The “Endpoints” window
8.6. The IO Graphs” window
8.7. Service Response Time
8.7.1. The "Service Response Time DCE-RPC" window
8.8. Compare two capture files
8.9. WLAN Traffic Statistics
8.10. The protocol specific statistics windows

8.1. Introduction

Wireshark provides a wide range of network statistics which can be
accessed via the Statistics menu.

These statistics range from general information about the loaded capture
file (like the number of captured packets), to statistics about specific
protocols (e.g. statistics about the number of HTTP requests and
responses captured).

e General statistics:

Summary about the capture file.

Protocol Hierarchy of the captured packets.

Conversations e.g. traffic between specific IP addresses.
Endpoints e.g. traffic to and from an IP addresses.

10 Graphs visualizing the number of packets (or similar) in time.

O O O O o

e Protocol specific statistics:

o Service Response Time between request and response of
some protocols.
o Various other protocol specific statistics.

Note

The protocol specific statistics require detailed knowledge

@ about the specific protocol. Unless you are familiar with
that protocol, statistics about it will be pretty hard to
understand.

8.2. The “Summary” window

General statistics about the current capture file.

Figure 8.1. The “Summary” window

File
Mame:
Length:
Format:
Packet size limit:

Time
First packet:
Last packet:

(home/stig/http.pcap

1713904 bytes
Wiresharkftcpdump/... - libpcap
65535 bytes

2007-11-30 20:49:42
2007-11-30 20:50:14

Avg. packet size
Bytes

Avg. bytes/sec
Avg. MBit/sec

Elapsed: 00:00:32
Capture

Interface: etho

Dropped packets: unknown

Capture filter; none
Display

Display filter: http or dns
Traffic Captured Displayed Marked
Packets 2238 367 0
Between first and |ast packet 32.374 sec 19.684 sec
Avg. packets/sec 69,160 18.645

749,467 bytes 575.507 bytes

1578056 211211
51833.067 10730.261
0.415 0.086

File: general information about the capture file.

Time: the timestamps when the first and the last packet were
captured (and the time between them).

Capture: information from the time when the capture was done (only
available if the packet data was captured from the network and not
loaded from a file).

Display: some display related information.

Traffic: some statistics of the network traffic seen. If a display filter is
set, you will see values in the Captured column, and if any packages
are marked, you will see values in the Marked column. The values in
the Captured column will remain the same as before, while the
values in the Displayed column will reflect the values corresponding
to the packets shown in the display. The values in the Marked
column will reflect the values corresponding to the marked
packages.

8.3. The “Protocol Hierarchy” window
The protocol hierarchy of the captured packets.

Figure 8.2. The “Protocol Hierarchy” window

[JOX) Wireshark - Protocol Hierarchy Statistics - google-v4+v6
Protocol v Percent Packets Packets Percent t Bytes Bytes Bits/s End Packets End Bytes End Bits/s
v Frame 100.0 445 100.0 238413 78k 0 0 0
v Ethernet 100.0 445 2.6 6230 2,062 0 0 0
v Internet Protocol Version 6 40.0 178 3.0 7120 2,356] 0 0
v Transmission Control Protocol 39.1 174 46.3 110299 36k 148 88513 29k
v Hypertext Transfer Protocol 5.8 26 43.9 104611 34k 14 15448 5,113
Portable Network Graphics 0.4 2 15.4 36720 12k 2 37336 12k
Media Type 0.2 1 0.5 1150 380 1 1464 484
Line-based text data 0.9 4 52.2 124486 41k 4 44546 14k
Compuserve GIF 1.1 5 1.7 3988 1,320 5 4299 1,423
Internet Control Message Protocol v6 0.9 4 0.1 128 42 4 128 42
v Internet Protocol Version 4 60.0 267 22 5340 1,767] 0)
v User Datagram Protocol 16.6 74 0.2 592 195) 0 0
Dropbox LAN sync Discovery Protocol 0.4 2 0.1 208 68 2 208 68
Domain Name System 16.2 72 3.5 8414 2,785 72 8414 2,785
v Transmission Control Protocol 42.2 188 41.9 99902 33k 144 72207 23k
Secure Sockets Layer 4.7 21 29 6952 2,301 20 5331 1,764
Hypertext Transfer Protocol 5.4 24 37.0 88154 29 k 13 13622 4,508
Portable Network Graphics 0.2 1 3.1 7330 2,426 1 7641 2,529
Line-based text data 1.1 5 7.5 170403 56 k 5 61353 20k
Compuserve GIF 1.1 5 1.7 3988 1,320 5 4299 1,423
Internet Control Message Protocol 1.1 5 0.1 180 59 5 180 59
No display filter.
WLl Cory M Close

This is a tree of all the protocols in the capture. Each row contains the
statistical values of one protocol. Two of the columns (Percent Packets
and Percent Bytes) serve double duty as bar graphs. If a display filter is
set it will be shown at the bottom.

The Copy button will let you copy the window contents as CSV or YAML.
Protocol hierarchy columns

Protocol
This protocol’'s name

Percent Packets
The percentage of protocol packets relative to all packets in the
capture

Packets
The total number of packets of this protocol

Percent Bytes
The percentage of protocol bytes relative to the total bytes in the
capture

Bytes

The total number of bytes of this protocol

Bits/s
The bandwidth of this protocol relative to the capture time

End Packets
The absolute number of packets of this protocol where it was the
highest protocol in the stack (last dissected)

End Bytes
The absolute number of bytes of this protocol where it was the
highest protocol in the stack (last dissected)

End Bits/s
The bandwidth of this protocol relative to the capture time where was
the highest protocol in the stack (last dissected)

Packets usually contain multiple protocols. As a result more than one
protocol will be counted for each packet. Example: In the screenshot IP
has 99.9% and TCP 98.5% (which is together much more than 100%).

Protocol layers can consist of packets that won't contain any higher layer
protocol, so the sum of all higher layer packets may not sum up to the
protocols packet count. Example: In the screenshot TCP has 98.5% but
the sum of the subprotocols (SSL, HTTP, etc) is much less. This can be
caused by continuation frames, TCP protocol overhead, and other
undissected data.

A single packet can contain the same protocol more than once. In this
case, the protocol is counted more than once. For example ICMP replies
and many tunneling protocols will carry more than one IP header.

8.4. Conversations

A network conversation is the traffic between two specific endpoints. For
example, an IP conversation is all the traffic between two IP addresses.
The description of the known endpoint types can be found in Section 8.5,
“‘Endpoints”.

8.4.1. The “Conversations” window

The conversations window is similar to the endpoint Window. See
Section 8.5.1, “The “Endpoints” window” for a description of their
common features. Along with addresses, packet counters, and byte
counters the conversation window adds four columns: the start time of
the conversation (“Rel Start”) or (“Abs Start”), the duration of the
conversation in seconds, and the average bits (not bytes) per second in
each direction. A timeline graph is also drawn across the “Rel Start” /
“Abs Start” and “Duration” columns.

Figure 8.3. The “Conversations” window

Wireshark - Conversations - odd-http

Ethernet - 1 IEEE 802.11 IPv4 - 21 L TCP =50 Vol

Address A Port A Address B PortB Packets Bytes Packets A + BytesA —+ B PacketsB—+ A BytesB— A Rel Start A Duration Bits/s A+ B Bits/s B — A

200.121.1.131 10554 172.16.0.122 80 230 162 k 111 155 k 119 7001 0.000000 135.2297 9217 414
90.162.140.182 21497 172.16.0.122 80 2 1010 0 0 2 1010 1.423515 47.9932 0 168
217.119.117.212 3581 172.16.0.122 80 9 1810 5 943 4 867 3.061139 0.6854 11k 10k
87.203.161.150 1666 172.16.0.122 80 10 1364 5 507 5 857 12.253327 0.4937 8215 13k
41.249.54.225 26773 172.16.0.122 80 20 2288 7 992 13 1296 18.674732 61.2531 129 169
83.29.13.169 2035 172.16.0.122 80 10 1589 6 721 4 868 22575078 32.5293 177 213
80.54.27.171 12333 172.16.0.122 80 16 3178 9 2206 7 972 26.235145 1.6106 10k 4827
81.36.38.122 25851 172.16.0.122 80 1 54 0 0 1 54 26.415975 0.0000 - -
77.125.22.149 1063 172.16.0.122 80 423 377k 262 367k 161 9296 26.578456 18.7531 156 k 3965
217.119.117.212 3603 172.16.0.122 80 9 1990 5 1123 4 867 31.647747 0.5684 15k 12k
41.232.66.192 60523 172.16.0.122 80 17 1967 9 952 8 1015 33780133 1.5249 4994 5324
86.158.82.212 4962 172.16.0.122 80 9 1527 5 641 4 886 36.592159 15.3524 334 461
85.18.14.19 14399 172.16.0.122 80 26 1Mk 10 6953 16 4129 43211651 93.4882 594 353
217.119.117.212 3609 172.16.0.122 80 i 3046 6 2125 5 921 44.536196 0.6076 27k 12k
80.91.112.106 52995 172.16.0.122 80 10 2595 6 2315 4 280 45.468204 3.3352 5552 671
83.190.80.105 2300 172.16.0.122 80 9 1491 5 623 4 868 52.126180 15.4955 321 448
89.85.51.194 1099 172.16.0.122 80 12 2658 6 1737 6 921 54758281 0.4205 33k 17k
80.90.81.206 2134 172.16.0.122 80 22 9989 " 8762 " 1227 57.683232 12.8947 5436 761
217.119.117.212 3629 172.16.0.122 80 " 2869 6 1936 5 933 58.483801 3.6900 4197 2022
41.250.23.6 45825 172.16.0.122 80 12 3162 7 2195 5 967 72.448185 | 12.1828 1441 634
217.119.117.212 3641 172.16.0.122 80 9 1926 5 1059 4 867 73.904674 0.6696 12k 10k
200.121.1.131 10594 172.16.0.122 80 515 385k 261 371k 254 14k 03.841385 28.8779 102 k 3960
200.72.43.226 62317 172.16.0.122 80 546 429 k 273 409 k 273 20k 99.866905 29.3974 111k 5473

Name resolution Limit to display filter Absolute start time Conversation Types |4
Help Copy | Follow Stream Graph Close

Each row in the list shows the statistical values for exactly one
conversation.

Name resolution will be done if selected in the window and if it is active
for the specific protocol layer (MAC layer for the selected Ethernet
endpoints page). Limit to display filter will only show conversations

matching the current display filter. Absolute start time switches the start
time column between relative (“Rel Start”) and absolute (“Abs Start”)
times. Relative start times match the “Seconds Since Beginning of
Capture” time display format in the packet list and absolute start times
match the “Time of Day” display format.

The Copy button will copy the list values to the clipboard in CSV (Comma
Separated Values) or YAML format. The Follow Stream... button will
show the stream contents as described in Figure 7.1, “The “Follow TCP
Stream” dialog box” dialog. The Graph... button will show a graph as
described in Section 8.6, “The “IO Graphs” window”.

Conversation Types lets you choose which traffic type tabs are shown.
See Section 8.5, “Endpoints” for a list of endpoint types. The enabled
types are saved in your profile settings.

Tip

@ This window will be updated frequently so it will be useful
even if you open it before (or while) you are doing a live
capture.

8.5. Endpoints

A network endpoint is the logical endpoint of separate protocol traffic of a
specific protocol layer. The endpoint statistics of Wireshark will take the
following endpoints into account:

Tip

@ If you are looking for a feature other network tools call a
hostlist, here is the right place to look. The list of Ethernet
or IP endpoints is usually what you're looking for.

Endpoint and Conversation types

Bluetooth
A MAC-48 address similar to Ethernet.
Ethernet
Identical to the Ethernet device's MAC-48 identifier.
Fibre Channel
A MAC-48 address similar to Ethernet.
IEEE 802.11
A MAC-48 address similar to Ethernet.
FDDI
Identical to the FDDI MAC-48 address.
IPv4
Identical to the 32-bit IPv4 address.
IPv6
Identical to the 128-bit IPv6 address.
IPX
A concatenation of a 32 bit network number and 48 bit node address,
by default the Ethernet interface’s MAC-48 address.
JXTA
A 160 bit SHA-1 URN.
NCP
Similar to IPX.
RSVP
A combination of varios RSVP session attributes and IPv4

addresses.
SCTP
A combination of the host IP addresses (plural) and the SCTP port
used. So different SCTP ports on the same IP address are different
SCTP endpoints, but the same SCTP port on different IP addresses
of the same host are still the same endpoint.
TCP
A combination of the IP address and the TCP port used. Different
TCP ports on the same IP address are different TCP endpoints.
Token Ring
Identical to the Token Ring MAC-48 address.
UDP
A combination of the IP address and the UDP port used, so different
UDP ports on the same IP address are different UDP endpoints.
USB
Identical to the 7-bit USB address.

Broadcast and multicast endpoints

Broadcast and multicast traffic will be shown separately
as additional endpoints. Of course, as these aren’t
physical endpoints the real traffic will be received by
some or all of the listed unicast endpoints.

8.5.1. The “Endpoints” window
This window shows statistics about the endpoints captured.

Figure 8.4. The “Endpoints” window

800 Wireshark - Endpoints - google-vd-+v6

Cp-22 Ethernet- 4 IPv4-8 IPv6-5 | UDP-36 |

Address & port Packets Bytes Packets A -+ 8 ByesA -8 Packets & — A Bytes B A iy Latitude Longitude
74.125.224.4 443 17 6107 7 2704 10 3403 Mountain View, CA 37.419201 -122.057404
74.125.224.17 80 152 98 k 81 80k 71 18k Mountain View, CA 37.419201 -122.057404
74.220.219.127 993 17 1753 6 794 11 959 Orem, UT 40.296799 -111.676102
174.36.30.73 443 2 132 0 0 2 132 Dallas, TX 32.782501 -96.820702
192.168.0.2 53278 1 66 1 66 0 v = 2
192.168.0.2 53202 52 45k 20 4918 32 40k -
192.168.0.2 53263 1 66 1 66 0 0
192.168.0.2 53203 21 12k 10 2045 11 9427 -
192.168.0.2 53204 21 13k 12 3120 12 0k -
192.168.0.2 53295 11 4386 6 2869 H 1517 -
192.168.0.2 53206 18 10k 9 1770 9 8243 -
192.168.0.2 53207 7 2003 4 1421 3 672 -
192.168.0.2 53208 17 6107 10 3403 7 2704 -
192.168.0.2 53305 19 10k 10 1110 9 9008 -
192.168.0.2 53265 17 1753 1 059 6 704
2001:470:105:c68:223 dfff-fe8f.fSae 53299 62 47k 23 5581 39 42k -
2001:470:1f05:c68:223 dfff:fe8f.fSae 53300 15 6919 8 3025 7 3804 -
2001:470:1f05:¢68:223:dfff:fe8f:fsae 53301 14 6479 8 4312 6 2167 -
2001:470:105:c68:223:dfff-fe8F FSae 53302 17 10k 8 2972 9 7678 -
2001:470:1f05:c68:223 dfff-fe8f.fSae 53303 22 13k 9 3061 13 0k -
2001:470:1f05:¢68:223:dfff:fe8f:fsae 53304 44 3ak 15 2460 29 32k -
2001:4860:8010::63 80 174 119k 103 98 k 71 21k -
Name resolution Limit to display filter [Endpoint Types |
Help | | Copy Map c

For each supported protocol, a tab is shown in this window. Each tab
label shows the number of endpoints captured (e.g. the tab label
“Ethernet - 4” tells you that four ethernet endpoints have been captured).
If no endpoints of a specific protocol were captured, the tab label will be
greyed out (although the related page can still be selected).

Each row in the list shows the statistical values for exactly one endpoint.

Name resolution will be done if selected in the window and if it is active
for the specific protocol layer (MAC layer for the selected Ethernet
endpoints page). Limit to display filter will only show conversations
matching the current display filter. Note that in this example we have
GeolP configured which gives us extra geographic columns. See
Section 10.10, "GeolP Database Paths” for more information.

The Copy button will copy the list values to the clipboard in CSV (Comma
Separated Values) or YAML format. The Map button will show the
endpoints mapped in your web browser.

Endpoint Types lets you choose which traffic type tabs are shown. See
Section 8.5, “Endpoints” above for a list of endpoint types. The enabled
types are saved in your profile settings.

Tip

@ This window will be updated frequently, so it will be useful

even if you open it before (or while) you are doing a live
capture.

8.6. The “10 Graphs” window

User configurable graph of the captured network packets.

You can define up to five differently colored graphs.

Figure 8.5. The “lO Graphs” window

— 250
I LI | LI I LI | LI I LI | T TT I T TT D
Os 10s 20s 30s
Graphs X AXis
[Graph ll Color[EEilter:“ l Style: Tick interval:

[Graphzl Color[EEilter:“http l Style: Pixels per tick: 10

!

[Graph 3]-

. [Wiew as time of day
lor [EEilter:“ ‘ Style: | Line = e
is

[Graph 4]Co|or[@£ilter:“ l Style: Unit: Packets/Tick | =

Graph 5]

II

[l Style: Scale: Auto

lor [Efilter:

glose

l h copy] [Z]save

The user can configure the following things:

e Graphs

(¢]

Graph 1-5: enable the specific graph 1-5 (only graph 1 is
enabled by default)
Color: the color of the graph (cannot be changed)

o Filter: a display filter for this graph (only the packets that pass

(¢]

this filter will be taken into account for this graph)
Style: the style of the graph (Line/Impulse/FBar/Dot)

e X Axis

o Tick interval: an interval in x direction lasts (10/1 minutes or
10/1/0.1/0.01/0.001 seconds)

o Pixels per tick: use 10/5/2/1 pixels per tick interval

o View as time of day: option to view x direction labels as time of
day instead of seconds or minutes since beginning of capture

e Y AXiIS

o Unit: the unit for the y direction (Packets/Tick, Bytes/Tick,
Bits/Tick, Advanced...) [XXX - describe the Advanced feature.]

o Scale: the scale for the y unit
(Logarithmic,Auto,10,20,50,100,200,500,...)

The Save button will save the currently displayed portion of the graph as
one of various file formats.

The Copy button will copy values from selected graphs to the clipboard in
CSV (Comma Separated Values) format.

Tip

@ Click in the graph to select the first package in the
selected interval.

8.7. Service Response Time

The service response time is the time between a request and the
corresponding response. This information is available for many protocols.

Service response time statistics are currently available for the following
protocols:

DCE-RPC
Fibre Channel
H.225 RAS
LDAP

LTE MAC
MGCP
ONC-RPC
SMB

As an example, the DCE-RPC service response time is described in
more detail.

Note

@ The other Service Response Time windows will work the
same way (or only slightly different) compared to the
following description.

8.7.1. The "Service Response Time DCE-RPC" window

The service response time of DCE-RPC is the time between the request
and the corresponding response.

First of all, you have to select the DCE-RPC interface:

Figure 8.6. The "Compute DCE-RPC statistics" window

Wireshark: Compute DCE-RPC SRT statistics Z E'E'

Program: ATSYC - EPM Yersion:

| E} Filker:

@Create Skat ‘ x Cancel

You can optionally set a display filter, to reduce the amount of packets.

Figure 8.7. The "DCE-RPC Statistic for ..." window

DCE-RPC Service Response Time statistics for EPM major version 3: test... |Z||E|[X|

DCE-RPC Service Response Time statistics For EPM major wersion 3; tesk,pcap
Filker:

ndex Procedure Calls * MinSRT Max SRT Avg SRT

XK Close I

Each row corresponds to a method of the interface selected (so the EPM
interface in version 3 has 7 methods). For each method the number of
calls, and the statistics of the SRT time is calculated.

8.8. Compare two capture files
Compare two capture files.

This feature works best when you have merged two capture files
chronologically, one from each side of a client/server connection.

The merged capture data is checked for missing packets. If a matching
connection is found it is checked for:

¢ |P header checksums
e Excessive delay (defined by the "Time variance" setting)
e Packet order

Figure 8.8. The "Compare" window

k-

ﬁ Compare two capture files: wsweb compare 2010-04-22.pcap EI@

Compare two capture files: wsweb compare 2010-04-22.pcap

Filter: tcp.port eq 80

Compare Statistics:

Murnber of packets total:208 1st file:08, 2nd file:110

Scopes: startl stoped

and: start:5 stop:d

Equal packets: 88

Allowed variation: 3.000000

Average time difference: 107.566205

IPId Problem Count Delta -
15638 Mot arrived in time 2 225082000
15824 Mot arrived in time 2 128.999000
16413 Mot arrived in time 2 326914000
16644 Packet lost 1 0.000000
16645 Packet lost 1 0.000000

16647 Packet lost
16648 Packet lost
16649 Packet lost

1 0.000000 _
1 0.000000 |
1 0.000000 =
17073 Mot arrived in time 2 78630000 I_
17755 Mot arrived in time 2 14971000
17756 Mot arrived in time 2 14.499000
17757 Mot arrived in time 2 9.909000
2 154.061000
2 277.575000
2 274044000
2

21321 Mot arrived in time 97.442000

20804 Mot arrived in time
20918 Mot arrived in time
20919 Mot arrived in time

-

You can configure the following:

e Start compare: Start comparing when this many IP IDs are matched.
A zero value starts comparing immediately.

e Stop compare: Stop comparing when we can no longer match this
many IP IDs. Zero always compares.

e Endpoint distinction: Use MAC addresses or IP time-to-live values to
determine connection endpoints.

e Check order: Check for the same IP ID in the previous packet at
each end.

e Time variance: Trigger an error if the packet arrives this many

milliseconds after the average delay.
o Filter: Limit comparison to packets that match this display filter.

The info column contains new numbering so the same packets are
parallel.

The color filtering differentiate the two files from each other. A “zebra”
effect is create if the Info column is sorted.

Tip

If you click on an item in the error list its corresponding
packet will be selected in the main window.

8.9. WLAN Traffic Statistics

Statistics of the captured WLAN traffic. This window will summarize the
wireless network traffic found in the capture. Probe requests will be
merged into an existing network if the SSID matches.

Figure 8.9. The "WLAN Traffic Statistics” window

i (= =Es)

Wiresharic VAN rathcStatist cstiw I peap’

WLAN Traffic Statistics

BSSID

00:13:12:a0:12:c0
00:02:3:46:99:f8
00:0e:2e:c2:15:07

Channel | SSID .

11 AMX
1 Fortress GB

Beacons | Data Packets | Probe Req Probe Resp Auth Deauth Other Percent | Protection
0 58 0 0 0.04%
744 6 0 0 0.46% WEP
0
£

0 0
0 0
13 0 0 0 0 001%
&l 0

[o0:13:12:6e:91 0

1 Telenor Mobil WLAN 130030

9683 2l 2 594.43%

[[] Name resolution

[Only show existing networks

Qlose

€ Help

Each row in the list shows the statistical values for exactly one wireless
network.

Name resolution will be done if selected in the window and if it is active
for the MAC layer.

Only show existing networks will exclude probe requests with a SSID not
matching any network from the list.

The Copy button will copy the list values to the clipboard in CSV (Comma
Separated Values) format.
Tip

This window will be updated frequently, so it will be
useful, even if you open it before (or while) you are doing
a live capture.

®

8.10. The protocol specific statistics windows

The protocol specific statistics windows display detailed information of
specific protocols and might be described in a later version of this
document.

Some of these statistics are described at
https://wiki.wireshark.org/Statistics.

https://wiki.wireshark.org/Statistics

Chapter 9. Telephony
Table of Contents

9.1. Introduction

9.2. RTP Analysis

9.3. IAX2 Analysis

9.4. VoIP Calls

9.5. LTE MAC Traffic Statistics

9.6. LTE RLC Traffic Statistics

9.7. The protocol specific statistics windows

9.1. Introduction

Wireshark provides a wide range of telephony related network statistics
which can be accessed via the Telephony menu.

These statistics range from specific signaling protocols, to analysis of
signaling and media flows. If encoded in a compatible encoding the
media flow can even be played.

9.2. RTP Analysis

The RTP analysis function takes the selected RTP stream (and the
reverse stream, if possible) and generates a list of statistics on it.

Figure 9.1. The “RTP Stream Analysis” window

7 0O Wireshark: RTP Stream Analysis

Forward Direction Reversed Direction
Analysing stream from 10.1.3.143 port 5000 to 10.1.6.18 port 2006 SSRC = 0xDEEOEESF
Pacl~ | Sequel Deltair Filtered Jitte Skew(ms IP BW (k Status
35 59134 29.97 0.00 0.03 4.48 [Ok]
36 59135 :30:13 0.01 -0.10 .72 [Ok]
37 59136 30.11 0.02 -0.21 8.96 [Ok]
38 58137 30.11 0.02 -0.32 11.20 [Ok]
39 59138 30.18 0.03 -0.51 13.44 [Ok]
41 59139 2873 0.11 0.76 15.68 [Ok]
43 59140 29.88 0.10 0.77 17.92 [Ok]
45 59141 29.98 .10 0.78 20.16 [Ok] =
Max delta = 34.83 ms at packet no. 274
Max jitter = 0.83 ms. Mean jitter = 0.37 ms.
Max skew = -4.14 ms.
Total RTP packets = 236 (expected 236) Lost RTP packets = O (0.00%) Sequence errors = 0
Duration 7.05 s (60 ms clock drift, corresponding to 7932 Hz (-0.85%)
Save payload... I Save as CSV...] &2 Refresh I S Jump to I Graph I MNext non-Ok I xgose

Starting with basic data as packet number and sequence number, further
statistics are created based on arrival time, delay, jitter, packet size, etc.

Besides the per packet statistics, the lower pane shows the overall
statistics, with minimums and maximums for delta, jitter and clock skew.
Also an indication of lost packets is included.

The RTP Stream Analysis window further provides the option to save the
RTP payload (as raw data or, if in a PCM encoding, in an Audio file).
Other options a to export and plot various statistics on the RTP streams.

9.3. IAX2 Analysis

The “IAX2 Analysis” dialog shows statistics for the forward and reverse
streams of a selected IAX2 call along with a graph.

9.4. VoIP Calls

The VolIP Calls window shows a list of all detected VolIP calls in the
captured traffic. It finds calls by their signaling.

More details can be found on the https://wiki.wireshark.org/\VVolP_calls
page.

The RTP Player window lets you play back RTP audio data. In order to
use this feature your version of Wireshark must support audio and the
codecs used by each RTP stream.

More details can be found on the https://wiki.wireshark.org/\VVolP_calls
page.

https://wiki.wireshark.org/VoIP_calls
https://wiki.wireshark.org/VoIP_calls

9.5. LTE MAC Traffic Statistics

Statistics of the captured LTE MAC traffic. This window will summarize
the LTE MAC traffic found in the capture.

Figure 9.2. The “LTE MAC Traffic Statistics” window

"2 Mwireshark: LTE MAC Traffic Statistics: testDL2ws.out =

Common Channel Data

BCH Frames: 0 BCH Bytes: 0 PCH Frames: 0 PCH Bytes: 0
UL/DL-SCH data (20 UES)
RNTI | UL Frames | UL Byles | UL CRC Ermors | UL ReTX Frames | DL Frames | DL Bytes | DL CRC Errors | DL ReTX Frames | E
87 0 0 0 0 138 41538 0 0
86 0 0 0 0 140 42140 0 0
84 0 0 0 0 140 42140 0 ol
83 0 0 0 0 139 41839 0 0 E

Selected UE details
CCCH LCID 1 LCID 2 LCID 3 LCID 4 LCID 5 LCID 6 LCID 7 LCID 8 LCID 9 LCID 10 Predefined

UL SDUs 0 0 4] 0 0 0 0 0 0 0 0 0
UL Bytes 0 4] 0 0 0 0 0 0 0 0 0 0
DL 5DUs 140 140 0 140 0 0 0 0 0 0 0 o]
DL Bytes 1540 22400 0 18200 0 0 0 0 0 0 0 0

The top pane shows statistics for common channels. Each row in the
middle pane shows statistical highlights for exactly one UE/C-RNTI. In
the lower pane, you can see the for the currently selected UE/C-RNTI the
traffic broken down by individual channel.

9.6. LTE RLC Traffic Statistics

Statistics of the captured LTE RLC traffic. This window will summarize the
LTE RLC traffic found in the capture.

Figure 9.3. The “LTE RLC Traffic Statistics” window

«"Wireshark: LTE RLC Traffic Statistics: test04_multi_ueout (2 UEs, 22 frames)__;_{—f*l'-:

|| show RLC PDUSs found inside logged MAC frames

2 UEs

UEId | UL Frames | UL Bytes | DL Frames | DL Bytes |
1 12 213 0 0
2 10 202 0 0

Channels of selected UE

| Mode | UL Frames | UL Bytes | UL ACKs | UL NACKS | DL Frames | DL Bytes | DL ACKs | DL NACKS |
cceH ™ 1 6 0 0 1 24 0 0
SRB-1 A 4 41 2 0 4 4 2 0

Filter on selected channel

Set UL display filter for this channel Set UL / DL display filter for this channel

Set DL display filter for this channel

At the top, the check-box allows this window to include RLC PDUs found
within MAC PDUs or not. This will affect both the PDUs counted as well
as the display filters generated (see below).

The upper list shows summaries of each active UE. Each row in the
lower list shows statistical highlights for individual channels within the
selected UE.

The lower part of the windows allows display filters to be generated and
set for the selected channel. Note that in the case of Acknowledged
Mode channels, if a single direction is chosen, the generated filter will
show data in that direction and control PDUs in the opposite direction.

9.7. The protocol specific statistics windows

The protocol specific statistics windows display detailed information of
specific protocols and might be described in a later version of this
document.

Some of these statistics are described at the
https://wiki.wireshark.org/Statistics pages.

https://wiki.wireshark.org/Statistics

Chapter 10. Customizing Wireshark
Table of Contents

10.1. Introduction
10.2. Start Wireshark from the command line
10.3. Packet colorization
10.4. Control Protocol dissection
10.4.1. The “Enabled Protocols” dialog box
10.4.2. User Specified Decodes
10.4.3. Show User Specified Decodes
10.5. Preferences
10.5.1. Interface Options
10.6. Configuration Profiles
10.7. User Table
10.8. Display Filter Macros
10.9. ESS Category Attributes
10.10. GeolP Database Paths
10.11. IKEv2 decryption table
10.12. Object Identifiers
10.13. PRES Users Context List
10.14. SCCP users Table
10.15. SMI (MIB and PIB) Modules
10.16. SMI (MIB and PIB) Paths
10.17. SNMP Enterprise Specific Trap Types
10.18. SNMP users Table
10.19. Tektronix K12xx/15 RF5 protocols Table
10.20. User DLTs protocol table

10.1. Introduction

Wireshark’s default behaviour will usually suit your needs pretty well.
However, as you become more familiar with Wireshark, it can be
customized in various ways to suit your needs even better. In this chapter
we explore:

How to start Wireshark with command line parameters
How to colorize the packet list

How to control protocol dissection

How to use the various preference settings

10.2. Start Wireshark from the command line

You can start Wireshark from the command line, but it can also be started
from most Window managers as well. In this section we will look at
starting it from the command line.

Wireshark supports a large number of command line parameters. To see
what they are, simply enter the command wireshark -h and the help
information shown in Example 10.1, “Help information available from
Wireshark” (or something similar) should be printed.

Example 10.1. Help information available from Wireshark

Wireshark 2.1.0 (v2.1.0rc0-502-9g328fbc® from master)
Interactively dump and analyze network traffic.
See https://www.wireshark.org for more information.

Usage: wireshark [options] ... [<infile>]

Capture interface:
-1 <interface> name or idx of interface (def: first non-
-f <capfilter|predef:> packet filter in libpcap filter syntax or
predef:filtername - predefined filtername

-s <snaplen> packet snapshot length (def: 262144)

-p don't capture in promiscuous mode

-k start capturing immediately (def: do noth

-S update packet display when new packets ar

-1 turn on automatic scrolling while -S is i

-1 capture in monitor mode, if available

-B <buffer size> size of kernel buffer (def: 2MB)

-y <link type> link layer type (def: first appropriate)

-D print list of interfaces and exit

-L print list of link-layer types of iface a
Capture stop conditions:

-Cc <packet count> stop after n packets (def: infinite)

-a <autostop cond.> ... duration:NUM - stop after NUM seconds

filesize:NUM - stop this file after NUM K
files:NUM - stop after NUM files
Capture output:
-b <ringbuffer opt.> ... duration:NUM - switch to next file after
filesize:NUM - switch to next file after
files:NUM - ringbuffer: replace after
RPCAP options:
-A <user>:<password> use RPCAP password authentication
Input file:

-r <infile>

Processing:
-R <read filter>
-n

-N <name resolve flags>

set the filename to read from (no pipes ¢

packet filter in Wireshark display filter
disable all name resolutions (def: all en
enable specific name resolution(s): "mnNt

-d <layer_type>==<selector>,<decode_as_protocol>

"Decode As", see the man page for details
Example: tcp.port==8888, http

--disable-protocol <proto_name>

disable dissection of proto_name

--enable-heuristic <short_name>

enable dissection of heuristic protocol

--disable-heuristic <short_name>

User interface:
-C <config profile>
-Y <display filter>
-g <packet number>
-J <jump filter>

-m

-t alad|d|dd|e|r|u]|ud
-u s|hms

-X <key>:<value>

-z <statistics>

Output:
-w <outfile|->

Miscellaneous:
-h
-V
-P <key>:<path>

-0 <name>:<value>
-K <keytab>

disable dissection of heuristic protocol

start with specified configuration profil
start with the given display filter

go to specified packet number after "-r"
jump to the first packet matching the (di
filter

search backwards for a matching packet af
set the font name used for most text
output format of time stamps (def: r: rel
output format of seconds (def: s: seconds
eXtension options, see man page for detai
show various statistics, see man page for

set the output filename (or '-' for stdou

display this help and exit

display version info and exit
persconf:path - personal configuration fi
persdata:path - personal data files
override preference or recent setting
keytab file to use for kerberos decryptic

We will examine each of the command line options in turn.

The first thing to notice is that issuing the command wireshark by itself
will bring up Wireshark. However, you can include as many of the
command line parameters as you like. Their meanings are as follows (in

alphabetical order):

-a <capture autostop condition>

Specify a criterion that specifies when Wireshark is to stop writing to
a capture file. The criterion is of the form test:value, where test is
one of:

duration:value
Stop writing to a capture file after value of seconds have
elapsed.

filesize:value
Stop writing to a capture file after it reaches a size of value
kilobytes (where a kilobyte is 1000 bytes, not 1024 bytes). If this
option is used together with the -b option, Wireshark will stop
writing to the current capture file and switch to the next one if
filesize is reached.

files:value
Stop writing to capture files after value number of files were
written.

-b <capture ring buffer option>

If a maximum capture file size was specified, this option causes
Wireshark to run in “ring buffer” mode, with the specified number of
files. In “ring buffer” mode, Wireshark will write to several capture
files. Their name is based on the number of the file and on the
creation date and time.

When the first capture file fills up Wireshark will switch to writing to
the next file, and so on. With the <command>files</command>
option it's also possible to form a “ring buffer.” This will fill up new
files until the number of files specified, at which point the data in the
first file will be discarded so a new file can be written.

If the optional <command>duration</command> is specified,
Wireshark will also switch to the next file when the specified number
of seconds has elapsed even if the current file is not completely fills

up.

duration</command>:value
Switch to the next file after value seconds have elapsed, even if
the current file is not completely filled up.

filesize</command>:value
Switch to the next file after it reaches a size of value kilobytes
(where a kilobyte is 1000 bytes, not 1024 bytes).
files</command>:value
Begin again with the first file after value number of files were
written (form a ring buffer).

-B <capture buffer size>

Set capture buffer size (in MB, default is 1IMB). This is used by the
capture driver to buffer packet data until that data can be written to
disk. If you encounter packet drops while capturing, try to increase
this size. Not supported on some platforms.

-c <capture packet count>

This option specifies the maximum number of packets to capture
when capturing live data. It would be used in conjunction with the -k
option.

Print a list of the interfaces on which Wireshark can capture, then
exit. For each network interface, a number and an interface name,
possibly followed by a text description of the interface, is printed. The
interface name or the number can be supplied to the -i flag to
specify an interface on which to capture.

This can be useful on systems that don’'t have a command to list
them (e.g., Windows systems, or UNIX systems lacking ifconfig -
a). The number can be especially useful on Windows, where the
interface name is a GUID.

Note that “can capture” means that Wireshark was able to open that
device to do a live capture. If, on your system, a program doing a
network capture must be run from an account with special privileges
(for example, as root), then, if Wireshark is run with the -p flag and is
not run from such an account, it will not list any interfaces.

-f <capture filter>

This option sets the initial capture filter expression to be used when
capturing packets.

-g <packet number>

After reading in a capture file using the -r flag, go to the given packet

-h

number.

The -nh option requests Wireshark to print its version and usage
instructions (as shown above) and exit.

-i <capture interface>

Set the name of the network interface or pipe to use for live packet
capture.

Network interface names should match one of the names listed in
wireshark -D (described above). A number, as reported by wireshark
-D, can also be used. If you're using UNIX, netstat -i Or ifconfig -
a might also work to list interface names, although not all versions of
UNIX support the -a flag to ifconfig.

If no interface is specified, Wireshark searches the list of interfaces,
choosing the first non-loopback interface if there are any non-
loopback interfaces, and choosing the first loopback interface if there
are no non-loopback interfaces; if there are no interfaces, Wireshark
reports an error and doesn’t start the capture.

Pipe names should be either the name of a FIFO (named pipe) or “-
to read data from the standard input. Data read from pipes must be
in standard libpcap format.

-J <jump filter>

After reading in a capture file using the -r flag, jump to the first
packet which matches the filter expression. The filter expression is in
display filter format. If an exact match cannot be found the first
packet afterwards is selected.

Capture wireless packets in monitor mode if available.

Use this option after the -3 option to search backwards for a first
packet to go to.

The -k option specifies that Wireshark should start capturing packets
immediately. This option requires the use of the -i parameter to
specify the interface that packet capture will occur from.

-K <keytab file>

Use the specified file for Kerberos decryption.

This option turns on automatic scrolling if the packet list pane is
being updated automatically as packets arrive during a capture (as
specified by the -s flag).

-L
List the data link types supported by the interface and exit.

-m
This option sets the name of the font used for most text displayed by
Wireshark.

-n

Disable network object name resolution (such as hostname, TCP
and UDP port names).

-N <name resolving flags>

Turns on name resolving for particular types of addresses and port
numbers. The argument is a string that may contain the letters m to
enable MAC address resolution, n to enable network address
resolution, and t to enable transport-layer port number resolution.
This overrides -n if both -N and -n are present. The letter d enables
resolution from captured DNS packets.

-0 <preference or recent settings>

Sets a preference or recent value, overriding the default value and
any value read from a preference or recent file. The argument to the
flag is a string of the form prefname:value, where prefname is the
name of the preference (which is the same name that would appear
in the preferences or recent file), and value is the value to which it
should be set. Multiple instances of -0 <preference settings> " can
be given on a single command line.

An example of setting a single preference would be:

wireshark -o mgcp.display dissect_tree:TRUE

An example of setting multiple preferences would be:

wireshark -o mgcp.display dissect_tree:TRUE -0 mgcp.udp.callager

You can get a list of all available preference strings from the
preferences file. See Appendix B, Files and Folders for detalils.

User access tables can be overridden using “uat,” followed by the
UAT file name and a valid record for the file:

wireshark -o "uat:user_dlts:\"User 0 (DLT=147)\",\"http\",\"0\",

The example above would dissect packets with a libpcap data link
type 147 as HTTP, just as if you had configured it in the DLT_USER
protocol preferences.

Don't put the interface into promiscuous mode. Note that the
interface might be in promiscuous mode for some other reason.
Hence, -p cannot be used to ensure that the only traffic that is
captured is traffic sent to or from the machine on which Wireshark is
running, broadcast traffic, and multicast traffic to addresses received
by that machine.

-P <path setting>

-Q

Special path settings usually detected automatically. This is used for
special cases, e.g. starting Wireshark from a known location on an
USB stick.

The criterion is of the form key:path, where key is one of:

persconf:path
Path of personal configuration files, like the preferences files.
persdata:path
Path of personal data files, it's the folder initially opened. After
the initialization, the recent file will keep the folder last used.

This option forces Wireshark to exit when capturing is complete. It
can be used with the -c option. It must be used in conjunction with
the -i and -w options.

-r <infile>

This option provides the name of a capture file for Wireshark to read
and display. This capture file can be in one of the formats Wireshark
understands.

-R <read (display) filter>

This option specifies a display filter to be applied when reading
packets from a capture file. The syntax of this filter is that of the
display filters discussed in Section 6.3, “Filtering packets while

viewing”. Packets not matching the filter are discarded.

-s <capture snapshot length>

This option specifies the snapshot length to use when capturing
packets. Wireshark will only capture snaplen bytes of data for each
packet.

This option specifies that Wireshark will display packets as it
captures them. This is done by capturing in one process and
displaying them in a separate process. This is the same as “Update
list of packets in real time” in the “Capture Options” dialog box.

-t <time stamp format>

This option sets the format of packet timestamps that are displayed
in the packet list window. The format can be one of:

r

Relative, which specifies timestamps are displayed relative to
the first packet captured.

a
Absolute, which specifies that actual times be displayed for all
packets.
ad
Absolute with date, which specifies that actual dates and times
be displayed for all packets.
d
Delta, which specifies that timestamps are relative to the
previous packet.
e
Epoch, which specifies that timestamps are seconds since
epoch (Jan 1, 1970 00:00:00)
-U <s | hms>

-V

Show timesamps as seconds (s, the default) or hours, minutes, and
seconts (hms)

The -v option requests Wireshark to print out its version information

and exit.

-w <savefile>
This option sets the name of the file to be used to save captured
packets.

-y <capture link type>
If a capture is started from the command line with -k, set the data link
type to use while capturing packets. The values reported by -L are
the values that can be used.

-X <eXtension option>

Specify an option to be passed to a TShark module. The eXtension
option is in the form extension_key:value, where extension_key can
be:

lua_script:lua_script_filename
Tells Wireshark to load the given script in addition to the default
Lua scripts.

lua_scriptinum]:argument
Tells Wireshark to pass the given argument to the lua script
identified by num, which is the number indexed order of the
lua_script command. For example, if only one script was loaded
with -X lua_script:my.lua, then -x lua_scripti:foo will pass
the string foo to the my.lua script. If two scripts were loaded,
such as -X lua_script:my.lua and -X lua_script:other.luain
that order, then a -x lua_script2:bar would pass the string bar
to the second lua script, namely other.lua.

-z <statistics-string>
Get Wireshark to collect various types of statistics and display the
result in a window that updates in semi-real time.

10.3. Packet colorization

A very useful mechanism available in Wireshark is packet colorization.
You can set up Wireshark so that it will colorize packets according to a
display filter. This allows you to emphasize the packets you might be
interested in.

You can find a lot of coloring rule examples at the Wireshark Wiki
Coloring Rules page at https://wiki.wireshark.org/ColoringRules.

There are two types of coloring rules in Wireshark: temporary rules that
are only in effect until you quit the program, and permanent rules that are
saved in a preference file so that they are available the next time you run
Wireshark.

Temporary rules can be added by selecting a packet and pressing the
Ctrl key together with one of the number keys. This will create a coloring
rule based on the currently selected conversation. It will try to create a
conversation filter based on TCP first, then UDP, then IP and at last
Ethernet. Temporary filters can also be created by selecting the Colorize
with Filter — Color X menu items when right-clicking in the packet detail
pane.

To permanently colorize packets, select View — Coloring Rules....
Wireshark will display the “Coloring Rules” dialog box as shown in
Figure 10.1, “The “Coloring Rules” dialog box”.

Figure 10.1. The “Coloring Rules” dialog box

https://wiki.wireshark.org/ColoringRules

- HaNs] M Wireshark - Coloring Rules - Default

Name Filter
Bad TCP tcp.analysis.flags && ltep.analysis.window_update
HSRP State Change hsrp.state |= 8 &% hsrp.state |= 16
Spanning Tree Topology Change stp.type == 0x80

ICMP errors icmp.type eq 3 || icmp.type eq 4 || icmp.type eq 5 || icmp.type eq 11 || icmpv6.type eq 1 || icmp
ARP arp

icmp || icmpv6

V]
V]
V]
& OSPF State Change ospf.msg =1
V]
S
v

(
)

& TCPRST tcp.flags.reset eq 1

& SCTP ABORT sctp.chunk_type eq ABORT

& TTL low or unexpected (!ip.dst == 224.0.0.0/4 && ip.ttl < 5 && Ipim) || (ip.dst == 224.0.0.0/24 && ip.dst |= 224.0.0..
IV Checksum Errors| 'eth.ch_had--l || ip.checksum_bad==1 || tep.checksum_bad==1 || udp.checksum_bad==1 ||
\fu SMB smb || nbss || nbns || nbipx || ipxsap || netbios

™ HTTP http || tcp.port == 80 || http2

o IPx ipx || spx

v DCERPC deerpc

\\fu Routing hsrp || eigrp || ospf || bgp || cdp || vrrp || carp [l gvre || igmp || ismp

' TCP SYN/FIN tep.flags & 0x02 || tep.flags.fin == 1

o TCP tcp

¥ uppP udp

o

Double click to edit. Drag o move. Rules are processed in order until a match (s found.

[Help | [Import.. | | Export... | | Cancel | [0k |

If this is the first time using the Coloring Rules dialog and you're using the
default configuration profile you should see the default rules, shown
above.

The first match wins

More specific rules should usually be listed before more

@ general rules. For example, if you have a coloring rule for
UDP before the one for DNS, the rule for DNS may not be
applied (DNS is typically carried over UDP and the UDP
rule will match first).

You can create a new rule by clicking on the + button. You can delete one
or more rules by clicking the - button. The “copy” button will duplicate a
rule.

You can edit a rule by double-clicking on its name or filter. In Figure 10.1,
“The “Coloring Rules” dialog box” the name of the rule “Checksum
Errors” is being edited. Clicking on the Foreground and Background
buttons will open a color chooser (Eigure 10.2, “A color chooser”) for the

foreground (text) and background colors respectively.
Figure 10.2. A color chooser

800 Colors
@ S e (- =
Q

=

| Cancel | [OK |

The color chooser appearance depends on your operating system. The
macOS color picker is shown. Select the color you desire for the selected
packets and click OK.

Figure 10.3, “Using color filters with Wireshark” shows an example of
several color filters being used in Wireshark. Note that the frame detail
shows that the “Bad TCP” rule rule was applied, along with the matching
filter.

Figure 10.3. Using color filters with Wireshark

A wireshark_download_lostpackets_recovered.cap = = -

File Edit View Go Capture Analyze Statistics Telephony Help

Am:@ R e Baaans
|ﬂr‘ tcp.analysis. flags X '] New Label
"

MNe. Time Source Destination Protocel Length Info

188 4.959604 .168.77. .228.110. 1.. [TCP Window Update] 61366+88 [ACK] ..
181 4.959879 .168.77. .228.110. [TCP Window Update] 61366438 [ACK]

292 5,257873 192.168.77.18 67.228.110. IEP 66 TCP Window

1= Update] 6136688 [ACK] ..
414 5.464495 192.168.77.18 67.228.118.1. TCP 66 [TCP Window Update] 61366+88 [ACK]
415 5,464581 192.168.77.18 67.228.118.1. TCP 66 [TCP Window Update] 61366-88 [ACK] ..
1362 6.851114 192.168.77.18 67.228 AT CP 66 [TCP Window Update] 61366-88 [ACK]

4 Frame 176: 1586 bytes on wire (12848 bits), 1586 bytes captured (12848 bits)
Encapsulation type: Ethernet (1)
Arrival Time: Apr 24, 2889 17:85:58.953488888 Pacific Daylight Time
[Time shift for this packet: ©.@88280888 seconds]
Epoch Time: 1248617958.95348380@ seconds
[Time delta from previocus captured frame: @.8082214888 seconds]
[Time delta from previcus displayed frame: @.008808888 seconds]
[Time since reference or first frame: 4.777167888 seconds]
Frame Number: 176
Frame Length: 1586 bytes (12848 bits)
Capture Length: 1586 bytes (12848 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:ethertype:ipitcp]
|[Coloring Rule Name: Bad TCP]
[Colering Rule String: tcp.analysis.flags &8 !tcp.analysis.window update]
» Ethernet II, Src: 3com _8d:d6:c7 (@@:68:88:8d:d6:c7), Dst: Fujitsu_84:31:92 (8@:17:42:84:31:92)
» Internet Protocol Version 4, Src: 67.228.110.120 (67.228.110.128), Dst: 192.168.77.18 (192.168.77.18)
» Transmission Control Protocol, Src Port: 8@ (88), Dst Port: 61366 (61366), Seq: 139681, Ack: 667, Len: 1448

6 Iﬁ The frame matched the coloring rule with this name (frame. coloring_rule.name) || Packets: 20136 - Displayed: 157 * Marked: 0 * Load time: 0:0.335|| Profile: Default

10.4. Control Protocol dissection
The user can control how protocols are dissected.

Each protocol has its own dissector, so dissecting a complete packet will
typically involve several dissectors. As Wireshark tries to find the right
dissector for each packet (using static “routes” and heuristics
““guessing"), it might choose the wrong dissector in your specific case.
For example, Wireshark won't know if you use a common protocol on an
uncommon TCP port, e.g. using HTTP on TCP port 800 instead of the
standard port 80.

There are two ways to control the relations between protocol dissectors:
disable a protocol dissector completely or temporarily divert the way
Wireshark calls the dissectors.

10.4.1. The “Enabled Protocols” dialog box

The Enabled Protocols dialog box lets you enable or disable specific
protocols. All protocols are enabled by default. When a protocol is
disabled, Wireshark stops processing a packet whenever that protocol is
encountered.

Note

Disabling a protocol will prevent information about higher-
layer protocols from being displayed. For example,
suppose you disabled the IP protocol and selected a

@ packet containing Ethernet, IP, TCP, and HTTP
information. The Ethernet information would be displayed,
but the IP, TCP and HTTP information would not -
disabling IP would prevent it and the other protocols from
being displayed.

To enable or disable protocols select Analyze - Enabled Protocols....
Wireshark will pop up the “Enabled Protocols” dialog box as shown in
Figure 10.4, “The “Enabled Protocols” dialog box”.

Figure 10.4. The “Enabled Protocols” dialog box

" Wireshark: Enabled Protocols

Enabled Protocols

Status Protocal * Description
(4 zdparityfer Pro-MPEG Code of Practice #3 release 2 FEC
[v] SCOMEMS ICom ¥MS Encapsulation
[+ 3GPP2 A11 3GPPZ A11
[soz.11 MaET IEEE 802.11 wireless LAN management Frame
4 80211 Radiotap IEEE 802,11 Radiotap Capture header
4 802.3 Slow protocols Slove Protocols
4 9p Plan 9 9p
1 aaLt ATM AAL1
[anLa4 ATM AAL3M
1 aarp Appletalk. Address Resolution Prokocal
[acap Application Configuration Access Protocal
[ACP133 ACP133 Aktribute Syntaxes
(] ACSE IS0 8650-1 OS5I Association Control Service
M Actrace AudinCodes Trunk Trace
[app Aruba - Aruba Discovery Protocol
L aFp Apple Filing Prokocol
[aFs (RE) Andrew File System (AF3)
L aH Authentication Header
L am a0l Instant Messenger
4] AIM Administration AIM Adrinistrative

£ b

Disabling a protocol prevents higher layer protocols from being displayed
l Enable &l l [Cisable Al] ’ Invert l
| <;9 ok, ‘ ‘ o apply ‘ ‘ Save ‘ ‘ M cancel |

To disable or enable a protocol, simply click on it using the mouse or
press the space bar when the protocol is highlighted. Note that typing the
first few letters of the protocol name when the Enabled Protocols dialog
box is active will temporarily open a search text box and automatically
select the first matching protocol name (if it exists).

You must use the Save button to save your settings. The OK or Apply
buttons will not save your changes permanently and they will be lost

when Wireshark is closed.

You can choose from the following actions:

ok whE

7.

Enable All: Enable all protocols in the list.

Disable All: Disable all protocols in the list.

Invert: Toggle the state of all protocols in the list.

OK: Apply the changes and close the dialog box.

Apply: Apply the changes and keep the dialog box open.

Save: Save the settings to the disabled_protos, see Appendix B,
Files and Folders for details.

Cancel: Cancel the changes and close the dialog box.

10.4.2. User Specified Decodes

The “Decode As” functionality lets you temporarily divert specific protocol
dissections. This might be useful for example, if you do some uncommon
experiments on your network.

Decode As is accessed by selecting the Analyze — Decode As....
Wireshark will pop up the “Decode As” dialog box as shown in
Figure 10.5, “The “Decode As” dialog box”.

Figure 10.5. The “Decode As” dialog box

() Do not decode

Wireshark: Decode As EJ @l E|

Link. | Metwaork | Transport

(default)
ap
ACAP
] e 8IP13
TCP | source (3196) prl:urtlisj as | ax4o00
" . BEEF
B&EF

| Shiawy Current |

CAasT

Il

Clear | CIMD v

95 Vow J[2o

The content of this dialog box depends on the selected packet when it
was opened.

These settings will be lost if you quit Wireshark or change profile unless
you save the entries in the Show User Specified Decodes... windows
(Section 10.4.3, “Show User Specified Decodes”).

oo

1. Decode: Decode packets the selected way.
2.
3. Link/Network/Transport: Specify the network layer at which “Decode

Do not decode: Do not decode packets the selected way.

As” should take place. Which of these pages are available depends
on the content of the selected packet when this dialog box is
opened.

Show Current: Open a dialog box showing the current list of user
specified decodes.

OK: Apply the currently selected decode and close the dialog box.
Apply: Apply the currently selected decode and keep the dialog box
open.

Cancel: Cancel the changes and close the dialog box.

10.4.3. Show User Specified Decodes

This dialog box shows the currently active user specified decodes. These
entries can be saved into current profile for later session.

Figure 10.6. The “Decode As: Show” dialog box

Table Value Initial Current
TCP port 8081 (none) HTTP
TCP port 3196 (none) AlM

Help || 8] 4 | | Save | | Clear

OK: Close this dialog box.

Save: Save the entries in the table into current profile.

Clear: Removes all user specified decodes without updating the
profile.

wn e

10.5. Preferences

There are a number of preferences you can set. Simply select the Edit -
Preferences... (Wireshark — Preferences... on macOS) and Wireshark
will pop up the Preferences dialog box as shown in Figure 10.7, “The
preferences dialog box”, with the “User Interface” page as default. On the
left side is a tree where you can select the page to be shown.

e The OK button will apply the preferences settings and close the
dialog.

e The Apply button will apply the preferences settings and keep the
dialog open.

e The Cancel button will restore all preferences settings to the last
saved state.

Figure 10.7. The preferences dialog box

hark: Preferences g@g]

User Interface

Lavout Packet list selection mode: Selecks W

Columns

Fant Protocol bree selection mode: Selecks W
Colors Save window position:
Caphure

Printing Save window size:

Mame Resolution
® Protocols Save maximized state:
Open a console window Automatic (advanced user)
"File Open” dialag behavior: (%) Remember lask direckary () Blwavys skark in:
Direckary:
"File Open" preview timeout: |3
"Open Recent” max. list entries: |20

Ask For unsaved capture files:

‘wirap to end/beginning of file during a find:

l x Cancel

l &QK H o apply H §ave

10.5.1. Interface Options

In the “Capture” preferences it is possible to configure several options for
the interfaces available on your computer. Select the “Capture” pane and

press the Edit button. In this window it is possible to change the default
link-layer header type for the interface, add a comment or choose to hide
a interface from other parts of the program.

Figure 10.8. The interface options dialog box

i Wiresharks Preferencesinterface options = Profilerefanlt

Interfaces

Device Description Default link-layer Comment Hide?

[etho Ethernet Internet Mo

any Pseudo-device that captures on all interfaces Linux cooked-mode capture Mo

lo Ethernet Local Mo

Froperties

Device: etho

l ogancel

Description:

Default link-layer header type: | Ethernet = l

Comment: |:Internet |

Hide interface?: [

(8=

Each row contains options for each interface available on your computer.

Device: the device name provided by the operating system.
Description: provided by the operating system.

Default link-layer: each interface may provide several link-layer
header types. The default link-layer chosen here is the one used
when you first start Wireshark. It is also possible to change this value
in Section 4.5, “The “Capture Options” dialog box” when you start a
capture. For a detailed description, see Section 4.12, “Link-layer
header type”.

Comment: a user provided description of the interface. This
comment will be used as a description instead of the operating
system description.

Hide?: enable this option to hide the interface from other parts of the
program.

10.6. Configuration Profiles

Configuration Profiles can be used to configure and use more than one
set of preferences and configurations. Select the Configuration Profiles...
menu item from the Edit menu, or simply press Shift-Ctrl-A; and
Wireshark will pop up the Configuration Profiles dialog box as shown in
Figure 10.9, “The configuration profiles dialog box”. It is also possible to

click in the “Profile” part of the statusbar to popup a menu with available
Configuration Profiles (Figure 3.22, “The Statusbar with a configuration
profile menu”).

Configuration files stored in the Profiles:

Preferences (preferences) (Section 10.5, “Preferences”)

Capture Filters (cfilters) (Section 6.6, “Defining and saving filters”)
Display Filters (dfilters) (Section 6.6, “Defining and saving filters”)
Coloring Rules (colorfilters) (Section 10.3, “Packet colorization”)
Disabled Protocols (disabled_protos) (Section 10.4.1, “The “Enabled

Protocols” dialog box”)

e User Accessible Tables:

(¢]

Custom HTTP headers (custom_http_header_fields)

o Custom IMF headers (imf_header_fields)
o Custom LDAP AttributeValue types

(custom_Idap_attribute types)

Display Filter Macros (dfilter_macros) (Section 10.8, “Display
Filter Macros”)

ESS Category Attributes (ess_category_attributes)

(Section 10.9, “ESS Category Attributes”)

GeolP Database Paths (geoip_db_paths) (Section 10.10,
“GeolP Database Paths”)

K12 Protocols (k12_protos) (Section 10.19, “Tektronix K12xx/15
RES protocols Table”)

Object Identifier Names and Associated Syntaxes

(Section 10.12, “Object Identifiers”)

PRES Users Context List (pres_context_list) (Section 10.13,
“‘PRES Users Context List”)

SCCP Users Table (sccp_users) (Section 10.14, “SCCP users

Table”)

o SNMP Enterprise Specific Trap Types (snmp_specific_traps)
(Section 10.17, “SNMP Enterprise Specific Trap Types”)

o SNMP Users (snmp_users) (Section 10.18, “SNMP users
Table”)

o User DLTs Table (user_dIts) (Section 10.20, “User DLTs protocol
table”)

o |KEv2 decryption table (ikev2_decryption_table) (Section 10.11,
“IKEv2 decryption table”)

e Changed dissector assignments (decode_as_entries), which can be
set in Decode As... dialog box (Section 10.4.2, “User Specified
Decodes”), and further saved in the User Specified Decodes...
window (Section 10.4.3, “Show User Specified Decodes”).

e Some recent settings (recent), such as pane sizes in the Main
window (Section 3.3, “The Main window”), column widths in the
packet list (Section 3.18, “The “Packet List” pane”), all selections in
the “View” menu (Section 3.7, “The “View” menu”) and the last
directory navigated to in the File Open dialog.

All other configurations are stored in the personal configuration folder,
and are common to all profiles.

Figure 10.9. The configuration profiles dialog box

Edit Configuration Profiles

Default
Tactical analysis

Compare traffic
Only IP and TCP
Wireless

| | Copy | No reassembly

‘@gelete‘

Properties

Profile name: |Wirele55

| @ﬂelp | « Apply | | @Qancel | o OK

New
This button adds a new profile to the profiles list. The name of the
created profile is “New profile” and can be changed in the Properties
field.
Copy
This button adds a new profile to the profiles list, copying all
configuration from the profile currently selected in the list. The name
of the created profile is the same as the copied profile, with the text
“(copy)” applied. The name can be changed in the Properties field.
Delete
This button deletes the selected profile, including all configuration
files used in this profile. It is not possible to delete the “Default”
profile.
Configuration Profiles
You can select a configuration profile from this list (which will fill in
the profile name in the fields down at the bottom of the dialog box).
Profile name

You can change the name of the currently selected profile here.

The profile name will be used as a folder name in the configured
“Personal configurations” folder. If adding multiple profiles with the
same name, only one profile will be created.

On Windows the profile name cannot start or end with a period (.),

and cannot contain any of the following characters: ‘\, /", *:’, *, ‘?’,
TS, or '+ On Unix the profile name cannot contain the */
character.

OK
This button saves all changes, applies the selected profile and
closes the dialog.

Apply
This button saves all changes, applies the selected profile and keeps
the dialog open.

Cancel
Close this dialog. This will discard unsaved settings, new profiles will
not be added and deleted profiles will not be deleted.

Help
Show this help page.

10.7. User Table

The User Table editor is used for managing various tables in wireshark.
Its main dialog works very similarly to that of Section 10.3, “Packet
colorization”.

10.8. Display Filter Macros

Display Filter Macros are a mechanism to create shortcuts for complex
filters. For example defining a display filter macro named tcp_conv whose
text is ((ip.src == $1 and ip.dst == $2 and tcp.srcport == $3 and
tcp.dstport == $4) or (ip.src == $2 and ip.dst == $1 and tcp.srcport == $4
and tcp.dstport == $3)) would allow to use a display filter like
${tcp_conv:10.1.1.2;10.1.1.3;1200,1400} instead of typing the whole filter.

Display Filter Macros can be managed with a Section 10.7, "User Table”
by selecting Analyze — Display Filter Macros from the menu. The User
Table has the following fields

Name
The name of the macro.

Text
The replacement text for the macro it uses $1, $2, $3, ... as the input
arguments.

10.9. ESS Category Attributes

Wireshark uses this table to map ESS Security Category attributes to
textual representations. The values to put in this table are usually found
in a XML SPIF, which is used for defining security labels.

This table is handled by an Section 10.7, "User Table” with the following
fields.

Tag Set

An Object Identifier representing the Category Tag Set.
Value

The value (Label And Cert Value) representing the Category.
Name

The textual representation for the value.

http://www.xmlspif.org/

10.10. GeolP Database Paths

If your copy of Wireshark supports MaxMind’s GeolP library, you can use
their databases to match IP addresses to countries, cites, autonomous
system numbers, ISPs, and other bits of information. Some databases
are available at no cost, while others require a licensing fee. See the
MaxMind web site for more information.

This table is handled by an Section 10.7, “User Table” with the following
fields.

Database pathname

This specifies a directory containing GeolP data files. Any files
beginning with Geo and ending with .dat will be automatically loaded.
A total of 8 files can be loaded.

The locations for your data files are up to you, but /usr/share/GeoIP
(Linux), c:\GeoIP (Windows), C:\Program Files\Wireshark\GeoIP
(Windows) might be good choices.

http://www.maxmind.com/
http://www.maxmind.com/download/geoip/database/
http://www.maxmind.com/app/ip-location

10.11. IKEv2 decryption table

Wireshark can decrypt Encrypted Payloads of IKEv2 (Internet Key
Exchange version 2) packets if necessary information is provided. Note
that you can decrypt only IKEv2 packets with this feature. If you want to
decrypt IKEv1 packets or ESP packets, use Log Filename setting under
ISAKMP protocol preference or settings under ESP protocol preference
respectively.

This table is handled by an Section 10.7, "User Table” with the following
fields.

Initiator’'s SPI
Initiator’s SPI of the IKE_SA. This field takes hexadecimal string
without “Ox” prefix and the length must be 16 hex chars (represents 8
octets).

Responder’s SPI
Responder’s SPI of the IKE_SA. This field takes hexadecimal string
without “Ox” prefix and the length must be 16 hex chars (represents 8
octets).

SK_ei
Key used to encrypt/decrypt IKEv2 packets from initiator to
responder. This field takes hexadecimal string without “Ox” prefix and
its length must meet the requirement of the encryption algorithm
selected.

SK er
Key used to encrypt/decrypt IKEv2 packets from responder to
initiator. This field takes hexadecimal string without “Ox” prefix and its
length must meet the requirement of the encryption algorithm
selected.

Encryption Algorithm
Encryption algorithm of the IKE_SA.

SK_ai
Key used to calculate Integrity Checksum Data for IKEv2 packets
from responder to initiator. This field takes hexadecimal string
without “Ox” prefix and its length must meet the requirement of the
integrity algorithm selected.

SK ar

Key used to calculate Integrity Checksum Data for IKEv2 packets
from initiator to responder. This field takes hexadecimal string
without “Ox” prefix and its length must meet the requirement of the
integrity algorithm selected.

Integrity Algorithm
Integrity algorithm of the IKE_SA.

10.12. Object Identifiers

Many protocols that use ASN.1 use Object Identifiers (OIDs) to uniquely
identify certain pieces of information. In many cases, they are used in an
extension mechanism so that new object identifiers (and associated
values) may be defined without needing to change the base standard.

Whilst Wireshark has knowledge about many of the OIDs and the syntax
of their associated values, the extensibility means that other values may
be encountered.

Wireshark uses this table to allow the user to define the name and syntax
of Object Identifiers that Wireshark does not know about (for example, a
privately defined X.400 extension). It also allows the user to override the
name and syntax of Object Identifiers that Wireshark does know about
(e.g. changing the name “id-at-countryName” to just “c”).

This table is handled by an Section 10.7, "User Table” with the following
fields.

OID
The string representation of the Object Identifier e.g. “2.5.4.6".
Name
The name that should be displayed by Wireshark when the Object
Identifier is dissected e.g. (¢);
Syntax
The syntax of the value associated with the Object Identifier. This
must be one of the syntaxes that Wireshark already knows about
(e.g. “PrintableString”).

10.13. PRES Users Context List

Wireshark uses this table to map a presentation context identifier to a
given object identifier when the capture does not contain a PRES
package with a presentation context definition list for the conversation.

This table is handled by an Section 10.7, "User Table” with the following
fields.

Context Id
An Integer representing the presentation context identifier for which
this association is valid.

Syntax Name OID
The object identifier representing the abstract syntax name, which
defines the protocol that is carried over this association.

10.14. SCCP users Table

Wireshark uses this table to map specific protocols to a certain DPC/SSN
combination for SCCP.

This table is handled by an Section 10.7, "User Table” with the following
fields.

Network Indicator
An Integer representing the network indicator for which this
association is valid.

Called DPCs
An range of integers representing the dpcs for which this association
Is valid.

Called SSNs
An range of integers representing the ssns for which this association
is valid.

User protocol
The protocol that is carried over this association

10.15. SMI (MIB and PIB) Modules

If your copy of Wireshark supports libSMI, you can specify a list of MIB
and PIB modules here. The COPS and SNMP dissectors can use them
to resolve OIDs.

Module name
The name of the module, e.g. IF-MIB.

10.16. SMI (MIB and PIB) Paths

If your copy of Wireshark supports libSMI, you can specify one or more
paths to MIB and PIB modules here.

Directory name
A module directory, e.g. /usr/local/snmp/mibs. Wireshark
automatically uses the standard SMI path for your system, so you
usually don’t have to add anything here.

10.17. SNMP Enterprise Specific Trap Types

Wireshark uses this table to map specific-trap values to user defined
descriptions in a Trap PDU. The description is shown in the packet
details specific-trap element.

This table is handled by an Section 10.7, "User Table” with the following
fields.

Enterprise OID

The object identifier representing the object generating the trap.
Trap Id

An Integer representing the specific-trap code.
Description

The description to show in the packet details.

10.18. SNMP users Table

Wireshark uses this table to verify authentication and to decrypt
encrypted SNMPv3 packets.

This table is handled by an Section 10.7, "User Table” with the following
fields.

Engine ID
If given this entry will be used only for packets whose engine id is
this. This field takes an hexadecimal string in the form 0102030405.

Username
This is the userName. When a single user has more than one
password for different SNMP-engines the first entry to match both is
taken, if you need a catch all engine-id (empty) that entry should be
the last one.

Authentication model
Which auth model to use (either “MD5” or “SHAL").

Password
The authentication password. Use \xDD for unprintable characters.
An hexadecimal password must be entered as a sequence of \xDD
characters. For example the hex password 010203040506 must be
entered as \x011x02\x03\x04\x05\x06. The | character must be
treated as an unprintable character, i.e. it must be entered as \x5C or
Ix5c.

Privacy protocol
Which encryption algorithm to use (either “DES” or ~AES").

Privacy password
The privacy password. Use \xDD for unprintable characters. An
hexadecimal password must be entered as a sequence of \xDD
characters. For example the hex password 010203040506 must be
entered as \x011x02\x03\x04\x05\x06. The | character must be
treated as an unprintable character, i.e. it must be entered as \x5C or
Ix5c.

10.19. Tektronix K12xx/15 RF5 protocols Table

The Tektronix K12xx/15 rf5 file format uses helper files (*.stk) to identify
the various protocols that are used by a certain interface. Wireshark
doesn’t read these stk files, it uses a table that helps it identify which
lowest layer protocol to use.

Stk file to protocol matching is handled by an Section 10.7, “User Table”
with the following fields.

Match string
A partial match for an stk filename, the first match wins, so if you
have a specific case and a general one the specific one must appear
first in the list.

Protocol
This is the name of the encapsulating protocol (the lowest layer in
the packet data) it can be either just the name of the protocol (e.g.
mtp2, eth_witoutfcs, sscf-nni) or the name of the encapsulation
protocol and the “application” protocol over it separated by a colon
(e.g sscop:sscf-nni, sscop:alcap, sscop:nbap, ...)

10.20. User DLTs protocol table

When a pcap file uses one of the user DLTs (147 to 162) wireshark uses
this table to know which protocol(s) to use for each user DLT.

This table is handled by an Section 10.7, "User Table” with the following
fields.

DLT
One of the user dlts.
Payload protocol
This is the name of the payload protocol (the lowest layer in the
packet data). (e.g. “eth” for ethernet, “ip” for IPv4)
Header size
If there is a header protocol (before the payload protocol) this tells
which size this header is. A value of O disables the header protocol.
Header protocol
The name of the header protocol to be used (uses “data” as default).
Trailer size
If there is a trailer protocol (after the payload protocol) this tells which
size this trailer is. A value of 0 disables the trailer protocol.
Trailer protocol
The name of the trailer protocol to be used (uses “data” as default).

Appendix A. Wireshark Messages
Table of Contents

A.l. Packet List Messages
A.1.1. [Malformed Packet]
A.1.2. [Packet size limited during capture]
A.2. Packet Details Messages
A.2.1. [Response in frame: 123]
A.2.2. [Request in frame: 123]
A.2.3. [Time from request: 0.123 seconds]
A.2.4. [Stream setup by PROTOCOL (frame 123)]

Wireshark provides you with additional information generated out of the
plain packet data or it may need to indicate dissection problems.
Messages generated by Wireshark are usually placed in square brackets

0.

A.1l. Packet List Messages
These messages might appear in the packet list.
A.1.1. [Malformed Packet]

Malformed packet means that the protocol dissector can’t dissect the
contents of the packet any further. There can be various reasons:

e Wrong dissector. Wireshark erroneously has chosen the wrong
protocol dissector for this packet. This will happen e.g. if you are
using a protocol not on its well known TCP or UDP port. You may try
Analyze|Decode As to circumvent this problem.

e Packet not reassembled: The packet is longer than a single frame
and it is not reassembled, see Section 7.8, “Packet Reassembly” for
further details.

e Packet is malformed: The packet is actually wrong (malformed),
meaning that a part of the packet is just not as expected (not
following the protocol specifications).

e Dissector is buggy: The corresponding protocol dissector is simply
buggy or still incomplete.

Any of the above is possible. You'll have to look into the specific situation
to determine the reason. You could disable the dissector by disabling the
protocol on the Analyze menu and check how Wireshark displays the
packet then. You could (if it's TCP) enable reassembly for TCP and the
specific dissector (if possible) in the Edit|Preferences menu. You could
check the packet contents yourself by reading the packet bytes and
comparing it to the protocol specification. This could reveal a dissector
bug. Or you could find out that the packet is indeed wrong.

A.1.2. [Packet size limited during capture]

The packet size was limited during capture, see “Limit each packet to n
bytes” at the Section 4.5, “The “Capture Options” dialog box”. While
dissecting, the current protocol dissector was simply running out of
packet bytes and had to give up. There’s nothing else you can do now,
except to repeat the whole capture process again with a higher (or no)
packet size limitation.

A.2. Packet Details Messages
These messages might appear in the packet details.
A.2.1. [Response in frame: 123]

The current packet is the request of a detected request/response pair.
You can directly jump to the corresponding response packet just by
double clicking on this message.

A.2.2. [Request in frame: 123]

Same as “Response in frame: 123" above, but the other way round.
A.2.3. [Time from request: 0.123 seconds]

The time between the request and the response packets.

A.2.4. [Stream setup by PROTOCOL (frame 123)]

The session control protocol (SDP, H225, etc) message which signaled
the creation of this session. You can directly jump to the corresponding
packet just by double clicking on this message.

Appendix B. Files and Folders

Table of Contents

B.1.

Capture Files

B.2.

B.1.1. Libpcap File Contents

B.1.2. Not Saved in the Capture File

Configuration File and Plugin Folders

B.3.

B.2.1. Folders on Windows

B.2.2. Folders on Unix-like systems

Configuration Files

B.4.

B.3.1. Protocol help configuration

Plugin folders

B.5.

Windows folders

B.5.1. Windows profiles

B.5.2. Windows roaming profiles

B.5.3. Windows temporary folder

B.1. Capture Files

To understand which information will remain available after the captured
packets are saved to a capture file, it's helpful to know a bit about the
capture file contents.

Wireshark uses the pcapng file format as the default format to save
captured packets. It is very flexible but other tools may not support it.

Wireshark also supports the libpcap file format. This is a much simpler
format and is well established. However, it has some drawbacks: it's not
extensible and lacks some information that would be really helpful (e.qg.
being able to add a comment to a packet such as “the problems start
here” would be really nice).

In addition to the libpcap format, Wireshark supports several different
capture file formats. However, the problems described above also applies
for these formats.

B.1.1. Libpcap File Contents

At the start of each libpcap capture file some basic information is stored
like a magic number to identify the libpcap file format. The most
interesting information of this file start is the link layer type (Ethernet,
802.11, MPLS, etc).

The following data is saved for each packet:

e The timestamp with millisecond resolution
e The packet length as it was “on the wire”
e The packet length as it's saved in the file
e The packet’s raw bytes

A detailed description of the libpcap file format can be found at:
https://wiki.wireshark.org/Development/LibpcapFileFormat

B.1.2. Not Saved in the Capture File

You should also know the things that are not saved in capture files:

https://github.com/pcapng/pcapng
https://wiki.wireshark.org/Development/LibpcapFileFormat
https://wiki.wireshark.org/Development/LibpcapFileFormat

Current selections (selected packet, ...)

Name resolution information. See Section 7.9, “Name Resolution” for
detalils

Pcapng files can optionally save name resolution information.
Libpcap files can’t. Other file formats have varying levels of support.

The number of packets dropped while capturing
Packet marks set with “Edit/Mark Packet”

Time references set with “Edit/Time Reference”
The current display filter

B.2. Configuration File and Plugin Folders

To match the different policies for Unix-like systems and Windows, and
different policies used on different Unix-like systems, the folders
containing configuration files and plugins are different on different
platforms. We indicate the location of the top-level folders under which
configuration files and plugins are stored here, giving them placeholder
names independent of their actual location, and use those names later
when giving the location of the folders for configuration files and plugins.

Tip
@ A list of the folders Wireshark actually uses can be found
under the Folders tab in the dialog box shown when you
select About Wireshark from the Help menu.
B.2.1. Folders on Windows
APPDATA is the personal application data folder, e.qg.:

C:\Users\username\Appbata\Roaming\Wireshark (details can be found at:
Section B.5.1, “Windows profiles”).

WIRESHARK is the Wireshark program folder, e.g.: c:\Program
Files\Wireshark.

B.2.2. Folders on Unix-like systems

XDG_CONFIG_HOME is the folder for user-specific configuration files.
It's usually $HOME/ .config, where $HOME is the user’s home folder,
which is usually something such as /home/username, or
/Users/username on macOS.

If you are using macOS and you are running a copy of Wireshark
installed as an application bundle, APPDIR is the top-level directory of
the Wireshark application bundle, which will typically be
/Applications/Wireshark.app. Otherwise, INSTALLDIR is the top-level
directory under which reside the subdirectories in which components of
Wireshark are installed. This will typically be /usr if Wireshark is bundled

with the system (for example, provided as a package with a Linux
distribution) and /usr/local if, for example, you've build Wireshark from
source and installed it.

B.3. Configuration Files

Wireshark uses a number of configuration files while it is running. Some
of these reside in the personal configuration folder and are used to
maintain information between runs of Wireshark, while some of them are
maintained in system areas.

The content format of the configuration files is the same on all platforms.
On Windows:

e The personal configuration folder for Wireshark is the wireshark sub-
folder of that folder, i.e. APPDATA\wireshark.

e The global configuration folder for Wireshark is the Wireshark
program folder and is also used as the system configuration folder.

On Unix-like systems:

e The personal configuration folder is
XDG_CONFIG_HOME /wireshark. For backwards compatibility with
Wireshark before 2.2, if XDG_CONFIG_HOME /wireshark does not
exist and $HOME/ .wireshark is present, then the latter will be used.

e |f you are using macOS and you are running a copy of Wireshark
installed as an application bundle, the global configuration folder is
APPDIR/contents/Resources/share/wireshark. Otherwise, the global
configuration folder is INSTALLDIR/share/wireshark.

e The /etc folder is the system configuration folder. The folder actually
used on your system may vary, maybe something like:
/usr/local/etc.

Table B.1. Configuration files overview

]FiIeIFoIder ||Description

preferences Settings from the Preferences dialog box.

recent Recent GUI settings (e.qg. recent files lists).

cfilters Capture filters.

dfilters Display filters.

colorfilters Coloring rules.

disabled_protos|Disabled protocols.

ethers Ethernet name resolution.
manuf Ethernet name resolution.
hosts IPv4 and IPv6 name resolution.
services Network services.

subnets IPv4 subnet name resolution.
ipxnets IPX name resolution.

vlans VLAN ID name resolution.

File contents

preferences

This file contains your Wireshark preferences, including defaults for
capturing and displaying packets. It is a simple text file containing
statements of the form:

variable: value

At program start, if there is a preferences file in the global
configuration folder, it is read first. Then, if there is a preferences file
in the personal configuration folder, that is read,; if there is a
preference set in both files, the setting in the personal preferences
file overrides the setting in the global preference file.

If you press the Save button in the “Preferences” dialog box, all the
current settings are written to the personal preferences file.

recent

This file contains various GUI related settings like the main window
position and size, the recent files list and such. It is a simple text file
containing statements of the form:

variable: value
It is read at program start and written at program exit.
cfilters

This file contains all the capture filters that you have defined and
saved. It consists of one or more lines, where each line has the
following format:

"<filter name>" <filter string>

At program start, if there is a cfilters file in the personal configuration
folder, it is read. If there isn’t a cfilters file in the personal
configuration folder, then, if there is a cfilters file in the global
configuration folder, it is read.

When you press the Save button in the “Capture Filters” dialog box,
all the current capture filters are written to the personal capture filters
file.

dfilters

This file contains all the display filters that you have defined and
saved. It consists of one or more lines, where each line has the
following format:

"<filter name>" <filter string>

At program start, if there is a dfilters file in the personal configuration
folder, it is read. If there isn’t a dfilters file in the personal
configuration folder, then, if there is a dfilters file in the global
configuration folder, it is read.

When you press the Save button in the “Display Filters” dialog box,
all the current capture filters are written to the personal display filters
file.

colorfilters

This file contains all the color filters that you have defined and saved.
It consists of one or more lines, where each line has the following
format:

@<filter name>@<filter string>@[<bg RGB(16-bit)>][<fg RGB(16-bit

At program start, if there is a coloffilters file in the personal
configuration folder, it is read. If there isn’t a colorfilters file in the
personal configuration folder, then, if there is a colofrfilters file in the
global configuration folder, it is read.

Wwhen you press the Save button in the “Coloring Rules” dialog
box, all the current color filters are written to the personal color filters
file.

disabled_protos

Each line in this file specifies a disabled protocol name. The
following are some examples:

tcp
udp

At program start, if there is a disabled_protos file in the global
configuration folder, it is read first. Then, if there is a disabled_protos
file in the personal configuration folder, that is read; if there is an
entry for a protocol set in both files, the setting in the personal
disabled protocols file overrides the setting in the global disabled
protocols file.

When you press the Save button in the “Enabled Protocols” dialog
box, the current set of disabled protocols is written to the personal
disabled protocols file.

ethers

When Wireshark is trying to translate an hardware MAC address to a
name, it consults the ethers file in the personal configuration folder
first. If the address is not found in that file, Wireshark consults the
ethers file in the system configuration folder.

Each line in these files consists of one hardware address and name
separated by whitespace. The digits of hardware addresses are
separated by colons (:), dashes (-) or periods(.). The following are
some examples:

ff-ff-ff-ff-ff-ff Broadcast

cO-00-ff-ff-ff-ff TR_broadcast
00.2b.08.93.4b.a1 Freds_machine

The settings from this file are read in when a MAC address is to be
translated to a name, and never written by Wireshark.

manuf

At program start, if there is a manuf file in the global configuration
folder, it is read.

The entries in this file are used to translate the first three bytes of an
Ethernet address into a manufacturers name. This file has the same
format as the ethers file, except addresses are three bytes long.

An example is:

00:00:01 Xerox # XEROX CORPORATION

The settings from this file are read in at program start and never
written by Wireshark.

hosts

Wireshark uses the entries in the hosts files to translate IPv4 and
IPv6 addresses into names.

At program start, if there is a hosts file in the global configuration
folder, it is read first. Then, if there is a hosts file in the personal
configuration folder, that is read; if there is an entry for a given IP
address in both files, the setting in the personal hosts file overrides
the entry in the global hosts file.

This file has the same format as the usual /etc/hosts file on Unix
systems.

An example is:

Comments must be prepended by the # sign!
192.168.0.1 homeserver

The settings from this file are read in at program start and never
written by Wireshark.

services

Wireshark uses the services files to translate port numbers into
names.

At program start, if there is a services file in the global configuration
folder, it is read first. Then, if there is a services file in the personal

configuration folder, that is read; if there is an entry for a given port

number in both files, the setting in the personal hosts file overrides

the entry in the global hosts file.

An example is:

mydns 5045/udp # My own Domain Name Server

mydns 5045/tcp # My own Domain Name Server

The settings from these files are read in at program start and never
written by Wireshark.

subnets

Wireshark uses the subnets files to translate an IPv4 address into a
subnet name. If no exact match from a hosts file or from DNS is
found, Wireshark will attempt a partial match for the subnet of the
address.

At program start, if there is a subnets file in the personal
configuration folder, it is read first. Then, if there is a subnets file in
the global configuration folder, that is read; if there is a preference
set in both files, the setting in the global preferences file overrides
the setting in the personal preference file.

Each line in one of these files consists of an IPv4 address, a subnet
mask length separated only by a /and a name separated by
whitespace. While the address must be a full IPv4 address, any
values beyond the mask length are subsequently ignored.

An example is:

Comments must be prepended by the # sign!
192.168.0.0/24 ws_test_network

A partially matched name will be printed as “subnet-name.remaining-
address”. For example, “192.168.0.1” under the subnet above would
be printed as “ws_test_network.1"; if the mask length above had
been 16 rather than 24, the printed address would be
“ws_test_network.0.1".

The settings from these files are read in at program start and never
written by Wireshark.

ipxnets

When Wireshark is trying to translate an IPX network number to a
name, it consults the ipxnets file in the personal configuration folder

first. If the address is not found in that file, Wireshark consults the
ipxnets file in the system configuration folder.

An example is:

CO.A8.2C.00 HR
c0-a8-1c-00 CEO
00:00:BE:EF IT Serverl
110f FileServer3

The settings from this file are read in when an IPX network number
is to be translated to a name, and never written by Wireshark.

vlans
Wireshark uses the vians file to translate VLAN tag IDs into names.

At program start, if there is a vians file in the personal configuration
folder, it is read.

Each line in this file consists of one VLAN tag ID and a describing
name separated by whitespace or tab.

An example is:

123 Server-LAN
2049 HR-Client-LAN

The settings from this file are read in at program start and never
written by Wireshark.

B.3.1. Protocol help configuration

Wireshark can use configuration files to create context-sensitive menu
items for protocol detail items which will load help URLSs in your web
browser.

To create a protocol help file, create a folder named “protocol_help” in
either the personal or global configuration folders. Then create a text file
with the extension “.ini” in the “protocol_help” folder. The file must contain
key-value pairs with the following sections:

[database]

Mandatory. This contains initialization information for the help file.
The following keys must be defined:

source
Source name, e.g. “HyperGlobalMegaMart”

version
Must be “1”.

location
General URL for help items. Variables can be substituted using
the [location data] section below.

[location data]

Optional. Contains keys that will be used for variable substitution in
the “location” value. For example, if the database section contains

location = http://www.example.com/proto?cookie=${cookie}& pat

then setting

cookie = anonymous-user-1138

will result in the URL PATH is used for help path substitution, and
shouldn’t be defined in this section.

[map]
Maps Wireshark protocol names to section names below. Each key

MUST match a valid protocol name such as “ip”. Each value MUST
have a matching section defined in the configuration file.

Each protocol section must contain an “*_ OVERVIEW” key which will be
used as the first menu item for the help source. Subsequent keys must
match descriptions will be appended to the location.

Suppose the file
C:\Users\sam.clemens\AppData\Roaming\Wireshark\protocol help\wikiped

contains the following:

Wikipedia (en) protocol help file.

Help file initialization

source: The source of the help information, e.g. "~ “Inacon'' or "~
version: Currently unused. Must be “~"1''.

url_template: Template for generated URLs. See "~ "URL Data'' below.
[database]

source=Wikipedia

version=1
url_template=https://${language}.wikipedia.org/wiki/${PATH}

Substitution data for the location template.

Each occurrence of the keys below in the location template will be
substituted with their corresponding values. For example, "~ “${lice
in the URL template above will be replaced with the value of " lic
below.

H o HHHHH

PATH is reserved for the help paths below; do not specify it here.
[location data]
language = en

Maps Wireshark protocol names to section names below. Each key MUS
a valid protocol name. Each value MUST have a matching section bel

[map]
tcp=TCP

Mapped protocol sections.

Keys must match protocol detail items descriptions.
[TCP]

_OVERVIEW=Transmission_Control_Protocol

Destination port=Transmission_Control Protocol#TCP_ports
Source port=Transmission_Control_Protocol#TCP_ports

Right-clicking on a TCP protocol detail item will display a help menu item
that displays the Wikipedia page for TCP. Right-clicking on the TCP
destination or source ports will display additional help menu items that
take you to the “TCP ports” section of the page.

example, the following configuration is functionally equivalent to the
previous configuration:

[database]

source=Wikipedia

version=1
location=https://en.wikipedia.org/wiki/

[map]
tcp=TCP

[TCP]

_OVERVIEW=Transmission_Control_Protocol
Destination port=Transmission_Control Protocol#TCP_ports
Source port=Transmission_Control_Protocol#TCP_ports

B.4. Plugin folders

Wireshark supports plugins for various purposes. Plugins can either be
scripts written in Lua or code written in C or C++ and compiled to
machine code.

Wireshark looks for plugins in both a personal plugin folder and a global
plugin folder. Lua plugins are stored in the plugin folders; compiled
plugins are stored in subfolders of the plugin folders, with the subfolder
name being the Wireshark version number.

On Windows:

e The personal plugin folder is APPDATA\Wwireshark\plugins.
e The global plugin folder is WIRESHARK\plugins.

On Unix-like systems:

e The personal plugin folder is
XDG _CONFIG_HOME /wireshark/plugins or, if
XDG_CONFIG_HOME/wireshark does not exist and
$HOME/ .wireshark is present, SHOME/ .wireshark/plugins.

e |f you are running on macOS and Wireshark is installed as an
application bundle, the global plugin folder is
APPDIR/contents/PlugIns/wireshark, otherwise it's
INSTALLDIR/share/wireshark/plugins.

B.5. Windows folders

Here you will find some details about the folders used in Wireshark on
different Windows versions.

As already mentioned, you can find the currently used folders in the
About Wireshark dialog.

B.5.1. Windows profiles

Windows uses some special directories to store user configuration files
which define the “user profile”. This can be confusing, as the default

directory location changed from Windows version to version and might
also be different for English and internationalized versions of Windows.

Note

@ If you've upgraded to a new Windows version, your profile
might be kept in the former location. The defaults
mentioned here might not apply.

The following guides you to the right place where to look for Wireshark’s
profile data.

Windows 10, Windows 8.1, Windows 8, Windows 7, Windows Vista, and

associated server editions
C:\Users\username\Appbata\Roaming\Wireshark.

Windows XP, Windows Server 2003, and Windows 2000 [1]
C:\Documents and Settings\uSername\Application Data.
“Documents and Settings” and “Application Data” might be
internationalized.

Windows NT 4 1]

C:\WINNT\Profiles\username\Application Data\Wireshark

Windows ME, Windows 98 with user profiles 4
In Windows ME and 98 you could enable separate user profiles. In
that case, something like
C:\windows\Profiles\USername\Application Data\Wireshark iS

used.

Windows ME, Windows 98 without user profiles [
Without user profiles enabled the default location for all users was
C:\windows\Application Data\Wireshark.

B.5.2. Windows roaming profiles

Some larger Windows environments use roaming profiles. If this is the
case the configurations of all programs you use won’t be saved on your
local hard drive. They will be stored on the domain server instead.

Your settings will travel with you from computer to computer with one
exception. The “Local Settings” folder in your profile data (typically
something like: c:\Documents and Settings\username\Local Settings)
will not be transferred to the domain server. This is the default for
temporary capture files.

B.5.3. Windows temporary folder

Wireshark uses the folder which is set by the TMPDIR or TEMP
environment variable. This variable will be set by the Windows installer.

Windows 10, Windows 8.1, Windows 8, Windows 7, Windows Vista, and
associated server editions

C:\Users\username\AppbData\Local\Temp
Windows XP, Windows Server 2003, Windows 2000

C:\Documents and Settings\uSername\Local Settings\Temp

Windows NT &
C:\TEMP

Ul No longer supported by Wireshark. For historical reference only.

Appendix C. Protocols and Protocol Fields

Wireshark distinguishes between protocols (e.g. tcp) and protocol fields
(e.g. tcp.port).

A comprehensive list of all protocols and protocol fields can be found in
the “Display Filter Reference” at https://www.wireshark.org/docs/dfref/

https://www.wireshark.org/docs/dfref/

Appendix D. Related command line tools
Table of Contents

D.1. Introduction

D.2. tshark: Terminal-based Wireshark

D.3. tcpdump: Capturing with tcpdump for viewing with Wireshark
D.4. dumpcap: Capturing with dumpcap for viewing with Wireshark
D.5. capinfos: Print information about capture files

D.6. rawshark: Dump and analyze network traffic.

D.7. editcap: Edit capture files

D.8. mergecap: Merging multiple capture files into one

D.9. text2pcap: Converting ASCII hexdumps to network captures
D.10. reordercap: Reorder a capture file

D.1. Introduction

Along with the main application, Wireshark comes with an array of
command line tools which can be helpful for specialized tasks. These
tools will be described in this chapter. You can find more information
about each command in the Manual Pages.

https://www.wireshark.org/docs/man-pages/

D.2. tshark: Terminal-based Wireshark

TShark is a terminal oriented version of Wireshark designed for capturing
and displaying packets when an interactive user interface isn’'t necessary
or available. It supports the same options as wireshark. For more
information on tshark see the manual pages (man tshark).

Help information available from tshark.

TShark (Wireshark) 2.1.0 (v2.1.0rc0-502-9g328fbcO® from master)
Dump and analyze network traffic.
See https://www.wireshark.org for more information.

Usage: tshark [options]

Capture interface:
-1 <interface>
-f <capture filter>
-s <shaplen>
-p
-1
-B <buffer size>
-y <link type>
-D
-L

Capture stop conditions:
-c <packet count>
-a <autostop cond.> ...

Capture output:
-b <ringbuffer opt.>

RPCAP options:

-A <user>:<password>
Input file:

-r <infile>

Processing:
-2
-R <read filter>
-Y <display filter>

-n
-N <name resolve flags>

name or idx of interface (def: first non-
packet filter in libpcap filter syntax
packet snapshot length (def: 262144)
don't capture in promiscuous mode

capture in monitor mode, if available
size of kernel buffer (def: 2MB)

link layer type (def: first appropriate)
print list of interfaces and exit

print list of link-layer types of iface a

stop after n packets (def: infinite)

duration:NUM - stop after NUM seconds
filesize:NUM - stop this file after NUM K
files:NUM - stop after NUM files
. duration:NUM - switch to next file after
filesize:NUM - switch to next file after
files:NUM - ringbuffer: replace after

use RPCAP password authentication

set the filename to read from (- to read

perform a two-pass analysis

packet Read filter in Wireshark display f
packet displaY filter in Wireshark displa
syntax

disable all name resolutions (def: all en
enable specific name resolution(s): "mnNt

-d <layer_type>==<selector>, <decode_as_protocol>
"Decode As", see the man page for details
Example: tcp.port==8888, http
-H <hosts file> read a list of entries from a hosts file,
then be written to a capture file. (Impli
--disable-protocol <proto_name>
disable dissection of proto_name
--enable-heuristic <short_name>
enable dissection of heuristic protocol
--disable-heuristic <short_name>
disable dissection of heuristic protocol

Output:
-w <outfile]|-> write packets to a pcap-format file named
(or to the standard output for "-")
-C <config profile> start with specified configuration profil

-F <output file type> set the output file type, default is pcap
an empty "-F" option will list the file t

-V add output of packet tree (Packet

-0 <protocols> Only show packet details of these protocc
separated

-P print packet summary even when writing tc

-S <separator> the line separator to print between packe

-X add output of hex and ASCII dump (Packet

-T pdml|ps|psml|text|fields
format of text output (def: text)
-e <field> field to print if -Tfields selected (e.g.
_ws.col.Info)
this option can be repeated to print mult
-E<fieldsoption>=<value> set options for output when -Tfields sele

header=y|n switch headers on and off
separator=/t|/s|<char> select tab, space, printable character a
occurrence=f|1l|a print first, last or all occurrences of e
aggregator=, | /s|<char> select comma, space, printable character
aggregator
guote=d|s]|n select double, single, no quotes for valu
-t alad|d|dd|e|r|u]|ud output format of time stamps (def: r: rel
-u s|hms output format of seconds (def: s: seconds
-1 flush standard output after each packet
-q be more quiet on stdout (e.g. when using
-Q only log true errors to stderr (quieter t
-g enable group read access on the output fi
-W n Save extra information in the file, if su
n = write network address resolution infc
-X <key>:<value> eXtension options, see the man page for d
-z <statistics> various statistics, see the man page for

--capture-comment <comment>
add a capture comment to the newly create
output file (only for pcapng)

Miscellaneous:

-h display this help and exit

-V display version info and exit

-0 <name>:<value> ... override preference setting

-K <keytab> keytab file to use for kerberos decryptic
-G [report] dump one of several available reports and

default report="fields"
use "-G ?" for more help

WARNING: dumpcap will enable kernel BPF JIT compiler if available.
You might want to reset it
By doing "echo 0 > /proc/sys/net/core/bpf_jit_enable"

D.3. tcpdump: Capturing with tcpdump for viewing with Wireshark

It's often more useful to capture packets using tcpdump rather than
wireshark. For example, you might want to do a remote capture and
either don’t have GUI access or don’'t have Wireshark installed on the
remote machine.

Older versions of tcpdump truncate packets to 68 or 96 bytes. If this is the
case, use -s to capture full-sized packets:

$ tcpdump -i <interface> -s 65535 -w <some-file>

You will have to specify the correct interface and the name of a file to
save into. In addition, you will have to terminate the capture with ~C when
you believe you have captured enough packets.

tcpdump is not part of the Wireshark distribution. You can get it from
http://www.tcpdump.org/ or as a standard package in most Linux
distributions.

http://www.tcpdump.org/

D.4. dumpcap: Capturing with dumpcap for viewing with Wireshark

Dumpcap is a network traffic dump tool. It captures packet data from a
live network and writes the packets to a file. Dumpcap’s native capture
file format is pcapng, which is also the format used by Wireshark.

Without any options set it will use the pcap library to capture traffic from
the first available network interface and write the received raw packet
data, along with the packets' time stamps into a pcapng file. The capture
filter syntax follows the rules of the pcap library.

Help information available from dumpcap.

Dumpcap (Wireshark) 2.1.0 (v2.1.0rc0-502-9g328fbc® from master)
Capture network packets and dump them into a pcapng or pcap file.
See https://www.wireshark.org for more information.

Usage: dumpcap [options]

Capture interface:
-1 <interface> name or idx of interface (def: first non-
or for remote capturing, use one of these
rpcap://<host>/<interface>
TCP@<host>:<port>

-f <capture filter> packet filter in libpcap filter syntax

-s <snaplen> packet snapshot length (def: 262144)

-p don't capture in promiscuous mode

-1 capture in monitor mode, if available

-B <buffer size> size of kernel buffer in MiB (def: 2MiB)

-y <link type> link layer type (def: first appropriate)

-D print list of interfaces and exit

-L print list of link-layer types of iface a
-d print generated BPF code for capture filt
-k set channel on wifi interface <freq>, [<ty
-S print statistics for each interface once

-M for -D, -L, and -S, produce machine-reada

-r don't ignore own RPCAP traffic in capture
-u use UDP for RPCAP data transfer

-A <user>:<password> use RPCAP password authentication

-m <sampling type> use packet sampling

count:NUM - capture one packet of every N
timer:NUM - capture no more than 1 packet
Stop conditions:
-Cc <packet count> stop after n packets (def: infinite)

-a <autostop cond.> ... duration:NUM - stop after NUM seconds
filesize:NUM - stop this file after NUM K
files:NUM - stop after NUM files
Output (files):

-w <filename> name of file to save (def: tempfile)
-g enable group read access on the output fi
-b <ringbuffer opt.> ... duration:NUM - switch to next file after

filesize:NUM - switch to next file after
files:NUM - ringbuffer: replace after
-n use pcapng format instead of pcap (defaul
-P use libpcap format instead of pcapng
--capture-comment <comment>
add a capture comment to the output file
(only for pcapng)

Miscellaneous:
-N <packet_limit> maximum number of packets buffered within
-C <byte_limit> maximum number of bytes used for bufferin
within dumpcap
-t use a separate thread per interface
-q don't report packet capture counts
Y print version information and exit
-h display this help and exit

WARNING: dumpcap will enable kernel BPF JIT compiler if available.
You might want to reset it
By doing "echo 0 > /proc/sys/net/core/bpf_jit_enable"

Example: dumpcap -i eth® -a duration:60 -w output.pcapng
"Capture packets from interface eth® until 60s passed into output.pc

Use Ctrl-C to stop capturing at any time.

D.5. capinfos: Print information about capture files

capinfos can print information about binary capture files.

Help information available from capinfos.

Capinfos (Wireshark) 2.1.0 (v2.1.0rc0-502-g328fbcO from master)
Print various information (infos) about capture files.
See https://www.wireshark.org for more information.

Usage: capinfos [options] <infile> ...

General infos:

-t display
-E display
-I display
-F display
-H display
-k display

Size infos:
-c display
-s display
-d display
-1 display

Time infos:
-u display
-a display
-e display
-0 display
-S display

the
the
the

capture file type
capture file encapsulation
capture file interface information

additional capture file information

the
the

the
the
the
the

the
the
the
the

SHA1, RMD160, and MD5 hashes of the file
capture comment

number of packets

size of the file (in bytes)

total length of all packets (in bytes)
packet size limit (snapshot length)

capture duration (in seconds)

capture start time

capture end time

capture file chronological status (True/False)

start and end times as seconds

Statistic infos:
-y display average data rate (in bytes/sec)
-i display average data rate (in bits/sec)
-z display average packet size (in bytes)
-X display average packet rate (in packets/sec)

Output format:
-L generate long report (default)
-T generate table report
-M display machine-readable values in long reports

Table report options:
-R generate header record (default)
-r do not generate header record

-B separate infos with TAB character (default)
-m separate infos with comma (,) character
-b separate infos with SPACE character

-N do not quote infos (default)
-q quote infos with single quotes (')
-Q quote infos with double quotes (")

Miscellaneous:
-h display this help and exit
-C cancel processing if file open fails (default is to continue)
-A generate all infos (default)

Options are processed from left to right order with later options su
or adding to earlier options.

If no options are given the default is to display all infos in long
output format.

D.6. rawshark: Dump and analyze network traffic.

Rawshark reads a stream of packets from a file or pipe, and prints a line
describing its output, followed by a set of matching fields for each packet
on stdout.

Help information available from rawshark.

Rawshark (Wireshark) 2.1.0 (v2.1.0rc0-502-9g328fbcO from master)
Dump and analyze network traffic.
See https://www.wireshark.org for more information.

Usage: rawshark [options]

Input file:
-r <infile> set the pipe or file name to read from

Processing:
-d <encap:linktype>|<proto:protoname>
packet encapsulation or protocol

-F <field> field to display
-n disable all name resolution (def: all ena
-N <name resolve flags> enable specific name resolution(s): "mnNt
-p use the system's packet header format
(which may have 64-bit timestamps)
-R <read filter> packet filter in Wireshark display filter
-S skip PCAP header on input
Output:
-1 flush output after each packet
-S format string for fields
(%D - name, %S - stringval, %N numval)
-t ad|a|r|d|dd]|e output format of time stamps (def: r: rel
Miscellaneous:
-h display this help and exit
-0 <name>:<value> ... override preference setting

-V display version info and exit

D.7. editcap: Edit capture files

editcap is a general-purpose utility for modifying capture files. Its main
function is to remove packets from capture files, but it can also be used
to convert capture files from one format to another, as well as to print
information about capture files.

Help information available from editcap.

Editcap (Wireshark) 2.1.0 (v2.1.0rc0-502-9g328fbcO from master)
Edit and/or translate the format of capture files.
See https://www.wireshark.org for more information.

Usage: editcap [options]

<infile> <outfile> [<packet#>[-<packet

<infile> and <outfile> must both be present.
A single packet or a range of packets can be selected.

Packet selection:
-r
-A <start time>

-B <stop time>

Duplicate packet removal:
-d
-D <dup window>

-w <dup time window>

keep the selected packets; default is to de
only output packets whose timestamp is afte
to) the given time (format as YYYY-MM-DD hh
only output packets whose timestamp is befc
given time (format as YYYY-MM-DD hh:mm:ss).

remove packet if duplicate (window == 5).
remove packet if duplicate; configurable <d
Valid <dup window> values are 0 to 1000000.
NOTE: A <dup window> of 0 with -v (verbose
useful to print MD5 hashes.

remove packet if duplicate packet is found
LESS THAN <dup time window> prior to curren
A <dup time window> is specified in relativ
(e.g. 0.000001).

-a <framenum>:<comment> Add or replace comment for given frame nu

-I <bytes to ignore>

NOTE: The use
other editcap

ignore the specified bytes at the beginning
the frame during MD5 hash calculation
Useful to remove duplicated packets taken ¢
several routers(differents mac addresses fc
example)

e.g. -I 26 in case of Ether/IP/ will ignore
ether(14) and IP header (20 - 4(src ip) - 4(

of the 'Duplicate packet removal' options w
options except -v may not always work as ex

Specifically the -r, -t or -S options will very likely NC
desired effect if combined with the -d, -D or -w.

Packet manipulation:
-s <snaplen>
-C [offset:]<choplen>

-t <time adjustment>

-S <strict adjustment>

-E <error probability>

-0 <change offset>

Output File(s):
-c <packets per file>

-1 <seconds per file>

-F <capture type>

-T <encap type>

Miscellaneous:
-h
Y

truncate each packet to max. <snaplen> byte
chop each packet by <choplen> bytes. Positi
chop at the packet beginning, negative valu
packet end. If an optional offset precedes
then the bytes chopped will be offset from
Positive offsets are from the packet beginn
negative offsets are from the packet end. Y
this option more than once, allowing up to
regions within a packet provided that at le
choplen is positive and at least 1 is negat
adjust the frame (i.e. reported) length whe
and/or snapping

adjust the timestamp of each packet;

<time adjustment> is in relative seconds (e
adjust timestamp of packets if necessary tc
strict chronological increasing order. The
adjustment> is specified in relative second
values of O or 0.000001 being the most reas
A negative adjustment value will modify tinm
that each packet's delta time is the absolu
of the adjustment specified. A value of -0
all packets to the timestamp of the first
set the probability (between 0.0 and 1.0 in
a particular packet byte will be randomly c
When used in conjuction with -E, skip some
beginning of the packet. This allows to pre
bytes, in order to have some headers untouc

split the packet output to different files
uniform packet counts with a maximum of
<packets per file> each.

split the packet output to different files
uniform time intervals with a maximum of
<seconds per file> each.

set the output file type; default is pcapng
"-F" option will list the file types.

set the output file encapsulation type; def
same as the input file. An empty "-T" optic
list the encapsulation types.

display this help and exit.

verbose output.

If -v is used with any of the 'Duplicate Pa
Removal' options (-d, -D or -w) then Packet

and MD5 hashes are printed to standard-errc

Capture file types available from editcap -F.

$ editcap -F

editcap: option requires an argument -- 'F'

editcap: The available capture file types for the "-F" flag are:
5views - InfoVista 5View capture
btsnoop - Symbian 0S btsnoop
commview - TamoSoft CommView
dct2000 - Catapult DCT2000 trace (.out format)
erf - Endace ERF capture
eyesdn - EyeSDN USB SO/E1 ISDN trace format
ki2text - K12 text file
lanalyzer - Novell LANalyzer
logcat - Android Logcat Binary format
logcat-brief - Android Logcat Brief text format
logcat-long - Android Logcat Long text format
logcat-process - Android Logcat Process text format
logcat-tag - Android Logcat Tag text format
logcat-thread - Android Logcat Thread text format
logcat-threadtime - Android Logcat Threadtime text format
logcat-time - Android Logcat Time text format
modlibpcap - Modified tcpdump - libpcap
netmonl - Microsoft NetMon 1.Xx
netmon2 - Microsoft NetMon 2.x
nettl - HP-UX nettl trace
ngsniffer - Sniffer (DOS)
ngwsniffer_1 1 - NetXray, Sniffer (Windows) 1.1
ngwsniffer_2 0 - Sniffer (Windows) 2.00x
niobserver - Network Instruments Observer
nokialibpcap - Nokia tcpdump - libpcap
nseclibpcap - Wireshark - nanosecond libpcap
nstracel® - NetScaler Trace (Version 1.0)
nstrace20 - NetScaler Trace (Version 2.0)
nstrace30® - NetScaler Trace (Version 3.0)
nstrace35 - NetScaler Trace (Version 3.5)
pcap - Wireshark/tcpdump/... - pcap
pcapng - Wireshark/... - pcapng
rf5 - Tektronix Ki12xx 32-bit .rf5 format
rhé_1libpcap - RedHat 6.1 tcpdump - libpcap
snoop - Sun snoop
suse6_3libpcap - SuSE 6.3 tcpdump - libpcap
visual - Visual Networks traffic capture

Encapsulation types available from editcap.

$ editcap -T

editcap: option requires an argument -- 'T'

editcap: The available encapsulation types for the "-T" flag are:
ap1394 - Apple IP-over-IEEE 1394
arcnet - ARCNET
arcnet_linux - Linux ARCNET
ascend - Lucent/Ascend access equipment
atm-pdus - ATM PDUs
atm-pdus-untruncated - ATM PDUs - untruncated
atm-rfcl1483 - RFC 1483 ATM
ax25 - Amateur Radio AX.25
ax25-kiss - AX.25 with KISS header
bacnet-ms-tp - BACnet MS/TP
bacnet-ms-tp-with-direction - BACnet MS/TP with Directional Infc
ber - ASN.1 Basic Encoding Rules
bluetooth-bredr-bb-rf - Bluetooth BR/EDR Baseband RF
bluetooth-h4 - Bluetooth H4
bluetooth-h4-1linux - Bluetooth H4 with linux header
bluetooth-hci - Bluetooth without transport layer
bluetooth-le-11 - Bluetooth Low Energy Link Layer
bluetooth-le-11-rf - Bluetooth Low Energy Link Layer RF
bluetooth-linux-monitor - Bluetooth Linux Monitor
can20b - Controller Area Network 2.0B
chdlc - Cisco HDLC
chdlc-with-direction - Cisco HDLC with Directional Info
cosine - CoSine L2 debug log
dbus - D-Bus
dct2000 - Catapult DCT2000
docsis - Data Over Cable Service Interface Specification
dpnss_1link - Digital Private Signalling System No 1 Link Layer
dvbci - DVB-CI (Common Interface)
enc - OpenBSD enc(4) encapsulating interface
epon - Ethernet Passive Optical Network
erf - Extensible Record Format
ether - Ethernet
ether-nettl - Ethernet with nettl headers
fc2 - Fibre Channel FC-2
fc2sof - Fibre Channel FC-2 With Frame Delimiter
fddi - FDDI
fddi-nettl - FDDI with nettl headers
fddi-swapped - FDDI with bit-swapped MAC addresses
flexray - FlexRay
frelay - Frame Relay
frelay-with-direction - Frame Relay with Directional Info
gcom-serial - GCOM Serial
gcom-tiel - GCOM TIE1
gprs-1lc - GPRS LLC
gsm_um - GSM Um Interface
hhdlc - HiPath HDLC
i2c - I2C
ieee-802-11 - IEEE 802.11 Wireless LAN

ieee-802-11-airopeek - IEEE 802.11 plus AiroPeek radio header
ieee-802-11-avs - IEEE 802.11 plus AVS radio header
ieee-802-11-netmon - IEEE 802.11 plus Network Monitor radio head
ieee-802-11-prism - IEEE 802.11 plus Prism II monitor mode radic
ieee-802-11-radio - IEEE 802.11 Wireless LAN with radio informat
ieee-802-11-radiotap - IEEE 802.11 plus radiotap radio header
ieee-802-16-mac-cps - IEEE 802.16 MAC Common Part Sublayer
infiniband - InfiniBand

ios - Cisco IOS internal

ip-over-fc - RFC 2625 IP-over-Fibre Channel

ip-over-ib - IP over Infiniband

ipfix - IPFIX

ipmb - Intelligent Platform Management Bus

ipmi-trace - IPMI Trace Data Collection

ipnet - Solaris IPNET

irda - IrDA

isdn - ISDN

ixveriwave - IxVeriWave header and stats block

jfif - JPEG/JFIF

json - JavaScript Object Notation

juniper-atml - Juniper ATM1

juniper-atm2 - Juniper ATM2

juniper-chdlc - Juniper C-HDLC

juniper-ether - Juniper Ethernet

juniper-frelay - Juniper Frame-Relay

juniper-ggsn - Juniper GGSN

juniper-mlfr - Juniper MLFR

juniper-mlppp - Juniper MLPPP

juniper-ppp - Juniper PPP

juniper-pppoe - Juniper PPPOE

juniper-svcs - Juniper Services

juniper-vp - Juniper Voice PIC

k12 - K12 protocol analyzer

lapb - LAPB

lapd - LAPD

layerl-event - EyeSDN Layer 1 event

lin - Local Interconnect Network

linux-atm-clip - Linux ATM CLIP

linux-lapd - LAPD with Linux pseudo-header

linux-sll - Linux cooked-mode capture

logcat - Android Logcat Binary format

logcat_brief - Android Logcat Brief text format

logcat_long - Android Logcat Long text format

logcat_process - Android Logcat Process text format
logcat_tag - Android Logcat Tag text format

logcat_thread - Android Logcat Thread text format
logcat_threadtime - Android Logcat Threadtime text format
logcat_time - Android Logcat Time text format

loop - OpenBSD loopback

ltalk - Localtalk

mime - MIME

most - Media Oriented Systems Transport
mp2ts - ISO/IEC 13818-1 MPEG2-TS

mpeg - MPEG

mtp2 - SS7 MTP2

mtp2-with-phdr - MTP2 with pseudoheader
mtp3 - SS7 MTP3

mux27010 - MUX27010

netanalyzer - netANALYZER
netanalyzer-transparent - netANALYZER-Transparent
netlink - Linux Netlink

nfc-1llcp - NFC LLCP

nflog - NFLOG

nstracel® - NetScaler Encapsulation 1.0 of Ethernet
nstrace20 - NetScaler Encapsulation 2.0 of Ethernet
nstrace30 - NetScaler Encapsulation 3.0 of Ethernet
nstrace35 - NetScaler Encapsulation 3.5 of Ethernet

null - NULL/Loopback

packetlogger - PacketlLogger

pflog - OpenBSD PF Firewall logs

pflog-old - OpenBSD PF Firewall logs, pre-3.4
pktap - Apple PKTAP

ppi - Per-Packet Information header

ppp - PPP

ppp-with-direction - PPP with Directional Info
pppoes - PPP-over-Ethernet session
raw-icmp-nettl - Raw ICMP with nettl headers
raw-icmpv6-nettl - Raw ICMPv6 with nettl headers
raw-telnet-nettl - Raw telnet with nettl headers
rawip - Raw IP

rawip-nettl - Raw IP with nettl headers

rawip4 - Raw IPv4

rawip6 - Raw IPv6

redback - Redback SmartEdge

rtac-serial - RTAC serial-line

s4607 - STANAG 4607

s5066-dpdu - STANAG 5066 Data Transfer Sublayer PDUs(D_PDU)
sccp - SS7 SCCP

sctp - SCTP

sdh - SDH

sdlc - SDLC

sita-wan - SITA WAN packets

slip - SLIP

socketcan - SocketCAN

symantec - Symantec Enterprise Firewall

tnef - Transport-Neutral Encapsulation Format
tr - Token Ring

tr-nettl - Token Ring with nettl headers

tzsp - Tazmen sniffer protocol

unknown - Unknown

unknown-nettl - Unknown link-layer type with nettl headers
usb - Raw USB packets

usb-linux - USB packets with Linux header

usb-linux-mmap - USB packets with Linux header and padding
usb-usbpcap - USB packets with USBPcap header

user® - USER
userl - USER
user2 - USER
user3 - USER
user4 - USER
user5 - USER
user6 - USER
user7 - USER
user8 - USER
user9 - USER
userl® - USER 10

userll - USER 11

userl2 - USER 12

userl3 - USER 13

userl4 - USER 14

userl5 - USER 15

v5-ef - V5 Envelope Function

whdlc - Wellfleet HDLC

wireshark-upper-pdu - Wireshark Upper PDU export

wpan - IEEE 802.15.4 Wireless PAN

wpan-nofcs - IEEE 802.15.4 Wireless PAN with FCS not present
wpan-nonask-phy - IEEE 802.15.4 Wireless PAN non-ASK PHY
x2e-serial - X2E serial line capture

X2e-xoraya - X2E Xoraya

x25-nettl - X.25 with nettl headers

©CoOoO~NOOULA,WNREO

D.8. mergecap: Merging multiple capture files into one

Mergecap is a program that combines multiple saved capture files into a
single output file specified by the -w argument. Mergecap knows how to
read libpcap capture files, including those of tcpdump. In addition,
Mergecap can read capture files from snoop (including Shomiti) and
atmsnoop, LanAlyzer, Sniffer (compressed or uncompressed), Microsoft
Network Monitor, AIX’s iptrace, NetXray, Sniffer Pro, RADCOM'’s
WAN/LAN analyzer, Lucent/Ascend router debug output, HP-UX’s nettl,
and the dump output from Toshiba’s ISDN routers. There is no need to
tell Mergecap what type of file you are reading; it will determine the file
type by itself. Mergecap is also capable of reading any of these file
formats if they are compressed using gzip. Mergecap recognizes this
directly from the file; the “.gz” extension is not required for this purpose.

By default, it writes the capture file in pcapng format, and writes all of the
packets in the input capture files to the output file. The -F flag can be
used to specify the format in which to write the capture file; it can write
the file in libpcap format (standard libpcap format, a modified format used
by some patched versions of libpcap, the format used by Red Hat Linux
6.1, or the format used by SuUSE Linux 6.3), snoop format, uncompressed
Sniffer format, Microsoft Network Monitor 1.x format, and the format used
by Windows-based versions of the Sniffer software.

Packets from the input files are merged in chronological order based on
each frame’s timestamp, unless the -a flag is specified. Mergecap
assumes that frames within a single capture file are already stored in
chronological order. When the -a flag is specified, packets are copied
directly from each input file to the output file, independent of each frame’s
timestamp.

If the -s flag is used to specify a snapshot length, frames in the input file
with more captured data than the specified snapshot length will have only
the amount of data specified by the snapshot length written to the output
file. This may be useful if the program that is to read the output file
cannot handle packets larger than a certain size (for example, the
versions of snoop in Solaris 2.5.1 and Solaris 2.6 appear to reject
Ethernet frames larger than the standard Ethernet MTU, making them

incapable of handling gigabit Ethernet captures if jumbo frames were
used).

If the -T flag is used to specify an encapsulation type, the encapsulation
type of the output capture file will be forced to the specified type, rather
than being the type appropriate to the encapsulation type of the input
capture file. Note that this merely forces the encapsulation type of the
output file to be the specified type; the packet headers of the packets will
not be translated from the encapsulation type of the input capture file to
the specified encapsulation type (for example, it will not translate an
Ethernet capture to an FDDI capture if an Ethernet capture is read and -T
fddi is specified).

Help information available from mergecap.

Mergecap (Wireshark) 2.1.0 (v2.1.0rc0-502-g328fbc® from master)
Merge two or more capture files into one.
See https://www.wireshark.org for more information.

Usage: mergecap [options] -w <outfile>|- <infile> [<infile> ...]
Output:
-a concatenate rather than merge files.
default is to merge based on frame timestamps.
-s <snaplen> truncate packets to <snaplen> bytes of data.
-w <outfile>|- set the output filename to <outfile> or '-' for

-F <capture type> set the output file type; default is pcapng.
an empty "-F" option will list the file types.
-I <IDB merge mode> set the merge mode for Interface Description E
an empty "-I" option will 1list the merge modes.

Miscellaneous:
-h display this help and exit.
-V verbose output.

A simple example merging dhcp-capture.pcapng and imap-1.pcapng into
outfile.pcapng iS shown below.

Simple example of using mergecap.

$ mergecap -w outfile.pcapng dhcp-capture.pcapng imap-1.pcapng

D.9. text2pcap: Converting ASCIl hexdumps to network captures

There may be some occasions when you wish to convert a hex dump of
some network traffic into a libpcap file.

text2pcap is a program that reads in an ASCIl hex dump and writes the
data described into a libpcap-style capture file. text2pcap can read
hexdumps with multiple packets in them, and build a capture file of
multiple packets. text2pcap is also capable of generating dummy
Ethernet, IP and UDP headers, in order to build fully processable packet
dumps from hexdumps of application-level data only.

text2pcap understands a hexdump of the form generated by od -A x -t
x1. In other words, each byte is individually displayed and surrounded
with a space. Each line begins with an offset describing the position in
the file. The offset is a hex number (can also be octal - see -o), of more
than two hex digits. Here is a sample dump that text2pcap can recognize:

000000 00 €O le a7 05 6f 60 10
000008 5a ad b9 12 08 00 46 00
000010 03 68 OO OO 0O 0O Ga 28
000018 ee 33 Of 19 08 7f 0f 19
000020 03 80 94 04 00 600 10 1
000028 16 a2 Oa 0O 603 50 GO0 OC
000030 01 01 6f 19 03 80 11 01

There is no limit on the width or number of bytes per line. Also the text
dump at the end of the line is ignored. Bytes/hex numbers can be
uppercase or lowercase. Any text before the offset is ignored, including
email forwarding characters ‘>’. Any lines of text between the bytestring
lines is ignored. The offsets are used to track the bytes, so offsets must
be correct. Any line which has only bytes without a leading offset is
ignored. An offset is recognized as being a hex number longer than two
characters. Any text after the bytes is ignored (e.g. the character dump).
Any hex numbers in this text are also ignored. An offset of zero is
indicative of starting a new packet, so a single text file with a series of
hexdumps can be converted into a packet capture with multiple packets.
Multiple packets are read in with timestamps differing by one second
each. In general, short of these restrictions, text2pcap is pretty liberal
about reading in hexdumps and has been tested with a variety of

mangled outputs (including being forwarded through email multiple times,
with limited line wrap etc.)

There are a couple of other special features to note. Any line where the
first non-whitespace character is # will be ignored as a comment. Any line
beginning with #TEXT2PCAP is a directive and options can be inserted
after this command to be processed by text2pcap. Currently there are no
directives implemented; in the future, these may be used to give more
fine grained control on the dump and the way it should be processed e.g.
timestamps, encapsulation type etc.

text2pcap also allows the user to read in dumps of application-level data,
by inserting dummy L2, L3 and L4 headers before each packet.
Possibilities include inserting headers such as Ethernet, Ethernet + IP,
Ethernet + IP + UDP, or Ethernet + Ip + TCP before each packet. This
allows Wireshark or any other full-packet decoder to handle these
dumps.

Help information available from text2pcap.

Text2pcap (Wireshark) 2.1.0 (v2.1.0rc0-502-9g328fbcO® from master)
Generate a capture file from an ASCII hexdump of packets.

See https://www.wireshark.org for more information.

Usage: text2pcap [options] <infile> <outfile>

where <infile> specifies input filename (use - for standard input)
<outfile> specifies output filename (use - for standard output

Input:
-0 hex|oct|dec parse offsets as (h)ex, (o)ctal or (d)ecima
default is hex.
-t <timefmt> treat the text before the packet as a date/

the specified argument is a format string ¢
supported by strptime.
Example: The time "10:15:14.5476" has the f
"%H:%M:%S."
NOTE: The subsecond component delimiter,
given, but no pattern is required; the rema
number is assumed to be fractions of a secc
NOTE: Date/time fields from the current dat
used as the default for unspecified fields.
-D the text before the packet starts with an I
indicating that the packet is inbound or ou
This is only stored if the output format is

Output:
-1 <typenum>

-m <max-packet>
Prepend dummy header:
-e <13pid>

-i <proto>

-4 <srcip>,<destip>

-6 <srcip>,<destip>

-u <srcp>,<destp>

-T <srcp>,<destp>

-s <srcp>,<dstp>,<tag>

-S <srcp>,<dstp>,<ppi>

Miscellaneous:

enable ASCII text dump identification.

The start of the ASCII text dump can be ide
and excluded from the packet data, even if
like a HEX dump.

NOTE: Do not enable it if the input file dc
contain the ASCII text dump.

link-layer type number; default is 1 (Ether
http://www.tcpdump.org/linktypes.html for a
numbers. Use this option if your dump is a
hex dump of an encapsulated packet and you
specify the exact type of encapsulation.
Example: -1 7 for ARCNet packets.

max packet length in output; default is 262

prepend dummy Ethernet II header with speci
(in HEX).

Example: -e 0x806 to specify an ARP packet.
prepend dummy IP header with specified IP p
(in DECIMAL).

Automatically prepends Ethernet header as w
Example: -i 46

prepend dummy IPv4 header with specified
dest and source address.

Example: -4 10.0.0.1,10.0.0.2

replace IPv6 header with specified

dest and source address.

Example: -6 fe80:0:0:0:202:b3ff:fele:8329,2
prepend dummy UDP header with specified
source and destination ports (in DECIMAL).
Automatically prepends Ethernet & IP header
Example: -u 1000,69 to make the packets loc
TFTP/UDP packets.

prepend dummy TCP header with specified
source and destination ports (in DECIMAL).
Automatically prepends Ethernet & IP header
Example: -T 50,60

prepend dummy SCTP header with specified
source/dest ports and verification tag (in
Automatically prepends Ethernet & IP header
Example: -s 30,40,34

prepend dummy SCTP header with specified
source/dest ports and verification tag O.
Automatically prepends a dummy SCTP DATA
chunk header with payload protocol identifi
Example: -S 30,40,34

display this help and exit.

show detailed debug of parser states.
generate no output at all (automatically di
use PCAP-NG instead of PCAP as output forma

D.10. reordercap: Reorder a capture file

reordercap lets you reorder a capture file according to the packets
timestamp.

Help information available from reordercap.

Reordercap (Wireshark) 2.1.0 (v2.1.0rc0-502-9g328fbcO® from master)
Reorder timestamps of input file frames into output file.
See https://www.wireshark.org for more information.

Usage: reordercap [options] <infile> <outfile>
Options:

-n don't write to output file if the input file is ordered.
-h display this help and exit.

Chapter 11. This Document’s License (GPL)

As with the original license and documentation distributed with
Wireshark, this document is covered by the GNU General Public License
(GNU GPL).

If you haven't read the GPL before, please do so. It explains all the things
that you are allowed to do with this code and documentation.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change fr
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit
using it. (Some other Free Software Foundation software is covered
the GNU Library General Public License instead.) You can apply it t
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that vy
have the freedom to distribute copies of free software (and charge f
this service if you wish), that you receive source code or can get i
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the right
These restrictions translate to certain responsibilities for you if
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights tha
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software,
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certa
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on
want its recipients to know that what they have is not the original,
that any problems introduced by others will not reflect on the origi
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making t
program proprietary. To prevent this, we have made it clear that an
patent must be licensed for everyone's free use or not licensed at a

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contain
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", belc
refers to any such program or work, and a "work based on the Program
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of 1it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Progr
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warrant
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, an

you may at your option offer warranty protection in exchange for a f

2. You may modify your copy or copies of the Program or any portic
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all thir
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provi
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of thi
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work base
on the Program, the distribution of the whole must be on the terms c¢
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrot

Thus, it is not the intent of this section to claim rights or contes
your rights to work written entirely by you; rather, the intent is t
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Progr
with the Program (or with a work based on the Program) on a volume c
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms ¢
Sections 1 and 2 above provided that you also do one of the followin

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sectic
1 and 2 above on a medium customarily used for software intercha

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a mediu
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offe
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Progran
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this Licens
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on th
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herei
You are not responsible for enforcing compliance by third parties tc
this License.

7. If, as a consequence of a court judgment or allegation of paten
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do n
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under th
License and any other pertinent obligations, then as a consequence y
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program
all those who receive copies directly or indirectly through you, the
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable unde
any particular circumstance, the balance of the section is intended
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willi
to distribute software through any other system and a licensee cannc
impose that choice.

This section is intended to make thoroughly clear what is believed t
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, th
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporate

the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new ver
of the General Public License from time to time. Such new versions
be similar in spirit to the present version, but may differ in detai
address new problems or concerns.

Each version is given a distinguishing version number. If the Progr
specifies a version number of this License which applies to it and "
later version", you have the option of following the terms and condi
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version numk
this License, you may choose any version ever published by the Free
Foundation.

10. If you wish to incorporate parts of the Program into other fre
programs whose distribution conditions are different, write to the a
to ask for permission. For software which is copyrighted by the Fre
Software Foundation, write to the Free Software Foundation; we somet
make exceptions for this. Our decision will be guided by the two gc
of preserving the free status of all derivatives of our free softwar
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WA
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTI
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXF
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RI
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD T
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVIC
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DA
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LI
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINE
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF TH
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greates
possible use to the public, the best way to achieve this is to make
free software which everyone can redistribute and change under these

To do so, attach the following notices to the program. It is safe
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found

<one line to give the program's name and a brief idea of what
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or mc
it under the terms of the GNU General Public License as publishe
the Free Software Foundation; either version 2 of the License, ¢
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public Licens
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02

Also add information on how to contact you by electronic and paper n

If the program is interactive, make it output a short notice like th
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
This is free software, and you are welcome to redistribute it
under certain conditions; type “show c' for details.

The hypothetical commands “show w' and "show c¢' should show the appr
parts of the General Public License. Of course, the commands you us
be called something other than “show w' and “show c'; they could eve
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or vy
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the prc
"Gnomovision' (which makes passes at compilers) written by James H

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your progr
proprietary programs. If your program is a subroutine library, you
consider it more useful to permit linking proprietary applications w
library. If this is what you want to do, use the GNU Library Genera
Public License instead of this License.

	Wireshark User's Guide
	Preface
	Who should read this document?
	Acknowledgements
	About this document
	Where to get the latest copy of this document?
	Providing feedback about this document
	Introduction
	System Requirements
	Where to get Wireshark
	A brief history of Wireshark
	Development and maintenance of Wireshark
	Reporting problems and getting help
	Building and Installing Wireshark
	Obtaining the source and binary distributions
	Installing Wireshark under Windows
	Installing Wireshark under macOS
	Building Wireshark from source under UNIX
	Installing the binaries under UNIX
	Troubleshooting during the install on Unix
	Building from source under Windows
	User Interface
	Start Wireshark
	The Main window
	The Menu
	The “File” menu
	The “Edit” menu
	The “View” menu
	The “Go” menu
	The “Capture” menu
	The “Analyze” menu
	The “Statistics” menu
	The “Telephony” menu
	The “Tools” menu
	The “Internals” menu
	The “Help” menu
	The “Main” toolbar
	The “Filter” toolbar
	The “Packet List” pane
	The “Packet Details” pane
	The “Packet Bytes” pane
	The Statusbar
	Capturing Live Network Data
	Prerequisites
	Start Capturing
	The “Capture Interfaces” dialog box
	The “Capture Options” dialog box
	The “Edit Interface Settings” dialog box
	The “Compile Results” dialog box
	The “Add New Interfaces” dialog box
	The “Remote Capture Interfaces” dialog box
	The “Interface Details” dialog box
	Capture files and file modes
	Link-layer header type
	Filtering while capturing
	File Input, Output, and Printing
	Open capture files
	Saving captured packets
	Merging capture files
	Import hex dump
	File Sets
	Exporting data
	Printing packets
	The “Packet Range” frame
	The Packet Format frame
	Working with captured packets
	Pop-up menus
	Filtering packets while viewing
	Building display filter expressions
	The “Filter Expression” dialog box
	Defining and saving filters
	Defining and saving filter macros
	Finding packets
	Go to a specific packet
	Marking packets
	Ignoring packets
	Time display formats and time references
	Advanced Topics
	Following TCP streams
	Show Packet Bytes
	Expert Information
	TCP Analysis
	Time Stamps
	Time Zones
	Packet Reassembly
	Name Resolution
	Checksums
	Statistics
	The “Summary” window
	The “Protocol Hierarchy” window
	Conversations
	Endpoints
	The “IO Graphs” window
	Service Response Time
	Compare two capture files
	WLAN Traffic Statistics
	The protocol specific statistics windows
	Telephony
	RTP Analysis
	IAX2 Analysis
	VoIP Calls
	LTE MAC Traffic Statistics
	LTE RLC Traffic Statistics
	The protocol specific statistics windows
	Customizing Wireshark
	Start Wireshark from the command line
	Packet colorization
	Control Protocol dissection
	Preferences
	Configuration Profiles
	User Table
	Display Filter Macros
	ESS Category Attributes
	GeoIP Database Paths
	IKEv2 decryption table
	Object Identifiers
	PRES Users Context List
	SCCP users Table
	SMI (MIB and PIB) Modules
	SMI (MIB and PIB) Paths
	SNMP Enterprise Specific Trap Types
	SNMP users Table
	Tektronix K12xx/15 RF5 protocols Table
	User DLTs protocol table
	Wireshark Messages
	Packet Details Messages
	Files and Folders
	Configuration File and Plugin Folders
	Configuration Files
	Plugin folders
	Windows folders
	Protocols and Protocol Fields
	Related command line tools
	tshark: Terminal-based Wireshark
	tcpdump: Capturing with tcpdump for viewing with Wireshark
	dumpcap: Capturing with dumpcap for viewing with Wireshark
	capinfos: Print information about capture files
	rawshark: Dump and analyze network traffic.
	editcap: Edit capture files
	mergecap: Merging multiple capture files into one
	text2pcap: Converting ASCII hexdumps to network captures
	reordercap: Reorder a capture file
	This Document’s License (GPL)

