
	Collapse	All						 	Language	Filter:
S#	API	documentation

About	S#
See	Also

S#	is	a	weakly-typed	dynamic	language	and	runtime	infrastructure	to
make	your	applications	extendable,	customizable	and	highly	flexible.	It
allows	introducing	expressions	and	large	code	blocks	evaluation	within
your	applications	in	the	similar	way	Microsoft	Office	deals	with	VBScript,
gives	you	possibilities	providing	rich	formula	evaluation	capabilities	like	it
can	be	seen	in	MS	Excel	and	other	office	applications.

The	key	principles	of	S#	are:	simplicity,	efficiency,	intuitive.	The	S#
runtime	has	been	designed	to	be	easily	hosted	by	applications.	Minimum
script	execution	scenario	requires	two	lines	of	code!	The	important	part
of	S#	is	its	well-defined	extendable	runtime	engine	together	with	the
application	programming	interface	that	allows	full	bi-directional
communication	between	script	and	application	code.	In	particular	it	is
easy	to	extend	S#	by	embedding	external	functions	and	functional
objects,	shared	static	or	dynamic	variables,	operator	handling	and	type
filters	from	the	host	application.	Moreover	the	execution	semantics	of
some	language	constructs	has	extensibility	mechanisms	available
externally.	This	enables	developers	to	create	user-friendly	executable
business/domain	specific	languages	on	S#	basis.

S#	can	work	in	single-expression	mode	in	order	to	execute	string
expressions	to	values.	This	is	especially	helpful	when	application	should
allow	users	executing	only	light-weight	portions	of	the	functionality.	S#	is
a	pure	.NET	interpreted	language	completely	written	in	C#.

Currently	S#	is	compatible	and	runs	on	top	of	the	following	platforms:
Microsoft	.NET	4
Microsoft	.NET	3.5	(SP1)

Microsoft	Silverlight	>	3
Microsoft	.NET	Compact	Framework
Microsoft	XNA	Framework
MONO

	
This	means	that	S#	runtime	can	be	hosted	by	applications	based	on
.NET	like	Console,	Windows	Forms,	ASP.NET,	Silverlight	2	and	3,
Windows	Presentation	Foundation	(WPF),	XNA	(both	PC	and	XBox
scenarios)	and	MONO	(Linux).

With	respect	to	the	DLR	and	languages	like	IronPython,	S#	is:

		1.	Designed	to	be	easily	embedded	into	applications	(several	lines	of
code	required	to	evaluate	script);

		2.	Highly	extensible	grammar	and	language	(new	functions,	constants,
variables	can	be	added	easily);

		3.	Rich	and	controlled	communication	between	script	and	application
code	in	both	directions;

		4.	Sits	on	the	top	of	.NET,	full	support	for	interaction	with	native	.NET
code;

		5.	Works	in	single-expression	mode	when	executing	string	expressions
to	values;

		6.	No	code	emitting,	CodeDom	or	background	compilation,	100%
interpreted	language	(own	Virtual	Machine	and	Debugging	is	in
progress);

		7.	Totally	in-memory	execution,	does	not	require	temp	files,	local
system	access,	etc;

		8.	C#-like	language	is	designed	to	be	familiar	for	.NET	and	Java
developers;	easy	to	study	for	non-developer	users;

		9.	Various	of	platforms	are	supported	(.NET/.NETCF/Mono;	WinForms,
ASP.NET,	WPF,	Silverlight,	XNA);

	10.	Fully	remotable	(expressions	and	scripts	can	be	sent	across	the
wire	and	executed	on	a	remote	machine);

	11.	Weakly-typed	as	IronPython/IronRuby	for	.NET

	
S#	was	originally	created	by	Petro	Protsyk	and	subsequently	adapted
and	improved	by	Denis	Vuyka	and	Francois	Vanderseypen.

	Collapse	All						 	Language	Filter:
S#	API	documentation

Downloads
See	Also

The	latest	runtime	setup	is	available	from	our	S#	product	page.
You	can	find	an	installation	manual	here.
A	Visual	Studio	2008	template	to	create	quickly	prototype	of
scriptable	WPF	applications	is	available.	Add	it	to	your	​
\Documents\Visual	Studio	2008\Templates\ProjectTemplates​
directory	and	you	will	see	the	template	appear	in	your	Visual	C#
templates

	

http://www.orbifold.net/Downloads/SSharp/Orbifold.SSharp.Runtime.exe
http://orbifold.net
http://www.orbifold.net/Downloads/SSharp/SSharp%20scriptable%20WPF%20application.zip

	

	Collapse	All						 	Language	Filter:
S#	API	documentation

What's	New
See	Also

Assembly	version	3.0.0.0
.NET	4	Support
Error	notification	improved.	Various	types	of	exceptions	were
introduced.
Notion	of	ContextEnabled	events	removed.	All	events	are	now
ContextEnabled,	which	means	event	handler	assigned	within
script	will	be	executed	in	the	context	of	this	script.
UnsubscribeAllEvents	property	removed	from	RuntimeHost.	It	is
however	possible	manually	clear	all	event	subscriptions	by	using
EventBroker.ClearAllSubscriptions	method.

	Collapse	All						 	Language	Filter:
S#	API	documentation

Comments
See	Also

Two	forms	of	comments	are	supported:	delimited	comments	and	single-
line	comments.

A	delimited	comment	is	wrapped	inside	the	/*	*/	characters.	Delimited
comments	can	occupy	a	portion	of	a	line,	a	single	line,	or	multiple	lines.
The	following	example	includes	a	delimited	comment:
	
/*	This	is	some	sample	multi-line	comment.
			Syntax	and	code	will	not	be	parsed	inside	this.
*/

A	single-line	comment	begins	with	characters	//	and	extends	to	the	end
of	the	line.	The	following	example	includes	a	single-line	comment:
	
a	=	0;	//	initializing	variable	with	0
b	=	1;	//	initializing	variable	with	1
	
Comments	don't	nest.	The	character	sequences	/*	and	*/	have	no
special	meaning	within	a	single-line	comment,	and	the	character
sequences	//	and	/*	have	no	special	meaning	within	a	delimited
comment.	Comments	are	not	processed	within	character	and	string
literals.

	Collapse	All						 	Language	Filter:
S#	API	documentation

Data	types
See	Also

It	is	possible	to	expose	any	.NET	data	type	or	instance	to	S#.	There	are
however	common	.NET	types	available	for	script	by	default:

Type	Name .NET	Analogue Initializer

double double x	=	1.23;	x	=	12d;

long long x	=	3;

string string s='Hello	World!'

bool bool b	=	true

array object[] A	=	[1,	1+2,	'Hello',	s]

There	is	also	an	implicit	type	object	which	is	basically	alias	for	.NET
System.Object.	The	list	of	base	types	may	be	changed	through	xml
configuration.	However,	it	does	not	mean	that	run-time	can't	access
other	.NET	types.	In	contrast,	base	types	are	cached	by	alias	and	may
be	accessed	faster	that	other	types.	Consider	this	if	you	want	to	improve
performance	of	script	execution.

Note:	S#	runtime	infrastructure	allows	to	filter	types	and	whole
assemblies	available	to	the	client	scripts.	It	is	also	possible	to	mark
members	of	a	class	definition	with	[Promote(false)]	attribute	to	make
them	invisible	to	the	default	script	binder.

Any	type	visible	to	the	runtime	can	be	accessed	either	by	short	name:
	b	=	new	StringBuilder();

or	by	its	full	name:
	b	=	new	System.Text.StringBuilder();

Besides	the	XML	configuration,	it	is	also	possible	to	expose	any	.NET

Framework	type	to	the	S#	programs	and	use	it	within	a	script	via	the
RuntimeHost.AddType()	method.

Note:	If	a	type	was	not	explicitly	added,	the	S#	runtime	will	search	it	in
libraries	loaded	in	the	current	application	domain.	Although	it	is	possible
to	filter	assemblies	and	types	available	to	the	script	as	well	as	completely
override	the	assembly/type	management	through	a	custom
implementation	of	the	IAssemblyManager	interface.

	Collapse	All						 	Language	Filter:
S#	API	documentation

Type	conversion
See	Also

Even	though	S#	is	dynamically	typed	language	there	are	cases	when	a
value	should	be	casted	to	a	type	explicitly.	The	type	conversion	operator
is	of	the	following	form:
	

(Expression1)	Expression2;

Where
Expression1	-	any	valid	expression	which	evaluates	to	.NET
Type,
Expression2	-	any	valid	expression,	value	of	which	will	be
converted.

Examples:
	

	(string)23;
	
	s	=	string;
	b	=	(s)	23;	//	b	=	"23";

Any	type	conversion	during	script	execution	is	performed	via	the	runtime
Binder.	The	above	shown	examples	are	simply	syntactic	shortcuts	for
the	following	calls:

	
RuntimeHost.Binder.ConvertTo(23,	string);

	

	Collapse	All						 	Language	Filter:
S#	API	documentation

Constants
See	Also

	
Boolean	=	True	|	False
Object	=	null

String	constants	must	be	in	'	'	or	"	"	quotes,	example:
	
s	=	'Hello';
s	=	"Hello	World!";

The	S#	parser	supports	following	number	formats:
	
//Hex
h	=	0xAAFFAA;
//Unsigned	int
u	=	3u;
//long
l	=	31231231278l;
//unsigned	long
ul	=	23423234548ul;
//Double
d	=	3.2312d;
//Single,	Float
f	=	3424.123f;
//Decimal
m	=	23123.25434543m;
//With	exponent
n1	=	4e+3;
n2	=	6.32e-3;

Arrays	in	S#	may	be	created	in	different	ways.	The	most	simple	array
constructor	is:

[value_1,	value_2,	...,	value_n]

Arrays	built	using	this	constructor	will	have	their	type	of	object[].

Elements	of	array	may	be	accessed	by	index:

array[index];

Example:

	
a	=	[1,2,3,4];	b	=	a[1];

	
This	is	equal	to	following	code	in	C#:
	

	object[]	a	=	new	object[]	{1,2,3,4};
	object	b	=	a[1];

	
There	is	also	a	custom	function	array	which	creates	a	typed	array.	There
are	two	cases	for	usage	array	function:

Explicit	type	definition:
	
	a	=	array(string,	'alex',	'peter');

Implicit	type	inference:
	
	//	a	is	of	type	string[]
	a	=	array('alex',	'peter');	
	
	//	b	is	of	type	object[]
	b	=	array('alex',	1,	2);	

	Collapse	All						 	Language	Filter:
S#	API	documentation

Variables
See	Also

All	variables	in	S#	are	dynamically	typed.	Storage	for	variable	values	is
called	scope.

Examples	of	valid	variable	names:	X,	x1,	name_of_var.

Variables	may	be	used	in	expressions,	statements,	function	invocations,
etc.	The	type	information	is	computed	at	run-time	basing	on	the	value
associated	with	a	variable	name.

See	also:
Global	and	local	variables
Example	of	global	variable	in	recursive	function
Scopes	by	example

	Collapse	All						 	Language	Filter:
S#	API	documentation

Expressions
See	Also

The	syntax	of	expressions	is	very	standard,	examples	are:
	
X	=	(y+4)*2;
Y	=	a[5]	+	8;
Z	=	Math.Sqrt(256);
P	=	new	System.Drawing.Point(3,4);
'this	is	string'	is	string

Expressions	can	be	concatenated	using	the	following	operators:
	

+,	-,	*,	/	,%,	!	,	|	,	&	,	!=	,	>	,	<	,	is

	

Code	expression	<!	program	code	!>	compiles	a	given	code	as	S#
function:

	
a	=	<!	c++;	b+=3;	return	2;	!>;
c=2;
b=5;
f	=	a();
	
Test.AreEqual(2,	f);
Test.AreEqual(3,	c);
Test.AreEqual(8,	b);
	
	
a	=	<!	return	a+b;	!>;
Test.AreEqual(19,	a([a->9,	b->10]));

	
There	is	also	special	operator	new	for	creating	instances	of	imported

types:
	
b	=	new	TypeName(constructor	arguments);
	

	Collapse	All						 	Language	Filter:
S#	API	documentation

Statements
See	Also

A	program	in	S#	script	is	a	sequence	of	statements.	There	are	three
common	statement	types	supported:	sequencing,	looping	and	branching.

if	...	then	...	else
	

if	(Expression)	Statement	else	Statement
	
For	example:
if	(x>0)	y	=	y	+	1	;	else	y	=	y	​	1;
if	(x>0)	message	=	'X	is	positive';

	
for	​
	

for	(Expression1;Expression2;Expression3)	Statement

For	example:
sum=0;
for(i=0;	i<10;	i++)	sum	=	sum	+	a[i];

	

while	​
	

while	(Expression)	Statement

For	example:
while	(i>0)	i	=	i-1;

	

foreach	...	in	​
	
foreach	(Identifier	in	Expression)	Statement

	

Note:	The	result	of	Expression	calculation	must	implement	IEnumerable.
Expression	evaluates	only	once,	before	loop	starts.	For	example:

arr=![1,2,3,4,5];	sum	=	0;
foreach(i	in	arr)	sum	=	sum	+	i;

	

switch
	

switch	(Expression)
{
			case	expr1:	Statement
			...
			default:	Statement
}
	
For	example:
	
switch	(i)
{
			case	1	:	MessageBox.Show('Hello!');
			case	2	:	MessageBox.Show('?');
			default:	MessageBox.Show('No	way');
}

	
using

	
using	(object	or	type)
{
				.	.	.
}

	
Example	1:
using	(Math)
{

		return	Pow(2,10);
}

Example	2:
a	=	new	List<	|int|>();
using(a)
{
		Add(10);
		Add(20);
}
return	a[0];

	

break,	continue
This	has	usual	meaning	and	can	be	used	only	inside	a	loop.

return
Used	only	inside	function	calls.

	

See	also:
Loops
Using	scope

	Collapse	All						 	Language	Filter:
S#	API	documentation

Functions
See	Also

Function	can	be	created	at	run-time	and	added	into	execution	scope	by
compiling	a	string	containing	its	definition.	Aside	this,	there	are	few	other
possibilities	to	introduce	functions	to	script.	Function	could	be	native	-
compiled	from	source,	or	external	-	is	.NET	object	implementing
IInvokable	interface.

Simple	Definition
	

function	NAME	(id1,	id2,	...	,	idn)
{
		Statement
}

	

With	references	to	global	variables
	

function	NAME	(id1,	id2,	...	,	idn)	global(id1,...,idk)
{
		Statement
}

	

For	example:
	
y	=	100;
function	f()	global(y)
{
y	=	y	-	1;
}
f();

After	executing	this	script	the	variable	y	will	have	its	value	99.

	

With	contracts
	
function	(id1,	id2,	...	,	idn)
[
	pre(boolExpr);
	post(boolExpr);
	invariant(boolExpr);
]
{
		Statement
}

	

By	function	expression	(this	is	usually	called	anonymous	function)
	

NAME	=	function	(id1,	id2,	...	,	idn)	{	Statement	};

For	example:
		helloFunction	=	function	(name)	{	return	string.Format("Hello	{0}!",	name);};
		helloFunction('John');

	

All	examples	of	syntactic	function	definitions	are	equal	to	the	function
expression.	In	fact	when	function	a()	{...}	is	written	it	actually	executes	as
following	assignment	statement:

a	=	function	()	{};

By	default	after	compilation	all	function	expressions	will	be	executed,	so
corresponding	variables	will	appear	in	script	scope.	This	is	done	by
FunctionDeclarationVisitor	post	processing	available	in	the	library.

Note:	The	functional	expression:
	

function	(params)	{	body	};

evaluates	to	an	IInvokable	object.	During	the	execution	of	the	function	a
local	scope	(Contract	Scope)	is	created	and	all	variables	created	within
this	scope	will	be	removed	at	function	return;

Example	showing	various	ways	of	invoking	function:
	

function	fac(n){
		if	(n==1)	return	1;
		else	return	n*fac(n-1);
}
rez	=	fac(5);
	
//pointer	to	a	function
Func_pointer	=	fac;
Func_pointer(4);	//Call	function	using	pointer
	
//Anonymous	function
aFunction	=	function(n){
		if	(n==1)	return	1;
		else	return	n*aFunction(n-1);
};
//Call	function	created	as	assignment
aFunction(5);
	
//Using	.NET	Method
sin	=	Math.Sin;
v	=	sin(0.75);
	

See	also:
Recursion
Creating	custom	function

	Collapse	All						 	Language	Filter:
S#	API	documentation

The	IInvokable	interface
See	Also

Objects	implementing	the	IInvokable	interface	will	be	treated	as
functions.	Suppose	there	is	a	variable	f	in	the	function	scope	that
implements	IInvokable,	then	following	S#	code:
	
f(1,2,3);

	
will	be	interpreted	as	following	in	C#	code:
	
IInvokable	fi	=	f	as	IInvokable;
if	(fi	==	null	||	!fi.CanInvoke())	throw	exception;
return	fi.Invoke(Context,	new	object[]	{1,2,3});
	

See	also:

Tutorial	2.	Creating	custom	function

	Collapse	All						 	Language	Filter:
S#	API	documentation

Reserved	Functions
See	Also

The	following	names	are	reserved	words	in	the	context	of	function
definitions:

eval	​	evaluates	value	of	an	expression;
	Example	of	eval	function	usage:
	
									a	=	eval('2+3*4');
	

clear	​	clears	all	variables	in	context;	(Obsolete)
array	-	creates	typed	array	of	objects;	(see,	Arrays	topic)

	Collapse	All						 	Language	Filter:
S#	API	documentation

Property	bags
See	Also

S#	has	internal	notion	of	property	bags.	A	property	bag	is	a	special	kind
of	object	which	is	composed	of	(name,value)	pairs.	Any	property	may	be
accessed	via	standard	syntax	object.PropertName.
Syntactically	property	bag	may	be	created	as	following:

	
vector3d	=	[
				x	->	2,
				y	->	3,
				z	->	-2	
];
	

After	property	bag	was	created	it	is	possible	to	introduce	new	property	to
it:

	vector3d.name	=	"my	vector";
	

Underlying	.NET	property	bag	class	should	implement	IScriptable
interface.	By	default	such	class	is	called	Expando,	and	specified	by	the
following	setting	in	runtime	configuration:

	<Item	id="ScriptableObjectType"
value="Scripting.SSharp.Runtime.Promotion.Expando"	/>

It	is	of	course	possible	to	replace	default	implementation	by	custom.

	Collapse	All						 	Language	Filter:
S#	API	documentation

IScriptable	interface
See	Also

Let's	look	at	IScriptable	definition:
	
		///	<summary>
		///	Expose	dynamic	members	of	an	Instance	to	the	script.
		///	This	require	using	of	DefaultObjectBinder	class	as	default	object	binder.
		///	</summary>
		public	interface	IScriptable
		{
				///	<summary>
				///	Should	return	object	wrapped	by	IScriptable	or	this
				///	</summary>
				[Promote(false)]
				object	Instance	{	get;	}
	
				///	<summary>
				///	Gets	a	binding	to	an	instance's	member	(field,	property)
				///	</summary>
				[Promote(false)]
				IMemberBinding	GetMember(string	name,	params	object[]	arguments);
	
				///	<summary>
				///	Gets	a	binding	to	an	instance's	method
				///	</summary>
				[Promote(false)]
				IBinding	GetMethod(string	name,	params	object[]	arguments);
		}

Each	class	implementing	this	interface	has	special	meaning	in	S#.	Let's
assume	that	variable	scriptable	associated	with	an	instance
implementing	IScriptable	interface.	Then	following	examples	are	valid	in
S#:

	
a	=	scriptable.PropertyName;
//The	same	as	following	code:
//	a	=	scriptable.GetMember("PropertyName").GetValue();
	
scriptable.PropertyName	=	2;
//The	same	as	following	code:
//scriptable.GetMember("PropertyName").SetValue(2);
	
scriptable.MethodName(1,"test",	3);
//The	same	as	following	code:
//	scriptable.GetMethod("MethodName").Invoke(currentContext,	new	object[]	{1,	"test",	3});

	Collapse	All						 	Language	Filter:
S#	API	documentation

Implementing	objects
See	Also

S#	is	not	object-oriented	language,	however	it	is	possible	to	emulated
classes	using	property	bags.

Function	definition	is	a	first	class	object	in	S#,	which	means	it	may	be
associated	with	a	variable	name,	thus	allowing	to	introduce	functional
logic	as	a	part	of	property	bag.	Consider	following	example:

		v	=	[
		x	->	4,
		y	->	3,
	
			length	->	function()	{
							Math.Sqrt(me.x^2+me.y^2);
			}	
];
	
		l	=	v.length();
	

In	the	given	example	variable	length	associated	with	anonymous
function.	This	function	calculates	length	of	vector	v.	To	get	access	to
properties	defined	within	current	property	bag,	a	function	definition	may
use	reserved	name	"me"	(it	is	similar	to	C#	this).
	
Here	is	yet	more	comprehensive	example	which	shows	implementation
of	3x3	matrix	class	and	matrix	product	function:
	
	

m	=	[
	//Rows
	r->3,
	//Columns
	c->3,

	
	//Values
	v->[1,2,3,
					4,5,6,
					7,8,9],
	
	//Get	value	
	cell->function(row,col){
			return	me.v[me.c*row	+	col];
	},
	
	//Set	value
	set->function(row,col,val){
			me.v[me.c*row	+	col]	=	val;
	}
	
];
	
function	MatProduct(a,b){
	rez	=	[
		r->a.r,
		c->b.c,
		v->new	double[a.r*b.c],
		cell->a.cell,
		set->a.set
];
	
	for(i=0;	i<a.r;	i++){
			for	(j=0;	j<b.c;	j++){
				s	=	0;
				for	(v=0;	v<a.c;	v++){
						s+=	a.cell(i,v)*b.cell(v,j);
				}	
	
				rez.set(i,j,s);
			}
	}

	
	return	rez;
}
	
r	=	MatProduct(m,m);
	

	Collapse	All						 	Language	Filter:
S#	API	documentation

Event	handling
See	Also

S#	has	limited	capabilities	of	handling	.NET	events.	However	it	is
possible	to	subscribe	a	function	defined	in	Script	on	.NET	event.

Note:	It	is	possible	to	subscribe	on	events	having	the	following
signature:
	
			public	void	Event(object	sender,	T	eventArgs)	or	which	is	the	same
EventHandler<T>.

Here's	an	example	for	running	S#	in	a	simple	Windows	Forms
application:

	
function	OnClick(s,e)
{
		MessageBox.Show('Hello');
}
button.Click	+=	OnClick;

	
You	can	also	the	sample	from	here.

It	is	also	possible	to	wire	Routed	Events	with	S#	functions	when	running
scripts	within	WPF	or	Silverlight	applications.

	Collapse	All						 	Language	Filter:
S#	API	documentation

Context	bound	events
See	Also

All	event	subscriptions	in	S#	are	controlled	by	a	specific	component
called	event	manager.	It	stores	in-memory	cache	of	all	S#	function
subscriptions	to	.NET	events.	Each	time	script	execute	+=	operator	new
record	will	be	added	to	event	manager	cache.	Each	event	will	be
handled	in	the	same	context	as	a	script	containing	this	event	function.

Here	is	an	example	which	demonstrate	this	case	(C#):
	
						Script	s	=	Script.Compile(
									@"
												invoked	=	false;
												function	handler(s,e)	global(invoked)	{
													invoked	=	true;
												}
												test	=	new	EventSource();
												test.NameChanged	+=	handler;
												return	test;
										"
);
						EventSource	resultVal	=(EventSource)s.Execute();
						Assert.IsFalse((bool)s.Context.GetItem("invoked",	false));
						//At	this	point	event	will	be	executed	in	the	script's	context,	i.e.	s.Context
						resultVal.Name	=	"TestName";
						//Now,	check	that	the	value	in	context	was	changed
						Assert.IsTrue((bool)s.Context.GetItem("invoked",	false));
	
Event	Source	class

	
		public	class	EventSource
		{
				string	name;

				public	string	Name
				{
						get
						{
								return	name;
						}
						set
						{
								name	=	value;
								if	(NameChanged	!=	null)
										NameChanged.Invoke(this,	EventArgs.Empty);
						}
				}
				public	event	EventHandler<EventArgs>	NameChanged;
		}

	Collapse	All						 	Language	Filter:
S#	API	documentation

Generic	parameters
See	Also

You	can	use	generics	in	S#	through	the	syntax
	

MethodName<|TypeName|>(...)

For	example	it	you	have	an	Attach<T>	method	you	can	call	it	with	the
string	type	as	follows:
	

Attach<|string|>(...)
	

and	create	instances	of	generic	types:
	
list	=	new	List<|string|>(...)

Example	of	using	generic	method:

C#:
public	class	TestGeneric
	{
		public	string	GenericGet<T>(T	input)
			{
				return	input.ToString();
			}
	}
S#:

				a	=	new	TestGeneric();
				return	a.GenericGet<|string|>('Hello	World');

	Collapse	All						 	Language	Filter:
S#	API	documentation

Script	context
See	Also

Script	Context	is	a	part	of	script	that	stores	run-time	information,	such
as:	scopes,	variables	inside	scopes,	flags,	functions,	etc.	With	a	help	of
Script	Context	host	application	may	expose	.NET	objects	for	script.
Script	Context	is	a	point	of	interoperability	between	runtime	and	host
application.

Script	runtime	ensure	that	context	is	passed	across	all	executable	parts
of	script.	For	example,	each	user	defined	function	implementing
IInvokable	interface	will	be	supplied	with	an	instance	of	context	(as	a	first
parameter)	during	its	execution.

Context	Switching¶
Run-time	ensures	that	there	is	one-to-one	relation	between	pre-compiled
script	instance	and	script	context.
						Script	s1	=	Script.Compile("return	A;");
						Script	s2	=	Script.Compile("return	B;");
	
						s1.Contex	=	s2.Context;
						//After	this	statement	s2.Context	will	be	equal	to	null
	
Following	scenario	is	possible:	

	
						Script	s	=	Script.Compile("return	A;");
	
						ScriptContext	sc	=	new	ScriptContext();
						sc.SetItem("A",	1);
						s.Context	=	sc;						
	
						ScriptContext	sc1	=	new	ScriptContext();
						sc.SetItem("A",	10);

						s.Context	=	sc1;
	
	
Note:	during	context	switching	all	references	created	with
Context.Ref	method	will	be	cleared.	Context.Ref	mainly	used	by
runtime	to	cache	references	and	improve	performance.	Avoid	using
this	function.

	Collapse	All						 	Language	Filter:
S#	API	documentation

Script	Scope
See	Also

The	purpose	of	the	script	Scope	is	to:
Resolve	variables:	associate	value	with	name,	return	value	by
given	name;
Create	reference	to	variable	for	fast	access	to	value;
Associate	name	with	IInvokable	object	(function)

Scopes	in	S#	forms	a	hierarchy:

	

There	are	different	types	of	scopes:	global,	local,	function	scope,	using
statement	scope,	and	events	scope.	All	of	them	are	used	to	resolve
names:	either	variable's,	type's,	function's	name	or	method's	and
properties'	names	in	of	certain	object	in	case	of	using	statement.	It	is
possible	to	inherit	and	implement	a	Scope	class	to	introduce	custom
behavior	of	name	resolution.	Before	script	execution	the	user	can	add
objects,types	and	functions	into	Script's	scope,	so	they	will	be	available
for	script.	For	example:

https://www2.hosted-projects.com/trac/Swa/SSharp/wiki/LanguageFunctions

				List<int>	vals	=	new	List<int>();
		vals.AddRange(new	int[]	{	1,	2,	3,	4	});
		Script	script	=	Script.Compile(@"
										rez	=	0;
										foreach	(number	in	numbers)
										rez	+=	number;"
);
		//Adding	variable	to	script's	scope
		script.Context.SetItem("numbers",	vals);
		object	rez	=	script.Execute();
		Console.WriteLine(rez);

	Collapse	All						 	Language	Filter:
S#	API	documentation

Global	and	local	variables
See	Also

Global	variables	are	variables	that	are	accessible	in	every	scope.	Such
variables	are	used	extensively	to	pass	information	between	sections	of
code	that	don't	share	a	caller/callee	relation	like	functions.

Example:
	
//	Creates	a	global	variable	"g_variable1"	with	value	of	100
g_variable1	=	100;
//	Creates	a	global	variable	"g_variable2"	with	value	of	200
g_variable2	=	g_variable1	+	100;
function	MyFunction1()	{	...	}
function	MyFunction2()	{	...	}
	

Local	variables	are	variables	that	are	given	local	scope.	Such	variables
are	are	accessible	only	from	the	function	or	block	in	which	it	is	declared.
Local	variables	are	contrasted	with	global	variables.

Example:
	
//	Creates	a	global	variable
my_variable	=	100;
function	MyFunction()
{
		//	Creates	a	local	variable
		my_variable	=	200;
}

	

To	avoid	naming	conflicts	when	referencing	local	and	global	variables	S#
provides	a	special	global:	keyword	that	provides	access	to	global	scope
Example:

//	Creates	a	global	variable
g_variable	=	100;
function	MyFunction()
{
		//	Creates	a	local	variable
		g_variable	=	200;
		Console.WriteLine("Local	variable	value:	"	+	g_variable);
		Console.WriteLine("Global	variable	value:	"	+	global:g_variable);
}
//	Invokes	"MyFunction"	function
MyFunction();
	

When	running	the	example	above	you	will	get	the	following	output	as	a
result:

Local	variable	value:	200

Global	variable	value:	100

Var	Keyword
There	is	ability	to	specify	that	variable	should	be	created	in	exactly	that
scope	in	which	expression	will	be	evaluated.	This	is	the	purpose	of	var
keyword:

var	a	=	2;

	Collapse	All						 	Language	Filter:
S#	API	documentation

Merging	Global	and	Local	Scopes
See	Also

S#	also	provides	a	possibility	importing	a	set	of	global	variables	into	the
local	scope	of	a	function.	This	is	achieved	by	means	of	global()
statement	used	within	function	definition.

	
Example:

myVariable1	=	10;
myVariable2	=	"hello";
function	MyFunction()	global	(myVariable1,	myVariable2)
{
		myVariable1++;
		myVariable2+=	"	world!";
		Console.WriteLine(myVariable1);
		Console.WriteLine(myVariable2);
}

The	example	above	will	provide	the	following	output	when	executed:
11
hello	world!

	

Please	note	that	after	variables	from	global	scope	are	merged	into
the	local	one	for	"MyFunction"	function	it	is	not	possible	to	declare
local	variables	with	the	same	names.	It	is	recommended	to	use
"global()"	statement	for	functions	which	are	intended	to	manipulate
static	(global)	variables	primarily.

	Collapse	All						 	Language	Filter:
S#	API	documentation

Scopes	by	example
See	Also

Creating	global	variable
		a	=	1;

Creating	global	variable	in	local	scope
								//Global	scope
										{	//Local	scope	1
												{//Local	scope	2
														//Create	global	variable	from	local	scope
														a	=	4;
												}
										}
										//	In	this	scope	a	=	4
										return	a;

Temporary	local	variables
								//Global	scope
										{	//Local	scope	1
												var	a;	//Create	empty	variable	in	local	scope	1
												{//Local	scope	2
														//This	will	set	variable	to	top-most	scope	which	contains
														//definition	for	variable,	which	is	Local	scope	1
														a	=	4;
												}
										}
										//Global	scope	still	empty

Variable	resolving	rules
								//Global	scope
										{	//Local	scope	1
												var	a;	//Create	empty	variable	in	local	scope	1

												{//Local	scope	2
														//This	will	set	variable	to	top-most	scope	which	contains
														//definition	for	variable,	which	is	Local	scope	1
														a	=	5;
														{	//Local	scope	3
																var	a;	//Create	empty	variable	in	local	scope	3
																//This	will	set	variable	to	top-most	scope	which	contains
																//definition	for	variable,	which	is	Local	scope	1
																global:a	=	4;
																a	=	3;	//	Set	local	variable
														}
												}
												//Create	variable	in	global	scope	equal	to	current	value	of	a	in	this
scope
												b	=	a;
										}
										//b	=	4;
										return	b;

Temporary	variables	in	for	loop
										var	sum	=	0;
										for	(var	x=0;	x<10;	x++){
												var	temp	=	x;
												sum	+=	x;
										}
										//Here	temp	and	x	variables	are	absent
										return	sum;

	Collapse	All						 	Language	Filter:
S#	API	documentation

.NET	Integration
See	Also

This	topic	describes	various	specific	ways	for	interacting	with	.NET	code.

1.	Pointer	to	.NET	Member	(S#)
	
												sin	=	Math.Sin;
												return	sin(0.75);
	
												a	=	DateTime.Now;
												b	=	a.ToString;								
												return	b();

2.	Threading	(S#)
	
									function	ThreadTest()
									{
											return	true;
									}
	
									th	=	new	Thread(new	ParameterizedThreadStart(ThreadTest,
ThreadTest.ThreadInvoke));
									th.Start(Context);
	

3.	Interfaces

		C#:
	public	interface	ITest
	{

		int	Get();
	}
	
public	interface	ITest1
	{
		int	Get();
	}
	
public	class	TestInterface	:	ITest,	ITest1
	{
			#region	ITest	Members
	
		int	ITest.Get()
			{
				return	2;
			}
	
			#endregion
	
			#region	ITest1	Members
	
		public	int	Get()
			{
				return	15;
			}
	
			#endregion
	}

	S#:
												a	=	new	TestInterface();
												return	a.Get();	//Returns	15
	
												a	=	new	TestInterface();

												i	=	new	ExplicitInterface(a,	ITest);												
												return	i.Get();	//Returns	2

4.	Shadowed	methods
S#	will	always	access	shadowed	method/property.

		C#:
public	class	TestShadowBase
	{
		public	string	Name	{	get	{	return	"Base";	}	}
	
		public	virtual	string	Get(){	return	"BaseGet";	}
	}
	
public	class	TestShadow	:	TestShadowBase
	{
		public	new	string	Name	{	get	{	return	"Shadow";	}	}
	
		public	new	string	Get()	{	return	"ShadowGet";	}
	}

		S#:
													a	=	new	TestShadowBase();
													b	=	new	TestShadow();
	
													return	a.Name	+	b.Name	+	a.Get()	+	b.Get();
													//Returns	"BaseShadowBaseGetShadowGet"

	Collapse	All						 	Language	Filter:
S#	API	documentation

Examples	of	scripts
See	Also

All	examples	are	given	in	S#	language.

Test	class	has	following	implementation	(C#):
	public	class	Test
	{
		public	static	void	IsTrue(bool	value)
			{
				if	(!value)	throw	new	TestException("Condition	failed");
			}
	
		public	static	void	AreEqual(object	v1,	object	v2)
			{
				if	(!object.Equals(v1,	v2))
														throw	new	TestException("Equality	condition	failed,	expected:
"
																					+	AsString(v1)	+	"	,actual:	"+	AsString(v2));
			}
	
		private	static	string	AsString(object	v1)
			{
				if	(v1	==	null)	return	"null";
	
				return	v1.ToString();
			}
	}
	
public	class	TestException	:	Exception
	{
		public	TestException(string	message)

					:	base(message)
			{
			}
	}

	Collapse	All						 	Language	Filter:
S#	API	documentation

Bubble	Sort
See	Also

								a=[17,	0,	5,	3,1,	2,	55];
	
								for	(i=0;	i	<	a.Length;	i=i+1)
									for	(j=i+1;	j	<		a.Length;	j=j+1)
										if	(a[i]	>	a[j])
										{
												temp	=	a[i];
												a[i]	=	a[j];
												a[j]	=	temp;
										}
	
									s	=	'';
									for	(i=0;	i	<	a.Length;	i++)
										s	=	s	+	','	+	a[i];
	
									Test.AreEqual(',0,1,2,3,5,17,55',s);		

	Collapse	All						 	Language	Filter:
S#	API	documentation

Quick	Sort
See	Also

	
								function	swap(array,	a,	b)
								{
										tmp=array[a];
										array[a]=array[b];
										array[b]=tmp;
								}
	
								function	partition(array,	begin,	end,	pivot)
								{
										piv=array[pivot];
										swap(array,	pivot,	end-1);								
										store=begin;
										for(ix=begin;	ix	<	end-1;	ix++)	{
											if(array[ix]<=piv)	{
													swap(array,	store,	ix);
													store++;
												}
										}
										swap(array,	end-1,	store);
										return	store;
								}
	
								function	qsort(array,	begin,	end)
								{
										if(end-1>begin)	{
												pivot=begin+(end-begin)	/	2;
												pivot=partition(array,	begin,	end,	pivot);

												qsort(array,	begin,	pivot);
												qsort(array,	pivot+1,	end);
										}
								}
	
								a	=	[1,2,10,0,12,34,5,3,3,4,1,23,4];
								s1	=	'';
								for	(i=0;	i	<	a.Length;	i++)
										s1	=	s1+'	'+a[i];
	
								qsort(a,	0,	a.Length);
								s='';
								for	(i=0;	i	<	a.Length;	i++)
										s	=	s+'	'+a[i];
	
								Test.AreEqual('	0	1	1	2	3	3	4	4	5	10	12	23	34',	s);
	

	Collapse	All						 	Language	Filter:
S#	API	documentation

Using	Scope
See	Also

using	(Math)
{
	//Build-in	Objects
	//using	the	Pow	function	from	Math	class
	a	=	Pow(2,	3);
}
	
Test.AreEqual(8d,	a);

	Collapse	All						 	Language	Filter:
S#	API	documentation

Vector	objects
See	Also

	
function	DotProduct(a,b){
return	a.x*b.x	+	a.y*b.y;
}
	
function	Scale(a,	s){
return	[x->a.x*s,	y->a.y*s];
}
	
	
Test.AreEqual(19,	DotProduct([x->1,	y->3],	[x->4,	y->5]));
Test.AreEqual(5.1,	Scale([x->0.51,	y->3],	10).x);

	Collapse	All						 	Language	Filter:
S#	API	documentation

Loops
See	Also

a	=	[1,2,3,4,5];
	
//------------------------------------//
s	=	0;
foreach	(i	in	a)
s+=i;
	
Test.AreEqual(15,	s);
//------------------------------------//
s	=	0;
i	=	0;
while	(i	<	a.Length){
s	+=	a[i];
i++;
}
	
Test.AreEqual(15,	s);
//------------------------------------//
s	=	0;
for(i=0;i<a.Length;i++){
s	+=	a[i];
}
	
Test.AreEqual(15,	s);
//------------------------------------//
	

	Collapse	All						 	Language	Filter:
S#	API	documentation

Generic	List
See	Also

a	=	new	List<|string|>();
	
a.Add("Hello");
a.Add("World");
	
s	=	String.Join("	",	a.ToArray());
	
Test.AreEqual("Hello	World",	s);

	Collapse	All						 	Language	Filter:
S#	API	documentation

Code	Objects
See	Also

a	=	<!c++;	b+=3;	return	2;!>;
	
c=2;
b=5;
	
f	=	a();
	
Test.AreEqual(2,	f);
Test.AreEqual(3,	c);
Test.AreEqual(8,	b);
	
Test.AreEqual(2,		eval('1+1'));

	Collapse	All						 	Language	Filter:
S#	API	documentation

Operators
See	Also

a	=	true;
b	=	false;
	
c	=	a	|	b;
	
Test.IsTrue(c);
	
c	=	a	&	b;
	
Test.IsTrue(!c);
	
a	=	2d;
c	=	a	is	double;
	
Test.IsTrue(c);

	Collapse	All						 	Language	Filter:
S#	API	documentation

Arithmetic	Expressions
See	Also

a	=	1.0;
b	=	2.0;
c	=	3.0;
d	=	2.0;
e	=	18.0;
f	=	6.0;
	
p	=	2.0;	u	=	3.0;	v	=	1.0;	r	=	2.0;	s	=	5.0;	t	=	12.0;
	
//	r1	=	9
r1	=	a	+	b	+	c*d;
Test.AreEqual(9d,	r1);
	
//	r2	=	-2.5
r2	=	a*(b	-	c/d)-	e/f;
Test.AreEqual(-2.5,	r2);
	
//r3	=	-4.5
r3	=	a*b*((c	-	d)*a	-	p*(u	-	v)*(r	+	s))/t;
Test.AreEqual(-4.5,	r3);
	
//r4	=	65536
r4	=	2	*	d^(c*5);
Test.AreEqual(65536d,	r4);
	
//r5	=	2
r5	=	5	%	3;
Test.AreEqual(2,	r5);

	Collapse	All						 	Language	Filter:
S#	API	documentation

Recursion
See	Also

s	=	0;
	
function	Draw(level)
{
global:s++;
	
if	(level>1)
{
		level	=	level	-	1;
		Draw(level);
		Draw(level);
}
}
	
Draw(10);
	
Test.AreEqual((int)(2^10-1),	s);

	Collapse	All						 	Language	Filter:
S#	API	documentation

Fibonacci	Numbers
See	Also

									function	fib(n){
										if	(n==1)	return	1;
										else	if	(n==2)	return	2;
										else	return	fib(n-1)+fib(n-2);
									}

	Collapse	All						 	Language	Filter:
S#	API	documentation

Factorial
See	Also

									function	fac(n){
										if	(n==1)	return	1;
										else	return	n*fac(n-1);
									}

	Collapse	All						 	Language	Filter:
S#	API	documentation

GCD
See	Also

									function	GCD(a,b){
										if	(a>b)	return	GCD(a-b,b);
										else
											if	(b>a)	return	GCD(a,b-a);
										else
												return	a;
									}
	
//Non	recursive	function
	
									function	GCD_fast(a,b){
										while	(a!=b)
										{
												if	(a>b)	a	=	a-b;
												else		
													if	(b>a)	b	=	b-a;
										}								
										return	a;
									}

	Collapse	All						 	Language	Filter:
S#	API	documentation

Tutorial
See	Also

Tutorial	1.	Getting	started
Tutorial	2.	Creating	custom	function

	Collapse	All						 	Language	Filter:
S#	API	documentation

Tutorial	1.	Getting	started
See	Also

For	installation	details	and	referencing	S#	assembly	consider	following
topics:

Downloads
Installation

Minimum	C#	application:
	
using	System;
using	System.Diagnostics;
using	System.IO;
using	Scripting.SSharp;
using	Scripting.SSharp.Runtime;
	
namespace	Debug.Net
{
class	Program
	{
		static	void	Main(string[]	args)
			{
				RuntimeHost.Initialize();
				Script	s	=	Script.Compile("Console.WriteLine('Hello	World');");
					s.Execute();
					s.Dispose();
				RuntimeHost.CleanUp();
			}
		}
}

	Collapse	All						 	Language	Filter:
S#	API	documentation

Tutorial	2.	Creating	custom	function
See	Also

It	is	possible	to	extend	S#	runtime	with	a	custom	function.	For	this
purpose	two	requirements	should	be	met:

A	class	implementing	IInvokable	interface	should	be	created;
An	instance	of	this	class	should	be	associated	with	a	variable
name,	via	script	context.

Here	is	an	example	of	custom	function:

	
					RuntimeHost.Initialize();								
				Script	script	=	Script.Compile(@"
							return	Test();
					");
					script.Context.SetItem("Test",	new	TestFunction());
	
				object	result	=	script.Execute();
	
				Assert.AreEqual(10,	result);
	
where:
	
public	class	TestFunction	:	IInvokable
	{
			#region	IInvokable	Members
	
		public	bool	CanInvoke()
			{
				return	true;
			}

	
		public	object	Invoke(IScriptContext	context,	object[]	args)
			{
				return	10;
			}
	
			#endregion
	}

	Collapse	All						 	Language	Filter:
S#	API	documentation

Tutorial	3.	Passing	objects	between	script	and	host
See	Also

1.	Create	a	new	Visual	Studio	...	project

	

	

	Tutorial
	Tutorial 1. Getting started
	Tutorial 2. Creating custom function
	Tutorial 3. Passing objects between script and host

