
THE	MAIN	PCRE	LIBRARY

Written	by:							Philip	Hazel

Email	local	part:	ph10

Email	domain:					cam.ac.uk

University	of	Cambridge	Computing	Service,

Cambridge,	England.

Copyright	(c)	1997-2007	University	of	Cambridge

All	rights	reserved

THE	C++	WRAPPER	LIBRARY

Written	by:							Google	Inc.

Copyright	(c)	2007	Google	Inc

All	rights	reserved

####

Windows	CHM	file	contributed	by	Sheri	Pierce

PCRE	LICENCE

PCRE	is	a	library	of	functions	to	support	regular	expressions	whose	syntax

and	semantics	are	as	close	as	possible	to	those	of	the	Perl	5	language.

Release	7	of	PCRE	is	distributed	under	the	terms	of	the	"BSD"	licence,	as

specified	below.	The	documentation	for	PCRE,	supplied	in	the	"doc"

directory,	is	distributed	under	the	same	terms	as	the	software	itself.

The	basic	library	functions	are	written	in	C	and	are	freestanding.	Also

included	in	the	distribution	is	a	set	of	C++	wrapper	functions.

THE	BASIC	LIBRARY	FUNCTIONS

Written	by:							Philip	Hazel

Email	local	part:	ph10

Email	domain:					cam.ac.uk

University	of	Cambridge	Computing	Service,

Cambridge,	England.

Copyright	(c)	1997-2007	University	of	Cambridge

All	rights	reserved.

THE	C++	WRAPPER	FUNCTIONS

Contributed	by:			Google	Inc.

Copyright	(c)	2007,	Google	Inc.

All	rights	reserved.

THE	"BSD"	LICENCE

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions	are	met:

				*	Redistributions	of	source	code	must	retain	the	above	copyright	notice,

						this	list	of	conditions	and	the	following	disclaimer.

				*	Redistributions	in	binary	form	must	reproduce	the	above	copyright

						notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

						documentation	and/or	other	materials	provided	with	the	distribution.

				*	Neither	the	name	of	the	University	of	Cambridge	nor	the	name	of	Google

						Inc.	nor	the	names	of	their	contributors	may	be	used	to	endorse	or

						promote	products	derived	from	this	software	without	specific	prior

						written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS	"AS	IS"

AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE	COPYRIGHT	OWNER	OR	CONTRIBUTORS	BE

LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR

CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF

SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS

INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN

CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)

ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE

POSSIBILITY	OF	SUCH	DAMAGE.

End

News	about	PCRE	releases

Release	7.4	21-Sep-07

The	only	change	of	specification	is	the	addition	of	options	to	control	whether

\R	matches	any	Unicode	line	ending	(the	default)	or	just	CR,	LF,	and	CRLF.

Otherwise,	the	changes	are	bug	fixes	and	a	refactoring	to	reduce	the	number	of

relocations	needed	in	a	shared	library.	There	have	also	been	some	documentation

updates,	in	particular,	some	more	information	about	using	CMake	to	build	PCRE

has	been	added	to	the	NON-UNIX-USE	file.

Release	7.3	28-Aug-07

Most	changes	are	bug	fixes.	Some	that	are	not:

1.	There	is	some	support	for	Perl	5.10's	experimental	"backtracking	control

			verbs"	such	as	(*PRUNE).

2.	UTF-8	checking	is	now	as	per	RFC	3629	instead	of	RFC	2279;	this	is	more

			restrictive	in	the	strings	it	accepts.

3.	Checking	for	potential	integer	overflow	has	been	made	more	dynamic,	and	as	a

			consequence	there	is	no	longer	a	hard	limit	on	the	size	of	a	subpattern	that

			has	a	limited	repeat	count.

4.	When	CRLF	is	a	valid	line-ending	sequence,	pcre_exec()	and	pcre_dfa_exec()

			no	longer	advance	by	two	characters	instead	of	one	when	an	unanchored	match

			fails	at	CRLF	if	there	are	explicit	CR	or	LF	matches	within	the	pattern.

			This	gets	rid	of	some	anomalous	effects	that	previously	occurred.

5.	Some	PCRE-specific	settings	for	varying	the	newline	options	at	the	start	of

			a	pattern	have	been	added.

Release	7.2	19-Jun-07

WARNING:	saved	patterns	that	were	compiled	by	earlier	versions	of	PCRE	must	be

recompiled	for	use	with	7.2	(necessitated	by	the	addition	of	\K,	\h,	\H,	\v,

and	\V).

Correction	to	the	notes	for	7.1:	the	note	about	shared	libraries	for	Windows	is

wrong.	Previously,	three	libraries	were	built,	but	each	could	function

independently.	For	example,	the	pcreposix	library	also	included	all	the

functions	from	the	basic	pcre	library.	The	change	is	that	the	three	libraries

are	no	longer	independent.	They	are	like	the	Unix	libraries.	To	use	the

pcreposix	functions,	for	example,	you	need	to	link	with	both	the	pcreposix	and

the	basic	pcre	library.

Some	more	features	from	Perl	5.10	have	been	added:

		(?-n)	and	(?+n)	relative	references	for	recursion	and	subroutines.

		(?(-n)	and	(?(+n)	relative	references	as	conditions.

		\k{name}	and	\g{name}	are	synonyms	for	\k<name>.

		\K	to	reset	the	start	of	the	matched	string;	for	example,	(foo)\Kbar

		matches	bar	preceded	by	foo,	but	only	sets	bar	as	the	matched	string.

		(?|	introduces	a	group	where	the	capturing	parentheses	in	each	alternative

		start	from	the	same	number;	for	example,	(?|(abc)|(xyz))	sets	capturing

		parentheses	number	1	in	both	cases.

		\h,	\H,	\v,	\V	match	horizontal	and	vertical	whitespace,	respectively.

Release	7.1	24-Apr-07

There	is	only	one	new	feature	in	this	release:	a	linebreak	setting	of

PCRE_NEWLINE_ANYCRLF.	It	is	a	cut-down	version	of	PCRE_NEWLINE_ANY,	which

recognizes	only	CRLF,	CR,	and	LF	as	linebreaks.

A	few	bugs	are	fixed	(see	ChangeLog	for	details),	but	the	major	change	is	a

complete	re-implementation	of	the	build	system.	This	now	has	full	Autotools

support	and	so	is	now	"standard"	in	some	sense.	It	should	help	with	compiling

PCRE	in	a	wide	variety	of	environments.

NOTE:	when	building	shared	libraries	for	Windows,	three	dlls	are	now	built,

called	libpcre,	libpcreposix,	and	libpcrecpp.	Previously,	everything	was

included	in	a	single	dll.

Another	important	change	is	that	the	dftables	auxiliary	program	is	no	longer

compiled	and	run	at	"make"	time	by	default.	Instead,	a	default	set	of	character

tables	(assuming	ASCII	coding)	is	used.	If	you	want	to	use	dftables	to	generate

the	character	tables	as	previously,	add	--enable-rebuild-chartables	to	the

"configure"	command.	You	must	do	this	if	you	are	compiling	PCRE	to	run	on	a

system	that	uses	EBCDIC	code.

There	is	a	discussion	about	character	tables	in	the	README	file.	The	default	is

not	to	use	dftables	so	that	that	there	is	no	problem	when	cross-compiling.

Release	7.0	19-Dec-06

This	release	has	a	new	major	number	because	there	have	been	some	internal

upheavals	to	facilitate	the	addition	of	new	optimizations	and	other	facilities,

and	to	make	subsequent	maintenance	and	extension	easier.	Compilation	is	likely

to	be	a	bit	slower,	but	there	should	be	no	major	effect	on	runtime	performance.

Previously	compiled	patterns	are	NOT	upwards	compatible	with	this	release.	If

you	have	saved	compiled	patterns	from	a	previous	release,	you	will	have	to

re-compile	them.	Important	changes	that	are	visible	to	users	are:

1.	The	Unicode	property	tables	have	been	updated	to	Unicode	5.0.0,	which	adds

			some	more	scripts.

2.	The	option	PCRE_NEWLINE_ANY	causes	PCRE	to	recognize	any	Unicode	newline

			sequence	as	a	newline.

3.	The	\R	escape	matches	a	single	Unicode	newline	sequence	as	a	single	unit.

4.	New	features	that	will	appear	in	Perl	5.10	are	now	in	PCRE.	These	include

			alternative	Perl	syntax	for	named	parentheses,	and	Perl	syntax	for

			recursion.

5.	The	C++	wrapper	interface	has	been	extended	by	the	addition	of	a

			QuoteMeta	function	and	the	ability	to	allow	copy	construction	and

			assignment.

For	a	complete	list	of	changes,	see	the	ChangeLog	file.

Release	6.7	04-Jul-06

The	main	additions	to	this	release	are	the	ability	to	use	the	same	name	for

multiple	sets	of	parentheses,	and	support	for	CRLF	line	endings	in	both	the

library	and	pcregrep	(and	in	pcretest	for	testing).

Thanks	to	Ian	Taylor,	the	stack	usage	for	many	kinds	of	pattern	has	been

significantly	reduced	for	certain	subject	strings.

Release	6.5	01-Feb-06

Important	changes	in	this	release:

1.	A	number	of	new	features	have	been	added	to	pcregrep.

2.	The	Unicode	property	tables	have	been	updated	to	Unicode	4.1.0,	and	the

			supported	properties	have	been	extended	with	script	names	such	as	"Arabic",

			and	the	derived	properties	"Any"	and	"L&".	This	has	necessitated	a	change	to

			the	interal	format	of	compiled	patterns.	Any	saved	compiled	patterns	that

			use	\p	or	\P	must	be	recompiled.

3.	The	specification	of	recursion	in	patterns	has	been	changed	so	that	all

			recursive	subpatterns	are	automatically	treated	as	atomic	groups.	Thus,	for

			example,	(?R)	is	treated	as	if	it	were	(?>(?R)).	This	is	necessary	because

			otherwise	there	are	situations	where	recursion	does	not	work.

See	the	ChangeLog	for	a	complete	list	of	changes,	which	include	a	number	of	bug

fixes	and	tidies.

Release	6.0	07-Jun-05

The	release	number	has	been	increased	to	6.0	because	of	the	addition	of	several

major	new	pieces	of	functionality.

A	new	function,	pcre_dfa_exec(),	which	implements	pattern	matching	using	a	DFA

algorithm,	has	been	added.	This	has	a	number	of	advantages	for	certain	cases,

though	it	does	run	more	slowly,	and	lacks	the	ability	to	capture	substrings.	On

the	other	hand,	it	does	find	all	matches,	not	just	the	first,	and	it	works

better	for	partial	matching.	The	pcrematching	man	page	discusses	the

differences.

The	pcretest	program	has	been	enhanced	so	that	it	can	make	use	of	the	new

pcre_dfa_exec()	matching	function	and	the	extra	features	it	provides.

The	distribution	now	includes	a	C++	wrapper	library.	This	is	built

automatically	if	a	C++	compiler	is	found.	The	pcrecpp	man	page	discusses	this

interface.

The	code	itself	has	been	re-organized	into	many	more	files,	one	for	each

function,	so	it	no	longer	requires	everything	to	be	linked	in	when	static

linkage	is	used.	As	a	consequence,	some	internal	functions	have	had	to	have

their	names	exposed.	These	functions	all	have	names	starting	with	_pcre_.	They

are	undocumented,	and	are	not	intended	for	use	by	outside	callers.

The	pcregrep	program	has	been	enhanced	with	new	functionality	such	as

multiline-matching	and	options	for	output	more	matching	context.	See	the

ChangeLog	for	a	complete	list	of	changes	to	the	library	and	the	utility

programs.

Release	5.0	13-Sep-04

The	licence	under	which	PCRE	is	released	has	been	changed	to	the	more

conventional	"BSD"	licence.

In	the	code,	some	bugs	have	been	fixed,	and	there	are	also	some	major	changes

in	this	release	(which	is	why	I've	increased	the	number	to	5.0).	Some	changes

are	internal	rearrangements,	and	some	provide	a	number	of	new	facilities.	The

new	features	are:

1.	There's	an	"automatic	callout"	feature	that	inserts	callouts	before	every

			item	in	the	regex,	and	there's	a	new	callout	field	that	gives	the	position

			in	the	pattern	-	useful	for	debugging	and	tracing.

2.	The	extra_data	structure	can	now	be	used	to	pass	in	a	set	of	character

			tables	at	exec	time.	This	is	useful	if	compiled	regex	are	saved	and	re-used

			at	a	later	time	when	the	tables	may	not	be	at	the	same	address.	If	the

			default	internal	tables	are	used,	the	pointer	saved	with	the	compiled

			pattern	is	now	set	to	NULL,	which	means	that	you	don't	need	to	do	anything

			special	unless	you	are	using	custom	tables.

3.	It	is	possible,	with	some	restrictions	on	the	content	of	the	regex,	to

			request	"partial"	matching.	A	special	return	code	is	given	if	all	of	the

			subject	string	matched	part	of	the	regex.	This	could	be	useful	for	testing

			an	input	field	as	it	is	being	typed.

4.	There	is	now	some	optional	support	for	Unicode	character	properties,	which

			means	that	the	patterns	items	such	as	\p{Lu}	and	\X	can	now	be	used.	Only

			the	general	category	properties	are	supported.	If	PCRE	is	compiled	with	this

			support,	an	additional	90K	data	structure	is	include,	which	increases	the

			size	of	the	library	dramatically.

5.	There	is	support	for	saving	compiled	patterns	and	re-using	them	later.

6.	There	is	support	for	running	regular	expressions	that	were	compiled	on	a

			different	host	with	the	opposite	endianness.

7.	The	pcretest	program	has	been	extended	to	accommodate	the	new	features.

The	main	internal	rearrangement	is	that	sequences	of	literal	characters	are	no

longer	handled	as	strings.	Instead,	each	character	is	handled	on	its	own.	This

makes	some	UTF-8	handling	easier,	and	makes	the	support	of	partial	matching

possible.	Compiled	patterns	containing	long	literal	strings	will	be	larger	as	a

result	of	this	change;	I	hope	that	performance	will	not	be	much	affected.

Release	4.5	01-Dec-03

Again	mainly	a	bug-fix	and	tidying	release,	with	only	a	couple	of	new	features:

1.	It's	possible	now	to	compile	PCRE	so	that	it	does	not	use	recursive

function	calls	when	matching.	Instead	it	gets	memory	from	the	heap.	This	slows

things	down,	but	may	be	necessary	on	systems	with	limited	stacks.

2.	UTF-8	string	checking	has	been	tightened	to	reject	overlong	sequences	and	to

check	that	a	starting	offset	points	to	the	start	of	a	character.	Failure	of	the

latter	returns	a	new	error	code:	PCRE_ERROR_BADUTF8_OFFSET.

3.	PCRE	can	now	be	compiled	for	systems	that	use	EBCDIC	code.

Release	4.4	21-Aug-03

This	is	mainly	a	bug-fix	and	tidying	release.	The	only	new	feature	is	that	PCRE

checks	UTF-8	strings	for	validity	by	default.	There	is	an	option	to	suppress

this,	just	in	case	anybody	wants	that	teeny	extra	bit	of	performance.

Releases	4.1	-	4.3

Sorry,	I	forgot	about	updating	the	NEWS	file	for	these	releases.	Please	take	a

look	at	ChangeLog.

Release	4.0	17-Feb-03

There	have	been	a	lot	of	changes	for	the	4.0	release,	adding	additional

functionality	and	mending	bugs.	Below	is	a	list	of	the	highlights	of	the	new

functionality.	For	full	details	of	these	features,	please	consult	the

documentation.	For	a	complete	list	of	changes,	see	the	ChangeLog	file.

1.	Support	for	Perl's	\Q...\E	escapes.

2.	"Possessive	quantifiers"	?+,	*+,	++,	and	{,}+	which	come	from	Sun's	Java

package.	They	provide	some	syntactic	sugar	for	simple	cases	of	"atomic

grouping".

3.	Support	for	the	\G	assertion.	It	is	true	when	the	current	matching	position

is	at	the	start	point	of	the	match.

4.	A	new	feature	that	provides	some	of	the	functionality	that	Perl	provides

with	(?{...}).	The	facility	is	termed	a	"callout".	The	way	it	is	done	in	PCRE

is	for	the	caller	to	provide	an	optional	function,	by	setting	pcre_callout	to

its	entry	point.	To	get	the	function	called,	the	regex	must	include	(?C)	at

appropriate	points.

5.	Support	for	recursive	calls	to	individual	subpatterns.	This	makes	it	really

easy	to	get	totally	confused.

6.	Support	for	named	subpatterns.	The	Python	syntax	(?P<name>...)	is	used	to

name	a	group.

7.	Several	extensions	to	UTF-8	support;	it	is	now	fairly	complete.	There	is	an

option	for	pcregrep	to	make	it	operate	in	UTF-8	mode.

8.	The	single	man	page	has	been	split	into	a	number	of	separate	man	pages.

These	also	give	rise	to	individual	HTML	pages	which	are	put	in	a	separate

directory.	There	is	an	index.html	page	that	lists	them	all.	Some	hyperlinking

between	the	pages	has	been	installed.

Release	3.5	15-Aug-01

1.	The	configuring	system	has	been	upgraded	to	use	later	versions	of	autoconf

and	libtool.	By	default	it	builds	both	a	shared	and	a	static	library	if	the	OS

supports	it.	You	can	use	--disable-shared	or	--disable-static	on	the	configure

command	if	you	want	only	one	of	them.

2.	The	pcretest	utility	is	now	installed	along	with	pcregrep	because	it	is

useful	for	users	(to	test	regexs)	and	by	doing	this,	it	automatically	gets

relinked	by	libtool.	The	documentation	has	been	turned	into	a	man	page,	so

there	are	now	.1,	.txt,	and	.html	versions	in	/doc.

3.	Upgrades	to	pcregrep:

			(i)			Added	long-form	option	names	like	gnu	grep.

			(ii)		Added	--help	to	list	all	options	with	an	explanatory	phrase.

			(iii)	Added	-r,	--recursive	to	recurse	into	sub-directories.

			(iv)		Added	-f,	--file	to	read	patterns	from	a	file.

4.	Added	--enable-newline-is-cr	and	--enable-newline-is-lf	to	the	configure

script,	to	force	use	of	CR	or	LF	instead	of	\n	in	the	source.	On	non-Unix

systems,	the	value	can	be	set	in	config.h.

5.	The	limit	of	200	on	non-capturing	parentheses	is	a	_nesting_	limit,	not	an

absolute	limit.	Changed	the	text	of	the	error	message	to	make	this	clear,	and

likewise	updated	the	man	page.

6.	The	limit	of	99	on	the	number	of	capturing	subpatterns	has	been	removed.

The	new	limit	is	65535,	which	I	hope	will	not	be	a	"real"	limit.

Release	3.3	01-Aug-00

There	is	some	support	for	UTF-8	character	strings.	This	is	incomplete	and

experimental.	The	documentation	describes	what	is	and	what	is	not	implemented.

Otherwise,	this	is	just	a	bug-fixing	release.

Release	3.0	01-Feb-00

1.	A	"configure"	script	is	now	used	to	configure	PCRE	for	Unix	systems.	It

builds	a	Makefile,	a	config.h	file,	and	the	pcre-config	script.

2.	PCRE	is	built	as	a	shared	library	by	default.

3.	There	is	support	for	POSIX	classes	such	as	[:alpha:].

5.	There	is	an	experimental	recursion	feature.

--

										IMPORTANT	FOR	THOSE	UPGRADING	FROM	VERSIONS	BEFORE	2.00

Please	note	that	there	has	been	a	change	in	the	API	such	that	a	larger

ovector	is	required	at	matching	time,	to	provide	some	additional	workspace.

The	new	man	page	has	details.	This	change	was	necessary	in	order	to	support

some	of	the	new	functionality	in	Perl	5.005.

										IMPORTANT	FOR	THOSE	UPGRADING	FROM	VERSION	2.00

Another	(I	hope	this	is	the	last!)	change	has	been	made	to	the	API	for	the

pcre_compile()	function.	An	additional	argument	has	been	added	to	make	it

possible	to	pass	over	a	pointer	to	character	tables	built	in	the	current

locale	by	pcre_maketables().	To	use	the	default	tables,	this	new	arguement

should	be	passed	as	NULL.

										IMPORTANT	FOR	THOSE	UPGRADING	FROM	VERSION	2.05

Yet	another	(and	again	I	hope	this	really	is	the	last)	change	has	been	made

to	the	API	for	the	pcre_exec()	function.	An	additional	argument	has	been

added	to	make	it	possible	to	start	the	match	other	than	at	the	start	of	the

subject	string.	This	is	important	if	there	are	lookbehinds.	The	new	man

page	has	the	details,	but	you	just	want	to	convert	existing	programs,	all

you	need	to	do	is	to	stick	in	a	new	fifth	argument	to	pcre_exec(),	with	a

value	of	zero.	For	example,	change

		pcre_exec(pattern,	extra,	subject,	length,	options,	ovec,	ovecsize)

to

		pcre_exec(pattern,	extra,	subject,	length,	0,	options,	ovec,	ovecsize)

ChangeLog	for	PCRE

Version	7.4	21-Sep-07

1.		Change	7.3/28	was	implemented	for	classes	by	looking	at	the	bitmap.	This

				means	that	a	class	such	as	[\s]	counted	as	"explicit	reference	to	CR	or

				LF".	That	isn't	really	right	-	the	whole	point	of	the	change	was	to	try	to

				help	when	there	was	an	actual	mention	of	one	of	the	two	characters.	So	now

				the	change	happens	only	if	\r	or	\n	(or	a	literal	CR	or	LF)	character	is

				encountered.

2.		The	32-bit	options	word	was	also	used	for	6	internal	flags,	but	the	numbers

				of	both	had	grown	to	the	point	where	there	were	only	3	bits	left.

				Fortunately,	there	was	spare	space	in	the	data	structure,	and	so	I	have

				moved	the	internal	flags	into	a	new	16-bit	field	to	free	up	more	option

				bits.

3.		The	appearance	of	(?J)	at	the	start	of	a	pattern	set	the	DUPNAMES	option,

				but	did	not	set	the	internal	JCHANGED	flag	-	either	of	these	is	enough	to

				control	the	way	the	"get"	function	works	-	but	the	PCRE_INFO_JCHANGED

				facility	is	supposed	to	tell	if	(?J)	was	ever	used,	so	now	(?J)	at	the

				start	sets	both	bits.

4.		Added	options	(at	build	time,	compile	time,	exec	time)	to	change	\R	from

				matching	any	Unicode	line	ending	sequence	to	just	matching	CR,	LF,	or	CRLF.

5.		doc/pcresyntax.html	was	missing	from	the	distribution.

6.		Put	back	the	definition	of	PCRE_ERROR_NULLWSLIMIT,	for	backward

				compatibility,	even	though	it	is	no	longer	used.

7.		Added	macro	for	snprintf	to	pcrecpp_unittest.cc	and	also	for	strtoll	and

				strtoull	to	pcrecpp.cc	to	select	the	available	functions	in	WIN32	when	the

				windows.h	file	is	present	(where	different	names	are	used).	[This	was

				reversed	later	after	testing	-	see	16	below.]

8.		Changed	all	#include	<config.h>	to	#include	"config.h".	There	were	also

				some	further	<pcre.h>	cases	that	I	changed	to	"pcre.h".

9.		When	pcregrep	was	used	with	the	--colour	option,	it	missed	the	line	ending

				sequence	off	the	lines	that	it	output.

10.	It	was	pointed	out	to	me	that	arrays	of	string	pointers	cause	lots	of

				relocations	when	a	shared	library	is	dynamically	loaded.	A	technique	of

				using	a	single	long	string	with	a	table	of	offsets	can	drastically	reduce

				these.	I	have	refactored	PCRE	in	four	places	to	do	this.	The	result	is

				dramatic:

						Originally:																										290

						After	changing	UCP	table:												187

						After	changing	error	message	table:			43

						After	changing	table	of	"verbs"							36

						After	changing	table	of	Posix	names			22

				Thanks	to	the	folks	working	on	Gregex	for	glib	for	this	insight.

11.	--disable-stack-for-recursion	caused	compiling	to	fail	unless	-enable-

				unicode-properties	was	also	set.

12.	Updated	the	tests	so	that	they	work	when	\R	is	defaulted	to	ANYCRLF.

13.	Added	checks	for	ANY	and	ANYCRLF	to	pcrecpp.cc	where	it	previously

				checked	only	for	CRLF.

14.	Added	casts	to	pcretest.c	to	avoid	compiler	warnings.

15.	Added	Craig's	patch	to	various	pcrecpp	modules	to	avoid	compiler	warnings.

16.	Added	Craig's	patch	to	remove	the	WINDOWS_H	tests,	that	were	not	working,

				and	instead	check	for	_strtoi64	explicitly,	and	avoid	the	use	of	snprintf()

				entirely.	This	removes	changes	made	in	7	above.

17.	The	CMake	files	have	been	updated,	and	there	is	now	more	information	about

				building	with	CMake	in	the	NON-UNIX-USE	document.

Version	7.3	28-Aug-07

	1.	In	the	rejigging	of	the	build	system	that	eventually	resulted	in	7.1,	the

				line	"#include	<pcre.h>"	was	included	in	pcre_internal.h.	The	use	of	angle

				brackets	there	is	not	right,	since	it	causes	compilers	to	look	for	an

				installed	pcre.h,	not	the	version	that	is	in	the	source	that	is	being

				compiled	(which	of	course	may	be	different).	I	have	changed	it	back	to:

						#include	"pcre.h"

				I	have	a	vague	recollection	that	the	change	was	concerned	with	compiling	in

				different	directories,	but	in	the	new	build	system,	that	is	taken	care	of

				by	the	VPATH	setting	the	Makefile.

	2.	The	pattern	.*$	when	run	in	not-DOTALL	UTF-8	mode	with	newline=any	failed

				when	the	subject	happened	to	end	in	the	byte	0x85	(e.g.	if	the	last

				character	was	\x{1ec5}).	*Character*	0x85	is	one	of	the	"any"	newline

				characters	but	of	course	it	shouldn't	be	taken	as	a	newline	when	it	is	part

				of	another	character.	The	bug	was	that,	for	an	unlimited	repeat	of	.	in

				not-DOTALL	UTF-8	mode,	PCRE	was	advancing	by	bytes	rather	than	by

				characters	when	looking	for	a	newline.

	3.	A	small	performance	improvement	in	the	DOTALL	UTF-8	mode	.*	case.

	4.	Debugging:	adjusted	the	names	of	opcodes	for	different	kinds	of	parentheses

				in	debug	output.

	5.	Arrange	to	use	"%I64d"	instead	of	"%lld"	and	"%I64u"	instead	of	"%llu"	for

				long	printing	in	the	pcrecpp	unittest	when	running	under	MinGW.

	6.	ESC_K	was	left	out	of	the	EBCDIC	table.

	7.	Change	7.0/38	introduced	a	new	limit	on	the	number	of	nested	non-capturing

				parentheses;	I	made	it	1000,	which	seemed	large	enough.	Unfortunately,	the

				limit	also	applies	to	"virtual	nesting"	when	a	pattern	is	recursive,	and	in

				this	case	1000	isn't	so	big.	I	have	been	able	to	remove	this	limit	at	the

				expense	of	backing	off	one	optimization	in	certain	circumstances.	Normally,

				when	pcre_exec()	would	call	its	internal	match()	function	recursively	and

				immediately	return	the	result	unconditionally,	it	uses	a	"tail	recursion"

				feature	to	save	stack.	However,	when	a	subpattern	that	can	match	an	empty

				string	has	an	unlimited	repetition	quantifier,	it	no	longer	makes	this

				optimization.	That	gives	it	a	stack	frame	in	which	to	save	the	data	for

				checking	that	an	empty	string	has	been	matched.	Previously	this	was	taken

				from	the	1000-entry	workspace	that	had	been	reserved.	So	now	there	is	no

				explicit	limit,	but	more	stack	is	used.

	8.	Applied	Daniel's	patches	to	solve	problems	with	the	import/export	magic

				syntax	that	is	required	for	Windows,	and	which	was	going	wrong	for	the

				pcreposix	and	pcrecpp	parts	of	the	library.	These	were	overlooked	when	this

				problem	was	solved	for	the	main	library.

	9.	There	were	some	crude	static	tests	to	avoid	integer	overflow	when	computing

				the	size	of	patterns	that	contain	repeated	groups	with	explicit	upper

				limits.	As	the	maximum	quantifier	is	65535,	the	maximum	group	length	was

				set	at	30,000	so	that	the	product	of	these	two	numbers	did	not	overflow	a

				32-bit	integer.	However,	it	turns	out	that	people	want	to	use	groups	that

				are	longer	than	30,000	bytes	(though	not	repeat	them	that	many	times).

				Change	7.0/17	(the	refactoring	of	the	way	the	pattern	size	is	computed)	has

				made	it	possible	to	implement	the	integer	overflow	checks	in	a	much	more

				dynamic	way,	which	I	have	now	done.	The	artificial	limitation	on	group

				length	has	been	removed	-	we	now	have	only	the	limit	on	the	total	length	of

				the	compiled	pattern,	which	depends	on	the	LINK_SIZE	setting.

10.	Fixed	a	bug	in	the	documentation	for	get/copy	named	substring	when

				duplicate	names	are	permitted.	If	none	of	the	named	substrings	are	set,	the

				functions	return	PCRE_ERROR_NOSUBSTRING	(7);	the	doc	said	they	returned	an

				empty	string.

11.	Because	Perl	interprets	\Q...\E	at	a	high	level,	and	ignores	orphan	\E

				instances,	patterns	such	as	[\Q\E]	or	[\E]	or	even	[^\E]	cause	an	error,

				because	the]	is	interpreted	as	the	first	data	character	and	the

				terminating]	is	not	found.	PCRE	has	been	made	compatible	with	Perl	in	this

				regard.	Previously,	it	interpreted	[\Q\E]	as	an	empty	class,	and	[\E]	could

				cause	memory	overwriting.

10.	Like	Perl,	PCRE	automatically	breaks	an	unlimited	repeat	after	an	empty

				string	has	been	matched	(to	stop	an	infinite	loop).	It	was	not	recognizing

				a	conditional	subpattern	that	could	match	an	empty	string	if	that

				subpattern	was	within	another	subpattern.	For	example,	it	looped	when

				trying	to	match		(((?(1)X|))*)		but	it	was	OK	with		((?(1)X|)*)		where	the

				condition	was	not	nested.	This	bug	has	been	fixed.

12.	A	pattern	like	\X?\d	or	\P{L}?\d	in	non-UTF-8	mode	could	cause	a	backtrack

				past	the	start	of	the	subject	in	the	presence	of	bytes	with	the	top	bit

				set,	for	example	"\x8aBCD".

13.	Added	Perl	5.10	experimental	backtracking	controls	(*FAIL),	(*F),	(*PRUNE),

				(*SKIP),	(*THEN),	(*COMMIT),	and	(*ACCEPT).

14.	Optimized	(?!)	to	(*FAIL).

15.	Updated	the	test	for	a	valid	UTF-8	string	to	conform	to	the	later	RFC	3629.

				This	restricts	code	points	to	be	within	the	range	0	to	0x10FFFF,	excluding

				the	"low	surrogate"	sequence	0xD800	to	0xDFFF.	Previously,	PCRE	allowed	the

				full	range	0	to	0x7FFFFFFF,	as	defined	by	RFC	2279.	Internally,	it	still

				does:	it's	just	the	validity	check	that	is	more	restrictive.

16.	Inserted	checks	for	integer	overflows	during	escape	sequence	(backslash)

				processing,	and	also	fixed	erroneous	offset	values	for	syntax	errors	during

				backslash	processing.

17.	Fixed	another	case	of	looking	too	far	back	in	non-UTF-8	mode	(cf	12	above)

				for	patterns	like	[\PPP\x8a]{1,}\x80	with	the	subject	"A\x80".

18.	An	unterminated	class	in	a	pattern	like	(?1)\c[with	a	"forward	reference"

				caused	an	overrun.

19.	A	pattern	like	(?:[\PPa*]*){8,}	which	had	an	"extended	class"	(one	with

				something	other	than	just	ASCII	characters)	inside	a	group	that	had	an

				unlimited	repeat	caused	a	loop	at	compile	time	(while	checking	to	see

				whether	the	group	could	match	an	empty	string).

20.	Debugging	a	pattern	containing	\p	or	\P	could	cause	a	crash.	For	example,

				[\P{Any}]	did	so.	(Error	in	the	code	for	printing	property	names.)

21.	An	orphan	\E	inside	a	character	class	could	cause	a	crash.

22.	A	repeated	capturing	bracket	such	as	(A)?	could	cause	a	wild	memory

				reference	during	compilation.

23.	There	are	several	functions	in	pcre_compile()	that	scan	along	a	compiled

				expression	for	various	reasons	(e.g.	to	see	if	it's	fixed	length	for	look

				behind).	There	were	bugs	in	these	functions	when	a	repeated	\p	or	\P	was

				present	in	the	pattern.	These	operators	have	additional	parameters	compared

				with	\d,	etc,	and	these	were	not	being	taken	into	account	when	moving	along

				the	compiled	data.	Specifically:

				(a)	A	item	such	as	\p{Yi}{3}	in	a	lookbehind	was	not	treated	as	fixed

								length.

				(b)	An	item	such	as	\pL+	within	a	repeated	group	could	cause	crashes	or

								loops.

				(c)	A	pattern	such	as	\p{Yi}+(\P{Yi}+)(?1)	could	give	an	incorrect

								"reference	to	non-existent	subpattern"	error.

				(d)	A	pattern	like	(\P{Yi}{2}\277)?	could	loop	at	compile	time.

24.	A	repeated	\S	or	\W	in	UTF-8	mode	could	give	wrong	answers	when	multibyte

				characters	were	involved	(for	example	/\S{2}/8g	with	"A\x{a3}BC").

25.	Using	pcregrep	in	multiline,	inverted	mode	(-Mv)	caused	it	to	loop.

26.	Patterns	such	as	[\P{Yi}A]	which	include	\p	or	\P	and	just	one	other

				character	were	causing	crashes	(broken	optimization).

27.	Patterns	such	as	(\P{Yi}*\277)*	(group	with	possible	zero	repeat	containing

				\p	or	\P)	caused	a	compile-time	loop.

28.	More	problems	have	arisen	in	unanchored	patterns	when	CRLF	is	a	valid	line

				break.	For	example,	the	unstudied	pattern	[\r\n]A	does	not	match	the	string

				"\r\nA"	because	change	7.0/46	below	moves	the	current	point	on	by	two

				characters	after	failing	to	match	at	the	start.	However,	the	pattern	\nA

				does	match,	because	it	doesn't	start	till	\n,	and	if	[\r\n]A	is	studied,

				the	same	is	true.	There	doesn't	seem	any	very	clean	way	out	of	this,	but

				what	I	have	chosen	to	do	makes	the	common	cases	work:	PCRE	now	takes	note

				of	whether	there	can	be	an	explicit	match	for	\r	or	\n	anywhere	in	the

				pattern,	and	if	so,	7.0/46	no	longer	applies.	As	part	of	this	change,

				there's	a	new	PCRE_INFO_HASCRORLF	option	for	finding	out	whether	a	compiled

				pattern	has	explicit	CR	or	LF	references.

29.	Added	(*CR)	etc	for	changing	newline	setting	at	start	of	pattern.

Version	7.2	19-Jun-07

	1.	If	the	fr_FR	locale	cannot	be	found	for	test	3,	try	the	"french"	locale,

				which	is	apparently	normally	available	under	Windows.

	2.	Re-jig	the	pcregrep	tests	with	different	newline	settings	in	an	attempt

				to	make	them	independent	of	the	local	environment's	newline	setting.

	3.	Add	code	to	configure.ac	to	remove	-g	from	the	CFLAGS	default	settings.

	4.	Some	of	the	"internals"	tests	were	previously	cut	out	when	the	link	size

				was	not	2,	because	the	output	contained	actual	offsets.	The	recent	new

				"Z"	feature	of	pcretest	means	that	these	can	be	cut	out,	making	the	tests

				usable	with	all	link	sizes.

	5.	Implemented	Stan	Switzer's	goto	replacement	for	longjmp()	when	not	using

				stack	recursion.	This	gives	a	massive	performance	boost	under	BSD,	but	just

				a	small	improvement	under	Linux.	However,	it	saves	one	field	in	the	frame

				in	all	cases.

	6.	Added	more	features	from	the	forthcoming	Perl	5.10:

				(a)	(?-n)	(where	n	is	a	string	of	digits)	is	a	relative	subroutine	or

								recursion	call.	It	refers	to	the	nth	most	recently	opened	parentheses.

				(b)	(?+n)	is	also	a	relative	subroutine	call;	it	refers	to	the	nth	next

								to	be	opened	parentheses.

				(c)	Conditions	that	refer	to	capturing	parentheses	can	be	specified

								relatively,	for	example,	(?(-2)...	or	(?(+3)...

				(d)	\K	resets	the	start	of	the	current	match	so	that	everything	before

								is	not	part	of	it.

				(e)	\k{name}	is	synonymous	with	\k<name>	and	\k'name'	(.NET	compatible).

				(f)	\g{name}	is	another	synonym	-	part	of	Perl	5.10's	unification	of

								reference	syntax.

				(g)	(?|	introduces	a	group	in	which	the	numbering	of	parentheses	in	each

								alternative	starts	with	the	same	number.

				(h)	\h,	\H,	\v,	and	\V	match	horizontal	and	vertical	whitespace.

	7.	Added	two	new	calls	to	pcre_fullinfo():	PCRE_INFO_OKPARTIAL	and

				PCRE_INFO_JCHANGED.

	8.	A	pattern	such	as		(.*(.)?)*		caused	pcre_exec()	to	fail	by	either	not

				terminating	or	by	crashing.	Diagnosed	by	Viktor	Griph;	it	was	in	the	code

				for	detecting	groups	that	can	match	an	empty	string.

	9.	A	pattern	with	a	very	large	number	of	alternatives	(more	than	several

				hundred)	was	running	out	of	internal	workspace	during	the	pre-compile

				phase,	where	pcre_compile()	figures	out	how	much	memory	will	be	needed.	A

				bit	of	new	cunning	has	reduced	the	workspace	needed	for	groups	with

				alternatives.	The	1000-alternative	test	pattern	now	uses	12	bytes	of

				workspace	instead	of	running	out	of	the	4096	that	are	available.

10.	Inserted	some	missing	(unsigned	int)	casts	to	get	rid	of	compiler	warnings.

11.	Applied	patch	from	Google	to	remove	an	optimization	that	didn't	quite	work.

				The	report	of	the	bug	said:

						pcrecpp::RE("a*").FullMatch("aaa")	matches,	while

						pcrecpp::RE("a*?").FullMatch("aaa")	does	not,	and

						pcrecpp::RE("a*?\\z").FullMatch("aaa")	does	again.

12.	If	\p	or	\P	was	used	in	non-UTF-8	mode	on	a	character	greater	than	127

				it	matched	the	wrong	number	of	bytes.

Version	7.1	24-Apr-07

	1.	Applied	Bob	Rossi	and	Daniel	G's	patches	to	convert	the	build	system	to	one

				that	is	more	"standard",	making	use	of	automake	and	other	Autotools.	There

				is	some	re-arrangement	of	the	files	and	adjustment	of	comments	consequent

				on	this.

	2.	Part	of	the	patch	fixed	a	problem	with	the	pcregrep	tests.	The	test	of	-r

				for	recursive	directory	scanning	broke	on	some	systems	because	the	files

				are	not	scanned	in	any	specific	order	and	on	different	systems	the	order

				was	different.	A	call	to	"sort"	has	been	inserted	into	RunGrepTest	for	the

				approprate	test	as	a	short-term	fix.	In	the	longer	term	there	may	be	an

				alternative.

	3.	I	had	an	email	from	Eric	Raymond	about	problems	translating	some	of	PCRE's

				man	pages	to	HTML	(despite	the	fact	that	I	distribute	HTML	pages,	some

				people	do	their	own	conversions	for	various	reasons).	The	problems

				concerned	the	use	of	low-level	troff	macros	.br	and	.in.	I	have	therefore

				removed	all	such	uses	from	the	man	pages	(some	were	redundant,	some	could

				be	replaced	by	.nf/.fi	pairs).	The	132html	script	that	I	use	to	generate

				HTML	has	been	updated	to	handle	.nf/.fi	and	to	complain	if	it	encounters

				.br	or	.in.

	4.	Updated	comments	in	configure.ac	that	get	placed	in	config.h.in	and	also

				arranged	for	config.h	to	be	included	in	the	distribution,	with	the	name

				config.h.generic,	for	the	benefit	of	those	who	have	to	compile	without

				Autotools	(compare	pcre.h,	which	is	now	distributed	as	pcre.h.generic).

	5.	Updated	the	support	(such	as	it	is)	for	Virtual	Pascal,	thanks	to	Stefan

				Weber:	(1)	pcre_internal.h	was	missing	some	function	renames;	(2)	updated

				makevp.bat	for	the	current	PCRE,	using	the	additional	files

				makevp_c.txt,	makevp_l.txt,	and	pcregexp.pas.

	6.	A	Windows	user	reported	a	minor	discrepancy	with	test	2,	which	turned	out

				to	be	caused	by	a	trailing	space	on	an	input	line	that	had	got	lost	in	his

				copy.	The	trailing	space	was	an	accident,	so	I've	just	removed	it.

	7.	Add	-Wl,-R...	flags	in	pcre-config.in	for	*BSD*	systems,	as	I'm	told

				that	is	needed.

	8.	Mark	ucp_table	(in	ucptable.h)	and	ucp_gentype	(in	pcre_ucp_searchfuncs.c)

				as	"const"	(a)	because	they	are	and	(b)	because	it	helps	the	PHP

				maintainers	who	have	recently	made	a	script	to	detect	big	data	structures

				in	the	php	code	that	should	be	moved	to	the	.rodata	section.	I	remembered

				to	update	Builducptable	as	well,	so	it	won't	revert	if	ucptable.h	is	ever

				re-created.

	9.	Added	some	extra	#ifdef	SUPPORT_UTF8	conditionals	into	pcretest.c,

				pcre_printint.src,	pcre_compile.c,	pcre_study.c,	and	pcre_tables.c,	in

				order	to	be	able	to	cut	out	the	UTF-8	tables	in	the	latter	when	UTF-8

				support	is	not	required.	This	saves	1.5-2K	of	code,	which	is	important	in

				some	applications.

				Later:	more	#ifdefs	are	needed	in	pcre_ord2utf8.c	and	pcre_valid_utf8.c

				so	as	not	to	refer	to	the	tables,	even	though	these	functions	will	never	be

				called	when	UTF-8	support	is	disabled.	Otherwise	there	are	problems	with	a

				shared	library.

10.	Fixed	two	bugs	in	the	emulated	memmove()	function	in	pcre_internal.h:

				(a)	It	was	defining	its	arguments	as	char	*	instead	of	void	*.

				(b)	It	was	assuming	that	all	moves	were	upwards	in	memory;	this	was	true

								a	long	time	ago	when	I	wrote	it,	but	is	no	longer	the	case.

				The	emulated	memove()	is	provided	for	those	environments	that	have	neither

				memmove()	nor	bcopy().	I	didn't	think	anyone	used	it	these	days,	but	that

				is	clearly	not	the	case,	as	these	two	bugs	were	recently	reported.

11.	The	script	PrepareRelease	is	now	distributed:	it	calls	132html,	CleanTxt,

				and	Detrail	to	create	the	HTML	documentation,	the	.txt	form	of	the	man

				pages,	and	it	removes	trailing	spaces	from	listed	files.	It	also	creates

				pcre.h.generic	and	config.h.generic	from	pcre.h	and	config.h.	In	the	latter

				case,	it	wraps	all	the	#defines	with	#ifndefs.	This	script	should	be	run

				before	"make	dist".

12.	Fixed	two	fairly	obscure	bugs	concerned	with	quantified	caseless	matching

				with	Unicode	property	support.

				(a)	For	a	maximizing	quantifier,	if	the	two	different	cases	of	the

								character	were	of	different	lengths	in	their	UTF-8	codings	(there	are

								some	cases	like	this	-	I	found	11),	and	the	matching	function	had	to

								back	up	over	a	mixture	of	the	two	cases,	it	incorrectly	assumed	they

								were	both	the	same	length.

				(b)	When	PCRE	was	configured	to	use	the	heap	rather	than	the	stack	for

								recursion	during	matching,	it	was	not	correctly	preserving	the	data	for

								the	other	case	of	a	UTF-8	character	when	checking	ahead	for	a	match

								while	processing	a	minimizing	repeat.	If	the	check	also	involved

								matching	a	wide	character,	but	failed,	corruption	could	cause	an

								erroneous	result	when	trying	to	check	for	a	repeat	of	the	original

								character.

13.	Some	tidying	changes	to	the	testing	mechanism:

				(a)	The	RunTest	script	now	detects	the	internal	link	size	and	whether	there

								is	UTF-8	and	UCP	support	by	running	./pcretest	-C	instead	of	relying	on

								values	substituted	by	"configure".	(The	RunGrepTest	script	already	did

								this	for	UTF-8.)	The	configure.ac	script	no	longer	substitutes	the

								relevant	variables.

				(b)	The	debugging	options	/B	and	/D	in	pcretest	show	the	compiled	bytecode

								with	length	and	offset	values.	This	means	that	the	output	is	different

								for	different	internal	link	sizes.	Test	2	is	skipped	for	link	sizes

								other	than	2	because	of	this,	bypassing	the	problem.	Unfortunately,

								there	was	also	a	test	in	test	3	(the	locale	tests)	that	used	/B	and

								failed	for	link	sizes	other	than	2.	Rather	than	cut	the	whole	test	out,

								I	have	added	a	new	/Z	option	to	pcretest	that	replaces	the	length	and

								offset	values	with	spaces.	This	is	now	used	to	make	test	3	independent

								of	link	size.	(Test	2	will	be	tidied	up	later.)

14.	If	erroroffset	was	passed	as	NULL	to	pcre_compile,	it	provoked	a

				segmentation	fault	instead	of	returning	the	appropriate	error	message.

15.	In	multiline	mode	when	the	newline	sequence	was	set	to	"any",	the	pattern

				^$	would	give	a	match	between	the	\r	and	\n	of	a	subject	such	as	"A\r\nB".

				This	doesn't	seem	right;	it	now	treats	the	CRLF	combination	as	the	line

				ending,	and	so	does	not	match	in	that	case.	It's	only	a	pattern	such	as	^$

				that	would	hit	this	one:	something	like	^ABC$	would	have	failed	after	\r

				and	then	tried	again	after	\r\n.

16.	Changed	the	comparison	command	for	RunGrepTest	from	"diff	-u"	to	"diff	-ub"

				in	an	attempt	to	make	files	that	differ	only	in	their	line	terminators

				compare	equal.	This	works	on	Linux.

17.	Under	certain	error	circumstances	pcregrep	might	try	to	free	random	memory

				as	it	exited.	This	is	now	fixed,	thanks	to	valgrind.

19.	In	pcretest,	if	the	pattern	/(?m)^$/g<any>	was	matched	against	the	string

				"abc\r\n\r\n",	it	found	an	unwanted	second	match	after	the	second	\r.	This

				was	because	its	rules	for	how	to	advance	for	/g	after	matching	an	empty

				string	at	the	end	of	a	line	did	not	allow	for	this	case.	They	now	check	for

				it	specially.

20.	pcretest	is	supposed	to	handle	patterns	and	data	of	any	length,	by

				extending	its	buffers	when	necessary.	It	was	getting	this	wrong	when	the

				buffer	for	a	data	line	had	to	be	extended.

21.	Added	PCRE_NEWLINE_ANYCRLF	which	is	like	ANY,	but	matches	only	CR,	LF,	or

				CRLF	as	a	newline	sequence.

22.	Code	for	handling	Unicode	properties	in	pcre_dfa_exec()	wasn't	being	cut

				out	by	#ifdef	SUPPORT_UCP.	This	did	no	harm,	as	it	could	never	be	used,	but

				I	have	nevertheless	tidied	it	up.

23.	Added	some	casts	to	kill	warnings	from	HP-UX	ia64	compiler.

24.	Added	a	man	page	for	pcre-config.

Version	7.0	19-Dec-06

	1.	Fixed	a	signed/unsigned	compiler	warning	in	pcre_compile.c,	shown	up	by

				moving	to	gcc	4.1.1.

	2.	The	-S	option	for	pcretest	uses	setrlimit();	I	had	omitted	to	#include

				sys/time.h,	which	is	documented	as	needed	for	this	function.	It	doesn't

				seem	to	matter	on	Linux,	but	it	showed	up	on	some	releases	of	OS	X.

	3.	It	seems	that	there	are	systems	where	bytes	whose	values	are	greater	than

				127	match	isprint()	in	the	"C"	locale.	The	"C"	locale	should	be	the

				default	when	a	C	program	starts	up.	In	most	systems,	only	ASCII	printing

				characters	match	isprint().	This	difference	caused	the	output	from	pcretest

				to	vary,	making	some	of	the	tests	fail.	I	have	changed	pcretest	so	that:

				(a)	When	it	is	outputting	text	in	the	compiled	version	of	a	pattern,	bytes

								other	than	32-126	are	always	shown	as	hex	escapes.

				(b)	When	it	is	outputting	text	that	is	a	matched	part	of	a	subject	string,

								it	does	the	same,	unless	a	different	locale	has	been	set	for	the	match

								(using	the	/L	modifier).	In	this	case,	it	uses	isprint()	to	decide.

	4.	Fixed	a	major	bug	that	caused	incorrect	computation	of	the	amount	of	memory

				required	for	a	compiled	pattern	when	options	that	changed	within	the

				pattern	affected	the	logic	of	the	preliminary	scan	that	determines	the

				length.	The	relevant	options	are	-x,	and	-i	in	UTF-8	mode.	The	result	was

				that	the	computed	length	was	too	small.	The	symptoms	of	this	bug	were

				either	the	PCRE	error	"internal	error:	code	overflow"	from	pcre_compile(),

				or	a	glibc	crash	with	a	message	such	as	"pcretest:	free():	invalid	next

				size	(fast)".	Examples	of	patterns	that	provoked	this	bug	(shown	in

				pcretest	format)	are:

						/(?-x:)/x

						/(?x)(?-x:	\s*#\s*)/

						/((?i)[\x{c0}])/8

						/(?i:[\x{c0}])/8

				HOWEVER:	Change	17	below	makes	this	fix	obsolete	as	the	memory	computation

				is	now	done	differently.

	5.	Applied	patches	from	Google	to:	(a)	add	a	QuoteMeta	function	to	the	C++

				wrapper	classes;	(b)	implement	a	new	function	in	the	C++	scanner	that	is

				more	efficient	than	the	old	way	of	doing	things	because	it	avoids	levels	of

				recursion	in	the	regex	matching;	(c)	add	a	paragraph	to	the	documentation

				for	the	FullMatch()	function.

	6.	The	escape	sequence	\n	was	being	treated	as	whatever	was	defined	as

				"newline".	Not	only	was	this	contrary	to	the	documentation,	which	states

				that	\n	is	character	10	(hex	0A),	but	it	also	went	horribly	wrong	when

				"newline"	was	defined	as	CRLF.	This	has	been	fixed.

	7.	In	pcre_dfa_exec.c	the	value	of	an	unsigned	integer	(the	variable	called	c)

				was	being	set	to	-1	for	the	"end	of	line"	case	(supposedly	a	value	that	no

				character	can	have).	Though	this	value	is	never	used	(the	check	for	end	of

				line	is	"zero	bytes	in	current	character"),	it	caused	compiler	complaints.

				I've	changed	it	to	0xffffffff.

	8.	In	pcre_version.c,	the	version	string	was	being	built	by	a	sequence	of

				C	macros	that,	in	the	event	of	PCRE_PRERELEASE	being	defined	as	an	empty

				string	(as	it	is	for	production	releases)	called	a	macro	with	an	empty

				argument.	The	C	standard	says	the	result	of	this	is	undefined.	The	gcc

				compiler	treats	it	as	an	empty	string	(which	was	what	was	wanted)	but	it	is

				reported	that	Visual	C	gives	an	error.	The	source	has	been	hacked	around	to

				avoid	this	problem.

	9.	On	the	advice	of	a	Windows	user,	included	<io.h>	and	<fcntl.h>	in	Windows

				builds	of	pcretest,	and	changed	the	call	to	_setmode()	to	use	_O_BINARY

				instead	of	0x8000.	Made	all	the	#ifdefs	test	both	_WIN32	and	WIN32	(not	all

				of	them	did).

10.	Originally,	pcretest	opened	its	input	and	output	without	"b";	then	I	was

				told	that	"b"	was	needed	in	some	environments,	so	it	was	added	for	release

				5.0	to	both	the	input	and	output.	(It	makes	no	difference	on	Unix-like

				systems.)	Later	I	was	told	that	it	is	wrong	for	the	input	on	Windows.	I've

				now	abstracted	the	modes	into	two	macros,	to	make	it	easier	to	fiddle	with

				them,	and	removed	"b"	from	the	input	mode	under	Windows.

11.	Added	pkgconfig	support	for	the	C++	wrapper	library,	libpcrecpp.

12.	Added	-help	and	--help	to	pcretest	as	an	official	way	of	being	reminded

				of	the	options.

13.	Removed	some	redundant	semicolons	after	macro	calls	in	pcrecpparg.h.in

				and	pcrecpp.cc	because	they	annoy	compilers	at	high	warning	levels.

14.	A	bit	of	tidying/refactoring	in	pcre_exec.c	in	the	main	bumpalong	loop.

15.	Fixed	an	occurrence	of	==	in	configure.ac	that	should	have	been	=	(shell

				scripts	are	not	C	programs	:-)	and	which	was	not	noticed	because	it	works

				on	Linux.

16.	pcretest	is	supposed	to	handle	any	length	of	pattern	and	data	line	(as	one

				line	or	as	a	continued	sequence	of	lines)	by	extending	its	input	buffer	if

				necessary.	This	feature	was	broken	for	very	long	pattern	lines,	leading	to

				a	string	of	junk	being	passed	to	pcre_compile()	if	the	pattern	was	longer

				than	about	50K.

17.	I	have	done	a	major	re-factoring	of	the	way	pcre_compile()	computes	the

				amount	of	memory	needed	for	a	compiled	pattern.	Previously,	there	was	code

				that	made	a	preliminary	scan	of	the	pattern	in	order	to	do	this.	That	was

				OK	when	PCRE	was	new,	but	as	the	facilities	have	expanded,	it	has	become

				harder	and	harder	to	keep	it	in	step	with	the	real	compile	phase,	and	there

				have	been	a	number	of	bugs	(see	for	example,	4	above).	I	have	now	found	a

				cunning	way	of	running	the	real	compile	function	in	a	"fake"	mode	that

				enables	it	to	compute	how	much	memory	it	would	need,	while	actually	only

				ever	using	a	few	hundred	bytes	of	working	memory	and	without	too	many

				tests	of	the	mode.	This	should	make	future	maintenance	and	development

				easier.	A	side	effect	of	this	work	is	that	the	limit	of	200	on	the	nesting

				depth	of	parentheses	has	been	removed	(though	this	was	never	a	serious

				limitation,	I	suspect).	However,	there	is	a	downside:	pcre_compile()	now

				runs	more	slowly	than	before	(30%	or	more,	depending	on	the	pattern).	I

				hope	this	isn't	a	big	issue.	There	is	no	effect	on	runtime	performance.

18.	Fixed	a	minor	bug	in	pcretest:	if	a	pattern	line	was	not	terminated	by	a

				newline	(only	possible	for	the	last	line	of	a	file)	and	it	was	a

				pattern	that	set	a	locale	(followed	by	/Lsomething),	pcretest	crashed.

19.	Added	additional	timing	features	to	pcretest.	(1)	The	-tm	option	now	times

				matching	only,	not	compiling.	(2)	Both	-t	and	-tm	can	be	followed,	as	a

				separate	command	line	item,	by	a	number	that	specifies	the	number	of

				repeats	to	use	when	timing.	The	default	is	50000;	this	gives	better

				precision,	but	takes	uncomfortably	long	for	very	large	patterns.

20.	Extended	pcre_study()	to	be	more	clever	in	cases	where	a	branch	of	a

				subpattern	has	no	definite	first	character.	For	example,	(a*|b*)[cd]	would

				previously	give	no	result	from	pcre_study().	Now	it	recognizes	that	the

				first	character	must	be	a,	b,	c,	or	d.

21.	There	was	an	incorrect	error	"recursive	call	could	loop	indefinitely"	if

				a	subpattern	(or	the	entire	pattern)	that	was	being	tested	for	matching	an

				empty	string	contained	only	one	non-empty	item	after	a	nested	subpattern.

				For	example,	the	pattern	(?>\x{100}*)\d(?R)	provoked	this	error

				incorrectly,	because	the	\d	was	being	skipped	in	the	check.

22.	The	pcretest	program	now	has	a	new	pattern	option	/B	and	a	command	line

				option	-b,	which	is	equivalent	to	adding	/B	to	every	pattern.	This	causes

				it	to	show	the	compiled	bytecode,	without	the	additional	information	that

				-d	shows.	The	effect	of	-d	is	now	the	same	as	-b	with	-i	(and	similarly,	/D

				is	the	same	as	/B/I).

23.	A	new	optimization	is	now	able	automatically	to	treat	some	sequences	such

				as	a*b	as	a*+b.	More	specifically,	if	something	simple	(such	as	a	character

				or	a	simple	class	like	\d)	has	an	unlimited	quantifier,	and	is	followed	by

				something	that	cannot	possibly	match	the	quantified	thing,	the	quantifier

				is	automatically	"possessified".

24.	A	recursive	reference	to	a	subpattern	whose	number	was	greater	than	39

				went	wrong	under	certain	circumstances	in	UTF-8	mode.	This	bug	could	also

				have	affected	the	operation	of	pcre_study().

25.	Realized	that	a	little	bit	of	performance	could	be	had	by	replacing

				(c	&	0xc0)	==	0xc0	with	c	>=	0xc0	when	processing	UTF-8	characters.

26.	Timing	data	from	pcretest	is	now	shown	to	4	decimal	places	instead	of	3.

27.	Possessive	quantifiers	such	as	a++	were	previously	implemented	by	turning

				them	into	atomic	groups	such	as	($>a+).	Now	they	have	their	own	opcodes,

				which	improves	performance.	This	includes	the	automatically	created	ones

				from	23	above.

28.	A	pattern	such	as	(?=(\w+))\1:	which	simulates	an	atomic	group	using	a

				lookahead	was	broken	if	it	was	not	anchored.	PCRE	was	mistakenly	expecting

				the	first	matched	character	to	be	a	colon.	This	applied	both	to	named	and

				numbered	groups.

29.	The	ucpinternal.h	header	file	was	missing	its	idempotency	#ifdef.

30.	I	was	sent	a	"project"	file	called	libpcre.a.dev	which	I	understand	makes

				building	PCRE	on	Windows	easier,	so	I	have	included	it	in	the	distribution.

31.	There	is	now	a	check	in	pcretest	against	a	ridiculously	large	number	being

				returned	by	pcre_exec()	or	pcre_dfa_exec().	If	this	happens	in	a	/g	or	/G

				loop,	the	loop	is	abandoned.

32.	Forward	references	to	subpatterns	in	conditions	such	as	(?(2)...)	where

				subpattern	2	is	defined	later	cause	pcre_compile()	to	search	forwards	in

				the	pattern	for	the	relevant	set	of	parentheses.	This	search	went	wrong

				when	there	were	unescaped	parentheses	in	a	character	class,	parentheses

				escaped	with	\Q...\E,	or	parentheses	in	a	#-comment	in	/x	mode.

33.	"Subroutine"	calls	and	backreferences	were	previously	restricted	to

				referencing	subpatterns	earlier	in	the	regex.	This	restriction	has	now

				been	removed.

34.	Added	a	number	of	extra	features	that	are	going	to	be	in	Perl	5.10.	On	the

				whole,	these	are	just	syntactic	alternatives	for	features	that	PCRE	had

				previously	implemented	using	the	Python	syntax	or	my	own	invention.	The

				other	formats	are	all	retained	for	compatibility.

				(a)	Named	groups	can	now	be	defined	as	(?<name>...)	or	(?'name'...)	as	well

								as	(?P<name>...).	The	new	forms,	as	well	as	being	in	Perl	5.10,	are

								also	.NET	compatible.

				(b)	A	recursion	or	subroutine	call	to	a	named	group	can	now	be	defined	as

								(?&name;)	as	well	as	(?P>name).

				(c)	A	backreference	to	a	named	group	can	now	be	defined	as	\k<name>	or

								\k'name'	as	well	as	(?P=name).	The	new	forms,	as	well	as	being	in	Perl

								5.10,	are	also	.NET	compatible.

				(d)	A	conditional	reference	to	a	named	group	can	now	use	the	syntax

								(?(<name>)	or	(?('name')	as	well	as	(?(name).

				(e)	A	"conditional	group"	of	the	form	(?(DEFINE)...)	can	be	used	to	define

								groups	(named	and	numbered)	that	are	never	evaluated	inline,	but	can	be

								called	as	"subroutines"	from	elsewhere.	In	effect,	the	DEFINE	condition

								is	always	false.	There	may	be	only	one	alternative	in	such	a	group.

				(f)	A	test	for	recursion	can	be	given	as	(?(R1)..	or	(?(R&name;)...	as	well

								as	the	simple	(?(R).	The	condition	is	true	only	if	the	most	recent

								recursion	is	that	of	the	given	number	or	name.	It	does	not	search	out

								through	the	entire	recursion	stack.

				(g)	The	escape	\gN	or	\g{N}	has	been	added,	where	N	is	a	positive	or

								negative	number,	specifying	an	absolute	or	relative	reference.

35.	Tidied	to	get	rid	of	some	further	signed/unsigned	compiler	warnings	and

				some	"unreachable	code"	warnings.

36.	Updated	the	Unicode	property	tables	to	Unicode	version	5.0.0.	Amongst	other

				things,	this	adds	five	new	scripts.

37.	Perl	ignores	orphaned	\E	escapes	completely.	PCRE	now	does	the	same.

				There	were	also	incompatibilities	regarding	the	handling	of	\Q..\E	inside

				character	classes,	for	example	with	patterns	like	[\Qa\E-\Qz\E]	where	the

				hyphen	was	adjacent	to	\Q	or	\E.	I	hope	I've	cleared	all	this	up	now.

38.	Like	Perl,	PCRE	detects	when	an	indefinitely	repeated	parenthesized	group

				matches	an	empty	string,	and	forcibly	breaks	the	loop.	There	were	bugs	in

				this	code	in	non-simple	cases.	For	a	pattern	such	as		^(a()*)*		matched

				against		aaaa		the	result	was	just	"a"	rather	than	"aaaa",	for	example.	Two

				separate	and	independent	bugs	(that	affected	different	cases)	have	been

				fixed.

39.	Refactored	the	code	to	abolish	the	use	of	different	opcodes	for	small

				capturing	bracket	numbers.	This	is	a	tidy	that	I	avoided	doing	when	I

				removed	the	limit	on	the	number	of	capturing	brackets	for	3.5	back	in	2001.

				The	new	approach	is	not	only	tidier,	it	makes	it	possible	to	reduce	the

				memory	needed	to	fix	the	previous	bug	(38).

40.	Implemented	PCRE_NEWLINE_ANY	to	recognize	any	of	the	Unicode	newline

				sequences	(http://unicode.org/unicode/reports/tr18/)	as	"newline"	when

				processing	dot,	circumflex,	or	dollar	metacharacters,	or	#-comments	in	/x

				mode.

41.	Add	\R	to	match	any	Unicode	newline	sequence,	as	suggested	in	the	Unicode

				report.

42.	Applied	patch,	originally	from	Ari	Pollak,	modified	by	Google,	to	allow

				copy	construction	and	assignment	in	the	C++	wrapper.

43.	Updated	pcregrep	to	support	"--newline=any".	In	the	process,	I	fixed	a

				couple	of	bugs	that	could	have	given	wrong	results	in	the	"--newline=crlf"

				case.

44.	Added	a	number	of	casts	and	did	some	reorganization	of	signed/unsigned	int

				variables	following	suggestions	from	Dair	Grant.	Also	renamed	the	variable

				"this"	as	"item"	because	it	is	a	C++	keyword.

45.	Arranged	for	dftables	to	add

						#include	"pcre_internal.h"

				to	pcre_chartables.c	because	without	it,	gcc	4.x	may	remove	the	array

				definition	from	the	final	binary	if	PCRE	is	built	into	a	static	library	and

				dead	code	stripping	is	activated.

46.	For	an	unanchored	pattern,	if	a	match	attempt	fails	at	the	start	of	a

				newline	sequence,	and	the	newline	setting	is	CRLF	or	ANY,	and	the	next	two

				characters	are	CRLF,	advance	by	two	characters	instead	of	one.

Version	6.7	04-Jul-06

	1.	In	order	to	handle	tests	when	input	lines	are	enormously	long,	pcretest	has

				been	re-factored	so	that	it	automatically	extends	its	buffers	when

				necessary.	The	code	is	crude,	but	this	_is_	just	a	test	program.	The

				default	size	has	been	increased	from	32K	to	50K.

	2.	The	code	in	pcre_study()	was	using	the	value	of	the	re	argument	before

				testing	it	for	NULL.	(Of	course,	in	any	sensible	call	of	the	function,	it

				won't	be	NULL.)

	3.	The	memmove()	emulation	function	in	pcre_internal.h,	which	is	used	on

				systems	that	lack	both	memmove()	and	bcopy()	-	that	is,	hardly	ever	-

				was	missing	a	"static"	storage	class	specifier.

	4.	When	UTF-8	mode	was	not	set,	PCRE	looped	when	compiling	certain	patterns

				containing	an	extended	class	(one	that	cannot	be	represented	by	a	bitmap

				because	it	contains	high-valued	characters	or	Unicode	property	items,	e.g.

				[\pZ]).	Almost	always	one	would	set	UTF-8	mode	when	processing	such	a

				pattern,	but	PCRE	should	not	loop	if	you	do	not	(it	no	longer	does).

				[Detail:	two	cases	were	found:	(a)	a	repeated	subpattern	containing	an

				extended	class;	(b)	a	recursive	reference	to	a	subpattern	that	followed	a

				previous	extended	class.	It	wasn't	skipping	over	the	extended	class

				correctly	when	UTF-8	mode	was	not	set.]

	5.	A	negated	single-character	class	was	not	being	recognized	as	fixed-length

				in	lookbehind	assertions	such	as	(?<=[^f]),	leading	to	an	incorrect

				compile	error	"lookbehind	assertion	is	not	fixed	length".

	6.	The	RunPerlTest	auxiliary	script	was	showing	an	unexpected	difference

				between	PCRE	and	Perl	for	UTF-8	tests.	It	turns	out	that	it	is	hard	to

				write	a	Perl	script	that	can	interpret	lines	of	an	input	file	either	as

				byte	characters	or	as	UTF-8,	which	is	what	"perltest"	was	being	required	to

				do	for	the	non-UTF-8	and	UTF-8	tests,	respectively.	Essentially	what	you

				can't	do	is	switch	easily	at	run	time	between	having	the	"use	utf8;"	pragma

				or	not.	In	the	end,	I	fudged	it	by	using	the	RunPerlTest	script	to	insert

				"use	utf8;"	explicitly	for	the	UTF-8	tests.

	7.	In	multiline	(/m)	mode,	PCRE	was	matching	^	after	a	terminating	newline	at

				the	end	of	the	subject	string,	contrary	to	the	documentation	and	to	what

				Perl	does.	This	was	true	of	both	matching	functions.	Now	it	matches	only	at

				the	start	of	the	subject	and	immediately	after	*internal*	newlines.

	8.	A	call	of	pcre_fullinfo()	from	pcretest	to	get	the	option	bits	was	passing

				a	pointer	to	an	int	instead	of	a	pointer	to	an	unsigned	long	int.	This

				caused	problems	on	64-bit	systems.

	9.	Applied	a	patch	from	the	folks	at	Google	to	pcrecpp.cc,	to	fix	"another

				instance	of	the	'standard'	template	library	not	being	so	standard".

10.	There	was	no	check	on	the	number	of	named	subpatterns	nor	the	maximum

				length	of	a	subpattern	name.	The	product	of	these	values	is	used	to	compute

				the	size	of	the	memory	block	for	a	compiled	pattern.	By	supplying	a	very

				long	subpattern	name	and	a	large	number	of	named	subpatterns,	the	size

				computation	could	be	caused	to	overflow.	This	is	now	prevented	by	limiting

				the	length	of	names	to	32	characters,	and	the	number	of	named	subpatterns

				to	10,000.

11.	Subpatterns	that	are	repeated	with	specific	counts	have	to	be	replicated	in

				the	compiled	pattern.	The	size	of	memory	for	this	was	computed	from	the

				length	of	the	subpattern	and	the	repeat	count.	The	latter	is	limited	to

				65535,	but	there	was	no	limit	on	the	former,	meaning	that	integer	overflow

				could	in	principle	occur.	The	compiled	length	of	a	repeated	subpattern	is

				now	limited	to	30,000	bytes	in	order	to	prevent	this.

12.	Added	the	optional	facility	to	have	named	substrings	with	the	same	name.

13.	Added	the	ability	to	use	a	named	substring	as	a	condition,	using	the

				Python	syntax:	(?(name)yes|no).	This	overloads	(?(R)...	and	names	that

				are	numbers	(not	recommended).	Forward	references	are	permitted.

14.	Added	forward	references	in	named	backreferences	(if	you	see	what	I	mean).

15.	In	UTF-8	mode,	with	the	PCRE_DOTALL	option	set,	a	quantified	dot	in	the

				pattern	could	run	off	the	end	of	the	subject.	For	example,	the	pattern

				"(?s)(.{1,5})"8	did	this	with	the	subject	"ab".

16.	If	PCRE_DOTALL	or	PCRE_MULTILINE	were	set,	pcre_dfa_exec()	behaved	as	if

				PCRE_CASELESS	was	set	when	matching	characters	that	were	quantified	with	?

				or	*.

17.	A	character	class	other	than	a	single	negated	character	that	had	a	minimum

				but	no	maximum	quantifier	-	for	example	[ab]{6,}	-	was	not	handled

				correctly	by	pce_dfa_exec().	It	would	match	only	one	character.

18.	A	valid	(though	odd)	pattern	that	looked	like	a	POSIX	character

				class	but	used	an	invalid	character	after	[(for	example	[[,abc,]])	caused

				pcre_compile()	to	give	the	error	"Failed:	internal	error:	code	overflow"	or

				in	some	cases	to	crash	with	a	glibc	free()	error.	This	could	even	happen	if

				the	pattern	terminated	after	[[but	there	just	happened	to	be	a	sequence	of

				letters,	a	binary	zero,	and	a	closing]	in	the	memory	that	followed.

19.	Perl's	treatment	of	octal	escapes	in	the	range	\400	to	\777	has	changed

				over	the	years.	Originally	(before	any	Unicode	support),	just	the	bottom	8

				bits	were	taken.	Thus,	for	example,	\500	really	meant	\100.	Nowadays	the

				output	from	"man	perlunicode"	includes	this:

						The	regular	expression	compiler	produces	polymorphic	opcodes.		That

						is,	the	pattern	adapts	to	the	data	and	automatically	switches	to

						the	Unicode	character	scheme	when	presented	with	Unicode	data--or

						instead	uses	a	traditional	byte	scheme	when	presented	with	byte

						data.

				Sadly,	a	wide	octal	escape	does	not	cause	a	switch,	and	in	a	string	with

				no	other	multibyte	characters,	these	octal	escapes	are	treated	as	before.

				Thus,	in	Perl,	the	pattern		/\500/	actually	matches	\100	but	the	pattern

				/\500|\x{1ff}/	matches	\500	or	\777	because	the	whole	thing	is	treated	as	a

				Unicode	string.

				I	have	not	perpetrated	such	confusion	in	PCRE.	Up	till	now,	it	took	just

				the	bottom	8	bits,	as	in	old	Perl.	I	have	now	made	octal	escapes	with

				values	greater	than	\377	illegal	in	non-UTF-8	mode.	In	UTF-8	mode	they

				translate	to	the	appropriate	multibyte	character.

29.	Applied	some	refactoring	to	reduce	the	number	of	warnings	from	Microsoft

				and	Borland	compilers.	This	has	included	removing	the	fudge	introduced

				seven	years	ago	for	the	OS/2	compiler	(see	2.02/2	below)	because	it	caused

				a	warning	about	an	unused	variable.

21.	PCRE	has	not	included	VT	(character	0x0b)	in	the	set	of	whitespace

				characters	since	release	4.0,	because	Perl	(from	release	5.004)	does	not.

				[Or	at	least,	is	documented	not	to:	some	releases	seem	to	be	in	conflict

				with	the	documentation.]	However,	when	a	pattern	was	studied	with

				pcre_study()	and	all	its	branches	started	with	\s,	PCRE	still	included	VT

				as	a	possible	starting	character.	Of	course,	this	did	no	harm;	it	just

				caused	an	unnecessary	match	attempt.

22.	Removed	a	now-redundant	internal	flag	bit	that	recorded	the	fact	that	case

				dependency	changed	within	the	pattern.	This	was	once	needed	for	"required

				byte"	processing,	but	is	no	longer	used.	This	recovers	a	now-scarce	options

				bit.	Also	moved	the	least	significant	internal	flag	bit	to	the	most-

				significant	bit	of	the	word,	which	was	not	previously	used	(hangover	from

				the	days	when	it	was	an	int	rather	than	a	uint)	to	free	up	another	bit	for

				the	future.

23.	Added	support	for	CRLF	line	endings	as	well	as	CR	and	LF.	As	well	as	the

				default	being	selectable	at	build	time,	it	can	now	be	changed	at	runtime

				via	the	PCRE_NEWLINE_xxx	flags.	There	are	now	options	for	pcregrep	to

				specify	that	it	is	scanning	data	with	non-default	line	endings.

24.	Changed	the	definition	of	CXXLINK	to	make	it	agree	with	the	definition	of

				LINK	in	the	Makefile,	by	replacing	LDFLAGS	to	CXXFLAGS.

25.	Applied	Ian	Taylor's	patches	to	avoid	using	another	stack	frame	for	tail

				recursions.	This	makes	a	big	different	to	stack	usage	for	some	patterns.

26.	If	a	subpattern	containing	a	named	recursion	or	subroutine	reference	such

				as	(?P>B)	was	quantified,	for	example	(xxx(?P>B)){3},	the	calculation	of

				the	space	required	for	the	compiled	pattern	went	wrong	and	gave	too	small	a

				value.	Depending	on	the	environment,	this	could	lead	to	"Failed:	internal

				error:	code	overflow	at	offset	49"	or	"glibc	detected	double	free	or

				corruption"	errors.

27.	Applied	patches	from	Google	(a)	to	support	the	new	newline	modes	and	(b)	to

				advance	over	multibyte	UTF-8	characters	in	GlobalReplace.

28.	Change	free()	to	pcre_free()	in	pcredemo.c.	Apparently	this	makes	a

				difference	for	some	implementation	of	PCRE	in	some	Windows	version.

29.	Added	some	extra	testing	facilities	to	pcretest:

				\q<number>			in	a	data	line	sets	the	"match	limit"	value

				\Q<number>			in	a	data	line	sets	the	"match	recursion	limt"	value

				-S	<number>		sets	the	stack	size,	where	<number>	is	in	megabytes

				The	-S	option	isn't	available	for	Windows.

Version	6.6	06-Feb-06

	1.	Change	16(a)	for	6.5	broke	things,	because	PCRE_DATA_SCOPE	was	not	defined

				in	pcreposix.h.	I	have	copied	the	definition	from	pcre.h.

	2.	Change	25	for	6.5	broke	compilation	in	a	build	directory	out-of-tree

				because	pcre.h	is	no	longer	a	built	file.

	3.	Added	Jeff	Friedl's	additional	debugging	patches	to	pcregrep.	These	are

				not	normally	included	in	the	compiled	code.

Version	6.5	01-Feb-06

	1.	When	using	the	partial	match	feature	with	pcre_dfa_exec(),	it	was	not

				anchoring	the	second	and	subsequent	partial	matches	at	the	new	starting

				point.	This	could	lead	to	incorrect	results.	For	example,	with	the	pattern

				/1234/,	partially	matching	against	"123"	and	then	"a4"	gave	a	match.

	2.	Changes	to	pcregrep:

				(a)	All	non-match	returns	from	pcre_exec()	were	being	treated	as	failures

								to	match	the	line.	Now,	unless	the	error	is	PCRE_ERROR_NOMATCH,	an

								error	message	is	output.	Some	extra	information	is	given	for	the

								PCRE_ERROR_MATCHLIMIT	and	PCRE_ERROR_RECURSIONLIMIT	errors,	which	are

								probably	the	only	errors	that	are	likely	to	be	caused	by	users	(by

								specifying	a	regex	that	has	nested	indefinite	repeats,	for	instance).

								If	there	are	more	than	20	of	these	errors,	pcregrep	is	abandoned.

				(b)	A	binary	zero	was	treated	as	data	while	matching,	but	terminated	the

								output	line	if	it	was	written	out.	This	has	been	fixed:	binary	zeroes

								are	now	no	different	to	any	other	data	bytes.

				(c)	Whichever	of	the	LC_ALL	or	LC_CTYPE	environment	variables	is	set	is

								used	to	set	a	locale	for	matching.	The	--locale=xxxx	long	option	has

								been	added	(no	short	equivalent)	to	specify	a	locale	explicitly	on	the

								pcregrep	command,	overriding	the	environment	variables.

				(d)	When	-B	was	used	with	-n,	some	line	numbers	in	the	output	were	one	less

								than	they	should	have	been.

				(e)	Added	the	-o	(--only-matching)	option.

				(f)	If	-A	or	-C	was	used	with	-c	(count	only),	some	lines	of	context	were

								accidentally	printed	for	the	final	match.

				(g)	Added	the	-H	(--with-filename)	option.

				(h)	The	combination	of	options	-rh	failed	to	suppress	file	names	for	files

								that	were	found	from	directory	arguments.

				(i)	Added	the	-D	(--devices)	and	-d	(--directories)	options.

				(j)	Added	the	-F	(--fixed-strings)	option.

				(k)	Allow	"-"	to	be	used	as	a	file	name	for	-f	as	well	as	for	a	data	file.

				(l)	Added	the	--colo(u)r	option.

				(m)	Added	Jeffrey	Friedl's	-S	testing	option,	but	within	#ifdefs	so	that	it

								is	not	present	by	default.

	3.	A	nasty	bug	was	discovered	in	the	handling	of	recursive	patterns,	that	is,

				items	such	as	(?R)	or	(?1),	when	the	recursion	could	match	a	number	of

				alternatives.	If	it	matched	one	of	the	alternatives,	but	subsequently,

				outside	the	recursion,	there	was	a	failure,	the	code	tried	to	back	up	into

				the	recursion.	However,	because	of	the	way	PCRE	is	implemented,	this	is	not

				possible,	and	the	result	was	an	incorrect	result	from	the	match.

				In	order	to	prevent	this	happening,	the	specification	of	recursion	has

				been	changed	so	that	all	such	subpatterns	are	automatically	treated	as

				atomic	groups.	Thus,	for	example,	(?R)	is	treated	as	if	it	were	(?>(?R)).

	4.	I	had	overlooked	the	fact	that,	in	some	locales,	there	are	characters	for

				which	isalpha()	is	true	but	neither	isupper()	nor	islower()	are	true.	In

				the	fr_FR	locale,	for	instance,	the	\xAA	and	\xBA	characters	(ordmasculine

				and	ordfeminine)	are	like	this.	This	affected	the	treatment	of	\w	and	\W

				when	they	appeared	in	character	classes,	but	not	when	they	appeared	outside

				a	character	class.	The	bit	map	for	"word"	characters	is	now	created

				separately	from	the	results	of	isalnum()	instead	of	just	taking	it	from	the

				upper,	lower,	and	digit	maps.	(Plus	the	underscore	character,	of	course.)

	5.	The	above	bug	also	affected	the	handling	of	POSIX	character	classes	such	as

				[[:alpha:]]	and	[[:alnum:]].	These	do	not	have	their	own	bit	maps	in	PCRE's

				permanent	tables.	Instead,	the	bit	maps	for	such	a	class	were	previously

				created	as	the	appropriate	unions	of	the	upper,	lower,	and	digit	bitmaps.

				Now	they	are	created	by	subtraction	from	the	[[:word:]]	class,	which	has

				its	own	bitmap.

	6.	The	[[:blank:]]	character	class	matches	horizontal,	but	not	vertical	space.

				It	is	created	by	subtracting	the	vertical	space	characters	(\x09,	\x0a,

				\x0b,	\x0c)	from	the	[[:space:]]	bitmap.	Previously,	however,	the

				subtraction	was	done	in	the	overall	bitmap	for	a	character	class,	meaning

				that	a	class	such	as	[\x0c[:blank:]]	was	incorrect	because	\x0c	would	not

				be	recognized.	This	bug	has	been	fixed.

	7.	Patches	from	the	folks	at	Google:

						(a)	pcrecpp.cc:	"to	handle	a	corner	case	that	may	or	may	not	happen	in

						real	life,	but	is	still	worth	protecting	against".

						(b)	pcrecpp.cc:	"corrects	a	bug	when	negative	radixes	are	used	with

						regular	expressions".

						(c)	pcre_scanner.cc:	avoid	use	of	std::count()	because	not	all	systems

						have	it.

						(d)	Split	off	pcrecpparg.h	from	pcrecpp.h	and	had	the	former	built	by

						"configure"	and	the	latter	not,	in	order	to	fix	a	problem	somebody	had

						with	compiling	the	Arg	class	on	HP-UX.

						(e)	Improve	the	error-handling	of	the	C++	wrapper	a	little	bit.

						(f)	New	tests	for	checking	recursion	limiting.

	8.	The	pcre_memmove()	function,	which	is	used	only	if	the	environment	does	not

				have	a	standard	memmove()	function	(and	is	therefore	rarely	compiled),

				contained	two	bugs:	(a)	use	of	int	instead	of	size_t,	and	(b)	it	was	not

				returning	a	result	(though	PCRE	never	actually	uses	the	result).

	9.	In	the	POSIX	regexec()	interface,	if	nmatch	is	specified	as	a	ridiculously

				large	number	-	greater	than	INT_MAX/(3*sizeof(int))	-	REG_ESPACE	is

				returned	instead	of	calling	malloc()	with	an	overflowing	number	that	would

				most	likely	cause	subsequent	chaos.

10.	The	debugging	option	of	pcretest	was	not	showing	the	NO_AUTO_CAPTURE	flag.

11.	The	POSIX	flag	REG_NOSUB	is	now	supported.	When	a	pattern	that	was	compiled

				with	this	option	is	matched,	the	nmatch	and	pmatch	options	of	regexec()	are

				ignored.

12.	Added	REG_UTF8	to	the	POSIX	interface.	This	is	not	defined	by	POSIX,	but	is

				provided	in	case	anyone	wants	to	the	the	POSIX	interface	with	UTF-8

				strings.

13.	Added	CXXLDFLAGS	to	the	Makefile	parameters	to	provide	settings	only	on	the

				C++	linking	(needed	for	some	HP-UX	environments).

14.	Avoid	compiler	warnings	in	get_ucpname()	when	compiled	without	UCP	support

				(unused	parameter)	and	in	the	pcre_printint()	function	(omitted	"default"

				switch	label	when	the	default	is	to	do	nothing).

15.	Added	some	code	to	make	it	possible,	when	PCRE	is	compiled	as	a	C++

				library,	to	replace	subject	pointers	for	pcre_exec()	with	a	smart	pointer

				class,	thus	making	it	possible	to	process	discontinuous	strings.

16.	The	two	macros	PCRE_EXPORT	and	PCRE_DATA_SCOPE	are	confusing,	and	perform

				much	the	same	function.	They	were	added	by	different	people	who	were	trying

				to	make	PCRE	easy	to	compile	on	non-Unix	systems.	It	has	been	suggested

				that	PCRE_EXPORT	be	abolished	now	that	there	is	more	automatic	apparatus

				for	compiling	on	Windows	systems.	I	have	therefore	replaced	it	with

				PCRE_DATA_SCOPE.	This	is	set	automatically	for	Windows;	if	not	set	it

				defaults	to	"extern"	for	C	or	"extern	C"	for	C++,	which	works	fine	on

				Unix-like	systems.	It	is	now	possible	to	override	the	value	of	PCRE_DATA_

				SCOPE	with	something	explicit	in	config.h.	In	addition:

				(a)	pcreposix.h	still	had	just	"extern"	instead	of	either	of	these	macros;

								I	have	replaced	it	with	PCRE_DATA_SCOPE.

				(b)	Functions	such	as	_pcre_xclass(),	which	are	internal	to	the	library,

								but	external	in	the	C	sense,	all	had	PCRE_EXPORT	in	their	definitions.

								This	is	apparently	wrong	for	the	Windows	case,	so	I	have	removed	it.

								(It	makes	no	difference	on	Unix-like	systems.)

17.	Added	a	new	limit,	MATCH_LIMIT_RECURSION,	which	limits	the	depth	of	nesting

				of	recursive	calls	to	match().	This	is	different	to	MATCH_LIMIT	because

				that	limits	the	total	number	of	calls	to	match(),	not	all	of	which	increase

				the	depth	of	recursion.	Limiting	the	recursion	depth	limits	the	amount	of

				stack	(or	heap	if	NO_RECURSE	is	set)	that	is	used.	The	default	can	be	set

				when	PCRE	is	compiled,	and	changed	at	run	time.	A	patch	from	Google	adds

				this	functionality	to	the	C++	interface.

18.	Changes	to	the	handling	of	Unicode	character	properties:

				(a)	Updated	the	table	to	Unicode	4.1.0.

				(b)	Recognize	characters	that	are	not	in	the	table	as	"Cn"	(undefined).

				(c)	I	revised	the	way	the	table	is	implemented	to	a	much	improved	format

								which	includes	recognition	of	ranges.	It	now	supports	the	ranges	that

								are	defined	in	UnicodeData.txt,	and	it	also	amalgamates	other

								characters	into	ranges.	This	has	reduced	the	number	of	entries	in	the

								table	from	around	16,000	to	around	3,000,	thus	reducing	its	size

								considerably.	I	realized	I	did	not	need	to	use	a	tree	structure	after

								all	-	a	binary	chop	search	is	just	as	efficient.	Having	reduced	the

								number	of	entries,	I	extended	their	size	from	6	bytes	to	8	bytes	to

								allow	for	more	data.

				(d)	Added	support	for	Unicode	script	names	via	properties	such	as	\p{Han}.

19.	In	UTF-8	mode,	a	backslash	followed	by	a	non-Ascii	character	was	not

				matching	that	character.

20.	When	matching	a	repeated	Unicode	property	with	a	minimum	greater	than	zero,

				(for	example	\pL{2,}),	PCRE	could	look	past	the	end	of	the	subject	if	it

				reached	it	while	seeking	the	minimum	number	of	characters.	This	could

				happen	only	if	some	of	the	characters	were	more	than	one	byte	long,	because

				there	is	a	check	for	at	least	the	minimum	number	of	bytes.

21.	Refactored	the	implementation	of	\p	and	\P	so	as	to	be	more	general,	to

				allow	for	more	different	types	of	property	in	future.	This	has	changed	the

				compiled	form	incompatibly.	Anybody	with	saved	compiled	patterns	that	use

				\p	or	\P	will	have	to	recompile	them.

22.	Added	"Any"	and	"L&"	to	the	supported	property	types.

23.	Recognize	\x{...}	as	a	code	point	specifier,	even	when	not	in	UTF-8	mode,

				but	give	a	compile	time	error	if	the	value	is	greater	than	0xff.

24.	The	man	pages	for	pcrepartial,	pcreprecompile,	and	pcre_compile2	were

				accidentally	not	being	installed	or	uninstalled.

25.	The	pcre.h	file	was	built	from	pcre.h.in,	but	the	only	changes	that	were

				made	were	to	insert	the	current	release	number.	This	seemed	silly,	because

				it	made	things	harder	for	people	building	PCRE	on	systems	that	don't	run

				"configure".	I	have	turned	pcre.h	into	a	distributed	file,	no	longer	built

				by	"configure",	with	the	version	identification	directly	included.	There	is

				no	longer	a	pcre.h.in	file.

				However,	this	change	necessitated	a	change	to	the	pcre-config	script	as

				well.	It	is	built	from	pcre-config.in,	and	one	of	the	substitutions	was	the

				release	number.	I	have	updated	configure.ac	so	that	./configure	now	finds

				the	release	number	by	grepping	pcre.h.

26.	Added	the	ability	to	run	the	tests	under	valgrind.

Version	6.4	05-Sep-05

	1.	Change	6.0/10/(l)	to	pcregrep	introduced	a	bug	that	caused	separator	lines

				"--"	to	be	printed	when	multiple	files	were	scanned,	even	when	none	of	the

				-A,	-B,	or	-C	options	were	used.	This	is	not	compatible	with	Gnu	grep,	so	I

				consider	it	to	be	a	bug,	and	have	restored	the	previous	behaviour.

	2.	A	couple	of	code	tidies	to	get	rid	of	compiler	warnings.

	3.	The	pcretest	program	used	to	cheat	by	referring	to	symbols	in	the	library

				whose	names	begin	with	_pcre_.	These	are	internal	symbols	that	are	not

				really	supposed	to	be	visible	externally,	and	in	some	environments	it	is

				possible	to	suppress	them.	The	cheating	is	now	confined	to	including

				certain	files	from	the	library's	source,	which	is	a	bit	cleaner.

	4.	Renamed	pcre.in	as	pcre.h.in	to	go	with	pcrecpp.h.in;	it	also	makes	the

				file's	purpose	clearer.

	5.	Reorganized	pcre_ucp_findchar().

Version	6.3	15-Aug-05

	1.	The	file	libpcre.pc.in	did	not	have	general	read	permission	in	the	tarball.

	2.	There	were	some	problems	when	building	without	C++	support:

				(a)	If	C++	support	was	not	built,	"make	install"	and	"make	test"	still

								tried	to	test	it.

				(b)	There	were	problems	when	the	value	of	CXX	was	explicitly	set.	Some

								changes	have	been	made	to	try	to	fix	these,	and	...

				(c)	--disable-cpp	can	now	be	used	to	explicitly	disable	C++	support.

				(d)	The	use	of	@CPP_OBJ@	directly	caused	a	blank	line	preceded	by	a

								backslash	in	a	target	when	C++	was	disabled.	This	confuses	some

								versions	of	"make",	apparently.	Using	an	intermediate	variable	solves

								this.	(Same	for	CPP_LOBJ.)

	3.	$(LINK_FOR_BUILD)	now	includes	$(CFLAGS_FOR_BUILD)	and	$(LINK)

				(non-Windows)	now	includes	$(CFLAGS)	because	these	flags	are	sometimes

				necessary	on	certain	architectures.

	4.	Added	a	setting	of	-export-symbols-regex	to	the	link	command	to	remove

				those	symbols	that	are	exported	in	the	C	sense,	but	actually	are	local

				within	the	library,	and	not	documented.	Their	names	all	begin	with

				"_pcre_".	This	is	not	a	perfect	job,	because	(a)	we	have	to	except	some

				symbols	that	pcretest	("illegally")	uses,	and	(b)	the	facility	isn't	always

				available	(and	never	for	static	libraries).	I	have	made	a	note	to	try	to

				find	a	way	round	(a)	in	the	future.

Version	6.2	01-Aug-05

	1.	There	was	no	test	for	integer	overflow	of	quantifier	values.	A	construction

				such	as	{1111111111111111}	would	give	undefined	results.	What	is	worse,	if

				a	minimum	quantifier	for	a	parenthesized	subpattern	overflowed	and	became

				negative,	the	calculation	of	the	memory	size	went	wrong.	This	could	have

				led	to	memory	overwriting.

	2.	Building	PCRE	using	VPATH	was	broken.	Hopefully	it	is	now	fixed.

	3.	Added	"b"	to	the	2nd	argument	of	fopen()	in	dftables.c,	for	non-Unix-like

				operating	environments	where	this	matters.

	4.	Applied	Giuseppe	Maxia's	patch	to	add	additional	features	for	controlling

				PCRE	options	from	within	the	C++	wrapper.

	5.	Named	capturing	subpatterns	were	not	being	correctly	counted	when	a	pattern

				was	compiled.	This	caused	two	problems:	(a)	If	there	were	more	than	100

				such	subpatterns,	the	calculation	of	the	memory	needed	for	the	whole

				compiled	pattern	went	wrong,	leading	to	an	overflow	error.	(b)	Numerical

				back	references	of	the	form	\12,	where	the	number	was	greater	than	9,	were

				not	recognized	as	back	references,	even	though	there	were	sufficient

				previous	subpatterns.

	6.	Two	minor	patches	to	pcrecpp.cc	in	order	to	allow	it	to	compile	on	older

				versions	of	gcc,	e.g.	2.95.4.

Version	6.1	21-Jun-05

	1.	There	was	one	reference	to	the	variable	"posix"	in	pcretest.c	that	was	not

				surrounded	by	"#if	!defined	NOPOSIX".

	2.	Make	it	possible	to	compile	pcretest	without	DFA	support,	UTF8	support,	or

				the	cross-check	on	the	old	pcre_info()	function,	for	the	benefit	of	the

				cut-down	version	of	PCRE	that	is	currently	imported	into	Exim.

	3.	A	(silly)	pattern	starting	with	(?i)(?-i)	caused	an	internal	space

				allocation	error.	I've	done	the	easy	fix,	which	wastes	2	bytes	for	sensible

				patterns	that	start	(?i)	but	I	don't	think	that	matters.	The	use	of	(?i)	is

				just	an	example;	this	all	applies	to	the	other	options	as	well.

	4.	Since	libtool	seems	to	echo	the	compile	commands	it	is	issuing,	the	output

				from	"make"	can	be	reduced	a	bit	by	putting	"@"	in	front	of	each	libtool

				compile	command.

	5.	Patch	from	the	folks	at	Google	for	configure.in	to	be	a	bit	more	thorough

				in	checking	for	a	suitable	C++	installation	before	trying	to	compile	the

				C++	stuff.	This	should	fix	a	reported	problem	when	a	compiler	was	present,

				but	no	suitable	headers.

	6.	The	man	pages	all	had	just	"PCRE"	as	their	title.	I	have	changed	them	to

				be	the	relevant	file	name.	I	have	also	arranged	that	these	names	are

				retained	in	the	file	doc/pcre.txt,	which	is	a	concatenation	in	text	format

				of	all	the	man	pages	except	the	little	individual	ones	for	each	function.

	7.	The	NON-UNIX-USE	file	had	not	been	updated	for	the	different	set	of	source

				files	that	come	with	release	6.	I	also	added	a	few	comments	about	the	C++

				wrapper.

Version	6.0	07-Jun-05

	1.	Some	minor	internal	re-organization	to	help	with	my	DFA	experiments.

	2.	Some	missing	#ifdef	SUPPORT_UCP	conditionals	in	pcretest	and	printint	that

				didn't	matter	for	the	library	itself	when	fully	configured,	but	did	matter

				when	compiling	without	UCP	support,	or	within	Exim,	where	the	ucp	files	are

				not	imported.

	3.	Refactoring	of	the	library	code	to	split	up	the	various	functions	into

				different	source	modules.	The	addition	of	the	new	DFA	matching	code	(see

				below)	to	a	single	monolithic	source	would	have	made	it	really	too

				unwieldy,	quite	apart	from	causing	all	the	code	to	be	include	in	a

				statically	linked	application,	when	only	some	functions	are	used.	This	is

				relevant	even	without	the	DFA	addition	now	that	patterns	can	be	compiled	in

				one	application	and	matched	in	another.

				The	downside	of	splitting	up	is	that	there	have	to	be	some	external

				functions	and	data	tables	that	are	used	internally	in	different	modules	of

				the	library	but	which	are	not	part	of	the	API.	These	have	all	had	their

				names	changed	to	start	with	"_pcre_"	so	that	they	are	unlikely	to	clash

				with	other	external	names.

	4.	Added	an	alternate	matching	function,	pcre_dfa_exec(),	which	matches	using

				a	different	(DFA)	algorithm.	Although	it	is	slower	than	the	original

				function,	it	does	have	some	advantages	for	certain	types	of	matching

				problem.

	5.	Upgrades	to	pcretest	in	order	to	test	the	features	of	pcre_dfa_exec(),

				including	restarting	after	a	partial	match.

	6.	A	patch	for	pcregrep	that	defines	INVALID_FILE_ATTRIBUTES	if	it	is	not

				defined	when	compiling	for	Windows	was	sent	to	me.	I	have	put	it	into	the

				code,	though	I	have	no	means	of	testing	or	verifying	it.

	7.	Added	the	pcre_refcount()	auxiliary	function.

	8.	Added	the	PCRE_FIRSTLINE	option.	This	constrains	an	unanchored	pattern	to

				match	before	or	at	the	first	newline	in	the	subject	string.	In	pcretest,

				the	/f	option	on	a	pattern	can	be	used	to	set	this.

	9.	A	repeated	\w	when	used	in	UTF-8	mode	with	characters	greater	than	256

				would	behave	wrongly.	This	has	been	present	in	PCRE	since	release	4.0.

10.	A	number	of	changes	to	the	pcregrep	command:

				(a)	Refactored	how	-x	works;	insert	^(...)$	instead	of	setting

								PCRE_ANCHORED	and	checking	the	length,	in	preparation	for	adding

								something	similar	for	-w.

				(b)	Added	the	-w	(match	as	a	word)	option.

				(c)	Refactored	the	way	lines	are	read	and	buffered	so	as	to	have	more

								than	one	at	a	time	available.

				(d)	Implemented	a	pcregrep	test	script.

				(e)	Added	the	-M	(multiline	match)	option.	This	allows	patterns	to	match

								over	several	lines	of	the	subject.	The	buffering	ensures	that	at	least

								8K,	or	the	rest	of	the	document	(whichever	is	the	shorter)	is	available

								for	matching	(and	similarly	the	previous	8K	for	lookbehind	assertions).

				(f)	Changed	the	--help	output	so	that	it	now	says

										-w,	--word-regex(p)

								instead	of	two	lines,	one	with	"regex"	and	the	other	with	"regexp"

								because	that	confused	at	least	one	person	since	the	short	forms	are	the

								same.	(This	required	a	bit	of	code,	as	the	output	is	generated

								automatically	from	a	table.	It	wasn't	just	a	text	change.)

				(g)	--	can	be	used	to	terminate	pcregrep	options	if	the	next	thing	isn't	an

								option	but	starts	with	a	hyphen.	Could	be	a	pattern	or	a	path	name

								starting	with	a	hyphen,	for	instance.

				(h)	"-"	can	be	given	as	a	file	name	to	represent	stdin.

				(i)	When	file	names	are	being	printed,	"(standard	input)"	is	used	for

								the	standard	input,	for	compatibility	with	GNU	grep.	Previously

								"<stdin>"	was	used.

				(j)	The	option	--label=xxx	can	be	used	to	supply	a	name	to	be	used	for

								stdin	when	file	names	are	being	printed.	There	is	no	short	form.

				(k)	Re-factored	the	options	decoding	logic	because	we	are	going	to	add

								two	more	options	that	take	data.	Such	options	can	now	be	given	in	four

								different	ways,	e.g.	"-fname",	"-f	name",	"--file=name",	"--file	name".

				(l)	Added	the	-A,	-B,	and	-C	options	for	requesting	that	lines	of	context

								around	matches	be	printed.

				(m)	Added	the	-L	option	to	print	the	names	of	files	that	do	not	contain

								any	matching	lines,	that	is,	the	complement	of	-l.

				(n)	The	return	code	is	2	if	any	file	cannot	be	opened,	but	pcregrep	does

								continue	to	scan	other	files.

				(o)	The	-s	option	was	incorrectly	implemented.	For	compatibility	with	other

								greps,	it	now	suppresses	the	error	message	for	a	non-existent	or	non-

								accessible	file	(but	not	the	return	code).	There	is	a	new	option	called

								-q	that	suppresses	the	output	of	matching	lines,	which	was	what	-s	was

								previously	doing.

				(p)	Added	--include	and	--exclude	options	to	specify	files	for	inclusion

								and	exclusion	when	recursing.

11.	The	Makefile	was	not	using	the	Autoconf-supported	LDFLAGS	macro	properly.

				Hopefully,	it	now	does.

12.	Missing	cast	in	pcre_study().

13.	Added	an	"uninstall"	target	to	the	makefile.

14.	Replaced	"extern"	in	the	function	prototypes	in	Makefile.in	with

				"PCRE_DATA_SCOPE",	which	defaults	to	'extern'	or	'extern	"C"'	in	the	Unix

				world,	but	is	set	differently	for	Windows.

15.	Added	a	second	compiling	function	called	pcre_compile2().	The	only

				difference	is	that	it	has	an	extra	argument,	which	is	a	pointer	to	an

				integer	error	code.	When	there	is	a	compile-time	failure,	this	is	set

				non-zero,	in	addition	to	the	error	test	pointer	being	set	to	point	to	an

				error	message.	The	new	argument	may	be	NULL	if	no	error	number	is	required

				(but	then	you	may	as	well	call	pcre_compile(),	which	is	now	just	a

				wrapper).	This	facility	is	provided	because	some	applications	need	a

				numeric	error	indication,	but	it	has	also	enabled	me	to	tidy	up	the	way

				compile-time	errors	are	handled	in	the	POSIX	wrapper.

16.	Added	VPATH=.libs	to	the	makefile;	this	should	help	when	building	with	one

				prefix	path	and	installing	with	another.	(Or	so	I'm	told	by	someone	who

				knows	more	about	this	stuff	than	I	do.)

17.	Added	a	new	option,	REG_DOTALL,	to	the	POSIX	function	regcomp().	This

				passes	PCRE_DOTALL	to	the	pcre_compile()	function,	making	the	"."	character

				match	everything,	including	newlines.	This	is	not	POSIX-compatible,	but

				somebody	wanted	the	feature.	From	pcretest	it	can	be	activated	by	using

				both	the	P	and	the	s	flags.

18.	AC_PROG_LIBTOOL	appeared	twice	in	Makefile.in.	Removed	one.

19.	libpcre.pc	was	being	incorrectly	installed	as	executable.

20.	A	couple	of	places	in	pcretest	check	for	end-of-line	by	looking	for	'\n';

				it	now	also	looks	for	'\r'	so	that	it	will	work	unmodified	on	Windows.

21.	Added	Google's	contributed	C++	wrapper	to	the	distribution.

22.	Added	some	untidy	missing	memory	free()	calls	in	pcretest,	to	keep

				Electric	Fence	happy	when	testing.

Version	5.0	13-Sep-04

	1.	Internal	change:	literal	characters	are	no	longer	packed	up	into	items

				containing	multiple	characters	in	a	single	byte-string.	Each	character

				is	now	matched	using	a	separate	opcode.	However,	there	may	be	more	than	one

				byte	in	the	character	in	UTF-8	mode.

	2.	The	pcre_callout_block	structure	has	two	new	fields:	pattern_position	and

				next_item_length.	These	contain	the	offset	in	the	pattern	to	the	next	match

				item,	and	its	length,	respectively.

	3.	The	PCRE_AUTO_CALLOUT	option	for	pcre_compile()	requests	the	automatic

				insertion	of	callouts	before	each	pattern	item.	Added	the	/C	option	to

				pcretest	to	make	use	of	this.

	4.	On	the	advice	of	a	Windows	user,	the	lines

						#if	defined(_WIN32)	||	defined(WIN32)

						_setmode(_fileno(stdout),	0x8000);

						#endif		/*	defined(_WIN32)	||	defined(WIN32)	*/

				have	been	added	to	the	source	of	pcretest.	This	apparently	does	useful

				magic	in	relation	to	line	terminators.

	5.	Changed	"r"	and	"w"	in	the	calls	to	fopen()	in	pcretest	to	"rb"	and	"wb"

				for	the	benefit	of	those	environments	where	the	"b"	makes	a	difference.

	6.	The	icc	compiler	has	the	same	options	as	gcc,	but	"configure"	doesn't	seem

				to	know	about	it.	I	have	put	a	hack	into	configure.in	that	adds	in	code

				to	set	GCC=yes	if	CC=icc.	This	seems	to	end	up	at	a	point	in	the

				generated	configure	script	that	is	early	enough	to	affect	the	setting	of

				compiler	options,	which	is	what	is	needed,	but	I	have	no	means	of	testing

				whether	it	really	works.	(The	user	who	reported	this	had	patched	the

				generated	configure	script,	which	of	course	I	cannot	do.)

				LATER:	After	change	22	below	(new	libtool	files),	the	configure	script

				seems	to	know	about	icc	(and	also	ecc).	Therefore,	I	have	commented	out

				this	hack	in	configure.in.

	7.	Added	support	for	pkg-config	(2	patches	were	sent	in).

	8.	Negated	POSIX	character	classes	that	used	a	combination	of	internal	tables

				were	completely	broken.	These	were	[[:^alpha:]],	[[:^alnum:]],	and

				[[:^ascii]].	Typically,	they	would	match	almost	any	characters.	The	other

				POSIX	classes	were	not	broken	in	this	way.

	9.	Matching	the	pattern	"\b.*?"	against	"ab	cd",	starting	at	offset	1,	failed

				to	find	the	match,	as	PCRE	was	deluded	into	thinking	that	the	match	had	to

				start	at	the	start	point	or	following	a	newline.	The	same	bug	applied	to

				patterns	with	negative	forward	assertions	or	any	backward	assertions

				preceding	".*"	at	the	start,	unless	the	pattern	required	a	fixed	first

				character.	This	was	a	failing	pattern:	"(?!.bcd).*".	The	bug	is	now	fixed.

10.	In	UTF-8	mode,	when	moving	forwards	in	the	subject	after	a	failed	match

				starting	at	the	last	subject	character,	bytes	beyond	the	end	of	the	subject

				string	were	read.

11.	Renamed	the	variable	"class"	as	"classbits"	to	make	life	easier	for	C++

				users.	(Previously	there	was	a	macro	definition,	but	it	apparently	wasn't

				enough.)

12.	Added	the	new	field	"tables"	to	the	extra	data	so	that	tables	can	be	passed

				in	at	exec	time,	or	the	internal	tables	can	be	re-selected.	This	allows

				a	compiled	regex	to	be	saved	and	re-used	at	a	later	time	by	a	different

				program	that	might	have	everything	at	different	addresses.

13.	Modified	the	pcre-config	script	so	that,	when	run	on	Solaris,	it	shows	a

				-R	library	as	well	as	a	-L	library.

14.	The	debugging	options	of	pcretest	(-d	on	the	command	line	or	D	on	a

				pattern)	showed	incorrect	output	for	anything	following	an	extended	class

				that	contained	multibyte	characters	and	which	was	followed	by	a	quantifier.

15.	Added	optional	support	for	general	category	Unicode	character	properties

				via	the	\p,	\P,	and	\X	escapes.	Unicode	property	support	implies	UTF-8

				support.	It	adds	about	90K	to	the	size	of	the	library.	The	meanings	of	the

				inbuilt	class	escapes	such	as	\d	and	\s	have	NOT	been	changed.

16.	Updated	pcredemo.c	to	include	calls	to	free()	to	release	the	memory	for	the

				compiled	pattern.

17.	The	generated	file	chartables.c	was	being	created	in	the	source	directory

				instead	of	in	the	building	directory.	This	caused	the	build	to	fail	if	the

				source	directory	was	different	from	the	building	directory,	and	was

				read-only.

18.	Added	some	sample	Win	commands	from	Mark	Tetrode	into	the	NON-UNIX-USE

				file.	No	doubt	somebody	will	tell	me	if	they	don't	make	sense...	Also	added

				Dan	Mooney's	comments	about	building	on	OpenVMS.

19.	Added	support	for	partial	matching	via	the	PCRE_PARTIAL	option	for

				pcre_exec()	and	the	\P	data	escape	in	pcretest.

20.	Extended	pcretest	with	3	new	pattern	features:

				(i)			A	pattern	option	of	the	form	">rest-of-line"	causes	pcretest	to

										write	the	compiled	pattern	to	the	file	whose	name	is	"rest-of-line".

										This	is	a	straight	binary	dump	of	the	data,	with	the	saved	pointer	to

										the	character	tables	forced	to	be	NULL.	The	study	data,	if	any,	is

										written	too.	After	writing,	pcretest	reads	a	new	pattern.

				(ii)		If,	instead	of	a	pattern,	"<rest-of-line"	is	given,	pcretest	reads	a

										compiled	pattern	from	the	given	file.	There	must	not	be	any

										occurrences	of	"<"	in	the	file	name	(pretty	unlikely);	if	there	are,

										pcretest	will	instead	treat	the	initial	"<"	as	a	pattern	delimiter.

										After	reading	in	the	pattern,	pcretest	goes	on	to	read	data	lines	as

										usual.

				(iii)	The	F	pattern	option	causes	pcretest	to	flip	the	bytes	in	the	32-bit

										and	16-bit	fields	in	a	compiled	pattern,	to	simulate	a	pattern	that

										was	compiled	on	a	host	of	opposite	endianness.

21.	The	pcre-exec()	function	can	now	cope	with	patterns	that	were	compiled	on

				hosts	of	opposite	endianness,	with	this	restriction:

						As	for	any	compiled	expression	that	is	saved	and	used	later,	the	tables

						pointer	field	cannot	be	preserved;	the	extra_data	field	in	the	arguments

						to	pcre_exec()	should	be	used	to	pass	in	a	tables	address	if	a	value

						other	than	the	default	internal	tables	were	used	at	compile	time.

22.	Calling	pcre_exec()	with	a	negative	value	of	the	"ovecsize"	parameter	is

				now	diagnosed	as	an	error.	Previously,	most	of	the	time,	a	negative	number

				would	have	been	treated	as	zero,	but	if	in	addition	"ovector"	was	passed	as

				NULL,	a	crash	could	occur.

23.	Updated	the	files	ltmain.sh,	config.sub,	config.guess,	and	aclocal.m4	with

				new	versions	from	the	libtool	1.5	distribution	(the	last	one	is	a	copy	of

				a	file	called	libtool.m4).	This	seems	to	have	fixed	the	need	to	patch

				"configure"	to	support	Darwin	1.3	(which	I	used	to	do).	However,	I	still

				had	to	patch	ltmain.sh	to	ensure	that	${SED}	is	set	(it	isn't	on	my

				workstation).

24.	Changed	the	PCRE	licence	to	be	the	more	standard	"BSD"	licence.

Version	4.5	01-Dec-03

	1.	There	has	been	some	re-arrangement	of	the	code	for	the	match()	function	so

				that	it	can	be	compiled	in	a	version	that	does	not	call	itself	recursively.

				Instead,	it	keeps	those	local	variables	that	need	separate	instances	for

				each	"recursion"	in	a	frame	on	the	heap,	and	gets/frees	frames	whenever	it

				needs	to	"recurse".	Keeping	track	of	where	control	must	go	is	done	by	means

				of	setjmp/longjmp.	The	whole	thing	is	implemented	by	a	set	of	macros	that

				hide	most	of	the	details	from	the	main	code,	and	operates	only	if

				NO_RECURSE	is	defined	while	compiling	pcre.c.	If	PCRE	is	built	using	the

				"configure"	mechanism,	"--disable-stack-for-recursion"	turns	on	this	way	of

				operating.

				To	make	it	easier	for	callers	to	provide	specially	tailored	get/free

				functions	for	this	usage,	two	new	functions,	pcre_stack_malloc,	and

				pcre_stack_free,	are	used.	They	are	always	called	in	strict	stacking	order,

				and	the	size	of	block	requested	is	always	the	same.

				The	PCRE_CONFIG_STACKRECURSE	info	parameter	can	be	used	to	find	out	whether

				PCRE	has	been	compiled	to	use	the	stack	or	the	heap	for	recursion.	The

				-C	option	of	pcretest	uses	this	to	show	which	version	is	compiled.

				A	new	data	escape	\S,	is	added	to	pcretest;	it	causes	the	amounts	of	store

				obtained	and	freed	by	both	kinds	of	malloc/free	at	match	time	to	be	added

				to	the	output.

	2.	Changed	the	locale	test	to	use	"fr_FR"	instead	of	"fr"	because	that's

				what's	available	on	my	current	Linux	desktop	machine.

	3.	When	matching	a	UTF-8	string,	the	test	for	a	valid	string	at	the	start	has

				been	extended.	If	start_offset	is	not	zero,	PCRE	now	checks	that	it	points

				to	a	byte	that	is	the	start	of	a	UTF-8	character.	If	not,	it	returns

				PCRE_ERROR_BADUTF8_OFFSET	(-11).	Note:	the	whole	string	is	still	checked;

				this	is	necessary	because	there	may	be	backward	assertions	in	the	pattern.

				When	matching	the	same	subject	several	times,	it	may	save	resources	to	use

				PCRE_NO_UTF8_CHECK	on	all	but	the	first	call	if	the	string	is	long.

	4.	The	code	for	checking	the	validity	of	UTF-8	strings	has	been	tightened	so

				that	it	rejects	(a)	strings	containing	0xfe	or	0xff	bytes	and	(b)	strings

				containing	"overlong	sequences".

	5.	Fixed	a	bug	(appearing	twice)	that	I	could	not	find	any	way	of	exploiting!

				I	had	written	"if	((digitab[*p++]	&&	chtab_digit)	==	0)"	where	the	"&&"

				should	have	been	"&",	but	it	just	so	happened	that	all	the	cases	this	let

				through	by	mistake	were	picked	up	later	in	the	function.

	6.	I	had	used	a	variable	called	"isblank"	-	this	is	a	C99	function,	causing

				some	compilers	to	warn.	To	avoid	this,	I	renamed	it	(as	"blankclass").

	7.	Cosmetic:	(a)	only	output	another	newline	at	the	end	of	pcretest	if	it	is

				prompting;	(b)	run	"./pcretest	/dev/null"	at	the	start	of	the	test	script

				so	the	version	is	shown;	(c)	stop	"make	test"	echoing	"./RunTest".

	8.	Added	patches	from	David	Burgess	to	enable	PCRE	to	run	on	EBCDIC	systems.

	9.	The	prototype	for	memmove()	for	systems	that	don't	have	it	was	using

				size_t,	but	the	inclusion	of	the	header	that	defines	size_t	was	later.	I've

				moved	the	#includes	for	the	C	headers	earlier	to	avoid	this.

10.	Added	some	adjustments	to	the	code	to	make	it	easier	to	compiler	on	certain

				special	systems:

						(a)	Some	"const"	qualifiers	were	missing.

						(b)	Added	the	macro	EXPORT	before	all	exported	functions;	by	default	this

										is	defined	to	be	empty.

						(c)	Changed	the	dftables	auxiliary	program	(that	builds	chartables.c)	so

										that	it	reads	its	output	file	name	as	an	argument	instead	of	writing

										to	the	standard	output	and	assuming	this	can	be	redirected.

11.	In	UTF-8	mode,	if	a	recursive	reference	(e.g.	(?1))	followed	a	character

				class	containing	characters	with	values	greater	than	255,	PCRE	compilation

				went	into	a	loop.

12.	A	recursive	reference	to	a	subpattern	that	was	within	another	subpattern

				that	had	a	minimum	quantifier	of	zero	caused	PCRE	to	crash.	For	example,

				(x(y(?2))z)?	provoked	this	bug	with	a	subject	that	got	as	far	as	the

				recursion.	If	the	recursively-called	subpattern	itself	had	a	zero	repeat,

				that	was	OK.

13.	In	pcretest,	the	buffer	for	reading	a	data	line	was	set	at	30K,	but	the

				buffer	into	which	it	was	copied	(for	escape	processing)	was	still	set	at

				1024,	so	long	lines	caused	crashes.

14.	A	pattern	such	as	/[ab]{1,3}+/	failed	to	compile,	giving	the	error

				"internal	error:	code	overflow...".	This	applied	to	any	character	class

				that	was	followed	by	a	possessive	quantifier.

15.	Modified	the	Makefile	to	add	libpcre.la	as	a	prerequisite	for

				libpcreposix.la	because	I	was	told	this	is	needed	for	a	parallel	build	to

				work.

16.	If	a	pattern	that	contained	.*	following	optional	items	at	the	start	was

				studied,	the	wrong	optimizing	data	was	generated,	leading	to	matching

				errors.	For	example,	studying	/[ab]*.*c/	concluded,	erroneously,	that	any

				matching	string	must	start	with	a	or	b	or	c.	The	correct	conclusion	for

				this	pattern	is	that	a	match	can	start	with	any	character.

Version	4.4	13-Aug-03

	1.	In	UTF-8	mode,	a	character	class	containing	characters	with	values	between

				127	and	255	was	not	handled	correctly	if	the	compiled	pattern	was	studied.

				In	fixing	this,	I	have	also	improved	the	studying	algorithm	for	such

				classes	(slightly).

	2.	Three	internal	functions	had	redundant	arguments	passed	to	them.	Removal

				might	give	a	very	teeny	performance	improvement.

	3.	Documentation	bug:	the	value	of	the	capture_top	field	in	a	callout	is	*one

				more	than*	the	number	of	the	hightest	numbered	captured	substring.

	4.	The	Makefile	linked	pcretest	and	pcregrep	with	-lpcre,	which	could	result

				in	incorrectly	linking	with	a	previously	installed	version.	They	now	link

				explicitly	with	libpcre.la.

	5.	configure.in	no	longer	needs	to	recognize	Cygwin	specially.

	6.	A	problem	in	pcre.in	for	Windows	platforms	is	fixed.

	7.	If	a	pattern	was	successfully	studied,	and	the	-d	(or	/D)	flag	was	given	to

				pcretest,	it	used	to	include	the	size	of	the	study	block	as	part	of	its

				output.	Unfortunately,	the	structure	contains	a	field	that	has	a	different

				size	on	different	hardware	architectures.	This	meant	that	the	tests	that

				showed	this	size	failed.	As	the	block	is	currently	always	of	a	fixed	size,

				this	information	isn't	actually	particularly	useful	in	pcretest	output,	so

				I	have	just	removed	it.

	8.	Three	pre-processor	statements	accidentally	did	not	start	in	column	1.

				Sadly,	there	are	*still*	compilers	around	that	complain,	even	though

				standard	C	has	not	required	this	for	well	over	a	decade.	Sigh.

	9.	In	pcretest,	the	code	for	checking	callouts	passed	small	integers	in	the

				callout_data	field,	which	is	a	void	*	field.	However,	some	picky	compilers

				complained	about	the	casts	involved	for	this	on	64-bit	systems.	Now

				pcretest	passes	the	address	of	the	small	integer	instead,	which	should	get

				rid	of	the	warnings.

10.	By	default,	when	in	UTF-8	mode,	PCRE	now	checks	for	valid	UTF-8	strings	at

				both	compile	and	run	time,	and	gives	an	error	if	an	invalid	UTF-8	sequence

				is	found.	There	is	a	option	for	disabling	this	check	in	cases	where	the

				string	is	known	to	be	correct	and/or	the	maximum	performance	is	wanted.

11.	In	response	to	a	bug	report,	I	changed	one	line	in	Makefile.in	from

								-Wl,--out-implib,.libs/lib@WIN_PREFIX@pcreposix.dll.a	\

				to

								-Wl,--out-implib,.libs/@WIN_PREFIX@libpcreposix.dll.a	\

				to	look	similar	to	other	lines,	but	I	have	no	way	of	telling	whether	this

				is	the	right	thing	to	do,	as	I	do	not	use	Windows.	No	doubt	I'll	get	told

				if	it's	wrong...

Version	4.3	21-May-03

1.	Two	instances	of	@WIN_PREFIX@	omitted	from	the	Windows	targets	in	the

			Makefile.

2.	Some	refactoring	to	improve	the	quality	of	the	code:

			(i)			The	utf8_table...	variables	are	now	declared	"const".

			(ii)		The	code	for	\cx,	which	used	the	"case	flipping"	table	to	upper	case

									lower	case	letters,	now	just	substracts	32.	This	is	ASCII-specific,

									but	the	whole	concept	of	\cx	is	ASCII-specific,	so	it	seems

									reasonable.

			(iii)	PCRE	was	using	its	character	types	table	to	recognize	decimal	and

									hexadecimal	digits	in	the	pattern.	This	is	silly,	because	it	handles

									only	0-9,	a-f,	and	A-F,	but	the	character	types	table	is	locale-

									specific,	which	means	strange	things	might	happen.	A	private

									table	is	now	used	for	this	-	though	it	costs	256	bytes,	a	table	is

									much	faster	than	multiple	explicit	tests.	Of	course,	the	standard

									character	types	table	is	still	used	for	matching	digits	in	subject

									strings	against	\d.

			(iv)		Strictly,	the	identifier	ESC_t	is	reserved	by	POSIX	(all	identifiers

									ending	in	_t	are).	So	I've	renamed	it	as	ESC_tee.

3.	The	first	argument	for	regexec()	in	the	POSIX	wrapper	should	have	been

			defined	as	"const".

4.	Changed	pcretest	to	use	malloc()	for	its	buffers	so	that	they	can	be

			Electric	Fenced	for	debugging.

5.	There	were	several	places	in	the	code	where,	in	UTF-8	mode,	PCRE	would	try

			to	read	one	or	more	bytes	before	the	start	of	the	subject	string.	Often	this

			had	no	effect	on	PCRE's	behaviour,	but	in	some	circumstances	it	could

			provoke	a	segmentation	fault.

6.	A	lookbehind	at	the	start	of	a	pattern	in	UTF-8	mode	could	also	cause	PCRE

			to	try	to	read	one	or	more	bytes	before	the	start	of	the	subject	string.

7.	A	lookbehind	in	a	pattern	matched	in	non-UTF-8	mode	on	a	PCRE	compiled	with

			UTF-8	support	could	misbehave	in	various	ways	if	the	subject	string

			contained	bytes	with	the	0x80	bit	set	and	the	0x40	bit	unset	in	a	lookbehind

			area.	(PCRE	was	not	checking	for	the	UTF-8	mode	flag,	and	trying	to	move

			back	over	UTF-8	characters.)

Version	4.2	14-Apr-03

1.	Typo	"#if	SUPPORT_UTF8"	instead	of	"#ifdef	SUPPORT_UTF8"	fixed.

2.	Changes	to	the	building	process,	supplied	by	Ronald	Landheer-Cieslak

					[ON_WINDOWS]:	new	variable,	"#"	on	non-Windows	platforms

					[NOT_ON_WINDOWS]:	new	variable,	"#"	on	Windows	platforms

					[WIN_PREFIX]:	new	variable,	"cyg"	for	Cygwin

					*	Makefile.in:	use	autoconf	substitution	for	OBJEXT,	EXEEXT,	BUILD_OBJEXT

							and	BUILD_EXEEXT

					Note:	automatic	setting	of	the	BUILD	variables	is	not	yet	working

					set	CPPFLAGS	and	BUILD_CPPFLAGS	(but	don't	use	yet)	-	should	be	used	at

							compile-time	but	not	at	link-time

					[LINK]:	use	for	linking	executables	only

					make	different	versions	for	Windows	and	non-Windows

					[LINKLIB]:	new	variable,	copy	of	UNIX-style	LINK,	used	for	linking

							libraries

					[LINK_FOR_BUILD]:	new	variable

					[OBJEXT]:	use	throughout

					[EXEEXT]:	use	throughout

					<winshared>:	new	target

					<wininstall>:	new	target

					<dftables.o>:	use	native	compiler

					<dftables>:	use	native	linker

					<install>:	handle	Windows	platform	correctly

					<clean>:	ditto

					<check>:	ditto

					copy	DLL	to	top	builddir	before	testing

			As	part	of	these	changes,	-no-undefined	was	removed	again.	This	was	reported

			to	give	trouble	on	HP-UX	11.0,	so	getting	rid	of	it	seems	like	a	good	idea

			in	any	case.

3.	Some	tidies	to	get	rid	of	compiler	warnings:

			.	In	the	match_data	structure,	match_limit	was	an	unsigned	long	int,	whereas

					match_call_count	was	an	int.	I've	made	them	both	unsigned	long	ints.

			.	In	pcretest	the	fact	that	a	const	uschar	*	doesn't	automatically	cast	to

					a	void	*	provoked	a	warning.

			.	Turning	on	some	more	compiler	warnings	threw	up	some	"shadow"	variables

					and	a	few	more	missing	casts.

4.	If	PCRE	was	complied	with	UTF-8	support,	but	called	without	the	PCRE_UTF8

			option,	a	class	that	contained	a	single	character	with	a	value	between	128

			and	255	(e.g.	/[\xFF]/)	caused	PCRE	to	crash.

5.	If	PCRE	was	compiled	with	UTF-8	support,	but	called	without	the	PCRE_UTF8

			option,	a	class	that	contained	several	characters,	but	with	at	least	one

			whose	value	was	between	128	and	255	caused	PCRE	to	crash.

Version	4.1	12-Mar-03

1.	Compiling	with	gcc	-pedantic	found	a	couple	of	places	where	casts	were

needed,	and	a	string	in	dftables.c	that	was	longer	than	standard	compilers	are

required	to	support.

2.	Compiling	with	Sun's	compiler	found	a	few	more	places	where	the	code	could

be	tidied	up	in	order	to	avoid	warnings.

3.	The	variables	for	cross-compiling	were	called	HOST_CC	and	HOST_CFLAGS;	the

first	of	these	names	is	deprecated	in	the	latest	Autoconf	in	favour	of	the	name

CC_FOR_BUILD,	because	"host"	is	typically	used	to	mean	the	system	on	which	the

compiled	code	will	be	run.	I	can't	find	a	reference	for	HOST_CFLAGS,	but	by

analogy	I	have	changed	it	to	CFLAGS_FOR_BUILD.

4.	Added	-no-undefined	to	the	linking	command	in	the	Makefile,	because	this	is

apparently	helpful	for	Windows.	To	make	it	work,	also	added	"-L.	-lpcre"	to	the

linking	step	for	the	pcreposix	library.

5.	PCRE	was	failing	to	diagnose	the	case	of	two	named	groups	with	the	same

name.

6.	A	problem	with	one	of	PCRE's	optimizations	was	discovered.	PCRE	remembers	a

literal	character	that	is	needed	in	the	subject	for	a	match,	and	scans	along	to

ensure	that	it	is	present	before	embarking	on	the	full	matching	process.	This

saves	time	in	cases	of	nested	unlimited	repeats	that	are	never	going	to	match.

Problem:	the	scan	can	take	a	lot	of	time	if	the	subject	is	very	long	(e.g.

megabytes),	thus	penalizing	straightforward	matches.	It	is	now	done	only	if	the

amount	of	subject	to	be	scanned	is	less	than	1000	bytes.

7.	A	lesser	problem	with	the	same	optimization	is	that	it	was	recording	the

first	character	of	an	anchored	pattern	as	"needed",	thus	provoking	a	search

right	along	the	subject,	even	when	the	first	match	of	the	pattern	was	going	to

fail.	The	"needed"	character	is	now	not	set	for	anchored	patterns,	unless	it

follows	something	in	the	pattern	that	is	of	non-fixed	length.	Thus,	it	still

fulfils	its	original	purpose	of	finding	quick	non-matches	in	cases	of	nested

unlimited	repeats,	but	isn't	used	for	simple	anchored	patterns	such	as	/^abc/.

Version	4.0	17-Feb-03

1.	If	a	comment	in	an	extended	regex	that	started	immediately	after	a	meta-item

extended	to	the	end	of	string,	PCRE	compiled	incorrect	data.	This	could	lead	to

all	kinds	of	weird	effects.	Example:	/#/	was	bad;	/()#/	was	bad;	/a#/	was	not.

2.	Moved	to	autoconf	2.53	and	libtool	1.4.2.

3.	Perl	5.8	no	longer	needs	"use	utf8"	for	doing	UTF-8	things.	Consequently,

the	special	perltest8	script	is	no	longer	needed	-	all	the	tests	can	be	run

from	a	single	perltest	script.

4.	From	5.004,	Perl	has	not	included	the	VT	character	(0x0b)	in	the	set	defined

by	\s.	It	has	now	been	removed	in	PCRE.	This	means	it	isn't	recognized	as

whitespace	in	/x	regexes	too,	which	is	the	same	as	Perl.	Note	that	the	POSIX

class	[:space:]	*does*	include	VT,	thereby	creating	a	mess.

5.	Added	the	class	[:blank:]	(a	GNU	extension	from	Perl	5.8)	to	match	only

space	and	tab.

6.	Perl	5.005	was	a	long	time	ago.	It's	time	to	amalgamate	the	tests	that	use

its	new	features	into	the	main	test	script,	reducing	the	number	of	scripts.

7.	Perl	5.8	has	changed	the	meaning	of	patterns	like	/a(?i)b/.	Earlier	versions

were	backward	compatible,	and	made	the	(?i)	apply	to	the	whole	pattern,	as	if

/i	were	given.	Now	it	behaves	more	logically,	and	applies	the	option	setting

only	to	what	follows.	PCRE	has	been	changed	to	follow	suit.	However,	if	it

finds	options	settings	right	at	the	start	of	the	pattern,	it	extracts	them	into

the	global	options,	as	before.	Thus,	they	show	up	in	the	info	data.

8.	Added	support	for	the	\Q...\E	escape	sequence.	Characters	in	between	are

treated	as	literals.	This	is	slightly	different	from	Perl	in	that	$	and	@	are

also	handled	as	literals	inside	the	quotes.	In	Perl,	they	will	cause	variable

interpolation.	Note	the	following	examples:

				Pattern												PCRE	matches						Perl	matches

				\Qabc$xyz\E								abc$xyz											abc	followed	by	the	contents	of	$xyz

				\Qabc\$xyz\E							abc\$xyz										abc\$xyz

				\Qabc\E\$\Qxyz\E			abc$xyz											abc$xyz

For	compatibility	with	Perl,	\Q...\E	sequences	are	recognized	inside	character

classes	as	well	as	outside	them.

9.	Re-organized	3	code	statements	in	pcretest	to	avoid	"overflow	in

floating-point	constant	arithmetic"	warnings	from	a	Microsoft	compiler.	Added	a

(size_t)	cast	to	one	statement	in	pcretest	and	one	in	pcreposix	to	avoid

signed/unsigned	warnings.

10.	SunOS4	doesn't	have	strtoul().	This	was	used	only	for	unpicking	the	-o

option	for	pcretest,	so	I've	replaced	it	by	a	simple	function	that	does	just

that	job.

11.	pcregrep	was	ending	with	code	0	instead	of	2	for	the	commands	"pcregrep"	or

"pcregrep	-".

12.	Added	"possessive	quantifiers"	?+,	*+,	++,	and	{,}+	which	come	from	Sun's

Java	package.	This	provides	some	syntactic	sugar	for	simple	cases	of	what	my

documentation	calls	"once-only	subpatterns".	A	pattern	such	as	x*+	is	the	same

as	(?>x*).	In	other	words,	if	what	is	inside	(?>...)	is	just	a	single	repeated

item,	you	can	use	this	simplified	notation.	Note	that	only	makes	sense	with

greedy	quantifiers.	Consequently,	the	use	of	the	possessive	quantifier	forces

greediness,	whatever	the	setting	of	the	PCRE_UNGREEDY	option.

13.	A	change	of	greediness	default	within	a	pattern	was	not	taking	effect	at

the	current	level	for	patterns	like	/(b+(?U)a+)/.	It	did	apply	to	parenthesized

subpatterns	that	followed.	Patterns	like	/b+(?U)a+/	worked	because	the	option

was	abstracted	outside.

14.	PCRE	now	supports	the	\G	assertion.	It	is	true	when	the	current	matching

position	is	at	the	start	point	of	the	match.	This	differs	from	\A	when	the

starting	offset	is	non-zero.	Used	with	the	/g	option	of	pcretest	(or	similar

code),	it	works	in	the	same	way	as	it	does	for	Perl's	/g	option.	If	all

alternatives	of	a	regex	begin	with	\G,	the	expression	is	anchored	to	the	start

match	position,	and	the	"anchored"	flag	is	set	in	the	compiled	expression.

15.	Some	bugs	concerning	the	handling	of	certain	option	changes	within	patterns

have	been	fixed.	These	applied	to	options	other	than	(?ims).	For	example,

"a(?x:	b	c)d"	did	not	match	"XabcdY"	but	did	match	"Xa	b	c	dY".	It	should	have

been	the	other	way	round.	Some	of	this	was	related	to	change	7	above.

16.	PCRE	now	gives	errors	for	/[.x.]/	and	/[=x=]/	as	unsupported	POSIX

features,	as	Perl	does.	Previously,	PCRE	gave	the	warnings	only	for	/[[.x.]]/

and	/[[=x=]]/.	PCRE	now	also	gives	an	error	for	/[:name:]/	because	it	supports

POSIX	classes	only	within	a	class	(e.g.	/[[:alpha:]]/).

17.	Added	support	for	Perl's	\C	escape.	This	matches	one	byte,	even	in	UTF8

mode.	Unlike	".",	it	always	matches	newline,	whatever	the	setting	of

PCRE_DOTALL.	However,	PCRE	does	not	permit	\C	to	appear	in	lookbehind

assertions.	Perl	allows	it,	but	it	doesn't	(in	general)	work	because	it	can't

calculate	the	length	of	the	lookbehind.	At	least,	that's	the	case	for	Perl

5.8.0	-	I've	been	told	they	are	going	to	document	that	it	doesn't	work	in

future.

18.	Added	an	error	diagnosis	for	escapes	that	PCRE	does	not	support:	these	are

\L,	\l,	\N,	\P,	\p,	\U,	\u,	and	\X.

19.	Although	correctly	diagnosing	a	missing	']'	in	a	character	class,	PCRE	was

reading	past	the	end	of	the	pattern	in	cases	such	as	/[abcd/.

20.	PCRE	was	getting	more	memory	than	necessary	for	patterns	with	classes	that

contained	both	POSIX	named	classes	and	other	characters,	e.g.	/[[:space:]abc/.

21.	Added	some	code,	conditional	on	#ifdef	VPCOMPAT,	to	make	life	easier	for

compiling	PCRE	for	use	with	Virtual	Pascal.

22.	Small	fix	to	the	Makefile	to	make	it	work	properly	if	the	build	is	done

outside	the	source	tree.

23.	Added	a	new	extension:	a	condition	to	go	with	recursion.	If	a	conditional

subpattern	starts	with	(?(R)	the	"true"	branch	is	used	if	recursion	has

happened,	whereas	the	"false"	branch	is	used	only	at	the	top	level.

24.	When	there	was	a	very	long	string	of	literal	characters	(over	255	bytes

without	UTF	support,	over	250	bytes	with	UTF	support),	the	computation	of	how

much	memory	was	required	could	be	incorrect,	leading	to	segfaults	or	other

strange	effects.

25.	PCRE	was	incorrectly	assuming	anchoring	(either	to	start	of	subject	or	to

start	of	line	for	a	non-DOTALL	pattern)	when	a	pattern	started	with	(.*)	and

there	was	a	subsequent	back	reference	to	those	brackets.	This	meant	that,	for

example,	/(.*)\d+\1/	failed	to	match	"abc123bc".	Unfortunately,	it	isn't

possible	to	check	for	precisely	this	case.	All	we	can	do	is	abandon	the

optimization	if	.*	occurs	inside	capturing	brackets	when	there	are	any	back

references	whatsoever.	(See	below	for	a	better	fix	that	came	later.)

26.	The	handling	of	the	optimization	for	finding	the	first	character	of	a

non-anchored	pattern,	and	for	finding	a	character	that	is	required	later	in	the

match	were	failing	in	some	cases.	This	didn't	break	the	matching;	it	just

failed	to	optimize	when	it	could.	The	way	this	is	done	has	been	re-implemented.

27.	Fixed	typo	in	error	message	for	invalid	(?R	item	(it	said	"(?p").

28.	Added	a	new	feature	that	provides	some	of	the	functionality	that	Perl

provides	with	(?{...}).	The	facility	is	termed	a	"callout".	The	way	it	is	done

in	PCRE	is	for	the	caller	to	provide	an	optional	function,	by	setting

pcre_callout	to	its	entry	point.	Like	pcre_malloc	and	pcre_free,	this	is	a

global	variable.	By	default	it	is	unset,	which	disables	all	calling	out.	To	get

the	function	called,	the	regex	must	include	(?C)	at	appropriate	points.	This

is,	in	fact,	equivalent	to	(?C0),	and	any	number	<=	255	may	be	given	with	(?C).

This	provides	a	means	of	identifying	different	callout	points.	When	PCRE

reaches	such	a	point	in	the	regex,	if	pcre_callout	has	been	set,	the	external

function	is	called.	It	is	provided	with	data	in	a	structure	called

pcre_callout_block,	which	is	defined	in	pcre.h.	If	the	function	returns	0,

matching	continues;	if	it	returns	a	non-zero	value,	the	match	at	the	current

point	fails.	However,	backtracking	will	occur	if	possible.	[This	was	changed

later	and	other	features	added	-	see	item	49	below.]

29.	pcretest	is	upgraded	to	test	the	callout	functionality.	It	provides	a

callout	function	that	displays	information.	By	default,	it	shows	the	start	of

the	match	and	the	current	position	in	the	text.	There	are	some	new	data	escapes

to	vary	what	happens:

				\C+									in	addition,	show	current	contents	of	captured	substrings

				\C-									do	not	supply	a	callout	function

				\C!n								return	1	when	callout	number	n	is	reached

				\C!n!m						return	1	when	callout	number	n	is	reached	for	the	mth	time

30.	If	pcregrep	was	called	with	the	-l	option	and	just	a	single	file	name,	it

output	"<stdin>"	if	a	match	was	found,	instead	of	the	file	name.

31.	Improve	the	efficiency	of	the	POSIX	API	to	PCRE.	If	the	number	of	capturing

slots	is	less	than	POSIX_MALLOC_THRESHOLD,	use	a	block	on	the	stack	to	pass	to

pcre_exec().	This	saves	a	malloc/free	per	call.	The	default	value	of

POSIX_MALLOC_THRESHOLD	is	10;	it	can	be	changed	by	--with-posix-malloc-threshold

when	configuring.

32.	The	default	maximum	size	of	a	compiled	pattern	is	64K.	There	have	been	a

few	cases	of	people	hitting	this	limit.	The	code	now	uses	macros	to	handle	the

storing	of	links	as	offsets	within	the	compiled	pattern.	It	defaults	to	2-byte

links,	but	this	can	be	changed	to	3	or	4	bytes	by	--with-link-size	when

configuring.	Tests	2	and	5	work	only	with	2-byte	links	because	they	output

debugging	information	about	compiled	patterns.

33.	Internal	code	re-arrangements:

(a)	Moved	the	debugging	function	for	printing	out	a	compiled	regex	into

				its	own	source	file	(printint.c)	and	used	#include	to	pull	it	into

				pcretest.c	and,	when	DEBUG	is	defined,	into	pcre.c,	instead	of	having	two

				separate	copies.

(b)	Defined	the	list	of	op-code	names	for	debugging	as	a	macro	in

				internal.h	so	that	it	is	next	to	the	definition	of	the	opcodes.

(c)	Defined	a	table	of	op-code	lengths	for	simpler	skipping	along	compiled

				code.	This	is	again	a	macro	in	internal.h	so	that	it	is	next	to	the

				definition	of	the	opcodes.

34.	Added	support	for	recursive	calls	to	individual	subpatterns,	along	the

lines	of	Robin	Houston's	patch	(but	implemented	somewhat	differently).

35.	Further	mods	to	the	Makefile	to	help	Win32.	Also,	added	code	to	pcregrep	to

allow	it	to	read	and	process	whole	directories	in	Win32.	This	code	was

contributed	by	Lionel	Fourquaux;	it	has	not	been	tested	by	me.

36.	Added	support	for	named	subpatterns.	The	Python	syntax	(?P<name>...)	is

used	to	name	a	group.	Names	consist	of	alphanumerics	and	underscores,	and	must

be	unique.	Back	references	use	the	syntax	(?P=name)	and	recursive	calls	use

(?P>name)	which	is	a	PCRE	extension	to	the	Python	extension.	Groups	still	have

numbers.	The	function	pcre_fullinfo()	can	be	used	after	compilation	to	extract

a	name/number	map.	There	are	three	relevant	calls:

		PCRE_INFO_NAMEENTRYSIZE								yields	the	size	of	each	entry	in	the	map

		PCRE_INFO_NAMECOUNT												yields	the	number	of	entries

		PCRE_INFO_NAMETABLE												yields	a	pointer	to	the	map.

The	map	is	a	vector	of	fixed-size	entries.	The	size	of	each	entry	depends	on

the	length	of	the	longest	name	used.	The	first	two	bytes	of	each	entry	are	the

group	number,	most	significant	byte	first.	There	follows	the	corresponding

name,	zero	terminated.	The	names	are	in	alphabetical	order.

37.	Make	the	maximum	literal	string	in	the	compiled	code	250	for	the	non-UTF-8

case	instead	of	255.	Making	it	the	same	both	with	and	without	UTF-8	support

means	that	the	same	test	output	works	with	both.

38.	There	was	a	case	of	malloc(0)	in	the	POSIX	testing	code	in	pcretest.	Avoid

calling	malloc()	with	a	zero	argument.

39.	Change	25	above	had	to	resort	to	a	heavy-handed	test	for	the	.*	anchoring

optimization.	I've	improved	things	by	keeping	a	bitmap	of	backreferences	with

numbers	1-31	so	that	if	.*	occurs	inside	capturing	brackets	that	are	not	in

fact	referenced,	the	optimization	can	be	applied.	It	is	unlikely	that	a

relevant	occurrence	of	.*	(i.e.	one	which	might	indicate	anchoring	or	forcing

the	match	to	follow	\n)	will	appear	inside	brackets	with	a	number	greater	than

31,	but	if	it	does,	any	back	reference	>	31	suppresses	the	optimization.

40.	Added	a	new	compile-time	option	PCRE_NO_AUTO_CAPTURE.	This	has	the	effect

of	disabling	numbered	capturing	parentheses.	Any	opening	parenthesis	that	is

not	followed	by	?	behaves	as	if	it	were	followed	by	?:	but	named	parentheses

can	still	be	used	for	capturing	(and	they	will	acquire	numbers	in	the	usual

way).

41.	Redesigned	the	return	codes	from	the	match()	function	into	yes/no/error	so

that	errors	can	be	passed	back	from	deep	inside	the	nested	calls.	A	malloc

failure	while	inside	a	recursive	subpattern	call	now	causes	the

PCRE_ERROR_NOMEMORY	return	instead	of	quietly	going	wrong.

42.	It	is	now	possible	to	set	a	limit	on	the	number	of	times	the	match()

function	is	called	in	a	call	to	pcre_exec().	This	facility	makes	it	possible	to

limit	the	amount	of	recursion	and	backtracking,	though	not	in	a	directly

obvious	way,	because	the	match()	function	is	used	in	a	number	of	different

circumstances.	The	count	starts	from	zero	for	each	position	in	the	subject

string	(for	non-anchored	patterns).	The	default	limit	is,	for	compatibility,	a

large	number,	namely	10	000	000.	You	can	change	this	in	two	ways:

(a)	When	configuring	PCRE	before	making,	you	can	use	--with-match-limit=n

				to	set	a	default	value	for	the	compiled	library.

(b)	For	each	call	to	pcre_exec(),	you	can	pass	a	pcre_extra	block	in	which

				a	different	value	is	set.	See	45	below.

If	the	limit	is	exceeded,	pcre_exec()	returns	PCRE_ERROR_MATCHLIMIT.

43.	Added	a	new	function	pcre_config(int,	void	*)	to	enable	run-time	extraction

of	things	that	can	be	changed	at	compile	time.	The	first	argument	specifies

what	is	wanted	and	the	second	points	to	where	the	information	is	to	be	placed.

The	current	list	of	available	information	is:

		PCRE_CONFIG_UTF8

The	output	is	an	integer	that	is	set	to	one	if	UTF-8	support	is	available;

otherwise	it	is	set	to	zero.

		PCRE_CONFIG_NEWLINE

The	output	is	an	integer	that	it	set	to	the	value	of	the	code	that	is	used	for

newline.	It	is	either	LF	(10)	or	CR	(13).

		PCRE_CONFIG_LINK_SIZE

The	output	is	an	integer	that	contains	the	number	of	bytes	used	for	internal

linkage	in	compiled	expressions.	The	value	is	2,	3,	or	4.	See	item	32	above.

		PCRE_CONFIG_POSIX_MALLOC_THRESHOLD

The	output	is	an	integer	that	contains	the	threshold	above	which	the	POSIX

interface	uses	malloc()	for	output	vectors.	See	item	31	above.

		PCRE_CONFIG_MATCH_LIMIT

The	output	is	an	unsigned	integer	that	contains	the	default	limit	of	the	number

of	match()	calls	in	a	pcre_exec()	execution.	See	42	above.

44.	pcretest	has	been	upgraded	by	the	addition	of	the	-C	option.	This	causes	it

to	extract	all	the	available	output	from	the	new	pcre_config()	function,	and	to

output	it.	The	program	then	exits	immediately.

45.	A	need	has	arisen	to	pass	over	additional	data	with	calls	to	pcre_exec()	in

order	to	support	additional	features.	One	way	would	have	been	to	define

pcre_exec2()	(for	example)	with	extra	arguments,	but	this	would	not	have	been

extensible,	and	would	also	have	required	all	calls	to	the	original	function	to

be	mapped	to	the	new	one.	Instead,	I	have	chosen	to	extend	the	mechanism	that

is	used	for	passing	in	"extra"	data	from	pcre_study().

The	pcre_extra	structure	is	now	exposed	and	defined	in	pcre.h.	It	currently

contains	the	following	fields:

		flags									a	bitmap	indicating	which	of	the	following	fields	are	set

		study_data				opaque	data	from	pcre_study()

		match_limit			a	way	of	specifying	a	limit	on	match()	calls	for	a	specific

																		call	to	pcre_exec()

		callout_data		data	for	callouts	(see	49	below)

The	flag	bits	are	also	defined	in	pcre.h,	and	are

		PCRE_EXTRA_STUDY_DATA

		PCRE_EXTRA_MATCH_LIMIT

		PCRE_EXTRA_CALLOUT_DATA

The	pcre_study()	function	now	returns	one	of	these	new	pcre_extra	blocks,	with

the	actual	study	data	pointed	to	by	the	study_data	field,	and	the

PCRE_EXTRA_STUDY_DATA	flag	set.	This	can	be	passed	directly	to	pcre_exec()	as

before.	That	is,	this	change	is	entirely	upwards-compatible	and	requires	no

change	to	existing	code.

If	you	want	to	pass	in	additional	data	to	pcre_exec(),	you	can	either	place	it

in	a	pcre_extra	block	provided	by	pcre_study(),	or	create	your	own	pcre_extra

block.

46.	pcretest	has	been	extended	to	test	the	PCRE_EXTRA_MATCH_LIMIT	feature.	If	a

data	string	contains	the	escape	sequence	\M,	pcretest	calls	pcre_exec()	several

times	with	different	match	limits,	until	it	finds	the	minimum	value	needed	for

pcre_exec()	to	complete.	The	value	is	then	output.	This	can	be	instructive;	for

most	simple	matches	the	number	is	quite	small,	but	for	pathological	cases	it

gets	very	large	very	quickly.

47.	There's	a	new	option	for	pcre_fullinfo()	called	PCRE_INFO_STUDYSIZE.	It

returns	the	size	of	the	data	block	pointed	to	by	the	study_data	field	in	a

pcre_extra	block,	that	is,	the	value	that	was	passed	as	the	argument	to

pcre_malloc()	when	PCRE	was	getting	memory	in	which	to	place	the	information

created	by	pcre_study().	The	fourth	argument	should	point	to	a	size_t	variable.

pcretest	has	been	extended	so	that	this	information	is	shown	after	a	successful

pcre_study()	call	when	information	about	the	compiled	regex	is	being	displayed.

48.	Cosmetic	change	to	Makefile:	there's	no	need	to	have	/	after	$(DESTDIR)

because	what	follows	is	always	an	absolute	path.	(Later:	it	turns	out	that	this

is	more	than	cosmetic	for	MinGW,	because	it	doesn't	like	empty	path

components.)

49.	Some	changes	have	been	made	to	the	callout	feature	(see	28	above):

(i)		A	callout	function	now	has	three	choices	for	what	it	returns:

							0		=>		success,	carry	on	matching

					>	0		=>		failure	at	this	point,	but	backtrack	if	possible

					<	0		=>		serious	error,	return	this	value	from	pcre_exec()

					Negative	values	should	normally	be	chosen	from	the	set	of	PCRE_ERROR_xxx

					values.	In	particular,	returning	PCRE_ERROR_NOMATCH	forces	a	standard

					"match	failed"	error.	The	error	number	PCRE_ERROR_CALLOUT	is	reserved	for

					use	by	callout	functions.	It	will	never	be	used	by	PCRE	itself.

(ii)	The	pcre_extra	structure	(see	45	above)	has	a	void	*	field	called

					callout_data,	with	corresponding	flag	bit	PCRE_EXTRA_CALLOUT_DATA.	The

					pcre_callout_block	structure	has	a	field	of	the	same	name.	The	contents	of

					the	field	passed	in	the	pcre_extra	structure	are	passed	to	the	callout

					function	in	the	corresponding	field	in	the	callout	block.	This	makes	it

					easier	to	use	the	same	callout-containing	regex	from	multiple	threads.	For

					testing,	the	pcretest	program	has	a	new	data	escape

							\C*n								pass	the	number	n	(may	be	negative)	as	callout_data

					If	the	callout	function	in	pcretest	receives	a	non-zero	value	as

					callout_data,	it	returns	that	value.

50.	Makefile	wasn't	handling	CFLAGS	properly	when	compiling	dftables.	Also,

there	were	some	redundant	$(CFLAGS)	in	commands	that	are	now	specified	as

$(LINK),	which	already	includes	$(CFLAGS).

51.	Extensions	to	UTF-8	support	are	listed	below.	These	all	apply	when	(a)	PCRE

has	been	compiled	with	UTF-8	support	*and*	pcre_compile()	has	been	compiled

with	the	PCRE_UTF8	flag.	Patterns	that	are	compiled	without	that	flag	assume

one-byte	characters	throughout.	Note	that	case-insensitive	matching	applies

only	to	characters	whose	values	are	less	than	256.	PCRE	doesn't	support	the

notion	of	cases	for	higher-valued	characters.

(i)			A	character	class	whose	characters	are	all	within	0-255	is	handled	as

						a	bit	map,	and	the	map	is	inverted	for	negative	classes.	Previously,	a

						character	>	255	always	failed	to	match	such	a	class;	however	it	should

						match	if	the	class	was	a	negative	one	(e.g.	[^ab]).	This	has	been	fixed.

(ii)		A	negated	character	class	with	a	single	character	<	255	is	coded	as

						"not	this	character"	(OP_NOT).	This	wasn't	working	properly	when	the	test

						character	was	multibyte,	either	singly	or	repeated.

(iii)	Repeats	of	multibyte	characters	are	now	handled	correctly	in	UTF-8

						mode,	for	example:	\x{100}{2,3}.

(iv)		The	character	escapes	\b,	\B,	\d,	\D,	\s,	\S,	\w,	and	\W	(either

						singly	or	repeated)	now	correctly	test	multibyte	characters.	However,

						PCRE	doesn't	recognize	any	characters	with	values	greater	than	255	as

						digits,	spaces,	or	word	characters.	Such	characters	always	match	\D,	\S,

						and	\W,	and	never	match	\d,	\s,	or	\w.

(v)			Classes	may	now	contain	characters	and	character	ranges	with	values

						greater	than	255.	For	example:	[ab\x{100}-\x{400}].

(vi)		pcregrep	now	has	a	--utf-8	option	(synonym	-u)	which	makes	it	call

						PCRE	in	UTF-8	mode.

52.	The	info	request	value	PCRE_INFO_FIRSTCHAR	has	been	renamed

PCRE_INFO_FIRSTBYTE	because	it	is	a	byte	value.	However,	the	old	name	is

retained	for	backwards	compatibility.	(Note	that	LASTLITERAL	is	also	a	byte

value.)

53.	The	single	man	page	has	become	too	large.	I	have	therefore	split	it	up	into

a	number	of	separate	man	pages.	These	also	give	rise	to	individual	HTML	pages;

these	are	now	put	in	a	separate	directory,	and	there	is	an	index.html	page	that

lists	them	all.	Some	hyperlinking	between	the	pages	has	been	installed.

54.	Added	convenience	functions	for	handling	named	capturing	parentheses.

55.	Unknown	escapes	inside	character	classes	(e.g.	[\M])	and	escapes	that

aren't	interpreted	therein	(e.g.	[\C])	are	literals	in	Perl.	This	is	now	also

true	in	PCRE,	except	when	the	PCRE_EXTENDED	option	is	set,	in	which	case	they

are	faulted.

56.	Introduced	HOST_CC	and	HOST_CFLAGS	which	can	be	set	in	the	environment	when

calling	configure.	These	values	are	used	when	compiling	the	dftables.c	program

which	is	run	to	generate	the	source	of	the	default	character	tables.	They

default	to	the	values	of	CC	and	CFLAGS.	If	you	are	cross-compiling	PCRE,

you	will	need	to	set	these	values.

57.	Updated	the	building	process	for	Windows	DLL,	as	provided	by	Fred	Cox.

Version	3.9	02-Jan-02

1.	A	bit	of	extraneous	text	had	somehow	crept	into	the	pcregrep	documentation.

2.	If	--disable-static	was	given,	the	building	process	failed	when	trying	to

build	pcretest	and	pcregrep.	(For	some	reason	it	was	using	libtool	to	compile

them,	which	is	not	right,	as	they	aren't	part	of	the	library.)

Version	3.8	18-Dec-01

1.	The	experimental	UTF-8	code	was	completely	screwed	up.	It	was	packing	the

bytes	in	the	wrong	order.	How	dumb	can	you	get?

Version	3.7	29-Oct-01

1.	In	updating	pcretest	to	check	change	1	of	version	3.6,	I	screwed	up.

This	caused	pcretest,	when	used	on	the	test	data,	to	segfault.	Unfortunately,

this	didn't	happen	under	Solaris	8,	where	I	normally	test	things.

2.	The	Makefile	had	to	be	changed	to	make	it	work	on	BSD	systems,	where	'make'

doesn't	seem	to	recognize	that	./xxx	and	xxx	are	the	same	file.	(This	entry

isn't	in	ChangeLog	distributed	with	3.7	because	I	forgot	when	I	hastily	made

this	fix	an	hour	or	so	after	the	initial	3.7	release.)

Version	3.6	23-Oct-01

1.	Crashed	with	/(sens|respons)e	and	\1ibility/	and	"sense	and	sensibility"	if

offsets	passed	as	NULL	with	zero	offset	count.

2.	The	config.guess	and	config.sub	files	had	not	been	updated	when	I	moved	to

the	latest	autoconf.

Version	3.5	15-Aug-01

1.	Added	some	missing	#if	!defined	NOPOSIX	conditionals	in	pcretest.c	that

had	been	forgotten.

2.	By	using	declared	but	undefined	structures,	we	can	avoid	using	"void"

definitions	in	pcre.h	while	keeping	the	internal	definitions	of	the	structures

private.

3.	The	distribution	is	now	built	using	autoconf	2.50	and	libtool	1.4.	From	a

user	point	of	view,	this	means	that	both	static	and	shared	libraries	are	built

by	default,	but	this	can	be	individually	controlled.	More	of	the	work	of

handling	this	static/shared	cases	is	now	inside	libtool	instead	of	PCRE's	make

file.

4.	The	pcretest	utility	is	now	installed	along	with	pcregrep	because	it	is

useful	for	users	(to	test	regexs)	and	by	doing	this,	it	automatically	gets

relinked	by	libtool.	The	documentation	has	been	turned	into	a	man	page,	so

there	are	now	.1,	.txt,	and	.html	versions	in	/doc.

5.	Upgrades	to	pcregrep:

			(i)			Added	long-form	option	names	like	gnu	grep.

			(ii)		Added	--help	to	list	all	options	with	an	explanatory	phrase.

			(iii)	Added	-r,	--recursive	to	recurse	into	sub-directories.

			(iv)		Added	-f,	--file	to	read	patterns	from	a	file.

6.	pcre_exec()	was	referring	to	its	"code"	argument	before	testing	that

argument	for	NULL	(and	giving	an	error	if	it	was	NULL).

7.	Upgraded	Makefile.in	to	allow	for	compiling	in	a	different	directory	from

the	source	directory.

8.	Tiny	buglet	in	pcretest:	when	pcre_fullinfo()	was	called	to	retrieve	the

options	bits,	the	pointer	it	was	passed	was	to	an	int	instead	of	to	an	unsigned

long	int.	This	mattered	only	on	64-bit	systems.

9.	Fixed	typo	(3.4/1)	in	pcre.h	again.	Sigh.	I	had	changed	pcre.h	(which	is

generated)	instead	of	pcre.in,	which	it	its	source.	Also	made	the	same	change

in	several	of	the	.c	files.

10.	A	new	release	of	gcc	defines	printf()	as	a	macro,	which	broke	pcretest

because	it	had	an	ifdef	in	the	middle	of	a	string	argument	for	printf().	Fixed

by	using	separate	calls	to	printf().

11.	Added	--enable-newline-is-cr	and	--enable-newline-is-lf	to	the	configure

script,	to	force	use	of	CR	or	LF	instead	of	\n	in	the	source.	On	non-Unix

systems,	the	value	can	be	set	in	config.h.

12.	The	limit	of	200	on	non-capturing	parentheses	is	a	_nesting_	limit,	not	an

absolute	limit.	Changed	the	text	of	the	error	message	to	make	this	clear,	and

likewise	updated	the	man	page.

13.	The	limit	of	99	on	the	number	of	capturing	subpatterns	has	been	removed.

The	new	limit	is	65535,	which	I	hope	will	not	be	a	"real"	limit.

Version	3.4	22-Aug-00

1.	Fixed	typo	in	pcre.h:	unsigned	const	char	*	changed	to	const	unsigned	char	*.

2.	Diagnose	condition	(?(0)	as	an	error	instead	of	crashing	on	matching.

Version	3.3	01-Aug-00

1.	If	an	octal	character	was	given,	but	the	value	was	greater	than	\377,	it

was	not	getting	masked	to	the	least	significant	bits,	as	documented.	This	could

lead	to	crashes	in	some	systems.

2.	Perl	5.6	(if	not	earlier	versions)	accepts	classes	like	[a-\d]	and	treats

the	hyphen	as	a	literal.	PCRE	used	to	give	an	error;	it	now	behaves	like	Perl.

3.	Added	the	functions	pcre_free_substring()	and	pcre_free_substring_list().

These	just	pass	their	arguments	on	to	(pcre_free)(),	but	they	are	provided

because	some	uses	of	PCRE	bind	it	to	non-C	systems	that	can	call	its	functions,

but	cannot	call	free()	or	pcre_free()	directly.

4.	Add	"make	test"	as	a	synonym	for	"make	check".	Corrected	some	comments	in

the	Makefile.

5.	Add	$(DESTDIR)/	in	front	of	all	the	paths	in	the	"install"	target	in	the

Makefile.

6.	Changed	the	name	of	pgrep	to	pcregrep,	because	Solaris	has	introduced	a

command	called	pgrep	for	grepping	around	the	active	processes.

7.	Added	the	beginnings	of	support	for	UTF-8	character	strings.

8.	Arranged	for	the	Makefile	to	pass	over	the	settings	of	CC,	CFLAGS,	and

RANLIB	to	./ltconfig	so	that	they	are	used	by	libtool.	I	think	these	are	all

the	relevant	ones.	(AR	is	not	passed	because	./ltconfig	does	its	own	figuring

out	for	the	ar	command.)

Version	3.2	12-May-00

This	is	purely	a	bug	fixing	release.

1.	If	the	pattern	/((Z)+|A)*/	was	matched	agained	ZABCDEFG	it	matched	Z	instead

of	ZA.	This	was	just	one	example	of	several	cases	that	could	provoke	this	bug,

which	was	introduced	by	change	9	of	version	2.00.	The	code	for	breaking

infinite	loops	after	an	iteration	that	matches	an	empty	string	was't	working

correctly.

2.	The	pcretest	program	was	not	imitating	Perl	correctly	for	the	pattern	/a*/g

when	matched	against	abbab	(for	example).	After	matching	an	empty	string,	it

wasn't	forcing	anchoring	when	setting	PCRE_NOTEMPTY	for	the	next	attempt;	this

caused	it	to	match	further	down	the	string	than	it	should.

3.	The	code	contained	an	inclusion	of	sys/types.h.	It	isn't	clear	why	this

was	there	because	it	doesn't	seem	to	be	needed,	and	it	causes	trouble	on	some

systems,	as	it	is	not	a	Standard	C	header.	It	has	been	removed.

4.	Made	4	silly	changes	to	the	source	to	avoid	stupid	compiler	warnings	that

were	reported	on	the	Macintosh.	The	changes	were	from

		while	((c	=	*(++ptr))	!=	0	&&	c	!=	'\n');

to

		while	((c	=	*(++ptr))	!=	0	&&	c	!=	'\n')	;

Totally	extraordinary,	but	if	that's	what	it	takes...

5.	PCRE	is	being	used	in	one	environment	where	neither	memmove()	nor	bcopy()	is

available.	Added	HAVE_BCOPY	and	an	autoconf	test	for	it;	if	neither

HAVE_MEMMOVE	nor	HAVE_BCOPY	is	set,	use	a	built-in	emulation	function	which

assumes	the	way	PCRE	uses	memmove()	(always	moving	upwards).

6.	PCRE	is	being	used	in	one	environment	where	strchr()	is	not	available.	There

was	only	one	use	in	pcre.c,	and	writing	it	out	to	avoid	strchr()	probably	gives

faster	code	anyway.

Version	3.1	09-Feb-00

The	only	change	in	this	release	is	the	fixing	of	some	bugs	in	Makefile.in	for

the	"install"	target:

(1)	It	was	failing	to	install	pcreposix.h.

(2)	It	was	overwriting	the	pcre.3	man	page	with	the	pcreposix.3	man	page.

Version	3.0	01-Feb-00

1.	Add	support	for	the	/+	modifier	to	perltest	(to	output	$`	like	it	does	in

pcretest).

2.	Add	support	for	the	/g	modifier	to	perltest.

3.	Fix	pcretest	so	that	it	behaves	even	more	like	Perl	for	/g	when	the	pattern

matches	null	strings.

4.	Fix	perltest	so	that	it	doesn't	do	unwanted	things	when	fed	an	empty

pattern.	Perl	treats	empty	patterns	specially	-	it	reuses	the	most	recent

pattern,	which	is	not	what	we	want.	Replace	//	by	/(?#)/	in	order	to	avoid	this

effect.

5.	The	POSIX	interface	was	broken	in	that	it	was	just	handing	over	the	POSIX

captured	string	vector	to	pcre_exec(),	but	(since	release	2.00)	PCRE	has

required	a	bigger	vector,	with	some	working	space	on	the	end.	This	means	that

the	POSIX	wrapper	now	has	to	get	and	free	some	memory,	and	copy	the	results.

6.	Added	some	simple	autoconf	support,	placing	the	test	data	and	the

documentation	in	separate	directories,	re-organizing	some	of	the

information	files,	and	making	it	build	pcre-config	(a	GNU	standard).	Also	added

libtool	support	for	building	PCRE	as	a	shared	library,	which	is	now	the

default.

7.	Got	rid	of	the	leading	zero	in	the	definition	of	PCRE_MINOR	because	08	and

09	are	not	valid	octal	constants.	Single	digits	will	be	used	for	minor	values

less	than	10.

8.	Defined	REG_EXTENDED	and	REG_NOSUB	as	zero	in	the	POSIX	header,	so	that

existing	programs	that	set	these	in	the	POSIX	interface	can	use	PCRE	without

modification.

9.	Added	a	new	function,	pcre_fullinfo()	with	an	extensible	interface.	It	can

return	all	that	pcre_info()	returns,	plus	additional	data.	The	pcre_info()

function	is	retained	for	compatibility,	but	is	considered	to	be	obsolete.

10.	Added	experimental	recursion	feature	(?R)	to	handle	one	common	case	that

Perl	5.6	will	be	able	to	do	with	(?p{...}).

11.	Added	support	for	POSIX	character	classes	like	[:alpha:],	which	Perl	is

adopting.

Version	2.08	31-Aug-99

1.	When	startoffset	was	not	zero	and	the	pattern	began	with	".*",	PCRE	was	not

trying	to	match	at	the	startoffset	position,	but	instead	was	moving	forward	to

the	next	newline	as	if	a	previous	match	had	failed.

2.	pcretest	was	not	making	use	of	PCRE_NOTEMPTY	when	repeating	for	/g	and	/G,

and	could	get	into	a	loop	if	a	null	string	was	matched	other	than	at	the	start

of	the	subject.

3.	Added	definitions	of	PCRE_MAJOR	and	PCRE_MINOR	to	pcre.h	so	the	version	can

be	distinguished	at	compile	time,	and	for	completeness	also	added	PCRE_DATE.

5.	Added	Paul	Sokolovsky's	minor	changes	to	make	it	easy	to	compile	a	Win32	DLL

in	GnuWin32	environments.

Version	2.07	29-Jul-99

1.	The	documentation	is	now	supplied	in	plain	text	form	and	HTML	as	well	as	in

the	form	of	man	page	sources.

2.	C++	compilers	don't	like	assigning	(void	*)	values	to	other	pointer	types.

In	particular	this	affects	malloc().	Although	there	is	no	problem	in	Standard

C,	I've	put	in	casts	to	keep	C++	compilers	happy.

3.	Typo	on	pcretest.c;	a	cast	of	(unsigned	char	*)	in	the	POSIX	regexec()	call

should	be	(const	char	*).

4.	If	NOPOSIX	is	defined,	pcretest.c	compiles	without	POSIX	support.	This	may

be	useful	for	non-Unix	systems	who	don't	want	to	bother	with	the	POSIX	stuff.

However,	I	haven't	made	this	a	standard	facility.	The	documentation	doesn't

mention	it,	and	the	Makefile	doesn't	support	it.

5.	The	Makefile	now	contains	an	"install"	target,	with	editable	destinations	at

the	top	of	the	file.	The	pcretest	program	is	not	installed.

6.	pgrep	-V	now	gives	the	PCRE	version	number	and	date.

7.	Fixed	bug:	a	zero	repetition	after	a	literal	string	(e.g.	/abcde{0}/)	was

causing	the	entire	string	to	be	ignored,	instead	of	just	the	last	character.

8.	If	a	pattern	like	/"([^\\"]+|\\.)*"/	is	applied	in	the	normal	way	to	a

non-matching	string,	it	can	take	a	very,	very	long	time,	even	for	strings	of

quite	modest	length,	because	of	the	nested	recursion.	PCRE	now	does	better	in

some	of	these	cases.	It	does	this	by	remembering	the	last	required	literal

character	in	the	pattern,	and	pre-searching	the	subject	to	ensure	it	is	present

before	running	the	real	match.	In	other	words,	it	applies	a	heuristic	to	detect

some	types	of	certain	failure	quickly,	and	in	the	above	example,	if	presented

with	a	string	that	has	no	trailing	"	it	gives	"no	match"	very	quickly.

9.	A	new	runtime	option	PCRE_NOTEMPTY	causes	null	string	matches	to	be	ignored;

other	alternatives	are	tried	instead.

Version	2.06	09-Jun-99

1.	Change	pcretest's	output	for	amount	of	store	used	to	show	just	the	code

space,	because	the	remainder	(the	data	block)	varies	in	size	between	32-bit	and

64-bit	systems.

2.	Added	an	extra	argument	to	pcre_exec()	to	supply	an	offset	in	the	subject	to

start	matching	at.	This	allows	lookbehinds	to	work	when	searching	for	multiple

occurrences	in	a	string.

3.	Added	additional	options	to	pcretest	for	testing	multiple	occurrences:

			/+			outputs	the	rest	of	the	string	that	follows	a	match

			/g			loops	for	multiple	occurrences,	using	the	new	startoffset	argument

			/G			loops	for	multiple	occurrences	by	passing	an	incremented	pointer

4.	PCRE	wasn't	doing	the	"first	character"	optimization	for	patterns	starting

with	\b	or	\B,	though	it	was	doing	it	for	other	lookbehind	assertions.	That	is,

it	wasn't	noticing	that	a	match	for	a	pattern	such	as	/\bxyz/	has	to	start	with

the	letter	'x'.	On	long	subject	strings,	this	gives	a	significant	speed-up.

Version	2.05	21-Apr-99

1.	Changed	the	type	of	magic_number	from	int	to	long	int	so	that	it	works

properly	on	16-bit	systems.

2.	Fixed	a	bug	which	caused	patterns	starting	with	.*	not	to	work	correctly

when	the	subject	string	contained	newline	characters.	PCRE	was	assuming

anchoring	for	such	patterns	in	all	cases,	which	is	not	correct	because	.*	will

not	pass	a	newline	unless	PCRE_DOTALL	is	set.	It	now	assumes	anchoring	only	if

DOTALL	is	set	at	top	level;	otherwise	it	knows	that	patterns	starting	with	.*

must	be	retried	after	every	newline	in	the	subject.

Version	2.04	18-Feb-99

1.	For	parenthesized	subpatterns	with	repeats	whose	minimum	was	zero,	the

computation	of	the	store	needed	to	hold	the	pattern	was	incorrect	(too	large).

If	such	patterns	were	nested	a	few	deep,	this	could	multiply	and	become	a	real

problem.

2.	Added	/M	option	to	pcretest	to	show	the	memory	requirement	of	a	specific

pattern.	Made	-m	a	synonym	of	-s	(which	does	this	globally)	for	compatibility.

3.	Subpatterns	of	the	form	(regex){n,m}	(i.e.	limited	maximum)	were	being

compiled	in	such	a	way	that	the	backtracking	after	subsequent	failure	was

pessimal.	Something	like	(a){0,3}	was	compiled	as	(a)?(a)?(a)?	instead	of

((a)((a)(a)?)?)?	with	disastrous	performance	if	the	maximum	was	of	any	size.

Version	2.03	02-Feb-99

1.	Fixed	typo	and	small	mistake	in	man	page.

2.	Added	4th	condition	(GPL	supersedes	if	conflict)	and	created	separate

LICENCE	file	containing	the	conditions.

3.	Updated	pcretest	so	that	patterns	such	as	/abc\/def/	work	like	they	do	in

Perl,	that	is	the	internal	\	allows	the	delimiter	to	be	included	in	the

pattern.	Locked	out	the	use	of	\	as	a	delimiter.	If	\	immediately	follows

the	final	delimiter,	add	\	to	the	end	of	the	pattern	(to	test	the	error).

4.	Added	the	convenience	functions	for	extracting	substrings	after	a	successful

match.	Updated	pcretest	to	make	it	able	to	test	these	functions.

Version	2.02	14-Jan-99

1.	Initialized	the	working	variables	associated	with	each	extraction	so	that

their	saving	and	restoring	doesn't	refer	to	uninitialized	store.

2.	Put	dummy	code	into	study.c	in	order	to	trick	the	optimizer	of	the	IBM	C

compiler	for	OS/2	into	generating	correct	code.	Apparently	IBM	isn't	going	to

fix	the	problem.

3.	Pcretest:	the	timing	code	wasn't	using	LOOPREPEAT	for	timing	execution

calls,	and	wasn't	printing	the	correct	value	for	compiling	calls.	Increased	the

default	value	of	LOOPREPEAT,	and	the	number	of	significant	figures	in	the

times.

4.	Changed	"/bin/rm"	in	the	Makefile	to	"-rm"	so	it	works	on	Windows	NT.

5.	Renamed	"deftables"	as	"dftables"	to	get	it	down	to	8	characters,	to	avoid

a	building	problem	on	Windows	NT	with	a	FAT	file	system.

Version	2.01	21-Oct-98

1.	Changed	the	API	for	pcre_compile()	to	allow	for	the	provision	of	a	pointer

to	character	tables	built	by	pcre_maketables()	in	the	current	locale.	If	NULL

is	passed,	the	default	tables	are	used.

Version	2.00	24-Sep-98

1.	Since	the	(>?)	facility	is	in	Perl	5.005,	don't	require	PCRE_EXTRA	to	enable

it	any	more.

2.	Allow	quantification	of	(?>)	groups,	and	make	it	work	correctly.

3.	The	first	character	computation	wasn't	working	for	(?>)	groups.

4.	Correct	the	implementation	of	\Z	(it	is	permitted	to	match	on	the	\n	at	the

end	of	the	subject)	and	add	5.005's	\z,	which	really	does	match	only	at	the

very	end	of	the	subject.

5.	Remove	the	\X	"cut"	facility;	Perl	doesn't	have	it,	and	(?>	is	neater.

6.	Remove	the	ability	to	specify	CASELESS,	MULTILINE,	DOTALL,	and

DOLLAR_END_ONLY	at	runtime,	to	make	it	possible	to	implement	the	Perl	5.005

localized	options.	All	options	to	pcre_study()	were	also	removed.

7.	Add	other	new	features	from	5.005:

			$(?<=											positive	lookbehind

			$(?<!											negative	lookbehind

			(?imsx-imsx)				added	the	unsetting	capability

																			such	a	setting	is	global	if	at	outer	level;	local	otherwise

			(?imsx-imsx:)			non-capturing	groups	with	option	setting

			(?(cond)re|re)		conditional	pattern	matching

			A	backreference	to	itself	in	a	repeated	group	matches	the	previous

			captured	string.

8.	General	tidying	up	of	studying	(both	automatic	and	via	"study")

consequential	on	the	addition	of	new	assertions.

9.	As	in	5.005,	unlimited	repeated	groups	that	could	match	an	empty	substring

are	no	longer	faulted	at	compile	time.	Instead,	the	loop	is	forcibly	broken	at

runtime	if	any	iteration	does	actually	match	an	empty	substring.

10.	Include	the	RunTest	script	in	the	distribution.

11.	Added	tests	from	the	Perl	5.005_02	distribution.	This	showed	up	a	few

discrepancies,	some	of	which	were	old	and	were	also	with	respect	to	5.004.	They

have	now	been	fixed.

Version	1.09	28-Apr-98

1.	A	negated	single	character	class	followed	by	a	quantifier	with	a	minimum

value	of	one	(e.g.		[^x]{1,6})	was	not	compiled	correctly.	This	could	lead	to

program	crashes,	or	just	wrong	answers.	This	did	not	apply	to	negated	classes

containing	more	than	one	character,	or	to	minima	other	than	one.

Version	1.08	27-Mar-98

1.	Add	PCRE_UNGREEDY	to	invert	the	greediness	of	quantifiers.

2.	Add	(?U)	and	(?X)	to	set	PCRE_UNGREEDY	and	PCRE_EXTRA	respectively.	The

latter	must	appear	before	anything	that	relies	on	it	in	the	pattern.

Version	1.07	16-Feb-98

1.	A	pattern	such	as	/((a)*)*/	was	not	being	diagnosed	as	in	error	(unlimited

repeat	of	a	potentially	empty	string).

Version	1.06	23-Jan-98

1.	Added	Markus	Oberhumer's	little	patches	for	C++.

2.	Literal	strings	longer	than	255	characters	were	broken.

Version	1.05	23-Dec-97

1.	Negated	character	classes	containing	more	than	one	character	were	failing	if

PCRE_CASELESS	was	set	at	run	time.

Version	1.04	19-Dec-97

1.	Corrected	the	man	page,	where	some	"const"	qualifiers	had	been	omitted.

2.	Made	debugging	output	print	"{0,xxx}"	instead	of	just	"{,xxx}"	to	agree	with

input	syntax.

3.	Fixed	memory	leak	which	occurred	when	a	regex	with	back	references	was

matched	with	an	offsets	vector	that	wasn't	big	enough.	The	temporary	memory

that	is	used	in	this	case	wasn't	being	freed	if	the	match	failed.

4.	Tidied	pcretest	to	ensure	it	frees	memory	that	it	gets.

5.	Temporary	memory	was	being	obtained	in	the	case	where	the	passed	offsets

vector	was	exactly	big	enough.

6.	Corrected	definition	of	offsetof()	from	change	5	below.

7.	I	had	screwed	up	change	6	below	and	broken	the	rules	for	the	use	of

setjmp().	Now	fixed.

Version	1.03	18-Dec-97

1.	A	erroneous	regex	with	a	missing	opening	parenthesis	was	correctly

diagnosed,	but	PCRE	attempted	to	access	brastack[-1],	which	could	cause	crashes

on	some	systems.

2.	Replaced	offsetof(real_pcre,	code)	by	offsetof(real_pcre,	code[0])	because

it	was	reported	that	one	broken	compiler	failed	on	the	former	because	"code"	is

also	an	independent	variable.

3.	The	erroneous	regex	a[]b	caused	an	array	overrun	reference.

4.	A	regex	ending	with	a	one-character	negative	class	(e.g.	/[^k]$/)	did	not

fail	on	data	ending	with	that	character.	(It	was	going	on	too	far,	and	checking

the	next	character,	typically	a	binary	zero.)	This	was	specific	to	the

optimized	code	for	single-character	negative	classes.

5.	Added	a	contributed	patch	from	the	TIN	world	which	does	the	following:

		+	Add	an	undef	for	memmove,	in	case	the	the	system	defines	a	macro	for	it.

		+	Add	a	definition	of	offsetof(),	in	case	there	isn't	one.	(I	don't	know

				the	reason	behind	this	-	offsetof()	is	part	of	the	ANSI	standard	-	but

				it	does	no	harm).

		+	Reduce	the	ifdef's	in	pcre.c	using	macro	DPRINTF,	thereby	eliminating

				most	of	the	places	where	whitespace	preceded	'#'.	I	have	given	up	and

				allowed	the	remaining	2	cases	to	be	at	the	margin.

		+	Rename	some	variables	in	pcre	to	eliminate	shadowing.	This	seems	very

				pedantic,	but	does	no	harm,	of	course.

6.	Moved	the	call	to	setjmp()	into	its	own	function,	to	get	rid	of	warnings

from	gcc	-Wall,	and	avoided	calling	it	at	all	unless	PCRE_EXTRA	is	used.

7.	Constructs	such	as	\d{8,}	were	compiling	into	the	equivalent	of

\d{8}\d{0,65527}	instead	of	\d{8}\d*	which	didn't	make	much	difference	to	the

outcome,	but	in	this	particular	case	used	more	store	than	had	been	allocated,

which	caused	the	bug	to	be	discovered	because	it	threw	up	an	internal	error.

8.	The	debugging	code	in	both	pcre	and	pcretest	for	outputting	the	compiled

form	of	a	regex	was	going	wrong	in	the	case	of	back	references	followed	by

curly-bracketed	repeats.

Version	1.02	12-Dec-97

1.	Typos	in	pcre.3	and	comments	in	the	source	fixed.

2.	Applied	a	contributed	patch	to	get	rid	of	places	where	it	used	to	remove

'const'	from	variables,	and	fixed	some	signed/unsigned	and	uninitialized

variable	warnings.

3.	Added	the	"runtest"	target	to	Makefile.

4.	Set	default	compiler	flag	to	-O2	rather	than	just	-O.

Version	1.01	19-Nov-97

1.	PCRE	was	failing	to	diagnose	unlimited	repeat	of	empty	string	for	patterns

like	/([ab]*)*/,	that	is,	for	classes	with	more	than	one	character	in	them.

2.	Likewise,	it	wasn't	diagnosing	patterns	with	"once-only"	subpatterns,	such

as	/((?>a*))*/	(a	PCRE_EXTRA	facility).

Version	1.00	18-Nov-97

1.	Added	compile-time	macros	to	support	systems	such	as	SunOS4	which	don't	have

memmove()	or	strerror()	but	have	other	things	that	can	be	used	instead.

2.	Arranged	that	"make	clean"	removes	the	executables.

Version	0.99	27-Oct-97

1.	Fixed	bug	in	code	for	optimizing	classes	with	only	one	character.	It	was

initializing	a	32-byte	map	regardless,	which	could	cause	it	to	run	off	the	end

of	the	memory	it	had	got.

2.	Added,	conditional	on	PCRE_EXTRA,	the	proposed	(?>REGEX)	construction.

Version	0.98	22-Oct-97

1.	Fixed	bug	in	code	for	handling	temporary	memory	usage	when	there	are	more

back	references	than	supplied	space	in	the	ovector.	This	could	cause	segfaults.

Version	0.97	21-Oct-97

1.	Added	the	\X	"cut"	facility,	conditional	on	PCRE_EXTRA.

2.	Optimized	negated	single	characters	not	to	use	a	bit	map.

3.	Brought	error	texts	together	as	macro	definitions;	clarified	some	of	them;

fixed	one	that	was	wrong	-	it	said	"range	out	of	order"	when	it	meant	"invalid

escape	sequence".

4.	Changed	some	char	*	arguments	to	const	char	*.

5.	Added	PCRE_NOTBOL	and	PCRE_NOTEOL	(from	POSIX).

6.	Added	the	POSIX-style	API	wrapper	in	pcreposix.a	and	testing	facilities	in

pcretest.

Version	0.96	16-Oct-97

1.	Added	a	simple	"pgrep"	utility	to	the	distribution.

2.	Fixed	an	incompatibility	with	Perl:	"{"	is	now	treated	as	a	normal	character

unless	it	appears	in	one	of	the	precise	forms	"{ddd}",	"{ddd,}",	or	"{ddd,ddd}"

where	"ddd"	means	"one	or	more	decimal	digits".

3.	Fixed	serious	bug.	If	a	pattern	had	a	back	reference,	but	the	call	to

pcre_exec()	didn't	supply	a	large	enough	ovector	to	record	the	related

identifying	subpattern,	the	match	always	failed.	PCRE	now	remembers	the	number

of	the	largest	back	reference,	and	gets	some	temporary	memory	in	which	to	save

the	offsets	during	matching	if	necessary,	in	order	to	ensure	that

backreferences	always	work.

4.	Increased	the	compatibility	with	Perl	in	a	number	of	ways:

		(a)	.	no	longer	matches	\n	by	default;	an	option	PCRE_DOTALL	is	provided

						to	request	this	handling.	The	option	can	be	set	at	compile	or	exec	time.

		(b)	$	matches	before	a	terminating	newline	by	default;	an	option

						PCRE_DOLLAR_ENDONLY	is	provided	to	override	this	(but	not	in	multiline

						mode).	The	option	can	be	set	at	compile	or	exec	time.

		(c)	The	handling	of	\	followed	by	a	digit	other	than	0	is	now	supposed	to	be

						the	same	as	Perl's.	If	the	decimal	number	it	represents	is	less	than	10

						or	there	aren't	that	many	previous	left	capturing	parentheses,	an	octal

						escape	is	read.	Inside	a	character	class,	it's	always	an	octal	escape,

						even	if	it	is	a	single	digit.

		(d)	An	escaped	but	undefined	alphabetic	character	is	taken	as	a	literal,

						unless	PCRE_EXTRA	is	set.	Currently	this	just	reserves	the	remaining

						escapes.

		(e)	{0}	is	now	permitted.	(The	previous	item	is	removed	from	the	compiled

						pattern).

5.	Changed	all	the	names	of	code	files	so	that	the	basic	parts	are	no	longer

than	10	characters,	and	abolished	the	teeny	"globals.c"	file.

6.	Changed	the	handling	of	character	classes;	they	are	now	done	with	a	32-byte

bit	map	always.

7.	Added	the	-d	and	/D	options	to	pcretest	to	make	it	possible	to	look	at	the

internals	of	compilation	without	having	to	recompile	pcre.

Version	0.95	23-Sep-97

1.	Fixed	bug	in	pre-pass	concerning	escaped	"normal"	characters	such	as	\x5c	or

\x20	at	the	start	of	a	run	of	normal	characters.	These	were	being	treated	as

real	characters,	instead	of	the	source	characters	being	re-checked.

Version	0.94	18-Sep-97

1.	The	functions	are	now	thread-safe,	with	the	caveat	that	the	global	variables

containing	pointers	to	malloc()	and	free()	or	alternative	functions	are	the

same	for	all	threads.

2.	Get	pcre_study()	to	generate	a	bitmap	of	initial	characters	for	non-

anchored	patterns	when	this	is	possible,	and	use	it	if	passed	to	pcre_exec().

Version	0.93	15-Sep-97

1.	/(b)|(:+)/	was	computing	an	incorrect	first	character.

2.	Add	pcre_study()	to	the	API	and	the	passing	of	pcre_extra	to	pcre_exec(),

but	not	actually	doing	anything	yet.

3.	Treat	"-"	characters	in	classes	that	cannot	be	part	of	ranges	as	literals,

as	Perl	does	(e.g.	[-az]	or	[az-]).

4.	Set	the	anchored	flag	if	a	branch	starts	with	.*	or	.*?	because	that	tests

all	possible	positions.

5.	Split	up	into	different	modules	to	avoid	including	unneeded	functions	in	a

compiled	binary.	However,	compile	and	exec	are	still	in	one	module.	The	"study"

function	is	split	off.

6.	The	character	tables	are	now	in	a	separate	module	whose	source	is	generated

by	an	auxiliary	program	-	but	can	then	be	edited	by	hand	if	required.	There	are

now	no	calls	to	isalnum(),	isspace(),	isdigit(),	isxdigit(),	tolower()	or

toupper()	in	the	code.

7.	Turn	the	malloc/free	funtions	variables	into	pcre_malloc	and	pcre_free	and

make	them	global.	Abolish	the	function	for	setting	them,	as	the	caller	can	now

set	them	directly.

Version	0.92	11-Sep-97

1.	A	repeat	with	a	fixed	maximum	and	a	minimum	of	1	for	an	ordinary	character

(e.g.	/a{1,3}/)	was	broken	(I	mis-optimized	it).

2.	Caseless	matching	was	not	working	in	character	classes	if	the	characters	in

the	pattern	were	in	upper	case.

3.	Make	ranges	like	[W-c]	work	in	the	same	way	as	Perl	for	caseless	matching.

4.	Make	PCRE_ANCHORED	public	and	accept	as	a	compile	option.

5.	Add	an	options	word	to	pcre_exec()	and	accept	PCRE_ANCHORED	and

PCRE_CASELESS	at	run	time.	Add	escapes	\A	and	\I	to	pcretest	to	cause	it	to

pass	them.

6.	Give	an	error	if	bad	option	bits	passed	at	compile	or	run	time.

7.	Add	PCRE_MULTILINE	at	compile	and	exec	time,	and	(?m)	as	well.	Add	\M	to

pcretest	to	cause	it	to	pass	that	flag.

8.	Add	pcre_info(),	to	get	the	number	of	identifying	subpatterns,	the	stored

options,	and	the	first	character,	if	set.

9.	Recognize	C+	or	C{n,m}	where	n	>=	1	as	providing	a	fixed	starting	character.

Version	0.91	10-Sep-97

1.	PCRE	was	failing	to	diagnose	unlimited	repeats	of	subpatterns	that	could

match	the	empty	string	as	in	/(a*)*/.	It	was	looping	and	ultimately	crashing.

2.	PCRE	was	looping	on	encountering	an	indefinitely	repeated	back	reference	to

a	subpattern	that	had	matched	an	empty	string,	e.g.	/(a|)\1*/.	It	now	does	what

Perl	does	-	treats	the	match	as	successful.

README	file	for	PCRE	(Perl-compatible	regular	expression	library)

The	latest	release	of	PCRE	is	always	available	from

		ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/pcre-xxx.tar.gz

There	is	a	mailing	list	for	discussion	about	the	development	of	PCRE	at

		pcre-dev@exim.org

Please	read	the	NEWS	file	if	you	are	upgrading	from	a	previous	release.

The	contents	of	this	README	file	are:

		The	PCRE	APIs

		Documentation	for	PCRE

		Contributions	by	users	of	PCRE

		Building	PCRE	on	non-Unix	systems

		Building	PCRE	on	Unix-like	systems

		Retrieving	configuration	information	on	Unix-like	systems

		Shared	libraries	on	Unix-like	systems

		Cross-compiling	on	Unix-like	systems

		Using	HP's	ANSI	C++	compiler	(aCC)

		Making	new	tarballs

		Testing	PCRE

		Character	tables

		File	manifest

The	PCRE	APIs

PCRE	is	written	in	C,	and	it	has	its	own	API.	The	distribution	also	includes	a

set	of	C++	wrapper	functions	(see	the	pcrecpp	man	page	for	details),	courtesy

of	Google	Inc.

In	addition,	there	is	a	set	of	C	wrapper	functions	that	are	based	on	the	POSIX

regular	expression	API	(see	the	pcreposix	man	page).	These	end	up	in	the

library	called	libpcreposix.	Note	that	this	just	provides	a	POSIX	calling

interface	to	PCRE;	the	regular	expressions	themselves	still	follow	Perl	syntax

and	semantics.	The	POSIX	API	is	restricted,	and	does	not	give	full	access	to

all	of	PCRE's	facilities.

The	header	file	for	the	POSIX-style	functions	is	called	pcreposix.h.	The

official	POSIX	name	is	regex.h,	but	I	did	not	want	to	risk	possible	problems

with	existing	files	of	that	name	by	distributing	it	that	way.	To	use	PCRE	with

an	existing	program	that	uses	the	POSIX	API,	pcreposix.h	will	have	to	be

renamed	or	pointed	at	by	a	link.

If	you	are	using	the	POSIX	interface	to	PCRE	and	there	is	already	a	POSIX	regex

library	installed	on	your	system,	as	well	as	worrying	about	the	regex.h	header

file	(as	mentioned	above),	you	must	also	take	care	when	linking	programs	to

ensure	that	they	link	with	PCRE's	libpcreposix	library.	Otherwise	they	may	pick

up	the	POSIX	functions	of	the	same	name	from	the	other	library.

One	way	of	avoiding	this	confusion	is	to	compile	PCRE	with	the	addition	of

-Dregcomp=PCREregcomp	(and	similarly	for	the	other	POSIX	functions)	to	the

compiler	flags	(CFLAGS	if	you	are	using	"configure"	--	see	below).	This	has	the

effect	of	renaming	the	functions	so	that	the	names	no	longer	clash.	Of	course,

you	have	to	do	the	same	thing	for	your	applications,	or	write	them	using	the

new	names.

Documentation	for	PCRE

If	you	install	PCRE	in	the	normal	way	on	a	Unix-like	system,	you	will	end	up

with	a	set	of	man	pages	whose	names	all	start	with	"pcre".	The	one	that	is	just

called	"pcre"	lists	all	the	others.	In	addition	to	these	man	pages,	the	PCRE

documentation	is	supplied	in	two	other	forms:

		1.	There	are	files	called	doc/pcre.txt,	doc/pcregrep.txt,	and

					doc/pcretest.txt	in	the	source	distribution.	The	first	of	these	is	a

					concatenation	of	the	text	forms	of	all	the	section	3	man	pages	except

					those	that	summarize	individual	functions.	The	other	two	are	the	text

					forms	of	the	section	1	man	pages	for	the	pcregrep	and	pcretest	commands.

					These	text	forms	are	provided	for	ease	of	scanning	with	text	editors	or

					similar	tools.	They	are	installed	in	<prefix>/share/doc/pcre,	where

					<prefix>	is	the	installation	prefix	(defaulting	to	/usr/local).

		2.	A	set	of	files	containing	all	the	documentation	in	HTML	form,	hyperlinked

					in	various	ways,	and	rooted	in	a	file	called	index.html,	is	distributed	in

					doc/html	and	installed	in	<prefix>/share/doc/pcre/html.

Contributions	by	users	of	PCRE

You	can	find	contributions	from	PCRE	users	in	the	directory

		ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/Contrib

There	is	a	README	file	giving	brief	descriptions	of	what	they	are.	Some	are

complete	in	themselves;	others	are	pointers	to	URLs	containing	relevant	files.

Some	of	this	material	is	likely	to	be	well	out-of-date.	Several	of	the	earlier

contributions	provided	support	for	compiling	PCRE	on	various	flavours	of

Windows	(I	myself	do	not	use	Windows).	Nowadays	there	is	more	Windows	support

in	the	standard	distribution,	so	these	contibutions	have	been	archived.

Building	PCRE	on	non-Unix	systems

For	a	non-Unix	system,	please	read	the	comments	in	the	file	NON-UNIX-USE,

though	if	your	system	supports	the	use	of	"configure"	and	"make"	you	may	be

able	to	build	PCRE	in	the	same	way	as	for	Unix-like	systems.	PCRE	can	also	be

configured	in	many	platform	environments	using	the	GUI	facility	of	CMake's

CMakeSetup.	It	creates	Makefiles,	solution	files,	etc.

PCRE	has	been	compiled	on	many	different	operating	systems.	It	should	be

straightforward	to	build	PCRE	on	any	system	that	has	a	Standard	C	compiler	and

library,	because	it	uses	only	Standard	C	functions.

Building	PCRE	on	Unix-like	systems

If	you	are	using	HP's	ANSI	C++	compiler	(aCC),	please	see	the	special	note

in	the	section	entitled	"Using	HP's	ANSI	C++	compiler	(aCC)"	below.

The	following	instructions	assume	the	use	of	the	widely	used	"configure,	make,

make	install"	process.	There	is	also	some	experimental	support	for	"cmake"	in

the	PCRE	distribution,	but	it	is	incomplete	and	not	documented.	However,	if	you

are	a	"cmake"	user,	you	might	want	to	try	it.

To	build	PCRE	on	a	Unix-like	system,	first	run	the	"configure"	command	from	the

PCRE	distribution	directory,	with	your	current	directory	set	to	the	directory

where	you	want	the	files	to	be	created.	This	command	is	a	standard	GNU

"autoconf"	configuration	script,	for	which	generic	instructions	are	supplied	in

the	file	INSTALL.

Most	commonly,	people	build	PCRE	within	its	own	distribution	directory,	and	in

this	case,	on	many	systems,	just	running	"./configure"	is	sufficient.	However,

the	usual	methods	of	changing	standard	defaults	are	available.	For	example:

CFLAGS='-O2	-Wall'	./configure	--prefix=/opt/local

specifies	that	the	C	compiler	should	be	run	with	the	flags	'-O2	-Wall'	instead

of	the	default,	and	that	"make	install"	should	install	PCRE	under	/opt/local

instead	of	the	default	/usr/local.

If	you	want	to	build	in	a	different	directory,	just	run	"configure"	with	that

directory	as	current.	For	example,	suppose	you	have	unpacked	the	PCRE	source

into	/source/pcre/pcre-xxx,	but	you	want	to	build	it	in	/build/pcre/pcre-xxx:

cd	/build/pcre/pcre-xxx

/source/pcre/pcre-xxx/configure

PCRE	is	written	in	C	and	is	normally	compiled	as	a	C	library.	However,	it	is

possible	to	build	it	as	a	C++	library,	though	the	provided	building	apparatus

does	not	have	any	features	to	support	this.

There	are	some	optional	features	that	can	be	included	or	omitted	from	the	PCRE

library.	You	can	read	more	about	them	in	the	pcrebuild	man	page.

.	If	you	want	to	suppress	the	building	of	the	C++	wrapper	library,	you	can	add

		--disable-cpp	to	the	"configure"	command.	Otherwise,	when	"configure"	is	run,

		it	will	try	to	find	a	C++	compiler	and	C++	header	files,	and	if	it	succeeds,

		it	will	try	to	build	the	C++	wrapper.

.	If	you	want	to	make	use	of	the	support	for	UTF-8	character	strings	in	PCRE,

		you	must	add	--enable-utf8	to	the	"configure"	command.	Without	it,	the	code

		for	handling	UTF-8	is	not	included	in	the	library.	(Even	when	included,	it

		still	has	to	be	enabled	by	an	option	at	run	time.)

.	If,	in	addition	to	support	for	UTF-8	character	strings,	you	want	to	include

		support	for	the	\P,	\p,	and	\X	sequences	that	recognize	Unicode	character

		properties,	you	must	add	--enable-unicode-properties	to	the	"configure"

		command.	This	adds	about	30K	to	the	size	of	the	library	(in	the	form	of	a

		property	table);	only	the	basic	two-letter	properties	such	as	Lu	are

		supported.

.	You	can	build	PCRE	to	recognize	either	CR	or	LF	or	the	sequence	CRLF	or	any

		of	the	preceding,	or	any	of	the	Unicode	newline	sequences	as	indicating	the

		end	of	a	line.	Whatever	you	specify	at	build	time	is	the	default;	the	caller

		of	PCRE	can	change	the	selection	at	run	time.	The	default	newline	indicator

		is	a	single	LF	character	(the	Unix	standard).	You	can	specify	the	default

		newline	indicator	by	adding	--enable-newline-is-cr	or	--enable-newline-is-lf

		or	--enable-newline-is-crlf	or	--enable-newline-is-anycrlf	or

		--enable-newline-is-any	to	the	"configure"	command,	respectively.

		If	you	specify	--enable-newline-is-cr	or	--enable-newline-is-crlf,	some	of

		the	standard	tests	will	fail,	because	the	lines	in	the	test	files	end	with

		LF.	Even	if	the	files	are	edited	to	change	the	line	endings,	there	are	likely

		to	be	some	failures.	With	--enable-newline-is-anycrlf	or

		--enable-newline-is-any,	many	tests	should	succeed,	but	there	may	be	some

		failures.

.	By	default,	the	sequence	\R	in	a	pattern	matches	any	Unicode	line	ending

		sequence.	This	is	independent	of	the	option	specifying	what	PCRE	considers	to

		be	the	end	of	a	line	(see	above).	However,	the	caller	of	PCRE	can	restrict	\R

		to	match	only	CR,	LF,	or	CRLF.	You	can	make	this	the	default	by	adding

		--enable-bsr-anycrlf	to	the	"configure"	command	(bsr	=	"backslash	R").

.	When	called	via	the	POSIX	interface,	PCRE	uses	malloc()	to	get	additional

		storage	for	processing	capturing	parentheses	if	there	are	more	than	10	of

		them	in	a	pattern.	You	can	increase	this	threshold	by	setting,	for	example,

		--with-posix-malloc-threshold=20

		on	the	"configure"	command.

.	PCRE	has	a	counter	that	can	be	set	to	limit	the	amount	of	resources	it	uses.

		If	the	limit	is	exceeded	during	a	match,	the	match	fails.	The	default	is	ten

		million.	You	can	change	the	default	by	setting,	for	example,

		--with-match-limit=500000

		on	the	"configure"	command.	This	is	just	the	default;	individual	calls	to

		pcre_exec()	can	supply	their	own	value.	There	is	more	discussion	on	the

		pcreapi	man	page.

.	There	is	a	separate	counter	that	limits	the	depth	of	recursive	function	calls

		during	a	matching	process.	This	also	has	a	default	of	ten	million,	which	is

		essentially	"unlimited".	You	can	change	the	default	by	setting,	for	example,

		--with-match-limit-recursion=500000

		Recursive	function	calls	use	up	the	runtime	stack;	running	out	of	stack	can

		cause	programs	to	crash	in	strange	ways.	There	is	a	discussion	about	stack

		sizes	in	the	pcrestack	man	page.

.	The	default	maximum	compiled	pattern	size	is	around	64K.	You	can	increase

		this	by	adding	--with-link-size=3	to	the	"configure"	command.	You	can

		increase	it	even	more	by	setting	--with-link-size=4,	but	this	is	unlikely

		ever	to	be	necessary.	Increasing	the	internal	link	size	will	reduce

		performance.

.	You	can	build	PCRE	so	that	its	internal	match()	function	that	is	called	from

		pcre_exec()	does	not	call	itself	recursively.	Instead,	it	uses	memory	blocks

		obtained	from	the	heap	via	the	special	functions	pcre_stack_malloc()	and

		pcre_stack_free()	to	save	data	that	would	otherwise	be	saved	on	the	stack.	To

		build	PCRE	like	this,	use

		--disable-stack-for-recursion

		on	the	"configure"	command.	PCRE	runs	more	slowly	in	this	mode,	but	it	may	be

		necessary	in	environments	with	limited	stack	sizes.	This	applies	only	to	the

		pcre_exec()	function;	it	does	not	apply	to	pcre_dfa_exec(),	which	does	not

		use	deeply	nested	recursion.	There	is	a	discussion	about	stack	sizes	in	the

		pcrestack	man	page.

.	For	speed,	PCRE	uses	four	tables	for	manipulating	and	identifying	characters

		whose	code	point	values	are	less	than	256.	By	default,	it	uses	a	set	of

		tables	for	ASCII	encoding	that	is	part	of	the	distribution.	If	you	specify

		--enable-rebuild-chartables

		a	program	called	dftables	is	compiled	and	run	in	the	default	C	locale	when

		you	obey	"make".	It	builds	a	source	file	called	pcre_chartables.c.	If	you	do

		not	specify	this	option,	pcre_chartables.c	is	created	as	a	copy	of

		pcre_chartables.c.dist.	See	"Character	tables"	below	for	further	information.

.	It	is	possible	to	compile	PCRE	for	use	on	systems	that	use	EBCDIC	as	their

		default	character	code	(as	opposed	to	ASCII)	by	specifying

		--enable-ebcdic

		This	automatically	implies	--enable-rebuild-chartables	(see	above).

The	"configure"	script	builds	the	following	files	for	the	basic	C	library:

.	Makefile	is	the	makefile	that	builds	the	library

.	config.h	contains	build-time	configuration	options	for	the	library

.	pcre.h	is	the	public	PCRE	header	file

.	pcre-config	is	a	script	that	shows	the	settings	of	"configure"	options

.	libpcre.pc	is	data	for	the	pkg-config	command

.	libtool	is	a	script	that	builds	shared	and/or	static	libraries

.	RunTest	is	a	script	for	running	tests	on	the	basic	C	library

.	RunGrepTest	is	a	script	for	running	tests	on	the	pcregrep	command

Versions	of	config.h	and	pcre.h	are	distributed	in	the	PCRE	tarballs	under

the	names	config.h.generic	and	pcre.h.generic.	These	are	provided	for	the

benefit	of	those	who	have	to	built	PCRE	without	the	benefit	of	"configure".	If

you	use	"configure",	the	.generic	versions	are	not	used.

If	a	C++	compiler	is	found,	the	following	files	are	also	built:

.	libpcrecpp.pc	is	data	for	the	pkg-config	command

.	pcrecpparg.h	is	a	header	file	for	programs	that	call	PCRE	via	the	C++	wrapper

.	pcre_stringpiece.h	is	the	header	for	the	C++	"stringpiece"	functions

The	"configure"	script	also	creates	config.status,	which	is	an	executable

script	that	can	be	run	to	recreate	the	configuration,	and	config.log,	which

contains	compiler	output	from	tests	that	"configure"	runs.

Once	"configure"	has	run,	you	can	run	"make".	It	builds	two	libraries,	called

libpcre	and	libpcreposix,	a	test	program	called	pcretest,	a	demonstration

program	called	pcredemo,	and	the	pcregrep	command.	If	a	C++	compiler	was	found

on	your	system,	"make"	also	builds	the	C++	wrapper	library,	which	is	called

libpcrecpp,	and	some	test	programs	called	pcrecpp_unittest,

pcre_scanner_unittest,	and	pcre_stringpiece_unittest.	Building	the	C++	wrapper

can	be	disabled	by	adding	--disable-cpp	to	the	"configure"	command.

The	command	"make	check"	runs	all	the	appropriate	tests.	Details	of	the	PCRE

tests	are	given	below	in	a	separate	section	of	this	document.

You	can	use	"make	install"	to	install	PCRE	into	live	directories	on	your

system.	The	following	are	installed	(file	names	are	all	relative	to	the

<prefix>	that	is	set	when	"configure"	is	run):

		Commands	(bin):

				pcretest

				pcregrep

				pcre-config

		Libraries	(lib):

				libpcre

				libpcreposix

				libpcrecpp	(if	C++	support	is	enabled)

		Configuration	information	(lib/pkgconfig):

				libpcre.pc

				libpcrecpp.pc	(if	C++	support	is	enabled)

		Header	files	(include):

				pcre.h

				pcreposix.h

				pcre_scanner.h)

				pcre_stringpiece.h)	if	C++	support	is	enabled

				pcrecpp.h)

				pcrecpparg.h)

		Man	pages	(share/man/man{1,3}):

				pcregrep.1

				pcretest.1

				pcre.3

				pcre*.3	(lots	more	pages,	all	starting	"pcre")

		HTML	documentation	(share/doc/pcre/html):

				index.html

				*.html	(lots	more	pages,	hyperlinked	from	index.html)

		Text	file	documentation	(share/doc/pcre):

				AUTHORS

				COPYING

				ChangeLog

				LICENCE

				NEWS

				README

				pcre.txt							(a	concatenation	of	the	man(3)	pages)

				pcretest.txt			the	pcretest	man	page

				pcregrep.txt			the	pcregrep	man	page

Note	that	the	pcredemo	program	that	is	built	by	"configure"	is	*not*	installed

anywhere.	It	is	a	demonstration	for	programmers	wanting	to	use	PCRE.

If	you	want	to	remove	PCRE	from	your	system,	you	can	run	"make	uninstall".

This	removes	all	the	files	that	"make	install"	installed.	However,	it	does	not

remove	any	directories,	because	these	are	often	shared	with	other	programs.

Retrieving	configuration	information	on	Unix-like	systems

Running	"make	install"	installs	the	command	pcre-config,	which	can	be	used	to

recall	information	about	the	PCRE	configuration	and	installation.	For	example:

		pcre-config	--version

prints	the	version	number,	and

		pcre-config	--libs

outputs	information	about	where	the	library	is	installed.	This	command	can	be

included	in	makefiles	for	programs	that	use	PCRE,	saving	the	programmer	from

having	to	remember	too	many	details.

The	pkg-config	command	is	another	system	for	saving	and	retrieving	information

about	installed	libraries.	Instead	of	separate	commands	for	each	library,	a

single	command	is	used.	For	example:

		pkg-config	--cflags	pcre

The	data	is	held	in	*.pc	files	that	are	installed	in	a	directory	called

<prefix>/lib/pkgconfig.

Shared	libraries	on	Unix-like	systems

The	default	distribution	builds	PCRE	as	shared	libraries	and	static	libraries,

as	long	as	the	operating	system	supports	shared	libraries.	Shared	library

support	relies	on	the	"libtool"	script	which	is	built	as	part	of	the

"configure"	process.

The	libtool	script	is	used	to	compile	and	link	both	shared	and	static

libraries.	They	are	placed	in	a	subdirectory	called	.libs	when	they	are	newly

built.	The	programs	pcretest	and	pcregrep	are	built	to	use	these	uninstalled

libraries	(by	means	of	wrapper	scripts	in	the	case	of	shared	libraries).	When

you	use	"make	install"	to	install	shared	libraries,	pcregrep	and	pcretest	are

automatically	re-built	to	use	the	newly	installed	shared	libraries	before	being

installed	themselves.	However,	the	versions	left	in	the	build	directory	still

use	the	uninstalled	libraries.

To	build	PCRE	using	static	libraries	only	you	must	use	--disable-shared	when

configuring	it.	For	example:

./configure	--prefix=/usr/gnu	--disable-shared

Then	run	"make"	in	the	usual	way.	Similarly,	you	can	use	--disable-static	to

build	only	shared	libraries.

Cross-compiling	on	Unix-like	systems

You	can	specify	CC	and	CFLAGS	in	the	normal	way	to	the	"configure"	command,	in

order	to	cross-compile	PCRE	for	some	other	host.	However,	you	should	NOT

specify	--enable-rebuild-chartables,	because	if	you	do,	the	dftables.c	source

file	is	compiled	and	run	on	the	local	host,	in	order	to	generate	the	inbuilt

character	tables	(the	pcre_chartables.c	file).	This	will	probably	not	work,

because	dftables.c	needs	to	be	compiled	with	the	local	compiler,	not	the	cross

compiler.

When	--enable-rebuild-chartables	is	not	specified,	pcre_chartables.c	is	created

by	making	a	copy	of	pcre_chartables.c.dist,	which	is	a	default	set	of	tables

that	assumes	ASCII	code.	Cross-compiling	with	the	default	tables	should	not	be

a	problem.

If	you	need	to	modify	the	character	tables	when	cross-compiling,	you	should

move	pcre_chartables.c.dist	out	of	the	way,	then	compile	dftables.c	by	hand	and

run	it	on	the	local	host	to	make	a	new	version	of	pcre_chartables.c.dist.

Then	when	you	cross-compile	PCRE	this	new	version	of	the	tables	will	be	used.

Using	HP's	ANSI	C++	compiler	(aCC)

Unless	C++	support	is	disabled	by	specifying	the	"--disable-cpp"	option	of	the

"configure"	script,	you	must	include	the	"-AA"	option	in	the	CXXFLAGS

environment	variable	in	order	for	the	C++	components	to	compile	correctly.

Also,	note	that	the	aCC	compiler	on	PA-RISC	platforms	may	have	a	defect	whereby

needed	libraries	fail	to	get	included	when	specifying	the	"-AA"	compiler

option.	If	you	experience	unresolved	symbols	when	linking	the	C++	programs,

use	the	workaround	of	specifying	the	following	environment	variable	prior	to

running	the	"configure"	script:

		CXXLDFLAGS="-lstd_v2	-lCsup_v2"

Making	new	tarballs

The	command	"make	dist"	creates	three	PCRE	tarballs,	in	tar.gz,	tar.bz2,	and

zip	formats.	The	command	"make	distcheck"	does	the	same,	but	then	does	a	trial

build	of	the	new	distribution	to	ensure	that	it	works.

If	you	have	modified	any	of	the	man	page	sources	in	the	doc	directory,	you

should	first	run	the	PrepareRelease	script	before	making	a	distribution.	This

script	creates	the	.txt	and	HTML	forms	of	the	documentation	from	the	man	pages.

Testing	PCRE

To	test	the	basic	PCRE	library	on	a	Unix	system,	run	the	RunTest	script	that	is

created	by	the	configuring	process.	There	is	also	a	script	called	RunGrepTest

that	tests	the	options	of	the	pcregrep	command.	If	the	C++	wrapper	library	is

built,	three	test	programs	called	pcrecpp_unittest,	pcre_scanner_unittest,	and

pcre_stringpiece_unittest	are	also	built.

Both	the	scripts	and	all	the	program	tests	are	run	if	you	obey	"make	check"	or

"make	test".	For	other	systems,	see	the	instructions	in	NON-UNIX-USE.

The	RunTest	script	runs	the	pcretest	test	program	(which	is	documented	in	its

own	man	page)	on	each	of	the	testinput	files	in	the	testdata	directory	in

turn,	and	compares	the	output	with	the	contents	of	the	corresponding	testoutput

files.	A	file	called	testtry	is	used	to	hold	the	main	output	from	pcretest

(testsavedregex	is	also	used	as	a	working	file).	To	run	pcretest	on	just	one	of

the	test	files,	give	its	number	as	an	argument	to	RunTest,	for	example:

		RunTest	2

The	first	test	file	can	also	be	fed	directly	into	the	perltest.pl	script	to

check	that	Perl	gives	the	same	results.	The	only	difference	you	should	see	is

in	the	first	few	lines,	where	the	Perl	version	is	given	instead	of	the	PCRE

version.

The	second	set	of	tests	check	pcre_fullinfo(),	pcre_info(),	pcre_study(),

pcre_copy_substring(),	pcre_get_substring(),	pcre_get_substring_list(),	error

detection,	and	run-time	flags	that	are	specific	to	PCRE,	as	well	as	the	POSIX

wrapper	API.	It	also	uses	the	debugging	flags	to	check	some	of	the	internals	of

pcre_compile().

If	you	build	PCRE	with	a	locale	setting	that	is	not	the	standard	C	locale,	the

character	tables	may	be	different	(see	next	paragraph).	In	some	cases,	this	may

cause	failures	in	the	second	set	of	tests.	For	example,	in	a	locale	where	the

isprint()	function	yields	TRUE	for	characters	in	the	range	128-255,	the	use	of

[:isascii:]	inside	a	character	class	defines	a	different	set	of	characters,	and

this	shows	up	in	this	test	as	a	difference	in	the	compiled	code,	which	is	being

listed	for	checking.	Where	the	comparison	test	output	contains	[\x00-\x7f]	the

test	will	contain	[\x00-\xff],	and	similarly	in	some	other	cases.	This	is	not	a

bug	in	PCRE.

The	third	set	of	tests	checks	pcre_maketables(),	the	facility	for	building	a

set	of	character	tables	for	a	specific	locale	and	using	them	instead	of	the

default	tables.	The	tests	make	use	of	the	"fr_FR"	(French)	locale.	Before

running	the	test,	the	script	checks	for	the	presence	of	this	locale	by	running

the	"locale"	command.	If	that	command	fails,	or	if	it	doesn't	include	"fr_FR"

in	the	list	of	available	locales,	the	third	test	cannot	be	run,	and	a	comment

is	output	to	say	why.	If	running	this	test	produces	instances	of	the	error

		**	Failed	to	set	locale	"fr_FR"

in	the	comparison	output,	it	means	that	locale	is	not	available	on	your	system,

despite	being	listed	by	"locale".	This	does	not	mean	that	PCRE	is	broken.

[If	you	are	trying	to	run	this	test	on	Windows,	you	may	be	able	to	get	it	to

work	by	changing	"fr_FR"	to	"french"	everywhere	it	occurs.	Alternatively,	use

RunTest.bat.	The	version	of	RunTest.bat	included	with	PCRE	7.4	and	above	uses

Windows	versions	of	test	2.	More	info	on	using	RunTest.bat	is	included	in	the

document	entitled	NON-UNIX-USE.]

The	fourth	test	checks	the	UTF-8	support.	It	is	not	run	automatically	unless

PCRE	is	built	with	UTF-8	support.	To	do	this	you	must	set	--enable-utf8	when

running	"configure".	This	file	can	be	also	fed	directly	to	the	perltest	script,

provided	you	are	running	Perl	5.8	or	higher.	(For	Perl	5.6,	a	small	patch,

commented	in	the	script,	can	be	be	used.)

The	fifth	test	checks	error	handling	with	UTF-8	encoding,	and	internal	UTF-8

features	of	PCRE	that	are	not	relevant	to	Perl.

The	sixth	test	checks	the	support	for	Unicode	character	properties.	It	it	not

run	automatically	unless	PCRE	is	built	with	Unicode	property	support.	To	to

this	you	must	set	--enable-unicode-properties	when	running	"configure".

The	seventh,	eighth,	and	ninth	tests	check	the	pcre_dfa_exec()	alternative

matching	function,	in	non-UTF-8	mode,	UTF-8	mode,	and	UTF-8	mode	with	Unicode

property	support,	respectively.	The	eighth	and	ninth	tests	are	not	run

automatically	unless	PCRE	is	build	with	the	relevant	support.

Character	tables

For	speed,	PCRE	uses	four	tables	for	manipulating	and	identifying	characters

whose	code	point	values	are	less	than	256.	The	final	argument	of	the

pcre_compile()	function	is	a	pointer	to	a	block	of	memory	containing	the

concatenated	tables.	A	call	to	pcre_maketables()	can	be	used	to	generate	a	set

of	tables	in	the	current	locale.	If	the	final	argument	for	pcre_compile()	is

passed	as	NULL,	a	set	of	default	tables	that	is	built	into	the	binary	is	used.

The	source	file	called	pcre_chartables.c	contains	the	default	set	of	tables.	By

default,	this	is	created	as	a	copy	of	pcre_chartables.c.dist,	which	contains

tables	for	ASCII	coding.	However,	if	--enable-rebuild-chartables	is	specified

for	./configure,	a	different	version	of	pcre_chartables.c	is	built	by	the

program	dftables	(compiled	from	dftables.c),	which	uses	the	ANSI	C	character

handling	functions	such	as	isalnum(),	isalpha(),	isupper(),	islower(),	etc.	to

build	the	table	sources.	This	means	that	the	default	C	locale	which	is	set	for

your	system	will	control	the	contents	of	these	default	tables.	You	can	change

the	default	tables	by	editing	pcre_chartables.c	and	then	re-building	PCRE.	If

you	do	this,	you	should	take	care	to	ensure	that	the	file	does	not	get

automatically	re-generated.	The	best	way	to	do	this	is	to	move

pcre_chartables.c.dist	out	of	the	way	and	replace	it	with	your	customized

tables.

When	the	dftables	program	is	run	as	a	result	of	--enable-rebuild-chartables,

it	uses	the	default	C	locale	that	is	set	on	your	system.	It	does	not	pay

attention	to	the	LC_xxx	environment	variables.	In	other	words,	it	uses	the

system's	default	locale	rather	than	whatever	the	compiling	user	happens	to	have

set.	If	you	really	do	want	to	build	a	source	set	of	character	tables	in	a

locale	that	is	specified	by	the	LC_xxx	variables,	you	can	run	the	dftables

program	by	hand	with	the	-L	option.	For	example:

		./dftables	-L	pcre_chartables.c.special

The	first	two	256-byte	tables	provide	lower	casing	and	case	flipping	functions,

respectively.	The	next	table	consists	of	three	32-byte	bit	maps	which	identify

digits,	"word"	characters,	and	white	space,	respectively.	These	are	used	when

building	32-byte	bit	maps	that	represent	character	classes	for	code	points	less

than	256.

The	final	256-byte	table	has	bits	indicating	various	character	types,	as

follows:

				1			white	space	character

				2			letter

				4			decimal	digit

				8			hexadecimal	digit

			16			alphanumeric	or	'_'

		128			regular	expression	metacharacter	or	binary	zero

You	should	not	alter	the	set	of	characters	that	contain	the	128	bit,	as	that

will	cause	PCRE	to	malfunction.

File	manifest

The	distribution	should	contain	the	following	files:

(A)	Source	files	of	the	PCRE	library	functions	and	their	headers:

		dftables.c														auxiliary	program	for	building	pcre_chartables.c

																												when	--enable-rebuild-chartables	is	specified

		pcre_chartables.c.dist		a	default	set	of	character	tables	that	assume	ASCII

																												coding;	used,	unless	--enable-rebuild-chartables	is

																												specified,	by	copying	to	pcre_chartables.c

		pcreposix.c)

		pcre_compile.c)

		pcre_config.c)

		pcre_dfa_exec.c)

		pcre_exec.c)

		pcre_fullinfo.c)

		pcre_get.c)	sources	for	the	functions	in	the	library,

		pcre_globals.c)			and	some	internal	functions	that	they	use

		pcre_info.c)

		pcre_maketables.c)

		pcre_newline.c)

		pcre_ord2utf8.c)

		pcre_refcount.c)

		pcre_study.c)

		pcre_tables.c)

		pcre_try_flipped.c)

		pcre_ucp_searchfuncs.c)

		pcre_valid_utf8.c)

		pcre_version.c)

		pcre_xclass.c)

		pcre_printint.src)	debugging	function	that	is	#included	in	pcretest,

)			and	can	also	be	#included	in	pcre_compile()

		pcre.h.in															template	for	pcre.h	when	built	by	"configure"

		pcreposix.h													header	for	the	external	POSIX	wrapper	API

		pcre_internal.h									header	for	internal	use

		ucp.h)	headers	concerned	with

		ucpinternal.h)			Unicode	property	handling

		ucptable.h)	(this	one	is	the	data	table)

		config.h.in													template	for	config.h,	which	is	built	by	"configure"

		pcrecpp.h															public	header	file	for	the	C++	wrapper

		pcrecpparg.h.in									template	for	another	C++	header	file

		pcre_scanner.h										public	header	file	for	C++	scanner	functions

		pcrecpp.cc)

		pcre_scanner.cc)	source	for	the	C++	wrapper	library

		pcre_stringpiece.h.in			template	for	pcre_stringpiece.h,	the	header	for	the

																												C++	stringpiece	functions

		pcre_stringpiece.cc					source	for	the	C++	stringpiece	functions

(B)	Source	files	for	programs	that	use	PCRE:

		pcredemo.c														simple	demonstration	of	coding	calls	to	PCRE

		pcregrep.c														source	of	a	grep	utility	that	uses	PCRE

		pcretest.c														comprehensive	test	program

(C)	Auxiliary	files:

		132html																	script	to	turn	"man"	pages	into	HTML

		AUTHORS																	information	about	the	author	of	PCRE

		ChangeLog															log	of	changes	to	the	code

		CleanTxt																script	to	clean	nroff	output	for	txt	man	pages

		Detrail																	script	to	remove	trailing	spaces

		HACKING																	some	notes	about	the	internals	of	PCRE

		INSTALL																	generic	installation	instructions

		LICENCE																	conditions	for	the	use	of	PCRE

		COPYING																	the	same,	using	GNU's	standard	name

		Makefile.in)	template	for	Unix	Makefile,	which	is	built	by

)			"configure"

		Makefile.am)	the	automake	input	that	was	used	to	create

)			Makefile.in

		NEWS																				important	changes	in	this	release

		NON-UNIX-USE												notes	on	building	PCRE	on	non-Unix	systems

		PrepareRelease										script	to	make	preparations	for	"make	dist"

		README																		this	file

		RunTest																	a	Unix	shell	script	for	running	tests

		RunGrepTest													a	Unix	shell	script	for	pcregrep	tests

		aclocal.m4														m4	macros	(generated	by	"aclocal")

		config.guess)	files	used	by	libtool,

		config.sub)			used	only	when	building	a	shared	library

		configure															a	configuring	shell	script	(built	by	autoconf)

		configure.ac)	the	autoconf	input	that	was	used	to	build

)			"configure"	and	config.h

		depcomp)	script	to	find	program	dependencies,	generated	by

)			automake

		doc/*.3																	man	page	sources	for	the	PCRE	functions

		doc/*.1																	man	page	sources	for	pcregrep	and	pcretest

		doc/index.html.src						the	base	HTML	page

		doc/html/*														HTML	documentation

		doc/pcre.txt												plain	text	version	of	the	man	pages

		doc/pcretest.txt								plain	text	documentation	of	test	program

		doc/perltest.txt								plain	text	documentation	of	Perl	test	program

		install-sh														a	shell	script	for	installing	files

		libpcre.pc.in											template	for	libpcre.pc	for	pkg-config

		libpcrecpp.pc.in								template	for	libpcrecpp.pc	for	pkg-config

		ltmain.sh															file	used	to	build	a	libtool	script

		missing)	common	stub	for	a	few	missing	GNU	programs	while

)			installing,	generated	by	automake

		mkinstalldirs											script	for	making	install	directories

		perltest.pl													Perl	test	program

		pcre-config.in										source	of	script	which	retains	PCRE	information

		pcrecpp_unittest.cc)

		pcre_scanner_unittest.cc)	test	programs	for	the	C++	wrapper

		pcre_stringpiece_unittest.cc)

		testdata/testinput*					test	data	for	main	library	tests

		testdata/testoutput*				expected	test	results

		testdata/grep*										input	and	output	for	pcregrep	tests

(D)	Auxiliary	files	for	cmake	support

		CMakeLists.txt

		config-cmake.h.in

(E)	Auxiliary	files	for	VPASCAL

		makevp.bat

		makevp_c.txt

		makevp_l.txt

		pcregexp.pas

(F)	Auxiliary	files	for	building	PCRE	"by	hand"

		pcre.h.generic)	a	version	of	the	public	PCRE	header	file

)			for	use	in	non-"configure"	environments

		config.h.generic)	a	version	of	config.h	for	use	in	non-"configure"

)			environments

(F)	Miscellaneous

		RunTest.bat												a	script	for	running	tests	under	Windows

Philip	Hazel

Email	local	part:	ph10

Email	domain:	cam.ac.uk

Last	updated:	21	September	2007

Installation	Instructions

Copyright	(C)	1994,	1995,	1996,	1999,	2000,	2001,	2002,	2004,	2005,

2006	Free	Software	Foundation,	Inc.

This	file	is	free	documentation;	the	Free	Software	Foundation	gives

unlimited	permission	to	copy,	distribute	and	modify	it.

Basic	Installation

==================

Briefly,	the	shell	commands	`./configure;	make;	make	install'	should

configure,	build,	and	install	this	package.		The	following

more-detailed	instructions	are	generic;	see	the	`README'	file	for

instructions	specific	to	this	package.

			The	`configure'	shell	script	attempts	to	guess	correct	values	for

various	system-dependent	variables	used	during	compilation.		It	uses

those	values	to	create	a	`Makefile'	in	each	directory	of	the	package.

It	may	also	create	one	or	more	`.h'	files	containing	system-dependent

definitions.		Finally,	it	creates	a	shell	script	`config.status'	that

you	can	run	in	the	future	to	recreate	the	current	configuration,	and	a

file	`config.log'	containing	compiler	output	(useful	mainly	for

debugging	`configure').

			It	can	also	use	an	optional	file	(typically	called	`config.cache'

and	enabled	with	`--cache-file=config.cache'	or	simply	`-C')	that	saves

the	results	of	its	tests	to	speed	up	reconfiguring.		Caching	is

disabled	by	default	to	prevent	problems	with	accidental	use	of	stale

cache	files.

			If	you	need	to	do	unusual	things	to	compile	the	package,	please	try

to	figure	out	how	`configure'	could	check	whether	to	do	them,	and	mail

diffs	or	instructions	to	the	address	given	in	the	`README'	so	they	can

be	considered	for	the	next	release.		If	you	are	using	the	cache,	and	at

some	point	`config.cache'	contains	results	you	don't	want	to	keep,	you

may	remove	or	edit	it.

			The	file	`configure.ac'	(or	`configure.in')	is	used	to	create

`configure'	by	a	program	called	`autoconf'.		You	need	`configure.ac'	if

you	want	to	change	it	or	regenerate	`configure'	using	a	newer	version

of	`autoconf'.

The	simplest	way	to	compile	this	package	is:

		1.	`cd'	to	the	directory	containing	the	package's	source	code	and	type

					`./configure'	to	configure	the	package	for	your	system.

					Running	`configure'	might	take	a	while.		While	running,	it	prints

					some	messages	telling	which	features	it	is	checking	for.

		2.	Type	`make'	to	compile	the	package.

		3.	Optionally,	type	`make	check'	to	run	any	self-tests	that	come	with

					the	package.

		4.	Type	`make	install'	to	install	the	programs	and	any	data	files	and

					documentation.

		5.	You	can	remove	the	program	binaries	and	object	files	from	the

					source	code	directory	by	typing	`make	clean'.		To	also	remove	the

					files	that	`configure'	created	(so	you	can	compile	the	package	for

					a	different	kind	of	computer),	type	`make	distclean'.		There	is

					also	a	`make	maintainer-clean'	target,	but	that	is	intended	mainly

					for	the	package's	developers.		If	you	use	it,	you	may	have	to	get

					all	sorts	of	other	programs	in	order	to	regenerate	files	that	came

					with	the	distribution.

Compilers	and	Options

=====================

Some	systems	require	unusual	options	for	compilation	or	linking	that	the

`configure'	script	does	not	know	about.		Run	`./configure	--help'	for

details	on	some	of	the	pertinent	environment	variables.

			You	can	give	`configure'	initial	values	for	configuration	parameters

by	setting	variables	in	the	command	line	or	in	the	environment.		Here

is	an	example:

					./configure	CC=c99	CFLAGS=-g	LIBS=-lposix

			*Note	Defining	Variables::,	for	more	details.

Compiling	For	Multiple	Architectures

====================================

You	can	compile	the	package	for	more	than	one	kind	of	computer	at	the

same	time,	by	placing	the	object	files	for	each	architecture	in	their

own	directory.		To	do	this,	you	can	use	GNU	`make'.		`cd'	to	the

directory	where	you	want	the	object	files	and	executables	to	go	and	run

the	`configure'	script.		`configure'	automatically	checks	for	the

source	code	in	the	directory	that	`configure'	is	in	and	in	`..'.

			With	a	non-GNU	`make',	it	is	safer	to	compile	the	package	for	one

architecture	at	a	time	in	the	source	code	directory.		After	you	have

installed	the	package	for	one	architecture,	use	`make	distclean'	before

reconfiguring	for	another	architecture.

Installation	Names

==================

By	default,	`make	install'	installs	the	package's	commands	under

`/usr/local/bin',	include	files	under	`/usr/local/include',	etc.		You

can	specify	an	installation	prefix	other	than	`/usr/local'	by	giving

`configure'	the	option	`--prefix=PREFIX'.

			You	can	specify	separate	installation	prefixes	for

architecture-specific	files	and	architecture-independent	files.		If	you

pass	the	option	`--exec-prefix=PREFIX'	to	`configure',	the	package	uses

PREFIX	as	the	prefix	for	installing	programs	and	libraries.

Documentation	and	other	data	files	still	use	the	regular	prefix.

			In	addition,	if	you	use	an	unusual	directory	layout	you	can	give

options	like	`--bindir=DIR'	to	specify	different	values	for	particular

kinds	of	files.		Run	`configure	--help'	for	a	list	of	the	directories

you	can	set	and	what	kinds	of	files	go	in	them.

			If	the	package	supports	it,	you	can	cause	programs	to	be	installed

with	an	extra	prefix	or	suffix	on	their	names	by	giving	`configure'	the

option	`--program-prefix=PREFIX'	or	`--program-suffix=SUFFIX'.

Optional	Features

=================

Some	packages	pay	attention	to	`--enable-FEATURE'	options	to

`configure',	where	FEATURE	indicates	an	optional	part	of	the	package.

They	may	also	pay	attention	to	`--with-PACKAGE'	options,	where	PACKAGE

is	something	like	`gnu-as'	or	`x'	(for	the	X	Window	System).		The

`README'	should	mention	any	`--enable-'	and	`--with-'	options	that	the

package	recognizes.

			For	packages	that	use	the	X	Window	System,	`configure'	can	usually

find	the	X	include	and	library	files	automatically,	but	if	it	doesn't,

you	can	use	the	`configure'	options	`--x-includes=DIR'	and

`--x-libraries=DIR'	to	specify	their	locations.

Specifying	the	System	Type

==========================

There	may	be	some	features	`configure'	cannot	figure	out	automatically,

but	needs	to	determine	by	the	type	of	machine	the	package	will	run	on.

Usually,	assuming	the	package	is	built	to	be	run	on	the	_same_

architectures,	`configure'	can	figure	that	out,	but	if	it	prints	a

message	saying	it	cannot	guess	the	machine	type,	give	it	the

`--build=TYPE'	option.		TYPE	can	either	be	a	short	name	for	the	system

type,	such	as	`sun4',	or	a	canonical	name	which	has	the	form:

					CPU-COMPANY-SYSTEM

where	SYSTEM	can	have	one	of	these	forms:

					OS	KERNEL-OS

			See	the	file	`config.sub'	for	the	possible	values	of	each	field.		If

`config.sub'	isn't	included	in	this	package,	then	this	package	doesn't

need	to	know	the	machine	type.

			If	you	are	_building_	compiler	tools	for	cross-compiling,	you	should

use	the	option	`--target=TYPE'	to	select	the	type	of	system	they	will

produce	code	for.

			If	you	want	to	_use_	a	cross	compiler,	that	generates	code	for	a

platform	different	from	the	build	platform,	you	should	specify	the

"host"	platform	(i.e.,	that	on	which	the	generated	programs	will

eventually	be	run)	with	`--host=TYPE'.

Sharing	Defaults

================

If	you	want	to	set	default	values	for	`configure'	scripts	to	share,	you

can	create	a	site	shell	script	called	`config.site'	that	gives	default

values	for	variables	like	`CC',	`cache_file',	and	`prefix'.

`configure'	looks	for	`PREFIX/share/config.site'	if	it	exists,	then

`PREFIX/etc/config.site'	if	it	exists.		Or,	you	can	set	the

`CONFIG_SITE'	environment	variable	to	the	location	of	the	site	script.

A	warning:	not	all	`configure'	scripts	look	for	a	site	script.

Defining	Variables

==================

Variables	not	defined	in	a	site	shell	script	can	be	set	in	the

environment	passed	to	`configure'.		However,	some	packages	may	run

configure	again	during	the	build,	and	the	customized	values	of	these

variables	may	be	lost.		In	order	to	avoid	this	problem,	you	should	set

them	in	the	`configure'	command	line,	using	`VAR=value'.		For	example:

					./configure	CC=/usr/local2/bin/gcc

causes	the	specified	`gcc'	to	be	used	as	the	C	compiler	(unless	it	is

overridden	in	the	site	shell	script).

Unfortunately,	this	technique	does	not	work	for	`CONFIG_SHELL'	due	to

an	Autoconf	bug.		Until	the	bug	is	fixed	you	can	use	this	workaround:

					CONFIG_SHELL=/bin/bash	/bin/bash	./configure	CONFIG_SHELL=/bin/bash

`configure'	Invocation

======================

`configure'	recognizes	the	following	options	to	control	how	it	operates.

`--help'

`-h'

					Print	a	summary	of	the	options	to	`configure',	and	exit.

`--version'

`-V'

					Print	the	version	of	Autoconf	used	to	generate	the	`configure'

					script,	and	exit.

`--cache-file=FILE'

					Enable	the	cache:	use	and	save	the	results	of	the	tests	in	FILE,

					traditionally	`config.cache'.		FILE	defaults	to	`/dev/null'	to

					disable	caching.

`--config-cache'

`-C'

					Alias	for	`--cache-file=config.cache'.

`--quiet'

`--silent'

`-q'

					Do	not	print	messages	saying	which	checks	are	being	made.		To

					suppress	all	normal	output,	redirect	it	to	`/dev/null'	(any	error

					messages	will	still	be	shown).

`--srcdir=DIR'

					Look	for	the	package's	source	code	in	directory	DIR.		Usually

					`configure'	can	determine	that	directory	automatically.

`configure'	also	accepts	some	other,	not	widely	useful,	options.		Run

`configure	--help'	for	more	details.

Compiling	PCRE	on	non-Unix	systems

This	document	contains	the	following	sections:

		General

		Generic	instructions	for	the	PCRE	C	library

		The	C++	wrapper	functions

		Building	for	virtual	Pascal

		Stack	size	in	Windows	environments

		Comments	about	Win32	builds

		Building	PCRE	with	CMake

		Building	under	Windows	with	BCC5.5

		Building	PCRE	on	OpenVMS

GENERAL

I	(Philip	Hazel)	have	no	experience	of	Windows	or	VMS	sytems	and	how	their

libraries	work.	The	items	in	the	PCRE	distribution	and	Makefile	that	relate	to

anything	other	than	Unix-like	systems	are	untested	by	me.

There	are	some	other	comments	and	files	in	the	Contrib	directory	on	the	ftp

site	that	you	may	find	useful.	See

		ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/Contrib

If	you	want	to	compile	PCRE	for	a	non-Unix	system	(especially	for	a	system	that

does	not	support	"configure"	and	"make"	files),	note	that	the	basic	PCRE

library	consists	entirely	of	code	written	in	Standard	C,	and	so	should	compile

successfully	on	any	system	that	has	a	Standard	C	compiler	and	library.	The	C++

wrapper	functions	are	a	separate	issue	(see	below).

The	PCRE	distribution	includes	support	for	CMake.	This	support	is	relatively

new,	but	has	already	been	used	successfully	to	build	PCRE	in	multiple	build

environments	on	Windows.	There	are	some	instructions	in	the	section	entitled

"Building	PCRE	with	CMake"	below.

GENERIC	INSTRUCTIONS	FOR	THE	PCRE	C	LIBRARY

The	following	are	generic	comments	about	building	the	PCRE	C	library	"by	hand".

	(1)	Copy	or	rename	the	file	config.h.generic	as	config.h,	and	edit	the	macro

					settings	that	it	contains	to	whatever	is	appropriate	for	your	environment.

					In	particular,	if	you	want	to	force	a	specific	value	for	newline,	you	can

					define	the	NEWLINE	macro.	When	you	compile	any	of	the	PCRE	modules,	you

					must	specify	-DHAVE_CONFIG_H	to	your	compiler	so	that	config.h	is	included

					in	the	sources.

					An	alternative	approach	is	not	to	edit	config.h,	but	to	use	-D	on	the

					compiler	command	line	to	make	any	changes	that	you	need	to	the

					configuration	options.	In	this	case	-DHAVE_CONFIG_H	must	not	be	set.

					NOTE:	There	have	been	occasions	when	the	way	in	which	certain	parameters

					in	config.h	are	used	has	changed	between	releases.	(In	the	configure/make

					world,	this	is	handled	automatically.)	When	upgrading	to	a	new	release,

					you	are	strongly	advised	to	review	config.h.generic	before	re-using	what

					you	had	previously.

	(2)	Copy	or	rename	the	file	pcre.h.generic	as	pcre.h.

	(3)	EITHER:

							Copy	or	rename	file	pcre_chartables.c.dist	as	pcre_chartables.c.

					OR:

							Compile	dftables.c	as	a	stand-alone	program	(using	-DHAVE_CONFIG_H	if

							you	have	set	up	config.h),	and	then	run	it	with	the	single	argument

							"pcre_chartables.c".	This	generates	a	set	of	standard	character	tables

							and	writes	them	to	that	file.	The	tables	are	generated	using	the	default

							C	locale	for	your	system.	If	you	want	to	use	a	locale	that	is	specified

							by	LC_xxx	environment	variables,	add	the	-L	option	to	the	dftables

							command.	You	must	use	this	method	if	you	are	building	on	a	system	that

							uses	EBCDIC	code.

					The	tables	in	pcre_chartables.c	are	defaults.	The	caller	of	PCRE	can

					specify	alternative	tables	at	run	time.

	(4)	Ensure	that	you	have	the	following	header	files:

							pcre_internal.h

							ucp.h

							ucpinternal.h

							ucptable.h

	(5)	Also	ensure	that	you	have	the	following	file,	which	is	#included	as	source

					when	building	a	debugging	version	of	PCRE	and	is	also	used	by	pcretest.

							pcre_printint.src

	(6)	Compile	the	following	source	files,	setting	-DHAVE_CONFIG_H	as	a	compiler

					option	if	you	have	set	up	config.h	with	your	configuration,	or	else	use

					other	-D	settings	to	change	the	configuration	as	required.

							pcre_chartables.c

							pcre_compile.c

							pcre_config.c

							pcre_dfa_exec.c

							pcre_exec.c

							pcre_fullinfo.c

							pcre_get.c

							pcre_globals.c

							pcre_info.c

							pcre_maketables.c

							pcre_newline.c

							pcre_ord2utf8.c

							pcre_refcount.c

							pcre_study.c

							pcre_tables.c

							pcre_try_flipped.c

							pcre_ucp_searchfuncs.c

							pcre_valid_utf8.c

							pcre_version.c

							pcre_xclass.c

					Make	sure	that	you	include	-I.	in	the	compiler	command	(or	equivalent	for

					an	unusual	compiler)	so	that	all	included	PCRE	header	files	are	first

					sought	in	the	current	directory.	Otherwise	you	run	the	risk	of	picking	up

					a	previously-installed	file	from	somewhere	else.

	(7)	Now	link	all	the	compiled	code	into	an	object	library	in	whichever	form

					your	system	keeps	such	libraries.	This	is	the	basic	PCRE	C	library.	If

					your	system	has	static	and	shared	libraries,	you	may	have	to	do	this	once

					for	each	type.

	(8)	Similarly,	compile	pcreposix.c	(remembering	-DHAVE_CONFIG_H	if	necessary)

					and	link	the	result	(on	its	own)	as	the	pcreposix	library.

	(9)	Compile	the	test	program	pcretest.c	(again,	don't	forget	-DHAVE_CONFIG_H).

					This	needs	the	functions	in	the	pcre	and	pcreposix	libraries	when	linking.

					It	also	needs	the	pcre_printint.src	source	file,	which	it	#includes.

(10)	Run	pcretest	on	the	testinput	files	in	the	testdata	directory,	and	check

					that	the	output	matches	the	corresponding	testoutput	files.	Note	that	the

					supplied	files	are	in	Unix	format,	with	just	LF	characters	as	line

					terminators.	You	may	need	to	edit	them	to	change	this	if	your	system	uses

					a	different	convention.	If	you	are	using	Windows,	you	probably	should	use

					the	wintestinput3	file	instead	of	testinput3	(and	the	corresponding	output

					file).	This	is	a	locale	test;	wintestinput3	sets	the	locale	to	"french"

					rather	than	"fr_FR",	and	there	some	minor	output	differences.

(11)	If	you	want	to	use	the	pcregrep	command,	compile	and	link	pcregrep.c;	it

					uses	only	the	basic	PCRE	library	(it	does	not	need	the	pcreposix	library).

THE	C++	WRAPPER	FUNCTIONS

The	PCRE	distribution	also	contains	some	C++	wrapper	functions	and	tests,

contributed	by	Google	Inc.	On	a	system	that	can	use	"configure"	and	"make",

the	functions	are	automatically	built	into	a	library	called	pcrecpp.	It	should

be	straightforward	to	compile	the	.cc	files	manually	on	other	systems.	The

files	called	xxx_unittest.cc	are	test	programs	for	each	of	the	corresponding

xxx.cc	files.

BUILDING	FOR	VIRTUAL	PASCAL

A	script	for	building	PCRE	using	Borland's	C++	compiler	for	use	with	VPASCAL

was	contributed	by	Alexander	Tokarev.	Stefan	Weber	updated	the	script	and	added

additional	files.	The	following	files	in	the	distribution	are	for	building	PCRE

for	use	with	VP/Borland:	makevp_c.txt,	makevp_l.txt,	makevp.bat,	pcregexp.pas.

STACK	SIZE	IN	WINDOWS	ENVIRONMENTS

The	default	processor	stack	size	of	1Mb	in	some	Windows	environments	is	too

small	for	matching	patterns	that	need	much	recursion.	In	particular,	test	2	may

fail	because	of	this.	Normally,	running	out	of	stack	causes	a	crash,	but	there

have	been	cases	where	the	test	program	has	just	died	silently.	See	your	linker

documentation	for	how	to	increase	stack	size	if	you	experience	problems.	The

Linux	default	of	8Mb	is	a	reasonable	choice	for	the	stack,	though	even	that	can

be	too	small	for	some	pattern/subject	combinations.

PCRE	has	a	compile	configuration	option	to	disable	the	use	of	stack	for

recursion	so	that	heap	is	used	instead.	However,	pattern	matching	is

significantly	slower	when	this	is	done.	There	is	more	about	stack	usage	in	the

"pcrestack"	documentation.

COMMENTS	ABOUT	WIN32	BUILDS	(see	also	"BUILDING	PCRE	WITH	CMAKE"	below)

There	are	two	ways	of	building	PCRE	using	the	"configure,	make,	make	install"

paradigm	on	Windows	systems:	using	MinGW	or	using	Cygwin.	These	are	not	at	all

the	same	thing;	they	are	completely	different	from	each	other.	There	is	also

some	experimental,	undocumented	support	for	building	using	"cmake",	which	you

might	like	to	try	if	you	are	familiar	with	"cmake".	However,	at	the	present

time,	the	"cmake"	process	builds	only	a	static	library	(not	a	dll),	and	the

tests	are	not	automatically	run.

The	MinGW	home	page	(http://www.mingw.org/)	says	this:

		MinGW:	A	collection	of	freely	available	and	freely	distributable	Windows

		specific	header	files	and	import	libraries	combined	with	GNU	toolsets	that

		allow	one	to	produce	native	Windows	programs	that	do	not	rely	on	any

		3rd-party	C	runtime	DLLs.

The	Cygwin	home	page	(http://www.cygwin.com/)	says	this:

		Cygwin	is	a	Linux-like	environment	for	Windows.	It	consists	of	two	parts:

		.	A	DLL	(cygwin1.dll)	which	acts	as	a	Linux	API	emulation	layer	providing

				substantial	Linux	API	functionality

		.	A	collection	of	tools	which	provide	Linux	look	and	feel.

		The	Cygwin	DLL	currently	works	with	all	recent,	commercially	released	x86	32

		bit	and	64	bit	versions	of	Windows,	with	the	exception	of	Windows	CE.

On	both	MinGW	and	Cygwin,	PCRE	should	build	correctly	using:

		./configure	&&	make	&&	make	install

This	should	create	two	libraries	called	libpcre	and	libpcreposix,	and,	if	you

have	enabled	building	the	C++	wrapper,	a	third	one	called	libpcrecpp.	These	are

independent	libraries:	when	you	like	with	libpcreposix	or	libpcrecpp	you	must

also	link	with	libpcre,	which	contains	the	basic	functions.	(Some	earlier

releases	of	PCRE	included	the	basic	libpcre	functions	in	libpcreposix.	This	no

longer	happens.)

If	you	want	to	statically	link	your	program	against	a	non-dll	.a	file,	you	must

define	PCRE_STATIC	before	including	pcre.h,	otherwise	the	pcre_malloc()	and

pcre_free()	exported	functions	will	be	declared	__declspec(dllimport),	with

unwanted	results.

Using	Cygwin's	compiler	generates	libraries	and	executables	that	depend	on

cygwin1.dll.	If	a	library	that	is	generated	this	way	is	distributed,

cygwin1.dll	has	to	be	distributed	as	well.	Since	cygwin1.dll	is	under	the	GPL

licence,	this	forces	not	only	PCRE	to	be	under	the	GPL,	but	also	the	entire

application.	A	distributor	who	wants	to	keep	their	own	code	proprietary	must

purchase	an	appropriate	Cygwin	licence.

MinGW	has	no	such	restrictions.	The	MinGW	compiler	generates	a	library	or

executable	that	can	run	standalone	on	Windows	without	any	third	party	dll	or

licensing	issues.

But	there	is	more	complication:

If	a	Cygwin	user	uses	the	-mno-cygwin	Cygwin	gcc	flag,	what	that	really	does	is

to	tell	Cygwin's	gcc	to	use	the	MinGW	gcc.	Cygwin's	gcc	is	only	acting	as	a

front	end	to	MinGW's	gcc	(if	you	install	Cygwin's	gcc,	you	get	both	Cygwin's

gcc	and	MinGW's	gcc).	So,	a	user	can:

.	Build	native	binaries	by	using	MinGW	or	by	getting	Cygwin	and	using

		-mno-cygwin.

.	Build	binaries	that	depend	on	cygwin1.dll	by	using	Cygwin	with	the	normal

		compiler	flags.

The	test	files	that	are	supplied	with	PCRE	are	in	Unix	format,	with	LF

characters	as	line	terminators.	It	may	be	necessary	to	change	the	line

terminators	in	order	to	get	some	of	the	tests	to	work.	We	hope	to	improve

things	in	this	area	in	future.

BUILDING	PCRE	WITH	CMAKE

CMake	is	an	alternative	build	facility	that	can	be	used	instead	of	the

traditional	Unix	"configure".	CMake	version	2.4.7	supports	Borland	makefiles,

MinGW	makefiles,	MSYS	makefiles,	NMake	makefiles,	UNIX	makefiles,	Visual	Studio

6,	Visual	Studio	7,	Visual	Studio	8,	and	Watcom	W8.	The	following	instructions

were	contributed	by	a	PCRE	user.

1.	Download	CMake	2.4.7	or	above	from	http://www.cmake.org/,	install	and	ensure

			that	cmake\bin	is	on	your	path.

2.	Unzip	(retaining	folder	structure)	the	PCRE	source	tree	into	a	source

			directory	such	as	C:\pcre.

3.	Create	a	new,	empty	build	directory:	C:\pcre\build\

4.	Run	CMakeSetup	from	the	Shell	envirornment	of	your	build	tool,	e.g.,	Msys

			for	Msys/MinGW	or	Visual	Studio	Command	Prompt	for	VC/VC++

5.	Enter	C:\pcre\pcre-xx	and	C:\pcre\build	for	the	source	and	build

			directories,	respectively

6.	Hit	the	"Configure"	button.

7.	Select	the	particular	IDE	/	build	tool	that	you	are	using	(Visual	Studio,

			MSYS	makefiles,	MinGW	makefiles,	etc.)

8.	The	GUI	will	then	list	several	configuration	options.	This	is	where	you	can

			enable	UTF-8	support,	etc.

9.	Hit	"Configure"	again.	The	adjacent	"OK"	button	should	now	be	active.

10.	Hit	"OK".

11.	The	build	directory	should	now	contain	a	usable	build	system,	be	it	a

				solution	file	for	Visual	Studio,	makefiles	for	MinGW,	etc.

Testing	with	RunTest.bat

1.	Copy	RunTest.bat	into	the	directory	where	pcretest.exe	has	been	created.

2.	Edit	RunTest.bat	and	insert	a	line	that	indentifies	the	relative	location	of

			the	pcre	source,	e.g.:

			set	srcdir=..\pcre-7.4-RC3

3.	Run	RunTest.bat	from	a	command	shell	environment.	Test	outputs	will

			automatically	be	compared	to	expected	results,	and	discrepancies	will

			identified	in	the	console	output.

4.	To	test	pcrecpp,	run	pcrecpp_unittest.exe,	pcre_stringpiece_unittest.exe	and

			pcre_scanner_unittest.exe.

BUILDING	UNDER	WINDOWS	WITH	BCC5.5

Michael	Roy	sent	these	comments	about	building	PCRE	under	Windows	with	BCC5.5:

		Some	of	the	core	BCC	libraries	have	a	version	of	PCRE	from	1998	built	in,

		which	can	lead	to	pcre_exec()	giving	an	erroneous	PCRE_ERROR_NULL	from	a

		version	mismatch.	I'm	including	an	easy	workaround	below,	if	you'd	like	to

		include	it	in	the	non-unix	instructions:

		When	linking	a	project	with	BCC5.5,	pcre.lib	must	be	included	before	any	of

		the	libraries	cw32.lib,	cw32i.lib,	cw32mt.lib,	and	cw32mti.lib	on	the	command

		line.

BUILDING	PCRE	ON	OPENVMS

Dan	Mooney	sent	the	following	comments	about	building	PCRE	on	OpenVMS.	They

relate	to	an	older	version	of	PCRE	that	used	fewer	source	files,	so	the	exact

commands	will	need	changing.	See	the	current	list	of	source	files	above.

"It	was	quite	easy	to	compile	and	link	the	library.	I	don't	have	a	formal

make	file	but	the	attached	file	[reproduced	below]	contains	the	OpenVMS	DCL

commands	I	used	to	build	the	library.	I	had	to	add	#define

POSIX_MALLOC_THRESHOLD	10	to	pcre.h	since	it	was	not	defined	anywhere.

The	library	was	built	on:

O/S:	HP	OpenVMS	v7.3-1

Compiler:	Compaq	C	v6.5-001-48BCD

Linker:	vA13-01

The	test	results	did	not	match	100%	due	to	the	issues	you	mention	in	your

documentation	regarding	isprint(),	iscntrl(),	isgraph()	and	ispunct().	I

modified	some	of	the	character	tables	temporarily	and	was	able	to	get	the

results	to	match.	Tests	using	the	fr	locale	did	not	match	since	I	don't	have

that	locale	loaded.	The	study	size	was	always	reported	to	be	3	less	than	the

value	in	the	standard	test	output	files."

=========================

$!	This	DCL	procedure	builds	PCRE	on	OpenVMS

$!

$!	I	followed	the	instructions	in	the	non-unix-use	file	in	the	distribution.

$!

$	COMPILE	==	"CC/LIST/NOMEMBER_ALIGNMENT/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES

$	COMPILE	DFTABLES.C

$	LINK/EXE=DFTABLES.EXE	DFTABLES.OBJ

$	RUN	DFTABLES.EXE/OUTPUT=CHARTABLES.C

$	COMPILE	MAKETABLES.C

$	COMPILE	GET.C

$	COMPILE	STUDY.C

$!	I	had	to	set	POSIX_MALLOC_THRESHOLD	to	10	in	PCRE.H	since	the	symbol

$!	did	not	seem	to	be	defined	anywhere.

$!	I	edited	pcre.h	and	added	#DEFINE	SUPPORT_UTF8	to	enable	UTF8	support.

$	COMPILE	PCRE.C

$	LIB/CREATE	PCRE	MAKETABLES.OBJ,	GET.OBJ,	STUDY.OBJ,	PCRE.OBJ

$!	I	had	to	set	POSIX_MALLOC_THRESHOLD	to	10	in	PCRE.H	since	the	symbol

$!	did	not	seem	to	be	defined	anywhere.

$	COMPILE	PCREPOSIX.C

$	LIB/CREATE	PCREPOSIX	PCREPOSIX.OBJ

$	COMPILE	PCRETEST.C

$	LINK/EXE=PCRETEST.EXE	PCRETEST.OBJ,	PCRE/LIB,	PCREPOSIX/LIB

$!	C	programs	that	want	access	to	command	line	arguments	must	be

$!	defined	as	a	symbol

$	PCRETEST	:==	"$	SYS$ROADSUSERS:[DMOONEY.REGEXP]PCRETEST.EXE"

$!	Arguments	must	be	enclosed	in	quotes.

$	PCRETEST	"-C"

$!	Test	results:

$!

$!			The	test	results	did	not	match	100%.	The	functions	isprint(),	iscntrl(),

$!			isgraph()	and	ispunct()	on	OpenVMS	must	not	produce	the	same	results

$!			as	the	system	that	built	the	test	output	files	provided	with	the

$!			distribution.

$!

$!			The	study	size	did	not	match	and	was	always	3	less	on	OpenVMS.

$!

$!			Locale	could	not	be	set	to	fr

$!

=========================

Last	Updated:	21	September	2007

Technical	Notes	about	PCRE

These	are	very	rough	technical	notes	that	record	potentially	useful	information	

about	PCRE	internals.

Historical	note	1

Many	years	ago	I	implemented	some	regular	expression	functions	to	an	algorithm

suggested	by	Martin	Richards.	These	were	not	Unix-like	in	form,	and	were	quite

restricted	in	what	they	could	do	by	comparison	with	Perl.	The	interesting	part

about	the	algorithm	was	that	the	amount	of	space	required	to	hold	the	compiled

form	of	an	expression	was	known	in	advance.	The	code	to	apply	an	expression	did

not	operate	by	backtracking,	as	the	original	Henry	Spencer	code	and	current

Perl	code	does,	but	instead	checked	all	possibilities	simultaneously	by	keeping

a	list	of	current	states	and	checking	all	of	them	as	it	advanced	through	the

subject	string.	In	the	terminology	of	Jeffrey	Friedl's	book,	it	was	a	"DFA

algorithm",	though	it	was	not	a	traditional	Finite	State	Machine	(FSM).	When

the	pattern	was	all	used	up,	all	remaining	states	were	possible	matches,	and

the	one	matching	the	longest	subset	of	the	subject	string	was	chosen.	This	did

not	necessarily	maximize	the	individual	wild	portions	of	the	pattern,	as	is

expected	in	Unix	and	Perl-style	regular	expressions.

Historical	note	2

By	contrast,	the	code	originally	written	by	Henry	Spencer	(which	was

subsequently	heavily	modified	for	Perl)	compiles	the	expression	twice:	once	in

a	dummy	mode	in	order	to	find	out	how	much	store	will	be	needed,	and	then	for

real.	(The	Perl	version	probably	doesn't	do	this	any	more;	I'm	talking	about

the	original	library.)	The	execution	function	operates	by	backtracking	and

maximizing	(or,	optionally,	minimizing	in	Perl)	the	amount	of	the	subject	that

matches	individual	wild	portions	of	the	pattern.	This	is	an	"NFA	algorithm"	in

Friedl's	terminology.

OK,	here's	the	real	stuff

For	the	set	of	functions	that	form	the	"basic"	PCRE	library	(which	are

unrelated	to	those	mentioned	above),	I	tried	at	first	to	invent	an	algorithm

that	used	an	amount	of	store	bounded	by	a	multiple	of	the	number	of	characters

in	the	pattern,	to	save	on	compiling	time.	However,	because	of	the	greater

complexity	in	Perl	regular	expressions,	I	couldn't	do	this.	In	any	case,	a

first	pass	through	the	pattern	is	helpful	for	other	reasons.	

Computing	the	memory	requirement:	how	it	was

--

Up	to	and	including	release	6.7,	PCRE	worked	by	running	a	very	degenerate	first

pass	to	calculate	a	maximum	store	size,	and	then	a	second	pass	to	do	the	real

compile	-	which	might	use	a	bit	less	than	the	predicted	amount	of	memory.	The

idea	was	that	this	would	turn	out	faster	than	the	Henry	Spencer	code	because

the	first	pass	is	degenerate	and	the	second	pass	can	just	store	stuff	straight

into	the	vector,	which	it	knows	is	big	enough.

Computing	the	memory	requirement:	how	it	is

By	the	time	I	was	working	on	a	potential	6.8	release,	the	degenerate	first	pass

had	become	very	complicated	and	hard	to	maintain.	Indeed	one	of	the	early

things	I	did	for	6.8	was	to	fix	Yet	Another	Bug	in	the	memory	computation.	Then

I	had	a	flash	of	inspiration	as	to	how	I	could	run	the	real	compile	function	in

a	"fake"	mode	that	enables	it	to	compute	how	much	memory	it	would	need,	while

actually	only	ever	using	a	few	hundred	bytes	of	working	memory,	and	without	too

many	tests	of	the	mode	that	might	slow	it	down.	So	I	re-factored	the	compiling

functions	to	work	this	way.	This	got	rid	of	about	600	lines	of	source.	It

should	make	future	maintenance	and	development	easier.	As	this	was	such	a	major	

change,	I	never	released	6.8,	instead	upping	the	number	to	7.0	(other	quite	

major	changes	are	also	present	in	the	7.0	release).

A	side	effect	of	this	work	is	that	the	previous	limit	of	200	on	the	nesting

depth	of	parentheses	was	removed.	However,	there	is	a	downside:	pcre_compile()

runs	more	slowly	than	before	(30%	or	more,	depending	on	the	pattern)	because	it

is	doing	a	full	analysis	of	the	pattern.	My	hope	is	that	this	is	not	a	big

issue.

Traditional	matching	function

The	"traditional",	and	original,	matching	function	is	called	pcre_exec(),	and	

it	implements	an	NFA	algorithm,	similar	to	the	original	Henry	Spencer	algorithm	

and	the	way	that	Perl	works.	Not	surprising,	since	it	is	intended	to	be	as	

compatible	with	Perl	as	possible.	This	is	the	function	most	users	of	PCRE	will	

use	most	of	the	time.

Supplementary	matching	function

From	PCRE	6.0,	there	is	also	a	supplementary	matching	function	called	

pcre_dfa_exec().	This	implements	a	DFA	matching	algorithm	that	searches	

simultaneously	for	all	possible	matches	that	start	at	one	point	in	the	subject	

string.	(Going	back	to	my	roots:	see	Historical	Note	1	above.)	This	function	

intreprets	the	same	compiled	pattern	data	as	pcre_exec();	however,	not	all	the	

facilities	are	available,	and	those	that	are	do	not	always	work	in	quite	the	

same	way.	See	the	user	documentation	for	details.

The	algorithm	that	is	used	for	pcre_dfa_exec()	is	not	a	traditional	FSM,	

because	it	may	have	a	number	of	states	active	at	one	time.	More	work	would	be	

needed	at	compile	time	to	produce	a	traditional	FSM	where	only	one	state	is	

ever	active	at	once.	I	believe	some	other	regex	matchers	work	this	way.

Format	of	compiled	patterns

The	compiled	form	of	a	pattern	is	a	vector	of	bytes,	containing	items	of

variable	length.	The	first	byte	in	an	item	is	an	opcode,	and	the	length	of	the

item	is	either	implicit	in	the	opcode	or	contained	in	the	data	bytes	that

follow	it.	

In	many	cases	below	LINK_SIZE	data	values	are	specified	for	offsets	within	the	

compiled	pattern.	The	default	value	for	LINK_SIZE	is	2,	but	PCRE	can	be

compiled	to	use	3-byte	or	4-byte	values	for	these	offsets	(impairing	the

performance).	This	is	necessary	only	when	patterns	whose	compiled	length	is

greater	than	64K	are	going	to	be	processed.	In	this	description,	we	assume	the

"normal"	compilation	options.	Data	values	that	are	counts	(e.g.	for

quantifiers)	are	always	just	two	bytes	long.

A	list	of	the	opcodes	follows:

Opcodes	with	no	following	data

These	items	are	all	just	one	byte	long

		OP_END																	end	of	pattern

		OP_ANY																	match	any	character

		OP_ANYBYTE													match	any	single	byte,	even	in	UTF-8	mode

		OP_SOD																	match	start	of	data:	\A

		OP_SOM,																start	of	match	(subject	+	offset):	\G

		OP_SET_SOM,												set	start	of	match	(\K)	

		OP_CIRC																^	(start	of	data,	or	after	\n	in	multiline)

		OP_NOT_WORD_BOUNDARY			\W

		OP_WORD_BOUNDARY							\w

		OP_NOT_DIGIT											\D

		OP_DIGIT															\d

		OP_NOT_HSPACE										\H

		OP_HSPACE														\h		

		OP_NOT_WHITESPACE						\S

		OP_WHITESPACE										\s

		OP_NOT_VSPACE										\V

		OP_VSPACE														\v		

		OP_NOT_WORDCHAR								\W

		OP_WORDCHAR												\w

		OP_EODN																match	end	of	data	or	\n	at	end:	\Z

		OP_EOD																	match	end	of	data:	\z

		OP_DOLL																$	(end	of	data,	or	before	\n	in	multiline)

		OP_EXTUNI														match	an	extended	Unicode	character	

		OP_ANYNL															match	any	Unicode	newline	sequence	

		

		OP_ACCEPT)

		OP_COMMIT)	

		OP_FAIL)	These	are	Perl	5.10's	"backtracking					

		OP_PRUNE)	control	verbs".																									

		OP_SKIP)

		OP_THEN)

		

Repeating	single	characters

The	common	repeats	(*,	+,	?)	when	applied	to	a	single	character	use	the

following	opcodes:

		OP_STAR

		OP_MINSTAR

		OP_POSSTAR	

		OP_PLUS

		OP_MINPLUS

		OP_POSPLUS	

		OP_QUERY

		OP_MINQUERY

		OP_POSQUERY	

In	ASCII	mode,	these	are	two-byte	items;	in	UTF-8	mode,	the	length	is	variable.

Those	with	"MIN"	in	their	name	are	the	minimizing	versions.	Those	with	"POS"	in	

their	names	are	possessive	versions.	Each	is	followed	by	the	character	that	is

to	be	repeated.	Other	repeats	make	use	of

		OP_UPTO

		OP_MINUPTO

		OP_POSUPTO	

		OP_EXACT

which	are	followed	by	a	two-byte	count	(most	significant	first)	and	the

repeated	character.	OP_UPTO	matches	from	0	to	the	given	number.	A	repeat	with	a

non-zero	minimum	and	a	fixed	maximum	is	coded	as	an	OP_EXACT	followed	by	an

OP_UPTO	(or	OP_MINUPTO	or	OPT_POSUPTO).

Repeating	character	types

Repeats	of	things	like	\d	are	done	exactly	as	for	single	characters,	except

that	instead	of	a	character,	the	opcode	for	the	type	is	stored	in	the	data

byte.	The	opcodes	are:

		OP_TYPESTAR

		OP_TYPEMINSTAR

		OP_TYPEPOSSTAR	

		OP_TYPEPLUS

		OP_TYPEMINPLUS

		OP_TYPEPOSPLUS	

		OP_TYPEQUERY

		OP_TYPEMINQUERY

		OP_TYPEPOSQUERY	

		OP_TYPEUPTO

		OP_TYPEMINUPTO

		OP_TYPEPOSUPTO	

		OP_TYPEEXACT

Match	by	Unicode	property

OP_PROP	and	OP_NOTPROP	are	used	for	positive	and	negative	matches	of	a	

character	by	testing	its	Unicode	property	(the	\p	and	\P	escape	sequences).

Each	is	followed	by	two	bytes	that	encode	the	desired	property	as	a	type	and	a	

value.

Repeats	of	these	items	use	the	OP_TYPESTAR	etc.	set	of	opcodes,	followed	by	

three	bytes:	OP_PROP	or	OP_NOTPROP	and	then	the	desired	property	type	and	

value.

Matching	literal	characters

The	OP_CHAR	opcode	is	followed	by	a	single	character	that	is	to	be	matched	

casefully.	For	caseless	matching,	OP_CHARNC	is	used.	In	UTF-8	mode,	the	

character	may	be	more	than	one	byte	long.	(Earlier	versions	of	PCRE	used	

multi-character	strings,	but	this	was	changed	to	allow	some	new	features	to	be	

added.)

Character	classes

If	there	is	only	one	character,	OP_CHAR	or	OP_CHARNC	is	used	for	a	positive

class,	and	OP_NOT	for	a	negative	one	(that	is,	for	something	like	[^a]).

However,	in	UTF-8	mode,	the	use	of	OP_NOT	applies	only	to	characters	with

values	<	128,	because	OP_NOT	is	confined	to	single	bytes.

Another	set	of	repeating	opcodes	(OP_NOTSTAR	etc.)	are	used	for	a	repeated,

negated,	single-character	class.	The	normal	ones	(OP_STAR	etc.)	are	used	for	a

repeated	positive	single-character	class.

When	there's	more	than	one	character	in	a	class	and	all	the	characters	are	less

than	256,	OP_CLASS	is	used	for	a	positive	class,	and	OP_NCLASS	for	a	negative

one.	In	either	case,	the	opcode	is	followed	by	a	32-byte	bit	map	containing	a	1

bit	for	every	character	that	is	acceptable.	The	bits	are	counted	from	the	least

significant	end	of	each	byte.

The	reason	for	having	both	OP_CLASS	and	OP_NCLASS	is	so	that,	in	UTF-8	mode,

subject	characters	with	values	greater	than	256	can	be	handled	correctly.	For

OP_CLASS	they	don't	match,	whereas	for	OP_NCLASS	they	do.

For	classes	containing	characters	with	values	>	255,	OP_XCLASS	is	used.	It

optionally	uses	a	bit	map	(if	any	characters	lie	within	it),	followed	by	a	list

of	pairs	and	single	characters.	There	is	a	flag	character	than	indicates

whether	it's	a	positive	or	a	negative	class.

Back	references

OP_REF	is	followed	by	two	bytes	containing	the	reference	number.

Repeating	character	classes	and	back	references

Single-character	classes	are	handled	specially	(see	above).	This	section

applies	to	OP_CLASS	and	OP_REF.	In	both	cases,	the	repeat	information	follows

the	base	item.	The	matching	code	looks	at	the	following	opcode	to	see	if	it	is

one	of

		OP_CRSTAR

		OP_CRMINSTAR

		OP_CRPLUS

		OP_CRMINPLUS

		OP_CRQUERY

		OP_CRMINQUERY

		OP_CRRANGE

		OP_CRMINRANGE

All	but	the	last	two	are	just	single-byte	items.	The	others	are	followed	by

four	bytes	of	data,	comprising	the	minimum	and	maximum	repeat	counts.	There	are	

no	special	possessive	opcodes	for	these	repeats;	a	possessive	repeat	is	

compiled	into	an	atomic	group.

Brackets	and	alternation

A	pair	of	non-capturing	(round)	brackets	is	wrapped	round	each	expression	at

compile	time,	so	alternation	always	happens	in	the	context	of	brackets.

[Note	for	North	Americans:	"bracket"	to	some	English	speakers,	including

myself,	can	be	round,	square,	curly,	or	pointy.	Hence	this	usage.]

Non-capturing	brackets	use	the	opcode	OP_BRA.	Originally	PCRE	was	limited	to	99

capturing	brackets	and	it	used	a	different	opcode	for	each	one.	From	release

3.5,	the	limit	was	removed	by	putting	the	bracket	number	into	the	data	for

higher-numbered	brackets.	From	release	7.0	all	capturing	brackets	are	handled

this	way,	using	the	single	opcode	OP_CBRA.

A	bracket	opcode	is	followed	by	LINK_SIZE	bytes	which	give	the	offset	to	the

next	alternative	OP_ALT	or,	if	there	aren't	any	branches,	to	the	matching

OP_KET	opcode.	Each	OP_ALT	is	followed	by	LINK_SIZE	bytes	giving	the	offset	to

the	next	one,	or	to	the	OP_KET	opcode.	For	capturing	brackets,	the	bracket	

number	immediately	follows	the	offset,	always	as	a	2-byte	item.

OP_KET	is	used	for	subpatterns	that	do	not	repeat	indefinitely,	while

OP_KETRMIN	and	OP_KETRMAX	are	used	for	indefinite	repetitions,	minimally	or

maximally	respectively.	All	three	are	followed	by	LINK_SIZE	bytes	giving	(as	a

positive	number)	the	offset	back	to	the	matching	bracket	opcode.

If	a	subpattern	is	quantified	such	that	it	is	permitted	to	match	zero	times,	it

is	preceded	by	one	of	OP_BRAZERO	or	OP_BRAMINZERO.	These	are	single-byte

opcodes	which	tell	the	matcher	that	skipping	this	subpattern	entirely	is	a

valid	branch.

A	subpattern	with	an	indefinite	maximum	repetition	is	replicated	in	the

compiled	data	its	minimum	number	of	times	(or	once	with	OP_BRAZERO	if	the

minimum	is	zero),	with	the	final	copy	terminating	with	OP_KETRMIN	or	OP_KETRMAX

as	appropriate.

A	subpattern	with	a	bounded	maximum	repetition	is	replicated	in	a	nested

fashion	up	to	the	maximum	number	of	times,	with	OP_BRAZERO	or	OP_BRAMINZERO

before	each	replication	after	the	minimum,	so	that,	for	example,	(abc){2,5}	is

compiled	as	(abc)(abc)((abc)((abc)(abc)?)?)?,	except	that	each	bracketed	group	

has	the	same	number.

When	a	repeated	subpattern	has	an	unbounded	upper	limit,	it	is	checked	to	see	

whether	it	could	match	an	empty	string.	If	this	is	the	case,	the	opcode	in	the	

final	replication	is	changed	to	OP_SBRA	or	OP_SCBRA.	This	tells	the	matcher

that	it	needs	to	check	for	matching	an	empty	string	when	it	hits	OP_KETRMIN	or

OP_KETRMAX,	and	if	so,	to	break	the	loop.

Assertions

Forward	assertions	are	just	like	other	subpatterns,	but	starting	with	one	of

the	opcodes	OP_ASSERT	or	OP_ASSERT_NOT.	Backward	assertions	use	the	opcodes

OP_ASSERTBACK	and	OP_ASSERTBACK_NOT,	and	the	first	opcode	inside	the	assertion

is	OP_REVERSE,	followed	by	a	two	byte	count	of	the	number	of	characters	to	move

back	the	pointer	in	the	subject	string.	When	operating	in	UTF-8	mode,	the	count

is	a	character	count	rather	than	a	byte	count.	A	separate	count	is	present	in

each	alternative	of	a	lookbehind	assertion,	allowing	them	to	have	different

fixed	lengths.

Once-only	(atomic)	subpatterns

These	are	also	just	like	other	subpatterns,	but	they	start	with	the	opcode

OP_ONCE.	The	check	for	matching	an	empty	string	in	an	unbounded	repeat	is	

handled	entirely	at	runtime,	so	there	is	just	this	one	opcode.

Conditional	subpatterns

These	are	like	other	subpatterns,	but	they	start	with	the	opcode	OP_COND,	or

OP_SCOND	for	one	that	might	match	an	empty	string	in	an	unbounded	repeat.	If

the	condition	is	a	back	reference,	this	is	stored	at	the	start	of	the

subpattern	using	the	opcode	OP_CREF	followed	by	two	bytes	containing	the

reference	number.	If	the	condition	is	"in	recursion"	(coded	as	"(?(R)"),	or	"in

recursion	of	group	x"	(coded	as	"(?(Rx)"),	the	group	number	is	stored	at	the

start	of	the	subpattern	using	the	opcode	OP_RREF,	and	a	value	of	zero	for	"the

whole	pattern".	For	a	DEFINE	condition,	just	the	single	byte	OP_DEF	is	used	(it

has	no	associated	data).	Otherwise,	a	conditional	subpattern	always	starts	with

one	of	the	assertions.

Recursion

Recursion	either	matches	the	current	regex,	or	some	subexpression.	The	opcode

OP_RECURSE	is	followed	by	an	value	which	is	the	offset	to	the	starting	bracket

from	the	start	of	the	whole	pattern.	From	release	6.5,	OP_RECURSE	is	

automatically	wrapped	inside	OP_ONCE	brackets	(because	otherwise	some	patterns	

broke	it).	OP_RECURSE	is	also	used	for	"subroutine"	calls,	even	though	they	

are	not	strictly	a	recursion.

Callout

OP_CALLOUT	is	followed	by	one	byte	of	data	that	holds	a	callout	number	in	the

range	0	to	254	for	manual	callouts,	or	255	for	an	automatic	callout.	In	both	

cases	there	follows	a	two-byte	value	giving	the	offset	in	the	pattern	to	the

start	of	the	following	item,	and	another	two-byte	item	giving	the	length	of	the

next	item.

Changing	options

If	any	of	the	/i,	/m,	or	/s	options	are	changed	within	a	pattern,	an	OP_OPT

opcode	is	compiled,	followed	by	one	byte	containing	the	new	settings	of	these

flags.	If	there	are	several	alternatives,	there	is	an	occurrence	of	OP_OPT	at

the	start	of	all	those	following	the	first	options	change,	to	set	appropriate

options	for	the	start	of	the	alternative.	Immediately	after	the	end	of	the

group	there	is	another	such	item	to	reset	the	flags	to	their	previous	values.	A

change	of	flag	right	at	the	very	start	of	the	pattern	can	be	handled	entirely

at	compile	time,	and	so	does	not	cause	anything	to	be	put	into	the	compiled

data.

Philip	Hazel

August	2007

Perl-compatible	Regular	Expressions
(PCRE)
The	HTML	documentation	for	PCRE	comprises	the	following	pages:

pcre 		Introductory	page
pcre-config 		Information	about	the	installation	configuration
pcreapi 		PCRE's	native	API
pcrebuild 		Options	for	building	PCRE
pcrecallout 		The	callout	facility
pcrecompat 		Compability	with	Perl
pcrecpp 		The	C++	wrapper	for	the	PCRE	library
pcregrep 		The	pcregrep	command
pcrematching 		Discussion	of	the	two	matching	algorithms
pcrepartial 		Using	PCRE	for	partial	matching
pcrepattern 		Specification	of	the	regular	expressions	supported	by	PCRE
pcreperform 		Some	comments	on	performance
pcreposix 		The	POSIX	API	to	the	PCRE	library
pcreprecompile 		How	to	save	and	re-use	compiled	patterns
pcresample 		Description	of	the	sample	program
pcrestack 		Discussion	of	PCRE's	stack	usage
pcresyntax 		Syntax	quick-reference	summary
pcretest 		The	pcretest	command	for	testing	PCRE

There	are	also	individual	pages	that	summarize	the	interface	for	each	function	in
the	library:

pcre_compile 		Compile	a	regular	expression
pcre_compile2 		Compile	a	regular	expression	(alternate	interface)
pcre_config 		Show	build-time	configuration	options
pcre_copy_named_substring 		Extract	named	substring	into	given	buffer

pcre_copy_substring 		Extract	numbered	substring	into	given	buffer

pcre_dfa_exec 		Match	a	compiled	pattern	to	a	subject	string
(DFA	algorithm;	not	Perl	compatible)

pcre_exec 		Match	a	compiled	pattern	to	a	subject	string	(Perl
compatible)

pcre_free_substring 		Free	extracted	substring
pcre_free_substring_list 		Free	list	of	extracted	substrings
pcre_fullinfo 		Extract	information	about	a	pattern
pcre_get_named_substring 		Extract	named	substring	into	new	memory
pcre_get_stringnumber 		Convert	captured	string	name	to	number
pcre_get_substring 		Extract	numbered	substring	into	new	memory
pcre_get_substring_list 		Extract	all	substrings	into	new	memory
pcre_info 		Obsolete	information	extraction	function
pcre_maketables 		Build	character	tables	in	current	locale
pcre_refcount 		Maintain	reference	count	in	compiled	pattern
pcre_study 		Study	a	compiled	pattern
pcre_version 		Return	PCRE	version	and	release	date

pcre_compile	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

pcre	*pcre_compile(const	char	*pattern,	int	options,	const	char	**errptr,	int
*erroffset,	const	unsigned	char	*tableptr);

DESCRIPTION	

This	function	compiles	a	regular	expression	into	an	internal	form.	It	is	the	same
as	pcre_compile2(),	except	for	the	absence	of	the	errorcodeptr	argument.	Its
arguments	are:

		pattern							A	zero-terminated	string	containing	the

																		regular	expression	to	be	compiled

		options							Zero	or	more	option	bits

		errptr								Where	to	put	an	error	message

		erroffset					Offset	in	pattern	where	error	was	found

		tableptr						Pointer	to	character	tables,	or	NULL	to

																		use	the	built-in	default

The	option	bits	are:

		PCRE_ANCHORED									Force	pattern	anchoring

		PCRE_AUTO_CALLOUT					Compile	automatic	callouts

		PCRE_BSR_ANYCRLF						\R	matches	only	CR,	LF,	or	CRLF

		PCRE_BSR_UNICODE						\R	matches	all	Unicode	line	endings

		PCRE_CASELESS									Do	caseless	matching

		PCRE_DOLLAR_ENDONLY			$	not	to	match	newline	at	end

		PCRE_DOTALL											.	matches	anything	including	NL

		PCRE_DUPNAMES									Allow	duplicate	names	for	subpatterns

		PCRE_EXTENDED									Ignore	whitespace	and	#	comments

		PCRE_EXTRA												PCRE	extra	features

																										(not	much	use	currently)

		PCRE_FIRSTLINE								Force	matching	to	be	before	newline

		PCRE_MULTILINE								^	and	$	match	newlines	within	data

		PCRE_NEWLINE_ANY						Recognize	any	Unicode	newline	sequence

		PCRE_NEWLINE_ANYCRLF		Recognize	CR,	LF,	and	CRLF	as	newline	sequences

		PCRE_NEWLINE_CR							Set	CR	as	the	newline	sequence

		PCRE_NEWLINE_CRLF					Set	CRLF	as	the	newline	sequence

		PCRE_NEWLINE_LF							Set	LF	as	the	newline	sequence

		PCRE_NO_AUTO_CAPTURE		Disable	numbered	capturing	paren-

																										theses	(named	ones	available)

		PCRE_UNGREEDY									Invert	greediness	of	quantifiers

		PCRE_UTF8													Run	in	UTF-8	mode

		PCRE_NO_UTF8_CHECK				Do	not	check	the	pattern	for	UTF-8

																										validity	(only	relevant	if

																										PCRE_UTF8	is	set)

PCRE	must	be	built	with	UTF-8	support	in	order	to	use	PCRE_UTF8	and
PCRE_NO_UTF8_CHECK.

The	yield	of	the	function	is	a	pointer	to	a	private	data	structure	that	contains	the
compiled	pattern,	or	NULL	if	an	error	was	detected.	Note	that	compiling	regular
expressions	with	one	version	of	PCRE	for	use	with	a	different	version	is	not
guaranteed	to	work	and	may	cause	crashes.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_compile2	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

pcre	*pcre_compile2(const	char	*pattern,	int	options,	int	*errorcodeptr,	const
char	**errptr,	int	*erroffset,	const	unsigned	char	*tableptr);

DESCRIPTION	

This	function	compiles	a	regular	expression	into	an	internal	form.	It	is	the	same
as	pcre_compile(),	except	for	the	addition	of	the	errorcodeptr	argument.	The
arguments	are:

		pattern							A	zero-terminated	string	containing	the

																		regular	expression	to	be	compiled

		options							Zero	or	more	option	bits

		errorcodeptr		Where	to	put	an	error	code

		errptr								Where	to	put	an	error	message

		erroffset					Offset	in	pattern	where	error	was	found

		tableptr						Pointer	to	character	tables,	or	NULL	to

																		use	the	built-in	default

The	option	bits	are:

		PCRE_ANCHORED									Force	pattern	anchoring

		PCRE_AUTO_CALLOUT					Compile	automatic	callouts

		PCRE_CASELESS									Do	caseless	matching

		PCRE_DOLLAR_ENDONLY			$	not	to	match	newline	at	end

		PCRE_DOTALL											.	matches	anything	including	NL

		PCRE_DUPNAMES									Allow	duplicate	names	for	subpatterns

		PCRE_EXTENDED									Ignore	whitespace	and	#	comments

		PCRE_EXTRA												PCRE	extra	features

																										(not	much	use	currently)

		PCRE_FIRSTLINE								Force	matching	to	be	before	newline

		PCRE_MULTILINE								^	and	$	match	newlines	within	data

		PCRE_NEWLINE_ANY						Recognize	any	Unicode	newline	sequence

		PCRE_NEWLINE_ANYCRLF		Recognize	CR,	LF,	and	CRLF	as	newline	sequences

		PCRE_NEWLINE_CR							Set	CR	as	the	newline	sequence

		PCRE_NEWLINE_CRLF					Set	CRLF	as	the	newline	sequence

		PCRE_NEWLINE_LF							Set	LF	as	the	newline	sequence

		PCRE_NO_AUTO_CAPTURE		Disable	numbered	capturing	paren-

																										theses	(named	ones	available)

		PCRE_UNGREEDY									Invert	greediness	of	quantifiers

		PCRE_UTF8													Run	in	UTF-8	mode

		PCRE_NO_UTF8_CHECK				Do	not	check	the	pattern	for	UTF-8

																										validity	(only	relevant	if

																										PCRE_UTF8	is	set)

PCRE	must	be	built	with	UTF-8	support	in	order	to	use	PCRE_UTF8	and
PCRE_NO_UTF8_CHECK.

The	yield	of	the	function	is	a	pointer	to	a	private	data	structure	that	contains	the
compiled	pattern,	or	NULL	if	an	error	was	detected.	Note	that	compiling	regular
expressions	with	one	version	of	PCRE	for	use	with	a	different	version	is	not
guaranteed	to	work	and	may	cause	crashes.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_config	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

int	pcre_config(int	what,	void	*where);

DESCRIPTION	

This	function	makes	it	possible	for	a	client	program	to	find	out	which	optional
features	are	available	in	the	version	of	the	PCRE	library	it	is	using.	Its	arguments
are	as	follows:

		what					A	code	specifying	what	information	is	required

		where				Points	to	where	to	put	the	data

The	available	codes	are:

		PCRE_CONFIG_LINK_SIZE					Internal	link	size:	2,	3,	or	4

		PCRE_CONFIG_MATCH_LIMIT			Internal	resource	limit

		PCRE_CONFIG_MATCH_LIMIT_RECURSION

																												Internal	recursion	depth	limit

		PCRE_CONFIG_NEWLINE							Value	of	the	default	newline	sequence:

																																13	(0x000d)				for	CR

																																10	(0x000a)				for	LF

																														3338	(0x0d0a)				for	CRLF

																																-2													for	ANYCRLF

																																-1													for	ANY

		PCRE_CONFIG_BSR											Indicates	what	\R	matches	by	default:

																																	0													all	Unicode	line	endings

																																	1													CR,	LF,	or	CRLF	only

		PCRE_CONFIG_POSIX_MALLOC_THRESHOLD

																												Threshold	of	return	slots,	above

																														which	malloc()	is	used	by

																														the	POSIX	API

		PCRE_CONFIG_STACKRECURSE		Recursion	implementation	(1=stack	0=heap)

		PCRE_CONFIG_UTF8										Availability	of	UTF-8	support	(1=yes	0=no)

		PCRE_CONFIG_UNICODE_PROPERTIES

																												Availability	of	Unicode	property	support

																														(1=yes	0=no)

The	function	yields	0	on	success	or	PCRE_ERROR_BADOPTION	otherwise.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_copy_named_substring	man
page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

int	pcre_copy_named_substring(const	pcre	*code,	const	char	*subject,	int
*ovector,	int	stringcount,	const	char	*stringname,	char	*buffer,	int
buffersize);

DESCRIPTION	

This	is	a	convenience	function	for	extracting	a	captured	substring,	identified	by
name,	into	a	given	buffer.	The	arguments	are:

		code										Pattern	that	was	successfully	matched

		subject							Subject	that	has	been	successfully	matched

		ovector							Offset	vector	that	pcre_exec()	used

		stringcount			Value	returned	by	pcre_exec()

		stringname				Name	of	the	required	substring

		buffer								Buffer	to	receive	the	string

		buffersize				Size	of	buffer

The	yield	is	the	length	of	the	substring,	PCRE_ERROR_NOMEMORY	if	the
buffer	was	too	small,	or	PCRE_ERROR_NOSUBSTRING	if	the	string	name	is
invalid.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_copy_substring	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

int	pcre_copy_substring(const	char	*subject,	int	*ovector,	int	stringcount,	int
stringnumber,	char	*buffer,	int	buffersize);

DESCRIPTION	

This	is	a	convenience	function	for	extracting	a	captured	substring	into	a	given
buffer.	The	arguments	are:

		subject							Subject	that	has	been	successfully	matched

		ovector							Offset	vector	that	pcre_exec()	used

		stringcount			Value	returned	by	pcre_exec()

		stringnumber		Number	of	the	required	substring

		buffer								Buffer	to	receive	the	string

		buffersize				Size	of	buffer

The	yield	is	the	length	of	the	string,	PCRE_ERROR_NOMEMORY	if	the	buffer
was	too	small,	or	PCRE_ERROR_NOSUBSTRING	if	the	string	number	is
invalid.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_dfa_exec	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

int	pcre_dfa_exec(const	pcre	*code,	const	pcre_extra	*extra,	const	char
*subject,	int	length,	int	startoffset,	int	options,	int	*ovector,	int	ovecsize,	int
*workspace,	int	wscount);

DESCRIPTION	

This	function	matches	a	compiled	regular	expression	against	a	given	subject
string,	using	an	alternative	matching	algorithm	that	scans	the	subject	string	just
once	(not	Perl-compatible).	Note	that	the	main,	Perl-compatible,	matching
function	is	pcre_exec().	The	arguments	for	this	function	are:

		code									Points	to	the	compiled	pattern

		extra								Points	to	an	associated	pcre_extra	structure,

																	or	is	NULL

		subject						Points	to	the	subject	string

		length							Length	of	the	subject	string,	in	bytes

		startoffset		Offset	in	bytes	in	the	subject	at	which	to

																	start	matching

		options						Option	bits

		ovector						Points	to	a	vector	of	ints	for	result	offsets

		ovecsize					Number	of	elements	in	the	vector

		workspace				Points	to	a	vector	of	ints	used	as	working	space

		wscount						Number	of	elements	in	the	vector

The	options	are:

		PCRE_ANCHORED						Match	only	at	the	first	position

		PCRE_BSR_ANYCRLF			\R	matches	only	CR,	LF,	or	CRLF

		PCRE_BSR_UNICODE			\R	matches	all	Unicode	line	endings

		PCRE_NEWLINE_ANY			Recognize	any	Unicode	newline	sequence

		PCRE_NEWLINE_ANYCRLF		Recognize	CR,	LF,	and	CRLF	as	newline	sequences

		PCRE_NEWLINE_CR				Set	CR	as	the	newline	sequence

		PCRE_NEWLINE_CRLF		Set	CRLF	as	the	newline	sequence

		PCRE_NEWLINE_LF				Set	LF	as	the	newline	sequence

		PCRE_NOTBOL								Subject	is	not	the	beginning	of	a	line

		PCRE_NOTEOL								Subject	is	not	the	end	of	a	line

		PCRE_NOTEMPTY						An	empty	string	is	not	a	valid	match

		PCRE_NO_UTF8_CHECK	Do	not	check	the	subject	for	UTF-8

																							validity	(only	relevant	if	PCRE_UTF8

																							was	set	at	compile	time)

		PCRE_PARTIAL							Return	PCRE_ERROR_PARTIAL	for	a	partial	match

		PCRE_DFA_SHORTEST		Return	only	the	shortest	match

		PCRE_DFA_RESTART			This	is	a	restart	after	a	partial	match

There	are	restrictions	on	what	may	appear	in	a	pattern	when	using	this	matching
function.	Details	are	given	in	the	pcrematching	documentation.

A	pcre_extra	structure	contains	the	following	fields:

		flags								Bits	indicating	which	fields	are	set

		study_data			Opaque	data	from	pcre_study()

		match_limit		Limit	on	internal	resource	use

		match_limit_recursion		Limit	on	internal	recursion	depth

		callout_data	Opaque	data	passed	back	to	callouts

		tables							Points	to	character	tables	or	is	NULL

The	flag	bits	are	PCRE_EXTRA_STUDY_DATA,
PCRE_EXTRA_MATCH_LIMIT,
PCRE_EXTRA_MATCH_LIMIT_RECURSION,
PCRE_EXTRA_CALLOUT_DATA,	and	PCRE_EXTRA_TABLES.	For	this
matching	function,	the	match_limit	and	match_limit_recursion	fields	are	not
used,	and	must	not	be	set.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_exec	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

int	pcre_exec(const	pcre	*code,	const	pcre_extra	*extra,	const	char	*subject,
int	length,	int	startoffset,	int	options,	int	*ovector,	int	ovecsize);

DESCRIPTION	

This	function	matches	a	compiled	regular	expression	against	a	given	subject
string,	using	a	matching	algorithm	that	is	similar	to	Perl's.	It	returns	offsets	to
captured	substrings.	Its	arguments	are:

		code									Points	to	the	compiled	pattern

		extra								Points	to	an	associated	pcre_extra	structure,

																	or	is	NULL

		subject						Points	to	the	subject	string

		length							Length	of	the	subject	string,	in	bytes

		startoffset		Offset	in	bytes	in	the	subject	at	which	to

																	start	matching

		options						Option	bits

		ovector						Points	to	a	vector	of	ints	for	result	offsets

		ovecsize					Number	of	elements	in	the	vector	(a	multiple	of	3)

The	options	are:

		PCRE_ANCHORED						Match	only	at	the	first	position

		PCRE_BSR_ANYCRLF			\R	matches	only	CR,	LF,	or	CRLF

		PCRE_BSR_UNICODE			\R	matches	all	Unicode	line	endings

		PCRE_NEWLINE_ANY			Recognize	any	Unicode	newline	sequence

		PCRE_NEWLINE_ANYCRLF		Recognize	CR,	LF,	and	CRLF	as	newline	sequences

		PCRE_NEWLINE_CR				Set	CR	as	the	newline	sequence

		PCRE_NEWLINE_CRLF		Set	CRLF	as	the	newline	sequence

		PCRE_NEWLINE_LF				Set	LF	as	the	newline	sequence

		PCRE_NOTBOL								Subject	is	not	the	beginning	of	a	line

		PCRE_NOTEOL								Subject	is	not	the	end	of	a	line

		PCRE_NOTEMPTY						An	empty	string	is	not	a	valid	match

		PCRE_NO_UTF8_CHECK	Do	not	check	the	subject	for	UTF-8

																							validity	(only	relevant	if	PCRE_UTF8

																							was	set	at	compile	time)

		PCRE_PARTIAL							Return	PCRE_ERROR_PARTIAL	for	a	partial	match

There	are	restrictions	on	what	may	appear	in	a	pattern	when	partial	matching	is
requested.	For	details,	see	the	pcrepartial	page.

A	pcre_extra	structure	contains	the	following	fields:

		flags								Bits	indicating	which	fields	are	set

		study_data			Opaque	data	from	pcre_study()

		match_limit		Limit	on	internal	resource	use

		match_limit_recursion		Limit	on	internal	recursion	depth

		callout_data	Opaque	data	passed	back	to	callouts

		tables							Points	to	character	tables	or	is	NULL

The	flag	bits	are	PCRE_EXTRA_STUDY_DATA,
PCRE_EXTRA_MATCH_LIMIT,
PCRE_EXTRA_MATCH_LIMIT_RECURSION,
PCRE_EXTRA_CALLOUT_DATA,	and	PCRE_EXTRA_TABLES.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_free_substring	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

void	pcre_free_substring(const	char	*stringptr);

DESCRIPTION	

This	is	a	convenience	function	for	freeing	the	store	obtained	by	a	previous	call	to
pcre_get_substring()	or	pcre_get_named_substring().	Its	only	argument	is	a
pointer	to	the	string.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_free_substring_list	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

void	pcre_free_substring_list(const	char	**stringptr);

DESCRIPTION	

This	is	a	convenience	function	for	freeing	the	store	obtained	by	a	previous	call	to
pcre_get_substring_list().	Its	only	argument	is	a	pointer	to	the	list	of	string
pointers.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_fullinfo	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

int	pcre_fullinfo(const	pcre	*code,	const	pcre_extra	*extra,	int	what,	void
*where);

DESCRIPTION	

This	function	returns	information	about	a	compiled	pattern.	Its	arguments	are:

		code																						Compiled	regular	expression

		extra																					Result	of	pcre_study()	or	NULL

		what																						What	information	is	required

		where																					Where	to	put	the	information

The	following	information	is	available:

		PCRE_INFO_BACKREFMAX						Number	of	highest	back	reference

		PCRE_INFO_CAPTURECOUNT				Number	of	capturing	subpatterns

		PCRE_INFO_DEFAULT_TABLES		Pointer	to	default	tables

		PCRE_INFO_FIRSTBYTE							Fixed	first	byte	for	a	match,	or

																														-1	for	start	of	string

																																	or	after	newline,	or

																														-2	otherwise

		PCRE_INFO_FIRSTTABLE						Table	of	first	bytes	(after	studying)

		PCRE_INFO_JCHANGED								Return	1	if	(?J)	was	used

		PCRE_INFO_LASTLITERAL					Literal	last	byte	required

		PCRE_INFO_NAMECOUNT							Number	of	named	subpatterns

		PCRE_INFO_NAMEENTRYSIZE			Size	of	name	table	entry

		PCRE_INFO_NAMETABLE							Pointer	to	name	table

		PCRE_INFO_OKPARTIAL							Return	1	if	partial	matching	can	be	tried

		PCRE_INFO_OPTIONS									Option	bits	used	for	compilation

		PCRE_INFO_SIZE												Size	of	compiled	pattern

		PCRE_INFO_STUDYSIZE							Size	of	study	data

The	yield	of	the	function	is	zero	on	success	or:

		PCRE_ERROR_NULL											the	argument	code	was	NULL

																												the	argument	where	was	NULL

		PCRE_ERROR_BADMAGIC							the	"magic	number"	was	not	found

		PCRE_ERROR_BADOPTION						the	value	of	what	was	invalid

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_get_named_substring	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

int	pcre_get_named_substring(const	pcre	*code,	const	char	*subject,	int
*ovector,	int	stringcount,	const	char	*stringname,	const	char	**stringptr);

DESCRIPTION	

This	is	a	convenience	function	for	extracting	a	captured	substring	by	name.	The
arguments	are:

		code										Compiled	pattern

		subject							Subject	that	has	been	successfully	matched

		ovector							Offset	vector	that	pcre_exec()	used

		stringcount			Value	returned	by	pcre_exec()

		stringname				Name	of	the	required	substring

		stringptr					Where	to	put	the	string	pointer

The	memory	in	which	the	substring	is	placed	is	obtained	by	calling
pcre_malloc().	The	convenience	function	pcre_free_substring()	can	be	used	to
free	it	when	it	is	no	longer	needed.	The	yield	of	the	function	is	the	length	of	the
extracted	substring,	PCRE_ERROR_NOMEMORY	if	sufficient	memory	could
not	be	obtained,	or	PCRE_ERROR_NOSUBSTRING	if	the	string	name	is
invalid.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_get_stringnumber	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

int	pcre_get_stringnumber(const	pcre	*code,	const	char	*name);

DESCRIPTION	

This	convenience	function	finds	the	number	of	a	named	substring	capturing
parenthesis	in	a	compiled	pattern.	Its	arguments	are:

		code				Compiled	regular	expression

		name				Name	whose	number	is	required

The	yield	of	the	function	is	the	number	of	the	parenthesis	if	the	name	is	found,
or	PCRE_ERROR_NOSUBSTRING	otherwise.	When	duplicate	names	are
allowed	(PCRE_DUPNAMES	is	set),	it	is	not	defined	which	of	the	numbers	is
returned	by	pcre_get_stringnumber().	You	can	obtain	the	complete	list	by
calling	pcre_get_stringtable_entries().

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_get_substring	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

int	pcre_get_substring(const	char	*subject,	int	*ovector,	int	stringcount,	int
stringnumber,	const	char	**stringptr);

DESCRIPTION	

This	is	a	convenience	function	for	extracting	a	captured	substring.	The
arguments	are:

		subject							Subject	that	has	been	successfully	matched

		ovector							Offset	vector	that	pcre_exec()	used

		stringcount			Value	returned	by	pcre_exec()

		stringnumber		Number	of	the	required	substring

		stringptr					Where	to	put	the	string	pointer

The	memory	in	which	the	substring	is	placed	is	obtained	by	calling
pcre_malloc().	The	convenience	function	pcre_free_substring()	can	be	used	to
free	it	when	it	is	no	longer	needed.	The	yield	of	the	function	is	the	length	of	the
substring,	PCRE_ERROR_NOMEMORY	if	sufficient	memory	could	not	be
obtained,	or	PCRE_ERROR_NOSUBSTRING	if	the	string	number	is	invalid.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_get_substring_list	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

int	pcre_get_substring_list(const	char	*subject,	int	*ovector,	int	stringcount,
const	char	***listptr);

DESCRIPTION	

This	is	a	convenience	function	for	extracting	a	list	of	all	the	captured	substrings.
The	arguments	are:

		subject							Subject	that	has	been	successfully	matched

		ovector							Offset	vector	that	pcre_exec	used

		stringcount			Value	returned	by	pcre_exec

		listptr							Where	to	put	a	pointer	to	the	list

The	memory	in	which	the	substrings	and	the	list	are	placed	is	obtained	by	calling
pcre_malloc().	The	convenience	function	pcre_free_substring_list()	can	be
used	to	free	it	when	it	is	no	longer	needed.	A	pointer	to	a	list	of	pointers	is	put	in
the	variable	whose	address	is	in	listptr.	The	list	is	terminated	by	a	NULL	pointer.
The	yield	of	the	function	is	zero	on	success	or	PCRE_ERROR_NOMEMORY	if
sufficient	memory	could	not	be	obtained.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_info	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

int	pcre_info(const	pcre	*code,	int	*optptr,	int	*firstcharptr);

DESCRIPTION	

This	function	is	obsolete.	You	should	be	using	pcre_fullinfo()	instead.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_maketables	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

const	unsigned	char	*pcre_maketables(void);

DESCRIPTION	

This	function	builds	a	set	of	character	tables	for	character	values	less	than	256.
These	can	be	passed	to	pcre_compile()	to	override	PCRE's	internal,	built-in
tables	(which	were	made	by	pcre_maketables()	when	PCRE	was	compiled).
You	might	want	to	do	this	if	you	are	using	a	non-standard	locale.	The	function
yields	a	pointer	to	the	tables.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_refcount	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

int	pcre_refcount(pcre	*code,	int	adjust);

DESCRIPTION	

This	function	is	used	to	maintain	a	reference	count	inside	a	data	block	that
contains	a	compiled	pattern.	Its	arguments	are:

		code																						Compiled	regular	expression

		adjust																				Adjustment	to	reference	value

The	yield	of	the	function	is	the	adjusted	reference	value,	which	is	constrained	to
lie	between	0	and	65535.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_study	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

pcre_extra	*pcre_study(const	pcre	*code,	int	options,	const	char	**errptr);

DESCRIPTION	

This	function	studies	a	compiled	pattern,	to	see	if	additional	information	can	be
extracted	that	might	speed	up	matching.	Its	arguments	are:

		code							A	compiled	regular	expression

		options				Options	for	pcre_study()

		errptr					Where	to	put	an	error	message

If	the	function	succeeds,	it	returns	a	value	that	can	be	passed	to	pcre_exec()	via
its	extra	argument.

If	the	function	returns	NULL,	either	it	could	not	find	any	additional	information,
or	there	was	an	error.	You	can	tell	the	difference	by	looking	at	the	error	value.	It
is	NULL	in	first	case.

There	are	currently	no	options	defined;	the	value	of	the	second	argument	should
always	be	zero.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_version	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	

#include	<pcre.h>

char	*pcre_version(void);

DESCRIPTION	

This	function	returns	a	character	string	that	gives	the	version	number	of	the
PCRE	library	and	the	date	of	its	release.

There	is	a	complete	description	of	the	PCRE	native	API	in	the	pcreapi	page	and
a	description	of	the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

INTRODUCTION
USER	DOCUMENTATION
LIMITATIONS
UTF-8	AND	UNICODE	PROPERTY	SUPPORT
AUTHOR
REVISION

INTRODUCTION

The	PCRE	library	is	a	set	of	functions	that	implement	regular	expression	pattern
matching	using	the	same	syntax	and	semantics	as	Perl,	with	just	a	few
differences.	(Certain	features	that	appeared	in	Python	and	PCRE	before	they
appeared	in	Perl	are	also	available	using	the	Python	syntax.)

The	current	implementation	of	PCRE	(release	7.x)	corresponds	approximately
with	Perl	5.10,	including	support	for	UTF-8	encoded	strings	and	Unicode
general	category	properties.	However,	UTF-8	and	Unicode	support	has	to	be
explicitly	enabled;	it	is	not	the	default.	The	Unicode	tables	correspond	to
Unicode	release	5.0.0.

In	addition	to	the	Perl-compatible	matching	function,	PCRE	contains	an
alternative	matching	function	that	matches	the	same	compiled	patterns	in	a
different	way.	In	certain	circumstances,	the	alternative	function	has	some
advantages.	For	a	discussion	of	the	two	matching	algorithms,	see	the
pcrematching	page.

PCRE	is	written	in	C	and	released	as	a	C	library.	A	number	of	people	have
written	wrappers	and	interfaces	of	various	kinds.	In	particular,	Google	Inc.	have

provided	a	comprehensive	C++	wrapper.	This	is	now	included	as	part	of	the
PCRE	distribution.	The	pcrecpp	page	has	details	of	this	interface.	Other	people's
contributions	can	be	found	in	the	Contrib	directory	at	the	primary	FTP	site,
which	is:	ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre

Details	of	exactly	which	Perl	regular	expression	features	are	and	are	not
supported	by	PCRE	are	given	in	separate	documents.	See	the	pcrepattern	and
pcrecompat	pages.	There	is	a	syntax	summary	in	the	pcresyntax	page.

Some	features	of	PCRE	can	be	included,	excluded,	or	changed	when	the	library
is	built.	The	pcre_config()	function	makes	it	possible	for	a	client	to	discover
which	features	are	available.	The	features	themselves	are	described	in	the
pcrebuild	page.	Documentation	about	building	PCRE	for	various	operating
systems	can	be	found	in	the	README	file	in	the	source	distribution.

The	library	contains	a	number	of	undocumented	internal	functions	and	data
tables	that	are	used	by	more	than	one	of	the	exported	external	functions,	but
which	are	not	intended	for	use	by	external	callers.	Their	names	all	begin	with
"_pcre_",	which	hopefully	will	not	provoke	any	name	clashes.	In	some
environments,	it	is	possible	to	control	which	external	symbols	are	exported	when
a	shared	library	is	built,	and	in	these	cases	the	undocumented	symbols	are	not
exported.

USER	DOCUMENTATION

The	user	documentation	for	PCRE	comprises	a	number	of	different	sections.	In
the	"man"	format,	each	of	these	is	a	separate	"man	page".	In	the	HTML	format,
each	is	a	separate	page,	linked	from	the	index	page.	In	the	plain	text	format,	all
the	sections	are	concatenated,	for	ease	of	searching.	The	sections	are	as	follows:

		pcre														this	document

		pcre-config							show	PCRE	installation	configuration	information

		pcreapi											details	of	PCRE's	native	C	API

		pcrebuild									options	for	building	PCRE

		pcrecallout							details	of	the	callout	feature

		pcrecompat								discussion	of	Perl	compatibility

		pcrecpp											details	of	the	C++	wrapper

		pcregrep										description	of	the	pcregrep	command

		pcrematching						discussion	of	the	two	matching	algorithms

		pcrepartial							details	of	the	partial	matching	facility

		pcrepattern							syntax	and	semantics	of	supported	regular	expressions

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre

		pcresyntax								quick	syntax	reference

		pcreperform							discussion	of	performance	issues

		pcreposix									the	POSIX-compatible	C	API

		pcreprecompile				details	of	saving	and	re-using	precompiled	patterns

		pcresample								discussion	of	the	sample	program

		pcrestack									discussion	of	stack	usage

		pcretest										description	of	the	pcretest	testing	command

In	addition,	in	the	"man"	and	HTML	formats,	there	is	a	short	page	for	each	C
library	function,	listing	its	arguments	and	results.

LIMITATIONS

There	are	some	size	limitations	in	PCRE	but	it	is	hoped	that	they	will	never	in
practice	be	relevant.

The	maximum	length	of	a	compiled	pattern	is	65539	(sic)	bytes	if	PCRE	is
compiled	with	the	default	internal	linkage	size	of	2.	If	you	want	to	process
regular	expressions	that	are	truly	enormous,	you	can	compile	PCRE	with	an
internal	linkage	size	of	3	or	4	(see	the	README	file	in	the	source	distribution
and	the	pcrebuild	documentation	for	details).	In	these	cases	the	limit	is
substantially	larger.	However,	the	speed	of	execution	is	slower.

All	values	in	repeating	quantifiers	must	be	less	than	65536.

There	is	no	limit	to	the	number	of	parenthesized	subpatterns,	but	there	can	be	no
more	than	65535	capturing	subpatterns.

The	maximum	length	of	name	for	a	named	subpattern	is	32	characters,	and	the
maximum	number	of	named	subpatterns	is	10000.

The	maximum	length	of	a	subject	string	is	the	largest	positive	number	that	an
integer	variable	can	hold.	However,	when	using	the	traditional	matching
function,	PCRE	uses	recursion	to	handle	subpatterns	and	indefinite	repetition.
This	means	that	the	available	stack	space	may	limit	the	size	of	a	subject	string
that	can	be	processed	by	certain	patterns.	For	a	discussion	of	stack	issues,	see	the
pcrestack	documentation.

UTF-8	AND	UNICODE	PROPERTY	SUPPORT

From	release	3.3,	PCRE	has	had	some	support	for	character	strings	encoded	in
the	UTF-8	format.	For	release	4.0	this	was	greatly	extended	to	cover	most
common	requirements,	and	in	release	5.0	additional	support	for	Unicode	general
category	properties	was	added.

In	order	process	UTF-8	strings,	you	must	build	PCRE	to	include	UTF-8	support
in	the	code,	and,	in	addition,	you	must	call	pcre_compile()	with	the
PCRE_UTF8	option	flag.	When	you	do	this,	both	the	pattern	and	any	subject
strings	that	are	matched	against	it	are	treated	as	UTF-8	strings	instead	of	just
strings	of	bytes.

If	you	compile	PCRE	with	UTF-8	support,	but	do	not	use	it	at	run	time,	the
library	will	be	a	bit	bigger,	but	the	additional	run	time	overhead	is	limited	to
testing	the	PCRE_UTF8	flag	occasionally,	so	should	not	be	very	big.

If	PCRE	is	built	with	Unicode	character	property	support	(which	implies	UTF-8
support),	the	escape	sequences	\p{..},	\P{..},	and	\X	are	supported.	The	available
properties	that	can	be	tested	are	limited	to	the	general	category	properties	such
as	Lu	for	an	upper	case	letter	or	Nd	for	a	decimal	number,	the	Unicode	script
names	such	as	Arabic	or	Han,	and	the	derived	properties	Any	and	L&.	A	full	list
is	given	in	the	pcrepattern	documentation.	Only	the	short	names	for	properties
are	supported.	For	example,	\p{L}	matches	a	letter.	Its	Perl	synonym,	\p{Letter},
is	not	supported.	Furthermore,	in	Perl,	many	properties	may	optionally	be
prefixed	by	"Is",	for	compatibility	with	Perl	5.6.	PCRE	does	not	support	this.

Validity	of	UTF-8	strings	

When	you	set	the	PCRE_UTF8	flag,	the	strings	passed	as	patterns	and	subjects
are	(by	default)	checked	for	validity	on	entry	to	the	relevant	functions.	From
release	7.3	of	PCRE,	the	check	is	according	the	rules	of	RFC	3629,	which	are
themselves	derived	from	the	Unicode	specification.	Earlier	releases	of	PCRE
followed	the	rules	of	RFC	2279,	which	allows	the	full	range	of	31-bit	values	(0
to	0x7FFFFFFF).	The	current	check	allows	only	values	in	the	range	U+0	to
U+10FFFF,	excluding	U+D800	to	U+DFFF.

The	excluded	code	points	are	the	"Low	Surrogate	Area"	of	Unicode,	of	which
the	Unicode	Standard	says	this:	"The	Low	Surrogate	Area	does	not	contain	any
character	assignments,	consequently	no	character	code	charts	or	namelists	are

provided	for	this	area.	Surrogates	are	reserved	for	use	with	UTF-16	and	then
must	be	used	in	pairs."	The	code	points	that	are	encoded	by	UTF-16	pairs	are
available	as	independent	code	points	in	the	UTF-8	encoding.	(In	other	words,	the
whole	surrogate	thing	is	a	fudge	for	UTF-16	which	unfortunately	messes	up
UTF-8.)

If	an	invalid	UTF-8	string	is	passed	to	PCRE,	an	error	return
(PCRE_ERROR_BADUTF8)	is	given.	In	some	situations,	you	may	already
know	that	your	strings	are	valid,	and	therefore	want	to	skip	these	checks	in	order
to	improve	performance.	If	you	set	the	PCRE_NO_UTF8_CHECK	flag	at
compile	time	or	at	run	time,	PCRE	assumes	that	the	pattern	or	subject	it	is	given
(respectively)	contains	only	valid	UTF-8	codes.	In	this	case,	it	does	not	diagnose
an	invalid	UTF-8	string.

If	you	pass	an	invalid	UTF-8	string	when	PCRE_NO_UTF8_CHECK	is	set,
what	happens	depends	on	why	the	string	is	invalid.	If	the	string	conforms	to	the
"old"	definition	of	UTF-8	(RFC	2279),	it	is	processed	as	a	string	of	characters	in
the	range	0	to	0x7FFFFFFF.	In	other	words,	apart	from	the	initial	validity	test,
PCRE	(when	in	UTF-8	mode)	handles	strings	according	to	the	more	liberal	rules
of	RFC	2279.	However,	if	the	string	does	not	even	conform	to	RFC	2279,	the
result	is	undefined.	Your	program	may	crash.

If	you	want	to	process	strings	of	values	in	the	full	range	0	to	0x7FFFFFFF,
encoded	in	a	UTF-8-like	manner	as	per	the	old	RFC,	you	can	set
PCRE_NO_UTF8_CHECK	to	bypass	the	more	restrictive	test.	However,	in	this
situation,	you	will	have	to	apply	your	own	validity	check.

General	comments	about	UTF-8	mode	

1.	An	unbraced	hexadecimal	escape	sequence	(such	as	\xb3)	matches	a	two-byte
UTF-8	character	if	the	value	is	greater	than	127.

2.	Octal	numbers	up	to	\777	are	recognized,	and	match	two-byte	UTF-8
characters	for	values	greater	than	\177.

3.	Repeat	quantifiers	apply	to	complete	UTF-8	characters,	not	to	individual
bytes,	for	example:	\x{100}{3}.

4.	The	dot	metacharacter	matches	one	UTF-8	character	instead	of	a	single	byte.

5.	The	escape	sequence	\C	can	be	used	to	match	a	single	byte	in	UTF-8	mode,
but	its	use	can	lead	to	some	strange	effects.	This	facility	is	not	available	in	the
alternative	matching	function,	pcre_dfa_exec().

6.	The	character	escapes	\b,	\B,	\d,	\D,	\s,	\S,	\w,	and	\W	correctly	test	characters
of	any	code	value,	but	the	characters	that	PCRE	recognizes	as	digits,	spaces,	or
word	characters	remain	the	same	set	as	before,	all	with	values	less	than	256.	This
remains	true	even	when	PCRE	includes	Unicode	property	support,	because	to	do
otherwise	would	slow	down	PCRE	in	many	common	cases.	If	you	really	want	to
test	for	a	wider	sense	of,	say,	"digit",	you	must	use	Unicode	property	tests	such
as	\p{Nd}.

7.	Similarly,	characters	that	match	the	POSIX	named	character	classes	are	all
low-valued	characters.

8.	However,	the	Perl	5.10	horizontal	and	vertical	whitespace	matching	escapes
(\h,	\H,	\v,	and	\V)	do	match	all	the	appropriate	Unicode	characters.

9.	Case-insensitive	matching	applies	only	to	characters	whose	values	are	less
than	128,	unless	PCRE	is	built	with	Unicode	property	support.	Even	when
Unicode	property	support	is	available,	PCRE	still	uses	its	own	character	tables
when	checking	the	case	of	low-valued	characters,	so	as	not	to	degrade
performance.	The	Unicode	property	information	is	used	only	for	characters	with
higher	values.	Even	when	Unicode	property	support	is	available,	PCRE	supports
case-insensitive	matching	only	when	there	is	a	one-to-one	mapping	between	a
letter's	cases.	There	are	a	small	number	of	many-to-one	mappings	in	Unicode;
these	are	not	supported	by	PCRE.

AUTHOR

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

Putting	an	actual	email	address	here	seems	to	have	been	a	spam	magnet,	so	I've
taken	it	away.	If	you	want	to	email	me,	use	my	two	initials,	followed	by	the	two
digits	10,	at	the	domain	cam.ac.uk.

REVISION

Last	updated:	09	August	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcre-config	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS
DESCRIPTION
OPTIONS
SEE	ALSO
AUTHOR
REVISION

SYNOPSIS

pcre-config	[--prefix]	[--exec-prefix]	[--version]	[--libs]	[--libs-posix]	[--
cflags]	[--cflags-posix]

DESCRIPTION

pcre-config	returns	the	configuration	of	the	installed	PCRE	libraries	and	the
options	required	to	compile	a	program	to	use	them.

OPTIONS

--prefix	Writes	the	directory	prefix	used	in	the	PCRE	installation	for	architecture
independent	files	(/usr	on	many	systems,	/usr/local	on	some	systems)	to	the
standard	output.

--exec-prefix	Writes	the	directory	prefix	used	in	the	PCRE	installation	for
architecture	dependent	files	(normally	the	same	as	--prefix)	to	the	standard
output.

--version	Writes	the	version	number	of	the	installed	PCRE	libraries	to	the
standard	output.

--libs	Writes	to	the	standard	output	the	command	line	options	required	to	link
with	PCRE	(-lpcre	on	many	systems).

--libs-posix	Writes	to	the	standard	output	the	command	line	options	required	to
link	with	the	PCRE	posix	emulation	library	(-lpcreposix	-lpcre	on	many
systems).

--cflags	Writes	to	the	standard	output	the	command	line	options	required	to
compile	files	that	use	PCRE	(this	may	include	some	-I	options,	but	is	blank	on
many	systems).

--cflags-posix	Writes	to	the	standard	output	the	command	line	options	required
to	compile	files	that	use	the	PCRE	posix	emulation	library	(this	may	include
some	-I	options,	but	is	blank	on	many	systems).

SEE	ALSO

pcre(3)

AUTHOR

This	manual	page	was	originally	written	by	Mark	Baker	for	the	Debian
GNU/Linux	system.	It	has	been	slightly	revised	as	a	generic	PCRE	man	page.

REVISION

Last	updated:	18	April	2007	

Return	to	the	PCRE	index	page.

pcreapi	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

PCRE	NATIVE	API
PCRE	API	OVERVIEW
NEWLINES
MULTITHREADING
SAVING	PRECOMPILED	PATTERNS	FOR	LATER	USE
CHECKING	BUILD-TIME	OPTIONS
COMPILING	A	PATTERN
COMPILATION	ERROR	CODES
STUDYING	A	PATTERN
LOCALE	SUPPORT
INFORMATION	ABOUT	A	PATTERN
OBSOLETE	INFO	FUNCTION
REFERENCE	COUNTS
MATCHING	A	PATTERN:	THE	TRADITIONAL	FUNCTION
EXTRACTING	CAPTURED	SUBSTRINGS	BY	NUMBER
EXTRACTING	CAPTURED	SUBSTRINGS	BY	NAME
DUPLICATE	SUBPATTERN	NAMES
FINDING	ALL	POSSIBLE	MATCHES
MATCHING	A	PATTERN:	THE	ALTERNATIVE	FUNCTION
SEE	ALSO
AUTHOR
REVISION

PCRE	NATIVE	API

#include	<pcre.h>

pcre	*pcre_compile(const	char	*pattern,	int	options,	const	char	**errptr,	int

*erroffset,	const	unsigned	char	*tableptr);

pcre	*pcre_compile2(const	char	*pattern,	int	options,	int	*errorcodeptr,	const
char	**errptr,	int	*erroffset,	const	unsigned	char	*tableptr);

pcre_extra	*pcre_study(const	pcre	*code,	int	options,	const	char	**errptr);

int	pcre_exec(const	pcre	*code,	const	pcre_extra	*extra,	const	char	*subject,
int	length,	int	startoffset,	int	options,	int	*ovector,	int	ovecsize);

int	pcre_dfa_exec(const	pcre	*code,	const	pcre_extra	*extra,	const	char
*subject,	int	length,	int	startoffset,	int	options,	int	*ovector,	int	ovecsize,	int
*workspace,	int	wscount);

int	pcre_copy_named_substring(const	pcre	*code,	const	char	*subject,	int
*ovector,	int	stringcount,	const	char	*stringname,	char	*buffer,	int
buffersize);

int	pcre_copy_substring(const	char	*subject,	int	*ovector,	int	stringcount,	int
stringnumber,	char	*buffer,	int	buffersize);

int	pcre_get_named_substring(const	pcre	*code,	const	char	*subject,	int
*ovector,	int	stringcount,	const	char	*stringname,	const	char	**stringptr);

int	pcre_get_stringnumber(const	pcre	*code,	const	char	*name);

int	pcre_get_stringtable_entries(const	pcre	*code,	const	char	*name,	char
**first,	char	**last);

int	pcre_get_substring(const	char	*subject,	int	*ovector,	int	stringcount,	int
stringnumber,	const	char	**stringptr);

int	pcre_get_substring_list(const	char	*subject,	int	*ovector,	int	stringcount,
const	char	***listptr);

void	pcre_free_substring(const	char	*stringptr);

void	pcre_free_substring_list(const	char	**stringptr);

const	unsigned	char	*pcre_maketables(void);

int	pcre_fullinfo(const	pcre	*code,	const	pcre_extra	*extra,	int	what,	void
*where);

int	pcre_info(const	pcre	*code,	int	*optptr,	int	*firstcharptr);

int	pcre_refcount(pcre	*code,	int	adjust);

int	pcre_config(int	what,	void	*where);

char	*pcre_version(void);

void	*(*pcre_malloc)(size_t);

void	(*pcre_free)(void	*);

void	*(*pcre_stack_malloc)(size_t);

void	(*pcre_stack_free)(void	*);

int	(*pcre_callout)(pcre_callout_block	*);

PCRE	API	OVERVIEW

PCRE	has	its	own	native	API,	which	is	described	in	this	document.	There	are
also	some	wrapper	functions	that	correspond	to	the	POSIX	regular	expression
API.	These	are	described	in	the	pcreposix	documentation.	Both	of	these	APIs
define	a	set	of	C	function	calls.	A	C++	wrapper	is	distributed	with	PCRE.	It	is
documented	in	the	pcrecpp	page.

The	native	API	C	function	prototypes	are	defined	in	the	header	file	pcre.h,	and
on	Unix	systems	the	library	itself	is	called	libpcre.	It	can	normally	be	accessed
by	adding	-lpcre	to	the	command	for	linking	an	application	that	uses	PCRE.	The
header	file	defines	the	macros	PCRE_MAJOR	and	PCRE_MINOR	to	contain
the	major	and	minor	release	numbers	for	the	library.	Applications	can	use	these
to	include	support	for	different	releases	of	PCRE.

The	functions	pcre_compile(),	pcre_compile2(),	pcre_study(),	and	pcre_exec()
are	used	for	compiling	and	matching	regular	expressions	in	a	Perl-compatible
manner.	A	sample	program	that	demonstrates	the	simplest	way	of	using	them	is

provided	in	the	file	called	pcredemo.c	in	the	source	distribution.	The
pcresample	documentation	describes	how	to	run	it.

A	second	matching	function,	pcre_dfa_exec(),	which	is	not	Perl-compatible,	is
also	provided.	This	uses	a	different	algorithm	for	the	matching.	The	alternative
algorithm	finds	all	possible	matches	(at	a	given	point	in	the	subject),	and	scans
the	subject	just	once.	However,	this	algorithm	does	not	return	captured
substrings.	A	description	of	the	two	matching	algorithms	and	their	advantages
and	disadvantages	is	given	in	the	pcrematching	documentation.

In	addition	to	the	main	compiling	and	matching	functions,	there	are	convenience
functions	for	extracting	captured	substrings	from	a	subject	string	that	is	matched
by	pcre_exec().	They	are:

		pcre_copy_substring()

		pcre_copy_named_substring()

		pcre_get_substring()

		pcre_get_named_substring()

		pcre_get_substring_list()

		pcre_get_stringnumber()

		pcre_get_stringtable_entries()

pcre_free_substring()	and	pcre_free_substring_list()	are	also	provided,	to	free
the	memory	used	for	extracted	strings.

The	function	pcre_maketables()	is	used	to	build	a	set	of	character	tables	in	the
current	locale	for	passing	to	pcre_compile(),	pcre_exec(),	or	pcre_dfa_exec().
This	is	an	optional	facility	that	is	provided	for	specialist	use.	Most	commonly,	no
special	tables	are	passed,	in	which	case	internal	tables	that	are	generated	when
PCRE	is	built	are	used.

The	function	pcre_fullinfo()	is	used	to	find	out	information	about	a	compiled
pattern;	pcre_info()	is	an	obsolete	version	that	returns	only	some	of	the	available
information,	but	is	retained	for	backwards	compatibility.	The	function
pcre_version()	returns	a	pointer	to	a	string	containing	the	version	of	PCRE	and
its	date	of	release.

The	function	pcre_refcount()	maintains	a	reference	count	in	a	data	block
containing	a	compiled	pattern.	This	is	provided	for	the	benefit	of	object-oriented
applications.

The	global	variables	pcre_malloc	and	pcre_free	initially	contain	the	entry
points	of	the	standard	malloc()	and	free()	functions,	respectively.	PCRE	calls	the
memory	management	functions	via	these	variables,	so	a	calling	program	can
replace	them	if	it	wishes	to	intercept	the	calls.	This	should	be	done	before	calling
any	PCRE	functions.

The	global	variables	pcre_stack_malloc	and	pcre_stack_free	are	also
indirections	to	memory	management	functions.	These	special	functions	are	used
only	when	PCRE	is	compiled	to	use	the	heap	for	remembering	data,	instead	of
recursive	function	calls,	when	running	the	pcre_exec()	function.	See	the
pcrebuild	documentation	for	details	of	how	to	do	this.	It	is	a	non-standard	way
of	building	PCRE,	for	use	in	environments	that	have	limited	stacks.	Because	of
the	greater	use	of	memory	management,	it	runs	more	slowly.	Separate	functions
are	provided	so	that	special-purpose	external	code	can	be	used	for	this	case.
When	used,	these	functions	are	always	called	in	a	stack-like	manner	(last
obtained,	first	freed),	and	always	for	memory	blocks	of	the	same	size.	There	is	a
discussion	about	PCRE's	stack	usage	in	the	pcrestack	documentation.

The	global	variable	pcre_callout	initially	contains	NULL.	It	can	be	set	by	the
caller	to	a	"callout"	function,	which	PCRE	will	then	call	at	specified	points
during	a	matching	operation.	Details	are	given	in	the	pcrecallout
documentation.

NEWLINES

PCRE	supports	five	different	conventions	for	indicating	line	breaks	in	strings:	a
single	CR	(carriage	return)	character,	a	single	LF	(linefeed)	character,	the	two-
character	sequence	CRLF,	any	of	the	three	preceding,	or	any	Unicode	newline
sequence.	The	Unicode	newline	sequences	are	the	three	just	mentioned,	plus	the
single	characters	VT	(vertical	tab,	U+000B),	FF	(formfeed,	U+000C),	NEL	(next
line,	U+0085),	LS	(line	separator,	U+2028),	and	PS	(paragraph	separator,
U+2029).

Each	of	the	first	three	conventions	is	used	by	at	least	one	operating	system	as	its
standard	newline	sequence.	When	PCRE	is	built,	a	default	can	be	specified.	The
default	default	is	LF,	which	is	the	Unix	standard.	When	PCRE	is	run,	the	default
can	be	overridden,	either	when	a	pattern	is	compiled,	or	when	it	is	matched.

At	compile	time,	the	newline	convention	can	be	specified	by	the	options
argument	of	pcre_compile(),	or	it	can	be	specified	by	special	text	at	the	start	of
the	pattern	itself;	this	overrides	any	other	settings.	See	the	pcrepattern	page	for
details	of	the	special	character	sequences.

In	the	PCRE	documentation	the	word	"newline"	is	used	to	mean	"the	character
or	pair	of	characters	that	indicate	a	line	break".	The	choice	of	newline
convention	affects	the	handling	of	the	dot,	circumflex,	and	dollar	metacharacters,
the	handling	of	#-comments	in	/x	mode,	and,	when	CRLF	is	a	recognized	line
ending	sequence,	the	match	position	advancement	for	a	non-anchored	pattern.
There	is	more	detail	about	this	in	the	section	on	pcre_exec()	options	below.

The	choice	of	newline	convention	does	not	affect	the	interpretation	of	the	\n	or	\r
escape	sequences,	nor	does	it	affect	what	\R	matches,	which	is	controlled	in	a
similar	way,	but	by	separate	options.

MULTITHREADING

The	PCRE	functions	can	be	used	in	multi-threading	applications,	with	the
proviso	that	the	memory	management	functions	pointed	to	by	pcre_malloc,
pcre_free,	pcre_stack_malloc,	and	pcre_stack_free,	and	the	callout	function
pointed	to	by	pcre_callout,	are	shared	by	all	threads.

The	compiled	form	of	a	regular	expression	is	not	altered	during	matching,	so	the
same	compiled	pattern	can	safely	be	used	by	several	threads	at	once.

SAVING	PRECOMPILED	PATTERNS	FOR	LATER	USE

The	compiled	form	of	a	regular	expression	can	be	saved	and	re-used	at	a	later
time,	possibly	by	a	different	program,	and	even	on	a	host	other	than	the	one	on
which	it	was	compiled.	Details	are	given	in	the	pcreprecompile	documentation.
However,	compiling	a	regular	expression	with	one	version	of	PCRE	for	use	with
a	different	version	is	not	guaranteed	to	work	and	may	cause	crashes.

CHECKING	BUILD-TIME	OPTIONS

int	pcre_config(int	what,	void	*where);

The	function	pcre_config()	makes	it	possible	for	a	PCRE	client	to	discover
which	optional	features	have	been	compiled	into	the	PCRE	library.	The
pcrebuild	documentation	has	more	details	about	these	optional	features.

The	first	argument	for	pcre_config()	is	an	integer,	specifying	which	information
is	required;	the	second	argument	is	a	pointer	to	a	variable	into	which	the
information	is	placed.	The	following	information	is	available:

		PCRE_CONFIG_UTF8

The	output	is	an	integer	that	is	set	to	one	if	UTF-8	support	is	available;
otherwise	it	is	set	to	zero.

		PCRE_CONFIG_UNICODE_PROPERTIES

The	output	is	an	integer	that	is	set	to	one	if	support	for	Unicode	character
properties	is	available;	otherwise	it	is	set	to	zero.

		PCRE_CONFIG_NEWLINE

The	output	is	an	integer	whose	value	specifies	the	default	character	sequence
that	is	recognized	as	meaning	"newline".	The	four	values	that	are	supported	are:
10	for	LF,	13	for	CR,	3338	for	CRLF,	-2	for	ANYCRLF,	and	-1	for	ANY.	The
default	should	normally	be	the	standard	sequence	for	your	operating	system.

		PCRE_CONFIG_BSR

The	output	is	an	integer	whose	value	indicates	what	character	sequences	the	\R
escape	sequence	matches	by	default.	A	value	of	0	means	that	\R	matches	any
Unicode	line	ending	sequence;	a	value	of	1	means	that	\R	matches	only	CR,	LF,
or	CRLF.	The	default	can	be	overridden	when	a	pattern	is	compiled	or	matched.

		PCRE_CONFIG_LINK_SIZE

The	output	is	an	integer	that	contains	the	number	of	bytes	used	for	internal
linkage	in	compiled	regular	expressions.	The	value	is	2,	3,	or	4.	Larger	values
allow	larger	regular	expressions	to	be	compiled,	at	the	expense	of	slower
matching.	The	default	value	of	2	is	sufficient	for	all	but	the	most	massive
patterns,	since	it	allows	the	compiled	pattern	to	be	up	to	64K	in	size.

		PCRE_CONFIG_POSIX_MALLOC_THRESHOLD

The	output	is	an	integer	that	contains	the	threshold	above	which	the	POSIX
interface	uses	malloc()	for	output	vectors.	Further	details	are	given	in	the

pcreposix	documentation.

		PCRE_CONFIG_MATCH_LIMIT

The	output	is	an	integer	that	gives	the	default	limit	for	the	number	of	internal
matching	function	calls	in	a	pcre_exec()	execution.	Further	details	are	given
with	pcre_exec()	below.

		PCRE_CONFIG_MATCH_LIMIT_RECURSION

The	output	is	an	integer	that	gives	the	default	limit	for	the	depth	of	recursion
when	calling	the	internal	matching	function	in	a	pcre_exec()	execution.	Further
details	are	given	with	pcre_exec()	below.

		PCRE_CONFIG_STACKRECURSE

The	output	is	an	integer	that	is	set	to	one	if	internal	recursion	when	running
pcre_exec()	is	implemented	by	recursive	function	calls	that	use	the	stack	to
remember	their	state.	This	is	the	usual	way	that	PCRE	is	compiled.	The	output	is
zero	if	PCRE	was	compiled	to	use	blocks	of	data	on	the	heap	instead	of
recursive	function	calls.	In	this	case,	pcre_stack_malloc	and	pcre_stack_free
are	called	to	manage	memory	blocks	on	the	heap,	thus	avoiding	the	use	of	the
stack.

COMPILING	A	PATTERN

pcre	*pcre_compile(const	char	*pattern,	int	options,	const	char	**errptr,	int
*erroffset,	const	unsigned	char	*tableptr);	pcre	*pcre_compile2(const	char
*pattern,	int	options,	int	*errorcodeptr,	const	char	**errptr,	int	*erroffset,
const	unsigned	char	*tableptr);

Either	of	the	functions	pcre_compile()	or	pcre_compile2()	can	be	called	to
compile	a	pattern	into	an	internal	form.	The	only	difference	between	the	two
interfaces	is	that	pcre_compile2()	has	an	additional	argument,	errorcodeptr,	via
which	a	numerical	error	code	can	be	returned.

The	pattern	is	a	C	string	terminated	by	a	binary	zero,	and	is	passed	in	the	pattern
argument.	A	pointer	to	a	single	block	of	memory	that	is	obtained	via
pcre_malloc	is	returned.	This	contains	the	compiled	code	and	related	data.	The
pcre	type	is	defined	for	the	returned	block;	this	is	a	typedef	for	a	structure	whose
contents	are	not	externally	defined.	It	is	up	to	the	caller	to	free	the	memory	(via

pcre_free)	when	it	is	no	longer	required.

Although	the	compiled	code	of	a	PCRE	regex	is	relocatable,	that	is,	it	does	not
depend	on	memory	location,	the	complete	pcre	data	block	is	not	fully
relocatable,	because	it	may	contain	a	copy	of	the	tableptr	argument,	which	is	an
address	(see	below).

The	options	argument	contains	various	bit	settings	that	affect	the	compilation.	It
should	be	zero	if	no	options	are	required.	The	available	options	are	described
below.	Some	of	them,	in	particular,	those	that	are	compatible	with	Perl,	can	also
be	set	and	unset	from	within	the	pattern	(see	the	detailed	description	in	the
pcrepattern	documentation).	For	these	options,	the	contents	of	the	options
argument	specifies	their	initial	settings	at	the	start	of	compilation	and	execution.
The	PCRE_ANCHORED	and	PCRE_NEWLINE_xxx	options	can	be	set	at	the
time	of	matching	as	well	as	at	compile	time.

If	errptr	is	NULL,	pcre_compile()	returns	NULL	immediately.	Otherwise,	if
compilation	of	a	pattern	fails,	pcre_compile()	returns	NULL,	and	sets	the
variable	pointed	to	by	errptr	to	point	to	a	textual	error	message.	This	is	a	static
string	that	is	part	of	the	library.	You	must	not	try	to	free	it.	The	offset	from	the
start	of	the	pattern	to	the	character	where	the	error	was	discovered	is	placed	in
the	variable	pointed	to	by	erroffset,	which	must	not	be	NULL.	If	it	is,	an
immediate	error	is	given.

If	pcre_compile2()	is	used	instead	of	pcre_compile(),	and	the	errorcodeptr
argument	is	not	NULL,	a	non-zero	error	code	number	is	returned	via	this
argument	in	the	event	of	an	error.	This	is	in	addition	to	the	textual	error	message.
Error	codes	and	messages	are	listed	below.

If	the	final	argument,	tableptr,	is	NULL,	PCRE	uses	a	default	set	of	character
tables	that	are	built	when	PCRE	is	compiled,	using	the	default	C	locale.
Otherwise,	tableptr	must	be	an	address	that	is	the	result	of	a	call	to
pcre_maketables().	This	value	is	stored	with	the	compiled	pattern,	and	used
again	by	pcre_exec(),	unless	another	table	pointer	is	passed	to	it.	For	more
discussion,	see	the	section	on	locale	support	below.

This	code	fragment	shows	a	typical	straightforward	call	to	pcre_compile():

		pcre	*re;

		const	char	*error;

		int	erroffset;

		re	=	pcre_compile(

				"^A.*Z",										/*	the	pattern	*/

				0,																/*	default	options	*/

				&error;,											/*	for	error	message	*/

				&erroffset;,							/*	for	error	offset	*/

				NULL);												/*	use	default	character	tables	*/

The	following	names	for	option	bits	are	defined	in	the	pcre.h	header	file:

		PCRE_ANCHORED

If	this	bit	is	set,	the	pattern	is	forced	to	be	"anchored",	that	is,	it	is	constrained	to
match	only	at	the	first	matching	point	in	the	string	that	is	being	searched	(the
"subject	string").	This	effect	can	also	be	achieved	by	appropriate	constructs	in
the	pattern	itself,	which	is	the	only	way	to	do	it	in	Perl.

		PCRE_AUTO_CALLOUT

If	this	bit	is	set,	pcre_compile()	automatically	inserts	callout	items,	all	with
number	255,	before	each	pattern	item.	For	discussion	of	the	callout	facility,	see
the	pcrecallout	documentation.

		PCRE_BSR_ANYCRLF

		PCRE_BSR_UNICODE

These	options	(which	are	mutually	exclusive)	control	what	the	\R	escape
sequence	matches.	The	choice	is	either	to	match	only	CR,	LF,	or	CRLF,	or	to
match	any	Unicode	newline	sequence.	The	default	is	specified	when	PCRE	is
built.	It	can	be	overridden	from	within	the	pattern,	or	by	setting	an	option	when	a
compiled	pattern	is	matched.

		PCRE_CASELESS

If	this	bit	is	set,	letters	in	the	pattern	match	both	upper	and	lower	case	letters.	It
is	equivalent	to	Perl's	/i	option,	and	it	can	be	changed	within	a	pattern	by	a	(?i)
option	setting.	In	UTF-8	mode,	PCRE	always	understands	the	concept	of	case
for	characters	whose	values	are	less	than	128,	so	caseless	matching	is	always
possible.	For	characters	with	higher	values,	the	concept	of	case	is	supported	if
PCRE	is	compiled	with	Unicode	property	support,	but	not	otherwise.	If	you	want
to	use	caseless	matching	for	characters	128	and	above,	you	must	ensure	that
PCRE	is	compiled	with	Unicode	property	support	as	well	as	with	UTF-8
support.

		PCRE_DOLLAR_ENDONLY

If	this	bit	is	set,	a	dollar	metacharacter	in	the	pattern	matches	only	at	the	end	of
the	subject	string.	Without	this	option,	a	dollar	also	matches	immediately	before
a	newline	at	the	end	of	the	string	(but	not	before	any	other	newlines).	The
PCRE_DOLLAR_ENDONLY	option	is	ignored	if	PCRE_MULTILINE	is	set.
There	is	no	equivalent	to	this	option	in	Perl,	and	no	way	to	set	it	within	a	pattern.

		PCRE_DOTALL

If	this	bit	is	set,	a	dot	metacharater	in	the	pattern	matches	all	characters,
including	those	that	indicate	newline.	Without	it,	a	dot	does	not	match	when	the
current	position	is	at	a	newline.	This	option	is	equivalent	to	Perl's	/s	option,	and
it	can	be	changed	within	a	pattern	by	a	(?s)	option	setting.	A	negative	class	such
as	[^a]	always	matches	newline	characters,	independent	of	the	setting	of	this
option.

		PCRE_DUPNAMES

If	this	bit	is	set,	names	used	to	identify	capturing	subpatterns	need	not	be	unique.
This	can	be	helpful	for	certain	types	of	pattern	when	it	is	known	that	only	one
instance	of	the	named	subpattern	can	ever	be	matched.	There	are	more	details	of
named	subpatterns	below;	see	also	the	pcrepattern	documentation.

		PCRE_EXTENDED

If	this	bit	is	set,	whitespace	data	characters	in	the	pattern	are	totally	ignored
except	when	escaped	or	inside	a	character	class.	Whitespace	does	not	include	the
VT	character	(code	11).	In	addition,	characters	between	an	unescaped	#	outside	a
character	class	and	the	next	newline,	inclusive,	are	also	ignored.	This	is
equivalent	to	Perl's	/x	option,	and	it	can	be	changed	within	a	pattern	by	a	(?x)
option	setting.

This	option	makes	it	possible	to	include	comments	inside	complicated	patterns.
Note,	however,	that	this	applies	only	to	data	characters.	Whitespace	characters
may	never	appear	within	special	character	sequences	in	a	pattern,	for	example
within	the	sequence	(?(which	introduces	a	conditional	subpattern.

		PCRE_EXTRA

This	option	was	invented	in	order	to	turn	on	additional	functionality	of	PCRE
that	is	incompatible	with	Perl,	but	it	is	currently	of	very	little	use.	When	set,	any
backslash	in	a	pattern	that	is	followed	by	a	letter	that	has	no	special	meaning

causes	an	error,	thus	reserving	these	combinations	for	future	expansion.	By
default,	as	in	Perl,	a	backslash	followed	by	a	letter	with	no	special	meaning	is
treated	as	a	literal.	(Perl	can,	however,	be	persuaded	to	give	a	warning	for	this.)
There	are	at	present	no	other	features	controlled	by	this	option.	It	can	also	be	set
by	a	(?X)	option	setting	within	a	pattern.

		PCRE_FIRSTLINE

If	this	option	is	set,	an	unanchored	pattern	is	required	to	match	before	or	at	the
first	newline	in	the	subject	string,	though	the	matched	text	may	continue	over	the
newline.

		PCRE_MULTILINE

By	default,	PCRE	treats	the	subject	string	as	consisting	of	a	single	line	of
characters	(even	if	it	actually	contains	newlines).	The	"start	of	line"
metacharacter	(^)	matches	only	at	the	start	of	the	string,	while	the	"end	of	line"
metacharacter	($)	matches	only	at	the	end	of	the	string,	or	before	a	terminating
newline	(unless	PCRE_DOLLAR_ENDONLY	is	set).	This	is	the	same	as	Perl.

When	PCRE_MULTILINE	it	is	set,	the	"start	of	line"	and	"end	of	line"
constructs	match	immediately	following	or	immediately	before	internal	newlines
in	the	subject	string,	respectively,	as	well	as	at	the	very	start	and	end.	This	is
equivalent	to	Perl's	/m	option,	and	it	can	be	changed	within	a	pattern	by	a	(?m)
option	setting.	If	there	are	no	newlines	in	a	subject	string,	or	no	occurrences	of	^
or	$	in	a	pattern,	setting	PCRE_MULTILINE	has	no	effect.

		PCRE_NEWLINE_CR

		PCRE_NEWLINE_LF

		PCRE_NEWLINE_CRLF

		PCRE_NEWLINE_ANYCRLF

		PCRE_NEWLINE_ANY

These	options	override	the	default	newline	definition	that	was	chosen	when
PCRE	was	built.	Setting	the	first	or	the	second	specifies	that	a	newline	is
indicated	by	a	single	character	(CR	or	LF,	respectively).	Setting
PCRE_NEWLINE_CRLF	specifies	that	a	newline	is	indicated	by	the	two-
character	CRLF	sequence.	Setting	PCRE_NEWLINE_ANYCRLF	specifies	that
any	of	the	three	preceding	sequences	should	be	recognized.	Setting
PCRE_NEWLINE_ANY	specifies	that	any	Unicode	newline	sequence	should	be
recognized.	The	Unicode	newline	sequences	are	the	three	just	mentioned,	plus
the	single	characters	VT	(vertical	tab,	U+000B),	FF	(formfeed,	U+000C),	NEL

(next	line,	U+0085),	LS	(line	separator,	U+2028),	and	PS	(paragraph	separator,
U+2029).	The	last	two	are	recognized	only	in	UTF-8	mode.

The	newline	setting	in	the	options	word	uses	three	bits	that	are	treated	as	a
number,	giving	eight	possibilities.	Currently	only	six	are	used	(default	plus	the
five	values	above).	This	means	that	if	you	set	more	than	one	newline	option,	the
combination	may	or	may	not	be	sensible.	For	example,	PCRE_NEWLINE_CR
with	PCRE_NEWLINE_LF	is	equivalent	to	PCRE_NEWLINE_CRLF,	but	other
combinations	may	yield	unused	numbers	and	cause	an	error.

The	only	time	that	a	line	break	is	specially	recognized	when	compiling	a	pattern
is	if	PCRE_EXTENDED	is	set,	and	an	unescaped	#	outside	a	character	class	is
encountered.	This	indicates	a	comment	that	lasts	until	after	the	next	line	break
sequence.	In	other	circumstances,	line	break	sequences	are	treated	as	literal	data,
except	that	in	PCRE_EXTENDED	mode,	both	CR	and	LF	are	treated	as
whitespace	characters	and	are	therefore	ignored.

The	newline	option	that	is	set	at	compile	time	becomes	the	default	that	is	used
for	pcre_exec()	and	pcre_dfa_exec(),	but	it	can	be	overridden.

		PCRE_NO_AUTO_CAPTURE

If	this	option	is	set,	it	disables	the	use	of	numbered	capturing	parentheses	in	the
pattern.	Any	opening	parenthesis	that	is	not	followed	by	?	behaves	as	if	it	were
followed	by	?:	but	named	parentheses	can	still	be	used	for	capturing	(and	they
acquire	numbers	in	the	usual	way).	There	is	no	equivalent	of	this	option	in	Perl.

		PCRE_UNGREEDY

This	option	inverts	the	"greediness"	of	the	quantifiers	so	that	they	are	not	greedy
by	default,	but	become	greedy	if	followed	by	"?".	It	is	not	compatible	with	Perl.
It	can	also	be	set	by	a	(?U)	option	setting	within	the	pattern.

		PCRE_UTF8

This	option	causes	PCRE	to	regard	both	the	pattern	and	the	subject	as	strings	of
UTF-8	characters	instead	of	single-byte	character	strings.	However,	it	is
available	only	when	PCRE	is	built	to	include	UTF-8	support.	If	not,	the	use	of
this	option	provokes	an	error.	Details	of	how	this	option	changes	the	behaviour
of	PCRE	are	given	in	the	section	on	UTF-8	support	in	the	main	pcre	page.

		PCRE_NO_UTF8_CHECK

When	PCRE_UTF8	is	set,	the	validity	of	the	pattern	as	a	UTF-8	string	is
automatically	checked.	There	is	a	discussion	about	the	validity	of	UTF-8	strings
in	the	main	pcre	page.	If	an	invalid	UTF-8	sequence	of	bytes	is	found,
pcre_compile()	returns	an	error.	If	you	already	know	that	your	pattern	is	valid,
and	you	want	to	skip	this	check	for	performance	reasons,	you	can	set	the
PCRE_NO_UTF8_CHECK	option.	When	it	is	set,	the	effect	of	passing	an
invalid	UTF-8	string	as	a	pattern	is	undefined.	It	may	cause	your	program	to
crash.	Note	that	this	option	can	also	be	passed	to	pcre_exec()	and
pcre_dfa_exec(),	to	suppress	the	UTF-8	validity	checking	of	subject	strings.

COMPILATION	ERROR	CODES

The	following	table	lists	the	error	codes	than	may	be	returned	by
pcre_compile2(),	along	with	the	error	messages	that	may	be	returned	by	both
compiling	functions.	As	PCRE	has	developed,	some	error	codes	have	fallen	out
of	use.	To	avoid	confusion,	they	have	not	been	re-used.

			0		no	error

			1		\	at	end	of	pattern

			2		\c	at	end	of	pattern

			3		unrecognized	character	follows	\

			4		numbers	out	of	order	in	{}	quantifier

			5		number	too	big	in	{}	quantifier

			6		missing	terminating]	for	character	class

			7		invalid	escape	sequence	in	character	class

			8		range	out	of	order	in	character	class

			9		nothing	to	repeat

		10		[this	code	is	not	in	use]

		11		internal	error:	unexpected	repeat

		12		unrecognized	character	after	(?

		13		POSIX	named	classes	are	supported	only	within	a	class

		14		missing)

		15		reference	to	non-existent	subpattern

		16		erroffset	passed	as	NULL

		17		unknown	option	bit(s)	set

		18		missing)	after	comment

		19		[this	code	is	not	in	use]

		20		regular	expression	too	large

		21		failed	to	get	memory

		22		unmatched	parentheses

		23		internal	error:	code	overflow

		24		unrecognized	character	after	(?<

		25		lookbehind	assertion	is	not	fixed	length

		26		malformed	number	or	name	after	(?(

		27		conditional	group	contains	more	than	two	branches

		28		assertion	expected	after	(?(

		29		(?R	or	(?[+-]digits	must	be	followed	by)

		30		unknown	POSIX	class	name

		31		POSIX	collating	elements	are	not	supported

		32		this	version	of	PCRE	is	not	compiled	with	PCRE_UTF8	support

		33		[this	code	is	not	in	use]

		34		character	value	in	\x{...}	sequence	is	too	large

		35		invalid	condition	(?(0)

		36		\C	not	allowed	in	lookbehind	assertion

		37		PCRE	does	not	support	\L,	\l,	\N,	\U,	or	\u

		38		number	after	(?C	is	>	255

		39		closing)	for	(?C	expected

		40		recursive	call	could	loop	indefinitely

		41		unrecognized	character	after	(?P

		42		syntax	error	in	subpattern	name	(missing	terminator)

		43		two	named	subpatterns	have	the	same	name

		44		invalid	UTF-8	string

		45		support	for	\P,	\p,	and	\X	has	not	been	compiled

		46		malformed	\P	or	\p	sequence

		47		unknown	property	name	after	\P	or	\p

		48		subpattern	name	is	too	long	(maximum	32	characters)

		49		too	many	named	subpatterns	(maximum	10,000)

		50		[this	code	is	not	in	use]

		51		octal	value	is	greater	than	\377	(not	in	UTF-8	mode)

		52		internal	error:	overran	compiling	workspace

		53		internal	error:	previously-checked	referenced	subpattern	not	found

		54		DEFINE	group	contains	more	than	one	branch

		55		repeating	a	DEFINE	group	is	not	allowed

		56		inconsistent	NEWLINE	options

		57		\g	is	not	followed	by	a	braced	name	or	an	optionally	braced

								non-zero	number

		58		(?+	or	(?-	or	(?(+	or	(?(-	must	be	followed	by	a	non-zero	number

STUDYING	A	PATTERN

pcre_extra	*pcre_study(const	pcre	*code,	int	options	const	char	**errptr);

If	a	compiled	pattern	is	going	to	be	used	several	times,	it	is	worth	spending	more
time	analyzing	it	in	order	to	speed	up	the	time	taken	for	matching.	The	function
pcre_study()	takes	a	pointer	to	a	compiled	pattern	as	its	first	argument.	If
studying	the	pattern	produces	additional	information	that	will	help	speed	up
matching,	pcre_study()	returns	a	pointer	to	a	pcre_extra	block,	in	which	the
study_data	field	points	to	the	results	of	the	study.

The	returned	value	from	pcre_study()	can	be	passed	directly	to	pcre_exec().
However,	a	pcre_extra	block	also	contains	other	fields	that	can	be	set	by	the
caller	before	the	block	is	passed;	these	are	described	below	in	the	section	on
matching	a	pattern.

If	studying	the	pattern	does	not	produce	any	additional	information	pcre_study()
returns	NULL.	In	that	circumstance,	if	the	calling	program	wants	to	pass	any	of
the	other	fields	to	pcre_exec(),	it	must	set	up	its	own	pcre_extra	block.

The	second	argument	of	pcre_study()	contains	option	bits.	At	present,	no
options	are	defined,	and	this	argument	should	always	be	zero.

The	third	argument	for	pcre_study()	is	a	pointer	for	an	error	message.	If
studying	succeeds	(even	if	no	data	is	returned),	the	variable	it	points	to	is	set	to
NULL.	Otherwise	it	is	set	to	point	to	a	textual	error	message.	This	is	a	static
string	that	is	part	of	the	library.	You	must	not	try	to	free	it.	You	should	test	the
error	pointer	for	NULL	after	calling	pcre_study(),	to	be	sure	that	it	has	run
successfully.

This	is	a	typical	call	to	pcre_study():

		pcre_extra	*pe;

		pe	=	pcre_study(

				re,													/*	result	of	pcre_compile()	*/

				0,														/*	no	options	exist	*/

				&error;);								/*	set	to	NULL	or	points	to	a	message	*/

At	present,	studying	a	pattern	is	useful	only	for	non-anchored	patterns	that	do
not	have	a	single	fixed	starting	character.	A	bitmap	of	possible	starting	bytes	is
created.

LOCALE	SUPPORT

PCRE	handles	caseless	matching,	and	determines	whether	characters	are	letters,
digits,	or	whatever,	by	reference	to	a	set	of	tables,	indexed	by	character	value.
When	running	in	UTF-8	mode,	this	applies	only	to	characters	with	codes	less
than	128.	Higher-valued	codes	never	match	escapes	such	as	\w	or	\d,	but	can	be
tested	with	\p	if	PCRE	is	built	with	Unicode	character	property	support.	The	use
of	locales	with	Unicode	is	discouraged.	If	you	are	handling	characters	with
codes	greater	than	128,	you	should	either	use	UTF-8	and	Unicode,	or	use

locales,	but	not	try	to	mix	the	two.

PCRE	contains	an	internal	set	of	tables	that	are	used	when	the	final	argument	of
pcre_compile()	is	NULL.	These	are	sufficient	for	many	applications.	Normally,
the	internal	tables	recognize	only	ASCII	characters.	However,	when	PCRE	is
built,	it	is	possible	to	cause	the	internal	tables	to	be	rebuilt	in	the	default	"C"
locale	of	the	local	system,	which	may	cause	them	to	be	different.

The	internal	tables	can	always	be	overridden	by	tables	supplied	by	the
application	that	calls	PCRE.	These	may	be	created	in	a	different	locale	from	the
default.	As	more	and	more	applications	change	to	using	Unicode,	the	need	for
this	locale	support	is	expected	to	die	away.

External	tables	are	built	by	calling	the	pcre_maketables()	function,	which	has
no	arguments,	in	the	relevant	locale.	The	result	can	then	be	passed	to
pcre_compile()	or	pcre_exec()	as	often	as	necessary.	For	example,	to	build	and
use	tables	that	are	appropriate	for	the	French	locale	(where	accented	characters
with	values	greater	than	128	are	treated	as	letters),	the	following	code	could	be
used:

		setlocale(LC_CTYPE,	"fr_FR");

		tables	=	pcre_maketables();

		re	=	pcre_compile(...,	tables);

The	locale	name	"fr_FR"	is	used	on	Linux	and	other	Unix-like	systems;	if	you
are	using	Windows,	the	name	for	the	French	locale	is	"french".

When	pcre_maketables()	runs,	the	tables	are	built	in	memory	that	is	obtained
via	pcre_malloc.	It	is	the	caller's	responsibility	to	ensure	that	the	memory
containing	the	tables	remains	available	for	as	long	as	it	is	needed.

The	pointer	that	is	passed	to	pcre_compile()	is	saved	with	the	compiled	pattern,
and	the	same	tables	are	used	via	this	pointer	by	pcre_study()	and	normally	also
by	pcre_exec().	Thus,	by	default,	for	any	single	pattern,	compilation,	studying
and	matching	all	happen	in	the	same	locale,	but	different	patterns	can	be
compiled	in	different	locales.

It	is	possible	to	pass	a	table	pointer	or	NULL	(indicating	the	use	of	the	internal
tables)	to	pcre_exec().	Although	not	intended	for	this	purpose,	this	facility	could
be	used	to	match	a	pattern	in	a	different	locale	from	the	one	in	which	it	was
compiled.	Passing	table	pointers	at	run	time	is	discussed	below	in	the	section	on

matching	a	pattern.

INFORMATION	ABOUT	A	PATTERN

int	pcre_fullinfo(const	pcre	*code,	const	pcre_extra	*extra,	int	what,	void
*where);

The	pcre_fullinfo()	function	returns	information	about	a	compiled	pattern.	It
replaces	the	obsolete	pcre_info()	function,	which	is	nevertheless	retained	for
backwards	compability	(and	is	documented	below).

The	first	argument	for	pcre_fullinfo()	is	a	pointer	to	the	compiled	pattern.	The
second	argument	is	the	result	of	pcre_study(),	or	NULL	if	the	pattern	was	not
studied.	The	third	argument	specifies	which	piece	of	information	is	required,	and
the	fourth	argument	is	a	pointer	to	a	variable	to	receive	the	data.	The	yield	of	the
function	is	zero	for	success,	or	one	of	the	following	negative	numbers:

		PCRE_ERROR_NULL							the	argument	code	was	NULL

																								the	argument	where	was	NULL

		PCRE_ERROR_BADMAGIC			the	"magic	number"	was	not	found

		PCRE_ERROR_BADOPTION		the	value	of	what	was	invalid

The	"magic	number"	is	placed	at	the	start	of	each	compiled	pattern	as	an	simple
check	against	passing	an	arbitrary	memory	pointer.	Here	is	a	typical	call	of
pcre_fullinfo(),	to	obtain	the	length	of	the	compiled	pattern:

		int	rc;

		size_t	length;

		rc	=	pcre_fullinfo(

				re,															/*	result	of	pcre_compile()	*/

				pe,															/*	result	of	pcre_study(),	or	NULL	*/

				PCRE_INFO_SIZE,			/*	what	is	required	*/

				&length;);									/*	where	to	put	the	data	*/

The	possible	values	for	the	third	argument	are	defined	in	pcre.h,	and	are	as
follows:

		PCRE_INFO_BACKREFMAX

Return	the	number	of	the	highest	back	reference	in	the	pattern.	The	fourth
argument	should	point	to	an	int	variable.	Zero	is	returned	if	there	are	no	back
references.

		PCRE_INFO_CAPTURECOUNT

Return	the	number	of	capturing	subpatterns	in	the	pattern.	The	fourth	argument
should	point	to	an	int	variable.

		PCRE_INFO_DEFAULT_TABLES

Return	a	pointer	to	the	internal	default	character	tables	within	PCRE.	The	fourth
argument	should	point	to	an	unsigned	char	*	variable.	This	information	call	is
provided	for	internal	use	by	the	pcre_study()	function.	External	callers	can
cause	PCRE	to	use	its	internal	tables	by	passing	a	NULL	table	pointer.

		PCRE_INFO_FIRSTBYTE

Return	information	about	the	first	byte	of	any	matched	string,	for	a	non-
anchored	pattern.	The	fourth	argument	should	point	to	an	int	variable.	(This
option	used	to	be	called	PCRE_INFO_FIRSTCHAR;	the	old	name	is	still
recognized	for	backwards	compatibility.)

If	there	is	a	fixed	first	byte,	for	example,	from	a	pattern	such	as	(cat|cow|coyote),
its	value	is	returned.	Otherwise,	if	either	

(a)	the	pattern	was	compiled	with	the	PCRE_MULTILINE	option,	and	every
branch	starts	with	"^",	or	

(b)	every	branch	of	the	pattern	starts	with	".*"	and	PCRE_DOTALL	is	not	set	(if
it	were	set,	the	pattern	would	be	anchored),	

-1	is	returned,	indicating	that	the	pattern	matches	only	at	the	start	of	a	subject
string	or	after	any	newline	within	the	string.	Otherwise	-2	is	returned.	For
anchored	patterns,	-2	is	returned.

		PCRE_INFO_FIRSTTABLE

If	the	pattern	was	studied,	and	this	resulted	in	the	construction	of	a	256-bit	table
indicating	a	fixed	set	of	bytes	for	the	first	byte	in	any	matching	string,	a	pointer
to	the	table	is	returned.	Otherwise	NULL	is	returned.	The	fourth	argument
should	point	to	an	unsigned	char	*	variable.

		PCRE_INFO_HASCRORLF

Return	1	if	the	pattern	contains	any	explicit	matches	for	CR	or	LF	characters,

otherwise	0.	The	fourth	argument	should	point	to	an	int	variable.	An	explicit
match	is	either	a	literal	CR	or	LF	character,	or	\r	or	\n.

		PCRE_INFO_JCHANGED

Return	1	if	the	(?J)	option	setting	is	used	in	the	pattern,	otherwise	0.	The	fourth
argument	should	point	to	an	int	variable.	The	(?J)	internal	option	setting	changes
the	local	PCRE_DUPNAMES	option.

		PCRE_INFO_LASTLITERAL

Return	the	value	of	the	rightmost	literal	byte	that	must	exist	in	any	matched
string,	other	than	at	its	start,	if	such	a	byte	has	been	recorded.	The	fourth
argument	should	point	to	an	int	variable.	If	there	is	no	such	byte,	-1	is	returned.
For	anchored	patterns,	a	last	literal	byte	is	recorded	only	if	it	follows	something
of	variable	length.	For	example,	for	the	pattern	/^a\d+z\d+/	the	returned	value	is
"z",	but	for	/^a\dz\d/	the	returned	value	is	-1.

		PCRE_INFO_NAMECOUNT

		PCRE_INFO_NAMEENTRYSIZE

		PCRE_INFO_NAMETABLE

PCRE	supports	the	use	of	named	as	well	as	numbered	capturing	parentheses.
The	names	are	just	an	additional	way	of	identifying	the	parentheses,	which	still
acquire	numbers.	Several	convenience	functions	such	as
pcre_get_named_substring()	are	provided	for	extracting	captured	substrings	by
name.	It	is	also	possible	to	extract	the	data	directly,	by	first	converting	the	name
to	a	number	in	order	to	access	the	correct	pointers	in	the	output	vector	(described
with	pcre_exec()	below).	To	do	the	conversion,	you	need	to	use	the	name-to-
number	map,	which	is	described	by	these	three	values.

The	map	consists	of	a	number	of	fixed-size	entries.
PCRE_INFO_NAMECOUNT	gives	the	number	of	entries,	and
PCRE_INFO_NAMEENTRYSIZE	gives	the	size	of	each	entry;	both	of	these
return	an	int	value.	The	entry	size	depends	on	the	length	of	the	longest	name.
PCRE_INFO_NAMETABLE	returns	a	pointer	to	the	first	entry	of	the	table	(a
pointer	to	char).	The	first	two	bytes	of	each	entry	are	the	number	of	the
capturing	parenthesis,	most	significant	byte	first.	The	rest	of	the	entry	is	the
corresponding	name,	zero	terminated.	The	names	are	in	alphabetical	order.
When	PCRE_DUPNAMES	is	set,	duplicate	names	are	in	order	of	their
parentheses	numbers.	For	example,	consider	the	following	pattern	(assume
PCRE_EXTENDED	is	set,	so	white	space	-	including	newlines	-	is	ignored):

		(?<date>	(?<year>(\d\d)?\d\d)	-	(?<month>\d\d)	-	(?<day>\d\d))

There	are	four	named	subpatterns,	so	the	table	has	four	entries,	and	each	entry	in
the	table	is	eight	bytes	long.	The	table	is	as	follows,	with	non-printing	bytes
shows	in	hexadecimal,	and	undefined	bytes	shown	as	??:

		00	01	d		a		t		e		00	??

		00	05	d		a		y		00	??	??

		00	04	m		o		n		t		h		00

		00	02	y		e		a		r		00	??

When	writing	code	to	extract	data	from	named	subpatterns	using	the	name-to-
number	map,	remember	that	the	length	of	the	entries	is	likely	to	be	different	for
each	compiled	pattern.

		PCRE_INFO_OKPARTIAL

Return	1	if	the	pattern	can	be	used	for	partial	matching,	otherwise	0.	The	fourth
argument	should	point	to	an	int	variable.	The	pcrepartial	documentation	lists
the	restrictions	that	apply	to	patterns	when	partial	matching	is	used.

		PCRE_INFO_OPTIONS

Return	a	copy	of	the	options	with	which	the	pattern	was	compiled.	The	fourth
argument	should	point	to	an	unsigned	long	int	variable.	These	option	bits	are
those	specified	in	the	call	to	pcre_compile(),	modified	by	any	top-level	option
settings	at	the	start	of	the	pattern	itself.	In	other	words,	they	are	the	options	that
will	be	in	force	when	matching	starts.	For	example,	if	the	pattern	/(?im)abc(?-
i)d/	is	compiled	with	the	PCRE_EXTENDED	option,	the	result	is
PCRE_CASELESS,	PCRE_MULTILINE,	and	PCRE_EXTENDED.

A	pattern	is	automatically	anchored	by	PCRE	if	all	of	its	top-level	alternatives
begin	with	one	of	the	following:

		^					unless	PCRE_MULTILINE	is	set

		\A				always

		\G				always

		.*				if	PCRE_DOTALL	is	set	and	there	are	no	back	references	to	the	subpattern	in	which	.*	appears

For	such	patterns,	the	PCRE_ANCHORED	bit	is	set	in	the	options	returned	by
pcre_fullinfo().

		PCRE_INFO_SIZE

Return	the	size	of	the	compiled	pattern,	that	is,	the	value	that	was	passed	as	the

argument	to	pcre_malloc()	when	PCRE	was	getting	memory	in	which	to	place
the	compiled	data.	The	fourth	argument	should	point	to	a	size_t	variable.

		PCRE_INFO_STUDYSIZE

Return	the	size	of	the	data	block	pointed	to	by	the	study_data	field	in	a
pcre_extra	block.	That	is,	it	is	the	value	that	was	passed	to	pcre_malloc()	when
PCRE	was	getting	memory	into	which	to	place	the	data	created	by	pcre_study().
The	fourth	argument	should	point	to	a	size_t	variable.

OBSOLETE	INFO	FUNCTION

int	pcre_info(const	pcre	*code,	int	*optptr,	int	*firstcharptr);

The	pcre_info()	function	is	now	obsolete	because	its	interface	is	too	restrictive
to	return	all	the	available	data	about	a	compiled	pattern.	New	programs	should
use	pcre_fullinfo()	instead.	The	yield	of	pcre_info()	is	the	number	of	capturing
subpatterns,	or	one	of	the	following	negative	numbers:

		PCRE_ERROR_NULL							the	argument	code	was	NULL

		PCRE_ERROR_BADMAGIC			the	"magic	number"	was	not	found

If	the	optptr	argument	is	not	NULL,	a	copy	of	the	options	with	which	the	pattern
was	compiled	is	placed	in	the	integer	it	points	to	(see	PCRE_INFO_OPTIONS
above).

If	the	pattern	is	not	anchored	and	the	firstcharptr	argument	is	not	NULL,	it	is
used	to	pass	back	information	about	the	first	character	of	any	matched	string	(see
PCRE_INFO_FIRSTBYTE	above).

REFERENCE	COUNTS

int	pcre_refcount(pcre	*code,	int	adjust);

The	pcre_refcount()	function	is	used	to	maintain	a	reference	count	in	the	data
block	that	contains	a	compiled	pattern.	It	is	provided	for	the	benefit	of
applications	that	operate	in	an	object-oriented	manner,	where	different	parts	of
the	application	may	be	using	the	same	compiled	pattern,	but	you	want	to	free	the
block	when	they	are	all	done.

When	a	pattern	is	compiled,	the	reference	count	field	is	initialized	to	zero.	It	is
changed	only	by	calling	this	function,	whose	action	is	to	add	the	adjust	value
(which	may	be	positive	or	negative)	to	it.	The	yield	of	the	function	is	the	new
value.	However,	the	value	of	the	count	is	constrained	to	lie	between	0	and
65535,	inclusive.	If	the	new	value	is	outside	these	limits,	it	is	forced	to	the
appropriate	limit	value.

Except	when	it	is	zero,	the	reference	count	is	not	correctly	preserved	if	a	pattern
is	compiled	on	one	host	and	then	transferred	to	a	host	whose	byte-order	is
different.	(This	seems	a	highly	unlikely	scenario.)

MATCHING	A	PATTERN:	THE	TRADITIONAL	FUNCTION

int	pcre_exec(const	pcre	*code,	const	pcre_extra	*extra,	const	char	*subject,
int	length,	int	startoffset,	int	options,	int	*ovector,	int	ovecsize);

The	function	pcre_exec()	is	called	to	match	a	subject	string	against	a	compiled
pattern,	which	is	passed	in	the	code	argument.	If	the	pattern	has	been	studied,	the
result	of	the	study	should	be	passed	in	the	extra	argument.	This	function	is	the
main	matching	facility	of	the	library,	and	it	operates	in	a	Perl-like	manner.	For
specialist	use	there	is	also	an	alternative	matching	function,	which	is	described
below	in	the	section	about	the	pcre_dfa_exec()	function.

In	most	applications,	the	pattern	will	have	been	compiled	(and	optionally
studied)	in	the	same	process	that	calls	pcre_exec().	However,	it	is	possible	to
save	compiled	patterns	and	study	data,	and	then	use	them	later	in	different
processes,	possibly	even	on	different	hosts.	For	a	discussion	about	this,	see	the
pcreprecompile	documentation.

Here	is	an	example	of	a	simple	call	to	pcre_exec():

		int	rc;

		int	ovector[30];

		rc	=	pcre_exec(

				re,													/*	result	of	pcre_compile()	*/

				NULL,											/*	we	didn't	study	the	pattern	*/

				"some	string",		/*	the	subject	string	*/

				11,													/*	the	length	of	the	subject	string	*/

				0,														/*	start	at	offset	0	in	the	subject	*/

				0,														/*	default	options	*/

				ovector,								/*	vector	of	integers	for	substring	information	*/

				30);												/*	number	of	elements	(NOT	size	in	bytes)	*/

Extra	data	for	pcre_exec()	

If	the	extra	argument	is	not	NULL,	it	must	point	to	a	pcre_extra	data	block.	The
pcre_study()	function	returns	such	a	block	(when	it	doesn't	return	NULL),	but
you	can	also	create	one	for	yourself,	and	pass	additional	information	in	it.	The
pcre_extra	block	contains	the	following	fields	(not	necessarily	in	this	order):

		unsigned	long	int	flags;

		void	*study_data;

		unsigned	long	int	match_limit;

		unsigned	long	int	match_limit_recursion;

		void	*callout_data;

		const	unsigned	char	*tables;

The	flags	field	is	a	bitmap	that	specifies	which	of	the	other	fields	are	set.	The
flag	bits	are:

		PCRE_EXTRA_STUDY_DATA

		PCRE_EXTRA_MATCH_LIMIT

		PCRE_EXTRA_MATCH_LIMIT_RECURSION

		PCRE_EXTRA_CALLOUT_DATA

		PCRE_EXTRA_TABLES

Other	flag	bits	should	be	set	to	zero.	The	study_data	field	is	set	in	the
pcre_extra	block	that	is	returned	by	pcre_study(),	together	with	the	appropriate
flag	bit.	You	should	not	set	this	yourself,	but	you	may	add	to	the	block	by	setting
the	other	fields	and	their	corresponding	flag	bits.

The	match_limit	field	provides	a	means	of	preventing	PCRE	from	using	up	a
vast	amount	of	resources	when	running	patterns	that	are	not	going	to	match,	but
which	have	a	very	large	number	of	possibilities	in	their	search	trees.	The	classic
example	is	the	use	of	nested	unlimited	repeats.

Internally,	PCRE	uses	a	function	called	match()	which	it	calls	repeatedly
(sometimes	recursively).	The	limit	set	by	match_limit	is	imposed	on	the	number
of	times	this	function	is	called	during	a	match,	which	has	the	effect	of	limiting
the	amount	of	backtracking	that	can	take	place.	For	patterns	that	are	not
anchored,	the	count	restarts	from	zero	for	each	position	in	the	subject	string.

The	default	value	for	the	limit	can	be	set	when	PCRE	is	built;	the	default	default

is	10	million,	which	handles	all	but	the	most	extreme	cases.	You	can	override	the
default	by	suppling	pcre_exec()	with	a	pcre_extra	block	in	which	match_limit
is	set,	and	PCRE_EXTRA_MATCH_LIMIT	is	set	in	the	flags	field.	If	the	limit
is	exceeded,	pcre_exec()	returns	PCRE_ERROR_MATCHLIMIT.

The	match_limit_recursion	field	is	similar	to	match_limit,	but	instead	of	limiting
the	total	number	of	times	that	match()	is	called,	it	limits	the	depth	of	recursion.
The	recursion	depth	is	a	smaller	number	than	the	total	number	of	calls,	because
not	all	calls	to	match()	are	recursive.	This	limit	is	of	use	only	if	it	is	set	smaller
than	match_limit.

Limiting	the	recursion	depth	limits	the	amount	of	stack	that	can	be	used,	or,
when	PCRE	has	been	compiled	to	use	memory	on	the	heap	instead	of	the	stack,
the	amount	of	heap	memory	that	can	be	used.

The	default	value	for	match_limit_recursion	can	be	set	when	PCRE	is	built;	the
default	default	is	the	same	value	as	the	default	for	match_limit.	You	can	override
the	default	by	suppling	pcre_exec()	with	a	pcre_extra	block	in	which
match_limit_recursion	is	set,	and
PCRE_EXTRA_MATCH_LIMIT_RECURSION	is	set	in	the	flags	field.	If	the
limit	is	exceeded,	pcre_exec()	returns	PCRE_ERROR_RECURSIONLIMIT.

The	pcre_callout	field	is	used	in	conjunction	with	the	"callout"	feature,	which	is
described	in	the	pcrecallout	documentation.

The	tables	field	is	used	to	pass	a	character	tables	pointer	to	pcre_exec();	this
overrides	the	value	that	is	stored	with	the	compiled	pattern.	A	non-NULL	value
is	stored	with	the	compiled	pattern	only	if	custom	tables	were	supplied	to
pcre_compile()	via	its	tableptr	argument.	If	NULL	is	passed	to	pcre_exec()
using	this	mechanism,	it	forces	PCRE's	internal	tables	to	be	used.	This	facility	is
helpful	when	re-using	patterns	that	have	been	saved	after	compiling	with	an
external	set	of	tables,	because	the	external	tables	might	be	at	a	different	address
when	pcre_exec()	is	called.	See	the	pcreprecompile	documentation	for	a
discussion	of	saving	compiled	patterns	for	later	use.

Option	bits	for	pcre_exec()	

The	unused	bits	of	the	options	argument	for	pcre_exec()	must	be	zero.	The	only
bits	that	may	be	set	are	PCRE_ANCHORED,	PCRE_NEWLINE_xxx,

PCRE_NOTBOL,	PCRE_NOTEOL,	PCRE_NOTEMPTY,
PCRE_NO_UTF8_CHECK	and	PCRE_PARTIAL.

		PCRE_ANCHORED

The	PCRE_ANCHORED	option	limits	pcre_exec()	to	matching	at	the	first
matching	position.	If	a	pattern	was	compiled	with	PCRE_ANCHORED,	or
turned	out	to	be	anchored	by	virtue	of	its	contents,	it	cannot	be	made	unachored
at	matching	time.

		PCRE_BSR_ANYCRLF

		PCRE_BSR_UNICODE

These	options	(which	are	mutually	exclusive)	control	what	the	\R	escape
sequence	matches.	The	choice	is	either	to	match	only	CR,	LF,	or	CRLF,	or	to
match	any	Unicode	newline	sequence.	These	options	override	the	choice	that
was	made	or	defaulted	when	the	pattern	was	compiled.

		PCRE_NEWLINE_CR

		PCRE_NEWLINE_LF

		PCRE_NEWLINE_CRLF

		PCRE_NEWLINE_ANYCRLF

		PCRE_NEWLINE_ANY

These	options	override	the	newline	definition	that	was	chosen	or	defaulted	when
the	pattern	was	compiled.	For	details,	see	the	description	of	pcre_compile()
above.	During	matching,	the	newline	choice	affects	the	behaviour	of	the	dot,
circumflex,	and	dollar	metacharacters.	It	may	also	alter	the	way	the	match
position	is	advanced	after	a	match	failure	for	an	unanchored	pattern.

When	PCRE_NEWLINE_CRLF,	PCRE_NEWLINE_ANYCRLF,	or
PCRE_NEWLINE_ANY	is	set,	and	a	match	attempt	for	an	unanchored	pattern
fails	when	the	current	position	is	at	a	CRLF	sequence,	and	the	pattern	contains
no	explicit	matches	for	CR	or	LF	characters,	the	match	position	is	advanced	by
two	characters	instead	of	one,	in	other	words,	to	after	the	CRLF.

The	above	rule	is	a	compromise	that	makes	the	most	common	cases	work	as
expected.	For	example,	if	the	pattern	is	.+A	(and	the	PCRE_DOTALL	option	is
not	set),	it	does	not	match	the	string	"\r\nA"	because,	after	failing	at	the	start,	it
skips	both	the	CR	and	the	LF	before	retrying.	However,	the	pattern	[\r\n]A	does
match	that	string,	because	it	contains	an	explicit	CR	or	LF	reference,	and	so
advances	only	by	one	character	after	the	first	failure.

An	explicit	match	for	CR	of	LF	is	either	a	literal	appearance	of	one	of	those
characters,	or	one	of	the	\r	or	\n	escape	sequences.	Implicit	matches	such	as	[^X]
do	not	count,	nor	does	\s	(which	includes	CR	and	LF	in	the	characters	that	it
matches).

Notwithstanding	the	above,	anomalous	effects	may	still	occur	when	CRLF	is	a
valid	newline	sequence	and	explicit	\r	or	\n	escapes	appear	in	the	pattern.

		PCRE_NOTBOL

This	option	specifies	that	first	character	of	the	subject	string	is	not	the	beginning
of	a	line,	so	the	circumflex	metacharacter	should	not	match	before	it.	Setting	this
without	PCRE_MULTILINE	(at	compile	time)	causes	circumflex	never	to
match.	This	option	affects	only	the	behaviour	of	the	circumflex	metacharacter.	It
does	not	affect	\A.

		PCRE_NOTEOL

This	option	specifies	that	the	end	of	the	subject	string	is	not	the	end	of	a	line,	so
the	dollar	metacharacter	should	not	match	it	nor	(except	in	multiline	mode)	a
newline	immediately	before	it.	Setting	this	without	PCRE_MULTILINE	(at
compile	time)	causes	dollar	never	to	match.	This	option	affects	only	the
behaviour	of	the	dollar	metacharacter.	It	does	not	affect	\Z	or	\z.

		PCRE_NOTEMPTY

An	empty	string	is	not	considered	to	be	a	valid	match	if	this	option	is	set.	If	there
are	alternatives	in	the	pattern,	they	are	tried.	If	all	the	alternatives	match	the
empty	string,	the	entire	match	fails.	For	example,	if	the	pattern

		a?b?

is	applied	to	a	string	not	beginning	with	"a"	or	"b",	it	matches	the	empty	string	at
the	start	of	the	subject.	With	PCRE_NOTEMPTY	set,	this	match	is	not	valid,	so
PCRE	searches	further	into	the	string	for	occurrences	of	"a"	or	"b".

Perl	has	no	direct	equivalent	of	PCRE_NOTEMPTY,	but	it	does	make	a	special
case	of	a	pattern	match	of	the	empty	string	within	its	split()	function,	and	when
using	the	/g	modifier.	It	is	possible	to	emulate	Perl's	behaviour	after	matching	a
null	string	by	first	trying	the	match	again	at	the	same	offset	with
PCRE_NOTEMPTY	and	PCRE_ANCHORED,	and	then	if	that	fails	by
advancing	the	starting	offset	(see	below)	and	trying	an	ordinary	match	again.

There	is	some	code	that	demonstrates	how	to	do	this	in	the	pcredemo.c	sample
program.

		PCRE_NO_UTF8_CHECK

When	PCRE_UTF8	is	set	at	compile	time,	the	validity	of	the	subject	as	a	UTF-8
string	is	automatically	checked	when	pcre_exec()	is	subsequently	called.	The
value	of	startoffset	is	also	checked	to	ensure	that	it	points	to	the	start	of	a	UTF-8
character.	There	is	a	discussion	about	the	validity	of	UTF-8	strings	in	the	section
on	UTF-8	support	in	the	main	pcre	page.	If	an	invalid	UTF-8	sequence	of	bytes
is	found,	pcre_exec()	returns	the	error	PCRE_ERROR_BADUTF8.	If	startoffset
contains	an	invalid	value,	PCRE_ERROR_BADUTF8_OFFSET	is	returned.

If	you	already	know	that	your	subject	is	valid,	and	you	want	to	skip	these	checks
for	performance	reasons,	you	can	set	the	PCRE_NO_UTF8_CHECK	option
when	calling	pcre_exec().	You	might	want	to	do	this	for	the	second	and
subsequent	calls	to	pcre_exec()	if	you	are	making	repeated	calls	to	find	all	the
matches	in	a	single	subject	string.	However,	you	should	be	sure	that	the	value	of
startoffset	points	to	the	start	of	a	UTF-8	character.	When
PCRE_NO_UTF8_CHECK	is	set,	the	effect	of	passing	an	invalid	UTF-8	string
as	a	subject,	or	a	value	of	startoffset	that	does	not	point	to	the	start	of	a	UTF-8
character,	is	undefined.	Your	program	may	crash.

		PCRE_PARTIAL

This	option	turns	on	the	partial	matching	feature.	If	the	subject	string	fails	to
match	the	pattern,	but	at	some	point	during	the	matching	process	the	end	of	the
subject	was	reached	(that	is,	the	subject	partially	matches	the	pattern	and	the
failure	to	match	occurred	only	because	there	were	not	enough	subject
characters),	pcre_exec()	returns	PCRE_ERROR_PARTIAL	instead	of
PCRE_ERROR_NOMATCH.	When	PCRE_PARTIAL	is	used,	there	are
restrictions	on	what	may	appear	in	the	pattern.	These	are	discussed	in	the
pcrepartial	documentation.

The	string	to	be	matched	by	pcre_exec()	

The	subject	string	is	passed	to	pcre_exec()	as	a	pointer	in	subject,	a	length	in
length,	and	a	starting	byte	offset	in	startoffset.	In	UTF-8	mode,	the	byte	offset
must	point	to	the	start	of	a	UTF-8	character.	Unlike	the	pattern	string,	the	subject

may	contain	binary	zero	bytes.	When	the	starting	offset	is	zero,	the	search	for	a
match	starts	at	the	beginning	of	the	subject,	and	this	is	by	far	the	most	common
case.

A	non-zero	starting	offset	is	useful	when	searching	for	another	match	in	the	same
subject	by	calling	pcre_exec()	again	after	a	previous	success.	Setting	startoffset
differs	from	just	passing	over	a	shortened	string	and	setting	PCRE_NOTBOL	in
the	case	of	a	pattern	that	begins	with	any	kind	of	lookbehind.	For	example,
consider	the	pattern

		\Biss\B

which	finds	occurrences	of	"iss"	in	the	middle	of	words.	(\B	matches	only	if	the
current	position	in	the	subject	is	not	a	word	boundary.)	When	applied	to	the
string	"Mississipi"	the	first	call	to	pcre_exec()	finds	the	first	occurrence.	If
pcre_exec()	is	called	again	with	just	the	remainder	of	the	subject,	namely
"issipi",	it	does	not	match,	because	\B	is	always	false	at	the	start	of	the	subject,
which	is	deemed	to	be	a	word	boundary.	However,	if	pcre_exec()	is	passed	the
entire	string	again,	but	with	startoffset	set	to	4,	it	finds	the	second	occurrence	of
"iss"	because	it	is	able	to	look	behind	the	starting	point	to	discover	that	it	is
preceded	by	a	letter.

If	a	non-zero	starting	offset	is	passed	when	the	pattern	is	anchored,	one	attempt
to	match	at	the	given	offset	is	made.	This	can	only	succeed	if	the	pattern	does
not	require	the	match	to	be	at	the	start	of	the	subject.

How	pcre_exec()	returns	captured	substrings	

In	general,	a	pattern	matches	a	certain	portion	of	the	subject,	and	in	addition,
further	substrings	from	the	subject	may	be	picked	out	by	parts	of	the	pattern.
Following	the	usage	in	Jeffrey	Friedl's	book,	this	is	called	"capturing"	in	what
follows,	and	the	phrase	"capturing	subpattern"	is	used	for	a	fragment	of	a	pattern
that	picks	out	a	substring.	PCRE	supports	several	other	kinds	of	parenthesized
subpattern	that	do	not	cause	substrings	to	be	captured.

Captured	substrings	are	returned	to	the	caller	via	a	vector	of	integer	offsets
whose	address	is	passed	in	ovector.	The	number	of	elements	in	the	vector	is
passed	in	ovecsize,	which	must	be	a	non-negative	number.	Note:	this	argument	is
NOT	the	size	of	ovector	in	bytes.

The	first	two-thirds	of	the	vector	is	used	to	pass	back	captured	substrings,	each
substring	using	a	pair	of	integers.	The	remaining	third	of	the	vector	is	used	as
workspace	by	pcre_exec()	while	matching	capturing	subpatterns,	and	is	not
available	for	passing	back	information.	The	length	passed	in	ovecsize	should
always	be	a	multiple	of	three.	If	it	is	not,	it	is	rounded	down.

When	a	match	is	successful,	information	about	captured	substrings	is	returned	in
pairs	of	integers,	starting	at	the	beginning	of	ovector,	and	continuing	up	to	two-
thirds	of	its	length	at	the	most.	The	first	element	of	a	pair	is	set	to	the	offset	of
the	first	character	in	a	substring,	and	the	second	is	set	to	the	offset	of	the	first
character	after	the	end	of	a	substring.	The	first	pair,	ovector[0]	and	ovector[1],
identify	the	portion	of	the	subject	string	matched	by	the	entire	pattern.	The	next
pair	is	used	for	the	first	capturing	subpattern,	and	so	on.	The	value	returned	by
pcre_exec()	is	one	more	than	the	highest	numbered	pair	that	has	been	set.	For
example,	if	two	substrings	have	been	captured,	the	returned	value	is	3.	If	there
are	no	capturing	subpatterns,	the	return	value	from	a	successful	match	is	1,
indicating	that	just	the	first	pair	of	offsets	has	been	set.

If	a	capturing	subpattern	is	matched	repeatedly,	it	is	the	last	portion	of	the	string
that	it	matched	that	is	returned.

If	the	vector	is	too	small	to	hold	all	the	captured	substring	offsets,	it	is	used	as
far	as	possible	(up	to	two-thirds	of	its	length),	and	the	function	returns	a	value	of
zero.	In	particular,	if	the	substring	offsets	are	not	of	interest,	pcre_exec()	may	be
called	with	ovector	passed	as	NULL	and	ovecsize	as	zero.	However,	if	the
pattern	contains	back	references	and	the	ovector	is	not	big	enough	to	remember
the	related	substrings,	PCRE	has	to	get	additional	memory	for	use	during
matching.	Thus	it	is	usually	advisable	to	supply	an	ovector.

The	pcre_info()	function	can	be	used	to	find	out	how	many	capturing
subpatterns	there	are	in	a	compiled	pattern.	The	smallest	size	for	ovector	that
will	allow	for	n	captured	substrings,	in	addition	to	the	offsets	of	the	substring
matched	by	the	whole	pattern,	is	(n+1)*3.

It	is	possible	for	capturing	subpattern	number	n+1	to	match	some	part	of	the
subject	when	subpattern	n	has	not	been	used	at	all.	For	example,	if	the	string
"abc"	is	matched	against	the	pattern	(a|(z))(bc)	the	return	from	the	function	is	4,
and	subpatterns	1	and	3	are	matched,	but	2	is	not.	When	this	happens,	both
values	in	the	offset	pairs	corresponding	to	unused	subpatterns	are	set	to	-1.

Offset	values	that	correspond	to	unused	subpatterns	at	the	end	of	the	expression
are	also	set	to	-1.	For	example,	if	the	string	"abc"	is	matched	against	the	pattern
(abc)(x(yz)?)?	subpatterns	2	and	3	are	not	matched.	The	return	from	the	function
is	2,	because	the	highest	used	capturing	subpattern	number	is	1.	However,	you
can	refer	to	the	offsets	for	the	second	and	third	capturing	subpatterns	if	you	wish
(assuming	the	vector	is	large	enough,	of	course).

Some	convenience	functions	are	provided	for	extracting	the	captured	substrings
as	separate	strings.	These	are	described	below.

Error	return	values	from	pcre_exec()	

If	pcre_exec()	fails,	it	returns	a	negative	number.	The	following	are	defined	in
the	header	file:

		PCRE_ERROR_NOMATCH								(-1)

The	subject	string	did	not	match	the	pattern.

		PCRE_ERROR_NULL											(-2)

Either	code	or	subject	was	passed	as	NULL,	or	ovector	was	NULL	and	ovecsize
was	not	zero.

		PCRE_ERROR_BADOPTION						(-3)

An	unrecognized	bit	was	set	in	the	options	argument.

		PCRE_ERROR_BADMAGIC							(-4)

PCRE	stores	a	4-byte	"magic	number"	at	the	start	of	the	compiled	code,	to	catch
the	case	when	it	is	passed	a	junk	pointer	and	to	detect	when	a	pattern	that	was
compiled	in	an	environment	of	one	endianness	is	run	in	an	environment	with	the
other	endianness.	This	is	the	error	that	PCRE	gives	when	the	magic	number	is
not	present.

		PCRE_ERROR_UNKNOWN_OPCODE	(-5)

While	running	the	pattern	match,	an	unknown	item	was	encountered	in	the
compiled	pattern.	This	error	could	be	caused	by	a	bug	in	PCRE	or	by
overwriting	of	the	compiled	pattern.

		PCRE_ERROR_NOMEMORY							(-6)

If	a	pattern	contains	back	references,	but	the	ovector	that	is	passed	to
pcre_exec()	is	not	big	enough	to	remember	the	referenced	substrings,	PCRE	gets
a	block	of	memory	at	the	start	of	matching	to	use	for	this	purpose.	If	the	call	via
pcre_malloc()	fails,	this	error	is	given.	The	memory	is	automatically	freed	at	the
end	of	matching.

		PCRE_ERROR_NOSUBSTRING				(-7)

This	error	is	used	by	the	pcre_copy_substring(),	pcre_get_substring(),	and
pcre_get_substring_list()	functions	(see	below).	It	is	never	returned	by
pcre_exec().

		PCRE_ERROR_MATCHLIMIT					(-8)

The	backtracking	limit,	as	specified	by	the	match_limit	field	in	a	pcre_extra
structure	(or	defaulted)	was	reached.	See	the	description	above.

		PCRE_ERROR_CALLOUT								(-9)

This	error	is	never	generated	by	pcre_exec()	itself.	It	is	provided	for	use	by
callout	functions	that	want	to	yield	a	distinctive	error	code.	See	the	pcrecallout
documentation	for	details.

		PCRE_ERROR_BADUTF8								(-10)

A	string	that	contains	an	invalid	UTF-8	byte	sequence	was	passed	as	a	subject.

		PCRE_ERROR_BADUTF8_OFFSET	(-11)

The	UTF-8	byte	sequence	that	was	passed	as	a	subject	was	valid,	but	the	value
of	startoffset	did	not	point	to	the	beginning	of	a	UTF-8	character.

		PCRE_ERROR_PARTIAL								(-12)

The	subject	string	did	not	match,	but	it	did	match	partially.	See	the	pcrepartial
documentation	for	details	of	partial	matching.

		PCRE_ERROR_BADPARTIAL					(-13)

The	PCRE_PARTIAL	option	was	used	with	a	compiled	pattern	containing	items
that	are	not	supported	for	partial	matching.	See	the	pcrepartial	documentation
for	details	of	partial	matching.

		PCRE_ERROR_INTERNAL							(-14)

An	unexpected	internal	error	has	occurred.	This	error	could	be	caused	by	a	bug
in	PCRE	or	by	overwriting	of	the	compiled	pattern.

		PCRE_ERROR_BADCOUNT							(-15)

This	error	is	given	if	the	value	of	the	ovecsize	argument	is	negative.

		PCRE_ERROR_RECURSIONLIMIT	(-21)

The	internal	recursion	limit,	as	specified	by	the	match_limit_recursion	field	in	a
pcre_extra	structure	(or	defaulted)	was	reached.	See	the	description	above.

		PCRE_ERROR_BADNEWLINE					(-23)

An	invalid	combination	of	PCRE_NEWLINE_xxx	options	was	given.

Error	numbers	-16	to	-20	and	-22	are	not	used	by	pcre_exec().

EXTRACTING	CAPTURED	SUBSTRINGS	BY	NUMBER

int	pcre_copy_substring(const	char	*subject,	int	*ovector,	int	stringcount,	int
stringnumber,	char	*buffer,	int	buffersize);

int	pcre_get_substring(const	char	*subject,	int	*ovector,	int	stringcount,	int
stringnumber,	const	char	**stringptr);

int	pcre_get_substring_list(const	char	*subject,	int	*ovector,	int	stringcount,
const	char	***listptr);

Captured	substrings	can	be	accessed	directly	by	using	the	offsets	returned	by
pcre_exec()	in	ovector.	For	convenience,	the	functions	pcre_copy_substring(),
pcre_get_substring(),	and	pcre_get_substring_list()	are	provided	for
extracting	captured	substrings	as	new,	separate,	zero-terminated	strings.	These
functions	identify	substrings	by	number.	The	next	section	describes	functions	for
extracting	named	substrings.

A	substring	that	contains	a	binary	zero	is	correctly	extracted	and	has	a	further
zero	added	on	the	end,	but	the	result	is	not,	of	course,	a	C	string.	However,	you
can	process	such	a	string	by	referring	to	the	length	that	is	returned	by
pcre_copy_substring()	and	pcre_get_substring().	Unfortunately,	the	interface
to	pcre_get_substring_list()	is	not	adequate	for	handling	strings	containing

binary	zeros,	because	the	end	of	the	final	string	is	not	independently	indicated.

The	first	three	arguments	are	the	same	for	all	three	of	these	functions:	subject	is
the	subject	string	that	has	just	been	successfully	matched,	ovector	is	a	pointer	to
the	vector	of	integer	offsets	that	was	passed	to	pcre_exec(),	and	stringcount	is
the	number	of	substrings	that	were	captured	by	the	match,	including	the
substring	that	matched	the	entire	regular	expression.	This	is	the	value	returned
by	pcre_exec()	if	it	is	greater	than	zero.	If	pcre_exec()	returned	zero,	indicating
that	it	ran	out	of	space	in	ovector,	the	value	passed	as	stringcount	should	be	the
number	of	elements	in	the	vector	divided	by	three.

The	functions	pcre_copy_substring()	and	pcre_get_substring()	extract	a	single
substring,	whose	number	is	given	as	stringnumber.	A	value	of	zero	extracts	the
substring	that	matched	the	entire	pattern,	whereas	higher	values	extract	the
captured	substrings.	For	pcre_copy_substring(),	the	string	is	placed	in	buffer,
whose	length	is	given	by	buffersize,	while	for	pcre_get_substring()	a	new	block
of	memory	is	obtained	via	pcre_malloc,	and	its	address	is	returned	via	stringptr.
The	yield	of	the	function	is	the	length	of	the	string,	not	including	the	terminating
zero,	or	one	of	these	error	codes:

		PCRE_ERROR_NOMEMORY							(-6)

The	buffer	was	too	small	for	pcre_copy_substring(),	or	the	attempt	to	get
memory	failed	for	pcre_get_substring().

		PCRE_ERROR_NOSUBSTRING				(-7)

There	is	no	substring	whose	number	is	stringnumber.

The	pcre_get_substring_list()	function	extracts	all	available	substrings	and
builds	a	list	of	pointers	to	them.	All	this	is	done	in	a	single	block	of	memory	that
is	obtained	via	pcre_malloc.	The	address	of	the	memory	block	is	returned	via
listptr,	which	is	also	the	start	of	the	list	of	string	pointers.	The	end	of	the	list	is
marked	by	a	NULL	pointer.	The	yield	of	the	function	is	zero	if	all	went	well,	or
the	error	code

		PCRE_ERROR_NOMEMORY							(-6)

if	the	attempt	to	get	the	memory	block	failed.

When	any	of	these	functions	encounter	a	substring	that	is	unset,	which	can

happen	when	capturing	subpattern	number	n+1	matches	some	part	of	the
subject,	but	subpattern	n	has	not	been	used	at	all,	they	return	an	empty	string.
This	can	be	distinguished	from	a	genuine	zero-length	substring	by	inspecting	the
appropriate	offset	in	ovector,	which	is	negative	for	unset	substrings.

The	two	convenience	functions	pcre_free_substring()	and
pcre_free_substring_list()	can	be	used	to	free	the	memory	returned	by	a
previous	call	of	pcre_get_substring()	or	pcre_get_substring_list(),
respectively.	They	do	nothing	more	than	call	the	function	pointed	to	by
pcre_free,	which	of	course	could	be	called	directly	from	a	C	program.	However,
PCRE	is	used	in	some	situations	where	it	is	linked	via	a	special	interface	to
another	programming	language	that	cannot	use	pcre_free	directly;	it	is	for	these
cases	that	the	functions	are	provided.

EXTRACTING	CAPTURED	SUBSTRINGS	BY	NAME

int	pcre_get_stringnumber(const	pcre	*code,	const	char	*name);

int	pcre_copy_named_substring(const	pcre	*code,	const	char	*subject,	int
*ovector,	int	stringcount,	const	char	*stringname,	char	*buffer,	int
buffersize);

int	pcre_get_named_substring(const	pcre	*code,	const	char	*subject,	int
*ovector,	int	stringcount,	const	char	*stringname,	const	char	**stringptr);

To	extract	a	substring	by	name,	you	first	have	to	find	associated	number.	For
example,	for	this	pattern

		(a+)b(?<xxx>\d+)...

the	number	of	the	subpattern	called	"xxx"	is	2.	If	the	name	is	known	to	be	unique
(PCRE_DUPNAMES	was	not	set),	you	can	find	the	number	from	the	name	by
calling	pcre_get_stringnumber().	The	first	argument	is	the	compiled	pattern,
and	the	second	is	the	name.	The	yield	of	the	function	is	the	subpattern	number,
or	PCRE_ERROR_NOSUBSTRING	(-7)	if	there	is	no	subpattern	of	that	name.

Given	the	number,	you	can	extract	the	substring	directly,	or	use	one	of	the
functions	described	in	the	previous	section.	For	convenience,	there	are	also	two
functions	that	do	the	whole	job.

Most	of	the	arguments	of	pcre_copy_named_substring()	and
pcre_get_named_substring()	are	the	same	as	those	for	the	similarly	named
functions	that	extract	by	number.	As	these	are	described	in	the	previous	section,
they	are	not	re-described	here.	There	are	just	two	differences:

First,	instead	of	a	substring	number,	a	substring	name	is	given.	Second,	there	is
an	extra	argument,	given	at	the	start,	which	is	a	pointer	to	the	compiled	pattern.
This	is	needed	in	order	to	gain	access	to	the	name-to-number	translation	table.

These	functions	call	pcre_get_stringnumber(),	and	if	it	succeeds,	they	then	call
pcre_copy_substring()	or	pcre_get_substring(),	as	appropriate.	NOTE:	If
PCRE_DUPNAMES	is	set	and	there	are	duplicate	names,	the	behaviour	may	not
be	what	you	want	(see	the	next	section).

DUPLICATE	SUBPATTERN	NAMES

int	pcre_get_stringtable_entries(const	pcre	*code,	const	char	*name,	char
**first,	char	**last);

When	a	pattern	is	compiled	with	the	PCRE_DUPNAMES	option,	names	for
subpatterns	are	not	required	to	be	unique.	Normally,	patterns	with	duplicate
names	are	such	that	in	any	one	match,	only	one	of	the	named	subpatterns
participates.	An	example	is	shown	in	the	pcrepattern	documentation.

When	duplicates	are	present,	pcre_copy_named_substring()	and
pcre_get_named_substring()	return	the	first	substring	corresponding	to	the
given	name	that	is	set.	If	none	are	set,	PCRE_ERROR_NOSUBSTRING	(-7)	is
returned;	no	data	is	returned.	The	pcre_get_stringnumber()	function	returns
one	of	the	numbers	that	are	associated	with	the	name,	but	it	is	not	defined	which
it	is.

If	you	want	to	get	full	details	of	all	captured	substrings	for	a	given	name,	you
must	use	the	pcre_get_stringtable_entries()	function.	The	first	argument	is	the
compiled	pattern,	and	the	second	is	the	name.	The	third	and	fourth	are	pointers
to	variables	which	are	updated	by	the	function.	After	it	has	run,	they	point	to	the
first	and	last	entries	in	the	name-to-number	table	for	the	given	name.	The
function	itself	returns	the	length	of	each	entry,	or
PCRE_ERROR_NOSUBSTRING	(-7)	if	there	are	none.	The	format	of	the	table
is	described	above	in	the	section	entitled	Information	about	a	pattern.	Given	all

the	relevant	entries	for	the	name,	you	can	extract	each	of	their	numbers,	and
hence	the	captured	data,	if	any.

FINDING	ALL	POSSIBLE	MATCHES

The	traditional	matching	function	uses	a	similar	algorithm	to	Perl,	which	stops
when	it	finds	the	first	match,	starting	at	a	given	point	in	the	subject.	If	you	want
to	find	all	possible	matches,	or	the	longest	possible	match,	consider	using	the
alternative	matching	function	(see	below)	instead.	If	you	cannot	use	the
alternative	function,	but	still	need	to	find	all	possible	matches,	you	can	kludge	it
up	by	making	use	of	the	callout	facility,	which	is	described	in	the	pcrecallout
documentation.

What	you	have	to	do	is	to	insert	a	callout	right	at	the	end	of	the	pattern.	When
your	callout	function	is	called,	extract	and	save	the	current	matched	substring.
Then	return	1,	which	forces	pcre_exec()	to	backtrack	and	try	other	alternatives.
Ultimately,	when	it	runs	out	of	matches,	pcre_exec()	will	yield
PCRE_ERROR_NOMATCH.

MATCHING	A	PATTERN:	THE	ALTERNATIVE	FUNCTION

int	pcre_dfa_exec(const	pcre	*code,	const	pcre_extra	*extra,	const	char
*subject,	int	length,	int	startoffset,	int	options,	int	*ovector,	int	ovecsize,	int
*workspace,	int	wscount);

The	function	pcre_dfa_exec()	is	called	to	match	a	subject	string	against	a
compiled	pattern,	using	a	matching	algorithm	that	scans	the	subject	string	just
once,	and	does	not	backtrack.	This	has	different	characteristics	to	the	normal
algorithm,	and	is	not	compatible	with	Perl.	Some	of	the	features	of	PCRE
patterns	are	not	supported.	Nevertheless,	there	are	times	when	this	kind	of
matching	can	be	useful.	For	a	discussion	of	the	two	matching	algorithms,	see	the
pcrematching	documentation.

The	arguments	for	the	pcre_dfa_exec()	function	are	the	same	as	for
pcre_exec(),	plus	two	extras.	The	ovector	argument	is	used	in	a	different	way,
and	this	is	described	below.	The	other	common	arguments	are	used	in	the	same
way	as	for	pcre_exec(),	so	their	description	is	not	repeated	here.

The	two	additional	arguments	provide	workspace	for	the	function.	The
workspace	vector	should	contain	at	least	20	elements.	It	is	used	for	keeping	track
of	multiple	paths	through	the	pattern	tree.	More	workspace	will	be	needed	for
patterns	and	subjects	where	there	are	a	lot	of	potential	matches.

Here	is	an	example	of	a	simple	call	to	pcre_dfa_exec():

		int	rc;

		int	ovector[10];

		int	wspace[20];

		rc	=	pcre_dfa_exec(

				re,													/*	result	of	pcre_compile()	*/

				NULL,											/*	we	didn't	study	the	pattern	*/

				"some	string",		/*	the	subject	string	*/

				11,													/*	the	length	of	the	subject	string	*/

				0,														/*	start	at	offset	0	in	the	subject	*/

				0,														/*	default	options	*/

				ovector,								/*	vector	of	integers	for	substring	information	*/

				10,													/*	number	of	elements	(NOT	size	in	bytes)	*/

				wspace,									/*	working	space	vector	*/

				20);												/*	number	of	elements	(NOT	size	in	bytes)	*/

Option	bits	for	pcre_dfa_exec()	

The	unused	bits	of	the	options	argument	for	pcre_dfa_exec()	must	be	zero.	The
only	bits	that	may	be	set	are	PCRE_ANCHORED,	PCRE_NEWLINE_xxx,
PCRE_NOTBOL,	PCRE_NOTEOL,	PCRE_NOTEMPTY,
PCRE_NO_UTF8_CHECK,	PCRE_PARTIAL,	PCRE_DFA_SHORTEST,	and
PCRE_DFA_RESTART.	All	but	the	last	three	of	these	are	the	same	as	for
pcre_exec(),	so	their	description	is	not	repeated	here.

		PCRE_PARTIAL

This	has	the	same	general	effect	as	it	does	for	pcre_exec(),	but	the	details	are
slightly	different.	When	PCRE_PARTIAL	is	set	for	pcre_dfa_exec(),	the	return
code	PCRE_ERROR_NOMATCH	is	converted	into	PCRE_ERROR_PARTIAL
if	the	end	of	the	subject	is	reached,	there	have	been	no	complete	matches,	but
there	is	still	at	least	one	matching	possibility.	The	portion	of	the	string	that
provided	the	partial	match	is	set	as	the	first	matching	string.

		PCRE_DFA_SHORTEST

Setting	the	PCRE_DFA_SHORTEST	option	causes	the	matching	algorithm	to

stop	as	soon	as	it	has	found	one	match.	Because	of	the	way	the	alternative
algorithm	works,	this	is	necessarily	the	shortest	possible	match	at	the	first
possible	matching	point	in	the	subject	string.

		PCRE_DFA_RESTART

When	pcre_dfa_exec()	is	called	with	the	PCRE_PARTIAL	option,	and	returns	a
partial	match,	it	is	possible	to	call	it	again,	with	additional	subject	characters,
and	have	it	continue	with	the	same	match.	The	PCRE_DFA_RESTART	option
requests	this	action;	when	it	is	set,	the	workspace	and	wscount	options	must
reference	the	same	vector	as	before	because	data	about	the	match	so	far	is	left	in
them	after	a	partial	match.	There	is	more	discussion	of	this	facility	in	the
pcrepartial	documentation.

Successful	returns	from	pcre_dfa_exec()	

When	pcre_dfa_exec()	succeeds,	it	may	have	matched	more	than	one	substring
in	the	subject.	Note,	however,	that	all	the	matches	from	one	run	of	the	function
start	at	the	same	point	in	the	subject.	The	shorter	matches	are	all	initial
substrings	of	the	longer	matches.	For	example,	if	the	pattern

		<.*>

is	matched	against	the	string

		This	is	<something>	<something	else>	<something	further>	no	more

the	three	matched	strings	are

		<something>

		<something>	<something	else>

		<something>	<something	else>	<something	further>

On	success,	the	yield	of	the	function	is	a	number	greater	than	zero,	which	is	the
number	of	matched	substrings.	The	substrings	themselves	are	returned	in
ovector.	Each	string	uses	two	elements;	the	first	is	the	offset	to	the	start,	and	the
second	is	the	offset	to	the	end.	In	fact,	all	the	strings	have	the	same	start	offset.
(Space	could	have	been	saved	by	giving	this	only	once,	but	it	was	decided	to
retain	some	compatibility	with	the	way	pcre_exec()	returns	data,	even	though
the	meaning	of	the	strings	is	different.)

The	strings	are	returned	in	reverse	order	of	length;	that	is,	the	longest	matching

string	is	given	first.	If	there	were	too	many	matches	to	fit	into	ovector,	the	yield
of	the	function	is	zero,	and	the	vector	is	filled	with	the	longest	matches.

Error	returns	from	pcre_dfa_exec()	

The	pcre_dfa_exec()	function	returns	a	negative	number	when	it	fails.	Many	of
the	errors	are	the	same	as	for	pcre_exec(),	and	these	are	described	above.	There
are	in	addition	the	following	errors	that	are	specific	to	pcre_dfa_exec():

		PCRE_ERROR_DFA_UITEM						(-16)

This	return	is	given	if	pcre_dfa_exec()	encounters	an	item	in	the	pattern	that	it
does	not	support,	for	instance,	the	use	of	\C	or	a	back	reference.

		PCRE_ERROR_DFA_UCOND						(-17)

This	return	is	given	if	pcre_dfa_exec()	encounters	a	condition	item	that	uses	a
back	reference	for	the	condition,	or	a	test	for	recursion	in	a	specific	group.	These
are	not	supported.

		PCRE_ERROR_DFA_UMLIMIT				(-18)

This	return	is	given	if	pcre_dfa_exec()	is	called	with	an	extra	block	that
contains	a	setting	of	the	match_limit	field.	This	is	not	supported	(it	is
meaningless).

		PCRE_ERROR_DFA_WSSIZE					(-19)

This	return	is	given	if	pcre_dfa_exec()	runs	out	of	space	in	the	workspace
vector.

		PCRE_ERROR_DFA_RECURSE				(-20)

When	a	recursive	subpattern	is	processed,	the	matching	function	calls	itself
recursively,	using	private	vectors	for	ovector	and	workspace.	This	error	is	given
if	the	output	vector	is	not	large	enough.	This	should	be	extremely	rare,	as	a
vector	of	size	1000	is	used.

SEE	ALSO

pcrebuild(3),	pcrecallout(3),	pcrecpp(3)(3),	pcrematching(3),	pcrepartial(3),

pcreposix(3),	pcreprecompile(3),	pcresample(3),	pcrestack(3).

AUTHOR

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION

Last	updated:	11	September	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcrebuild	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

PCRE	BUILD-TIME	OPTIONS
C++	SUPPORT
UTF-8	SUPPORT
UNICODE	CHARACTER	PROPERTY	SUPPORT
CODE	VALUE	OF	NEWLINE
WHAT	\R	MATCHES
BUILDING	SHARED	AND	STATIC	LIBRARIES
POSIX	MALLOC	USAGE
HANDLING	VERY	LARGE	PATTERNS
AVOIDING	EXCESSIVE	STACK	USAGE
LIMITING	PCRE	RESOURCE	USAGE
CREATING	CHARACTER	TABLES	AT	BUILD	TIME
USING	EBCDIC	CODE
SEE	ALSO
AUTHOR
REVISION

PCRE	BUILD-TIME	OPTIONS

This	document	describes	the	optional	features	of	PCRE	that	can	be	selected
when	the	library	is	compiled.	It	assumes	use	of	the	configure	script,	where	the
optional	features	are	selected	or	deselected	by	providing	options	to	configure
before	running	the	make	command.	However,	the	same	options	can	be	selected
in	both	Unix-like	and	non-Unix-like	environments	using	the	GUI	facility	of
CMakeSetup	if	you	are	using	CMake	instead	of	configure	to	build	PCRE.

The	complete	list	of	options	for	configure	(which	includes	the	standard	ones
such	as	the	selection	of	the	installation	directory)	can	be	obtained	by	running

		./configure	--help

The	following	sections	include	descriptions	of	options	whose	names	begin	with	-
-enable	or	--disable.	These	settings	specify	changes	to	the	defaults	for	the
configure	command.	Because	of	the	way	that	configure	works,	--enable	and	--
disable	always	come	in	pairs,	so	the	complementary	option	always	exists	as	well,
but	as	it	specifies	the	default,	it	is	not	described.

C++	SUPPORT

By	default,	the	configure	script	will	search	for	a	C++	compiler	and	C++	header
files.	If	it	finds	them,	it	automatically	builds	the	C++	wrapper	library	for	PCRE.
You	can	disable	this	by	adding

		--disable-cpp

to	the	configure	command.

UTF-8	SUPPORT

To	build	PCRE	with	support	for	UTF-8	character	strings,	add

		--enable-utf8

to	the	configure	command.	Of	itself,	this	does	not	make	PCRE	treat	strings	as
UTF-8.	As	well	as	compiling	PCRE	with	this	option,	you	also	have	have	to	set
the	PCRE_UTF8	option	when	you	call	the	pcre_compile()	function.

UNICODE	CHARACTER	PROPERTY	SUPPORT

UTF-8	support	allows	PCRE	to	process	character	values	greater	than	255	in	the
strings	that	it	handles.	On	its	own,	however,	it	does	not	provide	any	facilities	for
accessing	the	properties	of	such	characters.	If	you	want	to	be	able	to	use	the
pattern	escapes	\P,	\p,	and	\X,	which	refer	to	Unicode	character	properties,	you
must	add

		--enable-unicode-properties

to	the	configure	command.	This	implies	UTF-8	support,	even	if	you	have	not

explicitly	requested	it.

Including	Unicode	property	support	adds	around	30K	of	tables	to	the	PCRE
library.	Only	the	general	category	properties	such	as	Lu	and	Nd	are	supported.
Details	are	given	in	the	pcrepattern	documentation.

CODE	VALUE	OF	NEWLINE

By	default,	PCRE	interprets	character	10	(linefeed,	LF)	as	indicating	the	end	of	a
line.	This	is	the	normal	newline	character	on	Unix-like	systems.	You	can
compile	PCRE	to	use	character	13	(carriage	return,	CR)	instead,	by	adding

		--enable-newline-is-cr

to	the	configure	command.	There	is	also	a	--enable-newline-is-lf	option,	which
explicitly	specifies	linefeed	as	the	newline	character.	

Alternatively,	you	can	specify	that	line	endings	are	to	be	indicated	by	the	two
character	sequence	CRLF.	If	you	want	this,	add

		--enable-newline-is-crlf

to	the	configure	command.	There	is	a	fourth	option,	specified	by

		--enable-newline-is-anycrlf

which	causes	PCRE	to	recognize	any	of	the	three	sequences	CR,	LF,	or	CRLF	as
indicating	a	line	ending.	Finally,	a	fifth	option,	specified	by

		--enable-newline-is-any

causes	PCRE	to	recognize	any	Unicode	newline	sequence.

Whatever	line	ending	convention	is	selected	when	PCRE	is	built	can	be
overridden	when	the	library	functions	are	called.	At	build	time	it	is	conventional
to	use	the	standard	for	your	operating	system.

WHAT	\R	MATCHES

By	default,	the	sequence	\R	in	a	pattern	matches	any	Unicode	newline	sequence,
whatever	has	been	selected	as	the	line	ending	sequence.	If	you	specify

		--enable-bsr-anycrlf

the	default	is	changed	so	that	\R	matches	only	CR,	LF,	or	CRLF.	Whatever	is
selected	when	PCRE	is	built	can	be	overridden	when	the	library	functions	are
called.

BUILDING	SHARED	AND	STATIC	LIBRARIES

The	PCRE	building	process	uses	libtool	to	build	both	shared	and	static	Unix
libraries	by	default.	You	can	suppress	one	of	these	by	adding	one	of

		--disable-shared

		--disable-static

to	the	configure	command,	as	required.

POSIX	MALLOC	USAGE

When	PCRE	is	called	through	the	POSIX	interface	(see	the	pcreposix
documentation),	additional	working	storage	is	required	for	holding	the	pointers
to	capturing	substrings,	because	PCRE	requires	three	integers	per	substring,
whereas	the	POSIX	interface	provides	only	two.	If	the	number	of	expected
substrings	is	small,	the	wrapper	function	uses	space	on	the	stack,	because	this	is
faster	than	using	malloc()	for	each	call.	The	default	threshold	above	which	the
stack	is	no	longer	used	is	10;	it	can	be	changed	by	adding	a	setting	such	as

		--with-posix-malloc-threshold=20

to	the	configure	command.

HANDLING	VERY	LARGE	PATTERNS

Within	a	compiled	pattern,	offset	values	are	used	to	point	from	one	part	to
another	(for	example,	from	an	opening	parenthesis	to	an	alternation
metacharacter).	By	default,	two-byte	values	are	used	for	these	offsets,	leading	to
a	maximum	size	for	a	compiled	pattern	of	around	64K.	This	is	sufficient	to
handle	all	but	the	most	gigantic	patterns.	Nevertheless,	some	people	do	want	to
process	enormous	patterns,	so	it	is	possible	to	compile	PCRE	to	use	three-byte	or

four-byte	offsets	by	adding	a	setting	such	as

		--with-link-size=3

to	the	configure	command.	The	value	given	must	be	2,	3,	or	4.	Using	longer
offsets	slows	down	the	operation	of	PCRE	because	it	has	to	load	additional	bytes
when	handling	them.

AVOIDING	EXCESSIVE	STACK	USAGE

When	matching	with	the	pcre_exec()	function,	PCRE	implements	backtracking
by	making	recursive	calls	to	an	internal	function	called	match().	In
environments	where	the	size	of	the	stack	is	limited,	this	can	severely	limit
PCRE's	operation.	(The	Unix	environment	does	not	usually	suffer	from	this
problem,	but	it	may	sometimes	be	necessary	to	increase	the	maximum	stack	size.
There	is	a	discussion	in	the	pcrestack	documentation.)	An	alternative	approach
to	recursion	that	uses	memory	from	the	heap	to	remember	data,	instead	of	using
recursive	function	calls,	has	been	implemented	to	work	round	the	problem	of
limited	stack	size.	If	you	want	to	build	a	version	of	PCRE	that	works	this	way,
add

		--disable-stack-for-recursion

to	the	configure	command.	With	this	configuration,	PCRE	will	use	the
pcre_stack_malloc	and	pcre_stack_free	variables	to	call	memory	management
functions.	By	default	these	point	to	malloc()	and	free(),	but	you	can	replace	the
pointers	so	that	your	own	functions	are	used.

Separate	functions	are	provided	rather	than	using	pcre_malloc	and	pcre_free
because	the	usage	is	very	predictable:	the	block	sizes	requested	are	always	the
same,	and	the	blocks	are	always	freed	in	reverse	order.	A	calling	program	might
be	able	to	implement	optimized	functions	that	perform	better	than	malloc()	and
free().	PCRE	runs	noticeably	more	slowly	when	built	in	this	way.	This	option
affects	only	the	pcre_exec()	function;	it	is	not	relevant	for	the	the
pcre_dfa_exec()	function.

LIMITING	PCRE	RESOURCE	USAGE

Internally,	PCRE	has	a	function	called	match(),	which	it	calls	repeatedly

(sometimes	recursively)	when	matching	a	pattern	with	the	pcre_exec()	function.
By	controlling	the	maximum	number	of	times	this	function	may	be	called	during
a	single	matching	operation,	a	limit	can	be	placed	on	the	resources	used	by	a
single	call	to	pcre_exec().	The	limit	can	be	changed	at	run	time,	as	described	in
the	pcreapi	documentation.	The	default	is	10	million,	but	this	can	be	changed	by
adding	a	setting	such	as

		--with-match-limit=500000

to	the	configure	command.	This	setting	has	no	effect	on	the	pcre_dfa_exec()
matching	function.

In	some	environments	it	is	desirable	to	limit	the	depth	of	recursive	calls	of
match()	more	strictly	than	the	total	number	of	calls,	in	order	to	restrict	the
maximum	amount	of	stack	(or	heap,	if	--disable-stack-for-recursion	is	specified)
that	is	used.	A	second	limit	controls	this;	it	defaults	to	the	value	that	is	set	for	--
with-match-limit,	which	imposes	no	additional	constraints.	However,	you	can	set
a	lower	limit	by	adding,	for	example,

		--with-match-limit-recursion=10000

to	the	configure	command.	This	value	can	also	be	overridden	at	run	time.

CREATING	CHARACTER	TABLES	AT	BUILD	TIME

PCRE	uses	fixed	tables	for	processing	characters	whose	code	values	are	less
than	256.	By	default,	PCRE	is	built	with	a	set	of	tables	that	are	distributed	in	the
file	pcre_chartables.c.dist.	These	tables	are	for	ASCII	codes	only.	If	you	add

		--enable-rebuild-chartables

to	the	configure	command,	the	distributed	tables	are	no	longer	used.	Instead,	a
program	called	dftables	is	compiled	and	run.	This	outputs	the	source	for	new	set
of	tables,	created	in	the	default	locale	of	your	C	runtime	system.	(This	method	of
replacing	the	tables	does	not	work	if	you	are	cross	compiling,	because	dftables
is	run	on	the	local	host.	If	you	need	to	create	alternative	tables	when	cross
compiling,	you	will	have	to	do	so	"by	hand".)

USING	EBCDIC	CODE

PCRE	assumes	by	default	that	it	will	run	in	an	environment	where	the	character
code	is	ASCII	(or	Unicode,	which	is	a	superset	of	ASCII).	This	is	the	case	for
most	computer	operating	systems.	PCRE	can,	however,	be	compiled	to	run	in	an
EBCDIC	environment	by	adding

		--enable-ebcdic

to	the	configure	command.	This	setting	implies	--enable-rebuild-chartables.	You
should	only	use	it	if	you	know	that	you	are	in	an	EBCDIC	environment	(for
example,	an	IBM	mainframe	operating	system).

SEE	ALSO

pcreapi(3),	pcre_config(3).

AUTHOR

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION

Last	updated:	21	September	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcrecallout	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

PCRE	CALLOUTS
MISSING	CALLOUTS
THE	CALLOUT	INTERFACE
RETURN	VALUES
AUTHOR
REVISION

PCRE	CALLOUTS

int	(*pcre_callout)(pcre_callout_block	*);

PCRE	provides	a	feature	called	"callout",	which	is	a	means	of	temporarily
passing	control	to	the	caller	of	PCRE	in	the	middle	of	pattern	matching.	The
caller	of	PCRE	provides	an	external	function	by	putting	its	entry	point	in	the
global	variable	pcre_callout.	By	default,	this	variable	contains	NULL,	which
disables	all	calling	out.

Within	a	regular	expression,	(?C)	indicates	the	points	at	which	the	external
function	is	to	be	called.	Different	callout	points	can	be	identified	by	putting	a
number	less	than	256	after	the	letter	C.	The	default	value	is	zero.	For	example,
this	pattern	has	two	callout	points:

		(?C1)abc(?C2)def

If	the	PCRE_AUTO_CALLOUT	option	bit	is	set	when	pcre_compile()	is
called,	PCRE	automatically	inserts	callouts,	all	with	number	255,	before	each
item	in	the	pattern.	For	example,	if	PCRE_AUTO_CALLOUT	is	used	with	the
pattern

		A(\d{2}|--)

it	is	processed	as	if	it	were	

(?C255)A(?C255)((?C255)\d{2}(?C255)|(?C255)-(?C255)-(?C255))(?C255)	

Notice	that	there	is	a	callout	before	and	after	each	parenthesis	and	alternation
bar.	Automatic	callouts	can	be	used	for	tracking	the	progress	of	pattern
matching.	The	pcretest	command	has	an	option	that	sets	automatic	callouts;
when	it	is	used,	the	output	indicates	how	the	pattern	is	matched.	This	is	useful
information	when	you	are	trying	to	optimize	the	performance	of	a	particular
pattern.

MISSING	CALLOUTS

You	should	be	aware	that,	because	of	optimizations	in	the	way	PCRE	matches
patterns,	callouts	sometimes	do	not	happen.	For	example,	if	the	pattern	is

		ab(?C4)cd

PCRE	knows	that	any	matching	string	must	contain	the	letter	"d".	If	the	subject
string	is	"abyz",	the	lack	of	"d"	means	that	matching	doesn't	ever	start,	and	the
callout	is	never	reached.	However,	with	"abyd",	though	the	result	is	still	no
match,	the	callout	is	obeyed.

THE	CALLOUT	INTERFACE

During	matching,	when	PCRE	reaches	a	callout	point,	the	external	function
defined	by	pcre_callout	is	called	(if	it	is	set).	This	applies	to	both	the
pcre_exec()	and	the	pcre_dfa_exec()	matching	functions.	The	only	argument	to
the	callout	function	is	a	pointer	to	a	pcre_callout	block.	This	structure	contains
the	following	fields:

		int										version;

		int										callout_number;

		int									*offset_vector;

		const	char		*subject;

		int										subject_length;

		int										start_match;

		int										current_position;

		int										capture_top;

		int										capture_last;

		void								*callout_data;

		int										pattern_position;

		int										next_item_length;

The	version	field	is	an	integer	containing	the	version	number	of	the	block
format.	The	initial	version	was	0;	the	current	version	is	1.	The	version	number
will	change	again	in	future	if	additional	fields	are	added,	but	the	intention	is
never	to	remove	any	of	the	existing	fields.

The	callout_number	field	contains	the	number	of	the	callout,	as	compiled	into
the	pattern	(that	is,	the	number	after	?C	for	manual	callouts,	and	255	for
automatically	generated	callouts).

The	offset_vector	field	is	a	pointer	to	the	vector	of	offsets	that	was	passed	by	the
caller	to	pcre_exec()	or	pcre_dfa_exec().	When	pcre_exec()	is	used,	the
contents	can	be	inspected	in	order	to	extract	substrings	that	have	been	matched
so	far,	in	the	same	way	as	for	extracting	substrings	after	a	match	has	completed.
For	pcre_dfa_exec()	this	field	is	not	useful.

The	subject	and	subject_length	fields	contain	copies	of	the	values	that	were
passed	to	pcre_exec().

The	start_match	field	normally	contains	the	offset	within	the	subject	at	which
the	current	match	attempt	started.	However,	if	the	escape	sequence	\K	has	been
encountered,	this	value	is	changed	to	reflect	the	modified	starting	point.	If	the
pattern	is	not	anchored,	the	callout	function	may	be	called	several	times	from	the
same	point	in	the	pattern	for	different	starting	points	in	the	subject.

The	current_position	field	contains	the	offset	within	the	subject	of	the	current
match	pointer.

When	the	pcre_exec()	function	is	used,	the	capture_top	field	contains	one	more
than	the	number	of	the	highest	numbered	captured	substring	so	far.	If	no
substrings	have	been	captured,	the	value	of	capture_top	is	one.	This	is	always
the	case	when	pcre_dfa_exec()	is	used,	because	it	does	not	support	captured
substrings.

The	capture_last	field	contains	the	number	of	the	most	recently	captured
substring.	If	no	substrings	have	been	captured,	its	value	is	-1.	This	is	always	the

case	when	pcre_dfa_exec()	is	used.

The	callout_data	field	contains	a	value	that	is	passed	to	pcre_exec()	or
pcre_dfa_exec()	specifically	so	that	it	can	be	passed	back	in	callouts.	It	is
passed	in	the	pcre_callout	field	of	the	pcre_extra	data	structure.	If	no	such	data
was	passed,	the	value	of	callout_data	in	a	pcre_callout	block	is	NULL.	There	is
a	description	of	the	pcre_extra	structure	in	the	pcreapi	documentation.

The	pattern_position	field	is	present	from	version	1	of	the	pcre_callout	structure.
It	contains	the	offset	to	the	next	item	to	be	matched	in	the	pattern	string.

The	next_item_length	field	is	present	from	version	1	of	the	pcre_callout
structure.	It	contains	the	length	of	the	next	item	to	be	matched	in	the	pattern
string.	When	the	callout	immediately	precedes	an	alternation	bar,	a	closing
parenthesis,	or	the	end	of	the	pattern,	the	length	is	zero.	When	the	callout
precedes	an	opening	parenthesis,	the	length	is	that	of	the	entire	subpattern.

The	pattern_position	and	next_item_length	fields	are	intended	to	help	in
distinguishing	between	different	automatic	callouts,	which	all	have	the	same
callout	number.	However,	they	are	set	for	all	callouts.

RETURN	VALUES

The	external	callout	function	returns	an	integer	to	PCRE.	If	the	value	is	zero,
matching	proceeds	as	normal.	If	the	value	is	greater	than	zero,	matching	fails	at
the	current	point,	but	the	testing	of	other	matching	possibilities	goes	ahead,	just
as	if	a	lookahead	assertion	had	failed.	If	the	value	is	less	than	zero,	the	match	is
abandoned,	and	pcre_exec()	(or	pcre_dfa_exec())	returns	the	negative	value.

Negative	values	should	normally	be	chosen	from	the	set	of	PCRE_ERROR_xxx
values.	In	particular,	PCRE_ERROR_NOMATCH	forces	a	standard	"no	match"
failure.	The	error	number	PCRE_ERROR_CALLOUT	is	reserved	for	use	by
callout	functions;	it	will	never	be	used	by	PCRE	itself.

AUTHOR

Philip	Hazel	
University	Computing	Service	

Cambridge	CB2	3QH,	England.	

REVISION

Last	updated:	29	May	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcrecompat	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

DIFFERENCES	BETWEEN	PCRE	AND	PERL	

This	document	describes	the	differences	in	the	ways	that	PCRE	and	Perl	handle
regular	expressions.	The	differences	described	here	are	mainly	with	respect	to
Perl	5.8,	though	PCRE	versions	7.0	and	later	contain	some	features	that	are
expected	to	be	in	the	forthcoming	Perl	5.10.

1.	PCRE	has	only	a	subset	of	Perl's	UTF-8	and	Unicode	support.	Details	of	what
it	does	have	are	given	in	the	section	on	UTF-8	support	in	the	main	pcre	page.

2.	PCRE	does	not	allow	repeat	quantifiers	on	lookahead	assertions.	Perl	permits
them,	but	they	do	not	mean	what	you	might	think.	For	example,	(?!a){3}	does
not	assert	that	the	next	three	characters	are	not	"a".	It	just	asserts	that	the	next
character	is	not	"a"	three	times.

3.	Capturing	subpatterns	that	occur	inside	negative	lookahead	assertions	are
counted,	but	their	entries	in	the	offsets	vector	are	never	set.	Perl	sets	its
numerical	variables	from	any	such	patterns	that	are	matched	before	the	assertion
fails	to	match	something	(thereby	succeeding),	but	only	if	the	negative
lookahead	assertion	contains	just	one	branch.

4.	Though	binary	zero	characters	are	supported	in	the	subject	string,	they	are	not
allowed	in	a	pattern	string	because	it	is	passed	as	a	normal	C	string,	terminated
by	zero.	The	escape	sequence	\0	can	be	used	in	the	pattern	to	represent	a	binary
zero.

5.	The	following	Perl	escape	sequences	are	not	supported:	\l,	\u,	\L,	\U,	and	\N.
In	fact	these	are	implemented	by	Perl's	general	string-handling	and	are	not	part
of	its	pattern	matching	engine.	If	any	of	these	are	encountered	by	PCRE,	an	error

is	generated.

6.	The	Perl	escape	sequences	\p,	\P,	and	\X	are	supported	only	if	PCRE	is	built
with	Unicode	character	property	support.	The	properties	that	can	be	tested	with
\p	and	\P	are	limited	to	the	general	category	properties	such	as	Lu	and	Nd,	script
names	such	as	Greek	or	Han,	and	the	derived	properties	Any	and	L&.

7.	PCRE	does	support	the	\Q...\E	escape	for	quoting	substrings.	Characters	in
between	are	treated	as	literals.	This	is	slightly	different	from	Perl	in	that	$	and	@
are	also	handled	as	literals	inside	the	quotes.	In	Perl,	they	cause	variable
interpolation	(but	of	course	PCRE	does	not	have	variables).	Note	the	following
examples:

				Pattern												PCRE	matches						Perl	matches

				\Qabc$xyz\E								abc$xyz											abc	followed	by	the	contents	of	$xyz

				\Qabc\$xyz\E							abc\$xyz										abc\$xyz

				\Qabc\E\$\Qxyz\E			abc$xyz											abc$xyz

The	\Q...\E	sequence	is	recognized	both	inside	and	outside	character	classes.

8.	Fairly	obviously,	PCRE	does	not	support	the	(?{code})	and	(??{code})
constructions.	However,	there	is	support	for	recursive	patterns.	This	is	not
available	in	Perl	5.8,	but	will	be	in	Perl	5.10.	Also,	the	PCRE	"callout"	feature
allows	an	external	function	to	be	called	during	pattern	matching.	See	the
pcrecallout	documentation	for	details.

9.	Subpatterns	that	are	called	recursively	or	as	"subroutines"	are	always	treated
as	atomic	groups	in	PCRE.	This	is	like	Python,	but	unlike	Perl.

10.	There	are	some	differences	that	are	concerned	with	the	settings	of	captured
strings	when	part	of	a	pattern	is	repeated.	For	example,	matching	"aba"	against
the	pattern	/^(a(b)?)+$/	in	Perl	leaves	$2	unset,	but	in	PCRE	it	is	set	to	"b".

11.	PCRE	does	support	Perl	5.10's	backtracking	verbs	(*ACCEPT),	(*FAIL),
(*F),	(*COMMIT),	(*PRUNE),	(*SKIP),	and	(*THEN),	but	only	in	the	forms
without	an	argument.	PCRE	does	not	support	(*MARK).	If	(*ACCEPT)	is
within	capturing	parentheses,	PCRE	does	not	set	that	capture	group;	this	is
different	to	Perl.

12.	PCRE	provides	some	extensions	to	the	Perl	regular	expression	facilities.	Perl

5.10	will	include	new	features	that	are	not	in	earlier	versions,	some	of	which
(such	as	named	parentheses)	have	been	in	PCRE	for	some	time.	This	list	is	with
respect	to	Perl	5.10:	

(a)	Although	lookbehind	assertions	must	match	fixed	length	strings,	each
alternative	branch	of	a	lookbehind	assertion	can	match	a	different	length	of
string.	Perl	requires	them	all	to	have	the	same	length.	

(b)	If	PCRE_DOLLAR_ENDONLY	is	set	and	PCRE_MULTILINE	is	not	set,
the	$	meta-character	matches	only	at	the	very	end	of	the	string.	

(c)	If	PCRE_EXTRA	is	set,	a	backslash	followed	by	a	letter	with	no	special
meaning	is	faulted.	Otherwise,	like	Perl,	the	backslash	is	quietly	ignored.	(Perl
can	be	made	to	issue	a	warning.)	

(d)	If	PCRE_UNGREEDY	is	set,	the	greediness	of	the	repetition	quantifiers	is
inverted,	that	is,	by	default	they	are	not	greedy,	but	if	followed	by	a	question
mark	they	are.	

(e)	PCRE_ANCHORED	can	be	used	at	matching	time	to	force	a	pattern	to	be
tried	only	at	the	first	matching	position	in	the	subject	string.	

(f)	The	PCRE_NOTBOL,	PCRE_NOTEOL,	PCRE_NOTEMPTY,	and
PCRE_NO_AUTO_CAPTURE	options	for	pcre_exec()	have	no	Perl
equivalents.	

(g)	The	\R	escape	sequence	can	be	restricted	to	match	only	CR,	LF,	or	CRLF	by
the	PCRE_BSR_ANYCRLF	option.	

(h)	The	callout	facility	is	PCRE-specific.	

(i)	The	partial	matching	facility	is	PCRE-specific.	

(j)	Patterns	compiled	by	PCRE	can	be	saved	and	re-used	at	a	later	time,	even	on
different	hosts	that	have	the	other	endianness.	

(k)	The	alternative	matching	function	(pcre_dfa_exec())	matches	in	a	different
way	and	is	not	Perl-compatible.	

(l)	PCRE	recognizes	some	special	sequences	such	as	(*CR)	at	the	start	of	a
pattern	that	set	overall	options	that	cannot	be	changed	within	the	pattern.

AUTHOR	

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION	

Last	updated:	11	September	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcrecpp	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	OF	C++	WRAPPER
DESCRIPTION
MATCHING	INTERFACE
QUOTING	METACHARACTERS
PARTIAL	MATCHES
UTF-8	AND	THE	MATCHING	INTERFACE
PASSING	MODIFIERS	TO	THE	REGULAR	EXPRESSION	ENGINE
SCANNING	TEXT	INCREMENTALLY
PARSING	HEX/OCTAL/C-RADIX	NUMBERS
REPLACING	PARTS	OF	STRINGS
AUTHOR
REVISION

SYNOPSIS	OF	C++	WRAPPER

#include	<pcrecpp.h>

DESCRIPTION

The	C++	wrapper	for	PCRE	was	provided	by	Google	Inc.	Some	additional
functionality	was	added	by	Giuseppe	Maxia.	This	brief	man	page	was
constructed	from	the	notes	in	the	pcrecpp.h	file,	which	should	be	consulted	for
further	details.

MATCHING	INTERFACE

The	"FullMatch"	operation	checks	that	supplied	text	matches	a	supplied	pattern
exactly.	If	pointer	arguments	are	supplied,	it	copies	matched	sub-strings	that
match	sub-patterns	into	them.

		Example:	successful	match

					pcrecpp::RE	re("h.*o");

					re.FullMatch("hello");

		Example:	unsuccessful	match	(requires	full	match):

					pcrecpp::RE	re("e");

					!re.FullMatch("hello");

		Example:	creating	a	temporary	RE	object:

					pcrecpp::RE("h.*o").FullMatch("hello");

You	can	pass	in	a	"const	char*"	or	a	"string"	for	"text".	The	examples	below	tend
to	use	a	const	char*.	You	can,	as	in	the	different	examples	above,	store	the	RE
object	explicitly	in	a	variable	or	use	a	temporary	RE	object.	The	examples	below
use	one	mode	or	the	other	arbitrarily.	Either	could	correctly	be	used	for	any	of
these	examples.

You	must	supply	extra	pointer	arguments	to	extract	matched	subpieces.

		Example:	extracts	"ruby"	into	"s"	and	1234	into	"i"

					int	i;

					string	s;

					pcrecpp::RE	re("(\\w+):(\\d+)");

					re.FullMatch("ruby:1234",	&s;,	&i;);

		Example:	does	not	try	to	extract	any	extra	sub-patterns

					re.FullMatch("ruby:1234",	&s;);

		Example:	does	not	try	to	extract	into	NULL

					re.FullMatch("ruby:1234",	NULL,	&i;);

		Example:	integer	overflow	causes	failure

					!re.FullMatch("ruby:1234567891234",	NULL,	&i;);

		Example:	fails	because	there	aren't	enough	sub-patterns:

					!pcrecpp::RE("\\w+:\\d+").FullMatch("ruby:1234",	&s;);

		Example:	fails	because	string	cannot	be	stored	in	integer

					!pcrecpp::RE("(.*)").FullMatch("ruby",	&i;);

The	provided	pointer	arguments	can	be	pointers	to	any	scalar	numeric	type,	or
one	of:

			string								(matched	piece	is	copied	to	string)

			StringPiece			(StringPiece	is	mutated	to	point	to	matched	piece)

			T													(where	"bool	T::ParseFrom(const	char*,	int)"	exists)

			NULL										(the	corresponding	matched	sub-pattern	is	not	copied)

The	function	returns	true	iff	all	of	the	following	conditions	are	satisfied:

		a.	"text"	matches	"pattern"	exactly;

		b.	The	number	of	matched	sub-patterns	is	>=	number	of	supplied

					pointers;

		c.	The	"i"th	argument	has	a	suitable	type	for	holding	the

					string	captured	as	the	"i"th	sub-pattern.	If	you	pass	in

					NULL	for	the	"i"th	argument,	or	pass	fewer	arguments	than

					number	of	sub-patterns,	"i"th	captured	sub-pattern	is

					ignored.

CAVEAT:	An	optional	sub-pattern	that	does	not	exist	in	the	matched	string	is
assigned	the	empty	string.	Therefore,	the	following	will	return	false	(because	the
empty	string	is	not	a	valid	number):

			int	number;

			pcrecpp::RE::FullMatch("abc",	"[a-z]+(\\d+)?",	&number;);

The	matching	interface	supports	at	most	16	arguments	per	call.	If	you	need
more,	consider	using	the	more	general	interface	pcrecpp::RE::DoMatch.	See
pcrecpp.h	for	the	signature	for	DoMatch.

QUOTING	METACHARACTERS

You	can	use	the	"QuoteMeta"	operation	to	insert	backslashes	before	all
potentially	meaningful	characters	in	a	string.	The	returned	string,	used	as	a
regular	expression,	will	exactly	match	the	original	string.

		Example:

					string	quoted	=	RE::QuoteMeta(unquoted);

Note	that	it's	legal	to	escape	a	character	even	if	it	has	no	special	meaning	in	a
regular	expression	--	so	this	function	does	that.	(This	also	makes	it	identical	to
the	perl	function	of	the	same	name;	see	"perldoc	-f	quotemeta".)	For	example,
"1.5-2.0?"	becomes	"1\.5\-2\.0\?".

PARTIAL	MATCHES

You	can	use	the	"PartialMatch"	operation	when	you	want	the	pattern	to	match
any	substring	of	the	text.

		Example:	simple	search	for	a	string:

					pcrecpp::RE("ell").PartialMatch("hello");

		Example:	find	first	number	in	a	string:

					int	number;

					pcrecpp::RE	re("(\\d+)");

					re.PartialMatch("x*100	+	20",	&number;);

					assert(number	==	100);

UTF-8	AND	THE	MATCHING	INTERFACE

By	default,	pattern	and	text	are	plain	text,	one	byte	per	character.	The	UTF8	flag,
passed	to	the	constructor,	causes	both	pattern	and	string	to	be	treated	as	UTF-8
text,	still	a	byte	stream	but	potentially	multiple	bytes	per	character.	In	practice,
the	text	is	likelier	to	be	UTF-8	than	the	pattern,	but	the	match	returned	may
depend	on	the	UTF8	flag,	so	always	use	it	when	matching	UTF8	text.	For
example,	"."	will	match	one	byte	normally	but	with	UTF8	set	may	match	up	to
three	bytes	of	a	multi-byte	character.

		Example:

					pcrecpp::RE_Options	options;

					options.set_utf8();

					pcrecpp::RE	re(utf8_pattern,	options);

					re.FullMatch(utf8_string);

		Example:	using	the	convenience	function	UTF8():

					pcrecpp::RE	re(utf8_pattern,	pcrecpp::UTF8());

					re.FullMatch(utf8_string);

NOTE:	The	UTF8	flag	is	ignored	if	pcre	was	not	configured	with	the

						--enable-utf8	flag.

PASSING	MODIFIERS	TO	THE	REGULAR	EXPRESSION	ENGINE

PCRE	defines	some	modifiers	to	change	the	behavior	of	the	regular	expression
engine.	The	C++	wrapper	defines	an	auxiliary	class,	RE_Options,	as	a	vehicle	to

pass	such	modifiers	to	a	RE	class.	Currently,	the	following	modifiers	are
supported:

			modifier														description															Perl	corresponding

			PCRE_CASELESS									case	insensitive	match						/i

			PCRE_MULTILINE								multiple	lines	match								/m

			PCRE_DOTALL											dot	matches	newlines								/s

			PCRE_DOLLAR_ENDONLY			$	matches	only	at	end							N/A

			PCRE_EXTRA												strict	escape	parsing							N/A

			PCRE_EXTENDED									ignore	whitespaces										/x

			PCRE_UTF8													handles	UTF8	chars										built-in

			PCRE_UNGREEDY									reverses	*	and	*?											N/A

			PCRE_NO_AUTO_CAPTURE		disables	capturing	parens			N/A	(*)

(*)	Both	Perl	and	PCRE	allow	non	capturing	parentheses	by	means	of	the	"?:"
modifier	within	the	pattern	itself.	e.g.	(?:ab|cd)	does	not	capture,	while	(ab|cd)
does.

For	a	full	account	on	how	each	modifier	works,	please	check	the	PCRE	API
reference	page.

For	each	modifier,	there	are	two	member	functions	whose	name	is	made	out	of
the	modifier	in	lowercase,	without	the	"PCRE_"	prefix.	For	instance,
PCRE_CASELESS	is	handled	by

		bool	caseless()

which	returns	true	if	the	modifier	is	set,	and

		RE_Options	&	set_caseless(bool)

which	sets	or	unsets	the	modifier.	Moreover,	PCRE_EXTRA_MATCH_LIMIT
can	be	accessed	through	the	set_match_limit()	and	match_limit()	member
functions.	Setting	match_limit	to	a	non-zero	value	will	limit	the	execution	of
pcre	to	keep	it	from	doing	bad	things	like	blowing	the	stack	or	taking	an	eternity
to	return	a	result.	A	value	of	5000	is	good	enough	to	stop	stack	blowup	in	a	2MB
thread	stack.	Setting	match_limit	to	zero	disables	match	limiting.	Alternatively,
you	can	call	match_limit_recursion()	which	uses
PCRE_EXTRA_MATCH_LIMIT_RECURSION	to	limit	how	much	PCRE
recurses.	match_limit()	limits	the	number	of	matches	PCRE	does;
match_limit_recursion()	limits	the	depth	of	internal	recursion,	and	therefore	the
amount	of	stack	that	is	used.

Normally,	to	pass	one	or	more	modifiers	to	a	RE	class,	you	declare	a
RE_Options	object,	set	the	appropriate	options,	and	pass	this	object	to	a	RE
constructor.	Example:

			RE_options	opt;

			opt.set_caseless(true);

			if	(RE("HELLO",	opt).PartialMatch("hello	world"))	...

RE_options	has	two	constructors.	The	default	constructor	takes	no	arguments
and	creates	a	set	of	flags	that	are	off	by	default.	The	optional	parameter
option_flags	is	to	facilitate	transfer	of	legacy	code	from	C	programs.	This	lets
you	do

			RE(pattern,

					RE_Options(PCRE_CASELESS|PCRE_MULTILINE)).PartialMatch(str);

However,	new	code	is	better	off	doing

			RE(pattern,

					RE_Options().set_caseless(true).set_multiline(true))

							.PartialMatch(str);

If	you	are	going	to	pass	one	of	the	most	used	modifiers,	there	are	some
convenience	functions	that	return	a	RE_Options	class	with	the	appropriate
modifier	already	set:	CASELESS(),	UTF8(),	MULTILINE(),	DOTALL(),	and
EXTENDED().

If	you	need	to	set	several	options	at	once,	and	you	don't	want	to	go	through	the
pains	of	declaring	a	RE_Options	object	and	setting	several	options,	there	is	a
parallel	method	that	give	you	such	ability	on	the	fly.	You	can	concatenate	several
set_xxxxx()	member	functions,	since	each	of	them	returns	a	reference	to	its	class
object.	For	example,	to	pass	PCRE_CASELESS,	PCRE_EXTENDED,	and
PCRE_MULTILINE	to	a	RE	with	one	statement,	you	may	write:

			RE("	^	xyz	\\s+	.*	blah$",

					RE_Options()

							.set_caseless(true)

							.set_extended(true)

							.set_multiline(true)).PartialMatch(sometext);

SCANNING	TEXT	INCREMENTALLY

The	"Consume"	operation	may	be	useful	if	you	want	to	repeatedly	match	regular
expressions	at	the	front	of	a	string	and	skip	over	them	as	they	match.	This
requires	use	of	the	"StringPiece"	type,	which	represents	a	sub-range	of	a	real
string.	Like	RE,	StringPiece	is	defined	in	the	pcrecpp	namespace.

		Example:	read	lines	of	the	form	"var	=	value"	from	a	string.

					string	contents	=	...;																	//	Fill	string	somehow

					pcrecpp::StringPiece	input(contents);		//	Wrap	in	a	StringPiece

					string	var;

					int	value;

					pcrecpp::RE	re("(\\w+)	=	(\\d+)\n");

					while	(re.Consume(&input;,	&var;,	&value;))	{

							...;

					}

Each	successful	call	to	"Consume"	will	set	"var/value",	and	also	advance	"input"
so	it	points	past	the	matched	text.

The	"FindAndConsume"	operation	is	similar	to	"Consume"	but	does	not	anchor
your	match	at	the	beginning	of	the	string.	For	example,	you	could	extract	all
words	from	a	string	by	repeatedly	calling

		pcrecpp::RE("(\\w+)").FindAndConsume(&input;,	&word;)

PARSING	HEX/OCTAL/C-RADIX	NUMBERS

By	default,	if	you	pass	a	pointer	to	a	numeric	value,	the	corresponding	text	is
interpreted	as	a	base-10	number.	You	can	instead	wrap	the	pointer	with	a	call	to
one	of	the	operators	Hex(),	Octal(),	or	CRadix()	to	interpret	the	text	in	another
base.	The	CRadix	operator	interprets	C-style	"0"	(base-8)	and	"0x"	(base-16)
prefixes,	but	defaults	to	base-10.

		Example:

				int	a,	b,	c,	d;

				pcrecpp::RE	re("(.*)	(.*)	(.*)	(.*)");

				re.FullMatch("100	40	0100	0x40",

																	pcrecpp::Octal(&a;),	pcrecpp::Hex(&b;),

																	pcrecpp::CRadix(&c;),	pcrecpp::CRadix(&d;));

will	leave	64	in	a,	b,	c,	and	d.

REPLACING	PARTS	OF	STRINGS

You	can	replace	the	first	match	of	"pattern"	in	"str"	with	"rewrite".	Within
"rewrite",	backslash-escaped	digits	(\1	to	\9)	can	be	used	to	insert	text	matching
corresponding	parenthesized	group	from	the	pattern.	\0	in	"rewrite"	refers	to	the
entire	matching	text.	For	example:

		string	s	=	"yabba	dabba	doo";

		pcrecpp::RE("b+").Replace("d",	&s;);

will	leave	"s"	containing	"yada	dabba	doo".	The	result	is	true	if	the	pattern
matches	and	a	replacement	occurs,	false	otherwise.

GlobalReplace	is	like	Replace	except	that	it	replaces	all	occurrences	of	the
pattern	in	the	string	with	the	rewrite.	Replacements	are	not	subject	to	re-
matching.	For	example:

		string	s	=	"yabba	dabba	doo";

		pcrecpp::RE("b+").GlobalReplace("d",	&s;);

will	leave	"s"	containing	"yada	dada	doo".	It	returns	the	number	of	replacements
made.

Extract	is	like	Replace,	except	that	if	the	pattern	matches,	"rewrite"	is	copied
into	"out"	(an	additional	argument)	with	substitutions.	The	non-matching
portions	of	"text"	are	ignored.	Returns	true	iff	a	match	occurred	and	the
extraction	happened	successfully;	if	no	match	occurs,	the	string	is	left
unaffected.

AUTHOR

The	C++	wrapper	was	contributed	by	Google	Inc.	
Copyright	©	2007	Google	Inc.	

REVISION

Last	updated:	06	March	2007	

Return	to	the	PCRE	index	page.

pcregrep	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS
DESCRIPTION
OPTIONS
ENVIRONMENT	VARIABLES
NEWLINES
OPTIONS	COMPATIBILITY
OPTIONS	WITH	DATA
MATCHING	ERRORS
DIAGNOSTICS
SEE	ALSO
AUTHOR
REVISION

SYNOPSIS

pcregrep	[options]	[long	options]	[pattern]	[path1	path2	...]

DESCRIPTION

pcregrep	searches	files	for	character	patterns,	in	the	same	way	as	other	grep
commands	do,	but	it	uses	the	PCRE	regular	expression	library	to	support
patterns	that	are	compatible	with	the	regular	expressions	of	Perl	5.	See
pcrepattern(3)	for	a	full	description	of	syntax	and	semantics	of	the	regular
expressions	that	PCRE	supports.

Patterns,	whether	supplied	on	the	command	line	or	in	a	separate	file,	are	given
without	delimiters.	For	example:

		pcregrep	Thursday	/etc/motd

If	you	attempt	to	use	delimiters	(for	example,	by	surrounding	a	pattern	with
slashes,	as	is	common	in	Perl	scripts),	they	are	interpreted	as	part	of	the	pattern.
Quotes	can	of	course	be	used	on	the	command	line	because	they	are	interpreted
by	the	shell,	and	indeed	they	are	required	if	a	pattern	contains	white	space	or
shell	metacharacters.

The	first	argument	that	follows	any	option	settings	is	treated	as	the	single	pattern
to	be	matched	when	neither	-e	nor	-f	is	present.	Conversely,	when	one	or	both	of
these	options	are	used	to	specify	patterns,	all	arguments	are	treated	as	path
names.	At	least	one	of	-e,	-f,	or	an	argument	pattern	must	be	provided.

If	no	files	are	specified,	pcregrep	reads	the	standard	input.	The	standard	input
can	also	be	referenced	by	a	name	consisting	of	a	single	hyphen.	For	example:

		pcregrep	some-pattern	/file1	-	/file3

By	default,	each	line	that	matches	the	pattern	is	copied	to	the	standard	output,
and	if	there	is	more	than	one	file,	the	file	name	is	output	at	the	start	of	each	line.
However,	there	are	options	that	can	change	how	pcregrep	behaves.	In	particular,
the	-M	option	makes	it	possible	to	search	for	patterns	that	span	line	boundaries.
What	defines	a	line	boundary	is	controlled	by	the	-N	(--newline)	option.

Patterns	are	limited	to	8K	or	BUFSIZ	characters,	whichever	is	the	greater.
BUFSIZ	is	defined	in	<stdio.h>.

If	the	LC_ALL	or	LC_CTYPE	environment	variable	is	set,	pcregrep	uses	the
value	to	set	a	locale	when	calling	the	PCRE	library.	The	--locale	option	can	be
used	to	override	this.

OPTIONS

--	This	terminate	the	list	of	options.	It	is	useful	if	the	next	item	on	the	command
line	starts	with	a	hyphen	but	is	not	an	option.	This	allows	for	the	processing	of
patterns	and	filenames	that	start	with	hyphens.

-A	number,	--after-context=number	Output	number	lines	of	context	after	each
matching	line.	If	filenames	and/or	line	numbers	are	being	output,	a	hyphen
separator	is	used	instead	of	a	colon	for	the	context	lines.	A	line	containing	"--"	is

output	between	each	group	of	lines,	unless	they	are	in	fact	contiguous	in	the
input	file.	The	value	of	number	is	expected	to	be	relatively	small.	However,
pcregrep	guarantees	to	have	up	to	8K	of	following	text	available	for	context
output.

-B	number,	--before-context=number	Output	number	lines	of	context	before
each	matching	line.	If	filenames	and/or	line	numbers	are	being	output,	a	hyphen
separator	is	used	instead	of	a	colon	for	the	context	lines.	A	line	containing	"--"	is
output	between	each	group	of	lines,	unless	they	are	in	fact	contiguous	in	the
input	file.	The	value	of	number	is	expected	to	be	relatively	small.	However,
pcregrep	guarantees	to	have	up	to	8K	of	preceding	text	available	for	context
output.

-C	number,	--context=number	Output	number	lines	of	context	both	before	and
after	each	matching	line.	This	is	equivalent	to	setting	both	-A	and	-B	to	the	same
value.

-c,	--count	Do	not	output	individual	lines;	instead	just	output	a	count	of	the
number	of	lines	that	would	otherwise	have	been	output.	If	several	files	are	given,
a	count	is	output	for	each	of	them.	In	this	mode,	the	-A,	-B,	and	-C	options	are
ignored.

--colour,	--color	If	this	option	is	given	without	any	data,	it	is	equivalent	to	"--
colour=auto".	If	data	is	required,	it	must	be	given	in	the	same	shell	item,
separated	by	an	equals	sign.

--colour=value,	--color=value	This	option	specifies	under	what	circumstances
the	part	of	a	line	that	matched	a	pattern	should	be	coloured	in	the	output.	The
value	may	be	"never"	(the	default),	"always",	or	"auto".	In	the	latter	case,
colouring	happens	only	if	the	standard	output	is	connected	to	a	terminal.	The
colour	can	be	specified	by	setting	the	environment	variable
PCREGREP_COLOUR	or	PCREGREP_COLOR.	The	value	of	this	variable
should	be	a	string	of	two	numbers,	separated	by	a	semicolon.	They	are	copied
directly	into	the	control	string	for	setting	colour	on	a	terminal,	so	it	is	your
responsibility	to	ensure	that	they	make	sense.	If	neither	of	the	environment
variables	is	set,	the	default	is	"1;31",	which	gives	red.

-D	action,	--devices=action	If	an	input	path	is	not	a	regular	file	or	a	directory,
"action"	specifies	how	it	is	to	be	processed.	Valid	values	are	"read"	(the	default)

or	"skip"	(silently	skip	the	path).

-d	action,	--directories=action	If	an	input	path	is	a	directory,	"action"	specifies
how	it	is	to	be	processed.	Valid	values	are	"read"	(the	default),	"recurse"
(equivalent	to	the	-r	option),	or	"skip"	(silently	skip	the	path).	In	the	default	case,
directories	are	read	as	if	they	were	ordinary	files.	In	some	operating	systems	the
effect	of	reading	a	directory	like	this	is	an	immediate	end-of-file.

-e	pattern,	--regex=pattern,	--regexp=pattern	Specify	a	pattern	to	be	matched.
This	option	can	be	used	multiple	times	in	order	to	specify	several	patterns.	It	can
also	be	used	as	a	way	of	specifying	a	single	pattern	that	starts	with	a	hyphen.
When	-e	is	used,	no	argument	pattern	is	taken	from	the	command	line;	all
arguments	are	treated	as	file	names.	There	is	an	overall	maximum	of	100
patterns.	They	are	applied	to	each	line	in	the	order	in	which	they	are	defined
until	one	matches	(or	fails	to	match	if	-v	is	used).	If	-f	is	used	with	-e,	the
command	line	patterns	are	matched	first,	followed	by	the	patterns	from	the	file,
independent	of	the	order	in	which	these	options	are	specified.	Note	that	multiple
use	of	-e	is	not	the	same	as	a	single	pattern	with	alternatives.	For	example,	X|Y
finds	the	first	character	in	a	line	that	is	X	or	Y,	whereas	if	the	two	patterns	are
given	separately,	pcregrep	finds	X	if	it	is	present,	even	if	it	follows	Y	in	the	line.
It	finds	Y	only	if	there	is	no	X	in	the	line.	This	really	matters	only	if	you	are
using	-o	to	show	the	portion	of	the	line	that	matched.

--exclude=pattern	When	pcregrep	is	searching	the	files	in	a	directory	as	a
consequence	of	the	-r	(recursive	search)	option,	any	files	whose	names	match
the	pattern	are	excluded.	The	pattern	is	a	PCRE	regular	expression.	If	a	file	name
matches	both	--include	and	--exclude,	it	is	excluded.	There	is	no	short	form	for
this	option.

-F,	--fixed-strings	Interpret	each	pattern	as	a	list	of	fixed	strings,	separated	by
newlines,	instead	of	as	a	regular	expression.	The	-w	(match	as	a	word)	and	-x
(match	whole	line)	options	can	be	used	with	-F.	They	apply	to	each	of	the	fixed
strings.	A	line	is	selected	if	any	of	the	fixed	strings	are	found	in	it	(subject	to	-w
or	-x,	if	present).

-f	filename,	--file=filename	Read	a	number	of	patterns	from	the	file,	one	per	line,
and	match	them	against	each	line	of	input.	A	data	line	is	output	if	any	of	the
patterns	match	it.	The	filename	can	be	given	as	"-"	to	refer	to	the	standard	input.
When	-f	is	used,	patterns	specified	on	the	command	line	using	-e	may	also	be

present;	they	are	tested	before	the	file's	patterns.	However,	no	other	pattern	is
taken	from	the	command	line;	all	arguments	are	treated	as	file	names.	There	is
an	overall	maximum	of	100	patterns.	Trailing	white	space	is	removed	from	each
line,	and	blank	lines	are	ignored.	An	empty	file	contains	no	patterns	and
therefore	matches	nothing.

-H,	--with-filename	Force	the	inclusion	of	the	filename	at	the	start	of	output
lines	when	searching	a	single	file.	By	default,	the	filename	is	not	shown	in	this
case.	For	matching	lines,	the	filename	is	followed	by	a	colon	and	a	space;	for
context	lines,	a	hyphen	separator	is	used.	If	a	line	number	is	also	being	output,	it
follows	the	file	name	without	a	space.

-h,	--no-filename	Suppress	the	output	filenames	when	searching	multiple	files.
By	default,	filenames	are	shown	when	multiple	files	are	searched.	For	matching
lines,	the	filename	is	followed	by	a	colon	and	a	space;	for	context	lines,	a
hyphen	separator	is	used.	If	a	line	number	is	also	being	output,	it	follows	the	file
name	without	a	space.

--help	Output	a	brief	help	message	and	exit.

-i,	--ignore-case	Ignore	upper/lower	case	distinctions	during	comparisons.

--include=pattern	When	pcregrep	is	searching	the	files	in	a	directory	as	a
consequence	of	the	-r	(recursive	search)	option,	only	those	files	whose	names
match	the	pattern	are	included.	The	pattern	is	a	PCRE	regular	expression.	If	a
file	name	matches	both	--include	and	--exclude,	it	is	excluded.	There	is	no	short
form	for	this	option.

-L,	--files-without-match	Instead	of	outputting	lines	from	the	files,	just	output
the	names	of	the	files	that	do	not	contain	any	lines	that	would	have	been	output.
Each	file	name	is	output	once,	on	a	separate	line.

-l,	--files-with-matches	Instead	of	outputting	lines	from	the	files,	just	output	the
names	of	the	files	containing	lines	that	would	have	been	output.	Each	file	name
is	output	once,	on	a	separate	line.	Searching	stops	as	soon	as	a	matching	line	is
found	in	a	file.

--label=name	This	option	supplies	a	name	to	be	used	for	the	standard	input	when
file	names	are	being	output.	If	not	supplied,	"(standard	input)"	is	used.	There	is
no	short	form	for	this	option.

--locale=locale-name	This	option	specifies	a	locale	to	be	used	for	pattern
matching.	It	overrides	the	value	in	the	LC_ALL	or	LC_CTYPE	environment
variables.	If	no	locale	is	specified,	the	PCRE	library's	default	(usually	the	"C"
locale)	is	used.	There	is	no	short	form	for	this	option.

-M,	--multiline	Allow	patterns	to	match	more	than	one	line.	When	this	option	is
given,	patterns	may	usefully	contain	literal	newline	characters	and	internal
occurrences	of	^	and	$	characters.	The	output	for	any	one	match	may	consist	of
more	than	one	line.	When	this	option	is	set,	the	PCRE	library	is	called	in
"multiline"	mode.	There	is	a	limit	to	the	number	of	lines	that	can	be	matched,
imposed	by	the	way	that	pcregrep	buffers	the	input	file	as	it	scans	it.	However,
pcregrep	ensures	that	at	least	8K	characters	or	the	rest	of	the	document
(whichever	is	the	shorter)	are	available	for	forward	matching,	and	similarly	the
previous	8K	characters	(or	all	the	previous	characters,	if	fewer	than	8K)	are
guaranteed	to	be	available	for	lookbehind	assertions.

-N	newline-type,	--newline=newline-type	The	PCRE	library	supports	five
different	conventions	for	indicating	the	ends	of	lines.	They	are	the	single-
character	sequences	CR	(carriage	return)	and	LF	(linefeed),	the	two-character
sequence	CRLF,	an	"anycrlf"	convention,	which	recognizes	any	of	the	preceding
three	types,	and	an	"any"	convention,	in	which	any	Unicode	line	ending
sequence	is	assumed	to	end	a	line.	The	Unicode	sequences	are	the	three	just
mentioned,	plus	VT	(vertical	tab,	U+000B),	FF	(formfeed,	U+000C),	NEL	(next
line,	U+0085),	LS	(line	separator,	U+2028),	and	PS	(paragraph	separator,
U+2029).	

When	the	PCRE	library	is	built,	a	default	line-ending	sequence	is	specified.	This
is	normally	the	standard	sequence	for	the	operating	system.	Unless	otherwise
specified	by	this	option,	pcregrep	uses	the	library's	default.	The	possible	values
for	this	option	are	CR,	LF,	CRLF,	ANYCRLF,	or	ANY.	This	makes	it	possible	to
use	pcregrep	on	files	that	have	come	from	other	environments	without	having	to
modify	their	line	endings.	If	the	data	that	is	being	scanned	does	not	agree	with
the	convention	set	by	this	option,	pcregrep	may	behave	in	strange	ways.

-n,	--line-number	Precede	each	output	line	by	its	line	number	in	the	file,
followed	by	a	colon	and	a	space	for	matching	lines	or	a	hyphen	and	a	space	for
context	lines.	If	the	filename	is	also	being	output,	it	precedes	the	line	number.

-o,	--only-matching	Show	only	the	part	of	the	line	that	matched	a	pattern.	In	this

mode,	no	context	is	shown.	That	is,	the	-A,	-B,	and	-C	options	are	ignored.

-q,	--quiet	Work	quietly,	that	is,	display	nothing	except	error	messages.	The	exit
status	indicates	whether	or	not	any	matches	were	found.

-r,	--recursive	If	any	given	path	is	a	directory,	recursively	scan	the	files	it
contains,	taking	note	of	any	--include	and	--exclude	settings.	By	default,	a
directory	is	read	as	a	normal	file;	in	some	operating	systems	this	gives	an
immediate	end-of-file.	This	option	is	a	shorthand	for	setting	the	-d	option	to
"recurse".

-s,	--no-messages	Suppress	error	messages	about	non-existent	or	unreadable
files.	Such	files	are	quietly	skipped.	However,	the	return	code	is	still	2,	even	if
matches	were	found	in	other	files.

-u,	--utf-8	Operate	in	UTF-8	mode.	This	option	is	available	only	if	PCRE	has
been	compiled	with	UTF-8	support.	Both	patterns	and	subject	lines	must	be
valid	strings	of	UTF-8	characters.

-V,	--version	Write	the	version	numbers	of	pcregrep	and	the	PCRE	library	that
is	being	used	to	the	standard	error	stream.

-v,	--invert-match	Invert	the	sense	of	the	match,	so	that	lines	which	do	not
match	any	of	the	patterns	are	the	ones	that	are	found.

-w,	--word-regex,	--word-regexp	Force	the	patterns	to	match	only	whole	words.
This	is	equivalent	to	having	\b	at	the	start	and	end	of	the	pattern.

-x,	--line-regex,	--line-regexp	Force	the	patterns	to	be	anchored	(each	must	start
matching	at	the	beginning	of	a	line)	and	in	addition,	require	them	to	match	entire
lines.	This	is	equivalent	to	having	^	and	$	characters	at	the	start	and	end	of	each
alternative	branch	in	every	pattern.

ENVIRONMENT	VARIABLES

The	environment	variables	LC_ALL	and	LC_CTYPE	are	examined,	in	that
order,	for	a	locale.	The	first	one	that	is	set	is	used.	This	can	be	overridden	by	the
--locale	option.	If	no	locale	is	set,	the	PCRE	library's	default	(usually	the	"C"
locale)	is	used.

NEWLINES

The	-N	(--newline)	option	allows	pcregrep	to	scan	files	with	different	newline
conventions	from	the	default.	However,	the	setting	of	this	option	does	not	affect
the	way	in	which	pcregrep	writes	information	to	the	standard	error	and	output
streams.	It	uses	the	string	"\n"	in	C	printf()	calls	to	indicate	newlines,	relying	on
the	C	I/O	library	to	convert	this	to	an	appropriate	sequence	if	the	output	is	sent	to
a	file.

OPTIONS	COMPATIBILITY

The	majority	of	short	and	long	forms	of	pcregrep's	options	are	the	same	as	in
the	GNU	grep	program.	Any	long	option	of	the	form	--xxx-regexp	(GNU
terminology)	is	also	available	as	--xxx-regex	(PCRE	terminology).	However,	the
--locale,	-M,	--multiline,	-u,	and	--utf-8	options	are	specific	to	pcregrep.

OPTIONS	WITH	DATA

There	are	four	different	ways	in	which	an	option	with	data	can	be	specified.	If	a
short	form	option	is	used,	the	data	may	follow	immediately,	or	in	the	next
command	line	item.	For	example:

		-f/some/file

		-f	/some/file

If	a	long	form	option	is	used,	the	data	may	appear	in	the	same	command	line
item,	separated	by	an	equals	character,	or	(with	one	exception)	it	may	appear	in
the	next	command	line	item.	For	example:

		--file=/some/file

		--file	/some/file

Note,	however,	that	if	you	want	to	supply	a	file	name	beginning	with	~	as	data	in
a	shell	command,	and	have	the	shell	expand	~	to	a	home	directory,	you	must
separate	the	file	name	from	the	option,	because	the	shell	does	not	treat	~
specially	unless	it	is	at	the	start	of	an	item.

The	exception	to	the	above	is	the	--colour	(or	--color)	option,	for	which	the	data

is	optional.	If	this	option	does	have	data,	it	must	be	given	in	the	first	form,	using
an	equals	character.	Otherwise	it	will	be	assumed	that	it	has	no	data.

MATCHING	ERRORS

It	is	possible	to	supply	a	regular	expression	that	takes	a	very	long	time	to	fail	to
match	certain	lines.	Such	patterns	normally	involve	nested	indefinite	repeats,	for
example:	(a+)*\d	when	matched	against	a	line	of	a's	with	no	final	digit.	The
PCRE	matching	function	has	a	resource	limit	that	causes	it	to	abort	in	these
circumstances.	If	this	happens,	pcregrep	outputs	an	error	message	and	the	line
that	caused	the	problem	to	the	standard	error	stream.	If	there	are	more	than	20
such	errors,	pcregrep	gives	up.

DIAGNOSTICS

Exit	status	is	0	if	any	matches	were	found,	1	if	no	matches	were	found,	and	2	for
syntax	errors	and	non-existent	or	inacessible	files	(even	if	matches	were	found	in
other	files)	or	too	many	matching	errors.	Using	the	-s	option	to	suppress	error
messages	about	inaccessble	files	does	not	affect	the	return	code.

SEE	ALSO

pcrepattern(3),	pcretest(1).

AUTHOR

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION

Last	updated:	16	April	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcrematching	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

PCRE	MATCHING	ALGORITHMS
REGULAR	EXPRESSIONS	AS	TREES
THE	STANDARD	MATCHING	ALGORITHM
THE	ALTERNATIVE	MATCHING	ALGORITHM
ADVANTAGES	OF	THE	ALTERNATIVE	ALGORITHM
DISADVANTAGES	OF	THE	ALTERNATIVE	ALGORITHM
AUTHOR
REVISION

PCRE	MATCHING	ALGORITHMS

This	document	describes	the	two	different	algorithms	that	are	available	in	PCRE
for	matching	a	compiled	regular	expression	against	a	given	subject	string.	The
"standard"	algorithm	is	the	one	provided	by	the	pcre_exec()	function.	This
works	in	the	same	was	as	Perl's	matching	function,	and	provides	a	Perl-
compatible	matching	operation.

An	alternative	algorithm	is	provided	by	the	pcre_dfa_exec()	function;	this
operates	in	a	different	way,	and	is	not	Perl-compatible.	It	has	advantages	and
disadvantages	compared	with	the	standard	algorithm,	and	these	are	described
below.

When	there	is	only	one	possible	way	in	which	a	given	subject	string	can	match	a
pattern,	the	two	algorithms	give	the	same	answer.	A	difference	arises,	however,
when	there	are	multiple	possibilities.	For	example,	if	the	pattern

		^<.*>

is	matched	against	the	string

		<something>	<something	else>	<something	further>

there	are	three	possible	answers.	The	standard	algorithm	finds	only	one	of	them,
whereas	the	alternative	algorithm	finds	all	three.

REGULAR	EXPRESSIONS	AS	TREES

The	set	of	strings	that	are	matched	by	a	regular	expression	can	be	represented	as
a	tree	structure.	An	unlimited	repetition	in	the	pattern	makes	the	tree	of	infinite
size,	but	it	is	still	a	tree.	Matching	the	pattern	to	a	given	subject	string	(from	a
given	starting	point)	can	be	thought	of	as	a	search	of	the	tree.	There	are	two
ways	to	search	a	tree:	depth-first	and	breadth-first,	and	these	correspond	to	the
two	matching	algorithms	provided	by	PCRE.

THE	STANDARD	MATCHING	ALGORITHM

In	the	terminology	of	Jeffrey	Friedl's	book	"Mastering	Regular	Expressions",	the
standard	algorithm	is	an	"NFA	algorithm".	It	conducts	a	depth-first	search	of	the
pattern	tree.	That	is,	it	proceeds	along	a	single	path	through	the	tree,	checking
that	the	subject	matches	what	is	required.	When	there	is	a	mismatch,	the
algorithm	tries	any	alternatives	at	the	current	point,	and	if	they	all	fail,	it	backs
up	to	the	previous	branch	point	in	the	tree,	and	tries	the	next	alternative	branch	at
that	level.	This	often	involves	backing	up	(moving	to	the	left)	in	the	subject
string	as	well.	The	order	in	which	repetition	branches	are	tried	is	controlled	by
the	greedy	or	ungreedy	nature	of	the	quantifier.

If	a	leaf	node	is	reached,	a	matching	string	has	been	found,	and	at	that	point	the
algorithm	stops.	Thus,	if	there	is	more	than	one	possible	match,	this	algorithm
returns	the	first	one	that	it	finds.	Whether	this	is	the	shortest,	the	longest,	or
some	intermediate	length	depends	on	the	way	the	greedy	and	ungreedy	repetition
quantifiers	are	specified	in	the	pattern.

Because	it	ends	up	with	a	single	path	through	the	tree,	it	is	relatively
straightforward	for	this	algorithm	to	keep	track	of	the	substrings	that	are
matched	by	portions	of	the	pattern	in	parentheses.	This	provides	support	for
capturing	parentheses	and	back	references.

THE	ALTERNATIVE	MATCHING	ALGORITHM

This	algorithm	conducts	a	breadth-first	search	of	the	tree.	Starting	from	the	first
matching	point	in	the	subject,	it	scans	the	subject	string	from	left	to	right,	once,
character	by	character,	and	as	it	does	this,	it	remembers	all	the	paths	through	the
tree	that	represent	valid	matches.	In	Friedl's	terminology,	this	is	a	kind	of	"DFA
algorithm",	though	it	is	not	implemented	as	a	traditional	finite	state	machine	(it
keeps	multiple	states	active	simultaneously).

The	scan	continues	until	either	the	end	of	the	subject	is	reached,	or	there	are	no
more	unterminated	paths.	At	this	point,	terminated	paths	represent	the	different
matching	possibilities	(if	there	are	none,	the	match	has	failed).	Thus,	if	there	is
more	than	one	possible	match,	this	algorithm	finds	all	of	them,	and	in	particular,
it	finds	the	longest.	In	PCRE,	there	is	an	option	to	stop	the	algorithm	after	the
first	match	(which	is	necessarily	the	shortest)	has	been	found.

Note	that	all	the	matches	that	are	found	start	at	the	same	point	in	the	subject.	If
the	pattern

		cat(er(pillar)?)

is	matched	against	the	string	"the	caterpillar	catchment",	the	result	will	be	the
three	strings	"cat",	"cater",	and	"caterpillar"	that	start	at	the	fourth	character	of
the	subject.	The	algorithm	does	not	automatically	move	on	to	find	matches	that
start	at	later	positions.

There	are	a	number	of	features	of	PCRE	regular	expressions	that	are	not
supported	by	the	alternative	matching	algorithm.	They	are	as	follows:

1.	Because	the	algorithm	finds	all	possible	matches,	the	greedy	or	ungreedy
nature	of	repetition	quantifiers	is	not	relevant.	Greedy	and	ungreedy	quantifiers
are	treated	in	exactly	the	same	way.	However,	possessive	quantifiers	can	make	a
difference	when	what	follows	could	also	match	what	is	quantified,	for	example
in	a	pattern	like	this:

		^a++\w!

This	pattern	matches	"aaab!"	but	not	"aaa!",	which	would	be	matched	by	a	non-
possessive	quantifier.	Similarly,	if	an	atomic	group	is	present,	it	is	matched	as	if
it	were	a	standalone	pattern	at	the	current	point,	and	the	longest	match	is	then
"locked	in"	for	the	rest	of	the	overall	pattern.

2.	When	dealing	with	multiple	paths	through	the	tree	simultaneously,	it	is	not
straightforward	to	keep	track	of	captured	substrings	for	the	different	matching
possibilities,	and	PCRE's	implementation	of	this	algorithm	does	not	attempt	to
do	this.	This	means	that	no	captured	substrings	are	available.

3.	Because	no	substrings	are	captured,	back	references	within	the	pattern	are	not
supported,	and	cause	errors	if	encountered.

4.	For	the	same	reason,	conditional	expressions	that	use	a	backreference	as	the
condition	or	test	for	a	specific	group	recursion	are	not	supported.

5.	Because	many	paths	through	the	tree	may	be	active,	the	\K	escape	sequence,
which	resets	the	start	of	the	match	when	encountered	(but	may	be	on	some	paths
and	not	on	others),	is	not	supported.	It	causes	an	error	if	encountered.

6.	Callouts	are	supported,	but	the	value	of	the	capture_top	field	is	always	1,	and
the	value	of	the	capture_last	field	is	always	-1.

7.	The	\C	escape	sequence,	which	(in	the	standard	algorithm)	matches	a	single
byte,	even	in	UTF-8	mode,	is	not	supported	because	the	alternative	algorithm
moves	through	the	subject	string	one	character	at	a	time,	for	all	active	paths
through	the	tree.

8.	None	of	the	backtracking	control	verbs	such	as	(*PRUNE)	are	supported.

ADVANTAGES	OF	THE	ALTERNATIVE	ALGORITHM

Using	the	alternative	matching	algorithm	provides	the	following	advantages:

1.	All	possible	matches	(at	a	single	point	in	the	subject)	are	automatically	found,
and	in	particular,	the	longest	match	is	found.	To	find	more	than	one	match	using
the	standard	algorithm,	you	have	to	do	kludgy	things	with	callouts.

2.	There	is	much	better	support	for	partial	matching.	The	restrictions	on	the
content	of	the	pattern	that	apply	when	using	the	standard	algorithm	for	partial
matching	do	not	apply	to	the	alternative	algorithm.	For	non-anchored	patterns,
the	starting	position	of	a	partial	match	is	available.

3.	Because	the	alternative	algorithm	scans	the	subject	string	just	once,	and	never

needs	to	backtrack,	it	is	possible	to	pass	very	long	subject	strings	to	the	matching
function	in	several	pieces,	checking	for	partial	matching	each	time.

DISADVANTAGES	OF	THE	ALTERNATIVE	ALGORITHM

The	alternative	algorithm	suffers	from	a	number	of	disadvantages:

1.	It	is	substantially	slower	than	the	standard	algorithm.	This	is	partly	because	it
has	to	search	for	all	possible	matches,	but	is	also	because	it	is	less	susceptible	to
optimization.

2.	Capturing	parentheses	and	back	references	are	not	supported.

3.	Although	atomic	groups	are	supported,	their	use	does	not	provide	the
performance	advantage	that	it	does	for	the	standard	algorithm.

AUTHOR

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION

Last	updated:	08	August	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcrepartial	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

PARTIAL	MATCHING	IN	PCRE
RESTRICTED	PATTERNS	FOR	PCRE_PARTIAL
EXAMPLE	OF	PARTIAL	MATCHING	USING	PCRETEST
MULTI-SEGMENT	MATCHING	WITH	pcre_dfa_exec()
AUTHOR
REVISION

PARTIAL	MATCHING	IN	PCRE

In	normal	use	of	PCRE,	if	the	subject	string	that	is	passed	to	pcre_exec()	or
pcre_dfa_exec()	matches	as	far	as	it	goes,	but	is	too	short	to	match	the	entire
pattern,	PCRE_ERROR_NOMATCH	is	returned.	There	are	circumstances	where
it	might	be	helpful	to	distinguish	this	case	from	other	cases	in	which	there	is	no
match.

Consider,	for	example,	an	application	where	a	human	is	required	to	type	in	data
for	a	field	with	specific	formatting	requirements.	An	example	might	be	a	date	in
the	form	ddmmmyy,	defined	by	this	pattern:

		^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$

If	the	application	sees	the	user's	keystrokes	one	by	one,	and	can	check	that	what
has	been	typed	so	far	is	potentially	valid,	it	is	able	to	raise	an	error	as	soon	as	a
mistake	is	made,	possibly	beeping	and	not	reflecting	the	character	that	has	been
typed.	This	immediate	feedback	is	likely	to	be	a	better	user	interface	than	a
check	that	is	delayed	until	the	entire	string	has	been	entered.

PCRE	supports	the	concept	of	partial	matching	by	means	of	the
PCRE_PARTIAL	option,	which	can	be	set	when	calling	pcre_exec()	or

pcre_dfa_exec().	When	this	flag	is	set	for	pcre_exec(),	the	return	code
PCRE_ERROR_NOMATCH	is	converted	into	PCRE_ERROR_PARTIAL	if	at
any	time	during	the	matching	process	the	last	part	of	the	subject	string	matched
part	of	the	pattern.	Unfortunately,	for	non-anchored	matching,	it	is	not	possible
to	obtain	the	position	of	the	start	of	the	partial	match.	No	captured	data	is	set
when	PCRE_ERROR_PARTIAL	is	returned.

When	PCRE_PARTIAL	is	set	for	pcre_dfa_exec(),	the	return	code
PCRE_ERROR_NOMATCH	is	converted	into	PCRE_ERROR_PARTIAL	if	the
end	of	the	subject	is	reached,	there	have	been	no	complete	matches,	but	there	is
still	at	least	one	matching	possibility.	The	portion	of	the	string	that	provided	the
partial	match	is	set	as	the	first	matching	string.

Using	PCRE_PARTIAL	disables	one	of	PCRE's	optimizations.	PCRE
remembers	the	last	literal	byte	in	a	pattern,	and	abandons	matching	immediately
if	such	a	byte	is	not	present	in	the	subject	string.	This	optimization	cannot	be
used	for	a	subject	string	that	might	match	only	partially.

RESTRICTED	PATTERNS	FOR	PCRE_PARTIAL

Because	of	the	way	certain	internal	optimizations	are	implemented	in	the
pcre_exec()	function,	the	PCRE_PARTIAL	option	cannot	be	used	with	all
patterns.	These	restrictions	do	not	apply	when	pcre_dfa_exec()	is	used.	For
pcre_exec(),	repeated	single	characters	such	as

		a{2,4}

and	repeated	single	metasequences	such	as

		\d+

are	not	permitted	if	the	maximum	number	of	occurrences	is	greater	than	one.
Optional	items	such	as	\d?	(where	the	maximum	is	one)	are	permitted.
Quantifiers	with	any	values	are	permitted	after	parentheses,	so	the	invalid
examples	above	can	be	coded	thus:

		(a){2,4}

		(\d)+

These	constructions	run	more	slowly,	but	for	the	kinds	of	application	that	are
envisaged	for	this	facility,	this	is	not	felt	to	be	a	major	restriction.

If	PCRE_PARTIAL	is	set	for	a	pattern	that	does	not	conform	to	the	restrictions,
pcre_exec()	returns	the	error	code	PCRE_ERROR_BADPARTIAL	(-13).	You
can	use	the	PCRE_INFO_OKPARTIAL	call	to	pcre_fullinfo()	to	find	out	if	a
compiled	pattern	can	be	used	for	partial	matching.

EXAMPLE	OF	PARTIAL	MATCHING	USING	PCRETEST

If	the	escape	sequence	\P	is	present	in	a	pcretest	data	line,	the	PCRE_PARTIAL
flag	is	used	for	the	match.	Here	is	a	run	of	pcretest	that	uses	the	date	example
quoted	above:

				re>	/^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/

		data>	25jun04\P

			0:	25jun04

			1:	jun

		data>	25dec3\P

		Partial	match

		data>	3ju\P

		Partial	match

		data>	3juj\P

		No	match

		data>	j\P

		No	match

The	first	data	string	is	matched	completely,	so	pcretest	shows	the	matched
substrings.	The	remaining	four	strings	do	not	match	the	complete	pattern,	but	the
first	two	are	partial	matches.	The	same	test,	using	pcre_dfa_exec()	matching	(by
means	of	the	\D	escape	sequence),	produces	the	following	output:

				re>	/^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/

		data>	25jun04\P\D

			0:	25jun04

		data>	23dec3\P\D

		Partial	match:	23dec3

		data>	3ju\P\D

		Partial	match:	3ju

		data>	3juj\P\D

		No	match

		data>	j\P\D

		No	match

Notice	that	in	this	case	the	portion	of	the	string	that	was	matched	is	made
available.

MULTI-SEGMENT	MATCHING	WITH	pcre_dfa_exec()

When	a	partial	match	has	been	found	using	pcre_dfa_exec(),	it	is	possible	to
continue	the	match	by	providing	additional	subject	data	and	calling
pcre_dfa_exec()	again	with	the	same	compiled	regular	expression,	this	time
setting	the	PCRE_DFA_RESTART	option.	You	must	also	pass	the	same	working
space	as	before,	because	this	is	where	details	of	the	previous	partial	match	are
stored.	Here	is	an	example	using	pcretest,	using	the	\R	escape	sequence	to	set
the	PCRE_DFA_RESTART	option	(\P	and	\D	are	as	above):

				re>	/^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/

		data>	23ja\P\D

		Partial	match:	23ja

		data>	n05\R\D

			0:	n05

The	first	call	has	"23ja"	as	the	subject,	and	requests	partial	matching;	the	second
call	has	"n05"	as	the	subject	for	the	continued	(restarted)	match.	Notice	that
when	the	match	is	complete,	only	the	last	part	is	shown;	PCRE	does	not	retain
the	previously	partially-matched	string.	It	is	up	to	the	calling	program	to	do	that
if	it	needs	to.

You	can	set	PCRE_PARTIAL	with	PCRE_DFA_RESTART	to	continue	partial
matching	over	multiple	segments.	This	facility	can	be	used	to	pass	very	long
subject	strings	to	pcre_dfa_exec().	However,	some	care	is	needed	for	certain
types	of	pattern.

1.	If	the	pattern	contains	tests	for	the	beginning	or	end	of	a	line,	you	need	to	pass
the	PCRE_NOTBOL	or	PCRE_NOTEOL	options,	as	appropriate,	when	the
subject	string	for	any	call	does	not	contain	the	beginning	or	end	of	a	line.

2.	If	the	pattern	contains	backward	assertions	(including	\b	or	\B),	you	need	to
arrange	for	some	overlap	in	the	subject	strings	to	allow	for	this.	For	example,
you	could	pass	the	subject	in	chunks	that	are	500	bytes	long,	but	in	a	buffer	of
700	bytes,	with	the	starting	offset	set	to	200	and	the	previous	200	bytes	at	the
start	of	the	buffer.

3.	Matching	a	subject	string	that	is	split	into	multiple	segments	does	not	always
produce	exactly	the	same	result	as	matching	over	one	single	long	string.	The
difference	arises	when	there	are	multiple	matching	possibilities,	because	a	partial

match	result	is	given	only	when	there	are	no	completed	matches	in	a	call	to
pcre_dfa_exec().	This	means	that	as	soon	as	the	shortest	match	has	been	found,
continuation	to	a	new	subject	segment	is	no	longer	possible.	Consider	this
pcretest	example:

				re>	/dog(sbody)?/

		data>	do\P\D

		Partial	match:	do

		data>	gsb\R\P\D

			0:	g

		data>	dogsbody\D

			0:	dogsbody

			1:	dog

The	pattern	matches	the	words	"dog"	or	"dogsbody".	When	the	subject	is
presented	in	several	parts	("do"	and	"gsb"	being	the	first	two)	the	match	stops
when	"dog"	has	been	found,	and	it	is	not	possible	to	continue.	On	the	other	hand,
if	"dogsbody"	is	presented	as	a	single	string,	both	matches	are	found.

Because	of	this	phenomenon,	it	does	not	usually	make	sense	to	end	a	pattern	that
is	going	to	be	matched	in	this	way	with	a	variable	repeat.

4.	Patterns	that	contain	alternatives	at	the	top	level	which	do	not	all	start	with	the
same	pattern	item	may	not	work	as	expected.	For	example,	consider	this	pattern:

		1234|3789

If	the	first	part	of	the	subject	is	"ABC123",	a	partial	match	of	the	first	alternative
is	found	at	offset	3.	There	is	no	partial	match	for	the	second	alternative,	because
such	a	match	does	not	start	at	the	same	point	in	the	subject	string.	Attempting	to
continue	with	the	string	"789"	does	not	yield	a	match	because	only	those
alternatives	that	match	at	one	point	in	the	subject	are	remembered.	The	problem
arises	because	the	start	of	the	second	alternative	matches	within	the	first
alternative.	There	is	no	problem	with	anchored	patterns	or	patterns	such	as:

		1234|ABCD

where	no	string	can	be	a	partial	match	for	both	alternatives.

AUTHOR

Philip	Hazel	

University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION

Last	updated:	04	June	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcrepattern	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

PCRE	REGULAR	EXPRESSION	DETAILS
NEWLINE	CONVENTIONS
CHARACTERS	AND	METACHARACTERS
BACKSLASH
CIRCUMFLEX	AND	DOLLAR
FULL	STOP	(PERIOD,	DOT)
MATCHING	A	SINGLE	BYTE
SQUARE	BRACKETS	AND	CHARACTER	CLASSES
POSIX	CHARACTER	CLASSES
VERTICAL	BAR
INTERNAL	OPTION	SETTING
SUBPATTERNS
DUPLICATE	SUBPATTERN	NUMBERS
NAMED	SUBPATTERNS
REPETITION
ATOMIC	GROUPING	AND	POSSESSIVE	QUANTIFIERS
BACK	REFERENCES
ASSERTIONS
CONDITIONAL	SUBPATTERNS
COMMENTS
RECURSIVE	PATTERNS
SUBPATTERNS	AS	SUBROUTINES
CALLOUTS
BACKTRACKING	CONTROL
SEE	ALSO
AUTHOR
REVISION

PCRE	REGULAR	EXPRESSION	DETAILS

The	syntax	and	semantics	of	the	regular	expressions	that	are	supported	by	PCRE
are	described	in	detail	below.	There	is	a	quick-reference	syntax	summary	in	the
pcresyntax	page.	Perl's	regular	expressions	are	described	in	its	own
documentation,	and	regular	expressions	in	general	are	covered	in	a	number	of
books,	some	of	which	have	copious	examples.	Jeffrey	Friedl's	"Mastering
Regular	Expressions",	published	by	O'Reilly,	covers	regular	expressions	in	great
detail.	This	description	of	PCRE's	regular	expressions	is	intended	as	reference
material.

The	original	operation	of	PCRE	was	on	strings	of	one-byte	characters.	However,
there	is	now	also	support	for	UTF-8	character	strings.	To	use	this,	you	must
build	PCRE	to	include	UTF-8	support,	and	then	call	pcre_compile()	with	the
PCRE_UTF8	option.	How	this	affects	pattern	matching	is	mentioned	in	several
places	below.	There	is	also	a	summary	of	UTF-8	features	in	the	section	on	UTF-
8	support	in	the	main	pcre	page.

The	remainder	of	this	document	discusses	the	patterns	that	are	supported	by
PCRE	when	its	main	matching	function,	pcre_exec(),	is	used.	From	release	6.0,
PCRE	offers	a	second	matching	function,	pcre_dfa_exec(),	which	matches	using
a	different	algorithm	that	is	not	Perl-compatible.	Some	of	the	features	discussed
below	are	not	available	when	pcre_dfa_exec()	is	used.	The	advantages	and
disadvantages	of	the	alternative	function,	and	how	it	differs	from	the	normal
function,	are	discussed	in	the	pcrematching	page.

NEWLINE	CONVENTIONS

PCRE	supports	five	different	conventions	for	indicating	line	breaks	in	strings:	a
single	CR	(carriage	return)	character,	a	single	LF	(linefeed)	character,	the	two-
character	sequence	CRLF,	any	of	the	three	preceding,	or	any	Unicode	newline
sequence.	The	pcreapi	page	has	further	discussion	about	newlines,	and	shows
how	to	set	the	newline	convention	in	the	options	arguments	for	the	compiling
and	matching	functions.

It	is	also	possible	to	specify	a	newline	convention	by	starting	a	pattern	string
with	one	of	the	following	five	sequences:

		(*CR)								carriage	return

		(*LF)								linefeed

		(*CRLF)						carriage	return,	followed	by	linefeed

		(*ANYCRLF)			any	of	the	three	above

		(*ANY)							all	Unicode	newline	sequences

These	override	the	default	and	the	options	given	to	pcre_compile().	For
example,	on	a	Unix	system	where	LF	is	the	default	newline	sequence,	the	pattern

		(*CR)a.b

changes	the	convention	to	CR.	That	pattern	matches	"a\nb"	because	LF	is	no
longer	a	newline.	Note	that	these	special	settings,	which	are	not	Perl-compatible,
are	recognized	only	at	the	very	start	of	a	pattern,	and	that	they	must	be	in	upper
case.	If	more	than	one	of	them	is	present,	the	last	one	is	used.

The	newline	convention	does	not	affect	what	the	\R	escape	sequence	matches.
By	default,	this	is	any	Unicode	newline	sequence,	for	Perl	compatibility.
However,	this	can	be	changed;	see	the	description	of	\R	in	the	section	entitled
"Newline	sequences"	below.	A	change	of	\R	setting	can	be	combined	with	a
change	of	newline	convention.

CHARACTERS	AND	METACHARACTERS

A	regular	expression	is	a	pattern	that	is	matched	against	a	subject	string	from	left
to	right.	Most	characters	stand	for	themselves	in	a	pattern,	and	match	the
corresponding	characters	in	the	subject.	As	a	trivial	example,	the	pattern

		The	quick	brown	fox

matches	a	portion	of	a	subject	string	that	is	identical	to	itself.	When	caseless
matching	is	specified	(the	PCRE_CASELESS	option),	letters	are	matched
independently	of	case.	In	UTF-8	mode,	PCRE	always	understands	the	concept	of
case	for	characters	whose	values	are	less	than	128,	so	caseless	matching	is
always	possible.	For	characters	with	higher	values,	the	concept	of	case	is
supported	if	PCRE	is	compiled	with	Unicode	property	support,	but	not
otherwise.	If	you	want	to	use	caseless	matching	for	characters	128	and	above,
you	must	ensure	that	PCRE	is	compiled	with	Unicode	property	support	as	well
as	with	UTF-8	support.

The	power	of	regular	expressions	comes	from	the	ability	to	include	alternatives
and	repetitions	in	the	pattern.	These	are	encoded	in	the	pattern	by	the	use	of

metacharacters,	which	do	not	stand	for	themselves	but	instead	are	interpreted	in
some	special	way.

There	are	two	different	sets	of	metacharacters:	those	that	are	recognized
anywhere	in	the	pattern	except	within	square	brackets,	and	those	that	are
recognized	within	square	brackets.	Outside	square	brackets,	the	metacharacters
are	as	follows:

		\						general	escape	character	with	several	uses

		^						assert	start	of	string	(or	line,	in	multiline	mode)

		$						assert	end	of	string	(or	line,	in	multiline	mode)

		.						match	any	character	except	newline	(by	default)

		[start	character	class	definition

		|						start	of	alternative	branch

		(start	subpattern

)						end	subpattern

		?						extends	the	meaning	of	(

									also	0	or	1	quantifier

									also	quantifier	minimizer

		*						0	or	more	quantifier

		+						1	or	more	quantifier

									also	"possessive	quantifier"

		{						start	min/max	quantifier

Part	of	a	pattern	that	is	in	square	brackets	is	called	a	"character	class".	In	a
character	class	the	only	metacharacters	are:

		\						general	escape	character

		^						negate	the	class,	but	only	if	the	first	character

		-						indicates	character	range

		[POSIX	character	class	(only	if	followed	by	POSIX	syntax)

]						terminates	the	character	class

The	following	sections	describe	the	use	of	each	of	the	metacharacters.

BACKSLASH

The	backslash	character	has	several	uses.	Firstly,	if	it	is	followed	by	a	non-
alphanumeric	character,	it	takes	away	any	special	meaning	that	character	may
have.	This	use	of	backslash	as	an	escape	character	applies	both	inside	and
outside	character	classes.

For	example,	if	you	want	to	match	a	*	character,	you	write	*	in	the	pattern.	This
escaping	action	applies	whether	or	not	the	following	character	would	otherwise

be	interpreted	as	a	metacharacter,	so	it	is	always	safe	to	precede	a	non-
alphanumeric	with	backslash	to	specify	that	it	stands	for	itself.	In	particular,	if
you	want	to	match	a	backslash,	you	write	\\.

If	a	pattern	is	compiled	with	the	PCRE_EXTENDED	option,	whitespace	in	the
pattern	(other	than	in	a	character	class)	and	characters	between	a	#	outside	a
character	class	and	the	next	newline	are	ignored.	An	escaping	backslash	can	be
used	to	include	a	whitespace	or	#	character	as	part	of	the	pattern.

If	you	want	to	remove	the	special	meaning	from	a	sequence	of	characters,	you
can	do	so	by	putting	them	between	\Q	and	\E.	This	is	different	from	Perl	in	that	$
and	@	are	handled	as	literals	in	\Q...\E	sequences	in	PCRE,	whereas	in	Perl,	$
and	@	cause	variable	interpolation.	Note	the	following	examples:

		Pattern												PCRE	matches			Perl	matches

		\Qabc$xyz\E								abc$xyz								abc	followed	by	the	contents	of	$xyz

		\Qabc\$xyz\E							abc\$xyz							abc\$xyz

		\Qabc\E\$\Qxyz\E			abc$xyz								abc$xyz

The	\Q...\E	sequence	is	recognized	both	inside	and	outside	character	classes.

Non-printing	characters	

A	second	use	of	backslash	provides	a	way	of	encoding	non-printing	characters	in
patterns	in	a	visible	manner.	There	is	no	restriction	on	the	appearance	of	non-
printing	characters,	apart	from	the	binary	zero	that	terminates	a	pattern,	but	when
a	pattern	is	being	prepared	by	text	editing,	it	is	usually	easier	to	use	one	of	the
following	escape	sequences	than	the	binary	character	it	represents:

		\a								alarm,	that	is,	the	BEL	character	(hex	07)

		\cx							"control-x",	where	x	is	any	character

		\e								escape	(hex	1B)

		\f								formfeed	(hex	0C)

		\n								linefeed	(hex	0A)

		\r								carriage	return	(hex	0D)

		\t								tab	(hex	09)

		\ddd						character	with	octal	code	ddd,	or	backreference

		\xhh						character	with	hex	code	hh

		\x{hhh..}	character	with	hex	code	hhh..

The	precise	effect	of	\cx	is	as	follows:	if	x	is	a	lower	case	letter,	it	is	converted	to

upper	case.	Then	bit	6	of	the	character	(hex	40)	is	inverted.	Thus	\cz	becomes
hex	1A,	but	\c{	becomes	hex	3B,	while	\c;	becomes	hex	7B.

After	\x,	from	zero	to	two	hexadecimal	digits	are	read	(letters	can	be	in	upper	or
lower	case).	Any	number	of	hexadecimal	digits	may	appear	between	\x{	and	},
but	the	value	of	the	character	code	must	be	less	than	256	in	non-UTF-8	mode,
and	less	than	2**31	in	UTF-8	mode.	That	is,	the	maximum	value	in	hexadecimal
is	7FFFFFFF.	Note	that	this	is	bigger	than	the	largest	Unicode	code	point,	which
is	10FFFF.

If	characters	other	than	hexadecimal	digits	appear	between	\x{	and	},	or	if	there
is	no	terminating	},	this	form	of	escape	is	not	recognized.	Instead,	the	initial	\x
will	be	interpreted	as	a	basic	hexadecimal	escape,	with	no	following	digits,
giving	a	character	whose	value	is	zero.

Characters	whose	value	is	less	than	256	can	be	defined	by	either	of	the	two
syntaxes	for	\x.	There	is	no	difference	in	the	way	they	are	handled.	For	example,
\xdc	is	exactly	the	same	as	\x{dc}.

After	\0	up	to	two	further	octal	digits	are	read.	If	there	are	fewer	than	two	digits,
just	those	that	are	present	are	used.	Thus	the	sequence	\0\x\07	specifies	two
binary	zeros	followed	by	a	BEL	character	(code	value	7).	Make	sure	you	supply
two	digits	after	the	initial	zero	if	the	pattern	character	that	follows	is	itself	an
octal	digit.

The	handling	of	a	backslash	followed	by	a	digit	other	than	0	is	complicated.
Outside	a	character	class,	PCRE	reads	it	and	any	following	digits	as	a	decimal
number.	If	the	number	is	less	than	10,	or	if	there	have	been	at	least	that	many
previous	capturing	left	parentheses	in	the	expression,	the	entire	sequence	is	taken
as	a	back	reference.	A	description	of	how	this	works	is	given	later,	following	the
discussion	of	parenthesized	subpatterns.

Inside	a	character	class,	or	if	the	decimal	number	is	greater	than	9	and	there	have
not	been	that	many	capturing	subpatterns,	PCRE	re-reads	up	to	three	octal	digits
following	the	backslash,	and	uses	them	to	generate	a	data	character.	Any
subsequent	digits	stand	for	themselves.	In	non-UTF-8	mode,	the	value	of	a
character	specified	in	octal	must	be	less	than	\400.	In	UTF-8	mode,	values	up	to
\777	are	permitted.	For	example:

		\040			is	another	way	of	writing	a	space

		\40				is	the	same,	provided	there	are	fewer	than	40	previous	capturing	subpatterns

		\7					is	always	a	back	reference

		\11				might	be	a	back	reference,	or	another	way	of	writing	a	tab

		\011			is	always	a	tab

		\0113		is	a	tab	followed	by	the	character	"3"

		\113			might	be	a	back	reference,	otherwise	the	character	with	octal	code	113

		\377			might	be	a	back	reference,	otherwise	the	byte	consisting	entirely	of	1	bits

		\81				is	either	a	back	reference,	or	a	binary	zero	followed	by	the	two	characters	"8"	and	"1"

Note	that	octal	values	of	100	or	greater	must	not	be	introduced	by	a	leading	zero,
because	no	more	than	three	octal	digits	are	ever	read.

All	the	sequences	that	define	a	single	character	value	can	be	used	both	inside	and
outside	character	classes.	In	addition,	inside	a	character	class,	the	sequence	\b	is
interpreted	as	the	backspace	character	(hex	08),	and	the	sequences	\R	and	\X	are
interpreted	as	the	characters	"R"	and	"X",	respectively.	Outside	a	character	class,
these	sequences	have	different	meanings	(see	below).

Absolute	and	relative	back	references	

The	sequence	\g	followed	by	an	unsigned	or	a	negative	number,	optionally
enclosed	in	braces,	is	an	absolute	or	relative	back	reference.	A	named	back
reference	can	be	coded	as	\g{name}.	Back	references	are	discussed	later,
following	the	discussion	of	parenthesized	subpatterns.

Generic	character	types	

Another	use	of	backslash	is	for	specifying	generic	character	types.	The	following
are	always	recognized:

		\d					any	decimal	digit

		\D					any	character	that	is	not	a	decimal	digit

		\h					any	horizontal	whitespace	character

		\H					any	character	that	is	not	a	horizontal	whitespace	character

		\s					any	whitespace	character

		\S					any	character	that	is	not	a	whitespace	character

		\v					any	vertical	whitespace	character

		\V					any	character	that	is	not	a	vertical	whitespace	character

		\w					any	"word"	character

		\W					any	"non-word"	character

Each	pair	of	escape	sequences	partitions	the	complete	set	of	characters	into	two

disjoint	sets.	Any	given	character	matches	one,	and	only	one,	of	each	pair.

These	character	type	sequences	can	appear	both	inside	and	outside	character
classes.	They	each	match	one	character	of	the	appropriate	type.	If	the	current
matching	point	is	at	the	end	of	the	subject	string,	all	of	them	fail,	since	there	is
no	character	to	match.

For	compatibility	with	Perl,	\s	does	not	match	the	VT	character	(code	11).	This
makes	it	different	from	the	the	POSIX	"space"	class.	The	\s	characters	are	HT
(9),	LF	(10),	FF	(12),	CR	(13),	and	space	(32).	If	"use	locale;"	is	included	in	a
Perl	script,	\s	may	match	the	VT	character.	In	PCRE,	it	never	does.

In	UTF-8	mode,	characters	with	values	greater	than	128	never	match	\d,	\s,	or
\w,	and	always	match	\D,	\S,	and	\W.	This	is	true	even	when	Unicode	character
property	support	is	available.	These	sequences	retain	their	original	meanings
from	before	UTF-8	support	was	available,	mainly	for	efficiency	reasons.

The	sequences	\h,	\H,	\v,	and	\V	are	Perl	5.10	features.	In	contrast	to	the	other
sequences,	these	do	match	certain	high-valued	codepoints	in	UTF-8	mode.	The
horizontal	space	characters	are:

		U+0009					Horizontal	tab

		U+0020					Space

		U+00A0					Non-break	space

		U+1680					Ogham	space	mark

		U+180E					Mongolian	vowel	separator

		U+2000					En	quad

		U+2001					Em	quad

		U+2002					En	space

		U+2003					Em	space

		U+2004					Three-per-em	space

		U+2005					Four-per-em	space

		U+2006					Six-per-em	space

		U+2007					Figure	space

		U+2008					Punctuation	space

		U+2009					Thin	space

		U+200A					Hair	space

		U+202F					Narrow	no-break	space

		U+205F					Medium	mathematical	space

		U+3000					Ideographic	space

The	vertical	space	characters	are:

		U+000A					Linefeed

		U+000B					Vertical	tab

		U+000C					Formfeed

		U+000D					Carriage	return

		U+0085					Next	line

		U+2028					Line	separator

		U+2029					Paragraph	separator

A	"word"	character	is	an	underscore	or	any	character	less	than	256	that	is	a	letter
or	digit.	The	definition	of	letters	and	digits	is	controlled	by	PCRE's	low-valued
character	tables,	and	may	vary	if	locale-specific	matching	is	taking	place	(see
"Locale	support"	in	the	pcreapi	page).	For	example,	in	a	French	locale	such	as
"fr_FR"	in	Unix-like	systems,	or	"french"	in	Windows,	some	character	codes
greater	than	128	are	used	for	accented	letters,	and	these	are	matched	by	\w.	The
use	of	locales	with	Unicode	is	discouraged.

Newline	sequences	

Outside	a	character	class,	by	default,	the	escape	sequence	\R	matches	any
Unicode	newline	sequence.	This	is	a	Perl	5.10	feature.	In	non-UTF-8	mode	\R	is
equivalent	to	the	following:

		(?>\r\n|\n|\x0b|\f|\r|\x85)

This	is	an	example	of	an	"atomic	group",	details	of	which	are	given	below.	This
particular	group	matches	either	the	two-character	sequence	CR	followed	by	LF,
or	one	of	the	single	characters	LF	(linefeed,	U+000A),	VT	(vertical	tab,
U+000B),	FF	(formfeed,	U+000C),	CR	(carriage	return,	U+000D),	or	NEL	(next
line,	U+0085).	The	two-character	sequence	is	treated	as	a	single	unit	that	cannot
be	split.

In	UTF-8	mode,	two	additional	characters	whose	codepoints	are	greater	than	255
are	added:	LS	(line	separator,	U+2028)	and	PS	(paragraph	separator,	U+2029).
Unicode	character	property	support	is	not	needed	for	these	characters	to	be
recognized.

It	is	possible	to	restrict	\R	to	match	only	CR,	LF,	or	CRLF	(instead	of	the
complete	set	of	Unicode	line	endings)	by	setting	the	option
PCRE_BSR_ANYCRLF	either	at	compile	time	or	when	the	pattern	is	matched.
(BSR	is	an	abbrevation	for	"backslash	R".)	This	can	be	made	the	default	when
PCRE	is	built;	if	this	is	the	case,	the	other	behaviour	can	be	requested	via	the

PCRE_BSR_UNICODE	option.	It	is	also	possible	to	specify	these	settings	by
starting	a	pattern	string	with	one	of	the	following	sequences:

		(*BSR_ANYCRLF)			CR,	LF,	or	CRLF	only

		(*BSR_UNICODE)			any	Unicode	newline	sequence

These	override	the	default	and	the	options	given	to	pcre_compile(),	but	they	can
be	overridden	by	options	given	to	pcre_exec().	Note	that	these	special	settings,
which	are	not	Perl-compatible,	are	recognized	only	at	the	very	start	of	a	pattern,
and	that	they	must	be	in	upper	case.	If	more	than	one	of	them	is	present,	the	last
one	is	used.	They	can	be	combined	with	a	change	of	newline	convention,	for
example,	a	pattern	can	start	with:

		(*ANY)(*BSR_ANYCRLF)

Inside	a	character	class,	\R	matches	the	letter	"R".

Unicode	character	properties	

When	PCRE	is	built	with	Unicode	character	property	support,	three	additional
escape	sequences	that	match	characters	with	specific	properties	are	available.
When	not	in	UTF-8	mode,	these	sequences	are	of	course	limited	to	testing
characters	whose	codepoints	are	less	than	256,	but	they	do	work	in	this	mode.
The	extra	escape	sequences	are:

		\p{xx}			a	character	with	the	xx	property

		\P{xx}			a	character	without	the	xx	property

		\X							an	extended	Unicode	sequence

The	property	names	represented	by	xx	above	are	limited	to	the	Unicode	script
names,	the	general	category	properties,	and	"Any",	which	matches	any	character
(including	newline).	Other	properties	such	as	"InMusicalSymbols"	are	not
currently	supported	by	PCRE.	Note	that	\P{Any}	does	not	match	any	characters,
so	always	causes	a	match	failure.

Sets	of	Unicode	characters	are	defined	as	belonging	to	certain	scripts.	A
character	from	one	of	these	sets	can	be	matched	using	a	script	name.	For
example:

		\p{Greek}

		\P{Han}

Those	that	are	not	part	of	an	identified	script	are	lumped	together	as	"Common".
The	current	list	of	scripts	is:

Arabic,	Armenian,	Balinese,	Bengali,	Bopomofo,	Braille,	Buginese,	Buhid,
Canadian_Aboriginal,	Cherokee,	Common,	Coptic,	Cuneiform,	Cypriot,
Cyrillic,	Deseret,	Devanagari,	Ethiopic,	Georgian,	Glagolitic,	Gothic,	Greek,
Gujarati,	Gurmukhi,	Han,	Hangul,	Hanunoo,	Hebrew,	Hiragana,	Inherited,
Kannada,	Katakana,	Kharoshthi,	Khmer,	Lao,	Latin,	Limbu,	Linear_B,
Malayalam,	Mongolian,	Myanmar,	New_Tai_Lue,	Nko,	Ogham,	Old_Italic,
Old_Persian,	Oriya,	Osmanya,	Phags_Pa,	Phoenician,	Runic,	Shavian,	Sinhala,
Syloti_Nagri,	Syriac,	Tagalog,	Tagbanwa,	Tai_Le,	Tamil,	Telugu,	Thaana,	Thai,
Tibetan,	Tifinagh,	Ugaritic,	Yi.

Each	character	has	exactly	one	general	category	property,	specified	by	a	two-
letter	abbreviation.	For	compatibility	with	Perl,	negation	can	be	specified	by
including	a	circumflex	between	the	opening	brace	and	the	property	name.	For
example,	\p{^Lu}	is	the	same	as	\P{Lu}.

If	only	one	letter	is	specified	with	\p	or	\P,	it	includes	all	the	general	category
properties	that	start	with	that	letter.	In	this	case,	in	the	absence	of	negation,	the
curly	brackets	in	the	escape	sequence	are	optional;	these	two	examples	have	the
same	effect:

		\p{L}

		\pL

The	following	general	category	property	codes	are	supported:

		C					Other

		Cc				Control

		Cf				Format

		Cn				Unassigned

		Co				Private	use

		Cs				Surrogate

		L					Letter

		Ll				Lower	case	letter

		Lm				Modifier	letter

		Lo				Other	letter

		Lt				Title	case	letter

		Lu				Upper	case	letter

		M					Mark

		Mc				Spacing	mark

		Me				Enclosing	mark

		Mn				Non-spacing	mark

		N					Number

		Nd				Decimal	number

		Nl				Letter	number

		No				Other	number

		P					Punctuation

		Pc				Connector	punctuation

		Pd				Dash	punctuation

		Pe				Close	punctuation

		Pf				Final	punctuation

		Pi				Initial	punctuation

		Po				Other	punctuation

		Ps				Open	punctuation

		S					Symbol

		Sc				Currency	symbol

		Sk				Modifier	symbol

		Sm				Mathematical	symbol

		So				Other	symbol

		Z					Separator

		Zl				Line	separator

		Zp				Paragraph	separator

		Zs				Space	separator

The	special	property	L&	is	also	supported:	it	matches	a	character	that	has	the	Lu,
Ll,	or	Lt	property,	in	other	words,	a	letter	that	is	not	classified	as	a	modifier	or
"other".

The	Cs	(Surrogate)	property	applies	only	to	characters	in	the	range	U+D800	to
U+DFFF.	Such	characters	are	not	valid	in	UTF-8	strings	(see	RFC	3629)	and	so
cannot	be	tested	by	PCRE,	unless	UTF-8	validity	checking	has	been	turned	off
(see	the	discussion	of	PCRE_NO_UTF8_CHECK	in	the	pcreapi	page).

The	long	synonyms	for	these	properties	that	Perl	supports	(such	as	\p{Letter})
are	not	supported	by	PCRE,	nor	is	it	permitted	to	prefix	any	of	these	properties
with	"Is".

No	character	that	is	in	the	Unicode	table	has	the	Cn	(unassigned)	property.
Instead,	this	property	is	assumed	for	any	code	point	that	is	not	in	the	Unicode
table.

Specifying	caseless	matching	does	not	affect	these	escape	sequences.	For
example,	\p{Lu}	always	matches	only	upper	case	letters.

The	\X	escape	matches	any	number	of	Unicode	characters	that	form	an	extended
Unicode	sequence.	\X	is	equivalent	to

		(?>\PM\pM*)

That	is,	it	matches	a	character	without	the	"mark"	property,	followed	by	zero	or
more	characters	with	the	"mark"	property,	and	treats	the	sequence	as	an	atomic
group	(see	below).	Characters	with	the	"mark"	property	are	typically	accents	that
affect	the	preceding	character.	None	of	them	have	codepoints	less	than	256,	so	in
non-UTF-8	mode	\X	matches	any	one	character.

Matching	characters	by	Unicode	property	is	not	fast,	because	PCRE	has	to
search	a	structure	that	contains	data	for	over	fifteen	thousand	characters.	That	is
why	the	traditional	escape	sequences	such	as	\d	and	\w	do	not	use	Unicode
properties	in	PCRE.

Resetting	the	match	start	

The	escape	sequence	\K,	which	is	a	Perl	5.10	feature,	causes	any	previously
matched	characters	not	to	be	included	in	the	final	matched	sequence.	For
example,	the	pattern:

		foo\Kbar

matches	"foobar",	but	reports	that	it	has	matched	"bar".	This	feature	is	similar	to
a	lookbehind	assertion	(described	below).	However,	in	this	case,	the	part	of	the
subject	before	the	real	match	does	not	have	to	be	of	fixed	length,	as	lookbehind
assertions	do.	The	use	of	\K	does	not	interfere	with	the	setting	of	captured
substrings.	For	example,	when	the	pattern

		(foo)\Kbar

matches	"foobar",	the	first	substring	is	still	set	to	"foo".

Simple	assertions	

The	final	use	of	backslash	is	for	certain	simple	assertions.	An	assertion	specifies

a	condition	that	has	to	be	met	at	a	particular	point	in	a	match,	without	consuming
any	characters	from	the	subject	string.	The	use	of	subpatterns	for	more
complicated	assertions	is	described	below.	The	backslashed	assertions	are:

		\b					matches	at	a	word	boundary

		\B					matches	when	not	at	a	word	boundary

		\A					matches	at	the	start	of	the	subject

		\Z					matches	at	the	end	of	the	subject

										also	matches	before	a	newline	at	the	end	of	the	subject

		\z					matches	only	at	the	end	of	the	subject

		\G					matches	at	the	first	matching	position	in	the	subject

These	assertions	may	not	appear	in	character	classes	(but	note	that	\b	has	a
different	meaning,	namely	the	backspace	character,	inside	a	character	class).

A	word	boundary	is	a	position	in	the	subject	string	where	the	current	character
and	the	previous	character	do	not	both	match	\w	or	\W	(i.e.	one	matches	\w	and
the	other	matches	\W),	or	the	start	or	end	of	the	string	if	the	first	or	last	character
matches	\w,	respectively.

The	\A,	\Z,	and	\z	assertions	differ	from	the	traditional	circumflex	and	dollar
(described	in	the	next	section)	in	that	they	only	ever	match	at	the	very	start	and
end	of	the	subject	string,	whatever	options	are	set.	Thus,	they	are	independent	of
multiline	mode.	These	three	assertions	are	not	affected	by	the	PCRE_NOTBOL
or	PCRE_NOTEOL	options,	which	affect	only	the	behaviour	of	the	circumflex
and	dollar	metacharacters.	However,	if	the	startoffset	argument	of	pcre_exec()	is
non-zero,	indicating	that	matching	is	to	start	at	a	point	other	than	the	beginning
of	the	subject,	\A	can	never	match.	The	difference	between	\Z	and	\z	is	that	\Z
matches	before	a	newline	at	the	end	of	the	string	as	well	as	at	the	very	end,
whereas	\z	matches	only	at	the	end.

The	\G	assertion	is	true	only	when	the	current	matching	position	is	at	the	start
point	of	the	match,	as	specified	by	the	startoffset	argument	of	pcre_exec().	It
differs	from	\A	when	the	value	of	startoffset	is	non-zero.	By	calling	pcre_exec()
multiple	times	with	appropriate	arguments,	you	can	mimic	Perl's	/g	option,	and	it
is	in	this	kind	of	implementation	where	\G	can	be	useful.

Note,	however,	that	PCRE's	interpretation	of	\G,	as	the	start	of	the	current	match,
is	subtly	different	from	Perl's,	which	defines	it	as	the	end	of	the	previous	match.
In	Perl,	these	can	be	different	when	the	previously	matched	string	was	empty.
Because	PCRE	does	just	one	match	at	a	time,	it	cannot	reproduce	this	behaviour.

If	all	the	alternatives	of	a	pattern	begin	with	\G,	the	expression	is	anchored	to	the
starting	match	position,	and	the	"anchored"	flag	is	set	in	the	compiled	regular
expression.

CIRCUMFLEX	AND	DOLLAR

Outside	a	character	class,	in	the	default	matching	mode,	the	circumflex	character
is	an	assertion	that	is	true	only	if	the	current	matching	point	is	at	the	start	of	the
subject	string.	If	the	startoffset	argument	of	pcre_exec()	is	non-zero,	circumflex
can	never	match	if	the	PCRE_MULTILINE	option	is	unset.	Inside	a	character
class,	circumflex	has	an	entirely	different	meaning	(see	below).

Circumflex	need	not	be	the	first	character	of	the	pattern	if	a	number	of
alternatives	are	involved,	but	it	should	be	the	first	thing	in	each	alternative	in
which	it	appears	if	the	pattern	is	ever	to	match	that	branch.	If	all	possible
alternatives	start	with	a	circumflex,	that	is,	if	the	pattern	is	constrained	to	match
only	at	the	start	of	the	subject,	it	is	said	to	be	an	"anchored"	pattern.	(There	are
also	other	constructs	that	can	cause	a	pattern	to	be	anchored.)

A	dollar	character	is	an	assertion	that	is	true	only	if	the	current	matching	point	is
at	the	end	of	the	subject	string,	or	immediately	before	a	newline	at	the	end	of	the
string	(by	default).	Dollar	need	not	be	the	last	character	of	the	pattern	if	a
number	of	alternatives	are	involved,	but	it	should	be	the	last	item	in	any	branch
in	which	it	appears.	Dollar	has	no	special	meaning	in	a	character	class.

The	meaning	of	dollar	can	be	changed	so	that	it	matches	only	at	the	very	end	of
the	string,	by	setting	the	PCRE_DOLLAR_ENDONLY	option	at	compile	time.
This	does	not	affect	the	\Z	assertion.

The	meanings	of	the	circumflex	and	dollar	characters	are	changed	if	the
PCRE_MULTILINE	option	is	set.	When	this	is	the	case,	a	circumflex	matches
immediately	after	internal	newlines	as	well	as	at	the	start	of	the	subject	string.	It
does	not	match	after	a	newline	that	ends	the	string.	A	dollar	matches	before	any
newlines	in	the	string,	as	well	as	at	the	very	end,	when	PCRE_MULTILINE	is
set.	When	newline	is	specified	as	the	two-character	sequence	CRLF,	isolated	CR
and	LF	characters	do	not	indicate	newlines.

For	example,	the	pattern	/^abc$/	matches	the	subject	string	"def\nabc"	(where	\n
represents	a	newline)	in	multiline	mode,	but	not	otherwise.	Consequently,

patterns	that	are	anchored	in	single	line	mode	because	all	branches	start	with	^
are	not	anchored	in	multiline	mode,	and	a	match	for	circumflex	is	possible	when
the	startoffset	argument	of	pcre_exec()	is	non-zero.	The
PCRE_DOLLAR_ENDONLY	option	is	ignored	if	PCRE_MULTILINE	is	set.

Note	that	the	sequences	\A,	\Z,	and	\z	can	be	used	to	match	the	start	and	end	of
the	subject	in	both	modes,	and	if	all	branches	of	a	pattern	start	with	\A	it	is
always	anchored,	whether	or	not	PCRE_MULTILINE	is	set.

FULL	STOP	(PERIOD,	DOT)

Outside	a	character	class,	a	dot	in	the	pattern	matches	any	one	character	in	the
subject	string	except	(by	default)	a	character	that	signifies	the	end	of	a	line.	In
UTF-8	mode,	the	matched	character	may	be	more	than	one	byte	long.

When	a	line	ending	is	defined	as	a	single	character,	dot	never	matches	that
character;	when	the	two-character	sequence	CRLF	is	used,	dot	does	not	match
CR	if	it	is	immediately	followed	by	LF,	but	otherwise	it	matches	all	characters
(including	isolated	CRs	and	LFs).	When	any	Unicode	line	endings	are	being
recognized,	dot	does	not	match	CR	or	LF	or	any	of	the	other	line	ending
characters.

The	behaviour	of	dot	with	regard	to	newlines	can	be	changed.	If	the
PCRE_DOTALL	option	is	set,	a	dot	matches	any	one	character,	without
exception.	If	the	two-character	sequence	CRLF	is	present	in	the	subject	string,	it
takes	two	dots	to	match	it.

The	handling	of	dot	is	entirely	independent	of	the	handling	of	circumflex	and
dollar,	the	only	relationship	being	that	they	both	involve	newlines.	Dot	has	no
special	meaning	in	a	character	class.

MATCHING	A	SINGLE	BYTE

Outside	a	character	class,	the	escape	sequence	\C	matches	any	one	byte,	both	in
and	out	of	UTF-8	mode.	Unlike	a	dot,	it	always	matches	any	line-ending
characters.	The	feature	is	provided	in	Perl	in	order	to	match	individual	bytes	in
UTF-8	mode.	Because	it	breaks	up	UTF-8	characters	into	individual	bytes,	what
remains	in	the	string	may	be	a	malformed	UTF-8	string.	For	this	reason,	the	\C

escape	sequence	is	best	avoided.

PCRE	does	not	allow	\C	to	appear	in	lookbehind	assertions	(described	below),
because	in	UTF-8	mode	this	would	make	it	impossible	to	calculate	the	length	of
the	lookbehind.

SQUARE	BRACKETS	AND	CHARACTER	CLASSES

An	opening	square	bracket	introduces	a	character	class,	terminated	by	a	closing
square	bracket.	A	closing	square	bracket	on	its	own	is	not	special.	If	a	closing
square	bracket	is	required	as	a	member	of	the	class,	it	should	be	the	first	data
character	in	the	class	(after	an	initial	circumflex,	if	present)	or	escaped	with	a
backslash.

A	character	class	matches	a	single	character	in	the	subject.	In	UTF-8	mode,	the
character	may	occupy	more	than	one	byte.	A	matched	character	must	be	in	the
set	of	characters	defined	by	the	class,	unless	the	first	character	in	the	class
definition	is	a	circumflex,	in	which	case	the	subject	character	must	not	be	in	the
set	defined	by	the	class.	If	a	circumflex	is	actually	required	as	a	member	of	the
class,	ensure	it	is	not	the	first	character,	or	escape	it	with	a	backslash.

For	example,	the	character	class	[aeiou]	matches	any	lower	case	vowel,	while
[^aeiou]	matches	any	character	that	is	not	a	lower	case	vowel.	Note	that	a
circumflex	is	just	a	convenient	notation	for	specifying	the	characters	that	are	in
the	class	by	enumerating	those	that	are	not.	A	class	that	starts	with	a	circumflex
is	not	an	assertion:	it	still	consumes	a	character	from	the	subject	string,	and
therefore	it	fails	if	the	current	pointer	is	at	the	end	of	the	string.

In	UTF-8	mode,	characters	with	values	greater	than	255	can	be	included	in	a
class	as	a	literal	string	of	bytes,	or	by	using	the	\x{	escaping	mechanism.

When	caseless	matching	is	set,	any	letters	in	a	class	represent	both	their	upper
case	and	lower	case	versions,	so	for	example,	a	caseless	[aeiou]	matches	"A"	as
well	as	"a",	and	a	caseless	[^aeiou]	does	not	match	"A",	whereas	a	caseful
version	would.	In	UTF-8	mode,	PCRE	always	understands	the	concept	of	case
for	characters	whose	values	are	less	than	128,	so	caseless	matching	is	always
possible.	For	characters	with	higher	values,	the	concept	of	case	is	supported	if
PCRE	is	compiled	with	Unicode	property	support,	but	not	otherwise.	If	you	want
to	use	caseless	matching	for	characters	128	and	above,	you	must	ensure	that

PCRE	is	compiled	with	Unicode	property	support	as	well	as	with	UTF-8
support.

Characters	that	might	indicate	line	breaks	are	never	treated	in	any	special	way
when	matching	character	classes,	whatever	line-ending	sequence	is	in	use,	and
whatever	setting	of	the	PCRE_DOTALL	and	PCRE_MULTILINE	options	is
used.	A	class	such	as	[^a]	always	matches	one	of	these	characters.

The	minus	(hyphen)	character	can	be	used	to	specify	a	range	of	characters	in	a
character	class.	For	example,	[d-m]	matches	any	letter	between	d	and	m,
inclusive.	If	a	minus	character	is	required	in	a	class,	it	must	be	escaped	with	a
backslash	or	appear	in	a	position	where	it	cannot	be	interpreted	as	indicating	a
range,	typically	as	the	first	or	last	character	in	the	class.

It	is	not	possible	to	have	the	literal	character	"]"	as	the	end	character	of	a	range.
A	pattern	such	as	[W-]46]	is	interpreted	as	a	class	of	two	characters	("W"	and	"-
")	followed	by	a	literal	string	"46]",	so	it	would	match	"W46]"	or	"-46]".
However,	if	the	"]"	is	escaped	with	a	backslash	it	is	interpreted	as	the	end	of
range,	so	[W-\]46]	is	interpreted	as	a	class	containing	a	range	followed	by	two
other	characters.	The	octal	or	hexadecimal	representation	of	"]"	can	also	be	used
to	end	a	range.

Ranges	operate	in	the	collating	sequence	of	character	values.	They	can	also	be
used	for	characters	specified	numerically,	for	example	[\000-\037].	In	UTF-8
mode,	ranges	can	include	characters	whose	values	are	greater	than	255,	for
example	[\x{100}-\x{2ff}].

If	a	range	that	includes	letters	is	used	when	caseless	matching	is	set,	it	matches
the	letters	in	either	case.	For	example,	[W-c]	is	equivalent	to	[][\\^_`wxyzabc],
matched	caselessly,	and	in	non-UTF-8	mode,	if	character	tables	for	a	French
locale	are	in	use,	[\xc8-\xcb]	matches	accented	E	characters	in	both	cases.	In
UTF-8	mode,	PCRE	supports	the	concept	of	case	for	characters	with	values
greater	than	128	only	when	it	is	compiled	with	Unicode	property	support.

The	character	types	\d,	\D,	\p,	\P,	\s,	\S,	\w,	and	\W	may	also	appear	in	a
character	class,	and	add	the	characters	that	they	match	to	the	class.	For	example,
[\dABCDEF]	matches	any	hexadecimal	digit.	A	circumflex	can	conveniently	be
used	with	the	upper	case	character	types	to	specify	a	more	restricted	set	of
characters	than	the	matching	lower	case	type.	For	example,	the	class	[^\W_]

matches	any	letter	or	digit,	but	not	underscore.

The	only	metacharacters	that	are	recognized	in	character	classes	are	backslash,
hyphen	(only	where	it	can	be	interpreted	as	specifying	a	range),	circumflex	(only
at	the	start),	opening	square	bracket	(only	when	it	can	be	interpreted	as
introducing	a	POSIX	class	name	-	see	the	next	section),	and	the	terminating
closing	square	bracket.	However,	escaping	other	non-alphanumeric	characters
does	no	harm.

POSIX	CHARACTER	CLASSES

Perl	supports	the	POSIX	notation	for	character	classes.	This	uses	names
enclosed	by	[:	and	:]	within	the	enclosing	square	brackets.	PCRE	also	supports
this	notation.	For	example,

		[01[:alpha:]%]

matches	"0",	"1",	any	alphabetic	character,	or	"%".	The	supported	class	names
are

		alnum				letters	and	digits

		alpha				letters

		ascii				character	codes	0	-	127

		blank				space	or	tab	only

		cntrl				control	characters

		digit				decimal	digits	(same	as	\d)

		graph				printing	characters,	excluding	space

		lower				lower	case	letters

		print				printing	characters,	including	space

		punct				printing	characters,	excluding	letters	and	digits

		space				white	space	(not	quite	the	same	as	\s)

		upper				upper	case	letters

		word					"word"	characters	(same	as	\w)

		xdigit			hexadecimal	digits

The	"space"	characters	are	HT	(9),	LF	(10),	VT	(11),	FF	(12),	CR	(13),	and
space	(32).	Notice	that	this	list	includes	the	VT	character	(code	11).	This	makes
"space"	different	to	\s,	which	does	not	include	VT	(for	Perl	compatibility).

The	name	"word"	is	a	Perl	extension,	and	"blank"	is	a	GNU	extension	from	Perl
5.8.	Another	Perl	extension	is	negation,	which	is	indicated	by	a	^	character	after
the	colon.	For	example,

		[12[:^digit:]]

matches	"1",	"2",	or	any	non-digit.	PCRE	(and	Perl)	also	recognize	the	POSIX
syntax	[.ch.]	and	[=ch=]	where	"ch"	is	a	"collating	element",	but	these	are	not
supported,	and	an	error	is	given	if	they	are	encountered.

In	UTF-8	mode,	characters	with	values	greater	than	128	do	not	match	any	of	the
POSIX	character	classes.

VERTICAL	BAR

Vertical	bar	characters	are	used	to	separate	alternative	patterns.	For	example,	the
pattern

		gilbert|sullivan

matches	either	"gilbert"	or	"sullivan".	Any	number	of	alternatives	may	appear,
and	an	empty	alternative	is	permitted	(matching	the	empty	string).	The	matching
process	tries	each	alternative	in	turn,	from	left	to	right,	and	the	first	one	that
succeeds	is	used.	If	the	alternatives	are	within	a	subpattern	(defined	below),
"succeeds"	means	matching	the	rest	of	the	main	pattern	as	well	as	the	alternative
in	the	subpattern.

INTERNAL	OPTION	SETTING

The	settings	of	the	PCRE_CASELESS,	PCRE_MULTILINE,	PCRE_DOTALL,
and	PCRE_EXTENDED	options	(which	are	Perl-compatible)	can	be	changed
from	within	the	pattern	by	a	sequence	of	Perl	option	letters	enclosed	between	"
(?"	and	")".	The	option	letters	are

		i		for	PCRE_CASELESS

		m		for	PCRE_MULTILINE

		s		for	PCRE_DOTALL

		x		for	PCRE_EXTENDED

For	example,	(?im)	sets	caseless,	multiline	matching.	It	is	also	possible	to	unset
these	options	by	preceding	the	letter	with	a	hyphen,	and	a	combined	setting	and
unsetting	such	as	(?im-sx),	which	sets	PCRE_CASELESS	and
PCRE_MULTILINE	while	unsetting	PCRE_DOTALL	and	PCRE_EXTENDED,
is	also	permitted.	If	a	letter	appears	both	before	and	after	the	hyphen,	the	option

is	unset.

The	PCRE-specific	options	PCRE_DUPNAMES,	PCRE_UNGREEDY,	and
PCRE_EXTRA	can	be	changed	in	the	same	way	as	the	Perl-compatible	options
by	using	the	characters	J,	U	and	X	respectively.

When	an	option	change	occurs	at	top	level	(that	is,	not	inside	subpattern
parentheses),	the	change	applies	to	the	remainder	of	the	pattern	that	follows.	If
the	change	is	placed	right	at	the	start	of	a	pattern,	PCRE	extracts	it	into	the
global	options	(and	it	will	therefore	show	up	in	data	extracted	by	the
pcre_fullinfo()	function).

An	option	change	within	a	subpattern	(see	below	for	a	description	of
subpatterns)	affects	only	that	part	of	the	current	pattern	that	follows	it,	so

		(a(?i)b)c

matches	abc	and	aBc	and	no	other	strings	(assuming	PCRE_CASELESS	is	not
used).	By	this	means,	options	can	be	made	to	have	different	settings	in	different
parts	of	the	pattern.	Any	changes	made	in	one	alternative	do	carry	on	into
subsequent	branches	within	the	same	subpattern.	For	example,

		(a(?i)b|c)

matches	"ab",	"aB",	"c",	and	"C",	even	though	when	matching	"C"	the	first
branch	is	abandoned	before	the	option	setting.	This	is	because	the	effects	of
option	settings	happen	at	compile	time.	There	would	be	some	very	weird
behaviour	otherwise.

Note:	There	are	other	PCRE-specific	options	that	can	be	set	by	the	application
when	the	compile	or	match	functions	are	called.	In	some	cases	the	pattern	can
contain	special	leading	sequences	to	override	what	the	application	has	set	or
what	has	been	defaulted.	Details	are	given	in	the	section	entitled	"Newline
sequences"	above.

SUBPATTERNS

Subpatterns	are	delimited	by	parentheses	(round	brackets),	which	can	be	nested.
Turning	part	of	a	pattern	into	a	subpattern	does	two	things:	

1.	It	localizes	a	set	of	alternatives.	For	example,	the	pattern

		cat(aract|erpillar|)

matches	one	of	the	words	"cat",	"cataract",	or	"caterpillar".	Without	the
parentheses,	it	would	match	"cataract",	"erpillar"	or	an	empty	string.	

2.	It	sets	up	the	subpattern	as	a	capturing	subpattern.	This	means	that,	when	the
whole	pattern	matches,	that	portion	of	the	subject	string	that	matched	the
subpattern	is	passed	back	to	the	caller	via	the	ovector	argument	of	pcre_exec().
Opening	parentheses	are	counted	from	left	to	right	(starting	from	1)	to	obtain
numbers	for	the	capturing	subpatterns.

For	example,	if	the	string	"the	red	king"	is	matched	against	the	pattern

		the	((red|white)	(king|queen))

the	captured	substrings	are	"red	king",	"red",	and	"king",	and	are	numbered	1,	2,
and	3,	respectively.

The	fact	that	plain	parentheses	fulfil	two	functions	is	not	always	helpful.	There
are	often	times	when	a	grouping	subpattern	is	required	without	a	capturing
requirement.	If	an	opening	parenthesis	is	followed	by	a	question	mark	and	a
colon,	the	subpattern	does	not	do	any	capturing,	and	is	not	counted	when
computing	the	number	of	any	subsequent	capturing	subpatterns.	For	example,	if
the	string	"the	white	queen"	is	matched	against	the	pattern

		the	((?:red|white)	(king|queen))

the	captured	substrings	are	"white	queen"	and	"queen",	and	are	numbered	1	and
2.	The	maximum	number	of	capturing	subpatterns	is	65535.

As	a	convenient	shorthand,	if	any	option	settings	are	required	at	the	start	of	a
non-capturing	subpattern,	the	option	letters	may	appear	between	the	"?"	and	the
":".	Thus	the	two	patterns

		(?i:saturday|sunday)

		(?:(?i)saturday|sunday)

match	exactly	the	same	set	of	strings.	Because	alternative	branches	are	tried
from	left	to	right,	and	options	are	not	reset	until	the	end	of	the	subpattern	is
reached,	an	option	setting	in	one	branch	does	affect	subsequent	branches,	so	the

above	patterns	match	"SUNDAY"	as	well	as	"Saturday".

DUPLICATE	SUBPATTERN	NUMBERS

Perl	5.10	introduced	a	feature	whereby	each	alternative	in	a	subpattern	uses	the
same	numbers	for	its	capturing	parentheses.	Such	a	subpattern	starts	with	(?|	and
is	itself	a	non-capturing	subpattern.	For	example,	consider	this	pattern:

		(?|(Sat)ur|(Sun))day

Because	the	two	alternatives	are	inside	a	(?|	group,	both	sets	of	capturing
parentheses	are	numbered	one.	Thus,	when	the	pattern	matches,	you	can	look	at
captured	substring	number	one,	whichever	alternative	matched.	This	construct	is
useful	when	you	want	to	capture	part,	but	not	all,	of	one	of	a	number	of
alternatives.	Inside	a	(?|	group,	parentheses	are	numbered	as	usual,	but	the
number	is	reset	at	the	start	of	each	branch.	The	numbers	of	any	capturing	buffers
that	follow	the	subpattern	start	after	the	highest	number	used	in	any	branch.	The
following	example	is	taken	from	the	Perl	documentation.	The	numbers
underneath	show	in	which	buffer	the	captured	content	will	be	stored.

		#	before		---------------branch-reset-----------	after

		/	(a)		(?|	x	(y)	z	|	(p	(q)	r)	|	(t)	u	(v))	(z)	/x

		#	1												2									2		3								2					3					4

A	backreference	or	a	recursive	call	to	a	numbered	subpattern	always	refers	to	the
first	one	in	the	pattern	with	the	given	number.

An	alternative	approach	to	using	this	"branch	reset"	feature	is	to	use	duplicate
named	subpatterns,	as	described	in	the	next	section.

NAMED	SUBPATTERNS

Identifying	capturing	parentheses	by	number	is	simple,	but	it	can	be	very	hard	to
keep	track	of	the	numbers	in	complicated	regular	expressions.	Furthermore,	if	an
expression	is	modified,	the	numbers	may	change.	To	help	with	this	difficulty,
PCRE	supports	the	naming	of	subpatterns.	This	feature	was	not	added	to	Perl
until	release	5.10.	Python	had	the	feature	earlier,	and	PCRE	introduced	it	at
release	4.0,	using	the	Python	syntax.	PCRE	now	supports	both	the	Perl	and	the
Python	syntax.

In	PCRE,	a	subpattern	can	be	named	in	one	of	three	ways:	(?<name>...)	or
(?'name'...)	as	in	Perl,	or	(?P<name>...)	as	in	Python.	References	to	capturing
parentheses	from	other	parts	of	the	pattern,	such	as	backreferences,	recursion,
and	conditions,	can	be	made	by	name	as	well	as	by	number.

Names	consist	of	up	to	32	alphanumeric	characters	and	underscores.	Named
capturing	parentheses	are	still	allocated	numbers	as	well	as	names,	exactly	as	if
the	names	were	not	present.	The	PCRE	API	provides	function	calls	for
extracting	the	name-to-number	translation	table	from	a	compiled	pattern.	There
is	also	a	convenience	function	for	extracting	a	captured	substring	by	name.

By	default,	a	name	must	be	unique	within	a	pattern,	but	it	is	possible	to	relax	this
constraint	by	setting	the	PCRE_DUPNAMES	option	at	compile	time.	This	can
be	useful	for	patterns	where	only	one	instance	of	the	named	parentheses	can
match.	Suppose	you	want	to	match	the	name	of	a	weekday,	either	as	a	3-letter
abbreviation	or	as	the	full	name,	and	in	both	cases	you	want	to	extract	the
abbreviation.	This	pattern	(ignoring	the	line	breaks)	does	the	job:

		(?<DN>Mon|Fri|Sun)(?:day)?|

		(?<DN>Tue)(?:sday)?|

		(?<DN>Wed)(?:nesday)?|

		(?<DN>Thu)(?:rsday)?|

		(?<DN>Sat)(?:urday)?

There	are	five	capturing	substrings,	but	only	one	is	ever	set	after	a	match.	(An
alternative	way	of	solving	this	problem	is	to	use	a	"branch	reset"	subpattern,	as
described	in	the	previous	section.)

The	convenience	function	for	extracting	the	data	by	name	returns	the	substring
for	the	first	(and	in	this	example,	the	only)	subpattern	of	that	name	that	matched.
This	saves	searching	to	find	which	numbered	subpattern	it	was.	If	you	make	a
reference	to	a	non-unique	named	subpattern	from	elsewhere	in	the	pattern,	the
one	that	corresponds	to	the	lowest	number	is	used.	For	further	details	of	the
interfaces	for	handling	named	subpatterns,	see	the	pcreapi	documentation.

REPETITION

Repetition	is	specified	by	quantifiers,	which	can	follow	any	of	the	following
items:

		a	literal	data	character

		the	dot	metacharacter

		the	\C	escape	sequence

		the	\X	escape	sequence	(in	UTF-8	mode	with	Unicode	properties)

		the	\R	escape	sequence

		an	escape	such	as	\d	that	matches	a	single	character

		a	character	class

		a	back	reference	(see	next	section)

		a	parenthesized	subpattern	(unless	it	is	an	assertion)

The	general	repetition	quantifier	specifies	a	minimum	and	maximum	number	of
permitted	matches,	by	giving	the	two	numbers	in	curly	brackets	(braces),
separated	by	a	comma.	The	numbers	must	be	less	than	65536,	and	the	first	must
be	less	than	or	equal	to	the	second.	For	example:

		z{2,4}

matches	"zz",	"zzz",	or	"zzzz".	A	closing	brace	on	its	own	is	not	a	special
character.	If	the	second	number	is	omitted,	but	the	comma	is	present,	there	is	no
upper	limit;	if	the	second	number	and	the	comma	are	both	omitted,	the	quantifier
specifies	an	exact	number	of	required	matches.	Thus

		[aeiou]{3,}

matches	at	least	3	successive	vowels,	but	may	match	many	more,	while

		\d{8}

matches	exactly	8	digits.	An	opening	curly	bracket	that	appears	in	a	position
where	a	quantifier	is	not	allowed,	or	one	that	does	not	match	the	syntax	of	a
quantifier,	is	taken	as	a	literal	character.	For	example,	{,6}	is	not	a	quantifier,	but
a	literal	string	of	four	characters.

In	UTF-8	mode,	quantifiers	apply	to	UTF-8	characters	rather	than	to	individual
bytes.	Thus,	for	example,	\x{100}{2}	matches	two	UTF-8	characters,	each	of
which	is	represented	by	a	two-byte	sequence.	Similarly,	when	Unicode	property
support	is	available,	\X{3}	matches	three	Unicode	extended	sequences,	each	of
which	may	be	several	bytes	long	(and	they	may	be	of	different	lengths).

The	quantifier	{0}	is	permitted,	causing	the	expression	to	behave	as	if	the
previous	item	and	the	quantifier	were	not	present.

For	convenience,	the	three	most	common	quantifiers	have	single-character
abbreviations:

		*				is	equivalent	to	{0,}

		+				is	equivalent	to	{1,}

		?				is	equivalent	to	{0,1}

It	is	possible	to	construct	infinite	loops	by	following	a	subpattern	that	can	match
no	characters	with	a	quantifier	that	has	no	upper	limit,	for	example:

		(a?)*

Earlier	versions	of	Perl	and	PCRE	used	to	give	an	error	at	compile	time	for	such
patterns.	However,	because	there	are	cases	where	this	can	be	useful,	such
patterns	are	now	accepted,	but	if	any	repetition	of	the	subpattern	does	in	fact
match	no	characters,	the	loop	is	forcibly	broken.

By	default,	the	quantifiers	are	"greedy",	that	is,	they	match	as	much	as	possible
(up	to	the	maximum	number	of	permitted	times),	without	causing	the	rest	of	the
pattern	to	fail.	The	classic	example	of	where	this	gives	problems	is	in	trying	to
match	comments	in	C	programs.	These	appear	between	/*	and	*/	and	within	the
comment,	individual	*	and	/	characters	may	appear.	An	attempt	to	match	C
comments	by	applying	the	pattern

		/*.**/

to	the	string

		/*	first	comment	*/		not	comment		/*	second	comment	*/

fails,	because	it	matches	the	entire	string	owing	to	the	greediness	of	the	.*	item.

However,	if	a	quantifier	is	followed	by	a	question	mark,	it	ceases	to	be	greedy,
and	instead	matches	the	minimum	number	of	times	possible,	so	the	pattern

		/*.*?*/

does	the	right	thing	with	the	C	comments.	The	meaning	of	the	various
quantifiers	is	not	otherwise	changed,	just	the	preferred	number	of	matches.	Do
not	confuse	this	use	of	question	mark	with	its	use	as	a	quantifier	in	its	own	right.
Because	it	has	two	uses,	it	can	sometimes	appear	doubled,	as	in

		\d??\d

which	matches	one	digit	by	preference,	but	can	match	two	if	that	is	the	only	way
the	rest	of	the	pattern	matches.

If	the	PCRE_UNGREEDY	option	is	set	(an	option	that	is	not	available	in	Perl),
the	quantifiers	are	not	greedy	by	default,	but	individual	ones	can	be	made	greedy
by	following	them	with	a	question	mark.	In	other	words,	it	inverts	the	default
behaviour.

When	a	parenthesized	subpattern	is	quantified	with	a	minimum	repeat	count	that
is	greater	than	1	or	with	a	limited	maximum,	more	memory	is	required	for	the
compiled	pattern,	in	proportion	to	the	size	of	the	minimum	or	maximum.

If	a	pattern	starts	with	.*	or	.{0,}	and	the	PCRE_DOTALL	option	(equivalent	to
Perl's	/s)	is	set,	thus	allowing	the	dot	to	match	newlines,	the	pattern	is	implicitly
anchored,	because	whatever	follows	will	be	tried	against	every	character
position	in	the	subject	string,	so	there	is	no	point	in	retrying	the	overall	match	at
any	position	after	the	first.	PCRE	normally	treats	such	a	pattern	as	though	it
were	preceded	by	\A.

In	cases	where	it	is	known	that	the	subject	string	contains	no	newlines,	it	is
worth	setting	PCRE_DOTALL	in	order	to	obtain	this	optimization,	or
alternatively	using	^	to	indicate	anchoring	explicitly.

However,	there	is	one	situation	where	the	optimization	cannot	be	used.	When	.*
is	inside	capturing	parentheses	that	are	the	subject	of	a	backreference	elsewhere
in	the	pattern,	a	match	at	the	start	may	fail	where	a	later	one	succeeds.	Consider,
for	example:

		(.*)abc\1

If	the	subject	is	"xyz123abc123"	the	match	point	is	the	fourth	character.	For	this
reason,	such	a	pattern	is	not	implicitly	anchored.

When	a	capturing	subpattern	is	repeated,	the	value	captured	is	the	substring	that
matched	the	final	iteration.	For	example,	after

		(tweedle[dume]{3}\s*)+

has	matched	"tweedledum	tweedledee"	the	value	of	the	captured	substring	is
"tweedledee".	However,	if	there	are	nested	capturing	subpatterns,	the
corresponding	captured	values	may	have	been	set	in	previous	iterations.	For
example,	after

		/(a|(b))+/

matches	"aba"	the	value	of	the	second	captured	substring	is	"b".

ATOMIC	GROUPING	AND	POSSESSIVE	QUANTIFIERS

With	both	maximizing	("greedy")	and	minimizing	("ungreedy"	or	"lazy")
repetition,	failure	of	what	follows	normally	causes	the	repeated	item	to	be	re-
evaluated	to	see	if	a	different	number	of	repeats	allows	the	rest	of	the	pattern	to
match.	Sometimes	it	is	useful	to	prevent	this,	either	to	change	the	nature	of	the
match,	or	to	cause	it	fail	earlier	than	it	otherwise	might,	when	the	author	of	the
pattern	knows	there	is	no	point	in	carrying	on.

Consider,	for	example,	the	pattern	\d+foo	when	applied	to	the	subject	line

		123456bar

After	matching	all	6	digits	and	then	failing	to	match	"foo",	the	normal	action	of
the	matcher	is	to	try	again	with	only	5	digits	matching	the	\d+	item,	and	then
with	4,	and	so	on,	before	ultimately	failing.	"Atomic	grouping"	(a	term	taken
from	Jeffrey	Friedl's	book)	provides	the	means	for	specifying	that	once	a
subpattern	has	matched,	it	is	not	to	be	re-evaluated	in	this	way.

If	we	use	atomic	grouping	for	the	previous	example,	the	matcher	gives	up
immediately	on	failing	to	match	"foo"	the	first	time.	The	notation	is	a	kind	of
special	parenthesis,	starting	with	(?>	as	in	this	example:

		(?>\d+)foo

This	kind	of	parenthesis	"locks	up"	the	part	of	the	pattern	it	contains	once	it	has
matched,	and	a	failure	further	into	the	pattern	is	prevented	from	backtracking
into	it.	Backtracking	past	it	to	previous	items,	however,	works	as	normal.

An	alternative	description	is	that	a	subpattern	of	this	type	matches	the	string	of
characters	that	an	identical	standalone	pattern	would	match,	if	anchored	at	the
current	point	in	the	subject	string.

Atomic	grouping	subpatterns	are	not	capturing	subpatterns.	Simple	cases	such	as
the	above	example	can	be	thought	of	as	a	maximizing	repeat	that	must	swallow
everything	it	can.	So,	while	both	\d+	and	\d+?	are	prepared	to	adjust	the	number
of	digits	they	match	in	order	to	make	the	rest	of	the	pattern	match,	(?>\d+)	can
only	match	an	entire	sequence	of	digits.

Atomic	groups	in	general	can	of	course	contain	arbitrarily	complicated
subpatterns,	and	can	be	nested.	However,	when	the	subpattern	for	an	atomic
group	is	just	a	single	repeated	item,	as	in	the	example	above,	a	simpler	notation,
called	a	"possessive	quantifier"	can	be	used.	This	consists	of	an	additional	+
character	following	a	quantifier.	Using	this	notation,	the	previous	example	can
be	rewritten	as

		\d++foo

Note	that	a	possessive	quantifier	can	be	used	with	an	entire	group,	for	example:

		(abc|xyz){2,3}+

Possessive	quantifiers	are	always	greedy;	the	setting	of	the	PCRE_UNGREEDY
option	is	ignored.	They	are	a	convenient	notation	for	the	simpler	forms	of	atomic
group.	However,	there	is	no	difference	in	the	meaning	of	a	possessive	quantifier
and	the	equivalent	atomic	group,	though	there	may	be	a	performance	difference;
possessive	quantifiers	should	be	slightly	faster.

The	possessive	quantifier	syntax	is	an	extension	to	the	Perl	5.8	syntax.	Jeffrey
Friedl	originated	the	idea	(and	the	name)	in	the	first	edition	of	his	book.	Mike
McCloskey	liked	it,	so	implemented	it	when	he	built	Sun's	Java	package,	and
PCRE	copied	it	from	there.	It	ultimately	found	its	way	into	Perl	at	release	5.10.

PCRE	has	an	optimization	that	automatically	"possessifies"	certain	simple
pattern	constructs.	For	example,	the	sequence	A+B	is	treated	as	A++B	because
there	is	no	point	in	backtracking	into	a	sequence	of	A's	when	B	must	follow.

When	a	pattern	contains	an	unlimited	repeat	inside	a	subpattern	that	can	itself	be
repeated	an	unlimited	number	of	times,	the	use	of	an	atomic	group	is	the	only
way	to	avoid	some	failing	matches	taking	a	very	long	time	indeed.	The	pattern

		(\D+|<\d+>)*[!?]

matches	an	unlimited	number	of	substrings	that	either	consist	of	non-digits,	or
digits	enclosed	in	<>,	followed	by	either	!	or	?.	When	it	matches,	it	runs	quickly.
However,	if	it	is	applied	to

		aa

it	takes	a	long	time	before	reporting	failure.	This	is	because	the	string	can	be
divided	between	the	internal	\D+	repeat	and	the	external	*	repeat	in	a	large

number	of	ways,	and	all	have	to	be	tried.	(The	example	uses	[!?]	rather	than	a
single	character	at	the	end,	because	both	PCRE	and	Perl	have	an	optimization
that	allows	for	fast	failure	when	a	single	character	is	used.	They	remember	the
last	single	character	that	is	required	for	a	match,	and	fail	early	if	it	is	not	present
in	the	string.)	If	the	pattern	is	changed	so	that	it	uses	an	atomic	group,	like	this:

		((?>\D+)|<\d+>)*[!?]

sequences	of	non-digits	cannot	be	broken,	and	failure	happens	quickly.

BACK	REFERENCES

Outside	a	character	class,	a	backslash	followed	by	a	digit	greater	than	0	(and
possibly	further	digits)	is	a	back	reference	to	a	capturing	subpattern	earlier	(that
is,	to	its	left)	in	the	pattern,	provided	there	have	been	that	many	previous
capturing	left	parentheses.

However,	if	the	decimal	number	following	the	backslash	is	less	than	10,	it	is
always	taken	as	a	back	reference,	and	causes	an	error	only	if	there	are	not	that
many	capturing	left	parentheses	in	the	entire	pattern.	In	other	words,	the
parentheses	that	are	referenced	need	not	be	to	the	left	of	the	reference	for
numbers	less	than	10.	A	"forward	back	reference"	of	this	type	can	make	sense
when	a	repetition	is	involved	and	the	subpattern	to	the	right	has	participated	in
an	earlier	iteration.

It	is	not	possible	to	have	a	numerical	"forward	back	reference"	to	a	subpattern
whose	number	is	10	or	more	using	this	syntax	because	a	sequence	such	as	\50	is
interpreted	as	a	character	defined	in	octal.	See	the	subsection	entitled	"Non-
printing	characters"	above	for	further	details	of	the	handling	of	digits	following	a
backslash.	There	is	no	such	problem	when	named	parentheses	are	used.	A	back
reference	to	any	subpattern	is	possible	using	named	parentheses	(see	below).

Another	way	of	avoiding	the	ambiguity	inherent	in	the	use	of	digits	following	a
backslash	is	to	use	the	\g	escape	sequence,	which	is	a	feature	introduced	in	Perl
5.10.	This	escape	must	be	followed	by	an	unsigned	number	or	a	negative
number,	optionally	enclosed	in	braces.	These	examples	are	all	identical:

		(ring),	\1

		(ring),	\g1

		(ring),	\g{1}

An	unsigned	number	specifies	an	absolute	reference	without	the	ambiguity	that
is	present	in	the	older	syntax.	It	is	also	useful	when	literal	digits	follow	the
reference.	A	negative	number	is	a	relative	reference.	Consider	this	example:

		(abc(def)ghi)\g{-1}

The	sequence	\g{-1}	is	a	reference	to	the	most	recently	started	capturing
subpattern	before	\g,	that	is,	is	it	equivalent	to	\2.	Similarly,	\g{-2}	would	be
equivalent	to	\1.	The	use	of	relative	references	can	be	helpful	in	long	patterns,
and	also	in	patterns	that	are	created	by	joining	together	fragments	that	contain
references	within	themselves.

A	back	reference	matches	whatever	actually	matched	the	capturing	subpattern	in
the	current	subject	string,	rather	than	anything	matching	the	subpattern	itself	(see
"Subpatterns	as	subroutines"	below	for	a	way	of	doing	that).	So	the	pattern

		(sens|respons)e	and	\1ibility

matches	"sense	and	sensibility"	and	"response	and	responsibility",	but	not	"sense
and	responsibility".	If	caseful	matching	is	in	force	at	the	time	of	the	back
reference,	the	case	of	letters	is	relevant.	For	example,

		((?i)rah)\s+\1

matches	"rah	rah"	and	"RAH	RAH",	but	not	"RAH	rah",	even	though	the
original	capturing	subpattern	is	matched	caselessly.

There	are	several	different	ways	of	writing	back	references	to	named
subpatterns.	The	.NET	syntax	\k{name}	and	the	Perl	syntax	\k<name>	or
\k'name'	are	supported,	as	is	the	Python	syntax	(?P=name).	Perl	5.10's	unified
back	reference	syntax,	in	which	\g	can	be	used	for	both	numeric	and	named
references,	is	also	supported.	We	could	rewrite	the	above	example	in	any	of	the
following	ways:

		(?<p1>(?i)rah)\s+\k<p1>

		(?'p1'(?i)rah)\s+\k{p1}

		(?P<p1>(?i)rah)\s+(?P=p1)

		(?<p1>(?i)rah)\s+\g{p1}

A	subpattern	that	is	referenced	by	name	may	appear	in	the	pattern	before	or	after
the	reference.

There	may	be	more	than	one	back	reference	to	the	same	subpattern.	If	a

subpattern	has	not	actually	been	used	in	a	particular	match,	any	back	references
to	it	always	fail.	For	example,	the	pattern

		(a|(bc))\2

always	fails	if	it	starts	to	match	"a"	rather	than	"bc".	Because	there	may	be	many
capturing	parentheses	in	a	pattern,	all	digits	following	the	backslash	are	taken	as
part	of	a	potential	back	reference	number.	If	the	pattern	continues	with	a	digit
character,	some	delimiter	must	be	used	to	terminate	the	back	reference.	If	the
PCRE_EXTENDED	option	is	set,	this	can	be	whitespace.	Otherwise	an	empty
comment	(see	"Comments"	below)	can	be	used.

A	back	reference	that	occurs	inside	the	parentheses	to	which	it	refers	fails	when
the	subpattern	is	first	used,	so,	for	example,	(a\1)	never	matches.	However,	such
references	can	be	useful	inside	repeated	subpatterns.	For	example,	the	pattern

		(a|b\1)+

matches	any	number	of	"a"s	and	also	"aba",	"ababbaa"	etc.	At	each	iteration	of
the	subpattern,	the	back	reference	matches	the	character	string	corresponding	to
the	previous	iteration.	In	order	for	this	to	work,	the	pattern	must	be	such	that	the
first	iteration	does	not	need	to	match	the	back	reference.	This	can	be	done	using
alternation,	as	in	the	example	above,	or	by	a	quantifier	with	a	minimum	of	zero.

ASSERTIONS

An	assertion	is	a	test	on	the	characters	following	or	preceding	the	current
matching	point	that	does	not	actually	consume	any	characters.	The	simple
assertions	coded	as	\b,	\B,	\A,	\G,	\Z,	\z,	^	and	$	are	described	above.

More	complicated	assertions	are	coded	as	subpatterns.	There	are	two	kinds:
those	that	look	ahead	of	the	current	position	in	the	subject	string,	and	those	that
look	behind	it.	An	assertion	subpattern	is	matched	in	the	normal	way,	except	that
it	does	not	cause	the	current	matching	position	to	be	changed.

Assertion	subpatterns	are	not	capturing	subpatterns,	and	may	not	be	repeated,
because	it	makes	no	sense	to	assert	the	same	thing	several	times.	If	any	kind	of
assertion	contains	capturing	subpatterns	within	it,	these	are	counted	for	the
purposes	of	numbering	the	capturing	subpatterns	in	the	whole	pattern.	However,
substring	capturing	is	carried	out	only	for	positive	assertions,	because	it	does	not

make	sense	for	negative	assertions.

Lookahead	assertions	

Lookahead	assertions	start	with	(?=	for	positive	assertions	and	(?!	for	negative
assertions.	For	example,

		\w+(?=;)

matches	a	word	followed	by	a	semicolon,	but	does	not	include	the	semicolon	in
the	match,	and

		foo(?!bar)

matches	any	occurrence	of	"foo"	that	is	not	followed	by	"bar".	Note	that	the
apparently	similar	pattern

		(?!foo)bar

does	not	find	an	occurrence	of	"bar"	that	is	preceded	by	something	other	than
"foo";	it	finds	any	occurrence	of	"bar"	whatsoever,	because	the	assertion	(?!foo)
is	always	true	when	the	next	three	characters	are	"bar".	A	lookbehind	assertion	is
needed	to	achieve	the	other	effect.

If	you	want	to	force	a	matching	failure	at	some	point	in	a	pattern,	the	most
convenient	way	to	do	it	is	with	(?!)	because	an	empty	string	always	matches,	so
an	assertion	that	requires	there	not	to	be	an	empty	string	must	always	fail.

Lookbehind	assertions	

Lookbehind	assertions	start	with	(?<=	for	positive	assertions	and	(?<!	for
negative	assertions.	For	example,

		(?<!foo)bar

does	find	an	occurrence	of	"bar"	that	is	not	preceded	by	"foo".	The	contents	of	a
lookbehind	assertion	are	restricted	such	that	all	the	strings	it	matches	must	have
a	fixed	length.	However,	if	there	are	several	top-level	alternatives,	they	do	not	all
have	to	have	the	same	fixed	length.	Thus

		(?<=bullock|donkey)

is	permitted,	but

		(?<!dogs?|cats?)

causes	an	error	at	compile	time.	Branches	that	match	different	length	strings	are
permitted	only	at	the	top	level	of	a	lookbehind	assertion.	This	is	an	extension
compared	with	Perl	(at	least	for	5.8),	which	requires	all	branches	to	match	the
same	length	of	string.	An	assertion	such	as

		(?<=ab(c|de))

is	not	permitted,	because	its	single	top-level	branch	can	match	two	different
lengths,	but	it	is	acceptable	if	rewritten	to	use	two	top-level	branches:

		(?<=abc|abde)

In	some	cases,	the	Perl	5.10	escape	sequence	\K	(see	above)	can	be	used	instead
of	a	lookbehind	assertion;	this	is	not	restricted	to	a	fixed-length.

The	implementation	of	lookbehind	assertions	is,	for	each	alternative,	to
temporarily	move	the	current	position	back	by	the	fixed	length	and	then	try	to
match.	If	there	are	insufficient	characters	before	the	current	position,	the
assertion	fails.

PCRE	does	not	allow	the	\C	escape	(which	matches	a	single	byte	in	UTF-8
mode)	to	appear	in	lookbehind	assertions,	because	it	makes	it	impossible	to
calculate	the	length	of	the	lookbehind.	The	\X	and	\R	escapes,	which	can	match
different	numbers	of	bytes,	are	also	not	permitted.

Possessive	quantifiers	can	be	used	in	conjunction	with	lookbehind	assertions	to
specify	efficient	matching	at	the	end	of	the	subject	string.	Consider	a	simple
pattern	such	as

		abcd$

when	applied	to	a	long	string	that	does	not	match.	Because	matching	proceeds
from	left	to	right,	PCRE	will	look	for	each	"a"	in	the	subject	and	then	see	if	what
follows	matches	the	rest	of	the	pattern.	If	the	pattern	is	specified	as

		^.*abcd$

the	initial	.*	matches	the	entire	string	at	first,	but	when	this	fails	(because	there	is
no	following	"a"),	it	backtracks	to	match	all	but	the	last	character,	then	all	but

the	last	two	characters,	and	so	on.	Once	again	the	search	for	"a"	covers	the	entire
string,	from	right	to	left,	so	we	are	no	better	off.	However,	if	the	pattern	is
written	as

		^.*+(?<=abcd)

there	can	be	no	backtracking	for	the	.*+	item;	it	can	match	only	the	entire	string.
The	subsequent	lookbehind	assertion	does	a	single	test	on	the	last	four
characters.	If	it	fails,	the	match	fails	immediately.	For	long	strings,	this	approach
makes	a	significant	difference	to	the	processing	time.

Using	multiple	assertions	

Several	assertions	(of	any	sort)	may	occur	in	succession.	For	example,

		(?<=\d{3})(?<!999)foo

matches	"foo"	preceded	by	three	digits	that	are	not	"999".	Notice	that	each	of	the
assertions	is	applied	independently	at	the	same	point	in	the	subject	string.	First
there	is	a	check	that	the	previous	three	characters	are	all	digits,	and	then	there	is
a	check	that	the	same	three	characters	are	not	"999".	This	pattern	does	not	match
"foo"	preceded	by	six	characters,	the	first	of	which	are	digits	and	the	last	three	of
which	are	not	"999".	For	example,	it	doesn't	match	"123abcfoo".	A	pattern	to	do
that	is

		(?<=\d{3}...)(?<!999)foo

This	time	the	first	assertion	looks	at	the	preceding	six	characters,	checking	that
the	first	three	are	digits,	and	then	the	second	assertion	checks	that	the	preceding
three	characters	are	not	"999".

Assertions	can	be	nested	in	any	combination.	For	example,

		(?<=(?<!foo)bar)baz

matches	an	occurrence	of	"baz"	that	is	preceded	by	"bar"	which	in	turn	is	not
preceded	by	"foo",	while

		(?<=\d{3}(?!999)...)foo

is	another	pattern	that	matches	"foo"	preceded	by	three	digits	and	any	three
characters	that	are	not	"999".

CONDITIONAL	SUBPATTERNS

It	is	possible	to	cause	the	matching	process	to	obey	a	subpattern	conditionally	or
to	choose	between	two	alternative	subpatterns,	depending	on	the	result	of	an
assertion,	or	whether	a	previous	capturing	subpattern	matched	or	not.	The	two
possible	forms	of	conditional	subpattern	are

		(?(condition)yes-pattern)

		(?(condition)yes-pattern|no-pattern)

If	the	condition	is	satisfied,	the	yes-pattern	is	used;	otherwise	the	no-pattern	(if
present)	is	used.	If	there	are	more	than	two	alternatives	in	the	subpattern,	a
compile-time	error	occurs.

There	are	four	kinds	of	condition:	references	to	subpatterns,	references	to
recursion,	a	pseudo-condition	called	DEFINE,	and	assertions.

Checking	for	a	used	subpattern	by	number	

If	the	text	between	the	parentheses	consists	of	a	sequence	of	digits,	the	condition
is	true	if	the	capturing	subpattern	of	that	number	has	previously	matched.	An
alternative	notation	is	to	precede	the	digits	with	a	plus	or	minus	sign.	In	this
case,	the	subpattern	number	is	relative	rather	than	absolute.	The	most	recently
opened	parentheses	can	be	referenced	by	(?(-1),	the	next	most	recent	by	(?(-2),
and	so	on.	In	looping	constructs	it	can	also	make	sense	to	refer	to	subsequent
groups	with	constructs	such	as	(?(+2).

Consider	the	following	pattern,	which	contains	non-significant	white	space	to
make	it	more	readable	(assume	the	PCRE_EXTENDED	option)	and	to	divide	it
into	three	parts	for	ease	of	discussion:

		(\()?				[^()]+				(?(1)	\))

The	first	part	matches	an	optional	opening	parenthesis,	and	if	that	character	is
present,	sets	it	as	the	first	captured	substring.	The	second	part	matches	one	or
more	characters	that	are	not	parentheses.	The	third	part	is	a	conditional
subpattern	that	tests	whether	the	first	set	of	parentheses	matched	or	not.	If	they
did,	that	is,	if	subject	started	with	an	opening	parenthesis,	the	condition	is	true,
and	so	the	yes-pattern	is	executed	and	a	closing	parenthesis	is	required.

Otherwise,	since	no-pattern	is	not	present,	the	subpattern	matches	nothing.	In
other	words,	this	pattern	matches	a	sequence	of	non-parentheses,	optionally
enclosed	in	parentheses.

If	you	were	embedding	this	pattern	in	a	larger	one,	you	could	use	a	relative
reference:

		...other	stuff...	(\()?				[^()]+				(?(-1)	\))	...

This	makes	the	fragment	independent	of	the	parentheses	in	the	larger	pattern.

Checking	for	a	used	subpattern	by	name	

Perl	uses	the	syntax	(?(<name>)...)	or	(?('name')...)	to	test	for	a	used	subpattern
by	name.	For	compatibility	with	earlier	versions	of	PCRE,	which	had	this
facility	before	Perl,	the	syntax	(?(name)...)	is	also	recognized.	However,	there	is
a	possible	ambiguity	with	this	syntax,	because	subpattern	names	may	consist
entirely	of	digits.	PCRE	looks	first	for	a	named	subpattern;	if	it	cannot	find	one
and	the	name	consists	entirely	of	digits,	PCRE	looks	for	a	subpattern	of	that
number,	which	must	be	greater	than	zero.	Using	subpattern	names	that	consist
entirely	of	digits	is	not	recommended.

Rewriting	the	above	example	to	use	a	named	subpattern	gives	this:

		(?<OPEN>	\()?				[^()]+				(?(<OPEN>)	\))

Checking	for	pattern	recursion	

If	the	condition	is	the	string	(R),	and	there	is	no	subpattern	with	the	name	R,	the
condition	is	true	if	a	recursive	call	to	the	whole	pattern	or	any	subpattern	has
been	made.	If	digits	or	a	name	preceded	by	ampersand	follow	the	letter	R,	for
example:

		(?(R3)...)	or	(?(R&name;)...)

the	condition	is	true	if	the	most	recent	recursion	is	into	the	subpattern	whose
number	or	name	is	given.	This	condition	does	not	check	the	entire	recursion
stack.

At	"top	level",	all	these	recursion	test	conditions	are	false.	Recursive	patterns	are
described	below.

Defining	subpatterns	for	use	by	reference	only	

If	the	condition	is	the	string	(DEFINE),	and	there	is	no	subpattern	with	the	name
DEFINE,	the	condition	is	always	false.	In	this	case,	there	may	be	only	one
alternative	in	the	subpattern.	It	is	always	skipped	if	control	reaches	this	point	in
the	pattern;	the	idea	of	DEFINE	is	that	it	can	be	used	to	define	"subroutines"	that
can	be	referenced	from	elsewhere.	(The	use	of	"subroutines"	is	described	below.)
For	example,	a	pattern	to	match	an	IPv4	address	could	be	written	like	this
(ignore	whitespace	and	line	breaks):

		(?(DEFINE)	(?<byte>	2[0-4]\d	|	25[0-5]	|	1\d\d	|	[1-9]?\d))

		\b	(?&byte;)	(\.(?&byte;)){3}	\b

The	first	part	of	the	pattern	is	a	DEFINE	group	inside	which	a	another	group
named	"byte"	is	defined.	This	matches	an	individual	component	of	an	IPv4
address	(a	number	less	than	256).	When	matching	takes	place,	this	part	of	the
pattern	is	skipped	because	DEFINE	acts	like	a	false	condition.

The	rest	of	the	pattern	uses	references	to	the	named	group	to	match	the	four	dot-
separated	components	of	an	IPv4	address,	insisting	on	a	word	boundary	at	each
end.

Assertion	conditions	

If	the	condition	is	not	in	any	of	the	above	formats,	it	must	be	an	assertion.	This
may	be	a	positive	or	negative	lookahead	or	lookbehind	assertion.	Consider	this
pattern,	again	containing	non-significant	white	space,	and	with	the	two
alternatives	on	the	second	line:

		(?(?=[^a-z]*[a-z])

		\d{2}-[a-z]{3}-\d{2}		|		\d{2}-\d{2}-\d{2})

The	condition	is	a	positive	lookahead	assertion	that	matches	an	optional
sequence	of	non-letters	followed	by	a	letter.	In	other	words,	it	tests	for	the
presence	of	at	least	one	letter	in	the	subject.	If	a	letter	is	found,	the	subject	is
matched	against	the	first	alternative;	otherwise	it	is	matched	against	the	second.

This	pattern	matches	strings	in	one	of	the	two	forms	dd-aaa-dd	or	dd-dd-dd,
where	aaa	are	letters	and	dd	are	digits.

COMMENTS

The	sequence	(?#	marks	the	start	of	a	comment	that	continues	up	to	the	next
closing	parenthesis.	Nested	parentheses	are	not	permitted.	The	characters	that
make	up	a	comment	play	no	part	in	the	pattern	matching	at	all.

If	the	PCRE_EXTENDED	option	is	set,	an	unescaped	#	character	outside	a
character	class	introduces	a	comment	that	continues	to	immediately	after	the
next	newline	in	the	pattern.

RECURSIVE	PATTERNS

Consider	the	problem	of	matching	a	string	in	parentheses,	allowing	for	unlimited
nested	parentheses.	Without	the	use	of	recursion,	the	best	that	can	be	done	is	to
use	a	pattern	that	matches	up	to	some	fixed	depth	of	nesting.	It	is	not	possible	to
handle	an	arbitrary	nesting	depth.

For	some	time,	Perl	has	provided	a	facility	that	allows	regular	expressions	to
recurse	(amongst	other	things).	It	does	this	by	interpolating	Perl	code	in	the
expression	at	run	time,	and	the	code	can	refer	to	the	expression	itself.	A	Perl
pattern	using	code	interpolation	to	solve	the	parentheses	problem	can	be	created
like	this:

		$re	=	qr{\((?:	(?>[^()]+)	|	(?p{$re}))*	\)}x;

The	(?p{...})	item	interpolates	Perl	code	at	run	time,	and	in	this	case	refers
recursively	to	the	pattern	in	which	it	appears.

Obviously,	PCRE	cannot	support	the	interpolation	of	Perl	code.	Instead,	it
supports	special	syntax	for	recursion	of	the	entire	pattern,	and	also	for	individual
subpattern	recursion.	After	its	introduction	in	PCRE	and	Python,	this	kind	of
recursion	was	introduced	into	Perl	at	release	5.10.

A	special	item	that	consists	of	(?	followed	by	a	number	greater	than	zero	and	a
closing	parenthesis	is	a	recursive	call	of	the	subpattern	of	the	given	number,

provided	that	it	occurs	inside	that	subpattern.	(If	not,	it	is	a	"subroutine"	call,
which	is	described	in	the	next	section.)	The	special	item	(?R)	or	(?0)	is	a
recursive	call	of	the	entire	regular	expression.

In	PCRE	(like	Python,	but	unlike	Perl),	a	recursive	subpattern	call	is	always
treated	as	an	atomic	group.	That	is,	once	it	has	matched	some	of	the	subject
string,	it	is	never	re-entered,	even	if	it	contains	untried	alternatives	and	there	is	a
subsequent	matching	failure.

This	PCRE	pattern	solves	the	nested	parentheses	problem	(assume	the
PCRE_EXTENDED	option	is	set	so	that	white	space	is	ignored):

		\(((?>[^()]+)	|	(?R))*	\)

First	it	matches	an	opening	parenthesis.	Then	it	matches	any	number	of
substrings	which	can	either	be	a	sequence	of	non-parentheses,	or	a	recursive
match	of	the	pattern	itself	(that	is,	a	correctly	parenthesized	substring).	Finally
there	is	a	closing	parenthesis.

If	this	were	part	of	a	larger	pattern,	you	would	not	want	to	recurse	the	entire
pattern,	so	instead	you	could	use	this:

		(\(((?>[^()]+)	|	(?1))*	\))

We	have	put	the	pattern	into	parentheses,	and	caused	the	recursion	to	refer	to
them	instead	of	the	whole	pattern.

In	a	larger	pattern,	keeping	track	of	parenthesis	numbers	can	be	tricky.	This	is
made	easier	by	the	use	of	relative	references.	(A	Perl	5.10	feature.)	Instead	of	(?
1)	in	the	pattern	above	you	can	write	(?-2)	to	refer	to	the	second	most	recently
opened	parentheses	preceding	the	recursion.	In	other	words,	a	negative	number
counts	capturing	parentheses	leftwards	from	the	point	at	which	it	is	encountered.

It	is	also	possible	to	refer	to	subsequently	opened	parentheses,	by	writing
references	such	as	(?+2).	However,	these	cannot	be	recursive	because	the
reference	is	not	inside	the	parentheses	that	are	referenced.	They	are	always
"subroutine"	calls,	as	described	in	the	next	section.

An	alternative	approach	is	to	use	named	parentheses	instead.	The	Perl	syntax	for
this	is	(?&name;);	PCRE's	earlier	syntax	(?P>name)	is	also	supported.	We	could
rewrite	the	above	example	as	follows:

		(?<pn>	\(((?>[^()]+)	|	(?&pn;))*	\))

If	there	is	more	than	one	subpattern	with	the	same	name,	the	earliest	one	is	used.

This	particular	example	pattern	that	we	have	been	looking	at	contains	nested
unlimited	repeats,	and	so	the	use	of	atomic	grouping	for	matching	strings	of	non-
parentheses	is	important	when	applying	the	pattern	to	strings	that	do	not	match.
For	example,	when	this	pattern	is	applied	to

		(aaa()

it	yields	"no	match"	quickly.	However,	if	atomic	grouping	is	not	used,	the	match
runs	for	a	very	long	time	indeed	because	there	are	so	many	different	ways	the	+
and	*	repeats	can	carve	up	the	subject,	and	all	have	to	be	tested	before	failure
can	be	reported.

At	the	end	of	a	match,	the	values	set	for	any	capturing	subpatterns	are	those	from
the	outermost	level	of	the	recursion	at	which	the	subpattern	value	is	set.	If	you
want	to	obtain	intermediate	values,	a	callout	function	can	be	used	(see	below	and
the	pcrecallout	documentation).	If	the	pattern	above	is	matched	against

		(ab(cd)ef)

the	value	for	the	capturing	parentheses	is	"ef",	which	is	the	last	value	taken	on	at
the	top	level.	If	additional	parentheses	are	added,	giving

		\((((?>[^()]+)	|	(?R))*)	\)

					^																								^

					^																								^

the	string	they	capture	is	"ab(cd)ef",	the	contents	of	the	top	level	parentheses.	If
there	are	more	than	15	capturing	parentheses	in	a	pattern,	PCRE	has	to	obtain
extra	memory	to	store	data	during	a	recursion,	which	it	does	by	using
pcre_malloc,	freeing	it	via	pcre_free	afterwards.	If	no	memory	can	be	obtained,
the	match	fails	with	the	PCRE_ERROR_NOMEMORY	error.

Do	not	confuse	the	(?R)	item	with	the	condition	(R),	which	tests	for	recursion.
Consider	this	pattern,	which	matches	text	in	angle	brackets,	allowing	for
arbitrary	nesting.	Only	digits	are	allowed	in	nested	brackets	(that	is,	when
recursing),	whereas	any	characters	are	permitted	at	the	outer	level.

		<	(?:	(?(R)	\d++		|	[^<>]*+)	|	(?R))	*	>

In	this	pattern,	(?(R)	is	the	start	of	a	conditional	subpattern,	with	two	different
alternatives	for	the	recursive	and	non-recursive	cases.	The	(?R)	item	is	the	actual
recursive	call.

SUBPATTERNS	AS	SUBROUTINES

If	the	syntax	for	a	recursive	subpattern	reference	(either	by	number	or	by	name)
is	used	outside	the	parentheses	to	which	it	refers,	it	operates	like	a	subroutine	in
a	programming	language.	The	"called"	subpattern	may	be	defined	before	or	after
the	reference.	A	numbered	reference	can	be	absolute	or	relative,	as	in	these
examples:

		(...(absolute)...)...(?2)...

		(...(relative)...)...(?-1)...

		(...(?+1)...(relative)...

An	earlier	example	pointed	out	that	the	pattern

		(sens|respons)e	and	\1ibility

matches	"sense	and	sensibility"	and	"response	and	responsibility",	but	not	"sense
and	responsibility".	If	instead	the	pattern

		(sens|respons)e	and	(?1)ibility

is	used,	it	does	match	"sense	and	responsibility"	as	well	as	the	other	two	strings.
Another	example	is	given	in	the	discussion	of	DEFINE	above.

Like	recursive	subpatterns,	a	"subroutine"	call	is	always	treated	as	an	atomic
group.	That	is,	once	it	has	matched	some	of	the	subject	string,	it	is	never	re-
entered,	even	if	it	contains	untried	alternatives	and	there	is	a	subsequent
matching	failure.

When	a	subpattern	is	used	as	a	subroutine,	processing	options	such	as	case-
independence	are	fixed	when	the	subpattern	is	defined.	They	cannot	be	changed
for	different	calls.	For	example,	consider	this	pattern:

		(abc)(?i:(?-1))

It	matches	"abcabc".	It	does	not	match	"abcABC"	because	the	change	of
processing	option	does	not	affect	the	called	subpattern.

CALLOUTS

Perl	has	a	feature	whereby	using	the	sequence	(?{...})	causes	arbitrary	Perl	code
to	be	obeyed	in	the	middle	of	matching	a	regular	expression.	This	makes	it
possible,	amongst	other	things,	to	extract	different	substrings	that	match	the
same	pair	of	parentheses	when	there	is	a	repetition.

PCRE	provides	a	similar	feature,	but	of	course	it	cannot	obey	arbitrary	Perl
code.	The	feature	is	called	"callout".	The	caller	of	PCRE	provides	an	external
function	by	putting	its	entry	point	in	the	global	variable	pcre_callout.	By	default,
this	variable	contains	NULL,	which	disables	all	calling	out.

Within	a	regular	expression,	(?C)	indicates	the	points	at	which	the	external
function	is	to	be	called.	If	you	want	to	identify	different	callout	points,	you	can
put	a	number	less	than	256	after	the	letter	C.	The	default	value	is	zero.	For
example,	this	pattern	has	two	callout	points:

		(?C1)abc(?C2)def

If	the	PCRE_AUTO_CALLOUT	flag	is	passed	to	pcre_compile(),	callouts	are
automatically	installed	before	each	item	in	the	pattern.	They	are	all	numbered
255.

During	matching,	when	PCRE	reaches	a	callout	point	(and	pcre_callout	is	set),
the	external	function	is	called.	It	is	provided	with	the	number	of	the	callout,	the
position	in	the	pattern,	and,	optionally,	one	item	of	data	originally	supplied	by
the	caller	of	pcre_exec().	The	callout	function	may	cause	matching	to	proceed,
to	backtrack,	or	to	fail	altogether.	A	complete	description	of	the	interface	to	the
callout	function	is	given	in	the	pcrecallout	documentation.

BACKTRACKING	CONTROL

Perl	5.10	introduced	a	number	of	"Special	Backtracking	Control	Verbs",	which
are	described	in	the	Perl	documentation	as	"experimental	and	subject	to	change
or	removal	in	a	future	version	of	Perl".	It	goes	on	to	say:	"Their	usage	in
production	code	should	be	noted	to	avoid	problems	during	upgrades."	The	same
remarks	apply	to	the	PCRE	features	described	in	this	section.

Since	these	verbs	are	specifically	related	to	backtracking,	they	can	be	used	only
when	the	pattern	is	to	be	matched	using	pcre_exec(),	which	uses	a	backtracking
algorithm.	They	cause	an	error	if	encountered	by	pcre_dfa_exec().

The	new	verbs	make	use	of	what	was	previously	invalid	syntax:	an	opening
parenthesis	followed	by	an	asterisk.	In	Perl,	they	are	generally	of	the	form
(*VERB:ARG)	but	PCRE	does	not	support	the	use	of	arguments,	so	its	general
form	is	just	(*VERB).	Any	number	of	these	verbs	may	occur	in	a	pattern.	There
are	two	kinds:

Verbs	that	act	immediately	

The	following	verbs	act	as	soon	as	they	are	encountered:

			(*ACCEPT)

This	verb	causes	the	match	to	end	successfully,	skipping	the	remainder	of	the
pattern.	When	inside	a	recursion,	only	the	innermost	pattern	is	ended
immediately.	PCRE	differs	from	Perl	in	what	happens	if	the	(*ACCEPT)	is
inside	capturing	parentheses.	In	Perl,	the	data	so	far	is	captured:	in	PCRE	no	data
is	captured.	For	example:

		A(A|B(*ACCEPT)|C)D

This	matches	"AB",	"AAD",	or	"ACD",	but	when	it	matches	"AB",	no	data	is
captured.

		(*FAIL)	or	(*F)

This	verb	causes	the	match	to	fail,	forcing	backtracking	to	occur.	It	is	equivalent
to	(?!)	but	easier	to	read.	The	Perl	documentation	notes	that	it	is	probably	useful
only	when	combined	with	(?{})	or	(??{}).	Those	are,	of	course,	Perl	features	that
are	not	present	in	PCRE.	The	nearest	equivalent	is	the	callout	feature,	as	for
example	in	this	pattern:

		a+(?C)(*FAIL)

A	match	with	the	string	"aaaa"	always	fails,	but	the	callout	is	taken	before	each
backtrack	happens	(in	this	example,	10	times).

Verbs	that	act	after	backtracking	

The	following	verbs	do	nothing	when	they	are	encountered.	Matching	continues
with	what	follows,	but	if	there	is	no	subsequent	match,	a	failure	is	forced.	The
verbs	differ	in	exactly	what	kind	of	failure	occurs.

		(*COMMIT)

This	verb	causes	the	whole	match	to	fail	outright	if	the	rest	of	the	pattern	does
not	match.	Even	if	the	pattern	is	unanchored,	no	further	attempts	to	find	a	match
by	advancing	the	start	point	take	place.	Once	(*COMMIT)	has	been	passed,
pcre_exec()	is	committed	to	finding	a	match	at	the	current	starting	point,	or	not
at	all.	For	example:

		a+(*COMMIT)b

This	matches	"xxaab"	but	not	"aacaab".	It	can	be	thought	of	as	a	kind	of
dynamic	anchor,	or	"I've	started,	so	I	must	finish."

		(*PRUNE)

This	verb	causes	the	match	to	fail	at	the	current	position	if	the	rest	of	the	pattern
does	not	match.	If	the	pattern	is	unanchored,	the	normal	"bumpalong"	advance	to
the	next	starting	character	then	happens.	Backtracking	can	occur	as	usual	to	the
left	of	(*PRUNE),	or	when	matching	to	the	right	of	(*PRUNE),	but	if	there	is	no
match	to	the	right,	backtracking	cannot	cross	(*PRUNE).	In	simple	cases,	the
use	of	(*PRUNE)	is	just	an	alternative	to	an	atomic	group	or	possessive
quantifier,	but	there	are	some	uses	of	(*PRUNE)	that	cannot	be	expressed	in	any
other	way.

		(*SKIP)

This	verb	is	like	(*PRUNE),	except	that	if	the	pattern	is	unanchored,	the
"bumpalong"	advance	is	not	to	the	next	character,	but	to	the	position	in	the
subject	where	(*SKIP)	was	encountered.	(*SKIP)	signifies	that	whatever	text
was	matched	leading	up	to	it	cannot	be	part	of	a	successful	match.	Consider:

		a+(*SKIP)b

If	the	subject	is	"aaaac...",	after	the	first	match	attempt	fails	(starting	at	the	first
character	in	the	string),	the	starting	point	skips	on	to	start	the	next	attempt	at	"c".
Note	that	a	possessive	quantifer	does	not	have	the	same	effect	in	this	example;
although	it	would	suppress	backtracking	during	the	first	match	attempt,	the

second	attempt	would	start	at	the	second	character	instead	of	skipping	on	to	"c".

		(*THEN)

This	verb	causes	a	skip	to	the	next	alternation	if	the	rest	of	the	pattern	does	not
match.	That	is,	it	cancels	pending	backtracking,	but	only	within	the	current
alternation.	Its	name	comes	from	the	observation	that	it	can	be	used	for	a
pattern-based	if-then-else	block:

		(COND1	(*THEN)	FOO	|	COND2	(*THEN)	BAR	|	COND3	(*THEN)	BAZ)	...

If	the	COND1	pattern	matches,	FOO	is	tried	(and	possibly	further	items	after	the
end	of	the	group	if	FOO	succeeds);	on	failure	the	matcher	skips	to	the	second
alternative	and	tries	COND2,	without	backtracking	into	COND1.	If	(*THEN)	is
used	outside	of	any	alternation,	it	acts	exactly	like	(*PRUNE).

SEE	ALSO

pcreapi(3),	pcrecallout(3),	pcrematching(3),	pcre(3).

AUTHOR

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION

Last	updated:	17	September	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcreperform	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

PCRE	PERFORMANCE	

Two	aspects	of	performance	are	discussed	below:	memory	usage	and	processing
time.	The	way	you	express	your	pattern	as	a	regular	expression	can	affect	both	of
them.

MEMORY	USAGE	

Patterns	are	compiled	by	PCRE	into	a	reasonably	efficient	byte	code,	so	that
most	simple	patterns	do	not	use	much	memory.	However,	there	is	one	case
where	memory	usage	can	be	unexpectedly	large.	When	a	parenthesized
subpattern	has	a	quantifier	with	a	minimum	greater	than	1	and/or	a	limited
maximum,	the	whole	subpattern	is	repeated	in	the	compiled	code.	For	example,
the	pattern

		(abc|def){2,4}

is	compiled	as	if	it	were

		(abc|def)(abc|def)((abc|def)(abc|def)?)?

(Technical	aside:	It	is	done	this	way	so	that	backtrack	points	within	each	of	the
repetitions	can	be	independently	maintained.)

For	regular	expressions	whose	quantifiers	use	only	small	numbers,	this	is	not
usually	a	problem.	However,	if	the	numbers	are	large,	and	particularly	if	such
repetitions	are	nested,	the	memory	usage	can	become	an	embarrassment.	For
example,	the	very	simple	pattern

		((ab){1,1000}c){1,3}

uses	51K	bytes	when	compiled.	When	PCRE	is	compiled	with	its	default
internal	pointer	size	of	two	bytes,	the	size	limit	on	a	compiled	pattern	is	64K,
and	this	is	reached	with	the	above	pattern	if	the	outer	repetition	is	increased	from
3	to	4.	PCRE	can	be	compiled	to	use	larger	internal	pointers	and	thus	handle
larger	compiled	patterns,	but	it	is	better	to	try	to	rewrite	your	pattern	to	use	less
memory	if	you	can.

One	way	of	reducing	the	memory	usage	for	such	patterns	is	to	make	use	of
PCRE's	"subroutine"	facility.	Re-writing	the	above	pattern	as

		((ab)(?2){0,999}c)(?1){0,2}

reduces	the	memory	requirements	to	18K,	and	indeed	it	remains	under	20K	even
with	the	outer	repetition	increased	to	100.	However,	this	pattern	is	not	exactly
equivalent,	because	the	"subroutine"	calls	are	treated	as	atomic	groups	into
which	there	can	be	no	backtracking	if	there	is	a	subsequent	matching	failure.
Therefore,	PCRE	cannot	do	this	kind	of	rewriting	automatically.	Furthermore,
there	is	a	noticeable	loss	of	speed	when	executing	the	modified	pattern.
Nevertheless,	if	the	atomic	grouping	is	not	a	problem	and	the	loss	of	speed	is
acceptable,	this	kind	of	rewriting	will	allow	you	to	process	patterns	that	PCRE
cannot	otherwise	handle.

PROCESSING	TIME	

Certain	items	in	regular	expression	patterns	are	processed	more	efficiently	than
others.	It	is	more	efficient	to	use	a	character	class	like	[aeiou]	than	a	set	of
single-character	alternatives	such	as	(a|e|i|o|u).	In	general,	the	simplest
construction	that	provides	the	required	behaviour	is	usually	the	most	efficient.
Jeffrey	Friedl's	book	contains	a	lot	of	useful	general	discussion	about	optimizing
regular	expressions	for	efficient	performance.	This	document	contains	a	few
observations	about	PCRE.

Using	Unicode	character	properties	(the	\p,	\P,	and	\X	escapes)	is	slow,	because
PCRE	has	to	scan	a	structure	that	contains	data	for	over	fifteen	thousand
characters	whenever	it	needs	a	character's	property.	If	you	can	find	an	alternative
pattern	that	does	not	use	character	properties,	it	will	probably	be	faster.

When	a	pattern	begins	with	.*	not	in	parentheses,	or	in	parentheses	that	are	not
the	subject	of	a	backreference,	and	the	PCRE_DOTALL	option	is	set,	the	pattern

is	implicitly	anchored	by	PCRE,	since	it	can	match	only	at	the	start	of	a	subject
string.	However,	if	PCRE_DOTALL	is	not	set,	PCRE	cannot	make	this
optimization,	because	the	.	metacharacter	does	not	then	match	a	newline,	and	if
the	subject	string	contains	newlines,	the	pattern	may	match	from	the	character
immediately	following	one	of	them	instead	of	from	the	very	start.	For	example,
the	pattern

		.*second

matches	the	subject	"first\nand	second"	(where	\n	stands	for	a	newline
character),	with	the	match	starting	at	the	seventh	character.	In	order	to	do	this,
PCRE	has	to	retry	the	match	starting	after	every	newline	in	the	subject.

If	you	are	using	such	a	pattern	with	subject	strings	that	do	not	contain	newlines,
the	best	performance	is	obtained	by	setting	PCRE_DOTALL,	or	starting	the
pattern	with	^.*	or	^.*?	to	indicate	explicit	anchoring.	That	saves	PCRE	from
having	to	scan	along	the	subject	looking	for	a	newline	to	restart	at.

Beware	of	patterns	that	contain	nested	indefinite	repeats.	These	can	take	a	long
time	to	run	when	applied	to	a	string	that	does	not	match.	Consider	the	pattern
fragment

		^(a+)*

This	can	match	"aaaa"	in	16	different	ways,	and	this	number	increases	very
rapidly	as	the	string	gets	longer.	(The	*	repeat	can	match	0,	1,	2,	3,	or	4	times,
and	for	each	of	those	cases	other	than	0	or	4,	the	+	repeats	can	match	different
numbers	of	times.)	When	the	remainder	of	the	pattern	is	such	that	the	entire
match	is	going	to	fail,	PCRE	has	in	principle	to	try	every	possible	variation,	and
this	can	take	an	extremely	long	time,	even	for	relatively	short	strings.

An	optimization	catches	some	of	the	more	simple	cases	such	as

		(a+)*b

where	a	literal	character	follows.	Before	embarking	on	the	standard	matching
procedure,	PCRE	checks	that	there	is	a	"b"	later	in	the	subject	string,	and	if	there
is	not,	it	fails	the	match	immediately.	However,	when	there	is	no	following	literal
this	optimization	cannot	be	used.	You	can	see	the	difference	by	comparing	the
behaviour	of

		(a+)*\d

with	the	pattern	above.	The	former	gives	a	failure	almost	instantly	when	applied
to	a	whole	line	of	"a"	characters,	whereas	the	latter	takes	an	appreciable	time
with	strings	longer	than	about	20	characters.

In	many	cases,	the	solution	to	this	kind	of	performance	issue	is	to	use	an	atomic
group	or	a	possessive	quantifier.

AUTHOR	

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION	

Last	updated:	06	March	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcreposix	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS	OF	POSIX	API
DESCRIPTION
COMPILING	A	PATTERN
MATCHING	NEWLINE	CHARACTERS
MATCHING	A	PATTERN
ERROR	MESSAGES
MEMORY	USAGE
AUTHOR
REVISION

SYNOPSIS	OF	POSIX	API

#include	<pcreposix.h>

int	regcomp(regex_t	*preg,	const	char	*pattern,	int	cflags);

int	regexec(regex_t	*preg,	const	char	*string,	size_t	nmatch,	regmatch_t
pmatch[],	int	eflags);

size_t	regerror(int	errcode,	const	regex_t	*preg,	char	*errbuf,	size_t
errbuf_size);

void	regfree(regex_t	*preg);

DESCRIPTION

This	set	of	functions	provides	a	POSIX-style	API	to	the	PCRE	regular
expression	package.	See	the	pcreapi	documentation	for	a	description	of	PCRE's

native	API,	which	contains	much	additional	functionality.

The	functions	described	here	are	just	wrapper	functions	that	ultimately	call	the
PCRE	native	API.	Their	prototypes	are	defined	in	the	pcreposix.h	header	file,
and	on	Unix	systems	the	library	itself	is	called	pcreposix.a,	so	can	be	accessed
by	adding	-lpcreposix	to	the	command	for	linking	an	application	that	uses	them.
Because	the	POSIX	functions	call	the	native	ones,	it	is	also	necessary	to	add	-
lpcre.

I	have	implemented	only	those	option	bits	that	can	be	reasonably	mapped	to
PCRE	native	options.	In	addition,	the	option	REG_EXTENDED	is	defined	with
the	value	zero.	This	has	no	effect,	but	since	programs	that	are	written	to	the
POSIX	interface	often	use	it,	this	makes	it	easier	to	slot	in	PCRE	as	a
replacement	library.	Other	POSIX	options	are	not	even	defined.

When	PCRE	is	called	via	these	functions,	it	is	only	the	API	that	is	POSIX-like	in
style.	The	syntax	and	semantics	of	the	regular	expressions	themselves	are	still
those	of	Perl,	subject	to	the	setting	of	various	PCRE	options,	as	described	below.
"POSIX-like	in	style"	means	that	the	API	approximates	to	the	POSIX	definition;
it	is	not	fully	POSIX-compatible,	and	in	multi-byte	encoding	domains	it	is
probably	even	less	compatible.

The	header	for	these	functions	is	supplied	as	pcreposix.h	to	avoid	any	potential
clash	with	other	POSIX	libraries.	It	can,	of	course,	be	renamed	or	aliased	as
regex.h,	which	is	the	"correct"	name.	It	provides	two	structure	types,	regex_t	for
compiled	internal	forms,	and	regmatch_t	for	returning	captured	substrings.	It
also	defines	some	constants	whose	names	start	with	"REG_";	these	are	used	for
setting	options	and	identifying	error	codes.

COMPILING	A	PATTERN

The	function	regcomp()	is	called	to	compile	a	pattern	into	an	internal	form.	The
pattern	is	a	C	string	terminated	by	a	binary	zero,	and	is	passed	in	the	argument
pattern.	The	preg	argument	is	a	pointer	to	a	regex_t	structure	that	is	used	as	a
base	for	storing	information	about	the	compiled	regular	expression.

The	argument	cflags	is	either	zero,	or	contains	one	or	more	of	the	bits	defined	by
the	following	macros:

		REG_DOTALL

The	PCRE_DOTALL	option	is	set	when	the	regular	expression	is	passed	for
compilation	to	the	native	function.	Note	that	REG_DOTALL	is	not	part	of	the
POSIX	standard.

		REG_ICASE

The	PCRE_CASELESS	option	is	set	when	the	regular	expression	is	passed	for
compilation	to	the	native	function.

		REG_NEWLINE

The	PCRE_MULTILINE	option	is	set	when	the	regular	expression	is	passed	for
compilation	to	the	native	function.	Note	that	this	does	not	mimic	the	defined
POSIX	behaviour	for	REG_NEWLINE	(see	the	following	section).

		REG_NOSUB

The	PCRE_NO_AUTO_CAPTURE	option	is	set	when	the	regular	expression	is
passed	for	compilation	to	the	native	function.	In	addition,	when	a	pattern	that	is
compiled	with	this	flag	is	passed	to	regexec()	for	matching,	the	nmatch	and
pmatch	arguments	are	ignored,	and	no	captured	strings	are	returned.

		REG_UTF8

The	PCRE_UTF8	option	is	set	when	the	regular	expression	is	passed	for
compilation	to	the	native	function.	This	causes	the	pattern	itself	and	all	data
strings	used	for	matching	it	to	be	treated	as	UTF-8	strings.	Note	that	REG_UTF8
is	not	part	of	the	POSIX	standard.

In	the	absence	of	these	flags,	no	options	are	passed	to	the	native	function.	This
means	the	the	regex	is	compiled	with	PCRE	default	semantics.	In	particular,	the
way	it	handles	newline	characters	in	the	subject	string	is	the	Perl	way,	not	the
POSIX	way.	Note	that	setting	PCRE_MULTILINE	has	only	some	of	the	effects
specified	for	REG_NEWLINE.	It	does	not	affect	the	way	newlines	are	matched
by	.	(they	aren't)	or	by	a	negative	class	such	as	[^a]	(they	are).

The	yield	of	regcomp()	is	zero	on	success,	and	non-zero	otherwise.	The	preg
structure	is	filled	in	on	success,	and	one	member	of	the	structure	is	public:
re_nsub	contains	the	number	of	capturing	subpatterns	in	the	regular	expression.
Various	error	codes	are	defined	in	the	header	file.

MATCHING	NEWLINE	CHARACTERS

This	area	is	not	simple,	because	POSIX	and	Perl	take	different	views	of	things.	It
is	not	possible	to	get	PCRE	to	obey	POSIX	semantics,	but	then	PCRE	was	never
intended	to	be	a	POSIX	engine.	The	following	table	lists	the	different
possibilities	for	matching	newline	characters	in	PCRE:

																										Default			Change	with

		.	matches	newline										no					PCRE_DOTALL

		newline	matches	[^a]							yes				not	changeable

		$	matches	\n	at	end								yes				PCRE_DOLLARENDONLY

		$	matches	\n	in	middle					no					PCRE_MULTILINE

		^	matches	\n	in	middle					no					PCRE_MULTILINE

This	is	the	equivalent	table	for	POSIX:

																										Default			Change	with

		.	matches	newline										yes				REG_NEWLINE

		newline	matches	[^a]							yes				REG_NEWLINE

		$	matches	\n	at	end								no					REG_NEWLINE

		$	matches	\n	in	middle					no					REG_NEWLINE

		^	matches	\n	in	middle					no					REG_NEWLINE

PCRE's	behaviour	is	the	same	as	Perl's,	except	that	there	is	no	equivalent	for
PCRE_DOLLAR_ENDONLY	in	Perl.	In	both	PCRE	and	Perl,	there	is	no	way	to
stop	newline	from	matching	[^a].

The	default	POSIX	newline	handling	can	be	obtained	by	setting
PCRE_DOTALL	and	PCRE_DOLLAR_ENDONLY,	but	there	is	no	way	to
make	PCRE	behave	exactly	as	for	the	REG_NEWLINE	action.

MATCHING	A	PATTERN

The	function	regexec()	is	called	to	match	a	compiled	pattern	preg	against	a
given	string,	which	is	terminated	by	a	zero	byte,	subject	to	the	options	in	eflags.
These	can	be:

		REG_NOTBOL

The	PCRE_NOTBOL	option	is	set	when	calling	the	underlying	PCRE	matching

function.

		REG_NOTEOL

The	PCRE_NOTEOL	option	is	set	when	calling	the	underlying	PCRE	matching
function.

If	the	pattern	was	compiled	with	the	REG_NOSUB	flag,	no	data	about	any
matched	strings	is	returned.	The	nmatch	and	pmatch	arguments	of	regexec()	are
ignored.

Otherwise,the	portion	of	the	string	that	was	matched,	and	also	any	captured
substrings,	are	returned	via	the	pmatch	argument,	which	points	to	an	array	of
nmatch	structures	of	type	regmatch_t,	containing	the	members	rm_so	and
rm_eo.	These	contain	the	offset	to	the	first	character	of	each	substring	and	the
offset	to	the	first	character	after	the	end	of	each	substring,	respectively.	The	0th
element	of	the	vector	relates	to	the	entire	portion	of	string	that	was	matched;
subsequent	elements	relate	to	the	capturing	subpatterns	of	the	regular	expression.
Unused	entries	in	the	array	have	both	structure	members	set	to	-1.

A	successful	match	yields	a	zero	return;	various	error	codes	are	defined	in	the
header	file,	of	which	REG_NOMATCH	is	the	"expected"	failure	code.

ERROR	MESSAGES

The	regerror()	function	maps	a	non-zero	errorcode	from	either	regcomp()	or
regexec()	to	a	printable	message.	If	preg	is	not	NULL,	the	error	should	have
arisen	from	the	use	of	that	structure.	A	message	terminated	by	a	binary	zero	is
placed	in	errbuf.	The	length	of	the	message,	including	the	zero,	is	limited	to
errbuf_size.	The	yield	of	the	function	is	the	size	of	buffer	needed	to	hold	the
whole	message.

MEMORY	USAGE

Compiling	a	regular	expression	causes	memory	to	be	allocated	and	associated
with	the	preg	structure.	The	function	regfree()	frees	all	such	memory,	after
which	preg	may	no	longer	be	used	as	a	compiled	expression.

AUTHOR

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION

Last	updated:	06	March	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcreprecompile	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SAVING	AND	RE-USING	PRECOMPILED	PCRE	PATTERNS
SAVING	A	COMPILED	PATTERN
RE-USING	A	PRECOMPILED	PATTERN
COMPATIBILITY	WITH	DIFFERENT	PCRE	RELEASES
AUTHOR
REVISION

SAVING	AND	RE-USING	PRECOMPILED	PCRE	PATTERNS

If	you	are	running	an	application	that	uses	a	large	number	of	regular	expression
patterns,	it	may	be	useful	to	store	them	in	a	precompiled	form	instead	of	having
to	compile	them	every	time	the	application	is	run.	If	you	are	not	using	any
private	character	tables	(see	the	pcre_maketables()	documentation),	this	is
relatively	straightforward.	If	you	are	using	private	tables,	it	is	a	little	bit	more
complicated.

If	you	save	compiled	patterns	to	a	file,	you	can	copy	them	to	a	different	host	and
run	them	there.	This	works	even	if	the	new	host	has	the	opposite	endianness	to
the	one	on	which	the	patterns	were	compiled.	There	may	be	a	small	performance
penalty,	but	it	should	be	insignificant.	However,	compiling	regular	expressions
with	one	version	of	PCRE	for	use	with	a	different	version	is	not	guaranteed	to
work	and	may	cause	crashes.

SAVING	A	COMPILED	PATTERN

The	value	returned	by	pcre_compile()	points	to	a	single	block	of	memory	that
holds	the	compiled	pattern	and	associated	data.	You	can	find	the	length	of	this

block	in	bytes	by	calling	pcre_fullinfo()	with	an	argument	of
PCRE_INFO_SIZE.	You	can	then	save	the	data	in	any	appropriate	manner.	Here
is	sample	code	that	compiles	a	pattern	and	writes	it	to	a	file.	It	assumes	that	the
variable	fd	refers	to	a	file	that	is	open	for	output:

		int	erroroffset,	rc,	size;

		char	*error;

		pcre	*re;

		re	=	pcre_compile("my	pattern",	0,	&error;,	&erroroffset;,	NULL);

		if	(re	==	NULL)	{	...	handle	errors	...	}

		rc	=	pcre_fullinfo(re,	NULL,	PCRE_INFO_SIZE,	&size;);

		if	(rc	<	0)	{	...	handle	errors	...	}

		rc	=	fwrite(re,	1,	size,	fd);

		if	(rc	!=	size)	{	...	handle	errors	...	}

In	this	example,	the	bytes	that	comprise	the	compiled	pattern	are	copied	exactly.
Note	that	this	is	binary	data	that	may	contain	any	of	the	256	possible	byte	values.
On	systems	that	make	a	distinction	between	binary	and	non-binary	data,	be	sure
that	the	file	is	opened	for	binary	output.

If	you	want	to	write	more	than	one	pattern	to	a	file,	you	will	have	to	devise	a
way	of	separating	them.	For	binary	data,	preceding	each	pattern	with	its	length	is
probably	the	most	straightforward	approach.	Another	possibility	is	to	write	out
the	data	in	hexadecimal	instead	of	binary,	one	pattern	to	a	line.

Saving	compiled	patterns	in	a	file	is	only	one	possible	way	of	storing	them	for
later	use.	They	could	equally	well	be	saved	in	a	database,	or	in	the	memory	of
some	daemon	process	that	passes	them	via	sockets	to	the	processes	that	want
them.

If	the	pattern	has	been	studied,	it	is	also	possible	to	save	the	study	data	in	a
similar	way	to	the	compiled	pattern	itself.	When	studying	generates	additional
information,	pcre_study()	returns	a	pointer	to	a	pcre_extra	data	block.	Its
format	is	defined	in	the	section	on	matching	a	pattern	in	the	pcreapi
documentation.	The	study_data	field	points	to	the	binary	study	data,	and	this	is
what	you	must	save	(not	the	pcre_extra	block	itself).	The	length	of	the	study
data	can	be	obtained	by	calling	pcre_fullinfo()	with	an	argument	of
PCRE_INFO_STUDYSIZE.	Remember	to	check	that	pcre_study()	did	return	a
non-NULL	value	before	trying	to	save	the	study	data.

RE-USING	A	PRECOMPILED	PATTERN

Re-using	a	precompiled	pattern	is	straightforward.	Having	reloaded	it	into	main
memory,	you	pass	its	pointer	to	pcre_exec()	or	pcre_dfa_exec()	in	the	usual
way.	This	should	work	even	on	another	host,	and	even	if	that	host	has	the
opposite	endianness	to	the	one	where	the	pattern	was	compiled.

However,	if	you	passed	a	pointer	to	custom	character	tables	when	the	pattern
was	compiled	(the	tableptr	argument	of	pcre_compile()),	you	must	now	pass	a
similar	pointer	to	pcre_exec()	or	pcre_dfa_exec(),	because	the	value	saved	with
the	compiled	pattern	will	obviously	be	nonsense.	A	field	in	a	pcre_extra()	block
is	used	to	pass	this	data,	as	described	in	the	section	on	matching	a	pattern	in	the
pcreapi	documentation.

If	you	did	not	provide	custom	character	tables	when	the	pattern	was	compiled,
the	pointer	in	the	compiled	pattern	is	NULL,	which	causes	pcre_exec()	to	use
PCRE's	internal	tables.	Thus,	you	do	not	need	to	take	any	special	action	at	run
time	in	this	case.

If	you	saved	study	data	with	the	compiled	pattern,	you	need	to	create	your	own
pcre_extra	data	block	and	set	the	study_data	field	to	point	to	the	reloaded	study
data.	You	must	also	set	the	PCRE_EXTRA_STUDY_DATA	bit	in	the	flags	field
to	indicate	that	study	data	is	present.	Then	pass	the	pcre_extra	block	to
pcre_exec()	or	pcre_dfa_exec()	in	the	usual	way.

COMPATIBILITY	WITH	DIFFERENT	PCRE	RELEASES

In	general,	it	is	safest	to	recompile	all	saved	patterns	when	you	update	to	a	new
PCRE	release,	though	not	all	updates	actually	require	this.	Recompiling	is
definitely	needed	for	release	7.2.

AUTHOR

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION

Last	updated:	13	June	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcresample	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

PCRE	SAMPLE	PROGRAM	

A	simple,	complete	demonstration	program,	to	get	you	started	with	using	PCRE,
is	supplied	in	the	file	pcredemo.c	in	the	PCRE	distribution.

The	program	compiles	the	regular	expression	that	is	its	first	argument,	and
matches	it	against	the	subject	string	in	its	second	argument.	No	PCRE	options
are	set,	and	default	character	tables	are	used.	If	matching	succeeds,	the	program
outputs	the	portion	of	the	subject	that	matched,	together	with	the	contents	of	any
captured	substrings.

If	the	-g	option	is	given	on	the	command	line,	the	program	then	goes	on	to	check
for	further	matches	of	the	same	regular	expression	in	the	same	subject	string.
The	logic	is	a	little	bit	tricky	because	of	the	possibility	of	matching	an	empty
string.	Comments	in	the	code	explain	what	is	going	on.

The	demonstration	program	is	automatically	built	if	you	use	"./configure;make"
to	build	PCRE.	Otherwise,	if	PCRE	is	installed	in	the	standard	include	and
library	directories	for	your	system,	you	should	be	able	to	compile	the
demonstration	program	using	this	command:

		gcc	-o	pcredemo	pcredemo.c	-lpcre

If	PCRE	is	installed	elsewhere,	you	may	need	to	add	additional	options	to	the
command	line.	For	example,	on	a	Unix-like	system	that	has	PCRE	installed	in
/usr/local,	you	can	compile	the	demonstration	program	using	a	command	like
this:

		gcc	-o	pcredemo	-I/usr/local/include	pcredemo.c	-L/usr/local/lib	-lpcre

Once	you	have	compiled	the	demonstration	program,	you	can	run	simple	tests
like	this:

		./pcredemo	'cat|dog'	'the	cat	sat	on	the	mat'

		./pcredemo	-g	'cat|dog'	'the	dog	sat	on	the	cat'

Note	that	there	is	a	much	more	comprehensive	test	program,	called	pcretest,
which	supports	many	more	facilities	for	testing	regular	expressions	and	the
PCRE	library.	The	pcredemo	program	is	provided	as	a	simple	coding	example.

On	some	operating	systems	(e.g.	Solaris),	when	PCRE	is	not	installed	in	the
standard	library	directory,	you	may	get	an	error	like	this	when	you	try	to	run
pcredemo:

		ld.so.1:	a.out:	fatal:	libpcre.so.0:	open	failed:	No	such	file	or	directory

This	is	caused	by	the	way	shared	library	support	works	on	those	systems.	You
need	to	add

		-R/usr/local/lib

(for	example)	to	the	compile	command	to	get	round	this	problem.

AUTHOR	

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION	

Last	updated:	13	June	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcrestack	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

PCRE	DISCUSSION	OF	STACK	USAGE	

When	you	call	pcre_exec(),	it	makes	use	of	an	internal	function	called	match().
This	calls	itself	recursively	at	branch	points	in	the	pattern,	in	order	to	remember
the	state	of	the	match	so	that	it	can	back	up	and	try	a	different	alternative	if	the
first	one	fails.	As	matching	proceeds	deeper	and	deeper	into	the	tree	of
possibilities,	the	recursion	depth	increases.

Not	all	calls	of	match()	increase	the	recursion	depth;	for	an	item	such	as	a*	it
may	be	called	several	times	at	the	same	level,	after	matching	different	numbers
of	a's.	Furthermore,	in	a	number	of	cases	where	the	result	of	the	recursive	call
would	immediately	be	passed	back	as	the	result	of	the	current	call	(a	"tail
recursion"),	the	function	is	just	restarted	instead.

The	pcre_dfa_exec()	function	operates	in	an	entirely	different	way,	and	hardly
uses	recursion	at	all.	The	limit	on	its	complexity	is	the	amount	of	workspace	it	is
given.	The	comments	that	follow	do	NOT	apply	to	pcre_dfa_exec();	they	are
relevant	only	for	pcre_exec().

You	can	set	limits	on	the	number	of	times	that	match()	is	called,	both	in	total
and	recursively.	If	the	limit	is	exceeded,	an	error	occurs.	For	details,	see	the
section	on	extra	data	for	pcre_exec()	in	the	pcreapi	documentation.

Each	time	that	match()	is	actually	called	recursively,	it	uses	memory	from	the
process	stack.	For	certain	kinds	of	pattern	and	data,	very	large	amounts	of	stack
may	be	needed,	despite	the	recognition	of	"tail	recursion".	You	can	often	reduce
the	amount	of	recursion,	and	therefore	the	amount	of	stack	used,	by	modifying
the	pattern	that	is	being	matched.	Consider,	for	example,	this	pattern:

		([^<]|<(?!inet))+

It	matches	from	wherever	it	starts	until	it	encounters	"<inet"	or	the	end	of	the
data,	and	is	the	kind	of	pattern	that	might	be	used	when	processing	an	XML	file.
Each	iteration	of	the	outer	parentheses	matches	either	one	character	that	is	not	"
<"	or	a	"<"	that	is	not	followed	by	"inet".	However,	each	time	a	parenthesis	is
processed,	a	recursion	occurs,	so	this	formulation	uses	a	stack	frame	for	each
matched	character.	For	a	long	string,	a	lot	of	stack	is	required.	Consider	now	this
rewritten	pattern,	which	matches	exactly	the	same	strings:

		([^<]++|<(?!inet))+

This	uses	very	much	less	stack,	because	runs	of	characters	that	do	not	contain	"
<"	are	"swallowed"	in	one	item	inside	the	parentheses.	Recursion	happens	only
when	a	"<"	character	that	is	not	followed	by	"inet"	is	encountered	(and	we
assume	this	is	relatively	rare).	A	possessive	quantifier	is	used	to	stop	any
backtracking	into	the	runs	of	non-"<"	characters,	but	that	is	not	related	to	stack
usage.

This	example	shows	that	one	way	of	avoiding	stack	problems	when	matching
long	subject	strings	is	to	write	repeated	parenthesized	subpatterns	to	match	more
than	one	character	whenever	possible.

In	environments	where	stack	memory	is	constrained,	you	might	want	to	compile
PCRE	to	use	heap	memory	instead	of	stack	for	remembering	back-up	points.
This	makes	it	run	a	lot	more	slowly,	however.	Details	of	how	to	do	this	are	given
in	the	pcrebuild	documentation.	When	built	in	this	way,	instead	of	using	the
stack,	PCRE	obtains	and	frees	memory	by	calling	the	functions	that	are	pointed
to	by	the	pcre_stack_malloc	and	pcre_stack_free	variables.	By	default,	these
point	to	malloc()	and	free(),	but	you	can	replace	the	pointers	to	cause	PCRE	to
use	your	own	functions.	Since	the	block	sizes	are	always	the	same,	and	are
always	freed	in	reverse	order,	it	may	be	possible	to	implement	customized
memory	handlers	that	are	more	efficient	than	the	standard	functions.

In	Unix-like	environments,	there	is	not	often	a	problem	with	the	stack	unless
very	long	strings	are	involved,	though	the	default	limit	on	stack	size	varies	from
system	to	system.	Values	from	8Mb	to	64Mb	are	common.	You	can	find	your
default	limit	by	running	the	command:

		ulimit	-s

Unfortunately,	the	effect	of	running	out	of	stack	is	often	SIGSEGV,	though
sometimes	a	more	explicit	error	message	is	given.	You	can	normally	increase	the
limit	on	stack	size	by	code	such	as	this:

		struct	rlimit	rlim;

		getrlimit(RLIMIT_STACK,	&rlim;);

		rlim.rlim_cur	=	100*1024*1024;

		setrlimit(RLIMIT_STACK,	&rlim;);

This	reads	the	current	limits	(soft	and	hard)	using	getrlimit(),	then	attempts	to
increase	the	soft	limit	to	100Mb	using	setrlimit().	You	must	do	this	before
calling	pcre_exec().

PCRE	has	an	internal	counter	that	can	be	used	to	limit	the	depth	of	recursion,
and	thus	cause	pcre_exec()	to	give	an	error	code	before	it	runs	out	of	stack.	By
default,	the	limit	is	very	large,	and	unlikely	ever	to	operate.	It	can	be	changed
when	PCRE	is	built,	and	it	can	also	be	set	when	pcre_exec()	is	called.	For
details	of	these	interfaces,	see	the	pcrebuild	and	pcreapi	documentation.

As	a	very	rough	rule	of	thumb,	you	should	reckon	on	about	500	bytes	per
recursion.	Thus,	if	you	want	to	limit	your	stack	usage	to	8Mb,	you	should	set	the
limit	at	16000	recursions.	A	64Mb	stack,	on	the	other	hand,	can	support	around
128000	recursions.	The	pcretest	test	program	has	a	command	line	option	(-S)
that	can	be	used	to	increase	the	size	of	its	stack.

AUTHOR	

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION	

Last	updated:	05	June	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcresyntax	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

PCRE	REGULAR	EXPRESSION	SYNTAX	SUMMARY
QUOTING
CHARACTERS
CHARACTER	TYPES
GENERAL	CATEGORY	PROPERTY	CODES	FOR	\p	and	\P
SCRIPT	NAMES	FOR	\p	AND	\P
CHARACTER	CLASSES
QUANTIFIERS
ANCHORS	AND	SIMPLE	ASSERTIONS
MATCH	POINT	RESET
ALTERNATION
CAPTURING
ATOMIC	GROUPS
COMMENT
OPTION	SETTING
LOOKAHEAD	AND	LOOKBEHIND	ASSERTIONS
BACKREFERENCES
SUBROUTINE	REFERENCES	(POSSIBLY	RECURSIVE)
CONDITIONAL	PATTERNS
BACKTRACKING	CONTROL
NEWLINE	CONVENTIONS
WHAT	\R	MATCHES
CALLOUTS
SEE	ALSO
AUTHOR
REVISION

PCRE	REGULAR	EXPRESSION	SYNTAX	SUMMARY

The	full	syntax	and	semantics	of	the	regular	expressions	that	are	supported	by
PCRE	are	described	in	the	pcrepattern	documentation.	This	document	contains
just	a	quick-reference	summary	of	the	syntax.

QUOTING

		\x									where	x	is	non-alphanumeric	is	a	literal	x

		\Q...\E				treat	enclosed	characters	as	literal

CHARACTERS

		\a									alarm,	that	is,	the	BEL	character	(hex	07)

		\cx								"control-x",	where	x	is	any	character

		\e									escape	(hex	1B)

		\f									formfeed	(hex	0C)

		\n									newline	(hex	0A)

		\r									carriage	return	(hex	0D)

		\t									tab	(hex	09)

		\ddd							character	with	octal	code	ddd,	or	backreference

		\xhh							character	with	hex	code	hh

		\x{hhh..}		character	with	hex	code	hhh..

CHARACTER	TYPES

		.										any	character	except	newline;

															in	dotall	mode,	any	character	whatsoever

		\C									one	byte,	even	in	UTF-8	mode	(best	avoided)

		\d									a	decimal	digit

		\D									a	character	that	is	not	a	decimal	digit

		\h									a	horizontal	whitespace	character

		\H									a	character	that	is	not	a	horizontal	whitespace	character

		\p{xx}					a	character	with	the	xx	property

		\P{xx}					a	character	without	the	xx	property

		\R									a	newline	sequence

		\s									a	whitespace	character

		\S									a	character	that	is	not	a	whitespace	character

		\v									a	vertical	whitespace	character

		\V									a	character	that	is	not	a	vertical	whitespace	character

		\w									a	"word"	character

		\W									a	"non-word"	character

		\X									an	extended	Unicode	sequence

In	PCRE,	\d,	\D,	\s,	\S,	\w,	and	\W	recognize	only	ASCII	characters.

GENERAL	CATEGORY	PROPERTY	CODES	FOR	\p	and	\P

		C										Other

		Cc									Control

		Cf									Format

		Cn									Unassigned

		Co									Private	use

		Cs									Surrogate

		L										Letter

		Ll									Lower	case	letter

		Lm									Modifier	letter

		Lo									Other	letter

		Lt									Title	case	letter

		Lu									Upper	case	letter

		L&									Ll,	Lu,	or	Lt

		M										Mark

		Mc									Spacing	mark

		Me									Enclosing	mark

		Mn									Non-spacing	mark

		N										Number

		Nd									Decimal	number

		Nl									Letter	number

		No									Other	number

		P										Punctuation

		Pc									Connector	punctuation

		Pd									Dash	punctuation

		Pe									Close	punctuation

		Pf									Final	punctuation

		Pi									Initial	punctuation

		Po									Other	punctuation

		Ps									Open	punctuation

		S										Symbol

		Sc									Currency	symbol

		Sk									Modifier	symbol

		Sm									Mathematical	symbol

		So									Other	symbol

		Z										Separator

		Zl									Line	separator

		Zp									Paragraph	separator

		Zs									Space	separator

SCRIPT	NAMES	FOR	\p	AND	\P

Arabic,	Armenian,	Balinese,	Bengali,	Bopomofo,	Braille,	Buginese,	Buhid,
Canadian_Aboriginal,	Cherokee,	Common,	Coptic,	Cuneiform,	Cypriot,
Cyrillic,	Deseret,	Devanagari,	Ethiopic,	Georgian,	Glagolitic,	Gothic,	Greek,
Gujarati,	Gurmukhi,	Han,	Hangul,	Hanunoo,	Hebrew,	Hiragana,	Inherited,
Kannada,	Katakana,	Kharoshthi,	Khmer,	Lao,	Latin,	Limbu,	Linear_B,
Malayalam,	Mongolian,	Myanmar,	New_Tai_Lue,	Nko,	Ogham,	Old_Italic,
Old_Persian,	Oriya,	Osmanya,	Phags_Pa,	Phoenician,	Runic,	Shavian,	Sinhala,
Syloti_Nagri,	Syriac,	Tagalog,	Tagbanwa,	Tai_Le,	Tamil,	Telugu,	Thaana,	Thai,
Tibetan,	Tifinagh,	Ugaritic,	Yi.

CHARACTER	CLASSES

		[...]							positive	character	class

		[^...]						negative	character	class

		[x-y]							range	(can	be	used	for	hex	characters)

		[[:xxx:]]			positive	POSIX	named	set

		[[^:xxx:]]		negative	POSIX	named	set

		alnum							alphanumeric

		alpha							alphabetic

		ascii							0-127

		blank							space	or	tab

		cntrl							control	character

		digit							decimal	digit

		graph							printing,	excluding	space

		lower							lower	case	letter

		print							printing,	including	space

		punct							printing,	excluding	alphanumeric

		space							whitespace

		upper							upper	case	letter

		word								same	as	\w

		xdigit						hexadecimal	digit

In	PCRE,	POSIX	character	set	names	recognize	only	ASCII	characters.	You	can
use	\Q...\E	inside	a	character	class.

QUANTIFIERS

		?											0	or	1,	greedy

		?+										0	or	1,	possessive

		??										0	or	1,	lazy

		*											0	or	more,	greedy

		*+										0	or	more,	possessive

		*?										0	or	more,	lazy

		+											1	or	more,	greedy

		++										1	or	more,	possessive

		+?										1	or	more,	lazy

		{n}									exactly	n

		{n,m}							at	least	n,	no	more	than	m,	greedy

		{n,m}+						at	least	n,	no	more	than	m,	possessive

		{n,m}?						at	least	n,	no	more	than	m,	lazy

		{n,}								n	or	more,	greedy

		{n,}+							n	or	more,	possessive

		{n,}?							n	or	more,	lazy

ANCHORS	AND	SIMPLE	ASSERTIONS

		\b										word	boundary

		\B										not	a	word	boundary

		^											start	of	subject

															also	after	internal	newline	in	multiline	mode

		\A										start	of	subject

		$											end	of	subject

															also	before	newline	at	end	of	subject

															also	before	internal	newline	in	multiline	mode

		\Z										end	of	subject

															also	before	newline	at	end	of	subject

		\z										end	of	subject

		\G										first	matching	position	in	subject

MATCH	POINT	RESET

		\K										reset	start	of	match

ALTERNATION

		expr|expr|expr...

CAPTURING

		(...)										capturing	group

		(?<name>...)			named	capturing	group	(Perl)

		(?'name'...)			named	capturing	group	(Perl)

		(?P<name>...)		named	capturing	group	(Python)

		(?:...)								non-capturing	group

		(?|...)								non-capturing	group;	reset	group	numbers	for

																		capturing	groups	in	each	alternative

ATOMIC	GROUPS

		(?>...)								atomic,	non-capturing	group

COMMENT

		(?#....)							comment	(not	nestable)

OPTION	SETTING

		(?i)											caseless

		(?J)											allow	duplicate	names

		(?m)											multiline

		(?s)											single	line	(dotall)

		(?U)											default	ungreedy	(lazy)

		(?x)											extended	(ignore	white	space)

		(?-...)								unset	option(s)

LOOKAHEAD	AND	LOOKBEHIND	ASSERTIONS

		(?=...)								positive	look	ahead

		(?!...)								negative	look	ahead

		(?<=...)							positive	look	behind

		(?<!...)							negative	look	behind

Each	top-level	branch	of	a	look	behind	must	be	of	a	fixed	length.

BACKREFERENCES

		\n													reference	by	number	(can	be	ambiguous)

		\gn												reference	by	number

		\g{n}										reference	by	number

		\g{-n}									relative	reference	by	number

		\k<name>							reference	by	name	(Perl)

		\k'name'							reference	by	name	(Perl)

		\g{name}							reference	by	name	(Perl)

		\k{name}							reference	by	name	(.NET)

		(?P=name)						reference	by	name	(Python)

SUBROUTINE	REFERENCES	(POSSIBLY	RECURSIVE)

		(?R)											recurse	whole	pattern

		(?n)											call	subpattern	by	absolute	number

		(?+n)										call	subpattern	by	relative	number

		(?-n)										call	subpattern	by	relative	number

		(?&name;)							call	subpattern	by	name	(Perl)

		(?P>name)						call	subpattern	by	name	(Python)

CONDITIONAL	PATTERNS

		(?(condition)yes-pattern)

		(?(condition)yes-pattern|no-pattern)

		(?(n)...							absolute	reference	condition

		(?(+n)...						relative	reference	condition

		(?(-n)...						relative	reference	condition

		(?(<name>)...		named	reference	condition	(Perl)

		(?('name')...		named	reference	condition	(Perl)

		(?(name)...				named	reference	condition	(PCRE)

		(?(R)...							overall	recursion	condition

		(?(Rn)...						specific	group	recursion	condition

		(?(R&name;)...		specific	recursion	condition

		(?(DEFINE)...		define	subpattern	for	reference

		(?(assert)...		assertion	condition

BACKTRACKING	CONTROL

The	following	act	immediately	they	are	reached:

		(*ACCEPT)						force	successful	match

		(*FAIL)								force	backtrack;	synonym	(*F)

The	following	act	only	when	a	subsequent	match	failure	causes	a	backtrack	to
reach	them.	They	all	force	a	match	failure,	but	they	differ	in	what	happens
afterwards.	Those	that	advance	the	start-of-match	point	do	so	only	if	the	pattern
is	not	anchored.

		(*COMMIT)						overall	failure,	no	advance	of	starting	point

		(*PRUNE)							advance	to	next	starting	character

		(*SKIP)								advance	start	to	current	matching	position

		(*THEN)								local	failure,	backtrack	to	next	alternation

NEWLINE	CONVENTIONS

These	are	recognized	only	at	the	very	start	of	the	pattern	or	after	a	(*BSR_...)
option.

		(*CR)

		(*LF)

		(*CRLF)

		(*ANYCRLF)

		(*ANY)

WHAT	\R	MATCHES

These	are	recognized	only	at	the	very	start	of	the	pattern	or	after	a	(*...)	option
that	sets	the	newline	convention.

		(*BSR_ANYCRLF)

		(*BSR_UNICODE)

CALLOUTS

		(?C)						callout

		(?Cn)					callout	with	data	n

SEE	ALSO

pcrepattern(3),	pcreapi(3),	pcrecallout(3),	pcrematching(3),	pcre(3).

AUTHOR

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION

Last	updated:	21	September	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcretest	man	page
Return	to	the	PCRE	index	page.

This	page	is	part	of	the	PCRE	HTML	documentation.	It	was	generated
automatically	from	the	original	man	page.	If	there	is	any	nonsense	in	it,	please
consult	the	man	page,	in	case	the	conversion	went	wrong.	

SYNOPSIS
OPTIONS
DESCRIPTION
PATTERN	MODIFIERS
DATA	LINES
THE	ALTERNATIVE	MATCHING	FUNCTION
DEFAULT	OUTPUT	FROM	PCRETEST
OUTPUT	FROM	THE	ALTERNATIVE	MATCHING	FUNCTION
RESTARTING	AFTER	A	PARTIAL	MATCH
CALLOUTS
NON-PRINTING	CHARACTERS
SAVING	AND	RELOADING	COMPILED	PATTERNS
SEE	ALSO
AUTHOR
REVISION

SYNOPSIS

pcretest	[options]	[source]	[destination]	

pcretest	was	written	as	a	test	program	for	the	PCRE	regular	expression	library
itself,	but	it	can	also	be	used	for	experimenting	with	regular	expressions.	This
document	describes	the	features	of	the	test	program;	for	details	of	the	regular
expressions	themselves,	see	the	pcrepattern	documentation.	For	details	of	the
PCRE	library	function	calls	and	their	options,	see	the	pcreapi	documentation.

OPTIONS

-b	Behave	as	if	each	regex	has	the	/B	(show	bytecode)	modifier;	the	internal
form	is	output	after	compilation.

-C	Output	the	version	number	of	the	PCRE	library,	and	all	available	information
about	the	optional	features	that	are	included,	and	then	exit.

-d	Behave	as	if	each	regex	has	the	/D	(debug)	modifier;	the	internal	form	and
information	about	the	compiled	pattern	is	output	after	compilation;	-d	is
equivalent	to	-b	-i.

-dfa	Behave	as	if	each	data	line	contains	the	\D	escape	sequence;	this	causes	the
alternative	matching	function,	pcre_dfa_exec(),	to	be	used	instead	of	the
standard	pcre_exec()	function	(more	detail	is	given	below).

-help	Output	a	brief	summary	these	options	and	then	exit.

-i	Behave	as	if	each	regex	has	the	/I	modifier;	information	about	the	compiled
pattern	is	given	after	compilation.

-m	Output	the	size	of	each	compiled	pattern	after	it	has	been	compiled.	This	is
equivalent	to	adding	/M	to	each	regular	expression.	For	compatibility	with
earlier	versions	of	pcretest,	-s	is	a	synonym	for	-m.

-o	osize	Set	the	number	of	elements	in	the	output	vector	that	is	used	when	calling
pcre_exec()	or	pcre_dfa_exec()	to	be	osize.	The	default	value	is	45,	which	is
enough	for	14	capturing	subexpressions	for	pcre_exec()	or	22	different	matches
for	pcre_dfa_exec().	The	vector	size	can	be	changed	for	individual	matching
calls	by	including	\O	in	the	data	line	(see	below).

-p	Behave	as	if	each	regex	has	the	/P	modifier;	the	POSIX	wrapper	API	is	used
to	call	PCRE.	None	of	the	other	options	has	any	effect	when	-p	is	set.

-q	Do	not	output	the	version	number	of	pcretest	at	the	start	of	execution.

-S	size	On	Unix-like	systems,	set	the	size	of	the	runtime	stack	to	size	megabytes.

-t	Run	each	compile,	study,	and	match	many	times	with	a	timer,	and	output
resulting	time	per	compile	or	match	(in	milliseconds).	Do	not	set	-m	with	-t,
because	you	will	then	get	the	size	output	a	zillion	times,	and	the	timing	will	be
distorted.	You	can	control	the	number	of	iterations	that	are	used	for	timing	by

following	-t	with	a	number	(as	a	separate	item	on	the	command	line).	For
example,	"-t	1000"	would	iterate	1000	times.	The	default	is	to	iterate	500000
times.

-tm	This	is	like	-t	except	that	it	times	only	the	matching	phase,	not	the	compile
or	study	phases.

DESCRIPTION

If	pcretest	is	given	two	filename	arguments,	it	reads	from	the	first	and	writes	to
the	second.	If	it	is	given	only	one	filename	argument,	it	reads	from	that	file	and
writes	to	stdout.	Otherwise,	it	reads	from	stdin	and	writes	to	stdout,	and	prompts
for	each	line	of	input,	using	"re>"	to	prompt	for	regular	expressions,	and	"data>"
to	prompt	for	data	lines.

The	program	handles	any	number	of	sets	of	input	on	a	single	input	file.	Each	set
starts	with	a	regular	expression,	and	continues	with	any	number	of	data	lines	to
be	matched	against	the	pattern.

Each	data	line	is	matched	separately	and	independently.	If	you	want	to	do	multi-
line	matches,	you	have	to	use	the	\n	escape	sequence	(or	\r	or	\r\n,	etc.,
depending	on	the	newline	setting)	in	a	single	line	of	input	to	encode	the	newline
sequences.	There	is	no	limit	on	the	length	of	data	lines;	the	input	buffer	is
automatically	extended	if	it	is	too	small.

An	empty	line	signals	the	end	of	the	data	lines,	at	which	point	a	new	regular
expression	is	read.	The	regular	expressions	are	given	enclosed	in	any	non-
alphanumeric	delimiters	other	than	backslash,	for	example:

		/(a|bc)x+yz/

White	space	before	the	initial	delimiter	is	ignored.	A	regular	expression	may	be
continued	over	several	input	lines,	in	which	case	the	newline	characters	are
included	within	it.	It	is	possible	to	include	the	delimiter	within	the	pattern	by
escaping	it,	for	example

		/abc\/def/

If	you	do	so,	the	escape	and	the	delimiter	form	part	of	the	pattern,	but	since
delimiters	are	always	non-alphanumeric,	this	does	not	affect	its	interpretation.	If

the	terminating	delimiter	is	immediately	followed	by	a	backslash,	for	example,

		/abc/\

then	a	backslash	is	added	to	the	end	of	the	pattern.	This	is	done	to	provide	a	way
of	testing	the	error	condition	that	arises	if	a	pattern	finishes	with	a	backslash,
because

		/abc\/

is	interpreted	as	the	first	line	of	a	pattern	that	starts	with	"abc/",	causing	pcretest
to	read	the	next	line	as	a	continuation	of	the	regular	expression.

PATTERN	MODIFIERS

A	pattern	may	be	followed	by	any	number	of	modifiers,	which	are	mostly	single
characters.	Following	Perl	usage,	these	are	referred	to	below	as,	for	example,
"the	/i	modifier",	even	though	the	delimiter	of	the	pattern	need	not	always	be	a
slash,	and	no	slash	is	used	when	writing	modifiers.	Whitespace	may	appear
between	the	final	pattern	delimiter	and	the	first	modifier,	and	between	the
modifiers	themselves.

The	/i,	/m,	/s,	and	/x	modifiers	set	the	PCRE_CASELESS,	PCRE_MULTILINE,
PCRE_DOTALL,	or	PCRE_EXTENDED	options,	respectively,	when
pcre_compile()	is	called.	These	four	modifier	letters	have	the	same	effect	as
they	do	in	Perl.	For	example:

		/caseless/i

The	following	table	shows	additional	modifiers	for	setting	PCRE	options	that	do
not	correspond	to	anything	in	Perl:

		/A														PCRE_ANCHORED

		/C														PCRE_AUTO_CALLOUT

		/E														PCRE_DOLLAR_ENDONLY

		/f														PCRE_FIRSTLINE

		/J														PCRE_DUPNAMES

		/N														PCRE_NO_AUTO_CAPTURE

		/U														PCRE_UNGREEDY

		/X														PCRE_EXTRA

		/<cr>											PCRE_NEWLINE_CR

		/<lf>											PCRE_NEWLINE_LF

		/<crlf>									PCRE_NEWLINE_CRLF

		/<anycrlf>						PCRE_NEWLINE_ANYCRLF

		/<any>										PCRE_NEWLINE_ANY

		/<bsr_anycrlf>		PCRE_BSR_ANYCRLF

		/<bsr_unicode>		PCRE_BSR_UNICODE

Those	specifying	line	ending	sequences	are	literal	strings	as	shown,	but	the
letters	can	be	in	either	case.	This	example	sets	multiline	matching	with	CRLF	as
the	line	ending	sequence:

		/^abc/m<crlf>

Details	of	the	meanings	of	these	PCRE	options	are	given	in	the	pcreapi
documentation.

Finding	all	matches	in	a	string	

Searching	for	all	possible	matches	within	each	subject	string	can	be	requested	by
the	/g	or	/G	modifier.	After	finding	a	match,	PCRE	is	called	again	to	search	the
remainder	of	the	subject	string.	The	difference	between	/g	and	/G	is	that	the
former	uses	the	startoffset	argument	to	pcre_exec()	to	start	searching	at	a	new
point	within	the	entire	string	(which	is	in	effect	what	Perl	does),	whereas	the
latter	passes	over	a	shortened	substring.	This	makes	a	difference	to	the	matching
process	if	the	pattern	begins	with	a	lookbehind	assertion	(including	\b	or	\B).

If	any	call	to	pcre_exec()	in	a	/g	or	/G	sequence	matches	an	empty	string,	the
next	call	is	done	with	the	PCRE_NOTEMPTY	and	PCRE_ANCHORED	flags
set	in	order	to	search	for	another,	non-empty,	match	at	the	same	point.	If	this
second	match	fails,	the	start	offset	is	advanced	by	one,	and	the	normal	match	is
retried.	This	imitates	the	way	Perl	handles	such	cases	when	using	the	/g	modifier
or	the	split()	function.

Other	modifiers	

There	are	yet	more	modifiers	for	controlling	the	way	pcretest	operates.

The	/+	modifier	requests	that	as	well	as	outputting	the	substring	that	matched	the
entire	pattern,	pcretest	should	in	addition	output	the	remainder	of	the	subject
string.	This	is	useful	for	tests	where	the	subject	contains	multiple	copies	of	the
same	substring.

The	/B	modifier	is	a	debugging	feature.	It	requests	that	pcretest	output	a
representation	of	the	compiled	byte	code	after	compilation.	Normally	this
information	contains	length	and	offset	values;	however,	if	/Z	is	also	present,	this
data	is	replaced	by	spaces.	This	is	a	special	feature	for	use	in	the	automatic	test
scripts;	it	ensures	that	the	same	output	is	generated	for	different	internal	link
sizes.

The	/L	modifier	must	be	followed	directly	by	the	name	of	a	locale,	for	example,

		/pattern/Lfr_FR

For	this	reason,	it	must	be	the	last	modifier.	The	given	locale	is	set,
pcre_maketables()	is	called	to	build	a	set	of	character	tables	for	the	locale,	and
this	is	then	passed	to	pcre_compile()	when	compiling	the	regular	expression.
Without	an	/L	modifier,	NULL	is	passed	as	the	tables	pointer;	that	is,	/L	applies
only	to	the	expression	on	which	it	appears.

The	/I	modifier	requests	that	pcretest	output	information	about	the	compiled
pattern	(whether	it	is	anchored,	has	a	fixed	first	character,	and	so	on).	It	does	this
by	calling	pcre_fullinfo()	after	compiling	a	pattern.	If	the	pattern	is	studied,	the
results	of	that	are	also	output.

The	/D	modifier	is	a	PCRE	debugging	feature,	and	is	equivalent	to	/BI,	that	is,
both	the	/B	and	the	/I	modifiers.

The	/F	modifier	causes	pcretest	to	flip	the	byte	order	of	the	fields	in	the
compiled	pattern	that	contain	2-byte	and	4-byte	numbers.	This	facility	is	for
testing	the	feature	in	PCRE	that	allows	it	to	execute	patterns	that	were	compiled
on	a	host	with	a	different	endianness.	This	feature	is	not	available	when	the
POSIX	interface	to	PCRE	is	being	used,	that	is,	when	the	/P	pattern	modifier	is
specified.	See	also	the	section	about	saving	and	reloading	compiled	patterns
below.

The	/S	modifier	causes	pcre_study()	to	be	called	after	the	expression	has	been
compiled,	and	the	results	used	when	the	expression	is	matched.

The	/M	modifier	causes	the	size	of	memory	block	used	to	hold	the	compiled
pattern	to	be	output.

The	/P	modifier	causes	pcretest	to	call	PCRE	via	the	POSIX	wrapper	API	rather

than	its	native	API.	When	this	is	done,	all	other	modifiers	except	/i,	/m,	and	/+
are	ignored.	REG_ICASE	is	set	if	/i	is	present,	and	REG_NEWLINE	is	set	if	/m
is	present.	The	wrapper	functions	force	PCRE_DOLLAR_ENDONLY	always,
and	PCRE_DOTALL	unless	REG_NEWLINE	is	set.

The	/8	modifier	causes	pcretest	to	call	PCRE	with	the	PCRE_UTF8	option	set.
This	turns	on	support	for	UTF-8	character	handling	in	PCRE,	provided	that	it
was	compiled	with	this	support	enabled.	This	modifier	also	causes	any	non-
printing	characters	in	output	strings	to	be	printed	using	the	\x{hh...}	notation	if
they	are	valid	UTF-8	sequences.

If	the	/?	modifier	is	used	with	/8,	it	causes	pcretest	to	call	pcre_compile()	with
the	PCRE_NO_UTF8_CHECK	option,	to	suppress	the	checking	of	the	string	for
UTF-8	validity.

DATA	LINES

Before	each	data	line	is	passed	to	pcre_exec(),	leading	and	trailing	whitespace	is
removed,	and	it	is	then	scanned	for	\	escapes.	Some	of	these	are	pretty	esoteric
features,	intended	for	checking	out	some	of	the	more	complicated	features	of
PCRE.	If	you	are	just	testing	"ordinary"	regular	expressions,	you	probably	don't
need	any	of	these.	The	following	escapes	are	recognized:

		\a									alarm	(BEL,	\x07)

		\b									backspace	(\x08)

		\e									escape	(\x27)

		\f									formfeed	(\x0c)

		\n									newline	(\x0a)

		\qdd							set	the	PCRE_MATCH_LIMIT	limit	to	dd	(any	number	of	digits)

		\r									carriage	return	(\x0d)

		\t									tab	(\x09)

		\v									vertical	tab	(\x0b)

		\nnn							octal	character	(up	to	3	octal	digits)

		\xhh							hexadecimal	character	(up	to	2	hex	digits)

		\x{hh...}		hexadecimal	character,	any	number	of	digits	in	UTF-8	mode

		\A									pass	the	PCRE_ANCHORED	option	to	pcre_exec()	or	pcre_dfa_exec()

		\B									pass	the	PCRE_NOTBOL	option	to	pcre_exec()	or	pcre_dfa_exec()

		\Cdd							call	pcre_copy_substring()	for	substring	dd	after	a	successful	match	(number	less	than	32)

		\Cname					call	pcre_copy_named_substring()	for	substring	"name"	after	a	successful	match	(name	termin-

															ated	by	next	non	alphanumeric	character)

		\C+								show	the	current	captured	substrings	at	callout	time

		\C-								do	not	supply	a	callout	function

		\C!n							return	1	instead	of	0	when	callout	number	n	is	reached

		\C!n!m					return	1	instead	of	0	when	callout	number	n	is	reached	for	the	nth	time

		\C*n							pass	the	number	n	(may	be	negative)	as	callout	data;	this	is	used	as	the	callout	return	value

		\D									use	the	pcre_dfa_exec()	match	function

		\F									only	shortest	match	for	pcre_dfa_exec()

		\Gdd							call	pcre_get_substring()	for	substring	dd	after	a	successful	match	(number	less	than	32)

		\Gname					call	pcre_get_named_substring()	for	substring	"name"	after	a	successful	match	(name	termin-

															ated	by	next	non-alphanumeric	character)

		\L									call	pcre_get_substringlist()	after	a	successful	match

		\M									discover	the	minimum	MATCH_LIMIT	and	MATCH_LIMIT_RECURSION	settings

		\N									pass	the	PCRE_NOTEMPTY	option	to	pcre_exec()	or	pcre_dfa_exec()

		\Odd							set	the	size	of	the	output	vector	passed	to	pcre_exec()

		\P									pass	the	PCRE_PARTIAL	option	to	pcre_exec()	or	pcre_dfa_exec()

		\Qdd							set	the	PCRE_MATCH_LIMIT_RECURSION	limit	to	dd	(any	number	of	digits)

		\R									pass	the	PCRE_DFA_RESTART	option	to	pcre_dfa_exec()

		\S									output	details	of	memory	get/free	calls	during	matching

		\Z									pass	the	PCRE_NOTEOL	option	to	pcre_exec()	or	pcre_dfa_exec()

		\?									pass	the	PCRE_NO_UTF8_CHECK	option	to	pcre_exec()	or	pcre_dfa_exec()

		\>dd							start	the	match	at	offset	dd	(any	number	of	digits);

															this	sets	the	startoffset	argument	for	pcre_exec()	or	

		\<cr>						pass	the	PCRE_NEWLINE_CR	option	to	pcre_exec()	or	pcre_dfa_exec()

		\<lf>						pass	the	PCRE_NEWLINE_LF	option	to	pcre_exec()	or	pcre_dfa_exec()

		\<crlf>				pass	the	PCRE_NEWLINE_CRLF	option	to	pcre_exec()	or	pcre_dfa_exec()

		\<anycrlf>	pass	the	PCRE_NEWLINE_ANYCRLF	option	to	pcre_exec()	or	

		\<any>					pass	the	PCRE_NEWLINE_ANY	option	to	pcre_exec()	or	pcre_dfa_exec()

The	escapes	that	specify	line	ending	sequences	are	literal	strings,	exactly	as
shown.	No	more	than	one	newline	setting	should	be	present	in	any	data	line.

A	backslash	followed	by	anything	else	just	escapes	the	anything	else.	If	the	very
last	character	is	a	backslash,	it	is	ignored.	This	gives	a	way	of	passing	an	empty
line	as	data,	since	a	real	empty	line	terminates	the	data	input.

If	\M	is	present,	pcretest	calls	pcre_exec()	several	times,	with	different	values	in
the	match_limit	and	match_limit_recursion	fields	of	the	pcre_extra	data
structure,	until	it	finds	the	minimum	numbers	for	each	parameter	that	allow
pcre_exec()	to	complete.	The	match_limit	number	is	a	measure	of	the	amount	of
backtracking	that	takes	place,	and	checking	it	out	can	be	instructive.	For	most
simple	matches,	the	number	is	quite	small,	but	for	patterns	with	very	large
numbers	of	matching	possibilities,	it	can	become	large	very	quickly	with
increasing	length	of	subject	string.	The	match_limit_recursion	number	is	a
measure	of	how	much	stack	(or,	if	PCRE	is	compiled	with	NO_RECURSE,	how
much	heap)	memory	is	needed	to	complete	the	match	attempt.

When	\O	is	used,	the	value	specified	may	be	higher	or	lower	than	the	size	set	by
the	-O	command	line	option	(or	defaulted	to	45);	\O	applies	only	to	the	call	of

pcre_exec()	for	the	line	in	which	it	appears.

If	the	/P	modifier	was	present	on	the	pattern,	causing	the	POSIX	wrapper	API	to
be	used,	the	only	option-setting	sequences	that	have	any	effect	are	\B	and	\Z,
causing	REG_NOTBOL	and	REG_NOTEOL,	respectively,	to	be	passed	to
regexec().

The	use	of	\x{hh...}	to	represent	UTF-8	characters	is	not	dependent	on	the	use	of
the	/8	modifier	on	the	pattern.	It	is	recognized	always.	There	may	be	any	number
of	hexadecimal	digits	inside	the	braces.	The	result	is	from	one	to	six	bytes,
encoded	according	to	the	original	UTF-8	rules	of	RFC	2279.	This	allows	for
values	in	the	range	0	to	0x7FFFFFFF.	Note	that	not	all	of	those	are	valid
Unicode	code	points,	or	indeed	valid	UTF-8	characters	according	to	the	later
rules	in	RFC	3629.

THE	ALTERNATIVE	MATCHING	FUNCTION

By	default,	pcretest	uses	the	standard	PCRE	matching	function,	pcre_exec()	to
match	each	data	line.	From	release	6.0,	PCRE	supports	an	alternative	matching
function,	pcre_dfa_test(),	which	operates	in	a	different	way,	and	has	some
restrictions.	The	differences	between	the	two	functions	are	described	in	the
pcrematching	documentation.

If	a	data	line	contains	the	\D	escape	sequence,	or	if	the	command	line	contains
the	-dfa	option,	the	alternative	matching	function	is	called.	This	function	finds
all	possible	matches	at	a	given	point.	If,	however,	the	\F	escape	sequence	is
present	in	the	data	line,	it	stops	after	the	first	match	is	found.	This	is	always	the
shortest	possible	match.

DEFAULT	OUTPUT	FROM	PCRETEST

This	section	describes	the	output	when	the	normal	matching	function,
pcre_exec(),	is	being	used.

When	a	match	succeeds,	pcretest	outputs	the	list	of	captured	substrings	that
pcre_exec()	returns,	starting	with	number	0	for	the	string	that	matched	the	whole
pattern.	Otherwise,	it	outputs	"No	match"	or	"Partial	match"	when	pcre_exec()
returns	PCRE_ERROR_NOMATCH	or	PCRE_ERROR_PARTIAL,

respectively,	and	otherwise	the	PCRE	negative	error	number.	Here	is	an	example
of	an	interactive	pcretest	run.

		$	pcretest

		PCRE	version	7.0	30-Nov-2006

				re>	/^abc(\d+)/

		data>	abc123

			0:	abc123

			1:	123

		data>	xyz

		No	match

If	the	strings	contain	any	non-printing	characters,	they	are	output	as	\0x	escapes,
or	as	\x{...}	escapes	if	the	/8	modifier	was	present	on	the	pattern.	See	below	for
the	definition	of	non-printing	characters.	If	the	pattern	has	the	/+	modifier,	the
output	for	substring	0	is	followed	by	the	the	rest	of	the	subject	string,	identified
by	"0+"	like	this:

				re>	/cat/+

		data>	cataract

			0:	cat

			0+	aract

If	the	pattern	has	the	/g	or	/G	modifier,	the	results	of	successive	matching
attempts	are	output	in	sequence,	like	this:

				re>	/\Bi(\w\w)/g

		data>	Mississippi

			0:	iss

			1:	ss

			0:	iss

			1:	ss

			0:	ipp

			1:	pp

"No	match"	is	output	only	if	the	first	match	attempt	fails.

If	any	of	the	sequences	\C,	\G,	or	\L	are	present	in	a	data	line	that	is	successfully
matched,	the	substrings	extracted	by	the	convenience	functions	are	output	with
C,	G,	or	L	after	the	string	number	instead	of	a	colon.	This	is	in	addition	to	the
normal	full	list.	The	string	length	(that	is,	the	return	from	the	extraction	function)
is	given	in	parentheses	after	each	string	for	\C	and	\G.

Note	that	whereas	patterns	can	be	continued	over	several	lines	(a	plain	">"

prompt	is	used	for	continuations),	data	lines	may	not.	However	newlines	can	be
included	in	data	by	means	of	the	\n	escape	(or	\r,	\r\n,	etc.,	depending	on	the
newline	sequence	setting).

OUTPUT	FROM	THE	ALTERNATIVE	MATCHING	FUNCTION

When	the	alternative	matching	function,	pcre_dfa_exec(),	is	used	(by	means	of
the	\D	escape	sequence	or	the	-dfa	command	line	option),	the	output	consists	of
a	list	of	all	the	matches	that	start	at	the	first	point	in	the	subject	where	there	is	at
least	one	match.	For	example:

				re>	/(tang|tangerine|tan)/

		data>	yellow	tangerine\D

			0:	tangerine

			1:	tang

			2:	tan

(Using	the	normal	matching	function	on	this	data	finds	only	"tang".)	The	longest
matching	string	is	always	given	first	(and	numbered	zero).

If	/g	is	present	on	the	pattern,	the	search	for	further	matches	resumes	at	the	end
of	the	longest	match.	For	example:

				re>	/(tang|tangerine|tan)/g

		data>	yellow	tangerine	and	tangy	sultana\D

			0:	tangerine

			1:	tang

			2:	tan

			0:	tang

			1:	tan

			0:	tan

Since	the	matching	function	does	not	support	substring	capture,	the	escape
sequences	that	are	concerned	with	captured	substrings	are	not	relevant.

RESTARTING	AFTER	A	PARTIAL	MATCH

When	the	alternative	matching	function	has	given	the
PCRE_ERROR_PARTIAL	return,	indicating	that	the	subject	partially	matched
the	pattern,	you	can	restart	the	match	with	additional	subject	data	by	means	of
the	\R	escape	sequence.	For	example:

				re>	/^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/

		data>	23ja\P\D

		Partial	match:	23ja

		data>	n05\R\D

			0:	n05

For	further	information	about	partial	matching,	see	the	pcrepartial
documentation.

CALLOUTS

If	the	pattern	contains	any	callout	requests,	pcretest's	callout	function	is	called
during	matching.	This	works	with	both	matching	functions.	By	default,	the
called	function	displays	the	callout	number,	the	start	and	current	positions	in	the
text	at	the	callout	time,	and	the	next	pattern	item	to	be	tested.	For	example,	the
output

		--->pqrabcdef

				0				^		^					\d

indicates	that	callout	number	0	occurred	for	a	match	attempt	starting	at	the
fourth	character	of	the	subject	string,	when	the	pointer	was	at	the	seventh
character	of	the	data,	and	when	the	next	pattern	item	was	\d.	Just	one	circumflex
is	output	if	the	start	and	current	positions	are	the	same.

Callouts	numbered	255	are	assumed	to	be	automatic	callouts,	inserted	as	a	result
of	the	/C	pattern	modifier.	In	this	case,	instead	of	showing	the	callout	number,
the	offset	in	the	pattern,	preceded	by	a	plus,	is	output.	For	example:

				re>	/\d?[A-E]*/C

		data>	E*

		--->E*

			+0	^						\d?

			+3	^						[A-E]

			+8	^^					*

		+10	^	^

			0:	E*

The	callout	function	in	pcretest	returns	zero	(carry	on	matching)	by	default,	but
you	can	use	a	\C	item	in	a	data	line	(as	described	above)	to	change	this.

Inserting	callouts	can	be	helpful	when	using	pcretest	to	check	complicated
regular	expressions.	For	further	information	about	callouts,	see	the	pcrecallout

documentation.

NON-PRINTING	CHARACTERS

When	pcretest	is	outputting	text	in	the	compiled	version	of	a	pattern,	bytes	other
than	32-126	are	always	treated	as	non-printing	characters	are	are	therefore
shown	as	hex	escapes.

When	pcretest	is	outputting	text	that	is	a	matched	part	of	a	subject	string,	it
behaves	in	the	same	way,	unless	a	different	locale	has	been	set	for	the	pattern
(using	the	/L	modifier).	In	this	case,	the	isprint()	function	to	distinguish	printing
and	non-printing	characters.

SAVING	AND	RELOADING	COMPILED	PATTERNS

The	facilities	described	in	this	section	are	not	available	when	the	POSIX	inteface
to	PCRE	is	being	used,	that	is,	when	the	/P	pattern	modifier	is	specified.

When	the	POSIX	interface	is	not	in	use,	you	can	cause	pcretest	to	write	a
compiled	pattern	to	a	file,	by	following	the	modifiers	with	>	and	a	file	name.	For
example:

		/pattern/im	>/some/file

See	the	pcreprecompile	documentation	for	a	discussion	about	saving	and	re-
using	compiled	patterns.

The	data	that	is	written	is	binary.	The	first	eight	bytes	are	the	length	of	the
compiled	pattern	data	followed	by	the	length	of	the	optional	study	data,	each
written	as	four	bytes	in	big-endian	order	(most	significant	byte	first).	If	there	is
no	study	data	(either	the	pattern	was	not	studied,	or	studying	did	not	return	any
data),	the	second	length	is	zero.	The	lengths	are	followed	by	an	exact	copy	of	the
compiled	pattern.	If	there	is	additional	study	data,	this	follows	immediately	after
the	compiled	pattern.	After	writing	the	file,	pcretest	expects	to	read	a	new
pattern.

A	saved	pattern	can	be	reloaded	into	pcretest	by	specifing	<	and	a	file	name
instead	of	a	pattern.	The	name	of	the	file	must	not	contain	a	<	character,	as

otherwise	pcretest	will	interpret	the	line	as	a	pattern	delimited	by	<	characters.
For	example:

			re>	</some/file

		Compiled	regex	loaded	from	/some/file

		No	study	data

When	the	pattern	has	been	loaded,	pcretest	proceeds	to	read	data	lines	in	the
usual	way.

You	can	copy	a	file	written	by	pcretest	to	a	different	host	and	reload	it	there,
even	if	the	new	host	has	opposite	endianness	to	the	one	on	which	the	pattern	was
compiled.	For	example,	you	can	compile	on	an	i86	machine	and	run	on	a
SPARC	machine.

File	names	for	saving	and	reloading	can	be	absolute	or	relative,	but	note	that	the
shell	facility	of	expanding	a	file	name	that	starts	with	a	tilde	(~)	is	not	available.

The	ability	to	save	and	reload	files	in	pcretest	is	intended	for	testing	and
experimentation.	It	is	not	intended	for	production	use	because	only	a	single
pattern	can	be	written	to	a	file.	Furthermore,	there	is	no	facility	for	supplying
custom	character	tables	for	use	with	a	reloaded	pattern.	If	the	original	pattern
was	compiled	with	custom	tables,	an	attempt	to	match	a	subject	string	using	a
reloaded	pattern	is	likely	to	cause	pcretest	to	crash.	Finally,	if	you	attempt	to
load	a	file	that	is	not	in	the	correct	format,	the	result	is	undefined.

SEE	ALSO

pcre(3),	pcreapi(3),	pcrecallout(3),	pcrematching(3),	pcrepartial(d),
pcrepattern(3),	pcreprecompile(3).

AUTHOR

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION

Last	updated:	11	September	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

	AUTHORS
	LICENCE
	NEWS
	CHANGELOG
	README
	INSTALL (using Unix configure)
	NON-UNIX-USE (includes CMake instructions)
	HACKING
	Interface for Functions in the Library
	pcrecompile - Compile a regular expression
	pcrecompile2 - Compile a regular expression (alternate interface)
	pcre_config - Show build-time configuration options
	pcre_copy_named_substring - Extract named substring into given buffer
	pcre_copy_substring - Extract numbered substring into given buffer
	pcre_dfa_exec - Match a compiled pattern to a subject string (DFA algorithm; not Perl compatible)
	pcre_exec - Match a compiled pattern to a subject string (Perl compatible)
	pcre_free_substring - Free extracted substring
	pcre_free_substring_list - Free list of extracted substrings
	pcre_fullinfo - Extract information about a pattern
	pcre_get_named_substring - Extract named substring into new memory
	pcre_get_stringnumber - Convert captured string name to number
	pcre_get_substring - Extract numbered substring into new memory
	pcre_get_substring_list - Extract all substrings into new memory
	pcre_info - Obsolete information extraction function
	pcre_maketables - Build character tables in current locale
	pcre_refcount - Maintain reference count in compiled pattern
	pcre_study - Study a compiled pattern
	pcre_version - Return PCRE version and release date

	index - Perl-compatible Regular Expressions (PCRE)
	pcre - Introductory Page
	pcre-config - Information about the installation configuration
	pcreapi - PCRE's native API
	pcrebuild - Options for building PCRE
	pcrecallout - The callout facility
	pcrecompat - Compability with Perl
	pcrecpp - The C++ wrapper for the PCRE library
	pcregrep - The pcregrep command
	pcrematching - Discussion of the two matching algorithms
	pcrepartial - Using PCRE for partial matching
	pcrepattern - Specification of the regular expressions supported by PCRE
	pcreperform - Some comments on performance
	pcreposix - The POSIX API to the PCRE library
	pcrerecompile - How to save and re-use compiled patterns
	pcresample - Description of the sample program
	pcrestack - Discussion of PCRE's stack usage
	pcresyntax - Syntax quick-reference summary
	pcretest - command for testing PCRE

