
Help	file	version	1.13

Introduction	to	TPNGImage	1.4 	

You're	 now	 reading	 TPNGImage*	 documentation,	 this	 version	 intends	 to	 replace	 the	 previous
version,	1.2.	Improvements	in	this	new	version	includes:

The	new	unit	may	or	may	not	use	the	units	SysUtils,	Classes	and	Graphics,	which	will	greatly
reduce	the	size	of	the	final	executable.	Read	more	about	this	feature	here.

CRC	checking	will	now	be	fully	performed.

Some	bugs	when	reading	interlaced	images	are	now	fixed.

Error	on	broken	images	are	now	better	handled	using	new	exception	classes.

The	images	may	be	saved	using	interlaced	mode	also.

Transparency	information	won't	be	discarted	after	the	image	is	loaded	any	more.

Most	of	the	images	are	decoded	much	faster	now.

The	images	will	be	better	encoded	using	fresh	new	algorithms.

IMPORTANT!	Now	transparency	information	is	used	to	display	images.

Most	of	 the	 settings	may	be	 changed	 in	 the	pngimage.pas	 unit	 by	 changing	 define	 triggers.	Read
more	about	define	triggers	here.

The	 component	 by	 default	 self	 integrates	 to	 TPicture	 class	 when	 included	 in	 the	 main	 unit	 uses
clause.	
All	you	have	to	is	to	copy	all	files	to	directory	acessible	in	the	search	path	and	include	pngimage	to
the	uses.

*	Note:	The	name	for	the	product	continues	to	be	TPNGImage	but	the	real	component	now	is	called	TPNGObject	to	avoid	conflicts

	 Components	>	TPNGObject

This	 is	 the	 main	 object	 for	 the	 component.	 By	 default	 it's	 derived	 from	 TGraphic	 in	 order	 to
integrates	with	Delphi	and	 to	be	able	 to	be	used	with	TPicture,	TImage	and	many	others.	To	gain
access	to	when	using	TImage	or	TPicture,	typecast	the	TImage.Picture.Graphic	or	TPicture.Graphic
to	TPNGObject.	The	object	provides	access	to	some	interesting	and	important	features.

	

	 Components	>	TPNGObject	>	Properties	>	AlphaScanline

Provides	pointer	to	direct	access	to	alpha	information

property	AlphaScanline[const	Index:	Integer]:	pByteArray;

Description
Some	 kind	 of	Portable	 Network	 Images	 also	 provides	 transparency	 information.	 This	 allows	 the
images	 to	 be	 draw	 on	 the	 screen	 with	 transparent	 parts	 by	 blending	 the	 foreground	 against	 the
background	 using	 the	 value	 provided.	 Scanline	 property	 provides	 direct	 access	 to	 image	 contents
and	AlphaScanline	provides	direct	access	to	the	image	transparency.

It's	 important	 to	 know	 that	 only	 when	 ColorType	 is	 COLOR_RGBALPHA	 or
COLOR_GRAYSCALEALPHA	AlphaScanline	 is	 valid.	 For	 other	 color	 types,	 this	 property	 will
return	nil.

The	data	 in	 the	pointer	 received	will	be	always	an	array	of	bytes	with	 the	same	size	as	 the	 image
width	meaning	 that	 each	 byte	 represents	 the	 transparency	 for	 the	 correspondent	 position	 starting
from	0	(totally	transparent)	to	255	(opaque).

	

	 Components	>	TPNGObject	>	Properties	>	Chunks

Returns	pointer	to	a	object	containg	the	list	with	all	chunks.

property	Chunks:	TPNGList;

Description
This	 is	 the	 property	 which	 allows	 accessing	 all	 individuals	 chunks	 inside	 a	 Portable	 Network
Graphics	image.

	 Components	>	TPNGObject	>	Properties	>	CompressionLevel

Compression	level	when	saving	the	image.

type	TCompressionLevel	=	0..9;
property	CompressionLevel:	TCompressionLevel;

Description
To	save	 images,	currently	Portable	Network	Graphics	uses	a	compression	 technique	 called	ZLIB.
ZLIB	allows	setting	the	compression	level	when	compressing	images,	 this	allows	smaller	data	but
with	some	speed	lost.	Set	 this	property	 to	a	higher	value	 to	compress	better	and	to	a	 low	value	 to
compress	fastest.

	 Components	>	TPNGObject	>	Properties	>	Empty

Returns	if	the	image	is	empty.

property	Empty:	Boolean;

Description
Returns	if	the	image	contains	any	data	or	not.

	 Components	>	TPNGObject	>	Properties	>	Filters

Returns	the	filters	to	use	when	saving	an	image.

type	TFilter	=	(pfNone,	pfSub,	pfUp,	pfAverage,	pfPaeth);
type	TFilters	=	set	of	TFilter;
property	Filters:	TFilters;

Description
When	saving	the	image,	Portable	Network	Graphics	allows	to	use	different	filters	to	reduce	the	final
image	 size.	To	compress	 the	best	 as	possible,	 the	 component	 tests	 all	 the	 selected	 filters	 for	 each
image	 line	 to	detect	 the	best.	This	property	allows	 to	set	which	filters	 to	 test,	meaning	 that	 if	 you
select	all	the	options,	the	image	will	get	smallest	as	it	can	be	but	it	will	compress	five	times	slower
than	if	you	had	choosen	only	one	item.

Comments
It	is	always	recommended	to	set	this	property	to	test	all	the	filters,	but	for	speed	purposes	you	might
also	choose	only	one	filter	and	get	full	speed	when	saving.

	

	 Components	>	TPNGObject	>	Properties	>	Header

Returns	a	pointer	to	the	TChunkIHDR	chunk.

property	Header:	TChunkIHDR;

Description
This	property	will	return	a	pointer	to	the	TChunkIHDR	which	contains	the	image	information	such
as	bit	depth,	color	type,	interlacing	method,	compression	scheme	and	more.

	

	 Components	>	TPNGObject	>	Properties	>	Height

Returns	height	for	the	current	image.

property	Height:	Integer;

Description
This	 is	 a	 read-only	property	which	will	 return	 the	current	 image	height.	This	property	can	not	be
changed.	It's	 recommended	instead	to	assign	from	another	TBitmap	when	you	want	 to	change	 the
image	(or	when	you	don't	need	to	change	size	accessing	Scanline	property).

	

	 Components	>	TPNGObject	>	Properties	>	InterlaceMethod

Returns	the	interlacing	method	to	use	when	saving	the	image.

type	TInterlaceMethod	=	(imNone,	imAdam7);
property	InterlaceMethod:	TInterlaceMethod;

Description
This	 property	 returns/sets	 the	 interlace	method	 to	 use	when	 saving	 an	 image.	Currently	 there	 are
only	 two:	 none	 and	Adam	 7.	 Also,	 after	 an	 image	 is	 loaded,	 this	 property	 receives	 the	 interlace
method	used	by	this	image.	Read	bout	interlacing.

	

	 Components	>	TPNGObject	>	Properties	>	MaxIdatSize

Maximum	size	allowed	for	each	IDAT	chunk.

property	MaxIdatSize:	Cardinal;

Description
This	property	allows	the	set	the	maximum	size	for	each	IDAT	chunk	which	contains	the	image	data.
Portable	 Network	 Graphics	 allows	 multiple	 idat	 chunks	 (when	 one	 is	 followed	 by	 the	 other)	 to
reduce	the	memory	allocated	to	save	images.	Currently	the	minimum	size	allowed	is	65535.

	 Components	>	TPNGObject	>	Properties	>	TransparentColor

Sets	bit	transparent	color	for	the	png	image.

property	TransparentColor:	TColor;
property	TransparentColor:	ColorRef;

Description
Use	this	property	to	change	the	bit	transparency	color	for	png	images.

Note
Setting	bit	transparent	color	is	not	allowed	for	images	already	containing	alpha	information	for	each
bit.		Check	header	property	ColorType	(COLOR_RGBALPHA	and	COLOR_GRAYSCALEALPHA
are	not	allowed).

	

	 Components	>	TPNGObject	>	Properties	>	TransparencyMode

Returns	the	transparency	mode	used	by	this	png	image.

type	TPNGTransparencyMode	=	(ptmNone,	ptmBit,	ptmTranslucid);
property	TransparencyMode:	TPNGTransparencyMode;

Description
There	are	currently	three	transparency	modes	for	png:	none	when	all	the	image	is	opaque,	bit	when
one	color	will	be	fully	transparent	and	translucid	when	all	colors	may	have	transparent	values.	This
property	 is	mainly	 to	mantain	 compability	with	Windows	Delphi	 TBitmap	 since	 it	 supports	 only
None	and	Bit	(Translucid	data	is	lost	when	assigning	to	a	TBitmap).

	

	 Components	>	TPNGObject	>	Properties	>	Scanline

Provides	memory	pointer	to	have	direct	access	to	the	png	contents

property	Scanline[const	Index:	Integer]:	Pointer;

Description
Like	delphi	TBitmap,	TPNGObject	now	also	supports	direct	access	to	the	image	contents	(include	to
alpha	 information	 using	 AlphaScanline).	 This	 property	 is	 intended	 to	 be	 used	 by	 experienced
graphics	programmers.	Also	the	contents	depends	on	the	current	color	type	and	bit	depth	values	(See
header	property)	as	the	table	shows	bellow:

Image	kind
	Number	of
bits	for	each

pixel

	Recommended	typecast	to	access
the	scanline	data

		COLOR_GRAYSCALE	-	Each	pixel	is	intensity	from	0	to
2^BitDepth	-	1
		COLOR_PALETTE					-	Each	pixel	is	a	index	to	the	palette	table

		Bitdepth	=	1 1	bit

pByteArray	(windows.pas)
(Except	for	8	and	16,	bit

manangement	algorithms	should	be
used	since	there's	more	than	one	pixel

per	byte)

		Bitdepth	=	2 		4	bits	(not	2)

		Bitdepth	=	4 4	bits

		Bitdepth	=	8 		1	byte

		Bitdepth	=
16
			(Grayscale)

	1	byte

		COLOR_RGB	-	Each	pixel	contains	values	for	Red,	Green,	Blue
intensities
		COLOR_RGBALPHA	-	Same	as	RGB	but	followed	by	an	Alpha
Value
		COLOR_GRAYSCALEALPHA	-	Same	as	GRAYSCALE	but	with
alpha	value

	1	byte	per

		Bitdepth	=	8 sample TRGBLine	=	array[word]	of
TRGBTriple;

pRGBLine	=	^TRGBLine;

		Bitdepth	=
16

		1	byte	per
sample

	

	 Components	>	TPNGObject	>	Properties	>	Width

Returns	width	for	the	current	image.

property	Width:	Integer;

Description
This	 is	 a	 read-only	 property	which	will	 return	 the	 current	 image	width.	This	 property	 can	 not	 be
changed.	It's	 recommended	instead	to	assign	from	another	TBitmap	when	you	want	 to	change	 the
image	(or	when	you	don't	need	to	change	size	accessing	Scanline	property).

	

	 Components	>	TPNGObject	>	Properties	>	Pixels

Returns/sets	arbirtuary	pixels	in	the	current	png	image.

property	Pixels[const	X,	Y:	Integer]:	TColor;

Description
This	 property	 automates	 reading	 and	 setting	 pixels	 in	 the	 current	 png	 image	 by	 automatically
reading/changing	 scanline	 property	 for	 all	 the	 different	 pixel	 formats.	 For	 more	 details	 read	 the
Direct	Access	to	Pixels	article.

	

	 Components	>	TPNGObject	>	Methods	>	AddtEXt

Add	a	tEXt	chunk	to	the	PNG	image.

procedure	AddtEXt(const	Keyword,	Text:	String);

Description
AddtEXt	 is	 an	 easy	 way	 to	 add	 a	 new	 tEXt	 chunk	 (TChunktEXt)	 containing	 additional	 textual
information.

	 Components	>	TPNGObject	>	Methods	>	Assign

Assigns	contents	from	another	bitmap	or	png	object.

procedure	Assign(Source:	TPersistent);

Description
Use	assign	method	to	assign	contents	from	a	TBitmap	object	or	 from	another	TPNGObject.	When
assigning	from	a	TBitmap,	the	component	will	set	the	current	Portable	Network	Graphics	image	to
use	the	same	bit	depth	and	color	type	as	the	bitmap.

	 Components	>	TPNGObject	>	Methods	>	AssignHandle

Assigns	contents	from	a	windows	bitmap	handle.

procedure	AssignHandle(Handle:	HBitmap);

Description
Use	AssignHandle	to	copy	image	contents	from	a	windows	bitmap	handle	into	the	current	image.
Note:	AssignHandle	 does	 not	 owns	 the	 handle	 in	 the	 parameter.	 The	 program	 is	 responsible	 to
destroy	it
using	API	DeleteObject.

	 Components	>	TPNGObject	>	Methods	>	CreateAlpha

Generates	partial	transparency	information	for	the	current	image

procedure	CreateAlpha;

Description
Use	CreateAlpha	to	convert	the	current	image	into	a	partial	transparency	image.

When	the	current	image	color	type	is:

COLOR_RGB,	it	is	transformed	into	COLOR_RGBALPHA	and	AlphaScanline	becomes
valid.
COLOR_GRAYSCALE	is	transformed	into	COLOR_GRAYSCALEALPHA	and	also
AlphaScanline	becomes	valid.
COLOR_PALETTE,	the	tRNS	chunk	is	created	containg	alpha	information	for	the	current
image.

	 Components	>	TPNGObject	>	Methods	>	Draw

Draws	the	current	image	into	a	windows	device	context	(hdc).

procedure	Draw(Canvas:	TCanvas;	const	Rect:	TRect);
procedure	Draw(Canvas:	HDC;	const	Rect:	TRect);
the	above	only	with	objectpascal	trigger	set	off

Description
This	methods	draws	 the	current	Portable	Network	Graphics	 image	 into	a	windows	device	context.
Rect	is	the	area	where	the	image	should	be	painted	and	Canvas	is	the	canvas	object.
Note
When	the	rect	area	 is	 larger	 than	 the	current	 image	 the	 image	will	be	stretched	only	when	 it's	not
partial	transparent.

	 Components	>	TPNGObject	>	Methods	>	LoadError

Raises	an	error.

procedure	LoadError(ExceptionClass:	ExceptClass;	Text:	String);

Description
The	component	uses	this	method	every	time	it	needs	to	raise	an	error.	ExceptionClass	is	the	class	for
the	error	exception	and	text	is	the	text	to	be	displayed.

	 Components	>	TPNGObject	>	Methods	>	LoadFromFile

Loads	the	image	from	a	file.

procedure	LoadFromFile(const	Filename:	String);

Description
LoadFromFile	method	will	 load	 the	filename	into	 the	current	png	object.	 It's	recommended	to	use
try	except	end	operators	to	handle	the	different	errors	that	might	happen.
	

	 Components	>	TPNGObject	>	Methods	>	LoadFromResourceID

Loads	a	png	file	from	a	resource	using	a	resource	id.

procedure	LoadFromResourceID(Instance:	HInst;	ResID:	Integer);

Description
Use	 LoadFromResourceName	 to	 load	 a	Portable	 Network	 Graphics	 image	 from	 a	 file	 resource.
When	you	have	the	resource	name,	use	LoadFromResourceName	instead.

	 Components	>	TPNGObject	>	Methods	>	LoadFromResourceName

Loads	a	png	file	from	a	resource	using	a	resource	name.

procedure	LoadFromResourceName(Instance:	HInst;	const	Name:	String);

Description
Use	 LoadFromResourceName	 to	 load	 a	Portable	 Network	 Graphics	 image	 from	 a	 file	 resource.
When	you	have	the	resource	ID,	use	LoadFromResourceID	instead.

	 Components	>	TPNGObject	>	Methods	>	LoadFromStream

Loads	the	current	image	from	a	TStream	descendent.

procedure	LoadFromStream(Stream:	TStream);

Description
This	method	 uses	 the	 data	 from	 the	 Stream	 object	 on	 the	 parameter	 to	 load	 a	 Portable	 Network
Graphics	 image.	This	method	might	 be	 useful	 to	 read	data	 from	a	TStream	 that	 handles	different
sources	of	data	such	as	registry,	resources	or	even	from	internet.

	 Components	>	TPNGObject	>	Methods	>	RemoveTransparency

Removes	bit	transparency	from	the	image.

procedure	RemoveTransparency();

Description
This	method	 remove	any	bit	 transparency	 from	 the	current	 image.	Note:	 It	 doesn't	 remove	 partial
transparency	for	RGBA	images.

	 Components	>	TPNGObject	>	Methods	>	SaveToFile

Saves	the	current	image	into	a	file.

procedure	SaveToFile(const	Filename:	String);

Description
This	method	saves	the	current	image	into	the	file	specified	by	filename	parameter.	The	component
will	use	Filters	and	MaxIdatSize	parameters	when	saving.	Also	this	component	keep	all	the	chunks
from	the	loaded	image,	change	the	necessary	and	save	everything.
	

	 Components	>	TPNGObject	>	Methods	>	SaveToStream

Saves	the	current	image	to	a	TStream	descendent.

procedure	SaveToStream(Stream:	TStream);

Description
This	method	saves	the	current	loaded	image	using	a	TStream	descendent.	The	component	saves	all
the	chunks	when	a	image	is	loaded,	change	the	necessary	and	use	then	to	save	the	file	again.

	 Components	>	TPNGList

This	object	is	returned	by	chunks	property	from	TPNGObject.	TPNGList	provides	access	to	all	the
chunks	inside	the	current	image.

Count	property	returns	the	number	of	items,	Item[Index:	Cardinal]	property	returns	a	TChunk	using
the	index	position	(from	0	to	Count	-	1).	Check	the	name	from	the	returned	TChunk	using	the	name
property	 and	 typecast	 using	 the	 appropriate	 class.	 For	 instance,	 if	 name	 property	 returns	 'IHDR',
typecast	the	returned	TChunk	as	TChunkIHDR.

	Components	>	TPNGList	>	Properties	>	Count

Returns	the	number	of	items	in	the	list.

property	Count:	Cardinal;

Description
This	property	returns	the	number	of	items	inside	the	chunk	list.

	Components	>	TPNGList	>	Properties	>	Item

Returns	an	item	from	the	list.

property	Item[Index:	Cardinal]:	TChunk;

Description
Use	Item	to	return	any	chunk	from	the	current	Portable	Network	Graphics	image.	Index	parameter	is
a	position	from	0	to	Count	-	1.	The	returned	value	will	be	the	corresponding	TChunk	object.	This
should	be	typecasted	to	a	descendent	from	TChunk	to	get	it's	full	properties.

	Components	>	TPNGList	>	Properties	>	ItemFromClass

Returns	the	first	item	from	the	chunk	with	the	same	class.

type	TChunkClass	=	class	of	TChunk;
property	ItemFromClass[ChunkClass:	TChunkClass]:	TChunk;

Description
Use	ItemFromClass	property	to	search	and	return	the	first	item	in	the	list	using	the	same	class	from
the	parameter.	For	instance,	ChunkClass	parameter	might	be	TChunkIDAT.

	 Components	>	TPNGList	>	Methods	>	Add

Add	a	new	item	using	the	class	from	parameter.

type	TChunkClass	=	class	of	TChunk;
procedure	Add(ChunkClass:	TChunkClass):	TChunk;

Description
Add	method	will	create	a	new	item	using	the	ChunkClass	from	the	parameter	and	return	a	pointer	to
it.	The	Add	method	will	select	the	most	appropriate	position	to	add	depending	on	the	chunk	class.
Note
It's	not	allowed	to	add	a	second	critical	chunk	such	as	TChunkIHDR.	Calling	Add	using	these	on	the
parameters	will	return	an	error.

	 Components	>	TChunk

This	class	is	responsible	to	handle	all	 the	chunks	 inside	a	Portable	Network	Graphics	 image.	This
means	that	all	chunks	shares	this	class	as	ancestor	class	to	handle	the	data.

You	should	also	typecast	this	class	to	get	each	chunk	type	properties	when	you	know	the	chunk	type.
To	check	the	chunk	type	read	the	name	property.

	 Components	>	TChunk	>	Properties	>	Data

Returns	a	pointer	to	the	current	chunk	data.

property	Data:	Pointer;

Description
Returns	a	pointer	to	the	chunk	data.	Use	DataSize	property	to	know	the	data	length.

	 Components	>	TChunk	>	Properties	>	DataSize

Returns	the	chunk	data	size.

property	DataSize:	Cardinal;

Description
This	 property	 should	 be	 used	 with	 the	 Data	 property.	 The	 property	 returns	 the	 size	 for	 the	 data
returned.

	 Components	>	TChunk	>	Properties	>	Header

Returns	a	pointer	to	the	TChunkIHDR.

property	Header:	TChunkIHDR;

Description
This	property	returns	a	pointer	to	the	TChunkIHDR	chunk	which	should	be	always	the	first	chunk.

	 Components	>	TChunk	>	Properties	>	Index

Returns	this	chunk	position	from	the	list.

property	Index:	Integer;

Description
This	 property	 returns	 the	 current	 TChunk	 position	 inside	 the	 TPNGList.	 The	 position	 can	 be
between	0	and	TPNGList.Count	-	1.

	 Components	>	TChunk	>	Properties	>	Name

Returns	the	chunk	name.

property	Name:	String;

Description
This	property	returns	the	current	chunk	name.	Use	the	value	returned	from	this	property	to	typecast
the	 TChunk	 to	 the	 right	 class.	 For	 instance,	 if	 Name	 property	 returns	 IHDR,	 typecast
TChunkIHDR(TChunk).

	 Components	>	TChunk	>	Properties	>	Owner

Returns	owner.

property	Owner:	TPNGObject;

Description
Returns	a	pointer	to	the	TPNGObject	owner.

	 Components	>	TChunk	>	Methods	>	Assign

Assigns	from	another	chunk	contents.

procedure	Assign(Source:	TChunk);

Description
Use	this	method	to	assign	the	contents	from	another	TChunk.	When	creating	new	chunk	classes	it's
recommended	to	override	this	method	to	copy	extra	properties.

	 Example	1:	Reading	textual	chunks

Create	a	new	form	and	insert	an	edit	box,	a	listbox,	a	memo	and	a	button.	The	edit	box	is	supposed
to	receive	the	file	name,	the	listbox	will	contain	all	the	keywords	for	the	textual	chunks.	The	memo
will	contain	the	text	for	the	selected	keyword	in	the	listbox.	And	finally	the	button	will	load	the	file
and	fill	the	listbox.	Use	the	code	bellow:

uses
		Forms,	pngimage,	StdCtrls,	Classes,	Controls;

TForm1	=	class(TForm)
		Button1:	TButton;
		ListBox1:	TListBox;
		Memo1:	TMemo;
		Edit1:	TEdit;
		procedure	Button1Click(Sender:	TObject);
		procedure	ListBox1Click(Sender:	TObject);
public
		png:	TPngObject;
		constructor	Create(AOwner:	TComponent);	override;
		destructor	Destroy;	override;
end;

{Form	being	created,	create	the	png	object}
constructor	TForm1.Create(AOwner:	TComponent);	
begin
		inherited	Create(AOwner);		
		png	:=	tpngobject.create;
end;

{Form	being	destroyed,	destroy	the	png	object}
desstructor	TForm1.Destroy;	
begin
		inherited	Destroy;		
		png.free;
end;

{User	clicked	on	the	button,	load	the	file	and	fill	list}
procedure	TForm1.Button1Click(Sender:	TObject);
var
		i:	Integer;
begin
		try
				{Load	the	png	file	into	the	object}
				png.LoadFromFile(Edit1.Text);
				{Clear	the	listbox}
				listbox1.items.clear;

				{Searches	for	all	the	chunks	using	the	type	TChunktEXt}
				{add	these	to	the	listbox	and	a	pointer	to	the	chunk}
				{Note	that	all	textual	chunks	are	descendent	from	TChunktEXt}
				for	i	:=	0	to	png.chunks.count	-	1	do
						if	png.chunks.item[i]	is	TChunktEXt	then
								listbox1.Items.AddObject(TChunktEXt(png.chunks.item[i]).keyword,	png.chunks.item[i]);
		except
				{In	case	the	image	could	not	be	loaded,	show	error}
				showmessage('The	file	could	not	be	loaded.');
		end;
end;

	 Components	>	TChunk	>	Methods	>	LoadFromStream

Called	when	the	chunk	should	load	data.

function	 LoadFromStream(Stream:	 TStream;	 const	 ChunkName:	 TChunkName;	 Size:	 Integer):
Boolean;

Description
This	method	is	called	to	load	the	chunk	from	a	stream	using	the	property	Stream.	ChunkName	is	the
name	of	the	chunk	and	size	is	the	size	of	the	data.	After	this	methods	reads	the	data	it	should	also
read	and	check	the	crc	(network	ordered	longint,	4	bytes).

To	avoid	 reading	 the	data	 and	calculating	 the	crc,	 call	 inherited	method	 to	 let	 the	ancestor	do	 the
work.	Finally	use	Data	property	to	get	information.

The	method	should	return	true	or	false	if	it	sucessfully	readed	the	data.

	 Components	>	TChunk	>	Methods	>	ResizeData

Resizes	the	current	chunk	data.

procedure	ResizeData(const	NewSize:	Cardinal);

Description
This	method	is	used	to	resize	the	chunk	data	returned	by	data	property.

	 Components	>	TChunk	>	Methods	>	SaveToStream

Called	to	save	the	current	chunk	data	into	a	stream.

function	SaveToStream(Stream:	TStream):	Boolean;

Description
This	method	should	write	the	entire	chunk	into	the	stream.	The	first	part	is	the	chunk	length	which	is
a	network	ordered	cardinal,	followed	by	the	chunk	name	which	is	a	4	byte	string.	Then	it	is	followed
by	the	actual	data	and	then	a	network	ordered	cardinal	with	the	crc	for	the	chunk	name	and	for	the
data.

A	 easy	way	 to	 handle	 is	 changing	 the	 data	 using	Data	 and	ResizeData	 and	 then	 calling	 inherited
SaveToStream.	This	way	will	write	everything	and	calculate	the	crc.

	 Components	>	TChunkIEND

This	must	be	 the	 last	chunk	 in	a	Portable	Network	Graphics	 image.	This	 chunk	 indicates	 that	 the
image	has	reached	the	end.
Handles	the	IEND	chunk	type.
	

	 Components	>	TChunkIHDR

This	must	 be	 the	 first	 chunk	 in	 a	Portable	 Network	 Graphics	 image.	 This	 is	 a	 important	 chunk
indicating	 the	 image	 type,	 color	 type,	 compression	 method	 and	 other	 information.	 Internally	 it's
responsible	for	allocating	and	preparing	the	data	to	hold	the	image.
Handles	the	IHDR	chunk	type.
	

	 Components	>	TChunkIHDR	>	Properties	>	BitDepth

Returns	the	current	image	bit	depth.

property	BitDepth:	Byte;

Description
Bitdepth	is	the	number	of	bytes	for	each	sample.	It's	not	recommended	to	change	this	property	since
it	won't	realloc	data.	The	possible	bit	depths	for	the	different	color	types	(ColorType	property)	are:

Color	type
Allowed	
Bit
Depths

Interpretation

COLOR_GRAYSCALE 1,2,4,8,16	 Each	pixel	is	agrayscale	sample.

COLOR_RGB 8,16	 Each	pixel	is	an	R,G,B
triple.

COLOR_PALETTE 1,2,4,8
Each	pixel	is	a	palette
index;	a	PLTE	chunk
must	appear.

COLOR_GRAYSCALEALPHA 8,16

Each	pixel	is	a
grayscale	sample,
followed	by	an	alpha
sample.

COLOR_RGBALPHA 8,16
Each	pixel	is	an	R,G,B
triple,	followed	by	an
alpha	sample.

	 Components	>	TChunkIHDR	>	Properties	>	ColorType

Returns	the	current	image	color	type.

property	ColorType:	Byte;

Description
Color	 type	 is	 the	 description	 for	 each	 pixel	 in	 the	 image.	 It's	 not	 recommended	 to	 change	 this
property	since	it	won't	realloc	data.

Color	types Description

COLOR_PALETTE Each	pixel	is	a	palette	index;	a
PLTE	chunk	must	appear

COLOR_GRAYSCALE Each	pixel	is	a	grayscale
sample.

COLOR_RGB Each	pixel	is	an	R,G,B	triple.

COLOR_GRAYSCALEALPHA
Each	pixel	is	a	grayscale
sample,	followed	by	an	alpha
sample.

COLOR_RGBALPHA Each	pixel	is	an	R,G,B	triple,
followed	by	an	alpha	sample.

	 Components	>	TChunkIHDR	>	Properties	>	CompressionMethod

Compression	method	for	the	data.

property	ColorType:	Byte;

Description
This	property	indicates	the	compression	algorithm	to	compress	the	data.	Currently	the	only	possible
value	is	0,	deflate/inflate.	Changing	this	property	is	not	recommended	since	it	won't	change	anything
else.

	 Components	>	TChunkIHDR	>	Properties	>	FilterMethod

Filter	set	to	use	with	the	image.

property	FilterMethod:	Byte;

Description
This	property	defines	 the	current	 filter	set	used	by	 the	 current	 image.	Currently	 only	0	 is	 defined
which	is	the	none/sub/up/average/paeth	set.	Changing	this	property	is	not	recommended.

	 Components	>	TChunkIHDR	>	Properties	>	Height

Returns	the	current	image	height.

property	Height:	Cardinal;

Description
This	 property	 holds	 the	 height	 readed	 from	 the	 current	 image.	 Changing	 this	 property	 is	 not
recommended	 since	 it	 won't	 reallocate	 data	 and	may	 cause	 errors	 when	 saving.	 Changing	 image
should	be	done	by	assigning	a	tbitmap	using	TPngObject	assign.

	 Components	>	TChunkIHDR	>	Properties	>	InterlaceMethod

Method	to	use	to	encode	image.

property	InterlaceMethod:	Byte;

Description
Interlace	method	defines	the	way	the	image	is	compressed.	Currently	two	methods	are	definied:	0
which	is	none	and	1,	Adam	7.	Read	more	about	interlacing.

	 Components	>	TChunkIHDR	>	Properties	>	Width

Returns	the	current	image	width.

property	Width:	Cardinal;

Description
This	 property	 holds	 the	 width	 readed	 from	 the	 current	 image.	 Changing	 this	 property	 is	 not
recommended	 since	 it	 won't	 reallocate	 data	 and	may	 cause	 errors	 when	 saving.	 Changing	 image
should	be	done	by	assigning	a	tbitmap	using	TPngObject	assign.

	 Components	>	TChunkgAMA

PNG	 images	 can	 specify,	 via	 the	 gAMA	 chunk,	 the	 power	 function	 relating	 the	 desired	 display
output	with	the	image	samples.	Display	programs	are	strongly	encouraged	to	use	 this	 information,
plus	information	about	the	display	system	they	are	using,	to	present	the	image	to	the	viewer	in	a	way
that	reproduces	what	the	image's	original	author	saw	as	closely	as	possible.
The	name	for	this	chunk	is	gAMA.

	 Components	>	TChunkgAMA	>	Properties	>	Gamma

Returns	the	current	gamma	chunk	value.

property	Gamma:	Cardinal;

Description
Contains	 gamma	 value.	 The	 value	 is	 encoded	 as	 a	 4-byte	 unsigned	 integer,	 representing	 gamma
times	100000.	For	example,	a	gamma	of	1/2.2	would	be	stored	as	45455.	Changing	this	value	won't
update	the	image.

	

	 Components	>	TChunkPLTE

Contains	 the	 palette	 values	 for	 the	 current	 image.	 When	 ColorType	 from	 TChunkIHDR	 is
COLOR_PALETTE,	 this	chunk	is	required.	When	it	 is	COLOR_RGB	or	COLOR_RGBALPHA	 it	 is
optional	to	provide	a	sugested	palette	to	which	the	truecolor	image	could	be	quantized.

	 Components	>	TChunkPLTE	>	Properties	>	Item

Returns	a	palette	item	value.

type	TRGBQUAD	=	packed	record
		rgbBlue:	Byte;
		rgbGreen:	Byte;
		rgbRed:	Byte;
		rgbReserved:	Byte;
end;
property	Item[Index:	Byte]:	TRGBQuad;

Description
This	property	is	read-only	and	will	return	a	palette	item.	The	index	can	be	from	0	to	count	-	1.

	

	 Components	>	TChunkPLTE	>	Properties	>	Count

Returns	number	of	palette	items.

property	Count:	Integer;

Description
This	property	returns	the	number	of	items	in	the	palette.

	

	 Components	>	TChunktRNS

The	tRNS	chunk	specifies	 that	 the	 image	uses	 simple	 transparency:	either	alpha	values	associated
with	 palette	 entries	 (for	 indexed-color	 images)	 or	 a	 single	 transparent	 color	 (for	 grayscale	 and
truecolor	 images).	 Although	 simple	 transparency	 is	 not	 as	 elegant	 as	 the	 full	 alpha	 channel,	 it
requires	less	storage	space	and	is	sufficient	for	many	common	cases.

	

	 Components	>	TChunktRNS	>	Properties	>	TransparentColor

Bit	transparent	color	for	the	png	image.

property	TransparentColor:	ColorRef;

Description
This	property	sets/returns	the	transparency	color	for	png	images	when	using	bit	transparency	mode
(only	one	color	is	fully	transparent).

	 Components	>	TChunktRNS	>	Properties	>	PaletteValues

Returns	transparency	information	for	each	palette	item.

var	PaletteValues:	Array[Byte]	of	Byte;

Description
This	variable	contains	the	transparency	information	for	each	item	in	the	palette.	0	is	fully	transparent
and	 255	 is	 opaque.	 This	 variable	 is	 only	 valid	 when	 color	 type	 from	 TChunkIHDR	 is
COLOR_PALETTE.

	 Components	>	TChunkIDAT

Contains	the	actual	compressed	and	unfiltered	image	data.	This	chunk	will	be	used	to	get	 the	data
into	the	image.	Use	Scanline	and	AlphaScanline	from	TPNGObject	 to	have	access	 to	 the	decoded
image	data.

	 Components	>	TChunktIME

The	 tIME	 chunk	 gives	 the	 time	 of	 the	 last	 image	 modification	 (not	 the	 time	 of	 initial	 image
creation).	Universal	Time	(UTC,	also	called	GMT)	should	be	specified	rather	than	local	time.

	 Components	>	TChunktIME	>	Properties	>	Day

Day	for	the	last	modification	date.

property	Day:	Byte;

Description
Day	should	contain	the	day	for	the	image	last	modification.	The	value	for	the	first	day	in	the	month
is	1	and	for	the	last	31.

	 Components	>	TChunktIME	>	Properties	>	Hour

Hour	for	the	last	modification	date.

property	Hour:	Byte;

Description
Hour	should	contain	the	hour	for	the	image	last	modification.	First	hour	is	0	and	last	is	23.

	 Components	>	TChunktIME	>	Properties	>	Minute

Minute	for	the	last	modification	date.

property	Minute:	Byte;

Description
Minute	should	contain	the	minute	for	the	image	last	modification.	First	minute	is	0	and	last	is	59.

	 Components	>	TChunktIME	>	Properties	>	Month

Month	for	the	last	modification	date.

property	Month:	Byte;

Description
Month	should	contain	the	month	for	the	image	last	modification.	The	value	for	the	first	month	is	1
and	for	the	last	12.

	 Components	>	TChunktIME	>	Properties	>	Second

Second	for	the	last	modification	date.

property	Second:	Byte;

Description
Second	should	contain	the	second	for	the	image	last	modification.	First	second	is	0	and	last	is	60.	60,
for	leap	seconds;	not	61,		a	common	error

	 Components	>	TChunktIME	>	Properties	>	Year

Year	for	the	last	modification	date.

property	Year:	Word;

Description
Year	 should	 contain	 the	 year	 for	 the	 image	 last	 modification.	 The	 year	 should	 be	 complete,	 for
instance	2002	not	02.

	 Components	>	TChunktEXt

Textual	information	that	the	encoder	wishes	to	record	with	the	image	can	be	stored	in	tEXt	chunks.
Each	tEXt	chunk	contains	a	keyword	(see	above)	and	a	text	string.

	 Components	>	TChunktEXt	>	Properties	>	Keyword

Tile	for	the	text	information.

property	Keyword:	String;

Description
Change/read	this	property	to	change	the	keyword	for	the	text	property.

	 Components	>	TChunktEXt	>	Properties	>	Text

Text	for	the	text	chunk.

property	Text:	String;

Description
Change/Read	this	property	to	get	the	text	information	for	this	chunk.

	 Unit	methods	>	ByteSwap

Inverts	an	integer	bytes.

function	ByteSwap(const	a:	Integer):	Integer;

Description
Since	 all	 the	4	bytes	 integers	 from	Portable	Network	Graphics	 data	must	 encoded	 using	 network
order,	this	method	is	intended	to	adjust	integers	from/to	delphi	form.

	 Unit	methods	>	RegisterChunk

Registers	this	chunk	class	with	TPNGObject.

type	TChunkClass	=	class	of	TChunk;
procedure	RegisterChunk(ChunkClass:	TChunkClass);

Description
Use	RegisterChunk	method	to	register	a	new	class	using	TChunk	as	it's	ancestor.	The	method	will
use	 the	 last	 four	 letters	 from	 the	 chunk	 name	 as	 the	 chunk	 name	 (Or	 you	 may	 also	 set	 fName
variable	on	the	constructor).	When	the	component	reads	a	chunk	using	the	same	name	as	a	registered
chunk	it	will	use	LoadFromStream	method	to	load	the	data	and	SaveToStream	when	saving.

If	you	intend	to	create	new	chunk	classes	you	must	call	this	method	before	loading	or	saving	image
using	TPngObject.	See	example	2	to	see	an	example	registering	a	new	chunk	class.

	 Unit	methods	>	Update_Crc

Method	to	allow	calculating	crc	from	data.

type	TByteArray	=	array[word]	of	Byte;
type	pByteArray	=	^TByteArray;
procedure	update_crc(crc:	Cardinal;	buf:	pByteArray;	len:	Integer):	Cardinal;

Description
This	method	 is	used	 to	calculte	 crc	values	 from	data.	CRC	 is	 the	value	 resulting	 for	 the	previous
calls	for	update_crc.	Buf	is	a	pointer	to	the	data	to	calculate	and	len	is	the	size	for	the	data	in	Buf.
When	you	haven't	 any	previous	crc	 to	use	with	CRC	parameter,	 set	 it	 as	$FFFFFFFF.	When	 you
finished	calculating	the	value	xor	the	resulting	crc	with	$FFFFFFFF.	

An	example:

const
		DATA:	ARRAY[0..3]	of	Char	=	('C',	'R',	'C',	'C')
var	
		crcvalue:	Cardinal;
begin
		crcvalue	:=	update_crc($FFFFFFFF,	@Data[0],	1);
		crcvalue	:=	update_crc(crcvalue,	@Data[1],	1);
		crcvalue	:=	update_crc(crcvalue,	@Data[2],	1);
		crcvalue	:=	update_crc(crcvalue,	@Data[3],	1)	xor	$FFFFFFFF;
end;

is	the	same	as:

const
		DATA:	ARRAY[0..3]	of	Char	=	('C',	'R',	'C',	'C')
var	
		crcvalue:	Cardinal;
begin
		crcvalue	:=	update_crc($FFFFFFFF,	@Data[0],	4)	xor	$FFFFFFFF;
end;
	

	 Introduction	to	transparency

PNG	 is	 not	 just	 a	 replacement	 for	 compuserve	GIF,	 it	 goes	 further	 than	 that.	Portable	 Network
Graphics	 is	 a	 new	 generation	 format,	 supporting	 partially	 transparency	 images.	 This	 means	 that
pixels	 are	 blended	 with	 the	 background	 pixels	 when	 drawing,	 feature	 supported	 by	 this	 new
TPNGImage	version.	Also	 this	means	 that	pre-calculations	are	made	 to	blend	 the	 image	pixel	 and
the	background	pixel	in	order	to	partial	transparency	to	happen.
The	TPNGImage	1.4	 library	also	provides	access	 to	 the	 transparency	data	 in	order	 to	allow	image
editors	to	have	access	to	this	feature.

How	does	the	transparency	works	in	PNG	?

There	 are	 two	 different	methods	 for	 storing	 transparency	 information,	 one	 for	 24bits,	 48bits	 and
grayscale	 and	 the	 other	 for	 palette	 (8	 bits	 or	 less).	 When	 working	 with	 24bits	 or	 more,	 the
transparency	information	is	stored	next	to	each	pixel	red,	green	and	blue	values,	and	then	stored	in	a
different	 memory	 space	 by	 TPNGImage.	 In	 the	 second	 way,	 all	 the	 transparency	 information	 is
stored	in	a	chunk	called	tRNS	containing	transparency	information	for	each	palette	entry.

So,	in	order	to	have	access	to	transparency	data,	you	should	verify	the	color	mode	being	used.	To	do
so,	access	the	bitdepth	property	from	the	IHDR	chunk,	if	the	returns	COLOR_PALETTE	constant,
you	should	check	for	the	tRNS	chunk,	otherwise	use	the	AlphaScanline	array	(from	the	main
TPNGObject).

Transparency	data

In	 booth	 method,	 transparency	 is	 a	 single	 byte	 (in	 tpngimage	 implementation),	 containing
information	for	 the	associated	pixel.	This	byte	contains	values	between	0	and	255.	0	value	means
that	 the	 associated	 pixel	 is	 completly	 transparent	 (the	 background	 pixel	 is	 intact),	 and	 255	 value
means	 that	 the	background	pixel	 is	 replaced	by	 the	 image	pixel.	For	 instance,	 if	 the	 transparency
contains	a	value	like	128,	the	image	pixel	is	blended	with	the	background	pixel	and	resulting	pixel
contains	half	of	the	background	pixel	plus	half	of	the	image	pixel.

Detecting	transparency	mode

It	is	real	simple	to	detect	the	transparency	mode	for	the	current	image.	Just	check	the	BitDepth
property	from	the	IHDR	chunk,	accessed	by	bitdepth	property	from	the	header	(direct	access	to	the
IHDR	chunk)	property:

if	Header.BitDepth	<>	COLOR_PALETTE	then
		...	First	way	
else
		...	Second	way;
	

	 Accessing	thru	AlphaAscanline

The	AlphaScanline	property	contains	only	a	valid	value	when	the	color	mode	for	the	current	image
is	 either	 COLOR_RGBALPHA	 or	 COLOR_GRAYSCALEALPHA.	 You	 should	 check	 it	 before
accessing	it.

It's	real	simple	to	use	this	way.	AlphaScanline	is	an	indexed	property	that	returns	a	pointer	to	a	byte
array	containing	 transparency	 information	 for	needed	 image	 line.	So,	 it	means	 that	 the	 return	 is	 a
pByteArray	which	is	type	^Array[Word]	of	Byte	for	the	line.	Also	the	returned	array	contains	one
byte	for	each	line	pixel,	so	the	array	bounds	is	0	to	ImageWidth	-	1

The	example	shows	how	to	make	the	current	image	(don't	work	for	COLOR_PALETTE	mode)	half
transparent:

procedure	MakeImageHalfTransparent(Obj:	TPNGObject);
var	i,	j:	integer;
begin
		//Add	alpha	channel	in	case	it	is	RGB	or	GRAYSCALE
		if	Obj.Header.ColorType	in	[COLOR_RGB,	COLOR_GRAYSCALE]	then
				Obj.CreateAlpha();
		
		//Set	half	transparent	transparency,	value	128	(256	/	2)
		if	Obj.Header.ColorType	in	[COLOR_RGBALPHA,	COLOR_GRAYSCALEALPHA]	then
				FOR	j	:=	0	TO	Obj.Header.Height	-	1	DO
						FOR	i	:=	0	TO	Obj.Header.Width	-	1	DO
								Obj.AlphaScanline[j]^[i]	:=	128
end;
	

	 Accessing	thru	tRNS	chunk

The	tRNS	chunk	class	contains	transparency	information	when	the	color	type	is	COLOR_PALETTE
(It	exists	also	for	the	other	color	types	but	only	for	bit	transparency	modes).	It	works	different	than
AlphaScanline	 property	 since	 instead	 of	 providing	 transparency	 information	 for	 each	 pixel	 in	 the
image,	it	contains	transparency	for	each	palette	entry.

Acessing	 the	 tRNS	 chunk	 also	 is	 really	 easy	 using	 the	 ItemFromClass	method	 from	 the	Chunks
property.	Once	you	have	a	pointer	to	the	TChunktRNS,	the	transparency	information	for	each	palette
entry	is	acessed	thru	the	PaletteValues	property,	which	is	an	array	of	byte.	This	array	has	a	fixed	size
of	256	entries	(0	to	255),	but	the	valid	values	are	between	0	and	(2	POWER	Header.BitDepth	-	1).
255	means	that	the	palette	entry	is	completly	opaque	and	0	completly	transparent.

The	example	bellow	makes	the	image	half	transparent	when	the	color	mode	is	COLOR_PALETTE:

procedure	MakeHalfTransparent(Obj:	TPNGObject);
var	
		i:	Integer;
		TRNS:	TCHUNKtRNS;
begin
		//Creates	tRNS	chunk	in	case	its	not	avaliable
		if	(Obj.Header.ColorType	=	COLOR_PALETTE)		and	(Obj.Chunks.ItemFromClass(TChunktRNS)
=	nil)	then
				Obj.CreateAlpha();
		//Gets	pointer	to	the	tRNS	chunk
		TRNS	:=	Obj.Chunks.ItemFromClass(TChunktRNS)	as	TChunktRNS;
		//Set	transparency	information
		if	TRNS	<>	nil	then
				with	TRNS	do
						for	i	:=	0	to	DataSize	-	1	do
								PaletteValues[i]	:=	128
end;

	 Converting	to	partial	transparency

The	TPNGImage	latest	release	provides	a	method	to	generate	transparency	data	for	the	current
image	when	its	not	avaliable,	this	method	is	CreateAlpha.	It	generates	alpha	information:

When	the	image	color	type	is	COLOR_RGB	or	COLOR_GRAYSCALE	it	converts	to
COLOR_RGBALPHA	and	COLOR_GRAYSCALEALPHA	and	makes	the	AlphaScanline
property	avaliable.
For	COLOR_PALETTE	color	type,	it	generates	a	tRNS	chunk	which	may	be	acessed	using
Chunks.ItemFromClass.

If	the	image	already	contains	alpha	information,	the	method	don't	do	nothing,	so	its	always	safe	to
call	 it.	 Also,	 it	 initialize	 the	 transparency	 image	 so	 the	 image	 is	 fully	 opaque	 for	 booth
COLOR_PALETTE	and	COLOR_RGB/COLOR_GRAYSCALE	modes.

To	access	 the	 transparency	 information	when	 the	 image	 is	COLOR_RGB/COLOR_GRAYSCALE
use	the	first	way,	and	for	COLOR_PALETTE	use	the	second	way.

	 About	chunks

A	Portable	Networks	Image	is	made	of	several	information	packets	called	chunks.	Some	of	these	are
necessary	and	essencial	to	allow	the	image	to	be	displayed,	others	contain	additional	information	as
text	or	historiograms.

Inside	a	 file,	a	chunk	contains:	a	network	ordered	4	bytes	value	containing	 the	size	 for	 the	chunk
data;	a	4	bytes	string	containing	the	chunk	name;	the	data	with	the	length	specified	before;	and	for
the	last	also	a	network	ordered	4	bytes	unsigned	integer	containing	the	chunk	crc	for	the	chunk	name
and	data.	

ChunkLength:	Cardinal;
ChunkName		:	Array[0..3]	of	Char;
ChunkData		:	Array[0..ChunkLength	-	1]	of	byte;
ChunkCRC			:	Cardinal;

The	crc	part	is	important	to	validate	the	chunk	data,	as	when	the	image	was	saved.	The	crc	is	created
using	 the	ChunkName	and	ChunkData	only.	This	 storage	method	allows	 flexibility	 to	 the	 images,
allowing	decoders	to	ignore	certain	chunks	when	they	don't	reconize	it.

The	chunk	name	will	indicate	the	chunk	content	type	so	it	can	be	decoded.	The	name	should	contain
4	ASCII	uppercase	or	lowercase	letters.	Also	the	case	is	sensitive.	There	are	some	rules	to	tell	which
letter	should	be	lowercased	or	uppercased.

Letter

	In	case	it	is:

Uppercase Lowercase

1
The	chunk	is	critical	and
must	be	know	by	the

decoder.

It's	a	secondary	chunk	and
might	be	ignored.

2 The	chunk	is	part	from	the
official	PNG	specification.

This	is	a	private	chunk	with
specific	purposes.

3
Following	PNG

specification,	this	letter	must
be	uppercased.

It's	not	definied	yet	when
this	letter	should	be

lowercased.

4 Depends	on	the	image
contents	to	exist.

May	be	saved	unchanged	in
case	this	image	is	not

changed.

	

A	valid	PNG	image	must	contain	a	 IHDR,	one	or	more	sequencial	 IDAT	chunks	and	 in	 the	end	a
IEND	chunk.	In	case	this	image	requires	a	palette,	the	PLTE	chunk	is	also	mandatory.

Name Multiples	ok
? Ordem	do	chunk

IHDR No Must	be	always	the	first

PLTE No Before	IDAT

IDAT Yes Multiple	must	be	sequencial

IEND No Always	the	last

	

All	 the	 readed	 chunks	 are	 stored	 in	 allocated	 memory	 by	 the	 component.	 This	 component
implements	objects	to	handle	with	all	the	different	chunk	types	and	provides	ways	to	read	different
properties	from	each	chunk.	The	ancestor	class	 to	handle	all	 the	chunks	 is	TChunk.	Altough	there
are	 several	 differend	 classes	 with	 TChunk	 as	 it's	 ancestor	 to	 read	 specific	 information	 such	 as
TChunkIHDR	handling	the	IHDR	chunk.

Use	 the	 property	 Chunks	 from	 TPNGObject	 to	 access	 all	 the	 stored	 chunks.
TPNGObject.Chunks.Count	retorna	o	total	número	de	chunks	e	TPNGObject.Chunks.Item[i]	returns
a	TChunk	object	from	the	position	i	(should	be	between	0	and	Count	-	1).

As	you	get	the	returned	TChunk,	use	it's	property	Name	to	get	the	chunk	type.	You	might	also	use
the	 is	 operator	 followed	 by	 the	 class	 to	 test	 (for	 instance:	 TPNGObject.Chunks.Item[i]	 is
TChunkIHDR).

Knowing	the	chunk	name,	and	if	there	is	a	class	to	handle	this	chunk,	you	should	access	this	class
using	typecast,	for	instance	TChunkIHDR(TPNGObject.Chunks.Item[0]).	Now	you	may	access	this

object	properties	as	specified	in	this	help	file.

	

	 Portable	Network	Graphics	interlacing

As	 JPEG	 (Joint	 photographic	 experts	 group),	 Portable	 Network	 Graphics	 also	 supports	 image
interlacing.	This	technique	encodes	the	image	in	a	way	to	allows	the	user	preview	the	image	faster
as	it	is	being	transfered.

PNG's	 two-dimensional	 interlacing	 scheme	 is	 more	 complex	 to	 implement	 than	 GIF's	 line-wise
interlacing.	It	also	costs	a	little	more	in	file	size.	However,	it	yields	an	initial	image	eight	times	faster
than	GIF	(the	first	pass	 transmits	only	1/64th	of	 the	pixels,	compared	 to	1/8th	 for	GIF).	Although
this	initial	image	is	coarse,	it	is	useful	in	many	situations.	For	example,	if	the	image	is	a	World	Wide
Web	imagemap	that	the	user	has	seen	before,	PNG's	first	pass	is	often	enough	to	determine	where	to
click.	The	PNG	scheme	also	looks	better	than	GIF's,	because	horizontal	and	vertical	resolution	never
differ	by	more	than	a	factor	of	two;	this	avoids	the	odd	"stretched"	look	seen	when	interlaced	GIFs
are	filled	in	by	replicating	scanlines.	Preliminary	results	show	that	small	text	in	an	interlaced	PNG
image	is	typically	readable	about	twice	as	fast	as	in	an	equivalent	GIF,	i.e.,	after	PNG's	fifth	pass	or
25%	of	 the	image	data,	 instead	of	after	GIF's	 third	pass	or	50%.	This	 is	again	due	to	PNG's	more
balanced	increase	in	resolution.

	 About	the	triggers

This	version	introduces	new	set	of	triggers	to	enable	or	disable	some	features.

Trigger	name

When	the	trigger	is

Being	used Disabled

ObjectPascal

SysUtils,	Graphics	and
Classes	are	used	by	the

unit.

Heavy	units	are	not
used	but	the

TPNGObject	is	not
registered	as	a
TGraphic	class

ErrorOnUnknownCritical

In	case	it	decoder	finds
an	unknown	critical
chunk,	the	application

stops.

Unknown	critical
chunks	are	ignored	by

the	decoder.

CheckCRC
CRC	is	checked	for	all

the	data	readed.

The	CRC	is	not
checked	(less	security

for	more	speed)

RegisterGraphic
Registers	TPNGObject

as	a	TGraphic

TPNGObject	is	not
registered	as
TGraphic

SemiTransparentDraw

Images	with	partial
transparency	are	draw
agains	the	background

Semi	transparency
parts	are	ignored

All	this	triggers	are	set	in	the	beginning	of	pngimage.pas	unit.	To	set	them,	add	(to	use)	or	remove
the	lines	{$DEFINE	NameOfTheTrigger}.

	 Disable	use	of	heavy	object	pascal	units

One	 of	 the	 new	 features	 for	 this	 version	 is	 to	 disable	 the	 use	 of	 heavy	 object	 pascal	 units.	 This
features	only	becomes	interesting	when	the	programmer	is	writting	a	pure	windows	api	application.
This	features	also	makes	easier	to	use	the	unit	with	other	pascal	compilers	(not	tested).

To	enable/disable	using	heavy	object	pascal	units	add/remove	(to	disable)	the	line	in	the	beginning
of	the	unit	pngimage.pas:
{$DEFINE	ObjectPascal}
	

	 Translating	the	library

As	 the	 previous	 version,	 the	 new	 TPNGImage	 is	 translate	 ready	 to	 adapt	 to	 any	 language.	 To
translate,	edit	 the	 file	pnglang.pas	 located	 in	 the	same	directory	as	pngimage.pas	 and	 feel	 free	 to
change	anything.

There	are	some	triggers	to	make	the	translation	easier,	just	comment	the	triggers	for	 the	languages
you	don't	want	and	leave	the	trigger	for	the	language	you	want.	For	instance,	if	you	want	English
instead	 of	 Portuguese,	 change	 {$DEFINE	 Portuguese}	 to	 {.$DEFINE	 Portuguese}	 and	 then
{.$DEFINE	English}	to	{$DEFINE	English}.

	 Network	Order

All	the	values	containing	more	than	one	byte,	as	written	in	Portable	Network	Graphics	specification
must	use	Network	Order	format,	it	means	that	the	most	significant	byte	must	come	first	followed	by
the	less	significant.	([Byte	more	significant]	[Byte	less	significant]	for	2	bytes	values	or	B3	B2	B1
B0	to	4	bytes	values).	The	more	important	bit	(value	127)	from	a	byte	is	bit	7	and	the	less	important
(value	1)	is	bit	number	0.

	 Cyclic	redundancy	check

Abbreviation	 of	 cyclic	 redundancy	 check,	 a	 common	 technique	 for	 detecting	 data	 transmission
errors.	A	decoder	reads	the	received	data	and	compare	it	with	the	4	byte	32	bits	CRC	the	encoder
calculated,	which	comes	together	with	the	data	transmited.	In	case	the	values	are	different,	the	image
has	suffered	data	modification	during	the	transmission.

	

http://www.webopedia.com/TERM/C/data.html

	 Errors	handling

The	new	TPNGImage	introduces	a	 few	new	classes	 to	handle	different	errors.	All	 this	classes	are
descendent	 from	Exception	meaning	 that	 the	 error	might	 be	handled	 using	 the	 try	 operator	 from
delphi.	 It's	 recommended	 to	 handle	 errors	 when	 using	 the	 methods	 LoadFromFile,	 SaveToFile,
LoadFromStream	and	SaveToStream	from	TPNGObject.

The	new	classes	introduced	are:

Error	class Description

EPngError
Can	be	several	errors,	but	it's	never
called	when	the	image	is	being
loaded	or	saved.

EPngUnexpectedEnd The	decoder	found	an	invalid	end
of	the	file.

EPngInvalidCRC
One	or	more	chunks	contain	an
invalid	crc	identifier	which	is
provided	within	each	chunk

EPngInvalidIHDR The	size	from	the	IHDR	chunk	is
invalid

EPNGMissingMultipleIDAT The	IDAT	chunk	data	has	ended
and	it	still	misses	image	parts

EPNGZLIBError
ZLIB	returns	an	error,	common
causes	are	low	memory	or	invalid
compressed	data

EPNGInvalidPalette The	PLTE	chunks	contains	an
invalid	number	of	entries

EPNGInvalidFileHeader
The	Portable	Network	Graphics
image	contains	an	invalid	file
header.

EPNGIHDRNotFirst The	IHDR	chunk	is	not	the	first
chunk	on	the	image	but	it	must

EPNGNotExists The	file	does	not	exists.

EPNGSizeExceeds Either	width	or	height	is	more	than
65535	pixels.

EPNGMissingPalette The	image	uses	a	color	table	but
PLTE	chunk	was	not	found

EPNGUnknownCriticalChunk The	image	contains	an	unknowncritical	chunk

EPNGUnknownCompression
The	image	uses	an	unknown
compression	method	found	on	the
IHDR	chunk
The	image	uses	an	unknown

EPNGUnknownInterlace interlacing	method	found	on	the
IHDR	chunk

EPNGNoImageData There	is	no	IDAT	chunk.

	 About	filters

PNG	 allows	 the	 image	 data	 to	 be	 filtered	 before	 it	 is	 compressed.	 Filtering	 can	 improve	 the
compressibility	of	the	data.	The	filter	step	itself	does	not	reduce	the	size	of	the	data,	it	prepares	the
data	to	be	much	better	compressed.	All	PNG	filters	are	strictly	lossless.

PNG	defines	several	different	filter	algorithms,	including	"None"	which	indicates	no	filtering.	The
filter	algorithm	is	specified	for	each	scanline	by	a	filter-type	byte	that	precedes	the	filtered	scanline
in	the	precompression	datastream.	An	intelligent	encoder	can	switch	filters	from	one	scanline	to	the
next.	The	method	for	choosing	which	filter	to	employ	is	up	to	the	encoder.

For	images	of	color	type	3	(indexed	color,	COLOR_PALETTE),	filter	type	None	is	usually	the	most
effective.	Note	that	color	images	with	256	or	fewer	colors	should	almost	always	be	stored	in	indexed
color	format;	truecolor	format	is	likely	to	be	much	larger.
Filter	type	0	is	also	recommended	for	images	of	bit	depths	less	than	8.	For	low-bit-depth	grayscale
images,	it	may	be	a	net	win	to	expand	the	image	to	8-bit	representation	and	apply	filtering,	but	this	is
rare.

This	component	allows	to	select	the	filter	set	to	using	the	property	Filters	from	TPNGObject.

	

	 Bit	and	partial	transparency

In	 order	 to	 have	 more	 compability	 between	 Windows,	 TBitmap	 and	 TPNGObject	 features,
TPNGObject	introduces	three	different	transparency	modes:

None	-	When	there	are	no	transparent	areas	in	the	image

Bit	-	Each	pixel	may	be	full	transparent	or	opaque	against	the	background

Partial	-	Pixels	may	be	translucid	(semi	transparent)

TPNGObject	 provides	 a	 read-only	 property	 to	 obtain	 the	 transparency	 mode	 for	 the	 image,
TransparentMode	 property.	 Also	 changing	 TransparentColor	 property	 changes	 the	 image	 to	 Bit
transparency	mode	always,	loose	partial	transparency	information.

	

	 Direct	access	to	pixels	data

Accessing	the	pixels	data	directly	is	very	useful	when	you	need	speed	while	manipulating	the	png
data.	 For	 this	 purpose,	 the	 new	 version	 provides	 two	 properties	 to	 do	 so:	 Scanline	 and
AlphaScanline.

Before	 directly	 accessing	 the	 data	 (using	 typecasts)	 you	must	 first	 verify	which	 pixel	 format	 the
current	png	is	using.	This	information	is	stored	in	the	TChunkIHDR	chunk.	This	 is	returned	using
header	property	from	the	main	TPNGObject.

TChunkIHDR	provides	 the	 properties	BitDepth	 and	ColorType.	Using	 the	 table	 typecasting	 table
(described	in	this	page)	you	may	directly	access	the	data.

There	are	two	typecasts	you	should	use,	pByteArray	 (windows.pas)	when	pixels	occupy	8	or	 less
bits	and	pRGBLine	otherwise.

type
		TRGBLine	=	array[word]	of	TRGBTriple;
		pRGBLine	=	^TRGBLine;

The	method	bellow	returns	whenever	you	should	use	pRGBLine	or	pByteArray.

type
		TScanlineTypeReturn	=	(stByteArray,	stRGBLine)
function	GetScanlineType(const	png:	TPngObject):
		TScanlineTypeReturn
begin
		with	png.Header	do
		begin
				if	ColorType	in	[COLOR_GRAYSCALE,
						COLOR_PALETTE]	then
						Result	:=	stByteArray
				else
						Result	:=	stRGBLine
		end
end;

The	method	bellow	returns	an	arbituary	pixel	from	the	png	object.	Note:	It	does	not	performs	any
bounds	checking;	Valid	values	for	X	are	(0,	png.Width	-	1)	and	for	y	(0,	png.Height	-	1)

function	GetRGBLinePixel(const	png:	TPngObject;	
		const	X,	Y:	Integer):	TColor;

begin
		with	pRGBLine(png.Scanline[Y])^[X]	do
				Result	:=	RGB(rgbtRed,	rgbtGreen,	rgbtBlue)
end;

And	the	following	sets	a	pixel	value:

procedure	SetRGBLinePixel(const	png:	TPngObject;
	const	X,	Y:	Integer;	Value:	TColor);
begin
		with	pRGBLine(png.Scanline[Y])^[X]	do
		begin
				rgbtRed	:=	GetRValue(Value);
				rgbtGreen	:=	GetGValue(Value);
				rgbtBlue	:=	GetBValue(Value)
		end
end;

Adapt	the	code	above	so	it	may	fit	to	your	needs.

This	method	 is	much	more	 complicated	 than	 pRGBLine	 because,	 except	 for	 bit	 depths	 8,	 allows
more	than	one	pixel	for	each	byte	(pixels	never	cross	byte	boundaries)	requering	bit	manipulation	to
access	the	data.	Also,	for	COLOR_PALETTE	it	must	map	the	value	to	a	palette	entry	because	it	is
actually	an	index	rather	than	the	actual	value	(different	from	pRGBLine).

{Returns	pixel	for	png	using	palette	and	grayscale}
function	GetByteArrayPixel(const	png:	TPngObject;	
		const	X,	Y:	Integer):	TColor;
var
		ByteData:	Byte;
		DataDepth:	Byte;
begin
		with	png,	Header	do
		begin
				{Make	sure	the	bitdepth	is	not	greater	than	8}
				DataDepth	:=	BitDepth;
				if	DataDepth	>	8	then	DataDepth	:=	8;
				{Obtains	the	byte	containing	this	pixel}
				ByteData	:=	pByteArray(png.Scanline[Y])^[X	div	
						(8	div	DataDepth)];
				{Moves	the	bits	we	need	to	the	right}
				ByteData	:=	(ByteData	shr	((8	-	DataDepth)	-
						(X	mod	(8	div	DataDepth))	*	DataDepth));
				{Discard	the	unwanted	pixels}
				ByteData:=	ByteData	and	($FF	shr	(8	-	DataDepth));

				{For	palette	mode	map	the	palette	entry	and	for	
						grayscale	convert	and	returns	the	intensity}
				case	ColorType	of
						COLOR_PALETTE:

								with	TChunkPLTE(png.Chunks.ItemFromClass(TChunkPLTE)).Item[ByteData]	do
										Result	:=	rgb(GammaTable[rgbRed],	GammaTable[rgbGreen],
												GammaTable[rgbBlue]);
						COLOR_GRAYSCALE:
						begin
								ByteData	:=	GammaTable[ByteData	*	((1	shl	DataDepth)	+	1)];
								Result	:=	rgb(ByteData,	ByteData,	ByteData);
						end;
				end	{case};
		end	{with}
end;

And	the	following	sets	a	pixel	value:

{Sets	a	pixel	for	grayscale	and	palette	pngs}
procedure	SetByteArrayPixel(const	png:	TPngObject;	
		const	X,	Y:	Integer;	const	Value:	TColor);
const
		ClearFlag:	Array[1..8]	of	Integer	=	(1,	3,	0,	15,	0,	0,	0,	$FF);
var
		ByteData:	pByte;
		DataDepth:	Byte;
		ValEntry:	Byte;
begin
		with	png.Header	do
		begin
				{Map	into	a	palette	entry}
				ValEntry	:=	GetNearestPaletteIndex(Png.Palette,
						ColorToRGB(Value));

				{16	bits	grayscale	extra	bits	are	discarted}
				DataDepth	:=	BitDepth;
				if	DataDepth	>	8	then	DataDepth	:=	8;
				{Gets	a	pointer	to	the	byte	we	intend	to	change}
				ByteData	:=	@pByteArray(png.Scanline[Y])^[X	div	
						(8	div	DataDepth)];
				{Clears	the	old	pixel	data}
				ByteData^	:=	ByteData^	and	not	(ClearFlag[DataDepth]	shl	
						((8	-	DataDepth)	-	(X	mod	(8	div	DataDepth))	*	DataDepth));

				{Setting	the	new	pixel}
				ByteData^	:=	ByteData^	or	(ValEntry	shl	((8	-	DataDepth)	-
						(X	mod	(8	div	DataDepth))	*	DataDepth));
		end	{with	png.Header}
end;

The	methods	 above	 are	 extracted	 from	 the	 Pixels[]	 property	which	might	 be	 used	 to	 set	 and	 get
pixels.	Although	this	property	do	all	the	dirty	work,	it	is	probably	fast	for	time	critical	algorithms.	It
is	recomended	to	change	and	adapt	the	code	in	order	to	fast	change	and	access	the	data.

	 Converting	from	TBitmap	to	TPNGObject

TPNGObject	 provides	 flexibility	 by	 allowing	 to	 convert	 from	 a	 Bitmap	 file	 format	 to	 Portable
Network	Graphics	format.	
This	is	easily	done	like	in	the	same	way	as	any	graphic	class	in	delphi.
IMPORTANT:	Always	remember	to	add	pngimage	to	the	unit	uses.

Converting	from	Windows	bitmap	file	to	PNG	file
This	method	loads	a	bitmap	and	saves	it	using	png	format

procedure	BitmapFileToPNG(const	Source,	Dest:	String);
var
		Bitmap:	TBitmap;
		PNG:	TPNGObject;
begin
		Bitmap	:=	TBitmap.Create;
		PNG	:=	TPNGObject.Create;
		{In	case	something	goes	wrong,	free	booth	Bitmap	and	PNG}
		try
				Bitmap.LoadFromFile(Source);
				PNG.Assign(Bitmap);				//Convert	data	into	png
				PNG.SaveToFile(Dest);
		finally	
				Bitmap.Free;
				PNG.Free;
		end
end;

Converting	from	PNG	file	to	Windows	bitmap	file
The	above	inverse.	Loads	a	png	and	saves	into	a	bitmap

procedure	PNGFileToBitmap(const	Source,	Dest:	String);
var
		Bitmap:	TBitmap;
		PNG:	TPNGObject;
begin
		PNG	:=	TPNGObject.Create;
		Bitmap	:=	TBitmap.Create;
		{In	case	something	goes	wrong,	free	booth	PNG	and	Bitmap}
		try
				PNG.LoadFromFile(Source);
				Bitmap.Assign(PNG);				//Convert	data	into	bitmap
				Bitmap.SaveToFile(Dest);
		finally	
				PNG.Free;
				Bitmap.Free;
		end

end;

Converting	from	TImage	to	PNG	file
This	method	converts	from	TImage	to	PNG.	It	has	full	exception	handling	and	allows
converting	from	file	formats	other	than	TBitmap	(since	they	allow	assigning	to	a	TBitmap)

procedure	TImageToPNG(Source:	TImage;	const	Dest:	String);
var
		PNG:	TPNGObject;
		BMP:	TBitmap;
begin
		PNG	:=	TPNGObject.Create;

		{In	case	something	goes	wrong,	free	PNG}
		try
				//If	the	TImage	contains	a	TBitmap,	just	assign	from	it
				if	Source.Picture.Graphic	is	TBitmap	then
						PNG.Assign(TBitmap(Source.Picture.Graphic))				//Convert	bitmap	data	into	png
				else	begin

						//Otherwise	try	to	assign	first	to	a	TBimap
						BMP	:=	TBitmap.Create;
						try
								BMP.Assign(Source.Picture.Graphic);
								PNG.Assign(BMP);
						finally
								BMP.Free;
						end;

				end;

				//Save	to	PNG	format
				PNG.SaveToFile(Dest);
		finally	
				PNG.Free;
		end
end;

	

	

	

	 Example	1:	Reading	textual	chunks

Create	a	new	form	and	insert	an	edit	box,	a	listbox,	a	memo	and	a	button.	The	edit	box	is	supposed
to	receive	the	file	name,	the	listbox	will	contain	all	the	keywords	for	the	textual	chunks.	The	memo
will	contain	the	text	for	the	selected	keyword	in	the	listbox.	And	finally	the	button	will	load	the	file
and	fill	the	listbox.	Use	the	code	bellow:

uses
		Forms,	pngimage,	StdCtrls,	Classes,	Controls,	
				Dialogs;

type
		TForm1	=	class(TForm)
				Button1:	TButton;
				ListBox1:	TListBox;
				Memo1:	TMemo;
				Edit1:	TEdit;
				procedure	Button1Click(Sender:	TObject);
				procedure	ListBox1Click(Sender:	TObject);
		public
				png:	TPngObject;
				constructor	Create(AOwner:	TComponent);	override;
				destructor	Destroy;	override;
		end;

{$R	*.DFM}

var
		Form1:	TForm1;

implementation

{Form	being	created,	create	the	png	object}
constructor	TForm1.Create(AOwner:	TComponent);	
begin
		inherited	Create(AOwner);		
		png	:=	tpngobject.create;
end;

{Form	being	destroyed,	destroy	the	png	object}
destructor	TForm1.Destroy;	
begin
		inherited	Destroy;		
		png.free;
end;

{User	clicked	on	the	button,	load	the	file	and	fill	list}

procedure	TForm1.Button1Click(Sender:	TObject);
var
		i:	Integer;
begin
		try
				{Load	the	png	file	into	the	object}
				png.LoadFromFile(Edit1.Text);
				{Clear	the	listbox}
				listbox1.items.clear;
				{Searches	for	all	the	chunks	using	the	type	TChunktEXt}
				{add	these	to	the	listbox	and	a	pointer	to	the	chunk}
				{Note	that	all	textual	chunks	are	descendent	from	
				{TChunktEXt}
				for	i	:=	0	to	png.chunks.count	-	1	do
						if	png.chunks.item[i]	is	TChunktEXt	then
								listbox1.Items.AddObject(TChunktEXt(
										png.chunks.item[i]).keyword,	png.chunks.item[i]);
		except
				{In	case	the	image	could	not	be	loaded,	show	error}
				showmessage('The	file	could	not	be	loaded.');
		end;
end;

{User	selected	an	item,	show	text	on	the	memo}
procedure	TForm1.Listbox1Click(Sender:	TObject);
begin
		if	listbox1.itemindex	<>	-1	then
				memo1.text	:=	TChunktEXt(
						Listbox1.Items.Objects[Listbox1.itemindex]).Text;
end;
	

	 Example	2:	Creating	a	new	TChunk	descendent

One	of	the	powerful	features	from	the	component	is	the	support	to	additional	TChunk	descendents.
To	do	so,	you	have	to	create	a	new	class	descendent	from	TChunk.	To	read	the	data,	there	are	two
ways:	if	the	chunk	contains	large	amounts	of	data,	override	LoadFromStream	and	read	data,	crc	and
check	 if	 the	 crc	 is	 valid.	 If	 the	 data	 is	 not	 too	 large	 you	 might	 use	 the	 content	 from	 Data	 and
DataSize	property.

To	save	it,	either	override	SaveToStream	and	write	data	manually,	override	SaveToStream,	modify
data	property	and	call	inherited	SaveToStream.	Also	there	other	ways	as	modifying	the	data	property
directly	when	the	user	reads/writes	a	property.
Other	important	method	to	override	is	the	Assign	method	to	copy	the	chunk	custom	properties.

The	 essencial	 part	 is	 to	 register	 the	 chunk	 using	RegisterChunk(ChunkClass:	TChunkClass)	 from
pngimage.pas.

The	chunk	bellow	reads	a	text	and	shows	a	message	box	using	the	text.

type
		TChunkcUSt	=	class(TChunk)
		private
				fText:	String;
		public
				function	SaveToStream(Stream:	TStream):	Boolean;	override;
				function	LoadFromStream(Stream:	TStream;	const	
						ChunkName:	TChunkName;	Size:	Integer):	Boolean;	override;
				procedure	Assign(Source:	TChunk);	override;
				property	Text:	String	read	fText	write	fText;
		end;

implementation
		
{Saving	chunk	to	a	stream}
function	TChunkcUSt.SaveToStream(Stream:	TStream):	Boolean;
var
		ChunkLength,	ChunkCRC:	Cardinal;
begin
		{ChunkLength	must	be	in	network	order}
		ChunkLength	:=	ByteSwap(Length(fText));
		Stream.Write(ChunkLength,	4);
		{Writes	chunk	name}
		Stream.Write(fName[0],	4);
		ChunkCRC	:=	update_crc($ffffffff,	@fName[0],	4);
		{Writes	data	and	finishes	calculating	crc}
		Stream.Write(fText[1],	Length(fText));
		ChunkCRC	:=	Byteswap(update_crc(ChunkCRC,	@fText[1],	

				Length(fText))	xor	$ffffffff);
		{Writes	crc}
		Stream.Write(ChunkCRC,	4);
		Result	:=	TRUE;	
end;

{Loading	chunk	from	a	stream}
function	TChunkcUSt.LoadFromStream(Stream:	TStream;	
		const	ChunkName:	TChunkName;	Size:	Integer):	Boolean;
var
		ReadCRC,	ChunkCRC:	Cardinal;
begin
		{Prepares	text	to	hold}
		SetLength(fText,	Size);
		{Reads	data}
		Stream.Read(fText[1],	Size);
		{Calculates	crc	for	data	readed}
		ChunkCRC	:=	update_crc($ffffffff,	@ChunkName[0],	4);
		ChunkCRC	:=	Byteswap(update_crc(ChunkCRC,	@fText[1],	
				Size)	xor	$ffffffff);
		{Reads	crc	and	verify}
		Stream.Read(ReadCRC,	4);

		{Check	if	crc	is	valid}
		Result	:=	(ReadCRC	=	ChunkCRC);
		if	not	Result	then
				Owner.LoadError(EPngInvalidCRC,	
						EPngInvalidCRCText)
		{If	it's	valid,	show	text	using	a	message	box}
		else	ShowMessage(fText);
end;

{Assigns	contents	from	another	chunk}
procedure	TChunkcUSt.Assign(Source:	TChunk);	
begin
		fText	:=	TChunkcUSt(Source.fText);
end;

initialization
		RegisterChunk(TChunkcUSt);
finalization

	 Example	3:	Drawing	png	over	other	formats

As	 a	 TGraphic	 descendent,	 TPngObject	 supports	 assigning	 from	 and	 to	 TBitmap.	 As	 an
intermediary	class,	TBitmap	 talks	 to	most	 (if	 not	 all)	 other	 formats	 such	 as	metafiles,	 icons,	 jpgs
among	others.

The	example	bellow	 loads	 a	 jpg,	 a	 png	 and	draws	 the	png	over	 the	 jpg.	The	png	 image	may	use
alpha	transparency	normally.

{Draws	a	PNG	over	a	JPG	and	saves	again}
procedure	PNGOverJPG(InJPG,	InPNG:	String;	OutJPG:	String);
var
		JPG:	TJPEGImage;
		BMP:	TBitmap;
		PNG:	TPNGObject;
begin
		{Creates	and	loads	the	input	images}
		JPG	:=	TJPEGImage.Create;
		JPG.LoadFromFile(InJPG);
		BMP	:=	TBitmap.Create;
		BMP.Assign(JPG);
		PNG	:=	TPNGObject.Create;
		PNG.LoadFromFile(InPNG);
		{Draws	over	the	bitmap	(containing	the	JPG)}
		BMP.Canvas.Draw(0,	0,	PNG);
		{Assigns	back	to	the	JPG}
		JPG.Assign(BMP);
		{Saves	the	JPG}
		JPG.SaveToFile(OutJPG);
		{Free	the	images}
		JPG.Free;
		BMP.Free;
		PNG.Free;
end;
	

	 Complete	list	of	features

	

Chunks	are	organized	in	a	clever	way	with	an	ancestor	class	to	handle	all	the	chunks	and
derived	classes	to	handle	the	different	kinds
The	chunks	engine	allows	upgrades	by	registering	new	chunk	types	to	include	new	features
Full	cyclic	redundancy	check	for	all	the	chunks
Full	access	to	all	the	data	from	the	chunks
Several	derived	classes	from	TChunk	to	obtain	different	information	such	as	text	keyword
and	more
Gamma	chunk	is	used	to	change	the	image	gamma	to	be	displayed	as	when	it	was	encoded.
No	need	for	any	external	library,	everything	is	compiled	with	your	exe	project
Full	comented	source	code	and	also	well	written.
Can	read	all	the	images	from	the	official	PNG	test	suite	(see	showcase	2).	
Can	load	interlaced	and	non	interlaced	images
Ability	to	assign	data	from	a	tbitmap	or	bitmap	handle
The	PNG	images	may	also	be	saved
Saving	with	interlace	is	now	fully	supported.	
The	encoder	is	optimized	to	create	really	small	final	images	when	saving.
No	chunk	is	lost	when	loading	an	image
Portable	Network	Graphics	partial	transparent	images	are	now	supported	
Trigger	to	disable	use	of	Delphi	VCL
Full	speed	when	loading	and	saving
Allows	to	select	the	filters	to	test	when	saving	images	to	create	the	smallest	image	as	possible
Improved	error	handling	engine	to	allow	user	to	detect	easily	all	the	errors.		
Better	chunk	access	system,	now	the	engine	selects	the	best	place	to	put	chunks	when	adding
manually.	
Provides	now	accessed	to	the	image	data	and	for	the	transparency	alpha	data.	
Allows	to	select	the	compression	level	for	ZLIB.
Allows	the	set	the	maximum	size	for	IDAT	chunks	(and	then	dividing	the	rest	of	the	data	in
new	chunks).		
Complete	help	file	using	HTML	help

	

	 Installing	the	component

The	component	is	installed	as	any	other	common	delphi	component.

1.	 First	of	all,	copy	(unzip)	all	the	files	to	any	directory.	The	obj	sub-directory	is	necessary	to
install	the	component.

2.	 Run	a	Borland	Delphi	instance
3.	 Go	to	the	menu	Component	and	select	Install	Component	item	as	shown	in	the	picture

bellow:

4.	 In	the	"Unit	file	name:"	field,	click	on	"Browse..."	and	point	to	the	pngimage.pas	file.
By	default	Delphi	will	install	in	the	"Borland	User	Components"	package,	it	might	be
changed	using	"Package	file	name"	field	or	"Into	new	package"	page.
Click	on	Ok

5.	 A	confirmation	dialog	will	be	shown	asking	if	you	want	to	build	the	package	(name	might
change	depending	on	Delphi	version).	Click	on	"Yes".

6.	 You	have	just	installed	PngImage,	now	close	the	package	window	(Don't	forget	to	put	"Yes"
when	it	ask	if	you	want	to	save	the	package).

You	may	also	want		to	add	the	unit	to	the	search	path.

1.	 This	time,	go	to	the	"Tools"	menu	and	select	the	item	"Enviroment	Options".

2.	 Click	on	the	"Library"	page.

3.	 On	the	field	"Library	path"	add	a	";"	followed	by	the	unit	directory.	For	instance	";c:\png".
4.	 Click	on	the	ok	button.

	 Component	license

		
The	previous	versions	from	this	component	were	unclear	about	the	license	to	use	this	component.
Here	it	is:

1.	 This	component	should	be	distributed	freely	over	the	internet	only
when	containing	the	exact	same	files	from	the	original	packaging.

2.	 Modified	files	may	not	be	distributed.	If	you	want	to	contribute	with
TPNGImage,	send	the	enhancements	to	the	author	and	if	he
implements	your	changes,	you	will	be	given	the	proper	credit.

3.	 The	component	may	be	used	in	commercial	projects	but	may	NEVER
be	sold	as	source	code.

4.	 Commercial	graphics	libraries	are	not	allowed	to	use	this	component
WITHOUT	AUTHOR	PRIOR	AGREEMENT.

5.	 Credit	for	the	author	is	required	somewhere	in	the	product
documentation/or	about	box/etc	for	applications	distributed	over	the
internet.

6.	 Source	code	may	be	changed	since	it's	not	redistributed.

If	are	about	to	use	the	component	in	a	major	project	which	is	going	to	be	distributed	over	the
internet,	I'd	love	to	know,	so	please	send	me	an	email	telling	me	about.

	 Component	author	and	website

Gustavo	Huffenbacher	Daud
Currently,	contact	me	at:	gubadaud@terra.com.br

http://pngdelphi.sourceforge.net

This	is	the	best	place	to	get	the	latest	version.	TPNGImage	took	me	lots	of
hours	programming,	and	it's	free	even	for	commercial	projects	(read
license).	above.

mailto:gubadaud@terra.com.br
http://pngdelphi.sourceforge.net

	Introduction
	Component features
	Installing the component
	License
	Author and website

