
	 	

http://www.robelle.com/products/qedit

Introduction
Welcome	to	Qedit,	the	fast,	full-screen	text	editor	for	MPE	and	HP-UX.	To
get	into	Qedit/UX,	enter	this	command:

/opt/robelle/bin/qedit

Qedit	version	5.7	has	screen-editing,	function	keys	and	commands:

Commands:

Add FINDUp Open ZZ
Add(=copy) FORM Proc %ext
Add(<move) FORward Q shell
Add(=file) GARbage REDO 	
Append Glue RENum 	
Backward Help Replace 	
Before HOld Set 	
Change Justify SHut 	
COLcopy Keep SPell 	
COLMove List Text 	
Delete LISTREDO UNDo COmp
DEStroy LISTUndo Use RUN
Divide LSort Verify mpe
DO MErge VIsual Udc
Exit Modify Words Cmdfile
Find New Zave =calc

Function	Keys:

F1	Upd
Next/Visual F2	Roll	Up F3	Findup F4	Find

F5	Backward F6	Forward
F7	Do

===>
/LISTREDO

F8	Exit

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Documentation
Qedit	comes	with	a	User	Manual	and	a	Change	Notice.	You	may	have
received	printed	copies	of	these.	If	you	wish	to	have	printed	copies,	you
can	order	them	by	filling	out	the	form	on	our	web	site.

They	are	also	available	as	PDF	or	HTML	Help	files.	You	may	have
received	a	documentation	CD	with	these	files,	or	you	can	download	the
files	from	the	Robelle	web	site.

More:
User	Manual
Change	Notice
Printed	Documentation
Online	Documentation	in	HTML	Help	Format
CD	or	Web	Download

	 	

http://www.robelle.com/products/qedit

	 	

User	Manual
The	user	manual	contains	the	full	description	of	all	the	Qedit	commands,
as	well	as	usage	tips.	The	manual	is	up-to-date	with	all	the	latest
changes	incorporated	in	Qedit.	To	see	only	the	changes	in	the	latest
version,	see	New	to	Qedit	5.7	or	see	the	change	notice.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Change	Notice
For	a	complete	description	of	the	latest	changes	made	to	Qedit,	the
installation	instructions,	and	any	compatibility	issues,	see	the	change
notice	that	was	included	with	the	release.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Printed	Documentation
The	latest	user	manual	and	change	notice	are	available	in	Adobe	PDF
format.	If	you	do	not	already	have	the	Adobe	Acrobat	reader,	you	can	get
a	copy	from	http://www.adobe.com/prodindex/acrobat/readstep.html.	If
you	wish	to	have	printed	copies,	you	can	order	them	by	filling	out	the
form	on	our	web	site.

	 	

http://www.robelle.com/products/qedit
http://www.adobe.com/prodindex/acrobat/readstep.html
http://www.robelle.com/products/qedit

	 	

Online	Documentation	in	HTML	Help	Format
The	Qedit	user	manual	and	change	notice	are	available	in	HTML	Help
format.	Support	for	compiled	HTML	help	(CHM	files)	is	built	into	recent
versions	of	Windows.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

CD	or	Web	Download
If	you	received	a	documentation	CD	with	this	version	of	Qedit,	you	will
find	the	documentation	files	on	the	CD.	The	installation	program	will	start
automatically	when	you	insert	the	CD	into	the	drive.	If	it	does	not	start
automatically,	run	D:\setup.exe,	where	D	is	the	letter	assigned	to	your
CD-ROM	drive.

If	you	do	not	have	a	documentation	CD,	you	can	download	the	files	from
the	Robelle	web	site	at	http://www.robelle.com/library/manuals/.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/library/manuals/
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Customer	Support
When	you	purchase	Qedit,	customer	support	is	included	for	the	first	year.
After	the	first	year,	there	is	a	yearly	Maintenance	fee.	If	you	are	a	Right-
to-Copy	user	at	a	branch	of	a	larger	company,	you	have	two	options.	If
you	pay	only	the	one-time	Extra	CPU	surcharge,	then	you	must	obtain
your	support	from	your	own	corporate	resources.	If	you	wish	to	have
support	at	your	own	location,	you	may	obtain	this	by	also	paying	the
regular	Maintenance	fee.	With	this	yearly	support	for	Qedit,	you	are
entitled	to	call	with	questions.	Service	also	supplies	you	with	a	yearly
update	to	Qedit.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Robelle	Newsletter
Do	you	receive	a	copy	of	What's	Up,	DOCumentation?,	our	regular	news
memo	about	Robelle,	MPE,	and	HP-UX?	We	distribute	our	news	memos
only	to	sites	with	current	service.	Your	copy	may	be	going	to	your
corporate	headquarters.

The	lastest	newsletter	is	also	available	from	our	Web	site	at
http://www.robelle.com/newsletter/.

	 	

http://www.robelle.com/newsletter/
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Additional	Software
Qedit	comes	with	additional	software:

qcat	for	converting	Qedit	files,
qaccess	archive	library	for	reading	Qedit	files,	and
Compare/UX	for	comparing	two	text	files.

More:
Qcat
Qaccess
Compare

	 	

http://www.robelle.com/products/qedit

	 	

Qcat
Qcat	is	a	filter	program	similar	to	cat	and	zcat.	Qcat	reads	a	set	of	Qedit
files	and	prints	the	lines	on	standard	output.	Type	 man	qcat	for
more	information.

qcat	QeditFile	>	TextFile

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Qaccess
Qaccess	is	an	archive	library	for	reading	Qedit	files.	It	has	two	parts:

a	header	file	qaccess.h	in	/opt/robelle/include,
and	an	archive	library	qaccess.a	in	/opt/robelle/lib.

Type	 man	qaccess	for	more	information.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Compare
Compare/UX	compares	two	text	files	(Keep	or	Qedit	format)	and	prints
out	the	differences.	The	basic	comparison	unit	is	a	line.	Compare/UX
identifies	three	types	of	differences:

lines	that	are	in	the	first	file	but	not	in	the	second;
lines	that	are	in	the	second	file	but	not	in	the	first;
and	lines	that	are	in	both	files,	but	don't	match.

Type	 man	compare	for	more	information.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Notation
This	manual	uses	a	standard	notation	to	describe	commands.	Here	is	a
sample	definition:

VERIFY[@	|	ALL]

[keyword	...]

1.	 1.	 UPPERCASE	-	If	the	commands	and	keywords	are	shown	in
uppercase	characters	in	a	syntax	statement,	they	must	be
entered	in	the	order	shown	(example:	ALL).	However,	you
can	enter	the	characters	in	either	uppercase	or	lowercase.

2.	 Lowercase,	highlighted	-	These	are	"variables"	to	be	filled	in
by	the	user	(example:	keyword).	The	variables	may	be
highlighted	by	underlining	or	italics.	Each	such	"variable"	is
defined	elsewhere	(see	the	Introduction	when	you	have
trouble).	In	the	Help	command,	highlighting	is	not	available,
so	these	variables	appear	simply	in	lowercase.

3.	 Brackets	-	enclose	optional	fields	(example:	[ALL]).
4.	 Braces	-	enclose	comments	which	are	not	part	of	the

command.	However,	braces	and	comments	are	accepted	in
actual	Qedit	commands.
/listq	filename	{Q	means	without	line	numbers}

5.	 Up	lines	-	separate	alternatives	from	which	you	select
(example:	SET	CHECK	[ON|OFF]).	The	choices	are
sometimes	listed	on	several	lines	without	"up	lines".

6.	 Dot-dot-dot	(...)	-	indicates	that	the	variable	may	be	repeated
many	times	in	the	command.

7.	 Other	special	characters	-	literal	symbols	that	must	appear	in
the	command	as	they	appear	in	the	manual	(for	example,	"="
in	Add	linenum	=	rangelist).

In	examples,	there	is	an	implied	Return	key	at	the	end	of	each	line.

In	examples	in	our	documentation,	we	generally	show	Qedit	commands
preceded	by	the	Qedit	"/"	prompt.	However,	in	Qedit/UX	the	default
prompt	is	actually	"qux/".	Note	that	you	can	change	the	prompt	string	with
Set	Prompt.

Control	characters,	generated	by	holding	down	Control	while	striking

another	key,	are	either	spelled	out	(e.g.,	Control-H)	or	abbreviated	with	a
circumflex	prefix	(e.g.,	^H).

When	Qedit	asks	you	a	question,	the	default	answer	is	shown	in
[brackets].	The	default	is	the	answer	that	Qedit	will	assume	if	you	press
only	the	Return	key.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

New	to	Qedit	5.7
Here	are	a	few	highlights	of	the	new	features	in	Qedit.	For	a	complete	list
of	changes,	plus	details	on	how	to	take	advantage	of	all	the	new	features,
see	the	change	notice	that	accompanied	your	tape.	See	the
Documentation	for	instructions	on	how	to	print	the	change	notice.	All
changes	discussed	in	the	change	notice	have	been	incorporated	into	the
user	manual	and	help	file,	but	the	change	notice	gives	you	everything
new	in	one	convenient	document.

This	section	describes	the	latest	enhancements	to	host-based	Qedit	and
the	server	portion	of	Qedit	for	Windows.	For	information	about
enhancements	to	the	client	portion	of	Qedit	for	Windows,	see	the	Qedit
for	Windows	User	Manual.

A	rangelist	can	now	have	an	 AND	keyword	with	up	to	10
search	strings.	All	strings	must	be	found	on	a	single	line	for
the	line	to	be	selected.	Each	string	can	have	its	own	search
window.
Escape	sequences	to	set/reset	terminal	tab	stops	appear	in
output	file	when	Qedit's	output	is	redirected	as	in

$	qedit	>	qedit.out
Qedit	now	resets	the	tab	stops	when	running	in	interactive
mode	only.	Redirection	is	assumed	to	be	batch	mode.

The	following	enhancements	have	been	implemented	in	the	Qedit	for
Windows	server.

The	server	correctly	returns	error	90	when	the	modified	record
length	is	greater	than	the	maximum	allowed	in	the	current
workfile.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

General	Installation	Notes
Here	we	describe	how	to	install	and	configure	Qedit.	The	following	are
general	notes	about	installing	Qedit.

More:
Who	Should	Use	These	Instructions?
Summary	of	Installation	Steps

	 	

http://www.robelle.com/products/qedit

	 	

Who	Should	Use	These	Instructions?
The	system	manager	should	use	the	following	installation	instructions	to
install	Qedit/UX.	No	one	can	be	using	Qedit/UX	during	the	installation.
The	installation	should	only	take	a	few	minutes.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Summary	of	Installation	Steps
To	install	Qedit/UX,	follow	these	steps:

1.	 1.	 You	must	log	on	as	root.
2.	 You	must	create	the	correct	directory	structure.
3.	 Qedit/UX	and	its	associated	files	must	be	restored	from	the

distribution	tape.
4.	 You	can	set	up	a	PATH	for	Qedit/UX	or	copy	it	to	an	existing

directory	in	your	PATH.	(optional	step)
5.	 If	you	have	the	Qedit	for	Windows	server,	you	need	to	start

the	daemon	process.	(optional	step)

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Step	1:	Log	On	as	Root
There	are	two	ways	to	log	on	as	root:

1.	 1.	 Exit	from	HP-UX	and	log	on	with	root	as	the	user	name.
2.	 If	you	are	already	logged	on,	you	can	execute	this	command:

su	-

In	either	case,	you	have	to	supply	the	user	password	for	root.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Step	2:	Create	Robelle	Directory
Qedit/UX	is	installed	in	/opt/robelle.	Before	restoring	the	Qedit/UX	files
you	must	first	create	the	/robelle	directory.

mkdir	/opt/robelle

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Step	3:	Restore	Files
Use	the	following	command	to	restore	the	Qedit/UX	files	from	the
distribution	tape:

tar	xv	/opt/robelle

This	command	assumes	your	tape	device	is	/dev/rmt/0m.	If	it	is	not,	you
need	to	specify	your	tape	device	by	using	the	"f"	option	in	the	tar
command.	For	example,	if	your	tape	device	is	/dev/rmt/1m,	you	need	to
use	the	following	command	to	restore	the	files:

tar	xvf	/dev/rmt/1m	/opt/robelle

Once	the	files	have	been	restored,	you	can	run	the	new	version	of
Qedit/UX:

/opt/robelle/bin/qedit

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Step	4:	Set	Up	PATH	(Optional)
You	invoke	Qedit	with	this	command:

/opt/robelle/bin/qedit

If	you	just	type

qedit

to	invoke	Qedit/UX,	you	must	either	add	/opt/robelle/bin	to	your	PATH	or
copy	/opt/robelle/bin/qedit	to	a	directory	that	is	currently	on	your	PATH.
Similarly,	the	man	pages	for	Qedit	are	found	in
/opt/robelle/man/man1/qedit.1.	To	make	the	man	pages	available	to
everyone,	you	can	either	add	/opt/robelle/man	to	your	MANPATH	or	you
can	copy	the	man	pages	to	a	directory	that	is	currently	on	your
MANPATH.

Details	of	how	to	set	up	either	PATH	or	MANPATH	on	a	system-wide	or
user	basis	can	be	found	in	the	chapter	"Running	Qedit	under	HP-UX."

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Step	5:	Start	the	Qedit	for	Windows	Server
(optional)
If	you	have	the	Qedit	for	Windows	server	software,	you	must	start	the
Qedit/UX	daemon	process	before	any	Qedit	clients	can	connect	to	your
HP-UX	machine.	To	allow	users	to	connect	to	the	Qedit/UX	daemon
process,	you	must	log	on	as	root	and	issue	this	command:

qedit	-d

The	Qedit	server	process	requires	three	log	files.	By	default,	these	files
are	located	in	the	following	directory:

/opt/robelle/log/qedit/

If	you	have	moved	Qedit	to	a	different	directory,	Qedit	tries	to	identify	its
current	location	and	adjust	the	location	of	the	log	files.	If	it	is	not	able	to
correctly	identify	its	location,	it	will	default	back	to	/opt/robelle.

If	you	wish	to	explicitly	identify	the	logfiles	location,	you	can	perform	the
following	steps:

1.	 1.	 Set	the	ROBELLE	environment	variable	with	the	new
directory	name	before	you	start	the	Qedit	server	process.

2.	 Make	sure	the	new	directory	has	exactly	the	same	structure
as	the	/opt/robelle	directory.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Introduction
Qedit	aims	to	provide	everything	an	MPE	or	HP-UX	programmer	could
need	to	write	COBOL,	PowerHouse,	or	other	programs,	and	to	prepare
documentation.	Therefore,	Qedit	has	Line	mode	for	batch	editing	and	full-
screen	mode	for	interactive	editing.	On	HP	terminals,	Qedit's	full-screen
mode	is	called	Visual	mode.	On	VT	terminals,	Qedit's	full-screen	mode	is
called	Screen	mode.	See	Introduction.

As	of	HP-UX	11.0,	HP	has	dropped	support	for	block-mode	terminals.	For
this	reason,	full-screen	editing	as	implemented	on	HP3000	computers
only	works	on	HP-UX	versions	earlier	than	11.0.	On	HP-UX	11.0	or	later,
full-screen	editing	is	available	in	Screen	mode	(Set	Visual	Screen	On)	on
VT-type	terminals	or	in	Visual	Blockemulation	emulation	(Set	Visual
Blockemulation	On)	on	HP-type	terminals.

As	its	name	implies,	Blockemulation	emulates	block-mode	operations	by
reading	each	line	one	by	one	instead	of	reading	the	whole	screen	in	a
single	operation.	Depending	on	the	type	of	connection,	this	process	might
take	a	few	seconds	as	the	cursor	moves	down	the	screen.

Qedit's	Visual	mode	is	a	powerful	but	friendly	full-screen	editor	designed
specifically	for	programmers.	It	gives	you	full	access	to	the	editing
capabilities	of	your	terminal	in	block-mode,	with	low	system	overhead.
You	can	move,	copy,	mark	and	delete	blocks	of	text	with	Visual's	cut-and-
paste	functions,	and	page	backward	and	forward	through	your	file	with
function	keys.	To	use	Visual	mode,	you	must	have	an	HP	terminal	or	an
HP	terminal	emulator	(e.g.,	Reflection	from	WRQ).

In	Visual	mode,	you	have	access	to	all	Line	mode	commands	(including
UDCs,	command	files,	compiling,	linking	and	running	programs,	shell
scripts,	and	string	searching	and	changing).	Qedit's	search	and	replace
functions	aim	to	be	simple,	fast	and	powerful	(e.g.,	ignore	embedded
words,	etc.).	The	Undo	command	allows	you	to	cancel	any	previous	edits
to	your	file,	working	back	to	the	state	at	which	you	started.	Using	the
optional	Open	and	Shut	feature,	you	can	switch	between	files	instantly.

Visual	mode	is	a	good	introduction	to	the	HP	operating	systems	for	users
who	don't	work	on	HP	computers	all	day.	Those	who	may	particularly
benefit	are	novice	users,	or	users	who	run	Qedit	only	to	update	a	report
skeleton	once	a	week.	These	occasional	users	no	longer	have	to
memorize	editing	commands.	Visual	mode	provides	a	familiar
environment	where	novices	can	make	changes	to	the	entire	screen,	just
as	they	do	on	PC	editors.	You	can	even	configure	some	electronic	mail
packages	(HPDesk,	elm),	to	put	your	users	directly	into	Visual	mode
when	they	edit	a	message.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Starting	Visual	Mode
After	you	have	invoked	Qedit,	and	Texted	or	Opened	a	file,	you	switch
from	Line	mode	to	Visual	mode	by	typing	VI	or	pressing	F1.	If	you	don't
have	a	file	open,	Qedit	opens	a	scratch	file	and,	if	empty,	fills	it	with	a
screenful	of	blank	lines.

VI	[linenum	|	"string"]	or	press	F1

(Default:	linenum	=	*)

Whereas	in	Line	mode	you	type	in	command	and	text	lines	ending	each
with	a	Return,	in	Visual	you	edit	a	full	screen	of	text	in	block-mode	using
the	terminal	keyboard.	Since	your	terminal	is	off-line	from	the	computer,
you	can	use	its	cursor	and	editing	keys.	You	edit	by	moving	the	cursor
around	the	screen,	inserting	and	deleting	lines	and	characters.	Press
Enter	to	save	your	changes.	To	move	through	the	file,	you	have	the
convenience	of	eight	function	keys,	such	as	F6	Forward	One	Page.

Visual	mode	in	Reflection	for	Windows,	showing	cut-and-paste	indicators

You	copy,	move,	hold,	and	delete	blocks	of	text	easily	by	placing	"cut-
and-paste"	indicators	at	the	start	of	the	line.	You	may	type	Line	mode
commands	at	the	home	line	 ===>	and	execute	them	via	the	Enter
or	the	F7	key.	Combining	the	cut-and-paste	functions	with	the	Open	and
Shut	commands,	you	can	also	copy	and	move	text	quickly	between
different	Qedit	files.	Use	the	ZZ	cut-and-paste	indicator	with	any
command	to	mark	text	easily.

The	Set	Visual	command	controls	how	Visual	mode	operates	and	allows
great	latitude	in	configuring	Visual	to	your	own	liking.	For	example,	you
can	choose	to	have	automatic	update;	decide	where	the	current	line	or
cursor	appears;	and	select	how	many	lines	will	carry	over	when	you	page
up	or	down.

When	you	are	done,	exit	Visual	mode	using	F8,	then	Keep	or	Shut	your
file.	Press	F8	again	to	leave	Qedit.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Screen	Layout
===>

Okay		1691.75		WFILE.DOC.TACCT		"verify"(u)		Move	Ready
	*		procedure	abc;
+1		begin
+2						integer	def;
//	+....10...+....20...+...

The	screen	starts	with	the	home	Line,	followed	by	the	status	Line,
several	text	Lines,	and	ends	with	the	template	Line.	Columns	3	and	4	of
text	lines	sometimes	contain	special	characters	and	are	called	the
indicator	columns.

More:
Home	Line
Status	Line
Text	Lines
Template	Line
Special	Indicator	Columns

	 	

http://www.robelle.com/products/qedit

	 	

Home	Line
You	type	commands,	search	for	strings	and	for	line	numbers	after	the

===>	on	the	home	line.

===>

These	are	executed	when	the	F7	or	Enter	key	is	pressed.

The	home	line	is	also	used	by	Qedit	to	print	error	messages.	You	must
clear	the	error	message	by	pressing	the	F7	or	Enter	key	before	you	can
type	another	command	in	the	home	line.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Status	Line
The	second	line	shows	the	status,	the	current	line	number	(i.e.,	that	of
the	*	line),	the	name	of	the	file	you	are	editing,	the	current	string	with	its
window,	and	any	pending	cut-and-paste	task.

Okay		1691.75		WFILE.DOC.TACCT		"verify"(u)		Move	Ready

If	you	have	Texted	a	file	into	Qeditscr,	the	status	line	shows	the	name	of
the	Text	file,	which	is	also	your	default	Keep	file.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Text	Lines
By	default	you	see	the	*	(current)	line	and	19	lines	after	it.	Each	line	is
prefixed	by	the	relative	line	number,	and	two	columns	for	special
indicators.

	*		procedure	abc;
+1		begin
+2						integer	def;

Use	Set	Vis	Above	and	Set	Vis	Below	to	adjust	the	number	of	lines
shown	above	and	below	the	current	line.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Template	Line
The	last	line	has	//	and	a	column	template.	The	//	signals	end-of-screen
to	Qedit	and	must	not	be	erased.

//	+....10...+....20...+...

Visual	uses	more	than	76	columns	for	text	on	Reflection,	Qcterm,	a
2393/97,	2626,	or	700/9x	terminals.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Special	Indicator	Columns
Qedit	leaves	columns	3	and	4	of	the	text	lines	for	you	to	enter	cut-and-
paste	operators	(i.e.,	MM,	CC,	HH,	etc.).	Also,	Qedit	may	print	one	of	two
special	indicators	in	these	columns:

! line	extends	beyond	the	visible	right	margin
? line	contains	control	characters,	shown	as	dots

An	!	means	the	line	extends	beyond	the	right	terminal	margin.	To	shift	the
screen	image	left,	type	Set	Left	55	at	the	Visual	home	line	and	press	F7.

A	?	means	the	line	contains	nonprinting	characters	such	as	Nulls,
Escapes,	Bells,	Tabs	or	possibly	Roman-8	extended	characters.	Qedit
replaces	these	characters	with	dots	(.)	in	Visual	mode,	and	does	not
allow	you	to	make	changes.	These	?	lines	are	not	updated	when	you
press	Enter.

To	edit	Bells,	Escape	sequences,	Tabs,	ShiftOuts	and	ShiftIns	in	Visual,
use	Set	Vis	Bell,	Set	Vis	Esc,	Set	Vis	Tab,	Set	Vis	SO	and	Set	Vis	SI.	All
these	specify	substitute	characters	to	be	shown	instead	of	dots.	To	edit
other	control	codes,	use	Modify	or	Change	from	the	===>	line.	If	you	turn
Set	Editinput	Extend	Off,	Qedit	regards	Roman-8	characters	as
nonprinting	noise	and	show	them	as	dots.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Using	Your	Keyboard
In	Visual	mode,	the	keyboard	gives	you	the	power	to	move	around	the
screen,	edit	text,	and	control	the	flow	of	Qedit.

More:
Moving	the	Cursor
Editing	the	Text	Lines
Control	Functions
Reflection	for	DOS	Keyboards
Other	PC	Keyboards

	 	

http://www.robelle.com/products/qedit

	 	

Moving	the	Cursor
You	move	around	the	screen	using	the	cursor	keys	and	others:

Cursor	Left Move	one	space	to	left
Backspace Move	one	space	to	left
Cursor	Right Move	one	space	to	right
Cursor	Up Move	one	space	up
Cursor	Down Move	one	space	down
Return Down	to	next	line,	back	to	column	5
Home	Up Move	to	===>	line
Shift-Home Move	to	bottom	of	screen
Tab Move	to	next	right	Set	TAB	column
Shift-Tab Move	to	next	left	Set	TAB	column
Prev	Page Only	moves	around	terminal	memory
Next	Page Only	moves	around	terminal	memory

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Editing	the	Text	Lines
You	revise	the	screen	image	using	these	keys:

Space	bar Move	cursor	right	and	erase	character
any	char Overwrite	cursor	and	move	it	right
Del	Char Remove	character	at	current	cursor
Ins	Char Enable	"insert";	use	again	to	disable
Ins	Line Insert	blank	line	above	current	line
Del	Line Delete	line	at	current	cursor
Clear	Line Erase	to	the	end	of	the	line
Clear	Display Avoid!	Recovery:	Home	Up,*,F7

To	save	the	changes	you	have	made	on	the	screen,

Enter Send	screen	image	to	Qedit,	update
file

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Control	Functions
To	return	from	Visual	mode	to	Line	mode:

F8 exit	from	Visual

Some	other	keys:

Select Useless	in	Qedit
Stop Do	not	use	in	Visual
Break Disabled	in	Visual
Reset Use	if	screen	locks	up,	press	Enter
Esc First	key	of	Escape	sequences
Del Does	not	delete	anything!

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Reflection	for	DOS	Keyboards
If	you	are	using	a	PC	with	Reflection	for	DOS,	you	need	to	map	the	PC
keys	into	the	HP	keys.

Note	that	the	PC	keyboard	has	two	keys	labeled	Enter,	which	are	used
differently	in	Qedit.	The	Enter	key	above	the	Right	Shift	key	is	called	the
Return	key	in	this	manual,	and	is	used	to	execute	commands	in	Line
mode.	In	Visual	mode,	this	key	moves	the	cursor	down	by	one	line.	The
other	Enter	key	(on	the	numeric	keypad)	is	called	the	Enter	key,	and	is
used	to	update	the	screen	in	Visual	mode.

Here	are	the	default	Reflection	keystrokes	for	common	functions:

Terminal	Keyboard Reflection	Key	Sequence

Enter
Enter	on	the	numeric	keypad.	If	that
doesn't	work,	try	the	"+"	on	the
numeric	keypad,	or	try	Shift-F10

Home	Up Control-Home
Shift-Home Control-End
Ins	Line Alt-I
Del	Line Alt-D
Clear	Line Alt-K
Clear	Display Alt-J	(avoid	in	Visual!)
User	keys F9
System	keys F10	(then	F7	for	help)
Additional	Functions Reflection	Key	Sequence
Begin	Line	(Column	1) Home
End	Line End
Help	about	Reflection Alt-H
Exit Alt-X

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Other	PC	Keyboards
AdvanceLink	is	similar	(Alt-H	is	help,	Alt-I	is	Insert	Line,	Alt-D	is	Delete
Line),	but	Clear	Line	is	Alt-L,	and	Enter	is	Alt-F3.	Other	terminal
emulators	have	their	own	keystrokes	for	common	functions.	See	your
emulator's	manual	for	details.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Function	Keys
Much	of	the	convenience	of	Visual	mode	is	due	to	the	power	built	into	the
eight	user	function	keys:	F1	through	F8.

F1 Update	and	go	to	next	page

F2 Roll	Up	Screen	n	lines,	as	per	Set	Vis
Roll

F3 Findup	(search	back	for	current	string)
F4 Find	(search	ahead	for	current	string)
F5 Backward	One	Page
F6 Forward	One	Page
F7 Execute	command	typed	in	===>	line
F8 Exit	from	Visual	back	to	Line	mode
More:
F1:	Update	and	Go	to	Next	Page
F2:	Roll	Up	Screen
F3:	Findup	-	Previous	String
F4:	Find	-	Next	String
F5:	Backward	One	Page
F6:	Forward	One	Page
F7:	Execute	a	Command
F8:	Exit	from	Visual

	 	

http://www.robelle.com/products/qedit

	 	

F1:	Update	and	Go	to	Next	Page
Qedit	reads	the	current	page	and	updates	the	file,	then	displays	the	next
page.	The	F1	key	combines	the	Enter	key	and	F6	(Forward)	in	a	single
key.	However,	F1	does	not	execute	any	command	typed	in	the	home	line
as	the	Enter	key	would.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

F2:	Roll	Up	Screen
Qedit	clears	the	screen	and	displays	a	new	one	that	is	rolled	up	n	lines
(default:	6),	where	n	is	controlled	by	Set	Vis	Roll.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

F3:	Findup	-	Previous	String
Qedit	searches	backward	in	the	file,	starting	from	the	*	line,	until	it	finds	a
line	that	contains	the	current	string.	Qedit	clears	the	screen	and	displays
a	new	page,	with	*	positioned	at	the	line	that	contains	the	found	string.
Visual	also	displays	the	target	string	on	the	Status	line.

Before	you	can	use	F3,	you	must	establish	the	string	for	which	to	search.
Type	the	string	in	quotes	prefixed	by	a	circumflex	 (^"string")	at
the	 ===>	on	the	home	line	and	press	F7,	to	do	the	first	Findup.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

F4:	Find	-	Next	String
Qedit	searches	forward	in	the	file,	starting	from	the	*	line,	until	it	finds	a
line	that	contains	the	current	string.	Qedit	clears	the	screen	and	displays
a	new	page,	with	*	positioned	at	the	line	that	contains	the	found	string.
Visual	also	shows	the	target	string	on	the	Status	line.

Before	you	can	use	F4,	you	must	enter	the	target	string.	Type	the	string
in	quotes	("string")	at	the	 ===>	on	the	home	line	and
press	F7,	to	do	the	first	Find.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

F5:	Backward	One	Page
Qedit	clears	the	screen	and	displays	the	previous	page.	By	default,	the
top	line	of	the	original	screen	becomes	the	bottom	line	of	the	new	screen.
Use	Set	Vis	Carry	to	change	the	number	of	lines	carried	over	to	the	new
screen.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

F6:	Forward	One	Page
Qedit	clears	the	screen	and	displays	the	next	page.	By	default,	the
bottom	line	of	the	original	screen	becomes	the	top	line	of	the	new	screen.
Use	Set	Vis	Carry	to	change	the	number	of	lines	carried	over	to	the	new
screen.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

F7:	Execute	a	Command
Use	the	F7	key	to	execute	commands.	The	current	screen	is	not
updated,	unless	you	have	Set	Vis	Update	On.	Type	whatever	command
you	want	to	execute	after	the	 ===>.	This	includes	"strings"	to	find,
Qedit	Line	mode	commands	such	as	Open	or	Justify,	shell	commands,
calculator	commands	(=5/6),	and	special	Visual	commands	(e.g.,	*	for
Refresh,	?	for	Help).	Then	press	F7.	Qedit	reads	only	the	home	line	and
executes	the	function.	To	first	save	your	screen	changes	and	then
execute,	use	Enter	instead	of	F7.

See	the	section	"Home	Line	Commands"	for	complete	details.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

F8:	Exit	from	Visual
To	return	from	Visual	mode	to	Line	mode,	use	the	F8	key.	Press	F8	again
once	you	are	in	Line	mode	to	exit	Qedit	and	return	to	HP-UX.	If	for	some
reason	F8	fails	to	exit	from	Visual,	type	/	at	the	 ===>	and	press	F7
or	the	Enter	key.	This	should	get	you	back	to	Line	mode.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Browsing	Through	Your	File
Line	Number.	Move	to	a	specific	line	(e.g.,	to	line	45).

===>45	F7

>	and	<.	Move	ahead	or	back	a	page.	Use	with	a	number	to	move
several	pages	(e.g.,	ahead	3	pages).

===>>3	F7

+	and	-.	Move	forward	or	backward	any	number	of	lines	(e.g.,	back	200
lines).	If	you	do	not	specify	a	number,	the	default	is	the	number	of	lines
configured	by	Set	Vis	Roll.

===>-200	F7

~	The	Tilde	Key.	Return	to	the	"most	recent"	screen.	If	you	jump	from
line	1500	to	line	451,	~	sends	you	back	to	1500.	This	is	handy	if	you	jump
briefly	to	another	part	of	your	file	to	check	something	then	want	to	get
back	to	your	original	location.

The	tilde	is	also	available	from	line-mode	but	it	has	to	be	enabled	by
removing	it	from	the	list	of	string	delimiters.	In	order	to	do	this,	you	could
do	the	following:

/V	stringd
Set	STRINGDelimiters	"|\~{}[]_@?!#>%&:'"
/S	stringd	"|\{}[]_@?!#>%&:'"

Notice	that	tilde	has	been	removed	from	the	delimiter	list	entered	on	the
Set	command.

===>~	F7

FIRST	and	LAST.	Move	to	start	or	end	of	file.

===>first	F7

Scrollup	Character.	This	character	can	be	entered	in	the	cut-and-paste
columns	to	scroll	up	in	the	file.	A	single	character	scrolls	the	number	of
lines	defined	by	Set	Visual	Roll.	If	the	character	is	entered	more	than
once,	Qedit	scrolls	up	that	many	times	the	number	of	Roll	lines.	For
example,	enter	4	minus	signs	anywhere	to	scroll	4	X	Roll	lines.	The

default	scrollup	character	is	a	minus	sign.	It	can	be	changed	to
something	else	with	Set	Visual	Scrollup.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Cut-and-Paste
It	is	never	necessary	to	remember	line	numbers	in	full-screen	mode.
Visual	allows	you	to	mark,	hold,	move,	copy,	replicate,	or	delete	a	block
of	text,	all	visually.	This	is	called	"cut-and-paste"	and	is	done	by	putting
special	indicators	in	the	two	blank	columns	at	the	left	of	each	text	line
before	you	press	the	Enter	key.	For	example,	DD	indicates	a	block	of	text
to	be	deleted.

More:
Cutting	Operations
Pasting	Operations
Resetting	Cut-and-Paste
Copying	a	Block	of	Text
Cut-and-Paste	Between	Files
Dividing	and	Gluing	Operations
Dividing	Lines	in	Visual	Mode
Gluing	Lines	in	Visual	Mode
Excluding	Lines	From	Visual	Mode	Display
Justifying	Lines	in	Visual	Mode
Renumbering	Lines
Inserting	Blank	Lines
Hold	Files
Marking	Changes	Without	Using	Line	Numbers
Paste	from	a	Non-Qedit	File

	 	

http://www.robelle.com/products/qedit

	 	

Cutting	Operations
Order	Is	Not	Important	(But	One	at	a	Time).	You	can	enter	the
indicators	in	any	order	and	on	different	screens,	but	10,000	is	the
maximum	number	of	lines	you	can	cut.	When	you	have	defined	a
complete	cut-and-paste	task,	Qedit	completes	the	task	and	removes	the
indicators.	You	can	only	perform	one	cut-and-paste	task	at	a	time.

Single	Line Block	of	Text Function
M MM Move	line	or	block	of	text
C CC Copy	line	or	block	of	text
D DD Delete	line	or	block	of	text
H HH Hold	a	line	or	block	of	text
	 HJ Append	block	of	text	to	Hold	file
	 JJ Justify	a	block	of	text
Z ZZ Mark	a	line	or	block	of	text

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Pasting	Operations
A Insert	text	"after"	this	line	(or	use	F	for	"following")
B Insert	text	"before"	this	line	(or	P	for	"preceding")
AH Insert	Hold	file	after	this	line	(or	use	FH)
BH Insert	Hold	file	before	this	line	(or	use	PH)
A0 Insert	Hold0	file	after	this	line	(or	F0)
B0 Insert	Hold0	file	before	this	line	(or	P0)
R A	line	to	be	replicated	after	itself

Rn A	line	or	block	to	be	replicated	n	times	(max.	9).	(See
"Copying	a	Block	of	Text"	below.)

Display	Enhanced.	When	the	cut-and-paste	task	is	partly	defined,	Qedit
highlights	the	indicated	lines	and	adds	a	warning	to	the	status	line.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Resetting	Cut-and-Paste
You	can	cancel	a	pending	cut-and-paste	task	(if	you	have	not	pressed
the	final	Enter)	by	entering	a	period	(.)	in	the	 ===>	line	and
pressing	F7.

===>.	F7

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Copying	a	Block	of	Text
Paste	One	Copy	at	a	Time.	Suppose	you	want	to	copy	a	section	of	text
from	one	place	in	your	file	to	another.	Here	is	one	way	to	do	it.	First,
locate	the	screen	containing	the	start	of	the	block	that	you	want	to	copy,
using	a	string	search	via	the	home	line.	Move	the	cursor	down	to	the	first
line	you	want	to	copy,	then	press	Cursor	Left	twice	and	type	"CC"	in	the
blank	columns	provided.	Press	Enter	and	you	should	see	that	line
highlighted	in	inverse	video.

Second,	find	the	end	of	the	text	section	and	mark	the	last	line	with
another	"CC".	After	you	press	Enter,	you	should	see	the	entire	block
highlighted.

Third,	go	to	the	screen	where	you	want	to	insert	a	copy	of	the	text.	Move
the	cursor	down	to	the	line	before	the	desired	insertion	point,	Cursor	Left
once	and	type	"A"	(for	after).	Press	Enter	and	the	block	should	appear.

Paste	Multiple	Copies	at	Once.

When	working	with	a	block	of	text,	you	can	use	the	same	cut-and-paste
codes	to	mark	the	beginning	and	the	end	of	the	block	(i.e.,	HH	on	the	first
line	of	the	block	and	HH	again	on	the	last	line).	The	only	exception	to	this
is	the	block	replication	code.

In	this	case,	you	would	use	RR	to	mark	the	beginning	of	the	block	and	Rn
to	mark	the	end	of	the	block,	where	n	represents	the	number	of	times	you
want	that	block	replicated.	For	example,	to	have	the	same	block
replicated	five	times,	you	would	enter	R5.	The	new	blocks	are	inserted
immediately	after	the	last	line	of	the	copied	block.

The	original	lines	marked	for	replication	are	written	to	the	Hold0	file.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Cut-and-Paste	Between	Files
Using	Visual	mode's	cut-and-paste	functions,	you	can	copy	and	move
blocks	of	text	between	files.

You	can	only	edit	one	file	at	a	time	in	Qedit,	but	you	can	switch	quickly
between	different	Qedit	files	by	Opening	and	Shutting	them.

/o	file1
Open	file1		List	*	=	20
/o	file2															{implicitly	shuts	file1}
Shut	file1
Open	file2		List	*	=	48
/o	*																			{open	the	last	file	that	was	shut}
Shut	file2
Open	file1		List	*	=	20
/o	*																			{open	the	second	file	again}
Shut	file1
Open	file2		List	*	=	48

Note:	The	*	shortcut	refers	to	the	last	Qedit	file	that	was	shut.

Now,	to	copy	a	block	of	text	from	file1	to	file2,	use	HH	twice	(just	as	you
would	use	CC)	to	hold	the	block	in	file1.	Then,	open	file2,	and	use	AH	or
BH	to	paste	in	the	text	from	the	Hold	file.	To	move	a	block	from	file1	to
file2,	use	the	DD	function	to	delete	the	block	of	text	from	the	first	file.	The
deleted	block	is	stored	in	a	temporary	Hold	file	called	Hold0	(Hold-zero).
Now	immediately	open	file2	and	use	A0	or	B0	to	paste	in	the	text	from
Hold0.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Dividing	and	Gluing	Operations
Single	line

V a	single	line	to	be	diVided
G a	single	line	to	be	glued
GJ a	single	line	to	be	glued	with	a	space	inserted

Block	of	text

VV begin	or	end	of	the	block	to	be	diVided
GG begin	or	end	of	the	block	to	be	glued

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Dividing	Lines	in	Visual	Mode
To	divide	a	line,	use	the	V	(diVide)	cut-and-paste	function	in	column	3	or
4,	then	insert	the	special	field	separator	("~")	at	each	division	point	in	the
line.	The	default	field	separator	is	tilde	("~"),	but	you	can	override	this
with	Set	Vis	Field.	If	no	"~"	is	found	in	the	line,	a	blank	line	is	added	after
the	line.

What	about	dividing	all	the	lines	in	a	range?	Use	VV	to	mark	the	start	and
the	end	of	the	line	range,	then	place	the	field	separators	in	the	first	line	of
the	range.	Every	line	of	the	range	is	divided	at	the	specified	field
columns.	If	no	"~"	is	found,	a	blank	line	is	added	after	each	line.

When	marking	several	division	points,	insert	them	into	the	first	line	of	the
block	from	right	to	left.	As	you	insert	them,	they	shift	the	following	text	to
the	right	one	space	each.	Otherwise,	if	you	insert	them	from	left	to	right,	it
is	difficult	to	select	the	proper	division	point	for	subsequent	fields.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Gluing	Lines	in	Visual	Mode
To	Glue	the	next	line	to	the	current	line,	use	a	G	in	column	3	or	4.	To
Glue	two	lines	with	a	space	inserted	at	the	joint,	use	GJ	in	columns	3	and
4.

To	glue	"pairs"	of	lines	within	a	block,	use	GG	to	mark	the	start	and	end
of	the	block.

By	default,	G	and	GG	append	text	after	the	last	nonblank	character	in	a
line,	but	it	is	also	possible	to	glue	text	to	specific	columnar	fields.	You	do
this	by	inserting	a	field	separator	at	the	start	of	each	field	(mark	the	first
line	only).	The	default	field	separator	is	the	tilde	("~"),	but	you	may
override	this	with	Set	Vis	Field.	If	you	specify	three	fields,	G	glues	the
next	three	lines	to	the	first	line.	GG	glues	the	next	three	lines	to	the	first
line,	and	then	go	on	to	the	next	group	of	four	lines.	If	the	precise	column
number	where	each	field	starts	is	important	to	you,	insert	the	field
separators	from	right	to	left,	since	each	one	that	is	inserted	shifts	the
column	numbers	that	follow	off	by	one	more.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Excluding	Lines	From	Visual	Mode	Display
The	XX	indicators	are	used	to	mark	lines	that	you	do	not	want	displayed
in	full-screen	mode.	Once	marked,	the	block	of	text	is	replaced	with	a
single	line.

---	Excluded	Area	---	10/34.5

This	line	shows	the	line	numbers	which	are	currently	excluded.	An
excluded	area	setting	is	saved	in	the	workfile	so	it's	preserved	across
Open/Shut	commands.	To	reset	the	excluded	area	and	see	the	original
lines	again,	type	 .xx	on	the	Homeline	and	press	Enter	or	F7.

The	excluded	area	can	also	be	defined	using	Set	Visual	XX.	The	current
excluded	area	is	displayed	on	the	Verify	Visual	output.

Restrictions

The	 Excluded	Area	line	must	not	be	removed,	altered	or	used	in
any	way.	This	also	means	that	you	can	not	enter	any	indicators	in	the	cut-
and-paste	area.	If	you	wish	to	paste	lines	before	or	after	the	excluded
area,	you	should	use	the	appropriate	cut-and-paste	indicators	on	the	line
that	immediate	precedes	or	follows	the	 Excluded	Area	line.

An	excluded	area	can	not	be	included	in	any	other	block	operation	such
as	ZZ,	CC,	MM	or	other	XX.

If	any	of	these	rules	are	broken,	Qedit	displays	an	appropriate	error
message.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Justifying	Lines	in	Visual	Mode
Justification	in	text	alignment	is	available	in	full-screen	mode.	To	justify	a
block	of	text,	simply	mark	the	first	and	last	lines	in	the	block	with	the	JJ
indicator.	If	Qedit	uses	any	justify	default	settings,	they	are	defined	by	the
Set	Justify	command.	If	there	are	no	default	settings,	Qedit	assumes	the
text	should	be	justified	within	the	current	display	width.

The	justified	lines	are	written	to	the	Hold0	file.	A	single	J	indicator	is	not
valid.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Renumbering	Lines
When	the	insertion	point	is	on	the	current	screen,	Qedit	renumbers	the
screen	if	needed	(and	if	Set	Vis	Renum	is	ON).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Inserting	Blank	Lines
When	entering	a	lot	of	new	text,	it	is	tiresome	to	keep	pressing	Ins	Line
for	each	new	line.	To	insert	a	block	of	10	blank	lines	quickly,	press	Ins
Line	to	create	one	blank	line,	Cursor	Left	twice,	type	R9,	and	press	Enter.
This	reproduces	nine	copies	of	the	blank	line	immediately	after	it	(as	well
as	updating	the	paragraph	you	just	finished	typing).	Repeat	as	needed.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Hold	Files
Visual	has	both	an	implicit	and	an	explicit	Hold	file.

The	Implicit	Hold0	File.	Any	block	processed	by	the	CC,	MM,	JJ,	RR,	or
DD	indicators	is	also	written	to	a	disc	file	called	Hold0	(Hold-zero).	This
allows	you	to	copy	the	lines	back	into	your	workfile	using	A0	or	B0	(add
from	Hold0,	After	or	Before	the	line	on	which	you	place	the	indicator).

The	Explicit	Hold	File.	The	HH	indicator	writes	a	block	to	the	Hold	file
without	moving	or	modifying	it.	Use	H	for	a	single	line.	To	copy	the	line(s)
back	into	your	workfile,	use	AH	or	BH.	You	may	need	a	Hold	file	when
creating	a	file	that	you	want	to	compile,	or	when	using	the	Use	command.
You	must	use	HH	(instead	of	CC)	for	copying	text	from	one	file	to
another.

When	HH	is	used	to	mark	the	beginning	and	end	of	a	block,	it	copies	the
block	of	text	to	the	explicit	Hold	file.	With	the	HH	indicator,	the	current
contents	of	the	Hold	file	are	erased	and	replaced	with	the	marked	lines.

If	you	want	to	append	a	block	of	text	to	the	Hold	file,	you	can	use	the	HJ
indicator.	HH	or	HJ	can	be	used	to	mark	the	first	line.	However,	HJ	must
be	used	to	mark	the	last	line.	You	cannot	hold-append	a	single	line	of
text,	which	means	you	can	append	only	two	or	more	lines.	With	the	HJ
indicator,	the	current	contents	of	the	Hold	file	are	preserved	and	the	block
of	text	is	appended	to	it.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Marking	Changes	Without	Using	Line	Numbers
The	ZZ	indicators	mark	a	group	of	lines	that	you	want	Qedit	to	remember.
Use	Z	to	mark	a	single	line.	Note:	"Z"	for	a	single	line	is	valid	only	in
Visual	mode;	in	Line	mode,	use	"ZZ"	to	mark	a	single	line.	See	the	ZZ
command	in	the	"Qedit	Commands"	chapter	for	further	information.	Once
marked,	the	lines	are	displayed	at	half-bright	intensity	and	you	can	refer
to	them	in	any	home	line	command	by	using	ZZ	where	the	line	numbers
are	expected.	This	is	especially	useful	when	listing	lines	to	the	printer,
changing	or	appending	strings,	and	formatting	text:

===>	list	$lp	zz		F7
===>	change	"bob"Robert"	zz		F7
===>	verify	zz		F7								{check	current	ZZ	range}
===>	zz	off		F7											{cancel	ZZ	range}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Paste	from	a	Non-Qedit	File
If	you	want	to	copy	text	into	your	current	workfile	from	another	file	that	is
not	a	Qedit	file,	you	cannot	use	the	methods	described	above.	You
cannot	Open	the	second	file	if	it	is	not	in	Qedit	format.	Instead,	use	the
List	command	to	find	the	portion	of	text	that	you	want	to	add	from	it
(without	Shutting	the	first	file).	Then,	use	the	Add	command	to	paste	in
the	text.

===>list	xxx
===>add	*	=	xxx	10.7/22.9

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Home	Line	Commands
All	Qedit	commands	are	supported	in	Visual	mode.	To	do	a	command,
such	as	Listf	or	ls,	press	the	Home	Up	key	to	reach	the	home	line,	then
type	your	command	after	the	===>	and	press	F7	or	Enter.	To	execute	a
command,	such	as	Change,	on	a	subset	of	the	file,	first	use	the	ZZ	cut-
and-paste	indicators	to	mark	the	subset	and	then	use	ZZ	in	the
command.	After	most	 ===>	commands,	Qedit	prompts	you	for
more	commands	("Next	command	[Visual]").	Type	in	more	commands,	or
return	to	your	Visual	screen	above,	by	pressing	the	Enter	or	Return	key.

Qedit	accepts	each	command,	executes	it	and	goes	back	to	the	"Next
command"	prompt.	There	are	a	few	exceptions	to	this	process.	By
default,	when	you	enter	an	Open	command,	Qedit	assumes	you	want	to
edit	the	file	immediately	and	switches	into	full-screen	mode	automatically.
If	you	wish	to	disable	this	feature,	enter	Set	Visual	Editonopen	Off.

If	the	tilde	has	been	removed	from	the	list	of	string	delimiters	(see	Set
Stringdelimiters)	and	you	enter	a	tilde	"~"	at	the	"Next	command"	prompt,
Qedit	uses	the	current	line	number	associated	with	the	tilde,	makes	it	the
current	line	and	goes	back	into	Visual	immediately.

More:
Finding	Strings
Changing	Strings
Help	on	Visual	Mode
Formatting	Paragraphs
Undoing	Changes	in	Visual	Mode
Refreshing	the	Screen
Other	Line	Mode	Commands
Truncated	Home	Line
Exit	from	Visual

	 	

http://www.robelle.com/products/qedit

	 	

Finding	Strings
To	search	for	a	string,	simply	type	it	in	quotes	at	the	 ===>	line	and
press	F7	or	Enter.

===>"string"		F7

Qedit	will	find	the	next	line	containing	that	string,	display	the	page	around
it,	and	show	the	target	string	in	the	Status	line.	To	find	the	next
occurrence	of	the	same	string,	press	F4.

To	find	the	previous	occurrence	of	a	string,	prefix	the	string	with	a
circumflex.

===>^"string"		F7

To	find	the	next	previous	occurrence,	press	F3.

You	may	delimit	strings	with	any	of	the	following	characters:

~ Tilde

| Vertical	line,	Up-line

" Quotation	mark

' Apostrophe,	Single	quote

: Colon

% Percent	sign

\ Reverse	slant,	Backslash

You	may	use	single	quotes	(')	if	you	do	not	have	Set	Decimal	On.	Note
that,	with	this	syntax,	Qedit	permits	a	few	less	characters	in	Visual	mode
than	it	does	in	Line	mode	because	Visual	mode	uses	these	characters	for
other	purposes.	For	example,	the	question	mark	is	used	to	get	quick	help
about	Visual	mode,	instead	of	as	a	string	delimiter.	If	you	insist	on	using
other	delimiters,	you	should	use	the	Find	command	on	the	 ===>
line.

===>F	:string:					F7

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

	 	

Changing	Strings
You	can	change	strings	on	the	screen	by	entering	a	Change	command
on	the	===>	line.

===>c	"niether"neither"	*/*+19		F7

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Help	on	Visual	Mode
To	get	help,	press	Home	Up,	type	?	and	press	F7	or	Enter.

===>?		F7

The	?	command	gives	a	one-screen	summary	of	Visual	mode.	For
complete	on-line	help	on	Qedit,	including	Visual,	type	HELP	in	the

===>	line	and	press	F7	or	Enter.

===>help		F7

For	help	on	a	specific	command,	type	HELP	[command	name].	See	the
Help	command	in	the	"Qedit	Commands"	chapter.	To	get	out	of	help,
press	F8.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Formatting	Paragraphs
To	format	a	screen	paragraph,	mark	the	paragraph	with	ZZ	cut-and-paste
indicators,	then	use	a	Justify	command	that	includes	a	ZZ.	For	example:

===>justify	both	margin	68	zz		F7

If	every	paragraph	ends	with	a	blank	line,	you	can	Justify	a	paragraph	by
using	the	relative	line	number	on	the	screen.	Justify	will	start	at	that	point
and	continue	until	it	finds	a	blank	line:

===>justify	both	margin	68	*+2		F7

For	more	information	on	Justify,	see	the	Justify	command	in	the	"Qedit
Commands"	chapter.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Undoing	Changes	in	Visual	Mode
After	you	have	made	some	changes	to	your	screen	in	Visual	mode	and
updated	the	file	by	pressing	Enter,	you	may	decide	you	don't	want	those
changes	after	all.	You	can	use	the	Undo	command	to	cancel	these
changes.

All	of	the	changes	you	make	on	the	screen	before	pressing	Enter,	are
treated	by	Qedit	as	one	"undo-able"	command,	except	for	cut-and-paste
operations.	Qedit	always	executes	a	cut-and-paste	last	after	updating	the
file	with	any	other	changes,	no	matter	what	order	the	changes	were
made	in.	This	means	that	you	can	choose	to	undo	just	the	cut-and-paste
operation,	or	undo	it	and	all	of	the	other	changes.	You	can	continue
undoing	your	previous	changes	until	the	file	is	back	to	its	original	state.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Refreshing	the	Screen
If	you	make	changes	to	the	screen,	then	decide	not	to	keep	them	before
you	press	Enter	to	update	your	screen,	how	do	you	get	your	original	text
back?	You	refresh	the	screen	by	typing	a	*	on	the	home	line,	then
pressing	F7,	F1	or	Enter	(or	any	function	key	with	Set	Vis	Update	On).
Use	the	Undo	command	if	you	press	Enter	and	then	decide	that	you	don't
want	to	keep	your	changes.

If	you	insert	so	many	new	lines	that	you	push	the	column	template	line
right	off	the	bottom	of	your	screen,	don't	worry	--	it's	not	really	gone.
Qedit	won't	update	your	screen	without	the	template	line,	however.	Press
Next	Page	(Pg	Dn)	to	pull	up	the	next	screen	of	display	memory.	You
have	a	problem	only	if	you	inserted	so	many	lines	that	you	pushed	the
template	line	right	out	of	display	memory,	and	even	then	you	can	still
recover	your	changes.	See	the	Errors	in	Visual	section	of	Appendix	E,
regarding	qscreen.

Screen	Refresh	is	particularly	useful	if	you've	pressed	Clear	Display	by
accident.

===>*		F7

When	using	Set	Vis	Update	On	to	automatically	update	the	screen,	use
*>	F7	or	*<	F7	to	move	ahead	or	back	one	page,	without	updating	the
current	page.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Other	Line	Mode	Commands
You	may	enter	any	Line	mode	Qedit	command	in	the	 ===>	line,
including	Opening	another	file,	and	calculator	commands	(=).	The	ZZ	cut-
and-paste	indicator	can	be	used	to	mark	a	group	of	lines	for	use	in	any
Qedit	Line	mode	command.

===>list	$char	zz		F7

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Truncated	Home	Line
When	editing	a	file	with	short	records	(e.g.,	Set	Lang	Text,	Set	Len	20),
the	right	margin	of	terminal	display	memory	is	set	to	match	the	record
length.	This	means	that	when	typing	home	line	commands	you	wrap	the
status	line	at	the	same	width	as	the	records	(very	inconvenient	if	the
record	length	is	3	bytes!).	You	can,	however,	cursor	past	the	right	margin
to	type	a	longer	command.	Therefore,	Qedit	expands	the	right	margin
when	you	use	F7	to	execute	the	home	line	command,	making	it	possible
to	execute	a	long	command	even	when	the	data	length	is	short.	Qedit
cannot	expand	the	right	margin	if	you	press	Enter	(and	may	cut	short
your	command).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Exit	from	Visual
If	your	function	keys	do	not	work	for	some	reason,	you	may	not	be	able	to
use	F8	to	exit	from	Visual.	Instead,	press	Home	Up,	type	/	and	press
Enter.	This	updates	your	current	screen	and	returns	you	to	Line	mode.

===>/		F7

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Introduction
Qedit's	full-screen	mode	on	VT	terminals	is	called	Screen	mode,	which
works	with	most	VT	terminals	(i.e.,	VT100	and	VT220).	To	use	Screen
mode,	you	must	have	a	VT	terminal	or	terminal	emulator,	and	you	must
have	a	terminfo	entry	for	your	VT	terminal	in	your	configuration	(use

untic	vt100	or	 untic	vt220	to	check	your	terminfo
entries).

Screen	mode	differs	from	Visual	mode	by	not	relying	on	the	block-mode
feature	of	HP	terminals.	It	enables	you	to	page	forward	and	backward
through	your	file,	as	well	as	to	move,	copy,	mark	and	delete	blocks	of	text
with	Screen	mode's	cut-and-paste	functions.

Screen	mode	is	a	good	introduction	to	the	HP	operating	system	for	users
who	don't	work	on	HP	computers	all	day.	Those	who	may	particularly
benefit	are	novice	users,	or	users	who	run	Qedit	only	to	update	a	report
skeleton	once	a	week.	Screen	mode	provides	a	familiar	environment
where	novices	can	make	changes	to	the	entire	screen,	just	as	they	do	on
PC	editors.	You	can	even	configure	some	electronic	mail	packages	(e.g.,
HPDesk,	elm)	to	put	your	users	directly	into	Screen	mode	when	they	edit
a	message.

More:
Home	and	End	keys

	 	

http://www.robelle.com/products/qedit

	 	

Home	and	End	keys
On	PC's	running	a	terminal	emulator,	the	Home	and	End	keys
correspond	to	the	Home	and	End	keys	on	your	keyboard.	On	VT100
terminals,	these	keys	correspond	to	keypad-7	for	Home	and	keypad-1	for
End	because	there	are	no	keys	labeled	Home	and	End.	In	addition	to	the
keypad	equivalents,	VT220	terminals	also	correspond	Home	to	the	Find
key	and	End	to	the	Select	key.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Starting	Screen	Mode
After	you	have	invoked	Qedit,	and	used	Text	or	Open	to	access	a	file,
you	can	switch	from	Line	mode	to	Screen	mode	by	typing	"vi."	If	you	don't
have	a	file	open	when	you	type	"vi",	Qedit	will	open	an	empty	scratch	file
and	fill	it	with	a	blank	line.

In	Line	mode	you	must	type	command	and	text	lines,	and	press	Return
after	each	line.	In	Screen	mode	you	can	edit	a	full	screen	of	text	by
moving	the	cursor	around	the	screen,	inserting	and	deleting	lines	and
characters,	and	joining	and	splitting	lines.	To	move	through	the	file,	use
PF3	and	PF4	(or	the	Prev	and	Next	keys	if	you	have	a	VT220	or	above).

You	can	perform	additional	editing	functions	by	using	control-key
sequences.	For	example,	to	mark	the	first	line	in	a	cut-and-paste
operation,	press	^L.	When	you	are	finished	editing,	use	^E	to	exit	Screen
mode.

More:
Troubleshooting

	 	

http://www.robelle.com/products/qedit

	 	

Troubleshooting
If	your	TERM	environment	variable	is	set	to	a	VT	terminal,	Qedit	will
automatically	use	Screen	mode	when	you	type	"vi."	If	you	are	running
Reflection	with	HP	and	VT	emulation,	and	Qedit	is	still	using	Visual
mode,	you	should	check	the	following	items:

The	RCRTMODEL	environment	variable	is	set	to	0.
The	TERM	variable	has	been	exported.	Use	 export	to
see	a	list	of	your	exported	variables.
The	value	used	in	your	TERM	variable	is	a	valid	terminfo
entry.	Type	in	 untic	$TERM	or	 untic	terminfo
value	to	check	this.

You	can	also	manually	put	Qedit	into	Screen	mode	by	typing	in	the
following	command:

set	vis	screen	on

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Screen	Layout
The	screen	starts	with	the	Status	Line,	several	Text	Lines,	and	ends
with	the	Message	Line.

Qedit	Full-screen	editing	(Reflection	in	VT220	emulation	mode)

More:
Status	Line
Text	Lines
Message	Line

	 	

http://www.robelle.com/products/qedit

	 	

Status	Line
The	first	line	shows	the	current	line	number	and	column	location	of	your
position	in	the	file,	the	insert/replace	mode,	and	the	name	of	the	file	you
are	editing.	For	example,

L	11		C	5					I															monthly.report

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Text	Lines
By	default,	the	number	of	lines	on	the	screen	is	LINES-2.	The	default
value	of	LINES	is	specified	in	the	terminfo	entry	for	your	terminal.	You
can	override	terminfo's	default	value	by	setting	the	shell	environment
variable	LINES.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Message	Line
The	last	line	on	the	screen	is	the	message	line.	When	you	first	enter
Screen	mode,	this	line	displays	a	list	of	commonly	used	control	keys.	As
you	edit	a	file,	Qedit	uses	this	line	to	display	messages	about	your	editing
operations.	After	a	message	is	displayed,	it	remains	on	the	screen	until
you	move	to	another	screen	(e.g.,	by	scrolling	or	by	paging	forward	or
backward).	Then	the	list	of	commonly	used	keys	will	appear	in	the
message	line	again.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Using	Your	Keyboard
In	Screen	mode,	the	keyboard	gives	you	the	power	to	move	around	the
screen,	to	edit	text,	and	to	control	the	flow	of	Qedit.

More:
Moving	the	Cursor
Editing	the	Text	Lines
Control	Functions

	 	

http://www.robelle.com/products/qedit

	 	

Moving	the	Cursor
You	can	move	around	the	screen	by	using	the	cursor	keys	and	the
numeric	keypad.

More:
VT100	and	up
Keypad	Layout
VT220	and	Up

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

VT100	and	up
VT100	keystrokes:

Key Action
Cursor	Left Move	one	space	to	left
Cursor	Right Move	one	space	to	right
Cursor	Up Move	one	space	up
Cursor	Down Move	one	space	down
PF1 Display	help	screen
PF3 Previous	page	of	text
PF4 Next	page	of	text
Home Go	to	beginning	of	line
End Go	to	end	of	line
Home	Home Go	to	beginning	of	file
End	End Go	to	end	of	file

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Keypad	Layout
VT100	keystrokes:

[7]
Home

[8]
Cursor	Up

[9]
Previous	Page

[4]
Cursor	Left

[5]
Toggle	Wordmove

[6]
Cursor	Right

[1]
End

[2]
Cursor	Down

[3]
Next	Page

[0]
Insert

[.]
Remove

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

VT220	and	Up
VT220	keystrokes:

Key Action
Prev	Page Previous	page	of	text
Next	Page Next	page	of	text
Find Home
Select End
Insert Toggle	insert/overwrite	mode
Remove Delete	current	character

If	you	are	using	a	modem	to	access	your	HP-UX	computer,	you	can	try
pressing	^O	to	toggle	the	fast	scroll	option.	This	option,	whose	default	is
Off,	may	speed	up	single-line	scrolling	operations.	However,	the	screen
update	with	fast	scroll	may	be	visually	annoying.

The	toggle	WordMove	feature	selects	whether	the	left	and	right	cursor
keys	will	move	by	characters	or	by	words.	This	feature	is	useful	if	you
have	a	slow	connection	to	your	host	machine.

Press	keypad-5	to	move	by	word.	Qedit	defines	a	word	as	a	sequence	of
alphanumeric	characters	or	a	sequence	of	punctuation	characters.	For
example,	the	line	" if	(a==b)"	contains	6	words:	 if,	 (,

a,	 ==,	 b,	and).	Press	keypad-5	again	to	move	by
full	words.	Qedit	defines	a	full	word	as	a	sequence	of	non-blank
characters.	For	example,	" if	(a==b)"	contains	these	2	full	words:

if	and	 (a==b).	Press	keypad-5	once	again	to	return	to	move
by	single	character.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Editing	the	Text	Lines
You	revise	the	screen	image	by	using	these	keys:

Key Action

Return
Insert	mode:	split	line	at	current	position
Overwrite	mode:	move	to	start	to	next	line

Backspace

Delete	previous	character
Insert	mode:	rest	of	line	shifts	left
Overwrite	mode:	rest	of	line	unchanged
At	start	of	line,	join	line	to	previous	line

Insert Toggle	insert/overwrite	mode

Remove Delete	character	at	current	cursor	location,	rest	of
line	shifts	left

^N Insert	blank	line	above	current	line
^D Delete	line	at	current	cursor
^R Search	and	Replace

^U Undo	changes	to	current	line	before	you	move	cursor
off	the	line

In	Search	and	Replace,	Qedit	asks	you	three	pieces	of	information:	the
string	to	search	for,	the	string	to	replace	with,	and	the	search	options.
The	search	options	are	the	same	as	the	ones	in	the	Find	String	function,
which	is	documented	in	the	following	section.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Control	Functions
To	return	from	Screen	mode	to	Line	mode:

Key Action
^E Exit	to	Line	mode

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Browsing	Through	Your	File
Key Action
^G Go	to	a	particular	line
^F Find	string
^A Find	next

You	can	go	to	a	specific	line	number	by	pressing	^G.	The	first	line	in	the
file	is	line	1.	You	can	quickly	go	to	line	one	by	pressing	Home	twice.
Similarly,	you	can	go	to	the	last	line	by	pressing	End	twice.	The	Home
key	equivalent	is	keypad-7	(or	Find	on	VT220),	and	the	End	key
equivalent	is	keypad-1	(or	Select	on	VT220).

You	can	also	go	to	a	line	by	searching	for	a	string.	Press	^F	to	begin
searching.	Qedit	will	ask	you	for	two	pieces	of	information.	First,	you
need	to	enter	the	string	you	want	to	search	for.	Second,	you	need	to
enter	the	search	options.	The	search	options	are	as	follows:

Option Action

I
Ignore	type	case	of	words
Default:	case-sensitive

P
Specified	string	is	a	pattern
Default:	not	to	use	patterns.

W
Search	string	must	be	a	"word"	(surrounded	by
blanks	or	punctuation)
Default:	string	can	be	anywhere	in	line

1
Start	searching	from	line	1
Default:	start	from	current	line

To	search	for	the	next	occurrence	of	a	string,	press	^A.	Once	the	last
string	has	been	found,	Qedit	will	not	return	to	the	start	of	file.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Cut-and-Paste
Key Action

^L

Begin	marking	a	block	of	text
press	once	to	mark	by	complete	lines
press	again	to	mark	by	partial	lines
press	again	to	cancel	marking	line

^C Copy	marked	lines	to	Hold0	file
^X Cut	marked	lines	to	Hold0	file
^V Paste	lines	from	Hold0	file	before	current	line

Screen	mode's	model	for	cut-and-paste	is	similar	to	the	cut-and-paste	of
Microsoft	Windows.	First	you	mark	a	block	of	text.	Then	you	either	copy
or	cut	the	text	to	a	"clipboard."	The	copied	text	remains	in	the	file,	but	the
cut	text	is	deleted.	To	paste	the	text,	put	the	contents	of	the	clipboard	into
the	new	location.

If	you	have	not	marked	a	block	of	text	when	you	perform	a	copy	or	cut,
the	current	line	will	be	copied	or	cut.

When	you	start	marking	a	block,	Qedit	will	highlight	lines	as	you	move
through	the	file.	The	highlighted	lines	are	your	marked	block.	When	you
press	Ctrl-L	to	begin	marking,	Qedit	highlights	the	entire	line.	This	means
the	whole	line	will	be	inside	the	marked	block,	regardless	of	the
horizontal	location	of	your	cursor.	If	you	press	Ctrl-L	again,	Qedit
highlights	only	part	of	the	line,	from	the	position	of	your	cursor	when	you
first	pressed	Ctr-L	to	your	current	cursor	position.	Press	Ctrl-L	a	third	time
to	cancel	your	marked	block.

More:
Resetting	Cut-and-Paste
Copying	a	Block	of	Text

	 	

http://www.robelle.com/products/qedit

	 	

Resetting	Cut-and-Paste
You	can	cancel	the	current	marked	block	by	pressing	^L.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Copying	a	Block	of	Text
Suppose	you	want	to	copy	a	section	of	text	from	one	place	in	your	file	to
another.	Here	is	one	way	to	do	it:

1.	 1.	 Use	a	string	search	to	locate	the	start	of	the	block.	Move	the
cursor	to	the	first	line	you	want	to	copy	and	press	^L.	You
should	see	the	current	line	highlighted.

2.	 Go	to	the	last	line	you	want	to	mark	and	press	^C.
3.	 Go	to	the	screen	where	you	want	to	insert	a	copy	of	the	text.

Move	the	cursor	to	the	line	after	the	desired	insertion	point
and	Press	^V	to	add	the	block.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Splitting	and	Joining	Lines
To	split	a	line,	move	the	cursor	to	the	position	where	you	want	the	new
line	to	start.	Make	sure	you're	in	insert	mode	and	then	press	Return.

To	join	two	lines,	move	the	cursor	to	the	beginning	of	the	second	line,	and
then	press	Backspace.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Introduction
You	don't	have	to	learn	every	command	in	order	to	use	Qedit.	With	just	a
few	of	the	basic	functions,	you	can	take	care	of	editing	job	streams,
programs,	memos,	or	big	text	files.	First,	find	out	how	to	run	Qedit	on
your	system.	Your	system	manager	may	have	set	up	an	easy	way	to
access	Qedit	(try	typing	 qedit).	Look	for	a	slash	prompt	(/	on	MPE
or	qux/	on	HP-UX),	which	tells	you	Qedit	is	ready	to	go.

This	introduction	will	make	the	following	activities	familiar	to	you:	adding
lines	to	a	file,	looking	at	the	contents	of	files,	searching	files	for	specific
characters,	changing	one	line	or	many	lines,	deleting,	moving,	and
copying	lines,	and	saving	files.	In	the	examples	to	follow,	watch	for
comments	on	the	right-hand	side,	enclosed	in	curly	braces.	Whatever
you	see	in	{	}	is	an	explanation,	not	part	of	the	command,	although	Qedit
will	accept	it.	Press	Return	after	each	command	line.	When	you	finish
your	session,	getting	back	out	of	Qedit	is	easy.	Type	Exit,	and	press	the
Return	key:

/exit

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Adding	Lines	to	a	File
You	add	text	with	the	Add	command.	Qedit	numbers	each	line	you	add.
Pressing	Return	at	any	spot	in	the	line	moves	you	to	a	new	line.	This
means	that	you	can	put	a	blank	line	into	your	text	if	you	press	Return
twice	in	a	row.	Qedit	continues	to	add	your	lines	of	text	until	you	type	//
(two	slashes)	at	the	beginning	of	a	new	line	and	press	Return.	Try	typing
Add	right	now,	and	Qedit	moves	the	cursor	and	prints	some	identifying
information:

/add																										{remember	to	press	Return}
	QEDITSCR																					{Qedit	displays	this	line}
	Temporary	File	List	*	=	1				{and	this	line	too}
		1		_																								{go	on,	Qedit	is	waiting	for	you}

Continue	to	"add"	by	typing	in	this	example:

		1				MEMO	TO:	Drama	Staff,	News	Simulation	Dept.
		2
		3				FROM:				Marie	Reimer,	Publicity	Dept.
		4
		5				Please	check	your	in-baskets	daily	and
		6				respond	to	your	fan	mail	within	a	week.
		7				//																					{stop	adding	for	now}
/																													{Qedit	is	waiting	again}

You	can	add	lines	anywhere	in	the	file	by	typing	Add	followed	by	the	line
number	where	you	want	to	start	your	insertion.	For	example,	if	you
decide	to	date	this	memo,	type	at	the	slash	prompt:

/add	2
		2.1		DATE:		November	18,	2000
		2.2
		2.3		//
/

You	have	added	line	2.1	for	the	date,	and	line	2.2,	which	is	blank.	Line
2.3	is	not	put	into	your	file,	since	typing	the	double	slash	stopped	the
adding.	Notice	that	Qedit	used	line	numbers	that	would	fit	between	line	2
and	line	3.	Now,	if	you	want	to	see	what	the	whole	thing	looks	like,	type
List	ALL	at	the	slash	prompt.

/list	all
		1				MEMO	TO:	Drama	Staff,	News	Simulation	Dept.
		2
		2.1		DATE:		November	18,	2000
		2.2
		3				FROM:				Marie	Reimer,	Publicity	Dept.
		4
		5				Please	check	your	in-baskets	daily	and
		6				respond	to	your	fan	mail	within	a	week.
/

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Looking	at	the	File
The	command	for	looking	at	the	file	is	List.	But	you	can	do	much	more
than	List	ALL.	For	example,	you	can	list	a	file	you're	not	even	working	on.
Our	sample	memo	is	a	temporary	file,	in	your	group,	named	Qeditscr,	but
you	could	look	at	a	file	in	another	group	now	without	harming	the	memo
by	typing,	for	example:

/list	/etc/profile

The	file	/etc/profile	may	be	scrolling	by	on	your	screen,	but	don't	panic.	If
you	change	your	mind	about	looking	at	it,	you	can	stop	the	listing	by
holding	down	the	Control	key	and	pressing	"Y".

You	may	choose	to	look	at	just	a	small	part	of	the	file.	To	prove	that	the
memo,	although	temporarily	gone	from	your	screen,	is	not	lost	forever,
look	at	two	lines	of	it:

/list	3/4
		3				FROM:				Marie	Reimer,	Publicity	Dept.
		4

Instead	of	listing	all,	you	limited	the	range	of	lines	to	be	listed.	A	range	of
lines,	called	a	rangelist,	can	have	specific	line	numbers	(such	as	3	in	the
above	example),	words	like	"first"	and	"last",	relative	line	numbers	such
as	-3	(means	the	third	line	back)	or	+10	(tenth	line	ahead),	or	a
combination.

/list	first/2,+1,last-2
		1				MEMO	TO:	Drama	Staff,	News	Simulation	Dept.
		2
		2.2
		4

The	slash	/	separating	the	numbers	(or	words)	symbolizes	the	word	"to".
Rangelists	can	also	contain	strings.	See	the	section	on	strings	(called
Searching	the	File),	or	the	"Glossary"	for	definitions	of	rangelist	and
string.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Browsing	the	File
If	you	want	to	browse	through	the	file,	the	command	you	need	is	LJ.	LJ
stands	for	List-Jump.	Qedit	shows	you	a	screen	of	text,	prints

More?[yes]

at	the	bottom	of	the	screen,	and	waits	for	you.	If	you	press	Return,	Qedit
displays	the	next	screen.	You	can	stop	browsing	by	pressing	Control-Y,
typing	NO	or	just	N,	or	by	typing	//.	Also,	you	can	type	any	command,	and
Qedit	stops	browsing	to	execute	it.	To	request	a	List-Jump:

/lj	6																					{begin	browsing	at	line	6}
/lj	/etc/profile										{browse	configuration	file}

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Searching	the	File
So	far,	you	typed	line	numbers	to	specify	which	lines	you	wanted	to	see.
There	is	another	way	to	list	lines,	and	that	is	to	specify	an	identifying
string.	Put	anything	in	quotes	and	it's	a	string.	Qedit	lists	all	the	lines	that
contain	that	exact	same	"anything".

/list	"your"
		5				Please	check	your	in-baskets	daily	and
		6				respond	to	your	fan	mail	within	a	week.
2	lines	found

There	are	two	occurrences	of	"your"	in	the	file,	one	on	line	5	and	one	on
line	6.

Strings	can	help	you	find	a	particular	place	in	the	file	quickly.

With	the	commands	Find	and	Findup,	you	can	go	to	the	next	consecutive
location	of	a	string.	Find	searches	the	file	from	your	current	location	to
the	end.	Findup	searches	backwards	from	where	you	are	to	the
beginning.	So	in	order	to	search	a	file	for	a	date	scattered	throughout	it,
type:

/find	"January	18"							{search	forward	from	current	line}

Or,	search	back	through	the	file	with

/findup	"January	18"

Qedit	displays	the	next	line	containing	"January	18".	To	search	again	for
the	same	string,	just	type	Find	(or	Findup).	You	can	abbreviate	"Find"	to
"F"	and	"Findup"	to	"^".

/f

To	search	for	a	different	string,	just	type	F	"new	string".

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Editing	Lines
Suppose	you	want	to	change	the	date	of	your	memo.	You	could	do	it	the
slow	way,	first	deleting	the	line,	then	adding	a	replacement	line	with	the
new	date.	But	instead	of	all	that	retyping,	try	the	Modify	command.	Modify
has	a	lot	of	power.	Here's	how	to	use	it:

1.	 1.	 Type	M	and	the	line	number.
2.	 Qedit	displays	the	line,	and	you	move	along	on	the	line	below

it	by	pressing	the	space	bar.
3.	 Stop	at	the	point	where	you	want	to	make	your	correction.
4.	 Type	in	the	change	to	be	inserted	and	press	Return.
5.	 Qedit	displays	the	entire	corrected	line	for	your	approval.

Make	another	correction	if	you	want,	and	when	satisfied,
press	Return	again	to	accept	the	corrected	line	and	get	back
to	the	slash	prompt.

An	example:

/m2.1
		2.1		DATE:		November	18,	2000
																								9								{move	with	the	space	bar}
																																	{press	Return}
		2.1		DATE:		November	19,	2000		{press	Return	again}

Here	is	a	partial	list	of	special	things	you	can	do	with	Modify:

^B insert	text	Before	this	column
^D DELETE	text	from	this	column	onward
^L add	text	after	the	LAST	column	in	the	line
^O OVERWRITE	(or	replace)	columns
^T TRAVEL	over	the	line	without	changing	it
^G GOOFED.	Put	the	line	back	the	way	it	was,	please

Note:	The	little	symbol	^	is	a	shorthand	way	of	saying	that	you	hold	down
the	Control	key	(on	some	keyboards	abbreviated	Ctrl)	while	at	the	same
time	pressing	the	letter.	For	example,	^B	(or	Control-B):	keep	the	Control
key	down	with	one	finger	while	with	another,	type	a	B.	These	symbols
won't	show	up	on	your	screen.

HP-UX	reacts	to	certain	control	characters	which	might	conflict	with	the
Qzmodify	codes.	For	example,	control-D	sends	an	end-of-file	signal	to
HP-UX	but	is	also	the	delete	character	in	Qzmodify.	You	should	use	the

HP-UX	 stty	program	to	change	the	default	end-of-file	signal.
Please	see	the	section	Control	Characters	and	stty	for	more	details.

This	command	is	easy	to	use	but	awkward	to	describe;	you'll	understand
how	to	use	it	much	faster	if	you	give	it	a	try.	Let's	take	a	typical	example,
and	modify	line	5	of	our	memo.	Begin	by	typing	"m5"	and,	of	course,
pressing	Return.	Then,	to	replace	"daily"	with	"every	day",	our	first	step	is
to	delete	the	word.	Use	the	space	bar	to	move	to	the	column	under	the
"d"	in	"daily".	Press	^D	(you	won't	see	anything,	remember),	then	space
across	all	the	columns	you	want	to	delete.	Don't	press	Return	yet.

The	second	step	is	to	insert	the	two	new	words.	Press	^B	and	type	"every
day".	Now	press	Return	to	see	the	line	with	the	revisions.

Qedit	lets	you	see	your	revisions	and	continue	modifying	with	as	many
different	changes	as	you	can	fit	into	one	pass,	before	you	press	Return.
In	order	to	make	changes	at	different	locations	in	a	line,	press	^T	to
space	over	the	intervening	characters	without	disturbing	them.	If	you
goofed,	press	^G	instead:	you'll	get	your	original	line	back.

The	final	step	is	to	accept	the	revisions	by	pressing	Return	one	last	time.

If	your	fingers	are	so	trained	to	MPE's	style	of	Modify	(e.g.,	D	for	delete)
that	you	cannot	remember	to	use	the	Control	key,	do	not	despair.	As	with
most	things	in	Qedit,	there	is	a	configuration	option	to	solve	this	problem.
The	command	Set	Mod	HP	instructs	Qedit	to	accept	HP-style	modifies
(i.e.,	MPE	modifies	such	as	D	and	I),	instead	of	Qedit-style.	See	the
Modify	section	of	the	Set	command.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Global	Changes
There	is	another	way	to	modify	lines	in	your	workfile.	The	Change
command	allows	you	to	make	changes	throughout	the	entire	file,	without
the	bother	of	working	on	each	line	one	by	one.	For	example,	with	one
Change	command	to	your	memo,	you	can	replace	all	the	colons	with
dashes.

/change	":"-"	all
		1				MEMO	TO-	Drama	Staff,	News	Simulation	Dept.
		2.1		DATE-		November	19,	2000
		3				FROM-				Marie	Reimer,	Publicity	Dept.
3	lines	changed

Using	the	Change	All	command	is	a	one-way	street.	If	we	now	decide	we
don't	like	the	dashes	and	want	to	get	the	colons	back,	observe	what
happens	to	Line	5.

/change"-":"	all
		1				MEMO	TO:	Drama	Staff,	News	Simulation	Dept.
		2.1		DATE:		November	19,	2000
		3				FROM:				Marie	Reimer,	Publicity	Dept.
		5				Please	check	your	in:baskets	daily	and
4	lines	changed

This	second	Change	command	has	gotten	us	into	hot	water.	Luckily,
Qedit	has	an	Undo	command	that	takes	your	file	step-by-step	backwards
to	put	it	back	to	the	way	it	was.	See	the	Undo	command	in	the	"Qedit
Commands"	chapter.

CJ	Command

If	you're	not	sure	what	the	consequences	of	a	global	change	will	be,	use
the	CJ	command.	CJ	stands	for	Change-Jump.	Qedit	shows	you	each
line	it	means	to	change,	and	waits	for	you	to	approve,	to	change	your
mind,	or	to	modify	that	line.	Then	Qedit	jumps	to	the	next	occurrence	of
your	string,	and	repeats	its	question	until	you	have	dealt	with	all
occurrences	of	the	string	in	the	file.	To	accept	the	default	answer	of	NO
(i.e.,	don't	replace	the	string),	shown	in	square	brackets,	just	press
Return.

/cj":"-"	all
		1				MEMO	TO:	Drama	Staff,	News	Simulation	Dept.

Change	okay	(Y,N	or	Modify)	[No]:		{press	Return}
		2.1		DATE:		November	19,	2000
Change	okay	(Y,N	or	Modify)	[No]:		{press	Return}
		3				FROM:				Marie	Reimer,	Publicity	Dept.
Change	okay	(Y,N	or	Modify)	[No]:		{press	Return}
		5				Please	check	your	in:baskets	daily	and
Change	okay	(Y,N	or	Modify)	[No]:Yes
1	line	changed

You	can	use	the	handy	^Y	to	stop	in	the	midst	of	change-jumping	just	as
you	used	it	to	stop	listing.

Rangelist

You	can	also	specify	individual	lines	or	a	rangelist	to	Change.	For
example,

/change	"Dept."Department"	1/3
		1				MEMO	TO:	Drama	Staff,	News	Simulation	Department
		3				FROM:				Marie	Reimer,	Publicity	Department
2	lines	changed
/change	"Drama	Staff,	""	1		{changes	string	to	nothing}
																												{i.e.,	deletes	it}
		1				MEMO	TO:	News	Simulation	Department
1	line	changed

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Copying	Lines
Copying	lines	is	a	variation	of	the	Add	command.	One	reason	we	might
want	to	copy	lines	is	to	make	a	general-purpose	form	out	of	our	memo.
We	can	keep	a	sample	memo	form	at	the	beginning	of	the	file,	then	copy
it	to	the	end	of	the	file	and	fill	it	in	whenever	we	need	to	communicate.
This	is	how	to	do	it:

/add	last	=	first/4
		7				MEMO	TO:	News	Simulation	Department
		8
		9				DATE:		November	18,	2000
	10
	11				FROM:				Marie	Reimer,	Publicity	Department
	12
6	lines	COPIED

Qedit	copies	the	rangelist	(first/4	=	first	line	to	line	4)	after	the	indicated
line	(here,	last	line	in	file).	To	accomplish	our	goal	of	placing	the	sample
memo	template	at	the	beginning	of	the	file,	we'll	have	to	move	the	first	six
lines	so	they	follow	our	new	sample.	Before	we	try	moving	lines,	a	last	tip
on	copying:	you	can	copy	lines	from	an	external	file	by	including	the	file
name	in	the	command,	placed	after	the	equals	sign	and	right	before	the
rangelist.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Moving	Lines
Moving	is	very	similar	to	copying;	it's	another	form	of	the	Add	command.
But,	instead	of	using	the	equals	sign,	use	the	less-than	sign.	You	can
specify:

/add	12	<	1/6
	13				MEMO	TO:	News	Simulation	Department
	14
	15				DATE:		November	18,	2000
	16
	17				FROM:				Marie	Reimer,	Publicity	Department
	18
	19				Please	check	your	in-baskets	daily	and
	20				respond	to	your	fan	mail	within	a	week.
8	lines	MOVED

Qedit	moves	the	rangelist	(in	this	case,	lines	1	to	6)	after	the	indicated
line	(in	this	case,	12).	In	case	you	were	wondering,	we	could	have	used
"last"	instead	of	the	number	"12".	You	can	add,	move,	or	copy	lines	to
any	spot.	In	fact,	we	could	have	copied	the	first	six	lines	to	the	beginning
of	the	file	in	the	first	place,	but	then	we	wouldn't	have	had	this	fascinating
"move"	example.	The	result	of	this	particular	move	is

/list	all
		7				MEMO	TO:	News	Simulation	Department
		8
		9				DATE:		November	18,	2000
	10
	11				FROM:				Marie	Reimer,	Publicity	Department
	12
	13				MEMO	TO:	News	Simulation	Department
	14
	15				DATE:		November	18,	2000
	16
	17				FROM:				Marie	Reimer,	Publicity	Department
	18
	19				Please	check	your	in-baskets	daily	and
	20				respond	to	your	fan	mail	within	a	week.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Deleting	Lines
To	demonstrate	the	Delete	command,	we'll	get	rid	of	our	memo	template.
On	some	systems,	Qedit	asks	for	confirmation	before	deleting	a	large
number	of	lines.	If	so,	you	can	cancel	the	deletion	just	by	pressing
Return;	to	confirm	the	deletion,	type	"yes"	and	press	Return.	The
abbreviation	for	Delete	is	simply	D	:

/d	first/12
		7			_MEMO	TO:	News	Simulation	Department
		8			_
		9			_DATE:		November	18,	2000
	10			_
	11			_FROM:				Marie	Reimer,	Publicity	Department
	12			_
DELETE	6	lines	[no]?	yes

If	you	typed	"yes"	without	due	consideration,	you	now	have	a	chance	to
take	it	back.	Press	Control-Y,	and	Qedit	saves	your	bacon	with	the
message	"Undeleted!"	But	you	must	press	Control-Y	immediately:	if	you
do	anything	else	between	the	deletion	and	the	rescue,	Qedit	will	commit
to	the	deletion.	However,	in	this	situation	the	Undo	command	can	bring
your	lines	back,	even	if	you	have	made	more	changes.	You	must	undo
each	change	to	the	file	in	reverse	order.	See	the	"Qedit	Commands"
chapter	of	the	manual	for	details.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Help	Command
On-line	help	is	available	on	every	topic	in	Qedit.	After	you've	become	an
expert	with	the	commands	introduced	here,	you	can	use	Help	to	teach
yourself	all	sorts	of	amazing	new	commands.	To	get	Help,	type	a
question	mark	or	the	word	HELP.

/help

or

/?

Qedit	responds	with	a	list	of	its	commands,	and	at	the	bottom	of	the
screen,	a	list	of	keywords.	Type	the	keyword	of	the	topic	in	which	you're
interested.	For	example,	one	of	the	keywords	is	"Full-Screen".	Get	an
introduction	to	full-screen	mode	by	typing:

>full-screen

Did	you	notice	that	the	Help	prompt	is	different	from	Qedit's	regular
prompt?

When	you	asked	for	Help,	Qedit	filled	your	screen	with	lists.	To	learn
about	some	of	the	commands	in	the	list,	(e.g.,	the	Add	command),	type
the	keyword:

>commands

and	Qedit	gives	you	some	general	information	on	the	topic	of	commands.
At	the	bottom	of	the	screen	is	a	list	of	keywords.	Type	the	one	in	which
you're	interested:

>add

Qedit	responds	with	further	information.	You	can	backtrack	your	route
and	look	at	all	the	other	possibilities	too.	Pressing	Return	takes	you	back
one	step	at	a	time.

To	exit	from	Help,	press	the	Return	key	until	you	see	the	regular	Qedit
slash	prompt	again.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Saving	the	File
There	are	two	commands	that	preserve	your	work:	Keep	and	Shut.	First,
invent	a	name	for	your	file.	Naturally,	two	files	cannot	have	the	same
name.	The	name	must	be	a	valid	HP-UX	file	name.	We've	been	working
on	a	temporary	file.	To	save	it,	name	it:

/keep	myfile1

When	you	want	to	work	on	Myfile1	again,	type:

/text	myfile1

and	Qedit	will	copy	Myfile1	for	you	to	use.	If	you	make	changes	to	the
file,	remember	to	Keep	it	again	before	you	leave	Qedit	to	make	the
changes	a	permanent	part	of	the	file.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Open	and	Shut	for	Instant	Access
Only	Qedit	files	can	be	opened	and	shut.	It	is	much	faster	to	use	the
Open	command	than	it	is	to	use	the	Text	command,	because	you	make
changes	directly	to	the	Open	file.	With	a	Text	file,	you	must	wait	for	Qedit
to	make	a	copy	to	which	you	make	your	changes.

Using	the	Shut	command	saves	the	current	scratchfile	as	a	permanent
Qedit	workfile.	In	the	case	of	a	scratchfile,	the	name	of	the	new	workfile
must	not	exist.	You	can	Shut	a	new	file,	or	a	file	that	you	made	a	copy	of
(with	the	Text	command).	Name	the	file	as	described	above.

If	you	are	working	on	a	Qedit	workfile,	Qedit	renames	it	before	closing.

qux/t	myfile1

'Language'	is	now	DATA	{copy	of	myfile1	in
scratchfile}

20	lines	in	file
qux/sh	myfile1

Retained	existing	file	for	you.	{myfile1
already	exists.	No	change.}

qux/sh	myfile1.work	{renamed	to	myfile1.work}

qux/open	*
Open	/home/user1/myfile1.work	Current	=	1	Margins	=	1/80
qux/sh	myfile1.newwork
File	renamed.

A	workfile	looks	like	any	other	file	from	the	outside.	For	example,

ll	myfile1*
-rw-rw-rw-			1	francois			users										533	Aug	17	18:33	myfile1
-rw-rw-rw-			1	francois			users								16384	Dec		8	07:15	myfile1.work

However,	you	can	use	the	HP-UX	 file	command	to	determine	the
file	type.	In	order	for	 file	to	recognize	Qedit	files,	you	need	to	edit

/etc/magic.

login	as	root

$	cd	/etc	
$	qedit
qux/Text	magic
qux/Add	last

0\tstring\tQEDIT\tQedit	{\t	indicates	tab
characters}

//
qux/Set	Decimal	On

qux/Change	"\t"	'9	*	{change	\t	to	actual	tab
characters}

qux/Keep

You	can	now	use	the	 file	command	on	these	files.

$	file	myfile1*
myfile1:							ascii	text
myfile1.work:		Qedit

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Running	Qedit
To	run	Qedit	for	HP-UX,	type	this	command:

/opt/robelle/bin/qedit
Qedit.	Copyright	Robelle	Solutions	Technology	Inc.	1977-2001.
(Version	5.7)	Type	?	for	help.
qux/

Qedit	prints	its	version	number	and	prompts	with	"qux/".	You	type
commands,	ending	each	with	Return.	For	example,	to	edit	a	file	enter	a
Text	command:

qux/text	filename

To	save	your	edits,	use	the	Keep	command.

When	you	start	Qedit,	you	are	initially	in	Line	mode	(you	type	command
and	text	lines,	ending	each	with	the	Return	key).	Qedit	has	two	full-
screen	modes:	Visual	mode	for	HP	terminals	and	Screen	mode	for	VT
terminals.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Visual	Mode	for	HP	Terminals
Full-screen	editing	as	implemented	on	HP3000	computers	only	works	on
HP-UX	versions	earlier	than	11.0.	On	HP-UX	11.0	or	later,	full-screen
editing	is	available	in	Screen	mode	(Set	Visual	Screen	On)	on	VT-type
terminals	or	in	Visual	Blockemulation	emulation	(Set	Visual
Blockemulation	On)	on	HP-type	terminals.

As	its	name	implies,	Blockemulation	emulates	block-mode	operations	by
reading	each	line	one	by	one	instead	of	reading	the	whole	screen	in	a
single	operation.	Depending	on	the	type	of	connection,	this	process	might
take	a	few	seconds	as	the	cursor	moves	down	the	screen.

On	HP	terminals,	Qedit's	full-screen	mode	is	called	Visual	mode.	The
function	keys	give	you	eight	quick	functions:	F1	=	Visual,	F2	=	Roll	up,	F3
=	Findup,	F4	=	Find,	F5	=	Browse	backward	one	page,	F6	=	Browse
forward,	F7	=	Listredo,	and	F8	=	Exit.

Press	the	F1	key	or	use	the	Visual	command	to	switch	to	full-screen
mode,	where	you	can	edit	a	full	screen	of	text	with	the	terminal	keys.	The
Enter	key	passes	the	revised	screen	back	to	Qedit,	and	the	F7	key
executes	any	Line	command	that	you	type	on	the	home	line.	If	you	have
an	HP	terminal	or	emulator,	you	will	want	to	export	RCRTMODEL	so	that
you	can	use	advanced	screen	features.	See	"Variables	that	Drive	Qedit."

To	return	from	Visual	mode	to	Line	mode,	press	the	F8	key.	To	save	your
changes	to	the	Text	file,	use	the	Keep	command.	To	get	out	of	Qedit,	type
Exit	or	press	F8	again.

qux/keep
qux/exit

If	you	forget	to	Keep	your	changes,	Qedit	asks	if	you	want	to	"Discard
your	changes?"	or	stay	in	Qedit	to	save	them.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Screen	Mode	for	VT	Terminals
Screen	mode	differs	from	Visual	mode	by	doing	edits	to	a	line	right	away,
instead	of	waiting	for	a	screenful	of	changes.	Use	PF1	for	Help,	PF3/PF4
to	browse	back	and	forth	in	the	file.	You	can	enter	new	text	right	away
(there	is	no	concept	of	command	mode	vs	insert	mode	like	there	is	in	vi).
Perform	edit	operations	with	control-key	sequences.	To	exit	Screen
mode,	press	^E.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Edit	Several	Files	at	Once
Qedit's	primary	scratch	file	is	called	"Qeditscr."	By	default,	this	file	is
created	in	 /var/tmp	(/usr/tmp	is	the	default	on	older
versions	of	HP-UX)	or	the	path	name	specified	in	the	 TMPDIR
environment	variable.	The	scratchfile	name	is	 qscr.xxxxxxxxx
where	"xxxxxxxxx"	is	a	random	string	generated	by	the	HP-UX

tempnam	routine.

If	you	want	to	move	scratch	files	to	a	different	directory,	you	can	set	the
TMPDIR	environment	variable.

TMPDIR=/home/user1/tmp
export	TMPDIR

Keep	in	mind	that	Qedit	works	with	absolute	filenames	and	these	names
can	not	have	more	than	240	characters.	Whenever	you	use	the	default
options	for	Opening	or	Texting	a	file,	your	work	will	be	in	the	Qeditscr
scratch	file.

More:
How	to	Edit	Several	Files?
Starting	a	New	Scratch	File

	 	

http://www.robelle.com/products/qedit

	 	

How	to	Edit	Several	Files?
What	if	you	want	to	edit	two	or	more	files	and	copy	lines	between	them?
You	could	Text	the	first	file,	Hold	the	selected	lines,	Keep	your	changes,
then	Text	the	second	file	and	insert	the	lines.	However,	if	you	are	doing
numerous	edits,	the	constant	Text	and	Keep	operations	are	inconvenient.

It	is	faster	to	Text	each	file	into	an	extra	scratch	file	of	its	own.	Then	use
the	"Open	?"	or	the	"Open	*-n"	command	to	switch	quickly	between	them.
By	default,	Text	always	copies	the	file	into	the	Qeditscr	scratch	file.
However,	Qedit	can	supply	up	to	eight	extra	scratch	files.	To	Text	a	file
called	abcd	into	an	extra	scratch	file,	type:

qux/text	abcd,new

When	you	Exit,	Qedit	checks	whether	you	have	any	unsaved	edits	in	any
of	your	scratch	files.	If	there	are	some	unsaved	edits,	Qedit	prompts	you
to	"Discard?"	them	or	to	stay	in	Qedit	to	save	them	with	the	Keep
command.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Starting	a	New	Scratch	File
Sometimes	you	start	editing	a	new	document	and	have	nothing	to	Text	to
create	the	extra	scratch	file.	In	this	case,	use	the	New	command	without
parameters.

/new

Qedit	creates	a	new	extra	scratch	file	and	assigns	it	a	sequential	number
(1,2,3...).	If	you	use	an	Open	?	command,	you	would	see	"Extra	Scratch
file	#2"	in	the	list	of	files.	If	you	do	a	Keep	or	Set	Keep	Name	command,
you	would	see	the	Keep	file	as	the	Text	name	in	Open	?.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Configuring	Different	Shells
When	you	log	on	to	HP-UX,	a	program	is	run	called	the	shell.	The	shell
program	interprets	commands,	executes	them,	and	controls	command
execution.	Making	configuration	changes	requires	that	you	know	which
shell	you	are	using	and	what	files	are	automatically	executed.

More:
Bourne	and	Korn	Shells
C	Shell

	 	

http://www.robelle.com/products/qedit

	 	

Bourne	and	Korn	Shells
The	Bourne	and	Korn	shells	execute	the	file	/etc/profile	when	you	log	on
to	HP-UX.	They	then	look	for	a	file	in	your	home	directory	called	.profile.
If	it	exists,	it	is	executed.	If	you	use	SAM	to	add	new	users,	the	file
/etc/d.profile	is	automatically	copied	to	the	home	group	of	the	new	user.	If
you	want	to	make	global	changes	to	the	commands	executed	at	login
time,	you	should	change	two	files:

/etc/profile	{always	executed	at	login}

/etc/d.profile	{default	.profile	for	new
users}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

C	Shell
The	C	shell	executes	the	file	/etc/csh.login	when	you	log	on	to	HP-UX.	It
then	looks	for	the	file	.login	in	your	home	directory.	If	it	exists,	it	is
executed.	Next,	the	C	shell	executes	the	file	.cshrc	in	your	home
directory	(also	executed	any	time	you	invoke	a	new	copy	of	/bin/csh).	If
you	use	SAM	to	add	new	users,	the	files	/etc/d.login	and	/etc/d.cshrc	are
automatically	copied	to	the	home	group	of	the	new	user.	If	you	want	to
make	global	changes	to	the	commands	executed	at	login	time,	you
should	change	these	files:

/etc/csh.login	{always	executed	at	login}

/etc/d.login	{default	.login	for	new	users}

/etc/d.cshrc	{default	.cshrc	for	new	users}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Setting	Up	a	PATH	for	Qedit
You	can	invoke	Qedit	with	the	command:

/opt/robelle/bin/qedit

If	you	want	to	be	able	to	just	type

qedit

to	invoke	Qedit/UX,	you	must	either	add	/opt/robelle/bin	to	your	PATH	or
copy	/opt/robelle/bin/qedit	to	a	directory	that	is	currently	on	your	PATH.
Similarly,	the	man	pages	for	Qedit	are	found	in
/opt/robelle/man/man1/qedit.1.	To	make	the	man	pages	available	to
everyone,	you	can	either	add	/opt/robelle/man	to	your	MANPATH	or	you
can	copy	the	man	pages	to	a	directory	that	is	currently	on	your
MANPATH.

More:
Bourne	and	Korn	Shells
C	Shell

	 	

http://www.robelle.com/products/qedit

	 	

Bourne	and	Korn	Shells
See	the	discussion	above	about	the	files	automatically	executed	by	the
Bourne	and	Korn	shells.	The	easiest	way	to	change	the	two	PATHs	for	all
users	on	your	HP-UX	machine	is	to	log	on	as	root	and	add	these	two
lines	to	the	file	/etc/profile	after	any	existing	PATH	or	MANPATH
statements:

PATH=$PATH:/opt/robelle/bin
MANPATH=$MANPATH:/opt/robelle/man

Remember	to	delete	any	PATH	or	MANPATH	settings	in	/etc/d.profile,	so
that	new	users	do	not	override	your	changes.	You	also	have	to	warn
existing	Bourne	and	Korn	shell	users	to	change	the	.profile	file	in	their
home	directories.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

C	Shell
See	the	discussion	above	about	the	files	automatically	executed	by	the	C
shell.	The	easiest	way	to	change	the	two	PATHs	for	all	users	on	your	HP-
UX	machine	is	to	log	on	as	root	and	add	these	two	lines	to	the	file
/etc/csh.login	after	any	existing	path	or	MANPATH	statements:

set	path=($path	/opt/robelle/bin)
setenv	MANPATH	"$MANPATH":/opt/robelle/man

Remember	to	delete	any	path	or	MANPATH	settings	in	both	/etc/d.login
and	/etc/d.cshrc,	so	that	new	users	do	not	override	your	changes.	You
also	have	to	warn	existing	C	shell	users	to	change	their	.login	and	.cshrc
files	in	their	home	directories.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Control	Characters	and	stty
Most	HP-UX	users	have	Control-D	configured	as	the	end-of-file	character
and	Control-C	as	the	interrupt	character.	If	you	use	Robelle-style	modify,
you	must	reassign	Control-D	to	a	different	control	character.	If	you	are	a
former	MPE	user,	you	may	wish	to	assign	Control-Y	as	your	interrupt
character.	A	standard	shell	configuration	file	(.profile	for	Bourne	and	Korn
shells	and	.login	for	the	C	shell)	usually	contains	a	line	like:

stty	erase	"^H"	kill	"^U"	intr	"^C"	eof	"^D"	swtch	"^Z"

To	change	both	the	end-of-file	and	interrupt	character,	you	should	change
the	"intr"	and	"eof"	control	keys	as	follows:

stty	erase	"^H"	kill	"^U"	intr	"^Y"	eof	"^E"	swtch	"^Z"

Note	that	the	end-of-file	signal	is	required	by	many	programs.	Many
introductory	books	on	UNIX	assume	that	Control-D	generates	an	end-of-
file.	You	have	to	remember	to	now	use	Control-E	(at	least	Control-E	is
easy	to	remember	since	end-of-file	starts	with	the	letter	"E").

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Qeditmgr	Configuration	Files
When	you	run	Qedit,	it	automatically	"uses"	two	configuration	files	if	they
exist:	 /opt/robelle/qeditmgr	and	 .qeditmgr	in	your
home	directory.	The	system	manager	usually	creates

/opt/robelle/qeditmgr	and	puts	Qedit	commands	in	it	to	set
Qedit	options.	To	check	the	options	for	your	site,	List	this	file.

If	you	want	a	personal	Qeditmgr	file,	create	the	file	 .qeditmgr	in
your	home	directory.	This	file	is	in	addition	to	the	global	Qeditmgr	file
which	is	always	executed	first.

More:
Default	Set	Commands

	 	

http://www.robelle.com/products/qedit

	 	

Default	Set	Commands
Qedit	treats	the	Qeditmgr	file	exactly	like	a	usefile,	so	Qeditmgr	can
include	any	Qedit	commands.	The	Set	commands	let	you	configure	Qedit
so	it	has	the	ideal	defaults	for	your	shop	(e.g.,	Set	Lang	Cobol	...).	Here
is	a	typical	Qeditmgr	file:

{These	are	default	qedit	values	for	all	users:}
set	lang	cobolx	all	on

set	x	date	list	off	{mark	changed	lines	with
date}

set	check	on	{verify	delete/format	of	>5
lines}

set	list	page	on	{lp	listings	interpret	$page}

z=list	*/last	{define	z	command}

For	details	on	Set	commands,	refer	to	the	"Qedit	Commands"	chapter.

If	one	set	of	defaults	is	not	appropriate	for	everyone	on	your	system,	it	is
possible	to	set	up	personal	Qeditmgr	files	in	each	user's	home	directory.
See	the	chapter	"Running	Qedit	on	HP-UX"	for	details.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

On-Line	vs.	Batch	Access
You	normally	run	Qedit	as	an	on-line	session.	You	type	Qedit	commands
on	your	terminal	and	Qedit	prints	responses	on	your	terminal.	If	you
redirect	stdin	or	stdlist,	Qedit	assumes	that	it	is	in	batch.

Qedit	in	batch	is	almost	identical	to	Qedit	on-line,	except	for	answering
questions.	When	Qedit	asks	a	question	in	batch,	no	one	is	there	to
answer	it.	Therefore,	Qedit	does	not	expect	an	answer	from	stdin.	Qedit
assumes	that	you	want	your	batch	task	to	complete,	so	it	always	selects
the	option	that	will	complete	the	command	successfully.	This	is	normally
a	"YES"	answer,	as	in	"yes,	clear	the	file"	or	"yes,	upshift	the	line".	Qedit
prints	the	question	on	stdlist,	as	well	as	the	answer	that	it	has	selected
for	you.

When	Qedit	encounters	an	error	in	batch,	no	one	is	there	to	correct	it.
Therefore,	Qedit	normally	aborts.	However,	you	can	use	Set	Autocont	On
to	override	this	abort,	instructing	Qedit	to	keep	processing	after	errors	in
batch.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Command	Line	Options
You	can	invoke	Qedit/UX	with	options,	or	an	initial	file	name	to	edit,	or
both	(or	neither).	The	syntax	for	invoking	Qedit/UX	is:

qedit	[-csv]	[filename]

See	below	for	suggestions	on	setting	the	EDITOR	environment	variable
so	that	Qedit	is	automatically	invoked	as	your	editor	from	other	tools	like
elm.

More:
Initial	Command	Line:	-ccmdstring
Editing	a	Single	File:	-s
Exit	with	Verify:	-v
"Discard	Changes?"	on	Exit

	 	

http://www.robelle.com/products/qedit

	 	

Initial	Command	Line:	-ccmdstring
You	can	specify	commands	to	be	executed	using	the	-c	option	before	the
file	name.	The	-c	is	followed	by	commands	to	be	executed.	There	must
be	no	space	between	the	-c	and	the	command	list.

If	those	commands	contain	a	space,	they	must	be	enclosed	in	single	or
double	quotes;	otherwise,	the	quotes	are	optional.	When	both	-c	and	a
file	name	occur,	the	–c	commands	are	executed	after	the	file	is	accessed
for	editing.	Here	are	some	examples:

qedit	-cvisual	myfile
qedit	-c"visual"	myfile
qedit	-c'set	vis	ab	3	bel	12;visual'	myfile
qedit	-c"text	abc;use	fixit;k,y;e"

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Editing	a	Single	File:	-s
Sometimes	you	want	to	invoke	Qedit	for	a	specific	purpose,	such	as
writing	a	message	in	elm.	You	are	using	Qedit	as	a	dedicated	tool	for	a
specific	purpose.	In	these	cases,	specify	-s	and	a	file	name.	You	can	only
edit	that	file	and	it	will	be	saved	on	exit.	You	will	not	be	allowed	to	edit
any	other	files.

qedit	-cvisual	-s	myfile
/exit
Save	your	changes	(yes/no)?

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Exit	with	Verify:	-v
Some	users	find	that	they	Exit	from	Qedit	inadvertently	by	pressing	F8
too	many	times.	To	require	user	approval	on	Exit,	use	the	-v	option.

qedit	-v
/e
Okay	to	exit	[no]:
/

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

"Discard	Changes?"	on	Exit
Qedit	needs	to	purge	your	random-named	scratch	files	when	it
terminates.	But	you	may	not	have	saved	your	editing	work	yet.	In	that
case,	Qedit	asks	you	"Discard	changes?"	and	will	not	Exit/Purge	unless
you	answer	Yes:

qedit	myfile
/visual
/exit
Discard	your	changes	[no]:
/

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

HP-UX	Notes
This	section	describes	features	of	Qedit/UX	that	interact	with	the	HP-UX
environment.

More:
EDITOR	Variable
Scratch	File
Hold	Files
Shell	Commands
Shell	Command	History
Tab	Stops

	 	

http://www.robelle.com/products/qedit

	 	

EDITOR	Variable
HP-UX	utilities	that	invoke	an	external	editor	use	the	variable	EDITOR	to
determine	which	editor	and	run-time	options	are	invoked.	The	electronic
mail	tool	elm	is	an	example	of	a	utility	that	uses	an	external	editor	to	write
all	messages.

If	you	want	to	use	Qedit	as	your	standard	editor,	you	need	to	set	the
EDITOR	variable.	We	recommend	using	the	-s	option	for	application	use.
If	you	wish	to	immediately	go	into	Visual	mode,	you	should	specify	-
cvisual	as	part	of	the	variable	string.	The	following	example	sets	the
EDITOR	variable	to	invoke	Qedit	and	put	you	into	Visual	mode:

Bourne	and	Korn	shells:

$EDITOR="qedit	-s	-cvisual";export	EDITOR

C	Shell:

%setenv	EDITOR	"qedit	-s	-cvisual"

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Scratch	File
When	Qedit	needs	a	disposable	scratch	file	(e.g.,	for	Text	or	Add),	it
creates	a	Qedit	format	file	in	 /var/tmp	by	default	(/usr/tmp	is	the
default	on	older	versions	of	HP-UX)	or	the	path	name	specified	in	the

TMPDIR	environment	variable.	The	scratchfile	name	is
qscr.xxxxxxxxx	where	"xxxxxxxxx"	is	a	random	string	generated

by	the	HP-UX	 tempnam	routine.

Keep	in	mind	that	Qedit	works	with	absolute	filenames	and	these	names
can	not	have	more	than	240	characters.

Because	all	HP-UX	files	are	permanent,	Qedit	must	purge	this	scratch	file
when	you	exit	Qedit.	If	you	have	made	any	changes,	Qedit	asks	whether
you	want	to	discard	the	changes	that	you	have	made.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Hold	Files
Qedit	has	two	Hold	files:	Hold	and	Hold0.	The	first	one	is	created	using
the	Hold	command	or	with	HH/HJ	in	Visual	mode.

Lines	are	written	to	the	Hold0	file	every	time	you	move	or	copy	with	the
Add	command	(MM,	CC,	and	DD	in	Visual	mode)	or	justify	(JJ)	or
replicate	(RR)	lines	in	full-screen	mode.

By	default,	these	Hold	files	are	created	in	 /var/tmp	(/usr/tmp	is
the	default	on	older	versions	of	HP-UX)	or	the	path	name	specified	in	the

TMPDIR	environment	variable.	The	Hold	files	are	called
qholdxxxxxxxxx	(explicit	Hold)	and	 qholdxxxxxxxxx.0

(implicit	hold	file)	where	"xxxxxxxxx"	is	a	random	string	generated	by	the
HP-UX	 tempnam	routine.

If	you	want	to	have	these	files	in	a	different	location,	you	can	set	the
TMPDIR	environment	variable	to	the	new	path	name.

TMPDIR=/home/user1/tmp
export	TMPDIR

Keep	in	mind	that	Qedit	works	with	absolute	filenames	and	these	names
can	not	have	more	than	240	characters.	So	that	you	don't	have	to
remember	these	names,	you	can	refer	to	these	files	as	Hold	or	Hold0	in
Qedit	commands.	For	example,

/hold	50/60	{save	lines	in	the	Hold	file}

/open	report.cob	{switch	files}

/aq	last=hold	{lines	copied	from	the	Hold
file}

The	value	of	TMPDIR	can	be	a	relative	or	absolute	path.	Internally,	Qedit
always	uses	the	absolute	path.	It	converts	the	relative	path	if	needed.

You	cannot	use	Qedit	to	look	at	files	in	your	current	directory	called	hold
or	hold0,	unless	you	qualify	them	with	the	directory	or	a	relative	path
name,	as	in	./hold.

http://www.robelle.com/products/qedit

The	Hold	files	are	removed	when	you	exit	Qedit.

	 	

http://www.robelle.com/products/qedit

	 	

Shell	Commands
You	can	execute	shell	commands	by	typing	them	at	anywhere	you	can
type	a	Qedit	command.	If	Qedit	determines	that	it	is	not	one	of	its	own
commands,	it	assumes	it's	a	shell	command	and	tries	to	execute	it	as
such.	If	the	shell	command	matches	an	existing	Qedit	command,	you
must	precede	it	by	a	colon	(:)	or	an	exclamation	mark	(!).	Shell
commands	are	executed	by	your	default	shell	(the	one	configured	in
/etc/passwd	for	your	user	name).

If	you	want	to	enforce	the	use	of	the	colon	or	exclamation	mark	prefix,
you	can	enter	Set	Limits	Colonreq	ON.

Shell	commands	are	executed	by	a	child	copy	of	your	shell.	Child	shells
cannot	change	environment	variables	in	the	parent's	environment.	To
change	the	value	of	an	environment	variable,	you	must	first	exit	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Shell	Command	History
If	you	use	the	POSIX	or	Korn	shell,	you	have	access	to	a	shell	command
history	function.	By	default,	the	shell	saves	the	last	128	commands	you
have	entered.	The	default	name	is	.sh_history	and	is	located	in	your
home	directory.	If	you	want	to	use	a	different	file	name,	change	the
HISTFILE	environment	variable.	If	you	want	to	change	the	number	of
commands	saved,	change	the	value	of	the	HISTSIZE	variable.

Normally,	you	recall	commands	from	the	history	stack	by	using	the	fc
command.	This	command	calls	up	the	default	shell	editor	that	works	like
the	vi	editor.	You	can	instruct	the	shell	to	use	Qedit/UX	as	your	command
line	editor	instead.

The	first	step,	which	is	probably	the	most	important	one,	is	setting	the
FCEDIT	variable.	This	variable	specifies	which	editor	you	want	to	use	to
modify	the	commands.	The	default	editor	is	/bin/ed.	To	change	the	editor,
use

FCEDIT='qedit	"-c	m	;k,yes;e"'
export	FCEDIT

The	export	command	is	not	mandatory,	but	it	is	good	practice	to	include
this	command	in	case	you	start	up	another	shell	process.	Also	note	that
the	quotes	are	very	important.	You	begin	with	single	quotes	and	enclose
the	Qedit/UX	commands	in	double	quotes.

In	the	next	step,	you	can	use	the	fc	command	to	recall	commands.	It	has
a	fairly	simple	set	of	arguments.	You	can	also	create	your	own	set	of
commands	using	aliases.

A	typical	set	of	commands	would	include:

alias	listredo="fc	-l"
alias	redo=fc
alias	xeq="fc	-e	-"

NOTE:	You	cannot	use	"do"	because	it	is	a	shell-reserved	keyword.	The
xeq	command	is	used	instead.

The	listredo	command	simply	lists	the	most	recent	commands	in	the

http://www.robelle.com/products/qedit

history	stack.	Its	default	(no	argument)	setting	lists	the	last	16
commands.

When	you	use	one	line	number	as	the	argument,	listredo	lists	all	the
commands	from	the	specified	line	on.	When	you	enter	a	few	characters
as	the	argument,	the	list	starts	with	the	last	command	that	has	these
characters.

listredo	100	{list	all	commands	starting	with	number	100}

listredo	c@	{list	all	commands	starting	with	a
"c"}

With	two	line	numbers,	listredo	lists	all	commands	between	these	two
lines.

listredo	100	105	{list	commands	100	to	105}

The	redo	command	recalls	one	or	more	commands	and	allows	you	to
modify	them	before	executing	them.	It	uses	similar	syntax	to	listredo.	If
you	do	not	specify	an	argument,	redo	recalls	the	last	command	you	have
entered.	If	you	specify	a	command	number,	it	recalls	that	particular	entry.
If	you	enter	a	string,	it	recalls	the	most	recent	command	starting	with	that
string.	If	you	enter	2	numbers,	it	recalls	all	the	commands	between	these
2	numbers	and	allows	you	to	modify	them,	one	by	one.

The	xeq	command	recalls	one	or	more	commands	and	executes	them
immediately.	It	works	the	same	as	the	redo	command.	The	only
difference	is	that	you	are	not	able	to	modify	the	commands.

	 	

http://www.robelle.com/products/qedit

	 	

Tab	Stops
The	default	Qedit/UX	tab	stops	are	every	8	characters.	You	can	override
this	using	Set	Tabs	Stop	n	(every	2	to	15	characters).	If	you	Exit	from
Qedit	with	the	tabs	set	to	anything	other	than	Set	Tabs	Stop	8,	Qedit
resets	your	terminal	to	the	default	tab	stops.

When	you	Text	or	List	a	file	with	tab	characters	in	it,	Qedit/UX	does	not
expand	them	to	spaces.	If	you	want	to	edit	lines	containing	explicit	tab
characters,	see	Set	Vis	Tab.	If	you	want	to	expand	tabs	into	spaces	when
Texting	a	file,	use	the	Expandtabs	option:

/text	abcwork,expandtabs

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Hardcoded	File	Names
Some	file	names	are	hardcoded	into	Qedit.	This	section	describes	these
file	names	for	Qedit/UX.

More:
/opt/robelle/qeditmgr
$HOME/.qeditmgr
/opt/robelle/help/qedit

	 	

http://www.robelle.com/products/qedit

	 	

/opt/robelle/qeditmgr
This	is	an	optional	file	that	is	designed	to	contain	configuration
commands.	You	cannot	change	this	file	name.	Even	if	you	move
Qedit/UX	to	a	different	directory,	Qedit/UX	still	looks	for
/opt/robelle/qeditmgr	as	the	default	configuration	file.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

$HOME/.qeditmgr
In	addition	to	the	system	wide	/opt/robelle/qeditmgr,	each	user	can	have
a	personal	(optional)	configuration	file.	When	you	invoke	Qedit/UX,	it
reads	commands	from	the	file	.qeditmgr	in	your	home	directory.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

/opt/robelle/help/qedit
This	is	the	name	of	the	Qedit/UX	help	file.	You	can	override	this	name,
using	Set	Filename	Help:

/set	filename	help	/usr/local/help/qedit

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Visual	Mode
Qedit	has	a	Line	mode	and	two	full-screen	modes:	Visual	mode	and
Screen	mode.	Visual	mode	is	designed	for	HP	terminals	such	as	the
700/92,	PCs	running	an	emulator	such	as	Reflection,	or	"hpterm"	running
on	a	UNIX	workstation	or	X-terminal.	If	you	are	using	another	brand	of
CRT	or	a	generic	terminal	emulator	(ANSI,	VT100),	Visual	mode	will	not
work.	Screen	mode	is	designed	for	VT	terminals,	such	as	VT100	and
VT220.	Other	terminal	types	may	also	work	with	Screen	mode.

By	default,	Qedit	assumes	that	you	have	an	HP-compatible	terminal.
However,	you	can	direct	Qedit	to	identify	your	HP	terminal	by	exporting
the	variable	RCRTMODEL	with	value	2.	Or	you	can	export	three
variables	that	define	the	version	of	your	terminal	(see	Variables	that	Drive
Qedit).

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Variables	that	Drive	Qedit
Qedit	has	a	number	of	environment	variables	that	allow	you	to	configure
and	direct	the	execution	of	Qedit.	These	variables	identify	the	type	of	HP
terminal	you	have,	the	default	function	keys,	the	default	settings	for	the
terminal	G	and	H	straps,	and	other	options.

When	you	run	Qedit,	it	must	identify	the	type	of	terminal	that	you	are
using	and	determine	what	function-key	labels	to	display.	Qedit	does
status	requests	to	detect	the	model	number	and	the	current	width	of
display	memory.	This	information	is	used	to	enhance	the	functioning	of
Qzmodify,	Visual,	Help	and	List.	Qedit	locks	the	keyboard	during	terminal
identification	and	discards	any	user	input	that	manages	to	get	through.
However,	if	you	have	Reflection	typeahead	enabled,	Qedit	cannot	lock
the	keyboard;	be	careful	not	to	type	during	terminal	identification	in	this
case.

Qedit	sets	three	variables	to	remember	your	terminal	state:
RCRTMODEL,	RPCVERSION	and	RCRTWIDTH.	If	you	run	Qedit	and
these	variables	are	already	set,	Qedit	does	not	need	to	do	the	status
requests	of	your	terminal.	To	reset	these	variables	and	force	Qedit	to	re-
identify	the	terminal,	use	the	Set	Visual	Stop	command.	You	can	set	a
fourth	variable,	RCRTSTRAPSGH,	to	request	nondefault	handshaking	in
Line	mode.	The	fifth	variable,	RLABELDEFAULT,	is	described	under
"Function	Key	Label

More:
Setting	Variables	in	Your	Shell
RCRTMODEL	Variable
RPCVERSION	Variable
RCRTWIDTH	Variable
Function	Key	Labels
RCRTSTRAPSGH	for	Handshaking
QEDITMGRTRACE	Variable
QEDCURWFILE	Variable
QEDSTOREDPWD	and	QEDPROMPTEDPWD	Variables
ROBELLE	Environment	Variable

	 	

http://www.robelle.com/products/qedit

	 	

Setting	Variables	in	Your	Shell
You	must	set	and	export	environment	variables	before	you	invoke	Qedit.
The	syntax	for	setting	environment	variables	depends	on	which	shell	you
are	using.

Bourne	(sh)	and	Korn	(ksh)	shells:

$export	RCRTMODEL=2

In	some	versions	of	the	POSIX	shell,	you	might	have	to	split	the	previous
command	in	two:

$RCRTMODEL=2
$export	RCRTMODEL

C	shell	(csh):

%setenv	RCRTMODEL	2

Remember	to	always	type	the	variable	name	in	uppercase	letters.	The
Bourne	and	Korn	shells	do	not	allow	spaces	before	the	"=".	To	check	your
environment	variables	use:

Bourne	(sh)	and	Korn	(ksh)	Shells:

$env

C	Shell	(csh):

%printenv

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

RCRTMODEL	Variable
If	you	use	either	an	HP	terminal	(e.g.,	239x	and	700/9x	series)	or	a
terminal	emulator	such	as	Reflection,	you	can	get	Qedit	to	identify	the
terminal	type	automatically	by	setting	an	environment	variable.	If	you	use
a	VT	terminal,	you	should	either	not	set	the	variable	at	all	or	set	it	to	zero.

If	you	set	the	environment	variable	RCRTMODEL	to	2	and	export	it
before	running	Qedit,	Qedit	can	identify	your	terminal,	Reflection
emulator	or	Qcterm	emulator	automatically.	This	includes	the	terminal	ID
number	such	as	70092	or	2392	and	the	Reflection	or	Qcterm	version
number	such	as	430.	For	Reflection,	Qcterm	and	700/9x	terminals,	Qedit
also	determines	how	many	columns	of	display	memory	you	have	set
originally.	On	a	PC	with	Reflection,	Qedit	detects	whether	your
combination	of	VGA	adaptor	and	Reflection	version	is	likely	to	switch	into
132-column	mode	whenever	more	than	80	columns	of	display	memory
are	requested.

Qcterm	emulates	a	700/92	terminal	but	can	display	200	columns	as	well
as	80	or	132	columns	normally	available	on	a	700/92	terminal.

export	RCRTMODEL=2	{sh/ksh}

/opt/robelle/bin/qedit
Qedit/UX.	Copyright	Robelle	Solutions	Technology	Inc.	1977-2000.

qux/verify	visual	{e.g.,	Crt=7009,Col=132}

Qedit	takes	advantage	of	any	features	that	it	finds,	such	as	widening
display	memory,	enabling	wordwrap	if	you	have	done	Set	Vis	Wordwrap
On,	enabling	Limited-Immediates	in	block-mode,	resetting	display
memory	to	the	width	it	had	at	startup,	etc.

Instead	of	setting	RCRTMODEL	to	2,	you	can	set	it	to	the	actual	terminal
ID	number,	such	as	2392.	RCRTMODEL	can	have	any	of	these	values:

Value Terminal
0 Assume	that	you	are	using	a	2392-style	HP	terminal
1 Not	using	an	HP	terminal,	don't	check	it
2 Interrogate	the	terminal	to	identify	it

This	terminal	or	emulator	is	not	fully-compatible	with

http://www.robelle.com/products/qedit

1234 an	HP	terminal

2392,etc. This	is	a	newer	HP	terminal	with	labels
2393/2397 This	terminal	can	have	up	to	160	columns	of	display
7009 A	700/9x	terminal	with	132-column	ability

You	would	also	set	the	RPCVERSION	and	RCRTWIDTH	variables	to
describe	the	rest	of	your	terminal's	attribute.	When	you	use

rcrtmodel=2,	you	don't	set	RPCVERSION	or	RCRTWIDTH.
Qedit	does	not	update	your	environment	variables	with	the	identity	that	it
finds	since	a	child	process	cannot	change	the	parent's	environment	on
HP-UX.

More:
Type	1234	Terminal	or	Emulator

	 	

http://www.robelle.com/products/qedit

	 	

Type	1234	Terminal	or	Emulator
Set	the	RCRTMODEL	to	1234	if	the	terminal	or	emulator	you	are	using
does	not	support	all	the	standard	HP	terminal	features.	For	example,	you
should	use	this	setting	with	hpterm.	hpterm	is	a	UNIX	terminal	emulator
running	under	the	X	window	system.	It's	a	basic	2392	emulator.	hpterm
will	not	identify	itself	to	Qedit,	nor	let	Qedit	change	the	display	width	by
Escape	sequence	(although	you	can	configure	the	display	width
manually).

You	need	an	X-windows	server.	A	Unix/Linux	workstation	usually	have
this,	or	you	can	download	and	install	one	of	the	existing	X-window
systems	available	for	Microsoft	Windows	such	as	X-win32	from	Starnet
Communications	(www.starnet.com)	or	Winaxe	from	LabF.com.

If	you	are	not	already	familiar	with	hpterm,	you	should	be	able	to	start
hpterm	with:

/usr/bin/X11/hpterm	-display	192.168.0.1:0.0	-ls

where	192.168.0.1	is	your	PC's	IP	address.	The	"-ls"	argument	requests
that	/etc/profile	and	.profile	be	executed	so	your	environment	is	set	as	if
you	used	 login.

When	RCRTMODEL	is	set	to	1234	before	you	run	Qedit,	Qedit	functions
in	the	following	way:

1.	 1.	 It	accepts	hpterm	as	an	hp	terminal	that	is	capable	of	more
than	80	columns	of	display	memory	and	of	doing	full-screen
mode.	At	the	moment,	hpterm	cannot	support	the	line-mode
Visual	strategy	for	HP-UX	11	(Blockemulation).	Qedit	actually
accepts	any	hp	terminal	emulator	without	question,	so	this
option	may	be	useful	with	other	emulators.

2.	 If	you	set	RCRTWIDTH	to	some	value	between	81	and	256,
Qedit	accepts	it	as	the	manually	set	display	width.

3.	 If	you	do	not	set	RCRTWIDTH,	Qedit	attempts	to	sense	the
current	display	width	of	hpterm	and	sets	the	jcw	itself.	The
maximum	width	is	256	columns.	Qedit	can	support	up	to	999
columns	but,	in	these	instances,	the	width	has	to	be	entered

http://www.robelle.com/products/qedit

using	the	RCRTWIDTH	variable	or	the	Set	Term	Columns
command.

4.	 Qedit	sets	the	option	that	eliminates	changes	to	display	width:
Set	MarginFixed	On.

This	option	also	ensures	that	the	right	margin	is	always
set	at	the	right	edge	of	the	display	width.	Normally	the
right	margin	is	set	at	the	last	valid	column	of	the	file,
which	might	be	less	than	the	display	width.	You	can	use
this	option	with	other	emulators	if	you	wish	to	stop	Qedit
from	changing	the	display	width.

Please	read	the	section	on	Set	Visual	Marginfixed	to
learn	about	its	advantages	and	disadvantages.

5.	 The	only	way	to	change	the	display	width	with	hpterm	is
manually.	If	you	use	the	Set	Term	Columns	command	to
specify	a	new	width,	Qedit	prints	the	following	message	and
waits	for	you	to	change	the	width	manually:

Please	change	display	width	and	press	Enter:

Qedit	does	not	verify	that	you	have	done	this	correctly,	so
if	you	make	a	mistake,	do	another	Set	Term	Columns
command	to	fix	the	width.

6.	 Set	Visual	Stop	normally	resets	all	the	jcws	to	their	default
state,	forcing	Qedit	to	re-identify	the	terminal.	However,	for
hpterm,	the	RCRTMODEL	and	RCRTWIDTH	jcws	are	not
reset,	since	the	terminal	cannot	be	identified	automatically.	If
you	wish	to	stop	using	1234	mode,	you	must	reset
RCRTMODEL	to	0	manually.

7.	 Set	Visual	Widen	should	normally	be	set	to	76	or	80	(default)
with	hpterm.	Otherwise	you	will	not	be	able	to	use	the	extra
columns	beyond	80.

	 	

http://www.robelle.com/products/qedit

	 	

RPCVERSION	Variable
RPCVERSION	contains	information	about	the	terminal	emulator	e.g.
Reflection	or	Qcterm.	If	you	are	not	using	a	terminal	emulator,	you	can
set	RPCVERSION	to	1.	If	you	omit	it	or	set	it	to	0,	but	you	do	set
RCRTMODEL	to	2,	Qedit	attempts	to	identify	which	(if	any)	version	of	the
emulator	you	are	using.

If	you	are	using	Reflection,	the	version	number	has	a	direct	impact	on
Qedit's	behavior	in	full-screen	mode.	Qcterm's	version	currently	does	not
have	any	impact.	If	you	always	use	the	same	version	and	emulator,	set
RPCVERSION	to	the	value	determined	by	this	chart:

wXyyy,	where
							w=0			for	display	width	can	be	expanded
									1			for	display	width	cannot	be	expanded
									2			for	132-column	VGA	in	DOS	Reflection
							X=0			for	DOS	Reflection
									1			for	Macintosh	Reflection
									2			for	Windows	Reflection
									5			for	Qcterm
					yyy=version	number	(420	=	4.20)

For	example,	R1	for	DOS	version	4.30	with	a	132-column	VGA	adaptor
would	be	20430.

You	cannot	do	the	:Reflect	command	if	Xyyy	equals	150	or	200.	This
same	value	is	shown	in	Verify	Visual	as	{Reflect=420};	if	it	says	"Col=80
max",	this	PC	emulator	was	unable	to	make	display	memory	wider.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

RCRTWIDTH	Variable
Most	HP	terminals	have	80	columns	of	display	memory.	However,	700/9x
terminals	can	switch	into	132-column	mode	and	Reflection	emulators	can
have	as	many	columns	of	scrollable	display	memory	as	you	wish.	If	you
do	not	set	RCRTWIDTH,	Qcterm	emulates	a	700/92	terminal	but	can
display	200	columns	as	well	as	80	or	132	columns	normally	available	on
a	700/92	terminal.

Qedit	will	query	the	terminal	to	see	how	wide	display	memory	is	at
startup.	Qedit	must	determine	the	width	of	display	memory	in	order	to
properly	fold	listings	of	lines	that	will	overflow	that	width,	and	to	reset	the
width	after	it	has	been	changed.

To	change	the	Line	mode	display	width	while	within	Qedit,	do	Set	Term
Columns.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Function	Key	Labels
You	can	set	the	RLABELDEFAULT	variable	to	specify	what	function	key
labels	appear	upon	entry	into	Qedit.

Value labels
0 don't	care
1 terminal	lacks	labels
2 show	user	keys
3 show	modes	keys
4 no	keys	--	blank
5 F1	to	F8	labels
6 Qedit's	labels

If	you	wish	to	use	Qedit's	function	keys	in	Line	mode,	set	the
RLABELDEFAULT	variable	to	6	before	running	Qedit.	You	must	have	the
G	and	H	straps	set	to	"yes"	for	the	function	keys	to	work.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

RCRTSTRAPSGH	for	Handshaking
The	G	and	H	straps	of	the	HP	terminal	control	datacomm	handshaking.	If
you	pull	up	your	Terminal	Config	screen,	it	should	look	something	like
this:

InhHndShk(G)	YES						Inh	DC2(H)	YES

Since	these	are	"inhibit"	straps,	YES	actually	means	"no,	don't	do	the
handshake."	G	and	H	control	whether	the	terminal	waits	for	a	DC1	and/or
DC2	prompt	character	from	the	computer	before	sending	input	(such	as
on	terminal	status	requests,	or	upon	pressing	Enter	in	block-mode).	If	the
straps	are	configured	incorrectly,	the	symptom	is	a	hung	terminal	(i.e.,	the
terminal	is	waiting	for	a	prompt	that	is	never	going	to	come,	or	the
terminal	sent	the	data	before	the	computer	was	ready	because	it	didn't
wait	for	the	prompt).

To	override	the	G	and	H	strap	settings	of	your	CRT,	use	the
RCRTSTRAPSGH	variable.	The	default	value	for	Qedit/UX	is	3,	which
means	no	handshake	(G=YES,	H=YES,	inhibit	both).	A	value	of	0	means
use	handshaking	and	may	be	necessary	if	you	"shl"	to	an	MPE	system
and	use	terminal-based	typeahead.	Unfortunately,	a	0	value	makes
function	keys	lock	up	in	Line	mode	Qedit/UX.

The	valid	values	for	the	RTSTRAPSGH	variable	are	as	follows:

Value G H comment

0 no no (handshaking
active)

1 no yes
2 yes no

3 yes yes (default	for	HP-
UX)

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

QEDITMGRTRACE	Variable
If	the	QEDITMGRTRACE	variable	is	set	to	a	nonzero	value,	Qedit	prints
tracing	messages	for	the	Qeditmgr	configuration	files.	The	trace	includes
the	name	of	each	Qeditmgr	file	that	Qedit	attempted	to	open,	each
command	executed	from	the	file,	and	command	line	arguments	used	to
invoke	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

QEDCURWFILE	Variable
Qedit	updates	a	variable,	QEDCURWFILE,	with	the	name	of	your	current
or	last	workfile.	This	gives	you	the	ability	to	reference	the	current	workfile
easily	from	within	a	shell	script	without	having	to	pass	it	in	as	a
parameter.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

QEDSTOREDPWD	and	QEDPROMPTEDPWD
Variables
When	the	Qedit	for	Windows	client	establishes	a	new	connection,	it
transmits	information	about	the	passwords	included	in	the	request.	Qedit
updates	two	variables	with	the	information:	 QEDSTOREDPWD	and

QEDPROMPTEDPWD.	The	first	variable	indicates	which	passwords
are	stored	with	the	connection.	The	second	variable	indicates	which
passwords	are	prompted	for.

Values	for	these	variables	only	have	one	character:	the	letter	 U
representing	the	user	password.	Since	there	is	only	one	password,	the
letter	can	only	appear	in	one.	The	other	variable	in	this	case	is	not
created	at	all.	For	example,	if	the	password	is	stored	with	the	connection,

QEDSTOREPWD	will	have	a	value	of	 U	and
QEDPROMPTEDPWD	will	not	exist	at	all.

This	gives	you	the	ability	to	reference	these	variables	from	within	a	shell
script.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

ROBELLE	Environment	Variable
Qedit	looks	for	the	files	it	needs	in	the	/robelle	directory.	Normally,	Qedit
is	installed	in	/opt/robelle.	For	example,	the	Qedit	server	expects	to	find
its	log	files	in	a	subdirectory	called	log/qedit.	It	would	expect	to	find	the
error	log	file	in

/opt/robelle/log/qedit/error.log

which	is	the	default	full	path	name	of	the	error	log.	If	you	install	Qedit	in	a
directory	other	than	/opt/robelle,	Qedit	should	be	able	to	determine	the
new	location	and	adjust	the	path	for	its	support	files	(e.g.,	online	help	for
host-based	Qedit,	log	files	for	the	server).

If	Qedit	is	unable	to	correctly	determine	its	current	location,	it	is	going	to
revert	back	to	/opt/robelle.

If	you	wish	to	use	a	specific	path	explicitly,	you	need	to	set	the	ROBELLE
environment	variable	to	the	new	directory.	For	example,

ROBELLE=/usr/apps/robelle
export	ROBELLE

There	are	two	limitations	to	the	path	name:	the	full	path	name	of	the	file
must	be	no	more	than	240	characters,	and	the	path	name	to	the	/robelle
directory	must	be	no	more	than	219	characters.	A	slash	mark	(/)	is
optional	at	the	end	of	your	ROBELLE	environment	variable.	To	set	up	the
log	files	in	the	new	directory,	you	have	to	manually	create	the	"log"	or
"help"	subdirectory	in	the	alternate	search	path.

So,	in	order	to	determine	the	location	of	support	files,	Qedit	goes	through
the	following:

Uses	the	ROBELLE	variable,	if	it	exists.
If	the	ROBELLE	variable	does	not	exist,	Qedit	tries	to	identify
the	location	it	is	running	from	and,	if	successful,	determines
the	location	based	on	that	information.

If	the	information	from	the	previous	steps	is	not	available,	Qedit	assumes
the	files	are	in	the	/opt/robelle	directory.

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Converting	Qedit	Files	with	qcat
Qcat	is	a	filter	program	similar	to	cat	and	zcat.	Qcat	reads	a	set	of	Qedit
files	and	prints	the	lines	on	standard	output.	Type	 man	qcat	for
more	information.

qcat	QeditFile	>	TextFile

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Differences	Between	MPE	and	HP-UX
We	have	tried	to	make	the	MPE	and	HP-UX	versions	of	Qedit	as
compatible	as	possible.	This	section	describes	how	Qedit/UX	is	different
from	Qedit/MPE.

More:
Open/Shut
Current	"*"	File	Name
Missing	Features

	 	

http://www.robelle.com/products/qedit

	 	

Open/Shut
Qedit/UX	uses	three	forms	of	workfiles:	original,	Jumbo,	and	Wide-
Jumbo.	The	Wide-Jumbo	format	is	new	and	is	used	for	most	files	on
which	you	use	the	Text	command.	On	HP-UX,	the	original	format	is
unable	to	save	some	information	about	your	file	(due	to	technical
differences	in	how	the	Qedit	workfiles	are	stored	on	MPE	versus	HP-UX).
Once	you	shut	an	original	file,	the	following	is	lost:

The	name	of	the	file	from	which	you	texted.
The	current	line	number.
The	ability	to	immediately	reopen	the	file	and	"Undo"
changes.
The	settings	for	Set	Left	and	Set	Right.

For	these	reasons,	Wide-Jumbo	workfiles	will	be	the	standard	in
Qedit/UX.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Current	"*"	File	Name
Qedit/UX	does	not	allow	substitution	of	the	current	file	name	into	shell
scripts	and	commands,	because	the	asterisk	(*)	is	an	important
substitution	character	in	HP-UX.	For	example,

/cc	*

cannot	compile	your	current	file.	Instead,	it	compiles	all	files	in	your
current	directory.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Missing	Features
The	following	features	do	not	work	in	Qedit/UX:

Beginfile/Endfile	commands.
Hints	are	not	available.
Verify	to	a	line	printer.
Any	MPE-style	command	such	as	:Pause,	:Run,	etc.
Proc	command,	except	for	Up	and	Down.
I/O	redirection	of	Qedit	commands.
Spell	and	Words	commands.
Out=	option	of	the	Listredo	command.
User	Defined	Commands	and	command	files.
The	QEDITCOUNT	variable

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Introduction
Here	we	describe	Qedit	for	Windows.	Qedit	for	Windows	client	lets	you
edit	local	MPE/iX	and	HP-UX	files	from	a	single	MS	Windows	program.	It
consists	of	a	Windows	editing	client	and	an	MPE/iX	or	HP-UX	editing
server	that	work	together	to	edit	your	host	files	for	you.	To	take
advantage	of	Qedit	for	Windows,	you	need	both	the	Qedit	client	and	the
Qedit	server.

Qedit	for	Windows	uses	the	popular	TCP/IP	protocol	for	communicating
between	the	client	and	the	server	(this	is	the	same	protocol	that	you	use
to	access	the	Web).	Configuring	the	Qedit	server	software	requires
creating	the	correct	TCP/IP	environment	for	Qedit	for	Windows.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Server	Process
Qedit	clients	can	connect	to	Qedit/UX	only	if	the	Qedit/UX	daemon
process	is	running	(the	Qedit/UX	daemon	process	cannot	be	started	from
inetd).	This	process	listens	for	connections	on	a	registered	port	number
(described	below).	To	allow	users	to	connect	to	the	Qedit/UX	daemon
process,	you	must	log	on	as	root	and	issue	this	command:

qedit	-d

The	Qedit/UX	daemon	process	should	always	be	running,	so	it	is	a	good
idea	to	automatically	start	the	daemon	as	part	of	the	system	startup
process.	On	HP-UX	9.0,	this	is	done	by	adding	the	following	command	to
the	file	/etc/rc:

/usr/robelle/bin/qedit	-d

More:
HP-UX	10.0
Port	Number

	 	

http://www.robelle.com/products/qedit

	 	

HP-UX	10.0
On	HP-UX	10.0,	you	do	not	modify	the	startup	shell	script.	Instead,	you
need	to	create	a	number	of	files.	HP-UX	10.0	documentation	states	that
the	following	characters	cannot	be	used	as	part	of	the	file	names:

[.,~#].	Otherwise,	you	can	choose	any	name	for	these	files,	as
long	as	the	names	are	consistent	throughout	the	process.	In	our
example,	we	use	qedit_server.

You	first	need	to	create	a	control	file	in	/etc/rc.config.d.	This	file	sets	a
control	variable	that	will	be	checked	by	the	startup	script.	If	the	control
variable	is	set	to	1,	the	server	will	start;	if	it	is	not	equal	to	1,	the	server
will	not	start.	We	will	use	QEDIT_SERVER	as	our	variable	name.	The
/etc/rc.config.d/qedit_server	control	file	will	now	contain	the	following:

#	******	File:		/etc/rc.config.d/qedit_server	******
#	Qedit	for	Windows	server	configuration.
#
#	QEDIT_SERVER:				Set	to	1	to	start
#																		Qedit	for	Windows	server
QEDIT_SERVER=1

Next,	you	need	a	shell	script	that	will	actually	start	the	server.	You	should
make	a	copy	of	a	file	called	/sbin/init.d/template.

cd	/sbin/init.d
cp	template	qedit_server

Modify	the	file	so	that	it	contains	the	necessary	commands	to	start	the
server.	You	have	to	change	all	occurrences	of	CONTROL_VARIABLE	to
the	variable	name	you	used	in	the	control	file	(i.e.,	QEDIT_SERVER).

You	also	need	the	execute	command	for	the	server	program.	Insert	this
command	in	the	section	after	the	'start')	string.	The	section	looks	like	this:

'start')
						#	source	the	system	configuration	variables
						if	[-f	/etc/rc.config]	;	then
														.	/etc/rc.config

http://www.robelle.com/products/qedit

						else
									echo	"ERROR:	/etc/rc.config	defaults	file	MISSING"
						fi
						#	Check	to	see	if	this	script	is	allowed	to	run...
						if	["$QEDIT_SERVER"	!=	1];	then
									rval=2
						else
						#	Execute	the	commands	to	start	your	subsystem
									/opt/robelle/bin/qedit	-d
						fi
						;;

Finally,	you	need	a	symbolic	link	to	specify	when	the	script	in	/sbin/init.d
will	be	executed	at	boot	time.	Typically,	you	would	start	the	server	as	the
last	step	at	run	level	3.	Get	a	list	of	all	the	startup	files	in	/sbin/rc3.d	with

ls	/sbin/rc3.d/S*

Link	names	in	this	directory	follow	a	set	of	conventions.	The	names	start
with	the	letter	S	or	K.	S	links	are	startup	scripts;	K	links	are	shutdown	or
"kill"	scripts.	The	next	three	characters	in	the	name	represent	an
execution	sequence	number.	This	number	must	be	3	digits,	and	its	value
should	be	a	number	greater	than	the	highest	value	on	the	ls	listing.	For
example,	if	the	last	link	is	called	S100nfs.server,	you	could	use
S111qedit_server.	Create	the	symbolic	link	with

ln	-s	/sbin/init.d/qedit_server	/sbin/rc3.d/S111qedit_server

For	the	time	being,	you	do	not	need	a	"kill"	link.

	 	

http://www.robelle.com/products/qedit

	 	

Port	Number
By	default,	Qedit/UX	listens	on	port	number	7395.	This	port	number	has
been	registered	with	the	Internet	Naming	Authority,	so	you	should	not
have	any	conflicts	with	other	HP-UX	tools	for	the	same	port	number.	If
there	is	a	conflict,	you	can	start	the	Qedit	server	process	with	a	different
port	number.	For	example,

qedit	-d5678

tells	Qedit	to	listen	to	port	number	5678	instead	of	the	default	number
(7395).	If	you	change	the	port	number	on	the	Qedit/UX	server,	you	must
also	change	the	port	number	on	every	Qedit	client	to	the	same	value
(5678	in	this	example).	Client	port	numbers	can	be	changed	in	the	Server
dialog	box	of	the	Option	menu.

If	you	want	listings	from	netstat	and	other	networking	tools	to	identify	the
port	number	as	"qwin"	instead	of	just	"7395",	you	have	to	change	the
/etc/services	file	so	that	it	includes	the	Qedit	port	number.

qwin				7395/tcp					#Robelle	Qedit	for	Windows

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Log	Files
The	Qedit	server	can	only	communicate	with	Qedit	clients.	To	help
system	managers	see	what	is	happening	with	the	Qedit	process,	Qedit
for	Windows	writes	to	three	log	files:	the	access	log,	the	error	log,	and	the
trace	log.

More:
Console	Messages
Access	Log
Error	Log
Trace	Log
Log	File	Names

	 	

http://www.robelle.com/products/qedit

	 	

Console	Messages
.inx	.inx	If	Qedit	cannot	access	any	of	its	log	files,	it	writes	the	log
message	to	the	system	console.	You	can	also	enable	console	logging
with	the	Debug	command	in	the	Option	menu	of	the	Qedit	client.	If
someone	is	having	trouble	establishing	a	Qedit	for	Windows	connection
and	the	Qedit	log	files	on	the	host	do	not	include	a	message	for	this
connection,	check	the	system	console.	If	Qedit	was	unable	to	open	the
log	files,	it	probably	reported	the	message	on	the	system	console.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Access	Log
Every	time	a	Qedit	client	makes	a	connection	to	the	server	process,	an
entry	is	written	to	the	access	log	file	in	which	the	IP	address	of	the	client
is	logged.	Qedit	attempts	to	find	the	symbolic	name	of	the	client	IP
address	by	reverse	name	DNS	lookup.	If	this	lookup	is	not	enabled,	Qedit
writes	the	numeric	form	of	the	IP	address	to	the	log	file.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Error	Log
Any	error	conditions	encountered	by	the	Qedit	server	process	are	written
to	the	error	log	file.	If	you	suspect	a	problem	between	the	client	and	the
server,	start	your	diagnosis	by	looking	at	the	end	of	this	log	file.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Trace	Log
By	default,	Qedit	does	not	log	messages	to	the	trace	log	file.	However,
you	can	enable	trace	file	logging	by	using	the	Debug	command	in	the
Option	menu	of	the	Qedit	client.	The	trace	log	file	can	grow	to	become
very	large	because	Qedit	messages	are	constantly	being	added	to	it.
These	messages	assist	in	understanding	the	communication	between	the
Qedit	server	process	and	the	Qedit	client.	In	many	cases,	their	detailed
information	is	the	only	way	to	diagnose	a	problem.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Log	File	Names
By	default,	the	Qedit	server	assumes	that	the	log	files	are	located	in	this
directory:

/opt/robelle/log/qedit/

If	you	have	installed	Qedit	in	a	different	directory,	Qedit	should	be	able	to
detect	its	new	location	automatically	and	adjust	the	log	files	location
accordingly.	If	you	prefer,	you	can	explicitly	change	the	default	directory
of	the	log	files	by	using	the	ROBELLE	environment	variable.	The	three
log	files	are	called:

access.log
error.log
trace.log

Like	most	UNIX	log	files,	these	files	will	continue	to	grow	until	you	run	out
of	disc	space.	We	recommend	archiving	the	log	files	in	a	separate
directory	and	saving	them	each	week.	After	archiving,	you	can	remove
everything	from	the	log	files	with	these	commands:

cp	/dev/null		access.log
cp	/dev/null		error.log
cp	/dev/null		trace.log

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Running	Qedit	with	Reflection
Walker	Richer	&	Quinn	produces	Reflection,	the	well-known	terminal
emulator	for	IBM	PCs,	which	can	be	combined	with	Qedit	in	a	number	of
useful	ways.	See	also	the	section	Variables	that	Drive	Qedit	in	the
"Running	Qedit	under	HP-UX"	chapter.

More:
Alt-Y	vs.	:Reflect
Form	Feed	Causing	Return/Line	Feed
Completion	Codes
Controlling	the	PC
Accidental	Exit	from	Reflection
Changing	the	Exit	Keystroke

	 	

http://www.robelle.com/products/qedit

	 	

Alt-Y	vs.	:Reflect
Q:	Why	do	some	Reflection	command	files	work	fine	when	I	execute
them	from	the	Alt-Y	command	line,	but	go	screwy	when	I	execute	them
using	Qedit's	:Reflect	command?

A:	Qedit's	:Reflect	command	sends	an	escape	code	to	Reflection	to
invoke	the	command,	then	Qedit	waits	for	Reflection	to	send	back	a
status	code	to	indicate	when	the	command	is	finished.	While	Qedit	is
waiting	for	the	result	code	from	Reflection,	it	isn't	capable	of	executing
other	Qedit	commands	-	it's	already	executing	a	Qedit	command!	The
only	thing	that	Qedit	is	capable	of	doing	while	it's	waiting	is	to	execute
any	shell	commands	that	Reflection	might	send	to	the	HP	9000.	The
reason	why	shell	commands	must	be	accepted	is	that	Reflection	sends	a
command	to	execute	unxlink2	whenever	a	file	transfer	is	requested.

As	long	as	the	command	or	command	file	doesn't	attempt	to	transmit	any
data	to	the	HP	9000,	:Reflect	will	probably	work	the	same	way	as	Alt-Y.

For	example,	here	is	a	Reflection	command	file	that	works	from	Alt-Y,	but
not	from	:Reflect.

;	EXIT.RCL
;	This	command	file	gets	me	out	of	Qedit,	logs	me	off
;	the	HP	9000	and	exits	from	Reflection.
;
transmit	"exit^M"
wait	0:01:00	for	"[no]:"
transmit	"yes^M"
wait	0:01:00	for	"$"
transmit	"exit^M"
wait	0:01:00	for	"terminated>"
wait	0:00:05
hardexit

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Form	Feed	Causing	Return/Line	Feed
In	Modify,	the	Lengthen	control	code	(Control-L)	means	edit	the	end	of
the	current	line.	However,	in	recent	versions	of	Reflection,	^L	is	executed
by	the	PC	as	you	type	it	and	causes	a	Return/line	feed.	If	this	is
happening	to	you,	you	can	change	the	default	in	Reflection.	Press	Alt-Y
for	the	Reflection	command	line,	type	Set	Do-Form-Feeds	No,	press
Return,	then	type	Save	and	press	Return	again	to	save	the	new	default
to	your	current	configuration	file.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Completion	Codes
If	you	are	using	version	2.00	or	later,	Qedit	automatically	enables
completion	codes	on	Reflection	commands.	If	these	have	been	disabled
with	Set	Disable-Comp-Codes	YES,	you	will	find	that	your	terminal	hangs
when	Qedit	attempts	to	execute	a	Reflection	command;	just	press	Return
to	get	out	of	this	situation.	To	avoid	this	situation,	you	press	Alt-Y,	type
Set	Disable-Comp-Codes	NO,	press	Return,	then	type	Save	and	press
Return	again	to	save	the	new	default	to	your	configuration	file.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Controlling	the	PC
The	Reflect	command	allows	you	to	execute	any	Reflection	PC
command	from	within	a	Qedit	usefile	or	shell	script.	This	allows	you	to	do
things	like	automatically	download	and	upload	files	and	run	programs.

For	more	details,	see	the	:Reflect	command.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Accidental	Exit	from	Reflection
If	you	use	Reflection	for	DOS,	and	you	press	Alt-X	while	in	Visual	mode,
some	versions	of	Reflection	allow	you	to	recover.

Get	back	into	Reflection.	Your	usual	method	is	okay,	unless	you	use	a
command	file	that	performs	other	deeds,	such	as	logging	you	on.	A
command	file	would	send	the	logon	commands	to	a	puzzled	Qedit
session,	so	use	"r1"	at	the	DOS	prompt	instead.	Back	in	Reflection	again,
press	Alt-M	for	the	Modes	function	keys.	Ensure	that	none	of	the	labels
on	the	display	show	an	asterisk	(i.e.,	are	activated)	except	for	the
Remote	Mode	key.

Press	Return	or	Enter	--	Qedit	accepts	either	one.	If	you're	back	in	your
Visual	mode	session,	Qedit	prints	the	status	line	with	an	error.	It	might	be
No	//	at	the	end,	so	no	UPDATE	(see	qscreen)	or	maybe	Read	error
on	CRT.	Try	again	or	reduce	speed.	Type	an	asterisk	after	the	home
line	arrow	(===>),	and	press	F7.	If	the	function	keys	are	properly
defined	for	Qedit,	your	file	appears.	Any	changes	you	made	to	the	screen
between	your	last	update	and	the	time	you	pressed	Alt-X	are	lost.	The
qscreen	file	is	of	no	use	in	this	case.	Sometimes	Qedit	is	slow	to	display
the	status	line	and	error	message.	If	you	see	some	flashing	on	the	screen
that	hints	at	activity,	be	patient.	But	if	nothing	happens	when	you	press
F7,	or	if	random	characters	appear	right	after	the	asterisk,	it	probably
means	that	F7	is	not	defined	properly.	But	we	can	fix	that.

Display	the	menu	to	define	the	function	keys	by	pressing	Ctrl-F9.	To	set
these	back	to	the	default	values,	press	F3.	The	labels	become	F1,	F2,
F3...	Press	F9	to	activate	the	changes	and	go	back	to	your	regular
screen.	Pressing	F7	should	now	work;	then	press	Return.	Qedit	may
display	an	error	message,	such	as	"UNKNOWN	COMMAND	NAME",	but
you	will	still	get	your	file	back.	Again,	changes	to	the	screen	after	the	last
update	will	have	vanished.

In	the	worst	case,	you	will	not	be	able	to	recover.	Log	on	from	scratch.
When	you	open	your	file,	Qedit	will	display	the	message:	Warning:
Recovery.	Your	file	will	be	current	up	to	your	last	update.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Changing	the	Exit	Keystroke
The	Alt-X	keystroke	for	exiting	from	Reflection	back	to	DOS	is	too	close
to	the	Alt-D	(delete	line)	and	Ctrl-X	("re-think")	keys.	Accidentally
pressing	Alt-X	and	shutting	down	Reflection	in	the	middle	of	a	Visual
screen	is	pretty	disastrous.	WRQ	has	added	a	"remappable	keyboard"	in
Reflection	that	allows	the	user	to	specify	which	keys	perform	what
functions.	The	exit-to-dos	function	can	be	activated	by	a	different,	harder-
to-type	key	sequence.

To	remap	your	keyboard	in	Reflection	for	DOS,	first	create	a	DOS	file
called	REMAP.KBM	with	the	following	lines:

KEYBOARD-ID	=	ENHANCED
TERM	=	HP
alt	x							=	null
alt	ctrl	x		=	exit-to-dos

Then	activate	the	changes	by	typing	C:>	KEYMAP	REMAP.KBM	R1.CFG
at	the	DOS	prompt.	See	your	Reflection	user	manual	for	full	details.
Reflection	for	Windows	also	has	a	remappable	keyboard,	but	uses	a
different	method	of	configuring	it.	See	your	Reflection	for	Windows	on-
line	help	or	user	manual	for	details.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Files	without	NewLine	Characters
On	UNIX,	files	can	contain	NewLine	(nl)	characters	at	the	end	of	each
line.	However,	the	NewLine	characters	are	optional.	Some	files	have
them.	Others	don't.

Qedit/UX	requires	that	lines	be	separated	by	a	NewLine	(NL)	character.	If
that's	not	the	case,	Qedit/UX	assumes	the	file	does	not	contain	anything.
Thus,	the	Text	command	might	display:

/Text	longfile
'Language'	is	now	DATA
0	lines	in	file

If	you	run	into	this	problem,	you	have	to	find	a	way	to	insert	these
NewLine	characters	in	appropriate	places	and	break	the	file	into
manageable	pieces.

Starting	with	version	5.3.13	of	Qedit/UX,	you	can	use	the	Length	option
of	the	Text	command.	This	option	allows	you	to	specify	the	maximum
size	in	bytes	of	each	line.	The	file	will	be	split	in	a	number	of	same-size
lines	except	the	last	one	if	the	total	size	of	the	file	is	not	evenly	divisable
by	the	specified	length.

If	the	file	contains	Newline	characters,	these	characters	are	processed	as
data.	You	should	be	very	careful	when	editing	such	files.	If	you
inadvertently	remove	one	or	more	of	these	characters,	other	programs
might	have	problems	using	the	file	again.	Since	Newline	characters
causes	terminals	to	move	to	the	next	line,	we	recommend	that	you	use
the	$Char	or	the	$Hex	option	on	List	commands.

For	example,	to	break	a	file	into	80-byte	lines,	you	should	use:

/Text	longfile,length	80

Another	way	to	accomplish	this	is	by	using	the	 fold	command.

fold	-w	80	longfile	>	shortfile

In	this	example,	the	file	 longfile	is	broken	down	into	fixed-length
lines,	each	line	containing	a	maximum	of	80	bytes.	The	result	is	written	to
a	new	file	called	 shortfile.	It	is	then	possible	to	edit	the	new	file
using	Qedit/UX.

Once	you	have	made	all	the	necessary	changes,	you	can	put	the	short

lines	back	together	by	removing	the	NewLine	characters.	You	can	use
the	UNIX	 awk	to	perform	this	operation.

awk	-v	ORS=""	'{	print	$0	}'	shortfile	>	longfile

The	Output	Record	Separator	(ORS)	argument	is	used	to	specify	the
character	to	be	inserted	between	lines.	In	this	case,	you	don't	specify
any.

Because	of	a	limitation	in	awk,	you	cannot	assemble	lines	with	more	than
3,071	bytes.	So,	you	have	to	remember	not	to	exceed	this	maximum	in
the	fold	command.

Another	option	is	to	use	the	UNIX	 tr	command	and	remove	all
Newline	characters.

tr	-d	"/n"	<	shortfile	>	longfile

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Lines,	Strings	and	Ranges
Character	strings	can	be	used	of	line	numbers	to	qualify	lines	on	most
commands.	In	its	simplest	form,	a	command	can	have	a	single	string
using	all	the	search	window	defaults.

/List	"enhancement"

The	search	string	can	be	further	qualified	using	temporary	window
settings	as	in:

/List	"enhancement"	(Upshift	20/50)

This	example	searches	for	the	word	 enhancement	regardless	of
the	case	used	in	columns	20	to	50.

Qedit	allows	up	to	10	search	strings	on	a	single	command.	Individual
strings	are	separated	from	each	other	with	the	OR	keyword.	Each	string
can	have	its	own	temporary	window.

/List	"enhancement"	(U	20/50)	or	"bug"	or	"customer"	(1/30)

The	search	range	can	be	different	depending	on	the	command	it	is	used
on.	For	example,	a	List	command	searches	all	the	lines	in	the	file	by
default	while	a	Find	command	starts	from	the	current	line.	The	search
range	can	be	specified	on	individual	commands	using	a	rangelist.	A
rangelist	is	often	specified	using	line	numbers	(absolute	or	relative),
special	keywords	(First,	Last,	All)	or	characters	(@,	*,	[,]).	To	define	a
block	of	lines,	the	user	can	enter	2	line	numbers	separated	a	slash	"/"
e.g.	1/6.

It	is	also	possible	to	define	a	block	of	lines	using	a	string	range.	This
syntax	allows	the	use	of	strings	to	define	the	start	and	end	of	the	range.	A
string	range	can	also	be	combined	with	a	numeric	line	range	to	further
define	the	block.	Here	are	some	examples:

/List	"start-proc"	/	"end-proc"
/Change	"a"	"b"	"start-proc"	/	"end-proc"
/Delete	"start-proc"	/	"end-proc"	20/100

The	List	command	above	finds	the	first	occurrence	of	 start-proc
in	the	file	and	uses	it	as	the	range	start	location.	It	then	finds	the	first
occurrence	of	 end-proc	starting	from	the	start	location.	It	uses	that
line	as	the	range	end	location.	Finally,	it	lists	all	the	lines	between	the	2
locations.	By	default,	List	starts	at	the	beginning	of	the	file.

The	Change	command	above	replaces	all	occurrences	of	the	letter
a	with	a	 b	in	the	lines	between	(and	including)	 start-

proc	and	 end-proc.	By	default,	Change	starts	at	the	current	line.

The	Delete	command	above	removes	all	the	lines	between	(and
including)	 start-proc	and	 end-proc	found	in	lines	20	to
100.	By	default,	Delete	starts	at	the	beginning	of	the	file.

A	string	range	does	not	behave	like	a	rangelist	e.g.	1/20	in	all	cases.	For
example,	the	first	statement	is	not	a	valid	construct	with	the	second
statement	is.

/Delete	"bug"	"start-proc"/"end-proc"
Error:	Linenum	
/Delete	"bug"	10/30

You	can	use	the	Find	command	and	the	ZZ	marker	to	work	around	the
problem.	If	you	enter	a	simple	strings	on	a	Find	command,	Qedit	stops	at
the	first	string	occurrence	and	sets	the	current	line.	You	can	then	perform
any	operation	on	that	line	or	use	it	as	a	starting	point.	If	you	specify	a	line
range,	the	Find	command	sets	the	ZZ	marker	to	the	block	of	lines.	You
then	use	the	ZZ	marker	on	subsequent	commands.

/F	"start-proc"	first
			5					Start-Procedure.
						(1)^
/F	"start-proc"/"end-proc"	first
Lines	5/11	saved	in	ZZ
/Delete	"bug"	zz
				8				_bug-display-section.
1	line	Deleted!					

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Introduction
Qedit	operates	in	Line	mode	or	Visual	mode,	depending	upon	the	type	of
terminal.	The	same	commands	are	used	in	both	modes.	In	Line	mode,
you	do	everything	with	commands.	In	Visual	mode,	you	do	most	editing
with	built-in	functions	of	your	terminal,	but	use	commands	for	some
things.	Line	mode	commands	work	in	Visual	mode,	and	Visual	mode
function	keys	work	in	Line	mode.

Here	we	describe	the	Qedit	commands	in	alphabetic	order.	For	each
command,	we	show	both	the	longest	and	the	shortest	name	that	Qedit
can	recognize,	as	in	Add	[A].	Highlighted	terms	(e.g.,	linenum)	and	jargon
words	(e.g.,	"workfile")	are	defined	in	the	"Glossary".	The	Visual
command	is	described	only	briefly	in	this	section:	see	the	chapter
"Getting	A	Quick	Start	with	Full-Screen	Editing"	for	full	details.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

General	Notes
Here	are	general	guidelines	that	apply	to	using	the	Qedit	commands.

More:
Abbreviations
Uppercase	or	Lowercase
Multiple	Commands	per	Line
Comments	on	Command	Lines
Stopping	Commands	with	Control-Y
Implicit	Commands
Function	Keys
Shell	Commands
Calculator	Commands

	 	

http://www.robelle.com/products/qedit

	 	

Abbreviations
Each	Qedit	command	has	a	name	such	as	List	that	you	can	abbreviate	to
any	leading	subset.	Thus,	L	means	List.	Some	commands	require	more
than	one	letter:	GARbage,	DEStroy,	RENumber,	SHut,	VIsual.	You	may
append	option	letters	to	the	command:	Q,	T,	or	J.	Q	means	"quiet",	T
means	"template",	and	J	means	various	things,	depending	on	the
command.

list	all					{fully	spelled	out}
l	@										{maximal	abbreviation}
lq											{list	quietly}
listqt							{list	quietly,	with	template}
lqjt									{list	quiet,	jumping,	with	template}
list	$							{most	recent	external	file	name}
s	dec	on					{Set	Decimal	command}
sh											{Shut	command}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Uppercase	or	Lowercase
You	can	enter	the	commands	in	uppercase	or	lowercase.	Shell
commands	such	as	ls	and	cd	can	only	be	in	lowercase.	These
commands	are	identical:

LIST	ALL				{uppercase}
list	all				{lowercase}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Multiple	Commands	per	Line
You	can	enter	several	commands	on	a	single	line,	if	you	separate	them
with	semicolons.	The	maximum	command	line	is	256	characters,	and	\	is
not	supported	for	continuation.	If	you	want	to	have	an	HP-UX	command
or	a	calculator	command	in	the	stack,	you	should	enclose	it	in
parentheses.	This	prevents	Qedit	from	passing	the	rest	of	the	line	as
parameters.	For	example,

List	5;!find	.	-name	testfile	-exec	cat	{}	;	{fails}

List	5;(!find	.	-name	testfile	-exec	cat	{}	;)
{works}

If	the	syntax	requires	semicolons	and	parentheses,	you	have	to	put	the
problematic	command	in	a	shell	script	and	use	it	in	the	command	list
instead.

Any	error	causes	Qedit	to	flush	the	remaining	commands	in	the	line.

list	505;add	*-1			{list	line	505;	add	just	before	it}
shut;who

When	combining	Qedit	commands,	be	certain	to	use	the	same	quote
character	in	all	the	commands.

Wrong:

/c7/7"DISPLAY";c\.\\

Right:

/c7/7"DISPLAY";c".""

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Comments	on	Command	Lines
You	may	annotate	Qedit	commands	by	putting	comment	text	in	curly
braces	at	the	end	of	the	line:

keep	sample,yes				{update	disc	file}

Such	comments	are	recognized	at	the	"/"	prompt,	in	usefiles,	as	well	as
Visual's	home	line	and	Next?	prompt	and	List's	More?	prompt.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Stopping	Commands	with	Control-Y
You	can	stop	most	Line	mode	functions	by	pressing	the	Control-Y	key.
For	example,	to	stop	an	inadvertent	List	ALL,	use	Control-Y.	To	stop	the
Add,	Modify,	or	Replace	commands,	use	either	Control-Y	or	two	slashes
(//).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Implicit	Commands
Some	commands	have	no	alphabetic	name.	In	Line	mode,	pressing	only
Return	means	display	the	next	line	and	a	backslash	(\)	means	display	the
previous	line,	$	means	enable	Memory	Lock	and	$-	means	disable
Memory	Lock.	In	either	mode,	?	means	Help,	any	line	number	means	go
to	that	line,	a	string	means	display	the	next	line	with	that	string,	and	"^"
means	search	backwards	for	a	string:

55 find	and	display	line	55	or	higher
FIRST find	and	display	first	line
;;;; display	the	next	5	lines
\ display	the	previous	line
-5 move	current	line	back	5	lines
"string" display	next	line	with	string
^"string" display	previous	line	with	string
$ turn	on	memory	lock	at	this	line
$- turn	off	memory	lock

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Function	Keys
Qedit	accepts	the	eight	user	function	keys	of	HP	terminals	as	one-
keystroke	abbreviations	for	useful	functions:

F1 Go	into	Visual;	Update/Getnext	if	in	Visual
F2 Roll	the	screen	up	6	lines;	browse
F3 Findup	(find	previous	line	with	current	string)
F4 Find	(find	next	line	with	current	string)
F5 Browse	Backward	One	Page
F6 Browse	Forward	One	Page
F7 Listredo	(line)	or	execute	 ===>	line	(Visual)
F8 Exit	from	Qedit	or	Exit	from	Visual	to	Line	mode

^1	through	^8	are	another	way	of	invoking	the	user	function	keys	in	Line
mode.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Shell	Commands
Qedit	accepts	most	HP-UX	commands	and	scripts.	If	the	shell	command
matches	an	existing	Qedit	command,	you	must	precede	it	with	a	colon	(:)
or	an	exclamation	(!).	See	Running	Qedit	on	HP-UX	for	more	details.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Calculator	Commands
Any	command	that	begins	with	an	equal	sign	(=)	is	treated	as	a	calculator
expression.	This	feature	can	be	used	to	compute	temporary	values	and
do	conversions	from	one	number	base	to	another.

=64,O
Result=	%000100

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Add	Command	[A]
Adds	lines	into	the	workfile.	There	are	five	varieties	of	Add	that	cover	all
the	ways	you	can	add	lines	into	a	Qedit	workfile:

NEW Add	new	lines	to	your	workfile	from	Stdin.
STRING Add	a	new	line	from	the	command	prompt.
COPY Copy	lines	from	one	place	to	another.
MOVE Move	lines	from	one	place	to	another.
FILE Bring	lines	in	from	an	external	file.
More:
Add	(Adding	New	Lines)
Add	(Adding	a	String	as	a	Line)
Add	(Copying	Lines	within	a	File)
Add	(Moving	Lines	within	a	File)
Add	(Copying	Lines	Between	Files)

	 	

http://www.robelle.com/products/qedit

	 	

Add	(Adding	New	Lines)
Add	some	new	lines	from	the	terminal	keyboard.	Insert	them	at	a	given
line	number	or	after	it.

ADD	[linenum]

(Q=no	linenums,	J=justified,	T=template)

(Default:	linenum	=	*)

The	linenum	parameter	specifies	where	to	add	new	lines	and	also
determines	the	increment	between	new	lines.	If	linenum	is	9.1,	lines	will
be	incremented	by	0.1;	if	9.01,	then	0.01.	If	linenum	already	exists,	Qedit
increments	it	and	begins	adding	after	the	existing	line.	If	linenum	is	0,
Qedit	adds	new	lines	before	the	first	existing	line	in	the	file.	If	you	don't
say	which	linenum,	Add	inserts	the	lines	after	the	current	position	(*).
(See	Miscellaneous	Points	below.)

Examples

/add	5													{add	new	lines	after	line	5}
				5.1			line	a			{Qedit	prompts	with	line	number}
				5.2			line	b			{you	enter	line	of	text	and	Return}
				5.3			//							{you	enter	//	or	Control-Y	to	stop}
/aq																{add	after	*	line;	no	prompt}
This	is	new	text
//																	{end	the	Add	command}

Temporary	Workfile

If	you	do	not	have	a	named	workfile	Open	when	you	Add,	Qedit
automatically	builds	a	temporary	workfile	for	you.	This	file	has	a	random
file	name	and	is	created	in	 /var/tmp	by	default.	If	you	want	to
have	temporary	files	in	a	different	directory,	enter	the	new	path	name	in
the	TMPDIR	environment	variable.

TMPDIR=/home/user1/tmp
export	TMPDIR

http://www.robelle.com/products/qedit

Keep	in	mind	that	Qedit	works	with	absolute	filenames	and	these	names
can	not	have	more	than	240	characters.

If	you	make	any	changes	to	the	file	(e.g.,	by	adding	lines),	Qedit	will	ask	if
you	want	to	save	your	changes	when	you	exit.

Using	the	Tab	Key

By	default,	Qedit	defines	tabs	every	8	columns	across	the	line	(every	10
for	Qedit/MPE).	You	can	override	these	default	tab	stops	using	Set	Tabs
Stop	n	(every	2	to	15	characters)	or	Set	Tabs	5	10	22	28	...	for
completely	custom	tab	stops.	When	you	press	the	tab	key	as	you	Add
lines,	Qedit	correctly	inserts	spaces	in	your	lines	and	skip	to	the	correct
column	on	your	screen	(assuming	you	are	using	an	HP	terminal).

Overflowing	Lines	or	Line	Numbers

The	Add	command	continues	prompting	until	you	press	Control-Y,	or	you
type	"//"	at	the	end	of	a	line,	or	you	run	out	of	line	numbers.	When	you
exhaust	the	line	numbers	possible	between	two	lines,	Qedit	prints	"Error:
Already".	You	can	continue	by	doing	a	range	Renumber	on	the	area
where	you	wish	to	add	more	lines.	Thus,	if	your	last	line	added	was
4.999,	use	Renum	4/5	to	spread	out	the	lines	between	4	and	5.

You	can	configure	Qedit	to	automatically	renumber	part	of	the	file	so	that
you	do	not	have	to	renumber	it	manually.	See	the	Set	Visual	Renum
option.

Line	Wraparound

If	you	enter	a	line	that	is	too	long,	Qedit	divides	it	into	several	lines.	Set
Wraparound	ON	divides	lines	on	"word"	boundaries	only.	Any	words	that
will	not	fit	on	the	current	line	are	moved	to	the	next	line.	If	only	a	small
number	of	words	are	moved	to	the	next	line,	Qedit	prompts	you	to
complete	the	line.	To	end	the	Add	when	this	happens,	press	Return
before	typing	"//".	If	you	are	editing	FORTRAN	source	code,	Qedit
generates	a	valid	continuation	line	for	you.

Automatically	Indenting	Lines

AJ	for	justified	is	a	special	option	to	indent	new	lines.	The	linenum	you
specify	must	be	an	existing	line.	You	enter	new	lines	beneath	it.	Qedit	will
then	indent	the	new	lines	by	exactly	the	same	number	of	spaces	as	the
existing	line.	You	can	shift	the	indentation	left	by	typing	{'s	at	the	start	of	a
line,	or	shift	it	right	with	}'s.	To	redefine	the	{	and	}	characters,	use	Set
Zip.

Modifying	a	Line	During	Add

When	you	know	you	made	a	typo,	and	prefer	to	fix	it	now	instead	of	going
on,	the	auto-modify	character	will	help	you.	Enter	the	command	Set	Zip
[]@{}#,	or	better	yet,	put	it	in	your	Qeditmgr	configuration	file.	The	#
character	(or	other	special	character	of	your	choice)	is	called	the	auto-
modify	character.	It	allows	you	to	modify	the	line	you	are	currently
entering.	Type	"#"	at	the	end	of	the	line,	and	Qedit	redisplays	the	line	for
you	to	modify.	When	you	are	done	with	the	Modify,	you	press	Return	to
continue	adding	new	lines.

Miscellaneous	Points	to	Note

If	you	have	Set	Left/Right	margins,	the	new	lines	added	will	have	spaces
to	the	left	and	right	of	the	margins.	That	is,	the	line	you	enter	will	be	left-
justified	within	the	current	margins	of	the	workfile.

The	maximum	default	increment	between	new	lines	is	1.0	(or	0.1	for
standard	COBOL	files).	You	can	change	this	default	with	Set	Increment.

You	can	ask	Qedit	to	remove	nonprinting	characters	from	your	input	lines
using	Set	Editinput	Data	ON.	If	you	do	not	wish	to	allow	the	extended
Roman-8	characters,	use	Set	Editinput	Data	ON	Extend	OFF.

	 	

http://www.robelle.com/products/qedit

	 	

Add	(Adding	a	String	as	a	Line)
Add	one	new	line,	with	the	text	coming	from	a	string	in	the	command
itself.	This	is	handy	when	you	need	some	literal	text	within	a	User
Command	or	Use	file,	but	don't	want	to	create	a	temporary	file	to	hold	it.

ADD	linenum	string

(Q=no	linenums,	J=justified,	T=template)

(Default:	linenum	=	*)

The	linenum	parameter	specifies	where	to	insert	the	new	line	containing
the	string.

Examples

/add	5	"new	line"
			5.1				new	line
/add	10.01	"change	datasetdata	setall"
		10.01			change	datasetdata	setall

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Add	(Copying	Lines	within	a	File)
Add	lines	by	copying	duplicates	of	existing	lines.

ADD	linenum	=	rangelist

(Q=no	display)

(Defaults:	none)

The	linenum	parameter	tells	Qedit	where	to	insert	the	copied	lines.	The
number	of	decimal	places	in	linenum	tells	Qedit	how	finely	to	number	the
new	lines:

/add	50	=	1/9											{new	lines	will	be	50.1,	50.2,	50.3...}
/add	50.10=1/9										{new	lines	will	be	50.10,	50.11,	50.12...}

The	rangelist	parameter	tells	Qedit	which	lines	to	copy:

/add	50.1	=	1/9	10/15	{'1/9	10/15'	is	the	rangelist

Examples

/list	4/8															{how	lines	look	before	the	copy	command}
				4					aaaaaaaa
				5					bbbbbbbb
				6					cccccccc
				7					dddddddd
				8					eeeeeeee
/add	5	=	7/8												{copy	lines	7	and	8	after	line	5}
				5.1			dddddddd
				5.2			eeeeeeee
2	lines	COPIED
/list	4/8															{how	lines	look	after	the	copy	command}
				4					aaaaaaaa
				5					bbbbbbbb
				5.1			dddddddd

http://www.robelle.com/products/qedit

				5.2			eeeeeeee
				6					cccccccc
				7					dddddddd
				8					eeeeeeee
/aq	5	=	5															{duplicate	line	5	after	itself}

Notes

Add	prints	each	new	line,	unless	you	use	AQ.	When	you	copy	lines,	the
rangelist	must	not	include	the	linenum	(e.g.,	/Add	5	=	4/6	is	rejected
because	it	would	be	an	infinite	loop).	Qedit	prints	"Error:	Already".	The
lines	copied	are	not	deleted	from	the	original	location.	You	now	have	two
copies	of	the	lines	(and	a	copy	in	the	Hold0	file,	see	Add-Move).

If	you	have	Set	Left/Right	margins,	Qedit	prints	only	the	portion	of	each
line	within	the	margins.	However,	it	will	actually	copy	the	entire	line,
including	the	portion	outside	of	the	current	margins.

	 	

http://www.robelle.com/products/qedit

	 	

Add	(Moving	Lines	within	a	File)
Move	some	lines	from	one	place	in	the	file	to	another,	deleting	them	from
the	original	position.

ADD	linenum	<	rangelist

(Q=no	display)

(Defaults:	none)

The	linenum	tells	Qedit	where	to	move	the	lines.	The	number	of	decimal
places	in	linenum	determines	the	line	number	increment.	For	example,
"/add	5.10<100/200"	creates	lines	5.10,	5.11,	5.12,	etc.

The	rangelist	tells	Qedit	which	lines	to	move.	Add	deletes	the	original
lines	after	moving	them.	You	still	only	have	one	copy	of	each	line.

Examples

/list	4/7									{how	lines	look	before	the	move}
				4					aaaaaaaa
				5					bbbbbbbb
				6					dddddddd
				7					cccccccc
/add	5	<	7								{move	line	7	after	line	5}
				5.1			cccccccc
1	line	MOVED
/list	4/7									{how	lines	look	after	the	move}
				4					aaaaaaaa
				5					bbbbbbbb
				5.1			cccccccc
				6					dddddddd

Notes

Control-Y	during	a	move	stops	the	move,	but	it	also	changes	the	move
into	a	copy.	The	lines	being	moved	in	the	current	range	are	not	deleted.

http://www.robelle.com/products/qedit

Add-Move	ignores	Set	LEFT/RIGHT	margins;	it	moves	entire	lines.
However,	it	only	prints	the	portion	of	the	line	within	the	current	margins.

When	you	copy	or	move	lines	using	Add=	or	Add<,	Qedit	first	puts	the
lines	into	a	"Hold"	file	called	Hold0.	It	then	counts	the	lines.	If	you	do	not
have	sufficient	line	numbers	to	insert	the	new	lines,	Qedit	stops	and
prints	"Error:	Already".	Use	Renum	to	renumber	the	range	of	line
numbers	and	then	copy	the	lines	from	the	Hold0	file.	See	also	the	Hold
command.

/list	hold0
/add	55=hold0					{add	from	Hold	file}

	 	

http://www.robelle.com/products/qedit

	 	

Add	(Copying	Lines	Between	Files)
Add	lines	to	the	workfile	from	an	external	file.

ADD	linenum	=	filename	[,UNN]	[rangelist]

(Q=no	display)

(Default:	entire	file)

The	linenum	tells	Qedit	where	to	begin	adding	the	lines	from	the	external
file.

The	filename	tells	Qedit	which	file	to	copy	from.	It	can	be	any	type	of	disc
file.	If	any	of	the	lines	are	too	long,	they	will	be	truncated	with	a	warning.
Use	filename,UNN	when	you	are	adding	from	a	data	file	with	numeric
characters	in	the	last	eight	columns	which	are	not	really	sequence
numbers.

The	rangelist	tells	Qedit	how	much	of	the	file	to	copy.	The	default	is	to
copy	the	entire	file.	If	the	external	file	does	not	have	sequence	numbers,
Qedit	assumes	that	the	file	is	numbered	from	1	by	the	current	Set
Increment.	When	you	specify	a	rangelist,	Add	leaves	a	copy	of	the	lines
from	the	external	file	in	the	Hold0	file,	as	well	as	in	your	workfile.

Examples

/add	500.01	=	abc							{copy	in	the	file	ABC	after	500.01}
		500.001	abc	line-1				{prints	each	line	copied	from	file}
		500.002	abc	line-2				{prints	new	line	numbers	too}
/aq	5	=	xyz	5/10								{copy	in	lines	5/10	of	the	file	XYZ}
/l	template	"$page"(up)	{list	page	breaks	in	a	file}
				1				$PAGE	"xx"					{select	the	template	you	want}
			24				$PAGE	"yy"
			37				$PAGE	"zz"
/add	5=template	24/36			{copy	the	lines	between	$pages}
/shut	/dev/src/test.c			{establishing	"previous"	file}
/new	cust															{open	another	file}
/a	1	=	$	50/60										{$	stands	for	/dev/src/test.c}

http://www.robelle.com/products/qedit

Notes

Add	prints	each	line	as	it	copies	it,	unless	you	use	AQ.	If	Qedit	finds
invalid	sequence	numbers	in	a	file,	it	begins	assigning	"logical"	sequence
numbers	using	the	last	valid	sequence	number	and	the	current	Set
Increment.

If	you	have	Set	Left/Right	margins,	Qedit	inserts	blanks	before	the	left
margin	in	each	line.	That	is,	the	lines	from	the	external	file	are	left-
justified	within	the	current	margins	of	the	workfile.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Append	Command	[AP]
Appends	a	string	to	the	end	of	each	line	in	the	rangelist.

APPEND	"string"	[rangelist]

(Q=no	display)

(Default:	rangelist	=	*)

Append	allows	you	to	add	a	semi-colon	(or	any	other	string	of	characters)
to	the	end	of	a	line	(/AP	";"	5/10).	Append	prints	each	line	that	it	changes.
If	the	resulting	line	would	be	too	long,	Append	goes	into	Modify	on	that
line.

Examples

/list	25
			25				to	the	end	of	the	line
/append	"!"
			25				to	the	end	of	the	line!
/ap	")"	1/4
				1							(redo	function)
				2							(modify	function)
				3							(append	function)
				4							(list	function)

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Backward	Command	[BA/F5]
Starts	"browsing"	the	current	file	by	displaying	one	page	"backward".	You
stay	in	"browse"	mode	until	you	enter	any	command	(see	List,	jumping
option).

BACKWARD

(F5	key	does	the	same)

In	Line	mode,	Backward	and	Forward	(or	F5/F6)	throw	you	into	List-
Jumping's	browse-mode.	Qedit	displays	a	screen	of	text,	where	the
screen	size	is	either	23	lines	or	what	you	specify	with	Set	List	LJ,	then
waits	for	you	by	asking	"More?".	Press	Return	to	see	the	next	screen.
Typing	a	line	number	moves	you	to	the	screen	starting	at	that	line,
pressing	F2-F6	does	the	appropriate	action,	and	F8	or	"//"	or	Control-Y	or
typing	any	command	gets	you	out	of	browse-mode.	At	the	"More"	prompt,
the	*	"current"	line	is	the	last	line	displayed.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Before	Command	[B]
Repeat	any	combination	of	the	previous	1,000	command	lines,	with	or
without	editing.

BEFORE

[start	[/	stop]]

[string]

[ALL	|	@]

(Default:	redo	previous	line)

(BQ=redo	without	change)

(BJ=listredo)

The	Before	command	allows	you	to	modify	the	commands	before	it
executes	them.	If	you	don't	need	to	change	them,	use	BQ	or	:Do.
Commands	are	numbered	sequentially,	starting	with	1	for	the	first
command	entered	and,	by	default,	the	last	1,000	commands	are
accessible.	This	numbering	sequence	applies	only	to	the	temporary	redo
stack,	because	this	stack	is	discarded	when	you	exit	Qedit.	The
numbering	sequence	in	a	persistent	redo	stack,	which	is	accessible
across	Qedit	invocations,	continues	between	invocations.	Use	the
:Listredo	or	BJ	command	to	display	the	previous	commands.	You	can
redo	a	single	command,	a	range	of	commands,	or	the	most	recent
command	whose	name	matches	a	string.

The	Before	command	uses	Qedit-style	Control	characters	for	modifying
the	commands.	The	default	mode	is	to	replace	characters.	To	delete	use
Control-D,	and	to	insert	use	Control-B.	If	you	prefer	HP-style	modify	(D,
R,	I,	and	U),	use	the	:Redo	command	instead	of	Before,	or	do	Set	Modify
HP.

Examples

/ls	/users/obb																{"bob"	is	not	spelled	right}
/users/obb	not	found
/Before																							{redo	most	recent	command}
ls	/users/obb																	{last	command	is	printed}
										bob																	{you	enter	changes	to	it}
ls	/users/bob																	{the	edited	command	is	shown}

																														{you	press	Return}
/listredo	-10/																{show	last	10	commands}
/before	5																					{redo	5th	command	in	stack}
/bef	8/10																					{redo	8th	through	10th}
/b	ls																									{redo	last	ls	command}
/b	@temp																						{redo	last	containing	"temp"}
/before	–2																				{redo	command	before	previous}
/before	-5/-2																	{redo	by	relative	lines}

Notes

HP-UX	reacts	to	certain	control	characters	which	might	conflict	with	the
Qzmodify	codes.	For	example,	control-D	sends	an	end-of-file	signal	to
HP-UX	but	is	also	the	delete	character	in	Qzmodify.	You	should	use	the
HP-UX	 stty	program	to	change	the	default	end-of-file	signal.
Please	see	the	section	Control	Characters	and	stty	for	more	details.

If	you	wish	to	change	any	characters	within	the	line,	the	modify	operators
are	the	regular	Control	Codes	used	in	Qedit:

Any	printing	characters	replace	the	ones	above.

Control-D	plus	spaces	deletes	columns	above.

Control-B	puts	you	into	"insert	before"	mode.

Control-A	starts	appending	characters	at	the	end	of	line.

Control-A,	Control-D,	plus	spaces,	deletes	from	the	end.

Control-T	ends	Insert	Mode,	allowing	movement	to	a	new	column.

Control-G	recovers	the	original	line.

Control-O	specifies	"overwrite"	mode	(needed	for	spaces).

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

CD	Command	[CD]
Change	current	working	directory.

CD[directory]

(Default:	$home	directory)

You	can	switch	directories	using	the	cd	command.	The	cd	command
affects	your	Qedit	processes	and	any	processes	that	you	create.	When
you	exit	Qedit,	you	will	be	in	the	same	directory	that	you	were	in	when
you	invoked	Qedit.

Examples

cd	/usr/local/bin
cd																							{return	to	home}
cd	$HOME																	{return	to	home}
cd	~																					{return	to	home}
cd	$SAVEDIR														{Error!!!}

The	last	example	shows	a	limitation	of	cd	inside	Qedit.	You	can't	refer	to
a	directory	name	that	is	saved	in	a	variable,	because	Qedit	simulates	the
cd	command,	instead	of	passing	it	to	your	shell	program	for	execution.
Qedit	does	not	simulate	the	shell	command	processing	such	as	variable
substitution.	(The	three	special	cases	for	"home"	are	hardcoded	into
Qedit's	cd.)

In	addition,	a	few	things	still	do	not	work	well	when	doing	shell
commands	in	Qedit.	If	you	launch	a	command	in	the	background	using
"&",	the	jobs	command	will	not	show	the	status	of	it.	If	you	set	an
environment	variable,	it	will	not	be	set	for	Qedit.	Both	of	these	problems
are	caused	by	the	fact	that	shell	commands	are	executed	by	a	child
process	which	is	unable	to	change	the	status	of	Qedit.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Change	Command	[C]
Changes	one	string	or	column	range	to	another	string	in	some	or	all	of
your	lines.	There	are	two	basic	varieties	of	Change:

STRINGS replace	one	string	with	another
COLUMNS replace	a	column	range	with	a	string
More:
Change	(Changing	Strings)
Change	(Changing	Columns)

	 	

http://www.robelle.com/products/qedit

	 	

Change	(Changing	Strings)
Replaces	one	string	of	characters	by	another	string,	the	two	strings	being
separated	by	a	single	quote	character.

CHANGE	"string1"string2"	[rangelist]

(Q=no	display,	J=verify,	T=CobX	Tag)

(Default:	rangelist	=	*)

The	string1	tells	Change	what	string	of	characters	to	find.	The	default	for
string1	is	the	last	string	used,	and	you	specify	this	default	via	the	null
string	(e.g.,	 change	""xxx").	The	null	string	recalls	the	last	string
and	the	window	used	with	it.	If	the	target	string1	occurs	more	than	once
in	a	line,	Qedit	changes	every	occurrence.

The	string2	tells	Change	what	characters	to	substitute.	In	this	format	of
the	Change	command,	only	three	quote	characters	are	used	to	define	the
two	strings,	not	four	as	you	would	normally	expect.	Another	oddity	is	that
string2	does	not	become	the	current	string.	This	is	so	that	you	can	do
another	Change	or	Find	command	using	""	as	the	target	(i.e.,	the	last
string),	finding	and	fixing	multiple	occurrences	of	the	same	string	(e.g.,

find	"nad";	CH	""and";	F;	CH	""and";	...).	The	third
difference	of	string2	is	that	a	null	string	for	this	parameter	actually	means
"null".	 change	"very""	100	means	remove	"very"	from	line	100.

The	rangelist	tells	Change	what	lines	to	search	for	string1.	The	default
rangelist	is	the	current	line	only.

If	string2	is	shorter	than	string1	(e.g.,	 change	"Robert"Bob"),
Qedit	shortens	the	line	by	shifting	the	rest	of	the	line	left.	If	string2	is
longer	(e.g.,	 change	"Bob"Robert"),	Qedit	lengthens	the	line	by
shifting	characters	right.	If	string2	is	so	much	longer	that	the	line	would
be	too	long,	Qedit	sends	you	into	the	Modify	command	to	fix	the	line	by
hand.

Change	prints	each	line	that	it	updates,	unless	you	use	CQ.

Examples

/list	55																	{display	line	with	mistake}

http://www.robelle.com/products/qedit

			55					select	lines	contaning	both	of	two
/change	"contan"contain"	{change	string	in	current	line}
			55					select	lines	containing	both	of	two
/change	"sub"subindex"	all				{make	a	global	change}
			10					subindex	=	subindex	+	1
			11					table(subindex)	=	0
		213					if	subindexway	=	0		{oops-bad	change!}
/cj	"cust"Customer"	200/300			{change	with	user	approval}
		225				Display	Customer					{shown	for	approval}
Change	okay	(Y,N,or	Modify)	[No]:	yes
/list	9											{display	line	to	review}
				9					The	test	results	were	very	exciting.
/c	"very""								{remove	word,	change	to	null	string}
				9					The	test	results	were	exciting.
/find	"wiith"					{search	forward	for	line	with	error}
			99				the	string	is	combined	wiith	the	second	string
/c	""with"								{change	"wiith"	to	"with"}
			99				the	string	is	combined	with	the	second	string

Using	Alternates	to	Quote

You	may	select	your	own	quote	character	if	you	find	"	too	much	work
because	it	is	a	shifted	key.	Among	the	alternatives	are	\	:	and	'
(apostrophe).	See	the	"Glossary"	for	more	on	strings	and	other	alternates
to	quotes.

/c	:wiith:with:
/c	\wiith\with\

Approving	Each	Changed	Line

Use	CJ	to	give	yourself	approval	over	each	change	before	it	is	updated.
With	CJ,	Qedit	displays	the	line	as	it	would	be	and	asks	you	for	a	Yes,
No,	or	Modify	answer.	Use	CJ	when	you	have	trouble	working	out	the
precise	strings	to	change.

Searching	for	Two	Strings	at	Once

Because	the	rangelist	can	contain	a	search	string,	you	can	actually	select
lines	containing	both	of	two	strings:

/c	"xxx"filename"	all										{"xxx"	becomes	"filename"	in	ALL}

/c	"xxx"filename"	"rename"					{line	must	contain	"rename"	too}

Including	a	Window

The	form	of	Change	command	just	described	requires	only	three	quotes
per	command,	but	does	not	allow	all	options.	You	cannot	specify	a
special	window	-	you	will	always	use	the	default	Set	Window	value.	To	do
a	Change	with	a	special	window,	you	must	specify	four	quote	characters,
two	for	each	string:

CHANGE	"string1"	(window)	"string2"	[rangelist]

Each	string	is	delimited	by	two	quote	characters	and	the	two	strings	must
be	separated	by	a	space	or	a	comma.	Between	the	two	strings	you	may
insert	a	window	such	as	(SMART)	or	(20/30)	or	(UPSHIFT).

Changing	Within	a	Column	Range

If	you	insert	a	column	window,	Qedit	changes	only	the	columns	within	the
window.	Columns	outside	the	window	are	untouched:

/change	"CUSTREC"	(10/39)	"CUSTOMER-RECORD"

In	this	example,	"CUSTREC"	is	expanded	to	"CUSTOMER-RECORD",
but	the	data	at	column	40	and	beyond	is	not	moved.	In	addition,	the
Change	must	not	cause	the	rest	of	the	window	to	overflow.

Changing	Uppercase	and	Lowercase

If	you	specify	an	upshift	window,	Qedit	ignores	the	case	of	letters	when
matching	the	target	string.	It	will	match	words	that	are	spelled	with	caps
or	without:

/change	"JONES"	(upshift)	"Fitz-Jones"	all

In	this	example,	Change	selects	lines	containing	"JONES",	"Jones",	or
even	"joneS".

Avoiding	Changes	to	Embedded	Words

If	you	specify	a	Smart	window,	Qedit	rejects	those	matches	in	which	the
target	string	is	actually	in	the	middle	of	another	word:

/change	"FRANK"	(smart)	"Frank"	all

This	example	selects	"FRANK",	but	reject	"FRANKLYN."	You	can

combine	Smart	and	Upshift.

Patterns	and	Windows

In	other	commands	the	window	can	specify	a	pattern	to	match.	In	the
Change	command	patterns	are	not	allowed,	because	Change	cannot
perform	pattern	changes.	However,	a	string	specified	in	the	rangelist
portion	of	the	Change	command	may	be	a	pattern.	For	example:

/change	"CUSTREC"	"CUST-REC"	"@01@PIC@"	(pattern)
																	{change	custrec	to	cust-rec	in	all	lines	that}
																	{			also	contain	"01"	and	"PIC"	in	that	order}

CobX	Tags

Cobol	tags	are	short	strings	stored	in	columns	73	to	80	of	CobX	source
files.	The	Cobol	tag	value	is	defined	using	the	Set	X	command.	Once
enabled,	updated	lines	and	added	lines	are	automatically	updated	with
the	tag.	They	can	also	be	modified	manually	with	custom	tag	values.

In	its	regular	form,	the	Change	command	affects	only	the	text	area	in
columns	7	to	72.	If	you	wish	to	make	changes	to	Cobol	tags,	use	the

T	suffix.	You	can	think	of	it	as	the	 Tag	option.	This	option
operates	only	on	the	tag	area	itself,	columns	73	to	80.

/change	"CUST"	"SUPP"	all
																	{change	cust	to	supp	in	all	lines.			}
																	{	cust	must	be	between	columns	7	and	72.		}
/changeT	"CUST"	"SUPP"	all
																	{change	cust	to	supp	in	all	lines.								}
																	{	cust	must	be	between	columns	73	and	80.		}

To	to	this,	the	 Tag	option	temporarily	changes	the	margins	to
(73/80).	Qedit	displays	a	warning	every	time	this	option	is	used.

Because	the	margin	values	have	changed,	explicit	column	range	in	a
Window	can	only	be	between	73	and	80.

/changeT	"CUST"	(50/60)	"SUPP"	all
Warning:		ChangeT:	editing	the	Cobol	tag	area	only	(73-80).
Error:	Window
/changeT	"CUST"	(73/80)	"SUPP"	all
Warning:		ChangeT:	editing	the	Cobol	tag	area	only	(73-80).
			10						SUPP0102

1		line	changed

Because	the	margins	have	been	changed,	Qedit	displays	text	in	the	tag
area	only	except	when	the	Justify	option	is	used.	In	this	case,	Qedit
prompts	for	confirmation	before	making	the	change.	It	would	be	hard	to
determine	if	a	line	needs	to	be	changed	based	only	on	the	tag	value.	So,
when	the	Justify	option	is	used,	Qedit	displays	the	complete	line.	The
user	has	the	option	to	accept	the	changes,	reject	the	changes	or
manually	modify	the	line.	If	the	user	chooses	to	modify	the	line,	only	the
tag	is	displayed.

	 	

http://www.robelle.com/products/qedit

	 	

Change	(Changing	Columns)
Replace	some	columns	in	some	lines	with	a	new	string	of	characters.
Use	Change	to	insert	columns,	shift	text	left,	or	shift	text	right.

CHANGE	column	[/column]	[(window)]	"string"	[rangelist]

(Q=no	display,	J=verify)

(Default:	rangelist	=	*)

Change	replaces	the	target	column	range	with	the	string	in	the	lines	of
the	rangelist.	You	can	use	this	to	insert	a	string	at	a	specified	column.
You	can	also	use	it	to	replace,	expand,	or	contract	specified	columns.

If	you	specify	a	single	column	instead	of	a	range,	Qedit	inserts	the	string
before	that	column	and	shifts	the	rest	of	the	line	to	the	right.	You	can
create	new	columns	by	inserting	blanks	in	front	of	a	position	(e.g.,

change	5	"	").

If	you	specify	a	range	of	columns,	Qedit	replaces	that	column	range	with
the	string.	The	string	may	be	the	same	length	as	the	column	range,
longer,	or	shorter.	If	the	string	is	shorter	than	the	column	range	deleted,
the	rest	of	the	line	shifts	left.	If	longer,	the	rest	of	the	line	shifts	right.	You
can	remove	columns	entirely	by	changing	them	to	a	null	string	(e.g.,

change	5/7	"").

Examples

/change	5"|"all						{draw	vertical	line	of	"|"s	in	file}
/cq	1/2	""	10/15					{shift	lines	10/15	left	2	spaces}
/cq	1	"			"	10/15				{shift	lines	10/15	right	3	spaces}
/cq	1(1/8)"	"	all				{shift	columns	1/8	right	1	space}
																					{don't	change	text	beyond	column	8}
/change	12/12	::					{delete	column	12	in	the	current	line}

Notes

See	the	discussion	of	windows	under	"Changing	Strings".	Those	notes
also	apply	to	column	changes.

http://www.robelle.com/products/qedit

The	first	column	number	is	usually	1,	except	for	standard	COBOL	source
files,	where	it	is	7	(seven).	The	last	column	number	depends	on	the
current	values	for	Set	Language,	Set	Length,	and	Set	Right.

Change	prints	each	line	modified,	unless	you	use	CQ.	CJ	asks	you	to
verify	each	change.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Close	Command	[CL]
Shut	the	current	work	file	and	remove	it	from	the	recently	accessed	file
list.

CLose

(Default:	none)

The	Shut	command	is	the	normal	way	to	close	a	workfile.	When	you	Shut
a	file	(or	Open	another	one),	Qedit	remembers	the	name	of	the	current
workfile	in	a	list	of	recently	accessed	files.	This	allows	you	to	reopen	the
file	using	 open	?.	However,	the	list	is	of	limited	size.	If	you	are	not
coming	back	to	edit	the	current	file	again,	use	the	Close	command
instead	of	Shut.	This	keeps	other	file	names	from	falling	off	the	bottom	of
the	list.

Examples

/open	abc
/open	def
/close							{close	"def"	and	forget	it}
/open	*						{current	file	is	now	"abc"}

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Colcopy	Command	[COL]
Copies	one	or	more	columns	to	a	different	location	on	the	same	line.

COLCOPY	source	[/source2]	destination1	[/destination2]	[rangelist]

(Q=no	display,	J=verify,	T=CobX	Tag)

(Default:	rangelist	=	*)

Colcopy	copies	text	in	columns	specified	by	source1	and	source2	to	the
destination	columns	specified	by	destination1	and	destination2	in	the
lines	of	rangelist.	Even	though	Colcopy	can	modify	multiple	lines	using	a
rangelist,	it	really	operates	on	one	line	at	a	time.	You	can	not	copy
columns	from	one	line	to	another.

Source	and	destination	columns	always	represent	the	original	location.
All	changes	are	based	on	that	assumption.

If	source1	only	is	specified,	Qedit	copies	just	that	column	(length	of	1).	If
destination1	only	is	specified,	the	source	columns	are	inserted	at	that
location.	If	you	wish	to	replace	a	single	column,	enter	a	destination	range
where	destination1	and	Destination2	are	the	same	e.g.	 Colcopy	1
10/10.

/list	1
			1					abcdefghijklmnopqrstuvwxyz
/colcopy	1	10										{	insert	column	1	at	column	10	}
			1					abcdefghiajklmnopqrstuvwxyz
1	line	changed
/colcopy	1/5	10								{	insert	columns	1/5	at	column	10	}
			1					abcdefghiabcdejklmnopqrstuvwxyz
1	line	changed

If	destination1	and	destination2	are	specified,	text	in	these	columns	is
replaced	by	the	source	text.	If	the	source	text	is	narrower	or	wider,	the
line	is	shortened	or	expanded	as	needed.

/colcopy	1	10/15					{	copy	column	1	to	columns	10/15	}
			1					abcdefghiapqrstuvwxyz
1	line	changed
/colcopy	1/5	10/11			{	copy	columns	1/5	to	10/11.	Line	expands.	}
			1					abcdefghiabcdelmnopqrstuvwxyz

1	line	changed
/colcopy	1/5	10/20			{	copy	columns	1/5	to	10/20.	Line	shortens.	}
			1					abcdefghiabcdeuvwxyz
1	line	changed

Trailing	Spaces

Trailing	spaces	on	the	line	are	not	significant.	This	means	that	a	line	can
expand	until	a	non-space	character	reaches	the	current	right	margin	(Set
Right).	However,	trailing	spaces	from	the	source	text	are	significant	and
are	copied	in	the	operation.	If	the	line	can	not	be	expanded	further,	Qedit
displays	a	warning	message	and	allows	the	user	to	modify	it.

/list	2
			2					abcd					efghiabcdeuvwxyz
/colcopy	1/8	20								{	insert	columns	1/8	at	20	}
			1					abcd					efghiabcdeabcd				uvwxyz
1	line	changed
/Set	right	30
/colcopy	1/5	30								{	insert	columns	1/5	at	30	}
Warning:	Source	columns	could	not	be	inserted.	Please	modify.	(Warning	2)
			1					abcd					efghiabcdeabcd				uvwxyz
1	line	modified

Overlapping	Columns

When	source	and	destination	columns	do	not	overlap,	the	results	are
straightforward.	If	source	and	destination	columns	overlap	partially	or
completely,	the	results	might	not	be	as	expected.	Keep	in	mind	that:

source	and	destination	columns	are	always	based	on	the
original	line
the	destination	columns	are	removed
the	source	columns	are	put	in	their	place

Approving	Each	Changed	Line

Use	COLJ	to	give	yourself	approval	over	each	change	before	it	is
updated.	With	COLJ,	Qedit	displays	the	line	as	it	would	be	and	asks	you
for	a	Yes,	No,	or	Modify	answer.

CobX	Tags

Cobol	tags	are	short	strings	stored	in	columns	73	to	80	of	CobX	source
files.	The	Cobol	tag	value	is	defined	using	the	Set	X	command.	Once
enabled,	updated	lines	and	added	lines	are	automatically	updated	with
the	tag.	They	can	also	be	modified	manually	with	custom	tag	values.

In	its	regular	form,	the	Colcopy	command	affects	only	the	text	area	in
columns	7	to	72.	If	you	wish	to	make	changes	to	Cobol	tags,	use	the

T	suffix.	You	can	think	of	it	as	the	 Tag	option.	This	option
operates	only	on	the	tag	area	itself,	columns	73	to	80.

/ColT	73/74	79/80	all								{	copies	content	of	columns	73	and	74	}
																												{	into	columns	79/80																		}
/ColT	73/74	75	all												{	inserts	content	of	columns	73	and	74					}
																												{	in	column	75.	Columns	76-80	are	shifted.	}

To	to	this,	the	 Tag	option	temporarily	changes	the	margins	to
(73/80).	Qedit	displays	a	warning	every	time	this	option	is	used.

Because	the	margin	values	have	changed,	explicit	column	range	in	the
source	and	destination	columns	can	only	be	between	73	and	80.

/ColT	23/24	79/80	all
Warning:		ColcopyT:	editing	the	Cobol	tag	area	only	(73-80).
Error:		The	Sourcestart	column	(23)	is	not	between	73	and	80
/ColT	73/74	79/80	10
Warning:		ColcopyT:	editing	the	Cobol	tag	area	only	(73-80).
			10						ME0307ME
1		line	changed

Because	the	margins	have	been	changed,	Qedit	displays	text	in	the	tag
area	only	except	when	the	Justify	option	is	used.	In	this	case,	Qedit
prompts	for	confirmation	before	making	the	change.	It	would	be	hard	to
determine	if	a	line	needs	to	be	changed	based	only	on	the	tag	value.	So,
when	the	Justify	option	is	used,	Qedit	displays	the	complete	line.	The
user	has	the	option	to	accept	the	changes,	reject	the	changes	or
manually	modify	the	line.	If	the	user	chooses	to	modify	the	line,	only	the
tag	is	displayed.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Colmove	Command	[COLM]
Moves	one	or	more	columns	to	a	different	location	on	the	same	line.

COLMOVE	source	[/source2]	destination1	[/destination2]	[rangelist]

(Q=no	display,	J=verify,	T=CobX	Tag)

(Default:	rangelist	=	*)

Colmove	moves	text	in	columns	specified	by	source1	and	source2	to	the
destination	columns	specified	by	destination1	and	destination2	in	the
lines	of	rangelist.	The	source	columns	are	removed	from	their	original
location.	Even	though	Colmove	can	modify	multiple	lines	using	a
rangelist,	it	really	operates	on	one	line	at	a	time.

You	can	not	move	columns	from	one	line	to	another.	Source	and
destination	columns	always	represent	the	original	location.	All	changes
are	based	on	that	assumption.

If	source1	only	is	specified,	Qedit	moves	just	that	column	(length	of	1).	If
destination1	only	is	specified,	the	source	columns	are	inserted	at	that
location.	If	you	wish	to	replace	a	single	column,	enter	a	destination	range
where	destination1	and	Destination2	are	the	same	e.g.	 Colcopy	1
10/10.	A	move	means	the	original	columns	are	removed	and	the	line	is
shifted	left.	Then	the	source	text	is	inserted	at	the	destination.

/list	1
			1					abcdefghijklmnopqrstuvwxyz
/colmove	1	10										{	move	column	1	to	column	10	}
			1					bcdefghiajklmnopqrstuvwxyz
1	line	changed
/colmove	1/5	10								{	move	columns	1/5	to	column	10	}
			1					fghiabcdejklmnopqrstuvwxyz
1	line	changed

If	destination1	and	destination2	are	specified,	text	in	these	columns	is
replaced	by	the	source	text.	If	the	source	text	is	narrower	or	wider,	the
line	is	shortened	or	expanded	as	needed.

/colmove	1	10/15					{	move	column	1	to	columns	10/15	}
			1					bcdefghiapqrstuvwxyz
1	line	changed

/colmove	1/5	10/11			{	move	columns	1/5	to	10/11	}
			1					fghiabcdelmnopqrstuvwxyz
1	line	changed
/colmove	1/5	10/20			{	move	columns	1/5	to	10/20	}
			1					fghiabcdeuvwxyz
1	line	changed

Trailing	Spaces

Trailing	spaces	on	the	line	are	not	significant.	This	means	that	a	line	can
expand	until	a	non-space	character	reaches	the	current	right	margin	(Set
Right).	However,	trailing	spaces	from	the	source	text	are	significant	and
are	moved	in	the	operation.

/list	2
			2					abcd					efghiabcdeuvwxyz
/colmove	1/8	20								{	move	columns	1/8	to	20	}
			1						efghiabcdeabcd				uvwxyz
1	line	changed

Overlapping	Columns

When	source	and	destination	columns	do	not	overlap,	the	results	are
straightforward.	If	source	and	destination	columns	overlap	partially	or
completely,	the	results	might	not	be	as	expected.	Keep	in	mind	that:

source	and	destination	columns	are	always	based	on	the
original	line
the	source	columns	are	removed
the	destination	columns	are	removed
the	source	columns	are	put	in	their	place

Here	is	an	example:

/list	1
			1					abcdefghijklmnopqrstuvwxyz
/colm	6/20	15
			1					abcdefghijklmnopqrstuvwxyz
1	line	changed

Apparently,	nothing	has	changed	but,	in	fact,	something	did	happen	to
the	line.	Qedit	removed	the	source	columns	"fghijklmnopqrst"	and	tried	to

insert	the	original	text	where	column	15	used	to	be.	Column	15	was	part
of	the	area	that	has	been	removed	so	Qedit	inserts	the	text	where	it
should	have	been	i.e.	between	"e"	and	"u".	So,	it's	putting	the	original	text
back	where	it	was.

Moving	Passed	the	Right	Margin

Destination	columns	can	exceed	the	current	right	margin.	In	this	case,
Qedit	assumes	the	columns	should	be	moved	to	the	end	of	the	line.
Effectively,	the	source	columns	are	inserted	in	the	rightmost	columns	of
the	line.	The	destination	columns	do	not	have	to	be	a	precise	value.	They
just	need	to	be	larger	than	the	current	right	margin.	If	the	right	margin	is
currently	set	at	80,	the	following	commands	yield	the	same	results.

/v	right
Set	Right	50
/lt2
								+....10...+....20...+....30...+....40...+....5
			2					abcdefghijklmnopqrstuvwxyz
/colm	1/5	51
			2					fghijklmnopqrstuvwxyz																								abcde
1	line	changed
/colm	1/5	88/90
			2					fghijklmnopqrstuvwxyz																								abcde
1	line	changed

Approving	Each	Changed	Line

Use	COLMJ	to	give	yourself	approval	over	each	change	before	it	is
updated.	With	COLMJ,	Qedit	displays	the	line	as	it	would	be	and	asks
you	for	a	Yes,	No,	or	Modify	answer.

CobX	Tags

Cobol	tags	are	short	strings	stored	in	columns	73	to	80	of	CobX	source
files.	The	Cobol	tag	value	is	defined	using	the	Set	X	command.	Once
enabled,	updated	lines	and	added	lines	are	automatically	updated	with
the	tag.	They	can	also	be	modified	manually	with	custom	tag	values.

In	its	regular	form,	the	Colmove	command	affects	only	the	text	area	in
columns	7	to	72.If	you	wish	to	make	changes	to	Cobol	tags,	use	the

T	suffix.	You	can	think	of	it	as	the	 Tag	option.	This	option
operates	only	on	the	tag	area	itself,	columns	73	to	80.

/ColmT	73/74	79/80	all								{	copies	content	of	columns	73	and	74	}
																												{	into	columns	79/80																		}
/ColmT	73/74	75	all								{	inserts	content	of	columns	73	and	74					}
																												{	in	column	75.	Columns	76-80	are	shifted.	}

To	to	this,	the	 Tag	option	temporarily	changes	the	margins	to
(73/80).	Qedit	displays	a	warning	every	time	this	option	is	used.

Because	the	margin	values	have	changed,	explicit	column	range	in	the
source	and	destination	columns	can	only	be	between	73	and	80.

/ColmoveT	23/24	79/80	all
Warning:		ColcopyT:	editing	the	Cobol	tag	area	only	(73-80).
Error:		The	Sourcestart	column	(23)	is	not	between	73	and	80
/ColmoveT	73/74	79/80	10
Warning:		ColcopyT:	editing	the	Cobol	tag	area	only	(73-80).
			10						ME0307ME
1		line	changed

Because	the	margins	have	been	changed,	Qedit	displays	text	in	the	tag
area	only	except	when	the	Justify	option	is	used.	In	this	case,	Qedit
prompts	for	confirmation	before	making	the	change.	It	would	be	hard	to
determine	if	a	line	needs	to	be	changed	based	only	on	the	tag	value.	So,
when	the	Justify	option	is	used,	Qedit	displays	the	complete	line.	The
user	has	the	option	to	accept	the	changes,	reject	the	changes	or
manually	modify	the	line.	If	the	user	chooses	to	modify	the	line,	only	the
tag	is	displayed.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Delete	Command	[D]
Deletes	lines	from	the	workfile.

DELETE	[rangelist]

(Q=no	display,	J=verify)

(Default:	rangelist	=	*)

Delete	prints	each	line	in	rangelist,	with	an	underline	character	after	the
line	number,	as	it	deletes	them,	unless	you	use	DQ.

Notes

If	you	do	Delete	All,	you	must	answer	"Y"	to	a	verifying	question	before
the	lines	will	be	deleted.	This	also	applies	if	you	Set	Check	Delete	is	ON
and	you	delete	more	than	5	lines.

If	you	delete	the	wrong	lines,	you	can	cancel	the	Delete	by	striking
Control-Y.	However,	you	must	use	Control-Y	before	you	press	Return	on
the	next	command	line.	Qedit	responds	by	printing	"Undeleted"	or
"Canceled".	Once	you	have	typed	in	the	next	command	line	and	press
Return,	your	chance	to	recover	using	Control-Y	is	gone	and	the	previous
Delete	command	is	final.	You	can	still	undo	the	deletion	using	Undo.

Delete	All	resets	the	Set	Keep	Name	(default	for	Keep	command)	so	that
a	later	Keep	command	will	not	wipe	out	the	wrong	file	by	mistake.

Confirm	Each	Deletion

Use	DJ	to	give	yourself	approval	over	each	delete	before	it	is	carried	out.
With	DJ,	Qedit	displays	the	line	(even	if	the	Quiet	option	is	used)	and
asks	you	for	a	Yes,	No,	or	Stop	answer.

Answer	 No	or	Return	to	keep	the	line.

Answer	 Yes	to	delete	the	current	line.	Unlike	the	basic	Delete
operation	where	lines	are	removed	with	the	next	command,	lines
confirmed	in	DJ	are	deleted	immediately.	They	can	be	recovered	with	an
Undo	command.

Answer	 Stop	if	you	wish	to	stop	the	delete	process.	When	you	use
Stop,	lines	that	have	been	deleted	are	not	recovered	automatically.	Use
Undo	to	recover	them.

Examples

/delete	5/6											{remove	lines	5	and	6	from	file}
				5				_this	is	line	5
				6				_and	this	is	line	6!
/dq	2	10/49											{delete	lines	2	and	10/49}
/delete	"."(1/1)						{delete	lines	with	"."	in	column	1}
																						{Implied	rangelist	is	ALL}
/del	"."(1/1	nomatch)	{delete	lines	without	"."}
/d	"~"(pattern)							{delete	all	blank	lines}
/dj	3/66
				3				this	is	line	3
Delete	it	(Y,N	or	Stop)	[No]:
				4				this	is	line	4
Delete	it	(Y,N	or	Stop)	[No]:Y
				5				this	is	line	5
Delete	it	(Y,N	or	Stop)	[No]:n
				6				this	is	line	6
Delete	it	(Y,N	or	Stop)	[No]:S
1	line	Deleted!

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Destroy	Command	[DES]
Purges	the	current	workfile,	or	a	named	HP-UX	file,	after	first	verifying
with	the	user.

DESTROY	[filename]

(Default:	current	workfile)

The	filename	parameter	can	be	the	name	of	any	file	that	you	have	write
access	to,	"$"	to	refer	to	the	"last"	file	name	mentioned	in	another
command,	or	"*"	to	refer	to	either	the	current	workfile	or,	if	none	is
currently	open,	the	one	just	Shut.

Examples

/destroy	/dev/src/test.c
/dev/src/test.c	#	of	lines=162
Purge	file	[no]?	Oui						{that's	French	for	"yes"}
/open	ctemp
/des	*
ctemp	Qedit	file,	#	of	lines=15
Purge	file	[no]?										{Return	key	means	"no"}
File	NOT	purged
/list	datapg2													{check	contents	of	file}
/destroy	$																{...then	purge	it}

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Divide	Command	[DI]
Divides	a	line	into	two	or	more	lines	at	specified	columns.	Divide	can	turn
a	field-oriented	record	into	a	series	of	lines	with	one	field	per	line.	It	can
also	append	a	blank	line	after	every	line	in	a	file.	See	also	VV	in	Visual.
For	the	opposite	of	Divide,	see	the	Glue	command.

DIVIDE	[(columnlist)]	[rangelist]

(Default:	columnlist	=],	rangelist	=	*)

The	columnlist	parameter	is	one	or	more	valid	column	numbers	in
ascending	order	such	as	(10	20	30),	or	it	may	be	a	(])	for	"after	end-of-
line"	(i.e.,	append	a	blank	line).	All	characters	from	the	specified	column
to	end-of-line	are	moved	to	a	new	line	after	the	original	line.

The	rangelist	parameter	specifies	one	or	more	lines	in	the	file.	Each	line
is	split	into	two	or	more	lines	according	to	the	column	parameter.	The
default	rangelist	is	the	current	line.

The	default	columnlist	is	"]",	except	when	the	Divide	command	has	no
parameters	or	only	a	"string"	rangelist.	Then	the	current	line	is	split	at	the
"current	column".	When	Divide	has	no	parameters,	the	current	column	is
"]".	Following	a	successful	string	match,	the	current	column	is	the	first
column	of	the	string	position	in	the	line(s).

Examples

/find	"abc";divide					{move	"abc..."	to	a	new	line}
/list	*+2;divide							{move	ahead	2	lines,	add	a	blank	line}
/divide	(20)	all							{split	every	line	at	column	20}
/divide	(20	40)	@						{split	every	line	at	columns	20	and	40}
/divide	(10	20	30)					{split	current	line	at	3	places}
/divide	(])	*/*+10					{add	blank	line	after	lines	*/*+10}
/divide	(20)"Qedit"				{split	all	"Qedit"	lines	at	column	20}
/divide	"Qedit"								{split	all	"Qedit"	lines	at	"Qedit"}
/divide	(])"Qedit"					{add	blank	line	to	all	"Qedit"	lines}

Notes

After	a	Divide	command,	the	current	line	is	the	last	line	divided.	To	not
print	the	lines,	use	DivideQ.

Divide	works	within	the	current	Left	and	Right	margins.	That	is,

characters	to	the	right	or	left	of	the	current	margins	are	not	moved.

When	working	with	COBOLX	files,	the	Divide	command	does	not
consider	the	tag	(columns	73	to	80)	as	part	of	the	data.	This	means	that
the	current	tag	data	is	not	moved	to	the	new	split	line.	It	also	means	that
you	cannot	divide	a	line	past	column	73.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

:Do	Command	[DO]
The	:Do	command	repeats	(without	changes)	any	of	the	previous	1,000
commands.

DO[start	[/	stop]]

[string]

[ALL	|	@]

(Default:	repeat	the	previous	command)

Commands	are	numbered	sequentially	from	1	as	entered	and	the	last
1,000	of	them	are	retained.	Use	the	:Listredo	command	to	display	the
previous	commands.	You	can	repeat	a	single	command	(do	5),	a
range	of	commands	(do	5/10)	or	the	most	recent	command
whose	name	matches	a	string	(do	list).	If	you	want	to	modify	the
commands	before	executing	them,	use	:Redo	or	Before.

Examples

/listredo									{or	/bj	or	,,	}
/do															{do	previous	command	again}
/do	39												{do	command	line	39	again}
/do	5/8											{do	command	lines	5	to	8	again}
/do	list										{do	most	recent	List	command}
/do	ls												{do	last	starting	with	"ls"}
/do	ls	job								{do	last	"ls	job"	command}
/do	@job										{do	last	containing	"job"}
/do	-2												{do	command	before	previous}
/do	-7/-5									{do	by	relative	line	number}
/do	5/												{do	command	lines	5	to	"last"}

Notes

To	stop	a	:Do	All,	use	Control-Y.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Exit	Command	[E/F8]
Exit	from	Qedit	and	return	to	the	operating	system.

EXIT	[string]

The	current	workfile	is	closed	and	Qedit	terminates.	The	F8	user	key	is
the	same	as	Exit.

To	close	the	current	workfile	without	exiting,	use	Shut.

When	you	Exit,	Qedit	checks	whether	you	have	any	unsaved	edits	in	any
of	your	scratch	files.	If	so,	you	are	prompted	to	Discard?	them,	or	stay	in
Qedit	to	save	them.

Examples

/opt/robelle/bin/qedit
/open	qedit.doc														{open	file	to	work	on}
/modify	2482.5/														{do	some	editing...}
				.
				.
				.
/exit																								{ready	to	quit	for	the	day!}

Notes

To	avoid	accidental	Exit	as	a	result	of	pressing	F8	one	time	too	many,
you	can	run	Qedit	with	the	–v	option.	This	forces	user	approval	of	Exit.

The	string	parameter	is	only	allowed	when	Qedit	is	running	as	a	server.
The	string	is	a	message	sent	to	the	Qedit	for	Windows	client.	The	client
receives	the	exit	notification,	displays	the	message	and	disconnects
immediately.	If	no	string	is	specified,	a	default	message	is	displayed.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Find	Command	[F/F4]
Finds	the	next	line	in	the	workfile	that	contains	a	string.	Use	Findup	if	you
want	to	search	for	the	previous	line.	Find	always	finds	a	single	line	that
matches	a	string.	Use	the	List	command	if	you	want	to	find	many	lines
that	match	a	string.

FIND	[string]	[linenum]

FIND	[string	range]	[linenum]

(Q=no	display)

(Default:	string	=	recent;	linenum	=	*+1)

Find	defaults	string	to	be	"same	as	last	string"	and	linenum	to	be	"starting
from	the	next	line".	This	saves	having	to	repeatedly	type	the	string	and
linenum.	Once	you	have	defined	your	string	and	starting	position,	just
enter	"F"	to	find	the	next	line.

Find	does	not	start	searching	at	the	beginning	of	your	file.	Find	will	start
searching	for	the	string	at	the	line	after	the	current	line,	unless	you
specify	a	linenum	to	start	the	search.	If	you	want	to	search	from	the
beginning	of	your	file,	use	Find	string	FIRST.

The	F4	user	key	does	the	same	function	as	Find	with	no	parameters.

Examples

/find	"exit"	first					{find	first	line	with	"exit"}
				45					this	command	will	cause	an	exit	from	the
																																		(28)^
/f																					{find	next	line	with	"exit"}
				90					after	you	exit	from	a	module,	the	program
																	(11)^
/f																					{continue	finding	lines...}
			...
/f																					{...until	you	reach	end	of	file}
Warning:	No	Line									{prints	error	and	rewinds}
Error:	End	of	File
/f																					{next	Find	wraps	around!}
Warning:	Rewind	to	FIRST
				45					this	command	will	cause	an	exit	from	the

																																		(28)^
/fq"$page"(1/5);m						{find	next	$page	and	modify	it}
/fq;c""exit"											{find	next	string	and	change	it}
/fq;c"""															{find	next	string	and	remove	it}
/f	"start"/"end"	[{find	string	range	and	set	ZZ}
Lines	5/11	saved	in	ZZ

Notes

The	Q	option	lets	you	find	the	line	without	printing	it.	Use	FQ	if	you	intend
to	Modify	the	line	after	you	find	it.

Find	prints	an	error	when	the	search	reaches	the	LAST	line	without
locating	the	string.	Then,	if	you	enter	another	Find	without	a	line	number,
the	search	starts	from	the	FIRST	line	in	the	file,	after	printing	a	warning.

To	find/see	all	occurrences	of	a	string	in	a	file,	use	the	List	command.

When	a	string	range	is	used	and	a	corresponding	block	is	found,	the	start
and	end	line	numbers	are	stored	in	the	ZZ	marker.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Findup	Command	[FINDU/F3]
Finds	the	previous	line	in	the	workfile	that	contains	a	string.	Findup	can
be	shortened	to	^.	Use	Find	if	you	want	to	search	for	the	next	line.

FINDUP	[string]	[linenum]

(Q=no	display)

(Default:	string	=	recent;	linenum	=	*-1)

Findup	defaults	string	to	be	"same	as	last	string"	and	linenum	to	be
"starting	from	the	previous	line".	This	saves	having	to	repeatedly	type	the
string	and	linenum.	Once	you	have	defined	your	string	and	starting
position,	all	you	need	to	enter	is	"^"	or	"FINDU"	to	find	the	next	string.

The	F3	user	key	does	the	same	function	as	Findup	without	parameters.

Examples

/findup	"exit"	last			{find	last	line	with	"exit"}
				90					after	you	exit	from	a	module,	the	program
																	(11)^
/findup															find	previous	line	with	"exit"
				45					this	command	will	cause	an	exit	from	the
																																		(28)^
/^																				{continue	finding	lines...}
			...
/^																				{...until	you	reach	start	of	file}
Warning:	No	Line						{prints	error	and	rewinds}
Error:	Beginning	of	File
/findup															{next	Findup	wraps	around!}
Warning:	Rewind	to	LAST
				90					after	you	exit	from	a	module,	the	program
																	(11)^
/findupq;mod										{find	string	and	modify	it}
/findupq;c""exit"					{find	string	and	change	it}
/findupq;c"""									{find	string	and	remove	it}

Notes

Refer	to	the	notes	under	the	Find	command.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Form	Command	[FORM]
Displays	information	about	a	self-describing	file	created	by	programs
such	as	Suprtool.	These	programs	store	information	about	the	record
layout	such	as	field	names,	data	types,	length.

FORM	[$LP	|	$LPA	|	$LPB]	[filename]

(Default:	filename	=	current	Text	file)

If	filename	is	omitted	and	a	workfile	is	currently	active,	Qedit	uses	the
name	of	the	Text	file	(see	Verify	Keep).	An	external	filename	can	be
specified.	In	this	case,	the	name	must	be	the	name	of	the	data	file.

If	the	file	is	not	self-describing,	Qedit	displays	the	following	message:

Error:		File	is	not	self-describing.

Self-describing	files	on	Hp-UX	have	2	components:	the	data	file	and	the
data	description	file.	The	name	of	the	data	description	file	is	the	name	of
the	data	file	followed	by	the	 .sd	extension.	For	example,

/home/user1/mydata.dat										{	data	}
/home/user1/mydata.dat.sd							{	data	description	}

The	Form	output	looks	like	this:

Self-describing	information	for	/home/user1/mydata.dat
				File:	/home/user1/mydata.dat					(SD	Version	B.00.00)		Has	linefeeds
							Entry:																					Offset
										CHAR-FIELD											X5						1		<<Sort#	1	>>
										INT-FIELD												I1						6
										DBL-FIELD												I2						8
										PACKED-FIELD									P12				12
										PACKED*-FIELD								P12				18
										QUAD-FIELD											I4					24
										ID-FIELD													I1					32
										LOGICAL-FIELD								K1					34
										DBLLOG-FIELD									K2					36
										ZONED-FIELD										Z5					40
				Entry	Length:	80		Blocking:	1

LP	Listing

$lp,	$lpa	and	$lpb	send	output	to	a	device	associated	with	an
environment	variable	of	the	same	name.	For	example,	to	print	to	the
device	called	Laser	with	the	$lpa	option,	you	must	set	the	|4LPA|
environment	variable	to	Laser,	as	in	|2export	lpa=laser|.	If	the	LP
environment	variable	is	not	set,	Qedit	will	attempt	to	send	the	output	to
the	default	system	printer.	But	if	the	LPA	or	LPB	environment	variables
are	not	set	with	a	valid	device	name,	an	error	will	occur.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Forward	Command	[FO/F6]
Starts	"browsing"	the	current	file	by	displaying	the	next	page	"forward".
You	stay	in	"browse"	mode	until	you	enter	any	command	(see	List,
jumping	option).

FORWARD

(F6	key	does	the	same)

In	Line	mode,	Backward	and	Forward	(or	F5/F6)	throw	you	into	List-
Jumping's	Browse	mode.	Qedit	displays	a	screen	of	text,	where	the
screen	size	is	either	23	lines	or	what	you	specify	with	Set	List	LJ,	then
waits	for	you	by	asking	"More?".	Press	Return	to	see	the	next	screen,
typing	a	line	number	moves	you	to	the	screen	starting	at	that	line,
pressing	F2-F6	does	the	appropriate	action,	and	F8	or	"//"	or	Control-Y	or
typing	any	command	gets	you	out	of	browse	mode.	At	the	"More"	prompt,
the	*	"current"	line	is	the	last	line	displayed.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Garbage	Command	[GAR]
Finds	and	recovers	wasted	space	in	the	current	workfile.

GARBAGE

(Q	=	no	summary)

If	you	keep	adding	lines	to	a	workfile	and	editing	them,	eventually	you	will
get	an	"Error:	Full"	message	in	Line	mode	or	"File	nearly	full!"	in	Visual
mode,	and	be	unable	to	add	more	lines.	One	method	of	continuing	at	this
point	is	to	use	the	Garbage	command.

/garbage
/gar								{minimal	command	name}

Garbage	combines	partially	full	blocks	to	squeeze	out	free	blocks,	but	it
also	searches	the	workfile	for	any	blocks	that	have	been	"lost"	(i.e.,	are
no	longer	on	the	"free	list"	or	the	"text	list").	It	does	not	make	your	file	any
smaller,	it	just	allows	you	to	continue	editing	by	finding	usable	space
within	the	file.

Garbage	prints	a	summary	of	how	much	space	it	recovered	and	how
much	is	available	in	the	file.	The	summary	report	can	be	suppressed
using	GarbageQ.

5	blocks	squeezed	out,	2	found,	55	used,
				10	on	free	list,	9	for	expansion.

In	this	example,	Garbage	reports	that	5	blocks	were	retrieved	via
squeezing,	2	lost	blocks	were	found,	55	blocks	are	currently	used	to	hold
text,	10	empty	blocks	are	held	on	a	"deleted-block"	list	(the	free	list),	and
9	blocks	are	available	if	the	EOF	is	expanded	toward	the	LIMIT.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Glue	Command	[G]
Joins	a	line	with	one	or	more	following	lines,	either	concatenated	or	at
specified	tab	positions.	Use	Glue	to	turn	a	list	of	fields	into	a	single
record-oriented	line.	See	also	GG	in	Visual	mode.	For	the	opposite	of
Glue,	see	the	Divide	command.

GLUE	[(columnlist)]	[rangelist]

(Defaults:	columnlist	=],	rangelist	=	*/*+n)

The	columnlist	is	a	list	of	ascending	column	numbers	in	parentheses
such	as	(10	20	30),	or	(])	for	"after	the	end-of-line",	which	is	the	default.

The	rangelist	specifies	which	lines	to	combine.	The	default	rangelist	is
the	current	line	plus	n.	When	you	specify	a	range	of	lines,	Glue	joins	the
lines	in	"pairs".

Examples

/glue														{joins	*+1	to	*}
/gluej													{joins	*+1	to	*	with	space	between}
/glue;glue									{join	*+1	and	*+2	to	*}
/glue	(10)	all					{joins	lines	in	"pairs"	at	column	10}
/glue	(10	20	30)			{joins	4	lines	into	1	record}
/glue	"string"					{glue	"string"	lines	to	lines	that	follow}

Notes

If	there	are	not	enough	lines	at	the	end	of	a	rangelist	to	fill	in	each	column
of	the	list,	Glue	does	not	go	beyond	the	rangelist.	If	there	is	not	enough
room	to	move	all	of	the	characters	into	the	line,	as	many	characters	as
will	fit	are	moved,	the	following	line	is	not	deleted,	and	Qedit	prints	an
"overflow"	warning.

After	a	Glue	command,	the	current	line	is	the	line	last	spliced	together.	To
suppress	printing	of	the	spliced	lines,	use	GlueQ.

If	you	don't	specify	a	list	of	column	fields,	Glue	removes	leading	spaces
from	the	following	lines	before	moving	them.	To	insert	a	single	space
between	them,	use	GlueJ	instead.	If	you	do	specify	columnar	fields,	Glue
treats	spaces	as	valid	data	and	moves	them	intact.	If	you	specify	more
than	one	field,	some	nonblank	data	may	be	overwritten	if	the	columns	are
too	close	together	or	the	lines	to	be	glued	are	too	long.	You	can	always
use	Undo	to	cancel	a	Glue	command.

If	Left	or	Right	margins	have	been	Set,	only	the	text	within	the	margins	is
copied	and	the	following	lines	are	not	deleted.

When	editing	COBOLX	files,	the	tag	area	(columns	73	to	80)	is	not
considered	part	of	the	data.	This	means	that	the	tag	string	on	the	next
line	is	not	moved	to	the	new	line.	It	also	means	you	cannot	glue	to
columns	past	73.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Help	Command	[H/?]
Gives	instructions	on	the	use	of	Qedit.	Everything	in	the	Qedit	User
Manual	is	also	in	the	Help	command.	"?"	means	the	same	as	Help.

HELP[command	[,keyword]]

[TERMS	[,word]]

[INTRO]

[NEWS]

(Default:	browse	through	the	entire	help	file)

(Q	=	Quick	Reference	Guide	"Quick	Help")

The	parameters	have	the	following	meaning:

command	explains	command;	lists	subsidiary	keywords	to	select.

command,keyword	finds	keyword	under	command.

command,@	prints	everything	about	the	command.

TERMS	[,word]	explains	word	(see	"Glossary").

INTRO	explains	how	to	apply	Qedit	to	typical	problems.

NEWS	shows	any	new	features	in	Qedit.

Examples

/h	text			{explain	the	Text	command	and	show	sub-keywords}
/h	text,@	{tell	all	about	Text.		Comma	is	required}

Quick	Help	-	HQ

HQ	looks	for	entries	under	the	keyword	Quick	in	the	helpfile.	Quick
contains	the	text	from	the	Qedit	Quick	Reference	Guide,	offering	the
experienced	user	a	review	of	command	syntax.

/hq	visual												{full-screen	options}
/hq	shortcuts									{quick	list	of	shortcuts}

Notes

The	help	file	must	be	on	the	system	for	the	Help	command	to	work.	If	the
file	is	missing,	Qedit	still	works	fine,	but	you	cannot	get	any	on-line	help.
The	default	file	name	is	/opt/robelle/help/qedit.	Within	the	Help	command,
use	"+"	to	see	what	levels	exist	"beneath"	you	and	"?"	for	"help	on	Help".
The	help	file	is	organized	into	levels:	to	go	back	to	the	previous	level,
press	Return	instead	of	entering	a	keyword.	Press	F8	to	exit	the	QHELP
subsystem	completely	and	return	to	Qedit.	Use	the	Prev	Page	(or	Page
Up)	key	on	your	terminal	to	review	help	already	printed.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Hold	Command	[HO]
Lets	you	explicitly	write	lines	to	the	Hold	file.

HOLD	[filename]	[rangelist]

(Default:	hold	current	line)

(Q=hold	without	display)

(J=append,	without	erasing)

You	can	refer	to	the	current	contents	of	the	Hold	file	by	the	actual	file
name,	"hold",	in	any	of	the	commands	that	access	external	files	(Add-
File,	List,	Use).

Examples

/hold	50/60								{erase	Hold,	hold	lines}
/holdj	100/198					{append	more	lines	to	Hold}
/ho	"direct"							{hold	lines	with	string}
/open	abc.src
/add	33=hold							{adds	held	lines	to	abc.src}
/holdq	/etc/profile
/list	hold

Implicit	Hold

When	using	the	Add	command	to	move	or	copy	lines	within	a	file,	Qedit
overwrites	a	file	named	Hold0	with	a	copy	of	the	lines.	It	counts	the	lines
and	tries	to	select	a	line	number	increment	that	will	accommodate	the
number	of	lines	being	added	to	your	workfile.	So,	if	the	command	fails	or
if	you	wish	to	copy	the	same	lines	again,	you	can	refer	to	the	Hold0	file.
Adding	from	an	external	file	also	holds	the	lines	if	you	specify	a	rangelist
for	the	file,	and	if	the	file	is	not	the	Hold	file	itself.

/add	55=hold0
/list	hold0									{the	Hold	file	is	temporary}

Notes

By	default,	the	Hold	files	are	created	in	 /var/tmp	(/usr/tmp	is	the
default	on	older	versions	of	HP-UX).	If	you	want	to	keep	your	Hold	files	in
a	different	location,	you	can	enter	the	new	path	name	in	the	TMPDIR

environment	variable.

TMPDIR=/home/user1/tmp
export	TMPDIR

The	file	name	starts	with	"qhold"	and	ends	with	a	random	string	of
characters.	The	Hold0	file	ends	with	".0".	Keep	in	mind	that	Qedit	works
with	absolute	filenames	and	these	names	can	not	have	more	than	240
characters.

Every	time	you	use	"hold"	or	"hold0"	by	themselves	as	a	file	name	in	any
command,	Qedit	replaces	the	word	with	the	fully-qualified	file	name	of	the
appropriate	Hold	file.

/Add	1=hold

translates	to

/Add	1=/var/tmp/qholdDAAa05429.0

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Justify	Command	[J]
With	Justify,	you	can	do	text	formatting:	center	lines,	right-justify	lines,
left-justify	lines,	and	fill	text	into	margins.

JUSTIFY	[option]	[keyword	...]	[rangelist]

(Q=no	display)

(Default	option:	Null	or	Set	Justify)

When	the	Justify	command	is	processing	the	range	of	lines	you	specified,
if	you	decide	not	to	continue,	press	Control-Y	to	stop	the	formatting.

Options	Specify	Which	Function

Justify	Right right-justify	each	line
Justify	Center center	each	line
Justify	Centre Canadian	spelling!
Justify	Left remove	leading	spaces
Justify	Format fill	lines,	ragged	right	margin
Justify	Both fill	lines,	straight	right	margin
Justify	Null default	-	no	changes	-	safety

Keyword	Parameters	of	Justify

MARGIN	column right	edge,	relative	to	left
TWO	[ON|OFF] maintain	2	spaces	after	.	?	and	!
INDENT	spaces indentation	for	list	of	points
WITHINDENT activate	configured	indentation
STOP	"chars" break	justification	when	found
START	"chars" start	new	paragraph

You	may	shorten	options	and	keywords	to	the	leading	letters.

Rangelist	Specifies	Which	Lines

For	the	Format	and	Both	options,	the	rangelist	specifies	some	lines	to
format.	Warning:	if	you	type	a	single	line	number	(e.g.,	 just	both
5),	Qedit	begins	formatting	lines	from	that	line	number	to	the	end	of	the
paragraph.	Qedit	sees	blank	lines	as	end-of-paragraph	markers,	so	if	you

justify	format	all	you	end	up	with	smooth	and	even	chunks
of	text,	set	off	by	blank	lines.	This	is	one	of	the	few	places	in	Qedit	where
a	single	line	number	implies	a	range	of	lines.

For	the	Left,	Right	and	Center	options,	a	single	line	rangelist	means	a
single	line.	But,	you	can	specify	a	"string"	rangelist	to	center	or	justify
only	lines	containing	a	string.	Specifying	a	"string"	rangelist	with	the
Format	or	Both	options	is	equivalent	to	specifying	a	single	line	number
i.e.	formatting	starts	with	the	line	which	has	the	string	and	continues	to
the	end	of	the	paragraph.

Verification	Before	Formatting

If	Set	Check	Justify	is	ON,	Justify	Format	and	Both	require	user
verification	before	formatting	more	than	5	lines.	This	should	eliminate
inadvertent	formatting	of	entire	source	programs!

You	can	also	use	the	Undo	command	to	undo	the	effects	of	the	Justify
command.

Left	and	Right	Edges	for	Justify

Justify	works	within	borders	called	the	left	and	right	edge.	The	left	edge	is
usually	column	1,	or	column	seven	7	in	standard	COBOL.	The	right	edge
is	usually	the	highest	column	number	allowed	in	the	file	(e.g.,	80	for	JOB
files).	However,	if	you	use	Set	Left	and	Set	Right	to	create	margins	for
your	file,	Justify	operates	within	those	limits.	Set	Left	will	be	the	left	edge
and	Set	Right	will	be	the	right	edge.	You	can	also	use	the	Margin
keyword	to	establish	the	right	edge	for	Justify,	but	remember	that	this
edge	is	relative	to	any	Set	Left	value.

Examples

/justify	center	5/6				{center	lines	5	through	6}
/j	right	5/6											{right-justify	lines	5	through	6}
/j	left	5/6												{left-justify	lines	5	through	6}
/j	format	5/50									{format	lines	5/50	into	margins}
/j	f	5/6															{splice	lines	5	and	6	into	one	line}
/j	both	5														{format	a	paragraph,	even	right	edge,}
																							{		from	line	5	to	the	next	blank	line}

Right	Justifying	Lines

Justify	Right	shifts	each	line	of	rangelist	to	the	right	until	the	last	nonblank
character	is	at	the	right	edge.	For	example:

/justify	right	margin	50	rangelist

Input	lines:

Robelle	Solutions	Technology	Inc.
Tools	for	HP3000

Output	lines:

																Robelle	Solutions	Technology	Inc.
																																	Tools	for	HP3000

Centering	Lines

Justify	Center	adjusts	each	rangelist	line	so	that	it	is	centered	between
the	left	edge	and	the	right	edge.	For	example:

/justify	center	margin	50	rangelist

Input	lines:

Robelle	Solutions	Technology	Inc.
Tools	for	HP3000

Output	lines:

									Robelle	Solutions	Technology	Inc.
																	Tools	for	HP3000

Left	Justifying	Lines

Justify	Left	removes	leading	spaces	from	each	rangelist	line,	until	the	left-
most	nonblank	character	is	at	the	left	edge.	This	will	left-justify	the	lines.
Use	for	this	option	to	recover	from	an	inadvertent	Center	or	Right	option.
For	example:

/justify	left	rangelist

Input	lines:

																	Robelle	Solutions	Technology	Inc.
																				Tools	for	HP3000

Output	lines:

Robelle	Solutions	Technology	Inc.
Tools	for	HP3000

Filling	Words	into	Tidy	Paragraphs

Justify	Format	adjusts	the	processed	lines	so	that	the	words	fill	the	space
between	the	left	edge	and	the	right	edge,	but	allows	the	right	edge	to	be
ragged:

/justify	format	margin	50	rangelist

Input	lines:

The	Format	keyword	performs	a
function	which	is	equivalent	to	.ad	l
(left-justify)	in	nroff	and	troff.
Uneven	lines	are	converted	into	lines
of	about	the	same	length.

Output	lines:

The	Format	keyword	performs	a	function	which
is	equivalent	to	.ad	l	(left-justify)	in
nroff	and	troff.	Uneven	lines	are	converted
into	lines	of	about	the	same	length.

Making	Both	Edges	Even

Justify	Both	is	similar	to	Justify	Format,	except	that	both	the	left	and	right
edges	of	the	text	are	even.	This	is	accomplished	by	inserting	blanks
between	words.	For	example:

/justify	both	margin	50	rangelist

Input	lines:

The	Both	keyword	performs	a
function	which	is	equivalent	to	.ad	b
(adjust	both)	in	nroff	and	troff.	Uneven
lines	are	converted	into	lines
of	exactly	the	same	length.

Output	lines:

The	Both	keyword		performs		a		function		which		is

equivalent		to		.ad		b		(adjust	both)	in	nroff	and
troff.		Uneven	lines	are	converted	into		lines		of
exactly	the	same	length.

Null	Option

Justify	Null	is	included	as	an	option	to	serve	as	a	default.	If	Both	were	the
default	option,	most	of	your	file	would	be	quickly	formatted	if	you
accidentally	typed	"J	5"	instead	of	"LJ	5".

Configuring	the	Justify	Command

The	five	options	(Right,	Center,	Left,	Format,	and	Both)	and	the	four
keywords	(Margin,	Two,	Indent,	and	Withindent),	configure	the	Justify
command.	The	hierarchy	of	configuration	values	is	as	follows:

Startup	default	(the	"default	default")

overridden	by

SET	Justify	(the	configured	default)

overridden	by

Keywords	in	Justify	command

You	set	your	own	defaults	for	the	Justify	option	and	keyword	values	using
Set	Justify.	Once	you	find	the	setting	you	like,	you	may	want	to	put	them
in	your	Qeditmgr	configuration	file	so	you	won't	have	to	do	the	Set	Justify
command	every	time	you	run	Qedit.	For	example:

/set	justify	null	margin	50	two	on

causes

/justify	both	5

to	be	interpreted	as

/justify	both	margin	50	two	on	5

but	you	can	override	your	own	defaults,	as	in

/justify	both	margin	60	10/20

which	merges	with	your	Set	Justify	values	to	produce

/justify	both	margin	60	two	on	10/20

Configuring	the	Right	Edge

The	Margin	keyword	specifies	the	right-most	column	for	processed	lines.
This	column	is	needed	for	the	Right,	Center,	Format	and	Both	options.
The	value	you	specify	is	relative	to	any	Set	Left	margin	that	is	effective	at
the	time	of	the	Justify	command.

Determining	the	Left	Edge

For	the	Both	and	Format	options,	the	left	margin	is	determined	by	looking
at	the	first	and	second	lines	of	each	"paragraph".	If	the	first	and	second
line	are	indented,	the	entire	paragraph	will	be	indented.	Of	course,	this
indentation	is	relative	to	any	Set	Left.

/justify	both	margin	50	linenum

Input	lines:

					The	Both	keyword	performs	a
					function	which	is	equivalent	to
.ad	b	(adjust	both)	in	nroff	and	troff.
Uneven	lines	are	converted	into	lines
of	exactly	the	same	length.

Output	lines:

					The	Both	keyword	performs	a	function	which	is
					equivalent	to	.ad	b	(adjust		both)		in		nroff
					and		troff.		Uneven		lines	are	converted	into
					lines	of	exactly	the	same	length.

Two	Spaces	at	End	of	Sentence

Normally,	when	Qedit	adjusts	text	with	Format	and	Both,	it	inserts	one
space	between	each	symbol,	regardless	of	the	number	of	spaces
between	symbols	in	the	input	text.	If	the	Two	keyword	is	ON,	Justify
maintains	two	blanks	after	the	end	of	a	sentence	(i.e.,	after	a	.	?	or	!,	or
one	of	those	three	followed	by	a	quote	mark	or	a	right	parenthesis	and	a
space).	The	default	for	this	keyword	is	OFF.

Justify	does	not	insert	two	spaces	if	the	input	only	contains	one;	it	merely
maintains	two	spaces	if	they	are	there	already	(this	means	you	don't
have	to	worry	about	getting	two	spaces	in	a	name	like	Calvin	C.	Cook).

/justify	format	two	on	margin	70		99.5/

Formatting	a	List	of	Points

The	Indent	keyword	is	a	special	capability	for	handling	lists	of	numbered
points	(1.,	2.,	3.,	...).	It	assumes	that	your	text	is	indented	and	that	the
numbers	for	each	point	appear	to	the	left	of	that	indentation.	The	Indent
parameter	specifies	the	number	of	spaces	at	the	start	of	each	line	that
will	not	contain	text	to	format.	Justify	leaves	anything	to	the	left	of	this
border	"as	is".	In	fact,	the	existence	of	text	to	the	left	of	the	border	acts	as
an	"end-of-point"	indicator,	eliminating	the	need	for	a	blank	line	between
points	to	stop	the	justification.	Indent	is	relative	to	any	Set	Left.

The	end	of	each	point	in	a	list	is	effectively	an	end	of	paragraph.	Here	is
a	sample	of	what	happens	when	you	attempt	to	format	a	list	of	points
without	the	Indent	keyword:

/justify	both	margin	50	rangelist

Input	lines:

1.		Text	which	occurs	in
				a	list	of	points	should	also
				be	formatted	into	even	lines.
2.		Any	text	to	the	left	of	column	5
				causes	a
				"justification	break".

Output	lines:

1.		Text	which	occurs	in	a	list	of		points		should
				also		be		formatted		into	even	lines.		2.		Any
				text		to		the		left		of		column		5		causes			a
				"justification	break".

All	of	the	points	have	been	run	together	into	a	single	point.	You	can	avoid
this	result	by	inserting	a	blank	line	at	each	point,	or	by	doing	Justify	on
each	point	individually,	or	by	using	the	Indent	keyword:

/justify	both	margin	50	indent	4	rangelist

Input	lines:

1.		Text	which	occurs	in
				a	list	of	points	should	also
				be	formatted	into	even	lines.
2.		Any	text	to	the	left	of	column	5
				causes	a
				"justification	break".

Output	lines:

1.		Text	which	occurs	in	a	list	of		points		should
				also	be	formatted	into	even	lines.
2.		Any		text		to		the		left		of	column	5	causes	a
				"justification	break".

Activating	Indentation

Withindent	activates	an	Indent	value	that	you	have	previously	configured
with	Set	Justify	Indent.	Withindent	allows	you	to	settle	on	a	single
indentation	for	all	"lists	of	points"	without	having	to	respecify	that	value	on
every	Justify	command.	You	merely	specify	Withindent	when	you	format
a	list	of	points:

/set	justify	indent	4					{configure	potential	indentation}
/justify	format	5									{this	is	not	a	list	of	points}
/just	f	with		9											{this	is	a	list	of	points}

Justification	Breaks	and	Formatting	Commands

Justify	has	options	to	define	characters	that	start	and/or	stop	justification
when	found	in	column	one.	These	options	make	it	much	easier	to	justify
text	in	files	which	contain	embedded	commands	and	special	characters
for	a	format	program	(e.g.,	Prose,	TDP,	etc.).	The	specific	characters	are
defined	using	the	Start	and	Stop	options:

/set	justify	stop	".+"	start	"`	"

This	command	says	that	any	line	with	"."	or	"+"	in	column	one	stops	text
justification	and	that	line	is	not	changed.	Any	line	with	"`"	or	"	"	(space)	in
column	one	ends	justification	of	the	previous	paragraph	and	signals	a
new	paragraph	(i.e.,	that	line	is	formatted	as	part	of	the	next	paragraph).

It's	important	to	note	that	a	"string"	rangelist	has	precedence	over	Start
and	Stop	characters.	In	other	words,	the	latter	options	are	ignored.

Here	is	an	example	which	justifies	some	text	from	a	Robelle	document
that	consists	of	both	text	and	embedded	Prose	formatting	directives.	Note
that	lines	beginning	with	"."	and	"+"	are	not	altered,	and	the	line	beginning
with	"`"	properly	appears	as	a	new	paragraph.

/justify	start	"`	"	stop	".+"	margin	50	format	all

Input	lines:

.for([T			S:40	//	l55	/			"-"	pn:1	"-"	/]
+				[S			T:40	//	l55	/			"-"	pn:1	"-"	/])
.par(f`	p5	s1	u3).com		Define	`	as	Start	of	Paragraph
.ent	`|1Welcome	to	Compare|
.beginkey	compare
					Welcome	to	version	2.2	of	Compare	--	a
file	comparison	program	for	text	files.
`Compare	answers	the	question,
"How	different	are	these	two	text	files?"
Compare	will	tell	you	whether	lines
have	been	added,	or	whether	a	block	of
lines	is	now	different.

Output	lines:

.for([T			S:40	//	l55	/			"-"	pn:1	"-"	/]
+				[S			T:40	//	l55	/			"-"	pn:1	"-"	/])
.par(f`	p5	s1	u3).com		Define	`	as	Start	of	Paragraph
.ent	`|1Welcome	to	Compare|
.beginkey	compare
					Welcome	to	version	2.2	of	Compare	--	a	file
comparison	program	for	text	files.
`Compare	answers	the	question,	"How	different	are
these	two	text	files?"	Compare	will	tell	you
whether	lines	have	been	added,	or	whether	a	block
of	lines	is	now	different.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Keep	Command	[K]
Creates	a	standard	disc	file	and	writes	the	workfile	into	it.	Keep	is	the
reverse	of	Text,	which	copies	a	standard	disc	file	into	a	workfile	that	you
can	edit.	Use	Text	when	you	need	to	duplicate	a	file.

KEEP	[filename][,options]	[rangelist]

(Q=no	linenums)

(Defaults:	rangelist=ALL,	filename=last)

Keep	Options

Qedit	allows	several	options	on	the	Keep	command.	Note	that	the
comma	preceding	the	option	name	is	mandatory,	and	that	spaces	are	not
allowed	before	the	comma	or	the	option	name.

Keep	filename,UNN unnumbered	(same	as	KQ)
Keep	filename,YES go	ahead	and	purge	old	file
Keep	filename,NO never	purge	an	old	file
Keep	filename,XEQ assign	xeq	access
Keep	filename,IFDIRTY only	if	changes	made
Keep	filename,LF insert	Newline	delimiters
Keep	filename,NOLF Do	not	insert	Newline	delimiters

Keep	creates	a	new	disc	file	named	filename.	You	can	combine	several
options	on	the	same	Keep	command.	The	default	filename	is	the	name	of
the	last	Text	or	full	Keep	(i.e.,	it	does	not	count	if	you	use	a	rangelist	or
have	reduced	the	margins	with	Set	Left	or	Set	Right).	If	filename	already
exists,	Qedit	will	ask	you	to	verify	that	it	is	okay	to	purge	it	unless	you
specify	the	,YES	or	,NO	option.

Sometimes	the	file	will	have	sequence	numbers	in	each	line	(this	is	called
numbered),	but	you	can	omit	the	sequence	numbers	with	KQ,	or	by
specifying	the	,UNN	option.

Keep	transfers	rangelist	lines	from	the	workfile	to	filename.	The	default
rangelist	is	ALL.	Warning:	Qedit	writes	only	the	data	within	the	current	left
and	right	margins,	so	reset	the	margins	first	if	you	want	the	entire	line
(e.g.,	Set	Left;	Set	Right).

Examples

/text	/src/report.cob								{make	a	copy}
Scratch	file

/find	"FUNCTION-CODE"
			14							05		FUNCTION-CODE						PIC	X8.
/change	"X8"X10"
			14							05		FUNCTION-CODE						PIC	X10.
/keep	/src/new.cob											{create	a	new	file}
				...																						{do	some	more	changes}
/keep																								{save	again	with	same	name...}
/src/new.cob	#	of	records	=	127
Purge	existing	file	[No]?	yes		{you	must	authorize	purge!}
/s	left	1;s	right	50									{define	margins	as	first	50	columns}
/kq	/data/nov99														{unnumbered	with	50-byte	records}
/k	notes,UNN,YES													{unnumbered,	purge	old	file}
/keep	,yes																			{keep	to	last	text,	purging	old}

Absolute	File	Name

When	you	are	using	CD,	you	may	find	yourself	doing	the	following:	Text
file	xxx,	change	to	another	directory	to	add	from	some	other	files,	then
Keep	to	update	your	original	file.	Keep	defaults	to	the	"absolute"	name
(e.g.,	/user/dev/lib/src/xxx).	This	means	you	can	change	to	other
directories	after	a	Text,	but	still	easily	Keep	the	file	back	under	its	original
name.	In	the	past,	Keep	would	default	to	the	"relative"	name	of	the	Text
file	(e.g.,	xxx),	saving	the	file	in	your	current	working	directory.

Keep	Only	When	Changes	Were	Made

Keep,Ifdirty	only	does	the	Keep	operation	if	the	workfile	has	been
modified	since	the	last	Text	or	Keep.	This	can	be	useful	in	scripts	that	do
Changes:	by	not	Keeping	files	where	no	string	changes	occurred,	you
reduce	the	number	of	files	that	appear	on	the	partial	backup.	To	see
whether	your	workfile	is	clean	or	dirty,	do	Verify	Open.

File	Modification	Timestamp

When	you	use	the	Text	command	on	a	file,	Qedit	stores	the	file's
modification	timestamp	in	the	workfile.	If	you	try	to	Keep	the	file,	Qedit
compares	the	stored	timestamp	with	the	file's	current	timestamp.	If	they
are	different,	it	means	the	original	file	has	changed	since	you	first	opened
it.	Qedit	will	alert	you	to	the	difference	by	displaying	a	message	similar	to
the	following:

Warning:	Original	file	has	been	modified	since	the	initial
Text	or	last	Keep

The	file	timestamp	can	change	for	a	number	of	reasons.	Here	are	few
examples:

Someone	else	might	have	been	working	on	that	same	file	with
Qedit	and	saved	their	changes	before	you	did.
The	file	could	have	been	restored.
Maybe	you	used	the	file	to	test	a	program	which	modified	the
file	in	some	way.

Because	the	timestamp	message	is	just	a	warning,	Qedit	continues	its
processing.	It	then	asks	for	Keep	confirmation.	If	you	answer	"Yes",	the
file	will	be	purged	and	you	might	lose	someone	else's	changes.	Qedit	will
also	store	the	new	modification	timestamp.

If	you	answer	"No",	you	should	compare	the	contents	of	the	file	with	your
workfile	and	decide	if	it	is	safe	to	Keep	your	changes.	This	is	one	way	to
compare	the	files:

Keep	the	workfile	under	a	different	name
Use	our	Compare	bonus	program	to	display	the	differences
between	the	original	file	and	the	new	version	you	just	created
Look	at	the	report	and	separate	the	lines	that	you	changed
from	the	ones	you	did	not	touch
If	needed,	apply	changes	to	your	copy	so	you	are	not	missing
anything	important

By	default,	timestamp	checking	on	Keep	is	enabled.	If	you	want	to
change	this	setting,	use	the	Set	Keep	Checktimestamp	command.

If	you	want	to	erase	the	saved	timestamp,	you	can	use	the	Set	Keep
Name	command.

Newline	Delimiters

Normally,	lines	in	a	UNIX	file	are	terminated	by	a	NewLine	character.
Even	the	last	line	of	the	file	has	to	be	terminated.	For	cases	in	which	the
last	NewLine	character	is	missing,	Qedit	is	still	able	to	read	all	the	lines.
However,	if	the	file	is	saved	back,	Qedit	adds	a	NewLine	terminator.	This
makes	the	new	file	a	little	different	than	the	original,	even	if	you	have	not
made	any	changes	to	it.

By	default,	Qedit	inserts	a	Newline	delimiter	after	each	line.	If	you	do	not
want	Newline	terminators,	use	the	NOLF	option.	The	only	Newline
characters	written	to	the	file	are	the	ones	included	in	the	data.	Using	the
Length	option	on	the	Text	command	disables	the	LF	Keep	feature	(Set

Keep	LF	Off).	If	you	wish	to	override	this,	you	can	use	the	LF	option.

Notes

When	you	Text	a	file	and	Keep	it	again,	Qedit	attempts	to	duplicate	the
original	file.	The	form	of	the	Keep	file	depends	upon	the	current	language
and	Set	options,	especially	Set	Keep.	To	see	what	the	Keep	file	will	look
like,	use	Verify	Keep.

Keep	will	retain	the	security	of	your	existing	file	(i.e.,	the	file's	ACL)	if	you
answer	Yes	to	the	"Purge	old?"	question.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

List	Command	[L]
Prints	lines	of	the	current	workfile	or	an	external	file	either	on	your	screen
or	to	a	printer	device.

LIST	[$option...]	[rangelist]

(Default:	rangelist	=	*)

LIST	[$option...]	filename[,UNN]	[rangelist]

(Default:	rangelist	=	ALL)

(Q=no	linenums,	T=template,	J=jumping)

If	you	do	not	specify	a	filename,	List	displays	lines	of	the	current	workfile.
If	you	do	specify	a	filename,	List	displays	lines	from	that	file	without
Shutting	your	current	workfile.	You	can	refer	to	the	"previous"	file	by	a
shorthand	method,	a	"$".

If	you	specify	a	single	line	number	as	a	rangelist	and	that	line	does	not
exist	in	the	current	file,	Qedit's	action	depends	on	the	Set	List	Nearest
setting.	If	the	option	is	Off,	the	default,	Qedit	displays	a	No	Line	warning.
If	the	option	is	On,	Qedit	displays	the	nearest	line.	For	example,	if	lines
100	to	120	are	missing	from	a	file,	here	is	what	would	happen:

/List	100
Warning:	No	Line
/Set	List	Nearest	On
/List	100
			121				This	is	line	#121.

If	you	are	trying	to	do	something	similar	on	an	external	file,	Qedit	does
not	display	anything.

Specify	filename,UNN	when	listing	a	data	file	which	has	numeric
characters	in	the	last	8	column	positions	and	they	are	not	valid	sequence
numbers.

When	you	list	lines	of	your	current	workfile,	Qedit	shows	only	the
columns	within	the	current	left	and	right	margins,	and	the	default	rangelist
is	the	current	line	(e.g.,	List	=	List	*).	When	you	List	an	external	filename,
margins	are	ignored	and	the	default	rangelist	is	ALL.

Examples

/list	5														{display	line	5	only}
/listq	5/												{List-Quiet	from	5	to	Last}
/list	"customer"					{all	lines	containing	"customer"}
/list	-5/+5										{display	current	vicinity}
/l	report.cob								{display	entire	source	file}
/l	report.cob]-10/		{print	last	11	lines	of	file}
/l	$	"$page"(1/5)				{"$page"	in	column	1	of	previous	file}
/set	left	55;set	right	132		{set	margins	in	wide	file}
/listt	all											{show	template	above	columns}
/list	"bob"		(upshift)						{"bob","BOB","Bob",etc.}
/list	"@UPD@MAST@"	(pat)		{strings	UPD	and	MAST	both	in	line}
																													{pattern	matching}

$-Options

You	can	configure	permanent	options	for	the	List	command	using	Set
List;	you	can	also	select	temporary	options	within	a	specific	List
command.	The	temporary	options	are	preceded	by	a	dollar	sign.

LIST	[$option	...]	[filename[,UNN]]	[rangelist]

The	temporary	$-options	come	after	the	command	name	and	before	the
external	filename	and	rangelist.

Here	are	the	$-options	accepted	in	the	List	command:

[$DEVice	device]

The	$device	option	sends	output	to	a
specified	device.	The	device	must	be	a
valid	printer	name	or	class.	The
following	command	sends	lines	1
through	30	in	the	current	file	to	the
device	printer:	
/ list	$device	printer
1/30

[$lp	|	$lpa	|	$lpb	|	$record]

$lp,	$lpa	and	$lpb	send	output	to	a
device	associated	with	an	environment
variable	of	the	same	name.	For
example,	to	print	to	the	device	called
Laser	with	the	$lpa	option,	you	must
set	the	LPA	environment	variable	to
Laser,	as	in	 export
lpa=laser.	If	the	LP	environment
variable	is	not	set,	Qedit	will	attempt	to
send	the	output	to	the	default	system
printer.	But	if	the	LPA	or	LPB

environment	variables	are	not	set	with
a	valid	device	name,	an	error	will
occur.	$Record	sends	output	to
LPCRT=stdlist	via	Record	mode.

[$HEX	|	$OCTAL	|
$DECIMAL] Numeric	dump

$CHAR Remove	garbage;	combines	with
Hex/Octal/Dec

$PCL	code LaserJet	fonts	and	orientation

$DUPLEX Double-sided	printing	on	certain
LaserJets

$EVEN	|	$ODD Outputs	even	or	odd	number	of	pages

[$COLUMNS	(range,	...)]

Lists	only	certain	columns
The	$columns	option	allows	you	to	list
only	the	contents	of	certain	columns.
You	can	specify	up	to	four	column
ranges.	The	ranges	have	to	be
enclosed	in	parentheses	and	can	be
separated	by	commas	or	spaces.
A	range	must	have	a	start	column	and,
optionally,	an	end	column.	If	only	a
start	column	is	specified,	the	end
column	is	assumed	to	be	the	same.	In
this	case,	Qedit	lists	only	one	column.
For	example

/List	$columns	(5)
{lists	only	the	contents	of
column	5}
/List	$columns	(5/10)	{lists
the	contents	of	columns	5	to
10}
/List	$columns	(5	20/30)
{lists	column	5	and	20	to
30}
Column	numbers	must	be	valid	for	the
Language	of	the	file.	For	most	files,	the
first	column	is	1.	For	COBOL-type
files,	the	first	column	is	7.	Column
numbers	must	also	be	within	the
current	left	and	right	margins.	The
column	numbers	do	not	have	to	be
entered	in	a	particular	order.	For
example,	the	column	numbers	in	the
first	range	can	be	greater	than	the
column	numbers	in	the	second	range.
The	text	appears	in	range	order	(i.e.,
range1,	range2,	range3	and	range4).
The	same	column	can	be	included	in
multiple	column	ranges.	The	total
number	of	columns	listed	cannot
exceed	the	absolute	line	length

maximum	(8,172	characters).
Although	a	template	Listing	is	allowed
with	$columns,	the	output	might	not	be
very	helpful.	For	example,

/LT	$column	(15/20)
+....2
1	O
2	pp
3	QQQ
4	rrrr
List	$include	is	supported	with
$columns,	but	included	files	are
treated	as	if	they	are	the	same	type	as
the	main	file.	For	example,	if	you
include	a	COBOL	file	within	a	Data	file,
the	COBOL	file	will	start	at	column
one.
You	can	specify	a	rangelist	(e.g.,	a
search	string	with	$columns).	Qedit
first	searches	for	the	string,	which	can
appear	anywhere	on	the	line,	then
applies	the	$columns	specification.

$DOUBLE Double	space	the	listing	(or	$DBL)
$SHIFT Shift	the	listing	four	spaces	to	the	right

[$RIGHTBY	spaces]

Shift	the	listing	to	the	right	by	the
number	of	spaces
The	$rightby	option	works	like	the
$shift	option.	It	allows	you	to	shift	the
printed	output	to	the	right.	The	$shift
option	shifts	the	output	by	four	spaces.
The	$rightby	option	allows	you	to
specify	the	number	of	spaces	by	which
the	output	is	shifted.	This	number	can
be	between	1	and	30.

/List	$shift	LP	{shifts
output	by	four	spaces}
/List	$rightby	4	LP	{also
shifts	output	by	four
spaces}
/List	$rightby	20	LP	{shifts
output	by	20	spaces}

$INCLUDE List/search	$include	files	as	well
$USE List/search	usefiles	as	well
$PAGE	[ON|OFF] Override	Set	List	Page	option
$LINES	count Override	Set	List	Lines	(per	page)
$LENGTH	characters Specify	the	maximum	line	length

Here	is	an	example	that	uses	three	of	the	$-options:

/list	$lpa	$double	$shift	all

This	command	would	list	all	of	the	current	file	to	the	LPA	with	double
spacing,	and	the	listing	would	be	shifted	four	spaces	to	the	right.	To	send
the	output	of	the	List	command	to	the	device	called	Laser,	an
environment	variable	must	be	set	to	a	valid	printer	name	before	running
Qedit	(export	LPA=laser).

When	listing	an	external	file,	the	$-options	must	come	before	the	file
name:

/list	$hex	$char	filename					{hex-char	dump	of	file}

Include	Files

Normally,	Qedit	only	searches	the	current	file	for	a	string.	If	you	specify
the	$include	keyword,	however,	Qedit	will	also	search	the	$include	files
for	the	string.

/list	$include	"global_variable"

The	lines	that	specify	Include	files	must	begin	with	either	"$",	"#",	"!",	or
".".	In	SPL	programs,	an	exclamation	point	indicates	that	the	rest	of	the
line	should	be	treated	as	a	comment.	So,	if	a	line	starts	with	an
exclamation	point	followed	by	the	word	Include,	Qedit	also	assumes	this
to	be	a	comment	and	not	an	actual	Include	statement.

The	$include	command	must	be	spelled	out	in	full,	and	it	can	be	indented
from	the	prefix	character	($,	#,	etc.).

The	prefix	character	can	be	in	any	column	as	long	as	it	is	preceded	by
spaces	only.	Even	though	Qedit	allows	prefix	indentation,	other	programs
such	as	compilers	might	require	prefixes	to	be	in	specific	columns	e.g.
column	1.

So,	as	far	as	Qedit	is	concerned,	the	following	examples	are	valid	Include
source	lines:

$include	'globals.source'
				$include	constant.srcinc
				$				include	headers
#include	<strings.h>
#include	"parser/bnf.c"
!			include	somefile
.include				chapter1.book

You	cannot	combine	the	$use	and	$include	options.

Listing	C	Include	Files

Qedit/UX	assumes	that	any	include	statement	such	as

#include	<stdio.h>

is	a	C	include	file.	If	the	file	name	starts	with	a	letter,	it	is	qualified	with
/usr/include/.	This	is	where	the	standard	C	include	files	are

located.	C	file	names	that	start	with	"../h"	are	ignored	because	they
indicate	Include	files	for	rebuilding	the	HP-UX	kernel.

Usefiles

The	$use	option	is	very	similar	to	the	$include	option.	If	you	specify	the
$use	keyword,	Qedit	will	also	search	any	usefiles	for	a	string.	Usefiles
are	commonly	used	in	PowerHouse	source	code,	Qedit	and	Suprtool
command	files,	and	jobs	streams	that	run	Qedit	and	Suprtool.

/list	$use	"data.def"

The	lines	that	contain	the	"use"	directive	must	have	the	word	"use"	as	the
first	word	in	the	line.	Leading	blanks	are	allowed.	Everything	after	the
word	"use"	is	assumed	to	be	a	file	name.

You	cannot	combine	the	$use	and	$include	options.

$Device	Option

The	List	command	now	has	an	option	to	specify	the	HP-UX	print	device.
For	example:

list	$device	printer	1/10

The	above	command	prints	lines	1	through	10	of	the	current	file	to	the
printer	name	or	class	called	Printer.	The	name	specified	after	the	$device
keyword	must	be	a	valid	printer	name	or	class.	If	both	the	$device	and
$lp	keywords	are	used,	the	$device	takes	precedence.

Configuring	Printers

By	using	environment	variables	before	running	Qedit,	you	can	define	LP,
LPA	and	LPB	in	your	.profile	as	three	different	printers	on	your	system.

$LP;export	LP

$LPA=serialp;export	LPA
$LPB=shipping;export	LPB

Merging	Options

The	$-options	in	the	List	command	are	merged	with	the	Set	List	options,
except	that	Set	List	Record	ON	applies	only	to	the	file	LP,	not	LPA	and
LPB.	The	$-options	can	be	combined	wherever	they	make	sense;	they
can	be	used	with	Jumping,	Quiet	and	Template,	and	can	work	on	the
current	workfile	or	an	external	file.	$-Options	may	be	shortened	(e.g.,	$h
=	$hex).

Interrupting	a	Listing

Press	the	Control-S	key	to	"pause"	the	listing	for	review.	Then,	press
Control-Q	to	resume	the	listing.	On	newer	HP	terminals,	the	Stop	key
pauses	a	listing	until	you	press	Stop	again.	To	stop	the	List	command,
press	the	Control-Y	key.

Listing	External	Files

With	the	List	command,	you	can	look	at	any	file	on	a	system	to	which	you
have	read	access	security.

/list	/etc/profile

Qedit	studies	the	file	and	determines	whether	it	has	sequence	numbers
or	not.	If	you	ask	for	a	rangelist	of	lines,	Qedit	implicitly	numbers	a	file
without	numbers.	It	starts	at	line	1.0	and	adds	the	current	Set	Increment
value.	If	the	file	has	sequence	numbers,	Qedit	uses	them,	unless	it	finds
illegal	numbers	or	numbers	out	of	sequence.	It	then	prints	the	following
message:

Error:	line	number	out	of	sequence	(001200)	-	renumbering	the	rest

The	string	in	parentheses	is	the	incorrect	line	number.	You	should	make
sure	it	contains	numeric	digits	only	and	that	it	is	greater	than	the	number
on	the	previous	line.	To	check	this	information,	you	should	text	the	file
using	the	Unnumbered	option.

After	reporting	the	information,	Qedit	then	assigns	new	numbers	to	the
lines,	starting	with	the	last	valid	number	and	adding	the	current
increment.

Qedit	uses	this	shorthand	character	to	refer	to	the	most	recent	external
file	name:	"$".	For	example,

/list	report.cob	"$page"(1/5)
/list	$	500/600

Template	Listing

The	LT	command	prints	a	column-number	template	before	the	first	line	of
the	listing.

/lqt	5
....+....10...+....20...+....30...+....40...+....50..
				training	of	Qedit	users	is	so	easy	that	you	will

Remember	that	the	first	column	number	in	a	standard	COBOL	source	file
is	column	7,	not	column	1.	For	a	COBFREE	file,	the	first	column	is	1.	In
addition,	if	you	have	done	Set	Left	and	Set	Right	to	define	margins	for
your	file,	the	template	starts	with	the	Left	margin	column	and	ends	with
the	Right	margin	column.

/set	left	20;set	right	41
/lqt	5
20...+....30...+....40
it	users	is	so	easy	th

Browsing	or	"List-Jumping"

When	you	add	"J"	to	"List"	it	means	list-jumping.	This	lists	the	lines
specified,	but	stops	every	23	lines	(this	pause	is	handy	at	19.2K	baud).
Browse	quickly	throughout	a	file,	viewing	as	much	or	as	little	of	each
section	as	you	like.	The	default	rangelist	for	ListJ	is	*/Last,	and	ListJ
linenum	means	start	jumping	at	linenum.	You	can	go	into	Browse	mode
quickly	from	Line	mode	by	using	the	function	keys.	Press	F6	to	start
browsing	at	the	current	line,	press	F5	to	browse	starting	back	a	page,
and	press	F2	to	roll	the	screen	forward	a	few	lines	before	starting	to
browse.

At	the	end	of	each	screen,	ListJ	prompts	you	for	"what	to	do	next?"	and
waits	for	your	reply.	If	the	user	presses	Return	or	F6,	or	types	"yes",
Qedit	displays	the	next	screen.	If	the	user	presses	F8	or	Control-Y,	or
types	"no",	Qedit	stops	the	listing.	If	the	user	types	a	line	number,	a
string,	or	a	relative	line	count	(e.g.,	-50,	+5),	or	presses	F2,	F3,	F4,	or	F5,
Qedit	moves	to	a	new	location	within	the	file.	When	you	enter	any
command,	Qedit	stops	the	listing,	returns	to	Command	mode,	and
executes	the	command.	When	you	are	on	an	HP	terminal,	ListJ
enhances	and	erases	the	line	with	the	"what	to	do	next?"	prompt.

You	can	combine	ListJ	with	the	$include	option	to	browse	through	the
specified	files	as	well	as	their	$include	files.	You	can	combine	with	ListJ
with	"Q"	to	display	the	lines	without	sequence	numbers.	Also,	you	can
combine	"ListJ"	with	"T"	to	print	a	column	template	at	the	top	of	each
screen.	In	fact,	you	can	combine	all	three	options	into	"ListJQT"	to	List-
Jump	without	line	numbers,	but	with	a	column	template.

The	screensize	can	be	changed	from	23	lines	to	another	number	with	Set
List	LJ	nn	(where	nn	is	some	number	of	lines	from	5	to	100).	If	you	put
the	command	Set	List	QJ	On	in	your	Qeditmgr	file,	you	can	avoid	seeing
sequence	numbers	when	you	browse.

When	List-Jumping	reaches	the	last	line	of	your	file,	it	prints	"End!	Are
you	DONE?	[yes]"	and	waits	for	your	answer.	"Yes"	ends	the	listing,	and
"No"	starts	listing	again	from	the	beginning.	Set	List	Endstop	On	disables
this	question;	List-Jumping	just	prints	the	last	line	of	the	file	and	ends	the
LJ	command.

Controlling	Printer	Listings

When	you	specify	"$lp"	(or	"$lpa"	or	"$lpb")	in	a	List	command,	Qedit
looks	for	an	LP	environment	variable,	retrieves	the	value,	and	uses	this
as	the	device	name.	The	lines	that	would	have	been	printed	on	the
terminal	are	written	to	the	printer	file	instead.	At	the	end	of	the	command,
Qedit	closes	the	file,	which	releases	it	for	printing.

The	default	Qedit	listing	to	the	printer	is	a	raw	dump	of	your	lines,	with	or
without	line	numbers.	It	has	no	page	breaks,	no	headings,	no	title,	and	no
page	numbers.	However,	you	can	override	this	default	with	the	Set	List
command.

Listing	to	Attached	Printer

To	list	to	a	printer	that	is	attached	to	your	terminal,	use	List	$record.	If	you
want	all	listings	to	$lp	to	go	to	the	attached	printer,	do	Set	List	Record	On
and	then	List	$lp.	Qedit	will	use	Record	mode	on	your	terminal	or	PC	to
print	on	the	attached	printer.	This	option	opens	a	file	named	LPCRT
instead	of	LP.	If	you	are	listing	to	an	attached	printer	from	a	terminal,	your
terminal	may	remain	locked	after	the	printout	is	completed.	This	generally
happens	when	you	have	handshaking	enabled.	(G-H	straps	set	to	No).
You	can	do	a	soft	reset	to	unlock	your	terminal.

If	handshaking	is	disabled	(G-H	straps	set	to	Yes),	the	List	command
works	and	returns	control	to	the	terminal,	but	two	"S"	characters	are
printed	on	the	terminal.	There	is	currently	no	known	workaround	to	these
problems.

If	you	have	a	LaserJet	connected	to	your	PC	and	are	using	Reflection,

you	will	want	to	Set	Printer-Passthru-Conv	No	in	Reflection.	Otherwise
you	will	find	that	some	characters	are	printing	oddly,	such	as	the	square
block	printing	as	a	plus-minus	sign.	If	you	are	using	Reflection	for
Windows,	the	above	option	may	be	called	"Disable	Printer	Translation"	or
"Use	Host	Character	Set."	As	well,	you	have	to	select	"Bypass	Windows
Printing"	and	disable	"Auto	Form	Feed."

You	can	combine	this	option	with	other	listing	options	such	as	$PCL	or
$duplex.	You	cannot	interrupt	Record	mode	with	Control-Y,	but	you	can
do	a	soft	Reset.	This	unlocks	the	keyboard	and	causes	the	rest	of	the
output	to	appear	on	the	screen.	You	can	then	stop	it	with	Control-Y.

LP	Listings	with	Headings

To	have	Qedit	do	a	page	break	every	60	lines	and	put	a	heading	with	a
page	number	on	each	page,	do	List	$page	On	$lp	(or	$record,	$lpa,
$lpb).	To	configure	"paging"	as	the	default,	do	Set	List	Page	On.	Two
lines	at	the	top	of	each	page	are	used	as	a	heading.	The	first	line
contains	the	page	number,	the	file	name	(or	the	last	Text	file	name	in	the
case	of	Qeditscr),	and	the	time	of	the	listing,	and	the	second	line	is	blank.

In	this	mode,	Qedit	also	looks	for	$title,	$page,	#pragma	page,	and
#pragma	title	commands	in	your	file	and	uses	them	to	create	page
breaks.	The	optional	string	parameter	of	these	commands	replaces	the
date	and	time	in	the	page	heading	(e.g.,	$page	"Monthly	Staff	Review").
A	$page	or	$title	command	without	a	string	clears	the	title	area	of	the
heading.

To	vary	the	number	of	lines	per	page,	do	List	$lines	nn,	or	use	Set	List
Lines	nn	for	a	permanent	override,	where	nn	is	a	value	between	1	and
256.	(Assumes	Set	List	Page	On.).

/set	list	page	on	lines	59

To	print	the	heading	only	on	the	first	page,	use	$lines	0.	This	causes
continuous	printing	with	no	page	ejects.

/list	$lp	$lines	0	all					{ignores	$page	too}

To	perform	continuous	printing	with	no	automatic	page	ejects	but	skip	to
a	new	page	on	$Page	directives,	use	$lines	999.

/list	$lp	$lines	999	all					{skips	to	a	new	page	on	$page	only}

To	drop	the	file	name	from	the	page	heading,	do	Set	List	Name	Off.
(Assumes	Set	List	Page	On.)

/set	list	page	on	name	off

To	drop	the	page	numbers	from	each	page,	do	Set	List	Num	Off.
(Assumes	Set	List	Page	On.)

/set	list	page	on	name	off	num	off

To	drop	the	title	from	the	heading,	do	Set	List	Title	Off.	(Assumes	Set	List
Page	On.)

/set	list	page	on	title	off

To	drop	the	two-line	heading	from	each	page	while	still	doing	page
breaks,	use	Set	List	to	disable	the	three	components	of	the	heading:

/set	list	page	on	name	off	num	off	title	off

Getting	an	Even	or	Odd	Number	of	Pages

There	are	times	when	the	number	of	printed	pages	is	important.	For
example,	you	could	have	a	printer	that	is	always	loaded	with	pre-printed
forms	that	come	in	pairs	(e.g.,	Page	1	of	2	and	Page	2	of	2)	or	the	paper
is	folded	in	certain	ways	so	that	a	report	is	easier	to	tear	up	and	insert
into	a	binder.	In	both	examples,	sending	a	report	with	an	odd	number	of
pages	would	cause	the	next	output	to	be	on	a	wrong	page.

To	prevent	this	from	happening,	you	can	now	use	the	$even	or	$odd
options	on	the	List	command	and	ask	Qedit	to	"round	up"	the	number	of
pages.	The	$even	option	ensures	that	the	output	has	an	even	number	of
pages.	Similarly,	the	$odd	option	ensures	there	is	an	odd	number	of
pages	by	sending	an	extra	page	eject	sequence	before	closing	the	output
file.

These	even	and	odd	options	are	mutually	exclusive	(i.e.,	they	cannot	be
both	enabled	at	the	same	time).	If	you	try	use	them	both	on	the	same
command,	Qedit	uses	the	last	one	in	the	sequence.	For	example,	you
can	type

/List	$even	$odd	$lpa	myfile

Qedit	does	not	see	this	as	an	error	and	uses	the	$odd	option,	ignoring
$even.

These	options	only	make	sense	if	you	are	sending	the	list	to	a	printer,
either	attached	or	spooled.	They	have	no	effect	when	listing	the	file	to	the
screen.	For	this	reason,	you	have	to	specify	a	destination	printer	using

$lp,	$lpa,	$lpb,	$record	or	$device.

You	can	also	use	one	of	these	options	as	the	default	by	using	the	Set	List
command.	Specifying	a	$-option	on	the	List	command	overrides	the	Set
value.	There	is	currently	no	way	to	completely	ignore	the	Set	options.	If
you	want	both	options	to	be	disabled,	you	have	to	issue

/Set	List	Even	Off	Odd	Off

prior	to	the	List	command.

Double-Spaced	Listings

When	listing	to	LP,	you	can	force	the	result	to	be	double	spaced	with	List
$double.	This	feature	can	be	combined	with	most	of	the	other	features	of
List,	including	LT,	LQ,	and	Set	List	Page	On.	To	make	all	printer	listings
double	spaced,	do	Set	List	Dbl	On.	LQ	on	a	CCTL	file	disables	the
Double	option	because	the	CCTL	codes	in	the	file	control	the	spacing	on
the	listing.

LaserJet	Listings

Qedit	has	two	special	options	for	HP	LaserJets:	$duplex	and	$PCL.
Duplex	means	double-sided	printing,	and	PCL	means	Printer	Command
Language,	which	is	used	to	select	fonts,	spacing,	and	orientation.

$Duplex	for	Two-Sided	Printing.	Some	LaserJets	can	print	on	both
sides	of	the	paper;	use	List	$duplex	to	enable	this	option.

/list	$lp	$duplex	all

PCL	=	Printer	Command	Language.	All	LaserJets	have	several	sizes	of
character	fonts	and	can	print	in	either	landscape	or	portrait	orientation.	To
help	you	take	advantage	of	these	features,	Qedit	has	a	number	of	PCL
codes	that	can	do	all	the	work	for	you.	PCL	stands	for	Printer	Command
Language,	which	is	the	HP	standard	for	printers.	To	specify	a	LaserJet
option	for	a	single	listing,	use	List	$PCL;	to	configure	all	listings,	use	Set
List	PCL.	To	disable	the	special	PCL	option,	use	PCL	0.	Get	a	quick	on-
line	listing	of	the	PCL	options	with

/hq	set,list

Changing	Fonts	and	Orientation

Landscape-Tiny:	PCL	1.	To	list	to	the	LaserJet	in	the	tiny	font	that	prints
across	the	paper	sideways	(i.e.,	16.67	pitch,	landscape),	use	PCL	1.

/list	$device	printer	$pcl	1	all

Landscape-Regular:	PCL	2.	To	list	with	the	regular	Courier	font	in
landscape	orientation,	use	PCL	2.

The	Standard:	PCL	3.	The	normal	default	for	LaserJet	output	is	portrait
orientation	(across	the	narrow	side)	with	the	Courier	font.	However,	once
you	insert	a	font	cartridge	into	your	LaserJet,	it	may	select	one	of	the
cartridge	fonts	as	the	default	instead	of	Courier.	PCL	3	allows	you	to
select	the	standard	Courier	font,	even	if	another	font	cartridge	is	installed.

Portrait-Tiny:	PCL	4.	Some	LaserJets	provide	the	tiny	"Line	printer"	font
in	portrait	orientation	as	well	as	landscape	orientation.	PCL	4	selects	this
option.

A4	Special:	PCL	5.	To	print	80	columns,	instead	of	77,	across	A4	paper
using	the	standard	Courier	typeface,	try	PCL	5.	This	tightens	the	spacing
between	characters.

Legal-Landscape-Tiny:	PCL	6.	To	print	tiny	letters	in	landscape
orientation	on	legal-size	paper,	use	PCL	6.

You	can	combine	PCL	1,	2,	3,	4,	5,	and	6	with	Page	On	and	Off,	with
Lines	0,	with	LQ,	with	$DBL,	with	$record,	and	with	$duplex.

Two-Column	Listings

If	your	LaserJet	supports	"Line	printer"	font	in	landscape	orientation,	you
can	print	listings	across	the	page	with	two	columns	of	text	side	by	side.

/list	$lp	$pcl	10	all		{two-column	listing	format}
/lq	$rec	$pcl	10	1/200

If	you	have	a	legal-size	paper	tray,	you	can	use	PCL	11	to	print	two	wide
columns	of	110	characters	each	on	a	single	piece	of	paper.

A4-Size	Paper

Most	of	the	PCL	options,	with	the	exception	of	PCL	5,	were	designed	and
tested	with	North	American	letter-size	paper.	PCL	5	is	especially	for	A4
paper;	it	reduces	the	horizontal	spacing	between	characters	so	that	80
columns	of	Courier	output	can	fit	on	a	single	line.	In	addition,	if	you	add
2000	to	a	PCL	code,	Qedit	adjusts	the	number	of	rows	and	columns	for
that	option	to	match	A4	paper.	For	example,	to	print	two-up	landscape	on
A4	paper,	use	PCL	2010	instead	of	PCL	10.

In	general,	selecting	A4	paper	gives	you	more	space	along	the	long

dimension	of	the	paper	and	less	space	along	the	short	dimension.	If	you
are	happy	with	the	way	letter-size	rows	and	columns	work	on	A4	paper,
simply	do	not	add	2000	to	the	PCL	code.

Summary	of	Qedit	PCL	Codes

PCL L/P Font A4
Rows

A4
Columns

Letter
Rows

Letter
Columns Notes

1 L lp 58 188 60 175 	
2 L courier 43 110 45 100 	
3 P courier 64 77 60 80 "standard"
4 P lp 85 128 80 132 	
5 P courier 64 80 60 80 A4-squeeze
6 L lp 60 223 60 223 legal-size*
10 L lp 58 95 60 87 two	columns
11 L lp 60 110 60 110 2-up	legal*

L/P	mean	landscape	or	portrait	orientation.

*	Note:	PCL	6	and	11	were	designed	to	print	on	North	American	legal-
size	paper	and	will	select	that	size.	However,	you	can	see	what	happens
with	A4	paper	by	using	2006	and	2011.	Some	people	have	found	this
useful.

Roman-8	vs.	ASCII

The	PCL	option	requests	a	Roman-8	character	set,	but	some
combination	font	cartridges	only	supply	the	ASCII	character	set	(half	as
many	characters	means	twice	as	many	fonts	in	a	single	cartridge).	If	you
ask	for	landscape	Line	printer	and	get	landscape	Courier	instead,	your
Line	printer	font	probably	has	the	ASCII	character	set	instead	of	the
Roman-8	character	set.	To	request	an	ASCII	font,	add	1,000	to	the	PCL
code.	For	example,	if	you	have	a	Super	Cartridge	(55	fonts	in	one!),	use
PCL	1001,	1004,	1006,	1010	and	1011.	To	select	both	ASCII	and	A4
paper,	add	3000.

Folding	Wide	Lines

Qedit/UX	might	have	difficulty	handling	files	without	Newline	delimiters	at
the	end	of	each	line	or	files	with	lines	longer	than	8,172	characters.	To	be
able	to	access	these	files,	you	can	use	the	$length	option	to	specify	the
maximum	number	of	characters	you	want	on	each	line.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

:Listredo	Command	[LISTREDO/F7]
The	:Listredo	command	displays	any	of	the	previous	1,000	commands.

LISTREDO[start	[/	stop]][;ABS]	[;OUT=file]

[string][;REL]

[ALL	|	@][;UNN]

(Default:	display	previous	20	commands)

(BJ,	F7	and	,,	are	short	for	Listredo)

Commands	are	numbered	sequentially	from	1	as	entered	and	the	last
1,000	are	retained.	You	can	display	a	single	command,	a	range	of
commands,	all	1,000,	or	all	the	commands	whose	name	matches	the
string.	You	can	print	the	commands	with	ABSolute	line	numbers	(the
default),	RELative	line	numbers	(-5/-4),	or	UNNumbered.	The	OUT	option
is	not	available	for	Qedit/UX.	If	you	want	to	redo	any	of	these	commands,
see	:Do,	:Redo,	and	Before.

Examples

/listredo	5
/listredo	5/10
/listredo	help											{print	all	Help	commands}
/bj																						{historical	shorthand!}
/listredo	-10												{print	last	ten	commands}
/listredo	ALL												{print	entire	redo	stack}
/listredo	rm													{print	all	rm	commands}
/listredo	rm	xx										{print	all	"rm	xx"	commands}
/listredo	@rm												{print	all	with	"rm"	anywhere}
/listredo	@;rel										{print	all,	relative	numbers}

Notes

The	:Listredo	command	can	be	abbreviated	to	",,"	or	BJ,	or	can	be
invoked	by	the	F7	function	key.	Using	F7	to	invoke	Listredo	only	works	in
Line	mode,	not	Visual	mode.	You	cannot	use	";"	to	combine	commands
on	the	same	line.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

:Listundo	Command	[LISTU]
Displays	the	complete	Undo	change	log	of	commands	that	modified	text,
starting	with	the	most	recent	and	working	backward.

LISTUNDO

Listundo	shows	the	complete	Undo	change	log,	including	each
command,	the	number	of	lines	updated,	deleted,	added,	or	renumbered
by	that	command,	and	the	text	lines.	Text	for	deleted	lines	is	preceded	by
an	underscore	("_")	as	in	the	Delete	command,	and	the	"before"	value	of
lines	that	were	updated	has	a	Greater	Than	">".

Commands	are	printed	in	reverse	order,	with	the	most	recent	command
first.	This	is	the	command	that	would	undone	by	the	next	Undo
command.	To	stop	the	Listundo	report,	use	Control-Y.

Examples

/listundo

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

LS	Command	[LS]
Display	contents	of	a	directory.

LSnames

(Default:	current	directory)

Qedit	has	a	command	called	Lsort.	Due	to	Qedit's	shorthand	command
parsing,	ls	would	be	interpreted	as	Lsort.	The	Lsort	command	is	retained
for	compatibility	with	the	MPE	version	of	Qedit,	but	Qedit/UX	accepts	ls	to
mean	the	HP-UX	ls	command.

Examples

/ls																		{current	directory}
/ls	-a															{show	hidden	files	also}

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Lsort	Command	[LSO]
Sorts	a	range	of	lines.

LSORT	range	[KEYS	keylist]

LSORT	string	range	[KEYS	keylist]

(Q=no	display)

(Default:	by	entire	line)

The	simplest	Lsort	command	just	specifies	a	range	of	lines	to	be	sorted
and	no	other	parameters.	This	means	to	use	the	entire	line	as	the	key
and	sort	the	lines	into	ascending	order,	printing	them	once	sorted.

To	stop	Lsort	from	printing	the	sorted	lines,	use	LsortQ.	The	Lsort
command	can	be	abbreviated	to	"lso",	"lsq"	(quiet),	"lst"	(template)	and
"lsj"	(justify).	"ls"	followed	by	a	space	executes	the	HP-UX	shell
command.	"ls"	followed	by	any	other	character	is	executed	as	a	possible
shell	command.

Parameters

To	sort	by	some	other	key	fields	in	the	lines	(from	one	to	four	are
supported)	or	to	sort	the	lines	in	Descending	Order,	you	need	to	specify
the	KEYS	keylist	parameters.	The	keylist	consists	of	one	to	four	keys
separated	by	spaces	or	commas,	with	a	key	consisting	of	either	a	column
range	or	a	starting	column	and	length:

column	,	length	[DESC]

column	/	column	[DESC]

Ascending	Order	is	assumed	by	default,	but	you	may	specify	DESC	to
sort	this	key	in	Descending	Order.

Examples

/lsort	all											{sort	entire	file}
/lsortq	all										{sort	without	printing}
/lsort	10/33									{sort	some	lines	only}
/lsort	30/last	keys	10,5												{col	10	through	14}
/lsort	zz	keys	10/20																{col	10	through	20}
/lsort	20/last	keys	1,10	20,5,desc		{two	keys}

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Merge	Command	[ME]
Merges	an	external	file	into	the	current	workfile	by	line	number.	Use
Merge	to	apply	source-code	"changes-files"	containing	new	and	revised
text,	that	are	distributed	by	some	application	vendors.

MERGE	filename	[(rangelist)]

(Q=no	display,	J=Justified)

(Default:	rangelist:	ALL)

MergeQ	suppresses	printing	of	the	merged	lines.

The	optional	rangelist	specifies	a	subset	of	the	external	file	to	merge	into
the	current	file.

Examples

/text	master.src		{start	with	the	master	file}
/merge	changes				{update	changed	lines,	add	new}

Notes

To	make	your	own	"merge	file",	create	a	file	that	contains	edits	to	be
applied	to	your	current	workfile.	Mark	the	lines	of	text	that	will	replace
existing	lines	in	your	workfile,	with	the	corresponding	line	numbers.	Give
new	line	numbers	to	any	completely	new	lines	of	text	to	be	added	to	your
workfile.	$Edit	Void	removes	the	line	number	specified	in	the	command
and,	optionally,	lines	up	to	and	including	a	Void=	line	number.	Warning:
the	Void=	parameter	cannot	accept	a	decimal	point	so,	for	example,	you
must	enter	Qedit	line	60.1	as	60100.	To	delete	from	line	55	to	60.1,	you
would	use	the	following:

55.	 $edit	void=60100

Justified

The	default	is	to	replace	existing	lines	with	the	corresponding	line	from
the	external	file.	The	Justified	option	appends	the	corresponding	line	from
the	external	file.	Text	is	appended	immediately	after	the	last	non-blank
character	if	Set	Work	Trailingspaces	is	disabled.	If	Trailingspaces	is
enabled,	text	is	appended	immediately	after	the	last	significant	trailing
space.	If	the	resulting	merged	line	is	too	long	for	the	current	length,	the
merged	line	is	truncated.	Let's	say	the	current	workfile	contains:

abc
def
ghj

and	the	external	file	contains:

1111
2222
3333

A	MergeJ	would	result	in:

abc1111
def2222
ghj3333

If	the	maximum	length	was	5,	the	resulting	file	would	be:

/mergej	myfile
				1					11111
Warning:		Result	line	will	be	too	long.		Truncating	merged	text.
				2					22222
Warning:		Result	line	will	be	too	long.		Truncating	merged	text.
				3					33333
Warning:		Result	line	will	be	too	long.		Truncating	merged	text.
3	lines	merged
/l	all
				1					abc11
				2					def22
				3					ghj33

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Modify	Command	[M]
Editing	characters	within	lines	using	either	Control	codes	(default	Set
Mod	Robelle),	D-I-R-U	edits	(Set	Mod	HP),	or	Control	codes	with	visible
feedback	(Set	Mod	Qzmod).

MODIFY	rangelist

(Q=no	linenum,	T=template)

(Default:	rangelist	=	*)

By	default,	Modify	displays	the	first	line	and	puts	the	cursor	under	the	first
column.	You	enter	an	"edit-line"	to	specify	a	changes.	You	use	spaces	to
move	the	cursor	under	the	word	you	want	to	change,	then	type	new
characters	to	replace	those	in	the	columns	above.	For	example:

/modify	5
			5				Over	2000	computers	use	Suprtool.		{prints	line}
														750																										{you	edit	it}
			5				Over	2750	computers	use	Suprtool.		{prints	new	line}
								<Return>																											{end	Modify}

Each	time	you	press	Return,	Modify	applies	your	changes	to	the	line	and
prints	the	new	result.	This	cycle	continues	until	you	enter	only	a	Return
(no	more	edits).

You	use	nonprinting	Control	codes	for	editing,	such	as	Control-D	to
delete.	For	visual	feedback,	do	Set	Mod	Qzmod,	which	puts	your	cursor
right	on	top	of	the	line	and	responds	to	each	Control	code	by	revising	the
image	on	the	screen	(i.e.,	Control-D	actually	makes	the	character
disappear	from	the	screen).	If	you	would	prefer	to	use	MPE-style	edits
(D-I-R-U)	instead	of	Control	Codes,	do	Set	Mod	HP	to	reconfigure	Modify.

To	force	the	line	number	onto	a	separate	line,	use	Set	Mod	Prompt	OFF.

Examples

/modify	5/									{modify	from	line	5	until	^Y	or	end}
/find	"corelate";m	{find	spelling	error	and	modify	line}
/mod	"q_flag"						{modify	all	lines	with	"q_flag"}

Getting	into	Modify	Mode

There	are	other	commands	that	invoke	Modify	mode	in	Qedit:

Change,	when	a	line	overflows	or	you	use	CJ.
Add,	when	you	use	the	auto	modify	character	from	Set	Zip.
Before,	so	that	you	can	revise	and	redo	a	previous	command.
Redo,	also	enables	you	to	revise	and	redo	a	previous
command.

Edit	Functions	of	Modify

Here	are	the	edit	functions	of	Modify	and	their	Control	codes,	which	may
be	changed	with	the	Set	Modify	command.

Function Key Purpose
Overwrite Control-O Replace	characters	(default).
Delete Control-D Delete	characters.
Before Control-B Insert	characters	before	a	column.
Append Control-A Add	characters	to	end	of	the	line.
Divide Control-V Divide	line	in	two	at	this	column.
Goof Control-G Restart	Modify	with	original	line.
Terminate Control-T End	this	edit	so	you	can	do	another.
Lengthen Control-L Same	as	Append	(Control-A).
Insert Control-^ Same	as	Before	(Control-B).

HP-UX	reacts	to	certain	control	characters	which	might	conflict	with	the
Qzmodify	codes.	For	example,	control-D	sends	an	end-of-file	signal	to
HP-UX	but	is	also	the	delete	character	in	Qzmodify.	You	should	use	the
HP-UX	 stty	program	to	change	the	default	end-of-file	signal.
Please	see	the	section	Control	Characters	and	stty	for	more	details.

You	create	Control	codes	by	holding	down	the	Control	key	while	pressing
the	other	key.	Most	Control	codes	are	invisible	and	do	not	move	the
cursor.	In	the	user	manual,	the	symbol	(^)	as	a	prefix	stands	for	the
Control	key	(^-D	for	Control-D).

Some	functions	combine	two	of	the	Control	codes:	pressing	^-T	then	^-V
in	the	first	column	of	a	line	splices	two	lines	together	(and	deletes	the
second	line	if	it's	emptied).	Actions	not	restricted	to	column	1	may	be
performed	at	any	point	on	the	line.

Function Key Col. Purpose

Splice ^T	^V 1 Fills	current	line	from
next	line.

Insert	Line ^A	^V 1 Adds	a	blank	line	before
current	one.
Adds	a	blank	line	after

Insert	Line ^A	^V current	line.

Delete	Last ^A	^D
Spaces	remove
characters	at	end	of
line.

Replace	End ^A	^O Replaces	from	end	of
line	(overwrites).

Delete	Line ^T	^D 1 Deletes	current	line.

Overwriting	Characters

To	overwrite	characters	in	a	line,	type	the	new	characters	underneath	the
ones	to	be	replaced.	There	is	no	need	to	type	a	control	character;
"overwrite"	is	the	default	edit	function.	Once	you	are	in	Overwrite	mode,
you	can	also	use	the	Space	bar	to	erase	the	columns	that	you	move
through.	If	you	have	not	yet	typed	any	characters,	the	Space	bar	just
moves	your	column	position	to	the	right	one	place.	You	can	get	into
Overwrite	mode	at	any	time	while	in	modify	by	pressing	Control-O.
Terminate	overwrite	mode	and	go	into	space-	transparency	mode	by
typing	Control-T.

Start	Over	Editing	a	Line

To	correct	a	Modify	mistake,	enter	the	Goof	control	code	(Control-G)	and
press	Return.	Qedit	restores	the	line	to	its	original	contents	and	restarts
the	Modify	cycle.	Control-G	does	not	undo	Splits	and	Splices.

Doing	Several	Edits	in	One	Line

You	can	do	more	than	one	edit	operation	in	one	edit-line	if	each	edit	is
clearly	separated	from	the	preceding	and	following	ones.	When	the	edits
are	at	different	ends	of	the	line,	you	must	Terminate	the	first	function	so
that	you	can	move	the	cursor	right	to	the	next	column.	The	Terminate
control	code	(Control-T)	provides	this	capability.

The	following	illustrates	where	to	place	your	control	codes	(^	stands	for
the	Control	key),	even	though	they	will	not	appear	on	your	screen.	The
first	example	capitalizes	the	"r"	in	"return",	then	replaces	"in	error"	with
"by	mistake",	which	requires	inserting	the	letters	"ke."	The	second
example	inserts	the	word	"Goof"	and	a	space	at	the	start	of	the	line,	and
deletes	the	last	two	words	at	the	end	of	the	sentence,	adding	a	final
period.

/m	13
			13			a	return.	If	you	do	this	in	error,						{displays	line}
										R																						by	mistake					{^codes	are:	}
	<spaces>	R<^T,	spaces>										by	mista<^B>ke<Return>

			13			a	Return.	If	you	do	this	by	mistake,				{redisplays}
/m+1
			14			control	code	restores	the	line	for	you.	{displays	line}
								Goof																										.									{^codes	are:	}
				<^B>Goof	<^T,	spaces>													.<^D,	Return>
			14			Goof	control	code	restores	the	line.				{redisplays}

Deleting	Characters

To	delete	characters	from	the	line,	starting	with	the	current	column
position,	enter	the	Delete	control	code	(Control-D).	Then	space	to	the
right	the	number	of	columns	to	be	deleted.	Any	remaining	characters	in
the	line	are	left-shifted	to	fill	in	the	deleted	columns.

In	all	cases,	the	columns	deleted	are	those	immediately	above	the	cursor,
regardless	of	what	other	functions	have	been	performed	previously	on
the	same	line.	The	Delete	function	is	stopped	by	the	first	nonblank
character,	either	Return,	a	printing	character	to	switch	back	into
Overwrite	function,	or	another	control	code.

HP-UX	reacts	to	certain	control	characters	which	might	conflict	with	the
modify	codes.	For	example,	control-D	sends	an	end-of-file	signal	to	HP-
UX	but	is	also	the	delete	character	in	modify.	You	should	use	the	HP-UX

stty	program	to	change	the	default	end-of-file	signal.	Please	see
the	section	Control	Characters	and	stty	for	more	details.

Erasing	the	Line

To	erase	from	the	current	column	to	the	end	of	the	line,	enter	the	Delete
control	code,	followed	by	a	Return.	If	you	do	this	by	mistake,	the	Goof
control	code	restores	the	line	for	you.

Inserting	Characters

To	insert	characters	in	the	line	before	the	current	column	position,	enter
the	Before	control	code	(Control-B).	Then	type	the	characters	to	be
inserted.	The	existing	characters	starting	in	the	insert	column	are	right-
shifted	to	make	room	for	the	new	characters.

On	the	operator's	console	of	Seried	800	compputers,	the	Control-B
character	puts	the	terminal	into	"maintenance"	mode.	In	these	cases,	use
Control-^	instead.	If	you	do	press	Control-B	on	the	console	accidentally,
type	"CO"	on	a	Series	800	or	900.

Adding	Characters	to	the	End	of	a	Line

To	add	characters	to	the	end	of	the	line	after	the	last	nonblank	character
in	the	line,	enter	the	Append	control	code	(Control-A).	Then	type	the
characters	to	be	added.	This	function	is	independent	of	the	current
column	position.

Dividing	a	Line	into	Two	Lines

The	Divide	control	code	(Control-V)	splits	the	current	line	into	two	lines	at
the	current	column	position.	If	a	line	number	is	available,	Qedit	moves	all
characters	from	the	current	column	to	the	end	of	the	line	to	a	new	line
that	is	added	after	the	current	line.	The	Goof	function	recalls	the	original
contents	of	the	line,	but	does	not	delete	the	new	line	(neither	does
Control-Y).	See	also	Divide	command.

Splicing	Two	Lines	Together

To	splice	two	lines	together,	you	must	be	on	the	first	column	of	the	first
line	you	wish	to	splice.	Type	Control-T,	then	Control-V,	and	quick	as	a
wink,	all	the	characters	from	the	second	line	are	appended	to	the	end	of
your	current	one.	Qedit	moves	only	as	many	characters	as	will	fit.	If	all
the	characters	are	moved,	the	second	line,	now	empty,	is	deleted.	See
also	the	Glue	command.

Editing	Lines	with	More	Than	80	Columns

To	modify	long	lines	(i.e.,	more	than	80	columns),	use	Set	Left	and	Set
Right	to	define	a	slice	through	the	lines.

/set	left	55
/mqt	*												{quiet,	with	template}
+....60...+....70...+....80...+....90...+....100..+....
ubsequent	Sales	Follow-up	-	Completion	Ratio	Report

Or	use	Set	Modify	Qzmodify,	it	handles	long	lines	without	the	need	to	set
margins.

Qzmodify:	WYSIWYG

You	may	want	to	try	Set	Modify	Qzmodify	to	replace	the	normal	Qedit
modify	with	a	"visual"	modify	(What	You	See	Is	What	You	Get).	Qzmodify
uses	the	same	Control	codes,	plus	many	extensions,	but	Qzmodify	does
single-character	reads.	This	allows	it	to	respond	immediately	and	visually
to	each	keystroke,	but	means	that	the	performance	is	unacceptable	over
NS,	packet-switching	LANs,	and	the	DTC.	Once	in	Qzmodify,	type
Control-Q	for	a	list	of	commands.

How	to	Edit	in	Qzmodify

In	Qzmodify,	"what	you	see	is	what	you	get".	The	cursor	rests	on	the
same	line	as	the	text	you	are	editing.	If	you	press	any	printable	key
(ASCII	code	32	or	greater),	that	key	either	replaces	the	character	the
cursor	was	on,	or	(if	Insert	mode	is	on)	inserts	the	key	before	that
character,	moving	the	rest	of	line	to	the	right	by	one	character.

When	you	initially	enter	Qzmodify	you	are	in	Transparent	mode--here,	a
blank	simply	causes	the	cursor	to	move	one	space	to	the	right.	Pressing
any	other	printable	character	immediately	terminates	Transparent	mode
and	puts	you	in	Overwrite	mode,	so	the	character	replaces	the	one	the
cursor	is	on.	The	three	basic	modes	are:

Mode To	enter To	exit
transparent ^T any	printable	char,	^B,	^O,	or	^X
overwrite ^O ^T,	^B,	or	^X
insert ^B	or	^^ ^T,	^O,	or	^X

Qzmodify	will	not	allow	you	to	create	a	line	longer	than	a	maximum
specified	by	the	calling	program,	nor	can	you	accidentally	"lose"
characters	off	the	right	edge	when	using	Insert	mode	...	Qzmodify	beeps
when	you	try	to	do	something	illegal.	To	edit	Roman-8	characters,	use
Set	Editinput	Extend	ON.

Editing	Commands

Qzmodify	has	an	extensive	set	of	commands,	all	of	which	are	invoked	via
control	characters.	In	this	documentation,	the	symbol	^	means	that	the
following	character	is	a	control	character	(e.g.,	^G	is	control-G).	Control
characters	may	be	entered	as	lowercase	or	uppercase	letters	(i.e:	^g	and
^G	are	identical).

HP-UX	reacts	to	certain	control	characters	which	might	conflict	with	the
Qzmodify	codes.	For	example,	control-D	sends	an	end-of-file	signal	to
HP-UX	but	is	also	the	delete	character	in	Qzmodify.	You	should	use	the
HP-UX	 stty	program	to	change	the	default	end-of-file	signal.
Please	see	the	section	Control	Characters	and	stty	for	more	details.

Char	Mnemonic Description

^A	append

Go	to	end-of-line.	Moves	the	cursor	to	just	after
the	last	character	on	the	line.	If	the	line	is	already
at	the	maximum	length,	the	cursor	is	placed	at
the	last	character.

^B	before

Turn	on	Insert	mode.	Turns	off	Overwrite	mode.	If
you	enter	a	character	while	in	Insert	mode,	it	will
be	put	Before	the	character	the	cursor	is	on,	and
the	rest	of	the	line	will	move	one	to	the	right.

^^	before Control	up-arrow...synonym	of	^B.	Use	^^	instead

of	^B	if	you	are	on	a	system	console!

^C	case
Change	case	of	current	character.	If	the	current
character	is	a	lowercase	letter,	it	will	be	changed
to	an	uppercase	letter	and	vice	versa.

^D	delete
Delete	character.	Pressing	^D	will	cause	the
character	under	the	cursor	to	be	deleted,	and	the
rest	of	the	line	to	be	moved	one	space	to	the	left.

^L^D	delete	end
If	the	cursor	is	just	past	the	last	character	in	the
line,	(i.e.,	you	just	did	a	^L	or	^A),	then	the	^D	will
delete	the	last	character	of	the	line.

^E	erase Erase	to	end	of	line.	This	will	erase	all	of	the	text
from	the	cursor	to	the	end	of	the	line.

^F<c>	find

Find	next	occurrence	of	character	<c>.	The
cursor	will	be	moved	to	the	next	occurrence	of	the
character	<c>	to	the	right	of	the	cursor.	If	<c>	is
not	found,	you	will	hear	a	beep.

^F<n><c> Find	nth	occurrence	of	<c>	where	1<=n<=8.

^G	goof
Undo	all	current	modifications.	Restores	the	line
of	text	to	its	original	form.	Note:	^V,	^K,	^T^D,	and
^T^V	cannot	be	undone.

^H	backspace Move	back	one	character	(nondestructive).
^I	tab Skip	ahead	to	the	next	tab	stop.

^J	justify Deletes	blanks	from	the	cursor	to	the	first
nonblank	(does	not	delete	that	character).

^K	add
Requests	Qedit	to	add	a	line	after	the	current	line.
The	current	line	will	then	be	redisplayed	for
editing	and	you	will	get	to	edit	the	new	line.

^L	lengthen Go	to	end-of-line...synonym	of	^A.	Use	^L	instead
of	^A	if	you	are	on	a	Type	Ahead	Engine	(TAE).

^M	return
Marks	the	end	of	editing	a	line.	Returns	the
modified	line	to	Qedit.	Note	that	^M	is	the	same
as	Return.

^O	overwrite
Initiates	Overwrite	mode	and	turns	off	Insert
mode	(^B).	In	Overwrite	mode,	if	you	enter	a
character,	it	will	replace	the	one	on	the	screen.

^P<#><dir> Moves	up	or	down	some	number	of	lines	of	text.
For	example,	^P3-	moves	back	three	lines.

^Q	query Displays	list	of	Qzmodify	functions.

^S<c>	scan

Find	previous	occurrence	of	<c>.	The	cursor	will
be	moved	to	the	first	occurrence	of	<c>	to	the	left
of	the	current	cursor	position.	If	<c>	is	not	found,
you	will	hear	a	beep.

^S<n><c> Find	nth	occurrence	of	<c>	where	1<=n<=8.

^T	Transparent

Terminates	Insert	mode	and	Overwrite	mode.
After	^T,	if	you	type	blanks,	the	cursor	simply
moves	right	one	space	without	affecting	the	text.
Transparent	mode	is	always	turned	off
automatically	whenever	a	nonblank	printable

character	is	entered,	then	Overwrite	mode	is
turned	on.

^T^D	delete If	done	at	column	one,	this	deletes	the	entire	line.

^T^V	splice

If	done	at	column	one,	this	will	join	the	next	line	to
the	end	of	the	current	line	and	display	the	spliced
line	for	editing.	If	not	a	column	one,	then	is	the
same	as	^V.

^U	jUmpback

Move	back	to	the	previous	tab	stop.	This	is	the
opposite	to	^I.	As	an	aid	to	remembering	them,	^I
is	the	same	as	pressing	the	tab	key,	and	^U	is
just	to	the	left	of	^I	on	the	keyboard.

^V	split

Split	the	current	line	(at	the	cursor)	into	two	lines
and	modify	both	of	them.	Note	that	^Y	restores
the	text	if	you	decide	not	to	make	the	change,	but
you	have	to	manually	remove	the	second	split-off
line.

^X	eXamine Examine	(redisplay)	the	current	line.

^Y	abort Terminates	modify	without	changing	the	current
line.

^W	Wordproc
Shifts	into	"word-processor"	mode.	In	word-
processor	mode,	the	next	control	character	is
used	to	select	a	function.	The	functions	are:

^W^C Compress	multiple	blank	spaces	to	single	blank
spaces.

^W^D
Delete	Word.	Deletes	from	the	cursor	to	the	next
blank,	and	then	any	following	blanks	up	to	(but
not	including)	the	next	nonblank.

^W^H

Toggles	a	flag	that	remembers	if	you	have	an	HP
110	(or	an	HP	2640).	The	flag	is	needed	because
the	HP	110	knows	only	a	subset	of	the	"standard"
HP	26xx	escape	sequences,	and	some	of	them
incorrectly!

^W^L Draws	a	ruled	"line";	similar	to	the	ListT
command.

^W^N

Toggles	Numbered	mode.	A	line-number	prefix
will	be	displayed	in	front	of	a	line	of	text	only	if
both	of	the	following	are	true:-	line	numbers	have
been	requested	(either	via	a	Modify	command
from	Qedit	or	via	^W^N);-	the	line	number	was
passed	to	Qzmodify	by	Qedit	(i.e.,	you	did	an
Modify	command,	not	an	ModifyQ	command)

^W<c>^D

Delete	all	characters	from	the	cursor	up	to,	but
not	including,	character	<c>.	Note:	<c>	must	be	a
printable	ASCII	character	(character	code	>	31).	If
the	cursor	is	currently	on	the	same	<c>,	it	is
deleted	immediately	before	looking	for	the	first
<c>.	If	<c>	is	not	found,	nothing	is	deleted.
Put	the	character	into	the	text.	This	is	useful
when	you	want	to	put	a	control	character	into	the

^W^P<c> text.	All	nonprintable	characters	will	be	displayed
as	periods	(.),	so	they	will	take	up	one	space	on
the	line.

^W^S^D Downshift	all	letters	from	the	cursor	to	end-of-line.
^W^S^U Upshift	all	letters	from	the	cursor	to	end-of-line.

^W^S^T
Reverse	the	case	(e.g.,	"a"	becomes	"A"	and	"A"
becomes	"a")	of	all	letters	from	the	cursor	to	end-
of-line.

^W^T Toggles	the	Type	Ahead	Engine	(if	you	have	one)
through	three	states:	disabled,	enabled,	ignored.

^W^V Prints	the	version	ID	of	Qzmodify.

^W? Display	the	ASCII	character	code	for	the
character	that	the	cursor	is	on.

^W$<hh>
Replace	the	character	at	the	current	column
position	with	the	ASCII	character	whose
hexadecimal	value	is	<hh>.

Symbols	Used	in	Qzmodify	Command	List

<c>	is	any	single	character.	Qzmodify	will	search	for	this	character.	If	<c>
is	^W,	the	search	will	be	for	the	next	word	(words	are	anything	delimited
by	blanks)	instead	of	for	a	single	character.

<#>	is	zero	or	more	digits.	For	example,	^P12+	would	mean	move
forward	12	lines.	^P3-	would	move	back	three	lines.

<n>	is	one	of:	^A,	^B,	...,	^H	and	is	interpreted	as	the	number	1,	2,	...,	8
respectively.

<dir>	is	a	"-"	to	move	"back",	or	a	"+"	to	move	"forward".

<hh>	is	any	pair	of	hexadecimal	digits.

Note:	When	modifying	a	line	longer	than	79	characters,	some	commands
(e.g.:	^D,	^B,	^E)	will	not	update	any	line	of	the	screen	display	other	than
the	one	you	are	on.	Whenever	you	want	to	see	an	accurate	display	of
your	text	line,	press	^X	to	refresh	the	display.	This	limitation	could	be
fixed,	but	only	at	the	cost	of	slowing	down	response	time	while	editing
these	longer	lines.

Note:	You	cannot	use	the	special	keys	on	an	HP	terminal	(e.g.:	cursor
keys,	insert	char,	delete	char,	clear)	because	they	are	designed	to	either
send	no	characters	to	the	computer	when	they	are	pressed	or	two
characters	...	and	both	of	these	choices	cause	difficult	problems	unless
you	are	on	an	HP	e3000	with	a	Type	Ahead	Engine.	Thus,	these	keys
should	not	be	used.	If	you	use	them	by	accident,	a	^X	will	refresh	the
display	of	the	line	you	are	editing.

Qzmodify	with	a	Type	Ahead	Engine

The	Type	Ahead	Engine	(TAE)	from	Telamon	can	be	in	one	of	three
states	from	the	Qzmodify	viewpoint:	disabled,	enabled,	or	ignored.	Each
is	defined	below.

Ignored.	Qzmodify	will	not	do	anything	to	either	encourage	the	use,	or
discourage	the	use,	of	the	TAE.	This	is	usually	the	initial	state	(see
below).

Enabled.	Qzmodify	will	place	the	TAE	in	single-character	mode	at	entry,
and	restore	it	to	Line	mode	at	exit.	This	means	that	the	HP3000	won't
lose	typed	ahead	input	anymore,	and	that	the	special	keys	(e.g.,	cursor
keys)	will	work	nicely.

Disabled.	Qzmodify	will	disable	typeahead	(by	sending	^A^V	to	the	TAE)
at	entry,	and	enable	it	at	exit.	In	this	mode,	the	TAE	is	effectively	taken
out	of	the	"circuit".

With	Qedit,	you	configure	TAE-treatment	as	part	of	the	Set	Modify
Qzmodify	command:

Set	Mod	Qzmodify					{ignore	the	TAE}
Set	Mod	Qzmod	TAEOFF	{TAE	exists,	disable	it}
Set	Mod	Qzmod	TAE				{TAE	exists,	enable	it}

When	the	TAE	is	present	and	enabled,	you	can	use	these	extra
commands:

^W^T Toggles	the	Type	Ahead	Engine	through	three
states:	disabled,	enabled,	ignored.

leftarrow The	HP26xx	left-arrow	key	will	move	the	cursor	1
space	to	the	left.

rightarrow The	HP26xx	right-arrow	key	will	move	the	cursor
1	space	to	the	right.

up	arrow

Move	up	to	the	prior	line	of	text,	leaving	cursor	in
the	same	column.	The	terminal	screen	is	scrolled
DOWN,	so	the	line	you	were	just	editing	is	moved
down	1.

down	arrow

Move	down	to	the	next	line	of	text,	leaving	cursor
in	the	same	column.	The	terminal	screen	is
scrolled	UP,	so	the	line	you	were	just	editing	is
moved	up	1.

delete	char Deletes	the	character	under	the	cursor	(like	^D).
insert	char Turns	on	Insert	mode	(like	^B).

insert	line Asks	Qedit	to	add	a	new	line	after	the	current
line.

delete	line Asks	Qedit	to	delete	the	current	line.

^leftarrow

Moves	cursor	LEFT	to	the	blank	just	after	the
nearest	"word"	on	the	left	of	the	cursor.	Valid	only
if	a	Type	Ahead	Engine	is	present	and	enabled.
Only	available	on	HP264x	terminals.

^rightarrow

Moves	cursor	RIGHT	until	it	reaches	the	start	of
the	next	"word"	(will	not	move	past	current	end	of
text.)	Valid	only	if	a	Type	Ahead	Engine	is	present
and	enabled.	Only	available	on	HP264x
terminals.

Hpmodify:	No	Control	Characters

Set	Modify	Hpmodify	replaces	Qedit's	standard	Modify	in	all	places	with
MPE-style	editing	(D	for	delete,	I	for	insert,	R	for	replace,	U	for	undo,	>
for	append,	>D	for	delete	at	end,	>R	for	replace	at	end,	and	D>	for	clear).
We	suggest	Hpmodify	when	using	Qedit	over	finicky	datacomm
networks,	since	it	does	not	require	any	Control	codes.

Hpmodify	Keys	-	Reference

Directive Effect

i INSERT.	If	text	follows	the	i,	this	text	is	inserted	in
the	current	line,	starting	at	the	position	of	the	i.

r
REPLACE.	If	text	follows	the	r,	this	text	replaces	the
same	number	of	characters	in	the	current	line,
beginning	at	the	position	of	the	r.

d

DELETE.	Deletes	a	character	from	the	current	line
for	each	d	specified	in	the	edit	line.	Note	that	"d	d"
does	not	specify	a	range	as	it	does	in	MPE	V	but
simply	deletes	one	character	above	each	d.	Multiple
d's	may	be	followed	by	an	Insert	or	Replace
operation.

d>
DELETE.	Deletes	to	the	end	of	the	current	line	from
the	position	specified	by	d>.	May	be	followed	by	an
Insert	or	Replace	operation.

>

APPEND.	If	text	follows	the	>,	this	text	is	appended
to	the	end	of	the	current	line.	If	a	>	without	text	is
positioned	beyond	the	end	of	the	current	line,	then	a
simple	replacement	is	performed	instead.

>d
DELETE.	Deletes	from	the	end	of	the	current	line,
right-to-left.	Multiple	d's	and	Insert	and	Replace
strings	may	be	specified	after	>	.

>r
REPLACE.	Replaces	characters	at	the	end	of	the
command	line.	The	last	(rightmost)	character	of	the
replacement	string	is	at	the	end	of	the	line.
CHANGE.	Changes	all	occurrences	of	one	string	to
another	in	the	current	line	starting	at	the	c.	The

c

search	string	and	replace	string	must	be	properly
delimited.	A	proper	delimiter	is	a	nonalphabetic
character	(such	as	'	"	or	/)	The	substitution	is
specified	as	cdelim	search-string	delim	[replace-
string	[delim]].	Omitting	the	replace-string	causes
occurrences	of	search-string	to	be	deleted,	with	no
substitution.

u

UNDO.	A	single	u	in	column	one	cancels	the	most
recent	edit	of	the	current	line.	Using	the	Undo
command	twice	in	a	row	cancels	all	edits	for	the
current	line	and	re-establishes	the	original,	unedited
line.	If	u	is	placed	anywhere	other	than	column	one
of	the	current	line,	then	a	simple	replacement	is
performed.	Undo	makes	sense	only	if	you	have	a	line
on	which	you	have	performed	some	editing	that	can
be	"undone."

other

Simple	replacement.	Any	other	character	(not	i,	r,	d,
d>,	>,	>d,	>r,	c,	or	u)	will	be	put	into	the	current	line
at	the	position	above	where	it	is	placed,	replacing
any	existing	character.	Simple	replacement	also
occurs	for	the	editing	characters	i,	r,	c,	or	>	if	they
are	not	followed	by	text;	or	if	>	appears	at	or	beyond
the	current	end	of	line.

Hpmodify	Examples

Edit Action

u First	occurrence	undoes	the	previous	edits.	The	u
must	be	in	column	one.

u Second	occurrence	undoes	all	edits	on	the	current
line.	The	u	must	be	in	column	one.

rxyz Replaces	the	current	text	with	xyz	starting	at	the
position	of	r.

xyz Replaces	the	current	text	with	xyz	starting	at	the
position	of	x.

ixyz Inserts	xyz	into	the	current	line,	starting	at	the
position	of	the	i.

ddd Deletes	three	characters,	one	above	each	d.

d	xyz
Deletes	a	single	character	above	the	d,	skips	one
space,	then	replaces	the	current	text	with	xyz	starting
at	the	position	of	x.

ddixy Deletes	two	characters,	then	inserts	xyz	in	the
current	line	starting	at	the	position	of	the	i.

d	d

Deletes	one	character	above	the	first	d,	skips	two
spaces	and	deletes	a	second	character	above	the
second	d.	It	does	not	delete	a	range	of	characters,
making	it	unlike	the	MPE	V	version	of	Redo.
Deletes	a	single	character	above	the	first	d,	skips

d	d>xyz two	spaces	and	deletes	to	the	end	of	the	line
beginning	at	the	second	d,	and	then	places	xyz	at
the	end	of	line.

>xyz Appends	xyz	to	the	end	of	the	current	line.

>ddxyz
Deletes	the	last	two	characters	from	the	end	of	the
current	line	and	then	places	xyz	at	the	end	of	the
line.

>rxyz Replaces	the	last	three	characters	in	the	current	line
with	xyz.

>ixyz
Appends	xyz	to	the	end	of	the	line.	In	this	case,	the	i
command	is	superfluous,	because	>	accomplishes
the	same	result.	Using	>xyz	would	be	sufficient.

c/ab/def Changes	all	occurrences	of	ab	to	def,	starting	at	c.
c"ab" Deletes	all	occurrences	of	"ab"	starting	at	c.

cxyz

Replace	the	current	text	with	cxyz,	starting	at	c.
Because	delimiters	have	not	been	specified	(as	they
were	in	the	previous	two	examples),	this	is	a	simple
replacement	with	the	four	characters.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

New	Command	[N]
Creates	a	new,	empty	Qedit	workfile	and	opens	it.	This	can	be	either	an
unnamed	extra	scratch	file	or	a	named	workfile.	The	advantages	of	a
workfile	are	that	you	can	instantly	Open	and	Shut	it,	and	that	it
compresses	your	data.	You	can	use	Text	to	make	a	copy	of	a	Qedit	file
when	you	wish	to	protect	the	work	you	have	done.

NEWfilename	[,language	[(size)]

NEW

(Default:	extra	scratch,	3200	lines)

Qedit	shuts	the	current	file	and	builds	filename,	which	it	then	opens	for
editing.	If	you	leave	out	filename,	Qedit	creates	a	new	extra	scratch	file
and	assigns	it	a	number	(1,2,3..)	so	that	you	can	recognize	it	in	Verify
Open	and	Open	?.	Up	to	eight	extra	scratch	files	are	allowed	(see	also
the	TextJ	command).	You	cannot	Exit	without	discarding	or	saving	any
edits	you	have	done	in	an	extra	scratch	file.

The	language	defaults	to	the	current	Set	Lang	value,	but	can	be
overridden.

If	you	want	to	force	creating	a	Wide-Jumbo	format,	you	should	set	the
Length	to	a	value	larger	than	1,000	before	issuing	the	New	command.

/Set	Length	2500
/New	newwork

These	commands	create	a	new	permanent	workfile	called	Newwork.	If
you	want	to	create	a	new	scratch	file,	enter	the	New	command	by	itself.

The	optional	size	is	ignored	by	Qedit/UX.	The	maximum	number	of	lines
in	a	Qedit/UX	workfile	is	99,999,999.

Examples

/new																							{create	an	extra	scratch	file}
/new	memos																	{create	an	empty	file	named	Memos}
/set	lang	job														{define	file	as	80-column	records}
/add
/new	frankie															{build	frankie}
/aq	1=johnny															{memos	was	shut	automatically}

Building	Workfiles	with	Text

You	can	also	create	new	workfiles	while	doing	a	Text	command.

/t	frankie=johnny													{build	Frankie	file	...}
																														{and	copy	Johnny	into	it}

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Open	Command	[O]
Instantly	opens	or	reopens	a	Qedit	file	for	editing	or	browsing,	as
opposed	to	the	Text	command	which	creates	a	copy	of	a	file	for	editing.

OPENfilename[,BROWSE|DEFER|NODEFER]

*

*-n

?

(Default:	edit	primary	scratch	file)

Qedit	shuts	the	current	workfile	and	opens	filename.	The	filename	must
exist	(see	New	and	Text)	and	must	be	a	Qedit	workfile	or	scratch	file.	You
cannot	Open	a	Keep	file	-	you	must	first	Text	it	into	a	scratch	file.

Open	filename,Browse	opens	a	workfile	for	browsing	in	Qedit.	You	can
use	the	List	command,	including	List-Jumping,	Hold,	Visual	mode	HH
and	ZZ,	and	any	other	functions	of	Qedit	which	do	not	modify	the	file.
Open-Browse	protects	you	from	making	unplanned	changes	to	a	file.

If	you	try	to	Keep	the	file	with	its	original	name	i.e.	you	enter	a	Keep
without	a	filename,	you	will	get	an	error.

/Open	workfile,browse
/Verify	Keep
Set	Keep	Name	txtfile
/K
File	opened	with	Browse,	please	specify	a	Keep	file	name

You	can	still	force	a	Keep	by	specifying	an	explicit	filename	as	in:

/Open	workfile,browse
/Keep	txtfile
TXTFILE.DATA.ACCT,OLD	80B	FA	#	of	records=16
Purge	existing	file	[no]?	y

Open	filename,Defer	opens	the	workfile	without	write	access,	but
acquires	write	access	later	if	you	attempt	to	modify	the	file.	Set	Open
Defer	On	makes	Defer	the	default	and	Open	filename,Nodefer	overrides
that	command.

It	is	important	to	remember	that	certain	workfile	attributes	and	settings
are	normally	saved	when	the	file	is	opened	with	write	access.	Some	of
these	settings	are	the	ZZ	marker,	the	current	line	marker	(*),	and	a	new
default	Keep	name	modified	with	Set	Keep	Name.	If	you	open	a	workfile
in	Browse	mode,	these	settings	are	not	updated	unless	the	file	is	re-
opened	with	write	access.

To	reopen	the	file	most	recently	accessed,	do	 open	*;	for	the	file
before	that	do	 open	*-1,	then	 open	*-2,	and	so.	To	select
from	a	list	of	recently	accessed	files,	do	 open	?.

Examples

/open	mail													{want	to	edit	Mail}
/c	"stop"start"	@
/open	*																{reopen	previous	file}
/list	all
/open	?																{select	a	recent	file}
/visual
/open	*-1														{select	file	before	last}
/list	"function"
/open	*-2														{select	file	before	that}
/hold	400/500
/open																		{edit	scratch	file}

Notes

Since	you	must	Open	a	file	before	editing,	any	command	that	requires	an
Open	file	creates	a	scratch	file	if	none	is	Open.

If	you	attempt	to	Open	a	file	which	is	not	a	Qedit	workfile,	you	see	a
message	similar	to	the	following:

/open	qpart2
Error:		Cannot	open	a	non-Qedit	file.		Use	Text	command.

You	need	to	Text	this	file,	not	Open	it.

The	Open	Stack

Qedit	maintains	an	Open-Stack	of	the	ten	most	recently	Opened	files.
One	of	these	is	always	reserved	for	the	primary	scratch	file.	You	can
have	up	to	eight	extra	scratch	files	(see	TextJ	and	New),	which	take
priority	over	named	workfiles	in	the	Open-Stack.	To	reopen	one	of	these

files,	do	an	 open	?	command.	Open	?	prints	the	list	and	prompts
for	a	relative	file	number,	starting	with	zero	for	the	most	recent	(same	as
Open	*).

Open	*-n	allows	you	to	open	one	of	the	recently	accessed	files
directly.	 Open	*-2	opens	the	third	file	in	the	list,	since	zero	is	the
first.

When	you	open	any	file	it	moves	to	the	top	of	the	list	and	the	other	files
are	pushed	down	one	position.	The	Close	command	shuts	the	current
workfile	and	removes	it	from	the	list	of	recently	accessed	files.	This	is
useful	to	stop	desired	file	names	from	dropping	off	the	bottom	of	the	list.
If	the	file	is	a	scratch	file,	you	are	prompted	to	Discard	Changes.

Set	Open	Defer	On

If	you	use	Set	Open	Defer	On,	the	Open	command	does	not	acquire
write	access	to	a	workfile	until	you	make	a	change	to	it.	The	workfile	is
opened	with	read	access	by	default,	unless	Qedit	knows	you	are	going	to
be	writing	to	it	(as	when	Text	or	Add	force	an	Open).	If	you	only	browse
through	the	file,	the	Last-Mod	date	does	not	change.	This	includes	full-
screen	mode	viewing.	However,	if	you	make	any	changes	to	the	file	or
use	Set	Left/Right/Length	/Lang,	Qedit	reopens	the	workfile	with	write
access.

It	is	important	to	remember	that	certain	workfile	attributes	and	settings
are	normally	saved	when	the	file	is	opened	with	write	access.	Some	of
these	settings	are	the	ZZ	marker,	the	current	line	marker	(*),	and	a	new
default	Keep	name	modified	with	Set	Keep	Name.	If	you	explicitly	open	a
workfile	in	Browse	mode	or	use	Set	Open	Defer	On,	these	settings	are
not	updated	permanently	unless	the	file	is	re-opened	with	write	access.

You	can	override	the	current	Set	Open	Defer	value	by	doing	Open
filename,Defer	or	Open	filename,Nodefer.

There	are	a	few	error	conditions	that	may	occur	if	you	attempt	to	modify	a
file	because	now	someone	else	can	edit	the	file	while	you	have	it	open.
For	example,	you	cannot	obtain	write	access	if	someone	else	already	has
write	access	to	the	file.	In	Visual	mode,	you	may	see	the	error	"Unable	to
reopen	file	with	write	access.	Concurrent	usage/backup?".

If	"Error:	File	open	by	another	Qedit	Process"	appears	when	you	try	to
open	a	file,	it	means	that	someone	else	is	editing	the	file.

If	you	are	working	in	Visual	mode,	someone	can	delete	the	lines	you
want	to	edit	after	Qedit	has	displayed	them	on	your	screen.	If	this
happens,	Qedit	does	not	update	your	screen	and	displays	this	error
message:	"File	has	changed	since	page	last	displayed.	Another	user?"

Crash	Recovery

Qedit	ensures	the	validity	of	workfiles	after	a	system	crash	or	program
termination.	It	checks	to	see	whether	the	file	was	properly	closed	the	last
time.	If	the	file	was	in	the	midst	of	Renumber,	Qedit	completes	the
renumber.	If	the	file	was	in	the	middle	of	a	Text,	Qedit	clears	the	file	so
you	can	do	the	Text	over	again.	In	all	other	cases,	Qedit	prints	a
RECOVERY	warning	and	searches	through	the	file	to	eliminate	any
duplicate	lines.	After	a	RECOVERY,	examine	the	area	of	lines	that	you
were	last	editing.	A	few	lines	may	be	missing	or	out-of-date,	but	that	is	all.

File	Modification	Timestamp

When	you	use	the	Text	or	Keep	commands	on	a	file,	Qedit	stores	the
file's	modification	timestamp	in	the	workfile.	If	you	Shut	the	workfile	to	do
something	else,	the	next	time	you	Open	it,	Qedit	will	compare	the	stored
value	with	the	file's	current	timestamp.	If	they	are	different,	it	means	that
the	original	file	has	changed	either	since	you	last	worked	on	it	or	since
the	last	time	you	saved	your	changes.	Qedit	will	alert	you	to	the
difference	by	displaying	a	message	similar	to	the	following:

	Warning:	Original	file	has	been	modified	since	the
	initial	Text	or	last	Keep	!

The	file	timestamp	can	change	for	a	number	of	reasons.	Here	are	few
examples:

Someone	else	might	have	been	working	on	that	same	file	with
Qedit	and	saved	their	changes	before	you	did.
The	file	could	have	been	restored.
Maybe	you	used	the	file	to	test	a	program	which	modified	the
file	in	some	way.

Because	the	timestamp	message	is	just	a	warning,	Qedit	continues	its
processing.	However,	if	you	want	to	be	sure	you	are	not	missing
important	data,	you	should	compare	the	contents	of	the	file	with	your
workfile	and	decide	if	it	is	safe	to	continue	editing	your	copy.

This	is	one	way	to	compare	the	files:

Use	Verify	Keep	and	write	down	the	default	Keep	name
Keep	the	workfile	under	a	different	name
Use	our	Compare	bonus	program	to	display	the	differences
between	the	original	file	and	the	new	version	you	just	created
Look	at	the	report	and	separate	the	lines	that	you	changed

from	the	ones	you	did	not	touch
If	needed,	apply	changes	to	your	copy	so	that	you	do	not	miss
anything	important

It	is	important	to	remember	that	certain	Qedit	commands	will	shut	and
open	workfiles	on	your	behalf.	The	timestamp	warning	might	appear
when	you	do	not	expect	it.

By	default,	timestamp	checking	on	Open	is	disabled.	If	you	want	to
change	this	setting,	you	can	use	the	Set	Open	Checktimestamp
command.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Proc	Command	[P]
Calls	internal	procedures	to	downshift	and	upshift	lines.

PROC[DOWN	|	UP]	[rangelist]

(Defaults:	previous	proc)

For	DOWN	and	UP,	the	default	rangelist	is	the	current	line	(*);	PQ	shifts
quietly	(i.e.,	without	printing	the	lines);	and	PJ	shifts	with	user	verification
(i.e.,	PJ	prints	each	shifted	line	and	asks	you	to	approve	it).

Built-In	PROCs	to	Shift	Up	or	Down

The	Up	and	Down	Procedures	put	Roman-8	characters	into	uppercase	or
lowercase	if	Set	Editinput	Extend	is	On.	Otherwise,	they	only	operate	on
A-Z	and	a-z.

The	first	time	that	you	use	Down	or	Up	after	running	Qedit,	they	ask	you
to	configure	them.	There	are	4	options:	1	means	to	shift	every	alpha
character	in	the	lines,	2	means	to	skip	over	characters	enclosed	in
double	quotes	("),	3	means	to	skip	over	characters	enclosed	in	single
quotes	('),	and	4	means	to	skip	over	characters	enclosed	in	either	double
quotes	or	single	quotes.	If	Down	(or	Up)	finds	a	line	with	unmatched
quotes,	it	prints	a	warning	and	stops	(unless	the	lines	are	part	of	a
COBOL	program,	in	which	case	unmatched	quotes	are	okay).

/open	qedit.doc									{open	document	file}
/list	415.1													{display	a	line}
		415.1			You	will	need	to	Purge	the	old	file.
/proc	down	415.1								{try	it	lowercase}
Set	Shift	DOWN?		1(@)	2(")	3(')	4("	or	')		[0]:2
		415.1			you	will	need	to	purge	the	old	file.
/proc	up	415.1										{try	it	uppercase}
Set	Shift	UP?		1(@)	2(")	3(')	4("	or	')		[0]:2
		415.1			YOU	WILL	NEED	TO	PURGE	THE	OLD	FILE.
/proc	down														{lowercase	is	better}
/proc	410/415											{downshift	some	more	lines}
/pq	420/1002												{many	more!	quietly}
/pj	up	1003													{upshift	with	approval}
	1003					>GET	D-LINE	(Okay?)	yes

If	you	always	configure	the	shifting	routines	to	the	same	option	(e.g.,	skip

strings	with	double	quotes),	you	can	use	Set	Shift	to	define	the
configuration:

/set	shift	down	2	up	2

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Q	Command	[Q]
Prints	a	message	on	$stdlist.

Q["string"]

(Default:	print	a	blank	line)

The	string	of	up	to	80	characters	is	printed	on	$stdlist.

Use	the	Q	command	to	print	prompts	from	usefiles.	This	works	especially
well	when	you	use	a	file	quietly.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

:Redo	Command	[REDO]
Enables	you	to	modify	and	repeat	any	of	the	previous	1,000	command
lines.

REDO[start	[/	stop]]

[string]

[ALL	|	@]

(Default:	redo	the	previous	command)

The	:Redo	command	allows	you	to	modify	the	commands	before	it
executes	them.	If	you	don't	need	to	change	them,	use	the	:Do	command.
Commands	are	numbered	sequentially	from	1	as	entered	and	the	last
1,000	are	retained.	Use	the	:Listredo	command	to	display	the	previous
commands.	You	can	redo	a	single	command,	a	range	of	commands,	or
the	most	recent	command	whose	name	matches	a	string.

The	:Redo	command	uses	MPE-style	commands	(D,	I,	R,	U	and	>)	to
modify	a	line.	The	following	are	some	common	commands.	A	complete
list	of	commands	appears	at	the	end	of	this	section.	The	default	mode	is
to	replace	characters.	To	delete,	type	DDDD	under	the	characters	to	be
removed.	To	insert,	type	I	under	the	insertion	spot,	then	the	new
characters.	To	undo	your	changes,	type	U.	To	append	to	the	end	of	the
line,	use	>xxx.	To	delete	from	the	end	of	the	line,	use	>DD.	To	replace	at
the	end	of	the	line,	use	>Rxxx.	And	to	erase	the	rest	of	the	line,	use	D>.
See	below	for	a	complete	list	of	edits.

Examples

/ls	/users/obb								{"bob"	is	not	spelled	right}
/users/obb	not	found
/Redo																	{redo	most	recent	command}
ls	/users/obb									{last	command	is	printed}
										bob									{you	enter	changes	to	it}
ls	/users/bob									{the	edited	command	is	shown}
																						{you	press	Return}
/listredo	all
/redo	5													{redo	5th	command	in	stack}
/redo															{redo	previous	command}
/redo	-2												{redo	command	before	previous}
/redo	8/10										{redo	8th	through	10th}

/redo	-10/										{redo	-10	through	last}
/redo	rm												{redo	last	rm	command}
/redo	rm	test.c					{redo	last	"rm	test.c"}
/redo	@test									{redo	last	containing	"test"}

Editing	in	:Redo

:Redo	uses	the	same	edits	as	the	MPE/iX	:Redo	command,	except	that
control	characters	in	lines	are	printed	as	dots	"."	so	that	you	can	see
them.	Use	Set	Modify	Hpmodify	to	select	these	MPE-style	edits	for	all
commands.	If	you	prefer	the	Qedit-style	edits,	use	Set	Modify	Robelle	to
select	Qedit	editing	for	all	commands,	including	:Redo.	If	you	prefer
Qzmodify,	use	Set	Modify	Qzmodify	to	select	Qzmodify	editing	for	all
commands.

Persistent	Redo

Redo	commands	can	be	saved	in	a	permanent	file	and	can	therefore	be
used	from	another	session.	You	can	use	the	Set	Redo	command	to
specify	a	file	name	to	save	your	redo	commands.	Please	see	the	Set
Redo	command	for	details.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

:Reflect	Command	[REFLECT]
Executes	a	Reflection	command	on	your	PC.	Qedit	checks	whether	the
command	succeeds	or	fails.	:Reflect	allows	you	to	control	a	PC	from
within	your	Qedit	Usefiles	and	shell	scripts	(send	and	receive	files,
backup	your	PC,	execute	PC	programs,	etc.).

:REFLECT	reflection	command

(Defaults:	none)

Examples

/reflect	type	mreport.crt
/reflect	shell	lotus

Version	of	Reflection

The	:Reflect	command	depends	on	Reflection's	ability	to	accept
commands	using	an	escape	sequence,	and	to	be	able	to	pass	back	a
status	code	indicating	whether	the	command	succeeded.	These	features
are	implemented	in	the	following	versions	of	Reflection:

Reflection	1	for	DOS	version	1.40	or	later
Reflection	3/7	for	DOS	version	1.55	or	later
All	versions	of	Reflection	for	Windows
All	versions	of	Reflection	for	Macintosh

Debugging	PC	Errors

If	the	:Reflect	command	fails,	Qedit	will	display	the	Reflection	error-\code.
For	an	explanation	of	Reflection	error-\codes,	refer	to	the	Reflection
Command	Language	reference	manual.

Using	Line	Mode

Some	Reflection	command	files	work	fine	when	executed	from	the	Alt-Y
command	line,	but	fail	(possibly	leaving	your	terminal	in	a	locked	state)
when	invoked	with	Qedit's	:Reflect	command.

The	reason	is	that	Qedit's	:Reflect	command	sends	an	escape	code	to
Reflection	to	invoke	the	command.	Then	Qedit	waits	for	Reflection	to
send	back	a	status	code	to	indicate	when	the	command	is	finished.	While
Qedit	is	waiting	for	the	result	code	from	Reflection,	it	isn't	capable	of
executing	other	Qedit	commands	--	it's	already	executing	a	Qedit

command!	The	only	thing	that	Qedit	is	capable	of	doing	while	it's	waiting
is	to	execute	any	shell	commands	that	Reflection	might	send	to	the	HP
9000.	The	reason	shell	commands	must	be	accepted	is	that	Reflection
sends	a	command	to	run	unxlink2	whenever	a	file	transfer	is	requested.

As	long	as	the	command	or	command	file	doesn't	attempt	to	transmit	any
data	to	the	HP	9000,	:Reflect	will	probably	work	the	same	way	as	Alt-Y.

For	example,	here	is	a	Reflection	command	file	that	works	from	Alt-Y,	but
not	from	:Reflect.

;	EXIT.RCL
;	This	command	file	gets	me	out	of	Qedit,	logs	me	off
;	the	HP	9000	and	exits	from	Reflection.
;
transmit	"exit^M"
wait	0:01:00	for	"[no]:"
transmit	"yes^M"
wait	0:01:00	for	"$"
transmit	"exit^M"
wait	0:01:00	for	"terminated>"
wait	0:00:05
hardexit

Also	see	the	chapter	"Qedit	Issues	and	Solutions"	for	more	information.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Renumber	Command	[REN]
Renumbers	a	range	of	lines	or	the	entire	workfile.

RENUM[firstline]	[maxincr]

[startline	/	stopline]	[maxincr]

(Default:	entire	file	from	1.0	by	current	increment)

If	you	specify	a	range	of	lines	(e.g.,	101/102),	Qedit	spreads	out	the	line
numbers	in	that	range	to	allow	as	much	space	as	possible	between	each
line.	The	numbers	of	the	startline	and	stopline	are	not	changed.

If	you	do	not	specify	a	range,	Qedit	renumbers	the	entire	file,	starting	at
1.0	or	from	the	optional	startline	value.

If	you	specify	a	maxincr	value,	Renum	will	attempt	to	renumber	with	that
increment.	If	it	must	use	a	smaller	value,	it	will	print	a	warning.	If	you	do
not	specify	a	maxincr	value,	Renum	attempts	to	use	the	current	Set
Increment	value	which	defaults	to	1.0	(except	for	standard	COBOL	which
is	0.1).

Examples

/ren													{assign	new	numbers	to	all	lines}
/list	10/11						{show	current	line	numbers}
			10					The	Renumber	command
			10.2			has	two	basic	modes:
			10.21					1.		renumber	an	entire	file
			10.211				2.		spread	out	a	range	of	lines
			11					to	make	room	for	new	lines.
/add	10.21							{attempt	to	add	a	line}
Out	of	line	numbers.		Suggest	Renumber.
/ren	10/11							{spread	out	line	range	evenly}
/list	10/11						{check	new	lines	numbers}
			10					The	Renumber	command
			10.2			has	two	basic	modes:
			10.4					1.		renumber	an	entire	file
			10.6					2.		spread	out	a	range	of	lines
			11					to	make	room	for	new	lines.
/add	10.4								{now	you	can	add	some	lines}

			10.5								(usually	from	1.0	by	1.0).
			10.51			//

Notes

If	you	keep	adding	new	lines	at	the	same	spot	in	a	file,	Qedit	will	assign
incremental	line	numbers	such	as	3.01,	3.011,	but	it	cannot	add	a	line
between	3.011	and	3.012.	The	smallest	increment	between	lines	is
0.001.	When	you	run	out	of	line	numbers,	Qedit	warns	you.	You	can
Renumber	a	range	of	lines	or	the	entire	file	to	get	around	this	problem.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Replace	Command	[R]
Replaces	lines	with	new	text,	either	from	Stdinx	or	from	the	Hold	file.

REPLACE	[$HOLD]	rangelist

(Q=no	printing,	T=template,	J=justified)

(Default:	rangelist	=	*)

Replace	$hold	looks	for	new	lines	of	text	in	the	Hold	file	(see	the	Hold
command)	and	uses	each	to	replace	one	of	the	lines	of	the	rangelist.
Replace	without	$hold	prints	each	line	of	rangelist,	then	waits	for	you	to
type	a	new	line	at	the	keyboard.	Pressing	Return	only	erases	the	line!
Replacej	indents	the	new	line	the	same	number	of	columns	as	the
original	line.	$Hold	can	be	abbreviated	to	$h.

Examples

/rq	$hold	50/70					{replace	from	the	Hold	file}
/rq	$h	50/70								{replace	from	the	Hold	file}
/rep	5														{replace	line	5	only}
				5					LINE	5						{prints	existing	contents}
				5					NEW	LINE	5		{prompts	you	with	linenum}

Column	Editing	with	$Hold

You	can	use	the	$hold	option	of	the	Replace	command	to	do	extensive
column	editing:

/lt	@
									+....10...+....20...+....30...+....40...
					1				*****************
					2				*			Page	One				*
					3				*****************
					4				*****************
					5				*			Page	Two				*
					6				*****************
/holdq	4/6						{hold	the	second	page	of	text}
/deleteq	4/6				{now	delete	those	lines}
/set	left	20				{set	your	left	margin	to	starting	column}
/repq	$hold	1/3	{overlay	from	the	Hold	file}

/set	left	1					{don't	forget	to	reset	left	margin}
/lt	@
									+....10...+....20...+....30...+....40...
					1				*****************		*****************
					2				*			Page	One				*		*			Page	Two				*
					3				*****************		*****************

You	can	copy	columns	of	text	from	one	position	in	a	line	to	another	by
setting	margins	with	the	Set	Left	and	Set	Right	commands,	holding	the
columns	of	text	that	you	want	to	copy,	setting	new	margins,	and	replacing
the	new	column	range	with	the	text	in	the	Hold	file.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Set	Command	[S]
Changes	configuration	options	of	Qedit.

SETkeyword	[value	...]

You	can	use	Qedit	in	its	default	mode,	as	it	comes	out	of	the	box.	To	get
the	most	out	of	Qedit,	you	will	eventually	want	to	try	some	of	the	optional
features.	To	see	all	of	the	Set	options	available	and	their	minimal
abbreviations,	type	Verify	All	at	the	prompt.

/set	modify	hp																{select	MPE-style	modify}
/set	visual	save	on	update	on	{full-screen	options}

Each	Set	command	may	specify	one	keyword	from	among	those	listed
below.

Here	is	a	list	of	the	Set	keywords:

Account Where	to	find	Qedified	compilers	and	help	files.

Alias Redefine	Qedit	commands	or	create	new
commands.

Autocont Do	not	abort	in	batch	on	errors.
Check Verify	Delete	or	Justify	>	5	lines,	hold	programs.
Decimal Apostrophe	means	Control	Character	('7	=	Bell).
DL Reserve	memory	in	DL	area	for	user	Procs.
Editinput Remove	line	noise;	allow	Roman-8.
Expandtabs Expand	tab	characters	into	spaces	when	Texting.
Extentsize Minimum	sectors/extent	for	Keep	and	New.

Extprog Attach	an	external	program	such	as	MPEX	to
Qedit.

Filename Override	file	names	on	Help,	Hint,	Qzmodhlp
files.

FORTRAN External	files	default	to	FORTRAN,	not	SPL.
Hints Disable	the	"hint	of	the	day".
Hppath Override	default	path	for	cmd/prog	files	(MPE	V).
Increment Default	increment	between	added	lines.
Interactive Override	batch/session	mode.
Justify Margins	and	options	for	justifying	and	centering.
Keep Format	of	the	next	Keep	file.
Language Type	of	program	or	text	to	be	kept	in	this	file.
Left Left	margin	for	edit,	list,	keep	(default=1).
Length Maximum	characters	per	line	for	a	Lang=Text	file.
Lib Default	Lib=	for	the	:Run	command.

Limits Restricting	features	of	Qedit	available	to	user.
List Format	of	LP	listings;	also	LJ	options.
Modify Type	of	modify	(Robelle,	HP	or	Qzmodify).
Open Default	modes	for	Open	Command	(Defer,	etc.)
Pattern Switch	back	to	old	pattern-matching.
Priority Switch	Qedit	execution	to	a	new	MPE	subqueue.
Prompt Replace	"/"	with	new	prompt	string.
Right Right	margin	for	edit,	list,	keep,	etc.
RL Default	RL=	value	for	the	:Prep	command.
Shift Configure	how	to	up-	and	down-shift.
Spell Configure	how	spell	checks	lines	and	words.
Statistics Print	CPU	and	wall	time	of	each	command.
Suspend Whether	to	suspend	on	Exit	or	not.
Tabs Set	"tab"	key	and	columns;	set	on	terminal.
Term Adjust	number	of	terminal	display	columns.
Totals Print	number	of	lines	processed	by	a	command.
UDC Recognize	User	Defined	Commands	in	Qedit.
Undo Disable/enable	ability	to	"undo"	changes.
Visual Full-screen	options	(save	fkeys,	update,	etc.).
Warnings Print	warning	messages	(or	not!).
Whichcomp Which	COBOL	compiler,	etc.
Window Rules	for	string	search	(columns,	upshift,	etc.).
Work Default	size/function	of	workfiles.
Wraparound Move	words	to	next	line	when	long	line	Added.
X Tag	changed	lines	in	COBOL	file	with	string.
Zip Configure	auto-modify,	first,	last,	all,	etc.

To	configure	Qedit	to	operate	as	you	like	best,	put	your	favorite	Set
commands	in	a	file	named	/opt/robelle/qeditmgr.	These	commands	will
apply	to	every	user	that	invokes	Qedit.	If	you	can't	build
/opt/robelle/qeditmgr	or	you	don't	think	your	Set	options	will	appeal	to
everyone,	create	the	file	$HOME/.qeditmgr	with	your	personal	Set
commands.

A	typical	configuration	file	for	a	COBOL	shop	might	look	like	this:

{These	are	default	Qedit	values	for	all	users:}
set	lang	cobolx	all	on	{always	use	80	columns}
set	x	date	list	off				{mark	changed	lines	with	date}
set	check	on											{verify	delete/format	of	>5	lines}
set	vis	save	1									{Visual	saves	function	keys}
z=listj	*/last									{define	Z	command}
set	shift	down	3	up	3		{shift	everything	but	strings}

Syntax	of	Set	Commands

The	syntax	descriptions	that	follow	list	the	initial	values.	These	are	also
the	defaults	that	are	used	if	you	omit	values	in	Set	commands.	For
example:

Set	Foo	[ON|OFF]

(Default:	ON)

(Initially:	OFF)

The	(imaginary)	Foo	keyword	may	be	set	ON	or	OFF.	Initially	when	Qedit
starts	up	it	is	OFF.	Thereafter,	if	you	type	 Set	Foo	without
specifying	ON	or	OFF,	the	default	will	be	as	though	you	had	specified
ON.

Error	Messages

If	you	type	a	Set	command	that	Qedit	does	not	understand,	you	usually
get	an	error	message	telling	you	specifically	what	is	wrong,	sometimes
suggesting	valid	values.	Occasionally	you	will	see	the	error	message

Error:	Param.

This	is	Qedit's	catch-all	message	for	when	you	have	typed	something
that	it	doesn't	like,	and	cannot	guess	what	you	meant.

More:
Account
Alias
Autocont
Check
Decimal
DL	size
Editinput
Expandtabs
Extentsize
Extprog
Filename
FORTRAN
Halfbright
Hints
Hppath

Increment
Interactive
Justify
Keep
Language
Left
Length
Lib
Limits
List
Maxdata
Modify
Open
Pattern
Priority
Prompt
Redo
Right
RL	file	name
Shift
Spell
Statistics
Stringdelimiters
Tabs
Term
Text
Totals
UDC
Undo
Varsub
Visual
Warnings
Whichcomp
Window
Work
Wraparound
X
Zip

	 	

http://www.robelle.com/products/qedit

	 	

Account
Set	Account	accountname

(Initially:	same	as	the	Qedit	program)

This	option	does	not	apply	to	Qedit/UX.	It	is	still	accepted	for	compatibility
with	the	MPE	version	of	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Alias
Set	Alias	aliasname	To	aliasdefinition

Qedit	commands	have	priority	over	any	external	commands,	such	as
shell	commands	and	scripts.	The	fact	that	Qedit	commands	can	be
abbreviated	to	a	few	characters	(e.g.,	C	for	Change)	and	combined	with
various	suffixes	(e.g.,	CQ	for	Change	Quiet)	has	caused	some	problems
with	seemingly	different	external	commands.

The	new	Set	Alias	command	now	allows	you	to	override	Qedit's
command	priority.	Aliases	are	always	executed	first.	For	example,	"at"	is
the	abbreviation	for	Qedit's	AddTemplate	command	(i.e.,	add	new	lines
with	a	column	template).	If	you	want	to	use	the	UNIX	"at"	command,	you
can	get	at	it	only	by	explicitly	using	the	exclamation	mark	prefix	(!at).

Using	the	Alias	feature,	you	can	now	use

/Set	Alias	"at"	to	"!at"

From	that	point	on,	entering	"at"	would	always	call	the	shell	command.

The	alias	name	and	definition	must	be	enclosed	in	a	string	delimiter	such
as	quotes.	You	must	use	the	same	delimiter	for	both	items.

/Set	Alias	"SPJ"	to	"!ls	/home/joe/spj*"												{valid}
/Set	Alias	\SPJ\	to	\!ls	/home/joe/spj*\												{valid}
/Set	Alias	"SPJ"	to	\!ls	/home/joe/spj*\												{invalid}
/Set	Alias	\SPJ\	to	"!ls	/home/joe/spj*"												{invalid}

The	alias	name	can	have	up	to	50	characters.	It	can	contain	only
alphabetic	characters.	Although	the	alias	should	not	contain	numeric
digits,	special	characters	or	spaces,	the	Set	command	does	not	currently
prevent	you	from	using	these	characters.	If	you	do	use	them,	the	alias
feature	will	not	work	properly.	If	you	use	an	alias	name	that	has	already
been	defined,	the	new	definition	replaces	the	old	one.

The	alias	definition	can	contain	up	to	77	characters	and	can	include	one
or	more	commands.	The	definition	can	contain	any	command	that	can
normally	be	entered	at	the	Qedit	prompt,	including	other	aliases.

http://www.robelle.com/products/qedit

You	can	use	Qedit's	command	stacking	feature	to	enter	a	series	of
commands	and	create	something	that	resembles	a	macro	command.

Set	Alias	"Five"	to	"First;F	'string';List	*/*+5"

The	length	of	all	alias	names	and	definitions	cannot	exceed	2,500
characters.

Stacked	commands	are	separated	by	a	semicolon	(;).	If	you	use	UNIX
commands	or	shell	scripts,	you	might	have	to	use	semicolons	to	separate
parameters.	This	will	confuse	Qedit.	There	are	different	ways	to	work
around	this	problem.

You	can	put	the	command	in	another	shell	script	that	does	not	require
parameters.

/echo	find	.	-name	core	-exec	rm	{}	\\\;	>	myscript
/chmod	+x	myscript
/Set	Alias	"SPJ"	To	"myscript"

The	last	option	is	to	enclose	the	command	and	its	parameters	in
parentheses.

/Set	Alias	"SPJ"	To	"L	1;(!find	.	-name	core	-exec	rm	{}	\;);V"

If	the	command	itself	contains	parentheses,	you	will	have	to	use	the	shell
script	approach.

More:
Function	Key
Ignorecase
Trace
Remove
Reset

	 	

http://www.robelle.com/products/qedit

	 	

Function	Key
Set	Alias	Fkey	keynumber	To	aliasdefinition

You	can	also	assign	an	alias	definition	to	a	function	key.	Let's	say	you
want	the	F1	key	to	perform	a	series	of	commands,	simply	enter

/Set	Alias	Fkey	1	to	"ls	/home/joe"

The	function	key	number	can	only	have	a	value	of	1	through	8.	The
function	key	aliases	only	work	in	Line	mode.	In	full-screen	mode,	they	are
redefined	to	the	standard	Visual	meanings.

You	can	define	function	keys	by	specifying	the	escape	sequence	they
transmit.	For	example,	the	F1	key	sends	ESC+P.	Thus	you	could	use

/Set	Decimal	On
/Set	Alias	'27"p"	To	"ls	/home/joe"								{'27	is	the	ASCII	code}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Ignorecase
Set	Alias	Ignorecase	[ON	|	OFF]

(Default:	On)

(Initially:	Off)

On	HP-UX,	alias	names	are	case-sensitive	by	default	(i.e.,	spj	and	SPJ
are	not	the	same).	You	can	disable	sensitivity	with	Set	Alias	Ignorecase
On,	in	which	case	spj	is	considered	the	same	as	SPJ.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Trace
Set	Alias	Trace	[ON	|	OFF]

(Default:	On)

(Initially:	Off)

If	you	are	nesting	aliases	and	are	experiencing	problems,	you	can	enable
the	alias	trace	with	Set	Alias	Trace	On.	Qedit	then	displays	aliases	as	it
executes	them.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Remove
Set	Alias	aliasname	OFF

If	you	want	to	remove	a	single	alias,	you	can	use	Set	Alias	"SPJ"	Off.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Reset
Set	Alias	Reset

If	you	want	to	remove	all	your	current	aliases,	enter	Set	Alias	Reset.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Autocont
Set	Autocont	[ON|OFF]

(Default:	ON)

(Initially:	OFF)

Normally,	Qedit	aborts	in	batch	mode	if	errors	occur.	Set	Autocont	ON
disables	this	abort.	If	the	ON|OFF	parameter	is	omitted,	ON	is	assumed.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Check
Set	Check	[[Delete	|	Justify]	ON|OFF]

(Initially:	both	OFF,	Hold	Ask)

Causes	Qedit	to	ask	for	approval	before	performing	certain	tasks.

Set	Check	Delete	On	asks	approval	before	deleting	more	than	5	lines.
Set	Check	Justify	On	asks	approval	before	formatting	(i.e.,	Justify	Format
or	Both)	more	than	5	lines.	Both	options	are	OFF	by	default.	Set	Check
ON	turns	them	both	on	and	Set	Check	OFF	turns	them	both	off.	Or	you
can	adjust	them	individually.

When	Check	Delete	is	ON,	you	are	asked	before	deleting	more	than	five
lines.

/dq	1/10
Delete	10	lines	[no]?	yes

Regardless	of	whether	Check	is	ON	or	OFF,	you	can	always	undo	the
effects	of	a	Delete	or	Justify,	using	the	Undo	command.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Decimal
Set	Decimal	[ON|OFF]

(Default:	ON)

(Initially:	OFF)

If	you	need	to	find	nonprinting	characters,	you	can	enable	the	Decimal
option.	When	this	option	is	active,	character	strings	in	Qedit	can	refer	to
characters	by	giving	the	ASCII	character	code	in	decimal,	preceded	by
an	apostrophe:

/set	decimal	on				{enable	entry	of	control	codes}
/list	'7											{list	all	lines	with	Bell}
/c	"~"	'27	all					{change	"~"	to	Escape}

Set	Decimal	ON	disables	use	of	the	apostrophe	(')	as	a	string	delimiter,
and	the	use	of	'	as	part	of	a	string	in	the	Change	command.

Whenever	you	use	the	apostrophe	with	Set	Decimal	On,	you	have	to	use
a	space	as	a	delimiter	between	the	search	string	and	the	replacement
string.	This	means	that	you	cannot	use	the	abbreviated	syntax,	as	in

/c	"abc"def"	all

Qedit	is	able	to	determine	that	"abc"	is	the	target	string	and	"def"	is	the
replacement	string.	With	Set	Decimal	On,	the	space	between	the	target
string	and	the	replacement	string	is	mandatory.	Also,	it	is	possible	to	mix
ASCII	code	values	and	regular	characters.	Regular	characters	must	be
enclosed	in	another	set	of	string	delimiters.	For	example,

/c	'27"&d@"	'27"&dJ"	all				{	target=<ESC>&d@,	replacement=<ESC>&J	}
/l	"abc"'13																				{	target	is	abc<CR>	}
/l	'9"ColumnData"'9								{	target	is	<tab>ColumnData<tab>	}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

DL	size
Set	DL	[size]

(Default:	132)

(Initially:	132)

This	option	does	not	apply	to	Qedit/UX.	It	is	still	accepted	for	compatibility
with	the	MPE	version	of	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Editinput
Set	Editinput	option	value	...

Data	ON|OFF

Command	ON|OFF

Extend	ON|OFF

Asian	ON|OFF

(Initially:	Data=OFF,	Command=OFF,	Extend=ON,	Asian	ON)

Normally	Qedit	accepts	whatever	you	type	as	being	valid.	However,	if	you
are	connected	to	the	computer	via	a	phone	line	you	will	probably	find	that
strange,	nonprinting	characters	are	getting	into	your	files.	These	are
generated	by	line	noise.	You	can	use	Set	Editinput	Data	or	Set	Editinput
Command	to	tell	Qedit	to	remove	nonprinting	characters	from	your	input.
However,	nonprinting	characters	include	useful	characters	such	as	BELL
and	ESC.	You	can	explicitly	insert	nonprinting	characters	into	your	text
using	Set	Decimal	and	Change,	or	using	the	WP	or	W$	function	of	Set
Mod	Qzmod.

Set	Editinput	Data	ON	removes	"noise"	from	text	added	to	your	file	in
Line	mode	(it	has	no	effect	on	Visual	mode).

Set	Editinput	Command	ON	removes	"noise"	from	commands.

If	you	don't	want	to	edit	Roman-8	characters	in	either	Line	or	Visual
mode,	use	Set	Editinput	Extend	OFF.	This	tells	Qedit	to	discard	the
Roman-8	characters	as	noise,	rather	than	allow	them	through	as	valid
characters.	The	default	setting	is	ON	for	the	benefit	of	European	users.
When	Extend	is	ON,	UPSHIFT	string	windows	will	work	on	Roman-8
characters	(e.g.,	List	"ü"	(up)).

Asian	terminals	use	a	two-character	code	for	each	symbol	in	the
language.	When	you	set	Extend	ON,	you	also	set	Asian	ON	by	default.
This	validates	all	possible	character	codes	from	128	to	255,	not	just	161
to	254	as	used	by	the	Roman-8	character	set.

If	you	want	Roman-8	characters,	but	don't	want	Qedit	Visual	mode	to

http://www.robelle.com/products/qedit

display	undefined	control	codes	(such	as	decimal	130,	which	might	be
included	in	a	file	as	a	printer	control),	use	Set	Editinput	Asian	OFF.
Otherwise,	some	terminals	change	the	value	of	the	codes,	and	other
terminals	just	drop	the	codes	from	the	file.	When	you	turn	Asian	OFF,
Roman-8	characters	may	still	be	displayed	and	edited,	but	control	codes
from	128	to	160	are	displayed	as	dots	(".")	with	a	question	mark	to	the	left
of	the	line,	indicating	that	they	can	only	be	edited	in	Line	mode,	not
Visual	mode.

	 	

http://www.robelle.com/products/qedit

	 	

Expandtabs
Set	Expandtabs	ON	|	OFF

(Initially:	Off)

When	Qedit	encounters	tab	characters	in	an	external	file,	it	can	either
copy	them	as	is	or	it	can	expand	them	into	the	appropriate	number	of
space	characters	(using	the	Set	Tab	Stops	value).	The	default	is	to	leave
them	as	is,	in	the	file.	You	can	enable	the	removal	of	tab	characters	by
expansion	into	spaces	through	use	of	Set	Expandtabs	On.	However,
there	are	some	applications	that	use	tab	characters	as	field	separators	in
their	data	files.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Extentsize
Set	Extentsize	keepfile	[workfile]

(Initially:	100,	30	sectors)

This	option	does	not	apply	to	Qedit/UX.	It	is	still	accepted	for	compatibility
with	the	MPE	version	of	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Extprog
Set	Extprog	[program	[parm]	[Com	[ON|OFF]]]

(Default:	none)

(Initially:	none)

This	option	does	not	apply	to	Qedit/UX.	It	is	still	accepted	for	compatibility
with	the	MPE	version	of	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Filename
Set	Filename	Help	|	Hint	|	Qzmod	filename

(Initially:	/opt/robelle/help/qedit)

By	default,	Qedit	looks	for	the	help	file	as	/opt/robelle/help/qedit.	You	may
force	Qedit	to	open	specific	file	names	with	the	Set	Filename	command.
The	Hint	and	Qzmod	options	do	not	apply	to	Qedit/UX.	They	are	still
accepted	for	compatibility	with	the	MPE	version	of	Qedit.

/set	filename	/usr/local/help/qedit

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

FORTRAN
Set	FORTRAN	[ON|OFF]

(Default:	ON)

(Initially:	OFF)

When	Qedit	is	TEXTing	in	a	file,	it	must	decide	what	language	type	that
file	has.	If	the	file	is	a	Qedit	file,	there	is	no	problem,	because	the
language	type	is	stored	as	a	field	within	the	file.

If	the	file	is	a	Keep	file,	Qedit	examines	the	record	length,	and	position	of
the	sequence	number	field.	Unfortunately,	there	is	no	foolproof	way	to
distinguish	between	SPL,	PASCAL	and	FORTRAN	source	files,	since	all
have	sequence	numbers	in	columns	73-80.	If	the	current	language	is	set
to	FORTRAN,	Qedit	treats	the	external	file	as	FORTRAN.	If	the	current
language	is	not	set	to	FORTRAN	(i.e.,	to	JOB,	COBOL,	SPL,	etc.),	Qedit
treats	the	file	as	an	SPL	(or	Pascal)	file.	If	a	file	is	mistakenly	created	as
SPL	or	Pascal,	you	can	change	it	to	FORTRAN	with	Set	Lang
FORTRAN.	You	can	also	resolve	the	ambiguity	by	specifying	the
language	after	the	file	name	when	you	Text	it	(e.g.,	/text	abc,fortran).

If	you	primarily	edit	FORTRAN	source	files,	you	can	avoid	this	problem
with	Set	FORTRAN.	When	this	option	is	set,	Qedit	will	always	resolve
decisions	on	external	files	in	favor	of	FORTRAN,	regardless	of	the
current	language	setting.	You	may	then	have	to	convert	the	occasional
file	from	FORTRAN	to	SPL	or	Pascal.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Halfbright
Set	Halfbright	ON|OFF

(Initially:	ON)

Certain	monitors	do	not	support	halfbright	display	enhancements	very
well.	Some	messages	and	prompts	are	hardly	visible.	To	prevent	Qedit
from	using	halfbright,	enter	Set	Halfbright	Off.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Hints
Set	Hints	ON|OFF

(Initially:	ON)

This	option	does	not	apply	to	Qedit/UX.	It	is	still	accepted	for	compatibility
with	the	MPE	version	of	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Hppath
Set	Hppath	"path	list"

(Initially:	"!hpgroup,pub,pub.sys")

This	option	does	not	apply	to	Qedit/UX.	It	is	still	accepted	for	compatibility
with	the	MPE	version	of	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Increment
Set	Increment	linenum

(Initially:	depends)

The	default	increment	between	new	lines	is	1.000	in	SPL,	FORTRAN,
Pascal,	TEXT,	RPG,	JOB	and	COBFREE,	and	0.100	in	standard
COBOL.	You	can	override	this	value	with	Set	Increment.	The	linenum	is	a
number	between	0.001	and	10,000.	This	increment	is	also	used	as	the
default	increment	in	Renumber	and	in	assigning	line	numbers	to	external
files	that	lack	them.

Qedit	will	sometimes	pick	an	increment	smaller	than	your	requested	one.
For	example,	if	you	Set	Inc	0.2	and	do	Add	55.2,	Qedit	will	increment	by
0.1	based	on	the	number	of	decimal	places	in	55.2.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Interactive
Set	Interactive	[ON|OFF]

(Default:	no	change)

(Initially:	depends)

If	you	run	Qedit	from	a	Session,	Set	Interactive	is	ON.	If	you	run	Qedit
with	Stdin	or	Stdlist	redirected,	Set	Interactive	is	OFF.	When	it	is	OFF,
Qedit	will	abort	on	any	error,	will	assume	the	default	answer	to	any
question,	and	will	generally	act	as	if	there	is	not	an	intelligent	being	typing
the	commands.	When	it	is	ON,	Qedit	waits	for	answers	to	questions	and
does	not	trim	trailing	spaces	from	input	lines	(allowing	you	to	enter	//	plus
a	space	as	a	data	line	in	the	Add	command).

Entering	Set	Interactive	with	no	ON	or	OFF	parameter	does	not	change
the	current	setting.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Justify
Set	Justify	[keyword	[value]	...]

(Initially:	NULL	function,	TWO	OFF)

The	Set	Justify	command	allows	you	to	configure	Qedit	for	the	type	of
justify	operations	that	you	are	going	to	use	most	frequently.	These	are
then	the	defaults.

For	example,	the	command

/set	justify	margin	70	two	on	null

causes

/justify	both	5							{J=justify,	B=both}

to	be	interpreted	as

/j	both	margin	70	two	on	5

See	the	Justify	command	for	further	details.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Keep
Set	Keep	[option	value]...

(Default:	same	as	Text	file)

Determines	the	format	of	the	next	Keep	file.	Attributes	are	taken	from	the
previous	Text	or	Keep,	or	they	are	based	on	the	current	Set	Lang	value.
Qedit	attempts	to	duplicate	the	Text	file	as	much	as	possible	when	doing
the	Keep.	Use	Verify	Keep	to	display	the	current	Set	Keep	values,
including	the	default	file	name.

The	options	you	can	set	for	the	Keep	file	are	ASCII,	CCTL
Checktimestamp,	Code,	Lab,	Name,	Num,	Var,	Cobfree	and	Bytestream.
All	options	are	accepted	by	Qedit/UX	for	compatibility	with	the	MPE
version	of	Qedit.	However,	you	should	only	use	the	CHECKTIMESTAMP,
NAME,	NUM	and	VAR	options.

Set	Keep	ASCII	ON|OFF

(Initially:	ON)

Files	can	be	either	ASCII	or	Binary.	Qedit	takes	this	value	from	the	file
that	you	Text,	but	will	revert	to	ASCII	ON	for	any	new	workfile.	Even
though	Qedit	will	create	binary	files	with	Keep,	it	is	not	recommended	for
use	in	editing	binary	files.	The	reason	is	that	Qedit	treats	Carriage	Return
as	end-of-line,	which	may	truncate	some	records.	ASCII	files	have	their
records	padded	with	blanks;	Binary	files	are	padded	with	zeros	(nulls).

Set	Keep	Bytestream	ON|OFF

(Initially:	OFF)

POSIX	introduces	a	new	type	of	file	called	Bytestream.	These	files	do	not
necessarily	have	record	structures	that	are	similar	to	typical	files	on	MPE.
Bytestream	files	come	from	the	UNIX	environment.	To	application
programs,	they	simply	appear	as	a	stream	of	bytes	(hence	the	name).	To
MPE,	these	are	variable-length	files	in	which	each	record	contains	only
one	byte.

When	a	Text	command	is	used	on	an	existing	bytestream	file,	Qedit	is
able	to	recognize	the	file	and	preserve	its	attributes	on	a	Keep	command.

http://www.robelle.com/products/qedit

To	create	a	new	bytestream	file,	you	have	to	use	Set	Keep	Bytestream
On.

Because	bytestream	is	sort	of	an	extension	to	variable-length	files,	these
two	options	are	closely	linked.	If	you	use	Set	Keep	Bytestream	On,	the
Variable	option	is	also	enabled.	If	you	use	Set	Keep	Bytestream	Off,	the
Variable	option	is	also	disabled.	If	you	use	Set	Keep	Variable	Off,	the
Bytestream	option	is	also	disabled.	You	can	still	enable	Variable	by	itself,
without	enabling	Bytestream.

Set	Keep	CCTL	ON|OFF

(Initially:	OFF)

Ordinary	ASCII	files	have	the	CCTL	value	OFF.	When	CCTL	is	ON,	the
first	column	of	each	record	must	contain	a	carriage	control	value.	Some
of	the	common	values	are	"1"	for	new	page,	"+"	for	overprint,	and	"	"	for
normal	single-space.	When	Qedit	prints	a	file	with	CCTL	in	quiet-mode
(i.e.,	no	line	numbers	and	no	template),	it	interprets	the	carriage	control
values.

Set	Keep	Checktimestamp	ON|OFF

(Initially:	ON)

Qedit	stores	the	file	modification	timestamp	in	the	workfile.	It	uses	the
timestamp	to	determine	whether	the	file	has	been	modified	since	either
the	initial	Text	command	or	the	last	Keep	command	was	used.	By	default,
timestamp	checking	on	Keep	is	enabled.

If	you	want	to	disable	this	feature,	type

Set	Keep	Checktimestamp	Off

If	you	wish	to	see	the	current	saved	timestamp,	you	have	to	use	Verify
Info.

Saved	modification	timestamp	2005/10/14		18:29:02
Trailing	spaces	in	workfile	are	trimmed

Set	Keep	Cobfree	ON|OFF

(Initially:	On)

Qedit	uses	the	file	extension	(.cbl,	.CBL,	.cob	or	.pco)	to	identify	COBOL
source	files.	The	 .pco	extension	is	typically	used	to	identify	Cobol
source	files	that	needs	to	be	processed	by	the	Oracle	pre-compiler.

If	Qedit	detects	this	attribute,	it	assumes	the	lines	have	a	specific	format.
In	particular,	it	looks	for	the	presence	(or	absence)	of	sequence	numbers
in	the	first	six	(6)	columns	of	each	line.

If	these	columns	do	not	contain	numeric	digits	or	spaces,	Qedit	assumes
the	file	is	a	free-format	source	file	without	a	sequence	number.	The	file	is
then	assigned	the	COBFREE	language.

The	Set	Keep	Cobfree	option	controls	the	format	of	the	file	when	you
Keep	it	back.	If	this	option	is	enabled	(On),	it	means	you	allow	Qedit	to
save	files	in	the	COBFREE	format	(i.e.,	without	sequence	numbers).	If
this	option	is	disabled	(Off),	it	means	you	don't	want	to	create	COBFREE
files.	When	this	option	is	disabled,	Qedit	converts	the	file	to	COBOL,
assigns	it	sequence	numbers	and	writes	them	to	the	saved	file.	A	warning
is	displayed	before	this	occurs.

/Keep
Warning:	Lines	are	now	numbered.
									Language	changed	from	Cobfree	to	Cobol.
COBFON.COBSRC.APP,OLD	EDTCT	#	of	records=26
Purge	existing	file	[no]?

Set	Keep	Code	nnn

(Initially:	<null>,	0)

Any	file	can	have	a	special	file	code	to	help	identify	what	kind	of	data	it
contains.	Qedit	workfiles,	for	example,	always	have	a	Code	of	111,	while
COBOL	source	files	have	a	Code	of	1052	(EDTCT).

You	can	create	files	with	any	code	you	like	using	Set	Keep	Code	and	the
Keep	command.	However,	the	file	code	cannot	be	changed	if	the
Language	is	COBOL	or	COBOLX.

Set	Keep	Label	num

(Initially:	0)

This	value	is	set	to	the	number	of	user	labels	attached	to	the	file,	when
you	Text	it.	Text	filename,Labels	will	copy	the	user	labels	into	the	new
file.	Keep	will	append	those	labels	to	the	file,	unless	you	do	Keep
filename,Nolabels.	If	you	want	to	change	the	number	of	user	labels	to	be
created	on	the	new	Keep	file,	do	Set	Keep	Label	n.

Set	Keep	LF	ON|OFF

(Initially:	ON)

To	write	Newline	delimiters,	use	Set	Keep	LF	ON.	A	delimiter	is	added	at
the	end	of	each	line	whether	there	was	one	or	not	in	the	original	file.

To	create	a	file	without	Newline	delimiters	at	the	end	of	each	line,	use	Set
Keep	LF	OFF.	The	only	Newline	characters	written	to	the	file	are	the	ones
included	in	the	data.

Set	Keep	Name	[filename]

(Initially:	<null>)

The	default	name	for	Keep	is	the	same	name	as	the	last	Text	or	full	Keep
command,	if	any.	A	"full"	Keep	is	one	without	a	limiting	range	or	margins.
The	default	is	invoked	when	you	do	a	Keep	without	any	parameters.	You
can	set	the	default	name	with	this	command.

If	you	do	not	specify	a	file	name,	the	default	Keep	name	is	erased	as	if
this	was	a	brand	new	file.	If	you	erase	the	default	Keep	name	or	replace
it	with	a	new	name,	the	saved	modification	timestamp	is	erased.

Set	Keep	Num	ON|OFF

(Initially:	ON)

Keep	files	may	or	may	not	have	sequence	numbers.	In	standard	COBOL
files,	the	sequence	numbers	are	in	columns	1	through	6.	In	all	other	files
they	are	in	the	last	eight	columns.	When	Qedit	copies	in	an	external	file	it
remembers	whether	that	file	was	numbered	or	not	(if	not,	new	sequence
numbers	are	assigned	to	each	line	in	the	workfile).

When	you	set	the	language	to	Job	or	Text,	Qedit	turns	the	Num	flag	Off.
This	means	that	default	Keeps	of	these	files	will	be	without	sequence
numbers.	You	can	always	override	the	Qedit	default	by	doing	an	explicit
Set	Keep	Num	prior	to	the	Keep.

Set	Keep	Var	ON|OFF

(Initially:	ON)

All	HP-UX	files	are	inherently	variable-length.	However,	if	you	turn	Set
Keep	Var	Off,	Qedit/UX	will	keep	your	file	with	trailing	spaces	appended
to	each	record	to	fill	them	out	to	the	current	Set	Length	value.	There	will
still	be	a	newline	character	at	the	end	of	each	record.	This	appears	to	be
what	COBOL	expects	for	a	data	file.

	 	

http://www.robelle.com/products/qedit

	 	

Language
Set	Language	lang

(Initially:	SPL)

The	lang	codes	accepted	by	Qedit	are:

COBOL,	COBOLX	[ALL],	SPL,	FORTRAN,	Pascal,	RPG,	Job,	Text,	Data,
CC,	CPP,	PowerHouse	(PH),	COBFREE,	Html,	XML,	Java	and	QSL
(Qedit	Scripting	Language).

Initially	when	Qedit	starts	the	language	is	assumed	to	be	SPL,	but	this
may	be	changed	when	you	Text	a	file	("SPL"	stands	for	Systems
Programming	Language,	which	is	an	obscure	software	tool	on	the
original	HP	e3000	system;	files	have	80-character	records	with	columns
73-80	containing	a	sequence	number).	You	can	override	this	default	this
with	Set	Lang.	When	you	Set	Lang,	you	also	reset	the	Window,	the
Length,	the	Left	margin,	and	the	Right	margin.

The	"language"	sets	the	following	file	attributes:

1.	 1.	 Increment	between	lines
2.	 Number	of	digits	in	line	number
3.	 Placement	of	line	number	(left	or	right)
4.	 Maximum	data	line	length
5.	 Number	of	first	data	column
6.	 Name	of	compiler	program	file
7.	 Delimiters	for	Set	Window	(SMART)
8.	 Numbered	or	not	for	Keeps

The	following	chart	shows	the	values	set	for	each	language:

Lang 1 2 3 4 5 6 7 8

COBOL 0.100 6 Left 66 7 COBOL Special,	not"-" Yes

COBOLX 0.100 6 Left 74 7 COBOL Special,	not"-" Yes

SPL 1.000 8 Right 72 1 SPL Special,	not
"'" Yes

http://www.robelle.com/products/qedit

Fortran 1.000 8 Right 72 1 Fortran Any	special Yes

Pascal 1.000 8 Right 72 1 Pascal Special,	not
"_" Yes

RPG 1.000 8 Right 80 1 RPG Ignored No
Job 1.000 8 Right 80 1 Null Any	special No
Text 1.000 8 Right 256 1 Null Any	special No
Data 1.000 8 Right 1,000 1 Null Any	special No

CC 1.000 8 Right 1,000 1 Null Special,	not
"_" No

CPP 1.000 8 Right 1,000 1 Null Special,	not
"_" No

PH 1.000 8 Right 1,000 1 Null Special,	not
"-" No

COBFREE 1.000 8 Right 1,000 1 Null Special,	not
"-" No

HTML 1.000 8 Right 1,000 1 Null Special No
XML 1.000 8 Right 1,000 1 Null Special No

JAVA 1.000 8 Right 1,000 1 Null Special,	not
"_" No

QSL 1.000 8 Right 1,000 1 Null Special,	not
"_" No

COBOL	and	COBOLX	are	identical,	except	that	COBOLX	allows	data	to
extend	into	columns	73-80,	while	COBOL	does	not.	This	is	a	protection
against	compile	errors	for	those	programmers	who	do	not	use	columns
73-80	for	comments.	You	can	force	all	COBOL	files	to	be	in	COBOLX
format	by	using

/set	lang	cobolx	all	on

This	is	useful	when	you	are	using	Set	X	to	tag	program	changes	with	a
string	or	the	date.	You	can	change	from	a	non-COBOL	to	a	COBOL
language,	if	the	highest	line	number	in	your	file	is	less	than	or	equal	to
999.999.

The	COBOL	and	COBOLX	languages	follow	the	COBOL	standards	very
carefully.	These	standards	describe	the	format	of	a	statement.	Most,	if
not	all,	compilers	support	the	standards.	Some	compilers,	however,	allow
a	source	file	to	be	in	a	different	format.	Here	is	a	quick	summary	of	the
differences	between	COBOL,	COBOLX	and	COBFREE:

	 COBOL COBOLX COBFREE
Line	numbers columns	1-6 columns	1-6 none
Control	column column	7 column	7 column	1

Statements columns	8-72 columns	8-72 columns	1-
1,000

Comments none columns	73-80 None

Starting	column 7 7 1
Variable	length no no Yes
Record	length 72 80 1,000

The	Data	Language	setting	defaults	to	256	characters	per	record,	but	it
can	handle	up	to	8,172	characters	in	a	Wide-Jumbo	workfile.	In	a	workfile
of	Jumbo	format,	the	limit	is	actually	1,000.	To	use	Data,	your	workfile
must	be	in	Jumbo	or	Wide-Jumbo	format,	which	supports	longer	lines
and	more	of	them	(99,999,999	instead	of	65,535).	If	a	non-Jumbo
workfile	is	open,	you	will	have	to	shut	it	before	you	can	use	Set	Lang
Data	and	create	a	new	workfile.	To	check	whether	your	open	workfile	is
Jumbo	or	not,	use	Verify	Open.	If	you	see	"No	Recall"	in	the	display,	you
are	using	an	old	workfile.	If	you	see	"Jumbo"	or	"W-Jumbo"	after	the
Language	value,	you	are	using	a	Jumbo	file.

Because	RPG	is	a	column-oriented	language,	SMART	searches	on	RPG
source	files	are	performed	in	DUMB	mode.

In	FORTRAN,	spaces	in	the	middle	of	names	have	no	significance	(i.e.,
CUST	BOOK	is	the	same	as	CUSTBOOK).

If	a	workfile	is	empty,	you	can	set	the	Language	to	anything	you	like.

When	you	change	Language,	you	change	the	maximum	line	Length.	If
Length	is	reduced,	as	in	going	from	Job	to	SPL,	the	lines	are	not	actually
truncated	to	the	shorter	Length.	They	are	only	permanently	truncated	if
you	modify	the	lines.	Therefore,	you	can	switch	back	to	the	previous
Language	at	once	and	still	recover	the	full	lines.	(Note:	when	you	switch
from	COBOLX	to	COBOL,	lines	with	comments	are	actually	stripped	of
their	comments.)	Of	course,	when	you	Keep	your	file,	only	the	data	within
the	new	margins	are	kept.

	 	

http://www.robelle.com/products/qedit

	 	

Left
Set	Left	[n]

(Default:	first	column)

Set	Left	specifies	a	temporary	left	margin	for	your	file.	Existing	data	to	the
left	of	the	margin	is	not	changed	(unless	you	delete	a	line).	When	you
copy	or	move	a	line	with	Add,	the	entire	line	is	moved.	If	you	add	new
lines,	they	will	contain	spaces	to	the	left	of	the	margin.

Set	Left	applies	to	all	Qedit	commands,	including	Visual,	Modify,	List,	and
Keep.	Don't	forget	to	reset	Set	Left	when	you	want	to	Keep	a	file.

Set	Left	resets	the	Set	Window	columns	for	string	searches.	See	also	Set
Right.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Length
Set	Length	nn

(Initially:	from	file	TEXTed)

Most	files	have	a	fixed	record	length	determined	by	the	Language	setting
(e.g.,	SPL,	COBOL,	etc.).	Workfiles	with	Language	Text	or	Data	can	have
their	maximum	line	length	set	to	a	custom	value.	"Text"	defaults	to	256,
but	can	be	set	to	any	value	between	1	and	256	columns.	"Data"	defaults
to	256	as	well,	but	can	be	set	to	lengths	of	up	to	8,172.

Set	Length	will	reset	the	Set	Left/Right	margins	and	the	Set	Window
columns	for	string	searches.

When	you	reduce	the	Length,	you	should	treat	data	beyond	the	new
Length	as	gone,	unless	you	immediately	reset	the	Length.	As	soon	as
you	begin	modifying	lines,	Qedit	begins	reducing	lines	to	their	new
maximum	length.	If	you	wish	to	reduce	the	line	length	temporarily,	use
Set	Right.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Lib
Set	Lib	G|P|S

(Initially:	S)

This	option	does	not	apply	to	Qedit/UX.	It	is	still	accepted	for	compatibility
with	the	MPE	version	of	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Limits
Set	Limits	[option	value]	...

Sys	OFF

Run	OFF

Colonreq	OFF

Hold	n

Proc	x

(Initially:	Sys	ON,	Run	ON,	Colon	OFF,	Hold	10,	Proc	4)

Set	Limits	Sys	Off	disables	the	execution	of	shell	commands	from	within
Qedit.	It	also	prevents	Qedit	for	Windows	users	from	accessing	host
commands.

Qedit	normally	accepts	shell	commands	with	or	without	a	prefix	(colon	or
exclamation	mark).	To	enforce	the	use	of	a	prefix	for	shell	commands,
use	Set	Limits	Colonreq	ON.

These	are	one-way	options	--	once	disabled,	they	cannot	be	enabled
again	by	the	user.

The	rest	of	the	options	do	not	apply	to	Qedit/UX.	They	are	still	accepted
for	compatibility	with	the	MPE	version	of	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

List
Set	List	[option	value]	...

The	Set	List	command	controls	the	format	and	functions	of	the	List
command.	The	valid	options	are:

Page	ON|OFF page	breaks	on	List	LP
Lines	nn lines	per	page	with	PAGE	ON
Name	ON|OFF file	name	on	each	PAGE
Num	ON|OFF number	on	each	PAGE
Title	ON|OFF title	on	each	PAGE
Dbl	ON|OFF double-spacing	of	List	LP
PCL	nn LaserJet	fonts	and	orientation
Record	ON|OFF use	attached	printer	via	Record	Mode
LJ	nn lines	per	screen	for	List-Jump
QJ	ON|OFF "quiet"	for	List-Jumping	(no	seq#)
Endstop	ON|OFF no	"End?"	question	in	List-Jumping.
Even	ON|OFF outputs	even	number	of	pages
Odd	ON|OFF outputs	odd	number	of	pages
Nearest	ON|OFF displays	warning	or	nearest	line

For	more	information	on	Set	List	options,	including	examples,	see	the	List
command.	For	a	quick	list	of	the	PCL	values	and	their	meanings,	see
also	the	Quick-Help:	/hq	set,list

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Maxdata
Set	Maxdata	nnnn

(Initially:	no	stack	expansion)

This	option	does	not	apply	to	Qedit/UX.	It	is	still	accepted	for	compatibility
with	the	MPE	version	of	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Modify
Set	Modify	[option	[value]	...]

Qzmodify	|	HP	|	Robelle

Prompt	ON|OFF

codes

Set	Modify	controls	what	style	of	line	modify	is	used	throughout	Qedit.
The	defaults	are	Qedit-style	(^D	for	delete)	in	Modify	and	Before,	with
MPE-style	(D	for	delete)	in	Redo	only.	Set	Mod	HP	forces	MPE-style	in	all
places,	while	Set	Mod	Robelle	selects	Qedit-style	and	Set	Mod	Qzmod
selects	Qzmodify	(a	"what	you	see	is	what	you	get"	version	of	the	Qedit-
style).	If	you	type	Set	Modify	with	no	parameters	you	go	back	to	the
defaults.

You	also	use	Set	Modify	to	control	placement	of	the	Modify	line	number
and	redefine	the	Qedit-style	control	codes.

Prompt	Option:	Where	to	Print	Line	Number.	Robelle	Modify	normally
prints	the	line	number	on	the	same	line	as	the	data.	This	makes	lines
look	alike	in	List,	Delete,	Add,	and	Modify,	and	also	makes	maintaining
your	tab	stops	simpler.	On	the	other	hand,	placing	the	line	number	on	a
separate	line	makes	it	easier	to	press	Control-Y	and	re-enter	edits.	Set
Mod	Prompt	OFF	separates	line	and	number	("_"	represents	the	cursor):

/set	modify	prompt	off
/modify	10.2
			10.2
Now	is	the	time	for	all	good	people
_
/set	modify	prompt	on
/modify	10.2
			10.2			Now	is	the	time	for	all	good	people
										_

You	can	also	use	the	Quiet	option	not	to	see	line	numbers	at	all.

http://www.robelle.com/products/qedit

Replacing	Modify	with	Hpmodify.	If	you	prefer	the	MPE-style	edits
provided	in	the	:Redo	command,	do	Set	Modify	Hpmodify.

Qedit	will	accept	DDD	to	delete	characters,	Ixxx	to	insert	xxx,	Rxxx	to
replace	with	xxx,	and	U	to	undo.	Other	edits	include	>	to	append,	>D	to
delete	from	the	end,	>Rxxx	to	replace	from	the	end,	and	D>	to	clear	the
line.	HP-style	modify	does	not	support	tab	stops	and	always	prints	the
line	number	on	a	separate	line	from	the	data.	See	:Redo	command	for	a
complete	list	of	edits.	Hpmodify	applies	in	Modify,	Redo,	Before	and
modify	in	Change	and	Add.

Forcing	Redo	to	Use	Qedit-Style.	If	you	like	the	Qedit-style	modify
better	than	HP	style	and	want	to	use	it	even	in	Redo,	do	Set	Modify
Robelle.

Replacing	Modify	with	Qzmodify.	To	make	Qzmodify	the	style
throughout	Qedit,	use	this	command:

SET	MODIFY	QZMODIFY	[TAE|TAEOFF]

(Default:	disable	Qzmodify)

The	TAE	options	apply	only	if	you	have	a	Telamon	Type	Ahead	Engine:

TAEOFF	means	to	disable	your	Type	Ahead	Engine.
TAE	means	to	enable	your	Type	Ahead	Engine.
The	default	is	to	ignore	the	Type	Ahead	Engine.

Qzmodify	replaces	the	regular	Qedit	modify	with	a	routine	that	allows
"visual"	editing	on	HP	terminals.	Once	you	do	Set	Mod	Qzmod,	all	modify
operations	within	Qedit	will	use	Qzmodify,	including	Before,	Redo,	modify
from	within	Change,	and	the	Modify	command.	To	disable	use	of
Qzmodify,	enter	Set	Modify	with	no	parameters.

Qzmodify	uses	single-character	reads,	which	you	may	find	are	a
significant	drain	on	the	resources	of	your	HP	e3000.	Qzmodify	will	work
over	DS	lines,	but	will	be	very	slow.	However,	avoid	Control-Y	and	Break,
because	there	are	bugs	in	DS	that	confuse	the	state	of	the	terminal.
Qzmodify	does	Setmsg	OFF	on	your	session	and	Setmsg	ON	when	it	is
exits;	use	Set	Vis	Msg	OFF	to	leave	Setmsg	OFF	all	the	time.

For	details	on	the	Qzmodify	edit	codes,	either	enter	Qzmodify	and	type
Control-Q	or	see	the	Modify	command.

Changing	the	Control	Characters.	You	can	change	the	default	code
assigned	to	any	function	in	the	Qedit	Modify	command	by	using	Set
Modify:

^Set	Modify	(B	^x	D	^x	T	^x	G	^x	L	^x	O	^x	V	^x	A	^x)

The	Modify	command	uses	nonprinting	control	characters	for	function
codes.	These	characters	have	ASCII	values	between	1	and	31	which	are
generated	by	holding	down	the	CONTROL	shift	key	while	striking	another
key.	For	example,	the	code	for	Before	is	Control-B	(^B,	decimal	2).
Because	many	terminals	use	specific	control	codes	for	local	functions
(i.e.,	Control-B	may	clear	the	screen),	Qedit	allows	you	to	change	the
control	codes	assigned	to	Modify	functions.	However,	the	control	codes
for	Qzmodify	cannot	be	redefined.

Using	Set	Modify,	any	or	all	of	the	control	function	codes	can	be
changed.	The	current	codes	are	displayed	in	the	Verify	command.	Each
control-function	change	consists	of	the	first	letter	of	the	function	name,
followed	by	a	space,	then	the	circumflex	character	and	the	desired
control	letter.	For	example:

/set	modify	(t	^Z)

This	specifies	that	Control-Z	(equal	to	decimal	26)	is	the	control	key	for
the	TERMINATE	function.	Certain	control	codes	are	not	allowed	and	will
be	rejected.	Each	function	must	be	assigned	a	unique	control	character
from	among	these:

A		B		C		D		G		K		L		N		O		P		R		T		U		V		W		Z		\]		^		_

	 	

http://www.robelle.com/products/qedit

	 	

Open
You	can	control	the	behavior	of	Qedit	when	opening	workfiles.	With	the
first	option,	you	can	get	Qedit	to	warn	you	if	the	workfile	you	are	working
on	is	not	synchronized	with	the	file	it	is	based	on.	The	second	option
helps	you	preserve	timestamps	on	workfiles	so	that	you	have	a	better
idea	when	the	workfile	has	actually	been	accessed	and	modified.

Set	Open	Checktimestamp	ON|OFF

(Initially:	OFF)

Qedit	stores	the	file	modification	timestamp	in	the	workfile.	It	uses	the
timestamp	to	determine	whether	the	file	has	been	modified	since	the
initial	Text	command	or	since	the	last	time	the	Keep	command	was	used.

By	default,	timestamp	checking	on	the	Open	command	is	disabled.	If	you
want	to	enable	it,	type

Set	Open	Checktimestamp	On

Set	Open	Defer	ON|OFF

(Initially:	Off)

The	Open	command	is	used	to	access	a	Qedit	workfile	for	editing.
Normally,	the	workfile	is	opened	with	write	access,	which	updates	the
"Last	Modified	Date"	of	the	file,	even	if	you	don't	actually	make	any
changes	to	it.	However,	by	doing	Set	Open	Defer	On	you	can	instruct
Qedit	to	"defer"	the	write	access	until	a	modification	is	attempted.	Qedit
opens	the	workfile	with	Read	Access	initially,	then	reopens	it	with	Write
Access	later	if	it	is	necessary	to	post	a	modification	to	the	file.	See	the
Open	command	for	more	details.

It	is	important	to	remember	that	certain	workfile	attributes	and	settings
are	normally	saved	when	the	file	is	opened	with	write	access.	Some	of
these	settings	are	the	ZZ	marker,	the	current	line	marker	(*),	and	the	new
default	Keep	name	modified	with	Set	Keep	Name.	If	you	explicitly	open	a
workfile	in	Browse	mode	or	use	Set	Open	Defer	On,	these	settings	are
not	updated	permanently,	unless	the	file	is	re-opened	with	write	access.

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

	 	

Pattern
Set	Pattern	Old|New

(Initially:	New)

Qedit	uses	"@",	"#",	"?",	and	"~"	to	define	a	pattern	to	be	matched.	The
original	pattern-match	logic	in	Qedit	did	not	allow	you	to	look	for	a	pattern
that	contained	a	literal	"@".	The	current	pattern-match	logic	allows	"&"	as
an	"escape"	character.	This	means	that	you	can	look	for	any	reserved
pattern-match	character	by	putting	&	in	front	of	it.	For	example,

/list	"@first&@second@"	(pat)

Note	that	the	"escape"	character	does	not	match	the	ASCII	escape
character,	whose	value	is	decimal	27	or	octal	33.	In	this	case	"escape"
means	the	same	as	the	"transparency"	character	in	VPLUS/3000	pattern-
matching:	the	next	character	following	the	escape	is	to	be	treated	as	a
literal	instead	of	a	pattern-match	metacharacter.

Two	other	characters	have	been	reserved	for	future	use:	^	and	!.

To	reset	Qedit	to	the	old	pattern-match	logic,	use	Set	Pattern	Old	(the
default	is	Set	Pattern	New).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Priority
Set	Priority	CS	|	DS	|	ES

(Initially:	logon	priority)

This	option	does	not	apply	to	Qedit/UX.	It	is	still	accepted	for	compatibility
with	the	MPE	version	of	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Prompt
Set	Prompt	"string"

(Initially:	"qux/")

The	default	prompt	string	is	"qux/",	but	you	can	change	that	with	Set
Prompt.

set	prompt	"Qedit	/"
set	prompt	"Sys2	/"

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Redo
Set	Redo	[filename]

(Default:	none)

(Initially:	temporary	file)

Commands	entered	at	the	Qedit	prompt	are	saved	in	something	called
the	redo	stack.	You	can	recall	commands	from	this	stack	by	using	other
commands	such	as	Before,	Do	and	Redo.	By	default,	the	redo	stack	is
stored	in	a	temporary	file	and	discarded	as	soon	as	you	exit	Qedit.	This
does	no	allow	the	stack	to	be	preserved	across	Qedit	invocations.

Set	Redo	allows	you	to	assign	a	permanent	file	as	the	redo	stack,
allowing	the	stack	to	be	available	for	future	Qedit	invocations.	To	assign
the	Myredo	file	as	a	persistent	redo	stack,	enter

/Set	Redo	Myredo

If	the	file	does	not	exist,	Qedit	creates	it.	Otherwise,	Qedit	uses	the
existing	file.	All	your	subsequent	commands	are	written	to	the	persistent
redo	stack.	The	setting	is	valid	for	the	duration	of	the	Qedit	session.	As
soon	as	you	exit	Qedit,	the	setting	is	discarded.	Next	time	you	run	Qedit,
you	will	get	the	temporary	stack.	If	you	want	to	use	a	persistent	stack
every	time	you	run	Qedit,	you	have	to	insert	the	Set	Redo	command	in
one	of	the	Qeditmgr	files.

If	the	file	name	is	not	qualified,	the	redo	stack	is	created	in	the	current
working	directory.	This	may	be	desirable	if	you	want	to	have	separate
stacks.	If	you	prefer	to	always	use	the	same	persistent	stacks,	you
should	qualify	the	name.

The	Verify	command	shows	which	stack	is	currently	in	use.	If	it	shows
<temporary>,	then	Qedit	is	using	the	default	stack.	Anything	else	is	the
name	of	the	file	used	on	the	Set	Redo	command.

Concurrency

When	Qedit	uses	the	default,	the	temporary	stack	is	only	accessible	to
that	particular	instance	of	Qedit.	You	can	run	as	many	Qedit	instances	as
you	need,	and	each	one	gets	its	own	redo	stack.	You	will	never	have

http://www.robelle.com/products/qedit

concurrency	problems.

If	you	start	using	a	persistent	redo	stack,	however,	you	might	start
running	into	concurrency	problems.	A	persistent	redo	stack	can	be	used
only	by	one	Qedit	instance	at	a	time.	If	you	try	to	use	a	persistent	redo
stack	that	is	already	in	use,	you	will	get	the	following	message:

/Set	Redo	Myredo
The	redo	file	is	already	in	use.
Unable	to	open	file	for	REDO	stack

In	this	situation,	Qedit	continues	to	use	the	redo	stack	active	at	the	time
and	lets	you	continue	working	as	normal.

Suprtool,	STExport	and	Suprlink	also	have	the	ability	to	have	permanent
redo	stacks.	It	is	advisable	to	have	separate	redo	stacks	for	each
product,	because	they	will	write	commands	to	each	other's	redo	stack	if
you	supply	the	same	file	name.

For	example	if	you	use	the	command

set	redo	myredo

you	will	have	a	redo	stack	called	Myredo	for	your	Qedit	commands.	If	you
exit	Qedit	and	run	Suprtool	and	supply	the	same	Set	Redo	command,
your	Suprtool	commands	will	be	written	to	the	same	file	that	is	used	for
your	Qedit	commands.

This	command	is	ignored	if	Qedit	is	run	in	server	mode.

	 	

http://www.robelle.com/products/qedit

	 	

Right
Set	Right	[n]

(Default:	same	as	Set	Length)

(Initially:	same	as	Set	Length)

Set	Right	fixes	a	right	margin	for	listing	and	editing	lines	in	your	workfile.
Any	existing	data	to	the	right	of	the	margin	is	retained	unchanged	while
you	edit	to	the	left	of	the	margin.	Set	Right	also	resets	the	Set	Window
columns.	See	Set	Left	for	setting	the	other	margin.

Remember,	the	left	and	right	margins	apply	to	most	commands,	including
Visual	and	Keep.	To	reset	the	margin	to	the	far	right	edge,	Set	Right	with
no	parameter.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

RL	file	name
Set	RL	[filename]

(Default:	none)

(Initially:	none)

This	option	does	not	apply	to	Qedit/UX.	It	is	still	accepted	for	compatibility
with	the	MPE	version	of	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Shift
Set	Shift	[DOWN	n]	[UP	n]

(Default:	none)

(Initially:	both	0)

Configures	string	logic	for	the	built-in	PROCedures,	DOWN	and	UP.	Valid
values	are	0	through	4:

0 not	configured
1 shift	every	character	in	the	line
2 ignore	characters	within	double	quotes
3 ignore	characters	within	single	quotes
4 ignore	characters	within	either	single	or	double	quotes

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Spell
Set	Spell	[option	value]...

(Default:	<null>)

This	option	does	not	apply	to	Qedit/UX.	It	is	still	accepted	for	compatibility
with	the	MPE	version	of	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Statistics
Set	Statistics	[ON|OFF]

(Default:	OFF)

(Initially:	OFF)

If	you	turn	Set	Stat	ON,	Qedit	prints	the	CPU	and	wall	time	after	each
command.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Stringdelimiters
Set	Stringdelimiters	POSIX	|	"DelimiterList"

(Initially:	|\~%:'")

The	initial	list	indicates	the	characters	that	can	be	used	as	valid
delimiters.

The	single	quote	(')	is	removed	from	the	list	if	Set	Decimal	is	enabled
(On).	Quote	characters	(")	are	always	valid	delimiters	(i.e.,	they	cannot
be	removed	from	the	list).

From	full-screen	mode's	homeline,	a	tilde	always	represents	the	most
recently	accessed	line	number.	If	the	tilde	is	removed	from	the	delimiter
list,	it	also	becomes	a	reference	in	line-mode	to	full-screen's	mode	most
recently	accessed	line.

The	delimiter	list	itself	must	be	enclosed	between	a	pair	of	valid
delimiters.	The	new	delimiters	must	be	chosen	from	the	initial	list.	If	you
do	not	remember	what	the	initial	list	is,	simply	enter	the	Set	String
command	with	a	letter	or	a	numeric	digit	as	a	list.	For	example,

/Set	String	"a"
Error:		Not	an	acceptable	quote	char:	a
								select	from	|\~%:'"

You	can	reduce	the	list	to	just	a	few	characters.	If	you	want	to	reduce	it	to
just	a	colon	(:)	and	a	number	sign	(#),	enter:

Set	String	":#"

From	that	point	on,	only	quotes,	colons	and	number	signs	can	surround	a
string.

/List	"filename"
/Find	#procedure#
/Delete	:badline:
/Change	1/7	\oldtext\	@							{this	is	invalid	now}

http://www.robelle.com/products/qedit

The	Posix	option	allows	you	to	easily	bring	the	delimiter	list	down	to	three
characters:	quotation	marks	("),	a	backslash	(\)	and	a	colon	(:).	This
option	is	useful	when	working	with	file	names	that	contain	a	lot	of	special
characters.	It	reduces	the	number	of	parsing	errors.

There	is	no	easy	way	to	bring	the	defaults	back.	You	have	to	enter	the
Set	String	command	with	all	the	characters	in	the	initial	list.

	 	

http://www.robelle.com/products/qedit

	 	

Tabs
Set	Tabs	^char	HP	[ON|OFF]

(Default:	Control-I,	HP	ON)

When	you	enter	lines	in	Add,	Modify,	or	Replace,	Qedit	looks	for	and
interprets	"tab"	keys.	Each	time	Qedit	finds	a	"tab",	it	fills	the	input	line
with	blanks	to	the	next	tab	position.	The	default	positions	are	every	eight
columns.	If	there	are	no	more	positions,	Qedit	terminates	the	current	line
and	saves	the	remaining	text	for	the	next	line.

Using	Set	Tabs,	you	can	define	the	logical	"tab"	key	to	be	any	nonprinting
control	code	such	as	BELL	(^G,	decimal	7)	or	a	printing	character	such
as	tilde	(~).	Control-I	is	the	default	because	it	is	the	character	most
commonly	used	as	the	hardware	TAB	key	on	terminals.	All	HP	terminals
generate	a	Control-I	when	TAB	is	pressed.

/set	tabs	^i
/set	tabs	"~"

Set	Tabs	Hp	Off	tells	Qedit	not	to	set	physical	tab	stops	on	your	terminal
(for	example	it	does	not	work	on	2640	or	non-HP	terminals).	With	Set	Tab
Hp	On	(the	default),	Qedit	will	update	your	terminal's	tab	stops	at	once.
With	Hp	On,	each	time	you	switch	from	Add	to	AQ	(or	any	similar	change
that	would	shift	the	tabs	left	or	right	on	the	screen),	Qedit	also	resets	the
tab	stops.

When	using	the	TAB	Key,	remember	that	you	must	not	backspace	past
the	last	tab	stop.	If	you	do,	Qedit	will	never	see	the	TAB	key.

Set	Tabs	STOP	columns	|	NULL	|	nn	nn	nn	nn	...

(Default:	every	8	columns

NULL	means	no	tabs)

By	default,	Qedit	sets	the	tab	stops	every	10	columns	(MPE)	or	8
columns	(HP-UX).	You	can	override	this	with	Set	Tabs	NULL	to	set	no	tab
stops,	Set	Tabs	STOP	n	(every	2	to	15	columns),	or	Set	Tabs	with	a
custom	list	of	column	numbers.	The	maximum	number	of	custom	tab
stops	is	32.	Remember	that	the	columns	of	input	text	are	numbered

http://www.robelle.com/products/qedit

differently	depending	on	the	source	language.	In	SPL,	Pascal,
FORTRAN,	RPG,	Text,	Data	and	Job,	the	first	column	is	numbered	1;	in
standard	COBOL,	it	is	7.	You	cannot	set	a	tab	in	the	first	column.

/set	tabs	stop	8				{every	8	columns	(9	17	25	33	...)}
/set	tabs	5	10	15			{SPL,FORTRAN,RPG,Job,Text,Pas}
/set	tabs	12	16	20		{COBOL}
/set	tabs	null						{cancel	all	tabs}

	 	

http://www.robelle.com/products/qedit

	 	

Term
Set	Term	Columns	nnn

(Default:	80)

(Initially:	80)

When	you	run	Qedit,	it	tries	to	determine	the	number	of	columns	in	the
display	width	of	your	terminal.	The	default	is	80.	You	can	override	this
value	by	setting	the	display	width	manually	and	putting	the	correct	value
in	the	RCRTWIDTH	variable.	If	the	variable	is	not	set,	Qedit	queries	your
terminal	for	the	width.	If	you	change	it	manually	from	within	Qedit,	you
can	force	a	re-query	by	doing	Set	Visual	Stop.	However,	there	is	an
easier	way.

On	most	terminals,	Set	Term	Columns	nnn	adjusts	the	display	width	of
your	terminal.	You	must	be	on	an	HP-type	terminal	whose	width	can	be
varied,	and	the	column	value	nnn	can	be	between	80	and	999.	It	is	better
to	use	this	command	to	change	the	number	of	columns	than	to	do	it
manually	because	the	command	also	adjusts	your	terminal	listing	file
width,	and	other	parameters	within	Qedit.

Set	Term	Columns	is	effective	only	for	Line	mode.	When	you	enter	Visual
mode,	Qedit	may	adjust	your	display	width	to	suit	the	file	being	edited
and	resets	the	width	when	you	exit	completely	from	Visual	mode	or
Qedit.

If	you	have	set	RCRTMODEL	to	1234,	Qedit	assumes	the	terminal	or
emulator	has	limited	capabilities.	Qedit	assumes	the	display	width	can
only	be	changed	manually.	So,	if	Set	Term	Columns	is	used,	Qedit
displays:

Please	change	display	width	and	press	Enter:

and	waits	for	confirmation	from	the	user.

When	you	execute	a	command	via	the	Home	line	and	find	yourself	at	the
"Next	Visual?"	prompt,	Qedit	may	not	have	reset	your	display	width
because	you	often	immediately	press	Return	to	go	back	into	Visual
mode.	Flipping	the	width	frequently	is	slow,	erases	your	display	memory,
and	sometimes	causes	irritating	screen	flicker.

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

	 	

Text
Set	Text	Exclusive	ON|OFF	Cobolfixed	ON|OFF

(Initial:	Exclusive	OFF,	Cobolfixed	OFF)

More:
Exclusive	Access	Control
Fixed-length	Cobol	Source	Files

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Exclusive	Access	Control
When	you	text	in	a	file,	Qedit	creates	a	workfile	and	copies	the	contents
of	the	original	file	into	it.	The	original	file	is	then	closed.	This	means	that
other	users	on	the	system	can	text	in	the	file	and	make	changes	of	their
own.	This	is	great	for	concurrency	but	not	so	great	for	version	control.

A	new	option,	Set	Text	Exclusive,	provides	increased	control	over	files
that	you	are	editing.	To	enable,	simply	enter:

/Set	Text	Exclusive	On

When	this	option	is	enabled,	files	that	you	text	in	are	kept	open	for	read-
only	access.	This	means	the	files	are	still	accessible	to	compilers	and
other	programs	with	non-conflicting	access	including	Qedit	with	Set	Text
Exclusive	disabled.	In	the	latter	case,	a	user	will	be	able	to	text	the	file	in
but	will	not	be	able	to	save	changes	with	a	Keep	command.	When	Set
Text	Exclusive	is	enabled,	a	user	requires	read	and	write	permissions	to
be	able	to	Text	in	a	file.	If	he	only	has	read	permission,	he	has	to	use	the
Browse	option	on	the	Text	command	even	if	the	file	is	not	currently
accessed.

Once	Set	Text	Exclusive	is	enabled	for	all	users	and	a	particular	file	is
being	worked	on,	subsequent	Text	commands	immediately	fail	with:

Error:		File	open	by	another	Qedit	process

On	a	system	where	Qedit	is	the	editor	of	choice,	we	recommend	that	Set
Text	Exclusive	be	inserted	in	the	/opt/robelle/qeditmgr	file.

Once	a	file	has	been	texted	in,	the	user	retains	control	over	it.	The	file	is
released	when:

another	file	is	texted	in
the	workfile	is	closed	explicitly	by	a	Shut	command	or
implicitly	by	a	New	or	Open	command
the	workfile	is	purged	e.g.	purge	*
Qedit	is	terminated

All	these	operations	signal	Qedit	that	the	work	is	done	on	this	file.	When

http://www.robelle.com/products/qedit

the	workfile	is	shut	(explicitly	or	implicitly),	Qedit	tries	to	clear	its	contents.
If	the	file	is	clean	(i.e.,	has	not	been	modified),	the	file	is	erased.	If	the	file
has	been	modified,	Qedit	prompts	for	a	confirmation:

/shut
Reminder:	you	have	not	saved	the	changes	to	/home/bob/testisql.c
/var/tmp/qscr.CAAa09829
Clear	file	[no]?

If	you	answer	No,	nothing	happens.	The	workfile	remains	open,	the
original	file	is	still	in	use	and	a	warning	is	displayed.

File	NOT	cleared
Files	still	open.	When	Text	Exclusive	is	On,	workfile	must	be	cleared	to	Shut.

If	you	answer	Yes,	the	workfile	is	cleared	and	the	original	file	is	released.
This	accomplishes	two	things:

releases	the	file	so	it	can	be	used	by	someone	else	and	does
not	remain	blocked
forces	the	user	to	stop	and	decide	what	should	be	done	with
the	changes
forces	the	user	to	text	the	file	in	again	to	make	sure	he	has
the	latest	version

	 	

http://www.robelle.com/products/qedit

	 	

Fixed-length	Cobol	Source	Files
By	default,	all	UNIX	files	are	processed	as	variable-length	files.	If
needed,	you	can	override	this	option	using	Set	Keep	Var	OFF.	Some
Cobol	compilers	prefer	to	have	fixed-length	records.	It	can	quickly
become	tedious	to	enter	the	Set	Keep	command	after	every	Text
command,	not	to	mention	the	likelihood	of	forgetting	to	do	it.

If	you	wish	to	force	all	Cobol	source	files	to	be	processed	as	fixed-length
files,	use	Set	Text	Cobolfixed	ON.	Every	Cobol	source	texted	in	from
that	point	will	be	fixed-length.	If	a	file	has	already	been	texted	in,	the
Keep	command	will	switch	to	fixed-length	records	automatically.	Qedit
displays	a	warning	in	this	case.

qux/v	text
Set	Text	Exclusive	OFF	Cobolfixed	OFF
qux/t	mysource.cob
26	lines	in	file
qux/v	k
Set	Keep	Ascii	OFF	Cctl	OFF	COde	0	Lab	0	Num	ON	Var	ON	Checktimestamp	ON
Set	Keep	COBfree	ON	NAme	/users/robdev/qedit/test/file1CobFixed
Set	Keep	LF	ON
qux/s	text	cobolfixed	on
qux/k	testcob.txt
Warning:		Set	Text	Cobolfixed	is	On.	File	will	have	fixed-length	records.
/users/robdev/qedit/testcob.txt	#Records	=	26
Purge	existing	file	[no]?	Y
qux/set	keep	var	on
qux/t	mysource.cob
26	lines	in	file
qux/v	k
Set	Keep	Ascii	OFF	Cctl	OFF	COde	0	Lab	0	Num	ON	Var	OFF	Checktimestamp	ON
Set	Keep	COBfree	ON	NAme	/users/robdev/qedit/test/file1CobFixed
Set	Keep	LF	ON

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

	 	

Totals
Set	Totals	[ON|OFF]

(Default:	ON)

(Initially:	ON)

Shows	the	number	of	lines	changed,	deleted,	added,	texted	and	moved
by	each	command.

The	total	line	is	considered	a	"warning"	or	status-type	message.
Therefore,	Set	Warnings	Off	will	disable	Set	Totals,	as	will	Option	Nowarn
in	a	User	Command.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

UDC
Set	UDC	[ON|OFF|filename]	[LOCK]

(Default:	ON)

(Initially:	OFF)

This	option	does	not	apply	to	Qedit/UX.	It	is	still	accepted	for	compatibility
with	the	MPE	version	of	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Undo
Set	Undo	ON|OFF

(Initially:	ON	in	session,	OFF	in	batch)

"Undo"	is	the	ability	to	cancel	the	effect	of	previous	commands	that
modified	your	file.	By	default,	Undo	is	enabled	for	interactive	use	and
disabled	in	batch	use	of	Qedit.

Set	Undo	allows	you	to	override	that	default,	or	even	disable	Undo
around	some	very	large	editing	tasks,	to	speed	it	up.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Varsub
Set	Varsub	ON	|	OFF

(Default:	Off)

When	this	option	is	enabled,	Qedit	parses	entered	commands	looking	for
variable	names.	If	a	variable	name	is	found	and	currently	exists,	its	value
is	substituted	before	the	command	is	executed.	If	the	variable	does	not
exist,	the	variable	name	is	left	unchanged.

Qedit	commands	are	added	to	the	Redo	stack	before	the	substitution
occurs	i.e.	with	the	variable	name.	So,	if	the	variable	value	changes
between	the	time	the	command	is	entered	and	the	time	it	is	retrieved
from	the	stack,	the	results	may	be	different.	It's	also	important	to	note	that
commands	related	to	Redo	stack	operations	such	as	Listredo,	Do,
Before	can	not	have	trailing	comments	enclosed	in	curly	braces
anymore.	The	comments	are	not	removed	and	likely	cause	a	syntax
error.

/listredo		{	see	which	commands	I	have	entered	so	far	}
Bad	option,	expecting	;UNN	;ABS	;REL	or	;OUT
/listredo
					1)	t	testisql
					2)	l	"$myvar"
					3)	s	varsub	on
					4)	l	"$myvar"
					5)	setvar	myvar	"qed"
					6)	l	"$myvar"
					7)	LISTREDO		{	SEE	WHICH	COMMANDS	I	HAVE	ENTERED	SO	FAR	}

Variable	names	are	identified	by	a	leading	dollar	sign	"$".	For	example,
$HOME	is	replaced	with	the	current	value	of	the	HOME	environment

variable.	Some	Qedit	commands	such	as	List	have	an	extensive	series	of
$-options	which,	as	their	name	implies,	also	start	with	a	dollar	sign.
These	options	have	precedence	over	environment	variables.	In	other
words,	if	a	variable	has	the	same	name	as	a	$-option,	the	substitution
does	not	occur.	The	only	workaround	is	to	change	the	name	of	the
variable	to	something	that	does	not	conflict.

http://www.robelle.com/products/qedit

If	you	wish	to	prevent	variable	substitution	and	have	Qedit	interpret	the
dollar	sign	at	face	value,	insert	a	backslash	immediately	in	front	of	it	as	in

\$HOME.

The	tilde	is	a	special	character	with	different	meanings	in	Qedit.	Among
other	things,	it	can	be	a	string	delimiter	or	a	shortcut	pointing	to	the	most
recent	current	line	in	full-screen	mode.	In	HP-UX	shells,	it's	also
commonly	used	to	designate	the	user's	home	directory.

Here's	how	Qedit	handles	the	tilde	character.	If	it's	still	part	of	the	string
delimiter	list	(Verify	Stringdelimiter),	it	is	used	as	such.	If	it's	not	part	of
the	list	and	is	entered	by	itself	on	a	line,	it's	interpreted	as	the	most
recent	current	line	of	full-screen	mode.	If	it's	not	part	of	the	list,	Set
Varsub	is	enabled	and	is	used	anywhere	else	in	a	command,	it's	replaced
with	$HOME.	The	Varsub	feature	would	then	substitute	the	appropriate
value.

Set	Varsub	On	automatically	removes	the	tilde	from	the	string	delimiter
list.

	 	

http://www.robelle.com/products/qedit

	 	

Visual
Set	Visual	keyword	[value]	...

(Default:	see	Visual)

The	Set	Visual	command	controls	how	Visual	mode	operates.	The
following	section	shows	how	to	change	the	number	of	lines	per	screen,
how	to	set	where	the	current	line	will	appear,	and	other	options.	New
users	should	use	Set	Visual	Update	On.	This	option	does	an	automatic
screen	update	whenever	you	press	any	function	key.	This	saves	your
changes	even	if	you	forget	to	press	Enter	when	changing	screens.

Here	are	the	Set	Visual	options,	with	the	minimal	abbreviations	shown	in
capitals:

Above show	0	to	9	lines	above	*	line?
ATtachmate allow	for	KEA!	emulator	to	widen	to	500	columns
BELL define	printable	substitute	for	"Bell"
Below show	0	to	99	lines	below	*	line?
Blockemulation use	block-mode	emulation	in	Visual
BUF change	size	of	screen	buffer
Carry carry	0	to	9	lines	to	next	page?
CLEardisplay clear	all	of	display	memory	or	not?

Cutcurrent keep	cursor	near	original	current	line	after	cut-
and-paste

Editonopen return	to	full-screen	after	Open	at	Next	Command
prompt

Esc define	printable	substitute	for	"Esc"
Field redefine	the	GG/VV	field	separator	(~)
HALfbright use	fewer	enhancements	in	the	status	line
Hidetags hide	+1,+2	line	tags	with	display	enhancement
Home put	cursor	on	home	line	or	*	line?
Ignorelf accept	screens	without	line	feeds
Inschar enable	Insert	Character	on	your	terminal
Label load	function	key	labels?
Marginfixed do	not	change	terminal	right	margin
MSG leave	Setmsg	OFF	or	mesg	n	on	exit	from	Visual
Renum renumber	screen	if	out	of	line	numbers?
Roll adjust	number	of	lines	on	UP	(F2)

http://www.robelle.com/products/qedit

Save save	and	restore	existing	function	keys?
SI define	printable	substitute	for	"ShiftIn"
SO define	printable	substitute	for	"ShiftOut"
Stop reset	Visual	mode,	forces	restart.
TAB define	printable	substitute	for	tab	characters

TAE make	Qedit	work	with	Telamon	Type	Ahead
Engine

Update automatically	update	screen	every	time?
Widen whether	to	go	beyond	80-columns	of	display?
Wordwrap enable	wordwrap	in	Reflection?
More:
Above
ATtachmate
Bell
Below
Blockemulation
Buf
Carry
Cleardisplay
Cutcurrent
Editonopen
Esc
Field
Halfbright
Hidetags
Home
Ignorelf
Inschar
Label
Marginfixed
Msg
Renum
Roll
Save
Screen
SI
SO
Scrollup
Stop
Tab
TAE

Update
Widen
Wordwrap
XX
Labels	in	Line	Mode

	 	

http://www.robelle.com/products/qedit

	 	

Above
Set	Visual	Above	n

(Default=0)

By	default,	the	*	line	is	the	first	text	line	on	the	page.	Set	Vis	Above
specifies	that	from	0	to	9	lines	are	to	be	shown	above	the	*	line.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

ATtachmate
Set	Visual	Attachmate	OFF	|	ON

(Default=Off)

When	enabled	and	used	in	conjunction	with	the	Attachmate's	KEA!
Terminal	emulator,	Qedit	is	able	to	work	with	up	to	512	colums.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Bell
Set	Visual	Bell	'nnn	|	"char"

(Default=None)

If	you	edit	text	containing	Bell	characters,	they	will	appear	as	dots	with	a
"?"	at	the	left	of	the	line.	Otherwise,	they	would	disappear	from	your	file
when	you	press	Enter	because	Bells	are	not	saved	in	display	memory.	To
get	around	this	problem,	you	can	define	another	character	as	a
translation	for	the	Bell	character.	For	example,	Set	Vis	Bell	"|"	defines	"|"
to	represent	Bell.

When	Visual	needs	to	print	a	Bell	on	the	screen,	it	prints	a	"|"	instead.
When	Visual	sees	any	"|"	on	the	screen,	it	converts	it	into	a	Bell	internally.
To	avoid	turning	every	occurrence	of	the	"alias"	character	in	your	file	into
a	Bell,	Visual	prints	a	"?"	for	any	line	with	a	valid	alias	already	in	it	and
will	not	let	you	update	that	line	in	Visual	mode	(use	Modify	instead).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Below
Set	Visual	Below	nn

(Default=19)

By	default,	Visual	shows	19	lines	below	the	*	line.	Set	Vis	Below	can
change	this	to	0	through	99	lines.	Qedit	reads	and	writes	a	fixed	number
of	characters	per	screen	(see	Set	Visual	Buf).	If	you	Set	Vis	Below	to	a
large	number	of	lines	such	as	99,	Qedit	may	not	have	room	in	the	screen
write	buffer	for	all	of	the	lines	requested.	Qedit	prints	an	error	message,
attempts	to	reduce	Set	Vis	Below	to	a	value	that	will	work,	and	returns
you	to	Line	mode.	You	type	"vis"	to	restart	Visual	mode.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Blockemulation
Set	Visual	BLockemulation	ON	|	OFF

(Default=Off)

Full-screen	editing	as	implemented	on	HP3000	computers	only	works	on
HP-UX	versions	earlier	than	11.0.	On	HP-UX	11.0	or	later,	full-screen
editing	is	available	in	Screen	mode	(Set	Visual	Screen	On)	on	VT-type
terminals	or	in	Visual	Blockemulation	emulation	(Set	Visual
Blockemulation	On)	on	HP-type	terminals.

As	its	name	implies,	Blockemulation	emulates	block-mode	operations	by
reading	each	line	one	by	one	instead	of	reading	the	whole	screen	in	a
single	operation.	Depending	on	the	type	of	connection,	this	process	might
take	a	few	seconds	as	the	cursor	moves	down	the	screen.	Otherwise,	it
works	the	same	as	ordinary	block-mode.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Buf
Set	Visual	Buf	nnnn

By	default,	Qedit	reads	and	writes	a	maximum	of	10,000	characters	per
screen.	Set	Vis	Buf	will	increase	or	decrease	the	size	of	the	screen
buffer.	The	minimum	size	is	2,000	characters	and	the	maximum	is
30,000.	Increasing	the	buffer	size	may	increase	the	load	on	your	network
--	watch	for	hangs,	delays,	and	write	errors.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Carry
Set	Visual	Carry	n

(Default=1)

The	F5	and	F6	keys	move	the	screen	display	Backward	and	Forward	one
page.	In	doing	this,	they	carry	over	one	line	from	the	previous	display	for
context.	You	can	vary	the	number	of	lines	carried	over	from	0	to	9	with
Set	Vis	Carry.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Cleardisplay
Set	Visual	Cleardisplay	OFF

(Default=On)

This	option	tells	Visual	mode	not	to	clear	all	of	display	memory	before
writing	the	next	page	of	text.	Instead,	Visual	erases	enough	lines	at	the
start	of	display	memory	to	make	room	for	the	Visual	screen.	This	means
that	a	Home	Down	will	still	show	you	what	was	last	done	in	Line	mode
and	a	Home	Up	will	redisplay	the	Visual	screen.	When	you	press	Enter,
only	the	Visual	screen	is	transferred,	up	to	the	//	template	line.

Do	not	use	this	option	if	you	only	have	a	couple	of	pages	of	display
memory,	or	with	hpterm	on	HP-UX	workstations	(although	it	works	fine
with	PC	terminal	emulators	and	Qedit/UX).

In	Reflection	for	Windows	(versions	earlier	than	3.70),	changing	the
display	width	also	clears	display	memory,	beyond	the	control	of	Set	Vis
Cleardisplay.	If	you	want	to	retain	your	display	memory,	you	also	need	to
use	Set	Vis	Widen	Off.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Cutcurrent
Set	Visual	Cutcurrent	ON	|	OFF

(Default=On)

This	option	tells	Qedit	where	to	put	the	current	line	marker	after	a	cut-
and-paste	operation.	By	default,	Qedit	sets	the	current	line	at	(or	near)
the	first	pasted	line.	If	you	turn	the	option	Off	with	Set	Visual	Cutcurrent
Off,	Qedit	tries	to	keep	the	current	line	as	close	as	possible	to	the	current
line	position	before	the	paste	operation.

This	option	only	affects	full-screen	mode	editing.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Editonopen
Set	Visual	Editonopen	ON	|	OFF

(Default=On)

While	in	full-screen	mode,	you	can	enter	shell	commands	at	the	home
line.	Doing	so	causes	Qedit	to	temporarily	switch	to	line	mode	and
prompt	you	for	more	commands	with	next	command	[visual].	You	have	to	hit
return	or	enter	visual	to	return	to	full-screen	mode.

There	is	one	exception	to	this.	If	you	enter	an	Open	command	at	the
prompt,	Qedit	automatically	switches	back	to	full-screen	mode	after
opening	the	file.	This	is	the	default	behavior.

If	you	wish	to	disable	this	option,	use	Set	Visual	Editonopen	Off.	When
disabled,	an	Open	command	is	treated	as	any	other	command.	In	other
words,	Qedit	continues	to	prompting	for	more	commands	until	you
explicitly	tell	it	to	go	into	full-screen	mode.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Esc
Set	Visual	Esc	'nnn	|	"char"

(Default=None)

If	you	edit	text	containing	Esc	characters,	most	will	appear	as	dots	with	a
"?"	at	the	left	of	the	line.	Otherwise	the	escape	sequence	would	be
executed	by	your	terminal	and	be	lost.	To	get	around	this	problem,	you
can	define	another	character	as	a	translation	for	the	Esc	character.	For
example,	Set	Vis	Esc	"\"	defines	"\"	as	meaning	Esc.

When	Visual	needs	to	print	an	Esc	on	the	screen,	it	prints	a	"\"	instead.
When	Visual	sees	any	"\"	on	the	screen,	it	converts	it	into	an	Esc
internally.	To	avoid	every	valid	occurrence	of	an	alias	character	turning
into	an	Esc,	Visual	mode	looks	for	alias	characters	that	already	occur.
Any	line	with	a	valid	alias	in	it	is	printed	with	a	"?"	and	Visual	will	not	let
you	update	it	(use	Modify	instead).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Field
Set	Visual	Field	'nnn	|	"char"

(Default=~)

When	you	divide	a	line	with	VV	or	glue	lines	with	GG,	Qedit	looks	for	a
special	character	in	the	first	line	as	the	field	separator.	The	field	separator
is	the	~	(tilde)	by	default,	but	you	can	redefine	it	to	another	character	with
Set	Vis	Field	if	you	have	many	natural	occurrences	of	the	tilde	in	your
text.	For	example,	Set	Vis	Field	"|"	redefines	the	field	separator	as	|.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Halfbright
Set	Visual	Halfbright	ON

(Default=Off)

The	standard	status	line	uses	display	enhancements	all	across	the
screen	to	highlight	the	status	fields.	For	a	status	line	with	fewer	display
enhancements,	use	Set	Vis	Halfbright	On.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Hidetags
Set	Visual	Hidetags	ON

(Default=Off)

The	Hidetags	option	replaces	the	+1,+2,+3	line	tags	on	your	screen	with
a	Security	Video	enhancement	and	some	line	drawing	characters.	This
makes	the	Visual	screen	cleaner	and	less	confusing.	However,	the	option
only	works	if	your	terminal	supports	both	Security	Video	and	line	drawing.
It	works	on	the	700/92,	the	2392,	the	Cumulus	terminal,	and	with
Reflection	1	for	DOS.	It	fails	with	hpterm	(HP-UX),	on	some	versions	of
Reflection	for	Windows	and	Macintosh,	and	all	versions	of	Session.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Home
Set	Visual	Home	ON	|	OFF

(Default=On)

After	processing	the	Enter	key	or	a	function	key,	Visual	places	the	cursor
on	the	 ===>	line.	This	makes	it	convenient	to	enter	a	command.
You	must	then	press	Return	a	few	times	to	move	the	cursor	down	into	the
text.	Set	Vis	Home	Off	puts	the	cursor	at	the	first	column	of	the	*	line
instead.	After	a	Find	or	Findup,	this	means	the	cursor	will	appear	on	the
first	character	of	the	found	string.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Ignorelf
Set	Visual	Ignorelf	ON

(Default=Off)

Normally,	when	Qedit	reads	the	screen	it	finds	a	Return	and	line	feed	at
the	end	of	each	line.	Qedit	uses	this	information	to	divide	the	characters
of	the	screen	read	into	lines	and	then	match	them	up	with	the	lines	in
your	file.	However,	some	networks	strip	the	line	feed	from	the	lines,
sending	only	the	Return.	In	this	case,	Qedit	will	print	an	error	such	as
"Missing	status	line"	and	the	qscreen	dump	will	indicate	that	Returns
were	found	without	line	feeds.	It	may	be	easier	to	reconfigure	Qedit	than
your	network:	the	Set	Vis	Ignorelf	On	option	directs	Qedit	to	accept
screens	with	only	a	Return	at	the	end	of	each	line	and	without	the	line
feed.

Qedit	enables	the	Ignorelf	option	whenever	it	is	being	run	on	the	Qcterm
terminal	emulator.

If	you	are	using	the	Minisoft	92	terminal	emulator	from	Minisoft	Inc.,	you
should	always	enable	the	Ignorelf	option.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Inschar
Set	Visual	Inschar	ON

(Default=Off)

By	default,	Visual	mode	disables	Insert	Char	and	you	must	enable	it	after
each	time	you	press	Enter	or	a	function	key.	Set	Vis	Inschar	On	tells
Visual	to	enable	Insert	Char	each	time	it	displays	the	screen.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Label
Set	Visual	Label	ON	|	OFF

(Default=On)

When	you	memorize	the	eight	function	keys,	you	can	speed	entry	into
Visual	by	disabling	the	"labels"	on	the	screen.	Use	Set	Vis	Label	OFF.
This	only	works	with	a	2645	terminal,	where	the	labels	must	actually	be
painted	into	the	display	memory	every	time	a	new	page	is	written.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Marginfixed
Set	Visual	Marginfixed	ON	|	OFF

(Default=none)

Qedit	normally	adjusts	the	terminal	right	margin	and	display	width	based
on	the	file's	record	length.	This	caused	some	terminal	emulators	like
hpterm	to	behave	erratically.

When	Marginfixed	is	enabled,	Qedit	does	not	change	the	terminal
settings.	It	assumes	the	right	margin	is	the	physical	display	width.	This
should	work	properly	as	long	as	the	user	let's	Qedit	poll	the	terminal	for
the	information.	If	the	user	decides	to	override	this	function	by	setting	the
RCRTWIDTH	variable	or	change	the	width	with	Set	Term	Columns,	Qedit
trusts	that	the	user	has	set	the	terminal	properly.

Users	should	be	aware	of	two	things	when	Set	Marginfixed	is	ON.	If	a	file
is	narrower	than	the	configured	width,	nothing	prevents	the	user	from
entering	text	beyond	the	file's	right	edge.	This	extra	text	will	simply	be
ignored.

If	the	file	is	wider	than	the	configured	width,	Qedit	tries	to	display	as
much	text	as	it	thinks	it	can.	This	causes	the	text	to	overflow.	However,
instead	of	truncating	the	extra	characters,	the	emulator	writes	them	out
on	the	last	displayable	column.	For	example,	if	a	file	has	100	characters
but	the	configured	width	is	80,	the	first	79	characters	are	displayed
correctly.	Characters	80	through	100	are	written	to	column	80.	The	net
result	is	characters	80	to	99	are	lost	and	character	100	ends	up	in
column	80	on	the	screen.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Msg
Set	Visual	Msg	ON	|	OFF

(Default=On)

Visual	always	disables	messages	from	other	users	(using	Setmsg	OFF
on	MPE	and	mesg	n	on	HP-UX).	On	MPE,	this	is	why	a	Showjob	will
show	QUIET.	Normally,	Visual	re-enables	messages	upon	Exit	(using
Setmsg	ON	on	MPE	and	mesg	y	on	HP-UX).	If	you	want	messages	to	be
left	disabled	at	all	times,	use	Set	Vis	Msg	OFF.	These	same	rules	apply
to	Qzmodify.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Renum
Set	Visual	Renum	ON	|	OFF

(Default=On)

When	you	insert	lines,	Qedit	attempts	to	assign	them	new	line	numbers
between	the	existing	lines.	Sometimes	this	is	impossible,	as	between
500.01	and	500.011.	In	this	case,	Qedit	will	renumber	the	lines	on	your
screen	to	make	room	for	the	new	lines.	Qedit	uses	the	appropriate
Increment	value	that	ensures	proper	renumbering.	The	value	it	chooses
might	be	different	from	the	current	Increment	value.

Although	this	value	also	affects	operation	of	the	Add	command	in	Line
mode,	it	does	not	affect	the	Divide	command.

You	can	disable	this	option	with	Set	Vis	Renum	Off.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Roll
Set	Visual	Roll	nn

(Default=6)

The	F2	key	means	"roll	the	current	screen	up"	by	6	lines.	You	can	vary
the	number	of	"roll"	lines	from	1	to	20	by	doing	Set	Vis	Roll	nn.	You	can
also	do	an	individual	"roll"	of	any	size	by	pressing	Home	Up,	typing	+n	or
-n	and	F7.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Save
Set	Visual	Save	Fast	|	ON	|	OFF	|	1

(Default=Off)

Set	Vis	Save	ON	causes	Qedit	to	save	your	function	keys	upon	entry	into
Visual	and	reset	them	again	on	exit.	If	you	only	want	to	save	the	keys	on
the	first	entry	into	Visual	(and	reset	them	to	the	same	values	on	every
Exit),	use	Set	Vis	Save	1.

The	700/92	terminal	and	Reflection	have	the	ability	to	save	and	restore
the	current	user	function	keys	within	the	terminal	memory.	If	you	do	Set
Vis	Save	Fast,	Visual	will	take	advantage	of	this	feature,	which	is	much
faster	and	invisible	to	the	user.	This	feature	only	works	on	Reflection	if
the	Terminal	ID	is	configured	to	700/92	and	on	versions	greater	than	3.3
(DOS),	3.6	(Macintosh),	or	3.7	(Windows).	If	Qedit	decides	that	you	do
not	have	this	feature,	it	will	revert	to	a	regular	Set	Vis	Save	On.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Screen
Set	Visual	Screen	ON	|	OFF

This	option,	only	available	on	HP-UX,	controls	which	full-screen	editing
interface	Qedit	will	use.	When	it	is	set	to	Off,	Qedit	uses	Visual	mode.
When	it	is	set	to	On,	Qedit	uses	Screen	mode.	On	HP	terminals,	Off	is
the	default;	on	VT	terminals,	On	is	the	default.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

SI
Set	Visual	SI	'nnn	|	"char"

(Default=None)

If	you	edit	text	containing	ShiftIn	characters,	they	will	not	appear	on	the
screen.	Even	worse,	if	there	is	ShiftIn	character	but	no	ShiftOut	character
preceding	it	on	a	line,	the	ShiftIn	character	disappears	from	your	file
when	you	press	Enter.	This	is	done	"on	your	behalf"	by	the	terminal	or
terminal	emulator.	To	get	around	these	problems,	you	can	define	another
character	as	a	translation	for	the	ShiftIn	character.	For	example,	Set	Vis
SI	"|"	defines	"|"	to	represent	ShiftIn.

When	Visual	needs	to	print	a	ShiftIn	on	the	screen,	it	prints	a	"|"	instead.
When	Visual	sees	any	"|"	on	the	screen,	it	converts	it	into	a	ShiftIn
internally.	To	avoid	turning	every	occurrence	of	the	"alias"	character	in
your	file	into	a	Shiftin,	Visual	prints	a	"?"	for	any	line	with	a	valid	alias
already	in	it	and	will	not	let	you	update	that	line	in	Visual	mode	(use
Modify	instead).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

SO
Set	Visual	SO	'nnn	|	"char"

(Default=None)

If	you	edit	text	containing	ShiftOut	characters,	they	will	not	appear	on	the
screen.	From	the	location	of	ShiftOut,	the	display	switches	to	the
alternate	character	set	which	typically	is	the	Line	Drawing	set.	When	you
press	Enter,	the	terminal	or	terminal	emulator	automatically	inserts	an
escape	sequence	in	front	of	the	ShiftOut.	The	escape	sequence	is
<esc>)B.	To	get	around	this	problem,	you	can	define	another	character
as	a	translation	for	the	ShiftOut	character.	For	example,	Set	Vis	SO	"|"
defines	"|"	to	represent	ShiftOut.

When	Visual	needs	to	print	a	ShiftOut	on	the	screen,	it	prints	a	"|"
instead.	When	Visual	sees	any	"|"	on	the	screen,	it	converts	it	into	a
ShiftOut	internally.	To	avoid	turning	every	occurrence	of	the	"alias"
character	in	your	file	into	a	ShiftOut,	Visual	prints	a	"?"	for	any	line	with	a
valid	alias	already	in	it	and	will	not	let	you	update	that	line	in	Visual	mode
(use	Modify	instead).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Scrollup
Set	Visual	Scrollup	'nnn	|	"char"

(Default="-")

You	can	enter	a	minus	sign	in	one	(or	both)	copy/paste	columns	in	full-
screen	mode.	A	single	character	scrolls	up	the	number	of	lines	defined	in
the	|5Set	Visual	Roll	option.	Enter	2	minus	signs	to	scroll	up	twice	the
number	of	lines	and	so	on.

The	minus	sign	is	the	default	scrollup	character.	You	can	change	it	to
another	character	that	you	may	find	easier	to	type.	It	must	be	a	printable
character	and	must	not	be	a	valid	copy/paste	code.	Valid	codes	are:

A	B	C	D	F	G	H	J	M	P	R	V	Z	?	!.	Use	Set	Visual	Scrollup	"c"
to	change	the	character.

You	can	enter	Set	Visual	Scrollup	""	to	reset	it	back	to	the	default
character.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Stop
Set	Visual	Stop

The	Set	Visual	Stop	command	resets	Qedit	to	an	uninitialized	state.	On
your	next	function,	Qedit	will	re-identify	your	terminal	and	re-check	the
entire	context.	Use	this	when	changing	your	terminal	configuration	while
inside	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Tab
Set	Visual	Tab	'nnn	|	"char"

(Default=None)

If	you	edit	text	containing	tab	characters,	most	will	appear	as	dots	with	a
"?"	at	the	left	of	the	line.	Otherwise	the	tab	characters	would	be	executed
by	your	terminal	and	be	lost.	To	get	around	this	problem,	you	can	define
another	character	as	a	translation	for	the	tab	character.	For	example,	Set
Vis	Tab	"\"	defines	"\"	as	meaning	tab.

When	Visual	needs	to	print	a	tab	on	the	screen,	it	prints	a	"\"	instead.
When	Visual	sees	any	"\"	on	the	screen,	it	converts	it	into	a	tab	internally.
To	avoid	every	valid	occurrence	of	an	alias	character	turning	into	a	tab,
Visual	mode	looks	for	alias	characters	that	already	occur	in	the	text.	Any
line	with	a	valid	alias	in	it	is	printed	with	a	"?"	and	Visual	will	not	let	you
update	it	(use	Modify	instead).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

TAE
Set	Visual	TAE	ON	|	OFF

(Default=OFF)

To	make	Visual	mode	work	with	Telamon's	Type	Ahead	Engine,	use	Set
Vis	Tae	On.	Qedit	sends	out	a	Control-A	"A"	upon	entry	to	Visual	mode
and	a	Control-A	"V"	on	exit.	These	special	codes	disable	and	re-enable
the	TAE.	However,	Control-A	may	be	a	code	for	your	modem	or	network
and	could	cause	a	problem.	If	you	do	not	have	a	TAE,	the	"V"	may
appear	on	your	screen	upon	exit	from	Visual	mode.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Update
Set	Visual	Update	ON	|	OFF	 [Except	7]

(Default=Off)

If	you	find	that	you	are	losing	work	by	pressing	F5	or	another	function	key
before	you	have	saved	your	screen	work	with	the	Enter	key,	this	option	is
for	you.	When	Set	Vis	Update	is	ON,	Qedit	does	an	automatic	screen
update	with	every	function	key.	This	makes	it	almost	impossible	to	lose
your	changes,	but	it	does	slow	down	Visual	mode.	However,	you	may	do
*>	F7	or	*<	F7	to	move	ahead	or	back	one	page,	without	updating	the
current	page.	Note:	to	refresh	the	screen,	type	*	in	the	home	line	before
pressing	any	function	key	or	Enter.

If	you	want	to	be	able	to	execute	a	command	via	F7	without	updating	the
screen,	use	Set	Vis	Update	On	Except	7.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Widen
Set	Visual	Widen	76	|	80	|	OFF

(Default=80)

The	Widen	option	controls	whether	and	when	Visual	will	request	and	use
more	than	80	display	columns	on	your	terminal.	For	example,	you	can
control	whether	to	switch	the	700-series	terminal	into	132-column	mode
and	widen	Reflection's	Display	Memory.	The	default	value	is	Set	Vis
Widen	80,	which	causes	Visual	to	go	into	wider-mode	whenever	Length
is	greater	than	80	columns.	Therefore,	with	this	value	Visual	will	switch
your	700	series	terminal	into	132-column	mode	and	expand	the	width	of
Reflection's	Display	Memory.	Set	Vis	Widen	Off	restricts	Visual	mode	to
at	most	80	columns.

Reflection	version	5.x	and	later	allows	you	to	set	the	display	width	to	a
value	between	80	and	512.	Qedit	can	detect	this	feature	and	use	it
whenever	possible.	Qcterm	emulates	a	700/92	terminal	but	supports	up
to	200	columns.	Full-screen	mode	takes	advantage	of	the	extended	width
when	appropriate.

If	Visual	switches	into	132-column	mode	when	the	Length	value	for	your
file	is	higher	than	80	columns,	this	means	that	a	Job	file	with	exactly	80
columns	will	not	go	into	132-column	mode	and	you	won't	be	able	to	see
columns	77	through	80.	However,	you	can	reconfigure	Visual	to	switch
into	132-column	mode	when	Length	is	greater	than	76	by	doing	Set	Vis
Widen	76.

Some	new	versions	of	Reflection	will	automatically	switch	into	132-
column	display	when	Qedit	asks	to	widen	display	memory.	To	have	Qedit
follow	the	Set	Vis	Widen	rules,	you	must	have	Reflection	4.2	for	DOS,
Reflection	3.6	for	the	Macintosh,	Reflection	4.0	for	Windows;	add	20,000
to	the	value	in	your	RPCVERSION	variable.	In	some	versions	of	terminal
emulators,	you	have	to	explicitly	tell	the	software	which	type	of	graphics
adaptor	you	have.	You	need	to	refer	to	your	computer	manual,	or	use	the
MSD	utility	program	included	with	newer	versions	of	DOS	and	Windows.
The	RCRTMODEL	variable	is	also	useful	for	controlling	132-column
mode.

Qcterm	emulates	a	700/92	terminal	and	can	have	a	display	width	of	80,
132	or	200	columns.	Qedit	takes	advantage	of	these	widths	when
necessary.

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

	 	

Wordwrap
Set	Visual	Wordwrap	ON	|	OFF

(Default=Off)

The	Set	Vis	Wordwrap	option	enables	wordwrap	for	new	lines.	This
makes	Visual	mode	much	better	for	entering	memos	and	documentation.
If	you	have	Reflection	4.00	for	DOS	or	Reflection	5.0	for	Windows,	Set
Vis	Wordwrap	allows	you	to	keep	typing	at	the	end	of	your	line.	There	is
no	need	to	press	Return.	The	overflow	words	will	automatically	be	moved
to	the	following	line.	Words	will	not	be	split	arbitrarily.

The	Reflection	Wordwrap	feature	only	works	when	entering	new	lines.	It
does	not	work	with	INS	CHAR.	Because	it	does	not	work	in	Line	mode,
Qedit	enables	and	disables	it	as	you	enter	and	exit	Visual.	The	Reflection
configuration	setting	called	Force-80-Columns	must	be	set	to	No	for
Wordwrap	to	work	properly.	If	you	cannot	turn	off	this	setting	for
compatibility	with	other	software,	then	try	Set	Visual	Widen	Off	in	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

XX
Set	Visual	XX	[startline	[/	endline]]

(Default=reset)

Set	Visual	XX	defines	the	lines	that	should	be	excluded	from	the	full-
screen	mode	display.	Excluded	lines	are	replaced	by	a	single	line.

---	Excluded	Area	---	10/34.5

This	line	shows	the	line	numbers	which	are	currently	excluded.	If	no
parameters	are	specified,	the	current	excluded	area	is	reset.	An	excluded
area	must	have	a	start	and	an	end	line.	If	only	startline	is	specified,	the
excluded	area	is	incomplete.	An	appropriate	message	is	going	to	be
displayed	on	the	status	line	next	time	the	user	goes	into	full-screen
mode.

To	complete	the	excluded	area,	enter	another	Set	Visual	XX	command
with	another	line	number.	This	number	is	going	to	be	used	as	the	endline.
Of	course,	you	can	specify	both	startline	and	endline	on	a	single
command.

/Set	Visual	XX	5						{	Sets	the	start	line.	XX	incomplete.	}
/Set	Visual	XX	10					{	Sets	the	end	line.	XX=5/10										}
/Set	Visual	XX	5/10			{	Sets	XX	to	5/10	}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Labels	in	Line	Mode
This	is	not	a	Set	command,	but	an	environment	variable	value.

Normally,	Qedit	always	displays	the	modes	keys	except	within	Visual
mode.	You	have	the	option	of	displaying	the	User	Keys	instead,	or
removing	the	labels	from	the	screen.	This	is	done	by	setting	a	shell
variable	before	running	Qedit:

$RLABELDEFAULT=2;	export	RLABELDEFAULT
%setenv	RLABELDEFAULT	2																{C	shell}

Valid	values	for	this	variable	are	as	follows:

0	don't	care,	Qedit	displays	modes

1	terminal	has	NO	labels	(2645)

2	display	user	keys

3	display	modes	keys

4	remove	labels	from	screen

5	display	default	F1-F8	key	labels

6	display	the	Qedit	labels

These	values	define	which	key	labels	will	be	displayed	when	you	are	in
Line	mode	rather	than	Screen	mode.

Technical	Notes

Qedit	turns	echo	off	(echo	is	reset	to	its	previous	state	on	exit),	disables
the	Break	key,	and	disables	messages	from	other	users	(:Setmsg	OFF
on	MPE	and	mesg	n	on	HP-UX).	Visual	disables	your	Type	Ahead
Engine	(if	you	have	one	and	have	not	done	Set	Vis	TAE	Off),	and	puts
your	HP	terminal	into	block-mode,	page-mode,	but	with	Format	off.	Qedit
loads	the	function	keys	with	their	default	values,	and	writes	descriptive
labels	for	them.

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

	 	

Warnings
Set	Warnings	[ON|OFF]

(Default:	OFF)

(Initially:	ON)

When	you	put	commands	in	a	usefile	for	an	end-user,	it	is	often	irritating
to	have	Qedit	print	numerous	warnings	and	status	messages	(i.e.,	Shut
Qeditscr,	*	=	55,	Warning:	Noline,	etc.).	Set	Warnings	OFF	will	suppress
all	of	those	warnings.	It	also	suppresses	printing	the	line	when	you	enter
a	line	number	to	move	the	current	position	(i.e.,	/55	sets	*	to	55,	but	does
not	print	line	55).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Whichcomp
Set	Whichcomp	keyword	value	...

(Initially:	COBOL,	FORTRAN	66,	Pascal	V,	IN	Robelle)

This	option	does	not	apply	to	Qedit/UX.	It	is	still	accepted	for	compatibility
with	the	MPE	version	of	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Window
Set	Window	([window])

(Default:	all	columns,	exact	match)

Set	Window	establishes	the	default	window,	or	conditions,	for	string
searches	in	all	Qedit	commands.	You	can	override	the	default	by
specifying	an	explicit	window	in	any	command	(e.g.,	 list
".BEGINKEY"	(1/10	UPS)).	Once	a	window	is	set,	it	remains	in
effect	until	the	next	Set	Window	command.	See	the	Change	command
and	the	"Glossary"	for	further	details	on	window.

The	window	itself	consists	of	two	parts:	a	range	of	column	numbers	to
search,	and	four	independently	enabled	options	that	determine	how	to
select	a	line.

([column	/	column]	[option	...])

A	column	is	a	number	between	the	Left	and	Right	margins	of	the	file.
Qedit	searches	only	the	specified	range.	An	option	is	one	or	more	of
these:

[NO]Match select	lines	with[out]	string
[NO]Upshift upshift	before	searching	[or	not]
[NO]Smart ensure	match	is	a	"symbol"	[or	not]
[NO]Pattern string	is	a	pattern	to	find	[or	not]
[NO]Regexp string	is	a	regular	expression	to	find	[or	not]

The	default	window	is	all	columns,	Nosmart,	Noupshift,	Match,	Nopattern
and	Noregexp.

A	pattern	may	include	at-signs	(@)	to	match	anything,	#	to	match	a	single
numeric	character,	?	to	match	a	single	alpha-numeric,	and	tilde	(~,	wavy
line)	to	match	zero	or	more	blanks.	Any	other	character	must	be	matched
exactly.	(To	match	a	pattern	character	itself,	precede	it	with	an
ampersand:	 "&	".)	For	example,	to	look	for	"QEDIT"	followed	by
"TOOL"	in	the	same	line,	use:

/set	window	(pattern	upshift)
/list	"@Qedit@Tool@"

http://www.robelle.com/products/qedit

Either	or	both	parts	of	the	window	can	be	Set	in	one	command:

/set	window	(1/10)
/set	window	(smart	upshift)
/set	window	(1/20	upshift)
/set	window	(pattern)

To	reset	the	window	to	the	defaults,	enter:

/set	window	()

	 	

http://www.robelle.com/products/qedit

	 	

Work
Set	Work	keyword	value	...

(Initially:	Block	8,	Temp	ON,	Labels	OFF,	
Jumbo	ON,	Random	ON,	Trailingspaces	ON,	Size	3200)

Set	Work	specifies	the	default	size,	attributes	and	functions	of	Qedit
workfiles.	Most	of	Set	Work	does	not	apply	to	Qedit/UX.	However,	Set
Work	Jumbo,	Set	Work	Random	and	Set	Work	Trailingspaces	do	apply.
The	syntax	of	Set	Work	is	as	follows:

Set	WORK	[options]

Jumbo ON	|	OFF Control	use	of
Jumbo	workfiles default	ON

Random ON	|	OFF
Control	use	of
random	scratch
file	name

default	ON

Trailingspaces ON	|	OFF
Preserve	or
remove	trailing
spaces

default	ON

Jumbo.	Jumbo	Off	disables	use	of	Jumbo	workfiles.	It	can	also	be	used
if	you	want	to	build	an	original	format	workfile.	For	example,

/set	work	jumbo	off
/new	oldfmt
/set	work	jumbo	on

Workfile.	By	default,	Qedit	creates	a	workfile	named	/var/tmp/qscr.xxxxx
whenever	it	needs	it.	/var/tmp	is	used	by	default.	If	you	want	to	specify	a
different	location,	enter	the	new	path	name	in	the	TMPDIR	environment
variable.	Keep	in	mind	that	Qedit	works	with	absolute	filenames	and
these	names	can	not	have	more	than	240	characters.

TMPDIR=/home/user1/tmp
export	TMPDIR

You	can	force	Qedit	to	use	only	the	file	named	QEDITSCR	by	using	Set

http://www.robelle.com/products/qedit

Work	Random	Off.

Trailing	Spaces.	By	default,	Qedit	preserves	trailing	spaces	on	all	lines
in	a	variable-length	file.	Set	Work	Trailingspaces	ON	requests	that	Qedit
preserves	trailing	spaces	and	make	them	significant	characters.	The
option	also	allows	creation	of	odd-length	lines.

Once	enabled,	all	workfiles	created	or	opened	from	that	point	will	have
trailing	spaces	preserved.	To	check	the	current	status,	do:

/Verify	Work								{	Checks	global	setting	}
Set	WOrk	Jumbo	ON	Block	8	Labels	OFF	Temp	ON	Size	3200	Random	ON
Set	WOrk	TRailingspaces	ON
/Verify	Keep								{	Checks	current	workfile	}
Set	Keep	Ascii	OFF	Cctl	OFF	COde	0	Lab	0	Num	OFF	Var	ON	Checktimestamp	ON
Set	Keep	COBfree	ON	NAme	/home/user1/afile.txt
Set	Keep	LF	ON
/Verify	Info
Saved	modification	timestamp	2003/04/30		13:23:17
Trailing	spaces	preserved

The	last	line	shows	that	trailing	spaces	are	preserved	in	this	workfile.	If
the	option	is	disabled,	that	line	reads	 Trailing	spaces
trimmed.	Disabling	the	global	setting	with	Set	Work	Trailing	Off	does	not
disable	the	option	in	the	workfile.	You	have	to	clear	the	workfile	after
disabling	it.

The	Trailingspaces	setting	is	stored	in	the	workfile	so	it's	recognized
when	the	file	is	opened	in	the	future.	These	workfiles	may	contain	data
specific	to	Trailingspaces.	This	may	cause	unexpected	behavior	if
opened	with	versions	prior	to	5.4.11.	Because	trailing	spaces	are	now
treated	as	significant	characters,	Keep	files	created	from	these	workfiles
may	be	different	from	Keep	files	created	with	an	older	version.

	 	

http://www.robelle.com/products/qedit

	 	

Wraparound
Set	Wraparound	[chars	|	ON|OFF]

(Default:	ON)

(Initially:	OFF)

The	Wraparound	option	is	intended	to	make	line-overflow	in	the	Add
command	more	friendly.	When	it	is	enabled	and	a	line-overflow	occurs
during	entry	of	new	lines,	Qedit	splits	the	long	line	between	two	"words"
and	prompts	you	with	the	overflow	words	on	the	next	line.	An	appropriate
continuation	line	is	generated	for	FORTRAN	and	COBOL	source	files.
There	is	no	wraparound	capability	in	Visual	mode,	due	to	limitations	of
the	HP	terminals.	The	Reflection	for	DOS	terminal	emulator,	however,
can	do	wraparound	in	Visual	mode.	See	Set	Visual	Wrap	for	details.

The	chars	option	allows	you	to	specify	the	maximum	number	of
characters	you	will	be	able	to	type	before	pressing	the	Return	key.	You
can	specify	any	number	of	chars	between	150	and	5000.	When
Wraparound	is	ON,	and	no	chars	parameter	is	specified,	the	default
maximum	number	of	characters	that	you	can	type	before	pressing	Return
is	256.

When	you	do	an	Add	command,	you	can	"burst"	enter	an	entire	page
without	looking	at	the	screen.	Do	not	press	Return	at	the	end	of	each	line
--	just	keep	typing.	Qedit	will	put	the	words	into	lines	for	you.	Press
Return	once	only	at	the	end	of	each	page	of	text.

At	the	end	of	a	paragraph	(or	any	other	time	that	you	need	to	do	an	"end
of	line"),	type	Control-C	and	start	typing	the	next	line.	Do	not	put	a	space
after	the	Control-C	unless	you	want	the	next	line	indented.	For	a	blank
line,	press	Control-C	twice	in	succession.

You	end	the	Add	command	as	always	by	entering	"//".	Then	you	may	use
Visual	or	Modify	to	correct	any	typing	mistakes	you	may	have	made.
Qedit	will	fill	the	words	into	lines	that	are	less	than	or	equal	to	the	current
Set	Length	value.	To	create	lines	of	a	specific	length,	use	Set	Lang	Data
and	Set	Length.

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

	 	

X
Set	X	keyword	value	...

(J=justified)

(Initially:	<null>	List	ON	Tab	OFF	Local	OFF	Global	OFF)

Set	X	configures	automatic	tagging	of	source	changes	in	COBOL
programs.	The	syntax	of	Set	X	is	as	follows:

Set	X	[options]

["xx"][dateform]["xx"] define	the	tag	content default	is	a	null	string

List	ON	|	OFF control	the	display	of
tag	columns default	ON

Tab	ON	|	OFF allow	manual	editing
of	tag	columns default	OFF

Local	ON	|	OFF tag	value	saved	in
workfile default	OFF

Global	ON	|	OFF allow	use	of	local	tags default	OFF

Null reset	global	and	local
tags 	

To	check	on	the	current	tag	value	and	options,	use	Verify	X.

If	you	want	all	COBOL	changes	to	be	tagged,	all	files	must	be	have	Set
Lang	Cobolx,	not	Set	Lang	Cobol.	You	can	enforce	this	for	all	users	by
putting	Set	Lang	Cobolx	All	On	into	your	Qeditmgr	file.

Tag	format.	The	Set	X	command	allows	several	formats	for	the	date	tag,
plus	the	ability	to	replace,	precede	or	follow	the	date	with	a	short	string.
Once	you	have	configured	your	"X"	tag,	Qedit	will	automatically	mark	all
changed	lines	in	COBOLX	files	with	that	tag	in	columns	73	to	80.

The	dateform	parameter	can	be	any	of	these	options:

Keyword Sample
DATE 22	NOV99
DDMMMYY 22	Nov99
CCYYMMDD 19991122
YYMMDD 991122

http://www.robelle.com/products/qedit

MMDDYY 112299
DDMMYY 221199

DDMMMYY	and	CCYYMMDD	occupy	8	characters,	but	YYMMDD,
MMDDYY	and	DDMMYY	occupy	only	6.	Therefore,	the	last	three	can	be
combined	with	a	string	giving	your	initials,	before	or	after	today's	date.

/set	x	"rg"	yymmdd							{tag	is	"rg991122"	}

Null	vs	Blanks

Entering	Set	X	without	parameters,	Set	X	Null,	or	Set	X	""	effectively
turns	off	the	tagging	feature.	Tags	on	modified	lines	are	not	changed.
Lines	without	tags	do	not	get	one.	Lines	that	already	have	tags	retain
their	current	values.

This	is	different	from	setting	the	value	to	blanks,	as	in	Set	X	"	".	With	this
setting,	tags	on	modified	lines	are	actually	cleared.

List.	The	List	option	tells	whether	the	comment	tag	should	be	shown
during	normal	editing	and	listing	of	lines.	The	default	value	is	ON,	but	you
can	disable	listing	with	S	X	List	OFF.	Even	though	the	comment	tag	is	not
listed,	it	is	still	part	of	the	line	and	is	retained	when	you	Text	or	Keep	the
file.

When	you	edit	a	COBOLX	file	in	Visual,	Qedit	sets	the	right	margin	in
column	72	(instead	of	column	80).	In	this	way,	you	can	see	the	comment
field	(columns	73	through	80)	but	it	won't	shift	left	when	you	delete
characters.

Line	Overflow

Tagging	can	be	disabled	by	specifying	an	empty	string.

Set	X	Null
Set	X	""

While	disabled,	the	text	and	tag	areas	are	treated	as	one.	As	such,	edit
commands,	such	as	Change,	are	applied	to	the	complete	line.

Also,	if	a	tag	is	specified	and	the	List	option	is	On,	tag	values	are	treated
as	part	of	the	text.

If	a	line	has	a	tag	value	and	an	edit	operation,	such	as	Change	or	Modify,
causes	the	line	to	expand,	Qedit	reports	an	overflow	error.	To	avoid	this,
you	can	Set	X	to	Null,	but	you	would	have	to	remember	the	previous

setting.	A	better	solution	is	to	turn	the	List	option	Off	temporarily.	The	X
value	is	preserved,	but	the	tag	area	cannot	be	edited.

Margins.	For	those	users	who	still	must	enter	and	edit	the	tag	field
manually,	Set	X	Tab	On	puts	Qedit's	Visual	right	margin	at	column	80
instead	of	column	72.	This	makes	it	much	easier	to	edit	those	columns
because	you	can	tab	to	them.

Local	Tag.	Users	can	define	a	tag	that	is	specific	to	the	workfile	currently
opened.	The	local	tag	value	is	stored	in	the	Qedit	control	blocks.	Thus,
the	local	tag	is	preserved	when	you	Shut	the	workfile.	You	can	also
control	the	tag	display	for	a	specific	workfile	with	the	List	option.

To	enable	the	local	tag	option,	simply	enter

/Set	X	Local	On

From	that	point,	any	changes	to	the	tag	are	recorded	in	the	workfile.	The
statement	above	sets	the	local	tag	to	a	null	value.	You	can	specify	the
new	value	on	a	similar	statement	so	that	it	can	be	used	immediately.
Because	a	local	tag	is	workfile-specific,	if	you	switch	to	a	different
workfile,	the	local	tag	option	is	automatically	disabled	and	Qedit	starts	to
use	the	default	tag	again.

If	you	want	to	stop	using	the	local	tag,	enter	Set	X	Local	Off.	This	clears
the	local	tag	value	and	Qedit	starts	using	the	default	default	tag.	Enabling
the	local	option	again	does	not	return	the	tag	to	its	previous	value.

If	you	are	strictly	using	the	Text	and	Keep	commands	to	edit	your	source
files,	the	information	is	lost	as	soon	as	the	workfile	is	purged	or	cleared.

Global.	By	default,	users	can	define	their	own	local	COBOL	tag.	If	this	is
undesirable,	system	managers	can	enforce	the	use	of	a	single	tag	for	all
COBOL	files	by	using

/Set	X	Global	On

Once	enabled,	users	are	not	allowed	to	use	the	Local	option	of	the	Set	X
command.	They	can	still	use	the	Set	X	command,	but	only	the	global	tag
value	can	be	changed.

To	allow	the	use	of	local	COBOL	tags	again,	simply	enter

/Set	X	Global	Off

The	global	tag	has	priority	over	any	local	tag.	If	you	are	accessing	a
workfile	with	a	local	tag	and	you	disable	the	Global	option,	Qedit	resumes

using	the	saved	local	tag.

/Set	X	"localtag"	Local	On
/Verify	X
Set	X	"localtag"	Local	On	Default	"ME990204"	List	ON	Tab	OFF
/Set	X	Global	On
/Verify	X
Set	X	"ME990204"	Global	On	List	ON	Tab	OFF
/Set	X	Global	Off
/Verify	X
Set	X	"localtag"	Local	On	Default	"ME990204"	List	ON	Tab	OFF

When	the	local	option	is	enabled,	the	first	tag	shown	on	the	Verify	output
is	the	local	value.	It	is	followed	by	the	words	Local	On.	The	global	tag	is
displayed	after	the	keyword	Default.

Null.	If	you	want	to	reset	all	COBOL	tags	currently	in	use	(global	and
local),	use	the	Set	X	Null	command.

Change	Confirmation.	The	justified	option,	"SetJ",	displays	the	current
X	values	including	the	active	tag,	the	default	tag	and	the	local	tag
settings.	It	applies	the	changed	settings	entered	on	the	command	and,
lastly,	it	displays	the	revised	settings.	When	none	of	the	Cobx	tags	are
set,	the	output	is:

Set	X	values	before	this	command:
Active	tag	value=,	List	ON
Default	tag	value=,	List	ON
Local	tag	value.	NONE		List		NOT	SAVED
Set	X	values	AFTER	the	command:
Active	tag	value=,	List	ON
Default	tag	value=,	List	ON
Local	tag	value.	NONE		List		NOT	SAVED

The	first	4	lines	show	the	current	settings.	The	last	4	show	the	settings
after	the	requested	change	has	been	applied.	When	there	is	no	tag
value,	Qedit	displays	an	empty	string	or	the	word	"NONE".	When	the	List
option	displays	as	"NOT	SAVED",	it	means	the	Local	feature	is	enabled
but	the	List	setting	has	not	been	explicitly	set	yet.

If	the	tag	values	are	set,	the	result	strings	are	displayed	as	in:

/set	x	local	off

/set	x	"GB"	yymmdd
/set	x	local	on
/setj	x	"LC"	yymmdd
Set	X	values	before	this	command:
Active	tag	value=,	List	ON
Default	tag	value=GB011213,	List	ON
Local	tag	value.	prefix=					suffix=					dateform=0	List		NOT	SAVED
Warning:		Local	ON:	only	updates	tag	for	this	workfile,	not	defaults.
Set	X	values	AFTER	the	command:
Active	tag	value=LC011213,	List	ON
Default	tag	value=GB011213,	List	ON
Local	tag	value.	prefix=LC			suffix=					dateform=2	List		NOT	SAVED

In	this	example,	the	first	Set	command	turns	Local	X	off.	The	second	Set
command	changes	the	default	tag	to	the	prefix	"GB"	followed	by	the
current	date	in	year-month-day	format.	The	third	Set	command	turns
Local	X	back	on	and,	finally,	the	SetJ	command	sets	the	local	tag	to	the
prefix	"LC"	followed	by	the	date	in	the	same	format.	Looking	at	the	SetJ
output,	there	is	the	then-current	default	tag,	"GB011213",	with	List
enabled.	There	was	no	local	tag	and	List	was	not	set	at	that	point.

The	new	local	tag	is	applied	and	produces	a	warning.	After	the	change,
the	active	tag	is	the	local	one	and	List	is	enabled	(default	value).	The
default	tag	is	unchanged.	The	last	line	provides	details	on	how	the	local
tag	was	constructed.	The	List	option	still	shows	as	NOT	SAVED	because
it	has	not	been	changed	explicitly	after	Local	X	was	turned	on.

Verify.	The	Verify	command	displays	detailed	information	about	the	local
and	default	settings.

/verify	x
Set	X	Tab	OFF	"ME011214"	List	ON
/set	x	local	on
/verify	x
Set	X	Tab	OFF	Local	On	"LC011214"	List	ON	Default:	"ME011214"	List	ON

	 	

http://www.robelle.com/products/qedit

	 	

Zip
Set	Zip	characters

(Initially:	[]@{})

The	Set	Zip	command	changes	the	special	abbreviation	keys	provided	in
Qedit.	The	Zip	list	of	characters	is	positional	and	without	quotes:

1st	character FIRST [is	the	default
2nd	character LAST]	is	the	default
3rd	character ALL @	is	the	default

4th	character Left {	is	the	default	(see
Add)

5th	character Right }	is	the	default	(see
Add)

6th	character auto-mod OFF	by	default
(inactive)

Therefore,	the	default	Zip	list	is:	[]@{}.	The	only	way	to	reset	ZIP	to	its
default	value	is	to	re-enter	these	codes	in	a	Set	Zip	command.

Auto-Modify	in	Add.	The	"auto-modify"	character	(the	6th	one)	is
disabled	by	default.	If	you	do	Set	Zip	[]@{}_	to	specify	"_"	as	the	"auto-
mod"	character,	whenever	you	end	a	command	line,	or	a	new	text	line	in
Add,	with	an	underline,	Qedit	puts	you	into	Modify	on	that	line.

For	example,	Set	Zip	[%:~+?	specifies	[for	FIRST,	%	for	LAST,	:	for	ALL,
~	for	shift-left,	+	for	shift-right,	and	?	for	auto-modify.	You	may	specify	any
special	characters	you	like	for	these	functions,	but	each	must	be	unique
and	must	not	conflict	with	the	other	characters	configured	in	Qedit	(e.g.,
TAB,	$).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Shut	Command	[SH]
Closes	the	current	workfile.	May	also	rename	it.

SHUT	[filename]

(Default:	close	with	same	name)

With	no	filename	parameter,	Qedit	merely	stops	editing	the	current	file.
Although	Qedit	will	close	the	current	workfile	for	you	when	you	Open
another	one,	you	may	sometimes	want	to	Shut	explicitly.	One	thing	that
Shut	does	is	guarantee	that	all	of	your	changes	are	actually	posted	to	the
disc	and	will	not	be	lost	if	the	system	fails	or	you	disconnect	yourself	by
attempting	to	make	a	phone	call	on	your	modem	phone.	To	post	your
changes	to	the	disc	without	closing	the	workfile,	specify	any	shell-
command	(e.g.,	ls).

You	may	want	to	leave	your	terminal	for	lunch,	in	which	case	it	is	a	good
idea	to	Shut	your	current	file.	You	can	always	use	Open	*	to	reopen	it
when	you	return.

/shut														{you	may	shorten	Shut	to	SH}
/open	*												{reopen	same	file	later}

If	you	are	using	a	scratchfile	and	specify	a	filename	parameter,	Qedit
saves	the	scratchfile	as	a	permanent	Qedit	workfile.	In	this	case,	the
filename	must	not	exist.	If	you	are	using	a	Qedit	file,	Qedit	renames	it
before	closing.

qux/t	myfile1
'Language'	is	now	DATA													{copy	of	myfile1	in	scratchfile}
20	lines	in	file
qux/sh	myfile1
Retained	existing	file	for	you.				{myfile1	already	exists.	No	change.}
qux/sh	myfile1.work																{renamed	to	myfile1.work}
qux/open	*
Open	/home/user1/myfile1.work	Current	=	1	Margins	=	1/80
qux/sh	myfile1.newwork
File	renamed.

Examples

/open	crept45.dev				{open	source	file	to	edit}

/modify	5/		...						{make	some	changes...}
/shut																{close	workfile}

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Spell	Command	[SP]
The	Spell	command	is	not	available	in	Qedit/UX.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Text	Command	[T]
Copies	a	file	into	Qedit.	Use	Text	to	convert	a	file	into	Qedit	format	or	to
make	a	copy	of	an	existing	file.	After	a	Text,	the	new	copy	is	"open"	and
ready	to	edit	or	browse.

TEXTfilename	[,type]

filename	[,SAVETABS]

filename	[,BROWSE]

filename	[,NEW]

filename	[,SETINCR]

filename	[,LABELS]

filename	[,LENGTH	size]

workfile	[,workformat]	[(size)]	=	filename	[,type]

(Q=unnumbered)

(J=extra	scr	file,	same	as	,NEW)

(Defaults:	size	=	50%	bigger)

If	you	do	not	specify	a	workfile,	Qedit	checks	to	see	if	you	have	a	workfile
Open	and	it	is	empty.	If	it	is,	Qedit	will	Text	filename	into	it.	If	not,	Text
uses	the	primary	scratch	file.	If	you	do	Text	xx,New	or	TextJ,	Qedit
creates	an	extra	scratch	file	to	receive	the	copied	file.	You	can	have	up	to
eight	extra	scratch	files	(as	well	as	the	primary	scratch	file)	and	switch
among	them	with	Open	?.

Use	filename,type	to	override	the	attributes	that	Qedit	assigns	to	your	file.
Use	workfile,workformat	to	override	the	attributes	assigned	to	the
workfile.	See	below	for	details.

The	Text	command	works	on	any	file	that	you	can	read,	but	it	truncates
records	longer	than	8,172	columns	and	prints	a	warning.	You	can	use
Qedit	to	edit	binary	files.

The	Text	filename,Browse	command	copies	a	file	into	Qedit,	but	it	won't
let	you	modify	the	file.	You	can	use	the	List	command,	including	List-
Jumping,	Hold,	Visual	mode	HH	and	ZZ,	and	any	other	Qedit	functions
that	do	not	modify	the	file.	There	are	two	advantages	to	Browse	mode:	it

protects	you	from	making	unplanned	changes	to	a	file,	and	it	does	not
update	the	Mod-Date	of	the	file.

An	asterisk	(*)	as	filename	means	the	workfile	most	recently	shut.

If	you	do	specify	a	workfile	name,	Qedit	shuts	your	current	workfile	and
creates	a	new	workfile	to	hold	a	copy	of	filename.

If	you	try	to	Keep	the	file	with	its	original	name	i.e.	you	enter	a	Keep
without	a	filename,	you	will	get	an	error.

/Text	txtfile,browse
/K
File	opened	with	Browse,	please	specify	a	Keep	file	name

You	can	still	force	a	Keep	by	specifying	an	explicit	filename	as	in:

/Text	txtfile,browse
/Keep	txtfile
TXTFILE.DATA.ACCT,OLD	80B	FA	#	of	records=16
Purge	existing	file	[no]?	y

Examples

Make	copy	of	source	file,	change	and	save	it:

/text	hwsy.src							{copy	Hwsy.Src	into	scratch	file}
/modify	10											{make	changes}
/keep																{save	changes}

Absolute	File	Name

When	you	Text	a	file,	Qedit	remembers	the	absolute	path	name	of	the
file,	not	the	relative	name.	This	becomes	the	default	for	the	Keep
command.	If	you	Keep	with	an	explicit	name,	Qedit	remembers	the
absolute	path	of	that	name.	If	you	do	Set	Keep	Name	xxx	to	override	the
default	Keep	name,	Qedit	remembers	xxx	as	a	relative	name,	not	as	an
absolute	name.	This	gives	you	all	the	options	you	need	to	take
advantage	of	the	cd	command	within	Qedit.

How	to	Text	Several	Files?

Qedit	has	a	primary	scratch	file	that	is	referred	to	as	"Qeditscr".	Any	time
you	take	the	default	options	for	Opening	or	Texting	a	file,	your	work	will
be	in	the	Qeditscr	primary	scratch	file.

What	if	you	want	to	edit	two	or	more	files	and	copy	lines	between	them?
You	could	Text	the	first	file,	Hold	the	desired	lines,	Keep	your	changes,
then	Text	the	second	file	and	insert	the	lines.	However,	if	you	are	doing	a
large	number	of	edits,	the	constant	Text	and	Keep	operations	are
inconvenient.

A	faster	method	is	to	Text	each	file	into	an	extra	scratch	file	of	its	own.
Then	use	the	Open	?	or	Open	*-n	command	to	switch	quickly	among
them.	By	default	Text	always	copies	the	file	into	the	primary	Qeditscr
scratch	file.	However,	Qedit	can	supply	up	to	eight	extra	scratch	files.
Use	the	New	option	(text	abcdef,new)	or	do	Text-J	(textj	abcdef).

The	New	command	can	also	create	extra	scratch	files.	Warning:	If	you	do
New;Text	file,New	you	will	create	two	Extra	Scratch	Files,	not	one.

Saving	Your	Work

When	you	Exit,	Qedit	checks	whether	you	have	any	unsaved	edits	in	any
of	your	scratch	files.	If	so,	you	are	prompted	to	Discard?	them,	or	stay	in
Qedit	to	save	them.	Qedit	also	asks	you	to	Discard	your	changes	if	you
Close	a	scratch	file,	which	removes	it	from	the	Open-Stack	and	purges
the	file.

Clearing	the	Workfile

Sometimes	Qedit	will	ask	you	if	it	is	okay	to	clear	the	existing	contents	of
the	scratch	file	and	sometimes	it	won't.	If	you	have	not	made	any
changes	to	the	scratch	file	since	you	last	did	a	Text	or	Keep,	Qedit
assumes	that	you	have	another	copy	of	the	lines	and	it	is	okay	to	delete
the	copy	in	the	scratch	file.

In	batch,	the	answer	to	the	"Clear?"	question	will	always	be	"yes".	If	you
know	the	answer	you	want,	you	can	append	it	to	the	file	name	parameter
just	as	you	do	in	the	Keep	command:

/text	abc,yes
/text	def,no

Using	Set	Keep	for	File	Attributes

When	you	Text	a	file,	Qedit	remembers	as	many	attributes	of	the	file	as
possible.	When	you	later	Keep	the	file,	Qedit	attempts	to	reproduce	the
original	file.	The	Text	command	does	an	implicit	Set	Keep	command	to
record	what	it	has	discovered	about	the	Text	file.

Using	TextQ	for	Numeric	Data	Files

TextQ	means	"text	quiet"	or	"text	unnumbered"	and	is	the	same	as	using
,UNN	after	the	filename.	Use	TextQ	to	edit	any	data	file	that	may	contain
numeric	digits	in	the	last	eight	columns.	Otherwise,	Qedit	may	interpret
those	digits	as	sequence	numbers,	if	the	first	five	records	of	the	file
contain	data	that	looks	like	ascending	sequence	numbers.

Treatment	of	Sequence	Numbers

Qedit	retains	whatever	sequence	numbers	it	finds	in	the	external	file.	If
Qedit	finds	an	invalid	number,	it	begins	assigning	new	numbers	starting
from	the	last	valid	number	and	adding	Increment.

If	the	file	does	not	have	sequence	numbers,	Qedit	assigns	new	ones,
starting	at	1.0	and	going	up	by	a	calculated	increment.	The	calculated
increment	is	based	on	the	file's	current	characteristics	such	as	the
number	of	records.

This	works	well	in	the	majority	of	cases.	However,	there	are	cases	where
the	calculated	increment	is	not	accurate	enough	or	the	user	wishes	to
have	a	specific	increment.	This	can	be	done	by	setting	the	increment	with
the	Set	Increment	command.	Then,	use	the	Setincr	option	on	the	Text
command.

/Text	bigfile																{Use	calculated	increment}
/Set	Increment	.02											{Set	the	increment	value}
/Text	bigfile,Setincr								{Override	the	calculated	increment}

Files	with	Header	Records

Text	has	an	option	to	skip	1	to	9	records	before	deciding	the	"language"
of	the	external	file.	The	format	is	as	follows:

TEXT	lines/filename

where	lines	is	the	number	of	lines	to	skip	over.

This	is	useful	with	source	files	from	external	sources,	such	as	IBM
machines,	that	may	have	control	cards	without	sequence	numbers,
followed	by	a	numbered	COBOL	source	program.	By	skipping	the	control
cards,	Qedit	may	recognize	the	file	as	a	COBOL	program,	instead	of	a
Job	file.

Tab	Character

By	default,	Qedit	retains	tab	characters	in	a	file	when	it	Texts	the	file.
However,	another	option	is	to	expand	the	tab	characters	into	spaces	(to
the	next	tab	as	established	by	Set	Tabs	Stop).	You	can	expand	tabs	on	a

specific	file	by	using	the	Expandtabs	option	on	the	Text	(or	List	or	Add-
File)	command.	To	force	all	file	accesses	to	expand	tabs,	do	Set
Expandtabs	On	(the	default	is	Off).	With	Set	Expandtabs	On,	use	the
Savetabs	option	to	access	a	file	without	expanding	tabs	into	spaces:

/text	srcfile,expandtabs
/set	expandtabs	on
/text	dbfile,savetabs		{override	Set	Expandtabs	On}

If	you	are	editing	files	with	tab	characters,	see	Set	Vis	Tab.

Overriding	Qedit's	File	Type

Sometimes	Qedit	will	interpret	the	format	of	the	external	file	incorrectly.
You	can	override	the	file	type	that	Qedit	would	assign	by	appending	a	file
type	keyword	to	the	file	name:

filename,COBOL 	
filename,FTN or	FORTRAN
filename,SPL 	
filename,PASCAL 	
filename,JOB 	
filename,RPG 	
filename,TEXT 	
filename,COBFREE 	
filename,DATA forces	Jumbo	workfile
filename,UNNUMBERED 	
filename,HTML 	
filename,XML 	
filename,QSL 	
filename,JAVA 	

The	keyword	may	be	shortened	to	any	leading	substring,	but	the	comma
is	required.	You	cannot	use	this	option	to	force	Qedit	to	warp	a	file	into
something	that	it	is	not.	You	can	only	use	it	to	resolve	ambiguities	(i.e.,
between	FORTRAN,	Pascal,	and	SPL,	which	look	the	same).

/text	funny														{this	should	be	a	COBOL	file}
Language	is	now	JOB						{but	it	has	a	file	code	of	0}
678	lines	in	file
/text	funny,cobol
Language	is	now	COBX
678	lines	in	file

File	Modification	Timestamp

When	you	use	the	Text	command	on	a	file,	Qedit	stores	the	file's
modification	timestamp	in	the	workfile.	You	can	display	the	timestamp	by
using	the	Verify	command.	Qedit	uses	the	stored	timestamp	to	perform
some	verification	if	you	try	to	either	Keep	the	file	or	Shut	and	re-open	the
workfile.

$File	Keyword

File	names	containing	special	characters	might	cause	problems	to	Qedit.
For	example,

/Text	file:name
Error:		Extra	or	invalid	character	in	Text	command

If	you	run	into	this	problem,	you	can	use	the	$file	keyword	instead.	The
$file	keyword	can	be	used	wherever	a	file	name	is	expected,	such	as	in
Text,	Add,	List.	The	syntax	is:

$file[=]"filename"

$File	is	a	reserved	keyword,	which	is	followed	by	an	optional	equal	sign
and	the	actual	file	name	enclosed	in	string	delimiters.	Without	doing
anything	to	the	string,	Qedit	tries	to	open	the	specified	file.	The	previous
example	now	becomes:

/Text	$file="file:name"
10	lines	in	file

Implicitly	Folding	Wide	Lines

When	texting	files,	Qedit	assigns	a	language	to	the	file.	This	is	done	by
looking	at	file	characteristics	such	as	the	file	extension.	Each	language
has	a	set	of	predefined	attributes.	One	of	these	attributes	is	the	maximum
line	length.	As	it	reads	the	file	in,	Qedit	is	able	to	detect	lines	exceeding
the	maximum	length.	When	that	occurs,	Qedit	folds	the	line.	Characters
exceeding	the	maximum	are	moved	to	separate	lines.

Since	folding	lines	is	equivalent	to	inserting	new	lines,	Qedit	has	to
renumber	the	file	from	that	point.	When	all	this	occurs,	Qedit	displays	a
warning	message.	For	example,	if	Qedit	is	texting	in	a	Cobol	line	which
maximum	length	is	80,	a	line	with	200	characters	is	going	to	turn	into	3
lines.

qux/t	/home/demo/longline.cbl

'Language'	is	now	COBX
Warning:		Found	line(s)	over	80	characters.	Lines	folded	and	renumbered.
Error:	line	number	out	of	sequence	(001200)	-	renumbering	the	rest	
See	line	1.2
16	lines	in	file

Line	1.2	is	the	beginning	of	the	long	line.	The	file	now	looks	like	this.

1					This	is	really	the	first	line.
1.1			This	is	the	second	line.
1.2			This	line	is	too	long.	Qedit	will	split	it	into	multiple	lines	of	roughly
1.3			the	same	length.	Line	folding	is	not	smart.	In	other	words,	words	can	be	s
1.4			plit	in	the	middle.
1.5			"commit	work"	cw

Originally,	lines	1.2,	1.3	and	1.4	were	together	forming	one	very	long	line.

Explicitly	Folding	Wide	Lines

There	are	2	file	types	on	UNIX:	files	with	Newline	delimiters	at	the	end	of
each	line	and	files	without	Newline	delimiters.	By	default,	Qedit/UX	can
not	handle	files	without	Newlines	or	files	with	lines	longer	than	8,172
characters.	It	is	possible	to	edit	these	files	by	folding	the	content	into
manageable	pieces.	This	is	done	using	the	Length	option.	Use	this
option	to	specify	the	size	of	each	line.	The	maximum	value	is	8,172.

When	reading	the	file	in,	each	Qedit/UX	read	retrieves	the	specified
number	of	characters	until	it	reaches	the	end	of	the	file.	Lines	will	all	have
the	same	size	except	the	very	last	line,	if	the	total	size	of	the	file	is	not
evenly	divisable	by	the	specified	size.	For	example,	if	the	file	contains
8,000	characters	and	the	specified	Length	is	80,	Qedit/UX	creates	100
lines.	If	the	file	contains	8,020	characters,	there	will	be	100	lines	of	80
characters	and	the	last	line	will	only	have	20	characters.

If	the	Length	option	is	used,	Qedit/UX	assumes	the	file	does	not	have
any	Newline	delimiters	even	if	it	actually	had	some.	These	characters	are
processed	as	if	they	were	part	of	the	data.	In	this	case,	Qedit/UX
automatically	disables	Set	Keep	LF.	To	insert	Newline	delimiters	at	the
end	of	each	line,	you	can	enable	the	option	with

/Set	Keep	LF	On

or	use	the	LF	option	on	the	Keep	command	as	in

/Keep	myfile,lf

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Undo	Command	[UN]
Reverses	the	effect	of	the	previous	command	that	modified	text,	after
showing	you	the	command	and	asking	your	permission.

UNDO	[ALL	|	REDO]

(Default:	the	last	editing	task)

Undo	prints	the	command	to	be	undone	and	how	many	lines	it	actually
updated,	added,	deleted,	and/or	renumbered.	The	commands	can	only
be	undone	in	reverse	order,	one	at	a	time,	and	no	commands	can	be
skipped.	Therefore,	you	don't	have	to	specify	which	command	to	Undo;
you	are	always	presented	with	the	next	one,	then	asked	if	you	want	to
actually	undo	it.

If	you	want	to	see	the	commands	in	the	Undo	Stack,	use	the	Listundo
command.

After	an	Undo,	another	Undo	will	cancel	the	command	that	was	one
further	back.	In	this	way,	you	can	Undo	back	to	the	time	the	file	was	first
Texted	or	Opened.	If	you	Undo	one	step	too	far,	you	can	cancel	your
preceding	Undo	task	using	the	Undo	Redo	command.	This	option	is
accepted	until	there	are	no	more	Undo	tasks	to	be	cancelled.	Once	you
enter	a	non-Undo	edit	command,	you	have	approved	your	Undo	tasks
and	they	can	no	longer	be	cancelled.

Or,	you	can	use	Undo	All	to	undo	all	the	updates	since	the	last	Text	or
Open.	If	you	don't	like	the	results	after	an	Undo	All,	you	can	put	the	file
back	in	the	edited	state	by	doing	another	Undo	(i.e.,	you	can	Undo	the
Undo	All).

Examples

/cq	"Bob"Robret"	all		{mistake	in	Change}
23	lines	changed
/undo																	{reverse	Change	command}
Command	to	Undo:		CQ	"Bob"Robret"	all
			(Update:8)							{shows	actual	update	counts}

Undoing	Changes	in	Visual	Mode

You	can	use	the	Undo	command	to	cancel	changes	in	Visual	mode	as
well	as	in	Line	mode.	All	of	the	changes	you	make	on	the	screen	before
pressing	Enter	are	treated	by	Qedit	as	one	"undo-able"	command,	except
for	cut-and-paste	operations.	Qedit	always	executes	your	cut-and-paste

operation	last	after	updating	the	file	with	any	other	changes,	no	matter
what	order	the	changes	were	made	in.	This	means	that	you	can	choose
to	undo	just	the	cut-and-paste	operation,	or	undo	it	and	all	of	the	other
changes.	You	can	continue	undoing	your	previous	changes	from	each
Enter,	one	at	a	time,	until	your	file	is	back	to	its	original	state.

Notes

An	Undo	cannot	be	undone,	except	by	Undo	All.

The	Undo	change	log	is	reset	by	a	Text	command	(but	not	a	Keep),	by	a
Delete	All,	or	by	shutting	the	file.	The	Undo	log	is	temporary	and	is	not
retained	if	you	exit	Qedit	or	log	off	the	system.	You	cannot	go	back	and
undo	changes	that	you	made	to	a	file	after	you	leave	Qedit.

You	can	Undo	any	text-altering	commands	since	the	last	Text	or	Open
command,	except	for	Delete	All.	Delete	All	can	be	canceled	before	the
next	command	line	is	executed	using	Control-Y.

In	the	unlikely	event	that	the	undo	log	file	(i.e.,	"undolog")	overflows,
Qedit	will	print	a	warning	message	and	disable	the	Undo	feature.	Undo	is
disabled	in	batch	by	default,	and	active	in	session	usage.	Using	the	Set
Undo	command	you	may	override	this	default	or	disable	Undo	for	a
particularly	large	edit,	to	save	overhead.

/set	undo	on
/set	undo	off

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Up	Command	[UP/F2]
Starts	"browsing"	the	current	file	by	displaying	one	page,	starting	about
six	lines	forward.	You	stay	in	"browse"	mode	until	you	enter	any
command	(see	List,	jumping	option).

UP

(F2	key	does	the	same)

In	Line	mode,	Up	(or	F2)	puts	you	into	List-Jumping's	browse-mode.	The
starting	location	is	a	few	lines	ahead	of	the	current	position,	where	the
actual	number	of	lines	is	determined	by	the	Set	Visual	Roll	amount.	Qedit
displays	a	screen	of	text,	where	the	screen	size	is	either	23	lines	or	what
you	specify	with	Set	List	LJ,	then	waits	for	you	by	asking	"More?".	Press
Return	to	see	the	next	screen,	typing	a	line	number	moves	you	to	the
screen	starting	at	that	line,	pressing	F2-F6	does	the	appropriate	action,
and	F8	or	"//"	or	Control-Y	or	typing	any	command	gets	you	out	of
browse-mode.	At	the	"More"	prompt,	the	*	"current"	line	is	the	last	line
displayed.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Use	Command	[U]
Executes	part	or	all	of	the	commands	in	a	file.

USE	filename	[rangelist]

(Q=no	display,	J=no	open	error)

(Default:	*	means	current	or	last	workfile,	range=all)

Qedit	opens	filename	and	reads	command	lines	from	it,	instead	of	from
Stdin.	"*"	as	the	filename	either	closes	the	current	workfile	and	Uses	it,	or
Uses	the	workfile	most	recently	closed,	including	a	scratch	file.	Execution
continues	until	the	last	line	of	the	usefile	or	until	you	strike	Control-Y.

Qedit	prints	the	commands	on	Stdlist,	unless	you	do	UQ.	To	print
instructions	to	the	user	even	when	UQ	is	in	effect,	put	Q	commands	in
your	usefile.

Examples

/use	fixspell														{execute	a	list	of	Changes}
ch	"reveiw"review"	@							{commands	are	printed}
ch	"corelate"correlate"	@
/use	$	30/																	{rangelist,	last	file}
/use	*																					{*	=	last	Open	workfile}
/use	fixit	2/5													{do	lines	2/5	only}
/use	compile	"extfile"					{do	lines	with	string}

{See	the	Q	command	for	a	sample	usefile	that	compiles}

Notes

The	Use	command	temporarily	redirects	Qedit's	command	input	device,
reading	commands	from	a	file.	The	same	features	and	restrictions	apply
to	the	commands	in	a	usefile	as	would	apply	to	commands	typed	on	the
terminal.	For	example,	a	command	cannot	be	continued	from	one	line	to
the	next,	usefiles	do	not	accept	parameters,	etc.

The	usefile	can	be	of	any	file	type	allowed	in	Text	or	Add.	Although	Qedit
allows	nested	usefiles,	you	cannot	have	nested	loops.

If	the	usefile	does	not	exist,	UJ	suppresses	the	error	message	that	would
be	printed,	allowing	optional	Use	commands	in	Qeditmgr	files.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Verify	Command	[V]
Prints	the	status	of	Qedit,	the	current	workfile,	and	Set	options.

VERIFY	[@	|	ALL]

[keyword	...]

(Default:	show	nonstandard	options)

The	default	is	to	show	the	options	which	are	not	in	their	default	state.
Verify	All	shows	every	Set	option	in	the	exact	form	that	Qedit	accepts	(the
shortest	form	is	shown	in	uppercase).

The	keywords	may	be	any	Set	option,	or	Alias,	Exit,	Proc,	Prog,	Run,
String,	Lastfile,	Visual,	Version,	Z	for	Zave,	or	ZZ	for	the	marked	range.

Examples

/verify												{show	nondefault	values}
/ver	open										{describe	the	Open	workfile}
/ver	visual								{Visual	mode	status	and	options}
/v	@															{print	full	status	on	Stdlist}
/verify	version				{Qedit	version	number}
/verify	string					{current	"string"	for	F3/F4}
/verify	lastfile			{previous	file	for	List	$}
/v	$															{abbreviation	for	previous	file}
/verify	exit							{does	Qedit	suspend	on	Exit?}
/verify	zz									{currently	marked	range}

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Visual	Command	[VI/F1]
Switches	to	full-screen	editing	at	the	current	line,	at	a	specified	line,	or	at
the	next	occurrence	of	a	specified	string.

VISUAL	[linenum	|	"string"]

(Default:	linenum	=	*)

Qedit	allows	you	to	edit	text	in	"full-screen"	mode	on	most	HP	terminals
that	have	block-mode,	and	on	PCs	equipped	with	terminal	emulators
such	as	Reflection	and	AdvanceLink.	You	use	the	terminal's	special	keys
to	edit	the	screen,	instead	of	using	Qedit	commands.	When	the	image	on
the	screen	suits	you,	press	Enter	and	Qedit	reads	the	screen	and	records
the	changes	in	your	file.	For	full	details,	see	the	"Getting	a	Quick	Start
with	Full-Screen	Editing"	chapter.

Examples

/visual				{start	full-screen	editing	now}
/vis	45				{start	full-screen	editing	at	line	45}
/vi	"go"			{find	"go"	then	change	to	full-screen}

Notes

For	a	help	screen	that	summarizes	most	of	Visual	mode,	type	a	"?"	in	the
top	screen	line	(at	the	 ===>)	and	press	the	F7	key.

If	you	are	a	novice,	use	Set	Vis	Update	ON.	Qedit	now	automatically
reads	your	updated	screen	when	you	browse	or	use	a	function	key.

Other	tips:	Do	not	add	more	than	60	lines	before	pressing	Enter.	If	you
have	trouble	at	9600	baud	try	turning	your	terminal	down	to	2400	baud.
Avoid	the	Clear	Display	key;	if	you	press	it	by	mistake,	type	"*"	in	the	top
screen	line	and	press	F7	(this	will	refresh	the	screen).	To	save	and
restore	your	function	keys,	use	Set	Vis	Save	ON.	To	get	out	of	Visual,
use	the	F8	function	key.

Visual	Blockemulation	on	HP-UX

As	of	HP-UX	11.0,	HP	has	dropped	support	for	block-mode	terminals.	For
this	reason,	full-screen	editing	as	implemented	on	HP3000	computers
only	works	on	HP-UX	versions	earlier	than	11.0.	On	HP-UX	11.0	or	later,
full-screen	editing	is	available	in	Screen	mode	(Set	Visual	Screen	On)	on
VT-type	terminals	or	in	Visual	mode	emulation	(Set	Visual
Blockemulation	On)	on	HP-type	terminals.

Blockemulation	emulates	block-mode	operations	by	reading	each	line
one	by	one	instead	of	reading	the	whole	screen	in	a	single	operation.
Depending	on	the	type	of	connection,	this	process	might	take	a	few
seconds	as	the	cursor	moves	down	the	screen.

In	most	cases,	Qedit	is	able	to	detect	that	block-mode	is	not	available
and	activates	Visual	Blockemulation	automatically.	If	it	does	not,	use	the
Set	Visual	Blockemulation	command.

Visual	Blockemulation	also	has	the	following	limitations:

Does	not	allow	more	than	20	contiguous	blank	lines
Can	not	add	more	than	30	new	lines	at	a	time
Can	not	display	more	than	260	characters	on	a	line

Visual	Blockemulation	sometimes	can	not	detect	it	has	read	all	the	lines.
To	workaround	this,	Qedit	assumes	that	20	contiguous	blank	lines
indicates	a	potential	transmission	problem	and	stops	reading	the	screen.
If	you	have	to	insert	more	than	20	empty	lines,	make	sure	you	insert	less
than	20	and	hit	Enter.	Repeat	until	you	have	all	the	lines	you	need.	Of
course,	you	can	use	the	Add	command	outside	of	Visual	mode.

Similarly,	you	can	not	add	more	than	30	new	lines	to	the	current	screen
before	transmitting	your	changes.	Make	sure	you	insert	lines	in	smaller
numbers	then	hit	Enter	or	use	the	Add	command.

Visual	Blockemulation	can	not	display	more	than	260	characters	on	each
line.	To	edit	wider	lines,	change	the	Set	Left	and/or	Set	Right	values.

Right	Margin	and	Display	Width

Full-screen	mode	can	take	advantage	of	most	features	available	on	the
terminal	or	emulator	it's	running	on.	A	couple	of	these	features	are	the
ability	to	adjust	the	display	width	and	the	right	margin	based	on	the	file's
record	length.	Unfortunately,	these	features	are	not	implemented	equally
well	on	all	devices	and	may	cause	undesirable	behavior.

For	example,	the	hpterm	emulator	supports	display	width	larger	than	the
standard	80	columns.	However,	Qedit	can	not	change	the	display	width
using	the	usual	escape	sequences.	Setting	the	right	margin	also	caused
problems	for	some	users.	That's	why	we	introduced	the	RCRTMODEL
1234.	This	tells	Qedit	that	the	terminal	can	be	polled	to	determine	the
current	display	width	and	has	basic	block-mode	capabilities.

At	the	same	time,	we	introduced	Set	Visual	Marginfixed.	When
RCRTMODEL	is	set	to	1234,	Marginfixed	is	automatically	enabled.	In	this
case,	Qedit	does	not	try	to	change	the	display	width	nor	does	it	change

the	right	margin.	It	assumes	both	are	set	by	the	user	and	have	the	same
value.	If	needed,	a	user	can	manually	enable	Marginfixed	on	a	terminal
or	emulator	other	than	hpterm.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Words	Command	[W]
The	Words	command	is	not	available	for	Qedit/UX.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Zave	Command	[Z]
Saves	or	recalls	a	string	of	Qedit	commands.

Z	[=	[commands]]

(Default:	if	no	commands,	Z=	prompts)

Use	Z=	to	save	some	Qedit	commands	for	later	use.	Use	";"	to	combine
multiple	Qedit	commands.	If	Qedit	does	not	find	anything	after	the	"=",	it
reads	the	commands	from	the	terminal.	Qedit	saves	the	commands	and
you	can	execute	them	again	at	any	time	by	typing	Z.	There	is	only	one
"Z"	in	Qedit.	When	you	enter	a	new	Z	string,	you	lose	the	existing	one.

When	you	type	Z	with	no	=	sign,	Qedit	inserts	the	saved	commands	in
place	of	Z.	The	total	length	of	the	Z	string	plus	the	remainder	of	the
original	line	must	be	80	characters	or	less.

Examples

/z=											{redefine	value	of	Z	string}
list	*/last			{you	enter	new	line	of	commands}
/z												{use	Z	to	mean	"list	*/last"}
/z=l*-5/*+5			{define	z	as	"list	vicinity"}
/fq	"trish";z	{find	string	and	display	around	it}
/z=f"`|1@"(p);	a*=*;	c"`".ent	"
														{find	string	that	matches	pattern;	copy	line}
														{change	a	string	in	the	new	line}

Notes

You	can	display	and	edit	the	current	Z	string	only	if	you	entered	the	Z
string	at	the	same	time	as	the	Z=	command.

/z=q	"hi"
/z
hi
/redo	z=
/Z=q	"hi"
						hello"
/z
Hello

Although	the	line	saved	in	Z	need	not	be	a	complete	command,	it	is
recommended	that	incomplete	strings	not	be	put	in	Z,	as	they	may	be
upshifted.

"ListJ	*"	is	a	useful	command	string	to	save.	Just	type	Z,	and	Qedit	will
start	listing	from	your	current	position.	When	you	find	what	you	want,
press	Control-Y	to	stop	the	listing.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

ZZ	Command
Marks	a	block	of	lines	so	you	can	refer	to	them	in	any	command.

ZZ	[line	[/	line]	|	OFF]

ZZ	[[string	range]	|	OFF]

(Q=no	display)

(Default:	*	becomes	start	or	end	of	block)

ZZ	line/line	marks	a	range	of	lines,	while	ZZ	line	marks	the	start	or	end
of	a	range.	ZZ	marks	one	range	only,	not	a	rangelist.	To	mark	a	single
line,	say	5,	use	 zz	5/5.

ZZ	OFF	cancels	the	currently	marked	range,	eliminating	the	half-bright
display	enhancement	in	Visual.

Examples

/zz		5/10
/change	"prog"program"	zz
/find	"procedure	open"	(up)
/zz																						{mark	start	of	block}
/find	"@end;~{open}@"	(pattern	up)
/zz																						{mark	end	of	block}
/keep	savefile	zz								{save	block	in	a	file}
/verify	zz															{check	current	range}
/zz	off																		{cancel	current	range}

Notes

The	marked	range	is	adjusted	for	Renum	operations.	Use	Verify	ZZ	or
List	ZZ	to	check	the	currently	marked	range.	ZZ	is	also	valid	as	a	cut-
and-paste	operator	in	Visual	mode.

Using	a	string	range	on	a	Find	command	automatically	updates	the	ZZ
marker.	For	example:

/v	zz
ZZ	OFF
/find	"start"/"end"	[

Lines	5/11	saved	in	ZZ
/v	zz
ZZ	5/11

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Calculator	Command	[=]
The	calculator	evaluates	an	expression	and	prints	the	result.

=expression	[,O	|	D	|	B	|	H	|	A	|	#	%	$]

Any	command	that	begins	with	an	equal	sign	(=)	is	treated	as	an
expression	to	be	evaluated.	An	expression	consists	of	numbers	and
operators,	followed	by	an	optional	display	format.	The	operators	can	be
addition	(+),	subtraction	(-),	multiplication	(*),	division	(/),	or
exponentiation	(**).	The	value	of	the	expression	is	printed	immediately	on
Stdlist.

=20+15													{add	two	numbers	together}
Result=35.0
=20*15													{multiply	the	same	numbers}
Result=300.0
=20-15													{subtraction}
Result=5.0
=20/15													{divide,	print	precise	result}
Result=1.33333333333
=20**15												{20	raised	to	the	15th	power}
Result=.327680000000E+20

Order	of	Evaluation

Unlike	most	programming	languages,	the	calculator	always	evaluates	the
calculation	from	left	to	right.	This	is	similar	to	an	electronic	calculator,
where	each	keystroke	is	operated	on	immediately.	You	can	use
parentheses	to	force	the	calculator	to	evaluate	the	expression	in	a
different	order.

=14+16+15/3							{compute	an	average}
Result=15.0
=14+16+(15/3)					{add	14,	16,	and	the	result	of	15/3}
Result=35.0
=14+((16+15)/3)			{divide	16+15	by	3,	then	add	to	14}
Result=24.3333333333

Percentages

A	number	in	the	calculator	expression	may	be	followed	by	a	percent	sign

(%).	The	calculator	assumes	that	you	want	to	qualify	the	number	as	a
percentage.

=125*5%											{what	is	5%	of	125}
Result=6.25
=125+125*5%							{add	5%	of	125	to	125}
Result=12.5
=125+(125*5%)					{oops,	we	needed	to	change	the	order}
Result=131.25					{this	looks	like	the	answer	we	wanted}

The	last	two	examples	show	the	importance	of	the	order	in	which
calculator	evaluates	the	expression.	We	needed	to	use	parentheses	to
force	calculator	to	evaluate	our	expression	in	the	correct	order.

Display	Formats

A	calculator	expression	may	be	followed	by	a	comma	and	a	display	letter.
The	default	is	decimal	(#)	and	the	options	are	Hex	($	or	H),	Octal	(%	or
O),	Double	(D),	ASCII	(A)	and	Binary	(B).	With	these	options,	the	result	is
treated	as	a	32-bit	integer.

=10,%												{standard	octal	format}
Result=%000012
=-10,%											{negative	number	in	octal}
Result=%37777777766
=100,$											{hexadecimal}
Result=$0064

In	Double	format,	calculator	prints	the	double	result	as	two	octal
numbers.	The	first	number	represents	the	high-order	16-bits	and	the
second	number	represents	the	low-order	16-bits.

=10,d													{treat	result	as	two	16-bit	octal	words}
Result=%000000	%000012
=1000000000,d					{high-order	16-bits	are	nonzero}
Result=%035632	%145000
=-10,d												{note	negative	value,	2's	complement}
Result=	%177777	%177766

In	ASCII	format,	up	to	four	characters	are	printed	in	hexadecimal,
decimal,	and	ASCII	display	format.

=$2020,a
Result=$2020:	32,32	:"		"
=%20161	%72145,a
Result=$2071:	32,113:"	q"		$7465:116,101:"te"

In	Binary	format,	the	high-order	16-bits	are	examined.	If	these	bits	are	not
zero,	they	are	printed	as	two	groups	of	eight	bits.	A	one	(1)	means	that
the	bit	is	on	and	a	zero	(0)	means	that	the	bit	is	off.	The	low-order	16-bits
are	always	printed	as	two	groups	of	eight	bits.

=10,b													{high-order	16-bits	suppressed}
Result=%(2)00000000	00001010
=-10,b												{note	negative	value,	2's	complement}
Result=%(2)11111111	11111111	%(2)11111111	11110110
=1000000000,b					{high-order	16-bits	are	nonzero}
Result=%(2)00111011	10011010	%(2)11001010	00000000

Input	Format

The	calculator	supports	different	input	formats	for	numbers.	Octal	values
are	prefixed	with	a	percent	sign	(%)	and	hexadecimal	values	with	a	dollar
sign	($).	Decimal	is	assumed	by	default,	but	decimal	values	may	be
prefixed	with	#	if	desired.	An	ASCII	string	of	up	to	4	characters	is	entered
in	quotes.	The	result	of	the	last	calculation	is	referred	to	using	#.

=%12														{octal	12	or	decimal	10}
Result=10.0
=%12,o												{octal	input	and	octal	display	format}
Result=%000012
=$10
Result=16.0
=%177766										{octal	number	that	is	really	negative}
Result=-10.0
="abcd",h
Result=$61626364
=#,a
Result=$6162:	97,98	:"ab"		$6364:	99,100:"cd"

Calculator	Help

The	calculator	offers	a	number	of	options.	You	can	refresh	your	memory

on	the	calculator's	abilities	by	entering

=?																{?	gives	help}
																		{prints	a	summary	of	=	functions}

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Introduction
When	Qedit	encounters	an	error	condition,	it	prints	an	error	message
(Error:	xxx)	or	a	warning	message	(Warning:	xxx).	For	file	errors,	Qedit
prints	the	intrinsic	name	(Fopen),	the	file	system	error	number	(Err.	50,	or
a	message	for	common	errors)	and	the	file	name,	if	available.	An	error
message	will	cause	the	rest	of	the	command	line	to	be	skipped,	and,	in
batch	mode,	will	cause	Qedit	to	terminate	with	an	error	abort.	A	warning
message,	on	the	other	hand,	does	not	stop	the	rest	of	the	command	line
from	being	executed,	nor	does	it	cause	Qedit	to	abort	in	batch	mode.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Messages
Most	error	and	warning	messages	are	self-explanatory.	The	older,	more
cryptic	ones	are	explained	below.

Message Explanation

Already.

The	line	number	that	would	next	be	created
already	exists	in	the	workfile;	duplicate	line
numbers	are	not	allowed.	This	error	often	stops
an	Add	command.

Com	Name. The	first	character	of	a	line	or	after	a	semi-colon
is	not	a	valid	command.

Empty. The	external	file	you	have	referenced	does	not
contain	any	lines.

EOF	In. Caused	by	an	end-of-file	on	stdin	(e.g.,	pressing
Control-E).	This	error	always	terminates	Qedit.

Equals. Equals	sign	(=)	is	missing	from	the	command
(example:	Add	5	FILE);	most	are	optional.

Extra. A	command	is	followed	by	extra	characters	when
it	should	be	ended	(example:	A	500?).

Fclose. Unable	to	close	a	new	workfile	or	Keep	file.

Fcontrol. Unable	to	perform	a	control	operation	(such	as
logical	rewind)	on	a	file.

Fgetinfo. Unable	to	get	file	status.

Filename. An	invalid	file	name	has	been	specified	(e.g.,	K
123).

Fopen.
Unable	to	open	a	file.	Most	common	reasons	are
"no	such	file"	and	"bad	file	name"	(example:	L
ABC1234567).

Fread.
Unable	to	read	sequentially	from	an	external	file.
There	is	no	good	reason	for	this	error	that	we	are
aware	of.

Freaddir. Unable	to	read	a	block	from	a	workfile.	Almost
always	indicates	a	"broken"	Qedit	workfile.

Full.

The	current	workfile	is	full,	and	the	last	line
added	is	lost.	You	are	either	out	of	disc	space	or
your	file	has	65,535	lines	(if	original-format
workfile).

Fwrite. Unable	to	write	to	a	file	(example:	L	LP,ALL;	K
KFILE).

Fwritedir. Unable	to	write	a	block	to	the	current	workfile.
Probably	indicates	a	confused	workfile.

In	Use.

The	external	workfile	cannot	be	accessed,
because	it	is	being	edited	on	some	other
terminal,	or	someone	aborted	Qedit	with	the	file
open.	You	can	recover	such	files	by	Opening
them.

'Language'	is	now
xxx

The	current	language	setting	has	been	changed
by	Open,	Text	or	Set	Lang.	This	may	also
change	the	INCR,	WINDOW,	etc.

Linenum. The	command	contains	an	invalid	line	number
(example:	L	5.9999).

LP	Open. Unable	to	open	a	file	to	the	LP.

Modify.
Illegal	control	character	in	a	Modify	line;	an
ASCII	character	with	a	value	less	than	32,	that	is
not	in	the	Set	Modify	list	of	codes.

No	Line.
A	specific	line	number	is	required,	but	does	not
exist	(example:	AJ	100,	when	line	100	doesn't
exist).

No	Open. A	workfile	must	be	Opened	before	any	editing
can	be	done.

No	Write.

The	workfile	cannot	be	Opened	with	write
access.	Someone	else	may	be	editing	the	file,	or
you	may	not	have	proper	security	access	to	the
file.

Overflow.

A	data	line	has	been	entered	(Add,	Replace)	or
created	(Change,	Modify)	that	is	greater	than	the
maximum	length	allowed	by	the	current
language	setting.	Or,	a	file	has	been	Texted	that
is	too	large	for	the	workfile	(the	Text	is	rejected;
you	may	have	to	adjust	Set	Work	Block	to	allow
for	line	lengths	greater	than	60	bytes	average).

Param. A	parameter	of	the	command	is	illegal	(example:
S	Work	Size	ABC)

Paren. A	required	left	or	right	parenthesis	is	missing
(example:	Set	Window	(Up)).	Many	are	optional.

Proc.

Unable	to	load	the	procedure	named	from	the
library	specified;	you	may	have	specified	the
wrong	library,	or	spelled	the	procedure	name
incorrectly	(example:	P	ROUTINE-1,S,1).

Range. In	a	range,	the	second	line	number	is	less	than
the	first	(example:	List	4/3).

Recovery.
The	file	just	Opened	was	not	closed	properly	the
last	time	it	was	used;	the	file	is	being	recovered.
See	Open	command.

Size. An	illegal	size	in	a	new	workfile	(example:	New
ABC(1B3)).

String.
The	string	is	not	correctly	formatted;	either	the
ending	quote	is	missing,	or	the	string	is	too	long
(example:	C	1,"ABC!,510).

Target. Format	error	in	the	target	area	of	the	Change
command	(example:	C	53,"ABC",1).

Too	High.

In	Renumber,	the	starting	line	number	is	too
high.	Qedit	cannot	find	an	increment	small
enough	to	renumber	all	of	the	lines	in	the	file.
(example:	Ren	99999).	Choose	a	lower	starting

line	number.

Window. Format	error	in	column	search	window	(example:
Set	Window	(1020,MART)).

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Quit	Errors
After	serious	file	system	errors,	Qedit	will	print	the	file	system	error	and
the	following	message,	and	then	abort:

Warning:	This	error	can	only	occur	if	1)	your	UNIX	file	system	is
corrupted,	2)	your	hardware	has	problems,	3)	you	have	exceeded	your
disc	space	limits,	or	4)	Qedit	has	a	bug.
Make	a	copy	of	your	workfile	before	attempting	to	Open	it	again.
If	Open	does	not	recover	it	satisfactorily,	contact	Robelle.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Errors	in	Visual
There	are	a	number	of	problems	that	you	may	encounter	when	using
Visual.	We	have	tried	to	list	all	of	them	here.

More:
Using	Visual	with	X.25
Using	Visual	on	HP-UX
Terminals	Supported	by	Visual
Problems	with	700/9x	Terminals
Visual	Error	Messages

	 	

http://www.robelle.com/products/qedit

	 	

Using	Visual	with	X.25
When	configuring	X.25	pads,	be	certain	to	configure	large	enough
buffers.	Visual	can	transfer	up	to	30,000	bytes	in	a	single	read	(see	Set
Visual	Buf).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Using	Visual	on	HP-UX
Visual	mode	should	work	on	HP-UX,	providing	you	have	an	HP	terminal
or	an	HP	terminal	emulator.	You	must	configure	your	terminal	for
Transmit	and	Receive	XON/XOFF	Pacing	or	you	risk	file	system	errors.

You	must	also	configure	the	host	prompt	to	be	a	DC1	(Control-Q).
Because	there	are	few	block-mode	applications	for	HP-UX,	the	host
prompt	is	often	configured	as	null.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Terminals	Supported	by	Visual
Visual	will	work	on	most	HP	terminals	with	block-mode,	such	as	the
700/9x,	and	2392.	It	also	works	on	most	emulators	of	HP	terminals,	such
as	Reflection	for	DOS,	Windows,	and	Macintosh;	AdvanceLink	for	DOS
and	Windows;	and	Session	for	Windows	and	Macintosh.

Visual	may	work	over	DS,	but	only	one	machine	away	and	only	if	you
define	sufficient	buffers	for	your	DSLINE.

Visual	does	not	work	on	the	2640/41/44,	2621,	125,	120,	110,	or	the
700/4x	terminals.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Problems	with	700/9x	Terminals
Occasionally	a	700/92	or	700/94	terminal	will	refuse	to	work	properly	in
Visual	mode.	Symptoms	include	Qedit	saying	that	it	is	not	a	supported
terminal,	or	giving	the	infamous	"No	//	at	end"	message,	when	the	"//"	is
clearly	on	the	screen.	We	have	found	that	resetting	the	terminal	to	factory
default	settings	sometimes	sets	this	right	again.	This	is	more	than	a
regular	soft	or	hard	reset,	more	than	turning	the	terminal	off	and	on:	it	is	a
special	reset,	involving	a	reboot	of	the	terminal	firmware	from	ROM.

Verify	the	baud	rate	at	which	the	terminal	is	configured,	then	log	off	the
host,	and	power	off	the	700/9x	terminal.	Wait	a	few	seconds,	then	turn
the	terminal	back	on	WHILE	HOLDING	DOWN	THE	"D"	KEY.	Keep	the
"D"	key	pressed	until	you	hear	a	beep.	The	terminal	will	show	the
message	"default	configs	used".	Set	the	baud	rate,	and	ensure	that	the
Xmit	Pacing	and	Recv	Pacing	fields	are	both	set	to	XON/XOFF.	Log	on
again	and	try	Qedit	Visual	mode.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Visual	Error	Messages
Here	are	the	messages	that	may	appear	if	you	encounter	errors	in	Visual
mode.

Define	String:	press	Home	Up,	Clear	Line,	type	"string",	press	Enter.
You	cannot	use	F3	or	F4	(Findup,	Find)	until	you	have	defined	and	found
the	string	once.	Press	Home	Up,	type	"string"	(or	^"string"	for	Findup),
then	press	F7	or	Enter.

Parameter	missing	or	illegal	in	home	line.	You	have	typed	a	command
in	the	home	line	that	Qedit	cannot	understand	because	it	is	incomplete	or
typed	incorrectly.

Not	enough	line	numbers	to	add	new	lines.	If	you	add	too	many	lines
in	one	area,	Qedit	can	run	out	of	unique	line	numbers	to	assign	to	new
lines.	Check	that	Set	Vis	Renum	is	ON	(it	is	by	default).	Unfortunately,
even	this	will	sometimes	not	make	room.	In	this	case,	Qedit	writes	your
screen	image	to	a	disc	file	named	qscreen	(the	file	is	temporary	on	MPE)
and	does	not	update	the	lines.

A	recovery	method	is	to	renumber	that	part	or	all	of	your	file	and	then
copy	in	the	lost	lines	from	the	qscreen	file.	Since	qscreen	contains	a
screen	image,	you	will	need	to	remove	certain	rows	and	columns	to
extract	the	raw	text:

Press	F8	to	return	to	Line	mode

/renum	all;list	*-10/*+10
/list	qscreen												{now	select	line	range	to	copy}
/add	100.10=qscreen	5/23	{text	lines	only}
/change	1/4	""	100.10/*		{remove	columns}

No	//	at	the	end,	so	no	UPDATE	(see	qscreen).

If	you	press	the	Clear	Display	key	and	then	press	Enter,	Qedit	will	read
your	screen	and	object	to	it.	Qedit	looks	for	//	in	the	first	two	columns	of
the	last	screen	line	--	the	one	containing	the	column	template.	If	Qedit
does	not	find	these	two	slashes,	it	concludes	that	you	have	done	a	Clear
Display,	or	deleted	the	template	line,	or	typed	in	so	many	new	lines	or
characters	that	Qedit	does	not	have	a	big	enough	buffer	to	read	the

http://www.robelle.com/products/qedit

entire	screen.	Qedit	then	appends	your	screen	image	to	the	qscreen	file
and	does	not	attempt	to	update	the	lines.	If	the	Clear	Display	was
legitimate,	type	//	in	column	1	after	the	last	line.

Missing	or	invalid	status	line,	no	UPDATE	(see	qscreen).	Under	some
circumstances	the	start	of	the	status	line	is	not	transmitted	properly	to
Qedit,	even	though	the	rest	of	the	screen	is	okay.	Therefore,	Qedit	now
looks	for	the	line	number	field	in	the	status	line,	enhanced	as	Inverse
Halfbright.	If	that	is	not	found	you	will	get	the	message	"Missing	or	invalid
status	line".	Your	screen	has	not	been	updated,	but	it	has	been	appended
to	the	qscreen	file.	You	can	do	 list	$char	qscreen	to	see
what	was	actually	received	by	Qedit	or	to	recover	your	lines.

Home	line	(===>)	not	transmitted,	no	UPDATE	(see	qscreen).	If	Qedit
detects	the	status	line	as	the	first	line	of	your	screen,	you	will	get	the
error	message	"Home	line	(===>)	not	transmitted".	This	either	means
that	you	deleted	the	home	line	or	data	was	lost	at	the	start	of	your
transmission	or	you	inserted	too	many	lines	with	Set	Vis	Cleardisplay	Off.
Your	screen	has	not	been	updated,	but	has	been	appended	to	the
qscreen	file.	You	can	do	 list	$char	qscreen	to	see	what	went
wrong	or	to	recover	the	data.

NO	UPD:	bad	format	left	4	columns	(see	qscreen).	Qedit	uses	+	and	-
indicators	in	columns	1	and	2	to	keep	track	internally	of	which	line	on
your	screen	has	which	line	number.	If	you	move	the	lines	around	(not
using	cut-and-paste)	so	that	these	indicators	are	out	of	sequence,	Qedit
objects.	Qedit	does	not	update	your	lines,	but	it	does	write	them	to
qscreen.	If	you	move	lines	around	on	the	screen,	you	should	erase	the
+n	to	-n	indicators.

Cannot	update.	To	Exit,	press	*	F7	(refresh),	then	F8	(exit).	Set	Vis
Update	is	ON	and	you	have	pressed	F8	to	exit.	However,	Qedit	is	unable
to	update	the	current	screen	likely	due	to	the	bad	screen	format
described	above.	To	exit,	first	refresh	the	screen	(*	in	the	===>	line,	press
F7),	then	press	F8	again.

Inconsistent	or	badly	formed	cut-and-paste	task	(DD/MM/CC/HH).	If
you	put	both	a	CC	and	an	MM	on	the	same	screen,	you	will	get	this	error
message.	It	means	that	the	indicators	you	have	used	do	not	combine	in	a
logical	way.	Check	the	Status	line	to	see	what	cut-and-paste	function	is
pending.	You	may	also	see	this	message	if	you	enter	an	unknown
indicator	(e.g.,	NN	instead	of	MM).

Duplicate	cut-and-paste	task;	press	F7	to	reset	DD/MM/CC/HH.	Only
one	cut-and-paste	function	is	permitted	per	update.	For	example,	you
cannot	copy	a	block	of	lines	to	the	Hold	file	with	HH,	and	on	the	same
screen	use	R	to	replicate	a	line.

Cut-and-paste	operations	are	limited	to	32000	lines	or	less.	The

maximum	number	of	lines	that	you	can	move,	copy,	hold	or	delete	in	a
single	task	is	32000.

Problem	accessing	Hold	file;	unable	to	cut-and-paste.	When	you	use
HH,	HJ,	AH,	BH,	PH,	or	FH,	Qedit	must	access	a	temporary	file	called
Hold.	When	you	use	MM,	CC,	DD,	JJ,	RR,	A0,	B0,	F0,	or	P0,	Qedit	must
access	a	file	called	Hold0.	This	message	means	that	an	error	has
occurred	in	accessing	this	file.	Does	another	process	in	your	session
have	it	open?	Or	are	you	out	of	disc	space?

File	full.	Part	update.	Suggest	Exit,	see	qscreen.	If	you	add	enough
lines	to	a	workfile,	eventually	it	will	fill	up!	Visual	will	then	be	unable	to
add	in	the	new	lines	from	your	screen.	When	this	happens,	Qedit
appends	a	copy	of	your	screen	image	to	the	qscreen	file	(from	this	file
you	can	recover	the	lines	that	were	not	added,	if	you	desire).	To	expand	a
workfile	named	ABC,	do	Text	ABC	and	Shut	*.

File	nearly	full!	Qedit	will	warn	you	when	your	workfile	has	only	a	block
or	two	left.	This	is	your	advance	warning	that	soon	you	must	do	a
Garbage	collection	in	your	workfile,	or	expand	the	workfile.

Read	error	on	CRT.	Try	again	or	reduce	speed.	Screen	mode	only
works	with	HP-type	terminals	and	emulators.	If	you	use	a	VT	terminal	or
emulator,	you	should	use	Screen	mode	for	full-screen	editing.	Refer	to
the	appropriate	section	for	a	discussion	on	working	with	VT	terminals.

You	might	also	get	this	error	if	you	run	certain	combinations	of	HP-UX
and	the	Windows	95	TCP/IP	stack.	If	you	think	you	might	be	in	this
situation,	please	contact	our	technical	support	staff	for	details.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Introduction
This	appendix	describes	the	format	of	Qedit	workfiles	and	external	files.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Qedit	Workfiles
The	Qedit	workfile	provides	both	random	and	sequential	access	to
variable-length	lines	of	text.	The	workfile	is	broken	into	blocks.	Each
block	contains	several	Qedit	lines	(the	exact	number	depends	on	the
length	of	the	lines).	The	lines	in	a	block	have	contiguous	line	numbers
and	are	extracted	from	the	block	by	Qedit.

Block	0	of	the	workfile	has	a	special	format	because	it	contains	the
control	and	indexing	information.

The	first	Qedit	line	is	always	in	block	1,	and	the	start	of	block	1	points	to
the	next	sequential	block	in	the	file,	which	need	not	be	block	2.	Each
block	points	to	the	next,	and	end-of-file	occurs	when	the	forward	pointer
is	zero.

There	are	three	different	formats	of	Qedit	workfiles:	original,	Jumbo,	and
Wide-Jumbo.	All	formats	work	in	Qedit	for	MPE	and	Qedit	for	HP-UX,	but
the	default	for	MPE	is	the	original	format	while	the	default	for	HP-UX	is
Wide-Jumbo.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Original	Format	Workfiles
The	original	Qedit	workfiles	have	a	block	size	of	512	bytes	and	can	hold
up	to	65,535	lines	with	a	maximum	length	of	256	characters.

Within	an	original	format	data	block,	the	structure	is	as	follows:

Word	Within	Block				Contents												Comment
						(000)						Forward-pointer			First	word	in	block
						(001)						Line-number							First	word	of	first	line
						(002)								(cont.)
						(003)						Data	and	Indent			Descriptor	for	first	line
						(004)						"AB"														Contents	of	first	line
						(005)						"CD"
						(...)								(cont.)
						(...)
	(Data+003)						"YZ"														End	of	first	line
	(Data+004)						Line-number							Start	of	second	line
	(Data+005)								(cont.)
	(Data+006)						Data	and	Indent
	(Data+007)						"12"
						(...)
						(...)						"89"														End	of	last	line
						(...)						Binary-zero							Unused	portion	of	block.
						(...)								(cont.)									Binary-zeros	are	missing
						(255)								(cont.)											if	the	block	is	full.

The	following	definitions	are	used	above:

Forward-pointer:	block	number	of	the	next	block	(16-bit	unsigned).

Line-number:	a	32-bit	integer	containing	the	line	number	in	binary	(1,000
=	1.0).

Data:	the	number	of	words	of	data	in	the	line	(byte).

Indent:	number	of	full	words	of	blanks	before	the	data	(byte).

Qedit	Version	Number

Open	stores	the	version	number	of	the	Qedit	program	file	into	the	workfile

that	it	opens.	A	16-bit	integer	is	stored	at	word	offset	363	of	Block	0.	The
format	is,	for	example,	4258	for	version	4.2.58,	4300	for	4.3,	and	4301	for
4.3.01.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Jumbo	Workfiles
The	Qedit	Jumbo	workfile	is	an	extension	of	the	original	Qedit	workfile.
This	format	allows	files	to	be	up	to	1,000	characters	wide,	and	up	to	99
million	lines	long.	The	blocks	are	1024	bytes	long	instead	of	512.

Wide-Jumbo	workfiles	allow	lines	of	up	to	8,172	characters	and	limit	the
number	of	lines	to	99	million.	The	blocks	are	8,192	bytes	long	instead	of
1,024	for	Jumbo	workfiles.

As	in	the	old	Qedit	format,	each	block	in	Jumbo	or	Wide-Jumbo	contains
several	Qedit	lines	(the	exact	number	depends	on	the	length	of	the	lines).
The	lines	in	a	block	have	contiguous	line	numbers	and	are	extracted	from
the	block	by	Qedit.

Block	0	of	the	workfile	has	a	special	format	because	it	contains	the
language	of	the	file	and	the	number	of	lines,	and	provides	indexing.

The	first	Qedit	line	is	always	in	Block	1,	and	the	first	word	of	Block	1
points	to	the	next	sequential	block	in	the	file.	Each	block	points	to	the
next,	and	end-of-file	occurs	when	the	forward	pointer	is	zero.

Within	a	data	block,	the	structure	is	as	follows:

Word	Within	Block				Contents												Comment
						(000)						Block	type								First	double-word	in	block
						(002)						Forward-pointer			Second	double-word	in	block
						(004)						Line-number							First	word	of	first	line
						(005)								(cont.)
						(006)						Data	length							Descriptor	for	first	line
						(007)						Indent
						(008)						"AB"														Contents	of	first	line
						(009)						"CD"
						(...)								(cont.)
						(...)
	(Data+004)						"YZ"														End	of	first	line
	(Data+005)						Line-number							Start	of	second	line
	(Data+006)								(cont.)
	(Data+007)						Data
	(Data+008)						Indent
	(Data+009)						"12"
						(...)

						(...)						"89"														End	of	last	line
						(...)						Binary-zero							Unused	portion	of	block.
						(...)								(cont.)									Binary-zeros	are	missing
						(511)								(cont.)											if	the	block	is	full.

The	following	definitions	are	used	above:

Forward-pointer:	block	number	of	the	next	block	(32-bit	unsigned).

Line-number:	a	32-bit	integer	containing	the	line	number	in	binary	(1,000
=	1.0).

Data:	the	number	of	words	of	data	in	the	line	(16-bit	word).

Indent:	number	of	full	words	of	blanks	before	the	data	(16-bit	word).

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

External	Files
As	well	as	its	own	workfiles,	Qedit	recognizes	"external"	files	of	other
formats	(in	List	file,	Add	5=file,	Text	file,	etc.).	When	Qedit	opens	an
external	file,	it	determines	the	language	of	the	source	program	in	that	file
according	to	the	following	chart.	Files	with	a	".cbl,"	".cob",	".CBL"	or
".pco"	extension	are	treated	as	COBOL	source	files.	In	this	case,	Qedit
does	not	assume	there	is	a	sequence	number	in	the	first	6	columns;	it
checks	the	first	5	lines	of	the	file.	The	 .pco	extension	is	typically
used	to	identify	Cobol	source	files	that	needs	to	be	processed	by	the
Oracle	pre-compiler.

If	the	lines	contain	only	numeric	digits	in	these	columns,	Qedit	assumes
the	file	contains	sequence	numbers	and	uses	them	appropriately.	These
numbers	are	written	back	to	the	file	when	a	Keep	command	is	executed.

If	the	lines	only	contain	spaces	in	these	columns,	Qedit	assumes	the	file
is	unnumbered	and	automatically	assigns	numbers	during	the	Text
operation.	If	some	of	the	lines	have	a	sequence	number	already,	this
number	is	replaced	with	Qedit's	calculated	number.	When	the	file	is
saved,	the	sequence	numbers	are	replaced	by	spaces.

If	the	first	6	columns	do	not	contain	either	numeric	digits	or	spaces,	Qedit
assumes	the	file	is	free-format	and	assigns	it	line	numbers	in	the	same
way	that	numbers	are	assigned	to	Text	files.	The	file	format	might	change
on	a	Keep	command,	depending	on	the	Set	Keep	Cobfree	option.

When	accessing	files,	Qedit	checks	the	extension	of	the	file,	if	any.	It	then
tries	to	determine	the	language	based	on	the	extension.	Currently,	the
following	languages	are	recognized:

Language Extensions
Cobol CBL,	COB
CC H,	C
CPP CPP
HTML HTM,	HTML,	ASP
XML XML
JAVA JAVA
QSL QSL

PASCAL
P,	PAS,	PASCAL,	MODULE,
INCLUDE,	FORWARD,
EXTERNAL

Extensions	are	not	case-sensitive	i.e.	cbl	is	the	same	as	CBL.

Record
Size

Leading
Columns
(1-6)

Last	8
Columns
of	First

Current
Language

File
Code	/ Num	/

Unn?
LANG
Used

(bytes) Contain Line Setting* Ext.

74 	 	 	 ext. Unn COBOLX
66 	 	 	 ext. Unn COBOL
80 6	digits 	 	 ext. Num COBOLX
80 6	digits 	 	 not	ext. Unn JOB
80 no	digits no	digits RPG 	 Unn RPG
80 no	digits 8	digits FORTRAN 	 Num FTN
80 no	digits 8	digits Pascal ext/ Num Pascal

80 no	digits 8	digits not
Ftn/Pas 	 Num SPL*

72 6	digits 	 	 	 Num COBOL
72 no	digits 	 FORTRAN 	 Unn FTN
72 no	digits 	 Pascal ext. Unn Pascal

72 no	digits 	 not
Ftn/Pas 	 Unn SPL*

80 no	digits no	digits 	 	 Unn JOB
88 8	digits 	 	 	 Num JOB
9-264 8	digits 	 	 	 Num TEXT
1-256 no	digits 	 	 	 Unn TEXT

1-1000 no	digits
or	spaces 	 	 ext. Unn COBFREE

1-1000 no	digits 	 	 ext. Unn HTML
1-1000 no	digits 	 	 ext. Unn XML
1-1000 no	digits 	 	 ext. Unn JAVA
1-1000 no	digits 	 	 ext. Unn QSL

*	see	Set	FORTRAN	ON.

In	this	table,	the	"File	code	/	Ext."	column	indicates	how	Qedit	determines
which	language	to	use.	Code	means	it	uses	the	file	code	only.	Ext.
means	it	uses	the	file	extension	only.	Both	means	it	checks	the	file	code
and	the	file	extension.

Qedit	maps	an	ASCII	external	file	into	one	of	these	file	formats.	Qedit
checks	the	last	eight	columns	of	each	of	the	first	five	lines	for	an
ascending	sequence	number.	If	five	lines	with	valid	sequence	numbers
are	found,	the	file	is	treated	as	a	Numbered	file.	Qedit	may	sometimes
mistake	a	data	file	for	a	source	file	with	sequence	numbers.	If	there	is	an
ambiguity	in	identifying	the	language	of	an	external	file,	you	can	direct
Qedit	to	the	proper	choice	by	appending	a	file	type	to	the	file	name	in	the
Text,	List,	and	Add	commands.	For	example,	/List	abc,unn;Text
def,pascal.

External	files	with	80-character	records	and	no	valid	SPL	sequence
numbers	are	treated	as	RPG	files,	if	the	current	language	setting	is	RPG;
otherwise,	they	are	treated	as	JOB	files.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Introduction
Regular	expressions	might	look	like	wildcards	used	in	the	Pattern	search
option.	Regular	expressions	are	sometimes	compared	to	wildcards	but,	in
fact,	they	are	much	more	powerful	and	can	be	much	more	complex.	You
have	to	practice	in	order	to	use	them	efficiently	and	to	their	full	potential.
For	brevity,	we	will	often	refer	to	regular	expressions	simply	as	regexp.

In	Qedit's	line-mode,	you	can	use	regular	expression	in	most	places
where	you	can	use	a	string	or	pattern.	In	fact,	you	specify	regular
expressions	in	Qedit	similar	to	the	way	you	specify	patterns,	by
specifying	the	"regexp"	keyword	in	a	window:

/list	"Robel+e"(regexp)		{Robelle	or	Robele}
/change	"[rR]obel+e?"(reg)	"ROBELLE"		{robell	Robele...}

Although	all	regexp	implementations	share	a	basic	set	of	metacharacters
and	syntax	rules,	other	tools	and	programs	might	have	different
extensions	and	variations	than	Qedit.	For	example,	the	alternation
metacharacter	"|"	(equivalent	to	an	"or"	function)	is	not	provided	in	Qedit.
As	the	first	implementation	of	regular	expressions	in	Robelle	products,
this	version	of	Qedit	might	not	have	all	the	extensions	you	are	currently
familiar	with.	We	will	be	looking	at	other	tools	as	we	explore	the
possibility	of	extending	our	own	implementation	in	future	releases.

If	you	are	interested	in	learning	more	about	regular	expressions,	you
should	get	a	copy	of	Mastering	Regular	Expressions	written	by	Jeffrey	E.
F.	Friedl	and	published	at	O'Reilly	&	Associates,	Inc.	This	book	covers
most	regular	expression	implementations,	the	differences	between	each
one,	how	most	regexp	engines	work	and	some	tips	on	how	to	get	the
best	performance	from	each	type.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Metacharacters
Qedit	supports	the	following	metacharacters:

^ Start-of-line	anchor
$ End-of-line	anchor
. Matches	any	character
? Optional	character
* Matches	zero	or	more	of	the	preceding	character
+ Matches	one	or	more	of	the	preceding	character
[Start	a	character	class
] End	a	character	class
^ If	first	character	in	character	class,	negate	class
(Subpattern	start
) Subpattern	end

Anchor	Characters.

In	general,	a	regexp	can	find	a	match	anywhere	in	the	text	as	long	as	it
appears	on	a	single	line.	There	are	two	exceptions	to	this	rule.	The	start-
of-line	(^)	and	the	end-of-line	($)	anchors.	They	are	called	anchors	for
very	good	reasons.	These	anchors	actually	indicate	that	the	match	must
occur	at	fixed	positions	within	the	line.

The	start-of-line	anchor	specifies	that	the	string	must	appear	at	the	very
beginning	of	the	line.	If	you	enter

^abc

the	line	will	be	selected	only	if	the	string	"abc"	is	the	first	thing	on	the	line.
Thus,

abcdefghij									{will	be	selected}
xyzabc													{will	not	be	selected}

Similarly,	the	end-of-line	anchor	specifies	that	the	string	must	appear	as
the	last	thing	on	the	line.	In	this	example,

abc$

the	lines	must	end	with	the	string	"abc."	There	must	not	be	anything	else
after	it,	not	even	spaces.

abcdef													{will	not	be	selected}

xyzabc													{will	be	selected}

You	can	combine	the	anchors	to	verify	that	lines	contain	only	a	certain
string	and	nothing	else.	Simply	use

^abc$

Every	line	has	a	start	and	an	end	anchor.	If	you	search	for	the	start	or	the
end	anchor	(^	or	$)	by	itself,	Qedit	matches	all	the	lines	in	the	file.

TIP:	If	you	edit	your	file	in	full-screen	mode	with	Set	Visual	Home	Off,
searching	for	the	start-of-line	anchor	moves	to	the	next	line	and	puts	the
cursor	at	the	first	position.	If	you	search	for	the	end-of-line	anchor,	Qedit
goes	to	the	next	line	and	puts	the	cursor	after	the	last	character	on	the
line	(if	the	last	character	is	visible).

If	the	anchor	characters	are	used	anywhere	else,	they	lose	their
metacharacter	status	and	become	ordinary	characters.

Match	Any	Character.

The	period,	or	dot,	is	used	to	match	any	character.	The	character	can	be
of	any	type.	As	long	as	there	is	something	in	that	position,	there	will	be	a
match.	For	example,

abc.xyz

selects	any	line	that	contains	the	strings	"abc"	and	"xyz"	separated	by	a
single	character.	That	character	can	be	anything	(e.g.,	1,	w,	#,	etc).

Optional	Character.

You	can	check	the	absence	or	presence	of	a	character	by	following	it	with
a	question	mark	(?).	In	a	regexp,	the	question	mark	indicates	that	the
preceding	character	is	optional.	If	it	is	present,	it	must	appear	only	once.

ab?c						{matches	only	"ac"	and	"abc"}

Repeating	Characters.

There	are	different	ways	you	can	check	for	the	repetition	of	characters.	If
there	is	potential	for	a	character	to	appear	more	than	once,	you	can	use
the	asterisk	(*)	or	the	plus	sign	(+)	quantifier.	These	quantifiers	are
applied	only	to	the	character	to	their	immediate	left.

There	is	a	very	small	difference	between	the	two	quantifiers.	The	asterisk

represents	zero	or	more	occurrences	of	the	preceding	character.	In	other
words,	the	character	is	optional,	but,	if	it	is	there,	it	can	appear	multiple
times.	The	plus	sign	represents	one	or	more	occurrences.	This	means
the	character	must	appear	at	least	once,	but	it	can	appear	multiple	times.

ab*c						{matches	"ac,"	"abc,"	"abbc,"	etc.}
ab+c						{matches	"abc,"	"abbc,"	but	not	"ac"}

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Character	Class
When	you	have	to	check	for	a	fixed	string	of	characters,	it	is	easy	enough
to	simply	type	it	at	the	actual	regexp.	Entering	"abc123"	will	only	find
exact	matches.	What	if	you	want	to	find	the	string	"abc"	followed	by	a
numeric	digit?	There	are	no	specific	metacharacters	for	digits	or
alphabetic	characters.	However,	regular	expressions	have	a	concept
called	character	class	to	address	these	issues.	Actually,	character	class
is	a	lot	more	powerful	and	flexible	than	metacharacters	for	specific	types
of	text.

A	character	class	is	enclosed	between	brackets.	The	closing	bracket	can
be	left	out.	However,	it	is	good	practice	to	code	it	explicitly	to	avoid
ambiguity.

Note	that	most	regexp	metacharacters	listed	above	lose	their	meaning
inside	a	character	class.	The	start-of-line	anchor	acquires	a	different
definition	and	a	new	metacharacter,	hyphen	(-),	appears.

A	character	class	is	a	list	of	possible	values	for	a	specific	position	in	the
string.	The	character	class	can	be	as	long	as	needed.	A	character	class
for	numeric	digits	would	be

[0123456789]

Note,	the	list	does	not	have	to	be	in	sorted	order.	You	could	have	entered
the	digits	in	reverse	order	or	in	random	order	and	the	character	class
would	still	be	valid.	It	is	just	harder	to	verify	that	all	digits	are	included.
Similarly,	a	character	class	for	lowercase	letters	would	be

[abcdefghijklmnopqrstuvwxyz]

It	is	really	important	to	understand	that	a	match	occurs	if	one	of	the
characters	in	the	class	is	found.	Using	the	"abc"	example	above,	if	we
want	to	find	this	string	followed	by	a	digit,	we	would	enter

abc[0123456789]				{matches	"abc0",	"abc1",	etc.		to	"abc9"}

To	further	restrict	the	search,	we	could	have	used

abc[13579]									{matches	"abc"	followed	by	one	odd	digit}

Because	a	character	class	is	only	a	list	of	possible	values,	you	can	mix
and	match	all	the	characters	in	the	ASCII	code	table.

p[imy246!.*]e						{matches	"pie,"	"pme,"	"p4e,"	"p*e,"	etc.}

This	example	would	find	text	starting	with	the	letter	p	and	ending	with	an
e	that	encloses	a	single	character	matching	one	of	the	letters	a,	m	or	y,
one	of	the	digits	2,	4	or	6,	an	exclamation	mark	(!),	a	period	(.)	or	an
asterisk	(*).	Note	the	period	and	asterisk	are	not	metacharacters
anymore.

Of	course,	if	the	character	class	contains	many	possible	values,	it	can	be
tedious	and	error-prone	to	enter	each	character.	The	hyphen	is	a
character-class	metacharacter	that	can	be	used	as	a	range	indicator.
Simply	specify	the	first	and	last	characters	in	the	range.	Numeric	digits
could	then	be	coded	as	[0-9].	Lowercase	letters	could	be	coded	as	[a-z].
You	can	also	combine	ranges	with	single	values,	as	in

abc[0-9a-z!.*]

A	character	class	range	is	based	on	the	ASCII	character	set.	You	could
specify	a	range	of

[A-z]

and	it	would	be	perfectly	valid.	In	this	case,	the	range	would	include	all
uppercase	letters,	a	series	of	special	characters	([,\,],^,_,`)	and	all
lowercase	letters.	Typically,	you	would	enter	the	character	with	the
smallest	ASCII	value	as	the	lower	limit	and	the	character	with	the	largest
value	as	the	upper	limit.	Qedit	accepts	characters	even	if	they	are
reversed	(i.e.,	the	largest	value	first)	as	in:

[Z-A]

Qedit	detects	this	situation	and	swaps	the	values	internally	so	[a-z]	and
[z-a]	are	really	equivalent.	To	avoid	ambiguity,	it	is	recommended	that	you
use	the	first	format.

The	hyphen	is	interpreted	as	a	range	indicator	only	if	it	is	at	a	logical
place	between	two	other	characters.	If	it	is	somewhere	else	in	the	class,
it	is	used	at	face	value.

[-a-z]						{hyphen	and	lowercase	letters}
[a-z-]						{lowercase	letters	and	hyphen}
[a-z-9]					{lowercase	letters,	hyphen	and	digit	9}
[a-z0-9]				{lowercase	letters	and	digits	0	to	9}

Negated	Character	Class.

The	caret	(^)	takes	on	a	different	meaning	inside	a	character	class.	It	is
used	at	face	value	anywhere	in	the	class,	except	if	it	is	the	first	character
in	which	case	the	caret	negates	the	whole	class.	This	means	a	match	is
found	if	the	text	does	not	contain	any	of	the	characters	in	the	class.

p[246^]e											{matches	"p2e",	"p^e",	etc.}
p[^246]e											{matches	"pae",	"p3e",	etc.}

In	the	last	example,	the	caret	negates	2,	4	and	6.	The	regexp	is	true	if	the
text	starts	with	the	letter	p,	ends	with	the	letter	e	and	encloses	a	single
character	that	is	not	2,	4	or	6.

Repeating	Character	Class.

Because	a	character	class	is	interpreted	as	a	single	character,	you	can
use	the	optional	(?)	and	quantifier	(*	and	+)	metacharacters	to	further
qualify	a	character	class.	For	example,	if	we	want	to	allow	one	or	more
numeric	digits	after	the	"abc"	string,	we	could	use	the	following	regexp:

abc[0-9]+

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Escape	Character
Other	characters	used	in	a	regular	expression	might	also	have	special
meanings.	The	most	important	one	is	probably	the	escape	character.	In
Qedit,	the	backslash	is	the	escape	character.	A	metacharacter,	however,
loses	its	special	meaning	if	preceded	by	a	backslash.	In	the	example,

abc[123]

square	brackets	indicate	a	character	class.	This	regexp	would	match
"abc1,"	"abc2"	or	"abc3."	If	we	escape	the	square	brackets	as	in

abc\[123\]

the	square	brackets	are	then	used	as	literals.	This	means	they	are	now
part	of	the	string.	The	only	matching	value	is	then	"abc[123]."

If	you	want	to	search	for	a	backslash,	simply	enter	two	of	them	in	a	row
(\\).	The	only	exception	to	this	is	the	start-of-line	metacharacter.	Because
it	(^)	is	also	a	valid	escaped	sequence	(see	next	section),	there	is	no	way
to	tell	Qedit	to	search	for	the	caret	as	a	literal.	You	should	use	an
expression	with	the	corresponding	hexadecimal	value.

x05e

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Escaped	Sequences	in	Regular	Expressions
The	escape	character	can	be	combined	with	other	characters	to
represent	nonprinting	characters.	Qedit	recognizes	the	following	escaped
characters:	(These	should	not	be	confused	with	escape	sequences	that
control	the	display	on	HP-type	terminals.	They	are	also	not
metacharacters.)

\b Backspace
\e ASCII	escape	character	(ESC)
\f Form	feed
\n New	line	(line	feed)
\r Carriage	return
\s Space
\t Horizontal	tab
\DDD 1-3	octal	digits	representing	a	character's	ASCII	value
\xDDD 1-3	hex	digits	representing	a	character's	ASCII	value
\^C Control	code	(e.g.,	Control-G	(^G)	is	the	Bell	character)

For	example,	you	would	use:

\t										{all	lines	with	a	tab	character}
\e&d@&						{terminal	escape	sequence	ESC&d@}

Escaped	characters	can	be	used	anywhere	an	ordinary	character	is
used,	including	a	character	class	and	to	declare	a	character	range.

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Backreferences	in	Regular	Expressions
We	have	seen	basic	expressions	in	which	almost	everything	revolves
around	single	characters	of	text.	Even	character	class	lists	are	really
used	to	match	a	single	position.

You	can	use	parentheses	to	divide	a	long	regular	expression	into	smaller
portions.	Each	portion	then	becomes	a	regexp	on	its	own.	This	does	not
affect	the	way	a	string	search	is	done.	However,	each	subpattern	can
then	be	used	in	a	replacement	operation.

Subpatterns	are	numbered	from	0	to	9.	Subpattern	0	is	reserved	and
represents	the	complete	matched	string.	Note	that	subpattern	0	is	implicit
and	is	always	available,	even	if	the	expression	does	not	contain
parentheses.	Explicit	subpatterns	are	numbered	from	1	to	9,	starting	from
the	left	of	the	expression.

Subpatterns	can	be	referenced	in	a	replacement	regexp	by	using	the
escape	character,	a	backslash,	followed	by	the	subpattern	number.	When
applying	the	replacement	string,	backreferences	are	substituted	with	the
actual	matching	text.	Backreferences	can	be	used	as	many	times	as
needed.	Each	reference	ends	up	with	the	original	text.

Let's	say	we	have	a	file	that	contains	a	series	of	phone	numbers.	In	North
America	(and	possibly	other	countries),	phone	numbers	contain	a	3-digit
area	code	followed	by	a	3-digit	exchange	number	and,	finally,	a	4-digit
individual	number.	Unfortunately,	in	our	case,	the	phone	numbers	are	just
series	of	10	numeric	digits	without	separators.	For	example,

1234567890
1112224444
9087374456

We	would	like	a	fast	and	easy	way	to	format	them	so	that	the	numbers
are	easier	to	read.	To	find	all	these	strings,	we	can	use	the	following
regexp:

([0-9][0-9][0-9])([0-9][0-9][0-9])([0-9][0-9][0-9][0-9])

We	use	the	[0-9]	character	class	to	specify	that	we	are	expecting	only
numeric	digits.

In	this	example	there	are	three	subpatterns	in	the	regexp.	Each
subpattern	is	enclosed	in	a	set	of	parentheses.

The	first	subpattern	(\1)	repeats	the	numeric	character	class	3	times.	It

represents	the	digits	in	the	area	code.	The	second	subpattern	(\2)	also
has	the	character	class	repeated	3	times.	It	represents	the	exchange
number.	The	third	and	last	subpattern	(\3)	repeats	the	character	class	4
times.	It	represents	the	individual	number.

Subpattern	\0	represents	all	10	digits.

To	reformat	this	information,	we	can	now	combine	backreferences	with
other	characters	to	arrange	the	numbers	any	way	we	like.	Let's	say	we
want	to	put	the	area	code	in	parentheses,	insert	a	space	after	it	and
insert	a	dash	(-)	between	the	exchange	number	and	the	individual
number.	We	would	use	the	following	substitution	string:

(\1)	\2-\3

The	list	would	appear	as	follows:

(123)	456-7890
(111)	222-4444
(908)	737-4456

You	can	use	subexpressions	to	reorder	the	text	in	lines.	For	example,	if
we	want	to	reverse	the	telephone	numbers	(show	the	last	four	digits	first,
then	the	first	three	digits	of	the	telephone	number,	followed	by	the	area
code),	we	could	use

Last:	\3	Middle:	\2	Area:	\1	Complete:	\0

This	substitution	string	produces	the	following	list	(assuming	that	we
started	with	the	same	data	in	this	example	and	used	the	same	regexp):

Last:	7890	Middle:	456	Area:	123	Complete:	1234567890
Last:	4444	Middle:	222	Area:	111	Complete:	1112224444
Last:	4456	Middle:	737	Area:	908	Complete:	9087374456

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Escaped	Characters	in	Replacement	String
Escaped	sequences	can	also	be	used	in	the	replacement	string	of	a
Change	command,	making	it	easier	to	insert	special	characters.

All	escaped	sequences	are	valid	in	the	replacement,	except	for	octal
values	(these	are	coded	using	octal	digits).	For	example,	"\007"	can	be
used	to	represent	the	bell	character.	However,	backreferences	in	the
replacement	string	are	represented	by	\n,	where	n	is	a	digit	from	0	to	9.
Because	of	that,	\007	might	be	interpreted	as	backreference	\0	followed
by	the	literal	07	(bell	character).

To	work	around	this	limitation,	a	backslash	followed	by	a	digit	in	a
replacement	string	is	always	assumed	to	be	a	backreference.	To	specify
special	characters	using	numeric	values,	you	should	use	hexadecimal
notation	(e.g.,	\x007).

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Introduction
Certain	symbols	and	terms	are	common	to	many	Qedit	commands.	They
are	defined	here,	in	alphabetical	order.

The	slots	for	variables	within	the	command	definitions	are	highlighted	in
the	text.	You	replace	these	variable	fields	with	your	real-life	item.	For
instance,	the	syntax	for	the	Use	command	is	"Use	filename".	You	replace
the	term	filename	with	any	valid	filename.	For	example,

	/use	sample.quse

	 	

http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Terms
Abbreviating
Batch
Calculator
Column
Command
Control	Character
CRT
Current	Line
Defaults
External	File
File	Names
Full-Screen	Editing
Hold	File
J	Option
Jumbo	Files
Keep	File
Language
Left
Length
Line
Linenum
Margins
Memory	Lock
Patterns
Quiet-Q	Option
Range
Rangelist
Relative	Line	Numbers
Right
Shifting
String
Tab
Template-T	Option
Visual	Editing
Window
Workfile

	 	

http://www.robelle.com/products/qedit

	 	

Abbreviating
You	can	abbreviate	many	Qedit	commands.	You	can	shorten	command
names,	for	example,	to	a	single	letter,	unless	more	than	one	command
starts	with	the	same	letter.	If	that's	so,	enter	enough	of	the	command
name	to	distinguish	it.	The	reserved	words	First,	Last,	and	All	can	be
replaced	by	[,]	and	@	in	Qedit	commands.	Sometimes	you	can	even
dispense	with	the	command	completely:	/?	means	help,	/\	means	back
one	line,	/55	means	go	to	line	55,	/"string"	means	find	this	string,
/^"string"	means	search	backwards	for	this	string,	and	a	simple	Return
means	go	ahead	one	line.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Batch
Although	Qedit	is	primarily	designed	for	interactive	editing,	all	commands
except	Visual	can	be	used	with	stdin	or	stdlist	redirected.	If	either	stdin	or
stdlist	is	redirected,	Qedit	assumes	that	it	is	in	batch	mode.	There	are	two
differences	in	operation:

An	error	causes	Qedit	to	terminate	in	batch	mode,	but	only	skips	the
current	command	line	in	session	mode;

Where	a	"Yes-or-No"	question	is	asked	in	session	mode	(e.g.,	"Clear?"),
the	question	is	printed	with	an	implicit	"Yes"	answer	in	batch	mode	(e.g.,
"Clear?	Yes").

In	both	session	and	batch,	a	"warning"	message	is	nonfatal.	Set	Autocont
ON	causes	errors	to	be	nonfatal	in	batch	mode.	New	work	lines	can	be
Added	in	batch,	but	because	Control-Y	cannot	be	used,	the	Add	should
be	ended	with	"//".

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Calculator
Qedit	will	treat	any	command	that	begins	with	an	equal	sign	("=")	as	an
expression	to	be	evaluated.	To	add	two	numbers	together:

=125+512
Result=	637.0

An	expression	consists	of	numbers	and	operators.	The	operators	can	be
addition	(+),	subtraction	(-),	multiplication	(*),	division	(/),	or
exponentiation	(**).	The	value	of	the	expression	is	printed	immediately.

For	a	complete	description	of	calculator,	type	 help	calc.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Column
Individual	character	positions	within	lines	are	called	columns	and	have
column	numbers.	See	template	for	a	method	of	drawing	a	column
template	above	any	line.	Column	numbers	are	referenced	in	the	Change
command	and	string	windows.	For	example:

/change	1/4	""	23	{delete	first	4	columns	in	line	23}

/change	1	"	"	4/9	{insert	2	columns	at	front}

/l	"begin"(1/10)	{find	"begin"	in	first	10
columns}

A	column	is	an	integer	number	between	the	lowest	column	of	the	line	and
the	highest	column.	The	lowest	column	number	is	7	for	standard	COBOL,
and	1	for	SPL,	FORTRAN,	Pascal,	RPG,	Text,	COBFREE,	Data	and	Job
files.	The	highest	column	number	is	72	for	standard	COBOL,	SPL,	Pascal
and	FORTRAN	files,	1,000	for	COBFREE,	256	for	TEXT,	80	for
COBOLX,	RPG	and	Job	files,	and	8,172	for	Data	files.	When	in	doubt	as
to	column	numbers,	use	LT	to	list	a	line	with	column	headings.
Shorthand:	(1)	=	(1/1),	([/30)	=	(first	column/30),	(30/])	=	(30/last	column).

Using	Set	Left	column	and	Set	Right	column,	you	can	set	margins	in
specific	columns.	Any	existing	data	beyond	the	margins	is	retained,	but
new	lines	added	will	have	blanks	outside	the	margins.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Command
Qedit	accepts	two	basic	types	of	commands:	those	such	as	Add,	Change
and	Text	that	can	be	combined	on	a	line	using	semicolon	to	separate
them;	and	those	such	as	who	and	ls	which	can	only	appear	once	on	a
command	line	because	semicolon	is	reserved	for	separating	parameters.

/text	abc;modify	5	{two	Qedit	commands}

/ps	{one	shell	command}

/new	abc;who	{Qedit	and	shell	command}

We	call	the	first	style	"qedit"	commands	and	the	second	style	"shell"
commands,	although	they	are	all	equally	Qedit	commands.	With	the	first
style,	the	command	name	can	usually	be	abbreviated	to	one	letter	(Add
is	A),	although	some	commands	require	several	letters	(Findu	for
Findup).	With	the	"shell"	style,	the	command	name	must	usually	be
spelled	out	completely.

/vi	{"vi"	means	Visual}

/c	"abc"xxx"	all	{"c"	means	Change}

/ls	{means	show	files,	not	lsort}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Control	Character
You	create	a	control	character	by	holding	down	the	Control	key	while	you
strike	another	key.	Control	plus	"A"	generates	Control-A.	These	are
normally	nonprinting	characters,	but	they	may	do	things	to	your	terminal.
For	example,	Control-G	rings	the	bell.	We	assume	that	Control-Y	is	your
interrupt	character	and	that	you	do	not	use	Control-D	for	end-of-file.	Qedit
uses	control	characters	for	a	number	of	purposes:

In	Modify,	control	characters	specify	the	edit	functions:

Control-D	for	delete,	Control-B	for	before,	etc.
Control-Y	stops	execution	of	the	current	Qedit	command.
Control-H	causes	the	cursor	to	backspace	one	position	in	the
current	line.
Control-I	skips	to	the	next	tab	position.
Control-X	cancels	the	current	input	line.
Control-S	pauses	a	listing	that	is	printing	too	fast	for	you	to
read.
Control-Q	resumes	a	listing	that	you	have	paused	with
Control-S.

Editing	control	characters	can	be	tricky.	If	you	use	Set	Editinput	to	clean
your	text	of	line	"noise",	Qedit	will	not	let	you	enter	control	characters	in
Add	or	Replace.	If	you	use	Modify,	it	treats	all	control	characters	as	edit
functions.	If	you	use	Visual,	the	block-mode	terminal	strips	all	control
characters	from	the	text.	There	are	three	things	that	you	can	do:	1)	use
Set	Decimal	ON	and	insert	control	characters	using	Change	"$"	'26,	2)
use	Set	Editinput	Data	OFF	and	enter	them	using	Display	Functions	in
Add	and	Replace,	and	3)	use	Set	Mod	Qzmod	and	insert	them	using
Control-W,	Control-P	(put).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

CRT
CRT	(Cathode	Ray	Tube)	is	a	generic	term	used	to	refer	to	the	terminal.
It	refers	equally	to	"real"	HP	terminals,	clones	of	HP	terminals	made	by
other	companies,	and	PCs	that	run	terminal	emulation	software.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Current	Line
The	current	line	is	the	line	you	last	accessed.	You	can	refer	to	it	using	the
special	character	"*"	instead	of	a	linenum.	For	most	commands,	*	is	also
the	default	rangelist.	For	example,	VIS	sends	you	into	full-screen	mode
around	the	current	line.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Defaults
When	Qedit	asks	you	a	question,	it	puts	the	"default"	answer	in	brackets
(e.g.,	Purge	file?	[no]).	The	default	is	usually	the	option	that	would	do	the
least	harm	to	your	file.	That	is,	"do	not	complete	the	task",	"do	not	erase
the	file",	or	"do	not	upshift	the	line".	If	you	press	Return	to	the	question,
Qedit	will	take	the	default.	In	batch	processing,	there	is	no	one	available
to	answer	the	question,	so	Qedit	must	decide	on	the	proper	answer	for
you.	Qedit	assumes	that	you	want	your	batch	task	to	complete,	so	it
always	selects	the	option	that	will	complete	the	command	successfully.
That	is,	"do	clear	the	file",	or	"do	upshift	the	line".

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

External	File
Although	you	can	only	edit	the	workfile	that	is	currently	Open,	Qedit
accesses	files	for	other	purposes	than	editing.

Qedit	reads	external	files	in	the	Add,	Hold,	List,	Merge,	Text	and	Use
commands:

/add	100.1=tfile	{adds	lines	from	"tfile"	at	line	100.1}

/list	tfile	{lists	the	contents	of	"tfile"}

/text	tfile	{makes	a	copy	of	"tfile"}

/use	tfile	{executes	Qedit	commands	from
"tfile"}

/merge	tfile	{merge	in	contents	of	"tfile"}

/hold	sample	1/5	{write	lines	1/5	of	sample	to
Hold	file}

Qedit	recognizes	three	types	of	external	files:

Other	Qedit	workfiles.
NUMBERED	text	files.	Each	record	contains	a	line	number
field.	The	lines	are	sorted	by	the	line	number.	This	is	the	file
created	by	a	Keep	command.
UNNUMBERED	text	files.	Records	with	no	line	number	field.
These	are	created	by	a	KQ	command	or	by	Keep	file,UNN.
The	language	is	set	to	Data.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

File	Names
A	filename	is	any	valid	HP-UX	file	name	and	is	used	in	Qedit	commands
to	identify	a	workfile	for	editing	(Open,	New,	Text)	or	an	external	file	to	be
accessed	in	some	way	(Add,	Keep,	List,	Text	and	Use).	Qedit	accepts	file
names	up	to	240	characters	long,	containing	underbars	(_)	and	dashes	(-
).	The	following	commands	all	contain	valid	file	names:

/open	qedt3p1.source	{open	file	for	editing	work}

/add	50.1	=	abcd.pub	{copy	in	lines	from	a
file}

/new	qedt3p2.qedit	{create	a	new	Qedit
workfile}

/keep	test.c	{convert	workfile	to	Keep	file}

/text	/GREEN/BOB/temp-dash
/list	/GREEN/BOB/temp_underbar

File	names	that	include	special	characters	might	cause	problems	to
Qedit.	For	example,

/Text	file:name
Error:	Extra	or	invalid	character	in	Text	command

If	you	run	into	this,	you	can	use	the	$file	keyword	instead.	The	$file
keyword	can	be	used	wherever	a	file	name	is	expected	such	as	in	the
Text,	Add,	List	commands.	The	syntax	is:

$file[=]"filename"

$File	is	a	reserved	keyword,	which	is	followed	by	an	optional	equal	sign
and	the	file	name	enclosed	in	string	delimiters.	Without	doing	anything	to
the	string,	Qedit	tries	to	open	the	specified	file.	The	previous	example
now	becomes:

http://www.robelle.com/products/qedit

/Text	$file="file:name"
10	lines	in	file

	 	

http://www.robelle.com/products/qedit

	 	

Full-Screen	Editing
To	use	the	full-screen	editor	of	Qedit,	use	the	Visual	command.	This
feature	works	on	most	HP	terminals	with	block-mode	and	provides	many
powerful	features,	including	navigation	while	in	Visual	mode.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Hold	File
There	are	two	Hold	files.	You	can	explicitly	save	lines	in	the	file	called
Hold	by	using	the	Hold	command,	or	HH	/HJ	in	Visual	mode.	Lines	are
written	to	the	Hold0	file	every	time	you	move	or	copy	with	the	Add
command	(MM,	CC,	and	DD	in	Visual	mode).	You	can	refer	to	the
contents	of	these	files	by	their	file	names	in	any	of	the	commands	that
access	external	files,	such	as	Add-File,	List,	and	Use.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

J	Option
You	may	append	one	or	two	option	letters	to	a	command	name:	Q,	T,	or
J.	For	example,	the	List	command	has	these	options:	LQ,	LT,	LJ,	LQJ,
and	LQT.	The	J	option	specifies	left-justified	or	"jumping"	or	other	options.
For	example:

/lj	{List-Jumping	to	browse;	type	N	to	stop}

/lqj	{List-Jumping	without	sequence	numbers}

/cj"*"."	{verify	each	change	before	updating}

/aj	*	{add-justified	after	*;	same
indentation}

/rj	423	{replace-justified;	same	indentation}

/hoj	1/9	{append	rangelist	to	end	of	holdfile}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Jumbo	Files
Introduced	in	Qedit	4.3,	Jumbo	files	are	files	in	a	new	Qedit	file	format.
They	are	similar	in	structure	to	original	Qedit	files,	but	Jumbo	files	can
hold	lines	up	to	1,000	characters.	In	addition,	Jumbo	files	can	contain	up
to	99	million	lines.

Starting	in	Qedit	4.6.57,	there	is	a	new	workfile	format	known	as	Wide-
Jumbo.	These	expanded	Jumbo	files	can	hold	lines	up	to	8,172
characters.

If	you	pass	a	Jumbo	file	to	a	program	that	knows	about	Qedit	files	but	not
Jumbo	files,	the	file	will	appear	to	be	empty	to	the	program.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Keep	File
A	Keep	file	is	a	disc	file	that	is	created	by	the	Keep	command	of	Qedit.
See	external	file.	A	Keep	file	cannot	be	edited	per	se,	because	you
cannot	insert	lines	in	it.	A	Qedit	workfile	is	designed	to	hold	the	same
data	as	a	Keep	file,	but	more	compactly	and	with	the	ability	to	insert	lines.
Use	the	Text	command	to	copy	a	Keep	file	into	Qedit	format.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Language
Qedit	works	on	files	of	standardized	formats	called	languages.	Most	are
programming	languages:	COBOL,	FORTRAN,	SPL,	and	Pascal.	The
"language"	Data	is	provided	for	files	with	a	nonstandard	line	length	(e.g.,
Set	Length	45,	Set	Length	132),	but	less	than	or	equal	to	1,000	columns
per	line.	The	"language"	Text	is	like	the	language	Data,	but	for	lines	with
less	than	256	columns.	The	language	of	a	file	tells	Qedit	how	long	the
records	may	be,	where	the	sequence	number	goes,	and	much	more.

For	Qedit	workfiles,	the	language	is	assigned	to	the	file	when	it	is	created
(see	Set	Lang,	New	and	Text).

Qedit	also	determines	a	language	for	each	external	file	(COBOL,
COBOLX,	SPL,	FORTRAN,	Pascal,	RPG,	Job,	Text)	by	looking	at	the
maximum	record	length,	the	file	name	extension	and	the	format	of	the
first	record.	When	external	files	are	accessed,	Qedit	determines	these
attributes	following	rules	that	are	defined	in	appendix	B.	There	is	no	need
to	specify	the	Lang	explicitly,	unless	there	is	an	ambiguity	(e.g.,	/Text
datafile,UNN	because	the	file	has	numbers	in	last	eight	columns).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Left
The	Set	Left	command	allows	you	to	set	a	left	margin	for	lines	in	your
workfile.	When	you	do	this,	existing	data	to	the	left	of	the	margin	column
is	retained	unchanged,	even	though	you	may	edit	the	rest	of	the	line.	Of
course,	if	you	Delete	a	line,	the	entire	line	is	gone.	You	can	also	use	Set
Right	to	create	a	right	margin.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Length
The	maximum	length	of	lines	in	a	Qedit	workfile	is	8,172	columns,	if	the
file	has	Set	Lang	Data.	Other	Lang	values	are	limited	to	length	80	or	less
(72	for	SPL,	FORTRAN,	and	Pascal,	74	for	COBOLX	and	66	for	COBOL
without	the	comment	columns).	For	Text	and	Data	files,	the	maximum	line
length	can	be	defined	using	Set	Length	(maximum	is	256	for	Text,	and
8,172	for	Data).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Line
A	line	is	a	sequence	of	characters	within	a	Qedit	workfile.	It	has	a	length
which	may	vary	as	the	line	is	edited	and	a	maximum	length.	Many	Qedit
commands	are	based	on	the	line.	List	displays	lines,	Delete	deletes	lines,
etc.	If	you	use	margins	(Set	Left,	Set	Right),	you	can	only	list	and	edit	the
portion	of	the	line	within	the	margins.	Each	unique	line	has	a	linenum	that
determines	its	position	within	the	workfile.

55.01	Sample	line	of	text.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Linenum
Each	line	in	the	workfile	has	a	linenum	(e.g.,	999.99)	that	determines	its
relative	location	in	the	workfile.	Because	each	line	number	has	a
fractional	part,	lines	can	be	added	between	existing	lines.	For	example:

/add	1.1
1.1	line	inserted	between	1	and	2.
1.2	line	inserted	between	1.1	and	2.
1.3	//
/list	1/2
1	*REMARK
1.1	line	inserted	between	1	and	2.
1.2	line	inserted	between	1.1	and	2.
2	IDENTIFICATION	DIVISION.

The	smallest	increment	that	you	can	have	between	two	lines	is	0.001.
After	adding	enough	lines	in	a	single	spot,	you	will	not	be	able	to	add	any
more.	For	example,	lines	cannot	be	added	between	5.111	and	5.112.
When	this	happens,	use	Renum	to	renumber	all	or	part	of	your	file,	or
use	Set	Vis	Renum	On.

The	simplest	form	of	Qedit	commands	refers	to	a	single	linenum:

nnnnn.nnn:	1	1.0	1.05	.05	100	1000	10000.001
FIRST:	the	first	line	in	the	file	(lowest	line	number)
LAST:	the	last	line	in	the	file	(highest	line	number)
[:	default	abbreviation	for	FIRST
]	:	default	abbreviation	for	LAST
:	the	most	recently	accessed	line

Examples	of	commands	that	refer	to	a	single	linenum	are:

/add	50.1	{add	new	lines	at	line	50.1}

/c	"X"Y"	100	{change	X	to	Y	in	line	100}

http://www.robelle.com/products/qedit

/delete	last	{delete	the	last	line	in	the
file}

/list	[{list	the	first	line	in	the	file}

/modify	*	{modify	the	"current"	line}

/replace]-1	{replace	penultimate	line	in
file}

/list	200.1	{list	line	200.1,	if	it	exists}

Qedit	also	supports	relative	line	numbers,	as	in	List	LAST-5	or	Modify
-5/+5.

	 	

http://www.robelle.com/products/qedit

	 	

Margins
Using	Set	Left	and	Set	Right	you	can	define	margins	for	your	workfile.
The	existing	data	outside	the	margins	is	unchanged	when	you	edit	within
the	margins.	This	can	be	extremely	useful	for	editing	files	with	more	than
80	columns	per	line.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Memory	Lock
Qedit	has	commands	for	enabling	and	disabling	the	terminal	Memory
Lock.	This	is	so	that	you	can	leave	the	User	Keys	displayed	on	your
terminal	and	still	access	the	Memory	Lock	function:

/$	{or	$+enables	memory	lock}

/$-	{disables	memory	lock}

To	use	memory	lock	when	prompted	for	a	command,	just	move	the
cursor	up	to	the	desired	line,	type	"$"	and	hit	Return.	This	feature	does
not	work	in	Visual	mode.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Patterns
You	can	ask	Qedit	to	look	for	a	pattern	instead	of	a	specific	string	by
using	the	Pattern	window	option:

	/list	".@key@"	(pattern)

The	command	above	displays	all	lines	that	contain	a	period	in	column	1,
and	the	string	"key"	with	anything	in	between	and	at	the	end.	The	string
window	can	also	specify	Upshift	to	ignore	case	and	Nomatch	to	select
lines	that	fail	to	match.

Qedit	will	only	find	the	pattern	within	a	single	line	of	text,	not	spanning
two	lines.

The	special	characters	in	a	pattern	are:

@	to	match	anything,	including	nothing
#	to	match	a	single	numeric	digit
?	to	match	a	single	alphanumeric	character
~	(tilde	or	wavy	line)	to	match	zero	or	more	spaces
&	match	next	character	(use	to	match	"@")
^	(reserved	for	future	use)
!	(reserved	for	future	use)

Important:	At-signs	(@)	are	needed	at	both	ends	of	a	pattern	if	you	want
to	search	for	a	pattern	at	any	spot	in	the	line.	List	"QEDIT"	(PATTERN)
matches	only	lines	consisting	of	"QEDIT"	only,	starting	in	column	1.

The	Nomatch	and	Pattern	options	are	ignored	for	the	Change	target
string.	If	you	try	to	use	them,	Qedit	prints	a	warning.

Here	are	some	sample	commands	containing	window	options:

/list	"bob"	(upshift)	{"bob","BOB","Bob",etc.}

/list	"@BOB@"	(pattern)	{lines	containing
"BOB"	anywhere}

http://www.robelle.com/products/qedit

/list	"BOB@"	(pattern)	{lines	with	"BOB"	in
column	1}

/del	"&@@"	(pattern)	{delete	lines	starting
with	@}

/mod	"@fix@QEDIT@"(pat)	{lines	with	two
strings}

/delete	"~"	(pattern)	{delete	all	blank	lines}

/list	"^[A-Z][a-z]*"	(regexp)	{lines	starting
with	an	uppercase}

	 	

http://www.robelle.com/products/qedit

	 	

Quiet-Q	Option
You	may	append	one	or	two	option	letters	to	a	command	name:	J,	T,	and
Q.	For	example,	the	Add	command	has	these	variations:	AddQ,	AddT,
AddJ,	AddQT,	and	AddQJ.	The	Q	option	means	QUIET,	without	line
numbers,	or	without	printing	the	lines	processed.	For	example:

/lq	5/10	{list	lines	5/10	without	line	numbers}

/kq	paul	{save	lines	without	line	numbers}

/aq	5.01	{add	new	lines,	but	don't	prompt}

/aq	10.00=abc	{add	file	without	printing	the
lines}

/hq	45.1/.9	{replace	Hold,	but	don't	print
lines}

/cq	"X"Y"	{change	X	to	Y,	but	don't	print
line}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Range
A	range	is	just	a	series	of	lines	defined	by	a	starting	line	number,	a	slash
(/)	and	an	ending	line	number.	ALL	is	short	for	FIRST/LAST	and	@	is
short	for	ALL.	If	the	ending	line	is	left	off,	Qedit	assumes	LAST.	You	can
shorten	a	range	like	516/516.554	to	516/.554.

/a	20=100/120	{copy	range	100/120	after	line	20}

/c	"X"Y"	*/200	{change	X	to	Y	in	current	line
to	200}

/delete	all	{delete	the	range	ALL}

/keep	tF3	[/200	{write	the	range	[/200	to	a
file}

/list	100/	{list	the	range	100	to	LAST}

/m	1111/.99	{modify	the	range	1111/1111.99}

/list	last-10/	{list	the	last	11	lines	in	the
file}

/l	@	{list	the	entire	workfile}

/zz	5/10;l	zz	{mark	a	range,	then	list	it}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Rangelist
Qedit	commands	usually	contain	a	part	called	the	rangelist.	A	rangelist	is
simply	a	sequence	of	line	ranges	separated	by	spaces	or	commas.	Here
are	some	sample	ranges:

Range Means
1 a	single	line
1/4 lines	1	through	4,	inclusive
25/100.1 lines	25	through	100.1
100/ lines	100	through	the	LAST	line
ALL lines	FIRST	through	LAST
-9/+9 area	around	current	line

Here	are	some	sample	rangelists:

Rangelist Means
1,5 lines	1	and	5
1/5	10/20 lines	1	through	5	and	10	through	20
25,33/100 lines	25	and	33	through	100

A	rangelist	can	contain	overlapping	lines.	Qedit	does	not	try	to	resolve
the	ranges	into	a	list	of	ordered,	unique	lines.	The	ranges	are	processed
as	they	appear	in	the	list.

Rangelist Means
30/40,1/10 lines	30	to	40,	then	1	to	10
1/10	5/20 lines	5	to	10	are	processed	twice
all,all process	the	entire	file	twice

A	rangelist	can	also	contain	a	string	search:

Rangelist Means
"strg" search	the	entire	file	for	"strg"
"strg"	10/20 search	only	lines	10	through	20

A	rangelist	can	include	up	to	10	strings	(see	String	for	definition).	Strings
are	separated	from	each	other	by	an	 OR	or	 AND	keyword.

http://www.robelle.com/products/qedit

Each	string	can	have	its	own	search	setting	such	as	column	range	and
options.	 OR	and	 AND	keywords	can	not	be	mixed	in	a	rangelist.

When	OR	is	used,	each	string	is	compared	in	turn	against	the	text.	As
soon	as	a	match	is	found,	the	line	is	selected.	Thus,	most	commonly
found	strings	should	be	placed	at	the	beginning	of	the	list	to	increase
speed.

For	example,

/List	"abc"	or	"xyz"{	search	for	"abc"	or	"xyz"	}

/C	1/2	"ME"	"abc"	(u	30/35)	or	"xyz"	(50/60	s)

{	search	for	caseless	"abc"	in	columns	30/35	or
smart	"xyz"	in	columns	50/60	}

When	 AND	is	used,	all	strings	are	searched	for	on	each	line	and	all
strings	must	be	found	for	the	line	to	be	selected.	The	strings	do	not	have
to	be	in	the	same	order.	As	soon	as	one	string	is	not	found,	the	line	is
rejected.

For	example,

/List	"abc"	and	"xyz"
				{	search	for	"abc"	and	"xyz".	Both	strings	must	be	present,	}
				{	anywhere	on	the	line,	in	any	order																								}
/C	1/2	"ME"	"abc"	(u	30/35)	and	"xyz"	(50/60	s)
				{	search	for	caseless	"abc"	in	columns	30/35	and									}
				{	smart	"xyz"	in	columns	50/60																											}
				{	If	either	string	is	missing,	the	line	is	not	selected.	}

The	complete	rangelist	is	saved	and	used	when	the	"previous	string"
syntax	(i.e.,	a	null	string)	is	entered.	For	example,	 /List	"".

Each	command	has	a	default	rangelist.	The	following	commands	default
to	"*",	the	current	line:

Add,	Append,	Change,	Delete,	Find	(start	search	at	*),	Hold,	List,	Modify,
Proc,	Replace,	Visual	(enter	Visual	mode	at	current	line),	ZZ.

Justify	defaults	to	"*"	for	Center,	Left,	or	Right,	and	to	*/end	(maintaining
blank	lines	between	paragraphs)	for	Format	or	Both.

Before,	Do,	and	Redo	defaults	to	the	last	command	entered.

	 	

http://www.robelle.com/products/qedit

	 	

Relative	Line	Numbers
When	you	tell	Qedit	which	line	you	are	interested	in,	you	can	either
specify	the	exact	line	number,	as	in

/list	5	or	/list	last

or	you	can	specify	a	position	relative	to	an	exact	line,	as	in

/list	*+6	or	/list	last-1

The	first	lists	a	line	that	is	6	lines	after	the	current	line	and	second	lists
the	second	from	last	line	in	the	file.	The	"*"	is	optional.	Relative	line
numbers	can	go	forward	or	backward	10,000	lines.

To	modify	the	text	around	the	current	line,	use

/modify	*-5/	{use	Control-Y	to	stop	the	Modify}

/modify	-5/	{the	*	is	optional}

Qedit	will	even	let	you	use	relative	line	numbers	when	looking	at	an
external	file,	as	in

	/list	invoice.job	last-10/last

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Right
You	can	use	the	Set	Right	command	to	define	a	right	margin	for	the	lines
in	your	file.	Any	data	beyond	the	margin	will	remain	unchanged	as	you
edit	the	data	to	the	left	of	the	margin.	You	can	also	set	a	left	margin	with
Set	Left.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Shifting
The	Qedit	string	window	has	an	option	to	match	strings	even	if	they	differ
in	case.	If	you	want	to	match	"speed	demon",	"SPEED	DEMON"	or	even
"Speed	Demon",	do:

/list	"speed	demon"	(upshift)

If	you	want	to	change	the	case	of	letters	in	your	text,	use	either	Proc
DOWN	(downshift	entire	lines),	Proc	UP	(upshift	entire	lines),	^W^S^D	in
Qzmodify	(downshift	from	cursor	to	end	of	line),	^W^S^U	in	Qzmodify
(upshift	to	end	of	line),	or	^C	in	Qzmodify	(reverse	case	of	cursor).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

String
Most	Qedit	commands	can	specify	a	string	of	characters	to	be	searched
for	in	the	workfile.	Only	lines	containing	the	string	are	processed	by	the
command.	A	string	is	delimited	by	quote	characters	("SAM")	or	by	one	of
these	other	special	characters:

	'		\		~		:		|		%

The	delimiter	list	can	be	customized	with	the	Set	Stringdelimiters
command.

The	maximum	length	of	a	string	is	80	characters.	Apostrophe	is	a	valid
string	delimiter	when	Set	Decimal	is	OFF	(handy	because	'	is	an
unshifted	key	on	many	keyboards).	All	these	delimiters	can	be	used
within	Qedit	commands.	Some	delimiters,	like	the	colon,	cannot	be	used
in	an	implied	search	or	on	the	home	line	(===>)	in	full-screen	mode.

/QEDIT	{find	the	next	occurrence	of	the	word	QEDIT}

/:QEDIT:	{colon	prefix	identifies	a	system
command}

You	can	specify	more	precise	string	matching	by	appending	a	window	to
the	string	("SAM"	(UPSHIFT),	etc.).	A	null	string	("")	refers	to	the	previous
string	entered,	with	the	same	window	as	before.	For	example:

/c	"QEDIT"Quedit"@	{change	spelling	in	all	lines}

/l	'QEDIT'	(upshift)	{match	uppercase	and
lowercase}

/find	\withh\	{find	spelling	error;	fix	it}

/change	\\with\

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Tab
The	TAB	key	can	be	used	to	skip	logically	to	the	next	Tab	stop	(also
physically,	if	Tabs	are	set	on	the	terminal).	If	more	Tabs	are	included	in	a
line	than	there	are	Tab	stops,	a	new	work	line	is	created.	The	default	tab
key	is	Control-I	(TAB),	but	it	can	be	changed	(Set	Tabs	"_").	The	default
Tab	stops	are	every	10	columns	(MPE)	or	every	8	columns	(HP-UX),	but
you	can	set	the	tabs	to	whatever	columns	you	like	with	Set	Tabs.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Template-T	Option
You	may	append	one,	two,	or	three	option	letters	to	a	command:	Q,	J,	or
T.	For	example,	the	List	command	has	these	variations:	ListQ,	ListT,
ListJ,	ListQJ,	and	ListQT.	The	T	option	causes	a	column-number
template	to	be	printed	once	before	the	command	is	processed.	The	T
option	is	most	useful	with	Add,	List	and	Modify.

/LQT	1	{T=template	of	column	numbers}

1...+....10...+....20...+....30...+....40...+....
LINE	1.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Visual	Editing
Besides	the	traditional	Line	mode	editing	that	Qedit	supplies,	it	has
another	editor	built	into	it,	a	full-screen	editor	entered	via	the	Visual
command.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

Window
A	window	is	used	to	limit	the	extent	of	string	matching.	Normally,
specifying	a	string	in	a	rangelist	implies	processing	all	lines	where	the
string	occurs	anywhere	within	the	line,	regardless	of	starting	column	and
surrounding	context.

With	a	window,	string	matching	can	be	restricted	to	a	specified	column
window	(example:	10/30	means	column	10	through	column	30).
Shorthand:	(1)	=	(1/1),	([/30)	=	(first	column/30),	and	(30/])	=	(30/last
column).	Use	a	(1/132)	window	with	"TEXT"	files	to	reduce	the	record
width	to	132	columns.	The	column	numbers	begin	with	7	in	COBOL	and
1	in	the	other	languages.

The	complete	syntax	for	a	window	is:	([column/column]	[keyword]...)

The	window	keywords	are

Window	keyword Default
(SMART	|	NOSMART) NOSMART
(UPSHIFT	|
NOUPSHIFT) NOUPSHIFT

(PATTERN	|
NOPATTERN) NOPATTERN

(MATCH	|	NOMATCH) MATCH
(REGEXP	|
NOREGEXP) NOREGEXP

A	single	window	may	specify	multiple	options	separated	by	spaces	or
commas	and	following	the	column	range,	but	if	Pattern	is	included	the
Smart-NoSmart	option	is	ignored.	That	is,	(Upshift	Pattern)	makes	sense,
but	(NoSmart	Pattern)	does	not.	The	options	are	independent	and	setting
or	resetting	one	does	not	change	the	others.

With	the	Smart	keyword,	Qedit	matches	a	string	only	if	the	string	is
preceded	by	a	"special"	character,	or	the	start	of	the	window,	and	is
followed	by	a	"special"	character,	or	the	end	of	the	window.	In	SPL,	the
apostrophe	is	not	"special".	In	COBOL,	the	hyphen	is	not	"special".	In
Pascal,	the	underline	is	not	"special".	In	FORTRAN,	embedded	spaces
are	allowed.

When	you	specify	Nomatch,	Qedit	selects	the	lines	that	do	not	contain
the	string.	The	default	of	course	is	MATCH	to	select	lines	that	do	contain

http://www.robelle.com/products/qedit

the	string.

With	the	Upshift	window	keyword,	Qedit	ignores	the	case	of	letters	in
deciding	whether	to	find	a	match.

Pattern	means	that	the	string	in	the	window	is	to	be	treated	as	a	pattern
to	be	matched	(i.e.,	"@UPD@MASTER@").	It	may	be	combined	with
Upshift.

Regexp	means	that	the	string	in	the	window	is	to	be	treated	as	a	regular
expression	to	be	matched	(i.e.,	"UPD.*MASTER").	It	may	be	combined
with	Upshift.

Here	are	some	example	uses	of	windows:

/list	".begin"	(1/10	upshift)	{.begin	in	1st	10	cols}

/list	"@begin@end@"	(pattern	upshift)
{...begin...end...}

/list	"^begin.*end$"	(regexp	noup)
{begin...end}

A	window	can	be	specified	permanently	with	the	Set	Window	command,
or	temporarily	after	any	string	in	a	rangelist.	For	example:

/set	window	(smart)	{use	Smart	for	all	string	searches}

/list	"sum"	{defaults	to	Smart	searching}

/l	"Sam"	(upshift)	{upshift	in	this	command
only}

	 	

http://www.robelle.com/products/qedit

	 	

Workfile
Qedit	manipulates	a	collection	of	text	lines	that	is	called	a	workfile.	The
workfile	is	a	compact	disc	file	with	a	permanent	name	that	you	can	edit.
Use	New	or	Text	to	build	them.	The	scratch	file	is	a	special	workfile	that	is
the	default,	temporary	workfile.

To	provide	the	fastest	possible	response	time,	Qedit	does	not	write	every
word	that	you	type	out	to	the	disc.	Thus,	after	a	system	crash	(or	phone
disconnection),	you	could	lose	up	to	10	lines	of	text.	If	you	wish	to	force
Qedit	to	post	your	changes	to	the	disc,	you	can	either	Shut	the	workfile	or
do	an	HP-UX	command	(e.g.,	ls).

Qedit	saves	the	"context"	of	the	workfile	(i.e.,	Set	Left/Right,	current	line
number,	Set	Length,	etc.)	when	you	Shut	it.	When	you	Open	the	workfile
again,	Qedit	recalls	the	same	context.	The	Open	command	prints	a
compact	warning	of	any	features	it	sets	from	the	user	label.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Special	Characters
Certain	nonalpha	and	nonnumeric	characters	like	*	and	/	have	special
meaning	within	Qedit:

More:
?	Means	Help,	Nonprinting	Characters,	Alphanumeric	(in	Patterns)	or
Optional	(in	Regexp)
$	Means	Hex,	Memory	Lock,	List	Option,	Previous	File	or	End-Of-Line	(in
Regexp)
^	Means	Findup,	Control-Char,	Start-of-line	(in	Regexp)	or	Negate	(in
Regexp)
.	Means	Nonprinting,	Reset,	Decimal	Point	or	Any	Character	(in	Regexp)
!	Means	Shell	Script	or	Too	Long
%	Means	Octal	or	String
*	Means	Current,	Refresh,	Multiply	or	Quantifier	(in	Regexp)
\	Means	Previous,	String,	Literal	Match	(in	Regexp)	or	Special	Characters
(in	Regexp)
/	Means	Prompt,	Range	Delimiter,	Stop,	Exit,	or	Divide
[Means	FIRST,	[default]	or	Start	Class	(in	Regexp)
]	Means	LAST	or	End	Class	(in	Regexp)
{	}	Are	for	Comments	or	Indentation
@	Means	ALL
&	Means	Literal	Match
:	Means	Shell	Commands	or	String
;	Means	Multiple	Commands
,	Means	a	List
=	Means	Copy	or	Calculate
<	Means	Move,	I/O	Redirection	or	Backward	Page
>	Means	Forward	Page,	I/O	Redirection,	Modify	or	Qhelp
"	Means	String
(Means	Start	Parameter,	Command	or	Subpattern	(in	Regexp)
)	Means	End	Parameter,	Command	or	Subpattern	(in	Regexp)
+	Means	Ahead	Some	Lines,	Add	or	Quantifier	(in	Regexp)
-	Means	Back	Some	Lines,	Minus	or	Range	(in	Regexp)
#	Means	Numeric	Pattern
~	Means	Spaces	(Pattern),	Recent	Page	or	Field

	 	

http://www.robelle.com/products/qedit

	 	

?
Means	Help,	Nonprinting	Characters,
Alphanumeric	(in	Patterns)	or	Optional	(in
Regexp)
Typing	a	question	mark	in	the	Visual	home	line	or	in	response	to	the	Line
mode	prompt	(/),	is	a	request	for	on-line	Help.	In	Visual	you	can	get	more
detailed	assistance	by	typing	Help,	instead	of	"?,"	in	the	home	line.

When	Visual	prints	a	?	at	the	start	of	a	line,	it	means	that	the	line
contains	nonprinting	characters,	which	are	replaced	by	dots	(.).

Question	mark	"?"	in	patterns	matches	a	single	alphabetic	or	numeric
character:

/list	"BASE??"(pattern)	{"BASE"	plus	2	alphanumerics}

A	question	mark	(?)	in	regular	expressions	qualifies	the	preceding
character	and	makes	it	optional.	This	means	the	character	may	or	may
not	be	there.	In	either	case,	the	search	is	successful.

/list	"cancell?ed"	(regexp)	{"canceled"	and	"cancelled"
are	found}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

$
Means	Hex,	Memory	Lock,	List	Option,	Previous
File	or	End-Of-Line	(in	Regexp)
Dollar	sign	is	used	by	Qedit	to	enable	(/$)	and	disable	(/$-)	memory	lock
at	the	current	line.

In	the	calculator,	$	is	the	prefix	for	a	hexadecimal	value	(=$FF).

The	List	command	has	a	variety	of	temporary	options	preceded	by	$.	For
example:

/list	$octal	5/6	{octal	dump}

/list	$incl	abc	{Include	files}

$	can	be	used	as	a	shortcut	to	refer	to	the	"previous"	file	name
referenced	in	a	Qedit	command.	For	example,	after	List	XXX,	the	$	file
name	is	XXX.	If	you	already	have	an	open	workfile	or	scratch	file,	a	Text
or	Open	command	makes	Qedit	shut	the	current	workfile.	Thus,	the	$	file
name	now	contains	the	previous	workfile	name.	If	you	are	not	using	a
workfile,	then	$	is	not	updated	by	the	Text	or	Open	command.	However,	it
is	updated	by	a	Shut	command	without	a	file	name.	You	can	use	$	as	a
shortcut	in	commands	that	refer	to	an	external	file	name	(Open	$,	Add	1
=	$,	List	$,	Use	$,	etc.).	Verify	$	shows	you	the	name	of	the	"previous"
file.

A	dollar	sign	($)	in	regular	expressions	identifies	the	end	of	a	line.	It	takes
on	this	meaning	only	if	it	is	the	last	character	in	the	regexp.	If	used
anywhere	else	in	the	expression,	the	dollar	sign	is	used	as	a	literal.

When	it	represents	the	end	of	a	line,	the	dollar	sign	can	find	a	successful
match	only	when	the	string	is	the	last	thing	on	a	line.

/list	"The	END$"	(regexp)	{line	must	end	with	"The	END"}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

^
Means	Findup,	Control-Char,	Start-of-line	(in
Regexp)	or	Negate	(in	Regexp)
The	circumflex	character	(^)	is	a	short	name	for	the	Findup	command.	In
documentation,	it	often	indicates	a	control	character	(^A	is	Control-A).	If
you	are	not	on	an	HP	terminal,	you	can	use	^1	through	^8	to	simulate	the
user	function	keys	in	Line	mode.	That's	circumflex-1,	not	Control-1!

The	circumflex	(^)	in	regular	expressions	identifies	the	start	of	a	line.	It
takes	on	this	meaning	only	if	it	is	the	first	character	in	the	regexp.	If	used
as	the	start-of-line,	it	indicates	that	the	string	must	be	the	first	thing	on
that	line	for	a	successful	match.

/list	"^Once	upon"	(regexp)	{line	must	start	with	"Once
upon"}

If	it	used	anywhere	in	the	expression	and	is	not	preceded	by	a	backslash,
it	is	used	as	a	literal.

If	the	circumflex	(^)	in	a	regular	expression	is	preceded	by	a	backslash
(\),	it	indicates	a	control-character	combination.	The	character	to	the	right
of	the	circumflex	makes	up	the	actual	control	character.

/list	"\^G"	(regexp)	{Control-G	or	Bell	character}

The	circumflex	(^)	in	a	character	class	within	regular	expressions	negates
the	list	of	characters	in	the	class.	It	takes	on	this	meaning	only	if	it	is	the
first	character	in	the	class.	If	used	anywhere	else	in	the	class,	it	is	used
as	a	literal.

If	used	as	a	negation,	it	indicates	that	the	match	is	successful	if	the
character	in	the	specified	position	of	the	text	is	not	in	the	class	list.

/list	"[^abc]"	(regexp)	{successful	if	not	"a,"	"b,"	or	"c"}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

.
Means	Nonprinting,	Reset,	Decimal	Point	or	Any
Character	(in	Regexp)
The	most	common	use	of	a	period	is	as	a	decimal	point	in	line	numbers:
12.3.

Visual,	Qzmodify	and	List	$char	use	a	period	to	represent	nonprinting
characters	in	displays.

A	period	as	a	command	at	the	Visual	home	line	means	"reset	the	current
Cut	and	Paste	task".

A	period	or	dot	(.)	in	regular	expressions	is	a	placeholder	for	any
character.

/list	"[a.c]"	(regexp)	{one	character	between	"a"	and	"c"}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

!
Means	Shell	Script	or	Too	Long
Put	an	exclam	"!"	at	the	start	of	a	line	to	indicate	a	shell	script	or
command.

/!ls	{list	current	directory}

When	a	line	is	too	long	to	print	on	the	Visual	screen,	Qedit	prints	an
exclamation	mark	at	the	start	of	the	line.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

%
Means	Octal	or	String
Percent	(%)	means	either	an	octal	value	(%454)	or	a	string	(/list	%xxx%).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

*
Means	Current,	Refresh,	Multiply	or	Quantifier
(in	Regexp)
In	the	calculator,	*	means	multiply,	as	in	 =5*30.

In	Visual,	an	*	at	the	 ===>	command	lines	tells	Qedit	to	Refresh
the	screen.	When	using	Set	Vis	Update	On	to	automatically	update	the
screen,	*>	or	*<	moves	ahead	or	back	one	page,	without	updating	the
current	page.

You	can	refer	to	the	current	line	in	your	workfile	by	means	of	"*"	(e.g.,
Modify	*-10/*+10).	"*"	is	usually	the	default	rangelist	for	a	command	if	you
do	not	specify	one.	The	*-pointer	is	moved	by	these	commands:

Command Status	of	"*"	After	the	Command
Add last	line	added.
Change last	line	changed.
Delete previous	or	next	line,	it	depends.
Find last	line	found	or	end-of-file.
Findup last	line	found	or	start-of-file.
Hold last	line	held.
Justify last	line	updated.
Keep no	change	to	current	line.
List last	line	listed.
Lsort last	line	sorted.
Modify last	line	modified.
Proc last	line	passed.
Replace last	line	replaced.
Text first	line	in	file.
Visual *-line	of	last	page	displayed.

An	*	can	also	refer	to	the	"current"	(or	recent)	workfile;	as	in	Open	*	or
Use	*.	The	*	shortcut	refers	to	the	currently	open	Qedit	workfile	unless
none	is	open,	then	it	refers	to	the	one	most	recently	Shut.

An	asterisk	(*)	in	regular	expressions	indicates	the	preceding	element
might	repeat	zero	(optional)	or	more	times	in	the	text.

http://www.robelle.com/products/qedit

/list	"op*q"	(regexp)	{"p"	might	be	missing	or	appears
many	times}

	 	

http://www.robelle.com/products/qedit

	 	

\
Means	Previous,	String,	Literal	Match	(in
Regexp)	or	Special	Characters	(in	Regexp)
If	you	enter	only	a	Return	in	a	command	line,	Qedit	increments	the
current	line	pointer	to	the	next	line	and	displays	it.

If	you	enter	a	command	line	containing	only	a	backslash	("\"),	Qedit
decrements	the	current	line	to	the	previous	line	and	displays	it.	Entering
several	backslashes	("\\\")	displays	backwards	several	lines.

You	can	also	use	\	as	a	string	delimiter	(e.g.,	/list	\xxx\).

A	backslash	(\)	in	regular	expressions	is	used	to	indicate	the	next
character	must	be	used	as	a	literal.	It	removes	any	special	meaning	this
character	might	otherwise	have.

/list	"\["	(regexp)	{"["	is	not	start	of	character	class}

A	backslash	(\)	in	regular	expressions	might	qualify	the	next	character	as
a	special,	nonprinting	character.	These	are	special	characters:

\b	Backspace
\f	Form	feed
\n	New	line	(line	feed)
\r	Carriage	return
\s	Space
\t	Horizontal	tab
\e	ASCII	escape	character	(ESC)
\DDD	1-3	octal	digits	representing	a	character's	ASCII	value
\xDDD	1-3	hex	digits	representing	a	character's	ASCII	value
\^C	Control	code	(e.g,.	Control-G	(^G)	is	the	Bell	character)

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

/
Means	Prompt,	Range	Delimiter,	Stop,	Exit,	or
Divide
Qedit	uses	the	slash	"/"	in	many	places:

As	the	delimiter	in	a	line	range	(e.g.,	500/600).
As	the	delimiter	in	a	column	range	(e.g.,	Change	1/2	"").
//	(two	slashes)	terminate	input	in	the	Add	command
(same	as	Control-Y).
In	Visual,	/	at	the	===>	line	means	Exit	from	Visual	mode.
In	the	calculator,	as	a	divide	(e.g.,	=100/5).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

[
Means	FIRST,	[default]	or	Start	Class	(in	Regexp)
Left	bracket	([)	is	short	for	the	FIRST	line	in	the	file,	by	default.	This
abbreviation	can	be	changed	with	Set	Zip.

/list	[{list	first	line}

In	questions,	Qedit	shows	the	default	answer	in	square	brackets:

Purge	existing	file	[No]?

In	the	documentation,	[and]	indicate	optional	fields	in	commands	(e.g.,
List	[rangelist]).

Left	square	bracket	([)	in	regular	expressions	indicates	the	start	of	a
character	class.

/List	"x[abc]z"	{character	class	starts	with	"a"}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

]
Means	LAST	or	End	Class	(in	Regexp)
Right	bracket	(])	is	short	for	the	LAST	line	in	the	file,	by	default.	This
abbreviation	can	be	changed	with	Set	Zip.

/delete]	{delete	last	line}

In	the	documentation,	[and]	indicate	optional	syntax	fields	(e.g.,	Delete
[rangelist]).

Right	square	bracket	(])	in	regular	expressions	indicates	the	end	of	a
character	class.

/List	"x[abc]z"	{character	class	ends	with	"c"}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

{	}
Are	for	Comments	or	Indentation
Qedit	commands	can	have	comments	attached	to	them,	as	long	as	they
are	enclosed	in	curly	braces:

/keep	test.c,yes				{update	disc	file}

Qedit	recognizes	these	comments	at	the	"qux/"	prompt	or	in	usefiles.
Qedit	also	accepts	comments	on	the	home	line	in	Visual	mode,	and	at
the	More?	prompt	in	Browse	mode.

Braces	are	also	used	in	the	Add	Justified	and	Replace	Justified
commands	to	indicate	a	change	of	indentation.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

@
Means	ALL
The	at	sign	(@)	means	"all"	in	some	fashion:

/list	@	{all	lines	in	a	file}

/help	list,@	{all	information	about	List}

/l	"Cu@"(pattern)	{all	strings	starting	with
"Cu"}

The	abbreviation	for	"all	lines"	is	@	by	default,	but	can	be	changed	with
the	Set	Zip	command.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

&
Means	Literal	Match
Ampersand	(&)	in	a	pattern-match	string	means	to	match	the	next
character	literally,	even	if	it	is	an	"@"	or	other	character	with	pattern
meaning:

/list	"&@@"(pat)	{all	lines	starting	with	"@"}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

:
Means	Shell	Commands	or	String
Colon	":"	at	the	start	of	a	command	line	indicates	a	shell	script	or
command:

/:who	{show	users	logged	on}

Colon	is	also	a	valid	string	delimiter:

/list	:barbara:

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

;
Means	Multiple	Commands
Semicolon	";"	combines	two	or	more	Qedit	commands	on	a	single	line:

/list	5/10;add	5.5

Entering	several	semicolons	(";;;")	displays	forward	several	lines.

When	combining	Qedit	commands,	be	sure	to	use	the	same	quote
character	in	all	of	them.

Incorrect:

/c7/7"DISPLAY";c\.\\

Correct:

/c7/7"DISPLAY";c".""

If	you	want	to	include	HP-UX	commands	in	the	list	and	their	syntax
requires	semicolons,	Qedit	might	not	be	able	to	parse	the	list	correctly.	To
work	around	this	problem,	you	can	put	parentheses	around	the	whole
command.	For	example,

/list	5;!find	.	-name	testfile	-exec	cat	{}	\;	fails
/list	5;(!find	.	-name	testfile	-exec	cat	{}	\;)	works	fine

If	some	commands	require	semicolons	and	parentheses,	you	have	to	put
the	problematic	command	in	a	shell	script	and	use	it	in	the	command	list
instead.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

,
Means	a	List
Comma	","	separates	items	in	a	list:

/modify	5,	10,	20/30,	44

Most	commas	are	optional	in	Qedit.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

=
Means	Copy	or	Calculate
Equal	sign	"="	usually	means	copy	something:

/add	5	=	inclfile	{copy	"inclfile"	into	your	file}

/add	5	=	10/20	{copy	lines	10/20	after	line	5}

/text	w2	=	w1	{build	"w2"	and	copy	"w1"	into
it}

Equal	sign	at	the	start	of	a	command	means	to	calculate	something:

=10+25	{evaluate	the	expression}

Result=	35.0

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

<
Means	Move,	I/O	Redirection	or	Backward	Page
Less	than	"<"	in	the	Add	command	means	to	move	the	lines	instead	of
copying	them:

/add	5	<	10/20	{move	lines	10/20	after	line	5}

Less	than	"<"	in	an	HP/UX	command	means	to	read	input	from	an
external	file.

!a.out	<	test.script

Less	than	"<"	in	the	Visual	home	line	means	to	move	backwards	one	or
more	pages.

===><3	{move	back	3	pages	after	Enter	or	F7}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

>
Means	Forward	Page,	I/O	Redirection,	Modify	or
Qhelp
Greater	than	">"	in	the	Visual	home	line	means	to	move	forward	one	or
more	pages.

===>>5	{move	ahead	5	pages}

Greater	than	">"	in	an	HP-UX	command	means	redirection	of	output	to	a
file	other	than	stdlist.

	/ls	>	ls.result

The	">"	symbol	is	used	as	a	subcommand	of	HP-style	modify,	invoked	as
part	of	the	Modify,	Redo	or	Before	command,	and	meaning	"end	of	line".

">"	is	the	prompt	when	in	the	QHELP	subsystem.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

"
Means	String
Double	quotes	are	the	nominal	string	delimiter	in	Qedit	(List	"BOB").
However,	you	can	use	any	of	several	special	keys	for	string	delimiters	in
a	command:

/find	"witth"	{double	quotes	as	quote}

/find	:witth:	{use	colon	instead	of	quote}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

(
Means	Start	Parameter,	Command	or	Subpattern
(in	Regexp)
Left	parentheses	"("	introduces	the	size	of	a	file,	a	window	for	string
matches,	and	is	always	matched	by	an	ending	")".

	/list	"string"	(smart	upshift)

Left	parentheses	"("	can	be	used	to	enclose	commands	which	include
commas	or	semicolons	that	might	be	confused	with	delimiters.	Qedit
considers	everything	between	the	left	and	right	parentheses	as	one
command.	This	is	mostly	useful	when	multiple	commands	appear	on	one
line.

/F	"test";(listspf	o	;seleq=[owner=mgr.acct]);Li	*/*+5

Left	parentheses	"("	are	used	to	divide	regular	expressions	into	smaller
portions	called	subpatterns.	Left	parentheses	identify	the	start	of	a
subpattern.

/List	"x(abc)z"	{subpattern	starts	with	"a"}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

)
Means	End	Parameter,	Command	or	Subpattern
(in	Regexp)
Right	parentheses	")"	completes	a	file	size,	a	window	for	string	matches,
and	is	irresistibly	attached	to	"(".

/list	"Robelle"	(upshift)

Right	parentheses	")"	completes	command	enclosure	which	include
commas	or	semicolons	that	might	be	confused	with	delimiters.	Qedit
considers	everything	between	the	left	and	right	parentheses	as	one
command.	This	is	mostly	useful	when	multiple	commands	appear	on	one
line.

/F	"test";(listspf	o	;seleq=[owner=mgr.acct]);Li	*/*+5

Right	parentheses	")"	identify	the	end	of	subpatterns	inside	regular
expressions.

/List	"x(abc)z"	{subpattern	ends	with	"c"}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

+
Means	Ahead	Some	Lines,	Add	or	Quantifier	(in
Regexp)
Plus	(+)	means	move	ahead	a	relative	number	of	lines.

/mod	*+1

A	plus	sign	at	the	Visual	home	line	means	move	roll	ahead	a	number	of
lines.

===>+15	{roll	ahead	15	lines}

Plus	in	the	calculator	means	add	(e.g.,	=5+10).

A	plus	sign	(+)	in	regular	expressions	indicates	the	preceding	element
might	repeat	one	or	more	times	in	the	text.

/list	"op+q"	(regexp)	{"p"	must	be	there	one	or	more	times}

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

-
Means	Back	Some	Lines,	Minus	or	Range	(in
Regexp)
Minus	(-)	means	back	a	relative	number	of	lines.

/list	*-20/

Minus	in	the	Visual	home	line	means	roll	back	a	number	of	lines.

===>-10	{roll	back	10	lines}

Minus	in	the	calculator	means	subtract	(e.g.,	=1010-40).

Minus	(-)	in	a	character	class	within	regular	expressions	indicates	a
range	of	characters.	It	takes	on	this	meaning	if	it	appears	between	two
other	characters.	If	it	appears	at	the	beginning	or	end	of	the	class,	it	is
used	as	a	literal.

/list	"[a-z]"	(regexp)	{range	of	lowercase	letters}

/list	"[-az]"	(regexp)	{character	class	"-,"
"a"	and	"z"

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

#
Means	Numeric	Pattern
In	pattern-matching,	crosshatch	"#"	matches	a	single	numeric	character:

/list	"rec##"(pattern)	{"rec"	followed	by	2	digits}

In	the	calculator,	you	can	use	#	to	include	the	previous	result	in	the	next
calculation.

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

~
Means	Spaces	(Pattern),	Recent	Page	or	Field
In	a	Pattern,	~	(tilde)	means	to	look	for	zero	or	more	spaces.

At	the	Visual	home	line,	the	~	(tilde)	command	means	display	the	page
that	you	most	recently	left.	It	actually	corresponds	to	the	Visual	current
line	"*".	So,	it	can	be	used	from	line-mode	to	reference	that	line.

The	tilde	is	also	used	in	Visual	mode	as	a	field	separator	within	text	lines
that	are	to	be	divided	(VV)	or	glued	(GG).

	 	

http://www.robelle.com/products/qedit
http://www.robelle.com/products/qedit

	 	

http://www.robelle.com/products/qedit

Support
You	can	contact	us	at	the	following	address:

Robelle	Solutions	Technology	Inc.

7360	–	137	Street,	Suite	372

Surrey,	B.C.	Canada	V3W	1A3

Phone:604.501.2001

Fax:604.501.2003

E-mail:sales@robelle.com

E-mail:support@robelle.com

Web:http://www.robelle.com/

For	our	international	distributors	listing,	please	consult	our	web	site.

	 	

http://www.robelle.com/
http://www.robelle.com/products/qedit

This	feature	does	not	work	on	the	hpterm	terminal	emulator	at	the
moment.

Qcterm	version	2.0	or	higher	is	required	to	use	Qedit's	Blockemulation
mode.

Warning:	The	trailing	comments	limitation	is	an	incompatibility	with	older
versions.

This	feature	does	not	work	on	the	hpterm	terminal	emulator	at	the
moment.

This	feature	does	not	work	on	the	hpterm	terminal	emulator	at	the
moment.

